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Fachgebiet Organische Chemie

Optimal Robust Pulse Design

for Magnetic Resonance

Yun Zhang
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Abstract

Magnetic Resonance has become a powerful tool to study the state of matter in a variety
of domains extending from biology and chemistry to solid-state physics and medicine.
This thesis is concerned with the pulse design and development in magnetic resonance,
with the use of optimal control theory (Chapter 2). Different applications include: the
saturation of an NMR signal for a single spin 1/2 with relaxation (Chapter 3) and
radiation damping effect (Chapter 4); excitation of the maximum quantum coherence
for coupled homonuclear spin system (Chapter 5); maximization of the saturation con-
trast between two spins with different relaxation times in magnetic resonance imaging
(Chapter 6); excitation for the increased bandwidth in electron paramagnetic resonance
(Chapter 7). Some of the optimal control problems are solved both by using geometric
methods and the Gradient Ascent Pulse Engineering (GRAPE) algorithm. The results
of these two methds are also compared in the thesis.

v



vi



Zusammenfassung

Magnetresonanz ist ein mächtiges Werkzeug geworden, um den Zustand von Materie in
verschiedenen Domänen, die von Biologie und Chemie bis zu der Festkörperphysik und
der Medizin reichen, zu studieren. Die Arbeit beschäftigt sich mit dem Pulsedesign und
der Pulsesequenz-Entwicklung in der Magnetresonanztomographie mit Hilfe der Theorie
der optimalen Steuerung (Kapitel 2). Verschiedene Anwendungen sind: die Sättigung
eines NMR-Signals für einen einzelnen Spin 1/2 mit Relaxation (Kapitel 3) und radiation
damping (Kapitel 4); Anregung der maximale Quanten-Kohärenz für gekoppelte homo-
nucleare Spinsysteme (Kapitel 5); Maximierung des Sättigungs-Kontrasts zwischen zwei
Spins mit verschiedenen Relaxationszeiten in der Magnetresonanztomographie (Kapitel
6); Anregung für die erhöhte Bandbreite in der Elektronenspin-Resonanz (Kapitel 7).
Einige Probleme der optimalen Steuerung werden sowohl durch geometrische Methoden
gelöst als auch durch den GRAPE-Algorithmus (Gradient Ascent Pulse Engineering).
Die Ergebnisse beider Methoden werden in der Arbeit miteinander verglichen.
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Chapter 1

Introduction

Since its discovery in the forties, Nuclear Magnetic Resonance (NMR) has become a
powerful tool to study the state of matter in a variety of domains extending from biology
and chemistry to solid-state physics and quantum computing. The power of magnetic
resonance techniques can also be illustrated by medical imaging, which is a very import-
ant tool in medicine to produce diagnostics and to prepare surgical operation, as well
as in the field of electron paramagnetic resonance (EPR) spectroscopy for the detection
and identification of free radicals and paramagnetic centers.

However, fundamental problems in magnetic resonance are still unsolved, like how
to steer a magnetization vector from a given initial state in an efficient way (like in
minimum time or with minimum rf energy) to a desired target state including phys-
ical effects such as relaxation, radiation damping and experimental constraints such as
limited pulse amplitude or pulse power, as well as possible experimental imperfections.
My work focuses on solving the above question by the design of highly robust pulses to
efficiently transfer the initial state to a target state for different practical applications
under realistic conditions.

• Chapter 2

Chapter 2 gives an overview of the basic optimal control methodologies and the
general procedures of the numerical optimization, as well as its link and comparison
with the geometric methods.

• Chapter 3

The problem of saturation of an NMR signal for a single spin 1/2 with relaxation
is analyzed with optimal control theory. This method can be useful to suppress
a specific NMR signal. Both the problems of minimizing the duration of the
control and its energy for a fixed duration are considered. The optimal control
problems are solved by using geometric methods and a purely numerical approach,
the GRAPE algorithm. A very good agreement is obtained between the two results.
The optimal solutions are also implemented experimentally with available NMR
techniques.

• Chapter 4

Here the problem of Chapter 3 is extended to an ensemble of uncoupled spin 1/2
particles in the presence of both relaxation and radiation damping effects. The
dynamics of radiation damping is governed by non-linear equations generalizing the
standard linear Bloch equations. For a single spin, the optimal control strategy

1



2 CHAPTER 1. INTRODUCTION

can be fully characterized analytically. However, in order to take into account
the inhomogeneity of the static magnetic field, an ensemble of isochromats at
different frequencies must be considered. For this case, numerically optimized
pulse sequences are computed and the dynamics under the corresponding optimal
field is experimentally demonstrated using nuclear magnetic resonance techniques.

• Chapter 5

To simplify the analysis of complicated and overlapping spectra, one possibility is
to explore high quantum order coherences, up to the limiting case of the maximum
quantum (MaxQ) coherence, which is just a singlet for each spin system, resulting
in the largest spectral simplification. However, the standard pulse sequences for
MaxQ coherence generation are far from optimal and rely on long-range J coupling.
Here optimal control theory is applied for pulse design of MaxQ order excitation
and compare the performance of the optimized pulses with the standard approach.

• Chapter 6

Magnetic Resonance Imaging has become an indispensable tool with applications
ranging from medicine to material science. However, so far the physical limits of
the maximum achievable experimental contrast were unknown. An approach based
on principles of optimal control theory is introduced to find these physical limits,
providing a benchmark for numerically optimized robust pulse sequences which
can take into account experimental imperfections. This approach is demonstrated
using a model system of two spatially separated liquids corresponding to blood in
its oxygenated and deoxygenated forms.

• Chapter 7

In this chapter, the development of optimal control based pulses for broadband
excitation in electron spin resonance spectroscopy is presented. In collaboration
with the group of Prof. T. Prisner (University of Frankfurt), the pulses were im-
plemented and tested experimentally at X-band frequency (9 GHz), using a pulse
shaping unit with 1 ns time resolution. For excitation bandwidths on the order of
the bandwidth of the electronics and the resonator, transient effects play an im-
portant role, resulting in systematic distortions of the pulse shape experienced by
the electron spins, compared to the ideal pulse shape. These effects can be char-
acterized using a protocol to measure the experimental impulse response of the
probe with a pickup coil. Based on the measured impulse response, the transient
effects can be taken into account in the optimal control based GRAPE optimiz-
ation algorithm, resulting in significantly improved experimental performance of
broadband pulses. The application of broadband (200 MHz) excitation pulses is
presented to a quasi isolated spin 1/2 and an isotropically coupled spin 1/2 system.



Chapter 2

Optimal control methodologies

2.1 Introduction

All experiments in magnetic resonance can be described in a first approach as follows.
A sample is held in a strong and uniform longitudinal magnetic field denoted B0. The
magnetization of the sample is then manipulated by a particular sequence of transverse
radio-frequency magnetic pulses B1 in order to prepare the system in a particular state.
The analysis of the radio-frequency signal that is subsequently emitted by the nuclear
spins leads to information about the structure of the molecule and its spatial position.
One deduces from this simple description that the crucial point of this process is the
initial preparation of the sample, i.e. to design a corresponding pulse sequence to reach
this particular state with maximum efficiency. The maximum achievable efficiency can
be determined for a transfer between the initial and target states [1] if relaxation effects
can be neglected.

Within the physical conditions of the experiments, the optimal design of the pulses
leads to the subject of optimal control theory. Optimal control theory was created in
its modern version at the end of the 1950s with the Pontryagin Maximum Principle
(PMP) [2–4]. Developed originally for problems in space mechanics, optimal control has
become a key tool in a large spectrum of applications including engineering, biology and
economics. Solving an optimal control problem leads to the determination of a particular
trajectory, that is a solution of an associated Hamiltonian system constructed from
the Pontryaguin Maximum Principle and satisfying given boundary conditions. This
approach has found remarkable applications in liquid and solid state NMR spectroscopy,
as well as in Magnetic Resonance Imaging (MRI) and electron-nuclear system [5].

Roughly speaking, optimal control theory can be divided into purely numerical ap-
proachs and geometric methods. In Section 2.2, one numerical approach, the Gradient
Ascent Pulse Engineering (GRAPE) algorithm, is briefly discussed. Comparison and
the possible coupling between the numerical approach and the geometric methods are
presented in Section 2.3.

2.2 Numerical optimization

The gradient ascent algorithm is one of the most important class of numerical optimal
control algorithms with the recent progress within NMR spectroscopy [5,6]. It is an iter-
ative approach constructed to solve the optimal equations and the controls are updated
in a simultaneous manner, different from the Krotov’s method [7] based on a sequential

3



4 CHAPTER 2. OPTIMAL CONTROL METHODOLOGIES

scheme. The optimization is based on the classical Euler-Lagrange formalism [8]. The
goal is to find the curve or trajectory x(t) optimizing the value of the functional

J [x] =

∫ t1

t0

L[t, x(t), u(t)]dt+Φ[x(t1)], (2.1)

which includes a running cost function L, that depends on the path or the trajectories
of the spin and a final cost term Φ[x(t1)], which is only determined by the final state.
x(t) represents the state of the system, while u(t) represents controls to be optimized.
For the optimal case, the gradient δJ

δu
at each time point t0 ≤ t ≤ t1 should equal to

zero. In practice, the gradient can be calculated efficiently based on only one forward
propagation of the state x(t) (starting from the given initial state x(t0)) and one back-
forward propagation of the Lagrange multipliers, or the adjoint state λ(t), starting from
the λ(T ) = δJ

δx
. Assuming that the continuous control is digitized in N time slices (with

1 ≤ j ≤ N), at each time slice j, there is the state xj and the corresponding λj . Take
the most simple system, an uncoupled spin 1/2 as an example. The system can be fully
described by the Bloch equation and the gradient is simply the cross product of xj and
λj at each time slice:

δJ
δuj

= xj × λj , (2.2)

Based on the gradient, a given initial pulse or a random pulse can be improved in an
interative fashion by either following the gradient direction directly with a small step
size or by using more elaborate methods such as conjugated gradient or quasi Newton
methods [9, 10].

Detailed modification of the algorithms according to different applications and spin
dynamics are presented in the theory part of each individual chapter.

2.3 Comparison to geometric methods

More geometric aspects of the optimal control can be formulated for quantum systems
of low dimensions by using tools of geometric optimal control theory [4]. The idea is to
use the methods of differential geometry and Hamiltonian dynamics to solve the optimal
control problems. This geometric framework leads to a global analysis of the control
problem which completes and guides the numerical computations.

Compared to the pure numerical methods, the geometric method allows a complete
geometric understanding of the control problem from which one can deduce the structure
of the optimal solution, a proof of global optimality, and the physical limits of a given
process such as the minimum time to achieve a complete saturation. Such results can
be determined essentially analytically or at least with a very high numerical precision.
In addition, once the geometric analysis is done and the optimal control problem solved
for one set of parameters, other optimal solutions for other values of parameters can be
computed very fast.

However, the geometric method is intrinsically limited to systems of small dimen-
sions. Not like the numerical tools, the geometric approach can not be used to solve
complex problems with experimental imperfections and systems with large number of
spins. On the other hand, the numerical approach is generally applicable even if a com-
plete geometric analysis is not possible. The relative simplicity of the application of
numerical algorithms makes it possible to adapt it straightforwardly to a new class of
control problems.
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Possible coupling between these two methods could be interesting, like first solving
a simplified problem with the geometric techniques and then to use the corresponding
control field as a trial field for the numerical algorithm. This allows to help the con-
vergence of the algorithm and to guide it towards a solution similar to the geometric
one. Another possibility could be to use a numerical algorithm as a first step allowing
to obtain an accurate approximation of the initial adjoint state for the help to solve the
shooting equation, which is mandatory in the geometric methods.
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Chapter 3

Pulse optimization for single
spin 1/2 with relaxation

3.1 Introduction

This chapter is a part of articles [11] and [12], and the work is a collaboration with the
research group of Prof. D. Sugny in Dijon, France. In this project, my part was for the
numerical optimization and the experimental realization of the optimal pulses, while the
geometric analysis is mainly done by our collaboraters in Dijon (same for the projects
presented in Chapter 4 and Chapter 6). The work focuses on the optimal control of a
spin 1/2 particle with relaxation. As an example, following problem is considered: the
saturation of the NMR signal which consists in vanishing the magnetization vector of
the sample. The saturation mechanism is interesting in NMR for solvent suppression
or contrast enhancement [13, 14]. The optimal control problem is defined by a cost
functional which penalizes either the control duration or the energy of the pulse. This
problem can be solved both by the Geometric Approach (GM) [3, 4, 15] and by the
GRAPE algorithm [6]. In the first case, the Pontryagin Maximum Principle was used
to determine the structure of the control field and numerical methods guided by this
first analysis to compute the optimal control field. On the other hand, the GRAPE
algorithm which is also based on the PMP is a purely numerical approach for solving the
optimization equations. In the different computations, a very good agreement is obtained
between the geometric and GRAPE results. The relative advantages and disadvantages
of the two approaches are discussed. Finally, I implement experimentally the optimal
solutions in the energy minimization case by using techniques of NMR.

3.2 Methodology

3.2.1 Model system

The control of the magnetization of a spin 1/2 particle, whose dynamics is governed by
the Bloch equation, is considered. Starting from the equilibrium point of the dynamics
which corresponds here to the north pole of the Bloch ball, the goal of the control is
to reach its center in minimum time (with a maximum bound on the control field) or
in fixed time but in minimizing the energy of the field. In this latter case, there is no
bound on the control field but the maximum amplitude can be adjusted by changing

7
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the control duration, assuming that the transverse magnetic field is resonant with the
frequency of the spin. In this case, it can be shown that the optimal solution can be
restricted to a control field in only one direction and that the spin dynamics is confined
in a plane [16–20]. With this hypothesis, the Bloch equation is reduced for a control
field ωx along the x- direction to:

(

Ṁy

Ṁz

)

=

(

−My/T2

(M0 −Mz)/T1

)

+ ωx

(

−Mz

My

)

, (3.1)

whereMy andMz are two components of the magnetization vector ~M ,M0 is the value
of the equilibrium magnetization and T1 and T2 are two characteristic times describing
respectively the longitudinal return to the equilibrium and the transverse relaxation of
the magnetization. By introducing the normalized coordinates ~X = ~M/M0 = (y, z), the
Bloch equations are rewrited as follows:

~̇X = ~F0( ~X) + u~F1( ~X), (3.2)

where ~F0 = (−Γy, γ(1 − z)) and ~F1 = (−z, y). In (3.2), the normalized control is
u = 2πωx/ωmax and a normalized time which is defined by t̃ = ωmaxt/(2π) is used.
The tilde label of the time t has been omitted in the following of the chapter when
confusion is unlikely to occur. The dissipative parameters become Γ = 2π/(wmaxT2)
and γ = 2π/(wmaxT1). The parameter ωmax denotes for the time-minimum problem the
control bound in the original coordinates and is just a characteristic value of the control
in the case of the energy minimization problem.

3.2.2 Geometric approach

The optimal control problem can be solved by using the PMP with the constraint of
minimizing the duration of the control or its energy. For the time minimum cost, |u| ≤ 2π
is applied, while there is no restriction on the field if the cost minimizes the energy. The
PMP is formulated from the pseudo-Hamiltonian HP [21–24] which can be written as
follows:

HP = ~P · (~F0( ~X) + u~F1( ~X)) + p0f0(u(t), (3.3)

where ~P = (py, pz) is the adjoint state and p0 a negative constant such that ~P and p0 are
not simultaneously equal to 0. The cost C is related to the function f0 via the relation

C =
∫ T

0
f0(u(t))dt, where T is the control duration. In the energy minimization and

time-minimum cases, this gives respectively

C =

∫ T

0

u(t)2dt = E, (3.4)

and

C =

∫ T

0

dt = T, (3.5)

E being the energy of the control field. The PMP states that an extremal solution of
the problem which is candidate to be optimal is given by the Hamiltonian equations

Ẋ =
∂HP

∂ ~P
, Ṗ = −∂HP

∂ ~X
(3.6)

where the control field is given by the maximization condition

H( ~X, ~P ) = max
u(t)

HP ( ~X, ~P , u). (3.7)
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Since the way to solve the maximization condition depends on the cost considered,
let’s first begin the description with the time-minimum problem [15]. In this case,

this condition can be written as max|u(t)|≤2π[~P · u(t)~F1]. Introducing the switching

function [21–24] φ = ~P · ~F1 = −pyz+ pzy, in the regular case the maximization involves

a control of maximum amplitude called bang such that u = 2π × sign[φ( ~X, ~P )] when

φ( ~X, ~P ) 6= 0. If φ vanishes in an isolated point, the control field switches from ±2π
to ∓2π, while the control is said singular if φ is zero in a time interval [t0, t1]. In this
latter case, using the fact that φ and its derivative vanish, the singular control us can be
determined as follows. Denoting φ̇ = ~P · ~V with ~V = (−γ − δγz,−δγy) and δγ = Γ− γ,

the singular set is defined as the set where the vectors ~F1 and ~V are collinear. After
few computations, the singular set is the union of the two lines of equation y = 0 and
z0 = −γ/(2δγ). To define the control on this singular set, the second derivative of φ is

computed and us = 0 on y = 0 and us =
γ(γ−δγ)
2δγy on z = z0 are found.

For the energy-minimization problem, the Hamiltonian HP becomes HP = ~P · (~F0 +

u~F1)+ p0u
2 where the constant p0 can be normalized to −1/2 in the normal case and is

equal to 0 in the singular or abnormal one. Since there is no constraint on the control
field, the maximization condition leads to

∂HP

∂u
= 0, (3.8)

which gives the following relation in the normal case

u = ~P · ~F1. (3.9)

Plugging the expression of u into the Hamiltonian HP , one obtains the true Hamiltonian
H( ~X, ~P ):

H = ~P · ~F0 +
1

2
(~P · ~F1)

2. (3.10)

In the normal situation, the extremal solutions of the PMP are the Hamiltonian traject-
ories of H. In the abnormal case, the maximization condition involves that ~P · ~F1 = 0
and remains equal to zero on a given time interval. This case constitutes the strict
analog of the singular situation in the time-minimum control problem. In particular,
the singular set and the corresponding singular controls are the same. However, while
it can be shown that singular extremals are optimal in the time-minimal case [11], it
is shown in [20] that the optimal solution of the saturation problem is regular in the
energy minimization problem, the abnormal extremals therefore playing no role.

The last step of this approach is to solve the shooting equation. This means that the
initial adjoint state has to be determined ~P (0) = (py(0), pz(0)) such that the correspond-

ing projection ~X(t) of the Hamiltonian trajectory ( ~X(t), ~P (t)) reaches the target state
(here the center of the Bloch ball) at time t = T . This can be done with a straightfor-
ward numerical resolution using Newton methods and the Hamiltonian of Eq. (3.10) for
the energy case. For the time-minimum cost, the structure of the control field, i.e. the
way the different regular and singular parts of the control are glued together, has first
to be determined from a geometric analysis [11, 15]. Since there is no global expression
for the Hamiltonian of the system in this case, different shooting equations for each arc
of the optimal solution have to be solved.

