TUM

TECHNISCHE UNIVERSITAT MUNCHEN
INSTITUT FUR INFORMATIK

Using Network Analysis for
Recommendation of Central Software
Classes

Daniela Steidl

TUM-I1127

Using Network Analysis for Recommendation of
Central Software Classes

Daniela Steidl
Technische Universitidt Miinchen
Garching b. Miinchen, Germany

Email: steidl@in.tum.de

Abstract—Program comprehension is a complex task, espe-
cially for large software systems. Understanding an unknown
system requires a significant amount of time. To speed up
the learning process, developers focus on understanding central
classes first. If other developers are available, they usually suggest
which classes should be read at the beginning. In the absence of
this knowledge, an independent algorithm is needed to measure
the centrality of a class and give a recommendation for the
developer. This paper presents an approach to retrieve central
classes by using network analysis on the dependency graph of the
system. An empirical study on open source projects evaluates the
results of our algorithm based on a survey among the system’s
developers.

I. INTRODUCTION

In many situations a new developer is asked to become
familiar with an unknown software system, in order to either
further develop the software, generate code covering test
cases or review the code for quality management purposes.
Therefore, the shorter the training period of the new developer,
the lower the time and costs. To quickly understand the
system, the ordering in which software artifacts are read is
crucial. Usually, developers focus on understanding the central
classes first to achieve a steep learning curve. We assume
this simplifies the learning process, reduces its duration and
therefore also decreases the cost of development.

However, for a new developer it is not obvious which classes
are the most important ones. If other developers of the system
are available, they recommend certain classes to focus on first.
Nevertheless, they are biased towards the subset of classes
they frequently work with and therefore they do not have an
objective overview of the entire system. Instead of relying on
the availability of other developers, this paper proposes an
algorithm which determines the most important classes of the
system based on its dependency graph.

In the field of network analysis, a couple of metrics have
been proposed to define the importance of a node in a graph.
However, how well these metrics suit the concept of centrality
in the context of large software systems is an open research
question. In this paper we evaluate the use of centrality indices
on dependency graphs to measure the centrality of a software
class.

Research problem. The purpose of the paper is to calculate an
importance ranking among software classes to determine the
centrality of a class. The top classes of the ranking serve as a

recommendation for a new developer to focus on them first in
order to quickly understand the rest of the system. Ideally, the
ranking should provide an optimal recommendation. However,
the optimality of an importance ranking is not clearly defined
and subjective by nature. We measure optimality by evaluating
the results based on the opinion of the developers.

Contribution. In this paper, the importance or centrality of a
class is measured based on its dependencies on other classes.
Appliyng network analysis on the dependency graph of the
system, we experiment with a variety of network metrics
which define centrality in different ways. An empirical study
compares the results achieved by combining various centrality
indices with different kinds of dependency graphs. The study
comprises four open source projects, which are stand-alone
applications from different contexts and written in Java. The
size of the projects was about 160.000 lines of code on
average. For each project the developers named the most
important classes of their system. The individual rankings
of the developers were used to evaluate the results of the
centrality indices.

II. RELATED WORK

Network analysis has been used in software engineering
before. This section gives an overview of its previous appli-
cations.

In [1], the authors use network analysis on dependency
graphs in order to predict defects in software systems. With
the help of an empirical study they show that centrality mea-
surements can successfully find central, and therefore critical,
escrow binaries. With a recall of 60 percent on the Windows
Server 2003, using closeness centrality retrieves twice as many
critical binaries as previous complexity metrics. For most of
their network measures the authors observe significant corre-
lations, most of them being positive and moderate. Compared
to this paper, we evaluate the use of similar centrality indices
on dependency graphs. However, we interpret the ranking
determined by an index to estimate the importance of a class,
not its defects.

The authors of [2] propose a recommendation system for
software testers. Given a finite amount of resources, the system
recommends the tester to focus on critical classes first. The
importance of a class is defined on a two-dimensional grid
based on evolution cost (x-Axis) and PageRank (y-Axis), [3].

Classes are critical if they have a high PageRank value and
high evolution costs. Although there is no empirical evidence
of a correlation between error proneness and criticality of a
class, the authors claim that classes identified by their ap-
proach play an important role and should be tested thoroughly.
For the purpose of our study, we neglect evolution costs, but
evaluate PageRank as one possible centrality index.

Pich et al. use network analysis of the dependency graph,
with the goal of visualizing a software system, [4]. In their vi-
sualization tool, the vertical coordinate refers to the importance
of a system component measured with the PageRank value.
The horizontal coordinates describe similarity of objects based
on shortest-path-measurements. Similar objects are placed
close to each other, dissimilar objects are separated.

This section showed that network analysis on dependency
graphs is commonly used among software engineers. However,
there is no empirical evidence of which centrality index is
mostly related to the importance of a class as determined by
the software developers.

III. TERMS & DEFINITIONS

Dependency graph. A dependency graph is a graph G =
(V,E) where the vertices V represent the interfaces/classes
of the system. If the graph is directed, an edge e = (v1,v2)
connects vertex v; to vertex vs, if vy depends on vy. If the
graph is undirected, an edge e = {v1,v2} connects vertices
v1 and s, if v1 depends on vy or vice versa.

Recommendation set. A recommendation set of the algorithm
is the set containing the classes with the highest centrality
values. For example, we will consider the top ten recommen-
dation set, which includes the top ten classes of the ranking
as produced by the algorithm.

(Recommendation) precision. The (recommendation) pre-
cision denotes the fraction of correct recommendations. A
recommendation of the recommendation set is correct if it
was listed by at least one of the developers participating in
the survey.

IV. APPROACH

This section describes the approach of ranking classes of a
software system according to their importance. The top classes
of the ranking will then serve as a recommendation for a new
developer to focus on them first in order to quickly understand
the rest of the system.

In our approach, a class of a software system is considered
to be important/central if many other classes depend on it.
Dependency relations between classes are captured in the
dependency graph of a system. Among network analysis, a
variety of centrality indices are commonly used and constitute
metrics for the importance of a single node within a graph.
Computing a centrality index results in an importance ranking
among all classes of the system. Thereby, using different
indices leads to different results. Furthermore, these rankings
also depend on the dependency types used for creating the

graph. Different information such as data dependencies or call
dependencies can be included.

The approach mainly consists of two phases: First, the
dependency graph is extracted (IV-A). Second, the algorithm
calculates a centrality index for each node of the graph (IV-B)
and determines the recommendation set.

We implemented the approach with the open source quality
analysis framework ConQAT!. The current implementation
takes the source and byte code of software systems written
in Java as an input.

