Technische Universität München

Arbeitskreis für Synthese und Charakterisierung innovativer Materialien

Synthese, Charakterisierung, *in-situ* und *ex-situ* Hochdruckverhalten, Phasenumwandlungen und Eigenschaften von Kupfernitrid, Eisennitriden und Eisencarbonitriden

Dieter Rau

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Th. F. Fässler

Prüfer der Dissertation:

1. Univ.-Prof. Dr. R. Niewa, Universität Stuttgart

2. Univ.-Prof. Dr. S. Weinkauf

Die Dissertation wurde eingereicht am 27.08.2012 bei der Technischen Universität München und durch die Fakultät für Chemie am 06.12.2012 angenommen.

Danksagung

Diese Arbeit wurde unter Leitung von Prof. Dr. R. Niewa am Department Chemie der TU München und am Institut für Anorganische Chemie der Universität Stuttgart angefertigt. Ihm danke ich herzlich für die freundliche und offene Aufnahme in seine Arbeitsgruppe, die stets vorhandene Diskussionsbereitschaft, das Interesse und die Anregungen für meine Arbeit, die stetige Förderung und die angenehme und freundliche Arbeitsatmosphäre.

Allen anderen Mitarbeitern/-innen unseres Arbeitskreises und des Lehrstuhles von Prof. Dr. Th. F. Fässler danke ich herzlich für die angenehme Arbeitsatmosphäre und die Diskussionsbereitschaft. Herzlicher Dank geht an meine Kollegen Dr. F. Gäbler und Dr. D. Bräunling für die anregenden Diskussionen und an I. Werner für die Betreuung am REM. Allen Mitarbeitern/-innen des Lehrstuhles Anorganische Festkörperchemie von Prof. Dr. Th. Schleid danke ich herzlich für die angenehme Arbeitsatmosphäre und die Diskussionsbereitschaft. Ein besonderer und herzlicher Dank geht auch an unseren Kooperationspartner PD Dr. U. Schwarz (MPI für Chemische Physik fester Stoffe) für die Einführung, Hilfe und Betreuung an der Beamline ID09a am ESRF in Grenoble und für Hilfe bei Auswertungen sowie für die Durchführung vieler Versuche an der Vielstempel-Presse in Dresden. Der Dank geht ebenso an seine Mitarbeiter/-innen: Dr. A. Wosylus, Dipl.-Chem. K. Meier, S. Leipe. Bei der Kompetenzgruppe Röntgenbeugung (MPI für Chemische Physik fester Stoffe) bedanke ich mich für die Aufnahme einiger Diffraktogramme. Bei der Kompetenzgruppe Analytik (MPI für Chemische Physik fester Stoffe) bedanke ich mich für die Durchführung der chemischen Analysen. Bei Dr. D. Dzivenko (TU Darmstadt) bedanke ich mich herzlich für die Durchführung der Härtemessungen und der Nanoindentation. Dr. A. Leineweber und Dipl.-Ing. T. Woehrle (MPI für Intelligente Systeme) danke ich herzlich für die EBSD Untersuchungen. Dr. J. von Appen und Dr. M. Wessel (TH Aachen) danke ich herzlich für die Durchführung der elektronische Strukturberechnungen und der Dateninterpretation. Für Hilfe bei der in-situ Röntgenbeugung mit Synchrotronstrahlung unter Druck und Betreuung an der Beamline ID09a am ESRF in Grenoble danke ich herzlich Dr. M. Hanfland. Für die Hilfe bei der *in-situ* Neutronenbeugung unter Druck am ISIS (GB) danke ich herzlich Dr. M. Tucker. Für die Messungen der Neutronenbeugungsdaten an Pulvern danke ich herzlich Dipl.-Chem. M. Widenmeyer (Institut für anorganische Chemie, Universität Stuttgart) und Dr. T.C. Hansen (ILL, Grenoble). Der DFG danke ich für finanzielle Unterstützung im Schwerpunktprogramm SPP 1236 "Synthesis, *in-situ* characterization and quantum mechanical modelling of Earth materials, oxides, carbides and nitrides at extremely high pressures and temperatures". Meiner Lebensgefährtin Evi danke ich herzlich für Unterstützung und Zuspruch und meinen Eltern auch für finanzielle Unterstützung. Folgende Teile der Arbeit wurden bereits veröffentlicht:

High-Pressure–High-Temperature Behavior of $\zeta\text{-}\mathrm{Fe_2N}$ and Phase Transition to $\epsilon\text{-}\mathrm{Fe_3N_{1,5}}$

U. Schwarz, A. Wosylus, M. Wessel, R. Dronskowski, M. Hanfland, D. Rau, R. Niewa, Eur. J. Inorg. Chem. 2009, 1634–1639.

High-Pressure, High-Temperature Single-Crystal Growth, Ab initio Electronic Structure Calculation, and Equation of State of ϵ -Fe₃N_{1+x}

R. Niewa, D. Rau, A. Wosylus, K. Meier, M. Hanfland, M. Wessel, R. Dronskowski, D.A. Dzivenko, R. Riedel, U. Schwarz, *Chem. Mater.* **2009**, *21*, 392–398.

High-pressure Phase Transition and Properties of Cu_3N : An Experimental and Theoretical Study

A. Wosylus, U. Schwarz, L. Akselrud, M.G. Tucker, M. Hanfland, K. Rabia, C. Kuntscher, J. von Appen, R. Dronskowski, D. Rau, R. Niewa. Z. Anorg. Allg. Chem. 2009, 635, 1959–1968.

High-pressure high-temperature phase transition of γ' -Fe₄N R. Niewa, D. Rau, A. Wosylus, K. Meier, R. Dronskowski, U. Schwarz, *J. Alloys*

Compd. **2009**, *480*, 76–80.

 ζ -Fe₂N: Hochdruck-Hochtemperatur-Verhalten und Phasenumwandlung zu ϵ -Fe₃N_{1+x} D. Rau, U. Schwarz, A. Wosylus, M. Wessel, R. Dronskowski, M. Hanfland, R. Niewa, Z. Kristallogr. Supplement **2009**, 29, 82.

Inhaltsverzeichnis

1	Einleitung und Motivation					
2 Synthese- und Untersuchungsmethoden						
2.1 Gasnitridierungsapparatur						
	2.2 Verwendete Chemikalien				6	
	2.3	2.3 Hochdrucktechniken zur Synthese und <i>in-situ</i> Untersuchungen .				
2.3.1 Einführung in die verwendeten Hochdrucktechniken2.3.2 Vielstempel-Presse				ng in die verwendeten Hochdrucktechniken	6	
				pel-Presse	7	
			2.3.2.1	Presse und Walker-Modul	7	
			2.3.2.2	Die oktaedrische Druckkammer	9	
			2.3.2.3	Druck- und Temperaturmessung	11	
			2.3.2.4	Probenpräparation	11	
			2.3.2.5	Durchführung der HP-HT-Experimente	12	
		2.3.3	Diamant	tstempelzelle	12	
	2.4 Chemische Analyse		lyse	13		
	2.5	2.5 DTA-Untersuchungen		14		
	2.6	2.6 REM-Untersuchungen			14	
	2.7 Röntgenbeugung		g	15		
		2.7.1	Messung	gen am Pulver	15	
		2.7.2	In-situ F	köntgenbeugung mit Synchrotronstrahlung am Pulver		
			unter Di	ruck mittels einer Diamantstempelzelle	15	
		2.7.3	Röntgen	beugung am Einkristall	16	
	2.8 Neutronenbeugung an Pulvern		ung an Pulvern	17		
	2.9	In-situ	ı TOF-Ne	eutronenbeugung unter Druck	18	
	2.10	Rückst	treuelektr	onenbeugung (EBSD)	19	
	2.11 In-situ optische Spektroskopie unter Druck in einer Diamantstem					
		pelzell	е		20	
	2.12 Vickershärte und elastomechanische Eigenschaften		d elastomechanische Eigenschaften	20		
	2.13	Verwei	ndete Pro	gramme	21	

	2.14 Elektronische Strukturberechnungen			22	
3	3 Synthese, Charakterisierung und druckinduzierte Phasenumwandlur				
	von	Cu ₃ N		23	
	3.1 Einleit		tung	23	
	3.2 Ergebniss		nisse und Diskussion	24	
		3.2.1 3.2.2	Synthese und Charakterisierung von Cu_3N	24	
		3.2.3	Vielstempel-Presse und Charakterisierung des Produkts In-situ Röntgenbeugung von Cu ₃ N mit Synchrotronstrahlung	26	
			unter Druck	28	
		3.2.4	In-situ TOF-Neutronenbeugung von Cu_3N unter Druck	34	
		3.2.5	Elektronische Strukturberechnungen	39	
		3.2.6	In-situ optische Spektroskopie von Cu ₃ N unter Druck in einer		
			Diamantstempelzelle	45	
	3.3	Zusar	nmenfassung	47	
4	Syn	Synthese, Charakterisierung und Hochdruckverhalten von binären Ei-			
	seni	nitride	1	49	
	4.1	Einlei	tung	49	
	4.2	Ergeb	onisse und Diskussion	51	
		4.2.1	Synthese und Charakterisierung von Eisennitriden	51	
		4.2.2	$In\text{-}situ$ Röntgenbeugung von ϵ -Fe ₃ N mit Synchrotronstrahlung		
			unter Druck in einer Diamantstempelzelle	58	
		4.2.3	$\mathit{In\text{-}situ}$ Röntgenbeugung von $\gamma'\text{-}\mathrm{Fe_4N}$ mit Synchrotronstrah-		
			lung unter Druck in einer Diamantstempelzelle	60	
		4.2.4	$In-situ$ Röntgenbeugung von ζ -Fe ₂ N mit Synchrotronstrahlung		
			unter Druck in einer Diamantstempelzelle	63	
		4.2.5	Hochdruck-Hochtemperatur Einkristallzucht von $\epsilon\text{-}\mathrm{Fe_3N}$	67	
		4.2.6	Hochdruck-Hochtemperatur Einkristallzucht und Phasenum-		
			wandlung von γ' -Fe ₄ N	75	
		4.2.7	Hochdruck-Hochtemperatur-Einkristallzucht und Phasenum-		
			wandlung von ζ -Fe ₂ N	82	
		4.2.8	Berechnung der Zusammensetzung der Eisennitride aus den		
			Zellparametern	88	
		4.2.9	Mikrostruktur der Eisennitrid-Einkristalle	89	

		4.2.10 Vickers-Härte und elastomechanische Eigenschaften von Eisen-	
		nitrid-Einkristallen	93
	4.3	Zusammenfassung	96
5	these, Charakterisierung und Hochdruckverhalten von Eisencarbo-		
	nitri	den g	98
	5.1	Einleitung	98
	5.2	Ergebnisse und Diskussion	99
		5.2.1 Synthese und Charakterisierung von Eisencarbonitriden	99
		5.2.2 Rietveld-Verfeinerung der Neutronenbeugungsdaten in zwei	
		Modellen von ϵ -Fe ₃ $(N_{0,95}C_{0,05})_{1,55}$	05
	5.3	Zusammenfassung und Ausblick	08
Α	Anh	ang 11	10
	A.1	Röntgen-Pulverdiffraktogramme von $\gamma'\text{-}\mathrm{Fe}_4\mathrm{N},\epsilon\text{-}\mathrm{Fe}_3\mathrm{N}_{1,39}$ und $\zeta\text{-}\mathrm{Fe}_2\mathrm{N}$	
		nach der TG	10
Lit	erati	urverzeichnis 11	13
Ab	bildı	ingsverzeichnis 12	22
Та	belle	nverzeichnis 12	28

1 Einleitung und Motivation

Die Chemie der Nitride hat sich in den letzten zwei Jahrzehnten signifikant durch instrumentelle Entwicklungen ausgeweitet [1]. Am bedeutensten sind die neuen Synthesemethoden, die zu einer Vielzahl aussichtsreicher Anwendungen in den Bereichen der Material- und Ingenieurwissenschaften geführt haben. Ein bedeutender Parameter bei der Präparation dieser Verbindungsklassen ist der Druck, da typischerweise die Reaktivität des Stickstoffs und die Stabilität der Nitride deutlich durch die Anwendung von hohen Drücken ansteigt [2]. In den vergangenen Jahren hat es rapide Fortschritte sowohl bei den Instrumentierungen als auch bei den Techniken gegeben, die zu einem substantiellen Wachstum in der Hochdruckforschung und Technologie geführt hat [3]. Um die Struktur und die Dynamik des tiefen Erdinneren zu verstehen und bei der Suche nach neuen Materialien ist eine Kombination von Diamantstempelzellen und großvolumingen Synthese-Pressen, wie Gürtel-, Vielstempel-, Toroid- und Pistenzylinder-Pressen, in vielen Laboratorien weltweit angewandt worden, um die Strukturchemie, Bindung und die Reaktionen von kristallinen und amorphen Festkörpern und Flüssigkeiten unter Hochdruck-Bedingungen zu erforschen [3]. In den Materialwissenschaften sind Nitride bedeutend für harte Oberflächen und Keramiken, das heißt für die Stahlhärtung [4, 5] und für die Präparation von Hartstoffen wie Si₃N₄ und c-BN, die nach Diamant die härtesten bekannten Festkörper sind. c-BN war das erste industriell synthetisierte Hochdruck-Material und wird heute für einen weiten Bereich von Schneide- und Schleif-Anwendungen genutzt [3]. Die neu synthetisierten Polymorphe von Si_3N_4 und Ge_3N_4 weisen eine große direkte Bandlücke von 3,0–4,0 eV auf, die vergleichbar zu den neu entwickelten LED-Materialien sind, die auf Al-, Ga- und In-Nitriden basieren und UV/blaues Licht emittieren [6, 7]. In der Natur sind Nitride sowohl in der Erdkruste [8] als auch in Meteoriten [9] zu finden. Als terrrestrische Minerale werden Siderazot (auch Silvestrit genannt), Fe_5N_2 [8], und die Quecksilber-Minerale Gianellait, $(Hg_2N)_2SO_4$ [10], Kleinit, $Hg_2N_2((SO_4)_{0,25}Cl_{0,5}) \cdot 0,5 H_2O$ [11] und Moesit, $Hg_2N(Cl,SO_4,MoO_4,CO_3) \cdot H_2O$ [12] gefunden. Die Mehrzahl der Nitrid-Vorkommen ist extraterrestrischen Ursprungs: Nierit, Si₃N₄ [13], Sinoit, Si₂N₂O

[14], Osbornit, TiN [15], Carlsbergit, CrN [16], und Roaldit, γ' -(Fe,Ni)₄N [9]. Die Bildungsbedingungen der bei Meteoriteneinschlägen gefundenen Nitride sind größtenteils unbekannt und es gibt nur Spekulationen, ob die Nitride als stellares Material oder beim Eintritt in die Erdatmosphäre gebildet worden sind. Ebenso bleibt der Stickstoff-Gehalt des Erdinneren fraglich. Da Stickstoff eine Vielzahl an Verbindungen mit Übergangsmetallen bilden kann, insbesondere mit Eisen (z.B. γ' -Fe₄N, ϵ -Fe₃N), können möglicherweise die Hochdruck-Modifikationen dieser Phasen, mit unbekannten Kristallstrukturen oberhalb von 32,4 GPa, einen großen Teil des Erkernes bilden [17].

Im ersten Teil dieser Arbeit werden phasenreine Kupfernitrid-Precusoren synthetisiert und charakterisiert, die für anschließende Hochdruckversuche benötigt werden. Mit diesen *in-situ* und *ex-situ* Versuchen wird das Hochdruckverhalten von Kupfernitrid sowie mögliche Phasenumwandlungen und Eigenschaften der Hochdruckphase untersucht. Im zweiten Teil dieser Arbeit werden phasenreine Eisennitrid-Precusoren (γ' -Fe₄N, ϵ -Fe₃N und ζ -Fe₂N) synthetisiert und charakterisiert. In anschließenden *in-situ* und *ex-situ* Versuchen wird das Hochdruckverhalten der Eisennitride sowie mögliche Phasenumwandlungen der Hochdruckphasen untersucht. Mithilfe der Vielstempel-Presse werden Einkristalle der Eisennitride gezüchtet und an diesen Eigenschaften wie Mikro- und Nanohärte untersucht. Im dritten Teil dieser Arbeit werden phasenreine ϵ -Eisencarbonitrid-Precusoren synthetisiert und charakterisiert, die für anschließende Hochdruckversuche verwendet werden. Mit anschließenden *in-situ* und *ex-situ* Versuchen soll das Hochdruckverhalten sowie mögliche Phasenumwandlungen der Hochdruckverhalten sowie mögliche Phasenumwandlungen der Hochdruckverhalten sowie

2 Synthese- und Untersuchungsmethoden

2.1 Gasnitridierungsapparatur

Für die Nitridierung von Eisen-Pulver und die Ammonolyse von Kupferfluorid wurde eine eigene einfache Strömungsapparatur entwickelt. Diese besteht aus einem Betriebssteuergerät PR 4000 (Abbildung 2.2) und zwei Massenflußreglern Typ 1179B (maximaler Durchfluss: 500 sccm; standard cubic centimeters per minute bei 1013,25 mbar und 0 °C) der Firma MKS Instruments GmbH, einem Klapprohrofen mit Eurotherm Regler, einer 3-stufigen Drehschieberpumpe, einem Glasrechnen mit Kleinflanschen und Ventilen sowie Edelstahlwellschläuchen und Pertinaxklemmen und einem Strömungskopf mit Quarzglasrohr und Korundschiffchen. Später erfolgte die Erweiterung der Anlage für die Synthese der Eisencarbonitride um ein weiteres Betriebssteuergerät PR 4000 und einen Massenflußregler Typ 1179B (50 sccm) sowie einer Beheizung mit Heizschnüren und Regler der Firma Hillesheim (Abbildung 2.1). Die Beheizung der Stahlwellschläuche und des Strömungskopfes inklusive Blasenzähler auf ca. 120 °C ist notwendig, um die Bildung von Ammoniumcarbamat durch die Reaktion von Ammoniak mit Kohlendioxid zuverlässig zu verhindern, dass sich während der Synthese als Belag an den kalten Stellen der Apparatur niederschlägt und die Leitungen der Anlage verstopfen würde. Außerdem würde die Bildung von festem Ammoniumcarbamat die Gaszusammensetzung verändern und damit die Produktzusammensetzung beeinflussen.

Aufbau und Funktionsweise der Massenflussregler

Der Massenflussregler Typ 1179B besteht aus einen Durchflusssensor, einem Regelventil und einer Umgehung. Der Durchflusssensor ist ein Zwei-Element-Sensor, der eine exakte und zuverlässige Messung auch bei niedrigen Durchflussraten (< 10 sccm) ermöglicht [18]. Dies ist für die Synthese der Eisencarbonitride wichtig, da

Abbildung 2.1: Strömungskopf der Synthese-Apparatur mit Beheizung für die Synthese der ϵ -Eisencarbonitride.

Abbildung 2.2: Massenflußregler (links) und Betriebssteuergerät (rechts) der Firma $MKS\ Instruments\ {\rm GmbH}$

Abbildung 2.3: Schnittzeichnung (schematisch) mit Klapprohrofen, Quarzglasohr mit Korundschiff und Probe, Gaseinlass.

die Kohlenstoffquelle CO_2 nur mit geringen Durchflußraten zudosiert wird. Im Massenflussregler wird der Gasdurchfluss gemessen und der Durchfluss auf einen vorgegebenen Sollwert geregelt. Der Regelbereich reicht von 2 bis 100 % vom Endwert (Genauigkeit der Durchflussmessung: ± 0.5 % vom Mittelwert plus 0.2 % vom Endwert) [18]. Da die Massenflussregler auf Stickstoff kalibriert sind, muss für die verwendeten Gase Ammoniak, Wasserstoff und Kohlendioxid ein Gaskorrekturfaktor berücksichtigt werden, der einer Tabelle im Handbuch zu entnehmen ist und im Betriebssteuergerät entsprechend geändert wird. Nach Eintritt in den Regler strömt das Gas zuerst durch das Messteil und anschließend durch das Regelventil (Magnetventil, das im stromlosen Zustand geschlossen ist), mit dem der Durchfluss gemäß des gewählten Sollwertes reguliert wird. Danach strömt es mit dem entsprechenden Durchfluss aus dem Regler. Die Messeinheit des Reglers besteht aus einer Sensorröhre für Messbereiche bis 10 sccm (N_2 äquivalent) und aus einer Sensorröhre und paralleler Umgehung für Messbereiche > 10 sccm (N₂ äquivalent) [18]. Die kalorimetrische Messmethodik macht sich die physikalische Gesetzmäßigkeit zunutze, dass die Wärme immer nur in die Richtung der geringeren Temperatur fließt [19]. Wenn ein Körper eine höhere Temperatur als seine Umgebung hat, wird seine Wärmeenergie an eine vorbeiströmende Masse abgegeben (in diesem Fall das vorbeiströmende und zu messende Gas). Gemessen wird die Energie, die zum Aufrechterhalten eines bestimmten Temperaturprofiles entlang des Sensorröhrchens

Chemikalien	Hersteller	Reinheit in $\%$
CuF_2	Alfa Aesar	99,9
Eisenpulver	Johnson Mattey/Alfa Aesar	99,9
Ammoniak	Air Liquide	$\geq 99,998$
Wasserstoff	Air Liquide	$\geq 99,999$
Kohlendioxid	Air Liquide	$\geq 99,995$

Tabelle 2.1: Verwendete Chemikalien mit Angabe zu Hersteller und der Reinheit

bei einem laminaren Durchfluss benötigt wird [18]. Diese Energie resultiert aus der Massenflussrate. Bei Messung des Gasvolumens würden zusätzliche Parameter für Temperatur und Druck benötigt, da Gase kompressibel sind und sich in Abhängigkeit von Temperatur und Druck ihre Dichte und damit auch ihr Volumen ändert [19]. Auf dem Sensor des Gasflussreglers liegen Widerstandsheizelemente. Durch entsprechende Auslegung ihrer Temperaturen sind die Spannungsänderungen an der Sensorwicklung eine lineare Funktion von Abweichungen im Durchfluss [18]. Das digitalisierte und korrigierte Signal wird dem Regelteil zugeführt. Vorteil dieses Messverfahrens mittels Temperaturkonstanthaltung sind wesentlich kürzere Ansprechzeiten im Vergleich zu den sonst üblichen Verfahren [18].

2.2 Verwendete Chemikalien

In dieser Arbeit werden die in der Tabelle 2.1 aufgelisteten Chemikalien verwendet.

2.3 Hochdrucktechniken zur Synthese und *in-situ* Untersuchungen

2.3.1 Einführung in die verwendeten Hochdrucktechniken

Druck ist definiert als Kraft pro Flächeneinheit P = F/A mit der Einheit Pascal (N/m^2) . In der Hochdruckforschung sind das Kilobar (1 kbar = 10⁸ Pa) und das Gigapascal (1 GPa = 10⁹ Pa) die üblicherweise verwendeten Größenordnungen. Zur Erzeugung statischer Drücke oberhalb von 1 GPa werden Stempel-Zylinder-Pressen (piston-cylinder) und Gürtel-Pressen (belt apparatus) verwendet. Mit Ihnen lassen sich Drücke bis etwa 5 - 6 GPa realisieren. P. W. Bridgman [20] entwickelte ein anderes Prinzip der Druckerzeugung, bei welchem die Probe durch zwei flache, gegenüberliegende Stempel aus einem sehr harten Material komprimiert wird. Die

Probe befindet sich in einer Metalldichtung und die maximal erreichbaren Drücke liegen hier um 10 GPa, wobei das Probenvolumen gering ist (~ $10^{-2} - 10^{-3}$ cm³ [21]). Torusförmige Hochdruckapparaturen und der Vorgängertyp, die Chechevitsa-Hochdruckapparatur sind eine Modifikation des Bridgman-Prinzips mit gegenüberliegenden Stempeln. Jeder Stempel weist eine linsenförmige Druckkammer auf, die von einer torusförmigen Aussparung umgeben ist [22]. Die Vorteile gegenüber der Bridgman-Apparatur sind größere Probenvolumina (~ 10 cm³ [22]) und eher hydrostatische Druckbedingungen. In den 80er Jahren des 20-ten Jahrhunderts wurden weltweit über die Hälfte der produzierten synthetischen Diamanten und *c*-BN mit diesen Hochdruckapparaturen synthetisiert [22]. Diese Apparatur wird inzwischen auch häufig von Großforschungseinrichtungen für Strukturuntersuchungen mit Neutronenbeugung eingesetzt (Paris-Edinburgh-Zelle z.B. am ISIS, GB).

Zur Erzeugung höherer Drücke stehen prinzipiell zwei Möglichkeiten zur Verfügung. Die Maximierung der Preßkraft F oder die Minimierung der Fläche A, über welche komprimiert wird. Die erste Möglichkeit führte zur Entwicklung der Vielstempel-Pressen, die heute in den Standard-Ausführungen Preßkräfte von bis zu 1000 Tonnen und maximale Drücke von 15 GPa aufweisen. Seltener gibt es Pressen (z.B. in Bayreuth (Bayerisches Geoinstitut) und in Japan), die Preßkräfte von 5000 t bzw. 10000 t aufweisen und es erlauben große Probenmengen bei Drücken bis 25 GPa zu synthetisieren [23, 24]. Die zweite Möglichkeit führte zur Entwicklung der Diamantstempelzelle. Beide Technologien werden in dieser Arbeit verwendet und im Folgenden ausführlich beschrieben.

2.3.2 Vielstempel-Presse

2.3.2.1 Presse und Walker-Modul

Zur Erzeugung der Presskraft wird eine hydraulische 800 t Presse der Firma *Voggenreiter* (Abbildung 2.4) am MPI CPfS verwendet. Die von der Presse erzeugte primäre Kraft wird durch ein 2-stufiges Walker-Modul (Typ: 6/8) [25, 26] auf die Probe übertragen (Abbildung 2.6). Die erste Stufe besteht aus zwei Stahlzylindern in denen jeweils oben und unten drei Stahl-Stempel eingesetzt sind. Die drei unteren Stempel bilden ein Nest, in das die zweite Stufe bestehend aus 8 WC-Würfeln¹ in Richtung der dreizähligen Achse gesetzt wird [28]. Beim Verschließen des Walker-Moduls mit den oberen drei Stempeln bildet sich eine würfelförmige

¹Bei dem Hantieren mit den Würfeln ist ein stabiles Visier zu tragen, da die Würfel nach den Experimenten trotz Anlassen aufgrund von verbleibenden Spannungen spontan zerbersten können [27].

Lücke für die 8 WC-Würfel zwischen den oberen und unteren Stempeln [28]. Jeder der 8 WC-Würfel ist an einer Ecke abgeschnitten, so dass sich gleichseitige Dreiecke bilden. Im Inneren der 8 Würfel entsteht so ein oktaedrischer Hohlraum, in den ein Keramik-Oktaeder (Unterunterabschnitt 2.3.2.2) gesetzt wird. Bei Annäherung der Stempel im Hochdruckexperiment drückt jeder der 6 Stempel auf eine Fläche des Würfelpakets. Dadurch verkleinert sich die würfelförmige Lücke und somit drückt jeder der 8 Würfel mit seiner dreieckigen Fläche auf eine Fläche des Oktaeders, der so komprimiert wird. Durch diese 2-stufige Kraftübertragung wirken quasihydrostatische Drücke² auf die Probe ein. Zwischen den Würfeln werden Dichtungen aus Pyrophyllit gesetzt, die den Oktaeder umgeben und einen Anfangsabstand zu Beginn der Experimente definieren. Die Dichtungen dienen auch zur Stabilisierung der WC-Würfel und stellen durch Zerfließen einen Gegendruck gegen das bei höheren Drücken heraustretende Druckmedium dar (Abbildung 2.5 zeigt den schematischen Aufbau in einer Schnittzeichnung). Auf die Würfelflächen werden dünne Pappfolien und Teflonfolien aufgeklebt. Diese werden so angeordnet, dass sich im Aufbau immer eine Pappfolie und eine Teflonfolie gegenüberliegen. Eine Ecke der quadratischen Folien wird an der Seite des abgeschnittenen Würfels ebenfalls abgetrennt. Die Folien dienen als Widerstand für die herausfließenden Pyrophyllit-Dichtungen. Nachdem die 8 WC-Würfel mit dem Oktaeder zusammengesetzt sind, wird zur Stabilisierung des Würfelpakets auf jede Würfelfläche eine Plexiglas-Platte geklebt. Zwei gegenüber liegende Plexiglas-Platten haben eine kleine Aussparung, in die eine Kupfer-Kontaktscheibe geklebt wird, um den Strom für die Widerstandsheizung weiterzuleiten. Zur Minimierung der Reibung zwischen Stahlzylinder und Stahlstempeln werden in Anlehnung an [25, 26] zwei Folien aus Polyethylenterephthalat (PET) zwischen beide Teile eingesetzt. Zur weiteren Verminderung der Reibung werden die Folien und die Kontaktflächen zwischen Würfel und Stempel mit Teflonspray gleichmäßig besprüht. Diese Maßnahmen führen zur Verbesserung der Kraftausbeute um über 25 % [27]. Thermogravimetrische Untersuchungen zur Verbesserung des Aufbaues bei hohen Temperaturen zeigen einen deutlichen Massenverlust des BN-Materials und in geringem Maße auch bei den Bauteilen aus MgO und ZrO₂ [27]. Deshalb werden diese Teile vor dem Versuch bei 1300 K für eine 1 h geglüht [27]. Nach [29] werden auch thermogravimetrische Untersuchungen am Pyrophyllit durchgeführt, wobei sich ein deutlicher Massever-

²Bei hydrostatischen Druckbedingungen wirkt der Druck allseitig gleichmäßig auf die Probe ein während bei uniaxialen Druckbedingungen der Druck in einer Achse gerichtet auf die Probe einwirkt. Quasihydrostatische Druckbedingungen sind eine Mischform, bei der sowohl hydrostatische als auch uniaxiale Drück auf die Probe einwirken.

Abbildung 2.4: Hydraulische Presse der Firma *Voggenreiter* zur Erzeugung der primären Preßkraft (Bildquelle: MPI CPfS, Dresden).

lust über verschiedene Stufen zeigte [27]. Das Ausheizen der Gaskets bei ca. 700 K über eine Dauer von 1 h hat sich hier bewährt [27]. Diese Modifizierungen haben die Druckverteilung optimiert und die Standzeiten der Würfel erhöht.

2.3.2.2 Die oktaedrische Druckkammer

Die Oktaeder mit einer Kantenlänge von 11 und 14 mm, die in den Experimenten benutzt werden, bestehen aus einer MgO-Keramik, die mit 5 Gew. % Cr₂O₃ versetzt ist [25]. Dieses Material wird als druckübertragendes Medium benutzt, weil es einen hohen Schmelzpunkt hat, sich bei hohen Temperaturen duktil verhält und somit für nahezu hydrostatische Druckbedingungen bei den Experimenten sorgt. Cr₂O₃ dient zur Verringerung der Wärmeleitfähigkeit bzw. Erhöhung der thermischen Isolation in dem MgO-Oktaeder bei hohen Temperaturen. In dem Oktaeder ist eine zylinderförmige Öffnung ausgebohrt, in die der Innenaufbau (Abbildung 2.7) eingesetzt wird.

Als Tiegelmaterial für die eingesetzten Precusoren wird *h*-BN verwendet. Die Auswertung von gemessenen Röntgen-Pulverdiffraktogrammen und energiedispersiver Röntgenanalyse zeigt, dass die Precusoren nicht mit dem Tiegelmaterial reagieren [30]. Der Tiegel aus *h*-BN wird mit einem Deckel aus *h*-BN verschlossen und mit einer ihn umgebenden MgO-Hülse und mit zwei runden MgO-Distanzhaltern, die

Abbildung 2.5: Schnittzeichnung des Walkermoduls mit dem Innenaufbau (bestehend aus den WC-Würfeln, dem oktaedrischen Druckmedium und den Pyrophyllit-Dichtungen). In dieser Schnittzeichnung sind von den 6 Stempeln, die auf die 8 WC-Würfel drücken nur 4 zu sehen. Die beiden nicht dargestellten Stempel drücken von vorne und von hinten auf die Würfel.

Abbildung 2.6: Zweistufiges Walker-Modul (Typ: 6/8) mit den 8 WC-Würfeln, den Plexiglas-Platten und den Kupfer-Kontaktscheiben, die in Richtung der dreizähligen Achse in den unteren Teil des Walker-Moduls mit seinen 3 Stempeln gesetzt werden (Bildquelle: MPI CPfS).

Abbildung 2.7: Schnittzeichnung durch den MgO-Oktaeder mit seinem Innenaufbau ohne Thermoelement nach [28].

jeweils oben und unten vom Tiegel angeordnet sind, in ein Graphitrohr geschoben, das als Widerstandsheizung dient [28]. Zur Weiterleitung des Stromes vom Würfel zum Heizelement werden oberhalb und unterhalb des Heizelements (Graphitrohr) Kontaktscheiben aus Molybdän angebracht [28]. Das Graphitrohr wird von einer passgenauen ZrO₂-Hülse umgeben, die zur thermischen Isolation zwischen der Widerstandsheizung und dem MgO-Oktaeder und den WC-Würfeln dient [26]. Dieser Aufbau wird in die ausgebohrte Aussparung des MgO-Oktaeders eingesetzt.

2.3.2.3 Druck- und Temperaturmessung

Die Temperatur- und Druck-Kalibrierungen werden vor Beginn der Experimente durch die Messung der Widerstände von Bismuth und Blei [31] und durch Messungen, bei denen im Aufbau Thermoelemente verwendet werden, durchgeführt. Ein Fehler von 10 % in der Temperaturangabe muß bis 1500 K angenommen werden, der auf 15 % bei Temperaturen oberhalb von 2000 K ansteigt [27]. Die Druckangaben in dieser Arbeit weisen einen Fehler von ca. 10 % auf [27].

2.3.2.4 Probenpräparation

Das Oktaeder und die Teile des Innenaufbaus des Walker-Moduls werden vor der Präparation im Trockenschrank getrocknet und nach der Entnahme sofort in eine Handschuhbox eingeschleust. Das Laden der Probe erfolgt in der Box unter Ar-Atmosphäre. Für Hochdruckversuche wird das Oktaeder direkt vor Beginn des Hochdruckexperiments aus der Handschuhbox entnommen und nach Versuchsende wieder umgehend in diese eingeschleust.

2.3.2.5 Durchführung der HP-HT-Experimente

Für ein typisches Hochdruckexperiment wird der Druck innerhalb von 5 h auf 15(2) GPa erhöht, bei diesem maximalen Druck 5 h gehalten und danach innerhalb von 15 h wieder abgelassen. Bei dem maximalen Druck werden die Proben auf 1600(200) K für 5 min aufgeheizt und danach durch Abschalten des Heizstromes auf Zimmertemperatur abgekühlt, bevor der Druck abgelassen wird. Für die Durchführung der Hochdruckexperimente danke ich herzlich der Arbeitsgruppe von PD Dr. U. Schwarz am MPI CPfS in Dresden: Dr. A. Wosylus, K. Meier und S. Leipe.

2.3.3 Diamantstempelzelle

Die Anfänge der Technologie, mit Hilfe von Diamantstempeln hohe Drücke zu erzeugen, liegen über 50 Jahre zurück [32]. Diamant weist durch seine sehr hohe mechanische Belastbarkeit, seine extrem niedrige thermische Ausdehnung und sein chemisches inertes Verhalten ideale Voraussetzungen für die Anwendung als äußerst belastbare Komponente zur Druckerzeugung auf. Ein weiterer Vorteil der Diamantstempelzellen (diamond anvil cell, DAC) ist die Transparenz für einen weiten Bereich des Spektrums der elektromagnetischen Strahlung wie z.B. Röntgenstrahlung, infrarote Strahlung und sichtbares Licht. Dies erlaubt die Anwendung einer Vielzahl an spektroskopischen- und Beugungsmethoden zur *in-situ* Untersuchung von Proben bei hohen Drücken.

Eine zylindrische Druckkammer, die von einem Bohrloch in einer Metalldichtung – gasket – (hier Edelstahl oder Rhenium) gebildet wird, wird von zwei gegenüberliegenden Diamanten abgedichtet. Die Druckkammer hat einen Durchmesser von einigen zehn μ m bis maximal 0,5 mm und wird mit einem druchübertragenden Medium (Methanol-Ethanol-Mischungen, verflüssigter Stickstoff oder verflüssigte Edelgase) gefüllt, das auch unter hohen Drücken für hydrostatische bzw. quasihydrostatische Druckbedingungen sorgt. Durch elastische und plastische Verformung der Metalldichtung durch die entgegengesetzt wirkenden Kräfte der beiden Diamantstempel, wird die Druckkammer in ihrer Größe reduziert (Abbildung 2.8). Durch Kompression des Fluids erfolgt die Druckübertragung auf die sich ebenfalls in der

Abbildung 2.8: Schematische Darstellung einer Diamantstempelzelle.

