
CONTENT ADAPTATION FOR HETEROGENEOUS
MOBILE DEVICES

Robert Schmohl
Institut für Informatik

Technische Universität München
Boltzmannstr. 3

85748 Garching bei München
Germany

Email: schmohl@in.tum.de
Phone: +49-89-289-18566

Fax: +49-89-289-18557

Uwe Baumgarten
Institut für Informatik

Technische Universität München
Boltzmannstr. 3

85748 Garching bei München
Germany

Email: baumgaru@in.tum.de
Phone: +49-89-289-18564

Fax: +49-89-289-18557

Lars Köthner
Comnos GmbH

Nymphenburger Str. 20a
80335 München

Germany
Email: lars.koethner@comnos.de

Phone: +49-89-2000329-0

Fax: +49-89-2000329-99

ABSTRACT
Recent advances in mobile computing have spawned a very heterogeneous
environment of mobile devices, which is reflected by the presence of the devices’
different capabilities. This chapter focuses on handling this device heterogeneity in
the context of content adaptation of mobile services, so that generic content can be
provided to any device in the heterogeneity spectrum. We present an approach, which
enables mobile services to adapt its content provision to a mobile device by
considering the device’s content provision capabilities. Those capabilities encompass
both the communication channels for content delivery, and the capabilities to present
content to the user. Our approach is designed as a service platform, which implements
a content adaptation procedure for web-based mobile services by utilizing device
capability databases and generic page transformation. This approach enables mobile
devices to visualize any generic content device-specifically on their integrated
browsers.

INDEX WORDS
• Mobile computing
• Mobile services

• Mobile device heterogeneity
• Content adaptation

• Multi-channel service provision
• Web-based platform

• XML transformation

CONTENT ADAPTATION FOR HETEROGENEOUS
MOBILE DEVICES

INTRODUCTION
Since mobile computing is getting increasingly popular, the development of mobile
services is getting increasingly complex implying new challenges to be handled
(Schmohl, 2007; Want, 2005). One of those challenges is the highly heterogeneous
environment of mobile devices, which has emerged as a consequence of the rapid
mobile computing evolution of the past years. Most companies handle the
heterogeneity of mobile devices by employing the Pareto principle, also known as the
80-20-rule. In this context, this approach proposes to make a mobile service available
for 80% of the users, which employ 20% of devices available on the specific target
market. However, although this approach may work in practice, it lacks scalability
and it requires a high level of maintenance implied by the constantly ongoing
evolution of technologies. Hence, this solution of the problem is temporary at best.

Mobile devices' heterogeneity can be divided into hardware and software
heterogeneity (da Rocha, 2005). Hardware heterogeneity reflects the presence of
devices with different capabilities. Software heterogeneity describes the presence of
different operating systems and applications running on mobile devices. Speaking of
the provision of web-based mobile services, we face both hardware and software
heterogeneity, which is influenced by the following aspects:

• Markup languages: Mobile devices support several different markup
languages to display output. However, most of them support only a few, so
delivery of output is highly dependent on the target device's supported markup
language.

• Device output capabilities: Devices have very different capabilities in
processing output visually and acoustically (see the subsequent section about
content adaptation).

• Logical communication channels: Mobile devices’ communication is mapped
on physical and logical channels. While a device's physical communication
channels are intended to stay transparent to both the user and the mobile
service, the awareness of logical channels does matter. From this perspective,
service requests and provision occur on logical channels (such as SMS, MMS,
E-mail, voice, etc.), whose availability is completely device-dependent.