3.2.3 GRAPE algorithm

This section presents the numerical optimization GRAPE algorithm. Optimal control
theory with the GRAPE algorithm has been described in Chapter 2 and in detail else-
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where [6, 25–29]. Here the main theoretical aspects are summarized and the necessary
modifications associated with time-minimum and energy-minimum cases are introduced.
As described above, the spin system in normalized coordinates is consider. The optimal
control problem is formulated from the PMP, i.e. via the pseudo-Hamiltonian HP given
by

HP = ~P · (~F0 + u~F1) + p0f0(u(t)) (3.11)

and the cost functions Φt and ΦE for the time and energy cases, respectively. The
parameter p0 and the function f0 have the same definition as for the GM, but only the
regular situation is considered in the algorithm. The performance index Φ can be defined
flexibly for different applications. In the current situation, where the target state is the
center of the Bloch ball, the cost function can be chosen as

Φt =
√

y2 + z2. (3.12)

For the energy minimization problem, an additional cost is introduced to minimize the
energy of the whole pulse:

ΦE =
√

y2 + z2 + α

∫ T

0

u(t)2dt (3.13)

where α is a weight of the penalty imposed to minimize the energy. There is always
a compromise between the overlap of the final state to the target state and the energy
minimization for the pulse by choosing different values of α. The larger the parameter
α is, the worse the overlap but the better the energy minimization is. To guarantee a
reasonable overlap of the final state to the target state, a relative small value of α should
be used.

The extremal solutions are given by the Hamiltonian equations ~̇X = ∂HP

∂ ~P
for the

state and ~̇P = −∂HP

∂ ~X
for the adjoint state with the parameters (p0 = −1, f0 = 1)

and (p0 = −1/2, f0 = αu2(t)) respectively for the time and energy cases. The optimal

control also satisfies the initial condition ~X(0) at the beginning of the pulse, and the

final condition ~P (T ) = p0
∂

∂ ~X
[
√

y2 + z2] required at the end of the pulse. The gradients

∂HP /∂u = ~P · ~F1 for the time-minimum case and ∂HP /∂u = ~P · ~F1 − αu(t) for the
energy minimization problem are computed at each step of the algorithm to indicate
how each control field u(t) should be modified in the next iteration to improve the cost
function Φ. In this version of the GRAPE algorithm, there is no bound on the control
and the control duration is fixed. In the time-minimum case, at each iteration the
control field is cut with a maximum amplitude equal to the bound. The computations
are done for different control durations. The value of the cost function Φt increases as
the duration increases but with slower and slower rate (see Fig. 3.1 for an example).
Therefore, at a certain control duration, the pulse performance is saturated and the cost
Φt of this control duration is regarded as the time minimum cost. From a numerical
point of view, normally 10-20 control durations are considered to search the area where
the duration of the time minimum pulse is located and another 5-10 control durations
are used to finalize the computation. To expedite the convergence process, different
approaches like the steepest descent method, conjugated gradient method [30] or BFGS
method [9, 10,31,32] can be adopted.
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Figure 3.1: Evolution of the cost function Φt (crosses) generated by numerical optimization with the
GRAPE algorithm as a function of the control duration (see the text for the definition of Φt). The
solid line is just to guide the eye. Numerical parameters correspond to the first case of Sec. 3.3.1. The
vertical dashed line indicates the value of the limit time T for which Φt → 0 (see the text).

3.3 Time minimization case

3.3.1 Numerical results

This section presents the results of the time-minimum problem. The first example used
for illustration is defined by the relaxation parameters γ−1 and Γ−1 (expressed in the
normalized time unit defined above) of 23.9 and 1.94, respectively and M0 ≈ 2.15×10−5.
Note that the value of M0 is irrelevant for the control problem. The optimal control
law with an intuitive one used in NMR are compared. The intuitive solution, the so-
called inversion recovery (IR) sequence [13,14], is composed of a bang pulse to reach the
opposite point of the initial state along the z- axis followed by a zero control where the
dissipation acts up to the center of the Bloch ball. The optimal and the IR solutions
are plotted in Fig. 3.2. Geometric tools allow to show that the optimal control is
the concatenation of a bang pulse, followed successively by a singular control along the
horizontal singular line, another bang pulse and a zero singular control along the vertical
singular line. Figure 3.2 displays also the switching curve which has been determined
numerically by considering a series of trajectories with u = +2π originating from the
horizontal singular set where φ = 0. The points of the switching curve correspond to
the first point of each trajectory where the switching function vanishes. The second
bang pulse of the optimal sequence does not cross the switching curve up to the vertical
singular axis. In this example, a gain of 58% is obtained for the optimal solution over
the intuitive one, which clearly shows the importance of singular extremals.

Figure 3.3 displays the evolution of the optimal solution and of the intuitive one
when the maximum amplitude of the control field varies. The ratio between the two
control durations Topt and TIR is also plotted as a function of ωmax/2π. For low values
of ωmax, the optimal pulse and the IR sequence are very similar and the ratio is close
to 1. Note that for ωmax/2π ≤ 2.7, the target state cannot be reached from the initial
point so the ratio cannot be defined. A rapid decrease of this ratio is observed when
ωmax increases showing the crucial role of the horizontal singular line. The gain tends
asymptotically to a constant value when ωmax → +∞ for fixed values of T1 and T2. In
this limit, the duration of the different bang controls is neglected. Using the relation
ωs = ωmax

2π us = T2−2T1

2T1(T1−T2)y
, one obtains by a direct integration of the Bloch equation
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Figure 3.2: Plot of the optimal trajectories (black curve) and of the inversion recovery sequence
(grey curve) in the plane (y, z) for T1 = 740 ms, T2 = 60 ms and ωmax/(2π) = 32.3 Hz. The
experimentally measured trajectories are represented by filled squares and open diamonds, respectively.
The corresponding control laws are represented in the lower panel. In the upper panel, the small insert
represents a zoom of the optimal trajectory near the origin. The dotted line is the switching curve
originating from the horizontal singular line. The vertical dashed line corresponds to the intuitive
solution. The solid black curve is the optimal trajectory near the origin.
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Figure 3.3: (top) Ratio Topt/TIR as a function of ωmax/(2π). The horizontal line indicates the
position of the limit ratio when ωmax → +∞. (bottom) Optimal trajectories (left part) and the
inversion recovery sequences (right part) for four values of ωmax/(2π). The vertical lines of the top
panel correspond to the four solutions of the bottom panel. The solid curve is the case considered in
Fig. 3.1. The different values of ωmax/(2π) are taken to be 2.7, 7, 32.3 and 1000 Hz. The black dot and
the cross represent respectively the positions of the initial and final points. The small arrows indicate
the way the trajectories are traveled.
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Figure 3.4: Contour plot of the function dṙ/dθ as a function of y and z. The solid lines represent
the set of zeros of dṙ/dθ or the singular set S (see the text). The time-minimum and time-maximum
singular lines are plotted respectively in black and red (light gray).
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that

Topt →ωmax→+∞
T2

2
log(1− 2

αT2
) + T1 log(

2T1 − T2

2(T1 − T2)
),

TIR →ωmax→+∞ T1 log 2,

where α = T2(T2−2T1)
2T1(T1−T2)2

, which leads to a limit ratio of 0.389.

Physical interpretation of the optimal control strategy. In the example considered,
the role of singular extremals can be physically interpreted in light of the dissipation
effects. We introduce the polar coordinates (r, θ) such as y = r cos θ and z = r sin θ. A
straightforward computation then leads to:

ṙ = −(Γ cos2 θ + γ sin2 θ)r + γ sin θ,

dṙ/dθ = −(γ − Γ)r sin(2θ) + γ cos θ.

One immediately sees that the control field u cannot modify the radial velocity but
only the orthoradial one θ̇. To reach in minimum time the center of the Bloch ball, the
idea is then at each time to be on the point where |ṙ| is maximum for a fixed value
of the radial coordinate r. The singular control us is determined so that the dynamics
stays on the line of maximum variation of the radius r. In other words, this means that
the set of solutions of the equation dṙ/dθ = 0 is exactly the set S. One deduces that
the strategy of the optimal control can be thought of as follows. A first bang pulse is
applied to the system to reach the horizontal singular line. The radius r is then optimally
reduced along this curve as long as the control field satisfies the constraint of the control
problem. The local optimality of this line can be recovered by showing that the points
of this set are associated to maxima of the function |ṙ|(r, θ) for r fixed. When the limit
of admissibility is attained, a new bang pulse is applied to reach the vertical singular
line in a region where this set is optimal.

3.3.2 Comparison of the analytical and the numerical results

Figure 3.5 displays a comparison between the geometric and the GRAPE solutions
for two different sets of dissipative parameters. Very good and similar results have
been obtained in the two cases. Unlike the geometric solution, the GRAPE control
field is smooth by construction since in the GRAPE method the singular control is not
implemented. The GRAPE solution is for instance very close to the horizontal singular
set but does not reproduce the second bang pulse. For the first pulse in Fig. 3.5a, the
final cost function obtained from the geometric solution is Φt = 1− 5.34× 10−16 while
the cost function obtained from the GRAPE optimization is 1− 2.25× 10−13. A similar
result is found for the second pulse in Fig. 3.5b in which Φt = 9.88 × 10−15 for the
geometric solution and 1− 6.13× 10−8 for the GRAPE one.

Using the results of Fig. 3.1, one can have an estimation with the GRAPE algorithm
of the control duration as the limit of the time T when Φt → 1 [33]. One get T = 6.60
(T = 204.3 ms) which is similar but larger than the value obtained with the GM,
T = 6.58 (T = 203.7 ms).

At this point, some details have to be given about the numerical computations. The
geometric results have been obtained by solving the Bloch equation with Runge-Kutta
methods (5.105 points are used in this propagation), the control field being determined
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Figure 3.5: (top): Evolution of the magnetization vector in the (y, z)- plane for the numerical (solid
line) and the geometrical solutions (dashed line). In the left part of the figure, the green (light gray)
and blue (dark gray) trajectories correspond to T1 = 740 ms and T2 = 60 ms, while the red (dark gray)
and black trajectories correspond to T1 = 740 ms and T2 = 246 ms in the right part of the figure.
The bottom panel displays the corresponding control fields for (a) the left trajectories and (b) the right
trajectories.
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as a continuous function from the PMP. However, the field implemented experimentally
by NMR spectrometers is not continuous but piecewise constant. Therefore one has
to discretize the solution over a finite number of points to simulate a realistic NMR
experiment. Since the time-optimal solution is a concatenation of different regular and
singular arcs whose duration does not have a common divider, a discretization with a
constant step size cannot reproduce exactly the continuous optimal sequence leading thus
to smaller costs. One get a cost Φt equal respectively to 1−1.71×10−3 and 1−5.70×10−3

in the first and second examples when using 5000 points in the discretization. Note that
a better accuracy can be reached with an adaptative step size depending upon the nature
of the arc, which requires however some informations about the structure of the control
field. The GRAPE algorithm does not encounter such a problem since it optimizes
only the discretized values of the control field. From an experimental perspective, the
accuracy of the GRAPE solution is therefore better but it depends on the number of
points used in the discretization, which is not the case for the geometric control field.

3.3.3 Experimental application

Both the analytical and the IR pulse sequences of Figure 3.2 were implemented exper-
imentally on a Bruker Avance 250MHz spectrometer with linearized amplifiers. The
experiments were performed using the proton spins of H2O. The sample consists of 10%
H2O, 45% D2O and 45% deuterated Glycerol, saturated with CuSO4. At room temper-
ature (298 K) the relaxation times were T1 = 740 ms, T2 = 60 ms, which correspond
to the unitless values given above for ωmax/(2π) = 32.3 Hz. For this value of ωmax,
the duration of the intuitive IR sequence is 478 ms, whereas the optimal sequence has a
duration of only 202 ms. The experimentally measured trajectories of the Bloch vector
are also shown in Fig. 3.2 for the optimal sequence (filled squares) and the IR sequence
(open diamonds). The reasonable match between theory and experiment confirms that
the complex pulse sequences required for optimization can be implemented with modern
NMR spectrometers.

3.4 Energy minimization case

3.4.1 Numerical results

The same work has been done in this section for the energy minimization case. In
[20], the singular extremals play no role in this problem, so only regular extremals are
considered in the following of the chapter.

The results of the geometric and the GRAPE solutions for the energy minimization
problem are also very comparable. Table 3.1 (top) lists the comparison of the two
methods for one set of relaxation constants (T1 = 740 ms, T2 = 60 ms) but with
different control durations. Three cases are illustrated here, K = 1.1, 1.5, and 2, where
K is defined as the ratio of the control duration used in the energy minimization (TE)
with that of the time minimization (Tt) in the GM. Note that the energy used by the
geometric solution is lower than for the GRAPE one in particular for values of K close
to 1. Figure 3.6 displays the optimal trajectories of the magnetization vector and the
corresponding control fields for these three durations. In Table 3.1 (bottom), the control
fields are optimized for different T1 and T2 values and the result are still comparable. In
the GM column, the distance to the target with Runge-Kutta methods are indicated.

Next the structure of the control field is analyzed. Figure 3.7 shows that the energy
of the control field decreases as the control duration increases, but becomes infinite when
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Figure 3.6: (top) Evolution of the magnetization vector in the (y, z)- plane. The solid line corresponds
to the geometric solution and the dotted line to the numerical computations with the GRAPE algorithm.
Numerical values are taken to be K = 1.1 in red (dark gray), K = 1.5 in green (light gray) and K = 2
in blue (black). The bottom panel represents the corresponding control fields.
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T tends to the minimum time of the control [11]. This behavior can be understood from
the time-optimal solution. When there is no bound on the control, the control duration
is limited intrinsically by the dissipative parameters of the system [11]. The two bang
pulses of the optimal sequence have an infinite amplitude but an instantaneous duration
and therefore a negligible energy. The singular arc along the vertical singular line has
also a zero energy since the corresponding control field is equal to 0. The horizontal
singular arc requires however an infinite energy to be followed. This can be shown as
follows. The energy E of the singular arc can be expressed as:

E =

∫ t1

t0

ωs(t)
2dt =

∫ 0

−
√

1−z2

0

ωs(y)
2 dy

ẏ
, (3.14)

where

ωs =
ωmax

2π
us =

T2 − 2T1

2T1(T1 − T2)y
(3.15)

is the singular control in the original coordinates. In Eq. (3.14), t0 and t1 are the initial
and final times along the arc. In a neighborhood of y = 0, ẏ = −Γy−usz0 is of the order
of −usz0 since us scales as 1/y. One deduces that the integrand of Eq. (3.14) scales also
as 1/y and that E has a logarithmic divergence when y → 0. One can conclude that the
limit of the energy of the control pulse is infinite in the time-minimum case when the
bound of the control goes to infinity.

Figure 3.7 shows that a minimum pulse energy appears when the time increases.
This limit is due to the fact that this minimum is reached for a given finite time. For
longer durations, the control field has almost the same shape but shifted in time. This
behavior is confirmed by the results of Fig. 3.8 where the solid line represents the
maximum amplitude of the control field as a function of the control duration. The
maximum amplitude tends to a constant value when T increases. The position of this
maximum T (max(u)) is represented in the same figure by the dashed-dotted line. It can
be checked that T (max(u)) varies linearly with T for T sufficiently large. Finally, note
that a compromise between the minimization of the energy and of the control duration
can be found as displayed in Fig. 3.7. It can be shown that the product T × E(T )
admits a minimum for a finite time.

Methods GRAPE GM GRAPE GM GRAPE GM

K 1.1 1.5 2
Energy 3.1876 3.1272 1.8967 1.8963 1.8789 1.8781
Distance 5.37× 10−12 1.85× 10−12 1.51× 10−12 4.99× 10−13 3.24× 10−12 8.18× 10−13

δγ 0.4742 0.2373 0
Energy 1.8780 1.8798 1.3034 1.3031 0.5879 0.5881
Distance 4.22× 10−11 1.34× 10−14 1.16× 10−11 6.05× 10−14 4.75× 10−11 3.68× 10−14

Table 3.1: (Top) Comparison of the geometrical (GM column) and numerical (GRAPE column)
methods for different values of the control duration K = Te/Tt = 1.1, 1.5 and 2. (Bottom) Comparison
of the two methods for different values of δγ with fixed K = 10. The parameter δγ is defined as
2π/ωmax(T1 − T2)/T1T2. The length D =

√

y2 + z2 is the distance to the center of the Bloch ball.
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Figure 3.7: (Left vertical axis-solid line) Evolution of the energy of the control field as a function of
the control duration. (Right vertical axis-dashed line) Evolution of the product T ×E(T ) as a function
of T .
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Figure 3.8: (Left vertical axis-solid line) Evolution of the maximum of the absolute value of the
control field as a function of the control duration. (Right vertical axis-dashed-dotted line) Evolution of
the position of the maximum of the amplitude of the field as a function of the control duration.
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3.4.2 Experimental application

This section presents experimental data for K = 1.1 in the energy minimization problem
where ωmax/2π = 113.8 Hz. For this case, the optimal pulse with minimum enegy
derived using the GM is shown in Fig. 3.7a and was experimentally implemented on
a Bruker Avance 600MHz spectrometer with linearized amplifiers. The experiments
were performed using the 1H spins of HDO. The sample consisted of 70% D2O and
30% deuterated glycerol, saturated with CuSO4. At room temperature (298K), the
relaxation time constants are T1 = 210 ms, T ∗

2 = 17 ms and T2 = 22 ms (as determined
from CPMG-experiment [34, 35]). A simulation shows that very similar trajectories
are obtained when using T ∗

2 = 17 ms (with 1/T ∗
2 = 1/T2 + π∆uinhomo = 58.8, where

∆uinhomo ≈ 4 Hz, contributes to the full width at half height of a lorentzian shaped
B0 inhomogeneity distribution) or T2 = 17 ms (assuming negligible B0 inhomogeneity).
The optimal sequence has a duration of 63 ms. In order to determine the experimental
y and z components of the trajectory ~X(t), the pulse shape was interrupted at time t.
The y- component was then measured directly, while the z- component was isolated by
dephasing the transverse magnetization components using a sine shaped magnetic field
gradient with a duration of 0.2 ms and measured after bringing it to the transverse plane
using a π/2 pulse. The experimentally measured trajectory of the Bloch vector is shown
in Fig. 3.9. The reasonable match between theoretical and experimental curves confirms
that such kind of trajectories can be implemented with modern NMR spectrometers.
However, due to the experimental accuracy which is of the order of few percents, one
sees that the geometric and the GRAPE solutions are equivalent and cannot be clearly
distinguished from this experimental result.
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y
−1 −0.5 0 0.5

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.9: Plot of the geometric (blue or dark-gray) and the GRAPE (red or light-gray) optimal
trajectories in the energy minimization problem for K = 1.1. The experimentally measured points are
represented by black crosses.

