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Bits Through Deterministic Relay Cascades
With Half-Duplex Constraint
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Abstract—Consider a relay cascade, i.e., a network where a
source node, a sink node and a certain number of intermediate
source/relay nodes are arranged on a line and where adjacent node
pairs are connected by error-free -ary pipes. Suppose the
source and a subset of the relays wish to communicate independent
information to the sink under the condition that each relay in
the cascade is half-duplex constrained. A coding scheme is devel-
oped which transfers information by an information-dependent
allocation of the transmission and reception slots of the relays.
The coding scheme requires synchronization on the symbol level
through a shared clock. The coding strategy achieves capacity for
a single source. Numerical values for the capacity of cascades of
various lengths are provided, and the capacities are significantly
higher than the rates which are achievable with a predetermined
time-sharing approach. If the cascade includes a source and a
certain number of relays with their own information, the strategy
achieves the cut-set bound when the rates of the relay sources fall
below certain thresholds. For cascades composed of an infinite
number of half-duplex constrained relays and a single source, we
derive an explicit capacity expression. Remarkably, the capacity
in bits/use for is equal to the logarithm of the golden ratio,
and the capacity for is 1 bit/use.

Index Terms—Capacity, capacity region, constrained coding,
golden ratio, half-duplex constraint, method of types, network
coding, relay networks, timing.

I. INTRODUCTION

A RELAY cascade is a network where a source node, a sink
node and a certain number of intermediate source/relay

nodes are arranged on a line. We consider the problem where
a source node and certain relay nodes wish to communicate in-
dependent messages to the sink under the condition that each
relay is half-duplex constrained, i.e., is not able to transmit and
receive simultaneously. Throughout the paper, we assume that
adjacent node pairs are connected by error-free -ary
pipes. This approach lets us understand half-duplex constrained
transmission without having to consider channel noise. More-
over, we may use combinatorial arguments instead of stochastic
arguments.
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A natural strategy for half-duplex devices is to define a time-
division schedule a priori. Under this assumption, the capacity
or rate region of various half-duplex constrained relay channels
[1], [2] and networks [3] has been determined. We will, how-
ever, show that predetermined time-sharing falls considerably
short of the theoretical optimum or, conversely, higher rates are
possible by an information-dependent allocation of the trans-
mission and reception slots of the relays.
The meaning of information-dependent allocation scheme is

illustrated in the following example. Let be a
message set. In each block of length 4, the source
wishes to communicate a randomly chosen message

to the destination via a single half-duplex constrained relay
node. A direct link between source and destination does not
exist. Suppose the alphabet of both source and relay equals

where “N” indicates a channel use without transmis-
sion and is a -ary transmission alphabet. The half-
duplex constraint is modeled as follows. When the relay uses
symbol “N,” i.e., the relay is quiet, it is able to listen to the
source and otherwise not. Let be the codeword chosen by
the source encoder to represent in block and let
indicate the codeword chosen by the relay encoder for repre-
senting in block . The coding scheme is illustrated in
Table I. The source encoder maps each message to
by allocating the corresponding binary representation of ,
i.e., three bits, to four time slots. The precise allocation of the
three bits to four time slots is determined by the following pro-
tocol. In the first block, the source allocates three bits to the first
three time slots of . Now assume that the source has al-
ready sent codeword to the relay. Based on the first two
binary digits of the noiselessly received codeword , the
relay encoder determines which of the four time slots to use for
transmission in according to the following rule: 00, 01,
10, 11 in tells the relay to send in the first, the second, the
third or the fourth time slot of . The binary value to be
transmitted in is equal to the third bit in . Since
the source encoder knows the scheme used by the relay, it can
allocate its three new bits in to those slots in which the
relay is able to listen. Hence, the relay encodes a part of its infor-
mation in the timing of the transmission symbols. The sink de-
codes message (which is denoted as in Table I)
from the received relay codeword using both the position
of the transmission symbol and its value. In this example, a rate
of 0.75 bit per use is achievable if the number of blocks becomes
large. By allowing arbitrarily long codewords, wewill show that
an extension of the strategy approaches 1.1389 b/u which is also
the capacity of the single relay cascade with half-duplex con-
straint when the transmission alphabet is binary. The example
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TABLE I
THE RELAY ENCODES A PART OF THE INFORMATION BY THE

POSITION OF THE TRANSMISSION SYMBOLS

suggests that information encoding by means of timing is bene-
ficial in the context of half-duplex constrained transmission. A
similar example for was shown in [4] and [5].
In Section II we provide a snapshot of related literature. In

Section III we consider a channel model which captures the
half-duplex constraint in a simple way. We introduce a capacity
achieving coding strategy in Section IV. The strategy is based
on allocating the transmission and reception time slots of a node
in dependence of the node’s previously received data. The pro-
posed strategy requires synchronization on the symbol level
through a shared clock. In Section V, the performance of the
coding strategy is analyzed yielding several capacity results. In
the case of a relay cascade with a single source, it is shown that
the coding strategy is capacity achieving, i.e., approaches a rate
equal to