To tackle those heterogeneity issues we have developed a concept of a web-based
platform for mobile services, which handles both content adaptation and multi-
channel service provision. The basic idea behind this concept is based on a single
request-response dialog between the user of the mobile service and the platform
providing it. The outline of this concept encompasses the creation of a generic and
device-independent content-page, which is adapted to the requesting device using a
device capability database and XML transformation techniques. The conceptual
design of the web-based platform introduced here includes multi-channel
communication and modular configuration (service creation, discussed further on in
this chapter).
While the transformation of generic content covers the heterogeneity issues
concerning devices’ markup languages and output capabilities, the multi-channel

communication aspect enables the provision of services on different logical channels,
thus handling the correspondent remaining heterogeneity issue listed above. The
aspect of configuring the platform modularly aims at omitting the need of creating
services by means of programming. We propose to assemble mobile services out
custom building blocks, which are individually modeled instead of programmed. This
aspect results in significant simplification of service creation, since the complexities
of both the service creation and the underlying web framework are reduced.
The conceptual design introduced here has been developed in a joint effort by the
Technische Universität München and the Comnos GmbH to complement an existent
mobile service platform, the Open Dialog Platform (ODP) (Comnos GmbH, 2007).
The ODP is capable of providing services by SMS, MMS and email, so that the work
presented in this chapter aims at complementing the ODP by enabling service
provision on the web channel. We have validated this conceptualization by
implementing the web-channel-platform accordingly. We are going to discuss the
implementation after the conceptual discussion in the subsequent sections.
The rest of this chapter is structured as follows: In the next section we discuss the
aspects relevant for a web-platform, which aims at providing mobile services. Those
aspects reflect an as-is analysis of current technologies. Afterwards, we present an
overview about the utilized concept and the corresponding platform design. We carry
on with the discussion of our approach to solve the heterogeneity problem. With the
concept introduced, we briefly present our implementation of the platform before we
subsequently conclude this chapter by summarizing our work and discussing the
outlook on our future work.

BACKGROUND
To determine the relevant aspects for our approach, we have evaluated a set of Java-
based web frameworks. The reason for putting our focus on this type of frameworks is
the setting of our current system (Comnos GmbH, 2007), which runs in a J2EE
environment and which is intended to host our mobile service platform
implementation. We are going to discuss the implementation later on. At this moment,
we put our focus on the web framework evaluation, which we have conducted to
identify the current state-of-the-art techniques in web framework development.

The evaluation has encompassed frameworks developed by the Apache Foundation
(Apache Software Foundation, 2007), such as Struts, Turbine, Tapestry, Velocity and
Cocoon, as well as Spring (Spring, 2007), WebWork (Open Symphony, 2007) and
Java Server Faces (Sun Microsystems Inc., 2007). The following enumeration shows
the aspects, that we have identified during the evaluation and which we consider as
most relevant for a web framework employed for our approach:

• Request mapping: Those aspects describe how incoming client requests are
handled. This primarily denotes which URLs are mapped to which application
entry points handled by the web framework. It also includes the issue of
assigning existent sessions to its users. The evaluation has shown that XML is
a widely accepted method in configuring request mappings.

• Page flow control: This aspect consists of the sequence of pages, which a user
can request in a web application. A logical abstraction of this aspect is to
describe all possible sequences of pages by a directed graph, denoting the

page flow. For this purpose, XML is a reasonable format to represent such a
data structure in this case, too.

• Business logic execution: The business logic denotes all logic necessary to
calculate results, triggered by requests and influencing the content returned to
clients. The web framework controls its execution, which occurs in the period
between receiving a client request and issuing the appropriate response.
Business logic is usually encapsulated in Java Beans or POJOs (“Plain Old
Java Objects”), loaded by the web framework and executed as actions.

• Output rendering: The actual construction of the output data, which is
subsequently sent back to the client, is the main part of this aspect. Since we
are dealing with a highly heterogeneous set of possible clients, the device-
specific adaptation of output has to be handled adequately. A common
approach is to use generic markup to describe the output's static content and to
create the final output with regard to dynamic content and device data at
runtime. Since we focus on mobile devices, the output needs to be delivered to
fit on adequate display sizes.

• Configurability: This aspect encompasses the configuration of all dynamic
functionalities of a framework. This may include output page content, page
flow definitions, etc. Configurations are to be modular and adequately
represented in order to be easily deployable.

