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Abstract 
 
 
Diese Arbeit beinhaltet die Monte Carlo Simulationen, sowie die erste Tests mit einem 

adaptiv fokussierenden Neutronenleiter zur Erzeugung eines wellenlängenunabhängigen 

Fokus.  

Bekannte Neutronenleiter umfassen häufig einen Kanalkörper quadratischen Querschnitts, 

zusammengesetzt aus vier Glasplatten. Die Innenfläche des Kanalkörpers ist beispielweise 

mit einer komplexen Struktur von Metallschichten belegt. Durch diese soll, analog zur 

Lichtoptik, ein durchlaufender Neutronenstrahl reflektiert und letztlich weitergeleitet werden.  

Für eine Strahlfokussierung  stehen mittlerweile Neutronenleiter mit einer festgelegten 

Krümmung zur Verfügung. Für viele Untersuchungen ist es wichtig, den Neutronenstrahl auf 

eine möglichst kleine Fläche der zu untersuchenden Probe zu fokussieren. Hier hat es sich bei 

gekrümmten Neutronenleitern der o.g. Art, welche also eine festgelegte Krümmung besitzen, 

als nachteilig erwiesen, dass die Fokussierung (Grösse/Lage der Fokalfläche) 

wellenlängenabhängig ist. Demgemäss bedarf es für Messungen, die mit verschiedenen 

Wellenlängen durchgeführt werden einer entsprechenden Änderung der Krümmung des 

Kanalkörpers. Die Arbeit schlägt hierzu einen Neutronenleiter mit einem einfachen 

Mechanismus zum variablen Einstellen der Krümmung des Leiters vor.    Mittels des 

vorgeschlagenen Mechanismus zum Einstellen der Krümmung soll eine variable Krümmung 

in horizontaler Richtung als auch in vertikaler Richtung des Leiters erreicht werden. Die 

Biegungen in horizontale und vertikale Richtung sind unabhängig von einander.  

Das vorgeschlagene Element zum Einstellen der Krümmung umfasst im Wesentlichen ein 

Betätigungselement (Piezomotor) sowie eine Schubstange, welche mittels des 

Betätigungselements (in Stangen-Längsrichtung) betätigbar ist und über ein Hebelelement an 

der entsprechenden Glasplatte angreift. Über die Einleitung einer entsprechenden Kraft sowie 

eines Biegemoments am freien Ende der Glasplatte lässt sich nahezu jede geeignete Biegung 

erstellen. Durch Monte Carlo Simulationen haben wir die optimale parabolische Krümmung 

eines Neutronenleiters für das Spektrometer TOFTOF an der Forschungsneutronenquelle 

Heinz Maier-Leibnitz (FRM II) berechnet. Erste Tests mit Neutronen haben gezeigt dass man 

mit dem Adaptiv Fokussierenden Leiter bis zu einem Faktor drei in Intensität gewinnen kann 

einhergehend mit einer Verkleinerung der Strahlbreite im Fokalpunkt. Höhere 

Superspiegelung für den Leiter ermöglicht prinzipiell noch ein höher Gewinn. 

Dieser Adaptive Leiter kann in allen Bereichen der Neutronenspektroskopie eingesetzt 

werden, um fokussierende Strahlen zu erzeugen.  
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Abstract 
 
 
 
This work contains the Monte Carlo Simulations, as well as the first tests with an adaptive 

focusing neutron guide for creating a focus that does not depend on the wavelength of the 

incoming neutrons.  

All known neutron guides consist of a rectangular shape, built out of four glass plates. The 

inner side of the guide is coated with a complex structure of metal layers. This reflects and 

guides the neutrons (in analogy with the reflection of the light).  

For beam focusing neutron guides with fixed curvature can be built. For most experiments it 

is important that the beam is focused on to a small surface of the sample. In the case of 

focusing guides with fixed curvature it has been observed that the focusing (dimension and 

position of the beam focus) is wavelength dependent.    

This is why for measurements that are performed with different wavelengths it is very 

important to change the curvature of the neutron guide in order to obtain optimal results. In 

this work we have designed, constructed and tested a guide where we can change the 

curvature during the experiment.  In this way we can obtain a variable curvature in horizontal 

as well as in vertical direction. For a curvature in the horizontal or vertical direction it is not 

necessary to move all four walls, only two of the opposed plates.  

The element that changes the curvature of the guide consists of an acting element 

(piezomotor) as well as a rod that can be operated by the piezomotor and that acts through a 

lever onto the plate. The action of a force and a consecutive torsion momentum at the free end 

of the plate changes the curvature of the whole plate in an almost parabolic way.  

Making use of the Monte Carlo simulations we were able to determine the optimal curvature 

for each wavelength of a neutron guide for the spectrometer TOFTOF installed at the 

Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II). First tests have shown that with 

an adaptive focusing guide one can gain up to a factor three in intensity at the focal position 

and that the width of the beam is getting smaller. An increase in the supermirror coating of the 

focusing guide might bring higher gains in intensity.  

These adaptive focusing guides can find applications in all fields of neutron spectroscopy for 

obtaining focusing beams.  
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1. Introduction 

 

Neutron scattering is a powerful tool for the study of condensed matter because the 

wavelengths and energies of thermal and cold neutrons match well to the length and energy 

scales of solids and liquids. Neutron scattering is a useful source of information about the 

positions, motions, and magnetic properties of condensed matters.  

In order to perform neutron scattering experiments far from the reactor core where the 

background would be far too large to permit a proper measurement, the neutrons need to be 

guided to the experiments using so called ―neutron guides‖. 

In the last years a new technique for guiding neutrons was developed (focusing guides) in 

which the design of a neutron guide is chosen using multiple focusing techniques depending 

on the desired properties of the beam at the sample position (intensity, divergence). 

The aim of this work was to analyze and characterize different types of focusing guides using 

the Monte Carlo simulation program McStas and design an adaptive optics focusing guide for 

the time of flight instrument TOFTOF. Following the results of these simulations a prototype 

was build and tested at TOFTOF. 

Chapter 2 gives a short introduction on neutron properties and principles of scattering and 

reflectivity as an important tool for performing measurements at a research reactor.  

Recent developments in the field of neutron focusing and adaptive optics are also presented. 

In chapter 3 is described the Monte Carlo method and the Monte Carlo program that allows to 

perform simulations where valuable information about the beam properties of an instrument 

can be obtained.  

Chapter 4 presents various Monte Carlo simulations made for focusing in the sub-mm range, 

for optimizing the instrument PGAA as well as for adaptive optics.  

Following the results of the simulations made for adaptive optics an optimized design is 

proposed for the time of flight instrument TOFTOF in chapter 5 together with the Monte 

Carlo simulation results, the construction of a prototype and its characterization.  

In chapter 6 are presented the comparison between simulated and measured results and the 

steps to follow for improving the performances of the prototype.  
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2. Theoretical background 

       

In this chapter are presented the properties of the neutron and its interaction with the matter. 

Special attention is given to neutron scattering and reflectivity, as they provide the tools for a 

better understanding of the principle of functioning of different instruments at the reactor and 

of neutron guides. Special focusing techniques are described, as well as the importance and 

application fields of adaptive optics.  

 

     2.1. Neutrons as particles 

        2.1.1. Properties 

 

Walther Bothe and Herbert Becker described in 1930 an unusual type of a "gamma 

radiation", which occurred, when they irradiated metallic beryllium with alpha-particles 

(helium nuclei). James Chadwick recognized that the properties of this type of radiation were 

similar to a radiation of neutral particles, which were predicted 12 years before by Ernest 

Rutherford. This radiation was assumed to correspond to an uncharged nuclear constituent. 

When finally Irène Joliot-Curie (the daughter of Marie and Pierre Curie) and her husband 

Frédéric Joliot-Curie claimed that the "gamma radiation" of Bothe was able to knock out 

protons with a high energy out of paraffin, it became clear to James Chadwick that only 

"neutrons" with a mass comparable to protons would be able to do so.  In the following 

experiments in the year 1932, Chadwick succeeded to show that the radiation from the 

irradiated beryllium was indeed the assumed uncharged nuclear particle, which was finally 

called the neutron. This discovery was essential for completing the description of the atom 

and its nucleus: the atomic nucleus consists of protons and neutrons and is surrounded by an 

electron cloud. In an electrically neutral atom the number of the negatively charged electrons 

in the electron cloud is exactly equal to the number of positively charged protons in the 

atomic nucleus. The number of neutrons in the nucleus, in contrast, can vary freely within 

certain ranges, giving rise to different isotopes of the same element (with given charge z, the 

number of protons). Neutrons together with protons are the constituents of atomic nuclei. The 

neutron is slightly heavier than a proton and can therefore decay into the ―lighter‖ particles, a 

proton, an electron and an anti-electron-neutrino. A neutron is only stable when bound in an 

atomic nucleus. The lifetime of free neutrons is about 886 seconds [Arzu01]. Neutrons are 

neutral only to the outside; they have an inner structure with a charge distribution of positive 
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and negative charges (this is similar to the neutral atoms). It has also a spin, a kind of an inner 

angular momentum. The moving inner charge leads to another interesting property of 

neutrons: it has a magnetic dipole moment and can, just as a compass needle, adjusts its spin 

in a magnetic field. These properties of neutrons, being neutral, having a magnetic moment 

and a spin, make them a very desirable tool in solid state physics. Neutrons are able to pass 

through massive layers with thicknesses of several centimeters. They can induce nuclear 

reactions, which can be used for a so-called activation analysis. The reaction leads to a 

radioactive nucleus, whose presence can easily be detected by its characteristic radiation. 

When the neutron beam is only scattered by a solid, it transports the information on the 

microstructure inside the solid body. Scattering of neutrons from research reactors is therefore 

used to study the microscopic structure of crystals, or the inner mechanical strain of big 

mechanical parts, like the valve of a ship diesel motor. Neutrons are also useful to study the 

structure of magnetic layer systems, like those used in magnetic storage media [Helm01]. 

To summarise here is a list of main advantages and disadvantages in using neutrons [Pynn01].  

• Advantages in using neutrons: 

 

– Wavelength comparable with interatomic spacings 

– Kinetic energy comparable with that of atoms in a solid 

– Penetrating => bulk properties are measured and sample can be contained 

– Weak interaction with matter aids interpretation of scattering data 

– Isotopic sensitivity allows contrast variation 

– Neutron magnetic moment couples to B => neutron ―sees‖ unpaired electron spins and 

orbital magnetism 

 

• Disadvantages in using neutrons: 

 

– Neutron sources are weak => low signals, need for large samples etc. 

– Some elements (e.g. Cd, B, Gd) absorb strongly 

– Kinematic restrictions (cannot access all energy and momentum transfers) 
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    2.1.2. Interaction of neutrons with matter [Rina01]  

 

How neutrons interact with matter affects the ways in which experiments can be performed 

with neutrons. Neutron interactions with the material affect the interpretation of neutron 

measurements. A neutron can have many types of interactions with a nucleus. Fig.2.1 shows 

the types of interactions and their cross sections. Each category of interaction in the figure 

consists of all those linked below it. The total cross section expresses the probability of any 

interaction taking place. 

A simple notation can be used to give a concise indication of an interaction of interest. 

If a neutron n impinges on a target nucleus T, forming a resultant nucleus R and the release of 

an outgoing particle g, this interaction is shown as T(n,g)R. The heavy nuclei are shown 

outside the parentheses. To denote a type of interaction without regard for the nuclei involved, 

only the portion in parentheses is shown.  

An interaction may be one of two major types scattering or absorption. When a neutron is 

scattered by a nucleus, its speed and direction change but the nucleus is left with the same 

number of protons and neutrons it had before the interaction. The nucleus will have some 

recoil velocity and it maybe left in an excited state that will lead to the eventual release of 

radiation. When a neutron is absorbed by a nucleus, a wide range of radiations can be emitted 

or fission can be induced. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.1 Various categories of neutron interactions. The letters separated by commas in the 

parentheses show the incoming and outgoing particles [Rina01]. 
 
   

 



 12 

 2.2. Neutron scattering and reflectivity 

        2.2.1 Neutron scattering 

 

How can we determine the relative positions and motions of atoms in a bulk sample of solid 

or liquid? Neutrons have no charge, and their electric dipole moment is either zero or too 

small to measure. For these reasons, neutrons can penetrate matter far better than charged 

particles. Furthermore, neutrons interact with atoms via nuclear rather than electrical forces, 

and nuclear forces are very short range—on the order of a few femtometers (i.e., a few times 

10–15 meters). Thus, as far as the neutron is concerned, solid matter is not very dense because 

the size of a scattering center (i.e., a nucleus) is typically 100,000 times smaller than the 

distance between centers.   

As a consequence, neutrons can travel large distances through most materials without being 

scattered or absorbed. 

To understand the neutron scattering technique, we first examine the scattering by a single 

nucleus and then add up scattering from all of the nuclei within the solid or liquid we are 

interested in. This allows us to describe phenomena like neutron diffraction, used to 

determine the atomic arrangement in a material, and inelastic neutron scattering, which 

measures the vibrations of atoms. Minor modifications of the theory allows us to describe  

Small-Angle Neutron Scattering (SANS) that is used to study larger structures such as 

polymers and colloids as well as  surface reflection  of neutrons (often called  reflectometry) 

in which layered materials and interfaces are probed. The consequences of the neutron’s 

magnetic moment can also be explored. It leads to magnetic scattering of neutrons as well as 

to the possibility of polarized neutron beams that can provide enhanced information about 

vector magnetization in materials. 

 

2.2.1.a. Scattering by a Fixed Nucleus  

 

The scattering of neutrons by nuclei is a quantum mechanical process. Formally, the process 

has to be described in terms of the wavefunctions of the neutron and the nucleus. It is useful,  

to be able to switch between thinking about the wavefunction of a neutron—the squared 

modulus of which tells us the probability of finding a neutron at a particular point in space—

and a particle picture of the neutron. This wave-particle duality is common in describing 

subatomic particles, and we will use it frequently, sometimes referring to neutrons as particles 

and sometimes as waves. Quantum mechanics tells us that the wavelength of the neutron 
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wave is inversely proportional to the speed of the neutron. For neutrons used in scattering 

experiment, the wavelength, λ, is usually between 0.1 nm and 1 nm. Often, we work in terms 

of the neutron wavevector, which is a vector of magnitude 2π/λ that points along the neutron’s 

trajectory.  

The scattering of a neutron by a free nucleus can be described in terms of a  cross section,  σ, 

measured in barns (1 barn = 10–28 m2), that is equivalent to the effective area presented by the 

nucleus to the passing neutron. If the neutron hits this area, it is scattered isotropically, that is, 

with equal probability in any direction. The scattering is isotropic because the range of the 

nuclear interaction between the neutron and the nucleus is tiny compared with the wavelength 

of the neutron, so the nucleus essentially looks like a point scatterer. 

Suppose that at an instant in time we represent neutrons incident on a fixed nucleus by a 

wavefunction       in other words a plane wave of unit amplitude. The squared modulus of 

this wave function is unity for all positions, so the neutron has the same probability of being 

found  anywhere but has a definite momentum          . For a wave travelling in the x 

direction, the nodes of the wavefunction are straight wavefronts, as shown in Fig.2.2.   

The amplitude of the neutron wave scattered by the nucleus depends on the strength of the 

interaction between the neutron and the nucleus. Because the scattered wave is isotropic, its 

wavefunction can be written as    

 
        if the scattering nucleus is at the origin of our 

coordinate system. The constant b, referred to as the scattering length of the nucleus, 

measures the strength of the interaction between the neutron and the nucleus. The minus sign 

means that b is a positive number for repulsive interaction between neutron and nucleus. 

Scattering length has the dimensions of length and is constant for a given nucleus.  
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Fig.2.2. A neutron beam incident on a single scattering center and travelling in the x direction 

can be represented by a plane wave with unit amplitude. Because the neutron sees the 

scattering center (a nucleus) as a point, the scattering will be isotropic. As a result, the 

scattered neutron beam spreads out in spherical wavefronts (here drawn as circles) of 

amplitude b/r [Sivi01]. 

 

Because we have specified that the nucleus is fixed and because the energy of the neutron is 

too small to change the internal state of the nucleus, the scattering occurs without any change 

in the neutron’s energy and is said to be elastic [Walt01]. Because the neutron’s energy is 

unchanged by the collision, the same amount of wavevector k appears in the incident and 

scattered wavefunctions. It turns out that the cross section, σ, is given by σ = 4πb2. 

 

2.2.1.b. Scattering of neutrons by matter 

 

When neutrons are scattered by matter, the process can alter both the momentum and energy 

of the neutrons and the matter. The scattering is not necessarily elastic as it is for a single 

fixed nucleus because the atoms in matter are free to move to some extent. They can therefore 

recoil during a collision with a neutron or, if they are moving when a neutron arrives, they can 

transfer energy to the neutron. As is usual in a collision, the total energy and momentum are 

conserved: the energy, E, lost by the neutron in a collision is gained by the scattering sample 

and vice versa [Prin01]. While considering the scattering of neutrons by matter, the 
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expression scattering vector (Q) is generally used which is the difference between the wave 

vector of the incident neutrons (k) and the wave vector of the scattered neutrons (k’). The 

relationship between these quantities is generally represented using ―scattering triangles‖ 

[Dobr01] and these are depicted in Fig. 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.3 Scattering triangles in elastic and inelastic scattering (adapted from Ref. [Pynn01]) 

 

Scattering triangles are depicted here for both (a) an elastic scattering event in which the 

neutron is deflected but the neutron does not lose or gain energy (so that k’ = k) and (b) 

inelastic scattering events in which the neutron either loses energy  (k’ < k) or gains energy (k’ 

> k) during the interaction [Skol01] . 

In both elastic and inelastic scattering events, the neutron is scattered through the same angle 

and the scattering vector is given by the vector relationship [Love01]: 

Q = k - k’                                                                                                                                 2.1 

In neutron scattering experiments, scientists measure the intensity of neutrons scattered by 

matter (per incident neutron) as a function of the variables Q and E. The scattered intensity, 

denoted I (Q, E)  is often referred to as the  neutron-scattering law for the sample material. 