(I.1)

where indicates the number of relays in the cascade and
and are the sent and received symbol of the th relay. If the

cascade includes a source and a certain number of relays with
their own information, the strategy achieves the cut-set bound
given that the rates of the relay sources fall below certain thresh-
olds. Hence, a partial characterization of the boundary of the
capacity region follows. For cascades composed of an infinite
number of half-duplex constrained relays, we show that the ca-
pacity in bits/use (abbreviated as b/u in the remainder) is given
by1

(I.2)

Remarkably, is equal to the logarithm of the golden ratio
and is 1 b/u. In Section VI the capacity results are ap-
plied to various special cases. In particular, we transform (I.1)
into a convex optimization program with linear objective and
provide numerical solutions for for different values
of and . Further, the single relay channel with a source
and a relay source and binary transmission alphabet is consid-
ered and an explicit expression of the cut-set bound and of the
achievable segment on the cut-set bound is computed. We fi-
nally show that the proposed coding strategy can be applied to
different network topologies, namely to trees and to the half-du-
plex constrained butterfly network. In the latter case the pro-
posed timing strategy outperforms the well-known XOR-based
network coding strategy.

1In this paper all logarithms are to base .

II. RELATED LITERATURE

The classical relay channel goes back to van der Meulen [6].
Further significant results concerning capacity and coding were
obtained by Cover and El Gamal in [7]. A comprehensive litera-
ture survey as well as a classification of various decode-and-for-
ward and compress-and-forward strategies for relay channels
and small multiple relay networks is given in [8]. General relay
networks are very difficult to analyze (even the capacity of the
non-degraded single relay channel is an open question). Moti-
vated by the fact that line networks are often more accessible
for analysis and, further, are fundamental building blocks of
general communications systems, various source and channel
coding problems have been examined under the assumption of
network architectures structured as directed chains.
Yamamoto [9] considers a deterministic three node line net-

work where the first node generates two random sequences. The
region of achievable rates is found such that the second node
is able to reconstruct the first sequence and the third node the
second sequence within prescribed distortion tolerances. These
results are extended to longer lines and branching communica-
tion systems in the same paper. A related version of the three
node source coding problem is investigated in [10]. The encoder
at the first node intends to communicate a random sequence
within certain distortion constraints to the relay and the destina-
tion under the assumption that the relay and the destination have
access to individual side information about the source. The au-
thors derive inner and outer bounds for the rate-distortion region
and characterize scenarios where both bounds coincide. A dis-
tributed source coding problem for the three node line network
is examined in [11]. In contrast to the cases before, the relay acts
as a source which is correlated to the source at the first node. The
task of the destination is to estimate a function of the output of
the two sources. Inner and outer bounds on the achievable rate
region are provided such that an arbitrarily chosen distortion
constraint is satisfied.
The channel capacity of three node line networks composed

of two identical binary channels where no processing is allowed
at the middle terminal was examined in an early work [12]. The
author asks which channel of the infinite set of binary chan-
nels with equal capacity has to be cascaded with itself in order
to achieve the largest end-to-end capacity. The answer is that
a symmetric binary channel has a higher capacity under cas-
cade than an asymmetric channel with the same capacity, un-
less the channels have very low capacity. Finite length cas-
cades of identical discrete memoryless channels are considered
in [13] under the assumption that the intermediate terminals do
not possess any processing capability and that the transition ma-
trix of the subchannels is nonsingular. By means of the eigen-
value decomposition of the transition matrix, the channel ca-
pacity is derived. Another work in which cascades composed
of identical discrete memoryless channels are investigated is
[14]. However, it is assumed that the intermediate relay nodes
are able to process blocks of a fixed length. It is then shown
that the capacity of the infinite length cascade equals the rate
of the zero-error code of the underlying channel and that the
capacity is always upper-bounded by the zero-error capacity of
the underlying channel. In [15] the problem of finding the op-
timal ordering of a set of distinct binary channels is analyzed
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Fig. 1. A noiseless relay cascade and the link model illustrated by means of feedback. If relay is transmitting, the switch is in position 1 otherwise in position 2.

such that the capacity of the resulting cascade is maximized. A
line network composed of erasure channels is considered in [16]
for a single source-destination pair. The authors propose coding
schemes which are based on fountain codes.
In the work at hand, we apply the idea of timing to half-du-

plex line networks. Timing is not a new idea in the informa-
tion theoretical literature and has already been used in conjunc-
tion with queuing channels. Anantharam and Verdú showed [17]
that encoding information into the time differences of arrival
to the queue achieves the capacity of the single server queue
with exponential service distribution. The discrete-time version
of this problem was analyzed in [18]. In [19], Kramer developed
a memoryless half-duplex relay channel model and computed
decode and forward rates due to Cover and El Gamal [7]. He
noticed that higher rates are possible when the transmission and
reception time slots of the relay are random since one can send
information through the timing of operating modes.

