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To my grandmother, who, at the age of 102, passed away during the last
days of writing this thesis





Consider again that dot. That’s here. That’s home. That’s us. On it everyone
you love, everyone you know, everyone you ever heard of, every human being
who ever was, lived out their lives. The aggregate of our joy and suffering, thou-
sands of confident religions, ideologies, and economic doctrines, every hunter and
forager, every hero and coward, every creator and destroyer of civilization, every
king and peasant, every young couple in love, every mother and father, hopeful
child, inventor and explorer, every teacher of morals, every corrupt politician, ev-
ery "superstar", every "supreme leader", every saint and sinner in the history of
our species lived there – on a mote of dust suspended in a sunbeam.

Earth, photographed by NASA’s Voyager 1, from a dis-
tance of 6 billion kilometers

The earth is a very small
stage in a vast cosmic arena.
Think of the rivers of blood
spilled by all those generals
and emperors so that in glory
and in triumph they could be-
come the momentary masters
of a fraction of a dot. Think
of the endless cruelties vis-
ited by the inhabitants of one
corner of the dot on scarcely
distinguishable inhabitants of
some other corner of the dot.
How frequent their misunder-
standings, how eager they are to kill one another, how fervent their hatreds.

Our posturings, our imagined self-importance, the delusion that we have some
privileged position in the universe, are challenged by this point of pale light. Our
planet is a lonely speck in the great enveloping cosmic dark. In our obscurity – in
all this vastness – there is no hint that help will come from elsewhere to save us
from ourselves.

The Earth is the only world known so far to harbor life. There is nowhere else,
at least in the near future, to which our species could migrate. Visit, yes. Settle,
not yet. Like it or not, for the moment the Earth is where we make our stand.

It’s been said that astronomy is a humbling and character-building experience.
To my mind, there is perhaps no better demonstration of the folly of human con-
ceits than this distant image of our tiny world. To me, it underscores our respon-
sibility to deal more kindly and compassionately with one another and to preserve
and cherish that pale blue dot, the only home we’ve ever known.

Carl Sagan, Pale Blue Dot: A Vision of the Human Future in Space
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Abstract

Thoroughly understanding mixing processes is crucial in order to assess the per-
formance of a wide variety of chemical reaction systems, ranging from internal
combustion engines to biochemical reactors. While the Direct Numerical Simula-
tion, or DNS, is a numerical tool that provides deep insight into the phenomenon
of turbulent mixing, the astronomical computational requirements of DNS are pro-
hibitive for large scale technical application. In the present work, a model for
Large-Eddy Simulation, or LES, was devised, which can accurately predict mix-
ing processes by employing multiple, correlated mixture fractions. The input for
the mixing models themselves are first and second order statistical moments of the
distributions. Transport equations for these moments have been formulated, along
with the models required for closure.
DNS and LES for a co-annular jet-in-crossflow configuration have been executed
in order to assess the performance of the model. The quality indicator of the model
performance is a reaction rate using an Arrhenius assumption. For the Reynolds
numbers accessible by DNS, it is shown that the devised model predicts these
reaction rates with high accuracy.
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1 Introduction

This research was performed at the Lehrstuhl für Thermodynamik, TU München
in Germany, financed by the Deutsche Forschungsgesellschaft within the Schwer-
punktprogramm SPP1141, running from 2003 to 2009. The objective of SPP1141
was to further the understanding of mixing processes on a theoretical level by
combining experimental research with the development and application of compu-
tational methods. The aim of project PO710/4 of SPP1141, on which this thesis is
based, was to develop and validate an LES model to simulate turbulent mixing of
three streams, so called "ternary mixing" processes. Validation was planned within
the SPP1141 versus both DNS data and experimental results. The method pre-
sented herein has previously been successfully applied in the Reynolds-Averaged
Navier-Stokes (RANS) context by Brandt et al., 2003 and is now adapted for ap-
plication in LES.

The initial problem setting was the SEV 1 burner of the Alstom GT26 stationary
gas turbine (see figure 1.1 for a schematic). In this particular case, the hot exhaust
from the high-pressure turbine is fed into a second burner, called the SEV, where
additional fuel is consumed. In order for the fuel to not ignite right at the injection
point due to the high temperatures of the first burner, it is shielded from the ex-
haust gases by a mantle of cooling air as schematically shown in figure 1.2. This
configuration is an example of "ternary mixing", which occurs in a wide variety of
technical applications.

1.1 Modeling of Mixing Processes

Mixing processes play a crucial role in understanding reactive systems, which oc-
cur both in nature and technical applications. As a chemical reaction can only
take place when the reactants are in molecular contact so that the electron hulls of
the atoms or molecules in question can interact, understanding the mixing process
will enable assessing and optimizing the reaction system itself. In many cases,

1 The first burner is called the EV burner, for EnVironmental, while the second burner after the high
pressure turbine is called SEV for Sequential EnVironmental.
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1 Introduction

Figure 1.1: Schematic of the GT26 gas turbine, main flow is from right to left in this case

Figure 1.2: Schematic of a co-annular jet in cross flow. Main flow is from left to right. Left
image displays the central jet, right image shows the annular jet

2



1.1 Modeling of Mixing Processes

the mixing takes place in a turbulent regime, where a large number of eddies of
various sizes exist throughout the flow field. The interaction between those eddies
and the concentration fields of the flow largely determines the parameters of the
mixing process, such as mixing quality and homogeneity. Within the SPP1141,
it was noted that assessing the mixing quality itself is a challenging task. While
beyond the scope of this thesis, a short overview of the findings can be found in
appendix B.

Both turbulence and mixing are statistical processes. In this context variables
are often decomposed into a mean variable and a fluctuation. As the reaction rate
depends on the concentrations and the temperature in a highly non-linear fashion,
the mean reaction rate of computational cell is not equal to the reaction rate of the
mean values for concentrations and the temperature. In other words, in order to
accurately compute the reaction rate, knowledge of the fluctuations of the variables
is needed.

Methods using probability density functions or PDF methods lend themselves
to describe such statistical processes. Here, a probability function determines the
likelihood that a flow variable takes a certain value. One of the most success-
ful group of methods for describing turbulent mixing processes are Monte-Carlo
based transported PDF methods, where the mixing state of a computational cell
is represented by a large number of mass-less particles within the cell, which are
carrying properties that describe the mixing state. These particles are convected
by the velocity field. For mixing on small scales, mixing models are employed,
which describe the interaction (i.e. molecular mixing) of the particles. One of
the advantages of this scheme is the intrinsic closure of the chemical source term.
One simply has to sum up the reaction rate that the mixing state of each particle
provides to obtain the reaction rate within the computational cell. Modeling the
reaction rate is the prime reason why a precise description of the mixing state is
required.

However, for this method to be statistically stable, each cell requires a large
number of particles. This number then multiplies by the number of cells, yielding
an enormous amount of particles, which often places transported PDF methods
outside the realm of computational cost-effectiveness for technical applications.

3



1 Introduction

1.1.1 Joint Presumed Discrete Distributions - a Novel Approach to
Describing Mixing Processes

The present work attempts to model the unclosed terms of the sub-grid scale scalar
unmixedness by using a novel approach. It combines the advantages of transported
PDF and presumed PDF methods, which give the distribution a predetermined
shape, characterized, for instance, by its moments. The model in this work ap-
proximates the sub-grid scale distribution (filtered density functions, FDFs) of the
composition using particle ensembles. Mixing models, as known from transported
PDF methods, are used to generate the distributions. However, in order to ease
the computational cost of the simulation, the large number of particles within the
domain are removed. In their stead, transport equations for the statistical moments
of the distribution are solved. The mixing model then starts with a completely
unmixed distribution and produces a distribution of given first and second order
moments, which in turn are determined by the transport equations.

It has been shown that a distribution can be completely characterized by its (in-
finite) number of statistical moments. As this is impractical, only the first two
moments are solved in this work using transport equations. Here, the first-order
moments correspond to the means of the distribution, while the second-order mo-
ments are the variances and the covariances of the distribution. As particles can
convey an arbitrary number of properties, this approach lends itself well to sys-
tems that need multiple mixture fractions for representation. These multi-variate
distributions are then referred to as joint presumed discrete distributions or jPDD.
These distributions are characterized using their first and second order moments,
which represent the means and variances of the distribution. If the distribution con-
tains values for multiple mixture fractions, the second order moments do not only
represent the variance of any of the mixture fractions, but also the co-variances or
correlations between those fractions. As such, a derivation of a transport equation
for the co-variance is needed, which then contains the unclosed term of the scalar
cross-dissipation rate. Transport equations for these moments are used that do not
assume any equilibrium between the production and dissipation of sub-grid scalar
variance. Thus, models for the sub-grid scalar dissipation rate and the above-
mentioned scalar cross dissipation rate have to be employed, unless one wants to
go the extra mile of deriving a separate transport equation for this quantity, which
would lead to yet another set of unclosed terms, which would give rise to new
modeling problems [Fox03]. Hence, the new computational procedure developed
in this thesis is as follows (see also figure 1.3 for a graphical representation).

1. Before the actual simulation, in a preprocessing step (right side):

4



1.1 Modeling of Mixing Processes

Figure 1.3: Work flow diagram of the basic idea in this thesis

a) The mixing model generates distributions, starting from initial distri-
butions, which cover the whole required parameter space

b) A reaction scheme is applied to these distributions, obtaining a reac-
tion rate that corresponds to each set of moments

c) The reaction rate is placed into a table, with the moments as parame-
ters.

2. During the simulation (left side), the solver performs the following steps:

a) Compute flow variables (pressure, density and temperature if needed)

b) Solve the transport equations for the statistical moments

c) Extract the reaction rate that corresponds to the moments found in the
cell from the table

d) Adjust all variables that are influenced by the reaction rate

As the table only contains the statistical moments as parameters, it can be reused
for different simulations, provided these employ the same reactive systems.

5



1 Introduction

In order not to populate large parts of the table that will never be used in a
computation, the table can as well be populated in situ. In this scheme, when
the simulation commences, all cells of the table are empty and the corresponding
reaction rate of a cell will be computed on first use, which is a time-consuming
computation. All subsequent accesses to the same cell of the table then reduce to
a simple look-up.

It can therefore be assumed that this approach will be slightly less accurate than
traditional transported PDF methods, albeit at considerably reduced computational
effort. This will enable this new method to provide computational solutions to
problems of applied interest. It is also expected to produce more reliable results
than existing presumed PDF methods.

1.2 CFD Simulations using LES Modeling

Computational Fluid Dynamics, or CFD, are becoming a more and more important
tool for engineers and scientists. CFD is used not only for the design of technical
applications but also for the study of natural phenomena ranging from climate
simulations down to flow simulations of the blood in organisms. Three major
factors contribute to this development.

First of all, both the computational resources and the available memory in to-
day’s computers (ranging from notebooks to supercomputers) continue to grow at
an exponential pace. Thus it is possible to compute more complex problems with
fewer simplifications as well as make parametric studies with a large number of
parameters. Meuer [Meu08] shows that since 1993, the pure computational power
of the fastest supercomputers in the world has grown by a factor of almost 20000
and the computational power of the largest supercomputers at a certain point in
time is available in notebooks approximately 18 years later. This allows, on the
one hand, to perform more and more computationally challenging simulations on
very large computers while simpler simulations can today be performed with very
limited effort from a computing point of view, compared to what was necessary
only a few years ago.

A second point why CFD is more widely used is the fact that for optimization
processes or parametric studies, it is both costly and complex to construct a vast
number of prototypes that are needed to perform experiments on. While the fully
automatic optimization of flow systems using, for instance, genetic algorithms is

6



1.2 CFD Simulations using LES Modeling

still in its infancy, it is apparent that modifying the geometric or flow parame-
ters in a simulation most often requires much less time and effort compared to an
experimental setup that would have to be modified over and over.

The third factor is that CFD allows access to any physical parameter at any given
space-time coordinate within the computational domain. Experimental setups are
usually limited in the number of parameters they can determine at a given time and
can usually only obtain measurements for a limited geometrical region.

However, as shown in detail later, simulating all scales of turbulent phenomena
in large technical flow systems, like airborne or stationary gas turbines, remains a
formidable or, in many cases today, an impossible task. As the flow is described
using non-linear partial differential equations, for which no general analytical so-
lutions are known2 , numerical solution methods need to be applied. As turbu-
lence is an inherently three-dimensional phenomenon, the entire domain that is to
be simulated needs to be divided into a large number of domains in each physi-
cal dimension, typically referred to as computational cells. Also turbulence has
transient properties that require the computation to run over a large number of
(typically very small) time steps.

Whenever all scales of the turbulence are simulated directly, the method is re-
ferred to as Direct Numerical Simulation or DNS. While this is from a physical
point of view the least challenging and most desirable method, its use is limited
using current-generation computers.

In order to keep the computational effort of the simulation at bay, the number of
cells needs to be reduced, which is the main goal of the Large-Eddy-Simulation or
LES. It is generally assumed that the geometry of a flow system affects large scale
of the turbulence, while the smaller scales are more homogeneous and isotropic
in nature. LES makes use of this fact: Large scales, which are not only more
geometry-dependent but also carry most of the turbulent energy, are resolved by
the grid (i.e. simulated directly), while the smaller scales (carrying less energy
and being more isotropic) are modeled by one of the many available approaches
mentioned in chapter 2.

As such the LES is more flexible in approach than the computationally least
expensive method: The Reynolds-Averaged Navier-Stokes or RANS simulations. In
RANS, only the mean flow field is computed directly, and all scales of turbulence

2 Note that there are several academic corner-cases where an analytical solution to the describing equa-
tions exist. While those cases are of no importance for technical applications, they remain an important
tool of validating the solvers of such differential equation systems.
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1 Introduction

are modeled. While this reduces the number of cells that are required for any given
configuration, it places a very heavy burden on turbulence modeling. Any model
used in RANS requires not only the correct display of the small, isotropic scales
(like in LES), but also needs to model non-isotropic turbulent structures induced
by the geometric configuration of the flow. It is apparent that the applicability of
RANS is limited if the model cannot capture the turbulence correctly.

1.3 Structure of the Thesis

The first part of the thesis, chapter 2, presents the fundamentals required to de-
scribe turbulent mixing and will also show an introduction to reactive systems.
After deriving the fundamental Navier-Stokes equations, which can be used to
describe single phase turbulent flows in almost any case, the phenomenon of tur-
bulence, which is a result of the nonlinearity of the Navier-Stokes equations, is
explained. Then methods that describe the chemical state of a computational cell
are shown. A final section of this chapter will present and discuss the previously
mentioned computational methods (RANS, LES and DNS) to solve the Navier-
Stokes Equations. Some standard models that are used for LES approaches will be
shown as well.

In the second part, chapter 3, will then outline the mixing model that has been
developed in the course of this thesis. Since FDFs can be represented by ensem-
bles of particles without complex analytical descriptions, ensembles with prede-
termined first and second order moments are generated using mixing models. This
is done by starting from a state of maximum unmixedness for a given set of means.
First, the fundamentals of mixing models are discussed, then specific models taken
from literature and the required changes for ternary mixing are shown.

Chapter 4 will cover probability density function or PDF methods. These meth-
ods are used to describe the state of a specific random variable within a cell. It
will be seen in the chapter that a PDF can not only be an analytical function (i.e.
described by a formula) but can also be represented by a statistically significant
number of particles (i.e. described by an ensemble). As PDF methods have been
developed for the RANS context, some differences to the LES implementation
will be described. In LES, density functions usually describe the unresolved state
of a filtered variable and are hence called Filtered Density Functions or FDFs.
As the mixing model needs statistical moments of the distributions that are to be
generated, transport equations for those moments are derived. Also, it is shown

8



1.3 Structure of the Thesis

that filtering these transport equations for LES yields unclosed terms. Models and
methods for closing these terms are also displayed.

Chapter 5 then shows the validation of the model versus DNS data. One part of
that chapter shall describe the numerical setup and data handling of the DNS data,
while the second part compares the model and DNS data directly, while 6 will give
a short summary, conclusion and ideas for future projects that can build upon this
work.
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2 Theory of Turbulent Flows

This chapter shall summarize the theory of turbulent flows. Before the concept
of Large-Eddy-Simulation is introduced, the fundamental laws which lead to the
Navier-Stokes equations are presented in section 2.1. The phenomenon and the-
ory of turbulence is covered in section 2.2. Section 2.3 then explains the basics
of turbulent mixing and introduces the concept of mixture and mass fractions to
simulate multi-species flows. The next section of this chapter, 2.4, then gives an
overview of turbulent reacting flows and the closure of the reaction term, while the
final section 2.5 then shows the three different strategies that exist for solving fluid
phenomena.

2.1 Fundamentals of Fluid Mechanics

Throughout this thesis, single-phase mixtures of gas fluids are used. This first
section derives the fundamental laws to describe such flows.

2.1.1 Equations of Conservation

Deriving the governing equations for single phase fluids commences by using the
fundamental conservation laws. There are a number of exact conservation laws,
three of which are required here for the derivation:

• Conservation of mass-energy. As no nuclear reactions are present, the ap-
proximate conservation laws of mass and energy can be regarded separately

• Conservation of linear momentum

• Conservation of angular momentum

Using these laws, a first set of equations is obtained, which possesses more un-
knowns than equations. The subsequent sections then introduce the additional
laws required for the closure of the set. The conservation laws are set up on a
volume element as depicted in figure 2.1.

11



2 Theory of Turbulent Flows

Figure 2.1: Volume element of a fluid with the required physical quantities to describe the
flow
V: volume of the element
S: surface of the element
ρ: density
e: internal energy
w: heat production
σi: shear stress
p: pressure
ni: normal vector
qi: heat flux vector
ui: velocity vector
gi: volume force

12



2.1 Fundamentals of Fluid Mechanics

2.1.1.1 Conservation of Mass

The conservation of mass states that the mass of a volume of material remains
constant, thus, in integral form

d
dt

∫
V

ρdV = 0. (2.1)

If Reynolds’ Transport Theorem [Lea07]

d
dt

∫
V

Ψ(xi, t)dV =
∫
V

∂Ψ(xi, t)
∂ t

dV +
∮
S

Ψ(xi, t)
dxi

dt
·dS (2.2)

and the Divergence Theorem [MV89]∫
V

dΨi

dxi
dV =

∫
S

Ψ ·nidS, (2.3)

with Ψ being an arbitrary property of the flow, are applied to equation (2.1), the
integral form of the conservation of mass takes the form of

d
dt

∫
V

ρdV =
∫
V

(
∂ρ

∂ t
+

∂ρui

∂x j

)
dV = 0. (2.4)

Here, ui is the velocity of the fluid in all three spacial dimensions.