In 1954, Van Hove [VanH01] showed that the scattering law can be written in terms of time-

dependent correlations between the positions of pairs of atoms in the sample. Van Hove’s 

result implies that I (Q, E) is proportional to the Fourier transform of a function that gives the 

probability of finding two atoms a certain distance apart.  
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Van Hove’s work makes use of an observation made by Fermi that the actual interaction 

between a neutron and a nucleus may be replaced by an effective potential that is much 

weaker than the actual interaction. This so-called pseudo-potential causes the same scattering 

as the actual potential but is weak enough to be used in a perturbation treatment of scattering 

originally derived by Max Born. The Born approximation [Mess01] says that the probability 

of a neutron wave of wavevector k being scattering by a potential V(r) to become an outgoing 

wave of wavevector k’ is proportional to: 

                    
 

               
 
                                                                            2.2 

where the integration is over the volume of the sample. The potential V(r) to be used in this 

equation is the Fermi pseudo-potential which, for an assembly of nuclei situated at positions  

rj is given by: 

      
    

 
                                                                                                               2.3 

where m is the neutron’s mass and  δ(r) is a Dirac delta function which takes the value unity 

at position r and is zero everywhere else. The bj that appear in equation 2.3 are the scattering 

lengths that we encountered earlier. Van Hove was able to show that the scattering law could 

be written as:       

       
  

  
                            

 

  
    

 

 
  
                                                                2.4                                                                                                                               

In this equation, the nucleus labeled i is at position ri at time zero, while the nucleus labeled j 

is at position rj at time t. Equation 2.4 is a double sum over all of the positions of the nuclei in 

the sample, and the angular brackets indicate that we need to do a thermodynamic average 

over all  possible configurations that the sample could take with:        

       
                                                

      

      
                         2.5 

Let us suppose further that all of the nuclei in our sample have the same scattering length so 

that  bi = bj = b. Then the right-hand side of equation 2.5 becomes:    

                  

      
                                                                                                    2.6 

where:  

       
 

 
                                                                                                         2.7 

and N is the number of nuclei in the sample. Evidently the function G is zero unless the 

separation between nucleus i at time zero and nucleus j at time t is equal to the vector r. Thus, 

the function tells us the probability that, within our sample, there will be a nucleus at the 

origin of our coordinate system at time zero as well as a nucleus at position r at time t. For 
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this reason this function is called the time-dependent pair correlation function because it 

describes how the correlation between the positions of nuclei evolves with time.  

Van Hove’s scattering law can be then written as 

       
      

  
                  

      

 

  
   

 

 
  
                                                              2.8 

which allows us to see that the scattering law is proportional to the space and time Fourier 

transforms of the time-dependent correlation function. This general result provides a unified 

description of all neutron scattering experiments. By inverting Equation 2.8 we can obtain 

from neutron scattering information about both the equilibrium structure of matter and the 

way in which this structure evolves with time. 

Coherent scattering is the case in which neutron waves scattered from different nuclei 

interfere with each other. This type of scattering depends on the distances between atoms and 

on the scattering vector, and it thus gives information about the structure of a material.  

Elastic coherent scattering tells us about the equilibrium structure, whereas inelastic coherent 

scattering (with E ≠ 0) provides information about the collective motions of the atoms, such 

as those that produce phonons or vibrational waves in a crystalline lattice. In the second type 

of scattering, incoherent scattering (like isotope incoherent scattering and nuclear spin 

incoherent scattering), there is no interference between waves scattered by different nuclei. 

Rather the intensities scattered from each nucleus just add up independently. Once again, one 

can distinguish between elastic and inelastic scattering.  Incoherent elastic scattering is the 

same in all directions, so it usually appears as unwanted background in neutron scattering 

experiments.  Incoherent inelastic scattering, on the other hand, results from the interaction of 

a neutron with the same atom at different positions and different times, thus providing 

information about atomic diffusion. 

In reality, atoms are not frozen in fixed positions inside a crystal. Thermal energy causes them 

to oscillate about their lattice sites and to move around inside a small volume with the lattice 

site as its center. Since an atom can contribute to the constructive interference of Bragg 

scattering only when it is located exactly at its official position at a lattice site, this scattering 

becomes weaker the more the atoms vibrate and the less time they spend at their official 

positions. The factor by which the Bragg peaks are attenuated because of the atomic motion is 

called the Debye-Waller factor. Although such weakening of the scattering signal is the only 

effect of the thermal motions of atoms on elastic Bragg scattering, it is not the only way to use 

neutrons to study atomic motions. In fact, one of the great advantages of neutrons as a probe 

of condensed matter is that they can be used to measure details of atomic and molecular 
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motions by measuring inelastic scattering in which the neutron exchanges energy with the 

atoms in a material [Pynn01]. 

Neutrons can also provide information about the structure at or close to the surfaces of 

materials, beside the structure of bulk matter as described so far. Neutrons are sensitive to 

surface structure when they impinge on surfaces at sufficiently low angles. This method is 

usually referred to as neutron reflectometry.  

 

2.2.2. Neutron reflectivity [Baco01]  

 

The reflection of neutrons (neutron reflectometry) at a surface is very similar to the better 

known phenomenon of the reflection of light (optical reflectometry). That a beam of neutrons 

can be reflected from a flat surface just like light was first demonstrated by Fermi and applied 

for the first time for neutron guides. Light reflected from a thin film may undergo strong 

interference depending on the wavelength of the light, its state of polarisation, the thickness of 

the layer and the refractive indices of the media involved. 

 

 

 

 

                                                       k                        k 

 

 

                                                                                kt 

 

 

Fig.2.4 Plane wave reflection on a flat surface. The incident, as well as the reflected and 

transmitted waves are depicted 

 

We assume a neutron beam reflecting on a flat surface with an incident angle theta. This 

surface (see Fig. 2.4) is defined by the interface between the air (n = 1) and a medium of 

refractive indices n < 1. For a wavelength lambda, the wavevector is defined by:  

  
  

 
                                                                                                                                      2.9 

The wavevector in the medium of index n is defined by:      

  
                                                                                                                            2.10 
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N is the number of atoms per volume unit and b is the neutron coherent scattering length. The 

product N·b is called the neutron coherent scattering length density. For a homogeneous 

medium, the refractive indices n is defined by the ratio of the wavevector in the material to 

the wavevector in the vacuum [Squi01]:  

   
  

 
   

  

  
                                                                                                                2.11 

At the interface between the air and a medium of indices n, Descartes' law can be written:  

                                                                                                                                 2.12 

Total reflection occurs if θ lower than 
C  where

C  is defined so as 0n , which means:  

                                                                                                                                     2.13 

From the equations 2.11 and 2.13  we obtain:  

         
    

  

 
                                                                                                       2.14 

which is equivalent to:  

        
  

 
                                                                                                                 2.15 

where the a parameter is used to characterise the material. 

The projection of the wavevector on the z axes (perpendicular to the surface) is defined as:  

   
  

 
                                                                                                                               2.16 

If the material is made of many layers, each one having an index np, the propagation of a 

plane wave in the layers p and p+1 can be written the following way: [Dail01]                                               

                                   
  
 

                                                   
                                           2.17 

where i2 = -1, and Ap and Bp are the incoming and outgoing amplitudes in the layer p 

respectively. We have also: 

  
           

    
                                                                                                                       2.18 

We can write the continuity conditions at the interface p/p+1:  

                           

                                                                                                                  2.19 

The reflectivity in zp/p+1 is defined as being the ratio of the intensity of the reflected beam by 

layer p+1 to the intensity arriving in layer p and is written:  
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where u(zp/p+1) and u'(zp/p+1) are functions of zp/p+1 and qp+1.  

With this equation, we can calculate the reflectivity at the last interface (last layer/bulk), and 

then recursively calculate the reflectivity at each interfaces, and so obtain the reflectivity of 

the air/first layer interface. 

The reflectivity is analyzed using a formula in which the scattering length density, averaged 

over dimensions parallel to the surface, is split into thin layers and each density is refined 

until the measurement can be fitted. This method is called the Parratt formalism [Parr01] and 

has been programmed into a number of widely available software packages. 

  

2.3. Neutron guides 

     2.3.1. Why do we need them? 

 

The neutron guides transport slow neutron beams from the reactor core to the instrument and 

their use was first proposed by Christ, Mayer-Leibnitz and Springer [Chri01], [Leib01]. The 

neutron guides function in analogy with the optic fibers: a neutron entering the guide tube 

with an angle of incidence that is smaller than the critical angle corresponding to its particular 

wavelength will be transported along the tube by multiple total reflection. If a slight curvature 

is then incorporated in the tube, only those neutrons with the wavelength greater than some 

minimum value are transported down the tube. The shorter-wavelength fast neutrons, as well 

as any gammas in the incident beam, pass trough the wall of the tube where they can be 

absorbed in a suitable shielding. In this way a very clean and highly collimated beam of slow 

neutrons can be transported to a low-background location far from the primary neutron source 

where it is then available for neutron scattering experiments [Brue01]. 

 

  2.3.2. The principle 

 

Neutrons as particle waves follow the same law for the total reflection as light waves. To 

construct a neutron mirror or neutron guide the first question to solve was to find a medium 

for neutrons, which is optically "thinner" than vacuum. This is the case for all media with a 

positive scattering length b (see equation 2.11). Nickel exhibits one of the largest scattering 

lengths, i.e. exhibits one of the largest critical angle and is therefore ideally suited as mirror 
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material in neutron guides. The limiting angle for total reflection of a neutron mirror is much 

smaller than for light in the optical glass fiber; it also depends on the neutron wavelength. A 

rough formula for the limiting angle for neutron total reflection at a Nickel surface is 1° times 

the wavelength of neutrons in nanometer, which results for the wavelength of 0.5 nm to 

approximately 0.5°. This small angular range for the total reflection reduces the efficiency in 

comparison to an optical glass fiber, but it still allows transporting neutrons to a remarkable 

distance up to 10 - 100 meter. The acceptance angle of neutrons is improved by using so-

called super-mirrors, with limiting angles larger by factors 2 - 3 as compared to critical angle 

of Ni [Meze01]. The factor by which the critical angle is increased in comparison to the 

critical angle for natural Ni is called m. Super-mirrors are using layer systems with alternating 

layers of for example Ni and Ti, with a maximum in the difference of the respective scattering 

length. The variation in thickness d of the layers is such that a continuum of Bragg reflections 

is added on top of critical angle, thereby increasing the angle of reflection.  

In order to transport thermal or cold neutrons under small glancing angles almost loss-free 

from the neutron source to the distant neutron instrument neutron guides [Sear01] are used. 

Typical neutron guides have lengths of up to 100m and rectangular cross-sections of area 

~100cm2. At first neutron guides were fabricated from glass plates coated on their inside with 

a thin layer of natural Ni or enriched 58Ni. In such guides neutrons are transported by total 

reflection on the inner guide walls, with typical neutron reflection losses of 1% per bounce.    

Starting about twenty five years ago [Leib01], [Brue01] neutron guides equipped with 

'supermirror' coatings were developed. A neutron supermirror [Boen01] consisting of 

typically 100 double layers of Ni/Ti of varying thickness typically doubles the maximum 

permitted angle of neutron reflection. However, neutron reflection losses are stronger for a 

supermirror than for a conventional nickel mirror, typically 10% per bounce. Therefore, very 

long supermirror neutron guides must be of the 'ballistic' type in order to bring benefits 

[Boen02]. A neutron guide is called ballistic when its cross section varies along its length 

such as to minimize transport losses within the guide. In order to suppress a background due 

to a direct beam of gamma rays and fast neutrons, the guide is tightly surrounded by a 

combined shielding consisting of polyethylene, bor and lead. Unlike thermal neutrons, gamma 

rays and fast neutrons are not subject to reflections from the Ni coating and penetrate the 

guide walls. In the shielding around they are scattered and absorbed and only collimated 

thermal neutrons pass through. Therefore, a biological shielding, formed by boron-doped 

polyethylene and lead bricks, is built along the whole guide. 
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The quality of a neutron guide is influence by the quality of the supermirrors that builds it. 

There are a couple of parameters that influence the quality of a supermirror (Ni/Ti 

multilayers), in particular the number of bilayers, possibilities for isotope substitutions, 

interfacial roughness and other imperfections. [Meze02] 

Therefore there is the requirement for adding more and more bilayers in order to reach very 

high critical q values [Hayt01]. This approach is technically limited due to the following 

reasons:  

i) With an increasing number of layers, quality correspondingly suffers due to the increasing 

amplification of interface roughness.  

ii) Diffusion plays an increasing role especially for high-m supermirrors. The smallest single 

layer thickness of an m = 4 supermirror is about 40 Å. For metallic multilayers, it is very 

difficult to achieve rms-roughness values less than 5 Å.  

iii) The technical demands and fabrication time needed for depositing high-m supermirrors is 

roughly proportional to the number of layers; therefore, the cost for high-performance 

supermirror coatings rises very steeply.  

iv) The control of mechanical strain becomes more and more difficult for high-m 

supermirrors having very high total film thickness, e.g. approximately 35,000 Å in the case 

of m = 3.5 mirrors. Associated with this is the danger of mechanical failure of the films 

(cracks or extensive peeling). 

Enhancement of the critical q-value of a supermirror and its reflectivity function may be 

achieved by artificially increasing the contrast in scattering length density, ΔNb, between the 

materials constituting the mirror. There are cases in which natural Ni and Ti are substituted by 

more favourable isotopes or alloyed with other elements, for example hydrogen or carbon 

[Ande01] . 

In order to achieve high reflectivities at large angles it is necessary to grow multilayers with 

very smooth and sharp interfaces on large and smooth substrates. The major problem with this 

large m mirrors is the fact that the total thickness of the coating becomes very large. Therefore 

the force of coating on the substrate exceeds the mechanical strength of the glass and gives 

rise to fractures leading even to coatings detaching from the surface [Boen03].  

As a conclusion, the losses in reflectivity are due to: 

• Absorption due to the enormous total thickness of approximately 50.000 Å  

• Incoherent scattering (playing an important role)  

• Roughness between the interlayers (10% of individual layer thickness), plus  

surface roughness of the substrate  
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• Interdiffusion among the layers becoming increasingly more important with  

decreasing layer thickness  

            • Limited coherence due to deviations from design layering  

• Small-angle scattering on grain structure  

By overcoming the losses stated above, supermirror performances could be enhanced 

significantly. Supermirror coatings have reached nowadays an m factor of 7. 

The neutron reflectivity phenomenon offers us therefore the possibility to transport neutrons 

using neutron guides. The main advantage of using a neutron guide tube is its capability to 

transport a neutron beam easily without significant intensity loss, that is conserving the phase 

space density of neutrons, to a place far distant from the neutron source where a wider area 

with lower background can be prepared for beam utilization. 

 

     2.4. Recent developments 

 

Current trends in condensed matter physics evolve towards the investigation of strongly 

correlated electron systems. They include materials that exhibit quantum phase transitions 

[Stoc01] driving exotic phases, multiferroic materials [Sen01], low dimensional magnetism 

[Thie01] and high-temperature superconductors [Chan01]. However, the need of low 

temperatures in the mK-regime, high magnetic fields and hydrostatic pressures, permanently 

pushes the experimental requirements to new limits, as only small samples can be used under 

these conditions. Therefore, there is a continuous demand for higher neutron intensities at the 

sample position that is required to answer nowadays scientific questions. Neutron optics has 

been constantly developed and upgraded, improving both neutron flux and resolution, in order 

to meet these experimental challenges. Major developments are the installation of supermirror 

guides [Wagn01], [Ibbe01] delivering a high neutron flux to the experimental position, and 

the virtual source concept [Pint01], [Kuld01] that in combination with large focusing 

monochromator and analyzer arrays [Rist01], [Nune01], [Sche01], [Link01] allows to 

increase the energy resolution of the spectrometer while simultaneously focusing the neutron 

beam on small samples and reducing the background. 

The use of focusing guides is therefore a well-established technique to significantly increase 

the neutron flux for the investigation of small samples or samples subject to extreme 

conditions such as pressure or high magnetic field. In chapter 2.4.1 are presented possible 

ways of focussing a neutron beam, while in chapter 4 are illustrated simulation techniques and 

results for reaching the sub-mm range. 
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        2.4.1. Focusing neutron guides 

         2.4.1.a. Focusing principles 

 

A bent guide tube instead of a straight guide transmits preferentially those neutrons with a 

wavelength longer than the characteristic wavelength given by the geometrical configuration 

of the guide, which reduces the components of shorter-wavelength neutrons and gamma rays 

unnecessary for the neutron optics and slow neutron scattering experiments [Mild01]. 

This cutoff wavelength depends on the guide curvature and width. If we consider a curved 

guide with the radius of the outer wall ρ and the distance between the inner and the outer wall 

(width) a (see figure 2.5), this curved guide has a characteristic angle:           

This is the minimum angle that the guide subtends (in the horizontal plane) in order to get out 

of the direct line-of-sight. This curved guide has a cutoff wavelength            , with the 

critical angle defined by formula 2.15. 

All reflections are assumed to be specular with reflectivity 1 up to this defined critical angle 

θc and with reflectivity 0 above θc. 

There are two types of reflections that appear in bent guides: 

•  Zig-zag reflections (large θa) (red line in figure 2.5) – reflections on both walls 

• Garland reflections (small θa) (blue line in figure 2.5) – reflections from outer wall, never 

touching the inner wall 

If the maximum reflection angle allows only Garland reflections near the outer wall, then the 

guide is not efficiently ―filled‖. If θa ≈ θi (the incident angle) the filling of the guide will be 

fairly isotropic (many reflections).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5. Reflection that occur in  a bent guide [Chup01]  
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Beam focusing can be achieved by total reflection from a curved surface. [Ande01]  

Same as in optics, neutron focusing can be achieved with parabolic, elliptic mirrors or 

combinations of these two. 

An ellipse is a two dimensional closed curve that satisfies the equation [Clyn01] : 
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2
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y

a

x                                                                                                                            2.20 

The curve is described by two lengths, a and b. The longer axis, a, is called the semi-major 

axis and the shorter, b, is called the semi-minor axis. The parameters of an ellipse are also 

often given as the semi-major axis, a, and the eccentricity, e: 
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                                                                                                                          2.21 

or a and the flattening, f: 

a

b
f 1                                                                                                                                 2.22 

In the above common equation two assumptions have been made. First that the origin of the 

x-y coordinates is at the center of the ellipse and second that the longer axis of the ellipse is 

along the x-axis.  

