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Abstract

The equation of state of nuclear matter is calculated at finite temperature in the frame-
work of in-medium chiral perturbation theory up to three-loop order. The dependence of
its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark
condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of den-
sity and temperature sets important nuclear physics constraints for the QCD phase diagram.

Zusammenfassung

Die Zustandsgleichung von Kernmaterie wird bei endlicher Temperatur im Rahmen der
chiralen Störungstheorie im Medium bis zur Dreischleifen-Ordnung berechnet. Die Abhän-
gigkeit der thermodynamischen Eigenschaften nuklearer Materie von der Isospin-Asymmetrie
wird untersucht. Das chirale Kondensat wird für symmetrische Kernmaterie berechnet. Das
Verhalten dieses Kondensats als Funktion der Dichte und der Temperatur setzt wichtige
kernphysikalische Randbedingungen für das Phasendiagramm der QCD.
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Chapter 1

Introduction

In recent years the interest concerning the nuclear many-body problem has received a
renewed impulse from the astrophysical side of this field of research. Crucial constraints on
the equation of state of nuclear matter have recently come from accurate determinations
of the masses and the radii of neutron stars [1, 2]. The study of the Shapiro delay in the
binary radio pulsar systems has allowed to infer the mass of the pulsar J1614-2230 at a high
level of accuracy, M = (1.97± 0.04)M� [3]. A two-solar mass neutron star rules out almost
all soft equations of state with hyperons and boson condensation. It is instead consistent
with predictions arising from standard nuclear physics [2, 4].

The first step in describing the dynamics of a multi-nucleon system is to consider the
simple case of a system consisting of just two nucleons, i.e. nucleon-nucleon (NN) scat-
tering. In the early 1990’s the Nijmegen group conducted an accurate analysis of all NN
scattering data at energies below 350 MeV collected in almost 40 years and extracted thou-
sands of reliable data [5]. The models of NN interaction that fits the Nijmegen database
with χ2/Ndata ∼ 1 are called “modern”. “Modern” phenomenological potentials include the
Nijmegen models [6], the Argonne v18 [7] and the CD-Bonn [8]. They all describe the
long-distance part of the interaction, corresponding to inter-nucleon distances r & 2 fm, by
one-pion exchange, but follow different treatments at shorter distances. For instance, the
CD-Bonn potential includes in addition two-pion exchange and that of σ, ρ and ω mesons.
The Nijmegen potential comprehends a variety of mesons, such as π, η, η′, ρ, ω, φ, δ. How-
ever, nuclear matter with realistic NN interaction saturates at too high density and density-
dependent interactions and three-nucleon interaction models have been proposed [9]. We
note that these models have no connection with QCD, the gauge theory of strong interac-
tions.

The Effective Field Theory (EFT) approach allows to organize the calculation in a
systematic and model-independent way. After delineating the soft and hard scales of the
problem in consideration, the most general Lagrangian consistent with the conserved and
broken symmetries of the underlying theory, QCD, is written in terms of the active low-
energy degrees of freedom. The effective Lagrangian is usually expanded in powers of the
soft scales over the hard scale. A power counting scheme provides a method to estimate the
magnitude of each contribution.

Chiral perturbation theory (ChPT) is a low-energy EFT of QCD, incorporating the spon-
taneous and explicit chiral symmetry breaking of the QCD Lagrangian with light quarks.
Its characteristic breakdown (hard) scale is Λχ ∼ 1 GeV. The NN interaction is described
in terms of the active degrees of freedom at the momentum scales involved, i.e. nucleons and
pions. The pions are the Goldstone bosons arising from the spontaneous breaking of the
chiral symmetry. One-pion exchange generates the long-range part of the NN interaction,
two-pion exchange reproduces the attractive intermediate-distance NN interaction. There-
fore perturbative pion-exchange dynamics are treated explicitly. The ∆(1232)-isobar is the
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1 - Introduction

first (spin-flip) excited state of the nucleon. Its inclusion as an explicit degree of freedom in
ChPT improves the convergence of the theory. Within this scheme, many efforts have been
made to understand the structure of nuclear forces. At the present time, the calculation of
the nuclear potential is at the level of four-nucleon force contributions [11, 12].

We use ChPT for the description of nuclear matter. Our scheme is based on a sepa-
ration of scales between the long- and intermediate-range physics, described primarily by
pion-exchange dynamics, and the unresolved short-distance interaction, taken into account
through contact terms tuned to reproduce some selected known properties of nuclear mat-
ter. The small scales in the nuclear medium problem are the pion mass mπ ' 135 MeV, the
Fermi momentum kF and the ∆-isobar - nucleon mass splitting ∆ = 293 MeV. Calculations
are carried out using the in-medium nucleon propagator that accounts for the finite-density
effects. Two-body and three-body correlations are systematically incorporated. The equa-
tion of state results in an expansion in powers of the soft scales over Λχ.

In this work we are going to extend in-medium ChPT formalism to perform calculations
at finite temperature and for arbitrary isospin-asymmetry. The aim is to investigate the
thermodynamic properties of nuclear matter and their modifications when varying the rel-
ative percentage of protons and neutrons. The remarkable aspect of our work is that, by
adjusting a small number of contact terms, we are able to predict many realistic thermo-
dynamic properties and features of nuclear matter. Moreover, we calculate the in-medium
chiral condensate in symmetric nuclear matter and study its behaviour as a function of
density and temperature to ascertain the presence or absence of a chiral phase transition in
nuclear matter. The results constrain the location of the nuclear liquid-gas phase transition
and of the chiral phase transition in the QCD phase diagram.

This thesis is organized as follows.
In chapter 2 we define nuclear matter and introduce its empirical properties used as

constraints for the construction of the equation of state. These properties are obtained by
extrapolation from nuclear data. From electron-nucleus scattering one obtains the satura-
tion density ρ0 of nuclear matter. From the semi-empirical mass formula one extrapolates
the binding energy of infinite symmetric nuclear matter and the asymmetry energy at ρ0.
Multifragmentation studies of heavy-ion collision experiments indicate the presence of a
liquid-gas phase transition in nuclear matter. Many different approaches and techniques
have been developed to describe the properties of atomic nuclei and nuclear matter. We
present a brief overview of the most common ones. In particular, we classify them into three
categories: microscopic, phenomenological and effective field theory approaches.

Chapter 3 is dedicated to the construction of in-medium ChPT, the theoretical frame-
work we adopt for the description of nuclear matter. In the first part of the chapter, we
discuss the symmetries of the QCD Lagrangian with light quarks and introduce the chiral
Lagrangian and the chiral power counting. The NN interaction is discussed up to next-
to-leading order (NLO) in the chiral expansion. In the second part, the chiral formalism is
generalized to finite densities with the individuation of the relevant scales and the definition
of the in-medium nucleon propagator. The energy per particle of symmetric nuclear matter
is calculated up to three-loop order in the diagrammatic expansion.

In chapter 4 we extend this computational scheme to finite temperatures and generalize
it for arbitrary isospin-asymmetry. The appropriate thermodynamic potential is the free
energy density. The only change in performing calculations at finite temperature is the
replacement of the step function over the Fermi sea of the nucleons, appearing in the in-
medium propagator, by the T -dependent momentum distribution function. The free energy
density is then given by a sum of convolution integrals. The generalization to isospin-
asymmetric nuclear matter requires to differentiate between proton and neutron medium
insertions, because the Fermi momenta of the two particles are now different. We evalu-
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ate numerically the equation of state of nuclear matter as a function of nucleon density at
different temperatures and construct the corresponding phase diagrams. We study their
isospin-dependence providing a complete picture of the evolution of the liquid-gas coexist-
ence region for varying proton fraction xp = Z/A. Finally, we make a comparison with some
recent results obtained with other approaches.

In chapter 5 we consider the thermodynamic properties of the chiral (quark) condensate
in symmetric nuclear matter. This is the order parameter of the chiral phase transition.
It is expected to drop with increasing density and temperature. Through the Hellmann-
Feynman theorem one can relate the chiral condensate to the derivative of the free energy
per particle with respect to the pion mass. This derivative is straightforwardly performed
because the pion mass is an explicit parameter in our computational scheme. We study
the behaviour of the in-medium chiral condensate as a function of nucleon density and
temperature and analyze the interplay of two-body and three-body forces. We find that
the explicit involvement of ∆-isobar degree of freedom together with the Pauli principle for
nucleons delays the decrease of the condensate with increasing density at low temperature.
No indication of a chiral phase transition is found in the nuclear matter terrain of the QCD
phase diagram.

Chapter 6 deals with a known problem affecting the equation of state at low density,
especially in the case of neutron-rich matter. The perturbative expansion of the T -matrix
is invalidated by the large NN spin-singlet scattering length, as ' 19 fm. To treat the
problem, we carry out an in-medium resummation of the S-wave contact interaction to all
orders. The features of the resulting equation of state are discussed.

In chapter 7, we conclude this thesis with a summary of the results achieved and an
outlook. The appendices report some details of the calculations.
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Chapter 2

From Nuclei to Nuclear Matter

From a modern, QCD oriented point of view, the nucleon-nucleon interaction is inter-
preted as the residual strong interaction between the colorless nucleons composed of quarks
and gluons. This interaction is responsible for the binding of the nucleons and the forma-
tion of atomic nuclei, the properties of which have been extensively investigated. These
studies enable to perform extrapolations for systems with a large number of protons and
neutrons where the electromagnetic forces can be ignored, defining the basic properties of
nuclear matter. Another source of information about the behaviour of nuclear matter at
finite temperature is provided by heavy-ion collision experiments.

Here we give a brief overview of theoretical approaches to nuclear matter that have been
developed in the past decades.

2.1 Empirical Properties of Nuclear Matter

The experimental data of electron-nucleus scattering show that the charge density is
almost constant within the nuclear volume. Assuming that the nucleus is a uniformly
charged sphere with radius R, the following relation is valid:

R ' 1.21A
1
3 fm . (2.1)

The charge distribution measured by electron-nucleus scattering is different from the mass
distribution of the nucleus containing both protons and neutrons. The central charge density
ρ(r = 0) is almost constant, decreasing only slightly with increasing mass number. If we
take into account the presence of the neutrons multiplying by A/Z, the nuclear density
ρ(0)A/Z is the same for almost all nuclei. By extrapolation, infinitely extended nuclear
matter has a baryon density

ρ0 ≈ 0.16 nucleons/fm3 . (2.2)

The binding energy of the nucleons inside atomic nuclei is well parameterized by the
Weizsäcker formula or semi-empirical mass formula, introduced in 1935. For a nucleus with
Z protons and N neutrons the following phenomenological formula is worth:

B(A,Z) = avA− asA
2
3 − ac

Z2

A
1
3

−
(
aa +

aas

A
1
3

)
(N − Z)2

A
− δP + ED (2.3)

This parametrization is inspired to the nuclear liquid drop model. The different terms have
the following interpretation:

• Volume term. This contribution is proportional to the number of nucleons A ∼ R3.
Therefore we deduce that a nucleon interacts only with its neighbours, otherwise the
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2 - From Nuclei to Nuclear Matter

dependence would be proportional to A(A− 1). Any nucleon in the interior of a large
nucleus has a binding energy of about 16 MeV. This phenomenon is called saturation.
The density ρ0 defined in eq. (2.2) takes the name of saturation density.

• Surface term. Nucleons that are on the surface of the nucleus are surrounded by a
smaller number of particles than nucleons that are inside the nucleus. The surface
term is proportional to the square of the radius, R2 ∼ A 2

3 .

• Coulomb term. The repulsive Coulomb interaction of Z protons in the nucleus can
be approximated by assuming that the charge is uniformly distributed on a sphere of
radius Rc ∼ A

1
3 .

• Asymmetry term. With increasing mass number nuclei become richer in neutrons
than protons. The corresponding coefficient in eq. (2.3) distinguishes between the
bulk asymmetry energy proportional to aa ≈ 33 MeV and the surface asymmetry
energy proportional to aas.

• Pairing term. Nuclei with an even number of protons and/or neutrons are most stable.

• Deformation term. The energy ED takes into account the deformation effects coming
from the non-perfect sphericity of the nuclei.

A piece of information of primary interest for us is the coefficient of the asymmetry term,
as, with a value of about 33 MeV once finite size effects are taken into account [13] .

We now consider the limit A→∞ in eq. (2.3). If we turn off the Coulomb interaction,
only the volume and asymmetry terms survive. The binding energy per nucleon for infinitely
extended nuclear matter is

B̄(δ) = av + aaδ
2, (2.4)

with δ = (N − Z)/A the asymmetry parameter. This simple expression, derived by the
semi-empirical mass formula, is actually a good approximation of the energy per nucleon
in nuclear matter at the saturation point ρ0 ≈ 0.16 fm−3. We discuss it in more detail in
section 4.8. Note that symmetric nuclear matter (N = Z) has a binding energy per nucleon
of about 16 MeV at ρ0.

Last but not least, heavy-ion collision experiments show evidence for a phase transition
occurring in nuclear matter. The caloric curves of the nuclear fragments produced in nucleus-
nucleus collision experiments present a plateau usually interpreted as being related to the
latent heat of a liquid-gas first-order phase transition [14–16].

2.2 Approaches to the Nuclear Many-Body Problem

The construction of a realistic equation of state of nuclear matter is one of the key prob-
lems in nuclear physics and astrophysics. It represents an essential input for the description
of nuclear properties and the modeling of dense matter produced in heavy-ion collisions and
formed in the center of neutron stars.

Starting from the pioneering work of Brueckner et al. [17] in the late 1960’s, many
different approaches and numerical techniques are nowadays available for dealing with the
nuclear many-body problem. They can be classified into three categories [18]: microscopic
many-body approaches, phenomenological approaches and effective field theory approaches.

6



2.2 Approaches to the Nuclear Many-Body Problem

2.2.1 Microscopic Many-Body Approaches

BHF approach. The Brueckner-Hartree-Fock approach [19–21] is a mean-field theory at
lowest order of the non-relativistic Brueckner-Bethe-Goldstone theory. The main problem
with the application of perturbative techniques to nuclear matter is the divergence of the
transition matrix elements because of the strongly repulsive core in the NN interaction.
The Hamiltonian is then split in two pieces by means of a single-particle auxiliary potential
U in order to speed-up the convergence of the expansion:

H = (H0 + U) + (V − U) = H ′0 + V ′ , (2.5)

H ′0 =
∑

~k

[
− k2

2M
+ U(~k )

]
=
∑

~k

ek a
†
~k
a~k. (2.6)

The ek’s are interpreted as the new single-particle spectrum. V ′ is the interaction Hamilto-
nian that is treated perturbatively summing the infinite set of ladder diagrams arising from
its iteration. The auxiliary potential U is not unique and must be chosen in such a way as
to make the expansion convergent.

The diagrammatic expansion gives rise to diagrams with insertions of the potentials
V and U and can be ordered according to the number n of hole-lines, where n hole-lines
correspond to n-body correlations. The infinite set of diagrams with the insertion of the
potential V can be formally summed up by introducing the G-matrix equation:

G = V − V Q

W
G , (2.7)

whereW is the energy denominator related to the propagation of the intermediate state and
Q is an operator that forbids scattering to states in the Fermi sea (k > kF ). The G-matrix
represents an effective in-medium NN interaction and regularizes the non-perturbative
short-range part of the NN interaction.

At two hole-line approximation, the corresponding sum of diagrams leads to the Brueckner-
Hartree-Fock (BHF) approximation. There are essentially two ways of choosing the auxiliary
potential U . In the “standard choice” or “gap choice”, it is assumed that the potential is
rigorously zero for k > kF . In the “continuous choice” the potential is extended to momenta
larger than kF , making it a continuous function through the Fermi surface.

CBF approach. The Correlated Basis Functions approach or variational approach looks
for a optimal set of wave functions or states of the system that makes it possible to treat
the problem in a perturbative way [22–27]. Rather than implementing the non-perturbative
effects by means of a matrix equation as in the BHF approach, these effects are now directly
included in the choice of the basis functions.

The unperturbed Fermi gas states |n0〉 are replaced by the correlated states

|n〉 =
F |n0〉

〈n0 |F †F |n0〉
, (2.8)

where F is the correlation operator whose structure reflects that of the NN interaction. As-
suming a certain operatorial structure for F , the latter is fully determined by the variational
method minimizing the expectation value of the ground state, EV = 〈0|H|0〉.

Once the correlation operator F has been determined, the Hamiltonian is split into two
parts as in eq. (2.5). H ′0 is diagonal in the correlated basis, while V ′ contributes with
off-diagonal elements. If F is well chosen, EV results close to the eigenvalue of H ′0, the
correlated states have a large overlap with the true eigenstates of the system and the matrix
elements of V ′ are small.

The calculation of the matrix elements of H between correlated states is extremely
difficult due to the large number of particles involved. A possible procedure is that of

7



2 - From Nuclei to Nuclear Matter

expanding the matrix elements in a series whose terms represent the contribution of clusters
with an increasing number of particles. The terms in this series can be summed up to all
orders by solving a set of coupled integral equations known as Fermi hyper-netted chain
equations [28–31].

SCGF approach. In the self-consistent Green’s function approach the in-medium single-
particle propagator, obtained via the Dyson equation by summing all ladder diagrams gen-
erated by the iteration of the effective interaction, is the key ingredient to calculate the
binding energy and the single-particle properties of nuclear matter [32–34]. Particles and
holes are treated on an equal footing in contrast to the BHF approach where only interme-
diate particles with momenta above the Fermi sea (k > kF ) are considered in the ladder
diagrams.

DBHF approach. The Dirac-Brueckner-Hartree-Fock approach is a relativistic extension
of the BHF approach. Its formalism is based on a quantum field theoretical model for
nucleons, and their interaction with mesons [35–41]. The essential point is to use the Dirac
equation for the single particle motion in the nuclear medium. The free NN interaction
is described by a one-boson-exchange model. Two-nucleon scattering is implemented in
the medium by means of the covariant Bethe-Salpeter equation through a self-consistent
summation of the ladder diagrams. The common feature of all DBHF results is a density-
dependent relativistic many-body repulsion that is able to describe the saturation properties
of nuclear matter. In fact, the relativistic approach describes quite well the binding energy
and the saturation density of symmetric nuclear matter in contrast to corresponding non-
relativistic calculations.

2.2.2 Phenomenological Approaches

These schemes are based on effective density-dependent nuclear forces or effective inter-
action Lagrangians with parameters fitted to known properties of atomic nuclei or nuclear
matter. This category includes the RMF models [42–44], the Hartree-Fock approaches [45–
47], Thomas-Fermi approximations and phenomenological potential models.

RMF model. The relativistic mean field model uses effective interaction Lagrangians
with nucleons interacting through the exchange of mesons (σ−ω model, for instance). The
operators of the meson fields are replaced by their expectation values.

Non-relativistic Hartree-Fock approach. We mention here the Skyrme-Hartree-Fock ap-
proach based on effective energy-density functionals. One of the first thermodynamic studies
of the equation of state of nuclear matter was conducted using this approach [48].

2.2.3 Effective Field Theory Approach

The Effective Field Theory (EFT) approach is used to systematically describe the low-
energy behaviour of a physical system. After identifying the active degrees of freedom in the
momentum range of interest, one can write the effective Lagrangian according to the basic
principle of the EFT approach enunciated by Weinberg [49]: the construction of the most
general Lagrangian consistent with the symmetries of the underlying interaction leads to the
most general scattering matrix consistent with these symmetries. The effective Lagrangian
is perturbatively expanded in powers of the ratio of the soft momenta over the hard scale.
A power counting scheme specifies the terms required at a given accuracy. A separation of
scales between the non-perturbative short-range physics and the (perturbative) long-range
dynamics is introduced. This division is characterized by a breakdown scale that determines
the radius of convergence and the range of applicability of the theory. The resulting effective
interaction is used to derive the equation of state of nuclear matter in a controlled way, i.e. in
an expansion in powers of the Fermi momentum.
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2.2 Approaches to the Nuclear Many-Body Problem

p1/a mπ Λχ

perturbative

pion-less
EFT

resummed 
pion-less EFT

ChPT
resummed 
ChPT

Figure 2.1: Characteristic momentum scales in the NN scattering problem and range of
validity of the corresponding EFTs.

We can clarify the concepts of range of validity and breakdown scale of an EFT consid-
ering the NN scattering problem, for instance, identifying the relevant characteristic scales
depending on the momenta involved. They are displayed in Fig. 3.1. At low energy, the
problem is characterized by the scattering lengths of the NN channels. Consider neutron-
proton scattering. The corresponding scattering lengths range from a(1S0) ' 5.4 fm for the
spin-singlet case to a(3S1) ' 24 fm for the spin-triplet case. The latter sets a hard scale
of 1/a(3S1) ≈ 8.2 MeV for a perturbative treatment of the problem. If we want to extend
the theory to higher momenta, we have to perform a non-perturbative resummation of the
S-wave NN interaction to all orders (see Ref. [50]). As long as pion-exchange dynamics are
not treated explicitly, the limiting scale of this pion-less effective field theory is the pion
mass mπ. The inclusion of the pion-exchange dynamics leads to ChPT and extends the
convergence of the expansion in powers of the soft momenta up to Λχ ∼ 1 GeV.

ChPT is the approach we adopt for our description of nuclear matter and we present it
in detail in the next chapter [51–56]. The problem of the non-perturbative resummation of
the S-wave contact interaction arising from the large NN scattering length is discussed in
chapter 6 [50, 57]. In addition to in-medium ChPT, the EFT approach includes also the
density functional theory (DFT), oriented to the calculation of the properties of finite nuclei
[58–61].
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Chapter 3

Chiral Perturbation Theory for
Nuclear Matter

The strong interactions between quarks are described by the gauge theory called Quan-
tum chromodynamics (QCD) based on the SU(3) color symmetry. In particular, quark
fields interact through the exchange of massless bosons, the gluons. In contrast to QED,
QCD is a non-abelian gauge theory, a feature which has important consequences. While
the electromagnetic interaction is weak at large distances and strong at small distances, in
QCD the opposite behaviour takes place: the interaction between coloured objects is weak
at small distances (asymptotic freedom) and become strong for distances larger than about 1
fm, so strong to bind and confine the quarks in colorless objects, the hadrons. Consequently,
perturbation theory can be used only at high energies, whereas the low-energy regime is
non-perturbative. This is the case for the nuclear interactions.

The description of nuclear forces in terms of quarks and gluons from QCD is enormously
complicated. One can try to gain information by solving the field equations numerically
on a discretized, Euclidean space-time lattice with huge computing power. This field of
research, called Lattice QCD, is useful for investigating how hadron physics emerges from
QCD. For practical nuclear physics calculations, however, it does not represent a realistic
tool so far.

An efficient approach is that of building an effective field theory representing the low-
energy QCD. The first step is to identify the relevant scales. A characteristic feature that
one encounters in the hadron spectrum is the big gap between the masses of the pions (∼ 135
MeV) and the masses of the vector mesons (mρ = 770, for instance). So we can assume the
pion mass is a soft scale, Q ∼ mπ, and the ρ mass the hard scale, Λχ ∼ mρ. An estimation
based on consistency arguments concerning the meson-meson scattering sets as hard scale
Λχ ≈ 4πfπ ∼ 1 GeV [62], where fπ = 92.4 MeV. The effective theory will consist of an
expansion of the lagrangian in powers of Q/Λχ. Therefore the active degrees of freedom are
no longer quarks and gluons but pions coupled to heavy sources such as nucleons. The link
to QCD is given by Weinberg’s theorem [49]: it states that the effective field theory must
share all symmetries of the basic theory. The construction of the effective field theory of
low-energy QCD can be summarized in the following five points [56]:

• Identification of the soft and hard scales and the active degrees of freedom.

• Identification of the symmetries of QCD and their possible breaking.

• Construction of the most general lagrangian respecting the conserved and broken
symmetries of QCD.

• Elaboration of a power counting, an organization scheme that allows to identify a
hierarchy of important contributions in a low-momentum expansion.

11



3 - Chiral Perturbation Theory for Nuclear Matter

• Calculation of the Feynman diagrams of the different contributions up to desired
accuracy.

This lists the steps leading to Chiral Perturbation Theory (ChPT), to be described in
the present chapter. Still, our primary purpose is to attack the nuclear many-body problem
and obtain predictions for the properties of nuclear matter. So the last part of the chapter
is dedicated to the extension of ChPT to systems at finite density using the novel approach
developed in Refs. [53–55] and relying on the separation between long- and short-distance
dynamics.

3.1 Symmetries of QCD

3.1.1 Chiral Symmetry

The first point of the list of “things to be done” for the construction of an effective field
theory has already been discussed. We now proceed to the second point, the study of the
symmetries of the low-energy QCD lagrangian. This is written as follows:

LQCD(x) = q̄(x) (iγµDµ −M) q(x)− 1

4
Gµν,a(x)Gµν,a(x) . (3.1)

Quarks exist in six different flavours. Three of them, the u, d and s quarks, have a mass
smaller than Λχ. In low-energy QCD only these three quarks are relevant. In our model
for nuclear interactions no strange particle appears, so we restrict the discussion to the two
flavour case, with up and down quarks. Under such restriction the quark field q(x) is a
flavour doublet

q(x) =

(
u(x)
d(x)

)
(3.2)

and the fields u(x) and d(x) are in turn colour triplets

u(x) =



ur(x)
ug(x)
ub(x)


 , d(x) =



dr(x)
dg(x)
db(x)


 . (3.3)

M is a diagonal 2×2 matrix containing the quark masses mu and md. Dµ is the covariant
derivative

Dµ = ∂µ − ig
λCa
2
Aµ,a(x) , (3.4)

with λCa the eight linearly independent 3×3 Gell-Mann matrices, the generators of the SU(3)
colour symmetry group. Aµ,a (a = 1, . . . 8) are the gluon fields and g is the strong coupling
constant. Gµν,a(x) is the gluon strength tensor defined as

Gµν,a(x) = ∂µAν,a(x)− ∂νAµ,a(x) + gfabcAµ,b(x)Aν,c(x) , (3.5)

with fabc the fine structure constants of the SU(3) group. The non-abelian character of
QCD appears in the last term of Gµν,a(x), in which the gluon fields interact with each
other.

According to the PDG [63], the masses of the u and d quarks are:

mu = 2.5+0.6
−0.8 MeV , md = 5.0+0.7

−0.9 MeV , (3.6)

at a renormalization scale µ = 2 GeV. These values are very small compared to the charac-
teristic scale Λχ, so it is meaningful to discuss the QCD Lagrangian in the limit of vanishing
quark masses. In eq. (3.1) we set M = 0. As a consequence, the Lagrangian acquires the
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3.1 Symmetries of QCD

so called chiral symmetry. By introducing the left-handed and the right-handed projection
operators

PR =
1 + γ5

2
, PL =

1− γ5

2
, (3.7)

we define the right-handed and the left-handed quark fields:

qR = PR q , qL = PL q . (3.8)

In terms of these fields, the Lagrangian reads

L0
QCD = q̄L iγ

µDµ qL + q̄R iγ
µDµ qR −

1

4
Gµν,aG

µν,a . (3.9)

We note that for vanishing quark masses, the left-handed and the right-handed quark fields
decouple. In this limit the Lagrangian L0

QCD is invariant under the following global unitary
transformations:

qL −→ UL qL = e−iθ
L
i
τi
2 e−iθLqL , (3.10)

qR −→ UR qR = e−iθ
R
i
τi
2 e−iθRqR , (3.11)

where UL and UR are two independent unitary 2×2 matrices, τi with i = 1, 2, 3 are the
(isospin) Pauli matrices and the θ’s are the parameters of the transformations acting in
flavour space. L0

QCD has a classical global U(2)L × U(2)R symmetry. Applying Noether’s
theorem we find 2× (3 + 1) = 8 conserved currents:

Lµi = q̄Lγ
µ τi

2
qL , Lµ = q̄Lγ

µqL . (3.12)

Rµi = q̄Rγ
µ τi

2
qR , Rµ = q̄Rγ

µqR . (3.13)

The 6 currents Lµi and Rµi are associated with the SU(2)L × SU(2)R symmetry, while the
remaining two currents Lµ and Rµ are linked to the U(1)L×U(1)R symmetry. The left-hand
and right-hand currents are also written in terms of vector and axial currents:

V µ
i = q̄γµ

τi
2
q = Rµi + Lµi , V µ = q̄γµq = Rµ + Lµ (3.14)

Aµi = q̄γµγ5
τi
2
q = Rµi − L

µ
i , Aµ = q̄γµγ5 q = Rµ − Lµ . (3.15)

To summarize, the total symmetry group of L0
QCD is SU(3)color × SU(2)L × SU(2)R ×

U(1)V × U(1)A. However, the singlet axial current is conserved only on a classical level.
The associated symmetry is broken by quantization (“U(1)A anomaly”) and is no longer
a symmetry of the system. U(1)V is related to the conservation of the baryon number.
According to this property, we can classify the particles into mesons with B = 0 and
baryons with B = 1.