As equation (2.4) must be satisfied for all volumes, the integrand
(

∂ρ

∂ t +
∂ρui
∂x j

)
needs to be zero in all cases, yielding the conservation law of mass in differential
form

∂ρ

∂ t
+

∂ρui

∂xi
= 0. (2.5)

This Eulerian form of the equation is based on the control volume scheme. A
second form, called the convective form or Lagrangian form tracks units of fluids
along their paths of moments. As most CFD codes employ the control volume
approach, only that will be used throughout this thesis.

13



2 Theory of Turbulent Flows

2.1.1.2 Conservation of Momentum

According to Newton’s second law of motion, the change of momentum of a con-
trol volume equals the sum of all applied forces [Bat67]

d
dt

∫
V

ρuidV =
∮
S

(−pni +σi)dS+
∫
V

ρgidV . (2.6)

The right hand side of equation (2.6) contains three kinds of forces, the surface
forces in the first integral, and the volumetric forces in the second integral:

• gi is the change in momentum due to volumetric forces like gravitation or
electromagnetic forces. These forces are disregarded in the rest of this thesis
as their influence on the flow is negligible.

• pni is the pressure on the control volume, i.e. a force perpendicular to its
surface.

• σi are the stresses tangential to its surface, which result from the viscosity,
as will be shown in section 2.1.2.

With the identity
τi jn j = σi, (2.7)

and using the same laws as for the conservation of mass on equation (2.6) gives
the differential form of the momentum equation

ρ
Dui

Dt
=− ∂ p

∂xi
+

∂τi j

∂x j
+gi, (2.8)

with the operator D
Dt =

∂

∂ t +ui
∂

∂x j
.

The conservation of angular momentum requires that the tensor τi j is symmetric,
thus

τi j = τ ji. (2.9)

Here, equation (2.8) represents actually three individual equations, one for each
spatial direction.
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2.1 Fundamentals of Fluid Mechanics

2.1.1.3 Conservation of Energy

To complete the set of Navier-Stokes equations, the conservation of energy has
to be taken into account. As demanded by the first law of thermodynamics, the
sum of energy within a control volume, which itself is the sum of volume specific
internal energy e and kinetic energy 1

2 uiui, equals the power induced by the forces
plus the heat transfer into the volume, and the heat produced within the volume
itself. This gives, in integral form

d
dt

∫
V

ρ

(
e+

1
2

uiui

)
dV =

∮
S

(σi− pni)ui−qinidS+
∫
V

ρ (giui +w)dV . (2.10)

Where qi is the heat flux vector of the control volume and w is the heat production
by a chemical or nuclear reaction or absorption of radiation.

Again, this can be brought into differential form, yielding

ρ
D
Dt

(
e+

1
2

uiui

)
=

∂

∂x j

(
τi jui− pu j−qi

)
+ρgiui. (2.11)

Here, the heat production w can be either heat production by an ongoing reaction
in the fluid or the radiation balance, or a combination thereof. For this thesis, both
the radiation (either emitted or absorbed) and the heat production/consumption by
a chemical reaction are neglected, thus w = 0 at all times. Also, body forces like
gravitation or electromagnetism are not taken into account, thus gi = 0.

In open systems, where there is influx or outflux of fluid, it has been proven
more productive to replace the specific internal energy e with the enthalpy h or the
total enthalpy H. The relation between e, h and H is:

h =
p
ρ
+ e, (2.12)

H = h+
u2

2
. (2.13)

Using this and equation (2.11), including w = 0 and gi = 0, the conservation of
energy can be rewritten as the conservation of total enthalpy

ρ
DH
Dt

=
∂ p
∂ t

+
∂uiτi j

∂x j
−

∂q j

∂x j
. (2.14)
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2 Theory of Turbulent Flows

2.1.1.4 Scalar Transport

The general transport equation for a passive scalar φ reads [Fox03]

Dφ

Dt
=

∂

∂xi
Γφ

∂φ

∂xi
+Sφ . (2.15)

The left hand side contains the time derivative and the standard convection term
of a property that is propagated with the flow velocity, while on the right hand side,
there is the diffusive time with a generic diffusivity Γφ , and a generic source term
Sφ . If a conserved scalar (i.e. no sources) and a constant diffusivity is present,
equation (2.15) simplifies to

Dφ

Dt
= Γ

∂ 2φ

∂x2
i
, (2.16)

which is the form that is used in this work for mixture fractions, since they do
not have source terms as explained in chapter 3.

It is important to note that the value φ does not occur in equation (2.8) or equa-
tion (2.4), making the scalar passive. As such, the flow field can be solved inde-
pendently from the scalar field(s).

2.1.2 Closure of the Conservation Equations

Equation (2.5), (2.8) and (2.14) are 5 equations1, but the system contains 15 un-
knowns: ρ,ui (three unknowns), p,τi j (six),H and qi (three). Hence, additional
equations are needed to close the system of equations. Due to the pressures and
temperatures (around standard conditions) that are present throughout this work, it
is possible to use the ideal gas law to state a relationship between pressure, density
and temperature [Gri77] as

p = ρRT. (2.17)

The thermodynamic equations of state yield the relation between the internal en-
ergy and the temperature as

1 note that equation (2.8) displays three equations
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2.1 Fundamentals of Fluid Mechanics

de = cvdT, (2.18)
where cv is the specific heat at constant volume.

The tensor of velocity gradients can be split into a symmetric and an antisym-
metric part

∂ui

∂x j
=

1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
+

1
2

(
∂ui

∂x j
−

∂u j

∂xi

)
= si j + ri j. (2.19)

The symmetric part si j is the deformation tensor while the antisymmetric part ri j
is the rotation tensor. The trace of the deformation tensor is the volume dilatation
rate, the elements of the trace are the extension rates in the spatial dimensions.

A law for the shear stress tensor τi j can be obtained using kinetic gas theory.
There, the Enskog-Chapman method assumes that only small deviations from the
local thermodynamic equilibrium exist, which is a valid assumption for a very
large range of flow phenomena2 [Fri01]. The shear stress tensor that can be derived
is then

τi j = 2µsi j +

(
µd −

2
3

µ

)
skkδi j, (2.20)

where µ is the (dynamic or absolute) viscosity of the fluid and µd is its pressure
viscosity. The viscosity itself is a function of the temperature of the fluid, which
can be approximated, for instance, by Sutherland’s law. For cold flows, i.e. with
very small or no temperature changes, it is assumed to be constant within the entire
domain. The pressure viscosity is a result of the internal degrees of freedom of the
gas molecules. Thus, it is exactly zero for monatomic gases. More generally
µd = 0 is assumed for most CFD applications, but the term plays a noticeable role
in the dissipation of shock waves or ultrasonic waves [Fri02].

The same theory also derives a simple law, known as Fourier’s law, for the heat
flux qi as

qi =−λ
∂T
∂xi

, (2.21)

with λ as the thermal conductivity of the medium, which is assumed to be
isotropic. Thus the heat transfer through the fluid is proportional to the negative
temperature gradient within the fluid.

2 Typically, flow systems where this assumption is not valid, cannot be described using the Navier-Stokes
equations. These include flows where the Knudsen number is low, like capillary flows or atmospheric
reentry conditions
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2 Theory of Turbulent Flows

2.1.3 Simplifications for Incompressible Flows

In an incompressible flow the changes of density along the streamlines (i.e. paths
of motion of a fluid particle) can be neglected, so

∂ρ

∂ t
+u j

∂ρ

∂x j
= 0. (2.22)

With equation (2.22), the continuity equation (2.5) reduces to

∂ui

∂xi
= 0. (2.23)

In other words, incompressible flows possess no divergence in the velocity field.
The incompressible version of the continuity equation no longer has a time deriva-
tive, which has large implications for the solution method compared to compress-
ible flows. While in compressible flows, a time step operation is applied to both
the momentum and continuity equations (disregarding the energy equation for this
simplification), incompressible solvers can only perform a time stamp operation on
the momentum equation and then have to correct the solution to a divergence-free
one, which is usually performed using an iterative scheme.

While equation (2.23) is certainly satisfied for constant density flows, there are
other configurations where incompressibility can be obtained.

In order to determine under which circumstances the compressibility of a fluid
can be neglected, the total differential of the pressure

d p =

(
∂ p
∂ρ

)
s
dρ +

(
∂ p
∂ s

)
ρ

ds (2.24)

has to be regarded. With the first differential being the speed of sound a =
(

∂ p
∂ρ

)
s

and the second differential defined as
(

∂ p
∂ s

)
ρ
= ρa2

cp
βT and for thermic ideal gases

β = 1
T , equation (2.24) becomes, for a moving fluid particle

Dp
Dt

= a2 Dρ

Dt
+

ρa2

cp

Ds
Dt

. (2.25)
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2.1 Fundamentals of Fluid Mechanics

With the continuity equation in the form 1
ρ

Dρ

Dt + ∂ui
∂xi

= 0, equation (2.25) can be
used to derive the amount of velocity divergence as

∂ui

∂xi
=

1
ρa2

(
−∂ p

∂ t
−ui

∂ p
∂xi

)
+

1
cp

Ds
Dt

. (2.26)

Applying the momentum equation and the entropy transport equation to this, gives
the equation for the compressibility in dimensionless form

∂u∗j
∂x∗j

=
La2

0
a0t0a2

(
M0

2
∂u∗i u∗i

∂ t
− ρ0

ρ

∂ p∗

∂ t∗

)
(2.27)

+
a2

0
a2

(
M2

0 u∗j
∂

∂x∗j

(
1
2

u∗i u∗i

))
(2.28)

−
a2

0
a2 u∗i gi (2.29)

−
M2

0
Re0

ρ0a2
0

ρa2

(
u∗i

∂

∂x∗j
u∗i x j +

1
3

u∗j
∂ s∗ii
∂x∗j

)
(2.30)

+
1

Re0

ρ0a2
0

ρa2

(
1

Pr
∂

∂x∗j

∂T ∗

∂x∗j
+(κ−1)M2

0 τ
∗
i js
∗
i j

)
. (2.31)

The previous equation contains five different groups of terms

• The terms in the first line (2.27) are only of interest, if L
a0t0 is at least of

O(1), i.e. high frequency or acoustic effects.

• The terms in the second line (2.28) are of convective nature and contain the
term M2

0 . Thus, these terms are only of interest with respect to compress-
ibility if the Mach number is large enough. Typically a limit of 0.2 or 0.3 is
used for these effects.

• The third line (2.29) contains the volumetric forces. If the main volumetric
force is gravity, this term is only significant if the size of the domain (in
the direction of gravitation) is around the scale height. For air in Earth’s
gravity field, this value is in the order of 10km. For fluids where magnetic
or electric forces are present, this term has to be regarded separately, for
example in plasma flows.

• The forth term (2.30) represents viscous effects on the divergence of the flow

field and contains the term M2
0

Re . As the Navier-Stokes equation set is only
valid if Ma� Re [Fri01], these terms are very small and can be neglected.
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2 Theory of Turbulent Flows

• The final line (2.31) contains effects of dissipative nature and heat produc-
tion. Here, the term 1

Re is present, which means these effects are only of
interest if the temperature gradients are very steep.

In conclusion, low Mach number (below 0.2 or 0.3) flows where acoustic effects
are not under consideration, or atmospheric flows with large vertical distances can
generally be considered incompressible, i.e. ∂ui

∂xi
= 0.

2.2 Theory of turbulent flows

While the previous section explained the basic equations that govern the flows of
fluids, the current one explains the phenomenon of turbulence and its implications.
In general, flows exist in two major regimes, laminar and turbulent. A laminar
flow exists when the flow regime can be divided into moving planes, with no mass
exchange between the planes outside of molecular diffusion. In a turbulent flow,
there is convection of mass perpendicular to the stream lines. This convection is
generally chaotic in nature and can as such not be exactly predicted. This con-
vection happens on a wide range of length scales ranging from typical geometric
parameters of the flow down to the Kolmogorov scale, see also section 2.2.2.

Generally, the velocity field of the flow can be divided into two parts, a mean
part and a fluctuation. The mean part is the result of arithmetically averaging the
velocity over a large number of flow realizations at a given point in the computa-
tional domain, thus the mean flow is dependent only on the position [Dur07]. The
decomposition then is

ui(xi, t) = ui(xi)+u′i(xi, t), (2.32)

u′i(xi, t) = 0, (2.33)

u′iu
′
j , 0. (2.34)

Equation (2.34) is of particular interest. While the mean of the fluctuations of a
single dimension ui is always zero (see equation (2.33)), the Navier-Stokes equa-
tions contain correlation terms like uiu j. The fluctuations of those terms do not
cancel out. If the equations are filtered or averaged (explained in section 2.5),
modeling these fluctuations becomes the crucial part of the solution.

The turbulent kinetic energy can be derived as

k ≡ 1
2

u′iu
′
i. (2.35)
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2.2 Theory of turbulent flows

Figure 2.2: Turbulent flow of exhaust and cooling gases during Space Shuttle mission STS-1
launch. Picture courtesy of NASA

Finally, the mean turbulent fluctuation u′ can be computed from the turbulent ki-
netic energy as

u′ =

√
2
3

k. (2.36)

As shown by Friedrich [Fri02], a transport equation for the vorticity can be de-
rived by applying the rotation operator εi jk

∂

∂x j
to the momentum equation, which

eventually results in

Dωi

Dt
= ω j

∂ui

∂x j
−ωi

∂ui

∂x j
− εi jk

(
1

ρ2
∂ p
∂x j

∂ρ

∂xk
− ∂

∂x j

(
1
ρ

∂τkl

∂xk

))
, (2.37)

or, if constant density of the flow is assumed [Fri03],

Dωi

Dt
= ω j

∂ui

∂x j
+

1
ρ

εi jk
∂

∂x j

∂τkl

∂xk
= ω j

∂ui

∂x j
+ν

∂

∂x j

∂ωk

∂x j
. (2.38)

The first term of the right hand side couples the vorticity with the velocity of
the flow field. Equation (2.37) also shows that turbulence itself is an inherently
three-dimensional process.

21



2 Theory of Turbulent Flows

2.2.1 Definition of the Reynolds Number

The Reynolds Number gives the ratio of inertial forces to viscous forces in a
fluid. This can be derived by using the time scale of the diffusion of momen-
tum tdiffusion = L2

ν
and the time scale of convection of momentum tconvection = L

U .
Here, L represents a characteristic length of the phenomenon (like the diameter of
a pipe, the length of an airfoil, etc.) and U a characteristic velocity (for example
the free-flow velocity or a the maximum velocity in a pipe). Thus, the Reynolds
number becomes

Re =
UL
ν

. (2.39)

This number has a fundamental impact on the nature of the flow. This can be seen if
equation (2.8) is made dimensionless using the following definitions, with values
with an asterisk being the non-dimensional values and capitals for the reference
values

u∗i =
ui

U
, (2.40)

x∗i =
xi

L
, (2.41)

t∗ = t
U
L
, (2.42)

p∗ =
p

ρU2 , (2.43)

it yields, if volumetric forces are disregarded,

∂u∗i
∂ t∗

+u∗j
∂u∗i
∂x∗j

=−∂ p∗

∂x∗i
+

ν

UL
∂

∂x∗j

∂u∗i
∂x∗j

=−∂ p∗

∂x∗i
+

1
Re

∂

∂x∗j

∂u∗i
∂x∗j

. (2.44)

Equation (2.44) contains the Reynolds number only in the last term of the right
hand side, which leads to the following conclusions:

• Viscous phenomena become irrelevant in very high Reynolds number flows.

• Flows which have similar Reynolds numbers exhibit a similar behavior,
when made dimensionless as above.

The Reynolds number also defines whether a flow is laminar or turbulent in
nature.
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2.2 Theory of turbulent flows

2.2.2 Kolmogorov’s Theory of Turbulence

Komolgorov [Kol41, Kol62] has shown that for homogeneous and isotropic tur-
bulence, there is an energy cascade that transfers energy from the largest to the
smallest eddies, if the production and dissipation of turbulent kinetic energy is in
balance. The energy spectrum of turbulence has three ranges according to Pope,
Tennekes and Lumley [Pop00, TL87].

• The energy carrying range or large scale spectrum which contains the
largest eddies. Here, energy is transferred from the average flow into the
turbulent scales. The mean flow, and hence the geometry, is paramount for
this range.

• The inertial range is the range where energy is transferred from large eddies
to smaller and smaller eddies, this transfer happens with a dissipation rate
of

E(κ) =C1κ
− 5

3 ε
2
3 . (2.45)

Here, κ is the wave number of the eddies. ε is the turbulent dissipation
rate, defined as

ε =C2
u(r)3

r
, (2.46)

with u(r) as the fluid velocity in the eddy and the r as the size class (radius)
of the eddy.

• The dissipation range is where the small eddies are dissipated by the vis-
cosity of the fluid.

Within those ranges, four important length scales exist. In descending order of
length, these are

• The integral length scale, defined as the mean size of the eddies, divided by
the total energy in the eddies [Dur07]

lt ≡
∫

∞

0
1
κ

E(κ)dκ∫
∞

0 E(κ)dκ
. (2.47)

The Reynold number based on the mean fluctuation and the integral length
scale is called the turbulent Reynolds number

Ret =
u′lt
ν

. (2.48)
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2 Theory of Turbulent Flows

Figure 2.3: The turbulent energy cascade

This Reynolds number is often used for LES modeling, since it represents
the ratio between turbulent diffusion and molecular diffusion, i.e. high tur-
bulent Reynolds numbers imply that molecular diffusion effects can be ne-
glected.

• The inertial length scale is the size that has the maximum turbulent kinetic
energy, i.e. the separation of ranges (a) and (b) in figure 2.3.

• The Taylor length scale lλ is the ratio between the mean fluctuation and the
mean strain rate [Tay35]

lλ ≡
√

ui
∂u
∂x

= Re
− 1

2
t lt . (2.49)

• The Kolmogorov length scale η represents a lower limit for the size of ed-
dies, and has a time scale τη associated with it. Those, and the Kolmogorov
Reynolds numbers are defined as

η =

(
ν3

ε

) 1
4

, (2.50)

τη =
(

ν

ε

) 1
2
, (2.51)

Reη = 1. (2.52)
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2.3 Turbulent Mixing

This Reynolds number is the ratio between turbulent diffusion and the
molecular dissipation, thus this length scale is the lower size limit of the
eddies.

