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Abstract

Since more than two decades, probabilistic graphical models have gained more and more
attraction for analyzing data or modeling dependencies. Especially Bayesian belief net-
works, also called Bayesian networks (BN), allow a very intuitive representation of depen-
dencies among a set of random variables. Each variable is represented as a node in a graph,
and dependencies are modeled as directed edges among the nodes. By linking each vari-
able with a conditional probability distribution, BNs form a joint probability distribution
over the random variables. Learning the structure of Bayesian networks and thus revealing
the dependency structure among variables from data is one of the most challenging tasks
in the area of BNs.

This thesis is mainly concerned with methods to learn Bayesian networks in large do-
mains. A typical approach to make structure learning feasible in large domains is the
reduction of the number of variables: Variables ought to be not interesting for a specific
analysis are removed and the structure between the remaining variables is learned. While
this approach of learning a smaller subnetwork solves the performance issue, the learned
structure might not represent the true dependency structure since many variables are in-
visible for the learning process. In a dedicated chapter of this thesis the impact on the
quality of the learned structure is analyzed and a new method is developed that measures
the robustness of edges against such missing variables. The contribution in this chapter
is three-fold: First, we show that the commonly used statistically-based pre-selection of
variables has a negative effect on the quality of the learned network by means of learning
statistical fluctuations in the data. Second, we use subnetwork learning as a method to
measure the network errors learned because of the reduction of the number of variables
and show, based on several benchmark data, that the number of false positive edges is at
least doubled compared to the case if the network is learned completely. Third, with di-
mensional bootstrap we introduce a method to estimate the confidence in edges in such
situations in order to efficiently identify false edges in the network.
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We used the idea of omitting many variables and learning the network only for a small
subnetwork in a more systematic way to provide new efficient algorithms to learn the struc-
ture in large domains with high quality. The first structure learning algorithm developed in
this thesis is based upon the idea to learn small network substructures independently from
each other. After learning small substructures in such a way that all variables are covered,
all the small networks are combined in a single graph representing the dependency struc-
ture. However, this graph structure comes along with one problem: Since the substructures
are learned independently from each other, the resulting graph is not necessarily acyclic,
but may contain cycles in the directed structure. On the other hand, one basic property
of the graph of a Bayesian network is its acyclicity. As a result, this algorithm lacks the
representation of a single Bayesian network structure. To overcome this problem, a second
algorithm, called S-DAG, is introduced in this thesis that combines the small substructures
and builds an acyclic Bayesian network structure out of the small networks. In a dedicated
chapter, these two algorithms are introduced and their performance is evaluated. For the
latter algorithm (S-DAG), a comparison study with several other state-of-the-art Bayesian
network structure learning algorithms is carried out. We show that S-DAG outperforms
other well-known BN structure learning algorithms like the very competitive algorithm
MMHC.

The previously mentioned reduction of the number of variables is commonly used if the
so-called genetic network is reconstructed by means of Bayesian networks. The genetic
network, which controls all life processes, is mainly formed by mutual biochemical inter-
actions between DNA, RNA, and proteins. With structure learning based on microarray
data, these mutual interactions can be revealed on a higher level: All the complex interac-
tions are modeled as abstract gene-gene interactions in the network. In another chapter of
this thesis, a complete genetic netwok estimation is learned with the new efficient structure
learning algorithm. An analysis of important structural features of the genetic network
that were found and published based on small subnetworks is carried out on the complete
network. With more than 50.000 variables in one network, we learned one of the largest
unrestriced Bayesian networks with our new algorithm S-DAG.

iv



Contents

Abstract iii

1 Introduction 1

1.1 Motivation and Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Bayesian Networks 7

2.1 Definition of Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Equivalence and Causality . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Faithfulness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Learning Bayesian Networks 23

3.1 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Score-based Approach . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Constraint-based Approach . . . . . . . . . . . . . . . . . . . . . 28

3.3 Structure Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Greedy Hill Climbing: GS / MMHC . . . . . . . . . . . . . . . . 31
3.3.2 Simulated Annealing: SA and MMSA . . . . . . . . . . . . . . . 32
3.3.3 Ant Colony Optimization: ACO, MMACO and related algorithms 34
3.3.4 Constraint Hill Climbing: CHC, CHC*, iCHC, 2iCHC . . . . . . 37
3.3.5 Recursive Autonomy Identification: RAI . . . . . . . . . . . . . 38

4 Robust Learning in Large Domains 39

4.1 Robustness Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.1 MCMC Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



Contents

4.1.2 Data Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.3 Feature Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Sparse Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.3 Discussion and Related Work . . . . . . . . . . . . . . . . . . . 55

4.3 Subnetwork Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Dimensional Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Large-Scale Network Learning 75

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Substructure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 Time Complexity of Substructure Learning . . . . . . . . . . . . 79

5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Substructure DAG Learning . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.3 Comparison to Other BN Structure Learning Algorithms . . . . . 103

5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Estimating Genetic Networks 121

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Biological Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Rosetta Compendium . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.2 Oncology Data Set . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vi



Contents

7 Conclusions 131

A Appendix 135
A.1 Algorithm MMPC (Max-Min Parents and Children) . . . . . . . . . . . . 135
A.2 Benchmark Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.3 Detailed Results of Structure Learning Algorithms . . . . . . . . . . . . 138

Bibliography 157

vii



Contents

viii



1 Introduction

More than 50 years ago, Artificial Intelligence (AI) was established as a new research area
during a conference on the campus of Dartmouth College (McCarthy, Minsky, Rochester
& Shannon 1955, Russell & Norvig 2009). In the following years, research in that area
received more and more attraction induced by astounding results. For instance, Winograd
(1972) wrote a program to deal with geometric objects in a small world based on a language
parser that allowed a user interaction by giving instructions in English terms. Motivated by
such results, optimists even predicted that Artificial Intelligence will be capable within two
decades to do everything what human beings are able to do (Simon 1965). Contrary to the
enthusiasm of the early stage, the AI community failed to fulfill the expectations that were
produced and maintained by themselves. In the mid 1970’s and at the end of the 1980’s,
AI fall two times into big crisis known as the two AI winters (Russell & Norvig 2009),
also triggered by the realization that reasoning cannot be solely based on traditional logic
(McCarthy 1987).

Besides other proposals that were made to overcome the limitations of traditional logic,
Bayesian Networks (BN) were introduced by Pearl (1988). They belong to the class of
probabilistic graphical models that can deal with incomplete, uncertain and even contra-
dicting information by using a probabilistic approach to describe dependencies.

Probabilistic graphical models (or graphical models) are a useful and widely used frame-
work that combines uncertainty and logical structure to represent and model complex
statistical relationships by describing dependencies among random variables in a graph-
theoretic as well as a probabilistic way. Not least due to their flexibility and intuitive
representation, graphical models have been attracted increasing attention during the last
two decades (Pearl 1988, Lauritzen 1996, Jensen 2002, Cowell, Dawid, Lauritzen &
Spiegelhalter 2003, Jordan 2004, Koller & Friedman 2009). The high-level goal of such
models is the effective representation of a joint probability distribution p over a set of n
random variables X = {X1, ..., Xn}. Even in a very simple case where each random variable
can have only two different states, in total the variables X have 2n different assignments
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1 Introduction

x1, ..., xn, and each assignment has to be specified separately. Without any further assump-
tions, multivariate models with more than only few variables would be intractable large.
However, usually there is some structure in the distribution that enables the factorization
into smaller components. By taking systematic advantage of conditional independencies
among random variables, graphical models enable a compact representation of joint prob-
ability distributions.

As the name probabilistic graphical models suggests, conditional dependencies are
graphically represented by means of edges (also called links or arcs) between nodes (each
single variable is represented as a node in the graph), while missing edges represent con-
ditional independencies. Then the graph captures the way in which the joint probability
distribution can be decomposed into a product of smaller factors. The most prominent and
widely used representatives of graphical models are Markov networks (also called Markov
random fields, MRF) and Bayesian networks (belief networks). In Markov networks, the
semantics of conditional dependencies are based on undirected graphs, hence Markov net-
works are undirected graphical models. In contrast, in Bayesian networks the semantics of
conditional dependencies are based on directed graphs. Hence, BNs are directed graphical
models.

BNs emerged to be a quite useful tool in many domains and were used to tackle many
problems. A lot of research was done during the last years in the field of BNs (Kojima,
Perrier, Imoto & Miyano 2010, Schulte, Frigo, Greiner & Khosravi 2010, Scutari &
Brogini 2011, Wu, McCall & Corne 2011). Due to their intuitive graphical representation
together with a sound theoretical basis, they are widely-accepted tools for both modeling
knowledge and making predictions in different domains. For instance, medical diagnosis
relies on an increasing amount on diagnostic tests, with the challenge to identify diseases
or a high risk for a disease with high accuracy. Here, Bayesian networks can be used to
model the dependency between a disease and risk factors, diagnostic tests, and other fac-
tors influencing the disease. Based on these factors, the Bayesian network can be used
for diagnosis. E.g. HEPAR-II is a Bayesian network for the diagnosis of liver disorders
(Kraaijeveld & Druzdzel 2005), and DIAVAL can be used to diagnose heart diseases (Dı́ez,
Mira, Iturralde & Zubillaga 1997). Recently, it has been shown that the detection of wrong
blood in the tube, a common problem in blood transfusion, based on BNs outperforms
medical experts (Doctor & Strylewicz 2010). But the application of BN is not restricted to
the biomedical area: for instance, Davis (2003) reconstructs the cause of a traffic accident
by means of Bayesian networks.
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1.1 Motivation and Goal

1.1 Motivation and Goal

While many networks in the aforementioned cases were build up by experts, or at least
the graph structure of the network was mainly defined by experts and just the probability
distributions were learned from data, a more challenging task is the structure learning of
Bayesian networks. Thereby, the conditional dependencies and independencies among the
variables must be extracted from data in order to build up the BN structure (Pearl & Verma
1991, Cooper & Herskovits 1991, Lam & Bacchus 1994, Heckerman 1995, Heckerman,
Geiger & Chickering 1995, Friedman 1998, Darwiche 2009).

The problem of learning the structure from a data set could be tackled in the following
way: With a small number of variables, it is possible to iterate over all possible network
structures. Each structure is rated by a score that valuates the compliance of the network
and the given data. The network that best fits the data (the network with the best score) is
taken as result of the learning procedure. However, this approach has a severe drawback:
The number of possible different network structures grows super-exponentially with the
number of variables. Chickering, Geiger & Heckerman (1994) have proven that structure
learning of BNs is generally aNP-hard problem. The extreme amount of different network
structures can be seen by an example: For a network with only 10 variables, there are
almost 1020 different possible BN structures, which prohibits an exhaustive search over
all possible network structures (Hofmann 2000). Thus, it became a common approach to
apply heuristic search strategies to learn a BN network structure.

Two general types of learning algorithms have been developed over the last two decades:
The first, known as Score-based algorithms, utilize a scoring function to guide heuristic
search strategies. The goal of these algorithms is to find the network with the best score.
This is typically achieved by applying local changes to the network like edge addition,
edge removal or edge reversal until a high-scoring network is found. Constraint-based al-
gorithms form the second class of BN structure learning algorithms and rely on the BN def-
inition based on independence relationships. These algorithms perform statistical tests to
determine dependencies and independencies among the variables in order to reconstruct the
BN structure. A lot of research was done in both areas leading to a variety of different learn-
ing algorithms (Lam & Bacchus 1994, Heckerman et al. 1995, Friedman 1998, Spirtes,
Glymour & Scheines 2001, Darwiche 2009). A few years ago, Max-Min Hill-Climbing
(MMHC) (Tsamardinos, Brown & Aliferis 2006) as a quite competitive algorithm in terms
of network quality and computational effort for learning was introduced. This algorithm
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1 Introduction

combines both approaches: In a first step, an undirected network structure is created by
using constraint-based techniques. In a second step, a score-based search is used to orient
the undirected edges.

There are two main factors for all score-based algorithms: The quality of the scoring
function and the quality of the heuristic search algorithm. There are several approaches
for different scoring functions (Cooper & Herskovits 1991, Lam & Bacchus 1994, Heck-
erman et al. 1995, Roos, Silander, Kontkanen & Myllymaki 2008). In this thesis, we use
the Bayesian Dirichlet score with likelihood equivalence and uniform prior (BDeu score)
(Heckerman et al. 1995) and focus on the second factor to improve structure learning. Since
the BDeu score is a widely used score, structure learning algorithms that base upon this
score can be often directly compared to other methods. For the structure search, a greedy
hill climbing algorithm, sometimes enhanced by a TABU search, is often used (Heckerman
et al. 1995, Tsamardinos, Brown & Aliferis 2006).

For most structure learning algorithms, learning the structure of networks with reason-
able size is feasible. However, in some domains there are not only hundreds, but even thou-
sands or tens of thousands of variables. For instance, one of the applications of Bayesian
network structure learning is the estimation of biomolecular processes in cells. Here, BNs
are used to learn abstract gene-gene interactions in the so called genetic regulatory network
from microarray data (Friedman, Linial, Nachman & Pe’er 2000). With around 30.000 hu-
man genes, the genetic network is much larger than the artificial networks that are typically
used to benchmark the learning algorithms. To get a feasible set of variables for structure
learning, one normally reduces the size of the network by means of a feature-selection
method (Friedman et al. 2000) and learns the structure between the remaining variables.
Although this became a normal approach, there is no information about the influence of
this approach on the network quality. So the first problem that is tackled in this thesis
can be summarized in the following way: Does the reduction of dimensionality affect the
quality of the learned network structure?

Most score-based algorithms are not feasible to learn in high-dimensional domains.
In the year 2000, Silverstein, Brin, Motwani & Ullman (2000) even stated that “In our
view, inferring complete causal models (i.e., causal Bayesian networks) is essentially im-
possible in large-scale data mining applications with thousands of variables” (Silverstein
et al. 2000). An exception is MMHC (introduced in 2006) which is performant enough to
learn in such domains. The second problem tackled in this thesis is to find algorithms that
learn high dimensional network structures at least with the same runtime characteristics as
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1.2 Overview

MMHC, but produce networks with higher quality.

1.2 Overview

The work in this thesis concerns about learning the structure of Bayesian networks with
high accuracy and presents new efficient algorithms for this goal.

Chapter 2 provides a brief introduction to Bayesian networks. After the definition, the
most important features of BNs are presented.

State-of-the-art and commonly used structure learning algorithms are introduced in
chapter 3. These two chapters introducing Bayesian networks are partially based upon
Nägele (2005), Nägele, Arndt & Dejori (2008) and Pinto, Nägele, Dejori, Runkler & Sousa
(2009).

In chapter 4 the robustness of Bayesian network structure learning is studied if applied
in high-dimensional spaces. The contribution is three-fold: One existing and one novel
method are used to analyze the common approach of reducing the size of the network by
means of a feature-selection method. The two methods were applied to benchmark data to
show the influence of feature reduction together with various sample sizes on the quality
of the estimated network structure. Furthermore, Dimensional Bootstrap is introduced as
a new method to detect variables that are not selected by the feature-selection method, but
would increase the network structure quality if they were added to the set of variables for
structure learning (Nägele, Dejori & Stetter 2009).

In chapter 5 the focus lies on learning large-scale Bayesian networks. Two new structure
learning algorithms that are especially suitable for large domains are introduced. The first
algorithm, substructure learning, splits the learning task into many small tasks by dividing
the network into small subnetworks and learning each network separately. The second al-
gorithm, S-DAG, utilizes the small subnetworks and combines them to build up a complete
BN structure comprising all variables (Nägele, Dejori & Stetter 2007, Nägele et al. 2008).

In chapter 6 the S-DAG BN structure learning algorithm is applied to gene expression
data in order to provide an estimation of the genetic network. The main contribution is the
application of BN learning on two complete microarray data sets without feature reduction
and the analysis of network properties that were formerly found by subnetwork analysis
(Nägele et al. 2008).

Based on a cooperative work, some other algorithms were developed that are not in-
cluded in this thesis, but are used as comparison algorithms for the S-DAG algorithm
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(Pinto, Nägele, Dejori, Runkler & Sousa 2008, Pinto et al. 2009). The implementation of
some of the algorithms presented here uses a matrix package developed by Arndt, Bund-
schus & Nägele (2009).
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2 Bayesian Networks

Bayesian networks belong to the class of probabilistic graphical models that represent the
dependency structure among random variables by means of a graph. In this thesis, the
focus lies on Bayesian networks which have a directed acyclic graph (DAG) as dependency
structure. The acyclicity of the graph has the drawback that cyclic dependencies can not
be modeled with BNs. However, the advantage of Bayesian networks lies also exactly
in the acyclic dependency structure: The graph structure can be directly mapped to the
factorization of the joint probability distribution. This allows an intuitive definition of
Bayesian networks which is presented in section 2.1.1. In this chapter Bayesian networks
and their properties are introduced, while the next chapter gives an overview of methods to
learn Bayesian networks from data.

2.1 Definition of Bayesian Networks

There are two ways to define Bayesian networks (BNs). The first utilizes the ability of BNs
to represent a probability distribution p among a set of variables X. Thereby, the factoriza-
tion of p defines the graph structure of the BN. The second definition of BNs uses condi-
tional dependencies and independencies between the random variables X and determines
the graph structure G of the BN according to these dependencies and independencies. We
present both definitions and start with the definition using the factorization, following the
way how Hofmann (2000) introduced Bayesian networks. For a more detailed introduction
we refer to Heckerman (1995).

2.1.1 Factorization

Given a set of n random variables X = {X1, X2, X3, ..., Xn}, the joint probability function for
X can be written as

p(X1, ..., Xn) =

n∏
i=1

p(Xi | X1, ..., Xi−1). (2.1)
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2 Bayesian Networks

according to the chain rule of probability. Let the parents Pai of Xi be the minimal subset
of {X1, ..., Xi−1} (Pai j {X1, ..., Xi−1}) such that

p(Xi | X1, ..., Xi−1) = p(Xi | Pai). (2.2)

This means that there exists a set of variables for each variable Xi, called parents Pai,
such that Xi and {X1, ..., Xi−1}\Pai are conditionally independent given Pai. In other words:
each variable Xi is conditionally independent of its non-descendants given its parents Pai.
This property is often referred to as local Markov property (Russell & Norvig 2009). Thus,
equation 2.1 can be reduced to

p(X1, ..., Xn) =

n∏
i=1

p(Xi | Pai). (2.3)

In a graphical context, the variable Xi can be also denoted as node. The node Xi is also
called a child of the nodes Pai. The parents Pai and the node Xi are denoted as the family
of Xi.

The factorization given in equation 2.3 can be represented as a directed graph G =

(V,E), in particular as a directed acyclic graph (DAG). The nodes V in the graph corre-
spond to the variables X, and the edges E represent the parent-child relationships given in
equation 2.2, directing from a parent node to the corresponding child. Thereby, in graphical
models the terms node and variable can be used interchangeable. One important property
of the graphical DAG representation is that the graph comprises the same assertions of
conditional (in)dependence as given in equation 2.2. Thus, the conditional independencies
can be defined either by a factorization or by a DAG, while each representation can be
transformed into the other one without any change in the independence assumptions. This
graphical representation (the DAG) is often referred to as structure of a Bayesian network
(Hofmann 2000).

Besides the qualitative structure, a Bayesian network encodes the joint probability dis-
tribution as given in equation 2.3. Thus, for each variable Xi in the Bayesian network the
conditional probability distribution p(Xi | Pai) is defined by parameters θi. Depending on
the type of the BN, θ can be the parameters for a decision tree, a Gaussian distribution, a
non-parametric density estimator, or simply a conditional probability table (CPT). In this
thesis, we focus on a multinomial model and thus we use CPTs to represent the probability
distribution. If a multinomial variable Xi has ri states, and the parents Pai are in state j, the
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2.1 Definition of Bayesian Networks

probability distribution is given by

p(Xi = k | Pai = j) = θi jk, k = 1, ..., ri (2.4)

with θi j = θi j1, ..., θi jri , where θi j1 is usually omitted because it is given by 1 −
∑ri

k=2 θi jk.
The parameters of a variable Xi are defined as θi = {θi1, ..., θiqi} with qi as the number of
different states Pai can assume.

X1 -

true 0.6
false 0.4

X1 X2

X2
X1 true false

true 0.8 0.2
false 0.3 0.7

Figure 2.1: DAG and conditional probability tables for a BN representing p(X1, X2) =

p(X1)p(X2 | X1)

Figure 2.1 shows an example of a BN with two boolean variables X1 and X2, where X2

depends on X1. The probability distributions of both variables are defined by conditional
probability tables. Each line of the tables contains the parameters denoted as θi j, given a
state of the parents. If no parent exists (like for variable X1), the number of different parent
states is one.

Let ΘG be the set of the parameters for all local conditional probability distributions
ΘG = {θ1, ..., θn} of the graph structure G. A Bayesian network is then defined as

BN = (G,ΘG) (2.5)

and determines the probability distribution among the set of variables in G based upon
equation 2.3.

In figure 2.2, the structure of a small Bayesian network with three variables X1, X2,
and X3 is shown. According to the graph structure, the joint probability distribution
p(X1, X2, X3) factorises into p(X1)p(X2)p(X3 | X1, X2).

While every factorization of p(X1, ..., Xn) (equation 2.3) can be represented as a directed
acyclic graph, the numbering of the variables (often called ordering) can have a high im-
pact on the resulting graph structure. Different orderings usually yield to different parent
sets (Pai), which lead to different structures of the Bayesian network. Depending on the
chosen ordering, the complexity of the network structure can also vary a lot. We follow the
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2 Bayesian Networks

X1

X2 X3

Figure 2.2: DAG for the factorization p(X1, X2, X3) = p(X1)p(X2)p(X3 | X1, X2)

X1

X2 X3

Figure 2.3: DAG for the factorization p(X3, X2, X1) = p(X3)p(X2 | X3)p(X1 | X3, X2)

example of Hofmann (2000) and show the effect of the ordering on the network structure
based on this example network with three nodes.

For the network shown in figure 2.2, there are two possbile orderings: X1, X2, X3 or
X2, X1, X3. Since there is no edge between X1 and X2, the structure does not discriminate
between both orderings (Hofmann 2000). The factorization in both cases leads to

p(X1, X2, X3) = p(X1)p(X2)p(X3 | X1, X2)

and

p(X2, X1, X3) = p(X2)p(X1)p(X3 | X2, X1),

which encodes exactly the same probability distribution and graph structure. This small
example can be motivated by the following generative process: at first, values for the ran-
dom variables X1 and X2 are chosen independently; after that, depending on both variables,
the value for X3 is selected (Hofmann 2000).

Now, let us assume the following ordering: X3, X2, X1. Then the joint probability distri-
bution factorizes to

p(X3, X2, X1) = p(X3)p(X2 | X3)p(X1 | X3, X2).

10



2.1 Definition of Bayesian Networks

Despite the other orderings shown before, in this case it is not possible to make a further
simplification.

The resulting graph for this factorization is shown in figure 2.3. As it can be seen, the
graph is fully connected, unable to represent the independence of X1 and X2.

2.1.2 Independence

This section describes the second way to define Bayesian networks. The definition of the
Bayesian network given in the previous section is based upon the factorization of the joint
probability distribution to a set of conditional probability distributions. As seen before, this
factorization implicitly leads to a set of dependencies and independencies defined by the
structure of the DAG. Not surprisingly, the meaning of the graph structure of a Bayesian
network can be defined by a set of conditional (in)dependence statements, as well. Thereby,
two sets of variables are independent given another set of variables if the two sets are sep-
arated in the graph after the d-separation criterion, where ’d’ stands for directed (Geiger,
Verma & Pearl 1990). For a short notation of independence, the symbol ⊥⊥ is used: A ⊥⊥ B
means that variable A is independent of variable B, while A ⊥⊥ B | Z means that variable
A is independent of variable B if variable Z is given. In return, /⊥⊥ is the symbol for depen-
dence. A /⊥⊥B means that A and B are not independent, while A /⊥⊥B | Z means that variable
A is not independent of variable B if variable Z is given.

Generally speaking, if two variables are d-separated relative to a set of variables C in a
directed graph, then they are conditionally independent on C in all probability distributions
such a graph can represent.

Before we define the d-separation criterion formally, we have to introduce some terms. A
path between two variables Xi and X j is a sequence of edges that connects both variables,
independently of the direction of the edges. A variable Z is said to have serial edges if
either the preceding or successive variable along the path is the parent of Z, and the other
variable is the child (A → Z → B or A ← Z ← B). A small example is given in figure
2.4(a): The edges that connect Z with A and B are serial. A variable Z has diverging edges
if the preceding and successive variable along the path are children of Z (A ← Z → B).
An example is given in figure 2.4(b). Similarly, a variable Z is said to have converging
edges if both connected variables are parents of Z (A → Z ← B, see figure 2.4(c)). These
examples are based upon (Hofmann 2000). With these terms, the d-separation criterion

11



2 Bayesian Networks

A

Z

B

(a) Serial edges:
A ⊥⊥ B | Z

A

Z

B

(b) Diverging edges:
A ⊥⊥ B | Z

A

Z

B

D

(c) Converging edges (A →

Z ← B): A ⊥⊥ B | ∅

Figure 2.4: Illustration of d-separation. The figure on the left-hand side (2.4(a)) shows
edges with serial directions. A and B are d-separated given Z (A ⊥⊥ B | Z). The
middle graph shows diverging edges (A ⊥⊥ B | Z). The graph on the right-hand
side has converging edges (A → Z ← B) and A and B are only d-separated if
the state of both variables Z and D is not observed (A ⊥⊥ B | ∅). However, if the
state of Z or D is observed, both variables are no longer rendered d-separated
(A /⊥⊥B | Z) or A /⊥⊥B | D).

can be formally defined (Geiger et al. 1990):

Definition 2.1 (d-separation) If G = (X,E) is a directed acyclic graph with two disjoint
subsets of nodes A and B, then A and B are d-separated by C ⊆ X \ (A ∪ B) in G if and
only if every undirected path that connects a node A ∈ A with a node B ∈ B satisfies at
least one of the conditions:

1. The path contains an intermediate node Z ∈ C with serial or diverging edges (not
converging).

2. The path contains an intermediate node Z with converging edges and neither Z nor
the descendants of Z are in C.

A path is said to be inactive or blocked if at least one of the two conditions is fulfilled,
otherwise the path is said to be active. Thus, two variables are blocked according to the d-
separation criterion if every path between both variables is blocked. The criterion implies
that, besides the presence of edges, also their orientation plays an important role to render
variables d-separated. A and B are said to be d-connected by C if and only if they are not
d-separated by C in G.

The d-separation criterion, especially the second condition, can be better understood if
the directed edges are interpreted as causal effects that naturally imply statistical depen-
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dencies. It can be easily seen that the statistical dependencies and independencies that are
originated from the causal effects are equivalent to the d-separation criterion. While the
d-separation criterion defines conditional independencies, the following examples base on
dependencies since they are easier to understand.

• The first condition can be separated into two different cases: (1) the intermediate
variable Z has serial edges, or (2) Z has diverging edges. The first case implies that
two variables are dependent if one of the variables (A) influences an intermediate
variable Z and this intermediate variable influences the other variable (B) while the
state of the intermediate variable Z is not known (see figure 2.4(a) for an example)
(Hofmann 2000). The second case states that two variables A and B are dependent
if both variables are influenced by the same variable Z while the state of Z is not
known (see figure 2.4(b) for an example) (Hofmann 2000).

• The second condition is more complicated. It states that two variables A and B are
dependent if both variables influence a third variable Z and the state of this variable is
known (figure 2.4(c)). This, in the first moment maybe incomprehensible condition,
can be explained by the following example (Pearl 1988): Let us assume that there are
two (and only two) independent cases of a car refusing to start (”no start“): having no
gas (”no gas“) and having a dead battery (”dead battery“). The causal relationships
can be represented as a DAG:

no gas no start dead battery

Apparently, the variables ”no gas“ and ”no battery“ are independent from each other
in the DAG. Knowledge about the state of one of these variables does not change
the knowledge of the other one. E.g., knowing that the battery is charged does not
change the knowledge about the gas. However, knowing that the battery is charged
and the car does not start implies that the gas tank must be empty. Equally, if the gas
tank is full and the car does not start, it is sure that the battery is not charged.

Thus, the knowledge about a common effect renders two originally independent
causes dependent. This effect is referred to as explaining away. With a similar
consideration it can be shown that even the knowledge about a child of a common
effect can render two causes dependent. This is graphically shown in figure 2.4(c).
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The independent variables A and B are independent if the states of variables Z and
D are unknown. However, if the state of Z or its descendant (child) D is known, A
and B are no longer independent from each other.

It has been shown by Verma & Pearl (1990) that the definition of Bayesian networks
based on d-separation is equivalent to the definition based on the factorization of the joint
probability distribution. Based on a directed acyclic graph, the independence relations
defined by the d-separation are preserved in any probability distribution that can be rep-
resented as a Bayesian network with the DAG as structure. However, a specific probabil-
ity distribution may entail additional independence statements that are not encoded in the
graph structure. On the other hand, dependencies encoded in the graph structure by means
of the d-separation criterion must be also represented in the probability distribution.

For undirected graphical models (e.g. Markov random fields), a concept similar to d-
separation as applied to directed acyclic graphs has been introduced. In an undirected
graph, two sets of variables A and B are u-separated (’u’ for undirected) by a third set C
if each undirected path between a variable in A and a variable in B contains a variable
in C (Castillo, Gutiérrez & Hadi 1996). Similarly, c-separation has been introduced for
chain graphs (Bouckaert & Studený 1998). Chain graphs can contain both directed and
undirected edges, and can represent directed acyclic graphs as well as undirected graphs as
borderline cases (Lauritzen & Wermuth 1984, Lauritzen & Wermuth 1998).

A concept that is closely related to the concepts of conditional dependencies and inde-
pendencies introduced so far is the Markov blanket of a variable (Pearl 1988):

Definition 2.2 The Markov Blanket MB(Xi) of a variable Xi is a set of variables of a
domain X such that for any X j ∈ X \ (MB(Xi) ∪ {Xi}): Xi is independent of X j given
MB(Xi), i.e. Xi ⊥⊥ X j | MB(Xi).

In other words, this definition says that a Markov Blanket MB(Xi) completely shields a
variable Xi from any other variable in X. The minimal Markov Blanket is called Markov
Boundary of Xi (Pearl 1988). Henceforth, when we refer to the Markov Blanket in this
thesis, we actually always mean the Markov Boundary.

In Bayesian networks, the Markov Blanket of a variable can easily be determined accord-
ing to the graph structure of the Bayesian network. A variable’s Markov Blanket consists
of the variable’s parents, children and the parents of the children. A small example is given
in figure 2.5.
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Xi

Figure 2.5: Illustration of the Markov Blanket definition. The variables that belong to the
Markov Blanket of Xi are shown as shaded. These variables render Xi indepen-
dent from all other variables (filled with color white).

Another independence statement, mentioned already before, can be made by the local
Markov property: each variable is conditionally independent of its non-descendants given
its parent variables.

2.2 Equivalence and Causality

The structure of a Bayesian network uniquely determines a set of probability distributions
that encode conditional dependencies and independencies according to the d-separation
(and d-connection) criterion. However, the contrary case is not uniquely defined. This
means that for any given probability distribution p(X) there might be several different graph
structures (defining the same conditional dependencies and independencies) that all encode
the same probability distribution. This can be seen in a small example (Hofmann 2000):
Let p(X1, X2) be a probability distribution. This probability distribution can be factorized
to p(X1, X2) = p(X1)p(X2 | X1). The dependencies encoded in the factorization can be rep-
resented as a graph with a directed arc from X1 to X2 (X1 → X2). However, the probability
distribution can be factorized to p(X1, X2) = p(X2, X1) = p(X2)p(X1 | X2), as well, and the
conditional dependencies of this factorization lead to a different graphical representation
with a directed arc from X2 to X1 (X1 ← X2). Since both graphs can represent the same set
of probability distributions, the graphs are called equivalent.

In figure 2.6 an example with three variables X1, X2 and X3 is shown. The example is
based upon an example shown in Hofmann (2000). For the network shown on the left-hand
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X1

X3

X2 X1

X3

X2 X1

X3

X2

(a) Three equivalent Bayesian network structures

X1

X3

X2

(b) Network that is
not equivalent to those
shown in figure 2.6(a)

Figure 2.6: Illustration of the equivalence of Bayesian network structures. The equivalent
networks in subfigure 2.6(a) all represent the same following d-separations and
d-connections: X1 /⊥⊥X2 | ∅ and X1 ⊥⊥ X2 | X3.
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side, the joint probability distribution can be factorized:

p(X1, X2, X3) = p(X1)p(X3 | X1)p(X2 | X3)

with the rule p(X1)p(X3 | X1) = p(X1, X3) = p(X3)p(X1 | X3), the factorization can be
modified to:

p(X1, X2, X3) = p(X3)p(X1 | X3)p(X2 | X3)

The corresponding structure is shown in the middle subfigure of figure 2.6(a). Similarly,
with the rule p(X3)p(X2 | X3) = p(X2, X3) = p(X2)p(X3 | X2) the previous equation can be
transformed to

p(X1, X2, X3) = p(X2)p(X1 | X3)p(X3 | X2)

The corresponding structure is shown in the right-hand side of figure 2.6(a). Apparently, all
three factorizations, and thus all three directed acyclic graphs, represent exactly the same
probability distribution. The equivalence of these graph structures can be seen by using
the d-separation criterion, as well. According to the d-separation criterion, X1 and X2 are
d-separated by X3 (X1 ⊥⊥ X2 | X3), as well as X1 and X2 are d-connected given the empty
set (X1 /⊥⊥X2 | ∅) (Hofmann 2000).

A graph structure that is not equivalent to these networks is shown in figure 2.6(b).
Obviously, set of d-separations and d-connections is different from the other networks:
According to the second condition of definition 2.1, X1 and X2 are d-separated by the empty
set (X1 ⊥⊥ X2 | ∅), but they are d-connected given X3 (X1 /⊥⊥X2 | X3). The difference between
these networks that render them in-equivalent is the kind of how variable X3 is connected
to the other variables X1 and X2. While in the first three networks the connections are serial
or divergent (first condition of d-separation), variable X3 has converging edges in the last
network (second condition of d-separation).

While the term equivalence of two directed acyclic graphs was introduced before rather
informally, we here define equivalence in a more formal fashion. Two Bayesian networks
are equivalent if the represented probability distribution of one network is equal to the
distribution of the other network (Chickering 1995).

Definition 2.3 (Equivalence) Two directed acyclic graphs G and G′ are equivalent iff for
every Bayesian network BN = (G,ΘG) with graph structure G and parameters for the
conditional probability distributions ΘG there exists a Bayesian network BN′ = (G′,ΘG′)
with structure G′ and parameters ΘG′ , such that BN and BN′ define the same probability
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distribution.

Two Bayesian networks are commonly referred to as equivalent if, in fact, their DAGs
are equivalent. Verma and Pearl have shown that the equivalence of two Bayesian networks
can be decided by comparing their directed acyclic graph structures (Verma & Pearl 1990).

Therefore the following two definitions are needed. The skeleton of a DAG is the undi-
rected graph which results if every directed edge in the DAG is transformed to an undi-
rected edge, ignoring the edge direction. A local structure with three variables X1, X2 and
X3 is called collider or v-structure if two arcs connecting the variables converge in variable
X3 (X1 → X3 ← X2), and X1 and X2 are not connected.

Theorem 2.1 (Verma and Pearl, 1990) Two directed acyclic graphs are equivalent if and
only if they have the same skeleton and the same colliders.

That means that all equivalent Bayesian networks have a unique graph structure if the
direction of the edges is not taken into account. Since the equivalence relation, which is
often referred to as Markov equivalence relation, is symmetric, reflexive and transitive, the
relation defines a set of equivalence classes over directed acyclic graphs. One equivalence
class comprises all graph structures that are equivalent. Each directed edge that appears
in all DAGs of one equivalence class is called compelled edge. More formally, a directed
edge Xi → X j ∈ EG is compelled in G if for every DAG G′ that is equivalent to G, this
edge also appears in G′ (Xi → X j ∈ EG′). Any edge that is not compelled in G is called
reversible. This means that there exists a DAG G′ equivalent to G in which this edge has
the opposite direction.

