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Abstract

Real-time visual tracking and live environment modeling are key problems
of Augmented Reality (AR) applications. A multitude of methods tackling these
fundamental problems have been proposed and evaluated in the literature in the
past few decades, while in general no common datasets were used. This thesis
presents a novel methodology for benchmarking visual tracking algorithms. One
of the first outcomes of the benchmarking approach was the creation of the first
dataset specifically designed for planar template and/or feature-based visual
tracking methods. It was created using a camera mounted on a highly accurate
mechanical measurement arm.

All steps necessary to reproduce such a dataset are detailed including cali-
bration, registration and synchronization. The publication of the dataset in 2009
was accompanied by the evaluation of four tracking methods. In the meantime
the dataset was also used by several research institutes and universities and is an
integral part of the Trakmark benchmark. Later, other outcomes followed such
as the creation of datasets for evaluating 2.5D and 3D visual tracking methods
and their usage for designing and evaluating new methods.

The thesis also presents two novel methods for tracking with a hand-held
camera. Both approaches aim to reconstruct parts of the environment online so
that augmentations can be better integrated into the environment by realistically
modeling their occlusions.

The first approach, dubbed dense deformable tracking, is an extension of frame-
to-frame template tracking to 2.5D. A reference image of an object is given
to the algorithm. It uses every pixel of the template to perform a free-form
deformation of this reference image towards the true shape of the imaged object;
simultaneously, the pose of the camera is estimated.

The advent of the Microsoft Kinect in Nov. 2010, and thus the general avail-
ability of a low-cost high resolution depth camera with registered optical image,
reduced the complexity of the reconstruction problem. The thesis presents a live
tracking andmeshing system that can be used to track and reconstruct arbitrarily
shaped objects for which the Kinect provides depth information. The system is
initialized using only one frame. It instantly creates an environment mesh that
allows to correctly handle occlusions.

The dense deformable tracking and the method based on the Kinect were
evaluated on challenging objects using the methodology presented above to
create ground truth data. Both methods were shown to be more accurate than
related state-of-the-art methods. Several further improvements are outlined.
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Zusammenfassung

Das Tracking der Kamerapose in Echtzeit sowie die gleichzeitige Rekon-
struktion der durch die Kamera erfassten Umgebung sind Schlüsselelemente
hochqualitativer Augmented Reality-Anwendungen. Eine Fülle von Methoden
wurde in diesen Gebieten veröffentlicht. Aufgrund unterschiedlicher Datenbasis
bei den jeweiligen Evaluierungen sind diese Methoden untereinander jedoch
zumeist nicht quantitativ vergleichbar.

Diese Arbeit stellt eine Methodik vor, gemäß derer optische Trackingver-
fahren objektiv und anhand realer Kamerabilder verglichen werden können.
Ein erster Datensatz wurde entworfen speziell für die Evaluierung von pla-
naren Trackingverfahren. Sämtliche hierzu nötigen Schritte werden detailliert
beschrieben, beginnend bei der verwendeten Hardware, einem hochgenauen
mechanischen Messarm mit daran montierter Kamera, bis hin zur gleichzeitigen
Synchronisierung und Registrierung der Kamerabilder. Neben den vier bei der
Veröffentlichung evaluierten Trackingverfahren wurde dieser Datensatz inzwi-
schen von weiteren Universitäten und Forschungseinrichtungen angenommen
und ist Kernbestandteil von Trakmark.

Diese Arbeit stellt außerdem zwei neuartige Trackingverfahren vor, welche
auch Teile der Umgebung rekonstruieren für eine realistischere Darstellung der
Augmentierungen einschließlich ihrer Verdeckungen.

Das erste Verfahren ist eine Erweiterung klassischer 2D Template-Tracking-
Ansätze zu 2,5D. Jeder Pixel eines Referenzbilds wird dem aktuellen Kamerabild
zugeordnet, indem innerhalb derselben Kostenfunktion sowohl Kamerapose als
auch Deformation der Oberfläche des Templates geschätzt wird.

Das zweite Verfahren verwendet die im Laufe der Arbeit verfügbar gewor-
dene RGB-D Kamera Kinect von Microsoft, um zur Laufzeit beliebig geformte
Objekte zu rekonstruieren und tracken. Das System wird durch nur ein RGB-D
Bild initialisiert, stellt dank des metrischen Tiefenbildes der Kinect Augmentie-
rungen sofort im richtigen Maßstab und korrekt von der Umgebung verdeckt
dar. Gegenüber dem ersten Verfahren hat sich durch den Einsatz von Punkt-
merkmalen zum Tracking die Robustheit deutlich gesteigert.

Beide Verfahren wurden anhand herausfordernder Objekte auch quantitativ
evaluiert, wobei über die eingangs erwähnte Methodik eine hochgenaue Kame-
rapose zu jedem Bild bekannt war. Die entwickelten Verfahren sind genauer als
verwandte aktuell veröffentlichte Methoden.

Abschließend wird Verbesserungspotential aufgezeigt für die Methodik zur
Gewinnung von ground truth Daten und für beide Trackingverfahren.
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Chapter1
Introduction

1.1 What is Augmented Reality?

Augmented Reality (AR) is the concept of superimposing virtual data onto the
real world to enhance the user’s perception of the world in order to assist a user
in accomplishing a certain task. Unlike Virtual Reality, where the assistance is
done in a purely virtual world, the goal of AR is to support the user by adding
context-aware information that is registered to the real environment.

The range of applications for AR is immense; it includes navigation, training,
industrial scenarios likemaintenance and prototyping, educational scenarios like
magic books, medical scenarios, advertisement and entertainment. In this thesis,
we consider visual AR where 3D computer generated graphics are overlaid
on real-time acquired camera images. Here, from a technical perspective, AR
consists of continuously tracking the camera manipulated by a user with respect
to an object of interest and presenting him information e.g. in visual form on
a display. The thesis deals with methods for AR using a hand-held or head-
mounted camera, a setting termed visual inside-out tracking; it is potentially the
most employed setting today due to the prevalence of smartphones and tablets
which are equipped with cameras and reasonably powerful processors. For
a broader introduction to AR which sheds some light also on other tracking
technologies, please refer to Azuma’s Survey of AR [Azu97, ABB+01].

The realm of visual tracking can be characterized in a number of ways. One
important characteristic is the degree of knowledge about a scene before the
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Chapter 1: Introduction

Figure 1.1: From left: Markers from ARToolkit [KB99], ARTag [Fia10],
metaio [PMK06] and Studierstube [WRM+08] (two markers each).

tracking is started: Is it equipped with artificial landmarks, are parts of the
“natural” environment known e.g. in form if (textured)models, or is there nothing
known about the structure of the scene at all? In the last case, the tracking system
has to localize the camera and create a map of the environment at the same time.
This is known from robotics as simultaneous localization and mapping (SLAM).
As SLAM systems usually cannot infer knowledge about a scene, they are more
likely used for less context-aware applications such as games. Context can be
gradually added by the user if necessary. For example, by specifying the size of
a real-world object, augmentations can be shown in metric scale which is useful
e.g. for virtual furniture trial.

When AR should be used in an environment which is known or which can be
modified to some extent, the tracking problem is simplified a lot. One of themost
popular early software development kits for AR has been the ARToolkit [KB99].
It relies on the user to specify markers, i.e. images with a square thick black frame
andwhite margin (see figure 1.1). Later methods for detectingmarkers improved
the robustness by employing codes within the frame [Fia10, PMK06] and also
changed the appearance of the frame [WRM+08] to reduce the visual clutter for
the user.

Another class of trackingmethods has less strict constraints on the appearance
of an object that should be tracked. Thismarker-less class typically employs sparse
feature points, densely textured models or wire-frame models. Usually, there
is only a requirement on the gradient of the texture, but there is no necessity
for a specific shape being present for these methods to work opposed to the
marker-based case. The natural appearance of the object suffices to provide
enough information for performing the tracking task. A good introduction on
marker-less tracking technologies for AR can be found in [Kle06].

Tracking methods may further be separated into those that do not require
any knowledge about the previous pose of the camera (detectionmethods) and
those that require an estimate of the pose in the current frame (inter-frame meth-
ods). Detection methods are typically either computationally expensive, as

2



1.2 Contributions of the thesis

e.g. SIFT [Low04], require relatively large amounts of memory per target for
precomputed data, as e.g.Randomized Trees [LF06], or deliver a coarse rela-
tively estimate of the camera pose. Inter-frame methods typically require less
computational efforts and produce a fine estimate of the camera pose, e.g. the
edge-based tracking system presented in [DC02] or the template-based tracking
method ESM [BM07]. A full tracking system consists of methods from both
classes, typically using an inter-frame method to refine the result of a detection
method.

1.2 Contributions of the thesis

While big differences in the accuracy of tracking algorithms can be shown ef-
fortlessly using ad-hoc created video sequences or a live camera feed, these
perceived differences are usually hard to quantify. From some moment on, every
research field demands for common datasets to objectively compare different
methods.

In this thesis, we present a novel methodology to create datasets with highly
accurate ground truth for evaluating visual tracking methods based on real
camera images. A first dataset was created for evaluating methods that track
planar targets. This dataset has been used by several others. Furthermore, the
dataset has been integrated into the development process of the commercial
marker-less tracking systems of metaio GmbH 1. Over the course of the thesis,
the nightly evaluations showed up several unintended changes very early. They
were also valuable when components of the tracking systems were changed on
purpose.

Furthermore, a method for simultaneously tracking and reconstruction a
2.5D template was developed. The method targets low-textured near-convex
objects. Regular planar template tracking has been extended by allowing vertices
of an overlaid mesh to move along their projection ray in the template image.
The method was evaluated on several low textured objects and compared both
to planar template tracking and a SLAM method, with known absolute ground
truth based on the methodology mentioned in the last paragraph.

During the thesis, the Microsoft Kinect was launched, i.e. a low-cost cam-
era delivering per pixel color and depth information (RGB-D). Thanks to its

1http://metaio.com

3

http://metaio.com


Chapter 1: Introduction

Figure 1.2: Effect of occlusion on human depth perception. A virtual dwarf is aug-
mented in a miniature city. Left: Standard augmentation. Right: Augmentation
with occlusion geometry.

relatively high resolution and update rate, the complexity of the dense recon-
struction problem became manageable for many scenarios. This thesis presents
a SLAM system that uses the Kinect. The system tracks the pose of the camera
while a dense mesh of the environment is created. The mesh is used to occlude
augmentations by real objects which greatly improves the integration of the
augmentation as shown in figure 1.2.

1.3 Structure of the thesis

The thesis is structured as follows: After the introduction, the three main con-
tributions of the thesis are presented, namely a methodology for ground truth
generation for evaluating AR tracking methods (chapter 2), a method for dense
deformable template tracking (chapter 3) and RGB-D based tracking and mesh-
ing (chapter 4). Each of these chapters starts by explaining the motivation of
the specific contribution, followed by representative related work. Then, the
method is presented and evaluated in details. After sketching a few areas of
future work, the thesis concludes with a synthesis of the different contributions
and their impact on state-of-the-art methods.

1.4 Publications related to the thesis

Most of the work presented in this thesis has been peer-reviewed and presented
at conferences, published in conference proceedings, or published in journal
proceedings. A book chapter has been published about a point-based 3D model-
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Chapter2
Ground Truth Generation for Evaluating AR

Tracking Methods

This chapter describes a method to create ground truth data for the quantitative
evaluation of tracking algorithms suited to AR applications, i.e. image sequences
captured from a hand-held camera with a precisely known camera pose for every
image of the sequences.

2.1 Motivation

In the last few years, marker-less visual tracking reached the level where a large
variety of algorithms could be successfully used in a wide range of AR appli-
cations [KM07, WRM+08, CM11]. Only accurate, robust and stable tracking
can empower a natural interaction with AR. Until recently, the performance of
state-of-the-art algorithms was either evaluated quantitatively using syntheti-
cally rendered images or evaluated qualitatively using ad hoc recorded videos
demoing a new method.

Using a synthetic approach has the advantage that the pose of the virtual
camera can be set perfectly with respect to the synthetic scene, an example is
shown in figure 2.1. A pose estimate obtained from a given tracking algorithm
can be compared to this ground truth pose in order to compute an estimation
error. However, the author of the synthetic scene has to carefully model the
motion and the imaging properties of the camera.
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Figure 2.1: Synthetic scene with camera moving on a predefined path. Top: Scene
is shown in 3D modelling software Blender [Ble], camera highlighted in orange.
Bottom: Excerpt of the synthetic sequence.

The creation of realistic cameramotion can be simplified by usingmotion cap-
ture hardware. However, the creation of realistic images remains a challenging
task as there are numerous effects involved into the physical imaging process as
described in appendix C. Figure 2.3 illustrates some of themajor influence factors
of virtual and real imaging process and camera motion. Some of these effects
are observable in figure 2.2. In general, the imaging effects of a real camera can
only be approximated which makes the evaluations intrinsically biased towards
these approximations.

Synthetic sequences can be used during the design of new algorithms. They
are suitable for early stages of algorithmic design to get a first impression of the
behavior of the tracking. For example, the author of a method can first work on
perfect data to simplify the development, then addmore andmore imperfections
as the method matures. But synthetic data cannot guarantee the performance of
a method when it is usd with the real world data it was ultimately designed for.

The performance of a given algorithm can be easily shown on recorded or live
videos of real scenes – but usually, the evaluation of the camera pose in this case
remains qualitative. For example, it is possible to visually observe whether the
camera pose was correctly estimated from the pose of the virtual augmentations
or from the movement of the camera given an additional birds-eye view of the
scene.

8



2.1 Motivation

Figure 2.2: Digital image with various artifacts (contrast and brightness adjusted
for clarity). High amounts of sensor noise are shown due to high signal gain in
(originally) low-light condition (high ISO setting); motion blur due to hand-held
camera; blooming, i.e. charge overflow from the “bright” cells to connected sensor
cells (in lower right corner).

While this is also appropriate for early algorithmic development, the major
drawback of such an evaluation is that it is subjective and that it needs a human
observer. This can be a limiting factor both for small differences in performance
and for automating the evaluation in general. Automated evaluation can be
employed for e.g. assessing the precision and accuracy after changes to tracking
algorithms on a daily basis in order to not accidentally degrade the quality of a
method while refactoring its source code.

Since the research community is working on marker-less visual tracking very
actively, the need of common objective datasets with ground truth is growing.
We believe that image sequences acquired with a real camera where the pose
of the camera for every frame of the sequences is accurately estimated give
very strong benefits to the community. Such datasets allow a fast performance
estimation in terms of speed and accuracy of a newly designed algorithm and
its fair comparison with the state-of-the-art.

In the remainder of this chapter, we first present the related work. Next, we
show the methodology used to record image sequences and generate ground
truth data of the position and orientation of the camera in every frame. For

9
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Motion

Camera

turntablehand-held

virtualreal

parametric curves
head-worn

pinhole modelblooming motion blur
distortion

focus
rolling shutter

non-linear response

exposure
aperture

pan-tilt-zoom
fixed position

Figure 2.3: Overview of major influences on real imaging process and camera
motion. The major steps of the imaging process are described in appendix C.

this, first the used hardware will be presented, then the calibration, acquisition
and synchronization steps will be detailed for methods with prior knowledge
about the scene (such as template tracking algorithms) as well as for SLAM-like
methods.

Then, we present the datasets we created, starting with the template-tracking
dataset that is now used by researchers of several universities and research
institutes. Next, datasets featuring non-planar targets are shown and evaluation
methodologies for planar and non-planar methods are presented. The datasets
are used to evaluate four widely used template-based methods. The methods
for non-planar and RGB-D tracking developed as part of this are evaluated in
sections 3.4 and 4.5, respectively.

10



2.2 Related work

2.2 Related work

For a long time, Quam’s Yosemite sequence [Hee87] used to be the reference for
evaluating optical flow algorithms. Quam created a model by mapping aerial
photos onto a depth map of the Yosemite valley and generated a sequence by
simulating a flight through the valley, shown in figure 2.4.

Figure 2.4: From left: Part of the “Yosemite” and “Urban” synthetic optical flow
sequences; stereo dataset “Teddy” (all from the Middlebury datasets [BSL+07]).

Today, the Middlebury datasets [BSL+07] are the reference for optical flow.
Besides having generated synthetic images, dense ground truth from real images
was created by using hidden fluorescent texture. The same group additionally
made ground truth datasets for dense stereo matching using structured light
and datasets for multi-view stereo using a laser scanner [SCD+06, SZS+08].

In marker-less visual tracking, Baker and Matthews [BM04] used synthetic
image warping to compare four different template-tracking algorithms [LK81,
SS00, BM01, BM04], they varied the warping amplitude and the noise level of the
image. Mikolajczyk and Schmid [MS04] used still images for comparing affine
region detectors, their dataset was also used by many others (e.g. [DT05, BTG06,
NS06]) to show the performance of several feature detection, description and
matching schemes. Moreels and Perona [MP07] used a turn table together with
a static stereo camera setup to evaluate the performance of feature detectors and
descriptors on 3D objects. They generated a database consisting of 100 objects
with calibrated views, one image pair for each 5◦ rotation of the turntable.

None of the aforementioned datasets had been created specifically for eval-
uating tracking methods as used in AR applications. Arguably, they could
also be used for this purpose, but the results of such an evaluation would not
reflect a method’s performance in an inside-out AR scenario. This is because
several typical but non-negligible effects are missing in the previous datasets; in
particular the effects of live image acquisition, i.e.many images with typically
very small inter-frame distance, the effects of a hand-held device motion, i.e. full
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Figure 2.5: Targets used by Zimmermann, Matas and Svoboda [ZMS09] and one
frame from a sequence. Ground truth was obtained by manually clicking on the
corners.

