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abstract Finely dispersed porosity within castings of nickel base superalloys is inevitable.
These microstructural defects influence the mechanical properties and thus the function-
ality of the castings. Computed tomography studies of porous samples allowed the de-
velopment of a micromechanical computer generated finite element model to quantify
the effect of the porosity on the deformation behavior of the material. To use the results
gained on the microscopic scale for the component layout, a so-called multiscale model
was implemented in which the constitutive law is provided from micromechanical finite
element models. This allows to consider local variations in the microsturcture of the
material and thus enables an optimized component layout with respect to variations in
the load-bearing capacity of the material.

zusammenfassung Das Auftreten fein verteilter Poren in Nickel-Basis Struckturguss-
bauteilen lässt sich bei deren Herstellung nicht vermeiden. Diese Fehlstellen in der
Mikrostruktur des Materials beeinträchtigen die Materialeigenschaften und damit auch
die Funktionalität des Bauteils. Computertomographische Untersuchungen ermöglichen
eine Charakterisierung der auftretenden Porosität hinsichtlich der Volumenverteilung der
Einzelporen, der räumlichen Verteilung und der Form der Poren sowie des Porenvolu-
menanteils. Diese Charakteristika dienen als Grundlage zur Generierung mikromecha-
nischer Finite Elemente Modelle mit deren Hilfe das Materialverhalten in Abhängigkeit
der Porosität untersucht werden kann. Um die auf der mikromechanischen Ebene ge-
wonnenen Erkenntnisse für die Bauteilauslegung nutzbar zu machen, wird im Rahmen
dieser Arbeit ein Multiskalenmodell vorgestellt. Damit können bei der Bauteilauslegung
lokale Unterschiede der Porosität berücksichtigt werden.
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Chapter 1

Introduction

1.1 Significance of Nickel-Base Superalloys

The progress in engineering is inevitably linked to the employed materials. An important
group of multiphase materials are nickel-base cast superalloys which are extensively used
for turbo machinery components. Modern turbine engines significantly contribute to the
cost-effectiveness of aircrafts and help to keep environmental pollution to a minimum.
Together with the air frame, the fuel-efficiency of jet engines is crucial for the market suc-
cess of aircrafts. Figure 1.1 depicts an advanced turbofan engine which powers modern
aircrafts having a per passenger fuel consumption of typically 3 liters per 100 kilometers.
One of the main goals of civil jet engine development is to reduce the per passenger fuel

Figure 1.1: State of the art two shaft turbo machinery engine [1].

consumption even further by increasing the engines’ efficiency. According to the laws
of thermodynamics, this can be achieved by raising the turbine entry temperature (TTE)
of the gas streaming through the engine, which can be understood from Carnot’s theo-
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rem [4]. Using Carnot’s theorem, the theoretical thermal efficiency ηth of heat engines
can be calculated by

ηth = 1− T0

TTE
(1.1)

where T0 is the ambient gas temperature. Clearly raising the TTE increases the turbine
engines efficiency. However, the TTE is limited by the capability of the turbo machinery
components to withstand high temperatures [5]. In addition to increasing the TTE, the
efficiency of turbine engines can be increased by increasing the power to weight ratio.
However, this implies increased stresses acting on the turbine components. High temper-
atures in combination with high mechanical loads clearly link the progress in modern jet
engine design to advances in materials engineering. Materials engineering in turn neces-
sitates a thorough understanding of the thermo-mechanical material properties which
are determined by the materials microstructure [6]. Most industrial materials such as
metal alloys exhibit a heterogeneous microstructure consisting of different phases and
defects which can be distinguished at a sufficiently fine length scale [7] as shown in Fig-
ure 1.2. A phase is a region of the material wherein the physical material properties and
chemical composition are only subject to slight fluctuations. Segregation and pores can
be imagined as three dimensions defects within phases [8]. The physical phase proper-
ties and the morphology of the microstructural constituents of heterogeneous materials
contribute to the overall (effective or homogenized) behavior of the material.1

As already mentioned nickel-base cast superalloys are used for turbo machinery compo-
nents exposed to high thermal loads due to the alloys high temperature resistance and
outstanding mechanical properties. A major problem casting these turbine parts is their
complex geometry which gives rise to the formation of finely dispersed pores as shown
in Figure 1.2 (c). The focus of this work is to determine the influence of porosity on the
mechanical material properties of nickel-base cast superalloys. A thorough understand-
ing of this influence is crucial to achieving a save component design while using the full
mechanical potential of the material. An exclusively experimental investigation of the
influence of pores on the mechanical materials behavior is neither practical nor feasible
making the support of the experimental investigations by modeling strategies necessary.
Modeling helps to investigate and understand the influence of porosity on the mechan-
ical material properties. Furthermore, it provides the possibility to easily investigate
parameter variations such as a different pore volume fraction.

1”Effective material properties” are deduced from the response of a statistically representative volume
element of the heterogeneous material to loading, e.g. the effective Young’s modulus, effective offset yield
strength. ”Homogenized material properties” are deduced from volume elements of the heterogeneous
material which do not necessary have to be statistically representative.
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100 mµ

(a) (b)

100 mµ

(c) (d)

Figure 1.2: Various heterogeneous microstructures: (a) dual phase steel (DP 800) featur-
ing ferrit (white), martensite (light grey) and bainite (grey); (b) Ti6Al4V matrix-coated
fibre (MCF) composite [9]; (c) porous nickel-base cast alloy MAR-M247; (d) coarse
grained IN-713 nickel-base alloy

1.2 Review of Modeling Strategies

Over the last century several approaches to capture the influence of a materials’ mi-
crostructure on the effective material properties were developed. Voigt [10] and Reuss [11]
were among the first to introduce analytical bounds estimating the elastic behavior of
multiphase materials. They incorporated the phase volume fraction and phase specific
properties into their calculations. Voigt introduced the linear rule of mixture [10] based
on the assumption that the different phases are arranged parallel to the loading direction
and are subjected to a uniform strain. He calculated the effective Young’s modulus 〈E〉
as an average of the single phase moduli Ei weighted by their volume fraction vi, which
writes as

〈E〉 = E1v1 + E2v2 + · · ·+ Envn . (1.2)

Voigt’s assumption provides an upper bound for the elastic material properties. In con-
trast to Voigt, Reuss [11] derived a lower bound for the effective Young’s modulus of
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multiphase materials based on a uniform stress assumption for a serial arrangement of
the phases, which is written as

〈E〉 = E1E2 · · ·En

E1v1 + E2v2 + · · ·+ Envn
. (1.3)

Koutznetsova [7] pointed out that these approaches, strictly speaking, deny the influence
of any morphological aspects apart from the phase volume fraction. Neither Voigt nor
Reuss considered the case of a complex shape or a spatial arrangement of the phases.
Starting in the 1950s scientists have developed more sophisticated analytical methods
to calculate the effective elastic materials properties of heterogeneous microstructures.
Eshelby was the first to consider the effect of the shape of an inclusion on the stress
and strain distribution. He derived the solution for the stress concentration caused by
an ellipsoidal inclusion embedded in an infinite body [12]. Based on his contribution
tighter analytical bounds as compared to Voigt and Reuss were proposed, which take
the shape and spatial arrangement of phases into account. The Hashin-Shtrikman [13]
bounds for example show especially accurate results for short fiber reinforced composite
materials with a spatially random distribution of the fibers. The morphological assump-
tions considered by Hashin and Shtrikman closely match the real phase arrangement of
short fiber reinforced materials as depicted in Figure 1.3. Hashin and Shtrikman derived

Hashin-Shtrikmans approximation.

u = xε0u = xε0

real geometry of inclusions spherical approximation of inclusions

Figure 1.3: Schematic representation of the morphological approximation introduced
by Hashin and Shtrikman. The inclusions are approximated by spatially randomly dis-
tributed spherical inclusions of constant eigenstrains (cf Patscheider [14]).

analytical expressions for the effective compression modulus as well as for the effective
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shear modulus of multiphase materials. The effective Young’s modulus can be derived
using the effective compression modulus and the effective shear modulus as

〈E〉 = 9〈G〉〈K〉
3〈K〉+ 〈G〉 . (1.4)

Further analytical bounds were proposed by a series of other scientists, among them Mori
and Tanaka [15] and Hill [16]. Nemet-Nasser and Hori [17] provide a more complete
overview of analytical homogenization methods. Although analytical bounds generally
produce reliable results, there are some drawbacks to these methods. For example, the
lower bounds degrade when there is a high contrast in the phase properties. This is es-
pecially unfavorable when investigating the influence of pores with an elastic modulus
of Epore = 0. In this case Reuss’ assumption yields an effective elastic modulus of zero
for any volume content of pores as can be seen by Equation (1.3). Apart from that the
lower Hashin-Shtrikman bound is not defined for a porous material. Furthermore, ana-
lytical methods are limited in predicting the materials behavior in the plastic deformation
regime and in analyzing the local stress and strain distribution within a specific phase.
Beginning in the late 1980s, the development of numerical methods and increasing avail-
ability of computational power offered a remedy for these problems. Many researchers
used finite element methods to study effective materials properties as well as local phe-
nomena. The finite element method (FEM) is a powerful tool to study and quantify local
effects triggered by different phases. The potential to consider microstructural features
such as the arrangement of the phases and their shape as well as to study complex load-
ing paths is an advantage of FEM over analytical approaches. Furthermore, local stress
and strain distributions can be investigated offering an additional benefit for fracture
mechanical considerations.
Different volume element models which are used to investigate a variety of microstruc-
tural phenomena are known in literature. At the micro-scale level, there are two common
types of geometry models: Real microstructure phase arrangements derived from 3D
computed tomography (CT) and micrographs, and computer-generated geometries. An
advantage of computer generated microstructure models as pursued in this work over
geometries derived from the real microstructure is that the former enable parametric
studies. The following review of some of these approaches is not exhaustive, but – as the
objective of this work – points out relevant approaches for the investigation of porous
materials.
In 1993 Nakamura and Suresh [18] studied the influence of residual stresses and fiber
packing on the deformation behavior of metal matrix composites using volume element
models. Later Sluis et al. [19] investigated the overall behavior of heterogeneous materi-
als with microstructural finite element models. Werner et al. [20] studied the properties
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of random polycrystalline two-phase materials focusing on the influence of contiguity
and the cluster parameter using a finite element approach. Limitations of these early
finite element approaches are that they are based on 2D models with simple phase ge-
ometries.

Böhm and Han [21] investigated the differences between two-dimensional and three-
dimensional volume element models for particle reinforced metal matrix composites.
They found that the phase averages of two-dimensional models differ noticeably from
those of three-dimensional models. Two-dimensional models are generally too soft and
underestimate the width of the distribution of microscale fields. Based on the work of
Böhm and Han it is clear that reliable results can only be achieved using a 3D model.
Three-dimensional volume element models are reported by e.g. Böhm [22], Ghosh [23],
Shan [24] or Lee [25]. An overview of 3D volume element models is given e.g. by
Suresh [26]. The purpose of finite element based volume element methods is twofold,
namely to study local microstructural fields and to predict the effective stress-strain
curves resulting from the micromechanical model using a phenomenological constitutive
equation. These fitted constitutive models allow a more accurate macroscopic calculation
of micro-heterogeneous materials.

However, such a straight forward approach to fit macroscopic constitutive laws to the
results obtained from micromechanical models does not work for large deformations or
complex loading paths of the macroscopic structure [7]. In this case so-called concurrent
multiscale approaches are used, where the macroscopic constitutive law is updated at
each increment and for each macroscopic integration point. Multiscale models provide
the macroscopic constitutive material behavior based on the homogenization of a mi-
cromechanical model at a macroscopic point according to the local microstructure and
loading path. Implementations of multiscale approaches have been reported by Tem-
izer [27], Koutznetsova [7], Ghosh [28], Miehe [29, 30] and Ibrahimbegovich [31].

1.3 Scope of Work

The aim of this work is to implement a three dimensional micromechanical model pre-
dicting both the local microstructural fields as well as the effective material properties
of porous nickel-base cast alloys. To use the results gained on the microscopic level for
a finite element simulation of macroscopic structures a sequential multiscale model is
introduced. Furthermore, for components undergoing large deformations and complex
loading paths a basic framework of a concurrent multiscale approach is presented, which
accounts for loading path dependencies.
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Most multiscale implementations are based on non-commercial finite element codes
abridging an industrial application. To address this shortcoming, within this work a
multiscale approach, which couples three dimensional micro- and macro-structures is
implemented in the commercial finite element code Abaqus.

1.4 Outline

In Chapter 2 the experimental methods are discussed. An overview on the development
of nickel-base cast superalloys as well as a description of the MAR-M247 alloy is given.
The industrial casting process used to produce turbine components is explained. A theo-
retical treatment of the formation of cast porosities is given. Furthermore, the methods
of the microstructure characterization based on microscopy as well as on computed to-
mography are outlined.
In Chapter 3 the manufacturing of the samples is described. Furthermore, the experimen-
tal investigations are described. The samples are characterized in terms of pore volume
fraction, pore volume distribution, pore shape and spatial pore distribution. These results
provide the basis for the development of a three dimensional micromechanical volume
element model capturing the characteristic features of porous cast alloys. Mechanical
tests are performed in order to validate the mechanical modeling results.
Both the development of the micromechanical volume element model as well as the mul-
tiscale approach, which comprise the main focus of this work, are presented in Chapter
4. Based on the hypotheses outlined at the beginning of this chapter the implementation
of the micromechanical model and the multiscale model is described.
In Chapter 5 the results gained from the experiments and from modeling are discussed.
Chapter 6 presents the conclusions drawn from this work. Furthermore, improvements
of the micro- and multiscale models are proposed.
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Chapter 2

Materials and Experimental Methods

2.1 Nickel-Base Superalloys

2.1.1 Fundamentals

Nickel-base superalloys are used for parts exposed to both high thermal and mechan-
ical loads often in excess of 0.7 TM

1 [32]. Furthermore, these alloys display excellent
resistance to mechanical and chemical degradation. The suitability for high temperature
applications of nickel-base superalloys can be explained by the properties of the mate-
rials’ microstructure. The chemical composition of nickel-base superalloys promotes the
formation of two predominant phases, namely the gamma (γ) and the gamma-prime (γ ′)
phase. The γ phase is a solid solution with an fcc crystal lattice. Other than nickel it con-
tains elements with similar atom radii, such as cobalt, chromium and molybdenum [5].
The atoms are randomly distributed on the lattice sites as depicted in Figure 2.2 (a). The
γ phase forms a contiguous matrix embedding other phases [5] such as the γ ′ phase as
shown in Figure 2.1. The γ ′ phase exhibits an fcc lattice with a strictly ordered arrange-
ment of the atoms. As shown in Figure 2.2 (b) the nickel atoms are located at the face
centers, whereas the larger Al respectively Ti atoms are located at the corners of the fcc
lattice. Thus, the chemical formula of the γ ′ phase is Ni3AL, Ni3Ti or Ni3(Ti,Al). Even
though the γ and γ

′ phases are coherent to each other, the γ ′ phase is largely respon-
sible for the hight strength of the nickel-base superalloys. The ordered structure of the
γ

′ phase aggravates the penetration of dislocations moving through the γ phase, since
this would lead to an anti-phase boundary – the ordered crystal structure of the γ ′ phase
would be disturbed. To avoid such anti-phase boundaries in the γ ′ phase, the passage of
two dislocations from the γ phase is necessary. These dislocation pairs are called super

1TM absolute melting temperature of the alloy.
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1 µm

Figure 2.1: Transmission electron micrograph showing a large fraction of cubic γ ′ parti-
cles in a γ matrix [33].

Ni or Ti Ni Ti, AL
(a) (b)

Figure 2.2: Crystal structure: (a) gamma (γ) phase with a random distribution of atoms
in an fcc lattice; (b) gamma prime (γ ′) phase with an ordered arrangement of the atoms
in the fcc latice – the Ni atoms are located at the face centers, whereas the Ti or Al atoms
are located at the vertexes of the lattice (cf. [32]).

dislocations. The requirement for dislocations to pair up makes it more difficult for them
to penetrate the γ ′ phase [32].

As mentioned in Chapter 1 the efficiency of gas turbine engines is closely linked to raising
the TTE. Thus, the alloy design of nickel-base superalloys is geared towards improving
the creep life and yield stress of the alloys at elevated temperatures. A historical review of
the nickel-base superalloy development regarding the temperature for 1000 hour creep
life at 137 N

mm2 is given in Figure 2.3. As can be seen, early nickel-base superalloys were
used in wrought form only. The development of vacuum induction casting technologies
in the 1950s drastically improved the materials’ performance since it significantly en-
hanced the quality and cleanliness of the alloys [5]. Furthermore, new alloying concepts
were developed.
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Figure 2.3: Improvement in temperature for 1000 h creep life at 137 N
mm2 of Ni-base

superalloys over a 60 year period (cf. [34]).

One widespread nickel-base superalloy focused on within this work is MAR-M247. The
alloy was developed in the 1970s and is used for structural cast components in turbine
engines.

2.1.2 The Nickel-Base alloy MAR-M247

The nickel base alloy MAR-M247 was developed aiming at optimized castability and
high temperature resistance. The chemical composition of MAR-M247 according to the
material data sheet [35] is given in Table 2.1, which also lists the effects of the individ-
ual alloying elements. Furthermore, the chemical composition of the sample material
used within this work is presented. This is measured using energy-dispersive X-ray spec-
troscopy (EDX). As can be seen the measured alloy composition of the sample material
closely matches the specification. According to the material data sheet [35] MAR-M247
contains a phase volume fraction of 60 % γ

′ particles embedded in the γ matrix (see
Figure 2.1). Both phases are stable at high temperatures. In addition to the γ and
the γ ′ phases, elemental segregation during solidification causes the formation of small
amounts of an eutectic γ/γ ′ phase [35], which can be mitigated by an adequate heat
treatment.
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Table 2.1: Chemical composition of the MAR-M247 cast alloy as well as the effect of the
alloying elements.

Alloying Weight fraction (wt %) EDX measurement Effect
elements according to [35] Sample material (wt %)

Ni 59 60.55±0.39 –
Co 10 10.37±0.2 corrosion resistance
W 10 10.05±0.31 solid solution hardening
Cr 8.25 8.65±0.14 enhanced corrosion resistance
Al 5.5 5.65±0.13 γ

′ former
Ta 3 2.34±0.35 solid solution hardening
Hf 1.5 – enhanced hot cracking resistance
Ti 1 1.13±0.08 γ

′ former
Mo 0.7 – solid solution hardening
C 0.15 – carbide former
Zr 0.05 – grain boundary hardening
B 0.015 – grain boundary hardening

Next to these microstructural constituents, carbides are found mostly in inter-dendritic
regions and at grain boundaries [5]. Several carbide morphologies, such as globular,
blocky or script have been reported by Haruna [36] and Huangh and Koo [37]. Carbides
are particularly beneficial for the high-temperature grain boundary creep properties. Fur-
thermore, they have a positive influence on the rupture strength [5].

The manufacturing process has a significant effect on the phases and phase fractions
present within an alloy. The phases in turn determine the mechanical material behav-
ior. To gain an understanding of the production process of MAR-M247 components, the
casting process is discussed in more detail in the following section.