3.5 Summary

Hoping that these different examples of applications of optimal control theory to spin
systems in NMR will motivate a systematic investigation of these aspects in quantum
control. As a first example, the optimal control of the saturation of a dissipative spin
1/2 particle is analyzed. In this context, an open question is the generalization of the
geometric methods to more complex quantum systems having for instance four or eight
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levels or corresponding to two or three spin systems in interaction [36–38]. The com-
plexity of such systems renders difficult the direct resolution of the shooting equation,
i.e. the computation of the initial adjoint state. The determination of the optimal con-
trol law will require a more extensive numerical analysis than the one presented in this
chapter. A possible solution could be the use of a coupling between purely numerical
algorithms and GM. Numerical methods such as the GRAPE algorithm could be used
as a first step allowing to give an accurate approximation of the initial adjoint state. In
each situation, a geometric analysis will be however necessary to understand the role
and the optimality of singular extremals.
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Chapter 4

Pulse optimization for single
spin 1/2 with relaxation and
radiation damping effect

4.1 Introduction

This chapter is a part of article [39] (collaboration with the research group of Prof. D.
Sugny in Dijon, France). It can be seen as an extended work of Chapter 3, focusing on
the time-optimal control of an ensemble of uncoupled spin 1/2 particles in the presence
of relaxation and radiation damping effects whose dynamics is governed by non-linear
equations generalizing the standard linear Bloch equations.

This chapter is motivated by the desire to systematically use optimal control theory
to control the dynamics of spin systems [40]. In chapter 3 both the time-optimal control
and the energy minimization problem of a dissipative single spin 1/2 obeying the Bloch
equations [11,12] are investigated. Here In this chapter the more general case is analyzed,
where radiation damping effects [41–46] are included, resulting in additional non-linear
terms in the equation of motion. Radiation damping is a result of the reaction field
created by the current induced in the receiver coil. For example in liquid state NMR
experiments with large solvent signals or in experiments with hyperpolarized nuclear
spins, it is well known that radiation damping effects play an important role.

4.2 Model system

To illustrate our study, considering one of the basic control problems in NMR, that is
the saturation problem which consists in vanishing the magnetization vector of a sample
in minimum time by using an adequate pulse sequence [11, 13, 14]. Both the cases of a
homogeneous and of an inhomogeneous ensemble of uncoupled spin 1/2 particles with
different resonance offsets are analyzed. In the rotating frame, the equation of motion
for a homogeneous ensemble irradiated on resonance is given by [41,45]





Ṁx

Ṁy

Ṁz



 =





ωyMz

−ωxMz

ωxMy − ωyMx



+





−Mx/T2

−My/T2

(M0 −Mz)/T1
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+
1

M0Tr





−MxMz

−MyMz

M2
x +M2

y



 , (4.1)

where the Bloch vector (Mx, My, Mz)
t represents the state of the system. The first

term on the right hand side represents the effect of the control amplitudes ωx and ωy.
The second term corresponds to the longitudinal and transverse relaxation rates T−1

1

and T−1
2 . The last term is associated to the effect of radiation damping and is non-linear

in the components of the Bloch vector. The radiation damping constant Tr depends on
the rf coil filling factor and the rf circuit figure of merit [41, 45]. M0 is the magnitude
of the Bloch vector at thermal equilibrium. In the case of an inhomogeneous ensemble
with different resonance offsets ω, each isochromat is characterized by a Bloch vector
M(ω) =(Mx(ω), My(ω), Mz(ω))

t. The transverse magnetization components of the
isochromats are collectively coupled to the rf coil to produce a unique reaction field,
resulting in [46]





Ṁx(ω)

Ṁy(ω)

Ṁz(ω)



 =





−ωMy(ω) + ωyMz(ω)
ωMx(ω)− ωxMz(ω)
ωxMy(ω)− ωyMx(ω)





+





−Mx(ω)/T2

−My(ω)/T2

(M0 −Mz(ω))/T1





+
1

M0Tr





−MxMz(ω)
−MyMz(ω)

MxMx(ω) +MyMy(ω)



 . (4.2)

The average Bloch vector for the entire inhomogeneous ensemble is denoted:

M = (Mx,My,Mz)
t =

∫ +∞

ω=−∞

g(ω)M(ω)dω (4.3)

where g(ω) is a weighting function specifying the relative weight of the magnetization
vectors M(ω). In the following, I approximate the experimental weighting function g(ω)
by a simple Lorentzian distribution of the form:

g(ω) =
∆ωL

ω2 + (∆ωL/2)2
(4.4)

where ∆ωL is the full width at half height of the distribution. The chapter is organized
as follows. In Sec. 4.3, the time optimal control of a homogeneous ensemble of dissipative
spin 1/2 particles in the presence of radiation damping [c.f. Eq. (4.1)] is established using
tools of geometric optimal control theory. In Sec. 4.4, the effect of this control field is
simulated for a more realistic inhomogeneous ensemble in the presence of static magnetic
field inhomogeneities, resulting in a distribution of offsets ω [c.f. Eq. (4.2)]. In Sec. 4.5,
the optimal control problem for the inhomogeneous ensemble is solved numerically using
the GRAPE algorithm [47]. The optimal trajectories are implemented experimentally
using liquid state NMR techniques. A summary of the results is presented in Sec. 4.6.
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4.3 Time optimal control of a homogeneous ensemble

This section briefly summarizes the geometric tools needed to solve the optimal control
problem for a homogeneous ensemble of spins. This analysis is based on the application
of the Pontryagin Maximum Principle (PMP). The reader is referred to [16–20] for a
more complete and mathematical presentation of this problem and to standard textbooks
for a review of the PMP [15].

Here considers a homogeneous ensemble irradiated on resonance. Using the sym-
metry of revolution of the system around the z-axis, it can first be shown that without
loss of generality, the problem can be restricted to only one control field. In the following
of the chapter, one assumes that ωy = 0 which implies that the x- coordinate of the
magnetization vector is not coupled to the others. Introducing the normalized coordin-
ates Y = My/M0 and Z = Mz/M0, the dynamics which takes places in the (Y,Z)- plane
is ruled by the following equations:

Ẏ = −ωxZ − Y/T2 − Y Z/Tr

Ż = ωxY + (1− Z)/T1 + Y 2/Tr

. (4.5)

The goal of the control is to bring the magnetization vector from the north pole of the
Bloch ball to its center in minimum time with the constraint |ωx| ≤ ωmax on the field.
The application of the PMP leads to the introduction of the pseudo-Hamiltonian H
defined by

H = PyẎ + PzŻ (4.6)

where (Py, Pz) are the components of the adjoint state. The PMP states that the optimal
trajectories are solutions of the system

Ẏ =
∂H
∂Py

; Ż =
∂H
∂Pz

Ṗy = −∂H
∂Y

; Ṗz = −∂H
∂Z

where the optimal control is determined from the maximization condition max|ωx|≤ωmax

H(Y, Py, Z, Pz, ωx) and the final Hamiltonian satisfies H ≥ 0. The standard way to
handle the maximization condition is to introduce the switching function Φ = −PyZ +
PzY . It is straightforward to see that in the regular case where Φ is different from
0 or vanishes in an isolated point, the corresponding control field is given by ωx =
ωmaxsign[Φ]. When Φ vanishes, the field switches from ±ωmax to ∓ωmax. In the singular
case where Φ is zero in a time interval, the situation is more involved. In particular, one
has Φ̇ = Φ̈ = 0 on this interval. A straightforward computation leads to

Φ̇ = Py

(

T2(Z − 1)− T1Z

T2T1
− Z2

Tr

)

+ PZ

(

1

Tr

Y Z +
T2 − T1

T1T2
Y

)

. (4.7)

The conditions Φ = 0 and Φ̇ = 0 are compatible only on the singular set S which is
the union of the two lines of equations Y = 0 and Z = Z0 = T2/[2(T2 − T1)]. On the
set S, the dynamics is controlled by singular fields ωx,s which are determined from the

condition Φ̈ = 0. One arrives at ωx,s = 0 for the vertical line and

ωx,s =
1

2T1

(

T2 − 2T1

T1 − T2

)

1

Y
− Y

Tr

(4.8)

for the horizontal one. Note that this singular control depends on the radiation damping
parameter Tr, while it is not the case for the two singular lines. The extremal trajectories
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constructed from the PMP are finally concatenations of regular and singular arcs. The
crucial point is however that not every extremal is optimal and other tools have to be used
to get optimality results [16–20]. For the saturation problem of this chapter, it can be
shown that the optimal solution is the succession of a regular arc of maximum amplitude
to reach the horizontal singular line, followed by a singular arc along this latter line up
to the point of coordinates (Y0, Z0). At this point, a new regular arc is used to reach
the vertical singular line where a zero control brings the dynamics towards the target
state. Note that here the radiation damping has only a smooth effect on the optimal
solution in the sense that it does not change its structure. A detailed construction of
this solution and a proof of its optimality can be found in [11] and [16–20].

The optimal and the Inversion Recovery (IR) solutions [13,14] are plotted in Fig. 4.1
for a set of experimentally relevant parameters. The IR sequence, which is a standard
NMR technique to saturate a spin, is composed of a bang pulse to invert the direction
of the spin and a zero control along the vertical axis to reach the target state with
the relaxation. The control durations are equal to 127.14 ms for the optimal sequence
and to 979.22 ms for the IR one. The center of the Bloch ball is reached with an
accuracy better than 10−15 in this case. The comparison between the optimal and the
IR sequences allows to highlight the importance of determining the time-optimal solution
in such a spin system.
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Figure 4.1: Plot of the optimal trajectories (green or gray curve) and of the inversion recovery
sequence (blue or dark gray curve) in the plane (Y, Z) for T1 = 2000 ms, T2 = 23 ms, Tr = 13.7 ms and
ωmax = 2π× 32.3 Hz. Numerical computations lead to Y0 = −3.3955× 10−3 and Z0 = −5.8169× 10−3

for the point where the dynamics leaves the singular line. The corresponding control laws are represented
in the lower panel.
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4.4 Dynamics of inhomogeneous ensembles

Considering experimental implementations of the optimal trajectories, it is important
to distinguish homogeneous and inhomogeneous ensembles. In the absence of radiation
damping, the line width (full width at half height) of a homogeneous ensemble of spins
with identical resonance frequencies, is given by ∆ωhom = 2/T2 and for an ensemble with
a Lorentzian distribution g(ω) (c.f. Eq. (4.3) and Eq. (4.4)) of resonance frequencies
with width ∆ωL, the inhomogeneous line width is given by ∆ωinh = ∆ωhom + ∆ωL.
This corresponds to an observed time constant T ∗

2 = 2/∆ωinh for the exponential decay
of transverse magnetization in a free induction decay (FID) without radiation damping.
Hence, an experimentally determined line width ∆exp is consistent with a wide range of
possible values of T2 and ∆ωL. However, the value of T2 can be independently determ-
ined using standard spin echo experiments, in which the effect of different resonance
frequencies is refocused [48].

In the presence of radiation damping, the situation is more complicated as radiation
damping leads to additional line shape distortions and a non-exponential decay of the
FID. We experimentally determined T2 using a train of 180◦ refocusing pulses (CPMG
sequence) [34, 35], which not only cancels offset terms ω but also radiation damping
effects [49]. Assuming a Lorentzian distribution function g(ω) (c.f. Eq. (4.4)), I determ-
ined the width ∆ωL and the radiation damping constant Tr by fitting the experimentally
measured trajectories of the average magnetization vector M (c.f. Eq. (4.3)) for differ-
ent initial points to simulate trajectories using Eq. (4.2). In our simulations, a weighted
distribution of the isochromats M(ω) was considered and was digitized in N = 61 steps
for offsets −30 Hz≤ ω/(2π) ≤ 30 Hz. For each isochromat M(ωk), the evolution was
calculated based on Eq. (4.2). Starting at thermal equilibrium, three different initial
points were prepared in the different experiments, using a hard pulse with flip angle
of 45◦, 90◦, or 135◦. The value of T1 was measured independently by observing the
buildup of longitudinal magnetization after saturation [50]. In order to determine the
experimental y and z component of the trajectory M, the pulse shape was interrupted
at time t. The y component was then measured directly. The z component was meas-
ured in a second experiment. It was isolated by dephasing the transverse magnetization
components using a sine shaped magnetic field gradient with a duration of 0.2 ms and
measured after bringing it to the transverse plane using a π/2 pulse.

The experiments were performed using a Bruker Avance 600MHz spectrometer with
linearized amplifiers and a TXI 5mm probe with z- gradient and the proton spins of
H2O were measured. In order to create conditions, where Tr and T2 are of comparable
magnitude, I prepared a sample consisting of 70% H2O, 20% deuterated glycerol and 10%
D2O, saturated with CuSO4. A Shigemi tube (with magnetic susceptibility matched for
H2O) with a diameter of 5 mm and a sample height of about 1 mm was used to achieve
a relatively homogeneous rf field, allowing us to neglect effects of rf inhomogeneity. At
room temperature (298K), the measured time constants were Tr = 13.7 ms, T2 = 86 ms
and T1 = 2 s. The width ∆ωL of the distribution function g(ω) was determined to be
∆ωL = 2π × 10.1 Hz. This relatively large inhomogeneity of the static magnetic field
is a result of the sample geometry and incomplete match of the magnetic susceptibility
of the sample tube, and of practical limitations of magnetic field shimming due to the
large relaxation rates and the strong radiation damping effect. This inhomogeneity has
a significant effect on the experimental trajectories and has to be taken into account in
order to achieve a reasonable match between experimental and simulated trajectories.

A naive approach would be to approximate the inhomogeneous ensemble by a homo-
geneous ensemble with an effective transverse relaxation time T ′

2 = T ∗
2 = 23 ms, where
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Figure 4.2: Trajectory of the average magnetization vectors for the optimal pulse derived in section
4.3 and applied to a homogeneous ensemble of spin 1/2 (red or grey curve) and an inhomogeneous
ensemble (black curve).
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Figure 4.3: Trajectory for the optimal control (black curve) and the conventional inversion recovery
(IR) pulse (grey or red curve) for the inhomogeneous ensemble. Experimentally measured trajectories
are also shown for the optimal sequence (diamond) and IR sequence (square).
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T ∗−1
2 = T−1

2 + ∆ωL/2. However, this does not provide an accurate representation of
the spin dynamics in the presence of pulses and/or radiation damping due to spin-lock
effects [48]. This is illustrated in Fig. 4.2, which shows the optimal trajectory derived in
Sec. 4.3 for a single spin (corresponding to a homogeneous ensemble) with an effective
transverse relaxation time T ′

2 = 23 ms (red or grey curve). The black solid curve shows a
realistic simulation for an inhomogeneous ensemble with the experimentally determined
parameters given above. The two trajectories are similar but obviously not identical, as
expected. In particular, the length of the final magnetization vector of the inhomogen-
eous ensembles is 4.4% of M0, i.e. it is not reduced to zero as in the homogeneous case,
corresponding to the assumptions of Sec. 4.3.

Fig. 4.3 shows experimental trajectories (diamonds) for the optimized pulse (Fig.
4.1) and for the conventional inversion recovery sequence (squares). A reasonable match
is found with the corresponding simulations of the inhomogeneous ensemble shown by
black and red/grey curves, respectively. In the next section, I numerically calculate
optimal control sequences for the inhomogeneous ensemble using the GRAPE algorithm
based on the evolution of isochromats according to Eq. (4.2). This will improve the
optimal pulse sequence of Sec. 4.3 in the case of an inhomogeneous ensemble, but at the
price of a longer time required for the numerical optimizations.

4.5 Gradient-based optimization for an inhomogen-
eous ensemble

For a fixed duration T , the GRAPE algorithm [47] can be used to optimize a given figure
of merit. Note that similar results could be obtained with other optimization schemes
such as the monotonic algorithms [51–56]. For the saturation problem, two possible
figures of merit can be defined:

Φa = (Mx)
2 + (My)

2 + (Mz)
2 (4.9)

and

Φb = (Mx)2 + (My)2 + (Mz)2, (4.10)

where the bar indicates an ensemble average. Whereas Φa only requires the average
Bloch vector M to vanish in order to approach its minimum value of 0, the cost func-
tion Φb only reaches its minimum value of 0 if the Bloch vectors M(ω) vanish for all
offsets ω with non-zero weight g(ω) of the inhomogeneous ensemble. Depending on the
application, Φa or Φb, or a combination of both may be most appropriate.
The first order gradient of Φa,b with respect to the control amplitudes ωx(t) and ωy(t)
can be expressed as

δΦa,b

δωx

= −(My(ω)λz(ω)−Mz(ω)λy(ω)), (4.11)

δΦa,b

δωy

= −(Mz(ω)λx(ω)−Mx(ω)λz(ω)). (4.12)

For Φa, the adjoint state λ(ω) is given at the final time T by λf (ω) = −2Mf , where
Mf is the averaged magnetization at the final time T . For Φb, for each isochromat,
the adjoint state vector λ(ω) is given at the final time T by λf (ω) = −2Mf (ω), where
Mf (ω) is the state of M(ω) at the final time T . For 0 ≤ t < T , λ(ω) can be determined
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by evolving λf (ω) backwards in time using the equation of motion





λ̇x(ω)

λ̇y(ω)

λ̇z(ω)



 =





−ωλy(ω) + ωyλz(ω)
ωλx(ω)− ωxλz(ω)
ωxλy(ω)− ωyλx(ω)





+





λx(ω)/T2

λy(ω)/T2

λz(ω))/T1





+
1

M0Tr





−Mxλz(ω)
−Myλz(ω)

Mxλx(ω) +Myλy(ω)



 . (4.13)

As in the homogeneous case, the trajectory of the average magnetization vector is in
a plane when using one control field. Using the homogeneous solution as a starting point
for the optimization in the inhomogeneous case, a modified pulse was found (bottom
panel of Fig. 4.4) with Φa = 0.7%. The upper panel shows the trajectories of the
average magnetization vector of the inhomogeneous ensemble for this pulse and for the
pulse derived in Sec. 4.3, demonstrating a significant improvement compared to the
naive application of the homogeneous solution to the inhomogeneous ensemble.

Experimental results are also shown in Fig. 4.4 using the same instrumental setting as
detailed in the previous section. Using further optimizations based on the gradient δΦa

δωx

and starting from random pulse sequences, I was able to reduce Φa down to 1.7× 10−9

for the same duration. For the inhomogeneous ensembles, even shorter sequences reach
very good saturation levels. For example, for a pulse duration of only 80% of the
homogeneous optimized pulse, I found Φa = 1.1× 10−8. The optimal sequences did not
require any control along the y direction. Optimizing Φb, this quality factor could be
improved from 0.28 for the homogeneous solution to 0.24 for the same pulse duration.
It is easier to reach Φa = 0 than Φb = 0 since in the first case it is not necessary that
all the magnetizations are zero. Therefore, for inhomogeneous ensembles, shorter pulse
durations for the cost Φa are sufficient compared to the homogeneous case.

