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Lehrstuhl für Numerische Mechanik

A dual mortar formulation for finite deformation
frictional contact problems including

wear and thermal coupling

Markus Gitterle
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Abstract

Abstract
Contact mechanics and friction are fundamental disciplines in engineering and applied science.
They describe the potential surface interactions of solids. Closely related to especially frictional
contact are effects from wear and thermomechanics. Alone and in combination, they are causal
for different kinds of phenomena. Fretting fatigue, a possible damage mechanism in turbine or
fan disc to blade joints in aircraft engines, is one of many relevant examples.

This thesis is concerned with the development of a 3D finite deformation frictional contact
formulation based on finite elements. It is extended towards the inclusion of wear and towards
the multiphysics problem of thermomechanical contact.

The necessary contact surface discretization is realized with the mortar method to overcome
problems inherent to node-to-segment approaches. It represents a weak formulation of contact
constraints which results in a perfect quality of contact stresses even for non-matching meshes.
Contact constraints are enforced with the dual LAGRANGE multiplier method. This necessitates
no regularization of contact conditions and allows, due to choosing them from a dual space,
for an efficient elimination of these additional unknowns from the global system of equations.
The tangential relative velocity, an essential quantity for finite frictional sliding, is formulated
in terms of the change of the mortar projection in order to obtain a frame indifferent rate mea-
sure. The solution is realized with a semi-smooth NEWTON method. Thus, all nonlinearities are
treated within one single iterative scheme which leads to a highly efficient solution algorithm in
combination with the consistent linearization that is carried out.

The extension of the developed mortar contact formulation towards wear is performed using
both an internal state variable and an Arbitrary LAGRANGEan-EULERian formulation resolved
with a fractional-step strategy. The former approach increases the distance between contacting
bodies by a so-called wear-gap and is mainly suitable for small amounts of wear. The latter one,
which results in a LAGRANGEan step followed by an EULERian one where the mesh is adjusted
due to wear, allows for significant wear loss clearly changing the geometry.

The multiphysics problem of 3D thermomechanical contact is obtained by adding the thermal
field to the purely mechanical one. It contains coupling effects which are, related to contact, for
example the heat conduction over contacting surfaces or heat production from frictional dissi-
pation. For the thermal field, also the mortar method and dual LAGRANGE multipliers are used
for contact surface discretization and enforcement of constraints. This transfers the accompany-
ing advantages, which are the correct heat flux transfer over non-matching meshes and the easy
elimination of LAGRANGE multipliers. For the solution, both a partitioned and, for frictionless
contact, a monolithic scheme are applied. The latter is directly embedded in the semi-smooth
NEWTON method and shows, together with a consistent linearization of all contact related terms,
an excellent convergence behavior.

Accuracy, efficiency, and robustness of the proposed methods are demonstrated in several
numerical examples.
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Zusammenfassung

Zusammenfassung

Kontaktmechanik und Reibung sind grundlegende Disziplinen in Wissenschaft und Technik.
Sie beschreiben potentielle Oberflächen-Wechselwirkungen von Festkörpern. Eng verknüpft mit
solchen Fragestellungen sind, vor allem für den reibungsbehafteten Kontakt, Effekte aus Ver-
schleiß und Thermomechanik. Allein und in Kombination sind sie Ursache für die verschiedens-
ten Phänomene. Reibermüdung (fretting fatigue) als ein möglicher Schädigungsmechanismus
in Schaufel-Scheibe-Verbindungen von Flugzeugtriebwerken ist eines von einer Vielzahl von
Beispielen.

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung einer 3D reibungsbehafteten
Kontaktformulierung für große Deformationen auf Basis der Finite-Element-Methode. Zusätzlich
wird sie um die Berücksichtigung von Verschleiß und die Betrachtung von thermomechanischem
Kontakt als Mehrfeldproblem erweitert.

Die Diskretisierung der Kontaktoberflächen erfolgt mit der Mortar-Methode, womit Nachteile
aus Knoten-Segment-Ansätzen nicht auftreten. Sie besteht aus einer integralen Beschreibung
der Kontaktbedingungen und ermöglicht, auch für nicht passende Netze, die Abbildung von
Kontaktspannungen in einer sehr guten Qualität. Erzwungen werden die Kontaktbedingungen
mit der dualen LAGRANGE-Multiplikatoren-Methode. Diese erfordert keine Regularisierung und
erlaubt eine effiziente Beseitigung der damit verbundenen zusätzlichen Unbekannten aus dem
globalen Gleichungssystem. Die tangentiale Relativgeschwindigkeit ist eine wesentliche Größe
für die Formulierung von reibungsbehaftetem Gleiten bei großen Deformationen. Um ein ob-
jektives Maß zu erhalten wird sie mit Hilfe der Änderung der Mortar-Projektion beschrieben.
Die Lösung erfolgt mit einem halbglatten NEWTON-Verfahren, womit alle Nichtlinearitäten
innerhalb eines einzigen Iterationsschemas behandelt werden. Dies führt, zusammen mit der
durchgeführten konsistenten Linearisierung, zu einem sehr effizienten Algorithmus.

Die Erweiterung der entwickelten Mortar-Kontaktformulierung hinsichtlich der Berücksich-
tigung von Verschleiß erfolgt sowohl mit einer inneren Zustandsvariablen als auch mit einer
“Arbitrary LAGRANGEan-EULERian”-Betrachtungsweise, die partitioniert behandelt wird. Der
erste Ansatz erhöht den Abstand zwischen kontaktierenden Körpern um die bisher abgeriebene
Höhe und ist vor allem für geringe Mengen an Verschleiß geeignet. Der zweite besteht aus einem
LAGRANGE-Schritt gefolgt von einem EULER-Schritt, in welchem das Netz entsprechend des
Abriebs angepasst wird. Die Methode erlaubt die Abbildung von signifikantem Verschleiß mit
deutlichen Geometrieänderungen der kontaktierenden Körper.

Dreidimensionaler thermomechanischer Kontakt gehört zur Gruppe der Mehrfeldprobleme
und ergibt sich aus der Hinzunahme des thermischen Feldes zum rein mechanischen Problem.
Kopplungsphänomene bezogen auf den Kontakt sind, zum Beispiel, der Wärmeübergang über
Kontaktflächen oder die Wärmeerzeugung aus Reibung. Für das thermische Feld werden eben-
falls die Mortar- und die duale LAGRANGE-Multiplikatoren-Methode verwendet. Dies trans-
feriert die entsprechenden Vorteile, die hier die qualitativ hochwertige Abbildung des Wärme-
stroms über nicht passende Netze und die einfache Elimination der LAGRANGE-Multiplikatoren
erlaubt. Die Lösung erfolgt mit einem partitionierten Verfahren und, für reibungsfreien Kon-
takt, auch mit einem monolithischen Ansatz. Dieser ist direkt in den halbglatten NEWTON-
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Algorithmus eingebettet und zeigt, in Kombination mit der konsistenten Linearisierung aller
Kontaktbeiträge, ein hervorragendes Konvergenzverhalten.

Genauigkeit, Effizienz, und Robustheit der vorgeschlagenen Methoden werden in mehreren
Beispielen demonstriert.
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1 Introduction

This thesis is concerned with frictional contact analysis for finite deformations. It includes the
treatment of wear and the extension to the multiphysics problem of thermomechanical contact.

For the numerical solution scheme, nonlinear finite elements are used. Regarding contact,
three methods are predominant within this work: The mortar approach is applied for the dis-
cretization of contact surfaces and dual LAGRANGE multipliers are used for contact constraint
enforcement. To overcome difficulties associated with contact conditions of multivalued charac-
ter and formulated in terms of inequalities, the semi-smooth NEWTON method is utilized.

This chapter motivates the treatment of contact, wear, and thermomechanical contact in nu-
merical simulations. It contains a review of existing methods and from these, the objectives and
classification of the new aspects of the presented work are introduced. Finally, an overview on
the structure of this thesis is given.

1.1 Motivation

Contact mechanics and friction are fundamental disciplines in engineering and applied science
which describe potential surface interactions of solids. They are of interest in various fields as,
for example, crash-tests, metal forming, and machining in mechanical engineering applications
or bridge bearings in the area of civil engineering. But also for non-traditional problems, fric-
tional contact is relevant. In biomechanic applications, examples are the clamping of the aorta
during cardiopulmonary bypass surgery, the placement of stents in arteries, or the implantation
of artificial joint prostheses.

Some of the above mentioned applications are already strongly connected to wear and ther-
momechanical effects. This is, for example, considering the contact in joint protheses, where
wear unavoidably represents a limitation to the lifetime of components, see LONG and RACK

[91]. Another example is during metal forming, where temperature can heavily influence the
manufacturing process, see NEUGEBAUER et al. [99].

Initially, the damage mechanism of fretting fatigue in turbine or fan disc to blade joints in
aircraft engines was the primary motivation for this work. These thermally highly loaded con-
nections rely on frictional contact and are subjected to small-amplitude oscillatory movements.
Possible damage can either be wear or, when cracks appear, fretting fatigue, see HILLS and
NOWELL [51].

In general, numerical simulations can contribute to the design process and potentially reduce
or avoid expensive experiments. As a typical example, the crash-test in the automotive industry
is well known. Besides aiding the design process, they are used for interpretation and verifica-
tion of experimental findings or physical observations. They can also shed light on occurring
effects and help to better understanding complex phenomena. This could be, for example, the
above mentioned fretting fatigue failure. Numerical analysis can also help to extrapolate known

1



1 Introduction

behavior towards new limits, where experiments are difficult to carry out or data are difficult to
obtain. Examples in a large number can be found in the field of biomechanics, as, for instance,
the change of blood flow during the above mentioned aorta clamping.

Many of the above given contact examples entail finite deformations. According to demands,
these nonlinearities have to be taken into account in numerical contact simulations. Furthermore,
coupling effects from the thermal field or wear may also become necessary to consider. Accurate,
robust, and highly efficient methods are still matter of current research. This work contributes to
this.

1.2 Existing methods and objectives

This thesis is divided into three main parts: The development of a finite deformation frictional
contact formulation, its extension to wear and its extension to the fully coupled thermomechan-
ical contact problem. This section gives an overview of existing methods and classifies the new
aspects of this work.

1.2.1 Frictional contact problem

The solution of finite deformation contact problems is challenging due to the strong nonlinear-
ities involved. They originate from finite deformations and contact conditions. The latter are
non-smooth, of multivalued character, and have to be satisfied on a priori unknown contact re-
gions. The inclusion of friction laws, as for example the one of COULOMB, complicates the
problem even more. It makes the determination of the frictional traction path dependent and
represents a nonsymmetric problem. This aspect stems from the fact that frictional traction is
proportional to the contact pressure during sliding. However, the contact pressure is independent
of the frictional traction, see COULOMB’s law stated in equations (2.63) - (2.66). A comprehen-
sive overview on contact mechanics in general and the related computational methods can be
found in, for example, the contributions of LAURSEN [83] and WRIGGERS [144].

Numerical simulation of contact needs two basic ingredients: A technique to discretize the
contact surface and a scheme to enforce the contact constraints. For both, several approaches
are available in literature. Regarding the first aspect, the most prevalent method is a node-to-
segment approach (NTS) which enforces contact conditions at specific collocation points. Due
to the well known disadvantages of NTS, segment-to-segment approaches (STS), especially the
mortar method, have become very popular in recent years. The mortar method was originally
introduced in the context of domain decomposition techniques in BERNARDI et al. [11] and is
characterized by the weak formulation of the contact conditions across an interface instead of
strong, pointwise constraints. Both methods and their occurrence in literature are explained later
within this work. For completeness, a so-called contact domain method as recently presented in
HARTMANN et al. [41, 42], OLIVER et al. [102], and WEYLER et al. [137] shall be mentioned.
Therein, an intermediate domain of the same dimension as the contacting bodies is utilized.

The second aspect, i.e. the enforcement of contact constraints, is realized mainly by three
methods: The penalty approach, the augmented LAGRANGEan method resolved with USZAWA’s
scheme, and the LAGRANGE multiplier method. Their functioning and occurrence in literature

2



1.2 Existing methods and objectives

are explained in detail within the further course of this work. The latter method brings the ad-
vantage of an exact fulfillment of contact constraints without regularization as in the first case, or
at the extra computational costs required by the second case. However, the drawback is usually
an increased system of equations with LAGRANGE multipliers as additional primary unknowns,
yielding a saddle point-type problem. This issue can be addressed by using approaches based on
the NITSCHE method as presented in HEINTZ and HANSBO [43], where LAGRANGE multipliers
can be eliminated. But there again a penalty factor is introduced, which can influence the quality
of results. A further possibility is the application of so-called dual LAGRANGE multiplier spaces
as originally introduced in WOHLMUTH [140]. These alternative spaces allow for an efficient lo-
cal elimination of the discrete LAGRANGE multipliers by static condensation and the unknowns
of the remaining problem are the displacements only. Throughout this work, the mortar method
is applied for contact surface discretization and for contact constraint enforcement, the focus is
on using dual LAGRANGE multipliers.

As solution algorithm, the semi-smooth NEWTON method is applied. It can be interpreted as a
primal-dual active set strategy, see HINTERMÜLLER et al. [52], and is based on the reformulation
of contact conditions in so-called complementarity functions. These are not differentiable in the
classical sense, but smooth enough to be treated with NEWTON-type methods. For frictional
contact problems, such algorithms were early presented in ALART and CURNIER [2] and in
modified form in CHRISTENSEN et al. [16] for small deformations. This was enhanced to elasto-
plastic frictional contact problems in CHRISTENSEN [15]. In recent years, such an approach
with alternative complementarity functions was proposed in HÜEBER et al. [54, 56, 59] for the
two-body frictional contact problem in the context of small deformations. This algorithm was
extendend to finite deformations for the 2D and 3D frictionless cases by POPP et al. [110, 111].

This thesis treats the extension of that approach towards 2D and 3D finite deformation fric-
tional contact. To the author’s knowledge, it is the first implementation of this problem in the
context of the mortar method and dual LAGRANGE multipliers with consistent linearization. For
friction, COULOMB’s law is applied and the accompanying rate measure, the tangential relative
velocity, is formulated in a frame objective way. The new aspects considering the 2D problem
have already been published by the author in GITTERLE et al. [35].

The proposed method contains three main advantages: Firstly, there is the excellent conver-
gence behavior of the semi-smooth NEWTON method obtained from the consistent linearization
of all deformation and LAGRANGE multiplier dependent terms. Secondly, the additional LA-
GRANGE multipliers can easily be eliminated from the system of equations since they are cho-
sen from the above mentioned dual spaces. And finally, from the application of a semi-smooth
NEWTON method, nonlinearities stemming from contact (search for inactive, stick and slip set)
and all other nonlinearities (i.e. geometrical and material ones) are treated in one single iterative
scheme. These three advantages ensure that a robust, accurate and highly efficient algorithm for
the numerical simulation of three dimensional finite deformation frictional contact problems is
obtained.

1.2.2 Frictional contact problem with wear
When considering finite deformation frictional contact problems with wear, besides the govern-
ing equations covering contact, a wear evolution law has additionally to be taken into account.
For this, often and widely used is the phenomenological law of ARCHARD [4]. Although be-

3



1 Introduction

ing simple, it sufficiently covers the material removal caused from this complex physical phe-
nomenon in a multitude of applications. Wear, even to a small extent, can strongly influence
the contact problem. This is because material loss in the contact zone may lead, especially for
harder materials, to a significant redistribution of contact tractions. This, in turn, affects the wear
evolution. Therefore, these coupling effects have to be considered in numerical simulations.

In literature, there are mainly two approaches that consider wear in finite element analysis:
Firstly, the usage of an internal state variable and secondly, the modeling of contact surface
evolution. The internal state variable identifies the so far accumulated wear as an additional
gap, the so-called wear-gap. It enters the contact conditions by mathematically increasing the
distance between the worn bodies. Consequently, wear causes contact to be reached only at
a later stage. This approach does not model contact surface changes of participating bodies
and is therefore mainly suitable for problems leading to a small amount of wear. It has al-
ready been used in STRÖMBERG et al. [131] and has successfully been applied in, for example,
AGELET DE SARACIBAR and CHIUMENTI [1], IREMAN et al. [63, 64], SALLES et al. [123], and
STRÖMBERG et al. [128, 129, 130] for small and finite deformations.

Modeling of contact surface evolution may become necessary where shape changes due to
wear are finite, as for example, contact and wear of rubber like materials. Or for problems,
where contact tractions are extremely sensitive to the curvature of contacting surfaces. Such
methods have been presented in literature in various forms. There is the contribution of PÕDRA

and ANDERSSON [104], which has been improved in ÖQVIST [103], MCCOLL et al. [94], and
PAULIN et al. [107]. It consists of a finite element analysis treating frictional contact within a
commercial software and a subsequent evaluation of the worn material. With this, the original
reference geometry in the input file is changed. In order to overcome problems with degenerated
finite elements, the relocation of contact surface nodes has been extended to nodes within so-
called wear boxes in the latter work. In MOLINARI et al. [97], the possible distortion of elements
due to geometry adaption is solved via a continuous adaptive meshing strategy. Finally, a recent
contribution from LENGIEWICZ and STUPKIEWICZ [87] models contact surface evolution with
the introduction of three configurations to account for a time dependent material configuration.

The present work extends the above described frictional contact formulation towards wear. It is
realized using both the internal state variable approach and a model for contact surface evolution.
Here, an Arbitrary LAGRANGEan-EULERian (ALE) formulation resolved with a fractional-step
strategy is applied. This is frequently used for finite stain plasticity, see for example ARMERO

and LOVE [5] or HUERTA and CASADEI [60], and is firstly transferred to wear problems in this
thesis. Within a single time step, it results in a LAGRANGEan step followed by an EULERian one,
where the mesh is adjusted due to wear. The second new aspect in this field is, to the author’s
knowledge, the numerical treatment of wear in the mortar context.

The proposed methods bring clear benefits. Firstly, they allow the treatment of wear with the
advantages of the mortar method as well as using dual LAGRANGE multipliers and the semi-
smooth NEWTON method as described above. Secondly, for modeling contact surface evolution,
the tried and tested structural contact solver can be applied with almost no modifications due to
the usage of the fractional-step strategy.
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1.3 Outline

1.2.3 Fully coupled thermomechanical contact problem

Thermomechanical contact represents a multiphysics problem. Additional to the purely mechan-
ical problem, also the thermal field has to be considered in numerical simulations. The problems
couple within the bulk equations and at the contact interface. Regarding the latter, this allows
heat conduction over contacting surfaces as well as production of heat from frictional dissipa-
tion.

In literature, thermomechanical contact problems are treated mainly in the context of node-to-
segment approaches for small and finite deformations. Examples are the contributions of LAUR-
SEN [82, 83], OANCEA and LAURSEN [101], SIMO and MIEHE [125], WRIGGERS and MIEHE

[146], and ZAVARISE et al. [151]. HÜEBER and WOHLMUTH [56] were the first to treat ther-
momechanical contact problems with the mortar method in the context of dual LAGRANGE

multipliers. This discretization technique is also used in HANSEN [38] and HESCH and BETSCH

[46], where in the latter however, it is used for domain decomposition in thermodynamics.
In the last part of the presented work, the finite deformation frictional contact formulation

is extended towards thermomechanical contact. It is based on the contribution of HÜEBER and
WOHLMUTH [56], where only small deformation problems were considered. Thus, the new
aspect here is the first implementation of contact related terms for finite deformations in the
frame of the mortar and dual LAGRANGE multiplier method. It contains a consistent linearization
for both the partitioned and the initially treated monolithic solution approach.

The advantages resemble those of the purely mechanical contact problem: Firstly, dual LA-
GRANGE multipliers are also used for the thermal field in order for them to be easily conden-
sated from the system of equations. Secondly, excellent convergence behavior exists for the
semi-smooth NEWTON method applied to the monolithic system. It is obtained from consistent
linearization.

1.2.4 Summary of objectives

As can be summarized from above sections, the objectives of this thesis are as follows. They are
accompanied by the new aspects of this work.

1. Implementation of a finite deformation frictional contact formulation using the mortar
method and dual LAGRANGE multipliers with consistent linearization.

2. Inclusion of wear in the frictional contact formulation in 1. using both an internal state
variable approach and an ALE description resolved with a fractional-step strategy.

3. Extension of the frictional contact formulation in 1. towards finite deformation thermome-
chanical contact problems using the mortar method and dual LAGRANGE multipliers.

1.3 Outline

This thesis is organized as follows:
In Chapter 2, the continuous setting of the finite deformation frictional contact problem is

presented. It contains a brief overview of nonlinear continuum mechanics for solids and the
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1 Introduction

introduction of basic equations concerning frictional contact before the actual boundary value
problem is given.

Chapter 3 gives an overview of methods of constraint enforcement and contact surface dis-
cretization. Committed to the dual LAGRANGE multiplier and mortar approach, the weak form
and the finite element discretization are given.

The contact problem is solved with the application of a semi-smooth NEWTON method. This
is presented in Chapter 4. It contains the reformulation of contact conditions in complementarity
functions, the consistent linearization of contact related terms, and the algebraic representation
of the problem. Several numerical examples demonstrate the accuracy, robustness, and efficiency
of the proposed method.

In Chapter 5, the developed finite deformation frictional contact formulation is extended to-
wards wear. It contains both the approaches using an internal state variable and an ALE descrip-
tion resolved with a fractional-step strategy. For both methods, appropriate numerical examples
are presented for illustration and underlying respective advantages.

In Chapter 6, the developed finite deformation frictional contact formulation is enhanced to
the multiphysics problem of thermomechanical contact. It includes the formulation of the fully
coupled boundary value problem, its weak form, and finite element discretization. The solution
is performed with mainly a partitioned approach, but also a monolithic scheme. Several numer-
ical examples demonstrate the accuracy and efficient of capturing strong coupling effects of the
proposed methods.

The scope of Chapter 7 is to summarize the main achievements of this work and to suggest
improvements and directions for further work.
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2 Frictional contact - problem
formulation

Within this chapter, the continuous setting of the finite deformation frictional contact problem
is presented. A brief overview on nonlinear continuum mechanics for solids in Section 2.1 and
the introduction of basic equations concerning frictional contact related issues in Section 2.2
precede the final description in its strong form in Section 2.3.

2.1 Basic continuum mechanics for solids

This section presents the basic continuum equations for nonlinear solid mechanics. It is not
aimed for completeness in every detail, but for an overview on this topic as basis for the contact
problem focused on in this work. For a more comprehensive review, the reader is referred, for
example, to the books of BELYTSCHKO et al. [9], CRISFIELD [17, 18], HOLZAPFEL [53], or
WRIGGERS [145].

2.1.1 Kinematics

Kinematics are used to describe the motion of a body without keeping its cause in mind. In the
continuum mechanics framework, the body is assumed to be homogeneous. In general, molecu-
lar, grain, or crystal structures are ignored, see BELYTSCHKO et al. [9]. Kinematics encompass
the motion and possible deformation.

Motion

Starting from an initial state at time t = 0, a body experiences motion with ongoing time t ∈
[0, T ] as shown in Figure 2.1. The domain of the body in its initial state is denoted by Ω0 ⊂ R3

and called initial configuration. In its current state at time t, it is denoted by Ωt ⊂ R3 and called
current configuration. The motion is described by the unique and continuously differentiable
mapping ϕt, transforming the initial into the current configuration

ϕt : Ω0 → Ωt . (2.1)

Consequently, the position vector of material points X ∈ Ω0 of the initial configuration is con-
nected to its position vector x ∈ Ωt in the current configuration by the mapping ϕt at a fixed
time t as

x = ϕt (X, t) . (2.2)
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2 Frictional contact - problem formulation

Ωt

E3

E2

E1

X

ϕt (X, t)

x (X, t)

u (X, t)
Ω0

Figure 2.1: Initial (left) and current (right) configuration of a body, LAGRANGEan description.

The displacement u of a material point X is the difference between its current and initial position
at time t, i.e.

u (X, t) = x (X, t) − X . (2.3)

The velocity v is the temporal change of the material position vector. It is evaluated by the time
derivation of the motion ϕt for fixed X. Therefore, it is called material time derivative or total
derivative and is defined as

v (X, t) =
dϕt (X, t)

dt
=

du (X, t)

dt
= ẋ (X, t) . (2.4)

The acceleration a is the rate of change of the velocity v of a material point X and with this, the
material derivative of the velocity. It reads

a (X, t) =
dv (X, t)

dt
=

d2u (X, t)

dt
= v̇ (X, t) . (2.5)

It has to be noted that all above expressions, i.e. the motion ϕt (X, t), the current configuration
x (X, t), the displacement u (X, t), the velocity v (X, t), and the acceleration a (X, t), are for-
mulated in terms of the initial coordinates X. With this, they are written in the LAGRANGEan
way. More information about the LAGRANGEan formulation and especially its relation to the
EULERian one is focused on in the next section.

Nomenclature, LAGRANGEan and EULERian description

The nomenclature used so far contains initial and current configuration. Also the term “material
position vector” has been introduced. In this section, denotation is widened and the kinematic
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2.1 Basic continuum mechanics for solids

description of the motion of bodies is also regarded from the EULERian point of view. This leads
to partly adjusted names.

First of all, material position vectors already introduced above are considered again. They are
associated with continuum particles or material points in the initial configuration. Therefore, the
initial configuration is often also called material configuration. Unless specified otherwise, the
configuration Ω0 is assumed to be undeformed and stress free, thus a further name is undeformed
configuration. The equivalence to this nomenclature in the current configuration Ωt is spatial and
deformed configuration.

In the section above, the motion and all derived quantities are referred to the initial state Ω0

of the body with its material position vectors X. In that case, the initial configuration acts as
reference configuration resulting in the material or LAGRANGEan description. This description
implies paying attention to material points X. It is observed what happens to them with ongoing
time t starting in the initial configuration t = 0.

Alternatively, the motion or any other related quantity can be described with respect to the
spatial coordinates x and time t. This so-called spatial or EULERian form is not based on track-
ing of material points X but rather on the inspection of fixed control points x in space. Essential
therein is that these control points are totally independent of material points, whereby motion re-
lated quantities are formulated for alternating material points with ongoing time t. Consequently,
material or total time derivation leads to the typical convection terms as shown in the following.
An exemplary motion is described by means of time dependent velocities at fixed spatial co-
ordinates x as v (x, t). In contrast to the LAGRANGEan way, the reference configuration here
coincides with the spatial one. In order to obtain the acceleration field, total time derivation re-
quires the expression of spatial coordinates in v (x, t) as a function of material coordinates. The
application of the chain rule leads to

a (x, t) =
d

dt
v (x, t) =

∂v

∂x
· ∂ϕt (X, t)

∂t
+
∂v

∂t
= grad v · v +

∂v

∂t
. (2.6)

The first term on the right hand side of (2.6) is the convective term, which is often also called
transport term. The second one is the spatial time derivative.

In fluid mechanics, the EULERian description is widely used as it is often unnecessary or im-
possible to describe the motion with respect to an initial configuration. For example, it does not
matter where the fluid, which is circulating around a flag, comes from. In solid mechanics in con-
trast, the stress generally depends on the deformation with what the knowledge of an undeformed
or initial state is necessary. Because of this, the LAGRANGEan description is prevalent there. It
is also used for the frictional contact formulation with and without thermal effects throughout
Chapters 2, 3, 4, and 6.

Besides the LAGRANGEan and EULERian description, there also exists the Arbitrary LA-
GRANGEan EULERian (ALE) formulation. There, the reference frame is neither the material
configuration as in the LAGRANGEan form nor the spatial configuration as in the EULERian
form. The motion and all related quantities are referred to, as the name says, an arbitrary frame.
In Chapter 5, ALE formulations within a staggered scheme are used to model contact surface
evolution due to wear.

9



2 Frictional contact - problem formulation

Deformation gradient

In general, the motion of a continuum goes along with deformation. For this, the deformation
gradient is an essential kinematic quantity. It is defined in its material form as

F (X, t) :=
∂ϕt

∂X
=
∂x

∂X
= Grad x . (2.7)

By its help, an infinitesimal line element dX, area element dA, or volume element dV can be
mapped from the intital configuration to its spatial counterpart. This is given mathematically as

dx = F · dX , (2.8)

da = J F−T · dA , (2.9)
dv = J dV , (2.10)

where J = det F > 0 is the JACOBIan determinant of the deformation gradient F and F−T is the
transpose of the inverse tensor of F. Due to the properties of the mapping ϕt, the inverse tensor
F−1 is well defined as

F−1 =
∂X

∂x
= grad X . (2.11)

The deformation gradient F describes the deformation containing rigid body rotations and stretch
and is used for mapping between the initial and spatial configuration as in (2.8) - (2.10). It is basis
for strain measures defined in the next section.

Strain measures

In nonlinear mechanics, there are several ways to describe strains in solids. In the following, the
most common definitions are discussed. They differ in the configuration they are referred to and
if formulated in rate form or not.

A strain measure completely referred to the undeformed configuration is the GREEN-LAGRANGE

strain tensor E. It is defined by

dx · dx− dX · dX = 2 dX · E · dX . (2.12)

It gives the change in the square of the length of an infinitesimal line segment dX in the reference
configuration. Using the deformation gradient F, (2.12) can be rewritten as

E =
1

2

(
FT · F− I

)
, (2.13)

where I denotes the identity tensor. In contrast, the EULER-ALMANSI strain tensor e is a spatial
strain measure where the above change of squared lengths is now referred to an infinitesimal line
segment dx in the current configuration. The underlying definition

dx · dx− dX · dX = 2 dx · e · dx (2.14)

can be resolved as
e =

1

2

(
I− F−T · F−1

)
. (2.15)
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2.1 Basic continuum mechanics for solids

As the deformation gradient F relates the material and spatial configuration, it can be employed
to transfer the two introduced strain measures into each other. From the material strain measure
E to the spatial strain measure e, this is obtained with a so called push-forward operation. The
way back, the transition from e to E, is based on a pull back operation. More about this can be
found, for example, in BELYTSCHKO et al. [9].

Besides, there are also strain measures in rate form. Examples are the material velocity gradi-
ent Ḟ or the material strain rate Ė which are defined by total time derivation of the deformation
gradient F in the first case and the GREEN-LAGRANGE strain tensor E in the second case. An
additional measure is the rate of deformation tensor d to be evaluated as

d =
1

2

(
grad v + gradTv

)
. (2.16)

It has to be pointed out that the above strain definitions are among the most commonly used
measures in nonlinear continuum mechanics. But they do not complete the field of strain and
strain rate measures at all, a variety of other definitions have been discussed in literature as, for
example, in BELYTSCHKO et al. [9], FRENZEL [33], and HOLZAPFEL [53]. In the present work,
the introduced GREEN-LAGRANGE strain tensor E is used.

2.1.2 Stress concept

Stresses are accompanied by the deformation of bodies. As for the strains, there exist various
stress measures in nonlinear continuum mechanics. In this section, three of them are considered.

In order to come closer to the concept of stress, an infinitesimal force resultant vector dfa is
defined. It is acting at time t on an infinitesimal surface element da = dan with area da normal
to the vector n on the boundary of that deformed body Ωt. The quotient of these quantities, as
force per unit surface, defines the traction vector

t =
dfa
da

. (2.17)

As the resultant force dfa is acting in the current configuration on a surface element da also
defined in the current configuration, t represents a physical occurring state. With that, it is called
the true or CAUCHY traction vector. Accordingly, the CAUCHY stress tensor σ accounts for the
real internal stresses within a body in its current configuration. It is obtained from CAUCHY’s
theorem

t = σ · n , (2.18)

which results from equilibrium evaluations at an infinitesimal tetrahedral element.
As balance equations discussed in Section 2.1.3 are requested for the current configuration,

the definition of CAUCHY stresses makes sense. On the other hand, the spatial configurations are
unknown a priori. Therefore, it can be useful to define stress measures for the known material
state. In the derivation above, both the force resultant dfa and the infinitesimal surface element
da with its related normal vector n are taken from the current configuration. In order to obtain
stress measures connected to the material configuration, either one or both quantities are taken
from there.
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2 Frictional contact - problem formulation

By taking the quotient of the spatial force vector dfa and the area dA of the surface element
dA in the reference configuration, the first PIOLA-KIRCHHOFF traction vector T is obtained as

T =
dfa
dA

=
t da

dA
. (2.19)

It has the same direction as the CAUCHY traction vector t, but is of different length. The first
PIOLA-KIRCHHOFF stress tensor P is then defined by

T = P ·N , (2.20)

where N is the unit normal vector of the surface element dA within the reference configuration.
From (2.18), (2.19), and (2.20), P can be written in terms of the CAUCHY stress tensor σ as

P = J σ · F−T . (2.21)

Here, the mapping of area elements given in (2.9) is used. The first PIOLA-KIRCHHOFF stress
tensor is a two field tensor as it combines the spatial force resultant dfa with the material surface
element dA.

A stress measure completely referred to the material configuration is provided by the second
PIOLA-KIRCHHOFF stress tensor S. To obtain this measure, also the spatial force resultant dfa
is pulled back into its counterpart dFa in the material configuration as

dFA = F−1 · dfa , (2.22)

and the second PIOLA-KIRCHHOFF stress tensor S reads

S = F−1 ·P = J F−1 · σ · F−T . (2.23)

2.1.3 Balance principles and entropy
Fundamental principles in continuum mechanics are the balance equations and the entropy in-
equality principle. They are presented briefly in the following. Since the work focuses on solid
mechanics, they are formulated in a LAGRANGEan way. A more detailled and more general pre-
sentation, including for example the EULERian description, can be found in common continuum
mechanic literature as for example in BELYTSCHKO et al. [9] or HOLZAPFEL [53].

Conservation of mass

The conservation of mass requires the mass m of any material domain Ω0 to be constant over
time t, i.e.

m =

∫

Ω0

ρ0 dΩ0 =

∫

Ωt

ρ dΩt = const . (2.24)

Here, ρ0 is the density of the material configuration and ρ is the density of the spatial configura-
tion. Transferring the spatial density ρ to the material one ρ0 and considering an arbitrary portion
of the body Ω0 yields the local form of the mass conservation equation in the LAGRANGEan de-
scription:

ρ J = ρ0. (2.25)
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2.1 Basic continuum mechanics for solids

Balance of linear momentum

The balance of linear momentum, also known as conservation of linear momentum, is equiva-
lent to NEWTON’s second law of motion. It is therefore a key equation in nonlinear continuum
mechanics. It states that the material time derivative of the linear momentum equals the sum of
all applied volume and surface forces

d

dt

∫

Ωt

ρ ẋ dΩt =

∫

Ωt

b̂ dΩt +

∫

γ

t̂ dγ . (2.26)

Here, γ is the boundary of the body in its current configuration and b̂ and t̂ are forces acting on
the unit deformed volume dv and on the unit deformed area da, respectively. With CAUCHY’s
law (2.18), the traction t̂ can be reformulated as t̂ = σ ·n. The application of GAUSS’ divergence
theorem then allows for the conversion of the boundary integral in (2.26) into a domain integral.
Since the equation holds for arbitrary portions of the body, the local form of the balance equation
is obtained. Referred to the spatial configuration, it reads

divσ + b̂ = ρ ẍ (2.27)

and, referred to the material configuration, as

DivP + b̂0 = ρ0 ẍ , (2.28)

where b̂0 is the corresponding body force acting on the undeformed configuration.