The charge operators satisfy the commutation relations of the SU(2)L×SU(2)R×U(1)V
Lie algebra:

QLi =

∫
d3x q†L

τi
2
qL , QRi =

∫
d3x q†R

τi
2
qR , (3.16)

[QLi , Q
L
j ] = iεijkQ

L
k , [QRi , Q

R
j ] = iεijkQ

R
k , [QLi , Q

R
j ] = 0 , (3.17)

[QLi , Q
V ] = [QRi , Q

V ] = 0 . (3.18)

In terms of the vector and axial charge operators the commutation rules are:

[QVi , Q
V
j ] = iεijkQ

V
k , [QAi , Q

A
j ] = iεijkQ

V
k , [QVi , Q

A
j ] = iεijkQ

A
k (3.19)

[QVi , Q
V ] = [QAi , Q

V ] = 0 . (3.20)
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3 - Chiral Perturbation Theory for Nuclear Matter

3.1.2 Explicit Chiral Symmetry Breaking

The chiral symmetry is exact only for vanishing quark masses and is broken by the mass
term in eq. (3.1). This can be easily seen writing the mass term in terms of the left- and
right-handed quark fields:

LM = −q̄Mq = −q̄RMqL − q̄LMqR . (3.21)

The mass term mixes left-handed and right-handed quarks. We write explicitly the matrix
M :

M =

(
mu 0
0 md

)
=
mu +md

2
I +

mu −md

2
τ3 . (3.22)

Because of the negligible mass of the quarks, the chiral symmetry breaking is small. In the
particular case of mu = md, the second term in (3.22) vanishes and the Lagrangian recovers
the SU(2)V symmetry, better known as isospin symmetry.

3.1.3 Spontaneous Chiral Symmetry Breaking

What are the physical implications of the SU(2)V ×SU(2)A symmetry? The associated
charge operators commute with the Hamiltonian. So, with regard to the vector symmetry,
we expect to find degenerate isospin multiplets in the hadron spectrum. This is indeed the
case: neutron and proton, π+, π0 and π−, ρ+, ρ0 and ρ−, just to mention some of them.
The axial charges QAi have instead negative parity and degenerate parity doublets should
be associated with the axial symmetry. However, for the ρ-meson is an isospin triplet with
JP = 1− and mass about 775 MeV, the lightest meson with the same quantum numbers
but opposite parity is the a1-meson. Its mass is 1230 MeV and cannot at all be considered
as degenerate with the ρ-meson. We conclude that the SU(2)A symmetry is spontaneously
broken.

Given a symmetry of the Lagrangian, the ground state of the theory can share the
same symmetry of the Lagrangian or not. In the first case the charge operators annihilate
the vacuum, QAi |0〉 = 0 for example, and we have the so called Wigner-Weyl realization
of the symmetry. In the second case, the charge operators do not annihilate the vacuum,
QAi |0〉 6= 0, and the so called Nambu-Goldstone realization of the symmetry takes place.
The Goldstone theorem states that there exists a massless Goldstone boson with spin zero
for each operator that does not annihilate the vacuum, and with the same quantum numbers
as this operator.

From the breaking of SU(2)A, three Goldstone bosons are generated and we identify
them with the pion triplet. In the more general three flavour case we expect eight Goldstone
bosons that can be identified with the pseudoscalar meson octet. However, these mesons
are not massless, because the symmetry is not exact but explicitly broken by the finite mass
of the quarks. So the pions are the result of both the spontaneous and the explicit chiral
symmetry breaking. Pions are degenerate with the vacuum and their interactions must
vanish at zero momentum and in the chiral limit mπ → 0.

3.2 Chiral Effective Lagrangian

We are at the third point of the list, the construction of the most general effective
Lagrangian with the same conserved and broken symmetries of the QCD Lagrangian. Such
effective Lagrangian results in an expansion in powers ofQ/Λχ, where, as already mentioned,
Q is a soft scale, the pion momentum or the pion mass.
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3.2 Chiral Effective Lagrangian

3.2.1 Pion sector

The pion-pion Lagrangian is expanded in even powers of the soft scale because of Lorentz
invariance:

Lππ = L(2)
ππ + L(4)

ππ + . . . (3.23)

The superscript indicates the number of derivatives or pion mass insertions. The interaction
behaves correctly at zero momentum and in the chiral limit.

The leading order (LO) term is written as:

L(2)
ππ =

1

4
f2
π Tr

[
∂µU∂

µU † +m2
π(U + U †)

]
. (3.24)

The trace is in isospin space, fπ can be identified with the pion decay constant after evalu-
ating the weak pion decay π+ → µ+νµ. U is a SU(2) matrix in flavour space containing the
pion fields. It can be parameterized in different ways. The usual choices are the exponential
parameterization 1

U = ei(τ ·π)/fπ , (3.25)

and the sigma parameterization

U = (σ + i τ · π)/fπ , σ =
√
f2
π − π2 . (3.26)

If we expand U in powers of pion field π we obtain:

U = 1 +
i

fπ
τ · π − 1

2f2
π

π2 − i α

f3
π

(τ · π)3 +
8α− 1

8f2
π

π4 + . . . , (3.27)

with α = 1/6 for the exponential parameterization and α = 0 for the sigma parameteri-
zation. Clearly, the observables must not depend on the unphysical parameter α. Under
global chiral rotations, U transforms as:

U −→ gL U g
†
R , (3.28)

where gL = e−iθ
L
i
τi
2 and gR = e−iθ

R
i
τi
2 are elements of SU(2)L × SU(2)R. The Lagrangian

(3.24) is then invariant under the transformation (3.28). After replacing the expansion
(3.27) in (3.24), we find the following lowest order Lagrangian:

L(2)
ππ =

1

2
∂µπ · ∂µπ −

1

2
m2
ππ

2 +
1− 4α

2f2
π

(π · ∂µπ)(π · ∂µπ)

− α

f2
π

π2∂µπ · ∂µπ +
8α− 1

8f2
π

m2
ππ

4 +O(π6) (3.29)

The first two terms are the kinetic term and the mass term of the pion field. The other
terms describe the interaction between 4 pions, 6 pions and so forth.

3.2.2 Baryon sector

At leading order the most general relativistic πN Lagrangian is [64] :

L(1)
πN = ψ̄

(
iγµDµ −MN +

1

2
gAγ

µγ5uµ

)
ψ , (3.30)

1We use the arrow to indicate vectors in coordinate space, such as ~r, ~p, ~σ, and the bold symbol to indicate
vectors in isospin space, such as τ , π. This notation is useful to easily recognize scalar products in Dirac
space and in isospin space.
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3 - Chiral Perturbation Theory for Nuclear Matter

where ψ = (p, n)T is the nucleon field composed of the isospin doublet of proton and neutron
fields and gA the axial vector coupling constant. The covariant derivative is given by

Dµ = ∂µ + Γµ , (3.31)

where Γµ is the chiral connection:

Γµ =
1

2
[ξ†, ∂µξ] =

i

4f2
π

εabc τa πb ∂µπc +O(π4) , ξ =
√
U , (3.32)

which couples the nucleon with an even number of pions. Instead, uµ couples the nucleon
with an odd number of pions:

uµ = i{ξ†, ∂µξ} = − 1

fπ
τ · ∂µπ +

4α− 1

2f3
π

(τ · π)(π · ∂µπ) +
α

f3
π

π2(τ · ∂µπ) +O(π5). (3.33)

Inserting in the Lagrangian (3.30) we obtain:

L(1)
πN = ψ̄

(
iγµ∂µ −MN −

1

4f2
π

γµεabc τa πb ∂µπc −
gA
2fπ

γµγ5τ · ∂µπ + . . .

)
ψ (3.34)

The term containing the Levi-Civita tensor is called Weinberg-Tomozawa coupling. It is a
2π-contact term arising from the covariant derivative. The term proportional to gA is the
known axial vector derivative coupling of the nucleon with a pion.

In the relativistic formulation the time derivative of the nucleon field implies a factor
E ≈ MN comparable to the hard scale Λχ ≈ 1 GeV. Moreover, the nucleon mass does
not vanish in the chiral limit. Such problems can be overcome if nucleons are treated as
high massive static sources so that the momentum transfer due to pion exchange is very
small compared to the nucleon mass. The Lagrangian can then be expanded in powers of the
momentum transfer over the nucleon mass. This approach is known as Heavy Baryon Chiral
Perturbation Theory (HBChPT) [65] and represents the non-relativistic limit of ChPT.

The basic idea is to decompose the nucleon four-momentum pµ as

pµ = MNvµ + kµ (3.35)

with vµ the nucleon four-velocity, satisfying v2 = 1, and kµ its small residual momentum,
v · k �MN . We introduce the velocity-dependent spinor fields

N = eiMNv·xP+
v ψ , h = eiMNv·xP−v ψ , (3.36)

where the projectors P±v are defined as:

P+
v =

1 + γµvµ
2

, P−v =
1− γµvµ

2
. (3.37)

For vµ = (1, 0, 0, 0) (static limit), the fields N and h are respectively interpreted as the
large/upper component and the small/lower component of the Dirac spinor field ψ. Rewrit-
ing the Lagrangian (3.30) in terms of the field N (N̄ = N †) we obtain:

L̃(1)
πN = N̄

(
iD0 −

1

2
gA~σ · ~u

)
N . (3.38)

The 1/MN corrections give rise to a second-order Lagrangian:

L̃(2)
πN,MN

= N̄

[
1

2MN

~D · ~D + i
gA

4MN
{~σ · ~D, u0}

]
N . (3.39)
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3.3 Power Counting

The second-order Lagrangian is not complete. It receives a contribution from the correction
of order 1/MN to the first order Lagrangian, but still we can add combinations of operators
Oi of the form ci ψ̄ O

(2)
i ψ. The coefficients ci are low-energy constants (LECs) determined

by the fit to πN scattering data. They originate the following contribution to the second
order Lagrangian:

L̃(2)
πN,ct = N̄

[
2 c1m

2
π(U + U †) +

(
c2 −

g2
A

8MN

)
u2

0 + c3 uµu
µ

+
i

2

(
c4 +

1

4MN

)
~σ · (~u× ~u)

]
+ . . . , (3.40)

neglecting the isospin-breaking c5-term.

3.2.3 Nucleon-Nucleon Lagrangian

The short-distance dynamics is integrated out by the description in terms of low-energy
degrees of freedom. Nevertheless they are, although unresolved, still essential to get a
complete description of nuclear forces. Chiral pion dynamics reproduces the long and inter-
mediate range parts of the NN interaction. These long range pieces dominate the higher
partial waves, but NN observables at low energy depend largely on the contribution of the
lower partial waves with L ≤ 2. The lower partial waves are governed by short-distance.
We need to set contact terms to account for them.

Due to parity conservation, only even powers of derivates can appear in the contact
Lagrangian:

L̃NN = L̃(0)
NN + L̃(2)

NN + L̃(4)
NN + · · · (3.41)

The lowest order term reads [66]:

L̃(0)
NN = −1

2
CS N̄NN̄N −

1

2
CT (N̄~σN) · (N̄~σN) , (3.42)

where CS and CT are constants determined by the fit to NN scattering data.

3.3 Power Counting

The Feynman diagrams that can be calculated from the effective Lagrangian are infinite
in number. To be of some practical use, we need criteria for an ordering scheme that enables
to distinguish between large and small contributions.

In ChPT, each diagram gives a contribution of the form (Q/Λχ)ν , and we would like to
determine the power ν, also called chiral order.

Without going into details, the following power counting rule results [56, 67–69]:

ν = 2A− 2− 2C + 2L+
∑

i

∆i , (3.43)

with

∆i ≡ di +
ni
2
− 2. (3.44)

A is the number of nucleons involved, C is the number of separately connected pieces and
L the number of loops. ∆i is the interaction index of the vertex i, with di the number of
derivatives or pion mass insertions and ni the number of nucleons involved in vertex i. Note
∆i ≥ 0.
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3 - Chiral Perturbation Theory for Nuclear Matter

In any case, the most important aspect of such formula is that the chiral power ν is
bounded from below, ν ≥ 0, so that an expansion in powers of the small momentum Q is
convergent.

In the case of two interacting nucleons, A = 2 and the formula for the chiral order
reduces to

ν = 2L+
∑

i

∆i . (3.45)

For the evaluation of the chiral order of the Feynman diagrams, it is useful to rearrange
the heavy baryon Lagrangian in terms of increasing interaction index ∆. We show the first
orders [56]:

L̃∆=0 =
1

2
∂µπ · ∂µπ −

1

2
m2
ππ

2 +
1− 4α

2f2
π

(π · ∂µπ)(π · ∂µπ)− α

f2
π

π2∂µπ · ∂µπ +
8α− 1

8f2
π

m2
ππ

4

+N̄

[
i∂0 −

gA
2fπ

τ · (~σ · ~∇)π − 1

4f2
π

τ · (π × ∂0π)

]
N

+N̄

{
gA(4α− 1)

4f3
π

(τ · π)
[
π · (~σ · ~∇)π

]
+
gAα

2f3
π

π2
[
τ · (~σ · ~∇)π

]}
N

−1

2
CSN̄NN̄N −

1

2
CT (N̄~σN) · (N̄~σN) + . . . , (3.46)

L̃∆=1 = N̄

{
~∇2

2MN
− i gA

4MNfπ
τ ·
[
~σ ·
(←−∇∂0π − ∂0π

−→∇
)]

− i

8MNf2
π

τ ·
[←−∇ · (π × ~∇π)− (π × ~∇π) · −→∇

]}
N

+N̄

[
4 c1m

2
π −

2 c1

f2
π

m2
ππ

2 +

(
c2 −

g2
A

8MN

)
1

f2
π

(∂0π · ∂0π)

+
c3

f2
π

(∂µπ · ∂µπ)−
(
c4 +

1

4MN

)
1

2f2
π

εijkεabcσiτa(∂jπb)(∂kπc)

]
N

− D

4fπ
(N̄N)N̄

[
τ · (~σ · ~∇)π

]
N − 1

2
E(N̄N)(N̄τN) · (N̄τN) + . . . , (3.47)

L̃∆=2 = L(4)
ππ + L̃(3)

πN + L̃(2)
NN + . . . , (3.48)

L̃∆=4 = L̃(4)
NN + . . . , (3.49)

neglecting terms that are not relevant for nuclear forces up to ν = 4. The terms with
coefficients D and E are, respectively, a πNN -contact term and a NNN -contact term.
Note that all the constants appearing in the Lagrangian are taken in the chiral limit.

We are now able to construct the scattering diagrams for each chiral order in a controlled
way. In Fig. 3.1 we report a list of such diagrams organized according to their chiral order.

At leading order LO (ν = 0) only the terms of the Lagrangian with interaction index
∆ = 0 (eq. (3.46)) contribute. They generate a NN contact interaction (with coefficient
CS and CT ) and the well known static 1π-exchange, which introduces the tensor force and
reproduces the peripheral partial waves (L > 2). As concerns the two contact terms, they
contribute only in S-waves.

The order ν = 1 is forbidden by parity and time-reversal invariance.
The next-to-leading contribution (NLO) comes at order ν = 2. Eq. (3.45) guides us

in the construction of the diagrams. One-loop diagrams are allowed in combination with
∆ = 0 interaction vertices. Therefore we can include at this order 2π-exchange diagrams
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LO

(Q/Λχ)
0

NLO

(Q/Λχ)
2

NNLO

(Q/Λχ)
3

. . .

. . .

2N Force 3N Force

Figure 3.1: NN scattering diagrams organized according their contribution in powers of
Q/Λχ. The small dot indicates a vertex with ∆ = 0, the solid square a vertex with ∆ = 1
and the large dot a vertex with ∆ = 2.

with πNN (axial) and ππNN (Weinberg-Tomozawa) vertices. We can also consider the
combination L = 0 and ∆ = 2 and use the seven contact terms of O(Q2) in the Lagrangian
L̃(2)
NN . They are indicated with a solid square to distinguish them from the lower order

contact terms labeled with a small dot. They contribute in S and P waves. The structure
of the short- and intermediate-range parts of the NN interaction is well reproduced.

At next-to-next-to-leading order (NNLO) (ν = 3), the contributions come from one-
loop diagrams with an insertion of a ππNN contact-vertex with ∆ = 1 proportional to ci.
These contact terms include the correlated 2π-exchange as well as intermediate ∆-isobar
contributions. Note that also the first relativistic corrections of O(1/MN ) come at this
order.

Three-body diagrams appear at NLO, but it has been shown that they cancel each other
at this order. So the first contribution from 3-body forces takes place at NNLO.

3.4 Nucleon-Nucleon Interaction at One Loop

The NN interaction in the framework of ChPT has been calculated in Refs. [51, 52].
The calculation is performed in the center of mass frame:

N(~p ) +N(−~p ) −→ N(~p ′) +N(−~p ′) , (3.50)
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3 - Chiral Perturbation Theory for Nuclear Matter

with p = |~p | = |~p ′|. The results are given in terms of contribution to the elastic NN
T -matrix in momentum space, whose general structure is written as:

TNN = VC +WC τ1 · τ2 + [VS +WS τ1 · τ2]~σ1 · ~σ2 + [VT +WT τ1 · τ2] ( ~σ1 · ~q )( ~σ2 · ~q )

+[VSO +WSO τ1 · τ2] i ( ~σ1 + ~σ2) · (~q × ~p )

+[VQ +WQ τ1 · τ2] [ ~σ1 · (~q × ~p )][ ~σ2 · (~q × ~p )] , (3.51)

where ~q = ~p ′ − ~p is the momentum transfer with q = |~q | = p
√

2(1− z) (z = cos θ, with θ
the scattering angle). The ten complex functions V and W depend on p and z.

We adopt such form of the NN T -matrix in the present manuscript. Whenever results
for the functions V andW are given, it is implied that they refer to the form of the T -matrix
in eq. (3.51).

3.4.1 Pion-Exchange Dynamics

The pion-exchange contributions to NN scattering have been calculated in Ref. [51] up
to one-loop order and at NNLO. In the following, we briefly discuss this approach.

At LO we have the usual static 1π-exchange described by the second diagram in Fig. 3.1.
At NLO the diagrams involved are those in the third row in Fig. 3.1: they just renormalize
the nucleon and pion mass and the axial coupling constant to their physical values [51].
The renormalizations of fπ, gA, MN and mπ are taken into account by working with their
physical values.

The contributions from 2π-exchange are more involved and need to be treated carefully.
In Ref. [51] the covariant relativistic Lagrangian Eq. (3.34) is used as starting point. The
resulting transition matrix element is expanded in powers of 1/MN and only afterwards the
loop integral is solved and treated by means of dimensional regularization. The result is
of course the same of that obtained in HBChPT, but as regards the planar box diagram
it avoids the problem of the Pinch singularity that affects the HBChPT approach. Such
singularity in the loop integral originates from taking the limitMN →∞ from the beginning.
In a perturbative expansion in 1/MN the nucleon mass is finite and the box diagram is well
defined. The calculation of the box diagram produces a term proportional toMN and a term
of order zero in MN (neglecting the small relativistic corrections). The term proportional
to MN corresponds to the iterated 1π-exchange which is usually generated by the non-
relativistic Lippmann-Schwinger equation. This term is infinite in the heavy baryon limit.
The other term, not depending on the nucleon mass, corresponds to the irreducible part of
the 2π-exchange and causes no problem in the heavy baryon limit. The detailed calculation
of the 2π-exchange diagrams can be found in Ref. [56].

3.4.2 Explicit Inclusion of the ∆-Isobar Excitation

The ∆(1232)-isobar is the lowest excited state of the nucleon. It is a πN resonance
with both spin and isospin 3/2 and excitation energy ∆ = 293 MeV. It gives an important
contribution to the attractive intermediate-range NN interaction.

Given that ∆ ' 2mπ � Λχ, it is useful to treat the ∆-isobar as an explicit degree of
freedom. In this case ∆ is treated as a small parameter together with the pion mass and
external momenta. This scheme is called small scale expansion [70].

We report the leading-order Lagrangian involving the ∆(1232) in the heavy baryon
formalism:

L̃(∆=0)
D = D̄(i∂0 −∆)D − 3 gA

2
√

2fπ

(
N̄T~SD + h.c.

)
·~∇π −DT N̄τ~σN ·(N̄τ ~SD + h.c.) ,

(3.52)
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︸ ︷︷ ︸

2N Force

Figure 3.2: ChiralNN interaction diagrams without (left) and with (right) explicit inclusion
of the ∆-isobar excitation. A large amount of the ci-contact terms strength is taken out
by the ∆-isobar intermediate state (indicated by a double line), which increases the chiral
power by one unit, as pointed out by the arrows.

where D is a four-spinor field representing the ∆-isobar and DT a low energy constant. This
Lagrangian gives rise to a Nπ∆-isobar vertex and to a NNN∆-isobar contact interaction.
The spin 1/2 to spin 3/2 transition operators Si (i = 1, 2, 3) are 2×4 spin matrices satisfying
SiSj† = (2δij − iεijkσk)/3. The same property is valid for the isospin 1/2 to isospin 3/2
transition matrices T a: T aT b† = (2δab − iεabcτ c)/3.

In the ∆-less theory the effects of the ∆-isobar are implicitly taken into account through
the low-energy constants ci. The resonance contributes significantly to these coefficients [71].
Explicit inclusion of the ∆-isobar reduces the magnitude of some of the ci, improving the
convergence of the perturbative expansion. For instance, while in the ∆-less theory the
values of c3 and c4 are between 3 and 5 GeV−1 in modulo, resulting from the fit to the πN
scattering data, for the theory with the ∆-isobar they decrease to around 1 GeV−1.

In Fig. 3.2, we display the additional diagrams contributing to the NN force when the
∆-isobar degree of freedom is included. In comparison to the ci contact vertex, the explicit
insertion of a ∆-isobar intermediate state increases the chiral power by one unit.

2π-exchange diagrams with ∆-isobar at NLO have been evaluated in covariant perturba-
tion theory in Ref. [52]. For instance, the analytical form of the attractive isoscalar central
potential from diagrams with single ∆-isobar excitation is

V
(N∆)
C (r) = − 3 g4

A

64π2f4
π∆

e−2x

r6
(6 + 12x+ 10x2 + 4x3 + x4) , (3.53)
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LO
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NLO
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Figure 3.3: Chiral 3N interaction diagrams without (left) and with (right) explicit inclusion
of the ∆-isobar excitation. Diagrams with ∆-isobar start to contribute already at NLO.
The two diagrams at NLO cancel after antisymmetrization. The three diagrams at NNLO
are suppressed because the subleading N∆π vertex involves a time derivative [72].

with x = mπr. It agrees almost perfectly with the phenomenological σ-exchange model at
distances r > 2 fm and is reminiscent of the Van der Waals interaction, which fully emerges
in the chiral limit (x = 0).

In Fig. 3.3 we show the contributions to the 3N force. Note that 3N diagrams appear
already at NLO when the ∆-isobar is included. Only one of the three diagrams at NLO
remains. The other two diagrams cancel after antisymmetrization [72]. Diagrams at NNLO
are suppressed in the chiral counting [72].

3.5 In-Medium Chiral Perturbation Theory

In the last two decades a novel approach to the nuclear many-body problem has been
developed, based on the understanding of the NN interaction in the framework of chiral
effective field theories [53–55]. The basic assumption of this approach is the scale separation
between the short-range physics and the long- and intermediate-distance dynamics. While
the latter, described primarily by pion dynamics in the presence of the nuclear medium,
are treated explicitly, the unresolved short-distance physics is encoded in a few contact
terms with coefficients fixed in order to reproduce selected known bulk properties of nuclear
matter. Many other ground state and single-particle properties and nuclear thermodynamics
emerge as predictions.

In the following we consider the case of isospin-symmetric nuclear matter at temper-
ature zero, that is nuclear natter composed of an equal amount of protons and neutrons.
Their Fermi seas are identical as well as their Fermi momenta. Isospin-symmetric nuclear
matter is the simplest case because protons and neutrons can be treated indifferently as
isospin-doublet nucleons in performing calculations. The generalization to arbitrary isospin-
asymmetry and extension to finite temperature are the topics of the next chapter.

3.5.1 Small Scales in Nuclear Matter

The relevant active degrees of freedom for the description of the nuclear many-body
problem are nucleons and pions. In-medium ChPT is applicable to nuclear many-body

22



3.5 In-Medium Chiral Perturbation Theory

systems as long as the Fermi momentum kF is small compared to the scale of spontaneous
chiral symmetry breaking in QCD, Λχ ∼ 4πfπ ∼ 1 GeV.

The characteristic range of nuclear momenta is comparable to about twice the pion mass
(kF0 ≈ 2mπ, where kF0 ' 263 MeV is the Fermi momentum at the saturation density of
nuclear matter, ρ0 ' 0.16 fm−3). This implies that 1π- and 2π-exchange processes have
to be treated explicitly in the presence of the nuclear medium. Moreover, to complete the
picture it is mandatory to include the ∆(1232)-isobar excitation as an explicit degree of
freedom, as mentioned before, because the splitting between the ∆-isobar mass and the
nucleon mass, ∆ = 293 MeV, is again comparable to 2mπ. Consequently, the “small scales”
that appear in our scheme are the Fermi momentum of the nucleons, kF , the pion mass,
mπ, and the ∆(1232)-nucleon mass splitting ∆.

3.5.2 In-Medium Nucleon Propagator

The basic ingredient in performing calculations at finite baryon density is the in-medium
nucleon propagator.

At finite density, the ground state of a fermionic system is the filled Fermi sea |φ0〉. At
T = 0, all momentum levels up to the Fermi momentum kF are occupied. For momenta
below kF , one can only annihilate a particle of the Fermi sea or, equivalently, create a hole.
The creation of a particle with momentum smaller than kF is forbidden by the saturation
of the energy levels. There is no such restriction for creating a particle above the Fermi sea.

The Fermi momentum kF is related to the density ρ through the relation

ρ = g

∫ ∞

0

d3p

(2π)3
θ(kF − |~p |) = g

k3
F

6π2
, (3.54)

with g the degeneracy factor (g = 4 for symmetric nuclear matter).
The definition of the nucleon propagator must now be modified in the medium in com-

parison with the vacuum case:

SF0(x− y) = 〈0|T [Ψ(x)Ψ̄(y)] |0〉 −→ SF (x− y) = 〈φ0|T [Ψ(x)Ψ̄(y)] |φ0〉 , (3.55)

with T the time-ordering operator. The detailed derivation of the in-medium propagator
can be found in Appendix A.1. The in-medium nucleon propagator in momentum space
results:

SN (p) =
(
/p+MN

) [ i

p2 −M2
N + iε

− 2πδ(p2 −M2
N ) θ(kF − |~p|) θ(p0)

]
, (3.56)

with pµ = (p0, ~p ), and MN = 939 MeV is the free nucleon mass. The propagator consists
of two terms. The first term is the vacuum nucleon propagator. The second term is the
modification coming from the presence of the medium and is called medium insertion. It
originates from the Pauli blocking effects in dense matter. The contributions to the energy
density are then organized according to the number of medium insertions.