4.6 Summary

Here I studied the problem of time-optimal control of spins 1/2 in the presence of radi-
ation damping and relaxation, for which the equation of motion is a non-linear extension
of the familiar Bloch equations. A homogeneous ensemble of spins can be modeled ex-
actly by a single spin 1/2 particle, for which the control problem was fully analyzed
using geometric methods and the important role of singular extremals was pointed out.
The minimum pulse duration for the saturation problem was determined and the cor-
responding optimal pulse was derived. In order to find a reasonable agreement between
theoretical and experimental results, an inhomogeneous ensemble had to be modeled
using the numerical GRAPE algorithm. Numerical optimization methods were used to
find improved saturation pulses in this setting.
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Figure 4.4: (top) Trajectory of the numerically optimized pulse for the inhomogeneous ensemble
(grey or red line) and of the analytical solution of section 4.3 (black curve). (bottom) Corresponding
pulse sequence from the numerical optimization (black line).
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Chapter 5

Excitation of maximum
quantum coherence: physical
limits and practical pulse
sequences

5.1 Introduction

This chapter is a part of article [57], and it focuses on the excitation of maximum
quantum coherence (MaxQ) order for a coupled spin system. The simplification and
editing of complicated and overlapping spectra is highly desirable in many applications,
such as the analysis of complex mixtures or of large biomolecules. To a certain extent,
this can be achieved by using two-dimensional NMR spectroscopy, where in addition
to the detection period t2, the frequency of nuclear transitions is also probed in the
evolution period t1 [58, 59]. In two-dimensional multiple quantum NMR experiments,
multiple quantum coherence is excited and evolves during t1 [60,61]. The largest spectral
simplification is obtained by exciting and evolving the maximum quantum order that
can be created in a given spin system [62–65]. A variety of pulse sequence elements have
been developed for the excitation of multiple quantum coherence [58–62]. The standard
pulse sequence element based on non-selective pulses has the basic form 90◦-∆-90◦, i.e.
it consists of two 90◦ pulses separated by a delay [59]. In practice, an additional 180◦

pulse is applied in the center of the delay ∆ to refocus chemical shift evolution [60].
The delay ∆ between the 90◦ pulses can be optimized based on the theoretical transfer
functions if all coupling constants are known or it can be determined experimentally to
achieve the best signal-to-noise ratio for a given application.

However, in general the simple 90◦-∆-90◦ pulse sequence element is not optimal in
terms of MaxQ excitation efficiency for a given spin system. In order to generate MaxQ
coherence, this sequence requires that there is at least one spin in the spin system that
is directly coupled to all other spins. For large spin systems, the size of long-range
J coupling constants rapidly decreases with the number of intervening chemical bonds
and the smallest coupling constant forms a bottleneck for the speed of multiple-quantum
generation, resulting in long inter-pulse durations ∆ and concomitant signal loss due to
relaxation. Furthermore, the transfer function from polarization to MaxQ coherence is
a superposition of oscillating terms and in general the interference of these terms results

33
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in relatively small overall amplitudes of MaxQ coherence. Hence, the excitation of high
quantum orders by simple 90◦-∆-90◦ sequence elements is in general quite inefficient,
resulting in a relatively low S/N ratio in the resulting spectra. Significantly improved
MaxQ excitation efficiency can be achieved by using more sophisticated sequences ad-
apted to specific coupling topologies [66, 67].

This poses a number of fundamental question that addresses in the following. Ul-
timately it is interesting of the best possible pulse sequence for a given application for
a defined set of potential spin systems. More specifically, here focuses on the following
questions:

(a) What is the physical limit of the efficiency with which multiple quantum coherence
of a desired order can be created in a given spin system with defined coupling constants
and resonance frequencies?

(b) What is the shortest possible time T ∗ to reach this physical limit for a given spin
system?

(c) What is the maximum possible efficiency of multiple quantum generation for
shorter times, i.e. if the duration T of the pulse sequence is limited to T < T ∗?

The answers to questions (a)-(c) provide a benchmark that allows to judge the relative
performance of any known or future pulse sequence. Further questions of immediate
practical relevance are:

(d) What is the best possible pulse sequence for a given coupling network with defined
coupling constants that is robust with respect to variations of resonance frequencies
within a desired range?

(e) What is the best performance of relatively simple pulse sequences based on a
small number of hard pulses and how large is the achievable gain relative to the simple
90◦-∆-90◦ pulse sequence element?

Question (a) can be answered based on the general concept of universal bounds of spin
dynamics [1, 68–70] and questions (b)-(e) can be addressed using optimal-control based
numerical optimization algorithms, such as GRAPE (gradient ascent pulse engineering)
[47, 71–73] to optimize MQ excitation sequences. Previously, this algorithm has been
successfully used for a large range of NMR applications of uncoupled spins, see e.g.
[27, 74]. In coupled spin systems, the GRAPE algorithm was used to optimize the
transfer of polarization or single-quantum coherence [47, 75–78] and to create desired
unitary transformations [33]. The GRAPE algorithm has also been used for solid state
NMR applications to optimize excitation schemes for multiple-quantum magic-angle
spinning for quadrupolar nuclei [79]. Although it has been demonstrated that relaxation
effects can be fully taken into account in GRAPE optimizations [29, 47, 76, 77, 80, 81],
for simplicity here focuses on the excitation of MaxQ coherence in liquid state NMR of
small molecules, where relaxation effects can be neglected.

Here methods of pulse design for excitation of maximum-quantum (MaxQ) order are
demonstrated, focusing on specific exemplary families of spin systems, which are in part
motivated by recent experimental work on mixtures of poly- and monocyclic aromatic
hydrocarbons [63]. I discuss the theory and apply it to weakly coupled homonuclear
spin systems consisting of up to five spins 1/2. The significantly improved performance
of numerically optimized pulse sequences is also demonstrated experimentally.
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M topology Qmax T ∗
[

J−1
max

]

2 A 1/
√
2 = 0.7071 0.50

3 B
√

3/8 = 0.6124 0.89

E
√

3/8 = 0.6124 1.49

F
√

3/8 = 0.6124 0.93

4 C 1/2 = 0.5 1.26

5 D
√

5/32 = 0.3953 1.26

Table 5.1: The unitary bound for the maximum quantum excitation efficiency Qmax and the numer-
ically determined minimum time T ∗ to achieve it. M is the number of spins in the coupling network
and the coupling topologies labled A-F are represented in Fig. 5.2

5.2 Methodology

The state of a spin system is characterized by the density operator ρ(t) and its equation
of motion is given by the Liouville-von Neuman equation [58]:

ρ̇(t) = −i[(H0 + 2π(ux(t)Fx + uy(t)Fy), ρ(t)], (5.1)

where ux(t) and uy(t) are the amplitudes of the x and y components of the radio-

frequency (rf) field, Fα =
∑M

k=1 Ikα (for α ∈ {x, y, z}) and M is the number of spins in
the coupling network. The free evolution Hamiltonian

H0 = Hoff +Hc (5.2)

consists of the offsets term

Hoff =

M
∑

k=1

2πνkIkz (5.3)

and of the homonuclear coupling Hamiltonian Hc, which is assumed to be isotropic:

Hiso
c =

∑

k<n

2πJkn(IkxInx + IkyIny + IkzInz). (5.4)

In the weak coupling limit, the coupling term simplifies to

Hweak
c =

∑

k<n

2πJknIkzInz (5.5)

if |νk−νn| ≪ |Jkn| and in the absence of rf irradiation. However, note that the isotropic
coupling term Hiso

c can be made fully active by irradiating an isotropic mixing sequences
[82, 83]. Therefore, in the following elements of isotropic mixing are also considered,
although for simplicity assuming weak coupling conditions during periods without rf
irradiation.

The problem of pulse sequence optimization amounts to finding the optimal amp-
litudes ux(t) and uy(t) that steer a given initial density operator ρ(0) in a specified time
T to a density operator ρ(T ) which has maximum overlap with a desired target operator.
Starting at thermal equilibrium, the initial density operator is proportional to

ρ(0) = Fz =
∑

k

Ikz (5.6)
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and the target state of the density operator is the multiple quantum operator

F+ =

M
∏

k=1

I+k =

M
∏

k=1

(Ikx + iIky) (5.7)

of MaxQ order M .
The efficiency of MaxQ generation by a given pulse sequence can be quantified by

the quality factor [1]

Q =
|〈F+|ρ(T )〉|

||F+|| · ||ρ(0)|| , (5.8)

i.e. by the absolute value of the scalar product between the (normalized) final density
operator ρ(T ) and the (normalized) target operator F+, where ||ρ(T )|| = ||ρ(0)|| if
relaxation can be neglected.

The first order gradient of the quality factor Q with respect to the control amplitudes
ux(t) and uy(t) can be efficiently calculated using the GRAPE algorithm and based on
this gradient, a given initial pulse can be optimized in an iterative fashion [47,72,73].

Here three different approaches of pulse sequence optimization are considered, cor-
responding to three classes of pulse sequences (c.f. Fig. 5.1).

Approach I: In the most general approach, arbitrary pulse shapes ux(t) and uy(t) are
considered that are irradiated during a given duration T (c.f. Fig. 5.1 A). The spins
are assumed to have large offset differences (on the order of 100 Jmax), where Jmax is
the largest coupling constant in the spin system, to be in the weak coupling limit in the
absence of rf irradiation and to allow for selective manipulation of the spins. In practice,
ux(t) and uy(t) are digitized in steps that are small compared to |νmax|−1, where |νmax|
is the largest absolute frequency offset |νk| of the spin system. For example for M=3
spins, with Jmax=10 Hz, the offsets are ν1 = −1 kHz, ν2 = 0 Hz, and ν3 = 1 kHz
and the pulse is digitized in steps of 100 µs. The performance of the resulting pulses
forms a benchmark for the achievable efficiency of MaxQ order as a function of the pulse
sequence duration T . However, in approach I the pulse sequences are not optimized to
be robust with respect to offset, i.e. they are not broadband. (In principle, robustness
with respect to offset could be achieved by considering an ensemble of spin systems
with a range of offsets for each spin [47], however, this approach is computationally
significantly more expensive and was not applied here.)

Approach II: The second approach considered sequences of NB basic building blocks
(c.f. Fig. 5.1 B), where each block consists of (a) a hard pulse of arbitrary flip angle αk

and phase ϕk, (b) a period ∆weak
k of weak coupling evolution and (c) an optional period

∆iso
k of isotropic mixing. In practice, sequences consisting of NB = 4 and NB =16

blocks were focused and the sequence parameters αk, ϕk, ∆
weak
k and ∆iso

k were optim-
ized for 1 ≤ k ≤ NB . The resulting sequences of basic building blocks can be translated
into practical broadband pulse sequences in a straight-forward way by introducing 180◦

refocusing pulses in the center of the weak coupling evolution periods ∆weak
k and by ap-

plying broadband homo-nuclear isotropic mixing sequences such as DIPSI-2 [84] during
the periods ∆iso

k .
Approach III: The third approach focused on simple sequences consisting only of

NP pulses with fixed flip angles of 90◦ separated by periods ∆weak
k of weak coupling

evolution (c.f. Fig. 5.1 C). In each optimization, the phases ϕk of the pulses were fixed
to either x or y and all possible combinations of these phases were investigated. In this
case, the simulation of the quality factor is fast enough and the number of optimization
parameters ∆weak

k is small enough to perform an exhaustive grid search to find the global
optimum of performance for this simple class of pulse sequences. As in case (II), the
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resulting sequences can be made broadband by introducing 180◦ refocusing pulses in
the center of the weak coupling evolution periods ∆weak

k . Note that the basic 90◦-∆-90◦

sequence shown in Fig. 5.1 D is a special case of the class of pulse sequences considered
in approach III (c.f. Fig. 5.1 C) with NP = 2 and phase difference ϕ2 − ϕ1 = π/2 or 0
for excitation of multiple-quantum coherence of odd or even order, respectively [59,60].
Similarly, the class of pulse sequences shown in Fig. 5.1 C is a special case of the class
of pulse sequences used in approach II (c.f. Fig. 5.1 B) if NP=NB .

A

D

C

B

T

u

u

x

y

T

Figure 5.1: Schematic representation of the the families of pulse sequences considered here for excita-
tion of multiple quantum coherence: (A) arbitrary pulse shapes ux(t) and uy(t) of duration T that are
optimized in approach I, (B) sequence of NB basic building blocks (represented by dotted boxes) that
is used in approach II, where in the given example the number of blocks NB is four. Each block consists
of a hard pulse of arbitrary flip angle αk and phase ϕk, a period ∆weak

k
of weak coupling evolution and

an optional period ∆iso
k

of isotropic mixing (represented by a grey box), (C) sequences consisting of NP

pulses with fixed flip angles of 90◦ separated by periods ∆weak
k

of weak coupling evolution, where in the

given example NP = 4. The (NP − 1) delays ∆weak
k

are optimized in approach III. The phases ϕk of
the pulses are fixed to either x or y and all possible combinations of these phases were considered, (D)
basic 90◦-∆-90◦ sequence with phase difference ϕ2 − ϕ1 = π/2 or 0 for excitation of multiple-quantum
coherence of odd or even order, respectively [59,60].
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Figure 5.2: Schematic representation of the considered idealized coupling topologies: (A-D) show
spin chains consisting of up to five spins 1/2. In addition to the identical next neighbor couplings
Jk,k+1 = Jmax, the case of non-zero second-nearest neighbor couplings Jk,k+2 were also considered.
(E) shows the case of a three-spin chain with unequal coupling constants (J12 = Jmax, J23 = Jmax/2)
and (F) shows the case of a triangular coupling topology with couplings J12 = Jmax, J13 = Jmax/2
and J23 = −Jmax.
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Figure 5.3: Examples of 1H spin systems that are approximately represented by some of the idealized
coupling topologies shown in Fig. 5.2 (A) In Fluoranthene, the protons labeled H1-H3 (red) and H′

1
-H′

3

(green) form two (approximately isolated) three-spin chains (Fig. 5.2 B)and the protons labeled H′′

1
-H′′

4

(blue) form a four-spin chain (Fig. 5.2 C). (B) The proton spin system of Phenol can be approximated by
a five-spin chain (Fig. 5.2 D). (C) The proton spin system of 2,3-Dibromopropionic acid with J12 = 11.4
Hz, J23 = 4.4 Hz, and J13 = −10.15 Hz is approximated by the idealized triangular coupling topology
of Fig. 5.2 F.
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5.3 Results and discussion

The efficiency of MaxQ excitation for the idealized spin system was investigated, shown
in Fig. 5.2. Motivated by previous MaxQ experiments on mixtures of mono- and
polycyclic aromatic hydrocarbons [63], I studied idealized linear chains of coupled spins
with only nearest-neighbor couplings Jk,k+1 = Jmax (solid lines in Fig. 5.2 A-D). In order
to make the systems more realistic, I also considered linear spin chains with additional
second-nearest neighbor couplings Jk,k+2 (dashed lines in Fig. 5.2 A-D). Fig. 5.3 shows
examples of molecules with coupling topologies that are approximated by some of the
idealized coupling topologies show in Fig. 5.2. For example, for the 1H spin systems
of mono- and polycyclic aromatic hydrocarbons such as Fluoranthene and Phenol (c.f.
Fig. 5.3 A and B), typical 3J couplings between nearest neighbor proton spins are on
the order of Jmax = 7-8 Hz, whereas the 4J couplings between second-nearest neighbor
proton spins are only on the order of 1-2 Hz, resulting in Jk,k+2/Jmax ≈ 0.2. Long range
5J couplings are on the order of 0-0.5 Hz and are neglected here. The relative size of the
coupling constants of the idealized spin system shown in Fig. 5.2 F with J12 = Jmax,
J23 = Jmax/2 and J13 = −Jmax closely approximate the situation in the 1H spin system
of 2,3-Dibromopropionic acid (Fig. 5.3 C )with the experimentally determined coupling
constants J12 = 11.4 Hz, J23 = 4.4 Hz, and J13 = −10.15. Finally, the coupling network
shown in Fig. 5.2 E is identical to the case of Fig. 5.2 F except for J13 = 0, and
forms an example of a linear three-spin chain with unequal nearest neighbor coupling
constants (J23 = J12/2) and vanishing second-nearest neighbor couplings, and it forms
an intermediate coupling topology between Fig. 5.2 B and F.

For each coupling topology, I systematically optimized the efficiency of MaxQ excit-
ation as a function of the pulse sequence duration T using approaches (I)-(III) and the
results are summarized in Fig. 5.4 and Fig. 5.5. The unitary bound [1, 68–70] for the
achievable efficiency of MaxQ excitation (summarized in Table 5.1) is indicated in each
panel of Fig. 5.4 by a horizontal dotted line.

The maximum possible MaxQ excitation efficiency as a function of pulse dura-
tion can be numerically approximated using approach (I) and its graphical represent-
ations (marked by solid circles in Fig. 5.4 A-F) are called TOP (time optimal pulse)
curves [75, 85]. The numerical TOP curves provide a benchmark to judge the relative
performance of simple pulse sequences based on approach II or III. The shaded areas in
Fig. 5.4 represent the ”forbidden” regions of the graphs, i.e. all possible experimental
MaxQ excitation schemes are bounded by the TOP curve (and the unitary bound). The
minimum time required to reach the unitary bound depends on the specific spin system.
It can be estimated (within numerical accuracy) by plotting the logarithm of the differ-
ence between the unitary bound Qmax and the numerically found TOP curve Q(T ) as
a function of the pulse sequence duration T (c.f. Fig. 5.5). For each coupling topology,
the minimum time T ∗ required to approach the unitary bound with an error of less than
10−10 is summarized in Table 5.1 and is shown as a vertical dashed line in Fig. 5.5. For
the case of linear spin chains, T ∗ increases from 0.5/Jmax (for M=2), to 0.89/Jmax (for
M=3), to 1.26/Jmax (for M=4). Surprisingly, the same numerical approximation of T ∗

of 1.26/Jmax is found for M=4 and M=5.