Balance of angular momentum

The balance of angular momentum states that the sum of all moments resulting from acting
volume and surface forces is equal to the material time derivative of the angular momentum with
respect to an arbitrary point in space. It is obtained from the cross-product of each term in the
corresponding linear momentum principle with the position vector x̄ ∈ Ωt as

d

dt

∫

Ωt

x̄× ρ ẋ dΩt =

∫

Ωt

x̄× b̂ dΩt +

∫

γ

x̄× t̂ dγ . (2.29)

Similar to the balance of linear momentum, CAUCHY’s and GAUSS’ theorems are applied, which
finally lead to the symmetry of the CAUCHY stress tensor

σT = σ . (2.30)

Consequently, also the second PIOLA-KIRCHHOFF stress tensor S is symmetric whereas the first
PIOLA-KIRCHHOFF stress tensor P is not.

Balance of energy

In thermomechanical systems, the balance of energy states that the rate of change of total energy
within a body equals the sum of the power produced by external forces plus and the thermal
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2 Frictional contact - problem formulation

energy delivered to the body. It is equivalent to the first law of thermodynamics and can be
written as

d

dt

∫

Ωt

ρ

(
e+

1

2
ẋ · ẋ

)
dΩt =

∫

Ωt

b̂ · ẋ + ρ r̂ dΩt +

∫

γ

t̂ · ẋ− q · n dγ . (2.31)

In this equation, e is the internal energy per unit mass, r̂ denotes the external heat source per
unit mass, and q is the spatial heat flux. The local form of (2.31) is obtained by application
of CAUCHY’s law and GAUSS’ divergence theorem and considering only a local portion of the
body. In spatial description, it results in

ρ ė = σ : d+ ρ r̂ − div q . (2.32)

The tensor product σ : d is called the stress power and denotes the rate of internal mechanical
work. Using the equivalent P : Ḟ, the material form of (2.32) reads

ρ0 ė = P : Ḟ + ρ0 r̂ − Div Q . (2.33)

In this equation, the vector Q is the heat flux referred to the material configuration and is obtained
from Q = J F−1 · q.

Considering purely mechanical problems and neglecting other forms of energy as for example
thermal, electric, or chemical energy, the energy balance is not an additional requirement to be
satisfied. It is rather a consequence of the balance of linear momentum. Accordingly, as this
work considers purely mechanical problems in Chapters 2 - 5, these terms will not appear until
the thermal field is added to the problem in Chapter 6.

Entropy inequality

An additional fundamental law with regards to thermomechanical contact problems discussed in
Chapter 6 is the entropy inequality principle. So far, the energy transfer within a thermodynamic
process is governed by the balance of energy described above. But laws for the direction of this
transfer are still missing. An example is that heat flux always occurs from warmer to colder
regions of a body but never the other way round. The entropy inequality, also known as the
second law of thermodynamics, closes this gap.

The entropy is a fundamental state variable which can be viewed as a quantitative measure of
microscopic randomness and disorder, see BELYTSCHKO et al. [9]. The entropy inequality states
that the difference between the rate of entropy possessed by a continuum body and the rate of
entropy input into this body is always greater or equal than zero. This input is caused by external
heat sources or by heat flux over the surface of the body. The entropy inequality reads

d

dt

∫

Ωt

ρ η dΩt −
∫

Ωt

ρ r̂

θ
dΩt −

∫

γ

q · n
θ

dγ ≥ 0. (2.34)

The entropy η is defined with respect to the current unit volume and the rate of entropy input
in the second and third term is related to the quotient of supplied heat and absolute tempera-
ture θ, also known as the entropy flow vector, see BELYTSCHKO et al. [9]. Equation (2.34) is
also known as the CLAUSIUS-DUHEM inequality. The local form is obtained by application of
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2.1 Basic continuum mechanics for solids

GAUSS’ divergence theorem and the consideration of a local portion. In material description, it
reads

P : Ḟ + ρ0 θ η̇ − ρ0 ė− 1

θ
q · Grad θ ≥ 0 . (2.35)

A stronger form of equation (2.35) is the CLAUSIUS-PLANCK inequality as given by

Dint = P : Ḟ + ρ0 θ η̇ − ρ0 ė ≥ 0 , (2.36)

see HOLZAPFEL [53]. Here, Dint is the internal dissipation per unit mass or local production of
entropy. It is zero for reversible and positive for irreversible processes.

2.1.4 Constitutive equations
In addition to the above formulated kinematics, stress concept, and balance and entropy princi-
ples, constitutive equations have to be formulated in order to complete the necessary equations
for the structural boundary value problem without contact. They characterize the material res-
ponse by giving the stresses resulting from the deformation. The construction of constitutive
equations is conveniently achieved with the help of the CLAUSIUS-PLANCK inequality and the
introduction of the HELMHOLTZ free-energy function ψ. It is defined as

ψ = e− θ η . (2.37)

With the material time derivative of ψ, the CLAUSIUS-PLANCK inequality (2.36) can be rewritten
as

Dint = P : Ḟ− ρ0 ψ̇ − ρ0 η θ̇ ≥ 0 . (2.38)

Elastic materials for purely mechanical theory

Considering frictional contact under purely mechanical theory, thermodynamic variables, such
as temperature θ and entropy η, are neglected until Chapter 6. Assuming further only reversible
processes within the material and using the equivalent form of the stress power S : Ė, equation
(2.38) reduces to

S : Ė− ρ0 ψ̇ = 0 . (2.39)

In this case, the HELMHOLTZ free-energy ψ coincides with the internal energy e from (2.37).
Defining the HELMHOLTZ free-energy ψ with respect to the reference volume as Ψ = ρ0 ψ with
Ψ̇ = ∂Ψ

∂E
: Ė, the desired relationship between stresses and strains results from (2.39) as

S =
∂Ψ

∂E
. (2.40)

With the above assumptions covering an isothermal process, the HELMHOLTZ free-energy func-
tion Ψ can be identified with the strain-energy function of a material, see BELYTSCHKO et al.
[9]. It completely characterizes the hyperelastic material behavior and represents the potential
per unit reference volume as a function of the strain measure. In this work, a St. VENANT-
KIRCHHOFF and, to take account of geometric nonlinearities in the material, a compressible
Neo-HOOKEan behavior as described in the contribution of HOLZAPFEL [53] are used for hy-
perelastic materials.

Its derivation with respect to the strain measure yields the stresses from which the required
relationship between the displacements and the stresses is obtained.
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2 Frictional contact - problem formulation

Temperature dependent materials

For treating fully coupled thermomechanical contact problems in Chapter 6, the temperature θ
and the entropy η have to be included in the derivation of the constitutive equations. In doing so,
the equation (2.39) reads

S : Ė− ρ0 ψ̇ − ρ0 η θ̇ = 0 , (2.41)

where again reversible processes are assumed. The free energy function (2.37) depends on the
displacement and the temperature. Thus, its time derivation and the insertion into (2.41) now
leads to two constitutive relations. These are, assuming constant temperature (θ = const), the al-
ready known equation (2.40) and, assuming a constant deformation F (F = const), a connection
between entropy and temperature as

η = −∂Ψ

∂θ
. (2.42)

To sum up, it can be deduced from (2.40) and (2.42) that, for the description of materials in
thermomechanical processes, the stress and entropy functions both depend on the deformation
gradient and the temperature as

S (F, θ) , η (F, θ) . (2.43)

When deriving the boundary value problem of the coupled thermomechanical problem in
Chapter 6, the energy balance (2.32), the entropy inequality in form of the CLAUSIUS-PLANCK

inequality (2.36), and the constitutive equations are combined as in the work of SIMO et al. [125]
to obtain the temperature evolution equation.

2.2 Frictional contact related equations

The objective of this Chapter 2 is to state the boundary value problem of frictional contact. As
the basic equations concerning the structural problem neglecting contact have been presented
in Section 2.1, this section now introduces fundamental equations related to frictional contact.
These are mainly the definitions of geometric fundamental measures, also known as contact
kinematics, in Sections 2.2.1 and 2.2.2 and the formulation of contact conditions in Section
2.2.3. The whole presentation is for three dimensional problems in which also 2D examples are
used for illustration.

A three dimensional frictional contact problem with finite deformations and finite sliding is
shown in Figure 2.2. In contrast to Figure 2.1, here two elastic bodies are represented by the sets
Ω

(1)
0 ⊂ R3 and Ω

(2)
0 ⊂ R3 in the reference configuration. With ongoing time t ∈ [0, T ], they

experience motions ϕ(1)
t and ϕ(2)

t mapping them into their current configurations Ω
(1)
t and Ω

(2)
t .

These motions might cause the two bodies to contact and produce interactive forces. The bound-
aries ∂Ω

(i)
0 , i = 1, 2, include the DIRICHLET boundaries Γ

(i)
u , the NEUMANN boundaries Γ

(i)
σ ,

and the contact boundaries Γ
(i)
c . On the latter, contact constraints will be defined subsequently.

The spatial counterparts are denoted as γ(i)
u , γ(i)

σ , and γ(i)
c . The three surface sets are assumed to

be disjoint, satisfying

∂Ω
(i)
0 = Γ(i)

u ∪ Γ(i)
σ ∪ Γ(i)

c ,
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Figure 2.2: Notation for the two body finite deformation contact problem in 3D.

Γ(i)
u ∩ Γ(i)

σ = Γ(i)
u ∩ Γ(i)

c = Γ(i)
σ ∩ Γ(i)

c = ∅ . (2.44)

Maintaining a common nomenclature in contact mechanics here, Γ(1)
c is the slave surface and Γ

(2)
c

is the master surface, both referred to the reference configuration. Their respective counterparts
are denoted as γ(1)

c and γ(2)
c , see for example BENSON et al. [10] or HALLQUIST et al. [37].

In order to formulate the contact conditions, the contact kinematics with the geometric funda-
mental measures as the gap and the tangential relative velocity will be defined in the following
section.

2.2.1 Contact kinematics - gap
The gap function g (X(1), t) is defined on the slave contact surface and is a fundamental mea-
sure for the distance between the contacting bodies in the current configuration. Its definition is
obtained by the following steps and the help of Figure 2.2.

Any point on the reference slave contact surface X(1) ∈ Γ
(1)
c is mapped onto the corresponding

spatial point x(1) ∈ γ
(1)
c by x(1) = ϕ

(1)
t (X(1)). For this x(1), a contact point x̂(2) ∈ γ(2) on the

current master surface is defined via the projection of x(1) onto γ(2)
c along the current outward

unit normal vector n (x(1)) on the slave surface γ(1)
c . This projection from the slave onto the

master contact surface is described by the smooth mapping operator P : γ
(1)
c → γ

(2)
c . The

contact point x̂(2) is, on the other hand, the image of the material point X̂(2) ∈ Γ
(2)
c under

the mapping ϕ(2)
t . Consequently, both x̂(2) and X̂(2) are associated with X(1) via the described

projection. It has to be pointed out that in general, with ongoing time t, the projection changes
and thus assigns different material points X̂(2) ∈ Γ

(2)
c with X(1) ∈ Γ

(1)
c for different points in
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2 Frictional contact - problem formulation

time. The gap vector g (X(1), t) is the relative position vector between the corresponding points
in the spatial configuration, i.e.

g
(
X(1), t

)
=

[
x(1)

(
X(1), t

)− x̂(2)
(
X̂(2)

(
X(1), t

)
, t

)]
. (2.45)

The scalar normal gap g
(
X(1), t

)
is then defined by the scalar product with the parallel normal

vector n (x(1)) as
g

(
X(1), t

)
= −n

(
x(1)

(
X(1), t

)) · g (
X(1), t

)
. (2.46)

It is the fundamental quantity needed to formulate the normal contact conditions in Section 2.2.3.
The projection P using the outward unit normal vector n (x(1)) does not correspond with the

frequently applied closest point projection, see KONYUKHOV and SCHWEIZERHOF [74] for an
extensive treatment. But it avoids the problem of nonunique contact points and is identical to the
closest point projection for the normal gap being zero.

2.2.2 Contact kinematics - tangential relative velocity

When treating frictional contact, the tangential relative velocity is the second fundamental mea-
sure to be defined in order to formulate the contact conditions in the finite deformation frame-
work. In contrast to the normal gap g (X(1), t), this quantity is a rate measure and depends on
former states of the motion. Therefore, it requires the storage of history variables. In this work,
two possible definitions of the relative tangential velocity are presented for a better understand-
ing of this quantity and for a classification of traditional and currently used measures in literature.
For the further derivation of the discrete frictional contact problem, the second definition will be
chosen.

Formulation using slip advected bases

The formulation of frictional kinematics in component form using slip advected bases is pre-
sented in LAURSEN [81] as a “natural outcome of the framework under consideration”, where
it is applied for node-to-segment (NTS) contact. In the NTS context, this formulation is widely
used in literature as, for example, in CHAWLA et al. [14], LAURSEN et al. [83, 85], LENGIEWICZ

et al. [86], PIETRZAK et al. [108], and WRIGGERS [144, 145]. This form of defining the relative
tangential velocity is denoted as “traditional kinematics” in PUSO et al. [118]. A fully covariant
description including all linearizations performed in this local coordinate system has firstly been
presented in KONYUKHOV and SCHWEIZERHOF [73].

The formulation of the tangential relative velocity consists of the definition of slip advected
bases and the formulation of the measure in this coordinate system. Starting point for the defi-
nition of slip advected bases is the parametrization of the master contact surface. It is assumed
that the mappings Ψ

(2)
0 and Ψ

(2)
t transfer the parameter space A(2) ⊂ R2 into the master contact

surface Γ
(2)
c in the reference configuration and γ(2)

c in the current configuration, respectively, as

Γ(2)
c = Ψ

(2)
0

(A(2)
)

and γ(2)
c = Ψ

(2)
t

(A(2)
)
. (2.47)

These mappings, visualized in Figure 2.3, are assumed to be smooth. General points of A are
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Figure 2.3: Parametrization of master contact surface, coordinate system with origin in projec-
tion point and slip advected bases, for current and reference configuration.

denoted as ξ, the particular point associated with X̂(2) (X(1), t) is marked with ξ̂
(
X(1), t

)
. The

slip advected bases now are defined as

Tα := Ψ
(2)
0 ,α

(
ξ̂

(
X(1), t

))
and (2.48)

tα := Ψ
(2)
t ,α

(
ξ̂

(
X(1), t

))
, α = 1, 2 . (2.49)

These definitions (2.48) and (2.49) imply that the advected bases are associated with the same
point X(1) on the slave contact surface for the considered time interval. Origins for the two
coordinate systems spanned by these bases are X̂(2) and x̂(2). When x(1) moves over γ(2)

c , Tα

and tα are not fixed on the master surface but move over this surface as the projection point x̂(2)

changes. This motivates the names of these bases.
To formulate the tangential relative velocity, the gap vector g (X(1), t) as the relative position

vector between x(1) (X(1), t) and x̂(2) (X(1), t) in (2.45) is considered. During perfect sliding,
these two points remain coincident in space which implicates that the gap vector g (X(1), t) and
its total time derivative will remain zero. The latter is considered:

0 =
d

dt

[
x(1)

(
X(1), t

)− x̂(2)
(
X(1), t

)
)
]

=
d

dt

[
ϕ

(1)
t

(
X(1), t

)− ϕ
(2)
t

(
X̂(2)

(
X(1), t

)
, t

)]
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= v(1)
(
X(1), t

)− v(2)
(
X̂(2)

(
X(1), t

)
, t

)
− F(2)

(
Ψ

(2)
0

(
ξ̂

(
X(1), t

))) d

dt

[
X̂(2)

(
X(1), t

)]

(2.50)

where F(2) is the deformation gradient of the master body. The first two terms v(1) (X(1), t) and
v(2) (X̂(2) (X(1), t), t) are the material velocities of the points x(1) (X(1), t) and x̂(2) (X(1), t) and
are also denoted as ẋ(1) (X(1), t) and ˙̂x(2) (X(1), t) within this work. From (2.50) follows that
the desired relative velocity of these two points can also be expressed by the negative third term
which emerges the change of contact projection. It can be written in terms of the above derived
slip advected bases in its spatial and convective description as

vT,rel := F(2)
(
Ψ

(2)
0

(
ξ̂

(
X(1), t

))) d

dt

[
X̂(2)

(
X(1), t

)]
and (2.51)

V T,rel :=
d

dt

[
X̂(2)

(
X(1), t

)]
=

˙̂
ξα (X(1), t)Tα . (2.52)

From (2.51) and (2.52), it can be seen that VT,rel represents the pull back of vT,rel by ϕ(2)
t . So

the spatial relative velocity can also be expressed as

vT,rel =
˙̂
ξα (X(1), t) tα (2.53)

with
tα = F(2) ·Tα . (2.54)

In LAURSEN [83], the expressions for the components ˙̂
ξα in (2.52) and (2.53) are derived in

terms of the slip advected bases and the material velocities. They read

˙̂
ξα =

[
v(1)

(
X(1), t

)− v(2)
(
X̂(2)

(
X(1), t

)
, t

)]
· tα , (2.55)

where tα = mαβ tβ represents the dual or reciprocal basis to tβ , mαβ = tα · tβ .

Formulation by difference of material velocities

As a result of equation (2.50), the tangential relative velocity can also be expressed in terms of
the material velocities of the opposing points x(1) (X(1), t) and x̂(2) (X(1), t) by using the first
and second term there. The changeover to the definition on this basis was carried out mainly
due to using the mortar method instead of NTS approaches for discretizing the contact surfaces.
Examples are KIM et al. [71], LAURSEN et al. [81, 83, 84], MCDEVITT et al. [95], PUSO et
al. [116, 117, 118], and YANG et al. [148, 149, 150]. Only the contributions of FISCHER and
WRIGGERS [27, 28] or TUR et al. [132] using the mortar method could stay with “traditional
kinematics“, see PUSO et al. [118]. This is due to the application of an integration scheme where
sliding constitutive evaluations are made at quadrature points. This is in stark contrast to the
approach applied here and in the literature listed above where frictional sliding is described for
nodes of the slave contact surface, see PUSO et al. [118].

From equation (2.50), the relative velocity equally expressed in material velocities reads

vT,rel = v(1)
(
X(1), t

)− v(2)
(
X̂(2)

(
X(1), t

)
, t

)
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= ẋ(1)
(
X(1), t

)− ˙̂x(2)
(
X̂(2)

(
X(1), t

)
, t

)
. (2.56)

For the assumption of perfect sliding, it acts in the tangential plane. However, this is not the case
if ġ (X(1), t) is not exactly zero which could happen, for example, for heavily curved contact
surfaces. In order to remove a potential normal component, vT,rel in (2.56) is projected into the
tangential plane as

vτ,rel

(
X(1), t

)
=

(
τ ξ

(
x(1)

)

τ η (x(1))

)
·
(
ẋ(1)

(
X(1), t

)− ˙̂x(2)
(
X̂(2)

(
X(1), t

)
, t

))
. (2.57)

Here, the vectors τ ξ (x(1)) and τ η (x(1)) are the unit tangent vectors. Together with the outward
unit normal n (x(1)), they form an orthonormal basis in R3 as shown in Figure 2.2. The orienta-
tion of the coordinate system regarding the rotation around the n (x(1))-axis therein is arbitrary.

With the definition of the tangential relative velocity vτ,rel

(
X(1), t

)
as in (2.57), it is a two

component vector representing the relative material velocities of opposing points in in τ ξ (x(1))-
and τ η (x(1))-direction.

For a proper formulation of rate measures as the tangential relative velocity at hand, frame
indifference has to be guaranteed. The expressions (2.51) and (2.52) using the slip advected
bases above are frame indifferent since the contact projection is unaffected by any rigid body
rotation, see LAURSEN [83]. This is an important reason for the application within the node-to-
segment approaches listed above. Dealing with the mortar method here, the tangential relative
velocity in (2.57) is used for further derivation although this form is not frame indifferent. But
this issue is kept in mind and reconsidered within the spatial discretized version in Section 3.4.4.
There, the knowledge about the two possibilities to define the tangential relative velocity in the
continuum setting comes into play again.

2.2.3 Contact conditions

Besides the geometric fundamental measures defined in Sections 2.2.1 and 2.2.2, also contact
tractions at the contact surfaces are required to formulate the contact conditions. On the slave
contact surface, they are denoted as t

(1)
c and decomposed into normal and tangential components

as

t(1)
c = pn n + tξτ τ

ξ + tητ τ
η , pn = t(1)

c · n , tξτ = t(1)
c · τ ξ , tητ = t(1)

c · τ η . (2.58)

Normal contact condition

The contact conditions are formulated with respect to the current configuration. In normal direc-
tion, they are expressed with the classical KARUSH-KUHN-TUCKER (KKT) conditions, which
read

g (X(1), t) ≥ 0 , (2.59)
pn ≤ 0 , (2.60)

pn g (X(1), t) = 0 . (2.61)
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2 Frictional contact - problem formulation

Here, equation (2.59) is the impenetrability condition which does not allow the bodies to pene-
trate each other. Equation (2.60) implies that no adhesive stresses occur in the contact zone and
the complementarity condition (2.61) forces the gap to be closed when non-zero pressure occurs
and the pressure to be zero when the gap is open. This set of conditions is also visualized in
Figure 2.4.

g (X(1), t)

pn

Figure 2.4: Contact conditions in normal direction.

Here, admissible combinations of pn and g (X(1), t) are marked red. The normal contact con-
ditions are of multivalued character since they connect the gap at zero g (X(1), t) = 0 with an
infinite amount of values for the normal contact traction pn. Furthermore, they are not differ-
entiable. These reasons and the conditions being formulated in terms of inequalities require a
special treatment within the solution process presented in Section 3.1 and Chapter 4.

Tangential contact condition - COULOMB’s law

Friction is a very complicated physical phenomenon. It encompasses elastic and plastic defor-
mations at the contact interface, interaction with wear particles, microfractures, excitation of
electrons, and a lot more. In continuum mechanics, the most common description is the phe-
nomenological law of COULOMB. It is used throughout this work.

Writing the tangential components tξτ and tητ of the contact tractions from (2.58) into the two
component vector tτ as

tτ :=

(
tξτ
tητ

)
, (2.62)

the frictional contact conditions according to COULOMB’s law can be written as

ψc := ‖tτ‖ − µ |pn| ≤ 0 , (2.63)

vτ,rel(X
(1), t) + β tτ = 0 , (2.64)

β ≥ 0 , (2.65)
ψc β = 0 , (2.66)

where µ is the friction coefficient. Equation (2.63) requires the magnitude of the tangential stress
vector to not exceed the product of the coefficient of friction and the normal contact pressure.
When the tangential stress is less than the COULOMB limit (ψc < 0), the continuity equation
(2.66) forces β to be zero and, accordingly, the tangential relative velocity to be zero. This is

22



2.3 Boundary value problem of finite deformation frictional contact

called the stick state. When the tangential stress is at the COULOMB limit (ψc = 0), β may be
greater than zero in (2.66) and therefore the tangential stress is forced to oppose the relative tan-
gential velocity in (2.64). This is called the slip state. For the two dimensional case, COULOMB’s
law is visualized in Figure 2.5, where vτ (X(1), t) is the only component of the tangential relative
velocity.

µ pn

tξτ

vτ (X(1), t)

Figure 2.5: Frictional contact conditions in tangential direction, schematic depiction of
COULOMB’s law in 2D.

The set of equations (2.63) - (2.66) is not the only way of describing COULOMB’s law of
friction. This can also be achieved equivalently with the structure used, for example, in HÜEBER

et al. [54, 56] as

‖tτ‖ − µ |pn| ≤ 0 , (2.67)

‖tτ‖ − µ |pn| < 0 ⇒ vτ,rel (X
(1), t) = 0 , (2.68)

‖tτ‖ − µ |pn| = 0 ⇒ ∃ β ∈ R+
0 : vτ,rel (X

(1), t) + β tτ = 0 . (2.69)

These equivalent expressions are listed here as they will be helpful within the further derivation.
The tangential relative velocity vτ,rel (X

(1), t) defined above could be used for any other fric-
tion model as for example TRESCA’s friction law, which is independent of the contact normal
pressure. Further, rate, state, or temperature dependent friction laws could easily be included,
but are not considered in this work.

As the contact conditions in normal direction, also COULOMB’s law is of multivalued charac-
ter, not differentiable, and given in terms of inequalities. This has to be taken care of within the
solution process.

2.3 Boundary value problem of finite deformation
frictional contact

With the basic equations of nonlinear continuum mechanics in Section 2.1 and the formulation
of contact conditions in Section 2.2 at hand, the finite deformation boundary value problem of
frictional contact is presented here. Throughout this work, the discussion limits itself to qua-
sistatic problems as the focus is on frictional contact which is independent of forces of inertia.
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2 Frictional contact - problem formulation

However, the tangential relative velocity requires a temporal resolution leading to a quasistatic
treatment with pseudo-time steps. This can finally be interpreted as a dynamic process with ne-
glected inertia and viscous terms. Nevertheless, in this work, contact has been implemented in a
transient framework and respective examples are presented in Chapters 4, 5, and 6. Well known
issues of contact associated with numerical time integration, see for example LAURSEN [83], are
not considered within this work. The purely mechanical problem is described whereas thermal
effects are not taken into account so far. The notation and the partition of the boundary has been
stated in the beginning of Section 2.2.

The boundary value problem of finite deformation frictional contact requires the displacement
vectors u(i) to map the material configuration X(i) into the spatial configuration x(i). There, the
following equations have to be satisfied:

Div P(i) + b̂
(i)
0 = 0 in Ω

(i)
0 , (2.70)

P(i) ·N(i) = t̂
(i)
0 on Γ(i)

σ , (2.71)

P(i) ·N(i) = t
(i)
c,0 on Γ(i)

c , (2.72)

u(i) = û(i) on Γ(i)
u , i = 1, 2 . (2.73)

The first three equations are equilibrium equations. These are the balance of linear momentum
within the bodies (2.70), the NEUMANN boundary condition (2.71), and CAUCHY’s law for the
contact tractions t

(i)
c,0 acting on the reference configuration (2.72). The fourth equation (2.73)

denotes the DIRICHLET boundary condition. The problem (2.70) - (2.73) is constrained by the
contact conditions in normal direction (2.59) - (2.61) and in tangential direction (2.63) - (2.66),
the problem setup is completed with the definition of a constitutive equation according to (2.40).

It has to be pointed out that equation (2.72) is treated in the same way as the other equa-
tions of the boundary value problem. This significance is also visible in CHRISTENSEN [15] and
STRÖMBERG et al. [128, 131]. Reason for the equal treatment is the necessity of this term for the
derivation of the contact virtual work using integration by parts and GAUSS’ divergence theorem
presented in Section 3.3.1.
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3 Frictional contact - weak form and
finite element discretization

The solution of the frictional contact problem requires two basic ingredients. Firstly, the en-
forcement of contact constraints and secondly, the discretization of the contact surfaces. As they
are directly connected with the weak form and finite element discretization, a brief overview on
these techniques is given before deriving the weak and discrete form of the problem.

3.1 Methods of constraint enforcement
Historically, the methods of constraint enforcement come from optimization theory as the lin-
ear elastic contact problem without friction is similar to constrained minimization problems,
see LAURSEN [83]. There are mainly three methods. The penalty method, the augmented LA-
GRANGE approach in form of USZAWA’s algorithm and the LAGRANGE multiplier approach.
Besides, there are also methods based on the ideas of NITSCHE [100] as in HEINTZ and HANSBO

[43] or WRIGGERS and ZAVARISE [145] and further methods described in WRIGGERS [144] and
in ZAVARISE et al. [152].

In general, the methods of constraint enforcement can entirely be obtained from the formula-
tion of the corresponding functionals and its subsequent variation with respect to the unknowns
of the problem. This leads to the contact virtual work and, in case of the LAGRANGE multiplier
method, also to the contact conditions. For the penalty and the augmented LAGRANGE multiplier
approach, the conditions are already contained in the contact virtual work. The derivation of the
methods by this way is the most simple for the linear elastic case regarding frictionless contact,
see LAURSEN [83]. This is due to the absence of dissipation so that potentials can be formulated.
For frictional contact problems in a broader context, this strategy could be pursued by adding
pseudo-potentials, see for example ALART and CURNIER [2]. In this work however, the method
of weighted residuals, see FINLAYSON [26], is applied in Section 3.3 in order to obtain the weak
or also called variational form of the contact problem.

As mentioned, most prevalent are the LAGRANGE multiplier method, the penalty, and the
augmented LAGRANGE multiplier approach. Due to the large amount of information available
in literature, general characteristics are discussed very briefly in the following. They differ in the
way the contact conditions are formulated.

3.1.1 LAGRANGE multiplier method

The LAGRANGE multiplier method uses the contact conditions without modifications. It is char-
acterized by the introduction of additional unknowns, the so-called LAGRANGE multipliers λ.
They are identified as the (negative) contact tractions t

(1)
c and, in general, play the role of forces
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3 Frictional contact - weak form and finite element discretization

that maintain the constraints, see HUGHES [61]. Due to the additional unknowns, the LAGRANGE

multiplier method leads to a mixed variational formulation of the problem with saddle point-type
characteristics of the system of equations. Because of not modifying the contact conditions, the
exact fulfillment of constraints is a significant advantage of this method. For finite deformation
contact problems, it is applied for example in FISCHER and WRIGGERS [27] for frictionless or,
recently in TUR et al. [132], for frictional contact.

In this work, the so-called dual LAGRANGE multiplier method is used. From there, it is re-
ferred to Section 3.3 for the application to the frictional contact problem. This method was
originally introduced in WOHLMUTH [140] and can also be found in in GITTERLE et al. [35],
HARTMANN et al. [39, 40], HÜEBER et al. [54, 56], POPP et al. [110, 111], or WOHLMUTH

[141].

3.1.2 Penalty method
The basis of this method is the modification of contact conditions by regularization. By this, the
violation of contact condition is penalized. The method is employed for example in FISCHER

and WRIGGERS [28] and YANG et al. [150] for 2D frictional contact or in PUSO et al. [118]
for 3D frictional contact using quadratic interpolation. With the help of penalty parameters, the
regularization of the multivalued contact conditions is realized as given in the following.

For the normal direction, it is shown in Figure 3.1, where εN is the respective penalty para-

g (X(1), t)

pn

ǫN

Figure 3.1: Penalty regularization of normal contact conditions.

meter. It can also be stated in terms of equations as

pn =

{
0 for g > 0 (no contact)
εN g for g ≤ 0 (contact) . (3.1)

The visualization of the regularized version of COULOMB’s law is not straightforward as it
contains the tangential relative velocity vτ,rel as a term in rate form. This requires also the tan-
gential traction tτ as a rate quantity in order to state the penalty regularized form of COULOMB’s
law as

Lv tτ = εT

[
vτ,rel − β

tτ

‖tτ‖
]
, (3.2)

whereLv tτ is the LIE derivative of the frictional traction and εT the tangential penalty parameter.
It is completed with the remaining equations (2.63), (2.65) and (2.66).
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3.1 Methods of constraint enforcement

This procedure causes a not exact fulfillment of contact conditions, but leads to a direct con-
nection of the kinematic measures, i.e. the gap and the tangential relative velocity, to the con-
tact tractions. Consequently, the introduction of additional unknowns is not necessary and the
problem can be formulated in displacement terms only when, at a later stage, the weak form is
derived. The main disadvantage of this method is the violation of contact constraints. This can be
minimized with applying high values for the penalty parameters εN and εT , but at the drawback
of ill conditioned systems of equations.

3.1.3 Augmented LAGRANGE method, USZAWA algorithm
Another method to regularize the normal contact and friction conditions is the augmented LA-
GRANGE formulation. The main idea is the combination of the penalty method and the LA-
GRANGE multiplier approach. It is widely used throughout literature, as for example in ALART

and CURNIER [2], GEE [34], KIKUCHI and ODEN [70], LAURSEN et al. [84], PIETRZAK and
CURNIER [108], PUSO et al. [115, 116, 118], or YANG et al. [148, 149, 150]. One possibility of
its numerical treatment is the USZAWA algorithm which is partly used in the contributions given
above. It is described in the following.

The normal contact traction is evaluated in terms of the LAGRANGE multiplier λn in normal
direction and the penalty parameter εN as

pn =

{
0 for λn + εN g > 0 (no contact)
λn + εn g for λn + εN g ≤ 0 (contact) . (3.3)

The tangential contact traction tτ is determined via the relation

Lv (tτ − λτ ) = εT

[
vτ,rel − β

tτ

‖tτ‖
]
, (3.4)

where λτ is the tangential LAGRANGE multiplier vector. Together with the remaining equations
(2.63), (2.65) and (2.66), the augmented LAGRANGE regularized version of COULOMB’s law is
complete.

With this and similar to the penalty method, equations (3.3) and (3.4) provide the desired
connection between the contact traction t

(1)
c and the geometric fundamental measures as the

gap g and the relative tangential velocity vτ,rel. Using USZAWA’s algorithm, the LAGRANGE

multiplier λ in these equations is resolved via an iterative scheme. Consequently, during an
iteration step k, the LAGRANGE multiplier vector λk is held constant. The contact tractions in
turn are expressed in terms ofλk and the displacements. This connection is inserted into the weak
form of the problem, derived at a later stage, and is solved towards the unknown displacements.
After this, the updated version of the LAGRANGE multiplier λk+1 is evaluated from λk and
equations (3.3) and (3.4). The iteration is carried out until the violation of the contact conditions
falls below a given measure. In the limit, they are fulfilled exactly and the LAGRANGE multiplier
λ takes the value of the contact traction t

(1)
c . This is an obvious advantage, but at the costs of an

additional iteration loop.
For implementation, the LAGRANGE multiplier method, the penalty, and the augmented LA-

GRANGE multiplier method have been chosen. The further discussion however focuses on the
dual LAGRANGE multiplier method as it contains the new aspects of this work.
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3 Frictional contact - weak form and finite element discretization

3.2 Discretization of contact surfaces
The second important ingredient when treating contact problems is the spatial discretization
of the contact surfaces carried out in Section 3.4. This is accompanied by the resolution of
mutual interactions between the contacting bodies. In general, the finite element nodes of the
contact surfaces are not matching and the transfer of contact tractions and the fulfillment of
contact constraints is realized mainly with node-to-segment (NTS) or segment-to-segment (STS)
approaches.

