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Abstract
The recent paradigm shift in the architecture of the smart grid is driven by the need to

integrate Renewable Energy Resources (RER), the availability of information through com-
munication networks, and an emerging policy of demand that is intertwined with pricing. A
major component of this architecture is the design of electricity markets, which pertains to
the optimal scheduling of power generation and reserve requirements. The challenge is to
carry out this scheduling with a high level of integration of renewable generation sources,
a formidable task due to intermittency and uncertainty. Introducing huge intermittency and
uncertainty in the smart grid will demand a dynamic framework for addressing the oper-
ation, scheduling and financial settlements in the uncertain environment. The temporal
components in scheduling generation are necessary due to increasing penetration of renew-
able sources, and increasing potential of adjustable demand via Demand Response (DR).
The former brings issues of strong intermittency and uncertainty, and the latter brings a
feedback structure, where demand can be modulated over a range of time-scales. Both of
these components are dictating a new look at market mechanisms, with a controls viewpoint
enabling a novel framework for analysis and synthesis.

This dissertation provides static and dynamic models that capture the various aspects of
electrical power systems, including the dynamics of market participants, the physical and
technical constraints of power systems, and the uncertainty of RER. The proposed models
shed new light on wholesale electricity market design, allowing an understanding to be
gained of how to create markets, which enhance the stability of price profiles, and efficiency
of the power systems, in the presence of uncertain demand and intermittent resources. The
notion of market equilibrium in the presence of RER and DR is presented. The effects of
uncertainties due to forecast errors in RER and variations due to DR on the market equilib-
rium are analyzed using perturbation analysis. Then, the notion of a disequilibrium process
is provided as an indispensable market mechanism to attain market equilibrium in the pres-
ence of perturbations due to renewables and Demand Response. Associated with this notion
is the design of dynamic mechanisms whose roles become more crucial as one moves from
a day-ahead to a real time market and the underlying forecast models of renewables be-
come more accurate. Introduction of dynamics and feedback brings in questions of stability.
A systematic stability framework is studied, which analyzes the interplay between pricing
strategies, adjustable demand, and generation while guaranteeing a stable price profile.

Furthermore, an analytical modeling of a Transactive control architecture is provided,
which incorporates the interaction between market transactions, real-time pricing, physical
constraints, and DR in the presence of uncertainty of RER. Transactive control consists of
three hierarchical levels: (i) primary control, where power is regulated at a unit level, (ii)
secondary control, where frequency is regulated at an area-level, and (iii) tertiary control,
which includes market transactions between the generating and consumer companies in
order to dispatch the resources economically. With a goal of ensuring frequency regulation
using optimal allocation of resources in the presence of uncertainties in renewables and load,
an analytical framework of Transactive control is presented. Global asymptotic stability of
the overall system is established in the presence of uncertainties at all three time-scales,
and this overall hierarchical Transactive controller is then shown to be effective through
numerical simulations in the presence of generation and load uncertainties.
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Zusammenfassung

Der Paradigmenwechsel in der Architektur von Smart Grids, der sich in letzter Zeit vollzo-
gen hat, ist getrieben von der Notwendigkeit erneuerbare Energiequellen in das Stromnetz
zu integrieren, der Verfügbarkeit von Informationen durch fortschrittliche Mess- und Kom-
munikationstechnik und der sich abzeichnenden Strategie die Nachfrage mit der Preisge-
staltung zu verflechten. Ein bedeutender Aspekt dieser Architektur ist das Design von Elek-
trizitätsmärkten für Großkunden. Hierzu gehört die optimale Planung der Stromproduktion
und die Anforderungen an die Reserve. Die Herausforderung besteht darin, diese Planung
unter Berücksichtigung eines hohen Maßes an erneuerbaren Energien auszuführen; eine
anspruchsvolle Aufgabe angesichts der Periodizität und Unsicherheit von letzterem. Durch
die Einführung von Periodizitäten und Unsicherheiten im Smart Grid bedarf es einer dy-
namischem Lösung, die den Betrieb, die Planung und die finanziellen Vereinbarungen in
einer dynamischen und unsicheren Umwelt anspricht. Es ist notwendig die zeitlichen Aspek-
te bei der Produktionsplanung zu berücksichtigen, da durch das vermehrte Auftreten von
erneuerbaren Energiequellen sowohl Periodizitäten als auch Unsicherheiten und durch die
gesteigerten Möglichkeiten einer Rückführungsstruktur (Demand Response) verschiedene
Zeitskalen in das System eingebracht werden. Beide Aspekte diktieren eine neue Sichtweise
auf die zugrundeliegenden Marktmechanismen; ein regelungstechnischer Standpunkt bietet
dabei neuartige Möglichkeiten zur Analyse und Synthese.

In dieser Dissertation werden statische und dynamische Modelle vorgestellt, die verschie-
dene Dynamiken im System, physikalische und technische Beschränkungen, Unsicherheiten
und Preisschwankungen erfassen. Die Gestaltung von Großhandelsmärkten für Elektrizität
wurde neu beleuchtet um das Verständnis zu vergrößern, wie Märkte ihre Verlässlichkeit
und Effizienz unter Berücksichtigung von periodischen Ressourcen und Schwankungen er-
höhen und gleichzeitig stabile Preisprofile sicherstellen können. Dazu wird der Begriff des
Marktgleichgewichts in der Gegenwart von erneuerbaren Energien und Nachfragerückfüh-
rung eingeführt. Die Einflüsse auf das Marktgleichgewicht, die durch Unsicherheiten auf-
grund von Vorhersagefehlern bei der Verfügbarkeit erneuerbarer Energiequellen und Ver-
änderungen aufgrund der Nachfragerückführung hervorgerufen werden, werden mithilfe
der Störungstheorie untersucht. Anschließend wird der Begriff des Ungleichgewichtspro-
zesses vorgestellt, ohne den ein Marktgleichgewicht in Gegenwart von Störungen, die von
erneuerbargen Energien verursacht werden, und Nachfragerückführung nicht erreicht wer-
den kann. Hierzu gehört auch der Entwurf von dynamischen Mechanismen, deren Rolle
umso bedeutender sowohl beim Übergang von day-ahead zu Echtzeitmärkten als auch der
stetigen Verbesserung der zugrundeliegenden Vorhersagemodelle für erneuerbare Energien
wird. Diese werfen jedoch auch Fragen nach Stabilität auf. Eine systematische Stabilitätsbe-
trachtung, die das Zusammenspiel von Preistrategien, veränderbarer Nachfrage und Produk-
tion unter Gewährleistung stabiler Preisprofile analysiert, wird untersucht. Darüberhinaus
wird ein analytisches Modell einer transaktiven Regelungsarchitektur vorgestellt, das unter
Berücksichtigung von erneuerbaren Energiequellen die Wechselwirkungen zwischen Markt-
transaktionen, Echtzeitpreisen, physikalischen Beschränkungen und Nachfragerückführung
beinhaltet. Die transaktive Regelung beinhaltet drei Ebenen: (i) die primäre Regelung des
Stroms auf Geräteebene, (ii) die sekundäre Regelung der Frequenz auf Gebietsebene und
(iii) die tertiäre Regelung, die die Markttransaktionen zwischen produzierenden und konsu-
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mierenden Unternehmen ökonomisch verteilt. Unter der Maßgabe die Frequenzregulierung
unter optimaler Aufteilung der Ressourcen in Anwesenheit von Unsicherheiten in den erneu-
erbaren Energien und der Last sicherzustellen, wird eine hierarchische Regelungsmethodik
vorgestellt. Globale asymptotische Stabilität für das Gesamtsystem in Anwesenheit von Unsi-
cherheiten auf allen drei Zeitskalen wird sichergestellt und durch numerische Simulationen
wird gezeigt, dass der hierarchische transaktive Regler in Anwesenheit von Produktions- und
Lastunsicherheiten effektiv arbeitet.
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Notations

κD j Curtailment Factor by demand j
∆PD j Change of consumption by demand j
∆ρn( j) Change of LMP for demand j
λU

D jk
Marginal utility associated with block k of demand j

λC
Gi b

Marginal operating cost associated with block b of generator i
Bnm susceptance of line n−m
Bl ine Line admittance matrix with elements Bnm

τg Diagonal matrix of generators time constant diag{τGi}
τR

g Diagonal matrix of wind generators time constant diag{τR
Gi}

τd Diagonal matrix of demand time constant diag{τD j}
τδ Diagonal matrix of voltage angle time constant diag{τδ}
τρ Diagonal matrix of Locational Marginal Price time constant diag{τρ}
τγ Diagonal matrix of congestion price time constant diag{τγ}
cg Diagonal matrix of generators cost coefficient diag{cGi}
cd Diagonal matrix of consumers utility coefficient diag{cD j}
bg Vector of generators cost coefficient whose elements are{bGi}
bd Vector of consumers cost coefficient whose elements are{bD j}
A Bus incident matrix

�

Nt × N
�

Ar Reduced bus incident matrix
�

Nt × N − 1
�

Ag Generators incident matrix where Agi j
= 1 if the i th

generator is connected to j th bus and Agi j
= 0 if the i th

generator is not connected to j th bus(N ×Ng)
Ad Consumers incident matrix where Adi j

= 1 if the i th

consumer is connected to j th bus and Adi j
= 0 if the i th

consumer is not connected to j th bus
Pmax

nm Transmission capacity limit of line n−m
Pmax Vector of maximum capacity limit whose elements are Pmax

nm
R Rotating matrix where Rx1= [δ1...δN−1]
UD j Utility of demand j
CGi Cost of Generator Company i
M Inertia constant
D Damping coefficient
Tu Time constant representing the delay between the control valves and the turbine nozzles
Tg Time constant of the valve servo motor-turbine gate system
r Permanent speed droop of the turbine
MG Generator inertias
MT Turbine inertias
Dm Mutual damping coefficients
Ks Spring constant of the tortional spring
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"If you deliberately plan on being less than you are capable of being, then I warn you that
you’ll be unhappy for the rest of your life."

- Abraham Maslow



1 Introduction

Following deregulation in the 1980s, the wholesale electricity market was proposed in or-
der to ensure an efficient and reliable scheduling of power generation. In this structure,
organized competitive markets would set the price of wholesale electricity. Ownership of
generation would often be separated from the rest of the system, and an independent entity
would operate the transmission system and administer the wholesale markets [14]. Overall,
markets would take on some of the coordinating and cost-minimizing functions tradition-
ally performed within vertically integrated utilities to provide secure, reliable and affordable
electricity for all consumers with a reasonable quality of service.

Competitive electricity market had great appeal to some governments which found them-
selves owning nationalized power systems including generating plants that could be sold to
raise revenue and enable wholesale market competition. In 1982, Chile adopted a version
of this new model, and in 1990, the Thatcher government in the United Kingdom followed
suit as part of its privatization program [15–17]. In the U.S., as a result of slowing demand
growth and significant capacity expansion in some regions, the competitive market became
an important issue because it was presumed that prices for electricity would then be below
regulated prices [14,18,19].

To promote competition, in 1996 the Federal Energy Regulatory Commission (FERC) is-
sued Order No. 888, which required transmission owners to provide wholesale customers
open, non-discriminatory access to their systems under a regulated Open Access Transmis-
sion Tariff [14,19]. This order effectively granted equal access to both utility and non-utility
generators. Since then, independent system operators (ISOs) and regional transmission or-
ganizations (RTOs) have been created in certain parts of the U.S. As a result of this reform in
the U.S. power grid, ISOs and RTOs organized wholesale electricity markets in which inde-
pendent decisions of market participants set the price of energy generation, and also respect
the requirements of central commands provided by the ISO or RTO.

Furthermore, efforts by the European Union led to a major movement towards deregu-
lation in Europe in the second half of the 1990s [20]. The Nord Pool market, for instance,
was established in 1992. Sweden joined this market in 1996, Finland in June 1998, Western
Denmark in July 1999, and Eastern Denmark in October 2000 [20]. Germany brought in
deregulation in 1998 when its new energy law became effective. As a consequence, the first
German power exchange in Leipzig started operations in June 2000 [21].

Beginning in the summer of 2000 and continuing through the summer of 2001, wholesale
power prices in California increased significantly, forcing the federal government to subsidize
power for low-income families in San Diego and bankrupting one of the state’s three major
utility companies [18]. At the same time, huge shortages in available generation capacity
forced state-wide blackouts. The energy crisis in California may have cost the state as much
as $45 billion from increased electricity costs, lost business due to blackouts, and a slowdown
in economic growth [22,23]. The official explanation for California’s power crisis [23] was
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1.1 Motivation

that flaws in the restructuring agreement, combined with poor federal oversight, made it
possible for companies to artificially drive up prices.

A more recent example happened in ERCOT, the Texas market, for two days in 2011.
January 31 was a typical day, with prices ranging from a high near $80/MWh, and a low just
below zero. Two days later on February 2, 2011, unusually cold weather in Texas resulted
in real-time prices hitting the cap of 3,000 $/MWh, about 100 times the average [93]. In
another example, in March 2011 in New Zealand, electricity prices exceeded $20,000/MWh
in one region of the country, and remained near this extraordinary level for about six hours.

Economists and engineers agree that the unique physical attributes of electricity make the
design of efficient power markets a challenge [18, 24]. One of the significant challenges is
that power must be produced as it is needed because of the prohibitively high cost of storage.
Since demand for power is difficult to predict, some power plants are kept on reserve and
ready to begin production on short notice. However due to physical constraints, there is a
lag time before additional power can be generated. Because of capacity constraints in power
lines and other equipment, it can also be a challenge to deliver electricity where it is needed.
These technical issues make power dispatch a significant challenge.

As a result, models that capture the various dynamics in the system, the physical and tech-
nical constraints, the uncertainty and volatility are needed, to shed new light on wholesale
electricity market design and gain an understanding of how to create markets to enhance
reliability and efficiency, with stable price profiles, in the presence of uncertain and inter-
mittent resources and demand. Many of these challenges are discussed at length in the
following chapters of this dissertation.

1.1 Motivation

Smart grids introduce revolutionary changes to the generation, operation, scheduling, and
use of electricity. The emerging smart grid will be more dynamic, flexible, reliable, and
robust. Dynamic modeling and identification, estimation and optimization, feedback and
adaptation, and other control technologies and concepts will be key enablers for smart power
grids. The smart power grids will have four significant characteristics:

1. A tremendous number of sensing devices: Sensors, actuators, and communication de-
vices will be deployed at generators, along transmission lines, at substations, in trans-
formers, in distributed energy resources such as photovoltaics, wind turbines, invert-
ers, storage devices, electric vehicles, and smart appliances in distribution networks,
and microgrids.

2. A significant number of active agents: Active agents in the operation of the new smart
grid include industrial, commercial and residential customers together with micro-
grids, utilities, and power generating companies. Since these stakeholders are profit
seeking, their objectives are not perfectly aligned.

3. The penetration of Renewable Energy Resources (RERs): The power output from renew-
able energy resources, such as wind and solar is intermittent and less predictable than
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the output from fossil fuel generators. Information exchange is required for rapid
adaptation to unpredicted fluctuations in power supply, voltage, and frequency.

4. Advanced power electronics: Substantial advances are being made in smart components
such as DC/AC inverters, smart batteries, flexible AC transmission system (FACTS)
devices, and storage devices. Such advanced power electronics will not only enable
more effective use of existing power system assets, but, more importantly, they will
provide the means to implement control and optimization algorithms.

These characteristics of smart power grids pose several challenges. Among these chal-
lenges, jointly optimizing control structure and information and communication technolo-
gies to manage hundreds of millions of active endpoints, designing economic mechanisms to
align incentives and market forces to reach desired global outcomes are the most significant
challenges. Furthermore, a systematic methodology is necessary in order to design the con-
trol architectures and algorithms, to balance supply and demand, and regulate frequency in
the presence of volatile supply.

An interconnected system of billions of RERs introduces rapid, large, and random fluctu-
ations in power supply and demand, voltage and frequency Introducing huge intermittency
and uncertainty in a smart grid will demand a dynamic framework to address the operation,
scheduling and financial settlements in the dynamic and uncertain environment. The tempo-
ral components are necessary due to increasing penetration of renewable sources in schedul-
ing generation, and increasing potential of adjustable demand via Demand Response. The
former brings issues of strong intermittency and uncertainty, and the latter brings a feedback
structure, where demand can be modulated over a range of time-scales. Both of these com-
ponents are dictating a new look at market mechanisms, with a controls viewpoint enabling
a novel framework for analysis and synthesis.

Following this new look at market mechanisms, modeling of the wholesale electricity mar-
ket dynamics in an accurate manner is becoming increasingly important as new time-scales
and uncertainties enter the picture. These models must capture the behavior of the domi-
nant market players such as Generators Company (GenCo), Consumers Company (ConCo),
and Independent System Operator (ISO), real-time prices, diverse dynamic drivers (e.g.,
weather, load, fuel prices, and wind supply), and physical constraints (e.g., ramping, trans-
mission congestion). These market models, as well as an analysis of the market equilibrium,
directly help to identify various sources of price volatility, and can help to quantify sensitivity
to uncertainties and intermittencies in Renewable Energy Resources (RER) and variations in
real-time prices due to Demand Response (DR).

Furthermore, dynamic market mechanisms will become increasingly important as we
move from a day-ahead to a real time market and the underlying forecast models of renew-
ables and consumer and load control behavior become more accurate. The dynamic market
mechanism is entwined with the notion of a disequilibrium process, which is indispensable
in the current context of market mechanisms to attain market equilibrium in the presence of
perturbations due to the uncertainty and intermittency of RERs . The real-time price can be
viewed as a state of this dynamic framework, since it is determined through financial trans-
actions of various market entities, and also as a feedback control variable, since it can affect
consumption. Introduction of dynamics and feedback brings in questions of stability. A sys-
tematic stability framework to analyze the interplay between pricing strategies, adjustable
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demand, and generation, while guaranteeing stable behavior, is highly warranted. Needless
to say, this framework must include multiple time-scales, latencies leading to time-delays,
nonlinearities, distributed systems, learning, and adaptation. It should also be noted that
because of the flexibility in selecting price strategies and their underlying information in-
frastructure, the market design can be viewed as a control problem. The inter-relationships
between demand, real-time pricing strategies, and financial transactions, grouped under the
rubric of Transactive Control, necessitate a dynamic framework of study, in order to enable
integration of renewables and DR-compatible devices, social efficiency, and stability.

1.2 Related Work

The seminal papers of Fred Schweppe and his co-workers can be considered as the first
studies that systematically investigated and established the notion of spot pricing in the
wholesale electricity market [25]. Ever since, there has been a tremendous amount of re-
search devoted to different aspects of electricity market. For a detailed introduction and an
overview, the interested reader is to referred to many books on the subject, e.g., [26–31].
In particular, for a detailed overview and some recent results concerning different modeling
approaches of the wholesale electricity market, market equilibrium, and congestion man-
agement of transmission systems, we refer to [32,33,35–37].

Various methods have been proposed in the literature to determine market models
[38–40]. Given the primary purpose of balancing supply and demand in the market, these
methods are primarily focused on the analysis of market equilibrium. Methods in [38, 39]
model the electricity market participants, subject to spot market equilibrium and their own
constraints, leading to a method termed Equilibrium Programming with Equilibrium Con-
straints (EPECs). In such models, each agent solves a Mathematical Program with Equilib-
rium Constraints (MPEC) [40], and by using stationarity theory for MPECs, a standard linear
mixed complementarity problem (LMCP) is shown to lead to equilibrium [41].

Another approach to market modeling is the use of a variational and linear complemen-
tarity problem (LCP) formulation (see [42–45]). A single-settlement framework based on
a LCP is proposed in [46], which leads to a strategic game in which players have coupled
constraints. Starting from the framework proposed in [46] and [47], the approach based on
LCP is used in Chapter 3 to delineate the underlying market model. Representing the effect
of forecast errors in renewable energy as an uncertain parameter, we evaluate its effect on
the market equilibrium.

One of the most promising approaches to understanding and studying competition in
deregulated electricity markets is game theory [36, 48–55]. Game theory has long been a
discipline within the broader field of industrial organization, and is now finding applications
in the study of strategic behavior in the wholesale electricity markets. In particular, the
notion of Nash equilibrium, which specifies strategies such that competing firms maximize
their profits in the absence of collusion, can be applied to understand the likely behavior of
rational firms in the electricity markets.

According to Hobbs et al. [36], a crucial difference among various game-theoretical stud-
ies of wholesale electricity markets is the economic model used to characterize interactions
between competing generating companies. These models usually range from Bertrand com-
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petition (see [48]) to the more commonly used Cournot competition (see for example [18]).
Bertrand competition usually results in electricity prices equal to short-run marginal costs
of generating power, referred to as perfectly competitive equilibrium. Cournot competition,
however, results in prices exceeding short-run marginal costs due to some (often significant)
withholding of capacity from the market by generation owners. However, neither of these
sets of models appears realistic enough to capture the details of electricity markets but these
models are very useful for shedding light on the interaction of essential elements of the
market. Indeed, in order to achieve a perfectly competitive outcome of the Bertrand compe-
tition, one would have to assume that in each hour, generators first use all their capacity to
generate electricity, and then compete for revenues by setting a price which is low enough
to ensure that all generated power is sold, but high enough to recover all generation costs
incurred. No real electricity market operates this way, largely because electricity cannot be
stored in large quantities and, therefore, generators would have to set prices for their output
before, not after, committing for producing certain level of power. Given this sequence of
actions, generators are not pressed to set prices as low as the marginal cost of production,
and thus unlikely to achieve the Bertrand equilibrium in the market. On the one hand, under
Cournot competition, generators would commit to production only after establishing price
requirements; on the other hand, generators are assumed to have a perfectly flexible real-
time control of the level of generation they can offer to the market. By using this control,
generators can instantaneously change their commitments and influence market clearing
prices. In doing so, generators can maximize their profits through the trade-off between re-
duced market shares and increased prices. However, in reality, generators neither have the
full real-time control of their units, nor the ability to perfectly maximize their profits, due
to the lack of precise information required to reach such an equilibrium on an hourly basis
(see [43,45,53,54]).

The results presented in Chapter 4 are mainly based on Cournot competition, inspired by
the work of Alvarado and his co-workers [32, 33, 53, 56–58]. In [33], the authors investi-
gated how an independent system operator (ISO) could use electricity prices for congestion
management, without having a priori knowledge about the cost functions of the generators
in the system. The authors illustrated how a sequence of market observations could be used
to estimate the parameters in the cost function of each generator. Based on these estimates,
and by solving a suitably defined optimization problem, an ISO could issue the nodal prices
causing congestion mitigation. In [32,53,56] the results of [33] were extended by address-
ing a dynamical process for congestion management in the wholesale market. The usage
of price as a dynamic feedback control signal for power balance control was investigated
in [56]. There, the effects of interactions of price update dynamics and the dynamics of
an underlying physical system (e.g., generators) on the stability of the overall system were
investigated. However, no congestion constraints were considered and therefore only one,
scalar valued, price signal was used to balance the power system.

In contrast to the papers above, our proposed model introduces a state-space structure in
the static strategic form games while acknowledging the fact that the generators are limited
in their ability to instantaneously change their commitment level. Our proposed market
model includes information exchange pertaining to the state between the dominant players,
such as real time price, congestion price, generation and consumption level in order to arrive
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at the desired equilibrium, and is dynamic in nature. Furthermore, our proposed model is
directly linked with the standard market clearing structure, so that the relation between the
state-variables of the dynamic model and the primal variables of the power dispatch model
is transparent. Several constraints that are inevitable in power systems such as those due
to capacity limits on power generation and transmission as well as balance equations are
explicitly included. Using this model, in Chapter 4 we show the conditions under which the
dynamic model will result in asymptotic stability to the unique equilibrium.

A recent addition to the list of market players is generation due to RER. The integration
of RER into market dispatch poses the challenge of intermittency and uncertainty, both of
which can affect the economic planning and operation of the overall power system. The
results of [59–64] deal with a perturbed market due to RER by employing a stochastic
framework to capture both overestimation and underestimation of available wind power,
and show the effect on the optimal expected profit of wind power producer, overall market
efficiency, and overall operation cost. The model that we propose in Chapters 3 and 4 can
be viewed as a deterministic version of the model developed in [63].

Furthermore, the need for increased penetration of RERs has spurred significant interest
in the design of a Smart Grid. Another dominant feature of a smart grid is an informa-
tion layer. This layer helps to gather information from a variety of sources, at multiple
time-scales, and at distributed locations, and enables accurate decision and control by incor-
porating all available information about generation and load.

In the classical power system problem, all control actions are grouped under the rubric
of Automatic Generation Control (AGC). AGC has been studied extensively in the power
systems literature, with focus on topics such as parameter uncertainties, load characteris-
tics, excitation control, self-tuning regulator, and adaptive AGC regulator design [65–73].
The focus of the control actions, by and large, has been on primary control where power is
regulated at a unit level (with time-scales of the order of milliseconds), and on secondary
control, where frequency is regulated at an area-level (with time-scales of the order of sec-
onds) [65, 74]. Signals from economic dispatch are used to determine the participation
factor that allows minimal resources to be utilized while satisfying all constraints [65].

Wind intermittency requires a new way of looking at economic dispatch that accurately
captures the underlying dynamics and uncertainty. Due to the huge volatility and uncer-
tainty of the dynamic drivers such as wind and solar energy sources, and Demand Response,
the continued exchange of information is needed in order to mitigate costs imposed due
to intermittency and uncertainty [8, 10]. Moreover, market mechanisms are the most suc-
cessful way to incentivize and organize large distributed control policies. Therefore, control
and economic mechanisms must be jointly designed. A hierarchical Transactive control ar-
chitecture, which combines market transactions with the conventional AGC, is presented in
Chapter 5. This architecture enables us to incorporate the interaction between real-time
pricing, physical constraints, and Demand Response(DR) compatible loads in the presence
of uncertainty of RERs.
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Figure 1.1: Outline of the thesis, "Wholesale Energy Market in a Smart Grid: Dynamic mod-
eling, stability, and robustness" .

1.3 Thesis Outline

This thesis covers three major aspects of the Smart Grid: Static modeling of the whole-
sale electricity market, dynamic modeling of the wholesale electricity market and finally
Transactive control. Figure 1.1 illustrates the outline of this thesis. Chapter 2 provides an
overview of wholesale electricity markets, emphasizing the tight coupling between physical
properties of power systems and economics of power systems. This chapter explains how
an electricity market based on a pool operates, and finally introduces the concept of a Loca-
tional Marginal Price as a main mechanism which is currently implemented in many markets
around the world.

In Chapter 3, we discuss the equilibrium of an electric energy market in the presence
of RER and DR . The market framework proposed in this chapter consists of three main
participants:

• Generating companies (GenCos): GenCos are entities that own generating units. Gen-
Cos sell their electricity either through the electricity market, or through bilateral con-
tracts to the consumer. GenCos are responsible for the operation and maintenance of
their generating units.

• Consumer companies (ConCos): ConCos are entities that purchase electricity to sup-
ply consumption, either through the electricity market, or through bilateral contracts
directly from the GenCos.
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1.3 Thesis Outline

• Independent System Operator (ISO): Independent entity that clears the market by max-
imizing social welfare based on power systems security and reliability.

The overall market equilibrium is first evaluated in the absence of uncertainties, and suffi-
cient conditions are established for the proposed market equilibrium to be identical to the
Nash equilibrium. The effects of uncertainties, due to forecast errors in RER, and variations,
due to DR on the market equilibrium are analyzed using perturbation analysis. A parametric
characterization of the equilibrium shift is provided. In both the nominal and perturbed
markets, the equilibria are derived using the LCP approach based on Karush-Kuhn-Tucker
(KKT) conditions. We characterize the closeness of two strategic games corresponding to
the nominal market and the perturbed market, using the notion of α− approximation and
ε− equilibrium. An IEEE 30-bus system is used to evaluate the results of uncertainties in
both renewable energy and in demand curtailment.

In Chapter 4 of this thesis, we develop a new market model with an interactive framework
which introduces a state-space structure to the problem. Our market model uses an informa-
tion exchange pertaining to the state between the dominant players, such as real time price,
congestion price, generation and consumption level, to arrive at the desired equilibrium and
is dynamic in nature. The dominant players in this model include GenCos, ConCos, and ISO.
Our proposed dynamic model is directly linked with the standard market clearing structure
so that the relation between the state variables of the dynamic model and the primal vari-
ables of the power dispatch model is transparent. Several constraints that are inevitable in
a power systems, such as those due to power balance as a result of kirchoff’s law, capacity
limits on power generation and transmission are explicitly included. Using this model, it is
shown in this chapter that the dynamic model will result in asymptotic stability for all initial
conditions in the region of attraction. Finally, the effects of two main features of a smart
power grid, uncertainties in renewable energy sources and changes in the demand due to
changes in real-time pricing are analyzed using this model. In both the unperturbed dynamic
model and the perturbed model, conditions of stability and asymptotic stability are explicitly
derived. Numerical studies of an IEEE 30-bus are reported to illustrate the dynamic model,
its stability properties, and the effect of perturbations.

The wind power fluctuation, together with total average power variation, contributes
to the power imbalance and frequency deviation should be taken into account in the AGC
control scheme. An overall framework that shows the interconnection between the dynamic
market mechanism, mainly based on a dynamic economic dispatch and AGC is needed.
In Chapter 5, the analytical framework is presented by including models at a unit-level of
dispatchable, non-dispatchable and cyber physical load, tie-line flows between areas, and
Area Control Error (ACE), which includes a weighted combination the system frequency
and tie-line power deviations. Starting with models of pertinent dynamics at the primary,
secondary, and tertiary levels, we introduce uncertainties in generation and load. We include
controllers at the secondary level that utilize ACE, and controllers at the tertiary level that
include a dynamic information exchange between the generating and consumer companies,
as well as a real-time price transaction. This overall hierarchical Transactive controller is then
shown to be stable in the presence of generation and load uncertainties, and tie-line error.
Numerical studies of a 4-bus power system are reported to illustrate the effectiveness of the
proposed Transactive controller in the presence of wind uncertainty.
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1 Introduction

1.4 Contributions

The groundwork for the proposed analysis was laid in my recent papers [6–13].

Equilibrium of Electricity Market Under Perturbation of Renewable Energy Sources

The integration of RER into market dispatch poses the challenge of intermittency and uncer-
tainty, both of which can affect the market equilibrium and operation of the overall power
system. The main contributions of Chapter 3 are the introduction of an analytical frame-
work to evaluate the electricity market equilibrium, and the provision of a computable up-
per bound for market equilibrium shift with wind uncertainty and Demand Response. The
analytical framework introduced in this chapter consists of an overall model of the energy
market including Generation Companies (GenCos), Consumers Companies (ConCos) as well
as Independent System Operator (ISO), which allows the analysis of the market under nor-
mal conditions and perturbed conditions.

Furthermore, game theory interpretation of market equilibrium is presented and sufficient
conditions for the existence of a unique Pure Nash Equilibrium for the nominal market is
established. The perturbed market in the presence of wind uncertainty is analyzed using
the concept of closeness of two strategic games and the equilibria of close games based on
the notion of α-approximation and ε-equilibrium. The material presented in this chapter
has been published in [13], and the journal version of this chapter has been edited and
submitted for publication in IEEE Transaction on Smart Grid [6].

Disequilibrium of Electricity Market, Stability and Robustness

Wind intermittency requires a new way of looking at market mechanism that accurately
captures the underlying dynamics and uncertainty. Due to the huge volatility and uncer-
tainty of the dynamic drivers such as wind and solar energy sources, and Demand Response,
continued exchange of information is needed in order to mitigate costs imposed due to
intermittency and uncertainty. In Chapter 4, a dynamical framework to incorporate these
challenges is developed. The main contribution of this chapter is the notion of disequilibrium
process [7–10].

Disequilibrium process, often used in econometrics, can prove to be indispensable in the
current context of market mechanisms to attain market equilibrium in the presence of per-
turbations due to renewables and Demand Response. Associated with this notion is the
design of dynamic mechanisms, whose role becomes more crucial as one moves from a day-
ahead to a real time market and the underlying forecast models of renewables become more
accurate. Introduction of dynamics and feedback, both of which take a more prominent
position in all of the approaches suggested above, also brings in questions of stability. A
systematic stability framework which analyzes the interplay between pricing strategies, ad-
justable demand, and generation, while guaranteeing stable behavior is studied in Chapter
4. In this chapter, a dynamic model of the wholesale energy market that captures the effect
of uncertainties of RER and real-time pricing with DR is derived. Beginning with a frame-
work that includes real-time pricing as an underlying state, an attempt is made in this model
to capture the dynamic interactions between generation, demand, locational marginal price,
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1.4 Contributions

and congestion price near the equilibrium of the optimal dispatch. Conditions under which
the stability of the market can be guaranteed are derived. Modeling the effect of RER and
DR as perturbations, robust stability of the energy market model in the presence of such
perturbations are discussed.

This chapter is mainly based on the following published papers. In [8, 10, 11], an em-
pirical dynamic model of the wholesale energy market is proposed where the major market
components interact with each other in a distributed manner.

Stability of the Electricity Market in the Presence of Real Time Pricing Latency

The effect of latencies in a smart meter on this dynamic model is evaluated together with
real-time pricing, in the presence of congestion constraints due to transmission capacity
in [8, 11]. In particular, feedback of real-time pricing is shown to beneficial in alleviating
the burden of peak demands but at the same time, if this information is delayed, the overall
stability of the dynamic power market can be adversely affected. In [8,10,11], instead of an
empirical approach, an optimal power flow-based approach is used to derive the underlying
model. This in turn allows the effect of congestion constraints on stability to become more
transparent. Chapter 4 is based on these papers and the main contribution of this chapter is
the introduction of a dynamical framework for market clearing process based on the notion
of disequilibrium process.

Transactive Hierarchical Control, Analytical Modeling, Stability, and Robustness

The introduction of both RER, as well as efforts to integrate them through an information
processing layer, brings in dynamic interactions between the major components of a smart
grid. In [9, 12], a hierarchical control framework is proposed for the decision and con-
trol of the entire grid, with Automatic Generation Control-based approaches used for the
lower levels of primary and secondary control, and a dynamic market mechanism devel-
oped in Chapter 4 as market-based tertiary control for the higher, supervisory level. Chapter
5 introduces such a Transactive market that makes effective use of the emerging concept
of DR, where loads are adjustable in response to economic signals. Noting that flexibility
is present in determining price strategies and what information is fed-back and when, the
market design can be viewed as a control problem embedded in game theory, where parts of
the overall dynamic system can be selected for a given structure of generation, demand and
topology, akin to the concept of Transactive Control addressed and formulated in [9, 12],
where control actions are tightly integrated with price signals and utilized primarily for
end-use optimization.
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2 Overview of Wholesale Electricity Markets

Summary. This chapter provides an overview of electricity market and overall power
systems operation and control. The main topics in this chapter are

• A description of the electric power systems,

• Operation and control of power systems in the current stage,

• An introduction to the wholesale electricity market,

• Challenges of smart grid implications in the wholesale market.

2.1 Structure of the Electric Power System

The electric power system consists of generating units where primary energy is converted
into electric power, transmission and distribution networks which transport this power, and
consumers who use the power. While originally generation, transport, and consumption
of electric power were limited to relatively small geographic regions, today these regional
systems are connected together by high-voltage transmission lines to form highly intercon-
nected and complex systems spanning wide areas. This interconnection allows economies of
scale, utilization of the most economical generators, increased reliability, and an improved
ratio of average load to peak load due to load diversity, thus increasing capacity utilization.
Interconnection also leads to complexity, however, as any disturbance in one part of the sys-
tem can adversely impact the entire system. Figure 2.1 illustrates the basic structure of the
electric power system. We discuss each of its subsystems in the following sections.

