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Abstract. As self-management features of computer systems depend on
self-knowledge we have to cope with the issue that most large systems
are not entirely known to the self-management software. Especially when
system parts are supplied by external companies which want to preserve
their intellectual property we have to cope with black-box components.
This paper presents a novel approach for self-healing in distributed em-
bedded systems containing black-box application software. The interac-
tive self-healing process is based on well defined system knowledge and
enables the construction of a functional dependency graph which serves
as basis for rule-based root cause analysis and self-healing.

1 Introduction

Intelligent devices pervade more and more our everyday life. But new func-
tionalities and intelligent behavior also cause overhead for the management of
these systems with their hardware and software parts. Especially large systems
with versatile functionalities like vehicles, aircrafts or trains consist of highly
complex software systems executed by multiple, often heterogeneously intercon-
nected hardware nodes. The management of these systems has become one of
the major tasks, as life-cycles are up to several decades for the whole product,
while all of its parts, especially software, have distinctively shorter life-cycles.
The intelligent management of faults in such complex systems has gained a very
high value for the manufacturers who would definitely benefit from every step
research gets nearer to autonomous self-healing of IT systems.

In the majority of cases the software parts of such distributed and embedded
systems are implemented by supplier companies which do not want to reveal their
application-specific intellectual property. As a result, the OEMs1 who integrate
the different parts into the final product have to deal with software-hardware
bundles which exhibit black-box properties. The internals of these modules are
unknown to the integrator and only a specified interface is known. As hiding
of implementation knowledge is essential for supplier companies, a self-healing
approach has to consider these special conditions.

1 OEM - Original Equipment Manufacturer



In this paper we present a novel architecture for self-healing systems in dis-
tributed embedded environments, which regards the black-box properties of ap-
plication components. We underpin our concepts with examples from the au-
tomotive domain. The paper is structured as follows. Section two presents our
target scenario and introduces the self-management architecture with the self-
knowledge that provides the foundation for the interactive self-healing process.
While the third section describes our approach of failure classification, we ad-
dress the topic of interactive self-healing with it’s different stages in section four.
We briefly present our prototype in section five and point out related work in
six, whereas section seven concludes and outlines future work.

2 Target Scenario

As not only functionality but also cost is a driving force in automotive engineer-
ing, current vehicle systems have been recognized to be much too error-prone
and complex due to their heterogeneity. Hence effort is directed towards a reduc-
tion of the number of different nodes and networks in the same system. Instead
of ECUs2 in their current, very specialized design there will be two different
types of nodes in future vehicle systems. On one side there will be light-weight
sensors and actuators that might even be combined with mechanical units like
electronic dampers. On the other side there will be multiple nodes with higher
capacity and computing resources. These nodes are no longer used exclusively
for one specific purpose. Instead, they become platforms able to execute different
applications concurrently.

In our target environment application software is separated from hardware
by an abstraction layer. A small set of powerful platforms executes software
components which encapsulate intellectual property and hence have black-box
properties. In short we use the term components in the following. The plat-
forms are nodes which execute infrastructure software and are connected via a
broadband network. Platforms may provide different capabilities to the software
components running on them. This includes different computing resources and
in particular the type and number of special dedicated devices. Especially these
dedicated devices like sensors and actuators are characteristic for embedded,
vehicle control systems. Applications are defined according to [5] as a sets of
communicating components which provide coherent, user-perceivable function-
ality. Software components can be installed, removed or updated separately or
as a part of an application.

The aim of the interactive self-healing is to provide the best achievable func-
tionality with a system-wide view in the face of faults and failures in both hard-
ware and software.

2 ECU - Electronic Control Unit



2.1 Self-management Architecture

From an abstract point of view embedded control systems consist of platforms
which execute software components. The management of such systems can be
done either decentralized as an emergent effect from autonomous components
as done in [10] or centralized with one manager that controls the whole system.
While a decentralized system definitely has the benefit of avoiding single points of
failure by principle, it causes all components to be intelligent and hence costly
as they all have to include management functionality. Another difficulty with
the decentralized approach is that the outcome of distributed decision making is
hardly predictable. So for our approach we choose a centralized self-healing ar-
chitecture with ”light-weight” black-box components which is based on a central
System Manager and so-called Platform Managers which carry out instructions
and act as a local representatives, see Figure 1. The system manager provides
functionality for typical live-cycle operations like installing, starting, stopping or
removing components and applications. Additionally the system manager pro-
vides access to a component repository where all component archives are stored
for later installation and to the knowledge base which stores the systems self-
knowledge, see Section 2.3.
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Fig. 1. Architecture for centralized self-healing

Application components are labeled A-E in Figure 1. As explained before we
have to cope with black-box properties of application software. So the insides
of components are unknown, but we prescribe a management interface which
has to be implemented by every component. The structure and details about
the communication system are of lesser importance in the context of this pa-
per, but can be found in [6]. A publish/subscribe middleware provides for loose
component coupling and abstraction from the underlying network technology.