2.1.3 Casting Process

Casting is one of the oldest forming processes and can be tracked back to 5000 BC [38]
when it was used to form simple tools. Also today casting is still one of the most im-
portant forming processes and is widespread in industry. Also nickel-base superalloy
components are commonly manufactured by casting, more precisely by vacuum induc-
tion melting (VIM) and subsequent vacuum investment casting. The vacuum prevents
the formation of gas pores [39]. Furthermore the vacuum retains oxidation reactions of
the melt with the atmosphere [40].

Investment casting, also known as lost wax process, involves several steps. First a model
of the casting is produced by injecting wax into a metallic master mold [5]. This wax
replica of the cast part including runners and feeders is surrounded - invested - with
ceramic slurry to form a mold [41]. The slurry consists of binding agents and mixtures
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of zirconium silicate ZrSiO4, aluminum oxide Al2O3 and silicon dioxide SiO2. After the
wax model is covered with slurry it is baked in a multi step process. The wax within the
mold is melted at moderate temperatures. Subsequently the mold is fired to increase its
stability. The finished mold is preheated before the metal melt is poured into the cavity
to prevent temperature induced cracking. The cast temperature of a nickel-base melt is
approximately 1550 °C. After the casting is cooled down, the mold is removed from the
cast part. A basic diagram of an investment casting process is provided in Figure 2.4. The

(a) Pattern mold (b) Wax injection (c) Pattern

(d) Investment mould (e) De-waxing (f) Cast

(g) Finished cast part

Figure 2.4: Basic principles of the investment casting process [2]. The pattern mold (a)
is used to produce a wax replica of the casting (b & c). This wax replica is subsequently
surrounded (invested) with a ceramic slurry (d). To obtain the final cast mold (e) the
wax is melted at moderate temperatures and the mold is fired to increase its stability. The
melt is then casted into the mold (f). Once the casting is solidified, the mold is removed.

quality of the casting is defined by a variety of parameters: Next to the temperature of
the melt, the temperature of the mold and the cooling rate, the arrangement of runners
and feeders is of high importance for the quality of the casting. Feeding is the process,
which compensates the volume contraction during solidification. A feeder is a separate
reservoir of melt attached to the casting that balances the volume contraction of the
melt during solidification [3]. The contraction of the liquid upon solidification is due
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to a rearrangement of the atoms from a near field arrangement in the liquid state to
a regular crystalline array exhibiting a significantly denser packing in the solid state.
Especially for the nickel base alloys exhibiting an fcc lattice feeding is of high importance
since the rearrangement of the atoms during the face transformation from liquid to solid
state causes a large volume contraction. As a consequence of the solidification process,
different feeding mechanisms can be identified. A schematic representation of the main
feeding mechanisms is given in Figure 2.5. The most common feeding mechanism is

Liquid feeding Interdentritic feeding

Mass feeding (elastic) Solid feeding (plastic)

Figure 2.5: Schematic representation of the feeding mechanisms in a solidifying cast-
ing [3]. The more material is solidified, the harder becomes the feeding of liquid mate-
rial to balance the volume contraction (liquid, mas and interdentritic feeding). If a liquid
region is completely surrounded by solidified material, the only option of feeding is elas-
tic or plastic deformation of the surrounding area. This causes the build up of hydrostatic
tension. If the tension exceeds a critical limit shrinkage pores evolve (cf. Section 2.1.4).

liquid feeding. It occurs in regions where the casting has a fully liquid core. In regions,
where up to 50 percent of the melt is already solidified, mass feeding is observed. Mass
feeding denotes the movement of a slurry of solidified metal and residual liquid [3].
Once the solidified dendrite structure is not surrounded by liquid material the volume
contraction can be balanced by inter dendrite feeding. Inter dendrite feeding describes
the capillary flow of the melt between the dendrite arms. In case a liquid region is
confined by solidified material the volume shrinkage can be balanced by elastic and
plastic deformation of the casting. This occurs at a late stage in freezing, when sections
of the casting can become isolated from liquid feeding. Solid feeding is accompanied by
the buildup of hydrostatic tension within the material and a deformation of the casting.
Pores are caused by both lack of the aforementioned mechanisms and the hydrostatic
tension exceeding a critical limit. This will be investigated in more detail in the following
section.
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2.1.4 Formation of Cast Porosity

Campbell [3] states that in the absence of gas and with adequate feeding of the cast
part no porosity should be found in the casting. However, castings for aerospace appli-
cations often exhibit complex shapes so that one or more regions of the part cannot be
optimally fed until the whole part is solidified. This gives rise to the formation of shrink-
age porosity. These pores can be exposed by light optical microscopy (LOM) inspections
of structural cast parts as shown in Figure 2.6. The driving force for the initiation of

100µm

Figure 2.6: Cross sectional micrograph of a sample containing 4.9 vol. % of pores
(black).The pores vary in size and shape and have concave as well as convex radii.

shrinkage porosity is the hydrostatic tension building up in regions where the feeding of
metal during solidification is not ensured. If this hydrostatic tension reaches a critical
limit pores may form in a number of ways. Shrinkage porosity is closely linked to the
thickness of the section which is not well fed. Thin sections mainly exhibit a surface de-
formation called external porosity. When the internal shrinkage is not balanced by liquid
feeding the lowering of the internal pressure causes an inward movement of the external
surface of the casting. This inward movement constitutes a solid feeding with the effect
that sinks or draws are found at the surface of the casting [3].

Thicker sections of a casting which are not well fed show internal porosity. At the early
stages of solidification these sections form a sound, solid skin. Meanwhile liquid feeding
is still assured in the center of the casting. By a further freezing of this region the
internal pressure decreases. During the cooling of a liquid region embedded in an already
solidified section of the casting, the liquid will be stretched while the surrounding solid
will be drawn inwards first elastically, then plastically. Once the stress in the liquid
phase reaches the critical limit of the fracture pressure pf a pore will form and thereby
release the stress in the surrounding liquid metal. A theoretical value for the fracture
pressure needed for the initiation of internal shrinkage porosity is derived in the work
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of Fisher [42]. He stated that the work required for the formation of a cavity within a
liquid can be calculated by

W = γ A+ p V − pr V = 4πr2γ +
4

3
πr3(p− pr) (2.1)

where W is the net work associated with the formation of a spherical bubble of radius r,
γ is the inter-facial energy per unit area needed to create the phase boundary between
bubble and liquid p is the pressure of the liquid and pr is the pressure in the bubble. In
the case of shrinkage porosity the internal pressure is zero and Equation (2.1) simplifies
to

W = 4πr2γ +
4

3
πr3p. (2.2)

In Figure 2.7 the net work W is plotted as a function of the pore radius. It can be seen

W

rr∗

Figure 2.7: Required work for reversible formation of a bubble of radius r in a liquid
under negative pressure.

that pores with a radius smaller that the critical radius r∗ require free energy for further
growth, whereas pores with r > r∗ grow with a decrease of free energy. According
to [42] the curve has a maximum of Wmax = 16πγ3/3p2 at a critical radius of

r∗ = −2γ

p
. (2.3)

According to Campbell [3] one atomic diameter is a reasonable assumption for the criti-
cal pore radius. Using Equation (2.3) and the experimentally determined surface energy
γ for liquid metals, the theoretical value of the critical pressure pc at which shrinkage
porosity will nucleate can be calculated. The results of this theoretical critical pressure
for various liquids are given in Table 2.2. According to the values given in Table 2.2 an
extremely high hydrostatic tension is necessary to trigger the formation of pores. How-
ever, these are theoretical values for the formation of pores within pure liquids, whereas
in reality, seeds for the formation of pores such as solidified dendrites, carbides or other
solid particles, which are dispersed within the melt can be found. These seeds lower the
required hydrostatic tension for the formation of pores [3].
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Table 2.2: Fracture pressures of liquids. Surface tension and Atomic diameter except for
nickel taken from [3].

Liquid Surface Atomic pc from pc
tension diameter Equation(2.3) from [42](

N
m

)
(nm) (atm/MPa) (atm/MPa)

Water 0.072 – – 1320 / 134
Mercury 0.5 0.30 16700 / 1692 22300 / 2259
Aluminum 0.9 0.29 31000 / 3141 30000 / 3039
Copper 1.3 0.26 50000 / 5066 50000 / 5066
Iron 1.9 0.25 76000 / 7700 70000 / 7092
Nickel 1.77 *) 0.25 70000 / 7080 –
∗) from [43]

2.1.5 Effects of Porosity

Concerning effective mechanical material properties, the ductility and the fracture stress
are strongly influenced by the volume fraction of pores. This has been investigated
by Baldwin and Edelson [44]. Their results on the influence of pores on ductility and
fracture of a copper alloy are presented in Figure 2.8. It shows that already low pore
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Figure 2.8: Effect of pores on ductility and fracture stress of copper. In the ductility
measure A0 is the original crossectional area of the specimen and Af is the cross sectional
are of the specimen after fracture. Data from Edelson and Baldwin [44].

volume fractions have a strong impact on fracture stress and ductility. This is because
fracture is closely linked to stress concentrations. Such stress concentrations are caused
by pores, where the shape of the pore governs the severity of the stress concentration.
Therefore even small pore volume fractions are critical for the fracture toughness and
ductility of a material.
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Even though pores influence the material properties, the influence of pores on the func-
tionality of castings has to be discussed individually depending on the location of the
pores and the loads acting on that particular location. For example, a large pore located
in a low stressed region of a casting will most likely have negligible effects on the prop-
erties of the casting, while a smaller pore located in a region subjected to high stresses
may disqualify the casting as a structural component [3]. The discussion if a porous
region within a casting is critical for the load bearing function of the part is crucial for
the design and quality inspections and will be tackled in Chapter 4.3.

2.2 Destructive and Nondestructive Materials Testing

To characterize the morphology of pores in the cast MAR-M247 samples metallography
and computed tomography is used. The goal is to derive a simplified parameterizable
pore model based on primitive geometries offering the potential to perform parametric
studies e.g. investigating the influence of a varying pore volume fraction on the mechan-
ical behavior of the material.
Vice versa, the results gained by such a parametric study have to be experimentally
validated. Therefore the influence of pores on the mechanical materials’ behavior is
studied using compression tests.

2.2.1 Metallography

The main goal of metallography is the qualitative and quantitative description of the mi-
crostructural constituents present in metallic materials. This includes the identification
and determination of the

• amount

• size

• shape

• spatial distribution and

• texture

of the constituents by applying direct imaging techniques [45]. Through an accurate
description of the microstructural constituents their influence on the physical material
properties can be assessed. A main instrument of metallography is the light optical mi-
croscope (LOM). The preparation of samples for LOM analysis is important, since the true
microstructure may be partially or fully obscured by a poor sample preparation [46]. A
detailed description of the sample preparation can be found in [46, 45]. Certain fea-
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tures of the microstructure such as pores can be observed in the as-polished condition
if the constituents exhibit a sufficient difference in light reflectivity after polishing [46].
The analysis of crossectional planes (2D) is the most common approach to study the
morphology, size and distribution of pores within cast metals [47].

2.2.2 Computed Tomography

Theoretical background

The basis for computed tomography is X-ray radiography where an X-ray beam is sent
trough an object and the attenuation of the beam is recorded [48]. A schematic represen-
tation of an X-ray projection is shown in Figure 2.9. The attenuation of the X-ray beam

source

object detector

Figure 2.9: Schematic two dimensional representation of X-ray radiography with a coni-
cal beam (cf. Figure 2.11 (b)).

depends upon the interaction of the photons with the material by one of the following
mechanisms:

• The photoelectric effect causes an absorption of a photon by an atom. The whole
energy of the photon is transmitted to an electron of the atom it interacts with. As
a consequence the electron is emitted from its shell [49]. The vacant electron spot
is filled by either an electron from a higher shell or by a free electron.

• Compton scattering is similar to the photoelectric effect. As in the photoelectric
effect the photon interacts with an electron in the absorbing material. However, the
Compton effect describes an interaction of the photon with a free electron where
the photon transmits part of its energy to the free electron [49] and the photon is
deflected between 0 and 180◦ with respect to its original direction.

• Pair production can occur for photons with an energy exceeding 1.02 MeV. By pair
production the energy of the photon is directly converted into matter which usually
occurs in the vicinity of the atom nucleus. The photon is transformed into an
electron and a positron. The photon energy in excess of the amount needed for the
conversion into matter is converted into motion of the positron electron pair [50].
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The ratio of the emitted (Io) to incident (I) photons for X-ray radiography is described
by the Beer-Lambert law for monochromatic X-ray beams as

I = Io e(
−

∫
path µ(x,Ep) ds) , (2.4)

where ds is the differential path length of the photons’ trajectory and µ(x) is the attenua-
tion coefficient of the point p(x,y, z) and the photon energy Ep. In case of polychromatic
X-rays with a broad energy spectrum Equation (2.4) can be generalized by integration
over all energies. This is written as

I =

∫ ∞

0

Io(Ep) e(
−

∫
pathµ(x,Ep)ds) dEp . (2.5)

However, the photon energy spectrum of polychromatic sources can be averaged and
Equation (2.4) can be used yielding a good approximation [47]. As can be seen in Equa-
tions (2.4) and (2.5) the ratio of emitted to incident photons depends on the integrated
attenuation coefficient and the photon energy. The attenuation coefficient describes to
which extent the energy of a beam passing through an object is absorbed. The attenua-
tion coefficient depends on the atomic number of the elements and the photon energy.

In contrast to X-ray radiography computed tomography (CT) enables a three dimensional
representation of the attenuation coefficient [47]. For this purpose multiple radiographic
projections of an object are taken at different angles as shown in Figure 2.10. The
sample volume to be reconstructed is numerically divided into so-called voxels which
is a coinage meaning volumetric pixels. Utilizing mathematical image reconstruction
algorithms a specific attenuation coefficient is assigned to each of these voxels based on
the radiographic projections (cf. [51]) which is then transformed into a grayscale value.
To visualize pores a threshold for the greyscale value is defined deciding if a voxel is
interpreted as material or as a pore.

Setup of CT Systems

X-ray CT systems consist of an X-ray source, an X-ray detector and a stage for the mechan-
ical manipulation of either the object or the source and the detector. The stage allows
the relative positioning of the sample with respect to the X-ray source and the detector.
The sample is usually positioned in a way that the path length of the beam through the
material is minimized. While all CT systems consist of the same components, there are
different configurations for acquiring the CT data [47]. A brief description of the most
common setups, which are depicted in Figure 2.11 is presented below. As can be seen
in Figure 2.11, different beam geometries are used for CT scans. Either a conical beam
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source

object

detector

Figure 2.10: Schematic representation of multiple X-ray radiographic scans. The source
and detector are mounted on a common stage. Either the stage holding the X-ray source
and the detector, or the object is rotated incrementally. Based on multiple X-ray projec-
tions the three dimensional CT image can be reconstructed.

emitted by an X-ray tube or parallel beams as obtained by synchrotron sources is used.
Since all CT scans in this work are acquired using conical beam sources, this setup is dis-
cussed in more detail. For a comprehensive treatment of synchrotron sources the reader
is referred to [52]. X-ray tubes are the most common source to produce polychromatic
X-rays [47]. The X-rays are emitted from a metallic target generating a polychromatic
conical beam [48]. The sample is placed in between the X-ray source and the detector.
When using a conical beam, the sample position relative to the X-ray source and the
detector determines the magnification of the sample as can be seen in Figure 2.11 (a)
and 2.11 (b). The closer the sample is positioned to the X-ray source, the higher is the
resulting magnification on the detector. A detailed description of the different radiation
detection technologies can be found in [53]. The most common detection technologies
consist of a scintillator in combination with a charged coupled device (CCD) camera or
with photodiodes. The scintillator converts the X-ray beam into visible light. The inten-
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Figure 2.11: Main components of CT scanners: (a) conical beam X-ray source with 1D
detector. (b) conical beam X-ray source with a 2D detector. (c) parallel beam X-ray
source (e.g. synchrotron) with a 2D detector [48].

sity of the light is then measured by a CCD or photodiode detector. Based on the acquired
data a three dimensional representation of the scanned volume is generated by means of
image reconstruction.

According to Smith [54] there are four main approaches to reconstruct the slice image
of a sample from the recorded data given a sufficient set of scans from different angles.
The straight forward method is to solve a system of linear equations where the number
of equations scales linearly with the number of voxel. More sophisticated reconstruction
methods are the iterative technique, filtered back-projection or the Fourier reconstruc-
tion. A detailed theoretical treatment of the reconstruction techniques can be found in
e.g. [55, 56]. Whichever technique is used, one has to beware of artifacts due to noise in
the CT data, which can obscure the resulting image. An overview of the most commonly
observed artifacts is given in the following.

• Ring artifacts are concentric rings to the axis of rotation of the sample. They origi-
nate from local sensitivity fluctuations of the detector or scintillator [52].

• Edge artifacts are due to a sharp density transition, e.g. at outer or inner surfaces
of the material. Especially when evaluating pores within a material this artifact can
be troublesome since pores represent inner surfaces of the material. The effect can
be minimized by reducing the distance between sample and detector.

• Image noise results from energy spikes or from an unfavorable conversion rate
of X-ray photons to visible light [52]. This can be reduced by employing median
filters. This type of filter changes the greyscale value of a voxel to the median of
the surrounding voxels greyscale value (cf. [57]) thus diminishing the noise in the
measuring results.
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• Positioning errors these errors might occur due to imprecise positioning of the sam-
ple on the stage. For example if the sample is moved during the data acquisi-
tion of one tomography view. These errors can be corrected by an adequate post-
processing of the CT raw data.

2.2.3 Compression Test

The compression test is used to determine the offset yield stress of the sample material
under uniaxial compressive loading. The test is standardized in the DIN 50 106 [58].
According to DIN 50 106 a specimen is loaded by an uniaxial compressive force with a
loading rate below 30 N

mm2s . The load is increased until the yield stress of the material is
exceeded. Next, an unloading – loading hysteresis is performed. The slope of the elastic
regime is determined by the slope of a linear fit of the hysteresis loop as schematically
shown in Figure 2.12. This line is then shifted parallel, to intersect the strain axis at
0.2 %. The offset yield stress Rp0.2 is evaluated by determining the intersection of the
shifted elastic line and the recorded load-displacement curve which is converted into a
stress-strain curve taking the sample dimensions into account.
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Figure 2.12: Schematic representation of the evaluation of the offset yield strength. As-
suming isotropy the offset yield strength in compression and tension are equal. However,
the evaluation of the offset yield stress within this work is based on compression tests.
For this purpose the sample is loaded until the offset yield stress is exceeded. Then an
unloading–loading hysteresis is performed, where the mean slope is evaluated and used
to obtain the offset yield stress (cf. [58]).