2.1.1 Generation Units

Electric power is produced by generation units, housed in power plants, which convert pri-
mary energy into electric energy. Primary energy comes from a number of sources, such as
fossil fuel, nuclear, hydro, wind, and solar power. The process used to convert this energy
into electric energy depends on the design of the generating unit, which is partly dictated by
the source of primary energy. The term "thermal generation" commonly refers to generating
units that burn fuel to convert chemical energy into thermal energy, which is then used to
produce high-pressure steam. This steam flows and drives the mechanical shaft of an AC
electric generator which produces alternating voltage and current at its terminals.

Nuclear generating units use an energy conversion process similar to thermal units, ex-
cept the thermal energy needed to produce steam comes from nuclear reactions. Hydro
power and wind generating units convert kinetic energy of water and wind respectively,
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2 Overview of Wholesale Electricity Markets

Figure 2.1: Structure of the Electric Power System

directly into rotation of the shaft of the electric generator. Solar-thermal and geothermal
generating units use the sun’s radiation and the Earth’s warmth respectively, to heat a fluid
and then follow a conversion process similar to thermal units. Solar photovoltaic generating
units are quite different and convert the energy in solar radiation directly into electrical en-
ergy. Another common type of generating unit is gas, or combustion, turbine. This burns a
pressurized mixture of natural gas and air in a jet engine that drives the electric generator.
Combined-cycle gas turbine plants have a gas turbine and a steam turbine. They reuse the
waste heat from the gas turbine to generate steam for the steam turbine, and hence achieve
higher energy conversion efficiencies.

From the operational perspective of the electric power system, generating units are clas-
sified into three categories: baseload, intermediate, and peaking units.

• Baseload units are used to meet the constant, or base, power needs of the system.
They run continuously throughout the year, except when they have to be shut down
for repair and maintenance. They must therefore be reliable and economical to op-
erate. Because of their low fuel costs, nuclear and coal plants are generally used as
baseload units, as are hydroelectric plants. However, nuclear and coal baseload units
are expensive to build and have slow ramp rates, i.e. their output power can only be
changed slowly (on the order of hours).

• Intermediate units, also called cycling units, operate for extended periods of time, but
unlike baseload units, not at a fixed power level continuously. They have the ability to
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2.1 Structure of the Electric Power System

vary their output more quickly than baseload units. Combined-cycle gas turbine plants
and older thermal generating units are generally used as intermediate units.

• Peaking units operate only when the system power demand is close to its peak. They
have to be able to start and stop quickly, but they only run for a small number of hours
in a year. Gas turbine and hydroelectric plants with reservoirs are generally used as
peaking units. Gas turbines are the least expensive of all generation units to build, but
have high operating costs.

In addition to the main large generating units, the system typically also has some dis-
tributed generation, including combined heat and power units. These and other small gen-
erating units, such as small hydroelectric plants, generally operate at lower voltages, and
are connected at the distribution system level.

Large generating units generally are located outside densely populated areas, and the
power they produce has to be transported to load centers through transmission lines.

2.1.2 Power Transmission

The transmission system carries electric power over long distances from the generating units
to the distribution system. The transmission network is composed of power lines and sta-
tions/substations. Stations and substations house transformers, switchgear, measurement
instrumentation, and communication equipment. Transformers are used to change the level
of the transmission voltage, while switchgear includes circuit breakers and other types of
switches used to disconnect parts of the transmission network for system protection or main-
tenance. Measurement instrumentation collects voltage, current, and power data for mon-
itoring, control, and metering purposes. Communication equipment transmits the data to
control centers, and also allows switchgear to be controlled remotely.

Topologically, the transmission and subtransmission line configurations are mesh net-
works, as opposed to radial, meaning there are multiple paths between any two points on
the network [65,75]. This redundancy in multiple paths allows the system to provide power
to the loads even when a transmission line or a generating unit goes offline.

The power flow through a particular transmission line depends on the line’s impedance
and the amplitude and phase of the voltages at its ends. Predicting these flows requires sub-
stantial computing power and precise knowledge of the network voltages and impedances,
which are rarely known with high precision.

The power transmission network is modeled as follows. The network consists of n buses,
indexed i = 1, . . . , n. To each node are attached generators which supply power and loads
that consume power. The voltage at bus i is a sinusoidal waveform, whose instantaneous
value at time t is

vi(t) = Vi sin(ωt +δi) (2.1)

where Vi is the magnitude of the sinusoidal waveform, ω = 2π × 60 is the waveform’s
frequency in radians per second (for 60 Hz), and δi is the voltage phase angle. A line
connecting bus i to bus j is characterized by its electrical admittance, denoted Yi j where
Yi j = Yji > 0. The real power flow over the line from bus i to j is equal to

Pi j = ViVjYi j sin(δi −δ j) (2.2)
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2 Overview of Wholesale Electricity Markets

measured in kW or MW . Using Eq. (2.2), the net power, Pi, injected into the network at
bus i is the algebraic sum of the Pi j as

Pi =
n
∑

j=1

Pi j =
n
∑

j=1

ViVjYi j sin(δi −δ j), i = 1, . . . , n. (2.3)

For the sake of simplicity in this thesis, we assume that the voltage magnitude at bus i, Vi, is
constant. With no loss of generality, we can then set Vi = 1 for all i. Then the net power, Pi j

in (2.3), can be simplified as

Pi =
n
∑

j=1

Yi j sin(δi −δ j), i = 1, . . . , n. (2.4)

Eq. (2.4) defines the real power flow equations. It should be noted that, since P1+. . .+Pn = 0,
only n−1 of these equations are independent, implying that the phase angle differences are
dependent. Thus, we set δn = 0 and eliminate the nth equation. Bus n is called the reference
bus, or swing bus. Given the power injections P1, . . . , Pn−1, we can solve (2.4) for the n− 1
unknown phase angles δ1, . . . ,δn−1. Then, we can obtain the individual line flows from

Pi j = Yi j sin(δi −δ j). (2.5)

The power that can flow on a transmission line is limited by either thermal, voltage stabil-
ity, or transient stability constraints. The thermal constraint arises from the resistance of
the transmission line, causing excessive power losses and through heating when the power
exceeds a certain level. The voltage stability constraint is due to the reactance of the trans-
mission line causing the voltage at the far end of the line to drop below an allowable level
(typically 95% of the nominal design voltage level [65]) when the power exceeds a certain
level. The transient stability constraint relates to the ability of the transmission line to deal
with rapid changes in power without causing the generators to fall out of synchronism with
each other.

Generally, maximum power flow on short transmission lines is limited by thermal con-
straints, while power flow on longer transmission lines is limited by either voltage or tran-
sient stability constraints. From Eq. (2.5) we can see that the maximum value of |Pi j| is Yi j,
since the sine function is bounded by unity. Power flow beyond the limit, Ci j, can cause phys-
ical damage to the transmission line, with subsequent high probability of power failure [76].
Usually Ci j ≤ Yi j, and so we have the thermal constraints on each line

Pi j = Yi j sin(δi −δ j)≤ Ci j. (2.6)

The power flow constraints in (2.6) are denoted as congestion on transmission lines, and
mean the excess capacity in the lowest-cost generating units often cannot be supplied to
loads due to the limited capacity of one or more transmission lines.

Some very large consumers take electric power directly from the transmission or subtrans-
mission network. However, the majority of consumers get their power from the distribution
network, as is described next.
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2.1.3 Power Distribution

Distribution networks carry power for the last few kilometers from transmission or subtrans-
mission to consumers. The power is carried in distribution networks through wires, either
on poles or, in many urban areas, underground. Distribution networks are distinguished
from transmission networks by their voltage level and topology. Lower voltages are used in
distribution networks, typically up to 35 kV are considered part of the distribution network.
The connection between distribution networks and transmission or subtransmission occurs
at distribution substations, see Figure 2.1. Distribution substations have transformers to step
the voltage down to the primary distribution level. Like transmission substations, distribu-
tion substations also have circuit breakers and monitoring equipment. However, distribution
substations are generally less automated than transmission substations.

Distribution networks usually have a radial topology, referred to as a "star network," with
only one power flow path between the distribution substation and a particular load. Dis-
tribution networks sometimes have a ring (or loop) topology, with two power flow paths
between the distribution substation and the load. However, these are still operated as star
networks by keeping a circuit breaker open. The presence of multiple power flow paths in
ring and mesh distribution networks allows a load to be serviced through an alternate path
by opening and closing appropriate circuit breakers when there is a problem in the original
path. When this process is carried out automatically, it is often referred to as self-healing.
Distribution networks are usually designed assuming power flow is in one direction. How-
ever, the addition of large amounts of distributed generation may make this assumption
questionable and require changes in design practices.

2.1.4 Power Consumption

Electricity is consumed by a wide variety of loads, including lights, heaters, electronic equip-
ment, household appliances, and motors driving fans, pumps, and compressors. These loads
can be classified based on their impedance, which can be resistive, reactive, or a combina-
tion of the two. In theory, loads can be purely reactive, and their reactance can be either
inductive or capacitive. However, in practice the impedance of most loads is either purely
resistive or a combination of resistive and inductive reactance. Heaters and incandescent
lamps have purely resistive impedance, while motors have impedance that is resistive and
inductive. Purely resistive loads only consume real power. Loads with inductive impedance
also draw reactive power. Loads with capacitive impedance supply reactive power. From
the power system’s operational perspective, the aggregate power demand of the loads in a
region is more important than the power consumption of individual loads.

2.2 Operation and Scheduling of Power System

The electric power system is operated through a combination of automated control and
a wholesale electricity market conducted by the system operator. The main challenge in
operating the electric power system is that there is negligible electrical storage in the system.
Hence, supply and consumption of electrical power must be balanced at all times. Since

37
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the load changes all the time in ways that cannot be perfectly predicted, generation must
follow the load in real time. The balance between supply and demand is maintained using
a hierarchical control scheme at multiple timescales.

The objective of real-time operation of the electric power system is to ensure that the sys-
tem remains stable and protected, while meeting end-user power requirements. This means
a precise balance between power generation and consumption is required at all times. If this
balance is not maintained the system can become unstable and its voltage and frequency can
exceed allowable bounds, resulting in damaged equipment as well as blackouts. If the bal-
ance is not restored sufficiently quickly, a local blackout can grow into a cascading blackout
similar to those in the U.S. in 1965 and 2003 [77]. Fortunately, the stored kinetic energy as-
sociated with the inertia of generators and motors connected to the system helps overcome
small imbalances in power, giving enough time for an active control system to take correc-
tive action. This balance between supply and demand at the shortest timescale is maintained
actively via governor control.

2.2.1 Governor Control: Primary Control

The generators on governor control take the first corrective action as the balance between
demand and supply changes. The governor is a device which controls the mechanical power
driving the generator, via a valve limiting the amount of steam, water, or gas flowing to the
turbine. The governor acts in response to locally measured changes in the generator’s output
frequency with respect to the established system standard, which is 60 Hz in the U.S and
50 Hz in Europe.

If the electrical load on the generator is greater than the mechanical power driving it, the
generator maintains power balance by converting some of its kinetic energy into extra output
power, but slows down in the process. On the other hand, if the electrical load is less than the
mechanical power driving the generator, the generator absorbs the extra energy as kinetic
energy and speeds up. This behavior is known as inertial response. The frequency of the ac
voltage produced by the generator is proportional to its rotational speed. Therefore, changes
in generator rotational speed are tracked by the generator’s output frequency. A decreasing
frequency is an indication of real power consumption which is greater than generation, while
an increasing frequency indicates generation exceeding power consumption. Any changes
in frequency are sensed within a fraction of a second, and the governor responds within
seconds by altering the position of the valve, increasing or reducing the flow to the turbine.

If the frequency is decreasing, the valve will be opened further to increase the flow and
provide more mechanical power to the turbine, hence increasing the generator’s output
power, bringing demand and supply in balance and stabilizing the speed of the generator at
this reduced level. The speed of the generator will stay constant at this level as long as the
mechanical power driving it balances its electrical load. While very fast, for stability reasons,
governor control is not designed to bring the frequency of the generator back to exactly 60
Hz. Correcting this error in frequency is the job of the slower automatic generation control
(AGC), which will be discussed in the next section.
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Figure 2.2: Representation of Control Areas

2.2.2 Automatic Generation Control: Secondary Control

While governor control keeps the supply and demand of real power in balance, it results in
a small change in system frequency. Furthermore, the governor-based reaction of generators
located outside a control area1 to load changes inside the control area (or vice versa) can
alter power flows between control areas from their scheduled levels. As can be seen in Figure
2.2, control areas are connected through tie lines.

The errors in frequency and power flows between control areas are corrected by the
relatively slower AGC. AGC aims to eliminate the area control error (ACE). Over the control
area of interest, the ACE signal is constructed as a weighted sum of an area representative
frequency error, and deviations from scheduled values for power flows on a set of monitored
transmission tie lines, more details are presented in Appendix A.2. The area control center
automatically sends signals to generators equipped with AGC to increase or decrease their
output based on the ACE signal.

Beyond a certain level of power imbalance, system operators need to call in generation
reserves. These may be additional generating units on standby, or generators already pro-
ducing power and able to ramp up their output on request. Having adequate reserves in the
system is essential for dealing with load uncertainties and contingencies, such as the failure
of a generating unit.

Reserves are categorized based on the time taken to start delivering the requested power.
Reserves can be either spinning or non-spinning.

• Spinning reserves are generating units with turbines spinning in synchronicity with
the grid’s frequency without supplying power. They can deliver the requested power
within a few minutes.

• Non-spinning reserves are units that are offline but can also be quickly synchronized
with the grid.

1A control area consists of a collection of generation, transmission, and loads within metered boundaries
for which a responsible entity integrates resource plans for that area ahead of time, maintains the area’s
load-resource balance, and supports the area’s interconnection frequency in real time.

39



2 Overview of Wholesale Electricity Markets

In systems with organized markets, reserves are paid not only for the energy, they produce
but also for being available on short notice to deliver reserve power.

2.2.3 Economic Dispatch: Tertiary Control

A third level of control is required to ensure that all generators in the area are allocated
so that each power source is loaded most economically. The optimal operating point of
each generator is usually determined through the Economic Dispatch (ED) program running
at the control centre. Since system load continually changes over time, ED calculations
have to be made at frequent intervals. Through tertiary control, the speed changer settings
of generators are adjusted to ensure an economic dispatch order among them. Details of
tertiary control will be discussed in Chapter 5.

2.3 Wholesale Electricity Market

Scheduling of generation through the wholesale electricity in the transmission level deter-
mines which generation units should operate and at what power level. The objective is to
minimize cost, subject to generation and transmission constraints. Scheduling and market
mechanisms depend on the market model that will be discussed in Section 2.3.1. However
two important tools are widely implemented in the wholesale market. These consist of eco-
nomic dispatch, which will be introduced in Section 2.3.2, and unit commitment, which will
be presented in Section 2.3.3. Section 2.3.4 will provide the basics of the market clearing
mechanism and electricity pricing termed as Locational Marginal Price (LMP).

2.3.1 Wholesale Market Model

Pool markets and bilateral markets are two major types of markets in the world. Pool markets
require a central coordinator, usually referred to as the Independent System Operator (ISO),
who is responsible for both the market and system operation. On the other hand, bilateral
markets can be decentralized, requiring far less intervention from the ISO.

Bilateral Markets

Bilateral markets are conceptually simple and treat electricity as a commodity. Market partic-
ipants are free to enter into whatever trading mechanism they choose. Unlike pool markets,
bilateral markets do not require a central market operator. This decentralization means that
generator commitment and dispatch decisions are the responsibility of the individual market
participants. This is known as self-commitment and may be advantageous in markets where
the level of centralized control is to be minimized. There is, however, still a requirement for
a central ISO responsible for the operation of the transmission system, i.e. solving transmis-
sion congestion and procuring ancillary services. This type of ISO is generally referred to as
a Minimal ISO due to the low level of intervention in the market [78].

Due to the stochastic nature of electricity demand, imbalances will occur between bilat-
erally contracted quantities and actual consumption and generation of electricity. If these
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2.3 Wholesale Electricity Market

imbalances were allowed to persist, the system frequency would change. The ISO, which is
responsible for frequency control, will therefore correct these imbalances in real time. This
can be achieved using the ancillary services markets, a secondary bilateral market, or most
commonly, a balancing pool. This balancing pool is similar to the pool market except that
only imbalances are traded through it, and will be described in the next section.

Since bilateral contracts can be structured over any time-frame, bilateral markets gen-
erally result in stable prices for electricity [79]. This is beneficial to both consumers, who
are isolated from the risk of unexpected price spikes, and generators, who are assured a
steady revenue stream, making investment projects bankable. Examples of bilateral markets
include ERCOT (Texas), NETA (Great Britain), and Ontario (pre 1998).

Pool-Based Electricity Market

Generators sell their output into the pool and consumers buy their electricity from it. The
pool market structure requires an ISO, who is responsible for matching offers and bids for
energy, a process known as market clearing, and then dispatching the generation to meet
the demand. This type of market structure follows very neatly from a vertically integrated
environment [79]. As in a bilateral market, the ISO is also responsible for procuring ancillary
services and ensuring the secure operation of the transmission system. However, in contrast
with a bilateral market, the ISO is also responsible for the economic operation of the market
through scheduling and dispatching generation and is therefore termed a Maximal ISO [78].

In a pool-based electricity market, the generating companies (GenCos) submit bids to the
pool consisting of energy blocks and their corresponding minimum selling prices for every
hour of the market horizon and every unit. The consumer companies (ConCos) submit
energy blocks and their corresponding maximum buying prices for every hour of the market
horizon, and every demand. The ISO collects purchase and sale bids and clears the market
seeking maximum social welfare and using an appropriate market-clearing procedure. This
results in hourly prices, and production and consumption schedules. Figure 2.3 shows a
representation of a pool-based electricity market.

A pool market has a number of advantages over a bilateral market. Firstly, if the market
is competitive, pool markets, through the market clearing price, will provide the true in-
cremental cost of electricity. Secondly, pool markets provide ease of system operation since
the market and system operation functions are within one entity, namely the ISO. Another
advantage of the pool market is that it provides a price signal. In the short-term, high prices
provide an incentive for generators to increase production and for loads to reduce consump-
tion. Over longer time-frames, the high prices are a signal that investment in additional
generation capacity is required.

However, the pool market also has a significant disadvantage. It can exhibit consider-
able volatility, see Figure 2.4 [2]. When high loads coincide with low generator capacity,
consumers are exposed to large price spikes [93]. This phenomenon has been observed
on countless occasions in pool markets all over the world. Similarly, when there is excess
generation capacity available, prices can fall and generators can have insufficient revenue
to recover their fixed costs. While the same capacity considerations will also result in high
or low prices in bilateral markets, participants are generally not exposed to such short-term
volatility.
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Figure 2.3: Representation of a Pool-based Electricity Market

Figure 2.4: Day-ahead Market Price and Price Volatility in RTM [2]

Generator dispatches and the corresponding prices are generally calculated for a fixed
length of time (e.g. one hour, thirty minutes, five minutes), known as the dispatch interval.
The pool price can be calculated before the dispatch interval, known as ex ante pricing, or
after the dispatch interval, known as ex post pricing. Ex ante pricing has the advantage of
providing market participants with a price signal to which they can respond. However, since
it is calculated in advance, it is based on forecast quantities so may not be a true reflection
of the actual costs. Ex post pricing on the other hand is based on what actually occurred so
is more accurate. Its disadvantage is that, since market participants get no price signal, they
are not in a position to respond.

One of the first implementations of the pool market structure was in England and Wales,
where a power pool was introduced in 1990. Other pool markets include Australia, New
Zealand, Greece, and New England.

Hybrid Electricity Market

Finally, some markets are a hybrid of bilateral and pool-based market types. Generators may
here enter into physical bilateral contracts with loads, or they may elect to submit bids to the
system operator. The ISO will then determine the dispatch for all the generators in the pool
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and calculate the prices, while taking into consideration the effect of the bilateral contracts
on the transmission system.

Examples of such hybrid markets include NordPool (Scandinavia), Ontario and the PJM
(Pennsylvania, New Jersey, Maryland) Interconnection.

2.3.2 Economic Dispatch

The incremental production costs of generating units can be quite different from one another,
mostly due to differences in the costs of their fuel (for example, uranium, coal, natural gas),
and their efficiencies. Economic dispatch minimizes overall production costs by optimally
allocating projected demand to generating units that are online. Computers at control cen-
ters run optimization algorithms, typically every 5 or 10 minutes, to determine the dispatch
for the next hour, and send these economic dispatch signals to all the generators. Some-
times, power cannot be dispatched from the lowest-cost generating unit due to the physical
limits of the system, or security constraints associated with maintaining secure operation
under contingencies. Physical restrictions include transmission lines’ thermal and stability
constraints, and limitations on generating units’ output power and ramp rates. The cost and
benefit of the net injection, Pi, is denoted by the increasing convex function Ci(Pi). This
means that if i is a generator and Pi > 0 then Ci(Pi) is the variable cost of generation and
the marginal cost is increasing. The Economic Dispatch problem with Alternative Current
(AC) transmission constrains can be represented as

minimizePi ,δi

n
∑

i=1

Ci(Pi) (2.7a)

subject to

Pi =
n
∑

j=1

Yi j sin(δi −δ j), i = 1, . . . , n (2.7b)

Pi j = Yi j sin(δi −δ j)≤ Ci j. (2.7c)

The AC Economic Dispatch is difficult to solve because it is a nonlinear non-convex program
[80]. We now make one more simplification assumption.

Assumption 2.1. The phase angle differences, |δi −δ j|, are small.

Assumption 2.1 follows when the line admittances are large relative to sin(δi −δ j) [76].
Then we can make the approximation sin(δi − δ j) ≈ (δi − δ j) and end up with a convex
programming problem with linear constraints called as DC Economic Dispatch:

minimizePi ,δi

n
∑

i=1

Ci(Pi) (2.8a)

subject to

Pi =
n
∑

j=1

Yi j(δi −δ j), i = 1, . . . , n (2.8b)

Pi j = Yi j(δi −δ j)≤ Ci j. (2.8c)
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Associate Lagrange multipliers ρi with the n constraints in (2.8b), and γi j ≥ 0 with the
constraints in (2.8c), the Lagrangian can be written as

L =
n
∑

i=1

Ci(Pi) +
n
∑

i=1

ρi





n
∑

j=1

Yi j(δi −δ j)− Pi



+
n
∑

i=1

n
∑

j=1

γi j

�

Yi j(δi −δ j)− Ci j

�

. (2.9)

The optimal solution of DC Economic Dispatch, denoted as (P∗,δ∗), is characterized by the
existence of Lagrange multipliers such that

∂ Ci(P∗i )

∂ P∗i
= ρ∗i , i = 1, . . . , n (2.10a)

n
∑

j=1

Yi j(ρ
∗
i −ρ

∗
j + γ

∗
i j − γ

∗
ji) = 0, i = 1, . . . , n (2.10b)

γ∗i j

h

Yi j(δ
∗
i −δ

∗
j )− Ci j

i

= 0, i, j = 1, . . . , n. (2.10c)

Equations (2.10a)-(2.10c) follow from the Karush-Kuhn-Tucker (KKT) criteria (See Appendix
A.1.5.)

2.3.3 Unit Commitment

In addition to determining the level of power each generating unit should be producing
when it is online, system operators must also determine when each generating unit should
start up and shut down. This function is known as "unit commitment." Although significant
costs are associated with the startup and shutdown of generating units, it is not practical
to keep all of them online all the time. There are large fixed costs associated with running
generating units, and some units have a minimum power they must produce when they are
online. Unit commitment determines the economically optimal time when generating units
should start up and shut down and how much power they should produce while they are
online. This optimization is more complex and time consuming than economic dispatch.
Unit commitment is typically done one day ahead and covers dispatch for periods ranging
from one to seven days. It should be noted that only scheduling and control in real time
through economic dispatch are the main focuses of this thesis, thus with no loss of generality,
we assume that specific generators have been committed through unit commitment. Unit
commitment has been widely studied in [81,82] and the references therein.

2.3.4 Market Clearing Mechanism: Locational Marginal Prices

The process of trading wholesale energy begins with a bidding process, where generators
offer an amount of energy for sale during specific periods of the day at a specific price.
These offers are arranged by the System Operator in ascending order, called the "bid stack,"
and the generators are dispatched in the merit order until generation matches expected load.
Large loads also sometimes submit bids for the purchase of energy in the market.

In clearing the market, the ISO may require simple or complex offers and bids. A complex
offer consists of an incremental cost function, as well as other costs including start-up costs

44



2.3 Wholesale Electricity Market

and idling (no-load) costs; a simple offer consists of only an incremental cost function. The
ISO may also allow generators to submit operational constraints applicable to their units,
including ramp rates, minimum up- and down-times, start-up times and minimum loading
levels. A market that incorporates complex offers and bids, and the various operational con-
straints, will require a complex unit commitment solver for market clearing but it will have
the advantage that the solution (i.e. dispatch) will be more optimal, subject to participants
providing bids which are a true reflection of their costs. The solution will be feasible with
respect to those constraints. Conversely, a market that allows only simple bids and offers
will be more transparent to the casual observer, but it requires the participants to internal-
ize their fixed costs and operational constraints. As a consequence, it may in fact result in
infeasible and/or sub-optimal dispatches.

The goal of the Independent System Operator (ISO) is to determine the dispatch that
minimizes total cost, as measured by generators’ bids, subject to security constraints. The
ISO’s task is to select the operating point that satisfies Eqs. (2.10a)-(2.10c). This process
determines the marginal cost of meeting an increment of load at each bus in the transmis-
sion system to which load or generation is connected. Following [25] these costs are termed
locational marginal prices (LMPs) because they enable the ISO to fix the LMP ρi at the La-
grangian multipliers corresponding to the balance equation denoted in (2.8b). The attractive
feature of LMP is that it forces the system to operate at the unique, efficient equilibrium that
will be discussed in Chapter 3.

Distribution companies or large customers pay the applicable LMP for energy consumed.
Similarly, generation is paid the LMP at the point at which it is located. The LMP pricing
structure used in modern markets ensures that the profitable choice for generators and loads
is to follow the instructions of the economic dispatch.

Generators are only dispatched when their offer to sell is at a price no greater than LMP
at their location. Likewise, generators are not dispatched when the market price is less than
their offer to sell. The use of LMPs exploits the natural definition of an efficient equilib-
rium for a market, (discussed in Chapter 3), utilizes the crucial central coordination, and
avoids the need for market participants to track transmission flows or understand the many
constraints and requirements of the power system.

The Effect of Congestion on LMP

LMP reflects the market clearing price (MCP) at each location. In other words, ConCos pay
the ISO based on their LMP for dispatched energy. The ISO in turn pays GenCos based
on their respective LMPs. When the line flow constraints are not congested, LMPs at all
locations will be the same as the MCP the marginal bidding price of the most expensive
dispatched generation unit. However, when transmission flows are constrained, LMPs will
vary among buses. In this case, constrained flows could prevent the economic supply of
energy from serving bus demands at a certain location. As a result, the demand has to be
supplied by more expensive units via other transmission lines, which could result in LMP
differences. The LMP difference between two adjacent buses is the congestion cost defined
in the following definition.

Definition 2.1. [76] Let ρ∗i and γ∗i j be the associated Lagrangian variables corresponding
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Figure 2.5: LMP calculation: system with no congestion

to the optimal solution of DC Economic Dispatch (P∗i ,δ∗i ). Then γ∗i j is the congestion price
for the constraint Yi j(δ∗i −δ

∗
j )≤ Ci j, and

∑

i

∑

j γ
∗
i jCi j is the congestion rent.

Transmission losses impact LMP differences as well. Marginal losses are the incremental
changes in system losses due to incremental demand changes. Incremental losses yield
additional costs which are referred to as the cost of marginal losses. However in this thesis,
we ignore ohmic losses and only focus on congestion constraints. To clarify the effect of
congestion in LMP, let us consider a n-bus network where the flow on link 1−n is congested,
i.e. in Eq. (2.8c), P1n = C1n and all other flows are not congested. From (2.10c), this implies
that γi j = 0 for all i, j 6= 1n since the constraints are not active [76]. We can then write Eq.
(2.10b) in matrix form as











∑

j Y1 j −Y12 . −Y1n

−Y21

∑

j Y2 j . −Y2n

. . . .
−Yn1 −Yn2 .

∑

j Yn j





















ρ1

ρ2

.
ρn











=











−Y1n

0
0

Yn1











γ1n. (2.11)

These equations are linearly dependent [76]. We choose to eliminate the last equation.
Dividing throughout by λn and defining πi = ρi/ρn for all i = 1, . . . , n− 1 and m = γ1n/ρn,
we obtain











∑

j Y1 j −Y12 . −Y1n−1

−Y21

∑

j Y2 j . −Y2n−1

. . . .
−Yn−11 −Yn−12 .

∑

j Yn−1 j





















π1

π2

.
πn−1











=











−Y1n

0
0
0











m+











Y1n

Y2n

0
Yn−1n











. (2.12)

We can compactly write (2.12) as
Yπ= gm+ h (2.13)

where g =
�

−Y1n 0 0 0
�T

, h=
�

Y1n Y2n 0 Yn−1n

�T
, and

Y =











∑

j Y1 j −Y12 . −Y1n−1

−Y21

∑

j Y2 j . −Y2n−1

. . . .
−Yn−11 −Yn−12 .

∑

j Yn−1 j











.
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Figure 2.6: LMP calculation: system with congestion

By inspection it follows that h = Y 1 where 1 is a vector with all elements equal to unity
(see [76]). Then it follows that

ρi = ρn−αiγ1n (2.14)

where α = −Y−1 g and αi is the ith element of δ. As can be seen in Eq. (2.14), congestion
at link 1− n causes the difference between ρi and ρn. It can be seen from Eq. (2.14) that if
γ1n = 0, all LMPs are equal which corresponds to the uncongested case.

Example 2.1. Consider a 2-bus system connected through a transmission line with maxi-
mum capacity equal to 100 MW . A GenCo located in bus A offers to produce 150 MW at
10 $/MWh and another GenCo at bus B offers to produce 150 MW at 15 $/MWh. A ConCo
located at bus B submits a bid to consume 90 MW at 20 $/MWh. Figure 2.5 represents
the configuration of our example. As can be seen in this figure, G1 serves the incremental
megawatt of ConCo located in bus B and therefore LMP at bus B will be 10 $/MWh, equal
to the offer of G1. We denote G1 as the marginal asset that would supply the next increment
of load at either location A or B. Since the limit of the transmission line connecting bus A to
bus B is 100 MW , congestion does not occur, and therefore LMP at bus A is equal to LMP at
bus B and equal to the offer price of marginal asset G1 at both locations.

Example 2.2. Now consider that in Example 2.1 ConCo located in bus B submits a bid to
consume 120 MW at 20 $/MWh. As can be seen in Figure 2.6, the transmission line con-
necting bus A to bus B is congested. In this example, there are two marginal assets G1 and
G2. G1 would supply the next increment of load at location A and G2 would supply the
next increment of load at location B. Therefore, there are two different LMPs at different
locations, LMP in bus A is 10 $/MWh that is equal to the offer price of marginal asset G1
and LMP in bus B is 15 $/MWh that is equal to the offer price of marginal asset G2.

Electric Energy Supply Offers and Demand Bids

The offers made by GenCos, and the bids due to ConCos determine the LMPs. Production
costs and supplier operating characteristics influence the offers by GenCos. Generating units
submit three-part supply offers for their output including start-up, no-load, and incremental
energy offers. Start-up offers reflect the costs associated with bringing a unit from an off-line
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Figure 2.7: Quadratic (dashed line) and piece-wise linear (solid line) cost function

state to the point of synchronization with the grid. No-load offers reflect the hourly cost of
operating that does not depend on the megawatt level of output. Incremental energy offers
represent the willingness of participants to operate a resource at a higher output level for a
higher price. The first two costs should be considered in unit commitment and the last is an
essential cost for the economic dispatch problem.

The bids for electric energy reflect a participant’s load-serving requirements and the ac-
companying uncertainty, its tolerance for price volatility, and its expectations about con-
gestion on the system caused by transmission constraints. Participants may bid for a fixed
demand- i.e., they would buy at any price- and for price-responsive demand adjusting their
demand in response to the price signal.

Piecewise linear or quadratic functions are two general methods to represent costs and
bids. These two methods are illustrated in Figure 2.7. Generators with multiple units are
well approximated by piecewise linear curves, since there is a jump in cost each time a unit
is turned on or off, and then a gradual increase as individual units are ramped up or down.
Piecewise linear bid curves lead to jumps in the dispatch results, and volatility in revenue
and profit curves [34]. Quadratic cost curves lead to smooth dispatch, revenue, and profit
curves when none of the system constraints is active (transmission congestion, generator
capacities). While quadratic curves facilitate analysis, they are not a perfect characterization
of a generator’s cost structure. In Chapter 3, a piecewise linear bidding curve is considered,
and for the sake of analysis, a quadratic bidding curve is assumed in Chapter 4.
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Figure 2.8: IEEE 6-bus case study for Example 2.3

Example 2.3. Figure 2.8 shows a 6-bus system [5] with three GenCos. The maximum capac-
ity of the GenCo at bus 2, the reference bus, is 0.25 per-unit (p.u.) based on 100 MVA. The
maximum capacities of the GenCo at bus 1 and 3 are 0.2 p.u. and 0.22 p.u., respectively. A
quadratic cost function is assumed to model the variable cost for each generator as

Ci(Pi) = ai + bi Pi + ci P
2
i (2.15)

Table B.1 in Appendix B provides cost coefficients ai, bi, and ci. The same as GenCos, we
consider the quadratic utility function for ConCos located at buses 4, 5, and 6. Table B.1
provides utility coefficients for each of theConCos.

Transmission lines are modeled with reactance equal to 0.2 p.u. and ohmic losses are
ignored. The maximum capacity of all transmission lines is the same and equal to 0.914 p.u.

PSAT toolbox [5] was used to simulate this example. LMP at each node is shown in Figure
2.9. As can be seen, in this example LMP at bus 1 is lower than the LMPs at all other buses
due to the congestion of transmission lines. Fig 2.10 presents the flow of transmission lines.
Except for the line connecting buses 1 and 2, all lines connecting bus 1 to other buses are
congested. Therefore LMP at bus 1 is lower than other LMPs.

2.4 Structure of the Wholesale Electricity Market

ISOs are responsible for overseeing and administering competitive wholesale electricity mar-
kets. These markets work together to ensure the constant availability of electricity. In this
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Figure 2.9: Locational Marginal Price in $/MWh at each bus

Figure 2.10: Line Flow[p.u.]

section, the structure of the wholesale electricity market is presented. It should be noted
that the following structure of the wholesale markets is based on the current practice of ISO
New England [1], however different regions or countries might have modified structures,
based on their own energy policy. In particular, the wholesale electricity markets consist of
the following markets [3]:
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Figure 2.11: Day-ahead and Real-Time Markets Time Line

2.4.1 Day-Ahead Energy Market (DAM)

DAM allows market participants to hedge against price fluctuations which occur in real time.
The primary objective of the electricity markets operated by any ISO is to ensure a reliable
and economic supply of electricity to the high-voltage power grid. The day-ahead market
is a forward market, in which hourly clearing prices are calculated for each hour of the
next operating day, based on generation offers, demand bids, virtual supply offers, virtual
demand bids, and bilateral transaction schedules submitted into the day-ahead market.