III. NETWORK MODEL AND INFORMATION FLOW

A. Network Model

Consider the discrete memoryless relay cascade as depicted
in Fig. 1. The underlying topology corresponds to a directed
path graph in which each node is labeled by a distinct number
from with . The integers 0 and belong
to the first source and the sink, respectively, while all remaining
integers 1 to represent half-duplex constrained relays,
i.e., relays which cannot transmit and receive at the same time.
The connectivity within the network is described by the set of
edges , i.e., the ordered
pair represents the communications link from node
to node . The output of the th node, which is the input
to channel is denoted as and takes values on the
alphabet where
denotes the -ary transmission alphabet while “N” is meant to
signify a channel use in which node is not transmitting. The
input of the th node, which is the output of channel
is denoted as and is given by

(III.1)

where . Channel model (III.1) captures the half-
duplex constraint as follows. Assume relay is in transmission
mode, i.e., . Then relay hears itself but
cannot listen to node or, equivalently, relay and node

are disconnected. However, if relay is not transmitting,
i.e., , it is able to listen to relay via a noise-free

-ary pipe . The sink listens all the time,
i.e., is always equal to , and therefore its input is given

by . Another interpretation of the channel model
is that the output of relay controls the position of a switch
which is placed at its input. If relay is transmitting, the switch is
in position 1 otherwise it is in position 2 (see Fig. 1). Since a pair
of nodes is either perfectly connected or disconnected, we obtain
a deterministic network with that
factors as where is
defined by (III.1).

B. Information Flow

Every node draws its messages uniformly
and independently from the message set
where denotes the message sent by node to node
in block . Each block has a length of . Observe that this setup
includes the case that only a subset of the relays communicate
own information to the sink by setting the rate of the remaining
relays to zero. At the end of block , each relay with a rate

carries out two tasks. It draws a new message
and it decodes the messages
from the received codeword . The new message to-
gether with the decoded messages are forwarded to node in
block by means of the sequence . Similarly, each relay
without own information, i.e., , decodes the messages

at the end of block and for-
wards the decoded messages to the next node by means
of . Source node 0 sends one message per block
represented through . We assume an initialization period
of blocks. In the first block node 0 forwards informa-
tion, in the second block nodes 0 and 1 forward information and
so forth. From the th block onwards all nodes (except of the
sink) forward information. Thus, the sink does not decode until
the end of the th block. Since a very large number of trans-
mission blocks is considered, it is allowed to neglect the initial
delay in an asymptotic analysis.

IV. A TIMING CODE FOR LINE NETWORKS
WITH MULTIPLE SOURCES

A. General Idea and Codebook Sizes

A coding strategy is introduced which relies on the observa-
tion that information can be represented not only by the value of
code symbols but also by the position of code symbols, i.e., by
timing the transmission and reception slots of the relay nodes.
The codebook construction is recursive and guarantees that ad-
jacent nodes do not transmit at the same time. The following en-
coding techniques are applied at the source and the relays where
denotes the number of transmitted symbols of node within

one block of symbols.
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TABLE II
(A) EXAMPLE CODEBOOKS FOR SOURCE, RELAY AND RELAY SOURCE, (B) ILLUSTRATION HOW TO USE THE CODE

• At relay : Relay represents information by
choosing transmission symbols per block from the
-ary transmission alphabet combined with allocating
the symbols to the transmission block of symbols.
Thus, different sequences of length
are available at relay . Observe that equals
the number of possible distinct sequences when the -ary
symbols are located at fixed slots while equals the
number of possible transmission-listen patterns.

• At relay : The effective codeword length
of relay reduces to since relay cannot listen
to relay when it (relay ) transmits. For each trans-
mission-listen pattern used by node , node generates

different sequences by allocating transmis-
sion symbols from the alphabet in all possible ways to
the listen slots of the pattern. The remaining slots
of the pattern, i.e., the slots in which node transmits,
are filled with idle symbols “N.” As before, equals the
number of possible distinct sequences when the -ary sym-
bols are located at fixed slots while equals the
number of possible transmission-listen patterns. The pro-
cedure generates a certain number of transmission-listen
patterns used by node .

• At source node 0: The source uses the -ary alphabet
for encoding without transmitting informa-

tion in the timing of the symbols. Due to the half-duplex
constraint at relay 1, the effective codeword length of the
source reduces to what results from the fact that
relay 1 cannot pay attention to the source when it (relay 1)
transmits. Thus, the source is able to generate
different sequences .

Next, the maximum size of is given.
From the previous paragraph, we immediately obtain

(IV.1)

Both the source and the relays choose their messages uniformly
and independently of each other. Hence, relay is required to
reserve sequences in order to represent an arbitrary

combination of arriving messages
. Arriving messages are encoded by each relay with trans-

mission patterns and a fixed number of trans-
mission symbols. The remaining transmission symbols
per transmission pattern are used by relay for encoding own
messages . With the foregoing explanation in mind, we
have for all

(IV.2)

(IV.3)

If relay does not have own information, then . As a
final remark, we note that transmission patterns can only be used
for encoding arriving messages. Otherwise, if relay would en-
code own messages by means of transmission patterns,
node would not know when node listens in block as

(hence the transmission pattern used by node ) is not
known by node .