6 DOF unconstrained motion instead of e.g. 1 DOF constrained motion for turn-
table sequences, and the effects of the pysical imaging process of a real camera,
e.g.motion blur.

Recently, Zimmermann, Matas and Svoboda [ZMS09] published a dataset
consisting of gray-scale image sequences with transformations of the tracking
targets that cover all six degrees of freedom and that thus could be used to
evaluate frame-to-frame tracking algorithms. The ground truth location of the
targets in 2D was manually obtained by clicking on either crosses that were
attached to objects or by clicking directly on the corners of an object. The three
image sequences consist of approximately 12,000 images in total and feature
three different targets, namely a mouse pad, a towel and a desktop phone as
shown in figure 2.5.

To our knowledge, at the moment of its publication, it was the first dataset
that can be used for evaluating planar tracking methods in 2D quantitatively.
The intrinsic calibration of the camera and the real-world dimension of each
target are not given, such that an evaluation of a metric 6DOF Euclidean camera
pose is hard to obtain. The dataset considers a very limited number of objects and
major factors that influence the tracking were fixed, e.g. the lighting conditions.
Moreover, the ground truth data was based on information exclusively coming
from the images. Following this approach, it is not possible to have reliable
ground truth in the case of blurry or noisy images. It is also not possible to
recover the camera position and orientation when the points used to determine
the pose are not in the field of view of the camera. Consequently, the performance
of the tested algorithms could not be evaluated in the presence of noise, motion
blur or for some relative position between the camera and the tracked objects.

After the publication of the method and dataset described in this chapter,
Gruber et al. [GGV+10] presented a set of 3D paper models that can be built
from printouts. The authors included different image sequences with estimated
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2.2 Related work

camera motion. For creating these sequences, cameras were attached to a me-
chanical robot arm, a mechanical measurement arm and an optical infrared
tracking systems. The paper models and image sequences together with the
calibration data are published online1.

Gauglitz et al. [GHT11] recently published a dataset designed for planar
targets that used six different patterns and focused on 16 different camera paths,
including pure rotation, panning and several levels of motion blur. Four dis-
tinctive red spheres were put next to the patterns. They were used to compute
a homography for each video frame. These homographies, the original image
sequences as well as the intrinsic camera calibration and distortion coefficients
are available for download2.

1http://studierstube.icg.tugraz.at/handheld_ar/cityofsights.php
2http://ilab.cs.ucsb.edu/tracking_dataset_ijcv/
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Chapter 2: Ground Truth Generation for Evaluating AR Tracking Methods

2.3 Hardware setup

For the generation of ground truth data, we followed the principle of using
proven hardware components that are typically used for measuring tasks and
industrial quality assurance. This led us to choose a mechanical measurement
arm as key component in conjunction with an industrial global shutter camera.
The camera was mounted on the end effector of the measurement arm. Pho-
togrammetric hardware was used for calibrating the system. An image of the
setup is shown in figure 2.6. The measurement arm is mounted on a tripod
which is clamped to a table. On the table, the target is fixed with adhesive tape.

The goal of the setup is to provide an alternative way for the camera pose
cameraTtarget provided by tracking algorithms. A pose is represented as (4 × 4)
matrix and can be decomposed in a (3× 3) rotation R and a (3× 1) translation t

(c.f. appendix A). To evaluate the accuracy of the pose cameraTtarget provided by a
tracking algorithm, we indirectly compute the reference pose as

cameraTtarget = cameraTtip
tipTeffector

effectorTbase
baseTtarget (2.1)

where base refers to the base of the measurement arm located on the tripod,
(end) effector refers to the last link of the arm moved by the user and tip refers to
the exchangeable tip attached to the end effector which is used for measuring
coordinates. As measurement arm we chose the FaroArm Platinum [FARa]. It
has seven axes and an accuracy better than 0.013mm within its reach of around
1.2m from its base. The arm uses internal temperature sensors to compensate the
effect of thermal variations. We assume that for our purpose the residual noise

target

measurement arm

camera

effectorTbase

tipTeffectorcameraTtip

cameraTtarget

baseTtarget

Figure 2.6: Left: The measurement arm, the camera and one of the targets. Right:
The transformations needed to compute cameraTtarget which is displayed in red.
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2.3 Hardware setup

Figure 2.7: The daylight panel mounted above the target. The panel was adjusted
by switching on/off five independent fluorescent tubes.

of the measurement arm is neglectably small. An industrial AVT Marlin F080C
camera [All] was rigidlymounted on the end effector using an aluminum adapter
screwed between tip and end effector. The camera is able to progressively capture
VGA frames with 40Hzwhile the measurement arm provides absolute pose data
with 250Hz. As we planned to vary the lighting in case of the template-based
tracking class, we used an adjustable panel light providing daylight-balanced
5600 Kelvin light (see figure 2.7).

To make the system operational, first the camera intrinsics and undistortion
coefficients were estimated. The camera intrinsics consist of the focal lengths
fu and fv, the principal point u0 = [ u0 v0 1 ]

> and the shear s. The intrinsic
parameters form the matrix K

K =

fu s u0

0 fv v0

0 0 1

 (2.2)

which includes the distortion caused by non-rectangular pixels via s and non-
square pixels via the ratio fv and fu. A 3D point x ∈ P3 can be projected onto the
image plane by first transforming them from the target to the camera coordinate
frame via cameraTtarget. Next, the transformed point is multiplied by the intrinsics
K to take account of the specific lens and image sensor. Finally, we normalize
the homogeneous coordinates by applying

d


xy
z


 =

x/zy/z

1

 for z 6= 0. (2.3)
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Figure 2.8: Calibration target used for camera intrinsics (K and distortion coeffi-
cients) and hand-eye calibration cameraTtip.

The normalization can be done either before or after the multiplication with K.
The linear projection thus can be written as

u = d
([

K 0
]
cameraTtarget x

)
(2.4)

where 0 is a (3 × 1) null vector and u = [ u v 1 ]
> ∈ P2. To estimate K and fur-

ther non-linear radial and tangential image distortions, we used a professional
photogrammetric calibration target shown in figure 2.8 and the accompanying
software from AICON [AIC]. Next, the underlying model for image distor-
tion [Luh03, p120] used by AICON is described.

A 2D point u is distorted to the 2D point u′ as

u′ = distort (u) (2.5)

= u + dradial (u) + dtangential (u) + daffine (u) (2.6)

with each distortion being computed as

dradial (u) =

3∑
i=1

ai

(
r (u)

2i − r2i0
) [

u− u0

]
(2.7)

dtangential (u) = 2

b1 (u− u0)
2

b2 (v − v0)
2

0

+

b1 b2

b2 b1

0 0

[ r (u)
2

2 (u− u0) (v − v0)

]
(2.8)

daffine (u) =
[
c1 (u− u0) + c2 (v − v0) 0 0

]>
(2.9)
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2.3 Hardware setup

Figure 2.9: Sample distortions of a (640 × 480) image. The image border is
indicated by the rectangular frame. From left: Radial distortions (a1 = −10−6)
and (a1 = 10−6), tangential (b1 = −10−4, b2 = 3 × 10−5) and affine distortions
(c2 = 2× 10−1). A centered principal point and r0 = 10−3 were used to create
the examples.

where r(·) is the Euclidean distance to the principal point

r (u) = ||u− u0||2 (2.10)

and (r0, a1, a2, a3) are coefficients for radial, (b1, b2) for tangential and (c1, c2)

for affine distortion. Figure 2.9 shows exemplary distortion grids. Note that
this distortion model also includes the linear distortions previously defined in
K. This can be seen from equations (2.9) and (2.2) by substituting s = c2fv and
fu = c1fv .

For the presented methodology, we thus used only three degrees of freedom
for K, namely the principal point u0 and a common focal length f(= fu = fv).
The shear was ignored (s = 0). The result of the calibration then comprises
three intrinsic coefficients (f, u0, v0) for K and eight distortion coefficients. An
undistorted (U × V ) image I is created from a distorted image Ĩ as

I (u) = Ĩ (distort (u)) ∀u ∈ U (2.11)

where U is the set of all integer pixel coordinates of the images

U =

{[
u v 1

]> ∣∣ u ∈ {1, . . . , U}, v ∈ {1, . . . , V }
}
. (2.12)

We use bilinear interpolation for non-integer pixel coordinates (c.f. appendix B).
The undistortion can be accelerated by caching themapping between undistorted
and distorted pixels u↔ u′.

The calibration target used to estimate the intrinsic camera parameters and
the distortion coefficients consists of a carbon fiber body ontowhich 73 distinctive
and 215 non-distinctive circular markers were applied. The 3D position of the
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Chapter 2: Ground Truth Generation for Evaluating AR Tracking Methods

Figure 2.10: Calibration of the tip of the measurement arm (tipTeffector). The tip
should be located in the calibration target while the arm is moved on predefined
paths [FARb].

center of each of these markers had been calibrated by AICONusing a coordinate
measurement machine. The camera calibration was conducted following the
guidelines of the provider. Pictures were taken from recommended angles and
distances such that the full sensor was covered by the images of the circular
markers. The final reprojection error of the marker centroids was less than
0.065 pixels. This means that the calibration has provided accurate intrinsic
parameter estimations.

Next, the intrinsics of the robot were calibrated, namely the seven joints and
its tip. The calibration of the joints simply consisted of moving each joint within
at least 90% of its physically possible range. As can be seen from figure 2.6,
this calibration allows us to get effectorTbase at 250Hz. Obtaining the next trans-
formation along the chain, i.e. the offset of the tip tipTeffector, is a slightly more
tedious task. This transformation may vary because the tip can be exchanged,
several tips of different diameter are available. A calibration cone as shown in
figure 2.10 is mounted on a stable surface and the tip of the measurement arm is
placed into the cone. Next, the end effector is moved while the center of the tip
should not move; several hundreds measurements of such constrained motions
are then used for computing the tip offset.

We observed that the accompanying software of the measurement arm gives
a reliable calibration only when the cone is attached to a stable structure, e.g. a
window board. While the arm itself was mounted on a tripod weighing around
20 kg, it was beneficial for the calibration to also rigidly connect the tripod to the
same structure.
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2.3 Hardware setup

After that, the hand-eye-calibration was conducted for computing cameraTtip.
For this, we again used the AICON calibration target and software, but this time
mounted the end effector with already attached camera onto a second tripod
in order to capture corresponding image-pose pairs. The calibration software
was used this time only to obtain the highly accurate pose of the camera from
the images. By moving the tripod, ten pose pairs were obtained and a hand-eye-
calibration was computed with a method similar to the one proposed by Tsai
and Lenz [TL89].

The next section describes how ground truth camera poses for known planar
targets can be obtained. Besides computing the transformation baseTtarget this
also includes acquisition and synchronization of the images and poses of the
measurement arm.
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2.4 Recording datasets for template-based methods

Most of the hardware is now calibrated and ready to use. For evaluatingmethods
tracking known targets, only the transformation baseTtarget has still to be calibrated
(per target). A sample target is shown in figure 2.11. We designed it to contain
six fiducial markers next to the template image. While this section presents the
steps needed to record ground truth sequences with any target and a wide range
of motions, section 2.6 presents the specific targets and motions chosen for the
proposed dataset.

2.4.1 Determining baseTtarget

The offset baseTtarget is estimated via 3D–3D correspondences between the mea-
sured and designed positions of the outer fiducial corners. The correspondences
for markerMm are denoted as xm,i and xm,i, respectively. The plane π of the
target is determined in a first step to enforce co-planarity among the measure-
ments xm,i. The plane was measured by placing the tip of the arm on the target
at several positions pi ∈ P3. A plane π′ = [ n d′ ]

> with normal n = [ nx ny nz ]
>

was fit to these measurements by solving the system

π′>
[
p1,p2, . . . ,pn

]
= 0. (2.13)

The measurements pi specify the position of the center of the calibrated tip. The
tip we used was a sphere with a radius r = 3mm, thus the measurements pi

used for determining the plane π′ contain an translational offset of size r. The
sign of the offset is determined by measuring an additional point poff_plane which
is off the plane π′ in the direction of the surface normal of the target. Then, the
radius r of the measurement tip can be compensated by computing d as

d = d′ + sign(π′>poff_plane) r (2.14)

with

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

(2.15)
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2.4 Recording datasets for template-based methods

The derived plane π = [ n d ]
> is on the surface of the target. Next, the tip is

positioned on the four outer corners of each of the six fiducialsMm (marked
with red crosses in figure 2.11). Each of these measurements x′m,i is projected
onto π as

xm,i = x′m,i − π>x′m,i

[
n

0

]
. (2.16)

The 3D–3D correspondences xm,i ↔ xm,i are then used by the accompanying
software of the measurement arm to estimate the transformation baseTtarget.

2.4.2 Capturing and synchronization

Next, we captured the image and pose streams. Our goal was to capture a live
camera stream that can be played back for evaluations without loss of any detail.
To accomplish this goal, the streams were recorded directly to pre-allocatedmain
memory. Every sequence consists ofN = 1, 200 RGB images Ii with a resolution
of (640 × 480) pixels at 24 bit per pixel. The images were acquired from the
camera at 40Hz. We obtained absolute poses effectorTbase,k from the arm at only
75Hz for the dataset due to a flaw of the threading of the FaroArm capture code
at that time – for the evaluation of the RGB-D SLAM of chapter 4 this issue was
fixed and we recorded at native 250Hz.

As soon as the final image IN of a sequence was captured, we stopped
capturing poses from the arm. Timestamps tcam,i and tarm,k were attached to the
N images andK ≈ 75

40N poses as soon as the capturing program had access to

M1

M2

M3

M4

M5

M6

Figure 2.11: A target used for evaluation with six fiducial markers M1 . . .M6

around it. The outer corners xm,i of the markers Mm, highlighted with red
crosses, are used for the refinement of baseTtarget and for synchronization.
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them. The timestamps were used to synchronize the data, i.e. to associate a pose
to each image Ii. Using the same sequence for synchronization should provide
a better accuracy for fast and sudden motions within this sequence compared to
an a-priori synchronization on another sequence.

The arm supplies the poses effectorTbase,k as pairs of translations tk ∈ R3 and
Euler angles for the rotation. As the synchronization requires a smooth interpo-
lation of the poses, we converted the Euler angles to axis-times-angle rk ∈ so(3).
The captured data of about 1.1GiB for 30 seconds were recorded directly into the
main memory of the attached computer. This was done to minimize the influ-
ence of slowing down the recording at arbitrary moments because of hard disk
access. After each sequence, the images, poses and their respective timestamps
were written to disk as batch job.

Both the synchronization and the computation of the residual error of a
sequence are based on the reprojection error of the marker corners. The im-
ages were undistorted with bilinear interpolation before the marker detection
(c.f. sections 2.3 and appendix B). We assume that there is a constant offset toffset
between the timestamp of an image Ii and its corresponding (interpolated) pose
cameraTtarget

(
tcam,i + toffset

)
which minimizes the residual. The offset represents

the time needed to capture the image, to transfer the image data via the var-
ious busses to the main memory and finally to invoke all hard- and software
interrupts until the image is available to our software.

A pose cameraTtarget (t) is computed as

cameraTtarget(t) = cameraTtip
tipTeffector

effectorTbase(t)
baseTtarget (2.17)

where the measurement arm pose effectorTbase(·) is defined as

effectorTbase(t) =

[
R (r (t)) t (t)

0 1

]
(2.18)
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with R(·) from equation (A.10). We interpolated r(·) and t(·) from the measure-
ments as

r (t) =

[
rk∗(t)

rk∗(t)+1

]> [
t− tarm,k∗(t)
tarm,k∗(t)+1 − t

]
(2.19)

t (t) =

[
tk∗(t)

tk∗(t)+1

]> [
t− tarm,k∗(t)
tarm,k∗(t)+1 − t

]
(2.20)

where k∗ (t) returns the index of the measured timestamp closest to t as

k∗ (t) = argmin
k∈{1,...,K}

(t− tarm,k | tarm,k ≤ t) . (2.21)

The residual φi is computed for each image Ii as

φi(toffset) =
∑

Mm∈Di

4∑
c=1

∣∣∣∣um,c − u
(
tcam,i + toffset,xm,c

)∣∣∣∣
2

(2.22)

with

u (t,x) = d
([

K 0
]
cameraTtarget (t) x

)
(2.23)

and where 0 is a (3× 1) null vector, Di is the set of detected markers in image
Ii and um,c ∈ P2 and xm,c ∈ P3 are corresponding normalized 2D and 3D
positions of corners of markerMm.

The residual of a sequence was computed as the root of the mean of the
squares (RMS) of the 90% smallest residuals φi(toffset) of all images with detected
markers, i.e.where Di 6= {}. We did not use all residuals in order to be robust
to a small amount of outliers, specifically misdetected corners due to motion
blur. The global residual was minimized with Nelder-Mead simplex [PCB02] to
obtain the optimal offset t∗offset as

t∗offset = argmin
toffset

√
1

|K90%|
∑

k∈K90%

φk
(
toffset

)2
. (2.24)

Surprisingly, the initial residual was above one pixel, which made the dataset
so far inadequate for ground truth evaluations. We analyzed each influence
on the residual, starting from the fiducial detection. Although this component
does not have a formally certified accuracy, it is highly accurate [PMK06] and
thus appropriate for establishing a residual. We next rechecked the assumptions
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about the single transformations of equation (2.1). The internal pose effectorTbase

of the arm is known to be very precise, as it is a certified measurement system
according to the ASME’s B89.4.22 - 20043. The guaranteed accuracy of better than
0.013mm also includes the calibration of the tip (tipTeffector). The 3D coordinates
of the AICON calibration target were also obtained from a certified mechanical
measurement device. The low residual error of below 0.065 pixel of the intrinsic
calibration calibration suggests that this part of the calibration (K and distortion
coefficients) is also accurate. For the estimation of the hand-eye calibration
cameraTtip only highly accurate poses were used, thus we assumed that it also is
of high accuracy.