In addition to the unitary bound and the TOP curves, in each panel of Fig. 5.4 the
MaxQ excitation efficiency of the basic 90◦y-∆-90◦φ pulse sequence element (with φ = y if
M is odd and φ = x if M is even [60]) is shown by dash-double-dotted red curves (− · ·)
for comparison (assuming Jk,k+2 = 0 for the spin chains in Fig. 5.4 B-D). The basic
two-pulse sequence reaches the unitary bound only for the simple two-spin system (Fig.
5.4 A). For the considered three-spin systems, the basic two-pulse sequence reaches only
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Figure 5.4: Panels A-F show the maximum quantum (MaxQ) excitation efficiency Q (c.f. Eq. 8) for
several excitation schemes as a function of pulse sequence duration T for the corresponding idealized
coupling topologies of Fig. 5.2 A-F. The unitary bound for the maximum efficiency of MaxQ generation
(c.f. Table 5.1) is indicated in each panel by a horizontal dotted line, the maximum achievable efficiency
Q for any given pulse sequence duration T is given by the time-optimal pulse (TOP) curve (marked
by solid circles), which is found using approach I. The shaded area limited by the TOP curve and the
unitary bound represents the ”forbidden” regions of the graphs. The achievable transfer efficiency of
the conventional building block consisting of two 90◦ pulses (corresponding to approach III with Np = 2
pulses) is represented by red curves (− · ·). For Np = M and M + 1 pulses (where M is the number
of spins) the results are represented by green (−·) and orange (− − ·) curves, respectively, assuming
Jk,k+2 = 0. For the case Jk,k+2 = Jmax/7, the corresponding transfer functions are represented by
dashed curves (−−) of the same color. Open and solid squares represent results of block optimizations
(approach II) without and with periods ∆iso

k
of isotropic mixing, respectively. Squares connected by

dashed lines lines correspond to the optimization of NB = 4 blocks, whereas squares connected by solid
lines correspond to the optimization of NB = 16 blocks. The pulse sequence duration T is given relative
to the inverse of the largest coupling constant Jmax in each spin system.
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Figure 5.5: Panels A-F show the logarithm of the difference between the unitary bound Qmax and
the numerically found TOP curve Q(T ) (c.f. Fig. 5.4 )as a function of the pulse sequence duration T .
The vertical dashed line represents the minimal time T ∗ that is required to approach the unitary bound
with a an error of less than 10−10.
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about 30% of the unitary bound (Fig. 5.4 B, E, F). No MaxQ coherence can be created
by the simple two-pulse sequence for spin chains consisting of four and five spins (Fig. 5.4
C and D) if only nearest neighbor couplings are non-zero (Jk,k+2 = 0). This is expected
as in this case there exists no spin that is coupled to all remaining spins in the coupling
network (see Fig. 5.2 C, D). Only for the case of non-vanishing second-nearest neighbor
coupling (Jk,k+2 > 0), MaxQ coherence is created by the simple two-pulse sequence, see
dashed red curves (−−) in Fig. 5.4 C and D. Even in this case, the transfer efficiency
of the two-pulse sequence is small compared to the unitary bound and the buildup of
MaxQ coherence is slow. The low transfer efficiency is explained by the fact that only
a fraction of the spins are coupled to all other spins of the chain. For example, in the
five-spin chain (Fig. 5.4 D), only the center spin (I3) is coupled to all remaining spins
of the chain, i.e. the initial polarization of spins I1, I2, I4 and I5 cannot be converted
to MaxQ coherence, resulting in a low overall transfer efficiency of the simple two-pulse
sequence compared to the unitary bound for the transfer between Fz and F+. The
slow buildup of MaxQ coherence is a result of the bottleneck formed by the relatively
small second-nearest neighbor couplings J13 = J35 ≈ Jmax/7 as for the basic two-pulse
experiment the transfer function is proportional to sin(πJ13T ) sin(πJ23T ) sin(πJ34T )
sin(πJ35T ) in the five-spin chain.

Significantly larger and faster excitation of MaxQ coherence can be achieved using
more than two 90 degree pulses (approach III). In Fig. 5.4, the green dashed dotted
curves (−·) represent the achievable transfer efficiency based on approach III for the
case of Np = M , where M is the number of spins, assuming Jk,k+2 = 0 for the spin
chains in Fig. 5.4 A-D. Obviously approach III with Np = M is identical to the case of
the conventional two-pulse sequence for the system consisting of M = 2 spins (Fig. 5.2
A ). All possible combinations of pulse phases x or y were simulated and only the curves
for the best combinations are presented in Fig. 5.4. For the spin chains (Fig. 5.4 A-D),
approach III yields simple and quite efficient pulse sequences for Np = M pulses. The
necessary time to reach the unitary bound is about 1.12 T ∗ for M=3 spins, 1.19 T ∗ for
M=4 and 1.59 T ∗ for M=5 spins

While for the case of linear chains (or symmetric coupling topologies) with equal
coupling constants it is possible to derive sequences with reasonable transfer efficiencies
by hand using the well-known rules of the product operator formalism [66, 67], finding
optimal pulse sequence in the case of unequal couplings or complex coupling networks
is a non-trivial task. The effect of including second-nearest neighbor couplings is shown
in Fig. 5.4 D for Np = M = 5. In contrast to the case of the two-pulse sequence,
the dashed green line (for the case Jk,k+2 = Jmax/7) and the dash-dotted green line
(for the case Jk,k+2 = 0) are quite similar because the sequence exploits the large
nearest neighbor couplings and does not critically rely on the smaller Jk,k+2 coupling.
In fact, for T < 1.6/Jmax, the optimized five-pulse sequence is able to exploit the
small Jk,k+2 couplings to yield a slightly larger transfer amplitude, whereas for longer
pulse durations the additional small Jk,k+2 couplings result in slightly smaller transfer
amplitudes. For the three-spin systems of Fig. 5.2 E with unequal couplings, the largest
transfer amplitude of the sequence consisting of Np = M = 3 90◦ pulses is only about
70% of the unitary bound (c.f. Fig. 5.4 E). For the three-spin systems of Fig. 5.2,
the unitary bound is reached but only for a relatively long pulse duration of 4 /J ,
corresponding to more than three times the duration of T ∗ (c.f. Fig. 5.4 F), whereas for
T < 3.6/J the maximum achievable transfer amplitude is less than half of the unitary
bound. Increasing the number of 90◦ pulses from Np = M = 3 to Np = M + 1 = 4
(orange double-dash-dotted curves −− ·) only slightly improves the achievable transfer
efficiency in Fig. 5.4 E. However in Fig. 5.4 F it reduces the pulse duration to achieve
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the unitary bound by 50% to only about 1.6 T ∗. In the three-spin system of Fig. 5.4 B,
the use of four 90◦ pulses only improves the transfer efficiency compared to sequences
consisting of two or three 90◦ pulses for pulse sequence durations that are longer than
the time T = 1/Jmax to reach the unitary bound.

Finally, Fig. 5.4 also shows the results of block optimizations using approach II. Open
and solid squares represent results of block optimizations without and with periods ∆iso

k

of isotropic mixing, respectively. Squares connected by dashed lines lines correspond to
the optimization of NB = 4 blocks, whereas squares connected by solid lines correspond
to the optimization of NB = 16 blocks. In spin chains, the ability to use isotropic mixing
periods does not lead to improved pulse sequence performance and no (Fig. 5.4 A, B)
or relatively small (Fig. 5.4 C, D) gains are found compared to approach III. However,
in Fig. 5.4 E and F, significantly improved performance is found using approach II
compared to approach III. Compared to the performance of 4 blocks, 16 blocks yield
slightly larger quality factors Q but in the triangular coupling topology of Fig. 5.4 F,
the ability to used periods of isotropic mixing did not lead to improved efficiency of
MaxQ coherence. However, the linear coupling topology with unequal couplings (Fig.
5.2 E) is an example of a spin system, where the use of isotropic mixing periods is
in fact beneficial (see Fig. 5.4 E). Here, even with only four blocks, approach II with
isotropic mixing periods yields pulse sequences that closely approach the unitary bound
near T = 2/Jmax, which is only about 60% longer than T ∗, whereas for the same time
the four-block sequences without isotropic mixing reaches only about 80% of the bound.

Fig. 5.6 compares the maximum quantum (MaxQ) excitation efficiency Q (c.f. Eq.
5.8) for the linear spin chain of 5 spins (c.f. Fig. 5.2 D) for the cases with and without
the second-nearest neighbor coupling Ji,i+2, as a function of pulse sequence duration T .
Panel A summarizes cases without weak second-nearest neighbor coupling (Ji,i+2 = 0)
for the delay optimization (approach III) with Np = N − 3 = 2 (the red curve), Np =
N−2 = 3 (the blue curve), Np = N−1 = 4 (the black curve) and Np = N = 5 (the green
curve), respectively. One can see that, without the second-nearest neighbor coupling
Ji,i+2, the two 90◦ pulses (the red curve) generate no MaxQ coherence at all, while the
efficiency of Np = 3 and Np = 4 is also low with the maximum transfer of less than 10%.
Panel B displays the simulation results for the sequence with NP = N (same as the
green curve of panel A) but with the weak second-nearest neighbor coupling Ji,i+2 6= 0.
The green dash-dotted curve shows the original simulation of Ji,i+2 = 0 as a reference.
The solid curves with different colours correspond to simulations for different values
of Ji,i+2 = Ji,i+1/28, Ji,i+1/14, Ji,i+1/7, respectively. As expected, with the increased
value of Ji,i+2, the performance of the pulse (the Q factor) decrease gradually since the
original pulses are optimized for the case without Ji,i+2.

Note that the current work is focused on the MaxQ transfer case, however the presen-
ted approach can also be applied to the efficient generation of multiple quantum coher-
ence of arbitrary order.

5.4 Experimental application

For an experimental demonstration of optimized MaxQ excitation sequences, I chose
the 1H spin system of 2,3-Dibromopropionic acid (c.f. Fig. 5.3 C) dissolved in CDCl3.
The experiments were performed at room temperature using a Bruker Avance 600 MHz
spectrometer. The experimentally determined coupling constants are J12 = 11.4 Hz,
J23 = 4.4 Hz, and J13 = −10.15 Hz. A Shigemi tube (magnetic susceptibility matched
for CDCl3) with a diameter of 5 mm was used to achieve a rf field with high homogeneity.

In the experiments, spin 1 was set on resonance (ν1 = 0), and the offsets for spins 2
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Figure 5.6: The Maximum quantum (MaxQ) excitation efficiency Q (c.f. Eq. 5.8) for the linear spin
chain of 5 spins (c.f. Fig. 5.2 D) for the cases with and without the second-nearest neighbor coupling
Ji,i+2, as a function of pulse sequence duration T . Panel A summarizes case without weak second-
nearest neighbor coupling (Ji,i+2 = 0) for the delay optimization (approach III) with Np = N − 3 = 2
(the red curve), Np = N − 2 = 3 (the blue curve), Np = N − 1 = 4 (the black curve) and Np = N = 5
(the green curve), respectively. Panel B displays the simulation results for the sequence with the
number of 90◦ pulses of NP = N with different weak second-nearest neighbor coupling constants,
Ji,i+2 = Ji,i+1/28, Ji,i+1/14, Ji,i+1/7, respectively.
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and 3 were 347 Hz and −130 Hz, respectively. After the excitation of MaxQ coherence
of coherence order 3, other coherences were eliminated using a six-step phase cycling
procedure. In all experiments, the same sequence was used to convert MaxQ coherence
to detectable single quantum coherence.

Fig. 5.7 shows the experimental excitation efficiencies and the corresponding the-
oretical curves. Although the experimental relative coupling constants are similar to
the ideal case shown in Fig. 5.2 F and Fig. 5.4 F, I recalculated the TOP curve (us-
ing approach I) and the maximum excitation efficiency for approaches (II) and (III)
for the actual experimental coupling constants. A reasonable match is found between
simulations and experiments. The minimum time to reach the unitary bound of MaxQ
excitation for the block optimization (approach II) is about 0.14 s.
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Figure 5.7: Experimental and theoretical MaxQ excitation efficiencies Q of conventional and optimized
pulse sequences for the 1H spin system of 2,3-Dibromopropionic acid (Fig. 5.3 ) with J12 = 11.4 Hz,
J23 = 4.4 Hz, and J13 = −10.15 Hz for pulse sequence durations 0 ≤ T ≤ 200 ms= 2.28/Jmax. Red
triangles and dash-double-dotted curves represent experimental and simulated Q values for the simple
standard sequence consisting of two 90◦ pulses, respectively. Green pentagons and dash-dotted curves
( − ·) show the experimental and theoretical performance of optimized pulse sequences using approach
III consisting of three 90◦ pulses separated by optimal delays. Blue stars and open squares (which are
connected by straight lines to guide the eye) represent experimental and simulated results of NB=4
blocks (approach II without periods of isotropic mixing).
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Chapter 6

Exploring the physical limits
of saturation contrast in
magnetic resonance imaging

6.1 Introduction

This chapter is a part of article [86] (collaboration with the research group of Prof. D.
Sugny in Dijon, France) and it focuses on exploring the physical limits of the maximum
achievable experimental contrast using optimal control theory. In imaging applications,
where relaxation forms the basis for contrast, a very large number of different strategies
have been proposed and implemented so far with the rapid improvement of NMR and
MRI technology [87, 88]. However, there was no general approach to provide the max-
imum possible performance and the majority of these pulse sequences have been built
on the basis of intuitive and qualitative reasonings or on inversion methods such as the
Shinnar-Le Roux algorithm [89]. Note that this latter can be applied only in the case
where there is no relaxation effect and radio-frequency inhomogeneity.

Despite the efficiency of MRI techniques currently used in clinics, some aspects still
pose fundamental problems of both theoretical and practical interest. The enhancement
of contrast remains one of the crucial questions for improving image quality and the
corresponding medical diagnosis. The use of particular pulse sequences to generate
image contrast based on relaxation rates is not new in MRI, since this question was
raised at the beginning of the development of MRI in the 1970s. Different strategies
have been proposed, such as the Inversion Recovery sequence [13,90] for T1 contrast and
pulses for ultra short echo time experiments for T2 contrast [91] (see Eq. (6.1) for the
definition of T1 and T2 parameters). Here, let’s go beyond such intuitive methods by
using the powerful machinery of optimal control, which provides in this case not just an
improved performance but the global optimum, i.e. the best possible contrast within
the experimental constraints. This optimized contrast is demonstrated in a laboratory
benchmark experiment.

47
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6.2 Methodology

6.2.1 Model system

In its simplest form, the contrast problem can be stated by assuming that the signal
is composed of two different contributions. One considers as a benchmark example the
case of (a) oxygenated vs. (b) deoxygenated blood, where the spins that are probed
are the ones of the hydrogen atoms of water (H2O). This is e.g. an important issue in
functional studies of the human brain. These spins have different relaxation rates due
to the interaction with other molecules such as hemoglobin in its oxygenated or non-
oxygenated form, leading thus to two different signatures of the relaxation dynamics of
the magnetization, which is governed by the Bloch equations:
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where ~M i = (M i
x,M

i
y,M

i
z) is the magnetization vector considered with i = (a, b), M0

is the equilibrium magnetization, T i
1 and T i

2 the longitudinal and transverse relaxation
rates, ω the resonance offset and ωx and ωy the components in a rotating frame of the
transverse magnetic field along the x- and y- directions. While different definitions of
contrast exist in the literature [88], here a particular case is considered that it is called
the saturation contrast, where the objective of the control problem is to find the pulse
sequence which completely suppresses the contribution of one of the two magnetization
vectors while maximizing the modulus of the other. If such a pulse module can be found,
it can be used in combination with a large number of possible host sequences for imaging
and spectroscopy (see Chapter 14 of Ref. [88] for details).

6.2.2 Geometric approach

In this section, first the ideal situation of a homogeneous ensemble of spin 1/2 particles
irradiated on resonance is analyzed. It is described by Eq. (6.1) with ω = 0. The nor-

malized vectors ~V i = ~M i/M0 with coordinates (Xi, Y i, Zi) are introduced to eliminate
the equilibrium magnetization M0. Due to the symmetry of revolution of the system
around the z- axis (see [17,92] for details), One can restrict the dynamics to a meridian
plane by assuming, e.g. ωy = 0. Using advanced techniques of geometric optimal con-
trol theory [11], it is possible to find the desired control field ωx(t) which provides the
global contrast optimum by a direct solution of the PMP. The details of the theoretical
approach are given as following:

Here some indications are given about the optimal control theory used to solve the
contrast problem. Labeling the two spins by the indices a and b, recalling that the
objective of the control is to determine a field ~ω = (ωx, ωy) bringing the vector ~Va to

the center of the Bloch ball while maximizing the modulus |~Vb|. A bound ωmax on the
control field is introduced such that |~ω| ≤ ωmax. This constraint can be mathematically
justified to rigorously define the optimal control problem, but also physically since only
magnetic fields with a finite intensity can be produced experimentally.