It has been shown in Chickering (1995) that a directed acyclic graph G can be trans-
formed into any equivalent network structure G′ by iteratively reverting covered edges. An
edge Xi → X j is said to be covered in G if Xi and X j have identical parents in G while, of
course, Xi can not be the parent of itself.

Markov equivalence based on graph properties has also been introduced for other graph-
ical models. E.g., any DAG with latent variables can be represented by an ancestral graph
that encodes the same conditional independence relations entailed by the DAG (Richardson
& Spirtes 2002), providing a finite search space of latent variable models (Spirtes, Richard-
son & Meek 1997). Ali, Richardson & Spirtes (2004) found sufficient graphical conditions
that render two ancestral graphs Markov equivalent, while in Zhang & Spirtes (2005) a
transformational characterisation, comparable to the one given for DAGs by Chickering
(1995), has been introduced.
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For the class of chain graphs, Frydenberg (1990) introduced graph-theoretic criteria for
Markov equivalence concerning a restricted class of probability distributions, and Anders-
son, Madigan & Perlman (1997) introduced criteria for the general case without restricting
to a certain class of probability distributions.

Graphical Representation of Equivalence Classes

In the previous section we have introduced criteria for the graphical equivalence of two
directed acyclic graphs. As mentioned before, the equivalence relation partitions the space
of directed acyclic graphs into equivalence classes of (graphically) equivalent Bayesian
network structures.

Based on theorem 2.1 a graphical representation of equivalent Bayesian network struc-
tures can be defined. All equivalent Bayesian network structures can be represented by a
so called partially directed acyclic graph (PDAG). A PDAG can contain both directed and
undirected edges. A directed edge in the PDAG represents an edge that is directed (com-
pelled) in all Bayesian network structures contained in the equivalence class. All reversible
edges are represented as undirected edges in the PDAG.

That means if there is an edge that has no direction in the PDAG, there are at least two
Bayesian networks that have this edge in common, but the edge differs in its direction.
On the other hand it does not mean that directions of reversible edges can be combined
arbitrarily. First, the graph of a Bayesian network must be always acyclic. Second, if
the direction of an edge is chosen in a way that a new collider is generated, the Bayesian
network would no longer belong to the same equivalence class. Hence, inserted directions
must not create new colliders.

In this work we use the term PDAG as used by Chickering (1995). However, in the
literature, different terms for the graphical representation of equivalence classes have been
established. The PDAG representation was first introduced by Verma & Pearl (1990) as
the (completed) pattern associated with a DAG. Andersson, Madigan & Madigan (1997)
introduced the term essential arrows for the term compelled edges used by Chickering
(1995). Thus, they use the term essential graph instead of PDAG.

Based on a given directed acyclic graph structure, several algorithms have been devel-
oped in order to obtain the corresponding PDAG representing the equivalence class this
DAG belongs to. It is worth to mention that it is sufficient to direct only those edges in the
PDAG that are members of a collider structure in the underlying DAG (Chickering 1995).
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However, other edges might be compelled (and not reversal) as well since a reversal of
these edges would cause a new collider structure, and thus the corresponding DAG would
belong to another equivalence class. If the collider edges are the only edges that are di-
rected in the PDAG, the graph is called a minimal PDAG representation. On the other
hand, if every compelled edge is represented as a directed edge in the PDAG and every
undirected edge corresponds to a reversible edge, the PDAG is called a completed PDAG
representation.

There are several algorithms to identify compelled edges in a directed acyclic graph.
Usually, the algorithms start with a minimal PDAG and try to identify remaining undi-
rected, but compelled edges that do not participate in any collider structure. If a compelled
edge is found, it is directed in the PDAG and the search is repeated until no more com-
pelled edges can be identified. An algorithm that is known to be sound but not complete
was introduced in Verma & Pearl (1992). Since not all compelled edges can be identified
with this algorithm, the resulting PDAG might not be completed. However, every edge that
is directed in the resulting PDAG is compelled. Meek (1995a) and Andersson, Madigan &
Madigan (1997) have introduced sound and complete polynomial-time algorithms to de-
rive completed PDAG representations, another algorithm was introduced in Dor & Tarsi
(1992). An algorithm that can take both DAG as well as a minimal PDAG as input to de-
rive the completed PDAG with polynomial complexity has been introduced in Chickering
(1995).

Causal networks

Above, for the explanation of the d-separation criterion, we have shown a small example
network with three variables: ”no gas“, ”dead battery“ and ”no start“, and the correspond-
ing network structure is: ”no gas“ → ”no start“ ← ”dead battery“. In this example it is
obvious that the edges represent causal relationships besides the formal conditional inde-
pendencies defined by the d-separation criterion. ”no gas“ and ”dead battery“ are causes
that prevents a car being started (”no start“ is the effect of both causes). Such types of
Bayesian networks that describe causal dependencies among random variables are called
causal networks (Pearl 1988, Pearl & Verma 1991). In a causal network, each directed
edge represents a causal influence from the variable at the tail of the edge to the variable at
the head of the edge.

Usually, Bayesian networks can not be interpreted as causal networks. Instead, the
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structure of a BN with its directed edges represent the factorization of the joint proba-
bility distribution (or, equivalently, a set of conditional (in)dependence statements). The
(in)dependence statements result from a causal interpretation of the network, however,
the opposite is usually not true: the causal interpretation of edges does not result from
(in)dependence statements given by the d-separation criterion. This is apparent since d-
separations (and d-connections) do not define a directed acyclic graph but only an equiv-
alence class of equivalent Bayesian network structures. This means that at least edges
that are reversable in this equivalence class can not be treated as causal influences, if the
network is build upon (in)dependence statements.

2.3 Faithfulness

In section 2.1.2 we defined the meaning of the Bayesian network structure based on the
d-separation criterion, while we previously have introduced Bayesian networks by means
of the factorization of a probability distribution. Conditional dependencies and indepen-
dencies that are defined by the d-separation criterion must be enclosed in the probability
distribution. However, the probability distribution may comprise additional independen-
cies that are not predetermined by the structure of the BN, but that are encoded in some
suitably chosen parameters for the conditional probability distributions p(Xi | Pai). Some
factors of the factorized probability distribution could be further simplified, or the joint
probability could be factorized in different ways (Hofmann 2000).

If learning BNs from data, the following question arises: Is there a BN structure describ-
ing all the dependence and independence relations encoded in the data? Unfortunately, this
question must be negated, which can be seen in the following example (see (Steck 2001)
for more details): Assume that a probability distribution with three variables X1, X2, and
X3 comprises following conditional independencies: X1 ⊥⊥ X3 | X2 and X2 ⊥⊥ X3 | X1.
In other words, X1 and X3 are conditionally independent if X2 is known, and X2 and X3

are conditionally independent if X1 is known. All other associations are dependencies (see
figure 2.7). Obviously, there is no DAG that comprises all dependencies and independen-
cies: Either, the DAG does not encode all dependencies (DAGs shown in figures 2.7(a) and
2.7(b)), or some independencies are missing (figures 2.7(c), 2.7(d) and 2.7(e)). A graph
that encodes at least all independencies of the probability distribution is called D-map. On
the other side, this means that every dependency encoded in the graph must be represented
in the probability distribution. A maximal D-map is a D-map where no edge can be added
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X1
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(a) D-map
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(b) maximal
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Figure 2.7: Possible DAG representations of following conditional dependencies and inde-
pendencies:
Independencies: X1 ⊥⊥ X3 | X2, X2 ⊥⊥ X3 | X1
Dependencies: X1 /⊥⊥X2, X1 /⊥⊥X3, X2 /⊥⊥X3, X1 /⊥⊥X2 | X3

without destroying the D-map property. In contrast to D-maps, in I-maps each dependency
encoded in the probability distribution must be represented in the graph. This also means
that every independence encoded in the graph must exist in the probability distribution, as
well. A minimal I-map is an I-map from which none of the edges can be removed. P-maps
are graphs that are both I-maps and D-maps. For the example in figure 2.7 exists no P-map
since there exists no D-map that is also an I-map: The maximal D-map (figure 2.7(b)) has
one dependency less than the minimal I-map (figure 2.7(c)).

Additional independencies that are not encoded in the structure of a Bayesian network
but only in the probability distribution defined by a data set can complicate the learning of a
Bayesian netwok. Many algorithms, especially constraint-based learning algorithms which
are explained later in this chapter, usually assume the faithfulness condition (Pearl 1988):

Definition 2.4 (Faithfulness) A DAG G and probability distribution p satisfy the faithful-
ness condition if the Markov condition entails all and only the conditional independencies
in p.

Meek (1995b) shows that the assumption of faithfulness is reasonable and the probability
distributions that are un-faithful have measure zero.
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Learning Bayesian networks refers to the process of extracting a Bayesian network from a
data set D by means of unsupervised learning.

Bayesian network learning can be divided into two problems: parameter learning and
structure learning. In the first case the structure is already known or assumed known and the
parameters ΘG of the local conditional probability distributions of the Bayesian network G
are learned from data. The second case, learning the structure, is much harder, since both,
structure G and parameters ΘG, must be learned.

Learning the structure and the parameters of a Bayesian network can be formulated as
the following problem: Given a finite data set D = (d1, ...,dN) with N different independent
observations, where each data point dl = (dl

1, ..., d
l
n) is an observation of all n variables, find

the graph structureG and the parameters ΘG that best match data set D (Nägele et al. 2008).
In this thesis we assume that all variables are observed and no observation dl

i is missing,
meaning that the data set D is complete. There are also algorithms to learn from incom-
plete data. For instance, the parameters can be learned by an Expectation Maximization
(EM) algorithm even if some observations are missing. Friedman (1998) introduced SEM
(Structural Expectation Maximization) as an algorithm to learn the structure of a BN from
incomplete data. Besides complete data we also assume that data are nominal. There are
other types of data that are conceivable: For instance, variables could be continuous. Hof-
mann (2000) shows how BN can be learned in domains where nominal and continuous
variables appear together.

Generally there are two methods how data can be interpreted, the Bayesian and the fre-
quentist method. In a frequentist’s point of view, data are generated from one model. That
means that the model is real, but unknown. A common learning approach of frequentist
would be the maximum likelihood (ML) estimation. In contrast, the Bayesian point of
view is that the data is real, but not the model. All models are generally possible, each
model has an own degree of belief. To calculate the prediction for an event, all models
have to be considered. There are several advantages of the Bayesian point of view: First,
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the interpretation of the Bayesian approach is more intuitive: Having a fixed data set and a
distribution for all models is easier to understand and closer to the learning problem than
having just one fixed model and a standard error. Second, Bayesian statistics always have a
prior and a posterior: The prior distribution forms together with the observed data the pos-
terior distribution. This enables the incorporation of prior knowledge in a quite intuitive
way. However, there are also some drawbacks: To calculate the prediction for an event,
all models have to be considered. This can be computationally intractable, or at least very
expensive. For some prior distributions, the posterior distribution can be solved in closed
form which renders the calculation computationally tractable. The second problem also
arises from the prior distribution: The parameters of the prior distribution must be set even
if no prior knowledge is available. In the literature it is quite common to use the Bayesian
point of view for learning Bayesian networks. Thus, we focus on this view in this thesis.

3.1 Parameter Learning

At first it is shown how to learn the local probability distributions of a Bayesian network
given a data set D. The methods are capable to combine data and prior knowledge (for
example expert knowledge) to produce an optimal estimate.

Let k be the state of variable Xi and j the state of the parents Pai of variable Xi. Ni jk is
the number of cases in the data set D in which the parents of Xi are in state j and Xi itself
is in state k, and ri is the number of states the variable Xi can assume. The incorporation
of prior knowledge can be efficiently done by setting the prior variables αi jk. One can
imagine that αi jk is defined like Ni jk, but not on the data set D but on an imaginary data
set containing the prior knowledge. The size of this imaginary data set is called equivalent
sample size. This size is used to weight the proportion between prior knowledge and data.
If no prior knowledge is available and the parameters should be learned only from data a
noninformative prior can be used, and αi jk is reduced to a uniformly distributed pseudo
count.

With αi j =
∑ri

k=1 αi jk and Ni j =
∑ri

k=1 Ni jk, the probability of a variable in state k given
the parent state j, the data set D and the graph structure G can be easily assessed by

p(Xi = k | Pai = j,D,G) =
αi jk + Ni jk

αi j + Ni j
. (3.1)

Since the parameter θi jk and p(Xi = k | Pai = j,D,G) are equivalent (see 2.4), 3.1 can be
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used to learn the parameters ΘG of the BN with structure G. For a more detailed deduction
of 3.1, we refer the interested reader to Heckerman et al. (1995).

3.2 Structure Learning

In many domains, the structure of a Bayesian network is given and the learning process
focuses on the parameter estimation. For instance, a Naive Bayes classifier is a simple
Bayesian network with fixed structure: The class variable representing the variable to be
estimated (e.g. Cancer: yes / no) is the parent of all observed variables, representing the
observed conditions (e.g. blood test: positive / negative). The task here is to learn the
parameters of the local probability distributions in order to calculate the probability of the
class given the observed conditions.

In many other cases, however, the structure of a BN is unknown and must be recon-
structed from data. But learning the structure of a Bayesian network is a much more
challenging task than learning the parameters: The number of possible different network
structures growths super-exponentially with the number of variables. Chickering et al.
(1994) has proven that structure learning of BNs is generally an NP-hard problem. The
extreme amount of different networks can be seen by an example: For a network with only
10 variables, there are almost 1020 different possible BN structures, which prohibits an
exhaustive search over all possible network structures (Hofmann 2000). Thus, it became a
common approach to apply heuristic strategies to create a BN network structure.

Two general types of learning algorithms have been developed over the last two decades:
The first, known as score-based algorithms, utilize a scoring function to guide heuristic
search strategies. The goal of these algorithms is to find the network with the best score.
This is typically achieved by applying local changes to the network like edge addition, edge
removal or edge reversal until a high-scoring network is found. The underlying concept
of these algorithms is based on the factorization of the probability distribution (see equa-
tion 2.3) which is utilized by the scoring functions. Constraint-based algorithms form the
second class of BN structure learning algorithms and rely on the BN definition based on
independence relationships (see section 2.1.2). These algorithms perform statistical tests
to determine dependencies and independencies among the variables in order to reconstruct
the BN structure.

In general, both approaches have advantages and disadvantages (Dash & Druzdzel
1999). Both have the ability to incorporate prior knowledge about the network struc-
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ture. However, with an appropriate scoring function one can even integrate the knowledge
about the structure and parameters in form of prior probabilities. Usually, constraint-based
methods are relatively quick and outperform score-based approaches in terms of runtime.
However, constraint-based approaches identify dependencies based on independence tests
with a specific significance level. A wrongly detected dependency can lead to cascading
effects leading to a corrupted network structure. Score-based approaches can avoid such
cascading effects since they usually allow to remove an arc later on if it was added in a
previous phase of the learning.

The work presented in this thesis is based on both approaches (score-based and
constraint-based), thus a short overview of both techniques is given in the following sec-
tions.

3.2.1 Score-based Approach

The learning algorithms used in this work are restricted to the case of fully observed data.
For data with missing values the algorithms for fully observed data can be used if missing
values are filled as described in Heckerman (1995). Another method, introduced by Fried-
man (1997) and Friedman (1998), uses an advanced EM, called structural EM (SEM), to
determine the structure G and the parameter set ΘG. From now on we assume fully ob-
served data. The introduction of the score-based approach closely follows the introduction
published in Nägele (2005), Nägele et al. (2008) and Pinto et al. (2009).

Scoring function

To rate a structure according to the data set D, a scoring function S (G | D) is used. This
function rates the structure G by assigning a score S (G | D) to it. In this thesis a scoring
function is used that is based upon Bayesian statistics. The score of a graph G given data
set D is (Dejori 2005):

S (G | D) =
p(D | G)p(G)

p(D)
, (3.2)

where p(G) is the prior probability for the graph, p(D) a normalization constant and
p(D | G) the marginal likelihood of the data D. The scoring function S (G | D) is a prob-
ability distribution and is also called the posterior distribution for the network structures,
while p(G) is denoted as the prior.
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To determine the posterior distribution, the marginal likelihood has to be calculated:

p(D | G) =

∫
p(D | ΘG,G)p(ΘG | G)dΘG, (3.3)

where p(D | ΘG,G) is the likelihood of data D for the Bayesian network (G,ΘG), and
p(ΘG | G) denotes the prior for the local probability distributions ΘG of the Bayesian
network with structure G.

Equation 3.3 can be solved in closed form if some assumptions that are proposed by
Cooper & Herskovits (1991) are fulfilled. These are parameter independence, parameter
modularity, which means that the conditional probability distribution of Xi depends only on
its parent Pai, and complete data in combination with Dirichlet priors. The scoring func-
tion, based upon these assumptions, is called BD (Bayesian Dirichlet) score (Heckerman
et al. 1995):

p(D | G) =

n∏
i=1

qi∏
j=1

Γ(αi j)
Γ(αi j + Ni j)

ri∏
k=1

Γ(αi jk + Ni jk)
Γ(ai jk)

, (3.4)

where qi is the number of possible parent configurations of Xi and ri is the number of states
of Xi. Γ denotes the gamma function. As mentioned in section 2.2, different Bayesian
networks that belong to one equivalence class represent the same underlying probabil-
ity distribution. Therefore the scoring function should not distinguish between equivalent
Bayesian networks. Given a noninformative prior αi jk = 1

qiri
as proposed by Heckerman

et al. (1995) this score equivalence is achieved. Equation 3.4 together with the noninfor-
mative prior builds the Bayesian Dirichlet score with likelihood equivalence and uniform
prior (BDeu score).

Since this score is decomposable (Heckerman et al. 1995), it is possible to calculate
the score contribution of each variable independently from the score contribution of other
variables. With this, the score difference of simple network changes like edge addition or
edge removal can be efficiently calculated.

If using the logarithmic value of the score instead of 3.4 directly, the score becomes

fBDeu(D | G) = log(p(D | G)) =

n∑
i=1

fBDeu(Xi | Pai) (3.5)
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with

fBDeu(Xi | Pai) = log

 qi∏
j=1

Γ(αi j)
Γ(αi j + Ni j)

ri∏
k=1

Γ(αi jk + Ni jk)
Γ(ai jk)

 . (3.6)

Throughout this thesis, we use the BDeu score (to be more precise: its logarithmic value
fBDeu(D | G)) for our BN learning algorithms since this score is most widely used in the
literature. Whenever we refer to the BDeu score, we actually refer to its logarithmic value.

However, there are several other scoring functions to evaluate the fitness of a BN regard-
ing a data set. Another score based on the Bayesian approach is the K2 score (Cooper &
Herskovits 1991). A second class is formed by information-theoretic scores like the log-
likelihood or the Bayesian information criterion which is an approximation score derived
by Schwarz (1978). Exactly the same except the algebraic sign is the MDL score based on
minimum description length. MIT (mutual information tests) (de Campos 2006) and NML
(Roos et al. 2008) do also belong to the class of information-theoretic scores. We do not
consider these scoring functions in this thesis since we focus on algorithms for structure
learning and not on scoring functions. BDeu is the most widely used score, thus using this
score enables a direct comparison to results reported by others in the literature.

Heuristic Search Strategies

The target of a score-based structure learning algorithm is to find the Bayesian network
with the best score. Unfortunately, finding the highest-scoring structure is NP-hard
(Chickering et al. 1994), and the number of possible network structures grows super-
exponential with the number of nodes. Thus, an exhaustive search over all possible network
structures is intractable for networks of reasonable size. Some methods were developed to
find the optimal network structure even for networks with tens of variables (Tamada, Imoto
& Miyano 2011, Yuan, Malone & Wu 2011), but for larger networks one needs heuristic
search strategies to find high-scoring networks. The drawback of heuristic search strate-
gies is that the learned network structure might not be the optimal network structure. Some
existing algorithms are explained in section 3.3 in more detail.

3.2.2 Constraint-based Approach

Constraint-based algorithms form the second class of BN structure learning algorithms and
rely on the BN definition based on independence relationships (see section 2.1.2) (Spirtes
et al. 2001, Steck 2001, Cheng 2002). The basic concept behind constraint-based algo-
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rithms is the following: For a small set of variables, conditional independence tests are
performed in order to obtain a set of conditional dependency and conditional indepen-
dence relationships among the variables. These tests are repeated until a feasible set of
such relationships are extracted from data. Based on the faithfulness assumption (see sec-
tion 2.3), the structure of the BN including the direction of the edges is built upon the set
of conditional dependencies and independencies.

The local independence tests are a big advantage and a disadvantage at the same time:
Since it is not necessary to evaluate the complete network structure, but only local depen-
dencies and independencies, local evaluations are sufficient to create the BN network struc-
ture. However, putting locally good structures together to form a BN structure might lead to
worse network reconstructions compared to the global network analysis of the score-based
approach.

Another problem arises with the sparseness of data: The quality of the reconstructed net-
work heavily depends on the quality of the conditional independence tests. The conditional
independence tests need a sufficient amount of data to make statements about statistical in-
dependence.

Tsamardinos, Brown & Aliferis (2006) introduced a new method to combine both ap-
proaches: In the first step, a constraint-based algorithm is used to detect dependencies
among the variables to build a skeleton with undirected edges between dependent vari-
ables, and a score-based Greedy Hill Climbing search algorithm is used afterwards to learn
a structure, but restricted on the edges apparent in the skeleton.

3.3 Structure Learning Algorithms

There are many Bayesian network structure learning algorithms that are published in the
literature. These algorithms have typically in common that they either use a scoring func-
tion to determine the quality of a candidate network, or use constraint-based techniques
to identify the structure by conditional independence tests. A third fraction of algorithms
combines both approaches.

In this section we give an overview about existing structure learning algorithms.
Whereas the number of existing algorithms is high, we restrict on algorithms that are
well-known, commonly used or very competitive regarding the quality and the runtime
performance.

The most prominent representative of the class of algorithms using a scoring function is
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Greedy Hill Climbing (Heckerman et al. 1995) which searches in the space of DAGs. An
algorithm that learns a network in a greedy way, but with fixed ordering of the nodes, is the
K2 algorithm (Cooper & Herskovits 1991). Sparse Candidate (SC) (Friedman, Nachman
& Pe’er 1999) restricts the number of possible parents in such a way that it is much more
efficient than a pure Greedy Hill Climbing. Optimal Reinsertion is an any-time algorithm
(Moore & Wong 2003): Iteratively, a node is chosen and the best neighbourhood of this
node is determined.

Bio-inspired methods like genetic algorithms were also applied to the problem of
Bayesian network structure learning (Larrañaga, Poza, Yurramendi, Murga & Kuijpers
1996, Lee, Chung, Kim & Kim 2010, Ko, Kim & Kan 2011), also Ant Colony Optimization
was used to learn the structure (de Campos, Fernandez-Luna, Gamez & Puerta 2002, Pinto
et al. 2009). There is even an approach that combines a genetic algorithm with Ant Colony
Optimization (Li 2009). Greedy Equivalent Search (Chickering 2003) is a score-based al-
gorithm that does not search in the space of DAGs, but in the space of PDAGs. Others
search in the space of orderings (de Campos & Puerta 2001, Chen, Anantha & Lin 2008).

The second class of algorithms uses conditional independence tests to determine the
structure of a Bayesian network. The PC algorithm (Spirtes et al. 2001) is the most well-
known algorithm that returns a PDAG. Afterwards, the remaining undirected edges must be
directed. Three Phase Dependency Analysis (TPDA) (Cheng 2002) is another constraint-
based algorithm.

Hybrid methods form the third class of algorithms: Essential Graph Search (EGS) (Dash
& Druzdzel 1999) searches in the space of PDAGs by means of constraint-based techniques
and uses a score (in one variation combined with Greedy Hill Climbing) to rate the network.
An algorithm that builds a network by using constraint-based techniques as well as a score-
based search, given an ordering for the variables, is BENEDICT (Acid & Campos 2001).
An algorithm that is quite competitive regarding runtime performance and quality is Max-
Min-Hill-Climbing (MMHC) (Tsamardinos, Brown & Aliferis 2006). This algorithm uses
Max-Min Parents and Children (MMPC) to detect an undirected skeleton with constraint-
based methods and applies Greedy Hill Climbing on the set of undirected edges to direct
them.

In the following sections we present some Bayesian network structure learning algo-
rithms in more detail. Some of them were already mentioned in this thesis, some of them
were not yet presented. These algorithms are either commonly used or shown to be quite
competitive regarding performance and/or quality. We show them in more detail since later
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Algorithm 1: GS/MMHC Algorithm
Input: data set D, set of variables X, set of all/candidate edges E
Output: Bayesian network

if edges E not given: E contains all edges between variables X;1

// initialize with empty graph

G = (X, ∅);2

Gtotal = copy of G;3

T L : tabu list (FIFO) with last 100 structures;4

repeat5

// actions can be add-edge, remove-edge, revert-edge; only

try add-edge if edge exists in E; action may not cause
cycles

choose best action for G with resulting graph not in T L;6

apply best action to G;7

add G to T L;8

∆S : score G - score Gtotal;9

if (∆S > 0) then10

Gtotal = copy of G;11

end12

until Gtotal has not changed last 20 times ;13

return Bayesian network with structure Gtotal14

we compare our methods directly to these structure learning algorithms.

3.3.1 Greedy Hill Climbing: GS / MMHC

One of the most used score-based algorithms to learn the structure of Bayesian networks is
Greedy Hill Climbing (GS). This algorithm is quite simple compared to other algorithms
which explains the popularity of this algorithm. The algorithm itself learns a Bayesian
network in iterations: At every iteration, the action (add, remove, or revert edge) which
leads to the highest score-improvement (but not leading to a cycle in the graph structure) is
chosen (line 6, algorithm 1). The benefit of an action is calculated by the score difference
between the resulting graph and the graph before applying this action (see equation 3.4).
Since the BDeu score is decomposable, the score difference can be efficiently calculated.
For each of the local changes add-edge, remove-edge and revert-edge, only the score dif-
ference of the variables that have a changed set of parents must be calculated. Usually, the
algorithm ends if there is no operation that improves the score. The algorithm is shown in
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detail in algorithm 1 which is taken from Pinto et al. (2009).

In our implementation of the Greedy Hill Climbing algorithm which is used to bench-
mark our new methods, we extended the pure Greedy search as suggested in Tsamardinos,
Brown & Aliferis (2006) with a TABU search. The algorithm remembers the graph struc-
tures that were already evaluated and disallows every action in line 6 that leads to a graph
structure which was already evaluated. In our implementation, the last 100 graph struc-
tures are remembered. If a new graph structure is chosen in line 7, it is added to the tabu
list T L (line 8) and the oldest structure is removed from the list if the size of the tabu list
would be larger than 100. In order to escape local maxima, score decreases are allowed if
the best action leads to a score decrease. Only after several changes without improving the
score, the overall highest-scoring network is returned. We follow Pinto et al. (2009) and
use 20 as a number for the number of changes. The authors of MMHC repeated the search
for a better structure only 15 times without score improvement (Tsamardinos, Brown &
Aliferis 2006).

Tsamardinos, Brown & Aliferis (2006) introduced Max-Min-Hill-Climbing (MMHC)
as a combination of constraint-based techniques with a Greedy Hill Climbing search: A so
called skeleton of possible edges is constructed with a method called Max-Min Parents and
Children (MMPC) (see appendix A.1). The edges of the skeleton are given as parameter E
to the Greedy Hill Climbing algorithm (compare algorithm 1). If Greedy Hill Climbing is
applied, but the edges are restriced on those contained in the skeleton produced by MMPC,
the algorithm is called MMHC (Tsamardinos, Brown & Aliferis 2006).

3.3.2 Simulated Annealing: SA and MMSA

Simulated Annealing mimics the behaviour of metal that builds large crystals if it is cooled
in a controlled way. It was introduced by Kirkpatrick, Gelatt & Vecchi (1983) as a general
optimization technique, a more detailed description of SA can be found in Laarhoven &
Aarts (1987). The algorithm for learning the structure of a BN learns a network in iter-
ations (Dejori 2005). In every iteration a candidate edge from set of candidate edges E
is randomly chosen (line 10, algorithm 2). The best local action (add, remove or revert
edge) according to the score is selected (line 12) and applied if the score difference ∆S is
positive (meaning that the new structure has a better score than the network without the
action being applied). If there is no score improvement or even a decrease of the score, the
action is applied depending on a value called temperature T . As higher the temperature,
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Algorithm 2: SA/MMSA Algorithm
Input: data set D, set of variables X, set of all/candidate edges E
Output: Bayesian network

if edges E not given: E contains all edges between variables X;1

T0 = 30; // start temperature2

Tend = 0.000005; // end temperature3

γS A = 0.99; // temperature decrease factor4

βS A = 20; // iteration factor5

// initialize with empty graph

G = (X, ∅);6

T = T0;7

repeat8

for βS A · |X| times do9

choose edge Ei j randomly from candidate edges E ;10

// actions can be add-edge, remove-edge, revert-edge; only

try add-edge if edge exists in E; action may not cause
cycles

choose best local action for edge;11

∆S : score difference for best action (score G with best action - score G);12

if (∆S > 0) or (exp(∆S
T ) > rand(0,1)) then13

apply best action to G;14

end15

end16

T = T · γS A;17

until T < Tend ;18

return Bayesian network with structure G19

as higher the probability that score-decreasing actions are applied. The temperature is de-
creased from time to time (line 17), until it reaches a minimum value. As a result, score
decreasing actions become more unlikely as longer the algorithm runs. The algorithm is
sketched in algorithm 2 which is taken from Pinto et al. (2009).

To perform comparisons to our new methods, we implemented the algorithm in our
software tool. In our implementation, we set the start temperature to 30, decrease the tem-
perature after every iteration by the factor 0.99, and iterate until a minimum temperature of
0.000005 is reached. In one iteration, 20 times number of nodes local changes are tested.
These are the same values as used in Pinto et al. (2009).

The algorithm returns a Bayesian network with structure G. Similarly to MMHC, SA
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applied on the skeleton is called MMSA (see (Pinto et al. 2009) for more details).

3.3.3 Ant Colony Optimization: ACO, MMACO and related algorithms

Ant Colony Optimization is a meta-heuristic that mimics the way how ant colonies search
for food sources (Dorigo & Stützle 2004). The ACO algorithm presented here (see algo-
rithm 3) was first published in Pinto et al. (2008) and further investigated in Pinto et al.
(2009). The description of the algorithm is taken from Pinto et al. (2009) with minor mod-
ifications. We refer to this publication for more information about the ACO algorithm.
At the end of this section, some other ACO-based BN structure learning algorithms are
introduced. But first we introduce the algorithm of Pinto et al. (2009).

At each iteration of the algorithm, m ants collaboratively try to find a good network
structure. When building one network, each of the m ants take a randomly chosen node pair
Xi and X j and assign the edge between the two nodes the state k = Z(Xi, X j), representing
one of the three states {i → j, i ← j, i = j} (meaning: edge from Xi to X j, edge from X j

to Xi, no edge between Xi and X j). These edge states are restricted if the skeleton with
candidate edges E is given: In this case, edge states that are not included in the skeleton
have zero probability. The ant with the highest score improvement is taken and the edge
state produced by this ant is applied to the network. The network is build until no better
network structure is found, meaning that all ants are unable to find an edge improving the
score. This procedure is repeated Nmax iterations and the network with the highest score is
returned as result of the ACO algorithm.

To guide the ants to the direction of the best network, each ant chooses the edge state
according to the score and so called pheromones. The pheromones represent the knowledge
of the ants about previously learned networks. To be more precise, the pheromones assign a
value to each state of each possible edge Ei j. The pheromones are stored in the pheromone
matrix τ.

At the end of each iteration, the pheromones are updated according to the following
steps (see (Pinto et al. 2009)):

• Application of evaporation (with ρ as evaporation coefficient)

τ← (1 − ρ) · τ (3.7)

• Preserving information about currently learned network G:
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Algorithm 3: ACO/MMACO Algorithm
Input: data set D, set of variables X, set of all/candidate edges E
Output: Bayesian network

// Initialization

if pheromones τ not given: initialize each entry of τ with τ0;1

if edges E not given: E contains all edges between variables X;2

define Nmax as max number of iterations;3

Niter = 0;4

Gtotal = (X, ∅);5

// Optimization

repeat6

// initialize with empty graph

G = (X, ∅);7

Gbest = copy of G;8

// Edge assignment and orientation

while better solutions are found do9

// go over all m ants
for ant = 1 to m do10

choose edge Ei j from E randomly;11

choose edge assignment kant for Ei j according to equation (3.11);12

∆S ant: score difference for the assignment;13

end14

Find ant BestAnt with highest score benefit ∆S BestAnt;15

Assign edge value kBestAnt chosen by ant BestAnt to G;16

end17

Perform greedy hill climbing on G (Algorithm 1);18

// Pheromone update

if score G > score Gbest then19

Gbest = copy of G;20

end21

Update τ according to equation (3.7);22

Update τ according to equation (3.8) using G;23

Update τ according to equation (3.9) using Gbest;24

Niter++;25

// update total graph

if (score Gbest > score Gtotal) then26

Gtotal = copy of Gbest;27

end28

until Niter=Nmax ;29

return Bayesian network with structure Gtotal30
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τi, j,k ← τi, j,k + 1/| fBDeu(G)| (3.8)

• Preserving information about best learned network Gbest:

τi, j,k ← τi, j,k + 1/ | fBDeu(Gbest) | (3.9)

Additionally to the pheromones the search is also guided by the score of a candidate net-
work. In Ant Colony Optimization this is referred to as heuristics. For the ACO algorithm
the heuristic information is defined as:

ηi, j,k = fi j(k) (3.10)

with fi j(k) as the local score fBDeu(Xi | Pai) + fBDeu(X j | Pa j) with edge Ei j assigned to
value k.

Both the pheromones and the heuristics are used to determine the edge assignment in
line 12 of algorithm 3. The probability that state k is chosen for the edge Ei j is defined as

pk =
ταi, j,k · η

β
i, j,k∑3

e=1 τ
α
i, j,e · η

β
i, j,e

(3.11)

with α and β as balance factors to weight pheromones and heuristics.

The algorithm exists in two variants. The ACO algorithm that has a restricted set of
possible edges is called MMACO, while the algorithm without any edge restriction is called
ACO. MMACO uses MMPC to gain a set of candidate edges in order to restrict the search
space.

As supposed by Pinto et al. (2009), the parameters in our implementation were set to:

• Factor for pheromones: α = 1

• Factor for heuristics: β = 1

• Evaporation coefficient: ρ = 0.05

• Number of ants: m = 20

• Number of iterations: Nmax = 400

36



3.3 Structure Learning Algorithms

A couple of other Ant Colony Optimization algorithms to learn Bayesian networks are
reported in the literature. Since we have no implementation available for these algorithms,
and thus we do not compare results of our methods with results of these methods, we just
shortly review the main other algorithms in that area. The first algorithm called ACO-B was
published in de Campos et al. (2002). There are some differences between ACO/MMACO
and ACO-B. While ACO/MMACO uses BDeu as scoring function, ACO-B uses the K2
metric. Instead of detecting the next edge to add to the network, in ACO-B every ant
builds its own network. To build this network, the algorithm B is used which is a simple
greedy algorithm: At every step, the edge with the best score improvement is added to the
network. In contrast to GS, any edge added to the network can never be changed again.
To introduce non-determinism to the B algorithm, ACO-B refines the rule which edge is
added to the network: Instead of using the best-scoring edge, the edge to add is detected
by using a probabilistic rule.

I-ACO-B improves the performance of ACO-B by applying two major modifications (Ji,
Zhang, Hu & Liu 2009): First, similarly to MMACO, edges are restricted to node-pairs that
are not statistically independent according to a independence test. Second, the heuristics
which are used to select the next edge are not only the score of two nodes, but the score
is weighted with the dependency according to mutual information of the two variables. It
is shown in Ji et al. (2009) that these modifications improve the runtime significantly (Ji
et al. 2009). In Ji, Hu, Zhang & Liu (2011), I-ACO-B was further developed and Simulated
Annealing was additionally employed to optimize the stochastic search process.