2.3 Turbulent Mixing

All equations presented in this chapter up to now have been used to describe the
flow of a single gas or mixture of gases. If mixing processes are to be described,
additional information which describes the mixing state, i.e. the chemical compo-
sition of the fluid, is required.

2.3.1 Mixture Fractions, Mass Fractions and Molar Fractions

In order to describe mixing processes, the mixing state in a control volume needs
to be described. Several definitions of such fractions exist which can be used for
this purpose.

2.3.1.1 Mass Fraction

The most simple description of the mixing state is the mass fraction. It describes
the presence of a species i by setting its mass mi in relation to the mass in the
whole control volume dm = ρdv, where the density is the local density in the
control volume, thus

Yi =
mi

m
. (2.53)

As such, the sum of all mass fractions has to add up to unity

n

∑
i=1

Yi = 1. (2.54)

A transport equation for mass fractions of species i will have a chemical source
term if a chemical reaction takes place within the fluid, where the species i is either
produced or consumed.
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2 Theory of Turbulent Flows

2.3.1.2 Mixture Fraction

As shown previously, the chemical source term in the transport equation is the
main source of closure problems when modeling turbulent reacting flows.

Starting from the mass fraction describes previously, the molar concentration ci
of a species i is defined as

ci = Yi
ρ

Mi
, (2.55)

with ρ as the density of the mixture and Mi as the molecular weight of species i.
Since in a reactive scheme multiple species exist, all concentrations make up the
concentration vector c.

Fox [Fox03] shows that in non-premixed cases, the concentration vector can be
transformed into a mixture fraction vector f and a reaction progress vector. In this
decomposition, the reaction progress vector is always zero at all inlet conditions.
At high Reynolds numbers, the scalar fields of the mixture fractions are not deter-
mined by molecular diffusion, thus the transport equation of the mixture fractions
is independent of the molecular properties of the species that constitute the flow.

Hence, the mixture fraction approach "marks" each influx boundary condition
with an own mixture fraction fi which follow the simple transport equation

D fi
Dt

= Γ
∂ 2 fi
∂x2

i
, (2.56)

with Γ as a general diffiusity for all the scalars. The reaction itself is then de-
scribed by the transport equation of the reaction progress vector, which contains
the transformed chemical source terms.

2.3.2 Schmidt Number

The Schmidt Number is defined as

Sc =
ν

Γ
, (2.57)

with Γ as the diffusivity of the scalar. Using this, the length scales of turbulent
mixing are the Kolmogorov length scales and the Batchelor length scale lB. The
relation is defined as [Bat59]

ln =
√

Sclν . (2.58)
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2.4 Turbulent Reaction

It shows the relation between the convective mass transfer and the diffusive mass
transfer. Gases possess a Schmidt number of around unity, as such the smallest
diffusive and smallest convective length scales are of similar size. Liquids have
much higher Schmidt numbers (usually around 1000), thus the smallest length
scales of diffusion are much smaller than the smallest length scales of convection.
This poses an additional challenge for DNS as shown in 2.5.1.

2.4 Turbulent Reaction

To enable two fluids to react, the reactants need to be brought into direct molecular
or atomic contact. Thus, in order to assess the reaction process, understanding the
mixing process is crucial.

2.4.1 Turbulent Damköhler Number

The turbulent Damköhler Number represents the ratio between the turbulent time
scale tt and the chemical time scale tc of a system

Dat =
tt
tc
. (2.59)

Two main regimes exist. For Dat < 1, called a slow reaction, turbulent mix-
ing happens faster than the reaction takes place. The kinetics of the reaction are
paramount to the evolution of reaction over time. However, for Dat > 1, the reac-
tion is faster than the mixing. In this case, the mixing process itself is paramount
to the reaction, as the chemical reaction "waits" for the turbulent mixing to supply
reactants. In this case, a commonly-used simplification is mixed is reacted.

2.4.2 Reaction Rates

The transport equation for a species is given in equation (2.15). There the source
term Sφ is the chemical source term which needs closure. In order to close this
equation, this term needs to be modeled using other parameters of the flow. Also
the source term for one species depends, of course, on the concentration of the
other species. The Arrhenius formulation of the reaction ratei, which will be used
in this work, is

ω̇ = kAα Bβ e
EA
RT . (2.60)
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2.5 Computation of turbulent flows

Analytical solutions for the Navier-Stokes equations are only known for a few,
simple problems [Fri02]. While these solutions can often serve as a validation for
CFD solvers, in the vast majority of cases a numerical solution needs to be applied.
Three main approaches exist.

Direct Numerical Simulation or DNS of a flow attempts to resolve the entire
spectrum of length scale that a flow possesses. Those start at the geometric di-
mensions of the flow at hand and end at the Kolmogorov length scales and time
scales as shown in 2.2.2. This is, naturally, the most expensive approach from
a computational point of view, but does not require any modeling of phenomena
which happen at scales smaller than the grid resolution. On the other end of the
cost-scale is the Reynolds Averaged Navier-Stokes or RANS approach. Here, only
the average flow is computed directly, while all the fluctuations caused by the tur-
bulent nature of the stream is modeled. This approach requires much lower length
and time resolutions as the DNS approach, but places a heavy burden on the mod-
els for the turbulence. The Large Eddy Simulation or LES approach places itself
between DNS and RANS. Large scales, which are geometry dependent and carry
the majority of turbulent energy are directly computed as in DNS. In order to lower
the computational effort compared to DNS, a coarser grid is chosen, and models
are used to simulate the turbulence on a sub-grid scale.

2.5.1 DNS

The first part of this section will derive the requirements for the non-reacting DNS
with Schmidt numbers around unity, while the second part displays the additional
challenges posed by high-Schmidt number flows.

2.5.1.1 DNS with Schmidt Number Around Unity

The goal of the DNS is to directly solve the Navier-Stokes equations for all length
scales so that no models are required to obtain a solution. The computational mesh
needs to be fine enough that the Kolmogorov length scale η can be resolved. In
order to derive the minimum grid resolution, an arbitrary flow variable is developed
as a Fourier series

u(x, t) =
∞

∑
κ=0

uκ (x, t)eiκx, (2.61)
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where κ is the wave number and uk the amplitude of the flow variable correspond-
ing to the wave number κ .

For a DNS, the smallest eddies with Kolmogorov length scale η have to be
resolved. Thus the grid cutoff value of π

∆
has to be smaller than the wavenumber

kη of those eddies. Thus, according to

∆ <
π

kη

. (2.62)

Assuming an equidistant grid, the largest length scale L will cover the number of
grid points n as

n∆≥ L. (2.63)

Thus, as shown by Poinsot and Veynante [PV05], the minimum number of grid
points in this case is

n3 = Re
9
4
t . (2.64)

with the turbulent Reynolds number being defined as

Ret =
k2

εν
. (2.65)

Equation (2.64) thus places a practical limit on the problems which can be solved
by DNS. Today, the largest DNS performed are usually between ten and about a
hundred billion grid points. The computational requirements of a DNS are further
increased by the fact that the DNS is always a transient simulation, so that the time
step size that fulfills at least the CFL (Courant-Friedrich-Levy) condition must be
chosen, thus

∆t <CFL
∆

U
, (2.66)

with U as a typical flow velocity that is rarely exceeded. Thus, if the velocity is
increased, smaller time steps need to be used as well as a finer grid (due to the
increased Reynolds number).

2.5.1.2 Higher Schmidt Numbers in DNS

The problem of the very large number of grid points is further increased by the
Schmidt number as seen in 2.3 in case of mixing. While in gaseous flow the
resolution requirements are largely the same as for the pure flow field, liquids have
a high Schmidt number and thus require a much finer spatial resolution for the
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diffusive length scales, otherwise the too coarse grid imposes artificial diffusivity.
Roughly assuming a Schmidt number of 1000 for a liquid, equation (2.58) thus
demands a grid that has about 30000 times as many grid points to resolve the
mixing length scales compared to a grid that only resolves the turbulent length
scales. In order to minimize computational requirements, DNS can greatly benefit
from advanced meshing techniques like adaptive meshes or multi grid methods,
where the fine resolution is present only where the turbulence demands it. Those
techniques can reduce the number of required grid points by orders of magnitude.

A solution for high Schmidt number was suggested by Schwertfirm and
Manhart[SM07, BMPW10]. It decouples the solution of the velocity field from
the solution of the scalar field. For each time step, the velocity is computed first
on a grid which fulfills the requirements of the DNS. After that, the scalar field
can either be computed by a DNS on a finer grid to which the velocity fields are
interpolated, or the same grid as for the velocity field can be used and a LES for
the scalar field is done thereon, in a Semi-DNS approach.

2.5.2 RANS

In RANS, the Navier-Stokes equations are averaged, i.e. each flow variable is
decomposed into a mean value and a fluctuation, such as:

Ψ = Ψ+Ψ
′′. (2.67)

where Ψ is the mean part and Ψ′′ is the fluctuation. It is required that the mean of
the fluctuation needs to be zero, Ψ

′′
= 0. This simple decomposition is called the

Reynolds Averaging. Another typical decomposition is the mass averaged decom-
position or Favre Averaging of flow values as

Ψ = Ψ̃+Ψ
′, (2.68)

Ψ̃ =
ρΨ

ρ
. (2.69)

Here, also, the restriction Ψ
′
= 0 applies. Using equation (2.68) and equa-

tion (2.69) on equation (2.5) and equation (2.8) yields then the transport equations
used for a RANS model

∂ρ

∂ t
+

∂ρ ũi

∂xi
= 0, (2.70)

∂ρ ũi

∂ t
+

∂ρ ũiũi

∂x j
= − p̃

xi
+

∂ τ̃i j

∂x j
−

ρ ũ′iu
′
j

x j
. (2.71)
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As can be seen, these equations contain the unclosed term ũ′iu
′
j, the so called

Reynolds Stress Tensor which needs to be modeled.

2.5.2.1 Turbulent Viscosity

Boussinesq assumed that the momentum transfer performed by the eddies can
be modeled with the eddy viscosity, much like the molecular viscosity per-
forms molecular momentum transfer. Boussinesq also assumed that the Reynolds
stresses τi j are proportional to the traceless mean strain rate tensor,

τi j = 2µtS∗i j−
2
3

ρkδi j, (2.72)

with k as the turbulent kinetic energy as described in equation (2.35) The traceless
strain tensor is computed from the strain tensor as

S∗i j = Si j−
1
3

∂uk

∂xk
δi j. (2.73)

The two tensors are identical for incompressible flows as in this case ∂uk
∂xk

= 0, or

− ũ′iu
′
j = 2νt S̃i j−

2
3

kδi j. (2.74)

2.5.2.2 Turbulence Models for RANS

Primary task of RANS modeling is the computation of the turbulent viscosity νy
introduced in equation (2.74), or introducing a set of transport equations for the
Reynolds Stresses themselves. Thus, RANS models can be divided into different
complexities.

• Zero-equation models, which do not use separate transport equations to ob-
tain the turbulent viscosity. A local equilibrium for the turbulence is as-
sumed, which has been shown to be questionable [Piq02].

• Single equation models, which only posses a transport equation for the tur-
bulent kinetic energy.

• Two equation models, like the highly popular and successful k-ε and k-ω
models, which have one additional transport equation for either the turbulent
dissipation (ε) or frequency (ω).
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• Higher models which have a larger number of transport equations like the
Reynold Stress Model, where separate transport equations are solved for the
Reynolds stresses ũ′iu

′
j.

Approaches exist where several different turbulence models are used for differ-
ent regions of the computational domain. As such, the various strengths of the
different models can be exploited.

2.5.3 LES

The first part of this section shows the spatial filtering of the Navier-Stokes equa-
tion in order to obtain the LES equation, along with the unclosed terms that orig-
inate therein. In the second part the most popular models for the closure of these
terms are given.

2.5.3.1 Filtering of the Navier-Stokes Equations

In LES, the averaging approach in RANS is replaced by a filtering approach in
LES, where only large eddies are completely resolved by the grid. In a wavenum-
ber space, this filter is a low-pass filter which cuts off the high-wavenumber parts,
i.e. the small eddies. As in RANS, the effect of those eddies onto the flow has
to be modeled. The filtering also produces another fundamental difference be-
tween RANS and LES. While RANS, due to its averaging nature usually produces
a stationary result (although unsteady RANS or URANS methods have been sug-
gested), LES is inherently a transient method. However, it is generally assumed
that the smaller scales are more homogeneous and isotropic in nature than the
larger turbulent scales. As such, LES turbulence models are simpler than their
RANS counterparts. A few common LES models are shown below. In order to do
LES, the equations that need to be solved on the coarser grid need to be spatially
filtered, and unclosed terms need to be either modeled or neglected.

A flow value φ in LES is separated into two fractions, the resolved scales φ and
the sub-grid scales φ ′, so that

φ(xi, t) = φ(xi, t)+φ
′(xi, t), (2.75)

where the resolved parts are the results of a low-pass filtering and the sub-grid
scales are the results of the high-pass filtering. From a physical point of view, it
is easiest to work with a spectral representation of the filter. However, the Fourier
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transformation is rarely known for actual CFD simulations outside of homoge-
neous isotropic turbulence. Three commonly used filters are:

• The sharp Fourier cutoff filter

F(xi) =
2
∆i

sin(2π
xi
∆i
)

2π
xi
∆i

. (2.76)

This is called a sharp cutoff filter due to the fact that all wavelengths below
the cutoff wavelength are untouched, while wavelengths above the cutoff
are completely eliminated, thus, equation (2.76) becomes in spectral space

F̂(ki) =

{
1, if|ki| ≤ kcuto f f

0, otherwise
(2.77)

with F̂ as the filter operation in Fourier space.

• The Gaussian filter

F(xi) =

(
6

π∆2
i

)
e

(
− 6x2

i
∆2

i

)
. (2.78)

is the physical space representation of a Gauss function in spectral space

F̂(ki) = e

(
− ∆2

i k2
i

24

)
. (2.79)

• The top-hat filter, also called the box filter, is the standard intrinsic filter of
LES solvers that do not compute in spectral space. In this case, the kernel is
defined as

F(x) =

{
1
∆i
, if xi ≤ ∆i

2
0, otherwise

(2.80)

The spectral representation of this filter is

F̂(ki) =
sin
( 1

2 ki∆i
)

1
2 ki∆i

. (2.81)

The drawback of this filter can be seen in equation (2.81): This filter influ-
ences all wave numbers, even very low ones (i.e. well resolved scales). This
influence grows the closer the wave number is to the cutoff wavelength.
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A projector is an idempotent filter which fulfills the requirement FF = F .

As shown by Kim [Kim04], the discretization of the computational domain
serves as an implicit filter in CFD simulations. However, this implies that wave
numbers that are higher than the intrinsic cutoff wave number of the computational
grid are neglected. As these wave numbers still have an effect on lower (i.e. re-
solved) wave numbers due to the nonlinear nature of the momentum equation, this
effect needs to be modeled.

Applying the filtering function to equation (2.8), assuming that filtering and
differentiation are commutative [GM95]

∂φ

∂ t
=

∂φ

∂ t
, (2.82)

∂φ

∂xi
=

∂φ

∂xi
, (2.83)

yields the filtered momentum equation, for incompressible flows

∂ui

∂ t
+

∂

∂x j
uiu j = ν

∂

∂xi

∂ui

∂xi
− ∂ p

∂xi
− 1

ρ

∂τi j

∂x j
. (2.84)

The unclosed term
τi j = uiu j−uiu j (2.85)

in equation (2.84) are the sub-grid stresses. This term is the primary target for
modeling efforts of single-phase LES.

It has been suggested by Leonard [Leo74] to decompose equation (2.85) as

τi j = Li j +Ci j +Ri j. (2.86)

Equation (2.86) splits the sub-grid scale stress tensor into three parts:

• The Leonard-Stresses, which can be computed from resolved values as

Li j = uiu j−uiu j. (2.87)

Using an ideal filter as presented above will cause the Leonard Stresses to
vanish. In most of the current CFD codes, these stresses are assumed to be
zero even though a non-ideal filter is employed.

• The Cross-Stresses which show the interaction between the resolved and the
sub-grid scales

Ci j = uiu′j +u′iu j. (2.88)
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• The Reynolds-Stresses is then the remainder of the stress tensor

Ri j = u′iu
′
j. (2.89)

This part is the actual influence of the sub-grid scale fluctuations on the
filtered flow.

2.5.3.2 LES Models

The most popular models for LES are the Smagorinsky model, along with its dy-
namic extension, and the turbulent kinetic energy model. Next to those models, a
variety of other models of different complexity exist.

Smagorinsky Model Smagorinsky [Sma63] developed the first LES model in
1963. For simplicity’s sake, this model does not introduce additional transport
equations to the solution, but simply adds an algebraic closure for the sub-grid
scale turbulent viscosity νt

νt = (CS∆)2 Si j, (2.90)

Si j =
(
2Di jDi j

)0.5
. (2.91)

Here CS is a constant that has to be selected prior to the computation, which is
usually in the range of 0.1 to 0.2. ∆ is the width of the filter; for non-cubic grids,
∆3 =V with V as the volume of the cell.

Note that the original model assumes that in equation (2.86) Li j+Ci j = 0 and the
model applies to Ri j only. However, since Li j can be directly computed from the
filtered velocity field, other applications of the Smagorinsky model have applied it
to Ci j +Ri j .

Dynamic Smagorinsky Model The previous model has the drawback of select-
ing a single value for CS for the entire domain and every time step. This usually
leads to a gross overestimation of the dissipation near walls. Germano and Lilly
[GPMC91, Lil92] have suggested to compute a value for CS for each cell dynami-
cally. This is achieved by using a coarser test filter (denoted bŷ) on the resolved
scales, compute the turbulent viscosity from there and derive CS from this viscos-
ity.
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The Germano identity
Li j = Ti j− τ̂i j (2.92)

is the difference between the residual stress tensor of the test filter Ti j and the
residual test tensor of the grid τ̂i j, which are computed as

Ti j = ûiu j− ûi û j, (2.93)

τ̂i j = ûi u j− ûiu j. (2.94)

The model then yields for the model constant

CS =

√
Li jMi j

Mi jMi j
, (2.95)

with

Mi j = 2∆
2

∣∣∣Ŝ∣∣∣ Ŝi j−

(
∆̂

∆

)2 ∣∣∣Ŝ∣∣∣ Ŝi j

 , (2.96)

where ∆̂ and ∆ represent the filter width on the test filter and the grid filter respec-
tively.

