
Open quantum spin systems

in semiconductor quantum dots

and atoms in optical lattices

Heike Schwager

Dissertation

Technische Universität München

Max-Planck-Institut für Quantenoptik





Technische Universität München

Max-Planck-Institut für Quantenoptik

Open quantum spin systems

in semiconductor quantum dots

and atoms in optical lattices

Heike Schwager
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Abstract

In this Thesis, we study open quantum spin systems from di↵erent perspectives. The

first part is motivated by technological challenges of quantum computation. An impor-

tant building block for quantum computation and quantum communication networks

is an interface between material qubits for storage and data processing and travelling

photonic qubits for communication. We propose the realisation of a quantum interface

between a travelling-wave light field and the nuclear spins in a quantum dot strongly

coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of

the cavity to achieve the coupling between nuclear spins and the travelling-wave light

fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nu-

clear spins. High polarization of the nuclear spin ensemble is moreover highly desirable

as it protects the potential electron spin qubit from decoherence. Here we present the

theoretical description of an experiment in which highly asymmetric dynamic nuclear

spin pumping is observed in a single self-assembled InGaAs quantum dot.

The second part of this Thesis is devoted to fundamental studies of dissipative spin

systems. We study general one-dimensional spin chains under dissipation and propose

a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in

which both coherent interaction and dissipation can be engineered and controlled. This

system enables the study of non-equilibrium and steady state physics of open and driven

spin systems. We find, that the steady state expectation values of di↵erent spin models

exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit

of weak dissipation. This e↵ect can be used to dissipatively probe the spectrum of the

Hamiltonian. We moreover study spin models under the aspect of state preparation and

show that dissipation drives certain spin models into highly entangled state. Finally,
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we study a spin chain with subwavelength interatomic distances that exhibits long rage

interactions.

What lies at the heart of all these approaches is the endeavour to include the

coupling to the environment into the description of the physical system with the aim of

harnessing dissipative processes. While decoherence masks or destroys quantum e↵ects

and is considered as the main adversary of any quantum information application, we

turn the existence of the dissipative coupling of spin systems to the environment into

a fruitful resource.



Zusammenfassung

Die vorliegende Arbeit behandelt dissipative Quanten Spin-Systeme unter verschiede-

nen Aspekten. Während der erste Teil der Arbeit durch technologische Herausforderun-

gen der Quanteninformationsverarbeitung motiviert ist, werden im zweiten Teil Fragestel-

lungen zu dissipativen Spin-Modellen behandelt. Diese können unter anderem mithilfe

von kalten Atomen in optischen Gittern realisiert werden.

Eine Quantenschnittstelle zwischen Licht und Materie ist ein grundlegender Baustein

für Quantennetzwerke und Quantencomputer. In dieser Doktorarbeit wird ein theo-

retisches Konzept vorgestellt, welches die Realisierung einer Schnittstelle zwischen Licht

und den Kernspins eines selbstorganisierten Halbleiter-Quantenpunktes ermöglicht. Der

Quantenpunkt ist stark an einen optischen Resonator gekoppelt. Das hier vorgeschla-

gene Konzept ist robust gegenüber dem Zerfall der Resonatormode durch Kopplung an

die Umgebung. Es erö↵net die Möglichkeit, hochdimensionale photonische Quanten-

zustände in die Kernspins eines Quantenpunktes zu schreiben und auszulesen, ohne sie

vorher in den Resonator einkoppeln zu müssen. Eine Voraussetzung für dieses Konzept

ist eine hohe Polarisation der Kernspins. Polarisierte Kernspins haben außergewöhnlich

lange Lebensdauern und stellen daher ein hervorragendes Speichermedium für Quanten-

information dar. Des Weiteren verlängert ein hoch polarisiertes Kernspinensemble die

Kohärenzzeiten der in den Elektronenspin kodierten Quanten-Bits eines potenziellen

Quantencomputers. In selbstorganisierten Quantenpunkten können Kernspins durch

optisches Pumpen von Exzitonen polarisiert werden. Wir stellen hier die theoretis-

che Beschreibung eines parallel zu dieser Arbeit an der TU München durchgeführten

Experiments zur Kernspinpolarisation in einem Quantenpunkt vor, und erklären die

physikalischen Mechanismen, die den experimentellen Beobachtungen zugrunde liegen.



iv Zusammenfassung

Der zweite Teil der Arbeit behandelt eindimensionale Spinmodelle und die gezielte

Manipulation der Wechselwirkung der Spins mit der Umgebung. Wir zeigen, wie eindi-

mensionale Spinsysteme mit ultrakalten Atomen in optischen Gittern mithilfe von ver-

schiedenen Bewegungszuständen des Fallenpotentials realisiert werden können. Durch

optische Anregung von internen atomaren Zuständen und deren Zerfall kann die Dissi-

pation des Systems gezielt designt werden. Derartige Systeme erö↵nen die Möglichkeit,

Nicht-Gleichgewichtsphysik und stationäre Zustände von dissipativen, getriebenen Spin-

Systemen zu untersuchen. Durch numerische Modellierung derartiger dissipativer Spin-

Systeme haben wir einen unerwarteten E↵ekt entdeckt. Im Grenzfall schwacher Dis-

sipation treten Unstetigkeiten in den Erwartungswerten der stationären Zustände auf,

die im Zusammenhang mit den Entartungspunkten des System-Hamiltonians stehen.

Wir untersuchen diesen E↵ekt für verschiedene Spin Modelle und leiten Bedingungen

für das Auftreten derartiger Unstetigkeiten her. Des Weiteren zeigen wir, dass sich

bestimmte Spin Modelle zur dissipativen Präparation von vollständig verschränkten

Zuständen eignen. Außerdem leiten wir eine theoretische Beschreibung von atomaren

Ketten her, deren interatomare Abständen die Wellenlänge eines treibenden Feldes

deutlich unterschreiten. In diesen Systemen spielen langreichweitige Wechselwirkun-

gen eine Bedeutung, die es ermöglichen, stark-korrelierte und kollektive E↵ekte zu

studieren.
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Chapter 1

Introduction

1.1 Motivation

At the beginning of the twentieth century, the development of quantum mechanics

radically changed physical concepts describing our world and puzzled a whole generation

of physicists. While doubts remained over the following decades, and questions like

”Can Quantum Mechanical description of physical reality be considered complete?”

[1] posed in a seminal work 1935 by Einstein, Podolsky and Rosen (EPR) remained

controversial, the society was revolutionized by new technologies. Applying quantum

theory to the development of semiconductors lead to the invention of the transistor

in 1948 [2], that paved the way to the information age. Another ground-breaking

technology based on quantum mechanics was the invention of the laser in the 1950’s. In

1964, John Bell revisited the question posed by EPR thirty years back [3]. He showed

that the concept of local realism favoured by EPR contradicts quantum mechanics.

Bell derived inequalities that opened the path for experimental tests of fundamental

concepts of quantum mechanics. These experiments corroborated the understanding of

entanglement, which Einstein called ”a spooky action at a distance”, and showed that

it cannot be understood as classical correlations between particles.

Today, integrated circuits have reached sizes of less than 50 nm with 109 transistors

per chip. The progress of computer technology is facing di�culties of size as it is moving

closer and closer towards the frontier of the atomic scale, on which quantum e↵ects
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become dominant. A solution to this problem might be provided by the field of quantum

information science [4] based on quantum mechanical concepts such as the superposition

principle and entanglement. It started out in the 1980’s, when conceptual ideas were

developed that showed that quantum mechanics allows for new algorithms that are

for certain problems much faster than their classical counterparts [4, 5]. Quantum

information research promises much more than computers. To name a few examples,

similar technologies allow for unconditionally secure cryptography protocols [6], for

long-distance quantum communication [7] and highly sensitive measurements in the

field of quantum metrology [8].

Today, quantum information science has emerged into a vibrant field with many

research groups worldwide working on di↵erent physical systems towards the highly

ambitious goal of building a quantum computer and similar technologies. There are

a number of physical systems considered to be candidates for quantum information

technologies, for a review see [9]. One of the pioneering systems are ions in electromag-

netical traps. Laser-induced interactions allow for the implementation of single-qubit

and multi-qubit quantum gates by coupling the internal states of ions to their motion

[10, 11] and recently, states with 14 entangled quantum bits have been realized [12].

Another promising system are cold atoms in optical lattices where atoms can be ma-

nipulated with laser forces depending on their internal qubit levels which allows for

the realization of entangling quantum gate operations [13]. A drawback of using single

atoms for quantum computing purposes is the need to cool and trap them. Large ar-

rays of qubits might be easier to implement with solid state systems. Aiming towards

scalability and miniaturization, it would be convenient to use materials that are used

for current computers and electronics: silicon, GaAs and similar semiconductor materi-

als. This motivated the research towards semiconductor quantum dots, NV-centers and

phosphorus donors in silicon [9]. A detailed introduction into the field of semiconductor

quantum dots and cold atoms in optical lattices, that are the two physical systems that

are mainly studied in this Thesis, will be given in the following.

The answer to the question which physical system is the most promising one for

achieving a scalable quantum computer is still open. While reliable quantum com-
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munication setups exist and quantum cryptography is already operating, the field of

quantum computation is still struggling with problems of decoherence and scalabil-

ity. Quantum computation works on the level of single quantum systems that have to

be well isolated from the environment. The interaction with the ”outside world” de-

stroys quantum e↵ects and leads to decoherence of the qubits. Thus, dissipation is the

strongest adversary of quantum information science. Which physical system might be

best suited for quantum computation is di�cult to answer, as complete architectures of

a quantum computer have to be compared rather than comparing only the coherence

time of the qubit to the timescales that are required to control, initialize and measure

the qubit. The latter comparison is not su�cient, as the performance of the quantum

gates depends critically on the quantum error correction scheme applied.

Harnessing dissipation: While all proposals and experiments in the field of quan-

tum information struggle with dissipation and di↵erent ways to avoid decoherence are

being pursued, a new trend of harnessing dissipation has emerged in recent years. The

idea is to engineer the dissipative coupling between the system and the environment

such, that the environment drives the system into the desired state. It has been shown

that the coupling to an environment can be harnessed to generate useful quantum states

[14, 15, 16, 17]. The coupling to the environment can even be used to perform quantum

information tasks. The idea of dissipative quantum computation is proposed in [17, 18].

Here, dissipation drives the system into a steady state in which the outcome of the com-

putation is encoded. Recently, purely dissipative entanglement generation between two

atomic ensembles has been reported [19], following the theoretical proposal of Muschik

et al. [20]. Another recent proposal [18] shows, that entanglement distillation can also

be realized dissipatively. In this setup, the performance is improved by adding noise to

the system.

1.1.1 Harnessing dissipation - in the context of this Thesis

The endeavour to include the coupling to the environment into the description of the

physical system and to turn its existence into a fruitful discussion lies at the heart of

this Thesis. Here, we study open quantum spin systems from di↵erent perspectives. In
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Chapter 2 we propose a quantum interface between light and nuclear spins of a quan-

tum dot. Such an interface is an important building block for quantum computation

and quantum communication networks, coupling the ”stationary” qubits for storage

and data processing to mobile ”flying” qubits for communication (typically photons).

The system we study is a quantum dot strongly coupled to a cavity. We include the

coupling to the environment, which leads to decay of the cavity, into our description,

and propose a protocol for an interface between light and the nuclear spins of the

quantum dot that is robust against cavity decay. In Chapter 3 we study a physical

mechanism that leads to Dynamical Nuclear Spin Polarisation (DNP) of the nuclear

spins. Here, we include the tunnelling of electron spins from the quantum dot to the

leads into the description, and find, that this dissipative setup enables the polarization

of the nuclear spins. The second part of the Thesis is devoted to fundamental studies

of dissipative spin systems. In Chapter 4 we propose a scheme to realize a quantum

spin system using ultracold atoms in an optical lattice in which both coherent inter-

action and dissipation can be engineered and controlled. This system is an interesting

toy model to simulate one dimensional spin models like the Ising and the XXZ model,

and enables the study of non-equilibrium and steady state physics of open and driven

spin systems. In Chapter 5 we investigate under which conditions dissipation drives

these spin models into interesting steady states. We find, that the steady state ex-

pectation values of di↵erent spin models, including the XXZ and Ising model, exhibit

discontinuous behavior at degeneracy points of the Hamiltonian in the limit of weak

dissipation. This is a peculiar e↵ect that is highly interesting as it can be used to

dissipatively probe the spectrum of the Hamiltonian. Moreover, we study di↵erent spin

models under the aspect of state preparation and show, that certain spin models can be

dissipatively driven into highly entangled states. Here, we use collective dissipation of

spins all coupled to one single mode, and show, that such a setup can be realized with a

Bose-Einstein Condensate in an optical cavity. Finally, we derive the master equation

of a driven spin chain in the subwavelength regime where long-range interactions play

a role. This system allows to study strongly-correlated and collective e↵ects and might

be realized in plasmonic structures or with atoms encapsulated in carbon nanotubes.
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More details on the before-mentioned four projects presented in this Thesis will be

given in the context of the physical systems discussed in the next section.

1.2 Physical systems

Here, we introduce briefly the physical systems which are considered in this thesis.

We discuss semiconductor quantum dots and cold atoms in the context of the results

presented in the following Chapters and motivate why they are interesting candidates

for the implementation of the ideas put forward in the following Chapters.

1.2.1 Semiconductor quantum dots

A quantum dot is a small semiconductor structure in which an electron or hole is con-

fined in all three spatial directions. The localized wave function of the confined electron

or hole leads to a discrete, ”atom-like” energy spectrum. The most prominent exam-

ples are self-assembled quantum dots [21] and electrically defined quantum dots that are

both grown by molecular beam epitaxy. With this method, semiconductor structures

are grown layer by layer, allowing to stack materials with di↵erent band gaps. When a

layer of a lower bandgap semiconductor (for example InGaAs) is embedded in a layer of

a larger bandgap semiconductor (for example GaAs), the electrons, that originate from

optical excitation, current injection or doping, become confined in the material with the

lower bandgap and form a two dimensional electron gas (2DEG). Further confinement

in the remaining two dimensions leads to a quantum dot. In electrostatically defined

quantum dots, this is achieved by electrostatic potentials. These potentials are created

by applying voltages to lithographically defined metal-contacts (Schottky contacts) on

top of the quantum well, depleting small regions of the 2DEG. Self-assembled quantum

dots are created by a random semiconductor growth process. Due to their lattice mis-

match, droplets of e.g., InGaAs self-assemble on a GaAs substrate in order to minimize

surface strain. Subsequently, these droplets are covered by GaAs [22].

The main di↵erence between these two types of quantum dots is the depth of their

confining potential. While very low temperatures (< 1K) are required for experi-

ments with electrostatically defined quantum dots, the deep trapping potentials of
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self-assembled quantum dots allows to perform experiments at 4 K. Moreover, self-

assembled quantum dots allow to trap not only electrons but also holes. While in

electrostatically defined quantum dots, loading and measuring of electrons is accom-

plished by changing the gate voltages and detecting currents, self-assembled quantum

dots allow for coherent optical manipulation of charges.

Quantum computation with quantum dots: The ability to trap single charges

in quantum dots led to the famous Loss-DiVincenzo proposal to use single electron

spins confined to electrostatically defined quantum dots as qubits [23]. The proposal

envisions a scalable implementation of a quantum computer with arrays of quantum

dots each containing a single electron. These qubits allow for local gating operations

and controllable interaction through exchange coupling between neighboring spins, that

can be moved closer and further from each other by changing the gate voltages. Today,

many elements that are necessary for quantum computation with electrostatically de-

fined quantum dots have been realized, such as initialization of the qubit, single-shot

read-out of spin states [24], a two-qubit gate, i.e., coherent exchange of two electron

spins in a double dot system [25], and driven coherent spin rotations of a single elec-

tron spin [26]. However, interactions between electrostatically defined quantum dots

are very short-range, enabling quantum-computer architectures with nearest-neighbor

interaction only. Considering the constraints due to the requirements of fault-tolerant

Quantum Error Correction (QEC) with nearest-neighbor communication on the one

hand, and the space that the electrical leads, that define the qubit, require in this

setup on the other hand, a scalable architecture requires long-distance transport of

quantum information [9].

This requirement could be fulfilled with self-assembled quantum dots, that have

successfully been coupled to optical microcavities [27, 28, 29]. Shortly after the famous

Loss-DiVincenzo proposal, Imamoglu et. al. [30] proposed to use optical means to cou-

ple, manipulate, and read out qubits implemented in optically active quantum dots,

where the coupling to a mode of a microcavity mediates the interaction between di↵er-

ent qubits. Coherent control and measurement of electrons in self-assembled quantum

dots has progressed a lot in recent years. Electrons (and holes [31]) can be initialized
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very fast [32, 33] and a complete set of all optical single qubit rotations has been demon-

strated using ultrafast pulses [33]. A first step towards logic between quantum dots

in microcavities has been achieved with a single quantum dot coupled to a photonic

crystal nanocavity [34]. Recently, mutual coupling of two semiconductor quantum dots

via a photonic crystal nanocavity has been achieved by Laucht et al. [35]. However, a

two-qubit gate with self-assembled quantum dots has not been demonstrated yet, and

many challenges still remain on the way towards quantum computing. One problem is

that self-assembly implicates a certain randomness in view of the spatial position and

the spectral properties of the dots. Moreover, both self-assembled and electrostatically

defined quantum dots su↵er from an even more severe problem, the nuclear-spin in-

duced decoherence of the electron spin qubit. The hyperfine interaction of the electron

spin and the surrounding 104-106 nuclear spins of the atoms in the quantum dot is

the strongest source of decoherence for the electron spin qubit in quantum dots. This

decoherence could be in principle suppressed by polarizing the nuclei with magnetic

fields, but due to their small magnetic moment, the thermal state of the nuclear spins

is unpolarized even at the strongest magnetic fields and lowest temperatures available

in laboratories.

For self-assembled quantum dots, a solution in this respect is provided by the con-

cept of ”Dynamical Nuclear Spin Polarization” (DNP) which uses optical methods to

polarize the nuclear spins (for a review see [36]). The electron is initialised via op-

tical pumping and can interact with the surrounding nuclear spins via the hyperfine

interaction, which enables transfer of spin angular momentum from the electron to the

nuclear spin. Thereby, the nuclear spins become polarized and act back on the electron

spin. The resulting changes in electron spin orientation and transitions energies can be

measured and give insight into the nuclear spin polarization. Di↵erent groups achieved

high nuclear spin polarization in charged and neutral self-assembled quantum dots, see

[36]. Moreover, it has been shown that in uncharged quantum dots, the nuclear spin

system can be stable for up to several hours [37, 38]. This makes this system highly in-

teresting for information storage [39, 40] and even for quantum information processing

[41].
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1.2.2 Semiconductor quantum dots - in the context of this Thesis

While a quantum memory for electron spin qubits in the nuclear spins of a quantum

dot has been proposed in recent years [39, 40], direct coherent coupling between the

optical field and the nuclear spins in a QD, enabling the storage of photonic states while

avoiding electron spin decoherence, had not been studied before. In Chapter 2 we show

how to realize a quantum dot-based quantum interface between the nuclear spins in a

quantum dot and a traveling-wave light field. We show how to couple an optical field

directly to the nuclear spin ensemble, thus interfacing light to an exceptionally long-

lived mesoscopic system that enables the storage and retrieval of higher-dimensional

states. We study a singly charged self-assembled quantum dot strongly coupled to a

cavity. The scheme we propose is robust against cavity decay as it uses the decay of

the cavity to achieve the coupling between nuclear spins and the traveling-wave light

fields. The write-in of information, encoded in the state of the light field, proceeds by

deterministic creation of entanglement between the nuclear spins and the cavity output-

mode. This entangled state between the output field of the cavity and the nuclear spins

is a resource state for teleportation [42] and overcomes the in-coupling problem as the

traveling-wave light field can be teleported onto the nuclear spins. The read-out maps

the nuclear state to the output mode of the cavity. We discuss the performance of the

scheme and provide a convenient description of the dipolar dynamics of the nuclei for

highly polarized spins, demonstrating that this process does not a↵ect the performance

of our protocol. A prerequisite for such a quantum interface is a highly polarized

ensemble of nuclear spins.

As discussed before, high nuclear spin polarization can be achieved by the concept

of DNP. In Chapter 3 we present an experimental and theoretical investigation of

asymmetric unidirectional nuclear spin pumping in an uncharged self-assembled InGaAs

quantum dot [43, 37]. The experiment was carried out by Florian Klotz under the

supervision of Prof. Finley at the Walter-Schottky Institute of the TU Munich. In the

experiment, highly asymmetric dynamic nuclear spin pumping is observed in a quantum

dot subject to resonant optical pumping of the neutral exciton transition leading to a

large maximum polarization of 54%. The theoretical model gives new insights into
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the mechanism leading to the observed DNP e↵ect. It can be understood in terms

of electron-nuclear spin flip-flop processes exchanging the orientation of an electron

and nuclear spin and transferring the exciton from a optically active bright into an

optically inactive dark state which then decays non-radiatively. The model allows

to perform numerical calculations that simulate the actual measurement procedure

and quantitatively reproduce the experimentally observed characteristic features of the

achievable steady state nuclear polarization.

1.2.3 Ultracold atoms

Ultracold atoms are very interesting candidates for studying many-body quantum

physics and can serve as quantum simulators for condensed matter phenomena. These

systems are very clean and moreover well-controllable, making them a nice toy model

for real solid state crystals. Standing wave laser fields can be arranged to form struc-

tures that have the form of an artificial crystal, i.e., they form a periodic potential

which can trap atoms, with the distance between single lattice sites being on the order

of an optical wavelength. The dimensionality, depth, form and position of this potential

can be controlled very precisely via the intensity, geometry and other properties of the

external laser fields. When an optical lattice is loaded with a Bose condensate, the

atoms become trapped in the lattice potential. Depending on the depth of the lattice

potential, there is a competition between tunnelling between neighboring lattice sites

and on-site interaction between the atoms. There are two extreme cases, the superfluid

phase in which each atom is spread out over the entire lattice and the Mott insulator

phase in which the atoms are ”frozen” to an integer number of atoms in each lattice

site. Starting in the superfluid phase and increasing the depth of the lattice potential,

the system undergoes a quantum phase transition. The experimental observation of the

superfluid-Mott insulator transition by Greiner et al. [44] based on a proposal by Jaksch

et al. [45] stood at the beginning of experiments studying strongly correlated systems

with ultracold atoms. A huge variety of experimental studies of the dynamical evolution

of strongly correlated quantum many-body systems and the investigation of the static

quantum phases with cold atoms followed. Prominent examples are the experimental
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realization of the fermionized Tonks-Girardeau gas for bosonic particles [46, 47], the

BCS-BEC crossover [48, 49, 50] and the fermionized Mott Insulator [51, 52]. In all these

systems, strong interactions between the particles compete with their kinetic energy,

which leads to the generation of correlated quantum states. Considerable progress has

been made in the imaging of the correlated many body systems with single-site res-

olution [53]. The demonstration of strong coupling of a Bose-Einstein Condensate to

the quantized field of an optical cavity [54], where all atoms couple identically to one

single mode of the cavity, opened up the route to study many-body physics of cold

gases with cavity-mediated long-range interactions. A first groundbreaking experiment

in this direction was the demonstration of the Dicke quantum phase transition [55]

that was predicted more than thirty years before [56, 57, 58]. Moreover, cold atoms

allow for practically perfect realizations of quantum spin models. Quantum spins on a

lattice that are coupled through magnetic interactions give rise to magnetically ordered

ground states, such as paramagnets, ferromagnets and antiferromagnets. Spin systems

have been realized using two internal states of the atoms to represent the magnetic

spins. The interactions between the spins allow the system to be switched between an-

tiferromagnetic and ferromagnetic spin interactions [59]. While the interactions in this

system are quite weak, recently, a one-dimensional chain of Ising spins with stronger in-

teractions has been realized using a Mott insulator of spinless bosons in a tilted optical

lattice [60].

1.2.4 Ultracold atoms - in the context of this Thesis

We propose to simulate di↵erent quantum spin models using the motional degrees of

freedom of cold bosonic atoms in the Mott insulator regime in an optical lattice potential

(see Chapter 4 ). Changing the strength of the trapping lasers, di↵erent spin models

like the XXZ or the Ising model can be realized. Moreover, we show, how engineerable

dissipation can be added to this system. We give a detailed derivation of how optical

driving (and decay) of internal atomic levels can be used to realize tunable dissipation.

We moreover show how optical driving can be used to simulate an e↵ective transversal

magnetic field. This system comprises an interesting toy model for one-dimensional
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spin chains under dissipation. In Chapter 5 we study the steady state properties

of local one dimensional spin Hamiltonians under di↵erent types of dissipation. We

find that in the limit of weak dissipation, these peaks indicate discontinuities in the

steady state. We show that the steady state expectation values exhibit discontinuous

behavior at the degeneracy points of the Hamiltonian. This e↵ect can be used to

dissipatively probe the degeneracy of the Hamiltonian’s spectrum. Then we study

dissipative spin systems under the aspect of state preparation. We show that there

exist certain spin models, that are dissipatively driven into highly entangled states. We

study di↵erent types of dissipation and show, that apart from the setup discussed before

in Chapter 4, a Bose-Einstein Condensate strongly coupled to an optical cavity [54]

that we discussed in the previous Section has interesting properties for our purposes.

We show that adiabatic elimination of the cavity leads to collective dissipation, which

makes this system attractive from the point of view of state preparation and studying

phase transitions.

1.3 Outline of this Thesis

The various chapters of this thesis are written in a self-contained style that allows

the interested reader to study di↵erent chapters individually. In the introduction, the

general context of the following chapters has been established. Each chapter contains an

individual introduction into the specific topic and is supplemented by some concluding

remarks and outlooks. Here we give an overview over the following chapters:

In Chapter 2 we propose a quantum interface between a traveling-wave light field

and the polarized nuclear spins in a singly charged quantum dot strongly coupled to

a high-finesse optical cavity. We show that by adiabatically eliminating the trion and

the electron spin di↵erent e↵ective couplings between light and nuclear spins can be

achieved. Direct mapping of the state of the cavity field requires very long cavity

lifetimes. To circumvent this problem, we include the dissipative coupling of the cavity

to the environment in our description and propose a scheme, which is robust against

cavity decay. Our system uses the cavity decay to achieve the coupling between nuclear

spins and the traveling-wave light fields. The write-in of states of the light field proceeds
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by deterministic creation of entanglement between the nuclear spins and the cavity

output-mode and subsequent teleportation. The read-out maps the nuclear state to

the output mode of the cavity. We discuss the performance of the scheme and provide

a convenient description of the dipolar dynamics of the nuclei for highly polarized spins,

demonstrating that this process does not a↵ect the performance of our protocol.

In Chapter 3 we present an experimental and theoretical investigation of asym-

metric unidirectional nuclear spin pumping in an uncharged self-assembled InGaAs

quantum dot. The experiment was carried out by Florian Klotz under the supervision

of Prof. Finley at the Walter-Schottky Institute of the TU Munich. In the experiment,

highly asymmetric dynamic nuclear spin pumping is observed, leading to a large maxi-

mum polarization of 54%. We discuss the physical e↵ects that account for the observed

behavior. We explain that the observed asymmetric DNP e↵ects can be understood

in terms of electron-nuclear spin flip-flop processes exchanging the orientation of an

electron and nuclear spin. Thereby, the exciton is transferred from an optically active

bright into an optically inactive dark state which then decays non-radiatively. More-

over, we present a detailed theoretical model of the driven neutral QD that allows to

perform numerical calculations simulating the actual experimental procedure used in

the measurements. We find that the results of the numerical calculations account for

the observed behavior.

In Chapter 4 we propose a quantum optical implementation of a class of dissipative

spin systems with ultracold atoms in optical lattices using detuned Raman transitions

in the Lamb-Dicke regime. We show that using the motional degrees of freedom of cold

bosonic atoms described by the two-band Mott insulator model, di↵erent spin models

like the XXZ or the Ising model can be realized. We show in detail, how engineerable

dissipation can be realized in this system with optical driving (and decay) of internal

atomic levels. We moreover show how an e↵ective transversal magnetic field can be

simulated with optical couplings. This system comprises an interesting toy model for

one-dimensional spin chains under dissipation studied in the following Chapter.

In Chapter 5 we study the steady state properties of local one dimensional spin

Hamiltonians under di↵erent types of dissipation. First, we study small spin chains and
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find, that for weak dissipation, steady state expectation values show pronounced peaks

at certain critical system parameters. We find that in the limit of weak dissipation, these

peaks indicate discontinuities in the steady state expectation values. We show how to

use this e↵ect to dissipatively probe the Hamiltonian’s spectrum and derive a condition

that elucidates the occurrence of discontinuities in the steady state expectation values.

We moreover study state preparation with dissipative spin systems and show, that for

certain spin Hamiltonians under dissipation, fully entangled unique steady states of

spin chains of N atoms can be prepared. Then, we show how collective dissipation

can be experimentally realized with cold atoms in an optical cavity. Moreover, we

derive a master equation for a driven atomic spin systems with interatomic spacing

in the subwavelength regime in which long-range interactions play a significant role.

Such a system might be realized with atoms trapped in carbon nanotubes or plasmonic

structures.
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Chapter 2

A quantum interface between

light and nuclear spins

The coherent coupling of flying photonic qubits to stationary matter-based

qubits is an essential building block for quantum communication networks.

