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ABSTRACT  

 

We are currently working toward the development of a probabilistic decision-

support system (DSS) for near-real time emergency response and recovery 

following a seismic event. We utilize a Bayesian Network (BN) framework for 

assessing the performance of spatially distributed infrastructure systems 

subjected to seismic hazards. BNs have many valuable characteristics (e.g. they 

are graphical, adaptable, efficient, and enable Bayesian updating) that make 

them well-suited for such an application. We model seismic demands on an 

infrastructure system by constructing a BN model of ground motion intensity as 

a spatially distributed random field. In this paper we present this seismic 

demand model with recent enhancements including the addition of a finite 

source model.  The performance of infrastructure system components and the 

overall system is modeled using fragility functions and BN system connectivity 

formulations.  An example application to a hypothetical transportation system is 

presented to illustrate the power and value of the proposed BN framework. 

 

INTRODUCTION 

 

Civil infrastructure systems are the lifelines of modern societies. Disruption of 

the service of critical infrastructures such as transportation networks, utility 

distribution systems, communication networks, as well as government, health, 

and public facilities can have far-reaching economic, social, health, and safety 

consequences. Meanwhile, infrastructure systems remain vulnerable to a wide 

variety of natural and manmade hazards, and it is required to study and 

optimize their performance under these hazards. In this paper we focus on the 

earthquake hazard, which is a dominant hazard to infrastructure systems in 

many areas of the world.    

For many hazards, including earthquakes, the occurrence of the event 

cannot be prevented, but it is possible to mitigate hazards by minimizing the 

consequences when an event does occur. Decisions made by emergency 

management personnel immediately after a major earthquake (e.g. deployment 

of emergency personnel and equipment, evacuation of people, post-event 

inspections, and closure or continued operation of critical facilities) can 

significantly influence the severity of the associated consequences. 



Unfortunately, these vital decisions are often made in an ad hoc manner, under 

large uncertainties, with information that evolves in time. As a result, post-event 

decision-makers are in need of a tool that (1) can be employed in near-real time 

following a major disaster, (2) is capable of synthesizing evolving incoming 

information, and (3) can properly account for uncertainties both in the incoming 

information as well as in the analytical models that are used to assess the states 

of various components of an infrastructure. Recent advances in technology, 

computer science, risk assessment, and hazard modeling have yielded 

knowledge and methodologies that can be integrated to create a unique tool to 

aid the post-event decision-making process. 

To address this need, we are currently working towards the development 

of a probabilistic decision-support system (DSS) for near-real time emergency 

response and recovery following a seismic event, utilizing a Bayesian Network 

methodology. This DSS will integrate information from a wide-range of sources 

in near-real time to provide a comprehensive description of the state of a 

geographically distributed infrastructure system following an earthquake in 

near real time. 

A Bayesian Network (BN) (also known as a Belief Network or 

Probabilistic Network) is a probabilistic graphical model that encodes a set of 

random variables and their probabilistic dependencies (Jensen & Nielson 2007).  

The BN methodology has been employed because it has several characteristics 

that are ideally suited for the proposed application: (1) The BN is a graphical, 

powerful, and efficient tool for representing systems having components with 

uncertain demands and capacities, (2) BNs can be used to model multiple 

hazards and their interdependencies, (3) BNs can be used to model interacting 

systems, (4) BNs provide efficient frameworks for probabilistic updating and the 

assessment of component/system performance, (5) BNs can be used to identify 

critical components and cut sets in a system, (6) the graphical interface makes it 

an excellent tool for use by practitioners and end-users, and (7) BNs can be 

extended to include utility and decision nodes and thus analysis can be 

performed in which decision alternatives are considered and ranked based on 

expected utilities.   

The evaluation and management of seismic risks posed on an 

infrastructure system requires a number of elements, including: (1) 

characterization of the earthquake magnitude, location and other source 

features, (2) estimation of ground motion intensities at distributed points in the 

system while properly accounting for the spatial correlation structure, (3) 

modeling of the performance of system components, e.g., in terms of fragility 

functions, (4) modeling of the performance of the system in terms of the 

component performances and the seismic demand, and (5) system reliability 

assessment under different earthquake scenarios. In the context of the 

aforementioned near-real time DSS, we are interested in the reliability of the 

system and its components conditioned on any information that may become 

available following an earthquake, e.g. known magnitude and  location of the 

earthquake, measurements of shaking intensity at selected locations, observed 



performance of selected components.  This paper describes the implementation 

of these requirements in the BN framework. 

