
TECHNISCHE UNIVERSITÄT MÜNCHEN
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Abstract

The control of complex dynamical systems, such as power networks, is a very challenging

task due to its complexity in terms of the number of subsystems and their interconnec-

tions. This limits the use of conventional centralized control method and motivates the

development of decentralized control method. The basic idea is to design the control law

based only on local model obtained from the decomposition of the weakly interconnected

subsystems. However, this method may not work when the coupling between the subsys-

tems is not weak and suffers from performance degradation compared to the centralized

one. Digital communication networks allow the communication between the subsystems

and thereby provide a larger flexibility for control design: instead of only local subsys-

tem information also neighboring subsystems states can be used for the control, known as

distributed control. As a result, typically a better performance is achieved compared to

the decentralized approach. Additionally, the information exchange can also be utilized to

stabilize the interconnected system when no stabilizing decentralized control law exists.

Despite the advantages of distributed control, its design poses several new challenges.

The objective function of the distributed optimal control problem is in general non-convex.

Furthermore, the incorporation of communication topology into the control design increases

the problem complexity due to the combinatorial search that has to be performed. Another

challenge is the unavailability of the entire model of the interconnected system in reality for

designing the control law. Finally, while the use of communication network may improve

the system performance, it comes at the price that the system may become unstable under

permanent communication link failures.

This dissertation focuses on the design of distributed control for interconnected systems

such that the overall system performance is optimized. So far unique is the exploitation

of the additional degree of freedom offered by the communication network in designing

the distributed control law, namely taking into account the communication topology and

the information that needs to be exchanged between the local controllers. Specifically, the

contributions of this dissertation are summarized as follows. First, a novel two-layer control

architecture which is a combination of decentralized and distributed control is proposed

that allows to jointly improve the system performance and guarantee its stability under

permanent communication link failures. Following this, explicit solutions for topology

design of distributed control law are studied and discussed here for the first time. The

unique approach lies in the utilization of eigenvalue sensitivity analysis to transform the

original combinatorial problem into the one which allows for more insightful analysis.

Furthermore, a novel coordination algorithm based on decomposition of a global objective

function is developed to design distributed control in the absence of global plant model

information. Finally, an innovative approach to design distributed control for a coverage

control problem which guarantees that the system avoids undesired local optima of a non-

convex objective function is proposed by exploiting the use of information which can be

communicated.
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Zusammenfassung

Die Regelung komplexer dynamscher Systeme, wie es zum Beispiel elektrische Energiev-

ersorgungsnetze sind, ist eine äusserst anspruchsvolle Aufgabe. Systemkomplexität bezieht

sich hierbei auf die hohe Anzahl von Untersystemen und die Art wie diese miteinander

verbunden sind und somit wechselwirken. Aufgrund dieser Charakteristik ist der erfol-

greiche Einsatz klassischer, zentralisierter Regelungsverfahren begrenzt, worin gleichzeitig

die Motivation für dezentrale Regelungsstrategien liegt. Der Grundgedanke ist es den

Regler auf Basis lokaler Modelle, die aus der Zerlegung schwach wechselwirkender Un-

tersysteme gewonnen werden, zu entwerfen. Verglichen mit zentralen Regelungsverfahren

kann eine dezentrale Regelungsmethode im Falle nichtschwacher wechselseitiger Kopplung

allerdings zum Abfall der Regelgüte führen. Digitale Kommunikationsnetze ermöglichen

Kommunikation zwischen Untersystemen, woraus sich Flexibilität (durch zusätzliche Frei-

heitsgrade) im Reglerentwurf ergibt: Zustände benachbarter Untersysteme können für die

lokale Regelung ebenfalls zunutze gemacht werden, anstatt lediglich lokale Information zu

gebrauchen, was als verteilte Regelung bekannt ist. Infolgedessen kann im Vergleich zu

dezentralen Methoden typischerweise eine verbesserte Regelgüte erzielt werden. Zudem

ermöglicht eine angemessene Verwendung von Informations- und Nachrichtenaustausch

eine Stabilisierung von vernetzten Systemen auch wenn kein stabilisierendes dezentrales

Regelgesetz existiert.

Den Vorteilen verteilter Regelungseinrichtungen stehen neuartige Herausforderungen

im erforderlichen Entwurfsprozess gegenüber. Die Zielfunktion des verteilten optimalen

Regelungsproblems ist im Allgemeinen nichtkonvex. Wird zudem der Entwurf der Kommu-

nikationstopologie berücksichtigt, so erhöht sich die Komplexität des Entwurfsproblems um

den Aufwand einer notwendigen kombinatorischen Suche. Schließlich kommt der Nutzen

einer Verwendung von Kommunikationsnetzen hinsichtlich der Regelungsgüte auf Kosten

möglicher Instabilität im Falle andauernden Ausfalls von Nachrichtenverbindungen.

Diese Dissertation behandelt den Entwurf verteilter Regelungsgesetze für vernetzte Sys-

teme mit dem Ziel des Erreichens einer optimalen Performanz des Gesamtsystems. Eine

grundlegende Neuerung im Entwurf eines verteilten Regelungsgesetzes ist die Nutzung

des Komunikationsnetzes als zusätzlichen Freiheitsgrad; die Struktur der Kommunika-

tionstopologie und die spezifische lokale Information, die unter lokalen Reglern wechsel-

seitig ausgetauscht wird, findet dabei Berücksichtigung. Im Speziellen ist der Beitrag

dieser Dissertation wie folgt zusammengefasst: Zunächst wird eine neuartige zweischichtige

Regelungsarchitektur als Kombination von dezentraler und verteilter Regelung vorgestellt,

die eine Performanzverbesserung unter garantierter Wahrung der Gesamtsystemstabilität

ermöglicht bei anhaltendem Ausfall von Nachrichtenverbindungen. Dann werden explizite

Lösungen für den Topologieentwurf in verteilten Regelungseinrichtungen zum ersten Mal

studiert und diskutiert. Als Ansatz zum überwinden der kombinatorischen Natur des Prob-

lems dient eine Eigenwertsensitivitätsanalyse, die eine einsichtsvollere Analyse erlaubt.

Darüberhinaus wird ein neuartiger Algorithmus zum koordinierten Berechnen verteilter

Regelgesetze, welche nicht über vollständige Modellinformation verfügen, hergeleitet, basierend

auf einer Zerlegung der globalen Zielfunktion. Abschließend ist ein innovatives Verfahren

zum Entwurf verteilter Regelungsgesetze in einem ”Coverage”-Problem vorgestellt. Hier-

bei kann durch gezieltes Austauschen von Information das Erreichen ungewünschter lokaler

Optima einer nichtkonvexen Zielfunktion unter Garantie vermieden werden.
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1 Introduction

The design of control algorithms for complex dynamical systems has become a vibrant

part of research due to their wide applicability and impact in applications ranging from

smart power grids [145], water distribution [105], traffic systems [14] to large arrays of

micro-electro-mechanical systems (MEMS), formation of vehicles [9], and sensor actuator

networks [146] as illustrated in Fig. 1.1. One of the key challenges for the control of

(a) (b)

(c) (d)

Figure 1.1: Examples of large-scale systems: (a) smart grid [3]; (b) wireless sensor net-
works [1]; (c) traffic network [2]; (d) water distribution network [4].

complex dynamical systems is the complexity, i.e. dimensionality of the overall system in

terms of the number of subsystems and their interconnections [147]. In order to control

such systems, centralized or conventional control synthesis methods which assume that a

single centralized control has access to all measurements instantaneously, as depicted in

Fig. 1.2, become infeasible. To illustrate this issue, let us consider the power network as an

example of complex dynamical systems which consists of tens-of-thousands of components

such as generators, transmission lines, etc. In order to optimally regulate the voltage, power

1
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distributed control layer

local controller

interconnected system

subsystem

controller layer

local controller

interconnected system

subsystem

controller layer

interconnected system

subsystem

Figure 1.2: Three different control architectures for interconnected systems. Left: centralized
control architecture; middle: decentralized control architecture; right: distributed
control architecture with information exchange between the local controllers.

and frequency of the power network, a variety of sensors are employed to measure voltage,

frequency and power of the network and all of these measurements have to be transmitted

to the control stations over a communication network. However, the complexity of the

grid makes is extremely difficult to gather the total information. Furthermore, even if one

could gather and use this information in order to design a control law, due to for example,

the geographical distances, all measurements cannot instantaneously be available to all

the controllers of the system, i.e. it might require a very long time and, by then, the

information might be outdated which could lead to instability of the closed-loop system.

Preliminary results addressing the dimensional complexity of large-scale systems have

been achieved within the decentralized control framework developed in the seventies [11].

The fundamental idea in this method is to adopt a “divide and conquer” strategy which

decomposes the system into a number of interconnected subsystems. After partitioning the

system, the control problems are then solved locally on the level of subsystems and these

solutions are furthermore combined with the interconnections to provide a stable feedback

law for the overall system as illustrated in Fig. 1.2. In order for this approach to be ef-

fective, one of the main challenges is to develop systematic and computationally efficient

procedures for decomposing large dynamical systems [147]. An obvious and intuitive way

to achieve this goal would be to “tear” the system along certain natural boundaries that

are defined by its physical properties. This physical decomposition strategy is character-

ized by two main advantages. First, by doing so, it is possible to obtain important insights

into the interplay between the subsystems and their interconnections. In addition, im-

portant “physical” interpretations of the local control actions in terms of global outcomes

can also be obtained. However, physical decompositions are neither straightforward nor

optimal in general, since there are cases of many practical models in which it is difficult if

not impossible, to identify the “natural” boundaries of the subsystems. It is clear in such

cases that a physical decomposition is not a suitable strategy. The potential shortages of

physical decompositions have triggered the development of powerful numerical decomposi-

tions which utilize only the mathematical description of the system such as the well-known

Epsilon decomposition which mainly exploits the fact that complex systems often contain

a large number of variables which are weakly coupled, if they are coupled at all [147].

For example, in a typical large Linear Time-Invariant (LTI) system, a high percentage of

the coefficients in the system matrix are apparently to be small numbers. Therefore, by

using this observation, it is possible to perform a permutation on the matrix so that the

2



1.1 Challenges

off-diagonal blocks are limited to consist of elements that are smaller than the prescribed

threshold value Epsilon. The stability of the diagonal blocks can then guarantee the stabil-

ity of the overall matrix if this Epsilon value is sufficiently small. Although decentralized

control has been successfully applied in many engineering problems, it should be noted

that it has some inherent weaknesses. One of the most prominent ones is that feedback

laws of this type rule out any form of information exchange between the subsystems. As a

result, such a control strategy may be ineffective for certain types of models, particularly

those where the coupling between individual subsystems is not weak. Furthermore, even

though a stabilizing decentralized control law exists, performance might be significantly

degraded compared to a centralized approach since only the local subsystem information

is used for the design of the control law.

Advances in digital communication networks allow for the communication between sub-

systems and, thereby, provide a larger flexibility with respect to the control design: instead

of only local subsystem information, neighboring subsystems’ states can be used for the

control as well. These novel approaches are also known under the notion of distributed

control1 [10], see Fig. 1.2. As a result, a better performance is typically achieved compared

to the decentralized approach. In addition, an additional merit of using information from

neighboring subsystems is that this information can be employed to stabilize the inter-

connected systems when no stabilizing decentralized control law exists, as it happens for

example in the presence of decentralized fixed modes (DFM) in a system [134].

1.1 Challenges

Despite the advantages of distributed control, i.e. control law with a certain structural

constraint for interconnected systems, the design of distributed control law poses several

challenges compared to the conventional centralized and decentralized control. In this

section, some of these challenges which will be investigated in the rest of the dissertation,

are presented.

i. Non-convexity: It was shown by Witsenhausen that the constraint on the structure

of the control law can make the problem intractable even in rather simple cases [142].

Furthermore, the objective function of the distributed or decentralized optimal con-

trol problem is, in general, non-convex with respect to the control law.

ii. Combinatorial problem: Most of the results on distributed control design assume

that the structure of the control law is given a priori. The introduction of com-

munication networks, on the other hand, provides an additional degree of freedom

to the control design by jointly designing the distributed control gain together with

the communication topology with a view of further improving the performance of

the overall system. However, this generally results in a mixed-integer optimization

formulation, which is hard to solve for a large number of subsystems. In addition,

the combinatorial formulation which stems from the nature of the problem makes it

difficult to get an explicit solution and also an insightful analysis on the solution.

1In some literatures, e.g. [121], the distributed control is also called as partially decentralized control
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iii. Limited model information: Mainly, when designing a distributed control law, a

common assumption is that the system-wide information or the full knowledge of the

plant model is available to the designer. However, this assumption is far from being

warranted in practice. In real world applications, it is often difficult, if not impossible,

to have the whole system information due to the geographical constraints or privacy

reasons where the subsystems do not wish to provide their complete description to the

designer. Therefore, it is necessary to develop a method in order to design distributed

control laws using only limited model information about the interconnected systems.

iv. Robustness: It has been shown in many literature that compared to the decentralized

control, exchanging local information via the communication network may improve

the performance of the interconnected systems. However, the stability of the inter-

connected system under permanent communication link failures may not always be

guaranteed by the standard design procedure in the known literature.

1.2 Related Work

The design of distributed control for interconnected systems has received considerable

attention in recent years [12,13,30,31,41,66,68,76,102,130,136,137,139,149,152]. Research

efforts have focused on two major issues, namely, the design of the optimal control under

a priori specified structural constraints and the design of communication architectures of

the distributed control.

Since Witsenhausen’s work, much research related to the design of optimal distributed

control has been focused on characterizing a class of easily solvable problems. One of the

positive results showing that the problem for some cases becomes tractable is the work

of Ho and Chu [61] where a class of information structures, called partially nested, is de-

fined for which an optimal control law for the LQG problem is linear. Briefly speaking,

a plant-controller system is partially connected if controller C1 has access to all informa-

tion available to controller C2 whenever the decision made by C2 affects the information

available to C1. Rotkowitz and Lall [120] show that the class of quadratically invariant

problems may be easily solvable via convex programming algorithms [18]. This is one of

the largest classes of tractable problems and it includes many previously known tractable

cases. In addition, the authors in [136] show conditions where quadratic invariance holds

for some sparsity structures, even in cases when the sparsity structures of the plant and

the controller differ and provide a specific analytical relationship between quadratic invari-

ance and adjacency matrices. The authors in [129] suggest an independent approach to

decentralized control which employs the theory of partially ordered sets to model commu-

nication constraints between subsystems. An interesting result regarding interconnection

topology is reported in [78] which suggests that if the communication between the con-

trollers incurs some cost, then, adding communication channels may degrade the system

performance. Characterizing the structural properties of optimal distributed control law

constitutes another important question. For spatially invariant systems, it is shown in [12]

that the linear quadratic controllers are also spatially invariant and the measurements

from other subsystems are exponentially discounted with the distance between the con-
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troller and the subsystems. This spatial decaying property is further extended to systems

on graphs in [102] which motivates the search for inherently localized control law. The

design of optimal control for spatially invariant systems can also be cast into a convex

problem if the information in the controllers propagates at least as fast as in the plant as

reported in [13, 139].

It should be noted that the aforementioned work have a common feature: the structure

of the control law has to be specified in advance, that is, they do not consider the prob-

lem of structure design, but only the design of the control gain itself. The introduction

of communication network, however, offers an additional degree of freedom in designing

the distributed control by jointly considering the control gain and its structure, i.e. the

communication topology which also serves as design variables. Recently, some work have

been devoted to designing the distributed control gain together with the communication

topology for interconnected systems. The authors in [122] consider the problem of maxi-

mization of the degree of decentralization, i.e. minimizing the number of communication

links between the subsystems and the state feedback control laws subject to a given error

performance in term of the H∞-norm between the centralized and the decentralized closed

loop. The results are extended to the case of dynamic output feedback in [121] by means

of a weighted l1 relaxation and the development of an iterative algorithm based on LMIs to

deal with the relaxed decentralized control problem. The authors in [42] consider a linear

quadratic optimal control problem with an additional penalty on the number of commu-

nication links in the distributed control law. The combinatorial problem is reformulated

as a sequence of weighted l1 problems by utilizing the weighted l1 norm to approximate

the counting of the communication links. Furthermore, a class of systems is identified for

which the weighted l1 problem can be reformulated as a semidefinite program, and thus,

the solution can be computed efficiently. Apart from the systems which are interconnected

through the dynamics, there are also contributions in multi-agent systems corresponding

to communication topology design in recent years [29, 33, 47, 65, 115, 128, 148]. Algebraic

connectivity which is the second smallest eigenvalue of the Laplacian matrix is an impor-

tant performance metric related to the convergence rate of multi-agent systems and its

value depends on the communication topology of the network. In [108], it is shown that

the connectivity of the agents could improve the convergence rate of the whole system to

attain a desired behavior while decreasing the robustness of the systems with respect to

time delay. The authors in [47] study the problem of adding edges to a graph from a set

of candidate edges so as to maximize its algebraic connectivity. They develop a greedy

heuristic for this problem based on the Fiedler vector which can be applied to very large

graphs. The problem of finding the optimal graph and the weights of the communica-

tion links for a class of directed graphs is solved in [115] by formulating the problem as

a Mixed Integer Semidefinite Program (MISDP). Furthermore, the authors in [29] present

the optimal network design for consensus based systems using a variety of optimal based

methods and categorize the problem into three categories, namely, the construction of

optimal non-geometric networks, time-invariant geometric networks and time-varying geo-

metric networks. The authors in [65] consider the problem of optimal local leader selection

of a leader-first follower minimally persistent formation system such that the convergence

rate is optimized. The proposed approach is first to solve the combinatorial problem in a
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continuous domain to obtain the optimal solutions. Then, the actual optimal pair of local

leaders is selected from the discrete candidate local leader using the gradient method and

the matrix perturbation theory. The problem of designing communication topology has

also been studied in the area of sensor networks where the goal is to minimize the sensors’

power consumption while maintaining the connectivity of the network [72]. Note that most

of the works end up in an optimization problem without providing explicit solutions on

the problem.

Most of the work on distributed control design rely on a common assumption: the

design can be performed in a centralized manner with full knowledge of the whole plant

model. However, this assumption is far from being warranted in practice. This generates

a new class of problems, namely distributed control design under a limited model informa-

tion. There has been some interesting approaches for tackling limited model information

based control design problem, although not specifically tailored for it. For example, ref-

erences [46, 126, 127] introduce methods for designing sub-optimal decentralized control

without a global dynamical model of the system. In these works, one key assumption is

that the plant consists of an interconnection of weakly coupled subsystems. Then, un-

der this assumption, an optimal control is designed for each subsystem using only the

corresponding local model information and the obtained subcontrollers are connected to

construct a global control law. In addition, the authors show that, when the coupling

is negligible, this control law is satisfactory in terms of closed-loop stability and perfor-

mance. However, as coupling strength increases, even closed-loop stability guarantees are

lost. Note that the motivation behind their studies has been to design fully decentralized

near-optimal control for large-scale dynamical systems and to avoid numerical complica-

tions stemming from the high dimension of the system, by splitting the original problem

into several smaller ones. Other approaches such as in [37] are based on receding horizon

control and use decomposition methods to solve each step’s optimization problem in a de-

centralized manner with only limited information exchange between subsystems. Another

work on distributed design method for distributed control of identical and dynamically

decoupled systems is considered in [15]. Dual decomposition is used for distributed opti-

mization of local controllers in [96, 116]. On the analysis part, the authors in [83] derive

scalable decentralized conditions that can guarantee robust stability for networks of linear

interconnected, stable, linear time invariant systems. It is shown that robust stability of

the entire network is guaranteed by satisfying local rules that only involve an agent and its

neighboring dynamics. Recently, the authors in [43,44] present a rigorous characterization

of the best closed-loop performance which can be attained through limited model informa-

tion design and, furthermore, they study the trade-off between the closed-loop performance

and the amount of exchanged information based on the work presented in [77]. Most of

the results, however, assume that the structure of the control law is given a priori.

The last, but yet important issue is the robustness of the whole system in the pres-

ence of interconnection failures. The authors in [25, 26] present a method for synthesis of

decentralized control for multiple subsystems interconnected on a graph. They develop

a synthesis procedure for control laws which stabilize the system for any graph topology

satisfying given degree bounds, independent of the size of the graph. In other words, the

stability of the interconnected systems using the designed control laws can be guaranteed in
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the presence of physical interconnection failures. However, no communication is considered

and no stability guarantee is provided under permanent communication link failures.

1.3 Main Contributions and Outline of Dissertation

The present dissertation focuses on the design of distributed control laws for interconnected

systems where the goal is to improve and optimize the overall system performance. At

the same time, various challenges mentioned previously are investigated which have not

been addressed in-depth in the existing literature. So far unique is the exploitation of

the additional degree of freedom offered by the communication network in the design of

the distributed control law, namely taking into account the communication structure and

considering the information that needs to be exchanged among the local controllers in

order to achieve the objective of the task. The main contributions of this dissertation are

fourfold. The first contribution is the development of a novel two-layer control architecture

by combining the advantages of decentralized and distributed control law. The proposed

control architecture allows to jointly improve the performance of the interconnected system

and guarantee the stability of the interconnected system under permanent communication

link failures. The developed architecture is not only well suited for ideal communication

network, but also can be extended in a straightforward manner to deal with non-ideal

communication network. Second, explicit solutions on the communication topology design

for distributed control of interconnected systems with certain physical structure are derived

here for the first time. A third contribution is the development of a novel coordination

algorithm for the design of distributed control together with its communication topology of

interconnected systems, given only limited plant model information. Finally, an innovative

approach to design distributed control law for a coverage control problem is proposed by

exploiting the use of information that can be exchanged via the communication network,

which guarantees that the system avoids undesired local optima stemming from the non-

convex objective function.

This dissertation is mainly separated into two parts according to the associated inter-

connected systems which are considered. The first part deals with dynamical systems

which are interconnected via the states, inputs and the objective function. The objective

here is to improve the system performance by jointly designing the control gain and the

communication topology of the distributed control law under a given constraint on the

communication network while guaranteeing their stability under permanent communica-

tion link failures. The second part is concerned with systems which are coupled via the

(non-convex) objective function exemplified by coverage control of mobile sensor networks.

Here, the objective is to develop a distributed control law which guarantees that mobile

sensor networks avoid certain local optima of the objective function. The results and

primary work of this dissertation are published in [51, 53–55, 87]. The structure of this

dissertation is given in Fig. 1.3. The associated outline of the presented results is given in

the following.

In Chapter 3, a novel two-layer control architecture for interconnected systems is pro-

posed. While the known literature considers the problem of designing optimal distributed

control law and robust distributed control law with respect to interconnection failures sep-
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Figure 1.3: Outline of the dissertation.

arately, the developed two-layer control architecture allows the designer to consider this

problem in a unified fashion. This results in that the performance of the overall system

can be optimized, and at the same time, its stability is guaranteed under permanent com-

munication link failures, which cannot be achieved by the standard design procedure. The

innovative strategy is to combine the advantages of decentralized and distributed control

laws, i.e. first to design the decentralized control law that stabilizes the interconnected

systems, and then, improve the overall system performance by designing the distributed

control law together with its communication topology, under a given communication net-

work constraint. Communication topology design of distributed control reported in the

existing literature so far assumes an ideal communication network. In this chapter, it is

further demonstrated that the novel two-layer control architecture is not only suited for

ideal communication network, but also can be extended into the case where constant and

identical time delay exists in the communication network. Another innovation in this chap-

ter is the investigation via numerical simulations on how the addition of communication

links influences the performance of the interconnected system, which is still far from being

understood. Finally, the proposed method is applied to the design of a novel distributed

damping control for power systems.

While the results of joint distributed control gain-communication topology design re-

ported in the known literature, including the one presented in Chapter 3 end-up in an

optimization formulation, Chapter 4 provides for the first time the explicit solutions on

communication topology design problem with a fixed control gain for interconnected sys-

tems with certain class of physical structure, namely ring, star and line topology. As a

unique approach, the eigenvalue sensitivity analysis is utilized by treating the distributed

8
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control as a perturbation influencing the interconnected system and investigating how the

structure of the control law influences the movement of the eigenvalues. The analysis

starts with the case of interconnection of identical scalar subsystems and a single commu-

nication link. The results are then extended into interconnected systems with non-scalar

subsystems, multiple communication links and also more complex topology which can be

decomposed into rings, stars or lines. In addition, some new insights in terms of explicit

relation between the heterogeneity of the subsystems local dynamics, the strength of the

physical interconnection, the size of the network and the optimal communication topology

are introduced. Finally, the novel approach based on eigenvalue sensitivity is applied to

the case where time delay exists in the communication network to investigate how the

communication topology and time delay influence the performance of the interconnected

systems.

The proposed method in Chapter 3 and Chapter 4 requires system-wide information

in order to compute the control law even though the control law is implemented in a

distributed fashion. In real world applications, however it is difficult, if not impossible, to

obtain the whole system information due to the geographical constraints or privacy reasons

in which the subsystems may not wish to provide a complete description of themselves to

the designer. Therefore, in Chapter 5 a novel algorithm is developed in order to design

distributed control for interconnected systems under a limited plant model information.

In contrast to existing related literature where the structure of the control law is fixed

and given a priori, here the design of communication topology is also taken into account.

Specifically, it is assumed that each subsystem only has the information about its physical

neighbors’ local dynamics and the interconnection between them. The novel strategy is

to decompose and assign the design problem to each subsystem and then each subsystem

solves the design problem by coordinating with its neighbors, thus the joint distributed

control gain-communication topology design can be performed in a distributed fashion.

Finally, Chapter 6 deals with distributed control design for coverage control of mobile

sensor networks. It is known that the coverage control or deployment problem is a non-

convex optimization problem. In this chapter, an innovative approach to design distributed

control law which guarantees that the sensors avoid undesired local optima is proposed.

The unique strategy is to characterize, for the first time, the undesired local optima where

it is shown that one of them is caused by the existence of sensors which do not participate

in the coverage due to lack of information that the sensors sense. In order to avoid the

undesired local optima, as an intuitive strategy the standard coverage control law based on

a gradient method is combined with the leader-following algorithm which can be viewed as

a perturbation influencing the gradient-based term where the leaders are defined as sensors

with the most available information. The sensors provided with no information follow the

leaders until they gain some information about the region of interest by exploiting the

use of information that can be exchanged between them. The proposed novel algorithm

is advantageous compared to the other non-gradient based approaches in the sense that

it is more intuitive and is proven to guarantee that the sensors avoid the undesired local

optima, which cannot be achieved by other approaches reported in related literature.

This dissertation is concluded in Chapter 7 where a summary and discussion about

potential future directions are presented.

9



2 Modeling of Interconnected Systems

A model is a mathematical representation of a physical system which allows us to reason

about a system, make prediction about its behavior and design a control law to manipulate

its behavior. In general, there is a trade-off between the accuracy of the selected models

and the complexity of the control design. For example, general nonlinear models can be

very accurate in describing the behavior of a dynamical system, however, are difficult to

analyze and apply in model based control schemes. Therefore, it is important to choose the

models that are simple, but still can capture the behavior of the real dynamical systems.

In this dissertation, we choose to use linear time invariant (LTI) systems to model the

interconnected systems and design the distributed control law based on the corresponding

model. This chapter provides some background on the modeling of interconnected systems

and shows that a variety of interconnected systems found in the real world applications

can be modeled as the interconnection of a number of LTI subsystems. We consider three

real examples of interconnected systems, namely: power systems, temperature regulation in

large buildings and deformable mirrors in adaptive optics. For each interconnected system,

we derive the ordinary differential equations which is a common class of mathematical

models for dynamical systems and based on these equations, the state space system is

constructed which will be used as a model of the interconnected system for the distributed

control design in the remaining of the dissertation.

2.1 Power System

Generally, a power system is an interconnected system and its model consists of differen-

tial and algebraic equations describing the generator dynamics, controllers, networks and

loads. Power system dynamics can be divided into four groups depending on its time

scale, namely: wave dynamics which are the fastest, electromagnetic dynamics, electrome-

chanical dynamics and thermodynamics which are the slowest [95]. In this dissertation,

we consider the small-signal stability defined as the ability of power systems to maintain

synchronism under small disturbances. Specifically, we aim at designing a damping control

for low-frequency oscillations. This kind of stability problem belongs to the categories of

electromechanical dynamics whose time scale varies from seconds to minutes. Since the

disturbance is assumed to be small, a linearized model including the generator dynamics

and an equivalent transfer network model is considered. The equivalent transfer network

is a reduced network model in which all load nodes are eliminated and all generator nodes

are directly connected with each other, see e.g. [95]. The power system considered in

this dissertation consists of the generator, excitation system with voltage control and the

network described in the following.
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2.1 Power System

∆vi b1s+b0
s2+c1s+c0

∆Efi

Figure 2.1: Automatic voltage regulator model.

2.1.1 Generator and Exciter System Model

A linearized third order generator model with an excitation system as introduced in [95]

is used here as the model of i-th generator in the system.

• Generator dynamic equations is given by

∆δ̇i = ∆ωi, (2.1)

Mi∆ω̇i = −Zi∆ωi −∆Pei, (2.2)

T ′
doi∆Ė ′

qi = −∆E ′
qi + (Xdi −X ′

di)∆Idi +∆Efi (2.3)

where δi, ωi are the rotor angle and speed, Mi denotes the inertia constant, Zi rep-

resents the damping coefficient, Pei is the active power delivered at the terminals,

T ′
doi is the time constant, E ′

qi denotes the internal voltage, Xdi denotes the reactance

and Idi, Efi are the currents and the electromotive force of the i−th machine. A

second-order transfer function is used to represent the Automatic Voltage Regulator

(AVR) for the generator exciter as shown in Fig. 2.1. An AVR controls the excitation

current, and consequently the generators terminal voltage.

• Excitation system and automatic voltage control can be written as

ż2i = −c1iz2i − c0iz1i +∆vi, (2.4)

ż1i = z2i, (2.5)

∆Efi = b1iz2i + b0iz1i (2.6)

where z1i and z2i are the internal states of the AVR.

The linearized state dynamic xi of the i-th synchronous generator is then given by

xi =
[
∆δi ∆ωi ∆E ′

qi z2i z1i
]T

(2.7)

and the control input signal is denoted by ∆vi.

2.1.2 Network Model

In general, the network model of a power system is represented by the algebraic nodal

equations describing the relation between the current injections and the voltages of all

generation and load nodes via the admittance matrix. As discussed in [95], eliminating

the load nodes leads to an equivalent transfer network in which the generator nodes are
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directly connected with each other. After the elimination of all the load nodes, including

the generation terminal nodes, the d-axis currents Idi and the electrical power Pei of the

i-th generator can be expressed in terms of its variables, in this case the rotor angle δi and

the transient voltage E
′

qi according to

Idi =
N∑

j=1

E ′
qi[Lij cos(δi − δj)−Hij sin(δi − δj)], (2.8)

Pei = E ′
qi

N∑

j=1

[Lij sin(δi − δj) +Hij cos(δi − δj)]E
′
qj (2.9)

where N is the total number of generators in the system and i, j ∈ {1 · · ·N}, Lij and Hij

are the imaginary and the real part of a network admittance Yij.

Linearizing the equations (2.8) and (2.9), the power increment ∆Pei in (2.2) and the

current increment ∆Idi in (2.3) are given by

∆Pei =
[
∂Pei

∂δδδ
∂Pei

∂E′
q

] [ ∆δδδ

∆E′
q

]

, ∆Idi =
[
∂Idi
∂δδδ

∂Idi
∂E′

q

] [ ∆δδδ

∆E′
q

]

(2.10)

with ∆δδδ consists of the rotor angle deviations and ∆E′
q consists of the transient voltage

deviations of all generators in the power systems.