In Wu, McCall & Corne (2010), two novel algorithms were introduced: Both algorithms
(ChainACO and K2ACO) detect good node orderings for all variables with ACO and then
apply the K2 algorithm to learn a network structure.

3.3.4 Constraint Hill Climbing: CHC, CHC*, iCHC, 2iCHC

A quite interesting approach is constraint hill climbing (CHC) that was first published in
Gámez & Puerta (2005). This approach follows the idea of restricting the search space in
order to improve the performance of the structure learning. Instead of splitting the structure
learning into two phases as it is done for the MM algorithms (MMHC, MMSA, MMACO),
CHC identifies edges that should not be evaluated again during a greedy hill climbing run.
So the restriction of the search space and the structure learning are performed in one step.
Every time during the greedy hill climbing phase when an edge operation is evaluated, the
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score change is evaluated. If for an edge addition the score is not improved, this edge is
removed from the search space. If for an edge removal the score is improved, this edge is
removed from the search space. Theoretical considerations have shown that this approach
has the drawback of returning structures that might not be a minimal I-map of the distribu-
tion represented by data (Gámez, Mateo & Puerta 2007). In (Gámez, Mateo & Puerta 2011)
the authors presented new algorithms that are based on the original CHC algorithm that do
not have this drawback. Since greedy hill climbing does not have this drawback, they intro-
duced a new method CHC* that uses the output of CHC as a start network for a greedy hill
climbing search. Unfortunately, CHC* needs a lot of statistical computations more than
CHC and shoots the performance improvement down. iCHC repeats single CHC steps (the
output of one CHC step is used as start network for the next step) until the output network
does not improve. 2iCHC does exactly two CHC steps, where the output network of the
first CHC run is used as a start network for the second CHC run. Both algorithms return
minimal I-maps of the underlying distribution.

3.3.5 Recursive Autonomy Identification: RAI

Another approach is Recursive Autonomy Identification (RAI) (Yehezkel & Lerner 2009).
This method employs purely constraint based techniques and uses independence tests to
obtain the Bayesian network structure.

RAI starts with a fully-connected graph. Then, the following steps are performed: (1)
Test of conditional independencies and removal of edges if conditional independencies
are detected. (2) Edge orientation based on conditional independence tests. (3) Detection
of so-called autonomous substructures. On each autonomous substructure, the steps are
applied recursively. During the whole process, the order of the conditional independence
tests are increased (beginning with 0). This means that the size of the conditioning set for
the conditional independence tests is increased. At the end, the final Bayesian network
structure is used as a result of RAI.
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Due to theNP-completeness of structure learning (Chickering et al. 1994), many interest-
ing domains for Bayesian network learning face the problem of high dimensionality. For
instance, one of todays applications of structure learning is the estimation of biomolecu-
lar processes in cells. Here, BNs are used to learn abstract gene-gene interactions in the
so called genetic regulatory network from microarray data (Friedman et al. 2000, Dejori
& Stetter 2003, Dejori, Schürmann & Stetter 2004). However, with about 30,000 human
genes, learning the full network as a whole is a challenging task for current learning meth-
ods given the available computational power.

The computational complexity of learning Bayesian networks can be reduced by apply-
ing heuristic assumptions about possible network structures. E.g. there is an approach to
deal with very large networks (up to hundreds of thousands of variables) (Goldenberg &
Moore 2004), but it is restricted to binary variables and a very sparse network structure.
To mention another example: in Friedman, Nachman & Pe’er (1999), an algorithm with
polynomial computational complexity was introduced. The basic idea behind the so called
“Sparse Candidate” algorithm is following heuristic argument: If variables X and Y are al-
most independent in the data, they are unlikely to be connected in a Bayesian network, and
thus, the search can be constrained by allowing edges only between dependent variables.
On the other hand, the assumption might be wrong: X and Y can be marginally inde-
pendent, but conditionally strongly dependent on another variable Z (e.g., X is the XOR
of Y and Z). However, it is reasonable to assume that in many domains this dependency
structure does not appear. The restriction on network structures that can have links only be-
tween dependent variables enables structure learning up to several hundreds or thousands
of variables.

If learning in even larger domains, one typically goes one step further and restricts
the feature dimensions on a feasible subset of relevant variables that are of high inter-
est (Friedman et al. 2000, Pe’er, Regev, Elidan & Friedman 2001a, Hartemink, Gifford,
Jaakkola & Young 2001, Imoto, Goto & Miyano 2002, Dejori et al. 2004, Stetter, Nägele
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Figure 4.1: The Bayesian network to the left is an example for a complete Bayesian net-
work, the network to the right is the simplest Bayesian network that encodes
the same probability distribution, but without the missing variable X7. Note
that the variables X4, X5 and X6 are no longer independent given their parents.

& Dejori 2007). Following the idea that two variables that are marginally almost indepen-
dent in the data are not linked to each other in the network structure, one can abandon both
variables to be present in one network. On the other hand, strongly dependent variables
are likely to be connected in the network structure and thus should be put together in one
subnetwork. For this, the variables in one single subnetwork can be determined according
to their statistical dependence given the data. As a result, a typical pipeline for learn-
ing Bayesian networks from high-dimensional data could be stated as a two-step process
(Stetter et al. 2007):

1. Based on a statistical method, choose a number of highly-relevant variables.

2. Learn a Bayesian network with the set of variables selected in step 1.

Even though the structure learning becomes feasible, the restriction on a small set of
variables for learning is a potentially problematic step which can lead to a strongly cor-
rupted estimation of the true structure. First of all, edges incident to missing variables can-
not be learned by definition. Edges that are missing in the learned network, but contained
in the true underlying network structure, are called false negatives. Second, additional false
positive edges might be learned to explain statistical dependencies that can not be repre-
sented by a dependence on the missing variables (see figure 4.1 for an example (Binder,
Koller, Russell & Kanazawa 1997)). False positives are those edges that exist in the learned
network, but do not exist in the true underlying network structure. While there are many
publications about the quality of network reconstructions, the impact of the reduction of
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variables is not well evaluated. To rate the impact of such a search space restriction, we
introduce new methods in the chapter.

To evaluate the extent of the subnetwork-based structural shifts in the learned networks,
we simulate the reduction of variables with a method called subnetwork learning. This ap-
proach was originally published in Nägele (2005) and systematically estimates the network
structure of the whole network step by step using smaller subnetworks. According to the
method that is used to obtain smaller networks, we put variables together in one subnet-
work that are statistically dependent on each other. In this chapter we extend the analysis
of Nägele (2005) and analyze the dimensionality reduction in a systematic way. Based on
known benchmark networks, we can answer how many network errors appear caused by
the reduction of dimensionality.

In benchmark cases with known network structure, subnetwork learning can be used
to estimate the influence of learning partial networks with moderate size on the features
of the network structure. If learning the structure from data in real-world scenarios, the
true structure is never known and subnetwork learning can not help to identify errors in
the learned network. For this a method would be suitable that assigns confidence levels to
structural features in order to distinguish between true network structures and false pos-
itives. To minimize the error induced by subnetworks in real-world cases with unknown
true network structure, we develop and propose a new robustness assessment algorithm,
called dimensional bootstrap. For that, we iteratively learn the structure of a small subnet-
work. However, with each iteration, a somewhat different set of variables is added to the
subnetwork in such a way that even weakly dependent variables can evolve their influence
on the estimated network structure. With dimensional bootstrap, each edge gets a confi-
dence level that helps to separate between true edges and false positive edges in the learned
network.

Large and high-dimensional domains commonly imply the additional problem of sparse
data. A common approach to deal with sparse data and the fluctuations contained therein
is the non-parametric data bootstrap (Efron & Tibshirani 1994). This method allows to
assess those dependencies that are caused by the underlying true dependency structure be-
tween the variables and not by statistical fluctuations in the data (Friedman, Goldszmidt
& Wyner 1999, Friedman et al. 2000). However, in very large but sparse domains there
might be several variables that are highly dependent on each other only because of such
fluctuations. By restricting the learning on a subnetwork with highly related variables, the
presence of fluctuations in the small sub data set can be higher-than-average. To estimate

41
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the influence of such fluctuations, we propose a surrogate data analysis. For that, we per-
form the same steps used for structure learning with artificially generated data that contain
no dependencies between the variables at all. If applying this proposed new method one
can answer which fraction of the number of edges is learned because of true dependencies
in the data and which fraction is just based upon fluctuations in the data.

Before we introduce our new methods, in the next section we shortly describe common
methods to measure the robustness of features in the area of Bayesian networks.

4.1 Robustness Assessment

Primarily, Bayesian networks represent the joint probability distribution among random
variables. There are many applications that use this distribution directly. For instance, the
Naive Bayes classifier utilizes the probability distribution to classify samples. Another ex-
ample is the work of Dejori & Stetter (2004) who train Bayesian networks from microarray
data in order to simulate in-silico what-if scenarios.

However, there are several applications of Bayesian network structure learning that have
the primary goal of structural feature estimation, i.e. they make use of the link structure of
Bayesian networks, neglecting the quantitative part (Friedman & Koller 2003). A promi-
nent example is the previously mentioned reconstruction of abstract gene-gene interactions
(Friedman et al. 2000, Dejori & Stetter 2003, Dejori et al. 2004). The most common ap-
proach to discover BN structure is to learn a single high-scoring model. This model (or its
Markov equivalence class) is used as the structural estimation of the domain. It has been
shown that the likeliness of the highest scoring network is order of magnitudes higher than
any other network structure in small domains with a number of samples that is much higher
than the number of random variables (Heckerman, Meek & Cooper 1997). Unfortunately,
in many interesting domains, the number of observations are much smaller than the num-
ber of variables. Especially in the case of genetic network reconstruction, there are usually
only few hundred samples in a microarray data set, but there are commonly thousands of
genes measured. In cases where the number of samples is relatively small in comparison
to the number of variables, it is likely that there are many models (graph structures) that
describe the dependency structure reasonably well.

A possible solution to the problem of model uncertainty is to use the standard Bayesian
way. There, one sums over all possible models, weighted by each models likelihood, to
compute the posterior of a quantity of interest. Let be f this quantity of interest, such as a
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structural feature in the graph, the posterior distribution given data D is then given by

p( f | D) =

K∑
k=1

p( f | Gk,D)p(Gk | D), (4.1)

where K is the number of possible graph structures Gk. The posterior p(Gk | D) for each
model Gk in the light of data D is given by equation 3.4. It has been shown that averaging
over all possible models provides better results than using only the highest-scoring model
(Madigan, Raftery, Wermuth, York & Zucchini 1994).

However, a direct implementation of the Bayesian approach is difficult. Except for do-
mains with only few variables, there is no practical way to calculate the sum in equation
4.1 since the number of possible structures grows superexponential with the number of
variables, leading to an enormous amount of different structures.

Mainly, two different approaches have been developed in order to calculate the confi-
dence of a feature f in an approximate way. The first approach, introduced by Madigan,
York & Allard (1995), approximates the sum by considering only a subset of possible
structures. To obtain this subset, they use a Markov Chain Monte Carlo Method with a
Markov Chain over structures. While this approach approximates the Bayesian approach
(summing over all possible models), the second approach, called Bootstrap approach, esti-
mates the confidence indirectly by manipulating the data set D (Friedman, Goldszmidt &
Wyner 1999). Here, we shortly introduce both ways of estimating a feature’s confidence.

4.1.1 MCMC Methods

The Markov chain Monte Carlo approach, as introduced in Metropolis, Rosenbluth, Rosen-
bluth, Teller & Teller (1953) and Hastings (1970), is a common framework for approximat-
ing probability distributions that can not be solved in closed form or are hard to calculate
because of their complexity. In order to approximate 4.1, one can build a Markov chain
that has the posterior distribution p(Gk | D) as equilibrium distribution. Samples generated
from these chain are used to estimate 4.1 by summing over the restricted space of sampled
models rather than on all possible graph structures. The usage of the MCMC approach to
estimate the confidence of features in Bayesian networks was first proposed by Madigan
et al. (1995). They build a Markov chain over the space of directed acyclic graphs and use
basic edge operations as proposed movements between the states of the Markov chain.

Given a graph structure Gold, the probability A of moving to another structure Gnew is
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given by (Grzegorczyk & Husmeier 2008):

A = min
{

p(D | Gnew) p(Gnew)
p(D | Gold) p(Gold)

·
q(Gold | Gnew)
q(Gnew | Gold)

, 1
}
, (4.2)

where the proposal distribution q(Gnew | Gold) captures the proposed movements (here:
basic edge operations). Thereby, the Hastings factor q(Gold |Gnew)

q(Gnew |Gold) has to be chosen in such a
way that the process has the correct stationary distribution.

Due to convergence problems if basic edge operations are used, Friedman & Koller
(2003) suggest to build a chain over the orders of network variables rather than directly on
DAG structures. They show that this approach has substantial benefits in terms of conver-
gence of the Markov chain. Recently, this method was further improved by Grzegorczyk
& Husmeier (2008).

A major drawback of MCMC approaches to estimate the confidence of structural fea-
tures is the vast computational effort to calculate 4.1, in particular for large networks with
hundreds of variables. Even if we sum only over a small subset of networks generated by
the Markov chain rather than calculating the weighted sum over all possible models, the
computation remains challenging.

4.1.2 Data Bootstrap

While the MCMC method belongs to the Bayesian paradigm, there is also a frequentist ap-
proach of dealing with sparse data. In the frequentist view, data are generated by a process
with true but unknown parameters. The parameters are estimated from the data with max-
imum likelihood, leading to a single model representing the data. Model uncertainty can
be handled by repeating the data generation process several times, leading to a set of inde-
pendent and identical distributed data sets. The ensemble of models, where each model is
the estimator of one of these data sets, gives an estimation of this uncertainty. In fact, the
procedure of iterated data generation is unrealistic in most cases. Usually, there is not even
a small set of independent and identical distributed data sets available, but only one single
data set. For instance, genomic or proteomic data are very sparse in general due to two
main reasons: (1) the costs for one measurement are high and (2) each measurement repre-
sents a single patient, and the amount of patients can not be increased arbitrarily. Thus, it
is even hard to get a data set of a suitable number of samples, not talking about a large set
of data sets. Also in many other domains, the data generation process can not be iteratively
processed (Husmeier, Dybowski & Roberts 2004).
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In terms of computational costs, it would be preferential to base the confidence assess-
ment on the frequentist paradigm, i.e. to learn a single maximum likelihood or maximum
a posteriori (MAP) BN network structure for each of the data sets. Luckily, the method
of iterated sampling can be approximated by a Q-fold non-parametric bootstrap procedure
(Zoubir 1993, Efron & Tibshirani 1994). Thereby, at each fold q, a data set Dq is generated
from the original data set by re-sampling with replacement. Thus, some of the original sam-
ples may occur in the bootstrap data set repeatedly, while other samples may be missing.
The bootstrap data set Dq contains the same number of samples as the original data set D
and reflects the same underlying probability distribution. The Q Bayesian networks trained
from the Q bootstrap replicas result in an assessment of the structure variability caused by
finite sample fluctuations. The use of a boostrap approach to estimate the confidence of
structural features in Bayesian networks was first proposed by (Friedman, Goldszmidt &
Wyner 1999).

4.1.3 Feature Graph

To describe the variations in the structure of several Bayesian networks, the framework
of “feature partially directed graphs” (fPDAG) (Dejori 2005) that is based upon the work
in Friedman, Goldszmidt & Wyner (1999) is used. An fPDAG can deal with structural
uncertainties by assigning a value for the belief in the features “edge presence” and “edge
direction”. We shortly introduce the framework of fPDAGs in this section.

As explained in a previous chapter, the direction of an edge in a Bayesian network can be
ambiguous, and, thus, these edges should be counted as undirected edges. Before creating
an fPDAG, all Bayesian networks forming the estimation of the underlying network are
transformed into their PDAG representation (Chickering 1995).

The confidence in a feature can be written as

p(F) =
1
Q

Q∑
q=1

f (BNq), (4.3)

where f (BNq) has the value one if the feature feature exists in the q-th network, otherwise
it is zero. For the fPDAG, we use four features: fi→ j is the feature describing a directed
edge from Xi to X j, fi← j a directed edge from X j to Xi, fi− j an undirected edge and fi= j no
edge between both variables.

The feature of an edge between two variables Xi and X j can be described by a probability
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distribution with four states, that is

pi↔ j = {pi→ j, pi← j, pi− j, pi= j}. (4.4)

pi→ j denotes the probability of a directed edge from Xi to X j, pi← j the probability of
a directed edge from X j to Xi, pi− j the probability of an undirected edge and pi= j the
probability that there is no edge between the two variables. Each feature is calculated
according to 4.3. Sometimes in the forthcoming sections we neglect the direction of the
edges and we are just interested in the presence of an edge. The confidence in an edge
regardless its direction is pi→ j + pi← j + pi− j.

The fPDAG of Q Bayesian networks with corresponding Bayesian network structures
BNq, q ∈ {1, ...,Q} is a graph which contains all variables that are present in the Bayesian
networks. The edge between each pair of variables Xi and X j is weighted with its feature
distribution pi↔ j . Thus, unlike Bayesian networks or PDAGs, the structure of fPDAGs is
neither an acyclic directed nor a partially directed acyclic graph. Instead, it has undirected
edges between related variables, and these edges are labeled with pi↔ j (Dejori 2005).

This work considers partially overlapping Bayesian networks, i.e., there are Bayesian
networks that do not have all variables in common. As a result, an edge between two
variables Xi and X j can only be learned in networks that contain both variables. All other
networks cannot contain the edge, thus these networks also cannot be directly used to
calculate the feature probability with equation 4.3. Hence, we extend the definition of a
feature graph given by Dejori (2005) with the ability to deal with partially overlapping
networks. We define the probability of a feature solely based on these networks that can
contain the feature. If fi↔ j(BNq) is zero for all networks BNq that cannot contain the
feature, the feature probability can be estimated by replacing the normalization factor Q in
4.3:

pi↔ j =
1

QXi,X j

Q∑
q=1

fi↔ j(BNq), (4.5)

where QXi,X j is the number of Bayesian networks that contain both variables Xi and X j.
It is necessary to point out that this calculation of a feature confidence can lead to a poor
estimation of the confidence since an improbable edge could be assigned a confidence
of one if only one subnetwork contains both variables Xi and X j. An edge between two
variables that appears in 90 of 100 networks that contain both incident variables would have
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less confidence. It seems apparent that this edge is more likely than the edge between Xi

and X j. However, the good estimation of the network structure with the fPDAG framework
as it is presented later in section 4.3.2 shows that the approximation of the confidence given
in equation 4.5 seems to be quite reasonable.

4.2 Sparse Data Analysis

As stated before, Bayesian network structure learning is an NP-hard problem. Thus, if
applied to high-dimensional domains, the large number of variables is usually restricted to
a small set of variables of interest, and the Bayesian network structure is learned for this
small set of interest. Generally, this process can be separated into two steps:

1. Selection of highly relevant variables (set of interest). At this step, the variables
are separated into two sets: a set of interest (containing all variables used for BN
structure learning) and a set of less relevant variables that should not occur in the BN
structure and, thus, are omitted for the structure learning procedure. For instance,
the set of interest can be selected by a human with expert knowledge. In practice,
all variables are often ranked according to a specific criterion and the two sets are
defined according to the ranked list of the variables. E.g., Dejori et al. (2004) apply
a statistical test to detect genes that play an important role in acute lymphoblastic
leukaemia and use the 271 most relevant genes for BN structure learning.

2. Bayesian network structure learning. Now, the set of highly relevant variables de-
tected in step 1 are used for Bayesian network structure learning. Thereby, the
structure learning algorithm is applied only to the variables that belong to the set
of interest, all other variables are omitted.

In this section we do not focus on the problems arising if structure learning is applied
to a small set of variables, while most variables remain latent in the network. These prob-
lems are discussed in more detail in the following sections. Here we focus in particular
on the problem of sparse data, i.e. a small number of samples compared to the number of
variables observed, paired with the dimension reduction usually applied to large data sets.
Thereby, an insufficient number of observation can strongly impact the quality of the struc-
ture learning procedure leading to a network structure not representing the true network
structure underlying the data.
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Besides, statistical test methods to narrow down the amount of variables might be af-
fected by fluctuations in sparse data sets. There might be variables that have no relevance
for the tested condition, but instead they are selected because of fluctuations which in turn
might influence the quality of structure learning. Typically, for each of the variables in the
domain, one statistical test is performed, leading to the actual need of multiple test correc-
tion. Common approaches to control the false positives are controlling the familywise error
rate or the false discovery rate (Benjamini & Hochberg 1995). However, these methods are
typically used to obtain significant variables for the tested condition, and thus to determine
the variables that belong to the set of interest. In fact, we are interested in the influence of
sparse data on the quality of the learned network structure.

As described before, a common approach to deal with sparse data and the therein con-
tained fluctuations is the non-parametric data bootstrap (Efron & Tibshirani 1994) using
a “perturbed” version of the available data in order to enable an confidence estimation
of network features. Edges that have a high confidence in the fPDAG comprised by
the perturbed networks are shown to be rarely false positives (Friedman, Goldszmidt &
Wyner 1999, Friedman et al. 2000). This result is based on observations on small-scale
networks like the Alarm network consisting of 37 variables and 46 edges. Instead, we have
domains with thousands of variables.

4.2.1 Method

To estimate the influence of sparse data, we simulate the previously described two-step
process (reduction in dimensionality and structure learning) by using artificial benchmark
data. First, we apply this process to data that was generated from a network with known
structure. Second, we apply the same procedure to surrogate data. Figure 4.2 illustrates
the generation of surrogate data by scrambling the original data.

Based on an original data set (left hand side in the figure), the observations are randomly
interchanged variable-wise. Thus, all higher-order statistics are destroyed in the surrogate
data (right hand side) and all variables are independent from each other, while the variable-
wise marginal probabilities are kept stable. Since the variables are independent from each
other, all edges that are learned from surrogate data are false positives.

By comparing the number and confidences of edges in both cases (normal and surrogate
data), it is possible to quantify the fraction of edges that are caused by fluctuations in
sparse data sets. As a measure we define the “predictive value” as the number of edges
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Figure 4.2: Procedure of surrogate data generation (scrambling): The observations for each
variable in the original data set (left hand side) are interchanged randomly. The
resulting data set without any higher-order statistics is referred to as “surrogate
data set” (right hand side).

in the normal case divided by the number of all edges (normal and surrogate). A value of
one implies that all learned edges are originated by dependencies that are not caused by
the sparseness of the data. A high predictive value, however, does not imply all edges to be
true positives. In fact, a high value only indicates that there are more dependencies in the
data than in a randomly chosen data set. A differentiation between true positives and false
positives is not considered here.

A lower predictive value of 0.5 means that the learned edges have no meaning at all
since the same amount occurs in the surrogate case. For this reason, the original data set
contains relationships that are probably contained in any artificial (surrogate) data set by
chance. Hence, the predictive value quantifies the structural shift that can be caused by
data fluctuations.

To identify the influence of the commonly used preselection of variables on the fluctu-
ations in the network, we apply three different learning scenarios. The three scenarios are
sketched in figure 4.3.

• The “Normal” scenario imitates the method to preselect variables in order to reduce
the size of the network: Based on a high-dimensional data set, a couple of variables
are selected. For this set of variables BNs are learned by means of a non-parametric
bootstrap procedure.

• The “Scrambling before Variable Selection” scenario imitates the “Normal” case,
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Figure 4.3: Workflows for sparse data analysis: The general workflow of learning small
networks in large domains is shown on the left hand side (“Normal” case). The
“Scrambling before Variable Selection” method imitates the “Normal” case,
but with surrogate data. The learning from a small data set is imitated by the
“Scrambling after Variable Selection” method.

however uses surrogate data in order to perform the selection of variables and learn-
ing the BNs. Since all dependencies in the data are just caused by fluctuations, the
variable selection method selects variables that are assumed to be dependent just be-
cause of fluctuations in the data. So this approach enables to estimate the influence
of the variable selection on fluctuations in the learned BNs.

• The third method, called “Scrambling after Variable Selection”, does the scrambling
after the variable selection. This method allows to estimate the number of edges that
are learned by chance in a network having the size of the number of the selected
variables, neglecting the variable selection procedure.
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4.2.2 Results

The influence of fluctuations in sparse data on the structural robustness of learned net-
works is simulated by using data sets of different sizes that are drawn from the Alarm 270
benchmark network (see appendix A.2 for an overview of the network). In particular, we
sampled five different data sets for each of the following sample sizes: 20, 50, 100, 200,
500, 1000, 5000.

To simulate the procedure of feature reduction as it is applied for the preselection of a
subset of genes from a large microarray data set, one of the 9990 variables in the bench-
mark network is chosen randomly and the 199 most related variables according to the
mutual information measure are determined. The resulting data set (“Subset Data Set”)
with 200 dimensions is used to learn 40 Bayesian networks with a non-parametric boot-
strap approach (“Bootstrap Learning”). An overview over the workflow is given in figure
4.3 on the left hand side (“Normal” case). In addition, the same steps are performed sim-
ilarly, but using surrogate data instead of the data sets that are drawn from the Alarm 270
network (see figure 4.3, “Scrambling before Variable Selection” case). It is obvious that
this procedure does not exactly reflect the procedure of gene preselection from microarray
data as it was described before. There, the genes are usually detected by comprising some
external information such as disease state or type of treatment. Here, however, we want to
show results based on benchmark networks since it enables a comparison between learned
networks and the underlying true benchmark network.

Figure 4.4(a) illustrates the predictive value for different data sizes based on the
Alarm 270 benchmark network. The predictive values are calculated for several thresholds
for the edge confidence, averaged over all five different data sets and plotted separately for
each sample size. All edges with a confidence higher than the threshold are treated as
learned edges, whereas all others with lower confidence are neglected. It can be seen that
the bootstrap networks learned from a sufficiently large data set (at least 1000 samples)
have high predictive values even for a very low threshold for the confidence. The figure
clearly shows the impact of the sample size on the informative value of learned networks.
In the case of 5000 samples a confidence threshold of 0.4 leads to an estimation of the
network structure that is mainly based on the dependencies in the data, having a predictive
value of greater than 0.9.

By contrast, the results get worse if data gets sparse. With a sample size of 50 or smaller
the confidence must be at least 0.8 to assure a predictive value of 0.9 or higher, while a
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(a) Scrambling before variable selection
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(b) Scrambling after variable selection

Figure 4.4: Predictive values (fraction of edges in “normal” case and sum of edges of “nor-
mal” and surrogate cases) against different thresholds for the confidence level
based on the Alarm 270 benchmark network. Results are shown for several
different sample sizes.

robust identification of dependencies in the data is nearly impossible with a very sparse
data set with only 20 samples: This can be seen by the fact that the predictive value barely
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Table 4.1: Number of learned edges for some of the configurations shown in Figures 4.4(a)
and 4.4(b). Numbers are shown for the normal (N), the scrambling before vari-
able selection (S1) and the scrambling after variable selection (S2).

50 samples 100 samples 500 samples 5000 samples
Conf N S1 S2 N S1 S2 N S1 S2 N S1 S2

0.2 320.0 335.0 318.2 315.8 350.4 313.6 217.8 221.0 196.4 159.4 95.6 85.0
0.4 93.4 75.6 68.2 76.6 52.2 51.8 75.4 28.4 26.0 97.0 8.0 6.8
0.6 44.2 14.4 13.8 44.4 9.0 9.0 60.0 3.2 2.2 86.0 0.8 0.6
0.8 26.4 2.2 2.0 31.0 2.0 0.8 54.6 0.8 0.0 80.8 0.0 0.0
1.0 10.8 0.0 0.2 16.8 0.0 0.0 40.8 0.0 0.0 72.4 0.0 0.0

Table 4.2: Standard deviation for the values shown in table 4.1.
50 samples 100 samples 500 samples 5000 samples

Conf N S1 S2 N S1 S2 N S1 S2 N S1 S2

0.2 23.0 25.2 35.2 12.4 9.1 10.4 9.4 7.8 11.1 11.4 5.7 12.9
0.4 8.2 7.6 7.4 9.6 6.9 4.8 4.3 6.8 2.9 10.9 1.8 1.3
0.6 4.7 5.0 3.5 7.9 1.7 1.4 5.2 1.2 1.7 12.5 0.4 0.5
0.8 5.0 1.5 0.9 7.1 1.7 1.0 5.9 0.7 0.0 13.1 0.0 0.0
1.0 4.2 0.0 0.4 6.4 0.0 0.0 3.7 0.0 0.0 11.6 0.0 0.0

exceeds 0.7, showing the missing significance if learning networks from data with such few
data points: A predictive value of 0.7 means that only 70% of the edges are present in the
learned bootstrap networks, while 30% occur in a network that contains only false positives
by definition. Surprisingly, the best predictive value for 20 samples is not observed for a
confidence threshold of one like it would be expected, but for a lower confidence of around
0.7. With a threshold of one, the predictive value with about 0.6 is even worse. From this
observation one can reason that conclusions about learned network structures (at least in
this example) for a sample size of about 20 lack of any kind of significance.

While the figure shows only the predictive value which measures the relative frequency
of edges, table 4.1 shows the absolute values of learned edges for “Normal” (column N),
“Scrambling before Variable Selection” (column S1) and “Scrambling after Variable Se-
lection” (column S2) cases with respect to some selected sample sizes. The edge numbers
are reported for five different values for the confidence threshold. For a small threshold
for the edge confidence (e.g. 0.2) and a small data set, the amount of edges learned in the
S1 case is even higher compared to the normal learning procedure (N). Also the standard
deviation (see table 4.2) implies that there is no significant difference between the three
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Figure 4.5: Number of edges learned from a 200 variables data set. The variables are se-
lected from a randomly generated data set with 100.000 variables, while there
are no dependencies among these variables.

cases. On the other hand, for thresholds of the edge confidence (about 0.8), as well as for
large data sets, the predictive values are highly significant.

One fact is quite interesting: As expected, the number of edges learned in the “Scram-
bling before Variable Selection” (S1) case is most higher than in the “Scrambling after
Variable Selection” (S2) case, however the difference is barely significant. This implies
that the feature reduction procedure leads to a higher number of edges, however the in-
crease compared to networks learned from a data set without any dependency does not
reach a significant level. The results indicate that the commonly used method to preselect
variables for network learning leads to a little biased estimation of the network with oc-
currence of false positive edges, which can be neglected at least with the size of network
(9990 variables) used in this example.

With a network with about 10.000 variables, the pre-selection shows no massive influ-
ence on the false positive rate, however with a higher number of variables the picture could
be different. To show the influence of the number of variables, we applied the variable-
preselection on a data set with 100.000 variables and 200 samples. The data set is gen-
erated randomly and contains no true dependencies among the variables. The number of
edges learned in a network with 200 pre-selected variables is shown in figure 4.5, labeled as
“Random data” (simulating the “Scrambling before Variable Selection (S1)” case). While
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4.2 Sparse Data Analysis

for a low number for the edge confidence, there are quite a lot of edges in the network, with
a high confidence of 0.8 there remain only 4 false positive edges. To show the difference
between a network that was learned from a pre-selected data set and a data set that con-
tains no dependencies at all, we performed a scrambling after the variable selection (S2)
to destroy the dependencies. We learned bootstrap networks from this scrambled data set
(“Scrambling after variable selection”). The figure shows that the number of learned edges
is up to a factor of ten lower than in the case before. On the other hand, this means that
by applying the feature reduction the number of false positives is also up to a factor of ten
higher. This has a negative impact on the predictive value: For instance, in our benchmark
case with true dependencies in the data (see table 4.1, columns “S1” and “S2”), up to only
one edge more is learned in the “S1” case compared to the “S2” case for a confidence of
0.6, while here we have a factor up to ten. In table 4.1, columns “N”, one can also see that
for an edge confidence of 0.6 around 40 to 60 edges are learned for sample sizes of 500
and lower. This number of edges is in the same order of magnitude as the number of edges
learned in this case (around 40 edges are learned from random data, see figure 4.5).

In conclusion, the number of variables in the original data set has a big influence on
the number of of edges learned because of fluctuations: In the aforementioned example,
the amount of false positive edges was up to ten times higher for a data set with 100.000
variables compared to the case if no feature reduction is applied and just 200 variables are
contained in the data set.

4.2.3 Discussion and Related Work

Results from the last section have shown that the commonly used approach to pre-select
some variables from a data set with many variables can have the drawback that edges are
just learned because of fluctuations in the data and are not based upon true dependencies.
One can rate the amount of edges caused by fluctuations in the data by calculating the
“predictive value” which was introduced in this chapter.

If the amount of variables is reduced and the BN is learned for a subset of the variables,
the predictive value can be used to calculate the fraction of edges caused by fluctuations.
If data-bootstrapping is used in addition, one can control the fraction of edges caused by
fluctuations by setting the predictive value. The predefined predictive value can then be
used to distinguish between “significant” edges and “not significant” edges by means of
the edge confidences obtained by the bootstap procedure. Thus on can directly control
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the fraction of edges caused by fluctuations. In case of reduction of dimensionality, we
propose to always calculate the predictive value to determine the significance of the edges
in the learned BN.

Listgarten & Heckerman (2007) have published an approach to calculate the false dis-
covery rate (FDR) of learned edges that is very similar to our approach. They use a way
to calculate the FDR which is similar to the calculation of the predictive value: The pre-
dictive value is the inverse of one plus the false discovery rate: (1 + FDR)−1. While we
additionally applied a bootstrap procedure to calculate edge confidences, they just learn
one network from real data. Afterwards, they get the false discovery rate as the fraction
of the expected number of false edges and the number of edges learned from real data.
The expected number of edges is calculated as the mean number of edges over networks
learned from data sets drawn from a null-model.

Later, an approach to control the false discovery rate was published in Tsamardinos &
Brown (2008). Based on statistical independence tests, they restrict the neighbours of each
variable in such a way that the given value for the false discovery rate is not exceeded. This
approach is not suitable for pure score-based BN structure learning algorithms. However,
it can be used to define a possible set of parents and children for each variable to restrict
any score-based search algorithm on edges that fulfil the parent-child relationships defined
by these sets.

4.3 Subnetwork Learning

In the last section, we investigated the influence of sparse data in combination with the
reduction of the network size by omitting “uninteresting” variables. We were interested
in the fraction of learned edges that do not represent underlying dependencies among the
variables. In this section, we show the influence on the learned network structure if there
are missing variables in the network. In contrast to the last section, we focus on edges that
may represent dependencies among variables, but are false positives since the dependencies
are indirect and can be explained by direct dependencies using a missing variable.

By removing a variable, the dependency structure between the remaining variables may
change dramatically. The potential influence of one missing variable on the structure is
shown in figure 4.1 (Binder et al. 1997). The removal of one important variable (here
X7) can disrupt the structure of the Bayesian network. The direct relationships that pass
originally through X7 in the left network (B) must be represented by indirect relationships
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Figure 4.6: This Bayesian network was learned from a data set with 10000 samples. Out
of the 12 truly existing edges in the underlying dependency structure Bsub (pre-
sented in figure 4.1), nine edges are learned correctly. Only three edges are
missing in the learned network (missing edges are displayed in grey and dot-
ted).

between the remaining variables in the subnetwork to the right (Bsub), which leads to a
massive appearance of false positive edges.

While Binder et al. (1997) have presented this result theoretically, most of the false pos-
itives that appear in Bsub could represent dependencies among variables that are too small
to be learned from data. Thus we created a benchmark network to show the impact of
removing one node on the learned network. As structure for the benchmark network we
used network B (figure 4.1). The local probability distributions where chosen randomly,
which is the same procedure as used e.g. in Nielsen & Nielsen (2008) to generate probabil-
ity distributions. From this benchmark network, 10.000 samples were generated, and the
values for variable X7 were removed to obtain a data set to learn a network without node
X7. From this data set, we learned a network structure by using Greedy Hill Climbing with
BDeu as scoring function. The structure of this learned network is shown in figure 4.6. Out
of the twelve truly existing edges in the underlying dependency structure Bsub, nine edges
are learned correctly. Only three edges are missing in the learned network. As exemplary
shown with this benchmark network, the appearance of false positives if removing a vari-
able is more than a theoretical problem: There is a massive appearance of false positives
in this small example.
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4.3.1 Method

To estimate the influence of learning partial networks on the estimated network structure,
we model this constraint by learning a set of partially overlapping subnetworks with data
drawn from benchmark networks. All the learned subnetworks are afterwards compared
to the structure of the “original” benchmark network and to a learned network structure
that covers the whole domain without missing variables. By comparing these networks it
is possible to draw conclusions to what extent relying on subnetworks affects the estimated
structure and therewith the appearance of false negative and false positive edges.