Chapter 3

Experimental Procedure and Evaluation

“In the matter of physics, the first lessons should contain nothing but what
is experimental and interesting to see.”
From “Einstein on Education”, Nation and Anthenaeum, December, 3rd, 1921

3.1 Production of Porous Samples

The castings to extract the samples are produced by VIM and subsequent investment
casting under vacuum. The ingot material provided by a certified supplier was cast
into rods with a length of 100 mm and a diameter of 30 mm by MaTeck1 as shown in
Figure 3.1 (a). The cooling of the melt triggers the formation of a large shrinkage cavity
with an adjacent porous region which is depicted in Figure 3.1 (b). The samples are
extracted from this porous region.
Next to the casting parameters the sample material has to match the material specifica-
tion to gain relevant results for turbine cast parts. A comparison of the sample material

100 mm

AA
3 mm

(a) (b)

Figure 3.1: Sample material: (a) Cast rod; (b) Cross sectional micrograph of the cast rod
(A-A). Note the macroscopic cavity and the adjacent porous region.

to the material specification is presented in Table 3.1. The specification is in good agree-

1Experimental foundry located in Jülich, Germany
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ment with the alloy contents measured within the sample material. The contents of C,
Zr and B could not be verified due to their low mass content.

Table 3.1: Chemical composition of MAR-M247 as defined in the material specifications
and as found in the sample material in wt %.

Phase Ni Co W Cr Al Ta Hf Ti Mo C Zr B

Specification balance 10.0 10.0 8.25 5.5 3.0 1.5 1.0 0.7 0.15 0.05 0.015
Samples 60.24 10.35 10.26 9.06 5.68 1.63 0.95 0.96 0.86 – – –

3.2 Sample Preparation

The samples are extracted from the cast rods using electric discharge machining (EDM).
The rods are cut into slices perpendicular to their longitudinal axis with a slice thickness
of 6 mm as depicted in Figure 3.2 (a). These slices are subsequently milled to ensure
parallel faces. The final slice thickness is 5 mm. From these slices, rectangular samples
are cut by electric discharge machining as presented in Figure 3.2 (b). The pore volume

200 mm

(a)

5
m

m

4 mm

(b)

Figure 3.2: (a) Slice from the cast rod. The samples extracted from the rod can be
seen. They are labeled 01-12 starting at the top left sample. (b) Three dimensional
representation of a porous prismatic sample. The sample was reconstructed from CT
data.

fraction of a sample depends on the location of extraction. Samples from slices closer to
the shrinkage cavity (cf. Figure 3.1 (b)) tend to exhibit higher pore volume fractions.
After the samples are extracted, they are labeled according to their location of extraction.
The first number in the label indicates the slice, where the sample is extracted from.
The higher the slice number, the closer it is located to the shrinkage cavity. The slice
numbers range from 1 to 5. The second two numbers count the samples extracted from
a particular slice as depicted in Figure 3.2 (a). So the sample labeled 1-02 originates from
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the slice furthest from the shrinkage cavity, and is the second sample extracted from this
slice.
The porous samples are investigated using metallography and computed tomography,
which will be discussed in the following.

3.3 Metallographical Investigation

Metallography is used in a twofold way. Firstly, cross sectional micrographs of the cast
rods are taken providing an overview of the porosity found in the rods as well as on the
reproducibility of the porous pattern within the cast rods. Secondly metallography is
employed to validate the greyscale threshold to identify pores based on CT scans as will
be shown later. The micrographs were taken with the light optical microscope Olympus
AX70. The preparation of the samples to take micrographs is briefly explained in the
following:
First the burr from the sample, which originates from the electric discharge machin-
ing is eliminated by grinding. Next the sample is placed in a plastic embedding form
and embedded in epoxy resin. While the resin hardens the form is exposed to a vac-
uum atmosphere to eliminate voids within the embedding compound. Once the resin
has hardened the embedded sample is labeled to avoid a wrong attribution of results.
Now the sample is ground and polished. The samples are not etched before taking the
micrographs since the contrast between pore and metal matrix is sufficient.

3.4 Computed Tomography of the Samples

3.4.1 Setup and Scanning Parameters

The CT scans presented within this work are taken at the Fraunhofer Institute in Fürth.
The used CT system is shown in Figure 3.3. It consists of an YXLON FXE 225.99 panchro-
matic microfocus X-ray tube with a maximum voltage of 225 kV. The YXLON FXE 225.99
is equipped with a true X-ray intensity (TXI) control system, which ensures a high sta-
bility of the beam intensity over time by an adequate adjustment of the voltage applied
to the X-ray tube. The X-ray tube is located 818 mm from the detector. The detector
used in the CT setup is a Perkin Elmer XRD 1620 AN Digital X-Ray Detector. The detailed
technical specification of the detector is presented in Table 3.2. The mechanical stage (cf.
Section 2.2.2) enables a high precision manipulation of the sample. It allows to adjust
the placement of the sample relative to the X-ray tube and the detector, as well as a rota-
tion of the sample in order to acquire projections from different angels (cf. Figure 2.11).
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I

II

III

Figure 3.3: X-ray computed tomography setting at the Fraunhofer institute in Fürth.
(I) YXLON FXE microfocus X-ray tube; (II) stage for the mechanical positioning of the
sample; (III) Perkin Elmer XRD 1620 AN Digital X-Ray Detector.

Table 3.2: Technical Specifications of the XRD 1620 AN Digital X-Ray Detector.

Detector Specifications
Scintillator screen Lanex® Fine/Lanex® Fast
Pixel number 2048 x 2048
Active pixel number 2024 x 2024
Total area 409.6 x 409.6 mm2

Diode capacity 2.1 pF
Integration time (minimum) 285.6 ms
Frame rate (max) 3.5 Hz
Radiation energy 40 keV - 15 MeV
Detector housing 672 x 599 x 44 mm3

The dimensions of the investigated samples are 4×4×5 mm3. For the CT scan a burr
originating from the electrical discharge machining is left on one side of the sample (cf.
Figure 3.2 (b)). The irregular geometry of the burr allows to relate the CT data to the
sample. For the CT scans the samples were placed 18 mm from the focus and 800 mm
from the detector resulting in a magnification of 44.4 times. From each sample 1600
projections were acquired over an angular range of 360 degrees. The spatial resolution
of the CT scans was approximately 4.4µm. Within this work a total of 10 samples were
evaluated based on CT scans. An overview of the scan parameters is given in Table 3.3.
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The accuracy of the CT scans is evaluated by comparing them with micrographs which is
discussed in Section 3.4.2.

Table 3.3: Scan parameters for the CT scans.

Scan parameters

Tube voltage 220 kV
Tube current 120µA
Integration time 999 ms
Pre-filter 1 mm Cu
Number of projections 1600
Focus-Detector-Distance FDD ca. 800 mm
Focus-Object-Distance FOD ca. 18 mm
Magnification ca. 44,4 times
Geometric resolution ca. 4,4µm
Ambient temperature 22 °C

3.4.2 Comparison of CT and Micrography Evaluation

As explained in Chapter 2, the grayscale threshold for the evaluation of the CT data
decides if a voxel is interpreted as matrix material or as a pore. To validate the grayscale
threshold for the evaluation of the CT data, a sample is scanned by means of CT and
subsequently a cross sectional micrograph perpendicular to the longitudinal sample axis
is taken at a predefined position. The position of the micrograph is chosen on the basis of
the CT data analysis. It is crucial to select a slice of voxel from the CT data that exhibits
noticeable features so that similarities can be identified in the cross sectional micrograph.
After the CT scan, the sample is embedded and grinded to the predefined plane.
The micrograph shown in Figure 3.4 (a) is scaled to the same size as the slice extracted
from the CT scan shown in Figure 3.4 (b). However, due to the sample preparation for
the micrography minimal deviations in the location of the micrography plane compared
to the CT plane are inevitable. Nevertheless a qualitative judgment of the accuracy of the
grayscale threshold used to evaluate the CT data is possible. The pores detected within
the CT scan (black regions) are also identifiable within the micrograph. The differences
in the shape of the pores within the micrograph and the CT scan are due to the deviation
of the cross sectional plane.

3.4.3 Pore Analysis and Detection Limits

The pores are identified and characterized based on the CT data. The projection of the
sample does not cover the whole detector as shown in Figure 2.11, thus the CT data is



30 3. EXPERIMENTAL PROCEDURE AND EVALUATION
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Figure 3.4: Comparison of a cross sectional micrograph and a CT image of the same
sample. The investigated cross sections slightly deviate due to the preparation of the
micrograph: (a) Cross sectional micrograph obtained by LOM; (b) Cross sectional image
obtained by CT (cf. [59]). The same pores can be identified within the two images. The
slight deviation in the pore shape is due to the sample preparation, which hinders to
evaluate exactly the same cross section.

preprocessed decreasing the size of the raw data file by eliminating the area surrounding
the sample. This allows for an efficient evaluation of the CT scan.
After reducing the file size of the CT data, an algorithm to identify pores is applied.
The voxels are separated into matrix and pore voxels using a grayscale threshold. This
results in a binarized graph of black and white voxel. A region is recognized as a pore
if a minimum of at least 40 adjacent voxel are identified as pore-voxel. For two voxel to
be termed adjacent they have to share one face. The threshold of 40 adjacent pore-voxel
to actually be counted as a pore represents a minimum volume for recognizable pores of
just over 3400µm3. This prevents measuring noise from being interpreted as a pore.
The results of this data analysis are written to a text file, where the centroid coordi-
nates, the pore volume as well as the bounding box dimensions are stored for each pore.
This data provides the basis to evaluate the pore volume distribution, the spatial pore
distribution as well as the pore shape which will be discussed in the following.

3.4.4 Pore Volume Distribution

The pore volume distribution is evaluated based on the CT data of the porous samples
with a minimum identifiable pore volume of 3400µm3. The identification of smaller
pores is hindered by the measuring noise of the CT data.
The relative frequency of single pore volumes is analyzed using histograms with a bin
width of 40 voxel or 3400µm3. The bin height is normalized by the total number of pores
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found within the sample so that the bin height corresponds to the probability of a pore
to be found in a particular bin. The pore volume distribution is fitted using analytical
probability density curves. The Lognormal distribution

f(x) =
e
(
− 1

2(
lnx−µ

σ )
2
)

xσ
√
2π

, (3.1)

which is commonly used for an analytical description of the volume distribution of inclu-
sions as well as the Weibull distribution

f(x) =
α

β

(
x

β

)α−1

e−(
x
β )

α

, (3.2)

which Waters [47] found adequate to describe pore volume distributions, are fitted to
the experimentally determined pore volume distribution. In Equations (3.1) and (3.2)
f(x) is the probability density; (µ, σ) and (α, β) are the parameter pairs to fit the distri-
butions. The experimentally obtained histogram and the fitted probability density curves
of the Weibull and Lognormal distribution for the pores identified within sample 4-04 are
shown in Figure 3.5. Both distributions match the histogram. A comprehensive overview
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Figure 3.5: Pore volume distribution in sample 4-04. The relative pore volume density
resulting from the experimental investigation is fitted by a Lognormal distribution and a
Weibull distribution.

of the Lognormal and Weibull parameters to fit the pore volume distributions of all sam-
ples investigated by CT along with the pore volume fraction of the particular sample is
presented in Table 3.4. The accuracy of the Weibull and the Lognormal fit to the observed
pore volume distribution is compared based on the Kolmogorov Smirnov statistics. The
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Kolmogorov Smirnov statistics identifies the maximum vertical deviation between the ex-
perimental and theoretical cumulative distribution function. In case of the investigated
samples the Lognormal distribution provides the better fit to the observed pore volume
distribution. A graphical representation of the relation between fitting parameters and

Table 3.4: Weibull (Wb) and Lognormal (Ln) fit parameters for the pore volume distri-
bution. The accuracy of the fitted distributions is compared based on the Kolmogorov -
Smirnov statistic which is based on the maximum vertical difference of the fitted and the
experimental cumulative distribution function.

Sample Pore volume Weibull params. Lognormal params. Kolmogorov -
number fraction (vol. %) α β µ σ Smirnov (Wb/Ln)

2-01 5.31 0.65 1788.3 6.61 1.74 0.13/0.06
3-01 8.97 0.64 2075.7 6.73 1.81 0.12/0.08
3-02 7.88 0.65 1190.7 6.47 1.79 0.13/0.09
3-03 7.60 0.69 523.8 5.43 1.40 0.24/0.18
4-01 9.56 0.59 1205.3 6.12 1.81 0.18/0.14
4-02 12.37 0.65 2197.0 6.81 1.79 0.12/0.07
4-03 11.83 0.61 2086.1 6.70 1.87 0.14/0.09
4-04 5.75 0.70 1461.4 6.47 1.63 0.13/0.08
5-01 26.22 0.63 1133.8 6.25 1.49 –

the pore volume fraction for the Lognormal distribution is presented in Figure 3.6. The
dependencies of µ and σ on the pore volume fraction is shown in Figure 3.6 (a) and
Figure 3.6 (b), respectively which can be adequately described by linear regressions,
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Figure 3.6: Parameters for the fit of a Lognormal distribution to experimentally obtained
pore volume distributions: (a) Correlation of the parameter µ with the volume porosity;
(b) Correlation of the parameter σ with the volume porosity.
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µ = 5.968 + 0.052 · vp (3.3)

and
σ = 1.484 + 0.028 · vp . (3.4)

The dependency of the Weibull parameters on the pore volume fraction is presented in
Figure 3.7. Again the parameters are approximated by a linear regression. The parameter
β exhibits a large scatter. The maximum deviation of the measured parameters compared
to the linear fit is 17.5 % for the parameters of the Lognormal distribution and 64.0 %
for the parameters of the Weibull distribution. Based on the accuracy of the Weibull and
Lognormal fit and the scatter of the fit parameters the Lognormal distribution is favored
to describe the pore volume distribution in this study. A small scatter of the fit parameters
is important for running parameter studies (cf. Chapter 4.2), since this means that the
observed pore volume distribution does not significantly deviate from the input data for
the model generation which is defined according to the linear regressions given above.
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Figure 3.7: Parameters for the fit of a Weibull distribution to experimentally obtained
pore volume distributions: (a) Correlation of the parameter α with the volume porosity;
(b) Correlation of the parameter β with the volume porosity.

3.4.5 Nearest Neighbor Distance

The nearest neighbor distance is an easily accessible quantity to characterize the spatial
distribution of particles. In the present study, the deviation of the observed pore distri-
bution from a random distribution is measured. For this purpose the nearest neighbor
distance of individual pores is evaluated. The observed mean nearest neighbor distance
of the pores is then compared to a the mean nearest neighbor distance of a set of ran-
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domly distributed points. This approach has been used by Clark and Evans [60] to
analyze spatial distributions in 2D, but it can be generalized to 3D.

The distance d between two individual pores is calculated by using the Euclidean metric

d =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 , (3.5)

where the subscript i denotes the centroid coordinates of the ith pore, and the subscript j
denotes the centroid coordinates of the jth pore. The centroid coordinates are evaluated
for each pore based on the CT data. The distance of the ith pore to any other pore is
calculated using Equation (3.5). The shortest distance is called nearest neighbor distance
dmin. After calculating the nearest neighbor distance for every individual pore i in a
sample, the mean nearest neighbor distance rA is obtained by

rA =
1

n

n∑

i=0

dmin , (3.6)

where n is the number of pores.

The calculation of the mean nearest neighbor distance of randomly distributed points is
based on the nearest neighbor distribution density function p(r). According to Torquato [61],
p(r) can be written as

p(r) = η4πr2 e(−η 4
3
πr2) , (3.7)

in 3D where η is the pore density (cf. Table 3.5). The mean nearest neighbor distance rE

for randomly distributed points is defined as

rE =

∫ ∞

0

r p(r) dr =

∫ ∞

0

r4ηπr2 e(−η 4
3πr

2) dr . (3.8)

Following Waters [47], solving Equation (3.8) yields

rE = 0.812(πη)−
1
3 . (3.9)

The mean nearest neighbor distance rE is a function of the pore density η obtained by
dividing the number of pores by the sample volume.

With the aid of rE and rA, the degree of randomness

R =
rA

rE
(3.10)

is calculated as the ratio between the two values. A random pore distribution yields
R = 1 where the observed mean nearest neighbor distance coincides with the mean
nearest neighbor distance of randomly distributed points. Furthermore R < 1 indicates
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an aggregation of pores within the evaluated volume. In this case the mean nearest
neighbor distance of the pores found within the sample volume is below the mean near-
est neighbor distance of randomly distributed points. A degree of randomness R > 1

indicates an ordered distribution of pores. This can be imagined e.g. as pores located
at the corners of a cubic lattice. The ratio R is evaluated for each sample (Table 3.5).
Furthermore the results for the observed mean nearest neighbor distance rA of pores and
the mean nearest neighbor distances rE for randomly distributed points are presented in
Table 3.5. The distribution of the pores is nearly random in all cases except for sample
5-01. The evaluation of sample 5-01 was generally difficult, since the large pore volume
fraction hindered the identification of individual pores. However, regarding the evalu-

Table 3.5: Evaluation of the distribution of the porosities within the samples based on
the nearest neighbor distance.

Sample Pore volume Pore density Evaluated Calculated Degree of
number (vol. %)

(
1

mm3

)
mean distance (µm) mean distance (µm) randomness R

2-01 5.31 80.92 121.54 128.18 1.05
3-01 8.97 47.71 140.87 152.86 1.09
3-02 7.88 77.74 120.92 130.47 1.08
3-03 7.60 181.54 83.24 97.92 1.18
4-01 9.56 61.44 120.66 140.51 1.16
4-02 12.37 40.83 139.85 161.01 1.15
4-03 11.83 40.80 144.79 161.05 1.11
4-04 5.75 79.51 128.93 114.17 1.13
5-01 26.22 13.11 166.75 235.11 1.41

ation of the spatial pore distribution one needs to keep in mind that the randomness
of spatially distributed pores largely depends on the boundaries of the evaluated space.
Within a confined region of a cast part, porosity might be distributed fairly random as
e.g. in the cast samples investigated within this study. If one considers the whole casting
the pore distribution will be markedly non-random. This problem will be tackled in more
detail in Chapter 4.3.

3.4.6 Pore Shape

As mentioned in Chapter 2.2 the goal is to develop a parameterizable pore model based
on primitive geometries. The identification of a parameter describing the real pore ge-
ometry is vital to derive such a model geometry. Many micromechanical finite element
approaches use spheres [47] or ellipsoids to represent the geometry of the inclusions
within a matrix material [62, 63, 22, 24].
However, the pores in the nickel base cast alloy MAR-M247 have complex geometries
with both convex and concave radii as shown in Figure 3.8. Thus a more complex ge-
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200µm

Figure 3.8: The micrograph shows the complex geometries of the pores present in the
MAR-M247 cast alloy. It can be seen that the pore geometry is highly irregular.

ometry to represent the pores, which is still parameterizable is sought after. To represent
both convex and concave radii a Boolean model of intersecting ellipsoids is proposed to
model the pores, which consists of three identical rotational ellipsoids arranged mutually
perpendicular around a common center as presented in Figure 3.9. A further advantage
of the proposed pore model is its capability to represent the spatial ramification of pores
by adequately adjusting the aspect ratios of the ellipsoids. The ramification of real pores

Figure 3.9: Proposed three dimensional Boolean pore model. Three equal rotational
ellipsoids are arranged mutually perpendicular to each other around a common center.
The pore model allows the representation of both convex and concave radii as well as
the spatial ramification of pores found within MAR-M247.

is characterized by the ratio of the bounding box volume VBB to the actual pore volume
VPore as schematically presented in Figure 3.10. The bounding box is the smallest cube
enclosing a pore. The dimensions of the bounding box as well as the pore volume are
obtained from the CT data. The volume ratio

VR =
VBB

VPore
(3.11)

increases with an increasing ramification of the pore. It is represented by the Boolean
pore model through adjusting the aspect ratio of the individual ellipsoids (cf. Chap-
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Figure 3.10: Schematic representation of bounding box and pore volume. The bounding
box is the smallest cube enclosing the pore. The ratio of bounding box and pore volume
is used to characterize the spatial ramification of the pore.

ter 4.2). The higher the volume ratio, the higher is the aspect ratio of the ellipsoids used
for the Boolean pore model.