2.1.3 State Space Model

Combining equations (2.1)-(2.6) and (2.10), the small-signal dynamics of a generator con-

nected to the power system can be written as

ẋi = Aixi +Biui +
∑

j∈Ni

Aijxj (2.11)

where ui = ∆vi and Ni represents the set of the generators that are physically connected

with the i-th generator. The matrices Ai ∈ R
5×5,Bi ∈ R

5×1,Aij ∈ R
5×5 are given by

Ai =










0 1 0 0 0

− 1
Mi

∂Pei

∂δi
−Di

Mi
− 1

Mi

∂Pei

∂E′

qi

0 0

ηi
∂Idi
∂δi

0 − 1
T ′

doi

+ ηi
∂Idi
∂E′

qi

b1i
T ′

doi

b0i
T ′

doi

0 0 0 −c1i −c0i
0 0 0 1 0










,

Bi =
[
0 0 0 1 0

]T
,

Aij =










0 0 0 0 0

− 1
Mi

∂Pei

∂δj
0 − 1

Mi

∂Pei

∂E′

qj

0 0

ηi
∂Idi
∂δj

0 − 1
T ′

doi

+ ηi
∂Idi
∂E′

qj

b1i
T ′

doi

b0i
T ′

doi

0 0 0 0 0

0 0 0 0 0









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2.2 Thermal Model of Large Buildings

with ηi =
Xdi−X′

di

T ′

doi

. Therefore, the linearized power system can be expressed by an LTI

interconnected systems given by

ẋ = Ax+Bu (2.12)

where x ∈ R
5N×1 and u ∈ R

N×1 are the states and input signals of all N generators in the

power system respectively and the matrices A ∈ R
5N×5N ,B ∈ R

5N×N are given by

A =








A1 A12 · · · A1N

A21 A2 · · · A2N
...

...
. . .

...

AN1 AN2 · · · AN







, B =









B1 0 · · · 0

0 B2
. . .

...
...

. . .
. . . 0

0 · · · 0 BN









.

Remark 1 Similar state space model can also be derived for the case of water distribution

network, see e.g. [39, 81] for the details.

2.2 Thermal Model of Large Buildings

The building sector consumes about 40% of the energy used in the United States [98].

Therefore, it is economically and environmentally significant to reduced the energy con-

sumption of buildings. Furthermore, according to the September 2008 report of American

Physical Society [5], a large fraction of the energy delivered to buildings is wasted because

of inefficient building technologies. Real time monitoring and control is thus likely to play

a more significant role in operating the HVAC (Heating, Ventilation, and Air Condition-

ing) equipment in buildings than it has played so far. Mathematical models of thermal

transport, especially the dynamics of temperature evolution, in large building is an impor-

tant key to develop an effective control and monitoring systems. The temperatures in the

rooms of a building depend on the thermal interaction between rooms and the outside via

the walls, heat transport by supplied conditioned air as well as the solar radiation through

the windows. Furthermore, the complexity in the dynamics of temperature evolution in a

room comes from the thermal interaction between the rooms and the outside which can

be either via conduction through the walls, or convective air exchange among rooms. To

summarize, the thermal properties of a building is composed of heat transmission. Before

deriving the dynamics of the temperature evolution in a building, we first review the basic

equations to describe the heat transmission.

2.2.1 Heat Transfer

Heat transfer takes place via the conduction, convection and radiation described briefly in

the following [94].

Conduction

Conduction is the process of heat transfer through a substance such as a wall, from higher

to lower temperatures. It is possible to quantify the heat transfer process in terms of rate
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2 Modeling of Interconnected Systems

equations. The rate equation for heat conduction is known as Fourier’s law. Under steady

state and for one-dimensional plane wall, the Fourier’s equation is given by

qx = kA
∆T

∆x
= kA

Th − Tl

L
(2.14)

where qx (W ) is the heat transfer rate in the x direction, Th, Tl (K) are the high and low

temperatures respectively, L(m) is the length/thickness of material and k (W/mK) is the

thermal conductivity of the material. Note that equivalent to electric circuit, a thermal

resistance Rth may be associated with the conduction of heat which is given by

Rth =
Th − Tl

qx
=

L

kA
. (2.15)

Convection

Convection is the heat transfer between a surface and fluid or gas by the movement of the

fluid or gas. The rate equation for heat convection transfer process is given by

q = hA(Ts − T∞) (2.16)

where q (W ) is the convective heat transfer, Ts, T∞ (K) are the surface and fluid tem-

peratures respectively, A (m2) is the surface area and h (W/m2K) is the convection heat

transfer coefficient which are influenced for example by surface geometry or the nature of

the fluid motion. Similar to conduction, we can define the thermal resistance for convection

Rcv as

Rcv =
Ts − T∞

q
=

1

hA
. (2.17)

Radiation

Radiation is the energy emitted by matter transported by electromagnetic waves. While

the transfer of energy by conduction or convection requires the presence of a material

medium, radiation does not and even occurs most efficiently in a vacuum. Radiation may

also be incident on a surface from its surroundings. The radiation may originate from a

special source, such as the sun. The net radiation heat transfer from the surface is given

by the Stefan-Boltzman law

qrad = ǫσ(T 4
s − T 4

sur) (2.18)

where ǫ is the emissivity of the surface whose values 0 ≤ ǫ ≤ 1, σ is the Stefan-Boltzman

constant, Ts, Tsur are the surface and surroundings temperatures. Eq. (2.18) describes the

difference between thermal energy that is released due to radiation emission and that which

is gained due to radiation absorption.

Thermal Capacitance

Thermal capacitance is the capacity of a body to store heat. In order to compute the

thermal capacitance, we consider the following assumptions.
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2.2 Thermal Model of Large Buildings

• The air in a room has one temperature across its volume.

• The specific heat of air, cp, is constant.

• All rooms are at the same pressure.

• The radiative coupling between inner building walls can be ignored.

Therefore, the thermal capacity of room i, denoted by Cri is given by

Cri = ρaVicpa (2.19)

where ρa is the density of air at room temperature and Vi is the volume of room i. A

similar equation can also be derived for the walls.

2.2.2 State Space Model

Circuit representations provide a useful tool for quantifying heat transfer problems. The

equivalent thermal circuit for the plane wall with convection surface conditions is depicted

in Fig. 2.2 whose heat transfer rate can be expressed by

qx =
T∞,1 − T∞,2

Rtot
, Rtot =

1

h1A
+

L

kA
+

1

h2A
.

T∞,1 Ts,1 Ts,2 T∞,2

qx

Wall

1

h1A
L
kA

1

h2A

Figure 2.2: Equivalent thermal circuit of heat transfer through a plane wall.

For the sake of simplicity and clarity, we consider a building consists of two rooms

as shown in Fig. 2.3. The thermal influences between rooms of the same building occur

through internal walls, i.e. the internal walls isolation is weak [100]. Furthermore, the

coupling is assumed to be caused only between two adjacent rooms through walls. Each

room is also equipped with an independent converter heater as the control input. Each

wall and room is represented as nodes. Since the thermal model is an RC network, as

mentioned previously, its dynamics is described by a system of coupled first order linear

differential equations of the form Ci
dTi

dt
= qi where Ci is the thermal capacitance of node i

and qi is the net heat flow into node i through the resistive elements connected to it [35].

Therefore, we can write the following dynamics for wall w1

T∞ − Tw1

R̄1

+
T1 − Tw1

R̃1

+ αA1qrad1 = Cw1

d(Tw1)

dt
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2 Modeling of Interconnected Systems

where R̄1 = R1
o +

Rw

2
, R̃1 = R1

i +
Rw

2
and Rw, R

1
o, R

1
i denote the total thermal resistance of

the wall, the external and internal sides of the peripheral walls respectively. The first term

represents the heat transfer from outside to the wall while the second term describes the

heat transfer from the air in room number 1 to the wall. Moreover, the term αqrad1 is the

portion of the radiation heat from the sun absorbed by the wall, where α is the absorptivity

coefficient of the wall. Similar equations can also be obtained for walls w2, w3, w4, w5, w6.

On the other hand, we have the following dynamics for wall w7.

T1 − Tw7

R̄7

+
T2 − Tw7

R̃7

= Cw7

d(Tw7)

dt
.

Using the similar analysis, the dynamics for rooms number 1 and 2 can be written as

follows.

Tw1 − T1

R̃1

+
Tw2 − T1

R̃2

+
Tw7 − T1

R̃7

+
Tw6 − T1

R̃6

+Q1 = Cr1

d(T1)

dt
,

Tw4 − T2

R̃4

+
Tw5 − T2

R̃5

+
Tw7 − T2

R̃7

+
Tw3 − T2

R̃3

+Q2 = Cr2

d(T2)

dt

where Q1, Q2 are the input to the rooms. The state space representation of room number

1 can then be written as follows.










Ṫ1

Ṫw1

Ṫw2

Ṫw6

Ṫw7










︸ ︷︷ ︸

ẋ1

=












a 1
R̃1Cr1

1
R̃2Cr1

1
R̃6Cr1

1
R̃7Cr1

1
R̃1Cw1

− 1
R̂1Cw1

0 0 0
1

R̃2Cw2

0 − 1

R̂2Cw2

0 0
1

R̃6Cw6

0 0 − 1
R̂6Cw6

0
1

R̃7Cw7

0 0 0 − 1
R̂7Cw7












︸ ︷︷ ︸

A1









T1

Tw1

Tw2

Tw6

Tw7









︸ ︷︷ ︸

x1

+









1

0

0

0

0









︸︷︷︸

b1,1

Q1
︸︷︷︸

u1

+










0

0

0

0
1

R̃7Cw7










︸ ︷︷ ︸

b1,2

T2
︸︷︷︸

y2

+











0
αA1qrad1

Cw1
+ T∞

R̄1Cw1
αA2qrad2

Cw2
+ T∞

R̄2Cw2
αA6qrad6

Cw6
+ T∞

R̄6Cw6

0











︸ ︷︷ ︸

d1

T1
︸︷︷︸

y1

= [1 0 0 0 0]
︸ ︷︷ ︸

cT1









T1

Tw1

Tw2

Tw6

Tw7









where a = −1
Cr1

(
1
R̃1

+ 1
R̃2

+ 1
R̃6

+ 1
R̃7

)

and 1
R̂i

= 1
R̄i
+ 1

R̃i
. A similar state space representation

can also be obtained for room number 2. As can be observed from the above state space

representation, the dynamics of room number 1 is influenced, i.e. coupled by room number
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T1 T1

A2 A3

A4

A5A6

A1 A7

qrad

Figure 2.3: Simple two-room building.

2 via the temperature, i.e. T2. The state space representation for room i without any

external disturbance, i.e. di = 0 can then be generalized in the following form [101]

ẋi = Aixi +
∑

j∈Hi

bi,jyj + bi,iui,

yi = cTi xi

where Hi is the set of adjacent rooms of room i.

2.3 Deformable Mirrors

Since the turbulent nature of the atmosphere, light from distant stars and planets is dis-

torted before being received by ground-based telescopes. These distortions can be com-

pensated by means of adaptive optics. In adaptive optics systems, a deformable mirrors

is controlled by changing its shapes to counteract the spatially-distributed wavefront dis-

tortion with a spatial resolution equivalent to the strength of the turbulence. Feedback is

provided by a sensor array that measures local gradients of the incoming wavefront.

Figure 2.4: An adaptive optics mirror. Each circle contains an actuator.
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2 Modeling of Interconnected Systems

2.3.1 Dynamic Deformable Mirrors

In this section, the case of hexagonal pattern, which is common for deformable mirrors is

considered as illustrated in Fig 2.4 [45]. Deformable mirrors are typically made of a thin

reflective membrane or plate that can be shaped by means of an array of linear actuators.

In this section, it is assumed that the deflection w(x, y, t) of the mirror can be described

by the thin plate partial differential equation given by

(

EI∇4

(

1 + η
∂

∂t

)

+ ρh
∂2

∂t2

)

w(x, y, t) = p(x, y, t) (2.20)

where ∇4 = ( ∂4

∂x4 + 2 ∂4

∂x2∂y2
+ ∂4

∂y4
) is the biharmonic operator, E denotes the Young’s

modulus, I = h3

12
represents the moment of inertia, η is a material damping parameter, ρ

is the density, h denotes the thickness of the plate and p(x, y, t) is the pressure excerted

by the actuators [45]. The actuators are distributed over a spatial grid with equidistant

spacing. Furthermore, each actuator consists of a parallel connection of a spring with

stiffness c, a damper with damping constant d = ζc which are assumed to be identical

for all actuators and a force fi of actuator i which can be controlled, see Fig. 2.5. By

wi

c d fi

Figure 2.5: A deformable mirror with a thin plate membrane suspended by springs with stiffness
c and dampers with damping d and controller by force actuators.

assuming that the distance ∆ between the actuators to be small, the finite-difference

discretization of Eq. (2.20) over the hexagonal grid results in a sufficiently accurate model.

The finite-difference of the biharmonic operator over the grid with a unit distance between

two neighboring points is given by

G(S1, S2) =
4

9
(42− 10(S1 + S−1

1 + S1S
−1
2 + S−1

1 S2 + S2 + S−1
2 )

+2(S2
1S

−1
2 + S−2

1 S2 + S1S2 + S−1
1 S−1

2 + S1S
−2
2 + S−1

1 S2
2)

+(S2
1 + S−2

1 + S2
1S

−2
2 + S−2

1 S2
2 + S2

2 + S−2
2 ) (2.21)

where S1 and S2 are the unit shift operators along two principal axis s1 and s2 of the grid,

as shown in Fig. 2.6. The finite-difference discretization of Eq. (2.20) interconnected with

the actuators is given as follows.

(
AEI

∆4
G(S1, S2)

(

1 + η
∂

∂t

)

+ c

(

1 + ζ
∂

∂t

)

+ ρAh
∂2

∂t2

)

w(i, j, t) = f(i, j, t) (2.22)
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s1

s2

Figure 2.6: Infinite hexagonal grid, schematized as Z2.

where w(i, j, t), f(i, j, t) are the displacement and force at point with discrete index (i, j)

respectively and A = 3
√
3

8
∆2 denotes the surface area of one element corresponding with

one actuator. In addition, it is assumed that w(i, j, t) = 0 for points (i, j) outside the

dimensions of the mirror which corresponds with the clamped boundary condition.

2.3.2 State Space Model

The deformable mirror described by Eq. (2.22) can be written as an interconnected of a

series of equal and small size subsystems where the interconnection pattern is determined

by the finite-difference operator given by Eq. (2.21). In order to show this, Eq. (2.22) is

re-written in the following state-space form.

[
ẇ(i, j, t)

ẅ(i, j, t)

]

=

[
0 1

−
(

Eh2G(S1,S2)
12ρ∆4 + 8c

3
√
3ρ∆2h

)

−
(

ηEh2G(S1,S2)
12ρ∆4 + 8ζc

3
√
3ρ∆2h

)

] [
w(i, j, t)

ẇ(i, j, t)

]

+

[

0
8

3
√
3ρ∆2h

]

f(i, j, t)

w(i, j, t) = [1 0]

[
w(i, j, t)

ẇ(i, j, t)

]

where ẇ = ∂w
∂t
, ẅ = ∂2w

∂t2
and we use A = 3

√
3

8
∆2 and I = h3

12
. By stacking the values of

w(i, j, t), f(i, j, t) and the local state x(i, j, t) = [w(i, j, t) ẇ(i, j, t)]T at N grid points (i, j)

into w(t) ∈ R
N , f (t) ∈ R

N and x(t) ∈ R
2N , the global deformable mirror model for N

grid points can then be written as

ẋ(t) = (IN ⊗Aa,c + PN ⊗Ab,c)x(t) + (IN ⊗Ba,c)f (t)

w(t) = (IN ⊗Ca,c)x(t)

where

Aa,c =

[

0 1

− 8c
3
√
3ρ∆2h

− 8ζc

3
√
3ρ∆2h

]

, Ab,c =

[

0 0

− Eh2

12ρ∆4 − ηEh2

12ρ∆4

]

, Ba,c =

[

0
8c

3
√
3ρ∆2h

]

, Ca,v = [1 0].
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2 Modeling of Interconnected Systems

Furthermore, PN is a (sparse) pattern matrix where the non-zero elements on each row

correspond to the coefficients of the operator G(S1, S2) in Eq. (2.21) which represents the

coupling between the sub-elements.

2.4 Summary and Discussion

This chapter discusses the modeling of interconnected systems. It is demonstrated that a

variety of interconnected systems found in real world applications such as power systems,

temperature regulation in large buildings and adaptive optics can be simply modeled as

linear time invariant systems under several assumptions. Other examples which are not dis-

cussed in this chapter include water distributed network [39] and web processing lines [110].

Based on this observation, in the presented dissertation, we consider interconnected sys-

tems modeled as an interconnection of LTI subsystems. The utilized model provides us

with the first step in analyzing the dynamical systems and designing the control law based

on the established theorem of linear dynamical systems. In the future, it is necessary to

employ more general models, for example by considering the nonlinear models in order to

obtain more accurate models of the interconnected systems.
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3 Two-layer Control Architecture for

Interconnected Systems

The introduction of communication network provides an additional degree of freedom for

the structural design of distributed control in terms of its communication topology. The

joint distributed control gain-communication topology design has been investigated re-

cently, for example in [122] where structure optimization is done in terms of a minimization

of the required communication links and subject to a predefined bound on the tolerable

loss of the achieved H∞-performance of the decentralized control compared to an H∞-

optimal centralized control. The authors in [90] consider the synchronization of identical

networked systems by introducing a distributed control where the control gain and struc-

ture are optimized subject to a constraint on the number of links that can be added. Even

though adding communication links results in a performance improvement compared to

the decentralized control [34, 106], the interconnected system may become unstable under

communication link failures. This issue has not been considered in the known literature

so far. Furthermore, all of the works mentioned above assume an ideal communication

network. The use of communication networks comes, however, at the price of non-ideal

signal transmission: the data sent through the networks experience time delay or suf-

fer transmission data losses which is a source of instability and deteriorates the control

performance [49].

The major innovation in this chapter is the development of a novel two-layer control

architecture which enables the designer to improve the performance of the overall inter-

connected system while guaranteeing, at the same time, its stability in the presence of

permanent communication link failures. The source of inspiration is a combination of the

advantages of decentralized and distributed control. First, decentralized control law is

designed to stabilize the overall interconnected system. Additionally, the overall system

performance, which is the convergence rate, is improved by designing a control law, to-

gether with its structure, i.e. the communication topology, which uses the state information

from other subsystems under a given communication network constraint. Furthermore, it

is demonstrated that the approach is also well suited for the case of non-ideal communi-

cation network where the communication link is affected by constant and identical time

delay. Another part of innovation in this chapter is the investigation via numerical simu-

lations on the impact of the number of communication topology utilized for the control on

the performance improvement of the overall interconnected system.

The remainder of this chapter is organized as follows. After formulating the problem in

Section 3.1, we develop a novel two-layer control architecture in Section 3.2 which guaran-

tees the stability of the overall system in the presence of permanent communication link

failures by combining the decentralized and distributed control. Furthermore, the two-layer

control architecture and the joint distributed control gain-communication topology design

are extended to the case of non-ideal communication network, i.e. when the communica-
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3 Two-layer Control Architecture for Interconnected Systems

Figure 3.1: An interconnected system with distributed control architecture.

tion network is affected by time delay in Section 3.3. Finally, the proposed approach is

tested for designing a novel distributed damping control of power systems in Section 3.4.

3.1 Problem Formulation

Consider an interconnected system of N heterogeneous linear time invariant (LTI) subsys-

tems described by the following differential equations

ẋi = Aixi +
∑

j∈Ni

Aijxj +Biui, xi(t0) = xi
0 (3.1)

where i = 1, 2, ..., N denotes the i−th subsystem, xi ∈ R
n, ui ∈ R

p are the state of

subsystem i and the control input to subsystem i, and Ai,Aij ∈ R
n×n, Bi ∈ R

n×p. The

term
∑

j∈Ni
Aijxj represents the physical interconnection between the subsystems where

Ni is the set of subsystems to which subsystem i is physically connected. Here we consider

a state feedback control for which the control law can be written as follows

ui = Kixi +
∑

j∈Gi

Kijxj (3.2)

which is known as distributed control law since the control law for each subsystem does

not only depend on its own states but also the states of the other subsystems. Here Gi
represents a set of subsystems to which controller i could communicate, i.e. exchange

information via the network. The interconnected system with its distributed controller is

illustrated in Fig. 3.1. If Kij = 0, ∀i and ∀j ∈ Gi, then the control law (3.2) is called a

decentralized control law. The overall dynamics of the interconnected system can then be

written as

ẋ = Ax+Bu, x(t0) = x0 (3.3)
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3.2 Two-layer Control Architecture

ũi =
∑

Kijxj

ūi = Kixi

distributed control law

decentralized control law

interconnected system

stabilized interconnected system

Figure 3.2: Two-layer control architecture. The decentralized control law stabilizes the inter-
connected system while the distributed control law improves the overall system
performance.

where x = [x1,x2, · · · ,xN ]
T , u = [u1,u2, · · · ,uN ]

T and

A =








A1 A12 · · · A1N

A21 A2 · · · A2N
...

...
. . .

...

AN1 AN2 · · · AN







∈ R

nN×nN , B =








B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · BN







∈ R

nN×pN .

The goal is to design the distributed control law (3.2) together with the communication

topology such that

• the overall system performance is improved and the stability of the system is guar-

anteed,

• the stability of the interconnected system w.r.t. the permanent communication link

failures is guaranteed.

As a performance metric, in this chapter the convergence rate of the overall interconnected

system is considered.

3.2 Two-layer Control Architecture

In order to achieve the goals, in this section a novel two-layer control architecture as

illustrated in Fig. 3.2 is proposed. As an idea, first, a decentralized control law is designed

that guarantees the stability of the whole interconnected system. The performance of the

overall system is then improved by designing a distributed control law, i.e. the second

term of (3.2) together with the communication topology Gi, ∀i.
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3 Two-layer Control Architecture for Interconnected Systems

3.2.1 Decentralized Control Design

As a first step, the decentralized control law that stabilizes the interconnected system (3.1)

is designed. Let us first investigate the stability of the following interconnected system.

ẋi = Aixi +
∑

j∈Ni

Aijxj. (3.4)

Proposition 3.2.1 If there exists positive constants ǫi > 0 such that the following N

linear matrix inequalities have symmetrically positive definite solutions Pi ∈ R
n×n,

[

AiFi + FiA
T
i + 1

ǫi
(
∑

j∈Ni
AijA

T
ij) Fi

Fi − 1
ǫi(N−1)

I−1
n

]

< 0 (3.5)

where Fi = P−1
i and In is the identity matrix with dimension of n, then the interconnected

system (3.4) is asymptotically stable.

In order to prove the proposition, we need the following lemma.

Lemma 3.2.2 [17] Let X,Y be two matrices of appropriate dimension. Then, for any

ǫ > 0, the following inequality holds.

XTY + Y TX ≤ ǫXTX +
1

ǫ
Y TY .

We are now ready to prove the proposition.

Proof : The proof is similar to the one discussed in [135]. First, let us consider the

following Lyapunov function

V (x) =

N∑

i=1

xT
i Pixi.

Taking the derivative of V (x) along (3.4) gives:

V̇ (x) =
N∑

i=1

ẋT
i Pixi + xT

i Piẋi. (3.8)

Substituting (3.4) into the above equation gives

V̇ (x) =

N∑

i=1

[

(Aixi +
∑

j∈Ni

Aijxj)
TPixi + xT

i Pi(Aixi +
∑

j∈Ni

Aijxj)

]

=

N∑

i=1

xT
i (A

T
i Pi + PiAi)xi + (

∑

j∈Ni

Aijxj)
TPixi + xT

i Pi

∑

j∈Ni

Aijxj
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and applying Lemma 1 yields

V̇ (x) ≤
N∑

i=1

xT
i (A

T
i Pi + PiAi)xi +

1

ǫ
xT
i Pi(

∑

AijA
T
ij)Pixi + ǫ

∑

j 6=i

xT
j xj

≤
N∑

i=1

xT
i

[

AT
i Pi + PiAi +

1

ǫ
Pi(
∑

j∈Ni

AijA
T
ij)Pi + ǫ(N − 1)In

]

xi. (3.9)

If ∀i,AT
i Pi+PiAi+

1
ǫ
Pi(
∑

j∈Ni
AijA

T
ij)Pi+ǫ(N−1)In < 0, then V̇ (x) is negative definite.

Therefore, the interconnected system (3.4) is stable. Furthermore, pre- and post-multiply

(3.9) by P−1
i respectively gives

AiFi + FiA
T
i + ǫiFi(N − 1)InFi +

1

ǫi
(
∑

j∈Ni

AijA
T
ij) < 0. (3.10)

Finally, applying Schur complement to (3.10) results in (3.5).

Next, we consider the decentralized control law synthesis for the interconnected system

(3.1) with the control input given by

ui = ūi = Kixi. (3.11)

Let Ai +BiKi = Āi and we will have a similar expression as in (3.5) given by

[

ĀiFi + FiĀ
T
i + 1

ǫi
(
∑

j∈Ni
AijA

T
ij) Fi

Fi − 1
ǫi(N−1)

I−1
n

]

< 0. (3.12)

The difficulty in solving the feedback gain Ki in the matrix inequality (3.12) is that it

involves the nonlinear terms, i.e. ĀiFi, thus it cannot be considered as an LMI problem.

However, by restricting the solution space of Fi, the nonlinear terms can be eliminated

and the LMI problem is recovered. By using Proposition 3.2.1, the decentralized control

law synthesis can be computed as follows.

Proposition 3.2.3 If there exists positive constants ǫi > 0 such that the following N

linear matrix inequalities have symmetric solutions Fi > 0 and Yi,

[

AiFi + (AiFi)
T +BiYi + (BiYi)

T + 1
ǫi
(
∑

j∈Ni
AijA

T
ij) Fi

Fi − 1
ǫi(N−1)

I−1
n

]

< 0

where Fi = P−1
i , then the decentralized control law in (3.11) is given by Ki = YiF

−1
i .

Remark 2 In this dissertation, it is assumed that all the decentralized fixed modes

(DFMs), if any, are in the open left half plane. The problem with unstable DFMs is

beyond the scope of this dissertation.
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3 Two-layer Control Architecture for Interconnected Systems

3.2.2 Joint Distributed Control Gain-Communication Topology

Design

After the overall interconnected system (3.1) has been stabilized by the decentralized

control law, i.e. the first term of (3.2), the second step in the two-layer control architecture

is to improve the system performance by designing the distributed control law, i.e. the

feedback gain and the communication topology under a given communication network

constraint. Here the convergence rate of the overall system is considered as a performance

metric. However, the proposed approach can also be applied to other performance metrics.

The closed loop expression of the interconnected system (3.1) with the decentralized

control law (3.11) can be written as

ẋ = Adecx, x(t0) = x0 (3.14)

where

Adec =








Ā1 A12 · · · A1N

A21 Ā2 · · · A2N
...

...
. . .

...

AN1 AN2 · · · ĀN







∈ R

nN×nN .

It is well known that the solution of (3.14) is given by x(t) = eAdec(t−t0)x0 and the state

norm satisfies

‖x(t)‖ ≤ e{λmax(Adec)(t−t0)}‖x0‖, ∀t ≥ t0 (3.15)

where λmax(Adec) ∈ R represents the largest real part of the eigenvalues of Adec.

The objective is to improve the performance of the overall system, i.e. increase the

convergence rate by designing the second term of (3.2) given by the following control law

ūi =
∑

j∈Gi

dijKijxj (3.16)

where dij ∈ {0, 1} is a binary number that denotes the possibility to perform the state

information exchange between controllers i and j, i.e. dij = 1 means that a communication

link is added between controllers i and j and vice versa. The new closed loop expression

of (3.1) with the addition of control law (3.16) is given by

ẋ = Āx, x(t0) = x0 (3.17)

where

Ā =








Ā1 A12 · · · A1N

A21 Ā2 · · · A2N
...

...
. . .

...

AN1 AN2 · · · ĀN







+








0 Ā12 · · · Ā1N

Ā21 0 · · · Ā2N
...

...
. . .

...

ĀN1 ĀN2 · · · 0







,

Ā = Adec +Adist (3.18)

and the term Āij is defined as Āij = dijBiKij. Furthermore, it is assumed that not

26
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arbitrary many links can be added, i.e. the number is limited by an upper bound induced

by the communication constraint

∑

1≤i≤j≤N

γijdij ≤ c (3.19)

where c > 0 is the total cost constraint on the communication network, and γij represents

a cost to establish a link between subsystem i and j. This cost is typically related to

factors such as hardware costs, energy consumption for communicating information, the

distance between the subsystems or the number of hops in a multi-hop wireless network.

The problem can then be formulated as finding the control gain and communication

topology of the distributed control law such that the convergence rate of the intercon-

nected system is optimized under a given communication constraint. The solution of joint

distributed control gain and communication topology design problem is given by the fol-

lowing proposition.

Proposition 3.2.4 Consider an interconnected system (3.17). If there exists a solution

of the optimization problem

minimize
Kij ,dij

λmax(Ā)

subject to λmax(Ā) < λmax(Adec),
∑

1≤i≤j≤N

γijdij ≤ c,

dij ∈ {0, 1},

(3.20)

then the convergence rate of the interconnected system with the distributed control law

(3.2) is higher than with the decentralized control law (3.11) and the overall system remains

stable.

Proof : Here we prove that the system remains stable if a solution of the optimization

problem (3.20) exists. Since the overall interconnected system is stabilized by the decen-

tralized control, then λmax(Adec) < 0. This yields

λmax(Ā) < λmax(Adec) < 0,

i.e. the interconnected system with the distributed control law is stable. Moreover, since

λmax(Ā) < λmax(Adec), the convergence rate of the interconnected system with the dis-

tributed control is higher than with the decentralized control.

The optimization problem (3.20) is a mixed integer optimization problem since it is

solved with respect to both the feedback gain and the communication topology of the

distributed control law. Furthermore, the objective function, i.e. the spectral abscissa λmax

is non-convex and non-smooth since in general the matrix Ā is nonsymmetric. Therefore,

finding global optimum of the spectral abscissa is hard. Some numerical methods have

been developed in order to solve the optimization of the spectral abscissa, for example the

method proposed in [20]. However, when the matrix Ā is symmetric, the objective function
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3 Two-layer Control Architecture for Interconnected Systems

becomes convex and the problem can be reformulated into the Mixed Integer Semidefinite

Program (MISDP) as demonstrated in [115, 131].

Another important issue related to the optimization problem (3.20) is the combinatorial

problem stemmed from the communication topology design. For the sake of clarity, let us

assume that γij = 1. The complexity of the design approach for a given communication

links c in terms of the number of combinations that has to be performed is given by
(
cmax

c

)
= cmax!

c!(cmax−c)!
where cmax = N

2
(N − 1). Even though the optimization (3.20) can

be solved using well-known techniques such as relaxation and decomposition techniques

or cutting planes approaches [73], solving (3.20) for a large number of subsystems may

become very hard. However, as will be shown later in Chapter 4, for a special class of

systems, the combinatorial problem cannot only be solved efficiently, but the closed-loop

solution can also be obtained. An alternative method to deal with the combinatorial aspect

of this problem is by formulating the integer problem using l0 norm, and then relaxing the

combinatorial problem using (weighted) l1 norm as discussed in [121, 122].

In the following, it is shown that by using the two-layer control architecture developed

previously, the stability of the interconnected system is guaranteed in the presence of

permanent communication link failures as stated in the following Proposition.

Proposition 3.2.5 The stability of the interconnected system (3.17) is guaranteed under

any combination of permanent communication link failures.

Proof : Since the maximum and minimum value of λmax(Ā) are given by

Propositions 3.2.1 and 3.2.4 respectively, the maximum eigenvalue of the whole sys-

tem under any combination of communication link failures, i.e. λmax(Ã) will satisfy

λmax(Ā) < λmax(Ã) < λmax(Adec) < 0.

Remark 3 Even though the proposed two-layer control architecture guarantees the sta-

bility of the interconnected system under permanent communication link failures, it may

lead to a reduced system performance since the design of the decentralized control law is

not considered in the optimization problem (3.20).