Starting from one single variable, we select the variables that are statistically most de-
pendent on this variable. As a measure for the dependency we use mutual information.
The dependent variables are henceforth referred to as a “neighborhood”. The variable and
its neighborhood together form one subnetwork. By creating the subnetwork with one
central variable and the variables that are statistically most dependent on this variable, the
approach emulates the real-world case where the variables of one network are selected by
their statistical dependencies. To measure the mean influence of learning subnetworks, the
approach does not choose only one central variable, but instead creates one subnetwork for
each variable in the large-scale data set.

The algorithm itself is based upon an idea that was initially published in Nägele (2005),
however here we present a different analysis of the subnetwork learning algorithm. The
algorithm can be outlined as follows: In the first step, for each variable Xi ∈ X, where X is
the set of all variables in the original network, a Bayesian subnetwork with variables Mi is
put together, where Mi is the neighborhood of Xi and Xi itself. Mutual information is used
as a measure for the neighborhood between two variables. The most strongly dependent
variable which is not contained in the neighborhood Mi of Xi is added to that neighborhood.
This procedure (adding of a variable) is iterated until Mi contains a predefined number of
variables. The second step involves the learning of the BN on the small local subnetwork
Mi.

In order to test the structural robustness of learning subnetworks, a comparison is under-
taken between the structure of each single subnetwork and the corresponding part of the
original network by applying different distance measures (see section 4.3.2). The difference
in performance between the subnetwork learning and the learning of the complete network
allows to estimate the structural shifts introduced by learning subnetworks. This analysis
was not carried out in Nägele (2005). In a second step an fPDAG formed by the set of all
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Algorithm 4: Subnetwork Algorithm
Input: data set D, set of variables X
Output: set of subnetworks

// Learn network for each variable’s neighbourhood

foreach Xi ∈ X do1

// 1: Create neighbourhood

Mi :=
{
X j | X j neighbour of Xi

}
∪ {Xi};2

// 2: Learn network

Bi := LEARN BN(Mi,DMi);3

end4

return set B containing all Bi5

subnetworks is created. This enables an assessment of robust features that are preserved
with subnetwork learning, in particular the edge confidence can be used to discriminate
between robust edges and those edges that are only caused by learning subnetworks. How-
ever, this implies that the subnetworks cover the whole domain (one subnetwork for each
variable), which is definitely not the case if one single subnetwork is used for dependency
estimation. Thus, the assessment of robustness with the fPDAG cannot be utilized with
only one single subnetwork. An analysis based upon the fPDAG representation was al-
ready carried out in Nägele (2005), however in this chapter we do an ROC-like analysis
which was not done in Nägele (2005).

4.3.2 Results

Based on subnetwork learning, we investigate the influence of learning small subnetworks
that are composed by a statistical method on the quality of the learned network structure.
For the investigation we use the Alarm 50 and ALL benchmark 1000 networks with 500
samples for learning (see appendix A.2). The subnetwork learning was performed for
subnetwork sizes of 20, 50 and 100. The learning was not carried out for larger sizes
because of the computational time that would be needed for such configurations. Data
bootstrap as it was used for the surrogate data analysis before is also not applied due to its
high computational costs. As BN learning algorithm we used simulated annealing as used
in Dejori & Stetter (2003) and described in section 3.3.2.

Each learned subnetwork is compared to the original, true network structure on the basis
of several distance measures. To avoid the penalization of structural differences that cannot
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be statistically distinguished, the measures are based on the PDAG representation of the
Bayesian networks. The following distance measures are used:

• SHD (Structural Hamming Distance) is defined as the number of the following oper-
ations to make the PDAGs match (Tsamardinos, Brown & Aliferis 2006): (1) insert
or remove an undirected edge, (2) insert, reverse or remove a directed edge or (3)
direct an undirected edge or make a directed edge undirected.

• USHD (undirected Structural Hamming Distance) is introduced in this work and is
the Structural Hamming Distance without considering mismatches in the direction
of edges.

• TP (true positives): Number of edges that appear in the true network structure as
well as in the learned network structure.

• FP (false positives): Number of edges that appear in the learned network structure,
but not in the true network structure.

• FN (false negatives): Number of edges that appear in the true network structure, but
not in the learned one.

• Sens (sensitivity): T P
T P+FN .

• PPV (positive predictive value): T P
T P+FP .

Usually, one uses specificity to identify the fraction of correctly classified negatives.
Specificity is defined as ] true neg.

] true neg. + ] f alse pos. . However, since the number of true nega-
tives is much greater than the number of false positives in sparse domains, the specificity
is almost one. Thus we use in this work PPV instead of specificity. All of the aforemen-
tioned measures are calculated for each single subnetwork and are afterwards averaged
over all subnetworks, i.e. the measures denote the mean performance of learning a single
subnetwork.

In addition, 40 Bayesian networks were learned with all variables included and the same
measures calculated. To obtain comparable values for the globally learned networks as
well as for the subnetworks, we calculated the measures for the global network in the same
way as for the subnetworks. Thus, for each previously learned subnetwork, we selected
the corresponding variables in the global network, calculated the measures for each of the
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Table 4.3: Performance of subnetwork learning for the Alarm 50 (1850 vars) network with
different sizes of the subnetworks (20, 50 and 100). The values for the subnet-
work learning are denoted as S, while the result of learning networks completely
are denoted as C.

20 50 100
Measure S C S C S C

SHD 6.4 3.1 13.0 5.7 29.0 11.8
FP 1.2 0.3 3.5 0.5 9.6 0.9
FN 0.7 0.6 1.3 1.4 3.2 3.3
TP 9.3 9.4 16.5 16.4 32.0 31.9

USHD 1.9 1.0 4.9 1.9 12.7 4.2
Sens .93 .94 .92 .92 .91 .91
PPV .88 .97 .82 .97 .77 .97

Table 4.4: Same configuration as used in table 4.3, but for the ALL benchmark 1000 (1000
vars) network

20 50 100
Measure S C S C S C

SHD 8.0 4.0 24.6 13.9 52.6 30.6
FP 3.5 1.1 12.0 4.4 27.5 10.4
FN 1.6 1.8 6.2 6.7 13.9 14.8
TP 12.5 12.3 29.3 28.8 57.8 56.9

USHD 5.1 2.9 18.2 11.1 41.4 25.2
Sens .89 .87 .83 .81 .81 .79
PPV .78 .92 .71 .87 .68 .85

selected regions, and averaged the results. Thus, these measures indicate the performance
if networks are learned as a whole, but their values are transformed to be comparable to the
subnetwork measures. Tables 4.3 and 4.4 summarize the performance of the subnetwork
method by means of the previously mentioned evaluation measures.

One can clearly see that the subnetwork method produces significantly more false pos-
itive edges, often two to three times higher compared to the complete network case. The
structural hamming distance is much higher, as well. For example, a subnetwork size of
100 for the Alarm 50 network leads to a distance of 29 while there are only 32 true posi-
tive edges. This high value results from false positives edges, but also from a considerable
number of edges directed in the wrong direction. On the other hand, the number of true
positives (TP), false negatives (FN) and the sensitivity values are almost equal in the sub-
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network and in the complete case for both benchmark networks. This means, for a set
of selected variables, that all edges that can be detected if learning the complete network
can also be detected if only a small subnetwork is learned. However, they are sometimes
learned with the wrong direction.

For a further robustness assessment all Alarm 50 subnetworks of equal size are com-
bined to one fPDAG, as are the 40 complete learned networks. Based on these fPDAGs,
we calculated the sensitivity values and the positive predictive values (PPV) for several
confidence thresholds. In Figure 4.7 (a), the sensitivity values are plotted against the PPV
for different subnetwork sizes and the complete network, with better performance indicated
by more points in the top left of the graph.

The figure clearly shows that learning subnetworks performs worse than learning the
network on a whole. However, if one restricts on those edges that reach a high confidence
level, namely a level of 0.8 or above, the difference almost vanishes (see figure 4.7 (b)).
Many of the false positive edges that are learned in the subnetwork case have a low con-
fidence in the fPDAG and therefore can be eliminated by introducing a suitable threshold
for the confidence. It is remarkable that, for a small confidence threshold, the subnetwork
learning with a small subnetwork size (20 in this example) performs much better than with
larger network sizes (50 or 100). A reason for this could be that the selection method for
one subnetwork—taking variables that are related to one single central variable—is suit-
able for detecting the structure “around” the central variable, however, edges between other
variables very often seem to be false positives since these variables lack their neighborhood
required for learning.

The main result of this section is two-fold: First, we have shown that learning a sub-
network leads to around twice as many network errors compared to the case if learning
the network completely. This must be considered if results about network structures are
based upon subnetworks. Second, if we learn several different subnetworks, the edge con-
fidences can be used as a measure to distinguish between wrong edges and edges that are
also learned in the complete case.
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Figure 4.7: Benchmark results for the Alarm 50 network based on the fPDAG represen-
tation of all subnetworks. In the figure, (a) shows the sensitivity against the
positive predictive value for several sizes of the subnetworks and the complete
case. In (b) the sensitivity values (black) and positive predictive values (grey)
are plotted for different levels of the edge confidence.
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4.4 Dimensional Bootstrap

In order to assess the quality of a subnetwork, we introduce a new bootstrap approach,
called dimensional bootstrap. With dimensional bootstrap one can assess the robustness
of edges against missing variables that do not occur in the subnetwork. Especially in very
large domains, this bootstrap can support a robust estimation of the dependency structure
between a manageable subset of variables.

4.4.1 Method

Based on a set of interest (SOI) of variables the dimensional bootstrap tries to detect true
direct relationships between variables of the SOI while false positive edges (as shown in
figure 4.1) should be avoided. The SOI, thereby, can be created by a user, by using a
statistical criterion as described above or by any other suitable method. Based on the
assumption that variables outside the SOI that are highly dependent on variables inside the
SOI might have a high impact on the learned structure, dimensional bootstrap dynamically
adds missing variables that are highly dependent on variables in the SOI. These variables
are added in such a way that, on the one hand, false positives are avoided, and, on the
other hand, the size of the network is kept moderately small. The set of variables that is
added to the SOI for learning is henceforth referred to as the set of additionals (SOA). After
structure learning, only the edges between the variables of the SOI remain in the network,
all other edges and the SOA are removed. Thus, all direct relationships inside the SOI
remain as edges in the network. However, those indirect relationships between variables of
the SOI that can be explained by a cascade of direct relationships passing over the SOA are
removed, leading to a lower amount of false positive edges and, thus, to a better estimation
of the network structure.

In general, there might be a large number of variables highly related to the SOI and,
thus, also a large number of variables that might have an impact on the learned network
structure. Adding of all those variables again turns into a computational problem due to the
large size of the network. To avoid this problem, we propose a method whose general idea
is based upon the bootstrap method (Efron & Tibshirani 1994). However, the approach
does not re-sample data points, but re-samples the variables that should be included in the
network for structure learning, and with it re-samples the dimensions of the data set. In
practice this means a random selection of a few variables as SOA and the combination of
these variables with the SOI to learn the structure. This procedure is applied several times,
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each time with a different SOA. The general algorithm is outlined in algorithm 5.

Algorithm 5: Dimensional Bootstrap Algorithm
Input: data set D, set of variables X, set of interests SOI, number of bootstrap

replicas k
Output: fPDAG

R := variables that are related to the SOI;1

// Start bootstrapping

for i = 1...k do2

// Create set of additionals

SOAi := choose subset of R ;3

// Learn network

learn Bayesian network Bi with SOI ∪ SOAi as variables;4

end5

create fPDAG from all Bi, i = 1...k;6

return fPDAG7

Based on the k bootstrap networks Bi, the confidence of an edge is calculated as the
fraction of networks in which this edge occurs. Edges that represent direct relationships
between variables of the SOI should appear in almost every network independently of
the variables in the SOA. Thus, they should be rated with a high confidence level in the
fPDAG. On the other hand, false positive edges that are caused by indirect relationships
should not appear if the variables that allow the indirect relationships to be explained by
direct relationships are integrated into the SOA. If these variables are contained repeatedly
in the SOA by means of the bootstrap procedure, the confidence of false positive edges can
be decreased. Thus, using an appropriate threshold for the edge confidence should allow
the true positive and false positive edges to be separated.

However, if the SOA is sampled from a fairly large set of variables by using an equal
probability for each variable to be selected, the dimensional bootstrap approach might fail,
because variables, highly related to variables in the SOI, could appear only in a few boot-
strap networks. In contrast, the majority of the variables in the SOA might be weakly
related to the SOI and, hence, have only marginal influence on the learned network struc-
ture. For that reason we present two methods of choosing the SOA in such a way that these
negative effects are avoided. Both methods rank all variables that are not part of the SOI
according to their dependency on the SOI (dep(Xi,SOI)). We define the dependency of
a variable Xi on the SOI in the following way: The dependency between this variable Xi
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and each variable of the SOI is calculated, and the maximum of all these values is taken as
dependency:

dep(Xi,SOI) = max
X j∈SOI

dep(Xi, X j) (4.6)

All variables that are not included in the SOI (but in X) are sorted according to the
dependency on the SOI in descending order and stored in R (line 1, algorithm 5). We use
mutual information as measure for the dependency between two variables.

We investigate two different approaches to select the SOA out of R (line 3 in algorithm
5): SOA selection by using a fixed probability and by using a dependency distribution.

SOA selection by using a fixed probability

The first approach goes through the list R of variables in descending order. Each variable
is selected with a given probability psel and included in the SOA, and omitted with the
probability 1 − psel. Variables are added to the SOA until the size of the SOA reaches a
given maximum. Let max size o f S OA be this maximum size. Since the approach starts
with the most dependent variable in the list, each of the max size o f S OA most dependent
variables is added to the SOA with a probability of psel. However, the probability of
variables at the end of the list R to be included in the SOA is very low, if it is assumed that
the total number of variables is large compared to the maximum size of the SOA. All the
variables in the list that can contribute to the variables in the SOA, ranging from the most
dependent variable in the list to the least dependent variable that is added to the SOA, are
henceforth denoted as base quantity. The size of this base quantity has an expectation of
max size o f S OA

psel
. That means that mainly the first max size o f S OA

psel
variables contribute to the

SOA, whereas the probability for the subsequent variables decreases rapidly. Thus, with
the parameter psel one can indirectly control the size of the set of variables that should
be used as base quantity for the bootstrap selection of the SOA. Using this approach to
define the variability of the SOA raises a question: How should the parameter psel be set
to reach an optimal estimation of the network? Of course, this value should be smaller
than 1, since a selection probability of 1 would lead to a relegated dimensional bootstrap
and would imply that the bootstrap procedure serves no purpose. The value, however,
should be large enough to restrict the base quantity on the relevant variables, avoiding the
inclusion of a large amount of variables that have no impact on the structure. Here, a
value of 0.5 was found to be useful, motivated by the following simplifying argument: A
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structural shift caused by one single latent variable is avoided in about 50% of all networks,
since this variable is present in about 50% of the learned bootstrap networks. Similarly,
a shift caused by two missing variables affects 75% of all networks, because only 25% of
all bootstrap networks contain both variables, and so on. Thus, only high confident edges
(confidence of 80% or above) are supposed to be robust against hidden variables.

Henceforth we refer to the dimensional bootstrap with this selection method and psel =

0.5 as DB 0.5. With another value for psel, the number is changed respectively.

SOA selection by using the dependency distribution

The second approach for SOA selection makes a direct use of the distribution of the de-
pendency values. This dependency distribution therefore is treated as an unnormalized
probability distribution to sample the variables of the SOA. Consequently, the probability
for a variable to be selected depends directly on its dependency on the SOI and repre-
sents exactly the normalized dependency value of the variable. The normalization factor
is the sum of the dependency values of all variables not already contained in the SOA or
SOI. As a result, highly dependent variables, which are supposed to be important for the
network structure, occur much more often in the SOA compared to only weakly depen-
dent variables. Experimental investigations lead to the finding that having a large amount
of variables that are only weakly dependent on the SOI can lead to an SOA with many
variables that show no strong dependency on the SOI. Thus, in general, it is practical to
restrict the base quantity for the bootstrap selection depending on the maximal size of the
SOI. This is evident as the bootstrap procedure has to cover the whole space of dependent
variables several times to be able to make a good estimation of the network structure. For
example, consider a variable that is not contained in the SOI, but causes one false positive
edge. This variable has to occur several times in the SOA to lead to a decreased confidence
in this false positive edge. Otherwise the difference between the confidence of the edge
in this example and the confidence of true positive edges might be too small to separate
between those edges. Hence, in the remainder of this chapter a value for the size of the
base quantity that is four times higher than the maximal size of the SOI is chosen. Other
values might be suitable as well, but they are not considered in this chapter.

The dimensional bootstrap with this selection method is referred to as DB D later on.
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4.4.2 Results

For a performance test of the dimensional bootstrap, the Alarm 50 benchmark network
is used. The data set for learning contains 500 observations sampled from the network.
Out of the variables in this network we selected three different sets of interest (SOI) with
200 variables each. To generate a SOI, one variable was chosen by chance and its 199
most related variables were added, determined by the value of the mutual information. The
results shown in this section are the averaged results of the three cases.

To benchmark the dimensional bootstrap method different settings of learning were cho-
sen. At first, the dimensional bootstrap with a selection probability of 0.5 was used (“DB
0.5”). The alternative method based upon the distribution of the neighborhood is denoted
by “DB D”. In addition, to enable a suitable comparison to the learning without dimen-
sional bootstrap, the SOA was kept fixed (i.e. the selection probability was set to 1.0). We
refer to this setting as “FNS”. For the sake of completeness we also show how the learning
without SOA performs, including only the set of interest (denoted by “SOI”) and the case
if the complete network was learned without missing variables (“Complete”). 40 networks
were learned by using simulated annealing for each method. Based on the 40 networks, a
fPDAG was generated to calculate the edge confidences.

As performance criteria, the sensitivity and the positive predictive values (PPV) of the
network dependent on the confidence threshold are calculated. In figure 4.8(a), the result-
ing sensitivity values are plotted against the PPV for a size of 20 for the SOA. One can
clearly see that the method only learning the set of interest (“SOI”) is outperformed by
any other method, i.e. the PPV is markedly smaller for a given sensitivity level. With a
fixed SOA (“FNS” method), the PPV increases, however it is markedly outperformed by
both bootstrap approaches (“DB 0.5” and “DB D”). With the best method, in this case the
“DB D”, one can achieve a sensitivity of 0.85 with a specificity up to 0.84. This means the
approach is able to detect 85% of all edges with only about 15% false positives, compared
to 25% false positives in the “SOI” case. With an increasing size of the SOA (figure 4.8(c)
and figure 4.8(e)), all three methods that depend on the size of the SOA perform better.
However, both dimensional bootstrap methods outperform the “FNS” method in all cases.

On the right hand side of figure 4.8 the sensitivity (squares) and the PPV (diamonds) of
the “DB 0.5” method are plotted against several confidence thresholds. For comparison, the
sensitivity (right-pointing triangles) and PPV (left-pointing triangles) of the “SOI” case are
plotted in addition. One can clearly see that the dimensional bootstrap method substantially
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(b) SOA size: 20
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(c) SOA size: 100
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(d) SOA size: 100
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(e) SOA size: 200
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(f) SOA size: 200

Figure 4.8: Benchmark results for the dimensional bootstrap method for different sizes of
the SOA. For the dimensional bootstrap (DB) a selection probability of 0.5
(“DB 0.5”) is used, the method based on the dependency distribution is de-
noted by “DB D”. The left hand side shows the sensitivity against the positive
predictive value (PPV). The right hand side illustrates the sensitivity and PPV
plotted against the confidence threshold, and for comparison, the correspond-
ing results for the simple subnetwork case (“SOI”).
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Figure 4.9: Same plot as shown in figure 4.8(c), additionally results for different values of
the selection probability are included. The size of the SOA amounts to 100.

outperforms the simple case of learning a subnetwork especially for high values (0.8 and
above) for the edge confidence. While the sensitivity changes only marginally, the PPV
increases dramatically in the bootstrap case, particularly for large sizes of the SOA (see
figure 4.8(d) and figure 4.8(f)).

For all tests considered here we used a probability of 0.5 to select the SOA. We tested the
dimensional bootstrap method with different values for the selection probability, as well.
Figure 4.9 shows the results for a SOA size of 100. It can be seen that the results with
highest positive predictive values are achieved with a value for the selection probability of
0.3. With lower values, the sensitivity decreases noticeable, however with higher values
the positive predictive value is reduced markedly. Results with a value of 0.5 show a good
tradeoff between sensitivity and PPV, however, the maximum PPV is not as good as with a
value of 0.3.

To see the plausibility of this result, we show in figure 4.10 the dependency value of all
variables that are not contained in the SOI, ranked by their dependency on the SOI. Since
we have three different SOIs, we show the dependency for each SOI separately as different
curve in the plot. One can see that only few variables are highly dependent on the SOI.
The dependency values decrease nearly exponentially. A set of about 100 variables covers
already all highly related variables (marked by the left vertical line), exactly this set was
used to learn the networks for the “FNS” benchmark before. But the previous experiments
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Figure 4.10: Dependency of the SOA on the SOI. Each single variable in R is represented
on the x-axis (using the index of the variable in R). On the y-axis, the de-
pendency value is shown (calculated according to equation 4.6). Since three
different SOIs were selected for the tests, each of the dependency distributions
is plotted in a separate curve.

on the Alarm 50 network have shown that with a larger base ground for the dimensional
bootstrap one can achieve better results. For example, if the selection probability is set
to 0.5, the expectation for the size of the base ground is 200 (marked by the right vertical
line), with a value of 0.3 we reach a size of 333. It seems that this set is sufficient for a good
performance for the dimensional bootstrap. It is small enough for an exhaustive inclusion
of all variables in the bootstrap, on the other hand it is large enough to contain mostly
all important and relevant variables. With further increasing sizes of the base ground, the
performance decreases. This stands to reason that the base ground is too large to be covered
sufficiently by the bootstrap.

Since there is no perfect borderline that can be seen in figure 4.10 for a determination of
the size of the base ground and therewith of the selection probability, we propose to use the
“DB D” method that adopts automatically to the neighbourhood distribution of the SOI.

4.5 Summary

Graphical models, and in particular Bayesian networks, are very useful models for infer-
ring genetic networks by learning the dependency structure from microarray data. How-
ever, when learning BN structures in large-scale domains such as the genetic network one
faces the problem of NP-hardness. Thus, microarray data sets are usually reduced in
their dimensionality by ranking the genes according to their statistical dependency, and
network learning is applied on a small subset of potentially dependent genes (Friedman
et al. 2000, Dejori & Stetter 2003, Dejori et al. 2004). We evaluated the robustness of
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4 Robust Learning in Large Domains

Bayesian network learning if such a reduction in dimensionality is applied by means of
artificial benchmark data.

Initially, we investigated the additional influence of sparse data on the robustness of
edge features. A common approach to deal with the fluctuations in sparse data is the non-
parametric data bootstrap (Efron & Tibshirani 1994), which assesses those dependencies
that are caused by the underlying true dependency structure between the variables and
not by statistical fluctuations in the data (Friedman, Goldszmidt & Wyner 1999, Friedman
et al. 2000). To estimate the influence of the variable-preselection on this assessment, data
bootstrap with a surrogate data analysis were combined. In the surrogate data set, all true
dependencies between the variables are destroyed. Thus, dependencies that do occur in
data are caused by statistical fluctuations. We defined a measure, called predictive value,
indicating the fraction of edges caused by true patterns in the data but not by fluctuations.
Results from benchmark cases show that these fluctuations can have a significant influence
on the learned network structure. While edges with a low confidence might not represent
true dependencies but also fluctuations, edges with a high confidence are likely to represent
true dependencies in the data. For a tradeoff between the number of detected relationships
and the fraction of false dependencies, one can choose a predictive value leading to a
threshold for the edge confidence that fulfills the given predictive value. Based on bench-
mark networks, we have shown that the reduction of dimensionality influences the number
of false positive edges and thus the quality of the learned network in a negative manner.
We suppose to apply the here presented surrogate data analysis every time if a reduction of
dimensionality is applied. This allows to measure the influence of fluctuations in the data
if the dimensionality is reduced.

We also used subnetwork learning as an approach to benchmark the learning of subnet-
works in a structured way. Therefore, for each variable in the complete network one learns
a subnetwork, where the variables in the subnetwork are determined by their dependency
on the central variable. Results from a benchmark case show that the fPDAG formed by all
subnetworks is a reasonable representation of the true underlying network structure, if only
edges with high confidence are considered. However, each single subnetwork contains sev-
eral false positive edges and many edges with a wrong direction, on average. While such
false positive edges can be neglected in the fPDAG because of their low confidence, they
can disrupt the network of a single subnetwork. Although these results can probably be
transferred to networks that have a similar topology as the Alarm benchmark network used
here, the robustness of learning subnetworks should be benchmarked on other networks
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with the subnetwork algorithm too, because networks with different topological features
can also have a different performance. For example, the subnetwork method is known for
not being applicable to fully or almost fully connected networks, because the variables can-
not be reasonably divided into subnetworks. However, most highly dimensional network
structures are sparse. For instance, genetic networks are supposed to be scale-free (Jeong,
Tombor, Albert, Oltvai & Barabási 2000, Barabási & Bonabeau 2003) and are therefore
only sparsely linked.

To avoid on the one hand disruptions arising from learning subnetworks, but on the other
hand to enable networks with moderate size without learning the complete network, the di-
mensional bootstrap approach was introduced. Thereby the network structure between a
set of variables (set of interest: SOI) is estimated by learning several networks contain-
ing the SOI and randomly chosen variables (SOA) that are highly dependent on variables
contained in the SOI. At each iteration, a different set of dependent variables (SOA) is
combined with the SOI for learning. It has been shown by means of a benchmark net-
work that networks estimated by the dimensional bootstrap procedure are much closer to
the original network structure than networks learned only based on the SOI. The bootstrap
networks also have a better structural estimation than networks of same size with a fixed set
of dependent variables. Particularly with regard to very large domains where the reduction
in dimensionality is commonly used, the dimensional bootstrap approach can boost a more
robust estimation of subparts in the complete dependency structure.
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5 Large-Scale Network Learning

For the task to learn in large domains, reducing the size of the network is a common
approach in order to minimize the computational time for the learning procedure. As stated
before, this approach is often used in the literature. In the previous chapter we investigated
the shortcomings of this technique regarding the quality of the learned network. As we have
shown, the reduction of dimensionality comes along with a set of problems that lead to a
decrease of the quality of the learned network. Except the dimensional bootstrap method,
we focused more on measuring the network disruptions introduced by the downscaling
instead of investigating new learning methods to obtain high-quality network structures in
high-dimensional spaces.

In this chapter we go one step further and present two new learning algorithms that
tackle the problem of the network quality paired with high-dimensional feature spaces:
Based on a more profound feature selection algorithm introduced in Tsamardinos, Aliferis
& Statnikov (2003), we follow our idea of subnetwork learning and estimate the total
network by learning small subnetworks. The first algorithm, called substructure algorithm
as introduced in Nägele et al. (2007), utilizes subnetwork learning to estimate edges and
their direction on the basis of a feature graph (fPDAG). Substructure learning can be used
in high-dimensional spaces to estimate selective parts of a network without learning the
network as a whole. Since one can restrict the learning procedure on a small part of the
network, this method allows to estimate network areas that are of major interest with a
guaranteed computational complexity.

While this method leads to a pure structural estimation of the network on the basis of
small substructures, our second approach, called S-DAG as introduced in Nägele et al.
(2008), builds a complete Bayesian network on the basis of all substructures. We show
that this divide-and-conquer approach to learn DAG structures for large networks leads to
performant and high-quality BN reconstructions, outperforming state-of-the-art BN net-
work learning algorithms.
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5 Large-Scale Network Learning

5.1 Background

A quite competitive algorithm to learn BNs that combines constraint based and score based
approaches was developed (Tsamardinos, Brown & Aliferis 2006). The so called MMHC
(max-min hill-climbing) algorithm performs Bayesian network learning in two steps: first,
an undirected network skeletonS is estimated with MMPC (max-min parents and children)
that employs constraint-based techniques (Tsamardinos et al. 2003). Afterwards, a score-
based greedy search is performed to orient the edges.

MMPC is a local discovery algorithm to assess the set of parents and children PCi of a
variable Xi. The assessment is done in two phases: First, variables conditionally dependent
on Xi are added to a candidate set of parents and children. Just these variables are added
which are conditionally dependent on Xi, given the current set of candidate parents and
children. Thereby, the so-called Max-Min heuristic is used (Tsamardinos et al. 2003): this
variable is taken that maximizes the minimum association with Xi relative to candidate set.
The basis of this heuristic is the idea to add this variable to the candidate set that is most
unlikely conditionally independent from Xi. But due to this heuristic it is possible that
false positives enter the candidate set. Thus, in the second phase, these false positives are
removed. False positive variables are those variables that are conditionally independent of
Xi relative to any subset of the candidate parents and children.

A skeleton is constructed by performing MMPC on all variables. Undirected edges
between all variables of the set of parents and children PCi and Xi are added to the skeleton.
This procedure is repeated for every variable Xi in the network. To avoid false positives,
the relationship between Xi and PCi must be symmetric. If not, variables are removed from
PCi until the relation is symmetric. If faithfulness is assumed, the skeleton contains also
no false negative edges. For more details we direct the interested reader to appendix A.1
or Tsamardinos, Brown & Aliferis (2006).

It has been shown that the MMHC algorithm has a good performance in terms of quality
as well as runtime and outperforms many state-of-the-art BN learning algorithms such as
the sparse-candidate algorithm (Friedman, Nachman & Pe’er 1999, Tsamardinos, Brown
& Aliferis 2006). The MMHC algorithm is described in more detail in section 3.3.1 (algo-
rithm 1).
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5.2 Substructure Learning

Algorithm 6: Substructure Algorithm
Input: data set D, set of variables X
Output: set of Bayesian subnetworks B

// Skeleton reconstruction

create skeleton S by MMPC ;1

// structure learning

B := SUBSTRUCTURE LOC(D,X,S) ;2

return set B3

5.2 Substructure Learning

In this section we introduce substructure learning as an efficient and scalable method for
estimating the structural dependencies in large and sparse domains.

5.2.1 Algorithm

Based on the idea of reducing the dimensionality and instead of learning the whole net-
work, we learn a set of small subnetworks that together resemble the original global struc-
ture with high accuracy. The algorithm itself is a two-step process (see algorithm 6): First,
the skeleton S of the complete network structure is reconstructed. Second, small subnet-
works are learned independently of each other for an estimation of the complete network
structure (see algorithm 7). The new approach of substructure learning consists in estimat-
ing the complete network structure by learning several subnetworks, one for each variable
in the complete network.

The first phase of our algorithm (line 1, algorithm 6) is identical to the first phase of
MMHC and determines the set of parents and children PCi of each variable Xi to recon-
struct the skeleton S of the complete network by means of MMPC. In the second phase
(line 2), the subroutine SUBSTRUCTURE LOC to calculate the substructures is called.
This routine (algorithm 7) calculates one subnetwork (also called substructure) for each
variable in the complete network. Therefore, a set of related variables Mi is determined
by NEIGHBOURHOOD(Xi,S) for each variable Xi: To detect related variables within the
NEIGHBOURHOOD routine, we introduce a variable selection method that determines
variables centered “around” the variable Xi in the resulting graph. Manual tests have shown
that at least all variables that belong to the Markov blanket are important to reconstruct the
network structure around a variable. As defined in chapter 2.1.2, the Markov blanket of a
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Algorithm 7: SUBSTRUCTURE LOC
Input: data set D, set of variables X, skeleton S
Output: set of Bayesian subnetworks B

foreach variable Xi ∈ X do1

// Create Neighbourhood of Xi

Mi := NEIGHBOURHOOD(Xi,S) ;2

DMi := restrict data D on variables in Mi ;3

// Create subnetwork around Xi

Bi := LEARN BN(Mi,DMi ,S) ;4

Bi := restrict Bi on Xi and the Markov blanket of Xi ;5

B := B ∪ Bi ;6

end7

return B8

variable is a subset of variables that render this variable independent from all others. In a
BN, the Markov blanket of a variable consists of its parents, its children and the parents of
its children.

To detect variables that belong to the Markov blanket, we utilize the skeleton S and the
neighbourhood of variables regarding the undirected network structure of S. To include
all variables of the Markov blanket, one has to include the neighbours of Xi in S and their
neighbours. Regarding S, this is the minimum set of variables that contain all variables
of the Markov blanket. Thus, the central variable Xi of the local structure, the parents and
children of Xi and their parents and children are all put together for learning one single
BN. This variable selection is the first crucial step since a suboptimal selection with miss-
ing variables which are structurally important can lead to false positives as well as false
negatives, as it has been shown in chapter 4.

The second crucial step is the learning of the local Bayesian subnetworks. As done for
MMHC, we restrict edges in the subnetwork to edges that also appear (as undirected edges)
in the skeleton, this means an edge between two variables can only be added during struc-
ture search if the variables are also connected in the skeleton. To increase the quality of the
network estimation we afterwards restrict the learned subnetwork to the Markov blanket
of Xi by removing all variables and edges that do not belong to the Markov blanket or Xi

itself. The result of the substructure algorithm is the set B, containing all local Bayesian
subnetworks Bi, one for each variable. All the local subnetworks allow a structural estima-
tion of the complete DAG and, as well, build a quantitative model for each single variable
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given its Markov blanket, encoded as a BN.

The set of partially overlapping subnetworks B lacks of a unifying representation of the
network structure. Thus we use the fPDAG representation for the set of subnetworks B as
introduced in section 4.1.3.

5.2.2 Time Complexity of Substructure Learning

In the first phase of the substructure algorithm, the skeleton of the underlying dependency
structure is reconstructed using MMPC. The complexity of MMPC is O(|X|2|PCi |) accord-
ing to Tsamardinos, Brown & Aliferis (2006). Since a minimum amount of samples for
conditional independence tests is needed, the algorithm tests the independence not for all
possible subsets of PCi (algorithm 11, lines 4 and 12), but only for some of the possible
conditioning subsets. Then, each single call on MMPC has a computational complexity
of O(|X||PC|l+1) with l as the maximum size of all conditioning subsets. Thus, the overall
cost for reconstructing the whole skeleton is O(|X|2|PC|l+1), where |PC| is max

Xi∈X
| PCi |. If l

is restricted to a maximum (and fixed) number, MMPC performs polynomial in |X|, while
MMPC has worst-case complexityNP (we refer to (Tsamardinos, Brown & Aliferis 2006)
for more details). So far, the substructure algorithm does not differ from MMHC. However,
in the edge orientation phase substructure learning splits the structure search problem into
several small subproblems.

We now estimate the influence of this splitting on the number of possible network
structures. The learning problem with a given skeleton where each variable has at least
two neighbours is similar to the problem of having a minimum number of parents of 2.
Finding the best DAG in this setting is NP-hard in the number of variables (Chickering
et al. 1994, Friedman, Nachman & Pe’er 1999). Thus, learning one subnetwork is NP-
hard in |PC|2, since |PC|2 is an upper bound for the number of variables in one subnetwork.
This means, if |PC| is much smaller than the number of all variables, the substructure ap-
proach dramatically reduces the number of possible network structures. This affects the
performance of heuristic search strategies like hill climbing as well. For an estimation of
the impact, we define the cost of a search strategy, depending on the maximum number of
parents and children and the size of the domain, as f (|PC|, |X|). For one subnetwork, the
cost becomes f (|PC|, |PC|2). Thus, the overall cost for the second phase of substructure
learning is |X| f (|PC|, |PC|2). If we restrict |PC| to a fixed value, the second phase performs
even linearly in the number of variables. For small networks however, we expect substruc-
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ture learning to be significantly slower than MMHC. For instance, the edge orientation
phase for the network presented in figure 4.1 must be learned 7 times with the substructure
algorithm, but only once with MMHC.