The limit volume ratio, which can be represented by the proposed Boolean pore model
is given by a spherical pore. It can be calculated as

VR =
a3

4
3 π (

a
2)

3
= 1.91 . (3.12)

A histogram of the volume ratio of pores within the sample 4-04 is presented in Fig-
ure 3.11. The relation of the volume ratio and the aspect ratio of the model pore geome-
try is presented in Figure 3.12. With the use of this relation, each volume ratio obtained
from the experimental evaluation of pore volume and bounding box volume is converted
into an aspect ratio of the model pore. The resulting distribution of aspect ratios for the
pore model is again characterized using a Lognormal distribution. The results obtained
for the porous cast samples investigated within this work are given in Table 3.6. It can be
seen that the parameters to fit a Lognormal distribution characterizing the aspect ratios
only slightly vary for pore volume fractions between approximately 5 % to 13 %. This
seems not to be the case for considerably higher pore volume fractions (cf. the Lognor-
mal parameter µ for the aspect ratio distribution of pores within sample 5-01). However,
based on the evaluation of the aspect ratios the parameters

µ = 0.712− 0.009 · vp (3.13)

and
σ = 0.456 + 0.003 · vp , (3.14)
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Figure 3.11: Histogram of pore volume ratios evaluated from CT data of the sample 4-04.
The higher the pore volume ratio, the more spatially ramified is the pore.
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Figure 3.12: Correlation of Volume and aspect ratio: The volume ratio of a pore obtained
from the experimental evaluation can be represented by the proposed three dimensional
Boolean pore model (cf. Figure 3.8) by adjusting the aspect ratio of the three rotational
ellipsoids. The diagram shows the correlation of the volume ratio of pores found in the
sample and the aspect ratio of the ellipsoids for the Boolean pore model.
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Table 3.6: Evaluation of the pore shape based on the aspect ratios of pores within the
investigated samples.

Sample Pore volume Lognormal distribution parameters
number fraction (vol. %) µ σ

2-01 5.31 0.64 0.53
3-01 8.97 0.70 0.50
3-02 7.88 0.75 0.46
3-03 7.60 0.61 0.42
4-01 9.56 0.58 0.48
4-02 12.37 0.59 0.50
4-03 11.83 0.58 0.51
4-04 5.75 0.62 0.47
5-01 26.22 1.14 0.67

defining the Lognormal distribution of model pore aspect ratios for materials with pore
volume fractions between 5 % and 15 % are calculated by linear regressions.

3.5 Mechanical Testing of the Samples

Compression tests are performed to capture the influence of pores on the offset yield
stress and the plastic behavior of the sample material. The compression tests are carried
out with the deformation dilatometer DIL 805 developed by Bähr Thermoanalyse (see
Figure 3.13).
The sample is clamped between two aluminum oxide Al2O3 rams. The length change

Figure 3.13: Deformation dilatometer from Bähr Thermoanalyse used for the compres-
sion tests presented within this work.
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of the sample during testing is recorded by push rods, which are propped against the
rams. To reduce the jigging of the sample, a preload of 3.000 N is applied for a duration
of 30 seconds. Then the preload is reduced to 200 N and the actual experiment starts.
The sample is loaded at a loading rate of 20 N

mm2 . The compression force is continuously
ramped up to 14.400 N. Taking the sample dimensions into account this equals a first
Piola Kirchhoff stress of 900 N

mm2 which exceeds the initial yield stress as required by
the DIN standard [58]. Next, an unloading and loading hysteresis is performed. The
compression force is decreased to 6.000 N before the load is increased again to the final
compression load of 16.000 N. A schematic representation of the loading curve over time
is presented in Figure 3.14. Due to the slight jigging of the sample while loading, the
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Figure 3.14: Schematic representation of the load vs. time curve for the compression
tests: (I) preload sample with 3000 N to minimize jigging ; (II) reduce preload before
mechanical testing to 200 N; (III) ramp force to 14.400 N; (IV) unloading; (V) increase
load to final force of 16.000 N; (VI) final unloading and end of experiment.

slope of the linear elastic region cannot be determined accurately. Thus the slope of
the linear elastic range of the stress-strain curve is obtained from the mean slope of the
unloading-loading hysteresis as stipulated in [58] (cf. Section 2.2.3). The jigging of the
sample observed at stress values below 400 N

mm2 is eliminated by an extrapolation using
the slope obtained from the hysteresis. This procedure leads to a stress strain curve as is
depicted in Figure 3.15. To evaluate the offset yield stress, the elastic slope determined
from the hysteresis is shifted to a strain of 0.002. The offset yield stress is evaluated using
the method described in Section 2.2.3. The evaluation of the recorded data is automated
using Python scripting. The offset yield stresses obtained from the tested samples are
given in Table 3.7. In Figure 3.16 the stress strain curves from three different samples
are compared. It can be seen that the offset yield stress is significantly influenced by the
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Figure 3.15: Stress Strain curve obtained from the compression tests. The slope of the
elastic regime is determined as the mean slope of the unloading – loading hysteresis
shown in the detail of the graph. The yield stress is obtained from the intersection of the
experimental stress strain curve with the parallel translated elastic slope.

pore volume fraction of the tested sample. The dependency of the offset yield stress on
the pore volume fraction for a larger set of samples is shown in Figure 3.17.
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Table 3.7: Offset yield stress determined from the compression tests.

Sample Pore volume Rp0.2

number fraction (vol. %)
(

N
mm2

)

1-01 0.00 860
2-01 5.31 800
3-01 8.97 620
3-02 7.88 600
3-03 7.60 720
4-01 9.56 610
4-02 12.37 520
4-03 11.83 580
4-04 5.75 720
5-01 26.22 –
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Pore volume fraction:
0.00 % (Sample 1-01)
8.97 % (Sample 3-01)

12.37 % (Sample 4-02)

Figure 3.16: Stress strain curves obtained from compression tests at room temperature
for three samples featuring different pore volume fractions. The yield stress is signifi-
cantly influenced by the pore volume fraction, whereas the elastic region as well as the
hardening behavior is quite similar for the three samples.
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Figure 3.17: The dependence of the 0.2 % offset yield stress on the volume porosity of
the samples. Clearly, the yield stress decreases with increasing porosity.
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Chapter 4

Finite Element Models – Development
and Evaluation

The heterogeneous microstructure of engineering materials has a substantial influence on
their mechanical behavior. The finite element method (FEM) is a powerful tool to study
this influence by modeling a sufficiently large section of the material microstructure,
which can then be called a representative volume element (RVE) [7, 29, 30].
The macroscopic constitutive behavior of a heterogeneous material is derived employing
so-called computational homogenization to the RVE models [7]. However, one has to be
careful when using homogenized constitutive laws for macroscopic component layouts.
The homogenized constitutive laws are only valid as long as the microstructure is invari-
ant within the component. Furthermore, the constitutive behavior has to be independent
from the loading path. These limitations can be overcome by employing a so called con-
current multiscale approach. The idea is to run macroscopic and microscopic FE models
in parallel, where the macroscopic constitutive response is provided by the underlying
RVE models accounting for the local microstructure and loading path.
In this chapter the microscopic FEM model examining the influence of pores on the
mechanical behavior of nickel-base cast alloys is presented. Furthermore, a concurrent
multiscale approach to incorporate the micromechanical model in a macroscopic FE cal-
culation as well as a sequential multiscale model is introduced.

4.1 Definitions and Modeling Assumptions

The nickel base cast alloy MAR-M247 is assumed to be homogeneous on the macroscopic
level. On the microscopic level however, MAR-M247 is heterogeneous consisting of the
metal matrix and finely dispersed pores as schematically represented in Figure 4.1. De-
pending on the location on the macroscopic level, the respective microstructure can vary,
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but there is no abrupt change of the microstructure in the near surrounding of a macro-
scopic point. The assumption of a homogeneous macro and heterogeneous microscale

P

Figure 4.1: The macroscopic component is assumed to be homogeneous. However the
continuum exhibits a heterogeneous microstructure consisting of matrix material and
pores (cf. [7]) as shown for an arbitrary point P. Depending on the location, the mi-
crostructure can vary, but there is no abrupt change of the microstructure in the near
surrounding of any point in the macroscopic structure.

relies on the principle of scale separation where the – actually heterogeneous – material
is imagined as homogeneous on a macroscopic level because the heterogeneities cannot
be resolved by the eye of the observer [64]. To characterize this statement mathemati-
cally Ostoja-Starzewski [64] introduced three distinct length scales:

• the characteristic length of the component LC,

• the size of the modeled volume element LVE,

• the average dimension of the microscopic inclusions Lm.

The principle of scale separation requires for the characteristic component length LC to
be much larger than the modeled micromechanical volume element length LVE,

LC ( LVE . (4.1)

The necessary scale separation between LVE and Lm to obtain converged results from a
micromechanical model depends on the microstructure of the considered material. For
a strictly periodic microstructure the inequality LVE > Lm is sufficient to obtain conver-
gent results. Unfortunately, the pore distribution within MAR-M247 is spatially random,
which requires a more strict scale separation between LVE and Lm written as

LVE ( Lm . (4.2)

The micromechanical model to capture the influence of pores on the macroscopic mate-
rial behavior of the cast alloy considers two phases – the metal matrix phase and the pore
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phase. To model the constitutive behavior of the metal matrix the von Mises plasticity
(J2 plasticity) theory is employed.
There are multiple ways to convey the results obtained by micromechanical modeling
to the macroscale. An easy and industrially applicable way to proceed is to fit the con-
stitutive behavior of the macroscale on the basis of homogenized results obtained from
the heterogeneous micromechanical model (cf. Section 4.3.1). However, this straight
forward approach of transferring the constitutive behavior from the microscale to the
macroscale is only valid as long as

• the component’s microstructure is invariant with certain regions, and

• the loading path does not influence the constitutive behavior.

Within this work a remedy to bypass these limitations is presented by introducing a
concurrent multiscale approach (cf. Section 4.3.2). Each integration point of the macro-
scopic FE simulation is attached to a micromechanical volume element model, which
provides the macroscopic constitutive behavior according to the loading path and mi-
crostructure at the respective location. This accounts for a differing microstructure on
different macroscopic points, where in the vicinity of the point the microstructure is still
assumed periodic as presented in Figure 4.2. Furthermore, the concurrent multiscale
approach enables to considers loading path dependencies in the constitutive behavior.
The multiscale framework of both, the concurrent and the sequential approach are pre-

Figure 4.2: Representation of a microstructure with local periodicity. Different macro-
scopic material points exhibit a varying microstructure (cf. [7]).

sented in more detail in Section 4.3. The concurrent multiscale approach is computa-
tionally expensive; nevertheless, with increasing computer capacity and availability of
cloud computing such elaborate analysis methods are becoming more and more attrac-
tive. Moreover, the computational cost can be limited by a selective use of the multiscale
models at critical regions only, whereas a standard continuum approach is employed for
the remaining structure as was proposed by Ghosh [62].
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4.2 Micromechanical Finite Element Model

At the microscale level, there are two common ways to derive finite element geometry
models: Real microstructure phase arrangements derived from three dimensional CT
and micro-graphs, and computer-generated geometries. This work pursues the latter
approach using computer-generated geometries. One advantage of computer-generated
microstructure models over geometries derived from the real microstructure is that the
former enable parametric studies. The goal of the micromechanical modeling approach
is to replicate the characteristics of the pores utilizing a computer-generated pore model.

4.2.1 Volume Element Model Generation

To achieve reliable results it is important for the microstructure model to represent the
relevant characteristics of the materials microstructure. Within this work the character-
istics accounted for are limited to the accumulated volume of the inclusions, the volume
distribution of individual inclusions, the shape of single inclusions in terms of the ratio
between bounding box volume and pore volume, as well as the spatial distribution of the
inclusions within the modeled volume element. These characteristics were obtained from
detailed studies of 3D CT images of nickel-base cast alloy samples as presented in Sec-
tion 3.4 with the results briefly summarized in the following. The volume distribution
of single inclusions is statistically characterized utilizing Lognormal distributions with
minimum and maximum thresholds. The pore topologies in the model are based on a
Boolean union of parameterized rotational ellipsoids with their major axes arranged mu-
tually perpendicular around their common geometric center, as presented in Figure 4.3.
The abstract pore shape accounts for the ramification of interdentritic pores found in
the MAR-M247 cast alloy samples. The ramification is characterized by the volume ratio
VR of the bounding box volume to the pore volume. The intersection of the ellipsoids
representing the pores are rounded by concave radii to avoid singularities in the stress
distribution of the finite element solution. The intersection radius

rint =
1

10
aha , (4.3)

depends on the major axis length aha of the rotational ellipsoids of the Boolean pore
model. In addition to the shape and volume of individual pores, their spatial distri-
bution is an important parameter that governs the resulting materials properties. The
spatial distribution is experimentally characterized utilizing a coefficient for the spatial
randomness of pores found in a sampled volume (cf. Section 3.4.5).
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rint
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Figure 4.3: Representation of the Boolean pore model: a) The rotational ellipsoid with
the axis lengths ha and hb; b) Boolean union of three equivalent rotational ellipsoids
arranged mutually perpendicular around a common geometric center. The intersection
of the individual ellipsoids are rounded by the concave radius (rint) to avoid singularities
in the stress distribution of the finite element solution (cf. [65]). The aspect ratio of the
single rotational ellipsoids governs the volume ratio VRMP of the smallest cube enclosing
the model pore and the volume of the model pore.

An algorithm that automatically generates microstructures according to the aforemen-
tioned parameters is implemented using the programming language Python. The al-
gorithm requires the experimentally determined shape and volume distributions of the
pores, the pore volume fraction and information about the spatial distribution of the
pores as input parameters. The generated geometry model is designed to be suitable
for the periodic microfield approach (PMA) as described by Böhm [66]. PMA assumes
that the whole material exhibits a geometric periodicity, which corresponds to a periodic
arrangement of the modeled microstructural volume element. Therefore the spatial dis-
tribution of pores within the volume element model is governed by an algorithm similar
to the random sequential adsorption described by e.g. Torquato [67], which is enhanced
by taking the spatial periodicity into account. When a pore penetrates the surface of
the modeled volume element, an equivalent pore with the same spacial orientation and
aspect ratio is placed on the opposing side of the volume element as shown in Figure 4.4.

The algorithm to generate the parameters required to set up the micromechanical volume
element model can be divided into the following steps.

1. Definition of individual pore volumes: The volumes of individual pores are suc-
cessively defined based on a Lognormal distribution with minimum and maximum
thresholds. The cumulative pore volume is calculated after each definition of an in-
dividual pore volume. This procedure is repeated until the cumulative pore volume
fraction is within the defined tolerance of the target pore volume fraction.
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LVE

LVE

Figure 4.4: Periodic arrangement of inclusions penetrating the wall of the volume ele-
ment. If a pore penetrates the wall of the volume element model, an equivalent inclusion
with the same spatial orientation is placed on the opposing side of the volume element.

2. Definition of aspect ratio: After the individual pore volumes are defined, each pore
is assigned an aspect ratio for the ellipsoids it consists of. The aspect ratios are
generated according to the distribution of the ratio between bounding box volume
to pore volume as described above. Thus a statistical variation of the spatial rami-
fication of the pores is achieved.

3. Calculation of half-axis dimensions: Up to this step the individual pore volumes
and the corresponding aspect ratios for the ellipsoids are defined. The remaining
task is to calculate the half-axis dimensions conserving the half-axis ratio and lead-
ing to the desired pore volume. First, the maximum volume of a pore with a given
half-axis ratio within the micromechanical model is calculated. For this purpose
the pore is assumed to sprawl across the whole volume element with the major
half-axis of the ellipsoids equal to LVE. To calculate the volume, the Boolean pore
model is divided into n slices. The cross sectional area of each slice is calculated
and multiplied with the thickness of the slice. Adding up the volume of the indi-
vidual slices results in the pore volume. Since the principle of scale separation as
introduced in Equation (4.2) applies, the initial configuration with the pore sprawl-
ing across the whole volume element model yields a too larger pore volume. Thus
the half-axis ratio has to be adjusted, which is achieved using a bisecting algorithm
which readjusts the half-axes ratio of the model pore until the model pore volume
Vha is within a tolerance tol of the target pore volume Vt. This can be written as

|Vha − Vt| < |tol| . (4.4)
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Within the first iteration the half-axis dimensions are divided by two and the pore
volume is recalculated allowing three possible configurations:

(a) |Vha − Vt| < |tol|: The desired pore volume is reached and no further adjust-
ment is needed.

(b) Vha − Vt > + tol: The pore volume is too large, thus the half-axis dimensions
are decreased to the average of the last and second to last configuration.

(c) Vha − Vt < − tol: The pore volume is too small, thus the half-axis dimensions
are increased to the average of the last and second to last configuration.

This procedure is repeated until Equation (4.4) is fulfilled and the appropriate half-
axis dimensions are determined.

4. Spatial pore distribution: By default a spatially random distribution of the pores
within the micromechanical volume element is realized using the random num-
ber generation function of the programming language Python. A volume element
model with a spatially random pore distribution is depicted in Figure 4.6 (a). The
distribution algorithm is designed in such a way, that individual pores are non over-
lapping and spatially periodic (cf. Figure 4.4). A spatial clustering of pores can be
provoked by defining normal distribution functions and thresholds, which influ-
ence the probability of a pore to be placed at a certain location. An example of a
volume element model with clustered pores is presented in Figure 4.6 (b).

Based on the resulting parameters, the micromechanical geometry model is automati-
cally generated using the programming language Python and the commercial finite ele-
ment code Abaqus/CAE. In the following, the steps for the automated generation of the
FE model are described in more detail.
First the individual parts of the microstructure, namely the cube with the dimensions of
the desired volume element and the pores are generated in the Part-module of Abaqus/-
CAE. The pores are generated individually. Thus an ellipsoid with the defined half-axis
dimensions is generated. The ellipsoid is then imported three times into the Assembly-
module of Abaqus/CAE arranging the major half-axis of the ellipsoids mutually perpen-
dicular to a common center. To unite the ellipsoids to the Boolean pore model, the
merge function of Abaqus/CAE is utilized. Once the cube and the individual pores are
generated, the pores are spatially arranged within the cube in the Assembly-module of
Abaqus/CAE. Again the merge functionality is used to subtract the pores from the cube.
The operation results in a division of the cube into the matrix material representing the
cast alloys’ metal matrix structure presented in Figure 4.5 (a) and the enclosed pores
presented in Figure 4.5 (b). Once the geometry model is constructed, the finite element
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(a) (b)

Figure 4.5: Geometry of the volume element model exhibiting a pore volume fraction
of 5%. The pores exhibit a spatially random distribution; (a) The surface of the volume
element excluding the pores is depicted representing the cast alloys’ microstructure; (b)
The negative of the microstructure model is depicted representing the pores.

mesh has to be generated. The element size is defined by default as a fraction of the
smallest ligament length1 within the model. This ensures that slender morphological
structures are resolved by a minimum number of finite elements over their cross section,
which is vital to obtain reliable FE results. To mesh the microstructure model either the
quadratic tetrahedral elements C3D10M or the linear tetrahedral elements C3D8 [68]
can be utilized. The mesh is generated in the Mesh-module of Abaqus/CAE using the
free mesh technique, which allows to mesh complex geometries. Figure 4.6 (a) shows a
volume element model with a random pore distribution (R ≈ 1), whereas Figure 4.6 (b)
shows a volume element model exhibiting a clustered pore distribution (R < 1).