3.2.3 Evaluation

In this section, the proposed two-layer control architecture is evaluated via numerical ex-

amples. Furthermore, the impact of the addition of communication links on the system

performance improvement is investigated for the first time. For the sake of clarity, an

interconnection of scalar subsystems is considered which can be found for example in tem-

perature regulation problem in large building as described in Chapter 2 [43]. Specifically,

we consider an interconnected system consisting of 20 scalar subsystems whose physical

interconnection is shown in Fig. 3.3. It is assumed that the overall system has been stabi-

lized by using decentralized control law and the closed loop dynamics with the decentralized
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control law is given by:

Adec =



















−15 2 0 0 3 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
2 −10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
0 0 −12 1 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0
0 0 1 −13 3 0 0 0 0 0 10 0 0 0 0 0 2 0 0 0
3 0 0 3 −15 2 0 0 0 0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 2 −8 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 −7 4 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 −15 0 0 0 0 0 0 3 0 0 0 0 0
4 0 0 0 0 0 0 0 −10 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 2 0 0 −10 4 0 0 0 0 1 0 0 0 0
0 0 0 10 0 0 0 0 0 4 −15 0 0 0 0 1 0 0 0 0
0 0 5 0 0 0 0 0 0 0 0 −15 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 −9 0 0 0 3 0 0 4
0 0 0 0 4 0 0 0 0 0 0 0 0 −10 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 −15 3 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 3 −11 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 3 0 0 0 −12 0 0 0
0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −15 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −19 0
0 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 −15



















where its largest real part of the eigenvalues is given by λmax(Adec) = −1.89.
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Figure 3.3: An interconnected system consisting of 20 subsystems.

Joint Control Gain-Communication Topology

First, the performance of the overall system is improved by designing the distributed control

law, i.e. the second term of (3.2) together with the communication topology by solving

the optimization problem (3.20). In addition, it is assumed that γij = 1. The simulations

are performed by solving (3.20) using the YALMIP toolbox [92] for the maximum number

of allowable communication links c equal to 1,2,3 and 15. The results are summarized in

Table 3.1.

It can be observed from the simulations that for the case of c = 1, the communication

link is added between the local controllers of subsystems 4 and 11. Next, we set c = 2
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Table 3.1: The largest eigenvalue for different number of communication links

maximum number of links (c) used communication links λmax(Ā)
1 1 -4.26
2 2 -4.56
3 3 –4.56
15 14 -7

which results in λmax = −4.56 and Adist is given by

Adist =



























0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -2.1225 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -2.1225 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



























.

Furthermore, solving (3.20) for the maximum number of allowable communication links

c = 3 yields

Adist =






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



















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -10 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 -4 0 -2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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which surprisingly, results in a similar performance value as c = 2, i.e. λmax = −4.56. It

should be noted that the optimal communication topology for c = 2 is the subset of the

optimal topology for c = 3.
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Figure 3.4: Optimal communication topology for γij = 1, c = 15. As can be seen, only 14
communication topology is used. This means that adding more communication
links will not improve the overall system performance. The solid and dashed lines
represent the physical and communication links respectively.

Discussion

The results indicate that by increasing the number of communication links, the system

performance may not always be improved. Additionally, when the maximum number of

allowable communication links is increased to 15 links, as can be observed from Table 3.1,

only 14 out of 15 allowable communication links are utilized. In other words, by increasing

the number of maximum allowable communication links more than 14 links, the optimal

solution will be similar to the case of c = 14, i.e. the system performance cannot be further

improved. One of the possible reasons is that the distributed control gain is exploited to

improve the overall system performance without the need of having more communication

links. The optimal communication topology for the case of c = 15 is shown in Fig. 3.4,

and the trajectories of ||x|| are shown in Fig. 3.5 for a random initial states. As can be

seen from Fig. 3.5, the distributed control improves the performance of the overall system.

Furthermore, the robustness of the two-layer control architecture proposed in this chapter

is investigated by randomly deleting 4 communication links, in this case, communication

links between the local controllers of subsystems 4-9,13-20,17-4,7-8. As depicted in Fig. 3.5,

the overall interconnected system remains stable and the decay rate is still higher than the

decentralized control. Furthermore, the stability of the interconnected systems is also

guaranteed under permanent communication link failures which demonstrates the efficacy

of the proposed control architecture.

Impact of Number of Links on the Overall Performance

Next, the impact of addition of communication links on the system performance improve-

ment is investigated. Since we are interested in the impact of the utilization of commu-

nication links, the distributed control gain is assumed to be fixed and identical for all

communication links, i.e. the optimization problem is solved only with respect to the
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Figure 3.5: The convergence rate of the interconnected system with the distributed control
law and the decentralized control law. Furthermore, as can be seen from the
figure, by using the proposed two-layer control architecture, the stability of the
overall system is guaranteed under permanent communication link failures.

communication topology. In the simulations, the distributed control gain is set equally to

-2, i.e. Kij = −2, ∀i, j, i 6= j. The optimization is solved for maximum allowable number

of communication links c = 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 20, and the results are summarized in

Fig. 3.6.

Discussion

As can be observed from Fig. 3.6, for a small number of communication links, the system

performance is significantly improved. However, when the number of communication links

becomes larger, the performance improvement becomes smaller and the largest eigenvalue

of the closed loop with distributed control law is approximately constant when the number

of links is larger than 9. The simulation results for this specific setup indicate that adding

more than 9 communication links may not be beneficial to the performance improvement

of the interconnected system. It should be noted that similar results are also observed

in the consensus problem of multiagent systems. The algebraic connectivity, i.e. the

second smallest eigenvalue of the Laplacian matrix is known as a performance metric

which describes the convergence rate for reaching consensus, and its value depends on the

topology of the communication graph between the agents. While adding a communication

link into a graph may not decrease the algebraic connectivity, it is reported in [115] that

by increasing the maximum allowable communication cost, the algebraic connectivity is

not always improved. One of the conditions that results in the circumstance as discussed

in [19,47] is that when the second smallest eigenvalue of the original graph has multiplicity

r, then exactly r links are needed to be added before the algebraic connectivity increases

from its current value.
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Figure 3.6: The convergence rate of the interconnected system with different number of com-
munication links. As can be seen, from a certain number of communication links,
the performance improvement becomes smaller.

3.3 Two-layer Control Architecture for Time-Delay

Systems

Next, we investigate a more realistic case by considering non-ideal communication networks

where the information exchange is afflicted by time delay τ > 0 which is assumed to be

constant and identical for all communication links as illustrated in Fig. 3.7. The distributed

control law (3.2) can then be written as

ui = Kixi +
∑

j∈Gi

Kij(xj − τ). (3.22)

From Eq. (3.22), the closed loop expression (3.1) with constant and identical time delay τ

can be written as
ẋ(t) = Adecx(t) +Adistx(t− τ),

x(θ) = x0, ∀θ ∈ [−τ, 0]. (3.23)

Before proceeding, let us recall the following theorem on the exponential stability of time-

delay system [89]. For the sake of convenience, the notation in [89] is adopted into the

ones used in this section. Consider the time-delay system (3.23) utilizing the following

transformation

z(t) = eατ tx(t) (3.24)

where ατ > 0 is the delay decay rate, that is the convergence rate of time-delay system

(3.23), to transform (3.23) into

ż(t) = (Adec + ατI)z(t) +Adiste
ατ τz(t− τ). (3.25)

First, we introduce the following theorem on the stability of time-delay systems (3.25).

Theorem 3.3.1 [89] Consider the time-delay system (3.25) with delay time τ > 0 and

delay decay rate ατ . This system is exponentially stable with decay rate ατ if there exists

symmetric and positive-definite matrices P > 0,F > 0 such that the following inequality
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Figure 3.7: An interconnected system with distributed control architecture. The communica-
tion network has a constant and identical time-delay τ .

holds

S1 =

[
ÂTP + PÂ+ τF τeατ τÂTPAdist

τeατ τAT
distPÂ −τF

]

< 0 (3.26)

where Â = Adec + ατI +Adiste
ατ τ .

Since in general time delay deteriorates the performance of the overall system, first the

following practically relevant question is addressed: given a pre-designed distributed con-

trol under a given communication network constraint and without consideration of time

delay using the approach in Section 3.2.2, up to which time delay value a communication

network is still beneficial in terms of the convergence rate of the overall system. In this

section, we refer to the corresponding time delay as a performance-guaranteed time delay

bound. Specifically, the performance-guaranteed time delay bound τmax ∈ [0,∞) is defined

as follows.

max τ

s.t. ατ ≥ |λmax(Adec)| (3.27)

where λmax(Adec) denotes the decay rate of the interconnected system with the decentral-

ized control law.

From Theorem 3.3.1 and Eq. (3.27), the performance-guaranteed time delay bound τmax

for time-delay system (3.23) is given by the solution of the following optimization problem.

maximize
τ

τ

subject to S1 < 0 with ατ = |λmax(Adec)|.
(3.28)

Note that ατ is set to |λmax(Adec)| which is the convergence rate of the overall system

with the decentralized control law (3.11) since it is desired that the convergence rate by

using the distributed control law (3.22) to be higher than with the decentralized one. In

particular, the performance-guaranteed time delay bound can be calculated by increasing

τ until the positive definiteness conditions of P ,F are violated.
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Remark 4 A less conservative result on the performance-guaranteed time delay bound

τmax can be achieved using the result on the exponential stability of time-delay systems,

e.g. [24].

3.3.1 Distributed Control Design

Next, the following problem is considered: given a constant, identical time delay τ for

all communication links, design the distributed control law (3.2), if any, such that the

performance of the whole system is improved and the stability of the system is guaranteed.

Combining Theorem 3.3.1 and the results for performance-guaranteed time delay bound

derived previously, the distributed control design is given by

Proposition 3.3.2 Consider an interconnected time-delay system (3.23) with a given con-

stant and identical time delay τ for all communication links. If there exists a solution to

the optimization problem

maximize
Kij ,dij

α

subject to S1 < 0,

α > |λmax(Adec)|,
∑

1≤i≤j≤N

γijdij ≤ c,

dij ∈ {0, 1},

(3.29)

then the convergence rate of the interconnected time-delay system (3.23) with the dis-

tributed control law (3.22) is higher than with the decentralized control law (3.11) and the

whole system remains stable.

Proof : the proof is straightforward from Theorem 3.3.1 and the definition of

performance-guaranteed time delay bound.

Remark 5 The first constraint in (3.29) is not an LMI problem due to the nonlinear

terms PÂ and ÂPAdist in (3.26). However, the optimization problem can be solved using

numerical BMI techniques.

Next we have the following result on the stability of the interconnected time-delay

system in the presence of permanent communication link failures.

Proposition 3.3.3 The stability of the interconnected system (3.23) is guaranteed under

any combination of permanent communication link failures.

Proof : Since the convergence rate of the interconnected system (3.23) with dis-

tributed control law (3.22) is higher than with the decentralized control law (3.11),

we have λmax(Ā) < λmax(Adec) < 0. Furthermore, due to the local continuity of

each eigenvalue w.r.t. the parameter [99], the rightmost eigenvalue of the overall

system under any combination of communication link failures, i.e. λmax(Ã) will be

λmax(Ā) < λmax(Ã) < λmax(Adec) < 0.
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3 Two-layer Control Architecture for Interconnected Systems

3.3.2 Evaluation

Let us consider an interconnected system consisting of 10 scalar subsystems as shown in

Fig. 3.8. Furthermore, it is assumed that γij = 1, time delay τ = 0.01 and the distributed

control gain is set to 1. The closed-loop system with the decentralized control law, i.e.

Adec in Eq. (3.23) is given by

Adec =


















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.

First, the case of c = 2 is considered. The optimal communication topology and the

convergence of the system are illustrated in Fig. 3.8 and Fig. 3.9 respectively.
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8

Figure 3.8: Interconnection system consisting of ten subsystems. The solid and dash lines
represent the physical interconnection and the optimal communication topology
for number of links equal to 2 respectively.

Discussion

As can be observed from Fig. 3.9, the interconnected system with the distributed control

law (3.22) converges faster than with the decentralized control law (3.11). Furthermore, by

solving the optimization problem (3.28) using the YALMIP toolbox [92], the performance-

guaranteed time delay bound for the resulting topology is τmax = 0.91. Next, the optimal

topology for c = 43 is computed. The optimal topology is obtained without connecting

local controller of subsystems 3,5 and 3,6 from 45 links needed to make a complete graph

while the performance is shown in Fig. 3.9. and the time delay bound is τmax = 0.11. Fur-

thermore, in order to investigate the relation between τmax and the number of allowable
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Figure 3.9: The convergence of the interconnected system with the distributed control law
and the decentralized control law.

communication links c, Monte Carlo simulation is performed with respect to the intercon-

nected system dynamics and the physical topology. The simulation results indicate that

having more communication links may result in a lower τmax which also indicates that the

number of links should be reduced when τ becomes large.

3.4 Application to Power Systems

With the deregulation and integration of large amount of distributed generation units,

power systems are increasingly driven to operate closer to their operating and stability

limits. Under critical operation conditions in which the possibility of low-frequency os-

cillations rises, the small-signal stability of the system has to be guaranteed for secure

operation. These low-frequency oscillation modes have to be well damped by applying

advanced control strategies in order to avoid fatal contingencies such as blackouts.

The contemporary solution is the combined Automatic Voltage Regulator (AVR) - Power

System Stabilizers (PSS) approach with the support of wide-area signals. Such control

laws are usually designed based on pole placement and phase compensation technique

in terms of increasing the damping ratio or the decay rate of the system in response to

small disturbances. The development and deployment of Wide-Area Measurement System

(WAMS) based on the synchronized phasor measurement units (PMU) technology [112],

[32] enables the remote measurement and transmission of the synchronized system dynamic

data such as voltage, angle, frequency from and to different locations. Wide-Area Control

System (WACS) using the PMU measurements for the oscillation damping have been

widely investigated. It is shown that with the remote measured signals, the wide-area

control improves the damping performance and the stability of the power system [119], [6],

[144], [133].

Different control architectures have been proposed for the WACS design. In [133], [107],

[144] a centralized control have been designed as a supervisory instance to collect remote

signals from each local measurement units and send the processed control signals back to

local AVR of the generators. Two-level hierarchical control have also been widely investi-
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3 Two-layer Control Architecture for Interconnected Systems

gated, see e.g. [69], [150], [36], [59]. In such architecture, a decentralized control serves as

the first level, comprehending the local controller at generators or FACTS (Flexible AC

Transmission System) equipments, and provides the stabilizing action for local oscillation

modes for which global information may not be necessary. It also ensures the system

stability during events of loss of communication links or of failure that makes the central

instance unavailable. A centralized control, as the second control level, collects and pro-

cesses the wide-area measurement data. Its output is transmitted to the local controllers

of the generators in order to improve the global system performance. In any case, reliable

and efficient communication networks are required for enabling the WAMS and the WACS.

In the aforementioned works, the topology of the communication network is fixed for the

control design. The integration of communication technologies into the power system gives

though an additional degree of freedom in designing the distributed control for the inter-

connected systems and can be used to improve the performance of the overall system under

a given communication network constraint.

In the remaining of this chapter, the theoretical analysis in the previous sections is

applied to design a novel distributed damping control of a wide-area power system from

a new perspective, i.e. by jointly designing the control gain and communication topology

such that the overall system performance is improved and its stability in the presence of

the permanent communication link failures is guaranteed. In this section, a five-machine

power system [143] is considered as a case study as shown in Fig. 3.10 whose dynamics is

derived in Chapter 2.

G1
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G4

G5

Load 1

Load 2

Load 3
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Figure 3.10: A five machine power system for case study.

3.4.1 Distributed Damping Control for Power Systems

The conventional method for damping control is based on the modal analysis since the

oscillation modes are characterized by the eigenvalues of the linearized power system as

formalized in (2.12). Let λi = σi + jβi be the i − th eigenvalue of the state matrix A in

(2.12) where

• σi shows the damping or decay rate,
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• βi denotes the frequency of the oscillation,

• the relative damping ratio is given by

ξi =
−σi

√

σ2
i + β2

i

. (3.30)

The contemporary solution is usually realized based on pole placement and phase lead

compensation. The control goal can be formulated as to improve the decay rate of the sys-

tem oscillations by shifting the real part of the eigenvalue σi towards the left half complex

plane that also means to minimize σi which is negative in a system with a stabilizing con-

trol law. This method of pole shifting can also be formulated as an optimization problem

as in (3.20).

Remark 6 The decay rate of the overall system that is λmax is chosen as a performance

metric in this section since it influences the relative damping ratio of the power system as

will be shown later. Moreover, λmax also plays a dominant role in the dynamic responses

of the power system [64].

On the other hand, the eigenvalue assignment is proved to be complicated, while the

optimal linear quadratic (LQ) control provides a systematic way of designing the feedback

control for the complex systems with high order. Moreover, the resulting LQ control law

is guaranteed to stabilize the system with sufficient margins [8].

Using the proposed design procedure introduced in Section 3.2, first a decentralized

LQ control is designed using the approach discussed in [88] that stabilizes the system and

provides a minimum damping performance. Then, the distributed control together with

the optimized communication structure under a given communication network constraint

is designed by solving the mixed-integer optimization problem (3.20) that improves the

decay rate, i.e. the damping performance of the overall system. In contrast to the con-

ventional supervisory centralized control of the whole system, e.g. [144], [133], the central

instance in the proposed approach is only responsible for the optimization of the commu-

nication topology, i.e. solving the optimization problem (3.20). After the optimization is

performed, the generators with local controllers can operate autonomously while exchang-

ing information with each other. Since it is possible to use any of the variables from the

generators, e.g. the generator rotor speeds, angles, voltages or other variables [59], in this

section it is assumed that the local controller of the generators could measure all of its dy-

namic states and exchange them with each other via the communication links. Since AVR

control loop with wide-area signals could provide relatively good damping performance for

the inter-area oscillations of the power system as discussed in [144], [133], we consider in

this section that each generator is equipped with a local AVR but no PSS which could

further improve the damping performance of the system. However, this does not affect

the applicability of the design principle of the proposed approach. The inclusion of PSS is

beyond the scope of this dissertation.
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Figure 3.11: (a) Interconnected system used in the simulation; (b) the optimal communication
topology.

3.4.2 Evaluation

The proposed distributed control is evaluated via a numerical simulation using MATLAB

for the power system shown in Fig. 3.10 by considering the linearized model in (2.1)-(2.12).

The parameters are chosen as in [143] and listed in Appendix.

The system turns out to have a fully connected physical structure, i.e. all the five

generators are physically coupled with each other as shown in Fig. 3.11a. The γij and c

in (3.19) are equal to 1 and 9 respectively. This means that only 9 communication links

are available for the overall system. Solving the optimization problem (3.20) using the

YALMIP toolbox [92] gives the optimal topology as shown in Fig. 3.11b, where all local

controllers communicate with each other except between the local controller of generator

2 and 5.

The eigenvalue analysis of the inter-area oscillations of the test system is compared in

Table 3.2 in terms of the damping ratio and frequencies in the case of with and without the

obtained control law. The analysis shows that compared to the open loop, the decentralized

control improved slightly the decay rates and the damping ratios. Note that according to

the optimization problem (3.20), only the maximal real part of the eigenvalues is taken

into account to be minimized, which does not necessarily mean that the real parts of all

eigenvalues will be minimized, for example the second eigenvalue of the distributed control

case in Table 3.2 is larger than the second one of the decentralized control. However,

it is observed that with the proposed distributed control, the damping ratios of all the

oscillation modes are improved compared to the system with decentralized control. It is

interesting in the future to investigate this effect based on modal analysis of the system and

to perform the optimization by including all the eigenvalues and use different performance

metric such as the damping ratio.

Furthermore, the damping performance of the decentralized control and the proposed

distributed control in terms of the rotor angle deviations ∆δi and rotor speed deviations

∆ωi of each generator is also compared when a sudden load change of the load 3 is simulated

as a small disturbance to the power system starting at t = 0.5 and lasting for 1s as shown

in Fig. 3.12 - 3.16.

In consistence with the eigenvalue analysis in Table 3.2, it is observed that all the rotor

angle deviations ∆δi are damped much faster by the distributed control compared to the
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Table 3.2: Eigenvalue analysis of the test system

Case Eigenvalues Damping Ratio Freq. [Hz]

Open Loop
−0.339± 4.818j 0.0703 0.7668
−0.405± 3.265j 0.1230 0.5196
−0.354± 2.615j 0.1344 0.4157

Decentralized Control
−0.352± 4.813j 0.0730 0.7666
−0.411± 3.260j 0.1251 0.5188
−0.355± 2.609j 0.1347 0.4152

Distributed Control
−0.355± 4.769j 0.0743 0.7590
−0.409± 2.860j 0.1414 0.4553
−0.363± 2.377j 0.1509 0.3783

one with the decentralized control. Moreover, the damping of the rotor speed deviations

are also increased for some of the generators. It can also be observed that the oscillation

of the generator G3 and G4 have larger amplitude than the other three generators due to

the assumption in the simulation that the fault occurs at the load 3 which is physically

located closer to the generator G3 and G4.

The integrated squared control error of the rotor angle deviations ∆δi is shown in

Table 3.3. It is obvious that the distributed control achieves smaller integrated errors than

the decentralized ones except for the ∆δ4 of the generator G4. This might be due to the

fact that only the largest eigenvalue is considered in the optimization problem that leads to

the performance degradation of a subset of the generators. A similar effect is also observed

for the squared integrated control errors of the rotor speed deviations ∆ωi.

Table 3.3: Squared integrated control error of the rotor angle deviations

Integrated error ∆δ1 ∆δ2 ∆δ3 ∆δ4 ∆δ5
Dec. Control 0.0200 0.0174 0.0173 0.0357 0.0155
Dist. Control 0.0089 0.0003 0.0002 0.0441 0.0004

3.5 Summary and Discussion

While exchanging some information between the local controllers may improve the per-

formance of the interconnected system, the system may not be guaranteed to be robust

with respect to permanent communication link failures. In this chapter, a novel two-layer

control architecture is proposed in order to guarantee the stability of the interconnected

system while optimizing a given performance metric. The proposed control architecture

allows the designer to jointly consider the optimality and robustness aspects of distributed

control design. The innovative approach is first by designing decentralized control which

stabilizes the interconnected system and then improving the overall system performance by
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Figure 3.12: Response to disturbance of the generator G1.
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Figure 3.13: Response to disturbance of the generator G2.

designing the distributed control together with its communication topology under a given

network cost, i.e. by exploiting the additional degree of freedom offered by the introduction
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Figure 3.14: Response to disturbance of the generator G3.
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Figure 3.15: Response to disturbance of the generator G4.
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Figure 3.16: Response to disturbance of the generator G5.

of communication network. The problem is formulated as a mixed integer optimization.

Furthermore, it is demonstrated that the novel two-layer control architecture is also well

suited for the case when constant and identical time delay exists in the communication

links, i.e. for non-ideal communication network. It is also investigated via numerical

simulations on the influence of addition of communication links on the performance im-

provement of the interconnected system. It is indicated from the simulation results that

adding more links may not always result in the system performance improvement. It is

observed that the performance is drastically improved when few links are added and the

improvement gradually gets smaller as the number of links becomes larger. In addition,

when constant and identical time delay exists in the communication links, the simulation

results suggest that the number of communication links should be reduced when the time

delay is large. The simulation results provide a preliminary rule-of-thumb on the design of

distributed control law with respect to the number of communication links that has to be

utilized in order to obtain a good trade-off between optimal performance and network cost.

The proposed two-layer architecture can be applied to a variety of interconnected systems.

One of the examples is to design a novel distributed damping control of power systems as

discussed in this chapter. It should be noted that even though in this chapter the decay

rate of the overall system is used as a performance metric, the proposed two-layer control

architecture can also be applied to other performance metrics.

The novel two-layer control architecture proposed in this chapter heavily relies on the

assumption that a stabilizing decentralized control law exists. However, when the in-
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terconnection between the subsystems is strong, this assumption may not always hold.

Furthermore, even though the proposed two-layer control architecture guarantees the sta-

bility of the interconnected system under permanent communication link failures, it may

lead to a reduced performance since the design of decentralized control law is not consid-

ered in the optimization problem. Another important issue is the election of the objective

function in order to have the optimization problem efficiently solvable. In this chapter,

the decay rate of the overall system is chosen as a performance metric which, as discussed

previously, in general results in a non-convex and non-smooth objective function. However,

as shown in the following chapter, for a certain class of interconnected systems, the chosen

objective function in this chapter becomes convex and furthermore, it is possible to obtain

a closed-loop solution of the optimization problem with some insights. Additionally, for

the case of non-ideal communication network, it is assumed in this chapter that the time

delay in the communication links is constant and identical, which is not always the case

in real world applications. These lead to the following problems which require further

investigations in the future:

• Convex relaxation of the objective function and the relaxation of the binary decision

variables introduced by the design of communication topology. One possible approach

in order to relax the binary decision variables is to utilize l0 norm relaxation method

as proposed and discussed in the known literature, e.g. [122].

• Extension of joint distributed control gain-communication topology design for non-

ideal communication network where non-identical and time-varying delay exists in

the communication links.

• A rigorous analysis on the impact of the addition of communication links on the

improvement of overall system performance.
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4 On the Explicit Solution of Communication

Topology Design

Most of the work on communication topology design, e.g. [47, 115, 122] ends up in an

optimization formulation and lacks of explicit solutions. Having an explicit solution on

communication topology design provides the designer additional information about the

relation between the subsystem dynamics, strength of physical interconnection and the

resulting communication topology. This information can be exploited in designing the

interconnected system, given the constraint on the network cost. However, the explicit

solutions on topology design problem is in general hard to derive due to its combinatorial

formulation.

The major innovation in this chapter is to study for the first time the explicit solutions

of communication topology design for distributed control of interconnected systems. The

unique strategy is to employ the eigenvalue sensitivity analysis in order to investigate the

influence of the structure of the distributed control law, i.e. the communication topology,

on the overall system performance. In this chapter, the analysis focuses on interconnected

systems with a special class of physical interconnection topology, namely ring, star and

line topology. First, the explicit solutions of a single communication link for an intercon-

nected system with homogeneous interacting scalar subsystems are derived. Additionally,

some new insights are obtained on how the heterogeneity of the subsystem local dynamics

affects the optimal communication topology. The results are then extended to the case of

interconnection of homogeneous non-scalar subsystems, multiple communication links and

interconnected system with more complex physical interconnection topology. The eigen-

value sensitivity based approach is furthermore employed to distributed control with time

delay, where the results can be used to investigate how the communication topology and

time delay influence the performance of the interconnected system.

The remainder of this chapter is organized as follows: After formulating the problem in

Section 4.1, the communication topology design is reformulated using eigenvalue sensitivity

approach in Section 4.2. Explicit solutions on the single communication link design for

interconnected systems with interacting scalar subsystems are presented in Section 4.3. The

results are then extended to the case of non-scalar subsystems, multiple communication

links and more complex physical topology in Sections 4.4, 4.5 and 4.6 respectively. The

proposed method is also applied to distributed control with time delay in Section 4.7.

4.1 Problem Formulation

Let us first recall the problem formulation and optimization problem presented in Chap-

ter 3. Consider N LTI subsystems described by

ẋi = Aixi +
∑

j∈Ni

Aijxj +Biui, xi(t0) = xi
0 (4.1)
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with the control input is given by

ui = Kixi +
∑

j∈Gi

Kijxj. (4.2)

The closed loop expression of the interconnected system (4.1) with the distributed control

law (4.2) can be written as

ẋ = Āx, x(t0) = x0 (4.3)

where Ā is given by

Ā =








Ā1 A12 · · · A1N

A21 Ā2 · · · A2N
...

...
. . .

...

AN1 AN2 · · · ĀN







+








0 Ā12 · · · Ā1N

Ā21 0 · · · Ā2N
...

...
. . .

...

ĀN1 ĀN2 · · · 0







,

Ā = Adec +Adist (4.4)

where Āi = Ai +Ki, Āij = dijBiKij .

The goal in general is to design the control gain and also the communication topology of

the control law, i.e. the graph Gi which can be formulated as the following mixed-integer

optimization problem.
minimize
Ki,Kij ,dij

λmax(Ā)

subject to λmax(Ā) < 0,
∑

1≤i≤j≤N

γijdij ≤ c,

dij ∈ {0, 1}

(4.5)

where the second constraint represents the communication network constraint. In contrast

to the work in the known literature which focuses on the computation of the optimal control

gain for a given control law structure, in this chapter it is assumed that the control gain

Ki,Kij are fixed. Furthermore, for the sake of clarity, it is assumed that the interconnected

system is stable so that we can set Ki = 0, ∀i and Adec = A. The only design parameter

is thus the communication topology Gi. The goal of this chapter is to find the analytical

solution of the communication topology Gi, i.e. the binary variable dij in the following

optimization problem.
minimize

dij
λmax(Ā)

subject to λmax(Ā) < λmax(A),
∑

1≤i≤j≤N

γijdij ≤ c,

dij ∈ {0, 1}.

(4.6)

The condition on Kij such that the optimization problem (4.6) has feasible solutions will

be discussed in the subsequent section. Before proceeding, we introduce the following

definitions. Let us represent the structure of the interconnected system, i.e. the structure
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node 1

node 2

node 3

Figure 4.1: An example of a plant graph. The edges represent the physical interconnection
between the subsystems/nodes.

of matrix A in (4.4) by a plant graph GP = (Vp, Ep) comprising a set VP = {1, · · · , N} of
vertices or subsystems and a set EP = {(j, i)|eij 6= 0} of edges where eij 6= 0 means that

subsystem j is (physically) affecting subsystem i. In this chapter it is assumed that the

graph GP is undirected. Moreover, when eij 6= 0, we call vertices i, j are adjacent. Next

we review the definitions of path, distance and degree of a graph.

Definition 4.1.1 [48] A path of length r from i to j in a graph is a sequence of r+1 distinct

vertices starting with i and ending with j such that consecutive vertices are adjacent.

Definition 4.1.2 [48] The distance DGP
(i, j) between subsystem i and j in a graph GP

is the length of the shortest path from i to j.

Definition 4.1.3 [48] The degree of node i, i.e. deg(i) of a graph is the number of edges

incident to node i, i.e. the number of physical neighbors of node i.

Example 1 The distance between node 1 and node 2 of the plant graph depicted in

Fig. 4.1 is DGP
(1, 2) = 2 and the degree of node 3 is deg(3)=3.

4.1.1 Adding Communication Links is not Always Beneficial

First, we discuss that adding communication links is not always beneficial by finding a

counterexample using eigenvalue perturbation theory. Before proceeding we review the

well-known Gershgorin theorem. Consider a complex n × n matrix A with entries aij .

For i ∈ {1, · · · , n} write Ri =
∑

j 6=i |aij | and let D(aii, Ri) be the disc centered at aii with

radius Ri. Such a disc is called Gershgorin disc. We have the following theorems related

to the eigenvalue of a matrix and its Gershgorin disc.

Theorem 4.1.4 [62] Every nonzero eigenvalue of A lies within at least one of the Ger-

hgorin discs D(aii, Ri), i.e. every λi(A) satisfies |λi − aii| ≤ Ri for some aii.

Theorem 4.1.5 [62] If the union of k discs is disjoint from the union of the other n− k

discs, then the former union contains exactly k and the latter n− k eigenvalues of A.
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aj̄ aī

λmax

Re

Im

R̄ī

Figure 4.2: Largest eigenvalue and Gershgorin discs.

Recall Eq. (4.4) given by Ā = A+Adist. The term Adist can be seen as a perturbation

working on the matrix A. In order to show that adding communication links is not always

beneficial, we need to show that the perturbation Adist can possibly result in that the

convergence rate of the overall system with matrix Ā is lower than with matrix A, i.e.