B. Example

We now illustrate the ideas introduced in the previous section
by constructing a code for a relay cascade with four nodes, i.e.,

, where nodes 0 and 2 act as sources with a
rate greater than zero. The transmission alphabet is binary, i.e.,

, and the code parameters are (and
of course). According to (IV.1) to (IV.3), the maximum

size of the message sets is obtained for
and , which corresponds to a sum rate of 1

b/u. Table II(a) depicts possible codebooks for nodes
0, 1 and 2, respectively, and Table II(b) shows how to use the
codebooks in order to send a particular message sequence.
Let us first consider which consists of 16 different code-

words. The four underlying transmission patterns (arbitrarily
chosen from the possible patterns) are shown in the last
column of Table II(a). Each transmission pattern is identified
with a color and the binary transmission
slots within each pattern are marked with . Node
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2 uses the transmission patterns for representing source mes-
sages . In detail, pattern represents , pattern rep-
resents and so forth. Own messages are encoded by
the transmission symbols and according to :

.
Next, is considered. Recall that has to be constructed

such that node 1 is able to represent one out of four possible
source node 0 messages per block independently from the trans-
mission pattern used by node 2 in the same block. Hence, four
codewords per transmission pattern and have to be con-
structed. Take, for instance, pattern . When node 2 uses pat-
tern , node 1 can encode its information in slots one and three.
The following mapping is chosen for en-
coding where indicate the symbols used
by node 1 in slots one and three:

. By allocating each of the four values of
to the listen slots of pattern and, further, by re-

quiring that node 1 is quiet when node 2 transmits (i.e., allo-
cating “ ” to slots 2 and 4 of pattern ), we obtain the code-
words in the first column of . Applying the same procedure to
pattern and yields column two, three and four of . The
label next to each codeword in
has the following meaning. The first color indicates the trans-

mission pattern in from which the codeword was constructed
while the second color indicates the transmission pattern of the
codeword in .
Finally, we consider . In each transmission block,

source node 0 can use three time slots and
for encoding since node 1 sends once per block. Let

denote the symbols used by
node 0 for encoding a particular message . We use
the mapping for encoding where

.
Again, the mapping includes timing. Now, by allocating all
possible values of to the listen slots of
codewords in whose second color is and,
further, by requiring that node 0 is quiet when node 1 transmits,
we obtain all codewords in which are colored with . We
note that merely four from 27 possible sequences are used in
the mapping . Hence, could be
designed such that node 0 is able to send additional
messages to a sink at node 1 at a rate of 0.6462 b/u.
Adjacent nodes are able to cooperate since each node knows

the message(s) to be forwarded by the next node as well as
the coding strategy applied by the next node. Hence, a node
is always aware of the codeword used by the next node and,
therefore, can pick a codeword from the correct column of its
codebook. In particular, the codewords for block are picked
as follows. The encoder at node 0 determines, based on mes-
sage , the color of and, therefore, knows the first
color of codeword . Then, based on this information, the
encoder at node 0 determines the second color of by
means of . This color tells node 0 from which column
in has to be picked, namely from a columnwhose code-
words are colored with . The precise choice within the picked
column depends on the new source message . Similarly,
the encoder at node 1 determines, based on message ,
color of and, therefore, knows that has to be picked

from a column of whose entries have as their first color. The
precise choice within the column depends onmessage .
The encoder at node 2 knows at the begin-
ning of block . Message tells him which transmission
pattern to use in while determines the transmission
symbols.
We conclude the example by demonstrating how the code-

books and have to be used such that source node 0 is
able to transmit messages 3, 1, 2 to the sink while relay source
2 transmits messages 0, 2, 3 to the sink. Note that the transmis-
sion strategy includes the arrangement that a node picks its very
first codeword from the first column of its codebook. The result
is shown in Table II(b).

C. Rate Region

We now determine an achievable rate region from the ex-
pressions derived in Section IV-A. As usual, .
In order to avoid tedious case distinctions, we assume
in the remainder. Hence, for all .
This is without loss of generality since the rate region of a cas-
cade with is equal to the rate region of the shortened
cascade where the first node with a rate greater zero is made to
node 0. The following abbreviations are used for the portion of
time in which relay listens or transmits: and

. Observe that for

(IV.4)

(IV.5)

(IV.6)

since and . The set of points charac-
terized by (IV.4) to (IV.6) will be denoted as . By
identifying with , we can regard as a subset of the
joint probability distributions . Obviously, all distribu-
tions in factorize as .
Themethod of types [20] provides important tools for relating

combinatorial expressions to information theoretic expressions.
An example, which will be useful for the problem considered
here, is [21, Th. 1.4.5]