5.2.3 Results

In this section, we empirically benchmark the substructure algorithm by a comparison to
MMHC. We use only MMHC for comparison as it has been shown in Tsamardinos, Brown
& Aliferis (2006) that MMHC outperforms many other structure learning algorithms in
terms of accuracy and time efficiency. The study of Tsamardinos, Brown & Aliferis (2006)
included the algorithms optimal reinsertion (OR) (Moore & Wong 2003), sparse candidate
(Friedman, Nachman & Pe’er 1999), greedy hill climbing (Heckerman et al. 1995), PC
(Spirtes et al. 2001), three phase dependency analysis (Cheng 2002) and greedy equivalent
search (Chickering 2002). For all of them they have shown that MMHC outperforms these
algorithms in terms of time efficiency and quality, on average (Tsamardinos, Brown &
Aliferis 2006). We do not compare substructure learning to other algorithms, for instance
to the other algorithms presented in section 3.3. We do this comparison in more detail
with our new method S-DAG which is based upon substructure learning. This method is
introduced in the next section.

For the benchmark, we sample training data from known benchmark networks and re-
quest both algorithms to reconstruct the original network structures. These reconstructed
networks are then compared to the original network to assess the quality of the learned
structures. As benchmark networks we have chosen the networks Alarm 10, Alarm 20,
Alarm 30, Insurance 10, Insurance 20 and Insurance 30 (or abbreviated: A. 10, ..., I. 30).
From each of the benchmark networks we sampled data sets of different sizes (100, 200,
500, 1000 and 5000 samples). More details about the networks can be found in appendix
A.2.

For the structure learning part of the substructure algorithm we use random hill climbing
as heuristic search method. This means we select randomly two variables, calculate the
scores for arc addition, arc removal and arc reversal and apply the local change with the
highest score until no action can improve the total score. As scoring function that solves
3.3, we use the BDeu score (Heckerman et al. 1995) with an equivalent sample size of
ten. For the MMHC algorithm we use the implementation of the original authors from the
Causal Explorer software package (Aliferis, Tsamardinos, Statnikov & Brown 2003). For
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the DAG search, they implemented greedy hill climbing and used the BDeu score with an
equivalent sample size of ten, as well. The approach presented here is focused on optimally
reconstructing the original structure. Thus, we assess the accuracy by using evaluation
measures that are based on structural features only. Other quality measures that take the
density distribution into account are not considered here. As first evaluation measure we
use the Structural Hamming Distance (SHD) (Tsamardinos, Brown & Aliferis 2006). For
feature graphs (fPDAGs), we extend the definition that was given in section 4.3.2 in such
a way that each operation counts not as one but as the confidence of the corresponding
feature. Additionally, we use the number of false positives (FP) and false negatives (FN)
to benchmark the algorithm. The false negatives and false positives are also counted by the
confidence of the corresponding feature. For runtime comparisons we use the real-time of
both algorithms in seconds on a computer with an Intel Pentium M processor, 2 GHz, and
two GB working memory.

We have theoretically shown that under some circumstances substructure learning has
a better computational complexity for the edge orientation phase than MMHC, but it is
not proven that substructure learning performs faster than MMHC in reasonable large do-
mains. Thus we compare the runtime of the MMHC algorithm with the substructure algo-
rithm for several network sizes. Since we base on the MMHC implementation of Aliferis,
Tsamardinos, Statnikov & Brown (2003) (in the Causal Explorer software package) for
the edge orientation phase, but use our own implementation for the substructure algorithm,
the difference between the runtime might be caused by different implementations of the
algorithms.

As a result, the runtimes presented in this section can not be used as a hard criterion for
comparing both algorithms. But they show quite reasonable the scalability of substructure
learning for large networks. With a better implementation of the MMHC algorithm, we
expect the border for the network size where the substructure algorithm performs faster
than MMHC to be markedly shifted towards larger network sizes, even in such a way that
there can not be seen any performance gain for network sizes used in this section.

Table 5.1 shows the runtime performance of substructure learning compared to MMHC
for different sample sizes (500, 1000 and 5000 samples) and networks. We provide the
absolute values in seconds (column ’Absolute’) as well as the normalized performance
(column ’Norm.’). This means that we divided each measure for substructure learning by
the corresponding measure for MMHC. Thus, a value smaller than 1 denotes that substruc-
ture learning performs better than MMHC. The ’Absolute’ numbers denote the original,
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Table 5.1: Runtime results for different networks and sample sizes

500 1000 5000

Norm. Absolute Norm. Absolute Norm. Absolute

Alarm 1.22 5.43 1.23 7.31 1.30 26.4
Alarm 10 0.64 162.8 0.73 228.3 0.85 862.1
Alarm 20 0.40 582.9 0.45 802.4 – –
Alarm 30 0.24 1265 0.33 1741 – –
Insurance 1.18 5.1 1.09 7.66 1.11 57.2
Insurance 10 0.78 129.3 0.88 199.6 0.98 1348
Insurance 20 0.54 398.5 0.65 598.0 – –
Insurance 30 0.39 815.7 0.45 1202 – –

Table 5.2: Structural Hamming Distance results for different networks and sample sizes

500 1000 5000

Norm. Absolute Norm. Absolute Norm. Absolute

Alarm 1.25 26.2 1.03 16.4 1.85 18.5
Alarm 10 1.01 382.4 0.99 314.5 1.10 253.9
Alarm 20 0.91 742.8 0.89 620.9 – –
Alarm 30 0.88 1066 0.85 867.0 – –
Insurance 1.00 42.1 0.90 36.1 0.92 34.1
Insurance 10 1.11 405.0 1.04 327.1 1.08 201.6
Insurance 20 1.03 757.0 1.01 592.3 – –
Insurance 30 1.02 1137 0.97 885.2 – –

Table 5.3: Average normalized performance results

Network Size Edges Runtime SHD FP FN

Alarm 37 46 1.32 1.37 0.98 1.31
Alarm 10 370 570 0.74 1.21 0.81 1.06
Alarm 20* 740 1101 0.43 0.90 0.32 1.09
Alarm 30* 1110 1580 0.29 0.86 0.31 1.08
Insurance 27 52 1.31 1.00 1.04 1.09
Insurance 10 270 556 1.27 1.15 1.40 1.04
Insurance 20* 540 1074 0.59 1.02 0.86 1.03
Insurance 30* 810 1619 0.42 0.99 0.87 1.01
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not normalized measures for substructure learning. For small networks the substructure
algorithm shows a performance that is worse than the performance of MMHC. E.g. the
substructure algorithm takes around 1.2 times the runtime of MMHC for the Alarm net-
work with 500 samples. As MMHC shows better runtime results for small networks, the re-
duced complexity of substructure learning shows its advantage for larger networks: For the
Insurance 30 benchmark case, substructure learning needs only about 40 % of MMHC’s
runtime, while for the largest Alarm network only about 30 % of the runtime is needed.
We also tried to learn larger networks, thus we created a tiled Alarm network with 1850
variables and 2853 edges. MMHC failed to learn the complete network within one day
(we interrupted the algorithm because of time issues), while substructure learning recon-
structed the whole network within 255 minutes with a hamming distance of 1378, 88 false
positives, 661 false negatives and 1564 correctly identified edges.

While the pure runtime might show a wrong picture, the normalized runtime clearly
shows that the substructure algorithm has a better scalability than MMHC in terms of
runtime.

A fact that is more reliable than the runtime is the performance in terms of the quality
of the reconstructed network. In table 5.2, the Structural Hamming Distance between the
original network and the reconstructed network is presented. As for the runtime, we show
the absolute values as well as the normalized values. A normalized value smaller than
1 means that substructure learning has a better network reconstruction quality (less false
edges and/or less missing edges) than MMHC. For small networks, MMHC has better
results than substructure learning. The relatively small Alarm network is reconstructed
poorly for 5000 samples with a normalized hamming distance of 1.85 by substructure
learning. For all other cases, however, the Structural Hamming Distances are comparable
for both approaches, in some cases substructure learning even outperforms MMHC. An
important fact is that the relative performance of the substructure algorithm increases with
the network size. This is apparent when one compares the average performance over all
sample sizes for one network size.

Thus, we report in table 5.3 the network-wise averaged values over all sample sizes (100,
200, 500, 1000 and 5000 samples). Some of the networks (denoted by an asterisk in the
table) are only learned with 500 and 1000 samples due to the large amount of time needed
for one network reconstruction. As we can see, the substructure algorithm generally shows
a good performance in terms of runtime and network quality compared to MMHC, espe-
cially for large networks. As larger the network is, as better the quality of the reconstructed
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network. For the large Alarm networks, substructure learning clearly outperforms MMHC.
Besides SHD, we also show the normalized number of false positives (FP) and false neg-
ative edges (FN). While there are slightly more false negatives (see table 5.3), the number
of false positives are even less in most substructure networks. This indicates that the way
of shrinking the subnetworks to the Markov blanket of the central variable favors a higher
number of false negatives than leading to false positive edges.

To draw a conclusion, the substructure algorithm has a higher runtime and produces
networks with less quality if the networks are small. However, we have exemplary shown
with two different types of benchmark data (Alarm and Insurance) that substructure learn-
ing outperforms MMHC in terms of runtime performance and quality if applied on larger
networks with around 500 variables.

5.2.4 Discussion

Many other approaches for efficient network learning optimize the search procedure to find
a good DAG by utilizing the sparseness of the structure. An algorithm that deals with do-
mains up to hundreds of thousands of variables was introduced by Goldenberg & Moore
(2004). However, it restricts BNs on binary variables paired with very sparsely linked
graphs. Another approach that is closely related to MMHC was introduced in Brown,
Tsamardinos & Aliferis (2005). While, in the worst case, the skeleton reconstruction
phase using MMPC can have an exponential cost, they developed an polynomial algorithm
(called PMMS) for learning the skeleton. While we did not use PMMS for the substructure
algorithm, we included this algorithm for the S-DAG algorithm presented in section 5.3.

Since substructure learning detects the Markov blanket for each variable and thus ren-
ders this variable independent from all other variables given the Markov blanket, it can
also be seen as a feature selection algorithm. In Tsamardinos et al. (2003) a variation of
MMPC is developed that estimates the Markov blanket using conditional independence
tests. A comparison of different other approaches can be found in Aliferis, Tsamardinos
& Statnikov (2003). However, these methods return only the set of variables that belong
to the Markov blanket, without discovering the probability distribution and its underlying
network structure.

Another approach that is somehow related to our work is the framework of dependency
networks (Heckerman, Chickering, Meek, Rounthwaite & Kadie 2001). There, the joint
probability distribution is defined by a set of conditional probabilities. Unlike BNs where
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the conditional probability of a variable is defined given its parents, the conditional prob-
ability for each variable is determined by the complete Markov blanket. Subnetworks, re-
sulting from substructure learning, can be easily transformed into a dependency network:
The conditional probability of variable Xi is given by the joint distribution of subnetwork
Bi, conditioned on the Markov blanket of Xi. For inference in a dependency network,
the original authors have introduced a Gibbs sampling method. Since subnetworks can
be transformed into dependency networks, this inference method can also be applied to
subnetworks.

5.3 Substructure DAG Learning

We have shown in the previous section that substructure learning is a scalable method
to learn high-dimensional network structures with high quality, for some networks even
better than MMHC which on its part outperforms most others BN learning algorithms
(Tsamardinos, Brown & Aliferis 2006). However, there is a main drawback of substructure
learning: The result of the method is a set of independent Bayesian networks and the
structural result can only be presented using the fPDAG framework. Learning a single DAG
would be preferential because many useful tools, such as exact inference, require standard
Bayesian networks. The problem of merging the subnetworks to a single Bayesian network
was avoided in the last section. In this section however, we present a new algorithm,
called S-DAG (Substructure-DAG), as an extension to the substructure algorithm (Nägele
et al. 2008). While substructure learning produces a set of independent BNs, S-DAG uses
these BNs, combines them to a large graph and removes edges until the structure is a
directed acyclic graph (DAG). The acyclicity of the network structure is important since
the structure of a Bayesian network must be always a DAG. S-DAG scales polynomially
(under the assumption that the maximum number of parents and children are fixed), thus
being able to learn networks with tens of thousands of variables.

5.3.1 Algorithm

The substructure algorithm introduced in section 5.2 performs Bayesian network learning
in two steps: first, an undirected network skeleton is estimated with MMPC (max-min
parents and children) that employs constraint-based techniques. Afterwards, a score-based
greedy search is performed to orient the edges. The first step with the MMPC algorithm
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Algorithm 8: S-DAG
Input: data set D, set of variables X
Output: DAG G

// skeleton reconstruction

create skeleton S;1

// learn substructures

B := SUBSTRUCTURE LOC(D,X,S) ;2

G := graph with nodes X and all edges in B ;3

// remove cycles

G := REMOVE CYCLES(G,D) ;4

G := LEARN BN SKELETON GREEDY(X,D,S,G) ;5

return G6

has a worst-case complexity of NP (Tsamardinos, Brown & Aliferis 2006), which is a
serious drawback in very large domains. To overcome this issue, besides MMPC we use
a slightly different version of the MMPC algorithm, called PMMS (Polynomial Max-Min
Skeleton), which has a polynomial complexity (Brown et al. 2005). This improvement
in performance is achieved by replacing the exhaustive search of the minimal conditional
dependency of two variables by a greedy search (see Brown et al. (2005) for more de-
tails). However, PMMS does not guarantee to return no false positives, since some true
conditional independencies may not be detected by the greedy search.

Our S-DAG algorithm which performs the BN structure (DAG) search in three phases is
outlined in algorithm 8. The first two phases are similar to substructure learning (see algo-
rithm 6): First, the undirected skeleton is reconstructed (line 1). Based on the skeleton, we
learn the directed structure around each variable with SUBSTRUCTURE LOC (algorithm
7) in the second phase (line 2) and merge all networks together (line 3). Finally, in the third
phase, all cycles that might have been introduced in the second phase are removed (line 4),
followed by a greedy optimization at the end (line 5).

In the following, the single steps of S-DAG are explained in more detail:

Skeleton reconstruction (line 1): We have two variants of the S-DAG algorithm: S-DAG
PMMS uses the polynomial variant PMMS for the skeleton reconstruction, while S-DAG
MMPC uses MMPC and is therefore directly comparable to MMHC since both base on
the same skeleton reconstruction method. We refer to S-DAG if the general algorithm is
meant and use the terms S-DAG PMMS and S-DAG MMPC if the algorithm including a
specific skeleton reconstruction method is meant.

86



5.3 Substructure DAG Learning

Algorithm 9: LEARN BN SKELETON GREEDY
Input: set of variables X, data set D, set of possible edges (Skeleton) S, initial

structure G
Output: DAG G

if G not given then1

// initialize with empty graph

G = (X, ∅);2

end3

Gtmp = copy of G;4

T L : tabu list (FIFO) with last 100 structures;5

repeat6

// actions can be add-edge, remove-edge, revert-edge; only

try add-edge if edge exists in S; action may not cause

cycles

choose best action for Gtmp with resulting graph not in T L;7

apply best action to Gtmp;8

add Gtmp to T L;9

∆S : score Gtmp - score G;10

if (∆S > 0) then11

G = copy of Gtmp;12

end13

until G has not changed last 5 times ;14

return G15

SUBSTRUCTURE LOC (line 2): Based on the skeleton, a Bayesian network is learned
around each variable with the SUBSTRUCTURE LOC algorithm that was introduced in
section 5.2 (algorithm 7). This algorithm returns a set B of Bayesian networks, one for
each of the variables in X. Instead of using the original SUBSTRUCTURE LOC algo-
rithm, we replace the structure search algorithm LEARN BN (line 4, algorithm 7) with
the method LEARN BN SKELETON GREEDY (algorithm 9). This method implements
a greedy search and is almost identical to the standard Greedy Search (algorithm 1) de-
scribed in section 3.3.1. The difference is that SUBSTRUCTURE LOC accepts an initial
structure G for the Bayesian network structure. If G is given, this algorithm uses G as
start structure and performs the actions based upon this initial structure. The parameter
G is not given if LEARN BN SKELETON GREEDY is called from S-DAG. In this case
LEARN BN SKELETON GREEDY is identical to algorithm 1 (except one small detail:
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Algorithm 10: REMOVE CYCLES
Input: graph G, data set D
Output: DAG G

E := edges in G ;1

// remove length two cycles

foreach edge Ei j ∈ E do2

if E ji ∈ E then3

G := Remove edge (Ei j or E ji) with lower score from G;4

end5

end6

// remove cycle edges

while cycles exist in G do7

Ei j := detect edge in cycles with smallest score ;8

remove edge Ei j ;9

end10

return G11

The search for better structure is stopped after 5 times instead of 20 times if no structure
with improved score is found).

Subnetwork merging (line 3): After the calculation of all Bayesian subnetworks B, all
learned edges are added to the network structure G that contains all variables X. If an edge
already exists in the target structure G, the edge is not added. However, the causing of a
cycle in G is no reason to refuse the adding of the edge. Of course, only the directed edges
contained in the subnetworks B are added. In particular no undirected edge that might
appear the the PDAG representation of the BNs is used to build the structure G.

REMOVE CYCLES (line 4): Since every subnetwork is learned independently from each
other, there might exist cycles in the complete network structure G. This can happen, for
instance, if one subnetwork contains an edge from Xi to X j, and in another subnetwork this
edge has exactly the opposite direction, resulting in a cycle in G containing both variables
Xi and X j. Since the structure of a BN is a directed acyclic graph that must not contain
any cycle, we have to transform the potentially cyclic graph into an acyclic graph structure
forming the structure of a single Bayesian network. Generally, there are many ways how
such a structure can be created. Here, we restrict the DAG structure in such a way that
only edges which are in the cyclic graph G can be considered. Other edges that do not exist
in any of the substructures are not considered. Despite this constraint, finding the highest-
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scoring BN is anNP-hard problem (Hulten, Chickering & Heckerman 2003) which makes
heuristic search strategies appropriate. There are two obvious search strategies: Starting
from an empty graph, repeatedly add edges from graph G until no cycle occurs, or to start
from the network G and remove edges until there are no cycles. The first approach is very
similar to a normal greedy hill climbing structure learning approach. This means that all
edges that are in the final BN must be added, and for all edges, an acyclicity check must be
performed. Since we assume that most edges remain in the final BN, and only a few edges
cause cycles, we choose the latter approach and employ a greedy search strategy to remove
low-scoring edges in G until there are no cycles. Removing only a few edges leads to
the qualified assumption that this approach is more efficient than constructing a complete
network from an empty graph. Based on benchmark networks, we will show later on that
the number of edges that must be removed to get an acyclic network is much smaller than
the number of total edges. This observation justifies our approach to start with the full
network and remove edges until there are no cycles left.

The cost of removing an edge is calculated in the following way: Let be S (G, Xi → X j)
the score of the network with edge Xi → X j and S (G, Xi 9 X j) the score without this
edge. Then, the cost is defined as S (G, Xi → X j) − S (G, Xi 9 X j). Since we use the
decomposable BDeu score, the cost calculation can be reduced by determining solely the
local score fBDeu(X j | Pa j) (equation 3.6) of variable X j with and without the edge. The use
of the BDeu score to calculate the cost of removing an edge arises a question: Is it possible
to use the BDeu score even if there are cycles in the network? The whole deduction of
the BDeu score is based upon the fact that the graph is acyclic. However, we can justify
the usage of the BDeu score by the following argument: At the point in time when we
remove an edge, we are not interested in the global score of the complete network, indeed
we are only interested in the cost of removing a single edge. To calculate this cost, only
the variable X j and its parents are needed. This local structure has no cycles. Thus, for
this local structure the score calculation is sound, and since this local score calculation is
sufficient to determine the cost, it is possible to calculate the cost of removing an edge in
this way.

Algorithm 10 outlines the general procedure of removing the cycles. Instead of applying
a simple greedy algorithm that iteratively removes the edge with the lowest cost, we restrict
the search on edges that are members of cycles. The simplest cycles are those with a length
of two, i.e. cycles that are caused by duplicate edges between two variables Xi and X j.
This means that Xi is a parent of X j and X j a parent of Xi, and the variables Xi and X j
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are connected by the two edges Xi → X j and Xi ← X j. A length-two cycle can be easily
broken by removing either edge Xi → X j or Xi ← X j, in fact we remove the edge with
lower cost. Before we remove any other edges in the graph G, we break all length-two
cycles to avoid the removal of edges that have a lower cost and are a member of a cycle,
but do not cause cycles. After removing all length-two cycles, we perform a standard
greedy search and iteratively remove the edge with lowest cost until the graph is acyclic.
Thereby, only edges that are members of cycles are considered for the removal. These
edges can be determined by finding strongly connected components (SCC) in the graph
structure G. Using the algorithm of Tarjan, this operation can be done in O(n + e) (linear
time) with n as the number of variables and e the number of edges (Tarjan 1972). As
a result, REMOVE CYCLES returns the acyclic counterpart of the initially cyclic input
graph G.

LEARN BN SKELETON GREEDY (line 5): During the process of DAG structure learn-
ing with substructures, it can happen that some edges are included in the substructures, but
reduce the score of the complete network structure. Others might be added in the wrong
direction, i.e an edge in the opposite direction would improve the score in a stronger way.
Some edges that would improve the score might be removed during REMOVE CYCLES
because of the greedy search strategy, however they would not cause any cycle in the
network structure. Thus, at the end of algorithm S-DAG, we perform a greedy search
with LEARN BN SKELETON GREEDY to improve the structure G returned from RE-
MOVE CYCLES.

5.3.2 Results

To benchmark our method, we investigate its performance on artificial data with real
world characteristics focusing on the well-known Alarm (Beinlich, Suermondt, Chavez &
Cooper 1989) and Insurance (Binder et al. 1997) networks. In addition to the results pre-
sented before, we also applied the algorithm on the HailFinder (Jensen & Jensen 1996)
network. As before, we used the tiling-method (Tsamardinos, Statnikov, Brown &
Aliferis 2006) to enlarge the networks in size. We used the Alarm, Alarm 10, Alarm 20,
Alarm 30, Alarm 50, Alarm 270, Insurance, Insurance 10, Insurance 20, Insurance 30,
Insurance 200, HailFinder and HailFinder 10 as benchmark networks and applied the al-
gorithms on data sets with size 200, 500, 1000, and 5000. We sampled five different data
sets for each data set size and averaged the result over the five different data sets. In total,
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we applied the algorithms to 260 different data sets. For more information about the bench-
mark networks we refer to chapter A.2. For a short-hand notation, we sometimes refer to
the benchmark networks with the following abbreviations: A., A. 10, A. 20, A. 30, A. 50,
A. 270, I., I. 10, I. 20, I. 30, I. 200, H. and H. 10.

For the BDeu score calculation, we used an equivalent sample size of 10 for all networks.
The number of iterations to find a better graph was set to 20 for the MMHC comparison
algorithm (see line 13 of algorithm 1), while we used 5 for the S-DAG algorithm (line 14
of algorithm 9). The MMPC and PMMS algorithms were used with the same parameters
as described by the original authors. We used the same settings for the MMHC algorithm
as in Tsamardinos, Brown & Aliferis (2006), thus the results of the authors of MMHC
are directly comparable to our results presented in this chapter. To allow a proper perfor-
mance comparison of all algorithms, we reimplemented the MMHC, MMPC and PMMS
algorithms. Thus we can directly compare the algorithms and can neglect differences that
might be caused by different implementations and runtime environments.

In order to measure the quality of the learned network structures and the complexity
to learn the structures, the values of several metrics are reported. Apparently, the BDeu
score is one of the most important metrics to rate the structure learning algorithm, since
this score is optimized during the structure learning process. An algorithm that leads to
a better score optimizes the score in a better way. Besides the BDeu score, the Structural
Hamming Distance (SHD) and the number of statistical calls (NSC) are used. SHD is
a measure that counts the structural differences between two network structures and was
already introduced in chapter 4.3.2.

An important measure is also the runtime performance of an algorithm. However, the
pure runtime of an algorithm depends on the actual implementation, the programming lan-
guage and the execution environment an is thus a measure that can heavily depend on
factors that are not based on the algorithm itself. To avoid such influences on the measure,
we use the number of statistical calls (NSC) as a substitute for the runtime performance.
Under the reasonable assumption that the learning algorithm spends most time in calculat-
ing statistical values from data, the number of these statistical calculations can be used as
an indicator for the runtime performance (Tsamardinos, Brown & Aliferis 2006). In our
case, each call of dep(...) or ind(...) in MMPC or PMMS (see algorithm 11 in the appendix)
and each call of the BDeu score calculation is counted as one statistical call. In our imple-
mentation of the algorithms we use a BDeu score cache and calculate the BDeu score for
each parameter setting only once. If a requested BDeu score is found in the cache, we do
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not count this call for the measure NSC.

In the next section, we compare S-DAG directly to MMHC since MMHC outperforms
many other BN network learning algorithms. Later, we also compare our method to algo-
rithms that are not included in the MMHC comparison study.

5.3.2.1 Comparison to MMHC

Based on several measures, we empirically benchmark both S-DAG algorithms by a com-
parison to MMHC. As stated before, it has been shown that MMHC has a good perfor-
mance in terms of efficiency and network quality and outperforms greedy hill climbing,
optimal reinsertion, sparse candidate, PC, three phase dependency analysis and greedy
equivalent search (Tsamardinos, Brown & Aliferis 2006). Thus, an algorithm that outper-
forms MMHC shows also better results than these algorithms. For a better comparison, we
have normalized the values of all measures to the results of MMHC. Thus, a value smaller
than 1 denotes a better result than MMHC, while a value greater than 1 implies a result that
is worse than MMHC.

At first, we show the results regarding SHD (Structural Hamming Distance), BDeu
score, NSC (number of statistical calls) and runtime for each benchmark network and
sample size separately. The values presented in the following tables are averaged over the
five different data sets with the same size. We also show the average over all sample sizes
per method and network in the column Avg.

Table 5.5 contains the normalized “BDeu score” results. This score directly shows the
optimization capability of the score-based BN reconstruction algorithms since the algo-
rithms try to optimize this score. As lower the value for the normalized score, as better the
optimization by the algorithm. If we compare the MMHC algorithm with its S-DAG coun-
terpart S-DAG MMPC that uses the same skeleton reconstruction method as MMHC, it can
be clearly seen that our S-DAG MMPC algorithm never performs worse than the MMHC
algorithm (all normalized values are 1 or below 1). Indeed, our algorithm outperforms
MMHC in almost every setting of our benchmark. The approach to use substructures and
afterwards combining them to a complete DAG leads to better optimization results than a
pure Greedy-Hill-Climbing approach enriched with a TABU list as used by MMHC. Our
second variant of the substructure DAG algorithm called S-DAG PMMS shows a compara-
ble optimization result as S-DAG MMPC, however in rare cases (Alarm network with 5000
samples, table 5.5) it has a worse performance in terms of BDeu score than MMHC. Ob-
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Table 5.4: Normalized “SHD” results

Sample size

Network Method 200 500 1000 5000 Avg

Alarm S-DAG PMMS 0.962 1.001 0.960 1.118 1.010
Alarm S-DAG MMPC 0.949 1.001 0.921 1.000 0.968

Alarm 10 S-DAG PMMS 0.935 0.896 0.831 0.782 0.861
Alarm 10 S-DAG MMPC 0.926 0.883 0.831 0.782 0.856

Alarm 20 S-DAG PMMS 0.961 0.898 0.837 0.772 0.867
Alarm 20 S-DAG MMPC 0.953 0.891 0.836 0.778 0.865

Alarm 30 S-DAG PMMS 0.957 0.900 0.813 0.741 0.853
Alarm 30 S-DAG MMPC 0.947 0.895 0.817 0.744 0.851

Alarm 50 S-DAG PMMS 0.961 0.912 0.852 0.791 0.879
Alarm 50 S-DAG MMPC 0.956 0.904 0.852 0.793 0.876

Alarm 270 S-DAG PMMS 0.993 0.927 0.843 0.789 0.888
Alarm 270 S-DAG MMPC 0.981 0.915 0.845 0.790 0.883

Insurance S-DAG PMMS 1.000 0.996 1.002 0.879 0.969
Insurance S-DAG MMPC 1.000 0.972 0.993 0.917 0.971

Insurance 10 S-DAG PMMS 0.964 0.921 0.905 0.804 0.898
Insurance 10 S-DAG MMPC 0.964 0.890 0.907 0.786 0.887

Insurance 20 S-DAG PMMS 0.975 0.919 0.842 0.734 0.867
Insurance 20 S-DAG MMPC 0.974 0.890 0.851 0.720 0.859

Insurance 30 S-DAG PMMS 0.974 0.930 0.868 0.741 0.878
Insurance 30 S-DAG MMPC 0.973 0.894 0.854 0.720 0.860

Insurance 200 S-DAG PMMS 0.995 0.930 0.879 0.759 0.890
Insurance 200 S-DAG MMPC 0.992 0.900 0.870 0.730 0.873

HailFinder S-DAG PMMS 1.005 0.986 1.036 1.003 1.007
HailFinder S-DAG MMPC 1.005 1.000 0.988 0.954 0.987

HailFinder 10 S-DAG PMMS 0.998 0.989 0.985 0.966 0.985
HailFinder 10 S-DAG MMPC 0.998 0.989 0.973 0.965 0.981
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Table 5.5: Normalized “BDeu score” results

Sample size

Network Method 200 500 1000 5000 Avg

Alarm S-DAG PMMS 0.997 1.000 0.997 1.001 0.999
Alarm S-DAG MMPC 0.999 1.000 0.997 1.000 0.999

Alarm 10 S-DAG PMMS 0.995 0.994 0.992 0.993 0.994
Alarm 10 S-DAG MMPC 0.996 0.994 0.992 0.993 0.994

Alarm 20 S-DAG PMMS 0.996 0.994 0.992 0.991 0.993
Alarm 20 S-DAG MMPC 0.996 0.994 0.992 0.992 0.994

Alarm 30 S-DAG PMMS 0.995 0.995 0.991 0.990 0.993
Alarm 30 S-DAG MMPC 0.996 0.995 0.992 0.990 0.993

Alarm 50 S-DAG PMMS 0.996 0.994 0.992 0.990 0.993
Alarm 50 S-DAG MMPC 0.996 0.994 0.992 0.990 0.993

Alarm 270 S-DAG PMMS 0.996 0.994 0.991 0.989 0.992
Alarm 270 S-DAG MMPC 0.997 0.995 0.991 0.989 0.993

Insurance S-DAG PMMS 1.000 0.997 1.000 0.997 0.999
Insurance S-DAG MMPC 1.000 0.996 1.000 0.997 0.998

Insurance 10 S-DAG PMMS 0.994 0.983 0.985 0.980 0.985
Insurance 10 S-DAG MMPC 0.996 0.984 0.986 0.980 0.987

Insurance 20 S-DAG PMMS 0.995 0.984 0.981 0.972 0.983
Insurance 20 S-DAG MMPC 0.996 0.985 0.984 0.972 0.984

Insurance 30 S-DAG PMMS 0.995 0.986 0.982 0.978 0.985
Insurance 30 S-DAG MMPC 0.997 0.987 0.984 0.977 0.986

Insurance 200 S-DAG PMMS 0.997 0.986 0.982 0.978 0.986
Insurance 200 S-DAG MMPC 0.999 0.988 0.984 0.977 0.987

HailFinder S-DAG PMMS 1.000 1.000 0.999 0.999 1.000
HailFinder S-DAG MMPC 1.000 1.000 1.000 0.999 1.000

HailFinder 10 S-DAG PMMS 1.000 0.999 0.999 0.998 0.999
HailFinder 10 S-DAG MMPC 1.000 0.999 0.999 0.999 0.999
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Table 5.6: Normalized “NSC” results

Sample size

Network Method 200 500 1000 5000 Avg

Alarm S-DAG PMMS 0.970 0.990 1.061 0.945 0.992
Alarm S-DAG MMPC 1.050 1.054 1.048 1.044 1.049

Alarm 10 S-DAG PMMS 1.000 0.993 0.989 0.981 0.991
Alarm 10 S-DAG MMPC 1.018 1.014 1.014 1.016 1.016

Alarm 20 S-DAG PMMS 0.999 0.995 0.992 0.990 0.994
Alarm 20 S-DAG MMPC 1.010 1.008 1.008 1.009 1.009

Alarm 30 S-DAG PMMS 0.999 0.994 0.993 0.992 0.995
Alarm 30 S-DAG MMPC 1.008 1.006 1.005 1.006 1.006

Alarm 50 S-DAG PMMS 0.999 0.994 0.993 0.994 0.995
Alarm 50 S-DAG MMPC 1.005 1.003 1.003 1.004 1.004

Alarm 270 S-DAG PMMS 0.995 0.993 0.993 0.995 0.994
Alarm 270 S-DAG MMPC 1.003 1.001 1.001 1.001 1.001

Insurance S-DAG PMMS 0.970 0.950 0.865 0.724 0.877
Insurance S-DAG MMPC 1.063 1.063 1.041 1.032 1.050

Insurance 10 S-DAG PMMS 1.003 0.991 0.956 0.799 0.937
Insurance 10 S-DAG MMPC 1.040 1.031 1.029 1.027 1.032

Insurance 20 S-DAG PMMS 1.002 0.996 0.976 0.863 0.959
Insurance 20 S-DAG MMPC 1.029 1.019 1.019 1.021 1.022

Insurance 30 S-DAG PMMS 1.008 0.994 0.979 0.886 0.967
Insurance 30 S-DAG MMPC 1.031 1.013 1.014 1.016 1.019

Insurance 200 S-DAG PMMS 1.010 0.996 0.993 0.975 0.994
Insurance 200 S-DAG MMPC 1.024 1.002 1.002 1.003 1.008

HailFinder S-DAG PMMS 0.951 0.941 0.833 0.325 0.762
HailFinder S-DAG MMPC 1.054 1.010 1.014 1.009 1.022

HailFinder 10 S-DAG PMMS 1.000 0.994 0.970 0.790 0.938
HailFinder 10 S-DAG MMPC 1.052 1.015 1.008 1.010 1.021
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Table 5.7: Average normalized “SHD” results
Sample size

Method 200 500 1000 5000 Avg

S-DAG PMMS 0.975 ± 0.019 0.939 ± 0.021 0.896 ± 0.026 0.837 ± 0.032 0.912
S-DAG MMPC 0.971 ± 0.020 0.925 ± 0.019 0.887 ± 0.028 0.822 ± 0.030 0.901

Empty 1.254 ± 0.038 1.591 ± 0.046 2.137 ± 0.117 2.927 ± 0.191 1.977

Table 5.8: Average normalized “BDeu Score” results
Sample size

Method 200 500 1000 5000 Avg

S-DAG PMMS 0.997 ± 0.001 0.993 ± 0.001 0.991 ± 0.001 0.989 ± 0.002 0.992
S-DAG MMPC 0.998 ± 0.001 0.993 ± 0.001 0.992 ± 0.001 0.989 ± 0.001 0.993

True 1.013 ± 0.003 0.995 ± 0.003 0.987 ± 0.003 0.978 ± 0.003 0.993
Empty 1.326 ± 0.007 1.444 ± 0.006 1.508 ± 0.007 1.583 ± 0.007 1.465

Table 5.9: Average normalized “NSC” results
Sample size

Method 200 500 1000 5000 Avg

S-DAG PMMS 0.993 ± 0.004 0.986 ± 0.004 0.969 ± 0.006 0.866 ± 0.006 0.953
S-DAG MMPC 1.030 ± 0.004 1.019 ± 0.003 1.016 ± 0.003 1.015 ± 0.003 1.020
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5.3 Substructure DAG Learning

viously, this is due to the poorer quality of the reconstructed skeleton when using PMMS
instead of MMPC. But on average, S-DAG MMPC has almost the same BDeu score result
with a normalized value of 0.992 as S-DAG PMMS with 0.993. This can be seen in table
5.8. In this table, the results are averaged over all networks. Additionally, we present the
mean standard deviation over the different data sets per data set size. The low values for
the standard deviation (between 0.001 and 0.002) indicate that the scores are significantly
smaller for networks reconstructed with S-DAG. This means that S-DAG performs a bet-
ter network optimization than MMHC. For a better comparison of the score values, the
normalized BDeu score for an empty network and the true network are also shown.