λmax(Ā) > λmax(A). Consider a case where A is stable and its largest eigenvalue lies

between the ī-th and j̄-th Gershgorin disc centered at aī and aj̄ , aī > aj̄ respectively

as illustrated in Fig. 4.2. Now we would like to improve the performance by adding

communication links between the subsystems under a given constraint on the total number

of links. Here we assume directed communication links. Adding communication links into

the i-th row means that only the i-th controller could receive information from the other

controllers. Assume that the communication links are added only into the ī-th row of

matrix Adist. From Theorem 4.1.4 and since the perturbation is only working on the non-

diagonal elements of Ā, the new Gershgorin discs have the same centers and the radius

are scaled with the perturbation. Moreover, since the perturbations only influence the ī-th

row of the matrix Ā, only the radius of the ī-th Gerhgorin disc changes. Therefore, a

combination of communication links together with the corresponding gain can be selected

such that the ī-th Gershgorin disc is disjoint from the other as illustrated in Fig. 4.2 and

the new radius is less than the distance from its center to the largest eigenvalue of the

non-perturbed matrix A, i.e. R̄ī ≤ ‖aī − λmax(A)‖. From Theorem 4.1.5, it is clear

that the ī-th Gershgorin disc has one eigenvalue inside and since aī > aj̄ > · · · > aN ,

the corresponding eigenvalue is thus the largest eigenvalue of the perturbed matrix. This

yields λmax(Ā) > λmax(A).

4.2 Eigenvalue Sensitivity based Approach

In the previous section it has been discussed that the addition of communication links is

not always beneficial since it could deteriorate the performance of the whole system. In

this section we derive an explicit solution on how to add the communication links, i.e.
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which controllers should communicate in order to improve the performance of the whole

system for a given number of available communication links. In general, it is hard to derive

the explicit solution to the optimization problem (4.6). Therefore, in order to analyze the

optimal topology design, we constrain ourselves for the remainder of this section by the

following assumptions.
A1 The subsystems are scalar, i.e. xi ∈ R.

A2 The physical interconnection is symmetric, i.e. AT = A.

A3 The communication is bidirectional, i.e. AT
dist = Adist.

A4 The distributed control gains are fixed and equal, i.e. Kij = K.

The objective function in optimization problem (4.6) under Assumptions A1-A4 is convex

and can be solved by relaxing the binary variable into dij = [0, 1] and reformulating it

into a semi-definite programming (SDP) problem as discussed in [131]. However, since

we are interested in obtaining the explicit solution, an alternative approach is proposed

based on eigenvalue sensitivity analysis. Eigenvalue sensitivity gives an insight on the

behavior of the eigenvalues of a matrix when the matrix is perturbed, in our case, when the

distributed control law is applied to the interconnected system. Moreover, the magnitude

of the eigenvalue sensitivity informs about the size of the eigenvalue displacement in the

complex plane [93]. Assume that the matrix A is perturbed by a matrix M = [mij ] with

identical entries equal to m, i.e., mij = m, ∀i, j. Then the change of each eigenvalue of the

matrix A is given by [138]

∂λi

∂m
=

vT
i

∂Ā
∂m

wi

vT
i wi

(4.7)

where Ā = A + M , vi and wi are the right and left eigenvector of the matrix A corre-

sponding to the eigenvalue λi.

Next we present the results on where to add the communication links and how to choose

the feedback gain. For the simplicity of analysis and clarity of the result, it is assumed

that γij = 1, ∀i, j and c = 1, i.e. only one link is allowed to be added. The perturbation

matrix M can be seen as a distributed control given by Adist = [Kij] where Kij = K by

Assumption A4. Let vr = [vr1 , · · · , vrN ]T be the eigenvector corresponding to λmax(A).

Proposition 4.2.1 Consider an interconnected system (4.3) under Assumptions A1-A4.

The optimization problem (4.6) is minimized by adding a communication link between the

i−th and j−th controller that solves the following optimization problem

maximize
i,j

|vrivrj | (4.8)

and the sign of the feedback gain is chosen according to the following rules.

K =

{
> 0 if sign(vri .vrj ) < 0

< 0 if sign(vri .vrj ) > 0.
(4.9)

Proof : In order to find the optimal communication topology that minimizes λmax, first

we need to investigate the condition that results in λmax(Ā) < λmax(A), i.e. ∂λmax

∂K
< 0.

Next, we find the structure of perturbation, i.e. the distributed control Adist that results

in the largest displacement of λmax or maximizes |λmax(Ā)− λmax(A)|.
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The derivation of λmax w.r.t. perturbation K is given by

∂λmax

∂K
=

vT
r

∂Ā
∂K

wr

vT
r wr

(4.10)

where r = argmaxi λi. From Assumption A2, vr = wr = [vr1 , · · · , vrN ]T . This results in

∂λmax

∂K
=

vT
r

∂Ā
∂K

vr

‖vr‖2
. (4.11)

Assume that the perturbation K works on Aij and Aji of A. Since ‖vr‖2 = 1, we have

∂λmax

∂K
=
[
vr1 · · · vrN

] ∂Ā

∂K






vr1
...

vrN






where

∂Ā

∂K
=















0 0 · · · 0 0 · · · 0

0 0 · · · sign(K) 0 · · · 0
...

...
. . .

...
...

. . .
...

0 sign(K) · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0















,

i.e.
[
∂Ā
∂K

]

ij
=
[
∂Ā
∂K

]

ji
= sign(K) and are equal to 0 otherwise. After a straightforward

calculation, we have
∂λmax

∂K
= 2sign(K)vrivrj . (4.13)

In order to have ∂λmax

∂K
< 0, the sign of K has to be selected as in (4.9).

We have guaranteed that λmax is always decreasing. Next, we investigate the structure of

Adist that minimizes λmax or maximizes |λmax(Ā)−λmax(A)|. Therefore, the optimization

problem (4.6) can be reformulated as to find the structure of the distributed control law

Adist that results in the largest displacement of λmax. In other words, we would like to

solve the following optimization problem.

maximize
i,j

∣
∣
∣
∣

∂λmax

∂K

∣
∣
∣
∣
. (4.14)

From (4.13), the problem (4.14) can be written as

maximize
i,j

|vrivrj |.

This completes the proof.

Remark 7 Proposition 4.2.1 is easier to solve for a large number of subsystems than (4.6)

since the eigenvector can be computed in a decentralized manner [70]. Moreover it also

51



4 On the Explicit Solution of Communication Topology Design

provides the relation between the communication topology and the eigenvector w.r.t. the

rightmost eigenvalue of the interconnected system.

Note that for c > 1, the formulation as in Eq. (4.8) and Eq. (4.9) in Proposition 4.2.1 will

become more complicated. However, by considering an additional assumption given by

A5 Ai < 0, Aij > 0 and K < 0,

the communication topology design can be simply formulated as follows.

Proposition 4.2.2 Consider an interconnected system (4.3) under assumption A1-A5.

The optimal communication topology for a given number c of links to be added can be

reformulated as to find c pairs of links between the i−th and the j−th controller such that

the following optimization problem is solved

maximize
(i,j),··· ,(h,l)

c pairs
︷ ︸︸ ︷

|vrivrj |+ · · ·+ |vrhvrl | . (4.16)

Proof : First, we show that under Ai < 0, Aij > 0 and K < 0, the eigenvector corre-

sponding to λmax has all positive or negative entries, i.e. vri > 0 or vri < 0, ∀i. From the

definition of eigenvector we have

Avr = λmaxvr. (4.17)

The i−th row of (4.17) can be written as

Aivri +
∑

j 6=i

Aijvrj = λmaxvri

where Ai < 0, λmax < 0 and Aij > 0. Rearranging the above equation yields

(Ai − λmax)vri = −
∑

j 6=i

Aijvrj . (4.19)

Now let us assume that vri < 0 and vrj > 0, ∀j 6= i. Therefore, in order (4.19) to be

satisfied, the inequality Ai − λmax > 0 must hold. Assume that Ai > λmax. It is known

that

trace(A) =
∑

λi(A),

λmax +
∑

i 6=r

λi = NAi.

Since λmax > λi > · · · > λN , we always have

λmax +
∑

i 6=r

λi < NAi.

Thus, (4.19) will never hold. Therefore, it can be concluded that sign(vri) = sign(vrj ), ∀i, j.
The derivation of λmax is given by

∂λmax

∂K
=
∑[

sign(K)vrivrj
]
. (4.21)
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λmax
λm

Re

Im

Figure 4.3: An example of movements of the largest and the second largest eigenvalue of a
matrix due to a perturbation which degrade the overall system’s performance.

Since sign(vri) = sign(vrj ), ∀i, j and K < 0, ∂λmax

∂K
< 0. Therefore, the combination of local

controllers that results in the largest displacement can be computed by solving (4.16).

Remark 8 Systems that satisfy Assumption A5 is known as positive systems and can be

found in many important application areas, such as mechanical systems, transportation

network, vehicle formation and electrical power transmission [117].

The assumption in Proposition 4.2.1 is that the feedback gain for the distributed control

law is fixed. However, how to choose this gain is not a trivial problem. From trace(Ā) =
∑

λi(Ā) we have
∑

∂λi

∂K
= 0. This means that when ∂λmax

∂K
< 0, there exists at least one

eigenvalue of A denoted by λm(A) such that ∂λm

∂K
> 0. Therefore, for a certain value of

K, it is possible that λm(Ā) > λmax(A), i.e. the system with distributed control performs

worse as illustrated in Fig. 4.3. Therefore, in order to guarantee the improvement of

the performance by using the distributed control law, we derive the upper bound for the

distributed feedback gain. First, we introduce the following Lemma.

Lemma 4.2.3 Consider an interconnected system (4.3) under Assumptions A1-A4. Let

V be a matrix of the right eigenvectors of A in (4.3). The condition number of V denoted

by κ2(V ) is one, i.e. κ2(V ) = 1.

Proof : The condition number is given by

κ2(V ) = ‖V ‖2‖V −1‖2. (4.22)

From the definition of eigenvalue and eigenvector we have

AV = V diag(λi). (4.23)

Taking the transpose and from the assumption A = AT yields

V TA = diag(λi)V
T . (4.24)

From (4.24) we have diag(λi) = V TA(V T )−1. Substituting this into (4.23) gives

AV = V V TA(V T )−1. (4.25)
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Eq. (4.25) is satisfied if and only if V V T = I and V = (V T )−1. Therefore, we have

V T = V −1.

Finally (4.22) can be computed as

κ2(V ) =
[
λmax(V

TV )
] 1

2
[
λmax((V

−1)T (V −1))
] 1

2

= 1

which completes the proof.

Before proceeding, we review the Bauer-Fike Theorem [62] which bounds the maximum

movement of all eigenvalues of a matrix when it is perturbed in some region. According to

the Bauer-Fike Theorem, when the matrix A with eigenvalue λi is perturbed by the matrix

Adist where the resulting eigenvalues are given by λ̄i, the movement of the eigenvalues are

bounded by

|λi − λ̄i| < κ2(V )‖Adist‖2 (4.26)

where V is the eigenvector matrix of A. Using (4.26), the upper bound for the distributed

feedback gain with a single communication link such that the improvement of the perfor-

mance for the whole system is guaranteed is given as follows.

Proposition 4.2.4 Consider an interconnected system (4.3) under assumption A1-A5 and

c = 1. Let λm(A) be the largest eigenvalue of A that satisfies ∂λm

∂K
> 0. If the feedback

gain K satisfies

|K| < |λmax(A)− λm(A)|, (4.27)

then the performance of (4.3) with distributed control is guaranteed to be better than the

decentralized one.

Proof : From (4.26) and Lemma 4.2.3 we have

|λi − λ̄i| < κ2(V )‖Adist‖2,
|λi − λ̄i| < ‖Adist‖2 (4.28)

where λ̄i are the perturbed eigenvalues. The ‖Adist‖2 can be computed as

‖Adist‖2 =
[
λmax(A

T
distAdist)

] 1
2 = [λmax(AdistAdist)]

1
2 . (4.29)

Assume that we add the communication links between the k−th and l−th controllers,

i.e. Ākl = Ālk = K. Since [AdistAdist]ij =
∑N

s=1 ĀisĀsj , we have [AdistAdist]ij = 0 except

for [AdistAdist]kk = K2 and [AdistAdist]ll = K2. The eigenvalues of AdistAdist, i.e. λi are the

solutions of (λ −K2)2(λ)N−2 = 0. Therefore, λmax(AdistAdist) = K2 and ‖Adist‖2 = |K|.
Then Eq. (4.28) becomes

|λi − λ̄i| < |K|.

The above inequality informs us that the movement of any eigenvalues are bounded by

the magnitude of the perturbation to the system. Thus in order to guarantee λm(Ā) <

λmax(A), a sufficient condition is that the distance of the movement of the largest eigenvalue
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Figure 4.4: Sufficient condition for the distributed control gain such that the overall system
performance is improved, i.e. the largest eigenvalue λmax should move at most
distance of |λmax − λm|.

λmax has to be at most |λmax − λm| as illustrated in Fig. 4.4. In other words,

|λmax − λ̄max| < |K| < |λmax − λm|.

Therefore the feedback gain has to be chosen according to (4.27). This completes the

proof.

4.3 Explicit Solution for Special Class of Physical

Topology

Next, we present the explicit solution on where to add the communication link such that

the overall system performance is optimized for a given control gain based on the eigen-

value sensitivity analysis presented in the previous section. In Section 4.2, the optimization

problem (4.6) is reformulated as finding the elements of eigenvector corresponding to the

largest eigenvalue for a given control gain. However, in general the closed form are not

available for the generic case. Therefore, in this chapter as a first step we focus on intercon-

nected system with three different physical topology namely ring, star and line structure

as illustrated in Fig. 4.5. We start the investigation for scalar subsystems and c = 1, i.e.

we consider the case of a single communication link. The results are then extended to the

case of non-scalar subsystems, multiple communication links and more complex physical

topology.

4.3.1 Ring Topology Case

First, we present the explicit solution of communication topology design for interconnected

system whose physical topology has a ring structure and identical local dynamics.

Proposition 4.3.1 Consider an interconnected system (4.3) under Assumptions A1-A5

with a ring physical topology. In addition, it is assumed that the local dynamics of the

subsystems are identical, i.e. Ai = Aj = a, i 6= j and Aij = b, ∀i, j. Then the solution of

(4.8) is di⋆j⋆ where (i⋆, j⋆) = argmaxDGP
(i, j).
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(a) ring (b) star (c) line

Figure 4.5: Physical topology of the interconnected system investigated in the dissertation:
ring, star and line topology. The physical interconnection between the subsystems
are identical.

Proof : See Appendix B.1.

Next we investigate how the heterogeneity of the local dynamics affects the solution by

replacing one subsystem with different local dynamics.

Proposition 4.3.2 Consider an interconnected system (4.3) under Assumptions A1-A5

with a ring physical topology. It is assumed that the local dynamics of the subsystems are

identical except for the local dynamics of subsystem m, i.e. Am = g, Ai = Aj = a where

i, j 6= m. Furthermore, assumed that Aij = b, ∀i, j. Then, the solution of (4.8) is di⋆j⋆

where

• i⋆ = m and DGP
(m, j⋆) = 1 when |g| < |a|

• DGP
(i⋆, m) > DGP

(k,m) and DGP
(j⋆, m) > DGP

(k,m), ∀k, k 6= i⋆, j⋆ and i⋆ 6= j⋆,

otherwise.

Proof : See Appendix B.2.

Discussion

As shown in the above proposition, the optimal communication link for homogeneous scalar

subsystems with ring physical topology results in a high network cost under assumption

that the cost is proportional to the distance between the local controller. On the other

hand, unlike the case of homogeneous subsystems where the communication topology does

not depend on the local dynamics and the strength of physical interconnection, when

the subsystems of an interconnected system with ring physical topology are not identical,

the local dynamics affects the resulting communication topology, as shown in the above

proposition.

4.3.2 Star Topology Case

Next, we present the explicit solution of communication topology design for the intercon-

nected system whose physical topology has a star structure.
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Proposition 4.3.3 Consider an interconnected system (4.3) under Assumptions A1-A5

with a star physical topology. Under the assumption that the local dynamics of the

subsystems are identical except for subsystem m with the largest degree, i.e. Am = g,

where deg(m) = N − 1 and Ai = Aj = a where i, j 6= m. Furthermore, we assume that

Aij = b, ∀i, j. Then the solution of (4.8) is di⋆j⋆ where

• i⋆ = m and DGP
(i⋆, j⋆) = 1 when g − a > b(2−N),

• DGP
(i⋆, j⋆) = 2, otherwise.

Remark 9 Note that the result can be extended in a straightforward manner for the case

of deg(m) = 1.

Before proving the aforementioned proposition, we first introduce the following Lemma.

Lemma 4.3.4 The eigenvalues of the N ×N matrix

A =











g b b · · · b

b a 0 0

b 0 a
...

...
...

. . . 0

b 0 · · · 0 a











(4.31)

where a, g < 0 and b > 0 are given by

λ1 =
a+ g +

√

(a+ g)2 − 4 (ag − (N − 1)b2)

2

λ2 =
a+ g −

√

(a+ g)2 − 4 (ag − (N − 1)b2)

2
λ3 = · · · = λN = a.

Proof : See Appendix B.3.

We are now ready to prove Proposition 4.3.3.

Proof : With no loss of generality, we re-order the numbering of subsystems where the

subsystem with the largest degree, i.e. subsystem m as subsystem 1 and the others in

clockwise direction as subsystem 2, · · · , N . The overall dynamics of the interconnected

system with star topology can then be written as

A =











g b b · · · b

b a 0 0

b 0 a
...

...
...

. . . 0

b 0 · · · 0 a











. (4.32)
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The eigenvector corresponding to the largest eigenvalue λr can be computed by











g b b · · · b

b a 0 0

b 0 a
...

...
...

. . . 0

b 0 · · · 0 a




















vr1
vr2
...

vrN−1

vrN










= λr










vr1
vr2
...

vrN−1

vrN










.

The above equation can be re-written as

gvr1 + bvr2 + · · ·+ bvrN = λrvr1

bvr1 + avr2 = λrvr2
...

bvr1 + avrN = λrvrN .

Then, it can be computed that

vr2 = · · · = vrN =
b

λr − a
vr1 . (4.33)

From Lemma 4.3.4, λr = λ1, then we have

vr2 = · · · = vrN =
2b

g − a+
√

(a+ g)2 − 4 (ag − (N − 1)b2)
vr1 .

With no loss of generality, taking vr2 = · · · = vrN = 1 we have

vr1 =
g − a+

√

(a+ g)2 − 4 (ag − (N − 1)b2)

2b
. (4.34)

The optimal communication link is formulated as the optimization problem (4.8) whose

solution is given by i⋆ = 1, j⋆ 6= 1 when vr1 > 1 and i⋆, j⋆ 6= 1 when vr1 < 1. Next, the

condition for vr1 > 1 can be computed as follows

vr1 > 1
√

(a+ g)2 − 4 (ag − (N − 1)b2) > 2b− (g − a)
√

(g − a)2 + 4(N − 1)b2 >
√

(g − a)2 + 4(N − 1)b2

4(N − 1)b2 > 4
[
b2 − b(g − a)

]

Nb− b > b− (g − a)

g − a > b(2−N).

This completes the proof.

Additionally, we have the following corollary for the case of interconnected system with

identical local dynamics.

Corollary 4.3.5 Consider an interconnected system (4.3) under Assumptions A1-A5 with
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4.3 Explicit Solution for Special Class of Physical Topology

a star physical topology. In addition we assume that the local dynamics of the subsystems

are identical, i.e. Ai = Aj = a, i 6= j and Aij = b, ∀i, j. Then the solution of (4.8) is di⋆j⋆

where i⋆ = m and DGP
(i⋆, j⋆) = 1.

Proof : Since the subsystems are identical, i.e. a = g, Eq. (4.34) becomes

vr1 =
√
N − 1 > 1. (4.35)

Therefore, the solution of optimization problem (4.8) is given by i⋆ = 1 and j⋆ 6= 1. This

completes the proof.

Discussion

It is interesting to note that for interconnected systems consists of heterogeneous scalar

subsystems with a star physical topology, the resulting topology does not depend only on

the difference of local dynamics, but also on the strength of the physical interconnection

and the number of subsystems, i.e. the size of the network. On the other hand, for

homogeneous subsystems under a similar physical topology, the communication topology

neither depends on the local dynamics nor the strength of the physical interconnection.

4.3.3 Line Topology Case

Finally, we present the explicit solution of communication topology design for intercon-

nected system whose physical topology has a line structure.

Proposition 4.3.6 Consider an interconnected system (4.3) under Assumptions A1-A5

with a line physical topology. We assume that the local dynamics of the subsystems are

identical, i.e. Ai = Aj = a, i 6= j and Aij = b, ∀i, j. Furthermore, with no loss of generality,

the numbering of subsystems is re-ordered from left to right or up to down as 1, 2, · · · , N .

Then the solution of (4.8) is di⋆j⋆ where

• j⋆ = N+1
2

and i⋆ = N+1
2

+ 1 or i⋆ = N+1
2
− 1 when N is odd

• j⋆ = N
2
and i⋆ = N

2
+ 1 when N is even.

Proof : With no loss of generality, we re-order the numbering of subsystems from left

to right or up to down as 1, 2, · · · , N . The overall dynamics of the interconnected system

with line topology can then be written as

A =










a b

b a b
. . .

. . .
. . .

b a b

b a










. (4.36)

In order to prove the statement, first we need to compute the largest eigenvalue and the

corresponding eigenvector of (4.36). In general, the eigenvalue of the matrix A in (4.36)
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4 On the Explicit Solution of Communication Topology Design

is given by [16]

λj = a + 2|b| cos
(

j

N + 1
π

)

, j = 1, · · · , N (4.37)

while the corresponding eigenvector is given by

vj = yj[∆uj ], j = 1, · · · , N (4.38)

where

uj =

(
2

N + 1

) 1
2
[

sin

(
jπ

N + 1

)

, · · · , sin
(

Njπ

N + 1

)]T

,

∆ = diag(1, · · · , 1),

yj =

(

2

N + 1

N∑

i=1

sin2

(
ijπ

N + 1

))− 1
2

.

From (4.37), the largest eigenvalue, i.e. j = 1 can be computed as

λmax = a+ 2|b| cos
(

1

N + 1
π

)

(4.39)

and the corresponding eigenvector

v1 = y1[∆u1]

=

(
N∑

i=1

sin2

(
iπ

N + 1

))− 1
2

diag(1, · · · , 1)
[

sin

(
1π

N + 1

)

, · · · , sin
(

Nπ

N + 1

)]T

.

It is known that

N∑

i=1

sin2(ix) =
1

4
{1 + 2N − csc(x) sin[x(1 + 2N)]}.

Taking x = π
N+1

, we have
N∑

i=1

sin2

(
iπ

N + 1

)

=
N + 1

2
.

Therefore, the eigenvector corresponding to λmax is given by

v1 =

√

2

N + 1

[

sin

(
1π

N + 1

)

, · · · , sin
(

Nπ

N + 1

)]T

.

The maximum value of the element of v1 is equal to 1 which occurs at

sin

(
jπ

N + 1

)

= sin
(π

2

)

⇔ j =
N + 1

2
. (4.40)
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The optimal communication link is formulated as the optimization problem (4.8) whose

solution is then given by

• j⋆ = N+1
2

and i⋆ = N+1
2

+ 1 or i⋆ = N+1
2
− 1 when N is odd

• j⋆ = N
2
and i⋆ = N

2
+ 1 when N is even.

In other words, the communication link is added between local controller in the middle

and its neighbor. This completes the proof.

4.4 Explicit Solution for Multidimensional Subsystems

In this section, the results in section 4.3 are extended into the case of multidimensional

subsystems. Specifically, we investigate the following question: for which class of intercon-

nected system do the results for the scalar case still hold? We consider an interconnected

system given by the following assumptions.

V1 The state of subsystem i, i.e. xi ∈ R
n.

V2 Matrix Ai is real symmetric, i.e. Ai = AT
i and λmax(Ai) < 0.

V3 The physical interconnections are identical, i.e. Aij = Aks, i 6= j, k 6= s and Aij = AT
ij,

Aij = lAi, l < 0 ∈ R.

V4 The communication is bidirectional and the distributed control gains are fixed and

equal. Moreover BiKij = kJn where k ∈ R, k < 0 and Jn is a unit matrix of size n.

Let us consider an interconnected system (4.3) under Assumptions V1-V4 where the local

dynamics of the subsystems are identical, i.e. Ai = Aj = Â, i 6= j. Next let us compute

the change of the largest eigenvalue of the matrix A when it is perturbed by the matrix

K = [BiKij] ∈ R
Nn×Nn where BiKij ∈ R

n×n is given by Assumption V4. Without loss

of generality, it is assumed that the physical interconnection topology is given by a ring

and the communication link is added between the local controller of subsystem i and j.

Eq. (4.10) can then be computed as

∂λmax

∂k
= vT

r















On On · · · On On · · · On

On On · · · −Jn On · · · On
...

...
. . .

...
...

. . .
...

On −Jn · · · On On · · · On

On On · · · On On · · · On
...

...
. . .

...
...

. . .
...

On On · · · On On · · · On















vr (4.41)

where vr = [vr1 , vr2, · · · , vrn , vrn+1, · · · , vrNn
]T . After straightforward computation,

Eq. (4.41) becomes ∂λmax

∂k
= −2virvjr where

vir =

in∑

p=(i−1)n+1

vrp. (4.42)
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Next we compute the eigenvector of A corresponding to the largest eigenvalue λmax. The

matrix A can be written as

A = C ⊗−Â

where ⊗ describes the Kronecker product and the matrix C ∈ R
N×N is given by

C =










−1 l̄ 0 l̄

l̄ −1 l̄
. . .

. . .
. . .

l̄ −1 l̄

l̄ 0 l̄ −1










where l̄ = −l. The Nn eigenvalues of C ⊗−Â are then given by [79]

λ1(C)λ1(−Â), · · · , λ1(C)λn(−Â), λ2(C)λ1(−Â), · · · , λ2(C)λn(−Â), · · · , λN(C)λn(−Â).

Therefore, under Assumption V2, the largest eigenvalue of A can be com-

puted as λmax(A) = λmax(C)λmax(−Â) or λmax(A) = λmax(C)αmin(−Â). Further-

more, if z1, · · · , zN are linearly independent right eigenvectors of C corresponding to

λ1(C), · · · , λN(C) and w1, · · · ,wn are linearly independent right eigenvectors of −Â cor-

responding to λ1(−Â), · · · , λn(−Â), then zi ⊗ wj ∈ R
Nn are linearly independent right

eigenvectors of C ⊗−Â corresponding to λi(C)λj(−Â) [79]. The right eigenvectors of A

corresponding to the largest eigenvalue λmax is thus given by vr = zr⊗wr or vr = zr⊗w1.

Then, Eq. (4.42) can be re-written as

vir = zri

n∑

j=1

wrj or vir = zri

n∑

j=1

w1j

where wr = [wr1 , · · · , wrn]
T , w1 = [w11 , · · · , w1n]

T . Then we have

∂λmax

∂k
= −2zrizrj

∣
∣
∣
∣
∣

n∑

j=1

wrj

∣
∣
∣
∣
∣

2

︸ ︷︷ ︸

constant

or
∂λmax

∂k
= −2zrizrj

∣
∣
∣
∣
∣

n∑

j=1

w1j

∣
∣
∣
∣
∣

2

︸ ︷︷ ︸

constant

.

Therefore, it can be concluded that ∂λmax

∂k
∼ −2zrizrj . It is clear that the optimization

problem is reduced to the case of the scalar case by finding a pair of elements of eigenvector

corresponding to the largest eigenvalue of matrix C.

Remark 10 The similar results can be obtained for the case BiKij = kIn.

Similar results can be obtained for non-identical subsystems where one subsystem is sub-

stituted by another subsystem with different local dynamics and also for the non-scalar

subsystems with a star physical topology, as summarized in the following propositions.

Proposition 4.4.1 Consider an interconnected system (4.3) under Assumptions V1-V4

with a ring physical topology. In addition it is assumed that the local dynamics of the

subsystems are identical except for the local dynamics of subsystem m where Am = ζAi,

i, j 6= m and ζ > 0 ∈ R. Then the solution of (4.8) is di⋆j⋆ where
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• i⋆ = m and DGP
(m, j⋆) = 1 when ζ < 1

• DGP
(i⋆, m) > DGP

(k,m) and DGP
(j⋆, m) > DGP

(k,m), ∀k, k 6= i⋆, j⋆ and i⋆ 6= j⋆,

otherwise.

Proof : See Appendix B.4.

Proposition 4.4.2 Consider an interconnected system (4.3) under Assumptions V1-

V4 with a star physical topology. Under the assumption that the local dynamics of

the subsystems are identical except for subsystem m with the largest degree where

Am = ζAi, deg(m) = N − 1, i, j 6= m and ζ > 0 ∈ R. Then the solution of (4.8) is di⋆j⋆

where

• i⋆ = m and DGP
(i⋆, j⋆) = 1 when ζ − 1 > l̄(2−N),

• DGP
(i⋆, j⋆) = 2, otherwise.

Proof : See Appendix B.5.

Remark 11 As mentioned previously, the results for multidimensional subsystems under

Assumptions V1-V4 also hold for an interconnected system with star and line physical

topologies.

4.5 Explicit Solution for Multiple Communication Links

In this section, we discuss the case where multiple communication links are going to be

added, i.e. γij = 1, c > 1. Without loss of generality we consider the scalar subsystems.

The results also hold for non-scalar case under Assumptions V1-V4. First, we introduce

the following Lemmas for interconnected system consists of identical local dynamics.

Lemma 4.5.1 Consider an interconnected system (4.3) under Assumptions A1-A5 with

identical subsystems and a star physical topology. In addition, we assume that the subsys-

tem with degree N − 1 as subsystem 1 and the others in clockwise direction as subsystem

2, · · · , N . Then vri > 0 is the concave function of i and argmaxi vri = 1.

Proof : It is obvious from (4.33) and (4.35).

Lemma 4.5.2 Consider an interconnected system (4.3) under Assumptions A1-A5 with

identical subsystems and a line physical topology. In addition we re-order the numbering

of subsystems from left to right or up to down as 1, 2, · · · , N . Then vri > 0 is the concave

function of i and

argmax
i

vri =

{
N+1
2

if N is odd
N
2
, N+1

2
if N is even.

Proof : It is clear from the proof of Proposition 4.3.6 that

vr =

√

2

N + 1

[

sin

(
1π

N + 1

)

, · · · , sin
(

Nπ

N + 1

)]T

.

Furthermore we also have the following Lemmas.
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Lemma 4.5.3 Consider an interconnected system (4.3) under Assumptions A1-A5 with

ring physical topology. Furthermore, let us assume that the local dynamics of the subsys-

tems are identical except for subsystem 1 and the subsystems are numbered in a clock-

wise direction as 1, 2, · · · , N . Then vri > 0 is a concave (resp. convex) function of

i if |A1| > |Aj|, j 6= 1 (resp. |A1| < |Ai|, j 6= 1) and argmaxi vri =
⌊
N
2

⌋
+ 1 (resp.

argmaxi vri = 1).

Proof : The proof is straightforward from Lemma B.2.1 and Eq. (B.15) or Eq. (B.14).

Lemma 4.5.4 Consider an interconnected system (4.3) under Assumptions A1-A5 with

star physical topology. Furthermore, let us assume that the local dynamics of the sub-

systems are identical except for subsystem with degree N − 1 and the subsystems are

numbered such that subsystem with degree N − 1 as subsystem 1 and the others in clock-

wise direction as subsystem 2, · · · , N . Then vri is a concave (resp. convex) function of i if

A1 − Aj < Aij(2−N), j 6= 1 (resp. A1 − Aj > Aij(2−N), j 6= 1) and argmaxi vri = i 6= 1

(resp. argmaxi vri = 1).

Proof : The proof is straightforward from (4.33) and (4.34).

The results are intuitive since the minimization of λmax of a symmetric matrix is a convex

problem [131]. Therefore, by using Lemmas 4.5.1-4.5.4 and solving the optimization prob-

lem (4.16), the optimal communication topology for multiple links case can be computed

efficiently as will be demonstrated later via a numerical example.

