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The hydroelastic response of very large floating structures (VLFS) is obtained by resolving the 
interaction between the surface waves and the floating elastic body. We carry out the analysis in 
the frequency domain, assuming that the surface waves can be described by a directional wave 
spectrum. Applying the modal expansion method, we obtain a discrete representation of the 
required transfer matrices for a finite number of frequencies, while the influence of the wave 
direction is obtained by numerical integration of the directional components of the spectrum. 
The boundary element method is used to solve the Laplace equation together with the fluid 
boundary conditions for the velocity potential, whereas the finite element method is adopted for 
solving the deflection of the floating plate. Moreover, we compute the variance of the response 
for two different cases of mean wave angles. 
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1 Introduction 

Pontoon-type very large floating structures (VLFS) are relatively flexible structures that behave 
like giants plates resting on the sea surface. The response of such structures is obtained by 
resolving the interaction between the surface waves and the floating elastic body. Several 
methods have been proposed for the hydroelastic analysis of VLFS (Watanabe et al. 2004). 
However, usually the response is obtained for distinct wave frequencies and wave angles. 
Hamamoto (1995) derived analytical expressions for the response of large circular floating 
structures subject to a spectrum of wave frequencies. Chen et al. (2004 and 2006) studied the 
influence of second-order effects of the structural geometry and wave forces on the response of 
VLFS under two irregular wave systems coming from different directions.  

In this paper, we develop a method for hydroelastic analysis of VLFS subject to a directional 
wave spectrum. The analysis is done in the frequency domain by application of the modal 
expansion method (Newman 1994). The fluid domain is discretized by the boundary element 
method, while for the structure we use the finite element method derived from Mindlin plate 
theory. Due to the latter, the effects of transverse shear deformation and rotary inertia are 
accounted for. The derived linear system allows for the application of linear random vibration 
theory for the evaluation of the response spectrum.  
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2  Hydroelastic Analysis of the Floating Plate 

Figure 1 shows a schematic diagram of the VLFS. The VLFS has length L, width B, and height h 
and is assumed to be perfectly flat with free edges. Moreover, zero draft is assumed for 
simplicity. The plate domain is denoted by . The free and undisturbed water surface is at z = 0 
while the seabed is found at z = −H, where z is the out-of-plane coordinate. Assuming that an 
incident wave I of frequency ω, height 2A and wave angle  enters the computational domain, 
the plate will deform in a steady state harmonic motion in the same frequency ω. The deflection 
w is measured from the free and undisturbed water surface. 
 

 
Figure 1. Schematic diagram of the floating plate 

 
The Mindlin plate theory is used to model the VLFS. The plate material is assumed to be 

isotropic and described by Hooke’s law. The equation of motion of the plate structure is 
established using the finite element method and takes the following form (after omitting the time 
factor e–iωt) 

           2 T
M K w N N p d   



   (1) 

where [M] and [K] are mass and stiffness matrices, {w} is the displacement vector that includes 
vertical displacements and two rotations, {N} the vector of global shape functions and {p} is the 
vector containing the wave pressures at the nodes with hydrostatic and hydrodynamic 
components. 

The water is assumed to be an ideal fluid (inviscid and incompressible) and has an 
irrotational flow so that a velocity potential exists. Thus the single frequency velocity potential  
of the water must satisfy the Laplace equation: 

 2 0   (2) 

Based on linear potential theory, the vector of velocity potentials {} at the nodal points may be 
separated into 

        I S R       (3) 

where {I}, {S} and {R} are the vectors of incident, scattering and radiation potentials, 
respectively. The elements {I}j of the incident potential can be expressed as follows: 
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where xj, yj are the coordinates of each node, k is the wave number which can be expressed in 
terms of ω through the dispersion relation, and i = 1 . At the fluid–structure interface, the 
boundary conditions for {S} and {R} are as follows (Wang et al. 2008) 

 
   S I

z z
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   (6) 

where [I] is the identity matrix representing unit vertical amplitude at each node and {wz} is the 
vector of vertical displacements of the plate. In order to decouple this interaction problem into a 
hydrodynamic problem in terms of the velocity potential and a fluid–plate vibration problem in 
terms of the generalized displacement, we adopt the modal expansion method as proposed by 
Newman (1994). According to this method, the displacement vector of the plate {w} is 
expressed as a finite sum of products of the most significant free vibration modes [ψw] and the 
corresponding complex amplitudes {ςw}, i.e. 

    w ww        (7) 

The radiation potential {R} is expanded as 

     R R     (8) 

where the elements [ФR](j, l) of the matrix [ФR] indicate the value of the radiation potential on the 
jth node for unit vertical motion on the lth node, and {ς} is the vector of corresponding complex 
amplitudes. Following Newman (1994), we assume that the complex amplitudes {ς} are equal 
to the amplitudes of the plate motion {ςw}. Hence, substitution of Eq. (8) to Eq. (6) leads to: 

 
    R

wi
z

 
 


I    (9) 

The nodal pressures {p}j can be evaluated from the linearized Bernoulli equation: 

      zj j
p g w i  

j
    (10) 

where ρ is the fluid density. Combining Eqs. (1), (3), (8) and (10), we can derive the final 
equation for the hydroelastic response of the structure: 

        2 2
w w w M M i C K K w f                   (11) 

where [Mw], [Cw], [Kw] are the added mass, radiation damping and hydrostatic stiffness matrices, 
respectively, and the wave force vector {f} is expressed in terms of the vector of incident 
potentials as: 

    4 R If i       (12) 
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The matrices [Mw], [Cw] and [ R ] are obtained by resolution of the boundary integral equations 
applying the Green function method (Wang et al. 2008). 