We show how such a quantum interface can be realized between a traveling-

wave optical field and the polarized nuclear spins in a singly charged quan-

tum dot strongly coupled to a high-finesse optical cavity. By adiabatically

eliminating the electron a direct e↵ective coupling is achieved. Depending

on the laser field applied, interactions that enable either write-in or read-

out are obtained. We discuss the performance of the scheme and provide a

convenient description of the dipolar dynamics of the nuclei for highly polar-

ized spins, demonstrating that this process does not a↵ect the performance

of our protocol.

2.1 Introduction

An important milestone on the path to quantum computation and quantum communi-

cation networks is the coupling of “stationary” qubits for storage and data processing

(usually assumed to be realized by material systems such as atoms or electrons) and

mobile “flying” qubits for communication (typically photons) [61, 62]. Detection and
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subsequent storage of information is inapplicable in quantum information as an un-

known quantum state cannot be determined faithfully by a measurement. Hence the

development of “light-matter interfaces” that allow the coherent write-in and read-out

of quantum information has been the subject of intense theoretical research [63, 64, 65].

Two paths have been identified to make light e�ciently couple to a single atomic quan-

tum system: the use of a high-finesse cavity coupled to a single atom or the use of an

optically thick ensemble of atoms, in whose collective state the quantum information is

to be stored. Both have resulted in the experimental demonstration of such interfaces

[66, 67, 68, 69, 70]. Even without strong coupling a quantum interface can be realized

by combining the probabilistic creation of entanglement between atom and light with

teleportation. This approach has been demonstrated with trapped ions [71].

For qubits realized by electron spins in quantum dots [23, 30] such interfaces have

yet to be realized, though in particular for self-assembled quantum dots [72], which have

many atom-like properties, several proposals exist to map photonic states to an electron

in a quantum dot [30, 73] in analogy to the atomic schemes. Strong coherent coupling

between a single quantum system and a single mode of high-Q micro- and nano-cavities

has been demonstrated experimentally [74, 75, 76, 77], raising the prospect of coupling

light to the quantum dot’s electronic state by adapting protocols such as [63]. Despite

their good isolation from many environmental degrees of freedom, the electron-spin

coherence time in today’s quantum dots is limited mainly due to strong hyperfine

coupling to lattice nuclear spins. Moreover, the capacity of such an interface is one qubit

only, making the interfacing di�cult for many-photon states of the light field as used

in continuous variable quantum information processing. In contrast, the ensemble of

lattice nuclear spins could provide a high-dimensional and long-lived quantum memory

[40].

Here we will show how to realize a QD-based quantum interface between the nuclear

spins in a QD and the optical field. We show how to couple an optical field directly to

the nuclear spin ensemble, thus interfacing light to an exceptionally long-lived meso-

scopic system that enables the storage and retrieval of higher-dimensional states and is

amenable to coherent manipulation via the electron spin [41]. The system we consider
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is a charged quantum dot strongly coupled to a high-finesse optical cavity by a detuned

Raman process. We show that by adiabatically eliminating the trion and the elec-

tron spin di↵erent e↵ective couplings between light and nuclear spins are achieved. As

demonstrated in our publication [78] and my diploma thesis [79], the state of the cavity

field can be directly mapped to the nuclear spins using the methods of STIRAP and

Landau-Zener transitions. However, the drawback of this approach is that it requires

very long cavity lifetimes.

To address this problem we propose in Section 2.3 a scheme, which is robust against

cavity decay as it uses the decaying field of the cavity to achieve the coupling between

nuclear spins and the traveling-wave fields: the read-out maps the nuclear state to

the output mode of the cavity, while the write-in proceeds by deterministic creation of

entanglement between the nuclear spins and the cavity output-mode and subsequent

teleportation [42]. Our scheme has several attractive features: the very long nuclear

spin lifetimes make the nuclei attractive for storing quantum information [40] and the

use of collective states makes it possible to map not just qubits but also multi-photon

states. In addition, typical electron spin decoherence processes will be suppressed:

the major such process – hyperfine interaction with the lattice nuclear spins [80] –

is harnessed to achieve the desired coupling and the influence of other processes is

weakened since the electronic states can be adiabatically eliminated from the dynamics.

The price for this is a reduction in the speed of the mapping process and the necessity to

initialize the nuclear spin ensemble in a highly polarized state. In view of the progress in

Dynamical Nuclear Polarization (DNP) experiments (for a review see [36]) with nuclear

polarization up to > 80% [81], the proposed protocol enables the high-fidelity mapping

between a (traveling) optical field and the nuclear spin ensemble in a realistic setup.

2.1.1 Reader’s guide

The Chapter is organized as follows: In Section 2.2, we introduce the setup: a singly

charged quantum dot with highly polarized nuclear spins coupled to an optical cavity.

In Section 2.2.1 we sketch the adiabatic elimination that yields the Hamiltonians that

describes the e↵ective coupling between light and nuclear spins (a detailed derivation
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can be found in Appendix 2.C). In Section 2.3 we discuss the interface between light

and nuclear spins of the quantum dot. We investigate the time evolution of the system,

the fidelity of both write-in and read-out processes, and the intermediate entanglement

properties of the involved systems. Moreover, we show in Section 2.4 that apart from

mapping light states to the nuclear spins, the interaction we describe can be used

to generate an arbitrary Gaussian state. In Section 2.5 we discuss di↵erent aspects

concerning the experimental realization and the approximations used in our scheme.

We investigate the internal nuclear dynamics, dominated by dipolar interactions, and

model the dipolar interaction of a singly charged quantum dot with highly polarized

spins numerically. Finally, we discuss corrections to the first order bosonic description.

In Appendix 2.A, we introduce a simplified toy model of our system, that also allows

for the quantum interface protocol as discussed in Section 2.3. The toy model provides

an easier description of our system and might be of interest for the reader who is more

interested in the quantum interface protocol than in the specific physical realization.

In Appendix 2.B we discuss a physical implementation of the toy model with self-

assembled quantum dots that involves mixing of the trion states by a microwave field.

This system is experimentally more di�cult to realize than the system discussed in

Section 2.2. In Appendix 2.D we give a detailed derivation of the adiabatic elimination

used and in Appendix 2.E we briefly summarize the main properties of Gaussian states

and operations with particular regard to their entanglement.

2.2 The system

We consider a self-assembled III-V quantum dot (QD) with a single conduction-band

electron strongly coupled to a high-Q nano-cavity [see Fig. 2.1a)]. At zero magnetic

field, the two electronic ground states |±1/2i (s-type conduction band states) are de-

generate and the only dipole allowed transitions are to the trion states |±3/2i with

spin +3/2 and spin �3/2 (heavy-hole valence band state) with �± polarized light. An

external magnetic field Bz in z-direction, perpendicular to the growth (y-) direction

(Voigt geometry), Zeeman splits the two electronic states and the trion states and leads

to eigenstates |±i = 1p
2
(|1/2i ± i |�1/2i) and |T±i = 1p

2
(|3/2i ± i |�3/2i). The states
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|+i , |T+i and |�i , |T�i can be coupled [see Fig. 2.1b)] by horizontally polarized

light, and |+i , |T�i and |�i , |T+i by vertically polarized light:

Hopt = ⌦
c

2 (a† |�ihT+| + a† |+ihT�| + h.c.) + ⌦
l

2 (e+i!
l

t(|+ihT+| + |�ihT�|) + h.c.)

+!c a†a + !T+ |T+ihT+| + !T� |T�ihT�| + !eSz. (2.1)

Here, Sz is the electron spin operator and a†, a are creation and annihilation operators

of the single mode cavity field. !c, !l denote the cavity and the laser frequency (which

are vertically/horizontally polarized, respectively) and ⌦c, ⌦l the Rabi frequencies of

the cavity and the laser field, respectively. The energies of the trion states |T+i, |T�i

are !T+ = !T +!h/2 and !T� = !T �!h/2 where !T is the energy of the trion (without

magnetic field), !h the energy of the hole Zeeman splitting and !e = ge µbBy denotes

the Zeeman splitting of the electronic states. The first term of the Hamiltonian given

by Eqn. (2.1) describes the coupling to the cavity field and the second term the coupling

to a classical laser field in the rotating wave approximation. We assume both cavity

decay and spontaneous emission rate of the QD to be much smaller than ⌦c and omit

both processes in Eqn. (2.1). Besides the coupling to optical fields, the electron spin

in a QD also has a strong hyperfine interaction with the lattice nuclear spins, which is

for s-type electrons dominated by the Fermi contact term

Hhf =
A

2
(A+S� + S+A�) + ASzAz, (2.2)

where S±,z are the electron spin operators and A±,z =
P

j ↵jI
±,z
j are the collective

nuclear spin operators (in a typical GaAs quantum dot, the number of Ga and As nuclei

lies between N ⇠ 104-106). The individual coupling constants ↵j are proportional to

the electron wave function at site j (and the magnetic dipole moment of the jth nucleus)

[80] and are normalized to
P

j ↵j = 1. The requirement for using nuclear spins as a

quantum memory is to initialize them in a well-defined, highly polarized state. By

this we mean that hAzi is close to its minimum value hAzimin (⇡ �1/2 for spin-1/2

nuclei) and define the polarization as P = hAzi / hAzimin. Due to their small magnetic

moments, nuclear spins are almost fully mixed even at dilution-fridge temperatures

and fields of several Tesla. Over the past years, large progress in Dynamical Nuclear
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Figure 2.1: a) A singly charged QD coupled to a high-Q optical cavity. b) Level scheme

of the QD (Voigt geometry)

Polarization (DNP) experiments (for a review see [36]) has been reported with nuclear

polarization up to > 80% [81].

A convenient and intuitive description of the highly polarized nuclei with homoge-

neous coupling to the electron is provided by the Holstein Primako↵ transformation

[82], by which collective nuclear spin operators A±,z can be mapped to the bosonic op-

erators b,b†, associating A� ! 1p
N

q
1 � b†b

N b and Az ! 1
N

�
b†b � N

2

�
. Assuming high

polarization, the electron spin couples to a bosonic “spin wave” described by A� = 1p
N

b

and Az = 1
N (b†b � N/2) by a Jaynes-Cummings-like interaction

Hhf =
gn
2

(b†S� + S+b) +
gnp
N

Sz

✓
b†b � N

2

◆
, (2.3)

with gn = A/
p

N . The initial state of the nuclear spins is represented by a collection

of bosonic modes, with b in the vacuum state. One can generalize this description

to the case of inhomogeneous coupling to the electron (gn = A
qP

i ↵
2
i ) and obtains

an identical description in 0th order in
D
b†b
N

E
= (1 � P )/2 [83]. Corrections to this

description arising from inhomogeneous coupling and not fully polarized nuclear spins

will be discussed briefly in Section 2.5.2 and a detailed discussion can be found in [84].

It should be noted that the scheme we present does not require the bosonic description

and could also be discussed directly in terms of the collective spin operators. The Fock

basis would be replaced by (A+)n |# . . . #i and errors due to the inhomogeneity would

have to be treated along the lines of [40] and [78]. The bosonic picture, however, allows
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a much more transparent treatment of the corrections to the ideal case, emphasizes

the relation to quantum optical schemes, and gives access to the Gaussian toolbox of

entanglement criteria and transformations.

2.2.1 E↵ective coupling between nuclei and cavity

Our aim is to obtain from H = Hopt +Hhf a direct coupling between nuclear spins and

light. The Hamiltonian H describes a complicated coupled dynamics of cavity, nuclei

and quantum dot. Instead of making use of the full Hamiltonian (and deriving the

desired mapping, e.g., in the framework of optimal control theory) we aim for a simpler,

more transparent approach. We adiabatically eliminate [85] (see also Appendix 2.C for

a detailed derivation of the adiabatic elimination) the trion and the electronic spin

degree of freedom, which leads to a Hamiltonian Hel that describes a direct coupling

between nuclear spins and light. As explained later, this can be achieved if the couplings

(the Rabi frequency of the laser/cavity, the hyperfine coupling, respectively) are much

weaker than the detunings to the corresponding transition:

�0
T±

� ⌦l,⌦c
p

n, (2.4)
q
�0

T±
!̃e � ⌦l,⌦c

p
n, (2.5)

!̃e � gn
p

m. (2.6)

Here, !̃e = !e� A
2 , �0

T±
= !T �!l±!h/2+ !̃e/2 = �0±!h/2+ !̃e/2 with �0 = !T �!l,

n is the number of cavity photons and m the number of nuclear excitations. Note that

typically !̃e < �0
T±

such that condition (2.4) becomes redundant. In addition to (2.4)-

(2.6), we choose the adjustable parameters such that all first order and second order

processes described by H are o↵-resonant, but the (third order) process in which a

photon is scattered from the laser into the cavity while a nuclear spin is flipped down

(and its converse) is resonant. This leads to the desired e↵ective interaction.

The idea of adiabatic elimination is to perturbatively approximate a given Hamil-

tonian by removing a subspace from the description that is populated only with a very

low probability due to chosen initial conditions and detunings or fast decay processes.

If initially unpopulated states (in our case the trion states and the electronic spin-up
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state |"i) are only weakly coupled to the initially occupied states, they remain essen-

tially unpopulated during the time evolution of the system and can be eliminated from

the description. The higher order transitions via the eliminated levels appear as addi-

tional energy shifts and couplings in the e↵ective Hamiltonian on the lower-dimensional

subspace.

The starting point is the Hamiltonian H = Hopt + Hhf given by Eqns. (2.1) and

(2.2). In order to get a time-independent Hamiltonian, we go to a frame rotating with

U † = exp [�i!lt(a†a + |T+ihT+| + |T�ihT�|)] and obtain:

H 0 =
⌦c

2
(a† |�ihT+| + a† |+ihT�| + h.c.) +

⌦l

2
(|+ihT+| + |�ihT�|) + h.c.)

+� a†a +�T+ |T+ihT+| +�T� |T�ihT�| + !eS
z + Hhf , (2.7)

where �T± = !T± � !l and � = !c � !l.

Choosing the cavity and laser frequencies, !c and !l, far detuned from the exciton

transition and the splitting of the electronic states !̃e much larger than the hyperfine

coupling gn, such that conditions (2.4)-(2.6) are fulfilled, we can adiabatically eliminate

the states |T±i and |+i. Adiabatic elimination yields a Hamiltonian, that describes an

e↵ective coupling between light and nuclear spins

Hel = ⌦
c

⌦
l

A
8�0

T+
!̃
e

(aA+ + h.c.) + ⌦
c

⌦
l

A
8�0

T�
!̃
e

(aA� + h.c.) + !1a†a � A
2 �A

z

� A2

4!̃
e

A+A� + Tnl, (2.8)

where the energy of the photons !1 = �� ⌦2
c

4�0
T+

+
⌦2

l

4�02
T�
� and the energy of the nuclear

spin excitations ⇠ � A
2N � A2

4N !̃
e

. By Tnl we denote the nonlinear terms

Tnl =
A3

8!̃2
e

A+�AzA� +
A2

4!̃2
e

�a†aA+A� +
⌦2
c�

4�02
T+

a†a†aa, (2.9)

which are small (kTnlk ⌧ ⌦
c

⌦
l

A
8�0!̃

e

) in the situation we consider (� ⌧ ⌦c, gn/!̃z ⇠

⌦l/�0
T+,T�

⌧ 1) and neglected in the following. We also neglect the nuclear Zee-

man term which is of order 10�3 smaller than the Zeeman energy of the electron.

In the bosonic description of the nuclear spins that we introduced in Eqn. (2.3), the

Hamiltonian given by Eqn. (2.8) reads

He↵ = g1(ab† + h.c.) + g2(ab + h.c.) + !1a
†a + !2b

†b, (2.10)
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with coupling strengths g1 and g2 given by

g1 =
⌦c⌦lgn
8�0

T+
!̃e

, g2 =
⌦c⌦lgn
8�0

T�
!̃e

. (2.11)

The energy of the nuclear spin excitations can now be written as !2 = � A
2N � g2

n

4!̃
e

.

The first term in the Hamiltonian is a beamsplitter type interaction ⇠ (ab† + h.c.)

whereas the second term is a two-mode squeezing type interaction ⇠ (ab + h.c.). Both

interactions can be made dominant by choosing the resonance condition to be either

!1 = !2 or !1 = �!2. This will be discussed in detail in the following and illustrated

numerically.

First, we validate the adiabatic elimination by a numerical simulation which com-

pares the evolution of states  20 (where the first subscript indicates the number of pho-

tons and the second the number of nuclear excitations) [under the condition !1 = !2,

see Fig. 2.2] and  00 [under the condition !1 = �!2, see Fig. 2.3] under the full Hamil-

tonian given by Eqn. (2.7) to the evolution under the eliminated Hamiltonian given

by Eqn. (2.10). The solid lines show the evolution under the full Hamiltonian H 0,

the dashed lines under the eliminated Hamiltonian He↵ and we find that H 0 is well

approximated by He↵, and that the nonlinear terms Tnl can indeed be neglected.

For the simulation, we choose the parameters as follows: we assume a hole g-factor

gh = �0.31 and an electron g-factor ge = 0.48 [86]; the number of nuclei N = 104,

the hyperfine coupling constant A = 100µeV , the laser and cavity Rabi frequency

⌦c = ⌦l = 15µeV , the detuning of the trion �0 = 1000µeV , the e↵ective Zeeman

splitting of the electronic states !̃e = 13.9µeV (the magnetic field in x-direction is

4T) and the Zeeman splitting of the hole !h = �71.8µeV . With these parameters,

the conditions given by (2.4)-(2.6) are fulfilled and values g1 = 2.1 · 10�3µeV and

g2 = 1.9 · 10�3µeV are obtained. We assume full nuclear (spin-down) polarization and

use the bosonic description.

As already mentioned, two distinct resonance conditions are chosen in Figs. 2.2 and

2.3, leading to di↵erent dynamics of the system:

For resonant exchange of excitations between the two systems, we choose !1 =

!2, where the tuning can be done by changing � = !c � !l. Then He↵ describes a
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Figure 2.2: Evolution of the two-photon Fock state  20 under the full Hamiltonian H 0

(solid lines) and the eliminated Hamiltonian He↵ (dashed lines) tuning the energies

such that !1 = !2 (beamsplitter-type interaction). Populations in the states  00,  10,

 01,  12,  21,  33 are plotted here but not mentioned in the plot legend as they are

small.

beamsplitter-like coupling of the modes a and b and the e↵ective interaction is described

by

Hbs = g1(ab† + h.c.) + !1a
†a + !2b

†b. (2.12)

Processes in which absorption (or emission) of a cavity photon is accompanied by

a nuclear spin excitation are resonant, whereas the squeezing interaction given by

g2(a†b† + ab) is o↵-resonant. This can be seen going to a frame rotating with !1:

g2 is rotating with 2!1 and as 2!1 � g2, the squeezing type interaction is o↵ resonant.

Tuning the energies such that !1 = �!2, the creation of a nuclear spin excitation is

accompanied by scattering of a laser photon into the cavity, i.e. the e↵ective coupling

becomes g2(a†b†+ab) and the beamsplitter-type interaction g1(ab†+a†b) is o↵-resonant.

The driving laser now facilitates the joint creation (or annihilation) of a spin excitation

and a cavity photon, realizing a two-mode squeezing Hamiltonian

Hsq = g2(a
†b† + ab) + !1a

†a + !2b
†b. (2.13)

The plots in Figs. 2.2 and 2.3 illustrate that the dynamics of the system can indeed

be approximated by Eqn. (2.12) and Eqn. (2.13). To simulate the beamsplitter type
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Figure 2.3: Evolution of the state  00 under the full Hamiltonian H 0 (solid lines)

and the eliminated Hamiltonian He↵ (dashed blue lines) tuning the energies such that

!1 = �!2 (squeezing interaction). The dotted black lines show the evolution under

exact two-mode squeezing (TMS) (up to n = 3).

coupling given by Eqn. (2.12), we choose !1 = !2 and let the two-photon Fock state

 20 evolve under the Hamiltonian given by Eqn. (2.10) [see dashed lines in Fig. 2.3].

Almost perfect Rabi-oscillations can be seen between the two-photon Fock state  20

and the state with two nuclear spin excitations  02, showing that g2(a†b† + h.c.) in

Eqn. (2.10) can indeed be neglected. To simulate the squeezing-type interaction we

choose !1 = �!2 and study the evolution of the state  00 under the Hamiltonian given

by Eqn. (2.10) [see dashed blue lines in Fig. 2.3]. It can be seen that the state  00

evolves into the states  11,  22 and  33 with coupling strengths g2
p

n, depending on

the number of excitations n. We have thus shown, that in this case, the beamsplitter-

type interaction can indeed be neglected. For simplicity, we restricted the number

of photons and nuclear excitations to 3 in our simulation, such that states  44 and

higher excitation states do not occur and the evolution of the states  22 and  33 does

only correspond to its evolution in a space with higher excitation numbers at very short

times. This can be seen comparing the evolution to the exact two-mode squeezing which

generates the state
q

1 � tanh2 (g2t)
P1

n=0 tanhn (g2t) |nni for which the populations

up to n = 3 are plotted in Fig. 2.3 (dotted black lines).
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2.3 Quantum interface

Now we will discuss how a quantum interface between light and nuclear spins can

be realized with the physical system introduced so far. Note that the discussion in

the following is also valid for a simplified toy model (and its physical implementation

involving mixing of the trion states by a microwave field) as discussed in Appendix

2.A and 2.B, respectively. The toy model might be useful for the reader who is more

interested in the quantum interface protocol than in the specific physical realization.

The discussion in the following is valid for all three models introduced in Section 2.2

and the Appendixes 2.A and 2.B, as the Hamiltonians that are relevant for the quantum

interface, Hsq and Hbs, given by Eqns. (2.13) and (2.59) and Eqns. (2.12) and (2.57)

respectively, are of the same form for all three models. As the physical implementation

that we discuss in Section 2.2 is significantly easier to realize in an experiment than

the setup discussed in Appendix 2.B, we will in the following refer to this model.

The Hamiltonians Hbs and Hsq describe a direct coupling of light to the nuclear

spins. Now, the obvious route to a quantum interface is via the beam-splitter Hamil-

tonian Hbs: acting for a time t = ⇡/g it maps a ! ib and b ! ia thus realizing (up

to a phase) a swap gate between cavity and nuclear spins. This and related ideas are

explored in my diploma thesis and in our publication [87]. There are two practical

problems with this approach: Compared to the e↵ective coupling, present-day cavities

are “bad” with cavity life time ⌧cavity ⌧ 1/g, i.e., the cavity field will decay before

its state can be mapped to the nuclei. Moreover, it is notoriously di�cult to couple

quantum information into high-Q cavities, although proposals exist [63] that address

this issue. Both problems can be circumvented for our system by two key ideas: (i) to

include the field modes into which the cavity decays in the description and (ii) to realize

write-in via quantum teleportation. We will show in the following that it is possible to

create entanglement between nuclei and the traveling-wave output field of the cavity.

Then, quantum teleportation can be used to write the state of another traveling-wave

light field onto the nuclear spins (Fig. 2.4) 1. This approach gives an active role to

1This maps the state up to a random (but known) displacement. It can be undone using Hbs, where

the cavity is pumped with strong coherent light for a short time [88].
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Figure 2.4: Quantum teleportation can be used to write the state of a traveling-wave

light field onto the nuclei.

cavity decay in the interface and can tolerate a bad e↵ective cavity as long as strong

coupling is achieved in Eqn. (2.7). Moreover, it does not require to couple the quantum

information into the cavity. Similarly Hbs [Eqn. (2.12)] enables read-out, by writing the

state of the nuclei to the output field of the cavity. The entanglement between nuclear

spins and output field can moreover be used to entangle nuclear spins in two distant

cavities by interfering the output light of the cavities at a beamsplitter (Fig. 2.5).

2.3.1 Entangling nuclei with the output field

The Hamiltonian of the nuclear spin-cavity system tuned to the squeezing interaction

in Eqn. (2.13) (and Eqn. (2.59) of the toy model which is of the same form) and coupled

to the environment is given by

H = g2(a
†b† + ab) + ia

Z r
�

2⇡
c†! d! + h.c. +

Z
!c†!c!d!, (2.14)

where c! are the annihilation operators of the bath and � the cavity decay constant. We

have specialized (Eqn. (2.13)) to the case !1 = �!2 and transformed to an interaction

picture2 with H0 = !1(a†a � b†b) + !1

R
c†!c!d! and performed the rotating-wave and

Markov approximations in the description of the cavity decay [89]. The quantum

2As was already the case in (Eqn. (2.13)) all optical operators are also taken in a frame rotating

with the laser frequency !
l

.
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Figure 2.5: Nuclear spins of quantum dots in two distant cavities can be entangled by

interfering the traveling wave output fields of the two cavities at a beamsplitter and

measuring.

Langevin equations of cavity and nuclear operators read

ȧ(t) = �ig2 b†(t) � �

2
a(t) � p

�cin(t) (2.15)

ḃ(t) = �ig2 a†(t). (2.16)

Here, cin describes the vacuum noise coupled into the cavity and satisfies [cin(t), c
†
in(t

0)] =

�(t � t0). The solutions of Eqn. (2.15) and Eqn. (2.16) are given (for t � 0) by

a(t) = p�(t)a(0) + q(t)b†(0) +
p
�

Z t

0
p�(t � ⌧)cin(⌧)d⌧ (2.17)

b(t) = q(t)a†(0) + p+(t)b(0) +
p
�

Z t

0
q(t � ⌧)c†in(⌧)d⌧ (2.18)

where

p± = e�
1
4 t�

⇥
cosh (⌫t) ± �

4⌫ sinh (⌫t)
⇤
, (2.19)

q = �ig2⌫ e�
1
4�t sinh ⌫t, (2.20)

with

⌫ =

r⇣�
4

⌘2
+ g22. (2.21)

While Eqns. (2.17) and (2.18) describe a non-unitary time-evolution of the open

cavity-nuclei system, the overall dynamics of system plus surrounding free field given

by the Hamiltonian in Eqn. (2.14) is unitary. Moreover, it is Gaussian (see Appendix

2.E), since all involved Hamiltonians are quadratic. Since all initial states are Gaussian
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(vacuum), the joint state of cavity, nuclei, and output fields is a pure Gaussian state

at all times as well. This simplifies the analysis of the dynamics and in particular the

entanglement properties significantly: The covariance matrix [defined by Eqn. (2.82)

in Appendix 2.E] of the system allows us to determine the entanglement of one part

of the system with another one. In particular, we are interested in the entanglement

properties of the nuclei with the output field.

The covariance matrix �ns-c-o of the pure Gaussian state of nuclear spins, cavity

and output field and thus the covariance matrix �ns-o of the reduced nuclei-output field

system can be found by analyzing the covariance matrix of the cavity-nuclei system

�ns-c.

The elements hXi of the covariance matrix �ns-c can be calculated by solving the

Lindblad equation evaluated for the expectation values hXi

d

dt
hXi = i h[Hsq, X]i +

�

2

⇣D
2a†Xa

E
�
D
Xa†a

E
�
D
a†aX

E⌘
. (2.22)

We thus find the covariance matrix of the cavity-nuclei system to be

�ns-c =

0

BBBBBB@

m 0 0 k

0 m k 0

0 k n 0

k 0 0 n

1

CCCCCCA
, (2.23)

where

m = e�
�t

2

h�
⌫

sinh (2⌫t) +

✓
g22
⌫2

+
�2

8⌫2

◆
cosh (2⌫t) +

g22
⌫2

�
� 1, (2.24)

n = 1 + 32
g22
⌫2

e�
�t

2 sinh (⌫t)2, (2.25)

k = e�
�t

2

hg2�

2⌫2
sinh (⌫t)2 +

g2
⌫

sinh (2⌫t)
i
. (2.26)

According to [90] there exists a symplectic transformation S (see Appendix 2.E such

that �D = S�ns-cST = diag(�s1,�
s
1,�

s
2,�

s
2) where {�s1,�s2} are the symplectic eigenvalues

of �ns-c. This allows us to calculate the covariance matrix of the pure nuclei-cavity-

output field system

�ns-c-o = S0�D’(S
0�1)T (2.27)
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with �D’ in 2 ⇥ 2 block-matrix form

�D’ =

0

BBBBBB@

cosh (2r1) 2 sinh (2r1)�z

cosh (2r2) 2 sinh (2r2)�z

sinh (2r1)�z cosh (2r1) 2

sinh (2r2)�z cosh (2r2) 2

1

CCCCCCA
, (2.28)

where cosh r1 = �s1 and cosh r2 = �s2 and S0 =

0

@ S

4⇥4

1

A. One of the symplectic

eigenvalues {�s1,�s2} is 1, indicating a pure - and therefore unentangled - mode in the

system. That implies that there is a single “output mode” in the out-field of the

cavity to which the cavity-nuclear–system is entangled and we can thus trace out the

unentangled output mode.

The procedure for entangling the nuclei with the output field (write-in) is: let Hsq

act for time t1 to create a two-mode squeezed state  (g2, t1): nuclei entangled with

cavity and output field. To obtain a state in which the nuclei are only entangled to the

output field, we switch the driving laser o↵ (g2 = 0) and let the cavity decay for a time

t2 � ⌧cav, obtaining an almost pure two-mode squeezed state of nuclei and the output

mode. We define the coupling as

gt =

⇢
g2, t < t10, t � t1 (2.29)

For the parameters used in Section 2.2.1, g2 ⇠ 1.9 · 10�3µeV.

