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Zusammenfassung

Die vorliegende Arbeit ist in drei Abschnitte gegliedert. Die beiden ersten Abschnitte be-
fassen sich mit den Eigenwerten der empirischen Kovarianzmatrix eines multivariaten linearen
Prozesses, basierend auf der Annahme dass sowohl die Anzahl der Beobachtungen als auch
die Dimension des Prozesses gegen unendlich konvergieren. Der letzten Abschnitt beschäftigt
sich mit der Modellierung stochastischer Kovarianzmatrizen in stetiger Zeit.

Zu Beginn des ersten Abschnitts der Arbeit wird angenommen dass die Komponenten des
stationären linearen Prozesses durch unabhängige Kopien eines univariaten linearen Prozesses
gegeben sind. Die Randverteilung des univariaten Prozesses ist regulär variierend mit Index
α ∈ (0, 4). Es wird gezeigt dass der Punktprozess der Eigenwerte der empirischen Kovarianz-
matrix in Verteilung gegen einen Poisson-Punktprozess konvergiert, dessen Intensitätsmaß von
α und der Summe der quadrierten Koeffizienten des zugrunde liegenden linearen Prozesses
abhängt. Dies impliziert sofort die gemeinsame Konvergenz der k-größten Eigenwerte von
XXT. Das erwähnte Resultat wird im Folgenden für Modelle mit stochastischen Koeffizien-
ten verallgemeinert. Falls die Komponenten des linearen Prozesses abhängig sind, lassen sich
obere und untere Schranken für die Spektralnorm von XXT angeben.

Der zweite Abschnitt befasst sich mit der Spektralverteilung von XXT in dem Fall dass der
lineare Prozess unabhängige Komponenten und eine Randverteilung mit endlichen vierten Mo-
menten besitzt. In diesem Fall konvergiert die Spektralverteilung der empirischen Kovarianz-
matrix gegen ein deterministisches Wahrscheinlichkeitsmaß, welches von der Spektraldichte
des linearen Prozesses abhängt. Das deterministische Maß lässt sich eindeutig durch eine
implizite Gleichung für seine Stieltjes-Transformierte charakterisieren. Das gleiche Resultat
erhält man falls die Matrix X zeilenweise durch einen einzigen univariaten linearen Prozess
konstruiert wird.

Im letzten Abschnitt wird die Existenz und Eindeutigkeit von globalen starken Lösungen
für eine Klasse von Stochastischen Differentialgleichungen auf den symmetrisch positiv defi-
niten Matrizen gezeigt. Diese Klasse enthält Wishart Prozesse und allgemeinere affine Sprung-
prozesse deren Diffusionskoeffizient durch den a-ten Matrixexponenten des Prozesses gegeben
ist, wobei 0.5 6 a < 1.





Abstract

This thesis consists of three major topics. The first two parts study the eigenvalues of a large
sample covariance matrix XXT of a multivariate linear process. Corresponding to a statistical
setting where the sample size and the dimension of the process are large, we give asymptotic
results in case where the number of rows and the number of columns of X both tend to infinity.
The third part concerns the modeling of stochastic covariance matrices in time.

In the first part we begin with the assumption that the components of the stationary linear
process are independent copies of some univariate linear process with a marginal distribution
that is regularly varying with tail index α ∈ (0, 4). It is shown that the point process of
the eigenvalues of the sample covariance matrix converges in distribution to a Poisson point
process with intensity measure depending on α and the sum of the squared coefficients of the
underlying linear process. This implies the joint convergence of the k-largest eigenvalues.
The result will further be generalized to random coefficient models. In the case where the
components of the linear process are dependent, we give an asymptotic upper and lower bound
for the spectral norm of XXT.

The second part studies the limiting spectral distribution of XXT in case where the linear
process has independent components with marginal distributions which have finite fourth mo-
ments. If the ratio of the number of rows and columns of X tends to a positive finite constant
y, then the spectral distribution of the sample covariance matrix converges to a non-random
distribution which only depends on y and the spectral density of the underlying linear process.
The limiting distribution is uniquely determined by an implicit equation for its Stieltjes trans-
form. Moreover, it is shown that the same result applies if the linear process is replaced by a
univariate linear process which fills the matrix X row-wise.

In the final part of this thesis, we show the existence of unique global strong solutions of a
class of stochastic differential equations on the cone of symmetric positive definite matrices.
Our result includes Wishart processes and more general affine jump diffusion processes where
the diffusion coefficient is given by the a-th positive semidefinite power of the process itself
with 0.5 6 a < 1.
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CHAPTER 1

Introduction

1.1. Background and motivation

A random matrix ensemble is a sequence of matrices with increasing dimensions and ran-
domly distributed entries. Random Matrix Theory (RMT) studies the asymptotic spectrum,
e.g., limiting eigenvalues and eigenvectors, of random matrix ensembles.