4.2.2 Micromechanical Problem Definition

4.2.2.1 Balance Equation

In this section the differential balance equation is formulated. According to [69], the
equilibrium condition can be written as

∇m · σm = 0 in Ωm (4.5)

with the subscript m denoting micromechanical quantities. Equation 4.5 is a simplified
version of the equilibrium condition since the body forces are not considered within
the presented finite element model. In Equation 4.5 Ωm is the current domain of the

1The minimum ligament length denotes the shortest distance between two pores.
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(a) (b)

Figure 4.6: Two distinct spatial distributions of the pores. (a) Uniformly random mi-
crovoid distribution (R ≈ 1.0); (b) Clustered void distribution (R ≈ 0.5).

volume element model and σm is the micromechanical Cauchy stress tensor. There are
three types of boundary conditions typically used for micromechanical models, namely
periodicity, uniform displacement and uniform traction conditions [70]. All of these
boundary conditions fulfill Hill’s energy criterion [71]

〈σ〉 · 〈ε〉 = 〈σε〉 . (4.6)

Within this work the periodic as well as the uniform displacement boundary conditions
are implemented and described in more detail in the following.

4.2.2.2 Periodic Boundary Condition

Periodic boundary conditions constitute Dirichlet type boundary conditions, which es-
tablish an infinite periodic arrangement of the volume element model omitting any free
surface effects. The periodic arrangement of the volume element model in the reference
configuration may be imagined as an infinite spatial lattice, which can be expressed by

L3 = {x ∈ R3 | x =
3∑

i=1

λi ei, λi ∈ Z} , (4.7)

with ei as the base vectors of the volume element model. To abide a complete tiling
of space during loading, opposing surfaces of the volume element have to deform con-
gruently. Therefore the surface of the volume element model is divided into an active
∂Ω+

m and a passive ∂Ω−
m region. The kinematics of the passive and active region are then

coupled by equations.
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To split the surface of the volume element model denoted as ve into an active and a
passive domain, the set of vectors

Ave = (ex, ey, ez) (4.8)

containing the base vectors of the volume element model and the set of vectors

B = {b ∈ R3 | b = (b1, b2, b3)
T ∧ b1, b2, b3 ∈ {−1, 0, 1}} (4.9)

containing the linear combinations of the base vectors with the linear combination factors
bi ∈ {−1, 0, 1} are introduced. Initially the whole surface of the volume element is
assumed to be active. Starting at an arbitrary point x+ ∈ ∂Ω+

m of the active domain, the
set of vectors

N = {xcp ∈ R3 | xcp = x+ +Aveb, b ,= 0} (4.10)

is generated, where xcp are possible corresponding points to x+ ∈ ∂Ω+
m. However, the

actual corresponding points to x+ ∈ ∂Ω+
m are found as a subset

x− = {xcp | xcp ∈ ∂Ωm, xcp ∈ N} (4.11)

of N. The corresponding points are shifted from the active to the passive set, thus dimin-
ishing the active set. This routine is repeated until every point of the active set (x+) has
at least one corresponding point in the passive set (x−).
This routine does not lead to a unique division of the surface of the volume element
model into active and passive regions. Theoretically an infinite number of possible con-
figurations is possible. However, to enable an automated implementation of the periodic
boundary conditions a standardized division of the volume element model surface is de-
fined which complies with the theory introduced above and presented in Figure 4.7. For
corresponding points in the active and passive sets, the periodic boundary conditions can
be written as

x+ − x− = 〈F〉 (X+ −X−) (4.12)

where x+ and x− denote corresponding surface points of the micromechanical volume
element model in the current configuration, X+ and X− denote the reference configu-
ration of these points, and 〈F〉 is the homogenized deformation gradient imposed upon
the micromechanical volume element (cf. Section 4.2.3).
To implement the periodicity condition given in Equation (4.12) into Abaqus, the homog-
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(a) (b)

Figure 4.7: Representation of the active and passive domains of the volume element
model: (a) Three dimensional representation of the volume element model. Red edges
are passive regions whereas blue edges are active regions. (b) Girthed surface of the
volume element model with color coded active (blue) and passive (red) domains.

enized deformation gradient is decomposed into an identity tensor I and the homoge-
nized displacement gradient tensor ∇〈u〉

〈F〉 = I+∇〈u〉 . (4.13)

Within the FE model the displacement gradient tensor is represented by the displacement
of three so called dummy nodes

∇〈u〉 = (uDx,uDy ,uDz) . (4.14)

The dummy nodes Dx,Dy and Dz are introduced to govern the deformation of the volume
element model. Theoretically they can be positioned at arbitrary coordinates, since only
their displacement governs the deformation of the volume element model. However, to
avoid problems with a visual evaluation of the finite element results (e.g. evaluating
stresses predicted by the finite element model in a viewer) it is convenient to ensure that
the dummy nodes are placed somewhere within the volume element model, otherwise an
automatic fit of the volume element model within the viewer might fail. Hence, within
this work the dummy nodes are placed at the origin of the global coordinate system
which coincides with the center of the volume element models. The spatial arrangement
of the dummy nodes in Figure 4.8 and Figure 4.9 does not represent the actual location
of the dummy nodes, but is chosen for a better comprehension.
An implementation where the displacements of the dummy nodes govern the deforma-
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tion of the volume element model necessitates to recast the periodicity Equation (4.12)
into a displacement based formulation, which is written as

∇〈u〉 b = ux+ − ux−
with Ab = x+ − x− . (4.15)

In order to implement the theory described above, the discrete nodes of the FE model
have to be divided into active and passive domains. This is done according to Figure 4.7,
even though the nodes on opposing surfaces of the model are not congruent.

However, for the vertex and edge nodes of the micromechanical FE model Equation (4.15)
can be immediately implemented since the discrete nodes in the active domain have con-
gruent nodes in the passive domain. The equations coupling the displacement of the
vertices with those of the dummy nodes are written as

ub − ua + uDx + uDy + uDz = 0

ud − ua + uDx + uDy = 0

uc − ua + uDx + uDz = 0

ue − ua + uDx = 0

uf − ua + uDy + uDz = 0

uh − ua + uDy = 0

ug − ua + uDz = 0 , (4.16)

following the nomenclature of vertices and dummy nodes as depicted in Figure 4.8 (a).
The equations, which couple the displacement of corresponding edge nodes with the
dummy node displacements are implemented as

uk − ui + uDx + uDy = 0

uj − ui + uDx = 0

ul − ui + uDy = 0

uo − um + uDy + uDz = 0

up − um + uDy = 0

un − um + uDz = 0

us − up + uDx + uDz = 0

ut − up + uDx = 0

ur − up + uDz = 0 , (4.17)
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using the nomenclature conventions of the edges and dummy nodes presented in Fig-
ure 4.8 (b). In contrast to the vertex and edge nodes, the nodes on opposing faces of

a

b

c

d

e

f

g

h

Dx

Dy

Dz

(a)

i
j

k
l

m

n

o

p

q
rs

t Dx

Dy

Dz

(b)

u
v

y

z

w

x

Dx

Dy

Dz

(c)

Figure 4.8: Representation of the volume element; (a) vertexes (a-h) and dummy nodes
Dx, Dy, Dz; (b) edge nodes excluding vertexes (i-t) and dummy nodes Dx, Dy, Dz; (c)
nodes on the faces excluding edge and vertex nodes of the volume element model (u-z)
and dummy nodes Dx, Dy, Dz.

the volume element are not necessarily congruent, which is due to the free mesh tech-
nique used to mesh the volume element model. Thus Equation (4.15) cannot be directly
implemented for nodes on the volume element faces. To bypass this shortcoming, the
tie function of Abaqus/CAE is used. Nodes of passive faces are copied and the copy of
the passive face ( )pc is tied to the opposing active face. The tie condition is established
between the following faces

vpc tied to u

xpc tied to w

zpc tied to y

and ensures a congruent deformation and displacement of tied faces. Naturally the pas-
sive face and the copy of the passive face exhibit congruent nodes. The relative displace-
ment of the active and the passive faces as given in Equation (4.14) are governed by node
based equations coupling the displacement of the nodes of the copied passive face, the
original passive face and the dummy nodes. The equations can be written as

uv − uvpc + uDx = 0

ux − uxpc + uDy = 0

uz − uzpc + uDz = 0 . (4.18)

A schematic representation of the coupling of active and passive faces for the 2D case is
presented in Figure 4.9.
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Figure 4.9: Schematic representation of the periodic boundary conditions on a two di-
mensional model. The active (blue) and passive (red) faces of the model have non cor-
responding nodes. To ensure a congruent deformation of active and passive surfaces a
copy of the passive face (shown next to the active face) is tied to the active face. Naturally
the copied and the original passive face have corresponding nodes. The relative displace-
ment between those two phases is ensured by an equation coupling the dummy node,
the nodes of the copy of the passive face and the nodes of the original passive face. (a)
Two dimensional model in reference configuration; (b) Two dimensional configuration
in current configuration (deformed state).

4.2.2.3 Uniform Displacement Boundary Conditions

Complementary to the periodicity conditions, uniform displacement (UD) boundary con-
ditions are implemented to compare the results obtained by periodic boundary con-
ditions. Furthermore the sensitivity of the micromechanical model towards different
Dirichlet type boundary conditions is investigated by comparing results from volume
element models with prescribed UD and periodicity conditions.

In a general form the UD boundary conditions can be written as

x = 〈F〉 X , (4.19)

where x ∈ ∂Ωm denotes the current configuration and X ∈ ∂Ωm0 denotes the reference
configuration of a point at the surface of the micromechanical volume element model.
Within this work the implementation of UD conditions is limited to uni and multi-axial
loading, whereas shear deformations are not covered.

To implement the UD conditions the surface of the volume element model is split into
six sets, containing the FE nodes of the volume element’s faces. Each set includes the FE
nodes on the face as well as the adjacent edge and vertex nodes. The nomenclature of the
sets corresponds to Figure 4.8 (c). As for the periodicity conditions, the displacement of
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the dummy nodes are utilized to govern the deformation of the volume element model.
The displacement of the dummy nodes are coupled with the face sets u, w and y by

(uDx · ex)ex − (uu · ex)ex = 0 ,

(uDy · ey)ey − (uw · ey)ey = 0 ,

(uDz · ez)ez − (uy · ez)ez = 0 . (4.20)

The displacement of the remaining faces is locked in the respective direction, which is
written as

uvex = 0 ,

uxey = 0 ,

uzez = 0 . (4.21)

4.2.2.4 Constitutive behavior of MAR-M247

As mentioned in Chapter 4.1 the von Mises plasticity theory is used to describe the con-
stitutive behavior of the metal matrix phase. Thus, the grain structure of the material is
homogenized by a continuum approach as depicted in Figure 4.10. The material behav-
ior is based on a Ramberg-Osgood type constitutive law [72] describing experimentally
determined stress-strain curves of the bulk material. The Ramberg-Osgood constitutive
law describes a non-linear elastic material behavior. To allow for a plastic deformation

homogenization

(a) (b)

Figure 4.10: Homogenization of the heterogeneous bulk material. (a) microstructural
grain structure; (b) homogenized bulk material – the grains are smeared resulting in a
continuum.

of the material, the material behavior is implemented in Abaqus as an elastic-plastic
constitutive law representing the stress strain curve predicted by the Ramberg-Osgood
approximation. For the elastic regime a Young’s modulus of 200000 N

mm2 is assigned. The
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initial yield stress σy0 is defined as 800 N
mm2 . The plastic regime is defined according to

the flow stress depicted in Figure 4.11.
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Figure 4.11: Flow curve for the bulk material MAR-M247 as prescribed for the Abaqus
simulations.

4.2.3 Computational Homogenization

In this section the evaluation of apparent material properties based on homogenized
stress and strain quantities from the micromechanical FE model are described. The ho-
mogenization of any quantity A(x) over a continuous region Ω, for example the ho-
mogenization of the von Mises stress distribution within the volume element model as
presented in Figure 4.12 is expressed by

〈A〉 =
1

VΩm

∫

Ωm

A(x) dΩ . (4.22)

where VΩm is the volume of the continuous region and 〈A〉 is the homogenized quantity.
Since the homogenized deformation gradient tensor 〈F〉 is known a priori, and is imposed
upon the FE model using Dirichlet type boundary conditions as explained above, the
remaining task in order to calculate apparent material properties is to homogenize the
stress distribution within the volume element model. The volume averaged Cauchy stress
tensor 〈σ〉 is obtained via the transformation

〈σ〉 =
1

det〈F〉 〈P〉 〈F〉T (4.23)
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Figure 4.12: Von Mises stress distribution in the bulk material (metal matrix). The
volume element model exhibits a pore volume fraction of 10 %. The highest stresses
occur in the vicinity of the pores.

of the homogenized first Piola Kirchhoff stress tensor 〈P〉 (cf. [73]). According to Equa-
tion (4.22) the homogenized first Piola Kirchhoff stress tensor 〈P〉 can be written as

〈P〉 =
1

Vm0

∫

Vm0

P dΩ . (4.24)

By considering the equilibrium condition ∇m0 · PT = 0 and the equality ∇m0X = I, the
averaged first Piola Kirchhoff stress tensor 〈P〉 can be recast in

P = (∇m0 ·PT)X+P · (∇m0X) = ∇m0 · (PTX) . (4.25)

Substituting this expression into Equation (4.24) allows the application of the diver-
gence theorem as presented by Koutznetsova [7]. With this the homogenized first Piola
Kirchhoff stress can be written as

〈P〉 =
1

V0

∫

Ωm0

∇m0 · (PTX) dΩ =
1

Vm0

∫

∂Ωm0

p⊗X d∂Ω , (4.26)

where p = P ·n denotes the first Piola Kirchhoff stress vector and n denotes the outward
normal vector with respect to the volume element boundary in reference state (∂Ωm0).
The surface integral in Equation (4.26) is obtained from the volume element model after
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solving the boundary value problem by a summation over the traction vectors of the FE
nodes at the volume element boundary. This can be written as

〈P〉 =
1

Vm0

Np∑

i=i

fi ⊗Xi . (4.27)

In Equation (4.27) fi are the external forces at the boundary nodes and Xi are the cor-
responding location vectors in the reference configuration. Since the deformation of the
volume element model is governed by dummy nodes, Equation (4.27) can be simplified
further to

〈P〉 =
1

Vm0
(fDx, fDy , fDz); , (4.28)

where fDx, fDy and fDz denote the reaction forces at the dummy nodes Dx,Dy and Dz. The
homogenized Cauchy stress tensor is obtained by applying the transformations given in
Equation (4.23).

Knowing the homogenized stress and strain quantities, the homogenized material prop-
erties are evaluated using Hooke’s law

〈ε〉 = 〈S〉 〈σ〉 (4.29)

where 〈ε〉 is the homogenized strain of the volume element model, 〈S〉 is the homoge-
nized compliance tensor and 〈σ〉 denotes the homogenized Cauchy stress tensor of the
volume element model (cf. [71, 70]). Assuming an isotropic material behavior Equa-
tion (4.29) can be recast using the Voigt notation into





〈ε11〉
〈ε22〉
〈ε33〉
〈ε23〉
〈ε13〉
〈ε12〉





=





S11 S12 S12 0 0 0

S12 S11 S12 0 0 0

S12 S12 S11 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 S44









〈σ11〉
〈σ22〉
〈σ33〉
〈σ23〉
〈σ13〉
〈σ12〉





. (4.30)

In Equation (4.30) S11 = 1
E , S12 = −ν and S44 = (1+ν)

E = 1
2G . Applying an uniaxial load

to the micromechanical volume element model in x direction leads to strains in x,y and
z direction (〈ε11〉, 〈ε22〉 and 〈ε33〉) as well as to a stress in x direction (〈σ11〉). All other
stress entities are equal to zero. The homogenized elastic modulus can be evaluated
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using the homogenized stress and strain fields from the micromechanical model and
solving Equation (4.30) and is expressed by

〈E〉 = 〈σ11〉
〈ε11〉

. (4.31)

To assure the validity of the resulting Young’s modulus the plastic dissipation (PD) energy
within the micromechanical volume element has to be zero at the stress level used to
evaluate the Young’s modulus as presented in Figure 4.13. The PD energy is recorded
at every increment by Abaqus. Likewise the apparent shear modulus can be obtained by
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Figure 4.13: Evaluation of the Young’s modulus. The Young’s modulus can be evaluated
as long as the plastic dissipation (PD) energy in the model remains zero.

solving Equation (4.30), which is shown for a volume element model exposed to a pure
shear deformation (ε12 = ε21).

〈G〉 = 〈σ12〉
〈ε12〉

(4.32)

The presented evaluation scheme allows for a treatment of isotropic as well as orthotropic
materials. In case of orthotropy the elastic moduli as well as the shear moduli have to be
evaluated separately for the x, y, z and xy, xz and yz directions, respectively (cf. [74]).
In case of an anisotropic material an evaluation of an elasticity or a shear modulus is not
possible. Instead the entities of the compliance or the stiffness tensor can be evaluated
by a perturbation approach as described by Temizer [27] which is addressed in more
detail in Chapter 4.3.
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4.2.4 Evaluation of Local Variables

Contrary to the homogenized material behavior, the prediction of the onset of fracture
largely relies on local stresses and strains which are magnified in the vicinity of flaws as
e.g. pores [75]. Griffith [76] established a quantitative connection between the size of
a flaw and the fracture stress. The theory that flaws, in our case pores have a profound
influence on the fracturing of sample is supported by Figure 4.14 depicting a CT scan of
a porous tensile test sample before and after the test. The orange structures represent
pores which were identified based on the CT scan before the tensile test. The fracture
surface is the light blue jagged area. Evidently the fracture evolved along the flawed
(porous) region of the sample. To predict the onset of fracture in the vicinity of pores,

Figure 4.14: Overlay plot of a CT scan of a porous sample before and after a tensile test.
The orange areas denote pores within the sample which were identified by CT before the
tensile test. The fracture surface is represented by the lighter blue structured area. The
fracture evolved along the identified porous regions.

a post processing routine to analyze the local distribution of stresses and strain quanti-
ties within the micromechanical model is implemented using the programming language
Python. At each integration point the stress and strain quantity and the corresponding
integration point volume (IVOL) is read out from the output database file of the mi-
cromechanical volume element model. With the obtained data a histogram is generated
sorting the stress or strain quantities into bins. The bin height correlates with the cu-
mulative IVOL within a bin divided by the total integration point volume of the whole
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volume element model2. An example of such a diagram is presented in Figure 4.15. The
results obtained from the cumulative distribution function enable a quantile evaluation
of the evaluated quantity.