Finally, we decided to also include a refinement of baseTtarget into the syn-
chronization. We initially assumed that the 3D reference coordinates provided
to the 3D–3D registration should represent the center of the tip. Instead, the
provided 3D coordinates turned out to should have been the projections on the
target plane. This means that we had an offset of about 3mm per 3D–3D corre-
spondences xm,i ↔ xm,i. The refinement of baseTtarget thus lead to a substantial
improvement of the residual. For the proposed dataset, it is now below one pixel
on average.

3see http://www.asme.org/products/codes---standards/methods-for-performance-evaluation-of-articulated-
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2.5 Recording datasets for SLAM-like methods

In contrast to methods that have prior knowledge about the object they track,
SLAM-like tracking and reconstruction methods introduce an arbitrary scale
by assumptions about certain algorithmically necessary distances. For exam-
ple, PTAM [KM07] assumes a distance of 10 cm between the camera centers
associated to the first pair of images used to create the map of the environment.

The same image sequence given to two different SLAM algorithms thus
usually results in differently scaled reconstructions of the environment which
may also be associated to two different coordinate systems. It is only possible to
evaluate SLAM methods by aligning their trajectories to a common coordinate
frame. Compared to the workflow used in the last chapter, we now chose to
only use the transform effectorTbase and let the alignment of the trajectories take
care of the three explicitly calibrated transformations used before (see figure 2.6).
This removes most of the calibration steps, as now only intrinsics of camera and
measurement arm have to be dealt with.

The proposed ground truth acquisition records unmodified real-world objects
as e.g. the industrial object shown in figure 2.12. For obtaining a realistic perfor-
mance of the algorithms, we chose not to introduce any fiducials as they typically
affect e.g. feature-based SLAM-like methods because of their high-contrast ap-
pearance. We previously used fiducials both for establishing a pre-defined
coordinate system and for synchronization. The former step has been merged
into the alignment of the poses. We still assume that the offset toffset between
poses and images is constant. One synchronization strategy could be conducted
by (re-)adding fiducials to a part of the scene that is not visible when recording
the object of interest. Then, the aforementioned approach for synchronization
can be used whenever the markers are in the field of view. To minimize interfer-
ence with the SLAM method, separate sections of the recorded sequences, e.g. at
the beginning and in the end, can be dedicated to contain the fiducials.

The drawback of this approach would be that there again is either the full
extrinsic calibration of the system necessary or that the coordinate system of the
marker also has to be obtained in a separate step. Further a part of each sequence
has to be reserved for recording images of fiducials. However, the advantage of
this method is that only seven degrees of freedom remain during the evaluation
(6 for pose and 1 for scale).
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Figure 2.12: Clamping fixture used for evaluating SLAM-like methods on typical
industrial objects.

For the evaluation of our work on RGB-D images (see chapter 4), we chose to
record the data streams at their native speeds, i.e. images at 30Hz and poses at
250Hz. As detailed in section 2.7.2, we use a combined alignment/evaluation
optimization approach that consists of a 7-DOF initial linear alignment with
a 8-DOF non-linear robust refinement which then additionally included the
timestamp offset toffset.
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2.6 Designing tracking datasets

After the acquisition and synchronization of sequences with ground truth data
in general has been shown, we now present the datasets we created for our work
on evaluating planar template-based methods [LBMN09, LBMN11], deformable
template-based tracking [LBI11] and live tracking and meshing using a RGB-D
camera [LHIB11].

2.6.1 Planar targets

The motivation for creating the first dataset was to allow a fair comparison be-
tween a wide range of template-based tracking algorithms. There are algorithms
that use corners, edges and whole regions of an image. We tried to make the
dataset balanced and focused on real world usage. In the following, we describe
how we tried to achieve these goals.

One of the most basic and essential tasks for optical tracking is the tracking
of planar structures. In fact, in order to be able to determine the relative position
and orientation of the camera with respect to different objects of the environment
in real-time, most of the model-free detection and tracking algorithms have to
assume that the objects are locally or piecewise planar. That is why we used
planar targets in the first dataset. The targets were chosen to represent a broad
overview of all types of possible tracking targets. We use a classification of
four groups, namely “Low Texture”, “High Texture”, “Repetitive Texture” and
“Normal Texture”, meaning somewhere in between. Each class is represented in
the dataset by two targets, shown in figure 2.13. The targets were downloaded
from an online image database, see appendix D. We did not track any of these
targets in advance in order not to make the selection of the targets biased to any
of the evaluated methods.

The “Low Texture” group consists of images of road signs which are com-
posed of two distinct colors, large uniform areas and thus large edges. In the
“Repetitive” group there are images of electronic boards, one image with mainly
large, one with mainly small components. An image of a car and of a cityscape
are in the group of the “Normal” reference targets. Finally, the group of “Highly
Textured” images is composed of an image of a wall made of different sized
stones and of an image with English lawn which features many small structures.
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Figure 2.13: The reference targets used in our dataset. From left: Low, Repetitive,
Normal, High Texturedness. Image credits are in appendix D.

Each target imagewas resampled to a resolution of (800×600) before printing.
The algorithms later were providedwith the inner (640×480) area of these target
images which occurred to be an appropriate resolution as VGA cameras are
widespread. The targets were printed with a color laser printer. Both the printer
and the camera were not specifically color calibrated such that the captured
images of the printed targets match the reference targets exactly. These steps
were skipped on purpose as they are typically skipped in real world scenarios as
well and as they are hard to emulate with synthetic images. The printed pages
were glued onto foam board which was later fixed on a table rigidly connected
with the base of the measurement arm as shown in figure 2.6.

Next, we designed the dynamic part of the evaluation, i.e. the general types
of motion of the camera. We chose to include five different types for each target
into the dataset: “Angle”, “Range”, “Fast Far”, “Fast Close” and “Illumination”.
In the sequences of type “Angle”, we focus on varying the angle between the
normal of the reference target and the optical axis of the camera between 0◦ and
approximately 80◦ while trying to keep the distance to the target constant. The
target covers around 10–30% of the image.

The “Range” sequences focus on the size of the reference image in the camera
image. The maximum distance of the camera to the target resulted in a visible
area of the reference target of about (130× 100) pixels or 4% of the original area.
The maximum of the visible area is around 100%, i.e. the reference template
occupied the whole camera image. The reference template is always facing the
camera near fronto-parallel in these sequences, there is mainly rotation around
the normal of the target.
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Figure 2.14: Camera trajectories from Target “Bump”. From top: “Angle”,
“Range”, “Fast Far”, “Fast Close” and “Illumination”.
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Figure 2.15: Sample frames for Target “Bump Sign”. From top: Sequence “Angle”,
“Range”, “Fast Far”,“Fast Close” and “Lighting”. Background is dimmed.

The next type of sequences is “Fast Far”; here the camera is moved away
from the target until it covers again an area of approximately 4% of the image.
Then, wemove the camera with increasing speedwhich results in big inter-frame
motion. Towards the end of these sequences, the effect of motion blur shows
strongly. These motions are also applied to the “Fast Close” sequences, the only
difference here being that the reference image typically covers 60% or more of
the image where parts of the targets go often outside the image.

The last type of sequences we recorded, “Illumination”, varies the lighting
conditions of the scene while the camera is moving slowly. For this, we switch
off and on again two sets of fluorescent tubes during the sequence.Additionally,
a shadow is cast onto the reference target by a waving hand. This effectively
changes the mean brightness of the camera image as the exposure time and
aperture of the camera were held constant. In this scenario, the target is always
coveringmore than 15%of the camera image. Selected frames from the sequences
can be seen in figures 2.15 and 2.16, representative motion of the camera for each
type of motion is shown in figure 2.14.

After the synchronization was completed, the average RMS reprojection error
for all sequences was 0.86 pixels. This error also incorporates all errors from the
internal and external calibrations. The “Fast Close” sequences typically have the
highest residual error (mean 1.54 pixels) due to the motion blur and the large size
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Figure 2.16: From top: Sample frames for Targets “Isetta”, “Philadelphia”, “Wall”
and “Lucent”. Background is dimmed.

Figure 2.17: Post-processing. From left: captured image, undistorted image
without background, final image with randomized borders.

of the reference target in the image. The lowest residual error (mean 0.54 pixels)
was observed for the “Illumination” sequences.

To prevent algorithms from being distracted by a cluttered background, we
chose to remove the background, i.e. any image area not covered by the template.
In addition to that, we also removed the original borders of the reference target to
prevent algorithms from simply using the image borders instead of the template
image itself. The original borders of the (800×600) reference targetwere replaced
by randomized borders, but at the same time we made sure that the (640× 480)

image the algorithms were given is not cut by the new randomized borders.
These steps are visualized in figure 2.17.

While removing the background is clearly a simplification, we chose this
approach with the current datasets to focus on the best performance of the
algorithms possible with images of the tracked object coming from a real camera.
In later datasets we could either add a cluttered background to the real scene
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(but leaving the necessary area for the fiducials de-cluttered) or add a virtual
cluttered background after recording.
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Figure 2.18: Target used for the evaluation of the dense deformable tracking
approach of chapter 3. Left: The reference image given to the algorithms. Middle
and right: Two views on the ground truth trajectory of the sequence.

2.6.2 Non-planar convex targets

For ourwork on deformable template tracking [LBI11], we applied the calibration
steps described in section 2.4. This time, the target was not a planar print but
a computer mouse on a mouse pad, featuring very low texture and a convex
shape. The target and motion is shown in figure 2.18. As will be discussed in
chapter 3, the algorithm was designed to simultaneously deform an initially
planar template while tracking the pose of a moving camera.

As this approach is closer to reconstruction and SLAM rather than traditional
non-reconstructing template-tracking, we chose the motion of the camera such
that it is suitable for reconstruction purposes. In contrast to the motion of the
previous section it does not include fast, sudden motion. We captured a single
sequence that starts with an almost fronto-planar view of the target and slowly
moves on a spiral-like track outwards, see figure 2.18. To create a template
image of the non-planar target, we rectified the first image where the image
plane is almost fronto-planar. We used bilinear interpolation where the pixel
correspondences were established based on the ground truth pose.

We also removed the fiducials from the images since corner detectors em-
ployed by most feature-based tracking methods would mainly extract the feature
points on the markers. To analyze the influence of blur, we additionally blurred
the images artificially. The results of the evaluation will be shown next to the
presentation of the algorithm in chapter 3.
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Figure 2.19: Physical setup for the 3D RGB-D ground truth data.

2.6.3 Non-planar targets of arbitrary shape

Given arbitrary objects of interest for tracking and reconstruction, there is a
multitude of possible motions depending on the specific AR scenario. Some
examples of motions include very fast, irregular motion that may be found when
the user is engaged in an AR game. More gentle motions with long stalls may
be of interest as well, as they are typical when AR is used for design concepts
or discrepancy checks. A further typical type of motion includes a continuous
‘scanning’ which is used for obtaining 3D models of parts of the environment.

We created the 3D dataset for evaluating our method for RGB-D tracking and
meshing (described in chapter 4) on a challenging industrial object. Figure 2.19
shows the hardware setup. The AVT camera mounted on the end effector was
exchanged against a Microsoft Kinect which tries to associate a depth value to
every pixel of the (640× 480) color image acquired at 30Hz and uses a rolling
shutter.

Due to the size of the industrial object and the working volume of the mea-
surement arm, we recorded four sequences with continuous slow movement
around the object. Figure 2.20 shows excerpts of the sequences. As can be seen,
the object covered usually more than 50% of the captured image.
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Figure 2.20: Excerpt of the four RGB-D sequences, starting from top with images
from sequence 1. Each sequence consists of 300 images of which every 30th is
shown.
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2.7 Evaluation methodologies

In this section, we first describe which method we used to evaluate different
template-based tracking algorithms, then how we propose to compare differ-
ent SLAM-like tracking methods. The results of the template-based tracking
algorithms are presented in the next section, while the results of the non-planar
tracking methods are presented right next to the presentation of the algorithms
in chapters 3 and 4.

2.7.1 Evaluating template-based methods

Within the template-based methods, we differentiate between inter-frame and
detection-based tracking algorithms: Inter-frame tracking algorithms require an
initial pose or homography, but then should be able to track the reference target
in the images with high precision and over many consecutive frames. Detection-
based methods on the other hand typically try to establish a relatively coarse
initial pose or homography.

Similar to the Middlebury datasets [BSL+07], we do not publish the ground
truth for every frame. To support inter-frame tracking algorithms, we provide
2D–2D correspondences of the XGA boundaries [±512 ±384 ]

> between the cur-
rent image and the reference frame for the first and every 250th frame in the
dataset. Thus it is possible to initialize an inter-frame frame algorithm five times
per sequence in case it lost tracking.

Detection-based tracking algorithms were provided with the reference im-
ages only. They had to locate the target in the images of the sequences without
any further prior knowledge about the pose or homography. The missing need
of an approximate initial pose is a benefit over the inter-frame tracking algo-
rithms, they are usually initialized from detection algorithms. The total number
of successfully detected frames is more important for this type of algorithms
than the number of consecutively tracked frames.

We evaluated four tracking algorithms: FERNS [OFL07], ESM [BM07] and
two algorithms that use SIFT [Low04] and respectively SURF [BTG06] to obtain
2D–3D correspondences for estimating the camera pose. The (640×480) uncom-
pressed intensity images of the centered inner areas of the reference targets were
used as template (marked white in figure 2.21). Next, we setup each algorithm
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Figure 2.21: A reference target with the six fiducials. The inner area of each
template (marked with white dimmed frame) is provided as (640× 480) reference
image to the algorithms. The evaluation is based on the reprojection error of
four points on the XGA boundary (marked with blue crosses).

with the templates: For SIFT and SURF, features were detected in the reference
image and descriptors were extracted at these positions. For FERNS, classifiers
were trained. For ESM, the intensity image was cast to floating point values.

After that, the tracking methods were run on the sequences. The evaluation
is based on four reference points which are placed on the diagonal lines of the
reference images (marked with blue crosses in figure 2.21). The reference points
are at the XGA resolution boundaries, i.e. at [±512 ±384 ]

>. Their corresponding
3D positions in our setting are

x1 =


x0

y0

0

1

 x2 =


−x0
y0

0

1

 x3 =


−x0
−y0

0

1

 x4 =


x0

−y0
0
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 (2.25)

with x0 = 117.12mm and y0 = 87.84mm. Since the effect of the perceived errors
varies depending on the position and orientation of the tracked object, using
errors in the image domain, i.e. in pixel, is beneficial for AR over using metric
errors, i.e.meters for the translation and radians or degrees for the rotation.

Errors in the image domain better reflect whether the augmentation would
be correctly perceived or not and whether it would allow a seamless integration,
i.e.whether the augmentation would appear as close as possible to the desired
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Ground
truth

SURF

Error 6.2 pixels 9.7 pixels 14.2 pixels 22.6 pixels 29.7 pixels

correctly tracked not correctly tracked

Figure 2.22: Visualization of cameraTtarget from the ground truth dataset and SURF.
The images are augmented with a teapot. A threshold of 10 pixels is used for
classification of “correctly” tracked images.

position in the image. For every image Ii per sequence, the RMS distance yi of
each imaged reference point ui,j to the ground truth point ui,j was computed as

yi =

√√√√1

4

4∑
j=1

||ui,j − ui,j ||22 (2.26)

with the ground truth 2D coordinate ui,j as

ui,j = u
(
ti + toffset,xj

)
(2.27)

where u(·) is defined in equation (2.23). After computing these errors for each
image of a sequence, all frames with yi ≥ 10pixels are removed as we regard
a higher RMS error as sign that the tracking algorithm lost the target. Based
on the filtered results, we compute the ratio of tracked frames and analyze the
distribution of the error.

Figure 2.22 shows a comparison of poses originating from matched SURF
features to ground truth poses. The former are ordered by reprojection error,
from 6.2 to 29.7 pixels. While the first two images with errors below 10pixels are
still very similar to their corresponding ground truth images in the upper row,
with increasing reprojection error also the dissimilarity increases. We observed
that until an error of 10 pixels, the tracking result looks reasonable when the
template is visible at least in 15% of the image which is fulfilled in the majority
of the sequences.
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2.7.2 Evaluating SLAM-like methods

When evaluating methods that do not have any prior knowledge about the scene,
we directly used the trajectory of the estimated camera pose and the movement
of the measurement arm. As mentioned before, we record the image stream
and pose stream at their native frequencies and perform a joint synchroniza-
tion/evaluation at the same time using the results of an algorithm. We obtain
an initial estimation of the scale and Euclidean transformation by assuming that
there is no offset in the timestamps of the data from camera and themeasurement
arm. We create 3D–3D correspondences between the camera center and the end
effector and use these as input to a closed-formmethod from Umeyama [Ume91]
that computes the estimates of the initial transformation and scale. As before,
the poses of the measurement arm were interpolated on the SE(3) manifold to
match the timestamps of the images.

Umeyama’s method was originally designed to align point clouds, it is op-
timal when the assumption holds that the correspondences contain errors ex-
clusively belonging to a normal distribution. But as we are using it to align
trajectories where one should be evaluated to the other, and additionally still
have to synchronize the measurements, we use the result only as first step in the
alignment process.

In a second step, we take both the possibility of outliers into account and
additionally also search for the offset of the timestamps. We use a Nelder-
Mead simplex [PCB02] to minimize the distance of the corresponding 3D points.
The cost function was parameterized by the six degree of freedom Euclidean
transformation (using Lie algebra for parameterizing the rotation), the scale of
the trajectory and the offset of the timestamps. Noise and outliers are handled
by re-weighting the error with the Tukey M-Estimator [Ste99].