The original motivation to study random matrices came from applications in physics, cf.
the introduction of [81] and the references therein. In nuclear physics one is interested in
the properties of the energy levels of heavy nuclei. The energy levels of a such a system are
described by the eigenvalues of some Hermitian operator in an infinite dimensional Hilbert
space. In many cases this operator is not known, and even if it was, it would be too difficult to
determine its eigenvalues and -vectors. Thus Eugene Wigner [112] proposed to approximate
this operator by a large n × n Hermitian random matrix H which would, in the large n limit,
describe the energy levels of some general heavy nucleus.

Another motivation to study large random matrices comes from mathematical statistics. Of-
ten one tries to reduce the dimensionality of a data set while preserving as much of the variation
in the data as possible. To this end, Principal Component Analysis (PCA) [71] corresponds to
a linear transformation of the data to a new set of variables, the principal components, which
are ordered such that the first few retain most of the variation. Therefore one obtains a lower
dimensional representation of the data by retaining only the first few principal components. If
the data is observed from a multivariate time series and collected in some rectangular p × n
matrix X, then the empirical variances of the first k-principal components are exactly the k-
largest eigenvalues of the p × p sample covariance matrix 1

n XXT. In this context, p refers to
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1. Introduction

the dimension of the observed time series and n to the size of the sample. In modern statistical
applications one often has access to a vast amount of high-dimensional data, thus p and n may
be quite large. A reasonable asymptotic framework accounts for this by assuming that both
p and n tend to infinity. This motivates to study matrices of the form XXT in the context of
Random Matrix Theory.

Of course, Hermitian and sample covariance matrices are not the only examples of matrices
studied in RMT. Toeplitz, Circulant and Hankel matrices [27] have been studied as well. Fur-
thermore, there exist results for the complex eigenvalues of non-symetric rectangular random
matrices, cf. [104] and the references therein. However, we will not further discuss matrices
of this kind.

While we have explained how applications in physics naturally lead to the study of Hermi-
tian random matrices, and applications in statistics to the study of sample covariance matrices,
the joint distribution of the matrix entries is another feature which differentiates random matrix
ensembles. It is frequently assumed that the matrix entries are independent (subject to symme-
try conditions) and identically distributed in order to guarantee the mathematical tractability
of the model. As an example, let A be a real symmetric matrix such that all entries on and
above the diagonal are independent and identically distributed (iid). A matrix of this type is
called Wigner matrix in honor of the contributions of Eugene Wigner to RMT. The joint den-
sity of the entries of A is just the product density. Furthermore, if the matrix A is orthogonally
invariant, i.e., A and OAOT have the same distribution for any orthogonal matrix O, then it is
possible to compute the joint density of the eigenvalues of A, see, for instance, [2]. This is
then a starting point to analyze the limiting behaviour of the eigenvalues of A. An important
example of an orthogonally invariant ensemble is the Gaussian Orthogonal Ensemble (GOE)
which consists of symmetric random matrices where the entries on and above the diagonal are
iid Gaussian distributed. Many of the results shown for the GOE could later be generalized
to hold for Wigner matrices with more general non-Gaussian distributions satisfying some
moment conditions, see e.g. [106] and [48].

Sample covariance matrices of the form XXT, where X is some rectangular random matrix,
can be treated similarly as GOE matrices if they are orthogonally invariant. This is again the
case when X has iid Gaussian entries. The matrix XXT is then said to have a Wishart distri-
bution. If, for example, the columns of X are given by the observations of some multivariate
linear process, i.e., a weighted sum (or series) of iid random vectors, then XXT is not orthogo-
nally invariant in general. Therefore it might be hard or even impossible to analytically obtain
the joint density of the eigenvalues of a sample covariance matrix. Thus other techniques have
to be employed. Many results in this thesis give results for this kind of matrices. We consider
matrices with entries that have a light-tailed marginal distribution, i.e., a finite fourth moment,
as well as matrices with a heavy-tailed marginal distribution which has an infinite fourth mo-
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1.2. Outline of the thesis

ment.

When the random matrix ensemble is specified by the symmetry class of the matrices and the
joint distribution of its entries, one is able to study the eigenvalues of this ensemble. Clearly,
when the dimension of a matrix goes to infinity then so does the number of its eigenvalues, so
the vector of all eigenvalues is not an element of a fixed dimensional space and can therefore
not be studied conveniently. If A is symmetric, then it has real eigenvalues, so one possibility
is to investigate its spectral distribution FA. For any subset B of the real line, FA(B) counts
the fraction of eigenvalues of A which are located in the set B. Thus FA is a random measure.
Typically, FA converges, suitably normalized, to a non-random limiting measure that is uni-
versal to a large class of random matrix ensembles [9]. For example, if A is a Wigner matrix
with a marginal distribution which has a finite variance, then FA converges to the semi-circle
distribution. Sample covariance matrices of the form XXT, where X has iid entries with finite
variance, converge to the Marčenko-Pastur-law, see Chapter 2 for details.
Another possibility is to investigate some characteristic eigenvalue of A. For example, if A is
from the GOE, then the normalized largest eigenvalue of A converges to the Tracy-Widom-
distribution [107]. The same result holds true for the largest eigenvalue of a sample covariance
matrix, cf. the introduction of Chapter 2. In this thesis we study the global behaviour of the
eigenvalues of light-tailed sample covariance matrices via their spectral distribution as well as
the extreme eigenvalues in case the matrix entries are heavy-tailed. Further possible topics as
e.g. the eigenvectors of a large random matrix are not a focus of this thesis, for more informa-
tion see [105] and the references therein.