2.2 Requirements and Capabilities

In embedded control systems generally all installed applications are executed
concurrently. Hence it is very important to not hamper already running appli-
cations from doing their job when installing new ones. In order to be able to
judge such situations at runtime, we follow the path of describing both applica-
tions and platforms. Applications are composed of software components. Each
software component is in need of certain ’things’ in order to fulfill the task it
has been programmed for. This includes functional requirements (FRs) and non-
functional requirements (NFRs) from a software component point of view [5].
These component requirements are also called constraints or dependencies. The
only dependencies between components are given by functional requirements.

Functional Requirements in this context, describe a components com-
munication relations with other components. They are expressed as Ports of
components. Ports are connected to channels of a publish/subscribe messaging
system [6] and have a defined direction which makes them either InPorts for
receiving messages or OutPorts for sending messages to the connected channel.
The publish/subscribe paradigm with its channels provides for indirection and
location transparency of communication [7].

Non-functional Requirements in this context, describe all further entities
and conditions that are necessary to enable a software component to meet its
service goals. This includes the required resources like processor architecture,
the amount of free and persistent memory, but also what kinds of sensor and
actuator devices are needed. Also other requirements with non-functional nature
are described as NFRs, like the need for encrypted communication or the type
and version of infrastructural software needed as prerequisite on the executing
platform.

Capabilities provide the possibility to describe the features offered by plat-
forms. Capabilities are the counterpart of non-functional requirements. So the
question of whether or not a software component can be installed on a certain
platform can be answered by matching the NFRs of the component against the
capabilities of the platform in question as described in detail in [5].

2.3 Self-knowledge

Self-knowledge is the basis for self-management in any way. Only with a thorough
understanding of what a system looks like, a management software can come to
reasonable decisions. Therefore the system manager employs the concepts of
functional requirements, non-functional requirements, as well as capabilities in
order to build up a model of the system. All the entities in the system like soft-
ware components and platforms are required to contain their own descriptions
and have to make them available to the knowledge base. The knowledge base
represents and stores the systems static self-knowledge. It collects the informa-
tion about applications and components on their installation and removes the
descriptions after uninstallation. Analogously the knowledge base gathers the
information about the available platforms at the time they are first attached



to the rest of the system and removes their descriptions when platforms are
no longer available. This behavior enables the evolution of the complete sys-
tem including dynamic change in the system’s self-knowledge. The interactive
healing process presented in Section 4 we will mainly focus on the functional
dependencies between software components.

3 Failure classification

Self-healing systems should be able to cope with unforeseen problems. In order
to come near the goal of system completeness [12] we defined a classification of
different failures which governs both the localization and the healing of occur-
ring failures. The basis for our fault model have been foundation papers like [3]
but also domain-specific information like error data-bases for typical automotive
errors.

A failure is defined as a ”deviation of the actual output from the required
output by more than specified tolerances” according to [15]. Failures are caused
by faults or defects; failures may propagate and cause additional failures of a
different kind. A symptom is a failure which has been recognized by an observer;
so everything which is true for a failure is also valid for a symptom. In the
following the term symptom is used to emphasize that the failure has been
recognized.

We have defined a set of failure classes fc ∈ FC where each failure class is
defined as a triple fc := (O,PF,R) with its possible occurrence situations O
and a set of propagated failure classes PF = {fc1...fcp}. R represents a boolean
value which indicates whether fc is a root failure class or not. Non-root failure
classes are called propagated failure classes which only occur due to propagation.
The function isRoot(x) : FC 7−→ {0, 1} returns 1 for a root failure class and 0
for a propagated class. The function pf(x) : FC 7−→ P(FC) returns the set of
propagated failure classes for a given failure class with ∀c ∈ PF | isRoot(c) = 0.
There is only one failure per component at the same time and we are working
on failure classes to be open for unforeseen occurrences. So what is interesting
about a symptom is its class and the component where it was detected.

From a total of 15 different failure classes we will present only two: the timing
failure as an example for a propagated failure class and the device failure as an
example for a root failure class.

Timing Failure A timing failure is featured by late arrival of at least one in-
coming message. The occurrence OT is hence restricted to software compo-
nents which provide InPorts and depend on inputs from other components,
see Section 4.2. A timing failure may propagate along its OutPorts and may
cause further failures (PFT ) of the classes timing, omission and operability.
Timing failure is a non-root failure class, RT = 0.