A. Design of Dependency Graph

In a first step, the algorithm extracts the dependency graph
of the system. We distinguish between different kinds of
dependencies as follows: An edge e = (v, v9) represents a
dependency iff one of the following statements holds

o v; implements/extends the interface/class v, (Imheri-
tance dependency)

e v has a field of type v, (Field dependency)

o v1 calls a method of vy (Method dependency)

o a method of v; returns an object of type vz (Return
dependency)

o a method of vs takes an object of v; as a parameter
(Parameter dependency)

It is not obvious if all dependency-edges should be included in
the graph or if a higher recommendation precision is achieved
by including only a subset. An empirical study will answer
this question and determine the edge set of the dependency
graph (Section V).

In general, each node corresponds to exactly one interface or
class. However, we sometimes merge interfaces with their im-
plementation: The decision when to combine nodes is based on
the inheritance tree of the graph, where an edge e = (v1,v2)
indicates that v; implements vy. Interface I, is merged with
its implementation A, iff A is the only child of I4 in the
inheritance tree which does not have any children itself. This
means that interface I4 is implemented by only one single
class A. However, it could be implemented by more interfaces
I, I, which, in turn, have their own implementation classes.
We merge interface [4 with its single implementation A
because of the following reason: If class A is used within
the source code, then only its interface I, will occur in any
dependency. This is due to the purpose of an interface to hide
the details of its implementing class. Hence interface 14 will
have many incoming dependency edges. The outgoing edges,
however, belong to class A, because only the concrete class
makes calls and references to other classes of the system.
When A is the single implementation of [4, the interface can
be identified with its implementation and therefore we merge
both nodes in the dependency graph.

B. Centrality indices

In the second step, the algorithm calculates a centrality
index for the given dependency graph. Over the years, re-

Thttp://www.conqat.org/

searchers proposed a variety of different centrality measure-
ments. For the purpose of this paper, we evaluate the results of
using common measurements such as betweenness centrality
[5], PageRank [3], PageRank with priors [6], HITS [7], HITS
with priors [6], and Markov [6]. Furthermore we introduce a
hierarchical flow model.

Betweenness. The shortest-path betweenness centrality of a
node v belongs to the category of stress centralities and is

calculated as
CB(U) = Z Z 6st(v)) (1)

s#EvEV t#veV

where d,:(v) denotes the fraction of shortest paths between s
and ¢ that contains v. The betweenness centrality of a node
measures the control over communication between others.

PageRank. The PageRank algorithm is a feedback centrality,
so the score of one node depends on the number and scores
of its neighbours. The PageRank algorithm is based on the
random-surfer-model [5]. The random-surfer-model simulates
the navigation of a user through the web as a random walk:
After reading one web page, the random surfer either follows
a link to another page or randomly jumps to a new page.
Applied to the context of a dependency graph, the surfer is
considered to be the new developer who reads through the
source code. After visiting one class he either follows a link
(dependency edge) to another class or randomly jumps with
probability @ to a new class. The random-jump-probability
« is an important parameter of the algorithm, that needs to
be chosen appropriately. Considering the random-surfer-model
over infinite time, the PageRank gives a stationary probability
distribution to represent the likelihood that the developer will
read any particular class.

In an extension, the algorithm can generate biased ranks by
using priors. Priors represent nodes of the system which are
known to be important prior to running the algorithm. Prior
nodes have higher initial probabilities and therefore the output
ranking is biased towards these nodes.

HITS. Similar to PageRank, HITS is an algorithm originally
designed to rank web pages. However, it does not assign
a single value to each node, but calculates two scores, the
hub and the authority score. A good hub represents a node
that points to many good authorities and a good authority
represents a page that is pointed to by many good hubs.
Roughly speaking, good authorities are nodes with a large
number of incoming links and hubs are pages with a large
number of outgoing links. Preliminary experiments showed
that in our context it is better to use the authority score as
centrality metric than the hub score.

In the same way as PageRank, the HITS algorithm incorpo-
rates a random-jump-probability as a parameter input. HITS
can also be extended and supplied with previous knowledge
about priors.

Markov. The Markov approach is to view the dependency

graph as a first-order Markov chain, where a “token” traverses
the graph in a stochastic manner for an infinitely long time.
The stationary distribution denotes the fraction of time that the
token spends at any single node [6]. The Markov centrality of
a node v then denotes the inverse of the average mean first
passage time in the Markov chain. The mean first passage time
Mg, 18 defined as the expected number of steps taken until the
first arrival of the token at v starting at node s. The average
is taken over all nodes, that are specified as priors of the
algorithm. In contrast to PageRank and HITS, the specification
of prior nodes is not optional, but required.

Hierarchical flow model. In addition to commonly used
centrality metrics, we also designed a hierarchical flow model
specifically for the context of software systems. To calculate a
centrality measurement, the hierarchical flow model is built in
two steps: First, a centrality index is used on an aggregated de-
pendency graph, where each node corresponds to one package
rather than one class. Edges of each package node represent
the accumulation of all edges of the classes/interfaces within
the package. The centrality index then provides an importance
ranking among all packages. In preliminary experiments we
worked with PageRank, Markov and HITS as centrality in-
dices. The results did not differ significantly, mostly the same
packages were considered to be the most important, only in
different orders. Hence we arbitrarily chose to use PageRank
for the first step.

In a second step, a flow model is built for each package. The
graph G of the flow model contains a single vertex for each
class/interface of the package. In addition, the graph contains
a source-vertex and a sink-vertex, which represent the rest of
the system: Gp = (V U {source, sink}, E) with E = {e =
(v1,v2)] v1 depends on va Av; € V Avy € VIU{e =
(source,vs)| vo has an incoming edge from a node outside
the package } U {e = (v1, sink)| v1 has an outgoing edge to
a node outside the package }. Figure 1 illustrates an example
of the flow model for the package org.congat.engine.commons
from our tool ConQAT. Note that the resulting graph is not
necessarily acyclic as the one in Figure 1. Also, not every
node has to be connected to the source (or the sink) if the
class does not depend on the rest of the system.