The upcoming section gives an outline of this thesis. For a more specific overview on the
past and current literature on Random Matrix Theory we refer to the individual introductions
of Chapters 2 to 6. Furhtermore, a comprehensive introduction to Random Matrix Theory can
be found in the textbooks [2], [9], [81]; for a brief overview we recommend the survey articles
[45], [70] and [108]. An introduction to the modelling of covariance matrices in continuous
time is given in Chapter 7.

1.2. Outline of the thesis

Part I contains various results for the extreme eigenvalues of a sample covariance matrix of
dependent observations with heavy-tails.

In Chapter 2 we study the joint limiting distribution of the k largest eigenvalues of a p × p
sample covariance matrix XXT based on a large p × n observation matrix X. The rows of X
are given by independent copies of a linear process, Xit =

∑
j c jZi,t− j, with regularly varying

noise (Zit) with tail index α ∈ (0, 2). It is shown, as n→ ∞ and p→ ∞ at a suitable rate, that

3



1. Introduction

the point process based on the eigenvalues of XXT converges in distribution to a Poisson point
process with intensity measure depending on α and

∑
c2

j . This result is extended to random
coefficient models where the coefficients of the linear processes (Xit) are given by c j(θi), for
some ergodic sequence (θi), and thus vary in each row of X. As a by-product, we obtain a
proof of the corresponding result for matrices with iid entries in cases where p/n goes to zero
or infinity.

Subsequently, in Chapter 3, the results from Chapter 2 are extended to the case where α ∈
[2, 4). Apart from the special case α = 2, this implies that our observations have a finite
variance but an infinite fourth moment. That is, for example, often the case for financial data.
Since PCA requires the existence of second moments, this assumption is also more consistent
with the goal to derive a theoretical framework for analyzing high-dimensional data via PCA.
In this setting, the entries on the diagonal of XXT have a finite mean that has to be subtracted
in order to obtain a non-trivial distributional limiting result. Hence we study the eigenvalues
of the matrix XXT − n

∑
j c2

j EZ2
11Ip, where Ip denotes the identity matrix.

In Chapter 4 we study the random matrix model X̂ = (X̂it) with

X̂it =
∞∑

j,k=−∞

c jθkZi−k,t− j, (1.2.1)

where (Zit) is regularly varying with tail index α ∈ (0, 4). In contrast to the models from
Chapter 2 and 3, the matrix X̂ has dependent rows and columns. The motivation is that the
linear processes used in stochastic modelling typically do not have independent components.
If all θk in (1.2.1) are zero except θ0 being equal to one, then X̂ has independent rows and this
model reduces to the one studied in Chapter 2 and 3. We give an asymptotic lower and upper
bound for the largest eigenvalue (i.e., the spectral norm) of X̂X̂T in the case α ∈ (0, 2), and for
the largest eigenvalue of X̂X̂T − nEZ2

11
∑

j c2
j HHT when α ∈ [2, 4), where H = (Hi j) ∈ Rp×3p

is given by Hi j = θp−( j−i)1{06 j−i62p}.

As for Part II, we shift our attention from heavy to light-tailed matrices with entries which
have finite fourth moments, and study the spectral distribution of a sample covariance matrix.

In Chapter 5 we derive the distribution of the eigenvalues of a sample covariance matrix
when the data is modelled as a linear process (Xi,t)t=1,...,n = (

∑∞
j=0 c jZi,t− j)t=1,...,n, where

{Zi,t} are assumed to be independent random variables with finite fourth moments satisfying
a Lindeberg-type condition. If the sample size n and the number of variables p = pn both
converge to infinity such that y = limn→∞ n/pn > 0, then the empirical spectral distribution
of p−1XXT converges to a non-random distribution which only depends on y and the spec-
tral density of (X1,t)t∈Z. In particular, our results apply to (fractionally integrated) ARMA
processes, which we illustrate by some examples.

In Chapter 6 we introduce a random matrix model where the entries are dependent across
both rows and columns. More precisely, we investigate p × n matrices of the form X̃ =

4



1.2. Outline of the thesis

(X(i−1)n+t)it derived from a single linear process Xt =
∑

j c jZt− j, where the {Zt} are inde-
pendent random variables with bounded fourth moments. We show that, when both p and n
tend to infinity such that the ratio p/n converges to a finite positive limit, the empirical spectral
distribution of p−1X̃X̃T converges almost surely to the same deterministic measure which has
been derived in Chapter 5. Thus the matrix p−1X̃X̃T can be used as an approximation to the
sample covariance matrix of a high-dimensional process whose components are independent
copies of Xt, when only a single component is observed.

