
Model-Based Development of
Software-intensive Automotive Systems

Stefan M. Kugele

TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Software & Systems Engineering

Model-Based Development of
Software-intensive Automotive Systems

Stefan M. Kugele

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Hans-Joachim Bungartz

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy

2. Univ.-Prof. Dr. Helmut Veith, Technische Universität Wien / Österreich

Die Dissertation wurde am 16.07.2012 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 06.11.2012 angenommen.

Abstract

The automotive industry in general and the automobile in particular changed
fundamentally during the last 125 years. First automobiles reflected the pioneering
spirit of their constructors in the field of classical engineering disciplines. During
the last 40 years, however, a shift from a few electrical control units with dedicated
functions to complex networks of highly interconnected, distributed, and multi-
functional software-intensive systems took place. This change was accomplished
at a pace engineers, engineering tools, and processes could not follow. As a con-
sequence, the expected and also targeted high quality and reliability standards
could not be reached in any case. New methodologies and tools have to be de-
veloped in order to cope with future challenges—electromobility, environmental
compatibility, and sustainability are only few of them.

This thesis proposes the ‘COLA automotive approach’. It enables seamless
model-based development of software-intensive automotive systems along dif-
ferent levels of abstraction. This leads to a reduction of complexity and takes
the principle of separation of concerns into account. The both syntactical and
semantical well-defined domain-specific modelling language COLA is used to
design such systems and hence is the basis for further activities. For example,
model analysis, model transformation, and semantics preserving deployment can
be performed. The capabilities of the COLA-IDE are completed by an export of
simulatable requirements specification documents and a traceability analysis. The
COLA engineering tool stores all artefacts in a single repository (‘single point of
truth’) reflecting the product data model, hence avoiding tool integration gaps. By
means of several case studies, the approach has been evaluated and its feasibility
has been shown.

iii

Kurzzusammenfassung

Die Automobilindustrie im Allgemeinen und das Automobil im Besonderen un-
terlagen während der vergangenen 125 Jahre weitreichenden Veränderungen. Die
ersten Fahrzeuge spiegelten den Pioniergeist ihrer Konstrukteure speziell in klassi-
schen Ingenieursdisziplinen wider. Während der letzten 40 Jahren fand jedoch eine
Weiterentwicklung statt von einigen wenigen Steuergeräten mit sehr spezifischen
Funktionen hin zu sehr komplexen untereinander stark vernetzen und verteil-
ten softwarelastiger Systeme. Dieser Wechsel vollzog sich mit einer derartigen
Geschwindigkeit, dass Ingenieure, Werkzeuge und Prozesse dieser Entwicklung
nicht schritthalten konnten. Als Konsequenz konnten die erwarteten und ange-
strebten hohen Qualitäts- und Zuverlässigkeitsstandards nicht immer erreicht
werden. Neue Vorgehensweisen und Werkzeuge müssen entwickelt werden um
den zukünftigen Herausforderungen wie Elektromobilität, Umweltverträglichkeit
und Nachhaltigkeit gerecht zu werden.

Diese Arbeit schlägt den „COLA Automotive Ansatz“ vor. Dieser ermöglicht
eine durchgängige modellbasierte Entwicklung von softwareintensiven Auto-
motivesystemen entlang unterschiedlicher Abstraktionsebenen. Diese führen zu
einer Reduzierung der Komplexität und tragen dem Prinzip „Separation of Con-
cerns“ Rechnung. Die sowohl syntaktisch als auch semantisch formal definierte
domänenspezifische Modellierungssprache COLA dient zur Beschreibung die-
ser Systeme und bildet somit das Fundament für weitergehende Aktivitäten. So
können beispielsweise Modellanalysen, Modelltransformationen und ein semanti-
kerhaltendes automatisches Deployment durchgeführt werden. Eine Ausleitung
simulierbarer Lastenhefte sowie eine Nachverfolgbarkeitsanalyse runden die Fä-
higkeiten der COLA-IDE ab. Das COLA Entwicklungswerkzeug speichert alle
Artefakte in einer zentralen Datenbank („Single Point of Truth“), welche das
Produktdatenmodell abbildet und somit Lücken bei der Werkzeugintegration
vermeidet. Anhand mehrerer Fallstudien wurde der Ansatz evaluiert und dessen
Tragfähigkeit bestätigt.

v

Geniale Menschen beginnen große Werke, fleißige Menschen vollenden sie.

—Leonardo da Vinci (1452-1519)

Acknowledgements

I would like to thank all the people who helped me to make this dissertation a
success. First, I want to express my gratitude to my supervisors Manfred Broy
and Helmut Veith for giving me the opportunity to work at their chairs. Moreover,
I want to thank Javier Esparza and his group for providing me such an inspiring
and cordial working environment.

In addition, my thanks also go to all the people with which I had the pleasure
to work over the last years in different projects. In particular to my workmates
Wolfgang Haberl, Markus Herrmannsdörfer, Stefano Merenda, Sabine Rittmann,
Bernd Spanfelner, Michael Tautschnig, Zhonglei Wang, and Doris Wild who
worked hand in hand in the BASE.XT and BASE.XT Pro Live projects and made
it to such a success story. At this point I would particularly like to thank Martin
Wechs from BMW Group, who supported the project over years and touted for
both the project and the gained research results within the company.

This dissertation is based on a number of already published papers. I am
grateful to the co-authors which supported me to publish these papers. Not above-
mentioned are Andreas Holzer, Visar Januzaj, and Christian Schallhart whom I am
indebted to, as well. I would also like to thank the reviewers that tremendously
helped me to improve the dissertation with their comments.

I am deeply grateful to Farhad, my family—especially my mother—, and friends
who supported me over the years. They gave me the strength and motivation to
achieve my aims and to overcome setbacks.

Munich, July 2012 Stefan Kugele

ix

CONTENTS

1. Introduction 1
1.1. Initial Situation . 1
1.2. Approach . 5
1.3. Contributions of this Thesis . 6
1.4. Outline of this Thesis . 9

2. Background 13
2.1. Embedded Systems: An Overview 13
2.2. Historical Review . 17

2.2.1. Classical Mechanical Engineering 17
2.2.2. From Revolution to Disenchantment of Software 18

2.3. Automotive Industry Characteristics 23
2.3.1. Automotive Industry . 24
2.3.2. Automotive Domains . 28

2.4. Current and Future Challenges . 33
2.4.1. Heterogeneity . 33
2.4.2. Clash of Cultures . 35
2.4.3. Control the Complexity . 36
2.4.4. Move from E/E Component-driven Development Towards

Function- and Mode-driven Development 38

3. Seamless Model-Driven Automotive System Development 41
3.1. Introduction . 42
3.2. Separation of Concerns Through Abstraction and Modularisation . 42
3.3. Theoretic Foundation: A Fertile Soil for Formal Methods 46
3.4. From Isolated Tools to an Integrated Authoring Environment . . . 48

3.4.1. Daily Practice . 48

xi

3.4.2. Solution . 51
3.5. Summary . 53

4. The COLA Automotive Approach 55
4.1. Introduction . 55
4.2. Architectural Levels . 56

4.2.1. Feature Architecture . 56
4.2.2. Logical Architecture . 60
4.2.3. Technical Architecture . 61
4.2.4. Summary . 65

4.3. COLA—The Component Language 66
4.3.1. Basic Concepts . 67
4.3.2. Operating Modes . 71
4.3.3. Syntax and Semantics of COLA 74
4.3.4. Examples from Control Theory 75

4.4. Deployment Process . 77
4.5. Related Work . 80

4.5.1. Modelling Along Different Levels of Abstraction 80
4.5.2. Behavioural Modelling . 82

5. Model Analysis 85
5.1. Introduction . 85
5.2. Requirements Analysis . 86

5.2.1. Introduction . 87
5.2.2. Realisation . 89
5.2.3. Discussion . 91

5.3. Deterministic Models . 92
5.3.1. Introduction . 92
5.3.2. Problem . 93
5.3.3. Realisation . 97

5.4. COLA Model Analysis via a Translation to Coloured Petri Nets . . 101
5.4.1. Introduction to Coloured Petri Nets 101
5.4.2. Translation Schema . 104
5.4.3. Translation Algorithm . 111
5.4.4. Example . 111
5.4.5. Related Work . 114
5.4.6. Summary . 115

6. Generation of Requirements Specification Documents 119
6.1. Introduction . 120
6.2. Document Structure . 121

6.2.1. Differentiation between Customer- and System Requirements122
6.2.2. Structuring . 123

6.3. Realisation . 126
6.4. Semantically Tangible Requirements Documents 129
6.5. Integration into the Context of IEEE Std 830-1998 131
6.6. Summary . 132

7. Deployment 135
7.1. Introduction . 135
7.2. Allocation . 139

7.2.1. Notation . 139
7.2.2. Constraints . 141
7.2.3. Realisation . 146

7.3. Scheduling . 147
7.3.1. Terminology . 147
7.3.2. A Taxonomy of Real-Time Scheduling Algorithms 148
7.3.3. Dependency Analysis . 150
7.3.4. Constraint System . 160
7.3.5. Realisation . 163
7.3.6. Complexity Analysis . 166

7.4. Fault Tolerance . 169
7.4.1. Fault Hypothesis . 170
7.4.2. Adaptions . 172

7.5. Related Work . 174
7.6. Summary . 179

8. Case Studies 181
8.1. Adaptive Cruise Control . 182

8.1.1. Functional Description . 183
8.1.2. Hardware Topology and Execution Platform 184
8.1.3. Summary . 185

8.2. Autonomous Parking System . 185
8.2.1. Functional Description . 187
8.2.2. Hardware Topology . 188
8.2.3. Execution Platform . 190

8.2.4. Summary . 191
8.3. Comfort Hatchback Opener . 191

8.3.1. Functional Description . 192
8.3.2. Requirements Specification Documents 194
8.3.3. Chain of Effects . 194
8.3.4. Summary . 195

8.4. Summary . 195

9. Summary and Outlook 197
9.1. Summary . 197
9.2. Outlook . 199

Bibliography 203

List of Figures 225

List of Algorithms 227

List of Tables 229

Glossary 231

A. PID Controller 237
A.1. COLA model . 237
A.2. Simulation with different parameter sets 237

CHAPTER

ONE

Introduction

The topic of this thesis is model-based development of software-intensive auto-
motive systems. The work at hand reports on the COLA automotive approach,
which considerably contributes to the state-of-the-art and state of today’s practice.
We first explain the initial situation by outlining the current state of practice in
automotive software development in Section 1.1. Next, in Section 1.2 the basic
ideas of the COLA automotive approach are sketched. In Section 1.3, we list the
major contributions of this dissertation and finally give an outline in Section 1.4.

Contents
1.1. Initial Situation . 1

1.2. Approach . 5

1.3. Contributions of this Thesis . 6

1.4. Outline of this Thesis . 9

1.1. Initial Situation

Technological View. Development of software-intensive automotive systems
changed fundamentally within a relatively short period of time. After the first
functions were realised using software about 40 years ago, a multitude of thitherto
unimaginable features entered the automobile mainstream in the proceeding
decades. This change was accomplished at a pace engineers, engineering tools,
and processes could not follow. As a consequence, the expected and also targeted
high quality and reliability standards could not be reached in any case. This is

2 | 1 INTRODUCTION

reflected in the warranty costs carmakers have to pay each year. To take a single
example: in 2000, DaimlerChrysler paid USD 1.5 billion warranty costs because of
quality issues of the Mercedes-Benz luxury-car. These costs amount to a total of
up to USD 500 per vehicle [14]. According to IBM research, about 30% of these
costs are attributable to software and electronics defects. Against this background
and an evermore penetration of E/E (Electrical/Electronic) systems in vehicles,
quality assurance along the value-added chain is of vital concernment.

The constantly increasing complexity of automobiles itself but also the complex-
ity to develop them can be attested to be the crucial point of automotive software
engineering. The mentioned pace of change was accomplished in different di-

Functional
Complexity

Organisational
Complexity

Architectural
Complexity

Figure 1.1.: Multi-dimensional explosion of complexity.

rections (visualised with three criteria in Figure 1.1). Nowadays, more than 3000
software controlled functions (→ Functional Complexity) perform a multitude of
control and monitoring tasks. Of course, only some of them are actually visible to
customer. This tremendous increase in functionality is reflected in the growth of
the E/E architecture both in the number of Electronic Control Units (ECUs) andelectronic control

unit the number of technological different bus systems (→ Architectural Complexity). In
1968, Conway [49] formulated a famous law named after him postulating that the
structure of a product reflects that of the company’s organisation. This has decisive
impacts on the software with respect to the overall engineering effort in general
and maintainability in particular. Many automotive companies are still organised
in terms of responsibilities for ECUs and not in terms of functionality. This cannot
be future-proof with regard to integration of functions, i. e., many functions will be
executed on less ECUs. Hence, parts of different functions are mixed on a single
ECU, which makes coordination work a difficult job (→ Organisational Complexity).

1.1 Initial Situation | 3

Up to now, there is to the best of our knowledge no commercial tool which
seamlessly captures the whole product life-cycle process in an adequate way.
Rather, the tool landscape is best characterised as an ad hoc coupled tool chain
with in many cases incompatible product data models. Different product data
models and oftentimes also different semantics when considering for example
tools like MATLAB/Simulink/Stateflow, ASCET, and SCADE hamper the use of
formal methods from a complete vehicle perspective.

Model-based development or model-based engineering is a promising develop-
ment methodology and in many disciplines a de-facto standard. The pervasive
use of models enables a sufficient raise of abstraction facilitating to grasp even
huge models. Furthermore, models with a sufficient amount of information and
details can be used to synthesise code for the target hardware for instance.

Macroeconomic View. The German industry is characterised by the automotive
sector unlike any other country of the European Union and even worldwide [137].
According to Bernard et al. [23], the automotive industry contributed in 2009 with
about 20% (> 263 billion euros) to the German total sales. With about 723.000
employees, the automotive industry is one of the most important employers in
Germany. When also considering the dense network of the supplying indus-
try, more than five million jobs are either directly or indirectly dependent on
automobiles. Denner [55] estimates that the added value for E/E components
in electric vehicles will increase from 40% to 75% in contrast to cars with con-
ventional drive. This increase in turn will reduce the added value of OEMs original

equipment

manufacturer

(Original Equipment Manufacturer) from 35% to 23% (cf. also Figures 1.2a and
1.2b). Eberbach-Sahillioglu [66] estimates that the worldwide added value of
automotive electrics and electronics will increase up to 316 billion euros till 2015.

Today, the German semiconductor market for motor vehicle electronics is more
than 4.1 billion euros. Automobile electronics has a share of more than 41% of
the total German market for electronic components with a growth of about 5%
in 2012 [39]. Burkert concludes from these numbers the importance of electric
and electronic systems in vehicles. In order to maintain technological leadership,
it is important to accomplish efforts to reduce E/E architectural complexity (for
example by a high level of integration in electronic components) with rigorous
systems engineering in general and automotive software engineering in particular.
Staying the leading driver for automotive innovations is a precondition to preserve
and create stainable jobs.

The importance of automotive electronics in general and software in particular is
shown in a study done by Mercer Management Consulting and HypoVereinsbank

4 | 1 INTRODUCTION

0 %

25 %

50 %

75 %

100 %

Conventional drive Electric drive

25 %

60 %

75 %

40 %

E/E amount Remaining vehicle

(a) Added value w.r.t the drive forms.

0 %

25 %

50 %

75 %

100 %

Conventional drive Electric drive

77 %65 %

23 %35 %

OEM Suppliers

(b) Distribution of the added value between
OEM and suppliers.

Figure 1.2.: Figure (a) shows the shift of the added value with respect to the E/E parts
between conventional and electric drive. Figure (b) illustrates that the added
value amount of suppliers will even more increase in case of electric drives
(according to Denner [55]).

in 2001 [149]. Accordingly, in the year 2010, 13% of a car’s production cost is
associated to software. Together with the electronic components the software runs
on, 35% are reached. This is similar to Grimm [83] who expects about 40% of the
overall production cost for electronics (cf. Figure 1.3). Interestingly, the proportion

20102005200019951990198519801975

5 %
10 %
15 %
20 %
25 %
30 %
35 %
40 %
45 %

Engine Control
Anti Blocking System

Transmission Control
Electronic Stability Program

Adaptive Cruise Control

Break-by-wire

x-by-wire

Figure 1.3.: Proportion of cost incurred by electronics [83].

of costs dedicated to software and hardware changed from 20% : 80% in the year
2000 to 38% : 62% in 2010, respectively (cf. Figure 1.4). Again, this underlines the

1.2 Approach | 5

importance of software. According to Grimm, Daimler expects that about 80% of

0 %

7,00 %

14,00 %

21,00 %

28,00 %

35,00 %

2000 2010

Software Basic Software
Operating System Application Software
Hardware

Figure 1.4.: E/E value of software and hardware.

all future innovations will be electronics-driven and 90% thereof by software.
This thesis makes a significant contribution in the field of automotive software

engineering by proposing the COLA automotive approach sketched next.

1.2. Approach

In full awareness of the complexity, the COLA automotive approach contributes
to the state-of-the-art and state of practice in the field of model-based development
of software-intensive automotive systems. The centrepiece of the COLA auto-
motive approach is the well-defined graphical and textual modelling language
COLA—The Component language, which enables the application of formal meth-
ods. COLA models are designed along different levels of abstraction, namely the
Feature Architecture, the Logical Architecture, and the Technical Architecture. Arte-
facts modelled on the former are the most abstract ones, whereas the Technical
Architecture shows the most concrete, i. e., technical artefacts close to the execu-

6 | 1 INTRODUCTION

tion platform. All artefacts and their relations are stored in a central repository
reflecting the product data model. This allows to run verification or analysis tasks
24 hours a day, 7 days a week, and decouples these or similar time-consuming
tasks from the engineer’s workstation. One is aspired to perform as many analysis
tasks at an early stage of the development process (‘front loading’). The COLA
automotive approach follows the idea of a systems compiler, which means that an
executable system is generated directly from the model under consideration of
optimisation goals and constraints. The COLA-IDE as a sophisticated authoring
and engineering tool is used to model automotive E/E systems both graphically
and textually. It has the distinction of being a fully integrated engineering tool
rather than being characterised as an ad-hoc coupled pragmatic tool chain. This
seamless integration of modelling, analysis, and deployment capabilities renders
the deployment procedure ‘push-button’.

1.3. Contributions of this Thesis

This thesis presents the following contributions to the current state-of-the-art. The
seven previously published papers are listed below:

(i) Stefan Kugele, Michael Tautschnig, Andreas Bauer, Christian Schallhart,
Stefano Merenda, Wolfgang Haberl, Christian Kühnel, Florian Müller, Zhon-
glei Wang, Doris Wild, Sabine Rittmann, and Martin Wechs. COLA—The
Component Language. Technical Report TUM-I0714, Institut für Informatik,
Technische Universität München. September 2007.

(ii) Stefan Kugele and Wolfgang Haberl. Mapping Data-Flow Dependencies
onto Distributed Embedded Systems. In Proceedings of the 2008 International
Conference on Software Engineering Research & Practice, SERP 2008, Las Vegas,
Nevada, USA, July 2008.

(iii) Stefan Kugele, Wolfgang Haberl, Michael Tautschnig, and Martin Wechs.
Optimizing automatic deployment using non-functional requirement an-
notations. In T. Margaria and B. Steffen, editors. Leveraging Applications
of Formal Methods, Verification and Validation, Third International Symposium,
ISoLA 2008, Porto Sani, Greece, October 13-15, 2008. Proceedings, volume 17 of
Communications in Computer and Information Science. Springer, 2008.

(iv) Wolfgang Haberl, Stefan Kugele, and Uwe Baumgarten. Reliable Operating
Modes for Distributed Embedded Systems. In Proceedings of the ICSE Work-

1.3 Contributions of this Thesis | 7

shop on Model-based Methodologies for Pervasive and Embedded Software, volume
0, pages 11–21, Los Alamitos, CA, USA, May 2009. IEEE Computer Society.

(v) Wolfgang Haberl, Markus Herrmannsdoerfer, Stefan Kugele, Michael
Tautschnig, and Martin Wechs. One click from model to reality, 2009. Ac-
cepted for presentation at SAASE ’09: Symposium on Automotive/Avionics
Systems Engineering.

(vi) Wolfgang Haberl, Markus Herrmannsdoerfer, Stefan Kugele, Michael
Tautschnig, and Martin Wechs. Seamless model-driven development put
into practice. In T. Margaria and B. Steffen, editors, Leveraging Applications of
Formal Methods, Verification, and Validation, volume 6415 of Lecture Notes in
Computer Science, pages 18–32. Springer, October 2010.

(vii) Wolfgang Haberl, Stefan Kugele, and Uwe Baumgarten. Model-Based Gen-
eration of Fault-Tolerant Embedded Systems. In H. R. Arabnia and A. M.
G. Solo, editors, Proceedings of the 2010 International Conference on Embedded
Systems and Applications, ESA 2010, pages 136–142, Las Vegas, Nevada, USA,
July 2010. CSREA Press.

Seamless MDD Automotive Development. As we will see in the following
chapter, seamless model-driven development of software-intensive automotive
systems is one important building block to improve the system quality and
moreover the state of practise and state-of-the-art. This includes besides a
unique modelling formalism also modelling along different levels of abstraction.
The practical applicability is shown by means of the case study explained in
Section 8.2 [86, 87].

Data- and Control-Flow-Driven Specification of Automotive Systems. Together
with my colleagues, the data- and control-flow language COLA core [130] has
been envisioned and realised within the integrated engineering tool COLA-
IDE [86, 87].

Quality Improvements through Model Analysis. One of the major benefits
when working with mathematically well-defined modelling formalisms, such as
the COLA core modelling language, formal verification and model transformation
are enabled, just to mention two of the benefits. The detection of requirements
inconsistencies through model checking techniques is detailed on in Section 5.2,
the transformation of the COLA core language into Coloured Petri nets (CPNs),
as published in [106], is one way to employ the power of available modelling

8 | 1 INTRODUCTION

and analysis tools such as the Coloured Petri nets tools (CPN tools). Moreover,
engineers are given hints of possibly undesired non-deterministic system
behaviours (cf. Section 5.3).

Generation of Executable Requirements Specification Documents. The COLA-
IDE allows to generate requirements specification documents straight from the
tool. All artefacts stored in the model repository can be part of the generated
output, for example, formal or informal requirements, COLA textual and/or
graphical syntax. The look and feel can be adopted according to corporate design
guidelines using stylesheets. The structure of the generated documents has been
integrated into the next generation tool chain of our industrial partner and their
user requirements specification process. Moreover, due to the tight integration of
the generator into the engineering tool, the generated output can be considered
as a semantically tangible requirements document as it is dynamic. This means that
contained modelling artefacts can be simulated.

Optimised Automatic Deployment. The presented deployment methods follow
the idea of a systems compiler that, analogous to a compiler for programming lan-
guages, transforms source artefacts into an executable system under consideration
of optimisation goals. Optimisation is performed during system allocation with
respect to memory and CPU demands and during scheduling. Here a makespan
optimisation is performed. In general, many non-functional requirements can be
considered as well [88, 129].

Reliable Deployment of Operating Modes. The COLA core modelling language
supports the powerful concept of operating modes. They are used to decouple
complete system states into independent modes of operation, such as ‘start up’,
‘driving’, and ‘parking’. This enables separate modelling and analysis of particular
modes, thus reducing the complexity apparent to developers. Furthermore,
resources are saved on the execution platform. During deployment, operating
modes have to be considered especially during schedule generation as pointed
out in [88, 128].

Automatic Generation of Fault Tolerant Operating Modes. As a consequent
extension, [89] describes modifications to the COLA automotive deployment
concept, which are capable to tolerate to a certain extent hardware failures such as
ECU or cable brake downs.

1.4 Outline of this Thesis | 9

Evaluation through Case Studies. The feasibility of the presented COLA auto-
motive approach has been demonstrated with several case studies partly in a tight
cooperation with the industrial collaborator.

1.4. Outline of this Thesis

Contributions Chapters

Chapter 1
Introduction

Chapter 3
Seamless Model-Driven
Automotive System
Development

Chapter 5
Model Analysis

Chapter 7
Deployment

Chapter 8
Case Studies

Chapter 9
Summary and Outlook

Chapter 6
Generation of Requirements
Specification Documents

Chapter 4
The COLA
Automotive Approach

Seamless MDD Automotive
Development

Data- and Control-Flow-
Driven Specification of
Automotive Systems

Quality Improvements
through Model Analysis

Evaluation through Case
Studies

Optimised Automatic
Deployment

Reliable Deployment of
Operating Modes

Automatic Generation of
Fault Tolerant Operating
Modes

Generation of Executable
Requirements Specification
Documents

Chapter 2
Background

Figure 1.5.: Structure of this thesis.

In this dissertation, an automotive software development approach developed
within a cooperation project together with BMW Group will be carried out. The

10 | 1 INTRODUCTION

main idea is a seamless model-based development process of software-intensive
automotive systems along different levels of abstraction. Figure 1.5 displays the
contributions and chapters of this thesis.

Chapter 2 (Background) states basic facts about embedded systems in general, their
omnipresent penetration of everyday’s products, and their special requirements
concerning timely execution. Next, a historical sketch of the automotive industry
from purely mechanical to complex mechatronic-focused embedded systems is
given. Their special characteristic and problems as well as future challenges is
given next.

Chapter 3 (Seamless Model-Driven Automotive System Development) starts with
deficiencies of commonly used engineering tools in Section 3.1 and based on
this perception states the proposed solution in the following. The principle of
‘separation of concerns’ is seized on in Section 3.2 and the importance of having a
well-defined modelling formalism is outlined in Section 3.3. Before summarising
in Section 3.5, the step from isolated tools to an integrated authoring environment
is described in Section 3.4.

Chapter 4 (The COLA Automotive Approach) delves into the developed COLA
automotive approach with an introduction to the component language COLA, the
way of modelling along different levels of abstraction, and the way of bridging the
gap between a logical model and an executable system—the deployment process.

Chapter 5 (Model Analysis) points out that the well-defined foundation of COLA
facilitates the application of formal methods. Besides COLA model analyses
carried out in this chapter, also a translation into other modelling formalisms like
Coloured Petri nets is possible.

Chapter 6 (Generation of Requirements Specification Documents) underlines the
importance of requirements specification documents in the development of
huge systems such as those included in automotive E/E architectures. They
usually define the functional range of what to realise and not how to realise that
particular function. Especially due to the tight cooperative work of OEMs and
Tier 1 suppliers, a correct, consistent, and—if possible—complete specification
is obligatory. This chapter presents an approach, as it is integrated into the
COLA-IDE, to generate a well-structured requirements specification document
directly from the model repository. A tight integration of the generated document,

1.4 Outline of this Thesis | 11

the engineering tool, and the simulator makes the document dynamic.

Chapter 7 (Deployment) describes one of the main contributions of this thesis: an
automatic deployment approach. The realised ‘push-button’ manner of the COLA
automotive engineering tool allows an unattended transition from a logical
(behavioural) model into executable code on the target platform. This process
includes amongst others optimal allocation of software artefacts to hardware
entities and the generation of a time-triggered schedule. All involved steps are
performed automatically, which is a novelty in this field and a big step towards a
Systems Compiler.

Chapter 8 (Case Studies) elaborates by means of different case studies the
capabilities and feasibility of the COLA automotive approach.

Chapter 9 (Summary and Outlook) summarises this thesis and lists ideas of possible
future research directions.

CHAPTER

TWO

Background

In the same way as the first automobiles were purely mechanical and did not
contain any software or electric components at all, so automobility cannot be
imagined without electronic advanced driver assistance systems, today. This
transition from purely mechanical automobiles to mechatronic cars was immense.
In the following Section 2.1, a short overview of embedded systems is given since
the E/E parts of an automobile, which this thesis particularly deals with, build up
a very complex networked distributed embedded system. Next, the mentioned
transition and its cornerstones are outlined in Section 2.2, before characterising the
particular aspects of the automotive domain in Section 2.3. This leads in Section 2.4
to challenges the automotive industry is faced with.

Contents
2.1. Embedded Systems: An Overview 13

2.2. Historical Review . 17

2.3. Automotive Industry Characteristics 23

2.4. Current and Future Challenges 33

2.1. Embedded Systems: An Overview

The importance and indispensability of embedded systems grew tremendously
during the last four decades. One interacts with embedded systems in many
situations in everyday life—be it wittingly or unwittingly. As their presence is
ubiquitous, the necessity of quality, reliability, and safety grows. Their area of

14 | 2 BACKGROUND

application spans a very wide range of different domains with likewise different
requirements and characteristics.

On the one hand, there are the more or less non-safety critical consumer elec-
tronic products like smart phones, MP3 players, or tablet PCs. Washing machines,
microwaves, and home- or building automation are other examples where embed-
ded systems are used to make our lives easier and more convenient. All mentioned
examples have in common that their reliability requirements are circumstantial,
whereas their primary design goal was usability including their Human-Machine
Interface (HMI).human-machine

interface On the other hand, there is a huge class of embedded systems posing special
demands concerning reliability, robustness, safety, and timely execution. Their
fields of application are manifold: plant automation systems, like for example
nuclear power plants, airplanes and automobiles are smaller ones, but never-
theless big compared to small medical equipment like pacemaker, implantable
cardioverter-defibrillators, or cochlear implants, just to mention a few. Any kind
of failure in this category of embedded systems may be serious or even endanger
human lives in the worst case. In any case, accident or maloperation, the operating
company has to anticipate high warranty costs or claims for indemnification. It is
remarkable that even the mentioned medical devices, which one could ascribe a
very high quality, are not error-free: in the United States more than 200,000 pace-
maker and implantable cardioverter-defibrillators were recalled due to software
problems between 1990 and 2000 [144]. Engineers develop systems in these and
many other application areas, where an imminent need for quality and absence of
errors meets the problem’s inherent complexity.

The importance of embedded systems also in the economic sense becomes
apparent: according to Ebert and Jones [67], the worldwide market for embedded
systems is around 160 billion euros with an annual growth of 9%. In fact, most
microprocessors are used in embedded systems that are not first and foremost
computers. Actually, up to 98% of all processors are integrated into embedded
systems [28, 180].

In many cases, embedded systems are used to control complete systems or
parts of them like an engine, a wing stabilisation, or certain parts of a plant. The
term control refers to the fact that the system reacts on a continuously changing
environment or user input with certain actions. An Adaptive Cruise Control
(ACC) system, for instance, controls the speed of a vehicle in order to maintainadaptive cruise

control a user-defined driving speed. Thereby the minimum distance to ahead driving
cars is respected. Thus it reacts by controlling the pace, if the ahead driving
car accelerates or breaks or, analogously, if the road condition, i. e., the environ-

2.1 Embedded Systems: An Overview | 15

ment, changes. Such systems react continuously and are therefore executed in
a loop. Consequently, Harel and Pnueli coined the phrase reactive system [93].
Figure 2.1 [179] depicts the control system ‘Automobile’ from a control-theoretic
point of view. The system ‘Automobile’ is affected by the environment and by

Automobile

Driver Environment

Set point
device Actuators SensorsControlled

systemController

Figure 2.1.: Control system according to [179].

the user, who sets for instance the desired speed (set point device). The engine
speed (actuator) is set accordingly by the controller. As a consequence, the speed
of the car changes through the physical plant, which is detected by sensors and
fed back to the controller for the next loop iteration. A common characteristic is
the following: the physical world (environment) is measured using sensors and
actions are triggered using actuators. As this thesis concentrates on the functional

continuous environment

discrete core

Figure 2.2.: Discrete core of COLA systems.

description, modelling, and deployment of automotive systems, it is the discrete
core (cf. Figure 2.2) rather than its embedding into a continuous world, which
is considered in the following. Therefore, the interface between them, i. e., the
sensors and actuators and their analogue-digital (A/D) conversion and vice versa,
is assumed to be given.

16 | 2 BACKGROUND

If not only the correct operation, but also the point in time and therefore a timely
execution of a system is necessary for a safe, correct, and intended execution, such
systems are referred to as real-time systems, as described by Kopetz [117]. Real-timereal-time system

systems are divided into two classes:

(i) soft real-time and

(ii) hard real-time systems.

Soft real-time systems require that most of the results are computed within their
deadlines. Results available after their demanded deadline reduce their usefulness
and degrade the overall system quality. In contrast, hard real-time systems require
all data to be available on time for a correct operation. Missing a deadline leads to a
system failure. Hence, safety critical automotive functions, for example the airbag
system or the electronic stability control are hard real-time systems, whereas,
for instance, telematics or infotainment services are—if at all—realised as soft
real-time systems.

timedi
st

rib
ut

io
n

of
 ti

m
es

measured execution times

possible execution times

timing predictability

Lower
timing
bound

BCET

Minimal
observed
execution

time

Maximal
observed
execution

time

WCET

Upper
timing
bound

Figure 2.3.: Worst-case execution time according to Wilhelm et al. [198].

As time plays a crucial role for hard real-time systems, it is of importance to
know their timing behaviour already at design time to guarantee that all deadlines
are met. Therefore, the Worst-Case Execution Time (WCET) (cf. Figure 2.3) ofworst-case

execution time operations (on a specific target platform) is needed, i. e., the time required for the
longest of all possible executions. In general, calculating the WCET is difficult,
as all possible execution paths have to be checked, which in case of loops is
impossible. Thus, in the automotive domain, the software development standard

2.2 Historical Review | 17

for C programs, MISRA C [151], prohibits certain programming constructs such as
recursive function calls (cf. the required rule 70 ‘Functions shall not call themselves,
either directly or indirectly’) whose runtime in many cases depends on the input
values. In any case it is important that the estimated WCET is not less than the
actual execution on the target, but is as close as possible. For a comprehensive
survey of WCET analysis methods and tools, refer to Wilhelm et al. [198].

2.2. Historical Review

Development of automotive systems in general and automotive software in par-
ticular is best characterised in terms of a gradual evolution that took place over
more than a century. In the following, the cornerstones of the transition from
purely mechanical to electrical/electronic and software-controlled automobiles is
outlined.

2.2.1. Classical Mechanical Engineering

First automobiles reflected the pioneering spirit of their constructors in the field
of classical engineering disciplines, as they were purely mechanical and steam-
powered. Later on internal combustion engines became the state-of-the art. At that
time, cars were purely mechanical, without any electric device. In 1885 when Karl
Benz built the first petrol-powered automobile—the Benz Patent-Motorwagen
(cf. Figure 2.4)—, the pioneers at that time certainly could not imagine how an
automobile would look like more than 125 years later. Neither their performance
nor their functions besides the primary purpose—mobility and locomotion—could
be brought to mind. Finally, the introduction of an assembly line between 1908
and 1915 for the Ford Model T, credited to Henry Ford, paved the way for a mass
production. About ten years later, in 1926, the Robert Bosch GmbH invented a
windscreen wiper, which was powered by an electric motor. This was one of the
first examples of an electric device in a car.

In subsequent years, more and more electrical devices found their way into
automobiles, the electric fuel injection marks one of those milestones. The late 70’s
and beginning 80’s of the past century, however, can be thought of as the time when
E/E components established themselves. Gradually, also the design objectives
changed. In the beginning, for instance, engine controllers were optimised in terms
of speed and power, whereas today the focus shifts towards energy efficiency.
Over the last years the number of electronic components realising mostly safety

18 | 2 BACKGROUND

Figure 2.4.: The Benz Patent-Motorwagen Nr. 3 of 1888 [22]. Bertha Benz used it for
the first long distance journey by automobile from Mannheim to Pforzheim,
Germany.

and comfort functions increased significantly.
Nowadays, most of such electronic components run software affecting the de-

sired features, or are realised as a combination of software and hardware. Today’s
premium class cars contain several thousands of software-controlled functions,
that—in combination with electronics—facilitate about 90% of all automotive
innovations. Figure 2.5 gives an excerpt from some E/E-related inventions in
automotive history.

2.2.2. From Revolution to Disenchantment of Software

About 40 years ago, software began to change the automotive industry fundamen-
tally [35]. At the early beginning of this turning point, only very few functions
were controlled and realised by software. Broy [29] mentions the engine control
and in particular the ignition system. Since then more and more electronic control
units found their ways into automotive E/E architectures. Actually the number
of assembled ECUs grew exponentially (cf. Section 2.4.3), which of course comes

2.2 Historical Review | 19

1900 19601920 1940 1980 2000

rad
io

ele
ctr

ic
wiper

ele
ctr

ic
fu

el
injec

tio
n

ABS

lam
bda s

onde
air

bag

ESP

 st

art
 &

 st
op

 G

PS-b
ase

d nav
igati

on
LDW

prec

ras
h sy

ste
m

 b
rea

k as
sis

t

 f
ully

 el
ect

ric
 ig

nitio
n

 H

V m
ag

neto
 ig

nitio
n

Figure 2.5.: Milestones in automotive E/E history.

along with an increase in the amount of software. Nowadays, all domains like
passive safety, powertrain, chassis/driver assistance, body electronic, and especially the
human-machine interface and infotainment domain are software-orientated.

At the early beginning, engineers wrote software parts of their systems un-
der development predominantly using assembly language. In subsequent years
and even till today, the most influential programming language for automotive
software development has become C with all its advantages and disadvantages.
During the last years, however, model-based development became more and more
popular and turned out to be a promising methodology for software development
for safety-critical embedded automotive systems. In the avionics domain, for
instance, important European projects including the Airbus A340-600, A380, and
functions developed by Eurocopter were realised employing the model-based
paradigm [42]. There, the SCADE (Safety Critical Application Development
Environment) tool-suite by Esterel Technologies [24] has been used for modelling,
analysis, and DO-178B-level-A compliant code generation. The ASCET (Advanced DO-178B

Simulation and Control Engineering Tool) products [69] by ETAS Group are other
tools widely used in the automotive domain for safety-critical systems like ABS,
ESC, and the engine control unit.

There were and are up to now good reasons to introduce more and more
software-controlled functions in automotive E/E architectures. These are manifold
and include amongst others:

(i) Customers demand for more comfort. Customers demand more and more func-
tions that ease the usage of the automobile. Classical mechanical components
are replaced by their electrical counterparts. This sounds simple, but many
changes, yielding a tremendous increase in the overall complexity, are in-
volved. Basically, the complexity can be divided into two parts:

20 | 2 BACKGROUND

(a) the E/E related part representing the physical components like the elec-
tric motors, the wires (including direct connections and busses), buttons,
and electronic control units, and

(b) the system intrinsic complexity induced by relations to other components
of the car.

A typical example is the window winder, which is replaced by its electrical
counterpart—the power window. In each car door, a separate electric motor is
used for automated lifting and lowering of the respective automobile window.
Buttons, in contrast to hand-turned crank handles in the classical case, are
used to interact with the system. Sufficient battery voltage is necessary for
proper operation. The battery condition is provided via a bus signal. In
addition, a function that was not necessary in the classical case becomes now
necessary: the pinch protection, which reverses the moving direction as soon
as it detects a resistance before being in the end position (closed). This simple
example shows the problem: many E/E components communicate over
busses in a distributed setting where complicated interactions have to be
considered. The complexity is rooted in the functions’ nature: highly complex
software and hardware structures are realising a multi-functional behaviour
in combination with their distributed and concurrent characteristics.

(ii) Highly competitive mass market. The automotive domain is a highly competi-
tive mass market, where OEMs have to produce under excessive economic
pressure.

In order to differentiate from their competitors and to maintain a certain
corporate image, e. g. to be a driver of innovations, more and more functions
are included into the system. As different manufacturers share a relatively
high amount of same parts—as they are produced by the same supplier—it
is software, which in many cases makes the difference and thus supports a
corporate’s image.

(iii) Last but not least, a plethora of new functions realised by hardware, software,
or a combination of both is due to legal regulations. These are mainly related
to environmental and security regulations, e. g. the Directive 2005/66/EC
relating to the use of frontal protection systems on motor vehicles [187]. This
provision applies from 25th November 2006 to both new types of vehicles
and new types of frontal protection systems as separate technical units. The
idea behind this provision is to reduce the severity of injuries to pedestrians—
in particular if the vehicles are driving with a reduced speed (under 40 km/h).

2.2 Historical Review | 21

According to a study [133] charged by the European Commission, Enterprise
Directorate-General, Automotive Industry, the European Union had to suffer
the following causalities in 2004:

(a) Pedestrians killed: 9,024

(b) Pedestrians seriously injured: 176,385

(c) Pedal cyclists killed: 3,418

(d) Pedal cyclists seriously injured: 115,224

As a consequence, some OEMs use pyrotechnic actuators to raise the bonnet
in case of a pedestrian accident. This is done in a similar way to current air
bag inflators. Pyrotechnic processes produce gas-inflating bellows, which in
turn raise the bonnet providing more space between the engine block and
the bonnet used as crush-collapsible zone.

Of course, for the realisation of this system new hardware components such
as sensors, actuators, additional ECUs, and a number of wires—inducing
again more complexity—are needed.

Besides all the undoubted advantages software and electronics facilitated in
terms of comfort, safety, and pollution control, also drawbacks have to be men-
tioned. Software enabled the development of new functions that were not possible
in a solely mechanical realisation. As a consequence, at the beginning of this
millennium, nearly all OEMs pushed the development of software and electronics
controlled components at a pace that made manageability almost impossible. A
multitude of new functions were thought of and being developed by engineers
without having a detailed informatics or related education. Thus, many of those
realisations had more an ad-hoc characteristic than being well-engineered. In
consequence, the overall E/E architecture became more and more complex, which
made later maintainability a difficult task.

Mechanical engineering is traditional the predominant discipline of the engi-
neers working in the development of an OEM. For a long time, software was
neither seen to be a challenging nor an important part of the overall development
process. Established, and of course also proven development processes that were
instantiated in times when cars were more or less purely mechanical devices,
were no longer able to cope with software and E/E architecture development.
Koscher et al. [123] reveal that it is unclear whether vehicle manufacturers consid-
ered the possibility of adversarial in their architectural design and thus saw the
problem of potential threats. In fact, they demonstrate how to adversarial control
many automotive functions, which also includes disregarding the driver’s input.

22 | 2 BACKGROUND

Recently, Rouf et al. [173] reported security and privacy vulnerabilities of a tire
pressure monitoring system used in a wireless in-car network.

These aspects can be seen as the reason for unpredictable and—for the devel-
opers as well as for the customers—annoying random errors. After an initial
revolution of software in cars, disenchantment arose. Looking at the amount and
structure of warranty costs in the automotive domain, a need for improvement is
inevitable: billions of dollars are spent for warranty costs each year.

Considering the number and also the reason for car recalls in Germany from
1998 to 2009 [124], one notices a rapid increase. Figure 2.6 depicts both the recalls
and also follow-up activities related to them. According to the ADAC (German

0

50

100

150

200

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

154
148

129128

8379

66

22
27

2221
27

140
148

157
167

123

137

116
105

86

72
64

55

Recalls Trend (recalls) Follow-up activities Trend (follow-up activities)

Figure 2.6.: Car recalls in Germany between 1998 and 2009 according to [124].

automobile club) [11], who analysed the reasons for car breakdowns in 2007, more
than half of all breakdowns are dedicated to general electricity (including the
battery) issues and the ignition system (cf. Figure 2.7a). In a retrospective, one
can see that these components are exactly those whose breakdown contribution
increased most within the period 1985-2007 (cf. Figure 2.7b).

2.3 Automotive Industry Characteristics | 23

39,7 %

12,7 %
7,1 %

1,9 %
5,8 %

13,6 %

7,8 %
4,6 %

6,8 %

Fuel-injection system
Clutch/Gearbox
Engine
Miscellaneous
Cooling/Heating
Exhaust system
Wheels/Tires
Ignition system
General electricity

(a)

-10,0 % -5,0 % -0,0 % 5,0 % 10,0 % 15,0 % 20,0 % 25,0 %

Fuel-injection system
Clutch/Gearbox
Engine
Miscellaneous
Cooling/Heating
Exhaust system
Wheels/Tires
Ignition system
General electricity

(b)

Figure 2.7.: (a) Car breakdowns in Germany in 2007 and (b) its evolution between 1985
and 2007 [11].

2.3. Automotive Industry Characteristics

The automotive industry is described using two different points of view: first,
the economic perspective, which considers the company in a globalised world
(cf. Section 2.3.1). Second, the internal perspective, which enlightens the main

24 | 2 BACKGROUND

artefact—the automobile itself—, is detailed in Section 2.3.2. This perspective
observes the automobile from inside. Figure 2.8 visualises important attributes,

- globalised
- mass market
- time to market
- cost pressure

- legal requirements
- dependency on
 suppliers

- functionality
- safety critical
- networked
- embedded
- real-time systems

Figure 2.8.: Characteristic of the automotive domain.

which characterise the automotive industry. The automobile as central product is
surrounded by constraints affecting the production. This in turn is embedded in
an international context.

2.3.1. Automotive Industry

In the following, the automotive industry will be characterised with regard to
some important aspects, which differentiates this specific sector of industry from
for instance the avionics industry. In terms of safety, the avionics industry is
no way inferior to the automotive industry—consider for example the avionics
standard DO-178B and the upcoming DO-178C—but it cannot be considered as
mass market, the supplier dependence is less marked and the drift to alternative
propulsions has not happened yet.

Mass Market

When looking at the automotive industry—in particular during the last four
decades—one notices that it is subject to a fundamental change. Not only the
revolution from mechanical to mechatronic systems has to be mentioned, but also
a fundamental change in industry. More and more companies work in a highly
competitive mass market and have to produce under excessive economic pressure.

“Die weltweite Nachfrage nach Kraftfahrzeugen wird eine Million
nicht überschreiten – allein schon aus Mangel an verfügbaren
Chauffeuren.” (Gottlieb Daimler)

2.3 Automotive Industry Characteristics | 25

This becomes apparent when considering the last 110 years. The worldwide
production of cars grew from only nine thousands in the year 1900 to more that
sixty million in the year 2009 [12]. Figure 2.9 shows the impressive increase.
Having these numbers in mind, one can smile about the quotation of Daimler,

0

17500

35000

52500

70000

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2009

6004157903

47747

38557

29110

16165
10464

4901413523822559

Production per year in thousands

Figure 2.9.: Worldwide automobile production per year in thousands [12].

who says that the worldwide demand for automobiles will not exceed one million
due to the mere fact of the lack of chauffeurs.

As cars are sold in the magnitude of millions per OEM and year, possible savings
have to be elaborated in detail. A saving of less than EUR 1 per ECU might turn
the balance to change software and use the cheaper ECU. Vendors from emerging
nations, as for instance China and India, are just spreading their low-cost products
to western countries. Of course, they cannot compete with quality and functional
range yet, but they can compete with the price, which is for many people the most
substantial argument. Hence, the pressure for an ever faster time-to-market of
new models and derivatives grows notably.

Functional Differentiation

Some of the already in Section 2.2.2 mentioned drivers for new functions can be
used to describe the automotive industry. Different vendors use in many cases
similar components sold by the same specialised suppliers, i. e., cars from different

26 | 2 BACKGROUND

OEMs have a high ratio of common parts. This is true for both software and hard-
ware. It is not unusual that suppliers develop about thousand software variants
for different OEMs with less that 10% of functional difference. In consequence, a
corporate branding in design, sound and smell, and driving characteristics can
primarily establish differentiation. Moreover, specially developed functions that
are solely used by a typically small number of OEMs—in the best case a single
OEM—make the difference. Typically the differentiation not by design but by
function can only be done in the high price luxury segment, at least at the release of
a new function. One example is the contact-free opening of the hatchback, which
was introduced in Q4 of 2011 by the three big German OEMs Audi, Volkswagen,
and BMW Group. Information about a case study with similar functional range is
given in Section 8.3.

Dependency on Suppliers

As the automotive domain is a classical engineering discipline, which is rooted
in its historical evolution, companies usually do not have special experience in
the development of electronic or electric components. Oftentimes there is even
no motivation to close this leak of knowledge. This fact however led to a state
of dependence between the OEM and its suppliers. The OEM is dependent on
the components’ quality delivered by the supplier. The automotive supply chains
include different stakeholders. First of all, there is the car manufacturer—or OEM—
itself. Usually, OEMs provide the final product to their customers. Nowadays,
many components of a car are not produced and developed by the OEM itself,
but by a Tier 1 supplier. Mostly this includes the component’s development and
production on basis of a specification document provided by the OEM. It defines
the general requirements of the product. Typical Tier 1 suppliers are Bosch, Delphi,
Continental, and Siemens VDO. Finally, Tier 2 suppliers like for example Freescale
or Infineon provide CPUs, memory, etc., which are in turn used in ECUs from
Tier 1 suppliers. As the supplier’s business model is to sell more or less similar
hardware components to different OEMs, it is usually not possible for the OEM
to get full access to the source code of the delivered component. The OEM has to
trust that it does what it is intended to do. However, deeper insights are necessary
to understand in more detail what is going on inside the component and hence in
the interplay with the rest of the overall system. Today, the supply chain contains
hundreds of companies that design and develop components for the OEM or a
Tier 1 supplier [165].