• Definition of services: As a consequence of our above definition of
configurations we can state, that a user-accessed web-based service is
represented by the set of configurations interpreted by the framework. Since
our focus is set on mobile services, we especially emphasize the issues of
creating proper output pages tailored for mobile devices. This encompasses
the minimization of content and the creation of device-specific layout.

• Stability and performance: Web frameworks are required to handle large
amounts of simultaneous requests. For this reason, non-functional aspects,
such as stability and performance, are equally important.

After having evaluated the web frameworks, we have come to the conclusion, that
none of them is suitable to be employed as a base for our concept. The reason is that
every framework has a different strong emphasis on each of the various listed aspects.
JSF and Spring, for example, handle the aspect of defining page flows very neatly.
Cocoon, on the other hand, is doubtlessly the most powerful framework when it
comes to adapting content to a large amount of different formats. However, Cocoon
lacks the strengths of other frameworks and integrates poorly into modular systems. It
also performs just moderately. For those reasons, we decided not to employ one of the
evaluated frameworks neither as the controlling component nor as subordinate
modules. Our consideration of employing Cocoon was put aside due to the integration
issues.

For the just discussed reasons, our course of action has been to regard the aspects
listed above as a frame for the conceptualization of our own web platform, which we
present in this chapter. Hence, these aspects must be refined so that they can be
interpreted as basic requirements, which need to be met in the platform design. It is
discussed in the next section.

PLATFORM DESIGN
With the frame of requirements identified, we now introduce the design of the
platform implementing our approach. We start exploring the platform’s configuration
modules, which depict an important cornerstone of our concept. Afterwards, we
describe the workflow illustrating the basic working principle of providing content.
We close this section by providing a brief architectural draft, which reflects both the
workflow and the configuration modules.

Configuration
Our platform proposal utilizes modular configuration with the individual
configuration modules used as building blocks for the complete definition of a mobile
service. There are 4 types of configuration modules:

• Page flow definition: defines the page flow of the service. It represents a graph
with its edges denoting output pages and business logic actions, and its
vertices denoting the transitions to interconnect them according to the
service’s specification.

• Business logic definition: defines the business logic executed during page flow
traversing. This particularly includes the transition of communication channels
within a mobile service execution. The single steps to be executed are
summarized in a modeled definition, which is interpreted and executed by the
platform. In addition to modeling business logic, regularly programmed
libraries can be loaded and executed by the platform. However, a detailed
discussion of this topic is out of the scope of this chapter.

• Page definition: defines the structure and content of an output page. We have
identified several basic page types, which page definitions can be exclusively
assigned. Those page types enable a structured subset of all reasonable pages
modelable with markup languages. They cover most use cases, such as
representing content, input forms or result lists, for example. The constraint of
page definitions being assigned a single page type out of a limited amount of
page types greatly reduces the complexity, which is normally given when
using markup languages. Hence, the complexity of defining page definitions is
reduced without significantly limiting their expressional power.

• Style definition: defines the stylistic properties of output pages. This may
include layout, colors, font sizes, etc.

All of those configuration types are instantiated as XML-defined configurations, so
that they can be read and processed by both men and machines. The coherence of
those configurations with our platform proposal is discussed later on in this chapter.
Figure 1 visualizes in which context those configurations are settled. The main
purpose for the modular conception of those configurations is to omit the need to
define them by means of programming (as stated in the introductory section). Defined
sets of those configurations represent the execution manual for the service platform to
provide a specified service, so that those sets can basically be interpreted as the
service definitions themselves. This approach reduces the complexity of the service
definition, the platform design and the handling of heterogeneity aspects for the
following reasons:

• Complexity reduction of service definition: A mobile service is modeled,
instead of being programmed. The designer of a mobile service has a
structured set of design items (business logic, page types, style types)
available for modeling, which cover most use cases.

• Complexity reduction of platform design: The platform simply loads and
utilizes the configuration modules. This makes the platform scalable and easy
to maintain.