3.5.3 Low-momentum Expansion of the Energy Density

The observable we are interested in is the energy per particle Ē as a function of the
nucleon density ρ. For symmetric nuclear matter the degeneracy factor is g = 4, a factor 2
coming from the spin degeneracy, the other factor 2 coming from the isospin degeneracy.

The energy density of the system is given by the sum of all connected linked Feynman
diagrams, i.e. the vacuum or bubble diagrams [74, 75]. They are obtained closing the legs of
the diagrams in Fig. 3.2 in all possible ways and respecting the direction of the arrows. The
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Figure 3.4: (a): 1π-exchange Fock diagram; (b): iterated 1π-exchange Hartree diagram;
(c): iterated 1π-exchange Fock diagram. Diagram (a) includes two medium insertions,
diagrams (b) and (c) involve two and three medium insertions. The combinatoric factors
are respectively 1/2, 1/4, 1/4.

11

1

Figure 3.5: Irreducible 2π-exchange diagrams to be evaluated with two medium insertions.
Diagrams with three medium insertions contribute only at O(k6

F ). The combinatoric factors
are respectively 1/4, 1, 1/2, 1/4.

calculation is performed up to NLO and at three-loop order. Some of the vacuum diagrams
that contribute to the energy density are showed in Figs. 3.4 and 3.5.

The interaction vertices that are relevant for the vacuum diagrams in the present cal-
culation are the pseudo-vector NNπ vertex and the Weinberg-Tomozawa NNππ-contact
vertex, both coming from the interaction Lagrangian eq. (3.34), and the Nπ∆-isobar vertex
from the Lagrangian (3.52):

gA
2fπ

/qaγ5 τa ,
1

4f2
π

εabc (/qb − /qa) τc , − 3gA

2
√

2fπ
~S · ~qa Ta . (3.57)

The convention for the pion momenta is that qa,b are outgoing. The values of the constant
used are fπ = 92.4 MeV and gA = 1.37 [54].

The use of the in-medium nucleon propagator Eq. (3.56) to evaluate ground state ex-
pectation values of the energy per particle generates diagrams with different numbers of
medium insertions. Diagrams with no medium insertion give an unobservable shift of the
vacuum energy. Diagrams with one medium insertion renormalize the nucleon mass to its
physical value and provide a description at the level of the (non-interacting) Fermi gas. The
interesting many-body effects originate from diagrams with two and three medium inser-
tions. Two-body terms are directly related to the NN T -matrix and are generated from
diagrams with two medium insertions. Diagrams with three medium insertions generate
the important three-body terms, such as the Pauli-blocking effects on the two-body terms.
Diagrams with four medium insertions are imaginary and cancels the imaginary part of
the diagrams with two and three medium insertions, so that the energy is real. Conver-
gence in the series of medium insertions, or powers of kF , at the three-loop level is realized
for kF � Λχ ∼ 1 GeV as long as four-nucleon correlations are not prominent. Effects of
four-body correlations are still an open issue and subjects of ongoing investigations [73, 76].

The energy per particle at T = 0 is then derived as an expansion in powers of kF :

Ē(ρ) =
∑

n

Fn

(
kF
mπ

,
mπ

∆

)
knF . (3.58)
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The coefficients Fn of the expansion are non-trivial functions of the dimensionless ratios
kF /mπ and mπ/∆. The energy per particle of nuclear matter is calculated up to and
including O(k5

F ).
Fig. 3.4a shows the 1π-exchange Fock diagram. The corresponding Hartree diagram

is trivially null, because the exchanged momentum appearing in the spin trace is qµ =
0. Figs. 3.4b and 3.4c display respectively the iterated 1π-exchange Hartree- and Fock-
diagrams. We recall that the meaning of “iterated” and “irreducible” diagrams has been
discussed in section 3.4.1. In particular, the iterated 1π-exchange diagrams 3.4b and 3.4c
are proportional to the nucleon mass, so that their contribution is generally large. Such
diagrams are taken with two and three medium insertions.

The next set in Fig. 3.5 contains the irreducible 2π-exchange Fock-diagrams, to be
considered with two medium insertions. Diagrams with three medium insertions give a
contribution to the energy density of order O(k6

F ). In the case of isospin-symmetric nuclear
matter, the contribution of the corresponding Hartree diagrams with two medium insertions
vanishes. This can be easily seen considering the isospin-trace of the general form of the
NN T -matrix (Eq. (3.51)).

The irreducible 2π-exchange diagrams with single and double ∆-isobar excitation as in-
termediate state, arising from the scattering diagrams depicted in Fig. 3.2, are also included.

For the treatment of the irreducible 2π-exchange vacuum diagrams with two medium
insertions a twice-subtracted dispersion relation is used [77]. It is worth to spend some
words to describe this method.

The NN transition matrix can be represented in the form of a dispersion relation:

ReT (ω) =
1

π

∫ ∞

4m2
π

dω′
ImT (ω′)
ω′ − ω . (3.59)

The integration runs over the brunch-cut of the T -matrix starting at the two-pion state and
propagating to infinity. We set ω′ = µ2 and limit T to the physical domain imposing that
ω be space-like, ω = −q2 = −|~q |2 < 0, with ~q the momentum transfer in scattering process.
The integral becomes:

ReT (q) =
2

π

∫ ∞

2mπ

dµ
µ

µ2 + q2
ImT (iµ) . (3.60)

Under the integral, T is a function of iµ and not of µ in order to preserve the singularity
at the denominator. The integral is ultraviolet divergent and its regularization requires two
subtractions:

µ

µ2 + q2
−→ µ

µ4(µ2 + q2)
, (3.61)

or, in a more suitable form,

µ

µ2 + q2
=

1

µ
− q2

µ3
+

q4

µ3(µ2 + q2)
. (3.62)

After the integration, we get two subtraction constants:

ReT (q) = ReT (0) +
q2

2
ReT ′′(0) +

2

π

∫ ∞

2mπ

dµ
q4

µ3(µ2 + q2)
ImT (iµ) , (3.63)

where the derivative is taken with respect to q. The energy density is then obtained inte-
grating over the two Fermi spheres in momentum space. The subtraction constants give rise
to a contribution to the energy per particle proportional to k3

F and k5
F , respectively. They

can be considered as two contact terms that encode the unresolved short-distance part of
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the 2π-exchange dynamics. In general, we can introduce two contact terms subsuming the
contributions from unresolved short-distance physics,

Ē(kF )(ct) = B3
k3
F

M2
N

+B5
k5
F

M4
N

, (3.64)

whose dimensionless coefficients B3 and B5 can be tuned to some selected properties of
nuclear matter. Note that the two contact terms are equivalent to the contribution of two
S-wave (one of which q2-dependent) contact interactions. As concerns the long-range part of
the irreducible 2π-exchange, its contribution to the energy per particle of symmetric nuclear
matter is:

Ē(kF )(irrF ) =

∫

|p1, p2|<kF

d3p1

(2π)3

d3p2

(2π)3

∫ ∞

2mπ

dµ
q4

µ3(µ2 + q2)
Im(VC +3WC +2µ2VT +6µ2WT ) ,

(3.65)
where the spectral functions VC ,WC , VT andWT are calculated in Refs. [51, 52] and reported
in Appendix B.1.

The Hartree diagrams related to the irreducible 2π-exchange with ∆-isobar excitation
give a contribution proportional to k3

F or, equivalently, to the density ρ, and it is absorbed
in the B3 contact term.

For a good description of nuclear matter properties an additional three-nucleon contact
interaction, controlled by the parameter ζ, is required [55]. It is introduced to counteract
the strongly-repulsive ρ2-term arising from the three-body Hartree contribution to the irre-
ducible 2π-exchange with ∆-isobar excitation. Imposing only the minimum of the energy
curve to be -16 MeV, the optimal set of values for the coefficients of the contact terms has
been found to be B3 = −7.99, B5 = 0, ζ = −3/4 [55]. For instance, with such a parameter
set, the predicted saturation density is ρ0 ' 0.157 fm−3 and the compressibility of nuclear
matter at the saturation point results K ' 300 MeV.
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Figure 3.6: Energy per particle of isospin-symmetric nuclear matter as a function of the
nucleon density. The dashed line shows the equation of state obtained without the inclusion
of the ∆-isobar excitation as an explicit degree of freedom [54], the solid line displays the
equation of state obtained including the ∆-isobar [55].
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We conclude the present chapter showing the resulting equation of state of isospin-
symmetric nuclear matter at T = 0. In Fig. 3.6 the energy per particle is plotted as a
function of the nucleon density ρ. The dashed line shows the equation of state without the
inclusion of the ∆-isobar excitation [54], the solid line displays the equation of state with
the inclusion of the ∆-isobar excitation as an explicit degree of freedom [55]. One can note
how the inclusion of the ∆-isobar shifts the saturation point to a more realistic density.
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Chapter 4

Chiral Thermodynamics of Nuclear
Matter

In this chapter we extend the in-medium Chiral Perturbation Theory approach to nu-
clear matter at finite temperature with arbitrary isospin-asymmetry. A systematic investi-
gation of the thermodynamic properties of the resulting equations of state and their isospin
dependence is performed [76].

4.1 Thermodynamic Potentials

The thermodynamic potentials that are relevant for our work are the Helmoltz free
energy F (T, V,N) and the thermodynamic grand-potential Ω(T, V, µ).

The differential form of the free energy is

dF = −S dT − P dV + µ dN , (4.1)

with the chemical potential µ given by

µ =
∂F

∂N

∣∣∣∣
T,V

. (4.2)

Concerning the grand-potential, its differential form is

dΩ = −S dT − P dV −N dµ , (4.3)

where the number of particles is given by

N = − ∂Ω

∂µ

∣∣∣∣
T,V

. (4.4)

The two potentials are connected by the following relation:

F = E − TS = Ω + µN . (4.5)

4.2 Linked Cluster Expansion at Finite Temperature

In the grand-canonical ensemble the partition function and the thermodynamic potential
are defined through:

Z = e−βΩ = Tr
{
e−βK̂

}
= Tr

{
e−βK̂0 Ŝ(β)

}
, (4.6)
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Anomalous

Figure 4.1: Anomalous Fock diagram with combinatoric factor 1/2.

with β = 1/T and the operator K̂ given by

K̂ = Ĥ − µN̂ = K̂0 + V̂ = (Ĥ0 − µN̂) + V̂ . (4.7)

Ŝ(β) is the finite-temperature S-Matrix, i.e. the evolution operator of the interacting sys-
tem.

The thermodynamic potential is the summation of all different, connected diagrams
without external lines [75]:

Ω = Ω0 +
∑

n

Ωn , (4.8)

with Ω0 the potential of the non-interacting Fermi gas and Ωn the contribution of the
diagrams of order n in the quantity in which one expands.

The diagrams that contribute to the thermodynamic potential are the same of the zero-
temperature expansion described in section 3.5, with the addition of the so-called anomalous
diagram shown in Fig. 4.1. The anomalous diagrams are a particular class of diagrams that
arises in the finite-temperature treatment. They involve particle- and hole-lines with the
same momenta, a peculiarity that is forbidden by the zero-temperature formalism, for which
~phole 6= ~pparticle.

4.3 Expansion in the Limit T → 0

We expect that in the limit T → 0 the ground state of the system provided by the
finite-T formalism coincides with that of the T = 0 formalism. However, the anomalous
diagrams introduced by the finiteness of the temperature do not vanish generally for T = 0.
As a consequence, the diagrammatic expansions of the two formalisms are different due to
the presence of the additional anomalous diagrams. Furthermore, they also differ because
the finite-T formalism in the limit T → 0 makes use of the exact chemical potential µ =
εF , i.e. the Fermi energy of the interacting system, while the T = 0 formalism uses the
unperturbed Fermi energy µ0 = ε0F , i.e. the Fermi energy of the non-interacting system, and
generates the exact ground state adiabatically from the unperturbed ground state.
In the following, we show how a Taylor expansion of Ω(T, V, µ) around Ω(T, V, µ0) gives
rise to additional terms that cancel the contribution of the anomalous diagrams in the limit
T → 0 under the conditions specified by the Luttinger-Ward theorem [78, 79].

The contributions to the potential up to NLO are:

Ω(T, V, µ) = Ω0 + Ω1 + Ω2 + . . .

= Ω0 + Ω1π + Ωit + Ωirr + ΩA + . . . , (4.9)

where Ω1 = Ω1π is the LO contribution in the chiral power counting and the remaining term
Ω2 = Ωit + Ωirr + ΩA belongs to NLO. The subscripts it, irr, A mean respectively iterated
1π-exchange, irreducible 2π-exchange and anomalous term.
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To the same order, the number of particles is

N(T, V, µ) = −∂Ω0

∂µ
− ∂Ω1

∂µ
− ∂Ω2

∂µ
. (4.10)

We can expand first µ in the chiral-order contributions as done for Ω,

µ = µ0 + µ1 + µ2 + . . . , (4.11)

then replace it in eq. (4.10) and consider a Taylor expansion around µ = µ0:

N = − ∂Ω0

∂µ

∣∣∣∣
µ0

−(µ1+µ2)
∂2Ω0

∂µ2

∣∣∣∣
µ0

− 1

2
µ2

1

∂3Ω0

∂µ3

∣∣∣∣
µ0

− ∂Ω1

∂µ

∣∣∣∣
µ0

−µ1
∂2Ω1

∂µ2

∣∣∣∣
µ0

− ∂Ω2

∂µ

∣∣∣∣
µ0

+. . .

(4.12)

Solving iteratively, we obtain:

0th-order: N = − ∂Ω0

∂µ

∣∣∣∣
µ0

, (4.13)

1st-order: µ1 = − ∂Ω1/∂µ|µ0
∂2Ω0/∂µ2|µ0

. (4.14)

We can now eliminate µ in favour of µ0. We replace eq. (4.9) in the thermodynamic
relation (4.5) and expand again in chiral powers up to second order around µ0:

F = Ω0(µ0) + (µ1 + µ2)
∂Ω0

∂µ

∣∣∣∣
µ0

+
1

2
µ2

1

∂2Ω0

∂µ2

∣∣∣∣
µ0

+ Ω1(µ0)

+ µ1
∂Ω1

∂µ

∣∣∣∣
µ0

+ Ω2(µ0) + µ0N + (µ1 + µ2)N. (4.15)

Using Eqs. (4.13) and (4.14), we note that the terms in µ2 cancel. Moreover, we set
F0 = Ω0 + µ0N : this is the free energy of the free Fermi gas. Because we deal with
an infinitely extended system, it is more appropriate to introduce the free energy density
F(ρ, T ) = F (T, V,N)/V , with ρ = N/V the density of the system:

F(ρ, T ) = F0(ρ, T ) + Ω1π(µ0) + Ωit(µ0) + Ωirr(µ0) +

[
ΩA(µ0)− 1

2

(∂Ω1π/∂µ|µ0)2

∂2Ω0/∂µ2|µ0

]
,

(4.16)

where Ω = Ω/V .
At T = 0, the free energy density reduces to the energy density and we recover the

expansion of the T = 0 formalism if the last term in the square bracket vanishes. Such
property is ensured by the Luttinger-Ward theorem under the condition that the unper-
turbed Fermi sea is spherically symmetric and the interaction is invariant under spatial
rotations [79], a condition certainly satisfied in nuclear matter. In detail, the cancellation
between the anomalous diagram and the extra contribution results from the shift of the
chemical potential from µ to µ0 that takes place at T = 0.

4.4 The Approximation Scheme

The free energy density in eq. (4.16) depends on the chemical potential µ0 of the free
Fermi gas. We want to understand the approximations implied by this relation.
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From the thermodynamic relations (4.4) and (4.5), we find the free energy per particle
and the particle density:

F̄ =
F

N
= Ω̄− µ∂Ω̄

∂µ
, ρ =

N

V
= −∂Ω

∂µ
. (4.17)

We separate the contribution of the non-interacting Fermi gas from that of the interac-
tions writing Ω = Ω0 + Ω′. The two relations become:

F̄ = ρ−1

[
µ+ Ω0 + Ω ′ − µ∂Ω

′

∂µ

]
, (4.18)

ρ = −∂Ω0

∂µ
− ∂Ω ′

∂µ
=

g

2π2

∫ ∞

0
dp p2 nF (p)− ∂Ω ′

∂µ
, (4.19)

with nF (p) the Fermi distribution function, nF (p) = {1 + eβ[ε(p)−µ]}−1 .
The calculation of the thermodynamic quantities could in principle be performed for

fixed µ and T , but the density and the thermodynamic potential are double-valued for
µ ≤ 0 due to the presence of the liquid-gas phase transition. Then, we use the density as an
input and find the chemical potential inverting eq. (4.19). This can be achieved neglecting
the derivative term ∂Ω ′/∂µ, i.e. considering just the free Fermi gas. Such procedure follows
in part the scheme in Ref. [19]. The chemical potential so obtained is µ0 and does not
correspond to the true chemical potential of the system. If we consider for the derivative
term in eq. (4.18) only the 1π-exchange and set F0 = µ+Ω0, we essentially recover eq. (4.16).

To summarize, the present approximation scheme neglects the µ-dependence of the in-
teraction between the particles in the evaluation of the chemical potential and uses the free
chemical potential µ0 for the calculation of the thermodynamic quantities.

4.5 Finite-Temperature Extension of the
Perturbative Expansion

The description of isospin-symmetric nuclear matter in terms of medium insertions at
T = 0 that has been presented in section 3.5 is now extended to finite temperature. Due
to the relatively low temperatures (T ≤ 30 MeV) that are of interest in the discussion of
the thermodynamic properties of nuclear matter, one can neglect the effects coming from
thermal pions (mπ ' 135 MeV) or the thermal production of nucleon-antinucleon pairs.
Moreover, the nucleons can be treated non-relativistically.

A consistent extension to finite temperature, with the correct T → 0 limit eq. (3.58), is
the following [80]:

ρ F̄ (ρ, T ) = 4

∞∫

0

dp pK1(p) d(p) +

∞∫

0

dp1

∞∫

0

dp2K2(p1, p2) d(p1) d(p2)

+

∞∫

0

dp1

∞∫

0

dp2

∞∫

0

dp3K3(p1, p2, p3) d(p1) d(p2) d(p3) + ρ Ā(ρ, T ) . (4.20)

The free energy per particle F̄ is a function of particle density ρ and temperature T
and is given by a sum of convolution integrals. The corresponding kernels Kj and the
anomalous contribution Ā(ρ, T ) are specified in Appendix B.1. The one-body term with K1

is the contribution of the non-interacting Fermi gas, the terms K2 and K3 involve the two-
body and three-body contributions and correspond, in the T = 0 formalism, to diagrams
with two and three medium insertions, respectively.
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The function d(p) is the density of nucleon states in momentum space:

d(p) =
p

2π2

[
1 + exp

p2/2MN − µ0

T

]−1

, (4.21)

where p/2π2 is a factor included for convenience and the other factor is just the Fermi
distribution function nF (p).

The one-body “chemical potential” µ0 is related to the density ρ through

ρ = 4

∫ ∞

0
dp p d(p) = −

√
2

(
MT

π

) 3
2

Li3/2
(
−eµ0/T

)
, (4.22)

where Liν(x) is the polylogarithmic function of index ν for |x| < 1. The true chemical
potential of the system can be found using the thermodynamic relations:

µ =
∂(ρF̄ )

∂ρ

∣∣∣∣
T

= F̄ + ρ
∂F̄

∂ρ
. (4.23)

The anomalous contribution Ā(ρ, T ) corresponds to the term in the square brackets of
eq. (4.16). It is evaluated considering only the static part (MN → ∞) of the 1π-exchange
dynamics and, as concerns the anomalous diagram, using the Bloch-De Dominicis rules (see
eq. (22) in Ref. [78]). It is a small contribution in the range of temperatures considered and
vanishes in the limit T → 0 because of the Kohn-Luttinger-Ward theorem, as explained in
section 4.3.

Note that, using the finite-temperature nucleon propagator eq. (A.44) obtained in Ther-
mal Field Theory, one recovers the expansion (4.20) in complete analogy with the T = 0
formalism: the step function in the medium insertion is now replaced by the Fermi distribu-
tion function. The finite-temperature propagator provides a theoretical foundation of the
extension eq. (4.20).

The calculation can then be generalized to isospin-asymmetric nuclear matter and neu-
tron matter. In comparison with the calculation for symmetric nuclear matter, the only
changes required are in isospin factors and the introduction of two new contact terms whose
coefficients are labeled by Bn,3 and Bn,5, corresponding to subtraction constants in the
dispersion relation for neutron-neutron scattering. These coefficients are adjusted in or-
der to reproduce the values of 34 MeV for the asymmetry energy at the saturation point
[55]. The propagator (3.56) at T = 0 is split into proton and neutron contributions using
isospin-projectors:

θ(kF − |~p |) −→
1 + τ3

2
θ(kp − |~p |) +

1− τ3

2
θ(kn − |~p |) , (4.24)

with kp and kn denoting, respectively, the Fermi momenta of protons and neutrons. The
“one-body” chemical potentials of the two nucleon species in eq. (4.22) are now different.
At finite temperature we replace

d(p) −→ 1 + τ3

2
dp(p) +

1− τ3

2
dn(p) , (4.25)

where dp and dn are the proton and neutron distributions. Each diagram now involves
the sum of all possible combinations of proton and neutron medium insertions with their
specific isospin factors. In Appendix B.2 a complete list of the modifications to be done on
the kernels for generalizing to isospin-asymmetric nuclear matter is reported [76].

Finally, using the differential relation eq. (4.1), the pressure is derived from the free
energy per particle:

P (ρ, T ) = ρ2 ∂F̄ (ρ, T )

∂ρ
. (4.26)

In the following sections we show the results of the numerical calculation of the equation
of state of nuclear matter.
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Figure 4.2: Free energy per particle of isospin-symmetric nuclear matter as a function of
baryon density ρ for different temperatures. The dotted line indicates the non-physical
behaviour of the free energy in the liquid-gas coexistence region. The physical free energy
(solid lines) at low temperatures (T . 15 MeV) is obtained using the Maxwell construction.

4.6 Equation of State of Isospin-Symmetric Nuclear Matter

We consider first the case of isospin-symmetric nuclear matter. The free energy per
particle F̄ (ρ, T ) as a function of density ρ for a sequence of temperatures up to 25 MeV
is calculated using eq. (4.20) with the input for the interaction kernels Kn specified in
Appendix B.1. The result is shown in Fig. 4.2. The dotted lines indicate the non-physical
behaviour of the equation of state in the liquid-gas first-order transition region. This part
of each curve is substituted by the physical one (solid lines) using the Maxwell construction.

We briefly remind the main steps of the Maxwell construction. We plot first the free
energy per particle F̄ (ρ) as a function of the volume per particle v = 1/ρ. The region with
negative curvature is unphysical and is eliminated through the double tangent construction:
we search for the two points of the curve with the same tangent. This tangent line is the
physical free energy in the phase coexistence region and its negative slope gives the physical
pressure, which is constant. The two points with the same tangent are the boundary of the
coexistence region.

At T = 0 the free energy equals the internal energy of the system. The minimum
of the curve (the saturation point) is located at Ē0 = −16.0 MeV, ρ0 = 0.157 fm−3,
kF0 = 1.33 fm−1 = 262 MeV. At finite temperatures the free energy displays a singular
behaviour for ρ→ 0; this is a well-known generic feature that the present calculation shares
with other types of many-body calculations [23, 81].

The energy per particle of symmetric nuclear matter is commonly expanded around the
saturation point:

Ē(ρ) ≈ Ē0 +
K

2

(
ρ− ρ0

3ρ0

)2

, (4.27)

with K the compression modulus. From the curve at T = 0 we extract the value K ' 300
MeV, slightly larger than the values deduced from relativistic mean field models (K ≈
250−270 MeV)[82] and from the systematics of nuclear monopole resonances (K = 240±20
MeV) [83].
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Figure 4.3: Pressure isotherms as a function of density for symmetric nuclear matter dis-
playing a first-order liquid-gas phase transition. The dotted lines at low temperature show
the non-physical behaviour of the isotherms in the transition region. The physical pressure
is calculated using the Maxwell construction. The dashed line delimits the boundary of the
coexistence region. The dot indicates the critical point (Tc ' 15.1 MeV, ρc ' ρ0/3).

Fig. 4.3 shows isotherms of the pressure P (ρ, T ) as a function of density ρ. The emerging
picture is qualitatively reminiscent of a van der Waals gas with its generic liquid-gas first-
order phase transition. The liquid-gas phase transition is the result of a sensitive balance
between intermediate range attraction and short-range repulsion, the former originating
from 2π-exchange with intermediate ∆-isobar excitation and the latter represented by con-
tact terms encoding non-perturbative physics unresolved in detail in the range of momenta
relevant to the present study.

The critical temperature for the liquid-gas phase transition is found at Tc ' 15.1 MeV.
For T < Tc the usual Maxwell construction is applied, keeping the pressure constant in the
liquid-gas coexistence region. Empirical values of this transition temperature deduced from
multifragmentation and fission measurements locate Tc between 15 and 20 MeV [84–86].
Phenomenological Skyrme model studies gave a similar range for Tc [48].

In order to assess possible uncertainties of the thermodynamic properties in our cal-
culation we have considered variations of the parameters B5 and ζ. Within the ranges
−0.5 ≤ B5 ≤ 0.5 and −0.8 ≤ ζ ≤ −0.7 the critical temperature varies from Tc = 14.6 MeV
to Tc = 15.8 MeV, implying at most a change of ±5%.

As a digression, we can interpret the behaviour of nuclear matter according to the
equations of state in Fig. 4.2 and 4.3. We move for a given isotherm from ρ = 0 to increasing
densities. At T = 0 (red curve), for densities below the saturation point, the energy of the
system stays constantly at −16 MeV with zero pressure: in the absence of any repulsive
Coulomb interaction, it is convenient for nuclear matter to form a liquid with density ρ0.
The energy of the system is negative and nuclear matter is self-bounded. For densities
higher than ρ0, the pressure rises as well as its energy. At finite temperature the picture
is slightly different. At very low density nuclear matter is gaseous and, when compressed,
it enter the transition region with the appearance of a liquid phase. As a result, pressure
during the change of phase is non zero (see blue curve). As density increases the nucleon
gas passes to the liquid phase and the nuclear liquid “cluster” grow in size. At the end of
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Figure 4.4: Pressure isotherms as functions of the nucleon chemical potential µ for isospin-
symmetric nuclear matter. The dotted double-valued region of the curves at temperatures
below Tc ' 15.1 MeV corresponds to the non-physical behaviour of the equation of state in
the liquid-gas coexistence region. In this region the actual pressure and chemical potential
are constant and determined by the Maxwell construction. The dot indicates the critical
point.

the transition, the nuclear liquid occupies the whole volume. Above Tc no phase transition
takes place and nuclear matter is an interacting Fermi liquid.

We complete the discussion of the equation of state by displaying the pressure as a
function of the nucleon chemical potential (including the free nucleon mass),

µ = MN +

(
1 + ρ

∂

∂ρ

)
F̄ (ρ, T ) , (4.28)

in Fig. 4.4. The non-physical (dotted) curves in P (ρ, T ) of Fig. 4.3 are related to the double-
valued behaviour of P as function of µ at temperatures below Tc. In this coexistence region
the actual pressure and chemical potential are constant and given by the intersection point
of the double-valued loop according to the Maxwell construction. The temperature at which
this loop reduces to a point is the critical temperature Tc.