Druckkammer befindliche Probe und einen kleinen Rubineinkristall (tiefrot gefärbte Varietät des Minerals Korund (α -Al₂O₃) mit einer Substitution der Al³⁺-Ionen durch Cr³⁺-Ionen von 0,5 - 2,0 %). Die Kraftübertragung auf die beiden Diamanten erfolgt mechanisch (durch 4 Schrauben) durch eine aus Rahmenteilen bestehende Druckzange oder in Membranstempel-Zellen (Abbildung 2.9), die über einen Computer gesteuert werden. Ein Vorteil bei der Verwendung von Membranstempelzellen sind die sehr klein einstellbaren Druckinkremente bei der Aufnahme von Zustandsgleichungen sowie die Zeitersparnis, da die Zelle für die Druckveränderungen nicht jedes Mal aus der Meßhalterung herausgenommen und wieder eingesetzt werden muß. Die Bestimung des Drucks erfolgt mit der laserinduzierten Lumineszenz an Rubin, nach dem Einschwenken des Meßmikroskops (Abbildung 2.10) mit dem eingebauten Laser in den Strahlengang, indem die druckabhängige Verschiebung der R₁- und R₂- Linien gemessen wird [33, 34].

2.4 Chemische Analyse

Die chemischen Analysen von Sauerstoff und Stickstoff werden unter Verwendung der Heißgas-Extraktionstechnik mit einem *LECO* Analysegerät TCH-600 am MPI

Abbildung 2.9: Foto einer Membranstempelzelle, die in der Meßhalterung am ESRF für Röntgenbeugungsuntersuchungen mit Synchrotronstrahlung bei hohen Drücken eingesetzt ist.

CPfS in Dresden durchgeführt. Der Wasserstoffgehalt liegt bei allen gemessenen Proben unterhalb der Nachweisgrenze von ω (H) = 0,008 %. Für die Durchführung der chemischen Analysen danke ich herzlich der Kompetenzgruppe Analytik (Dr. G. Auffermann) am MPI CPfS.

2.5 DTA-Untersuchungen

Differential-Thermoanalytische- und Thermogravimetrische-Messungen (DTA/TG) werden am Wägesystem eines STA 449C (Thermoelement Typ S) der Firma NETZSCH Gerätebau Selb unter strömenden Sauerstoff, Argon oder Stickstoff durchgeführt. Die Temperaturkalibrierung wird unter Verwendung der Schmelzpunkte von 5 Standards im Temperaturbereich von 370 K $\leq T \leq$ 770 K erreicht. Für die Messungen werden Messtiegel und Deckel aus Korund (α -Al₂O₃) verwendet. Eine Auftriebskorrektur für die TG wird mit einem leeren Korund-Tiegel durchgeführt. Die DTA/TG-Messungen werden mit der NETZSCH Proteus Thermal Analysis Software [35] ausgewertet.

2.6 REM-Untersuchungen

Die Untersuchung der Mikrostruktur erfolgt an einem Rasterelektronenmikroskop (REM) JeoL JSM-5900 LV. Hierzu werden kleine Bruchstücke der Probe auf einen Probenhalter aus Aluminium, der mit einem elektrisch leitenden Klebeband bespannt ist, geklebt und in das REM eingesetzt. Nach dem Evakuieren werden die einzelnen Bruchstücke in verschiedenen Vergrößerungen abgescannt und von wesentlichen Bildteilen Aufnahmen zur Dokumentation angefertigt. Für die Bedienung des REM danke ich herzlich Frau I. Werner an der TU München.

2.7 Röntgenbeugung

2.7.1 Messungen am Pulver

Die mikrokristallinen Pulverproben werden mit Röntgendiffraktometrie charakterisiert. Es werden Diffraktometer der Firma *STOE* (*STADI P* und *STADI ID*3003) in Transmission mit Flachbettträgern bei einer Wellenlänge von Cu- $K_{\alpha 1} = 1,540598$ Å und Mo- $K_{\alpha 1} = 0,70930$ Å (Ge(111) Monochromator) verwendet. Als Detektoren werden eine Bildplatte (IP-PSD von *STOE*) und ein Detektor, der auf einer neu entwickelten komplementären Metalloxid-Halbleiter (CMOS) Hybrid-Pixel-Technologie basiert (MythenK1 der Firma *DECTRIS*), verwendet. Außerdem wird eine Guinier-Kamera der Firma *Huber Diffraction* (G670) mit Monochromator und Bildplatten-Detektor in Transmission mit Wellenlängen von Co- $K_{\alpha 1} = 1,78899$ Å und Mo- $K_{\alpha 1} = 0,70930$ Å verwendet. Die gemörserten Pulverproben werden fein verteilt auf einen Tesafilm aufgetragen, der auf dem Inneneinsatz des Flachbettträgers (*STOE*) aufgeklebt ist, und anschließend in die Halterung des Diffraktometers eingesetzt. Für weitere Informationen zur Pulverdiffraktometrie wird auf die Fachliteratur [36, 37] verwiesen.

2.7.2 *In-situ* Röntgenbeugung mit Synchrotronstrahlung am Pulver unter Druck mittels einer Diamantstempelzelle

Die zu untersuchenden Proben werden in einem Mörser zerkleinert, homogenisiert und zusammen mit einem druckübertragenden Medium (4:1 Methanol/Ethanol-Mischung, Argon oder Helium) in ein Stahlgasket eingesetzt. Zur Druckerzeugung werden Diamantstempelzellen mit Druckzangen und Membranstempelzellen verwendet. Die Druckbestimmung erfolgt mit Hilfe der Rubin-Lumineszenz-Methode. Die Röntgenbeugungsexperimente werden am Undulator Strahlrohr ID 09A des Synchrotron (ESRF in Grenoble) durchgeführt. Die Proben werden während der Aufnahme um \pm 3 Grad oszilliert, um die Pulverstatistik zu erhöhen. Typische Belichtungszeiten liegen zwischen 2 und 5 Sekunden. Die Beugungsbilder werden auf einem Bild-Platten-Detektor (Firma marresearch) aufgenommen, der in einer Entfernung von etwa 450 mm hinter der Probe positioniert ist. Zur Kalibrierung des Detektor-Abstandes und der Wellenlänge wird eine Silizium-Standard-Probe verwendet. Die zweidimensionalen Roh-Daten werden mit der Software Image Integrator integriert [38]. Die Reflexlagen und Zellparameter werden mit dem Computerprogramm WinCSD [39] verfeinert. Abbildung 2.10 zeigt den Meßaufbau in dem Meßraum mit Strahlführung Diamantstempelzelle, Meßmikroskop und Bildplatten-Detektor. Für die Hilfe bei den Messungen danke ich herzlich Dr. M. Hanfland (ESRF, Grenoble).

Murnaghan-Zustandsgleichung

Die Murnaghan-Zustandsgleichung [40] wird durch eine Reihenentwicklung von *B* nach *p* abgeleitet, wobei hinter dem zweiten Term abgeschnitten wird. Die Kompressibilität κ ist das Inverse des Kompressionsmoduls $B_0 = 1/\kappa$ (B_0 : Kompressionsmodul bei Nulldruck).

$$B = B_0 + B'_0 p (2.1)$$

$$B = -V \left(\frac{\partial p}{\partial V}\right)_T \tag{2.2}$$

$$B'_{0} = -\left(\frac{\partial B}{\partial p}\right)_{p=0,T}$$
(2.3)

$$\frac{V(p)}{V_0} = \left(\frac{B'_0}{B_0}p + 1\right)^{-1/B'_0} \tag{2.4}$$

Gleichung 2.1 kann nach p unter Verwendung von Gleichung 2.2 integriert werden. Das Resultat ist die Zustandsgleichung nach Murnaghan (Gleichung 2.4). In dieser Arbeit wird die Murnaghan-Zustandsgleichung verwendet, um die experimentell ermittelten Druck–Volumen-Daten mithilfe der Methode der kleinsten Fehlerquadrate an die Zustandsgleichung anzupassen und den Kompressionsmodul B_0 zu bestimmen.

2.7.3 Röntgenbeugung am Einkristall

Die Röntgenbeugung am Einkristall erfolgt mit automatischen Vierkreisdiffraktometern (*RIGAKU* ACF-7, CCD-Detektor, Drehanode, Ag- $K_{\alpha 1}$ -Strahlung und Oxford Diffraction X calibur 3 mit CCD-Detektor, Mo- $K_{\alpha 1}$ -Strahlung) bei Um-

Abbildung 2.10: Aufbau an der Beamline ID 09a am ESRF in Grenoble: a: einund ausschwenkbares Mikroskop mit Laser für die laser-induzierte Druckmessung, b: Membranstempelzelle, c: Primärstrahlfänger, d: Bildplatten- Detektor.

gebungsdruck. Hierzu werden geeignete Einkristalle unter dem Stereomikroskop ausgewählt und mit Nagellack auf einen Glasfaden geklebt. Absorptionskorrekturen werden entweder semiempirisch durch ψ -Scan (*RIGAKU* ACF-7) oder numerisch über indizierte Kristallflächen durchgeführt (*Oxford Diffraction Xcalibur* 3). Die Verfeinerung der Einkristalldaten wird mit den Programmen CrysAlis RED [41] und SHELXS-97 [42] und SHELXL-97-2 [43] durchgeführt. Für weitere Informationen zur Röntgenbeugung am Einkristall wird auf die Fachliteratur [44] verwiesen.

2.8 Neutronenbeugung an Pulvern

Die Neutronenbeugung an mikrokristallinen Pulvern wird an dem Strahlrohr D20 des ILL (Grenoble) bei Umgebungsdruck und Zimmertemperatur in einer Vanadiumküvette durchgeführt. Die Wellenlänge wird durch Kalibrierung mit einer Silizium-Standard-Probe zu $\lambda = 1,8670$ Å bestimmt. Die Rietveld-Verfeinerungen werden mit dem Programmen FullProf [45] und WinPLOTR [46] durchgeführt. Für die Messungen danke ich herzlich Dipl.-Chem. M. Widenmeyer (IAC, Universität Stuttgart) und Dr. T.C. Hansen (ILL, Grenoble).

Abbildung 2.11: Paris-Edinburgh Zelle (eingesetzt in die Meßhalterung).

2.9 In-situ TOF-Neutronenbeugung unter Druck

Die *in-situ* Neutronenbeugung unter Druck wird an dem Pearl-Strahlrohr der gepulsten Neutronenquelle des ISIS am Rutherford Appleton Laboratory als Flugzeit-Experiment (TOF) durchgeführt. Bei dieser Spallationsquelle (Spallation = Abspaltung) trifft ein gepulster (50 Hz) Protonenstrahl aus einem Synchrotron auf ein Schwermetall-Target (Wolfram) und erzeugt Neutronenpulse. Für die Messung wird ein weiter Bereich des primären Spektrums der Neutronenquelle verwendet.

Zur Erzeugung der Drücke bis ca. 10 GPa wird eine Paris-Edinburgh-Zelle (Abbildung 2.11^3) mit Standard-WC-Stempeln verwendet. Die mikrokristalline Probe wird mit einem kleinen Stückchen Blei als Druckmarker in einen Nickel-Tiegel gegeben. Für quasi-hydrostatische Bedingungen wird Methanol als Druckübertragendes Medium verwendet. Früher durchgeführte Beugungsexperimente in Diamantstempelzellen [30] zeigen, dass Cu₃N mit Alkohol (4:1 Mischung von Methanol und Ethanol) bis zu Drücken von 30 GPa nicht mit dem druckübertragenden Medium reagiert. Die Strukturverfeinerungen werden mit dem Programm GSAS [47] durchgeführt, dass im graphischen Interface EXPGUI [48] enthalten ist. Für die Hilfe bei den Messungen danke ich herzlich Dr. M. Tucker (ISIS, GB).

 $^{^{3}} http://www.isis.stfc.ac.uk/images/instruments/pearl/the-pearl-high-pressure-facility 7250.jpg 21.09.2011$

2.10 Rückstreuelektronenbeugung (EBSD)

Die EBSD-Messungen werden mit einem Zeiss Rasterelektronenmikroskop, dass mit einem EBSD-System (TSL EDAX, Inc.) ausgestattet ist, durchgeführt. Für die Messungen wird das aus dem *ex-situ* Hochtemperatur-Hochdruck-Versuch entnommene Probenstück eingebettet, geschliffen und poliert. An die Probenpräparation werden besonders hohe Anforderungen gestellt, da kleinere Rauhigkeiten und andere Oberflächeneffekte zu Fehlmessungen bei der Orientierungsbestimmung führen. Die Indizierung und Analyse der aufgenommenen Kikuchi-Bilder erfolgt mit der Software OIM 3.5. Für die Messungen danke ich Herrn Dr. A. Leineweber und Herrn Dipl.-Ing. T. Woehrle vom MPI IS in Stuttgart. Die EBSD-Technik ist auf⁴ und⁵ dargestellt und wird hier kurz zusammengefaßt, da es sich um eine spezielle Methode handelt, die nicht allgemein geläufig ist. Die Messung wird mit einem REM durchgeführt, dass um einen Phosphor-Schirm, eine CCD-Videokamera und einem Rechner mit der Software für die Orientierungsabbildende Mikroskopie (OIM) erweitert ist. Die auf die Probe auftreffenden Primärelektronen werden an den Atomen der Probe inelastisch gestreut und damit zu einer divergenten Quelle in der Probe. Das Beugungsbild auf dem Phosphorschirm zeigt ein charakteristisches Linienmuster, die sogenannten Kikuchi-Bänder, die den Netzebenen im Kristall entsprechen und erstmals von Kikuchi 1928 beschrieben wurden [49]. Die Schnittpunkte der Kikuchi-Bänder entsprechen den Schnittpunkten der Zonenachsen im Kristall. Durch die Indizierung der Netzebenen erfolgt die Bestimmung der Symmetrie und der Orientierung am Ort des auftreffenden Elektronenstrahls. Durch die Kombination der hohen örtlichen Auflösung des Elektronenmikroskops und der automatischen Auswertung mit Hilfe von Computern ist es möglich, lückenlose Orientierungsdaten von zusammenhängenden Probenbereichen zu erfassen, auzuwerten und als Kartierung darzustellen. Die Visualisierung der Orientierungen erfolgt z.B. durch Einfärben verschieden orientierter Körner im Bild.

⁴http://www.oxinst.com/ebsd-explained

⁵http://www.Krist.uni-freiburg.de/studium/Praktikum/Praktikum_Manuskripte/EBSD/ EBSD.pdf

2.11 *In-situ* optische Spektroskopie unter Druck in einer Diamantstempelzelle

Druckabhängige Absorptions- und Transmissionsmessungen werden im infraroten und sichtbaren Frequenzbereich mit einem Bruker IFS 66v/s Spektrometer und einem Infrarotmikroskop (Bruker IRscopell) durchgeführt. Teilweise werden die Messungen auch am Infrarot-Strahlrohr der Synchrotron-Strahlungsquelle Angströmquelle Karlsruhe (ANKA) durchgeführt. Für die Druckerzeugung bis zu 10 GPa wird eine Diamantstempel-Druckzange benutzt. Der Druck wird mit Hilfe der Rubin-Lumineszenz-Methode [33, 34] bestimmt. Um möglichst gute hydrostatische Drücke zu erzeugen, wird Ar als druckübertragendes Medium verwendet. Zur Bestimmung der Transmission von Cu₃N unter Druck, wird die Intensität $I_s(\omega)$ der durch einen kleinen Teil der Pulverprobe und des druckübertragenden Mediums transmittierten Strahlung gemessen. Als Referenz wird die Intensität $I_r(\omega)$ gemessen, die durch eine ungefüllte Zelle transmittiert wird. Die Transmission und die Absorption berechnen sich nach den Gleichungen 2.5 und 2.6. Für die Durchführung der Messungen an der Universität Augsburg danke ich herzlich Frau M.Sc. R. Kaneez.

$$T(\omega) = \frac{I_s(\omega)}{I_r(\omega)}$$
(2.5)

$$A = \log_{10}\left(\frac{1}{T}\right) \tag{2.6}$$

2.12 Vickershärte und elastomechanische Eigenschaften

"Härte" ist der Widerstand, den ein Werkstoff dem Eindringen eines sehr viel härteren Körpers entgegensetzt [50]. Härteprüfverfahren haben eine lange Tradition in der Werkstoffprüfung und erlauben kostengünstig und zuverlässig, eine Aussage über die lokalen mechanischen Eigenschaften zu treffen. Bekannte Härteprüfverfahren sind: Brinell (Eindringkörper: Kugel), Rockwell (Eindringkörper: Kegel) und Vickers (Eindringkörper: Pyramide). Die Vickershärte ist definiert als: H = F/Awobei F die verwendete Belastung ist und A die Fläche des Eindrucks.

Die Methode von Oliver und Pharr [51] wurde 1992 eingeführt und ermöglicht die Bestimmung der Härte und des Elastizitätsmoduls durch Nanoindentierungsexperimente. Die mechanischen Eigenschaften können bei dieser Methode im Gegensatz zur Vickershärte-Messung direkt aus der Last-Eindringkurve eines Zyklus von Belastung und Entlastung bestimmt werden, ohne den Härteeindruck abzubilden und zu vermessen [52]. Die hohe Auflösung ermöglicht die Messung der Härte im mikround nanoskaligen Bereich und ermöglicht so die Bestimmung der mechanischen Eigenschaften dünner Filme [52]. Aus der Last-Eindringkurve (F-h) werden die maximale Last F_{max} , die maximale Eindringtiefe h_{max} und die elastische Steifigkeit nach der Entlastung (auch als Kontaktsteifigkeit bezeichnet) S = dF/dh, sowie die verbleibende Eindringtiefe h_{f} nachdem der Indenter vollkommen entlastet worden ist, bestimmt [52].

Die Mikrohärte und die Nanoindentation werden an der Oberfläche eines spiegelnd polierten Fe₃N_{1+x} Einkristalls gemessen. Die Vickers-Mikrohärte (H_V) wird mit einem *LECO* M-4000 G2 Härte-Tester gemessen. Es werden 5 Eindrücke für jede gewählte Last von 5 g bis 0,5 kg (von 0,049 bis 4,9 N) erzeugt. Wegen der begrenzten Probenoberfläche werden bei der gewählten Last von 1 kg (9,8 N) nur 2 Eindrücke erzeugt. Die Ladezeit beträgt immer 15 s. Die Diagonalen der Eindrücke werden mit einem Lichtmikroskop für hohe Lasten und einem kalibrierten REM (*Philips* XL30 FEG) für geringe Lasten vermessen.

Die Nanoindentation-Experimente werden mit einem Fischerscope H100 System (*Fischer GmbH*), ausgestattet mit einem Vickers-Diamant-Indenter, durchgeführt. Für zwei maximale Lasten von 50 und 100 mN werden die Eindrücke in 40 und 60 Schritten erzeugt. Bei jedem Schritt wird die Last für 1 s gehalten. Die tip-shape Funktion wird mit einem von der *Fischer GmbH* zur Verfügung gestellten Standard (BK7-Glas) kalibriert. Um die Nanoindentations-Härte (H) und das reduzierte E-Modul (E_r) zu bestimmen, werden die erhaltenen Last-Eindringkurvenkurven analytisch nach der Methode von Oliver und Pharr [51] ausgewertet, die eine Erweiterung der Methode von Doerner und Nix [53] darstellt. Für die Durchführung der Messungen an der TU Darmstadt danke ich herzlich Dr. D. Dzivenko.

2.13 Verwendete Programme

In dieser Dissertation werden die folgenden an anderer Stelle noch nicht aufgeführten Programme verwendet. Zum Schreiben der Dissertation werden die Programme MikTEX, L_YX und JabRef (Literaturdatenbank) verwendet [54, 55, 56], wobei eine Lyx-Vorlage⁶ benutzt wurde, die entsprechend den eigenen Anforderungen angepäßt

⁶http://www.thesis-template.de/archives/3

worden ist. Zur Erstellung von Graphiken werden die Programme DIAMOND [57] und OpenOffice Draw⁷ verwendet. OriginPro [58] und Microsoft Excel [59] werden für Berechnugen und zur Datendarstellung benutzt. Das Programmsystem WinXPOW [60] wird zur Aufnahme der Diffraktogramme und zur Datenauswertung verwendet. Die Recherche bekannter Strukturdaten erfolgt mit der ICSD (Inorganic Crystal Sructure Database) Datenbank [61]. Die Literaturrecherche erfolgt mit Web of Science⁸. Die Integration der zweidimensionalen Rohdaten wird mit dem Image Integrator durchgeführt. Die Zellparameter werden mit den Programmen WinCSD [38], FullProf [45] und WinPLOTR [46] verfeinert.

2.14 Elektronische Strukturberechnungen

Die auf der Dichtefunktionaltheorie basierenden elektronischen Strukturberechnungen werden mit dem Vienna ab initio Simulationspaket [62, 63, 64, 65] durchgeführt, wobei Basissätze mit ebenen Wellen und ultraweichen Pseudopotentialen verwendet werden. Die Austausch-Korrelationsenergie wird in der generalisierten Gradientennäherung (GGA) berücksichtigt [66]. Die Abschneideenergien der ebenen Wellen wird bei 500 eV und ein dichtes Netz von k-Punkten wird gewählt, um die optimale Struktur mit der geringsten Energie zu finden. Die Brillouin-Zonen-Integration wird nach dem Schema von Monkhorst und Pack [67] durchgeführt. Die optimierten Strukturmodelle werden durch Relaxierung aller Kräfte bis zu Werten unterhalb von 10⁻³ eVÅ⁻¹ und Belastungen unterhalb von 1 kbar erhalten. Zur Bestimmung des strukturellen Verhaltens bei hohen Drücken werden alle Gesamtenergien nochmals unter Kompression und Ausdehnung berechnet und die Zellparameter werden in Schritten von 1 % von 91–105 % der minimalen Geometrien skaliert. Die 15 E - V-Datenpunkte werden nach der Methode der kleinsten Fehlerquadrate an die Murnaghan-Zustandsgleichung angepaßt [40]. Aus diesen kann die Enthalpie-Druck-Kurve einfach durch die Berechnung von $p = \Delta E / \Delta V$ und H = E + pVabgeleitet werden. Für die durchgeführten Berechnungen und Interpretationen danke ich herzlich Dr. J. von Appen und Dr. M. Wessel von der RWTH Aachen.

⁷http://www.openoffice.org/product/index.html

⁸http://apps.webofknowledge.com

3 Synthese, Charakterisierung und druckinduzierte Phasenumwandlung von Cu₃N

3.1 Einleitung

Aufgrund der Verwendung von Kupfernitrid als neues Material für optische Speicher durch lokale Zersetzung von Cu₃N-Filmen und Bildung von Metallischen Cu-Clustern in einem transparenten und isolierenden Material bestand in den vergangenen Jahrzehnten großes Interesse an dieser Verbindung [68]. Außer der Verwendung als Speichermedium ist es ein interessanter Kanidat als Isolationsbarriere in magnetischen Tunnelkontakten [69]. Das halbleitende Kupfernitrid Cu₃N wurde zuerst durch Juza und Hahn 1938 [70] synthetisiert und kristallisiert im inversen ReO₃-Strukturtyp (Abbildung 3.1), was für binäre Übergangsmetallnitride eine Besonderheit darstellt [70, 71]. Im Raumgruppentyp $Pm\bar{3}m$ besetzt Kupfer in dieser Struktur die 3c-Lage und Stickstoff die 1b-Lage (Abbildung 3.1). In einer zweiten möglichen symmetrisch equivalenten Aufstellung besetzt Kupfer die 3d-Lage und Stickstoff die 1a-Lage (Abbildung 3.5 a). Die Struktur kann auch als ein defizitärer inverser kubischer Perowskit ABX₃ beschrieben werden, bei dem die 1a-Lage in der ersten Aufstellung von A-Kationen nicht besetzt ist. Aufgrund seiner geringen Dichte, bedingt durch die großen Lücken in der Kristallstruktur, ist es ein möglicher Kanidat für eine druckinduzierte Phasenumwandlung. Diese Annahme wird auch durch die experimentelle Beobachtung einer Strukturänderung bei ReO₆ unter Kompression im Bereich von 1,27-8,01 GPa unterstützt [72]. Während die ReO₆-Oktaeder nahezu unverändert bleiben, nimmt der Bindungswinkel Re–O–Re von 166,5(1) auf $146,4(3)^{\circ}$ ab. Außerdem deuten die Ergebnisse von elektronischen Strukturberechnungen [73, 74] auf eine druckinduzierte Phasenumwandlung von Cu₃N zwischen 15 GPa und 35 GPa hin, die wahrscheinlich auf eine Halbleiter-Metall-Umwandlung folgt. Eine sehr detaillierte Arbeit von Jansen

Abbildung 3.1: Ausschnitt aus der Kristallstruktur der Normaldruck-Modifikation von Cu₃N (inverser ReO₃-Strukturtyp). Die roten Kreisflächen zeigen Cu-Atome, die Stickstoff oktaedrisch koordinieren. Die Oktaeder sind ausschließlich eckenverknüpft und bilden ein dreidimensionales Netzwerk.

et. al. [73] untersuchte kürzlich durch elektronische Strukturberechnungen viele aussichtsreiche Hochdruck-Struktur-Kanidaten für Cu₃N. Die erfolgversprechensten sind die folgenden Strukturtypen mit Übergangsdrücken zwischen 25 und 35 GPa: Na₃As-Strukturtyp, anti-TiI₃-Strukturtyp und UO₃-Strukturtyp. Im Gegensatz zu dieser Arbeit deutet ein zweiter theoretischer Beitrag [74] an, dass Cu₃N unter Druck im Cu₃Au-Strukturtyp kristallisiert. Dennoch stehen bis heute keine zuverlässigen experimentellen Hochdruck-Strukturdaten zur Verfügung. Kürzlich sind unabhänig von den hier präsentierten Experimenten elektrische Widerstandsmessungen von Cu₃N in Abhängigkeit vom Druck in einer Diamantstempelzelle durchgeführt worden. Sie zeigen als Resultat einen Halbleiter-Metall-Übergang oberhalb von ungefähr 5 GPa [75, 76].

3.2 Ergebnisse und Diskussion

3.2.1 Synthese und Charakterisierung von Cu₃N

Mikrokristallines, bräunliches Cu_3N -Pulver wird durch Ammonolyse von CuF_2 im Ammoniakstrom (30 sccm) bei 270 °C in 5 h nach [70] synthetisiert:

$$6 \operatorname{CuF}_2 + 16 \operatorname{NH}_3 \rightarrow 2 \operatorname{Cu}_3 \operatorname{N} + 12 \operatorname{NH}_4 \operatorname{F} + \operatorname{N}_2 \uparrow$$

Abbildung 3.2: Elementarzellparameter von Cu_3N bei Temperaturen zwischen 20 K und 230 K mit angegebenen Standardabweichungen. Die durchgezogene Linie zeigt die durch kleinste Fehlerquadrate ermittelte Ausgleichsgerade.

Das während der Reaktion gebildete NH_4F wird im Gasstrom abtransportiert und schlägt sich an den kalten Stellen der Strömungsapparatur als dünner, weißer Belag nieder. Es kann nach der Synthese problemlos entfernt werden. Höhere Reaktionstemperaturen oder eine längere Synthesedauer führen zur Bildung einer zweiphasigen Probe aus Cu₃N und elementarem Kupfer, wobei der Gehalt von Kupfer mit zunehmender Synthesedauer zunimmt. Dies ist ein Anzeichen dafür, dass Cu₃N bei den Synthesebedingungen metastabil ist.

Röntgen-Pulverdiffraktogramme werden bei Zimmertemperatur im Bereich von 8 ° $\leq 2\theta \leq 100$ ° mit Cu- $K\alpha_1$ Strahlung ($\lambda = 1,540598$ Å)gemessen. Die Verfeinerung des kubischen Zellparameters mittels kleinster Fehlerquadrate führt zu a = 3,8148(9) Å, verglichen mit a = 3,817(1) Å aus Einkristalldaten [71] und a = 3,807(4) Å aus mikrokristallinen Pulvern [70].

Pulverdiffraktogramme werden zwischen 230 K und 20 K im Bereich von $15 \,^{\circ} \leq 2\theta \leq 90 \,^{\circ}$ mit Cu- $K\alpha_1$ Strahlung ($\lambda = 1,540598 \,^{\text{A}}$) aufgenommen und aus den verfeinerten Zellparameter die thermische Ausdehnung bestimmt (Abbildung 3.2). Es ist keine Phasenumwandlung zu beobachten und der lineare thermische Ausdehnungskoeffizient im untersuchten Temperaturbereich wird zu $\alpha = 6,4(3) \times 10^{-6} \,^{\text{K}^{-1}}$ berechnet, was einen normalen Wert für keramische Materialien darstellt (zum Vergleich: Mullit: $\alpha = 4,5 \times 10^{-6} \,^{\text{K}^{-1}}$ [77] und Korund: $\alpha = 6,9 \times 10^{-6} \,^{\text{K}^{-1}}$ [77]).

Die Zusammensetzung von Kupfernitrid berechnet sich aus der chemischen

Analyse des Ausgangsmaterials zu $\text{Cu}_3\text{N}_{0,980\pm7}\text{O}_{0,05\pm2}$ [$w(\text{O}) = 0,40 \pm 0,14 \%$, $w(\text{N}) = 6,68 \pm 0,05 \%$], wobei die Analyse nur auf Stickstoff und Sauerstoff erfolgt und die Differenz von 100 % dem Kupfer-Gehalt entspricht. Alle angegebenen Werte sind Mittelwerte von drei voneinander unabhängig durchgeführten Messungen. Da die Probe röntgenographisch phasenrein ist, ist die Bildung von Kupferoxid auszuschließen. Der sehr geringe Sauerstoff-Gehalt ist als Anhaftung von Sauerstoff durch Physisorption an der sehr großen Oberfläche der sehr feinteiligen Probe zu interpretieren, oder auf eine oberflächliche Oxidation des Pulvers, die in den Pulverdiffraktogrammen nicht detektiert werden kann.

Simultane DTA/TG-Messungen werden im Temperaturbereich von 370 K $\leq T \leq$ 770 K durchgeführt. In reiner Sauerstoffatmosphäre ist die Gewichtszunahme oberhalb von 473 K gering. Bei der Heizrate von 10 Kmin⁻¹ nimmt die Geschwindigkeit der exothermen Oxidation bei höheren Temperaturen deutlich zu und ist bei 650 K vollständig abgelaufen (Abbildung 3.3). Röntgenbeugungsexperimente zeigen, dass reines CuO als einziges kristallines Produkt mit einer gesamten Gewichtszunahme von 16,1 % gebildet wird; die berechnete Gewichtszunahme beträgt 16,6 %. In Argon- oder Stickstoffatmosphäre beginnt die exotherme Zersetzung um 700 K, was die metastabile Natur des Normaldruck-Cu₃N bestätigt (Abbildung 3.3). Röntgenbeugungsexperimente zeigen, dass reines Kupfer als einziges kristallines Produkt gebildet wird (die berechnete Massendifferenz beträgt -6,8 %). Der beobachtete Gewichtsverlust von -7,0 % ist in guter Übereinstimmung mit der Zersetzungsreaktion in die Elemente.

3.2.2 *Ex-situ* Hochdruck-Syntheseexperimente von Cu₃N in der Vielstempel-Presse und Charakterisierung des Produkts

In einer ersten Serie von Experimenten wird Cu₃N bei hohen Drücken und Temperaturen bis zu p = 9 GPa und T = 500(80) K in einem Walker-Modul (Typ: 6/8) behandelt, bevor die Beheizung abgeschaltet und der Druck abgelassen wird. Die Analyse der Röntgenbeugungsuntersuchungen bestätigt, dass Umwandlungsprodukte sehr empfindlich in Abhängigkeit von den gewählten experimentellen Bedingungen sind: Entweder wird die Normaldruck-Modifikation von Kupfernitrid (LP-Cu₃N) beobachtet, oder es bildet sich metallisches Kupfer vermischt mit Kupfernitrid. Die nach dem Experiment erhaltene Normaldruck-Modifikation von Cu₃N weist eine signifikant erhöhte Halbwertsbreite der Reflexe in den Diffraktogrammen im Vergleich zu dem eingesetzten Cu₃N auf, was auf eine reversible

Abbildung 3.3: DTA/TG-Messung für Cu₃N: DTA-Kurve (blau) und die TG-Kurve (schwarz) bei einer Heizrate von 10 K/min auf 773 K. Die obere DTA/TG-Messung ist unter Argon und die untere unter Sauerstoff gemessen worden. Die DTA/TG-Messung unter Stickstoff zeigt ein nahezu identisches Ergebnis wie die DTA/TG-Messung unter Argon. Für die TG-Messungen wurde eine Auftriebskorrekt mithilfe einer Leermessung durchgeführt.

Abbildung 3.4: Röntgen-Pulverdiffraktogramme von Normaldruck-Cu₃N vor (schwarz) und nach (rot) dem *in-situ* Experiment in der Vielstempel-Presse bei ungefähr 9 GPa, aufgenommen mit Co- $K_{\alpha 1}$ Strahlung.

Phasenumwandlung hindeutet. Abbildung 3.4 zeigt einen Vergleich der Beugungsdiagramme von LP-Cu₃N vor und nach einem Hochdruck-Experiment. Die Bildung von metallischem Kupfer in einigen Experimenten ist auf Druckgradienten und Scherspannungen in der oktaedrischen Druckkammer und der metastabilen Natur von Cu₃N zurückzuführen.

3.2.3 *In-situ* Röntgenbeugung von Cu₃N mit Synchrotronstrahlung unter Druck

In-situ Röntgenbeugungsexperimente werden in einer Diamantstempelzelle mit den druckübertragenden Medien Methanol-Ethanol Mischung (4:1), Argon und Helium durchgeführt. Sie deuten auf den Erhalt der kubischen Normaldruck-Modifikation unterhalb von 5(1) GPa hin. In Richtung des steigenden Druckes ist der Beginn der Umwandlung in eine Hochdruck-Phase (HP-Cu₃N) um 5 GPa (Abbildung 3.6 und Abbildung 3.7) durch zusätzliche Reflexe und das Verschwinden von Reflexen der Normaldruck-Phase in den Röntgenbeugungsdiagrammen zu beobachten. Die Auswertung der Beugungsdiagramme in Richtung des steigenden Druckes (Abbildung 3.6) zeigt einen zweiphasigen Bereich, in dem verbleibendes LP-Cu₃N und die Hochdruckphase koexistieren. In Experimenten mit Alkohol-
Mischungen als druckübertragendes Medium ist der Koexixstenzbereich signifikant kleiner als mit Argon, welches einer Koppelung der bei den Hochdruckversuchen auftretenden Scherkomponenten mit der Phasenumwandlung zugeschrieben wird. Die resultierende Überlappung von Reflexen bei Beugungswinkeln von 2 Theta = 10,8° und 12° erschwert die Bestimmung der Zellparameter und folglich die Volumenberechnung. Deshalb sind im Bereich zwischen 4,5 GPa und 8,7 GPa keine Strukturverfeinerungen durchgeführt worden.

Neue in-situ Untersuchungen unter Hochdruck mit winkelaufgelöster Röntgenbeugung und Synchrotronstrahlung von Zhao et al. [78] bestätigen, dass die Phasenumwandlung von Cu₃N bei $\approx 5,5$ GPa beginnt. Für den Übergangsbereich der Phasenumwandlung finden sie die folgende Erklärung: Cu₃N wandelt sich zu einer neuen primitiven tetragonalen Struktur im Raumgruppentyp P4/mmm um $Cu(1)_3Cu(2)_xN(1)N(2)_{x/3}$. Anteile der Cu⁺-Ionen in Cu₃N besetzten die 1*a*-Lage (Cu(2)) und Anteile der Stickstoff-Ionen besetzten die 3*d*-Lage (N(2)), während Cu(1) und N(1) die ursprünglichen Positionen bezeichnen (Abbildung 3.5 b). Die Autoren diskutieren nicht den Grund für die Bildung der primitiven tetragonalen Übergangsstruktur. Auch aus der Symmetrie der Elementarzelle ist dies nicht ersichtlich. Der Gehalt x wird mit steigendem Druck größer was andeutet, dass die Phasenumwandlung allmählich stattfindet. Bei Drücken größer als 12 GPa ist x = 1 bis zum maximalen Druck von 36 GPa und die Struktur von Cu₃N, in der jetzt alle Cu(2)-Positionen mit Cu-Ionen besetzt sind, vollständig in die tetragonal innenzentrierte Struktur im Raumgruppentyp I4/mmm umgewandelt, bei der die Stickstoff-Positionen zu ¹/₃ mit Stickstoff-Ionen besetzt sind (Abbildung 3.5 c).