• Complexity reduction of device heterogeneity: Device heterogeneity does not
need to be handled in configurations. Instead, the platform’s dedicated
components accomplish this task.

A notable consequence of complexity reduction and the XML-based modeling
approach is the minimization of effort to create services.

Workflow
The workflow discussed here describes a typical dialog between the mobile device
(the client) and our service-provisioning platform (the server). Such a dialog is also
generally referred to as a request-response-cycle.

Figure 1 - Workflow

Device detection An incoming request from a mobile device is received by the
platform via the HTTP protocol (HTTP, 2007). The user-agent header from this
request is extracted and looked up in a device database to identify the requesting
device. With the device identified, all device capabilities are retrieved from the
database as well. This device capability database (DCDB) contains all relevant and
device-specific information to accurately render output pages for display at the
respective client device.

Request procession The base of processing client request is the concept of page
flows, which denotes a sequence of states traversed by the client. Those flows are
mapped on the page flow definition, which defines all possible flows. Graphically
represented, a single page flow is a directed path in the page flow definition graph.
The page flow definition of a web-based service includes dedicated states for output
pages and business logic (vertices in the graph). Those states are connected by
directed transitions (edges in the graph). Put in sequence, those states create a flow,
which basically denotes the workflow of a service. A user of a service only recognizes

the transition between an output-state to another, since the output pages assigned to
the correspondent output-state are shown to the user. The transition between two
output-states triggers all business logic defined in the business-logic-states on the path
between those two output-states. This approach allows the construction of services,
which symbiotically combine both output and business logic. Figure 2 shows an
exemplary page flow definition. A flow in the scenario described in this figure is to be
interpreted as the login process conducted by a user.

Figure 2 - Example of a page flow definition

Intermediary page generation Before being returned to the client the output
information is first generated as a device-independent meta-page. It serves as an
intermediary representation of all the content, which is supposed to be on the final
device-specific output page. The intermediary page is generated from a static page
definition and a style definition, which both have been identified after successfully
conducting the step to the output-state in the page flow. The generation process
consists of 2 independent tasks:

• Fusion of content and style: The page- and style definition are concatenated,
so that the intermediary page includes information about both style and
content.

• Dynamic reference dissolving: In addition to static content, both page- and
style definition may contain references to dynamic data, which is available at
runtime only. This includes data defined by the execution of business logic,
data passed by the user in the request, etc. During the generation of the
intermediary page, those references are dissolved and the current data is
fetched from the mobile service’s current context.

The resultant intermediary page includes all of the content information to be sent to
the client device. As the style- and page definitions, it is a valid XML document. It is
to be emphasized, that it is still lacking device-specifity and therefore needs to be
adapted. Figure 3 visualizes the intermediary page generation.

Figure 3 - Page generation process

Page transformation and content adaptation In order to be displayed properly by
the client device the intermediary page is transformed according to the client's device-
specifications. Since the intermediary page and the final output page are valid XML
documents (the markup language of the output page is an XML-derivate) this is done
using parameterized XSL-T (XSL-T, 2007), a common XML transformation
technique. The adaptation process includes the conformance to the device's support of
both markup language and media. To do so, the process furthermore includes the
utilization of the device data extracted from the DCDB in the beginning of the
request-response-cycle. Hence, the adaptation process consists of 2 concurrently
handled aspects:

• The transformation of the intermediary page into a page complying with the
target device's markup language support

• The adaptation of media to be displayed properly on the target device's screen
The resultant output page is subsequently returned to the client, completely tailored to
its device capabilities.
At this point, the reader is advised to re-review Figure 1, which visualizes the
workflow discussed in this section.

Architectural Draft
The architectural draft presented here strongly reflects the workflow described in the
previous section. The platform is composed of 3 basic components:

• Device detector: This component handles the device detection and the
connection to the DCDB. It is responsible for loading device data into the
platform.