The entanglement of the di↵erent subsystems can be quantified: We compute the

Gaussian entanglement of formation (gEoF) [91] of the reduced covariance matrix of the

nuclei-output field–system to quantify the entanglement of the nuclei with the output

field (see Fig. 2.6). For a Gaussian state ⇢(�,d) the gEoF EG(⇢(�,d)) is defined as the

minimal amount of average entanglement in a decomposition of ⇢(�,d) into Gaussian

states, i.e. EG(⇢(�,d)) = min{
R
�0,d0 dp(�0, d0)E(⇢(�0,d0)) : ⇢(�,d) =

R
�0,d0 dp(�0, d0)⇢(�0,d0)}

[91]. Thus EG(⇢(�,d)) measures how costly it is (in terms of entanglement) to prepare

⇢(�,d) by mixing Gaussian states and gives an upper bound to the Entangelement of

Formation (EoF). In the present case, it coincides with the logarithmic negativity [92].

The entanglement of the pure cavity-nuclei-output mode–system can be quantified using
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=7

Figure 2.6: Plot of the Gaussian entanglement of formation (gEoF) of the nuclei with

the output field vs t for di↵erent values of �/g. At g2t1 = 7 the coupling is switched

o↵. The curve saturates when all excitations have leaked out of the cavity.

the entanglement entropy SE [93]. We plot SE for the nuclei-cavity system with the

output mode [see Fig. 2.7a)] and of the nuclei with the cavity-output mode–system

[see Fig. 2.7b)]. The entanglement is plotted versus g2t for di↵erent ratios of the cavity

decay constants and the coupling, �/g2.

2.3.2 Write-in: Teleportation channel

The entangled state between nuclei and the cavity output field allows us to map a state

of a traveling light field to the nuclei using teleportation (see Fig. 2.4) [42].

To realize the teleportation, a Bell measurement has to be performed on the output

mode of the cavity and the signal state to be teleported. This is achieved by sending

the two states through a 50:50 beam splitter and measuring the output quadratures

[42]. To be able to do this, we need to know B0, the output mode of the cavity. In the

following, we derive an exact expression for this mode.

We fix a time t and denote by B(y, t), y 2 N a complete set of bath modes outside

the cavity. B(y, t) can be expressed as a superposition of bath operators c(x, t)

B(y, t) =

Z
z(y, x, t)c(x, t)dx (2.30)
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=7 =7

a) b)

Figure 2.7: a) Plot of the entanglement entropy SE of the nuclei+cavity with the output

field vs t for di↵erent values of �/g. At g2t1 = 7 the coupling is switched o↵. b) Plot

of the entanglement entropy SE of the nuclei with the cavity+output field vs g2t for

di↵erent values of �/g2.

where we introduce a complete set of orthonormal mode functions z(y, x, t). The bath

operators c(x, t) are known from the input-output relations [89]

c(x, t) =

p
�

2
a(t � x)�[0,t](x), (2.31)

where a(t) is given by Eqn. (2.17) and

�[0,t](x) =

8
<

:
1, 0  x  t

0, x < 0, x > t
. (2.32)

To calculate B(y, t) we thus need to determine z(y, x, t). This can be done, calculat-

ing the variance
⌦
c†(x, t), c(x0, t)

↵
=
⌦
c†(x, t)c(x0, t)

↵
�
⌦
c†(x, t)

↵
hc(x0, t)i following two

di↵erent pathways: With Eqn. (2.31) we find

D
c†(x, t), c(x0, t)

E
=
�

4
q(t � x0)q(t � x)⇤, (2.33)

where q(t) is given by Eqn. (2.20). Another way to express c(x, t) follows from Eqn. (2.30):

c(x, t) =
X

y

z(y, x, t)⇤B(y, t). (2.34)
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As shown in Section 2.3.1 there exists only one output mode which we label y = 0.

This mode contains all the output photons. Therefore
⌦
B(y, t)†B(y0, t)

↵
= K �y0�y00

and the variance using Eqn. (2.34) reads

D
c†(x, t), c(x0, t)

E
= K z(0, x, t)z(0, x0, t)⇤. (2.35)

Comparing Eqn. (2.33) to Eqn. (2.35) we find

z(0, x, t) =
q(t � x)⇤qR
|q(t � x)|2dx

(2.36)

and K = �
4

qR
|q(t � x)|2dx and we have thus fully determined B(0, t) (see Fig. 2.10).

Note that the bath modes are given in a frame rotating with !1 + !l to which we

transformed in Section 2.2 (!l) and Section 2.2.1 (!1).

Therefore a state of a traveling light field can be teleported to the nuclear spins

up to a random displacement that arises from the teleportation protocol [94, 42]. The

random displacement can be undone, letting the beam-splitter interaction Hbs [given

by Eqn. (2.12)] act for a short time, while pumping the cavity with intense coherent

light as suggested in [88].

Next, we want to consider the quality of the teleportation. Whereas before (see

Figs. 2.6 and 2.7) the time evolution of the system for a fixed switch-o↵ time g2t1 = 7

was considered, we now consider the ”final” entangled state of nuclei and output field

depending on g2t1, where the cavity has decayed to the vacuum state while the nuclei

are (still) stationary.

The fidelity with which a quantum state can be teleported onto the nuclei is a

monotonic function of the two-mode squeezing parameter

r1 =
1

2
arccosh(m(t = t1)) (2.37)

with m defined in Eqn. (2.24). A typical benchmark [95] is the average fidelity with

which an arbitrary coherent state can be mapped. This fidelity has a simple dependence

on the two-mode squeezing parameter r1 of the state used for teleportation and is given

by [96]

Ftel =
1

1 + e�2r1
. (2.38)
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Figure 2.8: Plot of the teleportation fidelity vs g2t1 for di↵erent values of �/g2.

We plot the teleportation fidelity dependent on the switch-o↵ time t1 (see Fig. 2.8).

Already for r1(t1) ⇠ 1 fidelities above 0.8 are obtained. After switching o↵ the cou-

pling we have to wait for the cavity to decay which typically happens on a nanosecond

timescale and does not noticeably prolong the protocol.

2.3.3 Read-out

The beamsplitter Hamiltonian Hbs [given by Eqn. (2.12)] enables read-out of the state

of the nuclei by writing it to the output field of the cavity. The quantum Langevin

equations of cavity and nuclear operators lead to almost identical solutions as for Hsq

[see Eqns. (2.17) and (2.18)]: of course, now a(t) is coupled to b(t) instead of b†(t) but

the only other change to Eqn. (2.17) and (2.18) is to replace ⌫ by

⌫̃ =
q

(�/4)2 � g21. (2.39)

This has the e↵ect that all terms in Eqns. (2.17) and (2.18) show exponential decay with

t. The decay of the slowest terms ⇠ e�2
g

2
1
�

t sets the timescale for read-out. To calculate

the read-out fidelity, we need to know the state of the output field at time t = T . We

assume that the state we want to read-out is a coherent state with displacement ↵ns

at time t = 0 fully described by its covariance matrix �b(0) = and its displacement

db(0) = hbi = ↵ns (while cavity and output field are in the vacuum state at t = 0). As
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Figure 2.9: Plot of the read-out fidelity vs g1t for di↵erent values of �/g1

the norm of the displacement kd(t)k of the nuclei-cavity-output system

d(t) =

0

BBB@

da(t)

db(t)

dB0(t)

1

CCCA
=

0

BBB@

ha(t)i

hb(t)i

hB0(t)i

1

CCCA
(2.40)

does not change under the beamsplitter transformation, the displacement of the output

mode B0 is given by

|dB0(t)| =
p

kd(0)k2 � da(t)2 � db(t)2

=
p

1 � (|q(t)|2 + |p+(t)|2)|↵ns| (2.41)

where q(t) and p+(t) are defined by Eqn. (2.19) and (2.20) with ⌫ replaced by ⌫̃.

At finite times, the nuclear excitations and the cavity have not fully decayed which

leads to a loss of amplitude of the mapped state. The loss is very small for su�ciently

large T . To assure high fidelity even for states with large photon number, we can amplify

the output field [97]. Then the state of the output field is (�B0 , dB0) = ( ,↵ns). This

leads to a read-out fidelity (see Fig. 2.9) given by

Fread = | h ,↵ns |  ,↵ns i |2 = 1 � (|q|2 + |p+|2),

where we have used relations for the transition amplitudes given by [98].
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2.3.4 Output mode

In Fig. 2.10 we plot the output mode of the cavity given by Eqn. (2.30) for write-in

and read-out, respectively, and for several choices of the parameters g1,2 and �. We

are considering here only the idealized case of a one-sided and one-dimensional cavity.

In general, the actual geometry of the cavity at hand has to be taken into account to

determine B0. In the following we briefly discuss the shape of the mode-function. It

provides some insight into the dynamics of the mapping process, since due to (2.31)

the weight of c(x, T ) in B(0, t) reflects the state of the cavity mode at time t�x in the

past.

Write-in: Let us consider the two extreme cases of very strong and very weak

cavity decay. In the former case (� � g2) the cavity mode can be eliminated, i.e., the

nuclear spins couple directly and with constant strength ⇠ g22/� to the output field:

z0 is a stepfunction which is 0 for g2 = 0 and constant otherwise. This is reflected in

Fig. 2.10, where for � = 100g2 most of the excitations decay directly to the outputmode

such that z0 takes a ”large” value at the time the squeezing is switched on and then

increases only slowly in time. After switching the squeezing interaction o↵ the cavity

quickly decays to the vacuum. For � ⌧ g2, instead, two-mode squeezing builds up in

the nuclei–cavity system as long as the squeezing interaction is on (3µs in Fig. 2.10)

and after g2 is switched o↵ the cavity decays to its standard exponential output mode.

The intermediate cases in Fig. 2.10a) show the shifting weight between “initial step-

function” and subsequent exponential decay.

Read-out: In the case of the beamsplitter interaction, the same cases can be

distinguished. For large �/g1, the cavity can be eliminated and the nuclear spins are

mapped directly to the exponential output mode of a cavity decaying with an e↵ective

rate g21/�. For smaller �, the output mode reflects the damped free evolution of the

nuclei–cavity system, which in this case includes oscillations (excitations are mapped

back and forth between nuclei and cavity at rate g1) in absolute value and phase.
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a) b)

Figure 2.10: The output mode in one dimension: Plot of z0 vs position x, where x = 0

is the position of the cavity a) Write-in: The squeezing interaction is ”on” for 3µs and

then switched o↵. b) Read-out: For � � g2 the excitations do not have fully decayed to

the output mode after t = 12µs. The read-out fidelity given by Eqn. (2.42) corresponds

to the probability that the excitations in the nuclear spins have decayed into the output

mode of the cavity. For �/g1 = 1 and �/g1 = 10 the read-out fidelity is Fread > 0.98

after t ⇡ 16 � 20µs. For �/g1 = 100 however, it takes ⇡ 200µs to achieve Fread > 0.98.

Note that for input and output modes to have similar shapes (e.g. for a network), it is

best to consider the case where �/g1 � 1.)

2.4 Linear Optics with the nuclear spin mode

The interaction we have described can not only be used to map states to the nuclear

spin ensemble but also for state generation and transformation. In fact, from a

nuclear spin mode in the vacuum state, all single mode Gaussian states can be prepared.

To see this, we have to show how any desired 2⇥2 correlation matrix � and displacement

d 2 can be obtained.

As we remarked already when discussing the write-in via teleportation, the beam-

splitter Hamiltonian Hbs can be used to realize displacements of the nuclear mode.

Driving the cavity mode with a strong laser to a coherent state with amplitude ↵ (and

the same phase as d) and switching on Hbs for a time t = |�|/(g1|↵|) provides in the

limit of large ↵ a good approximation to the displacement operation by � [88].

Concerning the CM, we use that every CM of a pure Gaussian state is of the form

� = ODOT , where D is a positive diagonal matrix with determinant one and O is

orthogonal and symplectic. O can be seen as the e↵ect of time evolution under some
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quadratic Hamiltonian acting on the single-mode squeezed state with CM D. In the

single mode case, any O represents a phase shift and is obtained by letting the nuclear

system evolve “freely” (without laser coupling, i.e. a polarized electron interacts o↵-

resonantly with the nuclei) according to the Hamiltonian / b†b for some time. Thus

the state with CM � can be generated in a two-step process: first generate the state

with � = D, then apply O.

While in the preceding paragraphs we could show how to realize operations that can

act on any input state, no such possibility seems to exist for squeezing in our context.

Instead we show how to obtain the pure single mode squeezed state with CM D from

the vacuum state. Letting Hsq act on the vacuum results in a two-mode squeezed

state with squeezing parameter r2. Performing a homodyne measurement (of the X

quadrature) on the optical part of this state projects the nuclear system into a squeezed

state with squeezing r1 = ln[cosh(2r2)]/2 [99], thus given enough two-mode squeezing,

any CM D can be produced.

One can go even further and simulate evolution according to any quadratic Hamil-

tonian on the nuclear-optical system: According to [100], the Hamiltonian given by

Eqn. (2.10) with the interaction part g1ab† + g2a†b† + h.c. enables simulation of any

Hamiltonian quadratic in a, b, a†, b†.

2.5 Remarks on internal nuclear dynamics and approxi-

mations

With regard to the realization of the proposed protocol and the applicability of the

approximations leading to the Hamiltonians given by Eqns. (2.12) and (2.13) there

are three aspects to consider: spontaneous emission of the quantum dot, the internal

nuclear dynamics and errors in the bosonic description. We assume the strong coupling

limit of cavity-QED and neglect spontaneous emission of the quantum dot. The other

two aspects will be studied in the following. Note that the results on the internal

nuclear dynamics are corroborated by independent work of Kurucz et al. [101]. They

introduce the bosonic description to analyze the performance of a nuclear spin quantum
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memory and show that the performance of the memory is enhanced due to a detuning

between excitations in the mode b versus those in other modes bk 6=0 and that secular

dipolar terms do not a↵ect the memory.

2.5.1 Internal nuclear dynamics

Up to now, we have focused exclusively on the hyperfine interaction and neglected “in-

ternal” nuclear dynamics, dominated by dipolar and quadrupolar interactions. More-

over, the hyperfine coupling leads to a dipolar interaction between nuclei mediated by

the electron. We study the dipolar interaction between nuclear spins which is signif-

icantly weaker than gn, g1 and g2: the energy scale for dipolar interaction between

two nuclei has been estimated ⇠ 10�5µeV for GaAs [80]. However, since for 104 � 106

nuclei there are many of these terms, they might play a role at the 10�50µs time scales

considered.

Dipolar interaction

The Hamiltonian of the direct dipolar interaction between N nuclei is given by [102]

Hdd = �µ0

4⇡

1

2

NX

i=1

NX

j 6=i=1

µiµj

IiIj

1

r3ij

 
3(Iirij)(Ijrij)

r2ij
� IiIj

!
, (2.42)

where rij is the vector connecting spins i and j and µi = (µi/Ii)Ii is the magnetic

moment of the nuclear spin operator Ii. Hdd can be written as

Hdd =
PN

i=1

PN
j 6=i=1 �̃ij [AijIzi Izj + BijI

+
i I�j + (CijI

+
i I+j + DijIzi I�j + h.c.)] (2.43)

where Aij = 1 � 3 cos2 ✓ij , Bij = �1
2(1 � 3 cos2 ✓ij), Cij = �3

4 sin2 ✓ije�2i�
ij , Dij =

�3
2 sin ✓ij cos ✓ijei�ij and �̃ij = µ0µiµj/4⇡r3ij . In GaAs the nearest-neighbor dipolar

interaction strength is around �̃ = 10�5µeV [80]. We want to calculate the strength of

the dipolar interaction between the main bosonic mode (that is defined as the mode

that is coupled to the electron spin) and other bath modes (here, we no longer assume

homogeneous coupling of the nuclei to the electron). We therefore write the Hamil-

tonian in terms of collective nuclear spin operators, use, in a next step, the bosonic

approximation and finally separate the relevant terms (the ones which couple the main
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bosonic mode to bath modes) and calculate the coupling strength of the main mode to

the bath modes.

For highly polarized nuclear spins, the first term of Hdd can be written as

NX

i=1

NX

j 6=i=1

�̃ijAijI
z
i Izj ⇡ 1

2

NX

i=1

NX

j 6=i=1

�̃ijAij

✓
1

2
� I+i I�i � I+j I�j

◆
,

where we write Izi = �1/2 + I+i I�i and neglect the second order term I+i I�i I+j I�j

which requires two excitations to be non-zero; thus in the highly polarized case the

contribution from these terms is by a factor of p = (1 � P )/2 smaller than the terms

we keep. The last term is (for spin 1/2-nuclei)

NX

i=1

NX

j 6=i=1

�̃ijDijI
z
i I�j ⇡ �1

2

NX

i=1

NX

j 6=i=1

�̃ijDijI
�
j ,

neglecting higher order terms. In extension to the definition of the collective operators

A± in Section 2.2, which we now label A±
0 , we introduce a complete set of collective

operators A�
k =

P
i ↵

(k)
i I�i with k = 0, .., N � 1 with an orthogonal set of coe�cients

↵(k)
i for which

P
i ↵

k
i = 1 for every collective mode k. Defining a unitary matrix U with

columns ↵(k) =

✓
1/
qP

i ↵
(k)2
i

◆⇣
↵(k)
1 , ..,↵(k)

N

⌘T
we can write

(I�1 , .., I�N )T = UA� (2.44)

where A� = diag

 
1qP
i

↵
(0)
i

2
, .., 1qP

i

↵
(N�1)
i

2

!
(A�

0 , .., A�
N�1)

T . Writing Hdd in terms

of the collective operators A�,+
k and neglecting higher order terms,

Hdd = A+U †SUA� + (A�U †MUA� � 1

2
DUA� + h.c.). (2.45)

Here, Mij = �̃ijCij for i 6= j, Mij = 0 for i = j, Sij = �̃ijBij for i 6= j and Sii =
PN

l=1 �̃ilAil for i = j. D is a vector with entries Dj =
PN

i 6=j=1 �̃ijDij . Next, we

write Hdd in terms of bosonic operators, using the bosonic approximation introduced in

Section 2.2, and map A� �! b = (b0, .., bN�1)
T . This allows to separate relevant terms

of Hdd, which couple the main bosonic mode b0 to other (bath) modes bk. Isolating the

terms containing b0, we find

b0
hP

k 6=0(U
†2MU)0kbk + (U †SU)0kb

†
k � 1

2DkU0k

i
+ h.c.

+(U †SU)00b
†
0b0 + (U †2MU)00b0b0 + h.c., (2.46)
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where the notation (U †SU)0l denotes the element (0, l) of the matrix U †SU . The first

term describes the passive coupling of the main mode b0 to other modes bk and acquires

a factor of two as the terms that describe the active coupling in Eqn. (2.46) can be writ-

ten bl(U †MU)lkbk + bk(U †MU)klbl = bl(U †2MU)lkbk as (U †MU)kl = (U †MU)lk: the

entries of U are real so that (U †)T = U and M = MT , i.e., Mij = ��̃ij 34 sin2 ✓ije�2i�
ij =

Mji as �ji = ⇡ + �ij . The second term in Eqn. (2.46) describes the passive coupling

of b0 to the modes b†k and the third term displaces the main mode. The last two

terms describe a constant energy shift (⇠ b†0b0) and a squeezing term (⇠ b0b0 + h.c.),

respectively.

The terms that couple the main mode b0 to bath modes can be written as

b0
⇣P

k 6=0(U
†2MU)0kbk + (U †SU)0kb

†
k � 1

2DkU0k

⌘
+ h.c.

= b0
⇣
c1b̃1 + c2b̃

†
2 � 1

2

P
k 6=0 DkU0k

⌘
+ h.c. (2.47)

where the linear combinations of bosonic modes bk, b†k can be transformed to bosonic

modes b̃1 and b̃†2. The coupling strength of b0 to the first term in Eqn. (2.47) is given

by

[c1b̃1, (c1b̃1)
†] = |c1|2 =

P
k 6=0 |(U †2MU)0k|2

= (U †4MM †U)00 � |(U †2MU)00|2 = (�M0)2, (2.48)

and |c2|2 = (�S0)2 for the second term. �M0 and �S0 depend only on the electron

wave function and the lattice geometry. To numerically calculate �M0 and �S0 and

the e↵ect of the last two terms in Eqn. (2.46), we consider the case where the nuclei lie

in a 2-dimensional square plane with length R =
p

Nr0 of each side on a grid with equal

spacings r0 (=0.24nm in GaAs [80]) [see Fig. 2.11a)]. Consequently, ✓ij = ⇡/2, which

simplifies many expressions in Hdd. These assumptions can be made as the height of

the QD is small compared to its diameter, so that the variation of ✓ that is dependent

of the height of the QD is small, ✓ij ⇡ ⇡/2.

To illustrate our results we consider two simple choices for the electron wavefunction

such that ↵(0)
l = 1P

l

f1/2(rl)
f1/2(rl) with rl = (xl, yl),

f1(rl) = cos
⇣⇡

2

xl

R

⌘2
· cos

⇣⇡
2

yl
R

⌘2
, (2.49)
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a) b) c)

Figure 2.11: a) Cosine-shaped wavefunction of the electron on a 2-dimensional square

grid with the nuclear spins located at the vertex points, b) plot of the ratios d1 = �̃(�M0)
g2

and d2 = �̃(�S0)
g2

for a cosine and a Gaussian shaped wave function. For N = 104, both

ratios d1 and d2 are on the order of 10�4, together with c), we see that the dipolar

interaction is negligible. c) plot of the ratios d3 = �̃(U†SU)00
g2

and d4 = �̃(U†2MU)00
g2

for a

cosine and a Gaussian shaped wave function. For N = 104, d3 is on the order of 10�2

and d4 is zero due to the symmetry of the electron wavefunction.

and

f2(rl) = exp (�
p

2r2l /R2). (2.50)

To show that the direct dipolar interaction is a weak e↵ect compared to the optical-

nuclear coupling g, we calculate the ratios

d1 = �̃(�M0)
g2

= �̃(�M0)
⌦
c

⌦
l

g

n

8�0
T�

!̃

e

=
8�0

T�
!̃
e

⌦
c

⌦
l

�̃
A

(�M0)qP
N

i=1 ↵
(0)2
i

. (2.51)

and d2 = �̃�S0
g2

. For the parameters used for the simulation in Section 2.2.1,
8�0

T�
!̃
e

⌦
c

⌦
l

�̃
A ⇡

4 ·10�5 with �̃ for GaAs [80]. A plot of d1 and d2 is shown in Fig. 2.11b). d1 and d2 are

both on the order of 10�4 � 10�5, for N > 1000 nuclear spins and increase slowly with

N . The last two terms in Eqn. (2.46), (U †SU)00b
†
0b0 and (U †2MU)00b0b0 are small and

zero, respectively, as can be seen in Fig. 2.11c): The ratio of d3 = �̃(U†SU)00
g2

is on the

order of 10�3 � 10�2 for N > 1000 nuclear spins and the ratio d4 = �̃(U†2MU)00
g2

is zero

due to the symmetry of the electron wavefunction in this setting. Shifting the electron

wavefunction such that it is not longer symmetric with respect to the coordinate origin,

d4 is on the order of 10�4. We assume that the nuclei lie in a plane, so there is no
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displacement of b0 as Dij = 0 for ✓ij = ⇡
2 . Therefore, we have shown, that direct dipolar

coupling is an e↵ect that does not a↵ect our protocol.

The hyperfine coupling between electron spin and nuclear spins leads to a mediated

dipolar interaction between nuclear spins [103]. In the bosonic description, the electron

couples solely to the b0 mode, thus, the mediated coupling leads only to an energy shift

g2n
4!̃e

b†0b0 (2.52)

that depends on the Zeeman splitting !̃e and the number of nuclear excitations. This

was already present in Eqn. (2.10) and is not a↵ecting the protocol, in fact it can help

as Kurucz et al. [104] showed.

For spin-1/2 systems, as considered here, the quadrupolar interaction is not present.

For large spin I (e.g. 3/2 or 9/2) nuclei present in GaAs, there is a significant quadrupo-

lar term. Depending on the strain, up to gq . 10�2µeV have been measured [38].

Therefore, for I > 1/2, dots with small strain have to be considered. The quadrupolar

interaction [102] can be treated on a similar footing as the dipolar coupling.

2.5.2 Errors in the bosonic picture

We have relied on a simple bosonic description of the collective nuclear excitations

and neglected all corrections to that simplified picture. For homogeneous coupling

(↵j =const) this is the well-known Holstein-Primako↵ approximation [82] and for sys-

tems cooled to a dark state [105] at moderate polarization (hAzi on the order of �1/2)

spin, replacing the collective spin operators by bosonic operators is accurate to o(1/N).

The generic inhomogeneous case is discussed in detail in [84]. In that case, the Hamil-

tonian given by Eqn. (2.3) can be seen as a zeroth order approximation in a small

parameter ⇠ q(1 � P ), where q � 1/2 and q = 1/2 for a homogeneous wave function.

The first-order correction analyzed in [84] contains two contributions: (i) a polariza-

tion dependent scaling of the coupling-strength gn which has negligible e↵ect on the

adiabatic transfer we consider and (ii) an e↵ective coupling of b to bath modes due to

the inhomogeneity of the Az term. This correction can be computed similarly to the

one in the preceding subsections by rewriting Az in terms of bosonic operators. The
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coupling strength of the leading term is found to be ⇠ A/N = gn/
p

N and is thus much

weaker than g1/2. Since g1/2 also characterizes the energy splitting between di↵erent

excitation-manifolds in the Jaynes-Cummings system, this term is further suppressed

by energy considerations.

2.6 Summary and Conclusions

We have shown how to realize a quantum interface between the polarized nuclear spin

ensemble in a singly charged quantum dot and a traveling optical field. The coupling

is mediated by the electron spin and the mode of a high-Q optical cavity to which the

quantum dot is strongly coupled. Our proposal exploits the strong hyperfine and cavity

coupling of the electron to eliminate the electronic degree of freedom and obtain an

e↵ective coupling between cavity and nuclei. We have presented an interface between

light and nuclear spins which is robust to cavity decay. Read-out is achieved via cavity

decay while write-in is based on the generation of two-mode squeezed states of nuclei

and output field and teleportation. For typical values of hyperfine interaction and cavity

lifetimes, several ebit of entanglement can be generated before internal nuclear dynamics

becomes non-negligible. All proposed schemes take advantage of the bosonic character

of the nuclear system at high polarization, which implies that all the relevant dynamics

of nuclei, cavity and output field is described by quadratic interactions. This allows

the analytical solution of the dynamics and a detailed analysis of the entanglement

generated. We show that apart from mapping a light state to the nuclei, the couplings

described enable the preparation of arbitrary Gaussian states of the nuclear mode.

For highly polarized nuclear spin systems the bosonic description provides a very

convenient framework for the discussion of (dipolar and quadrupolar) “internal” nuclear

dynamics. It is seen that these processes do not appreciably a↵ect the performance of

the interface.

Our results give further evidence that nuclear spins in quantum dots can be a

useful system for quantum information processing. In view of the recent impressive

experimental progress in both dynamical nuclear polarization of quantum dots and

quantum dot cavity-QED, their use for QIP protocols may not be too far o↵.
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2.A System: Toy model

Here, we present a simplified model of the system that also allows for the realization of

a quantum interface as discussed in Section 2.3. Note that the selection rules in QDs

often make it necessary to consider more complicated level schemes than the simplified

⇤-system described by the toy model. One example for a more complicated level scheme

is the setup discussed in Section 2.2. The toy model is a simplified model for the reader

who is interested more in the quantum interface protocol in general than in the specific

physical system. In Section 2.B we present a physical implementation of the toy model,

that is, however, more di�cult to realize experimentally than the scheme discussed in

Section 2.2. Note, that the Hamiltonians describing the e↵ective couplings between

light and nuclear spins are the same for all three setups in Section 2.2 and in the

Appendixes 2.A and 2.B. Therefore the quantum interface protocol applies to all three

setups.

Here, we consider a self-assembled QD charged with a single conduction-band elec-

tron, whose spin-states |"i , |#i are split in a magnetic field. For clarity we consider a

simplified model, in which both electronic states are coupled by electric dipole transi-

tions to the same charged exciton (trion) state |Xi in a ⇤-configuration, see Fig. 2.12.

We assume that the QD is strongly coupled to a high-Q nano-cavity [76]. The two

transitions are, respectively, o↵-resonantly driven by the cavity mode (frequency !c)

and a laser of frequency !l, see Fig. 2.12, described by the Hamiltonian

Hopt =

✓
⌦c

2
a† |#ihX| +

⌦l

2
e+i!

l

t |"ihX| + h.c.

◆
+ !c a†a + !X |XihX| + !zS

z, (2.53)

where ~ = 1, ⌦l,⌦c are the Rabi frequencies of laser and cavity fields, a†, a are the

cavity photons, !X denotes the trion energy, !z the Zeeman splitting of the electronic

states and Sz = 1/2(|"ih"| � |#ih#|).