4.6 Explicit Solution for Complex Physical Topology

In this section, it is demonstrated how the results can be extended to interconnected

system with more complex physical topology composed of the basic topologies investigated

in Section 4.3, i.e. the star, ring and line topology. For the sake of simplicity and clarity,

we consider the interconnected system given by Assumptions A1-A5 and the case of a

single communication link. Furthermore, we consider as an example an interconnected

system whose physical topology is a two-star network with identical subsystems as shown

in Fig. 4.6(b). We thus have the following result.

Proposition 4.6.1 Consider an interconnected system (4.3) under Assumptions A1-A5

with a two-star physical topology and equal number of subsystems. In addition it is

assumed that the local dynamics of the subsystems are identical, i.e. Ai = Aj = a, i 6= j

and Aij = b, ∀i, j. Then the solution of (4.8) is di⋆j⋆ where deg(i⋆)=deg(j⋆)>1.

Proof : With no loss of generality, we re-order the numbering of the subsystems as

illustrated in Fig. 4.6(b). The overall dynamics of the interconnected system with two-star
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1

2

3

4

N̄

N̄ + 1

N̄ + 2

N̄ + 3

N̄ + 4

2N̄

(a)

1

2

3

4

N̄

N̄ + 1

N̄ + 2

N̄ + 3

N̄ + 4

2N̄

(b)

Figure 4.6: (a) Disconnected two-star topology with equal number of subsystems N̄ ; (b)
Interconnected system whose physical topology is given by a two-star network.

topology can then be written as

A =






















a b b · · · b b 0 0 · · · 0

b a 0 0 0 0 0 · · · 0

b 0 a
...

...
...

...
...

...
...

...
. . . 0 0 0 0 · · · 0

b 0 · · · 0 a 0 0 0 · · · 0

b 0 0 · · · 0 a b b · · · b

0 0 0 · · · 0 b a 0 0
...

...
...

...
... b 0 a

...

0 0 0 · · · 0
...

...
. . . 0

0 0 0 · · · 0 b 0 · · · 0 a






















∈ R
2N̄×2N̄ . (4.43)

The two-star topology can be obtained by connecting the nodes with the maximum degree

of the identical stars topology in Fig. 4.6(a). Eq. (4.43) can then be written as

A =






















a b b · · · b 0 0 0 · · · 0

b a 0 0 0 0 0 · · · 0

b 0 a
...

...
...

...
...

...
...

...
. . . 0 0 0 0 · · · 0

b 0 · · · 0 a 0 0 0 · · · 0

0 0 0 · · · 0 a b b · · · b

0 0 0 · · · 0 b a 0 0
...

...
...

...
... b 0 a

...

0 0 0 · · · 0
...

...
. . . 0

0 0 0 · · · 0 b 0 · · · 0 a






















+






















0 0 0 · · · 0 b 0 0 · · · 0

0 0 0 0 0 0 0 · · · 0

0 0 0
...

...
...

...
...

...
...

...
. . . 0 0 0 0 · · · 0

0 0 · · · 0 0 0 0 0 · · · 0

b 0 0 · · · 0 0 0 0 · · · 0

0 0 0 · · · 0 0 0 0 0
...

...
...

...
... 0 0 0

...

0 0 0 · · · 0
...

...
. . . 0

0 0 0 · · · 0 0 0 · · · 0 0






















= A0 + dA. (4.44)

The matrix dA can be seen as a perturbation working on the matrix A0. Therefore, in

the following we investigate how the eigenvector related to the largest eigenvalue of A0
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changes due to the perturbation by dA. First we compute the eigenvector w.r.t. the largest

eigenvalue of A0. The eigenvalues of A0 are given by λ(A0) = {λ(As), λ(As)} where

As =











a b b · · · b

b a 0 0

b 0 a
...

...
...

. . . 0

b 0 · · · 0 a











∈ R
N̄×N̄ .

The largest eigenvalue of A0 is then given by λmax(A0) = λmax(A
s) and the corresponding

eigenvector vr can be computed as

A0vr(A0) = λmaxvr(A0).

From (4.33) and (4.35), vr(A0) is then given by vr = [vr1 , vr2 , · · · , vr2, vr1 , vr2, · · · , vr2 ]T
where vr1 =

√
N − 1 and vr2 = 1√

N−1
vr1 . Next we investigate the eigenvector sensitivity

of A when A0 is perturbed by dA given by

[A− λmaxIN ]
dvr

db
= −

[
∂A

∂b
− λ′

maxIN

]

vr(A0) (4.45)

where λ′
max =

∂λmax

∂b
. The left and right hand side of (4.45) can be computed as

[A− λmaxIN ]
dvr

db
=






















â b b · · · b b 0 0 · · · 0

b â 0 0 0 0 0 · · · 0

b 0 â
...

...
...

...
...

...
...

...
. . . 0 0 0 0 · · · 0

b 0 · · · 0 â 0 0 0 · · · 0

b 0 0 · · · 0 â b b · · · b

0 0 0 · · · 0 b â 0 0
...

...
...

...
... b 0 â

...

0 0 0 · · · 0
...

...
. . . 0

0 0 0 · · · 0 b 0 · · · 0 â






















dvr

db
,
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−
[
∂A

∂b
− λ′

maxIN

]

vr(A0) =
























λ′
max 0 0 · · · 0 −1 0 0 · · · 0

0 λ′
max 0 0 0 0 0 · · · 0

0 0 λ′
max

...
...

...
...

...
...

...
...

. . . 0 0 0 0 · · · 0

0 0 · · · 0 λ′
max 0 0 0 · · · 0

b 0 0 · · · 0 λ′
max 0 0 · · · 0

0 0 0 · · · 0 0 0 0 0
...

...
...

...
... 0 0 λ′

max

...

0 0 0 · · · 0
...

...
. . . 0

0 0 0 · · · 0 0 0 · · · 0 λ′
max
























vr(A0)

where â = a − λmax(A0) = −b
√
N − 1. Therefore, Eq. (4.45) can be written by N equations

given as follows

âq1 + bq2 + · · ·+ bqN = vr1(λ
′
max − 1)

bq1 + âq2 = λ′
maxvr2

...

bq1 + âqN̄ = λ′
maxvr2

bq1 + âqN̄+1 + · · ·+ bqN = vr1(λ
′
max − 1)

bqN̄+1 + âqN̄+2 = λ′
maxvr2

...

bqN̄+1 + âqN = λ′
maxvr2 .

where qi =
dvri
db . Subtracting the i−th and j−th equation where 2 ≤ i, j ≤ N̄ results in q2 = · · · =

qN̄ . Similar result given by qN̄+1 = · · · = qN is also obtained for N̄ +1 ≤ i, j ≤ N . Furthermore,

subtracting the first and (N̄+1)−th equations gives (â−b)(q1−qN̄+1)+(N̄−1)b(q2−qN̄+2) = 0.

Applying the similar computation to the second and (N̄ + 2)−th equations gives b(q1 − qN̄+1) +

â(q2 − qN̄+2) = 0. Both equations can then be written as

[
â− b (N̄ − 1)b

b â

] [
q1 − qN̄+1

q2 − qN̄+2

]

=

[
0

0

]

.

Therefore, we have q1 = qN̄+1 and q2 = qN̄+2. In other words, the first element and the (N̄+1)−th
element of the eigenvector has the same sensitivity. The similar result can also be obtained for

the rest of the elements of the corresponding eigenvector. The final step is to prove that the first

and the (N̄ + 1)−th elements of eigenvector of A is larger than the rest of the elements. Let us

recall the definition of eigenvector of A given by

Avr(A) = λmaxvr(A).

From the above equation, we have the following.

vr1 =

(
λmax(A)− a

b

)

vr2 ,
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vr1 =

(
λmax(A0) + λ′

max − a

b

)

vr2 ,

=

(
a+ b

√
N − 1 + (

√
N − 1)2 − a

b

)

vr2 ,

=

(
b
√
N − 1 +N − 1

b

)

vr2 .

At the end, we have vr1 > vr2 . It can then be concluded that the optimal communication link

is obtained by connecting the first local controller and the (N̄ + 1)−th local controller. This

completes the proof.

Remark 12 It is possible to apply the similar idea to interconnected systems whose topol-

ogy is given by a two-ring network or combination of stars, rings and lines networks. The

main procedure is first to disconnect the topology into several basic topologies, e.g. ring,

star and line and then to treat the links connecting the basic topologies as perturbations,

as illustrated in Proposition 4.6.1.

4.7 Eigenvalue Sensitivity for Distributed Control with

Time Delay

In the following, the eigenvalue sensitivity approach described in the previous section is

applied to the interconnected system with time delay discussed in Section 3.3. First, let

us recall the closed loop dynamics of the interconnected system with distributed control

law where the information exchange is afflicted by constant and identical time delay τ :

ẋ(t) = Adecx(t) +Adistx(t− τ),

x(θ) = x0, ∀θ ∈ [−τ, 0]. (4.46)

Furthermore, for the sake of simplicity, we constrain ourselves for the remainder of this

section by the following assumptions.

D1 The subsystems are scalar, i.e. xi ∈ R.

D2 The number of communication link c = 1 with γij = 1.

D3 The communication is bidirectional.

D4 The distributed control gain K is fixed and equal for all subsystems which results in

AT
dist = Adist.

Note that the approach described in the following can also be extended to the case when

xi ∈ R
n and for multiple communication links, i.e. c > 1 which however results in a more

complicated formulation.

The largest real part of the eigenvalues of (4.46), i.e. λmax determines the decay rate

of the whole interconnected system. Therefore, similar to the non-delay case, we are

interested in the minimization of the real part of the rightmost eigenvalue λmax.
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4.7.1 Sensitivity to Communication Link

In this section, the eigenvalue sensitivity is analyzed in order to investigate how the struc-

ture of the distributed control law affects λmax of (4.46) for a given time delay τ . The

eigenvalues of (4.46) are equivalent to the roots of the characteristic equation

det(λIN −Adec −Adist e
λτ ) = 0. (4.47)

Note that Eq. (4.47) is a nonlinear eigenvalue problem and has infinitely many solutions.

However, the number of eigenvalues to the right of any vertical line, Re(λ) ≥ r, with r ∈ R,

is finite, and hence −∞ is the only accumulation point for the real parts of the eigenvalues

[99]. Before proceeding, let us recall the sensitivity analysis for the nonlinear eigenvalue

problem [67]. Consider a nonlinear eigenvalue problem depending on a parameter h,Gh.

Hence the sensitivity of a solution to the nonlinear eigenvalue problem λ, which is the

generalization for the linear case is given by [67]

λ′(h) =
v∗ ∂Gh

∂h
(λ)w

v∗(IN − ∂Gh

∂λ
(λ))w

(4.48)

where v and w are the left and right eigenvector respectively with normalization v∗w = 1

where v∗ is the complex conjugate transpose of v. Since the goal is to find the commu-

nication topology such that the convergence rate of the overall system (4.46) with the

distributed control law is higher than the one with the decentralized control, we would like

to find the structure of the perturbation to the rightmost eigenvalues λmax of (4.46) such

that its sensitivity is negative and the magnitude is maximum. Note that the rightmost

eigenvalues of (4.47) can be computed numerically using, e.g. [40]. The function GK(λ) is

given as

GK(λ) = Adec +Adist(K)e−τλ. (4.49)

The sensitivity of the rightmost eigenvalues of (4.46) is then given by the following Lemma.

Lemma 4.7.1 Consider an interconnected system (4.46) under Assumptions D1-D4. The

sensitivity of the rightmost eigenvalue λmax w.r.t. the structure of the distributed control,

i.e. the communication topology is given by

λ′
max =

(v∗riwrj + v∗rjwri) sign(K)

eτλmax +Kτ(v∗riwrj + v∗rjwri)
(4.50)

where vr,wr are the left and right eigenvector w.r.t. λmax.

Proof : See Appendix B.6.

As can be observed from (4.50), the sensitivity of the rightmost eigenvalue depends on

the distributed control gain K, time delay τ and also the elements of the eigenvectors

corresponding to the rightmost eigenvalue λmax. When the rightmost eigenvalue is complex,

only the movement along the real axis that needs to be considered. The communication

link is then added according to the following proposition.
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Proposition 4.7.2 Consider an interconnected system (4.46) under assumption D1-D4

with a constant time delay τ . The convergence rate of the overall system with distributed

control law is maximized by adding a communication link between subsystem i and j which

is the solution to
maximize

i,j
|λ′

max|

subject to λ′
max < 0.

Proof : Since we want to have the real part of the rightmost eigenvalue of (4.46) to

be smaller than the one with the decentralized control law, it is required that λ′
max < 0.

Moreover, the movement of the real part of the perturbed rightmost eigenvalue has to be

maximum in order to have the highest convergence rate of (4.46).

4.7.2 Sensitivity to Time Delay

Next the influence of time delay τ on the performance of the whole interconnected system

for a given distributed control law with a certain communication topology is investigated.

Using the eigenvalue sensitivity analysis, the sensitivity of the rightmost eigenvalue of

(4.46) with respect to the time delay is then given by

Lemma 4.7.3 Consider an interconnected system (4.46) under Assumptions D1-D4 where

the communication link is added between local controller of subsystem i and j. The

sensitivity of the rightmost eigenvalue λmax w.r.t. the time delay τ is given by

λ′
max = −

λmaxK(v∗riwrj + v∗rjwri)

eτλmax +Kτ(v∗riwrj + v∗rjwri)
(4.51)

where vr,wr are the left and right eigenvector w.r.t. λmax.

Proof : See Appendix B.7.

Using (4.51), it can be investigated how the time delay influences the performance of the

whole interconnected system for a given communication topology.

4.8 Evaluation

In this section we illustrate our results on the explicit solution of communication topology

design using several numerical examples.

4.8.1 Single Communication Link

Consider three different interconnected systems consist of scalar subsystems with a star

topology satisfying Assumptions A1-A5 as shown in Fig. 4.7. The dynamics of the whole
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(a) Plant graph G1 (b) Plant graph G2 (c) Plant graph G3

Figure 4.7: Plant graphs for interconnected system with star topology. The solid line repre-
sents the physical interconnection and the dashed line represents the communica-
tion link.

interconnected system for each topology is given by

AG1 =









−18 2 2 2 2

2 −18 0 0 0

2 0 −18 0 0

2 0 0 −18 0

2 0 0 0 −18









,AG2 =









−20 2 2 2 2

2 −18 0 0 0

2 0 −18 0 0

2 0 0 −18 0

2 0 0 0 −18









,

AG3 =














−30 2 2 2 2 2 2

2 −18 0 0 0 0 0

2 0 −18 0 0 0 0

2 0 0 −18 0 0 0

2 0 0 0 −18 0 0

2 0 0 0 0 −18 0

2 0 0 0 0 0 −18














.

Furthermore, it is assumed that c = 1, γij = 1 and the distributed control gain is equal to -1

for the three cases. Using the results in Proposition 4.3.3 and Corollary 4.3.5, the communi-

cation topology can be computed as illustrated in Fig. 4.7. The rightmost eigenvalue with

the distributed control law are given by λmax(ĀG1) = −14.3944, λmax(ĀG2) = −15.2583
and λmax(ĀG3) = −16.4601.

4.8.2 Multiple Communication Links

Next, consider an interconnected system with 20 interacting scalar subsystems with a

ring physical topology satisfying Assumptions A1-A5 where g = −11, a = −15, b = 5

and the distributed control gain K = −2. Since |g| < |a| and from Proposition 4.3.2

and Lemma 4.5.3, it can be concluded that vri is a convex function of the number of

subsystem i as illustrated in Fig. 4.8(a). The optimal communication topology is the

solution of optimization problem (4.16). By observing the elements of eigenvector vri
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Figure 4.8: (a) The elements of eigenvector corresponding to the largest eigenvalue for inter-
connected system with ring topology with N = 20; (b) The optimal communica-
tion topology for number of links equal to 5. The solid line represents the physical
interconnection and the dashed line represents the communication link.

shown in Fig. 4.8(a), the optimal communication topology can be computed efficiently.

For example, when γij = 1, c = 5, the communication topology is depicted in Fig. 4.8(b)

which results in λmax(Ā) = −5.1264.

4.9 Summary and Discussion

This chapter presents for the first time explicit solutions of communication topology design

for distributed control of interconnected systems with special class of physical intercon-

nection topology, namely ring, star and line structure. The innovative approach is mainly

based on eigenvalue sensitivity analysis. First, explicit solutions of a single communication

link are derived for interconnected system consists of identical scalar subsystems. As can

be observed, for the class of systems considered in this chapter with homogeneous subsys-

tems and a single link case, the ring structure results in a communication topology with

the highest cost w.r.t. the distance between the controllers. Furthermore, it is investigated

how heterogeneity of the subsystems influences the communication topology. It turns out

that for the heterogeneous interconnected subsystems with star topology, the number of

subsystems also plays a role in the resulting topology, in addition to the local dynamics

and the strength of physical interconnection. The results are then extended for the case of

interconnected system with non-scalar subsystems by investigating the class of non-scalar

subsystems which can be reduced to the scalar case and also for multiple communication

links. It is also demonstrated that it is possible to extend the results into more complex

physical interconnection topology, which is composed of the ring, star and line networks

and where the interconnection is sparse using the idea described in Section 4.6. For a more

general physical topology, i.e. topology which cannot be decomposed into ring, star, line,

it is difficult to obtain a closed-form on the communication topology. However, the eigen-
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value sensitivity analysis can still be used in order to reduce the number of combinations

that has to be computed by looking at the sign of the elements of the eigenvector with

respect to the largest eigenvalue. Finally, the eigenvalue sensitivity analysis is applied to

distributed control with time delay in order to investigate the influence of the communica-

tion topology and time delay on the performance of the distributed control. The explicit

solutions and new insights on communication topology design introduced in this chapter

can be applied to a variety of interconnection systems such as power grid. One of the

examples is that the insights on topology design in this chapter can be used to design the

physical interconnection structure of the power grid. As shown in this chapter, in order

to achieve an optimal performance, choosing a ring structure results in a higher commu-

nication cost compared to line and star topologies and will be less robust to time delay,

under assumption that the value of time delay is proportional to the distance between the

subsystems. Note that it is also possible to utilize the idea of eigenvalue sensitivity analysis

in order to investigate the robustness of the physical structure of the interconnected sys-

tem assuming that the subsystem or the physical interconnection is perturbed by a certain

disturbance. This may also serve as a guidance in designing robust physical topology for

the interconnected system, given the number of subsystems and the heterogeneity of the

subsystems local dynamics.

However, the eigenvalue sensitivity based approach utilized in this chapter also suffers

from some disadvantages. The results obtained in this chapter rely on the assumption that

the physical interconnection are symmetric. On the other hand, in reality this assumption

may not always be satisfied by the interconnected systems. The breaking of symmetry of

the physical interconnection results in complex eigenvalues which makes the prediction of

their movement become more complicated and challenging, thus limits the use of eigenvalue

sensitivity analysis. Furthermore, the results for multiple communication links are also

derived by assuming that the distributed control gain are equal for all communication

links, which is quite a strong assumption. These lead to the following problems which

require further investigations in the future:

• Explicit solutions for the case of interconnected system with non-symmetric physical

interconnection.

• Extension of eigenvalue sensitivity analysis in order to deal with distributed control

consists of non-identical control gains.

• Explicit solutions of communication topology design for communication links with

time delay.

• Insights for interconnected system consists of more heterogeneous local dynamics.

• Investigation on the wider class of non-scalar subsystems whose analysis can be

reduced to the scalar case.
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Model Information

The design of distributed control in most literature, including the results presented in

Chapters 3 and 4 is performed in a centralized manner. In other words, system-wide

information needs to be collected in a central computer in order to compute the control

law, even though the control law is implemented in a distributed fashion. However, this is

not a realistic case and is difficult to be implemented in real world applications, for example

in the case of power system whose transmission and distribution networks have numerous

and geographically dispersed distributed generations. Another reason is due to the privacy

reasons in which the subsystems may not wish to provide their complete description to

the designer. The authors in [43, 44] present a framework for studying control design

under limited plant model information, and investigate the connection between the control

performance achieved by a design method and the amount of plant model information

available to it. Furthermore, the authors in [15] propose a distributed design of distributed

control. However, the subsystems are assumed to be identical and not physically coupled.

The authors in [116] propose an optimization-based distributed control design which can

be solved in a distributed manner. However, the communication topology in the known

literature mentioned previously is assumed to be fixed and given a priori.

The major innovation in this chapter is to develop a novel coordination algorithm in

order to design distributed control for interconnected systems under limited plant model

information. Specifically, it is assumed that each subsystem only has the information

about its physical neighbors local dynamics and the interconnection between them in

addition to its own local dynamics. The objective is to design the distributed control law

together with the communication topology under the limited model information such that

the performance of the overall system, which is the linear quadratic cost, is improved and

the stability is guaranteed under permanent communication link failures. The innovative

strategy is to distribute the control design among the subsystems. The proposed strategy

can be summarized as follows. First, sufficient condition in order to decompose the global

cost function into the sum of local cost functions is derived. Each subsystem is then

assigned a local cost function and based on the limited plant model information available

to it, the optimization problem is solved by coordinating with the neighboring subsystems.

Furthermore, the novel two-layer control architecture developed in Chapter 3 is adopted to

guarantee the stability of the overall system under permanent communication link failures.

The remainder of this chapter is organized as follows. After formulating the problem

in Section 5.1, the proposed novel algorithm for designing the distributed control gain

and the communication topology by using limited plant model information is described in

Section 5.2. Furthermore, the complexity of the approach is compared to the centralized

design proposed in Chapter 3. The proposed approach is finally illustrated through a

numerical example in Section 5.3.
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5.1 Problem Formulation

Consider an interconnected system of N heterogeneous linear time invariant (LTI) subsys-

tems described by the following differential equations

ẋi = Aixi +
∑

j∈Ni

Aijxj +Biui, xi(t0) = xi
0 (5.1)

where i = 1, 2, ..., N denotes the i−th subsystem, xi ∈ R
n, ui ∈ R

p are the state of

subsystem i and the control input to subsystem i, and Ai,Aij ∈ R
n×n, Bi ∈ R

n×p. The

term
∑

j∈Ni
Aijxj represents the physical interconnection between the subsystems where

Ni is the set of subsystems to which subsystem i is physically connected. Additionally, we

consider a state feedback control for which the control law can be written as

ui = Kixi +
∑

j∈Gi

Kijxj (5.2)

where Gi represents a set of subsystems to which controller i can exchange information

with via the communication network.

The overall dynamics of the interconnected system can then be written as

ẋ = Ax+Bu, x(t0) = x0 (5.3)

where x = [x1,x2, · · · ,xN ]
T , u = [u1,u2, · · · ,uN ]

T and

A =








A1 A12 · · · A1N

A21 A2 · · · A2N
...

...
. . .

...

AN1 AN2 · · · AN







∈ R

nN×nN ,B =








B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · BN







∈ R

nN×pN .

In this chapter, an linear quadratic regulator (LQR) problem is considered for the

interconnected system (5.3) with cost function given by

J(u,x0) =

∫ ∞

0

(
xTQx+ uTRu

)
dt (5.4)

where x0 is the initial state, Q > 0, R > 0 are the weighting matrices with appropriate

dimensions and given by

Q =








Q11 Q12 · · · Q1N

Q21 Q22 · · · Q2N
...

...
. . .

...

QN1 QN2 · · · QNN







, R =








R11 0 · · · 0

0 R22 · · · 0
...

...
. . .

...

0 0 · · · RNN







.

Similar to Chapter 3, the communication topology, that is Gi, ∀i of the distributed control

law (5.2) is also a design parameter and the number of communication links that can be
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(a) (b)

Figure 5.1: (a) Centralized design method where a central computer collects the information
of the whole interconnected system and compute the distributed control law based
on the information gathered; (b) Proposed distributed design method where the
design is performed in each subsystem’s local computer by coordinating with its
neighbors’ local computer. Each local computer only has limited model informa-
tion on the plant, i.e. its own local dynamics, its neighbors’ local dynamics and
the interconnection between them.

added is limited by an upper bound induced by the communication constraint

∑

1≤i≤j≤N

γijdij ≤ c (5.5)

where dij ∈ {0, 1}, c > 0 is the total cost constraint on the communication network, and

γij represents a cost to establish a link between the local controllers of subsystems i and j.

Therefore, by adopting the results in Chapter 3, the distributed control design together

with the communication topology can be formulated as the following optimization problem:

minimize
Ki,Kij ,dij

J

subject to ẋ = Ax+Bu, x(t0) = x0,
∑

1≤i≤j≤N

γijdij ≤ c,

dij ∈ {0, 1}.

(5.6)

The optimization problem (5.6) is a mixed integer optimization problem since it is solved

with respect to both the feedback gain and the communication topology of the distributed

control. It should be noted that the optimization problem (5.6) is solved in a centralized

fashion, i.e. the global knowledge of the interconnected system is required, see Fig. 5.1(a).

However, in real world applications, it is either very hard to obtain the complete model

of the interconnected system or the designer does not have access to full model of the

systems. The reasons are either because the full plant model is simply not available or

the subsystems may not wish to provide their complete description to the designer. In

addition, computing the distributed control law in a centralized manner results in that

the designer needs to completely recompute the control laws when the model parameters
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change or if new subsystems are introduced into the interconnected system.

In this chapter, a method in order to jointly design the control gain together with the

communication topology in a distributed fashion is proposed. Instead of computing the

distributed control law in a central computer, the computation is distributed among the

local controllers in each subsystem, see Fig. 5.1(b). Each local computer only has partial or

limited model information of the overall interconnected system. Specifically, it is assumed

that each subsystem has the information on the local dynamics of its physical neighbors

and also the interconnection matrix between its neighbors in addition to its own local

dynamics. In other words, the subsystem i has the following extended dynamics

˙̂xi = Âix̂i + B̂iûi, x̂i(t0) = x̂i
0 (5.7)

where x̂i = [xi, · · · ,xk]
T , ûi = [ui, · · · ,uk]

T , k ∈ Ni. The matrix Âi ∈ R
n(|Ni|+1)×n(|Ni|+1)

and B̂i ∈ R
n(|Ni|+1)×p(|Ni|+1) in (5.7) is obtained from (5.3).

Example 2 The limited model information of each subsystem from interconnected system

depicted in Fig. 5.2 is shown in Fig. 5.3. The extended dynamics of subsystem 1 can then

be written as

˙̂x1 =







A1 A12 A14 A15

A21 A2 On A25

A41 On A4 On

A51 A52 On A5






x̂1 +







B1 0 0 0

0 B2 0 0

0 0 B4 0

0 0 0 B5






û1

where x̂1 = [x1,x2,x4,x5]
T . It can be observed from the example above that subsystem 1

does not have the complete model information of its neighbors, i.e. subsystems 2, 4 and 5.

1

2

3

45

Figure 5.2: Example of physical interconnected system.

Furthermore, for each subsystem with extended dynamics described in (5.7), a local

cost function Ĵi is assigned given as follows.

Ĵi(û, x̂0) =

∫ ∞

0

(

x̂T
i Q̂ix̂i + ûT

i R̂iûi

)

dt (5.8)

where Q̂i, R̂i are the corresponding weighting matrices with appropriate dimensions. Note

that for the remainder of this chapter, the notation ( ˆ ) is used to refer to the local

subproblem solved by the corresponding subsystem.
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1 1

222 2 3

3 3 44

4

5

55

subsystem 1 subsystem 2 subsystem 3 subsystem 4 subsystem 5

Figure 5.3: Limited model information for each subsystem in interconnected system shown
Fig. 5.2. Each subsystem has the knowledge of its physical neighbors’ local dy-
namics and the interconnection between them.

The objective of this chapter is to develop an algorithm in order to design the dis-

tributed control law (5.2), including the communication topology by using the limited

model information (5.7) and local cost function (5.8) such that:

• the overall system performance is improved, that is the cost function (5.4) is mini-

mized and the stability of the whole system (5.3) is guaranteed,

• the stability of the interconnected system under permanent communication link fail-

ures is guaranteed.

Remark 13 The choice of quadratic infinite horizon cost (5.4) as a performance metric

results in several advantages compared to the decay rate of the system as used in the

previous chapters. First, as will be shown in the next section, it is possible to decompose

the global optimization problem into N local optimization problem which can be solved by

each subsystem in a distributed manner. Another advantage is that the quadratic infinite

horizon cost also considers input costs into the optimization which is not the case for the

decay rate.

5.2 Proposed Distributed Algorithms

In this section, we propose a method to design the distributed control, i.e. the control gain

and the communication topology by using only the limited model information in each sub-

system, instead of designing the distributed control in a centralized fashion. First, in order

to guarantee the stability of the interconnected system in the presence of permanent com-

munication link failures, a two-layer control architecture proposed in Chapter 3 is adopted.

Next, the algorithm to solve the optimization problem (5.6) in a distributed fashion using

only the limited model information in each subsystem is described. Briefly speaking, the

design procedure consists of three steps as illustrated in Fig. 5.4. First, sufficient condition

that enables to decompose the global cost function (5.6) into the summation of N local

cost functions (5.8) is derived. The optimization problem is then solved independently for

each local cost function by every subsystem. Finally, the optimal solution of each local

optimization problem is aggregated to obtain the global solution.
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min J

decomposition

+

min Ĵ1

min Ĵ2

min Ĵl

LQR

LQR

LQR

K̂ij,1, d̂ij,1

K̂ij,2, d̂ij,2

K̂ij,N , d̂ij,N

Kij , dijvoting

step 1 step 2 step 3

Figure 5.4: Proposed distributed design method. First, the global cost function is decomposed
into the summation of local cost functions. The optimization is then solved for
each local cost function. Finally, a voting is conducted to obtain a global solution
from the solution of the local optimization problems.

5.2.1 Two-layer Control Architecture

In order to guarantee the stability of the interconnected system in the presence of perma-

nent communication link failures, a two-layer control architecture proposed in Chapter 3

is adopted. First, a decentralized control law is designed that guarantees the stability of

the interconnected system (5.3) by using, e.g. the method in [71] with the control input

given by

ūi = Kixi. (5.9)

Remark 14 Similar to Chapter 3, it is assumed that all the decentralized fixed modes

(DFM), if any, are in the open left half plane.

The performance is then improved by designing a distributed control law, i.e. the second

term of (5.2). The optimization problem (5.6) is then reduced to

minimize
Kij ,dij

J

subject to ẋ = Ax+Bu, x(t0) = x0,
∑

1≤i≤j≤N

γijdij ≤ c,

dij ∈ {0, 1}.

(5.10)

Remark 15 Since the first term of (5.2) is designed in advanced and will be fixed in the

design of the communication topology, the optimality of the solution from the distributed

design approach may be degraded. However, as shown later in this chapter, this will

guarantee the stability of the overall system in the presence of permanent communication

link failures.
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In the following, an algorithm is proposed to solve the optimization problem (5.6) in a

distributed manner as illustrated in Fig. 5.4. We first give a sufficient condition that

decomposes the global cost function in (5.6) into N local cost functions (5.8).

5.2.2 Cost Function Decomposition

In the distributed design setting, each subsystem needs to solve its own subproblem. We

define subproblem i of subsystem i consists of the extended dynamics (5.7) and local cost

function (5.8). Before proceeding, let us introduce the following definition in order to

express the relation between the non-sparsity structure of two matrices.

Given a matrix Y ∈ R
m×n which may be written in term of its columns as

Y = [y1 · · ·yn] and associated with a vector vec(Y ) ∈ R
nm×1 defined by

vec(Y ) =






y1
...

yn




 .

The l0 norm of a vector is defined as ‖x‖l0 = |{i : xi 6= 0}| and counts the non-zero entries

in x. Thus, for any m × n matrices X = [Xij ] and Y = [Yij ], the non-sparsity structure

of X is the subset of that of Y iff ‖vec(Xij)‖l0 = 0 whenever ‖vec(Yij)‖l0 = 0.

Example 3 The non-sparsity structure of matrix X1 below is the subset of that of X2

X1 =









−18 1 0 2 0

1 −10 0 0 0

0 0 −12 0 0

2 0 0 −6 0

0 0 0 0 −8









, X2 =









−10 2 4 2 3

2 −18 0 0 0

4 0 −6 0 0

2 0 0 −14 0

3 0 0 0 −20









.

Furthermore, the following assumption is considered.