Fr
ac

tio
n

of
m

et
al

m
at

ri
x

(v
ol

%
)

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

Re
la

tiv
e

fr
eq

ue
nc

y
(-

)

0 0.005 0.01 0.015 0.02

Plastic equivalent strain (-)

Cumulative distribution function

Plastic equivalent strain

Figure 4.15: The histogram (red) shows the relative frequency of the matrix exhibiting
a certain plastic equivalent strain. The blue curve represents the cumulative distribu-
tion function of the plastic equivalent strain. The mean plastic equivalent strain is just
below 1 % whereas the maximum values of plastic equivalent strain are 2 % and more.
The maximum plastic equivalent strain values appear in the vicinity of the pores, where
cracks are initiated.

2The implementation is based on work from A. Fillafer
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4.3 Multiscale Finite Element Modeling

The increasing environmental awareness of the customers as well as a scarcity of raw
materials necessitates to save resources and minimize the mass of components. Thus,
providing an optimized component design is ever more important for companies to stay
competitive. Established optimization tools are mostly based on continuum approaches,
which do not consider the microstructure of the materials. However, the microstruc-
ture of engineering materials has a substantial influence on the mechanical behavior as
shown in the preceding chapters. Furthermore, components such as e.g. cast parts ex-
hibit variations in the microstructure depending on the location within the part. The
consideration of these microstructural fluctuations bears the potential to improve the
component layout.
So-called multiscale approaches present a promising possibility to exploit this potential.
As the name multiscale suggests, two (or more) models covering different length scales of
the same component are run and certain quantities are exchanged between these models.
In the following two different concepts are introduced, namely a concurrent multiscale
model and a sequentially coupled multiscale model.

4.3.1 Sequential Multiscale Model

A pragmatic way to link the results gained on the microscopic scale to the macroscopic
level is a sequential coupling of these scales. The steps of this sequential multiscale ap-
proach are depicted in Figure 4.16. The first step is to divide the macroscopic component
into sections, where each section represents a different microstructure (cf. Figure 4.16,
the grey region of the casting represents pore free material, whereas the green area
represents porous material). In the second step all regions are assigned a constitutive
behavior. Pore free regions are assigned the constitutive behavior of the bulk material,
whereas the constitutive behavior of a porous region is obtained by the homogenized
response of a micromechanical volume element model representing the microstructure
of that particular domain. Thus, it is possible to consider the influence of microstructural
variations on the constitutive behavior.
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Figure 4.16: Sequential multiscale computation steps. First the component is divided
into sections with different microstructures. Depending on the microstructure of the
section, either the constitutive behavior of the bulk material, or a constitutive behavior
obtained from the homogenized response of a volume element model is assigned for the
macroscopic finite element analysis (FEA). The stresses within the microstructure can be
evaluated based on a subsequent micromechanical model of critical points.
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In the third step the boundary conditions and loads are applied to the component and the
macroscopic FEA is performed yielding the stress and strain distributions. To evaluate
the stress and strain distributions within the microscale a subsequent micromechanical
computation is performed in step four. For this purpose, the deformation gradient ten-
sor is logged at each integration point within a porous region of the macroscopic FE
model. To enable the logging of the displacement gradient tensor, the homogenized
constitutive behavior of porous regions are defined using a user materials subroutine
(UMAT) [68]. The deformation gradient tensor of a critical area (e.g. with a high stress
within a porous region) is used to compute the symmetric displacement gradient tensor
(cf. Section 4.3.2.2) which is then applied to an RVE. In the last step the stress and strain
distributions obtained from the micromechanical model are evaluated.
The presented sequential multiscale approach features a quick and computationally in-
expensive method to incorporate microstructural influences into the component layout
and thus enabling an industrial application. However, the sequential multiscale method
is not able to account for nonlinear loading path dependencies of the material properties,
such as an initially isotropic plate with randomly distributed holes which is deformed in
two steps as shown in Figure 4.17 (a). In the first step a uniaxial deformation in x di-
rection is preformed causing a plastification at the edge of the holes (Figure 4.17 (b)).
In the second step the plate is deformed in y direction. The plastification caused by the
deformation in x direction leads to a dependency of the stiffnesses of the plate on the
loading direction (Figure 4.17 (c)). The stiffness in x direction can be described by the
Reuss bound assuming a sequential arrangement of plastified and non plastified material
whereas the stiffness in y direction can be described by the Voigt bound which assumes
a parallel arrangement of the plastified and non plastified portions of the material. The
former plastification caused by the deformation in x direction has almost no influence
on the stiffness of the plate in y direction. This loading path dependent behavior of the
material can not be accounted for by the sequential multiscale model but necessitates
a concurrent multiscale model where the material behavior is updated according to the
current loading path as explained in the following chapter.
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Figure 4.17: Schematic representation of the loading path dependency of the mate-
rial behaviors. (a) Loading path to reach the final deformation within two sequential
deformations(ψ1 is the logarithmic strain in x direction andψ2 is the logarithmic strain
in y direction. (1) the sample is deformed uniaxially in x direction, (2) the sample is
deformed uniaxially in y direction; (b) the grey regions at the hole are plastically de-
formed by the first deformation step, the sample now shows a stiffness dependency on
the loading direction; (c) the sample stiffness in x direction has significantly decreased
(point 1 in the stress strain curve) whereas the sample stiffness in y direction has only
changed slightly (point 2 in the stress strain curve). The sequential multiscale model is
not capable to account for this loading path dependent constitutive behavior.

4.3.2 Concurrent Multiscale Model

The term concurrent multiscale models means that the models covering different length
scales are run in parallel, where certain quantities are exchanged throughout the com-
putation. In in our case the macroscopic model representing a component provides the
deformation state and the micromechanical model representing the component materi-
als microstructure provides the constitutive law for the macroscopic model. Thereby a
concurrent multiscale computation allows to consider the component’s locally varying
microstructure and nonlinear loading dependencies of the materials constitutive behav-
ior in the layout process. This yields more accurate results compared to a computation
based on a macroscopic continuum theory only.

As of today there is no standard routine to conduct such concurrent multiscale compu-
tations using a commercial FE code. Hence there is a clear need to develop concur-
rent multiscale solution schemes based on commercial FE packages, which will allow
an industrial application. In Figure 4.18 the rough concept of the concurrent multiscale
approach introduced within this work is depicted.
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FM

δF

C,σ

Figure 4.18: Schematic representation of the scale cuppling by a concurrent multiscale
approach. The macroscopic model provides the deformation gradient FM. Based on the
deformation gradient the micromechanical model provides the update of the Chauchy
stress σ. Furthermore the updated Jacobian C is calculated by perturbations of the
deformation gradient δF.

4.3.2.1 Scale Coupling Concept

The implementation of the multiscale framework is realized using the commercial FE
code Abaqus and the programming languages Python and Fortran. It is inspired by the
works reported in [7, 27, 29, 30, 77, 78, 79].

A draft of the scale coupling concept is depicted in Figure 4.19. The microstructure of
the macroscopic component is represented by periodic representative volume element
models, which are coupled to the macroscopic integration points. As can be seen in
Figure 4.19, the multiscale computation scheme is realized using the Abaqus solver for
the macro and microscale boundary value problems and incorporating user subroutines
as well as Python scripts to govern and link the models on the different scales. This will
be explained in more detail in the following.

At the beginning of a macroscopic increment the user material subroutine UMAT is called
at every integration point. The subroutine obtains the Cauchy stress and the deformation
gradient at the beginning of the increment as well as a predicted deformation gradient
at the end of the increment. With the aid of these quantities the micromechanical model
assigned to the macroscopic integration point provides the update of the macroscopic
stress as well as the material Jacobian for the next increment.

• Update of the stress state
Based on the deformation gradient tensor predicted by Abaqus a symmetric dis-
placement gradient tensor is calculated and imposed upon the micromechanical
model. The homogenized stresses obtained from the micromechanical model are
used to update the macroscopic stress. The calculation of the symmetric displace-
ment gradient tensor and the micromechanical homogenization are controlled by
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Figure 4.19: Implementation scheme of the multiscale framework. The user subroutine
UMAT is used as a mediator between the macro and micro scale.

Python scripts. The resulting homogenized stress values are passed to the macro-
scopic model using the UMAT subroutine.

• Material Jacobian
The material Jacobian is calculated in terms of a numerical tangent C = ∆σ

∆ε based
on perturbations of the micromechanical volume element deformation. The ho-
mogenized stresses and strains of n closely neighboring deformation states (per-
turbations of the current deformation) of the micromechanical model are com-
puted [27]. From the homogenized stresses and strains obtained by these mi-
cromechanical tests the numerical tangent stiffness tensor C = ∆σ

∆ε is calculated
and returned to the macroscopic FE model using the UMAT subroutine.

A detailed description on how to initialize a multiscale model using Abaqus/CAE is pro-
vided in Appendix B.

4.3.2.2 Implementation of the Solution Scheme

The multiscale framework developed within this work incorporates user subroutines as
well as Python scripts to control the computation. The user subroutines used by the mul-
tiscale framework are the SDVINI to define initial solution dependent state variables, the
UMAT to define a material’s mechanical behavior and the UVARM to generate element
output [68]. At the beginning of the computation the SDVINI subroutine is called at each
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integration point to initialize the solution dependent state variables (SDV) [68]. These
variables are utilized to govern local microstructural parameters. In case of the cantilever
beam treated in Appendix B, the only microstructural parameter, which is varied is the
pore volume fraction with respect to the length coordinate (X) of the integration point.
After the solution dependent state variables are defined, the UMAT subroutine is called at
each integration point of the macroscopic model. Per definition the UMAT must provide
updates of the material Jacobian, the stress state and the SDVs as return values [68].
Since the SDVs are only used to define the parameters to initialize the micromechanical
volume element models, they are not modified.
The updates of the material Jacobian and the stress state are obtained from microme-
chanical FE models. This is realized using the UMAT as a mediator between macroscopic
and the microscopic scales. When called at a macroscopic integration point, the UMAT
obtains a set of variables listed in Table 4.13. These variables are used to control the
multiscale computation and are written to a text file. This enables for the variables to
be transferred between the different scripts incorporated within the multiscale compu-
tation scheme. A Python routine governing the micromechanical model is called from

Table 4.1: Relevant variables for the multiscale framework available within UMAT.

Variable Identifier

Element number NOEL
Integration point number NPT
Increment number KINC
Step number KSTEP
Jacobian matrix DDSDDE
Stresses STRESS
Deformation gradient at the end of the increment DFGRD1(3,3)

within the UMAT. The first time this Python script is called at an integration point, the
micromechanical volume element model has to be initialized. Therefore an altered ver-
sion of the automated microstructure model generation algorithm is used. In comparison
to the algorithm described in Chapter 4.2 the microstructural parameters are not man-
ually defined by the user. Instead these parameters are set to default values given in
Table B.1. Next, the text file containing the parameters to govern the multiscale com-
putation is read. Thereby the therein stored parameter are initialized within the Python
script and, in case any SDVs are defined, the respective default microstructural parame-
ters are altered. Based on the resulting parameter set a periodic volume element model
is generated. The micromechanical model is assigned to its corresponding integration

3A complete list of variables obtained by the UMAT is given in [68]. The given variables are constricted
to the ones used to govern the multiscale computation
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point in the macroscopic model using a naming convention. The structure of the mi-
cromechanical model name is given by

mm init el〈NOEL〉 npt〈NPT〉

where 〈NOEL〉 is the element number and 〈NPT〉 is the integration point number. This
ensures that the micromechanical model is uniquely assigned to its corresponding inte-
gration point in the macroscopic model. After the micromechanical model is generated,
the simulations to compute the stress state and the material Jacobian are conducted.
For this purpose the deformation gradient at the end of an increment, which is predicted
by Abaqus and obtained via the UMAT (cf. Table 4.1) is split into a proper orthogonal
tensor R describing the rigid body rotation and the symmetric tensor U describing a pure
homogeneous deformation

F = R U (4.33)

using a right polar decomposition. The symmetric displacement gradient tensor ∇u is
calculated by subtracting the identity matrix I from U

∇u = U− I . (4.34)

The tensor ∇u is imposed upon the micromechanical volume element model utilizing
periodic boundary conditions (cf. Chapter 4.2). The homogenized stress values obtained
from the solution of the micromechanical boundary value problem are used to update
the macroscopic stress state.
To update the material Jacobian the constitutive law in an incremental formulation

∆σ = C ∆ε (4.35)

is considered in its most general form where C is the stiffness tensor and ∆σ and ∆ε

denote the incremental stress and strain difference, respectively.

Assuming arbitrary anisotropy of the homogenized material requires to identify all 21
independent components4 of the stiffness tensor C = ∂σ

∂ε . To compute the stiffness tensor
a perturbation approach is employed testing ideally infinitesimally close neighboring de-
formation states as described by Temizer [27]. This technique allows to approximate the
partial derivative C = ∂σ

∂ε by the numerical tangent C = ∆σ
∆ε . At each integration point of

the macroscopic simulation six perturbations of the micromechanical deformation state
at the end of the increment are conducted. The displacement gradient tensors ∇u1−∇u6

defining the boundary value problem to conduct the micromechanical tests are generated

4For a theoretical treatment the reader is referred to [80] or [73]
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by slightly varying independent components of the symmetric displacement gradient ten-
sor at the end of an increment by small values 0 < δ - 1. The displacement gradient
tensors for the perturbations can be written as

∇u1 =




u11 + δ u12 u13

u21 u22 u23

u31 u32 u33



 ∇u2 =




u11 u12 u13

u21 u22 + δ u23

u31 u32 u33





∇u3 =




u11 u12 u13

u21 u22 u23

u31 u32 u33 + δ



 ∇u4 =




u11 u12 + δ u13

u21 + δ u22 u23

u31 u32 u33





∇u5 =




u11 u12 u13 + δ

u21 u22 u23

u31 + δ u32 u33



 ∇u6 =




u11 u12 u13

u21 u22 u23 + δ

u31 u32 + δ u33





resulting in three normal and three shear perturbations. For each perturbation a sep-
arate micromechanical FE simulation is conducted. Therefore the restart functionality
of Abaqus is used defining a restart step with altered boundary conditions for the stress
update simulation. The modified dummy node displacements are updated, whereas the
remaining displacement boundary conditions are replaced by traction boundary condi-
tions. The value of the traction force at the respective dummy node is equated to the
reaction force obtained from the stress update simulation. Using a micromechanical
boundary value problem with mixed boundary conditions 5 proved to be more stable
compared to applying Dirichlet type boundary conditions for all degrees of freedom of
the dummy nodes. After the micromechanical testing the differences in the homogenized
stress and strain results compared to the stress update simulation are calculated. The re-
sulting stress differences ∆σi and strains differences ∆εi are related by the incremental
constitutive equation

〈∆σi〉 = C 〈∆εi〉 (4.36)

where C is the sought-after numerical tangent. The index i ∈ {1, 2, . . . , 6} denotes the
respective perturbation. From the six micromechanical tests a set of linear equations is
obtained, which can be written in matrix form as

A xhom = bhom (4.37)

5Dirichlet type boundary conditions are defined on the degrees of freedom of the dummy nodes corre-
sponding to the direction of the perturbation whereas Neumann type boundary conditions are defined on
the remaining degrees of freedom of the dummy nodes.
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where the matrix A contains the homogenized strains obtained from the micromechani-
cal tests, the vector bhom contains the homogenized stresses obtained from the microme-
chanical tests and the vector xhom comprises the sought-after components of the nu-
merical tangent stiffness tensor. An expanded version of Equation (4.37) is given in
Appendix A. Obviously Equation (4.37) constitutes an overdetermined linear system of
equations. Typically an exact solution of Equation (4.37) is not possible. Hence the norm
of the residuum

r = A xhom − bhom (4.38)

is minimized (see [81]), which can be written as

F (x) = r(x)Tr(x) = xT
homA

T A xhom − 2xT
hom AT bhom + bT

hom bhom → min! (4.39)

The necessary condition to minimize F (x) is ∇F (x) = 0, which leads to the normal
equation

ATA xhom = ATbhom (4.40)

providing a least square fit for the unknown components of x, which are calculated by

xhom =
(
ATA

)−1
AT bhom . (4.41)

The obtained entries of the secant stiffness tensor C (components of x) are passed to the
macroscopic FE model by the UMAT subroutine. The update of the stress state and the
material Jacobian as explained above is repeated at each increment of the macroscopic
computation.
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Chapter 5

Results and Discussion

The results obtained from experimental and modeling investigations of porous cast sam-
ples presented in the previous chapters will be discussed and compared in the follow-
ing. The geometrical characteristics of the porous samples and computer generated mi-
crostructures are correlated. Furthermore the mechanical behavior of porous samples is
compared to the predictions of the micromechanical model.
The aim of this chapter is to study and discuss the results of the micromechanical model
as well as to correlate the experiment and modeling approach. This will also provide
ideas for further improvement.

5.1 Micromechanical Modeling Results

5.1.1 Microstructural Model Geometries

To compare the results of the micromechanical finite element solution to analytical re-
sults, volume element models featuring a spatially random distribution of pores are used.
Some realizations with varying pore volume fractions vp are depicted in Figure 5.1. The
volume element models are meshed using linear tetrahedral elements (Abaqus element
type: C3D4 [68]) with an average seed size of 0.3. The seed size determines the average
edge length of an element. However, the element edge length might vary depending on
the local geometry. For contours with a high curvature the edge length of the elements
is adjusted to allow for complex geometries to be adequately meshed.
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Figure 5.1: Three dimensional representation of volume element models with pores
(grey). The models contain a pore volume fraction between 0 % and 10 %. The pores
are distributed spatially random.
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5.1.2 Convergence Behavior of the Model

In order to obtain reliable results, the FE models have to be examined for mesh and
property convergence. In the present work, mesh convergence is defined as reached, if
the homogenized response of the micromechanical model does not change by more than
1 % compared to the finest mesh that was tested. The results of a mesh convergence study
are presented in Figure 5.2. For this study the same volume element geometry is meshed
using an initial seed size of 1.0, 0.7, 0.5, 0.3 and 0.2. This results in 27×103 C3D4
elements of the coarsest seed size and 619×103 C3D4 elements of the finest mesh. It can
be seen in Figure 5.2 that the second finest mesh which is generated prescribing a initial
seed size of 0.3 fulfills the convergence requirement. Thus all further studies presented
within this work are meshed using a seed size of 0.3. This ensures mesh convergence on
one hand, while on the other hand the numerical costs are kept within reasonable limits.
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Figure 5.2: Mesh convergence study. A volume element model is meshed with a varying
mesh resolution and the homogenized Young’s module is evaluated. The meshes are
generated using initial seed sizes between 1.0 and 0.2 resulting in 27328 to 618876
elements to discretize the volume element model. The convergence criterion is defined
as fulfilled, once the Young’s modulus does not vary more than 1 % compared to the
finest mesh tested. A seed size of 0.3 resulting in a mesh with 154207 elements is found
sufficient to obtain mesh convergence.