The edges of the graph have a capacity according to the
following weight function w:

oce(v1, v9),
sum

V1 = source
otherwise

wl(on,0)) = {

where occ(v1,v2) denotes the accumulative occurrences of
the dependencies between vy and v, and

7)

sum = Z occ(source,v) .
veV
The capacities are designed such that flow coming in from
the source is not restricted by the capacity of any edge along
a path to the sink.
The score of each vertex within the package is calculated as
the decrease in the maximum flow of the graph when the node

source

17 125 289

| ConQAT PipelineProcessor Base |

wl

| ConQAT Processor Base
431

| CommonUtils |

ConQAT ParamDoc

431
Fig. 1. Flow model of org.conqat.engine.commons

TABLE 1
RANKING ON ORG.CONQAT.ENGINE.COMMONS

Class | rank
ConQATProcessorBase 414
ConQATPipelineProcessorBase 125
CommonUtils 17
ConQATParamDoc 0

and all incident edges are removed. The higher the decrease
of the maximum flow, the more central we assume the node
to be. In the context of a software system, the graph models
the flow of information coming in from the rest of the system,
flowing through the package and back to the rest of the system.
The score is designed such that it represents the control each
vertex has over the flow. The scores for vertices of the package
org.conqat.engine.commons can be found in Table I.

It remains to be determined how the overall recommenda-
tion of the model is calculated (see Section V). The recom-
mendation should include a certain number of the most central
nodes of each package in the ordering (or a variant of it) as
determined by the PageRank values in step one.

V. CASE STUDY DESIGN

The large number of different centrality indices leads to a
variety of possible results. This section describes the design of
an empirical case study that evaluates these results, and con-
cludes with a suggestion for the most useful recommendation
algorithm.

A. Research Questions

The following questions guided the design of the case study:

RQ1: What is the influence of the priors? Some of the
centrality indices require prior nodes or take them as optional
user input. We investigate how the choice of different prior
nodes effects the outcome of the algorithm.

RQ2: Should the dependency graph be directed or
undirected? We evaluate the results based both on the
directed and undirected dependency graphs.

RQ3: Which dependencies should be represented as an
edge of the dependency graph? We investigate how the
kinds of dependencies included in the dependency graph
influence the recommendation precision. We consider five
different kinds of dependencies, as described in Section IV-A.

RQ4: Which centrality index yields the best result?
We examine which index suits our recommendation model
best. Some indices have additional parameters (see Section
V-D), which are chosen according to preliminary experiments.

RQS5: How does the algorithm perform compared to
recommendations of a single developer? We compare the
recommendation set of the algorithm with the recommendation
of each single developer and also investigate the intersection
of the developer’s opinion per project.

RQ6: How much better is the algorithm compared to a
trivial approach? As a trivial approach the largest classes are
recommended. We measure the size of a class in lines of codes
and recommend the ten, twenty and fifty largest classes.

B. Study Objects

The study was conducted on four Java open source projects
(see Table II). JEdit and jMol are two open source projects
available from SourceForge:? JEdit is a text editor, jMol a visu-
alization tool for chemical structures in 3D. The third project,
ConQAT Engine, is the core of the software quality analysis
tool ConQAT. The voTUM framework visualizes optimization
techniques of compilers.? Table II gives an overview of the size
of the projects, measured in LoC (lines of code), and denotes
the number of vertices and edges in the directed dependency
graph. The vertices are counted after merging interfaces with
single implementations. The number of edges includes all five
dependencies mentioned in Section IV-A.

C. Evaluation

To evaluate the recommendation set of the algorithm, de-
velopers of each project were asked to name the ten most
important classes of their system, which they would recom-
mend a new developer for his training period. Table IIT shows
the number of developers of each project who replied to the
survey.

For research questions RQ1 - RQ4, we evaluate the results
based on the recommendation precision, calculated over the

Zhttp://sourceforge.net/
3http://www2.in.tum.de/votum

TABLE 11
OPEN SOURCE PROJECTS EVALUATED IN THE STUDY
Project [Version LoC Vertices Edges
ConQAT Engine 2011.9 186.486 1571 7116
jEdit 4.5 164.783 499 2817
jMol 122 229.980 455 2671
voTUM 0.7.5 60.792 275 1393

TABLE III
OPEN SOURCE DEVELOPERS PARTICIPATING IN THE STUDY

Project | # developers
ConQAT Engine 4
jEdit 2
Mol 3
voTUM 3

union of the developers’ opinions. A recommendation in the
recommendation set is considered to be correct if it was named
by at least one developer. Thus, we do not take any ordering
into account. We consider the top ten, top 20, and top 50
classes for the recommendation set of the algorithm and refer
to the corresponding precisions as RP10, RP20 and RP50.

For research question RQ5 we calculate the recommenda-
tion precision for each single developer of the project. Hence,
a recommendation is only considered to be correct if it was
named by the specific developer under evaluation.

D. Parameter configurations

As described in Section I'V-B, some of the centrality indices
require parameters. In the following we list the configuration
with which we ran the case study:

Random-Jump-Probability. Page-Rank and HITS require a
random-jump-probability «. In general, o should be chosen
between 0 and 1. To find the best o, we used preliminary
experiments and ran Page-Rank and HITS with different values
for a. These experiments showed that the higher the «, the
more uniform the final distribution. Because a non-uniform
final distribution with high variance between two different
node values is desirable, we choose « to be very small and
used a random-jump-probability of 0.001.

Priors. Some algorithms take priors as an optional or required
input. Research question 1 will discuss in Section VI and VII
which priors are best to use. Based on that conclusion, Table
IV shows the priors used for the case study.

Flow model. For the hierarchical flow model, we decide to
use the top 25 packages according to the PageRank algorithm.
Within each package we use the top two classes according
to the maximum decrease in the flow value. To get a total
order, we rank the top two classes of the most important
package first, followed by the top two classes of the second-
most important package etc.

With manual inspection, we investigated if the overall
ranking of the flow model could be constructed differently.

TABLE IV
PRIOR NODES USED IN THE STUDY

Project | prior

ConQAT Engine | org.conqat.engine.core.driver.Driver

jEdit org.gjt.sp.jedit.jEdit

jMol org.jmol.applet. Wrapped Applet/
org.jmol.applet.Jmol

voTUM de.tum.in.wwwseidl.votum.gui.VoTUM

TABLE V
DIFFERENT SETS OF PRIORS FOR CONQAT ENGINE

Test | Priors

1 Driver

2 ConQATProcessorBase

3 IConQATProcessor

4 Driver, IConQATProcessor,
ConQATProcessorBase

5 Driver, WebconsoleMain,
ConQATRunner

6 JavaDocAnalyzer, ResourceBuilder

CloneEditPropagator

We determined that approximately only the top ten packages
according to PageRank contained classes that were named
by one of the developers. Within each package only the top
two classes seemed to be relevant. We evaluated if different
rankings, e.g. a ranking containing the top class of the top ten
packages first, followed by the second-most important classes
of the top ten packages etc. would perform better. However,
we believe that the overall ranking as mentioned above suits
our requirements best.