Assumption 1 The non-sparsity structure of the weighting matrixQ in (5.4) is the subset

of that of the physical interconnection, that is the non-sparsity structure of the matrix A

in (5.3).

Next, we introduce the following Lemma.

Lemma 5.2.1 Consider an interconnected system whose dynamics given by (5.1). Under

Assumption 1, the global cost (5.4) can be decomposed into N local cost (5.8) given by

J =
N∑

i=1

Ĵi (5.11)

where the weighting matrices Q̂i, R̂i are given by

Q̂i =








1
di+1

Qii
1
2
Qij · · · 1

2
Qik

1
2
Qji

1
dj+1

Qjj · · · 1
2
Qjk

...
...

. . .
...

1
2
Qki

1
2
Qkj · · · 1

dk+1
Qkk







, R̂i =








1
di+1

Rii 0 · · · 0

0 1
dj+1

Rjj · · · 0
...

...
. . .

...

0 0 · · · 1
dk+1

Rkk







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where j, k ∈ Ni and di = |Ni|.

Proof: For the sake of clarity, first the global cost function J in (5.4) is separated into

two parts, namely JQ and JR defined as

J =

∫ ∞

0

(xTQx)dt+

∫ ∞

0

(uTRu)dt,

= JQ + JR.

Let Ad be the adjacency matrix of the interconnected system (5.3) and Adij ∈ R be its

i, j element. Then Adii = 0, ∀i = 1, · · · , N , Adij = 0 if Aij = On and Adij = 1 otherwise.

Moreover, define the matrix H as H = IN + Ad where hij ∈ R is its i, j element. The

former part JQ can then be written as

JQ =

∫ ∞

0







xT








Q11h11 Q12h12 · · · Q1Nh1N

Q21h21 Q22h22 · · · Q2Nh2N
...

...
. . .

...

QN1hN1 QN2hN2 · · · QNNhNN







x








dt

=

∫ ∞

0

(
N∑

i=1

xT
i Qiihiixi +

N∑

i=1

N∑

j 6=i

(xT
i Qijhijxj)

)

dt

=

∫ ∞

0

(
N∑

i=1

xT
i Qiixi +

N∑

i=1

∑

j∈Ni

(xT
i Qijxj)

)

dt

=

∫ ∞

0

N∑

i=1

(

(di + 1)xT
i

1

di + 1
Qiixi +

∑

j∈Ni

2(xT
i

1

2
Qijxj)

)

dt.

Since the term Qij is only shared by subsystem i and j and the term Qii can be found

only in the subproblems which consists of the neighbors of subsystem i, the global cost

can then be written as

JQ =

∫ ∞

0













x̂T
1








1
d1+1

Q11
1
2
Q1i · · · 1

2
Qik

1
2
Qi1

1
di+1

Qii · · · 0
...

...
. . .

...
1
2
Qk1 0 · · · 1

dk+1
Qkk







x̂1

︸ ︷︷ ︸

subproblem 1 where i, k ∈ N1

+

+ · · ·+ x̂T
N








1
dN+1

QNN
1
2
QNj · · · 1

2
QNm

1
2
QjN

1
dj+1

Qjj · · · 0
...

...
. . .

...
1
2
QmN 0 · · · 1

dm+1
Qmm







x̂N

︸ ︷︷ ︸

subproblem N where j,m ∈ NN













dt.
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5 Distributed Control Design under Limited Model Information

Therefore, JQ can be written as

JQ =

N∑

i=1

∫ ∞

0

(x̂T
i Q̂ix̂i)dt =

N∑

i=1

ĴQi
.

A similar procedure can also be applied to JR as follows.

JR =

∫ ∞

0








u1

u2
...

uN








T 






R11 0 · · · 0

0 R22 · · · 0
...

...
. . .

...

0 0 · · · RNN















u1

u2
...

uN







dt

=

∫ ∞

0

(

N∑

i=1

uT
i Riiui)dt

=

∫ ∞

0

N∑

i=1

(

(di + 1)uT
i

1

di + 1
Riiui

)

dt

=

∫ ∞

0













ûT
1








1
d1+1

R11 0 · · · 0

0 1
di+1

Rii · · · 0
...

...
. . .

...

0 0 · · · 1
dk+1

Rkk







û1

︸ ︷︷ ︸

subproblem 1 where i, k ∈ N1

+

+ · · ·+ ûT
N








1
dN+1

RNN 0 · · · 0

0 1
di+1

Rii · · · 0
...

...
. . .

...

0 0 · · · 1
dm+1

Rmm







ûN

︸ ︷︷ ︸

subproblem N where j,m ∈ NN













dt

=
N∑

i=1

∫ ∞

0

(ûT
i R̂iûi)dt,

=

N∑

i=1

ĴRi
.

By combining both results together, we have

J =
N∑

i=1

(

ĴQi
+ ĴRi

)

=
N∑

i=1

Ĵi.

This completes the proof.

Remark 16 The decomposition in (5.11) does not guarantee that Q̂i is also positive

definite. The positive definite of Q̂i can be guaranteed, for example by choosing Q as a
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diagonal dominant matrix.

Under Lemma 5.2.1, the global optimization problem (5.10) can then be written as the

summation of the local optimization subproblem given as follows.

min J = min

N∑

i=1

Ĵi =

N∑

i=1

min Ĵi. (5.12)

Subsystem i can then solve the optimization subproblem i independently which results

in the optimization of the global problem (5.10), as can be observed from (5.12). Next,

the performance is improved by designing jointly the distributed control gain and com-

munication topology, i.e. Kij and Gi of (5.2) by solving the local subproblem (5.8) under

dynamics (5.7). For the remainder of the chapter, without loss of generality, it is assumed

that γij = 1, i.e. c is equal to the number of available communication links.

5.2.3 Distributed Control Design - Single Communication Link

For the sake of clarity, we first consider the case when only a single communication link is

allowed to be added to the interconnected system, i.e. c = 1. Let us defineN+
m = {m∪Nm}.

Due to the decomposition in (5.12), we can argue on the subproblem level which consists

of subsystem and its neighbors. The optimization for subproblem m = 1, · · · , N (Step 2

in Fig. 5.4) can then be formulated as follows.

minimize
K̂ij,m,d̂ij,m

Ĵm

subject to ˙̂xm = Âmx̂m + B̂mûm, x̂m(t0) = x̂m
0 ,

Ĵm < Ĵdec
m ,

∑

1≤i≤j≤Nm

d̂ij,m ≤ 1,

d̂ij,m ∈ {0, 1},
(i, j) ∈ N+

m

(5.13)

where Ĵdec
m is the cost of subproblem m with the decentralized control law and K̂ij,m ∈

R
p×n, d̂ij,m are the optimal control gain and communication link from subproblem m re-

spectively. The optimal control law for the extended dynamics (5.7) is then given by

ûm = −R̂−1
m B̂T

mP̂mx̂m = K̂mx̂m (5.14)

where K̂m ∈ R
(|N+

m|)p×(|N+
m|)n and P̂m is the solution of the following algebraic Riccati

equation

ÂT
mP̂m + P̂mÂm − P̂mB̂mR̂

−1
m B̂T

mP̂m + Q̂m = 0. (5.15)

The local cost with the distributed control law obtained from (5.13) is denoted by Ĵdist
m

which can be computed as [103]

Ĵdist
m = x̂T

0mP̂mx̂0m. (5.16)
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subproblem 1 subproblem 2 subproblem 3 subproblem 4 subproblem 5

Figure 5.5: Examples of the optimal communication link resulted from the voting. The dashed
line represents the optimal communication link. The first case is when the op-
timal link comes from subproblem 1 and the second case when it comes from
subproblem 2.

After the optimal control gain and communication link in each subproblem is computed,

the aggregation step, i.e. Step 3 in Fig. 5.4 is performed. A voting is employed among

the subsystems in order to select which link has to be used for the global problem, i.e.

dij in (5.10). Since the goal is to improve the performance, i.e. to have a minimum value

of J , the voting elects the communication link among the subsystems that results in the

smallest cost compared to the cost with the decentralized control law as formulated in the

following

dij = d̂ij,m⋆ = argmax
d̂ij,m

(Ĵdec
m − Ĵdist

m (K̂m)). (5.17)

Remark 17 The voting can be performed in a distributed manner between the subsystems

by using the existing distributed voting algorithm, e.g. [58] or flooding algorithm.

Remark 18 Since the optimal link for each subproblem d̂ij,m can only take value in the

set N+
m , the optimal link resulting from the distributed design, that is dij in (5.17) may

differ from the one of the centralized design in (5.10). This may also result in an optimality

loss compared to the centralized design.

After fixing the optimal communication link via a voting, the next step is to choose the

optimal control gain obtained from the local optimization problem. Given the optimal link

dij obtained from (5.17), which is the optimal link for subproblem m⋆, i.e. dij = d̂ij,m⋆ , we

first define the following notation.

N̂m⋆ = {k|i, j ∈ N+
k , k 6= m⋆}. (5.18)

When N̂m⋆ = ∅, i.e. no other subsystems that have both subsystem i and j as their

physical neighbors, the optimal gain Kij,m⋆ obtained from (5.13) is also the optimal gain

for the global problem (5.6), i.e. K̂ij = K̂ij,m⋆ since

J = Ĵdec
1 + · · ·+ Ĵdist

m⋆ + · · ·+ Ĵdec
N <

N∑

m

Ĵdec
m . (5.19)

Example 4 As shown in Fig. 5.5, when the optimal link for the global problem after the

voting is d45, which is the optimal link of subproblem 1, then K45 = K̂45,1 since N̂1 = ∅.
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However, when N̂m⋆ 6= ∅, the optimal gain K̂ij,m⋆ which is the solution of (5.13), (5.17)

cannot be directly used since it may destabilize the local interconnected systems in the

other local subproblems which share those subsystems, i.e. subproblems k ∈ N̂m⋆ . In order

to tackle this problem, the following approach is proposed. The idea is to use the optimal

link resulting from the optimization problem (5.17) and then to recompute the optimal

gain of the corresponding communication link, while taking into account the stability and

performance of the subproblems k ∈ N̂m⋆ .

First, every subproblem l ∈ {m⋆ ∪ N̂m⋆} sets d̂ij,l = dij, k ∈ N̂i and solve the following

optimization problem to recompute their optimal gain.

minimize
K̂ij,l

Ĵl

subject to ˙̂xl = Âlx̂l + B̂lûl, x̂l(t0) = x̂0,l,

Ĵl < Ĵdec
l , ∀l ∈ {m⋆ ∪ N̂m⋆}.

(5.20)

The last constraint guarantees that using the optimal gain K̂ij,l obtained from (5.20), the

interconnected system (5.7) for every subproblem l ∈ {m⋆ ∪ N̂m⋆} is also stable and the

performance is improved compared to the decentralized control law. However, this comes

at a price of loosing some optimality for the resulting control gain. Next, the optimal gain

computed by subproblems l ∈ {m⋆ ∪ N̂m⋆} are compared with each other to decide which

gain results in the smallest cost according to

Kij = argmax
K̂ij,l

∑

l∈{m⋆∪N̂m⋆}

(

Ĵdec
l − Ĵdist

l (K̂l)
)

. (5.21)

The detail of the proposed approach is shown in Algorithm 1.

Algorithm 1 Joint control gain-communication topology design-single link case

Step 1: Decompose the global cost function into N local cost functions
Step 2: Compute K̂ij,m, d̂ij,m for each subproblems m = 1, · · · , N
Step 3: Compute dij = d̂ij,m⋆ argmaxd̂ij,m(Ĵ

dec
m − Ĵdist

m (K̂m))

if N̂m⋆ = ∅ then
Kij = K̂ij,m⋆

else
For all l ∈ {m⋆ ∪ N̂m⋆}
Set d̂ij,l = dij
Solve (5.20)

Kij = argmax
K̂ij,l

∑

l∈{m⋆∪N̂m⋆}

(

Ĵdec
l − Ĵdist

l (K̂l)
)

end if

Example 5 As shown in Fig. 5.5, when the optimal link for the global problem is d25,

which is the optimal link from subproblem 2, then N̂2 = {1, 5}. The subsystem 2 then

solves (5.20) by taking into account the stability of interconnected system in subsystems

1 and 5.
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5.2.4 Distributed Control Design - Multiple Communication Links

In the following, the approach in the case of a single link described previously will be ex-

tended to multiple links case. As can be observed from (5.6), the constraint on the network

cost, that is
∑

1≤i≤j≤N dij ≤ c is still a global one and couples the whole interconnected

system. Therefore, in order to solve this problem, we propose to add the communication

link sequentially and solve the optimization problem at each time. Assume that the max-

imum allowable number of communication links is c. We add the link one after another,

that is each optimization subproblem (5.13) is solved at most c times. At each time, the

Ĵdec
m (resp. Ĵdec

l ) in (5.13) (resp. in (5.20)) is updated by Ĵdist
m obtained from the opti-

mization problem in the previous step if a new communication link has been added to the

corresponding subproblem m. The optimization (5.13) for each time can then be re-written

as

minimize
K̂ij,m,d̂ij,m

Ĵm

subject to ˙̂xm = Âmx̂m + B̂mûm, x̂m(t0) = x̂0,m,

Ĵm <

{
Ĵdist
m if at the previous step m ∈ {m⋆ ∪ N̂m⋆},

Ĵdec
i otherwise,

∑

1≤i≤j≤Ni

d̂ij,m ≤ 1,

d̂ij,m ∈ {0, 1},
(i, j) ∈ N̂ ⋆

m.

(5.22)

The detail of the proposed approach for multiple links case is shown in Algorithm 2.

Algorithm 2 Joint control gain-communication topology design-multiple links case

Require: c
Decompose the global cost function into N local cost functions
for t = 1→ c do
Execute Algorithm 1
if m ∈ {m⋆ ∪ N̂m⋆} then
Ĵdec
m ← Ĵdist

m

else
Ĵdec
m ← Ĵdec

m

end if
end for

Remark 19 Even though adding the communication link sequentially could overcome the

global constraint on the network cost, the optimality of the solution may again be degraded

compared to the centralized design.

One of the advantages of the two-layer control architecture used in this chapter is

that the stability of the whole system is guaranteed under permanent communication link

failures as stated in the following proposition.
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Proposition 5.2.2 The stability of the interconnected system (5.1) with the control input

given by (5.22) is guaranteed under any combination of permanent communication link

failures.

Proof: Since from (5.13) and (5.22), the cost is always guaranteed to be improved by

the addition of the communication link and the overall system is already stabilized by the

decentralized control law which is the worst case when all communication links are failed,

then the stability is guaranteed under any permanent communication link failures.

Another advantage of designing the distributed control in a distributed manner is its

scalability when new subsystems are added into the system. The reason is since only the

subsystems which are the physical neighbors of the new subsystem needs to solve its local

optimization problem.

5.2.5 Complexity of the Proposed Approach

In this section, a comparison in term of complexity between the centralized approach and

the proposed distributed design procedure is discussed. Since it is assumed that γij = 1,

the allowable number of links is equal to c. For a given number of subsystems N , the

maximum number of communication links cmax can be computed as cmax = N
2
(N − 1).

The complexity of the centralized design approach for a given number of communication

links c in term of the number of combinations that has to be carried out is given by
(
cmax

c

)
= cmax!

c!(cmax−c)!
. On the other hand, the complexity of the distributed approach for each

subproblem is depending on the size of each subproblem. Since each subproblem could

have a different size, here we consider the worst case by considering the subsystem with

the maximum vertex degree dmax defined as

dmax = max
i

di. (5.23)

The complexity of the distributed design for a single link, i.e. c = 1 can be computed as
(
c̄max

1

)
= c̄max

(c̄max−1)!
where c̄max = dmax

2
(dmax + 1). Since in the distributed design the link is

added one after another, the total complexity for c number of links is given by cc̄max

(c̄max−1)!
.

For large-scale interconnected system whose physical interconnection structure is a sparse

matrix such as power networks [109], the distributed design procedure results in a lower

complexity compared to the centralized design since dmax < N , which results in c̄max <

cmax. Furthermore, when a new subsystem is added to the existing interconnected system,

the complexity of the centralized design will increase exponentially while the increase of

complexity for the distributed design will be linear when dmax is constant.

5.3 Evaluation

In this section, the proposed distributed design is illustrated via a numerical example.

For the sake of clarity, an interconnection of scalar subsystems is considered. Specifically,

we consider an interconnected system consisting of 10 subsystems as depicted in Fig. 5.6
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whose dynamics is given by

A =
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andB is taken to be identity matrix. The LQR cost (5.4) is considered where the weighting

matrices Q,R are assumed to be also identity matrices. Moreover, the maximum number

of allowable communication links is set to 2 and γij = 1. After the interconnected system is

1
2

3
4

5

6

7

8

910

Figure 5.6: Interconnected system consists of ten subsystems. The solid lines represent the
physical interconnection. The dash and dash-dot lines represent the optimal com-
munication topology for number of links equal to two by means of centralized and
distributed design respectively.

stabilized by the decentralized control law, the interconnected system is then decomposed

into 10 subproblems using the result of Lemma 5.2.1. Since for the distributed design

the communication link is added one after another, each local subproblem first solves

the local optimization (5.13) using the YALMIP toolbox [92] for the addition of a single

link. The optimal link for each subproblem is shown in Table 5.1. Since the optimal link

from subproblem 9 results in the most improvement of the LQR cost, it is selected as

the optimal link for the global problem. The next step is to compute the optimal control

gain. Since subsystem 7 and 9 connected by the optimal link are owned by subproblem

7 and 9, i.e. N̂7 = {9}, see Fig. 5.6 and d̂ij,9 = d79, then subproblems 7 and 9 need to

recompute the control gain by taking into account the stability of the interconnected system

in subproblem 9 and 7 respectively by solving (5.20) and then compare the resulting gain

of each subproblem to select the one which results in the most cost improvement according

to (5.21). After computing the optimal link and control gain for a single link case, the
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Table 5.1: The optimal link for each local subproblem (c = 1)

subproblem i optimal link d̂ij,i Ĵdec
i − Ĵdist

i

1 1-4 22.4909
2 2-5 13.9844
3 4-7 36.2318
4 4-1 27.5482
5 5-1 19.5390
6 5-10 12.1654
7 7-9 42.4931
8 8-9 36.1358
9 9-7 43.2751
10 10-8 15.4705

Table 5.2: The optimal link for each local subproblem (c = 2)

subproblem i optimal link d̂ij,i Ĵdec
i − Ĵdist

i

1 1-4 28.3199
2 2-5 15.6788
3 4-7 37.5370
4 4-1 29.0934
5 5-1 22.5657
6 5-10 13.3136
7 7-3 2.5001
8 8-9 37.5062
9 7-8 8.6637
10 10-8 18.6608

optimal link and control gain for the second link is computed by solving (5.22). As can

be observed from Table 5.2, since the optimal link of subproblem 3 results in the most

cost improvement, thus it is selected as the optimal link for the global problem. Moreover,

because no other subsystems own both subsystem 4 and 7, i.e. N̂3 = ∅, the corresponding
control gain is then also the optimal control gain for the global problem.

The optimal communication links and the corresponding LQR cost from the centralized

and the proposed distributed design can be observed in Tables 5.3 and 5.4 respectively.

The complexity can be reduced as much as 96% (from 990 combinations reduced to 30

combinations) for c = 2.

Table 5.3: Optimal links for centralized and distributed design

links centralized design distributed design
1 7-9 7-9
2 4-9, 7-8 7-9, 4-7
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Table 5.4: Cost comparison between centralized and distributed design

links Jdec centralized distributed
1 387 259.30 300.45
2 387 168.55 262.91

5.4 Summary and Discussion

The design of distributed control for interconnected systems in the known literature is

mainly performed in a centralized fashion, i.e. system-wide information is required to

be collected in a central computer to design distributed control law. However, this is

not a realistic case and is difficult to be implemented in real world applications due to

geographical constraints and privacy reasons. Furthermore, the communication topology

of the distributed control law is assumed to be fixed and given a priori.

In this chapter, a novel coordination algorithm is proposed to design distributed control

together with its communication topology for interconnected system under a limited plant

model information. Here, it is assumed that each subsystem only has the information

about its physical neighbors local dynamics and the interconnection between them. As

a performance metric, the quadratic infinite horizon cost is considered. The novel idea

is to distribute the design of the control law among all subsystems by coordinating with

each other, instead of designing it in a central computer. In order to do so, we first

give sufficient condition in order to decompose the global cost function into the sum of

local cost functions. Each subsystem is then assigned a local cost function and based on

the limited plant model information available to it, the optimization problem is solved

iteratively by coordinating with the other subsystems. Furthermore, it is demonstrated

that it is possible to combine the proposed algorithm with the two-layer control architecture

developed in the previous chapter in order to guarantee the stability of the overall system

under permanent communication link failures, i.e. enabling the designer to consider jointly

performance improvement and robustness issues. As demonstrated from the simulations,

the proposed algorithm can reduce the combinatorial search that has to be performed

drastically compared to the centralized design approach. The proposed algorithm can be

applied in general to a variety of interconnected systems, especially for interconnected

systems with a sparse physical network structure such as power networks.

One of the main ingredients of the proposed algorithm is the decomposition of the

global objective function into sum of local objective functions. This is one of the rea-

sons of choosing quadratic infinite horizon cost as a performance metric since it can be

decomposed under a certain assumption. However, this decomposition strategy may not

work for other performance metrics, for example, the decay rate considered in the pre-

vious chapters. Furthermore, even though the proposed algorithm can solve the control

design in a distributed manner, it suffers from performance degradation compared to the

centralized design, which stems from the two-layer control architecture and the iterative

process for the case of multiple links. These lead to the following problems that need depth

investigations in the future:
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• It is significant in the future to investigate analytically how much the performance

of the proposed algorithm degrades compared to the centralized design method. The

analytical result may be used as a tool to improve the algorithm such that its per-

formance degradation compared to the centralized design method is minimized.

• Extensions of the approach to other performance metrics. Some possible research

questions are: For which performance metrics the proposed algorithm can be used

in a straightforward manner? How to deal with performance metric which cannot be

decomposed in a straightforward fashion?

• It is important to extend the algorithm such that it could deal with the case of

addition or removal of subsystems from the interconnected systems, thus enabling a

plug-and-play control strategy. This will be useful when the algorithm is employed

for designing distributed control of a smart power grid where some new distributed

generations such as photovoltaic may join and leave the network randomly, and it is

not desired to recompute the control law for the whole network.
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6 Performance-Oriented Distributed Coverage

Control for Robotic Sensor Networks

Stimulated by the technological advances and the development of relatively inexpensive

communication, computation, and sensing devices, the interest in the research area of

coordinated networked control has increased over the past years, see [97] for an excellent

overview. One example is the deployment of autonomous vehicles to perform challenging

tasks such as search and recovery operations, manipulation in hazardous environments,

surveillance and also environmental monitoring for pollution detection and estimation [82,

111]. Deploying multiple agents to perform tasks is advantageous compared to the single

agent case: it provides robustness to agent failure and allows to handle more complex tasks

effectively.

In this chapter, we consider a mobile sensing network of vehicles equipped with sensors,

known also as robotic sensor network to sample the environment. The goal is to drive

the sensors/robots/agents to the position such that a given region is optimally covered by

the sensors. There are many approaches proposed in the literature to solve the coverage,

i.e. self-deployment problem of mobile sensor network in both centralized and distributed

manner [85]. In general there are three main approaches to solve the coverage control

problem in a distributed fashion, namely a geometric, probabilistic, and potential field ap-

proach [125]. The geometric strategy is based on the Voronoi partition and the continuous

version of the Lloyd algorithm, see e.g. [27]. Briefly speaking, the agents partition the given

region into subregions given by Voronoi partitions and move towards the centroid of its

subregion and adjust their sensing radius until the whole area is covered. The advantage

of the Voronoi approach is that the control law is distributed by its nature. Moreover, a

lot of variations on the coverage control problem can be addressed and solved in a similar

fashion by associating different Voronoi partitions, for example [21, 38, 56, 74, 113]. The

probabilistic based strategy is introduced in [84] where the authors consider a probabilistic

network model and a density function to represent the frequency of random events taking

place over the mission space. The authors formulate an optimization problem that aims at

maximizing coverage using sensors with limited range, while minimizing communication

cost. A potential-field-based approach to deployment problem in an unknown environment

is presented in [63]. A similar approach is proposed in [114] where the area coverage of

a mobile sensor network is maximized while satisfying the constraint that every node has

at least K neighbors. Moreover, the coverage control problem based on receding horizon

control is considered in [7]. A coverage control problem assuming a more realistic sensor

model is considered in [28] by introducing “limited-range interactions” of the sensors, that

is, the sensing range of the sensor is restricted to a bounded region. Furthermore, coverage

algorithms for robotic visual sensor network are proposed in [52,60,141] where the sensors

have a limited view angle and their sensing performance also depend on their attitude.

As previously mentioned, coverage control problem is generally formulated as to opti-
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mize a (non-convex) cost function [27, 84]. The value of the cost function indicates the

coverage performance of the robotic network which mostly results in a local optimum since

most of the distributed control algorithm uses local gradients to compute the movement

of the mobile sensors [125]. Some works have been devoted in order to improve the cov-

erage performance, for example by balancing the number of sensors that cover the area

with high event density. The authors in [140] develop a task switching-based algorithm

in order to improve the coverage performance of the network. First, the agents explore

the environment and then switch synchronously the task to coverage which results in an

improvement of the coverage performance. The other approaches in order to improve the

coverage performance are for example based on distributed annealing algorithm [75] or

biologically inspired exploration strategy [124].

Another factor that influences the coverage performance is the participation of the

mobile sensors in the coverage task, which is the focus of this chapter. The advantages of

using mobile sensors over the static ones are the ability of self-deployment of the sensors

and the robustness to sensor failures [85]. However, when the mobile sensors are initially

deployed in an unknown environment, for instance air-dropped from an aircraft, some

sensors may be initially located far away from the region of interest. Moreover, due to the

limited sensing range of the sensors, those sensors may not be able to self-deploy themselves

and participate in the coverage task. This will also result in a degradation of the coverage

performance by the robotic network, i.e. the agents converge to the undesired local optima.

To the best of our knowledge, this fundamental issue has not been considered and discussed

in the existing literature so far.

The contribution of this chapter is the development of a novel distributed control law

by exploiting the use of information which can be exchanged via the communication net-

work that guarantees the participation of all sensors in the coverage task, i.e. improves

the coverage performance of the robotic network, even if some sensors do not sense any

event at the initial deployment. The existence of sensors which do not sense any event

results in that the system converges to the undesired local optima. Therefore, the objective

is to develop a novel distributed control law which guarantees that the agents avoid this

undesired local optimal. The innovative idea is to combine the coverage algorithm with

the leader-following algorithm where the leader(s), i.e. the sensor(s) who have sufficient

information about the environment, is elected by a voting. The sensors acting as leaders

will then guide the sensors which do not have information on the environment until they

gain sufficient information. First we define a global leader sensor voted only at the initial

deployment among all sensors and assume that the communication topology between the

mobile sensors is static which implies unlimited communication range. Since the leader is

voted only at the initial deployment among all sensors which makes the algorithm com-

putationally expensive when the number of sensors is large and is not robust to sensor

failures, we further develop a computationally non-expensive, robust distributed control

law with more realistic assumption on the communication range of the sensors. A new

leader concept called “local leaders” is introduced in order to reduce the complexity of

the algorithm. This local leader is elected locally between each sensor and its neighbors.

Moreover, the local leader is re-elected at every time step to increase the robustness with

respect to the environment changes and sensor failures. Furthermore, a more realistic case

93



6 Performance-Oriented Distributed Coverage Control for Robotic Sensor Networks

with limited communication range, resulting in a time-varying topology is considered. A

potential-function based algorithm is incorporated in order to maintain the connectivity of

the sensors during the deployment. The work in this chapter is based on the framework de-

veloped in [84] since it can be generalized to incorporate different sensor model, e.g. visual

sensor [52], non-convex environment [57, 151] and also limited energy storage [50]. How-

ever, the proposed approach can also be applied to other distributed coverage algorithms,

e.g. [27].

This chapter is organized as follows. The problem formulation for the coverage control

problem is presented in Section 6.1. Two novel distributed coverage control laws with the

global and local leader(s) are proposed and analyzed in Section 6.2. The effectiveness of

the proposed control laws are validated through numerical simulations in Section 6.3.

6.1 Problem Formulation

In this section, a condition which results in the convergence of the agents to the undesired

local optima is investigated. In order to do so, we first adopt some of the notation and

setting described in [84] and in addition introduce a new term called information value of

a sensor which will be presented in the following.

6.1.1 Region of Interest

Let Q be a polyhedron in R
2 including its interior. The density function φ(q) : Q → R+

represents the probability that some event take place in Q. Regions with a large value

of φ are regions of higher chances of finding a point of interest. The density function φ(q)

satisfies φ(q) ≥ 0 for all q ∈ Q and
∫

Q φ(q) <∞. In general, the region of interest Q
may be very large so that there exists some areas where the value of φ(q) approaches 0 as

illustrated in Fig. 6.1.

6.1.2 Sensor Model

We consider a robotic network where each robot is equipped with omnidirectional commu-

nication and isotropic sensing capabilities. For the sake of simplicity, it is assumed that

all sensors are identical, that is all sensors have identical capabilities for sensing, commu-

nication, computation, and mobility. Let s = (s1, ..., sN), si ∈ R
2 be the location of the

N identical robots/sensors moving in the region Q. The kinematic model of the sensors

are given by

ṡi = ui (6.1)

where ui is the control input for the position of sensor i.

The sensor is assumed to have a limited sensing range defined as

Sensor Model 1 Each sensor has a limited sensory domain Qi with the maximum sensing

range R given by

Qi = {q ∈ Q : di ≤ R} (6.2)

where di = ‖q − si‖.
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Figure 6.1: The region of interest Q and its density function φ(q). Regions with a high value
of φ are regions of higher chances of finding a point of interest. In general, there
are some regions in Q where φ(q) = 0.

When an event occurs at point q, it emits a signal and this signal is observed by sensor

i at location si. The received signal strength, i.e, the sensing performance of the sensor is

assumed to be decayed with the distance di from the sensor i. The degradation of the sensor

performance is represented by a monotonically decreasing differentiable function pi(q, si) :

R+ → R+ which expresses the probability that sensor i detects the event occurring at

q or indicates how poor the sensing performance is. Lower value of pi(q, si) means that

the point q is sensed poorly by sensor i and vice versa. Moreover, we make the following

assumption on the sensing performance of the sensor.

Assumption 2

pi(q, si) = 0,
∂pi(q, si)

∂di(q, si)
= 0 if q /∈ Qi. (6.3)

The assumption tells us that the sensor i can only sense the point inside its region of

sensing Qi. An example of the sensing performance is given for example by

pi(q, si) =

{
(
di−R
R

)2
if q ∈ Qi

0 otherwise.
(6.4)

Next we introduce the information value of each sensor, that is Ii : R+ → R+ defined

as

Definition 6.1.1 The information value of sensor i is defined as the total received signal
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6 Performance-Oriented Distributed Coverage Control for Robotic Sensor Networks

strength inside its sensory domain Qi. Mathematically, it is formulated as

Ii(si) =

∫

Qi

φ(q)pi(q, si)dq. (6.5)

6.1.3 Communication Graph

Let Rc denote the communication radius of the sensor. The communication topology is

described by an undirected graph G = (V, E) where the set of vertices V represents the set

of sensors and the set of edges E denotes all communication connection:

E = {(i, j) ∈ V × V|i ∈ Nj , j ∈ Ni, j 6= i}

where Ni denotes the neighbors of sensor i, i.e. the set of sensors whom sensor i can

communicate with and defined as

Ni = {j|hij ≤ Rc, j 6= i} (6.6)

where hij = ‖si−sj‖. The connectivity of the graph can be checked via the second smallest

eigenvalue, i.e. the algebraic connectivity of the Laplacian matrix of the graph G which

represents the communication topology between the mobile sensors [118], see Fig. 6.2.