As explained in detail in Section 2.2 the electron spin in a QD has a strong hyperfine

interaction with the lattice nuclear spins given by Eqn. (2.2). As previously discussed,

the highly polarized nuclear spins with homogeneous coupling to the electron spin can

be mapped to bosonic operators. The coupling of the electron spin to the collective

nuclear bosonic mode is described by Hhf given by Eqn. (2.3).
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b)a)

Figure 2.12: a) Singly charged QD coupled to high-Q optical cavity. b) Level scheme

of the QD. Optical and hyperfine transitions.

2.A.1 Coupling cavity and nuclear spins

The excitonic levels can again be eliminated (as explained in Section 2.2.1) to obtain an

e↵ective Hamiltonian that describes a direct coupling between nuclear spins and light.

This can be achieved if the couplings (the Rabi frequency of the laser/cavity, the hyper-

fine coupling, respectively) are much weaker than the detunings to the corresponding

transition:

�0 � ⌦l,⌦c

p
n, (2.54a)

p
�0 !̃z � ⌦l,⌦c

p
n, (2.54b)

!̃z � gn
p

m. (2.54c)

Here, �0 = !X�!l+!̃z/2 is the detuning, n is the number of cavity photons, and m the

number of nuclear excitations. Note that typically !̃z < �0 such that condition (2.54a)

becomes redundant. In addition to (2.54a-2.54c), we choose the adjustable parameters

such that all first order and second order processes described by H are o↵-resonant, but

the (third order) process in which a photon is scattered from the laser into the cavity

while a nuclear spin is flipped down (and its converse) is resonant. This leads to the

desired e↵ective interaction.

The starting point is the Hamiltonian H = Hopt + Hhf given by Eqns. (2.53) and

(2.2). In order to get a time-independent Hamiltonian, we go to a frame rotating with
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U † = exp [�i!lt(a†a + |XihX|)]:

H 0 =
⌦c

2
(a† |#ihX| + h.c.) +

⌦l

2
(|"ihX| + h.c.) + �a†a + !̃zS

z +
A

2
(A+S� + S+A�)

+ ASz�Az +� |XihX| , (2.55)

with detunings � = !X � !l and � = !c � !l.

Choosing the cavity and laser frequencies, !c and !l, far detuned from the exciton

transition and the splitting of the electronic states !̃z much larger than the hyperfine

coupling gn, such that conditions (2.54a-2.54c) are fulfilled, we can adiabatically elim-

inate the states |Xi, |#i. A detailed derivation of the adiabatic elimination can be

found in Appendix 2.C. This yields a Hamiltonian, that describes an e↵ective coupling

between light and nuclear spins

Hel =
⌦c⌦lA

8�0!̃z
(aA+ + h.c.) + !1a

†a + !2N�Az + Tnl, (2.56)

where the energy of the photons !1 = �� ⌦2
c

4�0 and the energy of the nuclear spin excita-

tions !2 = � A
2N � A2

4N !̃
z

. By Tnl we denote the nonlinear terms Tnl = A3

8!̃2
z

A+�AzA� +

⌦2
c

A

8�02 a†a�Az + A2

4!̃2
z

�a†aA+A� + ⌦2
c

�

4�02 a†a†aa, which are small (kTnlk ⌧ ⌦
c

⌦
l

A
8�0!̃

z

) in the

situation we consider (� ⌧ ⌦c, gn/!̃z ⇠ ⌦l/�0 ⌧ 1) and neglected in the following.

In the bosonic description of the nuclear spins that we introduced in Eqn. (2.3) the

Hamiltonian given by Eqn. (2.56) then reads

Hbs = g(ab† + h.c.) + !1a
†a + !2bb

†, (2.57)

with coupling strength g given by

g =
⌦c⌦lgn
8�0!̃z

. (2.58)

The energy of the nuclear spin excitations can now be written as !2 = �A
2 � g2

n

4!̃
z

. For

resonant exchange of excitations between the two systems, we choose !1 = !2. Then

Hbs describes a beamsplitter-like coupling of the modes a and b. Processes in which

absorption (or emission) of a cavity photon is accompanied by a nuclear spin flip are

resonant, and we have thus derived the desired e↵ective interaction between light and

nuclear spins. Since
p
⌦c⌦l/(�0!̃z) ⌧ 1 the e↵ective coupling g is typically 2�3 orders

of magnitude smaller than the hyperfine coupling gn.
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Figure 2.13: Evolution of the two-photon Fock state  20 under the full Hamiltonian H 0

(solid lines) and Hamiltonian Hbs (⇥, dashed and dotted lines), where the trion and

the electronic spin-up state have been eliminated.

To illustrate the validity of the adiabatic elimination and the approximations leading

to Eqn. (2.57), we have simulated the evolution of the two-photon Fock state  20 (the

first subscript denotes the number of photons, the second the number of nuclear spin

excitations) under the full Hamiltonian H 0 given by Eqn. (2.55) and compared it to

the evolution under the Hamiltonian Hbs given by Eqn. (2.57). We assume full nuclear

spin-down polarization and the validity of the bosonic description. In the simulation,

we choose ⌦l = ⌦c, ⌦l/� = 1/10, ⌦2
l /(�!̃z) = 1/100 and gn/!̃z = 1/50, such that

the conditions given by Eqns. (2.54a)-(2.54b) are fulfilled. Fig. 2.13 shows, that H 0 is

well approximated by Hbs, and that the nonlinear terms Tnl can be neglected. Almost

perfect Rabi-oscillations between the two-photon Fock state  20 and the state with two

nuclear spin excitations  02 can be seen in Fig. 2.13. For  01, the adiabatic elimination

is an even better approximation to the full Hamiltonian as the nonlinear terms Tnl and

the conditions (2.54a)-(2.54c) depend on the excitation number.

In the process leading to the beamsplitter coupling, a photon is scattered from the

cavity into the laser mode while a nuclear spin excitation is created (and vice versa).

If we interchange the role of laser and cavity field (i.e., the laser drives the |#i $ |Xi

transition and the cavity couples to |"i) then creation of a nuclear spin excitation is
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accompanied by scattering of a laser photon into the cavity, i.e. the e↵ective coupling

becomes a†b† + ab. Tuning the energies such that !1 = �!2, the driving laser now

facilitates the joint creation (or annihilation) of a spin excitation and a cavity photon,

realizing a two-mode squeezing e↵ective Hamiltonian

Hsq = g(a†b† + ab) + !1a
†a + !2bb

†. (2.59)

Here, the energy of the photons is !1 = �
⇣
1 + ⌦2

c

4�02

⌘
, the energy of the nuclear spin

excitations is !2 = � A
2N � g2

n

4!̃
z

, and the nonlinear terms are now given by Tnl =

g2
n

4!̃2
z

A
2N b†b†bb+ g2

n

4!2
z

�a†ab†b. As before, they are much smaller than g and can be neglected

for low excitation number. To be able to freely switch between Hbs and Hsq simply

by turning on and o↵ the appropriate lasers, both the “driven” and the empty mode

should be supported by the cavity.

2.B Physical implementation of the toy model

Here, we discuss a physical implementation of the toy model and its performance as

a quantum interface. Quantum dots generally have a richer level structure than the

⇤ scheme of the toy model depicted in Fig. 2.12. This and the applicable selection

rules imply that Hopt is not exactly realized. Here, we take this into account and

discuss a setting that allows to realize the desired coupling. In contrast to the physical

setup discussed in Section 2.2, the setup in the following requires a microwave field

to mix the states of the trion. The setup explained in Section 2.2 avoids the need of

an additional microwave field at the expense of additional couplings (which have to be

kept o↵-resonant) as explained in Section 2.2.

We now consider the two spin states |+i , |*i of the trion in addition to the two

electronic spin states. We focus on a setup where these states are Zeeman split by an

external magnetic field in growth/z-direction (Faraday geometry). The electronic state

|"i is coupled to |*i (with angular momentum +3/2) by �+ circularly polarized light

(and |#i to |+i with ��-polarized light). We can stimulate these transitions by a �+-

polarized cavity field and a ��-polarized classical laser field, respectively, but this will

not lead to a ⇤ scheme, see Fig. 2.14a. The cleanest way to obtain the desired coupling



50 2. A quantum interface between light and nuclear spins

a) b)

!c
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Figure 2.14: Level scheme of the QD a) Electronic and trion states split in an external

magnetic field in growth direction (Faraday geometry). They are coupled by a ��-

polarized laser and a �+-polarized cavity field with frequencies !l, !c, respectively. b)

Additional to the setting in a), a microwave field resonant with the splitting of the

trion states in the magnetic field (!* � !+ = !mw) mixes the trion states. Laser and

cavity couple both electronic states to the trion states |+i and |�i.

is to mix the trion states with a resonant microwave field. The electronic eigenstates

are unchanged (being far detuned from the microwave frequency) and are now both

coupled to the new trion eigenstates |�i = 1/
p

2(|*i � |+i) and |+i = 1/
p

2(|*i + |+i),

see Fig. 2.14b in a double ⇤ system.

The Hamiltonian of the system is now given by

H =
⌦c

2
a† |#ih*| +

⌦l

2
ei!l

t |"ih+| + ⌦mw ei!mw

t |+ih*| + h.c. + !c a†a + !* |*ih*| + !+ |+ih+|

+ !̃zS
z + Hhf, (2.60)

where !*,!+ = !X ± !zh/2 include the hole Zeeman splitting !zh = !mw and Hhf is

given by Eqn. (2.2). In a frame rotating with

U † = exp[�i(!mw + !l)t(|*ih*| + a†a) � i!lt |+ih+|)],

the Hamiltonian reads

H =
⌦c

2
p

2
(a† |#ih+| + a† |#ih�|) +

⌦l

2
p

2
(|"ih+| � |"ih�|) + �0a†a +�+ |+ih+| +�� |�ih�|

+ !̃zS
z + Hhf, (2.61)
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where �0 = !c � !l � !mw and �± = !+ � !l ± ⌦mw. We adiabatically eliminate |±i

and |"i as explained in Section 2.A.1 and Appendix 2.C. This yields

Hel = g0(aA+ + h.c.) + !0
1a

†a + !0
2NA�A+ + T 0

nl. (2.62)

This Hamiltonian is of exactly the same form as the Hamiltonian of our toy model given

by Eqn. (2.56). By replacing
⌦2

l

4� �! ⌦2
l

8

⇣
1

�+
+ 1

��

⌘
, and

⌦2
l

4�2 �! ⌦2
l

8

⇣
1

�2
+

+ 1
�2

�

⌘
in

the Hamiltonian given by Eqn. (2.62), !0
1, !

0
2, and T 0

nl correspond to !1, !2, and Tnl

in Eqn. (2.56). As before, the nonlinear terms T 0
nl are small and are neglected in

the following. Using the bosonic description, we then obtain again a beam splitter

Hamiltonian as given by Eqn. (2.57), where the coupling is now given by

g0 =
⌦c⌦lgn
16!̃z

✓
1

�+
� 1

��

◆
. (2.63)

Compared to Eqn. (2.58) the e↵ective coupling g is reduced by a factor �0(��1
+ ���1

� ),

i.e., ⇡ 2⌦mw/�0 for ⌦mw ⌧ �0. Now we want to estimate the strength of the coupling.

We choose the parameters as follows: we assume a hole g-factor gh = 2.2 and an electron

g-factor ge = 0.48; the number of nuclei N = 104, the hyperfine coupling constant

A = 100µeV , the laser and cavity Rabi frequency ⌦c = ⌦l = 5µeV , the detuning of

the trion � = 600µeV , the e↵ective Zeeman splitting !̃z = 50µeV and the microwave

Rabi frequency ⌦mw = 50µeV . With these parameters, a value of g0 ⇠ 5 · 10�5µeV is

obtained. This leads to times of ⇠ 10 microseconds for an operation of the interface

that will be discussed in Section 2.3.

To illustrate that Hel, in the bosonic description, which we denote by Hbs, provides

a good approximation to H and allows to implement a good quantum interface, we

consider a maximally entangled state
P

k |kiR |kic of cavity and some reference system

R and then use the interface to map the state of the cavity to the nuclei. If a maximally

entangled state of R and nuclei is obtained, it shows that the interface is perfect for

the whole subspace considered. The fidelity of the state R ⌦ U(t)
P2

k=1 |kiR |kic |0in
with the maximally entangled state

P
k |kiR |0ic |kin fully quantifies the quality of the

interface. In Fig. 2.15 we plot this fidelity for the evolutions U(t) generated by the

two Hamiltonians H and Hel of Eqns. (2.62) and (2.61) to show that a high-fidelity

mapping is possible with the chosen parameters and that the simple Hamiltonian Hel
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Figure 2.15: Performance of the quantum interface. One half of the maximally entan-

gled state
P2

k=1 |kiR |kic (subscript c indicates the cavity) is sent through the interface.

The fidelity of the reduced state of R and nuclei with the maximally entangled states
P2

k=1 |kiR |kin and
P2

k=1(�1)k |kiR |kin is plotted. Solid lines refer to the evolution

under Hbs, dashed lines to H.

well describes the relevant dynamics. Since U(⇡/g)aU(⇡/g)† = ib some care must be

taken concerning the phases of the number state basis vectors in the nuclear spin mode

(|kic 7! (i)k |kin) and di↵erent phases at t = 3⇡/g. For the numerical simulation, we

chose the parameters as follows: we assume a hole g-factor gh = 2.2 and an electron

g-factor ge = 0.48; the number of nuclei N = 104, the hyperfine coupling constant

A = 100µeV , the laser and cavity Rabi frequency ⌦c = ⌦l = 5µeV , the detuning of

the trion � = 600µeV , the e↵ective Zeeman splitting !̃z = 50µeV and the microwave

Rabi frequency ⌦mw = 50µeV . With these parameters, a value of g ⇠ 5 · 10�5µeV is

obtained, leading to times of ⇠ 10 microseconds for an interface operation.

2.C Adiabatic elimination

In this Section, we give a detailed derivation of the adiabatic elimination that yields

the Hamiltonian that describes the e↵ective interaction between light and nuclei, given

by Eqn. (2.56). Here, we discuss the adiabatic elimination for the toy model discussed

in Appendix 2.A as it involves less terms. The adiabatic elimination for the system
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discussed in Section 2.2 follows identical lines.

The starting point is the Hamiltonian given by Eqn. (2.55). Choosing the cavity and

laser frequencies, !c and !l, far detuned from the exciton transition and the splitting of

the electronic states !̃z much larger than the hyperfine coupling gn, such that conditions

(2.54a-2.54c) are fulfilled, we can adiabatically eliminate the states |Xi, |#i: denote by

Q = |XihX| + |"ih"| and P ⌘ � Q = |#ih#| the projectors on the eliminated subspace

and its complement, respectively. Then the Schrödinger equation in the two subspaces

reads

EP | i = PH 0(P + Q) | i , (2.64a)

EQ | i = QH 0(P + Q) | i . (2.64b)

Our goal is to derive an approximation of the Hamiltonian in the P-subspace which we

denote by Hel. From Eqn. (2.64b) we obtain

Q | i =
1

E � QH 0QQH 0P | i . (2.65)

Inserting Eqn. (2.65) into (2.64a), we arrive at the (still exact) equation

EP | i =

✓
PH 0P + PH 0Q 1

E � QH 0QQH 0P
◆
P | i , (2.66)

for the wavefunction in the electron spin-down subspace, with the unknown E appearing

both on the right hand side (rhs) and the left hand side (lhs) of Eqn. (2.66).

Now we use that (i) the range of (unperturbed) energies in the P-subspace is small

compared to the energy di↵erence between the P- and Q-subspaces and (ii) the coupling

term PH 0Q is small compared to this di↵erence, i.e.,

k 1

E � QH 0QQH 0P k⌧ 1. (2.67)

Then the second part on the rhs of Eqn. (2.66) is small and E can be approximated

by E0, an eigenvalue of PH 0P = �
�
!̃
z

2 + A
2 �A

z � �a†a
�
|#ih#|, which is here given by

E0 ⇡ �!̃z/2. Since for our purposes the energy of the nuclear excitations [⇠ g2n/(4!̃z)]

and cavity photons (�) are chosen equal and are ⌧ !̃z, and kA
2 �A

zk is of order A
2N

and ⌧ !̃z, condition (i) is fulfilled. Condition (ii) given by Eqn. (2.67) is satisfied
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if the conditions of Ineq. (2.54a) hold. This yields the e↵ective Hamiltonian in the

electron-spin down subspace:

Hel =

✓
PH 0P � PH 0Q 1

!̃z + QH 0QQH 0P
◆
P. (2.68)

To simplify the second term in Hel (the denominator is an operator containing a, a†, A�, A+),

we split it into two parts: !̃z + QH 0Q = B1 + B2, where

B1 = !̃z |"ih"| + (�+ !̃z/2) |XihX| (2.69)

contains the energetically large part and is easy to invert, and

B2 =
⌦l

2
(|"ihX| + h.c.) + �a†aQ +

A

2
A+A� |"ih"| . (2.70)

contains the Rabi frequency of the laser field ⌦l that couples the spin-up state and the

trion and the energies of photons and nuclear spins. From the conditions in Eqn. (2.54a)

follows that the cavity field is weak and the energies of photons and nuclear spins are

small compared to the energy scale given by �0 and !̃z, therefore

k 1p
B1

B2
1p
B1

k⌧ 1, (2.71)

and we can approximate the denominator in Eqn. (2.66) by

1

B1 + B2
⇡ 1

B1
� 1

B1
B2

1

B1
. (2.72)

Thus, inserting Eqn. (2.72) in Eqn. (2.66) and assuming the conditions given by Eqns. (2.54a)

to be fulfilled, we can write the Hamiltonian in the electron spin-down subspace as

Hel = PH 0P + PH 0Q
✓

1

B1
� 1

B1
B2

1

B1

◆
QH 0P, (2.73)

with PH 0Q = ⌦
c

2 a† |#ihX| + AA+ |#ih"|, which yields

Hel =
⌦c⌦lA

8�0!̃z
(aA+ + h.c.) + !1a

†a + !2NA+A� + Tnl, (2.74)

where the energy of the photons !1 = �� ⌦2
c

4�0 , the energy of the nuclear spin excitations

!2 = � A
2N � A2

4N !̃
z

. By Tnl we denote the nonlinear terms Tnl = A3

8!̃2
z

A+A+A�A� +
⇣

⌦2
c

A

8�02 + A2

4!̃2
z

�
⌘

a†aA+A�+ ⌦2
c

�

4�02 a†a†aa, which are small (kTnlk ⌧ ⌦
c

⌦
l

A
8�0!̃

z

) in the situation

we consider (� ⌧ ⌦c, gn/!̃z ⇠ ⌦l/�0 ⌧ 1) and neglected in the following.
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2.D Bosonic description of nuclear spins

The description of collective spin excitations in a large, highly polarized system of N

spins �j±, z as bosonic excitations out of the vacuum states goes back at least to the

introduction of the Holstein-Primako↵ transformation [82].

If the collective spin operators involved are A±,z ⌘ J±,z =
P

j �
±,z
j and the system

is initialized in the symmetric fully polarized state |## . . . #i then the symmetric space

spanned by the Dicke states [106] |J = N/2, mi is never left under the action of A±,z and

up to a n-dependent correction the matrix elements of J� in the basis |N/2, n � N/2i

coincide with the matrix elements of the bosonic annihilation operator b in the Fock

basis |ni. In fact we have

hJ, n � J | J� ��J, n0 � J
↵

=
p

2J

r
1 � n � 1

2J

p
n�n,n0�1. (2.75)

As long as n ⌧ 2J (in the whole subspace significantly populated throughout the

evolution) the factor
P

n

p
1 � n/(2J)P|J,n�Ji ⇡ and the association

J+ !
p

2Jb (2.76a)

|J, n � Ji ! |ni (2.76b)

Jz ! �J + b†b. (2.76c)

is accurate to o(nmax/(2J)). To obtain a more accurate description, we can even express

the factor
P

n

q
1 � n�1

2J in Eqn. (2.75) in bosonic terms, i.e., as
p

1 � b†b/(2J) leading

to an exact mapping between the spin and bosonic operators.

The intuition we are following is that this association still is useful if we are dealing

with (i) not fully polarized systems (i.e., 2J < N) and (ii) the collective spin operators

appearing in the dynamics are inhomogeneous, i.e. A±,z =
P

j ↵j�
±,z
j .

Let us first discuss the two issues separately. If the system is homogeneous and

J < N/2 but known, e.g., by measuring Jz and J2, then by Eqn. (2.75) compared

to the fully polarized case only the parameter 2J has to be adapted and the bosonic

description is still good as long as nmax ⌧ 2J .

If J is not precisely known, we get an inhomogeneous broadening of the coupling

constants appearing in front of A± [due to the scaling factor
p

2J in Eqn. (2.76a)] and
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of the constant in Eqn. (2.76c).

If A±,z are inhomogeneous, the three operators no longer form a closed algebra and

the dynamics cannot be restricted to the symmetric subspace even if starting from the

fully polarized state. However, it is still possible to associate A� to an annihilation

operator A� ! (
P

j ↵
2
j )

1/2(1 + f)b where the correction factor 1 + f is close to one

for highly polarized systems (kfk ⇠ 1 � P ) and depends on the excitation number not

only of the mode b but also of other bosonic modes, associated with collective spin

operators di↵erent from A±. These can be introduced, e.g., by choosing a complete

orthonormal set of coupling vectors {~↵(k)} with ↵(0) / ~↵ and defining a complete set

{A±
k =

P
j ↵

(k)
j �±j , k = 0, . . . , N �1} of collective spin operators. We refer to the modes

bk 6=0 as “bath modes”.

Generalizing the single-mode case discussed before, an exact mapping A�
k ! (1 +

fk)bk and Az ! �1
2 + 1

N

P
k b†kbk + Cz, with operators fk, Cz describing corrections to

the ideal case can be obtained. It was shown in [84] that the corrections fk, Cz are

of order 1 � P for high polarization. Thus the mapping used in our analysis of the

quantum interface is correct to zeroth order in 1 � P .

Corrections to that description can be obtained by including the corrections 1 � fk

and Cz. The analysis is simplified by the fact that coupling between the mode b and

the bath modes is weak (first order in the small parameter 1�P ) and we are interested

only in the mode b. Thus by the replacements [84]

A� ! (
X

↵2
j )

1/2(1 � f)b, (2.77a)

A�
k ! bk, (2.77b)

Az ! �1

2
� 1

N

N�1X

k=0

b†kbk + Cz, (2.77c)

with quadratic hermitian operators f =
P

kk0 F̃kk0b
†
kbk0 and Cz =

P
k,k0 Ckk0b

†
kbk we

obtain a first order description of the dynamics of the mode b (and the electron and

photons coupled to it). Here C = Udiag(↵j � 1/N)U † and F =
⇣P

j ↵
2
j

⌘
Udiag(↵2

j )U
†

and and U transforms from the canonical basis to
�
~↵(k)

 
. The matrix F̃ is obtained

from F by multiplying F00 by 1/2 and Fk0, F0k by 2/3. The operators f, D have been

chosen such that the commutation relations of A± are preserved to first order. And



2.E Gaussian states and operations 57

while A±
k , k > 0 are not as accurately preserved, this a↵ects the dynamics of A±,z only

to second order [84]. From Eqn. (2.56) we see that there are three main e↵ects of the

corrections: (i) inhomogeneous broadening of !̃z, gn (and consequently !2 and g) due

to the finite variance in P ; (ii) inhomogeneous broadening of g due to the variance of

the correction factor 1 � f ; and (iii) losses of excitations from the b mode to baths

modes due to inhomogeneity.

Since !̃z � gn, the broadening due to the variance of the Overhauser field is ⌧ !̃z

and thus has only a small e↵ect. Similarly, the broadening of g a↵ects the form of

the output mode z(0, x, t) [see Eqn. (2.36)], but since it appears there only via the

parameter ⌫ =
p

(�/4)2 ± g2 the e↵ect is negligible since g ⌧ �. However, the e↵ective

energy of the nuclear excitations, !2 = g2n/(4!̃z), can be more strongly a↵ected: e.g., a

standard deviation of 10% in P translates to a 10% variation in !2. It must be assured

that this variation is small compared to g so that the resonance condition is maintained.

Concerning leakage, the strongest term is the one arising from Az and it is not

necessarily small compared to g. However, as was pointed out in [101] the mode b

is detuned from the others due to the “AC Stark shift” arising from the o↵-resonant

interaction with the electron [the term ⇠ A2/(4!̃z)A+A�]. As long as this energy shift

is large compared to leakage, losses are suppressed and the mode b is only coupled

dispersively to the bath (via the inhomogeneous broadening). To work in that regime,

!̃z must not be too large, i.e., external and Overhauser field should partially compensate

each other while still keeping ⌦l ⌧
p
�0!̃z.

2.E Gaussian states and operations

Gaussian states and operations play a central role in quantum information with con-

tinuous variable systems [107]. To make this work self-contained we briefly summarize

here the main properties of Gaussian states and operations with particular regard to

their entanglement.

Gaussian states are a family of states occurring very frequently in quantum optics,

e.g., in the form of coherent, squeezed, and thermal states. Despite being defined on an

infinite dimensional Hilbert space [F+( 2N ), the symmetric Fock space over 2N ] they
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are characterized by a finite number of real parameters, namely the first and second

moments of N pairs of canonically conjugate observables (Q1, P1, . . . , QN , PN ) ⌘ ~R.

One way to define them is that their characteristic function, i.e., the expectation

values �(⇠) = tr(W⇠⇢) of the displacement operators W⇠ = exp(i⇠T ~R), ⇠ 2 2N is a

Gaussian function [108]:

�(⇢) = exp(�i⇠Td � 1/4⇠T�⇠). (2.78)

The displacement vector d 2 2N and the 2N ⇥ 2N real positive covariance matrix

(CM) � are given by the expectations and (co)variances of the Rk:

dk = tr[⇢Rk], (2.79)

�kl = hRiRj + RjRii � 2hRiihRji. (2.80)

All d 2 2N are admissible displacement vectors and any real positive matrix � is a

valid CM if it satisfies � � i�N when the symplectic matrix �N is

�N = �N
l=1�1 with �1 =

0

@ 0 �1

1 0

1

A . (2.81)

The last condition summarizes all the uncertainty relations for the canonical operators

Rj . These operators are related to the creation and annihilation operators a†j , aj by

the relations Qj = (aj + a†j)/
p

2 and Pj = �i(aj � a†j)/
p

2.

An example for a one-mode Gaussian state is a coherent state |↵i, with covariance

matrix � = and displacement d = (Re|↵|, Im|↵|)/
p

2.

Entanglement: All information about the entanglement properties of Gaussian

states is encoded in the CM. Given a CM, there are e�cient criteria to decide whether

a Gaussian state is entangled or not.

To apply these criteria, it is useful to write the CM of a bipartite N ⇥ M Gaussian

states in the following form,

� =

0

@ A C

CT B

1

A , (2.82)

where the 2N ⇥2N (2M ⇥2M) matrix A (B) refers to the covariances of the quadrature

operators associated with the first (second) system and C contains the covariances
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between the two systems. A (B) are the CM of the reduced state in the first (second)

system only.

In the case of a two-mode system the criteria [109, 110] are necessary and su�cient

for separability: a state with CM � is entangled if and only if det �+1�det A�det B+

2 det C 6� 0. In this case, entanglement is necessarily accompanied by a non-positive

partial transpose (npt) [111]. For more modes, entangled states with positive partial

transpose exist [112] and more general criteria to decide entanglement have to be used

[113, 114].

For pure states, the analysis of entanglement properties becomes particularly easy

since all such states can be transformed to a simple standard form, namely a collection of

two-mode squeezed states (TMSS) and vacuum states, by local unitaries [115], hence the

entanglement of such a state is fully characterized by the vector of two-mode squeezing

parameters. This also shows that for a 1 ⇥ M system in a pure state one can always

identify a single mode such that only it (and not the M � 1 other modes) is entangled

with the first system.

For many Gaussian states it is also possible to make quantitative statements about

the entanglement, i.e. to compute certain entanglement measures. For pure N ⇥ M

states, the entropy of entanglement can be computed from the symplectic eigenvalues

of the reduced CM A (or, equivalently, B). These are given by the modulus of the

eigenvalues of �NA [92]. All symplectic eigenvalues � � 1 correspond to a TMSS with

squeezing parameter acosh(�)/2 in the standard form of the state at hand and con-

tributes �2 log2 �
2 � (�� 1)2 log2(�

2 � 1) to the entanglement entropy of the system.

For mixed states, it is possible to compute the negativity [92] for any N ⇥ M system

from the symplectic eigenvalues of the CM of the partially transposed state (which is

related to the CM obtained by replacing all momenta Pj in the second system by �Pj).

Every symplectic eigenvalue � < 1 contributes � log2 � to the negativity.

For 1⇥1 Gaussian states with det A = det B (so-called symmetric states), the entangle-

ment of formation (EoF) can be computed [116] and for more general states a Gaussian

version of EoF is available [91]. Even if the states are not certain to be Gaussian,

several of the Gaussian quantities can serve as lower bounds for the actual amount of



60 2. A quantum interface between light and nuclear spins

entanglement [117].

Gaussian operations: Operations that preserve the Gaussian character of the states

they act on are called Gaussian operations [99]. Like the Gaussian states they are

only a small family (in the set of all operations) but play a prominent role in quantum

optics, since they comprise many of the most readily implemented state transformations

and dynamics. With Gaussian operations and Gaussian states many of the standard

protocols of quantum information processing such as entanglement generation, quantum

cryptography, quantum error correction and quantum teleportation can be realized

[107].