(IV.7)

where denotes the binary entropy function evaluated at
. Using (IV.7), we obtain from (IV.1) to (IV.3)

for

(IV.8)

(IV.9)

(IV.10)

where . As an aside, (IV.9) results from adding
the logarithm of (IV.2) to the logarithm of (IV.3), dividing the
result by and applying (IV.7). Inequality (IV.9) is well-defined
since and due to (IV.4) to (IV.6).
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The achievable rate region for is given by

(IV.11)

where indicates the region resulting from (IV.8) to (IV.10)
for a particular point while the convex hull takes
time-sharing between different regions into account.
Conditions (IV.8) to (IV.10) are merely another formulation

of (IV.1) to (IV.3) for . Since we can construct code-
books of the size stated in (IV.1) to (IV.3) by means of the
outlined procedure, it immediately follows that the rates due to
(IV.8) to (IV.10) are achievable and, thus, the conditions are
sufficient.

V. CAPACITY RESULTS

In this section, we shall investigate the optimality of the
coding strategy. We will make use of the following nota-
tion. The complement of a set within an ambient set is
denoted as , the power set of a set is denoted as
and indicates a set of random variables.
Further, is a -dimensional rate vector with as its
th entry. We will use pmf as acronym for probability mass
function.
A well-known result, which bounds the rate of information

flow from nodes in to nodes in is the so-called cut-set
bound.

Lemma 1 (Cut-Set Bound): [22, ch. 14.10] Consider a general
multiterminal network composed of nodes and channel

. denotes the transmission rate between
two nodes and . If the information rate is achievable,
then there is some joint probability distribution , such
that

(V.1)

for all .

Lemma 2: Consider a noise-free relay cascade as described
in Section III-A. If the information vector is achievable, then
there is some joint probability distribution , such that

(V.2)

for all .
Proof: We determine a sufficient subset from the set of

all possible network cuts. An upper bound on the sum rate
due to Lemma 1 is given by

(V.3)

where . We further have

(V.4)

since the network is deterministic. Now suppose that is
nonempty and let denote the smallest
integer in . By the chain rule for entropy, we can expand

as

(V.5)

For each cut with smallest entry , a cut called can be
found such that is less than or equal to

. Simply choose . This
eliminates the second and third term on the right-hand side
(RHS) of (V.5) due to the underlying channel model (III.1).
Further, since we have .
Thus, each nonempty cut with smallest element is dom-
inated by in terms of delivering a smaller entropy value.
Finally, has to be considered in (V.4) which yields

. To sum up, is upper bounded by2

(V.6)

(V.7)

where the last inequality follows from the fact that conditioning
does not increase entropy.

Theorem 1: The capacity of a noise-free relay cascade with
a single source-destination pair (namely nodes 0 and ) and

half-duplex constrained relays is given by

(V.8)

where the maximization is over all as shown in
Table III(a) and III(b) and equals the number of transmission
symbols.
Under consideration of the optimal input distribution stated

in Table III(a) and III(b), (V.8) becomes (V.9), shown at the
bottom of the page, where and
for all .
Proof: By Lemma 2 we have

(V.10)

The opposite direction of (V.10) is shown as follows. Consider
the marginal pmfs given in Table III(a)
and III(b). We show that these functions are optimal in terms
of maximizing . The zero probabilities in

2Note that . For notational convenience, we will
always use .

(V.9)
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TABLE III
(A) OPTIMAL FOR , (B) OPTIMAL

Table III(a) and III(b) result from the following well-known
fact [23, Def. 3]: a channel input can be neglected if it pro-
duces the same channel output as another channel input and this
with the same probabilities. Consider e.g., the first column in
Table III(a). For all , the inputs pro-
duce with probability 1. Hence, all but one input can
be neglected. Applying the same consideration to the second
till th column yields that only one nonzero entry remains in
each of the first columns of Table III(a) and III(b). Let us
now address the last column of Table III(a). Recall that a per-
mutation of the transmission symbols still yields the
same information flow between two nodes and . Hence,

can be chosen for all .
Considering the relative frequency of transmission sym-
bols used by node , we have for
all where .
In order to achieve the maximum information flow from

source node 0 to relay 1, the source has to encode with uni-
formly distributed input symbols when relay 1 listens, i.e.,

for all . By taking this
additional constraint into account, we obtain the last column of
Table III(b).
The constraints on , which are stated in the last line of the

Theorem, are necessary in order to guarantee that Table III(a)
and III(b) are proper probability mass functions. It is now fairly
easy to check that the following equalities hold:

(V.11)

(V.12)

for all . Observe that the set of probability mass
functions defined by Table III(a) and III(b) is a subset of , i.e.,
the set of empirical distributions due to the code construction
defined by (IV.4) to (IV.6). Further, by assumption,
for all . Then, a comparison of (V.11) and (V.12)
with (IV.8) and (IV.9) reveals that is an
achievable rate. Hence, the capacity is lower bounded by

(V.13)

where the maximization is with respect to Table III(a) and III(b).
Inequality (V.13) together with (V.10) proves (V.8). Replacing
the conditional entropies in (V.8) by (V.11) and (V.12) gives
(V.9).