• Request processor: This building block handles web-specific procession of
incoming client requests, such as request mapping and page flow procession.

• Output generator: The generation of the intermediary page and its adaptation
to the client device is realized by this component.

Those components are structured in 2 layers: the presentation layer handling device
detection and content adaptation, and the core framework handling the request
procession. Figure 4 visualizes this proposed architecture.

Figure 4 - Architectural draft

CONTENT ADAPTATION CONCEPT
This section discusses the adaptation of the output data to meet the client device's
specifications. First, we decompose the mobile devices' heterogeneity by structuring
the device-specific information. Then, we have a look on the working principle of the
content adaptation process, which is composed of two subordinate tasks: the
transformation of the intermediary page and the adaptation of all containing media
content in the transformed page.

Handling Device Heterogeneity
The heterogeneous capabilities of mobile devices regarding the visualization of
content received while accessing a web-based service have been abstracted as
follows:

• Supported markup language: The mobile device's integrated browser supports
a specific set of markup languages. However, even though markup languages
are standardized, some manufacturers extend their devices' markup support by
adding their own specifications. All markup support is based on the browser
employed by a mobile device, which can be a device's manufacturer's design
(Nokia, for example, employs its own browsers in its devices) or an external
product, such as the externally licensed OpenWave Browser (Openwave
Systems Inc., 2007). Hence, markup support is not dependent on devices, but
on the mobile devices' browsers.

• Media output capabilities: Mobile devices have different capabilities to output
both visual and acoustical media. Those capabilities may include physical
display properties, supported media file formats, etc. For example, a newer
mobile device may support colored Jpeg images whereas an older device may
only be able to display WBMP (WBMP, 2007) images on a monochrome
display. Depending on such capabilities, media content has to be delivered in
the particular format meeting the target device's capabilities.

• Supported logical channels: As stated before, mobile services can be provided
on numerous channels, such as SMS, MMS, voice and/or web. Since the work
described in this paper focuses on the web channel, we state this aspect on
account of completeness and we briefly discuss it later on.

Based on this abstraction of the heterogeneity faced while considering our content
adaptation approach the adaptation process can be decomposed into the following two
steps, which are discussed in the subsequent sections:

1. The transformation of the generic intermediary page into the output page
composed in the target device's supported markup language.

2. The adaptation of all media content meeting the target device's specification
concerning the visual and acoustical output.

XSL-T Transformation and Parameterization
As outlined during the introduction of the workflow, the content adaptation process
starts when the intermediate page is constructed. Since both the intermediate page and
the adapted output page are valid XML documents, the intermediate page is
transformed into the device-specific page using XSL-T. To incorporate the device
specifics into the content adaptation procedure the device data, which has been
determined during the device detection phase, is used to parameterize the
transformation process. That procedure can be decomposed into the following steps as
visualized in Figure 5:

1. Stylesheet selection: XSL-T transformations are defined by stylesheets, which
include all transforming instructions. In our approach we propose a stylesheet
for each markup language. Since the device is identified at this point of the
workflow, the device's browser - and therefore its supported markup language
- is known and hence specifies the stylesheet for the transformation. If the
browser supports several markup languages a prioritized selection is made.

2. Inclusion of device parameters: Since the interpretation of markup is not
language-specific, but browser-specific, certain device characteristics may be
of importance to display the output page properly at the client device. That's
why all relevant device parameters are passed as XSL-T parameters to the
transformation engine.

3. Transformation: With the stylesheet of the target markup language selected
and all device parameters known, the transformation process is conducted
outputting the device-specific page.

Figure 5 - Transformation process

At this point, we exploit the reduction of complexity of markup languages, which we
argued earlier while introducing our modular configuration concept. The page- and
style definitions are minimized to a few types, thus being manageable and far less
complex than original markup equivalents (i.e. HTML). Hence, the intermediary page
inherits that advantage and we exploit the fact that a manageable intermediary XML-
page is easier to transform, than a document in a standardized markup language (i.e.
HTML, again).