Thus, “ground truth” can be generated for every pair of algorithm and
sequence individually. However, we observed that the offset of the timestamp
was in the order of ±50 microseconds after successfully aligning the results of
our proposed method on RGB-D SLAM. The timestamp offset seemed to have no
substantial influence in the optimization. Since we wanted to compare multiple
algorithms on the same sequence, we generated common ground truth camera
poses using a fixed time offset.

The error measure used for the evaluation consists of a RMS error of the
translation in millimeters. For the rotation, we used an angular RMS error
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by using the difference of rotations in axis-times-angle representation which
represents an intuitive error in radians. Although we just argued in the previous
section that an error measured in pixel would be preferable for AR in general,
we chose to use error measures based directly on the trajectory as the recorded
sequences of the 3D object were mostly at approximately the same distance to
the object. The recorded sequences had roughly the same scale and gave rise
to comparable results, i.e. the errors are on similar scales. The results of the
evaluation can be found in chapter 4.
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2.8 Evaluation of four template-based methods

We used the original implementations of ESM, FERNS and SURF for the evalua-
tion. For SIFT we used the implementation from Vedaldi and Fulkerson [VF08].
The majority of the parameters were left at their authors’ default settings. We
only constrained SURF and FERNS to use the 800 strongest points, a number we
had to provide to the implementations that seemed high enough to not degrade
their performance.

The poses used in the evaluation were computed from 2D–3D correspon-
dences using a non-linear Levenberg-Marquardtminimization of the reprojection
error that was initialized by POSIT [DD95]. To obtain these correspondences
from the algorithms based on SIFT and SURF, we used nearest-neighbor match-
ing of the descriptors to generate initial 2D–3D correspondences, then removed
outliers via a RANSAC [FB81]-scheme. As FERNS has integrated matching
and outlier removal, we directly used the filtered correspondences. For ESM,
we similarly used the output homography to project corners of the reference
template into the current frame.

The targets were evaluated in the order shown in figure 2.13, i.e. “Low”,
“Repetitive”, “Normal”, “High Texturedness”. Each target was evaluated follow-
ing the discussed types of motion, we used the order “Angle”, “Range”, “Fast
Far”, “Fast Close”, “Illumination”. The results of the evaluation indicated that
SIFT is, most of the time, outperforming FERNS and SURF in terms of accuracy
and percentage of tracked frames. However, it should be mentioned that the
evaluation of SIFT took more than 2.5 days (approximately 3 s per frame) to
compute whereas FERNS, SURF and ESM finished in less than 6 hours each.

The focus of this evaluation was primarily to see whether the targets and
the chosen sequences per target were suitable for building a dataset that is both
challenging and at the same time not undoable so that it can be useful to the
computer vision community. Thus, we mainly focused on the accuracy of the
algorithms in close-to-ideal situations. The timingswere not considered since the
best possible frame rates of the algorithms are generally achieved with extensive
fine-tuning of parameters and this was of minor interest to us.

The percentage of correctly tracked frames is presented in figure 2.23 and
figure 2.24. Feature point approaches typically select positions with high cor-
nerness. The evaluation showed that ESM often depends on the selected area
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to be tracked. In contrast to the selective feature points approaches, ESM gives
the same weight to every pixel in its area. This can severely degrade the accu-
racy if e.g. the border of the image is approximately uniform. Thus, to make
the comparison fair, we manually selected patches in the low texture targets
for ESM. After that, it tracked the extremely low textured yellow road sign for
100% of the “Angle” sequence and surpassed the other algorithms in terms of
accuracy. Concerning low texturedness, both FERNS and SURF showed a better
performance on the slightly more textured stop sign target.

The reason for the performance of SURF for the first target is that SURF does
not find sufficient feature points on the yellow traffic sign, the same again applies
to the grass target which for ESM also turned out to be an extremely difficult
target. FERNS was in general very well adapted to the “Angle” sequences which
might come from the explicit training phase that warps the reference targets
numerous times.

The “Fast Close” sequences with large amounts of motion blur were the most
difficult to detect for all four algorithms, whereas “Range” and “Illumination”
sequences were often correctly detected. Figures 2.23 and 2.24 also show the
RMS errors for all targets, sequences and algorithm as box-and-whiskers-like
diagram. The whiskers mark the minimum and maximum error while the box
spans from the first to the third quartile, the mean is given via the red horizontal
line. The targets per target group are separated by a vertical black line. In general,
the “Fast Close” sequences were detected with the largest error per target while
“Illumination” yielded, most of the time, the lowest error.
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FERNS Angle Range Fast Far Fast Close Illumination
Low 17.08% 8.08% 1.58% 3.75% 6.58%

47.33% 71.00% 22.92% 40.50% 76.08%
Repetitive 36.42% 65.17% 15.42% 48.50% 91.83%

42.50% 45.17% 6.25% 50.00% 81.33%
Normal 69.50% 80.58% 24.92% 68.00% 95.92%

38.75% 53.08% 9.00% 64.67% 81.67%
High 34.92% 38.17% 5.92% 16.00% 31.58%

71.75% 61.50% 13.42% 63.00% 96.92%
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SIFT Angle Range Fast Far Fast Close Illumination
Low 47.25% 49.08% 10.33% 19.58% 59.17%

36.08% 95.42% 25.50% 55.58% 99.75%
Repetitive 59.00% 99.33% 43.33% 71.92% 100.00%

69.50% 95.67% 15.17% 62.83% 98.17%
Normal 63.50% 84.25% 21.75% 55.17% 96.08%

53.00% 96.08% 31.67% 77.67% 99.58%
High 66.83% 85.08% 18.33% 37.42% 97.00%

79.50% 94.75% 31.42% 72.75% 99.50%

Figure 2.23: Diagrams: Distribution of the RMS error for each sequence, only
successfully tracked frames were taken into account. The whiskers denote mini-
mum andmaximum, the box spans from first to third quartile; a red line segment
shows the mean RMS error. Tables: Ratio of successfully tracked images (with
yi < 10pixel).
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Image Sequence
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SURF Angle Range Fast Far Fast Close Illumination
Low 0.50% 0.33% 0.08% 0.00% 0.00%

27.17% 67.00% 11.83% 33.50% 55.17%
Repetitive 16.50% 38.42% 5.25% 47.33% 41.00%

25.58% 50.00% 6.08% 54.17% 49.50%
Normal 37.92% 50.17% 6.17% 50.33% 67.75%

45.33% 70.75% 14.25% 69.67% 89.58%
High 0.00% 7.75% 0.00% 0.08% 0.00%

64.00% 44.42% 6.50% 51.50% 72.33%
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ESM Angle Range Fast Far Fast Close Illumination
Low 100.00% 92.33% 35.00% 21.58% 71.08%

100.00% 64.17% 10.58% 26.83% 56.25%
Repetitive 61.92% 50.42% 22.50% 50.17% 34.50%

2.92% 11.33% 6.83% 35.83% 11.33%
Normal 95.42% 77.75% 7.50% 67.08% 76.75%

99.58% 99.00% 15.67% 86.75% 90.67%
High 0.00% 0.00% 0.00% 0.00% 0.00%

100.00% 61.42% 22.83% 45.50% 79.67%

Figure 2.24: Continuation of figure 2.23
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Chapter3
Dense Deformable Template Tracking

This chapter proposes and evaluates a method for simultaneously tracking the
pose of a moving camera and reconstructing a non-planar, convex object in
real-time given only a template image of the object.

3.1 Motivation

Template tracking is one of the fundamental problems in computer vision. Amul-
titude of techniques have been proposed in the literature. Since the seminal work
of Lucas andKanade [LK81] andmultiple subsequentworks [JD02, BM04, BM06],
researchers mainly concentrate on planar templates and estimate camera motion
by minimizing the energy defined by the difference of the image intensities in
subsequent frames. In general, the image intensity constancy assumption is
made, i.e. the same physical point is assumed to have the same intensity value
across different frames.

The applications of template tracking are wide and include, but are not lim-
ited to, vision-based control, human-computer interfaces, augmented reality (as
shown in figure 3.1), robotics, surveillance, medical imaging and visual recon-
struction. In many applications, the planarity assumption is good enough, but
in general that is not the case. For that reason Bartoli and Zisserman [BZ04] and
Silveira and Malis [SM10] considered computing 2D warpings of the reference
templates while tracking them. The real depth and camera motion are then
obtained by decomposing the estimated warpings.
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Figure 3.1: Template tracking used for Augmented Reality: By holding a LEGO
box in front of a camera, a virtual animation of the fully assembled LEGOmodel
appears on top of it.

Motivated by the fact that the world is not planar and driven by the emerging
needs of simultaneous recovery of the structures and motion of the camera, this
chapter addresses the problem of simultaneous tracking and reconstruction of a
non-planar template in real-time. The model of the template is represented as a
triangular mesh. We start with a planar shape and simultaneously recover 6 DOF
camera motion and deform the shape such that the underlying 3D structure is
approximately recovered. As we use all pixels of the template, the object does
not necessarily have to be well textured and contain many feature points. This
is different from classical Structure from Motion (SfM) and SLAM techniques
that primarily rely on sparse feature points, such as e.g.Klein and Murray’s
PTAM [KM07]. While sparse methods perform very well in terms of runtime
and precision, they generally depend on the amount of the observed features
and tend to be quite sensitive to blur.

Unlike methods which rely on prior deformation models [SUF08, SF09] and
assume fixed camera position, we solve for camera motion and do not impose
any constraints on the model deformation. Therefore, we can equally reconstruct
and track templates that are smooth or have creases. However, since the problem
is ill-posed, we havemade certain assumptions: we use templates of a predefined
size, assume that in its reference position the entire template is visible and is
not self-occluded, and we finally restrict mesh vertices to only move along the
camera rays, thus having one degree of freedom per vertex.

In the remainder of the chapter, we first discuss related works in more detail,
then describe our method and present experimental results.
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3.2 Related work

Template tracking has always been assuming the planarity of the object of interest
to be tracked. Since Lucas and Kanade’s original work [LK81], the real-time
constraint was enforced and became standard in recent works such as Baker
and Matthew’s Inverse Compositional (IC [BM04]) or Benhimane and Malis’
Efficient Second-Order Minimization (ESM [BM07]) methods. Improvements
in convergence speed and robustness in the calibrated camera setting were
especially achieved by the method of Benhimane and Malis [BM06]. For those
reasons, we in part relied on their method.

Other researchers also proposed to find deformations of an object in a se-
quence of acquired images. These methods generally consist of estimation of the
parameters of the warping function that registers the reference image, in which
the object is mainly planar, to the input image where the object is deformed. Pilet
et al. [PLF08] and Gay-Bellile et al. [GBBS09] relied on feature points. While the
former can deal with a huge amount of outliers, the latter is relatively sensitive
to them.

Datta et al. [DSK08] used affine warps and integrated the idea of articulated
points as hard constraints into the minimization, i.e. they force patches to move
according to their connectivity. Hilsmann et al. [HSE10] re-textured the surface
of a deforming object realistically by estimating both the changes in geometry and
photometry. They also explicitly model external occlusions to further improve
the quality of the augmentation.

Silveira and Malis [SM10] use 2D warps and present a generic framework
for template tracking which can undergo deformations. In all of these cases, the
warping is done in image space and therefore does not provide a 3D shape, but
instead 2D warpings of the images as in deformable registration. To recover the
3D shape, the recovered 2D warpings are decomposed into a rigid motion and
according depths.

On a separate track, deformable surface tracking from monocular videos has
been developed. Because of the inherent ambiguity, deformation models have
been introduced to constrain deformations of particular objects like e.g.paper
and clothes [SUF08, SF09, VSTF09]. These approaches generally output the 3D
surfacemeshes of the deformed object. However, they do not provide the relative
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camera/object motion in the image sequence, require heavily textured objects
and generally do not work in real-time.

Simultaneous recovery of the camera motion and the 3D shape is also re-
lated to SfM methods based either on bundle adjustment [TMHF00] or filtering,
such as Klein and Murray’s PTAM [KM07] or Davison’s MonoSLAM [DRMS07]
respectively. A theoretical comparison of both directions was conducted by
Strasdat [SMD10]. Both PTAM and MonoSLAM strictly rely on point-based im-
age features and incremental (if real-time) reconstruction of an observed scene,
while neither of them operates on the dense pixel level. The system proposed
by Newcombe and Davidson [ND10] indeed produces a dense reconstruction
using a movable camera. It relies on PTAM to precisely recover the motion of
the camera, furthermore also PTAM’s sparse feature map is used to initialize a
GPU-based dense optical flow method [WPZ+09].

Most of the previously mentioned methods are using feature points and/or
define constraints on the possible model deformations. Relying on features
usually implies that the observed object has to be well textured. Instead of using
a set of extracted feature points in the image, we share the belief that a higher
accuracy can be achieved when using all available pixels of the template – which
in turn enables tracking of low textured templates.

Recently, Newcombe et al. [NLD11] presented a system for densely tracking
and mapping that no longer needs PTAM’s sparse feature tracking as basis. The
dense reconstructed model of the environment is now directly tracked, and thus
unprecedented results are achieved also in presence of strong motion blur and
low textured objects. However, due to the computational complexity of this
approach, it has to be run on a modern GPU for real-time performance. In this
chapter, we present a method that requires rather low computational efforts and
thus potentially also could be run on less powerful mobile devices.
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3.3 Method

Our method is based on the idea of tracking the camera pose relative to a refer-
ence image I∗ of an object. Simultaneously, we estimate the shape of the object
as seen in I∗, using a triangular meshM as model for the shape and initially
assuming it to be planar. As the camera moves, the mesh deforms towards the
true shape of the object.

The pose of the camera that was used to take the reference image is used as
origin of the coordinate system, i.e. the pose assigned to I∗ is a (4× 4) identity
matrix. When a new image I from a sequence or live camera feed becomes
available, the pose of the camera where I was captured should be estimated
and the mesh updated. For simplicity, we denote this pose as T throughout this
section. As we typically deal with an image sequence, we assume that we have
the estimates for pose and mesh of the last processed frame available as T̂ and
M̂ .

We further assume that, ignoring occlusion and drastic lighting changes,
the reference image I∗ can be constructed from I by back-warping each face
f given the true camera pose and the recovered mesh. As we we only know
the approximations T̂ and M̂ , we produce an estimated image Î∗ by applying
a homography G to each face of the mesh. We then compute the photometric
error y as the difference between I∗ and Î∗ and minimize it. An overview of
the method is shown in figure 3.2.

We use a piece-wise planar mesh where each face f has a corresponding
normal n∗f = 1

d∗ [ n∗x n
∗
y n
∗
z ]
>. Please note that the normal n∗f is scaled by the

inverse of the distance d∗f of the face to the camera center c∗ in the reference
frame. The pixels associated with the face are interpreted to lie on the plane
defined by

[
n∗f
−1

]>
x = 0 (3.1)

where x is a 3D point in normalized homogeneous coordinates. Each face can
be warped from the image I to the frame of the reference image I∗ using the
homography

G(T,n∗f ) = K
[
R + tn∗>f

]
K−1Gf (3.2)
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I I∗

Î∗(∆) y(∆)

Figure 3.2: Overview of the method: The mesh is overlaid onto the object. Out
of the camera image I the estimate of the reference image Î∗(∆) is unwarped.
The error y(∆) = Î∗(∆) − I∗ is iteratively minimized to obtain object shape
and camera pose.

where K is a (3× 3) matrix with the known camera intrinsics (c.f. equation (2.2))
and R and t are contained in T (c.f. equation (A.2)). To use multiple faces in the
optimization, the homography Gf is used to apply a 2D translation within the
reference image I∗ as

Gf =

1 0 u∗f
0 1 v∗f
0 0 1

 . (3.3)

At the beginning of each iteration, we warp each face from the current frame
to the reference frame to compute the photometric error. We then compute and
eventually apply an update ∆ to decrease the error. In the following, each step
of the minimization will be explained.

For the sake of simplicity, we consider only a single face consisting of m
pixels. The homogeneous 2D coordinates of the pixels are denoted as p∗i ∈
{p∗1,p∗2, . . . ,p∗m}. They are in the coordinate frame of the reference image I∗.
We now define the (m× 1) error vector y(∆) as row by row concatenation of the
per-pixel error measures

yi(∆) = I
(
d
(
G
(
T̂T(∆), n̂∗f + n∗f (∆)

)
p∗i

))
− I∗(p∗i ) (3.4)
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u∗

v∗ I∗

z∗ = 1

z∗ = 0c∗

Figure 3.3: Parameterization of the mesh deformation. The vertices of the mesh
are free to move along their respective projection ray, i.e. their 2D coordinates
[ u∗i v

∗
i 1 ]
> in the reference image I∗ are fixed but their depth z∗i may change.

where d(·) is the perspective division by the last coordinate (c.f. equation (2.3)).
Intensity values at non-integer coordinates in I are bilinearly interpolated as
described in appendix B.

The update is parametrized as ∆ = [ a1...6 ψ∗1...n ]
>. The first six parameters

ai represent the update T(·) of the pose of the camera. We use the Lie algebra of
SE(3) for T(·) as explained in appendix A. The remaining ψ∗i of ∆ are used to
update themesh, more specifically the normals of each face. The parametrization
of the mesh updates and n∗f (·) are explained next.

3.3.1 Parameterization of the mesh updates

Deformations of the mesh M∗ are modeled by moving vertices along their
respective rays emanating from the camera center c∗ in the reference view, as
shown in figure 3.3. Every vertex v∗i of the mesh is defined via its homogeneous
2D coordinates v∗i = [ u∗i v

∗
i 1 ]
> in the frame of the reference image I∗ and its

depth z∗i with respect to the camera center c∗.