2.3 Automotive Industry Characteristics | 27

Legal Requirements

Passenger cars sold in the EU have to comply with the Framework Directive for
Whole Vehicle Type-Approval [10]. Thus, automakers must follow more than 80
EU directives and regulations and—in the international context—even a larger
number.

To some degree, this can be seen as a vicious circle. New functions as the LDW
(Lane Departure Warning) system help to reduce accidents. These in turn result
in less often head-on collisions. In fact, those systems lead more often to impacts
where only a part of the front is affected. Thus, more or less the same impact forces
have to be absorbed by a smaller fraction of the car. As a consequence, regulatory
authorities in turn adopted the legal requirements.

Drift to Hybrid and Electromobility

During the last years, more and more automotive companies developed and
introduced cars with alternative drive concepts. The most dominant ones are
hybrid, purely electric cars, or the latter one with so-called range extender. Hybrid
cars combine a combustion engine with an electric motor. Depending on the
charging condition of the batteries, the driving mode (accelerating, breaking, etc.),
and the speed, different scenarios (modes of operation) are possible:

(i) Only the electric motor is used. Especially in cities at lower speeds, when
accelerating at traffic lights and in traffic jams, this mode is favoured. Note,
that the cruising range is limited by the batteries’ capacity.

(ii) Both, the combustion engine and the electric motor are used. This is favoured
in sports cars, where a performance boost at lower emission rates is desired.

(iii) The shortcomings with respect to the distance in the first mentioned scenario
can be avoided using so-called range extender. In case of low battery capacity,
a special combustion engine is started to generate power for the electric
motor.

Besides hybrid cars, electric cars only have either a single or numerous electric
motors in their powertrain. Almost all of them are based on conventional com-
bustion engine cars with respect to chassis, bodywork, and interior equipment.
Generally, customers only waive energy consumers as for instance the seat heater.
Here, the need for a detailed and rigorous consideration of operating modes in
cars becomes obvious. Unfortunately, in the past operating modes have not been
paid attention to in an appropriate way.

28 | 2 BACKGROUND

In the near future electric cars developed totally from scratch will be announced.
This reinvention of the car itself was necessary to cope with the totally new future
challenges. Putting several hundred kilograms of batteries into a traditional
bodywork will most likely lead into a deadlock: the higher the weight of an
automobile, the less the expected cruising range. Besides the weight of the batteries
another problem is packaging, i. e., where to place the batteries best in the available
construction space.

2.3.2. Automotive Domains

When having a closer look onto different components of modern cars, one notices
at a first glance that it consists of dozens of embedded devices: the navigation
system, the radio, the engine control system, and the airbag system—just to
mention a few. But then, it turns out that all these embedded systems have
completely different requirements in terms of reliability, correctness, response
time, and a lot of other criteria. Therefore, they are coarsely classified into the
following domains: infotainment, body electronic, chassis/driver assistance, powertrain,
and passive safety, depicted in Figure 2.10.

Infotainment

Body
electronic

Chassis /
Driver

assistance

Powertrain

Passive
safety

Figure 2.10.: Typical automotive domains.

Each domain poses specific requirements: infotainment components, for in-
stance, settle for low reliability requirements, whereas passive safety components
like the airbag control unit pose maximal requirements concerning reliability.
The different categories will be explained in the following. As an example, Ta-
ble 2.1 provides some reference points of the 2009 BMW 7 series premium class
car (according to Weber [195]).

Infotainment

The term ‘infotainment’ subsumes the areas information, entertainment, and
communication, which enter more and more modern automobiles. According to

2.3 Automotive Industry Characteristics | 29

In
fo

ta
in

m
en

t
Bo

dy
el

ec
tr

on
ic

C
ha

ss
is

/D
ri

ve
r

as
si

st
an

ce
Po

w
er

tr
ai

n
Pa

ss
iv

e
sa

fe
ty

Pr
og

ra
m

si
ze

10
0

M
B

2,
5

M
B

4,
5

M
B

2
M

B
1,

5
M

B
E

C
U

s
(s

ta
n-

da
rd

)
4

14
6

3
11

EC
U

s
(o

pt
io

ns
)

12
30

10
6

12
Bu

s
ty

pe
M

O
ST

K
-C

A
N

F-
C

A
N

/
PT

-C
A

N
Lo

C
an

/P
T-

C
A

N
SI

-B
U

S
Ba

nd
w

id
th

22
M

Bi
t/

s
10

0
K

Bi
t/

s
50

0
K

Bi
t/

s
50

0
K

Bi
t/

s
10

M
Bi

t/
s

M
es

sa
ge

s
66

0
30

0
18

0
36

20
C

yc
le

ti
m

e
20

m
s

-5
s

50
m

s
-2

s
10

m
s

-1
s

10
m

s
-1

0
s

50
m

s
R

el
ia

bi
lit

y
re

qu
ir

em
en

ts
Lo

w
H

ig
h/

Lo
w

H
ig

h
H

ig
h

Ve
ry

hi
gh

Tr
an

sm
is

si
on

m
ed

iu
m

O
pt

ic
fib

re
C

op
pe

r
ca

bl
e

C
op

pe
r

ca
bl

e
C

op
pe

r
ca

bl
e

O
pt

ic
fib

re

Bu
s

to
po

lo
gy

R
in

g
Tr

ee
Tr

ee
Tr

ee
St

ar

Ta
bl

e
2.

1.
:C

ha
ra

ct
er

is
tic

s
of

di
ff

er
en

ta
ut

om
ot

iv
e

do
m

ai
ns

.T
he

ex
am

pl
e

sh
ow

s
va

lu
es

fr
om

th
e

20
09

BM
W

7
se

ri
es

,a
cc

or
di

ng
to

W
eb

er
[1

95
]

30 | 2 BACKGROUND

their fields of application, infotainment systems pose high demands concerning
data throughput and usability. Reliability demands in turn are relatively low.

Today, the driver has access to a multitude of information sources: beginning
with traffic control messages and GPS, on-board diagnostic and status systems,
going to full Internet access. Relatively new customer functions are realised using
camera systems. The night vision system provides an infrared video stream of
the vehicle’s trajectory in order to warn the driver in the dark when pedestrians
or animals are close to the road. A second example is a rear view camera used
for reversing. All those applications have in common that they require extremely
high transmission rates. Processing this amount of data needs relatively high
computing power and a powerful transmission medium. Hence, typical bus type-
s/protocols include the Media Oriented Systems Transport (MOST) [153] bus andMOST

Ethernet are used. As positive by-product of having camera systems in the car are
additional information sources like road sign recognition (e. g. maximum permit-
ted speed, ‘when wet’, or ‘10pm - 6am’). Besides information, entertainment is
also a very important scope of infotainment. The classical FM radio found its way
quite early into cars. In fact it was one of the first E/E function in cars. Of course,
since then it has been improved concerning satellite reception, digital broadcast
(DAB), MP3 and DVD playback capabilities. A well designed and ergonomic
HMI (Human Machine Interface) is a precondition to interact with these systems
without getting sidetracked. This, of course, holds for communication devices like
mobile phones that have to be integrated and used in a hands-free way.

Body Electronic

The body electronics domain includes functions that are usually not characterised
as highly safety-critical. Nevertheless, functions with real-time constraints occur,
too. This domain encapsulates functions that are not used to control the driving
dynamics of a car. They appear in the chassis, or powertrain domain. Wipers,
outside and inside lights, windows, doors and hatches, and seats are classical
components of cars being controlled by electronics and software today belonging
to the body domain. Figure 2.11 shows a fictitious but nonetheless realistic CAN [4–
9]/LIN [139] (Controller Area Network, Local Interconnect Network) topologyCAN

LIN consisting of some seat modules. Each module (this example assumes a car with
four seats) is responsible to control the following features (excerpt):

(i) Each seat can be moved forward and backward.

(ii) The position of each seat can be raised and lowered.

2.3 Automotive Industry Characteristics | 31

Seat module
driver

CAN
controller

LI
N

co

nt
ro

lle
r

Heater
actuator

Fan actuator

Massage
actuator

Neck heater
actuator

LIN

CAN

Seat module
front

passenger

Seat module
rear left

Seat module
rear right

Seat
forward/
backward

Seat
up/down

Massage
enable/
disable

Heater
enable/
disable

Fan
enable/
disable

...

...

Figure 2.11.: Example of a seat module consisting of a couple of sensors and actuators,
ECUs, and networks referring to [154].

(iii) Each seat can be heated.

(iv) Each seat comes with a massage function.

(v) Each seat comes with a fan.

(vi) Each seat comes with a neck heater.

All seat modules are connected to a CAN bus. Usually low-cost LIN-slaves
connected to a single LIN-master are employed to activate the respective actors
(heaters, fans, electric motors, etc.). In the depicted example, sensors are directly
connected to the driver seat module ECU. A further connection via LIN bus is also
possible in this setting.

From a functional point of view, most functions present in the domain are
relatively manageable in terms of functional complexity. Here, the complexity
arises from a very high degree of interconnectedness in the vehicle’s wiring system.

32 | 2 BACKGROUND

Chassis / Driver assistance

The chassis/driver assistance domain poses high demands with respect to hard
real-time constraints. Besides the timely availability of input and output signals,
the strict availability of contained functions is crucial from a safety point of view.
As this set of functions can be considered as the link between the vehicle and
the road, the contained functional range spans from ABS (Anti-lock Braking
System), ESC (Electronic Stability Control), to driver assistance systems like theelectronic stability

control lane departure warning system. Inputs to these systems are from the driver as well
as from the environment. The driver steers, accelerates, and breaks the vehicle.
Processed information from the environment contains the road conditions, the
trajectory, and information of each wheel. In case of the LDW system, also the
lane has to be analysed usually based on video sensors. Most of those functions
demand detailed knowledge in control theory from the engineers.

Similar to the following domain—the powertrain domain—many input signals
have to be processed. Hereto, values of sensors distributed all over the E/E
architecture have to be sent via possibly different buses and gateways.

Powertrain

The powertrain domain encompasses everything that is necessary to convert
driving power into propulsion. This includes traditional combustion engines,
purely electric motors, and a combination of both in a hybrid setting. Like in the
chassis domain, complex control laws with varying sampling rates according to
the motorcycle are used. Today, engine controllers are calibrated using thousands
of parameters. Depending on throttle position, current temperature, position of
the gas pedal, and also the exhaust pollution, the fuel injection is controlled. Due
to the rough environmental conditions in the close proximity of the engine (e.g.
vibrations, varying and high temperature, EMC, humidity, etc.) high requirements
are posed concerning the packaging and robustness of the E/E devices. Typical
powertrain ECUs work with 32-bit micro-controllers running at hundreds of
MHz [177]. Even multi-core ECUs are used in the powertrain domain, for instance
in some engine control units. Mössinger [152] states that a high-end engine control
unit contains more than 2 MBytes of flash memory and about 300 thousand lines
of code. A widely used controller is the Renesas Electronics (formerly NEC) V850
with all its variants for example the Px4 as dual core which is certified for safety
critical systems (ASIL D, SIL3).

2.4 Current and Future Challenges | 33

Passive Safety

Passive safety subsumes all functions in a vehicle that help to reduce the effects
after a crash. Of course, especially the possible injuries of passengers, pedestrians,
and cyclists should be minimised. Established functions are for instance seat
belts, airbags, and rollover bars in convertible cars. A new system, designed to
protect outside traffic participants in case of a frontal crash, is a raisable bonnet.
In its mode of action it is similar to an airbag. All the mentioned systems have
in common that they pose hard real-time constraints. Hence, it’s no wonder that
for new airbag systems the highest Automotive Safety Integrity Level (ASIL) D ASIL

with a tolerable hazard rate of 10−8 per hour is demanded according to the new
ISO 26262 [104]. Consequentially, for those systems the FlexRay [75] and the ISO 26262

FlexRayTime-Triggered CAN bus TT CAN [6] are used in many cases.
TT CAN

2.4. Current and Future Challenges

Derived from the status quo and the basic characteristics given in Section 2.3, some
major challenges the automotive industry is faced with can be given.

2.4.1. Heterogeneity

As outlined above, each automotive domain poses specific demands concerning
reliability, robustness, real-time capabilities, and environmental compatibility (e. g.
temperature, EMC, vibrations, humidity, etc.). This list can be continued with
aspects of more technological nature: we find in premium class cars a combination
of different bus technologies like CAN, LIN, FlexRay, MOST, and Ethernet. More-
over, the operating system of different ECUs may vary. In many cases functions
are realised in combination of hardware and software parts. This tight integration
makes it costly to correct defects late in the development process. Besides techno-
logical challenges during the development process of automobile E/E systems,
also organisational barriers have to be broken down. Dozens of Tier 1 suppliers
have to be synchronised, which in turn have sub-suppliers in order to meet all
deadlines. Heterogeneity becomes apparent in

(i) the used bus technologies,

(ii) the assembled electronic control units with,

(iii) the different operating systems running a combination of event- and time-
triggered tasks,

34 | 2 BACKGROUND

(iv) the different suppliers working hand-in-hand with the OEM, which in turn
synchronises interdepartmental work.

In the past, some OEMs wanted their suppliers to integrate their own software
core consisting of operating system and basic software services. Nowadays, more
and more OEMs proceed to demand AUTOSAR (AUTomotive Open SystemAUTOSAR

ARchitecture) compatibility including an AUTOSAR conform operating system
running on the respective ECUs. This, of course, is a big step in the right direction
towards reaching more homogeneity in automotive E/E architectures—at least
homogeneity of technological nature. AUTOSAR follows the goals modularity,

Application
Software

Component

AUTOSAR
Interface

Actuator
Software

Component

AUTOSAR
Interface

Sensor
Software

Component

AUTOSAR
Interface

Application
Software

Component

AUTOSAR
Interface

AUTOSAR Runtime Environment (RTE)

Standardised
Interface

Operating
System

Standardised
Interface

Standardised
AUTOSAR

Interface

Services

Standardised
Interface

Standardised
Interface

Standardised
Interface

Communication

AUTOSAR
Interface

ECU
Abstraction

Standardised
Interface

AUTOSAR
Interface

Complex
Device
Drivers

Microcontroller
Abstraction

Standardised
Interface

ECU-Hardware

AUTOSAR
 Software

...

Basic Software

Figure 2.12.: Different AUTOSAR layers [1].

scalability, transferability, and reusability of functions by providing a common
software infrastructure with the clear aim to be suitable for all automotive domains.
For all layers depicted in Figure 2.12, AUTOSAR provides standardised interfaces
facilitating the targeted objectives.

A second attempt to mention in this context is the GENIVI Alliance. This non-GENIVI Alliance

2.4 Current and Future Challenges | 35

profit consortium consists of major OEMs like BMW Group, GM, and PSA Peugeot
Citroën, semiconductor and device manufacturer, as well as software companies.
Their goal—as the ‘IVI’, which stands for In-Vehicle Infotainment, indicates—is
to provide a range of compliance statements, and a compliance programme for
GENIVI certification for automotive infotainment systems. The idea is to provide
a Linux-based open source reference platform including operating system and
middleware.

2.4.2. Clash of Cultures

According to Broy et al. [35], more than half of all replaced ECUs are technically
error-free. There are sporadic errors, which are very difficult to reproduce and
thus to isolate. Millions of euros are spent to replace error-free ECUs per year.
One problem is that monitoring E/E components at run-time was not of major
interest during the last decade, since resources were and are still limited. In
consequence, not all errors occurring in the field are logged. Hence, only the
entries in the error memory are available for diagnosis purposes. The root of
failures is however not the limited error memory, but a badly accomplished
automotive software or systems engineering. In practice, E/E architectures are
not re-developed from one generation to the next generation of automobiles. On
the contrary, ‘proven’ architectures are extended due to time and cost pressure.
Oftentimes, E/E architectures are a result of structures that have evolved over
time and—as experience has shown—are very hard to maintain. As automotive
software engineering is almost never a green field approach, the importance of an
extendable, well-understood and documented E/E architecture becomes apparent.
In practice, however, companies have to struggle with legacy issues. On average,
about seven years elapse between automotive generations with a so-called ‘facelift’
in between. Technological achievement develops at a much faster pace. Regarded
from this vantage point, a two generations old automotive architecture can be
considered as outdated. However, parts of these legacy architectures are still used
today.

Former architectures were designed having maximum resource and cost effi-
ciency as the most important design objectives in mind, current trends shift more
towards maintainability, extendibility, predictability, and functional safety.

36 | 2 BACKGROUND

2.4.3. Control the Complexity

With the ever-growing number of electronic control units and software-controlled
functions, the overall system complexity grew exponentially during the last years.
The overwhelming increase in the number of ECUs becomes apparent in the
following: whereas the Daimler-Benz W220 S-Class luxury sedan of 2003 had
approximately 50 controllers [83], forthcoming luxury class cars will have up to
110 ECUs. Hence, we noticed a doubling in less than ten years. The given example
is no particular case, but rather describes the evolution of E/E architectures of
the whole branch of industry. In Figure 2.13, the progress over the last 25 years is
depicted with a log-lin graph. Reichart and Heinecke [167] state that the number
of ECUs has reached a limit due to packaging reasons and propose to concentrate
the functional range on less but more powerful ECUs. This centralisation, in turn,
poses increasing requirements concerning reliability and availability, and may
cause pinning problems, i. e., the physical interface for connectors is limited.

0,1

1,0

10,0

100,0

1985 1990 1995 2000 2005 2010

ECUs Trend (ECUs)
Power consumption [kW] Trend (Power consumption) [kW]

Figure 2.13.: Progress of the number of ECUs (according to Grimm [83]).

Besides the sheer combinatorial complexity induced by the high number of
interconnected electronic control units and software functions, another source for
system complexity is the large number of mostly subtle and in many cases also
unexpected interaction patterns amongst the components (hardware as well as
software). Today, more that 3000 functions are realised by software running on

2.4 Current and Future Challenges | 37

ECUs, intelligent sensors and actuators. These functions are usually not realised on
a dedicated ECU, but perform their service in a highly interconnected distributed
networked system. According to Broy et al. [36] up to 100,000,000 lines of code
(LOC) are realising software-intensive functions in an automobile, which is by far
more than in the Space Shuttle or modern operating systems. Ebert and Jones [67]
cite that about 1 GiB of software can be found in modern automobiles.

The introduction of automotive bus systems had two sorts of effects: on the one
hand, numerous harnesses and cables could be economised, which in turn reduced
production costs and the weight. As the weight is a significant factor for the CO2

footprint, less weight is always desirable. Moreover, a reduced number of connec-
tion points saves time and cost during assembly and also reduces points of failures.
On the other hand, however, the coordination of distributed real-time functions
becomes more and more difficult: buses are shared by many bus subscribers, thus
depending on the used bus, a bus schedule has to be generated, engineers have to
think about arbitration and jitter. Due to sometimes used ‘evolutionary ad-hoc’
E/E architectures and topologies it is often hard to predict what happens when
a new bus subscriber, for instance a new ECU, is connected to a particular bus.
Different bus types are connected via gateways whose transmission times have
to be known and also considered in order to guarantee end-to-end deadlines for
time-critical system functions.

As mentioned above, several thousand functions in a vehicle are today realised
by software. Not all of them are directly tangible customer features, i. e., features
that can be noticed or used by a customer. However, there remains a multitude
of features influencing each other in an often subtle and at the first sight unex-
pected way. These so-called feature interactions are besides the functional and the feature interaction

architectural complexity a further source of complexity. A classical example of
feature interaction from the automotive domain is the power window. At least the
following two features are involved, namely

F1 : open/close the window and

F2 : anti-trap protection.

F1 F2open

Figure 2.14.: Feature interaction example: if F2 gets activated, the window is forced to
open.

38 | 2 BACKGROUND

In Figure 2.14 a convenient graphical representation of this situation is depicted:
if the anti-trap protection gets active, the window opens. For simplicity, this
example does not consider the fact that the car’s battery voltage has to be suf-
ficient. More details on how to model the set of interacting features is given in
Section 4.2.1. When considering requirements interdependencies in general, Carl-
shamre et al. [41] state that only approximately 20% of the requirements of any set
of requirements are truly singular, i. e., they are neither related nor influenced by
other requirements. For more information about requirements interdependencies,
refer to Dahlsted and Persson [51].

2.4.4. Move from E/E Component-driven Development
Towards Function- and Mode-driven Development

Up to now, automotive E/E development is highly hardware component-centric.
That means, for each hardware component—usually an ECU—software parts
are defined that are placed onto that particular ECU. This is due to the common
practices suppliers (Tier 1) are integrated into the development process. In many
cases a supplier is responsible for a defined ECU, which integrates different parts
of different functions. In the future, especially in the context of AUTOSAR, OEMs
will be enabled to exchange software components (SWC) from different vendors
for instance due to economic considerations. The principle to use Components
Off-The-Shelf (COTS) mainly associated to hardware components is extended to
software components, too. This shifts the focus away from the E/E component
towards a function realised as a SWC, which in turn is then deployed onto an E/E
component like an ECU, a sensor, or an actuator. Concerning functional safety,
AUTOSAR provides features to achieve this aim similarly to what is called a Safety
Element out of Context (SEooC) in ISO/FDIS 26262 part 10. As these elementsSEooC

(software or hardware components) are developed without having an item at the
time of development, safety requirements are replaced by assumptions.

When taking up again the example of hybrid drive given above, a function may
behave totally different in view of fully electric, combustion, or a mixed drive.
A seat heater, for instance, may only be enabled in the mixed or the combustion
mode. With regard to fully electric vehicles, however, the situation is different and
so is the functional behaviour: one can imagine that the seat heater is only active
when the car is decelerated and brake energy is recuperated. Thereby decelerative
forces are used in a process known as recuperation, which uses the electric motor
as a generator to produce energy and charge the batteries.

By means of this example it gets clear that—from a functional point of view—

2.4 Current and Future Challenges | 39

even functions of a manageable size and complexity like a seat heater have to be
adopted to fit into future automobiles with alternative powertrains.

CHAPTER

THREE

Seamless Model-Driven Automotive System
Development

Model-driven development (MDD) is an emerging engineering paradigm, which— model-driven

developmentin many areas of the automotive and other domains as well—becomes a de-facto
standard development approach. However, its potential is not fully exploited.
This chapter outlines a methodology to go far beyond the state of practice. After
motivating the approach in Section 3.1, the concept of abstraction and modularisa-
tion realised within this work will be presented in Section 3.2. The possibilities
that present themselves, when building upon a proper theory, are enlightened
in Section 3.3. Moreover, it facilitates the integration of hitherto ad-hoc built
tool chains into a single integrated engineering tool, which will be discussed in
Section 3.4.

Contents
3.1. Introduction . 42

3.2. Separation of Concerns Through Abstraction and Modularisa-
tion . 42

3.3. Theoretic Foundation: A Fertile Soil for Formal Methods . . . 46

3.4. From Isolated Tools to an Integrated Authoring Environment 48

3.5. Summary . 53

42 | 3 SEAMLESS MODEL-DRIVEN AUTOMOTIVE SYSTEM DEVELOPMENT

3.1. Introduction

At the early beginning, when electronics and software found its way in the auto-
motive domain, the pioneering engineers were faced with tremendous challenges.
Neither tools, nor development processes were established at that time. Many
technological problems had to be understood and solved, which was successful in
many cases. After roughly five to six generations of cars since the first electric and
electronic components had been used, most technological problems are solved.
As the automotive E/E systems’ complexity grows drastically (cf. Figure 2.13), in
fact exponentially in the number of ECUs and the functional scope, the bottleneck
nowadays is no more of technological nature, but is rooted in inadequate engi-
neering capabilities. According to Sangiovanni-Vincentelli and Di Natale [177],
most modelling tools have amongst others the following problems:

(P1) Lack of separation between the functional and the architectural model.

(P2) Lack of support for defining the task and resource model.

(P3) Lack of modelling support for analysis and back-annotation of scheduling-
related delays.

(P4) Lack of sufficient semantics preservation.

Later in this thesis, these four aspects are revisited and a solution is proposed.

3.2. Separation of Concerns Through Abstraction
and Modularisation

It is likely that the increase in system complexity will continue in the future.
Besides the functional and technological complexity, also the organisational chal-
lenges with different stakeholders have to be under control. In the design and
development of modern cars an immense number of interdisciplinary experts are
involved. No single engineer is able to be an expert in all contained disciplines.
Still, when only the E/E field is considered, we observe the following participants:

(i) requirements engineers,

(ii) function specialists,

3.2 Separation of Concerns Through Abstraction and Modularisation | 43

(iii) function architects,

(iv) experts for networked systems,

(v) user interface and HMI designers,

(vi) functional safety engineers

and many more. To enable modelling with a uniform engineering tool, each
involved engineer should be able to work with artefacts only in those parts of
the model s/he is particularly interested in and has the right to do so. The
introduction of views hides the system’s complexity apparent to developers and
also controls access authorisation. This can be achieved by abstraction, or—to be
exact—a hierarchy of different levels of abstraction. At the beginning of product
development, other aspects are of relevance than later in the process. For example,
the goal to develop an adaptive cruise control system is much more abstract than
its technical realisation using for instance long range and short radar sensors,
integrated into a special ECU and connected to particular bus systems.

The ideas to structure and modularise systems are not new, but go back to
seminal works by Dijkstra [58] and Parnas [157] in 1972. Decoupling, structuring,
and hierarchisation are some examples of simplifications in system design. But
designers of complex, reliable, safety-critical, and networked embedded (auto-
motive) systems still face complex problems. The task remains complex even
though structuring techniques are used since the complexity is problem-inherent.
However, what these methods can provide is to tame the complexity such that
developers are able to manage the design process.

Tony Hoare got to the heart of the problem in his famous and groundbreaking
Turing award lecture [98]:

“
[T]here are two ways of constructing a software design: One
way is to make it so simple there are obviously no deficien-
cies and the other way is to make it so complicated that
there are no obvious deficiencies.”

This thesis proposes to use a hierarchy of levels of abstraction, leading to a separa-
tion of concerns as claimed by Dijkstra [59]. On each level, special artefacts are
modelled that are of relevance in a particular process step. Consequently, at early
stages modelling artefacts are more abstract than in later steps. For instance, func-
tional requirements are usually quite abstract, as they do not consider a technical
realisation, which in turn is quite concrete. Hence, to capture all relevant mod-
elling artefacts, a hierarchy is constructed. This ordered hierarchy starts with a

44 | 3 SEAMLESS MODEL-DRIVEN AUTOMOTIVE SYSTEM DEVELOPMENT

very abstract level and finally ends in a very concrete and technical one. Figure 3.1
depicts an abstract example with n levels of abstraction (L1 to Ln). The transition

concretisation

very abstract
...

very concrete

L1

...

Li

Ln

Li+1

transition
summary

op1
op2
…

opo

Figure 3.1.: Hierarchy of abstraction levels with transition summary.

between different levels of abstraction—usually from top to bottom—has to ensure
the following criteria.

C1 Reversibility. When transiting the gap between two levels, all performed ac-
tions have to be logged. Reading the log in inverse order gives an explanation
for the existence of artefacts on lower levels. Reversibility is of importance to
guarantee traceability from concrete levels back to more abstract ones (and
vice versa), desired by regulatory authorities.

C2 Enrichment. From a higher level of abstraction to a direct subsequent lower
level, there has to be a real enrichment concerning concreteness, i. e., there
must be a real increase of information. Otherwise the respective levels would
not have been necessary and the two levels could be collapsed.

C3 Completeness. Specifications on more abstract levels have to be realised in the
lower levels.

One might ask why properties C1 to C3 are so important?
First of all (C1), when proceeding from an abstract level to a concreter one new

artefacts are possibly generated or existing ones modified. In reality, however, it
will not be possible to descend the hierarchy only using a single operation. Such a
transition usually consists of a set of operations. A chronological record (op1 to
opo) of all operations yields the transition’s summary as depicted in Figure 3.1.
Moreover, when reading the record in reverse order, traceability is facilitated.

3.2 Separation of Concerns Through Abstraction and Modularisation | 45

For certification authorities, traceability is important. Thus, the reason for
an artefact’s existence has to be traced back to a certain requirement. This
is demanded by maturity models like CMMI (Capability Maturity Model
Integration) [47] and ISO IEC SPICE (Software Process Improvement and
Capability Determination) [103]. Moreover certification standards like DO-178B
(Software Considerations in Airborne Systems and Equipment Certification) [174]
and ISO 26262 (‘Road vehicles – Functional safety’) [104] demand requirements
traceability, as well. In the context of automotive software, the ISO/IEC 12207 and
ISO/IEC 15504 have been adopted to fit the demands in the automotive domain.
The most serious change in Automotive SPICE was requirements traceability. These Automotive SPICE

adoptions were made by AUTOSIG, the AUTOmotive Special Interest Group, in AUTOSIG

2001. Therefore, for each artefact, traces can be given, which provide a summary
for the existence of an artefact. According to Ramesh et al. [166], comprehensive
traceability supports developing a better quality product, improve development
and maintenance of the software, and possibly lowering the system life cycle cost.
Figure 3.2 shows a 3-levelled architecture—as used later in this thesis—with a
couple of linked artefacts between the levels. Concretisation and thus reduction of
abstraction is visualised by following the directed arcs from top to bottom. For
instance, the second rectangular artefact of the second level (Llogical) is reached
from two circular artefacts of the first level (Lfeature). Hence, the existence of
the square is justified by the circles. This proceeds down to the lowest level of
abstraction (Ltechnical). By traversing the links back, i. e., upwards, a summary
for the existence of an artefact is given. In the depicted example, the star in the
middle of the lowest level has two justifying artefacts on the second level which
in turn have one and two artefacts on the highest level of abstraction, respectively.
The thick grey bottom-up arrows represent the back linking.

Lfeature

Llogical

Ltechnical

Figure 3.2.: Traceability links between artefacts.

46 | 3 SEAMLESS MODEL-DRIVEN AUTOMOTIVE SYSTEM DEVELOPMENT

Besides certification reasons, traceability also provides engineers with insights
about which artefacts s/he has to review on lower levels in case of changes on
higher levels. For further details about traceability in MDE, please refer to Galvao
and Goknil [78].

Next (C2), from one level to the next more concrete level there is a real informa-
tion enrichment. Without a real enrichment, the lower level would be obsolete
and thus both levels could be merged. The goal, of course, is to give more and
more details towards the final system under development. The allocation decision,
for example, enriches a logical model with information where deployable entities
should be executed.

Finally (C3), it shall be guaranteed that specifications on abstract levels are
fulfilled on lower, more concrete levels. For example, a requirement has to be
realised by a behavioural model, (ii) its semantics has to be preserved during
code generation, (iii) the code executed on the final target platform, again, has to
preserve what has been modelled and what was defined in the requirements.

3.3. Theoretic Foundation: A Fertile Soil for Formal
Methods

Today’s automotive software development is far away from being based on formal
models and methods. Only some aspects during the automotive software develop-
ment process are based on models and the model-based development paradigm.
As not all software-related parts are modelled using the MDD method, the full
capabilities are not exploited compared to what would be possible, if the process
was based on both seamless and formal model-driven engineering. However, some
tools working on semi-formal foundation like for example MATLAB/Simulink/S-
tateflow are applied in the daily practice. The widely used UML is not based on a
rigorous, formal theory and is therefore unsuitable in its comprehensive and not
specialised instantiation for safety-critical automotive systems.

Automatic C code generators are restricted to a subset of the modelling lan-
guage, actually on the formal, well-understood, and deterministic parts. Besides
the mentioned code generation also (model-based) test case generation (cf. also
Utting et al. [190] for a taxonomy of model-based testing) and consistency checks
are applied already today. Jackson [105] however objects that testing is not good
enough, as exhaustive testing for systems of realistic size is intractable. Nev-
ertheless, automatic test case generation from models or code as presented by
Holzer et al. [99] is a very important brick in the tool box of systems engineers,

3.3 Theoretic Foundation: A Fertile Soil for Formal Methods | 47

always having in mind Dijkstra’s famous pronouncement [57] that testing is used
to show the presence but not the absence of errors.

In order to upgrade the possibilities of having formal models, Kordon et al. [122]
claim that one has to consider MDE as a generic framework in which verification
plays an important role. Test case generation, verification, theorem proving, and
type checking are only some ways to improve the quality of automotive software-
intensive systems. D’Silva et al. [62] give a very good overview of automated
techniques for formal software verification.

Moreover, formal models based on a comprehensive modelling theory enable
model simulation—a sufficient level of detail assumed. According to Conrad
and Doerr [48], executable models that can also serve as starting point for code
generation can reduce software development time between 20-50%. The today’s
applicability of formal methods was not enabled by just a single technological and
scientific achievement, but instead by advancements of different aspect. First, the
available computing power, used to apply for instance time-consuming formal
verification techniques, grew many times over the last decade. Second, there
has been a great process especially in the field of efficient decision procedures
like SAT (Boolean SATisfiability of propositional logic) and SMT (SAT Modulo
Theories) solvers, i. e., formulae consisting of a propositional part and parts of a
different logic. Hence, Rushby [176] observes that formal methods are entering
the mainstream. Of course, model checking of entire large systems, or exhaustive
testing is still infeasible, but certain highly safety-critical sub-systems can be
treated in particular. However, most success stories given in the literature are
from the avionics rather than from the automotive domain. This may be rooted in
the fact that rigorous engineering and formal models and methods entered the
avionics development process quite early compared to the automotive field.

Summarising one can say that a theoretic foundation of the modelling theory
has the following advantages:

(i) Formal analysis and reasoning can only be performed reasonably if models
are based on a rigorous theory. Then, systematic verification and validation
techniques can be applied in order to improve the system’s quality. They
include amongst others: model checking, theorem proving, simulation, test
case generation, and consistency analysis. In Section 5.2, a technique is pre-
sented, which is capable to check in an early development stage consistency
of formally specified requirements.

(ii) Model transformations (model-to-model: M2M). Whenever the use of a sin-
gle repository building upon a formal product data model cannot be used

48 | 3 SEAMLESS MODEL-DRIVEN AUTOMOTIVE SYSTEM DEVELOPMENT

and a transformation between models (model-to-model transformation) be-
comes unavoidably necessary. Moreover, in the case that powerful analysis
tools building on a different modelling formalisms are employed, model
transformation is essential. This case is further exemplified by describing a
translation schema from COLA to Coloured Petri nets in Section 5.4.

(iii) Model-to-Code transformation (synthesis): Whenever source code or executable
models are desired, they are synthesised. C code generation (cf. also
Haberl et al. [90]), VHDL code used for hardware synthesis (cf. also
Wang et al. [193]), and SystemC code generation [192] are only three ex-
amples within the COLA automotive approach.

As we will see in the following section, a well-defined modelling theory also
bridges the gap between different product data models occurring in loose coupled
engineering tools.

3.4. From Isolated Tools to an Integrated Authoring
Environment

Today’s use of tools, or better ad-hoc coupled pragmatic tool chains differ con-
siderably from what can be considered as an integrated and seamless development
approach. Before outlining the vision and solution in Section 3.4.2, the current
state of practice is explained in the following section.

3.4.1. Daily Practice

At the present time, the modelling process can best be characterised as a prag-
matic coupling of different modelling and engineering tools forming tool chains
rather than having a single integrated authoring tool. The tool range spreads
from general-purpose office tools like text and spreadsheet processing tools to
specialised requirements engineering, behavioural modelling, or code generation
tools. Some of them are quite good interoperable especially when they come from
the same tool vendor. However, most of them are only coupled using ‘gluing’
adapters (‘ d t’ used as illustration in Figure 3.3) to build ad-hoc tool chains. In
consequence we observe integration gaps between tools. Each tool (t1 to tn) works
upon its own Product Data Model (PDM) (PDM1 to PDMn). This requires convert-product data

model ing artefacts back and forth between tools as development proceeds. Still, there
is neither a single tool capturing all steps needed during the automotive system

3.4 From Isolated Tools to an Integrated Authoring Environment | 49

development, nor a seamless tool chain without integration gaps. The pragmatic
approach has the following drawbacks:

t1 t2 tn-1 tn

PDM1 PDM2 PDMn-1 PDMn

Integration Gap

Figure 3.3.: Tool integration gap.

(i) The first and most visible difference between tools is the graphical user
interface. From a technical point of view that seems to be negligible, how-
ever, psychology tells us that fears of using a tool in a wrong way, or being
overwhelmed by the tool, does not humble the barrier between tool and
engineer. On the contrary, it decreases acceptance amongst engineers. This
fact could be studied during the work at industry partners trying to roll out
new modelling tools. In the worst case, missing acceptance and thus lacking
support by engineers could easily jeopardise the use of new tools.

(ii) An akin aspect coming along with the user interface is a subtle pitfall. Mod-
elling is oftentimes performed using a graphical language like for example
UML. Amongst others, UML supports modelling of automata using Stat-
echarts. The concept of automaton to model state transitions of systems
is common to other tools as well. MATLAB/Stateflow by The MathWorks,
ASCET-SD by ETAS, or SCADE by Esterel Technologies support a state transi-
tion based modelling concept. However, the problem is that developers have
an intuitive understanding of automaton and their semantics. Using different
tools with similar graphical syntaxes, but (slightly) different semantics is
very problematic.

(iii) The mentioned adapters are oftentimes realised using hand-written scripts
trying to map artefacts from one tool to the other. This presupposes that
the source and destination product data models are well-understood by the
integrator developing the adapter. As experience teaches, this process is
error-prone and not future-proof: each time, one of the tools changes—be

50 | 3 SEAMLESS MODEL-DRIVEN AUTOMOTIVE SYSTEM DEVELOPMENT

it the product data model itself or the tool interfaces—adapters have to be
checked and if necessary have to be adjusted. Each modification, however,
involves the risk of an unintentional insertion of errors. This scenario only
works as long as the tool vendors document their changes. If no changes are
documented, the user of the tool chain gets to know them only in case of a
noticeable malfunction, which may be too late.

(iv) The mapping only works if an artefact in the source data model has a cor-
responding determination in the destination data model. At our industrial
collaborators, this turned out to be a very pressing issue. If the destina-
tion data model does not have a semantically fitting concept/attribute, this
information cannot be used in a useful way, yielding information loss.

(v) Besides modelling artefacts that have to be passed between tools, also the
semantics amongst them has to be preserved. This point is possibly even
more important than the mapping of all data. On the one hand, if not
everything can be mapped, the engineer gets to know the information loss.
On the other hand, if semantics cannot be preserved, the passed model
becomes invalid, as one cannot trust in the preservation of its semantics.

(vi) Tool adapters may be a short term solution to pass modelling artefacts from
tool to tool with all the already mentioned drawbacks. One very important
issue, however, is not addressed: it is insufficient to only model artefacts.
Rather, their relationship has to be captured, too. If related artefacts are mod-
elled within different PDMs, it is hardly possible to manage their relationship,
which is essential for traceability.

(vii) Likewise noteworthy is the number of possible adapters between tools. When
having n different tools, one needs in the worst-case quadratic many adapters,
which—of course—is not maintainable.

In Table 3.1, commonly used tools during the development process—beginning
from requirements engineering through to production code generation—are listed.

To overcome the mentioned problems, Broy et al. [33, 35] pose the vision of an
integrated modelling approach, which supports the creation, maintenance, and
also the generation of new artefacts out of already modelled ones.

3.4 From Isolated Tools to an Integrated Authoring Environment | 51

Notation Tool

Requirements
(customer, system)

natural language
graphical notation
(statecharts, activity
diagrams, message
sequence charts)

requirements management tools
Word, Excel, DOORS, UML
tools

Design
System architecture

(formal) models
data-flow, control-
flow, UML, SysML,
AUTOSAR

modelling tools
MATLAB/Simulink/Stateflow,
ASCET-SD, SCADE, Rhapsody,
CATIA PLM V6, Siemens NX,
Enterprise Architect, ...

Code formal languages
Ada, C, C++, ...

IDEs and code generators
Eclipse, Netbeans, Visual
Studio, TargetLink, ASCET,
Simulink Coder

Table 3.1.: Commonly used COTS tools during the product development process.

3.4.2. Solution

Besides the already discussed problems, issues of different nature arise, too. The
multitude of used tools is not disjoint in terms of capabilities. That means, they
offer partly similar functionalities. Hence, for a company it is crucial to have
strict and mandatory rules ‘what’ to model ‘when’ in the process with ‘which’
tool. However, experience has shown that it is difficult to enforce and also to
monitor modelling guidelines. Tool capabilities are used although they should
not, especially by inexperienced engineers. As a result, the same or slightly differ-
ent artefact is modelled unintentionally in different tools, yielding redundancy.
Redundancy is very dangerous since it is not clear with which artefact to proceed
in the subsequent process steps and if they are modelled intentionally, how to
maintain consistency.

Consequently, the use of a central repository (‘single point of truth’) where all single point of

truthartefacts and their relations are stored has many advantages:

(i) There is no problem of redundant artefact storage—assumed the data model
is designed accordingly.

(ii) The central storage of modelling artefacts facilitates systematic data analy-
sis like for instance consistency checks. There is no need anymore to first

52 | 3 SEAMLESS MODEL-DRIVEN AUTOMOTIVE SYSTEM DEVELOPMENT

Semantic
Domain

Integrated
Architectural
Model

Model
Engineering
Environment

Architectural
Layers

Product Data
Model

Process
Model

Workflow
Engine

assigned
to

structures
and integrates

configures

Model
Repository

configures

formalised by

Modelling
Theory

'

Authoring
Tool

basis for

Figure 3.4.: Architecture of the COLA engineering environment as it has been realised
(except the process and workflow part). According to Haberl et al. [86, 87]
and Broy et al. [33].

aggregate necessary data from different data sources.

(iii) As all information are stored in a single repository, model analysis techniques,
as for instance model checking, static analysis, or theorem proving, can easily
be performed in a batch processing mode twenty-four-seven. By decoupling
data storage from the modelling client, these time-consuming tasks can be
run without affecting the client’s performance. The proposed and realised
tool architecture is depicted in Figure 3.4.

(iv) The way of collaboration between OEM and Tier 1 suppliers will change.
Suppliers obtain via an access control mechanism the possibility to directly
access relevant information and also to directly create, change, and delete
artefacts. Of course, the allowed actions can be configured and also may
change depending in the current process step. The same holds for the views,
i. e., the artefacts that can be seen and also their representation. This tight
coupling of OEM and suppliers simplifies and in turn accelerates the devel-
opment process.

(v) The presented centralised approach enables the installation of a well-defined
concurrency control, which is indispensable whenever hundreds or even
thousands of engineers are working concurrently from inside or outside the
company on the same models. Together with a process engine, a systematic

3.5 Summary | 53

distributed engineering will be facilitated. All process activities carried out
by different stakeholders are coordinated and orchestrated according to the
current process step.

3.5. Summary

This chapter discussed the idea of seamless model-driven development of
software-intensive systems. Through modularisation and hierarchisation of mod-
els and modelling of those along different levels of abstraction, a reduction of
complexity apparent to engineers and a separation of concerns is facilitated. Due
to the well-defined mathematical foundation of the COLA modelling language a
fertile soil for the use of formal methods like model checking is created. Seamless
modelling does not restrict itself to only modelling of artefacts, but also to store
them in a repository implementing a unique product data model. Hence, there is
no need to write adapters etc. to bridge the integration gap arising when using
different tools with—and that is the crucial point—semantical different product
data models.

CHAPTER

FOUR

The COLA Automotive Approach

This chapter summarises the COLA development approach for software-intensive
automotive systems. The fundamental ideas outlined in Chapter 3 are instantiated
in an effective implementation—the COLA-IDE. After an introduction given
in Section 4.1, a concrete instantiation of the abstraction hierarchy is given in
Section 4.2. The formal foundation will be COLA, which for its behavioural
modelling is based on a synchronous data-flow language. The different levels
of abstraction of COLA’s architectural model are bridged in the development
process explained in Section 4.4. Finally, Section 4.5 concludes this chapter with a
discussion of related work.

Contents
4.1. Introduction . 55

4.2. Architectural Levels . 56

4.3. COLA—The Component Language 66

4.4. Deployment Process . 77

4.5. Related Work . 80

4.1. Introduction

The COLA automotive approach has been realised in cooperation with differ-
ent departments of the BMW Group, including Research and Technology and
E/E Processes, Methods, and Tools. Besides the informatics department with
colleagues from Software & Systems Engineering, Theoretical Computer Science,

56 | 4 THE COLA AUTOMOTIVE APPROACH

and Operating Systems, also the chair of Integrated Systems from the department
for electrical engineering and information technology of the Technische Univer-
sität München was involved. During the collaboration of more than four years, a
number of case studies have been developed that substantiate the practicability
and viability of the COLA automotive approach. Details on the case studies are
given in the Chapters 8.1 to 8.3.

This chapter describes the interplay of a well-suited architectural model, which
facilitates modelling of artefacts on different levels of abstraction with a semanti-
cally and syntactically well-defined modelling language—The COmponent LAn-
guage, COLA . Furthermore, a highly sophisticated authoring tool coupled with aCOLA—The

Component

Language

central repository not only enables efficient development, but also provides analy-
sis capabilities to guarantee model consistency. As COLA’s core is mathematically
sound, formal methods like model checking, test case generation, and simulation,
as well as fully automatic deployment are enabled.

4.2. Architectural Levels

This section explains in detail the architectural model of the COLA automotive
approach. Basically, the architectural levels are structured following the work of
Pretschner et al. [162] and Broy et al. [32]. Within the COLA automotive approach
and the COLA-IDE [87], modelling is performed along three architectural levels,
namely

(i) Feature Architecture,

(ii) Logical Architecture, and

(iii) Technical Architecture.

In this lineup, the Feature Architecture is the most abstract, and the Technical
Architecture the most concrete architectural level, i. e., from the first to the last
mentioned, the completeness increases with regard to the implementation.

Next, the different architectural levels are detailed on and the question ‘Which
artefacts are modelled and how is modelling performed?’ will be answered.

4.2.1. Feature Architecture

The most abstract architectural level is the so-called Feature Architecture. Its prin-Feature

Architecture ciples are found in Rittmann [170], which in turn follows the ideas of FODA

4.2 Architectural Levels | 57

(Feature-Oriented Domain Analysis) by Kang et al. [112]. The Feature Archi-
tecture as the starting point in the COLA automotive development approach is
considered with requirements engineering and deals in the sense of Zave with the
functions or features of a system under development and their relationship.

“
Requirements engineering is the branch of software en-
gineering concerned with the real-world goals for, func-
tions of, and constraints on software systems. It is also
concerned with the relationship of these factors to precise
specifications of software behavior, and to their evolution
over time and across software families.” [202]

Systems have become so complex during the last decades that a purely text-based
requirements engineering and management turned out to be infeasible. The limits
of what can reasonably be done with a text processing tool have been exceeded,
even for—how Weber and Weisbrod [196] call them—local heroes.

Success of a software project comes along with a well-realised requirements
engineering phase. According to Lutz [141], about 75% of failures found in op-
erational NASA software are rooted in requirements errors. As the aeronautic
domain poses similar demands concerning product quality, one can assume that
these numbers also hold in the automotive domain, where traditional require-
ments engineering is done less systematic. Thus, the importance of requirements
engineering for a successful project that finishes within the cost and time bounds,
has to be emphasised. Wrong decisions made in early phases are particularly
problematic in the automotive domain. As functions or features, which are syn-
onymously used within this thesis, are oftentimes realised in a tight connection of
a hardware and a software part, late changes are difficult to accomplish and in any
case very cost-intensive. The tendency of the mentioned failure rate is confirmed
by MacKenzie’s [143] statement that source code ‘is seldom the weakest link in
the chain of dependability’. This analysis showed that coding errors contributed
with only 3% to software errors—other than one might expect.

As the name of the level of abstraction at hand suggests, so-called features and
their relationship are modelled on this level of abstraction. Unfortunately, there
is no uniform definition of a feature in the literature. Therefore, the following
definition is used for the remainder of this thesis.

Definition 1 (Feature). A feature encapsulates a functional part of the system and is Feature

characterised by an interaction between a customer and itself capable of being experienced.

Within this definition, the customer is not necessarily a driver of a car. In fact,
also service personnel or even diagnosis devices may be customers of a feature.

58 | 4 THE COLA AUTOMOTIVE APPROACH

Besides the features themselves, their relationship and interaction is modelled,
too. This leads us to the following definition according to Zave [203].

Definition 2 (Feature interaction). A feature interaction is some way in which aFeature

interaction feature or features modify or influence another feature in defining the overall system
behaviour.