3.2.1 Node-to-segment approach
The main idea of node-to-segment approaches is that finite element nodes on the slave contact
surface are not allowed to penetrate the respective segment on the opposite master surface. Such a
situation is shown in Figure 3.2. The gap function and, for the friction law, the tangential relative
velocity, are evaluated at the nodes of the slave contact surface x(1). Instead of using nodes, these
considerations could also be made at quadrature points. In either case, the contact conditions are
enforced only at a discrete number of points. This corresponds to a variationally inconsistent
assumption of contact tractions at the contact interface, see PAPADOPOULOS and TAYLOR [106]
and is also denoted as collocation method. Exemplary applications in the finite deformation
context can be found in ERHART et al. [24], LAURSEN and SIMO [85], or WRIGGERS et al.
[147].

x
(2)
2

x
(2)
4

x
(2)
1

x̂
(2)

x
(2)
3

x
(1)

nγ
(1)h
c

γ
(2)h
c

Figure 3.2: Node-to-segment approach for contact surface discretization, fulfillment of contact
constraints only for slave nodes.

Although used in many commercial codes, there are well known disadvantages of this ap-
proach. Especially for finite deformations, there is the problem of “chattering”, see PUSO and

28



3.2 Discretization of contact surfaces

LAURSEN [115]. It occurs where geometry is only approximated very roughly and kinks appear
for an originally smooth surface. When a slave node slides over this kink, non-physical jumps
in contact forces are typically encountered which can cause serious errors in contact stresses.
Similar problems occur for nodes placed near edges when they drop over this edge during the
simulation. A further important disadvantage of node-to-segment approaches is that the satis-
faction of the patch test is not for sure. This means that it cannot be guaranteed that a constant
stress field within two bodies is transferred correctly over a contact surface with non-matching
meshes, see HESCH [44] or PAPADOPOULOS and TAYLOR [106].

To overcome the described “chattering“ problem, there exist various smoothing techniques in
literature. Examples are PADMANABHAN and LAURSEN [105], PUSO and LAURSEN [115] or,
towards biomedical applications, KIOUSIS et al. [72]. FRANKE et al. [31, 32] and KONJUKHOV

and SCHWEIZERHOF [75] apply higher-order finite elements and DE LORENZIS et al. [20] use
NURBS-based isogeometric analysis for enhancing the continuity of the contact surfaces. Addi-
tional to these approaches, especially the mortar method explained in the next section, is highly
useful to avoid the above mentioned problems.

3.2.2 Segment-to-segment approach, mortar method

A fundamental different approach for discretizing the contact surfaces are segment-to-segment
approaches, wherein especially the mortar method has become very popular in recent years. The
mortar method has originally been introduced in the context of domain decomposition techniques
in BERNARDI et al. [11] and is used since then in a broad field of contact research. It can be found
for example in BELGACEM et al. [7, 8], MCDEVITT and LAURSEN [95], and WOHLMUTH [140]
for small deformations. For the extension to 3D finite deformation contact with and without
friction, contributions are FISCHER and WRIGGERS [27, 28], GITTERLE et al. [35], HESCH and
BETSCH [45, 46, 47, 48, 49], POPP et al. [110, 111], PUSO and LAURSEN [116], TUR et al.
[132], and YANG et al. [148, 149, 150]. This list here is certainly not exhaustive due to the wide
range of activities in this field.

Figure 3.3: Mortar method for contact surface discretization, weak formulation of contact con-
straints (left) and satisfactory transfer of a constant stress field over surfaces with
nonconforming meshes (patch test, right).
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3 Frictional contact - weak form and finite element discretization

The mortar method is characterized by a weak fulfillment of contact constraints which can be
clearly seen on the left hand side of Figure 3.3. It shows a coarsely discretized square intruding
into a flat surface. This weak enforcement is achieved, in contrast to NTS approaches, with spa-
tially interpolated LAGRANGE multipliers and, corresponding to this, also spatially interpolated
test functions for the contact conditions. With this, the mortar method requires the evaluation of
the typical mortar coupling surface integrals. They contain the integral product of interpolated
quantities which are, in case of the mortar matrix M, even defined on opposing surfaces. The
evaluation of these surface integrals can either be realized with a segmentation of the contact
surface based on contact segments as in GITTERLE et al. [35], POPP et al. [110, 111], or PUSO

et al. [114, 116, 117, 118]. Or it can be performed by an appropriate integration scheme based on
not changing slave segments instead of varying contact segments. This is carried out in FISCHER

and WRIGGERS [27, 28] and recently in TUR et al. [132].
With the application of the mortar method, the already mentioned patch test can be fulfilled,

see Figure 3.3 on the left hand side. ”Chattering” and related problems do not occur and optimal
spatial convergence rates can be obtained with using this integral representations of the contact
constraints, see LAURSEN [83]. Besides these mentioned advantages, the mortar method is, to
the author’s opinion, the logical consequence for contact surface discretization when using finite
elements based on a weak or variational formulation of the problem. It is used throughout this
work.

3.3 Weak form

In order to treat the present frictional contact problem with the finite element method, the weak
form has to be derived. To obtain this form in general, there is the method of weighted residuals
and the variational method as described earlier and in FINLAYSON [26]. The first one works
directly with the differential equation and boundary conditions whereas the second one uses
a functional related to these items. Here, the method of weighted residuals as a more general
principle is applied. It is carried out in Sections 3.3.1 and 3.3.2 to obtain a weak form of the
equilibrium equations and contact conditions. Within the considered mortar method, they are
enforced in a weak sense, too.

3.3.1 Equilibrium equations

In order to obtain these weak forms, the solution function space U (i) and weighting function
space V (i) are defined as

U (i) :=

{
u(i) ∈

[
H1

(
Ω

(i)
0

)]3

| u(i) = û(i) on Γ(i)
u

}
, (3.5)

V (i) :=

{
w(i) ∈

[
H1

(
Ω

(i)
0

)]3

| w(i) = 0 on Γ(i)
u

}
. (3.6)

Here,H1(Ω
(i)
0 ) denotes the usual SOBOLEV space of functions whose values and first derivatives

are square integrable over the domain. Then, the method of weighted residuals is applied to the
equilibrium equations. These are the balance of linear momentum within the bodies (2.70), the
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3.3 Weak form

traction boundary condition (2.71), and the balance of linear momentum at the contact inter-
face in equation (2.72). The weak form is obtained by multiplying these equations with the test
function w(i) ∈ V (i) and integration for each body i as

∫

Ω
(i)
0

[
Div

(
F(i) · S(i)

)
+ b̂

(i)
0

]
·w(i) dΩ

(i)
0 +

∫

Γ
(i)
σ

[
t̂
(i)
0 −P(i) ·N(i)

]
·w(i) dΓ(i)

σ

+

∫

Γ
(i)
c

[
t
(i)
c,0 −P(i) ·N(i)

]
·w(i) dΓ(i)

c = 0 . (3.7)

Identifying the arbitrary test functions w(i) as virtual displacements δu(i), applying integration
by parts and subsequently GAUSS’ divergence theorem, one obtains the virtual work expression
for that body i in material description as

G(i)(u(i), δu(i)) =

∫

Ω
(i)
0

S(i) : δE(i)dΩ
(i)
0 −

∫

Ω
(i)
0

b̂
(i)
0 · δu(i)dΩ

(i)
0

−
∫

Γ
(i)
σ

t̂
(i)
0 · δu(i)dΓ(i)

σ

−
∫

Γ
(i)
c

t
(i)
c,0 · δu(i)dΓ(i)

c = 0 ∀ δu(i) ∈ V (i) . (3.8)

The first three terms are well known and represent the virtual work form internal and external
forces Gint,ext(i). They are independent of the contact formulation. The last one is the contact
virtual work Gc(i) resulting from normal and frictional contact traction t

(i)
c,0 acting on the contact

boundary Γ
(i)
c of the respective body i.

In the following, the focus is on this contact virtual work. Due to implementation reasons, it
is written in the current configuration. Furthermore, the formulation is for the entire system as

Gc
(
u(i), δu(i)

)
= −

2∑
i=1

∫

γ
(i)
c

t(i)
c · δu(i)dγ , (3.9)

where t
(i)
c is the contact traction of body i in the current configuration. With the balance of linear

momentum across the contact interface as

t(1)
c dγ(1) = −t(2)

c dγ(2) , (3.10)

the contact virtual work (3.9) can be rewritten as an integral over the slave surface only

Gc (u, δu) = −
∫

γ
(1)
c

t(1)
c · (δu(1) − (

δu(2) ◦ P))
dγ , (3.11)

where P is the mapping operator at the contact interface introduced in Section 2.2.1.
At this place, a penalty or augmented LAGRANGE formulation could be obtained by substi-

tuting the contact traction t
(1)
c in (3.11) according to equations (3.1) and (3.2) or (3.3) and (3.4),

respectively. However, as stated in Section 3.1, the usage of LAGRANGE multipliers for con-
straint enforcement leading to a mixed variational formulation is aimed for in this work. They
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3 Frictional contact - weak form and finite element discretization

are introduced as additional unknowns on the slave contact surface and are identified as the
negative contact traction as

λ = −t(1)
c . (3.12)

In order to describe the solution function space for them, first, the trace spaces W (i) = H
1
2 (Γ

(i)
c )

being the restrictions of U (i) to Γ
(i)
c are defined. LAGRANGE multipliers simply based on this

space will be termed as standard LAGRANGE multipliers in the following. The focus within this
work is on dual LAGRANGE multipliers, which are specified to be in the corresponding dual trace
space M = H− 1

2 (Γ
(1)
c ), see WOHLMUTH [140]. They differ in the choice of shape functions in

the discrete setting, see Section 3.4.1.
Using LAGRANGE multipliers, the final version of the contact virtual work can be written as

Gc (λ, δu) =

∫

γ
(1)
c

λ · (δu(1) − (
δu(2) ◦ P))

dγ . (3.13)

It is pointed out that no further division of the contact virtual work (3.13) into normal and tan-
gentail parts is necessary here. This division is carried out for example in LAURSEN [83] or
WRIGGERS [144], where it is useful for the penalty and the augmented LAGRANGE multiplier
method.

3.3.2 Contact constraints
Contact constraints as variational inequalities in the continuous setting

The formulation of contact conditions in Section 2.2.3 is not the only possibility within the
continuous setting. With regards to deriving the weak form of contact constraints, they are now
expressed in a different way. These reformulated conditions are equivalent, they are also used
in CHRISTENSEN et al. [15, 16], HÜEBER [54], STRÖMBERG [128], WOHLMUTH [141], and
WRIGGERS [144].

Using the introduced LAGRANGE multiplier λ in (3.12) and decomposing it into normal and
tangential components λn and λτ similar to (2.58), the normal contact conditions (2.59) - (2.61)
are rewritten as

λn ∈ R+
0 : g (δλn − λn) ≥ 0 ∀ δλn ∈ R+

0 . (3.14)

Here, R+
0 is the semi-positive real half space and δλn is a “trial” force. The equation (3.14)

is classified as a variational inequality, see CHRISTENSEN et al. [16] and HÜEBER [54]. The
reformulation of frictional contact constraints (2.63) - (2.66) as a variational inequality reads

λτ ∈ B(µλn) : vτ,rel · (δλτ − λτ ) ≤ 0 ∀ δλτ ∈ B(µλn) , (3.15)

where B(µλn) is a (n− 1)-dimensional sphere with center 0 and radius µλn and δλτ is a “trial”
force in the tangential plane. It is the so-called principle of maximal dissipation representing
COULOMB’s law of friction, see STRÖMBERG [128].

The equivalence of contact conditions written as variational inequalities (3.14) and (3.15) and
their counterparts (2.59) - (2.61) and (2.67) - (2.69) is given in a more descriptive way in the
following. The ideas therefore are taken mainly from HÜEBER [54].
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vτ,rel

λτ
λτ

δλ̃τ

δλ̃τ + λτ

δλτ − λτ

δλτ

B(µλn) B(µλn)

Figure 3.4: Visualization of variational inequality (3.15) representing the tangential contact con-
ditions, stick (left) and slip case (right).

Regarding the conditions in normal direction, (2.60) is directly obtained from the constraint
in (3.14) that λn has to be within R+

0 . The remaining two equations are derived by choosing the
trial or test force δλn, which is arbitrary withinR+

0 , in a smart and target oriented way. Assuming
it to be λn + δλn ≥ 0, (3.14) results in

g δλn ≥ 0 ∀ δλn ∈ R+
0 . (3.16)

In order to hold this condition for all δλn ∈ R+
0 , the gap g must always be equal or greater than

zero, which is exactly condition (2.59). Let the test force be δλn = 0 ∈ R+
0 and δλn = 2λn ∈ R+

0 .
With this, (3.14) becomes for the individual cases

− g λn ≥ 0 and g λn ≥ 0 . (3.17)

Combining both inequalities leads to g λn = 0, which is condition (2.61) and the third desired
equation.

For the conditions in tangential direction, the constraint on the absolute value of λτ in (2.67)
follows directly from (3.15) with the restriction of λτ to be within B(µλn). The further equations
are explained with the help of Figure 3.4. Assuming that ||λτ || < µλn, the stick case is at hand
and (3.15) should deliver vτ,rel = 0 as formulated in (2.68). This can be obtained with having a
look at the left plot in Figure 3.4. It shows, as requested for the stick assumption, the tangential
traction λτ within the sphere B(µλn). In this case, an arbitrary vector δλ̃τ can be found and
added to λτ so that the sum of both vectors δλ̃τ + λτ is within B(µλn). Vectors within this
space can be chosen as trial or test force. Carrying out this allocation δλτ = δλ̃τ + λτ and
inserting δλτ into (3.15), one obtains

vτ,rel · δλ̃τ ≤ 0. (3.18)

Since the vector δλ̃τ is arbitrary, the inner product with vτ,rel can be positive or negative. Fol-
lowing from this, vτ,rel has to be 0 in order to fulfill (3.18) and (2.68) is reproduced. Considered
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3 Frictional contact - weak form and finite element discretization

is now the slip case and ||λτ || = µλn. Here, it has to be shown that λτ = β vτ,rel with β > 0
as given in (2.69) follows from (3.15). This means that the lines of action of these two vectors
(λτ and vτ,rel) have to be parallel and both vectors have to act in the same direction. If this is
not the case, as illustrated in the right graph of Figure 3.4, an arbitrary trial force δλτ within
B(µλn) can be found which leads to an acute angle between δλτ − δλτ and vτ,rel. This results
in a positive inner product in (3.15) whereby the equation is not fulfilled. Only if λτ = β vτ,rel

with β > 0 holds, no trial force leading to a positive inner product can be found from what it is
proven that finally (2.69) follows from (3.15), too.

It has been shown that the contact conditions (2.59) - (2.61) and (2.67) - (2.69) in Section
2.2.3 can be derived form the variational inequalities (3.14) and (3.15). Because this is also
possible for the other direction as described in HÜEBER [54], both formulations are equivalent.
Expressing the contact conditions weakly in the next subsection, the contact conditions written
as variational inequalities are used.

Weak form

Applying integration of (3.14) and (3.15) over the slave contact surface, the weak form of both
normal and tangential contact conditions is obtained as

λ ∈ M(λ) :

∫

γ
(1)
c

g (δλn − λn) dγ ≥ 0 , (3.19)
∫

γ
(1)
c

vτ,rel · (δλτ − λτ ) dγ ≤ 0 ∀ δλ ∈ M(λ) . (3.20)

Here, M(λ) is the admissible solution space for the LAGRANGE multiplier λ and the test space
for the trial force δλ. It is a convex subset M(λ) ⊂ M which accommodates the restrictions
of λ and δλ in (3.14) and (3.15). According to HÜEBER [54], this subspace can be written as

M(λ) := {δλ ∈ M : 〈δλ,η〉 ≤ 〈µλn, ||ητ ||〉,η ∈ W (1) with ηn ≤ 0} , (3.21)

where 〈·, ·〉 is the duality paring of the spaces M and V (1) on γ(1)
c given by

〈δλ,η〉 :=

∫

γ
(1)
c

δλη dγ . (3.22)

More detailled information about the construction of the constrained space M(λ) can be found
in HAGER [36], HÜEBER et al. [54, 55, 57] and WOHLMUTH [141].

3.3.3 Summarized weak form
In Sections 3.3.1 and 3.3.2, the weak form of the frictional contact problem has been derived
and is summarized here. Weakly formulated are both balance equations and contact conditions
and there are two unknown fields due to the usage of the dual LAGRANGE multiplier method
for constraint enforcement. From there, it is called a mixed formulation. Altogether, the mixed
weak form of the frictional contact problem looks as follows: Find u(i) ∈ U (i) and λ ∈ M(λ),
i = 1, 2, so that the following three equations are fulfilled for the given possible test functions:

Gint,ext +

∫

γ
(1)
c

λ · (δu(1) − (
δu(2) ◦ P))

dγ = 0 ∀ δu(i) ∈ V (i) , (3.23)
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∫

γ
(1)
c

g (δλn − λn) dγ ≥ 0 ∀ δλ ∈ M(λ) , (3.24)
∫

γ
(1)
c

vτ,rel · (δλτ − λτ ) dγ ≤ 0 ∀ δλ ∈ M(λ) . (3.25)

In order to solve this problem (3.23) - (3.25) by means of the finite element method, it is dis-
cretized in time and space in the following.

3.4 Finite element discretization
Generally, the finite element discretization of a problem contains the approximation of the ge-
ometry with finite elements and the approximation of the participating continuous solution and
weighting functions with ansatz- or shape functions. This section first introduces the shape func-
tions used for interpolation here. Then, with inserting the interpolated fields into the problem
equations (3.23) - (3.25), the discrete forms of the contact virtual work and the discrete normal
and tangential contact conditions are obtained.

3.4.1 Shape functions

Geometry and displacement fields

Carrying out the approximations for Ω
(i)
0 , i = 1, 2, given above, one has to, besides defining

an element size, commit to a finite element type. With this, the discrete solution space as finite
dimensional subset U (i)h ⊂ U (i) is defined. Space restrictions of U (i)h to the slave and master
contact surface lead to W (i)h. In this work considering the three-dimensional case, the focus is
on linear and trilinear interpolation of LAGRANGEan elements, namely 4-node tetrahedral and
8-node hexahedral elements for the approximation of Ω

(i)
0 , i = 1, 2. From this, the discretization

of the contact surfaces follows directly with reduction of the dimension d to d − 1 leading to
3-node triangular and 4-node quadrilateral elements. Also quadratic interpolation is considered,
more about this can be read in Section 3.4.7.

Following the isoparametric concept, the same shape functions are applied for both geometry
and field variables. For slave and master surface, the interpolations of the geometry X and the
displacements u are

X(1)h|
Γ

(1)h
c

=

nsl∑

k=1

N
(1)
k (ξ(1), η(1))X

(1)
k , (3.26)

X(2)h|
Γ

(2)h
c

=
nm∑

l=1

N
(2)
l (ξ(2), η(2))X

(2)
l , (3.27)

u(1)h|
Γ

(1)h
c

=

nsl∑

k=1

N
(1)
k (ξ(1), η(1))d

(1)
k , (3.28)

u(2)h|
Γ

(2)h
c

=
nm∑

l=1

N
(2)
l (ξ(2), η(2))d

(2)
l . (3.29)
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3 Frictional contact - weak form and finite element discretization

Here, nsl and nm represent the total number of slave and master nodes, N (1)
k , N (2)

l are the stan-
dard shape functions on the respective contact surface defined with respect to the finite element
parameter space ξ(i)(ξ(i), η(i)), i = 1, 2. Finally, X(1)

k , X(2)
l , d(1)

k and d
(2)
l denote the nodal coor-

dinates and the nodal displacements.

Weighting function for linear momentum equation

The application of the BUBNOV-GALERKIN method goes along with the same interpolation
of test function and displacement field. The discrete weighting space is restricted to the finite
dimensional subset V (i)h ⊂ V (i) of the continuous one and the interpolation of the weighting
function field δu(i) on slave and master surface is written as

δu(1)h|
Γ

(1)h
c

=

nsl∑

k=1

N
(1)
k (ξ(1), η(1)) δd

(1)
k , (3.30)

δu(2)h|
Γ

(2)h
c

=
nm∑

l=1

N
(2)
l (ξ(2), η(2)) δd

(2)
l . (3.31)

Here, the shape functions N (1)
k and N (2)

l are the same as in (3.26) - (3.29) and δd(1)
k and δd(2)

l

are the discrete nodal weighting values.

LAGRANGE multiplier field and weighting function for contact conditions

A main aspect of the method considered in this work is the interpolation of the LAGRANGE

multiplier field λ defined on the slave contact surface. It is not carried out with standard shape
functions leading to standard LAGRANGE multipliers. Here, so-called dual shape functions pro-
posed by WOHLMUTH [139, 140] are utilized for the discrete form of the LAGRANGE multiplier
field λh ∈ Mh(λh):

λh =

nsl∑
j=1

Φj(ξ
(1), η(1)) zj , (3.32)

where zj are the discrete nodal LAGRANGE multipliers. Dual shape functions Φj are constructed
such that the so-called biorthogonality condition, see for example HÜEBER [57] or WOHLMUTH

[139, 140], holds on the slave side:
∫

γ
(1)h
c

Φj(ξ
(1), η(1))N

(1)
k (ξ(1), η(1)) dγ = δjk

∫

γ
(1)h
c

N
(1)
k (ξ(1), η(1)) dγ , (3.33)

where δjk is the Kronecker delta

δjk =

{
1 for j = k
0 for j 6= k .

(3.34)

The interpolation of the weighting function field δλ is carried out with the same dual shape
functions Φj as used for the LAGRANGE multiplier field:

δλh =

nsl∑
j=1

Φj(ξ
(1), η(1)) δzj , (3.35)
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where δzj are the discrete nodal weighting values.
This choice of dual shape functions Φj fulfilling the biorthogonality condition (3.33) brings

two main aspects for the solution of the contact problem. Firstly, it results in a diagonal mortar
matrix D (see Section 3.4.2) in the contact virtual work expression. This allows for an easy
elimination of the discrete LAGRANGE multipliers from the system of equations in Section 4.5.
Secondly, the weak contact conditions decouple to nodal ones, see Section 3.4.4.

The construction of dual shape functions Φj for each slave node j can be read in FLEMISCH et
al. [29], LAMICHHANE et al. [79], or WOHLMUTH [140]. The starting point is to express them
as a linear combination of standard shape functions Nk as

Φj(ξ, η) = ajkNk(ξ, η) , Ae = [ajk] ∈ Rne
sl×ne

sl , (3.36)

where ne
sl is the number of slave element nodes. The superscript (i) is omitted here. Insertion of

(3.36) into equation (3.33) leads to
AeMe = De , (3.37)

where the matrices De and Me are evaluated as

De = [de,jk] ∈ Rne
sl×ne

sl , de,jk = δjk

∫

ele

Nk(ξ, η) J(ξ, η) dξdη , (3.38)

Me = [me,jk] ∈ Rne
sl×ne

sl , me,jk =

∫

ele

Nj(ξ, η)Nk(ξ, η) J(ξ, η) dξdη . (3.39)

Here, J(ξ, η) is the determinant of the JACOBIan

J(ξ, η) =
∂xh

∂ξ
. (3.40)

characterizing the mapping between the spatial physical space x and the finite element parameter
space ξ on the slave contact surface. The factors ajk from the matrix Ae finally can be evaluated
as

Ae = DeM
−1
e . (3.41)

Although the contact problem is formulated for 3D throughout this work, as example, the dual
shape functions of the linearly interpolated 2D line element are given. This is due to simplicity
and clearness. The respective standard shape functions are

N1(ξ) =
1

2
(1− ξ) , N2(ξ) =

1

2
(1 + ξ) , (3.42)

where ξ ∈ [−1..1] as visualized on the left of Figure 3.5. For this case, the determinant J of the
JACOBIan J of the above mapping does not depend on the finite element surface coordinate ξ
but is constant over the element size. Accordingly, the dual shape functions can be constructed
independently of the deformation in this special case. Following the above given instructions
(3.36) - (3.41), one obtains the discontinuous, piecewise linear dual shape functions

Φ1(ξ) =
1

2
(1− 3ξ) , Φ2(ξ) =

1

2
(1 + 3ξ) , (3.43)
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2

1

−1
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c
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Figure 3.5: Standard (left) and dual (right) shape functions of the linearly interpolated 2D line
element.

with ξ ∈ [−1..1] as visualized on the right of Figure 3.5. In 3D, a constant JACOBIan only
exists for triangular elements in the contact surface. From this, the dual shape functions can be
expressed directly in the beginning of the analysis without knowing the deformation state. For
all other interpolations, such as, for example, 3-node line elements in 2D or 4-node quadrilateral
elements in 3D, dual shape functions have to be reconstructed for every deformation state. The
construction of dual shape functions is explained and illustrated in more detail in HARTMANN

et al. [39, 40], where also an example containing numerical values is presented.

3.4.2 Discrete form of contact virtual work
Substituting both the discrete form of the LAGRANGE multiplier field λh and the discrete form
of the weighting function field δu(i)h into the weak form of the contact virtual work in (3.23),
one obtains

Gc(u, δu,λ) ≈ Gc h(uh, δuh,λh)

=

∫

γ
(1)h
c

λh
(
δu(1)h − (

δu(2)h ◦ P h
))

dγ

=

nsl∑
j=1

[
nsl∑

k=1

δd
(1)T
k

∫

γ
(1)h
c

ΦjN
(1)
k dγ −

nm∑

l=1

δd
(2)T
l

∫

γ
(1)h
c

Φj

(
N

(2)
l ◦ P h

)
dγ

]
zj ,

(3.44)

where P h defines the discrete approximation of the contact mapping introduced in Section 2.2.1.
The contact virtual work (3.44) contains two different kinds of integrals. There is, on the one
hand, the integral of dual shape functions defined on the slave contact surface times standard
shape functions, also defined on the slave contact surface. The associated matrix D ∈ R3nsl×3nsl

is the first of two mortar coupling matrices. In nodal blocks, it is evaluated as

D[j, k] = Djk I3 =

∫

γ
(1)h
c

ΦjN
(1)
k dγ I3 , j = 1, ..., nsl , k = 1, ..., nsl , (3.45)

where I3 denotes the identity matrix in R3×3. Due to the biorthogonality condition (3.33), equa-
tion (3.45) yields the intended diagonal structure of the mortar matrix D and can therefore also
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be evaluated as

D[j, j] = Djj I3 =

∫

γ
(1)h
c

N
(1)
j dγ I3 , j = 1, ..., nsl . (3.46)

On the other hand, the contact virtual work also contains the integral of dual shape functions
defined on the slave surface times standard shape functions defined on the master surface. The
according nodal blocks enter the second mortar coupling matrix M ∈ R3nsl×3nm and are evalu-
ated as

M[j, l] = Mjl I3 =

∫

γ
(1)h
c

Φj

(
N

(2)
l ◦ P h

)
dγ I3 , j = 1, ..., nsl , l = 1, ..., nm . (3.47)

With these mortar matrices at hand, the discrete form of the contact virtual work can be rewritten
as

Gc h(uh, δuh,λh) = δd(1)T DT z− δd(2)T MT z , (3.48)

where z is the vector of all discrete nodal LAGRANGE multipliers and δd(1) and δd(2) are the
vectors of all discrete nodal test function values on the slave and master side. In order to arrange
clearly the discrete system of equations with internal, external and contact forces, f int, f ext and
f c, all finite element nodes of Ω0 = Ω

(1)
0 ∪ Ω

(1)
0 are divided into three sets: the set S containing

all nsl potential contact nodes on the slave side, the set M of all nm potential contact nodes on
the master side and the set N of all remaining nodes. With this, the global displacement vector
is sorted as d = (dN ,dM,dS)T. Assuming arbitrary test function values δd(1) and δd(2), the
discrete vector of nodal contact forces can be written as

f c = [0 −M D]T z , (3.49)

and thus the discrete version of (3.23), the algebraic form of the force equilibrium, looks like

f int(d) + f c(d, z) = f ext . (3.50)

Herein, the vectors of internal forces f int and external forces f ext are evaluated independently
of the contact problem. Of course, f int contains geometrical and material nonlinearities. The
contact forces f c(d, z) are written in terms of the LAGRANGE multipliers z but also depend on
the displacements d. This is due to considering finite deformations throughout this work, where
the mortar matrices D and M are evaluated with respect to the deformed state. Description and
details on the evaluation of these surface integrals can be found in the next Section 3.4.3.

3.4.3 Evaluation of mortar surface integrals
As already mentioned in the beginning of this chapter, the mortar integrals (3.46) and (3.47)
can be evaluated with different integration schemes. In this work, so-called contact segments are
used as basis for numerical integration. They are defined such that the integrands, represented by
the shape functions, are C1-continuous on these surface subsets. With this, the further numerical
integration can be carried out exactly within the limits of the GAUSSian quadrature. In 2D,
integration is usually performed on the slave contact surface γ(1)h, see POPP et al. [110] or YANG
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nj,4

j

γ
(1)h
c

nj

e1

nj,2

e2

e3

e4

Figure 3.6: Nodally averaged normal vector nj at node j. Obtained from element normal vectors
nj,e from adjacent slave elements e1 - e4 evaluated at j. As examples, the element
normal vectors nj,e are visualized for elements e2 and e4.

et al. [150]. The extension to 3D is not straightforward as contact segments are arbitrarily shaped
polygons in contrast to line segments in 2D. In this work, the mortar coupling algorithm proposed
in PUSO et al. [114, 116, 117] is applied. It is also described and used in POPP et al. [111]
and consists of the integration on piecewise flat segments which represent the approximated
slave contact surface. It is valid for linear shape functions as occurring for 4-node tetrahedrals
and 8-node hexahedrals. Quadratic interpolation is discussed in Section 3.4.7, the algorithm is
explained in the following.

Basis for the mortar coupling and interface segmentation is the discrete normal field on the
slave contact surface. Although already determined in the continuous case in Section 2.2, a re-
peated definition is required in the discrete setting. This is due to the necessity of aC1-continuous
normal field as kinks in the local basis vectors can adversely affect the robustness of the algo-
rithm, see YANG et al. [150].

The chosen definition of the slave normal field is based on nodal averaging as first suggested
in YANG et al. [150]. At each slave node j ∈ S , the averaged nodal unit normal is evaluated as

nj =

∑nj
ele

e=1 nj,e∥∥∥∑nj
ele

e=1 nj,e

∥∥∥
, (3.51)

where nj,e is the unit normal vector of the adjacent slave element e = 1, ..., nj
ele evaluated at node

j. The number of adjacent slave surface contact elements is represented by nj
ele. The continuous

normal field n(1)h then is set up by the interpolation with standard shape functions N (1)
j on the
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slave side as

n(1)h|
γ
(1)h
c

=

nsl∑
j=1

N
(1)
j (ξ(1), η(1))nj . (3.52)

Before going on with the interface segmentation based on the continuous normal field (3.52),
also the tangential plane at node j is defined. This is necessary for the discrete frictional condi-
tions acting there, see Section 3.4.4. At each slave node j ∈ S , two unit tangent vectors τ ξ

j and
τ η

j are constructed from the averaged normal nj . Together, they give a local, orthonormal basis
at node j as

τ η
j = nj × τ ξ

j , nj · τ ξ
j = 0 , nj · τ η

j = 0 . (3.53)

These equations are not sufficient for a unique determination of τ ξ
j and τ η

j regarding the rotation
around the axis of nj . Therefore, construction requires an additional condition as for example
the adjustment to a global coordinate system. However, this specification is arbitrary as the focus
is on the tangential plane in the formulation considered here. For the ease of notation in the
further derivation, the tangential basis vectors τ ξ

j and τ η
j of a node j are aggregated in the matrix

τ j ∈ R3×2 as

τ j :=
[
τ ξ

j τ
η
j

]
. (3.54)

With the continuous normal field at hand, the numerical integration algorithm for the mortar
integrals can be carried out. Its description is similar to POPP et al. [111], for details, it is referred
to the original work in PUSO et al. [114, 116, 117]. The algorithm is visualized in Figure 3.7
and is described for one pair of slave element s and master element m which are assumed to
potentially come into contact.

Algorithm 1

1. Construct an auxiliary plane based on the normal vector n0 at the slave element center x
(1)
0 .

2. Project all ne
sl slave element nodes x

(1)
k , k = 1, ..., ne

sl along n0 onto the auxiliary plane. The
projected slave nodes are denoted as x̃

(1)
k . Steps 1 and 2 can be interpreted as a geometrical

approximation of the slave surface by removing element warping.

3. Project all ne
m master element nodes x

(2)
l , l = 1, ...ne

m along n0 onto the auxiliary plane. The
projected master nodes are denoted as x̃

(2)
l .

4. Form the clip polygon of projected slave and master element nodes in the auxiliary plane by
application of the polygon clipping algorithm, see FOLEY et al. [30] and Figure 3.7.

5. Locate the geometric center of the clip polygon to form ncell triangular integration cells. Each
integration cell is parametrized by its three vertices x̃cell

v , v = 1, 2, 3 and standard shape func-
tions within the integration cell parameter space ξ̃ = {(ξ̃, η̃)|ξ̃ ≥ 0, η̃ ≥ 0, ξ̃ + η̃ ≤ 1} .

6. Find ngp GAUSS integration points with coordinates ξ̃gp, gp = 1, ..., ngp, on each integration
cell and project back along n0 to the slave and master elements to obtain ξ(1)

gp and ξ(2)
gp .

7. Perform GAUSS integration of Djj(s,m) and Mjl(s,m), j = 1, ..., ne
sl and l = 1, ..., ne

m, on all
integration cells. Also the weighted gap vector g̃2,j(s,m) is integrated. Although firstly treated
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x
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x
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proj. master

proj. slave
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integration cell

Figure 3.7: Main steps of 3D mortar coupling of one slave and master element pair: Construction
of an auxiliary plane (top left), projection of slave and master element onto that aux-
iliary plane (top right), polygon clipping (bottom left), and division of clip polygon
into triangular cells for GAUSS integration (bottom right).

in Section 3.4.4, it is already listed here to avoid unnecessary repetitions. The GAUSS integra-
tions looks as

Djj(s,m) =

ncell∑
cell=1

(
ngp∑

gp=1

wgp N
(1)
j

(
ξ(1)

gp

)
Jcell

)
, (3.55)

Mjl(s,m) =

ncell∑
cell=1

(
ngp∑

gp=1

wgp φ
(1)
j

(
ξ(1)

gp

)
N

(2)
l

(
ξ(2)

gp

)
Jcell

)
, (3.56)

g̃2,j(s,m) =

ncell∑
cell=1

(
ngp∑

gp=1

wgp φ
(1)
j

(
ξ(1)

gp

)
gh

gp

(
ξ(1)

gp , ξ
(2)
gp

)
Jcell

)
, (3.57)

where wgp, gp = 1, ..., ngp, are the integration weights of the respective GAUSS rule and Jcell,
cell = 1, ..., ncell, is the integration cell determinant of the JACOBIan.