In the following we express the normal n∗f (∆) of a face f in terms of its
vertices {v∗i ,v∗j ,v∗k} and associated inverse depths {ψ∗i , ψ∗j , ψ∗k}. A 3D point
[ x y z ]

> is projected into the image asuv
1

 = d

K

xy
z


 =

1

z
K

xy
z

 . (3.5)
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This gives

xy
z

 = zK−1

uv
1

 . (3.6)

The co-planar 3D points of each face further satisfy the plane equation

n>

xy
z

 = d (3.7)

with the plane normal n = [ nx ny nz ]
>. Substituting [ x y z ]

> using (3.6) gives

n>zK−1

uv
1

 = d. (3.8)

Multiplying by 1
dz (where z 6= 0 and d 6= 0) gives

n>

d
K−1

uv
1

 =
1

z
= ψ∗. (3.9)

Transposing the equation finally ends in

[
u v 1

]
K−>

n

d
= ψ∗. (3.10)

Combining three points v∗1,v
∗
2,v
∗
3 with according inverse depths ψ∗1 , ψ∗2 , ψ∗3 into

this system, we obtain

[
v∗1 v∗2 v∗3

]>
K−>

n

d
=

ψ
∗
1

ψ∗2

ψ∗3

 . (3.11)
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The matrix [ v∗1 v∗2 v∗3 ]
> is invertible as the three points are non-collinear. By

multiplying first with the inverse of this matrix and then with K>, we finally
obtain n∗f (∆) as

n∗f (∆) =
n

d
= K>

[
v∗1 v∗2 v∗3

]−> [
ψ∗1 ψ∗2 ψ∗3

]>
. (3.12)

3.3.2 Minimizing the cost function

To increase the numerical stability of the minimization, we add a regulariza-
tion term to the cost function via a function r(∆) : R6+n → R6+n where n is
the number of movable vertices in the mesh, also called control points. The
regularization will be presented in section 3.3.3. We write cost function as

φ(∆) =
1

2

(
||y(∆)||22 + λ ||r(∆)||22

)
(3.13)

where the scalar λ is used to balance the squared norms of y(∆) and r(∆). We
assume that the updates T(∆),n∗f (∆) of the estimates T̂, n̂∗f are reasonably
small such that a Taylor expansion can be used for minimization. We denote Jy

and Jr as the Jacobians of the data and regularization terms evaluated at ∆ = 0.
A first-order Taylor expansion of equation (3.13) gives

φ(∆) ≈ φ̃(∆) =
1

2

(
||y(0) + Jy∆||22 + λ ||r(0) + Jr∆||22

)
. (3.14)

The update ∆ is then computed by derivation with respect to ∆ and setting the
resulting equation to zero as

∂

∂∆
φ̃(∆) = J>y (y(0) + Jy∆) + λJ>r (r(0) + Jr∆)

!
= 0. (3.15)

We collect the terms dependant on ∆ on one side and obtain

(
J>y Jy + λJ>r Jr

)
∆ = −

(
J>y y(0) + λJ>r r(0)

)
. (3.16)

This system is solved for ∆ using e.g.Cholesky decomposition or the pseudo-
inverse. The update ∆ is applied and another iteration is run until either the
norm of the update is below a certain threshold (we chose 10−3 in the experi-
ments) or the maximal number of iterations is reached.
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The Jacobian Jy can be written as the product of gradient of the estimated
reference image ∂

∂u Î
∗(u) = JÎ∗ , the Jacobian of the projection ∂

∂ad (a) = Jd and
the Jacobian of the homography ∂

∂∆G
(
T̂T(∆), n̂∗f + n∗f (∆)

)
p∗i = JG as

Jy = JÎ∗JdJG. (3.17)

In the spirit of [BM06], this first order linearization can be approximated to
second-order as

Jy =
1

2

(
JÎ∗ + JI∗

)
JdJG (3.18)

by including the gradient ∂
∂uI

∗(u) = JI∗ of the reference image I∗. As shown in
the evaluation, this in general increases the convergence frequency of the Gauss-
Newton optimization with low additional costs. As usually done in template
tracking, we try to increase the convergence radius and speed using a coarse-to-
fine strategy. Specifically, we run the proposed method on multiple levels of a
power-of-two image pyramid.

3.3.3 Regularization

In case the camera is close to the reference camera, the matrix J>y Jy becomes
increasingly ill-conditioned, i.e. small changes in y(0) may provoke big changes
in the estimated update ∆. This is because the projection rays of the current
camera are approximately aligned with those of the reference camera (depicted
in figure 3.3). In this degenerate configuration, arbitrary movements of the
vertices, respectively their inverse depths ψ∗i , result in almost identical unwarped
reference images Î∗.

However, this configuration can be easily mitigated by adding a regulariza-
tion term to the cost function that restrains the vertices in that case. We define
r(∆) = [ 0(1×6) r1(∆) r2(∆) ... rn(∆) ]

> such that it does not effect the update of
the pose but only operates on the nmovable vertices. We compute ri(∆) for all
i ∈ {1, 2, . . . , n} as

ri(∆) =
(

1 + λse
−λr||̂t||2

)( 1

ψ̂∗i + ψ∗i
− zi

)
. (3.19)

The first part of the regularization term is aweighting factor based on the baseline
t̂ of the last iteration that penalizes the degenerate configuration just discussed.
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c∗

c

ai

πi

Figure 3.4: Computation of reference depth zi from all successful previous
registrations. Left: The highlighted cell is currently used for storing the estimate
of the height and the similarity measure based on adjacent faces of the vertex.
Right: Example of cells containing data during typical run of the algorithm, with
the ground track of the camera overlaid.

The scalars λs and λr determine the scale and range of the penalty concerning
the baseline, empirically λs = λr = 10 gave good results. The second part of
r(∆) is responsible for damping the deformations and moving them towards
their most likely true value. It penalizes changes of the depths with respect to a
reference depth zi of the vertex.

A naïveway of determining zimay consist in computing it as running average,
e.g.updated after every image as zi ← 0.9 zi+0.1/ψ̂∗i . This method is simple yet
effective in case of a continuously moving camera. However, when the camera
becomes stationary, zi will converge towards the value optimal for only this
local configuration (which may be different from the globally optimal depth
because of ambiguities). In otherwords, all information fromprevious successful
registrations will be lost over time.

Therefore, our approach of computing zi tries to preserve previous knowl-
edge about the camera motion. The idea is to spatially sample height estimates
together with confidence values incorporating not only the height estimate of
vertex i but also other estimates such as the pose of the camera and the height es-
timates of adjacent vertices. It is outlined in figure 3.4 and will now be explained
in detail.
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We use the ray to the reference camera center c∗ from the initially assumed
3D point ai corresponding to vertex vi as normal for a plane πi. On this plane,
a unit square centered on ai is subdivided into a regular grid. While the user
moves the camera, we cast a ray from ai to the current camera center c, intersect
it with the unit half-sphere around ai and project the intersection onto πi, as
displayed on the left side of figure 3.4. The cell which contains the projection
records the current height estimate of the algorithm and a similarity measure
Si consisting of the sum of the normalized cross correlations (NCC) between
I∗ and Î∗ for all adjacent faces of vertex i. The NCC is defined for two (U × V )

images Ia and Ib as

NCC (Ia, Ib) =
1

N − 1

1

σaσb

∑
u∈U

(Ia (u)− µa) (Ib (u)− µb) (3.20)

with N = UV and where U is the set of the integer pixel coordinates with
measured intensities (c.f. equation (2.12)). Furthermore, the average intensity µi
is defined as

µi =
1

N

∑
u∈U

Ii (u) (3.21)

and the deviation σi is defined as

σi =

√
1

N

∑
u∈U

(Ii (u)− µi)2. (3.22)

The similarity measure and the height estimates stored in a cell are updated
when there was either no prior record or in case the stored similarity measure
was smaller than the one currently obtained. The reference height zi is then
computed from the recorded data as

zi =

∑
p zi(p)Si(p)w(p,ai)∑

p Si(p)w(p,ai)
(3.23)

where p represents a point inside the unit square on plane πi, zi(p) is the cor-
responding recorded estimated heights, Si(p) the according summed adjacent
NCCs and w(p,ai) is a function that down-weights samples drawn close to ai

as these are least discriminative. We used as weighting function

w(p,ai) = 1− e−λw||p−ai||
2
2 (3.24)
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with λw = 50, on a grid of resolution (100×100). Initially, the value of zi changes
rapidly as the shape transforms from the initial estimate towards a more likely
shape. The variance of zi increases, but at a certain point, when the user moved
sufficiently, the variance begins to steadily decrease. The objective is that when
the user has seen the object from various viewpoints so that all cells of the unit
circle are covered, zi becomes constant. Consequently, the estimated shape
of the template becomes very close to the running average and regularization
practically cancels. In practice, the outer regions of the grid are in general rarely
visited, so we used the grid only for the inner 70% of the unit circle and stored
the data of the outer 30% in its outmost cells to better utilize the grid.
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3.4 Evaluation

The proposed method was quantitatively evaluated both on synthetic and real
video sequences for which ground truth of the camera pose was available. In
case of the synthetic sequence we also evaluated the estimate of the shape.
Further, we evaluated the method qualitatively on smooth objects and on objects
with creases, ovserved from a moving camera. We also tested our method on a
smoothly deforming object with a fixed camera. We conducted a comparison
against PTAM [KM07] and analyzed both methods in presence of several levels
of blur. Videos of the evaluations can be found in the supplementary material.

3.4.1 Quantitative evaluation

Synthetic evaluation We created a synthetic pyramid first seen from the top,
then moving towards the lower left corner of the image while rotating. We
used a mesh of 16 faces and 13 vertices from which only the central vertex was
fixed at z = 1. No regularization was employed as neither noise nor degenerate
configurations are present and only a maximum of five iterations per frame on
pyramid level 0, i.e. on the original image resolution, were allowed.

The method shows low errors in both pose and shape of the object. The
synthetic evaluation is illustrated in figure 3.5 and in the supplementarymaterial.

frame 1 = I∗ frame 2 frame 3
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Figure 3.5: Evaluation of the shape on synthetic data. Upper row shows input
frames with an overlay of the 2D projection of the recovered shape shown below.
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Figure 3.6: The proposed second-order approximation of Jy converges 2–4 itera-
tions earlier in case of slight mesh deformations, using the synthetic sequence
from figure 3.5.

As can be seen, despite the small movement of the pyramid from frame 1 to
frame 2, the recovered shape quickly adjusted towards the true shape of the
pyramid. When comparing the first order linearization of Jy with the presented
approximated second-order linearization, we observed that they have similar
convergence rate when there is strong motion in the depths like in frames 1-2 as
shown in figure 3.6. However, when the estimation of the structure is changing
just slightly like in frames 2–3 of this sequence, 2 to 4 iterations may be saved and
our results match those of Benhimane andMalis [BM06] in terms of convergence.

Real sequence To perform a quantitative evaluation with real camera images,
we have created a equence with ground truth poses of a real camera as pre-
sented in section 2.6.2. The sequence starts from a near fronto-planar view onto
a low-textured computer mouse and features a near-circular motion. It was
first used to evaluate our method, ESM [BM07] and a calibrated multi-planar
tracking method [BM06] referred to as DP. The algorithms were given identical
parameters, i.e. 2 pyramid levels and (at most) 5 iterations per level. Poses were
computed from the 2D–3D correspondences of the corners of the tracked tem-
plate image using POSIT [DD95]. Images from the sequence and the errors of the
poses of the algorithms are shown in figure 3.7. The rotational error in radians
was on average 0.30 (17.2◦) for DP, 0.16 (9.2◦) for ESM and 0.07 (4.0◦) for the
proposed method; translational errors in the sequences averaged to 15.12mm,
9.11mm and 4.44mm respectively. The proposed method clearly outperforms
method that assume global planarity.

Furthermore, we evaluated the robustness of the proposed method with
respect to blur introduced by consecutively applying a (5× 5) mean filter. This
kind of blur can be found in real data when the object is out-of-focus given
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Figure 3.7: Evaluation on real data. Comparison of ESM [BM07], DP [BM06]
and proposed method.
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PTAM

proposed
method

blur 0 blur 1 blur 2

Figure 3.8: Evaluation against blur originating from a (5× 5) mean filter which
was applied consecutively 0–4 times. PTAM draws a ground plane into the
image if it tracks while we project the deformed 3D mesh model.

e.g. a fixed-focus camera. We observed that the accuracy of the method did
increase slightly as the blur increased, which could be explained by the way
we construct the pyramid levels in the implementation. For speed reasons, we
do not subsample the whole image, but only bilinearly interpolate at the pixel
positions we have to warp. Thus, only the intensity of the four nearest neighbors
of a pixel position is used. On a high pyramid level, the spacing between warped
pixels may become so large that some pixels of the object in the camera image
may not contribute to the computation of the photometric error. As the blur
diffuses the information, the higher pyramid levels effectively use more than the
intensities of four pixels per warped template pixel.

The same sequences were given to PTAM. As poses of PTAM are defined
in an rather arbitrary coordinate system, we aligned them by minimizing the
sum-of-squared distance to the ground truth, solving for a 6-DOF transformation
and 1-DOF scale (see section 2.7.2). PTAM recovered the trajectory of the camera
extremely well – however, as PTAM uses FAST [RD05] as feature detector, the
vast majority of the features used were on the high-contrast fiducials. As we
were rather more interested in evaluating the performance when tracking the
computer mouse, we removed the markers from the images in the same way as
presented in section 2.6.1. The proposed method and PTAM were evaluated on
this sequence. PTAM could not successfully initialize starting from the second
level of blur, as depicted in figure 3.8, presumably since there were very few
features on the lowest image pyramid level to be tracked. Table 3.1 shows the
average translational error and its standard deviation for both methods on the
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Figure 3.9: Translational errors of PTAM and the proposed method for cropped
images and blur levels 0 and 1.

blur 0 blur 1 blur 2 blur 3 blur 4
proposed method, full image 4.44, 1.62 4.32, 1.49 4.17, 1.43 4.04, 1.39 3.39, 1.38
PTAM, full image 2.49, 0.70 1.70, 0.58 2.00, 0.73 1.70, 0.60 1.61, 0.62
proposed method, cropped image 4.44, 1.62 4.31, 1.48 4.17, 1.43 4.03, 1.39 3.39, 1.38
PTAM, cropped image 2.95, 1.44 4.59, 1.98 - - -

Table 3.1: Average translational error and standard deviation of the pose for both
cropped and original image sequence (in [mm]). While PTAM is clearly superior
on the full image due to also tracking the fiducials, the proposed method also
obtains almost identical results when these are removed as they are not in the
template image.

full and cropped images. As can be seen, the proposed method is giving the
same results both for full and cropped image.

3.4.2 Qualitative evaluation

To analyze how the method works in case of a smooth object and in case of
object with creases, we evaluated it by tracking a cup and a truncated pyramid.
The method was able to track both objects well and approximated the shapes
reasonably. As observed also by Datta et al. [DSK08], best results are obtained
when the structure of the mesh is able to express the structure of the underlying
object. Furthermore, we evaluated the robustness of the method when tracking
deformed objects. Although this violates the rigidity assumption, the method
copes well with slight deformations as shown in figure 3.10. In the cup sequence,
after estimating the shape we manually disabled the estimation of the depths
and used the method only for tracking the pose. We show that the pose is
well estimated even under severe occlusion of up to 50% of the mesh. On a
2.5GHz dual core notebook, the speed is typically 10–30ms per frame when
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Figure 3.10: Qualitative evaluation of recovered shapes. The first frame of each
sequence (shown left-most) is used as template. Upper and middle row: Shape
recovery of the rigid objects from moving camera where also the camera motion
is estimated. Lower row: Recovering shape of the deforming object where the
camera is notmoving. Although themethodwas not designed for such situations,
we still managed to apply it to recover moderate object deformations.

estimating the camera pose and around 40–60ms when additionally estimating
the deformations. The timings were obtained using pyramid levels 3 and 2, at
most 5 iterations per level and a mesh of approximately (200× 200) pixels on
level 0. Most of the time was spent in the direct computation of J>y Jy.

63



Chapter 3: Dense Deformable Template Tracking

64



Chapter4
RGB-D based Tracking and Meshing

This chapter describes a method for tracking the pose of a moving RGB-D camera
and in parallel computing a meshed version of the environment.

4.1 Motivation

For several vision-based AR applications that relied on end-user hardware,
determining the relative motion of a single camera with respect to an unknown
environment was made possible thanks to approaches inspired from Davison’s
MonoSLAM [Dav03]. This approach and its successors are performing real-time
tracking of visual features extracted from live camera images. The features need
to be seen in many images for which the camera has performed a motion that is
sufficiently large for estimating the depth and consequently reconstructing the
3D coordinates of the features.

Generally, the reconstruction is based on the structure-from-motion prin-
ciple. As briefly stated in section 2.5, to get correctly scaled 3D coordinates
of the reconstructed points and therefore an e.g.metric camera motion, these
approaches usually require an explicit manual measurement of some parts of
the environment. Alternatively the environment could be equipped with known
objects. Yet another possibility to induce scale is to ask the user to perform a
constrained camera motion. For example, this done in the initialization of Klein
and Murray’s PTAM [KM07] where the camera needs to move between two
user-selected frames such that its optical center position varies with a metrically
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Figure 4.1: RGB-D camera Microsoft Kinect. From left: IR projector, RGB camera
and IR camera. c©Microsoft

known scaled translation. If one of these scale-inducing conditions is fulfilled,
it is possible to estimate a correctly scaled relative motion of the camera with
respect to an unknown environment and thus reconstruct a correctly scaled
(sparse) representation of it. The reconstructed 3D point clouds are generally
based on visual features as the only sensor used is a camera.