In Übereinstimmung mit den Daten mit Argon als druckübertragendem Medium handelt es sich um eine reversible Phasenumwandlung mit einer Hysterese von 2 GPa. *Ex-situ* Experimente in einer Vielstempel-Presse zeigen nach der Charakterisierung der Produkte durch Röntgenbeugungsuntersuchungen entsprechend ebenfalls die Rückbildung zu reinem Normaldruck-Cu₃N. Die verfügbaren experimentellen Daten stimmen mit der Annahme überein, dass die Zusammensetzung der Hochdruckphase mit der von der Normaldruckphase innerhalb der experimentellen Fehler übereinstimmt.

Die Röntgenbeugungsdiagramme bei Drücken oberhalb der strukturellen Phasenumwandlung unterscheiden sich signifikant, wenn bei den Messungen verschiedene druckübertragende Medien verwendet werden (Abbildung 3.8). Die Diskussion des Strukturmodells erfolgt nur mit den Beugungsdaten, die mit Helium als druckübertragendes Medium in Richtung des steigenden Drucks aufgenommen worden sind,

Abbildung 3.5: Kristallstrukturen von Cu_3N : (a) anti-ReO₃-Strukturtyp, (b) primitiv tetragonale Übergangsstruktur nach Zhao et al. [78] und (c) tetragonal innenzentrierte Hochdruck-Struktur (graue Elementarzelle).

Abbildung 3.6: Röntgen-Pulverdiffraktogramme aufgenommen mit Synchrotronstrahlung ($\lambda = 0.413082$ Å) bei steigenden Drücken mit Helium als Druckmedium. Die Lage der Reflexe sind oben (für HP-Cu₃N) und unten (für LP-Cu₃N) markiert. Sterne markieren die stärksten Reflexe des Druckmediums.

Abbildung 3.7: Änderung des Zellvolumens von Cu_3N mit steigendem Druck (diese Daten sind mit Helium als druckübertragendes Medium gemessen, die Hysterese ist im Textteil beschrieben). Der Einsatz in der Abbildung zeigt die Änderung des c/a-Verhältnisses der Hochdruck-Phase. Die Linie zeigt den Quotient der gefitteten Zustandsgleichiung für die Zellparameter.

Abbildung 3.8: Vergleich der mit verschiedenen Druckmedien aufgenommenen Röntgen-Pulverdiffraktogramme für HP-Cu₃N (Methanol:Ethanol = 4:1). Die Diffraktogramme zeigen Intensitätsänderungen, die den verschiedenen Streßbedingungen zugeschrieben werden und die resultierenden Unterschiede für die Bildung von HP-Cu₃N. Bei ca. $6,4^{\circ}$ und $11,8^{\circ}$ zeigen sich schwache Überstrukturreflexe.

Abbildung 3.9: Diffraktogramm und Differenzkurve zwischen beobachteten und berechneten Intensitäten von HP-Cu₃N im orthorhombischen Raumgruppentyp *Immm* unter Verwendung eines phenomenologischen Verzerrungsmodells. Der Einsatz zeigt eine Vergrößerung des Diffraktogramms bei kleinen Winkeln inklusive schwacher, nicht indizierter Reflexe.

da Helium verglichen mit den anderen druckübertragenden Medien die geringste Abweichung von den hydrostatischen Bedingungen aufweist. Das Beugungsmuster der Hochdruck-Phase ähnelt ungefähr dem von fcc Kupfer, aber die Aufspaltung der Reflexe $(200)_{fcc}$ und $(220)_{fcc}$ ist ein Anzeichen für eine Symmetrieerniedrigung (Abbildung 3.6). Die meisten intensiven Reflexe können zufriedenstellend indiziert werden, wenn die tetragonale Raumgruppe I4/mmm ($a \approx 2,60$ Å, $c \approx 3,80$ Å) gewählt wird – insbesondere bei Drücken oberhalb von 30 GPa. Allerdings weisen eine weitere Aufspaltung der Reflexe (insbesondere von $(220)_{fcc}$ und zusätzliche Relexe (bei $2\theta \approx 6.4$ ° und $2\theta \approx 11.8$ °)) auf eine niedrigere Symmetrie hin (oder eine bis jetzt nicht identifizierte zweite Phase). Um diese zusätzlichen Reflexe zu beschreiben, wird ein Modell in dem Raumgruppentyp Immm gewählt. Zusätzlich wurde ein phenomenologisches Modell gewählt, dass die Effekte von Verzerrungen berücksichtigt [79, 80], um die beobachtete Reflexverbreiterung zu beschreiben. Bei 10,5 GPa ergeben die Verfeinerungen eine kleine aber signifikante Abweichung von der tetragonalen Symmetrie mit a = 3,802(2) Å, b = 3,935(2) Å und c = 7,427(3) Å (Abbildung 3.9). Das Elementarzellvolumen der Verfeinerung in der orthorhombischen Raumgruppe Immm weicht nur um 0.1~% von der tetragonalen Lösung ab, so dass die Daten mit der höheren Symmetrie für die Ermittlung der Druck-Volumen Beziehung gewählt wird.

Intensitätsberechnungen zeigen, dass die tetragonale Teilstruktur der Hochdruck-Modifikation mit keiner der bekannten Modifikationen des gut untersuchten isotypen ReO₃ oder einer der favoritisierten Strukturtypen, die aus vorangegangenen Strukturvorhersagen mit Hilfe elektronischer Strukturberechnungen in Erwägung gezogen worden sind [73, 74], übereinstimmt. In Übereinstimmung mit den Röntgenbeugungsdaten nimmt die Kupfer-Teilstruktur eine tetragonal innenzentrierte Anordnung ein (die Kupferatome besetzen die Position 2b (0,0,1/2), Raumgruppentyp I4/mmm, siehe Abbildung 3.10), die dem Motiv der Indium-Metall-Struktur ähnelt. Jedoch sind die Stickstoff-Positionen, wegen des unvorteilhaften Verhältnisses der Streufaktoren von Kupfer und Stickstoff, nicht zuverlässig aus den Röntgenbeugungsexperimenten zu bestimmen (Tabelle 3.1).

Der Kompressionsmodul $B_0 = 114(2)$ GPa für LP-Cu₃N wird durch die Anpassung einer linearen Gleichung (für kleine Volumenänderungen gilt: $B_0 = -V(\frac{\Delta P}{\Delta V})$) an die experimentellen Daten ($V_0 = 55,48(2)$ Å³) mit Hilfe der Methode der kleinsten Fehlerquadrate ermittelt. Dieser Kompressionsmodul ist in guter Übereinstimmung mit dem Wert für die isotype ReO₃-Phase (100 GPa [81]) und zu einem aus elektronischen Strukturberechnugen erhaltenen Wert (115,2 GPa [82]).

Abbildung 3.10: Tetragonal innenzentrierte Cu_3N -Teilstruktur im Raumgruppentyp I4/mmm, die dem Motiv der Indium-Metall-Struktur ähnelt.

Ein steigender Widerstand der linearen Anordnung des Cu^{I} gegen Verbiegung wird durch das verschiedene Hochdruckverhalten von $Cu_{3}N$ und dem isotypen ReO₃ angezeigt und erklärt die Abwesenheit von Verzerrungsvarianten durch Oktaederrotationen für das Nitrid. Die lineare thermische Ausdehnung von LP-Cu₃N unterhalb der Zimmertemperatur ist im normalen Bereich für Halbleiter und unterstützt so indirekt diese Ansicht. Zum Vergleich zeigt der lineare thermische Ausdehnungskoeffizient von ReO₃ kleine positive oder auch negative Werte, abhängig von der Temperatur, bedingt durch die steigende thermische Rotation der ReO_{6/2}-Oktaeder. Dies bedeutet kleinere Winkel mit steigender Temperatur an dem verbrückenden Sauerstoffatom [83].

3.2.4 In-situ TOF-Neutronenbeugung von Cu₃N unter Druck

In-situ Neutronenbeugungsexperimente sind bei hohen Drücken durchgeführt worden, um die Positionen der Stickstoff-Atome in der Kristallstruktur zu lokalisieren, da die Streulängen für Kupfer und Stickstoff sehr ähnlich sind [b(Cu) = 7,9 fm, b(N) = 9,4 fm] [84]. Die beobachtete druckinduzierte Volumenänderung stimmt mit den erhaltenen Röntgenbeugungsdaten gut überein. Abbildung 3.11 zeigt Neutronenbeugungsdiagramme bei verschiedenen Drücken bis zu 8,2 GPa. Neben den Reflexen von Cu₃N, sind Reflexe von Blei (Druckanzeiger), WC (Material der Druckstempel) und Nickel (Tiegelmaterial) zu sehen. Die Phasenumwandlung von Cu₃N ist deutlich durch das Verschwinden der Reflexe des Normaldruck-Kupfernitrids zu erkennen. Die Reflexe des Hochdruck-Kupfernitrids gewinnen nur langsam an Intensität und bleiben schwach und breit. Dies ist am besten am Reflex bei TOF $\approx 18 \ \mu s$ zu erkennen. Der (100) Reflex ist das stärkste Signal des Normaldruck-Cu₃N. Bei 6,9 GPa zeigt sich an der Position dieses Reflexes keine Intensität mehr. Die tetragonale Teilstruktur bestätigt sich klar innerhalb

der experimentellen Auflösung. Bedingt durch die experimentellen Bedingungen des Hochdruck-Aufbaues (geringes Probenvolumen (88 mm³)¹ und die zusätzlichen Streubeiträge der Materialien von Tiegel, Druckmarker und der Druckstempel) ist das Signal-zu-Untergrund-Verhältnis limitiert, wodurch aus den Neutronenbeugungsdaten keine Überstrukturreflexe detektiert werden können. Die Abwesenheit zusätzlicher Reflexe würde darauf hinweisen, dass die Stickstoff-Atome unter den Hochdruck-Bedingungen der Neutronenbeugungsexperimenten ungeordnet in der gesamten Kristallstruktur verteilt wären. Die Strukturverfeinerung mit ungeordneten Stickstoff-Atomen in den verzerrten Oktaederlücken der tetragonal innenzentrierten Kupfer-Teilstruktur führt zu einer Besetzung von 0,33(1) für das Diffraktogramm bei 8,2 GPa. (Abbildung 3.13) zeigt beispielhaft das Ergebnis einer Rietveldverfeinerung von der Hochdruck-Cu₃N-Modifikation bei 8,2 GPa. Bei einer Beschreibung in der Raumgruppe I4/mmm (Tabelle 3.1) mit a = 2,655(1) Å und c = 3,913(1) Å ergibt sich der Elementarzellen-Inhalt von $Cu_2N_{0,66(1)}$, welches der Zusammensetzung von Cu₃N_{1,0(1)} entspricht. Jedoch führen Verfeinerungen der Beugungsdiagramme im Druckbereich von 8,2 – 9,5 GPa auch zu einer Variation der Lückenbesetzung von 0,28 - 0,38, was Zusammensetzungen von $Cu_3N_{0,84}$ bis $Cu_3N_{1,14}$ entspricht.

Abbildung 3.12 zeigt die gemittelte tetragonale Anordnung des HP- Cu_3N . Die Atomabstände d(Cu-N) von $3/4 \times 1,876(1)$ Å und $2/3 \times 1,954(1)$ Å bei 8,2 GPa stimmen gut mit den Werten der ReO₃-Struktur unter Umgebungs-Druck von d(Cu-N) = 1.91 Å überein [70, 71]. Das Strukturmodell entspricht einer elongierten Steinsalzstruktur mit ungeordneten Defekten in der Teilstruktur der Anionen. Somit paßt HP-Cu₃N gut in den Großteil der gut untersuchten und technologisch relevanten binären Übergangsmetallnitride, in denen Stickstoff die Oktaederlücken in dichtesten Kugelpackungen der Metall-Atome besetzt. Des Weiteren ist eine ähnliche Struktur in der Zimmertemperatur-Modifikation von Θ -Mn₆N_{5+x} bekannt, die eine tetragonale Steinsalz-Struktur mit Leerstellen (1 - x) in der Stickstoff-Teilstruktur bildet. Es wird angenommen, dass der Grund für die Verzerrung eine antiferromagnetische Ordnung ist [85]. In ähnlicher Weise zeigt CrN, welches bei Zimmertemperatur eine kubische Steinsalz-Struktur bildet, unterhalb der Néel-Temperatur durch eine magnetische Ordnung eine orthorhombische Verzerrung [86]. Diese Deformation eines magnetischen Körpers wird als Magnetostriktion bezeichnet. Bei der spontanen Magnetostriktion richten sich unterhalb der Curie-Temperatur $(T_{\rm c})$ die magnetischen Momente innerhalb der Weiss'schen Bezirke gleichmäßig

¹http://www.isis.stfc.ac.uk/instruments/pearl/sample-environment/pear-sample-environment2148.html 27.09.2011

aus². Die Abwesenheit magnetischer Momente beim Kupfernitrid bedingt durch die Elektronenkonfiguration von Cu^{1+} ([Ar] $3d^{10}$) läßt jedoch den Grund für die Verzerrung bei dieser Verbindung offen.

Ein Vergleich des Elementarzellvolumens zeigt, dass die strukturelle Phasenumwandlung von der Normaldruck-Phase zur Hochdruck-Phase mit einer diskontinuierlichen Volumenänderung von -20 % einhergeht die in guter Übereinstimmung mit der von ungefähr -21 % von Zhao et al. ist [78]. Bei den Volumendaten, die mit Alkohol als druckübertragendes Medium gemessen worden sind, zeigt sich hingegen eine bemerkenswerte Streuung, die möglichweise durch geringfügige Änderung der chemischen Zusammensetzung von Cu₃N zu einer Stickstoff-reicheren Phase erklärt werden kann. Die folgende Bildung von elementaren Kupfer ist wohl nicht mit Beugungsmethoden nach der Druckentlastung meßbar. Ausgelöst durch Scherkräfte wird zusätzlich gelegentlich Kupfer durch die Zersetzung des metastabilen LP-Cu₃N gebildet.

Die Größe der Volumenänderung, die bei der Phasentransformation auftritt, wird durch einen Vergleich der Packungsdichte analysiert. In der Normaldruck-Phase von Cu₃N mit linear koordiniertem Kupfer zeigen die Metallatome eine defizitäre Variante einer *fcc*-Anordnung, in der nur 75 % der Atom Positionen von Kupfer besetzt sind. Die Hochdruckphase, die eine tetragonal innenzentrierte Kupferanordnung einnimmt, kann als leicht verzerrtes *fcc*-Gitter der Metall-Atome beschrieben werden, in der alle Positionen besetzt sind. Daraus resultierend ist die Packungsdichte der Metall Atome signifikant größer und stimmt überraschend gut mit der experimentell beobachteten Volumenänderung von -20 % überein.

²http://www.uni-saarland.de/fileadmin/user_upload/Professoren/fr84_ProfMuecklich/down-loads/lehre/Kapitel7_Magnetostriktion.pdf.

Abbildung 3.11: Neutronen Beugungsdiagramme (TOF in μ s) von Cu₃N gemessen bei verschiedenen Drücken. N, P und W zeigen die stärksten Reflexe des Nickel-Tiegels, des Blei-Druckmarkers und der WC-Stempel an.

Abbildung 3.12: Gemittelte tetragonale Kristallstruktur der Hochdruck Modifikation von Cu₃N aus den experimentellen Daten. Die roten Kugeln stellen die Kupfer Atome dar. Die Stickstoff-Positionen (grüne Kugeln) sind nur zu 1/3 besetzt.

Tabelle 3.1: Kristallographische Daten von Cu₃N. ^{a)}Synchrotron-Daten (ESRF, ID 09A, $\lambda = 0,413082$ Å, ^{b)}Zellparameter bei Umgebungsdruck: a = 3,8148(9) Å, ^{c)}Time of flight Daten der weißen Spallationsquelle am Rutherford Appleton Laboratory, gemessen am Pearl Diffraktometer.

Tiefdruck-Phase Röntgenbeugungsdaten ^{a), b)}	
Druck Raumgruppe Zellparameter $a / \text{Å}$ Kupfer-Position Stickstoff-Position	4,5 $Pm\bar{3}m$ (Nr. 221) 3,7652 $^{1}\!/_{2}$, 0, 0 0, 0, 0
Hochdruck-Phase Röntgenbeugungsdaten ^{a)}	
Druck/GPa Raumgruppe Zellparameter a /Å Zellparameter c /Å Kupfer-Position	$\begin{array}{c} 8,7\\ I4/mmm \ ({\rm Nr.}\ 139)\\ 2,6588\\ 3,9469\\ 0,\ 0,\ 0\end{array}$
Neutronenbeugungsdaten ^{c)}	
Druck/GPa Raumgruppe Zellparameter a /Å Zellparameter c /Å c/a Kupfer-Position Stickstoff-Position	8,2 I4/mmm (Nr. 139) 2,655(1) 3,913(1) 1,47 0, 0, 0 $\frac{1}{2},\frac{1}{2}, 0$
Besetzungsfaktor von Stickstoff	0,33(1)

Abbildung 3.13: Ergebnis einer Rietveld-Verfeinerung von Cu_3N auf Grundlage von Neutronenbeugungsdaten beispielhaft für einen Druck von 8,2 GPa. Gemessenes Diffraktogramm (rot), berechnetes Diffraktogramm (blau), Bragg-Reflexe (schwarz) und Differenzkurve aus gemessenen und berechneten Diffraktogramm (grün).

3.2.5 Elektronische Strukturberechnungen

Zu Beginn der elektronischen Strukturberechnungen und als eine Absicherung der Qualität der ausgewählten Methode, werden die experimentell beobachteten Eigenschaften von LP-Cu₃N reproduziert. Hierzu werden die optimierte Anordnung und die Gesamtenergie durch eine komplette Relaxierung der Struktur berechnet. Die berechneten Zellparameter von LP-Cu₃N (Tabelle 3.2) stimmen gut mit den experimentellen Daten überein. Die berechneten Daten sind um 0,8 % geringfügig größer als die experimentellen Werte, was eine typische Besondereit der generalisierten Gradienten-Näherung (GGA) darstellt. Die bekannte Metastabilität von LP-Cu₃N zeigt sich bei dem Vergleich mit der Gesamtenergie für die Elemente (3 Cu + $1/2N_2$). Die berechnete Bildungswärme bei 0 K beträgt $\Delta H_f = 1, 21$ eV pro Formeleinheit. Die Energie-Volumen-Kurve (Abbildung 3.14 - links) wird durch eine Anpassung der 15 E(V) Datenpunkte an die Murhaghan-Zustandsgleichung mit der Methode der kleinsten Fehlerquadrate bestimmt.

Bei der Berechnung der Gesamtenergie der experimentell bestimmten Struktur der Zusammensetzung Cu₃N wird aufgrund der angenommenn Fehlordnung der Stickstoff-Atome eine Superzelle gewählt ($3 \times 3 \times 3$ Elementarzelle, die 54 Kupfer-Atome und 18 Stickstoff-Atome enthält). Durch eine zufällige Besetzung der 18 von

		ReO ₃ -Typ	HP-Cu ₃ N	
Zellparameter	Exp. (0 GPa)	p = 0 GPa	p = 8, 2 GPa	
a/Å	3,807(4) [70]	3,84	3,77	
$c/{ m \AA}$	_	_	_	
c/a	—	—	_	
$V/\text{\AA}^3/ ext{f.u.}$	$55,\!18$	$56,\! 6$	$53,\!5$	
$\Delta H/{\rm eV}/{\rm f.u.}$	—	0	2,82	
		$\mathrm{HP} ext{-}\mathrm{Cu}_3\mathrm{N}$		Exp. $(8,7/8,2 \text{ GPa})$
$a/ m \AA$	_	2,81	2,76	2,6588/2,655(1)
$c/{ m \AA}$	—	$3,\!95$	$3,\!87$	$3,\!9469/3,\!911(3)$
c/a	—	$1,\!41$	$1,\!40$	1,50/1,47
$V/\text{\AA}^3/\text{f.u.}$	_	46,9	44,5	41,89/41,34
$\Delta H/{\rm eV}/{\rm f.u.}$	_	$0,\!87$	3,21	_

Tabelle 3.2: Vergleich zwischen experimentell und theoretisch erhaltenen Eigenschaften von LP- Cu_3N und der vorgeschlagenen tetragonalen Hochdruck-Struktur.

Abbildung 3.14: Energie–Volumen-Diagramm (links) und Enthalpie–Druck-Diagramm (rechts) von LP-Cu₃N (inverser ReO₃-Strukturtyp) und der vorgeschlagenen Hochdruck-Phase [30].

Abbildung 3.15: Tetragonales c/a-Verhältnis (links) und Bildungsenthalpie (relativ zu Normaldruck-Cu₃N, rechts) pro Formeleinheit in Abhängigkeit von dem Stickstoff-Gehalt [30].

Verbindung	Raumgruppe	$a/\text{\AA}$	$c/\text{\AA}$	c/a	$V/{\rm \AA}^3$	$\Delta H/{ m eV}$
			p = 0 GPa			
$\mathrm{Cu}_{16}\mathrm{N}_{6}$	$P4_2/mmc$	3,89	16,60	$1,\!51$	47,2	0,36
$Cu_{12}N_4$	P4m2	3,88	12,27	1,49	46,2	0,39
			$p=8,2~\mathrm{GPa}$			
$\mathrm{Cu}_{16}\mathrm{N}_{6}$	$P4_2/mmc$	3,71	4,07	$1,\!50$	$45,\!0$	-0,16
$\mathrm{Cu}_{12}\mathrm{N}_4$	P4m2	3,71	3,99	$1,\!47$	44,0	$-0,\!12$

Tabelle 3.3: Berechnete Zellparameter und Bildungswärme für die aussichtsreichsten geordneten Verbindungen Cu_3N und $Cu_3N_{1,125}$ in Bezug zu LP- Cu_3N [30].

54 vorhandenen Oktaederlücken mit Stickstoff werden 20 verschiedene Zellen erzeugt. Alle Strukturen werden mit der Einschränkung von fixierten Atompositionen relaxiert. Die Gesamtenergie variiert innerhalb der 20 Strukturen nur um 1,7 % und das Volumen um weniger als 1 %. Die Mittelwerte der Zellparameter für die konventionelle Elementarzelle bei Nulldruck betragen a = 2,81 Å und c = 3,95 Å. Die Enthalpie der Phasenumwandlung von dem ReO₃-Strukturtyp zu der stabilsten Stickstoff-Verteilung beträgt 0,87 eV pro Formeleinheit und das Volumen der möglichen Hochdruckphase ist um 18 % geringer. Diese Volumenverringerung in Zusammenhang mit der nicht zu großen endothermen Enthalpie ist ein Anzeichen für eine mögliche Hochdruck-Umwandlung. Für eine Näherung mit den gleichen Kompressionsmoduli wird der Umwandlungsdruck 0-ter Ordnung von $p_{trans} = -\Delta E / \Delta V \approx 11$ GPa berechnet. Die berechneten Energie-Volumen-(E-V) und Enthalpie-Druck- $(\Delta H-p)$ Diagramme sind in Abbildung 3.14 dargestellt. Tabelle 3.2 zeigt einen Vergleich zwischen den experimentell und theoretisch erhaltenen Eigenschaften von LP-Cu₃N und der vorgeschlagenen tetragonalen Hochdruck-Struktur. Das Energie-Volumen-Diagramm zeigt das kleinere Gleichgewichtsvolumen und die höhere Energie der Hochdruck-Phase. Das Enthalpie–Druck-Diagramm zeigt, dass sie bei Drücken oberhalb von 16 GPa thermodynamisch stabil wird. Bei dem experimentell ermittelten Übergangsdruck ist die Verbindung um weniger als 0,39 eV stabiler und das Volumen um 7 % größer als LP-Cu₃N (Tabelle 3.2). Die größte Abweichung zeigt jedoch das c/a-Verhältnis. Alle 20 statistisch besetzten Strukturen relaxieren ausgehend von dem experimentellen Startwert von c/a = 1,50 zu einem Wert zwischen 1,37 und 1,43 bei den Berechnungen. Auch bei hohen Drücken bleibt dieses Verhältnis erhalten. Der Mittelwert der berechneten c/a-Verhältnisse beträgt $1,41 \approx \sqrt{2}$. Eine innenzentrierte Zelle mit einem $c/a = \sqrt{2}$ entspricht einer flächenzentrieten kubischen Zelle. Die Berechnungen werden mit einer größeren Superzelle von $5 \times 3 \times 3$ wiederholt, die 150 Kupfer- und 50 Stickstoff-Atome enthält, um die Resultate zu bestätigen und Fehler aufgrund einer zu klein gewählten Zelle auszuschließen. Das c/a-Verhältnis relaxiert ausghend vom Startwert zu 1,417 und bestätigt die vorhergehenden Ergebnisse. Aus der theoretischen Betrachtungsweise existiert kein Grund für eine tetragonale Verzerrung und die Struktur relaxiert in die stabilere kubische Struktur. Trotzdem ist der statistisch besetzte fcc Cu₃N Typ stabiler als alle bis jetzt betrachteten Alternativen.

Möglicherweise ist die verschiedene Zusammensetzung die Ursache für die tetragonale Verzerrung. Um dies zu berücksichtigen, werden jeweils 10 von $3 \times 3 \times 3$ Superzellen mit den Zusammensetzungen von Cu₅₄N₁₉, Cu₅₄N₂₀ und Cu₅₄N₂₁ er-

Abbildung 3.16: $\Delta H - p$ Diagramm der geordneten Phasen Cu₁₂N₄ und Cu₁₆N₆ relativ zu dem Normaldruck-ReO₃-Typ [30].

zeugt und ein Startwert für das c/a-Verhältnis von 1,50 gewählt. Die Ergebnisse für das c/a-Verhältnis und die berechneten Reaktions-Enthalpien für (1 + x) LP-Cu₃N = HP-Cu₃N_{1+x} + 3x Cu sind in Abbildung 3.16 dargestellt. Der Stickstoff-Gehalt scheint keinen Einfluß auf das c/a-Verhältnis zu haben. Die Werte für alle Zusammensetzungen relaxieren zu niedrigeren Werten und sind schließlich wieder um $\sqrt{2}$ herum verteilt. Die Reaktions-Enthalpien geben ebenfalls keinen Hinweis darauf, dass eine Disproportionierung zu elementarem Kupfer und einer Sticktoff-reicheren Phase bevorzugt wäre.

Um die experimentell bestimmte Struktur zu simulieren, wird nun eine gleichmäßigere Anordnung der Stickstoff-Atome bei den Berechnungen zugelassen. Eine AB_3 Verbindung, die in einem *bct* Teilgitter von *B* kristallisiert und deren Oktaederlücken mit *A*-Atomen besetzt sind, ist nicht bekannt. Deshalb werden ein $2 \times 2 \times 2$ (16 Kupfer-Atome) und ein $3 \times 3 \times 3$ (54 Kupfer-Atome) Kupfer *bct* Teilgitter mit 6 beziehungsweise 18 Stickstoff-Atomen in einer Weise besetzt, die der Verbindung voraussichtlich die Dilatation in *c*-Richtung beibehält. Die letztere Superzelle entspricht der vorgeschlagenen Zusammensetzung von Cu₃N, wogegen die kleinere Superzelle einen Stickstoff-Gehalt von 0,375 (Cu₃N_{1,125}) aufweist. Es werden nur einige Elementarzellen gefunden, die zufriedenstellend die Anforderungen sowohl der tetragonalen Symmetrie, als auch des annähernd experimentell gefundenen c/a-Verhältnisses der Zellparameter (Abbildung 3.16 und Abbildung 3.17) erfül-

Abbildung 3.17: V-p Diagramm der geordneten Phasen $Cu_{12}N_4$, $Cu_{16}N_6$ und Tiefdruck- Cu_3N [30].

len. Die Daten der aussichtsreichen Strukturen für jede Zusammensetzung sind in Tabelle 3.3 dargestellt. Die Formeln dokumentieren die resultierende Größe der Elementarzelle (bei $Cu_{12}N_4$) verursacht durch Symmetriereduktion. Wie Tabelle 3.3 zu entnehmen ist, verbleiben Cu₁₆N₆ und Cu₁₂N₄ während der Relaxierung mit einem optimierten c/a-Verhältnis von 1,51 bzw. 1,49 tetragonal. Bei Nulldruck erfordert eine Umwandlung vom Tiefdruck-ReO₃-Typ unter Erhalt der Zusammensetzung 0,39 eV und eine Disproportionierung in Kupfer und Cu₁₆N₆ 0,36 eV. Das bedeutet, dass diese geordnete tetragonale Verbindung um etwa 0,5 eV pro Formeleinheit Cu_3N stabiler ist als die stabilste berechnete statistisch besetzte und somit kubische Struktur. In Tabelle 3.3 sind die Eigenschaften bei dem experimentell beschriebenen Druck von 8,2 GPa aufgeführt. Die beiden geordneten Phasen Cu₃N und Cu₃N_{1.125} werden um 6 GPa gegenüber LP-Cu₃N stabiler, wobei die Stickstoff-reichere Phase über den gesamten Druckbereich ein wenig stabiler ist. Die Differenz der Enthalpien ist hingegen bei jedem Druck mit nur 0.03–0.04 eV viel zu klein für eine substanzielle Interpretation. Das c/a-Verhältnis von Cu₁₆N₆ beträgt 1,50 bei Drücken um 8 GPa und stimmt mit den experimentell gefundenen Werten der Röntgenbeugung bei 7,8 GPa überein. Bei Cu₁₂N₄ verringert sich der Wert unter Druck-Zunahme und stimmt bei 8 GPa mit den experimentellen Daten aus der Neutronenbeugung bei 8,2 GPa überein. Die mit der Phasenumwandlung einhergehende gemessene diskontinuierliche Volumenabnahme beträgt angenähert

20 % und die für $Cu_{12}N_4/Cu_{16}N_6$ beträgt 18 % bzw. 16 %. Die korrespondierenden Zellparameter sind um 2 % größer und somit in guter Übereinstimmung mit der GGA Näherung.

Dennoch findet sich für beide Elementarzellen eine chemisch nicht eingängige Situation vor. Für die Zusammensetzung $Cu_{16}N_6$ ist die wahrscheinlichste Koordination für das Metall durch N planar-quadratisch für 2 Cu^{2+} und linear für 14 Cu^+ . Stattdessen treten auch sowohl T-förmige als auch Stickstoff-unkoordiniertes Kupfer auf. Für $Cu_{12}N_4$ ist eine reguläre lineare Koordination intuitiv, aber dieser Strukturvorschlag zeigt neben dieser Koordination auch 0, 1 und 3-fache Koordinierungen durch N. Diese Situation ist nicht plausibel, obgleich auch bedacht werden muß, dass die vorgeschlagenen statistischen Besetzungen alle Möglichkeiten von diesen Koordinierungs-Umgebungen ermöglicht. Zusammenfassend soll aufgrund der vielfältigen Möglichkeiten die Stickstoff-Atome in einer geordneten Art und Weise zu verteilen und überdies wegen der ungewöhnlichen Koordinierungen der Kupfer-Atome bei diesen zwei Vorschlägen nicht behauptet werden, dass einer dieser die richtige Struktur des Hochdruck- Cu_3N ist.

3.2.6 *In-situ* optische Spektroskopie von Cu₃N unter Druck in einer Diamantstempelzelle

Einhergehend mit der diskontinuierlichen Volumenänderung bei der Phasenumwandlung treten bei Cu₃N signifikante Anderungen der elektronischen Eigenschaften mit steigendem Druck auf. Die Transmissions- und Absorptionsspektren von Cu₃N sind im infraroten und sichtbaren Frequenzbereich in Abhängigkeit vom Druck in Abbildung 3.18 dargestellt. Bei dem niedrigsten Druck von 1,0 GPa ist eine starke Zunahme der Absorption (markiert durch einen Pfeil im Bild) um 8000 cm⁻¹ (1 eV) zu beobachten, die durch Anregungen oberhalb der Bandlücke verursacht wird. Die Lage dieser Absorptionskante stimmt gut mit der berechneten Bandlücke überein (0,9 eV), die früher aus elektronischen Strukturrechnungen bestimmt wurde [87]. Bei Drücken oberhalb ≈ 4 GPa steigt die Absoroption im infraroten Bereich stark an. Dieser starke Anstieg kann zusätzlichen druckinduzierten elektronischen Zuständen nahe des Fermi-Niveaus zugeschrieben werden. Mit steigendem Druck zeigt die Absorption oberhalb ≈ 7 GPa nur geringe Veränderungen und das Absoptionsspektrum hat einen nahezu flachen Verlauf. Diese Ergebnisse weisen darauf hin, dass Cu_3N im Bereich von 4–7 GPa eine druckinduzierte Halbleiter-Metall-Umwandlung zeigt. Bei Messungen des elektrischen Widerstandes in Diamantstempelzellen wurde früher

Abbildung 3.18: Transmission $T(\omega) = I_s(\omega)/I_r(\omega)$ von Cu₃N bei Zimmertemperatur als Funktion des Drucks (oben) und die korrespondierende Absorption $A = \log_{10}(1/T)$ als Funktion des Drucks (unten). Die Frequenz der Absorptionskante ist durch einen Pfeil markiert [30].

ein ähnlicher Druckbereich für die druckinduzierte Halbleiter-Metall-Umwandlung beobachtet [75, 76]. Das ursprünglich geringe Absorptionsniveau im infraroten Bereich wird, wie in Abbildung 3.18 für das Spektrum bei 1,8 GPa zu sehen ist, bei Ablassen des Drucks nicht wieder erreicht. Dies ist in Übereinstimmung mit der in den druckabhängigen Beugungsexperimenten beobachteten Hysterese und mit den druckabhängigen elektrischen Widerstandsmessungen [76]. Dieses Phänomen kann durch die nicht vollständig reversibel ablaufende Phasenumwandlung bei Druckablass erklärt werden. Das eine Bildung von elementarem Cu zu den gemessenen erhöhten Widerstands-Werten führt, kann ausgeschlossen werden, da der Widerstand nach mehreren Monaten nach Druckablass wieder die ursprünglich gemessenen Werte einnehmen kann [78]. Somit scheint die reversible Phasenumwandlung nach Druckablass kinetisch behindert zu sein.

3.3 Zusammenfassung

In Kapitel 3 wurden in-situ und ex-situ Untersuchungen von Kupfernitrid unter hohen Drücken bzw. hohen Drücken und Temperaturen vorgestellt. Phasenreine Precusoren (Cu₃N) für die Hochdruck-Versuche wurden durch Ammonolyse von CuF_2 synthetisiert. Bei *ex-situ* Hochdruck-Experimenten von Cu_3N in der Vielstempel-Presse bei hohen Drücken und Temperaturen bis zu p = 9 GPa und T = 500(80) K in einem Walker-Modul (Typ: 6/8) wurden entweder die Normaldruck-Modifikation von Kupfernitrid beobachtet, oder es bildet sich metallisches Kupfer vermischt mit Kupfernitrid. Die nach dem Experiment erhaltene Normaldruck-Modifikation von Cu₃N weist eine signifikant erhöhte Halbwertsbreite der Reflexe in den Diffraktogrammen im Vergleich zu dem eingesetzten Cu₃N auf, was in Übereinstimmung mit einer reversiblen Phasenumwandlung ist. In-situ Röntgenbeugung mit Synchrotronstrahlung am Pulver unter Druck bei Zimmertemperatur in einer Diamantstempelzelle zeigte eine reversible Phasenumwandlung von Cu_3N oberhalb von 5 GPa mit einer Hysterese von 2 GPa. Erstmals konnte die Kristallstruktur der Hochdruck-Phase von Cu₃N bestimmt werden. Die Kupfer-Teilstruktur nimmt eine tetragonal innenzentrierte Anordnung im Raumgruppentyp I4/mmm ein. Der Kompressionsmodul von LP-Cu₃N wurde mit Hilfe von *in-situ* Hochdruckuntersuchungen in einer Diamantstempelzelle ermittelt. Die Anpassung einer linearen Gleichung an die experimentellen Daten mit der Methode der kleinsten Fehlerquadrate führte zu Werten von: $B_0 = 144(2)$ GPa. In-situ Neutronenbeugungsexperimente wurden bei hohen Drücken durchgeführt, um die Positionen der Stickstoff-Atome zu bestimmen. Anschließende Rietveldverfeinerungen bestätigen die tetragonale Kupfer-Teilstruktur. Eine Beschreibung in der Raumgruppe I4/mmm mit a = 2,655(1) Å und c = 3,913(1) Å mit ungeordneten Stickstoff-Atomen in den verzerrten Oktaederlücken ergibt den Elementarzellen-Inhalt von $Cu_2N_{0.66(1)}$, welches der Zusammensetzung von $Cu_3N_{1.0(1)}$ entspricht. Die beobachtete druckinduzierte diskontinuierliche Volumenänderung von -20~% stimmt mit den Röntgenbeugungsdaten gut überein. Ergebnisse der *in-situ* optischen Spektroskopie von Cu₃N unter Druck in einer Diamantstempelzelle weisen auf eine druckinduzierte Halbleiter–Metall-Umwandlung im Bereich von 4–7 GPa hin. Das ursprünglich geringe Absorptionsniveau im infraroten Bereich wird bei Ablassen des Drucks nicht wieder erreicht, was ein Anzeichen für eine nicht vollständig reversible Phasenumwandlung sein kann.

