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Abstract

In the last decade several authors propagated the use of interval  probabilities as alternative to  
Bayesian  models in reliability problems.
The basic idea of this approach is to start from some lower and upper bounds for functions of  
random variables describing the failure probabilities or rates of the components of a system and 
then to derive from these then bounds for the failure probability of the system. The advantage of 
such bounds is  that  there are no classical  or  Bayesian confidence probabilities,  one  is  100% 
certain that the calculated probabilities lie in the derived bounds. 
If  one considers the basic problem in reliability of finding the failure probability, this can be seen 
as  collecting  information,  one  starts  from  total  ignorance  and   gathering  more  and  more 
information one arrives at more specific estimates of the probability.
Using the mathematical definition of entropy and information, here it is shown that the method of 
interval probabilities requires an  infinite amount of  information. A prerequisite which in halfway 
realistic problems cannot be fulfilled.

1. Introduction

Structural  reliability started to develop in  the 50ies  of the  last  century,  usually  the paper  by 
Freudenthal (1956) is seen as marking the begin of this research field. Using in the beginning the 
ideas of classical probability, the favorite approach soon shifted to Bayesian methods. A seminal  
book pioneering this approach was Benjamin and Cornell (1970). Since then the overwhelming 
majority of research in this field is based on  this paradigm.
One point that causes often uneasiness in people entrenched in deterministic thinking is that there  
is  no  100% percent  certainty.  In  both conceptions   of  probability,  classical  or  Bayesian,  after  
deriving confidence intervals,  there  is  always  a remaining risk  that  something is  outside the 
bounds one has found.
There have been attempts to develop structural reliability methods which avoids such probability 
statements, as an example see Ben-Haim (1996). Avoiding probability statements seems appealing,  
since so all these fine points of probability theory are not needed and don't  have to be explained. 
On the other hand there is  the danger that such schemes are used especially because of these  
benefits without seeing shortcomings in them, which might be serious.
One of these alternative concepts competing with the Bayesian approach is the interval probability 
method. Here it seems that one has suddenly no more confidence intervals with some probability 
content less than 100%, but absolute certainty that the parameters of the  system are contained in 
the derived intervals.  It remains the question, how this can be achieved. This problem will  be 
examined here.
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2. Basics of  the Interval Probability Method

In this paragraph a sketch of the interval probability method following the paper by Uktin and  
Coolen (2007) is given.
The starting point of such methods is that for  random variables which characterize in some way 
the failure probabilities of system components some upper and lower bounds  are given. As an  
example consider a system consisting of n components where the behavior of each component is 
described  by  a  random  variable X i , i=1,…, n .  Suppose  that  partial  information  about 
reliability of  components  is  represented  as  a  set  of  lower  and upper  expectations E f i j and 

Ef i j , i=1,... ,n , j=1,... ,mi (i.e.  numbers)  of  functions f i¸ j .  Here mi is  a  number  of 
judgments that are related to the i-th component; f i j (X i) is a function of the random variable

X i of the  i-th component or some different random variable,  describing the  i-th component 
reliability and corresponding to the j-th judgment about this component. 
The simplest cases are bounds for the moments of X i . Here this means for the mean

E(X i)≤E(X i)≤E(X i ) . (1)

Similarly, bounds for other moments can be defined.
Further,  to  get  bounds  for  fractiles,  if X i is  the  time  to  failure  for  the i-th  component,  the 
interval-valued probability that a failure of this component is in the time interval  [a, b]  can be 
represented as expectations of the indicator function I [a,b] (X i) such that

 I [a,b] (X i)=1 if X i ∈ [a,b ]  and
 I [a,b] (X i)=0 if X i ∉ [a,b ] .

The partial information here is  a lower and upper bound for this expectation

E(I [ a,b] ) ≤ E( I [a,b ](X i)) ≤ E( I [a,b] )  

E(I [ a,b] ) ≤P(a ≤ X i ≤ b) ≤ E( I [a,b] ).  (2)

Said in plain words the probability that the value of X i lies between a and b is larger equal than
E(I [ a,b]) and less equal than E(I [ a,b]) . 

Utkin (2004) applied such concepts to structural reliability, taking as first example the basic load-
resistance model with  L the load and  R the resistance; where failure occurs if  L>R. Then it is 
assumed that for the load L and the resistance R  bounds for their respective CDF's are known

pi < P (L < α i) < pi , q j < P (R <β j )< q j.  (3)

for i=1,...,n  and j=1,..,m.  So here the pi ( pi ) are lower (upper) bounds for the CDF of the 
load L at the points α i and respectively the q j ( q j ) for the CDF of the resistance R at the 
points β j . This can be used to obtain bounds for the failure probability P(L>R).  Using now this 
information, further bounds for the reliability are derived. 
Further  reliability  problems,  especially  system reliability  are  studied  in  Utkin  (2004b,  2005). 
Generalizations of the interval probability method are second-order reliability models where the 
problems of contradicting judgements are discussed, see for example Kozin and Utkin (2001).