All of the transactions between participants in the day-ahead market are settled at the
day-ahead prices. Figure 2.11 shows the time line of DAM. After the day-ahead market bid
period closes at 12:00, ISO calculates the day-ahead schedule based on the GenCo offers
and ConCo bids, and schedules the dispatch plan for each hour of the next operating day
based on a least-cost, security-constrained unit commitment. The day-ahead market clear-
ing process incorporates reliability requirements and reserve obligations into the analysis.
Generators that are available but not selected in the day-ahead scheduling may revise their
bids for use in the Real-Time Market (RTM), discussed in Section 2.4.2, during the gener-
ation rebidding period from 16:00 to 18:00; otherwise the original day-ahead market bids
remain in effect for the real-time energy market. At 22:00, the ISO finalizes the operating
plan for the next day. To economically meet actual real-time load, RTM needs to balance en-
ergy and reserves in the grid, while accounting for transmission system limits and providing
contingency coverage.

2.4.2 Real-Time Energy Market (RTM)

The Real-Time Energy Market is a physical delivery market rather than a financial forward
market like the day-ahead energy market. The RTM is the environment in which the ISO
control room commits and dispatches physical resources to meet actual real-time load, in-
cluding the minute-to-minute balancing of energy and reserves, while accounting for trans-
mission system limits and the need to provide contingency coverage. The financial schedules
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produced by the Day-Ahead Energy Market clearing process provide a starting point for the
operation of the RTM. At each location, the power required, and available, can increase or
decrease for a number of reasons, including generator re-offers of their supply into the mar-
ket, real-time hourly self-schedules (i.e., generators’ choosing to be on line and operating at
a fixed level of output regardless of the price of electric energy), transmission or generation
outages, and unexpected real-time system conditions.

Physically, real-time operations balance instantaneous changes in supply and demand,
and ensure that adequate reserves are available to operate the transmission system within
its limits. Financially, the Real-Time Energy Market settles the differences between the day-
ahead scheduled amounts of load and generation and the actual real-time load and genera-
tion. Participants either pay or are paid the real-time locational marginal price (LMP) (see
Section 2.3.4) for the load or generation in megawatt-hours (MWh) that deviates from their
day-ahead schedule.

In the real-time energy market, the ISO meets the energy demand while respecting the
transmission security constraint using the least-cost security constrained Economic Dispatch
(ED) (see Section 2.3.2). The ED is an ex-ante dispatch that is based on the projected system
conditions within the next 5 minutes. The LMP calculations are ex-post and are based on
the actual generation response to the ex-ante dispatch that was sent 5 min earlier. The LMP
calculation will take into account the current transmission and generation outages as well
as transmission limitations through the ISO state estimator.

The sequential process of DAM and RTM is expressed in Figure 2.12. First, all genera-
tors have the flexibility to revise their incremental energy supply offers during the re-offer
period as discussed in Section 2.4.1. The ISO also may be required to commit additional
generating resources to support local-area reliability, or to provide contingency coverage.
This additional generating resources ensure that the system reliably serves actual demand,
the required operating-reserve capacity is maintained, and finally transmission line loadings
are safe. For these processes, the ISO evaluates the set of generator schedules produced by
the DAM solution, any self-schedules submitted during the re-offer period, and the availabil-
ity of resources for commitment near real time. The ISO will commit additional generation if
the DAM generation schedule, plus the self-scheduled resources and available fast-start gen-
eration, does not meet the real-time forecasted demand and also reserve requirements that
ensure system reliability. In addition, generating-unit and transmission line outages, along
with unexpected changes in demand, can cause the ISO to call on additional generating re-
sources to preserve the balance of supply and demand. All the circumstances which affect
the level of generator dispatch, such as changes in the level of demand, actual generator
availability, and system operating conditions, affect the real-time LMPs. RTM prices are in-
herently volatile in the competitive equilibrium due to physical constraints and uncertainty.
Recent work shows that volatility and uncertainty can have tremendous impact on system
operations and market outcomes [92]. As the penetration of wind and other renewable
energy resources increases, power systems are facing additional volatility. For this reason,
it is expected that many of the difficulties observed in today’s RTM might increase without
proper design.
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Figure 2.12: Pool-based market time line

2.4.3 Reserve Market

To maintain system reliability, all power systems need reserve capacity to be able to respond
to contingencies, such as those caused by unexpected outages. Operating reserves are the
unloaded capacity of generating resources, either off line or on line, which can deliver elec-
tric energy within 10 or 30 minutes.

The ISO’s operating procedures require reserve capacity to be available within 10 minutes
to meet the largest single system contingency. Additional reserves must be available within
30 minutes to meet one-half of the second-largest system contingency. The ISO also identi-
fies local second-contingency-protection resources (LSCPRs) to meet the second-contingency
requirements in the constrained areas. In general, capacity equal to between one-fourth and
one-half of the 10-minute reserve requirement must be synchronized to the power system, or
be 10-minute spinning reserve (TMSR), while the rest of the 10-minute requirement may be
10-minute nonspinning reserve (TMNSR). The entire 30-minute requirement may be served
by 30-minute operating reserve (TMOR) or the higher-quality 10-minute spinning reserve or
nonspinning reserve. In addition to the system-wide requirements, 30-minute reserves must
be available to meet the local second contingency in constrained areas.

The Forward Reserve Market (FRM) obliges participants to provide reserve capacity in
real time through a competitive, intermediate-term forward-market auction. Then, the ISO
dispatches resources in real time, and the use of resources for providing electric energy and
real-time reserves will be co-optimized. When resources are dispatched to a lower level in
real-time to provide reserve capacity rather than electric energy, a positive real-time reserve
price for the product is assigned, recognizing the resource’s opportunity cost of providing
reserve rather than energy. The real-time reserve prices also reflect additional costs to the
system of dispatching more expensive resource to provide electric energy in order to replace
the output of the resource which was dispatched down.

In particular, the reserve market consists of a regulation market, a forward reserve market
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and a voltage support market. Brief details of each of these markets are now discussed.

Regulation Market

Regulation is the capability of specially equipped generators and other energy sources to
increase or decrease their output every four seconds in response to signals they receive from
the ISO to control slight changes on the system. This capability is necessary to balance
supply levels with the rapid variations in demand and to assist in maintaining the frequency
of the entire interconnected power network.

The primary objective of the Regulation Market, which is the mechanism for selecting and
paying resources needed to manage system balancing, is to ensure that the ISO meets the
Real Power Balancing Control Performance Standard assigned by North American Electric
Reliability Corporation (NERC). According to this standard each balancing authority shall
operate such that its average area control error (ACE) for at least 90% of clock-10-minute
periods (six non-overlapping periods per hour) during a calendar month is within a specified
limit. The regulation clearing price (RCP) is calculated in real time and is based on the
regulation offer of the highest-priced generator providing the service.

Forward Reserve Market (FRM)

The Forward Reserve Market is designed to attract investments in the type of resources that
provide the long-run, least-cost solution to satisfying the reserve requirements. The ISO
conducts two FRM auctions, one each for the summer and winter reserve periods (June
through September and October through May, respectively), which acquire obligations to
provide pre-specified quantities of each reserve product. Forward-reserve auction clearing
prices are calculated for each reserve product in each reserve zone. To attract and maintain
resources which are normally expected to provide reserves instead of electric energy, the
FRM requires the resources designated as forward-reserve resources to offer the megawatt.
When enough supply is offered under the price cap to meet the requirement for a product in
a particular zone, the auction clearing price for that product is set equal to the price of the
marginal supply offer.

Voltage support

This allows ISO to maintain transmission voltages within acceptable limits through facilities
to produce Reactive Power. Thus, Reactive Supply and Voltage Control Services, called Volt-
age Support Services, must be provided to support voltage level in the transmission level.
The amount of Voltage Support Service that must be supplied will be determined based on
the Reactive Power support necessary to maintain transmission voltage within the limits that
are accepted in the region by the ISO.

2.4.4 Summary of Scheduling Process through Wholesale Market

As we discussed in the previous section, the ISO runs different generation schedules in
its day-ahead market and real-time market, to make sure that the energy and reserve re-

54



2.4 Structure of the Wholesale Electricity Market

Real-time 
Regulation 

Process 

Real-time 
Market 

Day-ahead 
Market 

AGC 

Real-time 

REG 

7.5 min 5 min 
65 
min 

RTED 

75 min 15 min 
5 h 

STUC/RTUC 

10 a.m., day before 

DAM 
24 h 

1 h 

4 s 

Figure 2.13: Granularity of dispatch in the wholesale market, adopted from [110]

quirements, including regulating up, regulation down, and ramping requirements are ulti-
mately met in real-time operation. Figure 2.13 shows the typical market timeline. The ISO
scheduling process includes day-ahead market (DAM), real-time unit commitment (RTUC),
short-term unit commitment (STUC), and real-time economic dispatch (RTED). Although
regulation (REG) capacity is procured in the day-ahead market, it is controlled by the AGC
system which is discussed in details in Chapter 5 and Appendix A.2. The RTM consists of
several applications, of which STUC, RTUC, and RTED work together. The STUC and RTUC
applications ensure there is enough on-line capacity to meet a 5-minute demand. The STUC
is performed in the RTM to commit units, and balance the system resource and demand,
while enforcing transmission constraint. STUC is run once an hour, and looks ahead 5 hours
to commit resources that have start up times greater than 90 minutes. The RTUC applica-
tion runs every 15 minutes and looks ahead between 60 minutes to 75 minutes intervals to
determine if short-start and fast-start units need to be committed or de-committed.

The RTED process runs every 5 minutes to meet the imbalance energy requirements of
the system. This process looks ahead 65 minutes to ensure that enough capacity is on-line
to meet real-time demand. It is expected that wind variability and the lack of accurate wind
forecast could create challenges for the RTED application. RTED is the lowest granularity of
dispatch in the overall hierarchical electricity market. Then regulating reserves is dispatched
through the EMS AGC system every 4 seconds to follow the remaining uncertainties.

Figure 2.14 represents the components of generation dispatch in the presence of uncer-
tainty. In the day-ahead timeframe, wind and solar resources are not required to bid directly
into the markets. This fact can significantly impact the unit commitment process in the DAM
timeframe because the ISO must forecast the expected hourly production in the DAM to en-
sure that enough resources are committed for the next day’s operation. Similarly, the ISO
load forecast is done in the DAM and RTM timeframes. RTED is provided 7.5 minutes before
the dispatch operating target (DOT) and is based on real-time forecasts. In the RTM, the
ISO automatic load forecasting system provides a load forecast for each 15-minute and 5-
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Figure 2.14: Components of Generation Dispatch in the Presence of Uncertainty, adopted
from [110]

minute interval. Load and wind forecasting errors can cause the RTM application to dispatch
incorrect amounts of imbalance energy needs. Because of the load and wind (as well as so-
lar) forecast errors, there are uncertainties in the ranges of regulation and load following
requirements.

Greater volatility means increased reserves, which reduces the value of wind power. With
sufficient storage and Demand Response (DR) we can reduce the impact of volatility and
increase the value of wind power. DR is discussed further in Section 2.5.2, and its effect on
market equilibrium is quantified in Chapters 3 and 4. It is also hoped that smart meters will
reduce the negative impacts of volatility, bringing a feedback structure where demand can be
modulated over a range of time-scales. In Chapter 4, we will develop a dynamic framework
for addressing the financial settlement, and will study the effects of wind uncertainty and
demand elasticity on the overall market stability.

2.5 Smart Grid Implications

One of the main foundations of the emerging Smart Grid is the integration of renewable
energy resources (RER). Particularly integration of wind and solar energy (two of the most
rapidly growing resources) into the electric power infrastructure presents significant chal-
lenges. At the heart of this challenge lies the inherent variability (often referred to as inter-
mittency) of wind and solar. An interesting concept that is being explored for mitigating the
integration cost of RERs is DR, the concept of controlling loads via economic signals. In the
following subsections, the challenges of Smart Grid implications, in terms of wind power
uncertainty and DR , will be discussed. There are other implications of Smart Grid such as
PHEVs, micro-grids, direct load control, and smart meters. These aspects of Smart Grid are
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beyond the scope of this thesis, but can be found in [109].

2.5.1 Wholesale Electricity Market Under Wind Uncertainty

Wind power cannot be dispatched in a traditional sense, due to the inherent intermittency
and uncertainty of wind. Therefore large-scale integration of wind power into a power
system constitutes a challenge for system operators and planners [83]. In particular, the
management of uncertainties in a power system has already been observed in current prac-
tice. Demand is also variable and uncertain, and system operators have been coping with
the natural variability and stochasticity of demand since the dawn of the power industry.
However, the integration of wind generation into a power system entails the consideration
of additional uncertainty and variability in the operation of the system. Specially for the
case that wind penetration is significant, uncertainty poses the significant challenge that
needs to be taken into account . Part of this variability can be predicted some hours or days
ahead. The uncertain part of the variability is managed with reserves in the power system.
As the level of wind power generation increases, the need for spinning and non-spinning
reserves increases to maintain system security. Increasing wind penetration requires higher
degree of flexibility in order to coordinate the resulting fluctuating of load and the variable
output of wind generation. This greater flexibility usually imposes huge integration costs to
operate conventional power systems at larger range of production levels in an attempt to
accommodate the inherent variability of wind generation by ramping up or down.

Through competition among participants, electricity markets should guarantee the eco-
nomically efficient operation of electrical systems . However, when wind power comes on
stage in high levels, the competitive system can be altered, as the energy transactions settled
in these markets may not be implemented in real-time, exactly as agreed due to intermit-
tency and uncertainty.

Therefore, the successful integration of wind generation into power systems relies on
economic criteria while maintaining, or even improving, the reliability of the overall power
systems. The reliability of power systems is largely dependent on reserve management,
which, in turn, depends on the penetration of wind power [83]. All these issues can be
tackled suitably by utilizing dynamic information in the form of dynamic mechanism of the
market clearing procedure, introduced in Chapter 4. This procedure constitutes a real-time
pricing, to reconcile economic efficiency and system security for clearing electricity markets
with high levels of uncertainty. In Chapter 5, a hierarchical control methodology based on
dynamic information is presented with a goal of ensuring frequency regulation using optimal
allocation of resources in the presence of uncertainties in renewables and load.

2.5.2 Demand Response (DR)

Along with adequate supply and robust transmission infrastructure, Demand Response (DR)
is an important component in the wholesale energy market. DR consists of the equipment,
systems, services, and strategies that enable demand resources to adjust their consumptions
in response to power grid needs through economic signals from a competitive wholesale
market. DRs can provide relief from capacity constraints and promote more economically ef-
ficient uses of electrical energy. In the Forward Capacity Market, some types of DR resources
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are paid capacity payments, which can compete in the Forward Capacity Auction along with
other supply-side resources. For example, some customers can reduce their overall energy
usage while maintaining the same level of productivity and comfort by implementing energy-
efficiency measures. Other customers can supply capacity by eliminating their consumption
on short notice in response to a capacity deficiency. Still others may be able to shift end-use
customer load onto an on-site emergency generator in response to system emergencies. The
ISO has three basic categories of DR

• Active DRs that reduce load to support system reliability,

• Active DRs that respond to wholesale energy prices,

• Passive DRs that reduce load through energy efficiency and similar measures.

In the subsequent chapters, different concepts of DR are presented. DR has increasingly
provided grid operators and utilities with flexibility in order to control power systems in
the presence of uncertainty and intermittency of RERs, which is delineated in the following
chapters.

2.6 Concluding Remarks

To achieve large-scale use of uncertain and variable renewable generation, it is necessary
to move to a new paradigm, where both the consumption and generation have a possibility
to suitably adjust in response to the power systems conditions. DR is such a paradigm,
and refers to a portfolio of control schemes which modulate and control consumption. In
Chapter 3, we analyze the effect of RER uncertainty, and we show that the integration cost of
RER in the wholesale market is mitigated by implementing DR. In Chapter 4, robust stability
of the wholesale market is presented and we will demonstrate how DR is useful to increase
robustness of market dynamics in the presence of wind uncertainty. Finally, in Chapter 5, DR
is used as a part of hierarchical Transactive control structure and the effect of DR in power
systems control is illustrated.
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Market

Summary. The notion of market equilibrium in the presence of Renewable Energy
Resources (RERs) and Demand Response (DR) is presented. The main contributions of
this chapter are

• An analytical framework to determine the market equilibrium shift using a lin-
ear complementarity problem (LCP) approach,

• Conditions under which the equilibrium of the market exists and is identical to
the Nash Equilibrium of the corresponding game, which is provided in Theo-
rem 3.2,

• A computable upper bound for market equilibrium shift in the presence of wind
uncertainty, which is provided in Theorem 3.3,

• Quantifying the deviation of Nash Equilibrium in the presence of wind uncer-
tainty and the effect of perturbation on the payoffs of GenCos and ConCos, which
is provided in Proposition 3.1.

One of the main challenges in the emerging smart grid is the integration of renewable en-
ergy resources (RER). The latter introduces both intermittency and uncertainty into the grid,
both of which can affect the underlying energy market. An interesting concept that is being
explored for mitigating the integration cost of RERs is DR. Beginning with an overall model
of the major market participants with RER and DR, together with the constraints of transmis-
sion and generation, the energy market in this chapter is analyzed and conditions for global
maximum using standard Karush-Kuhn-Tucker (KKT) criteria are derived. The effect of wind
uncertainty on the market equilibrium is then quantified. Perturbation analysis methods are
used to compare the equilibria in the nominal and perturbed markets. These markets are
also analyzed using a game-theoretic point of view. Sufficient conditions are derived for the
existence of a unique Pure Nash Equilibrium in the nominal market. The perturbed market
is analyzed using the concept of closeness of two strategic games and the equilibria of close
games. This analysis is used to quantify the effect of uncertainty of RERs and its possible
mitigation using DR. Finally numerical studies are reported using an IEEE 30-bus to validate
the theoretical results.

The remainder of this chapter is organized as follows: Section 3.1 describes the model of
the three market participants. In Section 3.2, the overall market equilibrium under nominal
conditions is formulated. A perturbation analysis is introduced in Section 3.4 to address the
effects due to uncertainty. In Section 3.5 numerical simulation results are reported. Section
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3.6 includes concluding remarks.

3.1 Modeling of Market Agent Behavior

In this section, we derive the model of the wholesale electricity market. The main compo-
nents of this market include

1. Generating companies (GenCos): GenCos are entities that own generating units. Gen-
Cos sell their electricity either through the electricity market, or through bilateral con-
tracts to the consumer. GenCos are responsible for the operation and maintenance of
their generating units.

2. Consumer companies (ConCos): ConCos are entities that purchase electricity to sup-
ply consumption, either through the electricity market, or through bilateral contracts
directly from the GenCos.

3. Independent System Operator (ISO): Independent entity that clears the market by max-
imizing social welfare based on power systems security and reliability.

A deterministic framework is used to capture interactions between these players. The un-
derlying goal is the determination of the power production of the generating units and the
power demanded by the consumers such that power is balanced at all network nodes and
social welfare is maximized while meeting capacity limits. The solution of the resulting
optimization problem not only determines the optimal dispatch but also the optimal Local
Marginal Price which is determined as the corresponding shadow price. In what follows,
we model each of the components 1-3 together with their constraints and the optimization
goals.

3.1.1 Generating Company

It is assumed that the generating company consists of NG generating units, and that the
production of each generating unit i, i = 1, . . . , NG is divided into b power blocks, where
b = 1, . . . , NGi

, and is denoted as PGib. The associated linear marginal operating cost is
denoted as λC

Gi b
. These costs are due to fuel consumption, and to operation and maintenance.

A precise model of the operation costs could require the use of non-differentiable and non-
convex functions [28, 74]. In practical applications, several approximations are used to
model operating costs. In this chapter, a piecewise linear approximation of the variable cost
is used. As can be seen in Figure 3.1, each power variable has a minimum value equal to
zero and a maximum value equal to the size of the corresponding block denoted as PGib.
The slope of the linear approximation for each block corresponds to the marginal cost of this
block and is represented by λC

Gi b
.

The goal of the company is to maximize its overall profit, and is stated as

maximizePGib

∑

i∈G f

NGi
∑

b=1

�

ρn(i)−λC
Gi b

�

PGib (3.1)
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Figure 3.1: Piecewise linear variable operating cost function, adopted from [46].

where ρn(i) denotes the Locational Marginal Price (LMP) of unit i at node n in the network.
The power production is subject to the following constraints:

NGi
∑

b=1

PGib ≤ Pmax
Gi : αi;∀i ∈ G f (3.2a)

PGib ≤ Pmax
Gib : φi b;∀i ∈ G f ; b = 1, . . . , NGi (3.2b)

PGib ≥ 0;∀i ∈ G f ; b = 1, . . . , NGi (3.2c)

where αi and φi b are the corresponding shadow prices. The decision variables of this prob-
lem are the amounts of power PGib to be generated by each unit i in each block b. While
ρn(i) are dual variables in the ISO problem in (3.14a)-(3.14e), they can be viewed as fixed
values with respect to the optimization of (3.1).

Assumption 3.1. The associated marginal cost of block b for GenCo i denoted as λC
Gi b

is
nondecreasing with respect to PGi b

.

Using Assumption 3.1, necessary and sufficient conditions for the optimization of (3.1)
subject to (3.2a) - (3.2c) are enumerated below, using dual variables αi and φi b, which cor-
respond to the KKT conditions (see Appendix A.1.5 for more details about KKT conditions.)
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Figure 3.2: Piecewise linear utility function, adopted from [46].

0≤ PGib ⊥
�

−ρn(i)+λ
C
Gi b
+αi +φi b

�

≥ 0 ∀i ∈ G f ; (3.3a)

b = 1, . . . , NGi

0≤ αi ⊥
�

−
NGi
∑

b=1

PGib + Pmax
Gi

�

≥ 0;∀i ∈ G f (3.3b)

0≤ φi b ⊥
�

Pmax
Gib − PGib

�

≥ 0;∀i ∈ G f ; b = 1, . . . , NGi (3.3c)

where the symbol 0 ≤ x ⊥ y ≥ 0 denotes the complementarity condition for optimality and
is equivalent to x T y = 0, 0≤ x and y ≥ 0.

3.1.2 Consumer Modeling

A consumer company (ConCo) is assumed to consist of ND units, and the demand of each
unit j, j = 1, . . . , ND, is divided into several blocks ND j

, with a block-index k = 1, . . . , ND j
. The

associated linear marginal utility function is denoted as λU
D jk

which represents the value of
using electricity for the consumer. The consumer is assumed to have a rational behavior and
the utility function representing that behavior is nonlinear. Utility is linearized by blocks
using marginal utilities denoted by λU

D jk
. The marginal utility represents the satisfaction

increase for consuming an additional MWh. The utility function for ConCo j is shown in
Figure 3.2. The goal of a ConCo is to maximize the total profit while consuming electricity.
The overall profit, for a unit j in block k connected to node n, is determined as the difference
between the utility λU

D jk
and the corresponding LMP, ρn( j). Assuming that the corresponding
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power consumed is denoted as PD jk, the maximization problem can be posed as

maximizePD jk

∑

j∈Dq

ND j
∑

k=1

�

λU
D jk
−ρn( j)

�

PD jk (3.4)

As before, this is subjected to the constraints

PD jk ≤ Pmax
D jk : σ j;∀ j ∈ Dq; k = 1, . . . , ND j (3.5a)

ND j
∑

k=1

PD jk ≥ Pmin
D jk :ψ jk;∀ j ∈ Dq; k = 1, . . . , ND j (3.5b)

PD jk ≥ 0;∀ j ∈ Dq; k = 1, . . . , ND j (3.5c)

where σ j and ψ jk are the corresponding dual variables for (3.5a) and (3.5b). While the
constraint (3.5c) is almost always satisfied in current-day markets, this may not be the case
in micro-grid topologies.

The decision variables of this problem are PD jk, the amounts of power to be consumed
by each demand j in each block k. While ρn( j) are dual variables in the ISO problem de-
noted in (3.14a)-(3.14e), they can be viewed as fixed values, as before, with respect to the
optimization of (3.4).

Assumption 3.2. The associated marginal utility of block k for ConCo j denoted as λu
D jk

is
non-increasing with respect to PD jk

.

Under Assumption 3.2, necessary and sufficient conditions for the optimization of (3.4)
subject to (3.5a) and (3.5b) are enumerated below, using dual variables σ j and ψ jk, which
correspond to the KKT conditions [46]:

0≤ PD jk ⊥
�

ρn( j)−λu
D jk
−σ j +ψ jk

�

≥ 0 (3.6a)

∀ j ∈ Dq; k = 1, . . . , ND j

0≤ψ j ⊥
�

ND j
∑

k=1

PD jk − Pmin
D jk

�

≥ 0;∀ j ∈ Dq; k = 1, . . . , ND j (3.6b)

0≤ σ jk ⊥
�

− PD jk + Pmax
D jk

�

≥ 0;∀ j ∈ Dq; k = 1, . . . , ND j (3.6c)

3.1.3 Effect of Uncertainties and Demand Response
The most dominant impact of the introduction of distributed energy resources is due to
uncertainties, which can directly alter the power generated. This in turn can affect the
overall market equilibrium as well as the corresponding LMP. A first step in this direction
is taken by introducing uncertainties in the decision variables introduced in Section 3.1.1.
First the family of PGib is separated into PC

Gib, i = 1, . . . , NG, and PW
Gl b, l = 1, . . . , NW , where NG

denotes the conventional dispatchable generating units, and NW denotes distributed energy
resources such as those based on wind and solar energy, which are non-dispatchable. At each
node, both conventional generators and wind generators may be committed for production.
We assume that the wind GenCo are competitive and that they submit their bids to the
market as other conventional GenCo, and not modeled as a negative demand [62,63].
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Using the above discussion, the objective function defined in (3.1) is modified as

maximizePw
Gl b

∑

l∈Gw

NGl
∑

b=1

�

ρn(l)−λC
Gw

l b
− C r

Gr
(∆wl b

)
�

Pw
Gl b (3.7)

where Pw
Gl b is the wind power from the l th wind generator, and assumed to lie in the interval

h

Pw
Gl bmin

, Pw
Gl bmax

i

. ∆wl b
is due to wind uncertainty, given by

∆wl b
= Pw

Gl b∆Gl b ∀∆Gl b ∈ (−1, 1). (3.8)

It should be noted that λC
Gw

l b
is the marginal cost function for the l th wind generator which

is close to zero. Finally, C r
Gr
(∆wl b

) is a cost incurred by committing specific generators as
reserves [64], due to the wind uncertainty ∆wl b

, and is modeled as

C r
Gr
(∆wl b

) = λC
Gr
∆wl b

(3.9)

where λC
Gr

is the associated linear operating cost of reserve for the generator that is commit-
ted by ISO as a reserve unit. λC

Gr
is determined using an independent procedure involving

reserve markets [64]. The available wind energy is overestimated when 0<∆Gl b < 1 which
implies that if the assumed power is not available, power can be purchased from an alter-
nate source or that loads can be shed. We furthermore assume that the overestimation is
only due to wind uncertainty and not because of strategic behavior of wind provider. The
available wind energy is underestimated if −1<∆Gl b < 0 which implies that surplus power
is either sold to adjacent utilities, or consumed through fast redispatch and automatic gain
control, or reduced through reduction of conventional generation.

The percentage of wind penetration is defined using a variable xw as

xw =

∑

l∈Gw

∑NGl

b=1 Pw
Gl b

∑

j∈Dq

∑ND j

k=1 Pmax
D jk

(3.10)

where Pmax
D jk is the maximum power demanded by consumer j in block k defined in (3.5a).

We note that the impact of wind power on the market equilibrium is small if xw is small, i.e.,
if wind penetration is low.

To include the effect of DR, we divide all ConCo units into dispatchable and non-
dispatchable ones, we consider a dispatchable load PD jk. This effect is modeled using a
control parameter κD jk, and denotes the response of the consumers to a change in the Real
Time Price (RTP) as

P̄D jk = PD jk
�

1−κD jk
�

0< κD jk < 1 (3.11)

P̄D jk denotes the consumption incorporated with demand responsiveness into RTP. It is as-
sumed that κD jk is suitably calibrated to represent the effect of RTP on the consumer behav-
ior, and is synonymous to elasticity factor defined in [84]. In contrast to ∆Gl b which may be
unknown, κD jk is assumed to be controllable. However, the equilibrium as well as the LMPs
are altered due to the presence of the perturbation parameters ∆Gl b and κD jk, the details of
which are discussed in Section 3.4.
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3.1.4 Modeling of Independent System Operator

In addition to GenCo and ConCo, a competitive electricity market also includes a coordi-
nator such as the ISO, who is independent of these profit-maximization entities [85]. The
responsibilities of the ISO are to enforce transmission capacity limits, to maintain indepen-
dence from the market participants, to avoid discrimination against the market participants,
and to promote the efficiency of the market.

In this paper we include network constraints in the underlying market model and the
resulting prices are therefore the Locational Marginal Prices [25]. For ease of exposition,
ohmic losses are not modeled in this paper. The standard market-clearing procedure is
based on Social Welfare, Sw, defined as

SW =
∑

j∈Dq

ND j
∑

k=1

λB
D jkPD jk −

∑

i∈G f

NGi
∑

b=1

λB
Gi b

PGib (3.12)

where the first and second terms denote the revenue due to surpluses stemming from bids
from GenCo and ConCo, respectively. The market-clearing procedure is then given by

maximize SW (3.13a)

subject to

∑

i∈θn

NGi
∑

b=1

PGib −
∑

j∈ϑn

ND j
∑

k=1

PD jk −
∑

m∈Ωn

Bnm
�

δn−δm
�

= 0;ρn∀n ∈ N (3.13b)

Bnm
�

δn−δm
�

≤ Pmax
nm ;γnm∀n ∈ N ;∀m ∈ Ωn (3.13c)

The constraints (3.13b) and (3.13c) are due to power balance and capacity limits, respec-
tively. It can be seen that the associated Lagrange multipliers, ρn and γnm, are indicated in
each constraint.

The underlying optimization problem of the ISO can therefore be defined as the optimiza-
tion of (3.13a) subject to constraints (3.13b) and (3.13c). This problem can be restated as
the solutions of the generation power blocks levels PGib, the demand power blocks levels
PD jk, the voltage angle δn, and dual variables ρn and γnm such that

0≤ PGib ⊥
�

λB
Gib −ρn(i)

�

≥ 0 (3.14a)

0≤ PD jk ⊥
�

ρn( j)−λB
D jk

�

≥ 0 (3.14b)

0≤ δn ⊥
�

∑

m∈Ωn

Bnm
�

ρn−ρm
�

+

∑

m∈Ωn

Bnm
�

γnm− γmn
��

≥ 0 ∀n ∈ N (3.14c)

0≤ ρn ⊥
�

−
∑

i∈θn

NGi
∑

b=1

PGib +
∑

j∈ϑn

ND j
∑

k=1

PD jk+

∑

m∈Ωn

Bnm
�

δn−δm
��

≥ 0 ∀n ∈ N (3.14d)

0≤ γnm ⊥
�

Pmax
nm − Bnm

�

δn−δm
��

≥ 0 (3.14e)
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The decision variables of this problem are the amounts of power to be generated by each
generating unit i in each block b, i.e., PGib; the amounts of power to be consumed by each
demand j in each block k, i.e., PD jk; and the locational marginal prices, ρn( j). It should be
noted that (3.14d) is arrived at using the balance equation, which implies that the term in
the corresponding parenthesis is zero, and by multiplying this term by ρn, which is positive.

In summary, the market model that we consider in this paper includes optimization goals
of GenCo discussed in Section 3.1.1 and formulated in Eqs. (3.1)-(3.2c), optimization goals
of ConCo, (3.4)-(3.5c) and formulated in Section 3.1.2, and optimization of the ISO dis-
cussed in Section 3.1.4 and formulated in Eqs (3.12)-(3.13c). The corresponding equilib-
rium point is therefore defined as that which satisfies the following criteria:

1. maximum profit for every individual generating company

2. maximum utility for every individual consumer

3. maximum net social welfare for the ISO.

3.2 Market Equilibrium

We now discuss the overall market equilibrium. In the GenCo and ConCo optimization
problems, given in (3.1)-(3.2c) and (3.4)-(3.5c), respectively, the Locational Marginal Prices
appear as inputs. On the other hand, these LMPs appear in the optimization problem of
the ISO in (3.12)-(3.13c) as dual prices corresponding to the balance equations, causing a
tight link between the three families of optimization problems, thereby making the overall
problem nontrivial.

It should be noted that under Assumptions 3.1 and 3.2, each of these three sets of opti-
mization problems are convex programming problems. Thus, the Karush-Kuhn-Tucker (KKT)
optimality conditions are both necessary and sufficient for describing the optimal solutions.
The optimality conditions of the three sets of problems result in a Linear Complementarity
Problem (LCP) which correspond to the market equilibrium for all i ∈ G f , b = 1, . . . , NGi,
j ∈ Dq, k = 1, . . . , ND j, and m ∈ Ωn can be compactly stated as the solution of the following
LCP:

0≤ x ⊥
�

M x + q
�

≥ 0 (3.15)

where x is defined as

x =
�

PG ᾱ Φ PD Ψ Σ ∆ ρ̄ Γ
�T

, (3.16)

with the following vector notations:
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PG =
h

PT
G1b

, PT
G2b

, ..., PT
GNG b

iT
, Λu

D =
h

λuT

D1k
,λuT

D2k
, ...,λuT

DNDk

iT
,

PD =
h

PT
D1k

, PT
D2k

, ..., PT
DNDk

iT
, Ψ=

h

ψT
1k,ψT

2k, ...,ψT
NDk

iT
,

∆=
�

δ1, ...,δN−1

�T , ρ̄ =
�

ρ1, ...,ρN
�T ,

ΛC
G =

h

λC T

G1b
,λC T

G2b
, ...,λC T

GNG b

iT
, ΛB

G =
h

λBT

G1b,λBT

G2b, ...,λBT

GNG b

iT
,

ᾱ=
h

αT
1b,αT

2b, ...,αT
NG b

iT
, ΛB

D =
h

λBT

D1k,λBT

D2k, ...,λBT

DNDk

iT
,

Pmax
G =

h

Pmax T

G1 , Pmax T

G2 , ..., Pmax T

GNG

iT
, Pmin

D =
h

PminT

D1 , PminT

D2 , ...., PminT

DND

iT
,

Pmax
D =

h

Pmax T

D1k , Pmax T

D2k , ..., Pmax T

DNDk

iT
, Pmax

Gb =
h

Pmax T

G1b , Pmax T

G2b , ..., Pmax T

GNG b

iT
,

Pmax =
�

Pmax T

1m , ..., Pmax T

Nm

�T
, Γ=

�

γ1m, ...,γNm
�T ,

Σ=
h

σT
1k,σT

2k, ...,σT
NDk

iT
, Φ=

h

φT
1b,φT

2b, ...,φT
NG b

iT
.