Briefly speaking, a graph is connected if and only if its algebraic connectivity is larger

than 0.

s4

s2

s3s1

Figure 6.2: Example of communication graph of the sensor networks. The dashed circles rep-
resent the communication range and the solid lines represent the communication
links.

6.1.4 Optimal Coverage Formulation

Optimal coverage is achieved by deploying the sensors into the region of interest so that

the probability of events detected is maximized. In this chapter, sensors are assumed to

make observations independently. When an event at q is observed by the sensors, the joint
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probability that this event is detected can be written as

P (q, s) = 1−
N∏

i=1

[1− pi(q, si)]. (6.7)

The optimal coverage problem can then be formulated as an optimization problem which

maximizes the objective function defined as

F (s) =

∫

Q
φ(q)P (q, s)dq (6.8)

which is the expected event detection probability by the sensors over the region of interest.

6.1.5 Distributed Coverage Algorithm

The control input for the kinematics of sensor i based on a gradient-based approach that

maximizes (6.8) is given by [84]

ui = ucov
i = β

∂F

∂si
(6.9)

where ∂F
∂si

is defined under Assumption 2 as

∂F

∂si
=

∫

Q
φ(q)

∂P (q, s)

∂si
dq =

∫

Qi

φ(q)
∏

k∈N̄i

[1− pk(q, sk)]
∂pi
∂di

∂di
∂si

dq (6.10)

where N̄i is the neighbors of sensor i. The algorithm is distributed since each sensor only

requires the information of other sensors within the distance of 2R from it in order to

compute the distributed control law (6.9) and drives the sensors into the region of interest.

However, since the control law (6.9) is based on a gradient-based approach and due to the

limited sensing range of the sensor, there exists a condition at the initial deployment where

the information gained by some agents are zero, that is Ii(si) = 0, for example sensors

located in the area with φ(q) = 0 as shown in Fig. 6.1. This results in that the control

input of the sensor ucov
i (k) = 0, i.e. the sensor could not participate in the coverage task

and the corresponding local optima is called by undesired local optima. Formally, we call

such a sensor as an isolated sensor defined as

Definition 6.1.2 Sensor i is called an isolated sensor if it collects no information so that

it has no ability to move, i.e. Ii = 0.

The goal of this chapter is to develop a novel distributed control law in order to improve

the coverage performance by guaranteeing the participation of all sensors in the coverage

task, that is there will be no isolated sensors exist in the final configuration of the sensors.
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6.2 Proposed Coverage Algorithm

The solution to the above problem is not trivial since each sensor only knows the density

function inside its own sensing range, i.e. the sensors only have partial information on

the environment. In addition, in a typical dynamic deployment application, the mobile

sensors start with the same copy of an estimated density function φ at the beginning of the

deployment. As the sensors deployed and data are collected, each node updates its local

map by merging new observations from its sensor into its perception and also by exchanging

information with its neighbors [23]. However, since the isolated sensors do not sense any

information, they will not be able to update their local maps, i.e. cannot participate in

the coverage. Furthermore, promising solution that executes a random movement such

as exploration [140] for the isolated sensors do not guarantee the participation of those

sensors in the coverage task and would result in a large amount of energy consumption

which is not desired.

In this section, a new distributed control law is proposed by combining the standard

coverage algorithm and a leader-following algorithm. Since the isolated sensors have no

information, that is do not sense any events, they cannot participate in the coverage task.

Therefore, they need to be guided in order to move into the region of interest to perform the

coverage task. However, no external supervisor is allowed in order to keep the algorithm

to be distributed. In this section, as a strategy virtual supervisors termed as leaders are

assigned between the sensors. The rest of the sensors then act as followers and will follow

their leaders based on the leader-following algorithm until they gain sufficient information

to switch to performing a coverage task. In this chapter, we introduce two types of leader:

a global leader elected among all sensors and local leader(s) elected between each sensor

and its neighbors. Before proceeding we introduce the following assumption.

Assumption 3 There exists at least one non-isolated sensor in the network, that is

∃i, Ii 6= 0.

6.2.1 Global Leader based Algorithm

The first distributed algorithm is based on a global leader where the leader is elected at

the initial deployment among all sensors. Furthermore, we assume the following:

Assumption 4 The communication topology G is static and connected.

Assumption 4 results in that the communication range of the sensor is unlimited, i.e.

Rc →∞. Therefore, the communication graph G becomes fully connected.

Global Leader Election

At the initial deployment, a sensor with the most information among all sensors in the

network is elected using a voting algorithm as a leader. Formally, the leader sensor is

defined as
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Definition 6.2.1 A leader sensor lg is a sensor which has the most information on the

region of interest. Mathematically,

lg = argmax
i

Ii(si(0)). (6.11)

Since the leader is elected among all sensors, we call such leader as global leader.

Remark 20 When more than one sensor have the most information, the leader is selected

randomly among those sensors.

The goal of a leader voting algorithm is to choose the sensor with the most information

value Ii and broadcast the result all over the network based on a simple implementation

of broadcast algorithm called flooding [104] using the multi-hop communication capability.

The algorithm is initialized by sensor i sending a message Ii to each of its neighbors. Each

sensor j ∈ Ni receiving one or more such messages compares the best received information

value to its currently stored one. If the received information value is higher, its own

information value is deleted and the new received one is stored. The message is then

forwarded to all of its neighbors except to the sender of the best information value. If the

received value is lower, then the sensor sends its own election value to all its neighbors. In

the end, a global leader lg will be elected.

Proposed Distributed Algorithm

Next, a distributed algorithm with a global leader that guarantees the participation of all

sensors in the coverage task is proposed. Mathematically, we would like to design ui that

solve the following optimization problem:

maximize
s

F

subject to Ii > 0, ∀i.
(6.12)

The proposed distributed control law is given by

ui = ui
cov + αiui

gl (6.13)

where αi = 0 if Ii > ηiIlg . Otherwise αi = 1, where 0 < ηi < 1 is a tunning variable.

Depending on the value of αi, sensor i will be in one of the following modes:

sensor i is in

{

following mode if αi = 1, i /∈ lg

autonomous deployment mode if αi = 0 or i = lg.

Physically, it means that when a sensor has gathered sufficient information, then it will

stop following the leader and only performs the coverage, i.e. switch from the following

mode into the autonomous deployment mode.

The ui
cov in (6.13) is given by (6.9) and ui

gl is given by

u
gl
i = ζgli (slg − si) (6.14)
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where ζgli > 0. Formally, the proposed distributed algorithm can be written as Algorithm 3.

Algorithm 3 Proposed distributed algorithm with a global leader

Require: Ni, Ii
Elect a global leader lg

For sensor i ∈ {1, · · · , N}
loop
if Ii > ηiIlg then
αi ⇐ 0 (autonomous deployment mode)
ui = ucov

i

else
αi ⇐ 1 (following mode)
ui = ui

cov + ui
gl

end if
end loop

Remark 21 Even though each sensor only needs the information from the sensors within

the distance of 2R in order to compute the standard coverage control law (6.9), it needs

the information from the rest of the sensors in order to elect the global leader.

Using the proposed control law (6.13), it is guaranteed that in the end of the deployment

all sensors participate in the coverage task as shown in the following.

Theorem 6.2.2 Consider mobile sensors whose kinematic given by (6.1) and the control

input is given by (6.13). Therefore, under Assumptions 2- 4, there will be no isolated

sensors, i.e. all sensors participate in the coverage.

Proof: From Assumption 3, there will always be a global leader in the network. Moreover,

since the graph is fully connected, then by implementing the control law (6.13), the other

sensors will approach the global leader until they have a sufficient information, i.e. Ii >

ηiIlg ≫ 0. Thus it is guaranteed that in the end of the deployment, there is no isolated

sensors, that is Ii > 0, ∀i.

6.2.2 Local Leader based Algorithm

Next, a computationally non-expensive, robust distributed control law with more realistic

assumption is proposed. A new leader concept called local leaders is introduced in order

to reduce the complexity of the algorithm with a global leader and is re-elected at every

time step to increase the robustness w.r.t. sensor failures. For the local leader case we

constrain ourselves to the case given by the following assumption.

Assumption 5 The density function φ only consists of a single maxima.

Furthermore, it is assumed that each sensor has a limited communication range, thus

2R ≤ Rc <∞ so that the each sensor can compute the standard coverage control law (6.9).

Note that Ni may change due to the movement of the mobile sensors, that is the graph

G = (V, E) = G(t) is time-varying. Moreover, let us denote the set of connected graphs

by C.
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Table 6.1: Comparison between global leader and local leader(s)

global leader local leader
number of leaders in the network one more than one
time of voting at the initial deployment at every time step
voters for leader all sensors in the network sensor i and its neighbors

Local Leader Election

First, each agent assigned himself either as a local leader or a follower to the other agents

by comparing its information value with its neighbors. Formally, the local leader and the

follower are defined as follows.

Definition 6.2.3 Sensor i is a local leader at time t if it has the most information value

compared to its neighbors or mathematically

Ii(si(t)) > Ij(sj(t)), ∀j ∈ Ni. (6.15)

Definition 6.2.4 The set of local leader sensor(s) of sensor i, i.e. sensor l is a sensor(s)

which has the most information on the region of interest. Mathematically,

l(t) ∈ argmax
j∈Ni

Ij(sj(t)) and Il > Ii, i 6= l. (6.16)

Therefore, at each time step sensor i computes its information value Ii and then compares

it with its neighbors to decide whether it is a local leader of follower. Note that when

sensor i and j have the same amount of information, i.e. Ii = Ij > Im, m, j ∈ Ni, the

following rule is used in order to decide whether sensor i acts as a leader or a follower:

• if sensor j is a follower to sensor k where k ∈ Nj, k 6= i, then sensor j is the leader

of sensor i,

• otherwise, sensor i itself is the leader.

The similar rule can also be applied in the case of more than two sensors have the same

amount of information. Note that an agent which is a follower can at the same time be

a local leader to the other agent, for example sensor 4 in Fig. 6.3(b) is a local leader of

sensor 3, sensor 5 and at the same time a follower to sensor 1. The comparison between

the global and local leader is summarized in Table 6.1.

Connectivity Maintenance

Let us first introduce the following assumption.

Assumption 6 The initial graph of the sensors is connected, i.e. G(0) ⊆ C and

‖si(0)− sj(0)‖ < δ, ∀i and j ∈ Ni where δ is a value approaching but less than Rc.

Since the communication range of the sensor is limited, there is a possibility that the

network becomes disconnected. Therefore, first we discuss the connectivity maintenance

between the sensors using the idea of a potential function. The potential function V c
ij is

selected which satisfies the following conditions:
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(a) (b)

global leader local leader

I1 = 10

I2 = 3

I3 = 2

I4 = 4

I5 = 1

Figure 6.3: Example of (a) global leader and (b) local leaders case. For the global leader
case, a leader is elected among all sensors in the network while for the local leader
case, each sensor assigned himself either as a leader of follower to the other by
comparing its information value with its neighbors. The sensor with outgoing
arrow is a follower to its local leader, that is the sensor with ingoing arrow as
shown in (b). Moreover, as can be seen from (b), sensor 4 acts as a follower and
also a local leader for sensor 3 and sensor 5.

• V c
ij ≥ 0 and is differentiable. Moreover,

∂V c
ij

∂hij
≥ 0,

• V c
ij = 0 when hij ≤ δ,

• V c
ij →∞ if hij → Rc.

One example of the potential function which will be used in this chapter is

V c
ij(si, sj) =

{
(hij−δ)a

(Rc−hij)
b δ ≤ hij ≤ Rc

0 hij < δ
(6.17)

where a ≥ 2, b ≥ 1. The collective potential function is given by

V c(s) =
1

2

N∑

i=1

∑

j∈Ni

V c
ij(si, sj). (6.18)

Remark 22 The potential function employed in this chapter is similar to the one used

in [86].

Note that the potential function described above makes the sensors which are connected at

time t0 to be kept connected for t > t0. This may degrade the coverage performance of the

sensors, for example when the initial graph is fully connected. In order to deal with this,

the connectivity maintenance should only be performed within the core structure which

gives a sufficient degree of freedom or produces the least impediment for the sensors to

achieve the optimal sensing coverage. Furthermore, the core structure should also keep
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the connectivity between the mobile sensors. As stated in [86], the spanning tree 1 is the

sparsest connected subgraph for a given connected graph G which can retain the degree of

freedom as large as possible for the sensors as shown in Fig. 6.4. Therefore, similar to [86],

in this section the spanning tree is taken as the core structure whose connectivity needs

to be maintained. Let us define the graph of the core structure which a spanning tree by

Gs = (V, Es) where Es ⊆ E . The new collective potential function thus can be written as

(a) (b)

Figure 6.4: (a) Communication topology of the sensors; (b) Core structure which is a spanning
tree whose connectivity needs to be maintained by the mobile sensors.

V cs(s) =
1

2

N∑

i=1

∑

j∈Ni(Es)

V c
ij(si, sj). (6.19)

Remark 23 The use of potential function (6.19) instead of (6.18) will also prevent from

the discontinuity due to the new agents which join as new neighbors of sensor i during the

deployment since the core structure Gs does not change over the time.

Remark 24 The spanning tree can be constructed in a distributed fashion, for example

using the algorithms proposed in [123].

Proposed Distributed Control Law

Next, we propose a novel distributed control law in order to improve the coverage perfor-

mance by guaranteeing the participation of all sensors in the coverage task while main-

taining the connectivity between the sensors. Mathematically, we would like to solve the

following optimization problem:

maximize
s

F

subject to Ii > 0, ∀i,
G ⊆ C.

(6.20)

1A spanning tree of a connected graph is a maximal set of edges that contains no cycle, or a minimal set
of edges that connect all vertices
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Let the set of local leaders of sensor i is given by N l
i and |N l

i | is its cardinality. The

proposed distributed control law is given by

ui = ui
cov + uc

i + αiui
lf (6.21)

where αi = 0 if Ii > ηiIl, l ∈ N l
i . Otherwise αi = 1, where 0 < ηi < 1 is a tunning variable.

Depending on the value of αi, sensor i will be in one of the following modes:

sensor i is in

{

following mode if αi = 1

autonomous deployment mode if αi = 0.

Similar to the global leader based algorithm, physically it means that when a sensor has

gathered sufficient information, then it will stop following the leader and only performs

the coverage, i.e. switch from the following mode into the autonomous deployment mode.

Each term of the proposed control law (6.21) is given by

ulf
i = ζ lfi

∑

l∈N l
i

(sl − si), (6.22)

uc
i = −ζci

∂V cs(s)

∂si
(6.23)

where ζ lfi , ζ
c
i > 0. Formally, the proposed distributed algorithm can be written as Algo-

rithm 4. Thus, by implementing the control law (6.21), the participation of all sensors in

the coverage task is guaranteed as shown in the following section.

Algorithm 4 Proposed distributed algorithm for sensor i (i ∈ {1, · · · , N})
Require: Ni, Ii, Ij , j ∈ Ni

The network construct the spanning tree graph Gs
loop
Sensor i decides if it is a local leader or a follower
if i is a leader or Ii > ηiIj , j ∈ N l

i then
αi ⇐ 0 (autonomous deployment mode)
ui = ucov

i + uc
i

else
αi ⇐ 1 (following mode)
ui = ui

cov + uc
i + ui

lf

end if
end loop

Analysis

We prove in the following that using the proposed distributed control law above, at the

final configuration, there will be no isolated sensors. Furthermore, when the initial graph

is connected, the connectivity is always maintained during the deployment.
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Theorem 6.2.5 Consider mobile sensors whose kinematics given by (6.1) and the control

input is given by (6.21). Under Assumptions 2, 3, 5 and 6, there will be no isolated sensors,

that is all sensors participate in the coverage task and the connectivity between the sensors

is guaranteed, that is G(t) ⊆ C, t > 0.

Proof: First, let us assume that there is no isolated sensors in the network, i.e. αi = 0, ∀i,
or all sensors are in autonomous deployment mode. The coverage with connectivity mainte-

nance as formulated in (6.20) can be considered as to maximize V (s) = k1F (s)− k2V
cs(s)

where k1 ≫ k2 > 0 represent the weighting factors for the coverage and connectivity main-

tenance respectively. First, we prove that for a given initial sensors position s(0) and

communication graph G(0) ⊆ C, the connectivity between the sensors is always main-

tained during the maneuvers. From Assumption 6, the communication graph is connected

at the initial position, i.e. G(0) ∈ C, V c
ij = 0 which results in V (s(0)) > 0. Moreover, the

control law (6.21) with αi = 0 can be obtained by taking the partial derivative of V (s),

i.e. ∂V (s)
∂si

. For mobile sensors steered by the control law (6.21), we have

dV (s(t))

dt
=

N∑

i=1

[
∂V (s)

∂si
ṡi

]

=
N∑

i=1

[
∂V (s)

∂si
.

(
∂V (s)

∂si

)]

=
N∑

i=1

∣
∣
∣
∣

∂V (s)

∂si

∣
∣
∣
∣

2

≥ 0.

Since
∫

Q φ(q) < ∞, then F (s) is finite, i.e. F (s) < ∞. Furthermore, since V (s(0)) > 0

and dV
dt
≥ 0, V cs(s) is also finite, that is V cs(c) <∞. Thus, from (6.18), V c

ij(si, sj) is finite,

i.e. V c
ij(si, sj) < ∞ for each pair of (i, j) ∈ Es. According to (6.17), the finite V c

ij implies

hij will never converge to Rc for any (i, j) ∈ Es. Hence the connectivity will be preserved

all the time. Next, consider the case when ∃i, αi = 1, i.e. there exists at least one sensor

which is in the following mode since it does not have sufficient information. Note that the

sensor who is a follower will execute the control law ulf
i = ζ lfi

∑

l∈N l
i
(sl − si) in (6.21), i.e.

sensor i will follow its local leader or approach the convex hull spanned by its leaders [118].

Moreover, since all mobile sensors apply the coverage control law ucov
i whose direction

towards the area with higher density function and from Assumption 5 since there is only

a single maxima in φ, the vectors ul and ui,i 6=l satisfy the following relation uT
l ui > 0, i.e.

the sensor applying (6.21) does not move in the direction opposite from the movement of

its leaders. Therefore, the connectivity will always be maintained.

Next we prove that there exists no isolated sensors in the end of the deployment. In

order to prove this and since there is only a single maxima in φ as stated in Assumption 5,

we consider the worst case scenario as shown in Fig. 6.5. Without loss of generality, we

re-order the label of the sensors as shown in Fig. 6.5 and consider the case where I1 > 0

and I2 = · · · = IN = 0, i.e. there is only one non-isolated sensor in the network. In

addition, it is assumed that the distance between the sensors are closed to the limitation

of the communication range Rc, i.e. hij = δ, ∀i, j. It is clear that using the standard

algorithm (6.10), all sensors including sensor 1 at the initial deployment cannot move

since the isolated sensors, i.e. sensor 2, · · · , N do not have information, i.e. cannot move

while sensor 1 has to keep the connectivity maintenance with the other sensor. Using the

proposed approach, at the first time step, sensor 2 chooses sensor 1 as its local leader while

sensor 3, · · · , N cannot decide who their local leader is since I2 = I3 = · · · = IN = 0. At

the next time step, sensor 3 will choose sensor 2 as its local leader since sensor 2 is the
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I1 > 0I2 = 0I3 = 0IN−1 = 0IN = 0

Rc

u1δ

Figure 6.5: Example of worst case scenario. At the initial deployment, the distance between
the sensors is closed to the limitation of the communication range Rc of its neigh-
bors. Furthermore, only sensor 1 which is not an isolated sensor, i.e. I1 > 0
while the other sensors are isolated ones, i.e. Ii = 0, i 6= 1. Using the standard
algorithm [84] no sensors participate in the coverage task.

follower of sensor 1 while sensor 4, · · · , N cannot decide who their local leader is. This

process will continue and finally sensor N will select sensor N − 1 as its local leader.

After each sensor assigned its local leader, sensor N will move towards to its local leader,

i.e. sensor N − 1 followed by sensor N − 1, · · · , 1. Since the graph is guaranteed to be

always connected, then by implementing the leader-following algorithm, all the followers

will approach their leaders until they have a sufficient information, i.e. Ii > ηiIl > 0 and

execute the deployment algorithm (6.10). Thus, it is guaranteed that in the end of the

deployment Ii > 0, ∀i. This completes the proof.

Remark 25 In fact, the connectivity can still be guaranteed even if only the leaders in Gs
who are responsible for maintaining the connectivity while the followers follow their leaders

without awareness of maintaining the connectivity. Therefore, in this case the control law

(6.21) can be re-written as

ui = ui
cov + (1− αi)u

c
i + αiui

lf.

Remark 26 The leader-follower term in the proposed distributed control law (6.13), (6.21)

can be seen as a perturbation term that works on the gradient-based control laws which

guarantees the agents to avoid the undesired local optimal value in the cost function.

Remark 27 The proposed algorithm based on local leader improves the coverage perfor-

mance by guaranteeing the participation of the sensors in the coverage task under assump-

tion that there exists only a single maxima in the density function. However, when the

density function consists of more than one local maxima, it is not guaranteed that the

proposed algorithms could maintain the connectivity and if there is no isolated sensors in

the final configuration. This issue is the subject of future work. It should be noted that

this situation does not influence the global leader-based approach described in the previous

section.
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6.2.3 Leader Election’s Complexity

One of the main ingredient of the proposed algorithm is the leader election. In this section,

the complexity of the global and local leader election in the proposed distributed control law

is compared. For the global leader case, the leader is elected among the N sensors by using

the broadcast algorithm. Therefore, the complexity of the global leader election algorithm

is increased with the number of sensors in the network. On the other hand, the local leader

election is conducted by each sensor only between itself and the neighbors. In this case, we

consider the worst case complexity which is proportional to dmax(G), that is the maximum

degree of the graph G. When the number of sensors in the network increases, the worst

case complexity remains constant as long as dmax(G) is not increased. The local leader

election is thus more scalable compared to global leader election algorithm. Furthermore,

since the leader is re-elected at every time step, the local leader based algorithm is more

robust to sensor failures and also the environment changes.

6.3 Evaluation

In this section, the proposed control law is evaluated through numerical simulations. The

region of interest Q is a rectangle of size 800 x 1200 (meter). It is assumed that there are

5 sensors whose sensing performance is given by (6.4) with sensing radius R = 100. The

initial positions of the sensors are given by s1 = [250, 300], s2 = [120, 210], s3 = [220, 180],

s4 = [110, 110], s5 = [200, 100]. The density function in the region of interest is given by

φ(q) = 35− 0.1||q − pt||. A Monte Carlo simulation is carried out over different location

of the event, that is the value of pt. The value of pt is chosen randomly between the

range pt = [(200, 600), (300, 900)] and is selected such that Assumption 3 is satisfied and

there exists at least one isolated sensor in the network. Moreover, for all simulations we

set β = 0.004, ζ lfi = ζgli = 0.0025, ζci = 0.004 and ηi = 0.5 for i, l ∈ {1, · · · , 5}. We apply

the standard coverage algorithm in [84] and the proposed algorithm both with the global

and local leader where the communication radius Rc = 200 for the similar setup. In

addition to the final value of the objective function, the convergence speed of the global

and local leader based algorithm are also compared. The comparison is possible since

both algorithms guarantee the participation of all sensors in the coverage task, which is

not the case for the standard algorithm. The results of the Monte Carlo simulation for

20 different value of pt are shown in Fig. 6.6. As can be observed from Fig. 6.6(a), both

the proposed algorithms improve the coverage performance and outperform the standard

algorithm in [84]. The final value of the objective function by the local leader based

algorithm is lower than the global leader based one. Moreover, it takes a longer time for

the sensors using the local leader based algorithm to converge as can be observed from

Fig. 6.6(b). The reason is that for the global leader based algorithm, the sensors are

not required to maintain the connectivity among themselves due to the assumption of

unlimited communication range. Next, we look into more detail the simulation results for

a particular value of pt = [400, 600]. As shown in Fig. 6.7(a), for the given initial position,

by using the standard coverage algorithm (6.10), in the end of the deployment there exist

four isolated sensors, i.e. sensor 2, sensor 3, sensor 4 and sensor 5 which cannot participate
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in the coverage task. Next, we apply the global leader based control law (6.13). At the

initial deployment, a voting is conducted among all sensors and as a result sensor 1 with the

most information is elected as the global leader. The other sensors follow the leader until

their information exceed half of the information of the global leader sensor 1. The snapshot

during the deployment using the control law (6.13) is shown in Fig. 6.11. Furthermore,

the trajectories and the information gathered by each sensor using the global leader based

algorithm are shown in Fig. 6.10. Next, we apply the proposed control law (6.21) based on

the local leader. Using the leader election algorithm, at the beginning sensor 1 is selected

as the local leader of sensor 2 and sensor 3. After several steps, sensor 3 is selected as

the local leader of sensor 4 and sensor 5. The local leader will be re-elected at every step.

Thus, the elected local leader may be different at each step. As can be observed from

Fig. 6.7(b), all sensors participate in the coverage task which results in a higher coverage

performance indicated by a higher value of the objective function as shown in Fig. 6.8.

The trajectories and the information gathered by each sensor are shown in Fig. 6.12 while

the snapshot during the deployment is shown in Fig. 6.13. As can be observed, sensor 3

switches to the autonomous deployment mode when its information value exceeds half of

the information value of its local leader, that is sensor 1 at around step 180. Sensor 2

does the same behavior to sensor 3 as its local leader at around step 240. Both sensor 4

and sensor 5 have sensor 3 as their local leader and switch to autonomous deployment

mode around step 300. Moreover, using the proposed algorithm, the connectivity between

the sensors is maintained during the deployment indicated by the algebraic connectivity

of the Laplacian matrix of the graph always larger than zero while the communication

graph will be disconnected, that is the algebraic connectivity is zero when no connectivity

maintenance algorithm is applied as shown in Fig. 6.9. Furthermore, As can be observed

from Fig. 6.8, the global leader based algorithm results in a better coverage performance

value and a faster convergence speed compared to the local leader one since the sensors

are not required to maintain the connectivity among them.

6.4 Summary and Discussion

The multi-robot deployment problem generally results in a non-convex optimization prob-

lem which makes the gradient-based control laws converge mostly to local optima. It is

reported in [125] that the cost function of deployment problem has multiple local optima

which all have an equal cost. However, in this chapter it is shown that there exists a condi-

tion for which the gradient methods converge to a certain local optima whose value is not

as close as the others. We refer to such local optima as the undesired local optima. This

local optima occurs in the following condition. When mobile sensors are initially deployed,

some sensors may be located far away from the region of interest and due to the sensor’s

limited sensing of range, some sensors may not be able to participate in the coverage task

which results in a degradation of coverage performance of the robotic network. A novel

distributed control that avoids the agents to converge to the undesired local optima is then

proposed by exploiting the use of information which can be exchanged via the communica-

tion network. Specifically, this chapter introduces a novel distributed coverage control law

with global and local leader that improves the coverage performance by guaranteeing the
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participation of all sensors in the coverage task. At each time step, each sensor executes

one of the two modes, namely autonomous deployment mode and following mode, depend-

ing on its information value. The innovative idea is that the sensors which have no or less

information at their initial deployment follow their neighboring sensors which have higher

information value until they gain sufficient information while maintaining the connectivity

among them. The leader-follower algorithm in the proposed distributed control law can

be viewed as a perturbation influencing the gradient-based control law. Compared to the

other non-gradient based approaches, the proposed approach in this chapter is advanta-

geous in the sense that it is more intuitive and guarantees that in the final configuration

of the deployment, there is no isolated sensors in the network, which cannot be achieved

by other approaches in the related literature. The results obtained in this chapter also

indicate that by exchanging more information, in this case the information gained by each

sensor, the performance of the overall system can be improved significantly. A similar

strategy is also considered in [22] for a consensus problem where it is shown that by using

both the current and outdated states in memory, the proposed algorithm converges faster

than the standard consensus algorithm while requiring identical maximum control effort if

the outdated states are chosen properly.

In this chapter, two different algorithms are proposed, namely global leader and local

leader based algorithms. Even though the local leader based algorithm is more robust to

environment changes, it relies on the assumption that the density function only consists

of a single maxima, which is quite restrictive in reality. Therefore, it is required in the

future to relax this assumption and improve the proposed algorithm. In addition, it is also

promising to investigate other cases or situations that result in an undesired local optima.

One possible situation is the unbalanced coverage of the region of interest by the mobile

sensors, for example when there exists area with high density function not covered by

the sensors as discussed in [140]. In this situation, exploration-based approach [124, 140]

or methods based on deterministic annealing [75] may not guarantee that each important

area, i.e. region with high density function is covered by at least one sensor. Therefore, it is

necessary to develop distributed control, possibly other than the non-convex optimization-

based techniques that guarantee the agents converge to the corresponding local optima.
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[Li & Cassandras 2005]
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Figure 6.6: Simulation results using the proposed algorithm based on both the global and local
leader and the standard algorithm [84] for different value of pt: (a) final value
of the objective function. Higher value of F means better coverage performance;
(b) time-step until all sensors converge to the final configuration. As can be seen
from (a), both the proposed algorithms outperform the standard algorithm. The
local leader based algorithm results in a lower final objective function and a slower
convergence time compared to one with the global leader.
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Figure 6.7: Final configuration of the sensors by using (a) the standard algorithm in [84]; (b)
the proposed algorithm with local leader. The area inside the dashed circle has
higher density function. As can be seen from (a), by using the standard algorithm,
only sensor 1 which could participate in the coverage task since the rest do not
have sufficient information. Thus in the final configuration, there exists several
isolated sensors. Meanwhile, as can be observed from (b), by using the proposed
algorithm, all sensors participate in the coverage task, i.e., there is no isolated
sensors in the final configuration.
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Figure 6.8: Objective function of the coverage problem. The solid, dashed-dot and dashed line
represent the evolution of the objective function by using the proposed algorithm
with local leader, the proposed algorithm with global leader and the standard
algorithm in [84] respectively. As can be seen, both the proposed algorithms result
in a better coverage performance compared to the standard coverage algorithm in
[84] indicated by a higher value of the objective function. The proposed algorithm
with local leader achieves a lower final objective function value and converges
slower compared to the algorithm with the global leader. This is due to that for
the global leader case, the communication range is assumed to be unlimited so
that the sensors do not need to maintain the connectivity among themselves.
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Figure 6.9: Connectivity between the sensors during the deployment. The solid and dashed line
represent the connectivity between the mobile sensors with the proposed algorithm
and with the proposed algorithm without considering connectivity maintenance.
As can be seen, without the connectivity maintenance, the topology between the
sensors will be disconnected, indicated by the algebraic connectivity value equals
to 0.
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Figure 6.10: (a) Trajectories of the mobile sensors during the deployment using the proposed
algorithm with a global leader and (b) The information value of each sensor and
the time of switching into a pure coverage algorithm for the followers. The solid
line in (b) represents the evolution of the information value of each sensor over
the time.
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Figure 6.11: Snapshots of the deployment of the sensors with unlimited communication range
using the proposed algorithm with a global leader at: (a) Initial Condition; (b)
Step = 100; (c) Step = 150; (d) Final Condition. The area inside the dashed
circle has higher density function. The lines connecting the sensors represent the
communication graph between the sensors.
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Figure 6.12: (a) Trajectories of the mobile sensors during the deployment using the proposed
algorithm with local leader and (b) The information value of each sensor and
the time of switching into autonomous deployment mode for the followers. The
solid line in (b) represents the evolution of the information value of each sensor
over the time.
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Figure 6.13: Snapshots of the deployment of the sensors using the proposed algorithm with
local leader at: (a) Initial Condition; (b) Step = 200; (c) Step = 300; (d) Final
Condition. The area inside the dashed circle has higher density function. The
lines connecting the sensors represent the communication graph between the
sensors. As can be seen, there is no isolated sensors in the final configuration.
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7 Conclusions and Future Directions

7.1 Concluding Remarks

The present work focuses on design of performance-oriented distributed control for inter-

connected systems. So far unique is the exploitation of an additional degree of freedom

offered by the introduction of the communication network in the control design. The main

approaches along with the corresponding major results are highlighted in the remainder of

the section.