VI. EXPERIMENTS & RESULTS

RQ1. To investigate the influence of the priors, we compare
the results of using different prior test sets for ConQATEngine,
as shown in Table V. The class Driver.java contains a main
method and is the entry point of the system. ConQATProces-
sorBase and IConQATProcessor were both named by at least
one developer as the most important class. ConQATProces-
sorBase is also determined to be important by our algorithm
and frequently found in the top ten recommendation set. In
contrast, [IConQATProcessor is not considered to be important
by our algorithm and is usually not included in the top twenty
recommendation set. In addition to the three individual test
sets, test set 4 includes all three of them. Test set 5 consists
of three classes that contain a main method each and test set
6 contains three randomly chosen classes.

We use these priors to calculate the markov centrality, the
PageRank with priors, and the HITS centrality with Priors on
ConQAT Engine. For the dependency graph we experiment
with different combinations of dependency edges: inheritance
dependency (I), parameter dependency (P), return dependency
(R), field dependency (F) and method dependency (M). We
take the combinations I, IPR, IFM and IFMPR. Figure 2, 3
and 4 show the resulting recommendation precisions RP10,
RP20 and RP50 for using each test set on the dependency
graphs I, IPR, IFM and IPRFM. Thereby, RP10, RP20 and
RP50 are displayed in one column: The bottom section of
each column represents RP10 (highest opacity). The bottom
and the middle section together represent RP20, and the entire
column represents RP50.

We also ran similar experiments on the other study objects.
However, since the results for ConQAT engine are represen-
tative, we do not include additional tables.

RP10, RP20 and RP50
for different prior sets and different dependency graphs

Correct Recommendations

16
15 I T
14 .
13
12 M I =
11 M =
10 = =
9 e L |

— N W R LN ®

Fig. 2. Influence of choosing different priors for markov centrality, run on
ConQAT Engine

RP10, RP20 and RP50
for different prior sets and different dependency graphs

Correct Recommendations

16
15 i il

Fig. 3.
Engine

Influence of choosing different priors for PageRank, run on ConQAT

RQ2 - RQ4. Since research questions RQ2, RQ3 and RQ4
can not be answered separately (the best type of dependency
graph might vary for different centrality indices), we design
an experiment to answer the three questions together: We
evaluate the recommendation precisions RP10, RP20, RP50
for different combinations of centrality index and dependency
graph. As index we use closeness-betweenness, PageRank,
PageRank with priors, HITS, HITS with priors, Markov and
the flow model. In addition, we work with the dependency
graphs I, IPR, IFM and IPRFM in both the directed and
the undirected version. Tables VI, VII, VIII, and IX show

RP10, RP20 and RP50
for different prior sets and different dependency graphs

Correct Recommendations

16 M
15 M
14 M
13 M .
12 . A =
11 =
10
9 L L

— N W R LN ®

4 T
est 5 [T
6

Fig. 4. Influence of choosing different priors for HITS, run on ConQAT

Engine

the results: Rows represent the kinds of dependency graphs,
columns the centrality indices. Each cell contains the values
of RP10, RP20 and RP50. For each kind of edge set, the
highest recommendation precision is printed in bold. The
global maximum precision per project is marked with a grey
cell.

RQS5. Developers of the same project often have a different
view on their software. Their feedback on our survey reveals
that developers’ recommendation on central classes can differ.
For each project Table X shows the size of the intersection
of the developers’ opinion. For ConQAT Engine and jEdit the
developers agree on three classes to be among the top ten. For
voTUM and jMol the intersection size is even only one.

We further evaluate the recommendation precision of our
algorithm based on the opinion of each individual developer.
Figure 5 shows the results for the project ConQAT Engine,
evaluated on the dependency graphs I, IFM, IPR and IPRFM,
using Markov. Figure 5 is representative for the results on
the other case study objects. Hence we do not attach further
graphs.

RQ6. In another experiment we evaluate how much better our
approach is compared to a trivial one. The trivial approach
recommends the ten (twenty or fifty) largest classes of the
system, measuring size in lines of code. Table XI shows the

TABLE X
SIZE OF THE INTERSECTION SET OF DEVELOPERS’ OPINIONS

Project intersection
ConQAT Engine 3
jEdit 3
Mol 1
voTUM 1

TABLE VI
RESULTS ON PROJECT CONQAT ENGINE

Graph Betweenness PageRank PageRankPr HITS HITSPr Markov Flow
i 3 3 4 2 2 3 1 1 2 2 2 3 1 1 2 0 0 0 3 3 4
T undirected 10°20°50 10°20°50 10° 20°50 10°20°50 10°20°50° 10°20°50 10°20°50
1 directed 2 3 6 4 5 6 2 2 2 2 2 6 1 2 2 4 5 6 2 4 4
10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50
. 6 9 12 7 9 11 7 9 11 7 9 9 6 9 13 7 10 11 4 6 8
IPR undirected 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50
i 6 9 11 3 4 9 1 2 4 4 4 4 4 5 6 4 5 9 4 4 7
IPR directed 10°20°50 10°320°50 10°20°50 10°20°50 10°20°50 10°20°50 10°320°50
IFM undirected 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50
H 1 6 12 5 7 15 1 1 2 8 11 14 8 11 15 5 8 15 0 3 5
IFM directed 10°20°50 10°20°50 10°20°50 10°20°50 _ 10°20°50 10°20°50 10°20°50
. 6 8 14 8 13 15 8 13 16 8 12 14 8 11 15 8 12 15 6 10 12
IPRFM undirected | 15,9555 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50
. 5 9 13 4 7 12 11 5 8 11 14 7 11 14 2 4 12 3 5 10
IPRFM directed 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 _ 10°20°50
TABLE VII
RESULTS ON PROJECT JEDIT
Graph Betweenness PageRank PageRankPr HITS HITSPr Markov Flow
- 0 0 3 0 1 4 2 2 2 0 0 0 2 2 2 0 0 0 0 0 1
I undirected 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°30
I directed 001 023 112 024 112 014 1 1 1
10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 _ 10°20°50
i 4 5 9 4 6 10 4 6 10 0 0 0 4 7 8 6 8 10 3 4 4
IPR undirected 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50
; 6 811 137 6 910 000 459 3 490 3 3 4
IPR directed 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 _ 10°20°50
- 2 6 9 5 7 11 5 7 11 4 7 12 4 5 10 4 9 13 4 5 5
IFM undirected 10°20°50 ~ 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°30°50
i 5 8 10 1l 3 9 3 7 10 5 6 13 2 5 9 1l 3 9 3 5 5
IFM directed 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 _ 10°20°50
i 4 6 10 4 7 12 4 7 12 4 7 12 4 6 10 4 8 12 4 4 4
IPRFM undirected 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50
i 5 8 10 3 5 11 4 8 13 5 7 13 4 6 10 3 7 11 3 4 4
IPRFM directed 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 _ 10°20°50
TABLE VIII
RESULTS ON PROJECT JMOL
Graph Betweenness PageRank PageRankPr HITS HITSPr Markov Flow
- 11 1 11 5 2 2 2 0 0 0 2 2 2 0 0 o0 111
[undirected 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°30°50
1 directed 0 1 2 1 1 3 4 4 5 1 1 2 3 4 5 2 2 3 0 1 2
10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 _ 10°20°50 _ 10°20°50
: 3 4 10 6 8 12 6 8 13 7 © 18 4 7 11 6 9 12 3 5 6
IPR undirected 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50
. 4 5 9 13 8 3 5 10 6 7 11 2 3 8 0 0 1 14 5
IPR directed 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 _ 10°20°50
i 3 6 12 5 7 14 5 7 14 5 8 12 3 6 13 5 7 13 4 6 6
IFM undirected 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50
i 5 9 12 3 4 9 4 4 9 4 5 9 3 7 8 2 3 8 4 5 6
IFM directed 10°20°50 10°320°50 10°20°50 10°20°50 10°20°50 10°20°50 10’20’50
i 3 8 11 5 8 14 5 8 14 6 9 11 3 7 12 S5 9 13 4 6 6
IPRFM undirected 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50
i 5 9 13 3 5 11 3 6 12 4 7 11 3 7 8 4 7 12 4 6 6
IPRFM directed 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10’20’50
TABLE IX