Adaptation of Media Content
While having abstracted the device heterogeneity aspects we have stated that the
output of media relies heavily on device capabilities. For this reason, we need to
know what the requesting client device is actually capable of. This information has

already been made available by the device detector at the beginning of the request-
response-cycle (see previous section about the workflow) and it is passed in the form
of parameters to the transformation engine prior to the transformation.
The intermediate page includes references to original media items, which are all
device-independent. Although, the intermediary page generation includes the
dissolving of all dynamic references, the dissolving of media references has been
explicitly postponed, since the intermediary page is supposed to be device-
independent. Instead, the page transformation substitutes all references to original
media, so that the output page only references device-specific media, which can be
outputted properly at the client device.

Those references to device-specific media imply an existent repository with all
imaginable device-specific derivates of all available (original) media items. This
repository needs to be structured by the heterogeneity aspects defining the output
capabilities of mobile devices. In particular, we propose the following criteria for
such a structuring:

• Type of media: This may include the basic type of a media element, such as
image or sound.

• Type of usage: Another structural criterion may be the information on how the
media element is to be used. If we consider an image, the type of usage may
be “thumbnail”, “preview”, etc.

• Media Format: Electronic media is available in an abundance of formats.
Regarding the example with images again, there are quite a few broadly
supported formats, such as Jpeg, GIF, PNG, etc. Hence, structuring of media
formats seems reasonable.

• Media properties: This structuring criterion denotes properties of format-
independent media elements, such as minimum size when speaking of the
image example again.

The media repository may be structured following the criteria proposed above. More
precisely, this means, that each media element corresponds to a set of all possible
derivates fitting the aspects above. That implies that the set of derivates has to be
spawned for each new media element inserted into the repository. To avoid the
extraordinary maintenance effort implied by this thought, we propose to create the
necessary derivates just in time. Having the structured repository available, a device-
specific derivate requested by a mobile device, which is referenced in the just
received output page, is created upon this request. The newly created derivate is then
stored in the repository so that it can be returned immediately upon the next request
with the fitting structuring parameters. Figure 6 visualizes this workflow, which
obviously causes significant performance savings by creating device-specific media
once and returns it on every subsequent matching request.

Figure 6 - Adapting media to device specifications

It is further to be reminded, that the media derivates in the repository are not
necessarily device-specific. They are not structured by device-specificity, but by
heterogeneity aspects, such as those listed above.

Multi-Channel Support
Although this paper focuses on web-based mobile services, we want to briefly discuss
the possibility of communicating aside from the web-channel, too. The
communication on other channels, such as SMS, Email or MMS, is implemented by
modules other than the platform conceptualized in this chapter. All those modules
compose the multi-channel service providing Open Dialog Platform (Comnos GmbH,
2007), as introduced in this chapter’s introduction.

However, even though this chapter’s platform design deals with the communication
on the web-channel, it is to be clarified how channel transitions (from the web-
channel to another and vice versa) are realized. As stated earlier, channel transitions
are executed by the business logic. In the approach presented so far, we see the
business logic executed during the request procession phase in the context of the page
flow, when business logic states are traversed during the transition from one output
state to another. This assumption implies that the business logic in question is
attached to the corresponding servers controlling the specific channel communication,
such as SMS centers (SMS channel) or service platforms handling multi-channel
communication other than the web-channel.

A mentionable use case of the platform presented in this chapter is the applicability to
extend it to enable the voice-channel. It requires the connection to a voice browser or
a voice platform between our platform and the user’s mobile phone. The voice
platform controls the voice dialog with the user and concurrently acquires the content
from our platform in form of Voice-XML, which has been created by our platform
using the adaptation techniques introduced earlier. All it takes is an XSL-stylesheet
capable of transforming page- and style definitions into Voice-XML documents,
which are standardized for the use by voice platforms. Our page definition rules have
been designed in consideration of also employing its content on the voice channel.
Concluding, all additionally required components for covering the voice channel
integrate perfectly into our platform, so it can be easily extended in this way.