While the S-DAG algorithm clearly outperforms the MMHC algorithm in terms of score
optimization, the main goal is to retrieve high-quality network reconstructions. The net-
work with the best score is not automatically the network with the best quality. This can
be seen by the fact that the averaged BDeu score for the true network is (with a value
of 1.013) greater than for the learned networks with 200 samples (see table 5.8). This
means that S-DAG finds networks that have better scores than the true network structures.
Thus we compare the algorithms also based on the Structural Hamming Distance (SHD)
results presented in the tables 5.4 and 5.7. While for smaller networks the S-DAG PMMS
method does six times (out of totally 52 different settings) not reach the result of MMHC
(e.g. average for Alarm network: S-DAG PMMS has a normalized SHD of 1.010), S-DAG
MMPC usually outperforms MMHC. Only for two of the 52 settings, the SHD value for
S-DAG is worse than for MMHC. For the rest, S-DAG MMPC is equal to MMHC or better.
For some of the benchmarks, the normalized SHD is even below 0.75 (e.g. Insurance 20,
5000 samples). On average, both S-DAG methods outperform MMHC with around 90%
to 91% of structural difference to the true network compared to MMHC. This means that
there are almost 10% less structural differences in networks learned by S-DAG compared
to MMHC.

In tables 5.6 and 5.9, the normalized results for “NSC” are reported. While the S-DAG
PMMS method has a better performance than MMHC with an average value of 0.949,
the performance of the S-DAG MMPC algorithm is worse than MMHC with an average
value of 1.021. Both values show, however, that the performance of all three algorithms is
comparable.

97



5 Large-Scale Network Learning

5.3.2.2 Analysis of S-DAG

In this section we analyse the properties of our new algorithm S-DAG in more detail and
have a closer look at the single steps of this algorithm. One of the crucial steps for the
performance of S-DAG is the splitting process: Big subnetworks directly lead to a non-
performant run of the S-DAG algorithm. Thus, each subnetwork must be as small as possi-
ble to obtain a good performance result. The size of one subnetwork is directly dependent
on the number of parents and children in the skeleton. As a result, the crucial step here is
to get a skeleton that contains as less false positives as possible.

Based on different sizes of the tiled Alarm networks with various sample sizes, we show
the properties of the skeletons produced by PMMS as well as MMPC. In addition to the
comparison study in the previous section, we present also the result for smaller data sets
with a size of 50 and 100 samples. Table 5.10 shows the maximum number of parents
and children in the networks, separately for several sample sizes. Two observations are
apparent: First, the maximum number increases with the size of the networks: For 50
samples, the Alarm network has a maximum number of parents and children of 11.6, while
the 50 times greater Alarm 50 network has 116.4. Second, the number decreases with
growing number of samples: For 50 samples, the Alarm 50 network has a number of 116.4
that decreases to 6.6 for 5000 samples. The same observations hold for the mean number
of parents and children (see table 5.11). While for 50 and 100 samples, the number gets too
large to learn efficiently with substructures, with 200 or more samples the average number
is always smaller than 4. For 500 samples or more it is even smaller than 3. This coincides
with the averaged number of different statistical calls for S-DAG MMPC in table 5.9. The
normalized number shrinks from 1.030 for 200 samples to 1.015 for 5000 samples. This
gain of less statistical calls seems to be small, but later we show that far more than 95% of
the statistical calls are needed for the skeleton reconstruction and not for the BN learning.
Thus, the reduction of about 1.5% of statistical calls is a big performance improvement for
the BN learning procedure.

We also investigate the single steps of the S-DAG algorithm in more detail. For this, table
5.12 shows the characteristics of a single S-DAG PMMS call for the Alarm 50 network.
For each of the steps of algorithm 8 (PMMS (line 1), Substructure (line 2), Remove Cycles
(line 4) and Greedy (line 5)), we show the number of statistical calls (NSC) with BDeu
score cache, the NSC without caching, and the runtime in milliseconds. In the rows labelled
with “Total”, either the absolute number of statistical calls or the runtime in milliseconds
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Table 5.10: Skeleton: Maximum number of parents and children

Sample size

Network Method 50 100 200 500 1000 5000 Avg

Alarm PMMS 11.6 12.8 9.4 7.2 6.6 5.2 8.8
Alarm MMPC 11.6 12.8 9.4 7.2 5.0 5.0 8.5

Alarm 10 PMMS 35.0 26.6 10.6 7.0 6.0 6.0 15.2
Alarm 10 MMPC 35.0 26.6 10.6 7.0 6.0 6.0 15.2

Alarm 20 PMMS 60.2 44.4 11.2 7.0 6.0 6.0 22.5
Alarm 20 MMPC 60.2 44.4 11.4 6.8 5.6 6.0 22.4

Alarm 30 PMMS 75.2 53.8 15.6 7.0 5.6 6.4 27.3
Alarm 30 MMPC 75.2 53.8 15.6 7.0 5.4 6.4 27.2

Alarm 50 PMMS 116.4 89.0 19.8 7.4 6.0 6.6 40.9
Alarm 50 MMPC 116.4 89.0 19.8 7.4 6.0 6.6 40.9

Table 5.11: Skeleton: Mean number of parents and children

Sample size

Network Method 50 100 200 500 1000 5000 Avg

Alarm PMMS 3.5 5.0 3.3 2.5 2.4 2.3 3.1
Alarm MMPC 3.5 5.0 3.2 2.4 2.2 2.3 3.1

Alarm 10 PMMS 12.5 8.2 3.1 2.5 2.4 2.6 5.2
Alarm 10 MMPC 12.5 8.2 3.1 2.5 2.4 2.6 5.2

Alarm 20 PMMS 21.5 12.1 3.2 2.5 2.4 2.5 7.4
Alarm 20 MMPC 21.5 12.1 3.2 2.5 2.4 2.5 7.4

Alarm 30 PMMS 30.4 15.6 3.5 2.6 2.4 2.5 9.5
Alarm 30 MMPC 30.4 15.6 3.4 2.6 2.4 2.5 9.5

Alarm 50 PMMS 47.9 23.0 3.8 2.6 2.5 2.6 13.7
Alarm 50 MMPC 47.9 23.0 3.7 2.6 2.5 2.6 13.7
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Table 5.12: Characteristics of S-DAG PMMS for Alarm 50 network

Sample size

200 500 1000 5000 Avg

NSC with BDeu score cache

Total 1909436 1912872 1919588 1936746 1919661
PMMS* 0.986 0.991 0.991 0.990 0.989
Substructure* 0.013 0.009 0.008 0.010 0.010
Remove Cycles* 0.000 0.000 0.000 0.000 0.000
Greedy* 0.001 0.000 0.000 0.000 0.000

NSC without cache

Total 2339790 2163860 2145831 2189520 2209750
PMMS* 0.805 0.876 0.887 0.876 0.861
Substructure* 0.185 0.115 0.104 0.115 0.130
Remove Cycles* 0.002 0.002 0.002 0.002 0.002
Greedy* 0.007 0.006 0.006 0.006 0.006

Runtime in ms

Total 28770 42945 68640 286892 106812
PMMS* 0.894 0.951 0.968 0.983 0.949
Substructure* 0.094 0.042 0.027 0.014 0.044
Remove Cycles* 0.001 0.001 0.001 0.000 0.001
Greedy* 0.011 0.006 0.004 0.003 0.006

Tarjan statistics

Length 2 Cycles 299.6 275.8 321.2 348.2 311.2
Removed Edges 20.4 18.6 18.4 22.4 20.0

*: Values denote the fraction of the contribution to the values shown in the
“Total” rows
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is shown. The values for the single steps show the fraction of statistical calls or runtime
needed by the step.

If the BDeu score cache is activated, around 99% of the score calculations are performed
by the PMMS skeleton reconstruction method. Only around 1% are needed for the sub-
structure algorithm, while “Remove Cycles” and “Greedy” can be neglected. To show the
real number of statistical calls, we also present the numbers without BDeu score cache.
Thus, consecutive calls to calculate the BDeu score for the same set of parameters are con-
sidered, as well. Without BDeu score cache, the substructure part needs about 13% of the
statistical calls, on average. “Remove Cycles” and “Greedy” together do not even reach
1%. The majority of all statistical calls is performed by PMMS with a fraction of 86%.
The runtime acts very similar: around 95% of the runtime is needed for PMMS, but only
4% for substructure.

We have shown that the step to remove the cycles is very performant and has only a
marginal influence on the total runtime of the algorithm. To see the cause we have a closer
look at this step and show the number of cycles. After combining all substructures into
a single graph structure, there are on average 311 cycles with length two in the graph.
Length two cycles consist of two nodes Xi and X j that are linked with two edges, one from
node Xi to node X j and one from node X j to node Xi. So there are 311 edges that have
a different direction in at least two substructures. To break all cycles in the graph that
exist additionally to the length two cycles, the “Remove Cycles” algorithm has removed
20 edges, on average. This justifies the approach we use to make the network acyclic:
Since we start with the full network and remove edges (and do not start with the empty
network and add edges), we only have to remove around 20 edges after breaking the cycles
of length 2 instead of adding a huge amount of edges (the original Alarm 50 network has
2854 edges). Thus, this approach saves a lot of computational time.

S-DAG is meant to be a scalable algorithm that can be used to learn in large domains.
One interesting question is how S-DAG performs if the number of variables increases. To
answer this question we show the runtime of the S-DAG PMMS algorithm as function
of the size of the network in figure 5.1(a). The results are based on data sets with 1,000
samples, results for other sizes of the data sets are not presented. For all networks in
our comparison study, we plot the size of the network on the x-axis and the runtime in
milliseconds on the y-axis. The runtime result for each network is the average over the
runtime results of the five data sets with 1,000 samples. We show the results separately for
the algorithm S-DAG PMMS and S-DAG PMMS without the PMMS part. Additionally,
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Figure 5.1: Runtime and NSC depending on the size of the network for all data sets with
1000 samples.

we show the runtime of Greedy Hill Climbing (GS) for comparison. A more detailed
analysis of the GS results is presented in the next section. Besides the size of the network,
its topology can also have an influence on the runtime. This influence is not considered
here.

Under the assumption that S-DAG shows polynomial runtime behaviour if the size of
the network is increased, the log-log graph of the runtime as function of the network size
should be asymptotically linear. The figure shows that the logarithm of the runtime of
the S-DAG PMMS algorithm is approximately linear dependent on the logarithm of the
network size. To gain an estimation of the dependency between runtime and network
size we applied a linear regression on the logarithmic values for the three cases. Thereby
we considered only networks with more than 100 variables in order to avoid a massive
influence of small-scale networks and to focus more on the asymptotic behaviour. The
gradient of the line for S-DAG PMMS has a value of 1.9. Thus, the runtime is roughly
proportional to network size1.9 with network size as the size of the network.

Before we have shown that the part of learning substructures shows linear complexity
if the maximum number of parents and children is fixed. To show the real performance
of the substructure part including the part to retrieve the DAG, we added the values for
S-DAG without the PMMS part to the figure. The results strengthen the theoretical con-
siderations: The runtime depending on the network size is approximately proportional to
network size1.1 which is almost linear.

The real runtime can always be influenced by the physical hardware and the system
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environment. For instance, we experienced that for large networks the computer sometimes
started to perform swapping operations. This can dramatically influence the runtime in a
negative way. Thus we also report the results for NSC. The NSC in dependence on the
network size is plotted in figure 5.1(b) as log-log plot. To obtain the results, we performed
the same steps as before for the runtime. In this figure we see that the logarithm of NSC is
approximately linearly dependent on the logarithm of the network size for S-DAG PMMS
and GS. The slopes of the lines have a value of 1.9 and 2.0, respectively. The runtime
results that indicate an almost linear dependency for S-DAG are approved by the results
for NSC: With 1.0 as the slope of the line the NSC is approximately linearly dependent on
the network size.

In general, the results for the dependency between the runtime or NSC on the network
size must be treated with care. For networks with different topology, the results could
look differently. Also the number of samples have an influence on the behaviour of the
algorithms. Last but not least we expect that PMMS has a complexity that is at least
quadratic (see algorithm 11): With a dependency in the magnitude of network size1.9 we
assume that the real dependency is a little bit underestimated. On the other hand, at least to
a certain extent the results can be used to predict how S-DAG PMMS performs for larger
networks. For instance, the network with 54,675 nodes that is presented in chapter 6 was
learned with about 1.1 · 109 statistical calls, while the expectation based on our results
amounts to 1.3 · 109 statistical calls.

5.3.3 Comparison to Other BN Structure Learning Algorithms

In this section we compare the S-DAG method to other state-of-the-art Bayesian network
reconstruction methods. We omit the comparison with optimal reinsertion, sparse candi-
date, PC, three phase dependency analysis and greedy equivalent search since they are all
included in the MMHC performance study (Tsamardinos, Brown & Aliferis 2006). Here,
we focus on methods that are not included in this study. All the algorithms we use to
benchmark S-DAG were already presented in section 3.3.

The first group of methods including Greedy Hill Climbing, Simulated Annealing and
Ant Colony Optimization are included in our software. Thus we are able to establish a
good comparison of these methods and to provide detailed results. For the methods that are
implemented in our software, we show summary results graphically in figures. The legend
for all the figures is shown in figure 5.2. The Structural Hamming Distance is compared
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in figure 5.3, the BDeu score results are shown in figure 5.4, and the number of statistical
calls and runtime are shown in figures 5.5 and 5.6. More detailed results can be found in
appendix A.3. For some configurations, some methods failed to learn the networks. In
such cases the result is not shown in the figures and marked with n/a in the tables in the
appendix.

We included also the results of two other methods, Constraint Hill Climbing (CHC) and
Recursive Autonomy Identification (RAI). Both methods are not included in our software,
but the authors of the corresponding publications presented direct comparisons to MMHC.
So we show the results of the original publications in order to compare these two methods
to S-DAG. To clearly distinguish between results we achieved with our software, and re-
sults that are taken over from other publications, we present the results of CHC and RAI in
separate tables. The Structural Hamming Distance is shown in table 5.13, the BDeu score
in table 5.14 and the number of statistical calls in table 5.15. We do not include runtime
results since it is useless to compare the runtimes if the implementations of the algorithms
and the platforms differ.

A
vgSample size

MMHC

S−DAG PMMS

S−DAG MMPC

MMSA

MMACO

GS

SA

ACO

Figure 5.2: Legend for figures 5.3 - 5.6

5.3.3.1 Greedy Hill Climbing: GS

One of the most common algorithms to learn the structure of BNs from data is Greedy
Hill Climbing Search. The general algorithm is further on referred to as GS and outlined
in algorithm 1. In contrast to S-DAG and MMHC, Greedy Hill Climbing does not imply
any restrictions on the network structure and is thus performed without any structural re-
strictions: There is no skeleton to restrict the search space on. If looking at the averaged
BDeu score results of all algorithms (table A.7) one can see that all skeleton-based learning
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Figure 5.5: Normalized “NSC” results
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Figure 5.6: Normalized “Runtime” results
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algorithms (MMHC, S-DAG, MMSA, MMACO) have worse BDeu score results than al-
gorithms without restriction on a skeleton. This means that, on average, the skeleton limits
the search algorithms to structures that can not have as good scores as networks that are
not limited to the skeleton. However, achieving better BDeu scores does not always mean
that the learned network has a higher quality: The averaged and normalized BDeu score
of the true network structure is with 0.993 higher than the averaged BDeu score results of
any method that is not based on a skeleton (e.g. GS: 0.981). In fact, the skeleton-based
approach prevents overfitting to the data. This means on the other hand that the BDeu
score with an equivalent sample size (ESS) of ten can lead to overfitting. In general, the
BDeu score is very sensitive on the ESS and it is hard to determine a good value for it
(Ueno 2011). Here, we do not focus on optimizing the ESS but use the commonly used
value of ten, even if it leads to overfitting.

GS does not restrict the search space on a skeleton. This implies that the number of BDeu
score calculations can be higher than for approaches that restrict the search space. In fact
this leads to a major increase of number of statistical calls (NSC) compared to S-DAG (see
figure 5.5): It is about three times higher than the NSC results for the S-DAG algorithms
(see appendix A.3, table A.8). This means that the number of BDeu score calculations is
higher than the sum of dependence or independence tests or BDeu score calculations in the
S-DAG case. Also the runtime is around five times slower than the runtime of the S-DAG
algorithms (see table A.9). Thereby, the average values are based upon relatively small
networks: GS failed to learn the networks Alarm 30, Alarm 50, Alarm 270, Insurance 30
and Insurance 200 within a reasonable time. From a network quality point of view, GS
produces around 50% more structural errors than S-DAG, on average (see table A.6).

The direct comparison between S-DAG and GS shows that GS finds networks with better
BDeu score, but S-DAG outperforms GS in terms of number of statistical calls, runtime and
quality of the reconstructed network (SHD), while GS even fails to learn large networks
within a reasonable runtime.

5.3.3.2 Simulated Annealing: SA and MMSA

Greedy Hill Climbing often gets stuck in local optima. A metaheuristic that can be used
to overcome this limitation is Simulated Annealing (SA) (Kirkpatrick et al. 1983). The
algorithm we used as benchmark here is outlined in algorithm 2 and was also used by
others (Dejori 2005, Pinto et al. 2009). In our benchmark study, we use two different
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kinds of Simulated Annealing algorithms: The standard SA algorithm and a version that
restricts the edge search on a skeleton. This algorithm is called MMSA and uses the skeleton
produced by MMPC to restrict the search space. MMSA was first published in Pinto et al.
(2008).

Since Simulated Annealing is a non-deterministic algorithm, we applied SA and MMSA
five times on each data set. The results are based upon the average results of these five runs.
Besides, for the sake of completeness we also report the result of the best run. This run is
chosen as best run that has the best BDeu score. In the results tables (A.2 - A.9), the result
with the best SA run is labelled SA b, and the result with the best MMSA run MMSA b.

First, we compare S-DAG to MMSA since both algorithms restrict their search space
on a skeleton. On average, MMSA reconstructs networks that have a BDeu score close to
the networks reconstructed with both S-DAG algorithms (see table A.7). MMSA produces
a normalized BDeu score of 0.993 which is close to both S-DAG algorithms (0.992 for
S-DAG PMMS and 0.993 for S-DAG MMPC). The quality of the reconstructed networks
is slightly better than for S-DAG. With 0.897 as the averaged normalized SHD, MMSA
is better than S-DAG PMMS (0.912) and S-DAG MMPC (0.901) (table A.6). The draw-
back of this method is that the runtime performance of MMSA is much worse than the
performance of the S-DAG algorithms: With around 25% more statistical calls, the run-
time is about four times higher (tables A.8 and A.9). The Alarm 270, Insurance 30 and
Insurance 100 are too large to be learned with MMSA within a reasonable time.

The standard SA algorithm shows similar characteristics as the GS algorithm: The BDeu
score is with an average value of 0.984 better than the averaged BDeu score of both S-DAG
algorithms (0.992 and 0.993). However, in terms of SHD results, the standard SA algorithm
performs worse than S-DAG and MMSA. With 1.017 as averaged normalized SHD, SA has
around 10% more structural errors than both S-DAG algorithms. The runtime results show
that SA does not scale well: On average it needs around 40 times more statistical calls than
both S-DAG algorithms. This leads to an about 30-fold runtime. Only the networks Alarm,
Alarm 10, Insurance and HailFinder were learned in reasonable time, for larger networks
we did not apply the SA algorithm since the algorithm did not finish within a reasonable
time.

In general, MMSA reconstructs the networks with a slightly better quality than S-DAG,
but pure SA is worse than S-DAG. The runtime performance of both algorithms show that
they do not scale well and even fail for larger networks.
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5.3.3.3 Ant Colony Optimization: ACO, MMACO and related algorithms

Another meta-heuristic approach is Ant Colony Optimization which mimics the way how
ants seek for food (Dorigo & Stützle 2004, Stützle, López-Ibáñez, Dorigo, Cochran, Cox,
Keskinocak, Kharoufeh & Smith 2011). If applied to BN structure learning, the idea is that
an ant makes a decision not only based upon the score, but uses so-called pheromones, as
well. The pheromones contain information about networks learned in previous iterations.
After every iteration, the pheromones are updated with the information about the learned
network, typically with the best network (called global update) and the network from the
current iteration (called local update). The algorithm used as benchmark for our S-DAG
algorithms is called ACO, respectively MMACO for the version that uses a skeleton to
restrict the search space. Ant colony optimization algorithms heavily depend on the meta-
parameters of the algorithm: Thus, we use the same parameters as proposed by Pinto et al.
(2009). For more information we refer to section 3.3.3 or the original publication (Pinto
et al. 2009).

Similarly to the Simulated Annealing algorithms, ACO/MMACO are non-deterministic
algorithms. Thus we run the algorithm five times and report the average result, as well as
the result for the best BDeu score. The result with the best ACO run is labelled ACO b,
and the result with the best MMACO run MMACO b.

On average, MMACO achieves almost identical BDeu score results as S-DAG. With a
value of 0.992 for the normalized BDeu score it is in the same range as 0.992 for S-DAG
PMMS and 0.993 for S-DAG MMPC (table A.7). The networks learned by MMACO
have a normalized Structural Hamming Distance to the original network of 0.891, on av-
erage. This is slightly better than the SHD for both S-DAG algorithms (0.901 and 0.912,
respectively). Similarly to Simulated Annealing, the number of statistical calls is higher
for MMACO: With 1.236 as NSC, both S-DAG algorithms outperform MMACO with
0.953 and 1.020 as NSC. The runtime for MMACO is much worse: It is about 10 times
higher than for both S-DAG algorithms. MMACO fails to learn Alarm 50, Alarm 270,
Insurance 30 and Insurance 200 within reasonable runtime.

ACO without any restriction on a skeleton achieves better results regarding the quality
of the reconstructed networks. The results (figures 5.3 - 5.6 or tables A.2 - A.9) show that
ACO achieves the best networks for all algorithms included in this study. For the Alarm
network, ACO has only around 50% of the network errors of S-DAG (table A.2). Also the
BDeu score is with a relative value of 0,974 better than for any other network induction
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method (SA has 0,975, for instance) (table A.3). But the number of statistical calls and the
runtime show the performance problem of the ACO algorithm: For the Alarm network, the
NSC is around 60 times higher than for S-DAG, and the runtime about 100 times (table
A.5). The problem becomes manifest if ACO is applied to large networks: ACO fails to
learn larger networks than Alarm, Insurance and HailFinder.

There is a series of other Ant Colony Optimization algorithms to learn the structure of
Bayesian networks. ACO-B, I-ACO-B, ChainACO and K2ACO are shortly introduced in
section 3.3.3: All these algorithms have the same problem with the runtime performance.
Since Ant Colony Optimization is a meta-heuristic that additionally has normally a greedy
hill climbing step inside its optimization procedure, it is typical that the runtime perfor-
mance is worse than for a greedy hill climbing algorithm. Since we are interested in a
good performance combined with a good quality of the networks, we do not compare S-
DAG to further Ant Colony Optimization algorithms, even if they slightly differ in runtime
and quality.

As a conclusion, MMACO and ACO produce networks with higher quality than S-DAG,
in general, but with the drawback of poor runtime performance. For larger networks,
MMACO and ACO even fail to learn the structure within reasonable runtime.

Constraint Hill Climbing: CHC*, iCHC and 2iCHC

The authors of constraint hill climbing provide detailed results about their algorithms
(Gámez & Puerta 2005). Since there was no implementation of the algorithms available
we are unable to provide a full comparison to our methods. Instead, we just transform the
provided results into their normalized form. It is obvious that their values can not be di-
rectly compared to our values since the data sets are different. But the values normalized to
MMHC just show the difference between the method to rate and MMHC. Thus it is likely
that the normalized values can be compared at least to a certain degree, even if the data sets
are not identical, but the network remains the same. Results for their methods and MMHC
are provided in Gámez et al. (2011), so we normalized the results to MMHC and compare
these values to our normalized results (see tables 5.13 - 5.15, the values shown here for
CHC*, iCHC and 2iCHC are based upon the values presented in Gámez et al. (2011)).
Only the results for the largest networks in Gámez et al. (2011) are shown.

The goal of constraint hill climbing is to provide a fast and efficient structure learning
algorithm. This can be seen if the number of statistical calls are compared to S-DAG (see

112



5.3 Substructure DAG Learning

Table 5.13: Normalized “SHD” results for Constraint Hill Climbing and RAI
Sample size

Network Method 500 1000 5000 Avg

Alarm 10 CHC* 1.243 1.376 1.415 1.345
Alarm 10 iCHC 1.240 1.343 1.415 1.333
Alarm 10 2iCHC 1.243 1.333 1.391 1.322
Alarm 10 RAI n/a n/a n/a 0.87
Alarm 10 S-DAG PMMS 0.896 0.831 0.782 0.836
Alarm 10 S-DAG MMPC 0.883 0.831 0.782 0.832

Insurance 10 CHC* 1.044 1.065 1.172 1.094
Insurance 10 iCHC 1.163 1.134 1.129 1.142
Insurance 10 2iCHC 1.149 1.148 1.265 1.187
Insurance 10 RAI n/a n/a n/a 0.88
Insurance 10 S-DAG PMMS 0.921 0.905 0.804 0.877
Insurance 10 S-DAG MMPC 0.890 0.907 0.786 0.861

HailFinder 10 CHC* 0.957 1.028 0.913 0.966
HailFinder 10 iCHC 1.011 1.099 1.058 1.056
HailFinder 10 2iCHC 1.011 1.099 1.054 1.055
HailFinder 10 RAI n/a n/a n/a 0.74
HailFinder 10 S-DAG PMMS 0.989 0.985 0.966 0.980
HailFinder 10 S-DAG MMPC 0.989 0.973 0.965 0.976
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Table 5.14: Normalized “BDeu score” results for Constraint Hill Climbing and RAI
Sample size

Network Method 500 1000 5000 Avg

Alarm 10 CHC* 0.992 0.998 0.995 0.995
Alarm 10 iCHC 0.994 0.999 0.996 0.996
Alarm 10 2iCHC 0.995 0.999 0.998 0.997
Alarm 10 RAI n/a n/a n/a n/a
Alarm 10 S-DAG PMMS 0.994 0.992 0.993 0.993
Alarm 10 S-DAG MMPC 0.994 0.992 0.993 0.993

Insurance 10 CHC* 0.986 0.986 0.987 0.986
Insurance 10 iCHC 0.995 0.995 0.989 0.993
Insurance 10 2iCHC 0.995 0.997 1.003 0.998
Insurance 10 RAI n/a n/a n/a n/a
Insurance 10 S-DAG PMMS 0.983 0.985 0.980 0.983
Insurance 10 S-DAG MMPC 0.984 0.986 0.980 0.983

HailFinder 10 CHC* 0.975 0.972 0.997 0.981
HailFinder 10 iCHC 0.986 0.978 0.999 0.988
HailFinder 10 2iCHC 0.986 0.978 0.999 0.988
HailFinder 10 RAI n/a n/a n/a n/a
HailFinder 10 S-DAG PMMS 0.999 0.999 0.998 0.999
HailFinder 10 S-DAG MMPC 0.999 0.999 0.999 0.999
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Table 5.15: Normalized “NSC” results for Constraint Hill Climbing and RAI
Sample size

Network Method 500 1000 5000

Alarm 10 CHC* 1.476 1.444 1.348 1.423
Alarm 10 iCHC 0.954 0.937 0.899 0.930
Alarm 10 2iCHC 0.882 0.846 0.818 0.849
Alarm 10 RAI n/a n/a n/a 0.75
Alarm 10 S-DAG PMMS 0.993 0.989 0.981 0.988
Alarm 10 S-DAG MMPC 1.014 1.014 1.016 1.015

Insurance 10 CHC* 1.392 1.328 1.192 1.304
Insurance 10 iCHC 0.875 0.827 0.708 0.803
Insurance 10 2iCHC 0.817 0.766 0.586 0.723
Insurance 10 RAI n/a n/a n/a 0.63
Insurance 10 S-DAG PMMS 0.991 0.956 0.799 0.915
Insurance 10 S-DAG MMPC 1.031 1.029 1.027 1.029

HailFinder 10 CHC* 1.284 1.323 1.536 1.381
HailFinder 10 iCHC 0.749 0.775 0.830 0.785
HailFinder 10 2iCHC 0.744 0.764 0.779 0.762
HailFinder 10 RAI n/a n/a n/a 0.77
HailFinder 10 S-DAG PMMS 0.994 0.970 0.790 0.918
HailFinder 10 S-DAG MMPC 1.015 1.008 1.010 1.038
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table 5.15): 2iCHC, which is the most competitive constraint hill climbing algorithm, needs
always less statistical calls than both S-DAG algorithms. But the reduction of statistical
calls is attended with an increase of structural errors. Results for SHD (see table 5.13)
show that S-DAG usually leads to much better network reconstructions than all constraint
hill climbing methods. Only CHC*, which is rated by the authors as a non-competitive
algorithm in terms of performance, has sometimes better results than S-DAG.

Recursive Autonomy Identification: RAI

Recursive Autonomy Identification (RAI) (Yehezkel & Lerner 2009) employs purely con-
straint based techniques and uses independence tests to obtain the Bayesian network struc-
ture. No scoring function is used here, so the method differs from all methods used in this
thesis so far. But for the sake of completeness, we compare our method also to RAI as one
of the most competitive constraint based algorithms.

Yehezkel & Lerner (2009) compared RAI to MMHC, thus we are able to compare our
method directly to RAI. We added the values for SHD and NSC presented in Yehezkel
& Lerner (2009) to the tables 5.13 and 5.15. BDeu score results are not available. The
authors of RAI also presented only average results for all sample sizes (500, 1000 and
5000). We just added the largest networks RAI was applied to: Alarm 10, Insurance 10,
HailFinder 10.

SHD results show (see table 5.13) that both S-DAG methods reconstruct the networks
Alarm 10 and Insurance 10 with better quality. However, RAI outperforms both S-DAG
algorithms in terms of SHD for the HailFinder 10 network. The number of statistical calls
is about 25% lower for RAI than for S-DAG.

While it seems that RAI partially outperforms S-DAG, the comparison is based upon lit-
tle data, indeed: The original authors of RAI did not publish results for larger networks, so
the comparison is just made with three networks. HailFinder 10 is the largest one with 560
variables. For the other methods we used benchmark networks with up to 9990 variables.

A second point is also quite interesting if comparing score-based methods with
constraint-based methods: The score based algorithms depend heavily on the hyperparam-
eters of the BDeu score. We have chosen an equivalent sample size (hyperparameter) of ten
to enable a direct comparison to other score-based methods, since this value is widely used
in the literature. But other values for the hyperparameter might be better and would lead
to better network reconstructions. However, the optimization of the hyperparameter is out
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of the scope of this thesis. On the other hand, the value for the significance level heavily
influences the network quality for constraint-based approaches, as well as the number of
free parameters for the significance test. Both values are subject to be optimized.

Because of the differences between score-based and constraint-based approaches, one
has to do further experiments in order to do a fair comparison between S-DAG and RAI:
RAI must be applied to much larger networks in order to test its scalability, and the hy-
perparameters for the BDeu score should be optimized. However, we leave this open for a
future investigation.

5.3.4 Discussion

We have introduced the S-DAG algorithm as an efficient and scalable Bayesian network
structure learning algorithm, which is based on the substructure algorithm presented in sec-
tion 5.2 (Nägele et al. 2007). While the substructure algorithm returns a set of independent
Bayesian subnetworks, S-DAG combines all the subnetworks and learns a single Bayesian
network.

An algorithm that also reduces the global learning problem by learning a local network
was introduced in Peña, Björkegren & Tegnér (2005). They particularly address the prob-
lem of scalability and propose an algorithm that starts from a seed variable that has to be
manually selected, and learn the BN structure around this seed variable in an iterative way.
However, this algorithm is intended to learn small local models instead of the complete
network. An algorithm that deals with domains up to hundreds of thousands of variables
was introduced in Goldenberg & Moore (2004). However, it restricts the BN on binary
variables paired with very sparsely linked graphs.

Another work that is somehow related to our approach is presented in Hulten et al.
(2003). They learn BNs from a dependency network. In dependency networks the joint
distribution is defined by a set of conditional probabilities, in this case by means of a de-
cision tree. Unlike BNs where the conditional probability of a variable is defined given
its parents, the conditional probability for each variable is defined independently, which
allows cycles in the global network structure. Hulten et al. (2003) presented an approach
that is very similar to our method: Based on a dependency network that is learned from
data, they remove edges until the global graph contains no cycles. However, on bench-
mark networks they report results that are slightly worse than a simple BN greedy forward
selection algorithm.
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Another approach to learn high-quality networks in large domains is presented in Her-
scovici & Brock (2007). They use a model-based search in order to identify regions likely
to contain high-quality networks and to restrict the search to these regions. On a ten-fold
Alarm network this algorithm produces a network that outperforms MMHC by around
18% by means of SHD. This is consistent with our results (17% decrease of SHD for the
Alarm 10 network with 1000 samples). For other networks they report better results: A
network with 801 variables was learned with around 50% less structural differences to the
original network compared to MMHC. Since we do not have the data for this network,
it is not possible to compare this approach directly to our approach. The largest network
the model-based search was applied is the network with 801 nodes. This network is much
smaller than our Alarm 270 network with 9990 nodes.

An algorithm published in Zeng & Hernandez (2008) also decomposes the complete net-
work into smaller subnetworks. However, the network is just divided into smaller clusters
on the basis of a dependency network. Each cluster is learned independently from each
other with constraint-based techniques and is combined afterwards on a graphical basis to
create a complete BN. Results from benchmark cases show that this algorithm is faster than
comparable constraint-based algorithms. The authors emphasize the good performance of
their algorithm, however the largest benchmark network contains only 223 nodes.

A quite interesting approach is presented in de Campos & Ji (2011): Based upon prop-
erties of scoring functions, they avoid the score computation for edge configurations that
can not have a higher score than the currently found solution. However, instead learning
efficiently in large domains, their goal is to find the best scoring network within a domain
of reasonable size. They managed to find the optimal solution for a domain with around
70 variables.

5.4 Summary

The problem of learning the best scoring Bayesian network from data is NP-hard. In this
chapter, we have introduced the substructure algorithm that efficiently estimates the fea-
tures of the underlying network structure by independently learning small subnetworks.
Based on a skeleton that is learned by MMPC, the substructure algorithm takes each vari-
able of the network and learns a local BN around the variable. As learning algorithm, a
very fast Random Hill Climbing algorithm was used. We have shown that the network
learning phase scales even linearly with the number of variables, if the number of parents
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and children of each variable is restricted to a constant value. Results from benchmark
cases show that structural features of large networks can be learned with high accuracy,
comparable to the results of MMHC that uses a greedy search to orient the edges of the
skeleton. However, substructure learning scales better for large domains, if the network is
only sparsely linked. We have also shown that the framework of dependency networks can
be utilized to perform inference on subnetworks. While learning structural features with
high quality, the substructure algorithm lacks of a uniform representation of the global
structure by means of a BN.

Motivated by the high quality of the reconstructed networks, we introduced the S-DAG
algorithm that learns a single BN based on the subnetworks learned by the substructure al-
gorithm. Following the goal to learn networks with high quality, we abandon the substruc-
ture’s high scalability and use a TABU-enriched greedy search for each substructure. Each
subnetwork is afterwards combined to a global network structure, and cycles are removed
until a DAG structure is reached. Based on a large study with several large benchmark
networks and reasonable large data set sizes, we have shown that our S-DAG algorithm
produces networks with competitive quality by comparing it to several state-of-the-art
structure learning algorithms. Just RAI which is a constraint-based method to learn the
structure of a Bayesian network produces networks with a quality comparable to S-DAG,
and this even with less statistical calls. However, this comparison is based upon relatively
small networks. Since we did not optimize the hyperparameters of the BDeu score, it is
thus hard to compare this constraint-based method to our score-based approach. A closer
comparison is left open for future research.