The optimization problem is solved by two complementary methods, the geomet-
ric [15] and the numerical ones [5, 25], in the homogeneous and inhomogeneous cases,
respectively.
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First the homogeneous situation is analyzed. Our approach is based on the Pontry-
agin Maximum Principle (PMP) which is formulated from a pseudo-Hamiltonian H,

given by H = ~P · ~̇X where ~X is a four dimensional vector of coordinates (Y a, Za, Y b, Zb)

describing the state of the system and ~P = (P a
y , P

a
z , P

b
y , P

b
z ) the adjoint state, playing

the role of a Lagrange multiplier. The optimal trajectory is solution of the Hamiltonian
equations

~̇X =
∂H
∂ ~P

; ~̇P = −∂H
∂ ~X

(6.2)

with the boundary conditions Y a(T ) = Za(T ) = 0, Y b(T ) = −P b
y (T ) and Zb(T ) =

−P b
z (T ) at the final time T , which are required to optimize the contrast. The ~X-

coordinates satisfy the Bloch equations:
{
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while the dynamics of the ~P - components is governed by the system:
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where i = (a, b). The optimal control field ωopt is obtained from the maximization

condition H( ~X, ~P , ωopt) = max|ωx|≤ωmax
H( ~X, ~P , ωx), which leads to two types of solu-

tions: the bang or regular ones where ωx = ±ωmax and the singular ones for which
|ωx| ≤ ωmax. Writing the Bloch equations in a compact form

~̇X = ~F ( ~X) + ωx
~G( ~X), (S4)

where ~F and ~G are respectively two vectors of coordinates (−Y a/T a
2 , (1−Za)/T a

1 ,−Y b/T b
2 , (1−

Zb)/T b
1 ) and (−ωxZ

a, ωxY
a,−ωxZ

b, ωxY
b), we introduce the switching function φ(t) =

~P · ~G. It is then straightforward to see that the Hamiltonian H is maximized in
the case where φ(t) is different from 0 (or vanishes in an isolated point) if ωx(t) =
ωmax × sign[φ(t)]. This corresponds to the regular situation. When φ is zero in a time
interval, the problem associated to the singular case is more involved. However, by us-
ing the fact that φ̇(t) = φ̈(t) = 0 on the considered interval, one can derive an analytic
formula for the singular control field ωs

x. Then:
{

φ̇(t) = ~P · [~F , ~G]

φ̈(t) = ~P · [~F , [~F , ~G]] + ωs
x[
~G, [~F , ~G]],

(6.4)

where the commutator [·, ·] of two vectors is defined in the coordinates xi by:

[~F , ~G]j =
∑

i

(
∂Gj

∂xi

Fi −
∂Fj

∂xi

Gi). (6.5)

In addition, when the control duration is not fixed, one also know from the PMP that
H = 0, which leads to ~P · ~F = 0 since ~P · ~G = 0. Using the different constraints on the
singular control, one finally arrives to the following analytic expression:

ωs
x = −det(~F , ~G, [~F , ~G], [~F , [~F , ~G]])

det(~F , ~G, [~F , ~G], [ ~G, [~F , ~G]])
. (6.6)

The last step of this approach consists of solving the shooting equation, that is to
determine the initial adjoint state such that the corresponding Hamiltonian trajectories
( ~X(t), ~P (t)) satisfy the boundary conditions at the final time.
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6.2.3 Numerical approach

Due to its geometric character, this efficient method is however intrinsically limited to
systems of small dimensions. Purely numerical approaches have to be used to simul-
taneously control the large number of spins of inhomogeneous ensemble. Due to the
offset frequencies, the symmetry of revolution around the z-axis is broken and two con-
trol fields with amplitudes ωx and ωy have to be considered. The control problem
has been solved with the GRAPE algorithm which is a standard iterative algorithm in
quantum control [25]. In this case, the figure of merit to be maximized is defined as

Φ = V b
x (T )− α|~V a(T )|, where V b

x is the x- component of the vector ~V b and the bar indic-
ates an ensemble average over all the spins of the ensemble. The parameter α measures
the relative weights between the two contributions to Φ. To guarantee a reasonable final
result, a relatively large value of α should be used. Note that in the original formulation
of the problem for the homogeneous case, the magnitude |~V b(T )| was maximized, which
requires an additional hard pulse to bring the magnetization into the transverse plane
for detection. In the inhomogeneous case corresponding to the experimental setting, the
given figure of merit Φ is chosen to directly maximize the detectable x- component of

the average vector ~V b(T ), eliminating the need for an additional hard pulse to rotate

~V b(T ) into the transfer plane. The GRAPE algorithm is also based on the PMP with

the pseudo-Hamiltonian H = ~P · ~̇X, where ~X is now a six-dimensional vector. The
extremal trajectory solution of the control problem satisfies the Hamiltonian equations

~̇X =
∂H

∂ ~P
; ~̇P = −∂H

∂ ~X
(6.7)

with the boundary conditions ~P (T ) = − ∂Φ

∂ ~X
(T ) at the fixed final time T . The gradients

∂H/∂~ω are computed at each step of the iterative algorithm to indicate how each control
ωx and ωy should be modified in the next iteration to improve the cost Φ. No bound
on the control amplitudes was required during the optimizations as the resulting control
amplitudes were well within the experimentally achievable limits.

6.3 NMR experiment

As a test case, typical relaxation parameters are choosen for (a) oxygenated and (b)

deoxygenated blood with identical T1 values (T
a,b
1 = 1.35 s) but different T2 values (T

a
2 =

200 ms, T b
2 = 50 ms). Note that in this situation, the conventional Inversion Recovery

experiment, which relies on T1 differences cannot provide useful contrast. However,
applying the optimal control approach for these parameters the global maximum of
the modulus of ~V a (under the condition that |~V b| = 0) is found to be |~V a| = 0.4663,
representing the maximum achievable saturation contrast in this system. For the blood
example, it can be shown that the optimal solution is the concatenation of a bang and
a singular trajectory. Since the bang pulse is of negligible duration, only the singular
trajectory is represented in Fig. 6.1. Note that a similar computation can be done to
saturate the spin (a) and maximize |~V b|, with a final result of |~V b| = 0.4731. We think
this saturation contrast is optimal or at least the best known results, therefore it gives
the benchmark of the physical upper limit that can be reached within the experimental
constraints given here by the values of the relaxation rates. The shape of the optimal
pulse is shown in Fig. 6.1a. For our demonstration experiments, I did not use actual
blood samples but prepared two different solutions with similar physical characteristics.
The relaxation properties of oxygenated blood were approached by solution (a) consisting
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of 90% D2O, 10% glycerol and doped with CuSO4 with relaxation times T a
1 = 1.8 s,

T a
2 = 260 ms (as determined from CPMG-experiment) and T ∗,a

2 = 100 ms (as determined
from the experimental line width). Deoxygenated blood was modeled by solution (b)
consisting of 70% D2O, 30% glycerol and doped with CuSO4 with T b

1 = 1.4 s, T b
2 = 60 ms

and T ∗,b
2 =30 ms. As the experimental T ∗

2 values [87] of the test sample were only about
2/3 of the T2 values assumed for the optimized pulse, the pulse duration and amplitude
were scaled by 2/3 and 3/2, respectively, resulting in a scaled pulse duration of 0.214
s and a maximum pulse amplitude of the order of 10 Hz (see Fig. 6.1a). The optimal
control field was implemented experimentally as a shaped pulse on a standard Bruker
Avance III 600 MHz spectrometer and the experimental trajectories were measured using
two different samples in different test tubes in order to approach ideal experimental
conditions with negligible magnetic field inhomogeneities. Under these conditions, the
dynamics is described with high accuracy by the Bloch equations (6.1). The simulated

and experimental trajectories of the two magnetization vectors ~V a(t) and ~V b(t) are
shown in Fig. 6.1b and a good match is found between theory and experiment.

u x [H
z]

       time [s] (a)

(b)

0.2

Figure 6.1: Optimal pulse sequence and trajectories for negligible B0 and B1 inhomogen-
eities. (a), The control amplitude ux(t) = ωx(t)/(2π) is shown for the optimal pulse sequence to

maximize |~V a| under the condition that |~V b| = 0. (b), Corresponding simulated (solid curves) and

experimental (open diamonds) trajectories of ~V a(t) (red) and ~V b(t) (blue) in the (Y, Z) plane for a
homogeneous ensemble of spin particles.

So far, I assumed that there is no experimental imperfection due to magnetic field
inhomogeneities, which are however not negligible in realistic imaging experiments and
have therefore to be taken into account. Nevertheless, it is important to point out that
the analytical PMP-based optimal solution in the absence of experimental imperfections
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provides a previously unavailable physical upper limit of the maximum achievable satur-
ation contrast, the inhomogeneities having a detrimental effect on the final result. This
bound, which can be determined for any set of relaxation parameters, is thus relevant
for any imaging contrast problem. Hence, it gives a fundamental benchmark to assess
the performance of standard methods and numerically optimized pulse sequences in this
domain.

6.4 Imaging experiment

6.4.1 Test sample and field inhomogeneity

To perform a realistic imaging experiment, I designed a test sample consisting of a small
test tube in a larger tube with an outer diameter of 8 mm, forming two compartments
filled with solutions (a) and (b) corresponding to the relaxation rates of deoxygenated
and oxygenated blood, see Fig. 6.2 for a schematic representation. In general, the
frequency offsets created by the B0 inhomogeneities are negligible if they are dominated
by the amplitude of the control field (in units of Hz). However, the control amplitude of
the analytically optimal pulse sequence shown in Fig. 6.1a is less than 10 Hz, which is
smaller than the resonance offset variation due to B0 inhomogeneities (see Fig. 6.3a) and
therefore, the optimal sequence derived analytically for an ideal case is not expected to
work in the experimental micro imaging setting. In addition, the experimental variation
of B1 scaling was not considered in the analytical solution and is also expected to
have detrimental effects on the pulse performance. Figure 6.3 shows the experimentally
measured spatial B0 and B1 distributions in the central slice of the sample. The variation
of B0 corresponds to resonance frequency shifts ω between 0 and -30 Hz, while the
experimental scaling of the B1 field (which is proportional to the control amplitude ) is
±20%.

Measurement method of the B0 and B1 field maps. Mapping of local B0 offsets was
accomplished by evaluating the signal phase evolution between two echoes acquired in a
dual-echo gradient pulse sequence [88]. The echo times of the 3D image acquisition were
TE1 = 1.5 ms and TE2 = 11.5 ms. Figure 3a of the main text shows the B0 field map in
the central axial slice. The amplitude of the B1 excitation field was measured by using
the cosine-like dependence of the remaining signal after a saturation pulse and fitting
to a curve measured with multiple saturation flip angles [93]. The applied saturation
flip angles were 10◦, 20◦, . . . , 300◦. Robust B1 mapping was achieved by fitting a signal
model to the acquired slice-selective gradient echo signal in a linear least-squares sense.

6.4.2 Numerical pulses

In order to take into account the experimentally measured B0 and B1 distributions,
numerically optimized pulse sequences were computed with the GRAPE algorithm [25],
which is a standard iterative algorithm to solve the optimization equations. The pulses
are designed to work for an ensemble of spins approximately within the range of the
B0 and B1inhomogeneities experimentally measured. The pulses are designed to work
for an ensemble of spins with variations of the offset frequency of ±20 Hz and for a
variation of the B1 scaling factor of ±20%. In the numerical optimizations, I fixed
the pulse duration to the duration of the corresponding analytic-PMP pulse for the
homogeneous case. Compared to the fundamental contrast benchmark (|V a| = 0.47 and
|V b| = 0) provided by the PMP-based analytical solution, the minimum value (worst
case) of |V a| for the considered range of B0 and B1 inhomogeneities is 0.37 (that is 79%
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Figure 6.2: Geometry of the test sample used for the imaging experiments. In the micro
imaging experiments, the sample consists of two test tubes with outer diameters of 5 mm and 8 mm. The
outer and inner volumes were respectively filled with the two solutions corresponding to (a) oxygenated
and (b) deoxygenated blood. The two slices represent the experimental results after the saturation of
the samples (a) (top) and (b) (bottom). (see also the results of Fig. 6.15)

 

 

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

(b) 

 

−30

−25

−20

−15

−10

−5

0

(a)

Figure 6.3: Experimental spatial B0 and B1 distributions. Spatial distributions of the B0

(a) and B1 (b) amplitudes in the central slice of the sample. The B0 variation is represented by the
corresponding 1H frequency offsets in units of Hz as a function of the spatial position, while the B1

variation is described by a dimensionless scaling factor.



54 CHAPTER 6. SATURATION CONTRAST IN MAGNETIC RESONANCE IMAGING

of the physically maximum saturation contrast achievable) while the maximum value
(worst case) of the incompletely suppressed |V b| is 0.054. Conversely, when the goal is
to saturate spin (a) and to maximize the magnetization vector of spin (b), the optimal

pulse sequence yields |~V a| = 0.047 and |~V b| = 0.33.
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Figure 6.4: The pulse shapes of the analytically optimized pulse A (top left panel) and B (top right
panel), as well as the numerically optimized pulse C (bottom left panel) and D (bottom right panel).

Pulses A and C are optimized to maximize |~V a| (the oxygenated spin) under the condition that |~V b| = 0

(the deoxygenated spin), while B and D are optimized to maximize |~V b| (the deoxygenated spin) under

the condition that |~V a| = 0 (the oxygenated spin).

Figure 6.4 shows the pulse shapes of the analytically optimized pulses A and B (top
left and right panels, respectively) and the numerically optimized robust contrast pulses
C and D (bottom left and right panels, respectively). Pulses A and C are optimized

to maximize |~V a| (the oxygenated spin) under the condition that |~V b| = 0 (the deoxy-

genated spin), while B and D are optimized to maximize |~V b| (the deoxygenated spin)

under the condition that |~V a| = 0 (the oxygenated spin). As expected, the optimized
pulses contain periods with very strong pulse amplitudes (note the different vertical
scale of the plots) to refocus the effects of B0 inhomogeneity. In order to compensate
B1 inhomogeneity, pulses C nad D have not only x but also y amplitudes.

Magnetization trajectories for pulses A (top left) , B (top right), C (bottom left)
and D (bottom right) are shown for ideal B0 and B1 (B0 = 0 and B1 = 1) values in
Figure 6.5 (for the relaxation parameters of ”deoxygenated spin”) and Figure 6.6 (for
the relaxation parameters of ”oxygenated spin”). As for pulses C and D the trajectories

are not limited to the yz plane, I plotted the transverse component xy =
√

x2 + y2 and
the z component of the trajectories.
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Figure 6.5: The corresponding trajectories for the deoxygenated spin of pulses A-D in Figure 6.4.
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Figure 6.6: The corresponding trajectories for the oxygenated spin of pulses A-D in Figure 6.4.
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Robustness against the field inhomogeneity The robustness of the numerical pulses C
and D (Figure 6.4, bottom panels) compared to the analytical pulses A and B (Figure
6.4, top panels) against the field inhomogeneity is demonstrated in Figure 6.8 (for the
relaxation parameters of ”deoxygenated spin”) and Figure 6.9 (for the relaxation para-
meters of ”oxygenated spin”). The figures show the simulated magnitude of the final
magnetization after pulses A, pulse B, pulse C and pulse D for variations of the offset
frequency (corresponding to B0 inhomogeneity) of ±20 Hz and for variations of the B1

scaling factor of ±20%. As expected, the numerical pulses work well for the whole range
of field inhomogeneity chosen for the optimization while the analytical pulse function
only in the area close to the ideal case. For more details, figure 6.7 shows the simulation
of the final contrast of the numerical pulses for the same range of B0 and B1 variations.
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Figure 6.7: Simulated final contrast: Contour plot of the final contrast, the saturation of the
deoxy II sample) as a function of the B0 and B1 inhomogeneities, which range respectively from -20Hz
to 20Hz and from -20% to 20%. The optimized pulse of the experiment has been used in the numerical
computation.

Robustness against T1 and T2 Figure 6.10 demonstrates the simulation results of the
analytical and the numerical pulses against the variations of the relaxation parameters:
0 ≤ T1 ≤ 5 and 0 ≤ T2 ≤ 0.6. It shows that the contrast changes very little for T1

variations, while changes quite dramatically for T2 variations.

From the analytic to the experimental optimal pulses. Here presents a series of op-
timizations for successively decreasing field inhomogeneities, down to inhomogeneities
that no longer result in massive qualitative changes in optimum trajectoryes from the
perfectly homogeneous case. Figures 6.4 show that the optimal pulse sequence has a
very complicated structure due to the strong B0 and B1 inhomogeneities measured in
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the experiment. This complexity makes the interpretation of the final optimal solution
difficult. In particular, no insight is given about the transition from the analytic pulse
used in the homogeneous case to the purely numerical solution suited to the experi-
mental situation. This section presents different numerical results which illustrate the
respective properties of the two pulses.

One of the main characteristics of the numerical GRAPE solution with respect to
the analytic one is its robustness with respect to B0-inhomogeneities. This point is
illustrated in Figs. 6.8 and 6.9, as well as in Figs. 6.11 and 6.12, which plot the time
evolution of XYZ magnetization for different offsets. Note that the final magnetization
vectors are very different according to the offset in the case of the analytic pulse, while
the final vectors are almost the same for the robust GRAPE pulse. This behavior
was expected since the analytic solution has been optimized only for the on-resonant
dynamics.

Different optimizations with the GRAPE algorithm have been then undertaken to
explore the transition from one solution to the other. The results are represented in
Fig. 6.13 and 6.14, where, to simplify the structure of the pulse, only the offset inhomo-
geneities have been taken into account. The same work could also be done for the B1-
imperfections. The offset ranges extend from 0 Hz to 30 Hz from left to right, while
the last column corresponds to the experimental pulse. Note that the analytic solution
is very close to the pulse depicted in the first column of Fig. 6.13 and 6.14, which was
designed here by the GRAPE algorithm. The only difference between the two solutions
is the final bang pulse which is due to the two different definitions used for the contrast.
Observed that short and intense peaks appear at different times with increasing offset
range. They can be associated to standard refocusing pulses, which are used to improve
the robustness of the control pulse with respect to the B0 inhomogeneities. The num-
ber and the amplitude of the peaks increase as the offset range increases. For sake of
illustration, the dynamics of the on-resonance spin and of the spin with the maximum
offset (e.g. a spin with an offset of 10 Hz for a range of 20 Hz) have been represented in
Fig. 6.13 and Fig. 6.14, respectively.

6.4.3 Application of the optimized pulse sequence

For the imaging experiment, the H2O content was increased in the sample in order to
have a sufficient signal-to-noise ratio. The outer and inner volumes of the sample were
filled with the following solutions: ”oxy sample II” (80% D2O, 10% H2O, 10% glycerol
doped with CuSO4 with relaxation times of T1=2.6 s and T ∗

2=100 ms) and ”deoxy
sample II” (60% D2O, 10% H2O, 30% glycerol doped with CuSO4 with relaxation times
of T1=1.4 s and T ∗

2=30 ms). The optimal pulses were implemented into a gradient
echo pulse sequence [94] without slice selection. The experiments were performed with
a 600MHz Bruker Avance III spectrometer equipped with a micro-imaging unit. The
field of view (FOV) was 15mm x15 mm, and in the third dimension it was limited to
approximately 10 mm by coil sensitivity. The repetition time (TR) is 7 s and the echo
time (TE) is 2 ms with the matrix size 128x128. Figure 6.15 shows the experimental
imgaging results, which are in the good agreement with the simulation data.

6.5 Summary

The maximized saturation contrast based on different relaxation times T1 and T2 is
demonstrated in magnetic resonance imaging within given experimental constraints.
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Starting from the analytic optimal solution of the homogeneous case, I have then de-
signed a particular pulse sequence using numerical tools of optimal control theory to
approach in a realistic experiment this physical limit. One of the main advantages of
this contrast enhancement is its general character since the optimal control fields can
be computed with standard routines published in the literature and implemented on a
standard NMR spectrometer without requiring specific materials and process techniques.

The efficiency of this approach was shown in a laboratory experiment using a model
system for the relaxation parameters of deoxygenated and oxygenated blood. The
presented method fully exploits the differences of both T1 and T2 to create the max-
imum possible saturation contrast as opposed to conventional approaches based on T1

or T2 differences. The combined analytical and numerical optimal control approach
is not limited to the definition of saturation contrast (motivated by typical magnitude
mode imaging experiments) used here for demonstration, but can also be applied to more
general definitions of relaxation-based contrast, e.g. for phase-sensitive images and for
a wide variety of possible host imaging sequences that can be applied after the contrast
pulse module [88]. Furthermore, the flexibility of the optimal control approach makes
it possible to include experimental constraints such as bounds on the control amplitude
or pulse energy or non-linear effects such as radiation damping [39].