The aim of the Feature Architecture is to bridge the gap between informally
written requirements and a formal, functional model. The Feature Architecture,
thus can be seen as a black box only specifying the functionality visible at the
system’s interface. A common source of errors are unconsidered interactions
between features. To avoid such errors, the designer can explicitly define these
interactions and hence lift them on a formal foundation for later analysis. As the
Feature Architecture has a functional rather than a technical emphasis, it does
not consider and abstracts from any technical details like distribution, operating
system, or hardware architecture. The specification on the Feature Architecture
may also be partial and behavioural specifications may be non-deterministic.

Structure and Structuring. The first step of constructing the Feature Architec-
ture is to build a so-called Feature Hierarchy. A Feature Hierarchy is a hierarchicalFeature Hierarchy

decomposition of features into sub-features, yielding a complexity reduction
amongst systems with rich customer functionality. A decomposed feature is also
called a combined feature if and only if it is decomposed into at least two sub-
features. Features that are not further decomposed are called atomic features. An
example for feature decomposition is given in Figure 4.1. In this simple example,

ACC

maintain
speed

maintain
distance

(a) Example in FODA notation

ACC

maintain
speed

maintain
distance

XOR

(b) Example in COLA notation

Figure 4.1.: Figure (a) depicts the feature diagram in the classical FODA notation. In
contrast, Figure (b) uses the COLA notation making interactions explicit.

assume we have an adaptive cruise control (ACC) feature that is decomposed

4.2 Architectural Levels | 59

into the sub-features ‘maintain speed’ and ‘maintain distance’, both sub-features
are exclusive, i. e., only one can be active at the same time. Figure 4.1a depicts
the feature diagram in the classical restricted FODA notation. In Figure 4.1b, the
COLA notation is shown. In contrast to the FODA notation, COLA allows to
mathematically model arbitrary computable relations, not only OR or XOR, as
shown in the example. For instance, features can enable, disable, or interrupt
others. All its sub-features together with the feature interaction determine the
behaviour of the ‘ACC’ feature.

In the hierarchical structure of the Feature Hierarchy, which except for feature
interactions is a directed tree, the root node represents the complete system under
development decomposed into its sub-features.

Points to start constructing the Feature Architecture are different kinds of re-
quirements. Usually, there are hundreds of more or less structured requirements
specification documents, collections of scenarios, use cases, etc. The following two
activities are involved:

1. Specification of the Feature Hierarchy

2. Specification of the Feature Architecture

In the first step, the user behaviour is decomposed in a top-down approach
into sub-features, which again can be decomposed. The decomposition can be
function-driven or mode-driven. A function may have a ‘desired’, an ‘undesired’,
and a ‘diagnosis’ behaviour, which could result in three sub-features. Moreover,
the Feature Hierarchy can be organised according to operating modes. In the
example given in Figure 4.1, there are two modes ‘maintain speed’ and ‘maintain
distance’. The second step in the first activity is to model the feature interactions
and finally to describe them with their functional requirements.

Based on the Feature Hierarchy, the formal Feature Architecture is modelled
in the second activity. This includes the definition of the features’ syntactical
interfaces as a subset of the total system’s interface. Their behaviours are specified
within the semantical interfaces. This is done using two ways: first, the behaviour
can be modelled using the COLA core modelling formalisms, i. e., data-flow
networks and automaton (cf. Sections 4.3), or second, using SALT (Structured
Assertion Language for Temporal Logic) [19] formulae to reason also over tem-
poral properties. As SALT is not a major topic of this thesis, only those parts
necessary for a better understanding will be explained at the relevant place. The
first-mentioned is also referred to as a constructive approach, whereas the latter is
called descriptive approach. The behavioural specification is done in a bottom-up

60 | 4 THE COLA AUTOMOTIVE APPROACH

fashion, i. e., beginning with the atomic (leaf) features, combined features are con-
structed based on the sub-features until the root is reached. Then, the root contains
the (partial) behavioural specification of the complete system. The constructive
parts of the root, i. e., complete system feature, can already be used to generate test
cases or to simulate the possibly partial behaviour. After the Feature Architecture
has been finished, for those parts specified using COLA, a simulatable model is at
hand. As the Feature Architecture is the closest architectural level with respect to
the requirements one can use in this setting the notion of executable requirements
according to Zave and Yeh [204].

4.2.2. Logical Architecture

If the Feature Architecture has been defined using COLA networks and automata,
its root feature can be used as a first version of a Logical Architecture. However,
as mentioned above, the Feature Architecture can be partial and possibly non-
deterministic. Hence, it is necessary to resolve possible issues on the Logical
Architecture, i. e., if the non-determinism was not intentional. As the model of thisLogical

Architecture level of abstraction will be used to generate source code, it has to be complete and
deterministic. Predictability of the modelled systems is very important. Of course,
code can be generated from non-deterministic models and also simulation can
be performed. However, in these cases, the language semantics has to have rules
how to interpret non-deterministic models. In MATLAB/Stateflow, for instance,
the so-called 12 o’clock semantics is used. There, transitions are taken with respect
to their graphical layout in a clockwise direction, which cannot be seen as a good
practice to prevent engineers from making modelling mistakes.

In contrast, to the Feature Architecture, the Logical Architecture is not struc-
tured with respect to functionalities, but in terms of architectural design. Here,
also aspects like the organisational structure, dependability, maintainability, and
reusability play a crucial role. Concerning the first mentioned, Conway [49]
pointed out in 1968 that

Conway’s law

“[...] organizations which design systems [...] are constrained to
produce designs which are copies of the communication struc-
tures of these organizations”.

Thus, when taking the modelled root feature from the Feature Architecture over
to the Logical Architecture, usually it has to be restructured to fulfil the mentioned
criteria. Hence, on the Logical Architecture the following activities are involved:

(i) (re-)structuring,

4.2 Architectural Levels | 61

(ii) completion of the behavioural model,

(iii) introduction of data sources and sinks, and

(iv) determinisation of undesired non-deterministic automata.

In addition to this top-down procedure, the Logical Architecture can also be
designed ‘from scratch’. If already existing sub-systems are reused, modelling
follows a bottom-up approach.

Models on the Logical Architecture are constructed using COLA’s core language
constructs: units, data-flow networks, and automata (cf. Section 4.3). It should not
be suppressed the fact that knowing that a model is complete is a difficult task.
Zowghi and Gervasi [206] mention that

“Davis states that completeness is the most difficult of the specifi-
cation attributes to define and incompleteness of specification is
the most difficult violation to detect [52]”.

As the Feature Architecture speaks about usage behaviour, i. e., the observable
system interface, additional logical sources and sinks have to be added in order to
establish the connection to the physical world. Sources and sinks are the logical
representation for sensors and actuators on the Technical Architecture, which will
be discussed later. As it cannot be guaranteed that signals apparent at the system
boundary on level of the Feature Architecture are also isomorphic present on the
Logical Architecture, source post-processing and sink pre-processing functions
may be needed. Assume for a moment the signal ‘speed’ on the Feature Architec-
ture. There might be different technical realisations to obtain the speed of a car,
for example, using GPS or calculating the speed based on the wheel speed and
radius. Additional computations are needed accordingly.

Again, modelling of hierarchies using networks that contain sub-networks or
automata whose states again contain networks, is supported. Hence, separation of
concerns is facilitated through modularisation and hierarchisation. An example is
given in Figure 4.2. In contrast to the most abstract level, the Feature Architecture,
the Logical Architecture is complete in terms of the desired behaviour. Models on
that level of abstraction are useful to apply formal methods such as for instance
model checking (cf. Section 3.3).

4.2.3. Technical Architecture
Technical

ArchitectureThe purpose of the Technical Architecture is to provide an abstract model of the
target execution platform, on which the COLA model will be executed. The

62 | 4 THE COLA AUTOMOTIVE APPROACH

Figure 4.2.: Hierarchical decomposition of COLA models.

Technical Architecture is the most concrete level within the abstraction hierarchy
of the COLA automotive approach. The aim is to provide as much information
about the hardware topology and the run-time configuration to be able to deploy
COLA models. For this purpose, the Technical Architecture consists of the three
concepts

(i) Cluster Architecture,

(ii) Allocation, and

(iii) Hardware Topology.

Their interplay is visualised in Figure 4.3 and details are given next.

Technical
Architecture

Cluster
Architecture Allocation Hardware

Topology

Figure 4.3.: Conceptual class diagram of COLA’s Hardware Architecture.

Cluster Architecture

The transition form the Logical Architecture towards the Technical Architecture
passes the so-called Cluster Architecture. The Cluster Architecture can be seen asCluster

Architecture an independent level of abstraction, or as a part of the Technical Architecture as it
is realised here.

4.2 Architectural Levels | 63

The COLA automotive approach deals with networked, distributed automotive
systems. The Logical Architecture, however, defines only a single model. Thus, in
order to execute the modelled behaviour distributed over a couple of ECUs, the
model has to be cut into atomic pieces (tasks from an operating system’s point
of view). These pieces are referred to as clusters and define in their interplay the Cluster

system’s run-time behaviour. As clusters are atomic, they form the deployable
entities that are considered during allocation and scheduling explained in the
Sections 7.2 and 7.3.

From a graph-theoretic perspective, the model on the Logical Architecture can
be considered as a directed graph consisting of nodes—the COLA units—and
edges—the data-flow channels. If the model is partitioned into clusters, data-flow
amongst clusters is defined by the cut between the contained units. Figure 4.4
illustrate the circumstance. Note, only data-flow between clusters is depicted.
There are three ways to build a Cluster Architecture:

C1
C2

C3

C4

C5

Figure 4.4.: Example of a possible clustering of the Logical Architecture into five clusters
C1 to C5.

1. Engineers define manually the clusters and—if desired—also their placement
on components of the Technical Architecture. This way is preferred if the
emphasis is on a hand-crafted software architecture.

64 | 4 THE COLA AUTOMOTIVE APPROACH

2. Engineers can use a mechanism to automatically generate clusters based
on a heuristic, which tries to balance the cluster sizes with respect to the
number of contained units.

3. Furthermore, a combined approach is possible. This means, a partial Cluster
Architecture can be predefined by an architect, and is completed using
automatic methods.

As clusters are atomic entities that are executed on the target hardware platform,
they are the starting point for code generation and resource estimation. Whereas
the Logical Architecture models the system behaviour, the Cluster Architecture
defines the software architecture of the system under development and thus cuts
the modelling artefacts from the Logical Architecture into deployable entities on
the Cluster Architecture.

As soon as clusters are defined, executable code is generated for each of them.
Note, the interplay amongst them is automatically given by the data- and control-
flow dependencies of the logical model. The generated C code serves multiple
purposes:

(i) It is used to estimate the performance figures using SciSim by
Wang et al. [194]. SciSim combines the instrumented C code and micro-
architecture simulators to model run-time interactions between software and
micro-architectures. SciSim is used for each cluster and each ECU with their
respective instruction set architecture, like for instance PowerPC, ARM, or
SPARC, yielding performance figures. These are used for allocation and
scheduling decisions during deployment.

(ii) Of course, the generated C code will be productively used 1:1 on the target
system.

Hardware Topology

The Hardware Topology models sensors, actuators, ECUs, and buses and theirHardware

Topology interplay. Buses connect different ECUs that can also act as gateways. Sensors and
actuators are assumed to be hard-wired to ECUs. The mentioned basic concepts of
the Hardware Topology are modelled each with as much information as necessary
for scheduling and allocation.

In Figure 4.5 the hardware topology of the autonomous parking system (cf.
Chapter 8.2) is shown. It consists of three ECUs that are connected via a single
bus. Each ECU has attached some sensors and actuators and a bus interface.

4.2 Architectural Levels | 65

Sensors

Actuators

CPU

Bus

Connection
interface

Figure 4.5.: Technical Architecture as modelled in the COLA-IDE.

Allocation

The Cluster Architecture models what to deploy whereas the Hardware Topology
defines where to deploy. The missing link between both is the Allocation. This
concept specifies which artefact of the Cluster Architecture is deployed onto which
artefact of the Hardware Topology. Clusters are mostly allocated onto ECUs, but
also sensors and actuators are valid allocation targets. This is interesting, if
complex intelligent sensors and actuators are modelled. The detailed allocation
algorithm with its optimisation scheme is given in Section 7.2.

4.2.4. Summary

Figure 4.6 depicts the concrete COLA automotive approach instantiation of the
abstraction hierarchy. By structuring the features and describing their possible
interactions, the Feature Hierarchy is build in a first step followed by a bottom-up
integration of their behaviours. By linking the features onto the Logical Architec-
ture, which is usually done in an m:n relation, i. e., a feature is realised by multiple
logical components, which in turn encapsulate the scope of possibly many fea-
tures. The components of the Logical Architecture, i. e., units, can be decomposed
hierarchically to structure the system and hide complexity apparent to developers.
The next step cuts the logical model into clusters, which are allocated to entities
of the Hardware Topology on the Hardware Architecture. Herby performance
attributes and hardware capabilities are considered. Modelling along these levels

66 | 4 THE COLA AUTOMOTIVE APPROACH

facilitates the separation of concerns, as it allows modelling of different aspects
relevant for the respective step during the development process. During the de-
velopment of automotive systems, usually different experts are involved. This
includes, requirements engineers, function specialists, architects, and hardware
component experts, just to mention a few important ones. Not everyone needs to
have all information of and access to the model. Instead, only a special view or
level is needed, which is also supported using the presented levels of abstraction.

Feature Architecture

Logical Architecture

Cluster Architecture

Hardware Topology

Technical
ArchitectureAllocation

Figure 4.6.: Different levels of abstraction in the COLA automotive approach.

As clusters can be considered as tasks from an operating system’s point of view,
the separation of the Logical and the Cluster/Technical Architecture, solves two
problems mentioned in Section 3.1:

1. Problem P1 is solved as we have a separation between the functional and the
architectural model represented by the Cluster Architecture (which basically
represents the software architecture of the developed system).

2. Problem P2 is solved as the Cluster Architecture can be considered as a task
model with its annotated resource requirements.

4.3. COLA—The Component Language

In the previous chapter, modelling along different levels of abstraction has been
discussed. On each level of abstraction different aspects of a system are modelled
using dedicated modelling constructs provided by the COLA modelling language.
One can distinguish between the operational part of COLA and a descriptive

4.3 COLA—The Component Language | 67

part. The operational part is used on the Feature and on the Logical Architecture.
It is denoted operational since it is based on an operational semantics, which is
defined in [130]. On the two mentioned levels of abstraction, it is also possible to
simulate models. The constructive part of COLA is also referred to as COLA core
within this thesis. The non-constructive part is used to describe the mapping from
logical COLA models onto entities of the Hardware Architecture, done within the
Cluster Architecture. Properties of the target hardware including the topology
are defined on the Hardware Architecture, too. In the following section, the basic
concepts of COLA core are explained.

4.3.1. Basic Concepts

Being a synchronous data-flow language, COLA follows the hypothesis of perfect
synchrony. This claims that models are executed in zero-time, i. e., we assume perfect synchrony

that computation does not need time. Furthermore, communication between
modelled components does not need time either. Besides the zero-time assumption,
logical components (from now on referred to as units) are executed in principle in COLA unit

parallel. Of course, this is only true for models of non-communicating units, i. e.,
where no data exchange between units occurs. Generally, there are networks of
interconnected units exchanging data via so-called channels. In addition to data- COLA channel

flow dependencies, COLA provides the powerful concept of automata in general
and mode automata in particular, which also imply causal relations, namely control COLA automaton

flow dependencies. Automata model finite state machines similar to Statecharts [92].
Details about mode automata will be given in Section 4.3.2 (cf. also [18, 146]).
The combination of units and communication channels is used to build complex
data-flow networks. Following the ideas to structure and modularise systems, COLA network

COLA allows to hierarchically decompose systems: complex COLA systems are
built using basic, primitive operators. These basic units are atomic and cannot
be further decomposed. They define basic Boolean and arithmetic operations,
which are building blocks for complex mixed arithmetic and Boolean functions.
Each unit has a syntactical input and output interface defined by typed input
and output ports. Compatibility is checked and types are inferred as described
by Kühnel et al. [131]. Channels are used to connect compatibly typed ports
to realise data-flow. To do so, a single source port can be connected to at least
one compatible destination port. COLA’s semantics makes interruptions within
feedback loops compulsory. This is necessary to ensure strict causality. Hence, on
each data-flow path starting and ending at the same unit, at least one so-called
delay block has to occur. This unit is initialised with a predefined value. This

68 | 4 THE COLA AUTOMOTIVE APPROACH

guarantees that COLA models are always well-defined in the sense that there
always exist unique fixed-points for the recursive equation system induced by
the data-flow (channels). Delay blocks also provide means for retaining data
for a single time unit. This concept can be used to store data like in variables
known from high-level programming languages. Moreover feedback loops are a
commonly used and well-suited modelling construct in control systems. As delay
units store data they are stateful blocks.

The evaluation of COLA core models follows a cyclic execution on a discrete
time base, so-called ticks. From one tick to the next consecutive tick, the complete
model is evaluated once, i. e., COLA systems produce and process results in
accordance with this time base. Logical interaction with the underlying hardware
is done using source and sink blocks, to read and write values, respectively. These
special units are the logical representation of sensors and actuators modelled in
the Hardware Architecture.

In the following, the basic modelling constructs (basic blocks, data-flow net-
works, and automata) are given and exemplified.

Basic Blocks

The simplest units, so-called basic blocks are constants, i. e., they provide at each
tick a constant, predefined value at their output port ‘out’. Moreover, COLA
supports the basic arithmetic operations +, −, ∗, and /. These binary operations
provide at each clock tick at their output port ‘result’ the value

result = lop ooopppeeerrraaatttooorrr rop (4.1)

where lop is the left operand and rop is the right operand.
As the delay block retards values by one clock tick, the values apparent at its

output port ‘result’ are hence defined over the infinite sequence of discrete time
steps

(
sj
)

j∈N0

result(sj) :=

{
initial if j = 0

next(sj−) if j > 0
(4.2)

where initial is the initial value of the delay block. The up to now mentioned basic
COLA blocks are visualised in Figure 4.7.

Another set of units is that of comparison operators <, ≤, =, ≥, and >. To express
inequality (6=), Boolean connectives are used, i. e., (x 6= y) ≡ ¬(x = y). Besides the
negation also the other common operators ∧ (AND) and ∨ (OR) are supported.
The last mentioned two categories are depicted in Figure 4.8. The port type of

4.3 COLA—The Component Language | 69

42 out

(a)

+lop
rop result

(b)

- resultrop
lop

(c)

* resultrop
lop

(d)

/ resultrop
lop

(e)

pre
[33] resultnext

(f)

Figure 4.7.: Basic COLA blocks: (a) constant block with the value 42, (b) addition block,
(c) subtraction block, (d) multiplication block, (e) division block, and (f) delay
block initialised with the value 33, named ‘pre’(vious).

<lop
rop result

(a)

≤lop
rop result

(b)

=lop
rop result

(c)

>lop
rop result

(d)

≥lop
rop result

(e)

!lop
rop result

(f)

!lop
rop result

(g)

¬op result

(h)

Figure 4.8.: Basic COLA blocks. (a) to (e) comparison operators and (f) to (h) Boolean
operators.

Boolean operators is of course Boolean, which is also the type of the output port
‘result’ of all comparison operators. The input ports of all operators ‘lop’ and ‘rop’
are of compatible type as well as the corresponding ‘result’ port. The output port
‘result’ of a delay block has always the same type as its input port ‘next’.

The last two basic blocks are sources and sinks. As the graphical representation
of both a source and that of a sink block is similar to that of a constant block with
an input instead of an output port, they are not depicted.

Complex Data-flow Networks

Data-flow networks are employed to structure systems and thus reduce the com-
plexity apparent to developers. They are used to hierarchically decompose systems
from a high-level design down to functional details. The hierarchical decomposi-
tion facilitates a logical view on the system under development at different levels
of abstraction. One of the simplest networks following the IPO-model (Input-

70 | 4 THE COLA AUTOMOTIVE APPROACH

Process-Output) consists only of tree units ‘Input’, ‘Process’, and ‘Output’ as
illustrated in Figure 4.9. The network ‘IPO-model’ thus consists of the mentioned

IPO-model

Input OutputProcess

Figure 4.9.: High-level COLA design following the IPO-model.

units and three exemplary channels. The contained units are again networks.
On the Logical Architecture level, channels are only allowed to connect a single
source port with at least one destination port, thus realising a 1 : n connection. By
descending networks, their originally hidden implementation becomes visible.

Networks are furthermore used to express the behaviour of automaton states
and guards used as precondition for transitions. Automata are discussed in more
detail in the following.

Automata

COLA automata are special units that consist of states and transitions between
them. They are basically finite state machines similar to Statecharts introduced
by Harel [92] and also found in other modelling formalisms like the UML [26],
Stateflow from The MathWorks, or ASCET-SD by ETAS Group.

Both, states and guards are themselves implemented by units: a state’s be-
haviour is defined by a network, the guards are stateless networks, i. e., networks
without occurrences of automata and delays since these units are stateful. They
have to store their current state, in the case of an automaton, and their last value,
in the case of a delay, for one execution cycle. As networks implementing the
states’s behaviour share the same signature, the current state, thus the network, is
executed in place of the automaton. Moreover, networks implementing transition
guards have the same input signature as the automaton, but, as they have to
evaluate to true or false, they have a single output port of type Boolean. If and
only if a transition’s guard evaluates to true the transition is taken.

Starting from a dedicated state, the initial state, the semantics is defined as
follows: let q be the current state, if there is an outgoing transition whose guard
evaluates to true, take it and execute the unit referenced by the target state. If there
is no such transition predicate evaluating to true, execute the unit referenced by
the current state q. Figure 4.10 gives an example of a data-flow if. Depending on

4.3 COLA—The Component Language | 71

the input ‘predicate’ (Boolean value), either the value at the ‘then’ or that present
at the ‘else’ port is written to the ‘result’ output port. The example also clarifies
the circumstance of the unit interfaces. Moreover, it illustrates an algorithmic

if

predicate
then
else

then
predicate

else
then result

else
predicate

else
then result

result

predicate

else
then guard

predicate

else
then guard¬

Figure 4.10.: COLA automaton modelling a data-flow if.

usage of automata. This is only one field of application. The second—at least
as important—one is the application to decouple system behaviours in terms of
operating modes, which will be discussed next.

4.3.2. Operating Modes

Using operating modes in embedded systems design in general and in software-
intensive automotive E/E systems in particular has several advantages. But before
stating them, the basic principle of operating modes is given. Maraninchi and
Rémond propose to use mode automata to realise the notion of running modes for
safety-critical systems development in [145,146]. The basic idea is to regard the sys-
tem under development—be it a complete system like an aircraft or an automobile,
or (parts of) functions—from a point of view that distinguishes between different
modes of operation. Examples are for instance ‘start-up’, ‘driving’, ‘accelerating’,
‘decelerate’, or ‘take-off’ and ‘landing’, which Maraninchi and Rémond commonly
give as example. With respect to electromobility or hybrid powertrains the use of
operating modes will turn out to be a powerful modelling construct. Considering
model-based engineering of embedded control software, Schätz [178] proposes a
clear separation of control- and data-flow models to avoid unnecessary complexity.
Mode automata are a way to model control-flow in complex COLA networks.
Advantages are amongst others:

72 | 4 THE COLA AUTOMOTIVE APPROACH

(i) separation of control- and data-flow,

(ii) complexity reduction by decoupling the behaviour (separation of concerns),

(iii) independent reasoning and analysis of modes,

(iv) facilitation of reuse, and

(v) reduction of system load since only a subset of all clusters is active, namely
those corresponding to the current operating mode.

−− A l u s t r e program
node example (i : i n t) −−input

re turns (X : i n t ; Y : i n t) ; −−outputs
var M : bool ; −−l o c a l v a r i a b l e
l e t

M=true−>pre (i f (M and (X>20)) or
((not M) and (X<20))

then not M e lse M) ;
X= i f M then (0−>pre (X)) + Y + 1

e lse (0−>pre (X)) − Y − 1 ;
Y= i f M then i + (0−>pre (Y))

e lse i − (0−>pre (Y)) ;
t e l

(a) A Lustre program

/ * a C program ,
i n p u t i n g i and o u t p u t i n g x , y * /

void main () {
i n t m=1 , x =0 , y =0; i n t i ;
for (; ;) { / * f o r e v e r * /

scanf ("%d" , &i) ;
i f (m) {

y= i +y ; x=x+y +1; m=(x <=20) ;
}
e lse {

y=i−y ; x=x−y−1; m=(x < 0) ;
}
p r i n t f (" x=%d y=%d\n" , x , y) ;

}
}

(b) A C program

A B

X init 0 : int
Y init 0 : int

X > 20

X < 0 X=pre(X)-Y-1
Y=i-pre(Y)

X=pre(X)+Y+1
Y=i+pre(Y)

(c) A mode automaton

Figure 4.11.: Figures (a) to (c) are taken from [146] and depict different implementations
of a mode automaton: (a) Lustre code, (b) representation using C code, and
(c) a graphical representation in automaton style.

The example given by Maraninchi and Rémond in [146] is depicted in Figure 4.11.
The corresponding COLA implementation using mode automata follows the
automaton of Figure 4.11c. Besides the textual description using Lustre, the

4.3 COLA—The Component Language | 73

authors also provide C syntax. Depending on the current state, A or B, variables X
and Y, both initialised with 0, are treated differently. The example uses a variable
i, which in the COLA model (cf. Figure 4.12a) is realised using a constant block.
Access to previous values in Lustre is modelled using delay blocks on the paths
feeding back the values of variables X and Y, respectively. Accordingly, both
are initialised with 0. Feedback-loops with delays make the use of previously
computed values explicitly visible. Figure 4.12 depicts the corresponding COLA
model. The figure shows the graphical representation of COLA. The textual
representation of the automaton (cf. Figure 4.12b) is given in Figure 4.13. For
a complete syntax and semantics specification, please refer to the appropriate
COLA report [130]. The case study outlined in Chapter 8.2 uses the concept of

(a) (b)

(c) (d)

Figure 4.12.: Figures (a) to (d) show the hierarchical decomposition of the COLA model
implementing the exemplary operating mode.

operating modes to decompose the system into the modes ‘normal’, ‘parking’, and
‘sdc active’, i. e., a mode to manually steer the car, one mode that is responsible
to find a parking space of sufficient size and to park automatically, and finally a
mode with the behaviour: drive along a wall (with a constant distance) and elude
obstacles.

74 | 4 THE COLA AUTOMOTIVE APPROACH

automaton ModeAutomaton (i:Int, preX:Int, preY:Int -> X:Int, Y:Int) {
 initial state A {
 behavior network A (i:Int, preX:Int, preY:Int -> X:Int, Y:Int) {
 channel c6;
 channel c2;
 c2 := (preY+i);
 X := ((c6+c2)+1);
 Y := c2;
 }
 }

 state B {
 behavior network B (i:Int, preX:Int, preY:Int -> X:Int, Y:Int) {
 channel c1;
 c1 := (i-preY);
 X := ((preX-c1)-1);
 Y := c1;
 }
 }

 continue transition from A to B {
 guard network guard (i:Int, preX:Int, preY:Int -> guard:Bool) {
 guard := (preX>20);
 }
 }

 continue transition from B to A {
 guard network guard (i:Int, preX:Int, preY:Int -> guard:Bool) {
 guard := (preX<0);
 }
 }
}

St
at

e A
 w

ith
 it

s
im

pl
em

en
tin

g
ne

tw
or

k

St
at

e
B

 w
ith

 it
s

im
pl

em
en

tin
g

ne
tw

or
k

Tr
an

si
tio

n
fr

om
st

at
e A

 to
 B

Tr
an

si
tio

n
fr

om
st

at
e

B
to

 A
Figure 4.13.: Textual COLA syntax of the automaton given in Figure 4.12b.

4.3.3. Syntax and Semantics of COLA

Below, some short notes about COLA’s syntax and semantics are given. However,
for more details please refer to the respective report by Kugele at al. [130].

Syntax

COLA’s graphical syntax is exemplified in numerous examples within this thesis
and thus should be self-explanatory. In this context, Fuhrmann and von Hanxle-
den [77] point out the importance of a graphical syntax in model-based design.
An example of the textual syntax is given in Figure 4.13. A complete definition
in EBNF is given in [130]. One of the outstanding benefits of the COLA-IDE in

4.3 COLA—The Component Language | 75

contrast to, for instance, MATLAB/Simulink, is that at each hierarchical level
it is possible to edit the model using both the textual and the graphical model
representation. In other tools—as the mentioned ones—it is only possible to use
either the textual or the graphical representation. When defining the behavioural
model on level of the Logical Architecture, it is beneficial in early phases to do the
architectural design using the graphical syntax, whereas in hierarchically decom-
posed models, where at lower levels algorithmic details are of interest, it is usually
more convenient for engineers to use the textual syntax.

Semantics

COLA is based on a rigorous operational semantics. In [130], the semantics of
COLA core has been defined by describing an interpreter for this synchronous
data-flow language. This way was chosen to give the readers the opportunity
to have a reference implementation for a COLA interpreter. This is useful for
the development of tools building upon the COLA syntax and semantics. The
following sums up the essentials of the COLA semantics: COLA models are
cyclically evaluated based on a discrete time base with the assumption of perfect
synchrony. Hence, all COLA units are executed once within a clock tick and in
principle concurrently with respect to data-flow dependencies. Again, for further
details please refer to Kugele et al. [130].

4.3.4. Examples from Control Theory

This section gives some examples from control theory showing the applicability
of COLA. The first example is a Bessel filter, which is a linear filter heavily
used in electronics and signal processing. Signal processing becomes more and
more important in the context of automotive driver assistance systems. All new
automotive features like for example the lane departure warning, the adaptive
cruise control system, or the blind spot assistant have all in common that a lot
of signals coming from sensors have to be processed. The second example is a
PID (Proportional-Integral-Derivative) control which is very often used in control
engineering

Bessel-Filter

In Figure 4.14 a Bessel filter with the transfer function

H(z) =
Y(z)

X(z)
=

4z2 + 8z + 4

12z2 − 4z− 1
, (4.3)

76 | 4 THE COLA AUTOMOTIVE APPROACH

which is the quotient of the z-transformed input and output signals X(z) and Y(z),
respectively, is given. The corresponding COLA model is given in Figure 4.15c.
When stimulating the system with a discretised rectangular wave (cf. Figure 4.15a)

z-1 z-1

z-1z-1

·1
3

·2
3

·1
3

· 1

12
·1
3

+ + +

++

+ + +

X(z)

Y (z)

Figure 4.14.: Exemplary Bessel filter diagram.

the system responses with a signal depicted in Figure 4.15b. Note, the values
are obtained using the COLA simulator. This example shows that COLA delay
blocks are well-suited to model recursive filters, i. e., filters with feedback loops.
The multiplication elements in the signal-flow graph are modelled as input ports
so that their values can be adjusted, which makes it more generic.

Proportional-Integral-Derivative (PID) controller

In cooperation with a project from the electrical engineering department, a test
set-up has been developed (cf. Figure 4.16) that demonstrates the feasibility of the
COLA approach. In this test set-up, a magnetic field is controlled in such a way
that a metal insert floats at a specified point.

Therefore, an exemplary part of a larger MATLAB/Simulink model, namely
a PID controller, was modelled using COLA. The PID block was realised as
an S-Function whose C code was generated using the COLA C code generator.
As the COLA model is complex and hierarchically structured, it can be found
in the Appendix A (Figure A.1). Figure 4.17 shows the PID controller with a
controlled system (general setting). u(t) is the set value, e(t) = u(t) − y(t) is the
error (deviation between set and real value). Kp, Ki, and Kd are proportional,
integral, and derivative gain, respectively.

4.4 Deployment Process | 77

300 5 10 15 20 25

2,5

0

0,5

1

1,5

2

(a) Input signal

300 5 10 15 20 25

2,5

0,5

1

1,5

2

(b) Output signal

(c) COLA model of the Bessel filter

Figure 4.15.: (a) Discretised rectangular wave as input signal and (b) the corresponding
output, i. e., Y(z) = H(z) · X(z). In (c) the used COLA model is depicted.

4.4. Deployment Process

One of the most fundamental ideas envisioned and then realised within the COLA
automotive approach was seamless model-based development of software-intensive
automotive systems. This development proposal contains several aspects. The
modelling theory and development along different levels of abstractions have
already been discussed. In order to bridge the gap from the Logical Architecture
via the Cluster to the Technical Architecture some process steps have to be taken.

78 | 4 THE COLA AUTOMOTIVE APPROACH

Floating body

Magnetic field

Figure 4.16.: Floating body in a magnetic field.

P Kpe(t)

I Ki

Z t

0

e(⌧)d⌧

D Kd
de(t)

dt

X

�

+

+
+

u(t) X
+

Controlled
system

y(t)e(t)

Figure 4.17.: PID controller with a controlled system.

In the following, the involved steps are shortly described and some are outlined
in detail later on, namely allocation in Section 7.2 and scheduling in Section 7.3.

(S0) Modelling and Verification: As a requisite, the logical model and the technical
model have to be modelled. It is assumed that verification and validation
tasks like model checking, simulation, and testing have been applied in order
to guarantee a high model quality.

(S1) Partitioning: Once, the logical model, i. e., the Logical Architecture, has been
completed and verified, it has to be cut into deployable, atomic entities,
which—from a technical point of view—are tasks running on an E/E compo-
nent. In the COLA approach, these entities are called clusters on level of the
Cluster Architecture.

(S2) C Code Generation: The C code generation step has two different purposes:
first, it is used to estimate the expected performance (worst-case execution

4.4 Deployment Process | 79

time) on the modelled target system. Second, the source code is uses to be
executed on the actual target system. Details can be found in [84, 90].

(S3) Resource Estimation: The generated source code is used as input for the
performance estimation tool SciSim presented by Wang et al. [194].

(S4) Allocation: Using these resource figures and the capabilities of the modelled
hardware, an allocation, i. e., a mapping of clusters onto the available E/E
components, usually ECUs, is performed. This procedure also includes an
optimisation with respect to non-functional requirements (cf. also [129] and
Section 7.2).

(S5) Scheduling: The mapping information together with the resource figures and
a data-flow analysis yield the basis for schedule plan computation. Details
are explained in Section 7.3 and [88].

(S6) Configuration: As the presented approach uses a middleware for transparent
communication and clock synchronisation, each ECU has to be configured
at start-up. Information about locality of allocated tasks and their schedules
are set. Detailed information about the developed middleware is given by
Haberl et al. [85].

Note, even though allocation and scheduling are divided in two steps (S4 and
S5), a single step would have been possible as well. However, a separated consid-
eration makes each of the steps more feasible. Moreover, different technological
realisations can be examined. As a point of criticism, one can state that a combined
approach would lead to even better results. However, the advantages outweigh
the disadvantages.

The outlined steps cannot be performed in a stringent way in any case, but
loops back to previous steps have to be done due to several reasons:

S0−→S0 If model verification or validation techniques are applied and find errors
or inconsistencies with respect to the specification, the model has to be fixed.

S1−→S0 If there is no partitioning yielding both a feasible allocation and a sched-
ule plan satisfying all timing requirements, the model has to be changed.

S4−→S1 If no feasible allocation can be found, the model partitioning has to be
changed.

S5−→S4 If there is no feasible schedule for the distributed system, the allocation
has to be changed.

These cases are illustrated in Figure 4.18.

80 | 4 THE COLA AUTOMOTIVE APPROACH

Refinement

Partitioning

C Code
Generation

Allocation

Scheduling

Resource
Estimation

Config-
uration

Modelling &
Verification

S0

S3

S1

S2

S4

S5

S6

Figure 4.18.: COLA deployment steps.

4.5. Related Work

During the last years and decades, a lot of work has been done in the field of
embedded systems development. Some of the approaches are to some extent
similar to the COLA automotive approach. However, none of them is able to
capture the development process from an early requirements specification to a
deployment phase in a single seamlessly integrated tool. With respect to modelling
along different levels of abstraction, the presented approach bases on work of
different authors outlined below.

The following distinguishes between architectural design and behavioural mod-
elling of software-intensive automotive systems, as the presented approach cap-
tures both while most of the available tools and methods do only capture either of
them.

4.5.1. Modelling Along Different Levels of Abstraction

Modelling of software-intensive automotive systems along different levels of ab-
straction has been described by Pretschner et al. [162], Broy [30], and Broy et al. [32].

4.5 Related Work | 81

Wild et al. [197] propose to develop automotive software along four levels of
abstraction, namely Service Level, Functional Level, Logical Cluster Level, and Plat-
form Level. These levels build the fundament for an automotive specific architec-
ture description language called CAR-CL (Combined ARchitecture Description
Language). The presented approach in this thesis is quite similar to the just men-
tioned but in contrast, it considers the Cluster Architecture as part of the Technical
Architecture. Similarly, the mobilSoft project [197] proposes a four-levelled ap-
proach. Van der Beeck [191] describes how to model a logical and a technical
architecture for automotive systems using UML-RT. This approach does not con-
sider the specification and structuring of customer requirements. EAST-ADL [65]
(Electronics Architecture and Software Technology - Architecture Description
Language) is a modelling language first published in 2004. Current version is 2.1
and development is still in progress. It supports modelling of E/E automotive
systems in four levels of abstraction, namely vehicle level, analysis level, design, and
implementation level. Chen et al. [45] use EAST-ADL2 and show how to model
safety-critical embedded systems. They describe how safety cases can be modelled
and give a basic introduction into EAST-ADL2. Main drawback of architecture
description languages in terms of a seamless and pervasive development is the
missing capabilities to model behaviour. Other approaches to mention are the
Save-IDE [183] (Save Integrated Development Environment) and ModES [61]
(Model-driven Design of Embedded Systems), both lacking behavioural mod-
elling capabilities. Furthermore, there is also the Forsoft Automotive [27] project
to mention.

AUTOFOCUS [34, 100] is a CASE tool for the design and analysis of distributed, AUTOFOCUS

reactive, timed systems. As the name suggests, it is based upon the FOCUS [37] FOCUS

theory that provides a computational model based on the notion of streams and
stream processing functions. Similarly to the presented approach, AUTOFOCUS
models are designed along the same three levels of abstraction only with a slightly
different name albeit the same purpose: Functional Architecture, Logical Architec-
ture, and the Technical Architecture.

Considering UML, Broy et al. [35] state that UML does not base on a proper
theory and favour to use a Domain-Specific Language (DSL) to model both the domain-specific

languagestructure and the behaviour of systems. One drawback closely linked to its in-
sufficient semantics definition is the herefrom resulted inconsistent usage in the
daily engineering practice. With the definition of the UML profile MARTE [155]
(Modeling and Analysis of Real-Time and Embedded Systems) better support for
embedded system development with its special requirements is given. For aspects
concerning modelling of time in this context, refer to André and de Simone [54].

82 | 4 THE COLA AUTOMOTIVE APPROACH

With regard to systems engineering, SysML [156] has to be mentioned. SysML as a
graphical modelling language combines a subset of UML 2 with some extensions
and is a response to the UML for Systems Engineering RFP developed by the OMG
(Object Management Group) and INCOSE (International Council On Systems
Engineering). The Architecture Analysis & Design Language (AADL) [72] or
Avionics Architecture Description Language as it was formerly known, is an archi-
tecture description language first developed in the field of avionics. It provides
formalisms to describe both, software and hardware aspects and allow to analyse
models in general and to perform schedulability analysis in particular using for
example the OSATE [181] tool set.

Specifically tailored towards automotive software systems is AUTOSAR. This
industrial partnership started in 2003 with the development of a standardised
software infrastructure with the aim to control the increasing complexity of au-
tomotive systems. An extension of the presented approach towards AUTOSAR
interoperability has been investigated by Haberl [84].

4.5.2. Behavioural Modelling

One of the main benefits of the COLA automotive approach is that, besides the
definition of the software architecture—using the Cluster Architecture—and the
specification of the Hardware Topology within the Technical Architecture it also
supports behavioural modelling on the Feature and the Logical Architecture.
Behavioural modelling is realised using the COLA core data-flow language with
its two fundamental concepts:

(i) hierarchical decomposition in COLA networks (data-flow) and

(ii) control-flow specification using COLA automaton.

Both modelling concepts are, indeed, not new, but seamlessly and rigorously inte-
grated into the language core. Established CASE tools like MATLAB/Simulink use
data-flow networks for the description of complex automotive systems, and sub-
sequent code-generation [186], just to mention industrial tools first. Conrad and
Doerr point out in [48] the significance of a well-elaborated syntax and semantics
definition and documentation. As a negative example, they mention the de-facto
industry standard for modelling control systems MATLAB/Simulink/Stateflow.
The manual of those tools describes syntax and semantics extensively, however it
lacks rigour.

Predominant in the avionics domain is the commercial SCADE Suite [3], which
is based on the synchronous data-flow language Lustre. The ASCET (Advanced

4.5 Related Work | 83

Simulation and Control Engineering Tool) products [69] by ETAS Group are
further tools widely used in the automotive domain for safety-critical systems like
ABS, ESC, and the engine control unit.

Similar to the mentioned data-flow language Lustre, also COLA is based on
the synchronous paradigm. Benveniste et al. [21] present a theory of synchronous
data-flow languages. Many data-flow language have their roots in Kahn’s [110]
process networks.

Lucid Synchrone [161], was one of the first approaches to extend the syn-
chronous paradigm towards a higher-order type system known from functional
languages, and to express programs that would be expressive and at the same
time executed synchronously. Another well-known synchronous approach, but
instead of a functional character using an imperative character, is Esterel [24].
Esterel systems differ, in that the behaviour is defined in a reactive manner, rather
than functionally based on the data-flow relations alone. Various efficient imple-
mentations of synchronous languages in the form of textual (e. g. Esterel, Lus-
tre [43, 91], Signal [81, 134], and FOCUS [37]), or graphical languages as for
instance AUTOFOCUS [34, 100] exist. Actually, graphical modelling of AUTO-
FOCUS is very similar to that of how COLA models are designed within the
COLA-IDE. Moreover, from a semantics point of view, AUTOFOCUS is based
on the time-synchronous notation of streams, hence models designed herein are
executed at a discrete time base (ticks) and logical components communicate
via channels synchronously. In fact, both tools have inspired each other. When
restricting MATLAB/Simulink to only discrete modelling blocks, it also adheres to
the synchronous languages paradigm [171]. For an example of an efficient imple-
mentation scheme of synchronous data-flow programs cf. [172]. Moreover, with
GALS (Globally Asynchronous, Locally Synchronous) [44] there exists another
wide-spread approach to implement synchronous systems in a distributed and
non-synchronous environment. GALS can be understood as having ‘synchronous
islands’ sitting and communicating in an asynchronous environment.

CHAPTER

FIVE

Model Analysis

This chapter highlights some techniques to lift the overall model quality to a higher
level. After a brief introduction in the following section, Section 5.2 discusses a
way to use model checking techniques to reason about requirements in an early
development stage. Next, in Section 5.3 an SMT-based approach is presented to
look for possibly undesired non-deterministic system behaviour, and finally in
Section 5.4 a translation scheme is described to transform COLA behavioural
models into models within the Coloured Petri nets notation. This allows us to use
the full power of, for example, the CPN-Tools [50] to analyse COLA models.

Contents
5.1. Introduction . 85

5.2. Requirements Analysis . 86

5.3. Deterministic Models . 92

5.4. COLA Model Analysis via a Translation to Coloured Petri Nets 101

5.1. Introduction

Probably the most crucial benefit of formal models, besides synthesis and model
transformation, is the ability to reason about models. The use of formal models or a
formal description notation in general opens the door to the powerful tools used in
the formal methods community. The toolbox contains amongst others static analy-
sis, model checking, theorem proving, testing, and simulation. D’Silva et al. [62]
give good overviews of automated techniques for formal software verification.

86 | 5 MODEL ANALYSIS

Depending on the current step during the overall development process, different
techniques can be applied. Thus it is up to the engineer to select the appropriate
verification technique(s). This is what Kordon et al. [122] mean by emphasising
the verification aspect and relax the ‘model centring’. They propose to move from
model-driven engineering to verification-driven engineering (VDE) following a VDE
helicoidal life cycle (cf. Figure 5.1).

modelling

verification+
code generation

feed-back analysis

t

Figure 5.1.: The VDE helicoidal life cycle (according to [122]).

In this sense, the following Sections exemplify how verification techniques can
be applied at different stages of development.

5.2. Requirements Analysis

During the development process of software systems in general and software
for embedded, safety-critical systems in particular, the phase of requirements
engineering plays a crucial role. Requirements engineering has to be performed
very carefully with due respect. This is important in particular with respect to
two exemplary surveys [70, 185], which identified poor requirements specifica-
tion and management to be the reason for at least half of the problems during
the development process. They include never completed projects, incomplete
functionalities, major cost overruns, and significant delays. The expression of
requirements in natural language is in many cases not sufficient especially when
developing safety-critical system. Unfortunately, it is a common practice of re-
quirements engineers to specify requirements not in a formal and precise manner.
This may cause in inconsistent specifications, which is not acceptable. Therefore,
rigorous requirements specification is done in the presented development process
right from the beginning. However, there is still the possibility that formally
specified requirements are inconsistent. Due to the formalisation, however, the
full mathematical power of formal methods and techniques is available to limit
the adversity and support the requirements engineer.

First, the problem statement will be introduced more formally in Section 5.2.1

5.2 Requirements Analysis | 87

before explaining in more detail the technical realisation in Section 5.2.2. Finally, a
discussion in Section 5.2.3 concludes this chapter.

5.2.1. Introduction

Section 4.2.1 introduced the essential information about the Feature Architecture.
As pointed out, the Feature Architecture is basically used to organise the informal
given requirements usually given as text documents (requirements specification
documents) by structuring the system from a feature or functional point of view.
Together with so-called feature interactions, the relationship between different
features is specified. This is an integral additional benefit, since informal require-
ments documents tend to be confusing, ambiguous, and redundant. Of course,
the quality of such documents fluctuates with the experience of the requirements
engineer. However, to come to his or her defence, it turns out that text documents
are good for contractual purposes but not to provide a convenient and less error
prone formalism, especially when considering the sheer length of such documents.
An approach to automatically generate requirements specification documents in
a model-based fashion is discussed in Chapter 6. The in this thesis presented
approach proposes to specify features either in a

(i) constructive way, i. e., using COLA data-flow networks and automata, or a

(ii) descriptive fashion, i. e., using SALT, the general-purpose language for creat-
ing concise temporal specifications.

The following describes how SALT—in the descriptive fashion—is used to auto-
matically detect inconsistencies between formalised requirements and therefore
features. Even though the Feature Architecture with its Feature Hierarchy helps
the requirements engineer to organise the customer requirements in a tree-like
way and thus supports a clear arrangement, it is still possible that specified re-
quirements are contradicting. Besides a feature description in natural language, a
formal specification of that particular feature can be given. The Structured Assertion
Language for Temporal Logic (SALT) is used for that purpose and illustrated in the
following example.

Suppose, the following requirements, inspired by the case study given in Sec-
tion 8.2, are given in natural language:

(R1) The side distance control shall always be active.

(R2) Steering movement (left or right) shall lead to a (left or right) direction of
motion.

88 | 5 MODEL ANALYSIS

Identifier Description

sdc active Side distance control is active
driver left Driver steers to the left
driver right Driver steers to the right
driver sdc Driver activates the side distance control
car left Car moves to the left
car right Car moves to the right
search active The car is in the mode to search a parking space

Table 5.1.: Identifier used within the SALT formulae.

(R3) The driver shall be able to enable the side distance control.

(R4) It shall only be possible to steer in one direction (left or right).

(R5) During steering, the side distance control shall be inactive.

(R6) When searching for a parking lot, the side distance control shall be active.

Assume, the requirements are spread over hundreds of pages and not listed like
here. Each of the requirements considered for its own makes sense. However, in
their combination they are inconsistent, i. e., they are contradictory. R1 requires
the side distance control system to be enabled permanently. However, this is
contrary to requirement R5, which stipulates that the side distance control shall
be inactive, whenever the driver performs a steering motion. If the mentioned
requirements are formally specified, for instance with SALT as done within the
COLA automotive approach, one can formally check them. The six requirements
being in the style of the case study are formally specified as follows. The meaning
of the used identifiers is explained in Table 5.1.

(F1) (always ("sdc active"))

(F2) (always ("driver left" implies (eventually "car left"))) and
(always ("driver right" implies (eventually "car right")))

(F3) (always ("driver sdc" implies (eventually "sdc active")))

(F4) (never ("driver left" and "driver right"))

(F5) (never ("sdc active") between
incl req ("driver left" or "driver right"),

excl req not ("driver left" or "driver right"))

5.2 Requirements Analysis | 89

(F6) (always ("sdc active") between
incl req ("search active"),

excl req not ("search active"))

With this formalisation it is now possible to check whether they are inconsistent,
where the formalised requirement Fi corresponds to the informal requirement Ri.