M is defined as

M =







































0 I I 0 0 0 0 −Ag 0
−1 0 0 0 0 0 0 0 0
−I 0 0 0 0 0 0 0 0
0 0 0 0 I −I 0 Ad 0
0 0 0 1 0 0 0 0 0
0 0 0 −I 0 0 0 0 0
0 0 0 0 0 0 0 −Ag 0
0 0 0 0 0 0 0 −Ad 0
0 0 0 0 0 0 0 Ybus AT

r Bl ine

−Ag 0 0 Ad 0 0 Ybus 0 0
0 0 0 0 0 0 Bl ineAr 0 0







































(3.17)

where Bl ine denotes the line admittance matrix (Nt by Nt diagonal matrix) with elements Bnm

and A denotes the Nt × N bus incidence matrix. The reduced bus incidence matrix denoted
as Ar is a (Nt × N − 1) matrix which is equal to A with the column corresponding to the
reference bus removed. Ybus = AT

r Bl ineA denotes the nodal admittance matrix. 1 is a m× n
matrix with all elements equal to unity. Ag is generators incidence matrix where Agi j

= 1 if
the i th generator is connected to j th bus and Agi j

= 0 if the i th generator is not connected to
j th bus. Ad is a load incident matrix where Adi j

= 1 if the i th consumer is connected to j th

bus and Adi j
= 0 if the i th consumer is not connected to j th bus. And finally, q is defined as

follows:

q =
�

ΛC
G Pmax

G Pmax
Gb −Λ

u
D − Pmin

D Pmax
D ΛB

G Λ
B
D 0 Pmax

�T
(3.18)

The corresponding solution x∗ of (3.15), which determines the market equilibrium and is
dependent on M and q, is denoted as

x∗ ¬ LC P(M , q). (3.19)
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Definition 3.1. A matrix M ∈ Rn×n is called a P-matrix if its all principal minors are positive.

The following theorem is useful for connecting the LCP solution with the properties of
matrix M .

Theorem 3.1. [86] Assume that for all GenCos and ConCos, Assumptions 3.1 and 3.2 hold.
In (3.15), M is a P-matrix if and only if the LC P(M , q) has a unique solution for any q ∈ Rn.

Theorem (3.1) sets the stage for connecting the market equilibrium denoted as x∗ as the
LCP solution with the Nash equilibrium of the corresponding game in the following section.

3.3 A Game-Theoretic Framework for Wholesale Energy
Market Equilibrium

Game theory is highly useful to establish market properties in a systematic manner and thus
provide more comprehensive predictive capabilities and possible challenges in electricity
markets. Game theoretical models are typically static in the sense that they assume some
sort of steady-state behavior of the fundamental market drivers. In the following sections
electricity market equilibrium is delineated using game theoretical methods.

3.3.1 Game Theory and NASH Equilibrium

A game is a representation of a situation in which a number of individuals interacts with
each other in a setting of strategic interdependence. To describe a game, there are four
things to consider: 1) the players, 2) the rules of the game, 3) the outcomes and 4) the
payoffs and the preferences (utility functions) of the players. A player plays a game through
actions. An action is a choice or election that a player takes, according to his (or her) own
strategy. Since a game sets a framework of strategic interdependence, a participant should
be able to have enough information about its own and other players’ past actions. This is
called the information set. A strategy is a rule that tells the player which action(s) it should
take, according to its own information set at any particular stage of a game. Finally, a payoff
function expresses the utility that a player obtains given a strategy profile for all players.

Game-theoretical analyses of the wholesale electricity markets follow a certain logic em-
ployed by the game-theorist. Specifically, the game-theoretical description of competition in
these markets is usually based on several typical informational assumptions such as:

• A subset of information is available to all players (common knowledge);

• A subset of information is available to each individual player but not to other players;

• All the above information is available to the game-theorist for being able to analyze
the game.

Based on these informational assumptions and on the formal mathematical description of the
game (e.g., definition of strategies, constraints, objectives, order of moves, and definition of
equilibrium) the game-theorist analyzes the game where the following questions are usually
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posed and answered: (i) Does any equilibrium exist? (ii) If it exists, is it unique? (iii) How
can this equilibrium (or equilibria) be computed? (iv) What are the economic and policy
implications of the equilibrium (or equilibria)?

In electricity market, particularly, it is assumed that LMP is available to all players, and
cost function and utility function is only available to each individual player but not to other
players. The game-theoretical studies imply that the equilibrium found by solving a particu-
lar game is a likely outcome of the market which the game in question intends to model. In
the subsequent sections, the posed questions (i)-(iv) are answered.

3.3.2 Electricity Market Equilibrium and Nash Equilibrium

Let a strategic form game G = 〈I , (Sp)p∈I , (up)p∈I 〉 with a finite set of players in the whole-
sale market, i.e. I = G f

⋂

Gw

⋂

Dq represents the game theoretical description of compe-
tition in the wholesale market modeled in Section 3.1. We denote sp ∈ Sp as an action for
player p where Sp is the set of feasible actions for player p. For example if p ∈ G f , then
Sp := {sp ∈ R+|(3.2a) and (3.2b) hold}. We denote S =

∏

p Sp as the set of all action pro-
files. up : S → R is the payoff function of player p defined in Eq. (3.1) for all p ∈ G f and in
Eq. (3.4) for all p ∈ Dq. In addition, we use the notation s−p = [sq]q 6=p as a vector of actions
for all players except p, and S−p =

∏

q 6=p Sq as the set of all action profiles for all players
except p. (sp, s−p) ∈ S denotes a strategy profile of the game.

The electricity market represented as the game G = 〈I , (Sp)p∈I , (up)p∈I 〉 can be viewed
as a class of constrained noncooperative games, which has been widely studied in [89].
Informally, a set of power generation profile PG

∗ and consumption profile PD
∗ is a Nash

equilibrium if no player can do better by unilaterally changing his or her strategy. A precise
definition of Nash equilibrium is provided below.

Definition 3.2. A Pure Strategy Nash Equilibrium of a strategic game
G = 〈I , (Sp)p∈I , (up)p∈I 〉 is a strategy profile s∗ ∈ S such that for all p ∈ I

up(sp, s∗−p)≤ up(s
∗
p, s∗−p) ∀sp ∈ Sp. (3.20)

In the following theorem, the connection between market equilibrium, x∗, and Pure Strat-
egy Nash Equilibrium is presented.

Theorem 3.2. Assume that for all GenCos and ConCos Assumptions 3.1 and 3.2 hold. If M is a
P-matrix, then the equilibrium of the market denoted as x∗ ¬ LC P(M , q) exists and is identical
to a unique Pure Strategy Nash Equilibrium.

Proof. A proof by contradiction follows. That is, we assume Assumptions 3.1 and 3.2 hold,
that M is a P-matrix and that x∗ ¬ LC P(M , q) is not a Pure Strategy Nash Equilibrium.
Since M is a P-matrix and Assumptions 3.1 and 3.2 hold, then Theorem 3.1 implies that
x∗ ¬ LC P(M , q) exists and is the unique maximizer of the GenCo problem denoted in (3.1)
- (3.2b), ConCo problem denoted by (3.4) - (3.5b), and ISO problem denoted by (3.13a) -
(4.8c). That is

up(xp, x∗−p)≤ up(x
∗
p, x∗−p) ∀xp ∈ Sp. (3.21)
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Now let us denote a Pure Strategy Nash equilibrium by xN
∗. Using the Nash Equilibrium

definition in (3.20), it follows that

up(xp, x∗−p)≤ up(x
∗
Np

, x∗N−p
) ∀xp ∈ Sp. (3.22)

Since we assume that x∗ ¬ LC P(M , q) is not a Pure Strategy Nash Equilibrium, it implies that
both x∗ and x∗N maximize the payoffs which contradicts the uniqueness of x∗ ¬ LC P(M , q)
and therefore completes the proof.

Remark 3.1. Theorem 3.2 provides conditions under which the market has a unique equilib-
rium that is identical to the Nash equilibrium of each player, i.e. no degeneracy can occur
in the market if M is a P-matrix and Assumptions 3.1 and 3.2 hold [46]. Assumptions 3.1
and 3.2 essentially imply that the underlying cost functions are convex and that the utility
functions are concave.

3.4 Perturbation Analysis of Market Equilibrium

Using the results in the previous section, we now present a perturbation bound for the
equilibrium of the electrical market. As we discussed above, the market equilibrium x∗ is
the solution of LC P(M , q) and given in Eq. (3.15). As we discussed in Section 3.1.3, the
wind forecast error parametrized by ∆Gl b in (3.8), and DR parametrized by κD jk in (3.11),
are considered as two sources of perturbations. These components can affect M and q as
M +∆M and q+∆q, respectively. Therefore the underlying LCP problem is altered as

x T �(M +∆M)x + (q+∆q)
�

= 0

x ≥ 0

(M +∆M)x + (q+∆q)≥ 0 (3.23)

This in turn leads to a corresponding equilibrium

x∗∆ ¬ LC P(M +∆M , q+∆q). (3.24)

In the rest of this section, the effects that cause x∗∆ to deviate from x∗ are analyzed . The
following definitions are useful.

Definition 3.3. Define non-dimensional perturbation parameters εM and εq as

||∆M || ≤ εM ‖ M ‖, (3.25)

||∆q|| ≤ εq ‖ q ‖, (3.26)

a constant η as
η= εMβ(M) ‖ M ‖, (3.27)

where
β(A) = maxd∈[0,1]||(I − D+ DA)−1D||, (3.28)

and a diagonal matrix D = diag(di) with 0≤ di ≤ 1, i = 1, 2, . . . , n.
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Theorem 3.3. If the nominal market (3.15) has a unique solution and η < 1, then the per-
turbed market in (3.23) has a unique solution x∗∆ and satisfies the following inequality

‖ x∗− x∗∆ ‖
‖ x∗ ‖

≤ µ(∆Gl b,κD jk) (3.29)

where ε0 = max{εM ‖ M ‖,εq ‖ q ‖}, and

µ(∆Gl b,κD jk) =
2ε0

1−η
β(M). (3.30)

In order to prove Theorem 3.3, we need to characterize the dependence of x(M , q) on
the market parameters. This is characterized in the following theorem.

Theorem 3.4. (Lemma 2.1 and Theorem 2.2 in [91]) Matrix A is a P-matrix if and only
if (I − D+ DA) is nonsingular for any diagonal matrix D = diag(di) with 0 ≤ di ≤ 1, i =
1,2, . . . , n. Furthermore, if x(A, q) and x(B, p) are the solutions of the corresponding LC P(A, q)
and LC P(B, p) respectively, we have:

‖ x(B, p)− x(A, q) ‖
‖ x(B, p) ‖

≤ β(A) ‖ (A− B)x(B, p) + q− p ‖ . (3.31)

Now the proof of Theorem 3.3 is provided as follows.

Proof. If the nominal electrical market (3.15) has a unique solution according to Theo-
rem 3.1, the matrix M is P-matrix. This in turn, according to Theorem 3.4, implies that
(I − D+ DM) is nonsingular for any diagonal matrix D = diag(di) with 0 ≤ di ≤ 1,
i = 1, 2, . . . , n. We have the following equality

�

I − D+ D(M +∆M)
�

= (I − D+ DM)
�

I +M0∆M
�

(3.32)

where
M0 = (I − D+ DM)−1D. (3.33)

Noting the definition of β(M) in (3.28), it follows that

||M0∆M || ≤ β(M)||∆M || ≤ η, ∀∆M ∈M (3.34)

where the setM is defined as

M :
�

∆M
�

�β(M)||∆M || ≤ η
	

.

Since η < 1 according to theorem 3.3, it follows that I + M0∆M is nonsingular for all
∆M ∈M . We therefore conclude from (3.32) that

�

I − D+ D(M +∆M)
�

is a P-matrix and
thus the market in (3.23) has a unique solution for all ∆M ∈M and η < 1.

We now show that x∗∆ satisfies (3.29). Using (3.31) in Theorem 3.4, we have that:

‖ x∗− x∗∆ ‖
‖ x∗ ‖

≤ β(M +∆M)||∆M x∗+∆q||. (3.35)
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We rewrite the argument of β(M +∆M) as

�

I − D+ D(M +∆M)
�−1D =

�

I +M0(∆M)
�−1(I − D+ DM)−1D. (3.36)

Using Appendix 1 in [13], we have that

||
�

I +M0(∆M)
�−1|| ≤

1

1− β(M)||∆M ||
≤

1

1−η
. (3.37)

Taking norms on both sides of (3.36), we obtain that

β(M +∆M)≤
1

1−η
β(M). (3.38)

Therefore (3.35) can be rewritten as

‖ x∗− x∗∆ ‖
‖ x∗ ‖

≤
1

1−η
β(M)||∆M +∆q||. (3.39)

Considering the definition of ∆M in (3.25) and ∆q in (3.26), we obtain, in turn,

‖ x∗− x∗∆ ‖
‖ x∗ ‖

≤
2ε0

1−η
β(M) (3.40)

where ε0 = max{εM ‖ M ‖,εq ‖ q ‖} which is the desired bound.

Remark 3.2. Theorem 3.3 implies that the uncertainty in market can lead to a maximum shift
in the equilibrium by an amount µ(∆Gl b,κD jk). As this function is nonlinear, determining an
analytical relationship between µ(∆Gl b,κD jk), ∆Gl b and κD jk is exceedingly difficult. As will
be shown in the next section, simulation studies show that as κD jk increases, µ decreases.
This in turn brings the perturbed equilibrium closer to the nominal equilibrium.

3.4.1 Game Theoretic Interpretations of Wind Uncertainty

We now evaluate the perturbed market using tools from game theory. Consider two strategic
games defined by two profiles of utility functions as G = 〈I , (Sp)p∈I , (up)p∈I 〉 and G̃ =
〈I , (Sp)p∈I , (ũp)p∈I 〉. If s∗p is a Nash equilibrium of G, then s∗p need not be a Pure Strategy
Nash Equilibrium of G̃. The equilibria of the strategic games G and G̃ may be far apart, even
if (up)p∈I and (ũp)p∈I are very close to each other.

Definition 3.4. Given ε ≥ 0, a Pure Strategy Nash Equilibrium s∗ ∈ S is called an ε −
equilibrium if for all p ∈ I and sp ∈ Sp,

up(sp, s∗−p)≤ up(s
∗
p, s∗−p) + ε ∀sp ∈ Sp. (3.41)

Obviously in Definition 3.4, when ε = 0, the ε − equilibrium is a Pure Strategy Nash
Equilibrium in the sense of Definition 3.2. The following definition formally defines the
closeness of two strategic form games.
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Figure 3.3: IEEE 30-bus case study

Definition 3.5. Let G = 〈I , (Sp)p∈I , (up)p∈I 〉 and G̃ = 〈I , (Sp)p∈I , (ũp)p∈I 〉 be two strategic
form games, then G̃ is a α− approximation of G if for all p ∈ I ,

|up(s)− ũp(s)| ≤ α ∀s ∈ S. (3.42)

The next proposition relates the ε− equilibrium of close games as defined in 3.5.

Theorem 3.5. If G̃ = 〈I , (Sp)p∈I , (ũp)p∈I 〉 is an α − approximation to G =
〈I , (Sp)p∈I , (up)p∈I 〉 and s∗ ∈ S is an equilibrium of G̃, then s∗ ∈ S is a (2α)− equilibrium of
G.

Proof. For all p ∈ I and all sp ∈ Sp, we can write

up(sp, s∗−p)− up(s
∗
p, s∗−p) = up(sp, s∗−p)− ũp(sp, s∗−p)+

ũp(sp, s∗−p)− ũp(s
∗
p, s∗−p)+

ũp(s
∗
p, s∗−p)− up(s

∗, s∗−p).

(3.43)

Since s∗ is a Pure Nash Equilibrium of G̃, then ũp(sp, s∗−p) − ũp(s∗p, s∗−p) ≤ 0. This in turn
implies that

up(sp, s∗−p)− up(s
∗
p, s∗−p)≤ |up(sp, s∗−p)− ũp(sp, s∗−p)|+

|ũp(s
∗
p, s∗−p)− up(s

∗, s∗−p)|.
(3.44)

Using Definitions 3.4 and 3.5, it follows that

up(sp, s∗−p)− up(s
∗
p, s∗−p)≤ 2α (3.45)

which in turn implies that s∗ ∈ S is a (2α)− equilibrium of G.
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Figure 3.4: Actual wind power and scheduled wind output

Proposition 3.1. Assume that the perturbed market denoted by the strategic game G̃ under
uncertainties ∆Gl b and κD jk is an α− approximation of the nominal market denoted by G. If
x∗∆ is an equilibrium of the perturbed market G̃, then x∗∆ is a (2α)−equilibrium of the nominal
market G.

Remark 3.3. If the wind uncertainty due to forecast error ∆Gl b increases, from Definition
3.5, it follows that α will increase as the relative payoffs of the corresponding generators
will have an increased error. Proposition 3.1 implies that in such a case, the equilibrium of
the perturbed game G̃ is correspondingly far away from the nominal market G. It should
be noted that as the forecast error increases, the corresponding cost of deploying ancillary
services increases as well. If a DR program is in place, this cost increase is conveyed to the
consumer, leading to a decrease in the load quantified by the demand curtail factor κD jk as
in (3.11). Similar to our observation in Remark 3.2, it should be noted that the exact impact
of an increasing κD jk on α is difficult to quantify due to its nonlinearity. However, simulation
studies show, as discussed in Section 3.5, that as κD jk increases, α decreases.

3.5 Case Study

An IEEE 30-bus case is used for simulation studies, whose interconnections are shown in
Figure 3.3. The size and price of each block of each GenCo are shown in Table B.2. Generator
2 is assumed to function partially in the energy market and partially in the reserve market.
The bids associated with all generators in these markets are indicated in Table B.2. The linear
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Figure 3.5: Price volatility and market equilibrium shift due to the wind uncertainty

operating costs of Generator 2 are assumed to be the same in both the energy and reserve
market. For the sake of simplicity, we assume that each GenCo bids its marginal cost. The
minimum power requirement of each demand and the size and price of each block of each
demand are shown in Table B.3. We assume that only some of the loads are participating
in the market, with the rest remaining fixed and are shown in Table B.4. The reactance
Bnm of the line connecting bus n and bus m can be found in Table B.5. The transmission
capacity limits of all lines are chosen to be 100 MW . The line parameters are per-unit with
three-phase base of 230 kV and 10 MVA.

3.5.1 Nominal Market Equilibrium

Table 3.1 provides equilibrium results concerning generator output, revenue, and profit for
the electric power market if no wind shortfalls are imposed to the system. These results
are obtained by solving the LCP problem in (3.14a)-(3.14e). Table 3.2 shows the power
consumed and the corresponding demand payments. The Locational Marginal Price in all
of the buses is 23.62 $/MWh and is uniform due to the fact that transmission lines are not
congested.

3.5.2 Perturbed Market Equilibrium with Wind Uncertainty

It is assumed that GenCo at bus 13 is wind based, committed to produce 20 MW as can be
seen in Table 3.1, row 5, and subjected to an uncertainty ∆G13 whose profile was adopted
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Tabular 3.1: Results of market equilibrium for GenCo, no wind uncertainty

Name Power outputMW Revenues$/h Cost$/h Total Profit$/h

Pg1
30 708.6 660 48.6

Pg2
11.64 274.93 274.76 0.18

Pg5
80 1889.6 1000 889.6

Pg11
80 1889.6 1000 889.6

Pg13
20 472.4 8 464.4
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Figure 3.6: Market equilibrium shift as a function of uncertainty and wind penetration

from [4] and is shown in Figure 3.4 over a 10-minute window. This duration was chosen
as it corresponds to a typical market clearing period. Using this wind profile, the resulting
perturbed market was simulated. In particular, at each instant t over the 10-minute win-
dow, the corresponding solutions of the LMP of the ideal and perturbed market equilibrium
as ρ∗ and ρ∗∆, were determined using (3.19) and (3.24), respectively. Also, using the cor-
responding matrices M , q, ∆M and ∆q, the market equilibrium shift µ defined in (3.30)
was computed. These are shown in Figure 3.5, which confirms that µ is an upper bound on
the equilibrium. This, together with (3.9), implies therefore that µ can be used as a metric
for assessing reserve costs that accompany wind uncertainties. Figure 3.5 also illustrates
that the volatility of this equilibrium is a function of the wind uncertainty, as also has been
pointed out in [92].

The effect of changes in ∆G13 on µ is quantified further in Figure 3.6. Also shown in this
figure is the change in µ as xw, the wind penetration, is changed. It can be seen that µ is a
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Tabular 3.2: Results of market equilibrium for ConCo, no wind uncertainty

Name Power consumed MW Total Payment $/h

Pd7
11 259.82

Pd15
12 283.44

Pd30
10 236.2

Pd9
15.5 366.1

Pd26
9.5 224.4

Pd27
12.0 283.44
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Figure 3.7: Market equilibrium shift as a function of uncertainty and demand curtailment
factor

monotonically increasing function of both ∆G13 as well as xw.

3.5.3 Measure of Uncertainty Incorporating Wind Uncertainty With
Demand Response

We now introduce a perturbation κD15 into the picture to represent a DR-compatible con-
sumer at bus 15. We numerically evaluate the effect of κD15 on µ for various values of ∆G13.
Figure 3.7 shows the corresponding results which clearly demonstrate that κD15 can reduce
the equilibrium shift and therefore the cost of uncertainty in the presence of a wind forecast
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error.

3.6 Concluding Remarks

The current energy crisis has created an urgent need in integrating renewable energy re-
sources into the power grid. The latter in turn can introduce intermittency and uncertainty
into the picture, thereby introducing a prohibitive integration cost. The main contributions
of this chapter are the introduction of an analytical framework to evaluate the integration
cost and providing a computable upper bound for market equilibrium shift with wind uncer-
tainty and DR.

The analytical framework introduced in this chapter consists an overall model of the
energy market including GenCo, ConCo as well as ISO, which allows the analysis of the
market under normal conditions and perturbed conditions. Game theory is used to establish
sufficient conditions for the existence of a unique Pure Nash Equilibrium for the nominal
market. The perturbed market in the presence of wind uncertainty is analyzed using the
concept of closeness of two strategic games and the equilibria of close games based on the
notion of α−approximation and ε− equilibrium. This analysis is used to quantify the effect
of wind uncertainty and its possible mitigation using DR in the form of a parameter denoted
as Curtailment Factor. Finally, numerical results are included that validate the theoretical
results, using an IEEE 30-bus network.
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Summary. The notion of market disequilibrium is provided in this chapter as a market
mechanism to attain market equilibrium in the presence of uncertainties. The main
contributions of this chapter are

• The notion of disequilibrium process to attain efficient equilibrium,

• Conditions under which the competitive equilibrium exists and it is unique,

• Stability of the disequilibrium process, which is provided in Theorem 4.5 and it
is a direct connection with consumer’s elasticity in response to the real time price
and the latency of market real time pricing,

• Robust stability of the wholesale market in the presence of wind uncertainty,
which is discussed in Theorem 4.6.

The recent paradigm shift in the architecture of a smart grid is driven by the need to integrate
Renewable Energy Resources (RERs), the availability of information via advanced metering
and communication, and an emerging policy of a demand structure that is intertwined with
pricing. The introduction of both RERs as well as efforts to integrate them through an
information processing layer brings in dynamic interactions between the major components
of a smart grid. In this chapter, a dynamic model of the wholesale energy market that
captures the effect of uncertainties of RERs and real-time pricing with Demand Response
(DR) is derived, and linked to the notion of a disequilibrium process. Beginning with a
framework that includes real-time pricing as an underlying state, an attempt is made in this
model to capture the dynamic interactions between generation, demand, locational marginal
price, and congestion price near the equilibrium of the optimal dispatch. Conditions under
which stability of the market can be guaranteed are derived. Modeling the effect of RERs
and DR as perturbations, robust stability of the energy market model in the presence of such
perturbations is discussed. Numerical studies of an IEEE 30-bus are reported to illustrate the
dynamic model, its stability properties, and the effect of perturbations.

This chapter has been organized as follows: In Section 4.1, wholesale energy market
is introduced, and the underlying dynamic model of the wholesale market is presented in
Section 4.2 and its stability properties are derived in Section 4.3. In Section 4.4, the model
is expanded to include the effect of uncertainties and the stability of the uncertain wholesale
market is studied and the region of attraction is established. Finally in Section 4.5, numerical
studies of an IEEE 30-bus are reported. In Section 4.6, summary and concluding remarks
are provided.
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4 Dynamic Modeling of the Electricity Market

4.1 Dynamic Modeling of Market Agent Behavior

The electricity market that is considered in this chapter is wholesale and is assumed to
function as follows: First, each generating company (GenCo) submits the bidding stacks of
each of its units to the pool. Similarly, each consumer (ConCo) submits the bidding stacks
of each of its demands to the pool. Then, the ISO clears the market using an appropriate
market-clearing procedure resulting in prices and production and consumption schedules.
In what follows, the models for each of the components (GenCo, ConCo, and ISO) together
with their constraints and the optimization goal are presented.

4.1.1 Generating Company

It is assumed that the generating company i ∈ G f = {1,2, . . . , NG} consists of only one
generating unit, and that the production of each generating company is denoted as PGi. In
contrast to Chapter 3 that piece-wise linear cost function is used, in this chapter quadratic
cost function is implemented. The associated operating cost is denoted as CGi

(PGi)

CGi
(PGi) = bGi PGi +

cGi

2
P2

Gi (4.1)

where bGi, and cGi are generators cost coefficients. The goal of the company is to maximize
its overall profit, πGi, and is stated as

maximizePGi
πGi =maximizePGi

�

ρn(i)PGi − CGi
(PGi)

�

(4.2)

subject to PGi ∈ XGi
(4.3)

where ρn(i) denotes the LMP of unit i at node n in the network, and
XGi

:= {x |Pmin
Gi ≤ x ≤ Pmax

Gi } is the closed convex set in RNG that Pmin
Gi and Pmax

Gi are
lower and upper bounds for the production of GenCo i.

4.1.2 Consumer Modeling

A consumer company (ConCo) j ∈ Dq = {1,2, . . . , ND} is assumed to aggregate to one unit,
and the demand of each ConCo is denoted as PD j. The associated quadratic utility function
is denoted as U(PD j) which represents the value of using electricity for the consumer and is
defined as

U(PD j) = bD j PD j +
cD j

2
P2

D j (4.4)

where bD j, and cD j are consumers utility coefficients. The goal of the ConCo is to maximize
the total profit, πD j, while consuming electricity. This profit, for a unit j connected to node
n, is determined as the difference between the utility U(PD j) and the corresponding cost of
electricity ρn( j)PD j where ρn( j) is LMP of ConCo j at node n in the grid. Assuming that the
corresponding power consumed is denoted as PD j, the maximization problem can be posed
as

maximizePD j
πD j =maximizePD j

�

U(PD j)−ρn( j)PD j
�

(4.5)

subject to PD j ∈ XD j
(4.6)
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where XD j
:= {x |Pmin

D j ≤ x ≤ Pmax
D j } is the closed convex set in RND that Pmin

D j and Pmax
D j are

lower and upper bounds for the production of ConCo j. The decision variables of this prob-
lem are PD j, the amounts of power to be consumed by each demand j.

4.1.3 ISO Market-Clearing Model

The market-clearing procedure consists of optimizing a cost function, subject to various
network constraints. The most dominant network constraints are due to line capacity limits
[40] and network losses [46]. The power flow through any line is often limited due to
technical constraints and is said to be congested when it approaches its maximum limit.
This constraint is explicitly included in our model below. The second constraint is due to
losses, most of which are due to the heat loss in the power lines. For ease of exposition, such
ohmic losses are not modeled in this thesis.

The cost function that is typically used in market clearing mechanism is referred to as
Social Welfare. Denoted as Sw, Social Welfare is defined as

SW =
∑

j∈Dq

UD j(PD j)−
∑

i∈G f

CGi
(PGi) (4.7)

where the first and second terms denote the revenue due to surpluses stemming from bids
from GenCo and ConCo, respectively. UD j(PD j) and CGi

(PGi) correspond to utility of con-
sumers and cost of generators company and are defined in (4.1), and (4.4). In summary, the
market-clearing procedure is given by

maximize SW =minimize − SW (4.8a)

subject to

−
∑

i∈θ

PGi +
∑

j∈ϑ

PD j +
∑

m∈Ω

Bnm
�

δn−δm
�

= 0; ρn, (4.8b)

Bnm
�

δn−δm
�

≤ Pmax
nm ; γnm,∀n ∈ N ;∀m ∈ Ω (4.8c)

PGi
∈ XGi

PD j
∈ XD j

(4.8d)

The constraints (4.8b) and (4.8c) are due to power balance and capacity limits, respec-
tively. It can be seen that the associated Lagrange multipliers, ρn and γnm, are indicated in
each constraint. The underlying optimization problem of the ISO can therefore be defined
as the optimization of (4.8a) subject to constraints (4.8b), (4.8c), and (4.8d).

Definition 4.1. A competitive equilibrium is a vector denoted as Pe
G =

h

P e
G1

, ..., P e
GNG

iT

where P e
Gi ∈ XGi

, the amounts of power to be generated by each generating unit i,

Pe
D =

h

P e
D1

, ..., P e
DND

iT
where P e

D j ∈ XD j
, the amounts of power to be consumed by each

consumer j, the voltage phase angles ∆e =
�

δe
1, ...,δe

N−1

�T
, the locational marginal prices,

ρe =
�

ρe
1, ...,ρe

N

�T
, and congestion price Γe =

�

γe
1m, ...,γe

Nm

�T
that satisfies the following
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conditions:

Pe
G solves the GenCo problem in (4.3)

P e
Gi ∈ arg maxPGi

∈XGi
πGi

(4.9a)

Pe
D solves the ConCo problem in (4.6)

P e
D j ∈ arg maxPDj

∈XD j
πD j

(4.9b)

(Pe
G,Pe

D,∆e) with a competitive prices (ρe,Γe)

solves the ISO problem in (4.8a)

(P e
Gi, P e

D j,δ
e
n,ρe

n,γe
nm) ∈ arg max SW (4.9c)

Subject to Constraints in (4.8b), (4.8c), and (4.8d). (4.9d)

Remark 4.1. Current Market Mechanism (CMM) consists of finding a competitive equilib-
rium (Pe

G,Pe
D,∆e,ρe,Γe) by solving (4.9c) subject to (4.9d) based on the submitted cost

function by GenCos and utility function by ConCos. If there exists a competitive equilibrium
then ISO can offer an appropriate LMP and Congestion prices such that constraints in (4.9d)
are satisfied in the most economical way and each GenCo and ConCo maximizes it own
benefit.

The following theorem, known as first welfare theorem [93], provides the connection
between competitive equilibrium and efficiency of the market.

Theorem 4.1. [93] Any competitive equilibrium, if it exists, is efficient, it maximizes the
overall social welfare in (3.12) due to the constraints in (4.8b), (4.8d) and (4.8c).

Existence of the competitive equilibrium plays a crucial rule in our analysis. Theorem 4.1
is a direct result of Definition 4.1, however Theorem 4.1 emphasizes the fact that a com-
petitive equilibrium is the most appealing outcome of a market. Yet immediate question on
the necessary and sufficient conditions for existence of competitive equilibrium stems from
Theorem 4.1. The next theorem characterizes the conditions for the competitive equilibrium
to exists.

Theorem 4.2. [93] A competitive equilibrium exists if and only if the ISO problem in (4.8a)-
(4.8d) satisfies strong duality.

Theorem 4.2 provides sufficient and necessary conditions for existence of the competitive
equilibrium in terms of strong duality condition of the ISO problem. The resulting com-
petitive equilibrium based on Definition 4.1 can be determined as a static solution of the
corresponding KKT conditions [10], as P e

Gi, the amounts of power to be generated by each
generating unit i, P e

D j, the amounts of power to be consumed by each consumer j, the loca-
tional marginal prices, ρe

n, and congestion price γe
nm that satisfie the following conditions:
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d(CGi
(PGi))

dPGi
|Pe

Gi
−ρe

n(i) = 0 ∀i ∈ G f , P e
Gi ∈ XGi

(4.10a)

ρe
n( j)−

d(UD j(PD j))

dPD j
|Pe

D j
= 0 ∀ j ∈ Dq, P e

D j ∈ XD j
(4.10b)

∑

m∈Ωn

Bnm

�

ρe
n−ρ

e
m+ γ

e
nm− γ

e
mn

�

= 0 ∀n ∈ N (4.10c)

−
∑

i∈θn

P e
Gi +

∑

j∈ϑn

P e
D j +

∑

m∈Ωn

Bnm

�

δe
n−δ

e
m

�

= 0 ∀n ∈ N (4.10d)

γe
nm

�

Bnm

�

δe
n−δ

e
m

�

− Pmax
nm

�

= 0 ∀n ∈ N ;∀m ∈ Ωn. (4.10e)

Theorems 4.1 and 4.2 set the stage for presenting our dynamic mechanism design in the
subsequent section. In contrast to the current practice CMM that ISO solves Eq. (4.8a)-
(4.8d) as a static optimization problem, a Dynamic Market Mechanism (DMM) approach
is taken in the following sections. The proposed DMM is inspired by the notion of dise-
quilibrium process as a sequences of action and state profiles that is needed to attain the
competitive equilibrium, defined in (4.10a)-(4.10e) and is characterized in theorems 4.1
and 4.2.

4.2 Dynamic Market Mechanism

Let us denote a finite set of players in the wholesale market as I = G f

⋂

Dq. An underlying
finite state space is denoted as X [95] and sp ∈ Sp as an action for player p where Sp is the set
of feasible actions for player p. Each agent p ∈ I has an action set Sp and a state dependent
payoff function πb

p : X × S→ R. For example if p ∈ G f , then XGp
is the corresponding action

set Sp. Let us consider ρn, and γnm as the states then πGi
in (3.1) is the state dependent

payoff . Let S =
∏

p Sp denote the set of all action profiles, a deterministic state transition
function is defined as F : X × S → X . In addition, the notation s−p = [sq]q 6=p is used as a
vector of actions for all players except p, and S−p =

∏

q 6=p Sq as the set of all action profiles
for all players except p.

Repeated play of a DMM produces of action profiles s(0), s(1), ... and a sequence of states
x(0), x(1), ... where s(t) ∈ S is referred to as the action profile at time t and x(t) ∈ X is state
profile at time t. DMM process is summarized as follows:

• At any time t ≥ 0, each player p ∈ I myopically selects an action
sp(t + 1) = A(sp(t), x(t)) where A(.) is a myopic decision rule as a function of each
player’s one-stage payoff function πb

p(s(t), x(t)) at time t.

• After all players select their respective action, the state x(t+1) is chosen according to
the deterministic state transition function x(t + 1) = F(x(t), s(t))

• The process is repeated since the equilibrium is reached.

The sequences of action profile and states profile are labeled as a disequilibrium process [96].
State dynamics provide a feed-back for entities about the marginal price that they have to
pay for deviation of the common constraint denoted in ISO problem (4.8a)-(4.8c).
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4.2.1 Dynamic Market Mechanism Design for Wholesale Market

The optimization problem in (4.8a)-(4.8c) can be viewed alternately as a game between the
GenCos, ConCos, and the ISO, where each of these three players attempts to maximize their
own benefit at the equilibrium. Instead of solving Eq. (4.8a)-(4.8c) as a static optimization
problem, a dynamic approach is taken. Now let us define h= Tmc/N with

h= tK+1− tK . (4.11)

Hence if Tmc is chosen as the market clearing time, it follows that N iterations elapse if h is
chosen as the sampling interval. The specifics of designing DMM for electricity market are
introduced as follows:

State Space:

The underlying state space in this game is denoted by X ⊂ RN+Nt where each state
(ρn,γnm) ∈ X is the profile of locational marginal prices at each node and congestion prices
for each transmission line.

State Dependent Payoff Function:

The state dependent payoff function for GenCo i is defined in Eq. (4.3), ConCo j is defined
in Eq. (4.6), and Social Welfare denoted in (4.7).