Turbulent Kinetic Energy Model Various other LES Models have been devel-
oped since the Smagorinsky Model shows a number of drawbacks. One of the
most obvious ones is that it does not take the history of a fluid particle into ac-
count. In order to make this possible, Kim [Kim04] has developed a model where
the sub-grid turbulent viscosity is proportional to the square root of the sub-grid
turbulent kinetic energy k, for which a transport equation is formulated which is

∂k
∂ t

+
∂u j

∂k
=−τi j

∂ui

∂x j
−Cε

k
3
2

∆
+

∂

∂x j

(
(ν +νt)

∂k
∂x j

)
. (2.97)

Then the sub-grid turbulent viscosity can be computed as

νt =
√

kCk∆. (2.98)

In order to maximize the performance of this model, the model parameters are
determined by the dynamic procedure similar to the dynamic Smagorinsky model
in the previous paragraph.
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Scalar Transport Equation and Models Comparable to the unclosed terms in
the filtered momentum equation (2.84) the filtered scalar transport equation,

Dφ

Dt
=

ν

Sc
∂ 2φ

∂x2
i
−

∂τiφ

∂xi
+ ω̇, (2.99)

contains on the one hand the unclosed term τiφ , the sub-grid scale scalar flux,
which is defined as

τiφ = uiφ −uiφ . (2.100)

In analogy to the eddy viscosity models, which are used to close the sub-grid scale
turbulence, the sub-grid scale mixing can be modeled by eddy diffusivity models,
where the turbulence accelerates the mixing. This has been suggested by Eidson
[Eid85], so that the transport equation can be closed as

τiφ =−ΓSGS
∂φ

∂xi
, (2.101)

where ΓSGS is the eddy diffusivity that is obtained similar to the Smagorinsky
model as

ΓSGS = 2
(CS∆)2

ScSGS
|Si j|. (2.102)

Here, ScSGS is the sub-grid scale Schmidt number, which usually takes a value of
approximately 0.4 [PS00]. The model constants in this equation can be determined
dynamically in analogy to the procedure shown in the previous section for the eddy
viscosity models. It should be noted that for high Schmidt number flows the sub-
grid scale eddy diffusivity far outweighs the molecular diffusivity, which can then
be neglected completely.

Closure of the second unclosed term in equation (2.99), ω̇ , called the filtered
reaction rate is one of the central topics of this work; the fundamental approach is
shown in the next chapter.
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This chapter will explain the use of mixing models in the present work. Section 3.1
will give an overview of mixing models, their properties and some commonly used
models, while the subsequent sections will explain the adaptation of the Modified
Curl model, which has proven to be the most applicable and most robust solution
to the problem at hand.

3.1 Fundamentals of Mixing Models

As seen in chapter 2, an LES or RANS simulation, as opposed to DNS, contains
a certain amount of unresolved unmixedness within a computational cell. Chapter
4 will show that PDF methods are effective in modeling this unmixedness. It was
also explained how transported PDF and jPDD methods require mixing models to
represent the particle interaction in order to actually model the mixing of the fluid
on a molecular scale. These mixing models, called particle-interaction models,
work by moving particles in the composition space from their initial position to-
wards the mean value. Thus, a mixing model will evolve any initial distribution to
single Dirac peak after a sufficiently large number of mixing events, i.e. a single
particle interaction process.

Based on the description of molecular mixing by Pope [Pop94], a number of re-
quirements that a mixing model shall posses in order to correctly model a physical
molecular mixing process, were derived. The full set of requirements can be found
in Meyer and Jenny [MJ06].

1. the mean of the scalars must remain unchanged

2. the variance of the scalars must decrease

3. in homogeneous turbulence, the joint PDF of inert scalars should relax to a
joint Gaussian

4. realizability has to be honored, i.e. scalars have to remain within the allow-
able region
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5. insensitivity with respect to linear transformations in scalar space and inde-
pendence of passive scalars

6. localness in scalar space

7. velocity and scalar gradients must remain uncorrelated

8. correct dependence on scalar length scales

9. correct dependence on Reynolds, Schmidt and Damköhler numbers

3.2 Mechanical-to-Scalar Time Scale Ratio

For transported PDF methods, most of the mixing models require a modeling pa-
rameter which is the mixing time scale. As seen in a review done by Pope [Pop85],
the suggestion of having a fixed mechanical-to-scalar time scale ratio of 2.0 still is
the most widely used, thus

τφ = 2
τ

Cφ

, (3.1)

with τφ as the scalar time scale, τ as the turbulent time scale and Cφ as the model
constant for the time scale ratio. As explained earlier, molecular diffusion can be
neglected with respect to turbulent diffusion at sufficiently high Reynolds numbers.
Fox [Fox03] also shows that at high Schmidt numbers, the mechanical-to-scalar
time scale ratio is constant. Eswaran and Pope [EP88] have performed DNS simu-
lations which show that independent of the initial distribution of the scalar length
scales, the system tends towards a final mechanical-to-scalar time scale ratio of
2.0. However, in both instances this constant ratio is only valid for fully developed
spectra. As will be shown later in chapter 5, this assumption is not necessarily true
for the entire domain.

Methods that assume not fully developed spectra and thus a non universal
mechanical-to-scalar time scale ratio for the entire domain have been developed
in the past, for example by Fox [Fox03]. Also, chemical reactions influence the
time scale ratio [Pop85]. As a result, methods which take this effect into account
have been suggested [CWP07].

3.3 Mixing Models

This chapter will present a number of existing mixing models along with their
properties. This will cover only a small number of mixing models available today.
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Due to the complex nature of the mixing process and the vastly different numerical
approaches, for example RANS versus LES, no universal mixing model has yet
been developed.

3.3.1 IEM / LMSE

The Interaction By Exchange With The Mean, short IEM Model, was suggested by
Villermaux and Devillon in 1972 [VD72]. A physically different approaching that
led to the same model was chosen by Dopazo and O’Brian called LMSE Model
[DO74]. Here the change of composition of a particle is described as

d f (i)

dt
=−1

2
C f 〈ω〉

(
f (i)−〈 f 〉

)
, (3.2)

with 〈ω〉 as the mean turbulence frequency and C f as the mechanical-to-scalar
time scale ratio. This ratio is assumed to be around 2 for high Reynolds number
flows as shown in [Fox03] for fully developed spectra.

In homogeneous turbulence, all particles relax towards the mean of the ensemble
with a rate that is proportional to its distance from the mean. This distance is
measured in state space, not physical space. Thus, this model is shape preserving
and will not relax to a Gaussian as required (see 3.1)

From (3.2) the decay of scalar variance
〈

f ′2
〉

can be derived as

d
dt

ln
〈

f ′2
〉
=−C f 〈ω〉 . (3.3)

3.3.2 Modified Curl

The Modified Curl model by Janicka, Kolbe and Kollmann in 1977 [JJ79] is based
on the standard model by Curl [Cur63]. Here, as opposed to the previous model,
two particles are randomly chosen from the ensemble and their compositions are
altered so that they both translate towards the mean value. As this model is the
foundation for the new model developed in this thesis, it is explained in detail in
section 3.4.
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3.3.3 Mapping Closure

A different mixing model, which starts from a Gaussian reference field, has been
suggested by Pope [Pop91] in 1991. It implies localness in scalar space by using
the condition

f i ≤ f i+1. (3.4)

The distribution with a total number of N particles then develops as

d f (1)

dt
=

1
2

C′f 〈ω〉
[
B1+ 1

2

(
f (2)− f (1)

)]
, (3.5)

d f (i)

dt
=

1
2

C′f 〈ω〉
[
Bi+ 1

2

(
f (i+1)− f (i)

)
+Bi− 1

2

(
f (i−1)− f (i)

)]
, (3.6)

for i = 2 . . .np−1

d f (np)

dt
=

1
2

C′f 〈ω〉
[
−Bnp− 1

2

(
f (np)− f (np−1)

)]
. (3.7)

3.3.4 Euclidian Minimum Spanning Tree

Subramaniam and Pope [SP98] introduced a significantly more complex mixing
model, the Euclidian Minimum Spanning Tree, EMST model. One of the main
goals of this model was to preserve the localness of the distribution. If, for each
time step, the whole distribution is taken to construct the spanning tree, the distri-
bution has the tendency of stranding, i.e. the formation of distinct branches, which
is unphysical. In order to prevent this, the EMST model randomly selects a subset
of the distribution, which then interacts. By actively controlling the mixing pa-
rameter, the EMST can be adjusted to perform an exponential variance decay, as
demanded by high Reynold number flows.

3.3.5 PSP

Mayer and Jenny [MJ04, MJ06] have suggested a mixing model based on
parametrized scalar profiles, which is an extension of the IEM model discussed
previously. The scalar field is assumed to be describable by scalar profiles, which
are sinusoidal in nature. The profiles are parametrized by four values, f− and f+,
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Figure 3.1: Initial distribution for the mixing model. Dashed line indicates the boundary of
the physically accessible state-space: The sum of mixture fractions can never
exceed unity

which are the minimum and maximum value of the profile, λ which is the width
of the profile and τ f as the relaxation time. The profile then evolves as

f (x, t) = e
−t
τ f

f+− f−
2

sin
(xπ

λ

)
+ fc, (3.8)

where x is the coordinate local to the profile and fc =
f++ f−

2 is the center value of
the profile. This model requires additional models or transport equations for the
model parameters. It however shows very promising results [MJ06].

3.4 A Biased, Multi-Variate Mixing Model

The mixing models shown in the previous section have been used in transported
PDF methods, where the particles that interact are indeed convected through the
domain by the velocity field. This work, on the other hand, uses mixing models in
a different fashion. Like in presumed PDF methods, no particles are convected by
the CFD solver. Instead, transport equations for the mathematical moments of the
distributions are solved. The mixing model then needs to generate a distribution
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with the required set of moments. A reaction rate is then computed from this
distribution.

Thus, the mixing model operates in a completely different environment than it
would in transported PDF methods. There, an input distribution is given by the
solver and the particle movement. The mixing model then creates a new distri-
bution. Mixing parameters, that appear in a large number of mixing models, are
determined from flow data. As such, the mixing model has a set of inputs, and
properties of the output distributions are the result of the computation that the
mixing model performs.

In this work, the only information supplied to the mixing model are the first
and second order moments, called the target values of the output distribution. The
mixing model then has to select a suitable set of input parameters from which to
obtain the output distribution. The set of input parameters consists of the initial
distribution and the first and second order moments of the output distribution. The
mixing model needs to cope with multiple mixture fractions, i.e a multi variate
mixing model is needed and the second order moments consist not only of the
variance but of the covariance as well.

The first two requirements for mixing models shown in 3.1 are the preservation
of the mean and the reduction of variance. Therefore, the mixing model is supplied
with an initial distribution that already possesses the required means, and contains
the maximum possible variance. This is achieved by moving all particles to the ex-
tremes of the state space. In a two-mixture-fraction setup this means a set of three
Dirac peaks at the corners of the mixture fraction triangle, as seen in figure 3.1.

As discussed, the main driver behind understanding the mixing process is the
determination of the reaction rate. Once the final distribution has been obtained, a
reaction rate is computed from the distribution by summing up the reaction rates
of each individual particles

ω̇ =
1
N

N

∑
i=0

ω̇( f (i)1 , f (i)2 ), (3.9)

, and the distribution is henceforth no longer needed. A look-up table is then
used to store the relation between the statistical moments on the one hand and the
resulting reaction rate on the other hand, formally

ω̇ = F
(

f 1, f 2, f ′21 , f ′22 , f ′1 f ′2
)
, (3.10)
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3.4 A Biased, Multi-Variate Mixing Model

, where F(x) represents the look-up in the table. See figure 1.3 for a schematic
overview of the process.

The LES itself never encounters actual particle distributions. It only enters the
look-up table with a set of moments and obtains the reaction rate from it. The
details of the distribution that generated this reaction rate is of subordinate impor-
tance and so is the intensity of the individual mixing event, which is the interaction
of two particles.

Each mixing event has a mixing parameter associated with it, which is usually
selected in some random fashion. In this work, the mixing model is based on the
Modified Curl model shown earlier, and the particle selection and interaction is
unchanged. However, the mixing model needs to obtain a distribution with a set of
required moments. This is achieved by modifying the upper and lower boundaries
of the mixing parameter for each mixing event. This process is called biasing of
the mixing model and its pseudo random number generator. The exact biasing
process will be explained in the following two sections.

The Modified Curl model then randomly selects pairs of particles f (p) and f (q)

from the distribution and their compositions are changed by a mixing event. Since
in this work every particle carries multiple mixture fractions fi, i = 1,2 with f1 +
f2 ≤ 1, these are modified as

f (p)
i,n+1 = f (p)

i,n +
1
2

a
(

f (q)i,n − f (p)
i,n

)
, (3.11)

f (q)i,n+1 = f (q)i,n +
1
2

a
(

f (p)
i,n − f (q)i,n

)
, (3.12)

where (p) and (q) denote the two chosen particles, n and n+1 denote the state
of the particle before and after the process and a is a randomly chosen number
(called the mixing parameter), which is distributed uniformly between zero and
unity.

3.4.1 Variance Adjustment

The variance V of a random variable X with the expected value µ = E (X) can be
written as

V (X) = E
[
(X−µ)2

]
. (3.13)
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In analogy to Subramaniam and Pope [SP98] it is assumed that the scalar variance
decays as

V (n) =V0e−Cn, (3.14)

where V0 represents the initial variance of the distribution, C denotes a constant
that depends on the mixing parameter in equation 3.11 and n is the number of
mixing processes. For uniformly distributed parameters

C ∝ a, (3.15)

if the number of mixing event is statistically significant.

If the mixing parameter a in equations (3.11) and (3.12) is distributed in the
same fashion for each mixture fraction i, it is obviously not possible to obtain
distributions that have greatly differing variances for both mixture fractions, unless
the initial distribution already possesses such variances. Thus, assigning different
mixing parameters ai to each of the mixture fractions is required. The mixture
fraction of the particle then is modified as

f (p)
1,n+1 = f (p)

1,n +
1
2

a1

(
f (q)1,n − f (p)

1,n

)
, (3.16)

f (q)1,n+1 = f (q)1,n +
1
2

a1

(
f (p)
1,n − f (q)1,n

)
, (3.17)

f (p)
2,n+1 = f (p)

2,n +
1
2

a2

(
f (q)2,n − f (p)

2,n

)
, (3.18)

f (q)2,n+1 = f (q)2,n +
1
2

a2

(
f (p)
2,n − f (q)2,n

)
. (3.19)

Here, a1 and a2 are the two different mixing parameters for the two different mix-
ture fractions.

If different mixing parameters ai are chosen, the decay law (3.14) for the two
mixture fractions can be written as

V1;target = V1;initiale
−C1n, (3.20)

V2;target = V2;initiale
−C2n. (3.21)
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3.4 A Biased, Multi-Variate Mixing Model

Figure 3.2: Distribution of mixing parameter for a single mixture fraction (left) and multiple
mixture fractions (right). The area of both rectangles in the right case is identical.

It can be seen that if the initial and target variances are known, the number of
mixing processes is canceling out and the only remaining unknown from equations
(3.20) and (3.21) is the quotient of the decay velocities C1/C2

a1

a2
∝

C1

C2
=

ln V1;initial
V1;target

ln V2;initial
V2;target

. (3.22)

It should be noted for stability reasons that ai cannot exceed unity, which im-
poses a minimal number of steps required to reach the given target values for the
variances. A representation of the mixing parameter distribution for two different
mixture fractions can been in figure 3.2.

Thus, when two particles are selected for mixing, one (random) mixing parame-
ter ai is generated for each of the mixture fractions i. However, while the standard
model has a uniformly distributed mixing parameter between 0 and 1, for multiple
mixture fractions the range of the mixing parameters is reduced. This process is
called the biasing of the random number generator. A typical variance evolution
over the mixing processes is shown in Figure 3.3. It can be seen that while both
mixture fractions commence at similar variances, the desired terminal variances
have been reached after the same number of mixing processes. The slight devia-
tions from the perfect e−x law by both variances can be explained by the statistical
nature of the selection of the mixing parameter and particles.
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Figure 3.3: Variance decay over mixing processes for the Modified Curl Model over a total of
400 mixing processes with 1600 particles. Both target variances are met after the
same number of mixing events. The target variances for each mixing parameter
is indicated by the horizontal line of the same color.
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3.4.2 Covariance

Distributions can have different covariances or correlations, with the covariance C
of two random variables X and Y defined as

C (X ,Y ) = E [(X−µ)(Y −ν)] , (3.23)

with µ = E (X) and ν = E (Y ) being the expected values of X and Y . The corre-
lation ρX ,Y of X and Y can be interpreted as the normalized covariance (i.e. the
correlation is always between -1 and 1)

ρX ,Y =
C (X ,Y )√
V (X)V (Y )

. (3.24)

As opposed to distributions with a low absolute value of the correlation, which are
more or less circular (as can be seen in figure 3.5a), the ones with higher corre-
lations (absolute value) have a more elliptic shape (figure 3.5b). The slope of the
semi–major axis of the ellipsis, with respect to the f1, f2–coordinate system, cor-
responds to the correlation of the distribution. This fact is exploited in the further
biasing of the mixing process, with the objective of generating jPDDs with certain
values of covariance. As seen from figure 3.4, neglecting the covariance can re-
sult in significant errors in the reaction rate. In the displayed case, there are three
streams, one containing the fuel (methane), and two containing the oxidizer at dif-
ferent temperatures. Initially, at mixing step 0, there is no reaction as the reactants
are not yet mixed at all. Then, while the variance decays, the normalized reaction
rate evolves very differently between the distributions until, after a large number
of mixing steps, the variances have decayed sufficiently so that the covariance is
no longer a factor.

In order to obtain a distribution with a certain correlation, the mechanism used
to bias the mixing parameter ai in equations (3.11) and (3.12) is also employed
for the correlation: As seen earlier, correlated functions are of elliptic nature, the
correlation itself can be interpreted as the slope of the semi-major axis of the el-
lipse (the correlation slope)1. Hence, if the line that connects two mixing particles
is parallel to the correlation slope, the mixing parameter will be selected so that
these particles will mix slowly, while those particles whose connecting line is per-
pendicular to the correlation slope will mix more rapidly (cf. figure 3.6). This
is another factor which is required to bias the pseudo-random number generator
to obtain the mixing parameter for each mixing event. Because of the statistical

1 The correlation slope is measured as the angle between the semi-major axis and the X-axis.
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Figure 3.4: Example reaction rate of the first oxidization step of methane. Three streams are
involved, one contains methane at 300K, the other two air at 600K and 1200K.