All relevant informations about the phase transition are collected in the T − µ, P − T
and T − ρ phase diagrams (Fig. 4.5). In Fig. 4.5a we display temperature versus chemical
potential (T − µ) and in Fig. 4.5b pressure versus temperature (P − T ). In these diagrams
the coexistence region gets projected onto a first-order phase transition line. The first-order
transition region terminates at the critical point indicated by the dot. The following critical
values of thermodynamic quantities (pressure, baryon chemical potential and density) are
found: Pc ' 0.261MeV fm−3, µc ' 914.7 MeV and ρc ' 0.053 fm−3 at Tc = 15.1 MeV. The
T −ρ phase diagram, Fig. 4.5c, clearly illustrates the extension of the gas-liquid coexistence
region.

At T = 0 the third law of thermodynamics gives important constraints about the slope
of the boundaries of the transition region. It implies that the boundaries of the transition
region at T = 0 have an infinite slope in the T − ρ and T − µ diagrams and a zero slope in
the P − T diagram. Moreover, the chemical potential at T = 0 is known and given by the
total energy per particle at the saturation point, i.e. µ = MN + Ē0 ' 923 MeV.
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Figure 4.5: Phase diagrams of symmetric nuclear matter [76]. The dot indicates the critical
point.
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Proton fraction Saturation point
xp ρsat Ēsat

[fm−3] [MeV]

0.5 0.157 -16.0
0.4 0.152 -14.7
0.3 0.137 -10.9
0.2 0.113 -5.24
0.12 0.087 0

Table 4.1: Saturation point as a function of the proton fraction xp = Z/A: listed are the
saturation density and the binding energy.

4.7 Equation of State of Isospin-Asymmetric Nuclear Matter

The next step is the investigation of the dependence of nuclear matter properties on
the isospin-asymmetry. The amount of asymmetry is given in terms of the proton fraction,
xp = Z/A = ρp/(ρp + ρn). The calculations are based on the expansion of the free energy
density, eq. (4.20), with modifications specified in Appendix B.2.

The resulting equations of state are shown in Fig. 4.6 for different values of the proton
fraction, xp = 0.3, 0.1 and 0. The limiting case xp = 0 corresponds to pure neutron matter.
The left column of Fig. 4.6 displays the free energy per particle, the right column shows the
pressure, both as a function of the baryon density ρ = ρn + ρp.

As the neutron-proton asymmetry increases, the free energy and the pressure increase at
given density, indicating the reduced binding in neutron-rich matter, because of the Pauli
exclusion principle and the smaller degeneracy. Pure neutron matter is unbound. The
coexistence region of the liquid-gas phase transition shrinks with decreasing proton fraction
until it disappears and only the interacting Fermi gas phase remains.

Note that for pure neutron matter the Pauli principle forbids a three-body contact
interaction. The behaviour of pure neutron matter at low density (ρ . 0.02 fm−3) is dictated
by the unnaturally large neutron-neutron scattering length, ann ' 19 fm [117, 118], which
invalidates the usual perturbative momentum expansion [50]. For a realistic description of
pure or rich-neutron matter the resummation of the short-distance NN interaction to all
orders in the presence of the medium is required [57].

To complete the picture, consider the evolution of the saturation point, defined as the
minimum of the energy curve at T = 0, in Fig. 4.7. Starting from its minimum for symmetric
nuclear matter, Ē0 ' −16 MeV at ρ0 ' 0.157 fm−3, the binding energy per nucleon is
reduced continuously with decreasing xp until it vanishes at a proton fraction xp ' 0.12.
Beyond this point neutron-rich matter at T = 0 is unbound. In Tab. 4.1 the saturation
density and the corresponding binding energy are reported for decreasing values of xp.

Phase diagrams of isospin-asymmetric nuclear matter are shown in Fig. 4.8 for different
proton fractions, demonstrating how the matter evolves with increasing asymmetry. The
dashed line shows the evolution of the critical point and its disappearance at xp ' 0.053.
At this particular proton fraction the coexistence region reduces to a point, as can be seen
in the T − ρ diagram, meaning that the liquid-gas phase transition does not take place any
more. Neutron-rich matter with xp . 0.053 is always in a gaseous phase. The values of the
thermodynamic quantities at the different critical points are listed in Tab. 4.2. Note that
the critical point disappears at a small but finite pressure.

The following features of the phase diagram in Fig. 4.8 are worth noting. Above a proton
fraction close to xp ' 0.1 (0.12 more precisely), the gas-liquid coexistence region starts at
zero density. A qualitative change in the behaviour of the coexistence region takes place at
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Figure 4.6: Isospin-asymmetric nuclear matter: free energy per particle (left column) and
pressure isotherms (right column) as a function of nucleon density for proton fractions xp
= 0.3, 0.1 and 0 [76]. The coexistence region, with boundary delimited by the dashed line,
gradually diminishes with increasing isospin-asymmetry until it disappears at xp = 0.053.
The dot indicates the critical point.
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Figure 4.7: Dependence of energy per particle and saturation point of nuclear matter at
T = 0 on the asymmetry [76]. The solid lines represent the energy per particle as a function
of nucleon density ρ = ρn + ρp for different proton fractions xp = Z/A. The dashed line
shows the trajectory of the saturation point as xp varies. For xp . 0.12 the energy is always
positive.

Proton fraction Critical point
xp Tc Pc µc ρc

[MeV] [MeV fm−3] [MeV] [fm−3]

0.5 15.1 0.26 914.7 0.053
0.4 14.7 0.25 916.1 0.053
0.3 13.4 0.22 920.1 0.049
0.2 10.9 0.16 927.2 0.044
0.1 6.4 0.08 937.6 0.037
0.053 0 0.02 943.6 0.032

Table 4.2: Critical point as a function of the proton fraction xp = Z/A: listed are the
temperature, pressure, chemical potential and density.

xp = 0.12, the point at which the binding energy at T = 0 vanishes. Following the dashed
line in Fig. 4.7 that represents absolute minima of the energy per particle, one observes that
for xp . 0.12 there is still a local minimum in Ē(ρ, xp), but the absolute minimum is now
located at ρ = 0. Consequently, neutron-rich nuclear matter for xp . 0.12 is a gas at very
low density and T = 0, and then enters the coexistence region as the density increases. This
is the reason why the transition line in the T − ρ phase diagram starts at finite density for
xp . 0.12. In the range 0.053 . xp . 0.12 nuclear matter is not self-bound but it can still
have a liquid-gas phase transition.

The present chiral thermodynamics framework for nuclear matter is, of course, oversim-
plified at low densities (ρ . 0.05 fm−3) where nuclear clustering takes place. However, in
a detailed study combining the appearance of clusters of light nuclei (deuteron, triton and
helium, i.e. A < 4) with relativistic mean field phenomenology [87], only modest changes
of the T − µ phase diagram have been found when cluster formation is incorporated: a
variation of less than 10% for Tc and less than 1% for µc.
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Figure 4.8: Phase diagrams of isospin-asymmetric nuclear matter for different proton frac-
tions [76]. The dashed line shows the evolution of the critical point.
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Figure 4.9: Asymmetry free energy per particle as a function of the density for different
temperatures. In the left panel δ = 0.2 (xp = 0.4), in the right panel δ = 0.6 (xp = 0.2).

4.8 Asymmetry Free Energy

Introducing the asymmetry parameter

δ =
ρn − ρp

ρ
= 1− 2xp , (4.29)

the free energy per particle can be expanded in powers of δ around the free energy of
isospin-symmetric nuclear matter:

F̄ (ρp, ρn, T ) = F̄ (ρ, T ) +A(ρ, T ) δ2 +O(δ4) . (4.30)

This defines the asymmetry free energy per particle, A(ρ, T ). The expansion of F̄ involves
only even powers of δ as long as we ignore isospin-symmetry breaking effects. In this limit
nuclear matter is invariant under the interchange of protons and neutrons. The asymmetry
energy is related to the asymmetry term of the semi-empirical mass formula (2.3) that is
non-vanishing for N 6= Z.

In Fig. 4.9 we show the behaviour of the asymmetry free energy A(ρ, T ) for δ = 0.2 (xp =
0.4) and δ = 0.6 (xp = 0.2) as a function of the nucleon density for different temperatures.
We note that the asymmetry free energy is sensitive to the temperature only at low densities,
ρ < 0.1 fm−3.

A test of the validity of the parabolic approximation is shown in Fig. 4.10, where we plot
the free energy difference with respect to isospin-symmetric nuclear matter as a function of
δ2 for different densities ρ = ρn + ρp. At T = 0 (Fig. 4.10a) the linear dependence on δ2 is
seen to be realized very well even up to large δ. At higher temperature (T = 20 MeV, 4.10b),
a slight bending is observed especially at low density. In summary, eq. (4.30) is confirmed
to be a good approximation of the free energy; the term of order δ4 is generally negligible
for most applications, even for large values of δ. This feature has also been observed in
other calculations [18, 21]. Estimates give a value of the quartic term smaller than 1 MeV
at the saturation point [18].

At the saturation density ρ0 we have imposed A(ρ0, T = 0) ' 34.0 MeV in our calcu-
lation in order to fix the contact terms associated with the isospin-dependent part of the
interaction. For comparison, a relativistic mean-field model [82] constrained by the prop-
erties of selected nuclei gives A(ρ0) = 34± 2 MeV. A more recent estimate using the same
relativistic mean-field phenomenology constrained by giant dipole resonances [90] suggests
A(ρ0) in the range (33 - 37) MeV. A further estimate in the same paper gives the asymmetry
energy at lower density, ρ = 0.1 fm−3, in a window between 21 and 23 MeV, slightly lower
than our calculated value A(0.1 fm−3, T = 0) ' 23.9 MeV. Previous determinations from
extensive fits of nuclide masses [91, 92] gave A(ρ0) between 33 and 37 MeV.
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Figure 4.10: Free energy per particle of nuclear matter as a function of the asymmetry
parameter δ2 for different densities.

Around the saturation point ρ0, the asymmetry energy at T = 0 can be expanded in
powers of ρ− ρ0 as follows:

A(ρ) = A(ρ0) + L
ρ− ρ0

3ρ0
+
Kas

2

(
ρ− ρ0

3ρ0

)2

+ . . . (4.31)

We extract the coefficients L ' 90.1 MeV and Kas ' 153 MeV. The value of L, in particular,
is compatible with empirical constraints from isospin diffusion which give L = 88± 25 MeV
[18].

For small asymmetries δ, the saturation density can be calculated taking the minimum
of the curve (4.30) at T = 0:

∂Ē(ρ, δ)

∂ρ

∣∣∣∣
ρ=ρsat

=
∂Ē(ρ, 0)

∂ρ

∣∣∣∣
ρ=ρsat

+ δ2 ∂A(ρ)

∂ρ

∣∣∣∣
ρ=ρsat

= 0 . (4.32)

Using eqs. (4.27) and (4.31) to evaluate the derivatives, the saturation density gets lowered
to:

ρsat(δ) ≈ ρ0

[
1− 3L

K
δ2

]
. (4.33)

The corresponding compression modulus K(δ) is often expressed as an expansion in
powers of δ:

K(δ) = K +Kτδ
2 +O(δ4) , (4.34)

where K is the compressibility of symmetric nuclear matter and Kτ is called isobaric com-
pressibility. If we consider the definition of compressibility, we can relate Kτ to the other
quantities L and Kas:

K(δ) = 9 ρ2
sat

∂2Ē(ρ, δ)

∂ρ2

∣∣∣∣
ρ=ρsat

≈ K + (Kas − 6L) δ2 , (4.35)

with

Kτ ≈ Kas − 6L . (4.36)

Our calculated value is Kτ = −388 MeV. The empirical determination suffers from large un-
certainties. A recent result from measurements of the isotopic dependence of giant monopole
resonances in even-A isotopes gives Kτ = −550± 100 MeV [93].
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4.9 Comparison to Other Approaches

In the recent literature several calculations of the thermodynamic properties of nuclear
matter using different approaches can be found [94–98]. In the following we comment on
some of these, based either on the self-consistent Green’s function (SCGF) method [97] or
on mean field theory [98].

As pointed out in Ref. [94], many traditional studies of nuclear matter at finite temper-
ature in mean field approximation treat the temperature dependence in a naive way. The
temperature dependence arises mainly from the replacement of the step function momen-
tum distribution at zero temperature by the corresponding Fermi-Dirac distribution. In
this way the temperature dependence of the phenomenological interactions accounting for
the correlations between nucleons is ignored. On the other hand, in many-body calculations
based on microscopic approaches, such as ours, the nuclear medium generates Pauli block-
ing effects that are weakened with increasing temperature. Consequently nuclear matter
properties and correlations in the medium are temperature dependent in a non-trivial way.

In the SCGF approach the ladder approximation provides the minimal scheme for the
description of the effective NN interaction in the medium. The three-body Green’s function
is decomposed into a one-body and a two-body propagator and arranged in an integral
equation for the in-medium T -matrix that sums the ladder diagrams to all orders. The set
of equations including the T -matrix, the nucleon self-energy and the single-particle Green’s
function can then be solved self-consistently. In Ref. [97] the equation of state of isospin-
symmetric nuclear matter has been calculated using such an approach in combination with
the CD-Bonn and Nijmegen NN potentials. Contributions of three body forces are included
via an effective (density-dependent) two-body interaction. The pressure P (ρ, T, δ) is found
to be strongly dependent on three body correlations and the liquid-gas coexistence region
gets reduced in size when they are included. With the CD-Bonn NN potential the critical
temperature results in Tc = 12.5 MeV. When using the Nijmegen potential Tc reduces to
11.5 MeV. The critical density lies in the range ρc ' 0.09−0.11 fm−3 and the critical pressure
is about 0.15MeV fm−3. The results of these calculations, including the very low value of
Tc, differs significantly from ours (compare with Tab. 4.2).

In Ref. [98] the properties of nuclear matter have been calculated in the framework of
relativistic mean field theory with density-dependent meson-nucleon couplings accounting
for medium modifications. This method has been successful in describing many properties of
both nuclear matter and finite nuclei. For symmetric nuclear matter a critical temperature
of Tc = 13.2 MeV is found, while the liquid-gas coexistence region vanishes at xp ' 0.07.
The emerging picture is closer to the one we have obtained in the present paper. The main
difference is a somewhat smaller phase transition region.
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Chapter 5

Thermodynamics of the
Chiral Condensate in Symmetric
Nuclear Matter

The chiral condensate is the order parameter of the chiral phase transition. It is expected
to drop with increasing density and temperature. Its vanishing determines the transition
from the Nambu-Goldstone phase of QCD with spontaneously broken chiral symmetry to
the Wigner-Weyl realization of the chiral symmetry. Next to this chiral phase restoration
the pions would loose their status of Goldstone bosons arising from the spontaneous chiral
symmetry breaking.

Many lattice QCD calculations indicate that the chiral “phase transition” is actually
a crossover whose critical temperature is deduced by the peak of the chiral susceptibility
χ = −∂ 〈q̄q〉 /∂mq. According to Ref. [100], the transition temperature lies in the band
Tc = (160 ± 30) MeV. A recent estimate from the HotQCD Collaboration, employing the
staggered fermions scheme and an extrapolation to the continuum limit, gives Tc = 154± 9
MeV [101]. The same collaboration, using the technique of domain wall fermions, finds a
crossover behaviour going from a temperature of 159 MeV up to 168 MeV [102].

The calculation of the chiral condensate that we present systematically incorporates for
the first time two-pion exchange dynamics in the nuclear medium. The ∆-isobar excitation
and the medium effects are fundamental ingredients for stabilizing the condensate at large
nucleon densities. The results obtained set important nuclear physics constraints for the
construction of the QCD phase diagram at baryon densities and temperatures that are
reached in relativistic heavy-ion collisions [103].

5.1 The Scalar Quark Condensate

We consider the following scalar and pseudoscalar densities for the case of light quarks:

S0(x) = q̄(x)q(x) , Si(x) = q̄(x)τiq(x) (5.1)
P0(x) = iq̄(x)γ5q(x) , Pi(x) = iq̄(x)γ5τiq(x) . (5.2)

Next we derive the commutators of these quark densities with the vector and axial charge
operators:

QVi (t) =

∫
d3x q†(~x, t)

τi
2
q(~x, t) , (5.3)

QAi (t) =

∫
d3x q†(~x, t) γ5

τi
2
q(~x, t) . (5.4)
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5 - Thermodynamics of the Chiral Condensate in Symmetric Nuclear Matter

A useful general expression is:

[q†(x)Â1(x) q(x), q†(y)Â2(y) q(y)] = Ârs1αβ(x) Âtu2γδ(y) [q†rα (x) qsβ(x), q†tγ (y) quδ (y)] , (5.5)

where x = (~x, t) and y = (~y, t). α, β, γ, δ are Dirac indices and r, s, t, u flavour indices. Â1

and Â2 are operators in Dirac and flavour space.
Using the following relation for the commutator

[AB,CD] = [AB,C]D + C[AB,D]

= A{B,C}D − {A,C}BD + CA{B,D} − C{A,D}B (5.6)

and the anticommutation rules of the quark fields, we find:

{B,C} = {qsβ(x), q†tγ (y)} = δ3(~x− ~y)δβγδ
st , (5.7)

{A,C} = {q†rα (x), q†tγ (y)} = 0 , (5.8)

{B,D} = {qsβ(x), quδ (y)} = 0 , (5.9)

{A,D} = {q†rα (x), quδ (y)} = δ3(~x− ~y)δαδδ
ru . (5.10)

Replacing in eq. (5.5), one arrives at the general relation

[q†(x)Â1(x) q(x), q†(y)Â2(y) q(y)] = δ3(~x− ~y) q†(x)[Â1(x), Â2(x)]q(x) . (5.11)

Using eq. (5.11) in combination with
[τi

2
, γ0

]
= 0 ,

[τi
2
, γ0τj

]
= γ0iεijkτk , (5.12)

the commutators of the scalar densities are:

[QVi (t), S0(y)] = 0 , [QVi (t), Si(y)] = iεijkSk(y) . (5.13)

The property of the Levi-Civita tensor

εijkεijn = 2δkn (5.14)

enables to invert the second equation in (5.13) and to express the isovector scalar field as

Sk(y) = − i
2
εijk[Q

V
i (t), Sj(y)] . (5.15)

In the chiral limit, QVi |0〉 = 0 because the SU(2)V symmetry is unbroken. It follows that

〈0 |Sk(y) | 0〉 = 〈0 |Sk(0) | 0〉 ≡ 〈Sk〉 = 0 , (5.16)

where we used the translational invariance of the vacuum. The third components gives the
relation

〈ūu〉 −
〈
d̄d
〉

= 0 −→ 〈ūu〉 =
〈
d̄d
〉
. (5.17)

From the definition of scalar density we get the scalar quark condensate:

〈S0〉 = 〈q̄q〉 = 〈ūu+ q̄q〉 = 2 〈ūu〉 = 2
〈
d̄d
〉
. (5.18)

Concerning the pseudoscalar quark density, with the use of
[
γ5
τi
2
, γ0γ5τj

]
= −γ0δij , (5.19)

46



5.2 Quark-Mass Dependence of the Pion Mass

we evaluate the commutator with the axial charges:

i[QAi (t), Pj(y)] = (ūu+ d̄d)δij . (5.20)

Again, taking the vacuum expectation value, we find:

〈
0
∣∣ i[QAi (t), Pj(y)]

∣∣ 0
〉

= 〈q̄q〉 δij . (5.21)

If the scalar quark condensate is not vanishing, 〈q̄q〉 6= 0, this implies QAi |0〉 6= 0 and
Pi(0) |0〉 6= 0. A non-vanishing quark condensate is a sufficient condition for the spontaneous
chiral symmetry breaking in QCD. The chiral condensate can be used as the order parameter
of the chiral phase transition and its variation with density and temperature is the key issue
to locate the chiral phase restoration in the QCD phase diagram.

5.2 Quark-Mass Dependence of the Pion Mass

The quark mass term in the QCD Lagrangian eq. (3.21) breaks the chiral symmetry
explicitly. It is related to the pion mass term present in the ChPT Lagrangian eq. (3.24),
as follows.

Consider the most general explicit symmetry breaking term in ChPT. At lowest order,
it can be written:

LM =
1

2
f2
πB0 Tr(MU † + UM †) , (5.22)

where M is the quark mass matrix eq. (3.22), B0 is a parameter to be determined and the
matrix U is given in eq. (3.27).

With U = 1, i.e. for the lowest-order term of the expansion (3.27), the energy density
of the ground state results:

〈HM 〉 = −f2
πB0(mu +md) = −2f2

πB0mq , (5.23)

with mq = (mu +md)/2.
At this point, we introduce the Hellmann-Feynman theorem. Given a Hamiltonian H(λ)

depending on a parameter λ that can be varied adiabatically, and given an eigenstate |ψ(λ)〉
of this Hamiltonian, the theorem states:

d
dλ
〈ψ(λ) |H |ψ(λ)〉 =

〈
ψ(λ)

∣∣∣∣
dH(λ)

dλ

∣∣∣∣ψ(λ)

〉
, (5.24)

with normalization 〈ψ(λ) |ψ(λ)〉 = 1.
We apply this theorem to the QCD Hamiltonian density HQCD = H0 + mq(ūu + d̄d),

with H0 the Hamiltonian density in the chiral limit. The parameter λ is the quark mass
mq. First, we calculate

〈0|∂HQCD

∂mq
|0〉
∣∣∣∣
mq=0

= 〈q̄q〉0 , (5.25)

where the subscript indicates that all quantities are taken in the chiral limit. Then, because
of the Hellmann-Feynman theorem, we have:

〈q̄q〉0 = −2f2
πB0 . (5.26)
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At second order in the expansion of U , the Lagrangian (5.22) takes the form:

LM = −B0

2
Tr(Mπ2) (5.27)

= −B0

2
[2(mu +md)π

+π− + (mu +md)π
0π0] (5.28)

= −B0mq(2π
+π− + π0π0) . (5.29)

Setting

m2
π = 2B0mq (5.30)

to reproduce eq. (3.24) and combining with eq. (5.26) to eliminate the coefficient B0, we
obtain the Gell-Mann-Oakes-Renner relation

m2
π = − 1

f2
π

mq 〈q̄q〉0 = − 1

2f2
π

(mu +md)
〈
ūu+ d̄d

〉
0
, (5.31)

which links the pion mass to the quark mass at leading order in mq. In the chiral limit
mu = md = 0, the pion mass also vanishes.

5.3 Quark-Mass Dependence of the Nucleon Mass

The nucleon mass is affected by the explicit chiral symmetry breaking as well.
Consider again the Hellmann-Feynman theorem and the one-nucleon state |N〉 as eigenstate
of the QCD Hamiltonian (〈N |HQCD |N〉 = MN in the rest frame):

∫
d3x

〈
N
∣∣ ūu+ d̄d

∣∣N
〉

2MN
=

〈
N
∣∣ ūu+ d̄d

∣∣N
〉

(~p = 0)

2MN
=
∂MN

∂mq
. (5.32)

The factor 2MN in the denominator normalizes the nucleon wave function |N〉 (〈N |N〉 =
2MN ). The integration is a Fourier transform in coordinate space with ~p = 0.

The pion-nucleon sigma term is defined as:

σN =

〈
N
∣∣mq(ūu+ d̄d)

∣∣N
〉

2MN
= mq

∂MN

∂mq
= m2

π

∂MN

∂m2
π

, (5.33)

where we have used in the last equality the Gell-Mann-Oakes-Renner relation eq. (5.31). It
is a measure of the contribution of the quark mass to the nucleon mass:

MN 'MN0 + σN +O(m3/2
q ) , (5.34)

with MN0 the nucleon mass in the chiral limit.
The sigma term can be extrapolated from low-energy pion-nucleon scattering data. The

empirical value adopted in the present calculation is [104]:

σN = (45± 8) MeV . (5.35)

Recent studies about the quark mass dependence of the nucleon mass in Lattice QCD [105]
and accurate chiral extrapolations [106] show a tendency to slightly smaller values, but still
consistent with that in Ref. [104] within the given errors. The large error band of the sigma
term is the primary source of uncertainty in our calculation.

48
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5.4 Scalar Quark Condensate at Finite Density

In section 5.2 we have used the Hellmann-Feynman theorem to calculate the chiral
condensate in vacuum. We now employ the theorem to evaluate the chiral condensate at
finite nucleon density ρ.

If the eigenstate of the Hamiltonian density HQCD is nuclear matter at density ρ, |ρ〉,
one finds from (5.24):

∂ε(mq)

∂mq
=
〈
ρ
∣∣ ūu+ d̄d

∣∣ ρ
〉

= 〈q̄q〉 (ρ) , (5.36)

with ε the energy density of the fermionic system. Only the energy shift ε − ε0 from the
vacuum is observable. Adding and subtracting at the same time the contribution of the
vacuum, the equation becomes:

〈q̄q〉 (ρ) = 〈q̄q〉0 +
∂(ε− ε0)

∂mq
. (5.37)

The condensate ratio between the finite-density quark condensate and the vacuum quark
condensate is:

〈q̄q〉 (ρ)

〈q̄q〉0
= 1 +

1

〈q̄q〉0
∂(ε− ε0)

∂mq
= 1− 1

f2
π

∂(ε− ε0)

∂m2
π

= 1− ρ

f2
π

∂Ē(ρ)

∂m2
π

(5.38)

with Ē(ρ) given by eq. (3.58).
The energy of the free Fermi gas depends on the pion mass through the nucleon mass.

With Ē = Ē0 + Ēint the condensate ratio takes the form [107]:

〈q̄q〉 (ρ)

〈q̄q〉0
= 1− ρ

f2
π

{
σN
m2
π

∂Ē0

∂MN
+
∂Ēint

∂m2
π

}

= 1− ρ

f2
π

{
σN
m2
π

(
1− 3k2

F

10M2
N

)
+
∂Ēint

∂m2
π

}
. (5.39)

The derivative of the interaction part Ēint gives the contribution of the pion-exchange dy-
namics to the condensate beyond the linear density approximation.

The extension to finite temperature is easily performed replacing the energy per particle
Ē(ρ) by the free energy per particle F̄ (ρ, T ), eq. (4.20):

〈q̄q〉 (ρ, T )

〈q̄q〉0
= 1− ρ

f2
π

{
σN
m2
π

∂F̄0(ρ, T )

∂MN
+
∂F̄int

∂m2
π

}
. (5.40)

We keep in mind that the quantities fπ, gA and MN in the equations are taken in the chiral
limit.

5.5 Calculation of the In-Medium Chiral Condensate

Eq. (5.40) links the chiral condensate to the pion-mass derivative of the free energy per
particle of nuclear matter and enables its calculation. The derivatives with respect to the
pion mass of the two- and three-body kernels of isospin-symmetric nuclear matter are given
explicitly in Appendix C. In the following we discuss the salient points of the derivation.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.1: NLO diagrams that renormalize the 1π-exchange NN interaction. The diagrams
(a-e) renormalize the pion-nucleon interaction vertex; diagrams (f) and (g) cause a pion-
mass shift and diagrams (h-j) renormalize the nucleon mass. The small dot indicates a
vertex with interaction index ∆ = 0. The large dot represents a vertex with ∆ = 1. The
solid square labels a vertex with ∆ = 2.

5.5.1 1π-Exchange

At three-loop order in the free energy density one encounters pion-loop corrections to 1π-
exchange. Such corrections have been taken into account in the calculation of the equation
of state of nuclear matter using the physical value of the pion and nucleon masses and of
the pion-nucleon coupling. We are now interested in their pion-mass dependence that gives
rise to a non-trivial contribution to the chiral condensate.