As mentioned before, if the matrix X from Part II has iid standard Gaussian entries, then
XXT is called Wishart matrix. It is easy to see that, for fixed dimension p and sample size
n→ ∞, 1

n XXT converges to the identity matrix. Thus, a Wishart matrix is a consistent estima-
tor of the covariance matrix of iid univariate Gaussian observations for a fixed point in time.
In many applications, e.g. derivative pricing and hedging in finance, one needs a stochastic
model for the covariance matrix in continuous time. To this end, one replaces the entries of
X by independent standard Brownian motions Bi j,t. Then XtXT

t with Xt = (Bi j,t) is called
Wishart process and is an example of a matrix variate process in the cone of symmetric pos-
itive definite matrices. In Part III we consider a large class of fixed dimensional covariance
matrix models in continuous time which are defined as solutions to a stochastic differential
equation (SDE) on the cone of symmetric positive definite matrices. More precisely, we show
the existence of unique global strong solutions of this class of SDEs. Our result includes affine
jump diffusion processes and therefore considerably extends the known statements concerning
Wishart processes, which have been extensively employed in financial mathematics. More-
over, we consider stochastic differential equations where the diffusion coefficient is given by
the a-th positive semidefinite power of the process itself with 0.5 < a < 1 and obtain existence
conditions for them. In the case of a diffusion coefficient which is linear in the process we
likewise get a positive definite analogue of the univariate GARCH diffusions.

5
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CHAPTER 2

Limit Theory for the largest eigenvalues of sample covariance
matrices with heavy-tails1

2.1. Introduction

Recently there has been increasing interest in studying large dimensional data sets that arise in
finance, wireless communications, genetics and other fields. Patterns in these data can often be
summarized by the sample covariance matrix, as done in multivariate regression and dimen-
sion reduction via factor analysis. Therefore, our objective is to study the asymptotic behavior
of the eigenvalues λ(1) > . . . > λ(p) of a p × p sample covariance matrix XXT, where the data
matrix X is obtained from n observations of a high-dimensional stochastic process with values
in Rp. Classical results in this direction often assume that the entries of X are independent
and identically distributed (iid) or satisfy high moment conditions. Our goal is to weaken the
moment conditions by allowing for heavy-tails, and the assumption of independent entries by
allowing for dependence within the rows and columns. Potential applications arise in portfolio
management in finance, where observations typically have heavy-tails and dependence.

Assuming that the data comes from a multivariate normal distribution, one is able to com-
pute the joint distribution of the eigenvalues (λ(1), . . . , λ(p)), see [68]. Under the additional
premise that the dimension p is fixed while the sample size n goes to infinity, Anderson [4]
obtains a central limit like theorem for the largest eigenvalue. Clearly, it is not possible to
derive the joint distribution in a general setting where the distribution of X is not invariant
with respect to orthogonal transformations. Furthermore, since in modern applications with

1This chapter is based on Richard A. Davis, Oliver Pfaffel and Robert Stelzer: Limit Theory for the largest
eigenvalues of sample covariance matrices with heavy-tails. Preprint.
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2. Limit Theory for the largest eigenvalues of sample covariance matrices

large dimensional data sets, p might be of similar or even larger order than n, it might be more
suitable to assume that both p and n go to infinity, so Anderson’s result may not be a good
approximation in this setting. For example, considering a financial index like the S&P 500,
the number of stocks is p = 500, whereas, if daily returns of the past 5 years are given, n is
only around 1300. In genetic studies, the number of investigated genes p might easily exceed
the number of participating individuals n by several orders of magnitude. In this large n, large
p framework results differ dramatically from the corresponding fixed p, large n results - with
major consequences for the statistical analysis of large data sets [69].

Spectral properties of large dimensional random matrices is one of many topics that has
become known under the banner Random Matrix Theory (RMT). The original motivation for
RMT comes from mathematical physics [44], [112], where large random matrices serve as a
finite-dimensional approximation of infinite-dimensional operators. Its importance for statis-
tics comes from the fact that RMT may be used to correct traditional tests or estimators which
fail in the ‘large n, large p’ setting. For example, Bai et al. [8] gives corrections on some
likelihood ratio tests that fail even for moderate p (around 20), and El Karoui [46] consistently
estimates the spectrum of a large dimensional covariance matrix using RMT. Thus statisti-
cal considerations will be our motivation for a random matrix model with heavy-tailed and
dependent entries.