(a) Means: 0.19, 0.56
Variances: 0.002 and 0.003
Correlation: 0.24

(b) Means 0.19, 0.44
Variances: 0.004 and 0.003
Correlation: -0.48

Figure 3.5: Distributions with different correlations taken from DNS. (a) Distribution with a
low (absolute value) correlation, which is more circular in nature. (b) Distribu-
tion with a higher absolute value for the correlation, it is more elliptic.
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nature of the mixing process, the development of the covariance is also statistical.
Due to this and the fact that the initial distribution already has a significant corre-
lation, it is insufficient to simply adjust the mixing process along the correlation
slope. In that case, the target value of the correlation would not be obtained after
the same number of mixing events that are needed to obtain the target values of the
variances. Hence, the following iterative scheme is applied for the correlation to
meet the target value of the correlation after the correct number of mixing events:

1. Start with a reference slope that is parallel to correlation slope.

2. Assess the correlation after a number of mixing events so that all particles
have mixed once.

3. Modify the reference slope. If the correlation is building up too fast with
respect to the required number of mixing events (see section 3.4.1), reduce
the reference slope with respect to the correlation slope, if the correlation is
growing too slow, increase the reference slope.

Using this scheme, it can be seen that the target correlation is obtained after the
correct number of mixing events. An example for the evolution of the covariance
by using this method is shown in figure 3.7. The large-scale fluctuations of the
correlation are the influence of the reference slope, while the small-scale fluctua-
tions are due to the statistical nature of the mixing. At each mixing process, the
reference slope was updated to meet the required correlation.

As shown previously, the biasing of the mixing parameter for variance adjust-
ment is performed on a global level. It is selected in the beginning, depending on
the initial and target variances. This is in contrast to the biasing which adjusts the
co-variance of the distribution. Here, the mixing parameter is modified for each
mixing event. As such, the variances and the correlation can be adjusted indepen-
dently from each other.

This scheme thus ties up the two statistically independent parameters of the mix-
ing process i.e. the variance and the correlation. The whole exercise of mixing the
particle ensembles in steps is to ensure that while the variance decays, the corre-
lation between the particle ensemble also develops and attains a value close to the
target value. The magnitude of the error i.e. the difference between the target cor-
relation and the correlation after every time step drives the adjustment to be made
in the reference slope based on which the mixing parameter is determined. The
functional dependency of the mixing parameter on the reference slope is treated
here with sine of angle of orientation of the mixing points. It should be noted
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Figure 3.6: Principle of covariance based mixing: As the blue particles are perpendicular
to the reference slope (dashed line), they mix more rapidly as the brown parti-
cles, which are more in-line to the reference slope (mixing intensity indicated by
arrow length)
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3.4 A Biased, Multi-Variate Mixing Model

Figure 3.7: Evolution of the covariance of a given distribution. The initial covariance is
determined by the initial Dirac–Delta peaks, the targeted covariance is -0.2

that the mixing parameter is only adjusted to the extent where decay of variance
is nearly equal to that given by the decay law for a given time step and hence the
correction in the covariance of the distribution continues till the variance decays to
the required values [FMP09].

Concerning the requirements for mixing models presented in 3.1, it should be
mentioned that the new mixing model, which is based on the Modified Curl model,
does not fulfill any requirements that the Modified Curl itself does not fulfill. Fur-
thermore, as the mixing model is employed in an offline step for this work, de-
pendence on flow parameters like scalar lengths scale or Reynolds, Schmidt and
Damköhler numbers is not given. The first four requirements however, are met.
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This chapter will give an overview of methods employing probability density func-
tions (PDF methods) and their associated transport equations in order to close the
chemical source term.

In the beginning of this chapter, section 4.1 will show how PDF methods can be
used to close the chemical source term. Section 4.2 will then introduce the basic
PDFs that can describe stochastic variables such as the velocity or the composition
of the flow field.

The second part of this chapter will then explain various PDF approaches such
as Filtered Density Functions (FDFs) for LES applications in section 4.3. The
main representations of PDFs, namely presumed PDF methods and transported
PDF methods will then be explained in section 4.4. The new representation, joint
presumed discrete distributions (jPDD) are explained in 4.5.

The final part of this chapter shall then introduce the transport equations for
PDF methods. At first, the general mechanims for deriving a transport equation of
the PDF is explained in 4.6. As the present work lends transport equations for the
statistical moments of a distribution, those will be introduced.

While the basic scalar transport equation has already been introduced in chapter
2, the transport equations for the variance and the covariance will be shown here
in section 4.7. Additonally the section explains and derives the models required
for the closure of said transport equations.
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4.1 Closure for the Chemical Source Term

Equation (2.99) is the fundamental transport equation for the species concentra-
tion. Besides the sub-grid scale scalar flux, τiφ , which has been explained earlier,
it contains another unclosed term which is the filtered reaction rate ω̇ . The sim-
plest approach for this term is only to take the means of the mixture fractions into
account and to compute the reaction rate from there, as in

ω̇ = f
(

f 1, f 2
)
. (4.1)

However, this assumes that the scalar field is perfectly mixed on a sub-grid level,
i.e. the concentration is free of sub-grid scale fluctuations. It was shown [Bra05]
that this assumption is usually not valid, the sub-grid scale unmixedness has to be
taken into account. One approach to determine the filtered reaction rate is to use
an PDF or Probability Density Function approach, where the reaction rate would
take the variances and covariance into account. For a simple system with two
concentrations, the filtered reaction rate would then be

ω̇ =

"
ω̇ ( f1, f2)P( f1, f2)d f1d f2. (4.2)

In this work, PDFs are usually represented by particle ensembles, in which case
4.2 results in

ω̇ =
1
N

N

∑
i=0

ω̇( f (i)1 , f (i)2 ), (4.3)

with N as the number of particles and (i) denoting the i-th particle of the distribu-
tion.

4.2 Flow Description Using PDFs

The Navier-Stokes equations described in chapter 2 can be used to exactly predict
the evolution of a flow field. However, due to the non-linearity of the equations,
slight variations in the initial or boundary conditions can result in large variations
of the resulting flow field. However, in most cases, a single realization of the
resulting flow field is only of minor interest. Instead, a statistical description of the
flow can be used. As such, the flow variables can be treated as statistical variables.
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4.2.1 One-Point, Velocity PDF

If a fixed point (x, t) is taken in space time, the PDF F of the velocity component
u1 is defined as [Fox03]

Fu1 (U1;x, t)≡ P{U1 ≤ u1(x, t)<U1 +dU1} . (4.4)

If a statistically significant number of flow realizations are present, (4.4) shows
the probability that the variable u1 at the position (x, t) is between U1 and U1+dU1
in the sample space.

4.2.2 One-Point Velocity Composition PDF

Turbulent mixing can be described using the one-point joint velocity/composition
PDF as

Fui,φ (U,Φ;x, t)≡ P{[Ui ≤U(x, t)<Ui +dUi]∩ [Φ≤ φ(x, t)< Φ+dΦ]} (4.5)

4.2.3 One-Point Composition PDF

By integrating (4.5) over the entire velocity sample space,

Fφ (Φ;x, t) =

+∞$
−∞

Fui,φ (U,Φ;x, t)dUi (4.6)

the one-point composition PDF is obtained, resulting in

Fφ (Φ;x, t)≡ P{Φ≤ φ(x, t)< Φ+dΦ} , (4.7)

with φ as the scalar in question and Φ as the point in sample space that is be-
ing sought. Removing the velocity information implies the following restrictions
[Fox03]

• Due to the missing information about the velocity field, a turbulence model
needs to supply mixing information by the velocity field (i.e. turbulence).

• The link between the scalar field and the velocity fluctuations, i.e. the scalar
fluxes is lost. A scalar flux model is required for closure.
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• The information about the scalar dissipation rate is lost. The variance decay
has to be provided by another means, such as a mixing model or a direct
model for the scalar dissipation rate in the transport equation for the scalar
variance. Such a model is shown in section 4.6.

Describing the mixing state by using a PDF method with a one-point PDF is a
common approach to simulate mixing phenomena, while models for the turbu-
lence, scalar fluxes and scalar dissipation rates are employed.

4.2.4 One-Point Joint PDF

Also, if two mixture fractions or concentrations are present, they can be written
into a single joint composition PDF

Fφ1,φ2(Φ1,Φ2;x, t)≡ P{[Φ1 ≤ φ1(x, t)< Φ2]∩ [Φ2 ≤ φ2(x, t)< Φ2]} (4.8)

4.3 Filtered Density Functions

Initially, PDF methods have been formulated for RANS computations, where only
the mean values of the flow field are directly computed. The PDFs could then be
used to model the fluctuating part of any variables. However, the PDF approach
has been adopted for the use in LES context. In LES the PDF is then used to
model only the sub-grid scale part, which is not directly simulated. Formally, the
PDF itself is filtered leaving only the sub-grid scale filtered density function. The
difference between a full PDF and an FDF in LES context shall be shown here. As
seen in chapter 2, an ideal LES filter cuts off all wave numbers κ greater than a
cut-off value κc. Thus, the unresolved velocity field ui(xi, t) in spectral space is

ui(xi, t) = ∑
|κ|>κc

Ûκ (t)eiκx (4.9)

with Û representing the velocity in Fourier space. The filtered density function
suggested by Pope [Pop00] is defined as

hU (V ;x, t) =
+∞∫
−∞

δ [U(r, t)−V ]G(r− x)dr. (4.10)
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This FDF is a random variable in the sense that it is different for each flow realiza-
tion. This in contrast to the velocity PDF which is defined on the sub-ensemble of
all realizations of the flow that possesses the same filtered velocity field [Fox03].

4.4 Different PDF Approaches

Two main approaches exist for PDF methods. On the one hand are presumed
PDF methods where the shape of the distribution is predetermined by an analytical
function. The number of parameters that this function possesses then equals the
number of transport equations that need to be solved.

On the other hand, transported PDF methods do not predetermine the shape of
the PDF. One of the most successful approaches to these methods is the Monte-
Carlo approach. Here, the PDF is represented by a large number of particles.

This work introduces a new approach to describing the PDF which is positioned
in the middle between presumed PDF and transported PDF approaches.

The three different approaches shall be explained in this section, along with a
short comparison.

4.4.1 Presumed PDFs

The most straightforward approach is to presume a given functional form of the
PDF [GB87, Gut91]. Most commonly used functions are for example Gaussian
functions, clipped Gaussian functions and Beta functions. This approach is com-
putationally inexpensive since it only adds transport equations for the parameters
or statistical moments that the function requires. For the (clipped or unclipped)
Gaussian, these would be for example the means and variance, or the first and
second order moment. Due to the simplicity of the approach, it proves also to be
numerically stable.

While this approach has been applied with success to a number of technical
applications, the main drawback still remains: There is no physical derivation for
the shape of the PDF, the underlying ’presumed’ function will always be arbitrarily
chosen.

For a presumed PDF, the filtered reaction rate can be derived from equation (4.2)
as

ω̇ =

"
ω̇ ( f1, f2)P

(
f1, f2; f 1, f 2, f ′21 , f ′22 , f ′1 f ′2

)
, (4.11)
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with f representing the means, f ′2 representing the variance and f ′1 f ′2 representing

the covariance. The term
(

f1, f2; f 1, f 2, f ′21 , f ′22 , f ′1 f ′2
)

is the probability that the

tuple f1, f2 occurs if the input parameters are f 1, f 2, f ′21 , f ′22 , f ′1 f ′2. Brandt [Bra05]
shows that neglecting the covariance can result in significant errors in the reaction
rate.

One of the most significant limitations of the presumed PDF approach is the low
number of degrees of freedom: The function that has been selected to represent
the mixing state of the cell determines the number of transport equations that are
needed: Each parameter of the function requires one transport equation.

4.4.2 Transported PDFs

Transported PDFs are the other end of the computational cost scale. In this ap-
proach, a large number of (mass less) particles is introduced into the flow field.
The particles themselves carry the property or multiple properties of the flow that
is of interest, for example mixture fractions. The PDF is then represented by the
ensemble of all particles that are present in a single computational cell at a given
point in time. However, this approach is, on the one hand, computationally ex-
pensive, as it involves tracking a large number of particles through the field, since,
for stable statistics, each cell needs to contain a sizable number of particles. Thus,
the number of particles that need to be tracked, far exceeds the number of cells in
the computational domain. Also, algorithms for particle management need to be
introduced, since particles might cluster in large numbers in a single cell, while
other cells might become devoid of particles over time. The particle management
has to add or remove particles from those cells without altering the statistics of the
ensemble in the cell.

Transported PDF methods require modeling of particle interaction. If the parti-
cles carry, for instance, information of the chemical composition of the cell, parti-
cles which are adjacent in physical space will interact with one another by mixing.
Mixing models like those shown in the next chapter can represent the physical
mixing within the cell. However, in order for the mixing models to work, adjacent
particles need to be found, a task which is either computationally expensive, mem-
ory intensive or a combination of both, depending on the underlying algorithms.
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4.5 Joint Presumed Discrete Distributions (jPDD)

The present work combines ideas from both approaches, as it employs multi-
variate ensembles of discrete particles to represent Filtered Density Functions (as
in transported PDFs), but generates those ensembles using transport equations for
statistical moments (as in presumed PDF). Those FDFs provide a closure for the
chemical source term and are used to model the sub-grid scale mixing state of
each cell. The particle ensembles (or distributions) are herein defined by their
first and second order statistical moments. This so called joint probability discrete
distribution (or jPDD) approach has been suggested previously for the Reynolds-
Averaged-Navier-Stokes (RANS) context [Bra05, BGP04, BP02, BPI+03]. Brandt
et al have employed the jPDD approach sucessfully for combustion processes. In
this work, the jPDD approach is refined, adapted for LES and validated using DNS
data. A comparison between the three PDF methods is given in table 4.1

Property presumed jPDD transported
Transported items Moments Moments Particles
Mixing process dissipation rates dissipation rates

& mixing model
mixing model

Coupling N/A low high
Plausibility low medium high
Multiple fractions limited several arbitrary
Computational effort very low low very high
Memory requirement very low high very high

Table 4.1: This table compares the three PDF methods.
Coupling displays the link between the flow field and the probability distribution.
Plausibility shows how much other physical properties determine the shape of the
distribution
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4.6 Transport Equations for PDFs

Previously in this chapter, various types of PDF have been introduced. In order
to be able to employ these PDFs within CFD, it is required to derive a transport
equation for this PDF. This section will first introduce a general transport equation
for a PDF and then derive the transport equation used in this work, which are based
on transport equation for statistical moments known from presumed PDF methods.

4.6.1 Transport Equation for a Joint PDF

Fox [Fox03] shows methods how a transport equation for the PDFs can be derived.
A transport equation for the full velocity, composition PDF can be derived as

∂ fui,φ

∂ t
+Vi

∂ fui,φ

∂xi
=− ∂

∂Vi

(
f 〈Ai|Vi,ψ〉 fui,φ

)
− ∂

∂ψi

(
f 〈Θi|Vi,ψ〉 fui,φ

)
(4.12)

where Vi is the sample space vector. Evolution of the PDF described in equa-
tion (4.12) can happen by three main mechanisms

• Convection by the velocity field

• Convection through the conditional acceleration term, which is the first term
on the right hand side

• Reaction or Diffusion, which is the second term of the right hand side

The two terms on the right hand side are referred to as conditional fluxes. These
terms need to be closed, which is done by deriving them from the right hand side
of the momentum equation and scalar transport equation, giving

〈Ai|Vi,ψ〉=

〈(
ν

∂ 2ui

∂x2
j
− 1

ρ

∂ p
∂x)i

)
|Vi,ψ

〉
− 1

ρ

∂ p
∂xi

+gi (4.13)

and

〈Ψ|V,ψ〉=

〈
Γ

∂ 2φα

∂x2
j
|Vi,ψ

〉
+Sα (ψ). (4.14)

The first term on the right hand side of both equations are unclosed and are the
result of the density/pressure fluctuations and molecular diffusion, respectively.
Modeling these terms pose the principal challenge for transported PDF methods.
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4.7 Transport Equations for Statistical Moments

As seen in the previous section, transport equations for PDFs contain considerable
modeling effort due to unclosed conditional terms. However, as the present work
requires transport equations for statistical moments of distributions, these are de-
rived from the basic filtered scalar transport equation. The transport equation for
the mean (i.e. filtered value) has already been covered in chapter 2, hence this
section will focus on the second order moments.

4.7.1 Scalar Variance

Starting from the basic transport equation of the mixture fraction in LES context,
using an eddy diffusivity model

D f
Dt

= (Γ+ΓSGS)
∂ 2 f

∂x j∂x j
, (4.15)

the transport equation for the sub-grid scale scalar variance f ′2 can be derived.

If the sub-grid scale scalar variance are the subgrid scale fluctuations, thus

f ′2 = ( f − f )2, (4.16)

which, by restricting the allowable filter operations to projectors, simplifies to
[JDCB01]

f ′2 = f 2− f 2
. (4.17)

Using the definition of the filtered density function introduced earlier in chapter
4, the second order moment, which is the sum of the square of fluctuations about
the filtered values yields [GO93, DVnF97]∫ [

Γ− f (xi)
]

P(Γ,xi)dΓ = f 2(xi)− f (xi)
2
. (4.18)

Deriving the full transport equation for the scalar variance then results, with
V f = f ′2 in [JDCB01]

∂V f

∂ t
+

∂uiV f

∂xi
=Γ

∂ 2V f

∂x2
i
−2Γ

∂ f
∂xi

∂ f
∂xi

+2Γ
∂ f
∂xi

∂ f
∂xi

− ∂ui f 2−ui f 2

∂xi
+2 f

∂ui f −ui f
∂xi

.

(4.19)
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Using a typical eddy diffusivity approach for the last two terms on the right hand
side of equation (4.19), which represent transport of the scalar field by the sub-grid
scale turbulence, gives the transport equation with only a single unclosed term

∂V f

∂ t
+

∂uiV f

∂xi
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∂x2
i

+2(Γ+ΓSGS)
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∂xi
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∂xi

−2Γ
∂ f
∂xi

∂ f
∂xi

.

(4.20)

Note that for large Reynolds numbers the sub-grid scale diffusivity ΓSGS far out-
weighs the molecular diffusivity Γ. As shown in chapter 2, ΓSGS can be determined
using a dynamic scheme, reducing the number of fixed model constants.