Expressions (3.55) - (3.57) are the contributions to Djj , Mjl and g̃2,j from one slave and
master element pair (s,m). In order to obtain the total quantities, all slave and master element
pair contributions have to be summed up.

3.4.4 Discrete form of contact constraints
The discrete form of contact constraints is obtained by substituting the discrete spatial geome-
try interpolation x(i)h, the LAGRANGE multiplier interpolation λh and the interpolation of the
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weighting function field for the contact constraints δλh into (3.24) and (3.25). In contrast to
the contact virtual work (3.23), there is a separation into normal and tangential direction for the
contact constraints.

Discrete contact conditions in normal direction

It is started with the contact conditions in normal direction. Applying the above specified substi-
tution for (3.24) yields

∫

γ
(1)
c

g (δλn − λn) dγ ≈
∫

γ
(1)h
c

gh (δλh
n − λh

n) dγ

= −
nsl∑
j=1

δznj

[
nsl∑

k=1

∫

γ
(1)h
c

Φjn
T
jN

(1)
k dγ x

(1)
k −

nm∑

l=1

∫

γ
(1)h
c

Φjn
T
j

(
N

(2)
l ◦ P h

)
dγ x

(2)
l

]

+

nsl∑
j=1

znj

[
nsl∑

k=1

∫

γ
(1)h
c

Φjn
T
jN

(1)
k dγ x

(1)
k −

nm∑

l=1

∫

γ
(1)h
c

Φjn
T
j

(
N

(2)
l ◦ P h

)
dγ x

(2)
l

]

= −
nsl∑
j=1

(δznj − znj)

[
nsl∑

k=1

∫

γ
(1)h
c

Φjn
T
jN

(1)
k dγ x

(1)
k −

nm∑

l=1

∫

γ
(1)h
c

Φjn
T
j

(
N

(2)
l ◦ P h

)
dγ x

(2)
l

]

= −
nsl∑
j=1

(δznj − znj)n
T
j

[∫

γ
(1)h
c

N
(1)
j dγ x

(1)
j −

nm∑

l=1

∫

γ
(1)h
c

Φj

(
N

(2)
l ◦ P h

)
dγ x

(2)
l

]

≥ 0 ∀ δλh ∈ Mh(λh) . (3.58)

Here, the biorthogonality (3.33) is exploited when going from the fourth to the fifth line. As
assumption, the continuous normal field n(1)h is approximated by the constant vector nj within
the local support of node j. The scalar values znj and δznj are the projections of zj and δzj into
the normal direction as

znj = nT
j zj and δznj = nT

j δzj . (3.59)

Defining the nodal weighted gap g̃1,j in its first variant in terms of the mortar matrices (3.46) and
(3.47) as

g̃1,j = −nT
j

[
D[j, j]x

(1)
j +

nm∑

l=1

M[j, l]x
(2)
l

]
, (3.60)

equation (3.58) can be rewritten as
nsl∑
j=1

(δznj − znj) g̃1,j ≥ 0 ∀ δλh ∈ Mh(λh) . (3.61)

In order to obtain a nodal form of this above equation for a slave node j ∈ S, the discrete test
function values therein are chosen in an appropriate way. They are assumed to be δznj ≥ 0
for node j and znk ≥ 0 for all other remaining nodes k, whereby the resulting discrete test
functions are within the admissible space δλh ∈ Mh(λh). This choice neglects the influence of
the remaining nodes k and leads to the uncoupled condition for a slave node j

(δznj − znj) g̃1,j ≥ 0 ∀ δznj ≥ 0 . (3.62)
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3 Frictional contact - weak form and finite element discretization

This nodal equation, containing the restriction znj ≥ 0 resulting from the definition of the ac-
cording admissible space Mh(λh), has exactly the same structure as the normal contact con-
straint written in its strong form as a variational inequality in (3.14). There, it was shown that
this variational inequality is equivalent to the conditions written as a complementarity problem
(2.59) - (2.61). This equivalence is now transferred to equation (3.62), which is consequently
rewritten as

g̃1,j ≥ 0 , (3.63)
znj ≥ 0 , (3.64)

znj g̃1,j = 0 . (3.65)

It has to be pointed out that the nodal weighted gap can be evaluated differently to (3.60). By
knowing the structure of this value from the above derivation, the second variant g̃2,j is achieved
with the direct evaluation of

g̃2,j =

∫

γ
(1)h
c

Φj g
h dγ . (3.66)

The numerical GAUSS integration of this term has already been given in (3.57). The clear advan-
tage of (3.66) is that it does not require the assumption of constant nodal normals as in (3.58).
Therefore, for further derivation and implementation, equation (3.66) is used for the definition
of the nodal weighted gap g̃j = g̃2,j .

Discrete contact conditions in tangential direction

The derivation of the discrete form of the frictional contact constraints is very similar to the
normal direction. It is obtained by inserting the discrete form of the material velocity field ẋ(i)h,
which is interpolated in the same way as the spatial geometry x(i)h, the discrete LAGRANGE

multiplier field λh as well as the discrete weighting function field δλh into (3.25):
∫

γ
(1)
c

vτ,rel · (δλτ − λτ ) dγ ≈
∫

γ
(1)h
c

vh T
τ,rel (δλ

h
τ − λh

τ ) dγ

=

nsl∑
j=1

δzT
τj

[
nsl∑

k=1

∫

γ
(1)h
c

Φjτ
T
jN

(1)
k dγ ẋ

(1)
k −

nm∑

l=1

∫

γ
(1)h
c

Φjτ
T
j

(
N

(2)
l ◦ P h

)
dγ ẋ

(1)
k

]

−
nsl∑
j=1

zT
τj

[
nsl∑

k=1

∫

γ
(1)h
c

Φjτ
T
jN

(1)
k dγ ẋ

(1)
k −

nm∑

l=1

∫

γ
(1)h
c

Φjτ
T
j

(
N

(2)
l ◦ P h

)
dγ ẋ

(2)
l

]

=

nsl∑
j=1

(δzτj − zτj)
T

[
nsl∑

k=1

∫

γ
(1)h
c

Φjτ
T
jN

(1)
k dγ ẋ

(1)
k −

nm∑

l=1

∫

γ
(1)h
c

Φjτ
T
j

(
N

(2)
l ◦ P h

)
dγ ẋ

(2)
l

]

=

nsl∑
j=1

(δzτj − zτj)
T τ T

j

[∫

γ
(1)h
c

N
(1)
j dγ ẋ

(1)
j −

nm∑

l=1

∫

γ
(1)h
c

Φj

(
N

(2)
l ◦ P h

)
dγ ẋ

(2)
l

]

≥ 0 ∀ δλh ∈ Mh(λh) . (3.67)
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The biorthogonality (3.33) again is used stepping from the fourth to the fifth line. Expressions
zτj ∈ R2 and δzτj ∈ R2 denote the projection of the vectors zj and δzj into the tangent plane
τ j ∈ R3×2 defined in (3.54) as

zτj
= τ T

j zj and δzτj
= τ T

j δzj . (3.68)

In (3.67), as approximation, the nodal tangent matrix τ j is held constant over the local support
of a node. Defining the weighted tangential relative velocity ṽτj of a node j ∈ S as

ṽτj = τ T
j

[
D[j, j] ẋ

(1)
j +

nm∑

l=1

M[j, l] ẋ
(2)
l

]
, (3.69)

(3.67) can be rewritten as
nsl∑
j=1

(δzτj − zτj)
T ṽτj ≥ 0 ∀ δλh ∈ Mh(λh) . (3.70)

The nodal form of the above equation results from assuming the discrete test function vector to
be δzj with ‖δzτj‖ ≤ µ znj for the node j and zk with ‖zτk‖ ≤ µ znk for all other remaining
nodes k. With the listed restrictions, the discrete test functions are in the admissible space δλh ∈
Mh(λh) and the nodal condition is obtained

(δzτj − zτj) ṽτj ≥ 0 ∀ δzτj with ‖δzτj‖ ≤ µ znj , (3.71)

where zτj is constrained as ‖zτj‖ ≤ µ znj . Analogous to the strong form of the tangential condi-
tions in Section 3.3.2, this variational inequality is transformed to the equivalent set of equations

ψc := ‖zτj‖ − µ |znj| ≤ 0 , (3.72)
ṽτj + β zτj = 0 , (3.73)

β ≥ 0 , (3.74)
ψc β = 0 . (3.75)

With equations (3.63) - (3.65) and (3.72) - (3.75), one has arrived at the discrete form of
normal and tangential contact constraints. Although they are formulated in an integral manner
in (3.24) and (3.25), they are now available as decoupled nodal equations for each slave node
j ∈ S having the same structure as their continuous counterparts (2.59) - (2.61) and (2.63) -
(2.66). The integral formulation is present in the geometric measures as in the weighted gap g̃j

and the weighted tangential relative velocity ṽτj .

3.4.5 Objectivity of tangential relative velocity
An important aspect of a proper formulation of frictional laws in the finite sliding context is
frame indifference of the rate measures involved. This affects the tangential relative velocity of
the contacting bodies ṽτ,rel in the considered case of frictional contact. Frame indifference, al-
ternatively referred to as objectivity, assures that this quantity is unaffected by any rigid body
motion which the two contacting bodies might experience at the instant of question. Mathemat-
ically, this can be tested with formulating the tangential relative velocity ṽτ,rel in an alternative
reference frame. If frame indifferent, it should be exactly the same there.
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3 Frictional contact - weak form and finite element discretization

Examination of objectivity

In the continuous setting, the tangential relative velocity vτ,rel in Expression (2.57) has been
chosen for further derivation because of integration reasons. But already in its strong form, this
measure is not frame indifferent. This can be proven or looked up in a large amount of publica-
tions, treated comprehensively for example in the work of LAURSEN [81, 83]. So it is no surprise
that also the weak form derived from this, Expression (3.69), is not frame indifferent:

To show this, first, an alternative frame is introduced. It is denoted in the following by super-
scripts (·)∗ and can be related to the original frame via a rigid body translation c(t) and a rotation
Q(t):

x∗ = c(t) + Q(t)x , (3.76)

where Q is a 3 x 3 rotation matrix with QT Q = I3. Then, the weighted tangential relative
velocity (3.69), as quantity to be examined, is expressed in this alternative frame

ṽ∗τj = (Q τ j)
T Q

(
D[j, j] ẋ

(1)
j −

nm∑

l=1

M[j, l] ẋ
(2)
l

)

+ (Q τ j)
T Q̇

(
D[j, j]x

(1)
j −

nm∑

l=1

M[j, l]x
(2)
l

)

= τ T
j I3

(
D[j, j] ẋ

(1)
j −

nm∑

l=1

M[j, l] ẋ
(2)
l

)

+ τ T
j QT Q̇

(
D[j, j]x

(1)
j −

nm∑

l=1

M[j, l]x
(2)
l

)

= ṽτj + τ T
j QT Q̇

(
D[j, j]x

(1)
j −

nm∑

l=1

M[j, l]x
(2)
l

)
. (3.77)

In order to obtain objectivity from (3.77), the tangential components of the weighted relative
velocity must be the same in both the transformed and the original frame, ṽ∗τj = ṽτj . This is
only the case for the term in brackets being zero. This term is the nodal weighted gap vector g̃j

defined as

g̃j = D[j, j] x
(1)
j −

nm∑

l=1

M[j, l] x
(2)
l , (3.78)

which can be obtained from
g̃j =

∫

γ
(1)h
c

φj gh dγ , (3.79)

where gh is the discrete version of the gap vector defined in (2.45). With this, the vector g̃j

has the same characteristic as the scalar values g̃j in (3.66) and ṽτj in (3.69), but contains no
projection into normal direction as in the first case or no projection into the tangential plane
together with a time derivation as in the second case.

The normal contact conditions only enforce the normal projection of g̃j , namely g̃j to be zero,
but not the vector itself, see also PUSO et al. [116] and YANG et al. [150]. In the case of curved
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surfaces discretized with the mortar method, g̃j can vary from zero, so that frame indifference
of the weighted tangential relative velocity ṽτj as derived above cannot be guaranteed in these
cases. Therefore, an alternative measure for finite deformation frictional contact is chosen and
presented in the next section.

Frame indifferent measure

Discretizing the contact surfaces with the standard, not with the dual mortar method, an alterna-
tive objective tangential relative velocity has originally been introduced in PUSO et al. [116] and,
since then, applied in LAURSEN et al. [84], PUSO et al. [118], and YANG et al. [148, 149, 150].
The derivation in PUSO et al. [116] is kept very short and repeated here. Starting point is the
definition of the relative tangential velocity in the continuous setting in Section 2.2.2. There,
two possibilities of evaluation are discussed. Firstly, formulating it in the slip advected bases as
in equations (2.51) and (2.52) and secondly, evaluating it from the relative velocity of opposed
material points as in equation (2.57). Both formulations are obtained by total time derivation of
the relative position vector g between x(1) and x̂(2) which has to be zero, see (2.50).

In the spatially discretized setting, having a non-objective measure for the weighted tangential
relative velocity ṽτj at hand, the above derivation is applied again. The discrete counterpart of
the relative position vector g in the continuous setting is g̃j which is already known from (3.78).
As in Section 2.2.2, total time derivation is applied:

d

dt
(g̃j) = ˙̃gj =

(
D[j, j] ẋ

(1)
j −

nm∑

l=1

M[j, l] ẋ
(2)
l

)

+

(
Ḋ[j, j]x

(1)
j −

nm∑

l=1

Ṁ[j, l]x
(2)
l

)
≈ 0 . (3.80)

Since the vector g̃j , as explained before, might not be exactly zero, also its time derivation can
vary from this value. Projecting the first term in brackets into the nodal tangential plane τ j , one
obtains exactly the non-objective measure for the relative velocity in (3.69). Now the second term
in brackets is considered. It is the discrete equivalent of the right hand side of equation (2.50) in
the continuous setting. As the time derivatives Ḋ and Ṁ are zero during rigid body rotations, it
is frame indifferent like its continuous counterpart. It is chosen to construct an objective measure
for the weighted tangential relative velocity by changing the sign and projection into the tangent
plane as

v̂τj = −τ T
j

[
Ḋ[j, j]x

(1)
j +

nm∑

l=1

Ṁ[j, l]x
(2)
l

]
. (3.81)

3.4.6 Time discretization

Besides the spatial approximation with finite elements discussed above, time dependent terms
have to be discretized temporally. As quasi-static problems are treated here, they do not appear
in the balance equation (3.50), but in the contact constraints with the tangential relative velocity
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(3.81). Choosing a Backward Euler scheme as time discretization

d(·)
dt

≈ (·)(t)− (·)(tn−1)

∆t
, (3.82)

one obtains the spatially and temporally discretized, tangential relative velocity v̂τj of a slave
node j

ṽτj =− τ T
j (tn)

(
D[j, j](tn)−D[j, j](tn−1)

∆t
x

(1)
j (tn)

)

+ τ T
j (tn)

(
nm∑

l=1

(M[j, l](tn)−M[j, l](tn−1))

∆t
x

(2)
l (tn)

)
. (3.83)

Multiplication with ∆t leads from the discretized velocity v̂τj
to the nodal slip increment ũτj

ũτj =− τ T
j (tn) (D[j, j](tn)−D[j, j](tn−1)) x

(1)
j (tn)

+ τ T
j (tn)

nm∑

l=1

(M[j, l](tn)−M[j, l](tn−1)) x
(2)
l (tn) (3.84)

and the discrete nodal tangential contact conditions can be summarized as

ψcj = ‖zτj‖ − µ znj ≤ 0 , (3.85)

ũτj − β̃j zτj = 0 , (3.86)

β̃j ≥ 0 , (3.87)

ψcj β̃j = 0 , (3.88)

with β̃j = βj ∆t.
It has to be stressed that the slip increment (3.84) varies from the slip increment applied in

LAURSEN et al. [84], PUSO et al. [116, 118] and YANG et al. [148, 149, 150]. This is because
the mortar matrices look different there due to the usage of the standard LAGRANGE multiplier
interpolation. In addition, the entering spatial configuration coordinates there are from the last
point of time x(1)(tn−1) and x(2)(tn−1) and not from the current one x(1)(tn) and x(2)(tn) as in
(3.84). Here, this results from the consistent application of the implicit Backward Euler inte-
gration scheme which leads to very good results for ũτj , even for large rotations during a time
step.

3.4.7 Quadratic interpolation, different types of interpolation

Before summarizing the discrete form of contact constraints, further types of interpolation for
displacements and LAGRANGE multipliers considered so far are discussed. This is firstly the
quadratic interpolation and secondly, the discretization of LAGRANGE multipliers with standard
instead of dual shape functions. Although these discretizations have been implemented as ex-
tension from normal to frictional contact within this work, they are only addressed very briefly
because of not being in the focus here.
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Quadratic interpolation

So far, only linear and trilinear interpolation in three dimensions has been considered. This is
at hand for hex8 and tet4 discretizations leading to 4-node quadrilateral and 3-node triangular
contact surface elements. This determination came into play for both the construction of dual
shape functions (section 3.4.1) fulfilling the biorthogonality condition and the evaluation of the
mortar surface integrals (section 3.4.3). In this section now, quadratic interpolation as a form of
higher-order interpolation is discussed for both issues. Concretely, this is for 9-node quadrilat-
eral, 8-node quadrilateral and 6-node triangular contact surface elements resulting from hex27,
hex20 and tet10 discretizations.

Firstly, the extension of the segmentation and integration algorithm for the evaluation of the
mortar surface integrals to second-order (quadratic) interpolation is considered. This extension
has originally been performed by PUSO et al. [118] and is also employed here. The basic idea
here is to subdivide the quadratic surface elements into linearly interpolated subsegments. This
leads to the following cases: The 9-node quadrilateral element is split into four 4-node quadri-
lateral subsegments, the 8-node quadrilateral element into one 4-node quadrilateral and four
3-node triangular subsegments and the 6-node triangular element into four 3-node triangular
subsegments. A more descriptive illustration can be found in PUSO et al. [118]. This measure
allows for the application of the described algorithm for linearly interpolated elements in Section
3.4.3 with almost no modification. For sure, the subdivision contains a geometrical approxima-
tion as it is no longer able to reflect the underlying quadratic surfaces correctly. This affects the
integration domain, see POPP et al. [111]. However, by establishing mappings from parent ele-
ment spaces to subsegment spaces and vice versa, the higher-order shape function products in
(3.55) - (3.57) can still be evaluated properly.

The second issue when treating second-order interpolation is the definition of suitable dual
LAGRANGE multiplier spaces. For 3-node line elements in 2D and 9-node quadrilateral ele-
ments in 3D, quadratic shape functions for the LAGRANGE multipliers are obtained from the
biorthogonality condition (3.33) with the application of (3.36) and (3.37) as demonstrated in
HARTMANN et al. [40] or POPP et al. [110, 111]. The construction of dual shape functions for
8-node quadrilateral and 6-node triangular contact elements is not straightforward. This is be-
cause already the standard shape functions of these elements do not satisfy the integral positivity
which can lead to unphysical, negative weighted nodal gaps g̃j although the unweighted physical
gap at the node j is positive. The solution is addressed for finite deformation frictional contact
using standard shape functions for LAGRANGE multiplier interpolation in PUSO et al. [118]. The
construction of dual LAGRANGE multiplier shape function for quadratic interpolation requires,
of course, the fulfillment of the biorthogonality condition (3.33), but also the fulfillment of the
integral positivity as briefly explained above. This is a non-trivial task for 8-node quadrilateral
and 6-node triangular contact elements. It has recently been solved on the basis of the work
of LAMICHHANE et al. [78, 80] in POPP et al. [112] and WOHLMUTH et al. [143] for finite
deformation contact. There, a basis transformation procedure is applied.

Standard shape functions for LAGRANGE multipliers

The interpolation of LAGRANGE multipliers and respective weighting functions for the contact
conditions is realized throughout this work mainly with dual shape functions. This brings the
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clear advantage of leading to a diagonal structure of the mortar matrix D. It allows, as explained,
for an efficient elimination of the discrete LAGRANGE multipliers from the system of equations
which will be shown when treating the algebraic representation of the problem in Section 4.5.
Besides, the discrete contact conditions for a slave node j ∈ S are unaffected from adjacent
slave nodes k ∈ S yielding point-wise decoupled constraints, see Section 3.4.4.

At first, the more obvious interpolation of LAGRANGE multipliers and weighting functions for
the conditions is the interpolation with standard shape functions. They are used successfully for
example in DICKOPF and KRAUSE [22], FISCHER and WRIGGERS [27], PUSO et al. [116, 118]
or YANG et al. [150]. The application of the LAGRANGE multiplier method with keeping the
additional unknowns leads to a saddle point-type problem similar to the dual case shown in
Section 4.5. However, the possibility of efficient elimination gets lost so that the saddle point-
type system of equations has to be solved within the Newton iteration. Besides, the contact
constraints are not point-wise decoupled when using standard instead of dual shape functions.
It already requires additional mathematical consideration when deriving the discrete form of
the contact constraints, see Section 3.4.4 and HÜEBER [54] and WOHLMUTH [141]. And, to
the author’s experience, the convergence of the active, stick and slip set in frictional contact
simulations is less for not having point-wise decoupled constraints.

3.4.8 Summarized discrete form
Since the derivation of the spatially and temporally discretized form of the 3D finite deforma-
tion frictional contact problem extends over several pages, it is summarized shortly here. In
order to be able to apply the finite element method as spatial discretization scheme, a weak
form of the contact problem including balance equation and contact constraints is obtained with
equations (3.23), (3.24) and (3.25). The problem is formulated with LAGRANGE multipliers as
method to enforce the contact constraints. Their interpolation and the interpolation of according
test functions is realized with continuous shape functions leading to the mortar method which
is characterized by a weak formulation of contact constraints. The dual shape functions fulfill
the biorthogonality condition (3.33) leading to a diagonal structure of the mortar matrix D. The
fully, also temporally discretized 3D frictional contact problem is finally made up of the balance
equation (3.50) and the contact constraints (3.63) - (3.65) and (3.72) - (3.75). Although enforced
weakly, they are available as nodal and decoupled conditions. Being still formulated as inequal-
ities, the constraints require the treatment with a suitable active set strategy presented in the
next chapter. The whole formulation is valid for finite deformations. This requires a consistent
linearization of all displacement and LAGRANGE multiplier dependent terms.
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semi-smooth NEWTON method

This chapter describes the applied solution algorithm for the discretized finite deformation fric-
tional contact problem in equations (3.50), (3.63) - (3.65) and (3.72) - (3.75). It is the semi-
smooth NEWTON method which allows for the treatment of all nonlinearities, including the
search for the active, stick and slip set, in one single iterative scheme. For this, contact condi-
tions are reformulated in so-called complementarity functions (section 4.1) leading to the equal-
ity instead of inequality constraints. The semi-smooth NEWTON method is equivalent to the well
known primal-dual active set strategy (PDASS) as demonstrated in CHRISTENSEN et al. [16],
HINTERMÜLLER et al. [52], or QI and SUN [119]. It has successfully been used for small de-
formation contact problems in ALART and CURNIER [2], CHRISTENSEN et al. [16], HÜEBER et
al. [56, 57], and WOHLMUTH [141] and has been extended to finite deformations in GITTERLE

et al. [35] and POPP et al. [110, 111, 112]. The chapter describes the algorithm, presents the
consistent linearization and the algebraic representation of the problem. It will conclude with
several 2D and 3D examples to validate the approach and demonstrate its numerical efficiency.

4.1 Non-smooth complementarity functions
In order to apply the semi-smooth NEWTON method, contact conditions are reformulated in
so-called complementarity functions which express them equivalently. They are constructed
“smooth enough to use NEWTON like solution methods”, as literally described in ALART and
CURNIER [2] concerning the construction of frictional contact operators.

4.1.1 Reformulation of normal contact conditions
As given and discussed in detail in, for example, HÜEBER et al. [54, 56] and POPP et al. [110,
111], the complementarity function for the normal direction is defined for each slave node j ∈ S
as

Cnj (zj,d) = (znj −max (0, znj − cng̃j)) , cn > 0 . (4.1)

It is equivalent to the normal contact conditions (3.63) - (3.65) when

Cnj (zj,d) = 0 , (4.2)

independently of the choice of the parameter cn. This parameter does not influence the accuracy
of results, but can influence the convergence behavior of the semi-smooth NEWTON method. A
study concerning this topic will follow in Section 4.6. The equivalence of the normal contact
conditions (3.63) - (3.65) with the active and inactive branch and the complementarity function
being zero in (4.2) is visualized in Figure 4.1.

51



4 Frictional contact - solution with semi-smooth NEWTON method

Cnj

active

inactive

Cnj = 0

g̃j

znj

Figure 4.1: Nodal complementarity function Cnj for normal direction, cn = 1, equivalent to
normal contact conditions for Cnj = 0 .

4.1.2 Reformulation of frictional contact conditions

The reformulation of frictional contact conditions is similar. One possible complementarity func-
tion is defined in HÜEBER et al. [54, 56] and used in GITTERLE et al. [35] in the context of 2D
finite deformation frictional contact. It takes the form of a two component vector equation and
is written as

Cτj (zj,d) = max (µ (znj − cn g̃j) , ‖zτj + ctũτj‖) zτj

− µmax (0, znj − cn g̃j) (zτj + ctũτj) , cn > 0, ct > 0 . (4.3)

It can be shown that COULOMB’s friction law (3.85) - (3.88) is equivalently expressed when

Cτj (zj,d) = 0 , cn, ct > 0 (4.4)

for any choice of the parameters cn and ct. As valid for cn, also ct does not influence the accu-
racy of results but can influence convergence behavior. Again, the reader is referred to Section
4.6 for more information about this parameter. In Figure 4.2, the complementarity function in
tangential direction (4.3) is visualized for 2D and a constant value of µ znj . The intersection with
the horizontal plane Cτj = 0 leads to conditions (3.85) - (3.88) with their characteristic stick and
slip branches.

It has to be pointed out that (4.3) is not the only possible complementarity function to express
COULOMB’s friction law. Different ones are used for example in ALART and CURNIER [2] and
CHRISTENSEN et al. [16]. In HÜEBER et al. [56], also an additional complementarity function
is mentioned. But it is not preferred there because of less robustness compared to the algorithm
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Cτj = 0

slip

slip

stick

Cτj

zτj

ũτj

Figure 4.2: Nodal complementarity function Cτj for tangential direction, visualized for 2D,
µ znj = 5, ct = 1, equivalent to frictional contact conditions for Cτj = 0.

based on (4.3). This statement has been confirmed in BUCHNER [13], where extensive conver-
gence studies addressing the robustness of algorithms with different complementarity functions
have been carried out.

4.2 Semi-smooth NEWTON method
From now on, the contact conditions (3.63) - (3.65) and (3.85) - (3.88) are replaced by (4.2)
and (4.4). In combination with the force equilibrium (3.23), the following nonlinear system
of equation is obtained. It represents the spatially and temporally discretized frictional contact
problem and is written in residual form:

r = f int(d) + f c(d, z)− f ext = 0 ,

Cnj (zj,d) = 0 ∀ j ∈ S ,
Cτj (zj,d) = 0 ∀ j ∈ S . (4.5)

To this set of equations, the semi-smooth NEWTON method as a NEWTON type algorithm is
applied. It is justified as the used complementarity functions contain the max-function and the
EUCLIDean norm, which is why they are are semi-smooth. This is known from mathematical
contributions in HINTERMÜLLER et al. [52] or QI and SUN [119]) treating optimization and in
HÜEBER et al. [56] or KOZIARA and BICANCIC [76] treating contact problems. For more pre-
requisites and details concerning semi-smooth NEWTON methods, for example for the concise
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4 Frictional contact - solution with semi-smooth NEWTON method

proof of superlinear convergence, the reader is referred to HINTERMÜLLER et al. [52] and QI

and SUN [119].
The solution of the frictional contact problem is possibly made up of active and inactive re-

gions, whereas the active regions are further divided into sticking and slipping areas. As com-
monly known, the correct determination of these regions can turn out to be difficult. For resolv-
ing these contact nonlinearities, the complementarity functions are helpful. Through using the
max-function and the EUCLIDean norm, they contain the different branches of the respective
conditions. These are, for the normal direction, the active and the inactive branch and, for the
tangential direction, the stick and the two slip branches. Besides being able to treat these func-
tions within a NEWTON type scheme as given above, Cnj and Cτj supply tangent information
about the correct contact sets of the solution. With this, the contact nonlinearities can be treated,
together with possible geometric or material nonlinearities, in one single iterative scheme. This
leads to an excellent convergence behavior. As is going to be demonstrated in Section 4.6, the
algorithm only requires a few NEWTON steps in order to find the correct active, inactive, stick
and slip sets. Then, when the sets remain constant, the residual is reduced quadratically due to
the consistent linearization presented.

The application of a semi-smooth NEWTON method gives an iterative process. The current
iteration step k for solving for the primal-dual pair (dk+1, zk+1) requires at first the consistent
linearization of all nonlinear equations in (4.5) at (dk, zk) as

∆r
(
dk, zk

)
= −rk , (4.6)

∆Cnj

(
dk, zk

j

)
= −Ck

nj ∀ j ∈ S , (4.7)

∆Cτj

(
dk, zk

j

)
= −Ck

τj ∀ j ∈ S . (4.8)

Here, the quantities ∆(·) denote the directional derivatives given by

∆ (·) =
∂ (·)
∂d

∆d +
∂ (·)
∂z

∆z , (4.9)

which are also called “linearizations” for ease of use in the following. Then, the linear system of
equations (4.6) - (4.8) is solved towards the solution increments (∆dk,∆zk) and the update for
the new iterate

(
dk+1, zk+1

)
is

(
dk+1, zk+1

)
=

(
dk, zk

)
+

(
∆dk,∆zk

)
. (4.10)

These steps are repeated until convergence is achieved.

Remark: Semi-smooth NEWTON method and augmented LAGRANGE strategy

Within this section, the semi-smooth NEWTON method derived above is classified with regards
to the augmented LAGRANGE strategy. It contributes to the clarification of possibly existing
misunderstandings concerning the names of these methods.

In the early work of ALART and CURNIER [2], a mixed penalty-duality approach for treating
small deformation contact problems is proposed. It is obtained from the formulation of an aug-
mented Lagrangian functional initially introduced by HESTENES [50] and POWELL [113] for
the solution of nonlinear programming problems with equality constraints. Evaluation of the di-
rectional derivatives towards the unknown displacements and the LAGRANGE multipliers leads
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4.3 Consistent linearization

to two governing equations: The equilibrium equation and, as it is denoted there, the contact
equation. They are solved with either a modified NEWTON method or the generalized NEWTON

method. These strategies are also applied in, for example, CHRISTENSEN et al. [16] or IREMAN

et al. [63].
The complementarity function for the normal direction here is, except from discretization and

finite deformation formulation, identical to the one obtained from the augmented Lagrangian
functional in ALART and CURNIER [2]. This is not the case for the frictional one as already
stated in HÜEBER et al. [56], but they have the same structure. From there, the semi-smooth
NEWTON method could also be interpreted as an augmented LAGRANGE strategy and resem-
bles the generalized NEWTON method from above. The approach here however at first handles
the non-smoothness and multivalued character of contact conditions with their reformulation in
complementarity functions. This is in contrast to ALART and CURNIER [2], where this is al-
ready done for the formulation of the functional. In LAURSEN [83], the augmented LAGRANGE

strategy is derived from the same functional. There, the numerical treatment however is realized
with the sequential treatment of variables in USZAWA’s algorithm. This resembles the modified
NEWTON method from above.

4.3 Consistent linearization
Being a new and important aspect of the formulation considered here, the consistent linearization
of the force residual and the two complementarity functions is addressed in the following.

4.3.1 Force residual
The evaluation of ∆r requires the linearizations of the internal force vector f int(d) and the
contact force vector f c(d, z). The vector f int(d) is not addressed here at all as it results from
well-known finite element technology leading to a standard tangential stiffness matrix K. It is
completely independent of contact. The linearization of the contact force vector f c(d, z) can be
expressed as

∆f c,k =




0
−∆MT zk −MT ∆zk

∆DT zk + DT ∆zk


 (4.11)

It requires the consistent determination of the directional derivatives of the mortar matrices D
and M. This can be found in POPP et al. [110, 111]. For the further treatment of this equation,
the LAGRANGE multiplier increment ∆zk is replaced by zk+1 − zk.

4.3.2 Complementarity function - normal direction
Containing the max-function as discussed above, the complementarity function for the normal
direction is not differentiable in the classical sense. For its linearization, a generalized derivative
has to be defined. It consists of the distinction of cases as

f(x) = max(a, x) −→ ∆f(x) =

{
0 if x ≤ a

1 if x > a
. (4.12)
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4 Frictional contact - solution with semi-smooth NEWTON method

Then, when evaluating the directional derivative of the complementarity function Cnj at the
current iterate k, this yields the separation of the slave node set S into the inactive node set Ik

and the active node set Ak. Furthermore, the respective solution branches are separated, too.
In compact form, all equations resulting from the linearized complementarity function Cnj are
given in the following. The sets are divided by

Ik := {j ∈ S | zk
nj − cng̃

k
j ≤ 0} , (4.13)

Ak := {j ∈ S | zk
nj − cng̃

k
j > 0} , (4.14)

which is tantamount to an update formula to be applied after each semi-smooth NEWTON step
in order to obtain Ik and Ak. And the accompanying nodal equations result in

zk+1
nj = 0 ∀ j ∈ Ik , (4.15)

∆g̃k
j = −gk

j ∀ j ∈ Ak . (4.16)

They are written to this certain level. For ongoing consistent linearizations, like the evaluation
of ∆g̃k

j , the reader is referred to POPP et al. [110, 111].

4.3.3 Complementarity function - tangential direction

As discussed, the complementarity function representing the frictional conditions Cτj contains
the max-function and the EUCLIDean norm. Concerning differentiation, the EUCLIDean norm
in (4.3) appears for nonzero arguments only. This results from the straightforward calculation of
(4.3), see also HÜEBER et al. [56]. With this, the only non-differentiability that matters is again
the max-function. It is treated in the same manner as in Section 4.3.2 .