Um die experimentell beobachteten Eigenschaften von LP- Cu_3N zu reproduzieren, wurden elektronische Strukturberechnungen durchgeführt. Die Berechnungen bekräftigen die experimentellen Ergebnisse. Der experimentell ermittelte Strukturtyp ist bei den Berechnungen, unabhängig von der Stickstoff-Verteilung auf die Oktaederlücken der Kupfer-Teilstruktur, stabiler als die früher diskutierten ausichtsreichen anderen Strukturtypen. Allerdings relaxiert die Struktur für ungeordnete Stickstoff-Atome zu einer fcc-Struktur. Auch ungeordnete Phasen mit einem höheren Stickstoff-Gehalt bevorzugen dieses Modell. Ein Grund für die tetragonale Verzerrung kann nicht gefunden werden. Für eine vollständige Übereinstimmung mit dem experimentell ermittelten Übergangsdruck und den Zellparametern, ist eine Ordnung der Stickstoff-Atome erforderlich. Die gezeigten Vorschläge für mögliche Strukturen des HP-Cu₃N, die alle geforderten Eigenschaften erfüllen, besitzen Koordinationspoyeder, die chemisch nicht eingängig sind. Eine geringe Stickstoff-Anreicherung, die aufgrund des experimentell dedektierten elementaren Kupfers in Erwägung gezogen wird, ist ebenfalls vorteilhaft und kann nicht vollständig ausgeschlossen werden. Somit ist die Kupfer-Teilstruktur des HP-Cu₃N aufgeklärt, aber die Verteilung des Stickstoffs bleibt ein Ziel weiterer Untersuchungen.

4 Synthese, Charakterisierung und Hochdruckverhalten von binären Eisennitriden

4.1 Einleitung

Binäre Eisennitride wurden in der Mitte des 19-ten Jahrhunderts entdeckt [88, 89] und werden seitdem aufgrund ihrer widerstandsfähigen Eigenschaften (erhöhtes Verschleiß-, Festigkeits- und Korrosionsverhalten) und ihrem möglichen Potential als attraktive magnetische Aufzeichnungsmaterialien intensiv untersucht [4, 5]. Desweiteren sind die Nitride, obwohl sie thermodynamisch in einer Atmosphere, die Sauerstoff enthält, nicht begünstigt sind, in der Erdkruste in der Nähe von Vulkankratern (Ätna und Vesuv) vereinzelt zu finden (Fe₅N₂, eine Phase des ϵ -Fe₃N Homogenitätsbereiches die Silvestrit oder Siderazot [8] genannt wird), da hier die Sauerstoffzufuhr zur Bildung von Eisenoxiden limitiert ist. Roaldit γ' -(Fe,Ni)₄N [9] ist in Eisen-Meteoriten (Jerslev und Youndegin) als späte Ausscheidung in Kamacit (α -(Fe, Ni)) zu finden und bildet dort flache Plättchen aus. Durch die Abwesenheit von Stickstoff in den tieferen Erdschichten wurde spekuliert, ob Eisennitride mögliche Bestandteile des Erdkerns sind, was tatsächlich eine bessere Beschreibung der elastischen Eigenschaften des Erdkerns ermöglicht [17].

Das binäre System Fe–N (Abbildung 4.1) enthält einige Phasen, die eine hohe Relevanz für die Eisen- und Stahlhärtung haben. Ferromagnetisches γ' -Fe₄N wird in Stickstoff-Atmosphäre aus Eisen gebildet. Es weist einen schmalen Homogenitätsbereich auf und ist nur bei Temperaturen unterhalb von 753 K stabil. Es kristallisiert im inversen Perowskit-Strukturtyp, in dem die Eisen-Atome eine kubisch dichte Packung (kdP) bilden, in der ein Viertel der Oktaederlücken vollständig geordnet durch Stickstoff besetzt sind [92, 93]. In der idealen Struktur von ϵ -Fe₃N ist ein Drittel der Oktaederlücken in einer hexagonal dichten Packung (hdP) aus Eisen-Atomen durch Stickstoff besetzt. Die NFe₆-Oktaeder sind in dieser Anordnung ausschließlich

Abbildung 4.1: Phasendiagramm des binären Systems Fe-N nach [90, 91].

über gemeinsame Ecken verknüpft [93]. Jedoch ist bekannt, dass die ϵ -artigen Nitride einen sehr breiten Homogenitätsbereich aufweisen [94, 90], was nur mit einer Fehlordnung möglich ist. Die ζ -Fe₂N Phase zeigt wieder einen schmalen Homogenitätsbereich und kristallisiert in einer inversen Variante des α -PbO₂-Strukturtyps. Die Eisen-Atome bilden das Motiv einer leicht verzerrten hdP, in der die Hälfte der Oktaederlücken in jeder Schicht von Stickstoff-Atomen besetzt sind. Die Symmetrie ist orthorhombisch und in jeder Schicht sind die Stickstoff-Atome in zickzack-Ketten parallel zu der orthorhombischen b-Achse angeordnet [95, 96]. Das abgebildete Phasendiagramm ist ein Nichtgleichgewichts-Diagramm. Es stellt nicht das Gleichgewicht zwischen Fe und N_2 bei einem gegebenen Druck dar, sondern bei einigen Nichtgleichgewichts-Zuständen, daß heißt die Bildung der genannten Phasen ist durch die Kinetik beeinflußt [97]. Zwei weitere Eisennitride erscheinen nicht in dem Phasendiagramm Fe–N. Das Stickstoff-reichste Material, γ'' -FeN, nimmt einen Zinkblende-Strukturtyp oder einen Natriumchlorid-Strukturtyp (γ'' -FeN) ein und ist bisher nur in dünnen Filmen mittels Abscheidung durch reaktive Zerstäubung synthetisiert worden [98, 99, 100]. α'' -Fe₁₆N₂ wurde zuerst von Jack synthetisiert und kristallisiert in der Raumgruppe I4/mmm mit den Zellparametern a = 5,72 Å und c = 6,29 Å [101]. Er berichtet von einer Elementarzelle, die eine $2 \times 2 \times 2$ Überstruktur von α -Fe ist, welche ungefähr um 10 % in Richtung der c-Achse durch

den Einbau von Stickstoff-Atomen ausgedehnt ist. Die magnetischen Eigenschaften von α'' -Fe₁₆N₂ haben große Beachtung gefunden, da erste Messungen eine sehr großes magnetisches Moment oberhalb von 3 $\mu_{\rm B}$ angedeutet haben [102, 103, 104]. Bei Proben, die mit verschiedenen Methoden als dünne Filme oder Pulver synthetisiert wurden konnte dieses große magnetische Moment nicht wieder reproduzierbar gemessen werden [105, 106, 107, 108, 109].

Früher durchgeführte *in-situ* Hochdruck-Röntgenbeugungsmessungen an einer zweiphasigen Probe (bestehend aus γ' -Fe₄N und ϵ -Fe₃N_{1+x}) zeigen, das für γ' -Fe₄N nahe 30 GPa keine Röntgenintensitäten mehr zu detektieren sind [17]. Die Autoren interpretierten diese Beobachtung als Phasenumwandlung. Jedoch bemerkten sie, dass eine Umwandlung zu einer ϵ -artigen Kristallstruktur nicht ersichtlich wäre, da die Reflexe von der zweiten ursprünglichen Phase überdeckt werden. Eine *in-situ* XRMCD-Studie (X-ray magnetic circular dichroism) an γ' -Fe₄N bis zu 11 GPa [110] und zwei *in-situ* Untersuchungen mit Mößbauer-Spektroskopie [111, 112] bis zu 12 GPa zeigen alle eine druckinduzierte Demagnetisierung, welche auch auf eine Phasenumwandlung hinweisen könnte. Andererseits werden keine strukturellen Veränderungen bei energiedispersiven Röntgenbeugungsexperimenten bis zu 8 GPa beobachtet [110].

4.2 Ergebnisse und Diskussion

4.2.1 Synthese und Charakterisierung von Eisennitriden

Die Synthese der Eisennitride erfolgt in der Strömungsapparatur durch Nitridierung von feinteiligem Eisenpulver in einem Korundschiff bei ausgewählten Temperaturen und Synthesedauern in einer Gasatmosphäre aus reinem Ammoniak oder ausgewählten Ammoniak/Wasserstoff-Gasmischungen. Wasserstoff wird als zweites Synthesegas neben Ammoniak für die Synthese von γ' -Fe₄N und ϵ -Fe₃N_{1+x} mit x < 0,39 benötigt, um die Nitrierkennzahl ($K_N = p_{NH_3}/p_{H_2}^{3/2}$) zu verringern. Die Nitrierkennzahl kennzeichnet das Nitridierpotential der Ofen-Atmosphäre bei der Synthese der Eisennitride [113]. Abbildung 4.2 zeigt das Lehrer-Diagramm [114] mit den Grenzen der Eisennitrid-Phasen und Isokonzentrationslinien für die ϵ -Eisennitride [115].

Röntgenographisch phasenreines γ' -Fe₄N wird aus feinteiligem Eisen-Pulver in einer Gasmischung aus Ammoniak und Wasserstoff (30 sccm/30 sccm) bei 490 °C und einer Synthesedauer ab 24 h synthetisiert. Abbildung 4.3 zeigt das RöntgenPulverdiffraktogramm von γ' -Fe₄N. Lehrer [114] synthetisierte phasenreines γ' -Fe₄N bei 480 °C mit Ammoniak-Gehalten des einströmenden Gasgemisches zwischen 24,2 und 49,9 %.

Wird bei der Synthese eines ϵ -typischen Eisennitrids nur Ammoniak als Synthesegas eingesetzt, bildet sich ein Stickstoff-reiches Eisennitrid (ϵ -Fe₃N_{1,39}) bei 550 °C und einer Synthesedauer von 6 h. Abbildung 4.4 zeigt das Röntgen-Pulverdiffraktogramm von ϵ -Fe₃N_{1,39}. Röntgenographisch phasenreines ϵ -Fe₃N_{1,05} wird aus feinteiligen Eisen-Pulver in einer Gasmischung aus Ammoniak und Wasserstoff (245 sccm/55 sccm) bei 550 °C und einer Synthesedauer von 6 h synthetisiert. Wird bei der Synthese dieser ϵ -Phase auch mit einem Gesamtgasstrom (Ammoniak und Wasserstoff) von 60 sccm gearbeitet, ist es nicht möglich, eine phasenreine Probe dieser Zusammensetzung zu synthetisieren. Als zweite Phase ist immer auch γ' -Fe₄N röntgenographisch nachzuweisen. Der Grund hierfür liegt vermutlich in Gaszersetzungsreaktionen von Ammoniak, die durch den eher langsamen Gasstrom verursacht werden. Dies kann zuverlässig durch eine deutliche Erhöhung des Gesamtgasstromes um den Faktor 5 auf 300 sccm verhindert werden. Abbildung 4.5 zeigt das Röntgen-Pulverdiffraktogramm von ϵ -Fe₃N_{1,05}.

Röntgenographisch phasenreines ζ -Fe₂N wird aus feinteiligem Eisen-Pulver in reinem Ammniak (60 sccm) bei 435 °C und einer Synthesedauer ab 24 h mit einer Abkühlrate von 50 °C nach [93] synthetisiert. Abbildung 4.6 zeigt das Röntgen-Pulverdiffraktogramm von ζ -Fe₂N. Die Diffraktogramme der Proben sind mit berechneten Diagrammen mit Daten aus [93] für γ' -Fe₄N, [116] für ϵ -Fe₃N_{1,05}, [116] für ϵ -Fe₃N_{1,39} und [96] für ζ -Fe₂N unterlegt.

Die Zusammensetzung der Eisennitride berechnet sich aus der chemischen Analyse zu ϵ -Fe₃N_{1,05±3}O_{0,017±1} [$w(O) = 0,148\pm0,007$ %, $w(N) = 7,96\pm0,30$ %], ϵ -Fe₃N_{1,39±1} [$w(N) = 10,72\pm0,03$ %, w(O) < NWG: 0,25 %], ζ -Fe₂N_{0,986±6}O_{0,0252±8} [$w(O) = 0,32\pm0,01$ %, $w(N) = 10,97\pm0,07$ %] und γ' -Fe₄N_{0,995±5} [$w(N) = 5,87\pm0,03$ %, w(O) < NWG: 0,25 %]. Alle angegebenen Werte sind Mittelwerte von drei voneinander unabhängig durchgeführten Messungen. Wasserstoff ist in allen Proben unterhalb der Nachweisgrenze ($w(H) \le 0,008$ %) vorhanden.

Die TG-Messungen werden im Temperaturbereich von 25 °C $\leq T \leq 850$ °C durchgeführt und zeigen die metastabile Natur der Eisennitrid-Phasen. Bei einer Heizrate von 10 Kmin⁻¹ in Argonatmosphäre beginnt die Zersetzung von γ' -Fe₄N bei 550 °C (Abbildung 4.7). Die Zersetzung in Eisen-Pulver ist bei ungefähr 730 °C mit einem Gewichtsverlust von 5,74 % abgeschlossen, was einer Zusammensetzung von γ' -Fe₄N_{0,97} entspricht; der theoretische Gewichtsverlust beträgt bei der Zerset-

Abbildung 4.2: Lehrer-Diagramm [114] (schematische Darstellung) mit Grenzen der Eisennitrid-Phasen und Isokonzentrationslinien für die ϵ -Eisennitride (rot gepunktete Linien) [115].

Tabelle 4.1: Übersicht der synthetisierten Eisennitride mit Zusammensetzung undSynthese-Bedingungen.

Synthetisierte	Zusammensetzung berechnet	Synthese-Bedingungen
Figure it is a		
Eisennitride	aus chemischer Analyse	
γ' -Fe ₄ N	γ' -Fe No oor $+r$	H _a : 30 sccm NH _a : 30 sccm
/ 10410	/ 10410,995±5	
		490 °C, ab 24 h
ϵ -Fe ₃ N _{1+x}	ϵ -Fe ₃ N _{1.05±3} O _{0.017±1}	$H_2: 55 \text{ sccm}, NH_3: 245 \text{ sccm}$
		550 °C, 6 h
c For N.	c For Neares	NH ₂ : 60 seem
$e^{-1}e_{31}e_{1+x}$	$e^{-1}e_{31}v_{1,39\pm 1}$	1113. 00 Seeni,
		550 °C, 6 h
ζ-Fe ₂ N	ζ -Fe ₂ N _{0.986+6} O _{0.0252+8}	NH_3 : 60 sccm,
5 2	3 2 0,300±0 0,0202±0	425 00 1 04 1
		435 °C, ab 24 h

Abbildung 4.3: Röntgen-Pulverdiffraktgramm ($\lambda = 0.70930$ Å) von γ' -Fe₄N (schwarz) mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus [93].

Abbildung 4.4: Röntgen-Pulverdiffraktgramm ($\lambda = 0.70930$ Å) von ϵ -Fe₃N_{1,39} (schwarz) mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus [116].

Abbildung 4.5: Röntgen-Pulverdiffraktgramm ($\lambda = 0.70930$ Å) von ϵ -Fe₃N_{1,05} (schwarz) mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus [116].

Abbildung 4.6: Röntgen-Pulverdiffraktgramm ($\lambda = 0.70930$ Å) von ζ -Fe₂N (schwarz) mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus [96].

Abbildung 4.7: TG-Messung für γ' -Fe₄N: Die TG-Kurve ist bei einer Heizrate von 10 Kmin⁻¹ in Argonatmosphäre gemessen worden. Es ist eine Auftriebskorrektur mithilfe einer Leermessung durchgeführt worden.

zung von γ' -Fe₄N 5,90 %. Abbildung A.1 zeigt das Röntgen-Pulverdiffraktogramm nach der TG. Die Zersetzung einer Stickstoff-reichen Probe ϵ -Fe₃N_{1,39} aus dem weiten Homogenitätsbereich der ϵ -Eisennitride, die hier stellvertretend gemessen worden ist, verläuft in zwei Stufen (Abbildung 4.8). Die ϵ -typische Probe zersetzt sich ab ungefähr 440 °C mit einem Gewichtsverlust von 4,39 % zu γ' -Fe₄N. Die zweite Stufe der Zersetzung zu Eisen-Pulver beginnt bei etwa 630 °C mit einem Gewichtsverlust von 5,41 %, was einer Zusammensetzung von γ' -Fe₄N_{0.92} entspricht und ist bei 750 °C abgeschlossen. Der gesamte Gewichtsverlust beträgt 9.8 % und entspricht einer Zusammensetzung von ϵ -Fe₃N_{1,27}. Abbildung A.2 zeigt das Röntgen-Pulverdiffraktogramm nach der TG. Die Zersetzung von ζ -Fe₂N verläuft in zwei Stufen (Abbildung 4.9). ζ -Fe₂N zersetzt sich ab ungefähr 440 °C mit einem Gewichtsverlust von 5,74 % zu γ' -Fe₄N. Die zweite Stufe der Zersetzung zu Eisen-Pulver beginnt bei etwa 630 °C mit einem Gewichtsverlust von 5,27 %, was einer Zusammensetzung von γ' -Fe₄N_{0,89} entspricht und ist bei 730 °C abgeschlossen. Der gesamte Gewichtsverlust beträgt 11,01 %, was einer Zusammensetzung von ζ -Fe₂N_{0.99} entspricht und der berechnete theoretische Gewichtsverlust bei der Zersetzung von ζ -Fe₂N beträgt 11,14 %. Abbildung A.3 zeigt das Röntgen-Pulverdiffraktogramm nach der TG.

Abbildung 4.8: TG-Messung für ϵ -Fe₃N_{1,39}: Die TG-Kurve ist bei einer Heizrate von 10 Kmin⁻¹ in Argonatmosphäre gemessen worden. Es ist eine Auftriebskorrektur mithilfe einer Leermessung durchgeführt worden. Die in zwei Stufen verlaufende Zersetzung von ϵ -Fe₃N_{1,39} über γ' -Fe₄N zu reinem Eisen-Pulver ist mit grünen Pfeilen markiert.

Abbildung 4.9: TG-Messung für ζ -Fe₂N: Die TG-Kurve ist bei einer Heizrate von 10 Kmin⁻¹ in Argonatmosphäre gemessen worden. Es ist eine Auftriebskorrektur mithilfe einer Leermessung durchgeführt worden. Die in zwei Stufen verlaufende Zersetzung von ζ -Fe₂N über γ' -Fe₄N zu reinem Eisen-Pulver ist mit grünen Pfeilen markiert.

4.2.2 *In-situ* Röntgenbeugung von ε-Fe₃N mit Synchrotronstrahlung unter Druck in einer Diamantstempelzelle

In-situ Röntgenbeugungsexperimente mit Synchrotronstrahlung werden bei Zimmertemperatur an einer einphasigen Probe mit der analytischen Zusammensetzung ϵ -Fe₃N_{1.05+3}O_{0.017+1} in einer Diamantstempelzelle durchgeführt und führen zu der in Abbildung 4.10 gezeigten Druck–Volumen-Abhängigkeit. Die Daten stammen aus zwei Messungen; eine davon mit größeren Druckinkrementen bis zu einem maximal Druck von 33 GPa. Die Daten ergeben keine Anzeichen für eine strukturelle Phasenumwandlung. Die Anpassung der Murnaghan-Zustandsgleichung an die experimentellen Daten mit der Methode der kleinsten Fehlerquadrate ist limitiert bis zu einem Druck von 10 GPa, da die Verfestigung des Druckmediums (Methanol:Ethanol 4:1) bei höheren Drücken diskontinuierliche Veränderungen der Daten zeigt, die auftretenden Scherkräften und/oder Spannungseffekten zu zuschreiben ist. Der Kompressionsmodul wird zu $B_0 = 172(4)$ GPa ($B'_0 = 5, 7$; fixiert. Dieser Wert stammt aus der Verfeinerung und wurde dann fixiert) bestimmt. Da B_0 und B'_0 stark bei der Verfeinerung korrelieren, werden die Ergebnisse gegenüber denen mit der freien Verfeinerung von B'_0 ($B_0 = 177(8)$ GPa, $B'_0 = 5(2)$) bevorzugt und ist in befriedigender Übereinstimmung mit dem Kompressionsmodul $B_0 = 220$ GPa aus quantenchemischen Berechnungen (Tabelle 4.6). Die aus beiden Parameter-Sätzen berechneten Druck–Volumen-Daten sind virtuell identisch. Eine vorhergehende Untersuchung der Kompressibilität mit einer vergleichbaren Technik ergibt Werte für den Kompressionsmodul von $B_0 = 168(10)$ GPa $(B'_0 = 5, 7(1, 5))$ [17]. Diese Probe ϵ -Fe₃N_{1,3} enthielt signifikante Anteile von γ' -Fe₄N [17]. Dies führte sowohl bei der Verfeinerung der Zellparameter als auch bei der Bestimmung der Zusammensetzung zu Ungenauigkeiten. Dennoch sind die Resultate mit den in dieser Arbeit bestimmten Daten innerhalb der experimentellen Fehler identisch. Das Nulldruck-Volumen wird durch eine *ex-situ* Röntgenbeugung am Pulver mit LaB₆ als internen Standard zu $V_0 = 83,73(7)$ Å bestimmt und ist ähnlich zu einem berichteten Wert für das Zellvolumen von V = 84,47 Å für eine vergleichbare Zusammensetzung von ϵ -Fe₃N_{1,10} [116]. Zum Vergleich wird der Kompressionsmodul der hexagonalen Hochdruck-Phase ϵ -Fe zu $B_0 = 165(4)$ GPa $(B'_0 = 5, 33(9), V_0 = 6, 73(1) \text{ cm}^3/\text{mol})$ für Drücke bis zu 300 GPa bestimmt [117].

Abbildung 4.11 zeigt das c/a-Verhältnis der hexagonalen Elementarzelle als Funktion des Drucks. Wie schon früher beobachtet wurde [17], weicht das c/a-

Abbildung 4.10: Druck–Volumen-Daten von ϵ -Fe₃N. Die durchgehende Kurve zeigt das Ergebnis einer Anpassung der Murnaghan-Zustandsgleichung an die experimentellen Daten mit der Methode der kleinsten Fehlerquadrate bis 10 GPa. Offene und geschlossene Symbole repräsentieren voneinander unabhängige Messungen. Die graue, gestrichelte Kurve zeigt das Ergebnis der dichtefunktional-theoretischen Berechnugen [118].

Abbildung 4.11: c/a Verhältnis der hexagonalen Zellparameter von ϵ -Fe₃N als Funktion des Drucks. Offene und gefüllte Symbole repräsentieren voneinander unabhängige Messungen. Die graue, gestrichelte Kurve zeigt das Ergebnis der Dichtefunktional theoretischen Berechnugen [118].

Verhältnis zu niedrigeren Werten verglichen mit dem hypothetischen Wert für eine hexagonal dichte Packung von Eisen bei Normaldruck ab $(0,943 = 1,633/\sqrt{3})$. Bei Zunahme des Drucks, vergrößert sich das c/a-Verhältnis in Richtung des idealen Wertes. Eine mögliche Änderung der Steigung des c/a-Verhältnisses um 15 GPa wird Teil weiterer Untersuchungen sein. Die hexagonale Hochdruck-Phase von elementarem Eisen (ϵ -Fe) zeigt auch eine Abweichung vom idealen Wert (c/a = 1,603), wobei aber das Verhältnis bei Druckzunahme abnimmt [117].

 ϵ -Fe wird generrell als die relevanteste Phase für die Zusammensetzung des inneren Erdkerns betrachtet. Die Geschwindigkeit der Schallwellen in der ϵ -Phase bei hohen Drücken sind von besonderem Interesse, da seismologische Untersuchungen zeigen, dass sich die Schallgeschwindigkeiten im inneren des Erdkerns anisotrop verhalten [119, 120]. Die Kompressions- und Scheer-Geschwindigkeiten (v_p und v_s) von Eisen wurden von Experimenten bis zu 153 GPa auf Druckbedingungen des inneren Erdkerns extrapoliert und mit den Schockwellen-Kurven verglichen und ergeben Werte, die geringfügig höher sind, als die des vorläufigen Referenzmodell der Erde (PREM) [121]. Neuere Untersuchungen zeigen, dass die beobachtete Anisotropie des Erdkerns mit signifikanten Anteilen von ϵ -Fe₃N mit einer geringeren Vorzugsorientierung verglichen mit ϵ -Fe zustande kommen kann [17]. Wie in Abbildung 4.11 gezeigt wird, ist das Verhältnis aus quantentheoretischen Berechnungen in sehr guter Übereinstimmung mit den experimentellen Daten. Offenbar scheint Stickstoff die kristallographische *c*-Richtung deutlich mehr zu stärken, als die *a*-Ebene verglichen mit reinem Eisen (ϵ -Fe).

4.2.3 *In-situ* Röntgenbeugung von γ'-Fe₄N mit Synchrotronstrahlung unter Druck in einer Diamantstempelzelle

In-situ Röntgenbeugungsexperimente mit Synchrotronstrahlung werden bei Zimmertemperatur an einer einphasigen Probe mit der analytischen Zusammensetzung γ' -Fe₄N_{0,995±5} in einer Diamantstempelzelle durchgeführt und führen zu der in Abbildung 4.12 gezeigten Druck–Volumen-Abhängigkeit. Die Anpassung der Murnaghan-Zustandsgleichung [40] an die experimentellen Daten mit der Methode der kleinsten Fehlerquadrate bis zu einem Druck von 33,6 GPa ergibt Werte für den Kompressionsmodul von $B_0 = 155, 8(6)$ GPa mit $B'_0 = 4, 23(6)$ und $V_0 = 54, 798$ Å³, die etwas kleiner sind als die Werte für das untersuchte ϵ -Fe₃N_{1+x} (x = 0, 05) mit $B_0 = 172(4)$ GPa ($B'_0 = 5, 7$; fixiert) [118]. In Abbildung 4.13 sind die Diffrakto-

Abbildung 4.12: Druck–Volumen-Daten von γ' -Fe₄N. Die schwarze durchgezogene Kurve zeigt das Ergebnis einer Anpassung der Murnaghan-Zustandsgleichung an die experimentellen Daten (schwarze Quadrate: steigende Drücke, weiße Quadrate: fallende Drücke) mit der Methode der kleinsten Fehlerquadrate.

gramme bei verschiedenen Drücken in einem Wasserfalldiagramm dargestellt. Bei Drücken oberhalb von 17 GPa zeigen sich drei breite und schwache Zusatzlinien um die (111) und (200) Reflexe des γ' -Fe₄N, wobei sich der intensivste Reflex von γ' -Fe₄N mit einem Zusatz-Reflex überlagert. Mit steigenden Drücken bis zu 33,6 GPa werden diese neuen Reflexe intensiver, dennoch bleiben die Reflexe des γ' -Fe₄N intensiv, schmal und dominierend. Die Abbildung 4.15 zeigt ein Diffraktogramm bei dem maximalen Druck von 33,6 GPa in dem gepunkteten, inhomogenen Teil des Pulvers in der Diamantstempelzelle innerhalb der Metalldichtung (Abbildung 4.14). Das Diffraktogramm in dem inhomogenen, gepunkteten Bereich weist etwas intensivere Zusatzlinien auf und zeigt vermutlich die beginnende Keimbildung der ϵ -Phase. Nach Ablassen des Drucks bleiben diese neugebildeten Reflexe unverändert. Die Zusatzlinien können durch eine beginnende druckinduzierte Phasenumwandlung zu einer ϵ -artigen Eisennitrid-Phase bei 17 GPa sinnvoll erklärt werden, welche durch dichtefunktional-theoretische Berechnungen [122] vorhergesagt wurde und bei Zimmertemperatur kinetisch gehindert zu sein scheint. Die Verfeinerung der Zellparameter der neugebildeten ϵ -artigen Eisennitrid-Phase nach Ablassen des Druckes (1 GPa) führt zu a = 4,605(5) Å, c = 4,381(5) Å verglichen mit a = 4,7160 Å, c = 4,3859 Å für ϵ -Fe₃N_{1.10} [116]. Dies gilt natürlich unter der Eischränkung, dass insgesamt nur drei Reflexe, die auch noch sehr breit sind, wenig Information darstellen.

Abbildung 4.13: Röntgen-Pulverdiffraktogramme von γ' -Fe₄N aufgenommen mit Synchrotronstrahlung ($\lambda = 0, 425$ Å) bei verschiedenen Drücken in einer Diamantstempelzelle mit Helium als druckübertragendes Medium bei Drücken von 0,57 GPa (unten) bis zu 33,6 GPa (oben). Die intensivsten Reflexe von γ' -Fe₄N sind mit schwarzen Pfeilen markiert und die Zusatz-Reflexe von der ϵ -artigen Eisennitrid-Phase mit roten Pfeilen. Der intensivste Reflex des Druckmediums ist mit einem blauen Stern markiert.

Abbildung 4.14: Ausschnitt aus der Metalldichtung der Diamantstempelzelle bei 33,6 GPa mit dem inhomogenen, gepunkteten Bereich der Probe.

Abbildung 4.15: Das Röntgen-Pulverdiffraktogramm ist bei 33,6 GPa im inhomogenen, schwarz gepunkteten Teil des Pulvers in der Metalldichtung aufgenommen (Abbildung 4.14). Die intensivsten Relexe von γ' -Fe₄N - (111) und (200) - sind im Diffraktogramm markiert. Die drei neuen, breiten und wenig intensiven Reflexe sind mit roten Pfeilen markiert.

4.2.4 In-situ Röntgenbeugung von ζ-Fe₂N mit Synchrotronstrahlung unter Druck in einer Diamantstempelzelle

In-situ Röntgenbeugungsexperimente mit Synchrotronstrahlung werden bei Zimmertemperatur an einer einphasigen Probe mit der analytischen Zusammensetzung ζ -Fe₂N_{0,986±6}O_{0,0252±8} in einer Diamantstempelzelle durchgeführt und führen zu der in Abbildung 4.16 gezeigten Druck–Volumen-Abhängigkeit. Die Anpassung der Murnaghan-Zustandsgleichung [40] an die experimentellen Daten mit der Methode der kleinsten Fehlerquadrate bis zu einem Druck von 25 GPa ergibt Werte für den Kompressionsmodul von $B_0 = 162, 1(8)$ GPa mit $B'_0 = 5, 24(8)$, die sehr nah bei den Werten für das untersuchte ϵ -Fe₃N_{1+x} (x = 0, 08) mit $B_0 = 172(4)$ GPa ($B'_0 = 5, 7$; fixiert) und das γ' -Fe₄N_{0,995±5} mit $B_0 = 155, 8(6)$ GPa ($B'_0 = 4, 23(6)$) liegen [118]. Die korrespondierende Kurve der Druck–Volumen-Daten aus den Bandstrukturberechnungen und der berechnete Kompressionsmodul von ζ -Fe₂N ($B_0 = 220(4)$ GPa, $B'_0 = 4, 4(1), V_0 = 112, 8(1)$] sind in akzeptabler Übereinstimmung mit den experimentellen Daten (Abbildung 4.16). Die anisotrope Kompressi-

on der verschiedenen kristallographischen Richtungen der orthorhombischen Elementarzelle ist in Abbildung 4.17 gezeigt. Obwohl die Röntgenbeugungs-Diagramme der Eisennitride mit ζ - und ϵ -artiger Ordnung sehr ähnlich sind (Abbildung 4.27) zeigt zum Vergleich die Röntgenbeugungs-Diagramme von ζ -Fe₂N und ϵ -Fe₃N_{1.5} bei Umgebungsdruck), ist die Unterscheidung der beiden Phasen in den *in-situ* Hochdruck-Röntgenbeugungsexperimenten eindeutig möglich. In Abbildung 4.18 sind ausgewählte Diffraktogramme bei verschiedenen Drücken in einem Wasserfalldiagramm dargestellt. Die Diffraktogramme von ζ -Fe₂N zeigen, aufgrund der orthorhombischen Verzerrung der hexagonal dichten Packung von Eisen, einige Reflexaufspaltungen im Vergleich zu der ϵ -Phase. Bedingt durch die Verbreiterung der Reflexe bei steigenden Drücken verschwinden diese Aufspaltungen. Die betreffenden Reflexe weisen jedoch Schultern oder eine vergrößerte Halbwertsbreite der Reflexe auf und sind in einem vergrößerten Ausschnitt des Wasserfalldiagramms in Abbildung 4.19 dargestellt. Zusätzlich sind zwei schwache Reflexe bei kleinen Beugungswinkeln (etwa 7° und 9°) in allen Diffraktogrammen bis zu den höchsten Drücken vorhanden Abbildung 4.19 und zeigen den Erhalt der ζ -Phase, während ein schwacher Reflex der ϵ -Phase, der bei einem anderen Beugungswinkel (etwa 8°) sichtbar sein müßte, nicht vorhanden ist. Die in-situ Hochdruck Röntgenbeugung mit Synchrotronstrahlung in einer Diamantstempelzelle bei Umgebungstemperatur zeigt eindeutig, dass ζ -Fe₂N bis zu Drücken von 25 GPa stabil bleibt und keine Phasenumwandlung bei Zimmertemperatur zeigt.

Abbildung 4.16: Druck–Volumen-Daten von ζ -Fe₂N. Die schwarze durchgezogene Kurve zeigt das Ergebnis einer Anpassung der Murnaghan-Zustandsgleichung an die experimentellen Daten mit der Methode der kleinsten Fehlerquadrate. Die korrespondierende Kurve der Daten aus den Bandstrukturrechnungen (graue Quadrate) ist in grau dargestellt.

Abbildung 4.17: Druckabhängigkeit der Zellparameter der orthorhombischen Elementarzelle von ζ -Fe₂N. Die offenen Symbole zeigen das Ergebnis der Bandstrukturrechnungen, die ausgefüllten Symbole zeigen die experimentellen Daten. Die durchgezogenen Kurven zeigen die Anpassungen der Murnaghan-Zustandsgleichung an die Daten mit der Methode der kleinsten Fehlerquadrate.

Abbildung 4.18: Röntgenpulverdiffraktogramme von ζ -Fe₂N aufgenommen mit Synchrotronstrahlung (0,431 Å) bei verschiedenen Drücken in einer Diamantstempelzelle. Die Überstrukturreflexe bei kleinen Winkeln und die Aufspaltung der Reflexe bei 18° zeigt den Erhalt der ζ -typischen Ordnung bis zu Drücken von 25 GPa.

Abbildung 4.19: Ausschnitt aus dem Wasserfalldiagramm der Röntgenpulverdiffraktogramme von ζ -Fe₂N zur Verdeutlichung des Erhalts der ζ -typischen Ordnung bis zu Drücken von 25 GPa (Überstrukturreflexe bei kleinen Winkeln und die Aufspaltung der Reflexe bei 18°).