This term,

χ = 2Γ
∂ f
∂xi

∂ f
∂xi

, (4.21)

is known as the scalar dissipation rate and referenced to as χ in this work, requires
another closure approach. The scalar dissipation rate is the main mechanism that
reduces sub-grid scale scalar variance, due to the quadratic nature of the term.
Also, note that scalar variance is mainly reduced where the gradient of the mean
field is high. Modeling this term has been a very active field or research recently
especially in RANS context, where it has been found to have a high influence on
the reaction rate in turbulent reacting flows at high Damköhler numbers.

4.7.2 Closure for the Scalar Dissipation Rate

It has been suggested [PM98] to assume that the scalar dissipation and the variance
production are in equilibrium, as in

χ = 2Γ
∂ f
∂xi

∂ f
∂xi

= 2(Γ+ΓSGS)
∂ f
∂xi

∂ f
∂xi

. (4.22)

In a closed system, the total amount of variance would thus be constant, while
mixing is a process that is known to reduce variance [MJ06]. This assumption has
been used in a context where no transport equation for the variance was present.

If a variance transport equation is employed, however, a model for the scalar
dissipation rate is required that reduces scalar variance during the mixing process.
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4.7 Transport Equations for Statistical Moments

As such, Jimenez et al [JDCB01] have suggested a non-equilibrium approach that
models the scalar dissipation rate using the mechanical–to–scalar time scale ratio,
thus

χ =CRV f τ f , (4.23)

with τ f as the characteristic mixing time. The same author also determines the
modelling parameter C as

CR =
1

Sc
(4.24)

taken from an a priori analysis of DNS data. By approximating the characteristic
mixing time as the ratio between kinetic energy κ and the kinetic energy dissipa-
tion ε , it can be written as

τ f =
κ

ε
. (4.25)

Unless a k− ε model is used to model the turbulence, values for κ and ε need
to be obtained from available values, for example by using a Smagorinsky-type
approach for the dissipation rate ε [Sma63] and a Yoshizawa approach for the
kinetic energy κ [YH85], resulting in

τ f =
κ

ε
=

2CI∆
2Si jSi j

2
(

ν +CS∆
2 ∣∣S∣∣)Si jSi j

. (4.26)

Fox [Fox03] shows that at Schmidt numbers of around unity the mechanical-to-
scalar time-scale ratio will be approximately constant, τ f ≈ 2, for a given Taylor-
scale Reynolds number.

Combining equation (4.23) with equation (4.26) yields the model equation for
the scalar dissipation rate as [FP10]

χ =
ν +CS∆

2 ∣∣S∣∣
ScCI∆

2

(
f 2− f 2

)
. (4.27)
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4.7.3 Scalar Covariance

As was shown in section 3.4.2, the covariance is a generalization of the variance,
in other words, the variance is the covariance of a statistical variance with itself.
This yields the transport equation for the covariance as
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(4.28)

For a detailed derivation of this, see the appendix A.

When employing the same models as for the variance this leads to
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(4.29)

with the unclosed term

χ12 = 2Γ
∂ f1
∂xi

∂ f2
∂xi

, (4.30)

remaining. This is called the scalar cross dissipation rate. It should be noted that
this term is no longer quadratic in nature like the scalar dissipation rate is. Thus, it
is a mechanism that can both produce and remove scalar covariance.

4.7.4 Closure for the Cross Dissipation Rate

Using the same approach as in section 4.7.2 the resulting model for the scalar
cross-dissipation rate reads

χ12 =
ν +CS∆

2 ∣∣S∣∣
ScCI∆

2

(
f1 f2− f1 f2

)
. (4.31)
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4.7.5 The Full Set of Transport Equations

This is the complete set of transport equations required for the incompressible LES
solver using means, variances and covariance for the mixture fractions.

• Continuity equation
∂ui

∂xi
= 0. (4.32)

• Momentum equation
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• Transport equation for the mean of the mixture fraction
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• Transport equation for the variance of the mixture fraction
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• Transport equation for the covariance of the mixture fractions
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With

τi j = −2(CS∆)2 ∣∣S∣∣Si j (4.37)

ΓSGS =
2(CS∆)2

ScSGS

∣∣S∣∣ (4.38)∣∣S∣∣ ≡ (
2Si j Si j

) 1
2 (4.39)

Si j ≡ 1
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)
. (4.40)

Note: Using a dynamic procedure for CI and CS fully closes this system of
equations.
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This chapter will assess the quality of the developed model against DNS data. The
first section of this chapter, 5.1 will explain how each model assumption will be
tested against DNS data. The following section, 5.2 explains the physical con-
figuration of the test up and the rationale behind selecting it. Section 5.3 then
introduces the CFD solvers used and the numerical setup of the computations. Af-
ter that, section 5.4 explains the post-processing of the DNS data that is required
to validate the model.

5.1 Validation Strategy

Three questions need to be answered when judging the quality of the model devel-
oped for this work.

1. The transport equations developed in chapter 4 contain a number of un-
closed terms, for which models have been devised. Such equations have
been developed for the first and second order statistical moments of the dis-
tribution. The first order moment represents the mean of the distribution. In
this case, a standard eddy-diffusivity approach with dynamic model closure
has been employed. This method has been used widely in the past for both
academic research and technical applications.

Thus, the validation effort for the transport equations focuses on the trans-
port equations for the second order moments, which represent the variances
and covariance of the distribution. Here, the crucial part is the modeling of
the scalar dissipation rate in the variance transport equation and the scalar
cross dissipation rate in the covariance transport equation. The results of
this analysis are shown in section 5.5.

2. The jPDDs generated by the mixing model are used to compute reaction
rates. Thus, the reaction rates need to be validated by being compared to
DNS data. However, there are no such distributions in DNS. It is therefore
required to devise a scheme that extracts distributions from DNS compu-
tations. These DNS distributions are then used to compute a DNS reaction
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5 A Priori Validation of Model Assumptions

(a) Mixture fraction of central jet (b) Mixture fraction of annular jet

Figure 5.1: DNS of a co-annular jet-in-crossflow, showing the mixture fractions for the two
jets, main flow from left to right. (a) Mixture fraction of central jet. (b) Mixture
fraction of annular jet.

rate, which is compared against the one obtained from the jPDD. The results
from this comparison are discussed in section 5.6.

3. In this work, jPDDs of two mixture fractions are characterized by five pa-
rameters: two mean values, one for each mixture fraction, two variances
and the covariance. The question that arises is whether those five param-
eters are sufficient or whether others shall be taken into account. Natural
candidates for additional parameters were the scalar dissipation rates and
the scalar cross dissipation rate. In order to answer this question, the DNS
data has been filtered again. However, this time the extraction of distribu-
tions from DNS data was performed so that the DNS distributions were not
only defined by the five model parameters but also by additional parameters.
The dependence of the reaction rate on the additional parameters could then
be assessed. These dependencies are shown in section 5.7.

5.2 Validation Configuration

The validation platform from the presented model is the co-annular jet-in-
crossflow arrangement. This arrangement differs from the normal jet-in-crossflow
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arrangement by the fact that the jet which enters the main flow consists of two
jets itself. The standard circular jet is enveloped by an annular jet, with each jet
carrying an own mixture fraction. A representation of such a flow can be seen in
figure 5.1, where the two mixture fractions of the jets can be seen.

This configuration has been chosen for three reasons. First of all, it resembles, in
a simplified manner, the configuration of the SEV burner in the Alstom gas turbine
(cf. figure 1.1) that has been the inspiration of this entire work. Furthermore,
an experimental configuration of a co-annular jet-in-crossflow arrangement was
planned. Finally, the single jet-in-crossflow serves as a basis of understanding
mixing processes in the CFD community and also within the SPP1141.

5.3 Solvers and Setup

In this thesis, two different solvers have been used to perform DNS: MGLET,
which was started under the supervision of Wengle [WW89] and is currently being
developed by the group of Prof. Manhart at the Technische Universität München
[Man04, MTF01], and alternatively OpenFOAM, which is an open source CFD
solver with a large and growing community. Two solvers have been used as their
properties complement each other well. In order to perform the simulations, two
clusters were available. First, the Lehrstuhl für Thermodynamik had its own com-
pute cluster for medium sized simulations. On the other hand, large simulations
have been performed on the 64bit cluster of the Leibniz Rechenzentrum (LRZ) in
Munich, Germany.

5.3.1 MGLET

MGLET is a FORTRAN77 based, high performance solver for incompressible
flows which uses a Cartesian staggered grid approach. In order to perform the
simulations needed for this thesis, it was required to extend MGLET’s capability
from a single passive scalar to multiple scalars. This extension has been imple-
mented as an external C library, which plugs into the MGLET solver instead of the
previous single-scalar capability. MGLET has been used in this thesis for a number
of simulations with simple geometries and for simulations with higher Reynolds
numbers, due to its considerable speed advantage over OpenFOAM. Apart from a
number of tests for the implementation of the multiple scalar transport equations,
one of the benchmark computations was a moderate Reynolds number channel
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5 A Priori Validation of Model Assumptions

with a co-annular jet-in-crossflow configuration with the following parameters:
Parameter high Re number low Re number
Maximum velocity of main flow 1.0 1.0
Channel height 2.0 0.4096
Viscosity 0.000355 0.0001138
Reynolds number (half channel) 2817 1800
Channel length 4.8 0.72
Diameter of outer jet 1.0 0.12
Reynolds number (jet diameter) 2817 1054
Maximum velocity of jets 3.0 3.0
Reynolds number (jet) 2112 780
Grid dimensions 350x144x128 256x200x256
Grid points 6451200 13107200
Schmidt number 1 1
Number of CPUs 2 4

All values are in their respective SI [m,kg,s] units for this and all subsequent
tables. A second simulation was performed at a considerably higher Reynolds
number with a smaller jet, where only the near-field of the influx location was
simulated. It can be noted that the flow with the lower Reynolds number actually
has a higher number of grid points. This is due to the fact that for the low Reynolds
number computation, an equidistant grid was used. However, in large sections of
the channel, especially further downstream and near the wall opposite of the jet,
the number of points exceeded the requirement for a DNS. For the higher Reynolds
number flow, a non-equidistant grid has been used, which reduced the very large
number of grid points compared to a non-equidistant grid. Both simulations used
a second order central difference scheme for the spatial discretization with a 3rd
order Runge-Kutta time step scheme. An example of such a flow computation in
MGLET is displayed in figure 5.2

Note that in these computations, the inflow pipes of the channel were not simu-
lated. Instead, the co-annular jet was set up as a simple boundary condition on the
bottom wall with a cosine-shaped velocity profile. This lead to some numerical
instabilities. Due to the fact that the value of the scalar changes from 0 to 1 within
a single cell, the employed second order central difference scheme will lead to
out-of-bounds data for the scalar as can be seen in figure 5.3.
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Figure 5.2: DNS computation from MGLET, using 256x200x256 grid points,with one scalar
shown on the left and the second scalar, corresponding to the annular jet, on the
right. Main flow from left to right.

Figure 5.3: DNS of a jet-in-crossflow arrangement. Left is the two dimensional plot along
the center of the channel, right is the one dimensional plot of the scalar along the
line indicated on the left side. The out-of-bounds values can be seen clearly
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5.3.2 OpenFOAM

OpenFOAM is a CFD software suite with a large and growing community, both in
academic and commercial environments. For the DNS simulations, the so called
"oodles" solver has been used, an incompressible LES solver which supports a
number of discretization and time stepping schemes. For the present work, it was
required to implement scalar transport equations into the solver. OpenFOAM,
despite its considerably lower absolute performance, has been used in this work
because of several advantages it offered of MGLET in some areas:

• OpenFOAM is written in heavily templated C++, offering very fast deve-
lopment and testing. It is only required to formulate the equation and all
the discretization, etc. will be done by the underlying system. The ease of
implementing transport equations in OpenFOAM can be seen in appendix
C,which shows the full implementation of the transport equations used in
this thesis.

• It supports unstructured grids. For the co-annular jet-in-crossflow, a full
geometry including inlet pipes has been set up using a commercial grid gen-
erator (ANSYS ICEM).

As seen previously, not simulating the inflow pipe of the jet leads to non-
physical values of the scalars.Thus, for OpenFOAM computations, a grid was cre-
ated that also contains a section of the inflow pipes. An example of the geometry
used for the OpenFOAM computations using a full co-annular jet-in-crossflow ar-
rangement has been shown previously in figure 5.1. At the inflow plane, a uniform
velocity has been set as boundary condition. The velocity profile halfway through
the pipes can been seen in figure 5.4.

The solver setup for the OpenFOAM DNS has been:
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Parameter Value
Maximum velocity of main flow 0.355
Channel height 0.06
Viscosity 0.00000355
Reynolds number (half channel) 3000
Channel length 0.15
Diameter of outer jet 0.012
Reynolds number (jet diameter) 1200
Maximum velocity of jets 1
Reynolds number (jet) 1600
Grid points 2082600
Schmidt number 1
Number of CPUs 64

Comparing the two solver setups, in particular the number of CPUs required,
shows the significant performance advantage the MGLET solver enjoys over
OpenFOAM.

In OpenFOAM an unstructured grid has been used, with most of the cells clus-
tered around the entry points of the jets. The pipes have been meshed using an
O-grid approach, which extends to the opposite (top) wall of the main channel.
The main channel itself has been meshed using a conventional, structured grid. In
order to assess the quality of the DNS grid, i.e. whether the resolution is sufficient,
a test simulation with an activated LES model has been performed. The sub-grid
scale viscosity of this simulation is shown in figure 5.5. It can be seen that the
sub-grid scale viscosity is, throughout the domain, more than an order of magni-
tude smaller than the molecular diffusion. Thus, the resolution used for the DNS
is sufficient.

The Schmidt number of the flow is unity, so that the Batchelor-length scale is
identical to the Kolmogorov-length scale (cf. equation (2.58). The resolution of the
DNS is then selected to be sufficient to eliminate scalar sub-grid scale fluctuations,
thus the DNS cells contain no scalar variance or co-variance. Transport equations
for two mixture fractions have been solved. One mixture fraction is set to unity for
the central jet, the other for the annular jet.

5.4 Post-processing of DNS Data

One part of the validation strategy is to assess the reaction rates that are obtained
from the jPDDs by comparing them against DNS data. In a further validation step,
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Figure 5.4: Velocity profile in the inlet pipes of a co-annular jet-in-crossflow configuration,
after half the length of the pipe

Figure 5.5: Sub-grid scale viscosity of an LES test run using a DNS grid to assess the re-
solution of the grid. The molecular viscosity of the computation is 3.55e-6. It
can been seen that the contribution of the sub-grid scale model is between one
and two orders of magnitude lower than the molecular viscosity, showing that
the resolution of the DNS is sufficient
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Figure 5.6: The filtering and sweep process to obtain test distributions for comparison with
the mixing model.
Step 1: A coarser grid is superimposed onto the DNS grid creating small distri-
butions.
Step 2: Small distributions with similar statistical moments are sought through-
out the domain both in spatial and temporal dimensions.
Step 3: Similar distributions are put together into one macroscopic distribution.

it should be determined whether the first and second order moments are indeed
sufficient to characterize the mixing state. However, each cell in the DNS has only
one sample of mixture fractions, as there is no variance within the computational
cell. The following scheme, which is depicted in figure 5.6 has been developed to
obtain distributions from the DNS data:

1. A test grid is generated that has a significantly lower resolution than the
computational grid for the DNS. For the Cartesian grids in the MGLET
simulations, the test grid was between three and eight times coarser than the
computational grid. Hence, each cell in the test grid contains between 27
and 512 samples of mixture fractions.

2. For each cell in the test grid, statistical moments of the distributions within
the test grid are computed.
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3. The number of samples in each of the test grid cell is still too low (27 to
512) to provide reliable statistics. Hence, all test grid distributions that pos-
sess the same first and second order moments, within a certain margin of
error, are combined into a single distribution with a large number of same,
called DNS distribution. The search for similar cells can be performed in all
spatial and the temporal dimension to maximize the number of sample for
the macroscopic distributions.

In the scheme explained above, distributions that possess the same first and
second order moments are combined. The set of parameters according to which
the combination is performed is called clustering parameters. The scheme was
developed so that any variable that is available at a test grid cell can be used as
clustering parameter.

For the first part of the validation, which is the comparison of reaction rates
obtained from jPDDs and DNS distributions, five clustering parameters have been
selected.

• The mean value of both mixture fractions

• The variances of both mixture fractions

• The correlation of the mixture fractions

In the second part of the validation of jPDDs, the question arises whether these
5 parameters are sufficient to characterize the distribution, or whether other pa-
rameters of the distribution, or the flow, play a major role in the resulting reaction
rates. To answer this question, the set of clustering parameters has been extended
by

• the scalar dissipation rate of either scalar.

• the scalar cross-dissipation rate.

• any combination of dissipation rates and cross dissipation rates.

Within this post processing scheme, three things are of interest. First, as the
underlying computation is a DNS, the dissipation rates are not readily available.
However, using the modeling approach as shown in chapter 4, it is possible to
compute scalar dissipation rates for the test grid cells using the flow parameters.

Second, using all the additional parameters to characterize the distributions re-
sults in an 8-dimensional1 problem. "Typical" regions in this 8-dimensional state

1 two means, two variances, two dissipation rates, one covariance and one cross dissipation rate
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space will have a large number of samples associated to them. However, the ex-
tremes of the state space will most likely have very few or even no samples as only
very few test grid cells are found that have the correct set of clustering parameters.
This problem can be mitigated by computing more time steps during the DNS, thus
generating a high total number of samples, but this comes at high computational
cost.

Finally, while this post processing scheme is applied to the DNS data, all the
possible sets of clustering parameters need to be stored. As, from a numerical
point of view, no two test grid cells will have exactly the same values for the
clustering parameters, a certain amount of difference between the parameters of
two test grid cells are allowed. In other words, the total range for each parameter
was subdivided into ‘bins’. For example, if only a single clustering parameter, for
instance the mean mixture fraction, was chosen, all test grid distributions with a
value of 0.00 to 0.05 would constitute one DNS distribution. A test grid distribu-
tions with a mean mixture fraction value of 0.05 to 0.1 would form a second DNS
distribution, from 0.1 to 0.15 a third, and so forth. In this simple scheme, in the
end there would be 20 DNS distributions.

However, the problem at hand is multi dimensional. If five clustering param-
eters are selected, already 3.2 million different ‘bins’ exist. With all 8 clustering
parameters enabled, this number grows to 25.6 billion, rendering this approach
useless unless fewer bins are chosen for at least some of the dimensions.