THE PLATFORM IMPLEMENTATION
In order to validate our concept presented in this chapter, we have implemented the
proposed platform, which utilizes all key functionalities described here.
The platform is an application written in Java and running on a Java servlet container.
It is able to provide services to requesting mobile devices utilizing the various
modular configurations. The content adaptation is working properly for devices tested
with support of XHTML, WAP 1.1, WAP 1.2, HTML 4.0, CHTML (I-mode) and
others. Figure 7 demonstrates an example output of a page on different mobile
devices provided by the platform.

Figure 7 - Output of a generic page on 3 different devices

The service platform presented in this chapter is acting as a subcomponent of our
Open Dialog Platform (Comnos GmbH, 2007). The design of the ODP is focused on
multi-channel provision of mobile services employing subordinate components, each
realizing communication on specified channels. The ODP runs in a J2EE environment
and for that reason our mobile web-service provisioning platform integrates well into
the ODP, realizing the ODP's web channel. The ODP possesses a dedicated
component capable of executing business logic configurations. This business logic
engine is capable of communicating with SMTP servers and SMS centers to enable
multi-channel communication.
A GUI is supplementing the ODP, enabling a designer to easily compose and
maintain services for mobile devices. This includes the configurations discussed in
this chapter: the definition of page flows, output pages and business logic.

CONCLUSION

Summary and Outlook
The concept for adapting web content to a very heterogeneous set of mobile devices
by employing a DCDB-driven adaptation mechanism has proved valid with the
implementation of the platform. We are able to easily construct mobile services and
provide them to any device having a web browser installed. Service construction is
simple and powerful, since the most important service aspects of page flow, page
definition and business logic are definable through a GUI. The service is then
available to any device after the device specifications are entered into the DCDB.
Finally, the concept presented here greatly reduces the maintenance complexity
implied by the heterogeneity issue, enabling mobile service providers to broaden their
range of possible clients with minimal effort.

The next mid-term steps will focus on maturing the platform application, and on
optimizing multi-channel communication and business logic execution.

The long-term focus lies on extending the ODP and to enable further channels other
than those in a GSM network.

Related Work
Since we are addressing a current issue in this paper, several other research groups are
currently engaging it, too. The most significant works, which we have identified in
this research spectrum, are briefly introduced below.
Nakazawa et al. have developed a bridging framework concept to overcome the
barrier between heterogeneous systems (Nakazawa, 2006). The system’s key concept
is the abstraction of semantics of the various heterogeneous domains and translating
those semantics in between those domains either directly or via intermediate
representations.

The Media Broker architecture, introduced by Mohdal et al. aims at interconnecting
media sources and media sinks (Modahl, 2004). Since both sources and sinks are
settled in their respective, highly heterogeneous domains, this research group faces
similar issues as presented in this chapter. They, however, address it by abstracting a
set of possible data types and employing compatibility checks when attaching media
sources to media sinks.
The research group Chan et al. aims at circumventing parts of the device
heterogeneity issue by exploiting the widely spread device-capability of J2ME
support (Chan, 2005). Their Gaia Microserver enables their Gaia Ubiquitous
computing platform to be utilized on mobile devices. A generic J2ME client is used to
select and install a platform-dependent distribution of the microserver on the device.
Since the selection procedure is transparent, this approach may be regarded as
platform-independent, hence decoupling the microserver’s execution from certain
device heterogeneity aspects.

Acknowledgements
This project has been conducted by the Technische Universität München (Technical
University of Munich) and the Comnos GmbH, funded by the Bavarian ministry of
economy (Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und
Technologie) under grant IUK219/002.