Actions:

Each GenCo i, ConCo j, and substation at bus n is assigned a state dependent action that
permits GenCos and ConCos to change their production and consumption level and substa-
tions to change their voltage phase angles. Using gradient play [10, 95], an action for the i
th GenCo ∀i ∈ G f can be derived as

PGi[K + 1] =PXGi

�

PGi[K] + hkPGi
(ρn(i)k − cGi PGik − bGi)

�

(4.12)

where PXGi
denotes the projection on set XGi

and is defined as

PK[x] = arg minz∈K ||x − z|| (4.13)

and ||.|| denotes the Euclidean norm. When K is the box,

K = {k ∈ Rn|ai ≤ x i ≤ bi, ∀i}

the projection PK[x] is given by

PK[x] =







ai if x i < ai

x i if ai ≤ x i ≤ bi

bi if bi < x i.

(4.14)
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Private Information Bidding Strategy 
Dynamic Mechanism 

(cD, bD)

(cG, bG)

(ρn, γnm)

PGi[k]

PDj [k]

δn[k]

ρn[K + 1] = ρn[K]+

hkρn


−

�

i∈θn

PGi +
�

j∈ϑn

PDjk +
�

m∈Ωn

Bnm [δn − δm]




γnm[K + 1] = [γnm[K] + hkγn
Bnm [δn − δm] − Pmax

nm ]
+
γnm

PDj [K + 1] = PXDj

�
PDj [K] + hkPDj

�
cDjPDjk

+ bDj − ρn(j)k

��

PGi[K + 1] = PXGi

�
PGi[K] + hkPGi

(ρn(i)k
− cGiPGik

− bGi)
�

δn[K + 1] = δn[K] − hkδn

��
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Bnm [ρn − ρm + γnm − γmn]
�
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Consumers Company (ConCo)  
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Biding Parameters 
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Figure 4.1: Dynamic Market Design for Wholesale Electricity Market

Similarly, using (4.4), a state dependent action can be derived for the jth ConCo ∀ j ∈ Dq as

PD j[K + 1] =PXD j

h

PD j[K] + hkPD j

�

cD j PD jk + bD j −ρn( j)k

�

i

(4.15)

where kPGi
MW/$ and kPD j

MW/$ are representing ramp property of GenCo and price elas-
ticity of ConCo, respectively. For instance, ConCos with higher kPD j

MW/$ can adjust their
consumptions faster to the changes of the price. The effect of kPGi

MW/$ and kPD j
MW/$

will be discussed further in Section 4.3.
Finally, the state dependent action for voltage phase angles can be determined as

δn[K + 1] = δn[K]− hkδn

 

∑

m∈Ωn

Bnm
�

ρn−ρm+ γnm− γmn
�

!

(4.16)

State Dynamics:

A description of how the states evolve as a function of players strategies is provided here. As
mentioned earlier, states consist of locational marginal price ρn and congestion price γnm.
The state dynamics or pricing mechanism can be derived as

ρn[K + 1] = ρn[K] + hkρn



−
∑

i∈θn

PGi +
∑

j∈ϑn

PD jk +
∑

m∈Ωn

Bnm
�

δn−δm
�



 (4.17)

γnm[K + 1] =
�

γnm[K] + hkγn
Bnm
�

δn−δm
�

− Pmax
nm

�+

γnm
(4.18)

where
�

h(x , y)
�+

y denotes the projection onto non-negative orthant which is equal to h(x , y)
if y > 0, and max(0, h(x , y)) when y = 0.

The size of the imbalance in the market reflecting in ρn, Locational Marginal Price, is
a function of the accuracy of forecast with which market participants meet their sched-
ules. Figure 4.1 represents the overall set-up for the proposed Dynamic Market Mechanism.
Equations (4.12)-(4.18) represent a dynamic model of the overall wholesale energy market.
These action and state profiles can also be viewed as a disequilibrium process [96] needed
to arrive at the equilibrium following a perturbation. In the subsequent sections, first the
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notion of equilibrium is discussed. Then the connection of the equilibrium of the disequilib-
rium process with the competitive equilibrium is presented and finally a proof for uniqueness
of the equilibrium is provided.

4.2.2 Equilibrium of Wholesale Market Dynamics

Let us make two simplification assumptions.

Assumption 4.1. Let us assume that generator capacities and load capacities are large
enough that PXGi

and PXDj
are not activated.

From Assumption 4.1, it follows that action of GenCo i in (4.12) can be simplified as

PGi[K + 1] = PGi[K] + hkPGi
(ρn(i)k − cGi PGik − bGi) (4.19)

and action profile of ConCo j in (4.15) is simplified as

PD j[K + 1] = PD j[K] + hkPD j

�

cD j PD jk + bD j −ρn( j)k

�

. (4.20)

Assumption 4.2. Let us assume that iteration elapse N is large such that for any x , and
kx > 0

lim
h→0

x[K + 1]− x[k]
kxh

= τx ẋ (4.21)

where τx = 1/kx .

From Assumption 4.2 it follows that the discrete process in (4.12)-(4.18) can be viewed as
a continuos process. In [8], the same analysis has been studied using (4.12)-(4.18) as a dis-
crete time system with relaxing transmission lines capacity constraints. Using Assumptions
4.1 and 4.2, the disequilibrium process in (4.12)-(4.18) can be represented as

τGi
ṖGi = ρn(i)− cGi PGi − bGi (4.22a)

τD j
ṖD j = cD j PD j + bD j −ρn( j) (4.22b)

τδn
δ̇n =−

∑

m∈Ωn

Bnm
�

ρn−ρm+ γnm− γmn
�

(4.22c)

τρn
ρ̇n =−

∑

i∈θn

PGi +
∑

j∈ϑn

PD j +
∑

m∈Ωn

Bnm
�

δn−δm
�

(4.22d)

τγnm
γ̇nm =

�

Bnm
�

δn−δm
�

− Pmax
nm

�+

γnm
. (4.22e)

where 1/τGi and 1/τD j are representing ramp property of GenCo and price elasticity of
ConCo, respectively.

Two important points should be made regarding the above model. The solution of this
model PGi(t), PD j(t), δn(t), ρn(t), and γnm(t) converges to the equilibrium in (4.23a)-
(4.23e), as t →∞ if the overall system of equations is stable. At all other transient times, the
trajectories PGi(t), PD j(t), δn(t), ρn(t), and γnm(t) represent the specific path that these vari-
ables take, when perturbed, as they converge towards the optimal solution. In other words,
(PGi(t), PD j(t),δn(t),ρn(t),γnm(t)) is distinct from the optimal solution (P∗Gi, P∗D j,δ

∗
n,ρ∗n,γ∗nm)

and coincides with it at infinity if the market is stable.
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4.2 Dynamic Market Mechanism

The second point that should be noted about the above dynamic model is its decentral-
ized nature. It can be seen that given the LMP at node i, Equation (4.12) can be assembled
and solved completely by GenCo i and Eq. (4.15) by ConCo j using the LMP at node j. That
is, GenCo i decides their generation quantities by estimating their own marginal profit, as
exemplified by cGi, and bGi. At any given iteration, if the marginal profit of the GenCo is
greater than zero, Eq. (4.12) implies that the GenCo will increase PGi to obtain a greater
economic benefit; if the marginal profit of the GenCo is less than zero, the GenCo will de-
crease PGi. ConCo j updates its consumption using Eq. (4.15) in a similar manner. These
players then transmit the information to the ISO, over a communication network with low
latencies, which then proceeds to solve Eqs. (4.16) to (4.18). Eq. (4.16) implies that the dy-
namic of voltage angle of bus n depends on the corresponding locational marginal price and
also congestion price. Eq. (4.17) describes the evolution of the locational marginal price,
and implies that every ρn at a node n is affected by the energy imbalance at that node. Eq.
(4.18) describes the evolution of the congestion price, and implies that for each transmission
line from bus n to bus m, the congestion price is affected by the empty capacity that is the
difference of the line flow denoted by Bnm

�

δn−δm
�

and maximum thermal capacity Pmax
nm .

If the overall system is stable, such an iterative procedure between the market participants,
GenCos, ConCos, and ISO, evolving according to the strategies given by Eqs. (4.12)-(4.18),
will guarantee convergence to the competitive equilibrium. Now the connection between the
equilibrium of the proposed disequilibrium process in (4.22a)-(4.22e) with the competitive
equilibrium presented in (4.10a)-(4.10e) is presented.

Theorem 4.3. Let strong duality hold. Then the equilibrium of the disequilibrium process in
(4.22a)-(4.22e) is identical to the competitive equilibrium denoted in (4.10a)-(4.10e).

Proof. The equilibrium of the disequilibrium process in (4.22a)-(4.22e) is a solution of the
following

ρ∗n(i)− cGi P
∗
Gi − bGi = 0 (4.23a)

cD j P
∗
D j + bD j −ρ∗n( j) = 0 (4.23b)

−
∑

m∈Ωn

Bnm

�

ρ∗n−ρ
∗
m+ γ

∗
nm− γ

∗
mn

�

= 0 (4.23c)

−
∑

i∈θn

P∗Gi +
∑

j∈ϑn

P∗D j +
∑

m∈Ωn

Bnm

�

δ∗n−δ
∗
m

�

= 0 (4.23d)

�

Bnm

�

δ∗n−δ
∗
m

�

− Pmax
nm

�+

γ∗nm
= 0. (4.23e)

Using Theorem 4.2, strong duality implies that a competitive equilibrium exits and satisfies
(4.10a)-(4.10e). Now it can be seen that Eq. (4.23a) follows by replacing the cost function
for GenCo denoted in (4.1) in (4.10a). Similarly, Eq. (4.23b) follows by replacing the utility
function of Conco j denoted as (4.4) into (4.10b). Furthermore, Eqs. (4.23c) and (4.23d)
are identical to Eqs. (4.10c) and (4.10d). From the definition of the projection denoted in
(4.30), it follows from Eq. (4.23e) that (i)

�

δ∗n−δ
∗
m

�

< Pmax
nm which implies that γ∗nm = 0

and therefore γ∗nm(
�

δ∗n−δ
∗
m

�

− Pmax
nm ) = 0, or (ii)

�

δ∗n−δ
∗
m

�

= Pmax
nm which implies that

γ∗nm > 0 and therefore γ∗nm(
�

δ∗n−δ
∗
m

�

− Pmax
nm ) = 0. Both cases (i) and (ii) are identical

to Eq. (4.10e). Therefore the equilibrium point that satisfies conditions (4.23a)-(4.23e)
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4 Dynamic Modeling of the Electricity Market

is identical to the competitive equilibrium denoted in (4.10a)-(4.10e). This completes the
proof.

For the sake of exposition, disequilibrium dynamics in (4.22a)-(4.22e) can be rewritten
compactly as

�

ẋ1(t)
ẋ2(t)

�

=

�

A1 A2

0 0

��

x1(t)
x2(t)

�

+

�

b
f2(x1, x2)

�

(4.24)

Let us denote PG =
h

PG1
, ..., PGNG

iT
, the amounts of power to be generated by each generat-

ing unit i, PD =
h

PD1
, ..., PDND

iT
as the amounts of power to be consumed by each consumer

j, the voltage phase angles ∆ =
�

δ1, ...,δN−1

�T , the locational marginal prices denoted as
ρ =

�

ρ1, ...,ρN
�T , and congestion price Γ=

�

γ1m, ...,γNm
�T .

Then
x1(t) =

�

PG PD ∆ ρ
�T

, x2(t) =
�

Γ
�T

. (4.25)

A1 =











−τ−1
g cg 0 0 τ−1

g AT
g

0 τ−1
d cd 0 −τ−1

d AT
d

0 0 0 −τ−1
δ AT

r Bl ineA
−τ−1

ρ Ag τ−1
ρ Ad τ−1

ρ AT Bl ineAr 0











(4.26)

A2 =
�

0 0 −BT
lineArτ

−1
δ 0

�T
(4.27)

Bl ine denotes the line admittance matrix (Nt by Nt diagonal matrix) with elements Bnm and
let A denote the Nt × N bus incidence matrix. Let Ar denote the reduced bus incidence
matrix (Nt × N − 1) which is A with column corresponding to reference bus removed. Ag

is generators incidence matrix where Agi j
= 1 if the i th generator is connected to j th bus

and Agi j
= 0 if the i th generator is not connected to j th bus, similarly for Ad which is load

incident matrix where Adi j
= 1 if the i th consumer is connected to j th bus and Adi j

= 0 if the
i th consumer is not connected to j th bus. Finally

b =
�

bT
gτ
−1
g bT

d τ
−1
d 0

�T
(4.28)

f2(x1, x2) =
�

τ−1
γ

�

cx1− Pmax�+
x2

�

(4.29)

where c = Bl ineArR, Rx1 = [δ1 . . .δN−1]T and R is rotating matrix (N −1×Ng+Nd+2N −1)
and Pmax denotes a vector with maximum capacity limit of transmission lines (Nt×1) whose
elements are Pmax

nm .
The n-th row of the projection

�

cx1− Pmax�+
x2

is denoted as

h

�

cx1− Pmax�+
x2

i

n
=

(

max(0,
�

cx1

�

n− Pmax
n ) if [x2]n = 0

�

cx1

�

n− Pmax
n if [x2]n > 0.

(4.30)

where
�

cx1

�

n = Bnm(δn − δm). In the following theorem, we prove the uniqueness of the
equilibrium of the disequilibrium process in (4.24) converges.

Theorem 4.4. The equilibrium of the disequilibrium process denoted in (4.24) is unique.
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4.2 Dynamic Market Mechanism

Proof. A proof by contradiction follows. That is, it is assumed that two equilib-
ria denoted as X ∗01, and X ∗02 exist. Let us denote a set of congested lines as
Tc := {l|Blm(δl −δm) = Pmax

l ∀m ∈ωl} and non-congested lines asT̄c := {l|Blm(δl − δm) <
Pmax

l ∀m ∈ ωl}. The first equilibrium point denoted as X ∗01 = (x
∗
11, x∗12) and satisfies the

following

A1 x∗11+ b+ A2 x∗12 = 0 (4.31)

[x12]
∗
l = 0, ∀l ∈ T̄c. (4.32)

Therefore for all transmission lines in this set,
�

cx∗11

�

l
< Pmax

l , ∀l ∈ T̄c.
The second equilibrium point denoted as X ∗02 = (x

∗
21, x∗22) and satisfies the following

A1 x∗21+ b+ A2 x∗22 = 0 (4.33)

[x∗22]
∗
l = γlm,∀l ∈ Tc (4.34)

where γlm > 0 for all l ∈ Tc. In this equilibrium, [cx∗21]l − Pmax
l = 0,∀l ∈ Tc.

Now let us consider the first, k-th and k′− th rows of A1 x∗11+ b+ A2 x∗12 = 0 as

[A1]1 x1+ [b]1 = 0 (4.35)

[A1]k x1+ [A2]k x2 = 0 (4.36)

[A1]k′ x1 = 0 (4.37)

where the first row corresponds to the GenCo’s dynamics in (4.22a), k− th row corresponds
to the voltage phase angle dynamics in (4.22c), and finally k − th row corresponds to the
price dynamics in (4.22d). Subtracting (4.37) from (4.35), it follows

[A1]k′ x1− [A1]1 x1− [b]1 = 0. (4.38)

Let us denote ai j as the corresponding element in A1, (4.38) can be rewritten as

ak′k xk′ + ak′ k̂ x k̂ + ak′k xk − a1k xk +
∑

i 6=k′,k

(ak′ i − a1i)x i − b1 = 0. (4.39)

Simplifying (4.39), it follows

ak′k xk′ + ak′ k̂ x k̂ + (ak′k − a1k)xk + K1 = 0 (4.40)

where K1 =
∑

i 6=k′,k(ak′ i − a1i)x i − b1.
Now rewriting element by element of (4.36), it follows

akk xk +
∑

i 6=k

aki x i + âkk x̂k +
∑

i 6=k

âki x̂ i = 0 (4.41)

where âki denotes the corresponding element of A2 and x̂k represents the k-th element of
x2. Now (4.41) can be simplified as

xk =−
âkk

akk
x̂k − K2 (4.42)
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4 Dynamic Modeling of the Electricity Market

where K2 =
∑

i 6=k
aki

akk
x i +

∑

i 6=k
âki

akk
x̂ i.

Now replacing (4.42) in (4.40), it follows

ak′k xk′ + ak′ k̂ x k̂ =−(ak′k − a1k)(−
âkk

akk
x̂k − K2)− K1. (4.43)

Simplifying (4.43), it follows

ak′k xk′ + ak′ k̂ x k̂ = (ak′k − a1k)(
âkk

akk
x̂k) + K (4.44)

where K = (ak′k − a1k)K2− K1.
From (4.22a)-(4.22e) for any l connected to bus m, we have ak′k = −ak′ k̂ = Blm, ak′k =

0, a1k = 1, âkk = −Blm, ak′k′ = −Blm, xk′ = δl , x k̂ = δm, and x̂k = γnm. Finally (4.44), is
simplified further as

Blm(δl −δm) =−γlm+ K . (4.45)

Now in equilibrium X ∗01 = (x
∗
11, x∗12) for any l ∈ T̄c from (4.32) it follows that γlm = 0,

which in turn implies that

Blm(δl −δm) = K , ∀l ∈ T̄c. (4.46)

And since Blm(δl −δm)< Pmax
l , for all l ∈ T̄c this implies that

K − Pmax
l < 0. (4.47)

At the second equilibrium X ∗02 = (x
∗
21, x∗22), since Blm(δl − δm) = Pmax

l , for all l ∈ Tc, this
implies that

K − Pmax
l = γlm, ∀l ∈ Tc. (4.48)

Since γlm > 0, (4.48) implies that

K − Pmax
l > 0, ∀l ∈ Tc. (4.49)

Certain conditions have to be satisfied for X ∗0i and X ∗02 to exist:

For X ∗01 :
�

cx∗1
�

l
− Pmax

l < 0, ∀l ∈ T̄c since [ ẋ2]l = 0, at the equilibrium point (4.50)

For X ∗02 : [x∗22]l > 0, ∀l ∈ Tc (4.51)

Equation (4.50) implies that for any l ∈ T̄c, see (4.47),

K − Pmax
l < 0.

Equation (4.51) implies that for any l ∈ Tc, see (4.49)

K − Pmax
l > 0.

Therefore it follows that only (4.50) or (4.51) is satisfied. That is, only X ∗01 or X ∗02 exist,
which implies uniqueness of equilibrium of (4.24).
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4.3 Nominal Stability of Electrical Market

The proposed DMM is a significant departure from the current practice where information
is exchanged only once between the GenCos and the ISO following which the ISO clears the
market and provides information regarding the price. Our thesis here is that due to the huge
volatility and uncertainty of the dynamic drivers such as wind and solar energy sources, and
load in the market, such a single iteration will not suffice, and stability cannot be ensured;
continued iteration as suggested by the dynamic model above is needed in order to mitigate
volatility in real-time price and ensure a stable market design. In the subsequent sections,
guidelines for determining stability with such an iterative exchange of information between
the different players are discussed.

4.3 Nominal Stability of Electrical Market

Now the stability property of the equilibrium is established using the Lyapunov approach. In
what follows, it is assumed that strong duality holds and there exists (x∗1, x∗2) such that Eqs.
(4.23a)-(4.23e) hold.

Let us define y1 = x1− x∗1, y2 = x2− x∗2, and the Lyapunov function V : Rn→ R as

V (y1, y2) = y T
1 P1 y1+ y T

2 P2 y2 (4.52)

where n= NG + ND + 2N − 1+ Nt , P1 > 0 and P2 > 0 are real symmetric matrices. It should
be noted that a matrix A1 is Hurwitz if and only if for any given positive definite symmetric
Q there exists a unique positive definite symmetric matrix P1 that satisfies the Lyapunov
equation

P1A1+ AT
1 P1 =−Q. (4.53)

Furthermore, a positive vector Pmax is defined with its orthogonal vectors wi as

Pmax =
Nt
∑

i=1

ψiwi (4.54)

where ψi > 0, for all i = 1, .., Nt , and

β = ||P1A2+ cTτ−1
γ P2||. (4.55)

Now let us define the compact set Ωc as

Ωc0
= {(y1, y2) | V (y1, y2)≤ c0}, (4.56)

and a set D as

D = {(y1, y2) | ||y2|| ≤ d} (4.57)

where

d =
2λmin(P2)ψminλmin(Q)

τγmax
β2 . (4.58)

The stability of the disequilibrium process is established in Theorem 4.5.
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4 Dynamic Modeling of the Electricity Market

Theorem 4.5. Let strong duality hold. Then the equilibrium (x∗1, x∗2) of (4.24) is asymptotically
stable for all initial conditions in Ωcmax

for a cmax > 0 where Ωcmax
( D, if A1 is Hurwitz.

Proof. Since strong duality holds, from Theorems 4.3 and 4.4 it follows that (4.24) has a
unique equilibrium point. First stability of this equilibrium point is established and then
proceed to its asymptotic stability.

(i) Stability: Differentiating V (y1, y2) with respect to time, it follows

V̇ (y1, y2) = y T
1 (P1A1+ AT

1 P1)y1+ y T
1 P1A2 y2+ y T

2 AT
2 P1 y1+ (4.59)

y T
2 P2

�

τ−1
γ

�

c y1− Pmax�+
y2

�

+
�

τ−1
γ

�

c y1− Pmax�+
y2

�T
P2 y2

Using the non-expansive property of the projection [97], it follows

y T
2 P2

�

τ−1
γ

�

c y1− Pmax�+
y2

�

≤ y T
2 P2

�

τ−1
γ

�

c y1− Pmax�
�

. This in turn implies that

V̇ (y1, y2)≤ y T
1 (P1A1+ AT

1 P1)y1+ y T
1 P1A2 y2+ y T

2 AT
2 P1 y1+ (4.60)

y T
2 P2

�

τ−1
γ c y1−τ−1

γ Pmax
�

+
�

τ−1
γ c y1−τ−1

γ Pmax
�T

P2 y2

If A1 is Hurwitz, for any Q > 0, a P in (4.53) exists and is positive definite. Let λmin(Q) denote
the minimum eigenvalue of Q. Since P2 is a symmetric positive definite matrices, with a set
of Nt orthogonal, real and nonzero eigenvectors x1, . . . xn, can be written P2 =

∑Nt

i=1λi x i x
T
i

where λi > 0 is the eigenvalue corresponding to x i. Using (4.54), it follows that

Pmax T
τ−1
γ P2 y2 ≥

λmin(P2)ψmin

τγmax

||y2|| (4.61)

where τγmax
=max(τγnm

), and ψmin = min(ψi),∀i = 1, .., Nt .
Using (4.55), it is obtained that

y T
1 (P1A2+ cTτ−1

γ P2)y2+ y T
2 (A

T
2 P1+ P2τ

−1
γ c)y1 ≤ 2β ||y1||||y2||. (4.62)

Using Eqs. (4.61)-(4.62) implies that

V̇ (y1, y2)≤−λmin(Q)||y1||2+ 2β ||y1||||y2|| − 2
λmin(P2)ψmin

τγmax

||y2|| (4.63)

Equivalently,

V̇ (y1, y2)≤−λmin(Q)
�

||y1|| −
β

λmin(Q)
||y2||

�2

− ||y2||
�

2
λmin(P2)ψmin

τγmax

−
β2

λmin(Q)
||y2||

�

(4.64)

For all Ωcmax
( D, it follows that for all solutions beginning in Ωcmax

, V̇ ≤ 0. Hence the
equilibrium is stable, and Ωcmax

is the region of attraction.
(ii) Asymptotic stability: We now show that all solutions beginning in Ωcmax

will converge
to the equilibrium point. Eq. (4.64) can be rewritten as

V̇ (y1, y2)≤−a(||y1|| − b||y2||)2− ||y2||(e− f ||y2||)
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G G 

1 2 

3 4 
Area 2 Area 1 

PD1 PD2∆3

Figure 4.2: 4-bus system example

where a = λmin(Q), b = β

λmin(Q)
, e = 2λmin(P2)ψmin

τγmax
, and f = β2

λmin(Q)
.

That is, V̇ can be zero if

(||y1||, ||y2||) =
�

be

f
,

e

f

�

(4.65)

or if
(||y1||, ||y2||) = (0, 0) (4.66)

Note that ||y2|| =
e
f

implies that the solution lies on D. However, since the initial conditions
start in Ωcmax

and the latter is a strict subset of D, y2 cannot be equal to e
f

in Ωcmax
. This

in turn implies that (4.66) is the only invariant set. Hence all solutions (y1, y2), starting
in Ωcmax

converge to the equilibrium point (x1, x2) = (x∗1, x∗2), which establishes asymptotic
stability.

Remark 4.2. The region of attraction Ωmax for which stability and asymptotic stability hold
places an implicit bound on the congestion price [97]. In particular, it implies that the
congestion price needs to be smaller than d, which is proportional to Pmax . In Section 4.5,
this dependence is explained in more detail through a numerical study.

Corollary 4.1. Let strong duality hold. Then the equilibrium (x∗1, x∗2) of (4.24) is asymptot-
ically stable for all initial conditions in Rn, if for any Q > 0, there exists P1 > 0, P2 > 0, and
diagonal matrix τ−1

γ > 0 such that

P1A2+ cTτ−1
γ P2 = 0 (4.67)

P1A1+ AT
1 P1 =−Q. (4.68)

Proof. From condition (4.67) and definition (4.55), it follows that β = 0. This in turn
implies that if A1 is Hurwitz, then V̇ (y1, y2) in (4.63) can be simplified as

V̇ (y1, y2)≤−λmin(Q)||y1||2− 2
λmin(P2)ψmin

τγmax

||y2||. (4.69)
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4 Dynamic Modeling of the Electricity Market

Since P2 is positive definite, therefore λmin(P2) > 0. Eq. (4.54) implies that ψmin > 0, and
since it is assumed that τγ > 0 therefore τγmax

> 0, which in turn follows that

V̇ (y1, y2)≤ 0. (4.70)

Eq. (4.70) implies that the unique equilibrium point (x∗1, x∗2) is stable, for all initial condi-
tions in Rn.

Asymptotic stability can be concluded by noting from Eqs. (4.31)-(4.34) that ẋ1 and ẋ2

are non-zero at all points other than the equilibrium.
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Figure 4.3: Market disequilibrium process for GenCos PG1, and PG2, ConCo PD1, and PD2, and
Locational Marginal Prices ρn∀n = 1, ..., 4 with initial conditions in Table B.8,
Case 1.

4.3.1 Illustrative Example

Now the stability of the equilibrium of the energy market is numerically evaluated using a
standard 4-bus network as can be seen in Figure 4.2. The network includes two generating
units located at bus 1 which corresponds to a base-load generator and at bus 2 as a peaking
generator. The latter can be assumed to be a spinning reserve to compensate for demand
fluctuations that may occur in bus 3 denoted as ∆3. The maximum and minimum power
output of each generating unit is shown in Table B.6. There are power consumption at nodes
3 and 4, and their respective minimum demand requirements are indicated in Table B.6.
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Figure 4.4: Market disequilibrium instability after a sudden increase of load in bus 3 with
initial conditions in Table B.8, Case 2.

Price coefficients bGi and cGi corresponding to cost functions of generators as well as
coefficients bD j and cD j of the utility functions of consumers are shown in Table B.6. Trans-
mission line parameters such as Bnm and the line capacity limits Pmax

nm are included in Table
B.7. The line parameters are per unit with a three-phase base of 230 kV and 10 MVA. It is
assumed that the market time constants τρ = 5 MWh2/$, and τδ = 5 $/MW .

Region of Attraction

Let us consider two cases, labeled Case 1 and Case 2, different cases with the same param-
eters given in Tables B.6 and B.7 and all initial conditions being the same except for δ2(0)
(see Table B.8). Figures 4.3 and 4.4 show responses of the critical state variables, PG1, PG2,
PD1, PD2, and ρn for the initial conditions in these two cases. It can be seen in Figure 4.3 that
PG1 supplies the base-load consumption and PG2 is dispatched to follow up load fluctuations.
Since transmission lines are not congested, Locational Marginal Prices (LMPs), ρn, converge
to the same value for all n buses, and the wholesale market is stable with the given parame-
ters. However, when δ2(0) is increased from 8 deg to 12 deg, the wholesale market exhibits
instability, as illustrated in Figure 4.4. The difference in the stable and unstable solutions for
Cases 1 and 2 is also illustrated in Figure 4.5 using a projection of the phase-plane.

A more detailed study of the sensitivity to initial conditions was also carried out. Starting
with the initial conditions in Case 1, we perturbed each of the fifteen state variables as
x i +∆i while keeping all j 6= i constant, and determined the maximum ∆max i

that led to
instability. It follows that larger the ∆max i

, the higher the robustness to perturbations in
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Figure 4.5: Blue curve is stable phase plane, Red curve is unstable phase plane due to the
disturbance.

that particular state x i. The values ∆max i
are shown in Figure 4.6 for each of the fifteen

state variables. As Figure 4.6 shows, the most sensitive states, i.e. the states that possess
the smallest set ∆max i

’s correspond to the phase angles δn,∀n = {1...4}. These sensitivity
studies can provide guidance for the design of robust control.

Stability and Volatility

In this section, the results of numerical simulations with only considering changes of τd1

and τρ are presented. It should be noted that 1/τD j represents price elasticity of ConCo
and τρ represents market time scale for updating prices. A standard 4-bus network as can
be seen in Figure 4.2 is considered and the coefficients for GenCos and ConCos are set as
represented in Table B.6. An analysis of disequilirbium process in 4.24 showed that the
stability is dependent on eigenvalues of A1. Matrix A1 is Hurwitz if every eigenvalue of A1

has strictly negative real part. Figure 4.7 provides the real part of maximum eigenvalue of
A1 by changing demand elasticity τd1 and market adjustment rate denoted by τρ. As can
be seen in Figure 4.7, for small τρ because of fast updating of real time price, we expect
volatility of prices. Volatility can be mitigated by increasing τρ which in turn implies slower
update of prices and therefore market latency is increased. Another important result that
can be seen in Figure 4.7 is that by decreasing τd1, volatility is increased. Decreasing τd1

corresponds to the increase of demand elasticity, and therefore increase of demand elasticity
will result in increase of volatility. This observation has been also reported in [94].
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Figure 4.9 compares price profile for 24 in response to the load profile ∆3 in Figure 4.8
from New England ISO, 1st of June 2012 [1]. As can be seen in Figure 4.9, the price in
Case A is extremely volatile under the conditions of τρ = 1.5 MWh2/$, and τd1 = 5 $/MW .
However by increasing market latency in Case C by keeping τd1 the same as Case A and
only increasing τρ from 1.5 MWh2/$ to 4.5 MWh2/$, we can see that price profile exhibits
oscillations but it is less volatile than Case A. Now in Case B, we keep τρ = 1.5 MWh2/$ and
decrease demand elasticity by increasing τd1 from 5 $/MW to 20 $/MW . We can observe
from Figure 4.9 that Case B leads to the stable price profile. As has been pointed out in [94],
a large scale use of smart meters by electricity consumers could lead power pricing and
demand swings and causes instability in the grid. This result can be delineated from Figures
4.7 and 4.9. As can be seen in Figure 4.9 increasing demand elasticity of Case B, causes huge
volatility in Case A. However market designer can adjust market latency denoted by τρ so
mitigate the resulting volatility. These observations emphasis that market designer should
carefully consider the effect of market time scale and demand elasticity in the stability of
wholesale market. Theorem 4.5 provides a guidelines for designing an efficient market with
stable price profile.
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4.4 Robust Stability of The Wholesale Market

The most dominant impact of the introduction of distributed energy resources is uncertain-
ties, which can directly alter the overall market equilibrium. A first step in this direction is
taken by introducing uncertainties in the decision variables introduced in Section 4.1.1 in
the following section.

4.4.1 Incorporating Wind Power and Demand Response

While modeling of wind power and DR are presented in Chapter 3, some of the concepts and
the definitions are introduced here too for the sake of completeness. The family of PGi is first
separated into PC

Gi, i = 1, . . . , nC , and Pw
Gl , l = 1, . . . , nw, where nC denotes the conventional

dispatchable generating units, and nw denotes distributed energy resources such as those
based on wind and solar energy, which are non-dispatchable. It is assumed that the wind
GenCo are competitive and that they submit their bids to the market as other conventional
GenCo, and not modeled as a negative demand [13,62,63].

Using the above discussion and similar to Chapter 3, the objective function defined in
(3.1) is modified as [63]

maximizePw
Gl
πw

Gl =maximizePw
Gl

�

ρn(l)P
w
Gl − Cw

Gl
(Pw

Gl)− C r
wl
(∆wl

)
�

(4.71)

subject to Pw
Gl ∈ X w

GL
(4.72)
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Figure 4.8: Load profile from New England ISO, 1st of June 2012 [1]

where ρn(l) denotes the LMP of unit l at node n in the network, and
X w

Gl
:= {x |x ∈ [Pw

Glmin
Pw

Glmax
]} is the closed convex set in Rn that Pw

Glmin
and Pw

Glmax
are

lower and upper bounds for the production of wind producer l. ∆wl
is due to wind

uncertainty, given by
∆wl
= Pw

Gl∆Gl , ∀∆Gl ∈ (−1,1). (4.73)

It should be noted that the cost function for the l th wind generator denoted as Cw
Gl
(Pw

Gl) is
very close to zero. Finally, C r

wl
(∆wl

) is a cost incurred by committing specific generators as
reserves [64], due to the wind uncertainty ∆wl

, and is modeled as a quadratic function

C r
wl
(∆wl

) =
cwl

2
∆2

wl
. (4.74)

The available wind energy is overestimated when 0 < ∆Gl b < 1 which implies that if the
assumed power is not available, power can be purchased from an alternate source or that
loads can be shed. It is furthermore assumed that the overestimation is only due to wind
uncertainty and not because of strategic behavior of wind provider. The available wind en-
ergy is underestimated if −1 < ∆Gl b < 0 which implies that surplus power is either sold to
adjacent utilities, or consumed through fast redispatch and automatic gain control, or re-
duced through reduction of conventional generation. Another quantity xw which represents
the percentage of wind penetration is defined as

xw =

∑

l∈Gw
Pw

Gl
∑

j∈Dq
PD j

(4.75)

where PD j is the power demanded by consumer j. It should be noted that the impact of wind
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Figure 4.9: Price profile of a dynamic market model in (4.24) with load profile in Figure 4.8.

power on the market equilibrium is much smaller if xw is small, i.e., if wind penetration is
low, than if xw is large.