In the following, the process of detecting inconsistencies among a set of formally
specified SALT requirements is discussed.

5.2.2. Realisation

SALT is a domain independent specification language, which, for instance, con-
trary to LTL (Linear Temporal Logic) [160] is much more readable. In terms of
expressiveness they are equivalent. In the following, the technical realisation of
the analysis method within the COLA automotive approach is discussed. Note
that this thesis assumes that features are attached with SALT specifications, i. e.,
their specification is given in the descriptive way.

Functional aspects of features are described in terms of their semantic interface.
Thus, we talk about a subset of the complete system interface visible to customers—
exactly that, which is necessary for service delivery. Thus, in principle only unique
port identifiers are used as variables (identifiers) in SALT specifications. Consider
the following simplified example for illustration. It should always be the case that
after a breaking request (request) eventually a breaking effect (effect) follows.

request effectBreak

assert always (request implies eventually effect) (SALT)

G (request -> (F effect)) (LTL)

This example illustrated the connection between port identifiers and their usage
within SALT specifications. Other than this example may convey, LTL formulae
are usually longer and especially much more difficult to specify compared to their
SALT counterpart.

The SALT compiler supports the translation from SALT specifications into
several temporal logics depending on the specifications. When only temporal
operators are used, LTL is the output format. However, if the so-called timed layer
is used, TLTL is generated. In this thesis, however, only the first is considered.
As the SALT compiler translates each SALT specification of a feature into a cor-
responding LTL formula φ, consistency amongst them has to be checked. For

90 | 5 MODEL ANALYSIS

each LTL formula φ there is an effectively constructible Büchi automaton B. We
say that two features, specified by SALT (φ1 and φ2) and therefore LTL formulae
(φ′1 and φ′2) are consistent, i. e., not contradicting, if the intersection of the respec-
tive Büchi automata (B1 and B2) recognises a non-empty language. That is, φ′1
and φ′2 are consistent if, and only if, L (B1 ∩ B2) 6= ∅. Figure 5.2a illustrates this
circumstance for n SALT specifications.

L (B1 \ . . . \ Bn)
?
= ;...

 LTL
 formula

�0
1

SALT
compiler

 SALT
 formula

�1

 SALT
 formula�n

\
LTL2BA Büchi

 automaton
B1

SALT
compiler

 LTL
 formula�

0
n LTL2BA Büchi

 automaton
Bn

(a)

...

 SALT
 formula

�1

 SALT
 formula

�n

^ SALT
compiler LTL2BA Büchi

 automaton
B LTL

 formula
�0 L (B)

?
= ;

(b)

Figure 5.2.: (a) Translates each SALT specification into an LTL formula and then into a
Büchi automaton. Finally determines the language accepted by the inter-
sected automata. (b) First generates the AND-connected SALT specification,
which in turn is translated into LTL and then into a Büchi automaton whose
accepting language is checked.

The current implementation follows the steps depicted in Figure 5.2b. A new
SALT specification is generated that is the conjunction of specifications φ1 to
φn. The SALT compiler1 generates LTL formula φ′ and the tool LTL2BA2 [80] by
Oddoux and Gastin is used to translate the LTL formula into a Büchi automaton.
Next, it is checked whether L (B) is empty or not. If L (B) is empty, we know that
the set of initial SALT specifications is inconsistent, since there is obviously no
accepting automaton run.

In Figure 5.3 the AND-connected SALT specification of the running example is
given.

1http://salt.in.tum.de/
2http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php

http://salt.in.tum.de/
http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php

5.2 Requirements Analysis | 91

assert (always (

(always ("sdc_active")) and
(always ("driver_left" implies (eventually "car_left"))) and
(always ("driver_right" implies (eventually "car_right"))) and
(always ("driver_sdc" implies (eventually "sdc_active"))) and
(never ("driver_left" and "driver_right")) and
(never ("sdc_active") between

incl req ("driver_left" or "driver_right"),

excl req not ("driver_left" or "driver_right")) and
(always ("sdc_active") between

incl req ("search_active"),

excl req not ("search_active"))

))

Figure 5.3.: Conjunction of the presented SALT specifications.

5.2.3. Discussion

A prototype of the presented method is implemented within the COLA engi-
neering environment. This initial work, however, has the potential for future
extensions. Besides an extension to TLTL, most aspects concern usability in partic-
ular the user interface. These are:

(i) As mentioned before, features offer a specific service that interacts with a
subset of the complete system interface. Hence, variables used within a SALT
specification can only refer to port names of that sub-interface. One extension
would be to guide the developer by only allowing variables referring to port
names.

(ii) As specifications follow in most cases specific patterns—as described by
Dwyer et al. [64]—such a pattern-based user guidance could simplify editing
of specifications and hence reduce the risk of potential erroneous specifica-
tions. Campetelli et al. [40] pursue a similar objective within AUTOFOCUS.

92 | 5 MODEL ANALYSIS

5.3. Deterministic Models

5.3.1. Introduction

In the context of automatic deployment of COLA models onto a distributed target
hardware platform, it is highly important that the deployed system behaves deter-
ministically. This requires that the possibly non-deterministic source model of the
Logical Architecture is transferred into a deterministic runnable entity. During the
deployment steps reported in Section 4.4, which fully automatically generate from
a COLA model an executable system for the introduced hardware platform, C
code generation is involved. The central and core idea of the development process
is to take the steps from model level to implementation level while preserving the
COLA semantics as close as possible. For this reason, randomness is not a desired
system characteristic. As mentioned in Section 4.2.2, it is of course possible to
generate deterministic code from non-deterministic models. In this case, code
generators need some deterministic rules to resolve the non-determinism (cf. also
MATLAB/Stateflow’s 12 o’clock semantics). To be semantics preserving down to
the execution platform, all involved process steps have to be semantics preserving
in general and deterministic in particular. When having a closer look on the
COLA modelling language, one notices at a glance that non-deterministic system
behaviour can only occur when using automata. Underspecification and thus
non-determinism might be a desired characteristic on the Feature Architecture.
Underspecification is oftentimes used if some aspects of a system behaviour are
not yet defined and thus left open intentionally.

Note, currently there is the restriction that COLA models on level of the Logical
Architecture have to be deterministic when generating executable C code. This
circumstance is due to the fact that the implemented code generator [90] does not
have any rules to resolve non-determinism and COLA’s semantics is not guided
by a 12 o’clock semantics, for example. Hence, it is all the more important that
engineers are made aware of possible problems. Obviously, a non-deterministic
source model could possibly result in different source codes, when running the
generator several times. In consequence, the resulting target system might behave
in an unexpected way. Besides the obvious reason, a pragmatic but not to un-
dervalue reason—especially in the field of safety-critical embedded systems—is
tool qualification: in the context of avionics systems—since COLA is developed
for, but not limited to automotive systems—the standard DO-178B [174] requires
thereafter qualified tools to work deterministically, i. e., on the same inputs always
result in the same output. Similar standards for the automotive domain include

5.3 Deterministic Models | 93

the international standard IEC 61508 for ‘functional safety of electrical/electron-
ic/programmable electronic safety-related systems’ [102] and the international
standard ISO 26262 (‘Road vehicles – Functional safety’) [104].

If the input model, for instance, for the code generation step was non-
deterministic, the generated output would not be the same in general. In conse-
quence, COLA models have to be checked whether they are non-deterministic or
not and when, why, and where. In the following, the technical realisation and its
restriction will be detailed on.

5.3.2. Problem

COLA uses the notion of automata to model control-flow and express distinct
system behaviour in the case of so-called mode automata (cf. Section 4.3.1 for
details). Automata are the only language constructs that enable non-deterministic
behaviour. They determine their next state by evaluating from the current state
all outgoing transitions (guarded by conditions) under the input vectors present
at the automaton’s interface. Depending on the input vectors and the guarded
transitions, it is possible that more than one transition is enabled at the same time,
hence leading to a set (more than one) of possible next states. As automata are
powerful and widely used modelling constructs—be it to define system modes
or just for algorithmic reasons—it is worth analysing them. Examples for both
mentioned cases are given in Figures 5.4a and 5.4b, respectively. Figure 5.4a

(a) Operating modes (b) Algorithmic steps

Figure 5.4.: Figures (a) and (b) show the usage as mode automaton and as an automaton
describing certain steps of an algorithm.

depicts the basic distinction between the different operating modes of one of

94 | 5 MODEL ANALYSIS

the case studies: ‘normal’, ‘sdc active’, and ‘parking’. In the second example,
depicted in Figure 5.4b, different steps within the parking procedure are shown.
The differentiation between both cases, however, is in many cases fluent. The
second example could also be interpreted as modes, however, to regard them as a
part or as a step of an algorithmic description seems more appropriate in this case.
The automaton of the first example would be non-deterministic if for example
there were input values that simultaneously activate the transitions from ‘normal’
to ‘sdc active’ and ‘parking’. Therefore, the involved guards have to evaluate
to true. Tool support hinting the developer to potential problems would be an
important brick in the set of quality-increasing activities.

In Figure 5.5 an example automaton is depicted. It consists of three states and
two transitions. Each transition is guarded by an expression over x, which—of
course—is also part of the automaton’s input interface. The variable x is assumed
to be a natural number, i. e., x ∈ N. Beginning with state ‘State1’, the two successive
states ‘State2’ and ‘State3’ are reachable, depending on the value of x. If formula

x State1

State2

State3

x < 5

x > 3

y

z

Figure 5.5.: For x = 4 both transitions are enabled simultaneously.

ϕ ≡ (x < 5) ∧ (x > 3), which is the conjunction of both guarded predicates, has
a satisfying assignment for variable x, then there is a possible non-deterministic
situation. Both guarded transitions are enabled in this case. At a first glance, one
can easily see that both conditions x < 5 and x > 3 evaluate to true for x = 4

and thus ϕ is satisfiable. Of course, this is locally true in the example. However,
it might be possible that x cannot be equal to 4 for some reason. Therefore,
the obtained result is an over-approximation, since false positives are possible.

5.3 Deterministic Models | 95

Engineers, however, can be made aware of a possible problem.
Figure 5.6 gives the example where x = 4 can never occur. Here, the original

State4State1

State2

State3

x < 5

x > 3

State0

x != 4

x x

y

zz

y

Figure 5.6.: The embedded automaton is deterministic, since it is only executed if x 6= 4.

automaton is embedded into a state ‘State4’ of another automaton. ‘State4’ is only
reachable from ‘State0’ if the condition x 6= 4 holds. At this point, one can see that
the embedded automaton is deterministic although it does not look like at the first
sight. Therefore, the environment or its context has to be considered in order to
obtain better results. However, if the automaton was not embedded hierarchically,
but some computations were done before, as illustrated in Figure 5.7, the situation
would have been much more difficult. In the given example, one has to check
whether it is possible that port x can ever hold the value 4. Only in this case a non-
deterministic behaviour can occur. Again, one has to check whether it is possible
that M eventually provides x = 4. In general, this is a very hard question due to
the Turing-completeness of COLA and in general even undecidable. Techniques
known from program analysis and model checking have to be applied in order to
try to compute for the example at hand those values x can take.

Suppose M is restricted, i. e., we do not allow feedback loops and automata,
then a new predicate encoding the impact of M on the variable x can easily be
derived. In this case, exemplary depicted in Figure 5.8, one can derive the new

96 | 5 MODEL ANALYSIS

x
State1

State2

State3

x < 5

x > 3

COLA model
M

y

z

Figure 5.7.: COLA model M has to be checked in order to know whether port x can ever
hold the value 4.

COLA model M

*

+

7

* x

y

za

b

Figure 5.8.: Pruning the search space by deriving new predicates by backwards search.
In the example: x = 7a + 7.

predicate x = 7a + 7. All together we gain:

ϕ ≡ (x < 5) ∧ (x > 3) ∧ (xxx = 7aaa + 7) (5.1)

If there is an assignment to the variables x and a satisfying ϕ, then M does not
change the non-determinism of the automaton. Hence, the backward traversal
has to be continued starting at port a until sources are reached or, if like in the
given example, ϕ cannot be satisfied anymore. Now, we know that x cannot
be equal to 4 because there is no value for a satisfying the equation 4 = 7a + 7

5.3 Deterministic Models | 97

on natural numbers. If, however, a had been a rational number, ϕ would have
been satisfiable with β(x) = 4 and β(a) = −3

7
. In this thesis, β denotes a function

returning the assignment of a variable, e. g. β(x) = 4. Let β(ϕ) denote the set
of variable assignments satisfying ϕ. In this case, the backwards search has to
be continued at port a. Again, the above discussed cases that can occur, namely,
model M is the implementation of an automaton state, or M is part of a larger
network.

5.3.3. Realisation

Coming back to the example in Figure 5.5. Starting from ‘State1’, there is a non-
deterministic behaviour if guards x < 5 and x > 3 are satisfied simultaneously.
Therefore

(x < 5) ∧ (x > 3) (5.2)

has to be satisfied. This is true for x = 4.
Generally, each automaton state having more than one next state is a potential

candidate for non-deterministic behaviour.

Definition 3 (Signature of a COLA unit [130]). Let Pin = 〈a1 : t1, . . . , ak : tk〉 and
Pout = 〈ak+1 : tk+1, . . . , an : tn〉 with k,n ∈ N be (ordered) lists of typed ports, such that
all port identifiers a1, . . . , an are pairwise disjoint. A typed port is denoted as aj : tj, i. e., a
port identifier aj with a type tj, 1 ≤ j ≤ n. A signature is written as σ = (Pin � Pout).

Definition 4 (Automaton). Let A = 〈Q,P,→, q0, σ〉 be a COLA automaton. Q is the
finite set of states, P a finite set of guard predicates, and→⊆ Q × P × Q is a ternary
relation of guarded transitions. q0 denotes the initial state and σ the interface of the
automaton. If p, q ∈ Q and l ∈ P, then (p, l, q) or p l→ q denotes a transition from p to q,
which is taken if and only if the predicate l evaluates to true under the values present at
the input side Pin of the interface.

Algorithm 1, which checks whether a given automaton is deterministic or not,
is explained in the following. For each state of the automaton under consider-
ation, all pairs (combined with AND) of outgoing guarded transitions (gs) are
combined with OR (cf. line 4) yielding ϕ. Next it is checked whether there exists
an assignment β satisfying ϕ (cf. line 5), i. e., there are input values simultaneously
satisfying at least two outgoing transitions. In this case, the automaton is locally
non-deterministic; otherwise, the automaton is deterministic in any case. Next,
the while-loop ascends the model as shown in the scenario of Figure 5.6. Here the
automaton at hand is embedded as the behavioural state specification of a further

98 | 5 MODEL ANALYSIS

input :Automaton A = 〈Q,P,→, q0, σ〉 to check whether it is
deterministic or not

output :Assignments (values) β for input ports in the case of
non-determinism, otherwise nil

1 ϕ← nil

2 foreach p ∈ Q do
3 G = {g ∈ P | (p, g, q) ∈→}
4 ϕ← ϕ ∨∨g1,g2∈G

g1 6=g2
(g1 ∧ g2) /* assuming g1 ∧ g2 ≡ g2 ∧ g1 */

5 if β(ϕ) 6= ∅ then
6 B ← A
7 while ¬ (reachedTopLevel() ∨ β(ϕ) = ∅) do
8 Let C = 〈Q′,P′,→′, q′0, σ′〉 be the automaton having B as an

implementation of one of its states q′ ∈ Q′

9 G′ = {g′ ∈ P′ | (p′, g′, q′) ∈→′}
10 ϕ← ϕ ∧

(∨
g′∈G′ g

′
)

11 B ← C
12 if β(ϕ) 6= ∅ then
13 return β(ϕ)

14 else
15 return nil

16 else
17 return nil

Algorithm 1: Checks whether a given automaton A is deterministic or not.
In the positive case it returns nil, otherwise it returns a variable assignments
(counterexample) β as proof for its local non-determinism.

5.3 Deterministic Models | 99

embracing automaton. It is possible that this state is reachable from multiple
predecessor states. Thus, the respective guarded transition conditions have to
be combined with OR (cf. line 10) and added (AND) to ϕ. Next, the hierarchical
COLA model is ascended until either ϕ is no more satisfiable or the top level has
been reached (cf. reachedTopLevel() in line 7). Now, if ϕ is still satisfiable,
then there is a strong evidence that the automaton is non-deterministic—at least
at model level. Why this restriction? If for instance the distance to an ahead
driving car is modelled using a source block on level of the Logical Architecture,
the engineer may use the integer data type. Suppose the outlined algorithm states
that some interesting automaton may be non-deterministic for an input parameter
‘distance’ with the value say −10. In a technical realisation, however, a distance
will never have a negative value—assuming no hardware malfunction—and thus
the provided counterexample is spurious. Hence, the gained input assignments
are always over-approximations unless variables are traced back to constant COLA
blocks only.

The current implementation uses the YICES [63] SMT-solver as backend to solve
ϕ. Indeed, any other solver would have been applicable, too. As YICES is not
capable to work with non-linear arithmetic, predicates like those for y in Figure 5.8,
namely y = ab, are not possible. In such a case a solver for non-linear arithmetic
as for instance the ABsolver by Bauer et al. [20] is necessary.

Figure 5.9 shows the integration into the COLA engineering environment.
In this example, the non-deterministic behaviour was introduced by hand, for
demonstration purposes. Here, the two predicates

g1 ≡ (mode control = 0) ∨ emergency stop (5.3)

g2 ≡ (mode control = 0) ∧ (¬emergency stop) ∧ (steering control = 0) (5.4)

determine ϕ ≡ g1 ∧ g2. In this formula, only Boolean and integer variables occur.
By construction, ϕ is satisfiable with the assignment

β(ϕ) = {emergency stop← false, steering control← 0,mode control← 0} (5.5)

The example does not use hierarchically nested automata, thus Algorithm 1 does
not enter the while-loop. As the variables occurring in ϕ are influenced by source
blocks, the given example indicating non-deterministic behaviour may be spurious.
Hence, the engineer has to verify whether the provided result makes sense. A
negative distance in the example above obviously makes no sense. The variable
assignment given in Formula (5.5) is not spurious.

100 | 5 MODEL ANALYSIS

(mode_control = 0)
∨

emergency_stop

(mode_control = 0) ∧
(¬emergency_stop) ∧
(steering_control = 0)

counterexamplepossibly nondeterministic state

emergency_stop = false
steering_control = 0
mode_control = 0

Figure 5.9.: Verification result visualised within the COLA-IDE.

Complexity Considerations

Initially, the length of ϕ for a given automaton A = 〈Q,P,→, q0, σ〉 is determined
by the number of contained states |Q| and the length of the guarded transitions.
For each state of the automaton and for each pair of outgoing transitions g1, g2,

possibly (|Q|−1
2)
2

many, a clause (g1 ∧ g2) is added. During each while-loop pass,
the length is extended by a clause of length constant in |Q′| − 1. The number of
loops is bounded by the embedding-depth δ of A. As COLA models are finite,
termination of Algorithm 1 is guaranteed. For a flat automaton, δ = 0 as in the
example depicted in Figure 5.9.

When using a technique similarly to iterative SAT solving [71], but in contrast
with SMT formulae, the solver has to be called only once with the initial formula
or set of assumptions ϕ. In the following execution, only δ-times new assertions
are added, which makes the approach feasible even for larger models.

5.4 COLA Model Analysis via a Translation to Coloured Petri Nets | 101

5.4. COLA Model Analysis via a Translation to
Coloured Petri Nets

Modelling formalisms with a well-defined formal basis including syntax and
semantics facilitate the use of formal methods for quality improving activities.
Testing, simulation, and verification are only some of them.

“The Heart and Soul of Model-Driven Software Development”,

as Sendall and Kozaczynski [182] characterise model transformation, is a further
category. This section introduces a transformation schema from COLA core to
Coloured Petri nets (CPNs) [107–109] illustrating one of the benefits of having a
formal foundation. CPNs are an example for a modelling language with an exact
mathematical definition of their execution semantics. Coloured Petri nets are an
extension of classical Petri nets and facilitate hierarchical system modelling and
distinguish between tokens having a value of a certain type. A transformation
between two formalisms allows mutually usage of available analysis tools and
techniques—assumed semantics preservation during translation. In the presented
case, the power of the CPN Tools [50] is used to analyse COLA models. Of course,
the analysis techniques of the used CPN tools could also have been redeveloped
and integrated into the COLA-IDE. However, this was not the intention of the
research question and thus has not been realised within the initial COLA break-
through. Nevertheless, in the following, a translation schema from COLA core
to CPN is developed and can be considered as a proof of concept in the sense
of rapid prototyping. After a brief introduction into Coloured Petri nets in the
following section, the actual translation scheme is presented.

5.4.1. Introduction to Coloured Petri Nets

Coloured Petri nets—similar to COLA—are a graphical modelling language
emerged from the combination of Petri nets [168] and the functional programming
language Standard ML (SML) [158, 184]. They are also referred to as high-level
Petri nets. In order to be able to cope with the normally large size of real life
systems and to introduce a better system overview, CPNs offer the possibility of
hierarchically modelling, i. e., parts of the model are combined into submodules.
On the one hand, the usage of Petri nets offers an effective framework for mod-
elling concurrency, communication, and synchronisation. On the other hand, the
application of SML facilitates the definition and manipulation of the data.

102 | 5 MODEL ANALYSIS

The application within the presented work focuses only on the analysis tech-
niques, since the COLA-IDE already features powerful modelling capabilities.
The CPN Tools [50] framework integrates modelling, simulation, and analysis
capabilities and has been successfully applied in various application areas and
industry projects [109, 125, 126, 159, 164].

The following definitions of hierarchical and non-hierarchical CPNs should
serve to easier understand the terminology used for the translation of COLA
models. We allow colour sets to be multi-sets, i. e., they are sets allowing multiple
appearances of the same element. For better readability multi-sets are marked
with the subscript MS. For more detailed and complete definitions see [107–109].

Definition 5 (Non-hierarchical CPN (cf. [108])). A non-hierarchical CPN is a 9-tuple
Ω = 〈P,T,A,Σ,V,C,G,E, I〉 with:

(i) A finite set of places P and transitions T such that P ∩ T = ∅.

(ii) A set of directed arcs A ⊆ (P× T) ∪ (T × P).

(iii) A finite set of colour sets Σ.

(iv) A finite set of variables V, type(v) ∈ Σ,∀ v ∈ V.

(v) A colour set function C : P→ Σ, C(p) ∈ Σ, ∀ p ∈ P.

(vi) A guard function G : T → Expr, type(G(t)) = B, ∀ t ∈ T.

(vii) An arc expression function E : A→ Expr, type(E(a)) = C(p)MS, ∀ a ∈ A and a
is connected to p ∈ P.

(viii) An initialisation function I : P→ Expr, type(I(p)) = C(p)MS, ∀ p ∈ P.

As Coloured Petri nets are an extension to Petri nets without colours, they also
consist of places P and transitions T connected by arcs A but moreover each place
p ∈ P can hold a certain colour, referred to as colour set C(p) ∈ Σ. CPNs can also
use variables v ∈ V of a type, i. e., type(v) ∈ Σ. Transitions t ∈ T can be guarded by
an expression Expr which shall evaluate to either true or false, i. e., type(G(t)) = B.
The arc expression function E maps each a ∈ A into an expression of type C(p)MS

where p ∈ P is that place connected to a. Finally, places may be initialised with an
expression Expr without variables.

In the following, the notion of substitution transitions is used. A substitution
transition is used to hierarchically decompose CPNs, i. e., they represent a more
detailed submodule of the CPN. The set of places belonging to the preset and the

5.4 COLA Model Analysis via a Translation to Coloured Petri Nets | 103

postset of a transition t is denoted X(t) = •t ∪ t•, respectively. Socket nodes are
called the places p surrounding a substitution transition t, i. e., p ∈ X(t). The socket
type function ST is defined as follows (cf. [108]):

X(t) = •t [t•

... tin out

i/o

...

. . .

ST(p, t) =

in if p ∈ (•t \ t•)

out if p ∈ (t• \ •t)
i/o if p ∈ (•t ∩ t•)

(5.6)
In the figure, the notion of a substitution transition and that of socket nodes and
types, respectively, is visualised. This parenthesis was important for the following
definition of hierarchical Coloured Petri nets.

Definition 6 (Hierarchical CPN (cf. [108])). A hierarchical CPN is a 9-tuple
ΩH = 〈S,SN,SA,PN,PT,PA,FS,FT,PP〉 with:

• A finite set of pages S. Each page is a non-hierarchical CPN:
∀ s ∈ S, s = 〈Ps,Ts,As,Σs,Vs,Cs,Gs,Es, Is〉, the set of net elements of each page
pair are disjoint.

• A set of substitution nodes SN ⊆ T, where T =
⋃

s∈S Ts is the set of transition of
the entire CPN.

• A page assignment function SA : SN → S, such that no page is a subpage of
itself.

• A set of port nodes PN ⊆ P where P =
⋃

s∈S is the set of all places of the entire
CPN.

• A port type function PT : PN → {in, out, i/o, general}.

• A port assignment function PA : SN → 2X(SN)×PN such that:

– The relation between socket nodes and port nodes is defined as follow:
∀ t ∈ SN : PA(t) ⊆ X(t)× PNSA(t).

– Correct types for socket nodes are required:
∀ t ∈ SN,∀(p1, p2) ∈ PA(t) : [PT(p2) 6= general⇒ ST(p1, t) = PT(p2)].

– Related nodes have the same colour set and initialisation:
∀ t ∈ SN,∀(p1, p2) ∈ PA(t) : [C(p1) = C(p2) ∧ I(p1)〈〉 = I(p2)〈〉].

104 | 5 MODEL ANALYSIS

• A finite set of fusion sets FS ⊆ Ps, such that all elements have the same colour set
and equivalent initialisation expressions.

• A fusion type function FT : FS→ {global, page, instance}, such that page and
instance fusion sets belong to a single page.

• A multi-set of prime pages PP ∈ SMS.

A hierarchical Petri net consists of a finite set of pages S that are associated to
substitution nodes SN, i. e., substitution transitions, using the page assignment
function SA. Each page is a non-hierarchical Petri net. Moreover, the interaction
between the high-level substitution transition and its associated page is realised
using the port assignment function PA. It relates the socket ports, i. e., those places
X(t) surrounding the substitution transition t with port nodes of the corresponding
direct subpage. These ports have to have the same port type—determined using
PT.

5.4.2. Translation Schema

In the following, a translation schema from COLA core to CPNs is proposed.
Therefore, each language construct is translated one after another. Beginning
with basic units, namely functional blocks, stepwise more and more complex
translation schemas for units like networks and automata are given.

For the translation both hierarchical and non-hierarchical CPNs are used. Units
that can be decomposed are translated into hierarchical CPNs, those that cannot
into non-hierarchical CPNs. In order to make sure that no value is written into
a non-empty place, input and output places (and where necessary) are defined
as lists of a given data type. Thus, apart from other constraints, each transition
connected to such places fires only if its postset is empty. This reflects the semantics
defined in COLA.

Before specifying the translation schema, the following function is defined first:
π : io(σ)→ P, which maps the set of COLA input in(σ) and output out(σ) ports
into the set of CPN places, with io(σ) = in(σ) ∪ out(σ). A unit’s signature σ is
specified as follows: σ = (〈lop : tt, rop : tt〉� 〈result : m〉) (cf. also Definition 3).

Constant Blocks and Delays

For constant blocks and delay units the translation is straightforward: constant
blocks are translated into a single CPN place initialised with the corresponding
value. For each input and output of a delay, a separate CPN place as well as a

5.4 COLA Model Analysis via a Translation to Coloured Petri Nets | 105

transition to connect them is generated. A translation of a delay, e.g. pre 1, can be
found in Figure 5.16a. Note that the delay is modelled as a substitution transition
whose subpage is depicted in Figure 5.10. On the superpage, a transition (pre 1

in the example) with two places connected with arcs is created. The behavioural
translation is done in the subpage depicted in Figure 5.10 not visible in Figure 5.16a.
The delay’s initialisation—1 in the example—is reflected with the marking 1‘[1]
at place init. Keeping the same structure as the original COLA model should
serve for a better understanding of the translation process.

[][] [][]

[n] [n][n][n]

initdelayin

I/O INT_L

out

I/O
INT_L

init

[1]

INT_L

I/O
I/O

1 1`[] 1 1`[]
1 1`[1]

Figure 5.10.: CPN for a COLA delay block initialised with 1.

Functional Block

OP
lop : T
rop : T result : M

(a) COLA

lop

T_list

rop

T_list

result

M_list

[]

t_op

[]

[]

[]

[]
[r]

[l]

[OP(l, r)]

[]

1 1`[]

1 1`[]

1 1`[]

(b) CPN

Figure 5.11.: (a) COLA basic block with two input ports of type T and an output port of
type M. (b) Corresponding CPN with three places and one transition.

In Figure 5.11 a COLA functional block and its translation is depicted. The trans-
lation schema for a functional block is defined in Algorithm 2. Since functional
blocks cannot be further decomposed, their translation is straightforward. Input
and output ports are transformed into CPN places (P), including their correspond-
ing data types (C). A transition (T) is generated to reflect the operation OP and

106 | 5 MODEL ANALYSIS

is accordingly connected to places by arcs (A). Arc inscriptions (E) matching the
empty list [] play a key role for the generated CPN model. On the one hand, they
force the transition to fire only if its postset is empty, cf. (result, top) in Figure 5.11b.
In this way the behaviour defined in COLA is reflected, i. e., no new value is
added to an output port unless old values are consumed. On the other hand, they
notify other modules connected to them that the data residing in the input ports
has been consumed (cf. the outgoing arcs from top to the left), i. e., new values
can proceed. To achieve this, lists of used data types (Σ) are defined. Variables
(V) corresponding to a data type are used to read the input and process the data
according to the operation OP, cf. the arc inscription of (top, result) in Figure 5.11b.
The guard (G) of the transition is always true. All places are initialised (I) with
the empty list.

input : COLA functional block
FB = 〈n, σ = (〈lop : tt, rop : tt〉� 〈result : m〉) ,OP〉

output :CPN cpn = (P,T,A,Σ,V,C,G,E, I)

1 P = π(io(σ)), i.e. {lop, rop} ∪ {result}
2 T = {top}
3 A = {(lop, top), (rop, top), (top, result), (top, lop), (top, rop), (result, top)}
4 Σ = {tt l,m l}, tt l and m l are lists of type tt and m, resp.
5 V = {l : tt, r : tt}

6 C(p) =

{
tt l if p ∈ {lop, rop}
m l if p ∈ {result}

7 G(t) = true, ∀ t ∈ T

8 E(a) =

[l] if a = (lop, top)

[r] if a = (rop, top)

[OP(l, r)] if a = (top, result)

[] if a ∈ {(top, lop), (top, rop), (result, top)}
9 I(p) = [],∀ p ∈ P

Algorithm 2: Translates a COLA functional block into a corresponding
CPN according to the given schema.

5.4 COLA Model Analysis via a Translation to Coloured Petri Nets | 107

Network

Usually, COLA networks consist of a larger number of subunits connected by
channels. An example is given in Figure 5.12. In the following, only the translation
of the highest level is given, lower levels are translated analogously. The transla-
tion schema for COLA data-flow networks is defined as shown in Algorithm 3.

Figure 5.12.: Exemplary COLA network.
out 1(in 1, in 2, in 3) = (in 1 + 3) + (in 2 + 3)
out 2(in 1, in 2, in 3) = in 3

Definition 7 (COLA network [130]). A network is a unit 〈n, σ, I〉 with a name n, a
signature σ (cf. also Definition 3) and an implementation I = 〈U,C〉 given by the set of
contained subunits U and the set of channels C connecting them.

Each network is translated into a corresponding hierarchical CPN. For the top
level of each COLA network a page, the super page, is generated, e. g. CPNnetwork
in Figure 5.13a.

In the following we will refer to the COLA and CPN models and their compo-
nents in Figures 5.12 and 5.13 when necessary to achieve a better understanding
of the translation process. The set of other pages, representing the implementation
I = 〈U,C〉 of the network, are included in SU, where U is the set of subunits partic-
ipating in the network. Each of these units is separately translated corresponding
to its schema type. The translation of the set of channels C is not explicitly given.
However, they are important for establishing the connectivity between translated
components, e. g. if there is a connection/channel from a COLA unit A to a unit

108 | 5 MODEL ANALYSIS

NETWORK

network

out2

[]

INT_L

out1

[]

INT_L

in 3

[3]

INT_L

in 2

[2]

INT_L

in 1

[1]

INT_L

network

1

1

1

1

1

(a) CPN model (superpage CPNnetwork)

[]

[n + m]

[]

[m]

[] [n]

[]

[m + k]

[]

[n + k]
[]

[n]

[]

[m]

k

k

[]

[]

[m]

[n]

[k] []

[]

[]

[] [k]

[m]

[n]

add 1

add 3

add 2

input

out2

I/O

[]

INT_L

result3
out1

I/O

[]

INT_L

result1
x3

[]

INT_L

result2
y3

[]

INT_L

y1
const3

3

INT

x1

[]

INT_L

x2
const3

3

INT

y2

[]

INT_L

in 3

I/O

[3]

INT_L

in 2

I/O

[2]

INT_L

in 1

I/O INT_L

[1]

I/O

I/O

I/O

I/O

I/O

1

1

1

1

1 1`3

1

1 1`3

1

1

1

1

(b) CPN model (subpage network)

Figure 5.13.: (a) depicts the superpage of a CPN model for the respective COLA model
given in Figure 5.12. (b) shows the corresponding subpage.

B, in the corresponding CPN model the output places of A are correspondingly
glued together with the input places of B. Each subunit is represented by the set of
substitution nodes SN, which consist of transitions, e. g. nNET = NETWORK, and
the set of those (SNU) appearing in the subunits in U. SA maps each substitution
transition to their implementations in the subpages, e. g. transition NETWORK
to the subpage network. The set of input and output nodes of CPNnetwork (in1,
in2, . . .) are unified with those of the subpages PNU building the set PN. Most
of port nodes are of type (PT) i/o as described in the schema. Now we just need
to define the assignment (PA) of port nodes to socket nodes, e. g. in1 in network,
denoted in1@network, is assigned to in1 in CPNnetwork (in1@CPNnetwork). This es-
tablishes the connection of places on the superpage to places of the corresponding

5.4 COLA Model Analysis via a Translation to Coloured Petri Nets | 109

subpage. Since the nodes in both pages share commonly the same name, the tuple
(out1@CPNnetwork, result3out1@network) illustrates best such an assignment.

input : COLA network NET = 〈n, σ, 〈U,C〉〉
output :Hierarchical CPN Hcpn = (S,SN,SA,PN,PT,FS,FT,PP)

1 S = {CPNnetwork} ∪ SU

2 SN = {nNET} ∪ SNU,nNET is the identifier of NET
3 SA(SN) =

⋃
s∈SN SA(s)

4 PN = π(io(σ)) ∪ PNU

5 PT(p) =

{
i/o if p ∈ π(io(σ))

PT(PNU) if p ∈ PNU

6 PA(t) =

{(in1@CPNnetwork, in1@network),

(in2@CPNnetwork, in2@network), . . . ,

(out1@CPNnetwork, out1@network), . . . } if t = nNET

PA(SNU) if t ∈ SNU

7 PP = 1‘CPNnetwork
/* Note: FS and FT are not considered during the

translation. */

Algorithm 3: Translates a COLA network into a corresponding hierarchical
CPN according to the given schema.

Automaton

Automata are the most complex units of COLA. Figure 5.14a shows a COLA
automaton and its CPN representation (5.14b). For the translation of an automaton
a two-step schema is given (cf. Algorithm 4). The highest level of abstraction is
described as a hierarchical CPN in the first step. In the second step the function-
ality of the automaton, i. e., guard evaluation and state switching, is described
as a non-hierarchical CPN. For each state of the automaton, e.g. T and F, there
exists a separate transition, which serves as a substitution transition for the im-
plementation of the underlying network unit (cf. Figure 5.16b). The same figure
would represent also the functionality of the automaton in Figure 5.14b, by only
replacing do nothing and working with T and F, respectively.

As mentioned and outlined in Algorithm 4, the translation of COLA automata
into CPNs is performed in two steps:

110 | 5 MODEL ANALYSIS

(a) COLA automaton

automaton

automaton

out

[]

INT_L

INT_L

INT_L

in1

in2[]

[]

automaton

1 1`[]
1 1`[]

1 1`[]

(b) CPN page CPNautomaton

Figure 5.14.: In Figure (a) a simple COLA automaton with the two states T and F is
depicted. Its CPN representation can be seen in (b).

(i) The first translation step is similar to the translation of a network, thus we
give no further description. We have, however, to stress that the index Q
represents the implementation of the underlying network for each automaton
state in Q. The set of their corresponding substitution transitions is denoted
QT.

(ii) The second step describes by means of non-hierarchical CPNs the next lower
level page (automaton). Besides the port nodes, determined by π(), which are
needed to be assigned to sockets of the parent or super page (CPNautomaton),
there are two additional places State and activated added to the set of places P.
Place State is of type State and holds the identifiers of each state in Q. activated
holds the currently active state. The transition activate State is responsible
for the initialisation of state switching, by feeding the function state() with
input data and the actual active state. The purpose of function state() is to
check and control the switching between states, according to the defined
guards of the automaton. Let G = {g1, g2, . . . , gn} be the set of the guards of
an automaton, V = {v1, v2, . . . , vm} the set of variables used in the guards
and S = {s1, s2, . . . , si} the set of states of the automaton, with s ∈ S. We
define the state() function and the colour sets State and State L as follows:

1 fun s t a t e (s , v_1 , . . . , v_m) =
2 i f s = s_1 andalso g_1 then s_2
3 e lse
4 i f s = s_2 andalso g_2 then s_3
5 . . .
6 e lse s ;
7 c o l s e t S t a t e = with s_1 | s_2 | . . . | s _ i ;
8 c o l s e t Sta te_L = l i s t S t a t e ;

The rest of the translation schema is straightforward.

5.4 COLA Model Analysis via a Translation to Coloured Petri Nets | 111

5.4.3. Translation Algorithm

The idea of the outlined Algorithm 5 is to translate COLA models into CPNs
in a DFS manner. For each visited unit, the corresponding translation schema
is applied. Once all units are translated there will be loose components and a
superfluous number of places (representing each input and output port of each
component). To reduce the number of places and establish the corresponding
connectivity between components, we glue together input and output places
(cf. line 19) regarding the defined channels in the original COLA model, i. e., the
corresponding source and destination ports. Finally, to accommodate the structure
of the generated hierarchical CPN, the connection between subpages and their
parent pages is established by assigning ports to sockets (cf. line 20).

There are two special cases that need to be considered during the translation of
a network:

(i) If multiple ports read from one and the same port (cf. port out of the constant
block in Figure 5.12). In this case, we translate the connection in that way
that the source of the channel is translated to as many places as there are
destinations (cf. places y1const3 and x2const3 in Figure 5.13b).

(ii) The input and output of a unit are not connected (cf. Figure 5.15 the im-
plementation of the do nothing state). Therefore, we create a new place
and connect it with the input transition and other transitions accordingly
(cf. Figure 5.16c). This is done to make sure that the data flow in the network
is not broken, i. e., we want to establish a correct consumption of the input
data in order to proceed to the output, as required in COLA.

Note that one can merge the transitions input and out, thus not needing to add the
new place at all. The transition input can often get merged with other transitions
and reduce the size of the net, e. g. one could merge input and add (cf. Figure 5.16d)
and deleting the places in 1 and in 2, without changing the behaviour of the net.

5.4.4. Example

In Figure 5.15, a screenshot of the COLA simulation tool is depicted. It shows
a high level COLA system consisting basically of two automata (automaton 1,
automaton 2), two input constants with the values 3 and 5 and two delay opera-
tors (pre, initialised with 1). Each automaton has two states, namely do nothing

and working. In both cases, do nothing always provides the value 0 as output,
concerning the behaviour of working, however, both automata show a different

112 | 5 MODEL ANALYSIS

implementation. automaton 1 performs the subtraction of the values present
at the input ports in 1 and in 2 (out := in 1 - in 2). The state working of
automaton 2 adds both input values in 1 and in 2, i. e., out := in 1 + in 2.
Concerning the state transitions, both automaton share similar conditions de-

Figure 5.15.: COLA simulator: dashed lines are added manually to clarify the hierarchi-
cal decomposition.

pending on their varying inputs in 1 (automaton 2) and in 2 (automaton 1),
respectively:

automaton 1: do nothing
in 2>0−→ working

in 2≤0−→ do nothing

automaton 2: do nothing
in 1>0−→ working

in 1≤0−→ do nothing

If in {1,2} > 0, the state changes from do Nothing to working and contrari-
wise if in {1,2} ≤ 0 the transition from working to do Nothing is taken. In
all other cases, the automaton stays in the current state.

In COLA a deadlock in a classical sense is not possible. This is due to the fact
that the COLA semantics dictates that at each tick of the system execution a new
value is assigned to each output port. A deadlock from a Petri net point of view is
compared best with a COLA system that is stuck in an automaton state, which

5.4 COLA Model Analysis via a Translation to Coloured Petri Nets | 113

cannot be changed anymore. This might, however, be a system design decision.
But in many cases, as in the given example, it is a modelling error. Regarding
the example, the values present at the output ports result of both delays have
a special behaviour: at the first tick both ports emit the value 1. To simplify
matters, we write these values as a result vector r = (1

1) where the upper value
corresponds to the port value of the upper delay, and the lower value to the lower
delay, respectively. The developer has set both values as default for the delays.
When considering the behaviour over time we use a matrix-like notation, i. e., the
ith column of the matrix represents the output values after the ith tick. For this
simple example, the following infinite sequence

M∞ =

(
1 2 −3 −4

1 6 7 0

)
◦
(

0

0

)ω

of port valuations is obtained, i. e., after a finite number of steps (four in this case)
the system reaches a deadlock-like state and from then on only emits r = (0

0) for
i > 4 as result. However, for more complex examples, the engineer cannot detect
similar behaviour solely using the COLA simulator. Here, the power of the CPN
Tools becomes important.

After translating the COLA model into a CPN, using the outlined translation
algorithm, the CPNs depicted in Figure 5.16 are obtained. The idea is to automati-
cally construct the state space of the CPN models and finally create the state space
report, which contains information about standard behaviour properties: dead
markings, dead and live transitions, etc. This information collected in the report
supports the analysis of a system in an early stage of its development and helps to
decreases the number of design errors.

Live Transition Instances

automaton1’activate State 1

automaton2’activate State 1

doNothing1’input 1

doNothing1’out 1

doNothing2’input 1

doNothing2’out 1

pre1’delay 1

pre1’init 1

pre2’delay 1

pre2’init 1

114 | 5 MODEL ANALYSIS

n

[n]

[]

[n]

[]

n

init_5

init_3

automaton_1

automaton1

automaton_2

automaton2

pre_2

pre2

pre_1

pre1

const_5

const_5

INT

const_3

const_3

INT

in_1_2

[]

INT_L

in_1_1

[]

INT_L

in_2_1

[]

INT_L

out_A2

[]

INT_L

out_A1

[]

INT_L

in_2_2

[]

INT_L

pre1

pre2
automaton2

automaton1

1 1`5

1 1`3

1 1`[]

1 1`[]

1 1`[]

1 1`[]

1 1`[]

1 1`[]

(a) CPN example

[state(s,n)]

[]

[m]

[n]

state(s,n)

s

working_2

working2

doNothing_2

doNothing2

activate
State out

I/O INT_L

activated

[]

State_L

in2

I/O
INT_L

State

working

State

in1

I/O INT_LI/O

I/O

I/O

doNothing2

working2

1 1`[]1 1`[]

1 1`[]

1 1`working

1 1`[]

(b) Automaton

[]

[]

[n][0]

[]

[n]

[]

n

s

[s]

[]

[m]

[]

[n]

outinput new

[]

INT_L

const_0

0

INTin2

I/O
INT_L

out

I/O
INT_L

doNothing

doNothing

State

in1

I/O

activated

I/O

[]

State_L
I/O

I/O

I/O

I/O

INT_L

1 1`[]

1 1`0

1 1`[]

1 1`[]

1 1`doNothing
1 1`[]

1 1`[]

(c) State do nothing

[]
[]

[x + y]
[]

[y]

[]
[x]

[m]

[]

[n]

[]

[m]

[]

[n]

[]

[s]

s

addinput

in_2

[] INT_L

in_1

[]

INT_L

out

I/O
INT_L

working

working

State

in2

I/O
INT_L

activated

I/O

[]

State_L

in1

I/O
INT_L

I/O

I/O

I/O

I/O

1 1`[]

1 1`[]

1 1`[]

1 1`working

1 1`[]

1 1`[]

1 1`[]

(d) State working

Figure 5.16.: CPN example: (a) The highest abstraction level of the CPN example. (b)
Realisation of an automaton. (c) Realisation of the state do nothing. (d)
Realisation of the state working (automaton 2).

The expected behaviour is reflected in this result to the effect that the transitions
representing both working states are not contained. That means for the CPN that
there is a marking from which there exists no path containing these transitions.
In other words—from a COLA point of view—it is possible to reach a system
configuration that prohibits a change to a distinguished system state (working
in our case). Based on this information, the developer has to check whether the
modelled system behaviour is what was desired. If this it not the case, a modelling
error has been detected.

5.4.5. Related Work

Coloured Petri nets have been extensively used to model and verify business
processes. Gottschalk et al. [82] translated Protos models, i. e., a popular tool for
business process modelling, into Coloured Petri nets for simulation, testing, and

5.4 COLA Model Analysis via a Translation to Coloured Petri Nets | 115

configuration reasons. Moreover, in the field of Web services, CPNs are used.
There, questions concerning correctness and reliability arise, when composing
single Web services to more complex ones. Kang et at. [111] and Yang et al. [201]
have studied the translation of WS-BPEL (Web Services Business Process Execution
Language) or BPEL specifications into CPNs. This makes analysis and verifica-
tion of the composed Web services using for example CPN Tools [50] possible.
However their translations are rather informal than a formal defined translation
schema. Hinz et al. [97] translated BPEL specifications into Petri nets in order to
use the model checking tool LoLA to verify relevant properties.

Akin to the presented approach, the authors of [74] bring together the two
modelling languages UML and CPN. They translate Use Cases and UML 2.0
Sequence Diagrams into CPN models for formal analysis. In the automotive
domain or in the field of embedded systems design in general, Live Sequence Charts
(LSC) are widely used as specification language. Amorim et al. [13] claim that LSC
do not provide the possibility for analysis and verification and thus a translation
into CPN is appropriate and which is given in a well-defined formal way.

5.4.6. Summary

This section exemplary outlined the way of using model-to-model transformation—
in the current achievement from COLA core to Hierarchical Coloured Petri nets—
to quickly adopt the analysis capabilities of other tools into the COLA-IDE. This
becomes possible since, both modelling formalisms are based on a well-defined
formal basis, which allows a stepwise transformation of COLA’s modelling con-
cepts.

116 | 5 MODEL ANALYSIS

input : COLA automaton AUT = 〈n, σ, I〉, I = 〈Q, q0,∆〉,
∆ ⊆ Q × dom(in(σ)) × Q

output :Hierarchical CPN Hcpn = (S,SN,SA,PN,PT,FS,FT,PP)

/* STEP 1 */

1 S = {CPNautomaton} ∪ SQ

2 SN = {nAUT} ∪ SNQ,nAUT is the identifier of AUT
3 SA(SN) =

⋃
s∈SN SA(s)

4 PN = π(io(σ)) ∪ PNQ

5 PT(p) =

{
i/o if p ∈ π(io(σ))

PT(PNQ) if p ∈ (PNQ)

6 PA(t) =

{(in1@CPNautomaton, in1@automaton),

(in2@CPNautomaton, in2@automaton), . . . ,

(out1@CPNautomaton, out1@automaton), . . . } if t = nAUT

PA(SNQ) if t ∈ (SNQ)

7 PP = 1‘CPNautomaton
8 automaton represents the subpage of nAUT.
/* Note: FS and FT are not considered during the

translation. */

/* STEP 2 */

9 P = {State, activated} ∪ π(in(σ) ∪ out(σ))

10 T = {activate State} ∪QT

11 A = {(State, activate State), (activate State,State),
(activate State, activated), (activated, activate State), . . . }

12 Σ = {State,State L, } ∪ D, with D = dom(in(σ))

13 V = {s : State} ∪ {v1 : t1, . . . , vn : tn}, ti ∈ D, 1 ≤ i ≤ n,n = |in(σ)|

14 C(p) =

State if p = State

State L if p = activated

D if p ∈ π(io(σ))

15 G(t) = true,∀ t ∈ T

16 E(a) =

s if a = (State, activate State)

state(s, {v1, v2, . . . }) if a = (activate State,State)

[state(s, {v1, v2, . . . })] if a = (activate State, activated)

. . .