Of particular interest for us are the Gaussian unitaries, i.e. unitary evolutions

generated by Hamiltonians that are at most quadratic in the creation and annihilation

operators. Unitary displacements W⇠ are generated by the linear Hamiltonian ⇠T ~R. All

other Gaussian unitaries can be composed of three kinds [118], named according to their

optical incarnations. The phase shifter (H = a†a) corresponds to the free evolution

of an harmonic system. The beam splitter (H = ab† + a†b) couples two modes. Both

generators do not change the total photon number and are therefore examples of passive

transformations. The remaining type of Gaussian unitary is active: the (single-mode)

squeezer is generated by the squeezing Hamiltonian H = a2+(a†)2, which, when acting

on the vacuum state decreases the variance in one quadrature (Q) by a factor f < 1

and increases the other one by 1/f . Combining these building blocks in the proper way,

all other unitaries generated by quadratic Hamiltonians, e.g. the two-mode squeezing

transformation (H = ab + a†b†) can be obtained.

Both active and passive transformations map field operators to a linear combination

of field operators (disregarding displacements caused by linear parts in the Hamilto-

nians, which can always be undone by a further displacement), i.e. for all Gaussian

unitaries we have in the Heisenberg picture

U ~RU † = S ~R ⌘ ~R0. (2.83)

Here S is a symplectic map on 2N , i.e. S preserves the symplectic matrix �N , assuring

that Ri and R0
i satisfy the same commutation relations. We denote by US the unitary

corresponding to the symplectic transformation S. Passive operations correspond to
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symplectic transformations that are also orthogonal.

In the Schrödinger picture, US transforms the Gaussian state with CM � and dis-

placement d such that (�, d) 7! (S�ST , Sd). The two-mode squeezing transformations

T (r) =

0

@ cosh (r) sinh (r)�x

sinh (r)�x cosh (r)

1

A (2.84)

is an important example of a active symplectic transformation.

Besides Gaussian unitaries, Gaussian measurements are another important and

readily available tool. Gaussian measurements are generalized measurements repre-

sented by a positive-operator-valued measure
�
|�, dih�, d| �, d, d 2 2N

 
that is formed

by all the projectors obtained from a pure Gaussian state |�, 0ih�, 0| �, 0 by displace-

ments. The most important example is a limiting case of the above: the quadrature

measurements (von Neumann measurements which project on the (improper, infinitely

squeezed) eigenstates of, e.g., Q). In quantum optics, these are well approximated by

homodyne detection. For example, the “Bell- or “EPR-measurement” that is part of

the teleportation protocol is a measurement of the commuting quadrature operators

Q1 + Q2 and P1 � P2.
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Chapter 3

Asymmetric optical nuclear spin

pumping in a single quantum dot

In this Chapter we present an experimental and theoretical investigation

of asymmetric unidirectional nuclear spin pumping in an uncharged self-

assembled InGaAs quantum dot. The experiment was carried out by Florian

Klotz under the supervision of Prof. Finley at the Walter-Schottky Insti-

tute of the TU Munich. In the experiment, highly asymmetric dynamic

nuclear spin pumping is observed in a quantum dot subject to resonant

optical pumping of the neutral exciton transition leading to a large maxi-

mum polarization of 54%. The theoretical model gives new insights into the

mechanism leading to the observed DNP e↵ect. It can be understood in

terms of electron-nuclear spin flip-flop processes exchanging the orientation

of an electron and nuclear spin and transferring the exciton from an opti-

cally active bright into an optically inactive dark state which then decays

non-radiatively. The model allows to perform numerical calculations that

simulate the actual measurement procedure and quantitatively reproduce

the experimentally observed characteristic features of the achievable steady

state nuclear polarization.
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3.1 Introduction

Nuclear spin e↵ects in semiconductor quantum dot (QD) nanostructures have attracted

much attention over recent years [119, 39, 120, 121, 122, 123, 124, 125, 126, 127, 128,

129, 38, 130]. The hyperfine (hf) interaction of the 104-105 nuclear spins within the dot

and the spin of an individual electron that is electrically or optically generated is key to

address and control the nuclear spin system. This may provide opto-electronic access

to the mesoscopic nuclear spin system with strong potential for future applications

in quantum information technologies [39]. The hf interaction limits the electron spin

coherence in QDs [120, 23] making reliable strategies to control the nuclear field highly

desirable [121, 122]. From both perspectives, a highly polarized ensemble of nuclear

spins would be advantageous. To date, the vast majority of experiments on dynamical

nuclear polarization (DNP) (for a review see [36]) have been carried out on charged

QDs containing a resident electron [123, 124, 131]. However, this system is subject to

fast depolarization e↵ects that are typically mediated by the residual electron in the

dot [123]. Neutral QDs are particularly interesting [126, 132, 128, 129, 38, 130] since

for them stable polarization of the nuclear spin system over timescales exceeding one

hour has been demonstrated [38].

The experiment demonstrates pumping of the nuclear spin system in an InGaAs

QD via resonant optical excitation of the neutral exciton X0. Most surprisingly, a

strong asymmetry in the DNP e�ciency is found for excitation of the two transitions

of the bright neutral exciton states of the dot with DNP predominantly occurring for

pumping of the higher energy Zeeman level. To gain a better understanding of the

mechanisms and processes involved, a detailed theoretical model of the driven neutral

QD was developed that allows to perform numerical calculations simulating the actual

experimental procedure used in our measurements. The observed asymmetric DNP

e↵ects can be understood in terms of hf-mediated spin flip transitions between dark

and bright exciton states. We treat the hyperfine coupling in second order perturbation

theory and eliminate the subspace of the fast dynamics of the excitonic decay. Under the

semiclassical approximation that the nuclear state is separable, we obtain an equation

of motion for the nuclear polarization. The simulations of the steady state population
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in the excitonic subspace quantitatively reproduce the experimental results.

3.1.1 Reader’s guide

In Section 3.2 the experimental setup is explained. Experimental results of nuclear

spin pumping are presented in Section 3.3. More experimental details can be found

in our joint publications [43] and [37]. In Section 3.4 the physical mechanisms that

account for the observed asymmetric nuclear spin polarization are explained. First, the

principal idea is sketched, and then details of the physical mechanism leading to DNP

as observed in the numerical simulations are explained in a comprehensive manner. In

Section 3.5, a detailed analysis of the theoretical description, that treats the hyperfine

coupling perturbatively, can be found. This description allows to perform numerical

calculations (work done by Geza Giedke) that are discussed in Section 3.6.

3.2 The system

The investigated structure is depicted in the inset of Fig. 3.1 consisting of a single layer

of molecular beam epitaxy grown InGaAs QDs embedded within the intrinsic region

of a Schottky photodiode formed by a heavily n+-doped back contact and a 3nm thick

semitransparent Ti top contact. This device geometry allows the application of DC

electric fields along the growth direction of the QDs. The Ti top contact is covered

with an opaque Au layer in which 1µm wide circular apertures are opened to facilitate

optical access to single QDs. Photocurrent (PC) measurements were carried out on

this structure at 10K for di↵erent magnetic fields Bext using linearly polarized light

from a tunable laser. The quantum confined Stark e↵ect (QCSE) is employed to tune

the transitions of the QD into resonance with the laser by sweeping the applied electric

field whilst keeping the laser energy fixed. Fig. 3.1 shows the DC Stark shift of the

examined X0 state measured at Bext = 0T in both PC at high (> 30kV/cm) and

photoluminescence at lower electric fields (< 30kV/cm) which can be well described

using a second order polynomial fit allowing a direct conversion of applied electric field

into transition energy [133].
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Figure 3.1: Combined PC and PL measurements at Bext = 0T. Inset: Schematic of the

structure investigated consisting of a single layer of self assembled QDs is embedded in

the intrinsic region of Schottky photodiode.

3.3 Experimental observation of DNP

Fig. 3.2 shows an example of an electric field sweep PC measurement performed at

Bext = 5T. The measurement clearly reveals the two optically active (bright) s-shell

states of X0, denoted |E1i and |E2i, as they are tuned into and out of resonance

with the laser by the QCSE. The levels |E1i and |E2i are separated by an energy

gap �E =
q

E2
Z + �b1

2
in an externally applied magnetic field, where EZ is the Zeeman

energy and �b1 the fine structure splitting due to anisotropic exchange coupling [134]. For

EZ � �b1 , the states |E1,2i correspond to the bright excitons with angular momentum

projection Jz = +1 (|#*i) and Jz = �1 (|"+i), respectively, where ", # (*, +) denote the

electron (hole) spin orientation, respectively. A clear di↵erence is observed between the

two measurements performed with opposing sweeping directions of the electric field;

from low to high values (’sweep up’ - blue trace on Fig. 3.2) and high to low values

(’sweep down’ - red trace on Fig. 3.2). These observations are shown to arise from

DNP and the resulting e↵ective Overhauser magnetic field BN. Partial polarization of

the nuclear spin bath in the QD arises from hf coupling to the spins of the electrons

pumped through the dot during the measurement and introduces an Overhauser energy

shift �n = geµBBN, where µB is the Bohr magneton and ge the electron g-factor.
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Figure 3.2: Both X0 s-shell states measured in PC electric field sweeps at Bext = 5T.

The individual curves were measured as described in the text.

3.3.1 Reference measurement: randomizing nuclear spins

To study DNP it is important to obtain a reference measurement for an unpolarized

state of the QD nuclear spin system. We obtain such a reference PC spectrum by

randomizing the nuclear spins prior to every measurement point recorded during an

electric field sweep and ensuring that our measurement does not induce significant DNP.

To achieve this, the sample was tuned close to flatband and excited non resonantly in

the wetting layer for 10 s with linearly polarized light. This procedure pumps randomly

oriented electron spins through the QD, whereupon hf interactions e�ciently depolarize

the nuclear spin system. This expectation is confirmed by the observations presented

in Fig. 3.2; when applying this randomization procedure the sweep direction is found to

have no influence on the measured resonance curves, the light and dark green traces in

Fig. 3.2 corresponding to sweep up and sweep down directions, respectively. We note

that the observed insensitivity to sweep direction when employing the randomization

procedure is in strong contrast to the results obtained without randomization during the

sweep (red and blue traces on Fig. 3.2). For all measurements without randomization,

as discussed below the electric field sweep was performed at a speed that was slow

compared to the time required to reach the steady state polarization of the nuclear spin

system. Therefore, each of these measurement point presented in Fig. 3.2 represents

the steady state situation of the nuclear spin system. However, before every sweep we
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applied the randomization process once to ensure a well defined initial state without

residual DNP.

3.3.2 Observation of asymmetric DNP

Fig. 3.2 reveals an asymmetric behavior of DNP upon pumping of the two bright exciton

states of X0. For the up-sweep, first |E2i comes into resonance with the laser as the

energies of the states are shifted via the QCSE. No significant DNP e↵ects are observed

upon exciting |E2i since the measured PC signal coincides exactly with the reference

curve recorded without DNP e↵ects. However, as |E1i is tuned into resonance with

the excitation laser, the nuclear spin bath is clearly subject to DNP since a shift of the

|E1i resonance to higher energies is observed. When the electric field is swept in the

opposite direction, first the |E1i state is tuned into resonance with the laser leading to a

buildup of BN. After the |E1i state has been tuned through the laser, the energetically

lower |E2i state approaches the laser energy. The measurements presented in Fig. 3.2

clearly show that the |E2i peak in the PC signal is now red shifted as compared to the

reference measurement. This observation unequivocally shows that the nuclear field

created by optical pumping of |E1i is still present.

A systematic investigation of �sn as a function of the applied magnetic field is pre-

sented in Fig. 3.3 b). For Bext = 0 � 6T, �sn created via resonant excitation of |E1i

increases with increasing Bext and then decreases monotonically for Bext � 6T. The

maximum observed Overhauser shift of �sn ⇡ 135µeV obtained for Bext ⇡ 6T corre-

sponds to a nuclear bath polarization of P = 54% [124] and an Overhauser field of

BN = 3.8T (using ge = �0.6 calculated for our InGaAs QDs [135] and similar to values

found in the literature [136, 137]). In strong contrast, resonant excitation of |E2i does

not result in any pumping of the nuclear spin bath for Bext � 4T. For Bext  4T a

small Overhauser shift is observed. However, the magnitude of �sn is always significantly

smaller than that induced by pumping of |E1i at the same Bext. Most remarkably, the

direction of BN with respect to Bext is found to be identical for excitation of both |E1i

and |E2i, since in both cases �n is found to result in an increase in �E over the value

measured without DNP e↵ects.
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Figure 3.3: a) Calculated Breit-Rabi diagram for the bright (|E1,2i) and dark (|E3,4i)

exciton states. b) Experiment: Steady state Overhauser shift �sn created by resonant

excitation of either of the two X0 states |E1i and |E2i as a function of Bext. c) Theory:

Overhauser shift calculated from the lineshift displayed in Fig. 3.4. System parameters

as in Tab. 3.1. A constant phenomenological nuclear depolarization rate fdepol = 10�9

was assumed.
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3.4 The physical mechanism

Di↵erent mechanisms can lead to DNP in a optically pumped quantum dot [105, 138,

139, 140, 141]. Most rely on the flip-flop terms in the hyperfine interaction, but di↵er

with regard to the active quantum dot states, the means by which an imbalance in

the up and down polarization rates is achieved, and which process provides the energy

for the typically o↵-resonant hyperfine flip-flop process. In our treatment, we focus

on a mechanism that is related to the neutral exciton in the QD. In the following the

physical mechanism that leads to the observed nuclear spin polarization is explained.

After sketching the main idea in Section 3.4.1, a detailed explanation of the physical

mechanism is given. This is done using results of the numerical simulation that is

introduced at a later stage (in Section 3.6). For now, the results can be understood

without explaining details of the numerical model, as the numerical results reflect the

already explained experimental results.

3.4.1 Principal idea of the mechanism

The pumping of the nuclear spin bath can be explained via hf-mediated electron-nuclear

spin flip-flop processes that exchange the orientation of the electron and a nuclear spin.

This process is described by the hf Hamiltonian

H↵ ⇠ S+
X

j

I�j + S�
X

j

I+j

[80], where S±, I±j are the raising and lowering operators for the electron and jth nuclear

spin, respectively. To understand the principle characteristics of the DNP curve in

Fig. 3.3 b) and c) we consider the exciton level structure shown in Fig. 3.3 a). The

two bright exciton states |E1,2i are split from the two optically inactive (dark) excitons

|E3,4i by the large isotropic exchange splitting (⇠ 150µeV [134]). Bright and dark

doublets are also split by anisotropic exchange �b1 (with �b1 = 40µeV determined from

measurements at Bext = 0T) and are, therefore, a superposition of the pure spin states

with a mixing ratio that decreases with increasing Bext.

The hf interaction couples di↵erent excitonic levels: the laser driving only populates

the bright excitons, but these are coupled to dark exciton states by the electron spin-flip
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terms in the hyperfine Hamiltonian,

|"+i $ |#+i and |#*i $ |"*i .

For the large magnetic fields considered in the present experiment, the dark exciton

eigenstates of the Hamiltonian |E3i and |E4i are (approximately) spin eigenstates,

|E3i ⇡ |"*i and |E4i ⇡ |#+i .

Thus transitions into
��E3(4)

↵
require an electron spin flip S+(S�) which is accompanied

by an opposite flip of the nuclear spin. As can be seen from the energy level diagram in

Fig. 3.3 a), for the magnetic field values investigated, the dark exciton with dominant

electron spin-up character |E3i is closer in energy to the bright excitonic states. This

makes hyperfine flip-flop transitions into |E3i more likely than those into |E4i, since

the flip rate scales with the inverse of the energy di↵erence squared (and the matrix

elements between the two states) [142]. The ensuing imbalance in hyperfine spin flip

rates can lead to a net polarization of the nuclei even if the optically excited electrons

are not polarized – the bias is provided by the di↵erence in rates for the two flip-flop

processes.

As will be explained in detail in the next subsection, there are two di↵erent second

order processes involving hf flip-flops:

1. If the laser is resonant with the bright exciton |E1i ⇡ |#*i, a second order process

which involves hf flip-flops can occur in which a nuclear spin is flipped down and

an electron spin is flipped up:

|E1i ⇡ |#*i S+

�! |E3i ⇡ |"*i .

2. The hyperfine assisted excitation of the dark exciton. It occurs when the laser

is resonant with the dark exciton |E3i but detuned from the resonance with the

bright exciton |E1i. Then, the dark exciton is excited in a second order process

involving virtual excitation of the bright exciton and hf flip-flops. This process

is very e�cient as each such exciton is accompanied by a nuclear spin flip. Note

however that in contrast to the process described in 1., the photocurrent here is

very weak.
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Figure 3.4: a) Simulated polarization dynamics at Bext = 6.4T. Photocurrent as a

function of laser detuning. b) Simulated photocurrent as a function of magnetic field

and DC Stark detuning. The peaks in the current display the Zeeman shift and the

e↵ect of DNP. The Overhauser field shifts the resonance to larger detunings up to

Bext ⇠ 8T, when DNP is no longer e�cient. White lines indicate the bright exciton

resonances (solid) and the dark blue exciton (dashed), all without Overhauser e↵ect.

In the next Section these two mechanisms will be explained on the basis of the calculated

full PC trace obtained from the numerical simulation presented in Section 3.6.

Both processes have the result that nuclear spins are predominantly flipped to align

anti-parallel with Bext. This qualitatively explains why we observe unidirectional nu-

clear polarization independent of the net polarization of the electrons pumped through

the dot.

3.4.2 Detailed explanation of the physical mechanism

In this Section the physical mechanism that leads to DNP is explained in more detail.

This is done on the basis of the calculated full PC trace obtained from the numerical

simulation shown in Fig. 3.4 a). Details of the numerical simulation are presented at a

later stage in Section 3.6. However, for the following, it is not necessary to understand

details of the simulation. The simulated PC trace corresponds to an actual steady

state PC bias sweep as carried out in experiment (see Fig. 3.2). To understand the
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detailed mechanism that leads to nuclear spin polarization, we consider a numerically

simulated PC trace at a fixed external magnetic field Bext = 6.4T in Fig. 3.4 a) . The

level scheme of the excitonic states is found by making a vertical cut through the Breit-

Rabi diagramm in Fig. 3.3 a) at Bext = 6.4T. Now we follow a laser sweep from red

to blue detuning in the PC trace in Fig. 3.4 a) at Bext = 6.4T. When the laser hits

the red exciton resonance (see Fig. 3.4 a), dashed red line), the photocurrent peaks

but no nuclear polarization is built up since all hyperfine interactions are suppressed

(energetically or by spin selection rules) for the red bright exciton |E2i.

When the laser reaches the blue resonance, PC increases and nuclear polarization

begins to build up (see Fig. 3.4 a), around the dashed blue vertical line). As the

Overhauser field and the external magnetic field point in the same direction, the total

magnetic field increases. Note, that the bright and dark excitons couple to the external

magnetic field with a total g factor of gbex = 0.4 for the bright exciton and gdex = �1.6

for the dark excitons (as given in Tab. 3.1). In contrast, the Overhauser field is only

seen by the electron and not by the hole, such that the bright exciton |E1i couples

mainly with a spin down electron |#i and the dark exciton |E3i couples mainly with an

electron spin up |"i to the Overhauser field, both with g factor ge = �0.6.

Now two counteracting e↵ects come into play: the nuclear polarization that builds

up shifts the bright exciton |E1i to higher energies (as the electron |#i couples to the

Overhauser field with negative g factor). Thus the bright exciton gets detuned which

reduces the PC and the polarization rate. In contrast, the dark exciton |E3i is moved

to lower energies (as the electron |"i couples to the Overhauser field with negative g

factor), i.e., closer to the bright exciton |E1i. Thereby the hyperfine coupling between

them is enhanced. At first, the first e↵ect prevails, PC increases and only little nuclear

polarization is built up. But as the blue dark exciton |E3i (and the laser) move closer to

|E1i a new process becomes resonant, namely the hyperfine-assisted excitation of dark

excitons (see point 2 in Section 3.4.2). This process leads to a very low photocurrent,

but it is very e�cient (each such exciton is accompanied by a nuclear spin flip) and it is

self-enhancing: as nuclear polarization is increased, the dark exciton line shifts to lower

energies, towards resonance with the laser. At the same time, |E1i is further detuned,
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which explains the deep trough in the PC curve. The doubly peaked structure is not

seen in experiment, probably due a combination of additional broadening of the lines,

lower nuclear polarization (which reduces the separation of the peaks), and di↵erent

ratio of the dark and bright exciton g factors. The asymmetric shape of the blue exciton

line might be related to this e↵ect. Eventually, the energy of |E3i falls below the laser

energy, so the process becomes less e�cient (and is no longer self-enforcing). However,

now the Overhauser-shifted |E1i comes into resonance again, resulting in the final sharp

peak in PC and a small revival in polarization rate. As the laser is tuned further to the

blue, all excitons become o↵ resonant, the nuclear polarization processes are no longer

e�cient and the base depolarization rate takes over. The process described above

requires |E3i close and to the blue of |E1i. This is only the case for intermediate Bext.

For too high fields, the gap between the two is too big. For too low magnetic fields,

|E3i is still below |E1i and the hyperfine-assisted excitation of |E3i is a self-detuning

process.

3.5 The theoretical model

3.5.1 Properties of the system

We consider a neutral QD in a magnetic field in Faraday configuration; resonantly

driven and strongly tunnel-coupled to the leads. As evidenced by the photocurrent

at saturation (⇠ 1010 excitons per second), most excitons decay non-radiatively via

tunneling on a timescale .ns (see below). The hyperfine coupling is much slower than

these tunnel processes and we have a clear separation of time scales: the excitonic

system reaches a (quasi-)steady state ⇢es quickly and the nuclear spins evolve “driven”

by an excitonic system in this state. The hyperfine flip-flop terms can then change the

nuclear polarization and ⇢es adiabatically follows these changes.

We only consider the subspace of a neutral quantum dot with zero or one exciton.

This is the simplest model capturing the e↵ects important for the setting we have

in mind. Multiple excitons are not expected at the pump rates and detunings the

experiment investigates (far from saturation). We expect the singly charged states of



3.5 The theoretical model 75

the QD to have little e↵ect on the nuclear polarization since the (much lighter) electron

is expected to tunnel faster and thus mostly hole states are populated, which do not

exchange spin with the nuclei. Therefore, we neglect these states in the following and

model tunneling by a Lindblad master equation that describes direct transitions from

excitonic states to the empty QD.

3.5.2 Theoretical description

Let us now describe the model and simulation in detail. We use the basis states

|ki , k = 0, . . . , 4 where |0i denotes the empty QD, and the spin eigenstates |1i = |"+i

and |2i = |#*i span the bright exciton space (the first arrow characterizes the electron

spin, the second one the hole spin), and |3i = |"*i and |4i = |#+i the dark exciton

space. By PX , PB, PD we denote the projectors on the exciton, bright-exciton, and

dark-exciton subspaces respectively. The electron and hole spin operators in the exciton

subspace are given by Sz
e = (|"ih"| � |#ih#|)/2 and Sz

h = (|*ih*| � |+ih+|)/2.

Hamiltonian Master Equation

The system dynamics is governed by a quantum master equation

⇢̇ = L⇢ ⌘ �i[H, ⇢] + Ld⇢,

where Ld is the dissipative part of the master equation that is explained later. The

Hamiltonian takes into account (i) the energy levels of the excitonic system including

Zeeman and exchange energies (Hz + Hx), (ii) the driving laser (Hl), and (iii) the

hyperfine interaction of the electron (Hhf). Written in a frame rotating with the laser

frequency we have the time-independent QD Hamiltonian H = Hx + Hz + Hl + Hhf

with

Hx = !xPX + �0(PB � PD)/2 + �b1 (|1ih2| + |2ih1|)/2 + �d1 (|3ih4| + |4ih3|)/2 (3.1)

Hz = geµBBextS
z
e + ghµBBextS

z
h, (3.2)

Hl = ⌦+ |1ih0| + ⌦� |2ih0| + h.c., (3.3)

Hhf = ~Se · ~A ⌘ Sz
eA

z +
1

2
(S+A� + S�A+). (3.4)
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Here, ~A =
P

i Ai
~Ii is the sum of the individual nuclear spin-I operators weighted

by their respective coupling Ai to the electron spin and A = I
P

i Ai is the total

hyperfine interaction 1; !x contains the laser detuning from the bare exciton energy

and the DC Stark shift of the excitons (the latter is changed in the experiment used to

perform the sweeps). �0 denotes the splitting between dark and bright excitons, �b(d)1

the bright (dark) exciton exchange splitting, and ⌦± denotes the Rabi frequency of the

�±-circularly polarized laser components.

It is useful to express the electron and hole spin operators in terms of the excitonic

spin eigenstates

Sz
e =

1

2
(|1ih1| � |2ih2| + |3ih3| � |4ih4|) , (3.5)

S+
e = |1ih4| + |3ih2| , (3.6)

Sz
h =

1

2
(|3ih3| � |1ih1| + |2ih2| � |4ih4|) . (3.7)

We also separate the zz-part of the hyperfine coupling into the (potentially large)

Overhauser term hAziSz
e which is added to HZ and the rest (Az � hAzi)Sz

e .

As the experiment uses linearly polarized light, we usually consider ⌦+ = ⌦�. There

is, however, little qualitative dependence on the polarization of the light, even using ��

light the asymmetric polarization e↵ect persists (though it will be significantly weaker

especially for large magnetic fields).

The decay of the excitons is described by a Lindblad master equation with jump

operators J�
k , k = 1, . . . 4

J�
k = |0ihk| (3.8)

and associated rates �k. The excitonic–nuclear quantum master equation then reads

d

dt
⇢ = L⇢ ⌘ (L0 + L1)⇢, (3.9)

with

L0⇢ =
X

k

�k
⇣
2J�

k ⇢J
+
k �

�
J+
k J�

k , ⇢
 
+

⌘
� i [H0, ⇢] , (3.10)

1We found that including a hole hyperfine interaction (of ⇠ 10% of electronic coupling) does not

lead to relevant changes of the observed behaviour and therefore do not include it in our simulations.
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where H0 = Hx + Hz + Hl contains all Hamiltonian terms except the hyperfine inter-

action. The decay rates �k include radiative and non-radiative processes and satisfy

�3 ⌘ �4 = �nr and �1 ⌘ �2 = �nr + �r. The time scale of L0 is set by the decay rates,

as long as �k � kHhfk the QD decays to its steady state ⇢es before hyperfine dynamics

appreciably changes the nuclear state, thus the dynamics of the nuclei is determined

by the instantaneous steady state of the QD (excitonic degree of freedom), and this

steady state, in turn, follows adiabatically the slow evolution of the nuclei (build-up of

nuclear polarization).

Nuclear Spin Dynamics

This intuition can be formalized by adiabatic elimination of the “fast” non-steady-

state subspace of L0. Let ⇢ss denote the steady state of the Liouvillian L0(hAzi), i.e.,

the instantaneous steady state of the QD at fixed Overhauser field hAzi. Define the

projector on the electronic steady state (“slow subspace”) by

P : ⇢ 7! ⇢ss ⌦ trqd(⇢) ⌘ ⇢ss ⌦ µ, (3.11)

(H = Hqd ⌦ Hnuc is the Hilbert space of the composite system; trqd denotes the trace

over the QD degrees of freedom and µ = trqd(⇢) denotes the reduced state of the nuclear

system) and its complement Q = � P.

The master equation Eqn. (3.9) leads to two coupled equations for P⇢ and Q⇢.

Setting d
dtQ⇢ = 0 (as the electronic system quickly reaches ⇢ss) we obtain for P⇢ the

equation
d

dt
P⇢ = PL1P⇢� PL1Q (QL0Q)�1 QL1P⇢, (3.12)

which describes (to second order in L1) the dynamics on the slow subspace, i.e. the evo-

lution of the nuclear spin system. Note that L0 is invertible on the subspace Q. Insert-

ing L1(⇢) = �i[Hhf , ⇢] and writing the hyperfine Hamiltonian Hhf =
P

r=±,z hrSr(Ar)†

as
P

r hr(�Sr + hSriss)Ar we obtain

d

dt
trqd(P⇢) = � i[

X

r

hrhSrissAr, µ] +
X

r,s

hrhs[c
(1)
rs ArAsµ � c(1)rs ArµAs

� c(2)rs AsµAr + c(2)rs µArAs], (3.13)
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where

c(1)rs = trqd(�SrL�1
0,Q(�Ss⇢ss)),

c(2)rs = trqd(�SrL�1
0,Q(⇢ss�Ss)),

and L0,Q = QL0Q; h± = 1/2, hz = 1.

Eqn. (3.13) contains (among others) the spin pumping terms responsible for DNP.

Note that c(2)±⌥ = (c(1)⌥±)⇤, which ensures that the (spin pumping) master equation for

the nuclear spins is of Lindblad type. For the polarization rates (prefactors of the terms

A+µA� and A�µA+) we find

�+ = �Re(trqd
⇥
L�1
0 (�S+

e ⇢ss)S
�
e

⇤
)/2, (3.14)

�� = �Re(trqd
⇥
L�1
0 (�S�

e ⇢ss)S
+
e

⇤
)/2, (3.15)

respectively. All the other terms in Eqn. (3.13) (/ A+A+, AzA+, AzAz etc.) are either

very small or do not contribute to DNP and are therefore neglected. The imaginary

part of trqd
⇥
L�1
0 (�S+

e ⇢ss)S
�
e

⇤
yields the electron-mediated nuclear spin interaction

/ {A+, A�}+, which we also neglect.