 

 

SEISMIC DEMAND MODEL 

 

Probabilistic seismic hazard analysis (PSHA) has grown as a computational tool 

in civil engineering in recent years, though it is primarily used for design and 

analysis of single-site structures or systems. The primary objective of PSHA is to 

determine the probability of exceeding a specified level of earthquake-induced 

ground shaking at a specific site.  For a given earthquake event (of random 

magnitude and location), this probability can be written as 

 ���� > ���
= 	 
 ���� > ����, ��, �����,����, ��������������������,�,��all sources  

 

(1)  

where �� denotes the intensity of ground shaking at site #, $ and %� represent the 

random earthquake magnitude and source-to-site distance, respectively, and &� 
represents a standard error term associated with the regression model that 

predicts the intensity at the site for given earthquake magnitude and distance.  

Existing research in PSHA primarily focuses on systems located at 

individual sites. Civil infrastructure systems, on the other hand, tend to be 

geographically distributed.  As such, they possess certain distinguishing features 

relative to single-site systems, which should be carefully considered. These 

include: 

1. Geographically distributed systems may be exposed to a variety of seismic 

hazards such as ground shaking, fault rupture, land/rock-slide, and 

liquefaction, whereas an individual site may only be exposed to a select few 

of these hazards.  Furthermore, because it covers a larger area, a spatially 

distributed system has a higher rate of exposure to earthquake events than 

a single-site system.  While we focus solely on ground-shaking hazard in 

this paper, it is important to note that the BN framework allows extension 

to include other hazards and this remains an area for future study. 

2. Various attributes of seismic hazard for a spatially distributed system may 

be correlated in space. For example, intensities of ground shaking affecting 

components of an infrastructure system at two different locations may be 

correlated. To properly account for this correlation, such attributes of an 

earthquake must be modeled as random fields. 

Within the context of modeling seismic demands on a spatially distributed 

infrastructure system, one is interested in the probability that ground motion 

intensities at any subset j of one or more sites i exceed corresponding 

thresholds: 



Pr () *+,�� > ��-
� ./  0 (2)  

 

With this objective in mind, we next discuss the BN model for predicting the 

seismic intensities at different sites across a spatially distributed infrastructure 

system following an earthquake.  The intensity of ground motion at a site is often 

characterized in terms of a single measure, such as the peak ground acceleration 

or the spectral acceleration at a selected frequency.  As defined previously, let �� 
denote this intensity measure at site #. Predictive models based on regressions of 

observed data are available to relate �� to site and earthquake source 

characteristics (Bozorgnia and Bertero, 2004). These models typically have the 

form 

 ln���� = ��$, %�, 2�� + &�,� + &� (3)  

 

where ��$, %�, 2��  is a deterministic function of the magnitude ($), site-to-

source distance (%�), and other characteristics of the source and site (2�), such as 

the type of faulting mechanism and the site shear-wave velocity;  &� is an inter-

event, zero-mean normally distributed error term representing inaccuracies in 

source characterization, and  &�,� is a zero-mean normally distributed intra-event 

error term representing inaccuracies due to site-specific factors and wave 

propagation effects. In general, the error terms &�,� and &�,/   at two sites # and 4 

are correlated.  Among other authors, Boore et al. (2003) and Park et al. (2007) 

have investigated this effect and have developed autocorrelation models 

expressed as functions of the inter-site distance. The BN representing the above 

model of ground motion intensities and assuming a point-source earthquake 

model is shown in Figure 1. Note that due to the spatial correlation described 

above, all nodes representing the intra-event error terms are connected through 

links. Straub et al. (2008) discuss the computational complexities (and potential 

computational intractability) associated with such a formulation.  To overcome 

this difficulty, Straub et al. (2008) employed a principal-component formulation 

whereby the correlated variables &�,� are approximately described in terms of a 

few standard normal variables 5� , # = 1,2, … , � with � ≪ :. The corresponding 

BN model is shown in Figure 2.  

 



 
Figure 1: BN of seismic demands with spatially correlated  

inter-event error terms 

 

 
Figure 2: BN of seismic demands using approximation  

of spatial correlation 

 

It is seen in Figure 2 that the ground motion intensity at site i, ��, is a function of 

the magnitude, source-to-site distance, and error terms as indicated by the 

directed links going into �� from its parent nodes $, %�, &�,� , and &�. &�,� is a 

function of the statistically independent standard normal random variables (5�) 

as detailed in Straub et al. (2008).  The source-to-site distance is a function of the 

earthquake location (;) since a point source model has been assumed in this 

figure.  