4.2.5 Hochdruck-Hochtemperatur Einkristallzucht von ϵ -Fe₃N

Bei Hochdruck-Hochtemperatur Versuchen in einer Vielstempel-Presse bei p =15(2) GPa und T = 1600(200) K für eine Dauer von 5 min wird das mikrokristalline ϵ -Fe₃N_{1.05+3}O_{0.017±1} Pulver reproduzierbar in ein kompaktes, gut kristallisiertes Material umgewandelt. Abbildung 4.20 zeigt Makrofotos eines Querschnitts durch das Tiegelmaterial (h-BN, dunkelgrau) und das vollkristallin umgewandelte ϵ -Fe₃N_{1.08} (hell metallisch glänzend) und eines Bruchstücks. Dies ist die erste Synthese von massiven binären Eisennitrid-Einkristallen; es wird nur einmal in der Literatur von der Synthese eines stark Nickel haltigen γ' -(Fe,Ni)₄N berichtet [93, 123]. Die Bestimmung der Zellparameter mit Röntgen-Pulverdiffraktometrie (hexagonal, a = 4,7241 Å, c = 4,3862 Å verglichen mit a = 4,7160 Å, c = 4,3859 Å für ϵ -Fe₃N_{1,10} [116]) zeigt, dass sich die Zusammensetzung während der Hochdruck-Hochtemperatur-Behandlung nicht signifikant verändert hat. Früher wurde bei Neutronenbeugungsuntersuchungen an Pulvern von ϵ -Fe₃N_{1+x} (x = 0, 0,10, 0,22) eine zunehmende Stickstoff Unordnung bis zu Temperaturen um 700 K beobachtet, während bei den Proben oberhalb von 750 K eine beginnende Zersetzung zu beobachten ist [116, 124]. Bei Betrachtung der thermischen Instabilität der Eisennitride, die zur Zersetzung bei erhöhten Temperaturen führt, ist die Kristallisation von ϵ -Fe₃N bei Erhalt des Stickstoff-Gehaltes als diffusionskontrollierter Prozess zu verstehen, der durch die hohe Temperatur ausgelöst wird. Der extern angelegte hohe Druck hingegen wird benötigt, um einen Stickstoff-Verlust zu verhindern. Kristalline Bruchstücke unterschiedlicher Größe werden aus verschiedenen Hochdruck-Experimenten für die Röntgeneinkristallbeugung ausgewählt. Größere Kristalle weisen bei hohen Beugungswinkeln eine Aufspaltung der Reflexe aufgrund ausgeprägter Mosaizität der Proben auf. Deshalb wird ein sehr kleiner Kristall der Größe von 20 μ m ausgewählt. Die Informationen zur Datensammlung und die kristallographischen Eigenschaften sind in Tabelle 4.2 aufgeführt. Die Kristallstruktur von ϵ -Fe₃N basiert auf dem Motiv einer hexagonal dichten Kugelpackung von Eisen mit Stickstoff in den Oktaederlücken. Die ϵ -Phase weist im Gegensatz zu den binären Nitriden γ '-Fe₄N und ζ -Fe₂N einen sehr breiten Homogenitätsbereich im Sinne von ϵ -Fe₃N_{1±x} auf. Abbildung 4.1 zeigt das allgemein akzeptierte Phasendiagramm Fe–N [90, 91]. Bereits seit den Pionierarbeiten werden verschiedene Raumgruppentypen diskutiert, um die kristallographische Ordnung von Stickstoff in ϵ -Fe₃N innerhalb des Homogenitätsbereichs von ϵ -Fe₃N_{1±x} zu beschreiben [91]. Die Stickstoff-Atome besetzen die Oktaederlücken in dem Motiv einer hexagonal dichten Packung von Eisen und weisen eine Fernordnung auf, die zu einer Vergrößerung

Abbildung 4.20: ϵ -Fe₃N_{1,08} nach einer HP-HT Synthese. Links: Makrofoto eines Querschnitts durch das Tiegelmaterial (*h*-BN, dunkelgrau) und das vollkristallin umgewandelte ϵ -Fe₃N_{1,08} (hell metallisch glänzend, Durchmesser der Probe 2,5 mm). Rechts: Makrofoto eines Bruchstücks ϵ -Fe₃N_{1,08} (lange Bildkante 0,3 mm).

der Elementarzelle um $\sqrt{3} \times \sqrt{3} \times 1$, verglichen mit einfachen hdP Elementarzelle, führt. Wie schon früher diskutiert wurde, basieren die Ordnungsmechanismen auf Beschreibungen in den Raumgruppentypen $P6_322$ und P312 [116]. Abbildung 4.21 visualisiert die bedeutensten strukturellen Besonderheiten, die unterhalb diskutiert werden.

Die ideale Kristallstruktur von ϵ -Fe₃N (ϵ -Fe₃N_{1±x} mit x = 0) mit einer geordneten Anordnung der Stickstoff-Atome ist mit dem Raumgruppentyp $P6_{3}22$ kompatibel: Alle Stickstoff-Atome besetzen die Wyckoff-Position 2c und bilden ein dreidimensionales Netzwerk von ausschließlich über Ecken verknüpften Fe_{6/2}N-Oktaedern. Zusätzliche Oktaederlücken innerhalb der hexagonal dichten Packung von Eisen befinden sich auf den Wyckoff-Positionen 2b und 2d, die beide in diesem idealisierten Strukturmodell unbesetzt sind. Eine Besetzung der 2*d*-Lage würde zur Vernüpfung des mit N zentrierten Oktaeders auf der Position 2c in Richtung [001] über Fläche verknüpfen, deshalb ist es unwahrscheinlich, dass diese besetzt werden aufgrund kurzer interatomarer Abstände und daraus resultierender Coulombscher Abstoßung, wenn Stickstoff als negativ geladen angesehen wird. Dies gilt auch für Proben mit einem größeren Stickstoff-Gehalt oder für eine Realstruktur, die eine partielle Unordnung von Stickstoff aufweist. Für eine vorliegende Zusammensetzung von ϵ -Fe₃N_{1+x} müssen für zusätzlich besetzte 2b-Positionen zwei ähnliche Modelle in Erwägung gezogen werden: Im Raumgruppentyp $P6_322$ führt eine Besetzung der 2b-Lage zu zusätzlichen Stäben von flächenverknüpften Oktaedern-NFe₆ entlang [001], die mit den Oktaedern auf der 2c-Lage über gemeinsame Kanten vernüpft sind. Die Besetzung ist bis 50 % ungeordnet möglich, welches die Anzahl der Flächenkontakte begrenzt. Für kleine Werte von x ist eine zufällige Besetzung der Oktaeder, sowohl innerhalb eines Stabes als auch in verschiedenen parallelen Stäben

möglich und deshalb ist eine Beschreibung im Raumgruppentyp $P6_322$ möglich.

Eine geordnete Besetzung von 50 % der kristallographisch äquivalenten Positionen 2b in P6₃22 in einer alternierenden Weise entlang [001] würde durch eine Symmetrieerniedrigung zum Raumgruppentyp P312 führen, wenn alle parallelen Stäbe in Phase sind. Diese Symmetrieerniedrigung zu P312 ist für große Werte von x wahrscheinlich, um die Flächverknüpfung der Oktaeder zu vermeiden. Die Situation in ϵ -Fe₃N_{1±x} ist jedoch noch komplexer, da für jedes Modell mit der Realstruktur der Besetzungsfaktor der 2c-Lage unter 1 in Erwägung gezogen werden muß und eine entsprechend ansteigende partielle Besetzung der zusätzlichen Oktaederlücken.

Die Tabellen 4.2 - 4.4 zeigen die Ergebnisse der Strukturverfeinerung eines recht kleinen Kristalls in guter Qualität in den beiden zu betrachtenden Strukturmodellen. Die Verfeinerungen ergeben für beide Raumgruppentypen eine Realstruktur mit etwa 10 % Leerstellen der Stickstoff-Position, d.a. der Wyckoff-Lage 2c in $P6_322$ beziehungsweise der Wyckoff-Lage 1a und 1d in P312.

Eine eindeutige Unterscheidung der Raumgruppentypen $P6_{3}22$ und P312 kann durch die Analyse der Reflexionsbedingung (00l) mit (l = 2n + 1) getroffen werden. Jedoch sind die Intensitäten der Reflexe (00l) im Fall von ϵ -Fe₃N nur in der Größenordnung von $3\sigma(I)$. Dies ist der insgesamt geringen Beugungsintensität des kleinen Kristalls und des kleinen Wertes von x in Kombination mit sehr kleinen lokal geordneten Domänen zuzuschreiben. Jedoch ist in Übereinstimmung mit der Landau-Theorie [125] ein Wechsel des Raumgruppentyps innerhalb eines Homogenitätsbereiches nicht möglich. So können die Ergebnisse dieser Untersuchung mit Ergebnissen früherer Untersuchungen und ergänzenden Daten kombiniert werden. Die Messungen von größeren Kristallen, die für die Datensammlung mit Röntgenbeugung nicht geeignet sind, weisen immer signifikante Intensitäten für die Reflexe (00l) mit l = 2n + 1 (n = 0, 1) auf. Zusätzlich belegt eine führe Studie bei einer Probe der Zusammensetzung von $Fe_3N_{1.22}$ [116] einen schwachen Reflex (001) in Neutronenbeugungsdaten. Eine nähere Betrachtung der Tabelle 4.2 zeigt umgekehrt etwas bessere Gütefaktoren für die Verfeinerung im Strukturmodell im Raumgruppentyp $P6_{3}22$. Die Gütefaktoren sind aufgrund einer besseren Beschreibung der Restelektronendichte in der letzten Differenzelektronenkarte geringer. Der größte Peak in P312 entspricht der Position, die in $P6_322$ zufällig besetzt ist, dennoch konvergiert die Besetzung zu Null und zu physiklisch unvernünftigen Auslenkungsparametern bei der Verfeinerung.

Auch eine lokale Ordnung, die kompatibel mit der Symmetrie in P312 ist, kann

Abbildung 4.21: Vergleich der Idealstruktur von ϵ -Fe₃N (mitte) im Raumgruppentyp $P6_322$ und den Modellen für die Realstruktur der ϵ -Phase unter Berücksichtigung der Unordnung der Stickstoff-Lage und der Abweichung von der idealen Zusammensetzung. Links: Modell in $P6_322$, eine zusätzliche Besetzung der Lage 2b ist durch schwarze Kugeln in offenen Oktaedern gekennzeichnet. Rechts: Modell in P312, die Lage 2c splittet in die Lagen 1a und 1d mit einer geringfügig verschiedenen und von 1 abweichenden Besetzung und ist durch scharze Kugeln in offenen Oktaedern dargestellt. Die kleinen, schwarzen Kugeln zeigen die unbesetzte Lage 1e.

zu Reflexen der Klasse (00*l*) mit l = 2n + 1 führen, die in $P6_322$ verboten sind. Für diese Reflexe sind Intensitäten, die in der Größenordnung von 0,05 % des stärksten Reflexes der $P6_322$ Teilstruktur liegen, bei der gegebenen Zusammensetzung zu erwarten. Somit deuten sowohl die aktuellen als auch frühere Beugungsdaten übereinstimmend eher auf ein Strukturmodell mit der Symmetrie P312 als auf $P6_322$ hin. Außerdem führt die Verfeinerung in P312 zu einer Zusammensetzung, die viel näher bei der aus der chemischen Analyse berechneten Zusammensetzung liegt, als die alternative Verfeinerung in $P6_322$. In dem bevorzugten Modell in P312 wird lokal eine abwechselnde Anordnung von besetzten und leeren zusätzlichen Oktaederlücken eingenommen. Diese Polyeder sind zu einem dreidimensionalen Netzwerk durch Eckenverknüpfung mit dem zweiten Typ von Oktaedern verbunden, die im Zentrum eine Besetzung von etwas unterhalb von 1 aufweisen. Die verfeinerten Abstände Fe-N, die in Tabelle 4.5 gezeigt werden, liegen im Bereich anderer Eisennitrid-Phasen.

Berechnungen der Gesamt-Energien für ϵ -Fe₃N_{1+x} führen zu den in der Tabelle 4.6 aufgeführten Werten. Für ϵ -Fe₃N bilden die Raumgruppentypen P312 und P6₃22 identische Strukturen. In Übereinstimmung damit sind die Werte für die Energie und das Volumen exakt dieselben. Die Bildungsenthalpie ($\Delta H = -28, 6 \text{ kJ/mol}$) ist verglichen mit den Enthalpien von ζ -Fe₂N (-12,1 KJ/mol; exp, -3,8 kJ/mol [126]) und γ' -Fe₄N (-20,4 kJ/mol; exp, -11,1 kJ/mol [126]) stärker exotherm. Für ϵ -Fe₃N_{1,1} wird untersucht, welche Wyckoff-Position bevorzugt mit zusätzlichen Stickstoff-Atomen besetzt wird. Ausgehend von einer hdP des Elements Eisen stehen 4 mögliche Wyckoff-Lagen zur Verfügung (2a, 2b, 2c, 2d). In Tabelle 4.7 wird gezeigt, dass die Positionen 2c und 2d deutlich bevorzugt werden. Die Positionen 2b (99 kJ/mol) und 2a (301 kJ/mol) sind weniger geeignet. Der Energieunterschied kann mit den COHPs (Abbildung 4.22) und mit der Koordination der Stickstoff-Atome durch die Eisen-Atome erklärt werden. Bei Besetzung der Position 2a, wird Stickstoff durch drei in einer Ebene liegende Eisen-Atome umgeben. Dadurch zeigt das COHP Diagramm starke antibindende Fe–N Wechselwirkungen unterhalb des Fermi-Niveaus. Die Stickstoff-Atome auf der Position 2b liegen in einer Oktaederlücke. Diese Oktaeder würden über Fläche verknüpft, was gemäß der dritten Paulingschen Regel aus elektrostatischen Gründen ungünstig ist und die entstehende Kette der Oktaeder verursacht die kleinen antibindenden Wechselwirkungen genau unterhalb des Fermi-Niveaus. Die Positionen mit der geringsten Energie sind die 2c und 2d Positionen. Die Stickstoff-Atome sind in beiden Fällen in einer Oktaederlücke lokalisiert, wobei die Oktaeder hier über Ecken verknüpft sind. Folglich zeigen sich in dem COHP-Diagramm nur bindende Zustände un-

Raumgruppe, Zu-	$P312, \operatorname{Fe_3N}_{1,08(2)}$		$P6_322$, Fe ₃ N _{1,20(2)}
sammensetzung			
a (Å)		4,7241(2)	
c (Å)		4,3862(2)	
$V(Å^3)$		84,773(6)	
Z		2	
$d_{\rm berechnet}$ (g cm ⁻³)	7,154		7,206
μ Ag-K (mm ⁻¹)		12,77	
F(000) (e)	171,1		172,4
<i>hkl</i> Bereich		-4 -9 , ± 8 , -8 -7	
$2\theta_{\rm max} \ ({\rm deg})$		68,0	
gemessene Reflexe		1088	
davon symmetrie-	477		244
unabhängig			
$R_{ m int}$	0,0107		0,0127
verfeinerte Parameter	21		14
$R(F) (F_{o} > 4\sigma(F_{o}))$	0,0189		0,0157
$R({ m F})/\omega R(F^2)$	0,0339/0,0556		0,0252/0,0377
(alle Reflexe)			
GOF (F^2)	1,129		1,188
$\Delta \rho_{\rm max} ~({\rm e}{\rm \AA}^{-3})$	2,44		0,59

Tabelle 4.2: Kristallstrukturdaten von ϵ -Fe₃N_{1+x} für Verfeinerungen in den Raumgruppen P312 und P6₃22.

terhalb des Fermi-Niveaus. Entsprechend der dritten Paulingschen Regel sind die eckenverknüpften Oktaeder (2c, 2d) gegenüber den flächenverknüpften Oktaedern bevorzugt (2b). Die verschiedenen Wyckoff-Positionen werden wie in $P6_322$ auch in P312 verglichen. Die Positionen 1a + 1d weisen die geringste Energie auf und sind dieselben, wie 2c + 2d in $P6_322$, wogegen 1e + 1f der Position 2b entspricht. Der Unterschied zwischen den beiden Raumgruppentypen besteht in der Möglichkeit, die Stickstoff-Atome in P312 anders verteilen zu können. Bei Besetzung der Positionen 1d + 1f, ist die Energie der Struktur nur um 37 kJ/mol höher, als die bei der energetisch günstigsten Kombination 1a + 1d. Somit ist eine Unterscheidung der Raumguppentypen möglich, wenn Stickstoff mehr als nur eine Position besetzt. Hierzu sind verschiedene Superzellen mit der Zusammensetzung Fe₃N_{1,1} entsprechend der Lage-Präferenz von Stickstoff, die in vorhergehenden Berechnungen für die ideale Zusammensetzung Fe₃N₁ gefunden wurde, gebildet worden. P312 ist gegenüber $P6_322$ in ϵ -Fe₃N_{1,1}um 5 kJ/mol begünstigt.

Atom	Lage	x	y	z	Besetzungs- parameter	$U_{\rm eq}$ (Å ²)
Fe N(1) N(2) N(3)	$\begin{array}{c} 6l\\ 1a\\ 1d\\ 1f \end{array}$	$0,99689(6) \\ 0 \\ 1/3 \\ 2/3$	0,33197(7) 0 2/3 1/3	0,24995(5) 0 1/2 1/2	$1 \\ 0,88(2) \\ 0,82(2) \\ 0,46(2)$	0,00670(8) 0,00051(7) 0,0060(9) 0,009(2)
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Fe N(1) N(2) N(3)	$\begin{array}{c} 0,0070(1)\\ 0,005(1)\\ 0,006(1)\\ 0,010(2) \end{array}$	$ \begin{array}{c} 0,0063(1) \\ U_{11} \\ U_{11} \\ U_{11} \\ U_{11} \end{array} $	$\begin{array}{c} 0,0061(1) \\ 0,006(2) \\ 0,006(1) \\ 0,009(4) \end{array}$	-0,00118(7) 0 0 0 0	-0,00042(9) 0 0 0 0	$\begin{array}{c} 0,00280(8) \\ 1/2 \ U_{11} \\ 1/2 \ U_{11} \\ 1/2 \ U_{11} \\ 1/2 \ U_{11} \end{array}$

Tabelle 4.3: Parameter der Kristallstruktur von $\epsilon\text{-}\mathrm{Fe_3N_{1,08(2)}}$ für Verfeinerungen im RaumgruppentypP312

Tabelle 4.4: Parameter der Kristallstruktur von ϵ -Fe₃N_{1,20(2)} für Verfeinerungen im Raumgruppentyp $P6_322$.

Atom	Lage	x	y	z	Besetzungs- parameter	$U_{\rm eq}~({\rm \AA}^2)$
Fe N(1) N(2)	$6g \\ 2c \\ 2b$	$0,33051(6) \\ 1/3 \\ 0$	0 2/3 0	$\begin{array}{c} 0 \\ 1/4 \\ 1/4 \end{array}$	$1 \\ 0,92(1) \\ 0,28(1)$	$\begin{array}{c} 0,00671(8) \\ 0,0075(5) \\ 0,007(2) \end{array}$
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Fe N(1) N(2)	$\begin{array}{c} 0,00737(9) \\ 0,0076(6) \\ 0,008(2) \end{array}$	$\begin{array}{c} 0,0063(1) \\ U_{11} \\ U_{11} \end{array}$	$\begin{array}{c} 0,0061(1) \\ 0,0073(9) \\ 0,006(3) \end{array}$	0,00133(7) 0 0	$1/2 \ U_{23}$ 0 0	$\begin{array}{c} 1/2 \ U_{22} \\ 1/2 \ U_{11} \\ 1/2 \ U_{11} \end{array}$

Tabelle 4.5: Ausgewählte Bindungsabstände (Å) von ϵ -Fe₃N_{1+x} für Verfeinerungen in den Raumgruppentypen P312 und P6₃22 im Vergleich.

	P312	
$\operatorname{Fe}(1)$	$-{ m N}(1) \\ -{ m N}(2) \\ -{ m N}(3)$	$\begin{array}{c} 1,9195(3) \\ 1,9277(3) \\ 1,9096(3) \end{array}$
	$P6_{3}22$	
	$\mathbf{N} \mathbf{T} (1)$	1.0044(1)

	$\mathrm{Fe}_3\mathrm{N}$		$\epsilon\text{-}\mathrm{Fe_3N_{1,1}}$	
	$P312/P6_{3}22$	P312		$P6_{3}22$
Ζ	1	1		1
V (Å ³)	40,5	41,0		41,1
$\Delta H_{\rm f} \; {\rm kJ/mol}$	$-28,\!6$	$-22,\!6$		$-17,\!3$
$B_0 (\text{GPa})$	214	220		-

Tabelle 4.6: Resultate der Gesamt-Energien und weiterer Eigenschaften für ϵ -Fe₃N und ϵ -Fe₃N_{1,1}.

Tabelle 4.7: Relative Energien bei der Besetzung zusätzlicher Oktaederlücken in ϵ -Fe₃N mit Stickstoff-Atomen in der hdP von Eisen in $P6_322$ (links) und P312 (rechts).

Wyckoff Lage	$\Delta E \ (kJ/mol)$	Wyckoff -Lage	$\Delta E \ (kJ/mol)$
2a	301	1e + 1f	99
2b	99	1d + 1f	37
2c	0	1a + 1d	0
2d	0		

Abbildung 4.22: Vergleich der COHPs für Stickstoff auf den verschiedenen Wyckoff-Positionen in ϵ -Fe₃N_{1+x} (*P*6₃22).

4.2.6 Hochdruck-Hochtemperatur Einkristallzucht und Phasenumwandlung von γ'-Fe₄N

 γ' -Fe₄N hat einen engen Homogenitätsbereich, während ϵ -Fe₃N Stickstoff-Gehalte aufweisen kann, die signifikant geringer oder höher sind als die nominelle Zusammensetzung von 3:1 [90, 94]. Nach der Präparation von Einkristallen ϵ -Fe₃N_{1+x} mit x = 0,08 [118] durch eine Hochtemperatur-Hochdruck-Technik ist es nun auch möglich, Einkristalle aus dem Homogenitätsbereich ϵ -Fe₃N mit einem signifikant geringeren Stickstoff-Gehalt zu synthetisieren. Versuche in einer Vielstempel-Presse bei Hochdruck-Hochtemperatur-Bedingungen (p = 15(2) GPa und T = 1600(200) Kfür eine Dauer von 5 min) wandeln das mikrokristalline γ' -Fe₄N_{0.995+5} Pulver reproduzierbar in ein kompaktes, gut kristallisiertes Material einhergehend mit einer druckinduzierten Phasenumwandlung und einer Kristallisation zu ϵ -Fe₃N_{0.94(2)} um. Die druckinduzierte Phasenumwandlung hat sich schon bei *in-situ* Experimenten in einer Diamantstempelzelle angedeutet, war dort jedoch bei der Zimmertemperatur kinetisch gehemmt (Unterabschnitt 4.2.3). Bei einem anderen Versuch in einer Vielstempel-Presse bei (p = 15(2) GPa und T = 1600(200) K für eine Dauer von 5 min) konnte eine Probe mit der Zusammensetzung ϵ -Fe₃N_{0,77(1)} synthetisiert werden. Die Zusammensetung wurde aus der chemischen Analyse berechnet ([w(N)] $= 5,94\pm1,17$ %, w(O) < NG), da von dieser Probe keine geeigneten Kristalle für die Einkristall-Röntgenbeugung vorhanden waren. Abbildung 4.24 zeigt die Röntgenpulverdiffraktogramme vor und nach dem Hochdruckexperiment. Die Beobachtung des ansteigenden Stickstoff-zu-Eisen-Verhältnisses könnte einer Bildung eines geringen Anteils von elementarem Eisen oder einer Stickstoff-ärmeren Phase an den Korngrenzen oder einer Stickstoff-Abreicherung in das BN-Tiegelmaterial zugeschrieben werden und ist zur Zeit noch in der Untersuchung. Dies ist die erste Synthese von Einkristallen eines phasenreinen binären Eisennitrids dieser Zusammensetzung. Es gibt nur einen Bericht von der Präparation eines stark nickelhaltigen Einkristalls γ' -(Fe,Ni)₄N in der Literatur [93, 123]. Röntgenbeugungsuntersuchungen an Pulvern und Einkristallen zeigen die Einphasigkeit in den Präparaten aus der HP-HT-Synthese mit einer hexagonalen Elementarzelle, die zu dem ϵ -artigen Homogenitätsbereich des Phasendiagramms gehört und allgemein als ϵ -Fe₃N bezeichnet wird. Die Bestimmung der Elementarzellparameter mittels Einkristall-Röntgenbeugung führt zu Werten von a = 4,6828(2) Å und c = 4,3705(2) Å verglichen mit a = 4,7160 Å und c = 4,3859 Å für ϵ -Fe₃N_{1.10} [116], was auch eine Zusammensetzung nahe der idealen von ϵ -Fe₃N andeutet. Die Bestimmung der Elementarzellparameter der Probe ϵ -Fe₃N_{0.77(1)} mittels Pulver-Röntgenbeugung und

Abbildung 4.23: Fe–N Phasendiagramm nach [90, 91] mit angedeuteter Phasenumwandlung (roter Pfeil) vom kubischen γ' -Fe₄N zu hexagonalem ϵ -Fe₃N und von orthorhombischen ζ -Fe₂N zu hexagonalem ϵ -Fe₃N.

LaB₆ als innerem Standard führt zu Werten von a = 4,634(1) Å und c = 4,358(1) Å, die nach Somers et al. [127] eine berechnete Zusammensetzung von ϵ -Fe₃N_{0,77} ergeben. Die Phasenumwandlung vom kubischen γ' -Fe₄N zu hexagonalem Eisennitrid bei diesen Temperaturen ist in dem Phasendiagramm für erhöhte Temperaturen oberhalb von 950 K angedeutet (Abbildung 4.23). Jedoch sind die Eisennitride bei diesen Temperaturen thermisch instabil und sollten sich zersetzen. Der hohe angelegte Druck läßt sich auch als notwendig interpretieren, um bei der Kristallisation von ϵ -Fe₃N einen Stickstoff-Verlust zu verhindern. Früher wurde bei Neutronenbeugungsuntersuchungen beobachtet, dass ϵ -Fe₃N_{1+x} (x = 0, 0,10, 0,22) eine zunehmende Stickstoff-Unordnung bis zu Temperaturen von ungefähr 700 K zeigt, während die Proben oberhalb von 750 K beginnen sich zu zersetzen [116, 124]. Die entsprechende Zersetzung von γ' -Fe₄N sollte erartungsgemäß bei etwas höheren Temperaturen beginnen, da eigene TG-Messungen (Abbildung 4.7) für γ' -Fe₄N eine Zersetzung ab 823 K zeigen.

 γ -Fe₄N kristallisiert in einem inversen Perowskit-Strukturtyp, in dem die Eisen-

Abbildung 4.24: Röntgenpulverdiffraktogramme (aufgenommen mit Mo- $K_{\alpha 1}$ Strahlung) von γ' -Fe₄N (schwarz) und dem Produkt (rot) der Hochtemperatur-Hochdruck-Behandlung in der Vielstempel-Presse, das das für eine ϵ -Phase typische Beugungsmuster zeigt.

Atome eine kubisch dichte Packung bilden und die Stickstoff-Atome 1/4 der Oktaederlücken in einer geordneten Weise besetzen, so dass ein Netzwerk von ausschließlich eckenvernüpften NFe $_{6/2}$ -Oktaedern entsteht [92]. Die Kristallstruktur von ϵ -Fe₃N basiert auf dem Motiv einer hexagonal dichten Packung von Eisen mit Stickstoff in Oktaederlücken. Deswegen ist zu erwarten, dass die Phasenumwandlung eher rekonstruktiv als displaziv ist. Im Gegensatz zu den bekannten binären Eisennitriden γ' -Fe₄N und ζ -Fe₂N hat die ϵ -Phase einen extrem breiten Homogenitätsbereich im Sinne von ϵ -Fe₃N_{1±x} (Abbildung 4.23). Die Stickstoff-Atome zeigen eine Fernordnung in den Oktaederlücken in dem Motiv einer hexagonal dichten Packung aus Eisen, die zu einer kristallographisch um $\sqrt{3} \times \sqrt{3} \times 1$ vergrößerten Elementarzelle verglichen mit der Elementarzelle der einfachen hdP führt. Wie im vorangegangenen Kapitel schon diskutiert wurde, können die aussichtsreichsten Ordnungs-Mechnismen in den Raumgruppentypen P312 und $P6_322$ beschrieben werden. Die Strukturverfeinerungen der Einkristallröntgenbeugungsdaten des durch ein Hochdruck-Hochtemperatur-Verfahren synthetisierten Kristalls führen zu der Zusammensetzung ϵ -Fe₃N_{0.94(2)}. Für ein Modell der Realstruktur muß die Besetzung der 2c-Lage unterhalb von eins aufgrund der Zusammensetzung von ϵ -Fe₃N_{1-x} betrachtet werden. Zusätzlich ist ein Entropie-gesteuerter Transfer von Stickstoff

von der 2c-Lage zu weiteren Oktaederlücken zu berücksichtigen und so ist Stickstoff am wahrscheinlichsten auf der 2b-Lage zu erwarten. Dies kann in den zwei folgenden Modellen stattfinden. Im Raumgruppentyp $P6_322$ führt die Besetzung der 2b-Lagen zu zusätzlichen Stäben von flächenverknüpften Oktaedern in Richtung [001], welche mit den Oktaedern der 2c-Position über gemeinsame Kante verknüpft sind. Eine alternative Anordnung im Raumgruppentyp P312 vermeidet die Flächenverknüpfung innerhalb der Stäbe. Die Besetzung der Postionen bedingt durch den Stickstoff-Transport von der 2c-Lage muß aufgrund des Stickstoff-Defizits verglichen mit der idealen Zusammensetzung von ϵ -Fe₃N gering sein. Eine nähere Betrachtung der Röntgenbeugungsdaten ergibt keinen Hinweis auf Reflexe der Klasse 00l mit ungeraden l, was auf den Raumgruppentyp $P6_{3}22$ als richtige Lösung gegenüber P312 hindeuten würde. Jedoch ist zu erwarten, dass diese Reflexe aufgrund der geringen Lage-Besetzung auch in P312 sehr schwach sind. Die Besetzung zusätzlicher Oktaederlücken in beiden Modellen führt zu Besetzungsfaktoren nahe Null und sehr großen Auslenkungsparametern. Tabelle 4.8 zeigt die technischen und kristallographischen Daten und die Tabelle 4.9 und Tabelle 4.10 zeigen die Ergebnisse der Verfeinerungen in beiden Raumgruppen. Für die beobachtete Besetzung zusätzlicher Oktaederlücken in den Stäben von ungefähr 10 % resultiert vermutlich nur in geringen Korrelationen, was zu sehr kleinen Bereichen lokaler Ordnung, die mit der Symmertie P312 kompatibel ist, führt.

Die Analyse der Ergebnisse aus den dichtefunktional-theoretischen Berechnungen wird für Fe₄N in den Raumgruppentypen $Pm\bar{3}m$ und P312 und für ϵ -Fe₃N in dem Raumgruppentyp P312 (Tabelle 4.12) durchgeführt. Wie in Abbildung 4.25 dargestellt, sollte sich γ' -Fe₄N in $Pm\bar{3}m$ spontan in ϵ -Fe₃N und metallisches Fe zersetzen, jedoch wurde diese Reaktion bisher nicht beobachtet. Da diese Phasenumwandlung eher rekonstruktiver Art sein wird, ist eine größere Aktivierungsbarriere für diese zu erwarten. Stattdessen liegt das Hauptaugenmerk auf einem alternativen Reaktionsweg über das energetisch höherliegende ϵ -Fe₃N_{0.75} (Abbildung 4.26). Aufgrund der Volumendifferenzen beider Fe₄N-Phasen ist eine Phasenumwandlung vom kubischen $Pm\bar{3}m$ zum hexagonalen P312 um 6 GPa bei 0 K vorausgesagt, die in akzeptabler Übereinstimmung mit den experimentellen Werten von 15(2) GPa bei 1600(200) K ist. Nachdem die Symmetrie hexagonal ist kann die Phasenumwandlung vom hexagonalen ϵ -Fe₃N_{0,75} in hexagonales ϵ -Fe₃N durch Segregation von reinem Eisen stattfinden, da dies eine exotherme Reaktion mit $\Delta E = -18, 8 \text{ kJ/mol}$ ist (Abbildung 4.25); außerdem ist die Aktivierungsbarriere für diese Reaktion klein genug, damit die Reaktion ablaufen kann.

Raumgruppe, verfeinerte	$P312, \text{ Fe}_3N_{0,94(2)}$		$P6_322$, $Fe_3N_{0,97(2)}$
Zusammensetzung			
a (Å)		4,6828(2)	
c (Å)		4,3705(2)	
$V(A^3)$		83,000(6)	
Z		2	
$d_{\rm berechnet}({ m g~cm^{-3}})$	7,231		7,245
μ Ag-K (mm ⁻¹)		$13,\!04$	
F(000) (e)	169,2		169,5
<i>hkl</i> Bereich		-7 -9 , -9 $-6,\pm8$	
$2\theta_{\rm max} \ ({\rm deg})$		70,0	
gemessene Reflexe		1629	
davon symmetrie-	505		255
unabhängig			
$R_{ m int}$	0,0124		0,0131
verfeinerte Parameter	20		12
$R(F) (F_o > 4\sigma(F_o))$	0,0157		0,0158
$R(\mathbf{F})/\omega R(F^2)$ (alle	0,0243/0,0298		0,0206/0,0234
Reflexe)			
GOF (F^2)	1,084		1,283
$\Delta ho_{ m max} ~({ m e}{ m \AA}^{-3})$	0,72		0,59
Flack Parameter	0,59(9)		0,4(1)

Tabelle 4.8: Kristallstrukturdaten von ϵ -Fe₃N_{0,94(2)} und ϵ -Fe₃N_{0,97(2)} für Verfeinerungen in den Raumgruppen *P*312 und *P*6₃22.

Tabelle 4.9: Parameter der Kristallstruktur von ϵ -Fe₃N_{0,94(2)}für Verfeinerungen in der Raumgruppe *P*312.

Atom	Lage	x	y	z	Besetzungs- parameter	$U_{\rm eq}$ (Å ²)
Fe	6l	0,99394(4)	0,33251(7)	0,24999(3)	1	0,00674(4)
N(1)	1a	0	0	0	0,87(1)	0,0055(5)
N(2)	1d	1/3	2/3	1/2	0,82(1)	0,0063(5)
N(3)	1f	2/3	1/3	1/2	0,19(1)	0,010(2)

Atom	Lage	x	y	z	Besetzungs- parameter	$U_{\rm eq}~({\rm \AA}^2)$
Fe	6g	0,33762(3)	0	0	1	0,00669(5)
N(1)	2c	1/3	2/3	1/4	0,860(9)	0,0064(4)
N(2)	1b	0	0	1/4	0,107(9)	0,010(3)

Tabelle 4.10: Parameter der Kristallstruktur von ϵ -Fe₃N_{0,97(2)}für Verfeinerungen in der Raumgruppe $P6_322$.

Tabelle 4.11: Ausgewählte interatomare Abstände (Å) in ϵ -Fe₃N_{0,94(2)} für Verfeinerungen in *P*312 und *P*6₃22 im Vergleich.

Atom	P312	$d(\text{Fe-N})/\text{\AA}$
$\operatorname{Fe}(1)$	$-{ m N}(1) \\ -{ m N}(2) \\ -{ m N}(3)$	$1,9139(2) \\ 1,9187(2) \\ 1,8838(1)$
	$P6_{3}22$	$d(\text{Fe-N})/\text{\AA}$
$\operatorname{Fe}(1)$	$-{ m N}(1) \\ -{ m N}(2)$	$1,9165(1) \\ 1,8835(1)$

Tabelle 4.12: Relative theoretische Bildungsenthalpien, relatives Volumen, Kompressionsmodul B_0 von Fe₄N; der erste experimentelle Parameter von B_0 wird von [17] und der zweite von [112] angegeben. Die ersten Werte für den Kompressionsmodul (überschrieben mit 1) beziehen sich auf Berechnungen mit der PAW-PBE-GGA Näherung die zweiten (mit 2 überschrieben) beziehen sich auf die US-GGA-PP Methodik.

	γ' -Fe ₄ N in $Pm\bar{3}m$	ϵ -Fe ₃ N _{0,75} in <i>P</i> 312	Elemente
ΔH / kJ/mol	0,0	10,5	20,4
$V_{\rm rel}/{\rm \AA}^3$	0	-2,233	
$B_0/{ m GPa^1}$	165	166	
$B_0'/{ m GPa^1}$	4,59	4,24	
B_0/GPa^2	166	168	
$B_0'/{ m GPa^2}$	3,64	4,20	
B_0 / GPa ^{exp}	155(3)/196		

Abbildung 4.25: Energie–Volumen-Diagramm für das System ϵ -Fe₃N + Fe, ϵ -Fe₃N_{0,75} und γ' -Fe₄N aus quantenchemischen Berechnungen.