The convention that the semi-major axis is the x-axis will be used throughout.  In this 

technical note both conventions for the coordinate system origin will be used.  The equations 

with the origin at the center of the ellipse and at one focus are shown. The two focus points 

are located along the x-axis (the longer axis) at a distance of: 

22 bac                                                                                                                           2.23 

from the center.  There are two, one on each side (at ±c, marked with F1 and F2 in figure 2.6.). 

 
Fig. 2.6. Ellipse with important points 

 



 26 

It can be mathematically proved that light ray that passes through one focus point of an 

elliptical mirror is reflected in such direction that it passes through the second focus point. 

This property is exploited for the elliptical neutron guide construction. 

Consider a curved mirror surface that is constructed as follows. Start with a curve, denoted by 

y(x) in the x–y plane, that is symmetrical under a reflection through the y axis; i.e.  

y(−x) = y(x). 

The y-axis is thus the symmetry-axis of the two-dimensional curve y(x). The three-

dimensional curved mirror surface is then obtained by rotating the curve about the y-axis, 

thereby producing a ―surface of revolution‖ corresponding to the surface of the mirror. The 

projection of this surface onto the x–y plane yields the original curve y(x). 

Due to the symmetry of the three-dimensional surface, it is sufficient to examine the light rays 

propagating in the x–y plane. Consider two parallel light rays that strike a curved mirror 

surface. 

The first ray is initially propagating in a direction parallel to the y-axis. It then strikes the 

mirror with an angle of incidence θ with respect to the normal to the curve y(x) at the point P, 

labeled by coordinates (x, y). Using the law of reflection, the angle of reflection of the 

resulting reflected ray is equal to the angle of incidence, θ. The second ray heads down the 

y-axis, strikes the mirror at O and then is reflected back up the y-axis. Both reflected rays 

intersect at the focal point F, labeled by coordinates (0, f), as shown in the figure 2.7. 

[Focu01]. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.7. Parabolic focusing mirror, with focal point F and center C. P is a point belonging to 

the parabola where a tangent is drawn 
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The tangent line to the curve at P is explicitly shown above. Simple geometrical 

considerations imply that the angle the tangent line makes with the x-axis is also given by θ. 

Thus, 

2tan
x

yf                                                                                                                        2.24 

Using the identity below it follows: 
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                                                                                                           2.25 

 

For a spherical mirror, the curve shown above is part of a circle of radius r. Moreover, C is the 

center of the circle, since the line segment CP is perpendicular to the tangent line at point P. 

Hence the length of CP is equal to r. Note that the triangle CFP is isosceles, hence the length 

of the sides FP and FC are equal. Denote this length by a. Then by the law of cosines: 

 22222 cos4)]2cos(1[2)]2cos(1[2 aaar                                                    2.26 

Finally, noting that f + a = r, we end up with: 

)
cos2
11(


 rf                                                                                                                   2.27 

This last equation shows that there is no unique focal point, since f depends on the angle θ. 

However for small θ values we can use the approximation: 

1,1
2

1cos
2

 


 for                                                                                                 2.28          

in which case, we can approximate: 

1,
2
1

 forrf                                                                                                                  2.29 

That is, for small angles (or equivalently for a mirror whose length is much smaller than the 

radius r), the location of the focal point F is independent of the angle of incidence, which 

means that all parallel rays that strike the spherical mirror (at small angle) pass through the 

focal point F. 

Consider a parabola that is described by the equation: 
2Axy                                                                                                                                    2.30 

for some positive constant A. Then dy/dx = 2Ax. Inserting these results into eq. 2.24 gives the 

following result for the focal length: 
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Thus, indeed the focal length f is independent of x. That is, all light rays that are initially 

parallel to the y-axis (i.e. the symmetry axis of the parabola) pass through the focal point F 

after reflecting off the mirror. No small angle approximation is necessary in this case. 

The requirement that the initial light rays should be parallel to the symmetry axis of the 

parabola is critical. One can show that if the initial light rays are parallel to each other but are 

not parallel to the symmetry axis of the parabola (sometimes called off-axis parallel rays), 

then the reflected rays are not focused to a unique focal point. 

Wolter[Asch01]  in 1951 analysed mirrors which have concentric figures of revolution, i.e. 

paraboloids, hyperboloids and ellipsoids. He showed that in order to achieve a true image 

over an extended field of view the x-rays have to undergo two successive reflections from 

either a paraboloid/hyperboloid or paraboloid/ellipsoid combination which are mounted in a 

coaxial and confocal arrangement. Fig. 2.8. is a schematic of the three configurations Wolter 

studied in detail and which are known as the Wolter type I, type II and type III systems. For 

each of the three configurations the two mirrors are arranged coaxially and they have a 

coincident common focus which makes the system focus. The Wolter type I and Wolter type 

I1 configurations both utilise a paraboloid and a hyperboloid. Within the type I system 

reflection occurs on the internal surfaces of each mirror; the reflection is off the external 

surface of the hyperboloid for the type II systems. In type III systems the incident rays are 

first reflected from the external surface of a paraboloid and then focused by the internal 

surface of an ellipsoid. 

The main difference between the three systems is the ratio of focal length to total system 

length. The focal length of the type 1 system is given by the distance from the 

paraboloid/hyperboloid intersection plane to the focus. Therefore the system length is larger 

than the focal length by the length of the paraboloid. The type II has a focal length which is 

larger and can exceed the system length substantially. The type III system has the shortest 

focal length of all three configurations. All three systems are equivalent in optical 

performance with respect to the Abbe sine condition. The principal surface is not a sphere as 

required but a paraboloid which is well approximated by a sphere in the angular region close 

to the centre of the field of view. Wolter showed that the sine condition can be approximately 

fulfilled also for larger apertures by introducing further hyperboloids, but only for an even 

number of mirrors in total. 
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Fig.2.8  Schematic of the different Wolter telescopes called type I, type II and type III from 

top to bottom 

 

The collecting area can be enlarged by nesting additional Wolter telescopes in the interior. 

Each system acts independently from its neighbouring ones. All of the systems are coaxial 

and have a common system focus. 

A new concept of neutron focalisation on SANS spectrometers using a combination of curved 

super mirrors (SM) can be proposed. The aim is to design a focusing system which is 

achromatic and has no absorption. The proposed design combines advanced neutron optical 

element such as parabolic and elliptic SM. Figure 2.9. presents the device design. A parabolic 

SM focuses the beam from the exit of the guide to make it a point source at its focal point Fp. 
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An elliptic SM with its primary focal point (Fe1) lying at the same position as Fp images Fe1 

to its secondary focal point Fe2 according to the properties of ellipses. Now, if a sample is 

placed after the elliptic SM and a detector is located at Fe2, then we build a focusing system 

with working on reflection (around 85% for m = 3 SM) and achromatic. Therefore, SANS 

instruments could benefit of this technique in terms of flux at the sample. 

 
Fig. 2.9. Design of the focusing device with a combination of parabolic and elliptic 

supermirrors 

  

   2.4.1.b Focusing guides 

 

The most recent developments have shown that elliptic guide systems can be used to focus 

neutron beams while simultaneously reducing the number of neutron reflections, hence, 

leading to considerable gains in neutron flux. Parabolic and elliptic guides can focus the beam 

in a single point beyond the guide exit with well defined beam characteristics and a gain 

factor in intensity of over 30 compared to straight guides [Scha01]. They can find applications 

in elastic and inelastic neutron scattering as well as for neutron radiography and tomography. 

It has been recently shown [Jano01] that the focusing performance of the elliptic nose 

crucially depends on its total length: for large length of the elliptic nose the guide behaves 

even worse than a straight guide as it leads to a large number of zig-zag-reflections and 

therefore the neutron beam has the smallest width and highest intensity near to the guide exit 

than at the position where the neutron beam is expected to be optimally focused. 

For small values of the length of the elliptic guide the number of reflections is essentially 

identical to a straight guide and only the very last reflection is used to focus the beam onto the 

focal spot. This leads to an improvement of the focusing performance for small lengths.  
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The conclusion is that the increased gain can easily be understood according to Fig. 2.10. The 

finite divergence of the neutron beam broadens the spatial distributions of the neutrons over 

the length of the gap (G). The increased entrance width of the elliptic guide (Win) therefore 

allows to minimize neutron losses due to this beam broadening. The intensity gain as a 

function of linw can be understood in terms of a virtual point source generated by the straight 

guide section in front of the gap. The beam image at the exit of the straight guide can be 

approximately mapped to a point if we again consider the divergence of the beam.  

 
Fig. 2.10. The entrance of the elliptic section can be used to minimize losses after a gap (G) 

in the neutron guide. This is achieved by taking into account the divergence  

of the neutron beam enlarging via an enlarged entrance width Win to the elliptic section. 

Further the beam image of the straight guide section in front of the gap can be mapped to a 

virtual point source (X) inside the guide. The distance linw between the focal spot of the 

ellipse and the guide entrance needs to be adjusted in such a way that the focal spot is 

situated at the position of this virtual point source. 

 

In comparison to an elliptic guide that maps the virtual source situated at linw, a parabolic 

guide will focus better a parallel beam with lower divergence into a small beam in focal point. 

 

Fig. 2.11. Schematic focusing design of (a) fully elliptic and (b) fully parabolic guides in the 

horizontal plane. 

 

The better performance of the parabolic versus the elliptic focusing concept for an instrument 

at the end of a neutron guide can be understood by the following reason: the parabolic guide 

focuses neutrons with small divergence from the whole entrance window into its focal point, 
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whereas the elliptic guide focuses neutrons with higher divergence from outer parts of the 

entrance window into its focal point. This can be seen in the schematic drawings of Fig. 2.11 

(a,b). At larger distances from the reactor, the neutron intensity provided by the guide is 

dependent on the neutron divergence. The intensity is strongly reduced for neutrons with 

higher divergence due to the reflection losses in the preceding neutron guide. This reduction 

of intensity for neutrons with higher divergence becomes especially significant for higher 

neutron energies. Since the elliptic concept also depends on focusing neutrons out of these 

high-divergence regimes into its focal point, it has a clear disadvantage with respect to the 

intensity, especially for higher neutron energies. In contrast, the parabolic concept basically 

focuses neutrons with low divergence (from the regime with highest flux in the intensity-

divergence distribution) into its focal point [Koma01]. 

Therefore the optimal shape of the focusing guide has to be chosen accordingly to the 

properties of the beam in front of the focusing optics and to the desired properties of the beam 

after the guide.  

Also the use of focusing guides opens wide possibilities to adapt the phase space of neutron 

beams to match the needs of neutron beam lines and to transport the neutrons efficiently from 

the moderator to the sample and detector. 

The new focusing techniques can find applications in triple axis, time of flight and spin-echo 

spectroscopy as well as for imaging with neutrons. 

      

   2.4.2. Adaptive optics 

 

The aim of the implementation of adaptive focusing neutron optics is to adapt the beam size 

as well as the beam divergence to the sample. By means of actuators, the curvature of the 

guide can be adjusted independently and therefore the focal length of the device can be varied.  

It is known that a focused neutron beam has many advantages for the investigation of small 

samples in the mm or sub mm range. The aim of this focussing is to obtain a focal point in the 

sub mm range in order to perform elastic and inelastic scattering on very small samples. 

Another important aspect is to reduce the scattering background in experiments under extreme 

conditions as in high magnetic fields or high pressures so that the beam illuminates only the 

sample. In the same way a focusing device can be used to collect the scattered neutrons after 

the sample. 

The idea behind adaptive optics is to give the possibility to align the focal point on tiny 

samples or to adapt the beam size and the divergence of the neutron beam to the sample. This 
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is possible by changing the curvature of the elliptic or parabolic guide by means of actuators 

independently in x and y direction so that the focal length of the device can be changed.  We 

consider as an example a parabolic guide whose curvature can be modified by means of 

actuators (fig. 2.12). Fig.2.12 shows the principal design of an adaptive parabolic focusing 

guide to adjust the focal spot of the focusing guide thus changing the flux and the divergence 

of the neutron beam at the sample position. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.12. Principle of adaptive optics. By means of actuators the focal length of the ellipse 

can be changed. 

 

As shown in Fig. 2.12 a, by adjusting the end of the guide we increase the curvature of the guide, 

therefore we decrease the focal length thus obtaining a beam with a small width in the focal point and 

an increased divergence. A decrease of the curvature leads to an increased focal length (Fig. 2.12 c) 

with an increased width of the beam in focal point and a decreased divergence. 

If we consider a white beam, each wavelength will be focused at a specific point f (the dependency of 

the position of the focal point with the wavelength is presented in chapter 5). If we consider now a 

monochromatic beam and we adapt the curvature of the guide with respect to the wavelength we can 

obtain that each wavelength will be focused at the same point. As an example we have chosen two 

wavelengths 1.5 Å in Fig. 2.13 upper part and 12 Å in Fig. 2.13 lower part. The two wavelengths are 

focused onto the same position because of the change in curvature in the reflecting guide. Monte Carlo 

simulations for the realization of such a device and the corresponding prototype will be presented in 

chapter 5.  

actuators

focal
point

guidea)

b)

c)
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Fig.2.13 Schematic of adaptive optics. Due to the change in curvature both wavelengths are 

focussed onto the same position f. 

 

3. Monte Carlo simulations      

 

In this chapter are presented the basics of Monte Carlo simulations in comparison with 

deterministic methods. The Monte Carlo simulation program McStas is described, starting 

from the way components are defined to construct an instrument up to the way neutron 

reflections are treated in the program..  

 

3.1. The Monte Carlo method 

 

Neutron histories are difficult to determine because of the large number of different 

interactions possible in materials. Techniques for calculating the behavior or transport of 

neutrons and gamma rays in such circumstances are important for the design of instrument the 

interpretation of measurements, and the development of shielding configurations [Muhl01]. 

Two techniques for calculating the transport of neutrons in matter are described briefly in the 

following. 
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a)Monte Carlo Techniques 

 

The probabability of a neutron interaction occurring is an important feature in the description 

of neutrons traveling through matter. Instead of trying to predict what an individual neutron 

may do, one can use procedures to predict what fraction of a large number of neutrons will 

behave in some manner of interest. Calculation techniques that, in simplistic terms, predict 

neutron events with ―rolls of dice‖ (actually the generation of random numbers in a computer) 

are called Monte Carlo methods. The response of an assay system can often be calculated 

from the transport of many individual neutrons, despite the inclusion of a few improbable 

neutron histories that deviate drastically from the average behavior. 

The Monte Carlo method can allow a detailed three-dimensional geometrical model to be 

constructed mathematically to simulate a physical situation. A neutron can be started at a 

selected location with a certain energy and direction. It travels distances that are consistent 

with the mean-free-paths in the materials, with random variations from the expected mean.  

At the end of each step in the neutron’s path, a decision maybe made to simulate a certain 

interaction, with the decision based on the cross section for the interaction with that material 

at that neutron energy. If an interaction is selected, the results of the interaction are simulated 

and its consequences followed. Eventually, a point is reached where no further interest in the 

neutron exists and its history is terminated. This might occur with the escape of the neutron or 

its moderation to very low energy. The neutron might be absorbed followed by the emission 

of a gamma ray of no interest or it might undergo a multiplication event. If a multiplication 

event occur the histories of the new neutrons are followed. In principle, the history of a 

simulated neutron is one that might actually occur with a real neutron. 

By repeating this procedure for many thousands of neutrons and by keeping tallies of how 

many enter the detector region, how many cause fissions, how many escape through a 

shielding or whatever else is of interest, an average behavior and its uncertainty are gradually 

deduced. Many specialized techniques may be used to get good average values with the 

fewest number of neutrons, but there are cases where even a fast computer cannot provide 

enough histories within the constraints of time and budget. Nonetheless, Monte Carlo 

techniques provide essential assistance in design work by closely modeling the actual 

geometry of a problem and by having imaginary neutrons that simulate the motions and 

interactions of real ones.  
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b) Discrete Ordinates Techniques 

 

Analytical transport equations exist that describe the exact behavior of neutrons in matter. 

However, only approximate numerical solutions to these equations can be obtained for 

complicated systems. Procedures for obtaining these numeral solutions are classified as 

discrete ordinates techniques. Some important differences distinguish discrete ordinates 

techniques from Monte Carlo techniques. Only one- or two-dimensional geometries are 

generally practical with a discrete ordinates process, and the neutrons are considered to be at 

discrete locations instead of moving freely through a three dimensional geometry. In a two 

dimensional discrete ordinates case, for example, it is as if the surface material were covered 

by a wire mesh and the neutrons existed only at the intersections of the wires. Furthermore, 

the energy of a neutron at any time must be selected from a finite set, in contrast to the 

continuously varying energy of a neutron in the Monte Carlo method. 

Despite these disadvantages, discrete ordinates techniques can produce useful results in many 

cases. 

Monte Carlo can be used to duplicate theoretically a statistical process (such as the interaction 

of nuclear particles with materials) and is particularly useful for complex problems that 

cannot be modeled by computer codes that use deterministic methods. The individual 

probabilistic events that comprise a process are simulated sequentially. The probability 

distributions governing these events are statistically sampled to describe the total 

phenomenon.  In general, the simulation is performed on a digital computer because the 

number of trials necessary to adequately describe the phenomenon is usually quite large. The 

statistical sampling process is based on the selection of random numbers—analogous to 

throwing dice in a gambling casino—hence the name ―Monte Carlo.‖ In particle transport, the 

Monte Carlo technique is pre-eminently realistic (a numerical experiment). It consists of 

actually following each of many particles from a source throughout its life to its death in some 

terminal category (absorption, escape, etc.). Probability distributions are randomly sampled 

using transport data to determine the outcome at each step of its life.  

The neutron ray-tracing Monte-Carlo method has been used widely for e.g. guide studies, 

instrument optimization and design. Most of the time, the conclusions and general behaviour 

of such studies may be obtained using the classical analytical approaches, but accurate 

estimates for the flux, the resolutions, and generally the optimum parameter set, benefit 

advantageously from MC methods. Recently, the concept of virtual experiments, i.e. full 
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simulations of a complete neutron experiment, has been suggested as the main goal for 

neutron ray-tracing simulations [Mont01]. 