Remarks:
i) A more intuitive explanation of the zero probability as-
signment in Table III(a) and III(b) is the following. As-
sume relay is transmitting, i.e., . According to
the underlying channel model, relay is not able to listen
to the input of node and, consequently, node
should not transmit when node transmits.

ii) One could ask why the channel inputs
and have equal

probability mass for but not necessarily for
since for the information flow between relay
and should also be maximized. However, in contrast to
the source node, relay receives information. The
amount of received information depends on the fraction
of listening time provided by relay . Thus, choosing
uniformly distributed inputs
, maximizes the rate on link but eventually

reduces the rate on link .
iii) Capacity expression (V.8) in Theorem 1 could also have

been obtained by applying the decode-forward rate of Xie
and Kumar [24] to the model considered in this paper.
However, we show achievability by a constructive argu-
ment while Xie and Kumar use a random coding argu-
ment in their proof.

Theorem 2: For , i.e., for an unbounded number of
relays, and transmission symbols, the capacity of the noise-
free and half-duplex constrained relay cascade with a single
source-destination pair is equal to

(V.14)

Proof: Theorem 2 is proved in the Appendix.

Remarks:
i) is achieved by the input pmf given in Table III(a)
where

(V.15)

for all (note that Table III(a) is also used for char-
acterizing ).
Another optimal input pmf is characterized by Table III(a)
for and Table III(b) when is replaced by (V.15)
for all . This is proved in the Appendix.

ii) b/u is equal to the logarithm of the
golden ratio. Also remarkable, is exactly 1 b/u.

iii) The maximum achievable rates with time-sharing and,
thus, no timing are given by
b/u. For we have 0.5 and 0.7925 b/u, respec-
tively. Since is obviously a lower bound on the
capacity of each finite length cascade, a comparison of
the time-sharing rates with and shows that
predetermined time-sharing falls considerably short of
the capacity for small transmission alphabets. For very
large transmission alphabets the gap between the rates
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due to time-sharing and timing becomes negligible, i.e.,
.

Next we state an achievable rate region for a cascade with
more than one source. Let denote the set of all rate vectors

satisfying

(V.16)

and let denote the set of all satisfying

(V.18)

where and . We note that,
taking into account Table III(a) and Table III(b), is equal to
(V.17).

Theorem 3: Consider a noise-free relay cascade with
half-duplex constrained relays where each relay can act as a
source. The achievable rate region due to the timing strategy
(see Section IV-A) is given by

(V.19)

where the union is over all assignments as shown in
Table III(a) and III(b).

Proof: The input pmf stated in Table III(a) and III(b) is also
optimal for the case considered here since the network model
has not changed in the meantime.. Taking into account the re-
sulting entropy functions (V.11) and (V.12), it follows that the
achievable rate region due to (IV.8) to (IV.11) equals (V.19)
as .

Remark: Observe that with as shown
in Table III(a) and III(b) is equal to the cut-set region (Lemma
2). Thus, all boundary points of that are achievable
when the constraints stated in (V.18) are satisfied are capacity
points. This idea will be illustrated for an example in paragraph
VI-B.

VI. NUMERICAL EXAMPLES

In this section we shall provide numerical capacity results for
various scenarios by means of Theorem 1 and Theorem 3. In
particular, we show how to obtain the capacity of a half-duplex
constrained relay cascade with one source-destination pair for
an arbitrary number of relays. Further, in case of a three node
relay cascade with source and relay source, an explicit expres-
sion of the region due to Theorem 3 is derived.

A. One Source

Let us first consider a relay cascade with
and , i.e., source node 0 intends to communicate

with sink node 2 via the half-duplex constrained relay 1. By
Theorem 1 and the optimum input pmf stated in Table III(b),
we have

(VI.1)

Problem (VI.1) exhibits a single degree of freedom and
is readily solved by finding a which satisfies

(see Fig. 2). The optimum value
for equals 0.7185 and results in

(VI.2)

Remarks:
i) Assume the relay does not have the capability to de-
cide whether the source has transmitted or not, i.e.,

. In this case an identical approach
shows that the capacity equals 0.8295 b/u, which is still
greater than the time-sharing rate of
bit per use.

ii) For , the outlined procedure yields
b/u achieved by . The capacity value of
this specific case has also been obtained in [23]. Therein,
the focus was not on half-duplex constrained transmis-
sion but on finding the capacity of certain classes of de-
terministic relay channels. In [5], the same channel model
was considered and the author also noticed that the ca-
pacity equals 0.7729 b/u. A simple coding scheme was
outlined which approaches 2/3 b/u, and extensions using
Huffman or arithmetic source coding are claimed.