Before describing our results, we will give a brief overview of some of the key results from
RMT for real-valued sample covariance matrices XXT. A more detailed account on RMT
can be found, for instance, in the textbooks [2], [9], or [81]. Here X is a real p × n random
matrix, and p and n go to infinity simultaneously. Let us first assume that the entries of X
are iid with variance 1. Results on the global behavior of the eigenvalues of XXT mostly
concern the spectral distribution, that is the random probability measure of its eigenvalues
p−1 ∑p

i=1 εn−1λ(i)
, where ε denotes the Dirac measure. The spectral distribution converges, as

n, p→ ∞ with p/n→ γ ∈ (0, 1], to a deterministic measure with density function

1
2πxγ

√
(x+ − x)(x − x−)1(x−,x+)(x), x± B (1 ±

√
γ)2,

where 1 denotes the indicator function. This is the so called Marčenko–Pastur law [77], [110].
One obtains a different result if XXT is perturbed via an affine transformation [77], [86]. Based
on these results, [89] treats the case where the rows of X are given by independent copies of a
linear process. Apart from a few special cases, the limiting spectral distribution is not known
in a closed form if the entries of X are not independent.

Although the eigenvalues of XXT offer various interesting local properties to be studied, we
will only focus on the joint asymptotic behavior of the k largest eigenvalues (λ(1), . . . , λ(k)),
k ∈ N. This is motivated from a statistical point of view since the variances of the first k
principal components are given by the k largest eigenvalues of the covariance matrix. Geman
[51] shows, assuming that the entries of X are iid and have finite fourth moments, that n−1λ(1)

10



2.1. Introduction

converges to x+ = (1 +
√
γ)2 almost surely if p/n→ γ ∈ (0,∞). Moreover, if the entries of

X are iid standard Gaussian, Johnstone [69] shows that

√
n +
√

p

3
√

1√
n
+ 1√

p

 λ(1)(√
n +
√

p
)2 − 1

 D
−→ ξ,

where ξ follows the Tracy–Widom distribution with β = 1. Soshnikov [99] extends this to
more general symmetric non-Gaussian distributions if the matrix X is nearly square, and ob-
tains a similar result for the joint convergence of the k largest eigenvalues. The Tracy–Widom
distribution first appeared as the limit of the largest eigenvalue of a Gaussian Wigner matrix
[107]. Péché [87] shows that the assumption of Gaussianity in Johnstone’s result can be re-
placed by the assumption that the entries of X have a symmetric distribution with sub-Gaussian
tails, and she allows for γ being zero or infinity.

There exist results on extreme eigenvalues of XXT which include dependence within the
rows or columns of X, but most of them are only valid if X has complex-valued entries such
that its real as well as its complex part have a non-zero variance. A notable exception, where
the real-valued case is considered, is [19]. They assume that the rows of X are normally
distributed with a covariance matrix which has exactly one eigenvalue not equal to one.

In contrast to the light tailed case described above, there exist only a handful of articles
dealing with sample covariance matrices XXT obtained from heavy-tailed observations. All
these results only apply to matrices X with iid entries. Belinschi et al. [14] compute the
limiting spectral distribution of sample covariance matrices based on observations with infinite
variance. Regarding the k-largest eigenvalues, Soshnikov [100] gives the weak limit in case the
underlying distribution of the matrix entries is Cauchy. Biroli et al. [18] argued, using heuristic
arguments and numerical simulations, that Soshnikov’s result extends to general distributions
with regularly varying tails with index 0 < α < 4. A mathematically rigorous proof of this
claim followed by Auffinger et al. [7].

We extend the previous results for 0 < α < 2 by allowing for dependent entries. More
specifically, the rows of X are given by independent copies of some linear process. Their
respective coefficients can either all be equal (Section 2.2.1) or, more generally, conditionally
on a latent process, vary in each row (Section 2.2.3). In the latter case the rows of X are not
necessarily independent. The limiting Poisson process of the eigenvalues of XXT depends on
the tail index α as well as the coefficients of the observed linear processes. As a by-product,
we obtain an independent proof of Soshnikov’s result for iid entries which also holds in cases
where γ ∈ {0,∞}.

The chapter is organized as follows. The main results will be presented in Section 2 while
the proofs will be given in Section 3. Results from the theory of point processes and regular
variation are required through most of this chapter. A detailed account on both topics can be
found in a number of texts. We mainly adopt the setting, including notation and terminology,
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2. Limit Theory for the largest eigenvalues of sample covariance matrices

of Resnick [96].

2.2. Main results on heavy-tailed random matrices with
dependent entries

2.2.1. A first result on the largest eigenvalue

Let (Zit)i,t be an array of iid random variables with marginal distribution that is regularly
varying with tail index α > 0 and normalizing sequence an, i.e.,

lim
n→∞

nP(|Zit| > anx) = x−α, for each x > 0. (2.2.1)

Equivalently, this means that (|Zit|) is in the maximum domain of attraction of a Fréchet dis-
tribution with parameter α > 0. The sequence an is then necessarily characterized by

an = n1/αL(n), (2.2.2)

for some slowly varying function L : R+ → R+, i.e., a function with the property that, for
each x > 0, limt→∞ L(tx)/L(t) = 1. In certain cases we also assume that Z11 satisfies the tail
balancing condition, i.e., the existence of the limits

lim
x→∞

P(Z11 > x)
P(|Z11| > x)