 

         3.1.1. Monte Carlo method versus deterministic methods [Hend01]  

 

Monte Carlo methods are very different from deterministic transport methods. Deterministic 

methods, the most common of which is the discrete ordinates method, solve the transport 

equation for the average particle behavior.  By contrast, Monte Carlo obtains answers by 

simulating individual particles and recording some aspects (tallies) of their average behavior. 

The average behavior of particles in the physical system is then inferred (using the central 

limit theorem) from the average behavior of the simulated particles. Not only are Monte Carlo 

and deterministic methods very different ways of solving a problem, even what constitutes a 

solution is different.  

Deterministic methods typically give fairly complete information (for example, flux) 

throughout the phase space of the problem. Monte Carlo supplies information only about 

specific tallies requested by the user. 

When Monte Carlo and discrete ordinates methods are compared, it is often said that Monte 

Carlo solves the integral transport equation, whereas discrete ordinates solves the integro-

differential transport equation.  Two things are misleading about this statement. First, the 

integral and integro-differential transport equations are two different forms of the same 

equation; if one is solved, the other is solved. Second, Monte Carlo ―solves‖ a transport 

problem by simulating particle histories.  

A transport equation need not be written to solve a problem by Monte Carlo. Nonetheless, one 

can derive an equation that describes the probability density of particles in phase space; this 

equation turns out to be the same as the integral transport equation. 

Without deriving the integral transport equation, it is instructive to investigate why the 

discrete ordinates method is associated with the integro-differential equation and Monte Carlo 

with the integral equation. The discrete ordinates method visualizes the phase space to be 

divided into many small boxes, and the particles move from one box to another.  In the limit, 

as the boxes get progressively smaller, particles moving from box to box take a differential 

amount of time to move a differential distance in space. In the limit, this approaches the 

integro-differential equation, which has derivatives in space and time. By contrast, Monte 

Carlo transports particles between events (for example, collisions) that are separated in space 
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and time. Neither differential space nor time are inherent parameters of Monte Carlo transport. 

The integral equation does not have terms involving time or space derivatives. 

Monte Carlo is well suited to solving complicated three-dimensional, time-dependent 

problems. Because the Monte Carlo method does not use phase space boxes, there are no 

averaging approximations required in space, energy, and time. This is especially important in 

allowing detailed representation of all aspects of physical data. 

 

         3.1.2 .McStas simulation program [Kjae01]  

 

The software package McStas is a tool for carrying out Monte Carlo ray-tracing simulations 

of neutron scattering instruments with high complexity and precision. The simulations can 

compute all aspects of the performance of instruments and can thus be used to optimize the 

use of existing equipment, design new instrumentation, and carry out virtual experiments for 

e.g. training, experimental planning or data analysis. 

In the McStas formulation of a neutron scattering instrument, all objects apart from the 

neutron are referred to as components. This includes for instance:  

 Source: The exit of a neutron production facility, where neutrons of certain velocities are 

emitted into some portion of space  

 Monochromator/Analyzer: crystals used to select a neutrons of a single wavelength  to 

probe the sample with (monochromator) or to analyze (analyzer)  

 Sample: An object altering the neutron physical properties in some sense, examples used 

here are  

a. Vanadium. Scatters incoming neutrons incoherently  

b. Powder2. Can be thought of as a large number of crystals, each scattering 

neutrons according to the Bragg law, thereby producing two concentric Debye-

Sherrer cones. This sample also has the posibility of adding inchoherent, 

eleasticaly scattered neutrons.  

 Monitors: Objects monitoring or registering neutron characteristics. In the exercises 

below are used different types of detectors or monitors:  

1. Monitor. Single monitor, detecting the number of neutrons flying through a 

plane. (User defined opening size)  

2. PSD_monitor. Square monitor, detecting the number of neutrons passing 

through a plane, divided into pixels. square regions of a plane. (User defined 

resolution and opening size)  
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3. PSD_monitor_4PI. As PSD_monitor but shaped like a sphere.  

4. L_monitor. Wavelength monitor, measuring the different wavelengths of the 

passing neutrons. (L is for lambda)  

5. Monitor_nD. General monitor for detecting all sorts of physical properties of 

the neutron. In our cases used with options  

                                  - 'single' - as PSD_monitor but only one small square  

                                 - 'banana' - as PSD_monitor but shaped like a curved, horizontal band  

 Collimators: Devices controling the direction and divergence of the neutron ray.  

                   - Collimator_linear A series of parallel absorbing neutron plates that limits the 

beam divergence.  

In short, the core of the McStas system is a precompiler. From a user-provided instrument 

description, components are assembled into a single piece of ansi-c code. Using a compiler, 

e.g. gcc, the c code is compiled into an executable program which can be run on your 

computer. Optionally, the program takes input arguments to tune the setup of your 

instrument/simulation. 

Important details that have to be followed while using McStas:  

 Neutron histories/Intensities: McStas simulates neutron histories rather than direct 

neutron counts, i.e. when a Monte Carlo choice is made in a given component (e.g. a random 

number is generated to decide a new direction of the neutron ray), the neutron weight factor is 

adjusted accordingly. As you may have guessed already, the weight factor is actually a 

probability of observing a neutron of the given behaviour. The transition to direct neutron 

intensites is made by adjusting the initial neutron weight of the source component, giving the 

absolute flux of neutrons emitted in one second. This means that the intensity of the neutron 

beam at a given position is the initial neutron weight multiplied by the product of all the 

Monte Carlo weight factors occuring from the source to the given position.  

 3D space: The 3D space in which the instrument is defined, usually has a single 

component which is placed absolutely in space, e.g. at (0,0,0). All other components can be 

placed relative to this component.  

 Changing coordinate system: Each component has its own local coordinate system. As 

the neutron travels from one component to the other, the local component coordinate system 

changes. The definition is that z is the direction toward the next component, and that the y-

direction is vertical.  

 Component order matters: It is important to understand that McStas is component order 

dependent. The basic idea is to follow the neutron as it travels from one component to the 
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next in the instrument description. This means that if you place one component geometrically 

before another component, but orderly after the other component, neutrons may never reach 

your 'first' component. This means that some designs can be difficult to achieve, though 

generally a solution can be found.  

 Use Arm()'s: The Arm() component is very good for defining changed orientation of the 

instrument, e.g. for axis turning points etc. Placing many Arm()'s will improve future 

flexibility of your instrument.  

 Use PSD_monitor()'s: The PSD_monitor() component is a position sensitive detector. 

This component can be used to image the shape of your beam as it travels through the 

instrument. This is very useful for debugging purposes. Other monitors, for instance 

wavelength monitors can also be useful.  

Our main interests during the Monte Carlo simulations were the neutron guides and the PSD 

monitors together with Divergence Monitors for characterizing the beam at the sample 

position. For implementing a neutron guide in the program one needs to define first the 

reflectivity curve. For this an empirical formula derived from the experimental data is used:     

   
       

 

 
          

     

 
                  

                                                    3.1 

Here Q is the length of the scattering vector defined by:                                                                                                     

          
  

 
                                                                                                        3.2 

mn
  being the mass of the neutron. 

The number m in the above equation is a parameter determined by the mirror materials, the 

bilayer sequence, and the number of bilayers (and was treated in chapter 1). As can be seen,  

R = R0 for Q < Qc, where Qc is the critical scattering wave vector for a single layer of the 

mirror material. At higher values of Q, the reflectivity starts falling linearly with a slope α 

until a ‖soft cut-off‖ at Q = m·Qc. The width of this cut-off is denoted W. See the example 

reflection curve in figure 3.1. 

It is important to notice that when m < 1, the reflectivity remains constant at R = R0 up to  

q = Qc, and not m·Qc. This means that m < 1 parameters behave like m = 1 materials. 
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Fig.3.1 A typical reflectivity curve for a supermirror. The used values are: m = 4, R0 = 1,  

Qc = 0.02Å
−1

, α = 6.49 Å, W = 1/300 Å
−1

 

 

The component Guide models a guide tube consisting of four flat mirrors. The guide is 

centered on the z axis with rectangular entrance and exit openings parallel to the x-y plane. 

The entrance has the dimensions (w1, h1) and placed at z = 0. The exit is of dimensions 

(w2, h2) and is placed at z = l where l is the guide length. See fig. 3.2. The reflecting 

properties are given by the values of R0, m, Qc, W and α, as defined above or alternatively 

from the reflectivity file. 

 

 

 

 

 

 

 

 

 

Fig. 3.2 The geometry used for guide systems 

 

α 

Qc mQc 
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For computations on the guide geometry, the planes of the four guide sides are defined by 

giving their normal vectors (pointing into the guide) and a point lying in the plane: 

                   3.3 

 
Fig.3.3.Neutron reflecting from mirror. vi and vf are the initial and final velocities, 

respectively and n is a vector normal to the mirror surface [Mont02]  

 

In the following, we refer to an arbitrary guide side by its origin O and normal n. 

With these definitions, the time of intersection of the neutron with a guide side can be computed  

by considering the projection onto the normal: 

  
  

   
        

 

   
                                                                                                                          3.4 

where α and β are indices for the different guide walls, assuming the values (h,v) and 

(1,2), respectively. For a neutron that leaves the guide directly through the guide exit we have: 

      
    

  
                                                                                                                               3.5 

The reflected velocity vf of the neutron with incoming velocity vi is computed by the formula: 

         
  

    
                                                                                                                 3.6                                                                                                                  

The algorithm for the propagation of the neutron inside the guide is:  

1. The neutron is initially propagated to the z = 0 plane of the guide entrance. 

2. If it misses the entrance, it is ABSORBED. 

3. Otherwise, repeatedly compute the time of intersection with the four mirror sides and the 

guide exit. 
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4. The smallest positive t thus found gives the time of the next intersection with the guide (or 

in the case of the guide exit, the time when the neutron leaves the guide). 

5. Propagated the neutron ray to this point. 

6. Compute the reflection from the side. 

7. Update the neutron weight factor by the amount πi = R(Q). 

8. Repeat this process until the neutron leaves the guide. 

In addition to the linear guide a tapered guide can be implemented which has many divisions 

that can approach an elliptic or parabolic shape. The input parameters for such a guide are: 

o w1(m) width at the guide entry 

o h1(m) height at the guide entry 

o linw (m) distance of 1. focal point and real guide entry - left and right horizontal mirrors 

o loutw(m) distance of real guide exit and 2nd focal point-left and right horizontal mirrors 

o l (m) length of guide   

o linh(m) distance of 1st focal point and real guide entry -top and bottom vertical mirrors 

o louth(m) distance of real guide exit and 2nd focal point -top and bottom vertical mirrors 

o option (string)  define the input function for the curve of the guide walls 

     The options are: 

 "elliptical" - define elliptical function of guide walls 

 "parabolical" - define parabolical function of guide walls 

 "file = [filename]" - read in ASC-file with arbitrary definition for the curve of the   

                                       guide walls 

o d (m) thickness of subdividing walls 

o k (1) number of channels in the guide (>= 1) 

o R0 (1)  low-angle reflectivity 

o Qcx (Å-1) critical scattering vector for left and right vertical mirrors in each channel 

o Qcy (Å-1) critical scattering vector for top and bottom mirrors 

o alphax (Å) slope of reflectivity for left and right vertical mirrors in each channel 

o alphay (Å) slope of reflectivity for top and bottom mirrors 

o mx (1) m-value of material for left and right vertical mirrors in each channel. Zero  

                     means completely absorbing. 

o my:(1) m-value of material for top and bottom mirrors. Zero means completely  

                    absorbing. 

o W (Å-1) width of supermirror cut-off for all mirrors 

o segno (1) number of segments (z-axis) for cutting the tube   
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A correlation between this parameters and those that define an ellipse a, b and f is presented 

in chapter 5.2.3. 

 

4. Simulation results 

 

In this chapter are presented a series of simulation using McStas for reaching the sub-mm 

range, for the optimization of the instrument PGAA at FRM II and for a first prototype based 

on the principles of adaptive optics, together with the interpretation of the results obtained.  

 

          4.1. Reaching the sub-mm range 

 

The aim of the first Monte Carlo simulations using McStas was to produce focal spots with a 

diameter of the order of 0.1 mm. We will discuss the results of our simulations, i.e. the gains 

obtained, their variation with lambda as well as the evolution of the beam size.  

 

 

4.1.1. The set up  

 

Within the simulation program McStas, a component Tapering\guide.comp was developed 

that requires as input parameters the focal lengths of the entrance, fin and the exit, fout, of the 

guide, the value of the wave number that defines the critical edge of total reflection of the 

coating in units of m, the size of the aperture (width x height) and the length of the guide, L. 

The size of the exit is defined by these parameters. For obvious reasons, the smaller the focal 

length at the exit, the smaller the focal spot. 

We have started our simulations with the cold source of FRM2, which is 22 cm x 14 cm large. 

In order to obtain focal points in the region of 1mm with symmetric elliptical guides it was 

necessary to start with a guide entrance area of 1cmx1cm. Due to the large loss in accepted 

intensity from the source, we have also used a source with reduced dimensions: 1cmx1cm. 

For this 2 sources we have used linear guides and elliptical guides with the initial length L 

30m and same entrance areas at the beginning (height h 1cm and width w 1cm) placed at the 

distance d 0,2 m away from the source (see fig.4.1). 
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Fig.4.1 Schematic of the set up. Top: small moderator (10 mm × 10 mm). Bottom: cold 

moderator at FRM II (220 mm × 140 mm) 

 

4.1.2.Simulation results 

 

The gain distributions over lambda obtained for these two set ups are presented in fig.4.2 

(Intensity distribution over lambda for the elliptical guide divided by the intensity distribution 

for the linear guide).   

     

 

 

 

 

 

 

 

 

 

 

 

Fig.4.2 Gain in intensity for symmetrical elliptical, 30 m long, placed at 0,2 m after the 

source for a source 22 cm x 14 cm large blue color and 1cmx1cm large red color 
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If we compare the gain distributions in the two cases, a gain factor of around 10 is obtained in 

both cases small and big source, while in the case of the smaller source we only win in the 

case of small wavelengths due to multiple reflection that can occur for larger wavelengths. 

In order to confirm this, we have chosen two bandwidths for the wavelength: first one from 1 

to 5 Å and the second one from 8 to 15 Å and we have varied the distance d between the 

source and the entrance of the elliptic guide by keeping the ellipse symmetrical.  

In Fig.4.3 is presented a comparison of the Position Sensitive Detector (PSD) in focal point 

of the elliptic guide on the left side for lambda from 1 to 5 Å and on the right side for lambda 

from 8 to 15 Å (from top 100 mm, middle 10 mm and bottom 5 mm distance between source 

and entrance of the elliptic guide) As one can see, we have a better focusing in the case of 

lower lambda regime, then in the case of larger lambdas, due to multiple reflections 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.3 Comparison of PSD detectors in focal point left side for lambda from 1 to 5 Å  and right side 

for lambda from 8 to 15 Å  (from top 200 mm, middle 50 mm and bottom 5 mm distance between 

source and entrance of the elliptic guide) 
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In order to analyze the spot size in focal point we have varied the distance from the elliptical 

guide to the source, keeping the elliptical guide symmetrical (i.e. fin = fout). 

The calculated values for the entrance dimensions of the elliptical guide (second column) for 

different distances between the focal point and the entrance of the ellipse (first column) are 

listed in table 4.1. 

 

 

 

 

 

Table 4.1 Entrance dimensions of the elliptical guide for different focal distances 

 

The obtained intensities (PSD detector in focal point) are presented in fig.4.4 and one can 

observe that by going closer and closer to the source and correspondingly to smaller cross-

sections for the guide entrance and exit we have a better focused beam. 

Fig.4.4 PSD detector in at the entrance and in focal point for different distances between 

source and entrance of the elliptical guide 

 

fin/fout(mm) exit/entrance(mm) 

200 10 
100 7.08 

50 5.01 
20 3.17 

10 2.24 
5 1.59 
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In fig. 4.5.a are plotted the integrated intensity (we have chosen a 0,2 mm x 0,2 mm large area 

at the centre of the PSD detector and we have averaged the intensity over this central area) 

and the total flux for different distances from the source to the entrance of the elliptic guide. 

The decrease in peak width is explained by the corresponding decrease in the dimensions of 

the elliptic guide (see also table 4.1). A decrease in intensity is also observed as we get closer 

to the source, due to the intensity distribution over lambda (we may win in intensity only for a 

specific wavelength or for an interval).  

 

 

 

 

 

 

 

 

 

 

 

Fig.4.5. a.Integrated intensity for different distances from the source to the entrance of the 

elliptic guide 

b. Peak width for different distances from the source to the entrance of the elliptic guide 

 

The horizontal cuts through the PSD in focal point in order to determine the full width at half 

maximum are plotted in fig.4.5.b and we are already in the sub mm range with a total flux of 

3.93·108 neutrons/cm2s for d = 5 mm.  

 

4.1.3.Non symmetric set up 

 

 All the results obtained up to this point were for symmetrical ellipses (i.e.fin = fout). Due to the 

fact that going 5mm away from the moderator for the maximum focusing meant an entrance 

of the ellipse with a cross section with 1,6mm x 1,6mm and correspondingly a decrease in the 

total flux as seen in fig.4.5.  

The non symmetric set-up was to keep the distance between the primary focal point of the 

ellipse and the entrance of the guide (fin) constant at 200 mm with a corresponding cross 
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section of 10 mm x 10 mm and to vary the distance between the exit of the elliptic guide and 

the secondary focal point (fout). The results obtained for the total flux and for the peak flux 

(see table 4.2) show that an unsymmetrical ellipse with a fin of 200 mm and and fout of 5 mm 

is the best choice for obtaining a minimum beam size in focal point. 

 

fin (mm) fout(mm) total flux 

(neutrons/cm2s) 

peak flux 

(neutrons/cm2s) 

Peak FWHM 

(mm) 

200 200 2.07·1010 1.57·1012 3,70 

200 50 2.17·1010 2.90·1012 1,15 

50 50 1.07·1010 1.30·1012 1,10 

200 5 2.12·109 4.50·1012 0,70 

5 5 3.93·108 1.50·1011 0,65 

Table 4.2 Intensities and FWHM for different fin and fout 

       

Taking these values, the next step was to insert a pinhole to further reduce the dimensions of 

the focused beam. Without pinhole we have obtained a beam with a full width at half 

maximum of around 0,7 mm. First we have placed the slit of 0,5 mm radius at different 

distances between the exit of the ellipse and the secondary focal point. The FWHM and the 

intensity distribution varying with this distance are plotted in fig.4.6. 