We see here some limitations of the existing approaches. First, before re-
constructing a point and adding it to the map, the point needs to be tracked
over multiple frames that have an estimated camera pose. This delays the par-
ticipation of a newly visible physical point in the estimation of the full camera
motion (it is possible that non-triangulated points participate in the estimation
of the rotation of the camera as done by Civera et al. [CDM08]). Second, either
the environment needs to be partially measured or pre-equipped or the user
needs to have some experience with the system in order to correctly perform a
constrained camera motion that allows correct scale estimation. Third, since the
existing approaches are mainly based on visual features (often extracted where
some texture gradient is available), the online map obtained from the existing
approaches is generally sparse and could not be used, even after post-processing
and meshing, for occlusion handling or similar AR tasks that require a meshed
version of the environment.

Camera systems that are designed to additionally provide a correctly scaled
depth of an imaged pixel would solve the above problems. However, for several
years, typical depth camera systems had low resolution, noisy measurements,
restricted working area and/or high cost. Whether they are based on Time-Of-
Flight technology or on standard Digital Fringe Projection, these camera systems
did not have the huge impact that the advent of the Microsoft Kinect (shown
in figure 4.1) has had starting from its launch in November 2010. In fact, this
end-user low cost and relatively high resolution RGB-D camera is based on a
RGB camera registered to a stereo system composed of an infra-red structured
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light projector combined with an infra-red camera which allows for pixel depth
computation. Originally targeted at indoor use and intended as a supplement
for gaming devices (XBox 360), the Microsoft Kinect got a high interest from the
research community once PrimeSense, the company that provided its reference
design, released official drivers for this device.

In this chapter, we investigate how such a device allows an important step
forward in the field of computer vision in general and in AR in particular. We
propose a real-time method based on such a consumer RGB-D camera that
estimates metric camera motion with respect to an unknown environment and
that builds a densemeshed and textured version of the surrounding environment
at the same time.

The remainder of this chapter is structured as follows. We first position our
contribution with respect to the existing and related state-of-the-art. Then, we
describe the approach used for the real-time RGB-D camera motion estimation
and meshing of the surrounding environment. The estimated trajectory of the
camera using the proposed method is evaluated against PTAM on ground truth
data as described in chapter 2. Furthermore, the recovered shape of a challenging
industrial object is compared to its known CAD model. Finally, we illustrate the
usage of the proposed method on different AR scenarios.
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4.2 Related work

Visual real-time trackingwith respect to known or unknown scenes is an essential
component of vision-based AR applications. There were numerous algorithmic
contributions in the topics in the last few years. But, if Davison et al.’s semi-
nal MonoSLAM [DMM03, Dav03] showed that it is possible to perform SLAM
using a single camera on end-user hardware in real-time, Klein and Murray’s
PTAM [KM07] showed that adapting and updating the algorithms used for
estimating the camera motion according to end-user available computational
capabilities allows to get impressive tracking results in small AR workspaces.

In fact, estimating the camera motion by tracking the environment and in
parallel building a feature-based sparse map was made possible thanks to the
generalization of multi-core processors on desktop computers and laptops. As
MonoSLAM was published a few years earlier, it relied on a single-threaded
paradigm to handle few (supposedly) high-quality features and adjust their state
with new measurements from every camera frame. This has the benefit that
every available information about a feature is integrated into its state. However,
it comes at the cost of being able to handle only maps of up to 100 features
(mostly due to the real-time constraint). More importantly, this approach has a
low level of robustness as errors in the data association, e.g.due to fast camera
motion, permanently corrupt the map of this SLAM system.

On the other hand, whenmultiple threads can be executed at the same time, a
clear separation between tracking and mapping has the benefit that the mapping
component is free to employ methods that traditionally were intended for offline
usage. The map refinement is run on a separate CPU core and can make use of
e.g.data-reassociations and (robust) bundle adjustment [TMHF00]. Themapping
scales with the number of mapped features and keyframes, i.e. camera frames
selected based on the spatial, photometric or temporal distance. The tracking is
able to maintain real-time performance as it scales with the number of tracked
features in the current camera frame. A decoupled system is typically able to
handle much bigger maps (few 10.000 features) while still tracking at frame-rate.

On a side note, Strasdat et al. analyzed these predominant paradigms in
monocular SLAM, i.e. filtering and optimization, in a series of real and synthetic
experiments. They concluded that, “while filtering may have a niche in sys-
tems with low processing resources, in most modern applications keyframe
optimization gives the most accuracy per unit of computing time” [SMD10].
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Many extensions of the above approaches showed that it is possible to scale
monocular SLAM approaches to a larger environment, such as the work of Eade
and Drummond [ED08] or Castle et al. [CKM08] who employ multiple local
maps. Notably, the former system also automatically merges these local maps as
Eade andDrummond interpreted recovery as loop closing. As already presented
in chapter 3, Newcombe and Davison [ND10] recently showed that by leveraging
the incomparably higher computational power of a modern GPU, it is possible to
get a dense representation of a desktop scale environment and highly textured
scene using a single standard hand-held video camera. While the basis tracking
system used in [ND10] was PTAM, Newcombe et al. [NLD11] went one step
further and also use the online created dense textured surface model for tracking
the camera’s pose. As the pose estimation is achieved by a direct alignment
method, their method is also robust to blur caused by out-of-focus or motion
(c.f. section 3.4).

Also, recently, Castaneda et al. [CMN11] replaced the generally used stan-
dard hand-held video camera with a combination of a time-of-flight (204× 204)

resolution camera and a (640 × 480) RGB camera and modified the measure-
ment model and the innovation formulas of the Extended Kalman filter used by
MonoSLAM to improve the tracking results. This work did not use a powerful
PC but instead a typical expensive depth camera system.

Henry et al. [HKH+10] directly used an RGB-D camera from PrimeSense,
similar to the Microsoft Kinect, for surfel-based modeling of indoor environ-
ments. While their system is capable of creating models of rather large indoor
scenes, it does not run on live data in real-time uses recorded videos as input.
Furthermore, it does not perform any real-time inter-frame tracking crucial for
AR. In parallel to the publication of the work presented in this chapter, New-
combe et al. [NIH+11] presented a system coined KinectFusion that exclusively
relies on depth maps obtained from the Kinect. It utilizes a modern GPU to
create a high-quality reconstruction by aligning and integrating every pixel of
the captured depth maps into a global implicit surface model.
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4.3 Real-time camera motion estimation

A typical SLAM system consists of three major parts: Map building, inter-frame
tracking and relocalization. The system proposed in this chapter uses a map for
tracking that consists of RGB-D keyframes with associated camera poses and
sparse 3D points with descriptors computed from the keyframes. An example
of such a map can be seen in figure 4.2. In the following, we will describe the
three stages and how they take the depth image into account.

4.3.1 Inter-frame tracking

Assuming that we have an initial map, an estimate cameraTworld,i−1 of the cam-
era pose and 2D–3D correspondences Ci−1 from the last camera frame Ii−1,
the task of the inter-frame tracking is to estimate the current camera pose
cameraTworld,i given the current frame Ii. In our system this is realized by first
updating the 2D part of the correspondences Ci−1 to obtain Ci. Next, the up-
dated correspondences and the camera pose cameraTworld,i−1 are used to compute
the current camera pose cameraTworld,i. These two steps will be explained in the
following. As in the previous chapters and appendix A, we define aTb as ho-
mogeneous (4× 4) matrix comprising the rotation and translation necessary to
transfer a point from coordinate frame b to a.

The correspondences Ci−1 can be written as a set of tuples (uj ,xj) where we
define uj as homogeneous 2D coordinates and xj as corresponding homoge-
neous 3D coordinates. The coordinates are normalized, i.e. their homogeneous
component is equal to 1. The 2D part of the correspondences is updated via
sparse optical flow, i.e.by independently minimizing the photometric error be-
tween Ii−1 and Ii within (N × N) windows around each feature position uj .
In contrast to other SLAM systems that rely on 3D motion models, we employ
a 2D motion model independently for each feature. In particular, we use a
pyramidal implementation of the sparse optical flow algorithm by Lucas and
Kanade [LK81, Bou99]. The updated 2D–3D correspondences Ci are used to
obtain cameraTworld,i by iteratively minimizing the cost function

φi(∆) =

|Ci|∑
j=1

w (yj(∆)) (4.1)
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with the weighting function w(·) defined in equation (4.3) and the error measure
yj(·) defined as

yj(∆) =
[
I 0

] (
uj − d

([
K 0

]
T(∆) T̂xj

))
(4.2)

where I is a (2×2) identity matrix, (uj ,xj) ∈ Ci, K are the known (3×3) intrinsic
camera parameters and 0 are zero columns of appropriate size. The perspective
division d(·) is defined in equation (2.3). As can be seen in equation (4.2), we
subsequently remove the homogeneous entry of the 2D and 3D vectors by
multiplying with zero columns to obtain an inhomogeneous error measure.

The estimate of the current camera pose is denoted as T̂, it is initially set to
cameraTworld,i−1 and updated after each iteration as T̂← T(∆) T̂. The parametri-
zation of the pose update T(∆) is based on the Lie algebra se(3) and described
in appendix A. To limit the influence of outliers, we weight the reprojection error
with the Tukey M-Estimator [Ste99] in each iteration:

w

([
u

v

])
=

[
ρ(u)

ρ(v)

]
(4.3)

with ρ(·) defined as

ρ(x) =

c
2/6−

(
1−

(
1− (x/c)

2
)3)

if |x| ≤ c

c2/6 if |x| > c

(4.4)

with the tuning constant c = 4.6851 σ(y(0)) for a 95% asymptotic efficiency
of the estimator. The standard deviation σ(y(0)) of the concatenated residual
vector y(0) = [ y1(0)

> y2(0)
> ... y|Ci|(0)

> ]
> is robustly estimated via the median

absolute deviation (mad) [Ste99] as

σ(y) = k mad(y(0)) (4.5)

= k median (|y(0)−median (y(0)) 1 |) (4.6)

where the scalar k = 1/Φ−1 (3/4) ≈ 1.4826 is used to neutralize the mad of
the normal distribution Φ(·) and 1 is a vector consisting of |Ci| one elements.
Equation (4.1) is minimized by linearizing T(∆) around ∆ = 0 and solving the
resulting normal equations as described in section 3.3.2. At each iteration, the
update ∆ is computed as solution for the system

J>WJ∆ = J>Wy(0) (4.7)
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where J is the Jacobian matrix ∂

∂∆y(∆) evaluated at the origin ∆ = 0 and
W is a diagonal matrix containing the weights w(yi) for each component yi of
y(0). The weight matrix W is updated before each iteration based on the latest
residual y(0). Each weight is computed as

w(x) =


(

1− (x/c)
2
)2

if |x| ≤ c

0 if |x| > c
. (4.8)

Features which were classified as outliers by the M-Estimator (i.e.final weight
equal to zero) and features with reprojection error bigger than a fixed threshold
are removed from Ci and thus discarded from further tracking.

Using the optical flow from the last to the current image is robust against
lighting changes and sudden motions, however it is prone to drift as small
frame-to-frame inaccuracies typically accumulate in the long run. To mitigate
drift, we additionally determine the closest keyframeKj in terms of rotation and
translation of its associated pose worldTkeyframe,j and reproject the 3D points of
this keyframe (highlighted in red in figure 4.2) into the current image Ii using
the current camera pose cameraTworld,i. The generated correspondences are added
to Ci and will be used for estimating the pose cameraTworld,i+1 in the next camera
frame Ii+1. The reprojection has the benefit that, assuming a high number of
features in the keyframes, we always can use the maximum number of features
for tracking. This strategy which greatly improved the accuracy and robustness
of the proposed system overall.

As the pose cameraTworld,i used for reprojection may already incorporate some
drift, we refine the positions of the reprojected features individually before
using them by employing Lucas-Kanade tracking from the keyframe Kj to the
current frame Ii. The neighborhood of the updated position is checked for
photo-consistency using the sum-of-squared differences of a window around
the 2D position of the features. However, we assume that the tracker did not
drift arbitrarily and thus require the displacement of the 2D feature to be less
than a given threshold. This thresholding is unfortunately necessary because we
currently use the same 2D feature detection both for relocalization and tracking;
the scale-invariant features used for relocalization are based on the principles of
SIFT [Low04], however we do not yet use the recovered scale of a feature in the
frame-to-frame tracking. Thus it can happen that a feature that is detected on a
high pyramid level starts to drift on the lower levels of the pyramid, mostly due
to near-uniform appearance on these levels.
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Figure 4.2: Sparse feature point cloud created online during the real-time track-
ing of a challenging industrial scene. Also shown: the dense reconstruction
presented in section 4.4.

It turned out that the pyramidal Lucas-Kanade tracking is the main compu-
tational task of the tracking component. Due to real-time constraints, we limit
the number of tracked features to around 300. All features discarded after the
pose estimation are eventually replaced by reprojected features from the closest
keyframe in order to maintain a high number of tracked features.

4.3.2 Sparse feature mapping

Each keyframe of the map is taken from the live image stream and has to ful-
fill two conditions: firstly, it has to provide a sufficient amount of features (at
least 40 in our experiments) that also have an associated measured depth, and
secondly, the pose worldTkeyframe = cameraT−1world assigned to the keyframe has to be
farther away from all keyframes’ poses currently forming themap (see figure 4.2).
Initially, the map is empty. We use the first camera image that has enough recon-
structed features as first keyframe. The camera pose associated to this keyframe
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serves as origin of the global coordinate system. 3D points are created from the
2D image coordinates [ u v 1 ]

> of each feature usingxy
z

 = zK−1

uv
1

 (4.9)

where K are the known intrinsics of the camera and z is the depth provided
by the depth image. Next, the inter-frame tracking is initialized from these
2D–3D correspondences and tries to estimate the camera pose for every new
camera image as described in the previous section. When a new camera image
eventually qualifies as new keyframe based on the currently estimated camera
pose, we put the RGB-D image into a queue for further processing on a second
thread to not block the tracking on the main thread. Whenever the second thread
is ready, the candidate is popped from the queue and the initial conditions on
the distance to the poses associated to the existing keyframes is re-checked as
closer keyframes may have been added to the map in the meantime. Then, all
features are extracted and their descriptors are matched against the descriptors
associated to the 3D points of the map.

We re-estimate the pose based on these 2D–3D matches in the same way as
described in section 4.3.3 to reduce the potential drift of the inter-frame tracking.
If the estimation is successful, the keyframe K is accepted and added to the
map. This consists of adding the RGB-D image with associated camera pose to
the known keyframes and adding the unmatched 3D points with descriptors
to the set of mapped 3D points. Furthermore, we keep the associations of the
2D–3D matches used to recompute the new keyframe’s pose in order to be
able to refine the 3D position of mapped features at a later point in time, e.g. by
Kalman Filtering. Currently we do not filter the depth maps from the Kinect
but instead rely on the M-Estimator of the pose estimation, as this approach
empirically already seemed to work reasonably well when using a few hundreds
of correspondences.

4.3.3 Relocalization

In case the tracking is lost, we try to re-localize the camera by extracting features
from the current camera image and then matching their descriptors against
those of the mapped 3D points. We currently use an exhaustive search in the
descriptor space to obtain a first and second nearest neighbors and use their ratio
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to determine match/no-match as in [Low04]. The matches are filtered using a
RANSAC [FB81]-scheme to remove outliers and obtain an initial guess of the
camera pose for the robust non-linear pose estimation presented in section 4.3.1.
The initial pose is estimated from the correspondences using POSIT [DD95]. If
the pose estimation was successful, we also project features from the closest
keyframe the current camera image as in section 4.3.1 to potentially increase the
number of tracked features. For the next camera image, the inter-frame tracking
is thus re-initialized with the pose estimate and a set of 2D–3D correspondences
from map and closest keyframe.
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Figure 4.3: From left: Mesh created from single RGB-D image and underlying
3D point cloud.

4.4 Online environment mesh creation

In this section, we explain the approach we use to reconstruct the environment
as a textured dense mesh. The reconstruction process is done in parallel to the
tracking and consists of the following tasks: the selection of the RGB-D frames
for updating the meshed model, the meshing of the point cloud corresponding
to the selected RGB-D frame and finally the integration of the newly created
local mesh into the global model. These steps will be explained in the following,
starting with the meshing. In general, we favored integration speed of new
data over global accuracy as the system should be used online with no special
hardware besides the RGB-D sensor.

4.4.1 Creating local textured meshes

Similarly to the sparse feature mapping, the dense meshing is also conducted
on a separate thread that gets RGB-D image and poses from the main tracking
thread. The first RGB-D frame that arrives is meshed and forms the basis into
which all other meshes will be integrated. We mesh all pixels on a regular grid
that also have an associated depth. The stepsize of the grid was set to five for
the online experiments as acceptable trade-off between speed and quality.

We eventually filter the sampled pixels such that we only keep points that
are not farther than a certain distance (2m in most experiments) from the depth
sensor. This helps to improve the quality of the meshed point cloud in case the
uncertainty of the depth measurement increases significantly with the depth, as
it is the case with the characteristic quantization effects of the Microsoft Kinect.
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step 1 step 2 step 3 step 4

Figure 4.4: Meshing approach adopted from Turk and Levoy [TL94].