Hope that the presented principles will find practical applications in MRI and in
particular in medical imaging, where increased contrast and sensitivity could not only
help in the diagnosis but could also reduce the required concentration of commonly used
contrast agents, which could be beneficial to the patient.
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Figure 6.11: Evolution of the X, Y and Z components of the magnetization vectors corresponding to
the oxygenated and desoxygenated blood samples under the effect of the analytic pulse. The different
trajectories are associated to different offsets in the range from -10 kHz to 10 kHz (the on-resonance case
is plotted in black). The goal of the control is to saturate the desoxygenated spin, while maximizing
the transverse component of the oxygenated one.
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Figure 6.12: Same as in Fig. 6.11 but for a numerical optimized pulse. Since this solution is robust
within the offset range, the final magnetization vectors associated to the different offset terms are almost
the same.
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Figure 6.13: Transition from the analytic to the experimental pulses: The first row displays
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extending from 0 Hz (on-resonance case) to 30 Hz and no B1 inhomogeneity. The last column recalls the
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Figure 6.15: Experimental implementation (right column) of the robust optimal pulse,
together with the simulation data (left column). Optimization of the contrast when the deoxy-
genated (b) or the oxygenated (c) blood is saturated. Figure (a) displays the reference image after the
application of a 90 degree pulse.
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Chapter 7

Shaped pulses for increased
excitation bandwidth in EPR

7.1 Introduction

This chapter is a part of article [95] as a collaboration with the research group of Prof.
T. Prisner in Frankfurt. In this project, I am responsible for the numerical pulse op-
timization together with the analysis of the transient effect, while the experimental part
was done by Ph. Spindler of Prof. Prisner’s group. Pulsed excitation has many ad-
vantages in most applications of magnetic resonance spectroscopy, like liquid and solid
state NMR, EPR, DNP and imaging. The reason is the multiplex advantage, lead-
ing to a strongly increased signal-to-noise ratio of the pulse experiment compared to
continuous-wave excitation [96] and the strongly enhanced possibilities to select specific
interactions and to optimize polarization and coherence transfer pathways between dif-
ferent spin systems [96–105]. Simple rectangular pulses (commonly referred to as hard
pulses) work very efficiently as long as the excitation bandwidth, defined by the mag-
netic field strength and pulse length of the exciting RF or MW field, exceeds the spectral
width of the investigated spin system, as is the case especially in many applications in
liquid state NMR [106]. Roughly speaking the excitation field strength ω1 = γB1 in
frequency units has to be larger than the spectral width, where γ is the gyromagnetic
ratio for the respective spin system.

However, there are many cases were the excitation field strength cannot be chosen
large enough to fulfill this condition. This holds especially for solid state applications
in NMR as well as EPR, where the intrinsic inhomogeneous line width can easily be
in the MHz to GHz region. Such high excitation field strengths cannot be achieved
because of technical limitations, such as limited excitation power, arcing or heating of
the sample itself. In such cases, the classical pulse sequences usually still work, but
with reduced efficiency. This strongly reduces the sensitivity of the experiment and
complicates the quantitative analysis of the obtained signals. In extreme cases, the
excitation bandwidth is small compared to the spectral width, so that only few spins are
on-resonant and interacting with the excitation field (called A spins), while most of the
spin system is not excited (called B spins). The A and B spins in such samples usually
strongly interact, leading to uncontrolled polarization and coherence transfer after the
RF excitation by relaxation pathways [107,108]. The excitation hole created by classical
rectangular pulses with constant phase is frayed, complicating again any quantitative
analysis of the time domain signal [109].

67



68 CHAPTER 7. SHAPED OPTIMAL CONTROL PULSES FOR EXCITATION IN EPR

Soon the idea was followed to replace short pulses with fixed amplitude and phase
by extended pulses with variable amplitude and/or phase to achieve higher excitation
bandwidth for a given excitation field strength. Different approaches in this direction
as ’Composite Pulses’ or ’Stochastic Excitation’ have been pursued in the field of NMR
[103, 110–115] and EPR [5, 25, 47, 116]. More recently, Optimum Control Theory has
been used very successfully in the field of NMR spectroscopy to improve excitation
bandwidth and polarization and coherence transfer efficiencies in liquid and solid state
NMR experiments [117–119].

Optimal control theory provides powerful analytical and numerical tools to solve
very general optimization problems. Analytical solutions have been derived for time-
optimal [11, 119] and relaxation-optimized [71, 73] pulse sequences in uncoupled and
coupled nuclear spin systems, establishing physical limits for minimal transfer times or
minimal relaxation losses, respectively. In addition to powerful analytical tools, optimal
control theory also provides extremely efficient numerical algorithms for the optimization
of pulse-sequences, such as the GRAPE (gradient ascent pulse engineering) algorithm,
exploiting the known equation of motion for the spin system [27, 75, 117]. With this
algorithm it is possible to optimize tens of thousands of pulse sequence parameters,
which makes it possible to explore the physical limits of pulse performance [29,39,120].
As the search is not limited to previously known pulse families, the solution space is
a generalization of commonly used shaped pulses parameterized by a relatively small
number of Gaussian pulses or Fourier coefficients, adiabatic or composite pulses [26,110].

The generality and flexibility of the optimal control approach allows the pulse de-
signer to include physical effects such as relaxation [121], radiation damping [122], ex-
perimental constraints such as limited pulse amplitude or pulse power, and experimental
imperfections such as B1 inhomogeneity [123,124] or transient effects to find highly ro-
bust pulses suitable for practical applications under realistic conditions. Furthermore,
optimal control methods are not limited to the optimization of individual pulses, but
can also be used to design mutually compensating sequences of pulses [39].

To transfer such concepts and ideas into the field of EPR spectroscopy is challen-
ging because of the many orders of magnitude changed time scales and spectral widths,
related to the much stronger electron spin compared to nuclear spin systems. In EPR
spectroscopy typical spectral widths range from 10 − 100 MHz for radicals, up to the
GHz range for low-spin transition metal systems, arriving at the THz regime for some
high spin metals and complexes. In a similar way the transverse relaxation times range
from microseconds to picoseconds, depending on the chemical nature and temperature
of the sample. This has to be compared to typical magnetic field strengths B1 in the
order of mT and correspondingly pulse lengths of a few nanoseconds achieved in pulse
EPR experiments. Usually a microwave resonator is used to achieve such excitation field
strengths at the sample. At the typical spectrometer frequencies of 9 or 34 GHz excita-
tion frequency (X- or Q-band), the quality factor Q of the cavity limits the achievable
bandwidth [125]. The corresponding response time τr of the mw resonator sets a natural
limit to spin manipulations in the nanosecond region and introduces also a dead time for
detection in the range of 50−100 ns after the excitation pulses [126–129]. Because of this
reason, most paramagnetic transition metals cannot be observed at room temperature
by pulsed EPR methods, where the transversal relaxation times are shorter than the
dead time of the spectrometer. At higher magnetic fields (3.4 − 9.4 T), corresponding
to 95 and 260 GHz (W-band / sub-mm band), the situation is usually opposite. At
these high frequencies the bandwidth of the microwave cavity is not the limiting factor
anymore, but the accessible microwave power [5,130,131]. Therefore, most pulsed EPR
experiments at any magnetic field strength suffer from such experimental limitations:
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while field-swept EPR and FT-EPR [132–134] are restricted in their application mostly
to organic radicals or to low temperatures because of the dead-time problem, other
pulsed EPR experiments which involve two electron spins or a coupled electron-nuclear
spin system, as for example DQ-EPR [135,136], HYSCORE [137], ESEEM [138], pulsed
ELDOR or FT-EPR detected NMR [139,140] and REFINE [141] perform non-ideal be-
cause of too small excitation bandwidth and non-ideal pulse behavior. In this chaper,
following things are described: the development of broadband excitation pulses for EPR
spectroscopy by optimum control theory, the hardware implementation of a pulse shap-
ing device into a commercial EleXSys pulse EPR spectrometer to accommodate the
necessary fast amplitude and phase modulations, discuss specific technical limitations
of the EPR spectrometer and finally speculate about the potential of this method for
further EPR applications.

7.2 Materials and methods

All experiments were performed on a commercial pulse X-band EPR spectrometer
(Bruker EleXSys) modified by a custom made pulse-forming unit (innovative technical
systems its) (Fig. 7.1) in the group of Prof. T. Prisner in Frankfurt. This unit allows
to apply extended pulses with 14 bit amplitude resolution, 1ns time resolution and a
maximum pulse length of 32 µs. It consists of two parallel fast DACs with 90 degree
phase shift, which drive the I and Q port of the modulator (Fig. 7.1), allowing to obtain
arbitrary phase of the pulse after the mixing process. The setup includes a low-pass
filter with a cutoff at 400 MHz, to remove the clock frequency residual signal. The low
power output from the Bruker bridge serves as LO carrier frequency and is modulated
by the two DACs from the pulse-forming unit. In order to correct the phase and amp-
litude imbalances of the modulator the AWG offers two adjusting possibilities. An offset
can be put on each DAC output independently to minimize the LO leakage. To achieve
amplitude parity between the I and Q ports of the modulator each DAC output can be
scaled by a constant factor.

The output of the pulse forming unit is preamplified with 18dB by a linear amplifier
to an output power of 6dBm to obtain the optimum input level for the 1kW high-power
TWT amplifier (Applied System Engineering). The pulse-forming unit was synchronized
with the pulse programmer (Bruker pattern jet) of the EleXSys spectrometer. At this
stage a jitter of 2 ns was observed for the 2ns pattern jet. For the applications shown
here the output power of the spectrometer was artificial reduced to 200 W, due to the
bandwidth limitation of the microwave resonator at X-band frequencies (see below).

Experiments to monitor the bandwidth of the new excitation pulses were performed
with a small single crystal (0.5x0.3x0.3 mm) of the organic conductor Fluoranthenyl-
hexafluorophosphate ((Flouranthene)2 •+ PF−

6 ) [6]. These crystals grow in long, thin
needles and exhibit a single homogeneous EPR linewidth of 1 µT at X-band frequencies
and room temperature. The quadrature detected FID signal of this sample was used to
measure stepwise the excitation bandwidth of the new developed pulses by changing the
external magnetic field in steps of 14 µT over a total range of 7 mT (corresponding to
a frequency range of ±100 MHz).

The FT-EPR experiments were performed with a degassed and sealed perynaphtneyl
(PNT) sample dissolved in paraffin oil (1 µM). This stable organic radical exhibits a
well resolved spectrum (linewidth of 20 µT) consisting of 28 hyperfine lines from 6
equivalent protons with 17.6 MHz hyperfine coupling and 3 equivalent protons with a
coupling of 5 MHz. The total width of the spectra is 121 MHz. As solid test sample, 1, 3-
bis(diphenylene)-2-phenylallyl (BDPA) in polystyrene is used, which exhibits a 20MHz
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Figure 7.1: Block diagram of modified pulse X-band EPR spectrometer (a) Detail of the pulse shaping
unit (b) with two 14 bit DACs operating at 1 GHz clock speed followed by a Tschebyscheff low pass filter
with a cutoff frequency of 450 MHz. The modulator ( Marki IQ0714LXP ) operates at LO frequencies
from 7 GHz to 14 GHz and offers an IF bandwidth of 500 MHz.
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broad EPR line dominated by unresolved proton hyperfine interactions. This sample
has a transversal relaxation time of 2 µs at room temperature.

7.3 Quality factor

For simplicity, here is focused on pulses for uncoupled spins, where the equation of motion
reduces to the well-known Bloch equations. The following problem is considered: to
transfer an initial magnetization vector M(0) = (0, 0, 1)t(where the subscript t indicates
the transpose of the vector) to a desired target state for a specified range of offsets vmin

off ≤
voff ≤ vmax

off and with a desired degree of tolerance with respect to B1 inhomogeneity

or B1 miscalibration, which is specified by a scaling factor smin ≤ s ≤ smax. In order
to optimize a given (shaped) pulse with x and y amplitudes ux(t) and uy(t) and overall
duration T , one need to define an overall quality factor that quantifies the performance
of the pulse [117]:

Φ =
1

NoffNs

Noff
∑

k=1

Ns
∑

k=1

φ(vk, sl) (7.1)

where Noff and Ns are the numbers of equidistant samples at offsets vk and B1

scaling factor sl, repectively. Defining a final magnetization vector M(T ) and the target
vector F , common choices for the local quality factor φ(vk, sl) are:

φP (vk, sl) = M(T )F =

3
∑

α∈x,y,z

Mα(T )Fα (7.2)

φw(vk, sl) =
∑

α∈x,y,z

(Mα(T )− Fα)
2 (7.3)

The local quality factor φP [25] is maximized. The local quality factor φw [6] is
minimized and incorporates the weighting factors ax,ay and az for the x, y, and z com-
ponents of the difference vector, respectively. While φP simply measures the projection
of the final magnetization vector onto the target vector, φw offers more flexibility and,
in particular, allows one to better defined the phase of the final magnetization vector.

7.4 Experimental results

7.4.1 Spectrometer impulse response

All passive or active microwave components cause linear or nonlinear distortions of the
pulse shape. The most obvious component is the microwave resonator, which is used
to increase the B1 field strength at the sample as well as the detection sensitivity.
One approach to characterize linear distortions of the system is to measure the impulse
response function h(t). This function is the signal response of the system to a delta-
shaped input pulse excitation. Linear response theory states, that once this function is
known, every output signal y(t) can be calculated by convolution of the input x(t) with
the impulse response h(t)

y(t) =

∫ ∞

−∞

h(τ) • x(t− τ)dτ (7.4)
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Therefore, in principle, the response function h(t) can be obtained by deconvolution
of the measured output signal y(t) from any known input signal x(t), but this is a math-
ematically unstable procedure. A more stable procedure is to use a pseudostochastic
maximum length sequence [142] as input function x(t − τ). The cross-correlation with
the output signal y(t) yields the response function h(τ).

∫ ∞

−∞

y(t) • x(t+ τ)dt = h(τ) (7.5)

This is derived from the autocorrelation function of the pseudostochastic sequences,
which approximate a delta-function

∫ ∞

−∞

x(t− τ) • x(t)dt = δ(τ) (7.6)

The measured output function y(t) at the position of the sample was determined with
a small pick-up coil brought into the stray field of the resonator. It was made out of a 0.7
m length 2.2mm diameter semi rigid cable with a SMA connector soldered at one end.
The coil itself consists of a half loop of the inner conductor soldered to the shield. The
coil was located immediately at the end of the cable. A Miteq DB0418LW1 broadband
mixer and a 350 MHz Tektronix TDS 5034B oscilloscope were used for detection (Fig.
7.2).

Figure 7.2: Pick-up coil test setup for measurement of the spin excitation function y(t) with the
standard Bruker resonator MD 5.

The impulse response function h(t) was determined with a maximum length sequence
generated by a 13-bit linear feedback shift register with one XOR gate between position
12 and 13. The initial values have been set to: [1 0 1 0 0 0 1 1 0 0 0 0 1]. The step time
of 1ns gives a total length of 8191 ns. The derived response function for the microwave
excitations of the spins is shown in Fig. 7.3 a. To illustrate the frequency response of
this excitation response function, the Fourier-Transform of h(t) is depicted in Fig. 7.3
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b. As can be seen most easily from the real part of the Fourier transform, H(v), the
excitation amplitude falls of very rapidly after a bandwidth of ±200 MHz, mainly due
to the limited resonator bandwidth.

The experimental group of Prof. Prisner in Frankfurt want to investigate the feasib-
ility of replacing classical hard pulses typically used in pulsed EPR with shaped optimal
control pulses of the same peak B1 amplitude to increase excitation bandwidth and im-
prove performance. Experimental comparison is difficult and unreliable at frequencies
where the resonator response approaches zero. Therefore, in the following applications,
I design OCT pulses with a bandwidth of ±100 MHz, where the resonator has significant
sensitivity, and utilize a reduced peak microwave excitation field strength of 12 MHz,
corresponding to a 21 ns π/2 pulse.

7.4.2 Bandwidth optimized pulses for excitation

As a first test case for the application of optimal control pulses in EPR, the FT-EPR
method is chosen . Bandwidth limitations and deadtime limit the application strongly.
For the generation of magnitude mode spectra, the phase of the excited magnetiza-
tion is irrelevant and hence the goal of the optimization is to maximize the transverse
magnetization components, which is equivalent to minimizing the absolute value of the
remaining z component of the magnetization vector at each offset within the desired
bandwidth. This can be quantified using the quality factor φw of Eq. (3) with F = (000)t

and ax = ay = 0, az = 1, resulting in φw(vk, Sl) = M2
z (T ), which should be minim-

ized. The corresponding adjoint state required for the GRAPE algorithm is given by
λ(T ) = 2(00Mz)

t. Each pulse of duration 500 ns was digitized in steps of 5 ns, resulting
in 100 time slices j during which the control amplitudes ux(j) and are constant. A

maximum value of umax =
√

u2
x(j) + u2

y(j) = 12 MHz, corresponding to a microwave

field amplitude B1 of 0.43 mT (and a power of 160 W), was enforced using the clipping
approach described in more detail in [26]. The following parameter ranges were used
for offset and B1 scaling factor s: vmin

off = −100 MHz, vmax
off = 100 MHz, smin = 0.95,

smin
max = 1.05.

The total bandwidth of 200 MHz is about a factor of 4 broader than the excitation
bandwidth of a classical π/2 pulse (with a length of 21ns at this MW power) as can be
seen in Fig. 7.4. Fig. 7.4 c/c’ shows the experimentally determined transverse signal
magnitude for the classical π/2 pulse (a) and for the optimal control pulse sequence
(a’) as a function of frequency offset. As can be seen, the optimal control pulse indeed
excites a broader spectral width as compared to a classical π/2 pulse with same maximum
microwave power. The energy delivered to the electron spin system is a factor of 10 larger
for the optimal control sequence applied for a total time of 0.5µs For comparison, an
extreme hard pulse amplitude of about 120 MHz compared to 12 MHz for the BEBOP
sequence would be required to cover the same bandwidth with comparable fidelity (c.f.
Fig. 7.4 b, ignoring transient effects), which would deliver the same energy to the sample
as the optimal control pulse.

The average power of the optimal control pulse is forty percent of the maximum
power. The signal intensity in Fig. 7.4 c is set to 1 for an on-resonant excitation of the
electron spin. The amplitudes of the transverse magnetization signal detected after the
optimal control pulse sequence have been normalized with the same procedure. Then
the signal amplitudes of the 21 ns π/2 is compared with the 0.5 µs long optimal control
pulse as a function resonance offset, after multiplying by the frequency response of the
video amplifiers. Only the magnitude of the transverse magnetization is shown since
the phase was not included in the optimization of the BEBOP (broadband excitation
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Figure 7.3: Frequency characterization of the spectrometer setup. 3a: Impulse response function and
(3b) frequency response of the excitation path (black/grey real/imaginary). 3c: Frequency response of
the video amplifiers set to 200MHz bandwidth.
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by optimized pulses) sequence. Since the transverse magnetization decays right from
the beginning of the pulse, the on-resonance signal of the BEBOP excited fluoranthenyl
is 0.93 times smaller compared to the hard pulse. The loss of signal intensity at higher
offsets is caused by the frequency response of the detection path dominated by the video
amplifiers, as shown in Fig. 7.3 c. The influence of the resonator bandwidth itself,
as shown in Fig. 7.3 b, plays a minor role for this reduced detection efficiency as a
function of frequency offset in this case. Thus, very good agreement between theoretical
predictions and experimental results has been obtained for the BEBOP pulse.