At a current iterate k, Cτj contains the separation of the slave node set S into the inactive
node set Ik and the active node set Ak. It is independent of the division resulting from the
complementarity function for the normal directionCnj , but leads to identical sets. In addition, the
active set Ak is further split into the stick node set Stk and the slip node set Slk. The respective
equations are

Ik :=
{
j ∈ S | zk

nj − cng̃
k
j ≤ 0

}
, (4.17)

Stk :=
{
j ∈ Ak | ‖zk

τj + ctũ
k
τj‖ − µ(zk

nj − cng̃
k
j ) < 0

}
, (4.18)

Slk :=
{
j ∈ Ak | ‖zk

τj + ctũ
k
τj‖ − µ(zk

nj − cng̃
k
j ) ≥ 0

}
, (4.19)

and for Ik, Stk and Slk, equation (4.7) yields the following notation

zk+1
τj =0 ∀ j ∈ Ik , (4.20)

∆Cτj,St =− µ
(
zk

nj − cng̃
k
j

)
ct∆ũk

τj

− µ
(
∆zk

nj − cn∆g̃k
j

)
ctũ

k
τj

=µ
(
zk

nj − cng̃
k
j

)
ctũ

k
τj

=−Ck
τj,St ∀ j ∈ Stk , (4.21)
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4.4 Primal-dual active set algorithm

∆Cτj,Sl =
∥∥zk

τj + ctũ
k
τj

∥∥ ∆zk
τj

+

(
zk

τj + ctũ
k
τj

)
∥∥zk

τj + ctũk
τj

∥∥ zk
τj

(
∆zk

τj + ct∆ũk
τj

)

− µ
(
zk

nj − cng̃
k
j

) (
∆zk

τj + ct∆ũk
τj

)

− µ
(
∆zk

nj − cn∆g̃k
j

) (
zk

τj + ctũ
k
τj

)

=− ∥∥zk
τj + ctũ

k
τj

∥∥ zk
τj + µ

(
zk

nj − cng̃
k
j

) (
zk

τj + ctũ
k
τj

)

=−Ck
τj,Sl ∀ j ∈ Slk . (4.22)

Concerning COULOMB’s friction law for the tangential direction, the expressions ∆zk
τj and ∆ũk

τj

still depend nonlinearly on the displacements dk and the nodal LAGRANGE multiplier vector
zk

j . According to GITTERLE et al. [35], ongoing consistent linearization of these contributions
towards the primary unknowns reads

∆zk
τj = τ k

j ∆zk
j + ∆τ k

j zk
j (4.23)

and

∆ũk
τj = −τ k

j

(
D[j, j]k −D(n−1)[j, j]

)
∆d

(1) k
j

+ τ k
j

nm∑

l=1

(
M[j, l]k −M(n−1)[j, l]

)
∆d

(2) k
l

−∆τ k
j

(
D[j, j]k −D(n−1)[j, j]

)
x

(1) k
j

+ ∆τ k
j

nm∑

l=1

(
M[j, l]k −M(n−1)[j, l]

)
x

(2) k
l

− τ k
j ∆D[j, j]k x

(1) k
j + τ k

j

nm∑

l=1

∆M[j, l]k x
(2) k
l . (4.24)

For the further derivation of ∆τ k
j , ∆D[j, j]k and ∆M[j, l]k, the reader is referred to POPP et al.

[110, 111], where these linearizations are carried out for the frictionless case.

4.4 Primal-dual active set algorithm

The semi-smooth NEWTON algorithm within one increment is summarized in this section. As
the complementarity functions implicitly contain the distinction of all potential contact nodes
into nodes not in contact, nodes in contact and sticking and nodes in contact and slipping, it
shows the form of a primal dual active set strategy. It is arranged as follows:

Algorithm 2

1. Set k = 0 and initialize the solution (d0, z0)
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4 Frictional contact - solution with semi-smooth NEWTON method

2. Initialize I0, St0 and Sl0 such that I0 ∪ S0 ∪ Sl0 = S, I0 ∩ St0 = I0 ∩ Sl0 = St0 ∩ Sl0 = ∅,
and St0 ∪ Sl0 = A0

3. Find ∆dk, zk+1 by solving

∆r
(
dk, zk

)
= −rk , (4.25)

zk+1
j = 0 ∀ j ∈ Ik , (4.26)

∆g̃k
j = −g̃k

j ∀ j ∈ Ak , (4.27)

∆Ck
τj,St = −Ck

τj,St ∀ j ∈ Stk , (4.28)

∆Ck
τj,Sl = −Ck

τj,Sl ∀ j ∈ Slk . (4.29)

4. Update dk+1 = dk + ∆dk

5. Set Ik+1, Stk+1 and Slk+1 to

Ik+1 :=
{
j ∈ S | zk+1

nj − cng̃
k+1
j ≤ 0

}
, Ak+1 = S \ Ik+1 , (4.30)

Stk+1 :=
{
j ∈ Ak+1 | ‖zk+1

τj + ctũ
k+1
τj ‖ − µ(zk+1

nj − cng̃
k+1
j ) < 0

}
, (4.31)

Slk+1 :=
{
j ∈ Ak+1 | ‖zk+1

τj + ctũ
k+1
τj ‖ − µ(zk+1

nj − cng̃
k+1
j ) ≥ 0

}
, (4.32)

6. If Ik+1 = Ik, Stk+1 = Stk, Slk+1 = Slk and ‖rabs‖ ≤ εr, then stop,
else set k := k + 1 and repeat from 3.

Here, εr denotes an absolute NEWTON convergence tolerance of choice. The algorithm shows
that the contact nonlinearities and all other types of nonlinearities are resolved within one single
NEWTON iteration. This necessitates an update of the inactive, stick and slip set after each semi-
smooth NEWTON step. The absolute residual vector rabs not only contains the force residual r
but also the residual of the contact constraints (4.26) - (4.29).

4.5 Algebraic representation
In this chapter, the algebraic representation of the linear system to be solved in each semi-
smooth NEWTON step is derived. The assembly of the global matrices representing the direc-
tional derivatives in (4.25) - (4.28) is straightforward. It is provided in compact form in the
following.

From (4.11), the directional derivatives of the contact force vector f c in (4.25) towards the
displacements can be expressed as

(
0, −∆MT zk, ∆DT zk

)T
= C̃∆dk

SM. (4.33)

Here, the matrix C̃ ∈ R(3nsl+3nm)×(3nsl+3nm) contains the directional derivatives of both mortar
matrices D and M together with the current LAGRANGE multiplier vector zk. The vector ∆dk

SM
is a subset of the global displacement vector containing the entries from slave and master nodes
S and M, their numbers are denoted by nsl and nm.
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4.5 Algebraic representation

Linearization of the normal constraint for all active nodes j ∈ A in (4.27) yields

na

A
j=1

(
∆g̃k

j

)
= S̃Ak

∆dk
S + M̃Ak

∆dk
M , (4.34)

where matrices S̃Ak
∈ Rna×3nsl and M̃Ak

∈ Rna×3nm completely represent the assembly of
all linearizations of ∆g̃j , where A is the standard finite element assembly operator and na the
number of active slave nodes.

The following notation expresses the assembled form of equation (4.28) for all stick nodes
j ∈ Stk:

nstick

A
j=1

(
∆Ck

τj,St + Ck
τj,St

)
= FStk ∆dk

S + HStk ∆dk
M + PStk zk+1

St + Cτ,St . (4.35)

Here, nstick is the number of stick nodes. The matrices FStk ∈ Rnstick×3nsl , HStk ∈ Rnstick×3nm

and PStk ∈ Rnstick×3nstick represent the assembly of all linearizations with respect to displace-
ments dk and LAGRANGE multipliers zk. The vector Cτ,St ∈ Rnstick contains the entries of the
right hand side.

The algebraic formulation for the linearized slip constraint (4.29) for all slip nodes j ∈ Sl is
derived in analogue form and yields

nslip

A
j=1

(
∆Ck

τj,Sl + Ck
τj,Sl

)
= GSlk ∆dk

S + JSlk ∆dk
M + LSlk zk+1

Sl + Cτ,Sl , (4.36)

where nslip is the number of all slip nodes and the matrices GSlk ∈ Rnslip×3nsl , JSlk ∈ Rnslip×3nm

and LSlk ∈ Rnslip×3nslip being the assembled form of all directional derivatives and the vector
Cτ,Sl ∈ Rnslip represents the right hand side. The transpose of the global mortar matrices, the
diagonal matrix D and the non-diagonal matrix M, are split with the respect to the inactive set
I, stick set St and slip set Sl as

DT =



DT
Ik

0 0
0 DT

Stk
0

0 0 DT
Slk


 (4.37)

and

MT =
[
MT

Ik
MT

Stk
MT

Slk

]
. (4.38)

Finally, with the assembled sub-matrices above, the algebraic representation of the linear sys-
tem (4.25) - (4.29) to be solved in each semi-smooth NEWTON step can be written. It shows
saddle point problem characteristics due to the fact that both displacements and LAGRANGE

multipliers as primary unknowns. The index for the current iteration k is dropped here for the
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4 Frictional contact - solution with semi-smooth NEWTON method

ease of notation:




KNN KNM KNI KNSt KNSl 0 0 0

KMN K̃MM K̃MI K̃MSt K̃MSl −MT
I −MT

St −MT
Sl

KIN K̃IM K̃II K̃ISt K̃ISl DT
I 0 0

KStN K̃StM K̃StI K̃StSt K̃StSl 0 DT
St 0

KSlN K̃SlM K̃SlI K̃SlSt K̃SlSl 0 0 DT
St

0 0 0 0 0 II 0 0

0 M̃A S̃AI S̃ASt S̃ASl 0 0 0
0 HSt FStI FStSt FStSl 0 PSt 0
0 JSl GSlI GSlSt GSlSl 0 0 LSl




·




∆dN
∆dM
∆dI
∆dSt

∆dSl

zI
zSt

zSl




= −




rN
rM
rI
rSt

rSl

0
g̃A

Cτ,St

Cτ,Sl




(4.39)

The first five rows represent the linearized equilibrium equation (4.25). The 16 blocks marked
with the tilde symbol K̃ imply the summation of the standard tangential stiffness matrix and
linearization entries from the contact force vector in (4.33) as for example K̃MM = KMM +
C̃MM. The sixth row trivially is the contact constraint for nodes of the inactive set I in (4.26),
with II ∈ R|I|×|I| as identity matrix. Normal contact constraints for nodes of the active set A
in (4.27) are placed in the seventh row. And, for friction, the tangential conditions for the active
nodes are divided in those for stick nodes j ∈ St in (4.28) in row eight and slip nodes j ∈ Sl in
(4.29) in row nine.

The saddle point-type system (4.39) contains displacement degrees of freedom ∆dk and LA-
GRANGE multipliers zk+1 and therefore is of increased size. Due to using dual shape functions
leading to a diagonal matrix D, the discrete LAGRANGE multipliers can easily be eliminated
from the global system of equation. For this, they are expressed in terms of displacements as

z = D−T
(
−rS −KSN∆dN − K̃SM∆dM − K̃SS∆dS

)
. (4.40)

It requires the inversion of the mortar matrix D which is, due to its diagonality, of minor com-
putational costs. Equation (4.40) is written in general form valid for all slave nodes j ∈ S . For
condensation, it is applied to rows four and five. With eliminating the sixth row and column of
(4.39), substitution of (4.40) into (4.39) leads to the reduced system with displacement degrees
of freedom only:




KNN KNM KNI KNSt KNSl(
KMN+

M̂T
AKAN

) (
K̃MM+

M̂T
AK̃AM

) (
K̃MI+

M̂T
AK̃AI

) (
K̃MSt+

M̂T
AK̃ASt

) (
K̃MSl+

M̂T
AK̃ASl

)

KIN K̃IM K̃II K̃ISt K̃ISl

0 M̃A S̃AI S̃ASt S̃ASl

PStD
−T
St KStN

(
PStD

−T
St K̃StM−
HSt

) (
PStD

−T
St K̃StI−
FStI

) (
PStD

−T
St K̃StSt−
FStSt

) (
PStD

−T
St K̃StSl−
FStSl

)

LSlD
−T
Sl KSlN

(
LSlD

−T
Sl K̃SlM−
JSl

) (
LSlD

−T
Sl K̃SlI−
GSlI

) (
LSlD

−T
Sl K̃SlSt−
GSlSt

) (
LSlD

−T
Sl K̃SlSl−
GSlSl

)



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·




∆dN
∆dM
∆dI
∆dSt

∆dSl




= −




rN
rM + M̂T

ArA
rI
g̃A

PStD
−T
St rSt −Cτ,St

LSlD
−T
Sl rSl −Cτ,Sl



, (4.41)

where the abbreviation
M̂ = D−TM (4.42)

is used. In the presented condensation process, the saddle point-type structure of the final linear
system has been removed. It allows for the favorable application of state-of-the-art iterative
solvers and preconditioners, such as algebraic multigrid techniques in BRUNSSEN et al. [12]
and WOHLMUTH and KRAUSE [142]. Subsequently, the condensed LAGRANGE multipliers are
recovered according to (4.40).

4.6 Examples
Four numerical examples in 2D and 3D are chosen to demonstrate the accuracy, robustness and
efficiency of the proposed method for finite deformation frictional contact. The 2D examples
have already been published in GITTERLE et al. [35].

All simulations are performed using a parallel implementation of the described algorithms
in the in-house research code BACI of the Institute for Computational Mechanics, Technische
Universität München, see WALL and GEE [135]. If not specified otherwise, a compressible Neo-
HOOKEan constitutive law is applied as material. It is determined by YOUNG’s modulus E and
POISSON’s ratio ν. As friction model, COULOMB’s law is used and in 2D, plane strain conditions
are assumed. Convergence of the NEWTON iterative scheme is measured in terms of the absolute
residual norm as mentioned in Section 4.4, with the absolute convergence tolerance εr set to
10−9. The algorithmic parameter cn and ct are both assumed to be 100 when nothing different is
mentioned but are further studied in the second example.

4.6.1 HERTZian contact
To investigate the accuracy of the formulation, first the well known cylinder on cylinder frictional
contact problem is presented. It is predestined for this as the analytical solution is available under
the assumption of infinitesimally small deformation, see JOHNSON [68]. Therefore, the load has
been chosen very small. The problem setup is shown in Figure 4.3. The cylinders are modelled
with a geometrically linear element formulation with St. VENANT-KIRCHHOFF’s material law
(E = 200, ν = 0.3) and the COULOMB coefficient of friction is 0.2. In a first step, the cylinders
are subject to a distributed constant pressure p = 0.625. In a second step, holding the vertical
pressure constant, a distributed load q = 0.05851 is applied horizontally. This induces frictional
contact forces in the contact zone. The analytical solution brings, according to JOHNSON [68],
the following quantities: The width b of half of the contact zone is evaluated as

b = 2

√
2R2 p (1− ν2)

E π
(4.43)
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x

R = 8

q = 0.05851

p = 0.625

R = 8

Figure 4.3: Frictional cylinder on cylinder HERTZian contact problem.

and the distribution for the normal contact traction pn is given as

pn =
4Rp

π b2

√
b2 − x2 , (4.44)

where R is the radius of the two cylinders. The contact zone b is divided into a stick zone in the
central area |x| ≤ c and two peripheral slip regions c < |x| ≤ b with characteristic parameter c

c = b

√
1− q

µ p
. (4.45)

The frictional tangential traction pt is

pt = µ
4Rp

π b2

(√
b2 − x2 −

√
c2 − x2

)
if |x| ≤ c ,

pt = µ
4Rp

π b2

(√
b2 − x2

)
if c < |x| ≤ b . (4.46)

With R = 8 and the given set of parameters, we obtain b = 0.6808 and c = 0.4965. Quasistatic
simulations are performed with a coarse mesh with about 12 linearly interpolated elements in the
potential contact zone shown in Figure 4.4, with the same mesh but quadratically interpolated
elements and a finer mesh with about 80 linear interpolated elements in the contact zone (not
shown). The vertical compression is realized within 10 load steps. Then, the horizontal load is
applied within 10 load steps.

The numerical results plotted in Figure 4.5 show that already for the coarse mesh frictional
contact tractions represent the analytical solution very well. This is improved by quadratic in-
terpolation (Figure 4.6) and when applying mesh refinement, where also the change from the
stick to the slip region can be identified very precisely (Figure 4.7). The small discrepancy in
the outermost part of the contact zone, most notably for the coarse mesh, is due to the end of
the contact zone not coinciding with a finite element node and decreases with mesh refinement,
compare Figures 4.5 and 4.7 respectively.
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Figure 4.4: Coarse mesh for frictional cylinder on cylinder HERTZian contact problem.
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Figure 4.5: Contact traction for frictional cylinder on cylinder contact problem - coarse mesh.
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Figure 4.6: Contact traction for frictional cylinder on cylinder contact problem - quadratic inter-
polation.
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Figure 4.7: Contact traction for frictional cylinder on cylinder contact problem - fine mesh.
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4.6.2 Frictional beam contact problem

10

2

23 7

dH dH

10 8

dV

Figure 4.8: Frictional beam contact problem.

Figure 4.9: Discretization of the frictional beam contact problem.

With this example, the robustness of the formulation in the context of large deformations with
finite sliding is demonstrated. Additionally, the accuracy of the method is shown by comparing to
results in [150], from where the problem setup is taken. It consists of a curved beam (E = 2250,
ν = 0.125) and a straight beam (E = 2700, ν = 0.35) as shown in Figure 4.8. The loading is
realized with Dirichlet conditions: The straight beam is fixed in vertical direction at both ends
and in horizontal direction at the left hand side. The curved beam is subjected to a horizontal
displacement dH = 2.0 t at both ends and to a vertical displacement dV = 1.2 t at the right hand
side. At time tmax = 8, the maximum prescribed displacements are dHmax = 16 and dV max = 9.6.
Between the two beams, frictional contact takes place, where COULOMB friction with a frictional
coefficient µ = 0.5 is considered. The discretization of the problem is shown in Figure 4.9, the
quasistatic simulation uses 320 pseudo-time increments with ∆t = 0.025. In Figure 4.10, the
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t = 2.0 t = 4.0

t = 6.0 t = 8.0

Figure 4.10: Deformed configurations for frictional beam contact problem.
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Figure 4.11: Reaction force at the left support of the straight beam; Comparison with results
from YANG et al. [150].
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HHHHHHcn

ct 10−1 100 101 102 103 104 105 106

10−1 4 4 4 4 4 4 4 -
100 4 4 4 4 4 4 4 -
101 6 4 4 4 4 4 6 -
102 - 5 4 4 4 4 4 -
103 - - 5 4 4 5 5 -
104 - - 7 4 5 5 5 -
105 - - 10* 7* 6* 8* - -
106 - - - 8* - - - -

(*) = more than one change in active and/or slip set.

Table 4.1: Number of NEWTON steps as function of parameters cn and ct for a representative
step starting from t = 0.325.

evolution of the deformations is exemplarily shown at times t = 2.0, 4.0, 6.0 and 8.0. Figure
4.11 supplies the horizontal reaction force at the left support of the straight beam compared to
original results obtained in YANG et al. [150], thus demonstrating very good agreement.

Moreover with this example, the influence of the parameters cn and ct introduced with the
complementarity functions in Section 4.1 is commented. It is worth mentioning that the con-
ditions in tangential direction are also influenced by the parameter cn, which is a result of the
applied COULOMB friction law. Examining the update formulas (4.31) and (4.32) it seems ad-
vantageous to choose ct such that the different scales of ũτj and zτj are balanced. Due to this
consideration ct and cn are suggested to reflect the material parameters of the contacting bodies
in HÜEBER et al. [56]. Another assumption is that ct should be in the range of the quotient of
the absolute values of zτj and ũτj . With this, the two summands in equations (4.31) and (4.32)
are of the same order of magnitude.

Table 4.1 illustrates convergence behavior for different values of cn and ct. A representative
step, including changes in the active and slip set, is investigated listing the number of NEWTON

steps needed to reach convergence. It can be seen that there exists a very broad spectrum for ct
and cn without any deterioration of convergence. With increasing cn, also ct has to be increased
in order to obtain a robust algorithm. Choosing cn and ct in the range of material parameters
results in very satisfactory performance. At the end of the considered time step, one slipping
node is in contact. Its quotient of |zτj| and |ũτj| in the 2D example is about 20. With this, also
the orientation at this factor for the choice of ct can be recommended.

It is emphasized that, according to Section 4.2, cn and ct can be interpreted as penalty param-
eters. But they do not influence the accuracy of results within an augmented Lagrangian scheme
which is similar to the semi-smooth NEWTON applied here, see Section 4.2.

4.6.3 Two elastic beams

The problem setup shown in Figure 4.12 is chosen according to YANG et al. [150], yet we
assume hyperelastic material behavior and a friction coefficient of µ = 0.8. The two curved
beams (E = 689.56, ν = 0.32) come into frictional contact (COULOMB’s law) due to the upper
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Figure 4.12: Two elastic beams contact problem.

Figure 4.13: Discretization of the two elastic beams contact problem.

beam being subjected to a horizontal displacement u. The discretization given in Figure 4.13
with linear shape as well as quadratic shape functions (not shown) are used. The parameters cn
and ct are assumed to be 10.

The simulation is quasistatic leading to a snapthrough behavior towards the end of the analysis.
In Figure 4.14, the evolution of deformation is shown at different stages. The simulation is
driven with a displacement increment ∆u = 0.5. In order to demonstrate the performance and
the robustness of the proposed algorithm, a large time step of ∆u = 2.5 has been applied. It is
starting form u = 5 as it is performed in YANG et al. [150] for the penalty regularized approach.
The full deformation of this large step is given in Figure 4.15 and the evolution of the absolute
residual is supplied in Table 4.2. Both changes in the active set as well as in the slip set occur. The
fully linearized, semi-smooth NEWTON approach exhibits excellent convergence behavior with
seven iterations (column 1 of Table 4.2) for linear shape functions and 12 iterations for quadratic
shape functions (column 2 of Table 4.2). Omitting linearizations of mortar matrices and normal
and tangential vectors leads to a significant larger number of iterations with associated high
computational costs. This is also the case for fixed point type methods, where comparisons have
already been demonstrated in POPP et al. [110].
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u = 6 u = 12

u = 18 u = 25.5

Figure 4.14: Deformed configurations for the two elastic beams contact problem.

Figure 4.15: Deformation for a large step ∆u = 2.5 starting form u = 5.

69



4 Frictional contact - solution with semi-smooth NEWTON method

linear quadratic
shape functions shape functions

1 8.55e+02 (*) 1.00e+04(*)
2 3.14e+02 (*) 4.09e+03(*)
3 8.91e+01 (*) 1.92e+03(*)
4 1.30e+01 1.48e+03(*)
5 3.41e−01 7.44e+02(*)
6 2.40e−04 2.50e+02(*)
7 1.28e−10 3.90e+02(*)
8 1.57e+02(*)
9 2.52e+01(*)
10 5.35e−01
11 5.34e−04
12 4.93e−10
Σ 7 12
(*) = change in active and/or slip set

Table 4.2: Convergence behavior of the fully linearized, semi-smooth NEWTON method in terms
of the absolute residual norm for the large step ∆u = 2.5 starting from u = 5 for linear
and quadratic shape functions.

4.6.4 Ironing problem

The setup of the frictional ironing problem is shown in Figure 4.16. It is the frictional extension
of the one presented in POPP et al. [111] and is similar to PUSO and LAURSEN [117]. Finite
deformation contact results from a cylindrical die (E = 1000, ν = 0.3) intruded into an elastic
block (E = 1, ν = 0.3). For the contact interface, the friction coefficient is assumed to be
µ = 0.2. The die is first pressed into the block by prescribing a vertical displacement of w = 1.4
in negative z-direction at the upper end of it. Then, holding the vertical displacement constant,
the die slides along by a prescribed horizontal displacement in x-direction up to a value of
u = 4.0. The problem is discretized with 8-node hexahedrals as also given in Figure 4.16. The
analysis is run quasistatically with the vertical intrusion phase being realized with 10 pseudo-
time steps. For the horizontal movement, additional 65 steps are applied.

Deformed configurations at different stages are shown in Figure 4.17. The accompanying fric-
tional tractions can be found in Figure 4.18. With the help of both of them, the different phases
of sticking and sliding can easily be identified: First, the die is pressed into the block which
deforms strongly. Basically sticking occurs, frictional contact tractions appear also pointing into
the y-direction caused from 3D effects. The respective stages are placed on the top left and top
right. Then, when the die experiences the prescribed horizontal displacement, the die takes along
the block due to mainly sticking and the frictional contact tractions align themselves in the op-
posite direction of the movement (bottom left). When the COULOMB limit is reached at every
point in the contact zone, finite sliding occurs (bottom right).

With the ironing problem, the excellent convergence behavior of the semi-smooth NEWTON

method in three dimensions is demonstrated. The evolution of the absolute residual norm is
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5.2
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Figure 4.16: Ironing example, problem setup and finite element discretization.

u = 0, w = 0.7 u = 0, w = 1.4

u = 3.08, w = 1.4u = 0.62, w = 1.4

Figure 4.17: Deformed configurations for the ironing example, stages during intrusion (top left,
top right) and prescribed horizontal displacement (bottom left, bottom right).
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u = 0, w = 0.7 u = 0, w = 1.4

u = 3.08, w = 1.4u = 0.62, w = 1.4

Figure 4.18: Frictional contact tractions for the ironing example, stages during intrusion (top left,
top right) and prescribed horizontal displacement (bottom left, bottom right).

intrusion phase sliding phase
1 6.53e+03 (*) 4.36e+02
2 2.49e+03 (*) 5.05e+01
3 8.27e+02 (*) 1.03e+00
4 1.80e+02 (*) 5.98e−04
5 1.40e+01 (*) 2.62e−10
6 1.14e−01
7 8.74e−06
8 3.52e−12
Σ 8 5

(*) = change in active and/or slip set

Table 4.3: Convergence behavior of the semi-smooth NEWTON method for the ironing example.
Evolution of the absolute residual norm for a time step of the intrusion phase (incre-
ment in displacement ∆w = 0.14) and a time step of the sliding phase (increment in
displacement ∆u = 0.06).

shown in Table 4.3 for a significant time step in the intrusion phase (increment in displacement
∆w = 0.14) in column 1 and in the sliding phase (increment in displacement ∆u = 0.06) in
column 2. For the time step in the intrusion phase, additional nodes come into contact, which
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is why it contains a few changes in the active and in the slip set. This does not appear for the
sliding phase as the surface of the die is chosen as the slave contact surface. Once the sets remain
constant, the residual decreases quadratically due to the linearization, which has been carried out
consistently also for the 3D case. In total, only eight and five iterations are necessary to bring the
residual below the given limit.
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5 Frictional contact problem with wear

This chapter treats the extension of the developed finite deformation frictional contact formula-
tion towards wear. After giving a short overview on wear mechanisms and a motivation for their
consideration in numerical simulations in Section 5.1, ARCHARD’s law of wear is presented in
Section 5.2. It enters the problem formulation with two different strategies: Firstly, the treatment
of wear with an internal state variable approach in Section 5.3 and, secondly, the modeling of
contact surface evolution with an ALE formulation in Section 5.5. The respective examples are
presented in Sections 5.4 and 5.6.

5.1 Overview on wear mechanisms and motivation

Wear is a complex physical phenomenon. It is characterized by the loss of material at the surface
of a body during contact with another surface. It is one of the main causes for component damage
and subsequent failure of machines and devices with what it is of high economic importance, see
POPOV [109]. It also plays a big role in biomechanic applications as, for example, in the field
of joint prostheses, see JOURDAN [69] or LONG and RACK [91]. Wear is closely related to
friction and can be divided according to its physical mechanisms. The main wear types from the
classifications in POPOV [109] and RABINOWICZ [120] are briefly summarized in the following.

Abrasive wear

Abrasive wear occurs if the contacting bodies are of different hardness. Here, the harder material
penetrates and cuts off the softer material as visualized in Figure 5.1 on the left. The wear debris
depends, among other things, on the normal contact force and the sliding length.

Adhesive wear

Another fundamental type of wear is the adhesive wear. It plays a primary role if the frictional
partners are of equal or similar hardness. Its mechanism can be imagined as the welding together
of rough surfaces noticeable on the microscopic level. This grows to wear particles which are
removed from the contact surfaces as given in Figure 5.1 on the right. Prerequisite for this type of
wear is the plastic deformation of metallic materials when reaching a certain stress level. Similar
to abrasive wear, the volume of wear depends on the normal contact force and the sliding length.

Corrosive wear

This type of wear occurs when sliding takes place in a corrosive environment. In the absence of
sliding, products of corrosion form a film on the contact surfaces from chemical modifications.
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worn material

Figure 5.1: Abrasive (left) and adhesive wear (right).

With ongoing time, this progress tends to slow down or even arrest the corrosion. Frictional
sliding wears this layer away and the corrosive attack continues.

Fretting wear, fretting fatigue

Fretting occurs whenever contacting bodies are subjected to small-amplitude oscillatory move-
ments between contacting bodies. The resulting damage can either be wear, which is denoted as
fretting wear, or fatigue. There, cracks appear and the phenomenon is known as fretting fatigue.
Fretting arises in flexible couplings, splines, and jointed structures as for example turbine or fan
disc to blade joints in aircraft engines.

The description of the wear mechanisms above is kept very short. For more detailled infor-
mation, the reader is referred to, for example, POPOV [109] and RABINOWICZ [120], and, es-
pecially for fretting wear and fretting fatigue, to ALDHAM et al. [3], HILLS and NOWELL [51],
HURRICKS [62], and WATERHOUSE [136] within the vast amount of literature concerning this
topic.

Motivation - prediction of fretting fatigue life

Besides the above motivated, very general necessities of modeling wear in numerical simula-
tions, a more specific area is described here. It addresses the prediction of fretting fatigue life of
the already mentioned jointed structures in aircraft engines. For those, fatigue equations are de-
veloped with experimental fretting fatigue tests, where a typical abstract test setup from JIN and
MALL [65, 66] is shown in Figure 5.2 on the left hand side. It is a “flat on punch“ experimental
rig, where a pair of cylindrical fretting pads is held in contact with a flat specimen. First, the
vertical force P is applied and then, the specimen is loaded with the cyclic loads σ (t) and Q (t)
leading to slip amplitudes of different lengths in the contact zone. The test stops when fatigue
failure occurs. A fundamental outcome of these tests is that fatigue life strongly depends on the
occurring slip amplitude. In general, it is reduced markedly for partial slip, i.e. a state where por-
tions of the contact zone remain sticking whereas others undergo slip. In contrast, gross sliding
with high wear volumes tends to infinite or, at least, long fatigue life, see Figure 5.2 on the left

76



5.1 Overview on wear mechanisms and motivation

P

P

σ (t)

Q (t)

Q (t)

Figure 5.2: Schematic fretting fatigue test setup according to JIN and MALL [65, 66] (left) and
the effect of slip amplitude on fretting fatigue life and wear rate (right). The diagram
is taken from MADGE et al. [92], where it is further referred to the work of VINGSBO

and SÖDERBERG [133].

hand side. More information about fretting fatigue tests, rig setups, and results can be found, for
example, in HILLS and NOWELL [51] and JIN and MALL [65, 66].

In literature, suggestions for the described dependence of slip amplitude and fatigue life can be
found, for example, in JIN and MALL [66] and VINGSBO and SÖDERBERG [133]. They suspect
that the reason for the connection of long fatigue life and large slip amplitudes is some kind
of ”rubbing out” effect. Due to gross sliding, the appearing cracks are immediately worn away
with what they cannot nucleate to larger ones that may lead to component failure. Furthermore,
the modeling of wear in contact analysis as in DING et al. [23], MADGE et al. [92, 93], and
MCCOLL et al. [94] contributed to this topic. They implemented a contact model considering
wear and validated the predicted wear scars against experimental wear test data. The numerical
simulations shed a light on geometry evolution and contact pressure distribution with ongoing
number of loading cycles as the components experience wear. A key observation is, that for gross
sliding, a widening of the contact area takes place. It is associated with a drop in the peak of the
contact pressure. In contrast, partial slip showed an increase of contact pressure in the stick-slip
zone. This is due to wear and material removal in the slip area and a redistribution of contact
stresses towards the stick region.

Fatigue equations, as for example the one from SMITH-WATSON-TOPPER (SWT) in SMITH

et al. [127] applied to fretting fatigue, have the potential to predict the position of cracks, their
orientations, and fatigue life of components in multiaxial stress states, see MADGE et al. [92].
The essential input in this model is, besides material parameters and others, the peak normal
stress. The authors from above, DING et al. [23], MADGE et al. [92, 93], and MCCOLL et al.
[94], obtained a very good agreement of predicted fatigue failure and observed behavior in ex-
perimental fretting fatigue tests. This also included capturing the dependency of fatigue life upon
slip amplitude, as discussed above. However, this was only possible by considering wear within

77



5 Frictional contact problem with wear

the finite element analysis leading to a change in contact geometry and a redistribution of conact
stresses in the contact zone. It is fundamental for the prediction of fatigue life.

To sum up, the accurate and efficient solution of wear problems is indispensable for the precise
prediction of fatigue life. As above mentioned numerical solution approaches, as for example in
DING et al. [23], are dealing with modifications of the contact geometry to obtain matching
meshes, the developed contact formulation based on the mortar method is extended towards
wear within this work.

5.2 ARCHARD’s law of wear
Due to being a complex phenomenon, MENG and LUDEMA [96] found about 180 wear laws
within their comprehensive literature review. Nevertheless, commonly the phenomenological
ARCHARD’s wear law [4] is applied to quantify sliding wear damage.

Basic equations

As explained, for abrasive wear, the harder material cuts out the softer one. Here, ARCHARD’s
wear law states the following dependencies: The worn volume loss V is proportional to the
normal force P and the sliding length S and inversely proportional to the hardness H of the
softer material as

V = K
P S

H
, (5.1)

whereK is the dimensionless wear coefficient. From MRÓZ and STUPKIEWICZ [98] and STRÖM-
BERG et al. [131], the rate of wear debris is also proportional to the rate of frictional dissipation.
This is also valid, for example, for adhesive wear, with what ARCHARD’s law, equivalently ex-
pressed in these terms, can be applied there, too. It is a “general” wear law for even more types
of wear, see POPOV [109], which is clearly the reason for its frequent use. It is applied also for
fretting wear in MCCOLL et al. [94] or SALLES et al. [123] and throughout this work.