Looking now at the starting point of the method, one  question arises. How one does get such  
information about the CDF's and is it a realistic assumption that such information is available? To 
answer this question first in the next paragraph the concept of entropy will be introduced as a tool  
for solving this problem.

3. The concept  of  entropy

The probability of  an event  A can be seen as  uncertainty about  the  occurrence of this  event. 
Considering now the question, how to model the uncertainty about which of a number of possible 
but incompatible events will occur, leads to the concepts of entropy and information. The outline 
here follows the presentation given in Papoulis (1991). A more detailed presentation can be found 
for example in Gray (1991).
For  a  given  probability  space  S a  partition  is  a  collection  of  mutually  exclusive  subsets 

A1,…, An such that the union of these sets equals  S .

Let  the  partition  of   n  sets  A1,…, An be  denoted  by  A. The concept  of  entropy assigns  a 
measure  of  uncertainty not  to  a  single  event  but  to  a  partition of  the  probability space.  This  
measure H(A) is called the entropy of the partition. It models our uncertainty which of the possible 
events will occur. 
So  if  there  are  only  two  events A1 and A2 in  the  partition  and P(A1)=0.999 and 

P(A2)=0.001 , we would be quite sure that A1 will occur, the entropy is low; on the other 
hand if P(A1)=0.5, P(A2)=0.5 , we would be more uncertain, the entropy is large.

The  actual  form of  H(A) is derived from some postulates formalizing the intuitive understanding 
of uncertainty. The usual set of postulates is the following (Shannon and Weaver, 1949):

1. H(A)   is a continuous function of pi=P(A i),

2. If p1=…=pn=1/n , then H(A)  is an increasing function of  N ,

3. If a new partition B  is formed by subdividing one of the sets of  A  , then H(B) ≥ H(A  ).

From these postulates one can derive that H(A)  (up to a multiplicative constant)

H(A)  =  −p1 log(p1)−…−pN log(pN). (4)

Here it is assumed that 0⋅log(0)=0 , which can be justified by using L'Hospital's rule. 
It can be derived easily that the entropy is maximal if all probabilities  pi of the partition are 
equal, i.e. if p1=…=pn=1/n . Then

H (A ) = n
1
n

log(1/n) = log(n).  (5)

If now we observe an event  M, the entropy of the partition changes, since now the probability 
space is S∩M and no more  S. 
Calculating then  the entropy under the condition that  M was observed,  gives the  conditional  
entropy H(A|M) defined as

H (A∣M ) = −∑i=1

N
P(A i∣M )log P(A i∣M ).  (6)



The  difference  H(A) -  H(A|M) is the information about H(A)  contained in M. With more and 
more observations and data the entropy should decrease, since we get more  information.
If we have a binary partition, i.e. the probability space  S is divided  in only two sets A1 and 

A2 , we have for the conditional entropy

H (A∣M ) = −P(A1∣M )log P(A1∣M )−P(A2∣M )log P(A2∣M ).  (7)

If we have perfect information about the partition after observing M, i.e. if no uncertainty is left 
and we know for example that A1 is the true state, the conditional entropy would be zero.

4. A Bayesian Analysis of Interval Probability Methods

Here we will examine now the proposed interval probability in the light of the Bayesian paradigm. 
For  this we will  consider  a  totally simple  example,  Bernoulli  experiments,  and study interval 
probability methods for it. All these partial information about distributions described in the second 
paragraph can  be considered as information about a Bernoulli random variable.
Now,   if  X is  a  Bernoulli  random variable,  denoting  for  example   X=1  the  failure  of  a 
component or the probability that a random variable Y takes on values in a specific interval , its 
expected value E(X )= p is the only parameter of its distribution.  Now we assume that partial 
information about this expected value is given, a lower bound p and an upper bound p so that

p ≤ p ≤ p .  (8)

Interval probability followers take this as starting point for their methods. But how do we get such 
an information?  An attempt to answer this query is now made, putting all into a Bayesian  frame.
In a Bayesian framework we start from total ignorance, i.e. we assume a uniform prior distribution 
over  the  unit  interval  [0,1]and  then  we  learn  from  the  observed  data.  Let  now  be  defined 

A1 = [p , p ] . Then the prior probabilities for the two sets are

P(A1) = ∣ p−p ∣ , P(A2) = 1−∣ p−p ∣  (9)