5.5 Post Processing Results

This section will give a brief overview of the results obtained by spatially filtering
an instantaneous flow field, as provided by the OpenFOAM DNS solver. Figure
5.7 shows the scalar fields of the two mixture fractions as a visual reference for the
following figures.

5.5.1 Variances and Scalar Dissipation Rates

Figures 5.8 and 5.9 show the variances and the scalar dissipation rates of the two
mixture fractions, as computed from DNS. Not unexpected, the scalar variance
builds up rapidly where there is a steep scalar gradient, which is in accordance
with the transport equations for the LES model. Also, the scalar dissipation rate
ramps up quickly so that scalar variance decays over the evolution of the flow.
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Figure 5.7: Scalar 1 (top) and Scalar 2 (bottom) of a DNS is co-annular jet-in-crossflow
arrangement.
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(a) Variance of scalar 1 (central jet)

(b) Dissipation rate of scalar 1 (central jet)

Figure 5.8: Stream wise slice of the co-annular jet-in-crossflow. (a) Scalar variance of mix-
ture fraction 1. (b) Corresponding scalar dissipation rate
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(a) Variance of scalar 2 (annular jet)

(b) Dissipation rate of scalar 2 (annular jet)

Figure 5.9: Stream wise slice of the co-annular jet-in-crossflow. (a) Scalar variance of mix-
ture fraction 2. (b) Corresponding scalar dissipation rate
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5.5.2 Covariance and Scalar Cross Dissipation Rate

Figure 5.10 shows the covariance and the corresponding scalar cross dissipation
rate of the two mixture fractions. It can be seen that at the influx, where both
mixture fractions enter the main flow, the absolute value of the covariance is at its
peak. Also, at the same location the scalar cross dissipation has a high absolute
value of the same sign. Very much like the scalar dissipation rate is attempting
to remove variance, the scalar cross dissipation is responsible for removing any
covariance as the fluid evolves.

It is worth noting that the filtered DNS data shows that within the region of high
scalar gradients (cf. figure 5.7), a considerable amount of covariance is present.
Figure 3.4 shows that at least for some reactions, the covariance plays a noticeable
role. Thus, including the covariance into the calculation will lead to a more ac-
curate prediction of the mixing process and, in extension, the reaction rate of the
system.

As for the variances and the covariance, the values shown here are the residual
sub-grid scale dissipation rates and cross dissipation rate. As expected, high val-
ues of the dissipation rates occur where the variance of the corresponding scalar
is high, which is reflected in the LES model as shown in section 4.7.2 and 4.7.4.
Scalar dissipation rates are always positive, i.e. the decay the corresponding vari-
ance. This is in contrast to the scalar cross dissipation rate, which can be positive
or negative, thus it can dissipate as well as produce scalar covariance.

5.5.3 Mechanical to Scalar Time Scale Ratio

Figure 5.11 shows the mechanical-to-scalar time scale ratio of the DNS computa-
tion. This ratio, for Schmidt numbers around unity, is assumed to be around 2 for
fully developed spectra. As can be seen the time scale ratio varies greatly between
zero and values larger than 10. This is due to the fact that the mixing process does
not yet possess a fully developed spectrum in the section of the computational area
shown.

However, as can be seen in figure 5.12, the largest part of the regions with ratios
of zero or over 5 are at places wherethe mixture fraction is zero or near zero. In
areas where most of the mixing takes place, the time scale ratio is closed to the
expected value of 2. However, further investigation in this matter is needed, as at
places where the time scale ratio deviates from 2, the transport equation for the
dissipation rate will over- or under predict the mixing.
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(a) Covariance

(b) Cross dissipation rate

Figure 5.10: Stream wise slice of the co-annular jet-in-crossflow. (a) Covariance of the two
mixture fractions. (b) Scalar cross dissipation rate
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Figure 5.11: Mechanical-to-scalar time scale ratio of scalar 1 (top) and scalar 2 (bottom)

85



5 A Priori Validation of Model Assumptions

(a) Time scale ratio of scalar 1 (b) Mean of scalar 1

Figure 5.12: Side-by-side display of the mechanical-to-scalar time scale ratio and the mean
of the same scalar. (a) Mechanical to scalar time scale ratio. (b) mean value of
the mixture fraction.

5.5.4 Transport equations

In chapter 4 the transport equations that are required for this model were presented.
Those equations contain some unclosed terms that require modeling. In order to
assess the quality of this modeling, the corresponding values have been determined
for the DNS, and then compared to the LES of the same flow.

For this comparison, an LES of the co-annular jet-in-crossflow configuration
has been performed with identical geometrical and flow configuration as in the
DNS show insection 5.3. The amount of grid points has been reduced, in this case
to around 400000 cells, while the DNS had over 2 million cells. The following
models have been used:

• Smagorinsky model (dynamic) for the sub-grid scale stresses

• Eidson model (dynamic) for the sub-grid scale scalar flux

• The model presented in chapter 4 for the scalar dissipation rate and the scalar
cross dissipation rate.

In this work, the main terms of the transport equations that required closure
were the scalar dissipation rate and the scalar cross dissipation rate. The compar-
ison of the filtered DNS data and the modeled value of the LES for the two scalar
dissipation rates are shown in figures 5.13 and 5.14. For scalar 1, i.e. the mixture
fraction of the central jet, DNS shows a high scalar dissipation rate around the cir-
cular inlet, the LES exhibits a very similar behavior. However, the gradients of the
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Figure 5.13: Comparison of the sub-grid scalar dissipation rate of scalar 1. Left reference
data obtained by filtering DNS, right the LES model

Figure 5.14: Comparison of the sub-grid scalar dissipation rate of scalar 2. Left reference
data obtained by filtering DNS, right the LES model

dissipation are more pronounced in the DNS which is a result of the considerably
higher grid resolution around the inlet.

For scalar 2, the annular jet, a similar situation occurs. Both LES and DNS
compute the scalar dissipation rate near the influx of the jet, however the DNS still
has considerable steeper gradients due to the higher grid resolution in the regarded
region.

5.6 jPDDs and Reaction Rates

In order to assess the quality of the model, reaction rates are obtained for each
cell in the grid, for both the LES and the DNS. As according to chapter 2 the
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composition of a DNS cell can be assumed as homogeneous, the LES cells need
convolution over the distribution from the model. For an FDF that is represented
by particle ensembles, this is the average over the individual reaction rates

ω̇

(
f1, f2, f ′21 , f ′22 , f ′1 f ′2

)
=

1
N

Npart

∑
i=1

ω̇i( f1, f2). (5.1)

The individual reaction rates ω̇i( f1, f2) can, for example, be obtained using
a conventional Arrhenius-like approach, however the model allows any other
scheme to be used that computes reaction rates from concentrations. As described
before, the first part of the results for the validation of the model copes with the
accuracy of the distributions themselves. Distributions that have been obtained
from the mixing models are compared against those extracted from DNS by the
method described in section 5.4. Figure 5.15 shows this comparison, where the
left column shows distributions that have been obtained from the mixing model,
and the right column shows those extracted from DNS data. Each row represents
a sample set of first and second order moments.

Generally it can be seen that the actual distributions found in a filtered DNS
computation and those generated by the model match reasonably well for a variety
of first and second order moments. The most noticeable difference can be seen in
the set 5.15b, where the model generates a number of artifacts with a high value
of the first scalar (the X-axis). In the same set it can also be seen that while the
DNS shows a number of points having a zero or near-zero value of the first scalar,
these points are missing altogether in the distribution produced by the model. As
described before, a mixing model moves all particles towards the mean, dragging
them away from the zero-value of the first scalar with each mixing event, thus
leaving the gap between the Y axis and the points with the lowest X values. Since
the requested mean of the first scalar is rather low, the model requires a number
of points with high values of the first scalar to offset the lack of points with low
values; this fact leads to the artifacts (few points with values far from the mean of
0.06) that can be seen in the distribution.

Figure 5.16 emphasizes the significance of the covariance. The mixing model
is run twice, beginning with the same initial distribution. However, for one run
(blue line), the mixing model has been set to establish a correlation of -0.4, while
during the second run (green line), a correlation of +0.4 has been produced. After
each mixing cycle, the reaction of a sample reaction (in this case, the oxidation
of methane) has been computed using an Arrhenius term. As the mixing takes
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5.6 jPDDs and Reaction Rates

(a) Means: 0.19 and 0.44; Variances: 0.004 and 0.003; Correlation: -0.48

(b) Means: 0.06 and 0.19; Variances: 0.002 and 0.002; Correlation: 0.19

(c) Means: 0.19 and 0.56; Variances: 0.002 and 0.003; Correlation: 0.29

Figure 5.15: Comparison between distributions. Distributions generated by mixing models
are displayed in the left column, those taken from the DNS data are shown in the
right column. The distributions in one row have the same statistical moments.
One scalar fraction depicted on the the X–axis, the other on the Y–axis. Red
lines indicate the boundary of the physical space, so that the sum of scalar
fractions does not exceed unity. In each case, the resulting reaction rate differs
by less than 5%.
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Cor = - 0.4

Cor = + 0.4

Figure 5.16: Example reaction rate over the number of mixing processes. Means are con-
served, Variances decay from left to right. Large differences can be seen be-
tween distributions of different correlations. Blue line: negative correlation of
-0.4; Green line: positive correlation of +0.4

place, the variance decays for both distributions, however the reaction rates after a
given number of mixing events differ greatly between two distributions, although
the means are identical and the variances are similar within statistical noise. After
a large number of mixing events, the variance is converging towards zero, the
covariance subsequently plays a subordinate role.

5.7 Additional Parameters

In section 5.4, it has been explained that numerous test-cells (which are coarser
than the actual DNS cells), that have similar first and second order moments, are
integrated into a single distribution in order to make the results statistically more
meaningful. In Figure 5.17, the individual reaction rates for each of those test
cells within a sample distribution (the distribution itself is seen in Fig. 5.17a)
are shown. In order to collocate the test-cells, a certain tolerance was applied
with respect to the means and variances to allow grouping (as no two cells have
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5.7 Additional Parameters

absolutely identical moments). Computing a mean filtered concentration function
M with

M = f [α]
1 f [β ]2 , (5.2)

the concentrations and the Arrhenius-exponents, and comparing this mean concen-
tration function against the filtered reaction rate, as shown in Figure 5.17e, reveals
that the deviation of the means of the individual test cells is still paramount to the
reaction rate, as a clear dependence can be seen. Figs. 5.17b and 5.17c show the
dependency of the reaction rate on the scalar dissipation rates of the first and sec-
ond scalar, respectively. No dependency between those parameters can be seen.
Also the reaction rate does not seem to depend directly on the scalar cross dissipa-
tion rate 5.17d. At first, this appears to be in direction contradiction to established
theories [Pet84]. However, two points should be taken into account

• In LES, only a part of the scalar dissipation rate actually appears in the
model, the sub-grid scale component, as only the sub-grid scale variance is
transported. Large amounts of the fluctuations are directly resolved by the
grid and thus computed.

• The selected case of auto-ignition in a gas turbine burner is exceptionally
slow chemistry, while the typically seen dependence of the reaction rate on
the scalar dissipation rate is especially pronounced in fast chemistry sys-
tems. Only in fast chemistry small scale reactive-diffusive structures can
develop, where the correlation between the reaction rate and the scalar dis-
sipation rate most significant.
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(a) The example distribution

(b) Dependency of the reaction rate on the first
scalar dissipation rate

(c) Dependency of the reaction rate on the sec-
ond scalar dissipation rate

(d) Dependency of the reaction on the scalar
cross-dissipation rate

(e) Dependency on the filtered concentration
function

Figure 5.17: Reaction rate dependency for a given distribution.
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6 Conclusions and Outlook

Within this thesis, an LES model for ternary mixing has been developed, imple-
mented and validated. Chapter 2 presented the theoretical foundation, whereas
chapter 3 showed the basics of mixing models and the specific adaptation for this
thesis. Chapter 4 then introduced PDF methods and derived the associated trans-
port equations required for this work, along with the sub-grid scale models that
are needed for closure. The final chapter 5 then explained the DNS that have been
performed as a basis of validation and the results for the validation of the model.

• An offline modeling scheme was developed to store the reaction rates of a
chemical system for a mixture fraction based approach. The reaction rates
are stored in a table beforehand using the first and second order statistical
moments of the mixture fractions, which include the covariance. During
the LES, the solver can look up the reaction rate in the table using those
statistical moments.

• The reaction rates for this table are generated by using an FDF approach
where the mixing state is represented by a particle ensemble. The particle
ensemble is created using a specialized version of the Modified Curl mixing
model, which has the following adaptations:

– It can process two mixture fraction simultaneously

– Starting from a configuration of complete unmixedness, it can gen-
erate distributions with specific first and second order moments on
demand

• A set of transport equations has been implemented for the first and second
order moments of multiple mixture fractions. This set of transport equations
possesses two important characteristics:

– The correlation between the mixture fractions is taken into account.

– There is no equilibrium assumption between sub-grid scalar variance
production and dissipation. Production is performed by resolved gra-
dients of the mean scalar field, while the dissipation takes sub-grid
effects into account.
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• DNS of co-annular jet-in-crossflow configurations have been performed,
which served as a basis for validating the LES model.

• A filtering scheme for the DNS data has been developed, which creates dis-
tributions much like the ones used for filling the table described earlier. The
DNS distributions have been compared to the ones generated by the mixing
model.

• The dissipation rates for the variance and covariance rates predicted by the
model have been compared to the DNS data.

Validation of the model against DNS data at low-to-medium Reynolds numbers
yielded the following results:

• The distributions created by the mixing model are very similar to the ones
obtained by filtering DNS data. This is the case for the distributions them-
selves and the reaction rates that have been computed for those distributions
using a simple reaction.

• No correlation could be obtained between the sub-grid scale scalar dissi-
pation rates and the resulting reaction rates using DNS data. The first and
second order moments appear to be sufficient to accurately parametrize the
reaction rate, at least at the configuration that has been tested (co-annular
jet-in-crossflow). It should however be noted that the sub-grid part of the
scalar dissipation rate is only a small part of the total dissipation, due to
the nature of the LES. This leads to the conclusion that for these Reynolds
numbers only 5 parameters1 are sufficient to obtain accurate reaction rates.

Several items still remain open for future work

• In this thesis, DNS was the main source of validation. While the numerical
setup and schemes of DNS are well established, and DNS is widely regarded
as a useful tool for validating new models, it has some limitations. First of
all, DNS is intrinsically expensive. As such, the number of different se-
tups that can be performed is very low simply due to the lack of processing
power available. Also, since the memory consumption grows very rapidly
with the Reynolds number, validation is limited to low-to-medium Reynolds
number regimes. Thus, the presented model should be further validated in
its entirety against both experiments and transported-PDF LES methods.
However, setting up experiments for ternary mixing has been difficult in the

1 for two mixture fractions: two means, two variances, one covariance
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past, and separate work needs to be put into an experimental setup that can
accurately analyze the mixing processing in a co-annular jet-in-crossflow
or similar configuration. Within the SPP1141, experimental validation was
planned. However, the experimental setup proved challenging. For the si-
multaneous measurement of two mixture fractions, two tracer substances
are required that not only have different excitation frequencies, but also low
cross-excitation. During the SPP, no such combination of tracers has been
found.

• The benchmark reaction rate, which was used as a validation tool was lim-
ited to a single reaction, i.e. the oxidation of methane, due to its high impor-
tance in technical combustion applications. Further benchmarking should
be performed using other, gaseous reactants. Special emphasis should be
put on analyzing the influence of the Damköhler number on the model and
the influence of the scalar dissipation rates on the reaction rate at higher
Damköhler numbers.

• It should be tested whether the accuracy of the model could be further im-
proved by implementing a full transport equation for both the scalar dissi-
pation rates and the scalar cross dissipation rates.

• Further analysis of the influence on the sub-grid scalar dissipation rates and
cross dissipation rates on the reaction rates is needed, especially at higher
Reynolds numbers where the sub-grid scale models have more work to do.

• The influence of the mechanical-to-scalar time scale ratio needs to be as-
sessed, since the spectra are not necessarily fully developed and a uniform
value might not be appropriate.

• The population of the look up table should be optimized as well as its storage
as currently only very simple algorithms are used.

95





Bibliography

[Bat59] G. K. Batchelor. Small-scale variation of convected quantities like
temperature in turbulent fluid part 1. general discussion and the case
of small conductivity. Journal of Fluid Mechanics, 5(01):113–133,
1959.

[Bat67] G. K. Batchelor. An Introduction to Fluid Dynamics. 1967.

[BGP04] M. Brandt, E. Gharaibah, and W. Polifke. Modellierung von Mis-
chung und Reaktion in turbulenten Mehrphasenströmungen mittels
Verteilungsfunktion. Chemie Ingenieur Technik, 76(01/Feb):46–51,
2004.

[BMPW10] Bockhorn, Mewes, Peukert, and Warnecke. Micro and Macro Mixing.
2010.

[Bot10] D. Bothe. Evaluating the quality of a mixture: Degree of homogene-
ity and scale of segregation. In Henning Bockhorn, Dieter Mewes,
Wolfgang Peukert, and Hans-Joachim Warnecke, editors, Micro and
Macro Mixing – Analysis, Simulation and Numerical Calculation,
number ISBN 978-3-642-04548-6, pages 17–35. Springer Verlag,
2010.

[BP02] M. Brandt and W. Polifke. Tabulation of mean reaction rates from
multivariate, correlated distributions with a monte carlo model. 9th
Int. Conference on Numerical Combustion, page 2, Sorrento,Italy,
2002. SIAM.

[BPI+03] M. Brandt, W. Polifke, B. Ivancic, P. Flohr, and B. Paikert. Auto-
ignition in a gas turbine burner at elevated temperature. Number
2003-GT-38224 in Proc. of ASME Turbo Expo 2003 Power for Land,
Sea and Air, page 11, Atlanta, Georgia, USA, June 16-19 2003.
ASME.

97



Bibliography

[Bra05] M. Brandt. Beschreibung der Selbstzündung in turbulenter Strömung
unter Einbeziehung ternärer Mischvorgänge. PhD thesis, Technische
Universität München, 2005.

[Cur63] R. L. Curl. Dispersed phase mixing: I. theory and effects in simple
reactors. AIChE Journal, 9(2):175–181, 1963.

[CWP07] R. R. Cao, H. Wang, and S. B. Pope. The effect of mixing models in
PDF calculations of piloted jet flames. Proceedings of the Combus-
tion Institute, pages 1543–1550, 2007.