For treating wear with finite elements, ARCHARD’s wear law in equation (5.1) is expressed in
its local form. This is achieved by referring it to a unit surface area as carried out for example
in DHIA and TORKHANI [21], LENGIEWICZ and STUPKIEWICZ [87], MCCOLL et al. [94],
MOLINARI et al. [97], SALLES et al. [123], and STRÖMBERG [128]. It is then written in terms
of the wear rate ẇ as height loss per unit time and reads

ẇ = kw |pn| ‖vτ,rel‖. (5.2)

Here, it is referred to the spatial configuration with ẇ yields the reduction of height of the current
bodies. The quantities vτ,rel and pn are the previously introduced tangential relative velocity and
the spatial normal contact pressure from the frictional contact formulation. The factor kw is the
local wear coefficient, which can be determined from K in equation (5.1) and the penetration
hardness of the material according to STRÖMBERG [128]. The formulation accounts for finite
deformations and has originally been proposed in DHIA and TORKHANI [21] and recently also
applied in LENGIEWICZ and STUPKIEWICZ [87].

Referred to the reference configuration, the local form of ARCHARD’s wear law quantifies the
height loss of the undeformed configuration. The accompanying wear coefficient is different and
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can be obtained from the spatial kw via the JACOBIan determinant of the respective mapping.
However, the question arises for which wear law the wear coefficient obtained from experiments
should be used. As there are no observations that would justify the choice of the material or the
spatial form, see LENGIEWICZ and STUPKIEWICZ [87], it is used for ARCHARD’s wear law in
its spatial form in (5.2) here.

For completeness, it is mentioned that ARCHARD’s wear law can also be obtained from the
model described by STRÖMBERG et al. [128, 131]. Starting from a variational formulation in
continuum thermodynamics, the formalism introduces a free energy and a pseudopotential from
which a standard model for contact, friction, and wear is derived. It is in the framework of
small displacements and small sliding. The interested reader is referred to these contributions
for details.

Explicit wear algorithm

With equation (5.2), the available wear law is of evolutionary type. It requires, similar to the
frictional conditions, an incremental time strategy which has to be at least a quasistatic analysis.
In order to obtain the wear height w, more or less simplified incremental formulations have
been developed, see DHIA and TORKHANI [21]. Within this work, an explicit wear algorithm is
applied.

Considering a time increment ∆t stepping from tn−1 to tn, it is assumed that the displacements
u (tn−1), the LAGRANGE multipliers λ (tn−1), and the so far accumulated wear w (tn−1) at tn−1

are known. Using the explicit algorithm, the wear problem is at first treated keeping the wear
state w (tn−1) constant. It is solved towards u (tn) and λ (tn) at tn with the approach proposed
in Section 5.3 or 5.5. Once this is obtained, wear is updated as

w (tn) = w (tn−1) + ∆w , (5.3)

where ∆w being the additional wear height within the current time increment ∆t. It is evaluated
according to ARCHARD’s law (5.2) with the solution variables at tn and reads

∆w = kw |pn (tn)| ‖vτ,rel (tn)‖∆t . (5.4)

This means that the displacement and LAGRANGE multiplier solution of the frictional contact
problem at time tn only depends on the accumulated wear w (tn−1). It is not influenced by the
additional wear height ∆w within the time step itself. Only when the solution is found, the
accumulated wear w (tn) is dated up in a postprocessing calculation. This value then enters the
problem of the next time increment.

Using an explicit time integration scheme for the wear law, its linearization within the later
applied NEWTON algorithm is avoided. It would become very strenuous due its structure at hand.
However, this is not the reason for using an explicit time integration scheme, it is rather chosen
due to the different time scales at hand. As the wear process is usually very slow in comparison
with the finite deformation problem, the rate of wear is negligible within a single time step. Only
the accumulation of wear over a longer period of time influences the results and has to be taken
into account. An explicit time integration scheme exactly covers these considerations. However,
it could lead to numerical instabilities if the change of wear within one time step is too large, see
MCCOLL et al. [94]. But, as explained, this classical limitation of explicit schemes will not occur
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in most applications treating wear. Therefore, it is frequently used in literature as for example in
MCCOLL et al. [94], ÖQVIST [103], PÕDRA and ANDERSSON [104], PAULIN et al. [107], and
within this work.

5.3 Wear with internal state variable approach
Within this section, the frictional contact problem including wear is treated by the use of an
internal state variable approach. Here, the accumulated wear w is identified as an additional gap
along the outward normal vector between two bodies. By using this method, wear does neither
change the geometry of the body nor the shape of the contact surfaces. For this reason, the
method is mainly suitable for problems leading to very small amounts of wear. It has been early
used in STRÖMBERG et al. [131] and is successfully applied in, for example, IREMAN et al.
[64], SALLES et al. [123], and STRÖMBERG et al. [128, 129, 130]. Wear leading to finite surface
changes is introduced in Section 5.5.

5.3.1 Boundary value problem of frictional contact with wear
The boundary value problem of the finite deformation frictional contact problem with wear,
treated with an internal state variable approach, looks like given in the following. It is similar
to the formulation in Section 2.3, except for the normal contact conditions. They do not only
depend on the gap g (X(1), t) and the normal contact traction pn, but also contain wear in form
of the internal state variable w (X(1), t) defined on the slave side. They are written as

g (X(1), t) + w (X(1), t) ≥ 0 , (5.5)
pn ≤ 0 , (5.6)

pn

(
g (X(1), t) + w (X(1), t)

)
= 0 , (5.7)

where the internal state variable w is evaluated from the already temporally discretized equation
(5.3). Similar to Chapter 3, this set of equations is equally expressed as a variational inequality
given as

λn ∈ R+
0 : (g + w) (δλn − λn) ≥ 0 ∀ δλn ∈ R+

0 . (5.8)

Here, the contact normal traction pn is already identified as the negative LAGRANGE multiplier
in normal direction λn.

5.3.2 Weak form and finite element discretization
This section treats the discrete form of the finite deformation frictional contact problem with
wear. As the entering equilibrium equations to the balance of linear momentum are exactly those
of the frictional contact without wear, it results in the already well known equations (3.23) and,
discretized in space, (3.50). It is not discussed further here.

The same is valid for the tangential contact conditions. Following the derivation in STRÖMBERG

et al. [131], the change of wear ẇ is included in the variational formulation of the frictional con-
tact condition. However, as the influence of ẇ on the solution within one time step is neglected
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in the explicit approach, the discrete frictional conditions remain unchanged. They are used as
stated in equations (3.85) - (3.88).

Normal contact conditions

Only the normal contact conditions (5.8) are different to the case without wear. In integral form,
they read

λ ∈ M(λ) :

∫

γ
(1)
c

(g + w) (δλn − λn) dγ ≥ 0 ∀ δλ ∈ M(λ) , (5.9)

see also STRÖMBERG [128]. The integral is split as

λ ∈ M(λ) :

∫

γ
(1)
c

g (δλn − λn) dγ +

∫

γ
(1)
c

w (δλn − λn) dγ ≥ 0 ∀ δλ ∈ M(λ) , (5.10)

where the first integral is well known from the contact problem without wear and not considered
further. The second one contains a weak formulation of the internal state variable w representing
the accumulated wear. It may be regarded as an additional gap or wear-gap and is therefore
treated in the same manner as the normal gap g. Referring to the formalism in Section 3.4.4 and
applying spatial and temporal discretization, the second integral in (5.10) results in the nodal
weighted wear increment ∆w̃j for a node j ∈ S stepping from tn−1 to tn. It reads

∆w̃j = kw

∫

γ
(1)h
c

Φ
(1)
j

(
λh

n(tn) ‖uh
τ,rel(tn)‖) dγ , (5.11)

where uh
τ,rel is the tangential relative slip increment resulting from vτ,rel ∆t. The update of the

nodal weighted wear w̃j after each time step takes place as

w̃j(tn) = w̃j (tn−1) + ∆w̃j . (5.12)

The increment ∆w̃j in equation (5.11) is obtained with GAUSS integration within the numeri-
cal scheme given in Algorithm 1. Similar to the mortar matrices and the nodal weighted gap, the
contribution of one slave and master element pair (s,m) is evaluated as

∆w̃j(s,m) = kw

ncell∑
cell=1

(
ngp∑

gp=1

wgp Φ
(1)
j

(
ξ(1)

gp

)
λh

n

(
ξ(1)

gp

) ∥∥∥uh
τ,rel gp

(
ξ(1)

gp , ξ
(2)
gp

)∥∥∥ Jcell

)
, (5.13)

where uh
τ,rel gp

(
ξ(1)

gp , ξ
(2)
gp

)
is defined as

uh
τ,rel gp =

(
I− n(1)h

(
ξ(1)

gp

)
⊗ n(1)h

(
ξ(1)

gp

))
·

(
x(1)h

gp

(
ξ(1)

gp

)
− x(1)h

gp (tn−1)
(
ξ(1)

gp

)
−

(
x(2)h

gp

(
ξ(2)

gp

)
− x(2)h

gp (tn−1)
(
ξ(2)

gp

)))
.

(5.14)

It has to be pointed out that the tangential plane in (5.14) is resolved with the interpolated normal
field n(1)h. This is due to the fact that interpolated values at GAUSSian points are used instead

81



5 Frictional contact problem with wear

of nodal ones. As the definition of nodal tangent vectors in (3.53) is not unique, they may jump
from node to node and consequently cause wrong interpolated quantities. This is prevented by
using the interpolated normal field. It results in a three component vector uh

τ,rel gp ∈ R3 in the tan-
gential plane, of which the absolute value is used for the determination of the weighted nodal slip
increment in (5.13). However, for formulating frictional equations in terms of nodal quantities
as in Chapters 3 - 4, this problem does not arise.

The evaluation of the nodal weighted wear increment ∆w̃j in (5.11) is based on equation
(2.57). However, preferable would be the usage of the nodal weighted tangential relative slip
increment ũτj defined in equation (3.84), which is applied as frame indifferent quantity for the
solution of the frictional contact problem throughout Chapter 4.

In doing so, an alternative nodal weighted wear increment, expressed in nodal quantities only,
is evaluated as

∆w̃2,j = kw znj (tn)‖ũτj (tn)‖. (5.15)

It has to be pointed out that this measure is not a direct consequence of (5.11). This derivation
requires, as approximation, keeping the LAGRANGE multiplier in normal direction λh

n constant
over the local support of a node. However, it contains the desired reformulation of the discrete
relative tangential velocity in Section 3.4.5 to obtain objectivity. Due to the above specified
approximation, so far, the weighted nodal wear increment is evaluated according to (5.11).

Finally, for the internal state variable approach with w̃j at hand, the discrete normal contact
conditions for each slave node j ∈ S read

g̃j + w̃j ≥ 0 , (5.16)
znj ≥ 0 , (5.17)

znj (g̃j + w̃j) = 0 . (5.18)

5.3.3 Solution within the frictional contact framework

Treating wear with the internal state variable approach as described above, the structural differ-
ences between the problems with and without wear are very small. For this reason, the solution
procedure from Chapter 4 can be taken with almost no modifications. The slightly changed
counterpart to Algorithm 2 within one time increment stepping from tn−1 to tn is given in the
following:

Algorithm 3

1. Perform a LAGRANGEan step to solve the frictional contact problem as described in steps 1.
- 6. of Algorithm 2. Within this time step, the accumulated nodal weighted wear w̃j is kept
constant. Wear is taken into account with substituting the nodal weighted gap g̃j by the nodal
weighted gap including wear g̃w

j in all equations of Chapter 4. For the current NEWTON iterate
k, it is evaluated as

g̃w,k
j (tn) = g̃k

j (tn) + w̃j (tn−1) . (5.19)

The directional derivatives in Section 4.3 are not influenced by this substitution as w̃j (tn−1)
does not depend on current displacements or LAGRANGE multipliers.
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2. Evaluate the nodal weighted wear increments ∆w̃j , j ∈ S, and the updates w̃j (tn), j ∈ S,
according to equations (5.11) and (5.12). Then, the time step is adjusted as tn−1 := tn and the
evaluation continues from 1.

One more comment on the treatment of wear with the internal state variable approach is given.
It is embedded consistently within the mortar discretization scheme. Similar to the weighted
nodal gap, the weighted nodal wear increment does not represent the physical height loss per
time step, but is an integral value over the local support of a node.

5.4 Examples
Considering wear with the internal state variable approach, two numerical examples are pre-
sented. Simulations are carried out in BACI and, if not specified otherwise, the same assumptions
are made as in Section 4.6.

5.4.1 HERTZian contact with wear
The accuracy of results treating frictional contact problems has already been demonstrated with
the HERTZian contact example in Section 4.6.1. A similar problem considering a cylinder on flat
problem setup is now presented in the context of wear. It shall show qualitatively the change of
contact traction distribution due to gross and partial sliding conditions. As already mentioned,
the correct capturing of these rearrangements is essential for lifetime prediction models.

6

12

uH

R = 6

uV

Figure 5.3: HERTZian contact with wear, problem setup and finite element discretization.

The 2D problem setup is given in Figure 5.3 and is similar to the one in DING et al. [23]
and MCCOLL et al. [94]. The cylinder and the block are both modelled with St. VENANT-
KIRCHHOFF’s material law (E = 200000, ν = 0.3). The upper line of the cylinder is subjected
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5 Frictional contact problem with wear

to the DIRICHLET conditions uV and uH . For 0 ≤ t ≤ 1, the cylinder is pressed onto the block
with uV = 0.04. Then, holding uV constant, a prescribed sinusoidal horizontal displacement uH

is applied for 1 ≤ t ≤ 301. Within this time, 300 cycles are performed. The maximum value is
determined to uHmax = 0.02 and to uHmax = 0.01 in the first and the second case. This leads,
with assuming the friction coefficient to be µ = 0.2, to two different friction states, respectively.
This is on the one hand gross sliding, where the whole contact zone reaches the COULOMB limit
and comes into sliding. On the other hand, this is partial sliding. Here, the prescribed horizontal
displacement uHmax is not large enough to obtain gross sliding. Only the outer parts of the contact
zone experience tangential movements whereas the inner part remains sticking. As wear model,
ARCHARD’s law of wear is applied, the wear coefficient is assumed to be kw = 1.0 · 10−6.
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Figure 5.4: HERTZian contact with wear, evolution of normal contact traction for gross sliding
(left) and partial sliding (right).

The discretization with 4-node quadrilateral elements is shown on the right of Figure 5.3, the
simulation is run quasistatically with 3010 pseudo-time increments of ∆t = 0.1.

As result, the evolution of the normal contact traction in the contact zone is shown in Figure
5.4. It is plotted for 0, 100, 200, and 300 cycles for the gross sliding case (left) and the partial
sliding case (right). For the gross sliding case, the maximum value in the center of the contact
zone decreases with ongoing number of wear cycles and the profile flattens out. It is because
of high normal contact tractions result in high wear rates, too. This leads to a redistribution of
contact tractions towards the outer contact zones. In contrast, for the partial sliding case, the
maximal contact traction increases. Wear only occurs in the outer sliding zones which therefore
escape from loading. It is shifted towards the center sticking zone.

The developed contact formulation with wear using an internal state variable approach cap-
tures the wanted redistribution of contact stresses in the contact zone. A qualitatively good agree-
ment with the results in DING et al. [23] is obtained. There, a modification of the contact geo-
metry within the solution algorithm is performed to obtain matching meshes. Of course, this in
not necessary due to the usage of the mortar method here.

5.4.2 Oscillating beam
This 2D example demonstrates that the proposed approach also captures the change of normal
contact tractions due to wear quantitatively in a a good way. As analytical solutions are difficult
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to receive, a setup from STRÖMBERG [128] is taken and numerical results here are compared to
those obtained there.

q (t)

p

0.05

0.005

Figure 5.5: Oscillating beam, problem setup.

The beam presented in Figure 5.5 is modelled with St. VENANT-KIRCHHOFF’s material law
(E = 210000, ν = 0.3). It is subjected to a constant vertical load p = 50 and a horizontal load
q (t) = 50 sin(2πt). In the contact zone, the friction and wear coefficients are assumed to be
µ = 0.2 and kw = 1 · 10−5.

A quasistatic simulation with a time step size of ∆t = 0.0125 is carried out. Accordingly,
80 steps are necessary for one cycle. Within this work, in total, 3000 cycles are performed.
The beam is discretized with 4-node quadrilateral elements as presented in Figure 5.6, see also
WICHMANN [138].

Figure 5.6: Oscillating beam, finite element discretization.

The analysis shows that the oscillating horizontal load leads to a back- and forward sliding
of about the right half of the beam whereas the left half of the beam remains sticking. Due to
wear, the distribution of normal tractions in the contact zone changes. This is presented in Figure
5.7, where results are compared to those obtained from STRÖMBERG [128]. A good quantitative
agreement can be observed. The comparison with higher numbers of load cycles would require
a finer mesh due to increasing gradients of wear and normal contact tractions and is not part of
this study.
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Figure 5.7: Normal contact traction in the contact zone for 0 cycles (left) and 3000 cycles (right).
Comparison with the results of STRÖMBERG [128].

5.5 Modeling contact surface evolution with ALE
approach

A fundamental different approach to treat wear in finite element contact simulations is presented
here. With the internal state variable method above, wear is considered only by the modification
of the gap vector as a geometric measure between the contacting bodies. The physical process
of wear changing participating bodies is not modeled directly. In this work, an Arbitrary LA-
GRANGEan-EULERian (ALE) approach allows the domains of the contacting bodies to reduce
as material is worn away from them. This brings a time dependent material configuration as vi-
sualized in Figure 5.8 for the slave domain. It is denoted as Ω

(1)
0,t and its spatial counterpart as

Ω
(1)
t,t . These described items make the method suitable for problems where shape changes due

to wear are finite as for example contact and wear of rubber like materials. Or problems with
the contact tractions being extremely sensitive also to the curvature of contacting surfaces. The
presented formulation is restricted to abrasive wear with material being solely worn from the
slave contact surface.

5.5.1 Idea of using an ALE approach resolved with a
fractional-step strategy

In this section, the idea of using an Arbitrary LAGRANGEan-EULERian (ALE) approach resolved
with a fractional-step strategy to treat contact surface evolution due to wear is presented. In
general, the characteristic of this solution strategy is to perform both a LAGRANGEan and an
EULERian step within a time increment. So for the problem at hand here, the course of action
could be as follows: Within the LAGRANGEan step, the frictional contact problem is solved. It
is followed by the evaluation of the amount of wear and, in a subsequent EULERian phase, by
the relocation of finite element nodes due to wear. The mesh is moved from the contact surface
towards the inside of the slave body in order to model material loss. Subsequently, the analysis
continues with the LAGRANGEan step of the next time increment. This approach within a time
increment is visualized schematically in Figure 5.9.
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Figure 5.8: Two body contact problem with wear. Time dependent reference configuration of the
slave body Ω

(1)
0,t from contact surface evolution due to abrasive wear.

worn material

Ω
(1) h
t,tn−1

Ω
(1) h
t,tn

Figure 5.9: Arbitrary LAGRANGEan-EULERian formulation resolved with a fractional-step strat-
egy: Deformed configuration with evaluated amount of wear after LAGRANGEan step
(left) and changed deformed configuration due to wear after EULERian step (right).

The described procedure above can be attributed to an Arbitrary LAGRANGEan-EULERian
formulation. Here, in general, the motion and related quantities are neither referred to the ma-
terial configuration, as in the LAGRANGEan formulation, nor to the spatial configuration, as in
the EULERian formulation. They are described with respect to an arbitrary domain in terms of
spatial and material mappings, see Section 5.5.2. This concerns the whole problem formulation
and already the fundamental principles, which can be read, for example, in the contributions
of BELYTSCHKO [9], LINDER [89], HUERTA and CASADEI [60], and WALL [134]. An ALE
formulation also contains governing equations for the parametrizations of the domains. The so-
lution towards the unknown material and spatial displacements can occur simultaneously, or the
probably complex problem is split into a several less complex problems with what the solution
strategies are denoted as operator split- or fractional-step methods, see WALL [134]. The sep-
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aration may result into a pure LAGRANGEan step and a pure EULERian step. This is applied
here.

In literature, ALE formulations resolved with a fractional-step strategy are frequently used in
the context of finite strain plasticity. There, the LAGRANGEan description may lead to heavily
distorted meshes which have to be repaired from time to time. This is achieved with subsequent
EULERian steps, where the deformation is held constant and finite element nodes are rearranged
according to certain mesh smoothing algorithms. Examples in this field are the contributions of
ARMERO and LOVE [5], HUERTA and CASADEI [60], LINDER [89], and RODRÍGUEZ-FERRAN

et al. [121, 122].
Treating wear in numerical simulations, the amount of additional wear within a time step is

usually very small. Therefore, it is neglected within this work for the solution of a current time
step with the application of an explicit time integration scheme. As the governing equation in
a fully coupled ALE description would also be from additional wear within a time step, such a
formulation would be unnecessary anyway. Hence, the fractional-step method is the appropriate
approach. Therefore, in the following, solely the essential components for the application of a
LAGRANGEan step followed by an EULERian step to consider wear are presented.

5.5.2 ALE kinematics
The basic equations of the frictional contact problem in Chapter 2 are expressed within the
LAGRANGEan framework. The underlying deformation mapping from the initial to the current
configuration is denoted as ϕt (X, t). More freedom is obtained by using an ALE description.
Here, this physical deformation mapping ϕt (X, t) can be reparametrized in terms of two inde-
pendent mappings. This brings the possibility of a mesh motion completely free from the actual
physical motion.

Related to the description in ARMERO and LOVE [5], the ALE kinematics are presented in
this section. At first, it is kept general without considering wear leading to changing surfaces
and domains. This is then treated within a second step.

Material and spatial maps

Considered more closely is the physical motion ϕt (X, t) between the initial or material con-
figuration Ω0,t and the current or spatial configuration Ωt,t. The objective is to describe it with
respect to a fixed reference domain Ω ⊂ R3 in time and the mappings

φt : Ω → Ω0,t and ψt : Ω → Ωt,t (5.20)

relating both the material and spatial configuration to the reference domain as visualized in
Figure 5.10. From this, φt (X , t) is denoted as material motion and ψt (X , t) as spatial motion.
It should be noted that, by the introduction of the material mapping φt, the parametrization of
the material configuration becomes time dependent. By construction, the physical motion at a
fixed time t now can be expressed as

ϕt = ψt ◦ φ−1
t . (5.21)

The mappings φt and ψt represent the parametrization of the material and the spatial config-
uration. However, main interest is still on the physical motion ϕt. By the introduction of two
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φt (X , t)

ψt (X , t)

ϕt (X, t)

x

X

X

Ω

spatial configurationmaterial configuration

reference configuration

Ω0,t Ωt,t

Figure 5.10: The physical motionϕt (X, t) is decomposed into the material motionφt (X , t) and
the spatial motion ψt (X , t) as ϕt = ψt ◦ φ−1

t . They are expressed with respect to
the reference configuration Ω fixed in time and allow a parametrization of material
and spatial configuration independent of the physical motion.

independent mappings (5.20) and the expression of ϕt as a linear combination of ψt and φ−1
t

in (5.21), one of these mappings can be chosen arbitrarily. The other one, of course, has to be
adapted consistently. Consequently, an ALE formulation allows to parametrize the material or
spatial configuration completely independent of the physical motion. This might be a clear ad-
vantage in comparison with a pure LAGRANGEan formulation, where this possibility does not
exist.

The above mappings are accompanied by the material and spatial displacement fields. They
are defined as

uφ (X , t) := φt (X , t)−X and (5.22)
uψ (X , t) := ψt (X , t)−X . (5.23)

In addition to the well known deformation gradient F of the physical motion ϕt in (2.7), there
are now those of the newly introduced material and spatial mappings, too. They are defined as

Fφ (X , t) :=
∂φt

∂X =
∂X

∂X = GradX X and (5.24)

Fψ (X , t) :=
∂ψt

∂X =
∂x

∂X = GradX x , (5.25)

where GradX being the gradient operator with respect to X . Equivalent to the connection of the
involved mappings in (5.21), the physical deformation gradient F can be expressed as

F = Fψ · F−1
φ . (5.26)
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The advection map

As discussed above, for a given deformation state ϕt, the parametrization of the material φt

or the spatial configuration ψt can be changed arbitrarily. The respective counterpart has to
be adapted consistently. The advection map considers this connection, it is presented in the
following.

At a fixed time t, the physical motion ϕt is considered. It is described by the material and the
spatial map, φt and ψt, as given in equation (5.21). The same physical motion can be expressed
alternatively by a different set of material and spatial motion, for example φ̃t and ψ̃t. In the
following, they are also denoted as “new” motions. It is stated as

ϕt = ψt ◦ φ−1
t = ψ̃t ◦ φ̃t

−1
. (5.27)

Considered is a general reference point X . At time t, it is connected with the material point X
and its spatial position x as

X = φt (X ) and x = ψt (X ) , (5.28)

where X and x are connected via the physical deformation mapping

x = ϕt (X) . (5.29)

Now, the physical motion shall be reparametrized and expressed in terms of φ̃t and ψ̃t. The
mappings of the reference point X now read

X̃ = φ̃t (X ) and x̃ = ψ̃t (X ) , (5.30)

where X̃ 6= X ∈ Ω0,t is a different material point of the material domain and x̃ 6= x ∈ Ωt,t is
a different spatial point in the spatial domain. Since the deformation remains constant, they are
still related by

x̃ = ϕt (X̃) . (5.31)

Let X̃ ∈ Ω be the reference point such that

φt (X̃ ) = φ̃t (X ) = X̃ (5.32)

and
ψt (X̃ ) = ψ̃t (X ) = x̃ (5.33)

holds. As only unique mappings are considered here, the reference point X̃ is defined. It is
supposed that, for a given deformation state, one of the two alternative mappings φ̃t or ψ̃t is
known. This allows the evaluation X̃ from either equation (5.32) or (5.33) and, with insertion
into the remaining one, the determination of φ̃t or ψ̃t, respectively.

The above derivation contains the evaluation of the alternative reference point X̃ for a given
reference point X . From literature, this relation is known as the advection map

χt : Ω → Ω (5.34)

defined by
X̃ = χt (X , t) . (5.35)

The evaluation of the advection map in the finite element discretized problem is stated in Section
5.5.4.
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Consideration of wear

Within this work, the ALE kinematics above are used to model surface evolution due to wear.
It is obtained by choosing a new spatial mapping ψ̃t in order to take the material loss at the
contact boundary into account. This results also in adapted material and spatial domains, which
are denoted as Ω̃0,t ⊂ Ω0,t and Ω̃t,t ⊂ Ωt,t, respectively. In order to determine the according
material mapping φ̃t with the advection map from above, the physical deformation state of this
remaining domain is assumed to be fixed. Accordingly, equation (5.27) is only valid for the
remaining domain Ω̃0,t as

ϕt|Ω̃0,t
= ψt ◦ φ−1

t = ψ̃t ◦ φ̃t

−1
. (5.36)

The evaluation of X̃ occurs from equation (5.33) and, with insertion into (5.32), one obtains the
demanded alternative material mapping φ̃t.

Material time derivatives

As shown, in ALE descriptions, material and spatial fields are expressed as functions of the ALE
coordinates X and time t. Accordingly, material or total time derivatives must be obtained by
the chain rule. This is similar to equation (2.6), where the acceleration field of a motion in an
EULERian description is derived. It leads to the typical convective terms. In case of the velocity,
they represent the difference between the material and mesh velocities.

In this work however, only quasistatic problems are treated and the topic of material time
derivatives in ALE descriptions is not considered further. It is referred to the contributions of
BELYTSCHKO [9], LINDER [89], HUERTA and CASADEI [60], and WALL [134] instead.

5.5.3 Solution algorithm
The algorithm for the solution of the frictional contact problem treating wear with modeling
contact surface evolution is presented in the following. As material is only removed from the
slave contact surface within this study, the following equations are related to this side.

For the simulations carried out within this work, the reference configuration of the slave body
Ω(1) is equal to the material configuration Ω

(1)
0,t=0 at t = 0. As the slave body is assumed to be

undeformed at this stage, it is equal to the spatial configuration Ωt,t=0 at this point, too. This can
also be expressed as

X (1) = X(1) = x(1) for t = 0 (5.37)

or
u

(1)
φ = u

(1)
ψ = 0 for t = 0 . (5.38)

Considered is a time interval stepping from tn−1 to tn. It is assumed that the material dis-
placement field u

(1)
φ (tn−1) and the spatial displacement field u

(1)
ψ (tn−1) at tn−1 are known. The

algorithm aims for the solution of u
(1)
φ (tn) and u

(1)
ψ (tn) at tn. It is presented in the following.

Algorithm 4

1. Solve the finite deformation frictional contact problem for u
(1)
ψ (tn) with holding the material

displacements constant (u
(1)
φ (tn−1) = const.). This is tantamount to a LAGRANGEan step
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as described in Chapter 4. Of course, the solution also contains the LAGRANGE multipliers
λ (tn).

2. Evaluate the additional wear height ∆w within the time step according to equation (5.4) from
the results obtained in 1.

3. Determine the new spatial displacements ũ
(1)
ψ (tn) according to the additional wear height

evaluated in 2. The respective material displacements ũ
(1)
φ (tn) are evaluated according to

equations (5.32) and (5.33) for fixing the physical deformation. This is called the EULERian
phase.

4. Replace the material and spatial displacement fields as

u
(1)
φ (tn) = ũ

(1)
φ (tn) and u

(1)
ψ (tn) = ũ

(1)
ψ (tn) , (5.39)

set tn−1 := tn and continue with 1. for the next time step.

In general, the solution of an ALE described problem within a staggered scheme has clear
advantages. With splitting the underlying equations into material and convective effects, they
become less intricate and allow for the application of well known and robust algorithms. Here,
this concerns especially the usage of the LAGRANGEan formalism for the solution of the physical
problem with almost no modification. It also contains a not increasing system size due to the
serial determination of material and spatial displacements.

5.5.4 Finite element implementation
As the above equations are only discretized temporally so far, this section now treats their spatial
discretizations.

Geometry and displacement interpolation

The geometry approximation of the reference domain Ω(1)h within the ALE formulation is real-
ized as it is done for the reference domain Ω

(1)h
0 within the LAGRANGE formulation in Chapter

3.4.1. The interpolated form is denoted as X (1)h, the approach is developed for linearly inter-
polated 4-node quadrilateral elements in the 2D case. Following an isoparametric concept, the
material and spatial displacements are approximated in the same way and lead to their discrete
counterparts u

(1)h
φ and u

(1)h
ψ . Consequently, the respective discrete domains Ω

(1)h
0,t and Ω

(1)h
t,t are

parametrized as

X(1)h = X (1)h + u
(1)h
φ and x(1)h = X (1)h + u

(1)h
ψ . (5.40)

New spatial displacements due to wear

This section treats the evaluation of the new spatial displacement field ũ
(1)h
ψ (tn). It corresponds

to the first part of the EULERian phase (Algorithm 4, 3.) of the discrete setting.
The weighted wear increment ∆w̃j of a slave node j ∈ S is evaluated from equation (5.11)

similar to the internal state variable approach. However, this is an integral quantity rather than
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Ω
(1) h
t,t

Ω̃
(1) h
t,t

Figure 5.11: Relocation of nodes in the spatial configuration: Only for nodes of the slave contact
surface (left) or, in order to be not limited to one element row, for nodes of the slave
contact surface plus remaining nodes within the domain (right).

a real physical measure. Consequently, it cannot be used directly for modeling the material loss
considered here without modifications. Nevertheless, it is the basis for the derivation of the non-
weighted discrete nodal value ∆wj . Of course, ∆wj could be obtained form (5.4) evaluated at
node j. From this, it would be a real physical value, but without considering the spatial distribu-
tion of solution variables between nodes. It rather would resemble a node-to-segment approach
than an integral mortar treatment of interface constraints. It is therefore not applied within this
work. Accordingly, ∆wj is obtained from ∆w̃j by removing the weighting as

∆wj =
∆w̃j

Djj

. (5.41)

The new spatial postions x̃
(1)
j of slave nodes j ∈ S are then obtained from the nodal wear

increment ∆wj and the averaged outward unit normal nj from equation (3.51) as

x̃
(1)
j = x

(1)
j −∆wj nj . (5.42)

The relocation of only slave contact nodes is visualized in Figure 5.11 on the left hand side. It is
limited to the removal of one element row with the risk of degenerated elements with ongoing
amount of wear.

In order to avoid this, not only slave contact nodes are repositioned, but also further ones
within the domain. This is given schematically on the right hand side of Figure 5.11. For the
evaluation of the new locations of these further nodes, there exist various possibilities in litera-
ture. Among them, there is the LAPLACEan smoothing as described in LÖHNER and YANG [90]
or pseudo-structure approaches using elastic springs, see BATINA [6]. Within this work, a con-
tinuous pseudo-structure approach as given in JOHNSON and TEZDUYAR [67] is applied. Basis
is the solution of a linear elastic problem with only DIRICHLET conditions. At the contact inter-
face, the prescribed displacements are the displacements determined from wear. The remaining
boundaries are adapted to the structural problem itself.

New material displacements, advection mapping

In this section, the construction of the advection map within the finite element discretized prob-
lem is considered. It needs to provide the values for the quantities of interest after reorganizing
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spatial configuration

reference configuration

material configuration

?

d̃φ ?dφ

dψ

d̃ψ

Figure 5.12: Nodal material and spatial displacements dφ and dψ represent a physical deforma-
tion state. Given are the new spatial displacements d̃ψ, wanted are the correspond-
ing material displacements d̃φ holding this state.

the mesh in the spatial configuration due to wear. These are the nodal material displacements
d̃

(1)
φ as counterpart to the new nodal spatial displacements d̃

(1)
ψ . Further quantities are discussed

at the end of this section. The construction of the advection map is obtained by tracking of ma-
terial particles, it corresponds to the second part of the EULERian phase (Algorithm 4, 3.) in the
discrete setting.

Starting point for the derivation is a deformation state represented by a known discrete material
and spatial displacement field. Both are expressed in terms of the respective nodal displacement
vectors d

(1)
φ and d

(1)
ψ and the interpolation presented above. At this stage, new nodal spatial

displacements d̃
(1)
ψ are given due to the subtraction of wear considered in this work. However,

in general, any other reason could be thought of. Figure 5.12 illustrates such a general situation.
There and for the further derivation, the superscript (1) for the slave domain is omitted. Wanted
are the corresponding material displacements d̃φ keeping the given physical deformation state.