Even after all these simplifications, solving Eqn. (3.13) is still di�cult due to the

exponentially large size of the Hilbert space of the N nuclear spins. It is significantly

simplified by invoking factorization assumptions [143, 144, 145], neglecting some (or

all) correlations between nuclear spins. Since we are interested here in long times

on which nuclear coherences are likely to play no role (due to inhomogeneities and

dipolar interaction), we use the semiclassical approximation that the nuclear spin state

is separable and diagonal in the z-basis at all times. Then we obtain the equation of

motion for the lth nuclear spin as

d

dt
µl = �+A2

l

�
I+l µlI

�
l � {I�l I+l , µl}+/2

�
+ ��A2

l

�
I�l µlI

+
l � {I+l I�l , µl}+/2

�
. (3.16)

Assuming spin-I nuclei and states that are diagonal in the Iz-basis, Eqn. (3.16)

yields a rate equation for the probabilities pi,m of the ith nuclear spin to be in state

|I, mi:
d

dt
pi,m = � [�i,+(I � m)(I + m + 1) + �i,�(I + m)(I � m + 1)]pi,m (3.17)

+ �i,+(I � m + 1)(I + m)pi,m�1 + �i,�(I + m � 1)(I � m)pi,m+1.
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From this the steady state nuclear populations (for given �i,±) can be easily found as

pi,m = 1�x
1�x2I+1 xI+m with x = �i,+/�i,� and m = �I, . . . , I. E.g., for spin-1/2 nuclei the

steady state population in the Iz = +1/2 state is pssi,+1/2 = �
i,+

�
i,++�

i,�
. Since the rates

�± depend (nonlinearly) on the nuclear polarization we have to integrate the model

numerically to find the nuclear steady state at given magnetic field and laser detuning

(see Section 3.5.2). For simplicity, we will in this work only consider homogeneously

coupled nuclei (�i,± = �±) and omit the index i henceforth.

3.6 Numerical simulation

3.6.1 The idea behind

We use the model described above to simulate the polarization process during the DC-

Stark sweeps performed in the experiment: for each value of external magnetic field,

the nuclear spins start in the maximally mixed stated (fully depolarized). Then, for a

given DC Stark shift (fixing the detuning !x of the laser frequency from the exciton

resonance), we numerically determine the electronic steady state and the associated

coe�cients c(i)rs in the nuclear master equation Eqn. (3.16). This yields the instantaneous

DNP rates �± and the associated nuclear steady state. We repeat the steps (i) evolve

nuclear state by Eqn. (3.17) and (ii) determine �± that correspond to the changed

nuclear polarization until the nuclear steady state is reached. Then nuclear polarization

P (Bext,!x) = hIziµn

s

and the exciton population hPXi⇢e
s

are recorded. The latter is

proportional to the steady state photocurrent, which is the observable from which the

Overhauser shift is deduced in the experiment. Now !x is changed (without changing

µn
s ) and the same calculation is repeated for the whole sweep.

3.6.2 Result: PC curve and determination of the Overhauser shift

As already mentioned in Section 3.4.2, a calculated full PC trace obtained this way

is presented in Fig. 3.4 a) simulating an actual steady state PC bias sweep as carried

out in the experiment (see Fig. 3.2. For each pair of parameters (Bext,!x) this yields

a steady state photocurrent. The results are plotted in Fig. 3.4 b). For fixed Bext we
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obtain a (typically) doubly-peaked curve, the peaks corresponding to the two bright

exciton levels. We numerically determine the peaks and deduce the Overhauser shift by

comparing the location of the blue and red peaks with and without nuclear polarization2

and solving

�!b(Bext) =
1

2

q
(�b1)

2 + (!z(Bext) + �n(Bext))2 �
q

(�b1)
2 + !z(Bext)2

�
, (3.18)

�!r(Bext) = �1

2

q
(�b1)

2 + (!z(Bext) + �n(Bext))2 �
q

(�b1)
2 + !z(Bext)2

�
, (3.19)

for �n. Here, !z denotes the Zeeman splitting. This yields, for every value Bext of

the external field an Overhauser shift of the exciton lines. These values are plotted in

Fig. 3.3 c) and reproduce the qualitative behavior seen in the experiment: an increased

splitting (Overhauser field enhancing the external field) independent of whether the

blue or red exciton is pumped. However, the increase is much more pronounced and

extended for the blue exciton line. For a discussion of the physical mechanisms that

we believe account for the shape of the full PC trace in Fig. 3.4, see Section 3.4.2.

3.6.3 Remark on the parameters

The parameters describing the system are not known precisely from experiment, in

particular, the exchange splittings �d1 , �0, the depolarization rate fdepol, the Rabi fre-

quency ⌦± or the sign of ge. We use typical values found in similar systems for our

simulation, since our objective is only to indicate that the proposed mechanism can

reproduce qualitatively the observed behavior. The values used in our simulations are

collected in Tab. 3.1. To reproduce the qualitative features of the polarization process

no fine-tuning of the parameters is required, but a few broad features seem necessary,

in particular that the dark excitons have lower energy than the bright ones (�0 > 0) and

that the g factor of the dark excitons is larger than the g factor of the bright excitons.

An important ad-hoc ingredient in the simulation is a small nuclear depolarization rate,

without which the simulation would predict too much polarization. The possible origin

of such a rate is discussed in the next Section.
2if a peak is split as in Fig. 3.4 a) the higher one is used to determine �

n
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parameter value

�0 120 µeV dark–bright splitting

�b1 40 µeV bright exciton ex-

change splitting

�d1 10 µeV dark exciton ex-

change splitting

ge �0.6 electron g factor

gh 1 heavy hole g factor

gbex ge + gh bright exciton g fac-

tor

gdex ge � gh dark exciton g factor

⌦± 0.3 µeV Laser Rabi frequen-

cies (linear polariza-

tion)

A 150µeV hyperfine interaction

N 30 000 number of nuclei

�nr 15 µeV non-radiative decay

rate

�r 1 µeV radiative decay rate

Table 3.1: System parameters used in the simulation
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3.6.4 Depolarization Rate

Given how many system parameters have not been measured directly (see Tab. 3.1) and

the stark simplifications (homogeneously coupled, factorizing spin-1/2 nuclei without

dipolar or quadrupolar interaction; neglect of singly-charged states of the QD) used, we

do not attempt to fit the measured data. The purpose of the model is only to achieve

qualitative agreement to corroborate the proposed mechanism as the likely reason for

the observed e↵ect. To obtain the peaked Overhauser shift (as a function of Bext)

shown in Fig. 3.3 c) the introduction of a phenomenological nuclear depolarization rate

fdepol is necessary. If the latter is set to zero, an almost constant Overhauser shift

corresponding to maximal nuclear polarization is obtained from the simulation. The

rate fdepol needs to be much larger than the nuclear depolarization rate observed when

the QD is empty and the laser is o↵. Therefore, we have to look for a laser-induced

(or exciton-induced) depolarization process. One such mechanism was proposed and

studied as DNSP mechanism in [141]: laser-induced nuclear spin flips enabled by the

non-collinear terms of the nuclear quadrupolar interaction arising from strain in the

QD. In [141] it was shown that nuclear spin polarization rates

�q± =

✓
⌦Anc

4!nz

◆2 �

4�2± + �2 + ⌦2/2
(3.20)

are induced, where Anc is the e↵ective strength of the non-collinear quadrupolar terms

(that arise from a small non-zero angle between the directions of growth and strain),

⌦ the laser Rabi frequency and � the decay rate of the optically excited state, and �±

is the detuning of the laser from the exciton. In [141] almost resonant lasers and only

radiative decay were considered. Then the di↵erence between these two rates (which

is related to the di↵erence between �+ and �� given by the Zeeman energy of a single

nucleus) is non-zero, leading to a net nuclear polarization rate explaining the dragging

e↵ects seen in many optical DNSP experiments [146]. In contrast, we consider a QD

that is strongly coupled to the leads and through much of the sweep strongly detuned

so that the tiny di↵erence between �± can be neglected (|�+ � ��| ⌧ |�+ + ��|,�) in

our setting, leaving us with a purely depolarizing process with a rate

fdepol =

✓
⌦Anc

4!nz

◆2 �nr + �r
4�2 + (�nr + �r)2

, (3.21)
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where � = (�+ + ��)/2 is the laser detuning. Throughout most of the sweep, � is

the largest value in the denominator. Taking Anc = 1.3 · 10�4µeV as in [141], the

depolarizing rate is too small to balance DNP. Thus the question of the depolarization

mechanism remains open.

3.7 Conclusions

In summary, we have presented an experimental and theoretical investigation of asym-

metric unidirectional nuclear spin pumping in an uncharged self-assembled InGaAs

quantum dot via resonant optical excitation of the neutral exciton states in the pho-

tocurrent regime. The model allows to perform numerical calculations that simulate

the actual measurement procedure and quantitatively reproduce the experimentally

observed characteristic features of the achievable steady state nuclear polarization �sn.

From the theoretical model, new insights into the mechanism leading to the observed

DNP e↵ect are gained. It can be understood in terms of electron-nuclear spin flip-flop

processes exchanging the orientation of an electron and nuclear spin and transferring

the exciton from a optically active bright into an optically inactive dark state which

then decays non-radiatively. The e�ciency of these processes are determined by the

detuning of bright and dark energy levels as well as the mixed character of the states

which both are magnetic field dependent. Taking this into account, empirically found

e↵ects like the pronounced asymmetry in DNP upon excitation of the two X0 Zee-

man states and the dependence on the magnetic field applied appear naturally in our

simulations.
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Chapter 4

One-dimensional spin chain

under dissipation with cold atoms

We propose a quantum optical implementation of a class of dissipative spin

systems with ultra-cold atoms in optical lattices using detuned Raman tran-

sitions in the Lamb-Dicke regime. We show that using the motional degrees

of freedom of cold bosonic atoms described by the two-band Mott insula-

tor model, di↵erent spin models like the XXZ or the Ising model can be

realized. Optical driving and decay of internal atomic levels leads to engi-

neerable dissipation and a tunable magnetic field. This system comprises

an interesting toy model for one-dimensional spin chains under dissipation

studied in Chapter 5.

4.1 Introduction

Quantum spin models play a fundamental role for the theoretical and experimental

study of quantum many-body e↵ects. They represent paradigmatic systems exhibiting,

e.g., quantum phase transitions [147] and peculiar forms of matter. They also provide

toy models for the description of many solid-state systems. Ultra-cold atoms in optical

lattices [148] have emerged as a system that is especially suited to study the low-energy

sector of quantum spin systems with the promise to eventually simulate theoretical
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models in large, controlled quantum systems.

To observe these e↵ects, coupling to uncontrolled degrees of freedom has to be

kept to a minimum, since it leads to dissipation and decoherence [149, 150] which can

mask or destroy the quantum e↵ects. But in recent years, it has been shown how

the coupling to an environment can be harnessed to generate useful quantum states

[14, 15, 16, 20, 17] or perform quantum information tasks [17, 18].

We propose a scheme to realize a quantum spin system using ultra-cold atoms in

an optical lattice in which both coherent interaction and dissipation can be engineered

and controlled. Considering a two-band Mott insulator model, we show how a spin

Hamiltonian (Ising, XXZ) can be implemented. Coupling to optical fields, we derive an

e↵ective Master equation and show how to implement an e↵ective transverse magnetic

field. This system enables the study the non-equilibrium and steady state physics of

open and driven spin systems. As studied in Chapter 5, we find that for such systems,

surprisingly, peaks occur in the steady state expectation values of the collective spin

operators for weak dissipation.

4.1.1 Reader’s guide

In Section 4.2.1, we introduce the setup and explain qualitatively how a spin chain under

engineerable dissipation in a tunable magnetic field can be realized with cold atoms in

optical lattices. In Sections 4.2.2-4.2.5 we give details of the derivation. In Section

4.2.2, we study how engineerable dissipation can be realized with optical driving (and

decay) of internal atomic levels. Then, in Section 4.2.3, we show how a magnetic field

in x-direction can be realized with detuned Raman transition between internal atomic

levels. The derivation of the spin Hamiltonian (which is tunable and can describe the

Ising or the XXZ model) is explained in Section 4.2.4. In Section 4.2.5, we combine

and discuss the results from the previous Sections.
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4.2 Physical implementation of a one-dimensional spin

chain under dissipation

Ultra-cold bosonic atoms in optical lattices are ideal candidates to simulate spin Hamil-

tonians. Di↵erent theoretical and experimental approaches [151] have been employed

to simulate quantum spin chains in optical lattices, for example by optical driving

of two hyperfine levels of cold bosons in the Hubbard regime [152]. Recently, a one-

dimensional chain of interacting Ising spins has been implemented experimentally using

a Mott-Insulator of spinless bosons in a tilted optical lattice [60].

In the following, we add engineered dissipation to the toolbox of these systems [153,

154]. Specifically, we show how to implement a system with the following properties: [i]

dissipative dynamics of Lindblad form, [ii] a tunable magnetic field in x-direction and

[iii] an e↵ective spin Hamiltonian such as, e.g., the XXZ, Heisenberg or Ising model. In

the next subsections, we first introduce the setup and explain qualitatively how such a

one-dimensional spin chain in a tunable magnetic field under engineerable dissipation

can be realized with cold atoms in optical lattices. In the subsequent subsections we

give specific requirements and parameters and details of the derivation for [i]-[iii].

4.2.1 Setup and qualitative description

The system we consider is an optical lattice that is populated with a single atomic

bosonic species. We assume to be in the Mott-insulator regime with filling factor 1,

where the on-site interaction is much larger than the tunneling (hopping) between

neighboring lattice sites. In this regime, the atoms are localized such that each lattice

potential is occupied with one atom. We aim to use the motional ground and first

excited state {|0i , |1i} of the atom to realize an e↵ective spin-1/2 system in each lattice

site. To access the motional degree of freedom optically, we work in the Lamb-Dicke

regime where the motion of the atom is restricted to a region small compared with the

laser wavelength. We make use of the anharmonicity of the lattice potential and, as

explained in the following, of decay of the atoms that leads to cooling of the system, to

restrict the dynamics to the two-dimensional subspace of {|0i , |1i} [155] (see Fig. 4.1).
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For the optical manipulation, we assume that the atoms have internal degrees of freedom

that can be addressed optically with laser fields. We consider a ⇤-scheme with ground

states |gi and |ri (both trapped by the same optical lattice potential) and an excited

state |ei. The level scheme of the internal states of the atoms is shown in Fig. 4.1.

O↵-resonant laser fields drive transitions between the two ground states |gi and |ri

and the excited state |ei. The system decays fast into the ground states, and as we

will see later, e↵ectively decays into the state |gi. Therefore the atoms are optically

pumped to the state |gi⌦ |0i and the states |ri and |ei can be adiabatically eliminated.

Eliminating the excited state |ei leads to the e↵ective two-level system in the lower

part of Fig. 4.1 with designable decay rates. Further elimination of the state |ri leads

to an e↵ective description in the internal ground state |gi. The optical couplings by

laser fields give rise to e↵ective Hamiltonians and e↵ective dissipation (cooling) in the

ground state |gi at each lattice site. Details will be given in Section 4.2.2.

Therefore, we have an e↵ective two-level system at each lattice site. As explained

before, the atoms are e↵ectively in the internal ground state |gi, and occupy the exter-

nal, motional degrees |gi ⌦ |0i and |gi ⌦ |1i, i.e., the e↵ective two-level system is given

by |0i and |1i as depicted in Fig. 4.3.

In the following Sections, we show that the optical couplings of the internal levels of

the atoms can be engineered such that we get an e↵ective master equation for the two-

level system |0i, |1i that [i] describes dissipation of Lindblad form and [ii] an e↵ective

magnetic field in x-direction. In the Mott insulator regime, tunnel couplings between

neighboring lattice wells can be treated as a perturbation, which [iii] leads to an e↵ective

spin Hamiltonian. The resulting master equation1 is given by

⇢̇t =
P

k A�(2��k ⇢t�
+
k � {�+k �

�
k , ⇢t}+) � i [H, ⇢t] . (4.1)

Here, �+k = |1ih0|k is the operator that excites an atom at lattice site k from state |0i to

state |1i. The sum runs over all N sites of the optical lattice potential. The first part

in Eqn. (4.1) describes decay from state |1i into state |0i as depicted in Fig. 4.3. The

decay parameter A� can be tuned by changing the Rabi frequencies of the lasers and

1for details see Eqn. (4.15)
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Figure 4.1: Upper Figure: Left: Internal levels of the atom: ⇤ system |gi, |ri, |ei,

o↵-resonantly driven by lasers. Right: Motional states of the optical lattice potential.

Lower Figure: After adiabatic elimination of the excited level: e↵ective two-level system

with designable decay rates � and �.

the detunings and is given by Eqn. (4.13) in Section 4.2.5. The Hamiltonian is given

by H = HB + Hspin where HB describes the magnetic field in x-direction given by

HB =
X

k

Bx(�
+
k + ��k ), (4.2)

where Bx is proportional to an e↵ective magnetic field in x-direction. It is derived in

Section 4.2.3. The Hamiltonian Hspin describes the spin Hamiltonian

Hspin =
X

k

↵1(�
x
k�

x
k+1 + �yk�

y
k+1) + ↵2�

z
k�

z
k+1, (4.3)

as derived in Section 4.2.4. The parameters ↵1 and ↵2 depend on the properties of the

optical lattice potential and can be tuned. Therefore, the Hamiltonian Hspin describes

the XXZ model, the Ising Model or the Heisenberg Model. In the following three

Sections, we employ a perturbative approach to derive a master equation comprising

dissipation of Lindblad form [i] as in Eqn. (4.1), a magnetic field in x-direction [ii] as in

Eqn. (4.2) and an e↵ective spin Hamiltonian [iii] as in Eqn. (4.3). For the sake of clarity,

we derive [i]-[iii] in three separate steps employing the approximation of independent

rates of variation as explained in [156].
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Figure 4.2: E↵ective two-level system |gi-|ri in the optical lattice potential with mo-

tional states |0i and |1i. Choosing resonance conditions as explained in Section 4.2.2,

the atoms are selectively excited from |gi ⌦ |1i to the state |ri ⌦ |0i and spontaneously

decay into |gi ⌦ |0i.

4.2.2 Dissipation of Lindblad form

In this Section, we show that optically addressing the atoms with suitably tuned lasers

allows to engineer dissipation of Lindblad form as in Eqn. (4.1).

We consider the internal levels |gi, |ri, |ei of an atom at site k. The ground states

|gi and |ri can be coupled via the excited state |ei by a detuned Raman transition

of two standing wave laser fields with Rabi frequencies ⌦1 and ⌦2. Eliminating the

excited state |ei leads to an e↵ective coupling between |gi and |ri (see Fig. 4.1) with

⌦e↵ = ⌦1⌦2/�re where �re is the detuning with respect to |ei (for details see Appendix

4.A). As shown in Fig. 4.1, |ri and |ei are coupled by another laser field (denoted by

a red arrow). Adiabatic elimination of the excited state |ei leads to an e↵ective two-

level system (as shown in the lower part of Fig. 4.1) with states |ri and |gi which has

designable decay rates � and � as derived in [157] (see also Appendix 4.A). Thereby,

the excited state |ei that is broadened by spontaneous emission is eliminated, and the

e↵ective two-level system |gi-|ri allows to resolve the motional states |0i and |1i of

the lattice potential (note that we are in the Lamb-Dicke regime), as can be seen in

Fig. 4.2. Under appropriate resonance conditions that will be specified in the following,

the atoms are excited from state |1i ⌦ |gi to state |0i ⌦ |ri and spontaneously decay
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into the state |0i⌦ |gi as shown in Fig. 4.2. Adiabatically eliminating the state |ri, this

corresponds to an e↵ective decay from state |1i ⌦ |gi into |0i ⌦ |gi. Thus the atoms

e↵ectively remain in the internal ground state |gi, such that the decay can be written

as an e↵ective decay from state |1i to |0i as depicted in Fig. 4.3.

In Appendix 4.A, we derive in a perturbative approach (that corresponds to an

adiabatic elimination of the state |ri) a master equation that describes the dynamics

of the two-level system |0i, |1i of the atom. Assuming that the driving of level |ri is

su�ciently weak such that the condition

�, �, ⌫, �r � |⌦e↵|

is fulfilled, and that the level broadening remains small

�+ � < ⌫,

the master equation is given by

⇢̇t =
X

k

A� �2��k ⇢t�
+
k � {�+k �

�
k , ⇢t}+

�
+ A+

�
2�+k ⇢t�

�
k � {��k �

+
k , ⇢t}+

�
� i[H(1)

e↵ , ⇢t].(4.4)

Here, A+ determines the strength of the heating terms and A� the strength of the

decay terms. For simplicity, A± are chosen to be independent of the lattice site k. A±

can be made dependent on the lattice site k by choosing di↵erent phases of the driving

lasers as explained in Appendix 4.A. Note that A� � A+ is required for the validity

of the approximation that only the motional levels |0i and |1i are considered. A� and

A+ are given by

A± = ⌦2
e↵⌘

2
1

(�+ �)

(�+ �)2 + (�r ± ⌫)2
. (4.5)

Here, �r is the e↵ective detuning given by Eqn. (4.20) in Appendix 4.A, ⌘1 = k1/
p

2M⌫

is the Lamb-Dicke parameter where k1 is the wave number of the laser with Rabi

frequency ⌦1, M the atomic mass, and ⌫ denotes the energy di↵erence between the

motional state |0i and |1i of the lattice potential. As mentioned before, �+k = |1ih0|k is

the operator that excites the atom in lattice site k from the motional ground state |0i

to the first excited motional state |1i (while the atom remains in the internal ground

state |gi). The Hamiltonian H(1)
e↵ in the last part in Eqn. (4.4) is given by

H(1)
e↵ =

X

k

⌫ |1ih1|k + HS (4.6)
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|0i
|1i

A�|gi ⌦

Figure 4.3: Decay of the e↵ective two-level system |0i, |1i described by the e↵ective

master equation given by Eqn. (4.7) that we derive in Section 4.2.2. The dissipation

strength A� is given in Eqn. (4.5).

where HS describes AC Stark shifts on the motional levels that are ⌧ ⌫ and are

given in more detail in Appendix 4.A. Now, we have everything at hand to implement

dissipation. If

�r ⇡ ⌫,

which can be achieved by choosing the laser frequency !l in �r = !r � !l accordingly,

the strength of the dissipation is much larger than the strength of the heating:

A� � A+.

Then, the master equation has only decaying terms and is of the form

⇢̇t =
P

k A�(2��k ⇢t�
+
k � {�+k �

�
k , ⇢t}+) � i

h
H(1)

e↵ , ⇢t
i
. (4.7)

It describes dissipation of the atoms from state |1i into |0i, while the atoms e↵ectively

remain in the internal state |gi. By adiabatic elimination of the internal state |ri,

we have thus shown that a master equation can be derived that can be tuned such

that it describes pure decay. Note that while we have shown here how to derive local

dissipation assuming that each atom couples to its environment independently, the

derivation of collective dissipation follows identical lines under the assumption that the

atoms either couple all to the same mode (of an optical cavity) or that the atoms are

restricted to a volume smaller than the optical wavelength.



4.2 Physical implementation: dissipative spin chain 93

|0i⌦ |ei

|0i⌦ |gi

|1i⌦ |gi

|ei

⌦b⌦a

�e

|0i⌦ |gi

|1i⌦ |gi
Bx

Figure 4.4: Left: A detuned Raman transition couples the internal ground state |gi

and the excited state |ei of the atom. Right: Adiabatic elimination of the excited state

|ei leads to an e↵ective magnetic field in x-direction (see Section 4.2.3) which drives

transitions between the motional states |0i and |1i.

4.2.3 E↵ective magnetic field in x-direction

To derive the e↵ective magnetic field in x-direction, we consider a detuned Raman

transition. Two standing wave laser fields with Rabi frequencies ⌦a and ⌦b couple the

internal ground state |gi and the excited state |ei of the atoms as depicted in Fig. 4.4.

The coupling is described by the Hamiltonian

Hab =
P

k ⌦a cos (kaxk) |eihg|k + ⌦b sin (kbxk) |eihg|k + h.c., (4.8)

where ka, kb denote the wave numbers of the lasers and xk the displacement from the

equilibrium position of the atom at lattice site k. As we are in the Lamb-Dicke regime,

sin (kbxk) ⇡ ⌘b(�
�
k + �+k ) 2 and cos (kaxk) ⇡ 1. Under the condition

|⌦a| , |⌦b| ⌧ |�e|,

where �e is the detuning of the driving lasers as depicted in Fig. 4.4, the excited state

|ei can be adiabatically eliminated and we get an e↵ective Hamiltonian

H(2)
e↵ = HB =

X

k

Bx(�
+
k + ��k ), (4.9)

2Note, that sin (k
b

x
k

) ⇡ ⌘
b

(c
k

+ c†
k

) where c
k

, c†
k

are bosonic operators that describe the harmonic

oscillator states of the trapping potential. As explained before, we work in the truncated subspace of

|0i and |1i due to the anharmonicity of the trapping potential and the cooling to the ground state.

Therefore, we can write ⌘
b

(c
k

+ c†
k

) = ⌘
b

(��
k

+ �+
k

).
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|0i⌦ |ei

|0i
|1i

|0i
|1i

t0

t1

Montag, 7. Mai 12

Figure 4.5: Tunneling between neighboring lattice wells with tunnel amplitudes t0 and

t1. States with two atoms per lattice well are treated in perturbation theory in Section

4.2.4, as the on-site interaction is much larger than the tunneling amplitudes.

that describes a tunable magnetic field in x-direction where Bx is proportional to the

magnetic field strength in x-direction is given by

Bx =
⌦a⌦b⌘b
�e

.

Thus, we have derived an e↵ective magnetic field in x-direction that drives tran-

sitions between the motional states |0i and |1i (as depicted in Fig. 4.4 on the right),

while the atoms remain e↵ectively in the ground internal state |gi.

4.2.4 E↵ective spin Hamiltonian

In the Mott-Insulator regime, bosonic atoms trapped by a lattice potential with two

motional states are described by the two-band Bose-Hubbard model (see Appendix 4.B).

We denote the on-site interaction by U01, U0 and U1
3 and by t0 (t1) the amplitudes

for atoms in state |0i (|1i) to tunnel to neighboring lattice sites. We assume that the

on-site interaction U01, U0, U1 � t0, t1 such that tunneling between neighboring wells

that leads to states with two atoms in one lattice well can be treated as a perturbation

(see Fig. 4.5). Using second order perturbation theory [156] (for a detailed derivation

see Appendix 4.B), we derive an e↵ective spin Hamiltonian Hspin given by:

H(3)
e↵ = Hspin + Bz

X

k

|1ih1|k , (4.10)

3U
xx

0 is the on-site repulsion of two atoms on lattice site k, where one atom is in motional state |xi

and the other one in |x0i with x, x0 = 0, 1, respectively
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with

Hspin =
X

k

↵1(�
x
k�

x
k+1 + �yk�

y
k+1) + ↵2�

z
k�

z
k+1, (4.11)

where ↵1 = �2t0t1/U01, ↵2 = (t20 + t21)/(2U01) � t20/U0 � t21/U1, the magnetic field in

z-direction

Bz = t21/U1 � t20/U0,

and the Pauli spin matrices �xk , �yk with �xk = |0ih1|k + |1ih0|k. The Hamiltonian given

by Eqn. (4.11) is an e↵ective spin Hamiltonian that is tunable by changing the lattice

properties. If ↵1, ↵2 > 0, H(3)
e↵ corresponds to the XXZ model with a magnetic field in z-

direction. If the lattice properties can be tuned such that one of the tunneling constants

t0 or t1 ! 0, Hspin is an Ising Hamiltonian with a magnetic field in z-direction.

4.2.5 Dissipative one-dimensional spin chain in a magnetic field

In the previous Sections, we showed that optical couplings of the internal levels can be

engineered such that we get a master equation of Lindblad form [Eqn. (4.4)] and an

e↵ective magnetic field in x-direction [Eqn. (4.9)]. Then we derived the spin Hamil-

tonian given by Eqn. (4.10) in perturbation theory. Now, we would like to combine

all these results to get a one dimensional spin chain described by the XXZ, Ising or

Heisenberg Model [iii] under dissipation of Lindblad form [i] in an e↵ective magnetic

field in x-direction [ii]. This system is discussed in Section 4.1 and is described by

Eqn. (4.1). Now, we want to discuss it in more detail.

In the previous Sections we derived [i]-[iii] in separate steps for the sake of clarity.

Combining these results, one has to carefully consider the order of magnitude of each

term. Doing so, we find that the magnetic field in z-direction Bz in Eqn. (4.10) and

Stark shifts in Eqn. (4.6) can be of the same order of magnitude as ⌫. Bz and Stark

shifts lead to an e↵ective energy di↵erence between the motional states |0i and |1i given

by

⌫̃ = ⌫ + Bz + s� � s+,

where Bz is defined in Eqn. (4.11) and s�, s+ are the AC Stark shifts in Eqn. (4.6).