 

   

 

 

 

 

 

 

 

 

 

 

 

Fig.4.6. FWHM and Intensity distribution varying with the distance from the aperture to the 

exit of the elliptical guide 
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With the slit fixed at 1mm away from the guide exit, we varied the radius of the slit, with 

values lower than 0.5 mm. The beam profiles in focal point are presented in fig.4.7. The 

simulations were made for a lambda band from 3 to 5 Å.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 PSD monitor in focal point for different radius of the slit 

 

For the lowest FWHM of 0,15 mm, in the case of a radius of 0,2 mm of the slit, placed 1mm 

away from the guide exit, we have an intensity of 4.8x107n cm-2s-1 

These simulations can find applications in elastic and inelastic neutron scattering as well as 

for neutron radiography and tomography. In elastic and inelastic neutron scattering for 

probing very small samples, since the new samples are usually small, in particular single 

crystals. Another application could be in the field of extreme environment experiments, like 

samples under very high pressure or high magnetic fields, when the neutron beam could be 

focused on the sample and again the reflected neutron beam collected so that the background 

noise and the scattering on the sample cell needs to be considerably reduced.  
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By this additional shaping with a pinhole the emerging beam can be used as bright neutron 

source for a cone beam geometry, allowing to increase the resolution and at the same time 

magnify the object for neutron imaging.  

 

4.2 PGAA 

 

In the following, the simulations were made for the prompt gamma activation analysis 

spectrometer, with the aim of obtaining better focusing. The focusing guide existing at the 

PGAA instrument is composed of 2 elliptical focusing neutron guides (with supermirrors 

coating with m = 3) first one with a length of 5.8 m and a second one with a length of 1.09 m 

separated by a thin aluminium window. With this configuration the performances of the 

instrument are: 

 

Position Neutron flux     

(n/cm2s) 

Beam profile (HxW) 

(mm2) 

 

End of the guide: 6.0·109
 28 x 62 measured 

Measurement position 1 (30-35 

cm from the end of the guide): 

7.3·109
 14 x 38 expected 

Measurement position 2 (9-10 

cm from the end of the guide): 

2.0·1010
 4 x 11 expected 

Table 4.3. Performances of the existing elliptical guide at PGAA instrument 

 

We have tried to obtain a better focussed beam by prolongation of the existing elliptic guide 

with a new part. First we have chosen a length of the additional guide of 7,5 cm and coatings 

for the neutron guide of supermirrors with m = 5 and 6 and calculated the flux using Monte 

Carlo simulation in the program McStas. We consider a wavelength band 1 Å < λ < 21 Å  and 

a neutron flux of  scmn 27 /10 . The neutron distribution in focal point is presented in the next 

figures: 
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Fig.4.8 Neutron flux in focal point without the prolongation guide 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.9 Neutron flux in focal point for m = 5 coating of the prolongation guide 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.10. Neutron flux in focal point for m = 6 coating of the prolongation guide 
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One can observe from the figures above that we have a significant reduction of the spot size 

by adding a prolonging elliptical guide to the existing one. We have also calculated the gain 

by dividing the intensity averaged over a central area of 4 mm x 1mm of the position sensitive 

detector in the focal point after adding the guide by the initial intensity in focal point (that of 

the position sensitive detector without the 7.5 added elliptical guide). The results are 

presented in table 4.4 and as one can observe a gain of at least a factor of 2 is obtained in both 

cases: 

 

 m = 5 m = 6 initial 

Intensity in focal point 

(n/cm2s) 3.47·108 3.89·108 1.39·108 

gain 2.49 2.79 1 

Table 4.4 Gain calculated for a 7.5 cm long additional elliptic guide 

 

The next step was to vary the length of the additional guide and to calculate the gain for each 

length in order to find the optimum length for the additional guide with a coating of m = 5. 

The calculations are presented in table 4.5. 

 

 initial 1 cm 2 cm 3 cm 4 cm 5 cm 6 cm 7 cm 

7.5 

cm 8 cm 9 cm 

Intensity in 

focal point 

(n/cm2s) 

1.39· 

108 

1.19·

108 

9.85·

107 

1.14·

108 

2.58·

108 

3.37·

108 

2.54·

108 

3.24·

108 

3.47·

108 

4.51·

108 

3.50·

108 

gain 1 0.86 0.7 0.82 1.85 2.42 1.82 2.33 2.29 3.25 2.51 

Table 4.5 Gain calculated for various lengths of the additional elliptic part 

 

As one can see a length of the additional guide of 8 cm brought the highest increase in 

intensity in the focal point, so we have chosen this length and  varied the m value for the 

supermirror coating (m= 3, 4 and 5 respectively).The results of the calculated intensities and 

gains are presented in Table 4.6. 
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 initial m = 3 m = 4 m = 5 

Intensity in focal point 

(n/cm2s) 1.39·108 2.94·108 4.24·108 4.51·108 

gain 1 2.11 3.05 3.25 

Table 4.6 Gain calculated for a 8 cm length of the additional elliptic part and various m-

values for the supermirror coating 

 

As we observed a small difference between a coating of m = 4 and m = 5 we decided to 

continue the simulation with a m = 4 coating for the prolongation of the elliptical guide and to 

introduce at half distance between the end of the guide and the focal point a small aperture in 

order to reduce substantially the dimension of the final spot. In table 4.7 are listed the beam 

profiles before and after the addition of the 8 cm elliptical guide coated with m = 4.  

 

Position Beam profile (HxW) (mm2) 

Beginning 50 x 110  

End of the initial elliptical guide 28 x 62  

End of the modified elliptical guide   4  x   9  

Table 4.7 Beam profile before and after the continuation of the elliptical guide. 

 

As one can see from Table 4.7 with the additional part we have reduced the beam profile to a 

dimension of 4 x 9 mm2 

For this configuration we have introduced the aperture 1cm far from the end of the prolonged 

elliptical guide and 1 cm in front of the focal position and varied the radius of this aperture. 

 

Radius of the 

aperture(mm) 

Intensity in focal 

point (n/cm2s) 

Beam diameter in 

focal point(mm) 

0.1 8.10·106 0.036 

0.2 1.94·107 0.12 

0.3 1.64·107 0.16 

0.4 1.50·107 0.18 

0.5 1.60·107 0.2 

Table 4.8 Beam profile in focal point after the introduction of aperture 
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For an aperture of 0.1 mm radius the beam is focused with focus spot of around 40 

micrometers in diameter. The simulated neutron flux for this case is presented in figure 4.11. 
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Fig.4.11 Neutron flux in focal point for m = 4 coating of the prolongation guide (with 8 cm 

length) and an aperture of 0.1 mm placed 10 mm in front of focal point 

 

We have therefore obtained by McStas simulation a well focused neutron beam with a 

diameter around 30 micrometer and an intensity of 8.10·108 n/cm2s, results that open wide 

possibilities in the field of neutron imaging and radiography as well as in probing very small 

samples. 

 

4.3. Adaptive optics 

 

The aim of the implementation of adaptive focusing neutron optics is to adapt the beam size 

as well as the beam divergence to the sample. The Monte Carlo simulations were made for 

testing the performances of an adaptive element, following the principles described in chapter 

2.3. The evolution of the focal point as well as the properties of the beam is investigated using 

Monte-Carlo simulation. The results of these simulations are the base for first experiments 

with an adaptive prototype as presented in chapter 5.  

As stated in chapter 2.3, a decrease of the curvature leads to an increased focal length with an 

increased width of the beam in focal point and a decreased divergence (as an example in fig. 4.12. are 

presented the beam profile in focal point and the divergence for two different fout values). 
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                  Focal point                                                           Divergence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12. Beam profile and divergence for fout 250 mm (top  line) and 50 mm (bottom  line) 

 

4.3.1. Monte Carlo simulations 

 

First we discuss the results of Monte Carlo simulations followed by presenting possible 

applications for an adaptive parabolic focusing device. 

 In order to have the possibility to vary the curvature of the guide independently in x and y 

direction using simulations, it was necessary to develop a new McStas component that allows 

changing the properties of the four sides independently. The sides can have different types of 

                  x position (cm)                                                                   x divergence (deg) 
            y position (cm

)                                                 y position (cm
) 

                y divergence (deg)                                    y divergence (deg) 
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curvatures for each side (linear, elliptic or parabolic). The walls of this new component are 

truly curved and do not consist of multiple segments that approximate the desired shape as in 

previous implementations. Moreover, the inner and outer sides of each wall can be set as 

transparent, absorbing or reflecting [Mont03].  

    To implement such a focussing guide in the McStas program (3) one has to define for each 

side the following parameters: l = length of the guide (same for all sides), win= width of the 

entrance of the guide, fin and fout. All these parameters define the width at the exit of the guide 

if a parabolic or elliptic shape is chosen.  

              x 

 

 

 

 

 

                                                                                       F 

  

                                                                               x-shift 

 

                                                   l                          fout                 f 

                                                                                                                                       z  

 

Fig.4.13 Parameters for defining a parabolic focusing guide using McStas. fin designates the 

distance from the first focal point to the entrance of the guide (fin = 0 for parabolic guide) and 

fout the distance from the exit of the guide to the second focal point, respectively. 

 

If the parabola is given by:        ,the parameters a and b can be calculated by: 

  
 

                
            

                                                                                                  4.1 

         
 

  
                                                                                                                     4.2 

The tangent at any point is given by:  

                                                                                                                                 4.3 

The parameters of this tangent can be calculated by: 

Win Wout 
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                                                                                                                         4.4 

To calculate the rotation angle and the movement x for adaptive optics one can use: 

                                                                                                                          4.5 

        
   

 
 

     
 

  

       
  

 

 
       

 

  
                                                                         4.6 

In table 4.9 are calculated as example the shift in x direction (the direction perpendicular to 

the optical axis in horizontal direction) which is defined as (win - wout)/2 (marked in fig.4.13) 

with the variation of fout from 500 mm to 50 mm the x-shift goes from 5.1 mm up to 12.2 mm 

shift for the last case. This calculations were done in order to see the correlation between the 

variation of the focal distance and therefore of the curvature of the guide and actual bending 

of the glass. 

 

fout (mm) x-shift(mm) 

50 12.2 

100 10.4 

200 8.2 

300 6.8 

400 5.8 

500 5.1 

Table 4.9. Variation of the x-shift with the fout value calculated using equation 4.6. 

 

4.3.2.Simulation results 

 

     We have simulated a 1-dimensional focusing guide, where the top and bottom sides are 

straight and transparent for neutrons. First we only varied the coating of the guide, second we 

have varied the distance d from the exit of the last linear guide to the entrance of the adaptive 

guide and finally we have varied the fout for the left and right side. 
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Fig.4.14 Simulation set-up 

 

 In the following we consider a 500 mm long guide with fout = 250 mm that is placed 1 meter 

behind a straight guide with a cross section of 35 mm x 120 mm providing neutrons with a 

wavelength  = 5 Å. By following the evolution of the beam, we observe 2 beams appearing 

at the exit of the guide (reflected from the coated guide walls) that converge towards a focal 

point with a width of 5 mm. Of course, further away the beam diverges again leading to two 

beams (see fig. 4.15) 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.15 Evolution of the beam from the entrance of the parabolic focussing guide (figure a) 

to the exit (figure b) to the focal point FP (figure e) up to 500 mm away from exit of the guide 

(figure i) in steps of 150 mm  

 

Varying the coating of the guide with m starting from 2 up to 6 the intensity increases with 

the increase in m due to the increase in the accepted angle of incidence of the incoming 

neutrons. Therefore we have continued the simulations with an m value 6, and we varied the 

distance d from the exit of the linear guide to the entrance of the adaptive guide. For small d, 

the adaptive guide accepts neutrons with a large divergence, while for large d the divergence 

a b c d e 

f g h i 

entrance exit Focal point FP FP-150mm FP-300mm 

FP+150mm FP+300mm FP+450mm FP+600mm 
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is reduced (geometrical effect). Horizontal cuts through the PSD (position sensitive detector) 

were performed for each detector in the focal point and at the focal point position for the 

initial case (Fig.4.15). The intensity features can be easily followed if we look at one of the 

curves in Fig.4.16. Symmetrical starting from x = 7 cm down to 3.5 cm we are approaching 

the outer part of the guide from the outside. The 2 peaks from 4 cm to 2 cm are the reflected 

beam from the guide walls, the next drop in intensity is caused by the bent guide ―shadowing‖ 

the incoming beam. The steep part represent the neutrons reflected by the coating, the plateau 

is the incident beam and finally the peak at x = 0 cm is our focused beam. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.16 Horizontal cuts through the PSD in focal point for various d.                                                        

 

The intensity decreases with increasing distance of the elliptic guide from the feeding guide. 

Clearly the FWHM decreases as well because the divergence of the incident beam is reduced 

(Fig.4.17). 

 

 

 

 

 

 

 

 

 

Fig.4.17 Intensity and FWHM for various d 
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For the following simulations we have chosen fixed d = 1m. In order to simulate the change in 

the curvature of the mirror we have varied the fout value for the mirror, taking into account 

that McStas calculates automatically the shape and the exit dimensions of the guide from the 

entrance dimensions and the fout value.  

If we plot the horizontal cuts through the PSD in the focal point for each value of fout and  

calculate the maximum intensity and the FWHM, we observe an increase in intensity for 

decreasing fout, due to the increase in the accepted beam by increasing the curvature of the 

parabolic walls (see table 4.9, a bigger part of the beam is focused) and a sharpening of the 

beam, leading to a decrease of the FWHM, due to the decreased cross-section at the exit of the 

guide (fig.4.18). 

 

 

 

 

 

 

 

 

Fig.4.18. Intensity and FWHM for various values of fout. 

For example for a fout = 0.1 m we obtain in the focal point a beam with a FWHM of 6mm and 

an intensity of 1.7·105 neutrons/cm2·s. 

It is very important to note that the shift of the thin side in x-direction and the angle alpha 

(defined as the angle made by the tangent at the parabola at the entrance and the optical axis) 

are correlated, when pressing against the mirror we also change the angle alpha(see fig.4.19). 

 

 

 

 

 

 

 

 

Fig.4.19. Scheme for the calculation of the relation between the rotation angle α and the 

movement in x direction. 
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If we press at the end of the parabola and the parabola shifts with x1, this corresponds to a 

shift in the angle of rotation alpha1. By pressing some more we change the shift in x2 but we 

also change the rotation angle so it is like we are sitting on a different parabola with a wider 

opening, but the same focal point. 

 

4.3.3. Possible applications 

 

One possible application of this prototype is the bending the beam out of the primary beam by 

tilting the component for a fixed alpha-x-setup. One can see as an example a simulation made 

for fout = 0.3 m, length = 0.5 m, m = 6, d = 1m with only the right wall set as reflective and the 

other 3 walls as transparent. It is presented the divergence depending on the tilting angle in 

fig.4.20. By tilting the component the primary beam is more and more covered and the 

reflected beam appears, therefore the two beams can be separated by more than 3 degrees. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.20. Simulation results for tilting the component for different m values. The curved guide 

does not cover completely the beam, this is why a primary beam can be observed. 

 

New designs using one dimensional adaptive optics can be imagined for the triple axis 

spectrometer RITA and for the powder diffractometer DMC at PSI as well as for the 

reflectometer MIRA and the Time of Flight instrument TOFTOF at FRM II, for which the 

first simulation for improvement of the neutron optics were already performed and will be 

presented in chapter 5. 
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5. Simulations for TOFTOF 

 

In this chapter are presented the Monte Carlos simulations made for optimizing the properties 

of the beam at the time of flight instrument TOFTOF at FRM II. The simulation results for 

different options are presented and discussed. After choosing the optimal shape, as resulting 

from the simulations, a prototype was constructed and mounted at the instrument. The 

characterization of the geometrical properties together with its performances during the 

neutron tests are also shown in this chapter.  

 

5.1. The instrument 

  

The simulations from chapter 4 can find applications to improve the beam of the TOFTOF 

instrument, a direct-geometry multi-disc chopper time-of-flight spectrometer, installed at the 

neutron source Heinz Maier-Leibnitz (FRM II). Moderated neutrons, arising from a liquid 

deuterium cold source (T = 25K), are transported to the sample by a primary S-shaped 

neutron guide (cross-section 44 x 100 mm2, radius 2000 m) followed by a secondary, focusing, 

neutron guide (cross-section at its end: 23 x 46 mm2 ). The use of the S-shaped neutron guide, 

which cuts off neutrons of wavelengths smaller than 1.4 Å, prevents the chopper system from 

the irradiation by too energetic neutrons, which would pass through the choppers and create 

an additional background [Unru01].  

Fig. 5.1. Neutron guide at TOFTOF 

Neutron guide  

Primary S-shaped 
neutron guide 

focusing 
neutron guide 
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The main features of this instrument are: 

• high signal-to-background ratio 

• high intensity also at short incident wavelengths (108 neutrons/cm2s for 1.5 Å see also 

Fig. 5.2.), with respect to comparable cold time-of-flight spectrometers 

• possibility of achieving a very high energy resolution, down to 2 µeV   

 

 

 
Fig. 5.2. Measured flux distribution at the time of flight spectrometer TOFTOF 

 

5.2. Monte Carlo simulations 

 

The future scientific perspective includes the investigation of magnetic systems as well as 

samples under extreme conditions (such as high-pressure cells electromagnetic and 

electrostatic levitators and magnetic or electric field). Since the typical samples for these 

investigations have dimensions of few mm2
, we aimed to focus the beam at the sample 

position on a cross section of 5 mm x 5mm with a significant gain.  

 

5.2.1. Simulation setup  

 

The present setup (see fig.5.1) imposes some geometrical restrictions: the neutron guide 

inside the chopper system cannot be changed, since this would affect the performances of the 

instrument. The only part that can be improved is the last one, just before the sample, 
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generally called the exchange guide, because it allows to switch between 2 options: a linear 

guide (represented in blue in fig. 5.3.a) and a collimator (in black in fig. 5.3.a).  

For reaching the desired properties of the beam the best geometrical shape for the focusing 

nose replacing the linear collimator has to be decided (length and position). We started 

considering a non-linearly tapered nose (figure 5.3.b). For all the simulations we have chosen 

as initial wavelength 3Å due to the maximum in intensity for this value (see fig 5.2) and 

dλ = 0.1 Å. 