= q and lim
x→∞

P(Z11 6 −x)
P(|Z11| > x)

= 1 − q (2.2.3)

for some 0 6 q 6 1. For each p, n ∈N, let X = (Xit) be the p× n data matrix, where, for each
i,

Xit =
∞∑

j=−∞

c jZi,t− j (2.2.4)

is a stationary linear times series. To guarantee that the series in (2.2.4) converges almost
surely, we assume that

∞∑
j=−∞

|c j|
δ < ∞ for some δ < min{α, 1}. (2.2.5)

Thus in our model the rows of X are given by iid copies of a linear process. We denote by
λ1, . . . , λp the unordered, and by λ(1) > . . . > λ(p) the ordered eigenvalues of the p× p sample
covariance matrix XXT. They are studied via the induced point process

Nn B

p∑
i=1

εa−2
npλi

. (2.2.6)

12



2.2. Main results on heavy-tailed random matrices with dependent entries

We will always assume that p = pn is an integer-valued sequence in n that goes to infinity as
n→ ∞ in order to obtain results in the ‘large n, large p’ setting. In the following we suppress
the dependence of p on n so as to simplify the notation wherever this does not cause any
ambiguity. In [7, 100] the iid case is considered, i.e., Xit = Zit, assuming that the condition
(2.2.1) holds for 0 < α < 4. They show that, if p, n→ ∞ with

lim
n→∞

pn

n
= γ ∈ (0,∞), (2.2.7)

Nn converges in distribution to a Poisson process N with intensity measure ν̂((x,∞]) = x−α/2.
Our next theorem extends this result by considering the case where X has dependent entries.
More precisely, the rows of X are given by independent copies of a linear process. It will
turn out that the intensity measure of the limiting Poisson process depends on the sum of the
squared coefficients of the underlying linear process.

Theorem 2.1. (i) Define the matrix X = (Xit) as in equations (2.2.1), (2.2.4) and (2.2.5)
with α ∈ (0, 2). Suppose pn, n→ ∞ such that

lim sup
n→∞

pn

nβ
< ∞ (2.2.8)

for some β > 0 satisfying

a) β < ∞ if α ∈ (0, 1], and

b) β < max
{

2−α
α−1 , 1

2

}
if α ∈ (1, 2).

Further assume, in case α ∈ (5/3, 2), that Z11 has mean zero and satisfies the tail
balancing condition (2.2.3). Then the point process Nn of the eigenvalues of a−2

np XXT

converges in distribution to a Poisson point process N with intensity measure ν which is
given by

ν((x,∞]) = x−α/2

∣∣∣∣∣∣∣∣
∞∑

j=−∞

c2
j

∣∣∣∣∣∣∣∣
α/2

, x > 0.

(ii) Assume that Xit = Zit and equation (2.2.1) is satisfied with α ∈ (0, 2). Further, let either

a) pn = nκl(n) for some κ ∈ [0,∞), where l is a slowly varying function which
converges to infinity if κ = 0, and is bounded away from zero if κ = 1, or

b) pn ∼ C exp(cnκ) for some κ, c, C > 0.

Then Nn converges in distribution to a Poisson point process with intensity measure
given by ν̂((x,∞]) = x−α/2.

Theorem 2.1 (i) weakens the assumption of independent entries made so far in the literature
on heavy-tailed random matrices at the expense of assumption (2.2.8), which is more restrictive

13



2. Limit Theory for the largest eigenvalues of sample covariance matrices

than the usual assumption (2.2.7) if α ∈ [1.5, 2). However, if α ∈ (0, 1.5), our assumption
(2.2.8) is more general than (2.2.7). This is important for statistical applications, because
p and n are usually fixed and there is no functional relationship between the two of them.
If we restrict ourselves to the iid case, then Theorem 2.1 (ii) shows that the point process
convergence result also holds in many cases where the limit γ from condition (2.2.7) is zero or
infinity, for example, by assuming that p is regularly varying in n.

It is well known [96] that a Poisson process has an explicit representation as a transformation
of a homogeneous Poisson process. In our case, the limiting Poisson process N with intensity
measure ν from Theorem 2.1 can be written as

N D
=
∞∑

i=1

εΓ−2/α
i

∑∞
j=−∞ c2

j
, (2.2.9)

where Γi =
∑i

k=1 Ek is the successive sum of iid exponential random variables Ek with mean
one. The points of N are labeled in decreasing order so that, by the continuous mapping
theorem, we can easily deduce the weak limit of the k largest eigenvalues of XXT.

Corollary 2.2.1. Under the assumptions of Theorem 2.1 we have, for each fixed integer k > 1,
that

a−2
np

(
λ(1), . . . , λ(k)

) D
−→
n→∞

(
Γ−2/α

1 , . . . , Γ−2/α
k

)  ∞∑
j=−∞

c2
j

 .