In the following, a single node j is considered. Its new spatial displacement vector after repo-
sitioning is denoted as d̃ψj . The determination of X̃ j according to equation (5.33) requires firstly
the identification of the “old” finite element in which the considered node will be after reposi-
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spatial configuration

x̃j

xj

e3

e4

e1

e2

Figure 5.13: Repositioning of node j in the spatial configuration. The determination of the ad-
vection map requires the identification of the element where the node will be and
its exact postion in element coordinates.

tioning. In the example in Figure 5.12, this is the element on the top left for the node in the
middle. Secondly, the element coordinates ξ̃j within this element associated with X̃ j have to be
identified. The problem is extracted in Figure 5.13. The solution within this work combines both
steps. It is assumed that mesh changes due to wear are small and the wanted element is adjacent
to the node. Based on this, the element coordinates ξ̃j of X̃ j are evaluated for one adjacent ele-
ment after another. This is performed until the obtained solution is within the parameter space
of the regarded element, i.e. ξ̃j ∈ [−1..1] and η̃j ∈ [−1..1].

Equation (5.33) is nonlinear in terms of ξ̃. Therefore, it is written in residual form in the
already discrete setting as

r (ξ̃j) :=

nele∑
i=1

Ni (ξ̃j)xi − x̃j = 0 (5.43)

and solved with a NEWTON scheme towards ξ̃j . The scalar nele is the number of nodes of the
respective element.

From this, the corresponding material displacement field ũφ can be evaluated from equation
(5.32). In the discrete setting and rewritten in terms of the desired material displacement vector,
it reads

d̃φj = N (ξ̃j) ·
(
Xele −X ele

)
, (5.44)

where N (ξ̃j) is the matrix of shape functions evaluated at ξ̃j and the vectors X ele and Xele

contain the reference and material positions of the nodes of the considered element.
As solely quasistatic problems are considered within this work, the evaluation of velocities and

accelerations of the new mesh can be omitted. However, as treating frictional contact problems,
the mortar matrices have to be considered. This is because, for the determination of the current
slip increment, their values of the former time step are used, see (3.84). They could have changed
through modifying the mesh in the EULERian phase. However, since relocation of contact surface
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nodes is small and towards the outward unit normal vector, these changes are insignificant and
can be neglected. However, this could easily be overcome with an additional mortar projection
after the EULERian phase.

Implementation - extended element formulation

Concerning the implementation of structural finite elements, modifications are necessary step-
ping from a LAGRANGEan formulation to the described ALE formulation resolved with a frac-
tional-step strategy as described above. However, changes are relatively small and the total LA-
GRANGE framework can be applied to a great extent.

Additional to the spatial displacements, also the material displacements have to be included.
And additional to the spatial deformation gradient in (5.25), the material one has to be evaluated
according to (5.24). From those, the composed deformation gradient representing the physical
motion is obtained from equation (5.26). Strains as well as corresponding internal forces are
evaluated from this measure. Depending on the code structure, it may be sufficient to only replace
the deformation gradient in the total LAGRANGE setting with the composed one in (5.26). Using
the fractional-step strategy, material displacements are held constant for the LAGRANGEan step
and consequently do not require linearizations with respect to them.

Within this work, contact surface evolution with an ALE strategy is implemented in BACI

for 2D nonlinear bilinear wall elements. The extension to higher-order interpolation and 3D
elements would be straightforward.

5.6 Examples

Within this section, three numerical examples are given to clarify the presented approach for
contact surface evolution and demonstrate its accuracy. This is shown gradually starting from an
example without contact going to a fully nonlinear frictional contact simulation with alternating
stick-slip conditions. All simulations are carried out in BACI and are subjected, if not specified
otherwise, to the assumptions made in Section 4.6.

5.6.1 Arbitrary mesh movement on rectangle

With this first example, the possibility of arbitrary mesh movement independent of the deforma-
tion is demonstrated. For this, the square in Figure 5.14 on the left is considered. It is model-
led with a compressible Neo-HOOKEan material law (E = 10000, ν = 0.0) and plane strain
assumption. As load, the right boundary of the square is subjected to a prescribed horizontal
displacement d = 0.5. The square is originally discretized as given on the right of Figure 5.14.
It is reference-, material-, and spatial domain at t = 0.

Applying the entire load within one quasistatic time step, the spatial configuration visualized
in Figure 5.15 on the top left is obtained. It shows a linearly increasing deformation in x-direction
leading to a constant stress state within the whole domain. Now, to a general reason, the spatial
discretization is changed arbitrarily. This is realized with moving the node in the middle by
dH = 0.375 and dV = 0 in a first step and further to dH = −0.25 and dV = 0.25 in a second
step. This leads to the configurations on the top right and bottom left. It can be seen clearly
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that the deformation state and the corresponding stress distribution in the entire domain does not
change. This is also valid for moving the middle node back to the initial position (dH = 0.0,
dV = 0.0) and reposition the middle node in the bottom row by dV = 0.25. This is close to
the wear problem, where boundary nodes are relocated. The corresponding result is given on the
bottom right of Figure 5.15.

1

1

d = 0.5
dH

dV

dV

Figure 5.14: Arbitrary mesh movement on rectangle example, problem setup and finite element
discretization.

Figure 5.15: Arbitrary mesh movement for given physical deformation.
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In this example, the repositioning in the spatial configuration was carried out only for single
nodes. Their new locations did not influence the positions of the adjacent or other nodes. This
corresponds the approach visualized on the left of Figure 5.11.

5.6.2 Surface evolution

The second example demonstrates the potential wider influence of relocation of nodes as schemat-
ically sketched on the right of Figure 5.11. Again, a simple example is chosen to clarify the
approach. The square on the left of Figure 5.16 is fixed at the upper end and subjected to a dis-
tributed vertical load p = 0.3 at the bottom. St. VENANT-KIRCHHOFF’s material law is applied
(E = 10, ν = 0.0) and the thickness of the 2D model is 1. The discretization is shown on the
right, as before, it represents the congruence of reference-, material-, and spatial domain at t = 0.

The loading is carried out with one quasistatic time step. This leads to the deformed configu-
ration shown on the left of Figure 5.17. Occurring displacements are linear in y-direction and the
resultant stress field is constant. Starting from this deformed state, the three nodes on the bottom
of the square are relocated within two steps. The respective prescribed displacements in vertical
direction are dV = 0.07 and dV = 0.21 for the first and second step, respectively. In contrast to
the example above, further nodes are relocated. As explained, their new positions are determined
solving a linear elastic problem with respective boundary conditions. The results of these two
steps are plotted in the middle and right of Figure 5.17. There, the spatial configurations are
reduced by a prescribed movement of the lower boundary. It clearly can be seen that also the
nodes of the middle row are relocated in order to keep optimal element sizes within the body. Of
course, as requested, the stress in the remaining domain stays constant.

1

1

p = 0.3

dVdV dV

Figure 5.16: Surface evolution example, problem setup and finite element discretization.
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Figure 5.17: Relocation of boundary nodes plus further nodes within the domain.

5.6.3 Oscillating block on cylinder

1

1

6

uH

uV

Figure 5.18: Oscillating block on cylinder contact problem with wear.

The third example finally presents a frictional contact simulation with treating a significant
amount of wear. The setup of the 2D problem is presented in Figure 5.18. The half of a cylinder
is fixed at its lower end and is assumed to be rigid. The block (E = 100, ν = 0.3) is subjected
to DIRICHLET conditions uH and uV at its upper end: For 0 ≤ t ≤ 1, the block is pressed onto
the cylinder by the prescribed vertical displacement uV = 0.3 t. After that, for 1 ≤ t ≤ 51, this
value is kept constant and sinusoidal horizontal displacements uH are applied. The amplitude
is determined to 1.0, one phase of this motion requires 10.0 time units. In sum, five runs are
performed. After that, for 51 ≤ t ≤ 53, the block is removed from the cylinder up to a value of
uV end = −0.3. Between the two bodies, frictional contact with µ = 0.1 takes place. Material is
supposed to be removed from the slave contact surface of the block, the wear coefficient of the
applied ARCHARD’s law of wear is assumed to be kw = 0.001. The discretization is shown in
Figure 5.19, the simulation is run quasistatically with 530 pseudo-time increments of ∆t = 0.1.
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Figure 5.19: Discretization of oscillating block on cylinder contact problem with wear.

t = 1.0 t = 3.5

t = 6.0 t = 8.5

t = 11.0 t = 21.0

t = 31.0 t = 51.5

Figure 5.20: Deformed configurations for the oscillating block on cylinder example. After intru-
sion (t = 1.0), during horizontal oscillation of block (t = 1.0 − t = 31.0) and
after removing the block from cylinder (t = 51.5). The arrows represent the normal
contact tractions.
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Figure 5.21: Changed material configuration after removing block from cylinder. Relocation of
nodes within the whole slave domain due to new nodal positions at the contact
interface from wear.

As result, the deformed configurations at different stages are presented in Figure 5.20. There,
also the normal contact tractions are visualized. It can be clearly seen that, with ongoing time,
material is removed and consequently, the normal contact tractions decrease due to the pre-
scribed constant vertical displacements uV . When the block is removed in the last subfigure, the
remaining body is stress free and worn material can be identified easily. Having a closer look at
this stage in Figure 5.21, it can be seen that approximately the height of two element rows has
been worn away. However, because of relocating the mesh within the whole body due to new
nodal positions at the contact interface, the proposed approach masters this challenge without
any problems.
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6 Fully coupled thermomechanical
contact problem

This chapter extends the finite deformation frictional contact problem towards thermomechanical
contact. This implies the addition of a thermal field to the purely mechanical problem treated so
far. With that, a fully coupled multiphysics problem is obtained. Coupling effects resulting from
contact are heat conduction over contacting surfaces or, very illustrative, production of heat due
to frictional dissipation.

Section 6.1 contains the problem formulation within the continuous setting. Focus is espe-
cially on the interface equations. Subsequently, the weak form and finite element discretization
are treated in Sections 6.2 and 6.3 and the problem is solved with a partitioned approach in Sec-
tion 6.4. An outlook to monolithic solution schemes is given in Section 6.5 before numerical
examples demonstrate the accuracy and efficiency of the proposed methods.

6.1 Problem formulation
The governing equations of the fully coupled thermomechanical contact problem mainly consist
of four parts: The balance of linear momentum, the balance of energy and the entropy inequality,
the mechanical contact constraints, and the laws of thermodynamics at the contact interface. The
fundamental equations in this list are already known from Section 2.1, where basic continuum
mechanics for solids have been presented. As the purely mechanical problem has extensively
been considered in Chapters 2 - 4, the focus of the further derivation is mainly put on the addi-
tional thermal and thermal-structure coupling terms.

Starting point is the frictional contact problem presented in Section 2.2. In addition to the
displacements u(i) of each body i, i = 1, 2, also the scalar temperature fields θ(i), i = 1, 2, serve
as primary unknowns. The boundaries δΩ(i)

0 now include the boundaries Γ
(i)
θ and Γ

(i)
q , where

temperature (DIRICHLET) and heat flux (NEUMANN) conditions are applied. Their counterparts
in the spatial configuration are denoted as γ(i)

θ and γ
(i)
q . The sets Γ

(i)
θ and Γ

(i)
q are allowed to

overlap with boundaries carrying structural boundary conditions, but are assumed to not overlap
with each other or with the contact boundary Γ

(i)
c . This reads

∂Ω
(i)
0 = Γ

(i)
θ ∪ Γ(i)

q ∪ Γ(i)
c ,

Γ
(i)
θ ∩ Γ(i)

q = Γ
(i)
θ ∩ Γ(i)

c = Γ(i)
q ∩ Γ(i)

c = ∅ (6.1)

in addition to (2.44).
Displacement and temperature fields have to be determined with respect to the above men-

tioned four sets of equations, which are presented in the following. This leads to the boundary
value problem of the fully coupled thermomechanical contact problem.
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6.1.1 Balance of linear momentum
The local equations considering the balance of linear momentum are equal to those of the purely
mechanical problem. These are equations (2.70) - (2.72) representing the local linear momen-
tum balance within the bodies, the NEUMANN boundary conditions, and the linear momentum
balance at the contact interface.

6.1.2 Energy balance, entropy inequality
The basic principles of local energy balance and entropy inequality in CLAUSIUS-PLANCK form
are stated in (2.33) and (2.36). According to the derivation in SIMO et al. [124], mathematical
reformulation leads to the temperature evolution equation within a body i as

c(i)θ̇(i) =
[
D(i)

int −H(i)
]
− Div Q(i) + ρ0r̂

(i) in Ω
(i)
0 , (6.2)

Q(i) = −k(i)
θ Grad θ(i) , i = 1, 2. (6.3)

Here, in each of the bodies, c(i) denotes the heat capacity, D(i)
int the mechanical dissipation, and

H(i) the heating from the JOULE effect. FOURIER’s law of heat conduction (6.3) relates the heat
flux Q(i) to the temperature gradient via the thermal conductivity k(i)

θ . Since the focus of this
work is on contact, a detailled derivation of equations (6.2) and (6.3) is omitted. The reader is
referred to the contribution of SIMO et al. [124] instead. In the following, equation (6.2) is also
denoted as energy balance equation for the ease of use.

Further balance equations are those at the NEUMANN and the contact boundary as

Q(i) N(i) = q̂
(i)
0 on Γ(i)

q , (6.4)

Q(i) N(i) = q
(i)
c,0 on Γ(i)

c , i = 1, 2 , (6.5)

where q̂(i)
0 represents a prescribed heat flux and q(i)

c,0 is the heat flux at the contact boundary. The
DIRICHLET condition reads

θ(i) = θ̂(i) on Γ
(i)
θ , i = 1, 2 . (6.6)

6.1.3 Mechanical contact constraints
In some cases, there exist dependencies of the contact conditions on the temperature at the con-
tact interface. An example for this would be a temperature dependent friction coefficient. In this
work however, such effects are neglected. Consequently, the applied mechanical contact condi-
tions in the thermomechanical contact setting are identical to those of Chapter 2, i.e. (2.59) -
(2.61) and (2.63) - (2.66).

6.1.4 Laws of thermodynamics at the contact interface
From the first law of thermodynamics, the local form of the energy balance equation for the
contact interface is obtained as

ėc = q(1)
c + q(2)

c + tτ · vτ,rel on γ(1)
c , (6.7)
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where ec is the surface density of the internal energy on the contact surface. The spatial heat flux
q
(i)
c out of the contact surface of body i is evaluated similar to (6.5) as

q(i)
c = q(i) · n(i) , i = 1, 2 . (6.8)

For the derivation of (6.7), the reader is referred to LAURSEN [83] or OANCEA and LAURSEN

[101]. It has to be pointed out that, for using the outward unit normal vector n(1) on the slave side
for the determination of q(2)

c , this term enters equation (6.7) with the minus sign as in OANCEA

and LAURSEN [101]. In words, the interface law (6.7) postulates that the sum of the heat flux
into the slave body, the heat flux into the master body, which are both negative for the above
definition (6.8), and the heat supply from friction per unit time is equal to the change of stored
energy at the interface.

Besides the first law of thermodynamics above, also the second one has to be considered. In
combination with the formulation of interface free energy and dissipation functions in LAURSEN

[83] or OANCEA and LAURSEN [101], dependencies of the heat fluxes on the temperatures at
the contact interface arise. They read

q(i)
c = α(i)

c (pn)
(
θ(i) − θc

)
, i = 1, 2 , (6.9)

where θ(i) is the temperature of body i as the contact interface is approached and θc is the contact
interface temperature. The scalar α(i)

c (pn) is the contact heat transfer parameter of the contact
surface at body i. It depends on the contact normal pressure pn and is evaluated according to a
constant or linear model as

α(i)
c =

{
0 for pn = 0 (no contact)
ᾱ

(i)
c for pn < 0 (contact)

(6.10)

and

α(i)
c =

{
0 for pn = 0 (no contact)
−ᾱ(i)

c pn for pn < 0 (contact)
, (6.11)

where ᾱ(i)
c is the original heat transfer parameter. Both equations guarantee that no heat flux

appears between the two bodies in the case of no contact. For contact, there is, in (6.10) a
constant and, in (6.11), a linear dependency on the normal contact pressure. The latter models
the approach of two rough surfaces in contact, see WRIGGERS [144]. From the micromechanical
point of view, with growing contact pressure, more and larger contact areas are produced. These
so-called spots then allow a more easy conductance of heat. Here, both models are applied.

Within the work at hand, the heat capacity of the interface itself and, consequently, ėc in
(6.7) is going to be neglected. In this particular case, the contact interface temperature θc can be
eliminated algebraically and the surface heat fluxes (6.9) are expressed as

q(1)
c =βc

(
θ(1) − θ(2)

)− δc (tτ · vτ,rel) and (6.12)

q(2)
c =− βc

(
θ(1) − θ(2)

)− (1− δc) (tτ · vτ,rel) . (6.13)

Here, the parameters βc and δc are evaluated as

βc =
α

(1)
c α

(2)
c

α
(1)
c + α

(2)
c

and δc =
α

(1)
c

α
(1)
c + α

(2)
c

. (6.14)
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And, directly from (6.7), one obtains

q(2)
c = −q(1)

c − tτ · vτ,rel . (6.15)

6.1.5 Boundary value problem of thermomechanical contact

The boundary value problem of the finite deformation thermomechanical contact problem is
summarized from Sections 6.1.1 - 6.1.4. As already for the purely mechanical setting in Sec-
tion 2.3, the derivation is presented for quasistatic analysis neglecting terms containing the time
derivation of primary variables. Furthermore, also dissipation within the bodies is not considered
further.

The problem is solved for the displacement fields u(i), i = 1, 2, and the temperature fields θ(i),
i = 1, 2, by fulfilling the following equations. They all have been already mentioned before, but
are briefly summarized here in order to obtain a clear overview on the coupled problem.

The local governing equations in each body are

Div P(i) + b̂
(i)
0 = 0 and (6.16)

−Div Q(i) + ρ0 r̂
(i) = 0 in Ω

(i)
0 , i = 1, 2 . (6.17)

The boundary conditions and equilibrium equations at the contact interface read

P(i) N(i) = t̂
(i)
0 on Γ(i)

σ , (6.18)

P(i) N(i) = t
(i)
c,0 on Γ(i)

c , (6.19)

u(i) = û(i) on Γ(i)
u , (6.20)

Q(i) N(i) = q̂
(i)
0 on Γ(i)

q , (6.21)

Q(i) N(i) = q
(i)
c,0 on Γ(i)

c , (6.22)

θ(i) = θ̂(i) on Γ
(i)
θ , i = 1, 2 . (6.23)

As explained, the contact constraints are those of the purely mechanical problem, namely (2.59)
- (2.61) and (2.63) - (2.66). And the laws of thermodynamics at the contact interface are repre-
sented entirely by the reformulated terms (6.12) and (6.15). They are used for further derivation.
The governing equations are completed with the definition of a temperature dependent constitu-
tive behavior as generally expressed in (2.43) and FOURIER’s law of heat conduction (6.3).

6.2 Weak form

This section presents the weak form of the thermomechanical contact problem. As the linear
momentum equations and the mechanical contact constraints have exactly the same structure
as those of Sections 3.3.1 and 3.3.2, only the additional governing equations are considered in
detail. These are the energy balance equation and the laws of thermodynamics at the contact
interface.
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6.2.1 Energy balance equations
In order to formulate the weak form, solution and weighting function spaces have to be defined.
For the purely mechanical problem, this is already done with the definitions (3.5) and (3.6).
For the thermomechanical problem considered now, there are, additionally, the solution function
space T (i) for the temperatures θ(i) and the weighting functions space C(i) for the accompanying
test functions v(i). They are defined for each subdomain Ω

(i)
0 as

T (i) :=
{
θ(i) ∈ H1

(
Ω

(i)
0

)
| θ(i) = θ̂(i) on Γ

(i)
θ

}
, (6.24)

C(i) :=
{
v(i) ∈ H1

(
Ω

(i)
0

)
| v(i) = 0 on Γ

(i)
θ

}
. (6.25)

The method of weighted residuals is applied to the equilibrium equations, i.e. the tempera-
ture evolution equation (6.17), the thermal NEUMANN boundary condition (6.21), and equation
(6.22) at the contact interface. By testing these expressions with the functions v(i) ∈ C(i) and
integrating over the whole domain Ω

(i)
0 of each body i, one obtains

∫

Ω
(i)
0

[
Div

(
Q(i)

)− ρ0 r̂
(i)

]
v(i) dΩ

(i)
0 +

∫

Γ
(i)
q

[
q̂
(i)
0 −Q(i) ·N(i)

]
v(i) dΓ(i)

q

+

∫

Γ
(i)
c

[
q
(i)
c,0 −Q(i) ·N(i)

]
v(i) dΓ(i)

c = 0 . (6.26)

Identifying the arbitrary test functions v(i) as virtual temperatures δθ(i), applying integration by
parts and subsequently GAUSS’ divergence theorem, the following integral equation for each
body i is obtained:

G
(i)
θ (u(i), θ(i), δθ(i)) =

∫

Ω
(i)
0

Q(i)
(
Grad δθ(i)

)
dΩ

(i)
0 +

∫

Ω
(i)
0

ρ0 r̂
(i) δθ(i) dΩ

(i)
0

−
∫

Γ
(i)
q

q̂
(i)
0 δθ(i) dΓ(i)

q

−
∫

Γ
(i)
c

q
(i)
c,0 δθ

(i) dΓ(i)
c = 0 ∀ δθ(i) ∈ C(i) . (6.27)

Here, the first three terms represent the internal and external thermal contributions Gint,ext(i)
θ .

They are seen to balance the contributions of the heat flux across the contact interface Gc(i)
θ

acting on Γ
(i)
c of the respective body i.

Similar to the purely mechanical problem, the further derivation is only performed for Gc(i)
θ

stemming from the contact interface. Transformed to the current configuration and stated for the
entire system, these contributions can be written as

Gc
θ

(
u(i), θ(i), δθ(i)

)
= −

2∑
i=1

∫

γ
(i)
c

q(i)
c δθ(i) dγ . (6.28)

Using (6.15), where the heat flux on the master side q(2)
c is expressed in terms of the heat flux on

the slave side q(1)
c and the mechanical dissipation tτ · vτ,rel, equation (6.28) can be rewritten as
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an integral over the slave surface only

Gc
θ (u, θ, δθ) = −

∫

γ
(1)
c

q(1)
c

(
δθ(1) − (

δθ(2) ◦ P))− (tτ · vτ,rel)
(
δθ(2) ◦ P)

dγ , (6.29)

where P is the projection operator presented in Section 2.2.1. Dual LAGRANGE multipliers are
introduced for the thermal field, too. These additional unknowns defined on the slave contact
surface are identified as the negative heat flux there, i.e.

λθ = −q(1)
c . (6.30)

They are specified to be in the dual trace space M similar to M in Section 3.3.1. For a more
mathematical background, the interested reader is referred to HÜEBER and WOHLMUTH [58]
and WOHLMUTH [140]. The final version of the contact integral reads

Gc
θ (u,λ, θ, λθ, δθ) =

∫

γ
(1)
c

λθ

(
δθ(1) − (

δθ(2) ◦ P))
+ |λτ · vτ,rel|

(
δθ(2) ◦ P)

dγ . (6.31)

With this, also the weak form of the energy balance equation (6.27) can be written finally for the
entire system as

Gθ = Gint,ext
θ +Gc

θ . (6.32)

6.2.2 Laws of thermodynamics at the contact interface

So far, equation (6.12) from the laws of thermodynamics at the contact interface has not been
used. It is of ROBIN-type relating the temperature θ(i) to the heat flux on the slave side q(1)

c . It
can be seen as remaining interface condition which is, as already started within the derivation
of the weak energy balance in the previous section, enforced with a LAGRANGE multiplier. For
this, condition (6.12) is multiplied with the arbitrary test function δλθ and is integrated over the
slave contact surface resulting in

∫

γ
(1)
c

δλθ

[
λθ − βc

(
θ(1) − (

θ(2) ◦ P))
+ δc |λτ · vτ,rel|

]
dγc = 0 ∀ δλθ ∈M . (6.33)

This equation is added to the weak form of the energy balance equation.

6.2.3 Summarized weak form

Altogether, the mixed variational form of the fully coupled thermomechanical contact problem
for finite deformations is for the solution of u(i) ∈ U (i), λ ∈ M(λ), θ(i) ∈ T (i), and λθ ∈ M.
It is composed of the weakly expressed equations as the balance of linear momentum (3.23), the
mechanical contact constraints (3.24) and (3.25), the balance of energy (6.32), and the thermal
interface condition (6.33). They must hold for the given test functions.
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Remark: Thermal equations without LAGRANGE multipliers

To the enforcement of the thermal interface condition with a LAGRANGE multiplier above, there
exists an alternative approach. It does not necessitate the introduction of the additional unknowns
λθ identified as the negative heat flux on the slave side q(1)

c . This is because of the value of q(1)
c

can directly be determined in terms of the primary variables θ(i) according to (6.12). Thus, with
insertion of (6.12) into (6.29), the contribution from the heat flux across the contact interface to
the weak energy balance equation can be expressed alternatively as

Gc
2,θ (u, θ, δθ) = −

∫

γ
(1)
c

βc

(
θ(1) − (

θ(2) ◦ P)) (
δθ(1) − (

δθ(2) ◦ P))−
(
δc δθ

(1) + (1− δc)
(
δθ2 ◦ P))

(tτ · vτ,rel) dγ . (6.34)

It already contains the thermal interface condition (6.12) that consequently does not have to be
enforced with a LAGRANGE multiplier.

This at a first look more obvious weak problem statement is, for example, used in LAURSEN

[83] or OANCEA and LAURSEN [101] in the context of node-to-segment contact surface dis-
cretization. However, within the applied mortar framework used here, extensions are necessary.
This is due to equation (6.34), which also requires the integration of the product of two func-
tions defined on the master surface, namely θ(2) and δθ(2). As this has to be performed for the
active contact surface within the applied active set strategy, this information, at hand on the slave
contact surface so far, has to be transformed to the master contact surface.

Within this work, both alternatives with and without LAGRANGE multipliers have been imple-
mented. Due to the advantage of being able to use the tried and tested framework of mechanical
contact, focus and subsequent derivation is on the variant with LAGRANGE multipliers as per-
formed in HÜEBER and WOHLMUTH [58], too.

6.3 Finite element discretization
This section addresses the finite element discretization of equations (6.32) and (6.33). They
represent the additional terms when considering thermomechanical contact problems instead of
purely mechanical ones. Shape functions are introduced and inserted into the above equations.
This leads to the spatially discretized setting of the problem.

6.3.1 Shape functions
The usage of shape functions for the thermal field is very similar to the one for the mechanical
field in 3.4.1. Therefore, the section is kept very short.

Temperature field

The underlying geometry of the temperature field is assumed to be identical to the one of the
structural field. Furthermore, as solution space for the temperature, the finite dimensional dis-
crete counterpart is defined as subset T (i)h ⊂ T (i) of the continuous one. This work is restricted
to 8-node hexahedral elements in the three dimensional setting. Subsequently, the discretization
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6 Fully coupled thermomechanical contact problem

of the contact surface results in 4-node quadrilateral elements. Following the isoparametric con-
cept, the same interpolation is applied for both geometry and temperature field. This also brings
the same shape functions for the displacement and the temperature field.

Slave and master surfaces are of special interest. There, the discrete form of the temperature
field θ(i) reads

θ(1)h|
Γ

(1)h
c

=

nsl∑

k=1

N
(1)
k (ξ(1), η(1)) θ

(1)
k , (6.35)

θ(2)h|
Γ

(2)h
c

=
nm∑

l=1

N
(2)
l (ξ(2), η(2)) θ

(2)
l . (6.36)

The interpolation is carried out with the standard shape functionsN (1)
k andN (2)

l on the respective
contact surface. The scalars θ(1)

k and θ(2)
l denote the nodal temperatures.

Weighting function for energy balance equation

According to the BUBNOV-GALERKIN method, the test function δθ(i) is interpolated the same
way as the temperature field θ(i) in Ω

(i)
0 , i = 1, 2. The according discrete weighting space is the

restriction of (6.25) to a finite dimensional subset C(i)h ⊂ C(i). The interpolations on the slave
and master surface are then be written as

δθ(1)h|
Γ

(1)h
c

=

nsl∑

k=1

N
(1)
k (ξ(1), η(1)) δθ

(1)
k , (6.37)

δθ(2)h|
Γ

(2)h
c

=
nm∑

l=1

N
(2)
l (ξ(2), η(2)) δθ

(2)
l , (6.38)

where δθ(1)
k and δθ(2)

l are the discrete nodal weighting values.

Thermal LAGRANGE multiplier field, weighting function for thermal interface
condition

The interpolation of the thermal LAGRANGE multiplier field is carried out with the already used
dual shape functions proposed by WOHLMUTH [139, 140] and presented Section 3.4.1. With
that, the discrete form λh

θ ∈Mh is given as

λh
θ =

nsl∑
j=1

Φj(ξ
(1), η(1)) zθj , (6.39)

where zθj are the nodal thermal LAGRANGE multipliers. The weighting function field δλθ ∈Mh

is interpolated with the same dual shape functions Φj as

δλh
θ =

nsl∑
j=1

Φj(ξ
(1), η(1)) δzθj . (6.40)

Here, δzθj are the discrete nodal weighting values.
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6.3.2 Discrete energy balance equation
Substituting the discrete form of the field variables from Section 6.3.1 into (6.31), one obtains
the expression

Gc
θ (u,λ, θ, λθ, δθ)

≈ Gc h
θ

(
uh,λh, θh, λh

θ , δθ
h
)

=

∫

γ
(1)h
c

λh
θ

(
δθ(1)h − (

δθ(2)h ◦ P h
))

+
∣∣λh T

τ vh
τ,rel

∣∣ (
δθ(2)h ◦ P h

)
dγ

=

nsl∑
j=1

[
nsl∑

k=1

δθ
(1)
k

∫

γ
(1)h
c

ΦjN
(1)
k dγ −

nm∑

l=1

δθ
(2)
l

∫

γ
(1)h
c

Φj

(
N

(2)
l ◦ P h

)
dγ

]
zθj

+
nm∑

l=1

∫

γ
(1)h
c

(
N

(2)
l ◦ P h

) ∣∣λh T
τ vh

τ,rel

∣∣ dγ δθ
(2)
l . (6.41)

It is the discrete contribution from contact to the energy balance equation and contains the same
coupling integrals as the contact virtual work in Section 3.4.2. From this, it can be rewritten in
terms of the global mortar matrices D and M as

Gc h
θ

(
uh,λh, θh, λh

θ , δθ
h
)

= δθ(1)T DT zθ − δθ(2)T [
MT zθ + fD

]
. (6.42)

Here, zθ denotes the vector of all discrete nodal thermal LAGRANGE multipliers and δθ(1) and
δθ(2) are the vectors of all discrete nodal test function values on the slave and master side. Having
a scalar thermal field at hand, the global mortar matrices are reduced accordingly in dimension
leading to D ∈ Rnsl×nsl and M ∈ Rnsl×nm . Finally, the vector fD ∈ Rnm contains all nodal
integrals

fD
m,l =

∫

γ
(1)h
c

(
N

(2)
l ◦ P h

) ∣∣λh T
τ vh

τ,rel

∣∣ dγ , l = 1, ..., nm , (6.43)

which represent the mechanical dissipation evaluated for nodes on the master side l ∈M. They
are evaluated with GAUSS integration similar to equation (5.11). Also in this case, the usage of
the nodal weighted tangential relative slip increment is desirable.

Dividing all finite element nodes of Ω0 = Ω
(1)
0 ∪ Ω

(2)
0 into the sets of slave nodes S , master

nodes M and remaining nodes N , the global temperature vector θ is sorted accordingly to
θ = (θN ,θM,θS)T. Assuming arbitrary test functions δθ(1) and δθ(2), the discrete contribution
from contact to the energy balance equation can be arranged as

f c
θ = [0 −M D]T zθ +

[
0 fD 0

]T
. (6.44)

Hence, the discrete counterpart of the weak energy balance equation (6.32) finally reads

f int
θ (d,θ) + f c

θ (d, z,θ, zθ) = f ext
θ . (6.45)

6.3.3 Discrete thermal contact condition
The discrete thermal contact condition is obtained by insertion of the interpolated fields into
equation (6.33). This applies to the temperature θ(i)h, the thermal LAGRANGE multiplier λh

θ , the
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test function δθh, as well as the displacements u(i)h and the mechanical LAGRANGE multiplier
λh. It leads to

∫

γ
(1)
c

δλθ

[
λθ − βc

(
θ(1) − (

θ(2) ◦ P))
+ δc |λτ · vτ,rel|

]
dγc

≈
∫

γ
(1)h
c

δλh
θ

[
λh

θ − βc

(
θ(1)h − (

θ(2)h ◦ P h
))

+ δc |λh T
τ vh

τ,rel|
]

dγc

=

nsl∑
j=1

δzθj

[
nsl∑
i=1

∫

γ
(1)h
c

ΦjΦi dγ zθi

− βc

[
nsl∑

k=1

∫

γ
(1)h
c

ΦjN
(1)
k dγ θ

(1)
i −

nm∑

l=1

∫

γ
(1)h
c

Φj

(
N

(2)
l ◦ P h

)
dγ θ

(2)
k

]

+ δc

∫

γ
(1)h
c

Φj

∣∣λh T
τ vh

τ,rel

∣∣ dγ

]
= 0 ∀ δλh

θ ∈Mh . (6.46)

Assuming arbitrary discrete test function values, equation (6.46) results in a nodal condition. For
each slave node j ∈ S , one obtains

nsl∑
i=1

Bji zθi − βc

(
Djj θ

(1)
j −

nm∑

l=1

Mjl θ
(2)
l

)
+ δc f

D
s,j = 0 . (6.47)

Here, the entries Djj and Mjl are the well known mortar coupling terms. The expression Bji is
evaluated as

Bji =

∫

γ
(1)h
c

ΦjΦidγ , j = 1, ..., nsl , i = 1, ..., nsl , (6.48)

and fD
s,j , the mechanical dissipation assigned to a slave node j ∈ S , i.e.

fD
s,j =

∫

γ
(1)h
c

Φj

∣∣λh T
τ vh

τ,rel

∣∣ dγ , j = 1, ..., nsl . (6.49)

It is evaluated in the same way as (6.43).
In order to obtain decoupled nodal conditions in (6.47), a lumping technique is applied in

HÜEBER and WOHLMUTH [58]. In the work at hand, a similar approach is done. The sum∑nsl
i=1Bji is approximated by the mortar term Djj . Consequently, equation (6.47) reads for a

slave node j ∈ S

rcond
θj = Djj zθj − βc

(
Djj θ

(1)
j −

nm∑

l=1

Mjl θ
(2)
l

)
+ δc f

D
s,j = 0 (6.50)

in its final form.