In order to compute for , we transform (V.8)
into a convex program with linear cost function and
convex equality constraints
for all . The resulting program reads as

By adopting a standard algorithm for constrained optimization
problems, the capacity was computed for various
values of . A brief summary is given in Table IV.

(V.17)
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Fig. 2. Graphical solution of optimization problem (VI.1).

TABLE IV
CAPACITY RESULTS FOR CASCADES COMPOSED OF HALF-DUPLEX
RELAYS. ROW “TS” SHOWS THE CORRESPONDING TIME-SHARING RATES

B. Two Sources

The considered relay network is characterized by
and . In contrast to the previous ex-

ample, the relay is allowed to send own information, i.e.,
. According to Theorem 3, the achievable rate region

is given by the convex hull of

(VI.3)

(VI.4)

(VI.5)

(VI.6)

together with which follows by consid-
ering the shortened cascade from the relay to the source. Ob-
serve that (VI.3) and (VI.4) correspond to while (VI.5) and
(VI.6) correspond to .
We will first derive an explicit expression for the boundary of

the cut-set region . Two cases have to be considered depending
on whether an optimum input pmf for the source or the relay
source is used. An optimum input pmf for the relay source due to
Table III(a) is shown in Table V. It yields the maximum possible
sum rate b/u for all valid (i.e., ).
When varies from 0 to 1/6, we have

where corresponds to . Thus, a part of
the cut-set region boundary is given by for

as shown in (VI.7a).
It remains to focus on the interval

b/u. Using the optimum input pmf for source node 0
[Table III(b)] and (V.11), we can express
as shown in (VI.7b). Hence, the boundary of the cut-set region
is given by (VI.7), shown at the bottom of the page.
In order to determine , (VI.5) must be taken into account.

We first check whether points on (VI.7a) are achievable under
constraint (VI.5). Using the probability mass function of
Table V, it follows from (VI.5) that b/u. Hence, no
point (except of ) is achievable on (VI.7a) since the
range of implies that is always greater or equal
b/u. Let us now focus on (VI.7b) and recall that Table III(b)
is the underlying probability function. Rate points on (VI.7b)
which satisfy

(VI.8)

(VI.7a)

(VI.7b)
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Fig. 3. The cut-set region is bounded by the solid curve, is bounded by the dashed line and the the solid curve for b/u. The time-sharing region
is bounded by the dotted line.

TABLE V
OPTIMAL YIELDING A SUM RATE OF B/U

are achievable. Equality in (VI.8) results for
which gives b/u and b/u. Since

is linear in while is concave in ,
(VI.8) is satisfied for all . The corresponding rate
points are and b/u. Thus, is given
by taking the convex hull of (VI.7b) for
b/u and the rate vector b/u.
The cut-set bound, the timing region and the region which

results from a deterministic time-division schedule (i.e., time-
sharing between and ) is de-
picted in Fig. 3. The derivation reveals that the cut-set bound is
achievable for . Moreover, we see that even when
the source transmits at a rate beyond the time-sharing rate of

b/u, the relay is still able to send its own information
at a nonzero rate.

VII. EXTENSION TO OTHER NETWORK ARCHITECTURES

Relay cascades are fundamental building blocks in commu-
nication networks. The results derived in the previous sections
may be instrumental in order to determine the capacity of half-
duplex constrained networks with more elaborate topologies.

A. Trees

Consider, for instance, the tree structured network depicted
in Fig. 4. The root (node 1) wants to multicast information to all
leaves (nodes 2 to 8) via four half-duplex constrained relays. We
assume noise-free bit pipes (i.e., ) and broadcast behavior

Fig. 4. A binary tree. The multicast capacity is equal to b/u.

at nodes with more than one outgoing arrow. The multicast ca-
pacity is limited by the capacity of the longest path in the tree
which goes from node 1 to nodes 7 and 8. Hence, the multi-
cast capacity in the considered example is equal to the capacity
of a cascade containing two intermediate relay nodes, which is

b/u (see Table IV).

B. The Half-Duplex Butterfly Network

A half-duplex butterfly network [25] is shown in Fig. 5.
Nodes 1 and 2 intend to multicast information to sink nodes
4 and 5 via both a direct link and a half-duplex constrained
relay node 3. Like before, broadcast transmission and bit pipes
are assumed. All nodes with two incoming arrows behave
according to a collision model, i.e., received information is
erased if there was a transmission on both incoming links. By
means of network coding (NC) with a bit-wise XOR, b/u
are achievable at the sink nodes. The (well-known) strategy is
(see Fig. 5) to send in the first time slot a binary symbol via
broadcast to nodes 3 and 4, in the second time slot a binary
symbol via broadcast to nodes 3 and 5 and, subsequently,
in the third time slot via broadcast from the relay
node to both sinks. However, under the usage of timing, at
least 0.7729 b/u is achievable by applying the proposed timing
strategy as follows. Information originating from node 1 can
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Fig. 5. The binary half-duplex butterfly network. With network coding, b/u
are achievable. Timing yields b/u.