17 I(State) = q0

Algorithm 4: Translates a COLA automaton into a corresponding hierar-
chical CPN according to the given schema.

5.4 COLA Model Analysis via a Translation to Coloured Petri Nets | 117

input : COLA model
output :CPN model

1 while (not all units u ∈ U have been visited) do
2 perform a DFS traversal on the COLA model
3 switch (u instanceof) do
4 case (functional block)
5 if (u isA constant) then
6 create a single place p
7 initialise p accordingly
8 else
9 FunctionalBlock(u)

10 case (network)
11 Network(u)
12 create a transition input to collect the incoming data
13 connect input according to the connections in u (channels)

14 case (automaton)
15 Automaton(u)

16 case (delay)
17 Delay(u)
18 initialise the translation

19 glue input and output places together, according to their connectivity in the
COLA model

20 assign ports to sockets

Algorithm 5: COLA2CPN translation algorithm.

CHAPTER

SIX

Generation of Requirements Specification Documents

Requirements specification documents do not only define the functionality and
constraints of a system (software, hardware, or both) to be developed, but are also
part of the contract between an OEM and a supplier. High-quality source material
is essential for the quality and reliability of the product to be developed. Inconsis-
tency between different documents may also influence the meeting of deadlines
within the development process and therefore have economic consequences. The
following section 6.1 gives a short introduction, before the generated document
structure is discussed in Section 6.2. Section 6.3 focuses on the technical realisa-
tion, which in turn facilitates the realisation of a semantically tangible requirements
document presented in Section 6.4. Section 6.5 refers to the ‘IEEE Recommended
Practice for Software Requirements Specifications’. Finally, Section 6.6 sums up
this chapter.

Contents
6.1. Introduction . 120

6.2. Document Structure . 121

6.3. Realisation . 126

6.4. Semantically Tangible Requirements Documents 129

6.5. Integration into the Context of IEEE Std 830-1998 131

6.6. Summary . 132

120 | 6 GENERATION OF REQUIREMENTS SPECIFICATION DOCUMENTS

6.1. Introduction

Requirements specification documents should contain all necessary information
such that the reader of the documents understands what s/he has to realise.
Therefore, clarity and comprehensibility are only two aims. Actually, industry
partners demanded a better readability and also the use of formal languages to
describe components if this supports understandability.

Oftentimes, one differentiates between different kind of requirements specifica-
tion documents according to their respective purpose.

(i) A functional requirements specification document describes in detail the intended
function from a solution independent point-of-view.

(ii) A component requirements specification document is aimed at the definition
of a component, whereas the notion component is used in the sense of a
hardware component—in general an ECU. This document specifies an ECU;
note: several (sub-)functions can be partitioned onto a single ECU, thus,
aspects of different functions can be contained.

(iii) A system requirements specification document contains information from a sys-
tem’s point-of-view and therefore contains information how to integrate
hardware components together to realise the whole system.

The purpose of such a document cannot be characterised only in terms of the
contained information, but also in terms of its reader: in most cases the functional
requirements specification document is used as an in-house document for the
function developers and function specialists. Sometimes also the suppliers is
handed-over this document in addition to the main document, which summarises
the component requirements. Actually, this is the most important document for
the supplier as it contains information about all functions that have to be realised
by a particular E/E component. Finally, the system requirements document is
necessary for those who have to integrate the component within the overall system
or automotive in this case.

Today, these documents are either hand-written, fully or partially generated
using tools like DOORS. As authors are usually different persons, consistency
between different documents has to be guaranteed, which is difficult, time-
consuming and—of course—error prone. Usually dozens to hundreds of docu-
ments are referenced and also modified over their life time. This makes consistency

6.2 Document Structure | 121

within all documents a very challenging task, which today is in many cases not
possible.

Actually, it is very difficult to find a good trade-off between preciseness and
incomplete specification. Immediately, it arises the question why a requirements
specification document should be incomplete or imprecise? This has amongst
others the following two reasons:

(i) Requirements specification documents involve over their life time. Especially
in early versions, not all information is available. Only in rare cases this is
rooted in poor requirements engineering. When realising the time line of
automotive development, one notices that even not all technological possi-
bilities that may be available five to seven years in the future—especially
in the E/E area—are known. This underspecification leaves a margin for
short-dated adaptions. A second reason for short-dated feature introductions
is in response to competitors’ innovations.

(ii) With requirements specification documents, OEMs define the scope of what
to develop but seldom how to realise it. Then it is the task of the supplier to
develop the desired functionality rather than to one-to-one realise what was
written. Sure, the environment has to be stated by OEMs, i. e., the interface,
bus connections, timings, etc. Within this context, suppliers have quite a lot
of freedom.

Besides impreciseness, the contrary extreme is complete information. Complete
ASCET-SD or MATLAB/Simulink models are provided for one-to-one realisation
as appendix to the requirements specification documents. Hence, they become
part of the contract between OEM and supplier.

In practice, however, terms like inconsistency, incompleteness, and even incorrect-
ness are oftentimes attributed to requirements specification documents. In many
cases this is because of inadequateness of natural language. Natural language is
imprecise, ambiguous, and confusing when having realistic requirements documents
with hundreds of pages in mind. As discussed above, incompleteness might be a
desired feature, but then it has to be made clear that at a certain point this is made
by intention.

6.2. Document Structure

The COLA automotive approach supports the generation of requirements spec-
ification documents. Through the whole document, a uniform structure is kept.

122 | 6 GENERATION OF REQUIREMENTS SPECIFICATION DOCUMENTS

In the following, the proposed structure is given. One of the main advantages
is that requirements are located directly next to the object they relate to. This
approach guarantees that hundreds of requirements for instance for a single func-
tion are not spread all over the document, but are placed next to the respective
functional description. This locality improves the readability and therefore the
understandability of the function to be realised. The structure is leant against the
Logical Architecture’s structure. Assume the model on the Logical Architecture
is structured as depicted in Figure 6.1. The illustrated figure gives only a partial

System model

Powertrain

Scope of
services 1

Scope of
services 2

Vehicle dynamics

Scope of
services 3

Figure 6.1.: Scope of services: the functional range to be part of the generated specification
document.

excerpt of the overall system model. This functional model is structured according
to some domains like for example vehicle dynamics or powertrain. Each of these
domains in turn can be sub-divided. In this example in so-called scopes of services.
Each of them encapsulates exactly that part of the overall system, a supplier shall
develop and is responsible for. Therefore, in the granularity of the example, it is
the scope of services, which is basis for the document to be generated. Everything
contained in it will be part of the generated requirements specification document.
This contains all requirements attached to units representing the scope of services,
its sub-structure, a figure illustrating the logical behaviour, interfaces, and also
the textual syntax of the respective COLA units, if desired. The textual syntax,
which can be seen as a platform-independent pseudo code, eases readability and
comprehensibility of the document.

6.2.1. Differentiation between Customer- and System
Requirements

COLA units as modelling artefacts on the Logical Architecture have two possible
reasons for their being. First, they are reused from the Feature Architecture
and thus are referred to as customer requirements, as they have been modelled to

6.2 Document Structure | 123

realise a customer feature. The second reason has a technical nature. Assume
for example a logical signal speed on the Feature Architecture. Possibly, there
may not be an isomorphic signal on the Logical Architecture and hence has to
be computed first. The computation can be established using for instance the
wheel rotation speed (‘rotation speed’ in Figure 6.2), wheel radius, and elapsed
time, all available as sources, which are the logical representations of sensors on
the Technical Architecture. Again, these additional computational efforts and
modelling artefacts (X’ and ‘rotation speed’ in Figure 6.2) are not directly rooted
in the feature itself, but in its technical realisation. Actually the only modelling
artefact directly derived from the feature is X. To have a clear differentiation

Xspeed
Do something

XX'

Feature Architecture Logical Architecture

F

...

rotation
speed

Figure 6.2.: Left: some feature F realised by a unit X.
Right: post-processing of source values. Dark shaded units are referred to as
system requirements: ‘rotation speed’ and X’. X is a customer requirement.

between the two mentioned classes, they are placed and treated separately in the
generated requirements specification document.

6.2.2. Structuring

In the following, the proposed structure of the generated document is given. Note,
the document is generated from the model of the Logical Architecture and has a
recursive structure.

To alleviate understanding of and navigation through the document, a generic
structure is proposed, which is capable to be used for all three mentioned docu-
ment types, namely the functional, the component, and the system requirements

124 | 6 GENERATION OF REQUIREMENTS SPECIFICATION DOCUMENTS

Customer requirements

General requirements

Textual Formal

Document header

Document footer

Graphical/textual syntax

System requirements

Recursion

Recursion

Sources/sinks

Interface

Figure 6.3.: Generic document structure.

specification document. Within this thesis, only the first mentioned will be dis-
cussed. However, at our industrial collaborator, also the generation of the compo-
nent requirements specification document has been advised and supported right
up to the integration into their tool chain for productive use.

Each document begins with a prosaic description of the function to be realised,
followed by an image of that COLA unit encapsulating the scope of services to be
realised, and its textual syntax. Note, this and other information may be subject to
intellectual property (IP) of the OEM. As a consequence, only the interface and the
requirements for that particular object are given. A unit marked as IP (isIP() is
used in descend to obtain this information) is considered as a black box, whereas
non-IP units are recursively descended and can therefore be considered as glass
boxes.

Next, the requirements directly annotated or linked to a unit are listed. These
are informal textual as well as formal requirements. The main advantage to place
them next to the image is locality, i. e., it is always clear which requirements belong
to which modelling artefacts and are not spread all over the document. The two
main parts namely the

6.2 Document Structure | 125

(i) customer requirements and the

(ii) system requirements

follow. Again, the IP issue becomes important at this point. The root unit is
taken and for all contained sub-units that are marked as customer requirements,
their graphical and textual representation, the annotated requirements, and their
customer and system requirements are given, respectively. Subsequently, the
system requirements are listed. Potentially contained sources and sinks, as well as
the signature of the unit at hand is included. The generic layout of the generated
requirements specification documents is depicted in Figure 6.3. Algorithm 6 shows
the algorithm to generate such a document for a unit on the Logical Architecture.

In addition to the already contained information, in many cases it might be bene-
ficial to know to what extend, the realised function is related to other components,
i. e., it’s context is of interest. Figure 6.4 depicts the context of the scope of services
of the modelled example. The relation (expecting or providing information) to
other domains, hardware entities, or other scopes of services is depicted as well.

Figure 6.4.: Context of the scope of services of ‘LR SmartOpener’.

126 | 6 GENERATION OF REQUIREMENTS SPECIFICATION DOCUMENTS

6.3. Realisation

Algorithm 6 and procedure descend, respectively, perform a depth-first-search
(DFS) on the COLA model of the Logical Architecture. The user specifies a root
unit r where the model traversal is started (that encapsulating the scope of ser-
vices). The document is generated analogously to the proposed generic structure
respecting intellectual property. As the approach is generic, each non-atomic
unit can be used therefore. However, in order to maintain a consistent level of
abstraction, it is recommendable to use similar levels for different documents. In
Figure 6.1 scopes of services have been introduced. These ‘container’ units encap-
sulate modelling artefacts and thus define the scope of the generated document.

input :Root unit r to start with
output :Document structure

1 Generate document header
2 if (¬isIP(r)) then
3 Print graphical syntax
4 Print textual syntax

5 descend(r)
6 Generate document footer

Algorithm 6: Generates a requirements specification document.

When traversing the COLA model, two things are generated simultaneously
and depicted in Figure 6.6:

1. An XML file, which is used to render the final document (cf. Figure 6.6b).
The generation process is depicted in Figure 6.5.

Model
repository

generates

refers to

displayed
inXML

XSLT

Web
browser

Figure 6.5.: Specification document generation and visualisation process.

6.3 Realisation | 127

1 Stack<Unit> stack
2 if (u has textual requirements) then
3 Print textual requirements

4 if (u has formal requirements) then
5 Print formal requirements

/* Considering customer requirements */

6 C← sub-units of u that are marked as customer requirements
7 if (|C| > 0 ∧ ¬isIP(u)) then
8 stack.addAll(C)

9 while (stack.size() > 0) do
10 s← stack.pop()

11 if (¬isIP(s)) then
12 Print graphical syntax
13 Print textual syntax

14 descend(s)

/* Considering different system requirements

manifestations */

15 D← sub-units of u that are used for data processing, i. e., no customer
requirements, and no sources/sinks.

16 if (|D| > 0 ∧ ¬isIP(u)) then
17 stack.addAll(D)

18 while (stack.size() > 0) do
19 s← stack.pop()

20 if (¬isIP(s)) then
21 Print graphical syntax
22 Print textual syntax

23 descend(s)

/* List sources and sinks */

24 Print all sub-units of u that are sources
25 Print all sub-units of u that are sinks
/* List the interface of u */

26 Print all input ports of u
27 Print all output ports of u

Procedure descend(Unit u) performs a DFS.

128 | 6 GENERATION OF REQUIREMENTS SPECIFICATION DOCUMENTS

2. An outline view, which is used within the COLA modelling environment to
navigate through the generated document, is depicted in Figure 6.6a.

(a) Outline view. (b) Document view

Figure 6.6.: Figure (a) shows the layout view of the generated document, and (b) gives a
short extract of the document.

Flexibility is the main advantage of generating XML documents. The look-and-
feel of the final document can easily be adapted by changing the XSLT file. This
XSL Transformation file is used to transform the generated XML file into the

6.4 Semantically Tangible Requirements Documents | 129

target structure. Hence, the constraints defined by an OEM with respect to layout,
structuring, and corporate design can easily be met. Different target file formats
like XHTML, PDF, or Excel are supported in principle.

The possibility to exclude marked units of interest from the generation process
facilitates the protection of intellectual property of an OEM. Only those informa-
tion of a marked unit relevant for the supplier are given: annotated requirements
and the interface. The behavioural model of such a unit is not handed over to the
supplier.

6.4. Semantically Tangible Requirements
Documents

In the daily work of many automotive companies, requirements management is
done using some commercial off-the-shelf tools. A predominant example is IBMs
Rational DOORS, which is used to manage requirements and to establish links
between them, yielding traceability. Using generators, requirements specification
documents can be generated as Word or PDF documents. However, automatic
document generation is not the rule. Usually, in an early phase of product devel-
opment, a multitude of different product specification documents are manually
written, or partially generated using requirements management systems (cf. [31]),
as mentioned. It is a challenging task to maintain consistency between all those
documents. Changes of one document may cause other documents to be modi-
fied, as well. Gained experience at our industry partners taught us the rule that
requirements are only allowed to be written once in a document, or a collection
of documents. Again, this is very hard to ensure, especially in hand-written
and -maintained documents. IEEE Std 830-1998 [101] Section 4.3.7 states that
redundancy is not an error, but can easily lead to errors and hence should be
avoided.

To overcome these difficulties, this thesis proposes to generate all documents
from a single data source—the central model repository—, which together with
the sophisticated COLA engineering environment enables a rigorous specification
document generation. Consistency amongst different generated documents can
be guaranteed as long as they have been generated at the same time, i. e., they are
based on the same model revision.

Through the tight integration of the requirements specification document gener-
ator into the COLA modelling environment a plenitude of key benefits have been
reached:

130 | 6 GENERATION OF REQUIREMENTS SPECIFICATION DOCUMENTS

(i) A single tool without the need to use error-prone adapters.

(ii) A single model repository storing all necessary artefacts, i. e., no possible
inconsistent databases that have to be queried and tried to keep consistent.

(iii) The generated document can be seen as a special view or perspective on the
modelled information. Thus, it does not make any difference, whether to
directly edit the model in the modelling perspective, or by editing the generated
document within the specification document perspective. Hence, it is possible
to directly edit for example captions, attributes, etc. within the generated
document. As a consequent next step, one can think of adding requirements
to units, creating units or other modelling artefacts similar to a text processing
tool, but in contrast with the full power of a well-defined semantics, clear
syntax, and the possibility to perform consistency checks in the background,
akin to the modelling perspective.

(iv) Moreover, in combination with the COLA model simulator [96] within the
simulation perspective, the generated document becomes dynamic, i. e., by
clicking highlighted elements, the corresponding modelling artefacts are
shown. This synchronises the current position within the document with
the behavioural model. Requirements annotated to modelling artefacts get
a context, which is shown as the graphical COLA syntax. That makes it
possible to click for example on signal names inside the document, and the
respective ports are shown together with their units. It is even possible to run
the simulator on a particular unit, selected in the document. That accounts
for a much better understanding of the generated requirements specification
document, because in addition to a list of requirements in the correct context,
the desired behaviour can be simulated, assumed a behavioural model has
been developed and the unit in question is not marked as IP. Furthermore,
also test cases are given as requirements that have to be tested against.
Thus, they are also present within the document, which in turn makes them
executable by the simulator.

All those mentioned benefits are only possible because of

(i) the tight integration into the COLA modelling environment,

(ii) the generation based on a single data source (model repository),

(iii) the rigorous syntax and semantics of COLA, and finally

6.5 Integration into the Context of IEEE Std 830-1998 | 131

(iv) the coupling with the model simulator.

Figure 6.7 depicts a screen shot of the COLA-IDE making requirements specifi-
cation documents semantically tangible. Basically, the IDE consists of four main
parts namely the model viewer and its property editor, an outline of the generated
document, the generated document itself, and on the right hand side the COLA
simulator, which shows graphically the simulation steps specified in a test case,
shown in the document view.

6.5. Integration into the Context of IEEE Std
830-1998

According to IEEE Std 830-1998 (‘IEEE Recommended Practice for Software Re-
quirements Specifications’) [101], a software requirement specification should
be correct, unambiguous, complete, consistent, ranked for importance and/or stability,
verifiable, modifiable, and traceable.

These attributes and their compliance aim among other things at reducing the
development effort and providing a baseline to organise the product’s verification
plan. In the following, arguments are given why the presented approach and in
particular the created generate has the same characteristics as demanded above.

(i) Correctness. As [101] emphasises, no tool can guarantee correctness. In this
context, correctness means that every requirement of the document is one
the software shall meet. But assuming the requirements given by the user are
correct, so the requirements put into the generated document are. The user
should convince herself of the correctness before generating the document.

(ii) Unambiguity. As long as textual requirements are given by humans in an
informal way, ambiguity cannot be excluded in any case. But the COLA
automotive approach offers the possibility to formulate requirements as
SALT specifications, which are unambiguous and intended to be processed
electronically. Moreover, when regarding the included parts (textual or
graphical) of the COLA model, ambiguity is out of question due to the
well-defined syntactical and semantical COLA definition.

(iii) Completeness. Similar to correctness, completeness is difficult to evaluate.
The standard gives examples for significant requirements such as for in-
stance those relating to the functionality, performance, design constraints,
or external interfaces. Of course, references to tables, figures, etc. as well

132 | 6 GENERATION OF REQUIREMENTS SPECIFICATION DOCUMENTS

as definitions and unit measures shall be given. As far as the user provides
these information, they are generated, too.

(iv) Consistency. A requirements specification is said to be ‘consistent if, and
only if, no subset of individual requirements described in it conflict’ [101].
For requirements given as SALT specifications, one can effectively check
whether they conflict as outlined in Section 5.2. Of course, this might also be
possible when using other formal requirements specification formalisms and
techniques.

(v) Ranking for importance and/or stability. COLA’s requirement objects can
be attributed with importance and /or stability weights.

(vi) Verifiability. A requirement is verifiable according to [101] ‘if, and only if,
there exists some finite cost-effective process with which a person or machine
can check that the software product meets the requirements’. Obviously,
this is true for SALT specifications. For prosaic requirements, it is up to the
requirements engineer to be precise and keep in mind that there has to be an
actually executable test.

(vii) Modifiability. IEEE Std 830-1998 recommends that changing the require-
ments should retain the structure and the style of the specification document
while being easy to make and staying complete and consistent. Since the doc-
ument is generated in accordance with a predefined structure, modifiability
is given.

(viii) Traceability. The relevant standard demands both forward and backward
traceability of requirements. To accomplish this demand, the COLA-IDE
and the COLA automotive approach in general have to be extended as
outlined in the outlook (cf. Section 9.2). Currently, only the attachment of
a requirement object to each COLA entity is supported, but no life-cycle
management and dedicated requirements management. If this was the case,
the generated document could easily be extended with respect to the desired
traceability capabilities.

6.6. Summary

This chapter outlined COLA’s capabilities to automatically generate a require-
ments specification document directly from the model on level of the Logical

6.6 Summary | 133

Architecture. It was shown how one type of document can be generated. Of
course, this approach can be extended to generate different documents for dif-
ferent stakeholders. When all those documents are generated simultaneously, it
can be guaranteed that their particular content is consistent. The generator was
integrated into the COLA-IDE using its plugin mechanism, which allows a very
tight coupling to other plugins. In particular, the coupling to the COLA simulator
makes requirements documents come alive. By relating requirements coming
along with their descriptions with the behavioural model, their meaning can be
explored and verified by running the simulator.

134 | 6 GENERATION OF REQUIREMENTS SPECIFICATION DOCUMENTS
Sim

ulation View
D

ocum
ent View

D
ocum

ent
O

utline
M

odel
Tree View

Figure
6.7.:Sem

antically
tangible

requirem
ents

specification
docum

ent.

CHAPTER

SEVEN

Deployment

The platform independent model (model on the Logical Architecture) together
with the platform dependent model (model on the Technical Architecture) provide
enough information to deploy a logically described functional model (behavioural
model) onto the target platform. Therefore, a couple of steps are necessary and
briefly described in Section 7.1. This chapter focuses on aspects that relate to
software onto hardware allocation in Section 7.2 and the timely execution on the
target platform in Section 7.3. These two techniques are in a next step extended to
realise fault tolerant systems based on the COLA paradigm. Details are given in
Section 7.4, followed by related work and a summary in Sections 7.5 and 7.6.

Contents
7.1. Introduction . 135

7.2. Allocation . 139

7.3. Scheduling . 147

7.4. Fault Tolerance . 169

7.5. Related Work . 174

7.6. Summary . 179

7.1. Introduction

One of the key ideas behind the COLA automotive approach is to illustrate the
feasibility of a seamless model-based development of safety-critical embedded
systems in the automotive domain. It is strongly believed that this approach can

136 | 7 DEPLOYMENT

only work, when manual user manipulation of produced artefacts is reduced to a
minimum. This prevents the accidental insertion of errors to the greatest possible
extent. On the one hand, this does not exclude user interactions with the system
for example when formal techniques like model checking were applied and the
user has to improve the model according to possible errors. On the other hand,
the user should not be allowed to modify generated code, just to mention one
example.

Therefore, the COLA approach provides a fully automatic deployment concept.
Assuming the deployment steps are free of errors and the model of the Logical
Architecture indeed does what has been demanded on the Feature Architecture,
a correct behaviour on the target platform can be guaranteed by construction. Of
course, hardware failures can only be tolerated to a certain extend, which will
be discussed in Section 7.4. This approach follows the idea of a systems com-

Compiler

High-level
programming languages

Assembly code

Machine code

System Compiler

Feature model

Behavioural model

Runnable entityco
nc

re
tis

at
io

n

Figure 7.1.: Systems compiler.

piler, which—similar to a C compiler, for example—builds from a specification
an executable object. Classically, programs are written in some kind of high-level
programming language, which is then transformed into assembly and machine
code. Hereby optimisations are considered. A systems compiler in turn auto-
matically builds a runnable entity by transformation from a behavioural model.
The transition from a feature model to a functional model is generally a step
involving user input. However, tool support allowing only distinct operations on
models, for instance merge (cf. [38]) or split, inhibits user-inserted errors. Non-
functional requirements are objectives for optimisation. From an industrial point
of view, automotive software as well as hardware architectures oftentimes follow
different criteria: the organisational structure of a company plays in many cases
an important role. However, the idea of a systems compiler and a push-button
deployment as we outlined in [86,87] sets the agenda. This in turn is confirmed by
Sangiovanni-Vincentelli and Di Natale [177] who state that the optimal approach

7.1 Introduction | 137

would automatically allocate tasks to computing nodes guaranteeing a correct
system behaviour, and using the resources optimal. The presented way of doing
deployment can be considered to be static, i. e., it is performed at design time.

Before proceeding with the preliminaries, it is useful to recapitulate the steps
performed during deployment: (S0) Modelling and Verification, (S1) Partitioning,
(S2) C Code Generation, (S3) Resource Estimation, (S4) Allocation, (S5) Scheduling,
and (S6) Configuration. This thesis focuses on the highlighted steps (S4) and (S5).

Preliminaries

The COLA automotive approach cannot be stated to be all-purpose applicable.
That does not imply any restrictions, but defines a setting and methodology of
modelling safety relevant automotive systems. The presented approach aban-
dons by intention aspects like event-triggered handling, dynamic scheduling, and
manual code manipulation. This is done in consideration of one main goal: pre-
dictability. The run-time behaviour is completely predictable in COLA-powered
systems. Figure 2.1 depicts the common setup of a controlled automotive system.
To reflect COLA’s semantics as close as possible and thus allow semantics preser-
vation from feature modelling down to the deployed system, COLA systems are
cyclically executed as shown in Figure 7.2. The evaluation of COLA systems

COLA System

Sensors Controller Actuators

Scheduling cycle

Figure 7.2.: Scheduling cycle.

follow the three phases according to the IPO-Model, i. e., Input-Process-Output
Model:

Input Read sensor values.

Process Perform the modelled functionality in order to control the system and gener-
ate fresh output values.

Output Write the new values to the actuators.

138 | 7 DEPLOYMENT

This model of execution fits best to the synchronous data-flow semantics of the
COLA core modelling language with its periodic execution.

As mentioned, in favour of predictability, COLA and the COLA automotive de-
velopment concept base on the time-triggered paradigm. Here, tasks are executed
at specific, predefined points in time. This guarantees a timely and thus correct
system execution.

In 2005, when the research project with BMW Group started, the introduction
of AUTOSAR just began. At that time it was open whether AUTOSAR will be aAUTOSAR

success story, as the first specification had too many drawbacks (v.1.0). If, and only
if, a supplier builds an AUTOSAR software component (SWC) for more that one
OEM, AUTOSAR can gain leverage. In 2005, that was anything but sure. Hence
we decided to develop our own middleware reported by Haberl et al. [85]. Today,
the situation is different with the current version 4.0.3.

Similar to AUTOSAR’s Virtual Function Bus (VFB) the developed middleware
abstracts from the underlying network topology, thus communication and infor-
mation exchange becomes transparent. Furthermore, the middleware is used to
store system-wide information, in particular operating modes (automata states)
and delay values, and synchronises the clocks of all involved ECUs. A schematic
construction of the system architecture including the middleware is given in Fig-
ure 7.3. A Real-Time Operating System (RTOS) is executed on the hardware

ECU1

Hardware

OS Drivers

Middleware

ECU2

Hardware

OS Drivers

Middleware

ECUn

Hardware

OS Drivers

Middleware

A1 A2 A3 A4 A5 Am

Bus

Figure 7.3.: System Architecture.

real-time

operating system platform. Applications (A1 to Am) communicate via a middleware running on
each ECU (ECU1 to ECUn).

7.2 Allocation | 139

7.2. Allocation

As soon as the model of the Logical Architecture has been partitioned into de-
ployable entities (clusters), allocation takes place. In this process step, an optimal
placement of clusters onto ECUs (actually onto a processor as a part of an ECU)
is determined. In the explanation below, only ECUs with a single processor are
considered. As multi-core and multi-processor ECUs become more and more
important, the presented approach can easily be extended towards multi-core
architectures (cf. [129] for example).

Of course, the fulfilment of all functional requirements has to be ensured by the
allocation step, however, allocation is rather uncritical in this respect. Later on the
scheduling step has to ensure that the model’s semantics is preserved, which in
turn highly influences the functional—or better the correct functional—behaviour.

This section describes in detail, how Non-Functional Requirements (NFR) are non-functional

requirementused to guide the allocation towards an optimal solution. For the non-functional
requirements exemplified in Figure 7.5, their consideration is outlined below
(Section 7.2.2). But before that, the used notation is explained in the following
section.

7.2.1. Notation

Let C = {c1, c2, . . . , cn} denote the set of clusters to be mapped onto the set of all
processors (ECUs) P = {p1, p2, . . . , pm} with n,m ∈ N and n being the number
of clusters and m the number of processors, respectively. In the following, the
indicator variable a[c7→p] is used where c ∈ C denotes the cluster to be mapped onto
the processor p ∈ P. It indicates whether there is a mapping or not

a[c 7→p] =

{
1 if cluster c is allocated onto processor p

0 otherwise.

Hardware capabilities as well as software requirements have to be considered in
order to optimise the placement. Therefore, attributes of both software (clusters)
and hardware (ECUs) have to be taken into account. Table 7.1 summarises the
attributes. Assume we have two relations R used to store information about the
needed resources to execute clusters ci on processors pj with 1 ≤ i ≤ n, 1 ≤ j ≤ m

140 | 7 DEPLOYMENT

and P holding the capabilities of the processors.

R

cluster cpu cyclesp1 . . . cpu cyclespm rom req ram req . . .

c1 * · · · * * * · · ·
c2 * · · · * * * · · ·
...

...
...

...
...

...
...

cn * · · · * * * · · ·
In the data model, the relation R is realised as an association class (cf. Figure 7.4),
yielding a separation of the architectural/hardware model and the resource model.

Cluster runs on › Processor

Resource requirements
R

P

Figure 7.4.: Separation of architectural and resource model.

P

processor costs rom cap ram cap os overhead power state · · ·
p1 * · · · * * * · · ·
p2 * · · · * * * · · ·
...

...
...

...
...

...
...

pm * · · · * * * · · ·
Note, for the sake of clearness, not all attributes are listed. The complete compila-
tion is given in Table 7.1.

We use the classical operators σ (selection) and π (projection) known from
relational algebra to query for information stored in the relations R and P . For
instance if we are interested in the set of processors having a price of at most c, we
write πprocessor (σcosts≤c (P)), i. e., we first select those tuples satisfying costs ≤ c and
then restrict the result to the attribute processor.

In the remainder of this thesis, the following notation is used to determine the
placement of a cluster and converse the set of clusters mapped onto an ECU.

Definition 8 (Mapping function). Let α : C→ P be the function mapping clusters C
onto ECUs P. Vice versa, α−1 : P→ 2C determines the set of clusters allocated onto an
ECU.

7.2 Allocation | 141

Attribute Description

H
ar

dw
ar

e
at

tr
ib

ut
es

costs The accruing costs when using the ECU.
rom cap The amount of non-volatile memory used for binary

program storage.
ram cap The amount of dynamic memory used during program

execution.
os overhead The amount of operating system overhead incurred

when executing a cluster (dispatching, memory man-
agement, etc.).

power state The lowest power state an ECU is active in.
supplier The supplier’s name building the ECU.
processor arch The processor architecture. General-purpose processors,

DSP, etc. can be distinguished.
proc cycles The available number of processor cycles available per

millisecond.

So
ft

w
ar

e
re

qu
ir

em
en

ts

cpu cycles The amount of processing cycles needed to ex-
ecute cluster c on processor p, denoted with
πcpu cyclesp (σcluster=c (R)).

rom req The amount of non-volatile memory needed for binary
file storage.

ram req The amount of dynamic memory used during cluster
execution.

power state The name of the minimal power state the cluster can be
executed.

supplier The name of the supplier implementing the cluster.
replicas The number of cluster copies distributed over the sys-

tem for redundancy reasons.

Table 7.1.: Attributes of clusters and ECUs used for the allocation.

7.2.2. Constraints

According to the classification of Figure 7.5, constraints are divided into essential
and auxiliary non-functional requirements (NFR). An NFR is called essential, if
it has to be satisfied to ensure a correct system operation. If for example an
electronic control unit does not provide enough storage memory (ROM) for the
cluster’s binary file representation the cluster cannot be mapped onto the ECU.

142 | 7 DEPLOYMENT

NFR

Essential Auxiliary

Computing
power Memory Power

states Supplier Redundancy Processor
architecture Cost Energy

consumption

Figure 7.5.: Classification of non-functional requirements.

As a consequence, the violation of a single essential NFR may cause an unsafe or
wrong operation of the modelled system.

The second category subsumes non-functional requirements that are not essen-
tial for a correct operation. Thus, they are referred to as auxiliary non-functional
requirements. Their fulfilment, however, may improve the system in terms of qual-
ity attributes: allocation of different clusters from the same Tier 1 supplier onto
a single ECU can improve the maintenance process, or a selective placement of
clusters onto cheap or energy-saving ECUs can reduce costs and the CO2 footprint,
respectively.

Essential NFRs

In the following list, the considered essential non-functional requirements are
formalised. Beginning with the available processing power. The allocation of
clusters onto the processors must not exceed the available resources, i. e., it holds
∀ p ∈ P

∑

c∈C

a[c 7→p] ·
[
πcpu cyclesp (σcluster=c (R)) + πos overhead

(
σprocessor=p (P)

)]
· % ≤

πproc cycles
(
σprocessor=p (P)

)
(7.1)

7.2 Allocation | 143

where % denotes the number of cluster invocations per time unit. As we will see
later on, not all clusters allocated onto a processor are executed, but rather the
current mode of operation determines the set of clusters responsible for rendering
the modelled behaviour. The assumption, taken above guarantees a safe bound,
even in the case of hardware failures discussed in Section 7.4. Next, the memory
consumption is regarded. Here, one distinguishes between dynamic memory
(RAM), and non-volatile memory (ROM) for storage of the binary code. It holds
∀ p ∈ P

∑

c∈C

a[c 7→p] · πram req (σcluster=c (R)) ≤ πram cap
(
σprocessor=p (P)

)
(7.2)

and

∑

c∈C

a[c 7→p] · πrom req (σcluster=c (R)) ≤ πrom cap
(
σprocessor=p (P)

)
(7.3)

Besides the already mentioned essential NFRs, the power states (ps) a proces-
sor supports have to be considered. It holds ∀ ps ∈ πpower state (P) and ∀ c ∈
πcluster

(
σpower state=ps (R)

)

∑

p∈πprocessor(σpower state≥ps(P))

a[c 7→p] = 1 (7.4)

This ensures that a cluster with a specified power state is allocated onto exactly
one processor with compatible power state.

Auxiliary NFRs

Next, auxiliary non-functional requirements that do not change the functional
behaviour but improve the system’s quality of service are considered. In some
cases it might be beneficial to allocate all clusters developed by a supplier s ∈
πsupplier (R) onto an electronic control unit also provided by him or her. It holds
∀ s ∈ πsupplier (R) and ∀ c ∈ πcluster

(
σsupplier=s (R)

)

∑

p∈πprocessor(σsupplier=s(P))

a[c 7→p] = 1 (7.5)

144 | 7 DEPLOYMENT

This ensures that a cluster with certain supplier demands is allocated onto exactly
one processor from the same supplier. For redundancy reasons, a cluster c can be
allocated onto r different, redundant processors, such that in case of for example
a hardware failure, the cluster can be executed on a different processor. If no
redundancy allocation is given, then r = 1, otherwise r = πreplicas (σcluster=c (R)). It
holds ∀ c ∈ C

∑

p∈P

a[c 7→p] = r (7.6)

The allocation decision is computed at design time and thus can be considered as
static deployment. However, in case of the mentioned redundancy allocation, the
ECU where a cluster is executed may change. More details are given in Section 7.4.
For some clusters, it might be beneficial to be executed on a special processor
architecture (a). Hence, annotations can be made accordingly. It holds ∀ a ∈
πprocessor arch (P) and ∀ c ∈ πcluster

(
σprocessor arch=a (R)

)

∑

p∈πprocessor(σprocessor arch=a(P))

a[c7→p] = 1 (7.7)

In order to account for communication costs, a new indicator variable defined as
follows is introduced:

c[ci 7→pu]

[cj 7→pv]
=

{
1 if a[ci 7→pu] + a[cj 7→pv] = 2 (ci and cj communicate)

0 otherwise.

Inter- and intra-processor communication is important in a real-time system
to consider communication delays and deadlines. If two clusters ci and cj are
allocated onto the same ECU, communication for example over shared memory
is done. This is very fast compared to communication over buses and gateways,
necessary in an inter-processor communication scenario.

It holds for communicating clusters ci and cj that c[ci 7→pu]

[cj 7→pv]
= 1 if, and only if, a[ci 7→uu] =

1 and a[cj 7→pv] = 1, which formulated as linear constraints yields for all 1 ≤ i, j ≤ |C|
and 1 ≤ u, v ≤ |P|

−a[ci 7→pu] − a[cj 7→pv] + c[ci 7→pu]

[cj 7→pv]
> −2 (7.8)

7.2 Allocation | 145

and

−2c[ci 7→pu]

[cj 7→pv]
+ a[ci 7→pu] + a[cj 7→pv] = 0 (7.9)

These indicator variables are then multiplied by measured costs for inter- and intra-
ECU communication. These costs include, amongst others, the communication
frequency. Both, indicator variables and costs form the basis for a metric in the
optimisation function.

In a similar fashion, different kinds of costs can be added. In the following
economic costs are given for instance. Analogously, other constraints can be
added. Hardware is an important expense factor. Hence, unused components like
controllers, buses, and connection interfaces are only assembled if for example
the costs for future extensions will be reduced. If a bus is exclusively used by
unnecessary ECUs, i. e., no cluster is mapped onto them, it can be economised.
This scenario, which is representative for similar dependencies, can be expressed
as follows. It holds ∀ c ∈ C and ∀ p ∈ P

−a[c 7→p] + cp > −1 (7.10)

and

−cp + a[c 7→p] = 0 (7.11)

where cp ∈ {0, 1} indicates that the expenses for ECU p have to be taken into
account during the optimisation process. Similarly, constraints for any other
hardware component can be stated.

In some cases, it might be beneficial to allocate a cluster c onto a fixed ECU p. In
this case the simple constraint

a[c 7→p] = 1 (7.12)

has to be added.

All the mentioned constraints, and other conceivable constraint extensions have
to be fulfilled such that it is possible to find an (optimal) solution. Additional

146 | 7 DEPLOYMENT

requirements include for example maintainability, extensibility, and locality of
input/output hardware. Maintainability demands for a placement of related
clusters onto the same or a small number of ECUs. This results in fewer system
nodes (ECUs) involved in software maintenance activities. Considering future
functionality improvements, it may be beneficial to include some spare system
capacity. This can be achieved by introducing dummy clusters. Regarding bus
communication, it is convenient to place clusters involved in environmental in-
teraction onto that ECU the respective sensors and actuators are connected to. To
make optimisation possible, in the following an objective function is given.

Optimisation Function

Besides the given constraints, it is mandatory to define an optimisation function.
It consists of the two main components costs and metrics. Costs characterise
actual expenses whereas metrics subsume non-functional optimisation factors
like memory, CPU time, or communication costs. For example the costs for ECUs
(costsproc) sum up to costsproc =

∑
p∈P cpκp where κp = πcosts

(
σprocessor=p (P)

)
is the

cost per unit obtained from the Bill Of Material (BOM). Metrics can be gained in a
similar way. Generally, costs costsj and metrics metrick have to be minimised with
respect to the constraints given in (in)equations (7.1) to (7.12), i. e.,

minimise
∑

j

λj costsj +
∑

k

µk metrick. (7.13)

The distinct but fixed weightings λj and µk enable to characterise OEM’s optimi-
sation criteria. However, it might be challenging to determine these weighting
factors, or at least requires experience.

7.2.3. Realisation

Formulae (7.1) to (7.12) define a linear system of (in-)equalities. Note, equalities in
the mentioned formulae can easily be rewritten as two inequalities. Formula (7.13)
defines the optimisation function. Together they describe a linear programming
problem. As the optimisation function is linear and all coefficient of the case study
were integers, the problem is a linear integer programming problem. Hence, a
suitable solver (GLPK [2], the GNU Linear Programming Kit) was used for the
problem statement.

As mentioned above, the determination of the weights λ and µ may be difficult.
Therefore, one can also take into consideration to formulate the problem as a

7.3 Scheduling | 147

multi-criteria or multi-objective optimisation problem. There, the aim is not to
minimise a single objective, but multiple objectives simultaneously. That means,
one could abandon the weights. In consequence, one can give for each cost and
metric optimisation aim a separate objective function.

minimise
x

[
cost1(x), . . . , costj(x),metric1(x), . . . ,metrick(x)

]
(7.14)

such that (in)equations (7.1) to (7.12) are satisfied

where x is the vector of occurring decision variables.
The problem formulation as a multi-criteria optimisation problem would be the

consequent next step since in many cases conflicting criteria occur.
The result contains assignments for all decision variables occurring in the linear

programming or the multi-criteria optimisation problem. The assignments of the
indicator variables a[c7→p], for all c ∈ C, p ∈ P determine the allocation or mapping
function α.

7.3. Scheduling

In order to fulfil a certain functionality, a hard real-time system has to execute a
set of possibly concurrent tasks. Each such time-critical task has certain properties
that the hard real-time system has to meet, such as its deadline. The underlying
system has to guarantee that every task receives its required computational and
data resources. The problem of finding a feasible allocation of there resources is
called the scheduling problem.

7.3.1. Terminology

Let C = {c1, c2, . . . , cn} be the set of n clusters. Since the clusters are executed
periodically, we observe an infinite sequence of cyclic cluster invocations, which
are called jobs ci,j with j ∈ N+. We assume for each job ci,j to have the same
characteristic as the corresponding cluster ci. Each job is characterised by its release
time ri,j, start time si,j, finishing time fi,j, response time Ri,j, i. e., fi,j− ri,j, absolute deadline
di,j, and its worst-case execution time Ci,j. As we assume that each job has the same
worst-case execution time, the same deadline, and the same release time, these
values are referred to as Ci, Di, and Ri, respectively. We denote with γ the cycle
time of the periodic execution. Figure 7.6 clarifies the notation.

148 | 7 DEPLOYMENT

ci,j ci,j+1

0 t

ri,j+1 si,j+1si,j fi,j fi,j+1Diri,j = Φi

9. Deployment 9.3. Scheduling

Major cycle

τi,j τi,j+1

0 t

ri,j+1

si,j+1

si,j fi,j fi,j+1

Ri,j

Ti

Di

ri,j = Φi

Response time

Figure 1: Periodic Scheduling

0 60 120 180 240 300 360 420 480 540 600 [ms]

Bridge

Car2

Car1

Figure 2: SuppyFigure 9.5.: Multi-rate scheduling example.

In this section, we will describe our SMT-based scheduling approach, for periodic
task invocations. To do so, we use the following distinct nomenclature throughout
this paper.

9.3.6. Contribution

9.3.7. Realisation

Dependency Analysis

Data dependencies which arise due to channels between interconnected units in
COLA networks, lead to dependencies in COLA clusters, too. For more complex
COLA systems it is administrable to have a clearer understanding of data depen-
dencies which in the sequel will help us to generate schedule plans and C code (see
also [Haberl et al., 2008c, Stürmer et al., 2005]). Further the contained information
serve for the configuration of the used middleware. This middleware will be subject
to another paper and will only be roughly discussed where it is necessary for a better
understanding. We’ll give a short introduction into its functionality in Section 9.3.7
and IV.

Definition 9.3.1 (Cluster Dependency Graph) A Cluster Dependency Graph (CDG) is
a directed, acyclic graph G = (Vw, Vm, Vb, Ed, Em) with three types of pairwise disjoint
vertices: working cluster vertices Vw, buffer vertices Vb and so-called mode cluster ver-
tices Vm. The set of directed edges is divided into data-flow edges Ed and mode edges Em

with Ed ∩ Em = ∅. For the edges it holds: Ed = {(u, v) | u ∈ Vw, v ∈ Vb} ∪ {(u, v) | u ∈
Vb, v ∈ (Vw ∪ Vm)} and Em = {(u, v) | u ∈ Vm, v ∈ (Vw ∪ Vm)}.

Solid data-flow edges going out of a working cluster vertex (visualized by a rectan-
gle) and pointing into an octagon (buffer vertex) symbolize that the working cluster
vertex writes data into a buffer, whereas an edge pointing from a buffer vertex to
an working or mode cluster vertex (symbolized by a diamond) indicate the fact that
they read from the buffer. In case of mode cluster vertices, only mode edges (drawn
as dashed edges) can start here and the edges can only point to working and mode
cluster vertices. This distinction is made in order to emphasize the different exclu-
sive control- and data-flows depending on the current mode. Figure 9.6 shows an
example for a cluster dependency graph of the case study explained in Section IV.

51

Di+1

Ri,j

 Ti

9. Deployment 9.3. Scheduling

Major cycle

τi,j τi,j+1

0 t

ri,j+1

si,j+1

si,j fi,j fi,j+1

Ri,j

Ti

Di

ri,j = Φi

Response time

Figure 1: Periodic Scheduling

0 60 120 180 240 300 360 420 480 540 600 [ms]

Bridge

Car2

Car1

Figure 2: SuppyFigure 9.5.: Multi-rate scheduling example.

In this section, we will describe our SMT-based scheduling approach, for periodic
task invocations. To do so, we use the following distinct nomenclature throughout
this paper.

9.3.6. Contribution

9.3.7. Realisation

Dependency Analysis

Data dependencies which arise due to channels between interconnected units in
COLA networks, lead to dependencies in COLA clusters, too. For more complex
COLA systems it is administrable to have a clearer understanding of data depen-
dencies which in the sequel will help us to generate schedule plans and C code (see
also [Haberl et al., 2008c, Stürmer et al., 2005]). Further the contained information
serve for the configuration of the used middleware. This middleware will be subject
to another paper and will only be roughly discussed where it is necessary for a better
understanding. We’ll give a short introduction into its functionality in Section 9.3.7
and IV.

Definition 9.3.1 (Cluster Dependency Graph) A Cluster Dependency Graph (CDG) is
a directed, acyclic graph G = (Vw, Vm, Vb, Ed, Em) with three types of pairwise disjoint
vertices: working cluster vertices Vw, buffer vertices Vb and so-called mode cluster ver-
tices Vm. The set of directed edges is divided into data-flow edges Ed and mode edges Em

with Ed ∩ Em = ∅. For the edges it holds: Ed = {(u, v) | u ∈ Vw, v ∈ Vb} ∪ {(u, v) | u ∈
Vb, v ∈ (Vw ∪ Vm)} and Em = {(u, v) | u ∈ Vm, v ∈ (Vw ∪ Vm)}.

Solid data-flow edges going out of a working cluster vertex (visualized by a rectan-
gle) and pointing into an octagon (buffer vertex) symbolize that the working cluster
vertex writes data into a buffer, whereas an edge pointing from a buffer vertex to
an working or mode cluster vertex (symbolized by a diamond) indicate the fact that
they read from the buffer. In case of mode cluster vertices, only mode edges (drawn
as dashed edges) can start here and the edges can only point to working and mode
cluster vertices. This distinction is made in order to emphasize the different exclu-
sive control- and data-flows depending on the current mode. Figure 9.6 shows an
example for a cluster dependency graph of the case study explained in Section IV.

51

Cluster i
j th job of cluster
Task period
Response time of job
Deadline of task
Release time of job
Start time of job
Finishing time of job

ci

fi,j

si,j

ri,j

Di

Ri,j

Ti

ci,j ci

ci,j

ci

ci,j

ci,j

ci,j

 Ri,j+1

Figure 7.6.: Terminology for periodic scheduling.

7.3.2. A Taxonomy of Real-Time Scheduling Algorithms

Cheng et al. [46] present a taxonomy of real-time scheduling algorithms depicted
in Figure 7.7. As the presented approach focuses on hard real-time systems, i. e.,

Real-Time Scheduling

Soft Hard

Preemptive

Dynamic Static

Non-preemptive Preemptive Non-preemptive

Hybrid

Figure 7.7.: Scheduling taxonomy referring to [46].

systems where one considers an operation as useless if its completion is after the
specified deadline, i. e., too late, in the following only those systems are regarded.
Similarly, if a result is delivered too early (for example an airbag inflates too early),
it is considered incorrect.

One can distinguish between static (pre-run-time, or offline) and dynamic (or
online) scheduling algorithms. The difference is the time when the algorithm is
executed: static algorithms make their decisions at compile time, whereas dynamic
approaches make their scheduling decisions at run-time.

In the following, both approaches are illuminated with respect to the mentioned
attributes.