 
3 Stochastic formulation 

3.1   Directional wave spectrum 

Assuming that the irregular (random) wind waves can be described by a zero mean stationary 
Gaussian process, they can be completely specified by the directional wave spectrum S(ω, θ), 
which represents the distribution of the wave energy in the frequency domain ω as well as in 
direction (wave angle) θ. The directional spectrum is generally expressed in terms of the one-
dimensional frequency spectrum S(ω) as 

      ,S S D |      (13) 

where D(θ | ω) is the directional spreading function and represents the directional distribution of 
wave energy for a given frequency ω. In this study, we use the following (one-sided) one-
dimensional frequency spectrum (Mitsuyasu 1970): 

     42 4 5
1/3 1/3 1/32516.7 exp 1605.3BMS H T T         

 (14) 

where H1/3 is the significant wave height and T1/3 is the significant wave period. Also, we assume 
independence of the directional distribution on the wave frequency and adopt the following 
directional spreading function (Pierson et al. 1953): 
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 is the mean wave angle and   1D d


 




 . where 
 
3.2    Stochastic response 

The stochastic hydroelastic response of the VLFS is obtained by applying linear random 
vibration theory. Following the approach adopted for the solution for a single frequency and 
wave angle, we first obtain the elements of the cross-spectral matrix [  IIS  ] of the vector of 
incident potentials {I} as follows: 

        2 cos sin

,
,lj ljik x y

II Ij l
S H e S d

 



    


 



      (16) 

where xlj and ylj denote the difference of the x and y coordinates of the locations corresponding 
to the lth and jth node, respectively. The function HI(ω) is the transfer function from the water 
surface elevation to the incident potential, given by 
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Furthermore, we obtain the cross-spectral matrix of the force vector as follows 

   (18)         *
FF F II FS H S H                 

where [ ]* denotes the conjugate transpose operator and the complex transfer matrix [HF(ω)] is 
obtained by Eq. (12), as follows: 

   4F RH i            (19) 

Finally, the cross-spectral matrix of the response is obtained as follows 

   (20)         *
ww w FF wS H S H                 

where the response transfer matrix [Hw(ω)] is given by Eq. (11) as 

        12 2
w w wH M M i C K Kw


                        (21) 

It should be noted that the inversion in Eq. (21) is trivial, since the solution approach utilizes the 
uncoupled modes of the system. A discrete representation of the matrix [Sww(ω)] is obtained 
using a finite number of frequencies. The variance of the response can then be estimated by 
numerical integration of the diagonal entries of [Sww(ω)]. 
 
4 Numerical Example 

The VLFS considered by Sim and Choi (1998) is used as an example for this study. The length, 
width and height of the floating plate are 300, 60 and 2 m, respectively. The following material 
properties of the plate are assumed: Poisson’s ratio ν = 0.13, Young’s modulus E = 1.19 × 1010 

N/m2, and the mass density of the plate  ρp = 256.25 kg/m3. The water density is ρ = 1025 kg/m3 
and a water depth H = 20m. The finite element mesh of the plate is shown in Figure 1. 

The chosen parameters for the spectrum of Eq. (14) are H1/3 = 2 m and T1/3 = 6.298 sec. We 
consider two cases for the mean wave angle ,  namely 0 and 30. Figure 2 shows the response 
spectra for five selected points (P1 to P5, as shown in Figure 1) for the two cases considered. 
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Figure 2. Input spectrum and response spectra at 5 selected points for the two mean wave angles considered 
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In the first case, we obtain symmetric response spectra with respect to the horizontal axis, since 
the directional spreading function is symmetric about the wave angle of zero degrees and 
therefore the effect of oblique wave angles is balanced. Moreover, larger responses are observed 
in the front and rear end compared to the middle parts. In the second case, the spectra are not 
symmetric, and the largest response is obtained at the upper corner of the rear end, 
corresponding to the point P4. This is due to the fact that in this case the directional spectrum 
includes a larger number of wave angles that trigger the twisting vibration modes of the plate.  

In Figure 3, the standard deviation of the vertical displacement is plotted for the two mean 
wave angles considered. It is shown that larger standard deviations are obtained in the second 
case, where more waves that approach the weak axis of the plate are included. This effect can 
only be captured if a directional spectrum is considered. For the example case of mean wave 
angle of 30, neglecting the probability of occurrence of larger oblique wave angles would lead 
to significantly smaller variances. 
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Figure 3. Standard deviation of the response for two different mean wave angles. 
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