Abbildung 4.26: Enthalpiedifferenz–Druck-Diagramm für Fe₄N bei 0 K berechnet mit Dichtefunktional-Theorie. Die Nulllinie zeigt die kubische $Pm\bar{3}m$ Phase, während die andere Kurve den hexagonalen P312 Polymorph zeigt.

Abbildung 4.27: Röntgenpulverdiffraktogramme (aufgenommen mit Co- $K_{\alpha 1}$ Strahlung) von ζ -Fe₂N und dem Produkt der HT-HP-Behandlung in der Vielstempel-Presse, die das für eine ϵ -Phase typische Beugungsmuster zeigt. Die für ζ -Fe₂N typischen Aufspaltungen einiger Reflexe sind in dem Diffraktogramm des Produkts nicht mehr vorhanden, ebenso wie ein Überstrukturreflex bei 37°. Ein Reflex von einer kleinen BN-Verunreinigung des Tiegelmaterials ist mit einem Stern markiert. Die horizontale Verschiebung der Diffraktogramme ist durch dünne Hilfslinien angedeutet.

4.2.7 Hochdruck-Hochtemperatur-Einkristallzucht und Phasenumwandlung von ζ-Fe₂N

 ϵ -Fe₃N kann Stickstoff-Gehalte aufweisen, die signifikant geringer oder höher sind als die nominelle Zusammensetzung von 3:1, während der Homogenitätsbereich von ζ -Fe₂N sehr eng ist [90, 94]. Außerdem ist der Stabilitätsbereich von ζ -Fe₂N in Bezug auf die Temperatur nicht genau geklärt. Die Unterkapitel 4.2.5 und 4.2.6 berichten von der Präparation von ϵ -Fe₃N_{1+x} Einkristallen mit x = 0,08und x = -0,06 durch ein Hochtemperatur-Hochdruck-Verfahren. Nun ist es auch möglich, Einkristalle aus dem Homogenitätsbereich von ϵ -Fe₃N mit einem signifikant höheren Stickstoff-Gehalt zu synthetisieren.

Versuche in einer Multianvil-Presse bei Hochdruck-Hochtemperatur-Bedingungen (p = 15(2) GPa und T = 1600(200) K für eine Dauer von 5 min) wandeln mikrokristallines Pulver ζ -Fe₂N_{0,986±6}O_{0,0252±8} reproduzierbar in ein kompaktes, gut kristallisiertes Material einhergehend mit einer Phasenumwandlung und einer Kristallisation zu einer ϵ -artigen Phase um. Die Phasenumwandlung vom orthorhombischen ζ -Fe₂N zu hexagonalem Eisennitrid bei diesen Temperaturen ist in dem Phasendiagramm für erhöhte Temperaturen oberhalb von 500 °C angedeutet (Abbildung 4.23). Ei-

Abbildung 4.28: Energie–Volumen-Diagramm für das System ζ -Fe₂N und ϵ -Fe₃N_{1,5} aus quantenchemischen Berechnungen.

gene TG-Untersuchungen (Abbildung 4.9) zeigen die Zersetzung von ζ -Fe₂N ab ungefähr 440 °C unter Ar-Atmosphäre zu Fe-Pulver und Stickstoff. Der extern angelegte hohe Druck läßt sich auch hier als notwendig interpretieren, um bei der Kristallisation von ϵ -Fe₃N einen Stickstoff-Verlust zu verhindern. In-situ Experimente in einer Diamantstempelzelle bei Zimmertemperatur zeigen, dass ζ -Fe₂N bis zu Drücken von 33 GPa stabil ist (Unterabschnitt 4.2.4). Um einen Einblick in die treibenden Kräfte der Phasenumwandlung zu gewinnen, werden einige Strukturmodelle von Fe₂N mit dichtefunktional-theoretischen Strukturberechnungen bei 0 K berechnet (Tabelle 4.13). ζ -Fe₂N (*Pbcn*) ist verglichen mit den Elementen eine exotherme Phase ($\Delta H = -12, 1 \text{ kJ/mol}$; exp: -3,8 kJ/mol) [126]. ϵ -Fe₃N_{1,5} kann, ähnlich wie im Fall von ϵ -Fe₃N_{1,1}, in den beiden Raumgruppentypen P312 und $P6_{3}22$ beschrieben werden und wieder ist der Raumgruppentyp P312 in diesem Fall um -12,1 kJ/mol begünstigt. Beide Strukturen für ϵ -Fe₃N_{1.5} liegen in der Energie höher als ζ -Fe₂N und haben auch eine geringere Dichte (Abbildung 4.28), so dass eine druckinduzierte Phasenumwandlung ausgeschlossen werden kann. Somit ist die Phasenumwandlung nicht druck- sonder temperatur-induziert.

Abbildung 4.27 zeigt die Röntgenpulverdiffraktogramme von ζ -Fe₂N vor und nach dem Hochdruckexperiment. Die für ζ -Fe₂N typischen Aufspaltungen einiger Reflexe sind in dem Diffraktogramm des Produkts nicht mehr vorhanden, ebenso wie ein Überstrukturreflex bei 37°. Das Diffraktogramm nach der Hochtemperatur-Hochdruck-Behandlung zeigt das für eine ϵ -Phase typische Beugungsmuster. Die

Verfeinerungen der Elementarzellparameter ergeben für das Material nach dem Experiment Werte von a = 4,797 Å und c = 4,419 Å. Diese Werte sind ähnlich zu a = 4,791 Å und c = 4,419 Å für eine mikrokristalline Probe der Zusammensetzung $\text{Fe}_3\text{N}_{1,39}$ (31,7 at % Stickstoff verglichen mit 33,3 at % Stickstoff für ζ -Fe₂N) [116]. Das gut rekristallisierte Produkt ist für Einkristallbeugungsexperimente geeignet. Die Verfeinerungen der Intensitätsdaten führen zu der Zusammensetzung von $Fe_3N_{1.47(1)}$ (32,9 at %). Wie früher schon berichtet, wurde der maximale Stickstoff-Gehalt von Fe₃N_{1+x} (ohne Anlegen eines externen Drucks) zu x = 0,48 bei einer nur geringfügigen Temperaturabhängigkeit bestimmt. Für größere Werte von x trennt ein Zweiphasenbereich die ϵ - und ζ -Phasen [90, 91, 116]. Obwohl die Elementarzellen der ζ - und ϵ -artigen Phasen eine einfache geometrische Beziehung gemäß $a_{\zeta} \approx c_{\epsilon}$; $b_{\zeta} \approx a_{\epsilon} \times 2/\sqrt{3}$; $c_{\zeta} \approx a_{\epsilon}$ zeigen, ist für die Phasenumwandlung zwischen den beiden Kristallstrukturen eine Umordnung der Stickstoff-Atome durch Diffusion innerhalb der Anordnung der dicht gepackten Eisen-Atome notwendig. Der Grund für die große Ähnlichkeit der Elementarzellen (und damit auch der Diffraktogramme) liegt darin begründet, dass in beiden Kristallstrukturen, des ζ - und des ϵ -Typs, die Ordnung des Stickstoffs auf der Besetzung von Oktaedern in einer Anordnung von hexagonal dicht gepackten Eisen-Atomen basiert. Es besteht keine einfache Symmetriebeziehung für eine displazive Phasenumwandlung. Abbildung 4.29 zeigt den Vergleich der idealisierten Modelle der Kristallstrukturen der beiden Phasen, die als ein Netzwerk von besetzten Oktaedern innerhalb einer identischen Anordnung von Eisenatomen dargestellt sind. Die NFe₆-Oktaeder in ζ -Fe₂N weisen sowohl Kanten- als auch Eckenverknüpfung auf, während die in ϵ -Fe₃N in der idealen Struktur (exakte Zusammensetzung und keine Unordnung) ausschließlich über Ecken verknüpft sind, um so den maximalen Abstand zwischen den Stickstoff-Atomen zu haben. Für die Zusammensetzung von Fe₃N_{1,5} müssen somit zusätzliche Oktaederlücken mit Stickstoff-Atomen besetzt werden.

Einkristall-Röntgenbeugungsdaten des Produktes ϵ -Fe₃N_{1+x} werden in den beiden in Erwägung zu ziehenden Strukturmodellen in P6₃22 und P312 verfeinert. Das Ergebnis der Strukturverfeinerung in P6₃22 zeigen die Tabellen 4.14 und 4.15. Für die ideale Struktur der ϵ -artigen Phase der Zusammensetzung Fe₃N ist die Wyckoff-Position 2c voll besetzt, während alle anderen Oktaederlücken in der Anordnung der hdP von Fe unbesetzt bleiben. Dieses Modell führt zu einem dreidimensionalen Netzwerk von allseits eckenverknüpften NFe_{6/2}-Oktaedern. Allerdings wurde für Phasen mit einem Stickstoff-Gehalt nahe an dieser Zusammensetzung gezeigt, dass ein wahrscheinlich Entropie-getriebenen Transfer des Stickstoffs von

Tabelle 4.13: Ergebnisse der Gesamtenergie-Berechnungen verschiedener Kristallstruktur-Modelle für ζ - und ϵ -artiges Fe₂N im Raumgruppentyp *Pbcn* als Referenzpunkt für Enthalpie und Volumen.

Raumgruppe (Strukturmodell)	$\Delta H \; [\rm kJ/mol]$	ΔV [Å ³]	B_0 [GPa]	B_0' [GPa]
$Pbcn \ (\zeta-\mathrm{Fe_2N})$	0,00	0,00	219	4,46
$P312 \ (\epsilon - {\rm Fe_3N_{1,5}})$	15,3	$0,\!11$	210	4,66
$P6_{3}22 \ (\epsilon - Fe_{3}N_{1,5})$	27,4	$0,\!26$	217	4,36
$2\text{Fe} + \alpha \text{-N}$	12,1	20,96	_	—

der Lage 2c zu der Lage 2b (um 10 %) existiert [118, 122]. Für die hier vorliegende Zusammensetzung, mit einem wesentlich höheren Stickstoff-Gehalt, ist die 2c-Lage nahezu vollständig besetzt. Die Strukturverfeinerungen in $P6_322$ zeigen eine etwa 50%-ige Besetzung der Lage 2b, die zu der verfeinerten Zusammensetzung von $Fe_3N_{1,47(1)}$ führt. Abbildung 4.29 zeigt die ideale Kristallstruktur von ϵ -Fe₃N mit dem Strukturmodell von ϵ -Fe₃N_{1,5}. Die Oktaeder um die 2b-Lage sind mit dem oben beschriebenen Netzwerk kantenverknüpft und bilden parallele Stäbe von flächenverknüpften Oktaedern entlang [001]. Die beobachtete 50%-ige Besetzung würde eine geordnete Besetzung von jedem zweiten Oktaeder erlauben, um große abstoßende Wechselwirkungen zu verhindern. Da keine Überstrukturreflexe beobachtet werden, tritt eine Symmetrieerniedrigung ein, die zu der Raumgruppe P312mit einer vollständig geordneten Stickstoff-Teilstruktur führt. Verfeinerungen dieses Modells führen allerdings zu einer Zusammensetzung mit deutlich reduziertem Stickstoff-Gehalt und großen Werten für die Restelektronendichte in der entsprechend unbesetzten Position. Diese Fakten führen, im Zusammenhang mit früheren Beobachtungen, zu folgender Interpretation: Die Stäbe der flächenverknüpften Oktaeder mit einer Besetzung von 50 % sind intern aus energetischen Gründen geordnet (Minimierung der Coulombschen Abstoßung zwischen benachbarten flächenverknüpften Oktaedern gemäß der 3. Paulingschen-Regel), aber die Wechselwirkung zwischen den benachbarten Stäben ist nicht hoch genug für eine komplette dreidimensionale Ordnung der Stäbe [128] (zum Vergleich siehe Abbildung 4.30). Eine eindeutige Unterscheidung der beiden Raumgruppentypen würde aus den Röntgenbeugungsdaten mit der Auslöschungsbedingung (00l) mit l = 2n + 1, die in $P6_{3}22$ verboten, aber in P312 erlaubt ist, möglich sein. Jedoch weist, auch in der komplett geordneten Struktur von ϵ -Fe₃N_{1.5} in P312, der intensivste Reflex mit l = 3 im verfügbaren 2-theta Bereich nur eine Intensität von weniger als 0.03% des

Raumgruppe, verfeinerte Zusammensetzung	$P6_322$, Fe ₃ N _{1,47(1)}
a (Å)	4,8016(2)
c (Å)	4,4269(2)
$V(Å^3)$	88,39
Z	2
$d_{\text{berechnet}}(\text{g cm}^{-3})$	7,069
μ Ag-K (mm ⁻¹)	12,26
F(000) (e)	$176,\! 6$
<i>hkl</i> Bereich	-12 $-7, -7-12, -11$ -6
$2\theta_{\rm max} \ ({\rm deg})$	90,0
gemessene Reflexe	1747
davon symmetrieunabhängig	498
$R_{ m int}$	0,0134
verfeinerte Parameter	13
$R(F) (F_{o} > 4\sigma(F_{o}))$	0,0127
$R(\mathbf{F})/\omega R(F^2)$ (alle Reflexe)	0,0404/0,0247
$\operatorname{GOF}(F^2)$	1,033
$\Delta \rho_{ m max} \ ({ m e}{ m \AA}^{-3})$	1,16

Tabelle 4.15: Kristallstrukturdaten von ε -Fe₃N_{1,47(1)}.

stärksten Reflexes (002) auf.

Die Atomabstände d(Fe-N) mit 1,9485(1) Å für die komplett besetzte Lage N(1) und 1,9407(2) Å für die zu 50 % besetzte Position N(2) liegt im Bereich anderer Eisennitride [96, 116, 118, 122]. Verglichen mit Phasen aus dem Homogenitätsbereich von ϵ -Fe₃N mit gringerem Stickstoff-Gehalt [118, 122], werden diese Abstände mit zunehmendem Stickstoff-Gehalt größer und zunehmend ähnlicher.

Abbildung 4.29: Kristallstrukturen von ϵ -Fe₃N_{1,5} (links) in der geordneten Variante (*P*312) und ζ -Fe₂N (rechts). Die schattierten Oktaeder sind durch Stickstoff in einer identischen Anordnung von Eisen besetzt, dass das Motiv einer *hdP* bildet.

Atom	Lage	x	y	z	Besetzungs- parameter	$U_{\rm eq}$
Fe N(1) N(2)	$\begin{array}{c} 6g\\ 2c\\ 2b \end{array}$	0,33200(4) 1/3 0	$egin{array}{c} 0 \\ 2/3 \\ 0 \end{array}$	$egin{array}{c} 0 \ 1/4 \ 1/4 \end{array}$	$1 \\ 0,993(4) \\ 0,479(7)$	$\begin{array}{c} 0,00595(2) \\ 0,0075(2) \\ 0,0048(6) \end{array}$
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Fe N(1) N(2)	$\begin{array}{c} 0,00613(4) \\ 0,0077(3) \\ 0,0054(6) \end{array}$	$ \begin{array}{c} 0,00628(6) \\ U_{11} \\ U_{11} \end{array} $	$\begin{array}{c} 0,00550(4) \\ 0,0070(5) \\ 0,004(1) \end{array}$	0,00148(3) 0 0	$1/2 \ U_{23}$ 0 0	$ \begin{array}{c} 1/2 \ U_{22} \\ 1/2 \ U_{22} \\ 1/2 \ U_{11} \end{array} $

Tabelle 4.16: Parameter der Kristallstruktur von ϵ -Fe₃N_{1,47(1)}. Die Werte für die Auslenkungsparameter U sind in Å² angegeben.

Abbildung 4.30: Mögliche Ordnungsvarianten von Stickstoff auf der Lage 2*b* (Raumgruppentyp $P6_322$) in ϵ -Fe₃N_{1+x} für x = 0, 5. Links: Blickrichtung in [001]. Netzwerk der eckenverknüpften, voll besetzten NFe₆-Oktaeder (Lage 2*c*, grau gefärbte Oktaeder) und Orientierungen von Stäben der intern flächenverknüpften zu 50 % besetzten Oktaeder (Lage 2*b*, offene Oktaeder). Rechts: Benachbarte Stäbe können entweder gleichförmig oder versetzt orientiert sein (nach T. Epicier [128]). Die erste Alternative ist in der gegebenen Elementarzelle die einzige Möglichkeit für eine vollständig geordnete Struktur, die zweite Alternative würde aufgrund des trigonalen Motivs zu einer strukturellen Frustration führen.

Zusammensetzung aus der Verfeinerung der Einkristall- Röntgenbeugungsdaten	Zusammensetzung berechnet aus den Zellparametern a und c
ϵ -Fe ₃ N _{1,08} $a = 4,7241(\text{\AA}), c = 4,3862 \text{ (Å)}$	ϵ -Fe ₃ N _{1,13} , ϵ -Fe ₃ N _{1,07}
ϵ -Fe ₃ N _{0,94} $a = 4,6828(\text{\AA}), c = 4,3705 (\text{\AA})$	ϵ -Fe ₃ N _{0,94} , ϵ -Fe ₃ N _{0,93}
ϵ -Fe ₃ N _{1,47} $a = 4,8016(\text{\AA}), c = 4,4269 (\text{\AA})$	$\epsilon\text{-}\mathrm{Fe_3N_{1,47}},\ \epsilon\text{-}\mathrm{Fe_3N_{1,46}}$
Zusammensetzung aus der	Zusammensetzung berechnet
chemischen Analyse	aus den Zellparametern a und c
ϵ -Fe ₃ N _{0,77}	ϵ -Fe ₃ N _{0,73} , ϵ -Fe ₃ N _{0,81}
a = 4,634(A), c = 4,358(A)	

Tabelle 4.17: Zusamensetzung verschiedener ϵ -Eisennitride aus den HP-HT Versuchen in der Vielstempel-Presse berechnet aus den Zellparametern.

4.2.8 Berechnung der Zusammensetzung der Eisennitride aus den Zellparametern

Die Zellparameter der ϵ -Eisennitride variieren für verschiedene Zusammensetzungen [90, 127]. Die Beziehungen zwischen a(y) und c(y) wurden bei Zimmertemperatur aus den Daten der Zellparametern von ϵ -FeN_u/ ϵ -Fe₃N_{1+x} für den Zusammensetzungs-Bereich 0, 33 < y < 0, 47, der zu 0, 0 < x < 0, 4 korrespondiert, bestimmt [127]: a(y) = 4,4709 + 0,673y (Å) und c(y) = 4,2723 + 0,318y (Å). Diese Beziehungen für die Zellparameter als Funktion der Zusammensetzung ermöglichen die Bestimmung des Stickstoff-Gehaltes aus den verfeinerten Zellparameter von spannungsfreien Proben von welchen eine chemische Analyse nicht möglich ist bzw. zur Absicherung derselben [129]. Tabelle 4.17 zeigt die Zusammensetzung der verschiedenen ϵ -Eisennitride aus den HP-HT-Versuchen in der Vielstempel-Presse, aus der Verfeinerung der Einkristall-Röntgenbeugungsdaten sowie aus der chemischen Analyse¹ und im Vergleich dazu die aus den verfeinerten Zellparametern berechnete Zusammensetzung. Die Zusammensetzungen aus der Verfeinerung der Einkristall-Röntgenbeugungsdaten und aus der chemischen Analyse von ϵ -Fe₃N_{0.77}, ϵ -Fe₃N_{0,94}, ϵ -Fe₃N_{1,08} und ϵ -Fe₃N_{1,47} sind in guter Übereinstimmung mit denen aus den verfeinerten Zellparametern a und c berechneten Zusammensetzungen (siehe Tabelle 4.17).

¹Bei diesem HP-HT-Versuch waren keine geeigneten Einkristalle für die Röntgenbeugung vorhanden, weshalb die Zusammensetzung hier aus der chemischen Analyse bestimmt wurde.

4.2.9 Mikrostruktur der Eisennitrid-Einkristalle

Die Produkte der Hochdruck-Hochtemperatur-Behandlung in der Vielstempel-Presse (p = 15(2) GPa und T = 1600(200) K für eine Dauer von 5 min) sind metallisch glänzende, graue, zylindrische Barren, die beim Zerkleinern muscheligen Bruch zeigen, wie es sowohl auf Makrofotos (Abbildung 4.20) als auch auf REM-Bilder (Abbildung 4.31 und Abbildung 4.32) zu sehen ist. Ausgebildete Kristallflächen sind nicht zu erkennen. Einige Bereiche der einkristallinen Probe zeigen domänenartige Verwachsungen (Abbildung 4.33 und Abbildung 4.34). Die Mikrostrukturuntersuchungen mit der Rückstreuelektronenbeugung an einer polierten Probenoberfläche zeigen den grobkristallinen Charakter der Probe mit der Zusammensetzung ϵ -Fe₃N_{1,08}. In der Kristallorientierungs-Kartierung verschiedener Bereiche der Probe (Abbildung 4.35), korrespondieren die verschiedenen Bereiche der Probe mit verschiedenen kristallographischen Richtungen, wobei ähnliche Farben ähnliche Orientierungen anzeigen, welches auch auf eine Textur in der gesamten Probe hinweist. Dies wird durch die Beobachtung unterstützt, dass größere Probenstücke als etwa 20 μ m bei der Einkristallbeugung eine Aufspaltung der Reflexe zeigen. Es handelt sich nicht um einen Einkristall, sondern um zwei oder mehrere Kristalle, die leicht verkippt miteinander verwachsen sind. Bei Hochdruck-Experimenten in einer modifizierten Vielstempel-Presse (mit uniaxialen Druckkomponenten) bei bis zu 17,5 GPa und 600 K zeigt hexagonales ϵ -Fe eine starke (001) Kompressions-Textur [130, 131]. Die eigenen Hochdruck-Hochtemperatur-Versuche werden unter quasihydrostatischen Druckbedingungen durchgeführt. Damit sind auch uniaxiale Druckkomponenten neben allseitig gleichmäßig auf die Probe wirkenden Druckkomponenten vorhanden, die zur Ausbildung einer Textur führen können. Die bunten Punkte (Fehlfarben) innerhalb der großen einkristallinen Bereiche sind Positionen, an denen keine Orientierung ermittelt werden konnte. Dies kann z.B. an der empfindlichen Oberfläche der Probe liegen, die für die EBSD-Messungen plan geschliffen und spiegelnd poliert sein muß. In den Bereichen der Korngrenzen ist die Probe weniger mechanisch stabil und so bei der Probenvorbereitung empfindlicher, so dass es im Mikrobereich Teile aus der Probe brechen bzw. abplatzen können und es somit bei der EBSD-Messung nicht möglich ist eine Orientierung zu ermitteln. Die Kartierung der Bildqualität von verschiedenen Bereichen der Probe (Abbildung 4.36: analoge Ausschnitte wie in Abbildung 4.35) zeigt große einkristalline Bereiche mit einer Größe bis zu mehreren 100 μ m, die durch Korngrenzen (schwarzgraue Linien) voneinander getrennt sind, wobei die einzelnen Körner Kleinwinkelkorngrenzen (helle Linien) enthalten.

Abbildung 4.31: REM-Bild eines Bruchstücks des einkristallinen Materials ϵ -Fe₃N_{1,08} (Übersichtsaufnahme).

Abbildung 4.32: REM-Bild eines Bruchstücks des einkristallinen Materials $\epsilon\text{-}\mathrm{Fe_3N_{1,08}}$ (Ausschnittsvergrößerung).

Abbildung 4.33: REM-Bild eines Bruchstücks des einkristallinen Materials ϵ -Fe₃N_{1,08} (Ausschnittsvergrößerung).

Abbildung 4.34: REM-Bild eines Bruchstücks des einkristallinen Materials ϵ -Fe₃N_{1,08} (Ausschnittsvergrößerung).

Abbildung 4.35: EBSD-Bilder von ϵ -Fe₃N_{1,08}: Kartierung der Kristallorientierungen von verschiedenen Bereichen der Probe.

Abbildung 4.36: EBSD-Bilder von ϵ -Fe₃N_{1,08}: Kartierung der Bildqualität von verschiedenen Bereichen der Probe (Bildausschnitte analog wie in Abbildung 4.35).

4.2.10 Vickers-Härte und elastomechanische Eigenschaften von Eisennitrid-Einkristallen

Die Härte wird an Einkristallen ϵ -Fe₃N_{1,08} (synthetisiert wie in Unterabschnitt 4.2.5 beschrieben) und ϵ -Fe₃N_{0,77} (synthetisiert wie in Unterabschnitt 4.2.6 beschrieben) gemessen; die Präparation der Proben für die Härtemessungen ist in Abschnitt 2.12 beschrieben. Die Ergebnisse der Vickers-Härtemessungen sind in Abbildung 4.37 dargestellt. Der Mittelwert für H_v von sechs Eindrücken bei 0,5 kg und von zwei Eindrücken bei 1,0 kg beträgt 7,4(19) GPa für ϵ -Fe₃N_{1,08}. Für ϵ -Fe₃N_{0,77} beträgt der Mittelwert für H_v von fünf Eindrücken bei 0,5 kg und von fünf Eindrücken bei 1,0 kg 4,6(0,2) GPa. Die Kraft/Eindringkurven der Nanoindentierungsexperimente sind in Abbildung 4.39 und Abbildung 4.40 dargestellt. Die Mittelwerte der Nanoindentierungshärte H und des reduzierten elastischen Moduls E_r betragen 10,1(8) GPa und 178(11) GPa für ϵ -Fe₃N_{1,08} und 8,5(6) GPa und 161(6) GPa für ϵ -Fe₃N_{0,77}. Die Härte der synthetisierten ϵ -Fe₃N_{1,08} Einkristalle ist signifikant höher als die von reinem Eisen ($\sim 0.3 - 2$ GPa) und liegt im Bereich der Härte von Werkzeugstählen (bis zu 9 GPa) und nitridierter Stähle (~5 – 15 GPa) [132, 133, 134, 135]. Die Härte von Proben ϵ -Fe₃N_{1±x} verschiedener Zusammensetzung zeigt eine signifikante Abhängigkeit vom Stickstoff-Gehalt. Die vergleichbar hohen Standardabweichungen der gemessenen Härte und des reduzierten elastischen Moduls von ϵ -Fe₃N_{1.08} sind höchstwahrscheinlich auf die Anisotropie des untersuchten Materials zurückzuführen. Inbesondere $E_{\rm r}$ variert in Abhängigkeit von den gemessenen Kristalliten von 165 bis 196 GPa. Die Orientierung der indentierten Kristalle ist in der Arbeit nicht bestimmt worden.

Zur Berechnung des Schermodul (G_0) , des Young Modul/Elastizitätsmodul (E_0) und des Poissonschen Zahl/Querkonraktionszahl (ν_0) werden für das polykristalline ϵ -Fe₃N_{1,08} die experimentellen Werte von B_0 und E_r verwendet. Es werden die bekannten Gleichungen zwischen den isotropen Parametern E, B, G, v, [125]nämlich:

$$E = \frac{9BG}{(3B+G)} \tag{4.1}$$

$$v = \frac{0,5(3B - 2G)}{(3B + G)} \tag{4.2}$$

in die Gleichung eingesetzt, die den reduzierten Elastizitätsmodul E_r definiert:

$$\frac{1}{E_r} = \frac{(1 - v_0^2)}{E_0} + \frac{(1 - v_i^2)}{E_i}$$
(4.3)

Abbildung 4.37: Vickers-Mikrohärte H_v von Kristallen ϵ -Fe₃N_{1,08} (obere Meßreihe mit deutlich größerer Standardabweichung) und ϵ -Fe₃N_{0,77} (untere Meßreihe) als Funktion der angelegten Last.

wobei $E_i = 1141$ GPa der Young Modul und $v_i = 0,07$ die Poissonsche Zahl des Indentermaterials Diamant [51] sind. Es wird angenommen, dass der Mittelwert des mit Nanoindentation gemessenen reduzierten Elastizitätmoduls von ϵ -Fe₃N_{1,08} der von isotropen polykristallinen Materials ist. Bei Einsetzen von $B_o = 172(4)$ GPa und $E_r = 178(11)$ GPa ergeben sich für ϵ -Fe₃N_{1,08} die Werte von $G_0 = 78(8)$ GPa für den Schermodul, $E_0 = 203(22)$ GPa für den Young Modul und $v_0 = 0, 32(4)$ für die Poissonsche Zahl. Die elastischen Eigenschaften von ϵ -Fe₃N_{1,08} (Young-Modul, Schermodul und die Poissonsche Zahl) liegen in der Größenordnung von Eisen, weichen Stählen, Werkzeugstahl und rostfreien Stählen [132] und sind in Tabelle 4.18 aufgeführt. Der experimentelle Wert für den Young Modul ist um 20 % geringer als der aus den quantenmechanischen Berechnungen (243 GPa), während die Poissonsche Zahl innerhalb der Fehlergrenzen identisch ist (0,29) [136]. Während die Härte der verschiedenen Stähle und des Eisennitrids signifikant höher als die Härte von Eisen ist, zeigen der Young Modul, der Schermodul und die Poissonsche Zahl hingegen keinen strengen Bezug zu der Härte des Materials (Tabelle 4.18).

Abbildung 4.38: REM-Aufnahme eines Vickers-Eindrucks in einen Kristall ϵ -Fe₃N_{1,08} bei einer Last von 0,98 N.

Abbildung 4.39: Last/Eindringkurve, F(h), einer Nanoindentierung von ϵ -Fe₃N_{1,08}.

 Tabelle 4.18: Elastische Eigenschaften des Eisennitrid und von Eisen und verschiedenen Stählen [132].

	Young Modul GPa	Schermodul GPa	Poissonsche Zahl
ϵ -Fe ₃ N _{1,08}	203 ± 22	78 ± 8	$0,32{\pm}4$
Eisen	211,4	81,6	0,293
Weiche Stähle	208	81-82	0,27-0,3
Werkzeug Stähle	203,2	78,5	0,295
Edelstahl	215,3	83,9	0,283

Abbildung 4.40: Last/Eindringkurve, F(h), einer Nanoindentierung von ϵ -Fe₃N_{0,77}.

4.3 Zusammenfassung

In Kapitel 4 wurden *in-situ* und *ex-situ* Untersuchungen von Eisennitriden unter hohen Drücken bzw. hohen Drücken und hohen Temperaturen vorgestellt. Phasenreine Precusoren (γ' -Fe₄N, ϵ -Fe₃N_{1.05} und ζ -Fe₂N) wurden durch Nitridierung von Eisen-Pulver in Ammoniak bzw. Ammoniak/Wasserstoff-Gasmischungen für anschließende Hochdruck-Versuche synthetisiert. Mit ex-situ Hochdruck-Hochtemperatur-Versuchen bei 1600(200) K und 15(2) GPa in einer Vielstempel-Presse mit einem beheizten 2-stufigen Walker-Modul (Typ: 6/8) sind zum ersten mal Eisennitrid-Einkristalle verschiedener Zusammensetzung aus dem weiten Homogenitätsbereich ϵ -Fe₃N_{1±x} synthetisiert worden. Die Synthese erfolgt entweder aus ϵ -Fe₃N_{1,05} oder durch Phasenumwandlung aus γ' -Fe₄N und ζ -Fe₂N. Aus γ' -Fe₄N entsteht in der Vielstempel-Presse durch druckinduzierte Phasenumwandlung und anschließender Kristallisation ϵ -Fe₃N_{0.94} bzw. ϵ -Fe₃N_{0.77}. Bei *in-situ* Hochdruck-Untersuchungen in einer Diamantstempelzelle hat sich ab 17 GPa eine druckinduzierte Phasenumwandlung zu einer ϵ -artigen Phase angedeutet, die bei Zimmertemperatur jedoch kinetisch gehindert ist. ζ -Fe₂N hat bei *in-situ* Hochdruck-Untersuchungen in einer Diamantstempelzelle bei Zimmertemperatur bis zu Drücken von 25 GPa kein Anzeichen für eine Phasenumwandlung gezeigt. Berechnungen der Gesamtenergie zeigen, dass die Strukturen für ϵ -Fe₃N_{1,5} (P312) und ϵ -Fe₃N_{1,5} (P6₃22) in der Energie höher liegen als ζ -Fe₂N und auch eine geringere Dichte aufweisen, so dass eine druckinduzierte Phasenumwandlung ausgeschlossen werden kann. Da bei *ex-situ* Versuchen in einer Vielstempelpresse bei T = 1600 K und p = 15 GPa eine Phasenumwandlung zu einer ϵ -artigen Phase stattfindet, ist die Phasenumwandlung vermutlich temperaturinduziert mit einer anschließenden Kristallisation zu ϵ -Fe₃N_{1,47}.

In dem weiten Homogenitätsbereich von ϵ -Fe₃N_{1±x} findet sich folgende strukturelle Entwicklung: Für die Zusammensetzung ϵ -Fe₃N_{0,77} mit einem wesentlich geringeren Stickstoff-Gehalt als x = 0 ist die Lage 2c unterbesetzt und die Lage 2b nur gering besetzt. Bei der Zusammensetzung ϵ -Fe₃N_{1,05}, nahe der idealen Zusammensetzung ϵ -Fe₃N, ist die Lage 2c nahezu vollständig besetzt, wobei ein wahrscheinlich Entropie-getriebener Transfer des Stickstoffs von der Lage 2c zu der Lage 2b von ungefähr 10 % existiert. Bei der Stickstoff-reichsten Zusammensetzung ϵ -Fe₃N_{1,47} ist die Lage 2c vollständig mit Stickstoff besetzt und die Lage 2bnahezu zu 50 %. Das Ausmaß der Entropie-getriebenen Unordnung mag von der thermischen Geschichte der Probe strukturell beeinflußt sein.

Die Kompressionsmodule der Eisennitride wurden mit Hilfe von *in-situ* Hochdruckuntersuchungen in einer Diamantstempelzelle ermittelt. Eine Anpassung der Murnagham-Zustandsgleichung an die experimentellen Daten mit der Methode der kleinsten Fehlerquadrate führte zu Werten von: $B_0 = 155, 8(6)$ GPa mit $B'_0 = 4,23(6)$ für γ' -Fe₄N, $B_0 = 172(4)$ GPa mit $B'_0 = 5,7$ (fixiert) für ϵ -Fe₃N_{1,05} und $B_0 = 162, 1(8)$ GPa mit $B'_0 = 5,24(8)$ für ζ -Fe₂N.

Die Produkte der Hochdruck-Hochtemperatur-Behandlung in der Vielstempel-Presse sind metallisch glänzende Barren, die muscheligen Bruch zeigen. EBSD-Untersuchungen zeigen einkristalline Bereiche der Probe mit einer Größe von mehreren 100 μ m Größe, die durch Korngrenzen voneinander getrennt sind und ähnliche Orientierungen benachbarten Kristallite, was auf eine Vorzugsorientierung in der gesamten Probe hindeutet.

Messungen der Vickers-Härte und Nanoindentation zeigen, dass die Eisennitrid-Einkristalle signifikant härter als reines Eisen sind und die Härte in dem Bereich von nitridierten Stählen liegt. Die Vickershärte wurde für ϵ -Fe₃N_{0,77} zu 4,6(0,2) GPa und für ϵ -Fe₃N_{1,05} zu 7,4(1,9) GPa bestimmt. Die Härte ist bei verschiedenen Proben aus dem weiten Homogenitätsbereich von ϵ -Fe₃N_{1±x} signifikant abhängig vom Stickstoff-Gehalt, wobei die Härte mit steigendem Stickstoff-Gehalt ansteigt.

5 Synthese, Charakterisierung und Hochdruckverhalten von Eisencarbonitriden

5.1 Einleitung

Neben dem Nitrieren ist das Nitrocarburieren ein weiteres bedeutendes thermochemisches Wärmebehandlungsverfahren für Eisen und Stahl, dass zur Bildung einer harten, verschleißfesten und korrosionsbeständigen Verbindungsschicht an der Probenoberfläche führt [113]. Während γ' -Fe₄N einen schmalen Homogenitätsbereich und nur eine geringe Löslichkeit für Kohlenstoff hat [92, 93], weist das ϵ -Eisennitrid einen breiten Homogenitätsbereich mit einer erheblichen Löslichkeit für Kohlenstoff auf [91, 92, 116, 137]. Die Kristallstrukturen der Eisencarbonitride basieren ebenso wie die der Eisennitride auf einer hdP der Eisen-Atome mit Stickstoffund Kohlenstoff-Atomen in den Oktaederlücken. Das Nitrieren wird üblicherweise im Temperaturbereich von 500 bis 550 °C, das Nitrocarburieren vorzugsweise im Temperaturbereich von 550 bis 570 °C durchgeführt, das heißt unterhalb der binären/ternären eutektoiden Temperatur des Austenits [113]. Abbildung 5.1 zeigt das ternäre Fe–C–N Phasendiagramm bei 575 °C mit einer Erweiterung des Existenzbereiches des ϵ -Eisencarbonitrids durch den Einbau von Kohlenstoff bis zu Stickstoff-Gehalten von deutlich unter 7 Masse-% [113].