The remaining samples are reconstructed in 3D using equation (4.9). The
samples are meshed using part of the “polygon zippering” method presented by
Turk and Levoy [TL94]. A single depth map is converted into a mesh by moving
a window over the depth map. The four corners of this window, illustrated as
red points in figure 4.4, are linked with edge candidates. First, the smaller of
the two possible diagonals is selected in order to better preserve details. Then
the remaining edge candidates are analyzed. They become part of the mesh if
the distance between the reconstructed 3D points is below a threshold. Up to
two triangles per window are created. Finally, the window is shifted to the next
position on the depth map.

Figure 4.4 shows the meshing generation on a grid of stepsize 3, i.e. every 3rd
pixel in each direction of the underlying depth map is used. In the example, the
3D distance corresponding to all but the rightmost edge are below the threshold.
Although Turk and Levoy recommend a threshold for the maximal edge length
depending on the current points, we use a fixed threshold as it empirically gave
better results.

Texturing of the meshes is done via vertex coloring, i.e.by associating the
vertices to the color of the corresponding pixels in the RGB image. The rendering
then takes care of the color interpolation inside every triangle of the mesh. Fig-
ure 4.3 shows the meshing and texturing results of a 3D point cloud originating
from the Microsoft Kinect.

4.4.2 Integration of local meshes

Local meshes are integrated into the global model by first aligning the meshes
to the global model. For this, we transform the underlying 3D points of the local
mesh by the inverse of the camera pose associated to the RGB-D frame, i.e.with

77



Chapter 4: RGB-D based Tracking and Meshing

Figure 4.5: Determining the contribution of a candidate keyframe by rendering
the global reconstruction into the current camera frame and determining the
overlap between candidate keyframe and rendered depth map.

worldTcamera = cameraT−1world. When performing real-time tracking, the camera is
assumed to typically undergo small inter-frame movements. This means that
there is a large overlap between meshes created from consecutive frames. For
simplicity, we currently do not refine the existing vertices of the global mesh as
e.g.proposed by Turk and Levoy, but instead simply add the aligned newmeshes
to the global mesh. We have to take care of the overlap in another way since
otherwise, if for example the entire mesh of every captured RGB-D image would
be added to the global mesh, the capacity of the main memory would be quickly
exceeded because of the massive data volume.

We initially tried to mitigate this problem by only considering keyframes
with associated camera poses that have a translation and/or rotation farther than
a given threshold from the already meshed keyframes, as done in the tracking.
This works well in many cases. But, choosing the threshold needs a compromise:
if too high, it makes it harder to mesh some previously unmeshed parts. And if
too low, the overlap between the regions becomes too large.

Instead of checking the position and the viewing angle of the camera, our
criterion to accept a new keyframe respectively a new local mesh consists in
the amount of non-overlapping geometry with respect to the global model. We
implemented this criterion by filtering 3D points before we try to mesh them. As
illustrated in figure 4.5, a binary mask is created by rendering the reconstructed
scene from the current view point of the camera. Unmasked 3D points, i.e.points
forwhich no geometrywas rendered at their originating position in the keyframe,
are directly considered for updating the mesh.

However, only relying on a binary mask would prohibit adding meshes of
objects that are first observed in front of already reconstructed geometry. This
happens for example when the camera is moved around a fixed object in an
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attempt to scan its geometry or when an object is initially too close to a depth
camera and thus no depth reading is available (e.g. the Microsoft Kinect does
not give depth data for objects that are closer than 30 cm to it). To also add such
closer objects, we keep the associated depth buffer of the rendering. For every
masked pixel we check whether the depth stored in the depth buffer is greater
than the value of the depth map by at least some threshold.

As can also be observed by close inspection of figure 4.5, small gaps may
occur especially on the boundaries of registered depth maps. To close these gaps,
we erode the binary mask directly after creation. New geometry may then also
be added on these boundaries despite already existing geometry closer than the
threshold.

Even though we avoid the creation of (massively) redundant meshes, still the
decision of which frame should be integrated into the global reconstruction is of
importance. One option is to process the frames continuously. The advantage of
this method would be that the 3D model is created fluently and fast since the
updates are small. Another possibility is, as discussed earlier, to decide on the
basis of the current camera pose if the current frame should be processed or not.
This possibility is very fast to evaluate. Since the meshing is done in a separate
thread, we finally chose to process every incoming camera image, but only add
those local meshes that contributed at least a certain number of triangles to the
global mesh as this visually provided the best result.
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4.5 Ground Truth-based evaluation

We evaluated the accuracy and precision of the camera motion estimation and
the inherent scale of the proposed method using real camera data. The creation
of the RGB-D ground truth data is explained in section 2. We recorded four
sequences of a challenging industrial object that has multiple self-occlusions
and is mainly composed of metallic, reflective and poorly textured surfaces. In
the following, we will show the evaluation on these sequences. Besides the
proposed method we also evaluated PTAM [KM07] on an RGB-only version of
the sequences. Furthermore, we evaluated the recovered shape of our method
against the known geometry of the industrial object.

4.5.1 Quantitative evaluation of the tracking

Our method is initialized on the first frame of each sequence and is able to
track the complete sequences. To initialize PTAM, it is necessary to carefully
move the camera a certain distance to establish an initial stereo configuration.
The baseline of these frames affects the scale of the map that PTAM builds and
thus the scale of the trajectory that PTAM estimates throughout the sequence.
When evaluating PTAM, for all sequences, we used the first frame and varied
the second image of the initial stereo setup from frame 1 to frame 50.

For some image pairs, the initialization of PTAM on the RGB images did not
succeed. In contrast, thanks to the usage of the also available metric depth maps
from the Kinect, the proposed method estimated an identical scene scale for
all four sequences as shown in figure 4.6. As only a single frame is needed for
the initialization, we tested how choosing this frame from the first 50 frames of
each sequence would affect the scale factor needed for metric alignment of the
trajectory. It turned out that the scale factor is relatively stable around 1.0 and
has low variance. Note that the scale of PTAM (and any other RGB-only method
in general) varies strongly depending on the image pair chosen for initialization.

Table 4.1 presents the results of the evaluation of the estimated camera pose.
We show for the errors of the proposed method on all sequences as well as for
several PTAM initializations. The evaluation shows that PTAM’s accuracy and
precision strongly depends on which image pairs are used for the initialization.
With some image pairs, PTAM could not be initialized despite a rather large
baseline between the frames. We show detailed results for the first sequence
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Figure 4.6: Comparison of the scale needed for aligning the trajectories of PTAM
and the proposed method to the ground truth trajectory obtained from the
mechanical measurement arm.
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Figure 4.7: Evaluation of proposed method and PTAM against the first ground
truth sequence.

in figure 4.7. Using the proposed method initialized on frame 0 and the best
result that PTAM could achieve on this sequence (using frame 0 and frame
15), despite a good rotation estimation from PTAM, we are still getting much
better translation estimation and our estimation of the camera trajectory with
the proposed method is much closer to the GT trajectory.

4.5.2 Quantitative evaluation of the shape

As initially stated, we do not post-process the range images obtained from the
Kinect other than neglecting samples further than 2m. We extend the recon-
struction only by adding new triangles to the mesh. We evaluated the quality of
this reconstruction process by comparing the recovered mesh of the observed
industrial object to known ground truth geometry. The reconstruction was ob-
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Figure 4.8: Evaluation against ground truth data. Left: Trajectories of proposed
method and PTAM aligned to ground truth motion of measurement arm. Right:
Evaluation of recovered shape against ground truth CAD model.

rot. error [deg] trans. error [mm] images tracked
µ σ µ σ

seq01 proposed 2.45 1.30 10.71 5.50 300/300
PTAM 05 7.04 3.72 94.55 42.35 282/300
PTAM 10 2.53 1.25 15.95 8.73 291/300
PTAM 15 1.37 0.85 17.77 9.97 286/300
PTAM 20 3.75 2.01 28.36 17.18 281/300
PTAM 25 1.85 1.02 26.69 11.44 276/300

seq02 proposed 4.03 2.00 6.85 2.82 300/300
PTAM 05 15.53 10.50 44.02 46.31 120/300
PTAM 10 3.05 2.56 39.62 41.50 175/300
PTAM 15 – – – – 0/300
PTAM 20 1.88 0.83 11.18 6.58 281/300
PTAM 25 13.78 5.06 162.95 78.85 243/300

seq03 proposed 5.76 3.36 21.49 8.93 300/300
PTAM 05 7.17 5.28 38.60 15.99 58/300
PTAM 10 19.36 12.09 18.69 8.05 69/300
PTAM 15 6.59 3.24 17.31 8.11 225/300
PTAM 20 6.86 3.33 18.08 9.52 212/300
PTAM 25 7.95 3.84 18.77 8.45 276/300

seq04 proposed 2.62 1.47 13.18 6.37 300/300
PTAM 05 – – – – 0/300
PTAM 10 13.62 9.43 97.83 58.16 142/300
PTAM 15 2.05 1.19 35.50 31.09 162/300
PTAM 20 2.45 1.22 17.36 13.55 150/300
PTAM 25 2.43 1.02 18.81 12.73 276/300

Table 4.1: Mean and variance of the error in rotation and translation of the
proposed method and PTAM with different initializations. We used frames 0+5
for PTAM05, 0+10 for PTAM10 etc. The best results per sequence are highlighted
in bold.
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Figure 4.9: Reconstruction of the environment using PTAM [KM07] and the
proposed method.

tained from the first sequence, using every 4th depth map pixel in each direction
and a maximally allowed edge length of 50mm. An update to the model was
done when the new depth image provided more than 2k new triangles. The
final model of the object contained around 14k vertices and 19k faces after re-
moving the background. The recovered model was manually aligned to the
known geometry for the evaluation. Next, we computed the discrepancy based
on the point-to-plane distances of the reconstructed vertices to the known faces,
visualized in figure 4.8. The median error was 9mm, lower and upper quartiles
3mm and 17mm respectively. In the absence of any filtering mechanisms, these
results should be regarded as upper bounds for Kinect-based reconstruction.
This level of error is already acceptable for realistic occlusion in typical AR main-
tenance scenarios for mid-sized objects as can be observed in the supplementary
material.

4.6 Application on different AR scenarios

We now demonstrate the proposed method on different AR scenes and scenarios.
It has been tested on scenes similar to the one shown in the supplementary
material and in figure 4.10. The initial map of the scene is built from the first
image and extended afterwards. The tracking equally handles moderate and fast
camera motion. The runtime of the tracking part of the system depends on the
convergence of inter-frame feature tracking both from the last camera frame as
well as from the closest keyframe to the current camera frame. On the desktop
computer used for testing (Intel Core i7 2.8GHz CPU), the inter-frame feature
tracking takes around 23ms on average for 200 tracked features. During fast
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Chapter 4: RGB-D based Tracking and Meshing

Figure 4.10: Evaluation using a live camera stream. From left: Tracking a desktop
scenario with moderate and fast camera motion. The map reconstructed online
consists of 63 keyframes and 14,775 reconstructed features.

motion, many features can be lost due to motion blur and the time per framemay
reach 50-70ms. The relocalization consists of matching the feature descriptors
extracted from the current image to those of the map. This is currently done
exhaustively, i.e. the runtime scales with the product of the number of features
in the map and camera image. For the sequence, the relocalization together with
reprojection from the closest keyframe takes between 25ms and 230ms for a
map with around 15,000 mapped features from 63 keyframes.

4.6.1 AR-based virtual furniture trial

This scenario is meant to help the typical user who needs to virtually try new
furniture (e.g. a closet) in the room before buying it. The user would not only
check the color and the model of the furniture but also its size. This requires
a correctly scaled camera pose estimation. Thanks to the proposed approach,
the furniture can now be placed at the desired position with the correct scale,
without modifying the environment. Furthermore, due to the reconstruction of
the environment, the user gets a more realistic impression of the possible future
look.

Figure 4.11 shows a correctly scaled shelf and chair augmented both without
and with occlusion from real objects. To further assist the user, one could use
the dense reconstruction also to restrict the movement of the virtual furniture
such that e.g. it cannot be accidentally pushed “through” a wall. In case there
are moving parts on the virtual furniture like doors or drawers, it could be
automatically checked whether they can be operated using their full intended
range of motion.
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Figure 4.11: AR-based virtual furniture trial: correctly handling the occlusion
thanks to the proposed parallel tracking and meshing of the environment makes
the AR visualization much more realistic. While the camera moves, the camera
motion is estimated and the environment model is updated.

4.6.2 Visual discrepancy check

Discrepancy check is of great use in an industrial application like prototyping. It
is often required to visually compare a prototype with a produced model. Using
AR allows to reduce the costs of construction since there is no need for manual
as-is analysis by a construction engineer.

The presented example assumes a high precision of the tracking for which
currently amechanical measurement system like FaroArm is used best. However,
for coarser discrepancy checks like e.g. the repositioned part shown in figure 4.12,
the dense mesh created online by the proposed method is sufficient. Once the
currently observed state of the object is registered to e.g. its constructed state,
potential differences can be easily highlighted (e.g.marked red as in figure 4.12).
Even simpler and also working in case there is no depth information of the
current state of an object, one can use a virtual clipping plane to perform a visual
discrepancy check.

4.6.3 Maintenance scenario

AR maintenance can be used as virtual replacement for a printed manual e.g. to
guide a technician during a repair or to unmount an industrial machine. For
this task, the single steps could be displayed e.g. as illustrated in figure 4.13,
which shows the specific screws that should be loosened next. The realism of the
augmentation can be again improved by using the meshed reconstruction of the
environment as occlusion model. As a next step, one could think of combining

85
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Figure 4.12: Live meshing allows to quickly create a textured meshed model of
an object for visual discrepancy check. The main discrepancy of the previously
scanned configuration and the current one is highlighted in red on the right
image.

Figure 4.13: Maintenance instructions can be better understood when their
occlusions are handled correctly as done for the lower of the two wrenches.

this scenario with the discrepancy check, e.g.only proceeding to the next step
of a repair manual when the correct execution of the current step is validated
using the current depth images of the RGB-D camera.
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Chapter5
Future Work

This chapter presents specific future steps for each of the main contributions of
the thesis. The steps were revealed during the course of the thesis and present
useful extensions of the presented methods.

Concerning the creation of ground truth datasets, a major improvement
would be to remove the current limitation of 1,200 images per sequence. The
current length of the sequences presented in chapter 2was primarily based on the
amount of addressable memory of the capturing computer and available 32 bit
device drivers. The length could be increased by changing the software, e.g.via
implementing a threaded writing to pre-allocated disk space. Alternatively, a
hardware upgrade e.g. towards high-throughput parallel storage systems or solid
state drives could further increase the recording bandwidth.

An increased duration of the sequences could be used in many ways. For ex-
ample, it would enable a “static” marker-based synchronization of the sequences
capturing 3D objects for SLAM-like methods. This approach would thus de-
couple the ground truth poses from the results of an algorithm. Extra slots in
the sequences at the beginning and the end could further be used to capture
calibration and/or synchronization objects. The current background-removal
of the template-based dataset could then also be dropped in favor of a more
realistic performance of the algorithms e.g. concerning real background clutter.

An evaluation based on the reprojection error enables an objective compari-
son of different methods. However, in case the target scenario is known, using an

87



Chapter 5: Future Work

error measure that is relative to the 3D dimension of the tracked object and/or
of the planned augmentation may be more appropriate.

To estimate a 3D shape of a static object from images of a moving camera,
two methods were presented in the thesis. The method presented in chapter 3
works well for static objects that can are fully visible from the top. As shown in
the evaluation in section 3.4, it does not depend on as much texture as feature-
based methods and thus has a wider range of use. The main source of error
observed in the experiments originated from fast translational camera motion.
The optimization then gets attracted by a local minimum as the assumption of
small motion is considerably violated. We believe this could be mitigated by
using a 3D motion model that predicts the camera pose in the next frame and
thus initializes the optimization closer to the global minimum.

To further increase the robustness of the reconstruction, a possible direction
could be a regularization term that penalizes deformation caused by errors in
camera tracking; in other words, e.g. to only reconstruct when the recovered
photometric error is low. Another interesting aspect of the regularization is
the assumption that the shape of non-deformable and non-moving objects is
recovered. Ideally, the method should stop estimating the shape at some point.
Currently, the algorithm continues estimating the structure unless the user man-
ually stops the estimation. However, as we have information about the variance
of each vertex when computing its reference depth, it could be incorporated
directly into the regularization term.

Another promising direction of future work is an analysis of the types of
targets that are tracked and reconstructed well by the method of chapter 3. It is
of great practical importance to identify a well-trackable target systematically
or improve a badly-tracking target in a principled way, e.g. as done by Gru-
ber et al. [GZW+10] for the feature-based mobile tracking system by Wagner et
al. [WRM+08].

When given per-pixel estimates of both color/intensity and depth, the RGB-D
method presented in chapter 4 can be employed to obtain cameras pose and a
reconstruction of the environment. This method can be improved by introducing
refinement steps for both mesh and 3D point cloud. The 3D position of a feature
used for tracking or a vertex used for meshing are currently determined from the
aligned keyframe that first observed it. There is a variety of literature on mesh
refinement, including the early works of Turk and Levoy [TL94] and Curless
and Levoy [CL96]. An excellent tutorial for refinement of sparse feature maps
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made from e.g.RGB images was published by Triggs et al. [TMHF00]. RGB-D
images can be aligned also using a modified iterative closest point algorithm as
e.g.proposed by Henry et al. [HKH+10].

In the RGB-D based method, we rely on sparse optical flow for inter-frame
tracking and do not use an explicit 3Dmotionmodel. The speed of the tracking is
thus primarily depending on the convergence properties of the optical flow. On
the one hand, this allowsmore flexible cameramotions, but on the other hand this
is computationally more expensive than template matching with a 3D motion
model. The amount of tracked features seems to also have the biggest influence
on the precision of the pose. Therefore, one direction of future work may consist
in analyzing how tracking more features with template matching instead of
currently tracking fewer features with optical flow could affect the accuracy,
speed and robustness of the system. Further, we currently do not distinguish
between features used for relocalization and features used for tracking. As
shown in the evaluation, this simplification works fairly well. However, it may
be desirable to decouple these orthogonal components and thus track features
that satisfy the requirements of only the tracking component.