To include the effect of DR, we divide all ConCo units into dispatchable and non-
dispatchable ones, a dispatchable load PD jk is considered. This effect is modeled using a
control parameter κD jk, and denotes the response of the consumers to a change in the Real
Time Price (RTP) as

P̄D jk = PD jk
�

1−κD jk
�

0< κD jk < 1 (4.76)

where P̄D jk denotes the consumption incorporated with demand responsiveness into RTP. It
is assumed that κD jk is suitably calibrated to represent the effect of RTP on the consumer
behavior, and is synonymous to elasticity factor defined in [84]. As discussed in Chapter 3,
a positive κD j, denotes a decrease in the ConCo consumption while a negative κD j, denotes
an increase. In this section, our attention is restricted to positive κD j since our focus is on
cases where there is a shortfall in the non-dispatchable GenCo, i.e. ∆Gl > 0. It is assumed
that κD j is suitably calibrated to represent the effect of RTP on the consumer behavior.
The inherent assumption here is that the dispatchable ConCo observes the state signal, i.e.
LMP and Congestion price, and suitably adjusts its demand. This adjustment is represented
through the curtailment factor κD j. The above discussions indicate that the effects of wind
uncertainty and DR are represented by three key parameters ∆Gl , xw, and κD j. In Section
4.4.2, it is shown that the stability of the perturbed market is strongly affected by these
parameters. In Section 4.5, we explain this dependence in more detail through a numerical
study of an IEEE 30-bus.
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4.4.2 Robustness of the Electricity Market

Now the dynamic model of the wholesale market is analyzed in the presence of the perturba-
tions due to the wind forecast error defined in (4.73) parametrized by∆Gl and DR defined in
(4.76) parameterized by κD j. The same as discussed in Section 4.2.1, the wholesale market
dynamic under uncertainty can be written compactly as

�

ẋ1(t)
ẋ2(t)

�

=

�

A1+∆A1 A2

0 0

��

x1(t)
x2(t)

�

+

�

b
f2(x1, x2)

�

(4.77)

where ∆A1 ∈ E and E is defined as

E := {∆A =∆G −∆D |∆G ∈ EG and∆D ∈ ED} (4.78)

∆G =











τ−1
g cg∆2

g 0 0 0
0 0 0 0
0 0 0 0

τ−1
ρ AT

g(I −∆g) 0 0 0











(4.79)

∆D =











0 0 0 0
0 0 0 0
0 0 0 0
0 τ−1

ρ AT
d(I −κd) 0 0











(4.80)

ED := {∆D | ||∆D|| :=
p

λmax(∆T
D∆D)≤ πD} (4.81)

and
EG := {∆G | ||∆G|| :=

p

λmax(∆T
G∆G)≤ πG} (4.82)

for a finite πD and πG and ∆g = diag{∆Gi} for all i ∈ G f ∪ Gw
f as well as κd = diag{κD j} for

all j ∈ D.
The same as Theorem 4.5, let y1 = x1 − x∗1 , y2 = x2 − x∗2, a positive definite Lyapunov

function V (y1, y2) = y T
1 P1 y1+ y T

2 P2 y2 and d∆ = d − d∆G + d∆D where d is defined in (4.58)
and

d∆G =
4λmin(P2)ψmin||P1||πG

β2

d∆D =
4λmin(P2)ψmin||P1||πD

β2 .
(4.83)

It should be noted that all three parameters including the wind uncertainty ∆Gl , wind pen-
etration xw, and demand curtailment factor κD j affect πG and πD. Denote the latter as
πG(∆Gl , xw) and πD(κD j). In the following theorem, the stability of the perturbed market is
presented.

Theorem 4.6. Let A1 be Hurwitz and strong duality hold. Also let

πG −πD <
λmin(Q)
2||P1||

. (4.84)

Then the equilibrium (x∗1, x∗2) ∈ E is asymptotically stable for all initial conditions in Ωcmax
=

{(y1, y2) | V (y1, y2)≤ cmax} for a cmax > 0 such that Ωcmax
( D∆ = {y2 | ||y2|| ≤ d∆}.
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Proof. Differentiating the Lyapunov function V (y1, y2) along the trajectories of (4.77), the
following is obtained

V̇ (y1, y2)≤−a∆
�

||y1|| −
β

a∆
||y2||

�2− ||y2||
�

e−
β2

a∆
||y2||

�

(4.85)

where
a∆ = λmin(Q)− 2||P1||πG + 2||P1||πD.

From (4.84), it follows that a∆ > 0. Therefore, Eq. (4.85) implies that for all Ωcmax
( D∆, for

all solutions beginning in Ω∆, V̇ ≤ 0. Hence the equilibrium is stable, and Ω∆ is the region
of attraction.

Asymptotic stability of the perturbed market can be proved as follows. Since initial con-
ditions start in Ω∆ and the latter is a strict subset of D∆, it can be shown using the same
arguments as in Theorem 4.5 that all solutions starting in Ω∆ converge to the equilibrium
point (x1, x2) = (x∗1, x∗2).

Remark 4.3. Theorem 4.6 implies that the region of attraction for asymptotic stability, Ω∆
is determined by D∆. D∆ in turn is a function of d, πG, and πD. The relative size of Ω∆ in
relation to Ωcmax

in the ideal case is therefore determined completely by πG − πD. As the
latter increases, the size of Ω∆ decreases in comparison to Ωcmax

, and as πG −πD decreases,
Ω∆ increases, and can become larger than Ωcmax

. That is, the uncertainty of RERs due to
forecast errors can reduce the region of attraction, whereas the load curtailment factor can
compensate for the effect of RERs and mitigate their effects.
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Figure 4.11: Increase of relative size of region of attraction by increase of transmission ca-
pacity

4.5 Case Study

An IEEE 30-bus case, whose interconnections are shown in Figure 3.3, is used to demonstrate
the properties of the unperturbed and perturbed market models presented in Sections 4.2.1
and 4.4.2. Both a wind generator and a dispatchable load that respond to real-time price
changes are introduced, with the former introduced in bus 13, and the latter in bus 15.
The effects of these two entities are quantified as ∆G13 and κD15 respectively. Pw

Gl defined in
(4.71) is varied so that the effect of wind penetration xw, defined in (4.75), can be analyzed
as well. Four scenarios, described below, are simulated and discussed further.

1. Wind generator in bus 13 with ∆G13 = 0% and penetration xw = 5.4%, without RTP
in bus 15, κD15 = 0 (Base case)

2. Wind generator in bus 13 with ∆G13 = 5% and penetration xw = 5.4%, without RTP
in bus 15, κD15 = 0%

3. Wind generator in bus 13 with ∆G13 = 5% and penetration xw = 12.5%, without RTP
in bus 15, κD15 = 0%

4. Wind generator in bus 13 with ∆G13 = 5% and penetration xw = 12.5%, without RTP
in bus 15, κD15 = 3%
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Tabular 4.1: Stability of the wholesale market incorporating wind uncertainty and wind pen-
etration

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Pw
G13min

30 MW 30 MW 70 MW 70 MW

Pw
G13max

30 MW 32 MW 78 MW 78 MW

∆13 0% 5% 5% 5%

xw 5.4% 5.4% 12.5% 12.5%

κ15 0 0 0 3%

cmax 38.3 37.1 32.5 36.9

Relevant parameters of generators and consumers are shown in Table B.9 and Table B.10,
respectively. The transmission capacity limit of all lines is chosen to be 50MW , the inter-
connections and the reactance Bnm of the line connecting bus n and bus m can be found
in Table B.5. It is assumed that GenCo in bus 2, is committed as a reserve generator and
start-up and shut-down costs are internalized in its associated cost function CG2

.

4.5.1 Stability of the Ideal Wholesale Market

With the parameters provide in Table B.9, and B.10, d in (4.58) for the scenario 1) is calcu-
lated and the corresponding region of attraction Ωcmax

such that Ωcmax
( D. It was found that

cmax = 38.4. Eigenvalues of A1 matrix with the parameters in Table B.9-B.10 is shown in
Figure 4.10, and as can be seen, all the eigenvalues of matrix A1 are in the LHP and matrix
A1 is Hurwitz. Furthermore, as can be seen in Figure 4.11 in the ideal market, by increasing
transmission capacity of line 12 to 13 there is an increase in ψmin denoted in (4.54), and
therefore cmax increases. In the next section, the effect of wind uncertainty will be quantified
and robust stability of the market will be studied.

4.5.2 Stability of the Perturbed Wholesale Market

Since the wind generator is introduced in bus 13, the key parameters of interest are ∆G13

and xw. Since a DR entity is introduced in bus 15, the other parameter of interest is κD15.
Now the effects of these parameters on the stability of the perturbed market are examined.
The region of attraction cmax was computed for different values of ∆13, xw, and κ15. First,
for all values of ∆13, xw , and κD15, the condition in (4.84) is satisfied, which implies that
the market is stable. As can be seen in Figure 4.12, with κ15 = 0, the region of attraction
decreases as the wind uncertainty∆13 is increased. Figure 4.12 also shows that by increasing
demand curtailment factor κ15, we can see that the region of attraction is improved. This
result indicates the fact that the demand curtailment factor due to real time pricing is an
effective way to mitigate the wind volatility in the wholesale market.

Table 4.1 provides a summary of the results obtained in the four scenarios 1) through 4)
described above. As can be seen in Table 4.1, the relative size of region of attraction, cmax is
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reduced in Scenario 2) compared to Scenario 1) due to wind uncertainty. The relative size of
region of attraction is reduced with increase in wind penetration as well. Scenario 4) shows
the positive effect of κ15 on cmax .
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Figure 4.12: Relative size of region of attraction for IEEE 30-bus

4.5.3 Placement of Wind Generations on the Grid

The final point that is made in this section is the placement of a wind generator on the grid.
Suppose we wish to add another wind farm with the same characteristics as that located in
bus 13 with candidate buses as 12, 10 and 22. Figure 4.13 shows the relative size of region
of attraction due to different placement of the new wind farm. As can be seen in this figure,
for small uncertainties, it doesn’t matter as to where this wind farm is located. However for
uncertainties more than 10%, the region of attraction is improved for an installation in bus
10 compared to installation in bus 12, and installation in bus 22 significantly improves the
relative region of attraction.

In order to explain this result, Ybusii
, self-admittance of bus i is defined, which equals the

sum of admittances of all transmission lines that terminate at bus i, with the bus admittance
matrix given by Ybus = AT Bl ineAr , and Ybusii

as its i th diagonal element. That is Ybusii
denotes

the strength of all transmission lines that support bus i. For this example, it can be shown
that |Ybus22−22

| = 54.6306, |Ybus10−10
| = 47.3407 and |Ybus12−12

| = 27.6583. These indicate that
as the self-admittance of a bus increases, the robustness of the perturbed market improves,
i.e., the grid integrates wind energy in a better manner at that bus. This may serve as an
important guideline to the location of the wind energy in general.
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Figure 4.13: Relative size of region of attraction by different placement of the second wind
farm

4.6 Concluding Remarks

In this chapter, the model of the players (GenCo, ConCo, and ISO) together with their con-
straints and the optimization goal are presented and then the dynamics of the real-time
market using the notion of disequilibrium process is captured. A gradient play is used to
derive the dynamic evolution of the actions for players and underlying states of the game as
dual variables to reach the competitive equilibrium of the real-time market. The stability of
the resulting dynamical model of the real-time market is investigated and the region of at-
traction around the equilibrium of interest is established. This region for which the real-time
market is asymptotically stable places an implicit bound on the congestion price.

The stability of the underlying market equilibrium in the presence of uncertainty due
to renewable energy and the corresponding region of attraction are established. Demand
response as a promising tool for improving robustness of the real-time market due to the
uncertainty of RERs is illustrated.

Numerical results are included that validate the theoretical results using IEEE 30-bus
system. The simulation results show how demand curtailment factor due to the real time
pricing can mitigate the wind volatility in the wholesale market. The final point that is
presented in this chapter is the placement of a wind generator due to inherent volatility and
intermittency. Our simulation studies show that self-admittance of the admittance matrix,
|Ybusii

|, serves as an important guideline for the location of the wind energy in the power
network.

106



5 Transactive Hierarchical Control Architecture

Summary. Transactive Control is presented in this chapter which concerns the use of
distributed communications to send an incentive signal and receive a feedback signal
within the power systems topology. The main contributions of this chapter are

• A hierarchical Transactive control architecture that combines market transac-
tions at the higher levels with inter-area and unit-level control at the lower
levels,

• An analytical model of the overall grid with multiple timescales of primary,
secondary, and tertiary levels and the corresponding uncertainties in each level,

• Global asymptotic stability of the overall system in the presence of uncertainties
at all three time-scales.

One of the hallmarks of a Smart Grid is the presence of a grid-wise information layer that
facilitates decision and control in the presence of intermittencies and uncertainties by gather-
ing and communicating pertinent data from generation, load, and storage distributed across
the grid. Given that this information is available at multiple time-scales and from multiple
sources, the underlying decision and control algorithms need to necessarily have a hierar-
chical structure. In this chapter, a hierarchical Transactive control architecture is proposed
that combines market transactions at the higher levels with inter-area and unit-level control
at the lower levels. A model of the overall grid is introduced, with dynamics at primary,
secondary, and tertiary levels. With a goal of ensuring frequency regulation using optimal
allocation of resources in the presence of uncertainties in renewables and load, a hierarchical
control methodology is presented. Global asymptotic stability of the overall system is estab-
lished in the presence of uncertainties at all three time-scales and numerically evaluated.
Our proposed hierarchical control framework has the following functionalities: (i) Primary
Control where fast control actions at a time-scale of Tp ensures stabilization. (ii) Secondary
control where frequency stabilization is carried out at a time-scale of Ts at an Area level.
(iii) Tertiary control where distributed economic dispatch occurs at a time-scale of Tt . In the
subsequent sections, details of (i)-(iii) as well as the information exchange between these
levels are presented. The advantage of such a hierarchical control structure is demonstrated
through simulation results.

In Section 5.2, we present the models and controllers of the primary, secondary and
tertiary dynamics. In Section 5.3, stability of the overall controller is established. In Section
5.4, numerical studies are presented. A summary is presented in Section 5.5.
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5.1 Preliminaries on Singular Perturbations Theory

For proving our main result, we will use singular perturbation theorem, which we recall
below [102]. Consider the problem of solving the system

Σ0 :

¨

ẋ(t) = f (t, x(t), u(t),ε), x(0) = ξ(ε)
εu̇(t) = g(t, x(t), u(t),ε), u(0) = η(ε)

(5.1)

where ξ : ε 7→ ξ(ε) and η : ε 7→ η(ε) are smooth. Assume that f and g are continuously
differentiable in their arguments for (t, x , u,ε) ∈ [0,∞]× Dx × Du× [0,ε0], where Dx ⊂ Rn

and Du ⊂ Rm are domains, ε0 > 0. In addition, let Σ0 be in standard form, i.e. 0 =
g(t, x , u, 0), has k ≥ 1 isolated real roots u = hi(t, x), i ∈ {1, · · · , k}, for each (t, x) ∈
[0,∞]× Dx . We choose one particular i, which is fixed. We drop the subscript i henceforth.
Let v(t, x) = u− h(t, x).

In singular perturbations theory, the system given by

Σ00 : ẋ(t) = f (t, x(t), h(t, x(t)), 0), x(0) = ξ(0) (5.2)

is called the reduced system, and the system given by

Σb :
dv

dτ
= g(t, x , v+ h(t, x), 0), v(0) = η0− h(0,ξ0) (5.3)

is called the boundary layer system, where η0 = η(0) and ξ0 = ξ(0), (t, x) ∈ [0,∞)× Dx ,
are treated as fixed parameters. The new time scale τ is related to the original time via the
relationship τ = (t/ε). The following assumptions are needed to present stability of the
singular perturbed system [102].

Assumption 5.1. On any compact subset of Dx×Dv, the functions f and g, their first partial
derivatives with respect to (x , u,ε), and the first partial derivative of g with respect to t are
continuous and bounded, h(t, x) and [(∂ g/∂ u)(t, x , u, 0)] have bounded first derivatives
with respect to their arguments, [(∂ f /∂ x)(t, x , h(t, x))] is Lipschitz in x , uniformly in t,
and the initial condition given by ξ and η are smooth functions of ε.

Assumption 5.2. The origin is an exponentially stable equilibrium point of the reduced
system Σ00 given by (5.2). There exists a Lyapunov function V : [0,∞)× Dx → [0,∞) that
satisfies

W1(x)≤ V (t, x)≤W2(x)

∂ V

∂ t
(t, x) +

∂ V

∂ x
(t, x) f (t, x , h(t, x), 0)≤−W3(x)

for all (t, x) ∈ [0,∞)× Dx , where W1, W2, W3 are continuous positive-definite functions on
Dx , and let c be a nonnegative number such that {x ∈ Dx |W1(x)≤ c} is a compact subset of
Dx .

Assumption 5.3. The origin is an equilibrium point of the boundary layer system Σb given
by (5.3), which is exponentially stable uniformly in (t, x).
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Theorem 5.1. Consider the singular perturbation system Σ0 given in (5.1), and let u= h(t, x)
be an isolated root of g(t, x , u, 0) = 0. Assume that the Assumptions 5.1-5.3 are satisfied for
all [t, x , u− h(t, x),ε] ∈ [0,∞)× Dx × Dv × [0,ε0] such that Dx ⊂ Rn and Dv ⊂ Rm, which
contain their respective origins. Let Rv ⊂ Dv denote the region of attraction of the autonomous
system

(dv/dτ) = g(0,ξ0, v+ h(0,ξ0), 0). (5.4)

Furthermore, let Ωv be a compact subset of Rv, then for each compact set
Ωx ⊂ {x ∈ Dx |W2(x)≤ ρc, 0< ρ < 1}, there exists a positive constant ε∗ such that for all
t ≥ 0, ξ0 ∈ Ωx , η0 − h(0,ξ0) ∈ Ωv, and 0 < ε < ε∗, Σ0 has a unique solution xε on [0,∞),
and

xε(t)− x00(t) = O(ε) (5.5)

holds uniformly for t ∈ [0,∞), where x00 denotes the solution of the reduced system Σ00 in
(5.2).

Remark 5.1. Assumption 5.3 can be locally verified by linearization. Let ϕ denote the map
v 7→ g(t,ξ, v + h(t,ξ),ε). It can be shown that if there exists ω0 > 0 such that the Jaco-
bian matrix [(∂ ϕ/∂ v)] satisfies the eigenvalue condition Re(λ[(∂ ϕ/∂ v)(t, x , h(t, x), 0)])≤
−ω0 < 0 for all (t, x) ∈ [0,∞)× Dx , then Assumption 5.3 is satisfied.

5.2 Modeling of the Transactive Hierarchical Grid

The Primary, Secondary, and Tertiary controllers of the Transactive control architecture,
function at three disparate time-scales designed with different purposes. The primary level
concerns unit-level time-scales, which includes power balance that occurs instantaneously,
and unit dynamics that is of the order of seconds, the secondary level concerns area-level
time-scales, where frequency regulation occurs in the order of minutes, and the tertiary
level, where economical dispatch occurs, of the order of 5 minutes. Denoting these time
scales as t, k, and K , we will show that the primary-level model is of the form

�

ẋp

εżp

�

= f (xp, zp,φp,∆p) + u[k] (5.6)

where ∆p denotes uncertainties in generation and load, φp denotes tie-line flow, zp denotes
the faster time scale of power balance, xp denotes unit states such as mechanical power,
valve positions and unit frequencies, ε is a small positive scalar and the limit ε→ 0 yields
the power flow constraint and finally u[k] denotes a desired reference in frequency and
load.

In order to accomplish frequency regulation in the presence of a satisfactory economic
dispatch, we address the underlying slower dynamics in (5.6), which will be shown to be of
the form

xs[k] = g(xs[k− 1],∆s[k− 1]) + u[k] (5.7a)

x t[K] = h(x t[K − 1],∆t[K − 1]) (5.7b)
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where∆s[k] and∆t[K] are equivalent uncertainties in the slower time scales due to∆p and
φp. A hierarchical controller

u[k] = C(xs[k], x t[K]) (5.8)

is proposed, whose goal is to ensure that the overall system with the above multiple time-
scales is stable, and satisfactory regulation is maintained even in the presence of the uncer-
tainties ∆p and φp. Each of the three levels are described below.

5.2.1 Dynamic Modeling for Primary Control

The purpose of the primary control loop is to regulate real power at a unit level. As men-
tioned earlier, the underlying time-scale in this level is of the order of Tp. Noting that
Tp is significantly small, we represent the dynamics at the primary level using differential
equations. Therefore the main components that need to be modeled are Governor-Turbine-
Generator (GTG) sets, wind-turbines, and loads that are DR-compatible. We first separate
the family of generating units into PCi

, i = 1, . . . , NG, and PWr
, r = 1, . . . , Nw, where NG

denotes the conventional dispatchable generating units, and NW denotes non-dispatchable
wind energy. Dispatchable generation refers to the generating units that can be dispatched
and control at the request of power grid operators. Non-dispatchable generators consist
of renewable energy sources that their generation level cannot be fully controlled by sys-
tem operator because of their uncertainty and intermittency. The dynamics of each of these
components are described below:

Reduced-order modeling of non-dispatchable generators

A fixed-speed wind turbine with a squirrel cage induction generator is the simplest electrical
topology in a wind turbine technology. The turbine blades convert the kinetic energy of
wind into rotational mechanical energy. The squirrel cage induction generator transforms
the mechanical energy into electrical energy and delivers the energy directly to the grid. It
should be noted that the rotational speed of the generator is relatively high in the order
of 1000− 1500 rpm for a 50 Hz system frequency. Such rotational speed is too high for
the turbine rotor speed with respect to turbine efficiency and mechanical stress. Thus, the
generator speed must be stepped down using a multiple-stage gearbox with an appropriate
gear ratio [103].

An induction generator consumes a significant amount of reactive power even during
zero power production. The reactive power consumption increases along with active power
output. Accordingly, compensating capacitor is necessary in order to compensate reactive
power consumption in an induction generator. It is possible to include all the dynamics of
an induction generator in a highly detailed model. Nevertheless, such a model make sta-
bility studies very complicated because it increases complexity and can be computationally
prohibitive. More importantly, not all of these dynamics have a significant influence on a sta-
bility analysis. A comprehensive discussion of a comparison of different induction generator
models can be found in [103].

In our analysis, we consider a two-mass model of a wind turbine discussed in [104].
The mathematical model of the two-mass model was elaborated in more detailed in [105].
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5.2 Modeling of the Transactive Hierarchical Grid

In this model the gearbox of a wind turbine is modeled as two inertias that are connected
to each other through a spring. The spring represents the low stiffness of the connecting
shaft. In addition to shaft stiffness, different damping factors that exist in the two-mass
model have been presented in [105]. Three different damping components are present in
the model, namely the turbine self damping (Dt), the generator self damping (Dg) and the
mutual damping (Dm). The turbine self damping represents the aerodynamic resistance that
takes place in the turbine blade. The generator self damping represents mechanical friction
and windage. The mutual damping represents balancing dynamics that occur because of
different speeds between the generator rotor and the turbine shaft. The mathematical equa-
tions of a two-mass drive train model obtained by neglecting the turbine and the generator
self dampings are given as

θ̇W =ωW

ω̇W =
Dm

MG
ωW −

Dm

MG
ωT +

Ks

MG
(θW − θT )−

1

MG
PW

θ̇T =ωT

ω̇T =−
Dm

MT
ωW +

Dm

MT
ωT −

Ks

MT
(θW − θT ) +

1

MT
∆W

(5.9)

where θW is the generator rotor angle, θT is the turbine rotor angle, ωW is the rotor
speed of the induction generator, ωT is the rotor speed of the wind turbine. ∆W is the wind
torque and is an uncertain input to the system of equations, and PW is the electrical power
output. MG, MT are the generator and turbine inertias, respectively. Dm is mutual damping
coefficients, Ks is the spring constant of the tortional spring used to model the drive train
coupling between the two rotors. Figure A.10 shows the details of dynamic modeling of
wind generators with mechanical part of wind turbines and range of the parameters are
provided in Appendix A.2.9.

State-space representation of (5.9) can be written as

ẋW = AW xW + bW∆W − cW PW (5.10)

where xW =
�

θW ωW θT ωT

�T
is defined as local state variables,

AW =













0 1 0 0
Ks

MG

Dm

MG
− Ks

MG
− Dm

MG

0 0 0 1
− Ks

MT
− Dm

MT

Ks

MT

Dm

MT













, bW =
h

0 0 0 1
MT

iT
, and cW =

h

0 1
MG

0 0
iT

.

Reduced-order modeling of dispatchable generators

Steam turbine generator units is one of the most important dispatchable generators. A
reduced-order modeling of steam turbine generators is a result of major simplifications that
the real power and the corresponding electromechanical variables such as frequency and
rotor angle are decoupled from the reactive power and electromagnetic variables including
voltage behind the transient reactance of a generator .
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A reduced-order model based on these simplifications can be derived as [65,99]

θ̇G =ωG −ωre f

Mω̇G = (eT − D)ωG + Pm− PC

Tu Ṗm =−Pm+ kt a

Tg ȧ =−ωG − ra+ωC

(5.11)

where θG is the rotor angle, ωG is the rotor speed, Pm is the mechanical power, a is valve
position, ωC is the reference frequency set by the secondary controls, and so is assumed
constant in the primary dynamics time scale, and finally PC is the electrical power output for
dispatchable generator defined as the system coupling variable. M is the inertia constant,
eT defined by ∂ Pt

∂ωG
is a coefficient representing the turbine self-regulation, D is the damping

coefficient, Tu is the time constant representing the delay between the control valves and
the turbine nozzles, kt is a proportionality factor representing the control valve position
variation relative to the turbine output variation, Tg is the time constant of the valve servo
motor-turbine gate system, r is the permanent speed droop of the turbine. The block dia-
gram of Stem-Turbine-Generator is shown in Figure A.6. State-space representation of the
reduced order steam turbine generator units located in bus i in (5.11) can be written as

ẋC = AC xC + bCωC + cC PC (5.12)

where xC =
�

θG ωG Pm a
�T

denotes local state variables of steam turbine generators,

AC =













0 1 0 0
0 eT−D

M
1
M

0
0 0 − 1

Tu

kt

Tu

0 − 1
Tg

0 − r
Tg













, bC =
h

−1 0 0 1
Tg

iT
, and cC =

�

0 1
M

0 0
�T

.

Dynamic modeling of hydro-turbine generators, combustion turbine generators, and com-
bined cycle plants are provided in Appendix A.2.6, A.2.7, and A.2.8, respectively.

The overall local physical model of generators can be written compactly as [12,99]

ẋG = AG xG + bGωre f − cG PG +∆G (5.13)

where the local state as xG =
�

x T
W x T

C

�T
, frequency references ωre f =

�

0 ωT
C

�T
, and

generator-outputs be defined as , PG =
�

PT
W PT

C

�T
, and the local system matrix as

AG = diag{AW , AC}, bG = diag{0, bC}, cG = diag{cW , cC}, and ∆G = diag{bW∆W , 0}.
It should be noted that PG, the vector of generator power outputs, is the coupling variable

which represents interactions with the local dynamics of other generators and loads via a
transmission network.

Load Modeling for Demand Response

Conventional methods in power systems control mainly rely on following load fluctuations
by adjusting the generation units. However due to huge intermittency and uncertainty,
relying on the conventional methods is inefficient and will impose huge cost of ancillary
reserves.
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5.2 Modeling of the Transactive Hierarchical Grid

Of late, Demand Response (DR) programs have begun to be used as an asset to the
power system [100, 101]. Rather than reduce the stress on the power system via peak-
load reduction, these programs are targeted to respond to specific reliability events. Some
of the loads have been identified as potential AGC signals that can respond on a 1-minute
time scale, denoted as Regulation-response DR (RR-DR), while others are classified as Price-
response DR (PR-DR) that respond to real-time price signals and move consumption from
peak-time to off-peak time [100].

Using the above classification, we express the overall load PL as

PL = PR-DR+RR-DR+ uncertain loads (5.14)

Loads with energy storage, such as heaters, air conditioners, refrigerators and PEVs, can
be modulated with reasonable disturbance to customer comforts [11]. Equipped with fre-
quency sensors, they can sense the frequency as a measure of supply-demand imbalance,
and consequently change the power consumed in less than 1 second [13]. Therefore Eq.
(5.14) can be expressed as

PL = P re f
L
︸︷︷︸

PR-DR

+ JLω̇L + DLωL
︸ ︷︷ ︸

RR-DR

+ ∆L
︸︷︷︸

Load Uncertainty

(5.15)

where JL and DL refer to the effective moment of inertia and the damping coefficient of the
aggregate load, ωL the frequency measured at the load location, ∆L represents uncertainty
of load, P re f

L is the set point of the electrical energy delivered by the network to the load
and is defined based on the real time price as well as local frequency deviation feedback,
and finally PL is the overall demanded power taken by the load and is used for coupling
through transmission or distribution lines. It is assumed in (5.15) that the Price-response
DR is capable of meeting a specified P re f

L rapidly.
Using Eq. (5.15), we can compactly rewrite the overall cyber-physical load as

ẋ L = AL x L + bL P re f
L + cL PL +∆L (5.16)

where x L =
�

ωL

�T
and the local system matrix as AL = diag{−DL/JL}, bL = diag{−1/JL},

and cL = diag{−1/JL}.

Electrical network coupling

Given that at each node, the generation and demand agents are interconnected, the Kirch-
hoff current and voltage laws should be satisfied. This requires that the electric power must
instantaneously equal the sum of power flow into transmission or distribution lines directly
connected to the buses.

Assuming lossless transmission network that consists of n nods or buses, indexed i, j =
1, . . . , n. To each node are attached generators that supply power and load that consume
power. A line connecting bus i to bus j is characterized by its electrical admittance, denoted
Yi j > 0 and Yi j = Yji. As pointed out in Chapter 2.1, the real power flow over the line from
bus i to j is equal to

Pi j = ViVj sin(δi −δ j) (5.17)
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where Vi is the voltage amplitude at bus i, and δi is the voltage phase angle at bus i. Using
Eq. (5.17), the net power Pi injected into the network at bus i is the algebraic sum of the Pi j

as

Pi =
n
∑

j=1

Pi j =
n
∑

j=1

ViVjYi j sin(δi −δ j), i = 1, . . . , n. (5.18)

For the sake of simplicity in this thesis, we assume that the voltage magnitude Vi at bus i
is constant and the phase angle differences, |δi − δ j|, are sufficiently small. With no loss of
generality, we can then set Vi = 1 for all i. Then the net power Pi j in (5.18) can be simplified
as

Pi =
n
∑

j=1

Yi j(δi −δ j), i = 1, . . . , n. (5.19)

As can be seen in Figure 5.1, voltage phase angle δi in general is not equal to the rotor
phase angle θi. Using Thevenin’s equivalent, the stator reactance X s is combined with the

G 
Vi !!i + 

- Ei !!i

sjX
Vi !!i

Figure 5.1: Response of the voltage phase angle and rotor phase angle.

transmission line admittance [65], and therefore we can write the real power flow equations
as

�

PG

PL

�

=

�

YGG YGL

YLG YLL

�

θ −
�

φG

φL

�

(5.20)

where θ =
�

θ T
G θ T

L

�T
, Y = AT Bl ineAr is a bus admittance matrix, Bl ine denotes the line

admittance matrix (Nt by Nt diagonal matrix) with elements Bnm+ X sn
and let A denote the

Nt × N bus incidence matrix. Let Ar denote the reduced bus incident matrix (Nt × N − 1)
which is A with column corresponding to reference bus removed. φG and φL represent
tie-line flows of power from neighbor areas into the area at the generator and load buses,
respectively.

Because of line power flow dependence on nodal angles, a general model of power system
dynamics comprises both the closed loop dynamics of the generators and loads as defined in
(5.13) and (5.16) respectively, and the real power flow constraints in (5.20). Consequently,
the general model is given as a differential algebraic equation (DAE) model with two time-
scales including the slow dynamics for the generators and loads and the fast dynamics for
power flow constraints. For the sake of simplicity, we restrict our attention only on real
power. A similar model for voltage control can be derived and analyzed [99].

Using ε-embedding techniques [102] and noting that θG = EG xG and θL = EL x L, the
algebraic power flow constraint (5.20) changes into fast dynamics as

ε

�

ṖG

ṖL

�

=

�

YGG EG YGL

YLG EL YLL

��

xG

x L

�

−
�

PG

PL

�

−
�

φG

φL

�

(5.21)
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where ε is a small positive scalar and the limit ε→ 0 yields the power flow constraint (5.20).

Reduced Model of Interconnected Grid for Primary Control

Using the dynamical models of generators (5.13), DR-capable loads in (5.16), and intercon-
nections in (5.21) the overall dynamical representation can be rewritten again as follows


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
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(5.22)

Remark 5.2. As can be seen in Eq. (5.22), both ωre f and P re f
L are set-points provided by

the secondary controller, with the former determined by the AGC and the latter by Price-
response DR. ∆G and ∆L denote the uncertainties in RER and load, respectively.

Before we proceed to the secondary level, we separate the time-scales in the primary level
by defining

tk+1 = tk + Ts

where Ts >> Tp. Denoting xp = [x T
G x T

L ]
T , zp = [PT

G PT
L ]

T , ∆p = [∆T
G ∆

T
L ]

T ,

u(k) = [ωT
re f P re f T

L ]T as command inputs, φp(t) = [φT
G φT

L ]
T as the tie-line flow and

zs(k) = zs(tk) for any variable of interest in the secondary level, we can express (5.22)
compactly as a singularly perturbed LTI system

ẋp = Axp(t) + Bzp(t) + Fu(k) +∆p (5.23a)

εżp = C xp(t) + Dzp(t) +φp(t). (5.23b)

5.2.2 Models and Controllers at the Secondary Level

The goal of the secondary level control is to determine the specific set-point u for the pri-
mary controllers despite the uncertainties ∆G and ∆L. The primary control acts in response
to locally measured changes in the generator’s output frequency from the established system
standard, which is 60 Hz in the U.S and 50 Hz in Europe. Spontaneous reaction in primary
level results in a small change in system frequency. The errors in frequency and flows be-
tween control areas are corrected by the relatively slower controller in the secondary level.

Models for Secondary Control

The first step of design is to assume that the primary level variables xp and zp denoted in
(5.22) have reached steady state and therefore we can rewrite the primary dynamics in
(5.23a), and (5.23b) as

0= Axpss
[k] + Bzpss

[k] + Fu[k] +∆pss
(5.24a)

0= C xpss
[k] + Dzpss

[k] +φpss
[k] (5.24b)
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where ∗pss
denotes the steady-state values of the primary states. Writing Eq. (5.24b) at two

successive secondary sampling instants k and k+ 1, we can rewrite (5.24b) compactly as

xs[k+ 1] = xs[k] + Bsus[k] + Cs∆s[k] (5.25)

where xs = Rs xpss
is the aggregated frequency of the underlying area and Rs denoted as the

aggregation matrix, Bs = Rs(BD−1C−A)−1F , us[k] = u(k+1)−u(k), Cs = Rs(BD−1C−A)−1,
and finally ∆s[k] is an equivalent uncertainty at the secondary level due to ∆p and φp,
defined as

∆s[k] =−BD−1
�

φpss
[k+ 1]−φpss

[k]
�

+
�

∆pss
[k+ 1]−∆pss

[k]
�

. (5.26)

Secondary Controller

We now use the model in (5.25) for the design of the secondary controller. The goal of
secondary control is to regulate generators frequency ωGss

[k] and load frequency ωLss
[k]

to reach the desired set point x t introduced by tertiary control level in the presence of the
uncertainty ∆s. As in the previous section, we introduce a third time-scale

tK+1 = tK + Tt (5.27)

where Tt >> Ts. Let us define the Area Control Error (ACE) compactly as

es[k+ 1] = xs[k+ 1]− Rt x t[K] (5.28)

where x t[K] is a reference signal determined by the tertiary level, and is adjusted every K
units of time, and Rt = diag{Ins

, 0} is the aggregation matrix for tertiary level. The overall
goal of secondary controller is to find the control input us[k] such that the following cost
function is minimized [99]

J =
N−1
∑

k=0

eT
s [k+ 1]Wes[k+ 1] + uT

s [k]Rus[k] (5.29)

subject to the equality constraints in (5.25) with the weighting matrices W ≥ 0, R ≥ 0. The
resulting discrete-time decentralized LQR controller is given by

us[k] =−Lses[k] =−Ls xs[k] + Lt x t[K] (5.30)

where Lt = LsRt , Ls = (R+ BT
s Fr Bs)−1BT

s Fr and Fr is the solution of discrete finite horizon
Riccati equation. The last term in equation (5.30) follows by noting that x t[K] remains
constant between k and k+1 for any k. The controller parameters Ls and Lt ensure stability
in the absence of the uncertainty ∆s. In Section 5.3, the robustness of the secondary loop to
this uncertainty will be formally discussed.