RESULTS ON PROJECT VOTUM

Graph Betweenness PageRank PageRankPr HITS HITSPr Markov Flow
I undirected 10°30°5 16°20°80 10°30°%0 10°30°30 10°20°30 10°30°30 10°30°50
I directed 5 7 10 5 8 13 2 5 8 4 7 13 2 4 8 5 7 13 6 6 8
10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50 10°20°50
IPR undirected 1°30°50 10°20°50 10°20°50 10°30°30 10°20°50 16°20°80 10°20°50
IPR directed T0°30°58 T0°20°30 10°20°50 10°30°30 10°20°50 10°30°50 10°30°50
IFM undirected 0°30°5 1002080 10°20°50 10°30°30 10°30°50 10°20°%0 10°36°30
IFM directed 10°36°55 T6°30°50 16°30'50 10°30°30 16°20°B0 16'30°50 10°35°50
IPRFM undirected | f5.55:50 fo'20°50 10730050 10°20°50 10°20'30 10°20°50 10°20°30
IPRFM directed | 5555 6'30'50 i6°30°50 T0°20°h0 0'20'50 T0°30°50 10°0°30

Recommendation Precision for individual developers
Correct Rec. K
among top ten recommendation set

6
5
4
3
2
1
7—‘C\lm<l' — Qo < — QN < — Q n <
=z 2 oz = e 2 oz =5 P o7 P
L L O O Lo 0 O O L O O O L LU U O
o T T o ° T TS S T T O S T T o
I IPR IFM IPRFM
Fig. 5. Recommendation precision of individual developers of ConQAT
Engine

recommendation precision RP10, RP20, and RP50 as well as
the size of the largest class.

VII. DISCUSSION

RQ1: What is the influence of the priors? The results as
shown in Figures 2, 3 and 4 reveal that using different sets of
priors does not change the outcome significantly. On graphs
IPR, IFM, IPRFM, the values of RP10 for example differ by
at most one, often they are the same for all sets of priors. On
dependency graph I, the results vary slightly more. However,
the recommendation precisions on this graph are lower than
on the other graphs, so we will not use this kind of graph.

For an independent algorithm, priors should be chosen such
that the least amount of developers’ knowledge is required.
We decide to use a class containing the main method.
However, in most of our test systems there are multiple
classes containing a main method, so the prior needs to be
chosen manually or randomly. Table IV previously showed
the priors we selected manually for the remaining research
questions.

RQ2: Should the dependency graph be directed or undi-
rected? Throughout all four test projects, PageRank, PageR-
ank with priors, Markov, and the flow model perform better
on the undirected dependency graphs than the directed ones.

TABLE XI
RESULTS OF THE TRIVIAL APPROACH BY MEASURING THE SIZE OF A
CLASS
Project RP10, RP20, RP50
. 2 2 3
ConQAT Engine 15°36°50
o 4 7 11
jEdit 10°36°50
: 7 7 12
Mol 10°36°55
2 4 7
voTUM 16°30°50

HITS and HITS Prior often obtain similar results for di-
rected and undirected graphs. For undirected graphs, both
scores authority and hubs are the same. For directed graph,
we use the authority score as centrality index, because the
authority score leads to better results.

The betweenness-centrality sometimes performs better on
the directed graph. However, in most cases, the betweenness-
centrality is outperformed by the other algorithms. In the
few cases, where betweenness-centrality achieves the highest
recommendation precision for one type of graph, Markov
and PageRank reveal similar results on the undirected graph.
Therefore it is legitimate to say that it is outperformed in the
general case. This indicates that the usage of shortest-path
measurements on dependency graphs is not particularly useful
for a centrality recommendation system. This is in contrast
to the results of [1], who are most successful applying their
shortest-path-centrality.

We conclude that the best recommendations are given
when the dependency graph is undirected.

RQ3 & RQ4: Which dependencies should be represented
as an edge of the dependency graph? Which centrality
index yields the best result? In all test projects except of
ConQAT Engine the highest precision is found for the IPR
dependency graph, which includes inheritance, parameter and
return dependencies. However, the index with the highest
precision varies.

Figure 6 visualizes the results of Tables VI-IX on the
undirected IPR dependency graph. The figure shows only
the results of PageRank, PageRank with priors, HITS, and
Markov, because the betweenness centrality and the flow
model are generally outperformed. Considering only the undi-
rected version of the IPR graph, the best indices (primarily

RP10, RP20 and RP50
for different centrality indices on all case study objects

Correct Recommendations

17 I
16
15

HITS

HITS Pr
HITS

HITS Pr
HITS

PageRank r
Markov
Markov
HITS Pr
Markov

HITS
HITS Pr
Markov |

PageRank Pr |
PageRank

PageRank Pr |
PageRank

PageRank Pr |
PageRank

PageRank Pr |

ConQAT engine jEdit

Z
g

voTUM

Fig. 6. Results of applying different centrality indices on the IPR undirected
dependency graph

based on RP10) are Markov for projects jEdit and voTUM.
On ConQAT engine, PageRank, PageRank with priors, and
Markov perform equally well. For jMol, HITS leads to the
best results, directly followed by Markov as the second best
index. We conclude that applying the Markov centrality on
the IPR depdency graph yields the best recommendation in
accordance with the developers’ opinion, because it performs
the best on three projects and second-best on the fourth one.