Remark: Lumping of thermal contact condition

It is mentioned that the described lumping of the thermal contact condition above does not nec-
essarily have to be performed. For the intended easy elimination of the thermal LAGRANGE
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multiplier, it is sufficient to have a diagonal structure of the mortar matrix D in the energy bal-
ance equation. From this, also equation (6.47) could be used and has been implemented within
this work. But, as experienced differences in results are negligible and lumping is successfully
used in HÜEBER and WOHLMUTH [58] for small deformations, focus lies on (6.50) within the
further course of this work.

6.3.4 Summarized discrete form

The summarized discrete form of the thermomechanical contact problem is for the solution of
u(i)h ∈ U (i)h, λh ∈ Mh(λh), θ(i)h ∈ T (i)h and λh

θ ∈ Mh. It is composed of the linear momen-
tum equation (3.50), the energy balance equation (6.45), and the mechanical and thermal contact
constraints (3.63) - (3.65), (3.72) - (3.75), and (6.50).

6.4 Partitioned solution scheme
For multiphysics problems in general, there exist various solution approaches. In FELIPPA et
al. [25] and WALL [134], they are divided into monolithic, partitioned and field elimination
schemes. Within this work, especially the partitioned approach is used for the solution of the
thermomechanical contact problem stated in Section 6.3.4. This is mainly due to the advantage
of its inherent modularity, which allows a separate usage of the tried and tested single field
solvers. But additional, an outlook to the application of a monolithic solution scheme is given.

The partitioned approach requires the repeated solution of mechanical and thermal fields. For
the treatment of the mechanical field, the semi-smooth NEWTON method described in Chapter 4
is applied. The only difference to the purely mechanical problem is the temperature dependent
material. It changes the bulk equations within the bodies, but contact contributions itself are not
affected by the thermal field. Consequently, focus here is on the solution of the thermal field.

6.4.1 NEWTON algorithm for thermal field

For the solution of the thermal problem within the partitioned scheme, the mechanical field vari-
ables as the nodal displacements d and the nodal LAGRANGE multipliers z are held constant.
This is also true for the contact sets where especially the active node setA and the set of slipping
nodes Sl are relevant for the thermal problem. The remaining equations for the solution of the
nodal temperatures θ and the nodal thermal LAGRANGE multipliers zθ are the discrete expres-
sions (6.45) and (6.50). In order to apply a NEWTON scheme, they are written in residual form
as

rθ = f int
θ (θ) + f c

θ (θ, zθ)− f ext
θ = 0 ,

rcond
θj (θ, zθj) = 0 ∀ j ∈ S . (6.51)

For the current iterate k, the linearizations of these equations at (θk, zk
θ) read

∆rk
θ

(
θk, zk

θ

)
= −rk

θ , (6.52)

∆rcond,k
θj

(
θk, zk

θj

)
= −rcond,k

θj ∀ j ∈ S . (6.53)
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Here, for the thermal problem, the quantities ∆(·) denote the directional derivatives given by

∆ (·) =
∂ (·)
∂θ

∆θ +
∂ (·)
∂zθ

∆zθ . (6.54)

The NEWTON iteration contains the solution of the linear system of equations (6.52) and (6.53)
for the increments (∆θk,∆zk

θ) and the subsequent update for the new iterate
(
θk+1,zθ

k+1
)

as
(
θk+1, zk+1

θ

)
=

(
θk, zk

θ

)
+

(
∆θk,∆zk

θ

)
. (6.55)

It has to be pointed out that the thermal contact problem considered within this partitioned ap-
proach depends linearly on the nodal temperatures θ and LAGRANGE multipliers zθ. Therefore,
a NEWTON scheme for its solution has not to be used necessarily. It is chosen nevertheless to
have a similar framework to the purely mechanical problem and a good starting point for the non-
linear monolithic approach. Here, consequently, the residual vanishes after only one NEWTON

step.

6.4.2 Linearization and algebraic representation
In this section, the linearizations of equations (6.52) and (6.53), their assembly into global ma-
trices, and the formulation of the linear system of equations to be solved is presented.

Energy balance equation

The evaluation of ∆rk
θ needs the linearization of the different parts of the energy balance equa-

tion, i.e. the internal contribution f int
θ (θ) and the contribution from contact f c(θ, zθ). The first

one, the bulk response, is independent of contact and therefore not discussed within this work.
Its treatment can be found for example in SIMO and MIEHE [126], the respective stiffness is
denoted as Kθ. The linearization of the second one can be expressed in already global matrices.
For the current iterate k, it reads

∆f c,k
θ =

(
0, −MT ∆zk

θ , DT ∆zk
θ

)T
. (6.56)

For the further treatment of this equation, the thermal LAGRANGE multiplier increment ∆zk
θ

is replaced by zk+1
θ − zk

θ .

Thermal contact condition

Concerning the thermal contact condition, the linearized equation (6.53) for the current iterate k
results in

∆rcond,k
θj = Dk

jj ∆zk
θj − βc

(
Dk

jj ∆θ
(1)k
j −

nm∑

l=1

Mk
jl ∆θ

(2)k
l

)
= −rcond,k

θj ∀ j ∈ Ak . (6.57)

As before, the equation is reformulated in terms of zk+1
θ . The assembly of (6.57) for all active

contact nodes j ∈ A reads
na

A
j=1

(
∆rcond,k

θj + rcond,k
θj

)
= UAk

∆θk
S + VAk

∆θk
M + WAk

zk+1
θA + rcond

θA . (6.58)
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Here, the matrices UAk
∈ Rna×nsl , VAk

∈ Rna×nm and WAk
∈ Rna×na are the assembled forms

of all linearizations and the vector rcond
θA ∈ Rna represents the right hand side.

System of equations

Finally, with the assembled matrices above, the linear system representing equations (6.52) and
(6.53) can be written. The iteration index k is dropped and the stiffness Kθ is shortened to K for
the ease of notation:




KNN KNM KNI KNA 0
KMN KMM KMI KMA −MT

A
KIN KIM KII KIA 0
KAN KAM KAI KAA DT

A
0 VA UAI UAA WA



·




∆θN
∆θM
∆θI
∆θA
zθA




= −




rθN
rθM + fD

rθI
rθA
rcond

θA




(6.59)

The first four rows represent the linearized energy balance equation (6.52) where I stands for the
inactive node set. The fifth row is the algebraic form of the linearized thermal contact condition
(6.53) for nodes of the active contact set A.

The system (6.59) contains temperature degrees of freedom ∆θk and thermal LAGRANGE

multipliers zk+1
θ and is therefore of increased size. But similar to the purely mechanical system

in Section 4.5, the LAGRANGE multipliers can easily be eliminated due to the diagonality of the
matrix D. From the fourth line in (6.59), they can be expressed as

zθA = D−T (−rθA −KAN∆θN −KAM∆dM −KAS∆θS) . (6.60)

With insertion of (6.60) into (6.59), a reduced system with only temperature degrees of freedom
is obtained:




KNN KNM KNI KNA
KMN + M̂T

AKAN KMM + M̂T
AKAM KMI + M̂T

AKAI KMA + M̂T
AKAA

KIN KIM KII KIA
WAD−T

A KAN WAD−T
A KAM −VA WAD−T

A KAI −UAI WAD−T
A KAS −UAA




·




∆θN
∆θM
∆θI
∆θA


 = −




rθN
rθM + fD + M̂T

ArθA
rθI

WAD−T
A rθA − rcond

θA


 , (6.61)

where it has been made use of definition (4.42). For the solution of this final system, standard
direct or iterative solution techniques can be applied.

6.4.3 Partitioned solution scheme

Partitioned solution schemes can be divided into two groups. Strongly coupled ones are charac-
terized by achieving the entire solution of the problem within every time step. It is reached by
iterating between the single fields as long as all governing equations are fulfilled. With this, the
solution equals the one of the monolithic approach, see for example the discussions in KÜTTLER
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and WALL [77] or WALL [134] for fluid-structure interaction problems. This kind of partitioned
approach is also denoted as iterative staggered scheme. In contrast, weakly coupled or one way
staggered schemes solve the single fields only once in each time step. This is mostly done se-
quentially and coupling information is passed from one field to the other although that one is
going on in time. Consequently, in general, the governing equations are not fulfilled exactly at
the end of a time step.

Throughout this work, an iterative staggered scheme for the partitioned solution is applied.
Within one time step, it is implemented as given in the following. The iteration index k used in
the algorithm is not to be mixed up with that of the NEWTON algorithm.

Algorithm 5

1. Set k = 0 and initialize the solution (d0, z0,θ0, z0
θ) and the contact sets I0, St0 and Sl0.

2. Find dk+1, zk+1, Ik+1, Stk+1 and Slk+1 with the solution of the nonlinear mechanical contact
problem (equation (4.5) plus temperature dependent material behavior). Nodal temperatures
θk and thermal LAGRANGE multipliers zk

θ are hold constant.

3. Find θk+1 and zk+1
θ with the solution of the thermal contact problem stated in (6.51). Nodal

displacements dk+1, LAGRANGE multipliers zk+1, and the contact sets Ik+1, Stk+1 and Slk+1

are hold constant.

4. If Ik+1 = Ik, Stk+1 = Stk, Slk+1 = Slk, ‖dk+1 − dk‖ ≤ εu, and ‖θk+1 − θk‖ ≤ εθ , then
stop, else set k := k + 1 and repeat from 2.

Here, εu and εθ denote tolerances of choice.
For validating purposes within the work presented here, the original full coupling of the me-

chanical and thermal field is sometimes reduced. In this regard, it is assumed that the material
law is not dependent on the temperature in a few examples. Consequently, the mechanical solu-
tion is not influenced by the thermal one and the iterative staggered algorithm above converges
after only one iteration. These cases however are marked clearly.

6.5 Outlook to monolithic solution scheme
Monolithic solution schemes are characterized by the simultaneous solution of both fields, in
which all dependencies are considered through coupling terms.

Here, an outlook to the treatment of thermomechanical contact problems with a monolithic
scheme is given. It is an extension of the problem without contact addressed in DANOWSKI et
al. [19]. The contact related terms are newly formulated for finite deformations and contain a
consistent linearization. Basis is the work of HÜEBER and WOHLMUTH [58], where this has
been carried out in the context of small deformations. The section is titled with “outlook” as
the derivation is kept short and some coupling effects are neglected. First, the formulation is for
frictionless contact, which results in the absence of frictional dissipation and therefore no heating
of the thermal field. Second, the heat flux over the contact surface is only modelled constantly
according to (6.10). However, except from these restrictions, the monolithic scheme is applied
consistently to the thermomechanical contact problem.
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6.5 Outlook to monolithic solution scheme

6.5.1 Semi-smooth NEWTON method for fully coupled problem

The fully coupled thermomechanical contact problem in residual form is presented. Dependen-
cies on primary unknowns are given in brackets:

r = f int(d,θ) + f c(d, z)− f ext = 0 ,

rθ = f int
θ (d,θ) + f c

θ (d,θ, zθ)− f ext
θ = 0 ,

Cnj (d, zj) = 0 ∀ j ∈ S ,
Cτj (d, zj) = 0 ∀ j ∈ S ,

rcond
θj (d,θ, zθj) = 0 ∀ j ∈ S . (6.62)

For the current iterate k, the linearizations of these equations at (dk, zk,θk, zk
θ) read

∆r
(
dk,θkzk

)
= −rk , (6.63)

∆rθ

(
dk,θk, zk

θ

)
= −rk

θ , (6.64)

∆Cnj

(
dk, zk

j

)
= −Ck

nj ∀ j ∈ S , (6.65)

∆Cτj

(
dk, zk

j

)
= −Ck

τj ∀ j ∈ S , (6.66)

∆rcond
θj

(
dk,θk, zk

θj

)
= −rcond,k

θj ∀ j ∈ S . (6.67)

Here, the derivatives ∆(·) have to be evaluated with respect to all primary unknowns as

∆ (·) =
∂ (·)
∂d

∆d +
∂ (·)
∂z

∆z +
∂ (·)
∂θ

∆θ +
∂ (·)
∂zθ

∆zθ . (6.68)

The linear system of equations (6.63) - (6.67) is solved for the solution increments (∆dk,∆zk,
∆θk,∆zk

θ), the update towards the new iterate (dk+1, zk+1,θk+1, zk+1
θ ) takes place as in (4.10)

and (6.55).

6.5.2 Linearization and algebraic representation

The evaluation of necessary linearizations in equations (6.63) - (6.67) is presented in this section.
Since the focus is on contact, it is not performed for bulk equations (6.63) and (6.64) leading to
the stiffness contributions Kuu, Kuθ, Kθu, and Kθθ. Here, it is carried out for contact related
terms only and, furthermore, only for expressions that differ from those in the sections before. In
this regard, a closer look is given to fθ(d,θ, z) and rcond

θj (d,θ, zθj), which are the contact contri-
bution to the energy balance equation in (6.64) and the thermal contact condition in (6.67). Here,
in contrast to the partitioned approach above, the solution variables d and z are not held constant
and directional derivatives with regard to these unknowns have to be considered, too. On the
other hand, the contact virtual work f c(d, z) and the mechanical contact constraints Cnj (d, zj)
and Cτj (d, zj) in (6.63), (6.65), and (6.66) are not influenced by the temperature θ or the ther-
mal LAGRANGE multipliers zθ. From this, their linearizations are equal to those of Section 4.3
and thus are not discussed further.
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6 Fully coupled thermomechanical contact problem

Contribution to energy balance equation from contact

For the current iterate k, the linearization of the contribution to the energy balance equation from
contact in (6.64) reads

∆f c,k
θ =




0
−∆MT zk

θ −MT ∆zk
θ

∆DT zk
θ + DT ∆zk

θ


 (6.69)

It requires the evaluation of the directional derivatives of the Mortar matrices D and M. These
can be found in POPP et al. [110, 111]. For the further treatment of expression (6.69), the thermal
LAGRANGE multiplier increment ∆zk

θ is replaced by zk+1
θ − zk

θ . The directional derivatives of
both matrices D and M are assembled in Ẽ ∈ R(nsl+nm)×(3nsl+3nm) as

(
0, −∆MT zk

θ , ∆DT zk
θ

)T
= Ẽ∆dk

SM, (6.70)

where they are multiplied with the current LAGRANGE multiplier vector zk
θ . Similar to (4.33),

the vector ∆dk
SM is a subset of the global displacement vector containing the entries from slave

and master nodes S and M.

Thermal contact condition

The linearized thermal contact condition (6.67) for each slave node j ∈ S reads as follows

∆rcond,k
θj = ∆Dk

jj z
k
θj +Dk

jj ∆zk
θj

− βc

(
∆Dk

jj θ
(1)k
j −

nm∑

l=1

∆Mk
jl θ

(2)k
l +Dk

jj ∆θ
(1)k
j −

nm∑

l=1

Mk
jl ∆θ

(2)k
l

)

= −rcond,k
θj ∀ j ∈ Sk . (6.71)

Again, the equation is reformulated in terms of zk+1
θ . Obtaining zero entries for inactive nodes

j ∈ I, the assembly of (6.67) is performed for active nodes j ∈ A only. It reads

na

A
j=1

(
∆rcond,k

θj + rcond,k
θj

)
= QAk

∆dk
SM + RAk

∆θk
SM + WAk

zk+1
θA + rcond

θA . (6.72)

Here, the matrices QAk
∈ Rna×3(nsl+nm), RAk

∈ Rna×(nsl+nm) and WAk
∈ Rna×na are the

assembled forms of all linearizations, the vector rcond
θA ∈ Rna denotes the right hand side.

System of equations

The final linear system representing equations (6.63) - (6.67) can be written in terms of the
displacement increments ∆d, the LAGRANGE multipliers z, the temperature increments ∆θ,
and the thermal LAGRANGE multipliers zθ. The blocks are written in compact form and the
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6.5 Outlook to monolithic solution scheme

iteration index k is dropped for the ease of notation:




Kuu
N 0 Kuθ

N 0

K̃uu
M −MT

A Kuθ
M 0

K̃uu
I 0 Kuθ

I 0

K̃uu
A DT

A Kuθ
A 0

SA 0 0 0

FA TA 0 0

Kθu
N 0 Kθθ

N 0

K̃θu
M 0 Kθθ

M −MT
A

K̃θu
I 0 Kθθ

I 0

K̃θu
A 0 Kθθ

A DT
A

QA 0 RA WA




·




∆d
zA
∆θ
zθA


 = −




rN
rM
rI
rA
g̃A
0

rθN
rθM
rθI
rθA
rcond

θA




(6.73)

The first four rows represent the linearized force equilibrium (6.63). Here, the blocks with the
tilde symbol (̃·) imply the sum of the respective part of the stiffness matrix Kuu and linearization
entries C̃ from the contact force vector given in (4.33). For example, K̃uu

M = Kuu
M + C̃M is the

block associated with the master nodes M. The mechanical normal contact condition (6.65) is
placed in the fifth row, where the matrix SA ∈ Rna×3(nsl+nm) contains all linearization entries
from S̃A and M̃A in (4.34). The mechanical tangential contact condition enters the system in
the sixth row. As stated above, the frictionless case with zτj = 0 for active nodes j ∈ A is
considered here. Its linearization leads to the matrices FA ∈ R2na×3nsl and TA ∈ R2na×3na

containing the derivatives with respect to d and z. The particular assembly of this subcase of
frictional contact can be found in POPP et al. [111]. The energy balance equation is represented
in rows seven to ten. Similar to above, blocks marked with the tilde symbol contain the respective
part of the stiffness matrix Kθu and linearization entries Ẽ from equation (6.70). For example,
the master node block reads K̃θu

M = Kθu
M + ẼM. And the thermal contact condition is placed

in the eleventh row. The zero constraints for inactive nodes j ∈ I are not included in the above
system of equations.

For the coupled system of equation considered here, structural and thermal LAGRANGE mul-
tipliers can easily be expressed in terms of displacement and temperature increments. This reads

zA = D−T
(
−rA − K̃uu

A ∆d− K̃uθ
A ∆θ

)
and (6.74)

zθA = D−T
(
−rθA − K̃θu

A ∆d− K̃θθ
A∆θ

)
. (6.75)

As before, this is achieved cheaply due to the diagonality of the mortar matrix D. Inserting
(6.74) and (6.75) into (6.73), one obtains the final system written in terms of displacement and
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temperature increments only:




Kuu
N Kuθ

N
K̃uu
M + M̂T

AK̃uu
A Kuθ

M + M̂T
AK̃uθ

A
K̃uu
I Kuθ

I
SA 0

TADT
AK̃uu

A − FA TADT
AK̃uθ

A
Kθu
N Kθθ

N
K̃θu
M + M̂T

AK̃uθ
A Kθθ

M + M̂T
AK̃θθ

A
K̃θu
I Kθθ

I
WADT

AK̃θu −QA WADT
AK̃θθ −RA




·
[

∆d
∆θ

]
= −




rN

rM + M̂T
ArA

rI
g̃A

TADT
ArA

rθN

rθM + M̂T
ArθA

rθI
WADT

ArθA − rcond
θA




(6.76)

The system can be solved with standard or iterative solution techniques. In a post postprocessing
step, the LAGRANGE multipliers are recovered from equations (6.74) and (6.75).

6.6 Examples

Considering thermomechanical contact problems, four examples are presented in this section. As
solution schemes, the partitioned as well as the monolithic approach are applied. Accuracy and
efficiency of the simulations performed in BACI are demonstrated. Assumptions are the same as
in Section 4.6, occurring differences are specified.

6.6.1 Heat conduction over non matching grids

The first example presents the pressure dependent heat conduction over non-matching grids.
Accuracy of numerical results is demonstrated by comparison with the analytical solution.

The two cubes in Figure 6.1 are modelled with St. VENANT-KIRCHHOFF’s material law (E =

400, ν = 0.0), the thermal conductivity is assumed to be k(i)
θ = 52. For the heat conduction

over the contact surface, the pressure dependent linear model (6.11) with ᾱ(i)
c = 100 is used. A

temperature of 40 is applied to the bottom surface of the lower cube and of 20 to the top surface
of the upper cube. There, additionally, a vertical displacement of w = 0.15 is prescribed. It is
performed with 15 pseudo load steps in a quasistatic simulation.

As solution scheme, the partitioned approach is applied. In order to be able to compare with
the analytical solution, effects are separated by neglecting the influence of the thermal field on
the structural deformation. This results in a temperature independent material behavior and the
partitioned approach converges after one solution of each field within a time step.

Figure 6.2 shows deformed configurations at different stages. When the two bodies come into
contact, heat flux over the contact surface occurs. It is the same as in the bodies resulting from
adjusted temperature gradients there. With growing contact pressure, the heat flux in the entire
system increases and temperatures adapt accordingly.

120



6.6 Examples

w = 0.0, θ = 40

0.1

w = 0.15, θ = 20

Figure 6.1: Heat conduction over non matching grids, setup and finite element discretization.

w = 0.05 w = 0.11 w = 0.12

w = 0.13 w = 0.14 w = 0.15

Figure 6.2: Heat conduction over non matching grids, temperature distribution at different de-
formed stages.
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Figure 6.3: Heat conduction over non matching grids. Temperature distribution along a vertical
axis through the entire system (left) and contact interface temperatures for changing
contact pressure, comparison with analytical solution (right).

The temperature distribution along a vertical axis through the system is presented schemati-
cally on the left of Figure 6.3. The values at the contact interface, θ(1) and θ(2), depend on the
normal contact pressure which is increasing with ongoing simulation. This numerically obtained
relationship is plotted on the right of Figure 6.3 for five different stages. It is compared with the
analytical solution, which can be evaluated for identical materials and equal heat transfer coeffi-
cients of both bodies. According to OANCEA and LAURSEN [101] and WRIGGERS and MIEHE

[146], the analytical solution reads

θ(1) =
40 η + 20 (1 + η)

1 + 2 η
, θ(2) =

20 η + 40 (1 + η)

1 + 2 η
, η = ᾱc

pn

2k
. (6.77)

The agreement with the analytical solution is perfect as can be seen in Figure 6.3. Also the
conduction of the heat flux over the non-matching contact interface is reproduced exactly due to
using the mortar method.

6.6.2 Rotating disc

This example is dominated by frictional heating. It is constructed such that the amount of me-
chanical dissipation transferred to thermal energy can be determined analytically and the accu-
racy of capturing this basic phenomenon can be demonstrated.

The 3D problem setup is presented in Figure 6.4. It is made up of a block and a disc, both
modelled with St. VENANT-KIRCHHOFF’s material law (E = 400000, ν = 0.3). The thermal
conductivity and heat capacity are determined as k(i)

θ = 52 and c(i) = 4.2 in each body. Frictional
contact with µ = 0.35 is assumed between block and disc. The heat transfer parameters of the
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2

1

10

α

7

10

Figure 6.4: Rotating disc contact problem, problem setup and finite element discretization.

α = 0
◦

α = 90
◦

α = 180
◦

α = 270
◦

α = 360
◦

Figure 6.5: Rotating disc contact problem, temperature distribution for different rotation angles.
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Figure 6.6: Rotating disc contact problem, thermal energy evolution in both bodies. Comparison
of numerical results with analytical solution.

slave and master surfaces are determined to ᾱ(i)
c = 100 using the model defined in (6.10). The

loading of the problem is split into two parts: First, for 0 ≤ t ≤ 1, the block is pressed onto
the disc. Then, with holding the vertical pressure constant, the disc is rotated up to an angle of
αmax = 360 within 1 ≤ t ≤ 37. The simulation is realized with a time step size of ∆t = 0.1,
the structural field is treated quasistatic, the thermal field resolved with the one-step-theta time
discretization scheme (θ = 0.5). The solution approach and mutual relationships are exactly
those of example 6.6.1.

As result, in Figure 6.5, the temperature distribution for different rotation angles α is pre-
sented. It can clearly be seen that, with ongoing time t, the bodies are heated up due to mechan-
ical dissipation transferred to thermal energy. Assuming rigid bodies, the analytical evolution of
this quantity can be determined easily. For the numerical simulation, this assumption is approx-
imated with high values of the YOUNG’s moduli E in the bodies. Figure 6.6 shows the com-
parison of numerical results and analytical solution. A very good agreement can be observed
which proves quantitatively the correct modeling of mechanical dissipation depending on slip
increment and contact traction and its entire transformation to energy of the thermal field.

6.6.3 Temperature balancing blocks

This example is treated with the monolithic solution scheme. It demonstrates the high efficiency
of the algorithm achieved from consistent linearization.

The setup is presented in Figure 6.7. Two blocks of different size are modelled with a geomet-
rically linear element formulation and St. VENANT-KIRCHHOFF’s material law (E = 400, ν =
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2

1

2

1

0.1

1
1

q

Figure 6.7: Temperature balancing blocks, problem setup and finite element discretization.

0.0). Thermal conductivity, heat capacity, and coefficient of thermal expansion are assumed to
be k(i)

θ = 5.2, c(i) = 42, and αT = 0.0001 in each body. The smaller block is fixed at its upper
surface and the bigger one at its lower surface. In their initial states, the temperature in the whole
system is 0 and the potential contact surfaces are placed with a distance of 0.1. Frictionless con-
tact can take place, the thermal heat transfer parameters are both determined to ᾱ(i)

c = 1 · 106

using the constant model (6.10). This setup is loaded with a prescribed heat flux q = 10000 at
the upper surface of the small body. It is hold constant at this value for the period 0 ≤ t ≤ 4 and
subsequently set to 0 for the remaining time 4 ≤ t ≤ 20. The simulation is performed with a
time step size of ∆t = 1 using the one-step-theta method (θ = 0.5) for time integration.

As results, deformed configurations at different stages are visualized in Figure 6.8. They are
color coded by temperature distribution. It can clearly be seen that, during the first phase of
energy supply, the upper block expands and, from there, comes into contact with the lower one.
Then, the heating stops but the transfer of heat flux over the contact surface continues towards
temperature balancing within the blocks.

The excellent performance of the applied algorithm is demonstrated in Table 6.1. It shows the
evolution of the total residual for the challenging time step starting from t = 2. Within the time
increment ∆t, all remaining slave nodes come into contact. It can clearly be seen that, after this
change in the active contact set, the residual is reduced quadratically. This is due to the consistent
linearization of all displacement, temperature, and LAGRANGE multiplier dependent terms.
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t = 4t = 1

t = 6 t = 10

Figure 6.8: Temperature balancing blocks, deformed configurations and temperature distribution
at different stages.

First step with all
nodes in contact

1 1.57e+03
2 5.15e+07 (*)
3 1.25e+06
4 1.45e+03
5 1.61e+01
6 4.05e−04
7 3.87e−08
Σ 7

(*) = change in active set

Table 6.1: Convergence behavior of the fully linearized monolithic solution scheme for the first
step with all nodes in contact.
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6.6.4 Block between plates
In this last example, all coupling terms of the described thermomechanical contact problem are
considered. It demonstrates the suitability of the proposed solution algorithm to challenging
problems with even extensive interactions of structural and thermal field.

E = 21000, ν = 0.0, ρ = 0.0078
b = 1.0, h = 0.6, t = 0.75

Block:

b = 11.0, h = 0.25, t = 1.0

Plates (fixed):

ᾱc = 2000, constant model

ᾱc = 200, constant model

kθ = 520000, c = 4.2, αT = 0.01

kθ = 52, c = 4200

30◦

Figure 6.9: Block between plates, problem setup and finite element discretization.

As shown in Figure 6.9, a block lies on a fixed inclined plate. With a normal inner distance of
0.60174, as second fixed plate is placed. From this, in its initial configuration, the block is not in
contact with the upper plate. Frictional contact with µ = 0.2 is assumed for both contact surface
pairings, the initial temperature is 0 and St. VENANT-KIRCHHOFF’s material law is applied.
Additional parameters and measures are given in Figure 6.9. The system is loaded with a body
force of 9.81 in negative y-direction.

The partitioned approach is used for solution. Here, the structural field is resolved with a
generalized-alpha time integration scheme (αf = 0.0, αm = 0.333, β = 0.444, γ = 0.833) and
the thermal one with the one-step-theta method (θ = 0.5). The convergence criterion for both
fields is assumed to be εu = εθ = 1 · 10−6. The time step size is chosen to be ∆t = 2.5 · 10−3.

Figure 6.10 shows configurations after s = 10, 20, . . . , 120 steps. It can be observed that,
because of the body force, the block starts frictional sliding (s = 10 − 70), which leads to
heating and thermal expansion. Resulting from this, the sliding block comes into contact with
the upper plate and gets stuck (s = 80). At this state, heat flows into both plates, the block cools,
shrinks, looses contact with the upper plate and starts sliding again (s = 90− 120).

127



6 Fully coupled thermomechanical contact problem

s = 10 s = 20 s = 30

s = 40 s = 50 s = 60

s = 70 s = 80 s = 90

s = 100 s = 110 s = 120

Figure 6.10: Block between plates, temperatures at deformed stages at steps 10, 20, . . . , 120.
Frictional sliding with heating and thermal expansion (s = 10 − 70), stuck due
contact with the upper plate (s = 80), cooling and shrinking and sliding again
(s = 90− 120).
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7.1 Conclusion

In this thesis, a 3D finite deformation frictional contact formulation is presented. As friction
model, COULOMB’s law is applied. The mortar method is chosen for contact surface discretiza-
tion to overcome problems from node-to-segment approaches. It represents a weak formulation
of contact constraints which yields a perfect quality of contact stresses, even for non-matching
meshes. For constraint enforcement, the dual LAGRANGE multiplier method is used. It implies
that no regularization of contact conditions is needed and allows, due to choosing them from a
dual space, for an efficient elimination of these additional unknowns from the global system of
equations. The tangential relative velocity, which is an essential quantity for finite sliding, is for-
mulated in terms of the change of the mortar projection in order to obtain a frame indifferent rate
measure. The solution is realized with a semi-smooth NEWTON method. Thus, all nonlinearities
are treated within one single iterative scheme which leads to a highly efficient solution algorithm
when combined with consistent linearization. The accuracy and robustness of the proposed for-
mulation are demonstrated in four numerical examples. Here, comparisons of numerical results
with analytical solutions show very good agreement. Convergence behavior of the semi-smooth
NEWTON method in the context of finite deformations is also tested: The active set as well as the
stick and the slip sets are efficiently located within only a few steps and quadratic convergence
is obtained in the limit.

Additionally, this thesis contains the extension of the developed mortar contact formulation
towards wear. On the one hand, it is performed using an internal state variable approach. Here,
the distance between contacting bodies is increased by a so-called wear-gap. Two 2D numerical
examples demonstrate that the proposed method captures wear effects qualitatively and quan-
titatively in an excellent manner. As the internal state variable approach is mainly suitable for
a small amount of wear, on the other hand, it is modelled with contact surface evolution using
an ALE approach resolved with a fractional-step strategy. It results in a LAGRANGEan step fol-
lowed by an EULERian one where the mesh is adjusted due to wear. Here, the LAGRANGEan
frictional contact formulation can be used with almost no modifications. It allows significant
wear volumes as demonstrated in the third example considering this method.

In the last part of this work, a 3D fully coupled thermomechanical contact formulation is pre-
sented as an extension to the developed purely mechanical one. For the thermal field, the mortar
method and dual LAGRANGE multipliers are also used for contact surface discretization and
enforcement of constraints. This transfers the accompanying advantages, which are the correct
heat flux transfer over non-matching meshes and the easy elimination of LAGRANGE multipliers.
Coupling effects are resolved with a partitioned scheme and for frictionless contact, also with
a monolithic scheme. Due to consistent linearization of all contact related terms, an excellent
convergence behavior of the applied semi-smooth NEWTON method is obtained. Four numeri-
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cal examples are presented. They demonstrate the accuracy of contact heat conduction and of
frictional dissipation transferred to thermal energy when using the proposed methods. They also
show the quadratic residual decrease of the monolithic approach and the stable capturing even
of strongly coupled nonlinear phenomena in challenging problems.

7.2 Outlook
There are several issues that will require further consideration in the future.

As stated in Chapter 4, the algorithmic parameters cn and ct, introduced with the complemen-
tarity functions, do not influence the accuracy of results. But their choice may have consequences
on the convergence behavior of the semi-smooth NEWTON method, especially for frictional con-
tact problems with complicated alternating stick and slip regions. Although treated in several
convergence studies, see LIEBERTSEDER [88], there is, except from the assumptions in Section
4.6.2, still no clear rule for their optimal determination. Here, future work could be worthwhile.

The evaluation of the weighted wear increment (5.11) and the mechanical dissipations in equa-
tions (6.43) and (6.49) are based on the tangential relative velocity defined in (2.57), which might
not transform in an objective way. Additionally, this represents a little inconsistency as the fric-
tional contact conditions are formulated in terms of expression (3.84), which is derived especially
to obtain frame indifference, see Section 3.4.5. To overcome both, it would be worth striving for
using the objective tangential relative slip increment (3.84) for the evaluation of the above given
wear and thermomechanical quantities. However, as explained, this is not straightforward and
would require additional approximations concerning the distribution of normal contact tractions,
see Section 5.3.2. This is the reason why these alternative formulations have not yet been imple-
mented, but only expressed exemplarily for the wear problem in equation (5.15). Future work
should have a closer look at this topic.

The wear formulation using an internal state variable approach is derived and implemented for
3D, but only 2D examples are tested and consequently presented within this work. This should
be extended for 3D. The ALE approach resolved with a fractional-step strategy is formulated
and implemented only for 2D linearly interpolated elements. Quadratic interpolation and the
extension to 3D are of course desirable.

The monolithic solution scheme for finite deformation thermomechanical contact problems
is realized for frictionless contact and a constant model for the heat transfer over the contact
surface. Enhancing it towards a linear model and frictional contact brings significant more de-
pendencies of structural and thermal fields into the problem formulation. Its implementation is
straightforward and requires extensive linearizations. It should also be considered in future work.
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[12] S. BRUNSSEN, F. SCHMID, M. SCHÄFER, B.I. WOHLMUTH, A fast and robust iterative
solver for nonlinear contact problems using a primal-dual active set strategy and alge-
braic multigrid, International Journal for Numerical Methods in Engineering 69 (2007)
524–543.

131



Bibliography

[13] T. BUCHNER, Analyse der Tangentialbedingungen im reibungsbehafteten Finite-Element
Kontakt, Semesterarbeit, Institute for Computational Mechanics, Technische Universität
München (2009).

[14] V. CHAWLA, T.A. LAURSEN, Energy consistent algorithms for frictional contact prob-
lems, International Journal for Numerical Methods in Engineering 42 (1998) 799–827.

[15] P.W. CHRISTENSEN, A semi-smooth Newton method for elasto-plastic contact problems,
International Journal of Solids and Structures 39 (2002) 2323 – 2341.

[16] P.W. CHRISTENSEN, A. KLARBRING, J.S. PANG, N. STRÖMBERG, Formulation and
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