Device Failure A device failure is given if an I/O device like a sensor or actu-
ator does not work properly. The occurrence OD is restricted to components
which make direct use of devices. Device failures are root failures RD = 1 and



may propagate (PFD) and manifest in the failure classes timing, omission,
response and operability.

4 Interactive Self-Healing

As there are many different factors that influence the procedure of self-healing,
especially the root cause analysis becomes very difficult. From the many possible
approaches as presented in [17] we chose a rule-based approach. Interactive self-
healing means that we do not strictly separate the phases the self-healing control
cycle, instead there may be healing-actions mixed up with the root cause locating
process. In this vein our approach mimics a human expert who would change
the system and would plan is next steps depending on the results of the first.

4.1 Health Monitoring

The first step in a self-healing control-loop like in [11] is the monitoring of the
system at runtime. In our architecture we gather information for the self-healing
process at three different layers from which we will focus on application specific
monitoring in this paper.

Network monitoring keeps track of the platforms, networks and the state of
connections between them. It provides information to the self-healing system
by sending alarm messages in case of malfunctions.

Platform monitoring is responsible for monitoring the availability of resources
on each platform and sends the information to the healing system.

Application specific monitoring How to monitor software components if you
don’t know much about them (black-boxes)? Our answer is the following:
Application specific knowledge is needed to recognize application specific
failures. Hence, application components have to include specific observers as
this knowledge is not available at infrastructure level, see Figure 2. Com-
ponents are able to detect their own failures and can additionally use their
communication relations to mutually monitor themselves and report alarms
to the management system. Symptoms of a timing failure for example can
be easily recognized by the receivers of late messages, additionally receivers
can perform plausibility checks on the contents of messages and can detect
the loss of cyclic messages. In this sense every component of the system be-
comes a monitor for different kinds of anomalies, both self-made and caused
by others.

Figure 2 depicts the concept of mutual component monitoring while a cen-
tralized system healer is used to analyze the monitoring data and perform the
planning and execution steps of our self-healing control loop.
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Fig. 2. Monitoring and healing concept

4.2 Functional Dependency Graph

In order to be generic, all rules of the rule-base do not depend on a specific de-
ployment of application components, but are based on a functional dependency
graph which represents the communication relations between software compo-
nents because these links are the main path of failure propagation. The graph is
extracted from the self-knowledge of the system.

There are two different types of nodes and arcs in a functional dependency
graph FDG := (SC,CC,Pi, Po). There is a set of software components SC
and a set of communication channels CC. Two sets of arcs connect components
and channels in a directed way, representing the components ports. (1) InPorts:
∀p = (x, y) ∈ Pi|x ∈ CC ∧ y ∈ SC and (2) OutPorts: ∀p = (x, y) ∈ Po|x ∈
SC ∧ y ∈ CC. This results in a directed graph where the successor of each
component is a channel and the successor of each channel is a component again,
see Figure 3 for an example. The function dep(x) : SC 7−→ P(SC) returns for
each component the set of components on which it functionally depends, this
means for components x, y ∈ SC that y depends on x if ∃a = (x, cj) ∈ Po∧∃b =
(ci, y) ∈ Pi with i = j.

Software Component

Communication Channel
OutPort

InPort

Device

Fig. 3. Functional Dependency Graph



4.3 Propagated Symptom Elimination

As a fault in an intermeshed system is likely to cause multiple failures and
symptoms which in turn may cause further symptoms and so on, we try to
avoid overhead by removing unnecessary symptoms. One hint is given by the the
isRoot(x) function of symptoms, another hint is given by the failure propagation
defined for each failure class which can be used for sorting out symptoms due to
propagation. The propagation can only occur along the edges of the FDG. For
a set of symptoms S we define the distance function d(x, y) : S×S 7−→ N which
returns the distance for the two symptoms x and y as the number of channels
between the two components where the symptoms occurred.

Consider a set of symptoms Scurr which collects the symptoms in the system
manager for a certain timespan. We have to check for every newly recognized
symptom if it is propagated from a different symptom which is already in Scurr

or whether it could be the cause for symptoms in Scurr due to propagation. For
every symptom x ∈ Scurr the explanation function ex(x) : Scurr 7−→ {0, 1} indi-
cates whether it could be explained as propagation of another one symptom. A
symptom is an essential input for the healing process, if it cannot be explained
by other symptoms. The function ex(x) is defined as follows for a given propaga-
tion distance pd ∈ N, which is the maximum number of component levels where
a symptom of a functional dependent component is considered to be a possible
propagation.

ex(x) =


1, ∃ s ∈ Scurr : pd > d(x, s) ∧ x ∈ pf(s)
0, isRoot(x) = 1
0, ¬∃ s ∈ Scurr : d > pd(x, s)
0, else

(1)

The function 1 defines when a symptom is not needed to be treated by
the self-healing process. These symptoms however are not removed from the
set Scurr as function 1 may not be evaluated properly for further symptoms if
the important knowledge of propagated symptoms is lost. By the means of the
propagation distance we are able to deal with cycles in a functional dependency
graph.