 

 
Fig. 5.3. Schematic of the simulation 

         

We took into consideration 4 different options, whose shape and length looked like 

particularly convenient to match the dimensions of the existing neutron guide, the sample 

environment and the chopper system.  

The parameters used for our simulations are defined as follows (see also fig 5.4):  

H – height at the entrance of the elliptic guide 

h - height at the exit of the elliptic guide 

L – length of the guide 

fin
 – distance between the primary focal point and the entrance of the elliptic guide 

fout
 – distance between the secondary focal point and the exit of the elliptic guide 

6 EXCHANGE GUIDE  7 

SAMPLE 

6 7 

SAMPLE 

a 

b 
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The correlation between these parameters and the factors a and b, describing an ellipse are 

given in chapter 5.2.3. 
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Fig. 5.4. Parameters which define the ellipse in McStas 

 

For all four options fin is fixed, whereas fout is optimized in such a way to focus the beam on 

the sample (―tapered component‖, vertical and horizontal curvature chosen independently). 

The units of measurement that were used for the characterization of the properties of the 

guides are:  neutron/(s·cm2) for neutron flux density and neutron/s for intensity integrated 

over the corresponding area.    

The 4 options have the following properties: fin fixed at 21m, m value of the coating 6, 

elliptical shaped walls. The rest of the properties are summarized in the table below: 

 

 Width at 

the 

entrance 

(mm) 

Height at 

the 

entrance 

(mm) 

Width at 

the exit 

(mm) 

Height at 

the exit 

(mm) 

Length 

(mm) 

fout  

(mm) 

Option 1 23.00 55.15 10.50 25.30 783 199 

Option 2 23.00 52.18 12.39 28.13 502 199 

Option 3 23.00 55.15 17.87 42.85 400 582 

Option 4 23.00 59.49 14.86 38.43 869 582 

 Table 5.1. Different options for simulation 

 

Fig. 5.5 shows the differences among the 4 simulated options.  
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Fig. 5.5. Schematic view of the 4 options (in yellow are represented the existing parts) 
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5.2.2. Simulation results 

The parameters used for comparing the performances of the different options with the existing 

exchange guide (initial setup) (see table 5.2) are: 

1. neutron intensity integrated over the area satisfying I < 10% Imax and corresponding 

area [mm x mm] 

2. neutron intensity integrated over the area satisfying I > 90%Imax and corresponding 

area [mm x mm] 

3. homogeneity factor, defined as Area 10% / Area 90% 

4. intensity integrated over an area of 1mm x 1 mm 

5. intensity integrated over an area of 0.5 mm x 0.5 mm 

option 

Intensity 

integra 

ted over 

10%·Imax 

(neutron

s/cm2·s) 

Area 

for 

10%·

Imax 

(mm 

x 

mm) 

Intensity 

integra 

ted over 

90%·Imax 

(neutron

s/cm2·s) 

Area 

for 

90%·

Imax 

(mm 

x 

mm) 

Intensity 

integrated 

over 

10mm x 

10mm 

(neutrons/ 

cm2·s) 

Intensity 

integrated 

over 5mm 

x 5mm 

(neutrons/ 

cm2·s) 

Homo

genity 

factor 

initial 

setup 4.95·107 

25.0x

53.0 7.26·107 

15.0x

37.5 6.86·108 2.70·109 2.35 

option1 

sample/ 

foc point 8.35·107 

22.0x

32.0 2.11·108 

5.0x 

6.0 1.65·1010 7.80·1010 23.46 

option2 

sample/ 

foc point 8.41·107 

18.0x

34.0 1.99·108 

4.0x 

7.5 1.87·1010 7.96·1010 20.40 

option3 

sample/ 

foc point 5.97·107 

38.0x

58.0 8.84·107 

8.0x 

10.0 7.89·109 3.30·1010 27.55 

option4 

sample/ 

foc point 5.44·107 

42.0x

58.0 8.39·107 

10.0x

10.0 7.53·109 3.07·1010 27.36 

Table 5.2. Results of the first simulations       
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For all the simulations the value considered for the coating was m=6. 

Comparing the 4 options with the present set-up of TOFTOF and the intensities obtained, 

option 2 turned out to be the best one with the following advantages:  

 the exchange neutron guide is replaced by an elliptic nose,  without need of cutting 

parts of the present neutron guide; 

 intensity gain of the order of 2.5-3; 

 the smallest area for integrated intensity satisfying I > 90%Imax among the 4 

considered options. 

In order to choose the optimal length of the guide, the length-dependence of the properties of 

the focal point has been studied (Table. 5.3) 

 

Length 

of the 

guide 

(m) 

Intensity 

integra 

ted over 

10%·Imax 

(neutrons/

cm2·s) 

Area 

for 

10%·I

max 

(mm x 

mm) 

Intensity 

integra 

ted over 

90%·Imax 

(neutrons/c

m2·s) 

Area 

for 

90%·I

max 

(mm x 

mm) 

Intensity 

integrated 

over an area 

of 10x10mm 

(neutrons/c

m2·s) 

Intensity 

integrated 

over an area 

of 5x5mm 

(neutrons/c

m2·s) 

0.1 1.36•109 32x58 1.02•108 10x16 1.67•108 2.47•108 

0.2 1.47•109 30x56 1.67•108   8x10 2.00•108 3.00•108 

0.3 1.50•109 28x54 1.74•108   6x8 2.53•108 3.83•108 

0.4 1.65•109 26x48 2.06•108   5x8 3.11•108 4.92•108 

0.5 1.12•1010 18x34 9.93•108   4x7.5 9.89•108 1.64•109 

Ini 

tial  1.06•109 28x53 2.22•107 15x38 1.77•108 6.45•107 

Table 5.3. Length-dependence of the properties of the focal point (intensities): keeping the 

wavelength fixed at 4 Å, changing the length and describing the properties of the focal point. 

 

The length of the elliptical nose has to be kept at 500 mm due to the maximum in intensity for 

this value. 

Dealing with elliptic mirrors, for given length and m-factor of the guide the position of the 

physical focal point (=minimum of the beam cross-section) doesn’t straightforwardly coincide 

with the geometrical focal point of the ellipse described by fout. It is indeed function of the 

wavelength (see fig.5.6) and of divergence and adaptive optics is therefore required.  
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Only in the case of the McStas simulations performed with a wavelength of 4 Å the physical 

focal point coincides with the geometrical focal point of the ellipse. 

In order to determine the best geometrical shape of the elliptic nose we first characterized the 

wavelength-dependence of the position of the physical focal point by keeping the curvature of 

the component fixed (fout = 199 mm), determining the position of the physical focal point in 

the wavelength-band 1.5-14 Å (sampling with a step of 0.5 Å).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6.  Displacement of the physical focal point as a function of the wavelength. Zero 

displacement corresponds to the sample position (with a nominal focal length of 199 mm).  

 

A dependency of the position of the focal point on the wavelength has been observed and only 

λ = 4 Å is focused at the sample position. Lower wavelengths are focused after the sample, 

whereas higher wavelengths before the sample. In order to keep the beam focused on the 

sample, one needs to change the curvature of the elliptic nose, by changing the fout value.  

Therefore, in a second moment, the curvature-dependence of the focal point has been 

characterized.  

Table 5.4 shows the focal point displacement from the sample position for 4 significant 

wavelengths (1.5, 3, 6 and 12 Å) and at different fout values.  
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Lambda (Å) fout (m) Exit (mm x mm) 

Displacement with respect to sample 

position  

1.5 0.20 28.1 x 12.4 -0.05 

1.5 0.25 30.4 x 13.4 -0.10 

1.5 0.15 25.3 x 11.1 0.00 

3 0.20 28.1 x 12.4 -0.02 

3 0.17 26.5 x 11.7 0.00 

6 0.20 28.1 x 12.4 0.02 

6 0.23 29.6 x 13.0 0.01 

6 0.24 30.0 x 13.2 0.00 

12 0.17 26.5 x 11.7 0.09 

12 0.20 28.1 x 12.4 0.07 

12 0.25 30.4 x 13.4 0.03 

12 0.23 29.6 x 13.0 0.02 

12 0.27 31.2 x 13.7 0.00 

Table 5.4. Variation of the fout for different lambda values 

 

Table 5.5. reports the features of the focal point for each one of these wavelengths, when the 

proper fout value is chosen: 

Lam

bda 

(Å) 

fout 

(m) 

Intensity 

integra 

ted over 

10%·Imax 

(neutron/c

m2·s) 

Area for 

10%·Imax 

(mm x 

mm) 

Intensity 

integrate

d over 

90%·Imax 

(neutron/

cm2·s) 

Area 

for 

90%·Im

ax (mm 

x mm) 

Intensity 

integra 

ted over an 

area of 

10mm x 

10mm 

(neutron/c

m2·s) 

Intensity 

integrated 

over an area of 

5mmx5mm 

(neutron/ 

cm2·s) 

Homoge

neity 

factor 

1.5 0.15 1.51•105 20 x 36 3.38•105 6 x  6 1.98•107 9.12•107 20.00 

3 0.17 6.40•106 16 x 25 1.50•107 5 x  4 1.02•109 4.88•109 20.00 

6 0.24 6.12•106 24 x 38 1.45•107 6 x  8 1.25•109 5.60•109 19.00 

12 0.27 9.53•105 36 x 50 2.17•106 8 x12 2.08•108 8.80•108 18.75 

Table 5.5. Simulation results
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There are 2 ways of obtaining the focusing at the same position for all wavelengths: 

1) to displace the elliptical nose along the beam direction. The results for these 

simulations are presented in the following and 

2) adaptive optics, which we will discuss later.  

Due to the large range of lambda and change in curvature, one solution could be to use 

adaptive optics only for the lambda range 1.5 to 6 Å, whereas shifting the nose for focusing  

λ in the range 6 -12 Å. Therefore taking the optimized shape for 6 Å (fout = 0.24 m), we 

translated the elliptical nose in the sample direction and determined the shift (of the order of 

mm up to 3 cm) necessary to bring the focus on the sample for each wavelength in the range 

7-12 Å, (sampling with a step of 1 Å). For each one of this wavelength we calculate all the 

usual integrated intensities on the sample position, after imposing the shift of the elliptic nose 

required for focusing on the sample.  

 

 

 

 

 

Table 5.6. Shift of the elliptic nose for different lambda values 

The corresponding shifts are presented in Table 5.6. The corresponding intensities at sample 

position are presented in Table 5.7. 

Wave

length 

(Å) 

Intensity 

integrated over 

10%·Imax 

(neutrons/cm2·s) 

 Intensity 

integrated over 

90%·Imax  

(neutrons/cm2·s) 

Intensity 

integrated over 

an area of 

10x10mm  

(neutrons/cm2·s) 

Intensity 

integrated over 

an area of 

5x5mm 

(neutrons/cm2·s) 

shift 

(mm) 

6 1.12•109 1.16•108 1.25•109 5.60•109 no shift 

7 9.19•108 1.06•108 9.26•108 4.12•109 5 

8 7.39•108 6.07•107 6.73•108 2.96•109 7 

9 7.16•108 7.01•107 5.92•108 2.48•109 9 

10 4.72•108 4.53•107 3.54•108 1.52•109 16 

11 3.79•108 4.13•107 2.62•108 1.08•109 19 

12 3.05•108 2.85•107 1.93•108 8.10•108 25 

12 3.21•108 3.69•107 2.08•108 8.80•108 no shift 

Table 5.7. Intensities for different lambda values 

Wavelength

(Å) fout(m)
 

Exit 
(mmxmm) 

focal point 
(m) shift (mm) 

7 0.24 30x13.2 0.2 5 

8 0.24 30x13.2 0.2 7 

9 0.24 30x13.2 0.2 9 

10 0.24 30x13.2 0.2 16 

11 0.24 30x13.2 0.2 19 
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The integrated intensity over an area of 10 mm x 10mm is plotted in fig 5.7 together with the 

shift necessary for each lambda value. The integrated intensity for λ = 12 Å over 10mm x 

10mm without a shift is higher then the intensity calculated for the same area in the case of 

the shift of 25 mm (see table 5.7). 

 

 

 

 

 

 

 

 

 

  

Fig. 5.7. The integrated intensity over an area of 10 mmx10 mm and shift necessary for each 

lambda value 

 

The gain for the different lambda values are presented in the fig. 5.8. The gain was calculated 

as the report between the integrated intensity over  

10 mm x 10 mm and 5 mm x 5 mm respectively for option 2 and the initial case for different 

lambda values. A maximum gain of around 3 was found for the integrated intensity over an 

area of 5 mm x 5 mm. 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.8. Intensity gain vs. lambda
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5.2.3 Calculation of the radius of curvature 

 

In order to build the neutron guides with the curvature resulting from the simulations, it is 

necessary to calculate the relationship between the parameters needed for the simulations  

(fout, fin, L) and the usual parameters used for an ellipse (a, b) in order to calculate the radius 

of curvature for the bent walls.  

For the simulations an ellipse was used with the fin value of 21.1m. Due to this large value we 

can approximate the ellipse with a parabola with the equation: 

                                                                                                                                         5.1 

where the factor a is given by: 

                                                                                                                               5.2 

with L the length of the parabolic part, H is the height at the entrance of the parabola and h the 

height at the exit.  

The curvature of the parabola is then given by: 

                                                                                                                           5.3 

with a given above. 

For an ellipse given by equation: 
  

   
  

  
                                                                                                                                5.4 

With a,b and f as in fig 5.4.  

                                                                                                                             5.5 

To obtain the relation between a,b and f the parameters of the ellipse and H, h, L and fin and 

fout
 
    we have to impose to the two point to belong to the ellipse: 

  
 

   
  

                                                                                                                                5.6 

  
 

   
  

  
                                                                                                                               5.7 

with: 

                                                                                                                                     

         

                                                                                                                                    5.8 

From this we obtain the parameter b: 

      
                    

            
                                                                                                5.9 

and a: 

         
             

 
 

             

     
                                                                        5.10 
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The radius of curvature in a point P(xP,yP)  is given by: 

       
  

 

  
 

  
 

  
 

 

                                                                                                           5.11 

 

5.2.4. Adaptive optics 

 

In order to model the focusing nose, we calculated the deformation of a plate in the simple 

case fixed at one end and pressed by a force F at the other end. We then compared the action 

of a momentum instead of that of a force. 

Mathematically the curvature (the inverse of the radius of curvature) is given by the formula:        
 

 
   

  

         
 
 

                                                                                                              5.12 

 
Fig. 5.9. Pressing with a force at the free end of a plate 

 

For a bar fixed at one end and pressed with a force at the other end (fig. 5.9.) the tangent of 

the angle and the vertical difference with respect to the straight plate at each point are 

expressed respectively as [VanH01]:      

   
   

   
 
  

 
  

 

 
 

 

                                                                                                          5.13 

  
   

   
   

 

 
 

 
  

 

 
 

 

                                                                                                    5.14 

In this case the curvature is given by: 

  
       

  

    
   

   
 
  

 
  

 

 
 
 
  

 

 

 
 

                                                                                                     5.15 

The equation of the deformation of a plate fixed at one end and pressed by a force F at the 

other end is [Laep01]: 

     
   

   
   

  

  
 

 

 
 

 

 
 

 

 , with        
   

   
                                           5.16 
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with  l being the maximum deformation of the plate and l the length of the guide l = 500mm. 

This transforms the equation in: 

          
  

  
 

 

 
 

 

 
 

 

                                                                                  5.17 

We calculate the profile of the guide (height and width at each point) by subtracting from the 

initial dimensions the deformation given by equation 5.16 and by replacing the unknown 

parameters force, inertia momentum and elasticity modulus by the maximum deformation, 

calculated as the difference between the dimension at the entrance minus the dimension at the 

exit (the dimensions at the exit are obtained from the simulations for each wavelength): 

                                                                                                                                   5.18 

The radius of curvature can be calculated in this case as: 

  
       

 
 

  
                                                                                                                         5.19 

where: 

      
  

  
 

 

  
 
 

 
 

 

  

     
  

  
                                                                                                          5.20 

and substituting these into the expression for R we obtain: 

  
    

   

  
    

 

 
 
 
   

 
 

    

  

                                                                                                        5.21 

x (mm) Δl (mm) Length (mm) radius(m) 

230 4.83 500 25.8841426 

330 9.25 500 13.5167215 

500 22.68 500 5.51146384 

 Table 5.8 Radius of curvature for different positions 

 

In the table 5.8 are calculated the values for the radius of curvature at different positions (x) 

along the plate.  

As seen in the equation 5.17, when one presses on a plate at one end and keeps the plate fixed 

at the other end the dependency of the vertical deformation from the horizontal position x 

goes with the third power exponent differently from what expected for the equation of a 

parabola or an ellipse. However we have plotted these curves and fitted with parabolic 

functions (red curves) as presented in figure 5.10. The 4 different curves are for 4 different 

heights at the exit of the guide of a length of 500 mm (the height at each point is calculated as 
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the difference between the initial height of the guide which is 52.18 mm and the deformation 

y given by the equation 5.17). 
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Fig. 5.10. Fit with parabolic functions 

 

The fitting parabola is given by the equation: y = A+Bx+Cx2 with the parameters: 

Height (mm) A B C 

15 0.01568 0.13059 -0.11064 

20 0.02059 0.11303 -0.09576 

25 0.02550 0.09547 -0.08088 

28 0.02844 0.08493 -0.07195 

Table 5.9. Parameters for fitting parabola 

 

After these considerations, we implemented in McStas a new guide shape, whose walls follow 

equation number 5.22, that has a parabolic shape:   

                
 

 
  

 

                                                                                          5.22 

We observe the properties of the beam and compare them with the ones obtained in the case 

of an elliptically shaped guide. In the following graph (fig 5.11) we present the comparison at 

4 Å between the integrated intensity over an area of 10 mm x 10 mm in the center of the PSD 

detector placed at 0.2 m away from the exit of the guide (in red) and the integrated intensity 

over an area of 5 mm x 5 mm respectively (in green) and for the initial setup, as well as for an 

elliptic shape, a parabolic shape and for the walls following the equation 5.22 with different 
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values for the height at the exit of the guide (for example eqh28 means a height at the exit of 

28 mm). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11 Intensity comparison for different simulated cases 

 

These calculations were made in order to choose the optimal height at the exit of the guide 

and therefore the optimal curvature. The same procedure was followed for lambdas 1.5 Å to 

12 Å. The intensity as function of the wavelength for initial case (initial setup already existing 

at TOFTOF) in the following marked with a, walls having an elliptic shaped (named case b) 

and the walls following the equation 5.22. (named case c) are presented in the figures 5.12 up 

to 5.14 calculated for an area of 10 mm x 10 mm and 5 mm x 5 mm. 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.12. Intensity as function of  lambda for the initial case 
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Fig 5.13. Intensity as function of wavelength for elliptic case(b) 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.14. Intensity as function of wavelength for the equation case(c) 

 

The intensity gain for both cases (elliptic and equation) calculated as the intensity in the 

different cases divided by the intensity in the initial case, are presented in the graphs 5.15 and 

5.16: 
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Fig 5.15. Intensity gain for the elliptic case (b) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.16. Intensity gain for the equation case(c) 

                                        

Furthermore, the divergence obtained in the case when the walls follow the equation is 

homogenous and much smaller than in the case of the elliptic case (see fig. 5.17. This 

indicates as favorable the construction of the guide with the possibility to ―adapt‖ the walls by 

simply pressing at the end of the guide. 
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Fig. 5.17. PSD and Divergence monitor for Lambda 4 Å and different shapes of the guide 
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5.3. Prototype construction 

 

The simulation results presented in chapter 5.2.4 have shown promising results for 

constructing a prototype to be tested at the time of flight Spectrometer TOFTOF, where it 

should bring a gain of a factor 3 in intensity at the focal position for a wavelength of 4 Å.  