A dynamic scheduler selects at run-time one of the currently ready tasks. Hence,dynamic

scheduling a dynamic scheduling algorithm is very flexible as it is able to adopt with regard

7.3 Scheduling | 149

to the current task set. The system can react on events that might not have been
considered by the developer in such a way that occurring events immediately
cause system activities. This flexibility, however, is bought dearly since managing
semaphores, blocking mechanisms, etc. yield a high run-time overhead and
prohibit—to a large extend—predictability, which is especially in the context
of safety-critical hard real-time systems a desired property. Moreover, efforts
for finding a feasible run-time schedule can be substantial. Usually, run-time
scheduling decisions are made based on priorities and rules are applied, such
as for example EDF (Earliest Deadline First). It is the most common dynamic earliest deadline

firstpriority-based algorithm for real-time systems. Priorities are assigned according
to the deadline: a task receives the highest priority if its deadline is the earliest
amongst the set of all ready tasks. Besides periodic task invocations, this algorithm
is also well suited for aperiodic tasks. In 1973, Liu and Layland [140] provided
a necessary and sufficient condition to check whether a set C = {c1, c2, . . . , cn} of n
periodic clusters (tasks) is schedulable or not. They showed that the task set is
schedulable by EDF if and only if

n∑

i=1

Ci

Ti
≤ 1 (7.15)

holds. In fact, EDF is optimal amongst all dynamic scheduling algorithms, i. e.,
if a given task set is not schedulable by EDF, then it cannot be scheduled by
any other algorithm [56]. Optimal means that it will always find a schedule, if
an exact schedulability test states the existence of such a schedule. According
to Kopetz [117], an exact schedulability test will always determine for a set of
ready task whether they can be scheduled such that all tasks meet their deadlines.
Sufficient schedulability tests can be easier as they might give a negative answer
although the given task set is in fact schedulable. If a necessary schedulability test
gives a negative answer, then the task set is definitely not schedulable. For the
class of exact schedulability tests, however, Garey and Johnson proved in their
seminal work [79] that almost all classes of schedulability tests are NP-complete,
i. e., computational intractable unless P = NP.

In contrast, a static scheduler makes its scheduling decisions at compile-time.
Therefore, the scheduler generates a dispatching table offline, which is then used
by the run-time dispatcher to initiate activities at predefined points in time. As the static scheduling

computation is done at compile-time, more sophisticated and complex algorithms
can be applied and even different plans (tables) can be tried. In this scenario,
everything is planned before the system is deployed. These algorithms need to
have detailed prior knowledge about the deployed system. In particular the task

150 | 7 DEPLOYMENT

characteristics, e. g. worst-case execution times, precedence constraints, mutual
exclusion constraints as well as deadlines, are of importance. The prior knowl-
edge makes the systems predictable and deterministic, i. e., the developer knows
exactly the system’s behaviour over time. Since only dispatching tables have to be
managed by the run-time dispatcher one observes only low run-time overhead.
The computation of the dispatching table can be time-consuming, which, however,
is affordable at compile-time. Unlike dynamic scheduling, which works for both
periodic and aperiodic tasks, the strengths of static scheduling approaches are
focused on periodic task invocations.

Besides the two mentioned approaches, a combination of both—hybrid schedul-
ing—is possible. In this setting, an offline schedule is computed for a subsethybrid scheduling

of—mostly safety critical—tasks. The operating system’s dispatcher executes
those tasks accordingly and schedules additional tasks when the system is idle
and not used for time-critical tasks.

Both approaches can either be preemptive or non-preemptive. Following the
preemptive paradigm, a currently executing task can be interrupted as soon
as another, more urgent task needs to be executed. On the other hand, non-
preemptive scheduling prohibits task interruption. Table 7.2 summarises the most
important properties.

Static Scheduling Dynamic Scheduling

+ deterministic
+ highly predictable
+ low run-time overhead
- inflexible

- non-deterministic
- limited predictable
- high run-time overhead
+ flexible

Table 7.2.: Comparison between static and dynamic hard real-time scheduling.

As mentioned before, one of the main advantages of the static (pre-run-time)
approach is predictability. This thesis focuses on automotive systems, where pre-
dictability, reliability, and safety are desirable attributes. Therefore, we decided to
sacrifice flexibility—in the case of dynamic scheduling—in favour of having full
prior control and predictability, as far as the available pre-run-time information
allows.

7.3.3. Dependency Analysis

Before a feasible schedule for the distributed COLA system can be performed, one
has to determine cluster dependencies arising from data-flow dependencies and

7.3 Scheduling | 151

operating modes. On level of the Cluster Architecture (cf. Section 4.2.3), the logical
COLA model is cut into deployable atomic entities—the clusters. The underlying
data-flow induced by channels between networks defines the dependencies. Data-
flow is then given in the following cases depicted in Figures 7.8a to 7.8d with bold
channels:

Sub1

(a) input/output
channel

Sub1

(b) input channel

Sub1

Sub2

(c) internal channel

Sub1

(d) output channel

Figure 7.8.: Possibilities for data-flow in COLA networks: (a) input to output flow, (b)
input to input flow, (c) output to input flow, and (d) output to output flow.

(i) Data-flow from an input port of a network to an output port of the same
network,

(ii) between an input port of a network to an input port of a connected sub-unit,

(iii) between sub-units of a network, i. e., from a single output port to at least one
input port of another sub-unit, and finally

(iv) between an output port of a sub-unit and an output port of the surrounding
network.

Besides data-flow dependencies, the cluster dependency graph does also reflect
control-flow dependencies induced by mode automata. Depending on the current
mode of operation, only a subset of all possible clusters is executed, exactly those
that are necessary for a correct functional service delivery.

Both data-flow and control-flow dependencies are important not only for
scheduling, but also for code generation and system configuration. Hence, we
introduced a data structure, namely the Cluster Dependency Graph [128].

Cluster

Dependency

Graph (CDG)

Definition 9 (Cluster Dependency Graph). A Cluster Dependency Graph (CDG) is
a directed, acyclic graph G = 〈Vw,Vm,Vb,Ed,Em〉 with three types of pairwise disjoint
vertices: working cluster vertices Vw, mode cluster vertices Vm, and buffer vertices
Vb. The set of clusters C of the Cluster Architecture is represented by Vw ∪Vm. The set

152 | 7 DEPLOYMENT

of edges is divided into data-flow edges Ed and mode edges Em with Ed ∩ Em = ∅.
It holds: Ed = {(u, v) | u ∈ Vw, v ∈ Vb} ∪ {(u, v) | u ∈ Vb, v ∈ (Vw ∪ Vm)} and
Em = {(u, v) | u ∈ Vm, v ∈ (Vw ∪ Vm)}.

DEV_ROTATION DEV_ULTRA DEV_TOUCH

Rotation Radar UI

ACC

rot_sens ultra_sens touch_sens

s_act dist mode s_user

acc_disp s_mot

ACC_off ACC_on

DEV_DISPLAY DEV_MOTOR

DEV_TIME

time_sens

DEV_VIEW DEV_PRGM

view_sens prgm_sens

working
cluster

buffer
node

mode
cluster

Figure 7.9.: Cluster dependency graph of the case study accomplished in Chapter 8.1.

The graphical representation of a cluster dependency graph is given in Fig-
ure 7.9. The depicted CDG is taken from the case study’s model of Chapter 8.1.
Working cluster nodes are depicted as rectangles, mode cluster vertices as dia-
monds, and buffer nodes as octagons. Solid edges symbolise that either values
are written to or read from a buffer. Communication between clusters takes place
whenever the model of the Logical Architecture is cut in a way that connected
units are spread over different clusters. In this case, for each channel of the Logical
Architecture traversing cluster boundaries on the Cluster Architecture, a buffer
vertex is generated. Dashed arrows indicate exclusive mode alternatives, i. e., in
the example either the mode ‘ACC on’ or ‘ACC off’ is active, but not both. ‘ACC’
decides based on its internal state and the incoming values which mode to chose.
Note, ‘ACC on’ and ‘ACC off’ have no other ingoing edges, since it is implicitly
clear from which buffers values are read, namely those pointing to ‘ACC’.

7.3 Scheduling | 153

The figure has a top-bottom layout, i. e., on top, there are sensors to be read
indicated with the prefix ‘DEV ’ (device) followed by buffers storing the values
which in turn are processed by the following working clusters. According to the
current mode, alternative cluster sets are executed before writing the fresh data to
buffers in order to be accessible for the actuators—again having the ‘DEV ’ prefix.
As mentioned before, the employed middleware (cf. Figure 7.3) is used for namely
two reasons:

(i) Transparent data communication and synchronisation.

(ii) Storage of the whole system state.

Each buffer node represents a concrete buffer in the middleware having a distinct
logical address to be accessible. Moreover, each cluster has to store its internal
state including delay values and automata states. All this is stored as a struct and
accessible via a distinct logical address. Mode clusters in turn need two addresses
for data storage: one for their internal state and one to store the current mode
decision. The middleware API is given in Figure 7.10. These functions are used
during C code generation to obtain the system time, read data from and write data
to the middleware, respectively, and to save or restore a task’s state. The cluster
dependency graph is essential for the generation of schedule plans. This is done
in two steps: first, for each possible mode, a set of clusters is generated. Second,
for each of those, a linearisation is performed with respect to all dependencies.
Together with determined worst-case execution times and deadlines, feasible
schedules are computed.

Determine clusters to be scheduled for each mode

As can be seen in the CDG of Figure 7.9, not only the causal data-flow, but also the
current operating mode determines the set of active clusters. This set has to be
scheduled in a certain mode in order to fulfil the desired behaviour. This example
has only one mode cluster that can be in two modes. Hence, one observes two
operating modes with the sets:

ON = { DEV ROTATION,DEV TIME,DEV ULTRA,DEV TOUCH,

DEV VIEW,DEV PRGM,Rotation,Radar,UI,ACC,ACC on,

DEV DISPLAY,DEV MOTOR }
OFF = { DEV ROTATION,DEV TIME,DEV ULTRA,DEV TOUCH,

DEV VIEW,DEV PRGM,Rotation,Radar,UI,ACC,ACC off ,

DEV DISPLAY,DEV MOTOR }

154 | 7 DEPLOYMENT

/ * send d a t a t o middleware , d i s t r i b u t e t o o t h e r nodes * /
i n t mw_send(void * buf , s s i z e _ t len , unsigned short i n t dataid) ;

/ * g e t d a t a by ID * /
i n t mw_receive (void * buf , s s i z e _ t len ,

unsigned short i n t dataid) ;

/ * s a v e d a t a t o middleware , no d i s t r i b u t i o n * /
i n t mw_save_task_state (void * buf , s s i z e _ t len ,

unsigned short i n t t a s k i d) ;

/ * g e t s a v e d d a t a from midd l eware * /
i n t mw_restore_task_state (void * buf , s s i z e _ t len ,

unsigned short i n t t a s k i d) ;

/ * g e t g l o b a l t ime f o r a l l nodes , t ime in n a n o s e c o n d s w i l l
be s t o r e d in * t ime (u in t64) * /

i n t mw_global_time (RTIME * time) ;

Figure 7.10.: API of the middleware developed by Haberl et al. [85].

This scenario, however, is the simplest. It becomes much more complicated when
having hierarchies of modes, i. e., a mode cluster is decomposed again into an
arbitrary number of sub-modes. Assume for example that a function decomposed
into multiple modes has different behaviours depending on the active powertrain,
namely, combustion engine, electric motor, or a hybrid setting.

A more complex setting with hierarchical modes is given in Figure 7.11a. We
see the three mode cluster vertices C, D, I and the working clusters A, B, E, F, G,
H, J, K, L, and M. For the sake of simplicity, the CDG is reduced by removing the
buffer vertices, as they are not used during scheduling. Edges directing to buffer
vertices are looped through it and now point to the original destination of the
buffer’s outgoing edges.

Definition 10 (Reduced Cluster Dependency Graph). A reduced cluster depen-
dency graph (RCDG) Gr = 〈Vw,Vm,E〉 is obtained from a cluster dependency graph
G = 〈Vw,Vm,Vb,Ed,Em〉 by doing the following: let v ∈ Vb be a buffer node. Further-
more, let Ei be the set of edges pointing to v, i. e., Ei = {(v′, v) | v′ ∈ Vw} and Eo the set of

7.3 Scheduling | 155

outgoing edges, i. e., Eo = {(v, v′) | v′ ∈ (Vw ∪ Vm)}.
input : CDG G = 〈Vw,Vm,Vb,Ed,Em〉
output : RCDG Gr = 〈V′w,V

′
m,E〉

1 V′w ← Vw

2 V′m ← Vm

3 E← ∅
4 foreach v ∈ Vb do
5 foreach (v′, v) ∈ Ei do
6 foreach (v, v′′) ∈ Eo do
7 E← E ∪ {(v′, v′′)}

8 E← E ∪ Em

9 return 〈V′w,V
′
m,E〉

The outlined algorithm returns the reduced cluster dependency graph. It simply removes
all buffer nodes v ∈ Vb and creates for each pair of ingoing and outgoing edge (v′, v) and
(v, v′′), respectively, a new edge (v′, v′′) bypassing the removed buffer node. Note that the
graphical representation of the RCDG does not distinguish between different edge types
anymore.

In Figure 7.11a a reduced CDG is depicted consisting only of working cluster
and mode cluster vertices as well as one edge type.

Definition 11 (Precedence relation ≺). The precedence relation is defined among clus-
ters, i. e., the expression ci ≺ cj means that cluster ci precedes cluster cj. In other words,
the execution of cluster ci has to be finished before cj can be started. If two clusters have
no relation, they are independent and thus can be executed in parallel if more than one
execution node is available.

The precedence relation provides information in which causal relation clusters
can be executed. In the example of Figure 7.11a, A and B have to be finished before
C can be started. L and M as a separate connected component are independent
from all nodes in the connected component on the left, hence can in principle be
executed in parallel (depicted with ‖ in the table of Figure 7.11c). In Figure 7.11b
the reduced CDG is covered by segments s1 to s7. A combination of these segments
determines the set of clusters to be scheduled in a certain mode. The hierarchical
combination of mode vertices induces four different node sets, each for one mode
of execution. The computation of schedule sets involves a sophisticated treatment
especially because of hierarchical modes.

156 | 7 DEPLOYMENT

A B

C

D E

F I

J

L

M

G

H K

(a) Reduced CDG Gr

A B

C

D E

F I

J

L

M

G

H K

s1

s2

s3
s4

s5

s6 s7
(b) Reduced CDG Gr covered by seg-

ments

≺ A B C D E F G H I J K L M

A 2 ‖ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ‖ ‖
B 2 ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ‖ ‖
C 2 ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ‖ ‖
D 2 ≺ ≺ ≺ ‖ ‖
E 2 ≺ ≺ ≺ ‖ ‖
F 2 ‖ ‖
G 2 ≺ ‖ ‖
H 2 ‖ ‖
I 2 ≺ ≺ ‖ ‖
J 2 ‖ ‖
K 2 ‖ ‖
L 2 ≺
M 2

(c) Overview on the precedence relation and concurrent executions of
the given example.

Figure 7.11.: Figure (a) shows a reduced cluster dependency graph, which can be cov-
ered by segments depicted in (b). The precedence relation and possible
concurrent executions are illustrated in table (c).

7.3 Scheduling | 157

Definition 12 (Schedule Set). A schedule set S ⊆ (Vw ∪ Vm) is a finite set of clusters
to be scheduled in order to adduce a mode’s behaviour.

The four modes have the schedule sets:

S1 = s1 ∪ s2 ∪ s4 = {A,B,C,D,F,L,M}
S2 = s1 ∪ s2 ∪ s5 = {A,B,C,D,G,H,L,M}
S3 = s1 ∪ s3 ∪ s6 = {A,B,C,E, I, J,L,M}
S4 = s1 ∪ s3 ∪ s7 = {A,B,C,E, I,K,L,M}

Let π = c1 . . . ck be a path of length k in the reduced cluster dependency graph.
Furthermore let Π = {π1, . . . , πm} be the set of all paths from root vertices, i. e.,
vertices without ingoing edges, to leaf vertices, i. e., nodes without outgoing edges.
Then, Algorithm 7 will output a set of schedule sets S.

The algorithm works as follows: first of all, in line 2 a depth-first search in the
reduced CDG Gr = 〈Vw,Vm,E〉 is performed to obtain all paths from root to leaf
nodes, yielding Π. In a second step (cf. lines 3 to 8), all path prefixes consisting
only of working cluster vertices are removed and their elements are added to an
initial set Sinit. Moreover, this set also includes the head elements of the shortened
paths, i. e., mode cluster nodes. The initial schedule set Sinit contains all clusters
that are executed in any case, i. e., no matter which operating mode is active. For
the running example this is Sinit = {A,B,C,L,M}. After generating the initial
schedule set, the algorithm continues to iterate over the path set Π until all paths
have been processed, i. e., have length zero (cf. line 9). Depending on the type of
the head element at hand (working or mode cluster node, cf. lines 11 and 18) the
procedure differs:

(i) Working cluster node vw = hd(π) ∈ Vw: If the length of the current path
|π| is grater than one, we add the second element of π, i. e., hd(tail(π)) to
that schedule set S ∈ S already containing the node vw. Otherwise, no more
elements have to be added. In both cases the procedure removePrefix(vw)

is called. This procedure iterates over all paths π ∈ Π and removes the prefix
vw if possible.

(ii) Mode cluster node vm = hd(π) ∈ Vm: Mode cluster nodes introduce a
branching of schedule sets. Each already computed schedule set S ∈ S

containing the mode cluster node vm is replaced by c schedule sets derived
from S but each being extended by the respective nodes for each mode, i. e.,
c = |{v ∈ (Vm ∪ Vw) | (vm, v) ∈ E}|. Again, removePrefix(vm) is called.

158 | 7 DEPLOYMENT

input :Reduced CDG Gr = 〈Vw,Vm,E〉
output : Set of schedule sets S

1 S← ∅
2 Traverse Gr to obtain the set of paths Π

/* build initial schedule set Sinit */

3 Sinit ← ∅
4 foreach π ∈ Π do
5 while hd(π) 6= nil do
6 Sinit ← Sinit ∪ {hd(π)}
7 if hd(π) ∈ Vm then break else π ← tail(π)

8 S← S ∪ {Sinit}
/* continue constructing the set of schedule sets S */

9 while ∃π ∈ Π : |π| > 0 do
10 choose such a π

/* processing working node */

11 if hd(π) ∈ Vw then
12 if |π| > 1 then
13 let S ∈ S : hd(π) ∈ S
14 S← S ∪ {hd(tail(π))}
15 removePrefix(hd(π))

16 else removePrefix(hd(π))

17 /* processing mode node with branching */

18 else if hd(π) ∈ Vm then
19 foreach S ∈ {S′ ∈ S | hd(π) ∈ S′} do
20 foreach v ∈ {v′ ∈ (Vm ∪ Vw) | (hd(π), v′) ∈ E} do
21 S′ ← S ∪ {v}
22 S← S ∪ {S′}
23 S← S \ {S}
24 removePrefix(hd(π))

25 return S

26 procedure removePrefix(v ∈ (Vw ∪ Vm))

27 foreach π ∈ Π do
28 if |π| > 0 & hd(π) == v then π ← tail(π)

Algorithm 7: Returns a set of schedule sets S, i. e., each of the sets contains
those clusters to be scheduled to deliver an operating mode’s service.

7.3 Scheduling | 159

{A, B, C,D, L, M} {A, B, C, E, L, M}

{A, B, C, D, F, L, M}

{A, B,C, L, M}

{A, B, C, D, G, L, M}

{A, B, C, D, G, H, L, M}

{A, B, C, E, I, L, M}

{A, B, C, E, I, J, L, M}{A, B, C, E, I, K, L, M}

D E

F G

IH

K J

Figure 7.12.: Exemplary run of Algorithm 7 using the reduced CDG depicted in Fig-
ure 7.11a. Π as listed below was processed from top to bottom:
(1) ACDF (6) BCDGH
(2) ACDGH (7) BCEIJ
(3) ACEIJ (8) BCEIK
(4) ACEIK (9) LM

(5) BCDF

Termination of the algorithm is guaranteed because there is only a finite number
of paths within the reduced cluster dependency graph. At each iteration of the
while-loop the paths are reduced in their length, finally satisfying the termination
condition of the loop (cf. line 9).

Figure 7.12 visualises an exemplarily run of the algorithm using the running
example. Arrows are labeled with the element added to the next lower level. Bold
letters indicate mode cluster vertices introducing a branching of schedule sets.

Together with the precedence relation ≺, which can directly be derived from the
reduced cluster dependency graph, the correct cluster order can be determined.

Definition 13 (Schedule List). A schedule list L = 〈S,≺〉 is a finite sequence l with
|l| = |S| respecting the precedence relation ≺. l is a permutation of S.

Definition 14 (Timed Schedule List). A timed schedule list Lτ = 〈S,≺, τ〉 is a
schedule list L where each element c ∈ S is assigned a starting time using τ : S→ N+

0 .

A possible schedule list for S3, i. e., 〈S3,≺〉 would be for example: ALBCEIMJ.
Now, we know which clusters to schedule in which mode and also their causal
order. In real-time systems, however, the correct point in time when to schedule a
task or cluster is of importance. The correct order is thus insufficient.

160 | 7 DEPLOYMENT

To meet the requirements of real-time systems, deployment of the COLA auto-
motive approach includes the determination of the worst-case execution time of
clusters with respect to the target hardware they are executed on (cf. also step S3
of Section 4.4).

Definition 15 (Schedule). A schedule for the complete COLA system is determined
by the triple S = 〈Gr, α,T〉. Gr is the reduced cluster dependency graph, α the allocation
decision, and T a finite set of temporal constraints like e. g. WCET and deadlines. If there
is a schedule, then it satisfies the precedence relation ≺ induced by Gr and the temporal
constraints T.

In the following, constraints are listed that encode the circumstance of temporal
(T) and precedence properties (≺) of distributed COLA systems.

7.3.4. Constraint System

For hard real-time systems, a timely execution is fundamental for a correct and
safe operation. Therefore, several general constraints have to be satisfied by a
static scheduler in order to guarantee these strict requirements. Only when the
points in time, when clusters (tasks) are activated by a dispatcher are correct, the
system operates as desired. In the following, some general constraints that have
to be fulfilled are given. A first distinction is made between single-ECU and multi-
ECU systems, as independent clusters can be executed in parallel on multi-ECU
systems, which—of course—is prohibited in single-ECU systems. Therefore, the
constrains encode amongst others the precedence relation and temporal attributes.

Generic constraints

Below, generic constraints are listed that have to be satisfied in both the single and
the multi-ECU case.

(G1) Wait for sensor values. As the COLA evaluation follows the IPO-model,
the processing phase follows the input phase, thus it holds ∀ 1 ≤ i ≤ n

si,j > ι j ∈ N+ (7.16)

where ι is the time needed to read the inputs.

(G2) Consider time to write actuators. Again, the IPO-model states that the
output phase follows the processing phase, thus it holds ∀ 1 ≤ i ≤ n

fi,j < γ − o j ∈ N+ (7.17)

7.3 Scheduling | 161

where o is the time needed to write the outputs and γ is the cycle time. That
means, we implicitly assume for all jobs the deadline Di to be γ − o.

(G3) Worst-case execution time. We assume that all jobs ci,j have the same worst-
case execution time Ci. As the worst-case execution time Ci may be different
depending on the executing processor, the allocation α has to be considered,
too. For the finishing times it holds ∀ 1 ≤ i ≤ n

fi,j = si,j + Cp
i j ∈ N+ (7.18)

where Cp
i denotes the worst-case execution time of cluster ci on processor p

assuming α(ci) = p. Cp
i is derived from R, cf. also Section 7.2.1.

Single-ECU system

As in single-ECU systems, the execution of tasks has to be linearised according to
the topological order, which is induced by the data-flow dependencies, thus no
concurrent execution is allowed.

(S1) Non-overlapping condition. No two jobs cs,j and ct,j are allowed to overlap,
i. e., it holds ∀ 1 ≤ s, t,≤ n, s 6= t
(
(ss,j > ft,j) ∧ (¬(st,j > fs,j))

)
∨
(
(st,j > fs,j) ∧ (¬(ss,j > ft,j))

)
j ∈ N+ (7.19)

(S2) Precedence relation. If two jobs cs,j and ct,j are interdependent, i. e., cs,j ≺ ct,j

then it holds ∀ 1 ≤ s, t,≤ n, s 6= t

fs,j < st,j j ∈ N+ (7.20)

Multi-ECU system

The usual case, and also the case primarily considered by the COLA automotive
approach is the multi-ECU setting. These systems have multiple ECUs realising
a single function, or a set of functions. These can be completely independent of
each other, or—which is the normal case for the automotive domain—are to a high
degree coupled and therefore interdependent. An appropriate consideration of
multi-ECU systems thus needs to regard the placement of clusters—the allocation.

(M1) Non-overlapping condition. No pair of independent jobs allocated onto the
same ECU is allowed to overlap, i. e., it holds ∀ 1 ≤ s, t,≤ n, s 6= t with
α(cs) = α(ct)
(
(ss,j > ft,j) ∧ (¬(st,j > fs,j))

)
∨
(
(st,j > fs,j) ∧ (¬(ss,j > ft,j))

)
j ∈ N+ (7.21)

162 | 7 DEPLOYMENT

(M2) Precedence relation. If two jobs cs,j and ct,j are interdependent, i. e., cs,j ≺ ct,j

then it holds ∀ 1 ≤ s, t,≤ n, s 6= t

fs,j < st,j j ∈ N+ (7.22)

Extension to Multi-Rate Scheduling

A possible extension, which is currently not implemented in the COLA engineer-
ing environment, is multi-rate scheduling. It is defined as a set of periodic tasksmulti-rate

scheduling (clusters) where the number of jobs per cycle may vary from cluster to cluster,
i. e., some clusters are executed more often than others within the same cycle. In
this case, one does not longer speak about a cycle but about a hyper-period H. The
hyper-period is defined to be the least common multiplier of the task periods

H = lcm
1≤i≤|C|

{Ti} . (7.23)

For the EDF algorithm, Leung and Merrill [138] proved that it is sufficient to
consider the hyper-period, as it defines the shape of all future executions. This
assumes that the release times are equal for all clusters, i. e., R1 = R2 = · · · = Rn

where n is the number of clusters. If, however, it holds Ri 6= Rj for some 1 ≤ i, j ≤ n,
then they showed that the time horizon to consider is no more the hyper-period,
but a new bound H′ defined as

H′ = max
1≤i≤|C|

{Ri}+ 2H. (7.24)

Hence, if all necessary and sufficient conditions for a dynamic scheduling algo-
rithm, such as EDF, are fulfilled, the outlined approach will find a valid scheduling
plan, as well. The presented approach can be considered as a generic approach,
i. e., if there is any scheduling algorithm finding a feasible schedule, then we will
find it, too.

Assume for example the four clusters with arbitrarily chosen values for the
attributes period Ti, deadline Di, and WCET Ci listed in Table 7.3. Figure 7.13
shows the job invocations of the four clusters. Arrowheads indicate deadlines of
the respective jobs. In this example no precedence relation is considered. However,
in combination with the already stated constraints for multi-ECU systems, this
is accomplished. The hyper-period defines the amount of time that has to be
considered during analysis. This is sufficient, since job invocations continuously
repeat after the first hyper-period. The number of job invocations #i of cluster ci

per hyper-period H is determined by the period Ti of a cluster.

#i =
H
Ti

1 ≤ i ≤ |C| (7.25)

7.3 Scheduling | 163

Cluster Period [ms] Deadline [ms] WCET [ms]

Speed measurement 60 60 40
ESP 20 20 7
Fuel injection 10 10 3
ABS 40 40 10

Table 7.3.: Multi-rate periodic cluster scheduling. Clusters have different periods and
deadlines.

Major cycle

τi,j τi,j+1

0 t

ri,j+1

si,j+1

si,j fi,j fi,j+1

Ri,j

Ti

Di

ri,j = Φi

Response time

Figure 1: Periodic Scheduling

0 12 24 36 48 60 72 84 96 108 120 [ms]

ABS

Injection

ESP

Speed

Figure 2: SuppyFigure 7.13.: Multi-rate scheduling example. H = 120 ms.

(R1) Deadlines. The deadlines for each job di,j within the hyper-period H are
described by

di,j = ((j− 1) mod #i + 1) Di j ∈ N+ (7.26)

(R2) Start times. The constraint G1 has to be changed in a way that it considers
multiple jobs within a hyper-period.

si,j ≥ ((j− 1) mod #i) Ti (7.27)

si,j ≤ ((j− 1) mod #i + 1) Ti)− Ci (7.28)

For j ∈ N+.

7.3.5. Realisation

In the previous section, numerous constraints were given, which a feasible sched-
ule has to satisfy, in order to guarantee preservation of the COLA semantics down
to the execution platform. Depending on the structure of operating modes, a
quite large number of hierarchically nested modes is possible. As for each nested

164 | 7 DEPLOYMENT

mode, the schedule set is forked, it is essential that a schedule for each of them is
computed efficiently. For the example given in Figure 7.11a one can assume for
example that node C distinguishes between combustion engine and electric motor
(E) and then whether the seat heater works in ‘ECO’ mode, i. e., with reduced
voltage, or is disabled at all if the power supply is not sufficient. Electric mobility
and its consequences concerning functional realisation is a very good example
where the concept of operation modes takes full effect.

For fast and effective schedule enumeration, the power of available SMT solversSMT solver

is used, in particular the public available YICES [63] solver. Given the COLA
system scheduling problem S , the solver results a single feasible schedule, if
there is one. The COLA automotive approach pursues the goal of minimising the
makespan, i. e., the minimisation of the finishing time of the last cluster execution
of each cycle (cf. also minimum makespan scheduling). The obtained result,
however, is not guaranteed to be optimal in the mentioned sense. As most SMT
solvers do not optimise as for instance solvers for linear programming where
an optimisation goal can be given, such a result has to be searched for. For this
purpose, we gradually prune the search space until no satisfying result can be
found anymore. Hence, the last found is also the optimal one. Therefore, a binary
search is performed within bounds that encode both the best- and the worst-case
(lower bound lb, upper bound ub), i. e., all clusters are aligned left-most and right-
most, respectively, with respect to the schedule cycle. Figure 7.14 gives an example
with four clusters c1 to c4 with the worst-case execution times C1 = 10, C2 = 20,
C3 = 30, and C4 = 40. The cycle time γ is assumed to be 150. Fifty time units,
say milliseconds, are unused. In the upper part of the figure, the best-case is

unused

10 30 60 100 150
c1 c2 c3 c4lb = 200

unused

50 90 120 140 150

c1c2c3c4ub = 550

Figure 7.14.: Determination of initial bounds

depicted, i. e., all clusters are aligned left-most. Contrariwise, in the lower part, all
clusters are aligned right-most. Between these extrema, a feasible schedule for the
complete system can be found. Note, in the following formulae, the precedence
constraint ≺ and temporal constrains T are not considered, as they are part of the

7.3 Scheduling | 165

remaining constraint system.
To render the search operational, the bounds are computed as follows:

lb =
∑

p∈P

|α−1(p)|∑

i=1

i∑

j=1

Cp
j (7.29)

ub =
∑

p∈P

|α−1(p)|∑

i=1

γ −

|α−1(p)|∑

j=1

Cp
j +

i−1∑

k=0

Cp
|α−1(p)|−k

=
∑

p∈P

γ +

|α−1(p)|−1∑

i=1

γ −

i∑

j=1

Cp
j

 (7.30)

where Cp
i denotes the worst-case execution time of cluster ci executed on ECU p.

The bounds accrue from the sums of finishing times of all clusters allocated on the
different ECUs.

Definition 16 (Optimal Schedule). Let S = 〈Gr, α,T〉 be a given scheduling problem
for the complete COLA system. If the makespan for all possible execution modes is desired
to be minimal, S then describes an optimal schedule problem, denoted by S ∗.

In the following, only feasible solutions for the optimal scheduling problem S ∗

are of interest. On the one hand, when sorting the clusters in ascending order
with respect to their worst-case execution times, and aligning them left-most, the
contribution to lb is minimised. On the other hand, when aligning the descending
ordered clusters right-most, their contribution to ub is maximised. In this vein, lb
and ub are safe search bounds.

For the sake of simplicity the set of clusters allocated onto an ECU p, i. e., α−1(p),
is assumed to be indexed in a way that it consists of elements c1, . . . , c|α−1(p)|. Actual
clusters are mapped to the new indices, which is omitted here. For example if
clusters c4, c7, and c2 are mapped onto ECU p, α−1(p) = {c1, c2, c3}with an internal
mapping c4 7→ c1, c7 7→ c2, c2 7→ c3, respectively. This is done ascending with
respect to the WCET, i. e., Cp

1 ≤ Cp
2 ≤ . . . ≤ Cp

|α−1(p)|. Coming back to the example
of Figure 7.14 the following bounds are obtained:

lb = 10 + 30 + 60 + 100 = 200

ub = 90 + 120 + 140 + 150 = 500

Assuming there is a feasible solution for S , i. e., satisfying for each mode the
constraint system given in Section 7.3.4. Then there is also a feasible schedule
where the sum of all cluster finishing times is within the interval [lb,ub], i. e.,
adding the constraint

166 | 7 DEPLOYMENT

(O) Optimisation condition.

|C|∑

i=i

fi,j ≤ b j ∈ N+ (7.31)

where b ∈ [lb, ub] holds, does not change the satisfiability of the constraint system
for at least one such b. If there is a minimal b for every operating mode, a solution
for the optimal schedule S ∗ has been found. If the system of constraints is
unsatisfiable, then either the value of b is too small, or the system would have been
unsatisfiable even without the optimisation condition. In other words, a solution
for S implies a solution for S ∗.

The aim of the scheduling algorithm is to find the minimal starting times (and
therefore minimal finishing times) for all clusters of all operating modes, i. e., for
each of them a minimal b satisfying the constraint system. Algorithm 8—based on
binary search—is used to find such a minimal b.

For each schedule set S ∈ S, the algorithm tries to find a minimal b such that all
constraints are satisfied. Therefore, a binary search between the bounds lb (lower
bound) and ub (upper bound) is performed.

The function check(S, b) (cf. line 9) checks whether for the schedule set S and
the bound b all constraints are satisfied. In the positive case, a timed schedule
list Lτ = 〈S,≺, τ〉 for that particular mode determined by S is retuned, otherwise
nil. In particular, τ is calculated, i. e., the points in time when clusters have to be
executed. If for all operating modes S ∗ has a non-nil result (cf. lines 19 and 20),
the result for the COLA system scheduling problem is a set of timed scheduling
lists, i. e., Lτ .

In this vein, the earliest possible placement taking allocation α and data-flow
dependencies ≺ into account is accomplished. The function check generates
an input file for the YICES SMT-solver, which in turn checks whether there is a
feasible schedule plan (timed schedule list) for the value b and the given clusters S.
Figure 7.15 visualises the convergence steps of the algorithm. The example shows
the three modes ‘normal’, ‘parking’, and ‘sdc active’ of the case study explained
in Chapter 8.2. For the sake of clarity, the upper (1392) and lower (888) bounds are
after the first and the second iteration of the described algorithm.

7.3.6. Complexity Analysis

The search for the minimal bs of each operating mode leads to a left-most align-
ment of all clusters in order to minimise the makespan. Therefore, the search is

7.3 Scheduling | 167

input :Optimal Scheduling problem S ∗ = 〈Gr, α,T〉
output : Solution for S ∗ if there is one, i. e., Lτ , otherwise nil

1 lb =
∑

p∈P

∑|α−1(p)|
i=1

∑i
j=1 Cp

j

2 ub =
∑

p∈P

(
γ +

∑|α−1(p)|−1
i=1

(
γ −∑i

j=1 Cp
j

))

3 counter = 0

4 foreach S ∈ S // S is obtained using Algorithm 7

5 do
6 Lτlast ← nil

7 while lb <= ub do
8 b = lb +

(
ub−lb

2

)

9 Lτcheck = check(S, b)
10 if Lτcheck = nil then
11 lb← b + 1

12 else
13 ub← b− 1

14 Lτlast ← Lτcheck
15 if Lτlast 6= nil then
16 counter ← counter + 1

17 Lτ ← Lτ ∪ {Lτlast}
18 else
19 return nil

20 return counter 6= |S| ? nil : Lτ

Algorithm 8: Calculates a solution for the optimal scheduling problem S ∗

if there is one.

performed within the interval [lb; ub]. For each operating mode, searching needs
log2(ub− lb) steps in the worst-case. Let m be the number of ECUs and n the num-
ber of clusters to be scheduled, respectively. Without loss of generality, assume
the WCET Ci of all clusters is set to 1, i. e., C1 = C2 = . . . = Cn = 1 no matter on
which ECU a cluster is executed, and all clusters are uniformly distributed over
the ECUs. Moreover we assume that n is a multiple of m. The following analysis
distinguishes between the lower and the upper bound for the search—beginning
with the first one.

168 | 7 DEPLOYMENT

1400 950 1000 1050 1100 1150 1200 1250 1300 1350

sdc_active (967)
normal (953)

parking (985)

parking

sdc_active

normal

Figure 7.15.: The search converges for every mode to a minimal b satisfying the constraint
system.

Lower bound

The earliest finishing times of all clusters is reached, when they start as early as
possible within the cycle, i. e., aligned left-most. As we assumed the WCET to be
one for all clusters, we do not need to order them ascending according to their
WCETs. Consequently, the first cluster will finish at time point 1, the second at 2,
and the last at n

m . Thus, the sum of all finishing times is as follows (summed over
all ECUs):

lb = m

n
m∑

i=1

i =
1

2

n(n + m)

m
(7.32)

Upper bound

The latest finishing times arise when the clusters are aligned right-most. Then,
their finishing times are γ, γ − 1, . . . , γ − (n

m − 1), and in sum over all ECUs

ub = m

n
m−1∑

i=0

γ − i =
1

2

n(2γm− n + m)

m
(7.33)

Both together yield the search space and thus the possible values for b, namely

ub− lb = m

n
m−1∑

i=0

γ − i

−

n
m∑

i=1

i

 = n

γm− n
m

(7.34)

7.4 Fault Tolerance | 169

Hence, in the worst-case we expect

log2

(
n
γm− n

m

)
(7.35)

calls of check (cf. line 9) for each operating mode. Of course, we are assuming
m,n to be positive and that the number of clusters per ECU is at most the cycle
time, i. e., n

m ≤ γ.

Clusters (n)
ECUs (m)

per ECU=

of search
iterations

�

Figure 7.16.: Visualisation of the number of search iterations depending on the number
of clusters n and the number of ECUs m, with γ = 50.

7.4. Fault Tolerance

The COLA automotive deployment methodology guarantees—by construction—
that the semantics of models on level of the Logical Architecture is preserved

170 | 7 DEPLOYMENT

down to the Technical Architecture and finally to the running target system.

“The physical world is neither precise nor reliable, so why
should we demand this of computing systems? Instead, we
must make the systems robust and adaptive, building reliable
systems out of unreliable components.” [135, 136]

Following Lee, the subsequent explanations describe changes to the COLA au-
tomotive approach in order to make the therewith modelled systems even more
robust and adaptive. Special fault tolerant modes are automatically generated,
capable to cope with some system failures described below.

Therefore, first the fault model is described in Section 7.4.1 and then necessary
adoptions in Section 7.4.2

7.4.1. Fault Hypothesis

The intention of fault tolerant modes guarantees continuous operation of highly
safety-critical clusters in case of hardware failures. To do so, the presented ap-
proach uses the already introduced concept of operating modes (cf. Section 4.3.2
and [88]). The fact that operating modes are computed offline, i. e., at design time,
allows to switch them and hence their corresponding schedule plans easily at
run-time. These differ in terms of contained clusters and their respective starting
times. By relying on the time-triggered paradigm, determinism at run-time is
guaranteed.

As spare capacity is rare in automotive E/E architectures, it is impossible to
compensate an arbitrary number of ECU failures or bus breakdowns. Rather it
is intended to guarantee the substituted execution of a few but most important
clusters from a single failing ECU on another ECU containing spare resources.
The decision about which clusters to select for redundancy is up to the developer
and shall be specified within the model. This information in combination with the
hardware platform model leads to a suitable failover ECU selection.

The concept outlined here is able to deal with the complete loss of a single ECU.
While this case seems to be very special, it is quite common in practice. In an
automotive system the ECUs as well as their connecting cables are exposed to
permanent vibrations and changing environmental conditions like temperature,
humidity, etc. These conditions can easily lead to broken wires, either in form of
copper wires or the even more sensitive fibre optic cables, which may be used
for example in MOST bus topologies. Other defects are loose contacts on or
cracks in the employed circuit boards. While the described approach does not

7.4 Fault Tolerance | 171

address problems like a babbling idiot at the moment, a safe operating state can
be guaranteed for the typical case of a not responding ECU, may it be because
of communication loss, power loss, or loose electronic components. Figure 7.17

ECU 1
C1 C2

ECU 2
C3 C4 C5

ECU 3
C6 C7

(a) Three ECUs are connected via a common bus. Clusters C1 to C7 are executed in a
distributed setting.

ECU 1 ECU 2
C3C1 C2 C4

ECU 3
C6 C7C5�C3 C5�

(b) Either ECU 2 fails of the connection to the bus breaks down. Re-allocation of important
clusters.

Figure 7.17.: Fault tolerance through re-allocation of clusters: (a) depicts the initial setting
with three ECUs, 7 distributed clusters, and a shared bus. (b) Either ECU 2
fails or the link to the bus breaks down. Clusters C3 and C5 are re-allocated
to ECUs 1 and 3, respectively. C4 is assumed to be non-critical and thus
stays on ECU 2.

exemplifies the transition to a fault tolerant mode. In the upper Figure 7.17a, three
ECUs and their contained clusters C1 through C7 are illustrated. In the lower part
7.17b a possible fault tolerant mode is shown, which is activated by the failure
of ECU 2. In the exemplary fault tolerant mode clusters C3 and C5 are necessary
for a safe operation of the system. Thus they are executed on ECU 1 and ECU 3
respectively, if ECU 2 fails. Cluster C4 is not safety-critical and thus is ignored in
the fault tolerance mode.

One important constraint is that sensors and actuators that are needed by safety-
critical clusters are either directly connected to the bus, or have a redundant
connection to the failover ECUs. Otherwise they would not be accessible in case
the ECU they are connected to fails, and thus the according cluster could not
continue its operation successfully.

172 | 7 DEPLOYMENT

7.4.2. Adaptions

When considering the hardware deficiencies ECU failure, cable break, or signal
loss one can in principle distinguish between

(i) complete functioning and

(ii) partial functioning guarantee.

The former is achieved by marking all clusters on an ECU as redundant if at least
a single one is. Whereas the latter principle is also provided by ECUs with a
mixture of redundant and non-redundant clusters. Regarding the cost pressure of
the automotive domain in general and E/E systems in particular, it is appropriate
to only concentrate on what is absolutely necessary. Thus in the following, the
partial functioning guaranteed is favoured. If there were lots of spare hardware
resources available, the first guarantee could also have been realised.

Allocation

From a set-theoretic point of view, the inverse mapping function α−1 : P → 2C

can be interpreted as a partitioning of the set of clusters C in r ≤ m = |P| disjoint
non-empty parts D1, . . . ,Dr—one for each used ECU defined in the Hardware
Topology of the Technical Architecture. Each part encapsulates those clusters
executed on the same ECU. Hence,

C =
⊎

1≤i≤r

Di = D1] · · ·]Dr (7.36)

holds. When taking fault tolerant redundancy into account, a special marked
cluster—be it because of realising a particularly important function—has to be
deployed onto two different ECUs. In the standard mode (faultless execution)
clusters are executed on the default ECU and their replica are unused, whereas
in the fault-tolerant mode (in case of an error) the replicas are activated on the
failover ECUs. Let

A =

α−1(p1)=D1︷ ︸︸ ︷
{c1, . . . , ce},

α−1(p2)=D2︷ ︸︸ ︷
{ce+1, . . . , cg}, . . . ,

α−1(pr)=Dr︷ ︸︸ ︷
{cl, . . . , cn}

(7.37)

be a partition of the set of clusters C where ci ∈ C with 1 ≤ i ≤ n = |C| holds.
We write ĉ to indicate that cluster c is to be allocated redundantly, and refer to
its replica as c′. Since the formerly described algorithm only calculates a single

7.4 Fault Tolerance | 173

input : COLA model of the Technical Architecture
output : Set of allocations A

1 A← ∅
2 A ← InitialAllocation()

3 A← A ∪ {A}
4 foreach Di ∈ A do
5 R = {ĉ ∈ Di | ĉ is a marked cluster}
6 if |R| > 0 then
7 Bi ← Di \ R
8 A′ ← (A \ {Di}) ∪ {Bi}
9 B ← ReplicaAllocation (A′,Bi,R)

10 A← A ∪ {B}

11 return A

12 function Allocation ReplicaAllocation(Allocation A′, Set Bi, Set R)
13 foreach Di ∈ A′ do
14 foreach c ∈ Di do
15 add(a[c 7→pi] = 1) // pi ∈ P ECU associated w/ part Di

16 foreach c ∈ R do
17 add(a[c 7→bi] = 0) // bi ∈ P ECU ass. w/ part Bi

18 add(
∑

p∈(P\{bi}) a[c 7→p] = 1)

19 return solve()

Algorithm 9: Redundant allocation of safety-critical clusters.

allocation, its adaptions are described in the following and depicted in Algorithm 9.

Starting with an initial allocation result A (cf. line 2), the algorithm checks
for each part Di ∈ A, 1 ≤ i ≤ r, whether there is a non-empty subset R ⊆ Di

of marked clusters. If so, a partial allocation A′ based on A is generated. It
differs in that Di is replaced by Bi (cf. line 8), which does not contain the marked
clusters anymore, i. e., R * Bi. ReplicaAllocation(A′,Bi,R) takes the partial
allocation A′ and fixes already made assignments (cf. line 15) except that of R
whose elements are not allowed to be placed into Bi (cf. line 17). Therefore, new
constraints are added (using add()) to those used to compute the initial allocation
(InitialAllocation()). The remaining elements of R (cf. line 18) are then

174 | 7 DEPLOYMENT

allocated onto the other parts of A under optimisation considerations (using
solve()), yielding a redundancy allocation B. The set of all allocations A is
extended by B. Figures 7.18(a) to (c) illustrates the presented algorithm.

bc2

bc3

bc4

c1

D1

D2

D3

c5

(a) Initial allocation

c02

bc2

bc3

bc4

c1

D1

D2

D3

c5

(b) ECU of D1 fails.

bc2

bc3

bc4

c1

c03

c04

D1

D2

D3

c5

(c) ECU of D2 fails.

Figure 7.18.: Figure (a) shows the initial allocation: D1 = {ĉ2, c5}, D2 = {ĉ3, ĉ4}, and D3 =

{c1}. Figures (b) and (c) show the replication of marked clusters: cluster
ĉ2 and clusters ĉ3 and ĉ4, respectively, have to be reallocated. Unmarked
clusters are fixed (cf. c5 in (b)).

Scheduling

The necessary changes towards fault tolerance concerning scheduling are of mod-
erate effort. In contrast to the procedure described so far, multiple allocations
have to be considered. The scheduling procedure thus has to be aware of sets of
allocations, each of them having its own α. Up to now, the number of generated
schedule lists was only dependent on the number of operating modes. Thus the
scheduling algorithm was executed once for a unique given allocation determined
by the mapping function α. Together with the allocation result all information
about when, where, and what cluster to start can be derived. If at least one cluster
of the allocation is marked as redundant, a new allocation is derived. Hence,
Algorithm 8 has to be executed for each A ∈ A with the mapping function α in
question.

The operating system’s dispatcher is responsible to select the correct schedule
with respect to operating mode and faulty hardware.

7.5. Related Work

During the last years, there has been a lot of work dealing with model-based
development of embedded systems. However, when having a closer look, most of

7.5 Related Work | 175

them have drawbacks that are not consistent with the idea of a seamless modelling
along of different levels of abstractions. Of course, the presented COLA automo-
tive approach cannot compete with commercial tools in terms of tool qualification
and field trial. However, the prototypic implementation comes up with many
interesting features that are not available in other approaches in such a seamlessly
integrated form.

The AutomotiveArchitect [113], for example, describes an automotive archi-
tecture optimisation approach. The idea is to allocate functional components
integrated in a functions net onto a hardware platform. Kebemou and Schiefer-
decker, however, do not model the behaviour of those components, which would
be essential for a realistic automated deployment using optimisation and code
generation. Moreover it is unclear how details of the hardware capabilities and the
software resources are modelled. Lacking behavioural modelling capabilities is
something that many other approaches have in common. Kebemou and Schiefer-
decker [114] also criticise that high level modelling languages such as SysML,
EAST ADL, AADL, etc. are not expressive enough to support an automated
partitioning approach for automotive systems. Detailed information about the
underlying hardware topology, their attributes and a behavioural description is
needed.