On projects ConQAT, jEdit and jMol all centrality indices
perform very poorly when applied to the inheritance graph (I).
For voTUM the results of the inheritance graph are slightly
better. In general this shows (as expected) that inheritance
information on its own is not sufficient for a recommenda-
tion tool but needs to be combined with other dependency
information. Why results are better for voTUM is speculative.
VoTUM is the smallest project of all four study objects and
the one with the strongest framework character. Maybe this
leads to an increase in the ratio of inheritance dependency to
the rest of the dependencies.

In most cases, the flow model is outperformed by random-
walk based centralities. Manual inspection revealed that using
the decrease in the flow value within one package does produce
useful results in accordance with the developers’ opinions.
However, ranking the packages among themselves based on
PageRank and recommending the top two vertices for each
package does not have strong correlation with the developers’
recommendation.

On the undirected versions of the dependency graphs,
PageRank and Markov obtain similar results in terms
of recommendation precision. Appendix A shows two
recommendation sets using Markov and PageRank. In many
cases, both algorithms end up with the same recommendation
set, just in slightly different orders. This observation is in
accordance to the results of [6], which evaluates the same
network algorithms on a variety of real world data sets.

RQ5: How does the algorithm perform compared to
recommendations of a single developer? Figure 5 shows
that the recommendation precision of the algorithm based
on the opinion of a single developer is at most 50 percent.
Calculating the recommendation precision based on the union
of all developers’ opinions as in RQ1-RQ4 leads to much
better results, with a precision up to 90 percent. The small
intersection size of the developers’ opinions (Table X) explains
the difference: Developers agree only on a small number of
classes to be central. Depending on which parts of the system
they work with the most, they consider different classes to be
important. However, the union over all developers’ opinions
matches the output of the algorithm.

In a second survey, we showed the ConQAT developers
the results of the algorithm. They agree that their individual
importance rankings reflect the parts of the system they
work on. Furthermore they consider all classes of the top
ten recommendation set to be important, even if they did not
list them in their answer. The algorithm provides a better
overview of the system than a single programmer could give

TABLE XII
RP10 OF THE TRIVIAL APPROACH COMPARED TO USING MARKOV ON THE
UNDIRECTED IPR DEPENDENCY GRAPH.

Project | trivial | Markov
ConQAT Engine | 20% 70%
jEdit 40% 60%
Mol 70% 60%
voTUM 20% 80%

on his own and recommends classes in agreement with the
developers.

RQ6: How much better is the algorithm compared to a
trivial approach? We compare the trivial algorithm to our
approach, using Markov on the undirected IPR graph, and
show the results in Table XII. For the three projects ConQAT
Engine, jEdit and voTUM our algorithm clearly outperforms
the trivial approach: On ConQAT Engine, the trivial approach
only enumerates two out of ten classes correctly, whereas our
approach has a precision of eight out of ten. On the fourth
project, jMol, both approaches perform equally well. With
seven compared to six correct recommendations, the trivial
approach achieved a slightly higher precision among the top
ten set. However, we do not consider the difference of one
correct class as significant.

VIII. VALIDITY OF THE CASE STUDY

Based on our experience, data from developers to evaluate
the case study is difficult to collect. In the absence of more
available data, the case study comprises only four open source
projects. However, the projects were chosen from different
domains so we believe that they represent a large area of
software applications. We also tried to gather more data by
using the Mylyn framework. However, the obtained data did
not suit our purpose very well, as shown in Appendix B.

Our evaluation metric precision is designed such that it
depends on the number of available developer opinions: More
developer participating in the survey make it likelier for our
algorithm to achieve a higher precision. One could argue that
a large enough number of participating developers will result
in a precision of 100 percent. Hence our evaluation metric is
invalid as a class should not belong to the recommendation set
of the algorithm because one single developer thinks that it is
important, but because a vast majority of developers agrees
on its centrality. However, we conducted another survey (see
RQ5, Section VII) in which we showed the recommendation
set the ConQAT Engine developers. Without exception, they
commonly agreed that the classes of the recommendation set
are central. Therefore we believe that our algorithm does
produce very useful results.

We conducted a couple of preliminary experiments to nar-
row down the parameter space of the case study. We could
have considered more centrality indices, more combinations
of dependency edges and more priors, for example. However,
it is not possible to make an exhaustive search through
the parameter space. To our best knowledge, we chose the

preliminary experiments such that the case study experiments
are the most representative and useful.

IX. CONCLUSION AND FUTURE WORK

This paper has shown that network analysis on dependency
graphs constitutes a useful foundation in order to recommend
important classes of a system. An empirical case study was de-
signed to find the best combination of centrality measurement
and dependency graph. The case study which included four
open source projects revealed a variety of interesting results:
The centrality indices work best on an undirected dependency
graph. Regarding the included dependency information, the
subset of inheritance, parameter and return dependencies con-
stitutes a promising approach. Furthermore using the Markov
centrality leads to the best results, with a precision between
60 and 80 percent in the top ten recommendation set.

For future work, it might be a challenging task to confirm
those results on a larger data base or investigate the results
of the algorithm on a large industry software system. We also
plan on evaluating the algorithm on software projects which
are not written in Java, such as C/C++ or C#.

(1]

[2

[

3

—

(4]

[5

—

(6]

(71

REFERENCES

T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in Proceedings of the 30th international
conference on Software engineering, ser. ICSE ’08. New York,
NY, USA: ACM, 2008, pp. 531-540. [Online]. Available: http:
//doi.acm.org/10.1145/1368088.1368161

S. Kpodjedo, F. Ricca, P. Galinier, and G. Antoniol, “Not all classes
are created equal: toward a recommendation system for focusing
testing,” in Proceedings of the 2008 international workshop on
Recommendation systems for software engineering, ser. RSSE ’08.
New York, NY, USA: ACM, 2008, pp. 6-10. [Online]. Available:
http://doi.acm.org/10.1145/1454247.1454250

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” 1999.