In particular, for each x > 0,

P

λ(k)a2
np
6 x

 −→n→∞
P(N(x,∞) 6 k − 1) = e−x−α/2

k−1∑
m=0

x−mα/2

m!

∑
j

c2
j


mα/2

.

Equivalently, in terms of the singular values s(1) =
√
λ(1) > . . . > s(p) =

√
λ(p) of the

matrix X, we obtain, for any fixed positive integer k, that

a−1
np

(
s(1), . . . , s(k)

) D
−→
n→∞

(
Γ−1/α

1 , . . . , Γ−1/α
k

) √√√ ∞∑
j=−∞

c2
j .

In a nutshell, the results in this section give the asymptotic behavior of the k largest eigen-
values of a sample covariance matrix XXT when the rows of X are given by iid copies of some
linear process with infinite variance. Our results will be generalized further in Section 2.2.3,
where, conditionally on a latent process, the rows of X will be independent but not identically
distributed.
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2.2. Main results on heavy-tailed random matrices with dependent entries

2.2.2. Examples and discussion

Theorem 2.1 holds for any linear process which has regularly varying noise with infinite vari-
ance as long as condition (2.2.5) is satisfied. Since the coefficients of a causal ARMA process
decay exponentially, (2.2.5) is trivially satisfied in this case. As two simple examples, con-
sider an MA(1) process Xit = Zit + θZi,t−1, which satisfies

∑
j c2

j = 1 + θ2; and a causal
AR(1) process Xit − φXi,t−1 = Zit, |φ| < 1, where

∑
j c2

j = (1 − φ2)−1. Yet another example of
a linear process fitting in our framework is a fractionally integrated ARMA(p, d, q) processes
with d < 0 and regularly varying noise with index α ∈ [1, 2), see, e.g., [24] for further details.
In this case |c j| 6 C jd−1 is summable and therefore condition (2.2.5) is satisfied for α > 1.

Regarding the normalization in (2.2.6), the sequence an is chosen such that the individual
entries of the matrix Z B (Zit)i,t satisfy (2.2.1). Replacing the iid sequence in the rows of Z
with a linear process to obtain the matrix X changes the tail behavior of its entries. Indeed, the
result stated in Davis and Resnick [39, eq. (2.7)] shows, under the assumption (2.2.3), that

nP

∣∣∣∣∣∑
j

c jZ1,t− j

∣∣∣∣∣ > a2
npx

 −→n→∞
x−α

∑
j

|c j|
α.

In view of (2.2.1) this suggests the normalization X̃it =
(∑

j |c j|
α
)−1/α

Xit. Denote by λ̃1, . . . , λ̃p

the eigenvalues of X̃X̃T, where X̃ = (X̃it)i,t. Since this is just a multiplication by a constant,
we immediately obtain, by Theorem 2.1, that

p∑
i=1

εa−2
np λ̃i

D
−→
n→∞

Ñ,

where Ñ is a Poisson process with intensity measure ν̃ given by

ν̃((x,∞]) = x−α/2

∣∣∣∣∑ j c2
j

∣∣∣∣α/2∑
j |c j|α

. (2.2.10)

Thus
∣∣∣∣∑ j c2

j

∣∣∣∣α/2
(
∑

j |c j|
α)−1 quantifies the effect of the dependence on the point process of the

eigenvalues when the tail behavior of each marginal Xit is equivalent to the iid case.
Assume for a moment that the dimension p is fixed for any n. Then it follows easily from

[39, Theorem 4.1] and arguments of this chapter that a−2
n λ(1) →

∑
j c2

j max16i6p S i in distribu-
tion as n → ∞, where (S i) are independent positive stable with index α/2, 0 < α < 2. If p is
large, one would intuitively expect that max16i6p S i ≈ p2/αΓ−2/α

1 , where Γ1 is exponentially
distributed with mean 1. Corollary 2.2.1 not only makes this intution precise but also gives the
correct normalization a−2

np . The distribution of the maximum of p independent stables is not
known analytically, hence ‘large n, large p’ in fact gives a simpler solution than the traditional
‘fixed p, large n’ setting.
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2. Limit Theory for the largest eigenvalues of sample covariance matrices

2.2.3. Extension to random coefficient models

So far we have assumed that our observed process has independent components, each of which
are modelled by the same linear process. From now on we will allow for a different set of
coefficients in each row. To this end, let (θi)i∈N be a sequence of random variables independent
of (Zit) with values in some space Θ. Assume that there is a family of measurable functions
(c j : Θ → R) j∈N such that

sup
θ∈Θ
|c j(θ)| 6 c̃ j, for some deterministic c̃ j satisfying condition (2.2.5). (2.2.11)