 ϵ -Eisennitride mit Stickstoff in Oktaederlücken können unter CO-Zufuhr bei Temperaturen zwischen 500 °C und 575 °C carburiert werden, wobei Zementit (θ -Fe₃C) ensteht [138]. Zementit, mit Kohlenstoff-Atomen in trigonalen Prismen, kann unter NH₃-Zufuhr bei ähnlichen Temperaturen keinen Stickstoff aufnehmen [95]. In diesem Kapitel wird die Synthese und Charakterisierung von ϵ -Eisencarbonitriden verschiedener Zusammensetzung beschrieben, die als phasenreine Precusoren für *in-situ* und *ex-situ* Hochdruckversuche eingesetzt werden sollen.

Abbildung 5.1: Fe–C–N Phasendiagramm (Schnitt bei 575 °C) [113]

5.2 Ergebnisse und Diskussion

5.2.1 Synthese und Charakterisierung von Eisencarbonitriden

Die Synthese der Eisencarbonitride erfolgt in der Strömungsapparatur durch Carbonitridierung von feinteiligem Eisenpulver in einem Korundschiff bei 550 °C und 575 °C mit anschließender Ofenabkühlung durch Ofenabschaltung und verschiedenen Synthesedauern in einer Gasatmosphäre aus ausgewählten Ammoniak/Kohlendioxid-Gasmischungen. Bei den Synthesen wird ein konstanter Gesamtgasstrom von 30 sccm der Synthesegase Ammoniak und Kohlendioxid verwendet. Die Gaszuleitungen für NH₃ und CO₂ sowie das aus dem Ofen herausragende Teil des Strömungskopfes und der Blasenzähler werden mit Heizschnüren und Reglern auf 120 °C beheizt, um eine Reaktion der Synthesegase zu Ammoniumcarbamat zuverlässig zu verhindern. Außerdem würde die Bildung von festem Ammoiumcarbamat die Gaszusammensetzung verändern und damit die Produktzusammensetzung beeinflussen. Nach der Synthese werden die ϵ -Eisencarbonitride für 24 h bei 100 °C in einen Trockenschrank gestellt, um möglicherweise in der Probe befindliches Ammoniumcarbamat durch sublimieren zu entfernen.

In einer ersten Reihe von Experimenten wird der Kohlendioxid-Anteil in der Gasmischung bei einer Temperatur von 550 °C und einer Synthesedauer von 10 h ausgehend von 1,5 sccm $CO_2/28,5$ sccm NH_3 auf 3,0 sccm $CO_2/27,0$ sccm NH_3 und 5,0 sccm $CO_2/25,0$ sccm NH_3 erhöht und nach der Synthese mit Röntgen-Pulverbeugung überprüft, ob die Produkte einphasige ϵ -Eisencarbonitride sind. Die röntgenographisch phasenreinen Produkte zeigen das typische Beugungsmuster der ϵ -artigen Carbonitride. Die Ergebnisse der chemischen Analyse zeigen, dass erst bei der Gaszusammensetzung von 5,0 sccm $CO_2/25,0$ sccm NH_3 ein nachweisbarer Einbau von Kohlenstoff von $[w(C) = 0.46 \pm 0.01 \%]$ erfolgt. Bei den Gaszusammensetzungen von 1,5 sccm $CO_2/28,5$ sccm NH_3 und 3,0 sccm $CO_2/27,0$ sccm NH₃ ist davon auszugehen, dass auch ein Einbau von geringen Mengen Kohlenstoff erfolgt ist, dieser aber unterhalb der Nachweisgrenze der chemischen Analyse von [w(C) < NWG: 0.20 %] liegt. Die Zusammensetzung des Eisencarbonitrids berechnet sich aus der chemischen Analyse zu ϵ -Fe₃(N_{0,95}C_{0,05})_{1,41} [w(N) $= 10,01\pm0,08$ %, $w(C) = 0,46\pm0,01$ %] und ist in Tabelle 5.1 mit den weiterem synthetisierten Carbonitriden aufgelistet. Die chemische Analyse erfolgt nur auf Stickstoff, Kohlenstoff und Sauerstoff und die Differenz zu 100~% entspricht dem Eisen-Gehalt. Alle angegebenen Werte sind Mittelwerte von drei voneinander unabhängig durchgeführten Messungen. Wasserstoff ist in allen Proben unterhalb der Nachweisgrenze $(w(H) \le 0,008 \%)$ vorhanden. Sauerstoff liegt in einigen Proben¹ (Tabelle 5.1) unterhalb der Nachweisgrenze ($w(O) \le 0.25\%$) und in einigen Proben² (Tabelle 5.1) mit einem maximalen Sauerstoff-Gehalt ($w(O) \leq 0, 33 \%$) vor. Da die Proben röntgenographisch phasenrein sind, ist die Bildung von Eisenoxiden auszuschließen. Der sehr geringe Sauerstoff-Gehalt ist als Anhaftung von Sauertoff durch Physisorption an der sehr großen Oberfläche der sehr feinteiligen Probe zu interpretieren, oder als eine oberflächliche Oxidation des Pulvers, die in den Pulverdiffraktogrammen nicht detektiert werden kann. Ab einem Gasmischungsverhältnis von 7 sccm $CO_2/23$ sccm NH_3 tritt neben dem ϵ -Eisencarbonitrid Magnetit (Fe_3O_4) als Fremdphase auf (Abbildung 5.2), was auch von Firrao et al. [139] beobachtet wurde. Ein Gasmischungsverhältnis von 15 sccm $CO_2/15$ sccm NH_3 führt sogar zur Bildung von phasenreinem Magnetit. Um die Zusammensetzung der ϵ -Eisencarbonitride weiter zu variieren, wird die Synthesedauer bei einem konstanten Gasmischungsverhältnis von 24 sccm $NH_3/6$ sccm CO_2 bei 575 °C auf bis zu 96 h verlängert. Bis zu einer Synthesedauer von 68 h sind die ϵ -Eisencarbonitride röntgenographisch einphasig. Bei einer Synthesedauer von 96 h tritt neben dem ϵ -Eisencarbonitrid Zementit (θ -Fe₃C) als Fremdphase auf (Abbildung 5.4). Un-
ter bestimmten Nitrocarburierungs-Bedingungen wird auch von der Bildung von θ -Fe₃C als zusätzlicher Phase [140], oder sogar als einziger Phase in den Verbindungsschichten von Eisen-Blechen berichtet [141]. Bei der Carbonitridierung von Eisenblechen bei 580 °C in NH₃/H₂/N₂/CO Gasmischungen beobachten Wöhrle et al. [142] eine Ausbildung der Mikrostruktur in mehreren Stufen: Zuerst wird eine Kohlenstoff-reiche Zementit-Phase gebildet, die nahezu kein Stickstoff enthält. Die Phasenzusammensetzung der Verbindungsschicht durchläuft danach mehrere Stufen mikrostruktureller Änderungen in Richtung Stickstoff-reicherer und Kohlenstoff-reicherer.

Die Zusammensetzungen der Eisencarbonitride mit dem Synthesegas-Verhältnis von 24 sccm NH₃/6 sccm CO₂ bei den verschiedenen Synthesezeiten berechnen sich aus der chemischen Analyse und sind in Tabelle 5.1 aufgelistet. Kohlenstoff wird von $[w(C) = 0.23\pm0.02 \%]$ bis zu maximal $[w(C) = 0.49\pm0.02 \%]$ eingebaut. Firrao et al. [139] synthetisierten Carbonitride mit CH₃OH als Kohlenstoffspender mit Kohlenstoff-Gehalten zwischen [w(C) = 0.53 %] und [w(C) = 1.12 %] und Leineweber et al. [116] mit CO₂ und CH₃OH in einem technischen Nitridierofen mit einem Kohlenstoff-Gehalt von [w(C) = 1.8 %]. Der Einbau von Kohlenstoff bei den eigenen Versuchen mit CO₂ als Kohlenstoff spendendes Gas ist nahezu unabhängig vom Gasmischungsverhältnis und der Synthesedauer.

Der maximale Stickstoff-Gehalt von ϵ -Fe₃N_{1+x} (ohne Anlegen eines externen Drucks) wurde zu x = 0, 48 bei einer nur geringfügigen Temperaturabhängigkeit bestimmt und bei einer eigenen HP-HT-Synthese zu x = 0, 47 (Unterabschnitt 4.2.7). Für größere Werte von x trennt ein Zweiphasenbereich die ϵ - und ζ -Phasen [90, 91, 116]. Für einige der synthetisierten ϵ -Eisencarbonitride sind die x-Werte geringfügig größer als der maximal für x bestimmte Wert von 0,48. Sie liegen allerdings noch in etwa im Rahmen der Standardabweichung und die zusätzliche Anwesenheit der ζ -Fe₂N Phase kann ausgeschlossen werden, da keine Reflexaufspaltungen und keine zusätzlicher Überstrukturreflexe der ζ -Phase (bei ca. 11,8° und 14,4° mit Mo- $K_{\alpha 1} = 0,70930$ Å) vorhanden sind (Abbildung 5.3). Außerdem ist ζ -Fe₂N bei den Synthesetemperaturen von 550 °C und 575 °C nicht stabil (Abbildung 4.23) und eigene TG-Untersuchungen (Unterabschnitt 4.2.1/Abbildung 4.9) zeigen eine Zersetzung von ζ -Fe₂N unter Argon ab 440 °C.

Tabelle 5.1: Übersicht der synthetisierten ϵ -Eisencarbonitride mit Zusammensetzung und Synthese-Bedingungen. Sauerstoff liegt unterhalb der NWG¹ ($w(O) \le 0, 25 \%$) oder mit maximal² ($w(O) \le 0, 33 \%$) vor.

Zusammensetzung berechnet aus chemischer Analyse	chemische Analyse	Synthese-Bedingungen
$^{1}\epsilon$ -Fe ₃ (N _{0,95} C _{0,05}) _{1,41}	$[w(N) = 10,01 \pm 0,08 \%,$	$NH_3: 25 \text{ sccm}/CO_2: 5 \text{ sccm}$
	$w(C) = 0.46 \pm 0.01 \%$	550 °C, 10 h
$^{2}\epsilon$ -Fe ₃ (N _{0,95} C _{0,05}) _{1,55}	$[w(N) = 10,96 \pm 0,34 \%,$	$NH_3: 24 \text{ sccm}/CO_2: 6 \text{ sccm}$
	$w(C) = 0.49 \pm 0.02 \%$	575 °C, 24 h
$^{2}\epsilon$ -Fe ₃ (N _{0,97} C _{0,03}) _{1,54}	$[w(N) = 11,10\pm0,03\%,$	$NH_3: 24 \text{ sccm}/CO_2: 6 \text{ sccm}$
	$w(C) = 0.34 \pm 0.01 \%$	575 °C, 30 h
$^{1}\epsilon$ -Fe ₃ (N _{0,96} C _{0,04}) _{1,56}	$[w(N) = 11,14\pm0,11\%,$	$NH_3: 24 \text{ sccm}/CO_2: 6 \text{ sccm}$
	$w(C) = 0.37 \pm 0.02 \%$	575 °C, 36 h
$^{2}\epsilon$ -Fe ₃ (N _{0,96} C _{0,04}) _{1,55}	$[w(N) = 11,07 \pm 0,29 \%,$	$NH_3: 24 \text{ sccm}/CO_2: 6 \text{ sccm}$
	$w(C) = 0.38 \pm 0.02 \%$	575 °C, 42 h
$^{1}\epsilon$ -Fe ₃ (N _{0,97} C _{0,03}) _{1,55}	$[w(N) = 11,20\pm0,23\%,$	$NH_3: 24 \text{ sccm}/CO_2: 6 \text{ sccm}$
, , , ,	$w(C) = 0,23 \pm 0,02 \%$	575 °C, 68 h

Tabelle 5.2: Synthetisierte ϵ -Carbonitride aus der Literatur zum Vergleich. Synthesen von Firrao³ et al. [139] unter Laborbedingungen und eine Synthese in einem technischen Nitridierofen der Firma *Carl Gommann* von Leineweber⁴ et al. [116]. Firrao⁵ et al. [139] geben keine Informationen zu ihren verwendeten Gasmischungsverhältnissen.

Zusammensetzung berechnet aus chemischer Analyse	Synthese-Bedingungen
3ϵ -Fe ₃ (N _{0,92} C _{0,08}) _{1,13}	⁵ NH ₃ / CH ₃ OH
	702 °C, 7 h
${}^{3}\epsilon$ -Fe ₃ (N _{0,93} C _{0,07}) _{1,24}	$^{5}\mathrm{NH}_{3}/\mathrm{~CH}_{3}\mathrm{OH}$
	602 °C, 3 h
${}^{3}\epsilon$ -Fe ₃ (N _{0.89} C _{0.11}) _{1.33}	$^{5}\mathrm{NH}_{3}/\mathrm{~CH}_{3}\mathrm{OH}$
	502 °C, 5 h
${}^{4}\epsilon$ -Fe ₃ (N _{0.80} C _{0.20}) _{1.38}	95,8 Vol. % $NH_3/1,8$ Vol. % CH_3OH
	0,7 Vol. % CO ₂ /1,7 Vol. % N ₂
	580 °C, 3 Zyklen a 36 h

Abbildung 5.2: Röntgen-Pulverdiffraktogramm von ϵ -Eisencarbonitrid (schwarz) mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus [116] und Magnetit (Fremdphase) mit unterlegtem berechneten Diffraktogramm (blau) mit Daten aus [143].

Abbildung 5.3: Röntgen-Pulverdiffraktogramm von ϵ -Fe₃(N_{0,98}C_{0,02})_{1,48} (schwarz) mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus [116].

Abbildung 5.4: Röntgen-Pulverdiffraktogramm von ϵ -Eisencarbonitrid (schwarz) mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus [116] und von Zementit (Fremdphase) mit unterlegtem berechneten Diffraktogramm (blau) mit Daten aus [144].

Die verfeinerten Zellparameter für ϵ -Fe₃(N_{0,95}C_{0,05})_{1,41} mit a = 4,7775(3) Å, c = 4,411(3) Å (Tabelle 5.3) sind ähnlich wie für ein ϵ -Eisencarbonitrid von Leineweber et al. [116] mit einem ähnlichen x-Wert von 1,38 aber einem höheren Kohlenstoff-Gehalt (ϵ -Fe₃(N_{0,80}C_{0,20})_{1,38} mit a = 4,777 Å, c = 4,407 Å). Die weiteren synthetisierten ϵ -Eisencarbonitride mit ihrer sehr ähnlichen Zusammensetzung (von N_{0,97}C_{0,03} bis N_{0,95}C_{0,05} und x-Werten von 1,54 bis 1,56) haben erwartungsgemäß ähnliche verfeinerte Zellparameter, die in Tabelle 5.3 aufgelistet sind. Der Gesamt-Gehalt von Kohlenstoff und Stickstoff aus der chemischen Analyse ist in

 Tabelle 5.3: Verfeinerte Zellparameter und Zusammensetzung (berechnet aus chemischer Analyse) der synthetisierten Carbonitride.

Zellparameter	Zusammensetzung berechnet aus chemischer Analyse
a = 4,7775(3) Å, c = 4,4111(3) Å a = 4,7894(3) Å, c = 4,4152(3) Å a = 4,7903(2) Å, c = 4,4180(2) Å a = 4,7897(1) Å, c = 4,4170(2) Å a = 4,7917(3) Å, c = 4,4191(3) Å a = 4,7889(1) Å, c = 4,4181(2) Å	$\begin{array}{l} \epsilon - \mathrm{Fe}_{3}(\mathrm{N}_{0,95}\mathrm{C}_{0,05})_{1,41} \\ \epsilon - \mathrm{Fe}_{3}(\mathrm{N}_{0,95}\mathrm{C}_{0,05})_{1,55} \\ \epsilon - \mathrm{Fe}_{3}(\mathrm{N}_{0,97}\mathrm{C}_{0,03})_{1,54} \\ \epsilon - \mathrm{Fe}_{3}(\mathrm{N}_{0,96}\mathrm{C}_{0,04})_{1,56} \\ \epsilon - \mathrm{Fe}_{3}(\mathrm{N}_{0,96}\mathrm{C}_{0,04})_{1,55} \\ \epsilon - \mathrm{Fe}_{3}(\mathrm{N}_{0,97}\mathrm{C}_{0,03})_{1,55} \end{array}$

guter Übereinstimmung mit den verfeinerten Zellparametern, die größer als die von $(\epsilon$ -Fe₃ $(N_{0,80}C_{0,20})_{1,38}$ [116] sind und auch auf eine Gesamtbesetzung von x = 1, 5 hindeuten.

5.2.2 Rietveld-Verfeinerung der Neutronenbeugungsdaten in zwei Modellen von ϵ -Fe₃(N_{0,95}C_{0,05})_{1,55}

Zur Bestimmung und der Unterscheidung der leichten Elemente Stickstoff und Kohlenstoff werden Neutronenpulver-Diffraktogramme aufgenommen. Der geringe Kohlenstoff-Gehalt (Tabelle 5.1) liegt in einem Grenzbereich, der mit der Neutronenbeugung überhaupt noch zuverlässig detektierbar ist, da auch die Streulänge von Kohlenstoff ungefähr $\frac{1}{3}$ geringer als die von Eisen und Stickstoff ist (b(Fe) = 0, 95 fm, 1)b(N) = 0,94 fm, b(C) = 0,66 fm [84]), was die Bestimmung von Kohlenstoff zu einer Herausforderung macht. In den Neutronen-Diffraktogrammen ist neben dem ϵ -Eisencarbonitrid eine bisher unbekannte Fremdphase enthalten. Neben einigen Zusatzreflexen dieser Fremdphase, die andere Reflexlagen im Diffraktogramm als das ϵ -Eisencarbonitrid haben, überschneiden sich zwei stärkere Reflexe mit denen des ϵ -Eisencarbonitrids. Dies läßt den Versuch die Besetzung der beiden leichten Elementen zu verfeinern zu einer weiteren Herausforderng werden. Leineweber et al. [116] konnten bei einem einphasigen ϵ -Eisencarbonitrid mit einem deutlich höheren Kohlenstoff-Gehalt $(N_{0.80}C_{0.20})$ die Besetzungen von Kohlenstoff und Stickstoff nicht einzeln verfeinern und haben die Werte aus der chemischen Analyse bei der Verfeinerung fixiert, wobei sie Stickstoff und Kohlenstoff auf den Lagen gemeinsam mit einer gemittelten Streulänge verfeinert haben. Eine Rietveld-Verfeinerung des Stickstoff-Gehaltes von ϵ -Fe₃(N_{0.95}C_{0.05})_{1.55} führt zu einem x-Wert von 1,37, der in recht guter Übereinstimmung mit dem ermittelten Wert aus der chemischen Analyse von 1,47 für ϵ -Fe₃(N_{0.95}C_{0.05})_{1,55} ist. Der Auslenkungsparameter der 2b-Lage von Stickstoff zeigt bei der Verfeinerung einen geringen negativen Wert, der andeuten könnte, dass Kohlenstoff diese Lage zusätzlich besetzt. Im weiteren Verlauf der Verfeinerung werden die Gehalte für Stickstoff und Kohlenstoff aus der chemischen Analyse als Summe für die beiden zu besetzenden Lagen 2b und 2c fixiert. Ebenso werden die B_{iso} -Werte für die zu besetzenden Lagen zusammen verfeinert. Der B_{iso} -Wert von Eisen wird ohne Kopplung verfeinert. Stickstoff ist auf der 2c-Lage mit 0,848(1) und auf der 2b-Lage mit 0,625(1) besetzt (Tabelle 5.4). Kohlenstoff hingegen zeigt auf der 2c-Lage eine negative Besetzung von -0.007(2) und auf der 2b-Lage eine geringe Besetzung von 0.085(2) (Tabelle 5.4). Die geringe negative Besetzung

Zellparameter / Å:	a = 4,7916(1)	c = 4,4148(1)
Besetzungsfaktoren:	N1 auf $2c$ -Lage	0,848(1)
	C1 auf $2c$ -Lage	-0,007(2)
	N2 auf 2 b -Lage	0,625(1)
	C2 auf 2 b -Lage	0,085(2)
Auslenkungsparameter:	$B_{\rm iso}({\rm Fe})$	0,52(6)
	$B_{\rm iso}({\rm N,C})$	1,17(1)
Gütewerte / %:	$R_{ m Bragg}$	$5,\!49$
	$R_{ m F}$	5,52

Tabelle 5.4: Ergebnisse der Rietveld-Verfeinerung der Neutronenpulverbeugungsdaten bei Zimmertemperatur und Umgebungsdruck von ϵ -Fe₃(N_{0,95}C_{0,05})_{1,55} mit besetzter 2*c*-Lage für Kohlenstoff im Modell 1 in der Raumgruppe *P*6₃22.

der 2c-Lage ist physikalisch nicht sinnvoll und kann als Anzeichen interpretiert werden, dass diese Lage nicht mit Kohlenstoff besetzt ist. Die B_{iso} -Werte haben physikalisch sinnvolle Werte (Eisen: 0.52(6); Stickstoff und Kohlenstoff: 1.17(1)). In einem alternativen Modell 2 wird die 2*c*-Lage nicht durch Kohlenstoff besetzt. Der gesamte Kohlenstoff-Gehalt aus der chemischen Analyse wird auf die 2b-Lage gesetzt und der gesamte Stickstoff-Gehalt wird auf den Lagen 2b und 2c verteilt und gekoppelt verfeinert. Die B_{iso} -Werte von Stickstoff und Kohlenstoff auf der 2c-Lage werden ebenfalls gekoppelt verfeinert. Die B_{iso} -Werte von Eisen und Stickstoff auf der 2c-Lage werden ohne Kopplung verfeinert. Stickstoff ist auf der 2c-Lage mit 0,840(2) und auf der 2b-Lage mit 0,633(2) besetzt (Tabelle 5.5), was sehr ähnliche Besetzungen der Lagen sind wie in Modell 1 (Tabelle 5.4). Auch in diesem Modell 2 haben die B_{iso} -Werte physikalisch sinnvolle Werte (Fe: 0,52(6), Stickstoff auf der 2c-Lage: 1,21(16), Stickstoff und Kohlenstoff auf der 2b-Lage: 1,12(22)). Im Gegensatz zu einem stickstoffreichen ϵ -Eisennitrid einer ähnlichen Gesamtzusammensetzung ϵ -Fe₃N_{1,47} und einer Besetzung der 2*c*-Lage von 0,993 mit Stickstoff aus einer HT-HP-Synthese (Unterabschnitt 4.2.7) zeigt ϵ -Fe₃(N_{0.95}C_{0.05})_{1.55} eine geringere Besetzung der 2c-Lage mit Stickstoff von 0,840. Die aus der Verfeinerung berechneten Zusammensetzungen für Modell 1 von ϵ -Fe₃(N_{0.95}C_{0.05})_{1.56} und Modell 2 von ϵ -Fe₃(N_{0.95}C_{0.05})_{1.55} sind in sehr guter Übereinstimmung mit der aus der chemischen Analyse berechneten Zusammensetzung von ϵ -Fe₃(N_{0.95}C_{0.05})_{1.55}.

 ϵ -Eisennitride und ϵ -Eisencarbonitride sind Ferromagnete. Mit steigendem Stickstoff-Gehalt fällt bei ϵ -Fe₃N_{1+x} die Curie-Temperatur ($T_{\rm C}$) von $T_{\rm C} \approx 575$ K für x = 0 auf $T_{\rm C} \approx 10$ K für x = 0, 48 [90, 124, 145], so dass Intensitätsbeiträge der Reflexe durch koinzidierende magnetische Reflexe ausgeschlossen werden können. Auch wenn die Rietveld-Verfeinerungen des Modells 1 (mit besetzter 2*c*-Lage für

Abbildung 5.5: Graphische Darstellung der Rietveld-Verfeinerung der Neutronenbeugungsdaten bei Zimmertemperatur und Umgebungsdruck von ϵ -Fe₃(N_{0,95}C_{0,05})_{1,55} für das Modell 1 mit besetzter 2*c*-Lage für Kohlenstoff. Gemessenes Diffraktogramm (rot), berechnetes Diffraktogramm (schwarz), Positionen der möglichen Bragg-Reflexe (grün), Differenz aus gemessenem und berechnetem Diffraktogramm (blau).

Abbildung 5.6: Graphische Darstellung der Rietveld-Verfeinerung der Neutronenbeugungsdaten bei Zimmertemperatur und Umgebungsdruck von ϵ -Fe₃(N_{0,95}C_{0,05})_{1,55} für das Modell 2 mit unbesetzter 2*c*-Lage für Kohlenstoff. Gemessenes Diffraktogramm (rot), berechnetes Diffraktogramm (schwarz), Positionen der möglichen Bragg-Reflexe (grün), Differenz aus gemessenem und berechnetem Diffraktogramm (blau).

Tabelle 5.5: Ergebnisse der Rietveld-Verfeinerung der Neutronenpulverbeugungsdaten bei Zimmertemperatur und Umgebungsdruck von ϵ -Fe₃(N_{0,95}C_{0,05})_{1,55} mit unbesetzter 2*c*-Lage für Kohlenstoff im Modell 2 in der Raumgruppe *P*6₃22.

Zellparameter / Å:	a = 4,7916(1)	c = 4,4148(1)
Besetzungsfaktoren:	N1 auf $2c$ -Lage	0,840(2)
	N2 auf 2b-Lage	0,633(2)
	C2 auf 2 b -Lage	0,078 (fixiert)
Auslenkungsparameter:	$B_{\rm iso}({\rm Fe})$	0,52(6)
	$B_{\rm iso}({\rm N1})$	1,2(2)
	$B_{\rm iso}({\rm N2,\ C2})$	1,1(2)
Gütewerte / %:	$R_{ m Bragg}$	$5,\!37$
	$R_{\rm F}$	5,52

Kohlenstoff) und des Modells 2 (mit unbesetzter 2c-Lage für Kohlenstoff) sowohl virtuell als auch in den Gütewerten nahezu identisch sind (Abbildung 5.5 und Abbildung 5.6 sowie Tabelle 5.4 und Tabelle 5.5) ist das Modell 2 mit unbesetzter 2c-Lage und vollbesetzter 2b-Lage für Kohlenstoff das bevorzugte Modell, da die geringe negative Besetzung der Lage 2c für Kohlenstoff physikalisch nicht sinnvoll ist.

5.3 Zusammenfassung und Ausblick

In Kapitel 5 wurden phasenreine Precusoren durch Carbonitridierung von Eisen-Pulver in Ammoniak/Kohlendioxid-Gasmischungen für anschließende Hochdruck-Versuche synthetisiert. Der Kohlenstoff-Gehalt ist nur geringfügig abhängig von den Ammoniak/Kohlendioxid-Gasmischungsverhältnissen und variiert innerhalb der Nachweisgrenze von $[w(C) = 0.23\pm0.02 \ \%]$ bis zu maximal $[w(C) = 0.49\pm0.02 \ \%]$. Bei einem festen Gasmischungsverhältniss von NH₃: 24 sccm/CO₂: 6 sccm ist der Kohlenstoff-Gehalt nahezu unabhängig von der Synthesedauer und phasenreines ϵ -Eisencarbonitrid wurde bis zu einer Synthesedauer von 68 h synthetisiert. Der x-Wert variiert mit der Synthesedauer und erreicht ab einer Synthesedauer von 24 h den maximalen Wert von x = 1, 56. Die verfeinerten Zellparameter sind in guter Übereinstimmung mit Literaturwerten für ähnliche Zusammensetzungen. Ab einer Synthesedauer von 96 h ist das Produkt nicht mehr phasenrein und enthält θ -Fe₃C (Zementit). Die Rietveld-Verfeinerungen der Neutronenbeugungsdaten von ϵ -Fe₃(N_{0.95}C_{0.05})_{1.55} zeigen eine Besetzung von Stickstoff auf den Lagen 2c mit 0.840(2) und 2b mit 0.633(2) und von Kohlenstoff auf der Lage 2b mit 0.078 (fixiert). Die aus der Verfeinerung berechnete Zusammensetzung beträgt ϵ -Fe₃(N_{0,95}C_{0,05})_{1,55}.

Mit *in-situ* und *ex-situ* Experimenten unter hohen Drücken bzw. hohen Drücken und Temperaturen soll zukünftig das Hochdruckverhalten und mögliche Phasenumwandlungen der ϵ -Eisencarbonitriden untersucht werden. Aus den Daten der *in-situ* Untersuchungen soll das Kompressionsmodul bestimmt werden. An Einkristallen aus der Synthese mit der Vielstempel-Presse sollen Eigenschaften wie Vickers-Härte und elastomechanische Eigenschaften bestimmt und mit den Daten der ϵ -Eisennitride verglichen werden.

A Anhang

A.1 Röntgen-Pulverdiffraktogramme von γ' -Fe₄N, ϵ -Fe₃N_{1,39} und ζ -Fe₂N nach der TG

Abbildung A.1: Röntgen-Pulverdiffraktgramm ($\lambda = 0,70930$ Å) von γ' -Fe₄N (schwarz) nach der TG in Ar-Atmosphäre bis 850 °C (Heizrate: 10 °Cmin⁻¹) mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus [146]. Reines Fe-Pulver ist als einzige Phase nach der TG in dem Diffraktogramm vorhanden.

Abbildung A.2: Röntgen-Pulverdiffraktgramm ($\lambda = 0,70930$ Å) von ϵ -Fe₃N_{1,39} (schwarz) nach der TG in Ar-Atmosphäre bis 850 °C (Heizrate: 10 °Cmin⁻¹) mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus [146]. Reines Fe-Pulver ist als einzige Phase nach der TG in dem Diffraktogramm vorhanden.

Abbildung A.3: Röntgen-Pulverdiffraktgramm ($\lambda = 0,70930$ Å) von ζ -Fe₂N (schwarz) nach der TG in Ar-Atmosphäre bis 850 °C (Heizrate: 10 °Cmin⁻¹) mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus [146]. Reines Fe-Pulver ist als einzige Phase nach der TG in dem Diffraktogramm vorhanden.

Literaturverzeichnis

- [1] F.J. Disalvo, Mater. Sci. Forum 2000, 383, 325.
- [2] E. Kroke, Angew. Chem. Int. Edit. 2002, 41, 77.
- [3] E. Horvath-Bordon, R. Riedel, A. Zerr, P.F. McMillan, G. Auffermann, Y. Prots, W. Bronger, R. Kniep, P. Kroll, *Chem. Soc. Rev.* 2006, 35, 987– 1014.
- [4] A. Fry, Stahl Eisen **1923**, 43, 1271–1279.
- [5] D. Andriamandroso, L. Fefilatiev, G. Demazeau, L. Fournes, M. Pouchard, Mater. Res. Bull. 1984, 19, 1187–1194.
- [6] S. Nakamura, MRS Bull. 1997, 22, 29.
- [7] F.A. Ponce, D.P. Bour, *Nature* **1997**, *386*, 351.
- [8] O. Silvestri, Poggendorfs Annalen der Chemie und Physik 1867, 157, 165– 172.
- [9] V.F. Buchwald, H.P. Nielsen, Lunar and Planetary Science 1981, 12, 112–14.
- [10] G. Tunell, J.J Fahey, F.W. Daugherty, G.V. Gibbs, Neues Jahrb. Mineral. 1977, Monatsh., 119–131.
- [11] G. Giester, W. Mikenda, F. Pertlik, Neues Jahrb. Mineral. 1996, Monatsh., 49–56.
- [12] G. Switzer, W.F. Foshag, K.J. Murata, J.J Fahey, Am. Mineral. 1953, 38, 1225–1234.
- [13] M.R. Lee, S.S. Russel, J.W. Arden, C.T. Pillinger, Meteoritics Planet. Sci. 1995, 30, 387.
- [14] C.A. Anderson, K. Keil, B. Mason, Science 1964, 146, 256.

- [15] F.A. Bannister, *Mineral. Mag.* **1941**, *26*, 36.
- [16] V.F. Buchwald, *Nature phys. Sci.* **1971**, *233*, 113.
- [17] J.F. Adler, Q. Williams, J. Geophysical. Res. 2005, 110, B01203.
- [18] MKS Instruments Deutschland GmbH, Digitale Gasflussregler Typ 1179B/ 1479B/ 2179B und Digitaler Gasflussmonitor 179B, 04/2009 Aufl., 2009.
- [19] Ch. Bürkert GmbH & Co. KG, Mass Flow Controller, Techn. Ber., 2011.
- [20] P.W. Bridgman, Proc. Roy. Soc. A **1950**, A203, 1.
- [21] M.I. Eremets, *High Pressure Experimental Methods*, (Hrsg.: Oxford Science Publications), Oxford University Press, **1996**.
- [22] L.G. Khvostantsev, V.N Slesarev, V.V. Brazhkin, High Pressure Res. 2004, 24, 371.
- [23] D.J. Frost, B.T. Poe, G.G. Tronnes, C. Liebske, A. Duba, D.C. Rubie, *Phys. Earth Planet Inter.* 2004, 143-144, 507–514.
- [24] A. Yoneda, M. Kato, Y. Kozuki, H. Sawamoto, M. Mumazawa, R. Makino, *High Temp.-High Pressures* 1986, 18, 301–310.
- [25] D. Walker, M.A. Carpenter, C. Hitch, Am. Mineral. 1990, 75, 1020–1028.
- [26] D. Walker, Am. Mineral. 1991, 76, 1092–1100.
- [27] A. Wosylus, Dissertation, TU Dresden, **2010**.
- [28] H. Huppertz, Z. Kristallogr. 2004, 219, 330.
- [29] A.J. Stewart, W. van Westrenen, S.M. W, E. Melekhova, *High Pressure Res.* 2006, 26, 293–299.
- [30] A. Wosylus, U. Schwarz, L. Akselrud, M.G. Tucker, M. Hanfland, K. Rabia, C. Kuntscher, J. von Appen, R. Dronskowski, D. Rau, R. Niewa, Z. Anorg. Allg. Chem. 2009, 635, 1959–1968.
- [31] D.A. Young, *Phase diagram of the elements*, University of California Press, Berkeley, **1991**.
- [32] C.E. Weir, E.R. Lippincott, A. van Valkenburg, E.N. Bunting, J. Res. Nat. Bur. Stand. A 1959, 63, 55.

- [33] G.J. Piermarini, S. Block, J.D. Barnett, R.A. Forman, J. Appl. Phys. 1975, 46, 2774.
- [34] H.K. Mao, M.P. Bell, J.W. Shaner, D.J. Steinberg, J. Appl. Phys. 1978, 49, 3276.
- [35] NETZSCH, NETZSCH Proteus-Thermal Analysis 2006, Version 4.8.2.
- [36] L. Spieß, R. Schwarzer, H. Behnken, G. Teichert, Moderne Röntgenbeugung Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker, B.G. Teubner Verlag, 2005.
- [37] R. Allmann, *Röntgenpulverdiffraktometrie*, Springer, Berlin, Heidelberg, New York, 2003.
- [38] L. Achselrud, Image Integrator, Version 1.2, *Techn. Ber.*, Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, 2005.
- [39] L.G. Achselrud, P.Y. Zavalii, Yu.N. Grin, V.K. Pecharsky, B. Baumgartner,
 E. Woefel, *Mater. Sci. Forum* 1993, 133-136, 335-340.
- [40] F.D. Murnaghan, Prog. Natl. Acad. Sci. USA 1944, 30, 244–247.
- [41] Oxford-Diffraction, CrysAlis RED 1995-2006, Version 1.171.
- [42] G. Sheldrick, C. Krüger, R. Goddard, SHELXS-97 1985.
- [43] G. Sheldrick, *SHELXL97-2* **1997**.
- [44] W. Massa, *Kristallstrukturbestimmung*, (Hrsg.: C. Elschenbroich, F. Hensel, H. Hopf), B.G. Teubner Verlag, **2005**.
- [45] J. Rodriguez-Carvajal, FullProf 2001.
- [46] T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR 2000.
- [47] A.C. Larson, R.B. von Dreele, Los Alamos National Laboratory Report 2004, 86–748.
- [48] B.H. Toby, J. Appl. Crystallogr. 2001, 34, 210–213.
- [49] S. Kikuchi, Jpn. J. Phys. **1928**, 5, 83.