Therefore, combining all results, the laser detuning �r that enters in the A± has to be
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adjusted to �̃r such that �̃r � ⌫ = �r � ⌫̃ which means that �̃r = �r ± (Bz + s� � s+).

Then, the master equation combining results from Eqns. (4.4), (4.9) and (4.10)

reads

⇢̇t =
P

k A+(2�+k ⇢t�
�
k � {��k �

+
k , ⇢t}+) + A�(2��k ⇢t�

+
k � {�+k �

�
k , ⇢t}+)

�i[H, ⇢t], (4.12)

where the rates A± are modified

A± = ⌦2
e↵⌘

2
1

(�+ �)

(�+ �)2 + (�̃r ± ⌫)2
. (4.13)

and the Hamiltonian part of the master equation is given by

H = Hspin + HB + ⌫̃
P

k |1ih1|k , (4.14)

where Hspin is given by Eqn. (4.11) and HB by Eqn. (4.9). The magnetic field in

z-direction and Stark shifts have been included in ⌫̃.

For �̃r ⇡ ⌫, as shown before, decay dominates over heating:

A� � A+.

Then, the master equation has only decaying terms. Eqn. (4.11) describes a dissipative

XXZ spin chain in a magnetic field with both x and z components. However, only

Bx is fully tunable, while Bz is large (compared to Bx, A±) and required to be so by

the conditions for adiabatic elimination. In order to obtain an e↵ective dissipative

XXZ chain without any field in z-direction, we transform to a frame rotating with

⌫̃. However, in the rotating frame, HB becomes time dependent. To obtain a time

independent field in x-direction, the detuned Raman pulses that lead to the e↵ective

magnetic field in x-direction have to be chosen time dependent, adapated to the rotating

frame. This yields a time independent transversal magnetic field, and the master

equation in the rotating frame is given by

⇢̇t =
P

k A�(2��k ⇢t�
+
k � {�+k �

�
k , ⇢t}+) � i [Hspin + HB, ⇢t] . (4.15)

It corresponds to the master equation given by Eqn. (4.1). In summary we have shown

how to implement a one-dimensional spin chain with nearest-neighbor interaction de-

scribed by the XXZ or the Ising model and a tunable e↵ective magnetic field in x-

direction under dissipation.
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4.3 Conclusions

We have investigated one-dimensional spin chains in a transverse magnetic field under

dissipation. A physical system that is well suited for the simulation of di↵erent spin

models are cold atoms in optical lattices. We have shown, that in the Mott-insulator

regime with one atom per lattice well, spin Hamiltonians, such as the XXZ model, the

Ising model or the Heisenberg model, can be realized. Optical driving of internal atomic

states allows the realization of engineered dissipation and a transversal magnetic field.

This system is an ideal testbed for studying steady state dynamics of dissipative spin

models. This will be discussed in the next chapter.

4.A Derivation of e↵ective dissipative master equation

The internal levels of the atom that we consider are |gi, |ri, |ei. Adiabatically elimi-

nating the excited state |ei as discussed in Section 4.2.2, we get an e↵ective two-level

system |gi and |ri that is coupled with the e↵ective Rabi frequency ⌦e↵ as depicted in

Fig. 4.1.

In the following, we derive in detail the master equation given by Eqn. (4.4) in

Section 4.2.2. The internal levels of the atom that we consider are |gi, |ri, |ei, as

depicted in the upper part of Fig. 4.1. The states |gi-|ri are coupled by a detuned

Raman transition via the excited state |ei by two standing wave laser fields. The

coupling is described by the Hamiltonians

Hl1 =
X

k

⌦1 cos (k1xk)(|eihg|k + h.c.), (4.16)

and

Hl2 =
X

k

⌦2 sin (k2xk)(|rihg|k + h.c.), (4.17)

where ⌦1 and ⌦2 are the Rabi frequencies of the two lasers and k1 and k2 are the

wave numbers of the lasers and k denotes the lattice site. xk is the displacement

from the equilibrium position of the atom at lattice site k. The phase of the lasers is

for simplicity chosen such that cos (k1(xk + x0
k)) = cos (k1xk) and cos (k2(xk + x0

k)) =

sin (k2xk) where x0
k the equilibrium position of the atom at lattice site k. Choosing
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di↵erent phases of the lasers makes A± in Eqn. (4.5) dependent on the lattice site k.

Adiabatic elimination of the excited state |ei leads to an e↵ective coupling

H1 =
X

k

⌦e↵⌘1(�
�
k + �+k )(|rihg| + h.c.), (4.18)

with ⌦e↵ = ⌦1⌦2/�re where �re is the detuning with respect to |ei and ⌘1 is the Lamb-

Dicke parameter. Here, we have expressed the deviation from equilibrium position,

xk, in terms of harmonic oscillator operators truncated to the two lowest lying levels

sin(k1xk) ⇡ ⌘1(�
�
k + �+k ) where �+k = |1ih0|k and ��k = |0ih1|k and cos (k2xk) ⇡ 1.

The e↵ective coupling with Rabi frequency ⌦e↵ between states |ri and |gi is shown in

Fig. 4.1.

Coupling the state |ri to the excited state |ei with a third standing wave laser

field with Rabi frequency ⌦er, depicted with a red arrow in Fig. 4.1, we can derive an

e↵ective two-level system |gi-|ri with designable decay rates as done in [157]. Here,

we quickly review this result. Following [157], the upper level |ei can be adiabatically

eliminated if the saturation parameter for the transition |ri and |ei is small

sr,e =
(⌦re/2)2

�2re + (�er + �eg)2/4
⌧ 1. (4.19)

According to [157], the e↵ective detuning and the e↵ective decay rates are given by:

�r = �gr � �re
(⌦re/2)2

[(�eg + �er)/2]2 + �2re
, (4.20)

� =
(⌦re/2)2

[(�eg + �er)/2]2 + �2re
�eg, (4.21)

� =
(⌦re/2)2

[(�eg + �er)/2]2 + �2re

�eg + �er
2

, (4.22)

see also the lower part of Fig. 4.1. The e↵ective two-level system |gi-|ri with the

e↵ective decay rates �, � and the e↵ective detuning �r is the starting point of the

following discussion. The full Hamiltonian describing the system is given by

Hfull = H1 + H0, (4.23)
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where H1 describes the atom-light interaction given by Eqn. (4.18) and H0 defines the

energies of the system

H0 =
P

k �r |rihr|k + ⌫ |1ih1|k . (4.24)

The e↵ective dynamics of the system can be derived considering contributions to the

Liouvillian up to second order in a perturbative approach. The full system is described

by a Liouvillian given by:

⇢̇(t) = (L0 + L1)⇢(t), (4.25)

where L0 is the unperturbed part of the Liouvillian and L1 is the perturbative part.

The unperturbed part of the Liouvillian is described by

L0⇢(t) =
P

k �
⇣
2 |gihr|k ⇢(t) |rihg|k � {|rihr|k , ⇢(t)}+

⌘

+�
⇣
2 |rihr|k ⇢(t) |rihr|k � {|rihr|k , ⇢(t)}+

⌘
� i [H0, ⇢(t)] . (4.26)

The first part of the Liouvillian is the decay part with the e↵ective decay rate � from

state |ri to |gi and the dephasing rate �. The perturbative part of the Liouvillian is

given by

L1⇢(t) = �i [H1, ⇢(t)] , (4.27)

where H1 is given by Eqn. (4.18) and describes the interaction of the two-level system

with the e↵ective laser field. Using a perturbative approach where L1⇢(t) is treated as

a perturbation, we derive an e↵ective Liouvillian in the subspace of the ground internal

state and the ground and first excited motional states, |gihg| ⌦ (|0ih0| + |1ih1|). The

projection onto this subspace reads

P⇢̇(t) = PLP⇢(t) + PLQ⇢(t), (4.28)

where P⇢ = |gihg| ⌦ (|0ih0| + |1ih1|)⇢ |gihg| ⌦ (|0ih0| + |1ih1|) and Q = 1 � P. Projecting

onto the subspace we want to eliminate we get

Q⇢̇(t) = QL⇢(t). (4.29)

In the following, we integrate Eqn. (4.29) to get the time evolution of the density

matrix in the fast space, Q⇢(t). We insert the result in Eqn. (4.28) to get an equation
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of motion for the density matrix in the slow space. Therefore, we first go into the

interaction picture where the density matrix is given by ⇢̃(t) = e�L0t⇢(t). The equation

of motion in the fast space reads

Q ˙̃⇢(t) = QWI(t)⇢̃(t), (4.30)

with WI(t) = eL0tL1eL0t. Solving this equation by iteration [158] we get

Q⇢(t) = QeL0t
hR t

0 dsWI(s)P⇢̃(0) +
R t
0 ds1

R s1
0 ds2WI(s1)WI(s2)P⇢̃(0)

i
. (4.31)

At time t = 0, ⇢̃(0)=⇢(0) and we assume that at t = 0, the population is in the ground

state, i.e., ⇢̃(0) = P⇢̃(0). Higher order integrals are neglected making the assumption

that

�, �, |�r|, ⌫ � |⌦e↵| . (4.32)

We denote the first integrals in Eqn. (4.31) by R1(t) and the second integral by R2(t)

such that

Q⇢(t) = R1(t) + R2(t). (4.33)

Inserting in Eqn. (4.28) leads to

P⇢̇(t) = PLP⇢(t) + PL0R1(t) + PL1R1(t) + PL0R2(t) + PL1R2(t). (4.34)

The term PL0R1(t) = 0, and PL1R2(t) is a third order term and can be neglected. Ne-

glecting terms rotating with exp(±i⌫t) we get the master equation given by Eqn. (4.4)

where AC Stark shifts given by

HS = s��
+
k �

�
k + s+�

�
k �

+
k , (4.35)

where

s± = ⌦2
e↵⌘

2
1

(�r ± ⌫)

(�+ �)2 + (�r ± ⌫)2
.

4.B Derivation of the spin Hamiltonian

In the Mott-Insulator regime, bosonic atoms trapped by a lattice potential with two

motional states are described by the two-band Bose-Hubbard model

HBH = H0 + Ht. (4.36)
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Here, the sum runs over the N sites k of the optical lattice. The unpertubed Hamilto-

nian H0 is given by

H0 =
P

k

⇣
U01
2 n̂k0n̂k1 +

P
x=0,1

U
xx

2 n̂kx(n̂kx � 1) + ⌫ |1ih1|k
⌘

,

where Uxx0 is the on-site repulsion of two atoms on lattice site k, where one atom is in

motional state |xi and the other one in |x0i with x, x0 = 0, 1, respectively. The operator

n̂kx = |xihx|k counts the number of atoms at lattice site k in the motional states x = 0, 1

and ⌫ is the energy di↵erence between ground and first excited motional states. We

assume the system to be prepared in the ground state |0i. Due to the anharmonicity

of the potential, we do not leave the subspace of n = 0 and n = 1 excitations.

The perturbative part of the Hamiltonian describes the tunneling between neigh-

boring lattice sites and is given by

Ht =
X

k

t0c
†
k,0ck+1,0 + t1c

†
k,1ck+1,1. (4.37)

Here, the operators ckx with x = 0, 1 are bosonic destruction operators for atoms in

the two motional states |0i and |1i at lattice site k. t0(t1) are the tunneling amplitudes

from state |0i (|1i) at lattice site k to state |0i (|1i) at k + 1.

As the on-site interaction Uxx0 � t0, t1, tunneling between neighboring wells that

leads to states with two atoms in one lattice well can be treated as a perturbation.

For that, we consider two neighboring lattice sites k and k + 1 and write the e↵ective

Hamiltonian in the basis of eigenvectors of H0, |xk, yk+1i, where for example |0k, 1k+1i

is the notation for the state with one particle in well k in state |0i, and one particle

in well k + 1 in state |1i. In perturbation theory [156], the second-order e↵ective

Hamiltonian can be evaluated in the following way:

hxk, yk+1| H(3)
e↵

��x0
k, y

0
k+1

↵
= 1

2

P
� hxk, yk+1| Ht |�i 1

E0 h�| Ht

��x0
k, y

0
k+1

↵
.

where
1

E0 =
1

Exy � E�
+

1

Ex0y0 � E�
,

and |�i are eigenstates of H0 with two particles in one well (and no particle in the other

one). Exy and E� are the unperturbed energies hxk, yk+1| H0 |xk, yk+1i, h�| H0 |�i etc.
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Evaluating Eqn. (4.38) leads to the e↵ective spin Hamiltonian H(3)
e↵ is given by:

H(3)
e↵ = Hspin + Bz

X

k

|1ih1|k . (4.38)

with

Hspin =
X

k

↵1(�
x
k�

x
k+1 + �yk�

y
k+1) + ↵2�

z
k�

z
k+1 (4.39)

Here

↵1 = �2t0t1/U01,

↵2 = (t20 + t21)/(2U01) � t20/U0 � t21/U1,

the magnetic field in z-direction

Bz = t21/U1 � t20/U0,

and the Pauli spin matrices �xk , �yk . Thus, we have derived an e↵ective XXZ-spin

Hamiltonian with a magnetic field in z-direction.



Chapter 5

Steady state dynamics:

Discontinuities and state

preparation

We study the steady state properties of local one-dimensional spin Hamil-

tonians under di↵erent types of dissipation. For small spin chains and weak

dissipation, steady state expectation values show pronounced peaks at cer-

tain critical system parameters. We find that in the limit of weak dissi-

pation, these peaks indicate discontinuities in the steady state expectation

values. We show how to use this e↵ect to dissipatively probe the Hamil-

tonian’s spectrum and derive a condition that elucidates the occurence of

discontinuities in the steady state expectation values. We moreover study

state preparation with dissipative spin systems and show, that for certain

spin Hamiltonians under dissipation, fully entangled unique steady states

of spin chains of N atoms can be prepared. Then, we show how collective

dissipation can be realized with cold atoms in an optical cavity.
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5.1 Introduction

Dissipation is a phenomenon naturally appearing in any realistic quantum system in-

teracting with its surroundings. While it is usually considered as an obstacle, in recent

years new approaches have been proposed harnessing dissipation for quantum state

engineering [14, 15, 16, 20, 17] and quantum information processing [17, 18]. Moreover,

the study of the steady state phase diagram of open quantum systems has turned into

a fruitful direction itself [159, 160, 161, 162, 163, 164].

In the previous Chapter, we have shown that ultra-cold bosonic atoms in optical

lattices are a good candidate for the realization of one-dimensional spin chains un-

der engineerable dissipation. This system enables experimental studies of steady state

properties of one-dimensional dissipative spin chains. Here, we study in more general-

ity, independent of the physical realization, one-dimensional spin Hamiltonians under

dissipation. We highlight a peculiar feature of the steady state phase diagram for small

spin chains: in the limit of weak dissipation, abrupt changes of steady state expectation

values for certain critical values of the system parameters are observed. Surprisingly,

these critical values are related to degeneracy properties of the system’s Hamiltonian

and allow for dissipative probing of the spectrum of the Hamiltonian. Moreover, we

study di↵erent classes of spin Hamiltonians under dissipation that enable engineering

of interesting steady states. We show that for certain spin Hamiltonians, the system

is dissipatively driven into (pure) fully entangled unique steady states. Here, we con-

sider also collective dissipation of spins that are all coupled to one single mode, and

show, that such a setup can be realized with a Bose-Einstein Condensates in an op-

tical cavity. Finally, we derive the master equation for a laser-driven chain of atoms

trapped with sub-wavelength distances, which might be realized with plasmonic struc-

tures or atoms encapsulated in a carbon nanotube. In the regime of sub-wavelength

interatomic distances, long-range interactions like the electrical dipole-dipole and the

magnetic dipole-dipole interaction (in case of a magnetic moment of the atomic levels)

play a significant role. Moreover, such systems are potential candidates for studying

strongly coupled spin systems as well as collective e↵ects such as, e.g., Dicke superra-

diance [56].
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5.1.1 Reader’s guide

In Section 5.2 we discuss numerical studies of one-dimensional spin chains with few

atoms. We find that the steady state expectation values show pronounced peaks that

can be related to degeneracy properties of the system’s Hamiltonian. In the limit of

weak dissipation, the peaks indicate discontinuities in the steady state expectation val-

ues of the spin operators. In Section 5.2.2 we derive a general condition that elucidates

the discontinuous behavior of the steady state expectation values at degeneracy points

of the Hamiltonian. To get a better understanding of this condition, we study it in more

detail for Ising Hamiltonians in Section 5.2.3. In Section 5.3 we investigate state engi-

neering with dissipative spin chains. We study a general family of spin Hamiltonians

under collective dissipation. We show that for certain spin Hamiltonians, the system

is dissipatively driven into (pure) fully entangled unique steady states. In Section 5.4,

we show how collective dissipation can be realized with cold atoms that are coupled to

one single mode of an optical cavity. In Section 5.5 we derive a master equation for

a laser-driven chain of atoms trapped with sub-wavelength distances which might be

realized with plasmonic structures or atoms encapsulated in a carbon nanotube.

5.2 Discontinuities in the steady state dynamics of a gen-

eral class of one-dimensional spin models under dissi-

pation

We study the steady state behavior of short spin chains under dissipation in a magnetic

field in x-direction with numerical simulations. In the previous Chapter, we discussed

how to realize the XXZ model in a transversal magnetic field under engineerable dissi-

pation with cold atoms in optical lattices. Studying the steady state properties of this

system we find peculiar features. We consider the XXZ model with 4 spins as given by

Eqn. (4.11) in the previous Chapter, where we chose ↵1 = 1
4↵2. We find that the steady

state of this system shows a surprising behavior: Changing the external magnetic field

in x-direction, peaks occur in the steady state expectation values of the collective spin

operators hJxi and hJzi (where Jx/z =
P

k Jx/z
k are collective spin operators) for weak
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dissipation, see Fig. 5.1. Here, we have considered dissipation as in Eqn. (4.15) with

equal dissipation strength on each spin. We find that decreasing the strength of the

dissipation the peaks become more narrow. The height of the peaks, however, does not

change. For small � we observe very narrow peaks. This indicates a discontinuity in

the steady state expectation values of the spin operators. We find, that these narrow

peaks appear exactly at degeneracy points of the spectrum of the Hamiltonian.

In the following, we study in more generality, independent of a physical implemen-

tation, local one dimensional spin Hamiltonians under dissipation of di↵erent kinds.

We present a condition that elucidates the discontinuous behavior of the steady state

at degeneracy points of the Hamiltonian. Then, we study this condition in more detail

for Ising Hamiltonians.

5.2.1 Numerical studies of discontinuous behavior in the steady state

We numerically simulate short spin chains. First, we study the one dimensional Ising

model, described by the Hamiltonian

H = Hzz + Hb (5.1)

with

Hzz = ↵3

X

k

Jz
kJz

k+1, (5.2)

and

Hb = Bx

X

k

Jx
k , (5.3)

subject to local or collective dissipation. The master equation describing the full system

with local dissipation is given by

⇢̇t =
X

k

�k
�
2J�

k ⇢tJ
+
k � {J+

k J�
k , ⇢t}+

�
� i[H, ⇢t], (5.4)

where J+
k and J�

k are spin raising and lowering operators for the kth spin in a chain.

The spin chain we consider here has open boundary conditions.

Changing the magnetic field Bx, we find that the steady state expectation values

of the spin operators hJxi and hJzi change abruptly for weak dissipation, see Fig. 5.2.
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Figure 5.1: XXZ model with 4 spins, ↵1 = 1
4↵2 and open boundary conditions under

local dissipation. Upper Figure: Steady state expectation value hJxi plotted versus the

magnetic field Bx/↵2. Lower Figure: Spectrum of the XXZ chain in the magnetic field

Bx plotted versus Bx/↵2.

Here, we have considered dissipation as in Eqn. (5.4) with equal dissipation strength

on each spin, �k = �. Decreasing the strength of the dissipation, i.e., decreasing �,

the peaks narrow at constant height. For � ! 0, we observe very narrow peaks, which

indicate discontinuities in the steady state expectation values of the spin operators.

We find, that these narrow peaks appear exactly at degeneracy points of the spectrum

of the Hamiltonian. I.e., to every peak for � ! 0 that is found for a given value of

x0 = Bx, at least one pair of degenerate eigenvalues �1,�2 of the local spin Hamiltonian

Hzz can be found, i.e., �1(x0) = �2(x0) at x0. This e↵ect can be observed for di↵erent

kinds of spin Hamiltonians such as for example the XXZ model (see Fig. 5.1), both for

periodic and open boundary conditions. Moreover, changing the type of dissipation,

the observed behavior does not change. Collective dissipation1 describes the dynamics

1In Chapter 5.4 we show how collective dissipation can be experimentally realized with cold atoms

in an optical cavity.
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Figure 5.2: Ising model with 4 spins with open boundary conditions under local dissi-

pation of form given by Eqn. (5.4). Upper figure: Steady state expectation value hJxi

plotted versus the magnetic field Bx/↵3. Peaks are observed that narrow for decreas-

ing the dissipation strength. Lower Figure: Spectrum of the Ising Hamiltonian in a

magnetic field Bx plotted versus Bx/↵3. Peaks in the steady state expectation value

(upper figure) appear at crossing points of the Hamiltonian that are marked with black

circles.

of spin all coupled to the same field mode and is decribed by the master equation

⇢̇t = �(2J�⇢tJ
+ � {J+J�, ⇢t}+) � i[H, ⇢t] (5.5)

where J± =
P

k J±
k are collective spin operators. It also leads to discontinuous behavior

in the steady state expectation values as shown in Fig. 5.3 for the Ising model. Choosing

a ”inhomogeneous” dissipation which is of the form of the dissipative part in Eqn. (5.4),

where now the strengths of the dissipation �k are di↵erent for each spin, peaks can be

observed for an even larger class of spin Hamiltonians: For �k = �, and H = HH + Hb,

where HH is the Heisenberg spin Hamiltonian, we do not observe any peaks. If we,

however, choose di↵erent dissipation strengths �k for each spin, we find peaks at the

degeneracy points of the Hamiltonian, as can be seen in Fig. 5.4.
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Figure 5.3: Ising model with 6 spins with periodic boundary conditions under collective

dissipation of the form given by Eqn. (5.5) in the translation and reflexion symmetric

subspace T = R = 1. Upper figure: Steady state expectation value hJxi plotted versus

the magnetic field Bx/↵3. Lower Figure: Spectrum of the Ising Hamiltonian in the

magnetic field Bx plotted versus Bx/↵3.

5.2.2 General condition for discontinuities in the steady state

Since the Liouvillian depends smoothly on the system parameters, the observed discon-

tinuities must be related to degeneracies in the spectrum of L. As we shall see, in the

weak dissipation limit they are directly related to degeneracy points of the Hamiltonian.

We consider a system described by the master equation

⇢̇(t) = L⇢ ⌘ [L0(x) + �L1] ⇢(t), (5.6)

where

L0(x)(⇢) = �i[H(x), ⇢]

with a Hamiltonian H(x) depending (analytically) on a parameter x. For simplicity,

we consider the case that H0(x) is non-degenerate for x 6= x0. The term L1 contains

dissipative terms and is independent of x. We are interested in the limit of weak

dissipation � ! 0 and in the change of the steady state at the degeneracy point x = x0.
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Figure 5.4: Heisenberg model with 4 spins with open boundary conditions under local

dissipation as given by Eqn. (5.4) with di↵erent dissipation strengths �k. Upper Figure:

Steady state expectation value hJxi plotted versus Bx/↵3. Lower Figure: Spectrum of

the Heisenberg Hamiltonian in a transverse magnetic field Bx, plotted versus Bx/↵3.

The steady state ⇢ss(x) is determined by L(x)⇢ss(x) = 0 and can be determined

perturbatively. The kernel of L0(x) is highly degenerate, being spanned by all eigen-

projectors |�i(x)ih�i(x)| of the (non-degenerate) H0(x). This degeneracy is lifted by L1

and the steady state for � ! 0 is for x 6= x0 given by

PD(x)L1P
D(x)⇢ss(x) = 0, (5.7)

where

PD(x)⇢ =
X

i

|�i(x)ih�i(x)| ⇢ |�i(x)ih�i(x)| . (5.8)

The possibility of discontinuous behavior of ⇢ss(x) at x = x0 arises from the enlarge-

ment of the kernel of L0(x) at this point, since now also coherences between degenerate

eigenvectors become stationary. We denote by P� the projector on these additional

elements in the kernel of L0(x0) 2. As we show in Appendix 5.A, a discontinuity

2Here we use that if H(x) is a holomorphic function of x (we are typically concerned with linear

dependence on x only) the eigenvectors of H(x) can be chosen as holomorphic (and thus continuous)
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⇢ss(x0) 6= limx!x0 ⇢ss(x) arises if

P�L1 lim
x!x0

⇢ss(x) 6= 0, (5.9)

which means that L1 couples the steady state to the newly available subspace P� in

the kernel of L0. For simplicity, we made the assumption that the Hamiltonian is

nondegenerate for x 6= x0. If the Hamiltonian does have degeneracies outside x0, the

argumentation follows identical lines, as also in this case, L1 can couple the steady

state to a newly available subspace P�.

Note, that in Figs. 5.1 - 5.4, a large feature appears in the steady state expectation

value hJxi around Bx = 0. It narrows for decreasing �, however, for the parameters

used for � it is not a sharp peak. For all spin models considered, the degeneracy

of their respective Hamiltonian is very high at Bx = 0 and is lifted initially only very

weakly by Bx. The above argumentation relies on � being much smaller than all energy

di↵erences. Peaks can be only resolved if � is small compared to the energy di↵erences

of eigenvalues around their degeneracy point x0.

5.2.3 Steady state behavior for Ising Hamiltonians

To get a better insight into the condition given by Eqn. (5.9) we now specialize to

the Ising model under collective dissipation given by Eqn. (5.5). Then we see that

the steady state apart from the degeneracy points and the condition for discontinuity

become very simple. For a detailed derivation of what follows, see Appendix 5.A.

The Hamiltonian in Eqn. (5.1) assuming periodic boundary conditions is in general

degenerate due to translational and reflection symmetry. To obtain a non-degenerate H,

we restrict our consideration to a specific subspace with eigenvalue 1 for the translation

operator T and the reflection operator R 3. Note that the Hamiltonian is also symmetric

under the spin-flip operation F = �⌦N
x , i.e., FHF † = H. Using the properties of L1

and F -invariance of H, we find that if the system has a unique steady state, it is, in

functions of x 2 [165]. Then lim
x!x0 P

D(x0) is well defined and we can define P� as the di↵erence

of the projector on the kernel of L0(x0) and lim
x!x0 P

D(x0).
3Initializing a system in this subspace it will remain there since both L0 and L1 respect these

symmetries.
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the limit of weak dissipation, given by the maximally mixed state / : plugging into

Eqn. (5.7) we obtain PDL1( ) =
P

i |�i(x)ih�i(x)| Jz |�i(x)ih�i(x)| and flip invariance

of H implies h�i(x)| Jz |�i(x)i = 0 for the eigenstates of a non-degenerate Hamiltonian

H (see Appendix 5.A).

Thus if the steady state is unique, it is always maximally mixed outside degen-

eracy points and we see a discontinuity at x = x0 if for the degenerate eigenstates

|�1(x0)i , |�2(x0)i we have

h�1| Jz |�2i 6= 0. (5.10)

This can be checked to hold for the points at which peaks are observed in Fig. 5.3.

For the Ising model in a transverse magnetic field, for larger N the peaks decrease

in height, and disappear in the limit N �! 1. The spectrum for the Ising model

in a transverse field is known analytically [166]. For large N , the spectrum gets very

dense such that degeneracies in the Hamiltonian are so close together that � can not

be chosen smaller that the minimal energy di↵erence between di↵erent eigenvalues.

5.3 State preparation with dissipative spin models

In the previous Sections, we studied discontinuous behavior in the steady state proper-

ties of spin Hamiltonians subject to individual or collective dissipation. In this Section

we study general spin Hamiltonians under collective dissipation. We aim at finding

systems which are dissipatively driven into (pure) steady states that show interesting

behavior such as entanglement. Our main concept is to search for pure steady states

that are eigenstates of the respective spin Hamiltonian and at the same time dark states

of the dissipative part of the Liouvillian. Under this aspect, we first study spin Hamil-

tonians with nearest-neighbor interaction and show, that for short spin systems, inter-

esting entangled states can be prepared. In Subsection 5.3.2 we include next-nearest

neighbor interaction and study state preparation with the Majumdar-Gosh Hamilto-

nian subject to collective dissipation. We find, that in a steplike magnetic field, fully

entangled unique steady states of N spins can be prepared.
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5.3.1 Fully entangled steady states with short spin chains

We study a spin Hamiltonian with nearest-neighbor interaction given by

H =
X

i

↵1J
x
i Jx

i+1 + ↵2J
y
i Jy

i+1 + ↵3J
z
i Jz

i+1. (5.11)

We assume that the spin system is subject to collective dissipation described by

L⇢t = �(2J�⇢tJ
+ � {J+J�, ⇢t}+) � i[H, ⇢t]. (5.12)

Note that it corresponds to Eqn. (5.5) in the previous Sections. As explained before,

J+ and J� are collective spin raising and lowering operators.

We investigate whether for certain choices of the parameters in the spin Hamiltonian

given by Eqn. (5.11), dissipation drives the spin system into interesting entangled states.