Another part of future work may consist in an analysis of the error of the
depth measurements from a consumer RGB-D camera like the Microsoft Kinect.
From the evaluation of section 4.5, it is not clear whether the rather small off-
set from metric scale is coming directly from the Kinect or from the RGB-D
method. Newcombe et al. [NIH+11] pre-processed the data with a bilateral filter
to compensate the inaccuracies in the depth channel. It should be analyzed
whether directly incorporating these uncertainties into the motion and structure
estimation would further improve the result.
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Chapter6
Conclusion

This thesis has explored marker-less visual tracking for augmented reality. For
conducting evaluations based on real images, a methodology for the creation
of ground truth datasets was developed and applied on several existing track-
ing methods and on the two contributed methods focusing on real-time dense
reconstruction of the environment. In the following, the thesis concludes by
summarizing each contribution.

Chapter 2 presented a methodology to create datasets for evaluating both
planar and non-planar tracking algorithms. The goal was to create image se-
quences with precisely known poses of the camera so that they can be used as
objective ground truth to evaluate algorithms and enable fair comparisons. As
key component, we used a highly precise measurement arm. For planar and
small convex objects, we recorded ground truth sequences with an industrial
global-shutter camera. The sequences feature realistic imaging conditions and
motions. We carefully selected the level of texture of the chosen targets as well as
the camera motions to create a representative dataset. Using these sequences, we
evaluated several state-of-the-art algorithms. Furthermore, we created similar
ground truth sequences using a RGB-D camera and an industrial object.

The template-based sequences can be used by the vision andAR communities.
We offer them at http://metaio.com/research to give other researchers the
opportunity to extensively evaluate template-based tracking algorithms and to
enable an objective comparison of different methods. We provide the sequences
both undistorted and containing the natural distortion of the lens. Furthermore,
the distortion coefficients are also available for evaluating tracking algorithms
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that explicitly model the distortion in their objective function. Since publication
of the dataset, it was used by researchers of several universities and research
institutes. For example, the dataset is used in the work of Dame and Marchand
on template tracking using mutual information [DM10], the work of Megret et
al.on gradient based image alignment [MAB10] and the work of Dupac and
Matas on zero-shift interest points [DM11].

Our dataset can be used to complement manual testing as, despite of our
ambitions to make it very general, the dataset represents only a selected subset
of motions and targets. For example, the rotations only cover a quarter of the
semisphere around the targets. While the dataset gives clues of an algorithm’s
performance in general, we suggest to still test the chosen algorithm(s) in the
specific target scenario in a project setting.

We further presented two methods for real-time tracking and reconstruction.
Chapter 3 presented a method for non-planar convex templates using intensity
images, chapter 4 presented a method based on a RGB-D images. While the
method of chapter 3 removes the planarity constraint inherent to classical tem-
plate tracking, we still benefit from all available pixels of the template when
building our objective function. No constraints are imposed on the model defor-
mation, therefore we can equally reconstruct and track templates that are smooth
or have creases. The performance of the proposedmethodwas evaluated on both
synthetic and real video sequences. Further, we performed quantitative analysis
and compared the method to ground truth sequences which we obtained as
described in chapter 2. These sequences were also used to compare standard
planar template tracking methods and a state-of-the-art SLAM system.

Despite recovering only an approximate shape, the tracking precision in-
creased and it also turned out to compute a more stable camera pose compared
to the evaluated planar methods. Not surprisingly, because the method uses all
pixels of the template image, it copes better with blur and low-textured surfaces
than a sparse point-based method.

The real-time method based on a consumer RGB-D camera was presented
in chapter 4. It estimates the camera motion with respect to an unknown en-
vironment while at the same time reconstructing a dense textured mesh of it.
The system is initialized using a single frame, the reconstruction does not need
constrained camera motion; especially pure rotational movement of the camera
is handled transparently.
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The scale of the reconstructed model is fixed and, in case of the Microsoft
Kinect used in our experiments, seems to be at most 5–6% off from metric
scale. We adopted the meshing algorithm of Turk and Levoy [TL94] for live
incremental meshing of the environment and showed several AR scenarios that
directly benefit from such a mesh. The proposed RGB-D tracking method and a
state-of-the-art RGB-SLAMmethod were evaluated on sequences with ground
truth camera motion and structure. In general, we obtain more accurate and
precise results while tracking a higher number of images from the sequences.
The method works already well and makes it possible to get satisfactory results
despite the efficiency of the computations involved.
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AppendixA
Transformations and Lie algebra of SE(3)

This appendix describes rigid transformations between different coordinate
frames and their notation used throughout the thesis. Further, a minimal para-
metrization using Lie algebra is presented.

The class of rigid transformations in R3 describes the spatial relationship
between two objects, e.g. a camera and a target. We use the notation cameraTtarget

to indicate that a point xtarget is transformed from the coordinate frame of the
target to the coordinate frame of the camera. Using homogeneous coordinates,
this relationship is written as

xcamera = cameraTtarget xtarget (A.1)

where cameraTtarget is a (4× 4) matrix and x are (4× 1) vectors.

The set of all rigid transformations in R3 is known as the Special Euclidean
group SE(3). A transformation bTa ∈ SE(3) consists of a (3× 3) rotation matrix
bRa and a (3× 1) translation vector bta ∈ R3 as

bTa =

[
bRa

bta

0 1

]
(A.2)
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The rotation is a member of the Special Orthogonal group SO(3), i.e. for bRa

holds that bR>a = bR−1a = aRb and det(bRa) = 1. The inverse of a transformation
bTa thus becomes

bT−1a =

[
bR>a −bR>a

bta

0 1

]
. (A.3)

For notational simplicity, we denote bTa as T in the following. Using the Lie
algebra se(3) associated to SE(3), a pose T(a) with a = [ a1 a2 a3 a4 a5 a6 ] can be
parameterized as

T(a) = expm

(
6∑
i=1

aiAi

)
(A.4)

with the expm(·) being the exponential map defined as

expm (A) =

∞∑
j=0

1

j!
Aj (A.5)

for any (n× n) matrix A. We now choose Ai as the generator matrices of SE(3),
namely

A1 =

[
[e1]x 0

0 0

]
A2 =

[
[e2]x 0

0 0

]
A3 =

[
[e3]x 0

0 0

]
(A.6)

A4 =

[
0 e1

0 0

]
A5 =

[
0 e2

0 0

]
A6 =

[
0 e3

0 0

]
(A.7)

with e1, e2, e3 being the canonical basis for R3 and [·]x constructing a skew
symmetric matrix as xy

z


x

=

 0 −z y

z 0 −x
−y x 0

 . (A.8)

The rotation is represented by a1 to a3 while a4 to a6 represent the translation of
T. This parametrization is singularity-free and has the advantage that a partial
differentiation around the origin (a = 0) as needed for minimization is trivial,
as ∂

∂ai
T(a) = Ai. Compared to other parameterizations of e.g. rotation, this is

favorable in terms of computational effort and numerical stability.

Furthermore, there are closed-form solutions available [Agr06] for evaluating
T(a). The forms were obtained by identifying the series of sine and cosine in the
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series resulting from applying the matrix exponential. Using the partitioning of
a into ω = [ a1 a2 a3 ]

> and µ = [ a4 a5 a6 ]
> for readability, we have

T(a) = expm
([

[ω]x µ

0 0

])
=

[
R(ω) B(ω)µ

0 1

]
(A.9)

with

R(ω) = I +
sin ||ω||
||ω||

[ω]x +
1− cos ||ω||
||ω||2

[ω]
2
x (A.10)

B(ω) = I +
1− cos ||ω||
||ω||2

[ω]x +
||ω|| − sin ||ω||

||ω||3
[ω]

2
x (A.11)

for ω 6= 0 and where I is a (3 × 3) identity matrix. For the case of ω = 0, we
define R(0) = B(0) = I.

Please refer to [Var84] for a more general introduction to Lie algebras.
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AppendixB
Interpolation

We define an (U × V ) image I to provide intensity values at integer pixel po-
sitions u = [ u v 1 ]

> for u ∈ {1, . . . , U} and v ∈ {1, . . . , V }. We use normalized
homogeneous 2D coordinates for accessing pixel intensities, i.e. the coordinates
have to be scaled such that the last element is equal to one. The measured
intensities are associated to the center of a pixel.

To obtain sub-pixel accuracy, intensities usually also have to be associated for
pixel positions within the imaged region that are not referring to pixel centers,
i.e. for u ∈

[
1
2 , U + 1

2

]
and v ∈

[
1
2 , V + 1

2

]
. Intensities for these sub-pixel locations

are provided by interpolating the closest intensities available. In the following,
two basic interpolation schemes are shown which are often used in real-time
computer vision algorithms.

Nearest Neighbour Interpolation
A simple interpolation scheme consists of using the nearest neighbouring
pixel at integer coordinates:

I (u) = I
(⌊

u +
[
1
2

1
2 0

]>⌋)
(B.1)

where b·c is the floor function defined as

bac = b | b ≤ a < b+ 1 with a ∈ R, b ∈ Z. (B.2)

This scheme is very fast to execute. However, as can be seen on figure B.1,
nearest neighbour interpolation tend to produces non-smooth images.
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Bilinear Interpolation
This scheme uses the four closest integer neighbours of u:

I (u) =

[
1− δv
δv

]> [
I (z0,0 (u)) I (z1,0 (u))

I (z0,1 (u)) I (z1,1 (u))

][
1− δu
δu

]
(B.3)

with zu,v(·) obtaining the nearest neighbour pixel intensities as

zu,v (u) = buc+

uv
0

 for u, v ∈ Z. (B.4)

The weights δu and δv are computed from the distance

δuδv
0

 = u− z0,0 (u) . (B.5)

Bilinear interpolation yields smoother results than nearest neighbour in-
terpolation. It is still fast to execute. However, it is not differentiable at
integer pixel coordinates.

Figure B.1: Example for interpolation. From left: vector image of the letter “a”,
nearest-neighbour and bilinear interpolation to a resolution of (40× 43).
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AppendixC
Physical Imaging Process

A digital camera creates a two dimensional image by measuring the light in-
tensity on each cell of its photoactive image sensor. Before hitting the sensor,
the incoming light passes the lens(es) and diaphragm as shown in figure C.1.
The lens focuses the incoming light on the sensor plane. Parts of the lens can be
moved perpendicular to the image sensor to adjust the focus, i.e. the minimal
depth relative to the sensor in which objects are imaged sharply. Zoom lenses
have additional movable lenses to further change the field of view of the camera.

diaphragm

lens assembly image sensor

optical viewer

display

pentaprism

mirror
shutter

Figure C.1: Annotated cut-through of digital camera. The light passes the lens
assembly and the diaphragm until it is measured by the sensor. Based on [dsl].
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Figure C.2: Sample Bayer filter used to create a color image from a single image
sensor. Only selected wavelengths pass the filters to each image sensor element.
The color image is created by interpolation.

The diaphragm is used to adjust the amount of light and the depth of field,
i.e. the distance between the nearest and farthest object relative to the camera
that are in focus. When the light hits the image sensor, the photoactive elements
convert the light into the electric charges. The charges in each of its cells are then
sampled, amplified, discretized and mapped into a pre-calibrated color space to
create the image Iraw. The sampling is done either at once for all pixels (global
shutter) or continuously (rolling shutter). In the latter case, the pixels of an image
are not taken at the same time, which increases artifacts related to motion.

Depending on the amount of light and the sensitivity of the sensor (signal
gain / ISO setting), the exposure of an image e.g.with a modern digital single-lens
reflex camera [Can] (DSLR) may take from 1/8000s to 30s (shutter speed). A high
gain/ISO setting reduces the time needed to capture the image. On the other
hand, the level of sensor noise increases notably with higher ISO settings (see
figure 2.2). In case the camera or part of the scene moves while an image is
captured, the same object is observed in multiple poses and thus blur along the
direction of the relative motion is apparent.

For color cameras, filters are mounted on top of the image sensor such that
certain cells mainly respond to a range of wavelengths corresponding to either
green, blue or red spectra. There are two possibilities to create a color image:
Dedicated sensor cells for each colored pixel, e.g. three cells per RGB pixel, or
a 1:1 sensor cell–colored pixel relationship by using a filter that combines the
readings of neighbouring sensor cells into a colored pixel. The former is typically
realized by separating the wavelengths with a prism and using three dedicated
image sensors. The latter coloring technique employs a Bayer filter, an example
is shown in figure C.2. This filter typically uses twice as many green cells as red
and blue cells as the human eye is most sensitive to green.
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Using the RGB color space, a (U × V ) color image Ic consists of the three
channels Ic|red, Ic|green and Ic|blue of the same resolution. The (U ×V ) raw image
Iraw is decomposed into three images Iraw|co for co ∈ {red, green, blue}. The
resolution of each decomposed image are (fcoU × fcoV ) where the scalar fco
depends on the structure of the filter. For a filter with twice as many green
samples the factors are fgreen = 1

2 and fred = fblue = 1
4 . Each channel of Ic is

created from the decomposed Iraw as

Ic|co(u) = Iraw|co(fcou) (C.1)

for all pixel positions u = [ u v 1 ]
> with u ∈ {1, . . . , U} and v ∈ {1, . . . , V }. The

intensities at sub-pixel locations in the images Iraw|co may be interpolated as
described in appendix B.
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AppendixD
Image Credits

The images we used for the template-based tracking dataset of section 2.6.1
were downloaded from http://flickr.com. They are licensed under a creative
commons licence that allows commercial use and adaption given the authors of
the original work are mentioned. Since publication of the ground truth dataset,
two of these images were removed from flickr. The following table provides an
overview:

Target Author/Username Source

Richard Drdul http://www.flickr.com/photos/drdul/180849815/

Robyn Gallagher http://www.flickr.com/photos/robyn-gallagher/185435145/

redjar http://www.flickr.com/photos/redjar/113728402/

unknown Flickr-ID 2676908272_3acda48db1_o

maazbot http://flickr.com/photos/maazbot/218926578/

unknown Flickr-ID 390864316_c117e70442_o

AliSabki http://www.flickr.com/photos/27711119@N07/2584365102/

Boby Dimitrov http://www.flickr.com/photos/bobydimitrov/2269383646/
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AppendixE
Supplementary material

In the following, a list of the supplementary videos is given. The videos are
available for download at http://lieberknecht.net/dissertation. The content of
each video is summarized.

E.1 Ground Truth for AR tracking methods

The following videos demonstrate the proposed methodology of chapter 2.
Excerpts of the 40 sequences created for the evaluation of template-based tracking
and detection methods are shown in section 2.6.1. All videos of this ground
truth dataset are available for download at http://metaio.com/research.

The following videos demonstrate the ground truth RGB-D sequences we
created to evaluate the method presented in chapter 4.

This video shows the first RGB-D sequence with
known camera pose.

gt_rgbd_seq01.mp4

This video shows the second RGB-D sequence
with known camera pose.

gt_rgbd_seq02.mp4
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This video shows the third RGB-D sequencewith
known camera pose.

gt_rgbd_seq03.mp4

This video shows the fourth RGB-D sequence
with known camera pose.

gt_rgbd_seq04.mp4

E.2 Dense deformable template tracking

The following videos demonstrate the proposed method of chapter 3.

This video shows the tracking and reconstruc-
tion of the proposed method on a synthetic se-
quence.

ddt_synthetic_sequence.mp4

This video shows a quantitative comparison of
two planar template tracking methods [BM07,
BM06] to the proposed method on real image
data with known ground truth camera pose.

ddt_comparison_planar.mp4

This video shows a quantitative comparison of
the proposed method and PTAM [KM07] on
a cropped and blurred sequence with known
ground truth camera pose.

ddt_comparison_PTAM.mp4

This video shows the reconstruction and track-
ing of a real object. The proposed method suc-
ceeded to track despite up to 50% occlusion of
the target.

ddt_occlusion.mp4

This video shows the proposed method track-
ing and reconstructing a deformed object. The
method copes well with minor deformations de-
spite assuming object-rigidity.

ddt_deforming_object.mp4
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E.3 RGB-D based tracking and meshing

E.3 RGB-D based tracking and meshing

The following videos demonstrate the proposed method of chapter 4.

This video shows the creation of the sparse map, re-
localization and tracking while the camera is maneu-
vered rapidly.

rgbd_tracking.mp4

This video shows how a sparse map is created. New
keyframes are added based on translational and rota-
tional distance to registered keyframes.

rgbd_adding_keyframes.mp4

This video shows the reprojection of features from
keyframes. Reprojected features are highlighted in
yellow.

rgbd_tracking_keyframes.mp4

This video shows the creation of a dense map. After
tracking a scene, a real box is added to the tracked
scene. The box is reconstructed, its mesh is then used
to occlude a virtual object.

rgbd_occlusion.mp4

This video shows the live creation of a dense map. An
RGB-D camera is maneuvered in an office. The mesh
is updated by integrating all non-overlapping mesh
segments from the current camera frame.

rgbd_scanning.mp4
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This video shows how occlusion of virtual objects
improves an AR maintenance scenario. Initially, the
augmentations are not occluded. Once the object is
reconstructed, the depth perception and thus useful-
ness of the scenario improves.

rgbd_ar_maintenance.mp4

This video shows how occlusion of virtual objects
improves an scenario with virtual furniture. Similar
to the previous scenario, the depth perception notably
improves once the real environment is meshed.

rgbd_virtual_furniture.mp4
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