Earthquakes, however, do not occur as points on a fault, but rather as 

finite ruptures along a fault length, area, or volume.  Thus we expand the model 

to include a finite source model. Figure 3 shows a conceptual framework for 

including a finite source model in the BN.  The elements of this model are as 

follows.  First, we express the rupture length as a function of the earthquake 
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magnitude and a standard error term using available empirical models such as in 

Wells and Coppersmith (1994): 

 log �;�=>� = ? + @$ + & (4)  

 

Here, ;�=> is the rupture length, $ is the earthquake magnitude, ? and @ are 

regression constants, and & is a standard error term.   

 

 

 
 

Figure 3: Conceptual framework of BN including finite source model 

In Figure 3 we are making use of objects to reduce graphical clutter.  In the BN 

framework an object is a special node behind which another BN resides.  Objects 

do not change the topology (variable dependencies) of the BN; an object simply 

hides some nodes to make it easier to read the BN.  Thus, we introduce an object 

(on the top right in Figure 3) to model the rupture length as a function of 

magnitude.  

Next, we use the geometry of the seismogenic source to describe the 

location of the rupture along the fault. The left edge of the rupture (AB,�=>C) is a 

random variable distributed uniformly (or by any other distribution of choice) 

on the interval [AB,EF=GC, AH,EF=GC − ;�=>], where AB,EF=GC and AH,EF=GC are the left 

and right edges of the fault relative to a reference coordinate system. These 

relations are encoded in the BN through the earthquake location object (top 

middle). 

We must update the ground motion intensity object in Figure 3 to 

calculate the source-to-site distance for the extended source model.  Based on 

the coordinate system and notation defined in Figure 4, with the fault idealized 

as a straight line, the K-component of the shortest distance vector from the site 
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to the rupture is calculated as max [AB,�=>C − AN�C� , AN�C� − min[AB,�=>C +%; , AH,EF=GC],0].  This value together with the distance in the direction 

perpendicular to the fault (Ymin) and the depth to the rupture plane define the 

shortest distance from the site to the rupture. These relations are encoded in the 

ground motion intensity object of the BN through four additional nodes as 

shown in Figure 3 (top left).   

 

 
 

Figure 4: Parameters for defining source-to-site distance 

 

SYSTEM PERFORMANCE 

 

Conditioned on the distribution of ground motion intensity at its site, the 

performance of an individual infrastructure system component is modeled using 

fragility functions.  Fragility functions provide the probability of damage given a 

level of ground motion intensity.  Based on the performance of its components, 

system performance can then be modeled using system connectivity 

formulations provided in Bensi et al. (2009). The resulting conceptual BN in 

which component and system performances are included is presented in Figure 

5. Nodes ci denote component states and they are dependent on the 

corresponding ground motion intensities as well as site-specific factors. The 

system node is dependent on the component states. This BN formulation is 

referred to as a “conceptual BN” because modeling system connectivity directly 

as shown in Figure 5  may not be computationally efficient or even feasible. To 

make the BN computationally more tractable, a more sophisticated system 

formulation must be used, as described in Bensi et al. (2009). 
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Figure 5: Conceptual BN including seismic demand model and 

component/system performance 

With the seismic demand and system performance models, we are able to assess 

the state of our infrastructure system following an earthquake while 

incorporating available information. That is, we can enter evidence or 

observations at any of the nodes, and this information will propagate through 

the network to update our beliefs about all other variables in the BN.  For 

example, we can determine component and system failures probabilities given 

that we know an earthquake has occurred as well as its magnitude and location. 

Additionally, via the max-propagation algorithm (Jensen & Nielson 2007; Friis-

Hansen 2004), we can determine likely component configurations given a 

specified set of evidence. Such information will be useful for post-event 

applications such as determining components that are most likely to have failed 

given a set of evidence (e.g. to aid the dispatch of inspectors) or pre-event for 

determining weak links in the system. The following example demonstrates 

these notions more concretely. 

 

  

EXAMPLE 

 

Consider the hypothetical transportation network shown in Figure 6.  In this 

system, a set of cities (circles) are connected to a hospital via roadways that 

cross bridges (squares) that can fail during an earthquake. We are interested in 

the probability that the hospital will be accessible from each city following an 

earthquake (i.e. system failure is defined as the event that any of the cities is 

unable to reach the hospital).  The BN for modeling this system is shown in 

Figure 7.  The empirical and analytical models that have been employed in this 

example are summarized in Table 1.  The choice of models used in this example 
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is based on their characteristics or ease of applicability and presentation.  They 

should in general be viewed as “place-holders” rather than restrictive choices.  It 

is fairly easy to switch one model for another within the BN.  