How can we arrive at the conclusion 

Ppost(p ≤ p ≤ p) = Ppost(A1) = 1?  (10)

Here Ppost denotes some unspecified posterior probability. If we can derive the result in eq. (10)  
in a Bayesian setting, it must be so that after a number of observations the then achieved posterior  
distribution of p gives us this result. This assumption is the basis of interval probability methods in 
this basic example.
Now,  if  we  observe  the  results  of  more  and more  Bernoulli  experiments,  the  entropy should 
diminish, until we reach the state where we can deduce that Ppost(p≤ p≤p)=Ppost(A1)=1 . But 

this would mean that the entropy H(A) of the binary partition consisting of  A1  and A2 with 
this  posterior probability distribution is zero,  since

H (A )= Ppost(A1)⋅log(Ppost (A1))+0⋅log(P post(A2))= 1⋅log (1)+0⋅log(0) = 0.  (11)



If only data are used to derive the statement in the equation above, after a finite number  K of 
experiments having observed  an event M, this conclusion must have been reached. Here nothing 
is said about which set M would bring this conclusion, but if  only a finite amount of information 
is used, such a conclusion must be based on the observation of  some set  M and nothing else.
Since this is the essential part of the argument, to repeat it, if the deduction is made in a rational 
way derived from the observed data, it must be done in such a way. Other ways to follow that 

Ppost(A1)=1 are not justifiable in a rational way in this context.
In a finite sequence of  K Bernoulli  experiments, all  elementary events  E are binary strings of 
length K. For each such elementary event the posterior probability is (Press (1989), p. 40)

P(A i∣E) ∝ P(A i) ( KnE)∫A i
p
nE(1−p)

K−nE dp, i=1,2.  (12)

Here nE  is the number of ones in the string E.
For  an  arbitrary  event  M which  is  composed  of  some  elementary  events  E,  the  posterior 
probabilities are then

P(A i∣M ) ∝ P(A i)∑E∈M ( K
nE)∫Ai

p
nE(1− p)

K−nEdp , i=1,2 .  (13)

It  is obvious that these posterior probabilities remain always positive, if  the prior probabilities 
were positive for both sets, which is the case here. Using  eq.(7), we can conclude that always

H (A∣M ) > 0 .  (14)

Therefore it is impossible to reach the conclusion in eq. (10)  in any way with a finite number of  
experiments if we look at the problem in the Bayesian framework. Somehow an infinite amount of 
information is needed to arrive at the conclusion in eq. (10). 
Now, defenders of the interval probability method may object, this method is no Bayesian method, 
we reject  the Bayesian paradigm, why should it  therefore fit  in here.  To answer this possible  
objection,  the  henchmen  of   this  method  have  to  give  a  rational   answer  how to  reach  the  
conclusion in eq.(10)  if only a finite amount of information is given -- which is quite usual in real  
life – since this is the starting point of the whole procedure. Elsewhere if no rational explanation  
for this is presented, one seems to be forced to believe that an information-theorical king Midas  
transforms finite information from data into infinite information. 

5. Conclusions

The results in this paper lead (at least the author) to the following conclusions:

1. The  interval  probability  method  is  based  on  assumptions  which  are  practically  never 
fulfilled in halfway realistic problems.

2. How to obtain the information necessary as starting point for applying these concept, i.e. 
the upper and lower expectations for functions of the involved random variables, remains 
an  enigma.  The  advocates  of  interval  probability  methods  mention  as  source  always 
“expert opinions” never the evaluation of data. 



3. It was shown that the interval probability methods are quite insensitive to the influence of 
new data. Given the “expert opinions”, the derived intervals remain forever unimpressed 
by any new data.

4. The use of classical probability theory in reliability is an anachronism. These concepts  
have been superseded since decades by Bayesian methods. Further this concept is static,  
an analysis is made and a result is obtained. There is no provision for incorporating new 
evidence via the theorem of Bayes.

5. The proposed methods are insofar dangerous for risk calculations as they tend to eliminate 
and underestimate the influence of distribution tails. This comes from the fact that only 
expert opinions are allowed which do not include any statements about the probabilities  
that  the  judged  quantity  is  in  the  interval.  Only  statements  “The  quantity  lies  with 
probability one here” are accepted, so forcing an expert on the bed of Procrustes.

6. Since the classical probability concept is used, only intervals are found, no probability 
distributions, which makes any optimization procedures based on expected values (risk,  
cost)  impossible.

7. With the computing powers available nowadays it is possible to study the influence of 
assumptions about the used probability and prior distributions to avoid wrong conclusions. 
So  there  is  no  need  to  avoid  assumptions  about  distributions;  as  it  might  have  been 
important decades ago, where there was no real possibility to examine the impact of these  
assumptions.
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