Using the control input in (5.30), we can write the nominal closed-loop secondary dy-
namics as

xs[k+ 1] = Ãs xs[k] + Bs Lt x t[K] + Cs∆s (5.31)
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where Ãs = (I − Bs Ls). The dynamics of the Area Control Error can be driven as

es[k+ 1] = Ãses[k] + Cs∆s. (5.32)

The controller parameters Ls and Lt ensure stability in the absence of the uncertainty ∆s.
Given the presence of uncertainty, the goal here is to ensure boundedness in the presence
of ∆s and to drive the ACE, es(k), to zero. It should be noted that if ∆s is such that it has
a non-zero mean value, then it can change the equilibrium point of es(k) which has to be
suitably addressed in the analysis of the higher level. This is done in Section 5.2.3.

5.2.3 Models and Controllers at the Tertiary Level

Tertiary control is responsible for the determination of x t[K] at each K such that the overall
system operates in the most economical way and satisfies all stability and reliability cri-
teria. Unlike the current centralized action of the ISO, we propose a dynamic economic
dispatch paradigm based on the notion of disequilibrium process where Generating Com-
panies (GenCo), Consumer Companies (ConCo), and ISO exchange information through a
communication network with low latencies.

In what follows, we use the model of GenCo presented in Section 4.1.1, and ConCo
in Section 4.4. The discussions of wind integration in the market and also the effect of
the transmission lines are provided in Chapter 4, here in contrast to what we proposed in
Section 4.4 that wind power is one of the main participants in the market, in this chapter
we assume that wind power is modeled as a negative load, and for the sake of simplicity we
ignore transmission lines capacity constraints.

Following this assumption, ISO problem is defined for all ConCo j ∈ Dq and GenCo i ∈ G f

as

maximize
∑

j∈Dq

UD j(PD j)−
∑

i∈G f

CGi
(PGi) (5.33)

subject to

∆n−
∑

i∈θn

PGi +
∑

j∈ϑn

PD j +
∑

m∈Ωn

Bnm
�

δn−δm
�

= 0; ρn,∀n ∈ N (5.34)

where

∆n =−
∑

i∈θ

∆Gi +
∑

j∈ϑ

∆L j
(5.35)

is the aggregation of predicted uncertainties at bus n due to the forecast error of wind
generation units and load uncertainty as will be discussed further in Section 5.2.5, and δn

is the voltage angle of bus n. Set θn denotes indices of generating units at node n, ϑn set
of indices of demands at node n, and finally Ωn is the set of nodes connected to node n.
The constraints (5.34) is due to power balance. It can be seen that the associated Lagrange
multiplier, ρn, is indicated in each constraint. The underlying optimization problem of the
ISO can therefore be defined as the optimization of (4.8a) subject to constraint (4.8b).
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5 Transactive Hierarchical Control Architecture

The resulting solution can be determined, using KKT conditions [10], as P∗Gi, the amounts
of power to be generated by each generating unit i, P∗D j, the amounts of power to be con-
sumed by each consumer j, the locational marginal prices, ρ∗n that satisfies the following
conditions:

d(CGi
(PGi))

dPGi
|P∗Gi
−ρ∗n(i) = 0 ∀i ∈ G f (5.36a)

ρ∗n( j)−
d(UD j(PD j))

dPD j
|P∗D j
= 0 ∀ j ∈ Dq (5.36b)

∑

m∈Ωn

Bnm

�

ρ∗n−ρ
∗
m

�

= 0 ∀n ∈ N (5.36c)

∆n−
∑

i∈θn

P∗Gi +
∑

j∈ϑn

P∗D j +
∑

m∈Ωn

Bnm

�

δ∗n−δ
∗
m

�

= 0 ∀n ∈ N (5.36d)

5.2.4 Dynamic Market Mechanism Design as a Tertiary Control

The same as Section 4.2.1, instead of solving Eq. (5.33)-(5.34) as a static optimization
problem, we take a dynamic approach. Now let us define h= Tmc/N with

h= tK+1− tK . (5.37)

Hence if Tmc is chosen as the market clearing time, it follows that N iterations elapse if h
is chosen as the sampling interval. From (5.27), it follows that h = Tt . We introduce the
specifics of designing DMM for electricity market as follows:

State Space:

The underlying state space in this game is denoted by X ⊂ RN where each state ρn ∈ X is the
profile of locational marginal prices at each node and congestion prices for each transmission
line.

State Dependent Payoff Function:

The state dependent payoff function for GenCo i is defined in Eq. (4.3), ConCo j is defined
in Eq. (4.6), and Social Welfare denoted in (4.7).

Actions:

Each GenCo i, ConCo j, and substation at bus n is assigned a state dependent action that
permits GenCos and ConCos to change their production and consumption level and substa-
tions to change their voltage phase angle. Using gradient play [10, 95], we can derive an
action for the i th GenCo ∀i ∈ G f as

PGi[K + 1] = PGi[K] + hkPGi
(ρn(i)k − cGi PGik − bGi) (5.38)
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5.2 Modeling of the Transactive Hierarchical Grid

with the goal of driving its solution PGi to the equilibrium P∗Gi which solves (5.36a). Similarly,
using (4.4), a state dependent action can be derived for the jth ConCo ∀ j ∈ Dq as

PD j[K + 1] = PD j[K] + hkPD j

�

cD j PD jk + bD j −ρn( j)k

�

(5.39)

where kPGi
and kPD j

are step sizes that can be adjusted so as to result in an optimal conver-
gence of these solutions to the equilibrium in (5.36a)-(5.36d). Finally, the state dependent
action for voltage phase angles can be determined as

δn[K + 1] = δn[K]− hkδn

 

∑

m∈Ω

Bnm
�

ρn−ρm+ γnm− γmn
�

!

(5.40)

State Dynamics:

We now describe how the states evolve as a function of players strategies. As mentioned ear-
lier, states consist of locational marginal price ρn. The state dynamics or pricing mechanism
can be derived as

ρn[K + 1] = ρn[K] + hkρn



∆̂n[K + d|K]−
∑

i∈θ

PGi +
∑

j∈ϑ

PD jk +
∑

m∈Ω

Bnm
�

δn−δm
�





(5.41)
where ∆̂n[K + d|K] is a d-step-ahead prediction of ∆n.

d-step-head Prediction:

∆̂n[K+d|K] is the d-step ahead predication of∆n[K] such that at each K can be represented
based on the actual wind generation uncertainty and load deviation denoted as

∆̂n[K + d|K] =F (∆n(K),∆n(K − 1), . . . ,∆n(K −M)),∀M ∈ Z. (5.42)

To find the optimal d-step-ahead predictor, consider the ARMA model as

A(q−1)∆n[K] = C(q−1)w[K] (5.43)

where

A(q−1) = 1+ a1q−1+ . . .+ anaq−na

C(q−1) = 1+ c1q−1+ . . .+ cncq
−nc.

Let Y t denote the information available at the time instant t as Y t = {∆n[K],∆n[K − 1], ...}.
The following assumptions are needed to present the optimal predictor.

Assumption 5.4. Let us assume the followings

• {w[K]} is a sequence of uncorrelated and identically distributed Gaussian random
variables with zero mean and variance λ2,

• A(q−1) and C(q−1) have no common zeros,
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5 Transactive Hierarchical Control Architecture

• the parameters {ai, ci} are given,

• C(q−1) is asymptotically stable.

The design problem is to determine the mean square optimal d-step predictor of ∆n[K +
d], i.e. an estimate ∆̂n[K + d|K] of ∆n[K + d], which is a function of Y t and is such that
the variance of the prediction error

εn[K + d] = ∆n[K + d]− ∆̂n[K + d|K] (5.44)

is minimized.

Lemma 5.1. Let for the ARMA model (5.43), Assumption 5.4 holds. Then the optimal
d-step-ahead prediction, ∆̂[K + d|K], of ∆[K + d] satisfies

C(q−1)∆̂n[K + d|K] = G(q−1)∆n[K] (5.45)

where the prediction error has zero mean with variance (1+ f 2
1 + ...+ f 2

k−1)λ
2, and F(q−1),

and G(q−1) are the unique polynomials such that for any given A(q−1), and C(q−1) satisfying

C(q−1) = F(q−1)A(q−1) + q−d G(q−1) (5.46)

G(q−1) = g0+ g1G(q−1) + ...+ gk−1G(q1−d) (5.47)

F(q−1) = 1+ f1F(q−1) + ...+ fk−1F(q1−d). (5.48)

Proof. Since A(q−1) and C(q−1) are coprime polynomials, it follows that there exists unique
F and G such that Bezout’s identity in (5.46) for polynomials holds. Inserting (5.46) into
(5.43) gives

∆n[K + d] = F(q−1)w[K + d] +
G(q−1)
C(q−1)

∆n[K] (5.49)

It should be noted that the first term in the right-hand side of the above relation is indepen-
dent of Y t . Thus the variance of the prediction error

E
�

∆n[K + d]− ∆̂n[K + d|K]
�2 = E

�

G(q−1)
C(q−1)

∆n[K]− ∆̂n[K + d|K]
�2

(5.50)

+ E
�

F(q−1)w[K + d]
�2

which shows that the optimal d-step predictor is given by (5.45). The prediction error is
obtained as

ε[K + d] = F(q−1)w[K + d]. (5.51)

Note that since {w[K]} is a sequence of Gaussian random variables with zero mean, it
implies that the prediction error has zero mean with variance (1+ f 2

1 + ...+ f 2
k−1)λ

2.

Equations (5.38)-(5.42) represent a dynamic model of the overall Transactive tertiary
level. These action and state profiles can also be viewed as a disequilibrium process [96]
needed to arrive at the equilibrium following a perturbation from lower levels in the hierar-
chical structure.
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5.2 Modeling of the Transactive Hierarchical Grid

Equations (5.38)-(5.42) can be viewed as control strategies adopted by the GenCo,
ConCo, and the ISO in order to ensure an optimal market operation. It should also be
noted they represent a significant departure from the current practice where information is
exchanged only once between the GenCos and the ISO, following which the ISO clears the
market and provides information regarding the price. Our thesis here is that due to the huge
volatility and uncertainty of the dynamic drivers such as wind and solar energy sources, and
load in the market, such a single iteration will not suffice, and stability cannot be ensured;
continued iteration as suggested by the dynamic model above is needed in order to mitigate
volatility in real-time price and ensure a stable market design. In the subsequent sections,
guidelines for determining stability with such an iterative exchange of information between

the different players are discussed. Let us denote PG =
h

PG1
, ..., PGNG

iT
, the amounts of

power to be generated by each generating unit i, PD =
h

PD1
, ..., PDND

iT
as the amounts of

power to be consumed by each consumer j, the voltage phase angles ∆ =
�

δ1, ...,δN−1

�T ,
the locational marginal prices denoted as ρ =

�

ρ1, ...,ρN
�T . Using Eqs. (5.38)-(5.41), the

dynamic model of tertiary level can be written compactly as

x t[K + 1] = (Int
+ hAt)x t[K] + hkρ∆̂t + b (5.52)

where

x t(K) =
�

PG PD ∆ ρ
�T

(N g+Nd+2N−1)×1
, (5.53)

At =











−kg cg 0 0 kgAT
g

0 kd cd 0 −kdAT
d

0 0 0 kδY T

−kρAg kρAd kρY 0











(5.54)

where Ag is generators incidence matrix where Agi j
= 1 if the i th generator is connected to

j th bus and Agi j
= 0 if the i th generator is not connected to j th bus, similarly for Ad which is

load incident matrix where Adi j
= 1 if the i th consumer is connected to j th bus and Adi j

= 0
if the i th consumer is not connected to j th bus and the matrix Y is defined in Section 5.2.1.
Finally,

∆̂t =
�

0 0 0 diag{∆̂n[K + 1|K]}
�T

,

b =
�

hbT
g kT

g hbT
d kT

d 0 0
�T

.

In the next section, we model the uncertainty in each level and finally in Section 5.3 the
stability analysis for the overall hierarchical control system will be presented.

5.2.5 Time Scale Separation of Uncertainties

Main sources of uncertainties that are considered in this paper are correspond to∆G and∆L

in Eqs. (5.13) and (5.14) as well as the uncertainty of the adjacent area in φp respectively.
For the purpose of analysis, we separate the three time-scales in ∆G and ∆L, and represent
them as ∆p, ∆s, and ∆̂t , defined as in (5.23a), (5.25), and (5.41) respectively.
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5 Transactive Hierarchical Control Architecture

In the tens of seconds time-scale, generators reflecting automatically to deal with the fast
uncertainties in the order of milli-seconds. We denote the uncertainty of this order as ∆p

which is corresponding to the states of primary level xp and denoted as

∆p = Ep xp (5.55)

where Ep is perturbation matrix.
In the tens of minutes time scale, system operators schedule adequate regulation reserves

to track minute-by-minute changes in the balance between generation and load. Given that
∆P = Ep xp, we can rewrite ∆s in (5.26) as

∆s[k] =−BD−1
�

∆φps
[k]
�

+
�

Ep∆xs[k]
�

(5.56)

where ∆xs[k] = xpss
[k + 1]− xpss

[k] and ∆φs[k] = φpss
[k + 1]− φpss

[k]. Change of the
steady state variables at time instance k depends directly on the set-point us[k] (see Eq.
(5.24b)), which in turn depends on the states of the secondary level xs[k]. Due to the pres-
ence of uncertainties, this dependency can be denoted as ∆xs[k] = Ps xs[k] where Ps is the
perturbation matrix. Using the same logic for the increments in tie line flow denoted as
∆φs, it follows that ∆φs = Qs xs[k] where Qs is the perturbation matrix for tie line variabil-
ity. Therefore, we can denote the uncertainties of this order as a multiplicative uncertainty
corresponding to the xs as

∆s = Es xs (5.57)

where Es =−BD−1Qs + EpPs represents the effect of perturbation on the secondary states in
the time scales Ts due to the slow uncertainty of∆G and∆L and the tie lines flow increments.

In the 5-min to hours time scale, system operators typically change the output of com-
mitted units to follow changes in load throughout the day. The aggregated uncertainty
was defined as ∆n in (5.35), whose d-step- ahead prediction in the tertiary time-scale as
∆̂n[K + d|K] in (5.42). Using the optimal d-step predictor in (5.45), implies that ε[K + d]
has a zero mean value. In turn, the aggregation of uncertainties at bus n, ∆n, is directly
reflected in the ACE signal. In turn, for the analysis, ∆̂t can be expressed as

∆̂t = Et es (5.58)

where Et represents the effect of aggregated forecast error on the ACE.

5.2.6 The overall Hierarchical Transactive Model

The overall model, including the primary, secondary, and tertiary level dynamics in the grid
is assembled in this section together with the corresponding uncertainties. These can be
written by using the primary level dynamics in (5.23a) and (5.23b) denoted by ΣPri, the
secondary level dynamics in (5.30) and (5.32) denoted by ΣSec, and the tertiary level dy-
namics in (5.52) denoted by ΣTer as (see Figure 5.2)
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Primary Level 

Secondary Level 

Tertiary Level 

xt[K + 1] = Ãtxt[K] + b ẋp = Axp(t) + Bzp(t) + Fu(k)

�żp = Cxp(t) + Dz(t) + φp(t) zp(t)

xp(t) xs[k]

∆p(t) φp(t)

xt[K] es[k]
Rt −Ls

Rs

Figure 5.2: Transactive Hierarchical Control Structure

ΣPri :

¨

ẋp = (A+ Ep)xp(t) + Bzp(t) + Fu(k) (5.59)
εżp = C xp(t) + Dzp(t) +φp(t) (5.60)

IPri : u[k+ 1] = u[k]− Ls xs[k] + Lt x t[K] (5.61)
ΣSec : xs[k+ 1] = (Ãs + CsEs)xs[k] + Bs Lt x t[K] (5.62)
ISec : es[k+ 1] = (Ãs + CsEs)es[k] + CsEsRt x t[K] (5.63)
ΣTer : x t[K + 1] = Ãt x t[K] + hkρEt es[K] + b (5.64)

where Ãt = Int
+ hAt . The information exchange between the three levels, from top to

bottom, are represented in IPri denoted by u(k) in (5.59) from the secondary to the primary
level, and Rt X t[K] from the tertiary to the secondary level represented in ISec; the terms
xs[k] in (5.62) and es[K] in (5.64) represent the aggregated information from the lower
levels to the higher levels. Interconnections in ISec and ISec are necessary for a stable and
affordable grid design, as will be shown in Sections 5.3 and 5.4.

5.3 Stability Analysis of Transactive Controller

In this section we present the stability analysis for the overall dynamical system in (5.59)-
(5.64). Before we analyze the stability of the dynamic market model in Eqs. (5.59)-(5.64),
we evaluate its equilibria. The equilibrium of the primary dynamics is shown in (5.24b).
From Eqs. (5.62), (5.63), and (5.64), the equilibrium points of xs denoted by x∗s and es[k]
denoted by e∗s , and x t denoted by x∗t is given as the solution of

(Ins
− Ãs − CsEs)x

∗
s − Bs Lt x

∗
t = 0 (5.65a)

(Ins
− Ãs − CsEs)e

∗
s − CsEsRt x

∗
t = 0 (5.65b)

hAt x
∗
t + hkρEt e

∗
s + b = 0. (5.65c)

Remark 5.3. It should be noted that the equilibrium of the overall Transactive controller in
the absence of uncertainty can be derived from (5.65a)-(5.65c) by letting Ep, Es, and Et

equal to zero and it follows that e∗s = 0, and hAt x
∗
t + b = 0 which is equivalent to the KKT

conditions for ISO problem in (4.10a)-(4.10e).

We now state a few assumptions regarding the uncertainties.
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Assumption 5.5. Let ∆p in (5.55) be such that

σmax(Ep)<
1

σmax(Pp)

where Pp is the unique matrix that satisfies the Lyapunov equation Pp(A−BC)+(A−BC)T PT
p +

2Ins
= 0.

Assumption 5.6. Let ∆s in (5.26) be such that

σmax(CsEs)<−σmax(Ãs) +
�

[σmax(Ã)]
2+

1

σmax(Ps)

�1/2

where Ps > 0 is the solution of ÃT
s PsÃs − Ps + I = 0.

Assumption 5.7. Let ∆t in (5.58) be such that

σmax(Ẽt)<−σmax(Ãt) +
�

[σmax(Ãt)]
2+

1

σmax(Pt)

�1/2

where Ẽt = hkρEt(Ins
− Ãs−CsEs)−1CsEsRt , and Pt > 0 is the solution of ÃT

t Pt Ãt−Pt+ Int
= 0.

Theorem 5.2. Let assumptions 5.5 to 5.7 hold. If the system in (5.59)-(5.64) is such that

Re
�

λmax{A− BC}
�

< 0 (5.66a)

|λi(Ãs)|< 1 for all i = 1, ...ns (5.66b)

|λi(Ãt)|< 1 for all i = 1, ...nt , (5.66c)

where λi is the i-th eigenvalue of matrix A and λmax(A) denoted the largest eigenvalue of the
matrix A, then there exists h∗, and ε∗ such that for all h ∈ (0, h∗) and ε ∈ (0,ε∗), the equi-
librium O = (xpss

, x∗s , e∗s , x∗t ) of the overall hierarchical Transactive control in (5.59)-(5.64) is
asymptotically stable.

Proof. The proof is provided in three steps, starting from the stability of the lowest level.
Step 1: Stability of the primary level

Let u(k) ≡ 0. Defining yp(t) = zp(t) + D−1C xp(t) + D−1φp(t), (5.59)-(5.60) can be
represented as

d xp(t)

d t
= (A− BD−1C)xp(t) + B yp(t) +∆p (5.67)

ε
d yp(t)

d t
= D yp(t) + εD−1C(A− BD−1C)xp(t)+

εD−1CB yp(t) + εφ̇p(t) + εD−1C∆p. (5.68)
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G 
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4 3 
Area 2 Area 1 

PD1PD2

G G 

L1L2

Figure 5.3: 4-bus system example for Transactive control

It follows that the equilibrium of (5.59)-(5.60) is asymptotically stable if and only if the
origin of (5.67)-(5.68) is asymptotically stable, see Theorem 5.1. Defining τ = t/ε, we can
represent (5.68) in the stretched τ-scale as

d yp(τ)

dτ
= D yp(τ) + εD−1C(A− BD−1C)xp(τ)+

εD−1CB yp(τ) + εφ̇p(τ) + εD−1C∆p.
(5.69)

In order to evaluate the stability of the dynamics in the stretched time-scale of τ, we let ε
tend to zero in (5.69), which leads to the boundary-layer system, see Theorem 5.1 [102]

d yp(τ)

dτ
= D yp(τ). (5.70)

Since D = −I , (5.70) is asymptotically stable, with y(τ) tending to zero as τ→∞. There-
fore, it suffices to focus on the reduced system

d xp(t)

d t
= (A− BD−1C)xp(t) +∆p. (5.71)

by setting yp(t) to zero. From Assumption 5.5 and (5.66a), it follows that the origin of (5.71)
is asymptotically stable, see Section A.1.2 [102]. This establishes the stability of xp = 0 in
(5.59) and (5.60). It therefore follows that for any bounded u(k) 6= 0, the solutions of
(5.59)-(5.60) are globally bounded.

Step 2: Stability of the secondary level
Let x t[K] ≡ 0 and consider the two lower levels defined by Eqs. (5.59)-(5.63). From

(5.26), Eq. (5.62) can be rewritten as

xs[k+ 1] = (Ãs + CsEs)xs[k]. (5.72)
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Figure 5.4: Wind power uncertainty and one-step ahead prediction using ARMA(1,1).

Using a Lyapunov function candidate V (x) = x T
s Ps xs we obtain

∆V (k) = x T
s [−I + (ET

s C T
s PsÃs + ÃT

s PT
s CsEs) + ET

s PsEs]xs. (5.73)

From Assumption 5.6 and (5.66b), it follows that ∆V (k) ≤ 0. Using Appendix A.1.4, see
Eq. (A.29), it follows that (5.72) is asymptotically stable. As before, it follows that for any
bounded x t[K] 6= 0, the solutions of (5.72), u(k), and therefore the solutions of (5.59)-
(5.60) are bounded for all k.

Step 3: Stability of the tertiary level
We now consider the complete system defined by (5.59)-(5.64). Let us assume that strong

duality holds and there exists a regular equilibrium point x∗t . Let yt = x t−x∗t and ηs = es−e∗s ,
the singular perturbed tertiary level in (5.64) together with the Area Control Error dynamics
in (5.63) can be represented as

yt(K + 1) = Ãt yt(K) + hkρEtηs(K) (5.74)

ηs(k+ 1) = (Ãs + CsEs)ηs[k] + (CsEs)Rt yt[K]. (5.75)

Using the method of the singular perturbation approach and time scale separation, the ter-
tiary dynamics in (5.74) and ACE dynamics in (5.75) can be transformed into slow and fast
subsystems as

yts
(K + 1) = (Ãt + Ẽt)yt(K) (5.76)

ηs f
(k+ 1) = (Ãs + CsEs)ηs f

(k) (5.77)
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Figure 5.5: Frequency response of Areas 1 and 2.

where yts
, and ηs f

denote the slow and fast decomposition of the original system in (5.74)-
(5.75). From assumptions 5.6 - 5.7 and (5.66c) it follows that (5.76) and (5.77) are asymp-
totically stable. This in turn implies that x t and es are bounded, ensuring the boundedness
of the solutions of the secondary level and primary level dynamics in (5.59)-(5.63).

5.4 Case Study

In this section we study power fluctuations from large scale wind power integration on a
power system of 2 interconnected areas, whose interconnection is shown in Figure 5.3. We
assume the integration of a wind farm in area 1. Primary, secondary, and tertiary controllers
as in Eqs. (5.59)-(5.64) are implemented. Numerical values of the steam units and wind
parameters are provided in Appendix A.2.5, A.2.9, and for RR-DR part of the load JL1 = 0.2,
JL2 = 0.1, DL1 = 0.7, and DL2 = 0.5 respectively [12]. The time-scales, as described in Eq.
(5.37) are chosen as Ts = 1s, h = 30s, and Tt = 5min. The proposed Transactive control
is evaluated in the presence of a wind power shown in Figure 5.4, together with one-step
ahead prediction using ARMA (1, 1) model and mean value of the projected wind power. As
can be seen in Figure 5.5, the secondary control responds to the wind power fluctuation and
adjusts the set-point of the steam turbine unit in area 1 and regulation response part of load
in Area 1. This restores the frequency to its nominal value (60 Hz). Regulation response
and price response of DR-compatible load in areas 1 and 2 are shown in Figure 5.6. As can
be seen, regulation response components of Pd1 and Pd2 adjust their frequency responses
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Figure 5.6: RR and PR components of Demand Response load in areas 1 and 2 in response
to the wind uncertainty.

following the wind uncertainty and tertiary level adjusts the price response components of
demand collectively following the intermittency that happens at 220 seconds .

The performance of the tertiary level in terms of reserve deployment is presented in Fig-
ure 5.7. Using Transactive control, less reserve is required to meet the fluctuations of the
wind power in Area 1 and the cheaper resources, i.e. demand in area 1 responds since it
is assumed to be DR-compatible and changes its set-point as can be seen in Figure 5.6, and
the steam turbine unit of area 2, are involved to deal with wind uncertainty. This is mainly
due to the coordination between the three levels and the use of one-step ahead prediction
in the proposed Dynamic Market Mechanism (DMM) at tertiary level. The efficiency of the
proposed hierarchical controller is validated by comparing the corresponding Sw defined in
Eq. (5.33) and total generation cost

∑

i∈G f
CGi
(PGi) in the case of using our proposed Trans-

active control with DMM at tertiary level and the case of using Current Market Mechanism
(CMM) at tertiary level. As can be seen in Table 5.1, our proposed Transactive hierarchical
controller results in a larger Sw following wind-intermittency and less deployment of reserve
with lower reserve cost.

Figure 5.8 compares Area Control Error of area 1 when this area is subjected to different
wind penetration. As can be seen ACE signal is extremely volatile when the system integrates
30% wind power and at this level of wind penetration our proposed Transactive control is
not stable anymore.
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Figure 5.7: Reserve requirement after applying Dynamic Market Mechanism (DMM) at ter-
tiary level.

Tabular 5.1: Comparison of Dynamic Market Mechanism (DMM) and Current Market Mech-
anism (CMM) for 400 seconds interval

Algorithm Total Generation
Cost

Total Reserve Cost Social
Welfare

∑2
i=1 CGi

(PGi) $/p.u. CG2
(PG2) $/p.u. SW $

With Transactive Control 120.1 69.2 65.9

Without Transactive
Control

152.8 102.5 60.6

5.5 Concluding Remarks

A hierarchical Transactive control architecture is proposed that combines market transac-
tions at the higher levels with inter-area and unit-level control at the lower levels. This ar-
chitecture consists of a primary, secondary, and tertiary levels, and operates over time-scales
that range from seconds to minutes. A dynamic market mechanism inspired by the notion
of disequilibrium is introduced into the traditional AGC architecture to develop the hierar-
chical models and controllers. Global asymptotic stability of the overall hierarchical system
is established in the presence of uncertainties at all three time-scales. Finally the resulting
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Figure 5.8: Area Control Error as wind penetration is increased.

controller is shown to satisfactorily accommodate perturbations in the wind generation, and
results in the desired frequency regulation as well as increased Social Welfare.
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6.1 Concluding Remarks

The current energy crisis has created an urgent need in integrating renewable energy re-
sources into the power grid. The latter in turn can introduce intermittency and uncertainty
into the picture, thereby introducing a prohibitive integration cost. The focus of this dis-
sertation is on introducing an analytical framework to evaluate and mitigate the integration
cost of Renewable Energy Resources (RERs).

Beginning with an overall model of the energy market including GenCo, ConCo as well
as ISO in Chapter 3, the equilibrium of an electric energy market has been discussed in
the presence of RERs and Demand Response (DR). The underlying market equilibrium was
analyzed using game theory and sufficient conditions for the existence of a unique Pure Nash
Equilibrium for the nominal market are established. The perturbed market in the presence
of uncertainty due to renewable energy is analyzed using the concept of closeness of two
strategic games and the equilibria of close games using the notion of α − approximation
and ε− equilibrium. This analysis is used to quantify the effect of uncertainty of RERs and
its possible mitigation using DR in the form of a parameter denoted as Curtailment Factor.
Finally, numerical results are included that validate the theoretical results, using an IEEE
30-bus network.

In Chapter 4, dynamic market mechanism is proposed as a significant departure from
the current practice where information is exchanged only once between the GenCos and
the ISO following which the ISO clears the market and provides information regarding the
price. Our thesis here is that due to the huge volatility and uncertainty of the dynamic
drivers such as wind and solar energy sources, and load in the market, such a single itera-
tion will not suffice, and stability cannot be ensured; continued iteration as suggested by the
dynamic model presented in this chapter is needed in order to mitigate volatility in real-time
price and ensure a stable market design. In this chapter, guidelines for determining stability
with such an iterative exchange of information between the different players are discussed.
Beginning with the model of the players (GenCo, ConCo, and ISO) together with their con-
straints and the optimization goal, the dynamics of the real-time market using the notion of
disequilibrium has been captured. A gradient play is used to derive the dynamic evolution
of the actions for players and underlying states of the game as dual variables to reach the
optimum solution of the real-time market. The stability of the resulting dynamical model of
the real-time market is investigated and the region of attraction around the equilibrium of
interest is established. This region for which the real-time market is asymptotically stable
places an implicit bound on the congestion price. In the same chapter, the stability of the
underlying market equilibrium in the presence of uncertainty due to renewable energy and
the corresponding region of attraction have been analyzed. The effect of DR as a promising
tool for improving robustness of the real-time market due to the uncertainty of RERs is then
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quantified.
Numerical results are included that validate the theoretical results using IEEE 30-bus

system. The simulation results show how demand curtailment factor due to the real time
pricing can mitigate the wind volatility in the wholesale market. The final point that has been
presented in this chapter is the placement of a wind generator due to inherent volatility and
intermittency. The simulation studies show that self-admittance of the admittance matrix,
|Ybusii

|, serves as an important guideline for the location of the wind energy in the power
network.

A hierarchical Transactive control architecture is proposed in Chapter 5 that combines
market transactions at the higher levels with inter-area and unit-level control at the lower
levels. This architecture consists of a primary, secondary, and tertiary levels, and operates
over time-scales that range from seconds to minutes. A dynamic market mechanism that
proposed in Chapter 4 is introduced into the traditional AGC architecture to develop the
hierarchical models and controllers. Global asymptotic stability of the overall hierarchical
system is established in the presence of uncertainties at all three time-scales. Finally the
resulting controller is shown to satisfactorily accommodate perturbations in the wind gener-
ation, and result in the desired frequency regulation as well as increased Social Welfare and
reducing the integration cost of RERs.

In summary, given the significant impact that increased uncertainties stemming from re-
newables can have on market transactions, the ideas, concepts and approaches developed
in this dissertation significantly advance the state-of-the-art in control and decision making
of smart power grid and pave the way for better RERs integration in power systems while
overcoming market volatility and inefficiency.

6.2 Future Directions

Uncertainty and intermittency of Renewable Energy Resources (RERs) imply that control
methodologies in the future of smart grids must be in real-time and close the loop at vari-
ous time-scales. Feedback structure leads a new look at market mechanisms with a controls
viewpoint enabling a novel framework for analysis and synthesis. Based on the results of
this thesis, continuing research in suitable Transactive control design intertwined with mar-
ket mechanisms design is essential for a successful practical application of the presented
methods in this dissertation. There are a number of exciting research directions directly
emerging from this thesis, some of which are listed below:

Incorporating Non-convex and Non-rational Participants in Transactive Grid:

Non-convex utility functions, non-rational players, and non-unique equilibrium routinely
occur in the wholesale electricity markets. The overall wholesale market model is highly
needed so as to include the effects of these realistic features. Each one of these participants
has a different utility cost function, which also varies differently with time. Different levels
of stochasticity are also associated with each of the participants. By integrating all these
participants together, and introducing congestion constraints due to transmission capacity
limits, and losses in transmission lines, we can evaluate different market conditions. Suitable
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6.2 Future Directions

price policies and appropriate information exchange between the different market players
can be derived for a stable efficient market under non-convex, an non-rational participants.

Analysis of the Transactive Grid:

Significant potential is anticipated with the expansion of Transactive control to a grid-wise
level, in terms of reducing or eliminating the need to build costly thermal resources, reducing
the region’s carbon footprint, smoothening peaks in electricity use, and integration of inter-
mittent renewable resources. At its core, Transactive control represents a procedure where
information is accumulated and forwarded for use over a future horizon, and in essence a
closed loop action. A grid-wise deployment of Transactive control implies the introduction
of multiple feedback loops, ranging from seconds at the unit-level to seasons at the mar-
ket level, amidst various latencies and uncertainties, and poses a host of formidable chal-
lenges. Concepts of hierarchy, distributed coordination, and cooperative decision-making
have to be judiciously introduced in order to simultaneously realize the combined objectives
of decarbonization and reliability while meeting capacity, ramp, and security constraints and
overcoming market volatility and inefficiency.

Cyber Security and Privacy of Transactive Grid:

Vulnerability analysis of the current market exercise versus the designed dynamic market
mechanism due to cyber attacks and exercising market power have to be considered in
market mechanism design. Robust dynamic market mechanism designs have a major role
to mitigate the effects of these adversities. The proposed market mechanism can be used
to perform some interesting analyses such as: (a) How cyber attacks can affect market
equilibrium and causes price volatility? (b) How to design a robust market mechanism to
deal with such cyber attacks?(c) How to design a Transative control with consumers privacy
consideration?

Fair Pricing Mechanisms for Energy and Reserve:

The market mechanism presented in this dissertation needs to be complemented with a fair
pricing mechanism for energy and reserve that allows producers to recover generation costs
from consumers while guaranteeing revenue reconciliation. How to price commodities in
electricity markets is a field of active research. In the context of stochastic security under
wind power uncertainty, reserve pricing is a topic of special importance.

To conclude, it should be noted that, apart from the topics for future research outlined in
this section, which are directly derived from the problems dealt with in this thesis, feedback
notion together with incorporating RERs is expected to pose unique challenges and oppor-
tunities in the planning and operation of the electric energy systems in future. This just
means several interesting research directions are posed for the current and next generation
of researchers in power systems, controls, and economics.
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A Appendix

The following Appendix is organized as follows. In Section A.1, the necessary mathematical
preliminaries are presented and in Section A.2 the preliminaries of power and frequency
control are expressed.

A.1 Mathematical Preliminaries

A.1.1 Lyapunov Stability Theory

In this section, the Lyapunov stability theory is reviewed. A survey of the results that we
need in this thesis are presented, with no proofs. The interested reader can refer to [106]
and [102], for details.