If compared to all other score-based approached included in our study (GS, MMHC,
ACO, MMACO, SA, MMSA and the CHC algorithms), there is no algorithm that is faster
and better than S-DAG. Either the methods produce networks with better quality (see
ACO), but fail to learn in large domains, or S-DAG outperforms the methods in terms
of structural quality of the reconstructed networks.
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6.1 Introduction

In recent years, the reconstruction of the genetic networks with graphical models, in par-
ticular Bayesian networks, from microarray data (mRNA expression levels) has shown
promising results (Friedman et al. 2000, Pe’er, Regev, Elidan & Friedman 2001b,
Hartemink, Gifford, Jaakkola & Young 2002, Peña et al. 2005, Bernard & Hartemink
2005). Bayesian networks can represent both, the quantitative distribution as well as the
structural dependencies between the variables. Regarding genetic network reconstruction
with BNs, the genes (more precisely: the measured transcripts) are represented as variables
(nodes) in the network, while edges between the variables describe relationships between
genes.

However, learning BN models from microarray data is problematic due to several as-
pects. First, BN structure learning requires a sufficiently large amount of independent
observations (here: expression profiles) to learn statistically reliable relationships. How-
ever, publically available data sets contain usually less than 1000 profiles. This is much
less than the number of measured genes which is usuallay up to tens of thousands. Ad-
ditionally, a BN represents an abstract gene-gene dependency network which might not
reflect the true underlying molecular interaction network, but only the statistically based
relationships between the measured genes.

Furthermore, current learning methods usually do not scale to large domains with tens of
thousands of variables. One typically restricts the feature dimensions to a feasible subset
of relevant variables (genes) that are of high interest (Friedman et al. 2000) to make the
structure learning process feasible. As a result, a typical pipeline for learning BNs from
high-dimensional data could be stated as a two-step process (Stetter et al. 2007): (1) Based
on a statistical method or on some other reasonable methods, choose a number of highly-
relevant variables, and (2) learn a Bayesian network with the set of variables selected in step
1. As discussed in more detail in section 4.3, the restriction on a small set of variables for
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learning is a potentially problematic step which can lead to a strongly corrupted estimation
of the true structure since (a) edges incident to missing variables cannot be learned by
definition, and (b) additional false positive edges might be learned to explain statistical
dependencies that can not be represented without the missing variables. Peña et al. (2005)
avoid this problem by starting structure learning from a predefined seed gene and iteratively
discover parents and children of variables that are already added to the learned network
structure. While none of the genes measured in the data set is excluded in advance, the
authors show results with only one or two iterations, resulting in a local genetic network
estimation around a single seed gene with only tens of genes, but not of the complete
dependency structure between all genes.

In the previous section (see section 5.3), we have shown that the S-DAG algorithm scales
polynomially, thus being able to learn networks with thousands of variables, enabling a
full-genome analysis of microarray data with BNs. We apply the S-DAG PMMS algorithm
to a S. cerevisiae and a homo sapiens microarray data set. To the best of our knowledge, the
resulting network from the latter data set with 54,675 transcripts is the largest unrestricted
Bayesian network that was learned so far. Based on both data sets, we show the biological
relevance of the learned network structures.

6.2 Biological Data

To illustrate the capability of our method to learn from large-scale mRNA data, we apply
it to two microarray data sets, the Rosetta compendium (Hughes, Marton, Jones, Roberts,
Stoughton, Armour, Bennett, Coffey, Dai, He, Kidd, King, Meyer, Slade, Lum, Stepani-
ants, Shoemaker, Gachotte, Chakraburtty, Simon, Bard & Friend 2000) and the data set of
the expression project for oncology (expO) (igc 2004). In the following we will refer to
these data as Rosetta compendium for the S. cerevisiae and as oncology data set for the
homo sapiens data set.
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Table 6.1: Network characteristics

Rosetta compendium Oncology data set

Samples 300 1,911
Variables (transcripts) 6,146 54,675
Edges 8,599 96,799
Genes 6,109 20,055
Genes with Ontology 5,446 15,697
Genes with Location 6,109 20,053
Genes with Pathway 1,190 3,917

YCR100CFZF1

APL1

FIT2
ZAP1

ARN3
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YOR356W DUR1,2
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Figure 6.1: BN model of the iron homeostasis pathway learned from the Rosetta com-
pendium. The figure shows the network centered around gene ARN1 with a
radius of two, all other genes are not shown. The grey colored nodes represent
genes that are supposed to be related to iron homeostasis, while white colored
genes are not known to play such a role.
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(a) Rosetta compendium (b) Oncology data set

Figure 6.2: Scale-free characteristics of learned network structures. In a scale-free net-
work, the plot of the degree k against the occurrence frequency forms a straight
line when using a log-log scale. The slope of this line has a value of -4.371 for
the (a) S. cerevisiae (Rosetta compendium) network and a value of -4.2904 for
the (b) Oncology network. Both graphs show a exponential cut-off for small
degree values (degree < 4).
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6 Estimating Genetic Networks

6.2.1 Rosetta Compendium

The Rosetta compendium consists of 300 expression profiles of diverse mutations and
chemical treatments in Saccharomyces cerevisiae, containing the observation of 6,316
measured transcripts (see table 6.1). To obtain a high-quality data set for the network learn-
ing task, we removed all transcripts which have missing values in more than 30 profiles,
resulting in a data set with 6,146 transcripts. Remaining missing values are replaced ac-
cording to Troyanskaya, Cantor, Sherlock, Brown, Hastie, Tibshirani, Botstein & Altman
(2001). Following the procedure of Stetter et al. (2007), the gene expression levels of this
preselected data set (6,146 transcripts × 300 samples) were normalized to a sample-wise
and gene-wise mean value of zero and unity standard deviation and discretized to three
levels (over-expressed, unchanged and under-expressed), by using the gene-wise negative
and positive standard deviation of the normalized expression levels as thresholds for under-
expressed and over-expressed.

To benchmark the validity of network reconstruction models from microarray data, oth-
ers (Pe’er et al. 2001b, Margolin, Banerjee, Nemenman & Califano 2004, Peña et al. 2005)
have used the iron homeostasis pathway in yeast, which regulates the uptake, storage and
utilization of iron. Thereby, they learned a network using the Rosetta compendium and
extracted the genes centered around ARN1 with a radius of two. ARN1 plays an important
role in this pathway together with the genes FRE1, FRE2, FTR1, FET3, ARN2, ARN3,
ARN4, FIT1, FIT2 and FIT3 (Protchenko, Ferea, Rashford, Tiedeman, Brown, Botstein
& Philpott 2001, Philpott, Protchenko, Kim, Boretsky & Shakoury-Elizeh 2002). In figure
6.1 we show our learned ARN1 subnetwork, and all genes associated with iron homeostasis
are marked in grey. Besides the mentioned genes, we additionally marked AKR1, because
it is discussed to play a role in iron homeostasis (de Freitas, Kim, Poynton, Su, Wintz, Fox,
Holman, Loguinov, Keles, Van Der Laan & Vulpe 2003). All other genes are not known to
be related to iron homeostasis. With a radius of two around ARN1, we have 17 genes in the
network, 10 of them related to iron homeostasis. This result is consistent with other work,
e.g. Peña et al. (2005) obtained also 10 related of 17 total genes with their BN induction
method.

Note that while others have learned Bayesian networks only for a subset of genes, we
provide a full-genome BN estimation of the regulatory network. This enables an investiga-
tion of features and properties of the large-scale network instead of focusing on small-scale
characteristics such as the reconstruction of the iron homeostasis pathway.
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It is known that genes that show a similar expression behaviour may be functionally re-
lated (Zhu, Gerstein & Snyder 2007) or closely positioned on the genome (Darvasi 2003).
Thus, genes that are connected in our network should have significantly more common
characteristics than expected by chance. To investigate this, we utilize each gene’s biolog-
ical annotation, i.e. the gene ontology (GO) terms (Ashburner, Ball, Blake, Botstein, But-
ler, Cherry, Davis, Dolinski, Dwight, Eppig, Harris, Hill, Issel-Tarver, Kasarskis, Lewis,
Matese, Richardson, Ringwald, Rubin & Sherlock 2000), KEGG pathways (Kanehisa &
Goto 2000) and chromosomal location. The annotation was downloaded from the NCBI
gene database in December, 2007 and integrated into the GeneSim knowledge platform
(Stetter et al. 2007). At first, we use the hierarchical organized gene ontology (GO) to
extract functional similarities between genes that are connected in our network. Each GO
term describes a biological property and belongs to one of three categories: molecular
functions, biological processes and cellular components. Even though two terms are dif-
ferent, they can be closely related by common ancestors. Thus, to measure the annotation
similarity between two genes, we do not only count exactly matching GO terms but utilize
the hierarchical organization to estimate the similarity between closely related, but differ-
ent terms. Here, we use the measure of Resnik to calculate the similarity of two terms in
an ontology (Resnik 1999): The similarity RS (ci, c j) of two terms ci, c j is defined as the
information content of the closest common parent of both terms, where the information
content is the negative logarithmic value of the occurrence frequency. Since each gene can
be annotated with several GO terms, we introduce a new score and calculate the mean over
all annotation terms to measure the similarity S (gi, g j) between two genes gi, g j:

S (gi, g j) =
1
2

∑
ci∈A(gi)

max
c j∈A(g j)

RS (ci, c j)

+
1
2

∑
c j∈A(g j)

max
ci∈A(gi)

RS (c j, ci), (6.1)

whereA(gi) describes all GO terms associated with gene gi.

Figure 6.3(a) shows the distribution of the similarity values between genes that are
neighbours in the learned BN structure. We report the similarity distribution separately
for each subtree of the Gene Ontology (molecular function, biological process and cellu-
lar component). We compare the results to the similarity distribution of a random graph
and the maximum possible values (similarity of each gene with itself). The similarity val-
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6 Estimating Genetic Networks

Table 6.2: Edge characteristics

R. compendium Oncology

Same Pathway
Learned Network 351 4,271
Random Network 17±4 161±14

Same Location
Learned Network 1,220 30,770
Random Network 654±22 3,471±59

Number of edges in the learned S. cerevisiae (Rosetta compendium) and Oncology
networks that exist between genes that belong to the same pathway or are located
on the same chromosome. Additionally, we report the number of expected edges
and its standard deviation by sampling random networks.

ues between connected genes are significantly higher than between two randomly selected
genes-pairs, which indicates that two genes that are neighbours in a BN show significantly
more similar biological characteristics than two genes selected randomly.

We next report the number of gene-pairs that are known to belong to the same pathway
(see table 6.2). Totally, 351 of 8,599 edges represent dependencies between genes that be-
long to the same pathway. To show that these are significantly more edges than expected by
chance, we created 100 random networks with 8,599 edges. On average, only 17 (standard
deviation: 4) of these edges are present between genes participating in the same pathway,
showing the statistical significance of our result.

It has been shown that genes that are closely located on the chromosome can show sim-
ilar expression characteristics. It is supposed that this can be caused e.g. by a sequence
variation that affects several genes in the chromosomal region where this variation occurs
(Darvasi 2003). Thus, we finally report also the number of edges between pairs of genes
that are located on the same chromosome: 1,220 of these edges exist in the learned net-
work, while in a random network occur only 654±22 of such edges.

A couple of years ago, researchers (Barabási & Oltvai 2004, Basso, Margolin,
Stolovitzky, Klein, Dalla-Favera & Califano 2005, Scholz, Dejori, Stetter & Greiner 2005)
have shown that cellular networks show scale-free characteristics (Barabási & Bonabeau
2003). Lee & Lee (2005) show the scale-free architecture of the genetic network, esti-
mated from the Rosetta compendium with the “modularized network learning” (MONET)
algorithm, while Dejori et al. (2004) obtained a scale-free network when BN learning was
applied on a leukemia data set, however on a restricted set of only 271 genes. In contrast,
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6.3 Summary

we use the full genome for the genetic network estimation with Bayesian networks. In
figure 6.2(a), the log-log plot shows that the probability p(k) of finding a node with degree
k follows a power law: p(k) ∼ k−γ with γ = 4.3741. The plot shows a exponential cut-off

for nodes that have a small degree (k < 4), which is consistent with the results presented in
other work (Dejori et al. 2004).

6.2.2 Oncology Data Set

As a second biological data set, we use the data from the expression project
for oncology (expO) (igc 2004), containing clinically annotated tumor ex-
pression profiles. The data were downloaded from the NCBI homepage
(ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/SeriesMatrix/GSE2109/) in November, 2007.
Data are normalized and discretized to three levels according to the description of the
Rosetta compendium. Totally, the data set consists of 54,675 transcripts representing
20,055 different genes with 1,911 samples. On this data set, we trained a BN model using
our S-DAG algorithm, resulting in a genetic network estimation of the complete human
genome. To the best of our knowledge, this is the largest unrestricted BN that was learned
from data so far.

As reported for the Rosetta compendium, the similarity values between connected genes
in the network is significantly higher than between two random genes (see figure 6.3(b)).
The shift is even stronger than for the S. cerevisiae network, and the distribution is close
to the “Maximum” similarity distribution. This means that two genes that are connected
in the Bayesian network model significantly show a higher biological similarity than two
random genes. Edges between genes that belong to the same pathway are overrepresented
as well: 4,271 of 96,799 edges belong to that class, while by chance only 161 of such edges
occur. The number of co-located genes is also significantly higher: 30,770 of such edges
occur, but only 3,471 by chance. The complete network with its 96,799 edges between the
transcripts has approximately the properties of a scale-free network with γ = 4.2904, but
has an exponential cut-off for nodes with a small degree (k <= 4).

6.3 Summary

We applied our S-DAG method on the expression profiles of a S. cerevisiae (Hughes et al.
2000) and a human oncology data set (igc 2004), enabling a full-genome analysis of the
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6 Estimating Genetic Networks

learned genetic network estimation. Results from both data sets show that the learned
networks have high biological relevance: First, as supposed by previous work (Barabási
& Oltvai 2004, Scholz et al. 2005, Basso et al. 2005), the networks have approximately a
scale-free architecture. Second, genes that are connected in the graph have significantly
more common biological characteristics than random genes. To the best of our knowledge,
the oncology network with 54,675 transcripts is the largest unrestricted BN that was learned
from data so far.
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7 Conclusions

During the last two decades, probabilistic graphical models have become quite popular
tools for reasoning under uncertainty. Due to their intuitive graphical representation to-
gether with a sound theoretical basis, they are widely accepted tools for both modeling
knowledge and making predictions in different domains. Bayesian networks, also known
as belief networks, are a prominent representative of the class of probabilistic graphical
models. They represent the dependency among random variables by means of a directed
acyclic graph, and link each node with a local conditional probability distribution. Both
together form a definition of the joint probability distribution of all random variables.

Bayesian networks are applied to provide solutions in many different domains. The
applications range from a pure modeling of existing knowledge in so-called expert systems,
where the network is build by human experts, over learning the conditional probabilities for
a given network structure to learning both, the parameters and the network structure itself.
They can be used as pure density estimators to make predictions about random variables.
This allows to perform “what-if” scenarios: Given the state of a set of variables, predictions
can be made about variables that aren’t observed. But not only the probability distribution,
but also the learned network structure can be used as a basis for a topological analysis of
the network. To mention only a few: Learned edges in the network give information about
direct dependencies among random variables, the direction of edges can in certain cases
be suggestive for the causality of the dependency, or the degree of a variable indicates its
importance for the network structure.

When drawing such conclusions from a learned BN, it is of major importance to re-
construct the network structure with high accuracy. To improve the quality of learned
networks, we introduced several methods in this thesis.

One of the challenging applications for structure learning of Bayesian networks is the
estimation of the cellular molecular interaction network, especially the so-called genetic
network. The web of mutual biochemical interactions between DNA, RNA, and proteins
forms the basis for the genetic network. The genetic network can be modeled as a BN
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by representing genes as variables and the complex interactions between the genes, their
RNA and proteins by means of edges in the BN. High-throughput measurements based on
microarrays allow the estimation of the activity of thousands of genes in parallel. If a se-
ries of measurements is combined into one microarray data set, the dependencies between
the genes can be learned by BN structure learning, deliver an insight into the complex
molecular interactions that take place in cells.

Contributions of this work

If learning in such real-world scenarios, one faces problems that do typically not arise
if learning from toy data. Microarray data contain with thousands or tens of thousands
of measured transcripts much more variables than usual benchmark networks. Due to the
NP-completeness of BN structure learning, the size of such a large network poses an enor-
mous challenge. A common approach to put a handle on the problem is the downscaling of
the network size: Based on a selection criterion, a feasible set of variables is selected, and
the network among these variables is learned from data. Another problem appears with
the sparseness of data: Typical microarray data sets usually contain many fewer samples
than observed transcripts. With subnetwork learning which is based upon Nägele (2005)
and an additional novel approach, we investigated with various measures the robustness
of BN structure learning under such real-world circumstances (chapter 4). We have first
shown that the downscaling of a data set based on a statistical method increases the num-
ber of false positives just because of fluctuations in the data. There are edges that do not
represent any true dependency in the data. The separation between these edges and edges
that are based upon true dependencies can be done by means of a threshold for the edge
confidence if data bootstrap is applied. By using the new measure predictive value which
was introduced in chapter 4, one can control the fraction of edges just learned because
of fluctuations in the data and those edges based upon true dependencies. Second, we
have shown by means of subnetwork learning that the downscaling of the network size
has a measurable, deteriorating influence on the learned network structure since variables
that are important for the network reconstruction are removed from the data set. To avoid
such influences, we introduced dimensional bootstrap as a method to enrich the initially
selected subset of variables with those that are of importance to reconstruct the network
among the selected variables. This approach assigns a confidence to each edge enabling a
separation between false positive and true positive edges. Results have shown that dimen-

132



sional bootstrap leads to a better reconstruction of the network structure compared to the
reconstruction only based upon the downscaled data set.

While the estimation of small subnetworks can be efficiently done with dimensional
bootstrap, the main goal is to learn a complete network that contains all observed vari-
ables. Many algorithms have been developed to learn Bayesian networks, and some of
them address large domains. However, there is need for algorithms that learn unrestricted
BNs in large domains very efficiently with high quality. In this thesis, we introduced two
novel algorithms (substructure and S-DAG) to learn in such large-scale domains (chapter
5). Both algorithms have the same basic idea: Learning the network is split into many small
subproblems. Based on an undirected skeleton that can be estimated by constraint-based
methods, small sets of variables are created. Following the idea of dimensionality reduc-
tion, for each small set a single Bayesian network, called substructure, is learned. Thereby,
edges that can be learned are restricted to those edges that are contained in the skeleton.
The first algorithm, called substructure learning, focuses on the graphical representation of
large networks. Instead of creating a single BN, substructure learning represents the graph
structure as a feature partially directed acyclic graph (fPDAG). Under the condition that
the size of the subnetworks is restricted to a maximum value, the phase of learning the
Bayesian networks performs even linearly with the number of variables. We have shown
that substructure learning offers a better performance than MMHC as being one of the
state-of-the-art algorithms, and even outperforms MMHC in terms of structural quality of
the estimated network.

Learning the graph structure by substructure learning gives insights about the network
structure, however the resulting fPDAG lacks of a representation of the probability distri-
bution by means of a Bayesian network. To solve this problem, we introduced S-DAG as a
novel algorithm that utilizes the small subnetworks learned by substructure learning, com-
bines all edges that are learned in these subnetworks in a single network and iteratively
removes edges in the complete network until a directed acyclic graph structure remains
(chapter 5). We have shown that S-DAG outperforms MMHC in terms of several quality
measures based on a large set of benchmark networks, while the performance of S-DAG
is comparable to MMHC. Based on several benchmark data we have shown that S-DAG
also outperforms many other state-of-the-art score-based Bayesian network structure learn-
ing algorithms either in runtime or in quality of the network reconstruction: Greedy Hill
Climbing (GS), MMHC, Ant Colony Optimization (ACO, MMACO), Simulated Anneal-
ing (SA, MMSA) and Cyclic Hill Climbing (CHC).
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Since benchmarks on toy examples have shown promising results, we applied S-DAG on
two real microarray data sets to enable a full-genome analysis with Bayesian networks for
the first time (chapter 6). The goal of this task was two-fold: First, some important network
properties that exist in smaller subnetworks still exist in the large network. The architecture
of the network approximately remains scale-free as genetic networks are supposed to be.
We have also shown that genes that are a member of the iron homeostasis pathway in
yeast, which regulates the uptake, storage and utilization of iron, are closely related in
the learned BN. Moreover, we have shown that S-DAG is capable to learn unrestricted
Bayesian networks with tens of thousands of variables without any problem. One of the
microarray data sets contains almost 55.000 measured transcripts, resulting in a BN with
this number of variables. This network, learned with our novel algorithm S-DAG, is one
of the largest published BNs that was learned from data so far.
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A.1 Algorithm MMPC (Max-Min Parents and Children)

Algorithm 11: MMPC Algorithm
Input: target variable Xi, data set D, set of variables X
Output: PCi: the parents and children of Xi

// First phase: add positives to PCi

PCi = ∅;1

repeat2

// add the best candidate to PCi

foreach X j ∈ (X \ {PCi ∪ {Xi}}) do3

// Minimize dependency dep(Xi, X j | Z)
S ep[X j] = argmin

Z⊆PCi

dep(Xi, X j | Z);
4

end5

Y = argmax
X j∈(X\{PCi∪{Xi}})

dep(Xi, X j | S ep[X j]);
6

// Xi and Y cond. independent?

if not ind(Xi,Y | S ep[Y]) then7

PCi = PCi ∪ {Y};8

end9

until PCi has not changed ;10

// Second phase: remove false positives from PCi

foreach X j ∈ PCi do11

if ind(Xi, X j | Z) for some Z ⊆ PCi \ {X j} then12

PCi = PCi \ {X j} ;13

end14

end15

return PCi16

MMPC is an algorithm to detect the parents and children PCi of a variable Xi. This
algorithm was introduced in Tsamardinos et al. (2003) and is sketched in algorithm 11.
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The algorithm is taken from Pinto et al. (2009).
The detection of parents and children is done in two phases: A candidate set of parents

and children is created in the first phase (growing phase). In the second phase all false
positives are removed. The dependency dep is calculated by using the negative p-value
of the G2 independence test (Spirtes et al. 2001, Tsamardinos, Brown & Aliferis 2006).
Variables are rendered conditionally independent (function ind) if they are conditionally
independent on a significance level of 0.05.

A.2 Benchmark Networks

Throughout this thesis, a set of different benchmark networks is used. The benchmark
networks vary in network topology, size, domain range, number of edges, maximum in-
and out-degree, besides others. These properties are summarized in table A.1. Since there
is the demand for large benchmark networks, commonly used and well-known Bayesian
networks (Alarm, Insurance and Hailfinder) are used and are increased in size by the tiling
method described in Tsamardinos, Statnikov, Brown & Aliferis (2006), which uses one
network as tile and puts several tiles together. The number in the suffix of the network
name denotes the number of tiles used for the network.

The Alarm network was constructed by human experts for monitoring patients in in-
tensive care and introduced in Beinlich et al. (1989). It has become a popular benchmark
network for BN structure learning algorithm.

Insurance is a Bayesian network to model car insurance risk and to estimate the ex-
pected claim costs for a policyholder (Binder et al. 1997).

Hailfinder is a Bayesian network, constructred by meteorological data and modeled
with expert knowledge to forecast severe weather in Northeastern Colorado (Abramson,
Brown, Edwards, Murphy & Winkler 1996).

The ALL benchmark 1000 was learned from the ALL microarray data set (Yeoh, Ross,
Shurtleff, Williams, Patel, Mahfouz, Behm, Raimondi, Relling, Patel & Cheng 2002). The
network consists of 1000 discrete variables, and each of them has three states.
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A.2 Benchmark Networks

Table A.1: Properties of Bayesian networks: number of variables (Variables), number of
edges (Edges), maximum in/out degree of a node (Max In/Out), maximum num-
ber of parents and children (Max PC), average number of parents and children
(Avg PC) and domain range (DR)

Network Variables Edges Max In/Out Max PC Avg PC DR

Alarm 37 46 4 / 5 6.0 2.49 2 – 4
Alarm 10 370 570 4 / 7 9.0 3.08 2 – 4
Alarm 20 740 1101 4 / 7 7.0 2.98 2 – 4
Alarm 30 1110 1580 4 / 7 8.0 2.85 2 – 4
Alarm 50 1850 2854 4 / 8 9.0 3.09 2 – 4
Alarm 270 9990 15559 4 / 8 9.0 3.11 1 – 4
Insurance 27 52 3 / 7 9.0 3.85 2 – 5
Insurance 10 270 556 5 / 8 11.0 4.12 2 – 5
Insurance 20 540 1074 3 / 8 10.0 3.98 2 – 5
Insurance 30 810 1619 3 / 8 10.0 4.00 2 – 5
Insurance 200 5400 10774 3 / 10 12.0 3.99 1 – 5
HailFinder 56 66 4 / 16 17.0 2.36 2 – 11
HailFinder 10 560 1017 5 / 20 21.0 3.63 2 – 11
ALL benchmark 1000 1000 1157 3 / 29 31.0 2.31 2 – 3
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A.3 Detailed Results of Structure Learning Algorithms

In this section, detailed results about the performance of BN learning algorithms are re-
ported. All the results are normalized to the results of MMHC. Some algorithms need so
much runtime that they did not always finish within reasonable time (several hours). In this
case, the result is not available and marked with n/a.

Table A.2: Normalized “SHD” results

Sample size

Network Method 200 500 1000 5000 Avg

Alarm MMHC 1.000 1.000 1.000 1.000 1.000
Alarm S-DAG PMMS 0.962 1.001 0.960 1.118 1.010
Alarm S-DAG MMPC 0.949 1.001 0.921 1.000 0.968
Alarm MMSA 0.738 0.672 0.921 0.995 0.831
Alarm MMSA b 0.721 0.699 0.921 1.000 0.835
Alarm MMACO 0.715 0.690 0.921 1.000 0.831
Alarm MMACO b 0.707 0.665 0.921 1.000 0.823
Alarm GS 1.005 1.408 3.338 5.074 2.706
Alarm SA 0.493 0.398 0.734 0.761 0.596
Alarm SA b 0.493 0.343 0.898 0.715 0.612
Alarm ACO 0.472 0.356 0.629 0.597 0.514
Alarm ACO b 0.461 0.356 0.629 0.597 0.511
Alarm True 0.000 0.000 0.000 0.000 0.000
Alarm Empty 1.580 2.263 6.242 11.143 5.307

Alarm 10 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 10 S-DAG PMMS 0.935 0.896 0.831 0.782 0.861
Alarm 10 S-DAG MMPC 0.926 0.883 0.831 0.782 0.856
Alarm 10 MMSA 0.885 0.831 0.790 0.756 0.816
Alarm 10 MMSA b 0.887 0.835 0.796 0.751 0.817
Alarm 10 MMACO 0.901 0.838 0.795 0.757 0.823
Alarm 10 MMACO b 0.897 0.842 0.802 0.760 0.825
Alarm 10 GS 1.269 1.459 1.546 1.628 1.475
Alarm 10 SA 1.240 1.303 1.331 1.438 1.328
Alarm 10 SA b 1.269 1.292 1.365 1.413 1.335
Alarm 10 ACO n/a n/a n/a n/a n/a
Alarm 10 True 0.000 0.000 0.000 0.000 0.000
Alarm 10 Empty 1.312 1.630 1.854 2.390 1.797

Alarm 20 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 20 S-DAG PMMS 0.961 0.898 0.837 0.772 0.867
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Table A.2: Normalized “SHD” results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Alarm 20 S-DAG MMPC 0.953 0.891 0.836 0.778 0.865
Alarm 20 MMSA 0.901 0.851 0.798 0.746 0.824
Alarm 20 MMSA b 0.904 0.857 0.802 0.750 0.828
Alarm 20 MMACO 0.919 0.864 0.804 0.737 0.831
Alarm 20 MMACO b 0.920 0.864 0.804 0.740 0.832
Alarm 20 GS 1.414 1.584 1.663 1.753 1.604
Alarm 20 SA n/a n/a n/a n/a n/a
Alarm 20 ACO n/a n/a n/a n/a n/a
Alarm 20 True 0.000 0.000 0.000 0.000 0.000
Alarm 20 Empty 1.325 1.627 1.850 2.319 1.780

Alarm 30 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 30 S-DAG PMMS 0.957 0.900 0.813 0.741 0.853
Alarm 30 S-DAG MMPC 0.947 0.895 0.817 0.744 0.851
Alarm 30 MMSA 0.897 0.848 0.782 0.724 0.813
Alarm 30 MMSA b 0.895 0.847 0.784 0.722 0.812
Alarm 30 MMACO 0.918 0.855 0.784 0.713 0.817
Alarm 30 MMACO b 0.917 0.857 0.782 0.711 0.817
Alarm 30 GS 1.528 1.779 1.928 1.935 1.792
Alarm 30 SA n/a n/a n/a n/a n/a
Alarm 30 ACO n/a n/a n/a n/a n/a
Alarm 30 True 0.000 0.000 0.000 0.000 0.000
Alarm 30 Empty 1.324 1.677 1.935 2.380 1.829

Alarm 50 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 50 S-DAG PMMS 0.961 0.912 0.852 0.791 0.879
Alarm 50 S-DAG MMPC 0.956 0.904 0.852 0.793 0.876
Alarm 50 MMSA 0.905 0.852 0.830 0.774 0.840
Alarm 50 MMSA b 0.905 0.852 0.830 0.773 0.840
Alarm 50 MMACO n/a n/a n/a n/a n/a
Alarm 50 GS n/a n/a n/a n/a n/a
Alarm 50 SA n/a n/a n/a n/a n/a
Alarm 50 ACO n/a n/a n/a n/a n/a
Alarm 50 True 0.000 0.000 0.000 0.000 0.000
Alarm 50 Empty 1.242 1.495 1.741 2.108 1.647

Alarm 270 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 270 S-DAG PMMS 0.993 0.927 0.843 0.789 0.888
Alarm 270 S-DAG MMPC 0.981 0.915 0.845 0.790 0.883
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Table A.2: Normalized “SHD” results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Alarm 270 MMSA n/a n/a n/a n/a n/a
Alarm 270 MMACO n/a n/a n/a n/a n/a
Alarm 270 GS n/a n/a n/a n/a n/a
Alarm 270 SA n/a n/a n/a n/a n/a
Alarm 270 ACO n/a n/a n/a n/a n/a
Alarm 270 True 0.000 0.000 0.000 0.000 0.000
Alarm 270 Empty 1.104 1.410 1.667 1.978 1.540

Insurance MMHC 1.000 1.000 1.000 1.000 1.000
Insurance S-DAG PMMS 1.000 0.996 1.002 0.879 0.969
Insurance S-DAG MMPC 1.000 0.972 0.993 0.917 0.971
Insurance MMSA 1.004 0.964 1.047 0.874 0.972
Insurance MMSA b 1.005 0.948 1.048 0.883 0.971
Insurance MMACO 0.961 0.920 1.034 0.897 0.953
Insurance MMACO b 0.961 0.920 1.034 0.917 0.958
Insurance GS 1.040 1.078 1.299 1.292 1.177
Insurance SA 0.980 0.871 0.991 0.789 0.908
Insurance SA b 1.000 0.829 0.927 0.804 0.890
Insurance ACO 0.883 0.858 0.951 0.772 0.866
Insurance ACO b 0.883 0.840 0.944 0.774 0.860
Insurance True 0.000 0.000 0.000 0.000 0.000
Insurance Empty 1.241 1.514 1.894 2.246 1.724

Insurance 10 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 10 S-DAG PMMS 0.964 0.921 0.905 0.804 0.898
Insurance 10 S-DAG MMPC 0.964 0.890 0.907 0.786 0.887
Insurance 10 MMSA 0.885 0.859 0.826 0.688 0.814
Insurance 10 MMSA b 0.894 0.860 0.828 0.677 0.815
Insurance 10 MMACO 0.893 0.860 0.839 0.686 0.819
Insurance 10 MMACO b 0.891 0.864 0.834 0.691 0.820
Insurance 10 GS 1.070 1.242 1.364 1.649 1.331
Insurance 10 SA n/a n/a n/a n/a n/a
Insurance 10 ACO n/a n/a n/a n/a n/a
Insurance 10 True 0.000 0.000 0.000 0.000 0.000
Insurance 10 Empty 1.359 1.592 1.902 2.433 1.822

Insurance 20 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 20 S-DAG PMMS 0.975 0.919 0.842 0.734 0.867
Insurance 20 S-DAG MMPC 0.974 0.890 0.851 0.720 0.859
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Table A.2: Normalized “SHD” results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Insurance 20 MMSA 0.870 0.851 0.774 0.622 0.779
Insurance 20 MMSA b 0.866 0.854 0.771 0.623 0.779
Insurance 20 MMACO 0.900 0.866 0.793 0.608 0.792
Insurance 20 MMACO b 0.903 0.869 0.790 0.602 0.791
Insurance 20 GS 1.085 1.255 1.392 1.851 1.396
Insurance 20 SA n/a n/a n/a n/a n/a
Insurance 20 ACO n/a n/a n/a n/a n/a
Insurance 20 True 0.000 0.000 0.000 0.000 0.000
Insurance 20 Empty 1.378 1.688 1.954 2.555 1.894

Insurance 30 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 30 S-DAG PMMS 0.974 0.930 0.868 0.741 0.878
Insurance 30 S-DAG MMPC 0.973 0.894 0.854 0.720 0.860
Insurance 30 MMSA n/a n/a n/a n/a n/a
Insurance 30 MMACO n/a n/a n/a n/a n/a
Insurance 30 GS n/a n/a n/a n/a n/a
Insurance 30 SA n/a n/a n/a n/a n/a
Insurance 30 ACO n/a n/a n/a n/a n/a
Insurance 30 True 0.000 0.000 0.000 0.000 0.000
Insurance 30 Empty 1.331 1.672 1.975 2.623 1.900

Insurance 200 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 200 S-DAG PMMS 0.995 0.930 0.879 0.759 0.890
Insurance 200 S-DAG MMPC 0.992 0.900 0.870 0.730 0.873
Insurance 200 MMSA n/a n/a n/a n/a n/a
Insurance 200 MMACO n/a n/a n/a n/a n/a
Insurance 200 GS n/a n/a n/a n/a n/a
Insurance 200 SA n/a n/a n/a n/a n/a
Insurance 200 ACO n/a n/a n/a n/a n/a
Insurance 200 True 0.000 0.000 0.000 0.000 0.000
Insurance 200 Empty 1.265 1.606 1.910 2.600 1.845

HailFinder MMHC 1.000 1.000 1.000 1.000 1.000
HailFinder S-DAG PMMS 1.005 0.986 1.036 1.003 1.007
HailFinder S-DAG MMPC 1.005 1.000 0.988 0.954 0.987
HailFinder MMSA 1.003 1.270 1.337 1.399 1.252
HailFinder MMSA b 0.995 1.305 1.434 1.434 1.292
HailFinder MMACO 1.007 1.177 1.204 1.302 1.172
HailFinder MMACO b 1.003 1.176 1.103 1.372 1.164
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Table A.2: Normalized “SHD” results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

HailFinder GS 0.851 1.038 1.095 1.071 1.014
HailFinder SA 0.940 1.234 1.305 1.461 1.235
HailFinder SA b 0.937 1.190 1.303 1.520 1.238
HailFinder ACO 0.867 1.016 1.102 1.210 1.049
HailFinder ACO b 0.891 1.004 1.092 1.166 1.038
HailFinder True 0.000 0.000 0.000 0.000 0.000
HailFinder Empty 0.900 1.385 1.570 1.877 1.433