- [50] E. Hornbogen, Werkstoffe: Aufbau und Eigenschaften von Keramik, Metallen, Kunststoffen und Verbundwerkstoffen, Springer, Berlin, Heidelberg, New York, 1983, 142.
- [51] W.C. Oliver, G.M. Pharr, J. Mater. Res. 1992, 7, 1564.
- [52] W.C. Oliver, G.M. Pharr, J. Mater. Res. 2004, 19, 3–20.
- [53] M.F. Doerner, W.D. Nix, J. Mater. Res. 1986, 1, 601.
- [54] C. Schenk, *MiKTEX 2.7* **2009**, open source.
- [55] LyX-Team, *LyX* **2009**, Version 1.6.5.
- [56] O.A. Mortan, *JabRef version 2.3.1* 2007, General Public License.
- [57] K. Brandenburg, *Diamond* **1997-2006**, Version 3.1d.
- [58] OriginLab, OriginPro 7.5G SR6 2006.
- [59] Microsoft, Microsoft Office Exel 2003 2003.
- [60] STOE, *WinXPOW* **2003**, Version 2.0.8.
- [61] FindIt, ICSD-Inorganic Crystal Structure Database 2009, Version 1.4.6.
- [62] G. Kresse, J. Hafner, *Phys. Rev. B* **1993**, *47*, 558–561.
- [63] G. Kresse, J. Hafner, *Phys. Rev. B* **1994**, *49*, 14251–14269.
- [64] G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50.
- [65] G. Kresse, J. Furthmüller, *Phys. Rev. B* **1996**, *55*, 11169–11186.
- [66] J.P. Perdew, K. Burke, M. Enzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- [67] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 1976, 13, 5188–5192.
- [68] D.M. Borsa, D.O. Boerma, Surf. Sci. 2004, 548, 95–105 mit Referenzen, die hier zitiert werden.
- [69] D.M. Borsa, S. Grachev, C. Presura, D.O. Boerma, Appl. Phys. Lett. 2002, 80, 1823.
- [70] R. Juza, H. Hahn, Z. Anorg. Allg. Chem. 1938, 239, 282–287.

- [71] U. Zachwieja, H. Jacobs, J. Less-Common Met. 1990, 161, 175–184.
- [72] J.E. Jorgensen, W.G. Marshall, R.I. Smith, J.S. Olsen, L. Gerwald, J. Appl. Crystallogr. 2004, 37, 857–861 mit Referenzen, die hier zitiert werden.
- [73] Z. Cancarevic, J.C. Schön, M. Jansen, Z. Anorg. Allg. Chem. 2005, 631, 1167–1171.
- [74] W. Yu, L. Li, C. Jin, J. Mater. Sci. 2005, 40, 4661–4664.
- [75] L.X. Yang, J.G. Zhao, Y. Yu, F.Y. Li, R.C. Yu, C.Q. Jin, *Chin. Phys. Lett.* 2006, 23, 426–427.
- [76] J.G. Zhao, L.X. Yang, Y. Yu, S.J. You, J. Liu, C.Q. Jin, *Phys. Status Solidi* 2006, 243, 573–578.
- [77] H. Salmang, H. Scholze, Keramik Teil 1: Allgemeine Grundlagen und wichtige Eigenschaften, Springer, Berlin, Heidelberg, New York, 1982.
- [78] J.G. Zhao, S.J. You, C.Q. Jin, Solid State Commun. 2010, 150, 1521–1524.
- [79] P.W. Stephens, J. Appl. Crystallogr. 1999, 32, 281–289.
- [80] R.E. Dinnebier, R. von Dreele, P.W. Stephens, S. Jelonek, J. Sieler, J. Appl. Crystallogr. 1999, 32, 761–769.
- [81] J.E. Jorgensen, J. Staun Olsen, L. Gerward, J. Appl. Crystallogr. 2000, 33, 279–284.
- [82] Ma. Guadalupe Moreno-Armenta, W. Lopez Perez, N. Takeuchi, Solid State Sci. 2007, 9, 166–172.
- [83] N. Matsuno, M. Yoshimi, S. Ohtake, T. Akahane, N. Tsudo, J. Phys. Soc. Jpn. 1978, 45, 1542–1544.
- [84] E. Prince, International Tables for Crystallography Volume C, Third Edition, Kluwer Academic Publishers Dordrecht/Bosten/London, 2004.
- [85] A. Leineweber, R. Niewa, H. Jacobs, W. Kockelmann, J. Mater. Chem. 2000, 10, 2827–2834.
- [86] L.M. Corliss, N. Elliott, J.M. Hastings, Phys. Rev. 1960, 117, 929–935.
- [87] U. Hahn, W. Weber, *Phys. Rev. B* **1996**, *53*, 12684–12693.

- [88] C. Despretz, Ann. Chim. Phys. 1829, 42, 122.
- [89] C.L. Berthollet, L.J. Thénard, Traite de Cimie 1834, 1, 434.
- [90] H.A. Wriedt, N.A. Gokcen, R H. Nafziger, Bull. Alloy Phase Diagrams 1987, 8, 355–377 mit Referenzen, die hier zitiert werden.
- [91] K.H. Jack, Acta Crystallogr. **1952**, 5, 404–411.
- [92] K.H. Jack, Proc. Royal Soc. London A 1948, 195, 34–41.
- [93] H. Jacobs, D. Rechenbach, U. Zachwieja, J. Alloys Compd. 1995, 277, 10–17.
- [94] K.H. Jack, Proc. Roy. Soc. A **1951**, 208, 200–215.
- [95] D.H. Jack, K.H. Jack, Mater. Sci. Eng. 1973, 11, 1–27.
- [96] D. Rechenbach, H. Jacobs, J. Alloys Compd. **1996**, 235, 15–22.
- [97] E.J. Mittemeijer, M.A.J. Somers, Surface Engineering 1997, 13, 483.
- [98] M. Takahashi, H. Fuji, H. Nakagawa, S. Nasu, F. Kanamaru, Proc. 6th Conf. Ferrites, Tokyo and Kyoto, Japan, 1992, 508.
- [99] S. Kikkawa, T. Yamamoto, K. Ohta, M. Takahashi, F. Kanamaru in, *The chemistry of Transition Metal Carbides and Nitrides*, (Hrsg.: S. T. Oyama), Blackie A & P Glasgow, **1996**.
- [100] K. Suzuki, H. Morita, T. Kaneko, H. Yoshida, H. Fujimori, J. Alloys Compd. 1993, 201, 11–16.
- [101] K.H Jack, Proc. Roy. Soc. 1951, A208, 216–224.
- [102] T.K. Kim, M. Takahashi, Appl. Phys. Lett. 1972, 20, 492–494.
- [103] K. Nakajima, S. Okamoto, Appl. Phys. Lett. 1990, 20, 92–94.
- [104] Y. Sugita, H. Takahashi, M. Komuro, J. Appl. Phys. 1994, 76, 6637–6641.
- [105] R.M. Metzger, X. Bao, J. Appl. Phys. 1994, 76, 6626–6631.
- [106] M.Q. Huang, W.E. Wallace, S. Shimizu, A.T. Pedziwiatr, R.T. Obermeyer, S.G. Sankar, J. Appl. Phys. 1994, 75, 6574–6576.
- [107] K.H. Jack, J. Alloys Compd. **1995**, 222, 160–166.

- [108] M. Takahashi, H. Shoji, J. Magn. Magn. Mater. 2000, 208, 145–157.
- [109] T. Saito, J. Appl. Phys. 2000, 87, 6514–6516.
- [110] N. Ishimatsu, Y. Ohishi, M Suzuki, N. Kawamura, M. Ito, H. Maruyama, S. Nasu, T. Kawakami, O. Shimomura, Nucl. Inst. Meth. Phys. Res. A 2001, 467-468, 1061.
- [111] C.L. Yang, M.M. Abd-Elmeguid, G. Michels, J.W. Otto, Y. Kong, D.S. Xue, F.S. Li and, J. Magn. Magn. Mater. 1995, 151, L19.
- [112] F. Li, Y. Kong, R. Zhou, C.L. Yang, M.M. Abd-Elmeguid, G. Michels, H. Micklitz, J.W. Otto, Solid State Commun. 1995, 95, 753.
- [113] D. Liedtke, U. Baudis, J. Boßlet, U. Huchel, H. Klümper-Westkamp, W. Lerche, H.J. Spies, Wärmebehandlung von Eisenwerkstoffen II Nitrieren und Nitrocarburieren, Bd. 686 Kontakt & Studium, (Hrsg.: W.J. Bartz, E. Wippler), expert-verlag, 2007.
- [114] E. Lehrer, Z. Elektrochemie **1930**, 36, 383–392.
- [115] H.-J. Spies, H.-J. Berg, H. Zimdars, Härterei-Techn. Mitt. 2003, 58, 189–197.
- [116] A. Leineweber, H. Jacobs, F. Hüning, H. Lueken, W. Kockelmann, J. Alloys Compd. 2001, 316, 21–38.
- [117] H.K. Mao, Y. Wu, L.C. Chen, J.F. Shu, A.P. Jephcoat, J. Geophysical. Res. 1990, 95, 21–37.
- [118] R. Niewa, D. Rau, A. Wosylus, K. Meier, M. Hanfland M. Wessel, R. Dronskowski, D. Dzivenko, R. Riedel, U. Schwarz, *Chem. Mater.* 2009, 21, 392–398.
- [119] K.C. Creager, *Nature* **1992**, *356*, 309.
- [120] K.C. Creager, Science **1997**, 278, 1284.
- [121] H.K. Mao, J. Xu, V.V. Struzhkin, J. Shu, R.J. Hemley, W. Sturhan, M.Y. Hu, E.E. Alp, L. Vocadlo, D. Alfe, G.D. Price, M.J. Gillan, M. Schwoerer-Böhning, D. Häusermann, P. Eng, G. Shen, H. Giefers, R. Lübbers, G. Wortmann, *Science* 2001, 292, 914.
- [122] R. Niewa, D. Rau, A. Wosylus, K. Meier, M. Wessel, R. Dronskowski, U. Schwarz, J. Alloys Compd. 2009, 480, 76–80.

- [123] H. Jacobs, J. Bock, J. Less Common Met. 1987, 134, 215–220.
- [124] A. Leineweber, H. Jacobs, F. Hüning, H. Lueken, H. Schilder, W. Kockelmann, J. Alloys Compd. 1999, 288, 79.
- [125] L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 2nd ed., Pergamon Press: London, 1975.
- [126] R. Blachnik, Taschenbuch für Physiker und Chemiker Teil 3, (Hrsg.: D'Ans & Lax), Springer, Berlin, Heidelberg, New York, 1998.
- [127] M.A.J. Somers, B.J. Kooi, L. Maldzinski, E.J. Mittemeijer, A.A. van der Horst, A.M. van der Kraan, N.M. van der Pers, Acta Mater. 1997, 45, 2013.
- [128] T. Epicier, The Physics and Chemistry of Carbides, Nitrides and Borides, (Hrsg.: R. Freer), Kluwer Academic Publishers Dordrecht/Bosten/London, 1990.
- [129] T. Liapina, A. Leineweber, E.J. Mittemeijer, W. Kockelmann, Acta Mater. 2004, 52, 173.
- [130] N. Nishiyama, Y. Wang, M.L. Rivers, S.R. Sutton, D. Cookson, *Geophys. Res. Let.* 2007, 34, L23304.
- [131] S. Merkel, M. Gruson, Y.Wang, N. Nishiyama, C. N Tomé, Modelling Simul. Mater. Sci. Eng. 2012, 20, 1–17.
- [132] E.A. Brandes, G.B. Brook, Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann: Oxford, U.K., 1997.
- [133] E. Oberg, F.D. Jones, H.L. Horton, H.H. Ryffel, Machinery's Handbook, 27th ed., Industrial Press: New York, 2004.
- [134] T. Weber, L. de Wit, F. Saris, A. Königer, B. Rauschenbach, G. Wolff, S. Krauss, S. Mater. Sci. Eng. 1995, A199, 205.
- [135] M. Guemmaz, A. Moser, J.-J. Grob, R. Stuck, Surf. Coat. Technol. 1998, 100, 353.
- [136] T. Gressmann, A. Leineweber, E.J. Mittemeijer, Philos. Mag. 2008, 88, 145.
- [137] F.K. Naumann, G. Langenscheid, Arch. Eisenhüttenw. 1965, 36, 677.

- [138] K.H. Jack, Proc. Roy. Soc. London A 1948, 195, 41.
- [139] D. Firrao, M. Rosso, G. Principi, R. Frattini, J. Mater. Sci. 1982, 17, 1773.
- [140] M.A.J. Somers, E.J. Mittemeijer, Surf. Eng. 1987, 3, 123–37.
- [141] T. Gressmann, M. Nikolussi, A. Leineweber, E.J. Mittemeijer, Scripta. Mater. 2006, 55, 723–26.
- [142] T. Wöhrle, A. Leineweber, E.J. Mittemeijer, Metall. Trans. A 2012, 43A, 2012–2401.
- [143] W.H. Bragg, Nature 1915, 95, 561.
- [144] E.J. Fasiska, G.A. Jeffrey, Acta Crystallogr. 1965, 19, 463.
- [145] G.M. Chen, N.K. Jaggl, J.B. Butt, E.B. Jeh, L.H. Schwartz, J. Phys. Chem. 1983, 87, 5326.
- [146] E.A. Owen, E.L. Yates, *Phil. Mag.* **1933**, *15*, 427–438.

Abbildungsverzeichnis

2.1	Strömungskopf der Synthese-Apparatur mit Beheizung für die Syn-	
	these der ϵ -Eisencarbonitride	4
2.2	Massenflußregler (links) und Betriebssteuergerät (rechts) der Firma	
	MKS Instruments GmbH	4
2.3	Schnittzeichnung (schematisch) mit Klapprohrofen, Quarzglasohr	
	mit Korundschiff und Probe, Gaseinlass.	5
2.4	Hydraulische Presse der Firma Voggenreiter zur Erzeugung der	
	primären Preßkraft (Bildquelle: MPI CPfS, Dresden).	9
2.5	Schnittzeichnung des Walkermoduls mit dem Innenaufbau.	10
2.6	Zweistufiges Walker-Modul (Typ: 6/8) mit den 8 WC-Würfel	10
2.7	Schnittzeichnung durch den MgO-Oktaeder mit seinem Innenaufbau	
	ohne Thermoelement nach [28]	11
2.8	Schematische Darstellung einer Diamantstempelzelle	13
2.9	Foto einer Membranstempelzelle, die in der Meßhalterung am ESRF	
	für Röntgenbeugungsuntersuchungen mit Synchrotronstrahlung bei	
	hohen Drücken eingesetzt ist.	14
2.10	Aufbau an der Beamline ID 09a am ESRF in Grenoble	17
2.11	Paris-Edinburgh Zelle (eingesetzt in die Meßhalterung)	18
3.1	Ausschnitt aus der Kristallstruktur der Normaldruck-Modifikation	
	von Cu_3N	24
3.2	Elementarzell parameter von $\rm Cu_3N$ bei Temperaturen zwischen 20 K	
	und 230 K	25
3.3	DTA/TG-Messung für Cu ₃ N: DTA-Kurve (blau) und die TG-Kurve	
	(schwarz) bei einer Heizrate von 10 K/min auf 773 K	27
3.4	Röntgen-Pulverdiffraktogramme von Normaldruck-Cu ₃ N vor (schwarz)	
	und nach (rot) dem <i>in-situ</i> Experiment in der Vielstempel-Presse	
	bei ungefähr 9 GPa, aufgenommen mit Co- $K_{\alpha 1}$ Strahlung	28

3.5	Kristallstrukturen von Cu_3N : (a) anti-ReO ₃ -Strukturtyp, (b) pri-	
	mitiv tetragonale Übergangsstruktur nach Zhao et al. [78] und (c)	
	tetragonal innenzentrierte Hochdruck-Struktur (graue Elementarzelle).	30
3.6	Röntgen-Pulverdiffraktogramme aufgenommen mit Synchrotron-	
	strahlung ($\lambda = 0.413082$ Å) bei steigenden Drücken mit Helium	
	als Druckmedium.	31
3.7	Änderung des Zellvolumens von Cu_3N mit steigendem Druck	31
3.8	Vergleich der mit verschiedenen Druckmedien aufgenommenen Rönt-	
	gen-Pulverdiffraktogramme für HP-Cu ₃ N. \ldots	32
3.9	Diffraktogramm und Differenzkurve zwischen beobachteten und be-	
	rechneten Intensitäten von $HP-Cu_3N$ im orthorhombischen Raum-	
	gruppentyp Immm unter Verwendung eines phenomenologischen	
	Verzerrungsmodells	32
3.10	Tetragonal innenzentrierte Cu_3N -Teilstruktur im Raumgruppentyp	
	I4/mmm	34
3.11	Neutronen Beugungsdiagramme (TOF in μ s) von Cu ₃ N gemessen	
	bei verschiedenen Drücken	37
3.12	Gemittelte tetragonale Kristallstruktur der Hochdruck Modifikation	
	von Cu_3N aus den experimentellen Daten	37
3.13	Graphische Darstellung einer Rietveld-Verfeinerung auf Grundlage	
	von Neutronenbeugungsdaten beispielhaft für einen Druck von $8,2~{\rm GPa}.$	39
3.14	Energie–Volumen-Diagramm (links) und Enthalpie–Druck-Diagramm	
	(rechts) von LP-Cu ₃ N (inverser ReO_3 -Strukturtyp) und der vorge-	
	schlagenen Hochdruck-Phase [30]	40
3.15	Tetragonales c/a -Verhältnis (links) und Bildungsenthalpie (relativ	
	zu Normaldruck-Cu ₃ N, rechts) pro Formeleinheit in Abhängigkeit	
	von dem Stickstoff-Gehalt [30]	41
3.16	$\Delta H\-p$ Diagramm der geordneten Phasen $\mathrm{Cu}_{12}\mathrm{N}_4$ und $\mathrm{Cu}_{16}\mathrm{N}_6$ relativ	
	zu dem Normaldruck-ReO ₃ -Typ [30]	43
3.17	$V–p$ Diagramm der geordneten Phasen $\mathrm{Cu}_{12}\mathrm{N}_4,\mathrm{Cu}_{16}\mathrm{N}_6$ und Tiefdruck-	
	Cu_3N [30]	44
3.18	Transmission $T(\omega) = I_s(\omega)/I_r(\omega)$ von Cu ₃ N bei Zimmertemperatur	
	als Funktion des Drucks (oben) und die korrespondierende Absorpti-	
	on $A = \log_{10}(1/T)$ als Funktion des Drucks (unten) [30]	46
<u>4</u> 1	Phasendiagramm des binären Systems Fe-N nach [00–91]	50
т. т	i naochanalastainni des ontaren systems i e iv naen [50, 51]	00

4.2	Lehrer-Diagramm [114] (schematische Darstellung) mit Grenzen der	
	Eisennitrid-Phasen und Isokonzentrationslinien für die $\epsilon\text{-}\mathrm{Eisennitride}$	
	(rot gepunktete Linien) [115]	53
4.3	Röntgen-Pulverdiffraktgramm ($\lambda = 0.70930$ Å) von γ' -Fe ₄ N (schwarz)	
	mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus [93].	54
4.4	Röntgen-Pulverdiffraktgramm ($\lambda = 0.70930$ Å) von ϵ -Fe ₃ N _{1,39} (schwarz)	
	mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus	
	[116]	54
4.5	Röntgen-Pulverdiffraktgramm ($\lambda = 0.70930$ Å) von ϵ -Fe ₃ N _{1.05} (schwarz)	
	mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus	
	[116]	55
4.6	Röntgen-Pulverdiffraktgramm ($\lambda = 0.70930$ Å) von ζ -Fe ₂ N (schwarz)	
	mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus [96].	55
4.7	TG-Messung für γ' -Fe ₄ N	56
4.8	TG-Messung für ϵ -Fe ₃ N _{1,39}	57
4.9	TG-Messung für ζ -Fe ₂ N	57
4.10	Druck–Volumen Daten von ϵ -Fe ₃ N	59
4.11	c/a Verhältnis der hexagonalen Zellparameter von ϵ -Fe ₃ N als Funk-	
	tion des Drucks	59
4.12	Druck–Volumen Daten von γ '-Fe ₄ N	61
4.13	Röntgen-Pulverdiffraktogramme von γ' -Fe ₄ N aufgenommen mit Syn-	
	chrotronstrahlung ($\lambda = 0, 425$ Å) bei verschiedenen Drücken.	62
4.14	Ausschnitt aus der Metalldichtung der Diamantstempelzelle bei	
	33,6 GPa mit dem inhomogenen, gepunkteten Bereich der Probe.	62
4.15	Das Röntgen-Pulverdiffraktogramm ist bei 33,6 GPa im inhomoge-	
	nen, gepunkteten Teil des Pulvers aufgenommen.	63
4.16	Druck–Volumen-Daten von ζ -Fe ₂ N	65
4.17	Druckabhängigkeit der Zellparameter der orthorhombischen Ele-	
	mentarzelle von ζ -Fe ₂ N	65
4.18	Röntgenpulverdiffraktogramme von ζ -Fe ₂ N aufgenommen mit Syn-	
	chrotronstrahlung ($\lambda = 0,4310$ Å) bei verschiedenen Drücken in	
	einer Diamantstempelzelle	66
4.19	Ausschnitt aus dem Wasserfalldiagramm der Röntgenpulverdiffrakto-	
	gramme von ζ -Fe ₂ N zur Verdeutlichung des Erhalts der ζ -typischen	
	Ordnung bis zu Drücken von 25 GPa (Überstrukturreflexe bei kleinen	
	Winkeln und die Aufspaltung der Reflexe bei 18°).	66

4.20	Makrofoto eines Querschnitts durch das Tiegelmaterial mit der Probe	
	und eines Bruchstücks von $\epsilon\text{-}\mathrm{Fe_3N_{1,08}}$ nach einer HP-HT Synthese	68
4.21	Vergleich der Idealstruktur von ϵ -Fe ₃ N (mitte) im Raumgruppentyp	
	$P6_322$ und den Modellen für die Realstruktur der $\epsilon\text{-Phase}$ unter	
	Berücksichtigung der Unordnung der Stickstoff-Lage und der Abwei-	
	chung von der idealen Zusammensetzung.	70
4.22	Vergleich der COHPs für Stickstoff auf den verschiedenen Wyckoff-	
	Positionen in ϵ -Fe ₃ N _{1+x} (P6 ₃ 22)	74
4.23	Fe–N Phasendiagramm nach [90, 91] mit angedeuteter Phasenum-	
	wandlung (roter Pfeil)	76
4.24	Röntgenpulverdiffraktogramme (aufgenommen mit Mo- $K_{\alpha 1}$ Strah-	
	lung) von γ' -Fe ₄ N (schwarz) und dem Produkt (rot) der Hochtempera-	
	tur-Hochdruck-Behandlung in der Vielstempel-Presse, das das für	
	eine ϵ -Phase typische Beugungsmuster zeigt	77
4.25	Energie–Volumen-Diagramm für das System $\epsilon\text{-}\mathrm{Fe_3N}$ + Fe, $\epsilon\text{-}\mathrm{Fe_3N}_{0,75}$	
	und γ' -Fe ₄ N aus quantenchemischen Berechnungen	81
4.26	Enthalpiedifferenz–Druck-Diagramm für Fe $_4 N.$	81
4.27	Röntgenpulverdiffraktogramme (aufgenommen mit Co- $K_{\alpha 1}$ Strah-	
	lung) von ζ -Fe ₂ N und dem Produkt der Hochtemperatur-Hochdruck	
	Behandlung in der Vielstempel-Presse	82
4.28	Energie–Volumen-Diagramm für das System $\zeta\text{-}\mathrm{Fe_2N}$ und $\epsilon\text{-}\mathrm{Fe_3N_{1,5}}$	
	aus quantenchemischen Berechnungen. \ldots \ldots \ldots \ldots \ldots \ldots	83
4.29	Kristallstrukturen von $\epsilon\text{-}\mathrm{Fe_3N_{1,5}}$ (links) in der geordneten Variante	
	(P312) und ζ -Fe ₂ N (rechts)	86
4.30	Mögliche Ordnungsvarianten von Stickstoff auf der Lage 2 b (Raum-	
	gruppentyp $P6_322$) in ϵ -Fe ₃ N _{1+x} für $x = 0, 5. \ldots \ldots \ldots$	87
4.31	REM-Bild eines Bruchstücks des einkristallinen Materials $\epsilon\text{-}\mathrm{Fe_3N_{1,08}}$	
	(Übersichtsaufnahme). \ldots \ldots \ldots \ldots \ldots \ldots \ldots	90
4.32	REM-Bild eines Bruchstücks des einkristallinen Materials $\epsilon\text{-}\mathrm{Fe_3N_{1,08}}$	
	(Ausschnittsvergrößerung)	90
4.33	REM-Bild eines Bruchstücks des einkristallinen Materials $\epsilon\text{-}\mathrm{Fe_3N_{1,08}}$	
	(Ausschnittsvergrößerung).	91
4.34	REM-Bild eines Bruchstücks des einkristallinen Materials $\epsilon\text{-}\mathrm{Fe_3N_{1,08}}$	
	(Ausschnittsvergrößerung).	91
4.35	EBSD-Bilder von $\epsilon\text{-}\mathrm{Fe_3N_{1,08}}\text{:}$ Kartierung der Kristallorientierungen	
	von verschiedenen Bereichen der Probe	92

4.36	EBSD-Bilder von $\epsilon\text{-}\mathrm{Fe_3N_{1,08}}\text{:}$ Kartierung der Bildqualität von ver-	
	schiedenen Bereichen der Probe (Bildausschnitte analog wie in	
	Abbildung 4.35)	92
4.37	Vickers-Mikrohärt e $H_{\rm v}$ von Kristallen $\epsilon\text{-}{\rm Fe_3N_{1,08}}$ (obere Meßreihe	
	mit deutlich größerer Standardabweichung) und $\epsilon\text{-}\mathrm{Fe_3N_{0,77}}$ (untere	
	Meßreihe) als Funktion der angelegten Last) 4
4.38	REM-Aufnahme eines Vickers-Eindrucks in einen Kristall $\epsilon\text{-}\mathrm{Fe_3N_{1,08}}$	
	bei einer Last von 0,98 N	<i>)</i> 5
4.39	Last/Eindringkurve, $F(h)$, einer Nanoindentierung von ϵ -Fe ₃ N _{1,08} .)5
4.40	Last/Eindringkurve, $F(h)$, einer Nanoindentierung von ϵ -Fe ₃ N _{0,77} .) 6
5.1	Fe–C–N Phasendiagramm (Schnitt bei 575 °C) [113]	99
5.2	Röntgen-Pulverdiffraktogramm von $\epsilon\text{-}\textsc{Eisencarbonitrid}$ (schwarz) mit	
	unterlegtem berechneten Diffraktogramm (rot) mit Daten aus $\left[116\right]$	
	und Magnetit (Fremdphase) mit unterlegtem berechneten Diffrakto-	
	gramm (blau) mit Daten aus [143]. $\ldots \ldots \ldots$)3
5.3	Röntgen-Pulverdiffraktogramm von $\epsilon\text{-}\mathrm{Fe}_3(\mathrm{N}_{0,98}\mathrm{C}_{0,02})_{1,48}$ (schwarz)	
	mit unterlegtem berechneten Diffraktogramm (rot) mit Daten aus	
	$[116].\ldots$)3
5.4	Röntgen-Pulverdiffraktogramm von $\epsilon\text{-}\textsc{Eisencarbonitrid}$ (schwarz) mit	
	unterlegtem berechneten Diffraktogramm (rot) mit Daten aus $[116]$	
	und von Zementit (Fremdphase) mit unterlegtem berechneten Dif-	
	fraktogramm (blau) mit Daten aus [144])4
5.5	Graphische Darstellung der Rietveld-Verfeinerung der Neutronen-	
	beugungsdaten bei Zimmertemperatur und Umgebungsdruck von	
	$\epsilon\text{-}\mathrm{Fe}_3(\mathrm{N}_{0,95}\mathrm{C}_{0,05})_{1,55}$ für das Modell 1 mit besetzter 2 c-Lage für Koh-	
	lenstoff. Gemessenes Diffraktogramm (rot), berechnetes Diffrakto-	
	gramm (schwarz), Positionen der möglichen Bragg-Reflexe (grün),	
	Differenz aus gemessenem und berechnetem Diffraktogramm (blau). 10)7
5.6	Graphische Darstellung der Rietveld-Verfeinerung der Neutronen-	
	beugungsdaten bei Zimmertemperatur und Umgebungsdruck von	
	$\epsilon\text{-}\mathrm{Fe}_3(\mathrm{N}_{0,95}\mathrm{C}_{0,05})_{1,55}$ für das Modell 2 mit unbesetzter 2 c-Lage für	
	Kohlenstoff. Gemessenes Diffraktogramm (rot), berechnetes Diffrak-	
	togramm (schwarz), Positionen der möglichen Bragg-Reflexe (grün),	
	Differenz aus gemessenem und berechnetem Diffraktogramm (blau). 10)7

Röntgen-Pulverdiffraktgramm von $\gamma'\text{-}\mathrm{Fe}_4\mathrm{N}$ (schwarz) nach der TG in
Ar-Atmosphäre bis 850 °C (Heizrate: 10 °Cmin ⁻¹) mit unterlegtem
berechneten Diffraktogramm (rot) mit Daten aus [146]. Reines Fe-
Pulver ist als einzige Phase nach der TG in dem Diffraktogramm
vorhanden
Röntgen-Pulverdiffraktgramm von $\epsilon\text{-}\mathrm{Fe_3N_{1,39}}$ (schwarz) nach der TG
in Ar-Atmosphäre bis 850 °C (Heizrate: 10 °Cmin ⁻¹) mit unterlegtem
berechneten Diffraktogramm (rot) mit Daten aus [146]. Reines Fe-
Pulver ist als einzige Phase nach der TG in dem Diffraktogramm
vorhanden
Röntgen-Pulverdiffraktgramm von $\zeta\text{-}\mathrm{Fe_2N}$ (schwarz) nach der TG in
Ar-Atmosphäre bis 850 °C (Heizrate: 10 °Cmin ⁻¹) mit unterlegtem
berechneten Diffraktogramm (rot) mit Daten aus [146]. Reines Fe-
Pulver ist als einzige Phase nach der TG in dem Diffraktogramm
vorhanden

Tabellenverzeichnis

2.1	Verwendete Chemikalien mit Angabe zu Hersteller und der Reinheit	6
3.1	Kristallographische Daten von Cu_3N .	38
3.2	vergleich zwischen experimentell und theoretisch erhaltenen El- genschaften von LP-Cu ₂ N und der vorgeschlagenen tetragonalen	
	Hochdruck-Struktur.	40
3.3	Berechnete Zellparameter und Bildungswärme für die aussichts-	
	reichsten geordneten Verbindungen Cu_3N und $Cu_3N_{1,125}$ in Bezug	
	zu LP-Cu ₃ N [30]	41
4.1	Übersicht der synthetisierten Eisennitride mit Zusammensetzung	
	und Synthese-Bedingungen.	53
4.2	Kristallstrukturdaten von $\epsilon\text{-}\mathrm{Fe_3N}_{1+x}$ für Verfeinerungen in den Raum-	
	gruppen $P312$ und $P6_322$.	72
4.3	Parameter der Kristallstruktur von ϵ -Fe ₃ N _{1,08(2)} für Verfeinerungen	
	im Raumgruppentyp $P312$	73
4.4	Parameter der Kristallstruktur von ϵ -Fe ₃ N _{1,20(2)} für Verfeinerungen	
	im Raumgruppentyp $P6_322.$	73
4.5	Ausgewählte Bindungsabstände (A) von ϵ -Fe ₃ N _{1+x} für Verfeinerun-	
	gen in den Raumgruppentypen $P312$ und $P6_322$ im Vergleich	73
4.6	Resultate der Gesamt-Energien und weiterer Eigenschaften für ϵ -Fe ₃ N	
	und ϵ -Fe ₃ N _{1,1}	74
4.7	Relative Energien bei der Besetzung zusätzlicher Oktaederlücken in	
	ϵ -Fe ₃ N mit Stickstoff-Atomen in der hdP von Eisen in $P6_322$ (links)	
	und $P312$ (rechts)	74
4.8	Kristallstrukturdaten von ϵ -Fe ₃ N _{0,94(2)} und ϵ -Fe ₃ N _{0,97(2)} für Verfei-	
	nerungen in den Raumgruppen $P312$ und $P6_322$	79
4.9	Parameter der Kristallstruktur von $\epsilon\text{-}\mathrm{Fe_3N}_{0,94(2)}$ für Verfeinerungen	
	in der Raumgruppe $P312$	79

4.10	Parameter der Kristallstruktur von ϵ -Fe ₃ N _{0,97(2)} für Verfeinerungen	
	in der Raumgruppe $P6_322$	80
4.11	Ausgewählte interatomare Abstände (Å) in $\epsilon\text{-}\mathrm{Fe_3N_{0,94(2)}}$ für Verfei-	
	nerungen in $P312$ und $P6_322$ im Vergleich	80
4.12	Relative theoretische Bildungsenthalpien, relatives Volumen, Kom-	
	pressions modul B_0 von Fe ₄ N; der erste experimentelle Parameter von	
	B_0 wird von [17] und der zweite von [112] angegeben. Die ersten Wer-	
	te für den Kompressionsmodul (überschrieben mit 1) beziehen sich	
	auf Berechnungen mit der PAW-PBE-GGA Näherung die zweiten	
	(mit 2 überschrieben) beziehen sich auf die US-GGA-PP Methodik.	80
4.13	Ergebnisse der Gesamtenergie-Berechnungen verschiedener Kristall-	
	struktur-Modelle für ζ - und ϵ -artiges Fe ₂ N im Raumgruppentyp	
	<i>Pbcn</i> als Referenzpunkt für Enthalpie und Volumen	85
4.15	Kristallstrukturdaten von ε -Fe ₃ N _{1,47(1)}	86
4.16	Parameter der Kristallstruktur von ϵ -Fe ₃ N _{1,47(1)} . Die Werte für die	
	Auslenkungsparameter U sind in Å ² angegeben	87
4.17	Zusamensetzung verschiedener ϵ -Eisennitride aus den HP-HT Versu-	
	chen in der Vielstempel-Presse berechnet aus den Zellparametern.	88
4.18	Elastische Eigenschaften des Eisennitrid und von Eisen und verschie-	
	denen Stählen [132].	95
E 1	Übergicht der amtheticienten z Digensenhenitnide mit Zugemmen	
5.1	ϵ observed and ϵ being and ϵ being an ϵ being an ϵ being and ϵ being and ϵ being and ϵ being an ϵ being an ϵ being and ϵ being an ϵ	
	setzung und Synthese-Dedingungen. Sauerston negt unternato der NWC1 ($w(\Omega) \leq 0.25$ %) oder mit megrimel ² ($w(\Omega) \leq 0.22$ %) vor 1	റാ
5.0	NWG $(w(O) \le 0, 25\%)$ oder mit maximal $(w(O) \le 0, 55\%)$ vor I	02
0.2	thesen yon Firres ³ et al. [120] unter Laberbedingungen und eine Sym-	
	these in sinem technischen Nitridierefen der Firme Carl Commann	
	these in emem technischen Withderbien der Finna Cart Gommann von Leineweher ⁴ et al. [116]. Firrae ⁵ et al. [130] geben keine Infer	
	von Lenieweber et al. [110]. Final et al. [155] geben keine mor-	റാ
59	Warfeinerte Zellperemeter und Zusemmengetzung (herschnet aus	02
0.0	chemischer Analyse) der synthetisierten Carbonitride	04
5.4	Ergebnisse der Pietveld Verfeinerung der Neutronenpulverbeugunge	04
0.4	Eigeblisse der Kletveld-verleinerung der Neutronenpulverbeugungs- daten von ε Eq. (N = C =) — mit begetzten 26 Lorge für Kehlensteff	
	$(aten Volte-Fe_3(N_{0,95} \cup_{0,05})_{1,55})$ int besetzter 2 <i>c</i> -Lage fur Komenston im Modell 1 in der Beumgruppe <i>De</i> 22	06
55	Ergebnicge der Dietweld Verfeinerung der Neutronennulwerheurener	00
0.0	L_{L} deten von c Eq. $(N - C_{L})$ mit unbesetzten 2a Laga für Vahler	
	uaten von ϵ -reg $(N_{0,95} \cup_{0,05})_{1,55}$ nit undesetzter 2 <i>c</i> -Lage für Konlen- stoff im Modell 2 in den Beumennunge <i>De</i> 22	00
	ston in Modell 2 in der Kaumgruppe $P_{0_3}221$	υð