In Fig. (5.1) we show the diagrams renormalizing the 1π-exchange at NLO. Corrections
to the pion-nucleon interaction vertex come from diagrams (a-e). The diagram (a) vanishes
because it involves an integration over an odd power of the loop momentum. The diagrams
(b-e) generate the vertex renormalization factor

Γ(mπ) = 1 +
g2
Am

2
π

(2πfπ)2

[
4γ + 1− 2 ln

mπ

λ

]
+

g2
A

3π2f2
π

{
πm3

π

∆
− m2

π

2

+ (3m2
π − 2∆2) ln

mπ

2∆
− 2

∆
(∆2 −m2

π)
3
2 ln

∆ +
√

∆2 −m2
π

mπ

+
9 g2

A

(4πfπ)2

{
m2
π + (4∆2 − 2m2

π) ln
mπ

2∆
+ 4∆

√
∆2 −m2

π ln
∆ +

√
∆2 −m2

π

mπ

}
. (5.41)

The low-energy constant γ(λ) takes care of the contribution of the diagram (e) with the
d18-contact term from L̃(3)

πN , responsible for the Goldberger-Treiman discrepancy. It is de-
termined, for a given renormalization scale λ, by imposing the condition:

gπN
MN

∣∣∣∣
phys

=
√

Γ(mπ)
gA
fπ

. (5.42)

As seen in eq. (C.4), the factor Γ(mπ) must be applied only to the static part of the kernel
K1π

2 for reasons of consistency [107].
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5.5 Calculation of the In-Medium Chiral Condensate

The diagrams (f) and (g) produce a pion mass shift. In particular, the contact term
in the diagram (g) relevant for our discussion is the l3-term in the Lagrangian L(4)

ππ . These
diagrams generate the contribution in eq. (C.8).

The remaining diagrams (h-j) renormalize the nucleon mass and imply corrections to
the pion-nucleon sigma term (5.33) because of their dependence on the pion mass. The
relevant contact interactions in the diagram (j) are the two c1-contact terms in Lagrangian
(3.47). After summing all contributions, the sigma term takes the form:

σN
m2
π

= −4c1 −
9g2
Amπ

64πf2
π

+
3 c1m

2
π

2π2f2
π

ln
mπ

λ
+

9g2
A

(4πfπ)2

×
{

∆ ln
mπ

2∆
+
√

∆2 −m2
π ln

∆ +
√

∆2 −m2
π

mπ

}
. (5.43)

5.5.2 Iterated 1π-Exchange and Anomalous Term

The m2
π-derivatives of the iterated 1π-exchange contribution and of the anomalous term

do not present particular complications and are derived as shown in eqs. (C.9) and (C.10).

5.5.3 Irreducible 2π-Exchange

The calculation of the m2
π-derivative of the three-body kernels is straightforward.

A different treatment is instead used for the two-body kernel. The latter is given in
eq. (B.7) by a dispersion relation collecting the potentials of the irreducible 2π-exchange
with only nucleons and with intermediate ∆-isobar excitation. Moreover, the dispersion
relation is twice-subtracted and the two corresponding subtraction constants are subsumed
into the B3- and B5-contact terms.

Concerning the m2
π-derivative, the strategy is to evaluate the 2π-exchange with only

nucleons and with intermediate ∆-excitation.
In eq. (C.12) one finds the m2

π-derivative of the irreducible 2π-exchange with only nu-
cleons, using the kernel eq. (8) in Ref. [80].

The two-body term from 2π-exchange with intermediate ∆-isobar divides into two
classes: a dominant term scaling with ∆−1 and the remaining ones with a more com-
plicated dependence on ∆. The dominant term eq. (C.16) is evaluated from the one-loop
NN scattering amplitudes proportional to ∆−1 in Ref. [52]. The remaining two-body terms
are worked out by means of the dispersion relation technique. The derivative of eq. (B.7)
takes the form:

∂K∆F ′
2 (p1, p2)

∂m2
π

= − 1

mπ
f(p1, p2, µ = 2mπ,mπ) +

∞∫

2mπ

dµ
∂f(p1, p2, µ,mπ)

∂m2
π

, (5.44)

where f(p1, p2, µ,mπ) is the integrand of the spectral integral in eq. (B.7). The first term
comes from themπ-dependence of the interval of integration and it vanishes once we exclude
the terms proportional to ∆−1, eqs. (B.17) and (B.20), and those coming from the diagrams
with only nucleons, eqs. (B.12) and (B.13). This cancelation furnishes a further motivation
to treat them separately. The resulting contribution is reported in eq. (C.18). Note that
its spectral function is now stabilized at high momenta by only one subtraction, which
gives rise to a subtraction constant linear in the density with a quark-mass dependence. Its
m2
π-derivative is given in eq. (C.19).
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c1 c1

Figure 5.2: 2π-exchange Hartree and Fock diagrams involving one ππNN -contact vertex,
with combinatoric factors respectively 1/2 and 1. These diagrams are negligible for the
calculation of the free energy of nuclear matter, because they belong to NNLO, but when
taking the m2

π-derivative they give a contribution of importance similar to the others.

5.5.4 ππNN-contact vertex

One of the two c1-terms in the Lagrangian (3.47) generates a ππNN -contact interaction,
that on one hand modifies the sigma term through a pion-loop correction to the 1π-exchange
scattering (as discussed in Sec. 5.5.1), and on the other hand gives rise to additional 2π-
exchange diagrams, shown in Fig. 5.2. Their contribution to the free energy density is
negligible, being at NNLO, but becomes sizable when taking its m2

π-derivative.

5.5.5 Short-distance interaction

In Sec. 3.5.3 we have explained how the unresolved short-distance interaction in isospin-
symmetric nuclear matter is encoded in three contact terms with coefficients proportional
to B3, B5 and ζ. The B3- and B5-contact terms include also the two subtraction constants
that appear in the dispersion relation (B.7). The quark mass dependence of the latter has
been discussed in Sec. 5.5.3. Concerning the residual short-distance physics encoded in the
contact terms, we refer to recent lattice QCD results [108, 109], where a negligibly small
quark-mass dependence of the short-distanceNN interaction, compared to the intermediate-
and long-range attraction, has been found [107].

5.5.6 Parameters in the Chiral Limit

The input parameters of the calculation are taken in the chiral limit.
The chiral limit of the pion decay constant is extracted through the relation:

fπ,phys = fπ

[
1 + l̄4

(
mπ

4πfπ

)2
]

= 92.4 MeV , (5.45)

where l̄4 is a low-energy constant present in L(4)
ππ [110]. Using the central value of l̄4 =

4.4± 0.2 in Ref. [111], one gets fπ = 86.5 MeV.
From the chiral extrapolation of lattice data in Ref. [112], we take gA = 1.224 in the

chiral limit; in a similar analysis [113], MN = 882 MeV and c1 = −0.93 GeV−1 have been
found.

The parameter γ that appears in eq. (5.41) and accounts for the Goldberger-Treiman
discrepancy is determined through eq. (5.42). Using gπN/MN |phys = 13.2/939 MeV−1, we
obtain γ = −1.505 at the renormalization scale λ = MN .

The pion-loop correction to the pion mass is given by [111]:

mπ,phys = mπ

[
1− l̄3

2

(
mπ

4πfπ

)2
]
, (5.46)
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Figure 5.3: Interaction contributions to the ratio between the in-medium chiral condensate
and the vacuum condensate at T = 0 (left plot) and at T = 100 MeV (right plot). Stepwise
the following contributions are added to the linear density term: 1π-exchange, iterated
1π-exchange, 2π-exchange with only nucleons, 2π-exchange with ∆-excitation, c1-contact
term.

with mπ ≡ 2B0mq (eq. (5.30)) and l̄3 ' 3. Because the difference between mπ,phys and
mπ is much smaller then the mass splitting between the charged and the neutral pion, we
neglect it and use mπ = 135 MeV in the calculation.

With this set of parameters inserted in eq. (5.43), we obtain σN = 44.3 MeV at the
physical pion mass. We recall that the empirical sigma term is σN = (45 ± 8) MeV [104].
Small differences may result from some residual dependence on the renormalization scale λ
not balanced by the parameters lr3(λ) in eq. (C.8) and γ(λ). However, a large variation of
the scale λ produces relatively small changes on the chiral condensate at the density ρ0 of
normal nuclear matter [107], anyway smaller than those induced by the large uncertainty
of the empirical σN , and so we rely on the choice λ = 882 MeV.

5.6 In-Medium Chiral Condensate

We are now able to evaluate numerically the in-medium chiral condensate at finite
temperature. We explore the range of densities 0 ≤ ρ . 2ρ0 for temperatures T . 100 MeV
[103].

First of all, we study the relative importance of the different interaction contributions
to the condensate ratio 〈q̄q〉 (ρ, T )/ 〈q̄q〉0 between the in-medium chiral condensate and its
vacuum value. In Fig. 5.3, the interaction contributions are displayed stepwise for the case
of temperature zero (on the left) and for the limit of large temperature T = 100 MeV (on
the right). Starting from the linear density approximation, i.e. the contribution of the
non-interacting Fermi gas, the interaction effects coming from pion-exchange dynamics are
added in the following order: 1π-exchange, iterated 1π-exchange, irreducible 2π-exchange
with only nucleons, irreducible 2π-exchange with ∆-excitation, 2π-exchange with c1-contact
term. At T = 0 one notes immediately the fundamental role played by the ∆-isobar degree
of freedom. If we had taken into account only 1π-exchange and 2π-exchange dynamics
without ∆-excitation, the condensate would melt rapidly, already at densities ρ . 2ρ0, in
the nuclear matter terrain of the QCD phase diagram. The inclusion of the ∆-isobar as
an explicit degree of freedom has the consequence of largely counteracting the decrease
of the condensate, actually delaying its melting significantly and stabilizing it. With the
increase of temperature, the effect of the interactions weakens gradually. In particular, the
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Figure 5.4: Two-body and three-body interaction contributions to the condensate ratio for
the limit cases of T = 0 and T = 100 MeV. Three-body contributions are strongly dependent
on temperature.

∆-isobar contribution appears to have a strong dependence on temperature. At T = 100
MeV, the amplitude of the corresponding curve is visibly reduced and the linear behaviour
characteristic of a Fermi gas tends to be restored.

Such behaviour of the interactions with temperature is better observed if we group the
interaction contributions into a two-body part, that we indicate shortly as K2, and a three-
body part, labeled with K3, as it has been done in Fig. 5.4. One notes that the K3 curve
(red line) has the opposite behaviour of that of K2 (blue line). While K2 works in favour
of the decrease of the condensate, K3 counteracts instead its reduction. At T = 0 the
three-body contribution is large and grows rapidly with density. Comparing with the curve
at T = 100 MeV one deduces that the three-body medium-effects are strongly dependent
on temperature. On the other hand, temperature has a weak influence on the two-body
term. At T = 100 MeV the three-body contribution is largely reduced such that it almost
balances with K2. As a result, the non-interacting Fermi gas governs the behaviour of the
condensate.

Fig. 5.5 shows systematically the variation of the condensate ratio with nucleon density
and temperature up to T = 100 MeV [103]. The considerations previously made apply to the
situation depicted by this figure. At low temperature, because of the action of the ∆-isobar,
the condensate becomes stable at large density. With increasing temperature, the linear
density behaviour of the non-interacting Fermi gas is tendentially restored. The numerical
calculation shows that such curves do not cross the zero below a density of 2ρ0. This has to
be regarded as a rough estimate. Once the condensate becomes too small, the fundamental
condition that justifies the chiral effective field theory approach, i.e. the spontaneous chiral
symmetry breaking, becomes obsolete. For this reason we restrict the plot to the range of
density 0 ≤ ρ ≤ 1.6 ρ0, inside of which the results are reliable. Other calculations [53, 114],
that do not include 2π-exchange dynamics with explicit ∆-isobar excitation, do not show a
trend of stabilization, emphasizing the importance of the ∆-isobar for a proper description
of the chiral condensate.

The chiral condensate exhibits yet another important feature. The Maxwell construction
prescribes a linear behaviour of the condensate at a given temperature when the liquid-gas
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Figure 5.5: Condensate ratio as a function of the baryon density for different values of
temperature [103]. The trace of the first-order liquid-gas phase transition is visible on the
red line, corresponding to T = 0. The dashed-line indicates the non-physical behaviour of
the condensate in the liquid-gas coexistence region. The physical condensate (linear solid
line) is obtained using the Maxwell construction.

phase transition occurs in nuclear matter, as it can be seen in the curve at T = 0 (red
line) of Fig. 5.5. The dashed line represents the non-physical behaviour of the condensate
in the liquid-gas coexistence region. While the liquid-gas phase transition shows itself in
the straight linear behaviour of the ratio 〈q̄q〉 (ρ, T )/ 〈q̄q〉0 at low temperature (T . 15
MeV) when plotted as a function of the baryon density, the occurrence of a first-order phase
transition becomes manifest if one investigates the condensate as a function of the baryon
chemical potential, as in Fig. 5.6. The discontinuity of the condensate ratio in the chemical
potential µ is characteristic of the first-order liquid-gas phase transition. In a finite system
the sharp discontinuity would be replaced by a smoother crossover.

Last we incorporate the effects of thermal pions. They give rise to a further reduction
of the condensate depending on temperature. The modifications of the ππ interaction at
finite temperature to the chiral condensate have been calculated at two-loop order in ChPT,
where only factorizable diagrams have been taken into account [115]. The resulting shift of
the condensate ratio reads:

δ 〈q̄q〉(T )

〈q̄q〉0
= − 3m2

π

(2πfπ)2
h3

(mπ

T

){
1 +

m2
π

8π2f2
π

[
h3

(mπ

T

)
− h1

(mπ

T

)
+

2− 3 l̄3
8

]}
, (5.47)

with the functions h1(y) and h3(y) defined by integrals over the Bose distribution function:

h1(y) =

∫ ∞

y

dx√
x2 − y2(ex − 1)

, h3(y) =
1

y2

∫ ∞

y
dx
√
x2 − y2

ex − 1
. (5.48)

In Fig. 5.7 we show the temperature dependence of the Gell-Mann-Oakes-Renner re-
lation, eq. (5.31), at zero baryon density. The ratio between the chiral condensate of the
pionic heat bath to its T = 0 value 〈q̄q〉(T )/ 〈q̄q〉0 is plotted as a function of temperature
for different values of the pion mass. This ratio reflects the corresponding behaviour of the
product m2

πf
2
π in the thermal pionic environment. In the chiral limit (mπ = 0) the decrease
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Figure 5.6: Ratio of the condensate to its vacuum value plotted as a function of the baryon
chemical potential [103]. The gap at low temperature is characteristic of the liquid-gas
coexistence first-order phase transition.
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Figure 5.7: Temperature dependence of the Gell-Mann-Oakes-Renner relation in eq. (5.31).
The ratio between the condensate of the thermal pionic bath to its T = 0 value is plotted
as a function of temperature. The pion mass dependence is also investigated. In the chiral
limit the condensate decreases faster than at the physical pion mass mπ = 135 MeV.

56



5.7 In-Medium Quark Condensate in the Chiral Limit

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25

ρ [fm−3]

〈q̄q〉(ρ, T)

〈0|q̄q|0〉

symmetric
nuclear matter

+
thermal pions

T = 0

20

50

T = 100 MeV

Figure 5.8: Ratio of the chiral condensate to its vacuum value with the inclusion of the
thermal pions as a function of baryon density at different temperatures [103]. The plot
excludes the chiral symmetry restoration in the nuclear matter sector of the QCD phase
diagram.

of the condensate proceeds considerably faster with temperature than at physical pion mass.
The explicit chiral symmetry breaking delays the melting of the condensate.

Finally, in Fig. 5.8 we add the contribution of the pionic heat bath, eq. (5.47), to the
chiral condensate in symmetric nuclear matter, eq. (5.40). The condensate at zero density
begins to deviate appreciably from its vacuum value at high temperature (T & 80 MeV).
We conclude that there is no indication of a first-order chiral phase transition for densities
0 ≤ ρ . 2ρ0 and at temperature T . 100 MeV. This result sets important constraints for
the location of the chiral transition in the QCD phase diagram.

Before closing the present section, we mention that a calculation of the chiral condensate
in pure neutron matter in the framework of in-medium chiral perturbation theory has also
been performed [116]. Due to the reduced isospin factors of 2π-exchange dynamics, only
small deviations from the linear decrease of the in-medium condensate have been found.

5.7 In-Medium Quark Condensate in the Chiral Limit

Because the pion mass mπ appears as an explicit parameter in the calculation, we are
able to investigate the chiral limit of the in-medium condensate. The scenario suggested by
the condensate in the chiral limit is very different from the real world.

As one can see in Fig. 5.9, the ∆-isobar plays no special role in determining the behaviour
of the condensate in this limit. Its counteraction to the dropping of the condensate is small
at zero temperature and, paradoxically, it turns out to considerably reduce the condensate
at large temperature. We conclude that the action of the ∆-isobar on the condensate is
substantially dependent on the pion mass.

In a similar way, the interplay between two-body and three-body interaction contribu-
tions changes in the chiral limit. In Fig. 5.10, at low temperature, K2 and K3 are very large
with a slight predominance of the former. They both reduce with temperature, but the
relative importance of K2 compared to K3 grows as T increases. So we deduce that medium
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Figure 5.9: Chiral limit: interaction contributions to the ratio between the in-medium chiral
condensate and the vacuum condensate at T = 0 (left plot) and at T = 100 MeV (right
plot). Stepwise the different contributions are added in the order displayed in the legend.
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Figure 5.11: Chiral limit: ratio of the chiral condensate to its vacuum value with the
inclusion of thermal pions as a function of baryon density at different temperatures.

effects are enhanced by the finiteness of the pion mass.
Consequently, the emerging scenario in the chiral limit with mπ = 0, after summing all

contributions, is drastically different from that in Fig. 5.8 at the physical pion mass. In
Fig. 5.11 the condensate drops to zero quickly and melts already at a density of 1.5 ρ0 at
T = 0. At high temperature the chiral transition takes place around the normal saturation
density ρ0.

As previously pointed out for the pionic thermal bath, the explicit chiral symmetry
breaking delays the transition to the restoration of chiral symmetry in its Wigner-Weyl
mode, shifting it beyond at least twice the saturation density of normal nuclear matter.
Medium effects and the role played by the ∆-isobar excitation depend crucially on explicit
chiral symmetry breaking.
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Chapter 6

In-Medium Resummations

The equation of state of nuclear matter obtained using in-medium ChPT has a well-
known problem at low densities, ρ . 0.05 fm−3, which becomes more prominent in neutron
rich matter. The neutron-neutron scattering is the simplest example of a process with a
large scattering length, a ' 19 fm. The large magnitude of a, compared with the typical
range of the interaction, invalidates the usual expansion in powers of the soft momenta of
the T -matrix. This problem is treated by a resummation to all orders of the S-wave contact
interaction. The resummation is now extended to the nuclear medium using the in-medium
nucleon propagator defined in section 3.5.

The spin-triplet (isospin-singlet) channel of NN scattering has a scattering length at '
−5.42 fm. The spin-singlet consists of three states with isospin I = 1. If we neglect
the isospin-breaking effects - such as the mass difference between proton and neutron and
the electromagnetic interaction - NN interaction is isospin invariant and the three states
with I = 1 have the same scattering length. According to recent measurements [117, 118],
the neutron-neutron scattering length is ann = (18.95 ± 0.40) fm. We take this result as
representative of the scattering length of the spin-singlet states: as ' 19 fm.

6.1 Unitary Fermi Systems

The scattering of two particles at low energy is determined by its S-wave scattering
length a. Low energy means that the corresponding de-Broglie wavelength is much larger
than the range of the interaction. In this situation the scattering properties depend primarily
on a.

To define in a rigorous way the limit just described, we introduce the concept of natu-
ralness of a scale. The pion-exchange in the NN scattering sets the characteristic distance
scale of the interaction, r ∼ 1/mπ ∼ 1.5 fm. This is also called natural low-energy length
scale. If the scattering length a is of the same order of magnitude as r, i.e. |a| ∼ r, then a
is said to have natural size. On the contrary, if a is much larger than r, i.e. |a| � r, it is
said to be unnaturally large.

If we consider the low-energy regime of NN scattering corresponding to momenta much
smaller than the pion mass, i.e. p � mπ ' 135 MeV, the pionic degrees of freedom are
integrated out and the pion exchange reduces to a contact interaction.

If the system under consideration is dilute, i.e. the mean interparticle separation is
much larger than the range of the interaction r, then the system becomes insensitive to
the particular form of the short-range interaction and is called universal. Its properties are
determined just by the scattering length a.

It may happen that the scattering length of a universal system is unnaturally large,
|a| � r, and therefore, is integrated out of the problem. Such a system is called unitary.
In a Fermi system, the only scale we are left with to characterize the problem is the Fermi
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T−1 = + + + . . .

Figure 6.1: The bubble-chain resummation is able to reproduce the term of order O(p−1)
in the non-perturbative expansion of the T -matrix when the scattering length a is large.

momentum kF . Observables, such as the energy per particle, will depend in this limit only
on kF :

Ē(kF ) = ξ
3 k2

F

10M
, (6.1)

with ξ the Bertsch parameter. Because the scattering length of the spin-singlet state of a
two-nucleon system is large, as ' 19 fm � r ∼ 1.5 fm, it is expected that neutron matter
at low density, ρ . 0.05 fm−3, resembles the behaviour of the unitary Fermi gas.

6.2 Momentum Expansion of the T -Matrix and Resummation

The large scattering length as is at the origin of the breakdown of the T -matrix pertur-
bative expansion in NN scattering at low energy, where the S-wave contribution dominates.
This T -matrix is:

T =
4π

MN

1

p cot δ − ip , (6.2)

with p the particle momentum in the center-of-mass frame and δ the S-wave phase shift.
Usually, p cot δ is expanded in powers of p/mπ, with p� mπ:

p cot δ = a−1 +
1

2
m2
π

∞∑

n=0

rn

(
p2

m2
π

)n+1

. (6.3)

At order p2, this expansion defines the scattering length a and the effective range r0:

p cot δ =
1

a
+

1

2
r0 p

2 + . . . (6.4)

The coefficients |rn| have generally a natural size so that they are bounded from above by
the range of the interaction. Instead, a can assume any value.

We discuss now the momentum expansion of the T -matrix in the two limiting cases
for the size of a. First consider the familiar case of naturalness of a, i.e. a ∼ 1/mπ. The
T -matrix can then be expanded in powers of p/mπ:

T =
4πa

MN

[
1 + iap−

(ar0

2
+ a2

)
p2 +O

(
p3

m3
π

)]
. (6.5)

This expansion is well defined because ap� 1, and it is convergent up to momenta p ∼ mπ.
In an EFT the expansion (6.5) corresponds to a perturbative sum of Feynman diagrams.
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Figure 6.2: The in-medium loop integral consists of contributions with zero, one and two
medium insertions, represented in the diagrams by the two lines transverse to the nucleon
propagator. The particle momenta are inside the Fermi sphere, |p1,2| < kF . ~P = (~p1 +~p2)/2
is the average momentum. Dashed lines represent contact interactions.

If a is unnaturally large, |a| � 1/mπ, the previous expansion breaks down for momenta
p & 1/|a|. This problem is overcome by keeping the large term ap to all orders in the
expansion:

T =
4π

MN

1

a−1 − ip

{
1− r0

2

1

(a−1 − ip)2
p2

+

[(r0

2

)2 1

(a−1 − ip)2
− r1

2m2
π

1

a−1 − ip

]
p4 +O(p6)

}
. (6.6)

We note that the leading term in T is of order O(p−1) and arises from the resummation of
the non-perturbative effects induced by the large size of the product ap. A leading term of
such a form can be reproduced in an EFT of low-energy NN interaction by summing the
leading four-nucleon contact term proportional to CS in eq. (3.42) to all orders, as shown in
Fig. 6.1. As a result of the resummation, the constant CS turns out to be scale-dependent
and can be matched with the scattering length a. This important feature has been pointed
out in Ref. [50].

6.3 In-Medium Resummation of Ring Diagrams

The resummation of the S-wave NN contact interaction is now performed in neutron
matter using the formalism developed in section 3.5. The inclusion of the non-perturbative
short-range effects is expected to improve the behaviour of the equation of state, especially
at low density ρ . 0.05 fm−3 . The technique for the ring diagram resummation in neutron
matter has been developed in Ref. [57] that we follow here.

We use the in-medium nucleon propagator eq. (3.56) and take from the beginning the
non-relativistic limit:

SN (p0, ~p ) =
i

p0 − ~p 2/(2MN ) + iε
− 2π δ

(
p0 −

~p 2

2MN

)
θ(kF − |~p |) . (6.7)

Consider the chain of ladder diagrams describing the NN scattering. For a contact
interaction the loop integrals factorize. A ladder diagram with n loops is equivalent to the
n− 1-th iteration of the basic loop integral.
At tree-level the NN transition amplitude is trivially 4πa/MN .

At the successive order we have to evaluate the one-loop diagram in Fig. 6.2. We
introduce the average momentum ~P = (~p1 + ~p2)/2 and the difference ~q = (~p1 − ~p2)/2 for
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convenience. Normalized to the tree-level amplitude, the loop integral to evaluate is:

L =
4πa i

MN

∫
d4l

(2π)4


 i

E
2 + l0 − (~P+~l )2

2MN
+ iε

− 2π δ

(
E

2
+ l0 −

(~P +~l )2

2MN

)
θ(kF − |~P +~l |)




·


 i

E
2 − l0 −

(~P−~l )2
2MN

+ iε
− 2π δ

(
E

2
− l0 −

(~P −~l )2

2MN

)
θ(kF − |~P −~l |)


 , (6.8)

where E = (~p 2
1 + ~p 2

2 )/(2MN ) is the energy of the system. The in-medium loop integral
consists of contributions with zero, one and two medium insertion, as showed in Fig. 6.2.

6.3.1 Vacuum Diagram

The contribution of the diagram with no medium insertion is:

L0 =
4πa i

MN

∫
d4l

(2π)4

i

E
2 + l0 − (~P+~l )2

2MN
+ iε

i

E
2 − l0 −

(~P−~l )2
2MN

+ iε

= 4πa

∫
d3l

(2π)3

1

~l 2 − ~q 2 − iε
=

2π

a

∫ ∞

0
dl

l2

l2 − q2 − iε

=
2a

π

∫ ∞

0
dl
[
1 +

q2

l2 − q2 − iε

]
= iaq , (6.9)

with q = |~q |. We have performed the integration in dl0 by the residue theorem and used
the property

∫
dl 1 = 0 in dimensional regularization; finally, the residue theorem is again

used to carry out the integration in dl.
The result is imaginary. The resummation to all orders of L0 generates a power series

in iaq corresponding to the momentum expansion in eq. (6.6).