Lately UML has become popular for modelling real-time systems. One approach
to generate C code from UML models has been presented by Khan et al. [115]. But
compared to COLA, the current diagram types defined in UML do not provide
enough information for generating the entire application code, thus having the
need to manually write code. Avoiding those error prone manual changes to
the resulting code was one of the main reasons for using a data-flow language
like COLA in the current work. The information captured in a COLA model
is sufficient to generate code necessary for a runnable system. The UML profile
MARTE (Modeling and Analysis of Real-Time and Embedded Systems) [155] is
currently in the course of standards definition. Therefore, Espinoza et al. proposed
an annotation of UML models with non-functional properties [68]. UML, however,
is a general-purpose language, which does not cater for the specific needs of the
sub-domains of embedded systems design, like automotive or avionics indus-
try. In [28], Broy objects and favours the use of domain specific languages and
architectures to improve the state-of-the-art. Therefore, we use COLA as such
a domain specific language, which, in contrast to UML, also features a unique
formal semantics.

Considering model-based engineering of embedded control software, Schätz
proposes in [178] a clear separation of control- and data-flow models to avoid un-

176 | 7 DEPLOYMENT

necessary complexity. Control-flow is used to specify modes of operation, whereas
data-flow is used to define the mode’s control task. In a similar way, COLA
models are structured with respect to operating modes using mode automata. As
an essential improvement—especially in the context of safety-critical systems—the
COLA automotive approach describes a novel technique to generate executable
code for complete systems, where operating modes are distributed over several
computing nodes.

AUTOFOCUS is a further academic tool, which is currently in the process
of being used in an industrial setting. Similar to the presented approach, it
supports seamless model-based development along different levels of abstraction.
In contrast to the COLA-IDE, AUTOFOCUS is based on the FOCUS theory. Both
approaches are very comparable in terms of functionality. However, they differ in
advanced features:

(i) the COLA-IDE supports the generation of requirements specification docu-
ments (cf. Chapter 6),

(ii) it provides support for model-based debugging (cf. Herrmannsdör-
fer et al. [96]),

(iii) moreover a traceability relation can be visualised between the Feature and
the Logical Architecture using ‘chain of effects’ (cf. Section 8.3.3), and

(iv) concerning deployment, COLA does support separate deployment of op-
erating modes, i. e., states of mode automata, which helps to save valuable
resources.

On the credit side of the account, AUTOFOCUS enters a long-time development
and evaluation also in other domains besides the automotive one, e. g. plant
automation, avionics, and energy engineering.

Common commercial tools like MATLAB/Simulink [188] and ASCET-SD [25]
are used for the design of embedded systems. These tools also feature automatic
code generation as described by Putty et al. [169,200], but the employed generators
are limited to translate the functionality of the modelled system. Adding system
functionality like for instance fault tolerance code is beyond their scope. This
is partly caused by the fact that COLA is aimed at the design and synthesis of
distributed systems, while most commercial tools are focusing on non-distributed
per-ECU modelling.

For SCADE [3], which is based on Lustre [91], a deployment concept for dis-
tributed embedded systems has been presented by Caspi et al. [42]. Compared

7.5 Related Work | 177

to COLA, this approach lacks a key concept: it does not offer the automatic de-
ployment of operating modes, supporting a dynamic change of schedule plans
at run-time, although Lustre and SCADE support mode automata [132, 146]. Fur-
thermore, unlike the COLA modelling process, no optimised automatic allocation
is performed.

Another language with similar focus regarding the target systems is Giotto, as
presented by Henzinger [94]. Models specified therewith are also executed in
a cyclic manner, similar to COLA models. An extension of Giotto towards dis-
tributed platforms has been described in [95], namely Distributed Giotto. Unlike
COLA, Giotto defines the causal order of tasks and their resource requirements,
but does not deal with specifying their implementation. Rather tasks are imple-
mented by hand and the Giotto compiler guarantees the timely execution in a
distributed system, given worst-case execution times and call frequencies for all
tasks are known. COLA contrariwise defines the clusters’ implementation, which
is necessary for formal verification and calculation of reliable execution times
based on the designed model, as presented by Wang et al [194].

Annotation of non-functional requirements and a notation of platform capa-
bilities were described by Dinkel and Baumgarten [60]. Their goal, however,
was the dynamic system reconfiguration at run-time. Not only non-functional
requirements and capabilities are modelled, but describe a fully automatic de-
ployment process. Wuyts and Ducasse [199] instrument components, with non-
functional requirements, specified in Comes (a general Component Meta-Model).
In Comes, components are seen as black boxes annotated with properties. This
may be sufficient for allocation and scheduling, but lacks the information neces-
sary for model checking and other verification techniques. In COLA, each level
of abstraction—from a very high-level system design down to the low imple-
mentation level—offers a white-box view and therefore provides all necessary
information.

Moreover, Matic et al. [148] take platform specifications, e. g. power modes of
the micro-controller, into account as well as application specific information like
periods of tasks in order to generate an optimal scheduling. Compared to the
presented approach, their work starts from having tasks to schedule. The approach
of this thesis, however, supports an integrated development process of distributed
hard real-time systems from requirements engineering (system features) over the
design phase to the actual code generation, task allocation, and scheduling in a
consistent modelling formalism. Furthermore, an objective function is optimised
subject to constraints stemming from non-functional requirements.

Regarding the overall design process, the DECOS project [121] is close to the pre-

178 | 7 DEPLOYMENT

sented approach. Unlike COLA, however, they do not use a consistent modelling
formalism, but rather resort to various techniques.

Support for automatic integration of fault tolerance into safety-critical systems is
very desirable in many cases. As a study by Mackall and colleagues showed [142],
all failures observed in the reviewed system where due to bugs in the design of the
fault tolerance mechanisms themselves. And as Rushby showed in his overview of
fault-tolerant bus architectures [175], even up-to-date bus systems like FlexRay not
necessarily have integrated fault tolerance mechanisms. The concept presented in
this work thus would be a valuable complement for those systems.

The requirements given for the used platform concept are similar to those of the
TTA, the Time-Triggered Architecture [116, 118, 119] presented by Kopetz et al. InTime-Triggered

Architecture (TTA) contrast to the TTA, the used middleware allows, in theory, an arbitrary number
of operating modes, while the TTA is limited to eight. This is advantageous as
the use of operating modes for fault tolerance presented here further raises the
number of possible modes. Contrariwise, COLA automotive approach lacks the
hardware support for failure detection by a bus guardian as intended for the TTA.
The TTA communication system periodically executes a time-division multiple
access (TDMA) schedule. Access to the communication medium is divided into aTime-Division

Multiple Access

(TDMA)

series of intervals, so-called slots. The exact times, where a node is allowed to send
messages over the communication medium is calculated a priori, i. e., at design
time (cf. also [85]).

The COLA automotive methodology focuses on an optimised automatic de-
ployment process for embedded hard real-time systems with respect to a set of
given non-functional requirements. These requirements are considered by the
presented allocation algorithm. Similar to Zheng et al. [205] and Matic et al. [148]
integer linear programming (ILP) is used. In addition to Zheng et al., Metzner and
Herde [150] who are using a SAT-based approach for the task allocation problem,
the presented approach takes non-functional requirements during the deployment
process into account (cf. also Section 7.2.2). De Niz and Feiler [53] present a re-
source allocation approach using the OSATE tool for AADL architectural models.
Their approach uses the Partition Bin Packing algorithm, which is an extension
of the Best-Fit Decreasing (BFD) bin backing algorithm to bind entities of the
software model to entities of the hardware model. Considering the change of
operating modes of hard real-time systems, Fohler [76] proposes a pre run-time
solution for the MARS approach [120].

7.6 Summary | 179

7.6. Summary

In this chapter, the deployment concept realised within the COLA automotive
approach was discussed. Following the IPO-model during the deployment steps,
the semantics of COLA’s synchronous data-flow language is preserved down to
the execution platform. This distinguished characteristic addresses and solves
problem P4 posed by Sangiovanni-Vincentelli and Di Natale [177] and took up in
Section 3.1.

The allocation step uses an optimisation scheme primarily based on non-
functional requirements to compute an optimal—according to the desired op-
timisation goal—allocation, i. e., assignment of clusters to hardware entities. The
approach uses an encoding into an integer linear program to search for an optimal
partitioning of the E/E architecture.

The presented scheduling procedure as it is used within the COLA automotive
approach uses SMT solvers to find solutions for the complete system also with
respect to different operating modes. Each such solution satisfies the mentioned
constraint system. In order to find a solution, which is also optimal in a sense
that it minimises the make span, binary search is used. The scheduling analysis
and computation address Sangiovanni-Vincentelli’s and Di Natale’s problem P3
mentioned in Section 3.1. The regarded case studies have in common that all
clusters have the same periods. An extension to multi-rate systems is given, too.

Figure 7.19 depicts the deployment perspective of the graphical user interface
of the COLA-IDE.

180 | 7 DEPLOYMENT

schedule plans for
the three different
operating modes

Model
Navigator

Properties
Viewer

Deployment
Settings

Figure 7.19.: COLA-IDE deployment perspective.

CHAPTER

EIGHT

Case Studies

In this chapter, case studies will be given that show the feasibility of the COLA
automotive approach. Each of the examples pursues a different goal. As a conse-
quence, not all capabilities of the COLA-IDE are used in every example but rather
particular capabilities. The first case study is an adaptive cruise control system
(ACC) discussed next in Section 8.1. An autonomous parking system (APS) has
been realised as second case study described in Section 8.2. Focus of the third case
study was to show that it is indeed possible to develop a totally new function—an
comfort hatchback opener (CHO)—very fast (cf. Section 8.3).

There are several reasons why not all capabilities of the COLA-IDE were used
in every case study: first and foremost, not all capabilities had been developed
and integrated in the COLA-IDE when the first case study was realised. Second,
priorities were set by the industrial collaborator. Figure 8.1 visualises the focus of
each case studies.

Contents
8.1. Adaptive Cruise Control . 182

8.2. Autonomous Parking System . 185

8.3. Comfort Hatchback Opener . 191

8.4. Summary . 195

182 | 8 CASE STUDIES

Modelling

Partitioning

C code
generation

Resource
estimation

AllocationScheduling

Configuration

Requirements
specification

document
generation

Chain of effects
visualisation

Model analysis /
verification

Single-ECU ACC Multi-ECU APS Comfort Hatchback Opener

Figure 8.1.: Focused activities of the case studies.

8.1. Adaptive Cruise Control

The focus of the adaptive cruise control case study was to show the modelling
capabilities of the COLA automotive approach. Moreover, the generation of C
source code was used first. I want to thank Michael Tautschnig and Wolfgang
Haberl who modelled the functional behaviour as well as built up the execution
platform.

The ACC system is an advanced driver assistance system. In addition to aadaptive

cruise control standard cruise control system, which automatically controls the speed of a motor
vehicle in order to maintain a steady speed as set by the driver, the ACC sys-
tem also records the distance and the relative speed of a vehicle driving ahead.
These data are used to control the distance between both vehicles. The following
Section 8.1.1 gives a functional description followed by information about the
execution platform in Section 8.1.2. Section 8.1.3 gives a summary. As that was
the first case study, the proof-of-concept and not a complete and comprehensive
functional and technical perfect realisation had priority.

8.1 Adaptive Cruise Control | 183

8.1.1. Functional Description

As a first prototype, intended to demonstrate the proof-of-concept, the imple-
mented ACC functionality is limited to follow a vehicle driving directly in front.
The driving behaviour is limited to go straight on without driving curves. The
complex interaction of the ACC module in real-life vehicles, i. e., interaction with
electronic stability control system, the gearbox, and the engine control—just to
mention the most important—is reduced to the most necessary: an engine, a
distance measure sensor, and a rotation sensor. Therefore, the functional range
is less than its example on the road. Since the demonstrator is intended to move
straight ahead, there is no need to determine the route of the ahead-driving car
in winding roads or even to determine its traffic lane. As a consequence, the
functional behaviour could be realised without information like yaw rate, steer
angle, and lateral acceleration. The following list contains the complete scope of
operation of the demonstrator:

(i) The system can be activated and deactivated using the buttons on the LEGO
brick.

(ii) The desired speed can be adjusted using the buttons.

(iii) If the system is deactivated, the currently set speed is sent to the engine,
moreover the display shows ‘off’. If the system is activated and the distance
to the ahead driving vehicle is more than 35 the display shows the speed set
by the user. Furthermore, if the system is activated and the distance is less
than 35, the display shows ‘slow’. Is the distance zero, the system indicates
this circumstance with ‘stop’ in the display.

(iv) If the system is activated, the set speed is controlled such that a steady speed
is maintained also in case of changing pavement or incline conditions.

(v) As long as an obstacle is detected within the vehicle trajectory within a
maximum distance of 35, the system continuously reduces the speed by
5%. Below a threshold of 15 (minimum distance), the system performs an
emergency stop.

(vi) As soon as there are no more obstacles within the vehicle’s trajectory, the
speed increases stepwise by 5% of the difference between the current and the
desired speed. This ensures a smooth acceleration until the desired speed
has been reached, or an obstacle is again in the vehicle’s trajectory.

184 | 8 CASE STUDIES

The smooth acceleration and breaking behaviour is illustrated in the following
example.

Example. Assume the ACC-powered vehicle follows another vehicle driving at
a constant speed of 20 ahead starting with a distance of 10. The ACC vehicle starts
with an initial speed of 5, however, the desired speed is set to be 25. In Figure 8.2,
a simulation with the stated values is depicted. The green curve indicates the
distance between both vehicles over time. The figure shows the simulation for 250
steps. The orange line indicates the constant speed of the ahead-driving vehicle,
whereas the green one illustrates that of the ACC-powered vehicle.

Since the initial distance of 10 is less than the minimum distance of 15, the
vehicle does not move at all as it performs an emergency stop. Only when the
obstacle moves on and thus increases the distance, the following car also starts
to move. As long as the obstacle’s speed is greater than the vehicle’s speed, the
distance between both vehicles increases more and more. But then, when the
vehicle’s speed exceeds 20, the distance begins to shrink—in this example after 32

steps. This phase ends just as the distance is below 35, that value when the vehicle
begins to break. After about 130 steps, the distance levels off at about 35 and the
speed at around 20, which is the speed of the obstacle driving ahead.

8.1.2. Hardware Topology and Execution Platform

The hardware topology is mainly determined by the chosen LEGO MindstormsLEGO

Mindstorms execution platform. The LEGO brick offers two softkeys used to adjust the desired
speed (increase/decrease). The ACC can be activated and deactivated with a
touch sensor used as a button. The ultrasonic and rotation sensors are connected
to the sensor ports, whereas the electromotor and the break lights are connected
to the actuator ports of the RCX. The display is used to give feedback of the
vehicle’s current operating mode and the set speed, respectively. Figure 8.3 gives
an overview of the hardware topology. The capabilities of the LEGO Mindstorms
platform are very restricted and thus can be considered as realistic for embedded
systems. The programmable LEGO brick RCX is powered by an 8-bit Renesas
(formerly Hitachi) H8/300 microcomputer. The 32K of RAM are used to store the
firmware as well as user programs. It offers a display for short messages, two
softkeys, and ports to connect sensors and actuators—three each. BrickOS wasBrickOS

used as operating system.

8.2 Autonomous Parking System | 185

0

75

150

225

300

0 65 130 195 260

Distance Speed Speed obstacle

Figure 8.2.: Simulation of the ACC behaviour (250 steps).

8.1.3. Summary

The aim of this first case study was to demonstrate the feasibility of the presented
MDD approach. As the capabilities of the used demonstration hardware platform
were very limited, a distributed system was not realised. As the functionality
has been realised as one monolithic task, no scheduling has to be done. But, this
demonstration vehicle showed very well the transition from a COLA model to
an executable C code generated by the developed code generator [90]. Figure 8.4
shows the LEGO vehicle.

8.2. Autonomous Parking System

The second mayor case study was a multi-functional, distributed, network embed-
ded system, namely an Autonomous Parking System (APS), which is a non-trivial
function available in modern medium- and luxury class cars. The major difference
between the ACC example and this one is that the full deployment capabilities
of the COLA-IDE, namely model partitioning, allocation, scheduling, C code

186 | 8 CASE STUDIES

Renesas
H8/300
microcomputer

Rotation
sensor

Back
lights

Motor
UI
(display,
buttons)

Ultrasonic
sensor

Figure 8.3.: Hardware topology of the LEGO Mindstorms ACC case study.

Figure 8.4.: LEGO Mindstorms ACC.

generation, and platform configuration were applied. Although the parking capa-
bility is at the centre of attention, the demonstration car on a scale 1:10 also allows
manual steering via Bluetooth and a side clearance control. Hence, we call it a
multi-functional system even though with a quite limited functional range. The

8.2 Autonomous Parking System | 187

key features of this system are:

(i) Finding and measuring of a parking space and

(ii) automatic reverse parking without

(iii) bumping any obstacles.

The following sections will detail on the functional description in Section 8.2.1, the
hardware topology in Section 8.2.2, and the execution platform in Section 8.2.3.
Finally, this case study is concluded in Section 8.2.4.

8.2.1. Functional Description

Besides the parking functionality, the system is also able to be steered manually
via Bluetooth connections to a customary mobile phone. Furthermore, the car can
follow a wall keeping a constant distance and perform an emergency stop if an
obstacle appears in front of the car that cannot be circumnavigated. The basic
functionalities are modelled using the concept of operating modes. Therefore, each
of the modes ‘normal’, ‘sdc active’, and ‘parking’ (cf. Figure 8.5) is encapsulated in
one state of the depicted automaton ‘vehicle mode’. In the mode ‘normal’ manual

Figure 8.5.: Operating modes of the multi-ECU case study modelled on the Logical
Architecture.

steering via Bluetooth connections to a mobile phone is possible, ‘sdc active’

188 | 8 CASE STUDIES

describes the mode of following a wall at a predefined distance without hitting
any obstacles, and last but not least ‘parking’ encapsulates the parking behaviour.
This method, again, facilitates a separation of concerns, decoupling of different
functions, and—when thinking about the runtime behaviour defined on level
of the Cluster Architecture—reduces the load of a certain ECU, since only those
clusters dedicated to a certain operating mode have to be executed at the same
time. Figure 8.6 depicts in more detail the parking feature. It basically consists

COLA System

normal sdc_active parking

searching parking

⤳	 steer right, reverse
⤳	 steer ahead, reverse
⤳	 steer left, reverse
⤳	 stop

⤳	 finding
⤳	 measuring
⤳	 forward

Figure 8.6.: APS functionality in detail.

of the two steps ‘searching’, i. e., the identification of a parking slot of sufficient
size, and the step ‘parking’ that performs the automatic reverse parking. The
search steps subsume to find a parking slot and to measure its size. If the size is
sufficient, the car drives a little bit forward before initialising the parking activity.
The parking algorithm works similar to how one is used to do reverse parking:
first, one reverses the car while steering right, followed by reversing while steering
ahead in the second step. Next, in the third step, the steering is changed to left
until the final parking position has been reached.

All the performed steps can be visualised using the COLA simulator developed
by Herrmannsdoerder at al. [96] (cf. Figure 8.7).

8.2.2. Hardware Topology

The graphical model of the Hardware Topology as modelled in the COLA specifi-
cation language can be seen in Figure 8.8. It consists of the three micro-controllers

8.2 Autonomous Parking System | 189

Figure 8.7.: COLA simulator [96] used to visually simulate the parking functionality.

‘CONNEX 1’ to ‘CONNEX 3’ connected via a common bus ‘CONNECTION 1’.
Each of the micro-controllers (ECU) comprises of a connection interface, a CPU
and a couple of directly connected sensors and actuators. Details of the Hardware
Topology and its entities are listed in Table 8.1. Each of them represents a con-

Sensors

Actuators

CPU

Bus

Connection
interface

Figure 8.8.: Hardware Topology of the APS case study.

190 | 8 CASE STUDIES

crete physical device in the execution platform discussed next. As one can see,
ECU ‘CONNEX 1’ is responsible for data communication to the mobile phone,
‘CONNEX 2’ takes the part of triggering the actuators except that for the display,
which is done by ECU ‘CONNEX 3’.

Component Description

rfcomm1 in,
rfcomm2 in,
rfcomm3 in

Incoming Bluetooth connections from the mobile phone.

rfcomm1 out,
rfcomm2 out,
rfcomm3 out

Outgoing Bluetooth connections to the mobile phone.

CONNEX 1,
CONNEX 2,
CONNEX 3

Intel XScale PXA255 micro-controllers running at 400 MHz with
64 MB of RAM and 16 MB flash memory.

ID 6, ID 7, ID 8 Connection interfaces.
ir rf, Infrared distance sensor assembled on the front-right bumper.
ir b, Infrared distance sensor assembled on the rear bumper.
ir r, Infrared distance sensor assembled on the right door sill.
bl Actuator for the break light.
eng Motor actuator.
rl Actuator for the reversing light.
ste Steering actuator (servo)
tsl Actuator for the left indicator.
tsr Actuator for the right indicator.
i2c-us i2c bus display interface.
CONNECTION 1 Ethernet connection.

Table 8.1.: Components used to build the Hardware Topology.

8.2.3. Execution Platform

The execution platform can roughly be described by mechanical and E/E com-
ponents, which in turn may either be material or immaterial. Purely mechanical
components of that case study is for instance the assembly set of bodywork and
chassis. ECUs, Ethernet-switch, engine etc. fall into the category of material E/E
components. Immaterial is—of course—the deployed software and the operating
system, which is a Linux with the Xenomai real-time development framework.

8.3 Comfort Hatchback Opener | 191

Communication between ECUs is done using Ethernet and a middleware devel-
oped by Haberl et al. [85]. As ECUs, three Gumstix 400xm-bt boards with Intel
XScale PXA255 processors, 64 MB RAM, and 16 MB of flash memory were used.
These boards were extended with a netCF Ethernet adapter each. Two infrared
and an ultrasonic sensor were used for distance measurement, an electric engine
as propulsion, a steering servo, and a couple of lights (stop lights, direction indi-
cators). A Nokia 6630 was used to steer the car and to set the operating modes
via Bluetooth. In Figure 8.9a a photo of the case study is depicted. At this point,
I want to thank my workmate Wolfgang Haberl who built up the hardware of
this case study in charge with a lot of passion and effort. Figure 8.9b shows the
visualisation of the three scheduling plans, one for each operating mode.

8.2.4. Summary

The intention of the presented case study was first and foremost the extension
from a single-ECU system to a real distributed multi-ECU networked embedded
system. Therefore, a deployment concept for COLA systems had to be developed
including allocation (cf. Section 7.2) and scheduling (cf. Section 7.3) with respect
to different operating modes. This case study used the capabilities of the COLA-
IDE on each level of abstraction. Hence, a fully integrated COLA engineering
tool supporting seamless model-driven development could be presented the first
time [86, 87].

8.3. Comfort Hatchback Opener

The case study described in this section has been modelled based on a real re-
quirements specification document of BMW Group. The COLA model has been
developed in parallel to the realisation of the first tier supplier, who developed
the system for Audi, Volkswagen, and BMW Group. Due to non disclosure agree-
ments, not all realisation details can be given. Besides a feature model on the
Feature Architecture, a simulatable behavioural model has been developed. In
addition, this model formed the basis for the generation of a requirements specifi-
cation document for that particular function. One way to visualise the connection
between the Feature and the Logical Architecture is the so-called ‘chain of ef-
fects’ which has been demonstrated using the Comfort Hatchback Opener (CHO)
example. The deployment onto a real car was not possible at that time.

192 | 8 CASE STUDIES

infrared sensors

rear
lighting system

front
lighting system

motor/steering
control

micro computers

ultrasonic sensor
(a)

(b)

Figure 8.9.: (a) Image of the APS case study with (b) the corresponding schedule plans.

8.3.1. Functional Description

The idea of the comfort hatchback opener is to enable the driver to guesture-driven
open the hatchback of his or her car. This is a very useful feature especially after
shopping when loading the trunk with full hands. The challenge of this feature
is not to model the desired ‘good’ case, but the undesired ‘bad’ cases, i. e., the

8.3 Comfort Hatchback Opener | 193

situations when the system should not open the hatchback.
After detecting a correct gesture, the system has to perform several checks before

opening the hatchback. These are amongst others to check if sufficient battery
voltage is available, if no hardware malfunction was detected, and if the correct
key is present in a certain area relative to the car. This example demonstrates,
that in many cases, the modelling effort for the ‘good’ case is less compared to
the ‘bad’ cases. This becomes apparent when having a look at the anonymised
Feature Architecture given in Figure 8.10. Some information are camouflaged
such that no information about the real requirements specification documents can
be gained. Actually, the desired opening functionality is encapsulated within the

open deactivate

no key

low voltage

hardware failure

misuse

diagnosis

CHO

Figure 8.10.: Anonymised Feature Architecture of the CHO example.

feature ‘open’, whereas ‘deactivate’ and ‘diagnosis’ with their respective subtrees
contain actions to be performed if for example no key is present or misuse has
been detected. Moreover, a lot of diagnosis functionalities have to be realised
apart from the open functionality. If all mentioned checks are passed and a
correct gesture has been detected, the hatchback opens. Essentially, the algorithm
compares the voltage curve given by sensors with a predefined curve. Due to non
disclosure agreements, however, no more information about how the detection is
technically realised and how the detection algorithm works can be given. I want to
thank Doris Wild and Bernd Spanfelner for modelling the Feature and the Logical
Architecture of this example.

194 | 8 CASE STUDIES

8.3.2. Requirements Specification Documents

Besides the proof of concept that the COLA automotive approach can be used
to develop simulatable models even for new functions very quickly, this case
study served as source model to generate requirements specification documents
as discussed in Chapter 6 based on the Logical Architecture.

8.3.3. Chain of Effects

Requirements traceability is a mandatory property during system development
demanded for instance by ISO 26262. The notion of a chain of effects is one waychain of effects

to graphically visualise how features of the Feature Architecture are realised on
level of the Logical Architecture. That means, they visualise the impact on theimpact analysis

logical model when changing a feature. Of course, this makes no claims of being
complete, however it might be sufficient in many cases. Realistically, one has to
mention, that for automotive systems of realistic size, it will never be possible to
have 100% complete traceability. This might be because of incomplete information
or insufficient tool support. Analysis also showed that automotive systems are
interconnected in such a way that nearly all components are related to certain
requirements. This makes it de-facto unusable for engineers.

The fashion how the chain of effects are implemented in the COLA-IDE is re-
ferred to as post-traceability, as it provides insights after the Feature and the Logical
Architecture have been created. In principle, the COLA engineering environment
could support full traceability when unifying the following information:

(i) To feature annotated requirements,

(ii) chain of effects to explain the interconnection between Feature and Logical
Architecture,

(iii) the Cluster Architecture, to know how logical components are clustered, and

(iv) the way how the COLA C code generator translates clusters into source
code.

All this information could provide detailed insight of how a feature is logically
modelled and technically realised in code. Figure 8.11 depicts an exemplary chain
of effects for the feature ‘no key’. The algorithm building this chain of effects
simply matches the selected features input and output ports, and locates them on
the Logical Architecture. By performing a

8.4 Summary | 195

Figure 8.11.: Chain of effects for the feature ‘no key’.

(i) backward search from the input ports of the corresponding unit on the
Logical Architecture, via connected channels, until sources have been reached
and a

(ii) forward search from the output ports of that unit until sinks have been
reached.

By collecting all units visited during the two search phases, the chain of effects
is constructed. For reasons of clarity and comprehensibility, in a first step not all
details are shown. If desired, however, more details can be shown, i. e., a node
for example ‘SMOFzgZugang’ will be replaced by its contained subtree. The
herefrom gained hierarchy is indicated using different node shapes—the lower in
the hierarchy the darker the shape.

8.3.4. Summary

The last case study pursed the goal to demonstrate that completely new functions
can be modelled quite quickly. Besides that, a semantically tangible requirements
specification document was created and the correlation between the Feature Archi-
tecture and the Logical Architecture has been shown using the notion of a chain of
effects.

8.4. Summary

This chapter demonstrated the feasibility of the COLA automotive approach by
dint of three different case studies. Each of them focused different aspects during
development:

196 | 8 CASE STUDIES

(i) The adoptive cruise control system demonstrated the practicability of C code
generation.

(ii) The autonomous parking system revealed a seamless modelling along differ-
ent levels of abstraction using a distributed, multi-functional system.

(iii) The comfort hatchback opener focused on the generation of requirement spec-
ification documents as well as the visualisation of the correlation between
the Feature and the Logical Architecture using chains of effects. Moreover,
one could demonstrate how fast simulatable models for completely new
functions can be modelled.

All aspects together claim to cover the central ideas of what was proposed as
‘seamless model-based development’ of software-intensive automotive systems.

CHAPTER

NINE

Summary and Outlook

This concluding chapter summarises the central results and contributions of this
thesis and discusses further possible research directions. In the following section
a summary is given followed by Section 9.2, which reveals possible future areas of
research.

Contents
9.1. Summary . 197

9.2. Outlook . 199

9.1. Summary

This dissertation proposed a novel approach for seamless model-based develop-
ment of reliable software-intensive embedded automotive systems. The particular
requirements, problems, and challenges of the automotive domain were given
in the beginning, namely the highly competitive mass market, the omnipresent
dependency on suppliers, legal requirements, and the drift to hybrid powertrains
and electromobility, which is a challenge and an opportunity at the same time.
To the best of our knowledge, there is no tool—let it be commercial or from the
academia—that comprises a similar high and especially seamlessly integrated
functional range building upon a common product data model.

After an overview of embedded systems had been given and their penetration
into automobiles during basically the last 40 years had been recapitulated, the
automotive industry was elucidated in terms of its domains infotainment, body
electronics, chassis, powertrain, and passive safety.

198 | 9 SUMMARY AND OUTLOOK

The COLA automotive approach supports modelling along different levels of
abstraction—the Feature Architecture, the Logical Architecture, and the Technical
Architecture. Dijkstra’s [58] and Parnas’ [157] ideas to structure and modularise
systems are not only supported on all levels of abstraction, rather these were
specifically designed to do so. The COLA automotive approach is characterised
by the fact that the core of the used modelling language COLA—The Component
Language—is mathematically well-defined with respect to its formal syntax (tex-
tual as well as graphical) and semantics. In fact, this rigorous foundation is at
the very heart of the presented work. This is crucial for the application of formal
methods such as model checking, simulation, or other verification techniques. It
is this fact that enables the application of model-to-model transformation like that
presented in the case of Coloured Petri nets, and synthesising of code. Model-
checking techniques were used to demonstrate how inconsistencies among a set
of features can be detected. In addition, a method was presented to check whether
a COLA automaton is deterministic or not when it is considered individually. The
quoted algorithm utilises and benefits from the performance of state-of-the-art
SMT solvers.

A per-tool formal foundation in a chain of different tools, however, undermines
the idea of seamless modelling by encouraging integration gaps, which may lead
to information loss or information corruption. On the contrary, the COLA-IDE
integrates everything that is necessary to take the transition from a high level
functional model down to very concrete executable code in a ‘push-button’ fash-
ion. This dissertation emphasises within the involved deployment steps aspects
concerning allocation, i. e., the mapping of logical software artefacts (clusters) onto
processing units of the hardware model, and scheduling of distributed COLA
systems. The first mentioned, moreover, takes non-functional requirements into
account to optimise the allocation result.

It was shown, how requirements specification documents can be generated
directly from the model of the Logical Architecture. So-called ‘scope of services’
define the scope of what should be part of the generated document. Due to the
tight OEM-supplier relationship, parts that are intellectual property of the OEM
will only be part of the document in a restricted form. The very tight integration of
the document viewer into the COLA-IDE enables navigation through the model
by clicking on elements of the document. This makes them ‘semantically tangible’.

Finally, the three case studies

(i) Adaptive Cruise Control (ACC),

(ii) Autonomous Parking System (APS), and

9.2 Outlook | 199

(iii) Comfort Hatchback Opener (CHO)

showed the feasibility of the presented COLA automotive approach. Each of the
examples focused different aspect, such that in their combination all capabilities
of the COLA-IDE and the idea of seamless model-based development of software-
intensive automotive systems could be demonstrated.

In particular, this dissertation contributed to the state-of-the-art and state of
practice by

(i) proposing a seamless model-based development approach for primary au-
tomotive systems, which uses the COLA modelling language for data and
control-flow specification of such systems,

(ii) improving the overall model quality by early detection of requirement in-
consistencies, possibly undesired non-deterministic behaviour, and possibly
‘deadlock-esque’ automata states,

(iii) stating a ‘push-button’ deployment concept taking non-functional require-
ments into account,

(iv) extending automatic deployment in terms of fault tolerance, and

(v) evaluating all concepts by dint of three different case studies.

9.2. Outlook

During the development phase of the COLA automotive approach and the ac-
companying IDE implementation several issues arose that were either not realised
due to time constraints or due to outstanding conceptional work. In the following,
these research questions are discussed.

Requirements Engineering. COLA supports adding requirement objects (tex-
tual informal descriptions or SALT formulae) to all COLA entities. This is useful
for instance when generating the requirements specification documents. Nev-
ertheless, having a linking mechanism to a central requirements management
component would be preferable. Such a specific functionality to centrally store,
maintain, and refine requirements would be appreciated. Then, traceability links
between refined and original requirements could be established. Moreover, during
development, engineers are oftentimes faced with the problem of contradicting,

200 | 9 SUMMARY AND OUTLOOK

L
re

q
u
ir
e
m

e
n
ts

Lfeature

Llogical

Ltechnical

(a)

Lfeature

Llogical

LtechnicalL
re

q
u
ir
e
m

e
n
ts

Lphysical

(b)

L
o
p
ti
m

is
a
ti
o
n

Lphysical

Lfeature

Llogical

LtechnicalL
re

q
u
ir
e
m

e
n
ts

(c)

Figure 9.1.: Figures (a) to (c) extend the presented levels of abstraction to (a) model and
organise requirements, (b) support of spatial modelling and analysis, and (c)
comprehensive support of any kind of optimisation goals and models.

mutually exclusive requirements. At such point, engineers have to make a trade-
off and finally decide which one to prefer. This weighting has to be documented,
such that following projects can gain from this already done consideration of
interests. All the mentioned points could be realised in a new conceptual layer—
the Requirements Architecture Lrequirements (cf. Figure 9.1a)—orthogonal to the
already existing levels of abstraction. Besides the existing analysis support on the
Feature Architecture, the Requirements Architecture would strive more towards
the idea of ‘front loading’, i. e., a stronger emphasis on the early developmentfront loading

phases with particular attention to quality assurance. To emphasis this phase even
further, the addition of parameterised requirements attributes, such as for instance
a desired braking distance, weight, or the bias-current would allow to feed back
simulation results and facilitate early requirements verification.

Some non-functional requirements have been considered within this thesis,
however for others like safety, maintainability, extensibility, reusability and other
‘ilities’ a notion and way of modelling has to be developed first.

Concerning the requirements specification document generation process out-
lined in this thesis, one possible extension would be to provide an easy to use
editor to change the proposed template document structure. Currently, an XSLT
file has to be changed by hand.

Computer Aided Design (CAD) and Spatial Modelling. This dissertation pro-
posed a way to solve the allocation problem, i. e., to determine on which ECU an
executable software entity (cluster) should be executed under consideration of

9.2 Outlook | 201

optimisation constraints. What was not done, is to go one step further and ask
where in the overall construction space an ECU should be placed. This again has to
be performed with respect to optimisation and physical constraints. Conceivable
considerations are to determine the placement with respect to

(i) harness routing (also harness routing alternatives could be considered) [189],

(ii) electromagnetic compatibility (harness, antennas, batteries, high-voltage
network, power electronics, etc.) [73],

(iii) humidity and other influencing environmental factors such as temperature
(consideration of try and wet area),

(iv) safety and redundancy aspects,

(v) vibrations, etc.

All the mentioned aspects could be modelled in a new architectural level—the
Physical Architecture Lphysical, depicted in Figure 9.1b. The Physical Architecture
could integrate features of current CAD (Computer-Aided Design) tools like PTC’s
Creo Elements/Pro, Dassault’s CATIA, or Siemens PLM Software’s NX or support
interoperability.

Moreover, the COLA automotive approach, which is currently limited to
software-intensive systems, could be extended towards a comprehensive mod-
elling support for mechatronic systems (mechanical engineering-electronic en- mechatronic

systemgineering), i. e., systems consisting of informatics, electronics, and mechanical
parts. To do so, COLA needs to overcome the current limitation to only discrete
modelling and has to provide modelling support of continuous systems.

Model-based Optimisation [127]. In the presented work, parametrisable opti-
misation goals were used during deployment. Besides other optimisation goals
that are associated to the Physical Architecture, completely different optimisation
goals and side condition could be taken into account. In the automotive context,
related work for

(i) cost models for E/E architectures [16, 163] and those for modelling explicit
uncertainties and risk analysis [17], as well as

(ii) vendor selection [15]

202 | 9 SUMMARY AND OUTLOOK

has been done. A new orthogonal layer—the Optimisation Architecture
Loptimisation—could subsume the mentioned and also other models for optimi-
sation. The optimisation Architecture primarily influences the existing levels of
abstraction during the transitions of a higher to the next lower level of abstraction.
This circumstance is shown in Figure 9.1c. As a positive by-product optimisation
goals are documented within the model.

AUTOSAR. As pointed out in Section 2.4.1, more and more OEMs proceed to
demand AUTOSAR compatibility. The COLA-IDE, however, currently lacks
AUTOSAR support. This stain can be removed with reasonable effort as discussed
by Haberl [84].

BIBLIOGRAPHY

[1] AUTOSAR: Automotive Open System Architecture. http://www.

autosar.org. [Online; accessed 13-02-2012].

[2] GNU Linear Programming Kit, Version 4.41. http://www.gnu.org/

software/glpk/glpk.html. [Online; accessed 12-05-2012].

[3] SCADE Suite. http://www.esterel-technologies.com/

products/scade-suite/. [Online; accessed 12-05-2012].

[4] ISO 11898-1:2003 - Road vehicles – Controller area network (CAN) – Part 1:
Data link layer and physical signalling, 2003.

[5] ISO 11898-2:2003 - Road vehicles – Controller area network (CAN) – Part 2:
High-speed medium access unit, 2003.

[6] ISO 11898-4:2004 - Road vehicles – Controller area network (CAN) – Part 4:
Time-triggered communication, 2004.

[7] ISO 11898-3:2006 - Road vehicles – Controller area network (CAN) – Part 3:
Low-speed, fault-tolerant, medium dependent interface, 2006.

[8] ISO 11898-5:2007 - Road vehicles – Controller area network (CAN) – Part 5:
High-speed medium access unit with low-power mode, 2007.

[9] ISO/NP 11898-6 Road vehicles – Controller area network (CAN) – Part 6:
High-speed medium access unit with selective wake-up functionality, under
development.

[10] ACEA - European Automobile Manufacturers Association. Streamlining
regulations: cost-effectiveness, impact assessments and harmonisation—the
key to ’better regulation’. http://www.acea.be/index.php/news/

http://www.autosar.org
http://www.autosar.org
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/
http://www.acea.be/index.php/news/news_detail/streamlining_regulation/
http://www.acea.be/index.php/news/news_detail/streamlining_regulation/
http://www.acea.be/index.php/news/news_detail/streamlining_regulation/

204 | Bibliography

news_detail/streamlining_regulation/, 2009. [Online; accessed
06-07-2009].

[11] ADAC. ADAC Motorwelt, 5, 2008.

[12] ADAC. ADAC Motorwelt, 1:24, 2011.

[13] L. Amorim, P. R. M. Maciel, M. N. N. Jr., R. S. Barreto, and E. Tavares. Map-
ping live sequence chart to coloured petri nets for analysis and verification
of embedded systems. ACM SIGSOFT Software Engineering Notes, 31(3):1–25,
2006.

[14] S. Arthur, H. N. Breed, and C. Schmitt-Luehmann. Shifting car makeup
shakes up OEM status quo: Software strength is critical. IBM White Paper.
http://www.ibm.com/services/in/igs/pdf/g510-1692-00-

shifting-car-makeup-shakes-up-oem-status-quo.pdf, 2003.
[Online; accessed 07-09-2011].

[15] N. Arunkumar and L. Karunamoorthy. An optimization technique for
vendor selection with quantity discounts using genetic algorithm. Journal
of Industrial Engineering International Islamic Azad University, South Teheran
Branch, Jan. 2007. [Online; accessed 07-09-2011].

[16] J. Axelsson. Cost models for electronic architecture trade studies. In ICECCS,
pages 229–239. IEEE Computer Society, 2000.

[17] J. Axelsson. Cost models with explicit uncertainties for electronic architec-
ture trade-off and risk analysis. In Proc. 16th International Symposium of the
International Council on Systems Engineering, July 2006.

[18] A. Bauer, M. Broy, J. Romberg, B. Schätz, P. Braun, U. Freund, N. Mata,
R. Sandner, and D. Ziegenbein. AutoMoDe — Notations, Methods, and
Tools for Model-Based Development of Automotive Software. In Proceedings
of the SAE 2005 World Congress, Detroit, MI, Apr. 2005. Society of Automotive
Engineers.

[19] A. Bauer, M. Leucker, and J. Streit. Salt - structured assertion language for
temporal logic. In Z. Liu and J. He, editors, ICFEM, volume 4260 of Lecture
Notes in Computer Science, pages 757–775. Springer, 2006.

[20] A. Bauer, M. Pister, and M. Tautschnig. Tool-support for the analysis of
hybrid systems and models. In R. Lauwereins and J. Madsen, editors, DATE,
pages 924–929. ACM, 2007.

http://www.acea.be/index.php/news/news_detail/streamlining_regulation/
http://www.acea.be/index.php/news/news_detail/streamlining_regulation/
http://www.acea.be/index.php/news/news_detail/streamlining_regulation/
http://www.ibm.com/services/in/igs/pdf/g510-1692-00-shifting-car-makeup-shakes-up-oem-status-quo.pdf
http://www.ibm.com/services/in/igs/pdf/g510-1692-00-shifting-car-makeup-shakes-up-oem-status-quo.pdf

Bibliography | 205

[21] A. Benveniste, P. Caspi, P. Le Guernic, and N. Halbwachs. Data-flow syn-
chronous languages. In J. de Bakker, W. de Roever, and G. Rozenberg,
editors, A Decade of Concurrency Reflections and Perspectives, volume 803 of
Lecture Notes in Computer Science, pages 1–45. Springer Berlin / Heidelberg,
1994.

[22] Benz, Carl Friedrich. Benz, Carl Friedrich: Lebensfahrt eines deutschen Erfinders.
Die Erfindung des Automobils, Erinnerungen eines Achtzigjährigen. Köhler und
Amelang, 1936. Zenodot Verlagsgesellschaft mbH http://www.zeno.

org.

[23] M. Bernard, C. Buckl, V. Döricht, M. Fehling, L. Fiege, H. von Grolman,
N. Ivandic, C. Janello, C. Klein, K.-J. Kuhn, C. Patzlaff, B. C. Riedl, B. Schätz,
and C. Stanek. Mehr Software (im) Wagen: Informations- und Kommunika-
tionstechnik (IKT) als Motor der Elektromobilität der Zukunft. Technical
report, fortiss GmbH, 2011.

[24] G. Berry and G. Gonthier. The esterel synchronous programming language:
design, semantics, implementation. Sci. Comput. Program., 19(2):87–152,
1992.

[25] F. Bitsch and M. Gunzert. Formale verifikation von softwarespezifikationen
in ASCET-SD und MATLAB. Technical report, IAS, Universität Stuttgart,
2000.

[26] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1998.

[27] P. Braun and M. Rappl. A model-based approach for automotive software
development. In P. P. Hofmann and A. Schürr, editors, OMER, volume 5 of
LNI, pages 100–105. GI, 2001.

[28] M. Broy. Automotive software and systems engineering (panel). In MEM-
OCODE, pages 143–149, 2005.

[29] M. Broy. Challenges in automotive software engineering. In ICSE ’06:
Proceedings of the 28th international conference on Software engineering, pages
33–42, New York, NY, USA, 2006. ACM.

[30] M. Broy. Architecture based specification and verification of embedded
software systems (work in progress). In Margaria and Steffen [147], pages
1–13.

http://www.zeno.org
http://www.zeno.org

206 | Bibliography

[31] M. Broy. From system requirements documents to integrated system model-
ing artifacts. In U. M. Borghoff and B. Chidlovskii, editors, ACM Symposium
on Document Engineering, page 98. ACM, 2009.

[32] M. Broy, M. Feilkas, J. Grünbauer, A. Gruler, A. Harhurin, J. Hartmann,
B. Penzenstadler, B. Schätz, and D. Wild. Umfassendes Architekturmodell
für das Engineering eingebetteter Software-intensiver Systeme. Technical
Report TUM-I0816, Technische Universität München, 2008.

[33] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu. Seam-
less model-based development: From isolated tools to integrated model
engineering environments. Proceedings of the IEEE, 98(4):526 – 545, Apr.
2010.

[34] M. Broy, F. Huber, and B. Schätz. AutoFocus – Ein Werkzeugprototyp zur
Entwicklung eingebetteter Systeme. Informatik Forschung und Entwicklung,
13(3):121–134, 1999.

[35] M. Broy, I. H. Krüger, A. Pretschner, and C. Salzmann. Engineering automo-
tive software. Proceedings of the IEEE, 95(2):356–373, 2007.

[36] M. Broy, G. Reichart, and L. Rothhardt. Architekturen softwarebasierter
Funktionen im Fahrzeug: von den Anforderungen zur Umsetzung. Infor-
matik Spektrum, 34(1):42–59, 2011.

[37] M. Broy and K. Stølen. Specification and development of interactive systems:
Focus on streams, interfaces, and refinement. Springer-Verlag, New York, 2001.

[38] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh.
A manifesto for model merging. In GaMMa ’06: Proceedings of the 2006
international workshop on Global integrated model management, pages 5–12,
New York, NY, USA, 2006. ACM.

[39] A. Burkert. Trends der Automobilelektronik und die Folgen für Au-
tohersteller. http://www.atzonline.de/Aktuell/Nachrichten/

1/15031/Trends-der-Automobilelektronik-und-die-Folgen-

fuer-Autohersteller.html, Dec. 2011. [Online; accessed 28-03-2012].

[40] A. Campetelli, F. Hölzl, and P. Neubeck. User-friendly model checking
integration in model-based development. In The Twenty-Fourth International
Conference on Computer Applications in Industry and Engineering (CAINE 2011),

http://www.atzonline.de/Aktuell/Nachrichten/1/15031/Trends-der-Automobilelektronik-und-die-Folgen-fuer- Autohersteller.html
http://www.atzonline.de/Aktuell/Nachrichten/1/15031/Trends-der-Automobilelektronik-und-die-Folgen-fuer- Autohersteller.html
http://www.atzonline.de/Aktuell/Nachrichten/1/15031/Trends-der-Automobilelektronik-und-die-Folgen-fuer- Autohersteller.html

Bibliography | 207

Honolulu, Hawaii, USA, Nov. 2011. The International Society for Computers
and Their Applications.

[41] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. N. och Dag. An
industrial survey of requirements interdependencies in software product
release planning. In RE, pages 84–93. IEEE Computer Society, 2001.

[42] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert.
From simulink to SCADE/lustre to TTA: a layered approach for distributed
embedded applications. In LCTES, pages 153–162. ACM, 2003.

[43] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative
language for programming synchronous systems. In POPL, pages 178–188,
1987.

[44] D. M. Chapiro. Globally-asynchronous locally-synchronous systems. PhD thesis,
Stanford University, Oct. 1984.

[45] D.-J. Chen, R. Johansson, H. Lönn, Y. Papadopoulos, A. Sandberg, F. Törner,
and M. Törngren. Modelling support for design of safety-critical automotive
embedded systems. In SAFECOMP, pages 72–85, 2008.

[46] S. Cheng, J. A. Stankovic, and K. Ramamritham. Scheduling algorithms
for hard real-time systems–a brief survey. Technical report, University of
Massachusetts, Amherst, MA, USA, 1987.

[47] M. B. Chrissis, M. Konrad, and S. Shrum. CMMI(R): Guidelines for Process
Integration and Product Improvement (2nd Edition) (The SEI Series in Software
Engineering). Addison-Wesley Professional, 2006.

[48] M. Conrad and H. Dörr. Deployment of model-based software development
in safety-related applications: Challenges and solutions scenarios. In H. C.
Mayr and R. Breu, editors, Modellierung, volume 82 of LNI, pages 245–254.
GI, 2006.

[49] M. E. Conway. How do committees invent? Datamation, 14(4):28–31, Apr.
1968.

[50] CPN Tools. http://cpntools.org/. [Online; accessed 12-05-2012].