 

 
 

Figure 6: Hypothetical transportation system 

 

 
 

Figure 7: Example System BN 
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Table 1: Empirical/analytical models employed in example BN 

magnitude distribution Truncated GR (exponential)  
ground motion (spectral acceleration at 

T=1.0 sec) prediction equation 
Campbell (1997) 

magnitude-rupture length relation Wells & Coppersmith (1994) 

spatial error correlation Boore et al. (2003), Park et al. (2007) 

error approximation model Straub et al. (2008) 

fragility function adaptation of Gardoni et al. (2002) 

system connectivity Bensi et al. (2009) 

 

To demonstrate the notion of information updating, we consider several post-

earthquake scenarios: 

(1) An earthquake has occurred, but we have no information available about 

its magnitude, location or other characteristics, i.e. we have no evidence. 

(2) We observe that the earthquake magnitude is in the range 6.25-6.5 and 

that a 15-20km rupture occurs on the far left edge of the fault.  

(3) We observe that the earthquake magnitude is in the range 6.25-6.5, a 15-

20km rupture occurs on the far left edge of the fault, and bridge 1 has 

failed.  

Table 2 demonstrates how available information can update our assessments of 

component and system performance. For example, consider the case in which 

we have only observed the magnitude, rupture length, and location of the 

earthquake versus the case in which we observed the same earthquake 

characteristics information but also that bridge 1 has failed.  The information 

that the bridge has failed back-propagates through the network by updating our 

belief about the distribution of spectral acceleration at the site of bridge 1, then 

updating the inter- and intra-error structure and back down to update the 

distribution of spectral accelerations at the other sites in the network and 

eventually their respective bridge failure probabilities.  That is, the change in the 

posterior probability of failure of another bridge (e.g. bridge 2), from the case 

without observation of bridge 1 failure to the case that includes the observation, 

is due to the correlation in the ground motion intensities arising from the inter- 

and intra-error terms. 

Additionally, we can use the max propagation algorithm to determine the 

most likely configuration of component states for any given evidence.  The 

numbers listed in Table 3 indicate the relative likelihoods of component states 

(failure or survival) given the aforementioned evidence scenario (2) and the 

information that the system has failed, i.e. one or more cities have been unable to 

reach the hospital. That is, values of 1.0 in this table indicate that a particular 

component state is part of the most probable configuration of all components 

states in a network given the evidence. Thus, given evidence scenario (2) and 

failure of the system, the most probable configuration of the system is bridges 3 

and 6 have failed and all other bridges have survived. This information indicates 



bridges 3 and 6 are most critical for the survival of the system and that these 

bridges should be prioritized when planning mitigation action.  

 

 

Table 2: Bridge and system failure probabilities for example system 

Evidence Case
Bridge 

1

Bridge 

2

Bridge 

3

Bridge 

4

Bridge 

5

Bridge 

6
System

Unconditional (no evidence) 0.003 0.004 0.006 0.003 0.006 0.006 0.001

Magnitude = 6.25-6.5, Rupture 

length = 15-20km, Location=Left 

edge of fault

0.013 0.013 0.039 0.004 0.022 0.031 0.004

Magnitude = 6.25-6.5, Rupture 

length = 15-20km, Location=Left 

edge of fault, bridge 1 has failed

1.000 0.039 0.066 0.010 0.054 0.053 0.065

 

Table 3: Likely configuration of bridges given evidence case (2) and 

known system failure 

Bridge 

1

Bridge 

2

Bridge 

3

Bridge 

4

Bridge 

5

Bridge 

6
System

failure 0.85 0.85 1.00 0.04 0.49 1.00 1.00

survival 1.00 1.00 0.85 1.00 1.00 0.85 0.00  
 

The results demonstrated in this example are just a small subset of the possible 

evidence cases that can be considered using the BN that has been developed.  It 

is hoped that they demonstrate the power of the BN framework for near-real 

time applications.   

 

CONCLUSIONS 

The goal of this paper was to present some of our recent efforts devoted to the 

development of BN framework for seismic infrastructure system performance 

assessment and near-real time decision support.  A seismic demand model was 

presented in which ground motion intensities at different sites across a 

distributed infrastructure system are predicted by modeling the spatially 

distributed random field using BN.  Conditioned on the distribution of ground 

motion intensity at each site, component performance is modeled using available 

fragility functions. System performance is modeled using formulations available 

in Bensi et al. (2009).  The BN framework allows for information updating so 

that system performance can be assessed in light of all available information.  An 

example of a hypothetical transportation system was presented to make ideas 

outlined in this report more concrete.  
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