be sent by means of timing at a rate of b/u
concurrently on paths and .
Similarly, information originating from node 2 can be sent by
means of timing at a rate of b/u concurrently
on paths and . Hence, time-sharing
of both source nodes yields a multicast rate of 0.7729 b/u.
Assume for the moment that node 1 is sending information.
Decoding at sink nodes 4 and 5 is done as follows. First observe
that the sequence received at sink node 4 is a superposition of
the sequence sent by source node 1 on the direct link
and of the relay sequence on . Due to the timing-strategy
source node 1 and the relay never transmit in the same time
slot. Hence, sink node 4 is able to extract the information sent
by source node 0 from the received sequence by the following
protocol. In the very first block source node 0 forwards a
message to sink node 4 and the relay via broadcast while
the relay is quiet. Sink node 4 and the relay are able to decode
successfully. In the second block the relay sends the decoded
message to nodes 4 and 5 via broadcast while source node 0
sends a new message to nodes 3 and 4 via broadcast . Since
sink node 4 knows both the strategy and, therefore, the current
sequence used by the relay for encoding the source message of
the previous block, it can determine the new source message
by subtracting the relay sequence from the received sequence.
Sink node 5 is also able to decode the received relay sequence
by applying the rules for the proposed timing strategy. The
outlined procedure is repeated in the following blocks and is
used in the same way for transmitting information from source
node 2 to nodes 4 and 5.

VIII. CONCLUSION

The half-duplex constraint is a property common to many
wireless networks. In order to overcome the half-duplex con-
straint, practical transmission protocols deterministically split
the time of each network node into transmission and reception
periods. However, this is not optimal from an information the-
oretic point of view, as is demonstrated by means of noise-free
relay cascades of various lengths with one or multiple sources.
We show that significant rate gains are possible when informa-
tion is represented by an information-dependent allocation of
the transmission and reception slots of the relays. Moreover, we
provide a coding strategy which realizes this idea and, based on
the asymptotic behavior of the strategy, we establish capacity
expressions for three different scenarios. These results may be

instrumental in deriving the capacity of half-duplex constrained
networks with a more elaborate topology.

APPENDIX

For the proof of Theorem 2, we need the following result.

Lemma 3: Consider a noise-free relay cascade with a single
source-destination pair (namely nodes 0 and ) and
half-duplex constrained relays where denotes the number of
transmission symbols. There exists a capacity achieving input
pmf such that .

Proof: Consider the capacity expression of Theorem 1
and assume that . It will be shown
that can be decreased to without forcing

, to decrease. The optimal input pmf
given in Table III(a) and III(b) is assumed in the following.
Hence, and

for all . The
assertion is clear for (see Fig. 2). Let . Recall that

and

(A.1)

where and . A change of does
not affect , since both expres-
sions depend on different variables. Therefore, it is enough to
consider . The maximum of is at

. Further, is (strictly) decreasing
to zero for . Hence, without loss, we can
focus on . In order to decrease
to has to be increased which, in turn, does not
decrease since

(A.2)

is nonnegative.

Proof of Theorem 2: The capacity series is
bounded (e. g. by 0 and ) and monotonically decreasing
(since each new relay causes an additional constraint in the
corresponding convex program of Section VI-A). Hence,

is convergent. Thus, for every there exists
an such that

(A.3)

for all . Assuming the capacity achieving input pmf, we
have and (Lemma
3). Then, by (A.3)

(A.4)

for all . Two cases can appear in (A.4) when ap-
proaches zero: as with
or .
Consider the first case, i.e., . By (IV.5), has to

be greater than or equal to 1. However, is always smaller
than 1 what can be seen as follows. First, note that the maximum
of is at . Hence, without restriction we can
assume that and (otherwise a
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priori). Since the first derivative of is point symmetric
with respect to , we have what
yields .
Hence, only the second case is valid, i.e.,

as . But this implies, using Table III(a) and replacing
and by , that is smaller than or equal to the

maximum of

(A.5)

Since Table III(a), with and being replaced by , is valid
for all , it follows that is equal to the
maximum of (A.5), which is

(A.6)

Proof of Theorem 2—Remark i): The maximum of (A.5) is
achieved at

(A.7)

and an optimal choice for is given by
Table III(a) when is replaced by (A.7). Another optimal input
pmf is given by Table III(a) and Table III(b) when is replaced
by (A.7) for all . Since is the only part which differs
from the pmf considered before, it suffices to show that the value
of under the claimed pmf is always greater or equal
to (A.6), i.e.

(A.8)

or, equivalently

(A.9)

Lowering the left-hand side (LHS) while increasing the RHS
gives

(A.10)

Using the substitution

(A.11)

in (A.10), we obtain

(A.12)

(A.12) is satisfied for all what can be seen as fol-
lows. First note that (A.12) is satisfied for and .
Since is concave due to a non-positive second derivative
in the considered domain, (A.12) is valid for all .
Thus, (A.8) is true for all . The validity of (A.8) for the re-
maining is easily checked by direct computation.
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