[51] Å. Dahlstedt and A. Persson. Requirements interdependencies: State of the
art and future challenges. In Engineering and Managing Software Requirements,
pages 95–116. Springer-Verlag, 2005.

http://cpntools.org/

208 | Bibliography

[52] A. M. Davis. Software requirements: analysis and specification. Prentice Hall
Press, Upper Saddle River, NJ, USA, 1990.

[53] D. de Niz and P. H. Feiler. On resource allocation in architectural models. In
11th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2008), 5-7 May 2008, Orlando, Florida, USA, pages 291–297.
IEEE Computer Society, 2008.

[54] R. de Simone and C. André. Time modeling in marte. In FDL, pages 268–273.
ECSI, 2007.

[55] V. Denner/Bosch/av. Gemeinsam mehr erreichen. http://www.all-

electronics.de/track.php?p=1&ci=8127&ct=&l=http:

//www.all-electronics.de/media/file/8702, 2010. [Online;
accessed 26-03-2012].

[56] M. L. Dertouzos. Control robotics: The procedural control of physical
processes. In IFIP Congress, pages 807–813, 1974.

[57] E. W. Dijkstra. On the reliability of programs. http://www.cs.utexas.
edu/users/EWD/ewd03xx/EWD303.PDF. [Online; accessed 12-05-2012].

[58] E. W. Dijkstra. Chapter i: Notes on structured programming. In Structured
programming, pages 1–82. Academic Press Ltd., London, UK, UK, 1972.

[59] E. W. Dijkstra. On the role of scientific thought. In Selected Writings on
Computing: A Personal Perspective, pages 60–66. Springer-Verlag, 1982.

[60] M. Dinkel and U. Baumgarten. Modeling nonfunctional requirements: a
basis for dynamic systems management. SIGSOFT Softw. Eng. Notes, 30(4):1–
8, 2005.

[61] F. A. M. do Nascimento, M. F. S. Oliveira, and F. R. Wagner. Modes: Embed-
ded systems design methodology and tools based on mde. In Model-Based
Methodologies for Pervasive and Embedded Software, 2007. MOMPES ’07. Fourth
International Workshop on, pages 67–76, Mar. 2007.

[62] V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of automated
techniques for formal software verification. IEEE Trans. on CAD of Integrated
Circuits and Systems, 27(7):1165–1178, 2008.

[63] B. Dutertre and L. de Moura. The yices smt solver. Tool paper at http:
//yices.csl.sri.com/tool-paper.pdf, Aug. 2006.

http://www.all-electronics.de/track.php?p=1&ci=8127&ct=&l=http://www.all-electronics.de/media/file/8702
http://www.all-electronics.de/track.php?p=1&ci=8127&ct=&l=http://www.all-electronics.de/media/file/8702
http://www.all-electronics.de/track.php?p=1&ci=8127&ct=&l=http://www.all-electronics.de/media/file/8702
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD303.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD303.PDF
http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf

Bibliography | 209

[64] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifica-
tions for finite-state verification. In ICSE, pages 411–420, 1999.

[65] EAST-EEA. Electronics Architecture and Software Technology - Architecture
Description Language, 2004. ITEA project 00009.

[66] M. Eberbach-Sahillioglu. Strukturanalyse und Wertschöpfungs- kette der
deutschen Automobilindustrie. http://www.bic-kl.de/user/pdf/

MA/automobilindustrie.pdf, 2004. [Online; accessed 28-March-2012].

[67] C. Ebert and C. Jones. Embedded software: Facts, figures, and future.
Computer, 42:42–52, 2009.

[68] H. Espinoza, H. Dubois, S. Gérard, J. L. M. Pasaje, D. C. Petriu, and C. M.
Woodside. Annotating uml models with non-functional properties for
quantitative analysis. In MoDELS Satellite Events, pages 79–90, 2005.

[69] ETAS Group. ASCET. http://www.etas.com/en/products/ascet_
software_products.php. [Online; accessed 12-05-2012].

[70] European Software Institute. European User Survey Analysis, Report USV
EUR 2.1, ESPITI Project, Jan. 1996.

[71] N. Eén and N. Sörensson. An extensible sat-solver. In E. Giunchiglia and
A. Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer Science,
pages 502–518. Springer, 2003.

[72] P. H. Feiler, B. Lewis, and S. Vestal. The SAE avionics architecture description
language (AADL) standard: A basis for model-based architecture-driven
embedded systems engineering. In Proceedings of the RTAS 2003 Workshop on
Model-Driven Embedded Systems (MDES), Washington, DC, May 2003.

[73] R. Fellini, N. Michelena, P. Papalambros, and M. Sasena. Optimal design of
automotive hybrid powertrain systems (invited). Environmentally Conscious
Design and Inverse Manufacturing, International Symposium on, 0:400–405, Feb
1999.

[74] J. M. Fernandes, S. Tjell, J. B. Jorgensen, and O. Ribeiro. Designing tool
support for translating use cases and uml 2.0 sequence diagrams into a
coloured petri net. In SCESM ’07: Proceedings of the Sixth International
Workshop on Scenarios and State Machines, page 2, Washington, DC, USA,
2007. IEEE Computer Society.

http://www.bic-kl.de/user/pdf/MA/automobilindustrie.pdf
http://www.bic-kl.de/user/pdf/MA/automobilindustrie.pdf
http://www.etas.com/en/products/ascet_software_products.php
http://www.etas.com/en/products/ascet_software_products.php

210 | Bibliography

[75] FlexRay Consortium. FlexRay - the communication system for advanced
automotive control applications. http://www.flexray.com/. [Online;
accessed 07-09-2011].

[76] G. Fohler. Realizing changes of operational modes with pre run-time sched-
uled hard real-time systems. In Proceedings of the Second International Work-
shop on Responsive Computer Systems, Saitama, Japan, 1992.

[77] H. Fuhrmann and R. von Hanxleden. On the pragmatics of model-based
design. In C. Choppy and O. Sokolsky, editors, Monterey Workshop, volume
6028 of Lecture Notes in Computer Science, pages 116–140. Springer, 2008.

[78] I. Galvao and A. Goknil. Survey of traceability approaches in model-driven
engineering. In EDOC ’07: Proceedings of the 11th IEEE International Enterprise
Distributed Object Computing Conference, page 313, Washington, DC, USA,
2007. IEEE Computer Society.

[79] M. R. Garey and D. S. Johnson. Computers and Intractability (A Guide to Theory
of NP-Completeness). Freeman, San Francisco, 1979.

[80] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In G. Berry,
H. Comon, and A. Finkel, editors, Proceedings of the 13th International Confer-
ence on Computer Aided Verification (CAV’01), volume 2102 of Lecture Notes in
Computer Science, pages 53–65, Paris, France, July 2001. Springer.

[81] T. Gautier, P. L. Guernic, and L. Besnard. Signal: A declarative language for
synchronous programming of real-time systems. In Proceedings of a conference
on Functional programming languages and computer architecture, pages 257–277,
London, UK, 1987. Springer-Verlag.

[82] F. Gottschalk, W. M. P. van der Aalst, M. H. Jansen-Vullers, and H. M. W.
Verbeek. Protos2cpn: using colored petri nets forr configuring and testing
business processes. STTT, 10(1):95–110, 2008.

[83] K. Grimm. Software technology in an automotive company: major chal-
lenges. In ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, pages 498–503, Washington, DC, USA, 2003. IEEE Computer
Society.

[84] W. Haberl. Code Generation and System Integration of Distributed Automotive
Applications. Dissertation, Technische Universität München, München, 2011.

http://www.flexray.com/

Bibliography | 211

[85] W. Haberl, J. Birke, and U. Baumgarten. A Middleware for Model-Based
Embedded Systems. In Proceedings of the 2008 International Conference on
Embedded Systems and Applications, ESA 2008, Las Vegas, Nevada, USA, July
2008.

[86] W. Haberl, M. Herrmannsdoerfer, S. Kugele, M. Tautschnig, and M. Wechs.
One click from model to reality, 2009. accepted for presentation at SAASE
’09: Symposium on Automotive/Avionics Systems Engineering.

[87] W. Haberl, M. Herrmannsdoerfer, S. Kugele, M. Tautschnig, and M. Wechs.
Seamless model-driven development put into practice. In T. Margaria and
B. Steffen, editors, Leveraging Applications of Formal Methods, Verification, and
Validation, volume 6415 of Lecture Notes in Computer Science, pages 18–32.
Springer, Oct. 2010.

[88] W. Haberl, S. Kugele, and U. Baumgarten. Reliable Operating Modes for
Distributed Embedded Systems. In Proceedings of the ICSE Workshop on
Model-based Methodologies for Pervasive and Embedded Software, volume 0,
pages 11–21, Los Alamitos, CA, USA, May 2009. IEEE Computer Society.

[89] W. Haberl, S. Kugele, and U. Baumgarten. Model-Based Generation of
Fault-Tolerant Embedded Systems. In H. R. Arabnia and A. M. G. Solo,
editors, Proceedings of the 2010 International Conference on Embedded Systems
and Applications, ESA 2010, pages 136–142, Las Vegas, Nevada, USA, July
2010. CSREA Press.

[90] W. Haberl, M. Tautschnig, and U. Baumgarten. From COLA Models to Dis-
tributed Embedded Systems Code. IAENG International Journal of Computer
Science, 35(3):427–437, Sept. 2008.

[91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-
flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–
1320, Sept. 1991.

[92] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program., 8(3):231–274, 1987.

[93] D. Harel and A. Pnueli. On the development of reactive systems, pages 477–498.
Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[94] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-triggered
language for embedded programming. In EMSOFT, pages 166–184, 2001.

212 | Bibliography

[95] T. A. Henzinger, C. M. Kirsch, and S. Matic. Composable code genera-
tion for distributed giotto. In LCTES ’05: Proceedings of the 2005 ACM
SIGPLAN/SIGBED conference on Languages, compilers, and tools for embedded
systems, pages 21–30, New York, NY, USA, 2005. ACM.

[96] M. Herrmannsdoerfer, W. Haberl, and U. Baumgarten. Model-level sim-
ulation for cola. In Modeling in Software Engineering, 2009. MISE ’09. ICSE
Workshop on, pages 38–43, May 2009.

[97] S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri Nets. In
Business Process Management, pages 220–235, 2005.

[98] C. A. R. Hoare. The emperor’s old clothes. Commun. ACM, 24:75–83, Feb.
1981.

[99] A. Holzer, V. Januzaj, S. Kugele, B. Langer, C. Schallhart, M. Tautschnig, and
H. Veith. Seamless testing for models and code. In D. Giannakopoulou and
F. Orejas, editors, FASE, volume 6603 of Lecture Notes in Computer Science,
pages 278–293. Springer, 2011.

[100] F. Hölzl and M. Feilkas. Autofocus 3: a scientific tool prototype for model-
based development of component-based, reactive, distributed systems. In
Proceedings of the 2007 International Dagstuhl conference on Model-based engi-
neering of embedded real-time systems, MBEERTS’07, pages 317–322, Berlin,
Heidelberg, 2010. Springer-Verlag.

[101] IEEE. IEEE Recommended Practice for Software Requirements Specifications
(IEEE Std 830-1998). Institute of Electrical and Electronics Engineers, Inc.,
Oct. 1998. [Online; accessed 04-April-2012].

[102] International Electrotechnical Commission. Functional Safety of Electrical /
Electronic / Programmable Electronic Safety-related Systems (IEC 61508),
1998.

[103] International Organization for Standardization. Software Process Improve-
ment and Capability Determination (ISO/IEC 15504-5, SPICE), 2006.

[104] International Organization for Standardization. Road vehicles–Functional
safety (ISO 26262), 2011.

[105] D. Jackson. A direct path to dependable software. Commun. ACM, 52:78–88,
Apr. 2009.

Bibliography | 213

[106] V. Januzaj and S. Kugele. Model Analysis via a Translation Schema to
Coloured Petri Nets. In D. Moldt, editor, PNSE’09: Proceedings of the Interna-
tional Workshop on Petri Nets and Software Engineering, pages 273–292, June
2009.

[107] K. Jensen. Coloured Petri nets (2nd ed.): basic concepts, analysis methods and
practical use, volume 1. Springer-Verlag, London, UK, 1996.

[108] K. Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use,
volume 2. Springer-Verlag, London, UK, 1997.

[109] K. Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use,
volume 3. Springer-Verlag New York, Inc., New York, NY, USA, 1997.

[110] G. Kahn. The semantics of a simple language for parallel programming.
In J. L. Rosenfeld, editor, Information Processing ’74: Proceedings of the IFIP
Congress, pages 471–475. North-Holland, New York, NY, 1974.

[111] H. Kang, X. Yang, and S. Yuan. Modeling and verification of web services
composition based on cpn. In NPC ’07: Proceedings of the 2007 IFIP Interna-
tional Conference on Network and Parallel Computing Workshops, pages 613–617,
Washington, DC, USA, 2007. IEEE Computer Society.

[112] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical report, Soft-
ware Engineering Institute, Carnegie Mellon University, 1990.

[113] A. Kebemou and I. Schieferdecker. AutomotiveArchitect: An environment
for the design of automotive systems architectures. In 6th International
Conference on Informatics and Systems (INFOS 2008), Cairo, Egypt, pages 40–47.
Univ. Cairo, Faculty of Computers and Information, Mar. 2008.

[114] A. Kebemou and I. Schieferdecker. A model-based design approach for the
partitioning of automotive systems. Fraunhofer Publica http://publica.
fraunhofer.de/oai.har, 2008.

[115] M. U. Khan, K. Geihs, F. Gutbrodt, P. Gohner, and R. Trauter. Model-
driven development of real-time systems with uml 2.0 and c. Model-Based
Methodologies for Pervasive and Embedded Software, International Workshop on,
0:33–42, 2006.

http://publica.fraunhofer.de/oai.har
http://publica.fraunhofer.de/oai.har

214 | Bibliography

[116] H. Kopetz. The time-triggered approach to real-time system design. In
Predictably Dependable Computing Systems, ESPRIT basic research series, pages
53–66. Springer, 1995.

[117] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[118] H. Kopetz. The time-triggered architecture. Object-Oriented Real-Time Dis-
tributed Computing, IEEE International Symposium on, 0:22, 1998.

[119] H. Kopetz and G. Bauer. The time-triggered architecture. In Proceedings of
the IEEE, volume 91, pages 112–126, 2003.

[120] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and
R. Zainlinger. Distributed fault-tolerant real-time systems: The mars ap-
proach. IEEE Micro, 09(1):25–40, 1989.

[121] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri. From a federated to an inte-
grated architecture for dependable embedded real-time systems. Technical
Report 22, Technische Universität Wien, Institut für Technische Informatik,
Austria, 2004.

[122] F. Kordon, J. Hugues, and X. Renault. From model driven engineering
to verification driven engineering. In U. Brinkschulte, T. Givargis, and
S. Russo, editors, SEUS, volume 5287 of Lecture Notes in Computer Science,
pages 381–393. Springer, 2008.

[123] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. Mc-
Coy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental
security analysis of a modern automobile. In IEEE Symposium on Security
and Privacy, pages 447–462. IEEE Computer Society, 2010.

[124] Kraftfahrt-Bundesamt. Jahresbericht 2009. http://www.KBA.de/cln_
007/nn_124384/DE/Presse/Jahresberichte/jahresbericht_

_2009__pdf,templateId=raw,property=publicationFile.

pdf/jahresbericht_2009_pdf.pdf, 2009. [Online; accessed 12-05-
2012].

[125] L. M. Kristensen and K. Jensen. Specification and validation of an edge
router discovery protocol for mobile ad hoc networks. In SoftSpez Final
Report, pages 248–269, 2004.

http://www.KBA.de/cln_007/nn_124384/DE/Presse/Jahresberichte/jahresbericht__2009__pdf,templateId=raw,property=publicationFile.pdf/jahresbericht_2009_pdf.pdf
http://www.KBA.de/cln_007/nn_124384/DE/Presse/Jahresberichte/jahresbericht__2009__pdf,templateId=raw,property=publicationFile.pdf/jahresbericht_2009_pdf.pdf
http://www.KBA.de/cln_007/nn_124384/DE/Presse/Jahresberichte/jahresbericht__2009__pdf,templateId=raw,property=publicationFile.pdf/jahresbericht_2009_pdf.pdf
http://www.KBA.de/cln_007/nn_124384/DE/Presse/Jahresberichte/jahresbericht__2009__pdf,templateId=raw,property=publicationFile.pdf/jahresbericht_2009_pdf.pdf

Bibliography | 215

[126] L. Kristenssen, J. Billington, and Z. Qureshi. Modelling military airborne
mission systems for functional analysis. In Digital Avionics Systems, 2001.
DASC. 20th Conference, volume 1, pages 4A2/1–4A2/12 vol.1, Oct. 2001.

[127] S. Kugele. From model-based design to model-based optimization of em-
bedded systems (extended abstract). In J. Strejček, editor, Young Researchers
Forum. Satellite workshop of MFCS & CSL, pages 43–44, Brno, Czech Republic,
Aug. 2010. DTU Informatics.

[128] S. Kugele and W. Haberl. Mapping Data-Flow Dependencies onto Dis-
tributed Embedded Systems. In Proceedings of the 2008 International Con-
ference on Software Engineering Research & Practice, SERP 2008, Las Vegas,
Nevada, USA, July 2008.

[129] S. Kugele, W. Haberl, M. Tautschnig, and M. Wechs. Optimizing automatic
deployment using non-functional requirement annotations. In Margaria
and Steffen [147], pages 400–414.

[130] S. Kugele, M. Tautschnig, A. Bauer, C. Schallhart, S. Merenda, W. Haberl,
C. Kühnel, F. Müller, Z. Wang, D. Wild, S. Rittmann, and M. Wechs. COLA –
The component language. Technical Report TUM-I0714, Institut für Infor-
matik, Technische Universität München, Sept. 2007.

[131] C. Kühnel, A. Bauer, and M. Tautschnig. Compatibility and reuse in
component-based systems via type and unit inference. In Proceedings of
the 33rd EUROMICRO Conference on Software Engineering and Advanced Appli-
cations, pages 101–108, Washington, DC, USA, 2007. IEEE Computer Society.

[132] O. Labbani, J.-L. Dekeyser, and P. Boulet. Mode-automata based methodol-
ogy for scade. In In Hybrid Systems: Computation and Control (HSCC05, pages
386–401, 2005.

[133] G. J. L. Lawrence, B. J. Hardy, J. A. Carroll, W. M. S. Donaldson, C. Visvikis,
and D. A. Peel. A study on the feasibility of measures relating to the
protection of pedestrians and other vulnerable road users - final re-
port. http://ec.europa.eu/enterprise/sectors/automotive/

files/pagesbackground/pedestrianprotection/pedestrian_

protection_study_en.pdf, June 2004. [Online; accessed 12-05-2012].

[134] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming
real-time applications with SIGNAL. Proceedings of the IEEE, 79(9):1321–1336,
Sept. 1991.

http://ec.europa.eu/enterprise/sectors/automotive/files/pagesbackground/pedestrianprotection/pedestrian_protection_study_en.pdf
http://ec.europa.eu/enterprise/sectors/automotive/files/pagesbackground/pedestrianprotection/pedestrian_protection_study_en.pdf
http://ec.europa.eu/enterprise/sectors/automotive/files/pagesbackground/pedestrianprotection/pedestrian_protection_study_en.pdf

216 | Bibliography

[135] E. A. Lee. Computing needs time. Commun. ACM, 52:70–79, May 2009.

[136] E. A. Lee. Computing needs time. Technical Report UCB/EECS-2009-30,
EECS Department, University of California, Berkeley, Feb. 2009.

[137] H. Legler, B. Gehrke, O. Krawczyk, U. Schasse, C. Rammer, N. Leheyda, and
W. Sofka. Die Bedeutung der Automobilindustrie für die deutsche Volk-
swirtschaft im europäischen Kontext. ftp://ftp.zew.de/pub/zew-

docs/gutachten/AutomobEndBericht_final.pdf, Sept. 2009. [On-
line; accessed 26-03-2012].

[138] J. Y.-T. Leung and M. L. Merrill. A note on preemptive scheduling of periodic,
real-time tasks. Inf. Process. Lett., 11(3):115–118, 1980.

[139] LIN Steering Group. LIN - Local Interconnect Network. http://www.lin-
subbus.org/. [Online; accessed 07-09-2011].

[140] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[141] R. R. Lutz. Targeting safety-related errors during software requirements
analysis. In SIGSOFT FSE, pages 99–106, 1993.

[142] D. A. Mackall and U. States. Development and flight test experiences with a
flight-crucial digital control system [microform] / Dale A. Mackall. National
Aeronautics and Space Administration, Scientific and Technical Information
Division, Washington, DC, 1988.

[143] D. MacKenzie. Mechanizing proof: computing, risk, and trust. MIT Press,
Cambridge, MA, USA, 2001.

[144] W. H. Maisel, M. O. Sweeney, W. G. Stevenson, K. E. Ellison, and L. M.
Epstein. Recalls and safety alerts involving pacemakers and implantable
cardioverter-defibrillator generators. JAMA, 286(7):793–9, Aug. 2001.

[145] F. Maraninchi and Y. Rémond. Mode-automata: About modes and states for
reactive systems. In C. Hankin, editor, Programming Languages and Systems,
volume 1381 of Lecture Notes in Computer Science, pages 185–199. Springer
Berlin / Heidelberg, 1998. 10.1007/BFb0053571.

[146] F. Maraninchi and Y. Rémond. Mode-automata: a new domain-specific
construct for the development of safe critical systems. Science of Computer
Programming, 46(3):219–254, 2003.

ftp://ftp.zew.de/pub/zew-docs/gutachten/AutomobEndBericht_final.pdf
ftp://ftp.zew.de/pub/zew-docs/gutachten/AutomobEndBericht_final.pdf
http://www.lin-subbus.org/
http://www.lin-subbus.org/

Bibliography | 217

[147] T. Margaria and B. Steffen, editors. Leveraging Applications of Formal Methods,
Verification and Validation, Third International Symposium, ISoLA 2008, Porto
Sani, Greece, October 13-15, 2008. Proceedings, volume 17 of Communications in
Computer and Information Science. Springer, 2008.

[148] S. Matic, M. Goraczko, J. Liu, D. Lymberopoulos, B. Priyantha, and F. Zhao.
Resource modeling and scheduling for extensible embedded platforms.
Technical Report MSR-TR-2006-176, Microsoft Reasearch, One Microsoft
Way, Redmond, WA, USA, 2006.

[149] Mercer Management Consulting and HypoVereinsbank. Studie-
Automobiletechnologie 2010, Aug. 2001.

[150] A. Metzner and C. Herde. Rtsat–an optimal and efficient approach to the
task allocation problem in distributed architectures. In RTSS, pages 147–158,
2006.

[151] MIRA Ltd. MISRA-C:2004 Guidelines for the use of the C language in critical
systems. www.misra.org.uk, Oct. 2004.

[152] J. Mössinger. Software in automotive systems. IEEE Software, 27(2):92–94,
2010.

[153] MOST Cooperation. MOST – Media Oriented Systems Transport. http:
//www.mostcooperation.com/. [Online; accessed 07-09-2011].

[154] N. Navet and F. Simonot-Lion. The Automotive Embedded Systems Handbook.
Industrial Information Technology Series. Taylor & Francis / CRC Press,
2008.

[155] Object Management Group. UML Profile for Modeling and Analysis of Real-
Time and Embedded systems (MARTE). OMG document: ptc/07-08-04,
2007.

[156] Object Management Group. OMG Systems Modeling Language (OMG
SysML™). OMG document: formal/2010-06-01, 2010.

[157] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058, 1972.

[158] L. C. Paulson. ML for the working programmer (2nd ed.). Cambridge University
Press, New York, NY, USA, 1996.

www.misra.org.uk
http://www.mostcooperation.com/
http://www.mostcooperation.com/

218 | Bibliography

[159] L. Petrucci, J. Billington, L. M. Kristensen, and Z. H. Qureshi. Developing
a formal specification for the mission system of a maritime surveillance
aircraft. In ACSD ’03: Proceedings of the Third International Conference on
Application of Concurrency to System Design, pages 92–101, Washington, DC,
USA, June 2003. IEEE Computer Society.

[160] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE,
1977.

[161] M. Pouzet. Lucid Synchrone, version 3. Tutorial and reference manual. Université
Paris-Sud, LRI, Apr. 2006.

[162] A. Pretschner, M. Broy, I. H. Krüger, and T. Stauner. Software engineering
for automotive systems: A roadmap. In Future of Software Engineering (FOSE
’07), pages 55–71, 2007.

[163] C. Quigley, R. McMurran, R. Jones, and P. Faithfull. An investigation into
cost modelling for design of distributed automotive electrical architectures.
In Automotive Electronics, 2007 3rd Institution of Engineering and Technology
Conference on, pages 1–9, June 2007.

[164] Z. H. Qureshi. Formal modelling and analysis of mission-critical software
in military avionics systems. In SCS ’06: Proceedings of the eleventh Australian
workshop on Safety critical systems and software, pages 67–77, Darlinghurst,
Australia, Australia, 2006. Australian Computer Society, Inc.

[165] R. Racu, A. Hamann, R. Ernst, and K. Richter. Automotive software integra-
tion. In Proceedings of the 44th Design Automation Conference, DAC 2007, San
Diego, CA, USA, June 4-8, 2007, pages 545–550. IEEE, 2007.

[166] B. Ramesh, C. Stubbs, T. Powers, and M. Edwards. Requirements traceabil-
ity: Theory and practice. Annals of Software Engineering, 3:397–415, 1997.
10.1023/A:1018969401055.

[167] G. Reichart and H. Heinecke. Systemintegration - im Wechselspiel von
Architektur, Technologie und Prozess. In 10. Jahrestagung Euroforum, 2006.

[168] W. Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc., New
York, NY, USA, 1985.

[169] J. W. Reuter. Analysis and comparison of 3 code generation tools. In
Proceedings of the SAE 2004 World Congress, Detroit, MI, Mar. 2004. Society of
Automotive Engineers.

Bibliography | 219

[170] S. Rittmann. A methodology for modeling usage behavior of multi-functional
systems. PhD thesis, Institut für Informatik, Technische Universität München,
2009.

[171] J. Romberg. Synthesis of distributed systems from synchronous dataflow programs.
PhD thesis, Technische Universität München, 2006.

[172] J. Romberg and A. Bauer. Loose Synchronization of Event-Triggered Net-
works for Distribution of Synchronous Programs. In Proceedings of the 4th
ACM International Conference on Embedded Software (EMSOFT), pages 193–202,
Pisa, Italy, Sept. 2004. Association for Computing Machinery.

[173] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser, W. Trappe,
and I. Seskar. Security and privacy vulnerabilities of in-car wireless net-
works: A tire pressure monitoring system case study. In Proceedings of the
19th USENIX Security Symposium, Aug. 2010.

[174] RTCA DO-178B. Software considerations in airborne systems and equip-
ment certification, 1992.

[175] J. M. Rushby. Bus architectures for safety-critical embedded systems. In
EMSOFT ’01: Proceedings of the First International Workshop on Embedded
Software, pages 306–323, London, UK, 2001. Springer-Verlag.

[176] J. M. Rushby. Automated formal methods enter the mainstream. J. UCS,
13(5):650–660, 2007.

[177] A. Sangiovanni-Vincentelli and M. D. Natale. Embedded system design for
automotive applications. Computer, 40:42–51, 2007.

[178] B. Schätz. Model-based engineering of embedded control software. In MBD-
MOMPES ’06: Proceedings of the Fourth Workshop on Model-Based Development
of Computer-Based Systems and Third International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software, pages 53–62, Washington,
DC, USA, 2006. IEEE Computer Society.

[179] J. Schäuffele and T. Zurawka. Automotive Software Engineering. Vieweg +
Teubner, Wiesbaden, 4. edition, 2010.

[180] S. Schulz, J. W. Rozenblit, and K. Buchenrieder. Multilevel testing for design
verification of embedded systems. IEEE Design & Test of Computers, 19(2):60–
69, 2002.

220 | Bibliography

[181] SEI AADL Team. OSATE. An extensible Source AADL Tool Environment.
Technical report, Software Engineering Institute, Carnegie Mellon Univer-
sity, 2004.

[182] S. Sendall and W. Kozaczynski. Model transformation: The heart and soul
of model-driven software development. IEEE Software, 20(5):42–45, 2003.

[183] S. Sentilles, A. Pettersson, D. Nyström, T. Nolte, P. Pettersson, and
I. Crnkovic. Save-IDE—A tool for design, analysis and implementation
of component-based embedded systems. In ICSE, pages 607–610. IEEE,
2009.

[184] Standard ML. http://www.standardml.org/. [Online; accessed 12-05-
2012].

[185] Standish Group. Software Chaos, 1995.

[186] I. Stürmer, D. Weinberg, and M. Conrad. Overview of existing safeguarding
techniques for automatically generated code. SIGSOFT Softw. Eng. Notes,
30:1–6, May 2005.

[187] The EP and the Council of the EU. Directive 2005/66/EC: re-
lating to the use of frontal protection systems on motor vehi-
cles. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?

uri=OJ:L:2005:309:0037:0054:EN:PDF, 2005. [Online; accessed 06-
07-2009].

[188] The Mathwork Inc. Using Simulink, 2012. [Online; accessed 12-05-2012].

[189] D. D. Turner. Determining the optimal distributed electronic module solu-
tion of an automotive system while incorporating harness routing alterna-
tives in an electrical/electronic architecture tool environment. In SAE World
Congress & Exhibition. SAE International, Apr. 2008.

[190] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based
testing approaches. Software Testing, Verification and Reliability, 22(5):297–312,
2012.

[191] M. von der Beeck. Development of logical and technical architectures for
automotive systems. Software and System Modeling, 6(2):205–219, 2007.

http://www.standardml.org/
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:309:0037:0054:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:309:0037:0054:EN:PDF

Bibliography | 221

[192] Z. Wang, W. Haberl, S. Kugele, and M. Tautschnig. Automatic Generation
of SystemC Models from Component-based Designs for Early Design Val-
idation and Performance Analysis. In Proceedings of the 7th International
Workshop on Software and Performance, WOSP 2008, pages 23–26, Princeton,
NJ, USA, June 2008. ACM.

[193] Z. Wang, A. Herkersdorf, S. Merenda, and M. Tautschnig. A model driven
development approach for implementing reactive systems in hardware. In
FDL, pages 197–202. IEEE, 2008.

[194] Z. Wang, A. Sanchez, and A. Herkersdorf. Scisim: a software performance
estimation framework using source code instrumentation. In WOSP ’08:
Proceedings of the 7th international workshop on Software and performance, pages
33–42, New York, NY, USA, 2008. ACM.

[195] J. Weber. Automotive Development Processes. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[196] M. Weber and J. Weisbrod. Requirements engineering in automotive devel-
opment - experiences and challenges. In RE, pages 331–340. IEEE Computer
Society, 2002.

[197] D. Wild, A. Fleischmann, J. Hartmann, C. Pfaller, M. Rappl, and S. Rittmann.
An architecture-centric approach towards the construction of dependable
automotive software. In Proc. of the SAE 2006 World Congress, Detroit. Society
of Automotive Engineers, Apr. 2006.

[198] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. P.
Puschner, J. Staschulat, and P. Stenström. The worst-case execution-time
problem - overview of methods and survey of tools. ACM Trans. Embedded
Comput. Syst., 7(3), 2008.

[199] R. Wuyts and S. Ducasse. Non-functional requirements in a component
model for embedded systems. In SAVCBS 2001, 2001.

[200] D. Wybo and D. Putti. A qualitative analysis of automatic code generation
tools for automotive powertrain applications. In Proceedings of the 1999
IEEE International Symposium on Computer Aided Control System Design, pages
225–230, 1999.

222 | Bibliography

[201] Y. Yang, Q. Tan, Y. Xiao, F. Liu, and J. Yu. Transform BPEL workflow into
hierarchical CP-nets to make tool support for verification. In APWeb, pages
275–284, 2006.

[202] P. Zave. Classification of research efforts in requirements engineering. ACM
Comput. Surv., 29(4):315–321, 1997.

[203] P. Zave. An experiment in feature engineering, pages 353–377. Springer-Verlag,
New York, NY, USA, 2003.

[204] P. Zave and R. T. Yeh. Executable requirements for embedded systems. In
ICSE, pages 295–304, 1981.

[205] W. Zheng, Q. Zhu, M. D. Natale, and A. S. Vincentelli. Definition of task
allocation and priority assignment in hard real-time distributed systems.
In RTSS ’07: Proceedings of the 28th IEEE International Real-Time Systems
Symposium, pages 161–170, Washington, DC, USA, 2007. IEEE Computer
Society.

[206] D. Zowghi and V. Gervasi. The Three Cs of Requirements: Consistency,
Completeness, and Correctness. In Proceedings of 8th International Workshop
on Requirements Engineering: Foundation for Software Quality, (REFSQ’02),
2002.

LIST OF FIGURES

1.1. Multi-dimensional explosion of complexity 2
1.3. Proportion of electronics-incurred costs 4
1.4. E/E value of software and hardware 5
1.5. Structure of this thesis . 9

2.1. Structure of a control system . 15
2.2. Discrete core of COLA systems . 15
2.3. Worst-case execution time (WCET) 16
2.4. The Benz Patent-Motorwagen Nr. 3 of 1888 18
2.5. Milestones in automotive E/E history 19
2.6. Car recalls in Germany between 1998 and 2009 22
2.7. Reasons and evolution of car breakdowns in Germany 23
2.8. Characteristic of the automotive domain 24
2.9. Worldwide automobile production per year 25
2.10. Typical automotive domains . 28
2.11. Example of a seat module . 31
2.12. Different AUTOSAR layers . 34
2.13. Rapid increase of the number of ECUs 36
2.14. Feature interaction example . 37

3.1. Hierarchy of abstraction levels . 44
3.2. Traceability links between artefacts 45
3.3. Tool integration gap . 49
3.4. Architecture of the COLA engineering environment 52

4.1. Examples showing the FODA and COLA’s feature notation 58
4.2. Hierarchical decomposition of COLA models 62
4.3. Conceptual class diagram of COLA’s Hardware Architecture . . . 62

224 | List of Figures

4.4. Exemplary clustering of a Logical Architecture 63
4.5. COLA’s Technical Architecture . 65
4.6. Different levels of abstraction in the COLA automotive approach . 66
4.7. Graphical notation of the basic arithmetic operators 69
4.8. Graphical notation of the basic comparison operators 69
4.9. IPO-model of high-level COLA design 70
4.10. COLA automaton modelling a data-flow if 71
4.11. Operating modes modelled using different formalisms 72
4.12. Exemplary hierarchical decomposition using operating modes . . . 73
4.13. Exemplary textual COLA syntax . 74
4.14. Exemplary Bessel filter diagram . 76
4.15. Exemplary input and output signals of the Bessel filter 77
4.16. Floating body in a magnetic field . 78
4.17. PID controller with a controlled system 78
4.18. COLA deployment steps . 80

5.1. The verification-driven engineering helicoidal life cycle 86
5.2. SALT to Büchi automata transformation steps 90
5.3. Conjunction of the presented SALT specifications 91
5.4. Different fields of application of COLA automata 93
5.5. Simultaneously enabled automaton transitions 94
5.6. Deterministic embedded automaton 95
5.7. Backwards-search to restrict over-approximation 96
5.8. Pruning the search space by deriving new predicates 96
5.9. Verification result visualised within the COLA-IDE 100
5.10. CPN for a COLA delay block initialised with 1 105
5.11. Graphical models of a functional block in COLA and CPN notation 105
5.12. Exemplary COLA network . 107
5.13. Exemplary hierarchical CPN model 108
5.14. High-level automaton in COLA and CPN notation 110
5.15. Screenshot of the COLA simulator 112
5.16. CPN model of the running example 114

6.1. Containment of a scope of services 122
6.2. Differentiation between customer and system requirements 123
6.3. Generic document structure . 124
6.4. Context of the scope of services of ‘LR SmartOpener’ 125
6.5. Specification document generation and visualisation process 126
6.6. Exemplary structure and layout of the generated document 128

List of Figures | 225

6.7. Semantically tangible requirements specification document 134

7.1. Systems compiler . 136
7.2. Scheduling cycle . 137
7.3. System Architecture . 138
7.4. Separation of architectural and resource model 140
7.5. Classification of non-functional requirements 142
7.6. Terminology for periodic scheduling 148
7.7. Scheduling taxonomy . 148
7.8. Possibilities for data-flow in COLA networks 151
7.9. Cluster dependency graph of the ACC case study 152
7.10. Middleware API . 154
7.11. Reduced cluster dependency graph 156
7.12. Exemplary run of Algorithm 7 . 159
7.13. Multi-rate scheduling example . 163
7.14. Determination of initial bounds . 164
7.15. Convergence of b for every operating mode 168
7.16. Visualisation of the number of search iterations 169
7.17. Fault tolerance through re-allocation of clusters 171
7.18. Exemplary re-allocation of clusters 174
7.19. COLA-IDE deployment perspective 180

8.1. Focused activities of the case studies 182
8.2. Simulation of the ACC behaviour . 185
8.3. Hardware topology of the LEGO Mindstorms ACC case study . . . 186
8.4. LEGO Mindstorms ACC . 186
8.5. Operating modes of the multi-ECU APS case study 187
8.6. APS functionality in detail . 188
8.7. COLA simulation view of the APS case study 189
8.8. Hardware Topology of the APS case study 189
8.9. Image of the APS case study with schedule plan 192
8.10. Feature Architecture of the CHO example 193
8.11. Chain of effects for the feature ‘no key’ 195

9.1. Extension of the levels of abstraction 200

A.1. PID controller COLA model . 239
A.2. PID controller with three different parameter sets 240

LIST OF TABLES

2.1. Characteristics of different automotive domains 29

3.1. Commonly used COTS tools . 51

5.1. Identifier used within the exemplary SALT formulae 88

7.1. Attributes of clusters and ECUs used for the allocation 141
7.2. Comparison between static and dynamic hard real-time scheduling 150
7.3. Multi-rate periodic cluster scheduling 163

8.1. Components of the APS’s Hardware Topology 190

LIST OF ALGORITHMS

1. Checks whether a given automaton A is deterministic 98
2. Translation schema for functional blocks 106
3. Translation schema for networks . 109

4. Translation schema for automata . 116
5. COLA2CPN translation algorithm . 117
6. Generates a requirements specification document 126
-. Procedure descend(Unit u) performs a DFS 127

7. Computation of the set of schedule sets S 158
8. Calculates a solution for the optimal scheduling problem S ∗ 167
9. Redundant allocation of safety-critical clusters 173

GLOSSARY

A

ACC Short for Adaptive Cruise Control (ACC). The ACC system is an ad-
vanced driver assistance system, which automatically controls the
speed of a vehicle by holding a safe distance to a vehicle driving ahead
at a specified velocity., p. 14.

APS Short for Autonomous Parking Assistant (APS). In German ‘Park-
manöver Assistent (PMA)’. It is a advanced driver assistance systems
for automatic parking., p. 185.

ASIL Short for Automotive Safety Integrity Level (ASIL). ISO 26262 provides
an automotive-specific risk-based approach for determining risk classes
(ASIL levels). Depending on the severity (S), exposure (E), and con-
trollability (C), the respective ASIL level can be looked-up in a table.,
p. 33.

Automotive SPICE Automotive SPICE is an automotive domain-specific vari-
ant of the international standard ISO/IEC 15504 (SPICE). It is aimed at
benchmarking the development processes of ECU suppliers., p. 45.

AUTOSAR AUTOSAR is a development partnership between all major auto-
mobile, electronic control unit manufacturers, and engineering tool
providers. The partnership is aimed at facilitating software exchange
between different ECUs. AUTOSAR provides a uniform software ar-
chitecture with standardised description and configuration formats.,
p. 34.

AUTOSIG Short for Automotive Special Interest Group (AUTOSIG). In AU-
TOSIG, vendors like AUDI, BMW, Daimler, Porsche, Volkswagen, Fiat,

232 | GLOSSARY

Ford, and others are represented., p. 45.

B

BrickOS BrickOS is an alternative operating system for the LEGO Mindstorms
RCX micro-computer. Applications for it can be written in the program-
ming languages C and C++., p. 184.

C

CAN Short for Controller Area Network (CAN). CAN is a standardised
vehicle bus originally developed by Robert Bosch GmbH in 1983., p. 30.

D

DO-178B Software Considerations in Airborne Systems and Equipment Certi-
fication is a guidance for software development published by RTCA,
Incorporated. The standard was developed by RTCA and EUROCAE.
The FAA accepts use of DO-178B as a means of certifying software in
avionics., p. 19.

DSL Short for Domain-Specific Language (DSL). A domain-specific language
(DSL) is a programming language dedicated to a specific problem
domain such as COLA is a DSL for the automotive domain., p. 81.

E

ECU Short for Electronic Control Unit (ECU). An ECU is a generic term in
the automotive domain. It is used to talk about embedded control
systems., p. 2.

EDF Short for Earliest Deadline First (EDF). It assigns priorities dynamically
according to the deadline: a task receives the highest priority if its
deadline is the earliest amongst the set of all ready tasks., p. 149.

ESC Short for Electronic Stability Control (ESC or ESP). This system im-
proves the vehicle’s stability by detecting loss of steering control and
selective wheel breaking., p. 32.

GLOSSARY | 233

F

feature interaction A feature interaction is some way in which a feature or
features modify or influence another feature in defining the overall
system behaviour [203]., p. 37.

FlexRay The FlexRay bus is a serial, deterministic, and fault-tolerant automotive
bus-system developed by the FlexRay Consortium. Main design goals
were to be faster and more reliable than CAN and TTP., p. 33.

G

GENIVI Alliance The GENIVI Alliance is a non-profit consortium consisting
of major OEMs, semiconductor and device manufacturer, as well as
software companies. There goal is to provide a range of compliance
statements, and a compliance programme for GENIVI certification for
automotive infotainment systems as well as a Linux-based open source
reference platform including operating system and middleware., p. 34.

H

HMI Short for Human-Machine Interface (HMI). It is the space where inter-
action between humans and machines occurs., p. 14.

I

ISO 26262 The ISO 26262 standard ‘Road vehicles - Functional safety’ is an
adaptation of the Functional Safety standard IEC 61508 for automotive
E/E systems., p. 33.

L

LEGO Mindstorms The LEGO Mindstorms series provides a programmable
Brick computer as controller, where sensors and actuators can be at-
tached to build programmable robots. Moreover, a visual programming
environment is provided., p. 184.

LIN Short for Local Interconnect Network (LIN). The LIN bus is a low-cost
serial automotive networking bus-system. Its aim is to connect intelli-

234 | GLOSSARY

gent sensors and actuator devices to the remaining E/E architecture.,
p. 30.

M

Model-driven development (MDD) Model-driven development (MDD) is a
software development methodology, which focuses on the creation and
exploration of models oftentimes in the context of specific domains.,
p. 41.

MOST Short for Media Oriented Systems Transport (MOST). MOST is a high-
speed multimedia network usually used for infotainment systems.,
p. 30.

N

NFR Short for Non-Functional Requirements (NFR). NFRs (or product qual-
ities) are defined in the international standard for the evaluation of
software quality ISO/IEC 9126 Software engineering., p. 139.

O

OEM Short for Original Equipment Manufacturer (OEM)., p. 3.

P

PDM Short for Product Data Model (PDM)., p. 48.

R

real-time system A real-time system (RTS) is a computing system underlying
specific real-time constraints. Its correctness does not only depend on
the functional or logical correctness, but also on its timely execution.,
p. 16.

RTOS Short for Real-Time Operating System, p. 138.

GLOSSARY | 235

S

SEooC Short for Safety Element out of Context (SEooC). When developing
generic components without a concrete application, no safety goals are
defined, yet. Those components can be developed as so-called SEooC
referring to ISO 26262 by making and documenting assumptions., p. 38.

T

TT CAN Short for Time-Triggered CAN (TT CAN)., p. 33.

W

WCET Short for Worst-Case Execution Time (WCET). The WCET is the maxi-
mum length a computational task could take when it is executed on a
specific hardware platform., p. 16.

APPENDIX

A

PID Controller

This chapter gives details on the PID controller modelled in COLA (cf. Sec-
tion 4.3.4). In Section A.1 the COLA model is given, and Section A.2 shows
the simulation results.

A.1. COLA model

This section presents details on the PID controller’s COLA model. Figure A.1a
gives the high-level view of the PID controller model. Basically the controller’s
functionality is encapsulated in the COLA network ‘PID controller’. The constants
are placed on the left side of the ‘PID-Network’. They are used to parameterise
the controller using dT (sample rate), Kp, Ki, and Kd—these are the proportional,
integral, and derivative gains—, and finally the setpoint is specified. The delay
block ‘pre’ feeds back the new value y(t) to compute the error, i. e., the difference
between the desired value und the current value. Figure A.1b gives details on the
‘PID-controller’ network. There, y(t) is computed by adding the proportional, the
integral, and the derivative ratios. Each of them is amplified by the specified input
gains. The implementations for the ‘integral’ and ‘derivative’ networks are given
in the Figures A.1c and A.1d.

A.2. Simulation with different parameter sets

In Figure A.2 the valuation of the modelled controller is depicted with three
different input parameter sets. Each time, the setpoint and the sampling rate is set

238 | A PID CONTROLLER

to 1.0 and 0.5, respectively. The gains Ki (integral) and Kd (derivative) are varied.
The values are gained using the COLA-IDE’s simulation capabilities.

A.2 Simulation with different parameter sets | 239

(a) PID network

(b) PID controller

(c) Integral

(d) Derivative

Figure A.1.: These figures give details of the PID controller modelled in COLA. Figure (a)
depicts the high-level view of the model. (b) shows the PID controller as a
glass box. Figures (c) and (d) show the implementation of the integral and
the derivative components.

240 | A PID CONTROLLER

0

0,20

0,40

0,60

0,80

1,00

1,20

0 25 50 75 100

Kp=0.06, Ki=0.5, Kd=0.2
Kp=0.06, Ki=0.5, Kd=0.1
Kp=0.06, Ki=0.1, Kd=0.1
Set point

Figure A.2.: PID controller with three different parameter sets.

	Introduction
	Initial Situation
	Approach
	Contributions of this Thesis
	Outline of this Thesis

	Background
	Embedded Systems: An Overview
	Historical Review
	Classical Mechanical Engineering
	From Revolution to Disenchantment of Software

	Automotive Industry Characteristics
	Automotive Industry
	Automotive Domains

	Current and Future Challenges
	Heterogeneity
	Clash of Cultures
	Control the Complexity
	Move from E/E Component-driven Development Towards Function- and Mode-driven Development

	Seamless Model-Driven Automotive System Development
	Introduction
	Separation of Concerns Through Abstraction and Modularisation
	Theoretic Foundation: A Fertile Soil for Formal Methods
	From Isolated Tools to an Integrated Authoring Environment
	Daily Practice
	Solution

	Summary

	The COLA Automotive Approach
	Introduction
	Architectural Levels
	Feature Architecture
	Logical Architecture
	Technical Architecture
	Summary

	COLA—The Component Language
	Basic Concepts
	Operating Modes
	Syntax and Semantics of COLA
	Examples from Control Theory

	Deployment Process
	Related Work
	Modelling Along Different Levels of Abstraction
	Behavioural Modelling

	Model Analysis
	Introduction
	Requirements Analysis
	Introduction
	Realisation
	Discussion

	Deterministic Models
	Introduction
	Problem
	Realisation

	COLA Model Analysis via a Translation to Coloured Petri Nets
	Introduction to Coloured Petri Nets
	Translation Schema
	Translation Algorithm
	Example
	Related Work
	Summary

	Generation of Requirements Specification Documents
	Introduction
	Document Structure
	Differentiation between Customer- and System Requirements
	Structuring

	Realisation
	Semantically Tangible Requirements Documents
	Integration into the Context of IEEE Std 830-1998
	Summary

	Deployment
	Introduction
	Allocation
	Notation
	Constraints
	Realisation

	Scheduling
	Terminology
	A Taxonomy of Real-Time Scheduling Algorithms
	Dependency Analysis
	Constraint System
	Realisation
	Complexity Analysis

	Fault Tolerance
	Fault Hypothesis
	Adaptions

	Related Work
	Summary

	Case Studies
	Adaptive Cruise Control
	Functional Description
	Hardware Topology and Execution Platform
	Summary

	Autonomous Parking System
	Functional Description
	Hardware Topology
	Execution Platform
	Summary

	Comfort Hatchback Opener
	Functional Description
	Requirements Specification Documents
	Chain of Effects
	Summary

	Summary

	Summary and Outlook
	Summary
	Outlook

	Bibliography
	List of Figures
	List of Algorithms
	List of Tables
	Glossary
	PID Controller
	COLA model
	Simulation with different parameter sets