To test for property convergence, the size of the volume element model is increased
systematically. Both periodic as well as uniform displacement boundary conditions were
applied to study the convergence behavior of the micromechanical volume element mod-
els. The largest volume element models used within this study have an edge length of
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200 µm and contain on average 20 pores, whereas the smallest models have an edge
length of 50 µm and contain only 1 pore. Even though the size of the volume element
models is varied, the pore volume fraction of all micromechanical models evaluated for
the convergency study is 10 %. For each micromechanical model size the mean value and
standard deviation of the Young’s modulus and the 98 % quantile of the plastic equivalent
strain is evaluated from 100 simulations, Figure 5.3. We define property convergence as
reached, if the mean of the Young’s modulus and the mean of the 98% quantile of the
plastic equivalent strain do not change by more than 1 % when increasing the edge length
of the volume element model by 50µm. In Figure 5.3 these restrictions are indicated by
the RVE limit size. Clearly, a minimum size of the unit cell is needed in order to obtain
viable results. If the micromechanical model is too small, the results are strongly influ-
enced by the boundary conditions. This is especially critical for the quantile evaluation
of the plastic equivalent strain as shown in Figure 5.3 (b). The difference between the
mean values of the 98 % quantile of the plastic equivalent stress from the smallest and
the largest tested volume element models is 17 %. The increase of the mean value of the
98 % quantile of the plastic equivalent strain is due to the higher complexity of the in-
teraction of the increased number of inclusions in larger micromechanical finite element
models. An increasing micromechanical volume element size not only leads to conver-
gence of the mean values, but also the standard deviation of the evaluated quantities
decreases. The standard deviation of the evaluated Young’s modulus decreases by 46 %
for models using periodicity boundary conditions and by 36% using uniform displace-
ment boundary conditions when comparing the largest to the smallest models.

As can be seen, the results obtained from the micromechanical model largely depend
on the representativeness of the volume elements. In the conducted study a minimum
edge length of the micromechanical models corresponding to 150 µm was determined
as sufficiently large. This corresponds with a minimum relative volume element size of
0,75 as can be seen in Figure 5.3.

Even though volume element models with an edge length larger than 150 µm can be
considered RVEs, the standard deviation of the results can be further decreased by using
even larger models, though causing higher computational costs. Bearing these thoughts
in mind the volume model size is adjusted based on the problem. Within this convergence
study the largest finite element models contain approximately 150000 finite elements.
For the simulations the iterative solver from Abaqus/Standard was used. The total CPU
time to perform one calculation is between 3000 and 5000 seconds using an Intel Xeon
X5550 CPU with a clock speed of 2.66GHz on a system with 12 GB RAM. This is accept-
able and all further simulations presented in this work are based on the largest tested
micromechanical volume element models corresponding to an edge length of 200 µm.
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Figure 5.3: Representative volume element size study. The finite element models evalu-
ated for this study exhibit a pore volume fraction of 10 %. Each data point represents 100
simulations: (a) the effective elastic response; (b) the dependence of the 98 % quantile
of the plastic equivalent strain on the volume element size (cf. Taxer [82]).

5.1.3 Elastic Behavior

After assuring convergence, the influence of the pore volume fraction on the effective
Young’s modulus and shear modulus is investigated. To quantify the influence of pores
on the Young’s modulus and the shear modulus, numerical volume element studies with
a varying pore volume fraction are carried out.

Since the sample size did not allow for a standardized evaluation of the effective Young’s
modulus, the results gained by the numerical volume element model are compared to
results gained by analytical methods. For porous materials the lower analytical bounds
are vague, since they degrade if pores are considered as a second phase. This leaves a
large gap between upper and lower bounds. Thus only upper bounds, namely the Voigt
and the upper Hashin-Shtrickman bounds are compared to the results obtained from the
finite element model. The results from the analytical as well as the finite element models
for the Young’s modulus are depicted in Figure 5.4 (a). The Voigt bound constitutes the
highest possible bound. If any results obtained from the volume element model would
exceed this bound, it would be an indication of an error within the volume element
model. The upper Hashin-Shtrikman bound was chosen since the assumptions of Hashin
and Shtrickman are very similar to the geometry assumptions of the volume element
model: A spatially random distribution of pores. The assumptions differ mainly in the
shape of the pores. Whereas Hashin and Shtrickman assume spherical pores, the pore
geometry of the numerical model is based upon a Boolean union of ellipsoids, which is
considerably more complex.
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The comparison of the results obtained form the volume element model and the ana-
lytical bounds enables to simultaneously look at two effects: Comparing the FE results
to the Voigt bound enables to check for plausibility of the FE results, whereas the com-
parison of the FE results with the upper Hashin-Shtrickman bound enables to evaluate
the influence of the pore shape on the effective Young’s modulus. The result presented
in Figure 5.4 (a) show that the upper Hashin-Shtrickman bound is congruent to the pre-
dictions of the micromechanical model. This indicates that the shape of the pores has a
minor influence on the resulting effective Young’s modulus. Thus, as long as the pores
exhibit a spatially random distribution the Hashin-Shtrickman bounds provide a reliable
and quick estimate of the effective Young’s modulus.
Similarly to the apparent Young’s modulus the apparent shear modulus is evaluated. The
results from the finite element models are compared to the Voigt bound and to the upper
Hashin-Shtrikman bound as shown in Figure 5.4 (b). Again the Voigt bound overesti-
mates the shear modulus, while the upper Hashin-Shtrikman bound and results obtained
from the finite element approach are in good agreement. Hence, the conclusions drawn
from the evaluation of the Young’s modulus also hold true for the shear modulus. After
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Figure 5.4: Dependency of the Young’s modulus (a) and the shear modulus (b) on the
pore volume fraction. The pores within the finite element models are distributed uni-
formly random. The error bars denote the standard deviation. It can be seen that the
Hashin-Shtrikman bounds are in good agreement with the finite element solution.

investigating the elastic material behavior a closer look on the plastic material behavior
will be taken in the following.

5.1.4 Plastic Behavior

Homogenized stress strain curves for RVEs with a pore volume fraction varying between
0 % and 10 % are depicted in Figure 5.5. Each curve represents the homogenized stress
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Figure 5.5: Homogenized stress strain curves predicted by the micromechanical finite
element model for pore volume fractions between 0 % and 10 %. The Young’s modulus
as well as the offset yield stress decreases with an increasing pore volume fraction.

strain curve obtained from one RVE. The offset yield stress decreases with increasing pore
volume fraction. The dependency of the offset yield stress on the pore volume fraction
as predicted by the micromechanical model is given in Figure 5.6. For each pore vol-
ume fraction a total of 10 Simulations are considered. The results for the homogenized
offset yield stress for a specific pore volume fraction exhibit a negligibly small scatter.
This is an indicator that the modeled volume element is representative for the evalua-
tion of the offset yield stress. Next to the homogenized offset yield stress, the onset and
evolution of plastic deformation within a porous material is investigated. Furthermore
the influence of the pore shape on the plastic deformation of the surrounding material
is studied. A local investigation of the stress and strain distributions reveals that plastic
deformation is initiated in the vicinity of pores. In Figure 5.7 an RVE with a pore vol-
ume fraction of 10 % is depicted. The depicted micromechanical volume element model
is exhibited to a uniaxial global strain of 0.35 %. The strain causes a volume averaged
Cauchy stress of 637 N

mm2 . In Figure 5.7 the red areas designate regions where the local
Cauchy stress exceeds the yield stress of the matrix material. The pores are represented
in a light blue color. It is noticeable that the matrix material exceeds the plastic limit in
the vicinity of the pores even though the global stress level of 637 N

mm2 is well below the
yield stress of the pore free material. For the prescribed global strain 5.9 % of the matrix
material deforms plastically. The successive plastification of the matrix material is shown
in Table 5.1. Furthermore Table 5.1 shows the evolution of the homogenized equiva-
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Figure 5.6: Dependency of the homogenized offset yield stress on the pore volume frac-
tion based on the evaluation of micromechanical models. For each pore volume fraction
10 calculations are evaluated. The low scatter of the results indicated, that the volume
element models are representative.
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Figure 5.7: Visualization of the plastic regime within the RVE. The plastic region builds
a network between the pores. It is assumed that cracks will develop in these areas and
thus lead to pore coalescence.
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Table 5.1: Evolution of the von Mises stress, plastified volume fraction and homogenized
equivalent plastic strain based on the homogenized strain in X direction for an RVE with
a pore volume fraction of 10%.

Homogenized Homogenized Plastified volume Homogenized
strain (%) stressσM (MPa) fraction (%) εpeeq (-)

0.35 637 5.9 0.0000602
0.70 750 79.4 0.0023742
1.15 769 94.6 0.0066178

lent plastic strain (εpeeq) of the matrix material with an increasing averaged strain. The
quantile evaluation of the equivalent plastic strain is an important indicator for damage
predictions. This emphasizes the relevance of the micromechanical results gained by the
introduced FE model for the component layout.

5.2 Comparison of Experimental and Modeling Results

5.2.1 Characteristic Pore Geometries

As shown above, the pore volume fraction and pore shape significantly influence the
mechanical behavior of a porous material. Thus, a realistic representation of these char-
acteristics is vital to obtain reliable results from a microstructure model predicting the
influence of pores on the mechanical material behavior. To gain an understanding of
the geometrical representativeness of the microstructure model, three sets of computer
generated microstructures with different pore volume fractions are assessed. The statis-
tically evaluated pore volume fraction, pore volume distribution, pore shape and the spa-
tial pore distribution obtained from the volume element models are correlated to those
obtained from CT scans of porous cast samples with an equal pore volume fraction. The
samples and their respective pore volume fraction used for this study are

• sample 2-01 with a pore volume fraction of 5.76 %,

• sample 3-03 with a pore volume fraction of 7.60 % and

• sample 4-01 with a pore volume fraction of 9.56 %.

For these samples the afore mentioned characteristics are evaluated based on CT data.
The pore size distribution is modeled by a Lognormal distribution, which is commonly
used to describe the volume distribution of particles [47]. The pore shape is also modeled
using a Lognormal distribution. The results of the CT data evaluation of the samples
given above are summarized in Table 5.2.
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Table 5.2: Experimentally determined characteristics of the microstructure geometry.

Parameter Sample 2-01 Sample 3-03 Sample 4-01

Pore volume fraction (vol. %) 5.31 7.60 9.56
Single pore volume distribution σ 1.74 1.40 1.81
Single pore volume distribution µ 6.61 5.43 6.12
Aspect ratio distribution σ 0.64 0.61 0.48
Aspect ratio distribution µ 0.53 0.42 0.58
Maximum aspect ratio 12.42 10.12 9.42
Degree of randomness R 1.05 1.18 1.16

The characteristics of the respective samples given in Table 5.2 are correlated to 500
computer generated models. The input parameters for the model generation are given
in Table 5.3. The parameters governing the Lognormal pore shape distribution and the
Lognormal pore volume distribution are obtained by linear fits of the experimental data
and can be calculated using Equations (3.3) and (3.4) and Equations (3.13) and (3.14),
respectively. A linear fit of experimental data naturally entails that the individual pa-

Table 5.3: Input parameter set for the computer generated microstructure models.

Parameters Sample 2-01 Sample 3-03 Sample 4-01

Pore volume fraction (vol. %) 5.31 7.60 9.56
Single pore volume distribution σ 1.63 1.70 1.76
Single pore volume distribution µ 6.24 6.36 6.46
Aspect ratio distribution σ 0.47 0.48 0.49
Aspect ratio distribution µ 0.66 0.64 0.63
Maximum aspect ratio 10 10 10
Spatial randomness R 1.0 1.0 1.0

rameters given in Table 5.2 are not exactly matched by the input parameters. Since the
volume element model is intended as a predictive tool, a certain misfit of the param-
eters obtained by experimental evaluations and the input parameters for the computer
generation of microstructure models is unavoidable.
One restriction of the proposed modeling approach is certainly the use of intersecting
ellipsoids to represent the pore shape. The aspect ratio of the ellipsoids is used to model
the spatial ramification of the pores. This aspect ratio is obtained by a conversion of the
pore volume to bounding box volume ratio. The minimum representable volume ratio by
the proposed modeling approach is limited by a spherical pore yielding an aspect ratio of
1.0 and a volume ratio of VR = 1.91. This does not coincide with the minimum volume
ratio obtained from the CT data which is considerably lower. A remedy for this limitation
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would be using Lame curves [83, 84] to construct the model pores which has not been
implemented within this work. This would allow for a more general pore shape and
enable to represent arbitrary volume ratios. In a Cartesian reference system Lame curves
are defined by ∣∣∣

x

a

∣∣∣
m
+
∣∣∣
y

b

∣∣∣
m
= 1 (5.1)

where a and b are the half axes and x, y and m are positive numbers defining the shape
of the Lame curve. Conversely to the minimum aspect ratio, the maximum aspect ra-
tio of pores within the micromechanical model is defined as averaging the maximum
experimentally determined aspect ratio.

Next to the pore shape, pore size thresholds have to be defined for the microstructure
model. The minimum and maximum pore size thresholds largely depend on the size of
the volume element model. Within this study the size of the volume element is defined as
200×200×200 µm3 for a twofold reason. Firstly, it is the minimum volume element size
to yield representative results as presented in Chapter 4.2. Secondly the volume element
of 200×200×200 µm3 allows to define a relevant range of pore sizes. The minimum
threshold for the pore size is 6250 µm3, which equals to a spherical pore of 22.8µm
in diameter, which is just above the detection limit of the CT scans preformed within
this work. The maximum pore size is defined as 400000µm3 equal to a spherical pore
of 91.4µm in diameter. Larger pores are detectable by standard inspection methods.
This emphasizes the technical relevance of the minimum and maximum pore sizes. The
characteristics of pores, which are not detectable by standard inspection methods, are
obtained by the experimental investigations carried out within this work. Furthermore,
their influence on the mechanical material behavior was studied both experimentally as
well as by the micromechanical model.

For each set of input parameters a total of 500 models are generated. A comparison of
the results obtained by a statistical evaluation of the computer generated models and the
corresponding variables obtained from the CT data of the respective sample is given in
Table 5.4. The geometry generation algorithm is able to match the pore volume frac-
tion with an accuracy of ±0.1 percent to the desired value. However, one needs to
keep in mind that the pore volume fraction given in Table 5.4 is evaluated before the
finite element discretization of the model. The pore volume fraction changes after the
discretization depending on the mesh size of the FE model.

Even though the pore volume fraction closely matches the input parameter, matching a
predefined distribution as for example the pore size distribution is a much more difficult
matter. The accuracy of the resulting pore size distribution increases with an increasing
size of the volume element model. The volume element size determines the number of
pores within the model, which in turn influences the representation of the predefined



88 5. RESULTS AND DISCUSSION

Table 5.4: Comparison of experimental and computer generated data. The computer
generated data represents the average of the set of 500 generated microstructures. Nat-
urally, the averaged quantities deviate form the input parameters, since thresholds are
defined for the pore volume distribution and the aspect ratio distribution which hinders
an exact representation.

2-01 3-03 4-01
Parameter Sample Model Sample Model Sample Model

Pore volume fraction (vol %) 5.31 5.31±0.1 7.60 7.60±0.1 9.56 9.56±0.1
Single pore volume distribution σ 1.74 1.07 1.40 1.09 1.81 1.10
Single pore volume distribution µ 6.61 6.51 5.43 6.54 6.12 6.59
Aspect ratio distribution σ 0.53 0.41 0.42 0.40 0.48 0.41
Aspect ratio distribution µ 0.64 0.74 0.61 0.72 0.58 0.72
Maximum Aspect Ratio 12.42 8.81 10.12 9.28 9.42 9.28
Degree of randomness R 1.05 1.27 1.18 1.25 1.16 1.26

distribution. The more pores are generated, the better the predefined distribution is rep-
resented. Unfortunately, increasing the size of the volume element model infers a higher
numerical cost to run the FE analysis. Thus a trade off between the model size and
the statistical representativeness is needed. As mentioned above, the presented results
are based on volume element models with an edge length of 200µm. This model size
coincides with the minimum volume element size to obtain mechanically representative
results as shown in Chapter 5.1. Apart from the size of the volume element model, the
minimum and maximum thresholds influence the resulting distribution. The more re-
strictive the thresholds are defined, the worse the experimental pore volume and pore
shape distribution can be represented. Nevertheless a quantitative comparison of the
resulting distribution parameters for computer generated and experimental data of the
respective samples is given in Table 5.4. A more intuitive understanding of the correla-
tion of experiment and model is gained by comparing histograms of the pore sizes and
pore shapes. The histogram in Figure 5.8 (a) depicts the relative frequency of pores with
a volume in between 100 voxel and 6250 voxel, identified in sample 2-01 based on the
CT data. Figure 5.8 (b) depicts the statistical evaluation of the pore size distribution
from 500 computer generated geometries. The two histograms show a similar relative
frequency of occurring pore sizes. In all three cases the pore size distribution is well
represented by the micromechanical modeling approach.
Next to the pore size distribution, the representation of the pore shape is investigated. A
histogram showing the relative frequency of pore aspect ratios obtained based on the CT
data of sample 2-01 is presented in Figure 5.9 (a). The aspect ratio distribution obtained
from the corresponding model geometries is presented in Figure 5.9 (b). Even though
the parameters σ and µ to fit the distribution of aspect ratios which were obtained based
on the evaluation of the CT data and the simulation data match well (Table 5.4), the
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Figure 5.8: Comparison of experimentally observed pore volume fraction in sample 2-01
(a) and simulated (b) pore volume distribution. The pore volume fraction of sample
2-01 is 5.31 %. The simulation yields a very similar pore volume distribution. This is an
indicator that the input parameters for the simulation are chosen well.
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Figure 5.9: Comparison of experimentally observed aspect ratios in sample 2-01 (a)
and simulated (b) aspect ratios. The difference is because the all observed pores with a
volume ratio VR < 1.91 were counted as spherical pores with an axis ratio of 1.

histograms show significant differences for small aspect ratios. This is because experi-
mentally determined volume ratios below VR < 1.91 were counted as spherical pores in
the histogram shown in Figure 5.9 (a). As already mentioned above, a remedy for this
mismatch would be to allow generalized ellipsoids.

Finally the spatial distributions of pores is accessed. Even though a spatial random dis-
tribution of pores is defined in the input parameters, all three models show a slight
tendency towards an ordered distribution of the pores. There are two possible causes,
firstly, the random number generation algorithm of Python could be flawed. Secondly,
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the pores are placed sequentially within the volume element model and, by definition,
need a minimum distance between the pores. This causes an increased limitation of pos-
sible locations to place pores with every further pore placed within the model. Naturally
this influences the random distribution of points (pores).

The observations presented above allow some conclusions to be drawn with respect to
the representation of the characteristic pore geometries by the presented modeling ap-
proach. In large, the geometrical characteristics of porous samples can be represented
with a high accuracy by the proposed modeling approach. Care has to be taken when
defining the input parameters for the model generation, especially defining the minimum
and maximum thresholds for the pore size and pore shape distributions as well as the
volume element size. An inapt definition of these parameters can cause serious errors
in the statistical representation of the geometrical characteristics of a porous material.
Finally, the proposed modeling approach is limited in the ability to represent the pore
shapes, which should be improved in a future advancement of the modeling approach.