6.3.2 One Medium Insertion

After the integration in dl0 one gets rid of the delta function and finds:

L1 = −4πa

∫
d3l

(2π)3

1

~l 2 − ~q 2 − iε

[
θ(kF − |~P −~l |) + θ(kF − |~P +~l |)

]

= −8πa

∫
d3l

(2π)3

1

~l 2 − ~q 2 − iε
θ(kF − |~P −~l |)

= −a
π

∫ 1

−1
d cos θ

∫ lup

0
dl

l2

l2 − q2 − iε . (6.10)

The integration in d3l is carried out in spherical coordinates. In Fig. 6.3 one can see the
integration region in momentum space. Applying simple trigonometric rules, we find the
upper integration limit lup:

lup = Py +
√
k2
F − P 2(1− y2) , y = cos θ , P = |~P | . (6.11)

The real part of the loop integral L1 is:

ReL1 = −akF
π
R(s, k) , (6.12)

R(s, k) = 2 +
1

2s

{[
1− (s+ k)2

]
ln

1 + s+ k

|1− s− k| +
1

2s

[
1− (s− k)2

]
ln

1 + s− k
1− s+ k

}
, (6.13)
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P l

kF

θ

Figure 6.3: Region of integration of the real part of the loop integral with one medium
insertion eq. (6.10).

with

s =
|~P |
kF

, k =
|~q |
kF

, 0 6 s, k 6 1 , s2 + k2 6 1 . (6.14)

6.3.3 Imaginary Part

The imaginary part of the loop integral (6.8) can be evaluated with the help of the
optical theorem in Quantum Field Theory. The imaginary part of a Feynman diagram is
related to its discontinuity by a factor 1/(2 i). According to the optical theorem, one derives
the discontinuity of the Feynman diagram replacing the (vacuum) propagator with a delta
function:

1

p0 − ~p 2/(2MN ) + iε
−→ −2πi δ

(
p0 −

~p 2

2MN

)
. (6.15)

After performing this substitution in eq. (6.8), we find:

ImL =
2πa

MN

∫
dl4

(2π)4
(2π)2 δ

(
E

2
+ l0 −

(~P +~l )2

2MN

)
δ

(
E

2
− l0 −

(~P −~l )2

2MN

)

{[
1− θ(kF − |~P +~l |)

] [
1− θ(kF − |~P −~l |)

]

+ θ(kF − |~P +~l |) θ(kF − |~P −~l |)
}
. (6.16)

We carry out the integration in dl0:

ImL = 4π2a

∫
dl3

(2π)3
δ(~l 2 − ~q 2)

{[
1− θ(kF − |~P +~l |)

] [
1− θ(kF − |~P −~l |)

]

+ θ(kF − |~P +~l |) θ(kF − |~P −~l |)
}
. (6.17)

The first term with the product [1− θ][1− θ] vanishes because it is Pauli-blocked due to the
impossibility of satisfying simultaneously the three conditions:




k2
F < |~P +~l |2
k2
F < |~P −~l |2
~l 2 − ~q 2 = 0

=⇒ 2k2
F < |~P +~l |2 + |~P −~l |2 = ~p 2

1 + ~p 2
2 + 2(~l 2 − ~q 2) < 2k2

F . (6.18)
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=⇒

Figure 6.4: The closing of the ladder diagrams gives rise to the bubble ring diagrams and
implies a double integration over the Fermi sea of the two incoming nucleons. The Hartree
diagrams have a factor 4 from spin degeneracy and the Fock diagrams a factor 2. All
diagrams have a 1/2 symmetry factor coming from the interchange of the nucleon lines.

It restricts the scattering of on-shell particles to states below the Fermi surface because of
the conservation of energy. The integral simplifies:

ImL = 4π2a

∫
dl3

(2π)3
δ(~l 2 − ~q 2) θ(kF − |~P +~l |) θ(kF − |~P −~l |) . (6.19)

The result of the integral is given by the intersection between the spherical surface with
radius q = |~q | and center at the origin and the two Fermi spheres whose centers are displaced
by 2P (P = |~P |), as shown in Fig. D.1. The calculation of the integral can be found in
Appendix D.1. The outcome is:

ImL = akF I(s, k) , (6.20)

I(s, k) =





k 0 6 k 6 1− s
1

2s
(1− s2 − k2) 1− s < k 6

√
1− s2

. (6.21)

Note that the loop integral with two medium insertions is imaginary. The only real compo-
nent of the loop integral is eq. (6.12). Summing the real and the imaginary parts, we finally
obtain:

L0 + L1 = −akF
π
{R(s, k) + iπI(s, k)} , L2 = 2iakF I(s, k) , (6.22)

L = −akF
π
{R(s, k)− iπI(s, k)} . (6.23)

The inclusion/exclusion of the diagram with two medium insertion implies just a change of
sign of the imaginary part of the loop integral.

6.3.4 The Energy per Particle

The energy per particle is constructed at any order an from the sum of the ladder
diagrams up to that order. The closing of the legs simply implies a double integration over
the Fermi sea of the two nucleons, |k1,2| < kF , and is symbolized in Fig. 6.4 by a double
medium insertion in the resulting rings. The Hartree diagrams get a factor 4 from spin
degeneracy, while the Fock diagrams receive a factor 2. All diagrams have a 1/2 symmetry
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6.3 In-Medium Resummation of Ring Diagrams

Figure 6.5: Ring diagrams arising from the class of ladder diagrams with n = 3. The
binomial expansion does not account for the 1/3 symmetry factor of the diagram with three
double medium insertions. At order a3, the contribution of the sum is L3 = (R + iπI)2 +
(R+ iπI)(−2πiI) + (−2iπI)2/3 = R2 − (πI)2/3.

factor coming from the exchange of the two nucleonic ring lines. The overall factor is then
(4− 2)/2 = 1.

Consider the class of ladder diagrams with n contact terms and n−1 loops. A naive line
of argument would suggest to associate with it the n− 1-th power of the loop integral (R−
iπI)n−1 = [(R+ iπI)− 2iπI]n−1. However, the energy would then have an imaginary part.
A more detailed examination reveals that the combinatorial factors of the ring diagrams are
different from the coefficients given by the binomial expansion. For instance, Fig. 6.5 shows
the class of ring diagrams resulting from n = 3. It is convenient to adopt an organizational
scheme that splits the loop contribution into L0 + L1 = R + iπI and L2 = −2πiI. In the
figure, a loop with no medium insertions is associated with the term R+ iπI, while a loop
with double medium insertion corresponds to the term −2πiI. This scheme is justified by
the fact that different diagrams with the same number/power of L0 and L1 have the same
combinatorial factor. It is evident that the third diagram in the figure has a symmetry
factor of 1/3 for which the binomial expansion does not account. One finds that the j-th
power of the two medium insertion −2iπI has to be reweighted by the symmetry factor
1/(j + 1). The sum of the diagrams with a given n is:

Ln =

n−1∑

j=0

1

j + 1

(
n− 1

j

)
(R+ iπI)n−1−j (−2iπI)j

=
n−1∑

j=0

1

n

(
n

j + 1

)
(R+ iπI)n−1−j (−2iπI)j

=
1

2πi I n
{(R+ iπI)n − (R− iπI)n} . (6.24)

The binomial coefficient, as it is rewritten in the second line, offers a clear interpretation.
It is the number of all possible ways of arranging the j + 1 double medium insertions in a
ring diagram with n loops and is divided by the number n of rotations that transform the
ring diagram into itself. Ln is always real for any n. The first terms of the series are:

L1 = 1 , L2 = R , L3 = R2 − (πI)2

3
, L4 = R(R2 − π2I2) . (6.25)

Finally, we carry out the resummation to all orders of Ln:
∞∑

n=1

(
−akF

π

)n
Ln = − 1

πI
arctan

akF I

1 + akF
π R

. (6.26)
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Figure 6.6: Energy per particle of the unitary Fermi system as a function of the neutron
density for two different values of the Bertsch parameter ξ. The solid line corresponds to
the value obtained in eq. (6.30), the dotted line to the Bertsch parameter resulting from a
quantum Monte Carlo simulation in Ref. [121].

The integration over the Fermi seas of ~p1 and ~p2 can be changed to an integration over
s and k with the following master formula as demonstrated in Appendix E:

∫

|~p1,2|<kF

d3p1 d3p2

(2π)6
f(s, k) =

2k6
F

π4

∫ 1

0
ds s2

∫ √1−s2

0
dk k I(s, k) f(s, k) . (6.27)

The energy per particle after the resummation to all orders becomes:

Ē(kF ) =
k2
F

2MN

{
3

5
− 48

π

∫ 1

0
ds s2

∫ √1−s2

0
dk k arctan

akF I(s, k)

1 + akF
π R(s, k)

}
. (6.28)

The firsts terms of the expansion in powers of akF are:

Ē(kF ) =
k2
F

2MN

{
3

5
− 2

3π
akF +

4

35π2
(11− 2 ln 2)(akF )2

−0.0755733 (akF )3 + 0.0524813 (akF )4 +O(k5
F )
}
. (6.29)

The energy density has been calculated up to several orders of akf in the particle-hole
formalism and the present expansion is in good agreement with the existing calculations
[119, 120].

We can consider the unitary limit akF →∞ and calculate the Bertsch parameter ξ:

ξ = 1− 80

π

∫ 1

0
ds s2

∫ √1−s2

0
dk k arctan

πI(s, k)

R(s, k)
' 0.5067 . (6.30)

In comparison to the result obtained in a recent quantum Monte Carlo calculation ξ = 0.382
[121], the present value is somewhat larger. It is compatible with indications from a variety
of sophisticated many-body calculations, giving ξ ≈ 0.5 [122]. The quantum Monte Carlo
simulation agrees also well with some experimental determinations, ξ = 0.32 ± 0.11 in
Ref. [123] and ξ = 0.36± 0.15 in Ref. [124].
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6.4 In-Medium Resummation with Isospin Asymmetry

In Fig. 6.6 we plot the energy per particle as a function of the density in the unitary
limit. The solid line shows the equation of state corresponding to the Bertsch parameter in
eq. (6.30). The dotted line is produced using the Bertsch parameter in Ref. [121].

6.4 In-Medium Resummation with Isospin Asymmetry

The in-medium ladder diagram resummation technique has been generalized to systems
with isospin asymmetry in collaboration with N. Kaiser. The discussion of the tree-level
NN scattering enables to define a strategy for the resummation of the loop integrals.

The NN scattering can be characterized by the scattering length as if the two-nucleon
state has isospin I = 1 (spin singlet) and by the scattering length at if the state has isospin
I = 0 (spin triplet):

〈I = 1 | T | I = 1〉 =
4π

MN
as , 〈I = 0 | T | I = 0〉 =

4π

MN
at . (6.31)

We write the NN tree-level T -matrix in a compact form using the isospin projection oper-
ators:

Ttree =
4π

MN

[
as

3 + τ1 · τ2

4
+ at

1− τ1 · τ2

4

]
. (6.32)

If we consider the physical scattering processes, the transition amplitude is a combination
of as and at in the channels with non-defined isospin:

p p −→ p p : as nn −→ nn : as

p n −→ p n :
1

2
(as + at) n p −→ n p :

1

2
(as + at)

p n −→ n p :
1

2
(as − at) n p −→ p n :

1

2
(as − at) (6.33)

The problem is more easily treated using a matrix notation. We introduce the orthonor-
mal basis with the physical scattering states (|pp〉 , |nn〉 , |pn〉 , |np〉). The different scattering
processes can be arranged in a matrix of the form:

T =




pp nn pn np

pp tp 0 0 0

nn 0 tn 0 0

pn 0 0 ta tb

np 0 0 tb ta



. (6.34)

Defining the coupling matrix

√
a =

√
4π

MN




√
as 0 0 0
0

√
as 0 0

0 0 1
2(
√
as +

√
at)

1
2(
√
as −

√
at)

0 0 1
2(
√
as −

√
at)

1
2(
√
as +

√
at)


 , (6.35)

we can write T as:

T =
√
aR
√
a =
√
a




rp 0 0 0
0 rn 0 0
0 0 ra rb
0 0 rb ra



√
a =

4π

MN




asrp 0 0 0
0 asrn 0 0
0 0 sa sb
0 0 sb sa


 , (6.36)
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with

sa =
as(ra + rb) + at(ra − rb)

2
, sb =

as(ra + rb)− at(ra − rb)
2

. (6.37)

We reproduce Ttree when R is an identity matrix: rp = rn = ra = 1, rb = 0. At higher
orders, the ladder diagrams generate corrections to the identity matrix through the loop
integrals. Indicating with L the loop matrix, R can be expressed as a power series in L:

R = 1 +




Lp 0 0 0
0 Ln 0 0
0 0 La Lb
0 0 Lb La


+ · · · = 1 + L+ L2 + · · · =

∞∑

n=0

Ln (6.38)

It is impossible to carry out this series in powers of L in the basis of the physical states
where the matrix R is not diagonal. The problem simplifies in the isospin basis defined as
(|1, 1〉 , |1,−1〉 , |1, 0〉 , |0, 0〉), because the T -matrix becomes diagonal, with elements given
by its eigenvalues (neglecting a factor 4π/MN for simplicity):

tp = asrp , tn = asrn , ta + tb = as(ra + rb) , ta − tb = at(ra − rb) . (6.39)

The different channels decouple and the matrix R is easily calculated through the resum-
mation of the eigenvalues of the loop matrix L:

rp =
∑

n

Lnp , rn =
∑

n

Lnn , ra + rb =
∑

n

(La + Lb)
n , ra − rb =

∑

n

(La − Lb)n .

(6.40)

6.4.1 The Loop Matrix

We proceed with the evaluation of the one-loop diagram arranging the contributions of
the different scattering processes in the matrix L defined in eq. (6.38). We write L as the
product:

L = i
√
a




Sp Sp 0 0 0
0 Sn Sn 0 0
0 0 Sp Sn 0
0 0 0 Sp Sn



√
a , (6.41)

where the notations Sp and Sn indicate the in-medium proton and neutron propagators,
respectively. With the introduction of the coupling matrix

√
a that accounts for the off-

diagonal elements, the action of the loop integral is reduced to that of a diagonal matrix
whose elements are the products of the nucleon propagators associated with the loop. An
integration over the loop momentum is implicit.

The calculation of Lp and Ln leads to expressions of the same form of eq. (6.23) but
with the insertion of the proper Fermi momentum:

Lp = L(kF → kp) , Ln = L(kF → kn) , (6.42)

with kp and kn the proton and neutron Fermi momenta, respectively.
La and Lb differ only for the coupling:

La,b =
4πi

MN

as ± at
2

∫
d4l

(2π)4
Sp(P + l)Sn(P − l) . (6.43)
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Following the procedure developed in the previous section, the loop integral consists of real
and imaginary parts. The real part is:

ReLa,b = −2π(as ± at) P
∫

d3l

(2π)3

1

~l 2 − ~q 2 − iε

{
θ(kp − |~P +~l |) + θ(kn − |~P −~l |)

}
.

(6.44)

In contrast to the previous case with only a single Fermi sea, the two step functions are
defined over different Fermi spheres and do not give the same contribution. We find:

ReLa,b = −as ± at
4π

(kpRp + knRn) , (6.45)

Rp ≡ R
(
P

kp
,
q

kp

)
, Rn ≡ R

(
P

kn
,
q

kn

)
, (6.46)

where R(s, k) is the function in eq. (6.13). We come now to the imaginary part. The
corresponding integral is:

ImLa,b = 2π(as ± at)
∫

d3l

(2π)3
δ(~l 2 − ~q 2)

{[
1− θ(kp − |~P +~l |)

] [
1− θ(kn − |~P −~l |)

]

+ θ(kp − |~P +~l |) θ(kn − |~P −~l |)
}
. (6.47)

Even in this case the product [1− θ][1− θ] vanishes:




k2
p < |~P +~l |2
k2
n < |~P −~l |2
~l 2 − ~q 2 = 0

=⇒ k2
p + k2

n < ~p 2
1 + ~p 2

2 < k2
p + k2

n . (6.48)

The loop integral has a geometrical interpretation similar to the case of pure neutron matter.
Its solution is the portion of the spherical surface with radius q and center at the origin
in common with the intersection of the two Fermi spheres whose centers are displaced by
2P . However, the Fermi spheres have now different radii, kp and kn, and this gives rise to a
variety of possible configurations. The calculation of the integral is carried out in Appendix
D.2. We report directly the outcome:

ImLa,b =
1

2
(as ± at)Ipn , (6.49)

Ipn =





0 q > kp + P

q θ(kp − P ) q 6 |kp − P |

k2
p − (P − q)2

4P
|kp − P | < q 6 |kn − P |

k2
p + k2

n − 2(P 2 + q2)

4P
|kn − P | < q 6

√
k2p+k2n

2 − P 2

, (6.50)

with P = |~P | and q = |~q |. We rewrite the results in terms of the eigenvalues of the loop
matrix L:

Lp = −askp
π

(Rp − iπIp) , Ln = −askn
π

(Rn − iπIn) , (6.51)

La ± Lb = −as,t
π

(
kp
2
Rp +

kn
2
Rn − iπIpn

)
. (6.52)
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The resummation of the ladder diagrams to all orders can be carried out using eq. (6.26).
Combining eq. (6.39) and (6.40), one finds the eigenvalues of the T -matrix:

tp,n =
1

kp,nIp,n
arctan

askp,nIp,n

1 +
askp,n
π

Rp,n

, (6.53)

ta ± tb =
1

Ipn
arctan

as,tIpn

1 +
as,t
2π

(kpRp + knRn)
. (6.54)

6.4.2 The Energy per Particle

Once the ladder diagrams are resummed, we calculate the energy per particle by con-
sidering the corresponding ring diagrams. We sum over all processes in the T -matrix (6.34)
with the correct factors coming from symmetry and spin degeneracy. Note that the interac-
tion described by the T -matrix elements can exchange the incoming particles. The exchange
processes give rise to off-diagonal elements in proton-neutron scattering, labeled with tb.
Concerning proton-neutron scattering, the diagonal elements ta generate the Hartree ring
diagrams, while the Fock diagrams arise from the exchange processes characterized by tb.
Using the same arguments of section 6.46, the Hartree diagrams have an overall factor
4 · 1/2 = 2. We indicate with the symbol θNN the generic NN scattering process in the
T -matrix. The contribution of the Hartree diagrams to the energy density is of the form:

THartree = 2[θpp tp + θnn tn + (θpn + θnp)ta] . (6.55)

A similar discussion is valid for the Fock diagrams, whose overall factor is 2 · 1/2 = 1:

TFock = −[θpp tp + θnn tn + (θpn + θnp)tb] . (6.56)

Their sum is:

THartree + TFock = θpp tp + θnn tn + (θpn + θnp)(2ta − tb)
= θpp tp + θnn tn + θpn[(ta + tb) + 3(ta − tb)] . (6.57)

With the outcome written in terms of the eigenvalues of the T -matrix, the calculation
of the energy per particle is now straightforward. The integration over the Fermi seas of
the two particle species gives:

ρĒ(kp, kn) =
k5
p + k5

n

10π2MN
− 4π

MN





∫

|~p1,2|<kp

d3p1d3p2

(2π)6
tp +

∫

|~p1,2|<kn

d3p1d3p2

(2π)6
tn

+

∫

|~p1,2|<kp,n

d3p1d3p2

(2π)6
[(ta + tb) + 3(ta − tb)]





. (6.58)
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Figure 6.7: Energy per particle as a function of the nucleon density resulting from the in-
medium ring diagram resummation. The curves display the energy for different values of
the proton fraction xp = Z/A. One can compare the violet curve corresponding to xp = 0
with the Akmal-Pandharipande-Ravenhall equation of state of pure neutron matter (black
line) [25].

Using eqs. (6.53) and (6.54), we finally obtain:

Ē(kp, kn) =
3

MN (k3
p + k3

n)




k5
p + k5

n

10
−

8k5
p

π

1∫

0

ds s2

√
1−s2∫

0

dk k arctan
akp I(s, k)

1 +
akp
π R(s, k)

− 8k5
n

π

1∫

0

ds s2

√
1−s2∫

0

dk k arctan
akn I(s, k)

1 + akn
π R(s, k)

− 1

2π

kp∫

0

dp1 p
2
1

kn∫

0

dp2 p
2
2

1∫

−1

dx
1

Ipn

[
arctan

asIpn
1 + as

2π (kpRp + knRn)

+3 arctan
atIpn

1 + at
2π (kpRp + knRn)

]}
, (6.59)

with as = 19 fm and at = −5.4 fm and Rp and Rn defined in eq. (6.46). The first term is the
kinetic energy of protons and neutrons. The other terms are, in this order, the contributions
of pp and nn scattering and that of np scattering in the isospin triplet (I = 1, I3 = 0) and
singlet (I = 0, I3 = 0) states. The variables P and q in the functions Rp and Rn are related
to p1 and p2 by P, q = (

√
p2

1 + p2
2 ± 2x p1p2)/2.

We have employed the master formula (6.27) to change the integration variable to s and
k in the pp and nn terms. A similar master formula is valid also for the terms with different
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Figure 6.8: Energy per particle as a function of the nucleon density at very low density
ρ . 0.005 fm−3. A sort of double-hump behaviour develops with increasing proton fraction
xp and is governed by the spin-triplet term of eq. (6.59).

Fermi seas:

kp∫

0

dp1 p
2
1

kn∫

0

dp2 p
2
2

1∫

−1

dx f(P, q) = 16

kp+k2
2∫

0

dP P 2

qmax∫

qmin

dq q Ipn f(P, q) , (6.60)

qmin = max(0, P − kp) , qmax = min


kp + P,

√
k2
p + k2

n

2
− P 2


 . (6.61)

The formula is constructed by analogy with eq. (6.27) and with the use of the plot D.3a
showing the domain of the function Ipn. The validity of the master formula for the calcu-
lation of the energy per particle has been checked numerically.

6.5 Energy of Nuclear Matter
from Ring Diagram Resummation

In Fig. 6.7 we investigate systematically the contributions of resummed contact terms,
based on the scattering lengths as and at, to the energy per particle, and their dependence
on the isospin-asymmetry. Starting from symmetric nuclear matter, indicated by the red
line, the figure shows the evolution of the energy per particle as a function of the density
for increasing isospin asymmetry up to the case of pure neutron matter (violet line). At the
scale of density displayed in the plot the energy appears to have a regular and systematic
behaviour. However, a zoom in the density scale reveals a more complicated behaviour at
very low density.

In Fig. (6.8) we observe for ρ . 0.003 fm−3 a sort of double-hump behaviour. It is
related to the appearance of the protons in matter because the effect is maximally prominent
for symmetric nuclear matter and absent in pure neutron matter. The effect presumably
originates from one of or both the pn scattering terms of eq. (6.59).
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Figure 6.9: The plots show the different terms of eq. (6.59) contributing to the energy
per particle of nuclear matter for increasing proton fraction. The contributions include the
proton and neutron kinetic energies, the spin-singlet (nn, pp and I3 = 0) and the spin-triplet
(I = 0) terms. The insets zoom in the curves at low density (ρ . 0.003 fm−3) revealing
that the spin triplet term changes sign because of the negative value of at.

Fig. 6.9 clarifies this point. The plots show the contribution of the single terms of
eq. (6.59) to the energy per particle for several proton fractions xp. The first plot relates
to pure neutron matter: only the neutron kinetic energy and the nn scattering term are
present. With increasing xp the other terms involving protons appear and become gradually
larger while the nn terms decrease. In particular, note how the spin-triplet term changes the
sign at very low density from positive to negative and develops the double-hump behaviour
as xp approaches the value 0.5. This feature is explained by the negative scattering length
at entering the spin-triplet term. Because of the negative value of at, the denominator of
the fraction in the arctangent function, in contrast to the spin-singlet term, change sign
when |at|(kpRp + knRn) > 2π, causing in this way the behaviour observed in the plots. Of
course, in the actual physics situation these particular low-density features are overruled by
a most important effect not considered here, namely the formation of nuclear clusters.

Fig. 6.10 shows how the interaction changes with the scattering length. The energy
per particle of neutron matter divided by the kinetic energy Ē(kF )/Ekin(kF ) is plotted as
a function of the adimensional quantity akF . For positive akF the interaction energy is
negative and attractive. The negative branch of akF presents a more involved behaviour.
For small values of |akF | the energy per particle has a peak and the interaction is repulsive.
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Figure 6.10: Energy per particle of neutron matter normalized to the kinetic energy as a
function of the adimensional variable akF . In the resonant limit akF → ±∞ the system
tends to a unitary behaviour. For positive akF the interaction energy is attractive. For
akF < 0, the interaction energy is at first repulsive at small values of the parameter, then
becomes again attractive with growing |akF |.

With increasing |akF | the interaction energy originating from nn scattering in the medium
changes sign and becomes again negative and attractive. Note that both branches tend to
the unitary limit for akF → ±∞. Although the plot refers - strictly speaking - to the nn
scattering term, it also explains qualitatively the behaviour of the spin-triplet energy term
in Fig. 6.9.
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Chapter 7

Summary and Outlook

In this thesis we have used in-medium Chiral Perturbation Theory (ChPT) to investigate
the thermodynamic properties of nuclear matter. As this approach and the underlying
Chiral Effective Field Theory establish the interface between low-energy QCD and nuclear
physics, this is presumably the appropriate framework to set important nuclear physics
constraints for the construction of the QCD phase diagram at low temperature and finite
baryon densities.

ChPT is recognized as a powerful tool for attacking the nuclear many-body problem in
consideration of the fact that pion-exchange dynamics plays an essential role for reproducing
the empirical features of nuclear matter - such as the saturation density, the binding energy
and the liquid-gas phase transition. Moreover, the typical scales that one encounters in the
description of nuclear matter - the pion mass mπ, the Fermi momentum at the saturation
point kF ' 2mπ, and the ∆-isobar - nucleon mass splitting ∆ ' 293 MeV - are all well
below the spontaneous symmetry breaking scale of the theory, Λ ∼ 1 GeV. Our approach is
based on a separation of scales between the long- and intermediate-range correlations and
the short-distance physics. The former corresponds to 1π- and 2π-exchange dynamics and
is treated explicitly up to three-loop order with inclusion of the ∆-isobar excitation. In
this way, the attractive part of the nucleon-nucleon interaction is basically reproduced. The
short-range interaction is unresolved in the scales of momenta involved and is accounted for
by means of a few S-wave contact terms fixed to reproduce some selected known properties
of nuclear matter.

The basic ingredient to perform calculations at finite density is the in-medium nucleon
propagator. We follow an organizational scheme in the number of medium insertion in
the Feynman diagrams. Two-body and three-body forces (where the latter include genuine
three-body forces and the Pauli-blocking on two-body terms) are systematically taken into
account. The free energy density of nuclear matter is given by a sum of convolution integrals
describing the many-body effects according to the number of integrations over the nucleon
momentum distributions. The free energy per particle is evaluated numerically.

We have presented a detailed study of the equation of state of nuclear matter as a
function of the nucleon density and the temperature. Furthermore, the isospin-dependence
of the corresponding phase diagram has been investigated with the help of the Maxwell
construction. Starting from isospin-symmetric nuclear matter, pressure isotherms display
clearly a first-order liquid-gas phase transition with a behaviour similar to that of the
well-known van-der-Waals equation of state. By imposing only that the energy minimum
of the curve at T = 0 is −16 MeV per nucleon, the model predicts a saturation density
ρ0 ' 0.157 fm−3, remarkably close to the empirical value, and a compression modulus
K(ρ0) ' 300 MeV. The critical point is located at Tc ' 15.1 MeV and ρc ' ρ0/3. We
emphasize that the liquid-gas phase transition is the result of the subtle balance between
the long- and intermediate range interaction described primarily by pion-exchange dynamics

77



7 - Summary and Outlook

and the unresolved short-distance physics encoded in the contact terms. With increasing
isospin-asymmetry the liquid-gas coexistence region gradually shrinks and disappears at the
proton fraction xp ' 0.05. Neutron-rich matter cannot undergo any phase transition. In a
similar way, for decreasing proton fraction, the binding energy of nuclear matter is reduced.
Below xp ' 0.12 neutron-rich matter is unbound at any density and temperature.

The chiral condensate is the order parameter of the chiral phase transition and is related
to the derivative with respect to the pion mass of the free energy per particle. This derivative
can be carried out within our scheme because the pion mass appears as an explicit parameter
in the interacting energy. We have investigated the dependence on the nucleon density and
the temperature of the chiral quark condensate of symmetric nuclear matter, normalized to
its vacuum value, in the density range 0 ≤ ρ . 2 ρ0 and for T . 100 MeV. The main source
of uncertainty in the calculation is represented by the sigma term which guides the dropping
of the leading contribution linear in the density. At low temperature, the ∆-isobar degree of
freedom plays a fundamental role in retarding the decrease of the condensate and, actually,
stabilizes it at large density. Its inclusion is essential to determine the behaviour of the chiral
condensate. The thermodynamics of the chiral condensate is the result of the interplay
between attractive two-body interactions and repulsive three-body in-medium correlations.
At low T these latter are dominant and counteract the reduction of the condensate relative
to its vacuum value. At T = 100 MeV, their contribution is balanced by the two-body
term and the linear behaviour of the sigma term is practically restored. In the liquid-gas
coexistence region present for T . 15 MeV, the condensate drops linearly. Finally, the
contribution of the pionic heat bath is included and gives a further temperature-dependent
reduction of the condensate. We find no indication of a first-order chiral phase transition
in the density range 0 ≤ ρ . 2 ρ0 and at temperatures T . 100 MeV.