4.4 Planning and Executing Actions

The result of the propagated symptom elimination phase is a set of significant
symptoms, which becomes the input for a rule-based planning and healing pro-
cess. The rule-based approach has been chosen in order to provide a flexible
and easily tunable system. The rules for our system have been defined based on
the functional dependency graph, on the global system knowledge and on our
failure classification. Hence even specific system configurations can be treated in
a generic way.

The rules may cause tests like component self-tests, platform tests or net-
work tests, which in turn may cause further rules to be activated. Additionally,
rules may initiate reinitialization of devices, migrate or update components and
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remove complete applications in case of severe problems which results in several
escalation steps for healing a fault. The overall goal of the rules is to find an in-
stance of one of the root cause failure classes and heal it. A failure is considered
to be healed if the dependent components can work on without encountering
new symptoms.

To get an idea of what a typical healing process looks like, we depict it’s
beginning in an activity diagram in Figure 4. The first distinction is to be made
depending on whether the current symptom is element of a root failure class
or not. Generally we first test the network and the symptomatic component’s
platform in order to avoid unnecessary reasoning. Depending on the outcome of
a Platform Test we decide whether the affected component has to be restarted.
If a component restart does not heal the failure we use the functional depen-
dency graph in order to perform component self-tests on the publishers of the
symptomatic component (Publisher Test). This may result in new alarm mes-
sages with new symptoms which are again treated by the rule engine. Rules for
specialized tests and healing actions are defined according to the different failure
classes as can be seen in the Device Test in Figure 4.

5 Prototype and Evaluation

For the evaluation we have implemented a prototype system based on four differ-
ent nodes connected via two different Ethernets and a CAN3 network. The nodes
run Linux and a Sun JVM 1.5 which executes a Knopflerfish OSGi framework.
All functionality has been implemented as OSGi bundles and the platform man-
ager (see Figure 1) enables the life-cycle management of application software,
while a publish/subscribe middleware enables location transparent communica-
tion. The rule-base self-healing process has been implemented by the means of
the Jess rule engine4.

The web ontology language (OWL) [1] has been chosen as a suitable for-
mat for encoding the the system knowledge with its descriptions of platforms
and components. From the three sub-languages of OWL we used OWL DL (De-
scription Logic) since it supports the maximum expressiveness while retaining
3 CAN - Controller Area Network
4 Jess - http://www.jessrules.com/jess/index.shtml



computational completeness [13]. OWL is based on the Resource Description
Framework (RDF) which provides XML-formated data representation. For the
knowledge representation, we adopted the N-triple notation of RDF, details on
the description language can be found in [9].

So far we could validate our approach with two example scenarios where we
could successfully locate and treat timing and device failures in our prototype.

6 Related Work

Model-based adaptation as in [8] builds an architectural model and uses descrip-
tions of architectural styles to recognize violations of constraints which have to
cause repair operations. Like the architectural self-healing in [8] and [14] we also
use an external healing process with external knowledge. We include however
internal aspects with the use of application specific observers. Self-management
in enterprise networks and the Internet is addressed in [4] with the help of lo-
cal rule-based expert systems which have been identified to be well suited to
automate management tasks as they are extensible, understandable, reusable
and interoperable. The ABLE tool-kit provides rule-based planning and execu-
tion support for domain independent autonomic computing [16]. It is strongly
coupled with Java and defines a specific rule language which allows to specify
different kinds of rules.

The escalation steps of many of our healing actions are designed in the style
of ”recursive restartability” as described in [2] which also tries to fix a problem
locally and only extend to a broader context if the local restart did not succeed.
However most of these approaches do not explicitly address the problem of self-
healing in the face of black-box components.

7 Conclusions and future work

In this paper we have presented a novel approach for dealing with black-box soft-
ware components in a self-healing system. The basis for the self-healing process
is given by the systems self-knowledge from which we construct the functional
dependency graph. The DFG provides a suitable basis for symptom elimination
and rule-based reasoning for the actual interactive root cause analysis. Rules are
based on generic assets and on expert knowledge.

However testing with scenarios does not allow general statements about the
correctness and quality of our rule-base. As most of the rules rely on the coop-
eration of software components it is difficult to tell by scenarios how the system
would behave in the face of false positives and other incorrect answers. There-
fore we are currently implementing a simulation environment which mimics the
behavior of a complete system, including multiple symptoms and the possibility
of incorrect component self-testing.
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