 

5.3.1. Prototype design 

 

Taking into account the geometrical restriction at the instrument (see anex 5.a) we have 

designed the following prototype. The drawing in fig.5.18.a is made for a wavelength of 1.5 Å  

(the maximum curvature), therefore the guide is completely ―closed‖ (no gaps appear) .  

The prototype is surrounded by 4 rods made out of 10mm glass used for stabilizing the 

structure and for mounting the motors. The rods are glued together with pieces of glass into a 

rectangular shape to make the entrance dimensions fixed and immobile. The other end of the 

glass is free and can be moved with the help of motors. The thickness of the glass for the 

495mm long movable glass plates was chosen to be 3 mm for a better waviness, elasticity and 

stability of the system.  

 

 Fig.5.18. Prototype design with piezomotors (a) in yellow vs. the real protype (b)  

 Glass rods 

Piezomotor with holder 

Al push rod 

Al torsion arm 

 Glass plates 

a 

b 
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For placing the motors additional glass pieces were glued at 140 mm away for the exit of the 

prototype (the 140 mm were chosen due to geometry consideration: adjusting screws that 

already exist). Each motor is fixed to the external glass case by a glass holder (mounted 

parallel to the guide walls and connecting two adjacent glass rods). The motor, moving, 

presses an Al rod, whose end pushes of small vertical Al plate, orthogonal to the Al rod and 

glued at the end of the guide wall (see fig.5.20). These motors, operated by a dedicated 

software, offer the possibility to adapt the curvature of the guide (see also chapter 5.3.5). 

The motors have also the possibility to rotate around their own axis (see fig. 5.19.) and a 

rotation point is located where the Al push rod presses on the torsion arm. This prevents the 

rod to bend and the motor to remain blocked. 

 

 

 

 

  

 

  

 

 

 

 

Fig.5.19. Motor holder as detail (red circle) from fig.5.18 and real motor 

 

In fig 5.20. is represented schematically one plate of the prototype together with the forces 

that act on it. The force F0 presses under the angle α. Therefore we have two components of 

the force: one perpendicular to the torsion arm creating the momentum M = h·F0cosα and a 

second one parallel to the torsion arm F = F0sinα, which also contributes to the bending of the 

plate. To eliminate the effect of this last force we have chosen the dimension H and h in such 

a way that the rod is parallel to the plate. Using this momentum we obtain the desired shape of 

the glass. The coating of the walls of the prototype was  m=3.5. 

 

 

 

 

Rotation axis 

Piezomotor 
with holder 
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Fig. 5.20. Schematic representation of the glass with the motor holding. The double red 

arrows mark the adjustment screws that allow us to vary H and h and fix them after finding 

the optimum values. 

 

5.3.2. Testing the geometry – characterization of optical properties 

 

Before assembling the prototype, the 4 walls have been tested separately. First of all we tested 

the elastic behavior of the glass support and then we tested the coated glass. The properties of 

the coating were tested separately. 

 

              5.3.2.a. Using the height-profilometer 

 

We have fixed one end and we have pressed using the Al road onto the torsion arm in order to 

modify the curvature of the glass like during its normal operation (as shown in fig.5.19). 

Using a height-profilometer we measured the height of the curved glass at different positions. 

The tests were performed for the wavelengths 1.5 and 12 Å and the results are plotted in fig. 

5.21 and 5.22. The values measured with the height profilometer are plotted in red and the 

theoretical curves in black (theoretical curve is the equation 5.22). There is a very good match 

between the theoretical and the measured curve (as seen from the difference between the 

theoretical and the measured curve plotted in blue), showing that using this method we 

simulate very well the action of a momentum on to the wall and that the wall reproduces very 

well the desired shape.  
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Fig.5.21 Theoretical (black) and measured curve (red) for a wavelength of 1.5 Å 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.22 Theoretical (black) and measured curve (red) for a wavelength of 12 Å 

 

Using this method we have determined the parameters needed to reach the proper curvature: 

the thickness of the glass: either 2 or 3 mm, the distance at which we should press on to the Al 

tortion arm (h) that together with the length of the road with which we press  and H gives us 

the tilting angle of the road.    
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5.3.2.b. Using the theodolyte 

 

All of the above measurements were performed with uncoated pieces of glass. For a non 

invasive characterization of the coated walls we have measured the curvature with a 

theodolyte.  

For the first test we kept the Al screw road used in the previous tests and pressed on the 

torsion arm (without using motors) and characterized the coated glass with a theodolyte. We 

have measured a plate 495 mm long, starting 30 mm away from the entrance of the plate and 

measuring 15 points. Calculating the correlation between the angles measured by the 

theodolyte and the tangent at each point at the theoretical curve (the first derivative of the 

equation 5.22) we were able to compare the theory with the experiment.  

 

Lambda (Å ) H (mm) h (mm) Difference (H-h)/2 (mm) 

1.5 52.18 25.3 13.44 

3 52.18 27.6 12.29 

6 52.18 29.5 11.34 

9 52.18 30.6 10.79 

12 52.18 31.2 10.49 

Table 5.10. Maximum deformation (calculated as height at the entrance H minus height at the 

exit h) for the upper and lower plates 

 

Lambda (Å ) H (mm) h (mm) Difference (H-h)/2 (mm) 

1.5 23 11.16 5.92 

3 23 12.19 5.405 

6 23 12.8 5.1 

9 23 13.23 4.885 

12 23 13.6 4.7 

Table 5.11. Maximum deformation (calculated as height at the entrance H minus height at the 

exit h) for the side plates 

We have represented in the following diagrams the comparison between theory and 

experiment for the lower and upper plate where we have the larger deformations from the 

horizontal (listed in the tables 5.10 and 5.11 in comparison with the maximal deformations for 

the plates placed on the side of the prototype). If we calculate the first derivative (tangent) 

from equation 5.22 we obtain: 
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                                                                                                    5.23 

From equation 5.23 one can calculate the angle at each point for the theoretical case.  

The standard deviation from the theoretical formula (equation 5.23) presented in graphs 5.23 

and 5.24 correspond to a standard deviation from the theoretical curve of under 0.1mm.  

 

Lambda 1.5 Å                                                                  Lambda 12 Å 

  

 

 

 

 

 

 

 

 

 

Fig. 5.23. Comparison between theory and measurements with theodolyte for the lower plate 

 

Lambda 1.5 Å                                                                Lambda 12 Å 

 

 

 

 

 

 

 

 

 

Fig. 5.24. Comparison between theory and measurements with theodolyte for the upper plate 

 

In all of the above graphs the black curve represents the angle in radian calculated from the 

theoretical equation, while the red and the blue curves are 2 measurements made with the 

theodolyte for the different wavelengths. The standard deviation from the tangent values is  

also depicted. This deviation from the theoretical curve leads to a decrease of less then 0.5% 
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in intensity in the focal point (simulated with McStas program) and is therefore neglectable. 

There is also a  loss in intensity caused by the gap that appears when we ―open‖ the guide, 

meaning when we go from 1.5 Å  (the biggest curvature) to 12 Å  (the lowest curvature).  

If we consider all walls curved for 1.5 Å no gaps appear (the guide is ―closed‖).  

Moving all 4 walls to the configuration for 12 Å we have gaps appearing in the horizontal and 

in vertical position. We have approximated the losses that result from these gaps as the report 

between the area that remains ―opened‖ (calculated as the difference between the integral of 

the equation for the curvature of the guide for 1.5 Å and 12 Å) and the area corresponding to 

the horizontal or vertical plate. With respect to this approximation we have obtained: 

                
        

           
       

              
        

         
                                                                             5.24 

That makes a total loss of intensity due to the appearing gaps of:                                                                          

           
                                                 

                     
                                   5.25                   

This means that we will expect a gain of 2,92 instead of 3 at focal point (calculated for 4 Å ) 

We have also tested the reproducibility of our measurements by making more measurements 

and the standard deviations show that the measurements can be very well reproduced. From 

these measurements we were able to confirm the established parameters for each wall, 

meaning the height where the motor will be placed and the position where this will press. The 

table 5.12 summarizes these parameters for each wall. 

 

Wall H (mm) h (mm) L (mm) 

Up 17 18 150 

Side 22 21 170 

Down 18 15 150 

Table 5.12 Parameters for each wall. The parameters H, h, and L are defined in fig. 5.20 
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5.3.4. Corrections  

 

The equations that we have used so far for simulations were those for a plate of rectangular 

shape and without taking into account the gravity. We have therefore analyzed the influence 

of taking into account the real shape of the glass and the gravity compared to the results 

obtained using the theoretical curve. 

 

              5.3.4.a. Due to the real shape of the glass 

 

The equation from which our formula for the deformation is: 

       
     

   
                                                                                                                    5.26 

where w is the deformation, M the momentum, E the elasticity modulus and I the second area 

momentum. For a rectangular plate the second area momentum is defined as: 

       

 
                                                                                                                            5.27 

   
    

  
   

  

  
                                                                                                                   5.28 

is a constant and therefore we obtain the equation:  

                                                                                                                             5.29 

That leads to the theoretical equation that we have used: (see also chapter 5.2.4) 

                
 

 
  

 

                                                                                                   5.30 

In the case of a trapezoid shaped glass (the real form of the glass) we have: 

      
               

          
                                                                                                          5.31 

That leads to a difference from the theoretical curve (equation 5.22) presented in fig.5.25 for 

the side walls and in fig.5.26 for the up and down wall. 

 

 

 

 

 

 

 

Fig. 5.25 Difference between the theoretical curve (black) and the theoretical curve obtained 

in case of considering a trapezoidal shape of the glass (red) for the side walls  
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Fig. 5.26. Difference between the theoretical curve (black) and the theoretical curve obtained 

in case of considering a trapezoidal shape of the glass (red) for the up and down walls  

 

The difference between the two graphs in fig. 5.25 and 5.26 is due to the different geometries 

of the plates: at the entrance for the up and down wall 23 mm and for the side walls 

52.18 mm as well as at the exit that must be inserted in equation 5.31 (the entrance and the 

exit dimensions constitute the b1 and b2 values for the trapezoidal form). 

 

5.3.4.b. Due to gravity 

  

For calculation of deformation in case of the gravity (which influence only the up and down 

wall) we have measured the curvature of the glass (using the theodolyte) placing it on the side 

and than as it should be placed up or down. The difference between these two measurements 

is presented in fig.5.27. 

  

 

 

 

 

 

 

 

Fig. 5.27. Difference between the theoretical curve (black) and the theoretical curve obtained 

in case of considering the gravity effect (red) for the up and down walls  
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Taking these deformations into account we have simulated and evaluated the evolution of the 

beam using McStas. The results are presented in table 5.13 and fig 5.28. First graph in fig. 

5.28 presents the beam distribution in focal point (a PSD placed at focal point) obtained from 

simulating a focusing guide which walls following the equation 5.22 and having a rectangular 

shape and no gravity effect is considered. The next two graphs show the beam distribution in 

case of considering first a trapezoidal shape of the glass and then add the effect of gravity.  

 

a) Theoretical curve with rectangular shaped walls and no gravity effect –ideal case 

 

 

 

 

 

 

 

b) Theoretical curve with trapezoidal shaped walls and no gravity effect  

 

 

 

 

 

 

 

c) Theoretical curve with trapezoidal shaped walls and gravity effect  

 

 

 

 

 

 

 

 

 

Fig. 5.28 Comparison of PSD detectors placed at focal point for different shapes of the glass 
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Integrated Intensity 
over 10mmx10mm 

Integrated Intensity 
over 5mmx5mm FWHM(mm)  

1.59·108
 5.85·107

 12.5 Ideal case  

1.63·108
 5.86·107

 12.3 Trapez 

1.57·108
 5.91·107

 12.7 Trapez plus gravity 

Table 5.13 Intensity and FWHM calculated for the above simulations 

 

Therefore comparing the ideal case of rectangular shaped glass and no gravity effect with the 

case when we consider the walls having a trapezoidal shape and we add the gravity effect, we 

observe no significant difference in intensities (they are comparable within the error bars 

given by the McStas simulation program) or in FWHM. This allows us to continue the 

simulations considering the walls following the equation obtained for the ideal case (equation 

5.22). 

 

5.3.5. Inserting the motors  

 

The Piezomotors were supplied by the company with a controlling software. They can be 

operated by setting the waveform and the number of steps.  

For our calibration we have chosen the option that offers us the possibility to vary the speed 

between 60 and 10 000 µm/s and is optimized for the maximum force of the motor.  

As optimum speed we chose 60 µm/s, that is the minimum speed in the interval given by the 

waveform. With this speed we can run between 0 and 200 000 microSteps which corresponds 

to a movement between 0 and 37 500 µm. For each wavelength we have varied the number of 

steps keeping the speed constant for reaching the theoretical curves. 

 

              5.3.5.a. Determination of the parameters for each wavelength 

 

Each motor is operated in such a way to reach a reference curvature and then to move back to 

the wished curvature, thus preventing back clash. We have then ran the motors at the end of 

each end point and then we have calculated the number of steps to run back to reach each 

curvature. Each motor has a different force therefore the parameters and the equations will 

also differ. In annex 5.c is presented the procedure for operating each wall: the number of 

steps necessary to reach the reference, the speed and the measurements with the theodolyte.  

Plotting the number of steps as a function of the wavelength we obtained the equations below 

that allows then to calculate the number of steps for each desired wavelength for each wall: 
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Fig. 5.29 Calibration of step number as function of lambda for the up and down wall 

 

y = 943.93 + 21.28 · x (equation for motor left)                                                                   5.34 

y = 893.14 + 21.56 · x (equation for motor right)                                                                5.35 

 

 

 

 

 

 

 

 

Fig. 5.30. Calibration of step number as function of lambda for motor left 

 

   5.3.5.b. Estimation of errors 

 

We have performed more than one measurement to test the reproducibility of our runs (for a 

wavelength of 1.5 Å and for the upper wall since there we had the larger deformations). 5 of 

these measurements are presented in fig.5.31 in comparison with the tangent of the theoretical 

curve (equation 5.23). 
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Fig.5.31 Repeated measurements with the theodolyte in comparison with the theoretical curve 

(black) 

 

We have calculated the standard deviation from the theoretical curve (in black in fig.5.31) and 

we have chosen measurement number 2 (see table 5.14) as heaving the maximum difference 

from theory. We have calculated the maximum difference for the factor F (where F is the 

factor in the equation that defines our curvature y = F· (1-x/L)2, that we can calculate from the 

equation of the tangent tg = 2·F/L· (1-x/L) represented in fig.5.31) 

 

 
Measurement 

1 

Measurement 

2 

Measurement 

3 

Measurement 

4 

Measurement 

5 

Standard 

deviation 

(rad) 

7,47636·104 8,42·104 7,35057·104 7,51602·104 

 

8,24751·104 

 

Factor  

(mm) 
0,37382 0,42081 0,36753 0,3758 0,41238 

Table 5.14 Standard deviation for the different measurements 

 

With the factor difference calculated as in the table above we were able to calculate the 

difference from the theoretical curve (equation 5.23) and to implement this into a Monte Carlo 

simulation. 
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Fig.5.32 Comparison between the curve with maximum difference (red) with theory (black) 

 

 In the fig.5.32 one can see the difference from the theory for all the measurements with the 

maximum deviation. All the other measurements are between the black line (theory) and the 

red curve (the maximum difference). For this measurement in red (that has the largest 

difference) we have performed a Monte Carlo simulation to observe the variations in intensity 

and in dimensions of the beam  

The results of the simulation are in the fig.5.33 on the left being the beam at sample position 

for the walls described by the curve that has the maximum difference from the theory and on 

the right the beam (a position sensitive detector placed at the sample position) in case that the 

walls of the guide are described by the theoretical curve (the simulations were performed for a 

wavelength of 1.5 Å) 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.33. PSD in focal point for the 2 cases described above 
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Fig.5.34 FWHM for the 2 simulations 

 

By performing horizontal cuts through the simulated images (fig 5.33) we were able to 

determine the FWHM (fig. 5.34) and we have also calculated the integrated intensity over the 

entire area of the detector as well as for areas of 5 mm x 5 mm and 10 mm x 10 mm. The 

results are summarised in the table 5.15: 

 

 Integrated intensity 

over the area of the 

entire detector (a.u.) 

Integrated intensity 

over an area of 

10mmx10mm (a.u.) 

Integrated intensity 

over an area of 

5mmx5mm (a.u.) 

FWHM (mm) 

Theory 2.002·108 1.15·108 5.74·107 6.1 

Measurement 

Max. 