In neutron-rich matter, the large neutron-neutron scattering length, ann ' 19 fm, in-
validates the perturbative expansion of the T -matrix in powers of p. A resummation to all
orders of the S-wave contact interaction is required. The in-medium propagator enables to
implement the resummation at finite density. It gives rise to loop integrals with zero, one
and two medium insertions. The multi-loop vacuum ring diagrams are powers of the basic
loop integral with the proper combinatorial and symmetry factors and are summed to all
orders. The resummation is then extended to isospin-asymmetric nuclear matter. The loop
contributions to the different scattering processes are arranged in a 4×4 matrix. Once the
matrix is diagonalized moving to the isospin basis, the resummation is easily carried out as
sum of the eigenvalues.

We have studied the isospin-dependence of the energy per particle as a function of the
nucleon density. The resulting curves display an oscillating behaviour at very low density,
ρ . 0.005 fm−3, emerging for increasing proton fraction in matter. The study of the single
contributions to the energy per particle reveals that it arises from the spin-triplet term and
its negative scattering length, at ' −5.42 fm, entering the corresponding function.

As an outlook for future issues and projects to be carried out, we end with a list of
topics for further developments:

• The convergence of the expansion at three-loop order is ensured as long as four-body
correlations are not predominant. Preliminary calculations give encouraging results.
Contributions of four-nucleon forces to the binding energy of 4He have been estimated
to have a magnitude somewhat smaller than 1 MeV in ChPT [73]. In Ref. [76], the
contributions of two chiral four-nucleon diagrams to the equation of state stay below
0.1 MeV in the density range of interest and are thus negligible. However, one expects
more significant effects with the inclusion of the ∆-isobar. The issue of the magnitude
of four-body correlations in nuclear matter is still open.

• The formalism for carrying out an in-medium resummation to all orders of the ring
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diagrams with S-wave contact interaction has been developed. The next possible
steps are, on one hand, the inclusion of the effective range r0 through a (S-wave)
q2-dependent contact interaction and of P -wave scattering. On the other hand, the
equation of state resulting from in-medium resummations has to be combined with
the chiral equation of state at three-loop order. This requires a separation between
the contribution of the S-wave contact terms and that of pion-exchange dynamics to
the nucleon-nucleon scattering length, because only the former has to be resummed.
Specifically, one can write, e.g. for the scattering lengths, aphys = a0 + aπ, and only
a0 is inserted in the resummation formulae. The corresponding energy can then be
added to the chiral equation of state and the contact terms B3 and B5 retuned to
encode the residual short-distance physics.

• There have been very important astrophysical achievements in the last few years. A
most important result is the discovery of a two-solar-mass neutron star. Its mass,
M = (1.97± 0.04)M� [3], is determined very accurately and sets decisive constraints
on the equation of state of dense matter. In order to support the pressure to stabilize
such a massive object against gravitation, the equation of state of neutron star matter
must be sufficiently stiff. In particular, soft scenarios with meson condensation or
quark matter would be ruled out. It is an interesting point to establish whether our
equation of state can sustain a two-solar-mass neutron star. Extrapolations to large
supranuclear densities are possible following the analysis in Ref. [4].
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Appendix A

In-Medium Fermion Propagator

In this appendix we derive the fermion propagator in the presence of a medium at T = 0
and at finite temperature using the formalism of Thermal Field Theory.

A.1 In-Medium Fermion Propagator at T = 0

First we remind the result for the vacuum. The fermion field Ψ(x), solution of the
Dirac-equation, reads [125]:

Ψ(x) =

∫
d3p

(2π)3

1√
2E~p

∑

s=1,2

[
as~p us(p)e

−ipx + b†s~p vs(p)e
ipx
]
, (A.1)

where Ψ(x), us(p) and vs(p) are four-spinors and s is the polarization index. The conjugate
field is Ψ̄(x) = Ψ†(x) γ0. The operator as~p annihilates a particle of momentum ~p and
polarization s; a†s~p creates instead a particle with momentum ~p and polarization s. The
operator bs~p /b

†s
~p annihilates/creates an antiparticle. These operators satisfy the following

anticommutation rules:

{ar~p, a†s~q } = {br~p, b†s~q } = (2π)3δ(~p− ~q ) δrs . (A.2)

The vacuum state |0〉 is defined such that

as~p |0〉 = 0 , bs~p |0〉 = 0 . (A.3)

The vacuum propagator is the time-ordered expectation value of the product Ψ(x)Ψ̄(y) in
the vacuum:

SF0(x− y) = 〈0|T [Ψ(x)Ψ̄(y)] |0〉
= 〈0|Ψ(x)Ψ̄(y) |0〉 θ(x0 − y0)− 〈0| Ψ̄(y)Ψ(x) |0〉 θ(y0 − x0) . (A.4)

In the presence of a medium (at T = 0), the definition is slightly modified. The ground
state of the system is no longer the vacuum but the filled Fermi sea |φ0〉. The action of
annihilation and creation operators on it changes according to their momenta. Indicating
with kF the Fermi momentum of the fermionic system, we have:

• |~p| > kF
annihilation:

creation:
as~p
a†s~p

}
particle ,

bs~p
b†s~p

}
antiparticle , as~p |φ0〉 = bs~p |φ0〉 = 0 ,

(A.5)

• |~p| < kF
creation:

annihilation:
as~p
a†s~p

}
hole ,

bs~p
b†s~p

}
antihole , a†s~p |φ0〉 = b†s~p |φ0〉 = 0 .

(A.6)

81



A - In-Medium Fermion Propagator

In the fermion field we split the nodes above kF from the nodes below kF :

Ψ(x) =

∫
d3p

(2π)3

1√
2E~p

∑

s=1,2

[
as~p us(p)e

−ipx + b†s~p vs(p)e
ipx
]

[θ(|~p| − kF ) + θ(kF − |~p|)] ,

(A.7)

Ψ̄(y) =

∫
d3p

(2π)3

1√
2E~p

∑

r=1,2

[
a†r~p ūr(p)e

ipy + br~p v̄r(p)e
−ipy

]
[θ(|~p| − kF ) + θ(kF − |~p|)] .

(A.8)

The in-medium propagator is defined as

SF (x− y) = 〈φ0|T [Ψ(x)Ψ̄(y)] |φ0〉 . (A.9)

After replacing eqs. (A.7) and (A.8) in (A.9), using the anticommutation relations (A.2)
and the completeness relations

∑

s=1,2

us(p)ūs(p) = Λ+(p) = /p+m , (A.10)

∑

s=1,2

vs(p)v̄s(p) = −Λ−(p) = /p−m , (A.11)

we find:

SF (x− y) =

∫
d3p

(2π)3

1

2E~p
·

{
θ(|~p | − kF )

[
(/p+m)e−ip(x−y)θ(x0 − y0)− (/p−m)eip(x−y)θ(y0 − x0)

]

+θ(kF − |~p |)
[
(/p−m)eip(x−y)θ(x0 − y0)− (/p+m)e−ip(x−y)θ(y0 − x0)

]}
. (A.12)

We use in the equation the integral representation of the step function:

θ(x0 − y0) =

∫ ∞

−∞

dω
2πi

eiω(x0−y0)

ω − iε . (A.13)

We perform a change of variable: p0 = E~p → p0 = E~p − ω in the first and second terms,
and p0 = E~p → p0 = E~p + ω in the third and fourth terms. We obtain:

SF (x− y) =

∫
d4p

(2π)4

1

2E~p i

{
θ(|~p | − kF )

[
(/p+m)

e−ip(x−y)

E~p − p0 − iε
− (/p−m)

eip(x−y)

E~p − p0 − iε

]

+θ(kF − |~p |)
[

(/p−m)
eip(x−y)

p0 − E~p − iε
− (/p+m)

e−ip(x−y)

p0 − E~p − iε

]
. (A.14)

We change p→ −p in the second and third terms and, after some manipulations, we find

SF (x− y) =

∫
d4p

(2π)4
e−ip(x−y) i(/p+m)

{
θ(|~p | − kF )

p2 −m2 + iε
+

θ(kF − |~p |)
p2 −m2 − iε

}

=

∫
d4p

(2π)4
e−ip(x−y) i(/p+m)

{
1

p2 −m2 + iε

+θ(kF − |~p |)
[

1

p2 −m2 − iε −
1

p2 −m2 + iε

]}
. (A.15)
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We use the formulae
1

x± iε =
1

x
∓ iπδ(x) (A.16)

to finally write:

SF (x− y) =

∫
d4p

(2π)4
e−ip(x−y) (/p+m)

[
i

p2 −m2 + iε
− 2πδ(p2 −m2)θ(kF − |~p |)θ(p0)

]
.

(A.17)
The in-medium propagator consists of two terms. The first term is identical to the vacuum
propagator, the second one takes into account the presence of the medium, confining its
action to momenta |~p| < kF , and is called medium insertion. In it, the delta of Dirac
sets the fermion on the mass shell; θ(p0) is added to ensure that p0 > 0 according to our
convention.

A.2 In-Medium Fermion Propagator at Finite Temperature

At finite temperature T the thermal expectation value of an operator Â is defined as:

〈Â〉β =
1

Z(β)
Tr
{
e−β(Ĥ−µN̂)Â

}
, (A.18)

with Z(β) = Tr{e−β(Ĥ−µN̂)} the grand-canonical partition function. Ĥ is the Hamiltonian
operator of the system, N̂ the particle number operator, µ the chemical potential and
β = 1/T . In the following we neglect the hut in the operators for simplicity.

First we consider the case µ = 0. The results can then be generalize to finite µ. We
define the fermion propagator as:

SFβ (x− y) = 〈T [ψ(x)ψ̄(y)] 〉β (A.19)

= θ(x0 − y0)S>β (x− y) + θ(y0 − x0)S<β (x− y) , (A.20)

where the advanced and retarded propagators are

S>β (x− y) = 〈ψ(x)ψ̄(y)〉β , S<β (x− y) = −〈ψ̄(y)ψ(y)〉β . (A.21)

Combining the Fourier transform definition

SFβ (p) =

∫
d4x e−ipxSFβ (x) (A.22)

and the Kubo-Martin-Schwinger (KMS) relation

S>β (x0, ~x; y0, ~y) = −S<β (x0 + iβ, ~x; y0, ~y) , (A.23)

it is possible to find a relation between advanced and retarded propagator:

S<β (p) = −e−βp0S>β (p) . (A.24)

The spectral function is defined as:

ρ(p) = S>β (p)− S<β (p) . (A.25)

Substituting Eq. (A.24) in it, we find:

S<β (p) = −nF (p0)ρ(p) , S>β (p) = [1− nF (p0)]ρ(p) , (A.26)
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where nF (p0) = [eβp0 + 1]−1 is the Fermi distribution function.
We can now obtain the spectral representation of the fermion propagator. Consider the

fermion propagator in momentum space:

SFβ (p) =

∫
d4x eipx

[
θ(x0)S>β (x) + θ(−x0)S<β (x)

]
. (A.27)

Using Eq. (A.13), the definition (A.22) and the relations (A.26), we get:

SFβ (p) = i

∫
dp′0
2π

ρ(p′0, ~p )

p0 − p′0 + iε
− nF (p0) ρ(p) . (A.28)

At this point we need the spectral function ρ(p). This can be calculated using the
imaginary-time (Matsubara) propagator and performing an analytic continuation to con-
tinuous values of the Matsubara frequencies.

In the imaginary-time formalism, after the substitution x0 → −ix̃0, the propagator takes
the form:

SFβ [−i(x̃0 − ỹ0), ~x− ~y ] = θ(x̃0 − ỹ0) S>β [−i(x̃0 − ỹ0), ~x− ~y ]

+ θ(ỹ0 − x̃0) S<β [−i(x̃0 − ỹ0), ~x− ~y ] . (A.29)

Let us define

∆β(x̃0, ~x) = Sβ(−ix̃0, ~x) . (A.30)

The Matsubara propagator is defined in the interval 0 ≤ x̃0 ≤ β and is antiperiodic:

∆β(x̃0, ~x) = −∆β(x̃0 − β, ~x) . (A.31)

We define the Fourier transform

∆(iωn, ~p) =

∫ β

0
dx̃0

∫
d3x eiωnx̃0e−i~p·~x ∆(x̃0, ~x) (A.32)

and its inverse

∆(x̃0, ~x) =
1

β

∑

n

∫
d3p e−iωnx̃0ei~p·~x ∆(iωn, ~p ) . (A.33)

Due to the antiperiodicity and the finite interval [0, β], the frequencies take discrete values:

ωn =
(2n+ 1)π

β
. (A.34)

Consider

∆(x̃0, ~x) = S>β (−ix̃0, ~x) =

∫ ∞

−∞

dp0

2π
e−p0x̃0

∫
d3p

(2π)3
ei~p·~x S>β (p0, ~p ) . (A.35)

Using eqs. (A.35) and (A.26), the spectral representation of the Matsubara propagator
(A.32) results:

∆(iωn, ~p) =

∫ ∞

−∞

dp0

2π

ρ(p0, ~p )

p0 − iωn
. (A.36)

To invert the relation and determine ρ(p), we extend ∆(iωn, ~p ) to a continuous function
∆(p0, ~p):

ρ(p) = ∆(p0 + iε, ~p )−∆(p0 − iε, ~p ) . (A.37)
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Comparing with Eq. (A.25), we note that the Matsubara propagator returns the advanced
and retarded real-time propagator with the replacement iωn → p0 ± iε.

The explicit form of the Matsubara propagator can be obtained Fourier-transforming
the kernel of the Dirac equation in imaginary time:

(i/∂ −m)∆β(x̃0, ~x) = iδ(x̃0)δ3(~x) . (A.38)

One finds:

∆β(iωn, ~p ) =
i

iωnγ0 − ~p · ~γ −m
. (A.39)

The spectral function results:

ρ(p) = i(/p+m)

[
1

p2 −m2 + iε sgn(p0)
− 1

p2 −m2 − iε sgn(p0)

]

= 2π sgn(p0) (/p+m) δ(p2 −m2) . (A.40)

After replacing in Eq. (A.28), we obtain the fermion propagator in real-time formalism [126]:

Sβ(p) = (/p+m)

[
i

p2 −m2 + iε
− 2π nF (p0) δ(p2 −m2)

]
. (A.41)

We can naively generalize the fermion propagator to the case µ 6= 0 on the basis of
simple considerations.

In the creation/destruction-operator formalism, the operator K = H − µN is:

K =

∫
d3p

(2π)3

∑

s=1,2

(p′0 − µ)
[
a†s~p a

s
~p + b†s~p b

s
~p

]
. (A.42)

It implies for the real-time formalism the replacement:

p0 −→ p′0 − µ . (A.43)

Note that p0 is associated to the operator −i∂/∂x0, which becomes ∂/∂x̃0 in the imaginary-
time formalism and −iωn in momentum space. Therefore, iωn −→ iω′n + µ. The fermion
propagator in real time becomes [127, 128]:

Sβ(p′) = (/p
′ +m)

[
i

p′2 −m2 + iε
− 2π nF (p′0 − µ) δ(p′2 −m2)

]
, (A.44)

with p′ ≡ (p′0 = p0 + µ, ~p ). The delta of Dirac states that p′0 = E =
√
~p 2 +m2.

As a remarkable result, the propagator is split in a zero-temperature and in a temperature-
dependent part.
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Appendix B

Contributions to the Free Energy
Density

In this appendix we summarize the diagrammatic contributions to the free energy density
by reporting the explicit expressions of the kernels for the convolution integrals Eq. (4.20).
For further details and explanations see Refs. [55, 76, 80].

B.1 Isospin-Symmetric Nuclear Matter

One-body kernel

K1(p) = µ0 −
p2

3MN
− p4

8M3
N

, (B.1)

where µ0 is the effective one-body chemical potential andMN = 939 MeV is the free nucleon
mass.

Two-body kernels

• Contact terms:

K(ct)
2 (p1, p2) = 24π2B3

p1 p2

M2
N

+ 20π2B5
p1 p2

M4
N

(p2
1 + p2

2) , (B.2)

with B3 = −7.99 and B5 = 0.

• 1π-exchange Fock-diagram:

K(1π)
2 (p1, p2) =

3 g2
A

16f2
π

{
8 p1 p2 − 2m2

π ln
f+(p1, p2)

f−(p1, p2)
+

1

M2
N

[
−4 p1 p2(p2

1 + p2
2)

+m2
π(p2

1 + p2
2) ln

f+(p1, p2)

f−(p1, p2)
− 2m2

π p1 p2(p2
1 − p2

2)2

f+(p1, p2) f−(p1, p2)

]}
, (B.3)

with

f+(p1, p2) = m2
π + (p1 + p2)2 , f−(p1, p2) = m2

π + (p1 − p2)2 . (B.4)

• Iterated 1π-exchange Hartree-diagram:

K(itH)
2 (p1, p2) =

3 g4
AMNm

2
π

8πf4
π

{
(p1 + p2) arctan

p1 + p2

mπ

+(p2 − p1) arctan
p1 − p2

mπ
− 5

8
mπ ln

f+(p1, p2)

f−(p1, p2)

}
. (B.5)
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• Iterated 1π-exchange Fock-diagram:

K(itF )
2 (p1, p2) =

3 g4
AMNmπ

32πf4
π

{
2 p1 p2 +m2

π

∫ p1+p2
2mπ

|p1−p2|
2mπ

dx
1 + 2x2

[
(1 + 8x2 + 8x4) arctanx

−(1 + 4x2) arctan 2x
]}

. (B.6)

• Irreducible 2π-exchange Fock-diagram:

K(irrF )
2 (p1, p2) =

1

π

∞∫

2mπ

dµ Im(VC + 3WC + 2µ2VT + 6µ2WT )

×
{
µ ln

f+(p1, p2)

f−(p1, p2)
− 4 p1 p2

µ
+

4 p1 p2

µ3
(p2

1 + p2
2)

}
, (B.7)

where ImVC , ImWC , ImVT , ImWT are the spectral functions of the isoscalar and isovec-
tor central and tensor NN -amplitudes [52]. They are given by:

ImVC(µ) =
1

π
(VCb1 + VCb2) , (B.8)

ImWC(µ) =
1

π
(WCir +WCtr +WCb1 +WCb2) , (B.9)

ImVT (µ) =
1

π
(VT ir + VTb1 + VTb2) , (B.10)

ImWT (µ) =
1

π
(WTb1 +WTb2) , (B.11)

where the contributions from the different diagrams are separated:

– From irreducible 2π-exchange:

WCir(µ) =
1

3µ(4fπ)4

{[
4m2

π(1 + 4g2
A − 5g4

A) + µ2(23g4
A − 10g2

A − 1)
]

×
√
µ2 − 4m2

π +
48m4

πg
4
A√

µ2 − 4m2
π

}
, (B.12)

VT ir(µ) = −6

(
gA
4fπ

)4
√
µ2 − 4m2

π

µ
. (B.13)

– From the ∆ triangle diagram:

Lq = −
√
µ2 − 4m2

π

2µ
, Dq =

1

2µ∆
arctan

√
µ2 − 4m2

π

2∆
, (B.14)

σ = 2m2
π − µ2 − 2∆2 , W2 = 4m2

π − µ2 , (B.15)

WCtr(µ) =
g2
A

192f4
π

{
[6σ −W2]Lq + 12 ∆2 σDq

}
. (B.16)

– From the single-∆ box diagram:

VCb1(µ) =
3 g4

A

32f4
π∆

(2m2
π − µ2)2 π

4µ
, (B.17)

WCb1(µ) =
g4
A

192f4
π

[
(12∆2 − 20m2

π + 11µ2)Lq + 6σ2Dq

]
, (B.18)

VTb1(µ) =
3 g4

A

128f4
π

{
−2Lq +

[
W2 − 4∆2

]
Dq

}
, (B.19)

WTb1(µ) =
g4
A

128f4
π∆

W2
π

4µ
. (B.20)
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– From the double-∆ box diagram:

Hq = 2
σ Lq

W2 − 4∆2
, (B.21)

VCb2(µ) =
3 g4

A

64f4
π

{
−4∆2Lq + σ

[
Hq +

(
σ + 8∆2

)
Dq

]}
, (B.22)

WCb2(µ) =
g4
A

384f4
π

{
[12σ −W2]Lq + 3σ

[
Hq +

(
8∆2 − σ

)
Dq

]}
, (B.23)

VTb2(µ) =
3 g4

A

512f4
π

{
6Lq +

[
12∆2 −W2

]
Dq

}
, (B.24)

WTb2(µ) =
g4
A

1024f4
π

{
2Lq +

[
4∆2 +W2

]
Dq

}
. (B.25)

Three-body kernels

• Iterated 1π-exchange Hartree-diagram:

K(itH)
3 (p1, p2, p3) =

3 g4
AMN

4f4
π

p1+p2∫

|p1−p2|

dq
q4

(m2
π + q2)2

ln
|p2

1 − p2
2 + q2 + 2 p3q|

|p2
1 − p2

2 + q2 − 2 p3q|
. (B.26)

• Iterated 1π-exchange Fock-diagram:

K(itF )
3 (p1, p2, p3) =

3 g4
AMN

16f4
π

{
1

8 p3
3

[
4 p1p3 +

(
p2

3 − p2
1 −m2

π

)
ln
f+(p1, p3)

f−(p1, p3)

]

×
[
4 p2 p3 +

(
p2

3 − p2
2 −m2

π

)
ln
f+(p2, p3)

f−(p2, p2)

]

+

p2+p3∫

|p2−p3|

dq
q2

m2
π + q2

[
ln
|p1 + h|
|p2 − h|

+
m2
π

R
ln
|p1R+ (p2

1 − p2
3 −m2

π)h|
|p1R+ (p2

3 +m2
π − p2

1)h|

]




, (B.27)

h =
1

2q

(
p2

2 − p2
3 − q2

)
, R =

√(
m2
π + p2

1 − p2
3

)2
+ 4m2

π

(
p2

3 − h2
)
. (B.28)

• 2π-exchange three-body Hartree-diagram with single ∆-isobar excitation:

K(∆H)
3 (p1, p2, p3) =

3 g4
A p3

∆f4
π

{
2 p1p2 (1 + ζ) +

2m4
π p1p2

f+(p1, p2) f−(p1, p2)

−m2
π ln

f+(p1, p2)

f−(p1, p2)

}
, (B.29)

including the contact term with ζ = −3/4.

• 2π-exchange three-body Fock-diagram with single ∆-isobar excitation:

K(∆F )
3 (p1, p2, p3) = − g4

A

4∆f4
π p3

[2X(p1, p3)X(p2, p3) + Y (p1, p3)Y (p2, p3)] , (B.30)

X(p1, p3) = 2 p1p3 −
m2
π

2
ln
f+(p1, p3)

f−(p1, p3)
, (B.31)

Y (p1, p3) =
p1

4 p3

(
5 p2

3 − 3m2
π − 3 p2

1

)
+

3 (p2
1 − p2

3 +m2
π)2 + 4m2

π p
2
3

16 p2
3

ln
f+(p1, p3)

f−(p1, p3)
.

(B.32)
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Anomalous contribution

ρĀ(ρ, T ) = − [Ω′1π(ρ, T )]2

2Ω′′0(ρ, T )
+

9 g4
A

8f4
πT

∞∫

0

dp1

∞∫

0

dp2

∞∫

0

dp3 d(p1) d(p2)
[
2π2d(p2)− p2

]
d(p3)

×
[
p1 −

m2
π

4 p2
ln
f+(p1, p2)

f−(p1, p2)

] [
p3 −

m2
π

4 p2
ln
f+(p3, p2))2

f−(p3, p2)

]
, (B.33)

with

Ω′1π(ρ, T ) =
3 g2

AMN

2f2
π

∞∫

0

dp1

∞∫

0

dp2 d(p1)
d(p2)

p2

[
(p1 + p2)3

f+(p1, p2)
+

(p1 − p2)3

f−(p1, p2)

]
, (B.34)

Ω′′0(ρ, T ) = −4MN

∞∫

0

dp
d(p)

p
=
√

2T

(
M

π

)3/2

Li1/2(−eµ0/T ) . (B.35)

B.2 Isospin-Asymmetric Nuclear Matter

In isospin-asymmetric nuclear matter the Fermi momenta and the “one-body” chemical
potentials of protons and neutrons are different. As a consequence, Eq. (4.20) has to be
modified, by taking into account that

• for each closed diagram we sum over all possible combinations of protons and neutrons,
each combination multiplied by its own isospin factor;

• the densities of states dp(q) and dn(q) are different due to different µ0p and µ0n. Note
that the momenta to be integrated over are now denoted by the symbol q instead of
p.

One-body kernel

The integration over the proton and neutron distributions have to be performed sepa-
rately, resulting in the following replacement in Eqs. (4.20) and (B.1):

4

∞∫

0

dq qK1(q)d(q) −→ 2

∞∫

0

dq q
[
K(p)

1 (q)dp(q) +K(n)
1 (q)dn(q)

]
, (B.36)

where K(p,n)
1 (q) = µ0p,n −

q2

3MN
− q4

8M3
N

.

Two-body kernels

• 1π-exchange Fock-diagram.
Using K(1π)

2 of Eq. (B.3) the product d(q1)d(q2) for isospin-symmetric nuclear matter
is replaced by:

d(q1)d(q2) −→ 1

6
[dp(q1)dp(q2) + dn(q1)dn(q2) + 4 dp(q1)dn(q2)] . (B.37)

• Iterated 1π-exchange Hartree-diagram.
Using K(itH)

2 from Eq. (B.5), replace in the corresponding integral:

d(q1) d(q2) −→ 1

12
[dp(q1) dp(q2) + dn(q1) dn(q2) + 10 dp(q1) dn(q2)] . (B.38)
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B.2 Isospin-Asymmetric Nuclear Matter

• Iterated 1π-exchange Fock-diagram.
Using K(itF )

2 from Eq. (B.6), replace in the corresponding integral:

d(q1) d(q2) −→ 1

6
[8 dp(q1) dn(q2)− dp(q1) dp(q2)− dn(q2) dn(q2)] . (B.39)

• Irreducible 2π-exchange.
For isoscalar amplitude VC,T in Eq. (B.7), replace:

d(q1) d(q2) −→ 1

2
[dp(q1) dp(q2) + dn(q1) dn(q2)] . (B.40)

For isovector amplitude WC,T in Eq. (B.7), replace:

d(q1) d(q2) −→ 1

6
[dp(q1) dp(q2) + dn(q1) dn(q2) + 4 dp(q1)dn(q2)] . (B.41)

• Contact terms.
Expressions for symmetric nuclear matter using K(ct)

2 of Eq. (B.2) are replaced as
follows:

B3 d(q1) d(q2) −→ (B3 −Bn,3) dp(q1) dn(q2) +
1

2
Bn,3

[
dp(q1) dp(q2) + dn(q1) dn(q2)

]
,

(B.42)

B5 d(q1) d(q2) −→ (B5 −Bn,5) dp(q1) dn(q2) +
1

2
Bn,5

[
dp(q1) dp(q2) + dn(q1) dn(q2)

]
,

(B.43)

with Bn,3 = −0.95, Bn,5 = −3.58.