Thus, we search for pure steady states ⇢ss = | ssih ss| fulfilling L⇢ss = 0. Note that we

did not extend our search to mixed steady states. We explore the parameter space of

↵1, ↵2 and ↵3 in the Hamiltonian given by Eqn. (5.11). We calculate the intersection

of the set of vectors in the Kernel of the dissipative part of the master equation

Ldiss = �(2J�⇢tJ
+ � {J+J�, ⇢t}+) (5.13)

and the set of states that are eigenstates of the Hamiltonian.

In the following, we will discuss for which families of Hamiltonians we find pure

steady states that are entangled. We start with a system with two spins. We find

that for ↵1 = cos (✓), ↵2 = sin (✓) and ↵3 = � cos (✓) � sin (✓) in Eqn. (5.11) with

✓ 6= 1
4⇡ + n⇡, the Singlet state | iss = 1p

2
|S12i is a unique pure steady state. Here,

|Siji is defined by

|Siji = |"i#ji � |#i"ji . (5.14)

For a spin chain of four spins, we find that the steady state is given by

| iss =
1

2
p

3
(2 |S13i |S24i � |S14i |S23i) (5.15)

and for six spins, it is given by

| iss =
1

2
p

8
(2 |S16i |S23i |S45i + |S13i |S25i |S46i + |S14i |S25i |S36i . (5.16)
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For eight and more spins, however, we do not find any pure unique steady states within

this family of Hamiltonians. We neither find any other family of Hamiltonians with ↵1,

↵2, ↵3 in Eqn. (5.11) that leads to interesting unique pure entangled steady states.

We do find other families of Hamiltonians described by Eqn. (5.11) (for more than

eight spins) with pure entangled states, however, they are not unique and the system

is not so interesting for state preparation as it can always be driven into the (not so

interesting) state where all spins are down | i = |### .. #i.

5.3.2 Fully entangled steady states with N spins

Studying spin Hamiltonians with nearest-neighbor interaction under dissipation, we

did find entangled unique pure steady states, however, only for spin chains with less

than eight atoms. In the following, we show, that if we consider next-nearest neighbor

interaction, fully entangled unique steady states of a spin chain of N spins can be

generated.

We consider the Majumdar-Ghosh model [167], which is an extension of the one-

dimensional Heisenberg spin model. An extra interaction is added that couples next-

nearest neighbor spins at half strength as before.

The Majumdar-Ghosh Hamiltonian [167] with nearest-neighbor and next-nearest

neighbor interaction is given by

H =
NX

k=1

Hk
nn + Hk

nnn (5.17)

with the Hamiltonian Hnn describing the nearest-neighbor interaction:

Hk
nn = ↵1J

x
k Jx

k+1 + ↵2J
y
kJy

k+1 + ↵3J
z
kJz

k+1 (5.18)

and the next-nearest neighbor interaction

Hk
nnn = ↵0

1J
x
k Jx

k+2 + ↵0
2J

y
kJy

k+2 + ↵0
3J

z
kJz

k+2 (5.19)

where ↵0
1 = 1

2↵1, ↵0
2 = 1

2↵2, ↵0
3 = 1

2↵3. To this model, we add a steplike magnetic field

in x-direction

Bx =

N/2X

k=1

(B + k�B)(Jx
2k�1 + Jx

2k), (5.20)
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such that two neighboring atoms see the same magnetic field strength. We numerically

find that the Liouvillian given by Eqn. (5.12) with H = Hnn + Hnnn + Bx describing

a spin chain of N atoms in an external magnetic field has a fully entangled, unique

steady state that fulfills L⇢ss = 0 given by

| ssi = |S12i |S34i .. |SN�1,N i , (5.21)

for a spin chain of N atoms. | ssi is in the kernel of the dissipative part of the master

equation given by Eqn. (5.13), and an eigenstate of the Hamiltonian H = Hnn +

Hnnn + Bx. This can be proven analytically: In Appendix 5.B we show that | ssi is an

eigenstate of the Hamiltonian H.

5.4 Collective dissipation: ultracold atoms coupled to a

single cavity mode

In this Section we give an example for a system with collective dissipation as described

by Eqn. (5.5). The system we consider are ultracold atoms in an optical cavity [54],

such as a BEC coupled to one single mode of the cavity and pumped with a standig-

wave laser field as in T. Esslingers experiments [55]. We assume the atom to have three

internal states, |g1i, |g2i, |ei where the states |g1i-|ei are coupled by the cavity field

and |g2i-|ei is coupled by the standing wave pump laser. Both optical couplings are far

detuned from resonance. The Hamiltonian is given by

H =
PN

k=1⌦c(~rk)(a† |g1ihe|k + h.c.) + ⌦l(~rk)(e�i!
l

t |g2ihe|k + h.c.)

+!g2 |g2ihg2|k + !e |eihe|k + !ca†a. (5.22)

Here, the sum runs over N atoms and the frequencies of laser and cavity fields are

denoted by !l and !c, respectively, and ~rk is the position vector of the kth atom.

⌦l(~rk) = ⌦l cos (~kl · ~rk) and ⌦c(~rk) = ⌦c cos (~kc · ~rk) denote the position dependent

Rabi frequencies of laser and cavity field, where ~kl, ~kc are the wave vectors of the laser

field and cavity field, respectively. !e and !g1/2 are the energies of the level (with

~ = 1). In a frame rotating with the laser frequency U = exp [�i!lt(a†a + |eihe|k)] the
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Hamiltonian is time-independent and given by

H =
PN

k=1⌦c(~rk)
�
a† |g1ihe|k + h.c.

�
+ ⌦l(~rk) (|g2ihe|k + h.c.)

+�e |eihe|k + !g2 |g2ihg2|k + �ca†a, (5.23)

where �c = !c � !l and �e = !e � !l. After adiabatic elimination of the excited state

|ei, the e↵ective Hamiltonian reads

He↵ =
PN

k=1 g(~rk)
�
a�+k + a†��k

�
+ !g2 |g2ihg2|k

+�ca†a � ⌦
l

(~r
k

)2

�
e

|g2ihg2|k � ⌦
c

(~r
k

)2a†a
�

e

|g1ihg1|k , (5.24)

where the coupling g(~rk) is given by g(~rk) = �⌦
l

(~r
k

)⌦
c

(~r
k

)
�

e

and �+k = |g2ihg1|k. For

kl = kc and ~kc · ~rk = 2⇡, the coupling g(~rk) is constant.

The full system including the decay of the cavity is described by the master equation

⇢̇(t) = �i[He↵, ⇢(t)] + (2a⇢(t)a† � a†a⇢(t) � ⇢(t)a†a) (5.25)

where He↵ is the Hamiltonian given by Eqn. (5.24) and  is the cavity decay constant.

We assume that we are in the bad cavity limit with  � g such that the cav-

ity mode can be adiabatically eliminated. This can be done as follows: Projecting

Eqn. (5.25) onto the subspace of 0 and 1 photons, we get four coupled di↵erential

equations h0| ⇢̇(t) |0i, h0| ⇢̇(t) |1i, h1| ⇢̇(t) |0i and h1| ⇢̇(t) |1i. Setting h0| ˙⇢(t) |1i = 0,

h1| ˙⇢(t) |0i = 0 and h1| ˙⇢(t) |1i = 0 as they are fast decaying and neglecting all terms of

O
⇣

g2

2

⌘
and higher, we get

h0| ⇢(t) |1i ⇡
NX

i

�ig h0| ⇢(t) |0i�+i
� i�c

, (5.26)

h1| ⇢(t) |1i ⇡
NX

i

ig
�
h0| ⇢(t) |1i��i � h0| ⇢(t) |1i�+i

�

2
(5.27)

and h1| ⇢(t) |0i = h0| ⇢(t) |1i⇤. Inserting these equations in h0| ⇢̇(t) |0i we get

⇢̇(t)00 =
PN

k=1 �e↵
�
2��k ⇢00�

+
k � {�+k �

�
k , ⇢00}+)

�

�i
h⇣
!g2 � ⌦2

l

�
e

⌘
|g2ihg2|k , ⇢00

i
(5.28)
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where ⇢00 = h0| ⇢(t) |0i and

�e↵ =
g2

2 + �2c

is the strength of the collective dissipation described by the first two terms in Eqn. (5.28).

Eqn. (5.28) can be written in terms of collective operators

⇢̇(t)00 = �e↵ (2J�⇢00J+ � {J+J�, ⇢00}+) � i
h⇣
!g2 � ⌦2

l

�
e

⌘
|g2ihg2|k , ⇢00

i
, (5.29)

where J� =
PN

k=1 �
�
k . Therefore, we have shown, that atoms that are all coupled to

one single rapidly decaying mode of the light field, e.g. in a cavity, undergo collective

dissipation. Thus, we have given an example for the physical realization of collective

dissipation described by Eqns. (5.5) and (5.12) in the previous Sections.

5.5 Derivation of the master equation for sub-wavelength

atomic chains

Here we derive a master equation for a chain of atoms that are trapped in a sub-

wavelength region. The internal levels of the atom are driven by an (optical) field

and are subject to spontaneous emission. We assume the size of the atomic chain

to be smaller than the wavelength of the driving (optical) field. As derived in the

following, in this regime, long-range interactions like the electrical dipole-dipole and

the magnetic dipole-dipole interaction (in case of a magnetic moment of the atomic

levels) play a significant role. Moreover, such systems are potential candidates for

studying collective e↵ects such as, e.g., Dicke superradiance [56], where the atoms

interact with each other through the radiation field. Trapping particles on distances

that are much smaller than an optical wavelength, i.e., on the order of ångströms, is

di�cult. Optical lattices for example are not suited for this approach as the distances

between neighboring atoms trapped in the lattice potential are on the order of an optical

wavelength. Possible systems for trapping particles in the sub-wavelength regime might

be plasmonic structures. Proposals exist to optically trap an atom via the strong near-

field generated by a sharp metallic nanotip [168] and sub-wavelength patterning of the

optical near-field has been reported [169].
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Figure 5.5: Atoms encapsulated in a carbon nanotube. For a TEM picture see [170].

Another potential system for the purpose of sub-wavelength trapping might be single

atoms encapsulated in single walled carbon nanotubes (see Fig. 5.5). Encapsulation of

single atoms in carbon nanotubes has been realised in various groups with atoms such

as Cs, Li, K, P, O, Fe, Ag, for a TEM image of Cs encapsulated in a carbon nanotube

see [170]. Trapping atoms in carbon nanotubes is highly interesting as the distance

between the trapped atoms is on the order of ångströms. We are interested in sub-

wavelength trapped atoms that are optically addressable with laser light. The optical

properties of atoms trapped in CNTs have not been studied in detail, in particular it is

not clear how the atomic levels and the spectral properties are a↵ected by the carbon

nanotube.

Therefore, the system we investigate in the following should be studied under a

more general point of view. In the following, we assume that atoms can be trapped

with interatomic distances on the order of a few ångströms. We show, that optical

couplings of internal levels of the atoms and spontaneous emission leads to a master

equation that describes electrical dipole-dipole interactions and decay. Due to the

small distances between the atoms, magnetic dipole-dipole interaction also have to be

included in the description if the participating levels have magnetic moments.

5.5.1 Atom-light interaction

First, we derive the interaction of the atoms with the laser light. We assume the atoms

to have two ground states |gi and |si that have a magnetic moment, e.g., hyperfine

states, and an excited state |ei that is dipole coupled to the ground states. The transi-
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tion |si-|ei is driven by a laser with detuning � with respect to the atomic transition

energy, see Fig. 5.6. The atoms are assumed to decay only from state |ei to state |gi,

and not to state |si, see [171] for more details. We will follow the derivation as done

by D. Porras et al. [171]. Note that D. Porras et al. work in the regime where the

wavelength of the light is comparable to the interatomic distance.

The Hamiltonian for the coupling between the states |ei and |si is given by

HL =
X

j

~⌦L

2

⇣
�+ese

i~k
L

·~r
j

�i!
L

t + h.c.
⌘

, (5.30)

where ⌦L is the Rabi frequency of the laser, �+es,j = |eihs| the operator that excites the

jth atom from state |si to |ei, !L the laser frequency, ~kL the wave vector of the laser

and ~rj the position of the atoms of the jth atom. The decay from state |ei to state |gi

is described by

Hdec =
X

j,~k,�

r
~!k

2✏0V
~✏k,� · ~dge�+eg,jei

~k·~r
ja~k,� + h.c., (5.31)

where �+eg,j = |eihg|j is the operator that excites the jth atom from state |gi to |ei, dge

is the dipole matrix element of the g � e transition and a~k is the bosonic operator for

the annihilation of a photon. After adiabatic elimination of the excited state |ei, the

atom-light interaction is described by

HI(t) =
X

j,~k,�

geg~k,�

⇣
�+j a~k,�e

i(~k�~k
L

)·r
j

+i!
L

t + �+j a†~k,�
e�i(~k�~k

L

)·r
j

+i!
L

t + h.c.
⌘

(5.32)

where �+j = |sihg|j and the coupling is given by

gegk,� =
⌦L

2�

r
~!k

2✏0V

⇣
~✏~k,� · ~dge

⌘
.

In the interaction picture the density matrix evolves like:

@t⇢T =
1

i~ [HI(t), ⇢T (t)]. (5.33)

Following [156] we find

⇢T (t +�t) � ⇢T (t) = � 1

~2

Z �t

0
d⌧

Z t+�t

t
dt0[HI(t

0), [HI(t
0 � ⌧), ⇢T (t0)]]. (5.34)
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�

|si|gi

|ei

⌦L

Figure 5.6: ⇤ system

In the limit where 1/�, 1/⌫ � �t � ⌧c, where ⌧c is the correlation time of the electro-

magnetic field, we can do the Born-Markov approximation:
R �t
0 d⌧ !

R1
0 d⌧ . Tracing

over the bath we get the master equation

@⇢T /@t =
X

ij

(Jij�
�
i ⇢�

+
j � Jij�

+
i �

�
j ⇢+ h.c.), (5.35)

where

Jij =
R1
0 d⌧

P
~k,�

⇣
⌦

L

2�

⌘2
!
k

2~✏0V

⇣
~✏~k,� · ~deg

⌘2 h
e(i(!k

�!
L

)⌧+i(~k�~k
L

)·~r
ij

)

+e(i(!k

+!
L

)⌧+i(~k�~k
L

)·~r
ij

)
i
. (5.36)

Here, ~rij = ~ri � ~rj is the vector connecting the atoms at positions i and j. Using the

equality
X

�

(~✏~k,� · ~neg)
2 = 1 �

 
~k · ~neg

|k|

!2

, (5.37)

where we have defined ~deg = deg~neg where ~neg is the unit vector, and using the identity

Z
d⌧ei!⌧ = ⇡�(!) + iP (1/!), (5.38)

we can evaluate the expression in Eqn. (5.36) (see also [172]) and find

Jij = 1
2 �̄e�i~k

L

·~r
ij

"
[1�3(~d

eg

·~̂r
ij

)2] cos (k
L

r
ij

)

(k
L

r
ij

)2
+

[1�(~d
eg

·~̂r
ij

)2] sin (k
L

r
ij

)

k
L

r
ij

�
h
1�3(~d

eg

·~̂r
ij

)
2
i
sin (~k

L

·~r
ij

)

(k
L

r
ij

)3

�i
⇣h

1 � 3(~deg · ~̂rij)2
i ⇣

cos (k
L

r
ij

)

(k
L

r
ij

)3
+ sin (k

L

r
ij

)

(k
L

r
ij

)2

⌘
�
h
1 � (~deg · ~̂rij)2

i
cos (k

L

r
ij

)
k
L

r
ij

⌘i
,

where kL = |~kL|, rij = |~rij | and ~̂rij = ~rij/|~rij |. We assume ~rij to be aligned along the

z-axis and �̄ is given by

�̄ =
1

3⇡

✓
⌦L

2�

◆2 !3
L

✏0c3
d2eg.
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In the limit kLrij ⌧ 1 the real part of Jij can be approximated as

Re(Jij) ⇡ 1

3
�̄ (5.39)

and the dissipative part of the master equation then reads

Ldiss⇢T =
1

3
�̄
X

ij

(�̂�i ⇢�̂
+
j � �̂+i �̂

�
j ⇢+ h.c.), (5.40)

where we have defined phase factor into the operators and defined �̂+i as �̂+i = e+i~k
L

·~r
ij�+i .

The imaginary part of Jij leads to the Hamiltonian part of the master equation and

describes the electric dipole-dipole interaction

LH⇢T = �i[Hel, ⇢T (t)] (5.41)

with

Hel =
X

ij

Im(Jij)(�̂
+
i �̂

�
j + h.c.). (5.42)

As kLrij ⌧ 1, the imaginary part of Jij , Im(Jij), can be approximated by

Im(Jij) ⇡ �1
2 �̄

h⇣
1 � 3(~deg · ~̂rij)2

⌘⇣
1

(k
L

r
ij

)3

⌘

+
⇣
1 + (~deg · ~̂rij)2

⌘
1

k
L

r
ij

i
. (5.43)

5.5.2 Magnetic dipole-dipole interaction

As the interatomic distances are assumed to be on the order of ångströms, magnetic

dipole-dipole interactions between the atoms (if present) may be sizeable. The Hamil-

tonian of the magnetic dipole-dipole interaction between two atoms at sites i and j is

given by [173]

Hmag =
µ0

4⇡
�i�j

1

r3ij
[~�i · ~�j � 3(~�i · ~rij)(~�j · ~rij)] . (5.44)

As stated before, we assume that ~rij is aligned along the z-axis, ~rij = (0, 0, 1). Then,

the magnetic dipolar interaction reads:

Hmag =
X

hiji

µ0

4⇡
�i�j

1

r3ij

h
�xi �

x
j + �yi �

y
j + 2�zi �

z
j

i
(5.45)
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5.5.3 Description of the full system

The master equation of the full system is given by

⇢̇T = Ldiss⇢T � i [Hel + Hmag] = 1
3 �̄

P
ij(�̂

�
i ⇢T �̂

+
j � �̂+i �̂

�
j ⇢T + h.c.)

�i
h
Im(Jij)(�̂

+
i �̂

�
j + h.c.) + Hmag, ⇢T

i
. (5.46)

where Hmag is given by Eqn. (5.45). This master equation describes a laser driven chain

of atoms with subwavelength interatomic distances. As discussed before, such a system

might be realized with atoms encapsulated in carbon nanotubes or sub-wavelength

plasmonic structures.

5.6 Conclusions

We have discovered a peculiar feature of the steady state diagram for small spin chains:

in the limit of weak dissipation, the expectation values of the collective spin opera-

tors exhibit abrupt changes that hint at discontinuities in the steady state. These

discontinuities occur at degeneracy points of the Hamiltonian. We have studied this

phenomenon for di↵erent spin models with open and periodic boundary conditions

subject to individual and collective dissipation. We have presented conditions that

elucidate the discontinuous behavior of the steady state at degeneracy points of the

Hamiltonian. Therefore, measurements of the steady state dynamics of cold atoms in

optical lattices would allow to draw conclusions on the spectrum of the respective spin

model. Moreover, we have studied di↵erent classes of spin Hamiltonians under dissi-

pation. We showed, that for certain spin Hamiltonians, fully entangled unique steady

states can be prepared as steady states of a dissipative dynamics induced by optical

driving and decay. We have shown that collective dissipation can be realized with cold

atoms that are coupled to one single mode of an optical cavity. Finally, we have derived

a master equation for a chain of atoms with sub-wavelength interatomic distances and

discuss possible realizations of such system.
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5.A Condition for discontinuous behavior

Here, we first derive a general condition for the discontinuous behavior in the steady

state at a degeneracy point of a large class of spin Hamiltonians. Then, we focus on more

specific Hamiltonians. We study the steady state of flip-invariant Hamiltonians outside

the degeneracy point and, starting with the general condition for finding discontinuities

in the steady state, we derive a more precise condition for flip-invariant Hamiltonians.

5.A.1 General condition for discontinuities in steady state

First, we derive a general condition for discontinuous behavior in the steady state at the

degeneracy point x = x0 of a general Hamiltonian H, where H = H(x) is an analytic

function of x. We consider a system described by the master equation

⇢̇(t) = (L0 + L1)⇢(t), (5.47)

where the Hamiltonian part of the Liouvillian is given by L0 = �i[H, ⇢] and the local

decay Liouvillian

L1⇢(t) =
X

k

�k
⇥
2J�

k ⇢(t)J
+
k �

�
J+
k J�

k ⇢(t) + ⇢(t)J+
k J�

k

�⇤
. (5.48)

First, we want to describe the system outside the degeneracy point, i.e., for x 6= x0.

We assume that in the vicinity of x0, the Hamiltonian is nondegenerate (for x 6= x0)

and that the dissipation is weak. The steady state ⇢ss that fulfills (L0 + L1)⇢ss = 0 is,

in the limit � ! 0 given by

PD(x)L1P
D(x)⇢ss = 0, (5.49)

where PD(x) is the projector onto the kernel(L0). As the kernel of L0 is spanned by

the eigenprojectors |�k(x)ih�k(x)| of H we have for arbitrary A:

PDA =
X

k

|�k(x)ih�k(x)| A |�k(x)ih�k(x)| , (5.50)

where |�k(x)i are eigenstates of the Hamiltonian H0 which is assumed to be nondegen-

erate.
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Now, let us consider the case that at x = x0, the Hamiltonian has a degeneracy

point at which two or more eigenvalues cross. At this degeneracy point, we expect an

discontinuous behavior of the steady state that leads to the peaks we observe in our

numerical simulation (see Figs. 5.1-5.4). At x = x0 the projector onto the kernel of

L0 has to be extended. It now also projects onto coherences between eigenstates of H:

|�1i,|�2i which are eigenvectors to the degenerate eigenvalues �1 = �2. Therefore the

projector on the coherences reads:

P�A = |�1ih�1| A |�2ih�2| + h.c. (5.51)

It is convenient to define a continuous extension of the projector PD at x = x0 which

reads

PD(x = x0) = lim
x!x0

PD(x). (5.52)

Thus, at x = x0, the full projector onto the kernel of L0 reads PD(x0) + �x0(x0)P�.

Now the condition for the steady state ⇢ss(x = x0) at the degeneracy point is given by

⇥
PD(x0) + P�

⇤
L1

⇥
PD(x0) + P�

⇤
⇢ss(x0) = 0. (5.53)

We want to find a condition for the steady state to show discontinuous behavior. This

means that

⇢ss(x0) � lim
x!x0

⇢ss(x) 6= 0, (5.54)

where lim
x!x0

⇢ss(x) is the continuous extension of ⇢ss(x)8x 6= x0. From Eqn. (5.54)

follows that the continuous extension of the steady state has to fulfill

⇥
PD(x0) + P�

⇤
L1

⇥
PD(x0) + P�

⇤
lim
x!x0

⇢ss(x) 6= 0, (5.55)

as ⇢ss(x0) fulfills the condition given by Eqn. (5.53). The last part of Eqn. (5.55) can

be simplified using

⇥
PD(x0) + P�

⇤
lim
x!x0

⇢ss(x) = lim
x!x0

⇢ss(x),

which holds since lim
x!x0

⇢ss(x) is per definition in the space onto which PD(x0) projects,

therefore

PD(x0) lim
x!x0

⇢ss(x) = lim
x!x0

⇢ss(x),
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[see Eqn. (5.49)]. Also per definition,

PD(x0)L1P
D(x0) lim

x!x0
⇢ss(x) = 0.

As P� is orthogonal to PD, P� lim
x!x0

⇢ss(x) = 0. Thus Eqn. (5.55) reduces to the

condition

P�L1 lim
x!x0

⇢ss(x) 6= 0. (5.56)

If this condition is fulfilled, then ⇢ss(x0)� lim
x!x0

⇢ss(x) 6= 0 which means that the steady

state shows discontinuous behavior at the degeneracy point x = x0.

5.A.2 Condition for discontinuous behavior for Ising Hamiltonians

Here, we want to get a better insight how the condition given by Eqn. (5.56) relates

to the peaks observed in our numerical simulation. In the following, we will apply it

to the Ising model in a transverse magnetic field. In the numerical simulation (see

Fig. 5.3) for the Ising Hamiltonian with periodic boundary conditions under collective

dissipation described by Eqn. (5.5), we restrict our consideration to a specific subspace

with eigenvalue 1 for translation operator T and reflexion operator R: T = R = 1.

First, we want to prove that if the steady-state is unique, it is the fully mixed state

outside the degeneracy points as indicated by our numerical simulation. Then we show

that starting from the condition given by Eqn. (5.56), specialization to the Ising model

allows to derive a more precise condition for finding a discontinuity in the steady-state

at the degeneracy points.

First, we show that satisfies (L0 +L1) = 0 outside the degeneracy point x = x0.

Therefore, for systems with unique steady-state, it is given by the fully mixed state

for x 6= x0 in the limit � ! 0. The Hamiltonian given by Eqn. (5.1) is assumed to be

non-degenerate for x 6= x0 and invariant under the spin flip operator F = �⌦N
x , i.e.,

FHF † = H. Thus, we want to show that for x 6= x0:

PDL11l = 0, (5.57)

where PD is given by Eqn. (5.50). Then,

PDL1(1l) = 2�(J�J+ � J+J�) / �Jz. (5.58)
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Therefore, Eqn. (5.57) reads

PDL1(1l) = PDJz =
X

k

|�kih�k| Jz |�kih�k| = 0. (5.59)

If we can show that each term of the sum on the right hand side of Eqn. (5.59),

h�k| Jz |�ki = 0, (5.60)

then we have shown that the fully mixed state is a steady state of our system outside

the degeneracy points of the Hamiltonian. As the Hamiltonian is nondegenerate and

invariant under the flip operator F , the eigenvectors of H are eigenvectors of F : F |↵i =

↵ |↵i. As |↵i can be written |↵i = ↵2 |↵i = ↵F |↵i (the eigenvalues of the flip operator

can only be ±1), we can write Eqn. (5.60) as

h↵| Jz |↵i = ↵ h↵| JzF |↵i

= �↵ h↵| FJz |↵i = �↵2 h↵| Jz |↵i (5.61)

where we have used that Jz and F anticommute, {F, Jz}+ = 0. As �↵2 6= ↵, it follows

from Eqn. (5.61) that

h↵| Jz |↵i = 0. (5.62)

Then, PDL1(1l) = 0 and we have shown that in the limit of weak dissipation, the steady

state, if it is unique, is the fully mixed state. We know from our numerics that for the

Ising model with up to 8 spins and collective dissipation, the steady state is unique.

To see that the steady state shows discontinuous behavior at the degeneracy point

x = x0, we need to show that in this case, the fully mixed state is not the steady state

of the system. Thus, we need to show that

P�L1(1l) = P�Jz =
X

k,l,k 6=l

|�kih�k| Jz |�lih�l| 6= 0 (5.63)

where P� is given by Eqn. (5.51). This is true if 9k 6= l such that

h�k| Jz |�li 6= 0. (5.64)

Therefore, Eqn. (5.64) gives a condition for finding discontinuous behavior of the steady

state of the Ising model in a transverse field under collective dissipation. Note that
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2 931 4 5 86 7

Figure 5.7: Spin chain with nearest-neighbor and next-nearest neighbor interaction.

Groups of 4 neighboring spins are denoted by green, red and grey overlapping rectangles

respectively. Next-neighbor and next-nearest neighbor interaction are marked with the

color of the respective rectangle.

this derivation can be easily extended to all non-degenerate Hamiltonians that are flip-

invariant. Here, we specialize to the Ising model as we know, that the system has a

unique steady state for small spin chains and for collective dissipation in T = R = 1.

5.B Proof: Fully entangled state with N spins

We write the Hamiltonian as a sum of Majumdar-Gosh Hamiltonians of four neighbor-

ing spins and subtract the next-nearest neighbor Hamiltonian Hk,k+1 of the two spins

that are double counted (see Fig. 5.7):

H =
4X

k=1

Hk +
6X

k=3

Hk + ...
NX

k=N�4

Hk � H3,4
nn � H5,6

nn .. � HN�1,N
nn . (5.65)

One can easily show that | ssi given by Eqn. (5.21) is an eigenstate of the first term in

H:
4X

k=1

Hk | ssi = �1 | ssi . (5.66)

This Hamiltonian is symbolized by the green rectangle in Fig. 5.7. If | ssi is an eigen-

state of
P4

k=1 Hk, it is, due to symmetry, also an eigenstate of all the other four-spin

Hamiltonians in the sum in Eqn. (5.65). Moreover, it is easy to verify that | ssi is an

eigenstate of H3,4
nn :

H3,4
nn | ssi = �2 | ssi (5.67)
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Therefore, it is also an eigenstate of H5,6
nn , and we have shown that | ssi is an eigenstate

of the Hamiltonian given by Eqn. (5.65), which corresponds to the Hamiltonian given

by Eqn. (5.17). It can be easily seen that | ssi is an eigenstate of the steplike magnetic

field given in Eqn. (5.45). As | ssi is in the kernel of the dissipative part of the master

equation given by Eqn. (5.13), it is a pure fully entangled steady state.
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and Kyoto and Simon Frédérick for organizing so many nice dinners for all of us.

I also want to thank my friends outside work, especially Annika Schad and Enrica
Puggioni, Hagen Langhuth, Kristine Teske, Sigrid Gehann, Michael Weihing, Mareike
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