As a first application, the BEBOP pulse was then applied in a FT EPR experiment
on PNT dissolved in paraffin oil. FID signals were recorded under the same experimental
settings as described above. The same number of accumulations was chosen for BEBOP
and rectangular π/2 excitation pulses. Fig. 7.5 shows the magnitude Fourier transform
of the FID signals recorded 100ns after the end of the pulses. The maximum B1 field
strength was 4.3µT which corresponds to an on resonance Rabi nutation frequency of
12 MHz. For the two central lines, the FID signal detected after the BEBOP pulse is a
factor of 0.6 smaller in overall signal amplitude.

Dividing the peak intensities of the lines appearing at −2.5 MHz and −38 MHz gives
theoretically a factor of 3 (Fig. 7.5 a). The experimentally observed ratios of intensities,
taking into account the frequency response of the video amplifier, are 3.8 and 9.3 for the
BEBOP and rectangular pulse, respectively (Fig.7.5 b c). This is consistent with the
simulated excitation performance shown in Fig. 7.4. More interesting is the comparison
of the spectra taken with both excitations applied 53 MHz off-resonance. The spectrum
taken with the rectangular π/2 pulse (Fig. 7.5 e) shows very strong distortions in the
relative peak amplitudes of the hyperfine spectra of PNT, whereas the spectrum recorded
with the optimal control pulse still gives a very good qualitative representation of the
expected signal intensities (Fig. 7.5 d). In both cases the signal loss due to relaxation
of the optimal control spectra is more than compensated by the large signal loss of the
21 ns π/2 pulse for offsets greater than 40 MHz, as shown in Fig. 7.5 e.

7.4.3 Prefocused pulse

Due to their narrower linewidth, it is in general preferable to acquire phase-sensitive
spectra rather than magnitude-mode spectra. In contrast to excitation pulses with
arbitrary phase considered in the previous section, this application requires excitation
pulses that create transverse magnetization with a defined constant slope of the phase φ
as a function of offset. The normalized, dimensionless phase slope R is defined as [143]

R = T−1∂φ/∂ωoff = (2πT )−1∂φ/∂voff (7.7)

Ideally, an excitation pulse should have a normalized phase slope R = 0, in order
to align all magnetization vectors at the end of the pulse. However, after an excitation
pulse the resulting FID cannot be directly measured due to the finite dead time ∆d of
about 50-100 ns for X-band frequencies, during which the detected signal is distorted
by resonator ringing caused by the microwave pulse.

One approach to align the transverse magnetization vectors for all resonance offsets
after the dead time, i.e. to form an echo, is to use a broadband excitation pulse with
0 ≤ R ≤ 1 [143], followed by a delay ∆d − RT and an ideal refocusing pulse, which
rephases all transvers magnetization components at the time ∆d after the end of the
refocusing pulse. However, the problem of this approach is that the bandwidth of con-
ventional rectangular refocusing pulses is quite limited (on the order of the maximum
pulse amplitude). Although refocusing pulses with larger bandwidth can be designed
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Figure 7.4: Comparison of a conventional rectangular pulse (left column) and the optimized BEBOP
(broadband excitation by optimized pulses) [25]. The panels in the first row show the pulse shapes.
The panels in the second row (b, b) show the simulated magnitude of the excited transverse magnet-
ization. The black curves in the third row (c, c) represent the simulated magnitude of the transverse
magnetization multiplied by the measured frequency response of the video amplifier. The grey lines in
c and c’ represent experimental magnitude mode spectra
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Figure 7.5: Magnitude Fourier Transform spectra of 1 mM PNT in paraffin oil measured at room
temperature. Stick-diagram of hyperfine spectra (a). Experimental spectra excited in the center of
the EPR spectra with the BEBOP sequence (b) and with a 20ns π/2 pulse (c). Experimental spectra
excited 53 MHz off-resonance from the center of the EPR spectra with the BEBOP sequence (d) and
with a 21ns π/2 pulse (e)
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using optimal control based numerical algorithms such as GRAPE or constructed from
broadband excitation pulses [144], the duration Tr of a refocusing pulse with similar
bandwidth and quality as the excitation pulse is expected to be on the order of 2T ,
where T is the duration of the excitation pulse. Hence, for this approach, the min-
imum time between the end of the excitation pulse and the time of the echo is given by
2∆d − RT + Tr ≈ 2∆d + T (2 − R), which may result in substantial signal loss due to
relaxation.

An alternative approach, is to design an excitation pulse with a negative normalized
phase slope R = −∆d/T , which will create an echo after the delay time ∆d (i.e. after
the dead time) and without the need for additional pulses [143] (see Fig. 7.6).

Excitation pulses with R < 0 can be viewed as an optimal combination of excitation
and refocusing pulse in a single monolithic pulse with a given maximum pulse amplitude.
As shown in [143], a pulse with a desired phase slope R can be optimized using the offset
dependent target state

F (voff ) = [cos(2πvoffRT ), sin(2πvoffRT ), 0]t (7.8)

in the definition of the local quality factor φP or φw(c.f. Eqs. 2 and 3). The
optimizations choses a pulse of duration 1µs which was digitized in steps of 1 ns, resulting
in 1000 time slices j during which the control amplitudes ux(j) and uy(j) are constant.
R = −0.2 is chosen, resulting in a delay between the end of the pulse and the echo
formation of 200 ns. In order to minimize relaxation losses during the pulse duration of
1µs The relaxation can be included in the optimization as described in [29]. A maximum
pulse amplitude of umsx = 20 MHz was chosen and the optimized bandwidth was 200
MHz, corresponding to vmin

off = −100 MHz and vmax
off = 100 MHz. A B1 inhomogeneity

of ±5% was considered, corresponding to smin = 0.95, smax = 1.05. One approach to
take into account the finite bandwidth of the probe is to restrict the largest frequency
component of the pulse during the optimization [145]. The pulse shown in Fig. 7.7a was
optimized using this approach to obtain a maximum bandwidth of 200 MHz, assuming
it is delivered with ideal fidelity by the probe (grey line in Fig. 7.7c). However, the
non-uniform frequency response of the probe at the lower frequencies comprising the
pulse is still sufficient to degrade pulse output performance (black line in Fig. 7.7c). A
more general approach, which allows best use of the available hardware characteristics,
is discussed in the following.

7.4.4 Frequency-response-compensated pulses

Due to the finite response time of the resonator (related to the Q factor), the switching
of pulse amplitude and phase during the pulse causes transient effects which result in
amplitude and phase distortions of the ideal input pulse. The output pulse experienced
by the electron spins can be quite different from the desired input pulse shape. The time
scale of amplitude and phase transients can be described in terms of the bandwidth of
the resonator. These transient effects are not significant in typical liquid-state NMR ex-
periments performed with low-Q probes and can be neglected in designing pulses for such
experiments. However, they need to be taken into account in the design of broadband
EPR pulses, where typically the desired excitation bandwidth of a pulse is comparable
to (or larger than) the bandwidth of the microwave transmission system including the
resonator. As shown in [146], for any given input pulse, the corresponding output pulse
can be predicted if the impulse response of the electronics is known (assuming a lin-
ear response system). Conversely, for any desired output pulse the corresponding input
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Figure 7.6: (top) Schematic representation of three spin packages in the transverse plane directly
after the prefocused pulse sequence, 200 ns later, and 400 ns later, and (bottom) the experimentally
observed in phase (black line) and quadrature (grey line) signal with such a pulse on a BDPA sample
in polystyrene. The FID signal (echo) appears at the focus time for this sequence, which is chosen to
be 200 ns after the end of the pulse.

pulse can be calculated [146]. However, the required input pulse may not be experi-
mentally feasible e.g. because the required pulse amplitudes to be sent to the resonator
may exceed the maximum amplitude provided by the pulse amplifiers. Therefore, the
best approach is to take the impulse response into account in the optimization of the
pulse, where constraints of input amplitude can be enforced. The relationship between
the input pulse uin and the output pulse uout can be expressed as a convolution:

uout(t) = h ∗ uin =

∫

h(τ)uin(t− τ)dτ (7.9)

where h(t) is the impulse response function. As discussed in the experimental section
h(t) can be determined experimentally by deconvoluting uout (which can be measured
using a pickup coil) with uin. The Fourier transformation of uin, h and uout are related
by F (uout) = F (h)F (uin) where, in the numerical calculation, uin is extended by a delay
corresponding to the duration during which the amplitude of the impulse response is
not negligible.

Conventionally, GRAPE optimizations are based on the performance of the ideal
input pulse uin. In a modified version of the GRAPE algorithm, the input pulse uin

is optimized by maximizing the excitation profile of the resulting output pulse uout .
Here I used the local quality factor for the offset-dependent target state given in Eq.
7.2. Both the forward propagation of the initial magnetization M(0) and the backward
propagation of the adjoint λ(T ) is calculated using the output pulse uout.

For each time slice j, the first order gradient of φP with respect to the output
amplitudes uout

x (j) and uout
y (j) is given by

∂φP

∂uout
x (j)

= My(j)λz(j)−Mz(j)λy(j) (7.10)
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∂φP

∂uout
y (j)

= Mz(j)λx(j)−Mx(j)λz(j) (7.11)

In order to update the input pulse uin, one approach is to translate the gradient
∂φP

∂uout
α (j) with respect to the output pulse into the corresponding gradient ∂φP

∂uin
α (j) of the

input pulse, using the impulse response function [145, 147]. Here I used the following
equivalent approach: in each iteration, uout is updated based on the gradient ∂φP

∂uout
α (j)

(e.g. by steepest descent with a small step size or by the conjugated gradient method)
and the corresponding uin is calculated by uin = F−1(F (uout)/F (h)). The constraint of
the maximum allowed input pulse amplitude uin

max is taken into account in each iteration
by clipping the amplitude of uin such that uin(j) ≤ uin

max.
To summarize the procedure:

(1) create a (random) initial input pulse uin(0) of duration T
(2) for each iteration step k, translate the current input pulse uin(k) into the correspond-
ing output pulse uout(k) with the help of the experimental response function h
(3) for all offsets vk and scaling factors sl
(a) evolve M(t) forward in time under uout starting from M(0) = (001)t

(b) evolve λ(t) backwards in time under uout starting from λ(T )

(c) calculate the gradient ∂φ(vk,sl)
∂uout

α (j)

(4) calculate the overall gradient ∂Φ
∂uout

α (j) by averaging the local gradient ∂φ(vk,sl)
∂uout

α (j) for all

offsets vk and scaling factors sl
(5) update uout(k)(j) → uout(k+1)(j) = uout(k)(j) + ǫ ∂Φ

∂uout
α (j) where ǫ is a small step size

(6) calculate the corresponding uin(k+1) from uout(k+1) with the help of the experimental
response function h
(7) clip the amplitude of uin(k+1) if the maximum amplitude uin

max is exceeded, i.e. if
uin(j) > uin

max, set u
in(j) = uin

max

(8) repeat steps (2)-(7) until a desired convergence of Φ is reached.
The efficiency of the procedure described above was tested with the fluoranthenyl

sample for offsets ranging from −40 MHz to +40 MHz. Fig. 7.7 shows the comparison
between a Hahn echo sequence with rectangular pulses (first column), the prefocused
pulse sequence (second column) and the pre-compensated prefocused pulse sequence
which takes the impulse response function (Fig. 7.3 a) into account during optimization
(third column).

In the first row of Fig. 7.7, the x-component (in blue) and the y-component (in red)
of the input pulse are depicted. The second row shows the simulated output pulse, as
modified by the response function. The calculated x-magnetization 200 ns after the pulse
is shown in the third row of Fig. 7.7. The grey line shows the performance of an input
pulse from the first row, assuming it is delivered with ideal fidelity by the instrument-
ation. The black line represents the performance of the actual output pulse delivered
to the sample. As illustrated in Fig. 7.7 c’, the almost ideal performance (grey) of the
faithfully delivered input pulse is severely distorted (black) by these hardware limita-
tions. When this anticipated distortion is quantified by measuring the input response
function, it can be designed into the pulse presented in the third column. Now, the per-
formance (grey, Fig. 7.7 c”) of this input pulse from row one, assumed to be unaffected
by the instrumentation, is severely degraded compared to the desired performance, but
the performance (black) of the actual output pulse from row two approaches the ideal.
In the last row, the performance of the actual output pulse plotted in black in row
three is multiplied by the measured frequency response of the video amplifier and again
plotted in black. This simulates the frequency profile of the measured signal, including
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instrumental effects, resulting from application of the pulses in row two. Experimental
cosine Fourier-transformed FID signals of the fluoranthenyl sample are plotted as grey
lines in the last row of Fig. 7.7 for both prefocused pulses. There is resonable agreement
between the theoretical and experimental performance of the pulses.

Although the hard pulses in column one are relatively unaffected by these instru-
mental effects, they perform over a very limited bandwidth which can be significantly
extended using the shaped OCT pulse in column three. The comparison was made with
the same B1 amplitude to emphasize that this conclusion and possibility is relevant for
a range of EPR applications currently employing hard pulses.

7.5 Discussion

I have designed pre-compensated pulses using optimal control theory that take into
account instrumental modifications of the pulse between input and output. This input
pulse is then distorted by the system hardware in the precise fashion that delivers the
desired optimized pulse shape to the sample. Experiments described above are the first
to demonstrate the potential of this method to improve the excitation bandwidth and
overcome other limitations, as, for example the dead-time of the spectrometer. Our
test experiments were all performed at X-band frequencies with a reduced MW power
of approximately 160 W for the BEBOP sequence and 440 W for the prefocused pulse.
This allowed a quantitative comparison with rectangular pulses of the same Microwave
power, by reducing the limitations of resonator bandwidth. Additionally, optimal control
pulses have to be performed in the linear regime of the high power microwave amplifier.
Some of these limitations will become less severe at higher microwave frequencies, where
the intrinsic resonator bandwidth by far exceeds the excitation bandwidth of rectangular
pulses.

The BEBOP pulse was designed for a broadband (200 MHz) excitation of trans-
verse magnetization of arbitrary phase. Comparison of the experimental results for the
BEBOP pulse with a rectangular π/2 pulse, with the same microwave excitation field
strength B1 of 0.43 mT, showed significantly broader excitation bandwidth for the op-
timal control pulse. This provided FT-EPR spectra with much better reproducibility of
the relative signal intensities, as demonstrated on a liquid PNT sample.

Experiments also tested a pre-focused optimal control pulse producing magnetization
of constant phase at a focus time of 200 ns after the pulse. This pulse was applied to
a solid BDPA sample. Indeed, an echo like FID signal could be recorded 200 ns after
the end of this pulse. This allows comfortable detection of the signal after the typical
spectrometer dead-time of approximately 50-100 ns, making the method very promising
for FT-EPR.

Limitations mostly arise from the restricted bandwidth of the excitation and detec-
tion. The microwave resonator distorts the excitation substantially, introducing artifacts
and holes in the excitation pattern, as shown in Fig. 7.7. I have shown this can be com-
pensated by measuring the excitation transfer function and taking it into account in the
optimization of the pulses, as described above and illustrated in Fig 7.7. Since the coil
cannot be inserted directly into the resonator it is placed in the stray field. The meas-
ured field at this position differs from the field experienced by the spin in the resonator
due to the superposition of MW modes in the probe and the resonator itself. In our case
this deviation is small at least in a frequency range of 80 MHz as shown in Fig. 7.7. The
bandwidth of the pick up coil itself does not affect the measurement in the frequency
range of interest which was verified with a network analyzer.
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Figure 7.7: Compares conventional and optimized pulses designed to acquire self refocused signal 200
ns after the end of the last pulse. Signal (x-magnetization) is plotted as a function of resonance offset.
The left column represents a conventional echo sequence based on rectangular 90◦ and 180◦ pulses. The
middle and right columns represent results of optimizations without (middle column) and with (right
column) compensation for instrumentinduced transient effects taken into account in the optimization.
The panels in the first (a) and second (b) row show x- (red) and y-(blue) component of simulated input
and output pulses, respectively. The third row (c) shows the simulated response for the input pulse
(grey curves) and for the output pulse (black curves). Finally, the black curves in the fourth row (d,
d’, d”) represent the simulated response of the output pulses multiplied by the measured frequency
response of the video amplifier. In panels d’ and d”, experimental spectra are shown as grey curves.
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Since the duration of the optimal control pulses providing increased bandwidth ex-
ceeds the length of classical rectangular pulses of the same B1 amplitude, transverse
relaxation can be even more important. In cases where the length of the OCT pulse
becomes comparable to the relaxation time, compensation for relaxation has to be ad-
dressed in the optimization procedure, as described above. Higher available microwave
power will shorten the length of OCT pulses for a given performance, but only by the
square-root of the power. For this first application of optimal control theory to EPR,
pulses were designed assuming uncoupled electron spins. Applying such pulse sequences
to electronic spin systems with large anisotropic hyperfine couplings will lead to arti-
facts, especially for cancellation conditions. Again, these problems will be less severe at
high microwave frequencies, where the nuclear Zeeman splitting exceeds the hyperfine
couplings.

7.6 Summary

For the first time, optimal control theory was used to design broadband excitation pulses
for EPR spectroscopy. To accommodate such sequences in a commercial pulsed X-band
spectrometer, a fast amplitude and phase modulating unit has been designed and im-
plemented. OCT broadband excitation pulse sequences have been tested and evaluated
with this setup. Substantial gain in excitation bandwidth for a given microwave excita-
tion field strength has been obtained. The pulses are also unique in that they transform
magnetization as a function of resonance offset to the precise orientations in the trans-
verse plane that subsequently precess and self-refocus during the dead-time of the EPR
spectrometer detection channel. This allows dead-time free recording of the FID-signal
in FT-EPR spectroscopy. Restrictions arising from the spectrometer response function
are discussed and have been compensated by including this function in the optimization
procedure. In addition, the pulses tolerate B1 inhomogeneity of ±5%. This requires
a particular pulse shape that is more than difficult, if not impossible, to determine by
traditional methods based on intuition or symmetry arguments. The optimization math-
ematics provides a means for finding such a pulse out of the vast number of possible
pulse shapes. Other pulses, such as inversion pulses, will be targets for OCT-derived
pulses in the future. Additionally, this method can be applied to redesign whole pulse se-
quences, such as the four-pulse PELDOR sequence [148] or the double-quantum filtered
EPR experiment [132], which strongly suffer from imperfect polarization and coherence
transfer pathways of standard pulses.
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