C. Pich, L. Nachmanson, and G. G. Robertson, “Visual analysis of
importance and grouping in software dependency graphs,” in Proceedings
of the 4th ACM symposium on Software visualization, ser. SoftVis ’08.
New York, NY, USA: ACM, 2008, pp. 29-32. [Online]. Available:
http://doi.acm.org/10.1145/1409720.1409725

U. Brandes and T. Erlebach, Network analysis: methodological founda-
tions, ser. Lecture notes in computer science: Tutorial. Springer, 2005.
[Online]. Available: http://books.google.de/books?id=TTNhSm7HYrIC
S. White and P. Smyth, “Algorithms for estimating relative importance
in networks,” in Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, ser. KDD ’03.
New York, NY, USA: ACM, 2003, pp. 266-275. [Online]. Available:
http://doi.acm.org/10.1145/956750.956782

J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
J. ACM, vol. 46, no. 5, pp. 604632, Sep. 1999. [Online]. Available:
http://doi.acm.org/10.1145/324133.324140

APPENDIX A
RANKINGS FOR CONQAT ENGINE

Tables XIII and XIV show the resulting ranking of using
Markov and PageRank on the undirected IPR dependency
graph.

APPENDIX B
MYLYN DATA

In order to have more data for evaluation of our algorithm
available, we also tried to use data provided by Mylyn*. Mylyn
is a task-focused interface, integrated in the development en-
vironment of Eclipse. Mylyn monitors all programm activities
while a developer is working on a certain task of his projects,
e.g. bug fixing, producing code, testing etc. These programm
activities are recorded in a task-content, specified in an XML
format.

The bugzilla platform of Eclipse® records bugs for a variety
of Eclipse projects and thereby also provides data recorded
by Mylyn. In particular, bug fixing activities for the project
Mylyn itself were monitored with Mylyn. We downloaded all
.zip-files for any bug of one of the Mylyn projects (Mylyn,
Mylyn Builds, Mylyn Commons, Mylyn Context, Mylyn Tasks
...) and created a statistic over the files that were read or edited
while fixing a bug. The statistic shows which classes were
selected or edited the most.

We then compared the results of the statistic with the results
of our algorithm, using Markov or PageRank on the IPR
undirected dependency graph. To run our algorithm, we used
the source and the byte code of Mylyn, which is automatically
downloaded while installing Eclipse. The source code can be
found in several .jar-files in the plugin-folder of the Eclipse
program.

The first hypothesis was that the most central classes of the
algorithm are also read the most during a bug fix. The available
data did not support this hypothesis. Using a statistic that
contains only the selected files (and not the edited ones), one
class of the top 50 of the statistic was included in the top ten
recommendation set of the PageRank algorithm, similar with
Markov. Including the edits to the statistic did not improve the
correlation with the recommendation set. However, it seems
intuitive that the most important classes are so well-known
among the developers that they are mostly not affected by a
bug and also not opened during any bug fix.

In a second hypothesis we claimed that the ranking of
our algorithm contains a middle section of classes, that are
not the most central, but also not peripheral. We claimed
that these classes should be selected, but not edited during
a bug fix. They should be selected, because they are not
important enough such that every developer remembers them.
They should not be edited, because they are nevertheless so
important that we assumed them to be bug-free. We expected
that the ranking of these classes within the statistic should be
linearly related to the ranking position in the recommendation

“http://www.eclipse.org/mylyn/
Shttps://bugs.eclipse.org/bugs/

2500

Ranking in Recommendation Set

1200

Ranking in Statistic

Fig. 7. Correlation between Mylyn statistic and recommendation set
(PageRank, IPR, undirected)

set of the algorithm. However, the data also did not support this
hypothesis. Figure 7 shows the ranking in the statistic (x-axis)
compared to the ranking in the recommendation set (y-Axis).
We experimented both with including only the selected files
in the statistic as well as the selected and the edited files, but
the results were the same: No correlation could be found.

While working with Mylyn data the following problems oc-
curred: First, among the top 1000 classes of the statistic, only
approximately half of them were found in the current source
code. Manual inspection revealed that many classes changed
name or were moved during development. Some classes were
explicitly located in a folder called “src-old”. Others were
external classes used from libraries and frameworks outside
the source code.

Second, the Mylyn task content does not seem to differen-
tiate between different edits of a file: Marking a method with
the mouse without making a change results in the same edit
event as renaming the method. To test hypothesis two we were
therefore not able to filter those files that were opened, read,
but not edited.

We conclude that using data gathered by Mylyn is not useful
to evaluate the results of our algorithm.

TABLE XIII
RECOMMENDATION LIST CONTAINING THE TOP 50 CLASSES FOR CONQAT ENGINE, USING MARKOV ON IPR, UNDIRECTED

Class/Interface Markov
org.congat.engine.commons.node.IConQATNode 0,014
org.conqat.engine.resource.text.ITextElement/org.conqat.engine.resource.text. TextElement 0,009
org.conqat.engine.core.logging.IConQATLogger 0,008
org.conqat.engine.commons.node.IRemovableConQATNode 0,008
org.conqat.engine.resource.IElement/org.congat.engine.resource.base.ElementBase 0,008
org.congat.engine.resource.text.ITextResource 0,007
org.congat.engine.resource.IResource/org.conqgat.engine.resource.base.ResourceBase 0,007
org.congat.engine.sourcecode.resource.ITokenElement/org.conqat.engine.sourcecode.resource. TokenElement 0,006
org.conqat.engine.commons.ConQATProcessorBase 0,005
org.congat.engine.sourcecode.resource.ITokenResource/org.conqat.engine.sourcecode.resource. TokenContainer 0,005
org.congat.engine.commons.ConQATPipelineProcessorBase 0,005
org.conqat.engine.java.resource.lJavaElement/org.conqat.engine.java.resource.JavaElement 0,005
org.conqat.engine.commons.pattern.PatternList 0,005
org.conqat.engine.commons.traversal. ETargetNodes 0,005
org.conqat.engine.commons.findings.Finding 0,005
org.conqat.engine.code_clones.core.CloneClass 0,004
org.congat.engine.commons.util. ConQATInputProcessorBase 0,004
org.conqat.engine.code_clones.detection.CloneDetectionResultElement 0,004
org.conqat.engine.java.resource.lJavaResource/org.conqat.engine.java.resource.JavaContainer 0,004
org.conqat.engine.resource.IContentAccessor/org.conqat.engine.resource.base.ContentAccessorBase 0,004
org.conqat.engine.core.bundle.BundlesConfiguration 0,004
org.conqat.engine.commons.node.ConQATNodeBase 0,003
org.congat.engine.core.core.IConQATProcessorInfo 0,003
org.conqat.engine.commons.findings.FindingGroup 0,003
org.congat.engine.core.bundle.BundleInfo 0,003
org.congat.engine.core.driver.instance.BlockInstance 0,003
org.conqat.engine.code_clones.core.Unit 0,003
org.conqat.engine.graph.nodes.ConQATGraph 0,003
org.congat.engine.code_clones.core.Clone 0,003
org.congat.engine.core.driver.specification.BlockSpecification 0,003
org.conqat.engine.commons.traversal. NodeTraversingProcessorBase 0,003
org.congat.engine.commons.findings.FindingReport 0,003
org.congat.engine.resource.base.ElementTraversingProcessorBase 0,003
org.conqat.engine.resource.IContainer/org.conqat.engine.resource.base.ContainerBase 0,003
org.conqat.engine.commons.node.ListNode 0,003
org.conqat.engine.core.driver.info.BlockInfo 0,003
org.conqat.engine.sourcecode.parsed.IParsedElement/org.congat.engine.sourcecode.parsed.ParsedElement 0,003
org.congat.engine.commons.traversal. TargetExposedNodeTraversingProcessorBase 0,003
org.conqat.engine.simion.extraction.IChunkExtractionStrategy 0,002
org.conqat.engine.core.driver.declaration.IDeclaration/