Three-body kernels

• Iterated 1π-exchange Hartree-diagram.
Using K(itH)

3 from Eq. (B.26), replace in the corresponding integral:

d(q1) d(q2) d(q3) −→ 1

12

[
dp(q1) dp(q2) dp(q3)+dn(q1) dn(q2) dn(q3)+dp(q1) dp(q2) dn(q3)

+ dn(q1) dn(q2) dp(q3) + 4 dn(q1) dp(q2) dn(q3) + 4 dp(q1) dn(q2) dp(q3)
]
. (B.44)

• Iterated 1π-exchange Fock-diagram.
Using K(itF )

3 from Eq. (B.27) , replace in the corresponding integral:

d(q1) d(q2) d(q3) −→ 1

6

[
2 dp(q1) dn(q2) dp(q3)+2 dp(q1) dn(q2) dn(q3)−dp(q1) dp(q2) dp(q3)

+ 2 dn(q1) dp(q2) dp(q3) + 2 dn(q1) dp(q2) dn(q3)− dn(q1) dn(q2) dn(q3)
]
. (B.45)

• Irreducible 2π-exchange Hartree-diagram with single ∆-isobar excitation.
Using K(∆H)

3 from Eq. (B.29), replace in the corresponding integral:

d(q1) d(q2) d(q3) −→ 1

12

[
dp(q3)+dn(q3)

][
dp(q1) dp(q2)+dn(q1) dn(q2)+4 dp(q1) dn(q2)

]
,

(B.46)

The three-body contact term proportional to ζ is excluded from this formula, because
it transforms differently:

ζ d(q1) d(q2) d(q3) −→ ζ
1

2
dp(q1) dn(q2)[dp(q3) + dn(q3)] . (B.47)
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• Irreducible 2π-exchange Fock-diagram with single ∆-isobar excitation.
Expressions for symmetric nuclear matter using K(∆F )

3 of Eq. (B.30) are replaced as
follows:

2X(q1, q3)X(q2, q3) d(q1) d(q2) d(q3) −→ 1

6
X(q1, q3)X(q2, q3)×

[
dp(q1) dp(q2) dp(q3)+dp(q1) dn(q2) dp(q3)+dn(q1) dp(q2) dp(q3)+3 dn(q1) dn(q2) dp(q3)

+dn(q1) dn(q2) dn(q3)+dn(q1) dp(q2) dn(q3)+dp(q1) dn(q2) dn(q3)+3 dp(q1) dp(q2) dn(q3)
]
,

Y (q1, q3)Y (q2, q3) d(q1) d(q2) d(q3) −→ 1

6
Y (q1, q3)Y (q2, q3)×

[
2 dp(q1) dp(q2) dp(q3)−dp(q1) dn(q2) dp(q3)−dn(q1) dp(q2) dp(q3)−3 dn(q1) dn(q2) dp(q3)

+2 dn(q1) dn(q2) dn(q3)−dn(q1) dp(q2) dn(q3)−dp(q1) dn(q2) dn(q3)+3 dp(q1) dp(q2) dn(q3)
]
,

(B.48)

where X(q1, q3) and Y (q1, q3) are given in Eq. (B.31) and (B.32).

Anomalous term

The anomalous term is given by the sum of two terms transforming in a different way.

• Replace in the triple integral in Eq. (B.33):

d(q1) d(q2)
[
2π2d(q2)− q2

]
d(q3) −→

1

18

{
dp(q1) dp(q3)

{
dp(q2)[2π2dp(q2)− q2] + 4 dn(q2)[2π2dn(q2)− q2]

}

+ dn(q1) dn(q3)
{
dn(q2)[2π2dn(q2)− q2] + 4 dp(q2)[2π2dp(q2)− q2]

}

+ 4 dp(q1) dn(q3)
{
dp(q2)[2π2dp(q2)− q2] + dn(q2)[2π2dn(q2)− q2]

}}
. (B.49)

• The subtraction term in Eq. (B.33) transforms as:

− [Ω′1π(ρ, T )]2

2 Ω′′0(ρ, T )
−→ −

[
Ω′1πp(ρp, ρn, T )

]2

2 Ω′′0p(ρp, T )
− [Ω′1πn(ρp, ρn, T )]2

2 Ω′′0n(ρn, T )
(B.50)

with ρ = ρp + ρn and

Ω′′0p,n(ρp,n, T ) = −2MN

∞∫

0

dq
dp,n(q)

q
. (B.51)

Using Ω′1π(ρ, T ) defined in Eq. (B.34), Ω′1πp is obtained replacing in the integral:

d(q1) d(q2) −→ 1

6

[
dp(q1) dp(q2) + 2 dn(q1) dp(q2)

]
. (B.52)

Using Ω′1π(ρ, T ) defined in Eq. (B.34), Ω′1πn is obtained replacing in the integral:

d(q1) d(q2) −→ 1

6

[
dn(q1) dn(q2) + 2 dp(q1) dn(q2)

]
. (B.53)
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Appendix C

Contributions to the In-Medium
Chiral Condensate

In this appendix we summarize the diagrammatic contributions to the chiral conden-
sate of isospin-symmetric nuclear matter. We report the explicit expressions of the m2

π-
derivatives of the kernels of the convolution integrals in Appendix B.1. The dot denotes the
derivative ∂/∂m2

π.

One-body kernel

From the one-body term eq. (B.1) with the addition of the nucleon mass MN , we get:

K̇1(p) =
σN
m2
π

[
1 +

3ρ

2MNΩ′′0
+

p2

3M2
N

+
3p4

8M4
N

]
, (C.1)

We use:

∂MN

∂m2
π

=
σN
m2
π

,
∂µ0

∂m2
π

=
σN
m2
π

∂µ0

∂MN
. (C.2)

The derivative ∂µ0/∂MN is calculated using the condition ρ = const against variations of
any of its variables. Applying the variational principle to eq. (4.22), one finds:

∂µ0

∂MN
= − 3T

2MN

Li3/2(−eµ0/T )

Li1/2(−eµ0/T )
=

3ρ

2MNΩ′′0
, (C.3)

with Ω′′0 given by eq. (B.35).

Two-body kernels

• 1π-exchange Fock-diagram.
From eq. (B.3), one obtains:

K̇
(1π)
2 (p1, p2) =

3g2
A

8f2
π

{[
m2
π

f−(p1, p2)
− m2

π

f+(p1, p2)
− ln

f+(p1, p2)

f−(p1, p2)

]
Γ(mπ)

+

[
4p1p2 −m2

π ln
f+(p1, p2)

f−(p1, p2)

]
Γ̇(mπ) +

1

2M2
N

[
(p2

1 + p2
2) ln

f+(p1, p2)

f−(p1, p2)

+m2
π(p2

1 + p2
2)

(
1

f+(p1, p2)
− 1

f−(p1, p2)

)
+

(p1 + p2)4(p1 − p2)2

2 f2
+(p1, p2)]

−(p1 − p2)4(p1 + p2)2

2 f2
−(p1, p2)

]}
, (C.4)
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with

f+(p1, p2) = m2
π + (p1 + p2)2 , f−(p1, p2) = m2

π + (p1 − p2)2 . (C.5)

The renormalization factor Γ(mπ) is

Γ(mπ) = 1 +
g2
Am

2
π

(2πfπ)2

[
4γ + 1− 2 ln

mπ

λ

]
+

g2
A

3π2f2
π

{
πm3

π

∆
− m2

π

2

+(3m2
π − 2∆2) ln

mπ

2∆
− 2

∆
(∆2 −m2

π)
3
2 ln

∆ +
√

∆2 −m2
π

mπ

}

+
9 g2

A

(4πfπ)2

{
m2
π + (4∆2 − 2m2

π) ln
mπ

2∆
+ 4∆

√
∆2 −m2

π ln
∆ +

√
∆2 −m2

π

mπ

}
,

(C.6)

and its derivative is given by

Γ̇(mπ) =
g2
A

(πfπ)2

{
γ − 1

2
ln
mπ

λ
+
πmπ

2∆
− 1

8
ln
mπ

2∆
+

[√
∆2 −m2

π

∆
− 9

8

∆√
∆2 −m2

π

]
ln

∆ +
√

∆2 −m2
π

mπ

}
, (C.7)

with γ = −1.505 at the regularization scale λ = MN = 882 MeV.

• Pion self-energy and l3-contact term.
From the diagrams (f) and (g) of Fig. 5.1, we obtain:

K̇(self)
2 (p1, p2) =

3g2
Am

2
π

(8π)2f4
π

{(
32π2lr3 + ln

mπ

λ

)[m4
π

2

(
1

f2
+(p1, p2)

− 1

f2
−(p1, p2)

)

+2m2
π

(
1

f−(p1, p2)
− 1

f+(p1, p2)

)
− ln

f+(p1, p2)

f−(p1, p2)

]

−1

4
ln
f+(p1, p2)

f−(p1, p2)
+
m2
π

4

[
1

f−(p1, p2)
− 1

f+(p1, p2)

]}
, (C.8)

with the low-energy constant lr3 determined through the relation l̄3 = −64π2lr3 −
2 ln(mπ/λ) ' 3 [111].

• Iterated 1π-exchange Hartree-diagram.
From eq. (B.5), one obtains:

K̇(itH)
2 (p1, p2) =

3g4
AMN

8πf4
π

{
(p1 + p2) arctan

p1 + p2

mπ
+ (p2 − p1) arctan

p1 − p2

mπ

−15

16
mπ ln

f+(p1, p2)

f−(p1, p2)
+
m3
π

8

[
1

f−(p1, p2)
− 1

f+(p1, p2)

]}
. (C.9)

• Iterated 1π-exchange Fock-diagram.
From eq. (B.6), one obtains:

K̇(itF )
2 =

3g4
AMN

64πf4
π

{
2

mπ
p1p2 + 3mπ

∫ p1+p2
2mπ

p1−p2
2mπ

dx f(x)

−1

2
(p1 + p2) f

(
p1 + p2

2mπ

)
+

1

2
(p1 − p2) f

(
p1 − p2

2mπ

)}
, (C.10)
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with

f(x) =
1

1 + 2x2

[
(1 + 8x2 + 8x4) arctanx− (1 + 4x2) arctan 2x

]
. (C.11)

• Irreducible 2π-exchange with only nucleon intermediate states.
From eq. (8) in Ref. [80], one obtains:

K̇2π
2 (p1, p2) =

3m2
π

64π2f4
π

{
I

(
p1 + p2

2mπ

)
− I
(
p1 − p2

2mπ

)}
, (C.12)

with

I(x) = (11g4
A − 2g2

A − 1) ln2(x+
√

1 + x2)

+ 2x

[
(7g4

A − 6g2
A − 1)

√
1 + x2 − 2g4

A√
1 + x2

]
ln(x+

√
1 + x2)

+ 2x2
[
1 + 4g2

A − 3g4
A + (15g4

A − 6g2
A − 1) ln

mπ

λ

]
. (C.13)

• Irreducible 2π-exchange Fock-diagram with virtual ∆-excitation.
We separate the leading contribution proportional to ∆−1 from the others. Using the
potentials [52] (q is the momentum transfer)

VC(q) =
3g4
A

32πf4
π∆

{
(2m2

π + q2)2

2q
arctan

q

2mπ
+mπq

2 + 4m3
π

}
, (C.14)

WT (q) =
gA

128πf4
π∆

{
4m2

π + q2

2q
arctan

q

2mπ
+mπ

}
, (C.15)

the contribution of the dominant two-body term is written in a closed form:

K̇(∆F )
2 (p1, p2) =

g4
Am

3
π

32πf4
π∆

{
Φ

(
p1 + p2

2mπ

)
− Φ

(
p1 − p2

2mπ

)}
, (C.16)

with

Φ(x) = 8x(3 + x2) arctanx− 11 ln (1 + x2)− 148x2 , (C.17)

The remaining contribution with a non-trivial ∆-dependence is evaluated employing
the spectral-representation (B.7) with the exclusion of the irreducible 2π-exchange
with only intermediate nucleons (B.12) and (B.13) and of the potentials proportional
to ∆−1 (B.17) and (B.20), which has already taken into account in eqs. (C.12) and
(C.16). Differentiating the imaginary part of eq. (B.7) with respect to m2

π, one gets:

K̇(∆F ′)
2 (p1, p2) =

3g2
A

32π2f4
π

∫ ∞

2mπ

dµ
[
µ ln

f+(p1, p2)

f−(p1, p2)
− 4

µ
p1p2

]
·

{[
2∆

µ
+

g2
A

8µ∆
(8∆2 + 40m2

π − 13µ2)

]
arctan

√
µ2 − 4m2

π

2∆
− g2

Aµm
2
π

∆2
√
µ2 − 4m2

π

+
√
µ2 − 4m2

π

[
3g2
Aµ(m2

π −∆2)

(µ2 + 4∆2 − 4m2
π)2
− 2 + g2

A

2µ
+

2g2
Aµ(m2

π −∆2)− µ∆2

2∆2(µ2 + 4∆2 − 4m2
π)

]}
. (C.18)

The spectral representation is only once subtracted and not twice as in eq. (B.7). The
associated subtraction constant proportional to the density ρ has a non-analytical de-
pendence on the quark mass that supplies an additional contribution linear in density:

K̇(dt)
2 (p1, p2) =

9g2
A p1p2

32π2f4
π

{
4∆2 − 5g2

A(2∆2 + 3m2
π)

2∆
√

∆2 −m2
π

ln
∆ +

√
∆2 −m2

π

mπ

+(2− 5g2
A) ln

mπ

2∆

}
. (C.19)
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C - Contributions to the In-Medium Chiral Condensate

• 2π-exchange diagrams with c1-contact term.
From the isoscalar central one-loop NN -scattering amplitude [51]

VC(q) =
3g2
Ac1m

2
π

4πf4
π

{
2m2

π + q2

2q
arctan

q

2mπ
+mπ

}
, (C.20)

we derive

K̇(c1)
2 (p1, p2) =

g2
Ac1m

3
π

8πf4
π

{
H

(
p1 + p2

2mπ

)
−H

(
p1 − p2

2mπ

)}
, (C.21)

with

H(x) = 8x(3 + x2) arctanx− 5 ln (1 + x2)− 100x2 (C.22)

and the contact term c1 = −0.93GeV−1.

Three-body kernels

• Iterated 1π-exchange Hartree-diagram.
From eq. (B.26) it follows:

K̇(itH)
3 (p1, p2, p3) =

3g4
AMN

2f4
π

p1+p2∫

p1−p2

dq
q4

(m2
π + q2)3

ln
|p2

1 − p2
2 + q2 − 2 p3q|

|p2
1 − p2

2 + q2 + 2 p3q|
. (C.23)

• Iterated 1π-exchange Fock-diagram.
From eq. (B.27) it follows:

K̇(itF )
3 (p1, p2, p3) =

3g4
AMN

8f4
π

{
1

8 p3
3

[
4p1p3 + (p2

3 − p2
1 −m2

π) ln
f+(p1, p3)

f−(p1, p3)

]

·
[

2p3(p2 + p3)

f+(p2, p3)
+

2p3(p2 − p3)

f−(p2, p3)
− ln

f+(p2, p3)

f−(p2, p3)

]

−
p2+p3∫

p2−p3

dq
q2

(m2
π + q2)2

[
ln
|p1 + h|
|p1 − h|

+
m2
π

R
ln
|p1R+ (p2

1 − p2
3 −m2

π)h|
|p1R+ (p2

3 − p2
1 +m2

π)h|

]
 . (C.24)

• 2π-exchange Hartree-diagram with single ∆-isobar excitation.
From eq. (B.29) it follows:

K̇(∆H)
3 (p1, p2, p3) =

3g4
A p3

∆f4
π

{
m4
π

2f2
+(p1, p2)

− m4
π

2f2
−(p1, p2)

− 2m2
π

f+(p1, p2)
+

2m2
π

f−(p1, p2)
− ln

f+(p1, p2)

f−(p1, p2)

}
. (C.25)

• 2π-exchange Fock-diagram with single ∆-isobar excitation: From eq. (B.30) it follows:

K̇(∆F )
3 (p1, p2, p3) = − g4

A

4∆f4
π p3

{[
4 p1p3 −m2

π ln
f+(p1, p3)

f−(p1, p3)

]

·
[

m2
π

f−(p2, p3)
− m2

π

f+(p2, p3)
− ln

f+(p2, p3)

f−(p2, p3)

]

+

[
p1

4p3
(5p2

3 − 3m2
π − 3p2

1) +
3(p2

1 − p2
3 +m2

π)2 + 4m2
πp

2
3

16p2
3

ln
f+(p1, p3)

f−(p1, p3)

]

·
[

3m2
π + 3p2

2 − p2
3

4p2
3

ln
f+(p2, p3)

f−(p2, p3)
+

m2
π

f−(p2, p3)
− m2

π

f+(p2, p3)
− 3p2

p3

]}
. (C.26)
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• 2π-exchange Hartree-diagram with c1-contact term:

K̇(c1H)
3 (p1, p2, p3) =

6g2
Ac1p3

f4
π

{
m4
π

f2
+(p1, p2)

− m4
π

f2
−(p1, p2)

− 3m2
π

f+(p1, p2)
+

3m2
π

f−(p1, p2)
− ln

f+(p1, p2)

f−(p1, p2)

}
. (C.27)

• 2π-exchange Fock-diagram with c1-contact term:

K̇(c1F )
3 (p1, p2, p3) =

3g2
Ac1

f4
π p3

[
p2 +

p2
3 − p2

2 −m2
π

4p3
ln
f+(p2, p3)

f−(p2, p3)

]

·
[
p1 +

p2
3 − p2

1 − 3m2
π

4p3
ln
f+(p1, p3)

f−(p1, p3)
+
m2
π(p1 + p3)

f+(p1, p3)
+
m2
π(p1 − p3)

f−(p1, p3)

]
. (C.28)

Anomalous contribution

From eq. (B.33) it follows:

ρ ˙̄A(ρ, T ) = −Ω′1πΩ̇′1π
Ω′′0

+
9g4
A

16f4
πT

∞∫

0

dp1

∞∫

0

dp2

∞∫

0

dp3 d(p1)d(p2)[2π2d(p2)− p2]d(p3)

· 1

p2

[
m2
π

f−(p1, p2)
− m2

π

f+(p1, p2)
− ln

f+(p1, p2)

f−(p1, p2)

] [
p3 −

m2
π

4p2
ln
f+(p3, p2)

f−(p3, p2)

]
, (C.29)

with

Ω̇′1 = −3g2
AMN

2f2
π

∫ ∞

0
dp1

∫ ∞

0
dp2 d(p1)

d(p2)

p2

{
(p1 + p2)3

f2
+(p1, p2)

+
(p1 − p2)3

f2
−(p1, p2)

}
. (C.30)
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Appendix D

Loop Integrals with Two Medium
Insertions

D.1 Case with Two Equal Fermi Spheres

Consider the integral

Q =
a

2π

∫
d3l δ(l2 − q2) θ(kF − |~P +~l |) θ(kF − |~P −~l |) (D.1)

The solution is given by that portion of the spherical surface of radius q ≡ |~q | intersecting
the two Fermi spheres of radius kF whose centers are displaced by 2P ≡ 2|~P |. As showed
in Fig. D.1, two cases are possible according to the length of q with respect to kF .

a) 0 < q < kF − P : the intersection is the whole spherical surface of radius q.

Q =
a

2π

∫
d3l δ(l2 − q2) = 2a

∫ ∞

0
dl
l2

2q
δ(l − q) = a q . (D.2)

b) kF < q <
√
k2
F − P 2: the solution is the area of the spherical zone of radius q and

height y. We calculate y from the intersection between the Fermi sphere and the
spherical surface:

{
x2 + (y + P )2 = k2

F

x2 + y2 = q2 =⇒ y =
k2
F − P 2 − q2

2P
. (D.3)

The area is

Q = a

∫ y/q

−y/q
dcos θ

∫ ∞

0

l2

2q
δ(l − q) = a

k2
F − P 2 − q2

2P
. (D.4)

Introducing the variable s = P/kF and k = q/kF , the solution can be written as:

Q = akF I(s, k), I(s, k) =





k 0 < k 6 1− s

1− s2 − k2

2s
1− s < k 6

√
1− s2

. (D.5)
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D - Loop Integrals with Two Medium Insertions

kF

kF

P

q

P

(a)

kF

kF

P

q

P

y

(b)

Figure D.1: Geometrical interpretation of the loop integral (D.1) with two medium inser-
tions. The two Fermi spheres have radius kF . The solution is given by their intersection
with the spherical surface of radius q. Depending on the size of q with respect to kF , two
cases can take place.

D.2 Case with Two Different Fermi Spheres

Consider now the integration over two different Fermi spheres with radii kp and kn
(kp < kn):

Ipn =
1

2π

∫
d3l δ(l2 − q2) θ(kp − |~P +~l |) θ(kn − |~P −~l |) . (D.6)

The integral has the same geometrical interpretation given for eq. (D.1). However, the
two Fermi spheres have different sizes and give rise to a wider number of cases, as one can
see in Fig. D.2.

a) If q 6 |kp − P | and kp 6 P , there is no intersection:

Ipn = 0 . (D.7)

b) If q 6 |kp −P | and kp > P , the intersection is the whole spherical surface of radius q:

Ipn =
1

2π

∫
d3l δ(l2 − q2) = q . (D.8)

c) If |kp−P | < q 6 |kn−P |, the intersection is given by the surface of the spherical cup.
The height of the cup is y:

{
x2 + (y + P )2 = k2

p

x2 + y2 = q2 =⇒ y =
k2
p − P 2 − q2

2P
. (D.9)

We calculate the integral:

Ipn =

∫ y/q

−1
dcos θ

∫ ∞

0
dl

l2

2q
δ(l − q) =

k2
p − (P − q)2

4P
. (D.10)
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D.2 Case with Two Different Fermi Spheres
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kn

kp

P

q

P

b)

(b)
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y

(c)

kn

kp

P

q

P
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(d)

kn

kp

P q

P

e)

(e)

Figure D.2: Geometrical interpretation of the loop integral (D.6) with two medium insertions
with two different Fermi spheres with radii kp and kn. All possible cases are displayed. In
red we highlight the intersection between the two Fermi spheres and the spherical surface
with radius q.
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D - Loop Integrals with Two Medium Insertions

It becomes negative for q > kp + P loosing any physical meaning. We then exclude
this region:

Ipn = 0 for q > kp + P . (D.11)

d) If |kn − P | < q 6 rb, the solution is the area of the spherical zone of radius q and
height |ya − yc|. First, we calculate rb from the intersection of the two Fermi spheres:

{
x2 + (y + P )2 = k2

p

x2 + (y − P )2 = k2
n

=⇒ rb =
√
x2
b + y2

b =

√
k2
p + k2

n

2
− P 2 . (D.12)

The ordinates ya and yc are:

ya =
k2
p − P 2 − q2

2P
, yc = −k

2
n − P 2 − q2

2P
. (D.13)

Finally, we integrate:

Ipn =

∫ ya/q

yc/q
dcos θ

∫ ∞

0
dl

l2

2q
δ(l − q) =

k2
p + k2

n − 2(P 2 + q2)

4P
. (D.14)

e) If kp + P 6 q < |kn − P |, there is no intersection:

Ipn = 0 . (D.15)

We summarize the result:

Ipn =





0 q > kp + P

q θ(kp − P ) q 6 |kp − P |

k2
p − (P − q)2

4P
|kp − P | < q 6 |kn − P |

k2
p + k2

n − 2(P 2 + q2)

4P
|kn − P | < q 6

√
k2p+k2n

2 − P 2

. (D.16)

Fig. D.3a shows the domain of the function Ipn in the variables P and q. Being a piece-
wise function, its domain is subdivided in blocks on which it assumes a different behaviour.
The alphabetical letters labeling the subdomains are in correspondence with the items of
the list above and with the cases of the geometrical interpretation in Fig. D.2. Eventually,
Fig. D.3b is the plot of Ipn corresponding to the choice of values kp = 7.5 and kn = 16.5.
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D.2 Case with Two Different Fermi Spheres

P

Ipn = q

0

0

P+q=kp

P-
q=
kp

P+q=kn

q-
P=
kp

Ipn=[kp2+kn2-2(P2+q2)]/(4P)

Ipn=[kp2-(P-q)2]/(4P)q

kp

kp

(kn-kp)/2 (kn+kp)/2

√[(kn2+kp2)/2]

a)

b)

c)

d)

e)

√[1/2(kp 2+kn 2)-P 2]

(a) (b)

Figure D.3: On the left: domain of the function Ipn in the variables P and q. On the right:
plot of the function Ipn for the numerical choice kp = 7.5 and kn = 16.5.
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Appendix E

Change of variables in the Integration
over the Interior of Two Fermi
Spheres

We prove the master formula (6.27) used to perform the integration over the interior of
two Fermi spheres. We solve the integral

A =

∫

|~p1,2|<kF

d3p1 d3p2

(2π)6
f(s, k) =

k6
F

8π4

∫ 1

0
dx1 x

2
1

∫ 1

0
dx2 x

2
2

∫ 1

−1
dz f(s, k) , (E.1)

with

s, k =
1

2

√
x2

1 + x2
2 ± 2x1x2z . (E.2)

The integral A is symmetric under the exchange x1 ↔ x2. As one can see in Fig. E.1a,
the domain of integration in x1 and x2 is defined over a square of unitary side. Due to the
symmetry, A can be rewritten as twice an integration over one of the triangle delimited by
the straight line x1 = x2:

A =
k6
F

4π4

∫ 1

0
dx1 x

2
1

∫ x1

0
dx2 x

2
2

∫ 1

−1
dz f(s, k) . (E.3)

We change the integration variable z in k using eq. (E.2). We obtain:

A =
k6
F

π4

∫ 1

0
dx1 x1

∫ x1

0
dx2 x2

∫ x1+x2
2

x1−x2
2

dk k f(s, k) . (E.4)

We exchange the order of integration between k and x2 using Fig. E.1b to calculate
the new integration intervals. The grey region is the domain of integration. The red band
indicates the initial order of integration, the green band the final one after the exchange.
This leads to:

A =
k6
F

π4

∫ 1

0
dx1 x1

∫ x1

0
dk k

x1∫

|2k−x1|

dx2 x2 f(s, k) . (E.5)

The next step is the replacement of the variable x2 with s. Employing the relation

s2 + k2 =
1

2

(
x2

1 + x2
2

)
−→ 2s ds = x2 dx2 , (E.6)
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E - Change of variables in the Integration over the Interior of Two Fermi Spheres

1

1

x2

x1 x1=x2

(a)

x1

x2

k=(x1+x2)/2

k=(x1-x2)/2

x1/2

x1

k

(b)

s

x1
1k

1-k

√(1-k2)

√(x12-k2)

x -k

(c)

k1

s
1

√(1-k2)

(d)

Figure E.1: The grey region shows the domain of integration of A in the variables labeling
the axes. In the plot (a), A can be calculated as twice the integral over one of the triangles
because of its symmetry under the exchange x1 ↔ x2. The other plots are used to change
the order of integration in A. Initially A is first integrated over the vertical axis (red band)
and then over the horizontal one. The exchange of the order implies to start with the
integration over the horizontal axis (green band).
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the integral becomes:

A =
2k6

F

π4

∫ 1

0
dx1 x1

∫ x1

0
dk k

√
x21−k2∫

x1−k

ds s f(s, k)

=
2k6

F

π4

∫ 1

0
dk k

∫ 1

k
dx1 x1

√
x21−k2∫

x1−k

ds s f(s, k) . (E.7)

In the second line we have exchanged the order of integration between x1 and k. And now
we exchange the order between s and x1 with the help of Fig. E.1c:

A =
2k6

F

π4

∫ 1

0
dk k

∫ √1−k2

0
ds s

[∫ s+k

√
s2+k2

dx1 x1 θ(1− s− k)

+

∫ 1

√
s2+k2

dx1 x1 θ(s+ k − 1)

]
f(s, k) . (E.8)

The integration in x1 is easily carried out:

A =
2k6

F

π4

∫ 1

0
dk k

∫ √1−k2

0
ds s

[
ks θ(1− s− k) +

1− s2 − k2

2
θ(s+ k − 1)

]
f(s, k) . (E.9)

As last step we change the order of integration between s and k (Fig. E.1d):

A =
2k6

F

π4

∫ 1

0
ds s2

∫ √1−s2

0
dk k

[
k θ(1− s− k) +

1− s2 − k2

2s
θ(s+ k − 1)

]
f(s, k)

=
2k6

F

π4

∫ 1

0
ds s2

∫ √1−s2

0
dk k I(s, k) f(s, k) , (E.10)

where we have used the definition of the function I(s, k) eq. (D.5).
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