Difference 

1.950·108 1.10·108 5.42·107 5.8 

Table 5.15. Intensities and FWHM 

 

There is therefore almost no difference either in intensity or in the width of the beam if we 

take into account the largest difference possible resulting from the measurements 

Another way to evaluate the losses in intensity is by using the McStas program. All of the 

simulations presented in chapter 5.2.4 were made for both up and down and left and right 

following either the given equation or the equation of the ellipse. 

To simulate the losses that will appear, we have kept fixed the curvature of the left and right 

walls, according to the requirements for lambda 4 Å (corresponding to a height of the guide of 

28.1 mm) and we have changed the upper and lower walls both for ellipse and equation case 

(up and down focusing). Analogously we kept fixed the curvature of the upper and lower 

walls optimized for 4 Å (corresponding to a height of the guide of 12.4 mm) and varied the 
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fout value for the left and right walls (left and right focusing). The results of the gains obtained 

are presented in the figures below 

 

 

 

 

 

  

  

Fig.5.35. Gains obtained for the case of horizontal  focusing for λ = 4 Å 

 

 

 

 

 

 

 

Fig.5.36. Gains obtained for the case of vertical  focusing λ = 4 Å 

 

Although the gains are comparable in both focusing cases, we have continued with focusing 

in vertical direction and we fixed the left and right walls to follow the parabolic shape given 

by equation 5.22 for lambda 1.5 Å corresponding to a width of the guide of 11.16 m (the 

largest curvature for the left and right walls) and varied the fout value for the up and down 

walls. The gains for elliptic and equation case for the 2 integrated areas of 10 mm x 10 mm 

and 5 mm x 5 mm are presented in the following graphs: 

 

 

  

 

 

 

 

Fig.5.37. Gains obtained for the case of vertical  focusing λ = 1.5 Å 
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The divergences in the case of elliptic and parabolic shape equation case are presented below 

for different wavelengths: 

 

 

 

 

  

  

 

 

 

Fig.5.38.Divergency for λ =1.5 Å for parabolic shape (left) and elliptic (right) case 

 

 

 

 

 

 

 

 

 

 

Fig.5.39.Divergency for λ = 3Å for parabolic shape (left) and elliptic (right) case 

 

 

 

 

 

 

 

 

 

 

Fig.5.40.Divergency for λ = 6 Å for parabolic shape (left) and elliptic (right) case 
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Fig.5.41.Divergency for λ =12 Å for parabolic shape (left) and elliptic (right) case 

 

For all simulated wavelengths the divergence for the walls following the equation is much 

smaller than that for the walls following the elliptic curvature, whereas the gains are 

comparable. For this reason we have chosen the option given by equation shape. If we now 

consider λ = 4 Å and we calculate the loss in intensity for the case when we focus only up and 

down and the case when we focus with all the 4 walls we obtain a loss of 0.085% in Intensity 

and a difference in FWHM of  0.093%. 

 

5.4. First tests of the prototype at TOFTOF 

 

The prototype has been developed in order to replace the existing linear collimator at TOF 

TOF, at the present located in the exchange guide. The latter consists of two vertical 

switchable stages: a linear collimator namely and a linearly focusing guide. Fig 5.42 shows 

the prototype mounted in the place of the collimator and aligned with the centre of the beam. 

As resulting from the Monte Carlo simulations which have been performed, the adaptive 

guide is expected to work in the whole typical range of TOFTOF wavelengths (from 1.5 up to 

12 Å). Independently from the wavelength, it will be able to keep the beam focused at the 

sample position, located 200 mm away from the exit of the prototype, with an intensity gain. 

Considering the integrated intensity over an area of 10 mm x 10 mm a factor 2 of 

improvement will be achieved. 



 

100 

 

Fig. 5.42. Prototype mounted at TOFTOF 

 

For testing the beam properties a neutron camera (Del Cam) has been placed at the sample 

position. The neutron camera detects neutrons making use of a 6LiF/ZnS scintilator and 

covers an area of 98 mm x 65 mm. Placing the camera at the sample position, we have set the 

curvature of the walls up to the optimal curvature. In fig. 5.43 are the pictures taken with the 

DelCam at the sample position (focal point) for different wavelengths. On the left side is the 

beam distribution with the old guide (linear guide) and on the right side of fig. 5.43 with the 

prototype. For testing the beam homogeneity, we have performed horizontal and vertical cuts 

through the centre of the beam, as well as at position +5 mm and -5 mm both in horizontal 

and in vertical direction.  
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c) Lambda 6 Å 
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d) Lambda 8 Å 
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e) Lambda 12 Å 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.43 Pictures taken with the DelCam for different wavelengths, together with horizontal 

and vertical cuts (black- curves for the initial guide, red- curves for the prototype) 
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From the cuts in fig.5.43 we calculated the horizontal and vertical FWHM of the beam 

(presented in fig. 5.44). There is a reduction of the FWHM of the beam from 23 mm x 39 mm 

in the initial case to 11 mm x 26 mm in the case of the prototype.  

  

 

 

 

 

 

 

 

 

 

 

Fig.5.44 Horizontal (left) and vertical (right) FWHM calculated for the initial (in black) and 

for the prototype (in red) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.45 Comparison between the gain resulting from the simulation (in black) and the gain 

calculated from the measurements with the DelCam (in red) for an area of 5mm x 5mm (left) 

and 10mm x 10mm (right) 
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Gain factors (calculated as intensity integrated over an area of 10 mm x 10 mm and 5 mm x  

5 mm correspondingly for the prototype divided by the integrated intensity over the same area 

for the linear guide) between 1.6 and 2 were calculated from the DelCam measurements (see 

fig.5.45). The decrease in gain for larger wavelengths may be explained by the Garland 

reflections that smear the beam at focal point or to the m-value of the coating that was only 

3.5. There is also a loss in intensity due to the gaps appearing when the curvature of the 

adaptive guide is varied.  

An inhomogeneity of the beam was observed (this inhomogeneity was already present and 

known at the instrument). This may be due to the gravity effects and to the S-shaped curved 

primary neutron guide. Generally, when dealing with small samples, the beam cross-section 

which illuminates the sample is chosen smaller accordingly with the samples dimension (in 

our case 10 mm x 10 mm) in order not to illuminate the sample environment (a large source 

of background). In the same time the centre of the beam should meet the centre of the 

instrument for a proper calculation of the time-of-flight and the energy of the scattered 

neutrons. Because of this inhomogeneity, closing the slits (reducing the incoming beam cross 

section from 40 mm x 25 mm to 10 mm x 10 mm) the flux of the incoming neutrons doesn’t 

scale with area. If for example for an area of 25 mm x 10 mm we have an incoming neutron 

rate of 10 counts/s, doesn’t mean that for an area of 10 mm x 10 mm -10 times smaller, the 

incoming neutron rate will be 1 count/s. Taking all of the above into account the comparison 

of the linear guide with the prototype has been done with the slits closed (10 mm x 10 mm). 

As sample a hollow cylinder made of Vanadium, 60 mm height, external diameter 25 mm and 

a thickness of 2 mm) was chosen. This is actually the standard reference for measurements at 

the instrument). Vanadium was chosen because of it is purely incoherent scattering, therefore 

only the elastic line was observed with each detector expected to count the same number of 

neutrons. The measurements were performed for the same wavelengths as with the DelCam, 

meaning 2, 3, 6, 8 and 12 Å, with the instrument parameters listed in Table 5.16 for each 

wavelength  

 

wavelength (Å) Ratio velocity (rpm) 

2 2 12000 

3 3 12000 

6 4 12000 

8 5 12000 

12 8 12000 

Table 5.16 Parameters for setting each wavelength at the instrument TOFTOF 
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The information that was extracted from the experiment at the time of flight instrument was 

the scattering function S(q,ω) shown at significant q-values represented in the following 

figures for all the wavelengths. The intensity of all spectra has been normalized to the 

intensity of the incoming beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.46. Scattering function for 2 Å neutrons (left) and logarithmic representation for a 

better distinction of the background difference for the two cases (right) at q = 3.1 A
-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.47. Scattering function for 3 Å neutrons (left) and logarithmic representation for a 

better distinction of the background difference for the two cases (right)  at q = 2.1 A
-1
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Fig.5.48. Scattering function for 6 Å neutrons (left) and logarithmic representation for a 

better distinction of the background difference for the two cases (right) at q = 1 A
-1

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.49. Scattering function for 8 Å neutrons (left) and logarithmic representation for a 

better distinction of the background difference for the two cases (right)  at q = 0.78  A
-1
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Fig.5.50. Scattering function for 12 Å neutrons(left) and logarithmic representation for a 

better distinction of the background difference for the two cases (right)  at q = 0.51  A
-1

  

 

With the DelCam measurements we have observed that more neutrons reach the sample 

(already with open slits we have a gain factor of 2). Closing the slits we see that we can gain 

more because we avoid the inhomogeneity of the beam. There is less contribution from the 

sample environment so less background, especially at high wavelengths, typically used for 

high resolution measurements. One gets a higher signal-to-background ratio, especially at 

high q values. This means that because of the better focus we not only get a better statistics 

(i.e. more neutrons), but we also use the neutrons in a more efficient way.  

 

6. Conclusions 
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beam for all wavelengths at the same position (the sample position), only by the change in the 

curvature of the guide (therefore the adaptive guide is working as it was expected to do). 

Performing elastic scattering on a Vanadium sample, we obtained a higher signal-to-

background ratio in the case of the adaptive guide, therefore we not only gain in intensity, but 

we also use the neutrons in a more efficient way.   

Further steps in improving the adaptive guide could be the increase of the m-value of the 

supermirror coating (the replace of the existing m = 3,5 coating with an m = 6 one is expected 

to bring a gain factor of 2.78 in Intensity at sample position) or the design of a shielding frame 

for the gaps appearing in the guide when changing the curvature for higher wavelengths.  

We can conclude that adaptive guides could be implemented at all instruments that need to 

vary the properties of the beam at the sample position (intensity and beam width) and that by 

use of Monte Carlo simulation one could optimize the proper shape of the focusing guide 

according with the desired beam properties.  
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Appendixes 

 

5.a. Restrictions due to given geometry 

 

The prototype is going to be placed at the position of the exchange guide (see fig.5.a.1) where 

a motor can bring it into the beam. At present the exchange guide has the option of a linear 

guide (represented in blue) and a collimator (in black), that will be replaced by the prototype. 

In front of the exchange guide there is a focusing linear guide which delivers an entrance 

angle for the prototype of 0.1 degrees. The entrance dimensions of the adaptive focusing 

guide are: height of 52.18 mm and width of 23 mm and the exit dimensions vary from  

25.3 mm x 11.16 mm for a wavelength of 1.5 Å up to 31.2 mm x 13.6 mm for 12Å.  

The length of the exchange guide is 500 mm but in order to be able to move the prototype in 

and out the beam without reaching the end of the surrounding structure, the length was set to 

495 mm. The total external case dimensions of the prototype with all the adjusting parts have 

to be 104 mm height and 75 mm width.  

 

 
 

Fig.5.a.1 Schematic of the last part of neutron guides at TOFTOF 
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5.b. PiezoMotor 

 

The Piezo LEGS linear motor is intended for a very large range of applications. The motor is 

ideally suited for move and hold applications or for automatic adjustments. This is due to the  

fact that the motor does not require any power in hold position as well  as  that  the motor  has  

no  backlash  and  can move  in increments of single nanometers.   

The  maximum  force  of  the  motor  is  set  by  the  number  of springs  giving  the  force. 

The standard motor is set for a stall force of  6.5N. Higher forces are optional (up to 10 N).   

The motor can move in full steps, shorter steps or partial steps (micro-stepping) giving 

positioning resolution in the nanometer range.  For extreme positioning requirements in the 

sub-nanometer range a bending mode  is possible. Speed is easily adjustable from extremely 

low up to maximum specified. 

PiezoMotor offers a range of drivers and controllers. The basic one is a handheld push button 

driver. An option is the PDA 3.1 analogue driver that regulates the motor speed by means of 

an analogue ±7 Volt interface.  The more advanced alternative is the PMD90 microstepping 

driver/controller. This product enables the user to vary the waveforms as well as speed. The 

microstepping feature divides full step cycle in up to 2048 increments which results in steps 

as small as two nanometers.         

 

5.c Calibration 

 

 
Fig.5.c.1 Software for operating the piezomotor 
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In the software that is used to operate the piezo motor (PMD90 microstepping 

driver/controller), the speed and the number of steps of the motor can be varied (see picture).  

There are 3 intervals of speed (given by Wfm option – short form from Waveform) which can 

be chosen - the 3 intervals are listed in the table below 

 

Option Lower limit (µm/s) Upper limit (µm/s) 

32p 60 10000 

128p 15 5859 

2048p 0.9 366 

Table 5.c.1 Speed limits for the motor 

 

With one of these options one chooses the speed interval and with the Cursor ―stepDelay‖ one 

can choose discrete values in this interval. 

Calibration for:-the upper wall 

For the upper wall we have introduced a motor that has a maximum force of 12N. We have 

started with a wavelength of 1.5A. For this wavelength we have run the motor to the built end 

point (that corresponds to a run of the motor of 15 000 steps at a speed of 4000µm/s) and the 

run back with the low speed 60µm/s various number of steps. We measure then with the 

theodolyte the curvature obtained and calculated the standard deviation for each measurement 

(see table 5.c.2) to establish the number of steps necessary for this wavelength and we have 

also repeated the measurements for the chosen number of steps in order to test the 

reproducibility. The motor has to take back 1000 steps to reach the needed curvature. The 

same procedure has to be done for the wavelength of 12Å  (see table 5.c.3).  

 

Steps 
Standard 
deviation (rad) 

500 0.0015470 

580 0.0009557 

630 0.0008585 

700 0.0013895 

800 0.0009549 

900 0.0008048 

1000 0.0007351 

1000 0.0007516 

1000 0.0008416 

1000 0.0007251 

1000 0.0008248 

1000 0.0007476 

1100 0.0013290 

Table 5.c.2 Standard deviation for 1.5Å  
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Steps 
Standard 
deviation (rad) 

1250 0.0019394 

1400 0.00129117 

1600 0.00064888 

1700 0.00066364 

1650 0.00060143 

1650 0.00061731 

1650 0.00062437 

1650 0.00063443 

1650 0.00063815 

Table 5.c.3 Standard deviation for 12Å  

For 12 Å the motor has to make 1650 steps back to reach the needed curvature. 

Proceeding with the next wavelengths 3, 6 and 9 Å we were able to find the number of steps 

necessary to run back for reaching each of the necessary curves.  

lambda steps 

1.5 1000 

3 1225 

6 1400 

9 1525 

12 1650 

Table 5.c.4 Number of steps to run back for each wavelength 

Plotting the number of steps dependent of wavelength we obtained the equation below that 

allows then to the number of steps for each desired wavelength  

The side walls 

For the side walls we had 2 motors to adjust (one with a maximum force of 12N named 

motor1 on the left side and one with a maximum force of 10N named motor 2 on the right 

side)We have started with a wavelength of 1.5A. For this wavelength we have run the motor 

to the built end point (that corresponds to a run of the motor of 10 000 steps at a speed of 

4000µm/s) and the run back with the low speed 60µm/s various number of steps. We measure 

then with the theodolyte the curvature obtained and calculated the standard deviation for each 

measurement (see table 5.c.5 and 5.c.6) to establish the number of steps necessary for this 

wavelength and we have also repeated the measurements for the chosen number of steps in 

order to test the reproducibility. 

Steps 
Standard deviation 

(rad) 

925 0.0000859 

775 7.746E-05 

800 0.0001023 

785 0.0000577 

790 0.0000539 

790 0.0000517 

790 0.0000523 

Table 5.c.5 Standard deviation for 1.5Å for motor 1  
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Steps 

Standard 
deviation 

(rad) 

900 0.0002176 

870 0.0001985 

750 0.0003066 

820 0.0000787 

820 0.0000710 

             820   0.0000506 

             820   0.0000676 

Table 5.c.6 Standard deviation for 1.5Å for motor 2  

 

Therefore the motor1 has to take back 790 steps and motor2 820 steps to reach the needed 

curvature. The same procedure has to be done for the wavelength of 12Å (see table 5.c.7 and 

5.c.8).  

 

Steps 
Standard 
deviation (rad) 

1365 1.62249E-04 

1350 9.39489E-05 

1230 8.98557E-05 

1220 4.62871E-05 

1220 4.63451E-05 

1220 4.71241E-05 

Table 5.c.7 Standard deviation for 12Å for motor 1 

 

Steps 
Standard 
deviation (rad) 

1250 5.6463E-05 

1150 6.53964E-05 

     1150 6.10567E-05 

     1150 6.43732E-05 

Table 5.c.8 Standard deviation for 12Å for motor 2 

 

For 12 Å the motor1 has to make 1220 steps back and motor 2 1150 steps in order to reach the 

needed curvature. Proceeding with the next wavelengths 3, 6 and 9 Å we were able to find the 

number of steps necessary to run back for reaching each of the necessary curves. 

lambda steps 

1.5 975 

3 1010 

6 1070 

9 1135 

12 1220 

Table 5.c.9 Number of steps to run back for each wavelength for motor 1 
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lambda steps 

1.5 920 

3 960 

6 1050 

9 1085 

12 1150 

Table 5.c.10 Number of steps to run back for each wavelength for motor 2 

 

The lower wall 

For the lower wall we mounted a motor with a maximum force of 20N to compensate the 

weight of the entire plate plus motor. We have started with a wavelength of 1.5A. For this 

wavelength we have run the motor to the built end point (that corresponds to a run of the 

motor of 20 000 steps at a speed of 4000µm/s) and the run back with the low speed 60µm/s 

various number of steps. We measure then with the theodolyte the curvature obtained and 

calculated the standard deviation for each measurement (see table 5.c.11) to establish the 

number of steps necessary for each wavelength. 

 

lambda steps Standard deviation (rad) 

1.5 300 0.00059373 

 230 0.00051059 

12 950 0.00045459 

 925 0.00040353 

9 800 0.00059373 

 825 0.00051059 

 850 0.00045675 

6 750 0.00040039 

 750 0.00035747 

3 500 0.00024485 

 500 0.00021819 

Table 5.c.11 Standard deviation for each wavelength 

 

Therefore we were able to find the number of steps necessary to run back for reaching each of 

the necessary curves. 

 

lambda steps 

1.5 230 

3 500 

6 750 

9 850 

12 925 

Table 5.c.12 Number of steps to run back for each wavelength 
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