HailFinder 10 MMHC 1.000 1.000 1.000 1.000 1.000
HailFinder 10 S-DAG PMMS 0.998 0.989 0.985 0.966 0.985
HailFinder 10 S-DAG MMPC 0.998 0.989 0.973 0.965 0.981
HailFinder 10 MMSA 1.006 1.052 1.071 0.986 1.029
HailFinder 10 MMSA b 1.005 1.055 1.072 0.990 1.030
HailFinder 10 MMACO 0.991 0.983 0.969 0.979 0.980
HailFinder 10 MMACO b 0.990 0.977 0.973 0.981 0.980
HailFinder 10 GS 0.884 0.962 0.984 0.935 0.941
HailFinder 10 SA n/a n/a n/a n/a n/a
HailFinder 10 ACO n/a n/a n/a n/a n/a
HailFinder 10 True 0.000 0.000 0.000 0.000 0.000
HailFinder 10 Empty 0.937 1.130 1.289 1.405 1.190

Table A.3: Normalized “BDeu score” results

Sample size

Network Method 200 500 1000 5000 Avg

Alarm MMHC 1.000 1.000 1.000 1.000 1.000
Alarm S-DAG PMMS 0.997 1.000 0.997 1.001 0.999
Alarm S-DAG MMPC 0.999 1.000 0.997 1.000 0.999
Alarm MMSA 0.994 0.996 0.997 1.000 0.997
Alarm MMSA b 0.994 0.996 0.997 1.000 0.997
Alarm MMACO 0.994 0.996 0.997 1.000 0.997
Alarm MMACO b 0.994 0.996 0.997 1.000 0.997
Alarm GS 0.975 0.979 0.987 0.990 0.983
Alarm SA 0.966 0.970 0.977 0.986 0.975
Alarm SA b 0.964 0.969 0.977 0.986 0.974
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Table A.3: Normalized “BDeu score” results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Alarm ACO 0.964 0.969 0.977 0.986 0.974
Alarm ACO b 0.964 0.969 0.977 0.986 0.974
Alarm True 0.979 0.975 0.980 0.987 0.980
Alarm Empty 1.528 1.708 1.806 1.902 1.736

Alarm 10 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 10 S-DAG PMMS 0.995 0.994 0.992 0.993 0.994
Alarm 10 S-DAG MMPC 0.996 0.994 0.992 0.993 0.994
Alarm 10 MMSA 0.994 0.993 0.991 0.992 0.993
Alarm 10 MMSA b 0.993 0.993 0.991 0.992 0.993
Alarm 10 MMACO 0.994 0.993 0.991 0.992 0.993
Alarm 10 MMACO b 0.994 0.993 0.991 0.992 0.993
Alarm 10 GS 0.977 0.985 0.988 0.993 0.986
Alarm 10 SA 0.980 0.983 0.985 0.993 0.985
Alarm 10 SA b 0.976 0.979 0.983 0.991 0.982
Alarm 10 ACO n/a n/a n/a n/a n/a
Alarm 10 True 1.002 0.985 0.982 0.986 0.989
Alarm 10 Empty 1.389 1.509 1.574 1.662 1.534

Alarm 20 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 20 S-DAG PMMS 0.996 0.994 0.992 0.991 0.993
Alarm 20 S-DAG MMPC 0.996 0.994 0.992 0.992 0.994
Alarm 20 MMSA 0.994 0.994 0.992 0.991 0.993
Alarm 20 MMSA b 0.994 0.994 0.992 0.991 0.993
Alarm 20 MMACO 0.995 0.994 0.992 0.991 0.993
Alarm 20 MMACO b 0.994 0.994 0.992 0.991 0.993
Alarm 20 GS 0.979 0.983 0.988 0.994 0.986
Alarm 20 SA n/a n/a n/a n/a n/a
Alarm 20 ACO n/a n/a n/a n/a n/a
Alarm 20 True 1.007 0.986 0.984 0.987 0.991
Alarm 20 Empty 1.378 1.487 1.551 1.631 1.512

Alarm 30 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 30 S-DAG PMMS 0.995 0.995 0.991 0.990 0.993
Alarm 30 S-DAG MMPC 0.996 0.995 0.992 0.990 0.993
Alarm 30 MMSA 0.993 0.994 0.991 0.989 0.992
Alarm 30 MMSA b 0.993 0.994 0.991 0.989 0.992
Alarm 30 MMACO 0.994 0.994 0.991 0.989 0.992
Alarm 30 MMACO b 0.994 0.994 0.991 0.989 0.992
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Table A.3: Normalized “BDeu score” results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Alarm 30 GS 0.974 0.983 0.988 0.992 0.984
Alarm 30 SA n/a n/a n/a n/a n/a
Alarm 30 ACO n/a n/a n/a n/a n/a
Alarm 30 True 1.003 0.987 0.984 0.986 0.990
Alarm 30 Empty 1.378 1.489 1.551 1.625 1.511

Alarm 50 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 50 S-DAG PMMS 0.996 0.994 0.992 0.990 0.993
Alarm 50 S-DAG MMPC 0.996 0.994 0.992 0.990 0.993
Alarm 50 MMSA 0.994 0.993 0.992 0.990 0.992
Alarm 50 MMSA b 0.994 0.993 0.992 0.990 0.992
Alarm 50 MMACO n/a n/a n/a n/a n/a
Alarm 50 GS n/a n/a n/a n/a n/a
Alarm 50 SA n/a n/a n/a n/a n/a
Alarm 50 ACO n/a n/a n/a n/a n/a
Alarm 50 True 1.010 0.987 0.985 0.985 0.992
Alarm 50 Empty 1.378 1.490 1.553 1.628 1.512

Alarm 270 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 270 S-DAG PMMS 0.996 0.994 0.991 0.989 0.992
Alarm 270 S-DAG MMPC 0.997 0.995 0.991 0.989 0.993
Alarm 270 MMSA n/a n/a n/a n/a n/a
Alarm 270 MMACO n/a n/a n/a n/a n/a
Alarm 270 GS n/a n/a n/a n/a n/a
Alarm 270 SA n/a n/a n/a n/a n/a
Alarm 270 ACO n/a n/a n/a n/a n/a
Alarm 270 True 1.015 0.987 0.982 0.983 0.992
Alarm 270 Empty 1.385 1.488 1.566 1.628 1.517

Insurance MMHC 1.000 1.000 1.000 1.000 1.000
Insurance S-DAG PMMS 1.000 0.997 1.000 0.997 0.999
Insurance S-DAG MMPC 1.000 0.996 1.000 0.997 0.998
Insurance MMSA 0.999 0.995 1.000 0.997 0.998
Insurance MMSA b 0.999 0.995 1.000 0.997 0.998
Insurance MMACO 0.999 0.995 1.000 0.997 0.998
Insurance MMACO b 0.999 0.995 1.000 0.997 0.998
Insurance GS 0.996 0.979 0.977 0.986 0.984
Insurance SA 0.992 0.976 0.974 0.983 0.981
Insurance SA b 0.991 0.975 0.974 0.983 0.981
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Table A.3: Normalized “BDeu score” results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Insurance ACO 0.991 0.975 0.974 0.983 0.981
Insurance ACO b 0.991 0.975 0.974 0.983 0.981
Insurance True 1.077 1.012 0.995 0.987 1.018
Insurance Empty 1.364 1.446 1.502 1.582 1.473

Insurance 10 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 10 S-DAG PMMS 0.994 0.983 0.985 0.980 0.985
Insurance 10 S-DAG MMPC 0.996 0.984 0.986 0.980 0.987
Insurance 10 MMSA 0.985 0.980 0.983 0.977 0.981
Insurance 10 MMSA b 0.985 0.980 0.983 0.976 0.981
Insurance 10 MMACO 0.986 0.980 0.983 0.975 0.981
Insurance 10 MMACO b 0.985 0.980 0.983 0.975 0.981
Insurance 10 GS 0.975 0.978 0.981 0.985 0.980
Insurance 10 SA n/a n/a n/a n/a n/a
Insurance 10 ACO n/a n/a n/a n/a n/a
Insurance 10 True 1.028 0.985 0.975 0.965 0.988
Insurance 10 Empty 1.275 1.380 1.454 1.549 1.415

Insurance 20 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 20 S-DAG PMMS 0.995 0.984 0.981 0.972 0.983
Insurance 20 S-DAG MMPC 0.996 0.985 0.984 0.972 0.984
Insurance 20 MMSA 0.985 0.981 0.981 0.970 0.979
Insurance 20 MMSA b 0.985 0.981 0.981 0.969 0.979
Insurance 20 MMACO 0.986 0.982 0.981 0.968 0.979
Insurance 20 MMACO b 0.986 0.982 0.981 0.968 0.979
Insurance 20 GS 0.975 0.978 0.980 0.982 0.979
Insurance 20 SA n/a n/a n/a n/a n/a
Insurance 20 ACO n/a n/a n/a n/a n/a
Insurance 20 True 1.008 0.972 0.961 0.958 0.975
Insurance 20 Empty 1.275 1.387 1.456 1.548 1.417

Insurance 30 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 30 S-DAG PMMS 0.995 0.986 0.982 0.978 0.985
Insurance 30 S-DAG MMPC 0.997 0.987 0.984 0.977 0.986
Insurance 30 MMSA n/a n/a n/a n/a n/a
Insurance 30 MMACO n/a n/a n/a n/a n/a
Insurance 30 GS n/a n/a n/a n/a n/a
Insurance 30 SA n/a n/a n/a n/a n/a
Insurance 30 ACO n/a n/a n/a n/a n/a
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Table A.3: Normalized “BDeu score” results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Insurance 30 True 1.009 0.972 0.961 0.964 0.976
Insurance 30 Empty 1.274 1.389 1.456 1.560 1.420

Insurance 200 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 200 S-DAG PMMS 0.997 0.986 0.982 0.978 0.986
Insurance 200 S-DAG MMPC 0.999 0.988 0.984 0.977 0.987
Insurance 200 MMSA n/a n/a n/a n/a n/a
Insurance 200 MMACO n/a n/a n/a n/a n/a
Insurance 200 GS n/a n/a n/a n/a n/a
Insurance 200 SA n/a n/a n/a n/a n/a
Insurance 200 ACO n/a n/a n/a n/a n/a
Insurance 200 True 1.008 0.968 0.958 0.963 0.974
Insurance 200 Empty 1.274 1.384 1.454 1.558 1.417

HailFinder MMHC 1.000 1.000 1.000 1.000 1.000
HailFinder S-DAG PMMS 1.000 1.000 0.999 0.999 1.000
HailFinder S-DAG MMPC 1.000 1.000 1.000 0.999 1.000
HailFinder MMSA 0.999 1.007 1.007 1.005 1.004
HailFinder MMSA b 0.999 1.000 0.999 0.999 0.999
HailFinder MMACO 0.999 1.000 0.999 0.999 0.999
HailFinder MMACO b 0.999 1.000 0.999 0.999 0.999
HailFinder GS 0.940 0.997 0.999 0.999 0.984
HailFinder SA 0.955 1.010 1.009 1.005 0.995
HailFinder SA b 0.942 0.997 0.998 0.998 0.984
HailFinder ACO 0.938 0.996 0.998 0.998 0.983
HailFinder ACO b 0.938 0.996 0.998 0.998 0.982
HailFinder True 0.988 1.034 1.027 1.010 1.015
HailFinder Empty 1.171 1.312 1.349 1.393 1.306

HailFinder 10 MMHC 1.000 1.000 1.000 1.000 1.000
HailFinder 10 S-DAG PMMS 1.000 0.999 0.999 0.998 0.999
HailFinder 10 S-DAG MMPC 1.000 0.999 0.999 0.999 0.999
HailFinder 10 MMSA 0.994 1.008 1.004 0.998 1.001
HailFinder 10 MMSA b 0.993 1.005 1.002 0.998 1.000
HailFinder 10 MMACO 0.998 0.997 0.998 0.998 0.998
HailFinder 10 MMACO b 0.998 0.997 0.998 0.998 0.998
HailFinder 10 GS 0.936 0.988 0.987 0.929 0.960
HailFinder 10 SA n/a n/a n/a n/a n/a
HailFinder 10 ACO n/a n/a n/a n/a n/a
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Table A.3: Normalized “BDeu score” results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

HailFinder 10 True 1.038 1.078 1.059 0.950 1.031
HailFinder 10 Empty 1.164 1.297 1.336 1.313 1.278

Table A.4: Normalized “NSC” results

Sample size

Network Method 200 500 1000 5000 Avg

Alarm MMHC 1.000 1.000 1.000 1.000 1.000
Alarm S-DAG PMMS 0.970 0.990 1.061 0.945 0.992
Alarm S-DAG MMPC 1.050 1.054 1.048 1.044 1.049
Alarm MMSA 2.314 1.379 1.086 1.017 1.449
Alarm MMSA b 2.320 1.380 1.088 1.019 1.452
Alarm MMACO 1.861 1.381 1.188 1.190 1.405
Alarm MMACO b 1.865 1.385 1.190 1.187 1.407
Alarm GS 2.146 2.106 2.276 2.009 2.134
Alarm SA 73.085 82.244 87.460 67.952 77.685
Alarm SA b 73.290 82.380 87.458 67.825 77.738
Alarm ACO 26.385 43.814 62.946 107.030 60.044
Alarm ACO b 26.420 43.707 63.027 106.671 59.956

Alarm 10 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 10 S-DAG PMMS 1.000 0.993 0.989 0.981 0.991
Alarm 10 S-DAG MMPC 1.018 1.014 1.014 1.016 1.016
Alarm 10 MMSA 1.154 1.055 1.025 1.015 1.062
Alarm 10 MMSA b 1.154 1.055 1.024 1.014 1.062
Alarm 10 MMACO 1.105 1.065 1.050 1.081 1.075
Alarm 10 MMACO b 1.106 1.065 1.050 1.081 1.075
Alarm 10 GS 4.312 4.517 4.593 4.696 4.530
Alarm 10 SA 10.299 12.707 13.999 14.854 12.965
Alarm 10 SA b 10.216 12.718 14.026 14.894 12.963
Alarm 10 ACO n/a n/a n/a n/a n/a

Alarm 20 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 20 S-DAG PMMS 0.999 0.995 0.992 0.990 0.994
Alarm 20 S-DAG MMPC 1.010 1.008 1.008 1.009 1.009
Alarm 20 MMSA 1.119 1.042 1.022 1.011 1.049
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Table A.4: Normalized “NSC” results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Alarm 20 MMSA b 1.119 1.042 1.022 1.011 1.049
Alarm 20 MMACO 1.055 1.032 1.024 1.042 1.038
Alarm 20 MMACO b 1.055 1.032 1.024 1.042 1.038
Alarm 20 GS 4.639 4.915 4.967 5.110 4.907
Alarm 20 SA n/a n/a n/a n/a n/a
Alarm 20 ACO n/a n/a n/a n/a n/a

Alarm 30 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 30 S-DAG PMMS 0.999 0.994 0.993 0.992 0.995
Alarm 30 S-DAG MMPC 1.008 1.006 1.005 1.006 1.006
Alarm 30 MMSA 1.104 1.032 1.016 1.007 1.040
Alarm 30 MMSA b 1.104 1.032 1.016 1.007 1.040
Alarm 30 MMACO 1.044 1.023 1.017 1.027 1.028
Alarm 30 MMACO b 1.044 1.023 1.017 1.027 1.028
Alarm 30 GS 4.830 5.223 5.262 5.324 5.160
Alarm 30 SA n/a n/a n/a n/a n/a
Alarm 30 ACO n/a n/a n/a n/a n/a

Alarm 50 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 50 S-DAG PMMS 0.999 0.994 0.993 0.994 0.995
Alarm 50 S-DAG MMPC 1.005 1.003 1.003 1.004 1.004
Alarm 50 MMSA 1.083 1.021 1.010 1.005 1.030
Alarm 50 MMSA b 1.083 1.021 1.010 1.005 1.030
Alarm 50 MMACO n/a n/a n/a n/a n/a
Alarm 50 GS n/a n/a n/a n/a n/a
Alarm 50 SA n/a n/a n/a n/a n/a
Alarm 50 ACO n/a n/a n/a n/a n/a

Alarm 270 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 270 S-DAG PMMS 0.995 0.993 0.993 0.995 0.994
Alarm 270 S-DAG MMPC 1.003 1.001 1.001 1.001 1.001
Alarm 270 MMSA n/a n/a n/a n/a n/a
Alarm 270 MMACO n/a n/a n/a n/a n/a
Alarm 270 GS n/a n/a n/a n/a n/a
Alarm 270 SA n/a n/a n/a n/a n/a
Alarm 270 ACO n/a n/a n/a n/a n/a

Insurance MMHC 1.000 1.000 1.000 1.000 1.000
Insurance S-DAG PMMS 0.970 0.950 0.865 0.724 0.877
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Table A.4: Normalized “NSC” results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Insurance S-DAG MMPC 1.063 1.063 1.041 1.032 1.050
Insurance MMSA 1.800 1.395 1.233 1.112 1.385
Insurance MMSA b 1.800 1.397 1.234 1.115 1.386
Insurance MMACO 1.578 1.341 1.284 1.465 1.417
Insurance MMACO b 1.579 1.345 1.285 1.469 1.419
Insurance GS 1.539 1.613 1.344 0.783 1.320
Insurance SA 54.743 49.705 40.476 15.303 40.057
Insurance SA b 54.547 49.547 40.161 15.228 39.871
Insurance ACO 13.742 21.397 26.550 32.094 23.446
Insurance ACO b 13.585 21.586 26.634 32.067 23.468

Insurance 10 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 10 S-DAG PMMS 1.003 0.991 0.956 0.799 0.937
Insurance 10 S-DAG MMPC 1.040 1.031 1.029 1.027 1.032
Insurance 10 MMSA 1.709 1.222 1.136 1.058 1.281
Insurance 10 MMSA b 1.709 1.223 1.135 1.057 1.281
Insurance 10 MMACO 1.231 1.191 1.221 1.341 1.246
Insurance 10 MMACO b 1.230 1.190 1.223 1.343 1.247
Insurance 10 GS 3.485 3.718 3.836 3.015 3.514
Insurance 10 SA n/a n/a n/a n/a n/a
Insurance 10 ACO n/a n/a n/a n/a n/a

Insurance 20 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 20 S-DAG PMMS 1.002 0.996 0.976 0.863 0.959
Insurance 20 S-DAG MMPC 1.029 1.019 1.019 1.021 1.022
Insurance 20 MMSA 1.621 1.144 1.085 1.038 1.222
Insurance 20 MMSA b 1.622 1.144 1.085 1.038 1.222
Insurance 20 MMACO 1.163 1.115 1.127 1.226 1.158
Insurance 20 MMACO b 1.163 1.115 1.127 1.226 1.158
Insurance 20 GS 3.779 4.404 4.567 4.096 4.211
Insurance 20 SA n/a n/a n/a n/a n/a
Insurance 20 ACO n/a n/a n/a n/a n/a

Insurance 30 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 30 S-DAG PMMS 1.008 0.994 0.979 0.886 0.967
Insurance 30 S-DAG MMPC 1.031 1.013 1.014 1.016 1.019
Insurance 30 MMSA n/a n/a n/a n/a n/a
Insurance 30 MMACO n/a n/a n/a n/a n/a
Insurance 30 GS n/a n/a n/a n/a n/a
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Table A.4: Normalized “NSC” results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Insurance 30 SA n/a n/a n/a n/a n/a
Insurance 30 ACO n/a n/a n/a n/a n/a

Insurance 200 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 200 S-DAG PMMS 1.010 0.996 0.993 0.975 0.994
Insurance 200 S-DAG MMPC 1.024 1.002 1.002 1.003 1.008
Insurance 200 MMSA n/a n/a n/a n/a n/a
Insurance 200 MMACO n/a n/a n/a n/a n/a
Insurance 200 GS n/a n/a n/a n/a n/a
Insurance 200 SA n/a n/a n/a n/a n/a
Insurance 200 ACO n/a n/a n/a n/a n/a

HailFinder MMHC 1.000 1.000 1.000 1.000 1.000
HailFinder S-DAG PMMS 0.951 0.941 0.833 0.325 0.762
HailFinder S-DAG MMPC 1.054 1.010 1.014 1.009 1.022
HailFinder MMSA 2.303 1.633 1.433 1.160 1.632
HailFinder MMSA b 2.297 1.644 1.441 1.147 1.632
HailFinder MMACO 1.418 1.728 1.731 1.373 1.562
HailFinder MMACO b 1.413 1.727 1.738 1.375 1.563
HailFinder GS 1.846 1.442 1.012 0.255 1.139
HailFinder SA 40.502 31.067 18.861 3.039 23.367
HailFinder SA b 40.401 31.119 18.849 2.949 23.329
HailFinder ACO 12.462 16.526 16.834 9.294 13.779
HailFinder ACO b 12.482 16.301 16.867 9.280 13.733

HailFinder 10 MMHC 1.000 1.000 1.000 1.000 1.000
HailFinder 10 S-DAG PMMS 1.000 0.994 0.970 0.790 0.938
HailFinder 10 S-DAG MMPC 1.052 1.015 1.008 1.010 1.021
HailFinder 10 MMSA 2.619 1.205 1.117 1.050 1.498
HailFinder 10 MMSA b 2.617 1.205 1.117 1.051 1.498
HailFinder 10 MMACO 1.212 1.228 1.206 1.124 1.192
HailFinder 10 MMACO b 1.213 1.227 1.206 1.124 1.193
HailFinder 10 GS 2.807 3.119 3.268 2.979 3.043
HailFinder 10 SA n/a n/a n/a n/a n/a
HailFinder 10 ACO n/a n/a n/a n/a n/a
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Table A.5: Normalized Runtime results

Sample size

Network Method 200 500 1000 5000 Avg

Alarm MMHC 1.000 1.000 1.000 1.000 1.000
Alarm S-DAG PMMS 1.441 1.292 1.471 1.065 1.317
Alarm S-DAG MMPC 1.129 1.001 1.110 1.055 1.074
Alarm MMSA 5.761 3.718 3.196 1.720 3.599
Alarm MMSA b 6.593 4.359 3.491 1.821 4.066
Alarm MMACO 15.306 12.216 11.532 6.224 11.320
Alarm MMACO b 17.304 13.711 12.366 6.672 12.513
Alarm GS 1.436 1.551 1.669 1.864 1.630
Alarm SA 33.993 57.029 91.509 96.423 69.739
Alarm SA b 35.572 58.636 93.100 97.458 71.191
Alarm ACO 56.540 65.907 96.843 181.899 100.297
Alarm ACO b 60.489 68.592 100.506 184.971 103.639

Alarm 10 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 10 S-DAG PMMS 1.072 1.014 1.005 1.034 1.031
Alarm 10 S-DAG MMPC 0.949 0.932 0.949 1.026 0.964
Alarm 10 MMSA 5.858 3.625 2.681 1.426 3.398
Alarm 10 MMSA b 5.995 3.659 2.695 1.419 3.442
Alarm 10 MMACO 27.310 17.767 11.511 4.355 15.236
Alarm 10 MMACO b 28.464 18.296 11.905 4.335 15.750
Alarm 10 GS 10.151 9.128 7.824 6.207 8.327
Alarm 10 SA 52.085 56.247 57.243 47.259 53.208
Alarm 10 SA b 52.899 57.501 58.817 47.970 54.297
Alarm 10 ACO n/a n/a n/a n/a n/a

Alarm 20 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 20 S-DAG PMMS 0.997 0.998 1.010 0.993 1.000
Alarm 20 S-DAG MMPC 0.929 0.932 0.950 0.977 0.947
Alarm 20 MMSA 10.115 5.987 3.682 1.626 5.353
Alarm 20 MMSA b 10.395 6.119 3.798 1.626 5.485
Alarm 20 MMACO 24.146 14.487 9.487 3.358 12.869
Alarm 20 MMACO b 24.486 14.721 9.605 3.383 13.049
Alarm 20 GS 14.724 12.594 9.966 6.959 11.061
Alarm 20 SA n/a n/a n/a n/a n/a
Alarm 20 ACO n/a n/a n/a n/a n/a

Alarm 30 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 30 S-DAG PMMS 1.175 1.100 1.010 1.025 1.077
Alarm 30 S-DAG MMPC 1.081 1.028 0.964 1.004 1.019
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Table A.5: Normalized Runtime results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Alarm 30 MMSA 10.929 5.410 3.320 1.500 5.290
Alarm 30 MMSA b 10.824 5.381 3.402 1.491 5.275
Alarm 30 MMACO 26.230 14.836 8.854 3.135 13.264
Alarm 30 MMACO b 26.679 15.051 8.966 3.157 13.463
Alarm 30 GS 21.528 17.193 12.308 7.805 14.708
Alarm 30 SA n/a n/a n/a n/a n/a
Alarm 30 ACO n/a n/a n/a n/a n/a

Alarm 50 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 50 S-DAG PMMS 1.126 1.053 1.019 0.999 1.049
Alarm 50 S-DAG MMPC 1.050 1.016 1.011 1.006 1.021
Alarm 50 MMSA 10.165 4.572 3.098 1.449 4.821
Alarm 50 MMSA b 10.377 4.733 3.147 1.440 4.925
Alarm 50 MMACO n/a n/a n/a n/a n/a
Alarm 50 GS n/a n/a n/a n/a n/a
Alarm 50 SA n/a n/a n/a n/a n/a
Alarm 50 ACO n/a n/a n/a n/a n/a

Alarm 270 MMHC 1.000 1.000 1.000 1.000 1.000
Alarm 270 S-DAG PMMS 1.109 1.011 0.990 0.991 1.025
Alarm 270 S-DAG MMPC 1.057 1.003 1.001 1.000 1.015
Alarm 270 MMSA n/a n/a n/a n/a n/a
Alarm 270 MMACO n/a n/a n/a n/a n/a
Alarm 270 GS n/a n/a n/a n/a n/a
Alarm 270 SA n/a n/a n/a n/a n/a
Alarm 270 ACO n/a n/a n/a n/a n/a

Insurance MMHC 1.000 1.000 1.000 1.000 1.000
Insurance S-DAG PMMS 1.473 1.437 1.088 0.753 1.188
Insurance S-DAG MMPC 1.199 1.185 1.000 1.032 1.104
Insurance MMSA 4.401 4.225 2.907 1.513 3.262
Insurance MMSA b 5.176 5.406 3.668 1.464 3.928
Insurance MMACO 12.704 11.381 8.529 3.850 9.116
Insurance MMACO b 14.468 13.102 9.669 4.028 10.316
Insurance GS 1.060 1.374 1.281 0.743 1.115
Insurance SA 22.975 39.358 45.599 22.640 32.643
Insurance SA b 23.863 40.629 45.467 22.564 33.131
Insurance ACO 33.978 43.111 46.470 51.348 43.727
Insurance ACO b 36.308 45.539 48.906 51.196 45.487
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Table A.5: Normalized Runtime results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Insurance 10 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 10 S-DAG PMMS 1.672 1.237 1.094 0.766 1.192
Insurance 10 S-DAG MMPC 1.513 1.148 1.085 1.035 1.195
Insurance 10 MMSA 16.353 8.704 4.485 1.429 7.743
Insurance 10 MMSA b 16.300 8.579 4.551 1.446 7.719
Insurance 10 MMACO 37.551 24.185 14.774 3.859 20.092
Insurance 10 MMACO b 38.089 24.736 15.263 3.853 20.485
Insurance 10 GS 7.246 7.324 6.828 3.528 6.231
Insurance 10 SA n/a n/a n/a n/a n/a
Insurance 10 ACO n/a n/a n/a n/a n/a

Insurance 20 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 20 S-DAG PMMS 1.746 1.167 1.094 0.854 1.215
Insurance 20 S-DAG MMPC 1.670 1.082 1.055 1.031 1.209
Insurance 20 MMSA 16.925 7.193 4.321 1.485 7.481
Insurance 20 MMSA b 17.381 7.374 4.280 1.502 7.634
Insurance 20 MMACO 33.686 20.052 12.301 3.596 17.409
Insurance 20 MMACO b 34.750 20.811 12.699 3.617 17.969
Insurance 20 GS 10.531 11.433 9.779 5.311 9.264
Insurance 20 SA n/a n/a n/a n/a n/a
Insurance 20 ACO n/a n/a n/a n/a n/a

Insurance 30 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 30 S-DAG PMMS 1.926 1.078 1.020 0.828 1.213
Insurance 30 S-DAG MMPC 1.960 1.075 1.051 1.026 1.278
Insurance 30 MMSA n/a n/a n/a n/a n/a
Insurance 30 MMACO n/a n/a n/a n/a n/a
Insurance 30 GS n/a n/a n/a n/a n/a
Insurance 30 SA n/a n/a n/a n/a n/a
Insurance 30 ACO n/a n/a n/a n/a n/a

Insurance 200 MMHC 1.000 1.000 1.000 1.000 1.000
Insurance 200 S-DAG PMMS 8.009 1.022 0.996 0.956 2.746
Insurance 200 S-DAG MMPC 8.235 1.015 1.009 1.005 2.816
Insurance 200 MMSA n/a n/a n/a n/a n/a
Insurance 200 MMACO n/a n/a n/a n/a n/a
Insurance 200 GS n/a n/a n/a n/a n/a
Insurance 200 SA n/a n/a n/a n/a n/a
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Table A.5: Normalized Runtime results (Continued)

Sample size

Network Method 200 500 1000 5000 Avg

Insurance 200 ACO n/a n/a n/a n/a n/a

HailFinder MMHC 1.000 1.000 1.000 1.000 1.000
HailFinder S-DAG PMMS 1.671 1.388 1.012 0.294 1.091
HailFinder S-DAG MMPC 1.504 1.116 1.006 0.997 1.156
HailFinder MMSA 7.015 4.286 3.148 1.511 3.990
HailFinder MMSA b 7.433 4.463 3.281 1.476 4.163
HailFinder MMACO 20.439 15.428 11.086 2.571 12.381
HailFinder MMACO b 21.050 16.175 11.486 2.604 12.829
HailFinder GS 1.291 1.247 0.967 0.220 0.931
HailFinder SA 28.594 33.044 25.540 4.015 22.798
HailFinder SA b 30.336 33.890 26.146 3.903 23.569
HailFinder ACO 93.391 97.492 101.939 29.004 80.457
HailFinder ACO b 98.416 99.434 101.978 28.934 82.190

HailFinder 10 MMHC 1.000 1.000 1.000 1.000 1.000
HailFinder 10 S-DAG PMMS 5.622 1.306 1.045 0.710 2.171
HailFinder 10 S-DAG MMPC 5.521 1.307 1.072 1.014 2.229
HailFinder 10 MMSA 15.987 5.844 3.722 1.572 6.781
HailFinder 10 MMSA b 16.261 6.028 3.716 1.562 6.892
HailFinder 10 MMACO 37.290 18.722 11.488 3.020 17.630
HailFinder 10 MMACO b 37.923 19.074 11.683 3.037 17.929
HailFinder 10 GS 5.703 6.421 5.867 3.426 5.354
HailFinder 10 SA n/a n/a n/a n/a n/a
HailFinder 10 ACO n/a n/a n/a n/a n/a
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Table A.6: Average normalized “SHD” results
Sample size

Method 200 500 1000 5000 Avg

MMHC 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000
S-DAG PMMS 0.975 ± 0.019 0.939 ± 0.021 0.896 ± 0.026 0.837 ± 0.032 0.912
S-DAG MMPC 0.971 ± 0.020 0.925 ± 0.019 0.887 ± 0.028 0.822 ± 0.030 0.901
MMSA 0.909 ± 0.043 0.905 ± 0.041 0.918 ± 0.047 0.856 ± 0.051 0.897
MMSA b 0.908 0.911 0.929 0.860 0.902
MMACO 0.912 ± 0.042 0.895 ± 0.043 0.905 ± 0.050 0.853 ± 0.053 0.891
MMACO b 0.910 0.893 0.894 0.864 0.890
GS 1.127 ± 0.067 1.312 ± 0.073 1.623 ± 0.124 1.910 ± 0.187 1.493
SA 0.913 ± 0.085 0.951 ± 0.102 1.090 ± 0.135 1.112 ± 0.168 1.017
SA b 0.925 0.914 1.123 1.113 1.019
ACO 0.741 ± 0.086 0.743 ± 0.108 0.894 ± 0.134 0.860 ± 0.165 0.810
ACO b 0.745 0.733 0.888 0.846 0.803
True 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000
Empty 1.254 ± 0.038 1.591 ± 0.046 2.137 ± 0.117 2.927 ± 0.191 1.977

Table A.7: Average normalized “BDeu Score” results
Sample size

Method 200 500 1000 5000 Avg

MMHC 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000
S-DAG PMMS 0.997 ± 0.001 0.993 ± 0.001 0.991 ± 0.001 0.989 ± 0.002 0.992
S-DAG MMPC 0.998 ± 0.001 0.993 ± 0.001 0.992 ± 0.001 0.989 ± 0.001 0.993
MMSA 0.993 ± 0.001 0.994 ± 0.002 0.994 ± 0.002 0.991 ± 0.002 0.993
MMSA b 0.993 0.993 0.993 0.990 0.992
MMACO 0.994 ± 0.001 0.992 ± 0.002 0.993 ± 0.002 0.990 ± 0.002 0.992
MMACO b 0.994 0.992 0.993 0.990 0.992
GS 0.970 ± 0.004 0.983 ± 0.004 0.986 ± 0.004 0.983 ± 0.004 0.981
SA 0.973 ± 0.006 0.984 ± 0.007 0.986 ± 0.007 0.992 ± 0.007 0.984
SA b 0.968 0.980 0.983 0.989 0.980
ACO 0.964 ± 0.005 0.980 ± 0.005 0.983 ± 0.006 0.989 ± 0.006 0.979
ACO b 0.964 0.980 0.983 0.989 0.979
True 1.013 ± 0.003 0.995 ± 0.003 0.987 ± 0.003 0.978 ± 0.003 0.993
Empty 1.326 ± 0.007 1.444 ± 0.006 1.508 ± 0.007 1.583 ± 0.007 1.465
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Table A.8: Average normalized “NSC” results
Sample size

Method 200 500 1000 5000 Avg

MMHC 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000
S-DAG PMMS 0.993 ± 0.004 0.986 ± 0.004 0.969 ± 0.006 0.866 ± 0.006 0.953
S-DAG MMPC 1.030 ± 0.004 1.019 ± 0.003 1.016 ± 0.003 1.015 ± 0.003 1.020
MMSA 1.683 ± 0.042 1.213 ± 0.029 1.116 ± 0.024 1.047 ± 0.020 1.265
MMSA b 1.683 1.214 1.117 1.047 1.265
MMACO 1.296 ± 0.029 1.234 ± 0.023 1.205 ± 0.019 1.208 ± 0.017 1.236
MMACO b 1.296 1.234 1.207 1.208 1.236
GS 3.265 ± 0.068 3.451 ± 0.068 3.458 ± 0.081 3.141 ± 0.084 3.329
SA 44.657 ± 3.136 43.931 ± 2.545 40.199 ± 2.462 25.287 ± 2.034 38.519
SA b 44.613 43.941 40.123 25.224 38.475
ACO 17.530 ± 1.220 27.246 ± 1.130 35.444 ± 1.414 49.472 ± 1.447 32.423
ACO b 17.496 27.198 35.509 49.339 32.386

Table A.9: Average normalized “Runtime” results
Sample size

Method 200 500 1000 5000 Avg

MMHC 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000
S-DAG PMMS 2.234 ± 0.094 1.162 ± 0.062 1.066 ± 0.055 0.867 ± 0.045 1.332
S-DAG MMPC 2.138 ± 0.084 1.065 ± 0.058 1.020 ± 0.053 1.016 ± 0.041 1.310
MMSA 10.351 ± 0.884 5.356 ± 0.717 3.456 ± 0.604 1.523 ± 0.478 5.172
MMSA b 10.674 5.610 3.603 1.525 5.353
MMACO 26.074 ± 1.203 16.564 ± 0.844 11.062 ± 0.724 3.774 ± 0.570 14.369
MMACO b 27.023 17.297 11.516 3.854 14.923
GS 8.186 ± 0.311 7.585 ± 0.265 6.276 ± 0.266 4.007 ± 0.237 6.514
SA 34.412 ± 2.911 46.419 ± 2.364 54.973 ± 2.686 42.584 ± 2.482 44.597
SA b 35.667 47.664 55.882 42.973 45.547
ACO 61.303 ± 5.840 68.837 ± 4.435 81.751 ± 5.343 87.417 ± 5.027 74.827
ACO b 65.071 71.188 83.797 88.367 77.106
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