While the performance of interconnected systems can be improved by exchanging infor-

mation between the local controllers of the subsystems via the communication network, the

overall system’s stability guarantee may be lost under permanent communication link fail-

ures. In Chapter 3, a novel two-layer control architecture is proposed in order to guarantee

the stability of the system when communication link failures occur while improving at the

same time the performance of the overall system. The novel concept is to combine the ad-

vantages of decentralized and distributed control. Specifically, the interconnected system

is first stabilized by designing the decentralized control without any information exchange

between the local controllers. The next step is to improve the system performance by

designing the distributed control together with the communication topology under a given

communication network constraint. The problem is formulated as a mixed integer opti-

mization problem. The proposed approach is applied to the design of a novel distributed

damping control of power systems. Furthermore, it is investigated in-depth for the first

time via numerical simulation how the addition of communication links influences the per-

formance improvement of the overall system. It is shown from the simulations that adding

more communication links may not always improve the performance of the interconnected

system. Finally, the results are extended to the case of non-ideal communication network

where it is assumed that identical and constant time delay exists in the communication

links.

The design of communication topology results in a combinatorial optimization problem

which makes it difficult to have a closed-loop solution which allows for some insights. In

Chapter 4, the explicit solutions of the communication topology design for distributed

control of interconnected systems with special class of physical interconnection topology,

namely ring, star and line structures are presented for the first time. The innovative

approach is based on the eigenvalue sensitivity analysis by reformulating the original op-

timization problem as an optimization problem involving the eigenvector related to the

largest eigenvalue of the interconnected system. It is demonstrated that the closed-loop

solutions of communication topology design can be obtained for the corresponding physical

structure. The analysis starts with identical scalar subsystems and a single communication

link. Afterwards, it is investigated how the heterogeneity of the subsystems’ local dynam-

ics, the number of subsystems and the strength of the physical interconnection between
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these subsystems affect the solutions. The results are further extended by giving class

of non-scalar subsystems whose analysis can be reduced to the case of scalar subsystems.

Some discussions on how to deal with multiple communication links and some viewpoints

on how to extend the results into more complex physical structure are presented. Finally,

the eigenvalue sensitivity analysis is applied to the case where identical and constant time

delay exists in the communication links which serves as a tool to investigate the influence

of the communication topology and time delay on the performance of the system.

The results developed in Chapters 3 and 4 require system-wide information to compute

the control law. In reality, however, it is difficult to obtain the whole system model due to,

for example, geographical constraints between the subsystems. This issue is investigated

in Chapter 5 by proposing a novel coordination algorithm to design the distributed control

based only on some local plant model information. As a performance metric, the quadratic

infinite horizon cost is considered. The original idea is to distribute the design of the control

law among all subsystems. Specifically, first, a sufficient condition is given which enables

the designer to decompose the global cost function into the sum of local cost functions.

Each subsystem is then assigned a local cost function and, based on the limited plant model

information, the optimization problem is iteratively solved by coordinating with the other

subsystems. Furthermore, it is demonstrated that the algorithm can be combined with the

two-layer control architecture developed in Chapter 3 in order to guarantee the stability of

the overall system in the presence of permanent communication link failures. Even though

the proposed algorithm can solve the control design in a distributed manner, it suffers

from performance degradation compared to the centralized design which comes from the

two-layer architecture and also the iterative process in the case of multiple links. The issue

of how much the performance degrades compared to the centralized design method is still

an open problem.

Finally, Chapter 6 deals with the non-convexity of the objective function for cooperative

control problem and specifically the deployment of mobile sensor networks. The objective

here is to guarantee that the agents avoid converging to the undesired local optima. The

innovative concept is to identify the situation which causes the agents to converge to

these local optima and develop a distributed coverage control law which avoids these local

optima. It is shown that one possible situation resulting in such local optima is when mobile

sensors are initially deployed and some sensors may be located far away from the region of

interest and due to the sensor’s limited sensing of range, some sensors may not be able to

participate in the coverage task which results in a degradation of coverage performance of

the robotic network. After characterizing the undesired local optima, a novel distributed

coverage control law with global and local leader that guarantees the participation of all

sensors in the coverage task is proposed by exploiting the use of information which can

be communicated. At each time step, each sensor executes one of the two modes, namely

autonomous deployment mode and following mode, depending on its information values.

The novel strategy is that the sensors which have no or less information at their initial

deployment follow their neighboring sensors which have higher information value until they

gain sufficient information while maintaining the connectivity among them. The leader-

follower algorithm in the proposed distributed control law is acting as a perturbation

which operates on the gradient-based control law. In addition, we show that by using the
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proposed control law, it is guaranteed that, in the final configuration of the deployment,

there are no isolated sensors in the network which is demonstrated in numerical simulations.

It is additionally shown that by exchanging more information gained by each sensor, the

performance of the overall system can be significantly improved.

7.2 Outlook

The present dissertation serves as a first step towards designing adaptive and scalable dis-

tributed control for interconnected systems. The analysis in this dissertation is performed

for the static case. However, in reality, the structure of the interconnected systems may

change due to the addition or removal of subsystems or component failures. It is thus nec-

essary to extend the current approach to deal with interconnected systems under dynamic

changes. There is a number of exciting research directions emerging from this dissertation

and some of them are the following:

• Self-reconfigurable distributed control: In general, the structure of the inter-

connected system may change due to uncertainty, addition of new subsystems or

component failures. This occurs, for example, in (smart) power grid where unpre-

dictable interconnection failures and, also, addition/removal of subsystems may result

in structural changes of the system. Therefore, it is required to adapt the distributed

control together with the communication topology in order to guarantee the stability

and performance of the overall system under the structural changes.

• Exchanged information vs. performance improvement: While it is well-

known, in the consensus problem for example, that exchanging information may

improve the performance of the whole system, it is still unclear about the relation

between the amount of information exchanged and the improvement of the perfor-

mance. It is shown in this dissertation via simulations that, starting from a certain

point, exchanging more information in the sense of allowing more communication

links may not improve the performance significantly. It is thus necessary to develop

a rigorous analysis on how the incremental of information exchanged influences the

performance. Furthermore, it is significant to investigate the use of a communica-

tion network in order to control complex dynamical systems which are originally

uncontrollable [91].

• Combined optimization and feedback control: Optimization is inherently ad-

vantageous with respect to performance and capability of handling constraints. Feed-

back control mechanisms, on the other hand, can guarantee stability even in the pres-

ence of fast dynamic changes and quickly react to disturbances in the system. The

combination of optimization-based and feedback control approaches is considered

as a powerful and effective way to deal with interconnected systems with different

time-scale objectives, as met, for example, in power distribution systems. There-

fore, another possible direction is to develop a two-layer architecture by combining

distributed optimization and feedback control in order to deal with constraints and

uncertainty in the interconnected systems.
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A Power systems simulation parameters

Table A.1: Generator parameters

Parameter G1 G2 G3 G4 G5
Mi 4.6 4.75 4.53 4.04 5
Di 3.14 3.77 3.45 4.08 3.5
xdi 0.1026 0.1026 1.0260 0.1026 1.0260
x′
di 0.0339 0.0339 0.3390 0.0339 0.3390

T ′
doi 5.67 5.67 5.67 5.67 5.67
b1i 6.66KA 6.66KA 6.66KA 6.66KA 6.66KA

b0i 3.33KA 3.33KA 3.33KA 3.33KA 3.33KA

c1i 33.3 33.3 33.3 33.3 33.3
c0i 3.33 3.33 3.33 3.33 3.33
KA 200 200 200 200 200

Table A.2: Generator operating points

Parameter G1 G2 G3 G4 G5
V 1.05 1.03 1.025 1.05 1.025
θ 0 0.1051 0.0943 0.0361 0.0907

Table A.3: Parameters of transmission lines [p.u.]

node node R X B/2
1 7 0.00435 0.01067 0.01536
2 6 0.00213 0.00468 0.00404
3 6 0.02004 0.06244 0.06408
4 8 0.00524 0.01184 0.01756
5 6 0.00711 0.02331 0.02732
6 7 0.04032 0.12785 0.15858
7 8 0.01724 0.04153 0.06014
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B Proofs

B.1 Proof of Proposition 4.3.1

With no loss of generality, we re-order the numbering of subsystems in a clockwise direction

as 1, 2, · · · , N . The overall dynamics of the interconnected system with ring topology can

then be written as

A =










a b 0 b

b a b
. . .

. . .
. . .

b a b

b 0 b a










(B.1)

which is known as circulant matrix. The eigenvalue of the circulant matrix in (B.1) is

given by [80]

λk = a + bρkN + bρ
(N−1)k
N (B.2)

where ρN = e
2iπ
N = cos

(
2π
N

)
+ i sin

(
2π
N

)
, i2 = −1. The eigenvalues can then be computed

as

λk = a+ b

(

cos

(
2πk

N

)

+ i sin

(
2πk

N

))

+

+b

(

cos

(
2π(N − 1)k

N

)

+ i sin

(
2π(N − 1)k

N

))

,

= a+ b

(

cos

(
2πk

N

)

+ cos

(
2π(N − 1)k

N

))

+

+ib

(

sin

(
2πk

N

)

+ sin

(
2π(N − 1k

N

))

︸ ︷︷ ︸

=0

,

= a+ 2b cos

(
2πk

N

)

.

Furthermore, the corresponding eigenvector is given by

vk = [1, ρkN , ρ
2k
N ,

..., ρ
(N−1)k
N ]T . (B.3)

The largest eigenvalue λmax is achieved at k = N . Then the corresponding eigenvector can

be computed as

vN = h[1, 1, · · · , 1]T , h ∈ R. (B.4)

The optimal communication link is the solution of (4.8) for r = N . However, from (B.4)

since vN1 = · · · = vNN
= h, we cannot find the solution of (4.8). Note that from

119



B Proofs

trace(Ā) =
∑

λi(Ā) we have
∑

∂λi

∂K
= 0. Thus, when ∂λmax

∂K
< 0, there exists at least

one eigenvalue of A denoted by λm(A) such that ∂λm

∂K
> 0. Therefore in order to find the

optimal communication topology, we consider the case where only two eigenvalues affected

by the perturbation which is the largest eigenvalue λmax and the second largest eigenvalue

λm where m = {1, N − 1}. From (4.6), the optimization problem (4.16) can then be

reformulated as
maximize

i,j
|vmi

vmj
|

subject to vmi
vmj

< 0
(B.5)

where vm is the eigenvector corresponding to the second largest eigenvalue λm. The eigen-

vector for m = 1 is then given by

v1 =











1

cos
(
2π
N

)
+ i sin

(
2π
N

)

cos
(
2π.2
N

)
+ i sin

(
2π.2
N

)

...

cos
(

2π(N−1)
N

)

+ i sin
(

2π(N−1)
N

)











. (B.6)

Since
∣
∣
∣cos

(
2π(N−1)

N

)

+ i sin
(

2π(N−1)
N

)∣
∣
∣ = 1, the optimization problem (B.5) is equal to

maximize
i,j

|Re{v1i}Re{v1j}|

subject to Re{v1i}Re{v1j} < 0.
(B.7)

Since −1 < cos
(
2πl
N

)
< 1, the solution of (B.7) is achieved at i⋆ = 1 and

cos

(
2πl

N

)

= −1

⇔ cos

(
2πl

N

)

= cos(π)

⇔ l =
N

2
,

or j⋆ = N
2
+ 1. In other words, the communication link is added between two local

controllers with the largest distance. This completes the proof.

B.2 Proof of Proposition 4.3.2

In order to prove the proposition, instead of computing directly the elements of the corre-

sponding eigenvector, we investigate their changes w.r.t perturbation. In order to do so,

we introduce the following Lemmas.
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B.2 Proof of Proposition 4.3.2

Lemma B.2.1 For the following N ×N matrix:

A =










g b 0 b

b a b
. . .

. . .
. . .

b a b

b 0 b a










(B.8)

the elements of the eigenvector corresponding to the largest eigenvalue, i.e. vr =

[vr1 , · · · vrN ] satisfy
vri+1

= vrN−(i−1)

where i = 1, · · · ,
⌊
N+1
2

⌋
.

Proof : The eigenvector sensitivity analysis is employed in order to prove the Lemma.

First, the matrix A in (B.8) can be written as

A =










a b 0 b

b a b
. . .

. . .
. . .

b a b

b 0 b a










︸ ︷︷ ︸

A0

+










ζ 0 0 0

0 0 0
. . .

. . .
. . .

0 0 0

0 0 0 0










︸ ︷︷ ︸

∆A

(B.9)

where g = a + ζ . In other words, the matrix A in (B.8) can be seen as matrix A0 which

is perturbed by the matrix ∆A. As shown in (B.4), the eigenvector corresponding to

the largest eigenvalue of matrix A0 is vA0
r = [1, · · · , 1]T . Thus in order to show that

vA

ri+1
= vA

rN−(i−1)
, we need to show

dvA0
ri+1

= dvA0
rN−(i−1)

,

i.e. the direction and magnitude of the movement of the (i + 1)-th and (N − (i − 1))-th

element of the eigenvector corresponding to the largest eigenvalue of the matrix A0 when

it is perturbed by the matrix ∆A are equal.

For the eigenvalue problem which depends on the design variable ζ given as

[A(ζ)− λi(ζ)I]vi(ζ) = 0, (B.10)

the first-order design sensitivities of the eigenvectors with respect to the design ζ repre-

sented by dvi

dζ
is given by [132]

[A− λiI]
dvi

dζ
= −

[
∂A

∂ζ
− λ′

iI

]

vi (B.11)
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where λ′
i = ∂λi

∂ζ
and A is defined in (B.9). For the largest eigenvalue of A0 and its

eigenvector, the left-hand-side of (B.11) can be computed as

[A− λrI]
dvr

dζ
=










d̂ b 0 b

b â b
. . .

. . .
. . .

b â b

b 0 b â










dvr

dζ

where â = a− λr, d̂ = d− λr. The right-hand-side of (B.11) can also be computed as

[
∂A

∂ζ
− λ′

rI

]

vr = −















sign(ζ) 0 · · · 0

0 0 0
...

. . .
...

0 · · · · · · 0







− λ′

r








1 0 · · · 0

0 1 0
...

. . .
...

0 · · · · · · 1














vr

=










−sign(ζ) + λ′
r 0 0 0

0 λ′
r 0

. . .
. . .

. . .

0 λ′
r 0

0 0 0 λ′
r










vr.

Since from (B.4) it is known that vr = [k, · · · , k]T , without loss of generality, taking k = 1,

Equation (B.11) becomes










d̂ b 0 b

b â b
. . .

. . .
. . .

b â b

b 0 b â










dvr

dζ
=










λ′
r − sign(ζ)

λ′
r
...

λ′
r

λ′
r










.

The above equation can be written by N equations as follows.

d̂x1 + bx2 + bxN = λ′
r − sign(ζ)

bx1 + âx2 + bx3 = λ′
r

bx2 + âx3 + bx4 = λ′
r

...

bxN−2 + âxN−1 + bxN = λ′
r

bx1 + bxN−1 + âxN = λ′
r
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where xi =
dvri
dζ

. Subtracting the i−th and N− (i−2)-th equation for i = 2, · · · ,
⌈
N
2

⌉
gives

⌊
N−1
2

⌋
equations which can be written as










â b 0 0

b â b
. . .

. . .
. . .

b â b

0 0 b â










︸ ︷︷ ︸

R̄











x2 − xN

x3 − xN−1
...

x⌈N2 ⌉−1 − xN−(⌈N2 ⌉−3)
x⌈N2 ⌉ − xN−(⌈N2 ⌉−2)











=










0

0
...

0

0










.

Note that the matrix R̄ is nonsingular. Thus it can be computed











x2 − xN

x3 − xN−1
...

x⌈N2 ⌉−1 − xN−(⌈N2 ⌉−3)
x⌈N2 ⌉ − xN−(⌈N2 ⌉−2)











= R̄−1










0

0
...

0

0










=










0

0
...

0

0










,

i.e. xri+1
= xrN−(i−1)

, i = 1, · · · ,
⌊
N+1
2

⌋
. This completes the proof.

Lemma B.2.2 The largest eigenvalue of the N ×N matrix:

A =










a + ζ b 0 b

b a b
. . .

. . .
. . .

b a b

b 0 b a










(B.12)

where |ζ | < |a| is given by λr(A) = λr(A0) +
1
N
sign(ζ) where λr(A0) is the largest eigen-

value of A when ζ = 0.

Proof : The matrix A in (B.12) can be written as

A =










a b 0 b

b a b
. . .

. . .
. . .

b a b

b 0 b a










︸ ︷︷ ︸

A0

+










ζ 0 0 0

0 0 0
. . .

. . .
. . .

0 0 0

0 0 0 0










︸ ︷︷ ︸

P̄

where the matrix P̄ can be seen as a perturbation matrix working on the matrix A0. From

(4.10), the sensitivity of the largest eigenvalue of A0 can be computed as

λ′
r =

∂λr

∂ζ
= v2r1sign(ζ).

123



B Proofs

Furthermore, from (B.4) it is known that vr = [k, · · · , k]T . The normalized vr is given by

k = 1√
N
. The sensitivity of the largest eigenvalue is then equal to λ′

r = 1
N
sign(ζ). Thus

the largest eigenvalue of the matrix A is then given by

λr(A) = λr(A0) + λ′
r = λr(A0) +

1

N
sign(ζ).

This completes the proof.

We are now ready to prove Proposition 4.3.2.

Proof : With no loss of generality, we re-order the numbering of subsystems in a clockwise

direction as 1, 2, · · · , N where the susbsystem 1 corresponds to the subsystem m. The

overall dynamics of the interconnected system with ring topology can then be written as

A =










g b 0 b

b a b
. . .

. . .
. . .

b a b

b 0 b a










. (B.13)

As stated in Lemma B.2.1, the elements of the eigenvector corresponding to the largest

eigenvalue of matrix A in (B.13), i.e. vr has the following pattern: vri+1
= vrN−(i−1)

. Next

we will show that the following relationship between the elements of the eigenvector vr:

vr1 ≥ vr2 ≥ · · · ≥ vr⌊N+1
2 ⌋

(B.14)

or

vr1 ≤ vr2 ≤ · · · ≤ vr⌊N+1
2 ⌋

(B.15)

holds. First, from definition and using Lemma B.2.1, we can write










g b 0 b

b a b
. . .

. . .
. . .

b a b

b 0 b a



















vr1
vr2
...

vr3
vr2










= λmax










vr1
vr2
...

vr3
vr2










. (B.16)

Equation (B.16) can then be described by
⌊
N
2

⌋
+1 equations where each equation is given

by

gvr1 + bvr2 + bvr2 = λrvr1

for i = 1 and

bvri−1
+ avri + bvri+1

= λrvri
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for i = 2, · · · ,
⌊
N
2

⌋
+ 1. When i = 1 we have

vr1 =
2b

λr − g
vr2 . (B.17)

With no loss of generality, for the remainder of the proof we assume that |g| < |a|. From
Lemma B.2.2 we have λr(A) = λr(A0) + λ′ = 2b+ a+ 1

N
. Equation (B.17) can then be

written as

vr1 =
2b

2b+ a− g + 1
N

vr2 .

Since |g| < |a|, we have a − g < 0. Thus 2b
2b+a−g+ 1

N

≥ 1, i.e. vr1 ≥ vr2 . Next, when

i =
⌊
N
2

⌋
+ 1 we have

vr⌊N2 ⌋
=

λr − a

2b
vr⌊N2 ⌋+1

=
2b+ 1

N

2b
vr⌊N2 ⌋+1

.

Since
2b+ 1

N

2b
≥ 1, we have vr⌊N2 ⌋

≥ vr⌊N2 ⌋+1
. In addition, when i =

⌊
N
2

⌋
we have

bvr⌊N2 ⌋−1
+ avr⌊N2 ⌋ + bvr⌊N2 ⌋+1

= λrvr⌊N2 ⌋ . (B.19)

Substituting (B.18), Equation (B.19) can be written as

vr⌊N2 ⌋−1
=

1

b

[

λr − a− 2b2

λr − a

]

︸ ︷︷ ︸

=k⌊N2 ⌋

vr⌊N2 ⌋
.

The term k⌊N2 ⌋ =
1
b

[

λr − a− 2b2

λr−a

]

can be re-written as

k⌊N2 ⌋ =
1

b

[

λr − a− 2b2

λr − a

]

=
1

b

[

(2b+ a +
1

N
)− a− 2b2

(2b+ a + 1
N
)− a

]

= 2 +
1

bN
− 2b2

2b2 + b
N

.

Taking the derivative of k⌊N2 ⌋ w.r.t. N we have

∂k⌊N2 ⌋
∂N

= − 1

bN2
− b

N2
(
2b2 + b

N

)2 < 0, (B.20)

i.e. k⌊N2 ⌋ is a decreasing function of N . Furthermore, when N → ∞ we have k⌊N2 ⌋ → 1.

Thus it can be concluded that k⌊N2 ⌋ ≥ 1, i.e. vr⌊N2 ⌋−1
≥ vr⌊N2 ⌋ . Using the similar procedure
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as above, when i =
⌊
N
2

⌋
− 1 we have

vr⌊N2 ⌋−2
=

1

b

[

λr − a− b

k⌊N2 ⌋

]

︸ ︷︷ ︸

=k⌊N2 ⌋−1

vr⌊N2 ⌋−1
. (B.21)

The term k⌊N2 ⌋−1 =
1
b

[

λr − a− b
k⌊N2 ⌋

]

can be re-written as

k⌊N2 ⌋−1 = 2 +
1

bN
− 1

k⌊N2 ⌋
.

Taking the derivative of k⌊N2 ⌋−1 w.r.t. N we have

∂k⌊N2 ⌋−1

∂N
= − 1

bN2
− b

∂

(

1
k⌊N2 ⌋

)

∂N
< 0.

In addition, when N →∞ we have k⌊N2 ⌋−1 → 1. Again, it can be concluded that k⌊N2 ⌋−1 ≥
1, i.e. vr⌊N2 ⌋−2

≥ vr⌊N2 ⌋−1
. Finally, we can write

vrj−1
=

1

b

[

λr − a− b

kj+1

]

︸ ︷︷ ︸

=kj

vrj (B.22)

for 3 ≤ j ≤
⌊
N
2

⌋
− 2. Furthermore, it can be proven in the similar way that kj ≥ 1 which

results in vrj−1
≥ vrj . Thus, by collecting all results we can conclude that

vr1 ≥ vr2 ≥ · · · ≥ vr⌊N+1
2 ⌋ .

The optimal communication link is formulated as the optimization problem (4.8) whose

from (B.14), the solution is given by i⋆ = 1 = m and j⋆ = 2 or j⋆ = N .

For the case |g| > |a|, it can also be proven in a similar fashion that

vr1 ≤ vr2 ≤ · · · ≤ vr⌊N+1
2 ⌋

.

Thus the solution of (4.8) is given by i⋆ =
⌊
N+1
2

⌋
and j⋆ =

⌊
N+1
2

⌋
− 1 or j⋆ =

⌊
N+1
2

⌋
+ 1.

This completes the proof.
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B.3 Proof of Lemma 4.3.4

The eigenvalues of the matrix A in (4.31) are the solution of the following equation

|λI −A| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ− g −b −b · · · −b
−b λ− a 0 0

−b 0 λ− a
...

...
...

. . . 0

−b 0 · · · 0 λ− a

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

=L̂

= 0.

Applying the Laplace’s formula, L̂ can be written as

L̂ =(−1)1+N (−b)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−b −b −b · · · −b
λ− a 0 0 · · · 0

0 λ− a
. . .

...
...

. . .
. . .

...

0 · · · 0 λ− a 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

=L̄∈R(N−1)×(N−1)

+(−1)N+N (λ− a)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ− d −b −b · · · −b
−b λ− a 0 · · · 0

−b 0
. . .

...
...

...
. . . 0

−b 0 · · · 0 λ− a

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

=L̃∈R(N−1)×(N−1)

.

Applying the Laplace’s formula, L̄ can be computed as

L̄ = (−1)1+N (−b)(−1)1+(N−1)(−b)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ− a 0 · · · 0

0 λ− a
...

...
. . . 0

0 · · · 0 λ− a

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

∈R(N−2)×(N−2)

= (−1)2N+1b2(λ− a)N−2

= −b2(λ− a)N−2.

Next we compute L̃. Again, applying the Laplace’s formula results in

L̃ = (λ− a)(−b)(−1)N−1+1S̄N−2 + (λ− a)2(−1)(N−1)+(N−1)S̃N−2

= (λ− a)(−b)(−1)1+(N−1)S̄N−2 + (λ− a)2(−b)(−1)1+(N−2)S̄N−3

+ (λ− a)3(−1)(N−2)+(N−2)S̃N−3
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where

S̄i =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−b −b −b · · · −b
λ− a 0 0 · · · 0

0 λ− a
. . .

...
...

. . .
. . .

...

0 · · · 0 λ− a 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

∈Ri×i

, S̃i =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ− g −b −b · · · −b
−b λ− a 0 · · · 0

−b 0
. . .

...
...

...
. . . 0

−b 0 · · · 0 λ− a

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

∈Ri×i

.

Applying the Laplace’s formula iteratively, we have

L̃ = (λ− a)(−b)(−1)1+(N−1)S̄N−2 + (λ− a)2(−b)(−1)1+(N−2)S̄N−3 + · · ·+

+ (λ− a)(N−3)−1(−b)(−1)1+[N−((N−3)−1)]S̄3 + (λ− a)N−3

∣
∣
∣
∣
∣
∣

λ− g −b −b
−b λ− a 0

−b 0 λ− a

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

=S̃3

.

Computing and substituting S̄i and S̃3, we have

L̃ =(λ− a)(−1)1+(N−1)b2(−1)1+(N−2)(λ− a)(N−2)−1

+ (λ− a)2(−1)1+(N−2)b2(−1)1+(N−3)(λ− a)(N−3)−1 + · · ·+
+ (λ− a)(N−3)−1(−1)1+[N−(N−3−1)]b2(−1)4(λ− a)2

+ (λ− a)N−3(λ− a)
[
(λ− g)(λ− a)− 2b2

]
.

After some straightforward computations we have

L̃ = (λ− a)N−2b2(−1)2N−1 + (λ− a)N−2b2(−1)2N−3 + · · ·+
+(λ− a)N−2b2(−1)9 + (λ− a)N−2

[
(λ− g)(λ− a)− 2b2

]

= −(λ− a)N−2b2 − · · · − (λ− a)N−2b2
︸ ︷︷ ︸

N−4

−2b2(λ− a)N−2 + (λ− a)N−1(λ− g).

Therefore, L̂ = L̄+ L̃ can be computed as

L̂ = −b2(λ− a)N−2 − (N − 4)b2(λ− a)N−2 − 2b2(λ− a)N−2 + (λ− a)N−1(λ− g)

= (λ− a)N−2
[
(λ− a)(λ− g)− (N − 1)b2

]
.

The eigenvalues of the matrix A in (4.34) are then the solution of

(λ− a)N−2
[
(λ− a)(λ− g)− (N − 1)b2

]
= 0,

⇔(λ− a)N−2
[
λ2 − (a+ g)λ+ ag − (N − 1)b2

]
= 0
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which are given by

λ1 =
a+ g +

√

(a+ g)2 − 4 (ag − (N − 1)b2)

2

λ2 =
a+ g −

√

(a+ g)2 − 4 (ag − (N − 1)b2)

2
λ3 = · · · = λN = a.

This completes the proof.

B.4 Proof of Proposition 4.4.1

With no loss of generality, we re-order the numbering of subsystems in a clockwise direction

as 1, 2, · · · , N where the susbsystem 1 corresponds to the subsystem m. Using the similar

computation as for the identical subsystems, the matrix A can be written as A = C⊗−Â
where

C =











−ζ l̄ l̄ · · · l̄

l̄ −1 0 0

l̄ 0 −1 ...
...

...
. . . 0

l̄ 0 · · · 0 −1











where l̄ = −l. Furthermore, it can also be shown that the sensitivity of the largest

eigenvalue of matrix A w.r.t. the control gain k can be written as ∂λmax

∂k
∼ −2zrizrj where

zr is the eigenvector corresponding the largest eigenvalue of C. Thus the optimization

problem is reduced to the scalar case.

B.5 Proof of Proposition 4.4.2

With no loss of generality, we re-order the numbering of subsystems where the subsystem

with the largest degree, i.e. subsystem m as subsystem 1 and the others in clockwise

direction as subsystem 2, · · · , N . The matrix A can be written as A = C ⊗−Â where

C =










−ζ l̄ l̄ l̄

l̄ −1 l̄
. . .

. . .
. . .

l̄ −1 l̄

l̄ 0 l̄ −1










where l̄ = −l. Furthermore, it can also be shown that the sensitivity of the largest

eigenvalue of matrix A w.r.t. the control gain k can be written as ∂λmax

∂k
∼ −2zrizrj where

zr is the eigenvector corresponding the largest eigenvalue of C. Thus the optimization

problem is reduced to the scalar case.
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B.6 Proof of Lemma 4.7.1

Assume that the perturbation K works on Āij and Āji of Adist. From (4.48) with GK(λ)

given by (4.49), the sensitivity of λmax can be written as

λ′
max(K) =

v∗
r
∂GK

∂K
(λmax)wr

v∗
r (IN − ∂GK

∂λmax
(λmax))wr

(B.23)

where
[
∂GK

∂K

]

ij
=
[
∂GK

∂K

]

ji
= sign(K)e−τλmax and zero otherwise,

[
∂GK

∂λmax

]

ij
=
[

∂GK

∂λmax

]

ji
=

−Kτe−τλmax and zero otherwise,
[

IN − ∂GK

∂λmax

]

ij
=
[

IN − ∂GK

∂λmax

]

ji
= Kτe−τλmax and zero

when i 6= j and
[

IN − ∂GK

∂λmax

]

mm
= 1, ∀m. Thus after some straightforward computation,

we have

λ′
max =

e−τλmax(v∗riwrj + v∗rjwri) sign(K)
∑

wriv
∗
ri
+Kτe−τλmax(v∗riwrj + v∗rjwri)

. (B.24)

Since v∗
rwr = 1 we have

λ′
max =

e−τλmax(v∗riwrj + v∗rjwri) sign(K)

1 +Kτe−τλmax(v∗riwrj + v∗rjwri)

=
(v∗riwrj + v∗rjwri) sign(K)

eτλmax +Kτ(v∗riwrj + v∗rjwri)
. (B.25)

This completes the proof.

B.7 Proof of Lemma 4.7.3

The sensitivity of λmax w.r.t. time delay τ can be written as

λ′
max(τ) =

v∗
r
∂Gτ

∂τ
(λmax)wr

v∗
r (IN − ∂Gτ

∂λmax
(λmax))wr

(B.26)

where Gτ (λ) = Adec +Adist(K)e−τλ. Computing each term, we have
[
∂Gτ

∂τ

]

ij
=
[
∂Gτ

∂τ

]

ji
=

−Kλmaxe
−τλmax and zero otherwise,

[
∂Gτ

∂λmax

]

ij
=
[

∂Gτ

∂λmax

]

ji
= −Kτe−τλmax and zero

otherwise,
[

IN − ∂Gτ

∂λmax

]

ij
=
[

IN − ∂Gτ

∂λmax

]

ji
= Kτe−τλmax and zero when i 6= j and

[

IN − ∂Gτ

∂λmax

]

mm
= 1, ∀m. Thus after some straightforward computation, we have

λ′
max =

Kλmaxe
−τλmax(v∗riwrj + v∗rjwri)

∑
wriv

∗
ri
+Kτe−τλmax(v∗riwrj + v∗rjwri)

. (B.27)
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Since v∗
rwr = 1 we have

λ′
max =

Kλmaxe
−τλmax(v∗riwrj + v∗rjwri)

1 +Kτe−τλmax(v∗riwrj + v∗rjwri)

= −
λmaxK(v∗riwrj + v∗rjwri)

eτλmax +Kτ(v∗riwrj + v∗rjwri)
. (B.28)

This completes the proof.
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