org.conqat.engine.core.driver.declaration.DeclarationBase 0,002
org.conqat.engine.core.driver.instance.ProcessorInstance 0,002
org.congat.engine.simulink.scope.ISimulinkElement/org.conqat.engine.simulink.scope.SimulinkElement 0,002
org.congat.engine.core.core.IProgressMonitor/org.congat.engine.core.driver. ConQATInstrumentation 0,002
org.congqat.engine.core.driver.specification.ProcessorSpecification 0,002
org.congat.engine.simion.extraction.Chunk 0,002
org.conqat.engine.resource.analysis.ElementAnalyzerBase 0,002
org.conqat.engine.architecture.overlap.IArchitectureComponent/

org.congat.engine.architecture.scope.ComponentNode 0,002
org.conqat.engine.java.base.JavaAnalyzerBase 0,002
org.conqat.engine.core.driver.error.ErrorLocation 0,002
org.conqat.engine.simulink.scope.ISimulinkResource/org.conqat.engine.simulink.scope.SimulinkContainer 0,002

TABLE XIV
RECOMMENDATION LIST CONTAINING THE TOP 50 CLASSES FOR CONQAT ENGINE, USING PAGERANK ON IPR, UNDIRECTED

Class/Interface PageRank
org.conqat.engine.commons.node.IConQATNode 0,026
org.conqat.engine.commons.ConQATProcessorBase 0,022
org.conqat.engine.resource.text.ITextElement/org.conqat.engine.resource.text. TextElement 0,014
org.conqat.engine.resource.lElement/org.conqat.engine.resource.base. ElementBase 0,012
org.congat.engine.sourcecode.resource.ITokenElement/org.conqat.engine.sourcecode.resource. TokenElement 0,011
org.conqat.engine.code_clones.core.CloneClass 0,009
org.conqat.engine.commons.node.IRemovableConQATNode 0,009
org.conqat.engine.core.logging.IConQATLogger 0,009
org.conqat.engine.resource.IResource/org.conqat.engine.resource.base.ResourceBase 0,009
org.conqat.engine.resource.text.ITextResource 0,009
org.congat.engine.commons.ConQATPipelineProcessorBase 0,008
org.conqat.engine.java.resource.lJavaElement/org.congat.engine.java.resource.JavaElement 0,008
org.conqat.engine.core.bundle.BundleInfo 0,006
org.conqat.engine.commons.traversal. ETargetNodes 0,006
org.conqat.engine.commons.pattern.PatternList 0,006
org.conqat.engine.sourcecode.resource.ITokenResource/org.conqat.engine.sourcecode.resource. TokenContainer 0,006
org.conqat.engine.commons.util. ConQATInputProcessorBase 0,006
org.congat.engine.persistence.store.IStore 0,006
org.conqat.engine.code_clones.core.Clone 0,005
org.conqat.engine.code_clones.detection.CloneDetectionResultElement 0,005
org.conqat.engine.commons.findings.Finding 0,005
org.conqat.engine.graph.nodes.ConQATGraph 0,005
org.conqat.engine.resource.IContentAccessor/org.conqat.engine.resource.base.ContentAccessorBase 0,005
org.conqat.engine.core.driver.specification.BlockSpecification 0,004
org.conqat.engine.persistence.store.IStorageSystem 0,004
org.congat.engine.simion.extraction.Chunk 0,004
org.congat.engine.java.resource.lJavaResource/org.conqat.engine.java.resource.JavaContainer 0,004
org.conqat.engine.code_clones.core.Unit 0,004
org.congat.engine.simulink.scope.ISimulinkElement/org.conqat.engine.simulink.scope.SimulinkElement 0,004
org.conqat.engine.commons.node.ConQATNodeBase 0,003
org.congat.engine.architecture.overlap.IArchitectureComponent/

org.congat.engine.architecture.scope.ComponentNode 0,003
org.conqat.engine.commons.findings.FindingGroup 0,003
org.conqat.engine.model_clones.model.INode/org.conqat.engine.simulink.clones.model.SimulinkNode 0,003
org.conqat.engine.simion.extraction.IChunkExtractionStrategy 0,003
org.conqat.engine.commons.findings.FindingReport 0,003
org.conqat.engine.commons.traversal. NodeTraversingProcessorBase 0,003
org.congat.engine.commons.node.ListNode 0,003
org.conqat.engine.commons.traversal. TargetExposedNodeTraversingProcessorBase 0,003
org.conqat.engine.resource.IContainer/org.conqat.engine.resource.base.ContainerBase 0,003
org.conqat.engine.core.driver.specification.ProcessorSpecification 0,003
org.congat.engine.core.bundle.BundlesConfiguration 0,003
org.conqat.engine.model_clones.model.IDirectedEdge/

org.conqat.engine.simulink.clones.model.SimulinkDirectedEdge 0,003
org.conqat.engine.sourcecode.parsed.]ParsedElement/org.conqat.engine.sourcecode.parsed.ParsedElement 0,003
org.conqat.engine.code_clones.core.constraint.ICloneClassConstraint/
org.conqat.engine.code_clones.core.constraint.ConstraintBase 0,002
org.conqat.engine.java.base.JavaAnalyzerBase 0,002
org.conqat.engine.core.core.IConQATProcessorInfo 0,002
org.congat.engine.resource.base.ElementTraversingProcessorBase 0,002
org.conqat.engine.core.driver.declaration.IDeclaration/

org.conqat.engine.core.driver.declaration.DeclarationBase 0,002
org.conqat.engine.core.driver.error.ErrorLocation 0,002
org.congat.engine.core.driver.info.BlockInfo 0,002

org.congqat.engine.sourcecode.shallowparser.framework.ShallowEntity 0,002