REFERENCES
Apache Sofware Foundation (2007). J2EE frameworks by the Apache Software
Foundation, cited Novemver 2nd, 2007, from http://apache.org
Comnos GmbH (2007). Open dialog platform, cited November 2nd, 2007,
information available at
http://www.comnos.de/?menu=so&content=page_so_platform.htm

HTTP (2007). Hypertext transfer protocol, cited November 2nd, 2007, specification
available at http://www.w3.org/Protocols

Open Symphony (2007). Webwork application framework, cited November 2nd,
2007, available at http://www.opensymphony.com/webwork

Openwave System Inc. (2007). Openwave mobile browser, cited November 2nd,
2007, information available at http://www.openwave.com

Spring (2007). Spring framework and spring web flow, cited November 2nd, 2007,
available at http://www.springframework.org

Sun Microsystems Inc. (2007). Java server faces, cited November 2nd, 2007,
available at http://java.sun.com/javaee/javaserverfaces

WBMP (2007). Wireless application protocol bitmap format, cited November 2nd,
2007, specification available at http://www.openmobilealliance.org

XSL-T (2007). XSL transformations, cited November 2nd, 2007, specification
available at http://www.w3.org/TR/xslt

Ellick Chan, Jim Bresler, Jalal Al-Muhtadi & Roy Campbell (2005). Gaia
microserver: An extendable mobile middleware platform, In Third IEEE International
Conference on Pervasive Computing and Communications (PerCom'05) (pp. 309-
313), IEEE Computer Society

Ricardo Couto A. da Rocha & Markus Endler (2005). Evolutionary and efficient
context management in heterogeneous environments, In MPAC '05: Proceedings of
the 3rd international workshop on Middleware for pervasive and ad-hoc computing,
(pp. 1-7), New York, NY: ACM Press

Martin Modahl, Ilya Bagrak, Matthew Wolenetz, Phillip Hutto & Umakishore
Ramachandran (2004). Mediabroker: An architecture for pervasive computing, In
Second IEEE International Conference on Pervasive Computing and
Communications (PerCom'04) (p. 253), IEEE Computer Society

Jin Nakazawa, H. Tokuda, W.K. Edwards & U. Ramachandran (2006). A bridging
framework for universal interoperability in pervasive systems, In 26th IEEE
International Conference on Distributed Computing Systems (ICDCS 2006) (p. 3),
IEEE Computer Society

Robert Schmohl & Uwe Baumgarten (2007). Mobile services based on client-server
or p2p architectures facing issues of context-awareness and heterogeneous
environments, In PDPTA '07: Proceedings of the 2007 international conference on
parallel and distributed processing techniques and applications (pp. 578-584),
CSREA Press
Roy Want &Trevor Pering (2005). System challenges for ubiquitous & pervasive
computing, In ICSE '05: Proceedings of the 27th international conference on
Software engineering (pp. 9-14), New York, NY: ACM Press

KEY TERMS
Mobile services are services utilized by a user of a mobile device. Although they are
not necessarily restricted to the mobile sector, their focus clearly lies on the utilization
on mobile devices. Mobile services are facing significant constraints concerning their
expressional power. Their target devices are highly heterogeneous, have limited
output capabilities and constrained hardware capabilities concerning computational
power, energy and communication.

Content adaptation is a necessary process to enable mobile devices to display
generic content properly. The content is adapted to a mobile device’s display

capabilities. This is necessary, since those capabilities are very heterogeneous among
mobile devices.

Markup languages are expressional tools enabling to define structured content. They
use tags and attributes to both structure data and enrich it with auxiliary information.

Page flow defines a web application’s sequence of pages, which is traversed by its
user. It normally distinguishes between states for outputting data and states for
executing business logic.
Request-response-cycle is the time period between a user issuing a request and the
web application returning the appropriate page to the user.
Business logic is the definition of any logic in a web application. It is usually
executed during a request-response-cycle.
XML-validity denotes the conformity of an XML-document to its corresponding
scheme.
XSL-T is a technique for transforming XML-documents. The source is usually
corresponding to an XML-schema, so that an XSL-stylesheet can define all the
transformation rules for the corresponding sources.