[DO74] C. Dopazo and E. E. Obrien. Approach to autoignition of a turbulent
mixture. Acta Astronautica, 1(9-10):1239–1266, 1974.

[Dur07] L. Durand. Development, implementation and validation of LES mod-
els for inhomogeneously premixed turbulent combustion. PhD thesis,
TU München, 2007.

[DVnF97] C. Dopazo, L. Valiño, and N. Fueyo. Statistical description of the
turbulent mixing of scalar fields. Int. J. Mod. Phys., B 11:2973, 1997.

[Eid85] Thomas M. Eidson. Numerical simulation of the turbulent Rayleigh-
Benard problem using subgrid modelling. Journal of Fluid Mechan-
ics, 158:245–268, 1985.

[EP88] V. Eswaran and S. B. Pope. Direct numerical simulations of the tur-
bulent mixing of a passive scalar. Physics of Fluids, 31:506–520,
1988.

[FMP09] F. V. Fischer, B. Muralidharan, and W. Polifke. Simulation of ternary
mixing in a co-annular jet in crossflow. JSME Int. J., J. of Fluid
Science and Technology, 4(2):379–390, 2009.

[Fox03] Rodney O. Fox. Computational Models for Turbulent Reacting
Flows. Cambridge, 2003.

[FP10] Frank Victor Fischer and Wolfgang Polifke. Formulation and val-
idation of an LES model for ternary mixing and reaction based on
joint presumed discrete distributions. In Henning Bockhorn, Di-
eter Mewes, Wolfgang Peukert, and Hans-Joachim Warnecke, edi-
tors, Micro and Macro Mixing – Analysis, Simulation and Numeri-
cal Calculation, number ISBN 978-3-642-04548-6, pages 185–204.
Springer Verlag, 2010.

98



Bibliography

[Fri01] R. Friedrich. Strömungen verdünnter Gase. TU München, 2001.

[Fri02] R. Friedrich. Kompressible Strömungen mit Reibung und Wärmelei-
tung. TU München, 2002.

[Fri03] R. Friedrich. Grundlagen turbulenter Strömung und numerische
Simulation. TU München, 2003.

[GB87] E. Gutheil and H. Bockhorn. The effect of multi-dimensional PDFs
on the turbulent reaction rate in turbulent reactive flows at moderate
Damköhler numbers. PhysicoChemical Hydrodynamics, 9(3/4):525–
535, 1987.

[GM95] S. Ghosal and P. Moin. The basic equations of the large eddy simu-
lation of turbulent flows in complex geometry. Journal of Computa-
tional Physics, 118:24–37, 1995.

[GO93] F. Gao and E. E. O’Brien. A large eddy simulation scheme for turbu-
lent reacting flows. Physics of Fluids A, 5:1282, 1993.

[GPMC91] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic
subgrid-scale eddy viscosity model. Physics of Fluids, 3:1760–1765,
July 1991.

[Gri77] U. Grigull. Technische Thermodynamik. De Gruyter, 1977.

[Gut91] E. Gutheil. Multivariate PDF closure applied to oxidation of CO in a
turbulent flow. In A. L. Kuhl, J.-C. Leyer, A. A. Borisov, and W. A.
Sirignano, editors, Dynamics of Deflagrations and Reactive Systems.
Progress in Astronautics and Aeronautics, 1991.

[JDCB01] C. Jimenez, F. Ducros, B. Cuenot, and B. Bedat. Subgrid scale
variance and dissipation of a scalar field in large eddy simulations.
Physics of Fluids, 13:1748–1754, 2001.

[JJ79] W. Kollmann J. Janicka, W. Kolbe. Closure of the transport–equation
for the probability denstiy function of turbulent scalar fields. Journal
of Non-Equilibrium Thermodynamics, 4(1):47–66, 1979.

[Kim04] G. E. Kim. Large eddy simulation using unstructured meshes and dy-
namic subgrid-scale turbulence models. 34th AIAA Fluid dynamics
conference and exhibit, pages 1–18, 2004.

99



Bibliography

[Kol41] A. Kolmogorov. The Local Structure of Turbulence in Incompress-
ible Viscous Fluid for Very Large Reynolds’ Numbers. Akademiia
Nauk SSSR Doklady, 30:301–305, 1941.

[Kol62] A. Kolmogorov. A refinement of previous hypotheses concerning the
local structure of turbulence in a viscous incompressible fluid at high
Reynolds number. Journal of Fluid Mechanics, 13:82–85, 1962.

[Lea07] L. G. Leal. Advanced transport phenomena: fluid mechanics and
convective transport processes. 2007.

[Leo74] A. Leonard. Energy cascade in large-eddy simulations of turbulent
fluid flows. In Turbulent diffusion in environmental pollution, 1974.

[Lil92] D. K. Lilly. A proposed modification of the germano subgrid-scale
closure method. Physics of Fluids, 4:633–635, 1992.

[Man04] M. Manhart. A zonal grid algorithm for DNS of turbulent boundary
layers. Computer and Fluids, 33(3):435–461, 2004.

[Meu08] H. Meuer. The TOP500 Project: Looking Back over 15 Years of
Supercomputing Experience. 2008.

[MJ04] D. W. Meyer and P. Jenny. Stochastic mixing model for pdf simula-
tions of turbulent reacting flows. Tenth European Turbulence Confer-
ence, pages 681–684, 2004.

[MJ06] D. W. Meyer and P. Jenny. A mixing model for turbulent flows based
on parameterized scalar profiles. Physics of Fluids, 18(3):035105,
2006.

[MTF01] M. Manhart, F. Tremblay, and R. Friedrich. MGLET: a parallel code
for efficient DNS and LES of complex geometries. Parallel Compu-
tational Fluid Dynamics 2001, 2001.

[MV89] K. Mayberg and P. Vachenauer. Höhere Mathematik 1. 1989.

[Pet84] N. Peters. Laminar diffusion flamelet models in non-premixed tur-
bulent combustion. Progress in Energy and Combustion Science,
10(3):319–339, 1984.

[Piq02] J. Piquet. La turbulence et sa modelisation. Ecole Centrale de Nantes,
2002.

100



Bibliography

[PM98] Ch. Pierce and P. Moin. A dynamic model for subgrid-scale vari-
ance and dissipation rate of a conserved scalar. Physics of Fluids,
10:3041–3044, 1998.

[Pop85] S. B. Pope. PDF methods for turbulent reactive flows. Progress in
Energy and Combustion Science, 11:119–192, 1985.

[Pop91] S. B. Pope. Mapping closures for turbulent mixing and reaction.
Theoretical and Computational Fluid Dynamics, 2:255–270, 1991.
10.1007/BF00271466.

[Pop94] S. B. Pope. Lagrangian PDF methods for turbulent flows. Annual
Review of Fluid Mechanics, 26:23–63, 1994.

[Pop00] S. B. Pope. Turbulent Flows. Cambridge, 2000.

[PS00] H. Pitch and H. Steiner. Large-eddy simulation of a turbulent pi-
loted methane/air diffusion flame (sandia flame d). Physics of Fluids,
12:2541–2554, 2000.

[PV05] T. Poinsot and D. Veynante. Theoretical and Numerical Combustion.
Edwards, R. T. Incorporated, 2 edition, 2005.

[SM07] F. Schwertfirm and M. Manhart. DNS of passive scalar transport
in turbulent channel flow at high Schmidt numbers. International
Journal of Heat and Fluid Flow, 28:1204–1214, 2007.

[Sma63] J. S Smagorinsky. General circulation experiments with the primitive
equations, part I: The basic experiment. Monthly Weather Review,
91:99–152, 1963.

[SP98] S. Subramaniam and S. B. Pope. A mixing model for turbulent reac-
tive flows based on euclidean minimum spanning trees. Combustion
and Flame, 115(4):487–514, 1998.

[Tay35] G. I. Taylor. Statstical theory of turbulence. Proceedings of the Royal
Society, pages 421–464, 1935.

[TL87] H Tennekes and J. L. Lumley. A First Course in Turbulence. MIT
Press, 1987.

101



Bibliography

[VD72] J. Villermaux and J. C. Devillon. Representation de la coalencence et
de la redispersion des domaines de segregation dans un fluide par un
modele d|interaction phenomenologique. Second International Sym-
posium on Chemical Reaction Engineering, pages 1–13, 1972.

[WW89] H. Werner and H. Wengle. Large-eddy simulation of turbulent flow
over a square rib in a channel. In 7th Symposium on Turbulent Shear
Flows, Volume 1, volume 1 of Thin Solid Films, page 10, 1989.

[YH85] A. Yoshizawa and K Horiuti. A Statistically-Derived Subgrid-Scale
Kinetic Energy Model for the Large-Eddy Simulation of Turbulent
Flows. J. Phys. Soc. Jpn., 54:2834–2839, 1985.

102



List of Figures

1.1 Schematic of the GT26 gas turbine, main flow is from right to left
in this case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Schematic of a co-annular jet in cross flow. Main flow is from left
to right. Left image displays the central jet, right image shows the
annular jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Work flow diagram of the basic idea in this thesis . . . . . . . . . 5

2.1 Volume element of a fluid with the required physical quantities
to describe the flow V: volume of the element S: surface of the
element ρ: density e: internal energy w: heat production σi: shear
stress p: pressure ni: normal vector qi: heat flux vector ui: velocity
vector gi: volume force . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Turbulent flow of exhaust and cooling gases during Space Shuttle
mission STS-1 launch. Picture courtesy of NASA . . . . . . . . . 21

2.3 The turbulent energy cascade . . . . . . . . . . . . . . . . . . . . 24

3.1 Initial distribution for the mixing model. Dashed line indicates
the boundary of the physically accessible state-space: The sum of
mixture fractions can never exceed unity . . . . . . . . . . . . . . 43

3.2 Distribution of mixing parameter for a single mixture fraction
(left) and multiple mixture fractions (right). The area of both rect-
angles in the right case is identical. . . . . . . . . . . . . . . . . . 47

3.3 Variance decay over mixing processes for the Modified Curl
Model over a total of 400 mixing processes with 1600 particles.
Both target variances are met after the same number of mixing
events. The target variances for each mixing parameter is indi-
cated by the horizontal line of the same color. . . . . . . . . . . . 48

3.4 Example reaction rate of the first oxidization step of methane.
Three streams are involved, one contains methane at 300K, the
other two air at 600K and 1200K. . . . . . . . . . . . . . . . . . 50

103



List of Figures

3.5 Distributions with different correlations taken from DNS. (a) Dis-
tribution with a low (absolute value) correlation, which is more
circular in nature. (b) Distribution with a higher absolute value for
the correlation, it is more elliptic. . . . . . . . . . . . . . . . . . . 50

3.6 Principle of covariance based mixing: As the blue particles are
perpendicular to the reference slope (dashed line), they mix more
rapidly as the brown particles, which are more in-line to the refer-
ence slope (mixing intensity indicated by arrow length) . . . . . . 52

3.7 Evolution of the covariance of a given distribution. The initial
covariance is determined by the initial Dirac–Delta peaks, the tar-
geted covariance is -0.2 . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 DNS of a co-annular jet-in-crossflow, showing the mixture frac-
tions for the two jets, main flow from left to right. (a) Mixture
fraction of central jet. (b) Mixture fraction of annular jet. . . . . . 70

5.2 DNS computation from MGLET, using 256x200x256 grid
points,with one scalar shown on the left and the second scalar,
corresponding to the annular jet, on the right. Main flow from left
to right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 DNS of a jet-in-crossflow arrangement. Left is the two dimen-
sional plot along the center of the channel, right is the one dimen-
sional plot of the scalar along the line indicated on the left side.
The out-of-bounds values can be seen clearly . . . . . . . . . . . 73

5.4 Velocity profile in the inlet pipes of a co-annular jet-in-crossflow
configuration, after half the length of the pipe . . . . . . . . . . . 76

5.5 Sub-grid scale viscosity of an LES test run using a DNS grid to
assess the resolution of the grid. The molecular viscosity of the
computation is 3.55e-6. It can been seen that the contribution of
the sub-grid scale model is between one and two orders of magni-
tude lower than the molecular viscosity, showing that the resolu-
tion of the DNS is sufficient . . . . . . . . . . . . . . . . . . . . 76

5.6 DNS post processing step to obtain DNS distributions . . . . . . . 77
5.7 Scalar 1 (top) and Scalar 2 (bottom) of a DNS is co-annular jet-in-

crossflow arrangement. . . . . . . . . . . . . . . . . . . . . . . . 80
5.8 Stream wise slice of the co-annular jet-in-crossflow. (a) Scalar

variance of mixture fraction 1. (b) Corresponding scalar dissipa-
tion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

104



List of Figures

5.9 Stream wise slice of the co-annular jet-in-crossflow. (a) Scalar
variance of mixture fraction 2. (b) Corresponding scalar dissipa-
tion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.10 Stream wise slice of the co-annular jet-in-crossflow. (a) Covari-
ance of the two mixture fractions. (b) Scalar cross dissipation rate 84

5.11 Mechanical-to-scalar time scale ratio of scalar 1 (top) and scalar 2
(bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.12 Side-by-side display of the mechanical-to-scalar time scale ratio
and the mean of the same scalar. (a) Mechanical to scalar time
scale ratio. (b) mean value of the mixture fraction. . . . . . . . . . 86

5.13 Comparison of the sub-grid scalar dissipation rate of scalar 1. Left
reference data obtained by filtering DNS, right the LES model . . 87

5.14 Comparison of the sub-grid scalar dissipation rate of scalar 2. Left
reference data obtained by filtering DNS, right the LES model . . 87

5.15 Comparison between distributions. Distributions generated by
mixing models are displayed in the left column, those taken from
the DNS data are shown in the right column. The distributions in
one row have the same statistical moments. One scalar fraction
depicted on the the X–axis, the other on the Y–axis. Red lines in-
dicate the boundary of the physical space, so that the sum of scalar
fractions does not exceed unity. In each case, the resulting reaction
rate differs by less than 5%. . . . . . . . . . . . . . . . . . . . . . 89

5.16 Example reaction rate over the number of mixing processes.
Means are conserved, Variances decay from left to right. Large
differences can be seen between distributions of different correla-
tions. Blue line: negative correlation of -0.4; Green line: positive
correlation of +0.4 . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.17 Reaction rate dependency for a given distribution. . . . . . . . . . 92

105





Appendix A

Derivation of the Covariance

" [
Γ1−φ 1

][
Γ2−φ 2

]
dΓ1dΓ2 = (A.1)

=

$ [
Γ1−φ 1(x)

][
Γ2−φ 2(x)

]
G
(
x,x′
)

δ
(
Γ1−φ1(x′)

)
δ
(
Γ2−φ2(x′)

)
(A.2)

dΓ1dΓ2dx′ =

=
∫ [

φ1(x′)φ2(x′)−φ 1(x)φ2(x′)−φ1(x′)φ 2(x)+φ 1(x)φ 2(x)
]

G
(
x,x′
)

dx′ =

(A.3)

=φ 1(x)φ 2(x)+φ1(x)φ2(x)−φ 1(x)φ2(x)−φ1(x)φ 2(x) = (A.4)

=φ1(x)φ2(x)−φ 1(x)φ 2(x). (A.5)
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Appendix B

Quality of Mixing

In the SPP1141, within which this thesis was written, it became quickly apparent
that no generally accepted definition of the quality of a mixture exists. This was
especially true in an environment where a large number of different reactors with
a considerable difference in physical size, throughput and Reynolds numbers were
examined. The final publication of the SPP1141 [BMPW10] dedicates a separate
section to exactly this problem. A brief overview of these findings will be shown
here.

Bothe [Bot10] displays that the variance of a mixture fraction or concentration
proves to be a good measure for the quality of the mixing process especially for
reacting mixtures. However, he also explains that the variance is completely in-
dependent from the scale of segregation of the mixture. To adequately describe a
mixture, the analysis of both these parameters appears to be required.

For the homogeneity of a mixture, it is shown that

rate of reaction at given conditions
rate of reaction for homogeneous mixture

= 1+
Cov(cA,cB)

〈ca〉〈cB〉
, (B.1)

which contains the covariance Cov of the concentrations.

It is also shown that for the given configuration, which is a T-shaped mixer, the
integral length scale of the scale of segregation depends on the Schmidt number,
while the smallest length scales depend on the Batchelor length scale. The scale
of segregation itself represents the total surface area as in

|Γ|=
∫
V

|| ∂ f
∂xi
||dV, (B.2)

with Γ as the surface area and the term || ∂ f
∂xi
|| as the Euclidean length of the gradi-

ent of f . In summary, Bothe suggests to put more emphasis on integral measures
of the scaled which have been produced by the mixing process.
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Appendix C

Implementation of the Transport Equations in OpenFOAM

The following is the implementation of the second order moments transport equa-
tions in OpenFOAM including the model for the dissipation rates.

dub = 2 * (sgsModel->nu() + sgsModel->nuSgs()) /
(0.7 * 0.06 * sqr(sgsModel->delta()));

chi1 = tTurb * f1var;

fvScalarMatrix f1varEqn (
fvm::ddt(f1var)
+ fvm::div(phi, f1var, "div(phi,fvar)")
- fvm::laplacian( (D + sgsModel->nuSgs()),

f1var, "laplacian(D,f)")
- 2 * (D + sgsModel->nuSgs()) *

(fvc::grad(f1) & fvc::grad(f1))
+ chi1

);
f1varEqn.relax();
f1varEqn.solve();

chi2 = tTurb * f2var;

fvScalarMatrix f2varEqn (
fvm::ddt(f2var)
+ fvm::div(phi, f2var, "div(phi,fvar)")
- fvm::laplacian( (D + sgsModel->nuSgs()),

f2var, "laplacian(D,f)")
- 2 * (D + sgsModel->nuSgs()) *

(fvc::grad(f2) & fvc::grad(f2))
+ chi2

);
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Appendix C Implementation of the Transport Equations in OpenFOAM

f2varEqn.relax();
f2varEqn.solve();

cross_chi12 = tTurb * f1f2cov;

fvScalarMatrix f1f2covEqn (
fvm::ddt(f1f2cov)

+ fvm::div(phi, f1f2cov, "div(phi,fvar)")
- fvm::laplacian( (D + sgsModel->nuSgs()),

f1f2cov, "laplacian(D,f)")
- 2 * (D + sgsModel->nuSgs()) *

(fvc::grad(f1) & fvc::grad(f2))
+ cross_chi12
);
f1f2covEqn.relax();
f1f2covEqn.solve();
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