Basic definitions

Consider a dynamical system which satisfies

ẋ = f (x , t) x(t0) = x0 x ∈ Rn. (A.1)

We will assume that f (x , t) satisfies the standard conditions for the existence and unique-
ness of solutions. Such conditions are, for instance, that f (x , t) is Lipschitz continuous with
respect to x , uniformly in t, and piecewise continuous in t. A point x∗ is an equilibrium
point of (A.1) if f (x∗, t) ≡ 0. Intuitively, we say an equilibrium point is locally stable if all
solutions which start near (meaning that the initial conditions are in a neighborhood of x∗)
remain near x∗ for all time. The equilibrium point x∗ is said to be locally asymptotically
stable if x∗ is locally stable and, furthermore, all solutions starting near x∗ tend towards x∗

as t →∞. By shifting the origin of the system, we may assume that the equilibrium point
of interest occurs at x∗ = 0. If multiple equilibrium points exist, we will need to study the
stability of each by appropriately shifting the origin.

Definition A.1. The equilibrium point x∗ = 0 of (A.1) is stable (in the sense of Lyapunov)
at t = t0 if for any ε > 0 there exists a δ(t0,ε)> 0 such that

‖x(t0)‖< δ⇒ ‖x(t0)‖< ε,∀t ≥ t0. (A.2)

Lyapunov stability is a very mild requirement on equilibrium points. In particular, it does
not require that trajectories starting close to the origin tend to the origin asymptotically. Also,
stability is defined at a time instant t0. Uniform stability is a concept which guarantees that
the equilibrium point is not losing stability. We insist that for a uniformly stable equilibrium
point x∗, δ in the Definition A.1 not be a function of t0, so that equation (A.1) may hold for
all t0. Asymptotic stability is made precise in the following definition:

Definition A.2. An equilibrium point x∗ = 0 of (A.1) is asymptotically stable at t = t0 if
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1. x∗ = 0 is stable, and

2. x∗ = 0 is locally attractive; i.e., there exists δ(t0) such that

‖x(t0)‖< δ⇒ lim
t→∞

x(t) = 0. (A.3)

As in the previous definition, asymptotic stability is defined at t0. Uniform asymptotic
stability requires:

1. x∗ = 0 is uniformly stable, and

2. x∗ = 0 is uniformly locally attractive; i.e., there exists δ independent of t0 for which
equation (A.3) holds. Further, it is required that the convergence in equation (A.3) is
uniform.

Finally, we say that an equilibrium point is unstable if it is not stable. Definitions A.1
and A.2 are local definitions; they describe the behavior of a system near an equilibrium
point. We say an equilibrium point x∗ is globally stable if it is stable for all initial conditions
x0 ∈ Rn. Global stability is very desirable, but in many applications it can be difficult to
achieve. Notions of uniformity are only important for time-varying systems. Thus, for time-
invariant systems, stability implies uniform stability and asymptotic stability implies uniform
asymptotic stability. It is important to note that the definitions of asymptotic stability do not
quantify the rate of convergence.

The direct method of Lyapunov

Lyapunov’s direct method (also called the second method of Lyapunov) allows us to deter-
mine the stability of a system without explicitly integrating the differential equation (A.1).
The method is a generalization of the idea that if there is some measure of energy in a sys-
tem, then we can study the rate of change of the energy of the system to ascertain stability.
Let Bε be a ball of size ε around the origin, Bε = {x ∈ Rn : ‖x‖< ε}.

Definition A.3. A continuous function V : Rn×R+→ R is a locally positive definite function
if for some ε > 0 and some continuous, strictly increasing function α : R+→ R,

V (0, t) = 0 and V (x , t)≥ α(‖x‖) ∀x ∈ Bε,∀t ≥ 0. (A.4)

A locally positive definite function is locally like an energy function. Functions which are
globally like energy functions are called positive definite functions:

Definition A.4. A continuous function V : Rn ×R+ → R is a positive definite function if it
satisfies the conditions of Definition A.3 and, additionally, α(p)→∞ as p→∞.

To bound the energy function from above, we define decreasening function as follows:

Definition A.5 (Decrescent functions). A continuous function V : Rn×R+→ R is decrescent
if for some ε > 0 and some continuous, strictly increasing function β : R+→ R,

V (x , t)≤ β(‖ x ‖) ∀x ∈ Bε,∀t ≥ 0 (A.5)
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Using these definitions, the following theorem allows us to determine stability for a sys-
tem by studying an appropriate energy function. Roughly, this theorem states that when
V (x , t) is a locally positive definite function and V̇ (x , t) ≤ 0 then we can conclude stabil-
ity of the equilibrium point. The time derivative of V is taken along the trajectories of the
system:

V̇ | ẋ= f (x ,t) =
∂ V

∂ t
+
∂ V

∂ x
f .

In what follows, by V̇ we will mean V | ẋ= f (x ,t).

Theorem A.1 (Basic theorem of Lyapunov). Let V (x , t) be a non-negative function with
derivative V̇ along the trajectories of the system.

1. If V (x , t) is locally positive definite and V̇ (x , t) ≤ 0 locally in x and for all t, then the
origin of the system is locally stable (in the sense of Lyapunov).

2. If V (x , t) is locally positive definite and decrescent, and V̇ (x , t) ≤ 0 locally in x and for
all t, then the origin of the system is uniformly locally stable (in the sense of Lyapunov).

3. If V (x , t) is locally positive definite and decrescent, and −V̇ (x , t) is locally positive
definite, then the origin of the system is uniformly locally asymptotically stable.

4. If V (x , t) is positive definite and decrescent, and −V̇ (x , t) is positive definite, then the
origin of the system is globally uniformly asymptotically stable.

Theorem A.1 gives sufficient conditions for the stability of the origin of a system. It does
not, however, give a prescription for determining the Lyapunov function V (x , t). Since the
theorem only gives sufficient conditions, the search for a Lyapunov function establishing
stability of an equilibrium point could be difficult. However, it is a remarkable fact that the
converse of Theorem A.1 also exists: if an equilibrium point is stable, then there exists a
function V (x , t) satisfying the conditions of the theorem. However, the utility of this and
other converse theorems is limited by the lack of a computable technique for generating
Lyapunov functions.

The indirect method of Lyapunov

The indirect method of Lyapunov uses the linearization of a system to determine the local
stability of the original system. Consider the system

ẋ = f (x , t) (A.6)

with f (0, t) = 0 for all t ≥ 0. Define

A(t) =
∂ f (x , t)
∂ x

|x=0 (A.7)

to be the Jacobian matrix of f (x , t) with respect to x , evaluated at the origin. It follows that
for each fixed t, the remainder

f1(x , t) = f (x , t)− A(t)x
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approaches zero as x approaches zero. However, the remainder may not approach zero
uniformly. For this to be true, we require the stronger condition that

l im‖x‖→0 sup
t≥0

‖ f1(x , t)‖
‖x‖

= 0 (A.8)

If equation (A.8) holds, then the system

ż = A(t)z (A.9)

is referred to as the (uniform) linearization of equation (A.1) about the origin. When the
linearization exists, its stability determines the local stability of the original nonlinear equa-
tion.

Theorem A.2 (Stability by linearization). Consider the system (A.6) and assume

lim‖x‖→0 sup
t≥0

‖ f1(x , t)‖
‖x‖

= 0 (A.10)

Further, let A(·) defined in equation (A.7) be bounded. If 0 is a uniformly asymptotically stable
equilibrium point of (A.9) then it is a locally uniformly asymptotically stable equilibrium point
of (A.6).

The preceding theorem requires uniform asymptotic stability of the linearized system to
prove uniform asymptotic stability of the nonlinear system. Counterexamples to the theorem
exist if the linearized system is not uniformly asymptotically stable. If the system (A.6) is
time-invariant, then the indirect method says that if the eigenvalues of

A=
∂ f (x)
∂ x

|x=0

are in the open left half complex plane, then the origin is asymptotically stable. This theorem
proves that global uniform asymptotic stability of the linearization implies local uniform
asymptotic stability of the original nonlinear system. The estimates provided by the proof of
the theorem can be used to give a (conservative) bound on the domain of attraction of the
origin.

A.1.2 Quadratic Lyapunov Functions for Continues LTI Systems

Constructing a Lyapunov function for an arbitrary nonlinear system is not a trivial exercise.
The complication arises from the fact that we cannot restrict the class of functions to search
from in order to prove stability. The situation is different for LTI systems as

ẋ(t) = Ax(t). (A.11)

Consider a Lyapunov function candidate of the form

V (x) = x T P x , P > 0, (A.12)
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for the system (A.11). Then

V̇ (x) = ẋ T P x + x T P ẋ (A.13)

= x T AT P x + x T PAx (A.14)

= x T (AT P + PA)x (A.15)

=−x TQx , (A.16)

where we have introduced the notation Q = −(AT P + PA); note that Q is symmetric. Now,
we see that V is a Lyapunov function if Q ≥ 0, in which case the equilibrium point at the
origin of the system (A.11) is stable. If Q > 0, then the equilibrium point at the origin is
globally asymptotically stable. In this latter case, the origin must be the only equilibrium
point of the system, so we typically say the system (rather than just the equilibrium point)
is asymptotically stable. The preceding relationships show that in order to find a quadratic
Lyapunov function for the system (A.11), we can pick Q > 0 and then try to solve the
equation

AT P + PA=−Q (A.17)

for P > 0. This equation is referred to as a Lyapunov equation, and is a linear system of
equations in the entries of P. If it has a solution, then it has a symmetric solution, so we only
consider symmetric solutions. If it has a positive definite solution P > 0, then we evidently
have a Lyapunov function x T P x that will allow us to prove the asymptotic stability of the
system (A.11). The interesting thing about LTI systems is that the converse also holds: If
the system is asymptotically stable, then the Lyapunov equation (A.11) has positive definite
solution P > 0 (which, as we shall show, is unique). This result is stated in the following
theorem.

Theorem A.3. Given the dynamic system (A.11) and any Q > 0, there exists a positive definite
solution P of the Lyapunov equation

AT P + PA=−Q (A.18)

if and only if all the eigenvalues of A are in the open left half plane. The solution P in this case
is unique.

Proof. See [102].

A.1.3 Quadratic Lyapunov Functions for Discrete LTI Systems

Consider the discrete LTI system as

x(t + 1) = Ax(t). (A.19)

If

V (x) = x T P x , P > 0, (A.20)

then

∆V = V (t + 1)− V (t) = x T AT PAx − x T P x (A.21)
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Thus the resulting Lyapunov equation to study is

AT PA− P =−Q (A.22)

The following theorem is analogous to what we presented in the continuos case in Theorem
A.3.
Theorem A.4. Given the dynamic system (A.19) and any Q > 0, there exists a positive definite
solution P of the Lyapunov equation

AT PA− P =−Q (A.23)

if and only if all the eigenvalues of A have magnitude less than 1 (i.e. are in the open unit disc).
The solution P in this case is unique.

A.1.4 Bounded Perturbation and Robustness

In this section, we are interested in studying the stability of linear time-invariant systems of
the form

ẋ(t) = (A+∆)x(t) (A.24)

where ∆ is a real matrix perturbation with bounded norm. In particular, we are interested
in calculating a good bound on the size of the smallest perturbation that will destabilize a
stable matrix A. Applying the same Lyapunov function as in (A.17) to the perturbed system
we obtain

V̇ (x) = x T (AT P + PA+∆T P + P∆)x (A.25)

It is evident that all perturbations satisfying

∆T P + P∆<Q, (A.26)

will result in a stable system. This can be guaranteed if

2σmax(P)σmax(∆)< σmin(Q). (A.27)

This provides a bound on the perturbation although it is potentially conservative.
Now consider linear time-invariant discrete systems of the form

x(t + 1) = (A+∆)x(t) (A.28)

where ∆ is a real matrix perturbation with bounded norm. Applying the same Lyapunov
function as in (A.21) to the perturbed system we obtain

∆V (x) = x T (A+∆)T P(A+∆)x − x T P x (A.29)

It is evident that all perturbations satisfying

AT P∆+∆T PA+∆T P∆<Q, (A.30)

will result in a stable system. This can be guaranteed if

σmax(∆)<−σmax(A) +
�

[σmax(A)
2+

1

σmax(P)
]
�1/2

. (A.31)

This provides a bound on the perturbation although it is potentially conservative.
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A.1.5 Convex Optimization

In this section, we provide some preliminaries related to the convex optimization. These in
turn are directly used in establishing the equilibrium of the wholesale market in Chapter 3.
We start with a few basic definitions.
Definition A.6. A set K ⊆ R is convex if for any two points x , y ∈ K ,

αx + (1−α)y ∈ K , ∀x , y ∈ K and α ∈ [0, 1]. (A.32)

Definition A.7. Given a convex set K ⊆ R and a function f (x) : K → R; f is said to be a
convex function on K if, ∀x , y ∈ K and α ∈ (0,1),

f (αx + (1−α)y)≤ α f (x) + (1−α) f (y), (A.33)

Furthermore, a function f (x) is concave over a convex set if and only if the function − f (x)
is a convex function over the set.
Definition A.8. Given a scalar-valued function f (x) : Rn→ R we use the notation ∇ f (x) to
denote the gradient vector of f (x) at point x , i.e.,

∇ f (x) =
h

∂ f (x)
∂ x1

, ..., ∂ f (x)
∂ xn

iT
. (A.34)

Definition A.9. Given a scalar-valued function f (x) :
∏I

i=1R
mi → R we use the notation

∇i f (x) to denote the gradient vector of f (x) with respect to x i at point x , i.e.,

∇i f (x) =
h

∂ f (x)
∂ x1

i
, ..., ∂ f (x)

∂ x
mi
i

iT
. (A.35)

Consider a generic optimization problem

maximize f (x)

subject to gn(x) = 0, ∀n= 1, . . . , N
N
∑

n=1

Rmnhn(x)≥ cm, ∀m= 1, . . . L

where f (x) is called the objective function or cost function, R is a matrix of constants and cm

are constants. We assume that f (x) : Rn→ R is a convex function to be maximized over the
variable x , the functions gn(x) as equality constraints are affine, and the functions hn(x) as
inequality constraints are cocave. With these assumptions the optimization problem (A.36)
is termed a convex optimization problem. In addition, the constraint set for the optimization
problem is convex which allows us to use the method of Lagrange multipliers and the Karush
Kuhn Tucker (KKT) theorem which we state below [107,108].
Theorem A.5. Consider the optimization formulated in (A.36), where f (x) is a convex func-
tion, gn(x) are affine functions, and hn(x) are cocave functions. Let x∗ be a feasible point, i.e.
a point that satisfies all the constraints. Suppose there exists constants λn and µm ≥ 0 such that

∇ f (x∗) +
N
∑

n=1

λn∇gn(x
∗) +

L
∑

m=1

µm(Rmn∇hn(x
∗)− cm) = 0 ∀n= 1...N

µm(Rmnhn(x
∗)− cm) = 0 ,∀m= 1, . . . , L

(A.36)

then x∗ is a global maximum. If f (x) is strictly concave then x∗ is also the unique global
maximum.
Proof. see [108].
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A.2 Active Power and Frequency Control

A generator driven by a steam turbine can be represented as a large rotating mass with two
opposing torques acting on the rotation. The mechanical torque, Tmech, acts to increase rota-
tional speed whereas the electrical torque, Telec, acts to slown it down. When Tmech and Telec

are equal in magnitude, the rotational speed, ω, will be constant. If the electrical load is in-
creased so that Telec is larger than Tmech, the entire rotating system will begin to slown down.
Since it would be damaging to let the equipment slow down too far, preventive action must
be done to increase the mechanical torque Tmech to restore equilibrium; that is, to bring the
rotational speed back to an acceptable value and the torques to equality so that the speed is
again held constant.

In the development to follow, we are interested in deviations of quantities about steady-
state values which will be designated by a ∆. Before starting let us define ωas rotational
speed, α as a rotational acceleration, δ as a phase angle of a rotating machine, Tnet as a
net accelerating torque in a machine, Tmech as a mechanical torque exerted on a machine by
the turbine, Telec as an electrical torque exerted on the machine by the generator, Pnet as a
net accelerating power, Pmech as a mechanical power input, and finally Pelec as an electrical
power output where all quantities (except phase angle) will be in per unit on the machine
base, or, in the case of ω, on the standard system frequency base.

Assume that the machine has a steady speed ofωre f . Due to various electrical or mechan-
ical disturbances, the machine will be subjected to differences in mechanical and electrical
torque, causing it to accelerate or decelerate. We are chiefly interested in the deviations of
speed, ∆ω. If the speed of the machine under acceleration is

ω=ωre f +αt (A.37)

then the deviation from nominal speed, ∆ω, may be expressed as

∆ω= αt. (A.38)

The relationship between speed deviation and net accelerating torque is

Tnet = Iα= I
d

d t
(∆ω). (A.39)

Next, we will relate the deviations in mechanical and electrical power to the deviations
in rotating speed and mechanical torques. The relationship between net accelerating power
and the electrical and mechanical powers is

Pnet = Pmech− Pelec (A.40)

which is written as the sum of the steady-state value and the deviation term,

Pnet = Pnet0
+∆Pnet (A.41)

where Pnet0
= Pmech0

− Pelec0
, ∆Pnet =∆Pmech−∆Pelec.

Then
Pnet = (Pmech0

− Pelec0
) + (∆Pmech−∆Pelec). (A.42)
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Similiarly for torques,

Tnet = (Tmech0
− Telec0

) + (∆Tmech−∆Telec). (A.43)

Using the basic relationship
Pnet =ωTnet

we can see that
Pnet = (ω

re f +∆ω)(Tnet0
+∆Tnet). (A.44)

Substituting Eqs. (A.42) and (A.43), we obtain

(Pmech0
− Pelec0

) + (∆Pmech−∆Pelec) = (ω
re f +∆ω)[(Tmech0

− Telec0
)

+ (∆Tmech−∆Telec)]. (A.45)

Assume that the steady-state quantities can be factored out since

Pmech0
= Pelec0

, (A.46)

Tmech0
= Telec0

(A.47)

and further assume that the second-order terms involving products of ∆ω with ∆Tmech and
∆Telec can be negelected. Then

∆Pmech−∆Pelec =ω
re f (∆Tmech−∆Telec). (A.48)

From Eqs. (A.39), (A.43), and (A.47) the net torque is related to the speed change as

∆Tmech−∆Telec = I
d

d t
(∆ω), (A.49)

we then have

∆Pmech−∆Pelec =ω
r e f I

d

d t
(∆ω) = M

d

dt
(∆ω). (A.50)

This can be expressed in Laplace transform operator notation as

1
Ms

+
-

Pmech

Pelec

Figure A.1: Relationship between mechanical and electrical power and speed deviation.

∆Pmech−∆Pelec = Ms∆ω. (A.51)

We now consider the effect of loads on the speed deviation ∆ω. The loads on a power
system consist of a variety of electrical devices. Some of them are purely resistive, some are
motor loads with variable power-frequency characteristics, and others exhibit quite different
characteristics. Since motor loads are a dominant part of the electrical load, there is a need
to model the effect of a change in frequency on the net load drawn by the system. This
relationship is given by

∆PL( f req) = D∆ω, (A.52)

143



A Appendix

where D is expressed as percent change in load divided by percent change is frequency,
D =

∆PL( f req)

∆ω
. For example, if load changed by 1.5% for a 1% change in frequency, then D

would equal 1.5. The net change in Pelec is

∆Pelec =∆PL + D∆ω (A.53)

where ∆PL is nonfrequency-sensitive load change, and D∆ω is frequency-sensitive load
change. Including this in the block diagram in Figure A.1 results in the new block diagram,
see Figure A.2

1
Ms

+
-

Pmech

PL

-

D

or equivalent

1
Ms+D

+
-

Pmech

PL

Figure A.2: Block diagram of rotating mass and load as seen by prime-mover output.

A.2.1 Generation Control

Automatic Generation Control (AGC) is the name given to a control system having three
major objectives:

(1) To hold system frequency at or very close to a specified nominal value (e.g. 60 Hz).

(2) To maintain the correct value of interchange power between control areas.

(3) To maintain each unitt’s generation at the most economic value.

A.2.2 Supplementary Control Action

A load change will produce a frequency change with a magnitude that depends on the droop
characteristics of the governor and the frequency characteristics of the system load. Once
a load change has occurred, a supplementary control must act to restore the frequency to
nominal value. Assume that we are studying a single generating unit supplying load to an
isolated power system. The supplementary control action can be accomplished by adding a
reset (integral) control to governor, see Figure A.3.
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1
Ms+D

+
-

Pmech

PL

Prime 
mover

Governor

R

K
s +

-

Figure A.3: Supplementary control added to generating unit.

A.2.3 Tie-line Control

When two utilities interconnect their systems, they do so for several reasons. One is to be
able to buy and sell power with neighboring systems whose operating costs make such trans-
actions profitable. Further, even if no power is being transmitted over ties to neighboring
systems, if one system has a sudden loss of a generating unit, the units throughout all the
interconnection will experience a frequency change and can help in restoring frequency.
Consider the hypothetical situation in Figure A.4. Assume both systems have equal gener-

G G

Area 1 Area 2

Tie line

Figure A.4: Two-area system.

ation and load characteristics and, further, assume system in Area 1 was sending 100 MW
to system in Area 2 under an interchange agreement made between the operators of each
system. Now, let system 2 experience a sudden load increase of 30 MW . Since both units
have equal generation characteristics, they will both experience an increase in flow from
100 MW to 115 MW . Thus, the 30 MW increase in Area 2 will have been satisfied by a
15 MW increase in generation in Area 2, plus a 15 MW increase in tie flow into Area 2. This
would be fine, except that system 1 contracted to sell only 100 MW , not 115 MW . What is
need at this point is a control scheme that recognizes the fact that 30 MW load increase oc-
curred in system 2 and, therefore, would increase generation in system 2 by 30 MW while
restoring frequency to nominal value. It would also restore generation in system 1 to its
output before the load increase occurred.

We define a control area to be a part of an interconnected system within which the load
and generation will be controlled as per tie-line frequency control scheme

(1) If frequency decreased and net interchange power leaving the system increased, a load
increase has occurred outside the system.
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Figure A.5: Tie-line bias supplementary control for two areas.

(2) If frequency decreased and net interchange power leaving the system decreased, a
load increase has occurred inside the system.

This can be extended to cases where frequency increases.
This control scheme can be implemented by a control mechanism that weighs frequency

deviation, ∆ω, and net interchange power, ∆Pnet,int . The frequency response and tie flows
resulting from a load change, ∆PL1, in the two-area system in Figure A.4 can be expressed
as

∆ω=
−∆PL1

1
R1
+ 1

R2
+ D1+ D2

(A.54)

∆Pnet,int =
−∆PL1

�

1
R2
+ D2

�

1
R1
+ 1

R2
+ D1+ D2

(A.55)

The required change in generation, called area control error (ACE), represents the shift
in the area’s generation required to restore frequency and net interchange to their desired
values. The equations for ACE for each area are

AC E1 = −∆Pnet,int1
− B1∆ω, (A.56)

AC E2 = −∆Pnet,int2
− B2∆ω (A.57)

where B1 and B2 are called frequency bias factors

B1 =
�

1

R1
+ D1

�

, B2 =
�

1

R2
+ D2

�

.
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This results in

AC E1 = ∆PL1, (A.58)

AC E2 = 0. (A.59)

This control can be carried out using the scheme outlined in Figure A.5.

A.2.4 Power Generation Basics

In the following sections, generation models which include a synchronous generator all use
a form of the swing equation as the generator state equation

Jω̇+ Dω= Pm− Pe,

where Pe ≡ PG is the electrical power output. This generator equation differs for different
technologies, since the mechanical power from the turbine, Pm, has a different representa-
tion for each turbine type.

A.2.5 Steam-Turbine-Generator

The full set of steam turbine-generator equations is

Mω̇G = (eT − D)ωG + Pm− PG

Tu Ṗm = −Pm+ kt a

Tg ȧ = −ωG − ra+ωre f

where

• M = 1.26 is the inertia constant,

• eT = 0.15 defined by ∂ Pt

∂ωG
is a coefficient representing the turbine self-regulation,

• D = 2 is the damping coefficient,

• Tu = 0.2 is the time constant representing the delay between the control valves and
the turbine nozzles,

• kt = 0.95 is a proportionality factor representing the control valve position variation
relative to the turbine output variation,

• Tg = 0.25 is the time constant of the valve-servomotor-turbine gate system,

• r = 0.05 is the permanent speed droop of the turbine,

• ωre f is the reference frequency set by the secondary controls, and so is assumed con-
stant in the primary dynamics time scale,

• PG is the electrical power output defined as the system coupling variable.
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Steam
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governor
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Time constant of the valve 
servomotor-turbine gate system

Figure A.6: Steam-Turbine-Generator.

The block diagram of Steam-Turbine-Generator is shown in Figure A.6. State-space repre-
sentation

ẋG =









eT−D
M

1
M

0
0 − 1

Tu

kt

Tu

− 1
Tg

0 − r
Tg









xG +









0
0
1
Tg









ωre f +







− 1
M

0
0






PG

where xG =
�

ωG Pm a
�T

is defined as local state variables.

A.2.6 Hydro-Turbine-Generator

Hydro turbines have a peculiar response due to water inertia: a change in gate position
produces an initial turbine power change which is opposite to that sought. For stable control
performance, a large transient (temporary) droop with a long resetting time is therefore
required. Hence, a slightly more complex set of equations than that for the steam turbine
contains governor droop ν as an additional state variable.
The set of equations for a hydro turbine-generator is

Mω̇G = −(eH + D)ωG + kqq− kwa− PG

q̇ =
ωG

Tf
−

q

Tq
+

a

Tw

Teν̇ = ν + r ′a

Ts ȧ = −ωG + ν − (rh+ r ′)a+ωre f

where

• q is penstock flow,

• M = 1.5 and D = 2 are the inertia and damping constants as above,
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1
Ms+(eH+D)

ωref

Pm

PG

+ -

+
-

Speed governor

rh

r´

Te

Ts

Pm

PG

M

D

Permanent speed droop

Transient speed droop

Time constant of the

valve-turbine gate system

Time constant of

the servomotor gate

Mechanical power

Electrical power

Rotor inertia constant

Rotor damping constant

ωG Rotor speed

a
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-
+
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Hydro-turbine

Tw, Tq, Tf, eH, kq, kw Ratios of constants from a standard hydro-turbine diagram

Figure A.7: Hydro-Turbine-Generator.

• eH =−0.22, kq = 2.78 and kw = 1.52 are all ratios of constants from a standard hydro-
turbine diagram referred to as the universal water turbine steady-state performance
diagram,

• Tf = −3.6, Tq = 0.72, and Tw = 0.76 are also all ratios of constants from the same
diagram,

• Tc is the time constant of the penstock,

• Te = 2 is the time constant of the valve-turbine gate system,

• Ts = 0.1 is the time constant of the servomotor gates,

• rh = 0.05 is the permanent speed droop,

• r ′ = 0.4 is the transient speed droop.

State-space representation

ẋG =


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






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where xG =
�

ωG q ν a
�T

is defined as local state variables.
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A.2.7 Combustion-Turbine-Generator

The typical model of gas turbines in stability studies is presented in Figure A.8. The set of

Gas turbine

Pm

PG

VCE

ωG

ωref

+ -

WF=WFdot

1
Ms+D+

-

ωref Reference rotor speed
ωG Rotor speed
VCE Fuel demand signal 

(fuel controller)

WFdot ,WF Fuel flow
Pm Mechanical power output
PG Electrical power output
PL Load

M Rotor inertia constant D Rotor damping constant

.

KD

1+sb β+sα
1 1

s

δ

WF

+ -
c

Speed
governor

Fuel system dynamics

a

Figure A.8: Combustion-Turbine-Generator.

equations used for a combustion turbine is

Mω̇G = −DωG + cWF − PG

bV̇C E = −KDωG − VC E + KDω
re f

ẆF = WF dot

αẆF dot = aVC E −δWF − βWF dot

where

• VC E is fuel controller,

• WF , WF dot = ẆF are fuel flow and fuel flow rate respectively,

• M = 11.5 and D = 2 are the rotor inertia and damping coefficients respectively,

• a, b = 0.05 and c = 1 are transfer function coefficients for the fuel system,

• KD = 25 is the governor gain,

• β = b+cτF and δ = c+aKF are algebraic functions of the parameters in the references,

• τF = 0.4 is the fuel system time constant,

• KF = 0 is the fuel system feedback gain.

State-space representation

ẋG =


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where xG =
�

ωG VC E WF WF dot

�T
is defined as local state variables.

A.2.8 Combined Cycle Plant

The combined cycle combustion turbine, CCCT, model
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Figure A.9: Combined Cycle Plant.

has equations for both a combustion turbine and steam turbine driving the synchronous
generator

Mω̇G = −DωG + (Pm,GT + Pm,ST )− PG

bV̇C E = −KDωG − VC E + KDω
re f

ẆF = WF dot

αẆF dot = aVC E − γWF − βWF dot

TνẆair = dωG + VC E −Wair

Ṗm,ST = Pm,ST dot

(TM TB)Ṗm,ST dot = −pωG + nWF +mWair − Pm,ST − (TM + TB)Pm,ST dot

where

• M is the generator inertia constant,
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• D is the generator damping constant.

State-space representation
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where xG =
�

ωG VC E WF WF dot Wair PST PST dot
�T

is defined as local state vari-
ables.

A.2.9 Wind Turbine: Induction Generator

The model for the wind turbine system is specifically developed a model to be used for
dynamic studies of dispersed wind turbine applications

ω̇G = −
DG − DT

MG
ωG +

DG − DT

MG
ωT +

1

MG
Tw −

1

MG
PG

δ̇ = −ωG +ωT

ω̇T =
DT

MT
ωG −

K

MT
ωT −

DT

MT
ωT +

1

MT
Tw

where

• δ is the tortional spring,

• ωG is the rotor speed of the induction generator,

• Tw defined as the wind torque is an input to the system of equations, as is PG,

• d is the tortional spring,

• ωT is the rotor speed of the wind turbine,

• MG = 5, MT = 11, DG = 0.8 and DT = 1 are the generator and turbine inertias and
damping coefficients,
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Figure A.10: Wind Turbine - Induction Generator.

• K = 400 is the spring constant of the tortional spring used to model the drive train
coupling between the two rotors,

State-space representation
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where xG =
�

ωG δ ωT

�T
is defined as local state variables.
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B.1 Tables for Chapter 2

B.1.1 Parameters of GenCos in IEEE 6-bus system used for Example 2.3

Tabular B.1: Cost functions data of Generators
GenCo1 GenCo2 GenCo3 ConCo1 ConCo2 ConCo3

cG [$/MW 2h] 1 1.5 1.8 - - -
cD [$/MW 2h] - - - -1 -0.7 -1.2
bG [$/MWh] 8.8 9.7 7 - - -
bD [$/MWh] - - - 9.5 12 10.5
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B.2 Tables for Chapter 3

B.2.1 Parameters of GenCos in IEEE 30-bus system used for Section 3.5

Tabular B.2: Cost functions data of Generators
Name Block 1 Block 2

SizeMW Price$/MW SizeMW Price$/MW

Pg1
12.5 240 40 900

Pg2
12.7 300 40 950

Pg5
12.2 240 80 1200

Pg11
12.2 240 80 1200

Pg13
10 40 20 80

B.2.2 Parameters of ConCos in IEEE 30-bus system used for Section 3.5

Tabular B.3: Cost functions data of consumer
Name Block 1 Block 2

SizeMW Price$/MW SizeMW Price$/MW

Pd7
11 150 19 600

Pd15
10 100 21 600

Pd30
12 170 22 600

Pd9
12 150 24 600

Pd26
15.5 150 21 600

Pd27
9.5 150 22 600

Tabular B.4: Fixed load data

Name Demand Name Demand
Pd3

22.31 Pd14
7.20

Pd4
8.83 Pd16

4.06
Pd8

13.95 Pd17
10.46

Pd10
6.74 Pd18

3.72
Pd12

13.01 Pd19
11.04

Pd20
2.55 Pd21

3.39
Pd23

22.31 Pd24
10.11

Pd26
4.06 Pd29

2.78

B.2.3 Parameters of transmission lines in IEEE 30-bus system used for
Section 5.4 and 4.5
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Tabular B.5: Transmission Lines Reactance; Line reactances are perunited based on 100MW

Connected
Reactance

Connected
ReactanceBus Bus

Bus Bus (xb_k) Bus Bus (xb_k)
b k b k
1 2 0.0575 1 3 0.1652
2 4 0.1737 3 4 0.0379
2 5 0.1983 2 6 0.1763
4 6 0.0414 5 7 0.116
6 7 0.082 6 8 0.042
6 9 0.208 6 10 0.556
9 11 0.208 9 10 0.11
4 12 0.256 12 13 0.14

12 14 0.2559 12 15 0.1304
12 16 0.1987 14 15 0.1997
16 17 0.1923 15 18 0.2185
18 19 0.1292 19 20 0.068
10 20 0.209 10 17 0.0845
10 21 0.0749 10 22 0.1499
21 22 0.0236 15 23 0.202
22 24 0.179 23 24 0.27
24 25 0.3292 25 26 0.38
25 27 0.2087 28 27 0.396
27 29 0.4153 27 30 0.6027
29 30 0.4533 8 28 0.2
6 28 0.0599

B.3 Tables for Chapter 4

B.3.1 Parameters of GenCos in 4-bus system used for Section 4.3.1

Tabular B.6: Generators Cost and Demand Utilities Coefficients
GenCo1 GenCo2 ConCo1 ConCo2

cG $/MW 2h 0.25 0.53 - -
cD $/MW 2h - - -0.41 -0.41
τG $/MW 10 48 - -
bG $/MWh 47.2 48.8 - -
bD $/MWh - - 70 73
τD $/MW - - 5 5
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B.3.2 Parameters of transmission lines in 4-bus system used for Section
4.3.1

Tabular B.7: Transmission Lines Data

From To X p.u. Capacity Limit MW
1 3 0.504 10
1 4 0.372 10
2 3 0.372 15
2 4 0.636 20

B.3.3 Initial conditions in 4-bus system used for Section 4.3.1

Tabular B.8: Initial Conditions

x i(0) Case 1 Case 2 x i(0) Case 1 Case 2

PG1(0) 20 20 ρ1(0) 57 57
PG2(0) 10 10 ρ2(0) 20 20
PD1(0) 30 30 ρ3(0) 60 60
PD2(0) 35 35 ρ4(0) 10 10
δ1(0) 0 0 γ13(0) 10 10
δ2(0) 8 12 γ14(0) 10 10
δ3(0) 2 2 γ23(0) 10 10
δ4(0) 8 8 γ24(0) 10 10

157



B Appendix: Tables

B.3.4 Parameters of GenCos in IEEE 30-bus system used for Section 4.5

Tabular B.9: Parameters of Cost functions for Generators

Name Pmin
Gi

Pmax
Gi

τg cg bg

Pg1
0 100 0.6 0.28 47.2

Pg2
0 100 0.2 0.55 53.8

Pg5
0 150 0.6 0.25 40

Pg11
0 150 0.6 0.25 40

Pg13
0 100 0.2 0.015 10

B.3.5 Parameters of ConCos in IEEE 30-bus system used for Section 4.5

Tabular B.10: Parameters of Cost functions for Consumers

Name Pmin
D j MW Pmax

D j MW τd cd bd

Pd3
,Pd19

15 30 0.1 -0.2 87.2
Pd7

,Pd20
30 50 0.1 -0.5 85.5

Pd8
,Pd21

30 50 0.1 -0.15 70
Pd9

,Pd23
35.0 40 0.2 -0.35 70

Pd14
,Pd24

10 30 0.2 -0.2 50
Pd15

,Pd26
15 30 0.2 -0.3 60

Pd16
,Pd29

6 20 0.2 -0.1 65
Pd17

,Pd30
15 30 0.2 -0.5 68
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