5.2.2 Mechanical Material Behavior

Within this chapter the mechanical material behavior of porous MAR-M247 nickel-base
cast alloy as predicted by the numerical micromechanical volume element model as well
as the results obtained by mechanical testing are discussed. After studying the effective
elastic behavior of porous MAR-M247 cast samples, the offset yield stress is investigated
by comparing the micromechanical model predictions to the mechanical tests preformed
using the deformation dilatometer as explained in Chapter 3. The resulting offset yield
stress obtained from the dilatometer experiments and those obtained form the simula-
tion are compared in Figure 5.10. The models predict slightly to high offset yield stresses.
A likely reason for the over-estimation of the offset yield stress by the volume element
model is that only pores are considered in the microstructure. However, the real material
is far more complex exhibiting other inclusions such as carbides within the microstruc-
ture, which also trigger stress concentrations, but are not considered in this modeling
approach.

For the small scattering of the model results, this is seen as an indication for a sufficient
size of the volume element model to obtain representative results.

However, more compression tests should be conducted to achieve a statistically relevant
sample size.
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Figure 5.10: Comparison of simulated and experimentally determined offset yield
stresses. The simulation seems to overestimate the offset yield stress.

5.3 Multiscale Modeling Results

5.3.1 Sequential Multiscale Modeling Results

As an example of a sequential multiscale model, a fictional component containing porous
regions with the dimensions listed in Appendix C is analyzed. A three dimensional repre-
sentation of the component is given in Figure 5.11. This component guides a fluid from a

x
y

z

Figure 5.11: Part of the converging nozzle guiding a fluid from a high pressure to a low
pressure reservoir. The grey area is assumed to be pore free (bulk) material, whereas the
red region is assumed to be porous with a pore volume fraction of 8 %.
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high pressured reservoir into a nozzle which is connected to a low pressure reservoir (cf.
Figure 5.12). The relative pressure of the high pressure reservoir and the surrounding

A
B

C

Figure 5.12: Schematic representation of the nozzle setup. The fluid is guided from a
high pressure reservoir (A) to a low pressure reservoir (C). Part of the converging nozzle
(B) is exposed to a pressure load resulting form the pressure difference of the ambient
pressure and the pressure in the high pressure reservoir.

atmosphere is 10 bar, thus causing a pressure loading on the wall of the component. The
component is clamped at the flange face (converging end).
In the first step, the stresses caused by the loading are evaluated based on an FEA ne-
glecting any influence of the pores (see Figure 5.13 (a)). The obtained stress distribution
is compared to the results from an analysis of the same structure using the sequential
multiscale model and thus taking into account the influence of the pores on the consti-
tutive behavior of the porous section (see Figure 5.13 (b)).
For the sequential multiscale analysis the component is partitioned into a porous section
with a pore volume fraction of 8 % (red area in Figure 5.11; constitutive behavior is as-
signed according to the homogenized response of an RVE model) and a pore free section
(grey area in Figure 5.11; constitutive behavior of the pore free material is assigned).
The results obtained from the conventional FEA and the sequential multiscale model
have significantly different stress distributions (see Figure 5.13). The pores’ influence
on the constitutive behavior of the porous section leads to a decrease in its load-bearing
capacity, which causes an increase of the stress level in certain pore free regions.
However, not only the stresses on the macroscopic level differ between the sequential
multiscale model and the FEA neglecting the influence of the pores. The sequential
multscale model also enables the investigation of stresses acting on the microscopic level.
Therefore, the stress distribution within the porous region of the structure is studied (see
Figure 5.14). As previously mentioned, in the sequential multiscale model the constitu-
tive behavior of the porous region is assigned using a UMAT subroutine, which enables a
logging of the deformation gradient tensor at every integration point (see Section 4.3.1).
After the FEA of the component, the deformation gradient of any area of interest within
the porous section can be extracted and used for a microscopic simulation. The de-
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Figure 5.13: Comparison of the stress distribution obtained from a conventional FEA
(a) and from a sequential multiscale model (b). The influence of the pores lead to a
redistribution of the stresses. The predicted stresses within the pore free region are
considerably higher in the sequential multiscale model due to the decreased load-bearing
of the porous structure (red area in Figure 5.11).
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Figure 5.14: Stress distribution within the porous section of the converging nozzle struc-
ture. The deformation gradient is logged at each integration point via a UMAT subroutine
(cf. Section 4.3.1). The deformation gradient of the highest stressed area is read-out and
used for a subsequent computation of the stresses in the microstructure (see Figure 5.15).

formation gradient tensor of the highest stressed point within the porous section (see
Figure 5.14) is extracted as

F =




0.999467 −0.000132 −0.000560

−0.001010 1.001701 −0.000383

0.000660 0.000536 0.999724



 .
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Using Equations (4.33) and (4.34) the symmetric displacement gradient tensor is derived
from the displacement gradient tensor. The symmetric displacement gradient tensor is
applied to a micromechanical volume element model representing the microstructure of
the highest stressed point. The results obtained from the micromechanical simulation
show that the stresses on the microstructural level (see Figure 5.15) are considerably
higher than the stresses predicted on the component level (see Figure 5.14). The stress
locally exceeds the yield stress of the bulk material of 800 N

mm2 .
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Figure 5.15: Stress distribution in the microstructure. The RVE depicted in (a) is de-
formed according to the symmetric displacement gradient tensor of the highest stressed
area within the porous region of the converging nozzle structure shown in Figure 5.14.
The stresses present in the microstructure are considerably higher than those observed on
the macroscopic level. A histogram of the stress distribution within the RVE is depicted
in (b).

Based on the results obtained from the sequential multiscale model, the component ge-
ometry can be optimized. The presented example clearly demonstrates the importance of
taking the microstructural influence into account. Using the sequential multiscale model
enables to improves the accuracy of the macroscopic stress prediction and to evaluate
the stresses on the microstructural level at a moderate increase of the computational
expense. However, it is not feasible for nonlinear loading paths.

5.3.2 Concurrent Multiscale Modeling Results

In order to validate the results obtained by the concurrent multiscale approach a simple
uniaxial deformation test is preformed on a cube. The stress response obtained by the
concurrent multiscale approach is compared to the result from a conventional FE model.
The constitutive law is assumed as bilinear elastic-plastic, which is schematically depicted
in Figure 5.17 (b).
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On the macroscopic level, the multiscale model consists of one reduced integrated linear
brick element (C3D8R). The applied boundary conditions (see Figure 5.16) constitute
displacements prescribed on the vertex nodes of the brick element which cause a uniaxial
strain of 0.5 % in x direction. The microscale model which is coupled to the macroscopic

u

u

u

u

x

y

z

Figure 5.16: Macroscopic element with defined boundary conditions on the nodes. The
boundary conditions constitute a uniaxial deformation.

integration point as depicted in Figure 5.17 (a) comprises 1000 fully integrated linear
brick elements (C3D8) [68] with prescribed periodic boundary conditions.
Even though the load case is seemingly trivial it is of fundamental importance in order
to validate the accuracy of the implemented concurrent multiscale computation scheme.
A comparison of the results gained by the multiscale model and the conventional FE
model is presented in Figure 5.17 (d). Due to the trivial load case it is sufficient for
the conventional FE model to contain only one reduced integrated 8-node linear brick
(C3D8R) [68] element. The results show that the concurrent multiscale model provides
the same quantitative values of the von Mises stress as the conventional FE model which
is depicted in Figure 4.19 (d).
The wall clock time recorded in the data (*.dat) file allows to compare the computational
cost of the two modeling approaches. The direct solver of Abaqus/Standard is used for
both the conventional and the concurrent multiscale model. The simulations are run
using an Intel Xeon X5550 CPU with a clock speed of 2.66GHz on a system with 12
GB RAM. The wall clock time for the concurrent multiscale model is recorded with 381
seconds. By comparison, the wall clock time of the conventional FE model is 1 second.
The difference in the wall clock times demonstrates the computational cost of concurrent
multiscale simulations. However, it should be noted that the computation time strongly
depends on the model at hand and the computer hardware. Thus the comparison of
the concurrent multiscale and the conventional FE model only shows a trend and is not
directly scalable to other problems.
Nevertheless, a major advantage of the multiscale scheme is, that it offers the possibility
to obtain additional information about stress and strain quantities within the microstruc-
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Figure 5.17: Model assumptions for the verification of the concurrent multiscale model.
(a) Concurrent multiscale model comprising the macroscopic reduced integrated brick
element and the micromechanical volume element coupled to the integration point of
the macroscopic element. The von Mises Stress in is depicted for both microscopic and
macroscopic models at the end of the deformation. (b) Schematic representation of the
bilinear elasto-plastic constitutive model. (c) The displacement of the vertex nodes is
linearly ramped. (d) The resulting stress strain curve from the concurrent multiscale
model (x) compared to results obtained form a purely macroscopic model (+).

ture. Furthermore the macroscopic stress and strain distributions are based on the un-
derlying microstructure and thus are more accurate compared to the conventional FE
approach. This bears the potential to optimize the design of components with respect to
the materials’ microstructure and the local loading conditions.

The evaluation of the macroscopic stress distribution as well as the ability to evaluate
microscopic quantities are demonstrated by the concurrent multiscale model of a beam
presented in the following. The beam is clamped at one end whereas the tip is deflected
by 1 % of the beam length (cf. Figure 5.18). The beam is supposed to have a pore volume
fraction of 2 % at its bearing point. The pore volume fraction is linearly increased over
its length to a pore volume fraction of 8 % at the tip of the beam. The macroscopic stress
distribution of a deflected beam exhibiting a varying pore volume fraction over its length
as predicted by the concurrent multiscale computation is presented in Figure 5.19. The
stress distribution of a conventional FE model of the beam without considering any pores
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clamped support u

Figure 5.18: Boundary and loading conditions of the beam model. The beam is clamped
at its bearing point, where the tip of the beam is displaced by 1 % of the beam length.

is presented in Figure 5.20. The multiscale model predicts a 4.2% lower von Mises stress
which can be understood considering that by accounting for porosity some material is re-
moved from the beam. Thus for displacement controlled loading the homogenized stress
must be lower compared to the model without considering any porosity. Furthermore the
stress distribution of two attached microstructure models are presented in Figure 5.19.
The concurrent multiscale beam model contains four fully integrated linear brick ele-
ments (C3D8) on the macroscale. A micromechanical model is linked to each of the
32 integration points. The micromechanical models contain between 36343 and 71820
linear tetrahedral elements (C3D4). The wall clock time to complete this simulation is
135221 seconds or 37 hours and 34 minutes. This again demonstrates the immense com-
putational cost of the multiscale computation scheme. An application of the introduced
concurrent multiscale framework for the layout of industrial components is not econom-
ically profitable at present. Nevertheless it shows the potential to improve component
layout processes and resource management in the future.
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Figure 5.19: Working example of the multiscale approach. The pore volume fraction
varies along the beam. Two exemplary underlying microstructures are depicted. The
field plots represent the macroscopic and the microscopic stress distributions.

+1.883e+02
+2.638e+02
+3.393e+02
+4.147e+02
+4.902e+02
+5.657e+02
+6.412e+02
+7.167e+02
+7.921e+02
+8.676e+02
+9.431e+02
+1.019e+03

von Mises Stress
(

N
mm2

)

Figure 5.20: Predicted stress distribution obtained from a macroscopic FE model of the
deflected beam. The constitutive law is equivalent to the one used for the metal matrix
in the multiscale computation (cf. Figure 5.19).



Chapter 6

Conclusions and Outlook

6.1 Conclusions

A micromechancal finite element model to study the influence of pores on the material
behavior has been presented within this work. The assumptions for the computer gen-
erated modeling approach are based on experimental evaluations of porous MAR-M247
cast samples. The results gained by experimental and computational investigations of
porous MAR-M247 samples led to seven important conclusions.

1. The analysis of the CT data shows that the volume distribution of pores is accu-
rately represented by a Lognormal distribution. Attention has to be paid to the
threshold for minimum and maximum pore size. These thresholds are strongly de-
pending on the available experimental data, the aim of the model and engineering
considerations as e.g. rejection limits. The assumptions used within this work are
not universally valid.

2. A spatially random pore distribution is found to be a good approximation for
low and medium pore volume fractions (<13 %) within the MAR-M247 cast sam-
ples. For larger pore volume fraction the assumption of individual, non-intersecting
pores looses its validity.

3. The size of the modeled volume element has to be sufficiently large - representa-
tive - to obtain reliable results. To ensure converged results for low to medium
pore volume fractions (<13 %) the minimum volume element size is found to be
200×200×200 µm3. Obviously applying the model to different materials necessi-
tates a reevaluation of the convergency.

4. Attention has to be paid when defining the input parameters for the model volume
element generation. As shown in the convergence study of the mechanical behavior
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as well as in the statistical evaluation of the geometry parameters, a set of flawed
input parameters can cause inadequate results. Thus, the convergence behavior
should always be critically assessed before an interpretation and further usage of
the results.

5. The results gained by the modeling approach regarding the linear elastic materials
behavior supports the analytical solution provided by the Hashin Strickman up-
per bounds. The main difference between the assumptions made by Hashin and
Strickman and the modeling approach presented within this work is the shape of
the pores. Since the results from the FE model and the analytical solution coincide
we can conclude that the pore shape does not have a significant influence on the
elastic materials behavior.

6. The simulations show that pores trigger stress concentrations within the material.
Plastification starts in the vicinity of pores. The onset of plastification is governed
by the pore volume fraction as well as the pore shape. Plastification starts at a
macroscopic load level well below the offset yield stress. Thus pores do influence
the offset yield stress and provide a potential site for the initiation of cracks.

7. The sequential multiscale model provides a straight forward method to transfer the
results obtained at the microscopic scale to the macroscopic scale. However, the
sequential multiscale model is not able to account for nonlinear load path depen-
dencies of the material behavior. To overcome this limitation so-called concurrent
multiscale models have to be applied. The basic applicability of such an approach is
demonstrated within this work, however, the efficiency of the concurrent multiscale
model needs to be improved to enable an application on an industrial scale.

6.2 Outlook

There are several limitations in the experimental investigations of the porous samples.
First, the number of samples that were available to base the experimental analysis of the
pore characteristics on is very small. Investigating a larger number of samples would
help to validate and refine the linear regression of the parameters for the Lognormal
distribution of the pore volumes.
Within this work the spatial pore distribution is evaluated based on the centroid coor-
dinates of the pores. However, since the shape of the pores is complex, the distance of
the centroids of the pores is just an estimate for the nearest neighbor distance. To im-
prove the evaluation of the nearest neighbor distance, the post processing script for the
CT data should be adapted such that the actual minimum distance between two pores
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can be evaluated. Considering the actual nearest neighbor distance of pores in the mi-
cromechanical model is expected to increase the accuracy of the modeling results, since
the minimum distance between two pores does influence the development of stress and
strain fields between two pores.
Another area of major interest, which is not tackled within this work is the establishment
of a phenomenological fracture criterion. To derive such a criterion tensile tests are
necessary, however casting porous tensile specimens is a very difficult matter, which was
not part of this project. Nevertheless the micromechanical FE model presented within
this work is designed such that a phenomenological fracture criterion based on quantile
evaluation of stress or strain fields can be easily implemented.
Regarding the FE approach presented within this work, there are two main areas of
interest. Firstly, for the micromechanical FE model of porous materials, more general
pore shapes should be implemented. This of course has to be accompanied by more so-
phisticated experimental evaluations of the pore shape e.g. evaluating local and global
curvatures of the pores within the matrix material. Secondly, focus should be directed
towards improving the presented concurrent multiscale approach. The concurrent multi-
scale framework implemented in the course of this project is a first step to directly linking
the microscopic to the macroscopic scale in modern component layout. On the one hand
the validation and the minimal working example presented in Chapter 5.3 proofs the
basic functionality of the concurrent multiscale approach. The immense computational
cost on the other hand demonstrates that it is currently not applicable for real world
component layouts. However, to optimize the component layout of components the con-
sideration of microstructural features bears a huge potential for the future. The devel-
opment and implementation of efficient concurrent multiscale frameworks is definitely
the most exciting area of research in terms of its potential to improve future component
layouts. The multiscale approaches will gain in importance and are vital in order to link
microstructural volume element models and macroscopic component layout.
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Appendix A

Computation of Numerical Tangent

Expanded version of Equation (4.37). The given linear equation system can be solved to
obtain the sought after components of the tangential stiffness tensor C.




1ε11 1ε22 1ε33 1ε12 1ε13 1ε23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 1ε11 0 0 0 0 1ε22 0 0 0 1ε33 0 0 1ε12 1ε13 1ε23 0 0 0
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Appendix B

Initialization of the Concurrent
Multiscale Model

The macroscopic model intended for a multiscale computation is conventionally set up
using Abaqus/CAE. The macroscopic part geometry can be meshed using any predefined
solid elements provided by the Abaqus element library. Since the constitutive behavior on
the macroscopic scale is provided by micromechanical models, a User Material is defined
to incorporate the UMAT subroutine. The UMAT is used to control the link between the
macroscopic and microscopic models. Next the load steps are defined in the step module
and the desired field output and history output variables are specified. To complete the
model definition in Abaqus/CAE, Dirichlet type boundary conditions1 are applied.
The local variation of microstructural parameters of the macroscopic component is gov-
erned by solution-dependent state variables (SDVs). These are defined by the SDVINI
subroutine. As an example a cantilever of 35 mm length exhibiting a locally differing
pore volume fraction is considered. The pore volume fraction should be 2.0% at the root
and 8.0% at the tip of the cantilever. Thus a function in the form

STATEV(1)=2.D0+(COORDS(1)/35.D0)*6 .D0

using the X coordinate of the cantilever is implemented resulting in a state variable field
as depicted in Figure B.1. Naturally the definition of multiple SDVs in the macroscopic
model allows to control further micromechanical quantities as for example the pore vol-
ume distribution, the spatial distribution of the pores and the aspect ratio of the pores
represented in the micromechanical volume element models. Caution has to be paid
when defining these variables since different SDV names are reserved for certain mi-
crostructural parameters as given in Table B.1. For the variation of any further variables
which are not listed in Table B.1 the source code has to be adopted. Each SDV defined

1The implementation of the multiscale framework is restricted to Dirichlet type boundary conditions
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Figure B.1: State variable depending on x position of the cantilever.

Table B.1: Default micromechancial geometry parameters.

Parameter Default value Corresponding SDV name

Aspect ratio of pores 1 SDV1
Pore volume fraction 0 SDV2
Clustering in X, Y and Z direction off SDV3 - SDV6
Pore volume distribution algorithm Lognormal∗)
Minimum and maximum pore volume 0.001-0.005 SDV8 & SDV9
∗)Change of pore volume distribution algorithm is not supported

by the user requires the allocation of memory. The memory allocation is ensured by
inserting

*DEPVAR
1

into the Abaqus input file using the Keyword editor tool. The integer in the second line
indicates the number of state variables that are defined. After the state variables are
defined, and the memory is allocated a job is created in Abaqus/CAE and the input file is
written.
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Draft of Converging Nozzle
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Figure C.1: Draft of the nozzle structure. All non dimensioned cast radii are 5 mm.
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