Our observed processes have the form

Xit =
∞∑

j=−∞

c j(θi)Zi,t− j (2.2.12)

where (Zit) is given as in (2.2.1) with α ∈ (0, 2). Thus, conditionally on the latent process (θi),
the rows of X are independent linear processes with different coefficients. Unconditionally, the
rows of X are dependent if the sequence (θi) is dependent. Theorem 2.2 below covers three
classes among which (θi) may be chosen: stationary ergodic; stationary but not necessarily
ergodic; and ergodic in the Markov sense but not necessarily stationary. In the following we
say that a sequence of point processes Mn converges, conditionally on a sigma-algebra H ,
in distribution to a point process M , if the conditional Laplace functionals converge almost
surely, i.e., if there exists a measurable set B with measure one such that for all ω ∈ B and all
nonnegative continuous functions f with compact support,

E
(
e−Mn( f )

∣∣∣H)
(ω) −→

n→∞
E

(
e−M( f )

∣∣∣H)
(ω) as n→ ∞. (2.2.13)

Theorem 2.2. Define X = (Xit) with Xit as given in (2.2.12). Suppose that (2.2.11) is satisfied,
and p, n→ ∞ such that (2.2.8) holds under the same conditions as in Theorem 2.1 (i). Further
assume, in case α ∈ (5/3, 2), that Z11 has mean zero and satisfies the tail balancing condition
(2.2.3).

(i) If (θi) is a stationary ergodic sequence, then, both conditionally on (θi) as well as un-
conditionally, we have that

p∑
i=1

εa−2
npλi

D
−→
n→∞

∞∑
i=1

ε
Γ−2/α

i

∥∥∥∥∑ j c2
j (θ1)

∥∥∥∥α
2

, (2.2.14)

with the constant
∥∥∥∥∑ j c2

j(θ1)
∥∥∥∥α

2
=

(
E

∣∣∣∣∑ j c2
j(θ1)

∣∣∣∣α/2
)2/α

, and (Γi) as in (2.2.9).
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2.3. Proofs and auxiliary results

(ii) If (θi) is stationary but not necessarily ergodic, then we have, conditionally on (θi), that

p∑
i=1

εa−2
npλi

D
−→
n→∞

∞∑
i=1

εΓ−2/α
i Y2/α ,

with Y = E
(
|
∑

j c2
j(θ1)|α/2|G

)
, where G is the invariant σ-field generated by (θi). In

particular, Y is independent of (Γi).

(iii) Suppose (θi) is either an irreducible Markov chain on a countable state space Θ or a
positive Harris chain in the sense of Meyn and Tweedie [83]. If (θi) has a stationary
probability distribution π then, conditionally on (θi) as well as unconditionally, (2.2.14)
holds with ∥∥∥∥∥∥∥∥

∑
j

c2
j(θ1)

∥∥∥∥∥∥∥∥α
2

=

∫Θ

∣∣∣∣∣∑
j

c2
j(θ)

∣∣∣∣∣α/2
π(dθ)


2/α

.

One can view the assumptions (i) and (ii) of Theorem 2.2 in a Bayesian framework in which
the parameters of the observed process are drawn from an unknown prior distribution. As an
example, let (θi) be a stationary ergodic AR(1) process θi = φθi−1 + ξi, where |φ| , 1 and
(ξi) is a sequence of bounded iid random variables, and set Xit = Zit + θiZi,t−1. Then, by
Theorem 2.2 (i), we would expect, for n and p large enough, that

a−2
npλ(1) ≈ Γ−2/α

1

(
E |1 + θ1|

α/2
)2/α

.

Models of this kind are refered to as random coefficient models and often used in times series
analysis, see, e.g., [74] for an overview. In the setting of Theorem 2.2 (iii) one might think of
a Hidden Markov Model where the latent Markov process (θi) evolves along the rows of X,
each state θi defining another univariate linear model.

2.3. Proofs and auxiliary results

The first step is to show that the matrix XXT is well approximated by its diagonal, see Sec-
tion 2.3.2. In the second step we then derive the extremes of the diagonal of XXT in Sec-
tion 2.3.3. Both steps make use of a large deviation result which is presented in the upcoming
section.

2.3.1. A large deviation result and its consequences

The next theorem gives the joint large deviations of the sum and the maximum of iid nonneg-
ative random variables with infinite variance.
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2. Limit Theory for the largest eigenvalues of sample covariance matrices

Proposition 2.3.1. Let (xn)n∈N and (yn)n∈N be sequences of nonnegative numbers with xn →

∞ such that xn/yn → γ ∈ (0,∞]. Suppose (Yt)t∈N is an iid sequence of nonnegative random
variables with tail index α ∈ (0, 2) and normalizing sequence bn. If 1 6 α < 2, we assume
that bnxn/n1+δ → ∞ for some δ > 0. Then

lim
n→∞

P
(∑n

t=1 Yt > bnxn, max16t6n Yt > bnyn
)

nP(Y1 > bn max{xn, yn})
= 1. (2.3.1)

Proof. Let us first assume that 0 < α < 1. Using standard arguments from the theory of
regularly varying functions, see e.g. [96], it can be easily seen that for any positive sequence
zn → ∞ we have

lim
n→∞

P(max16t6n Yt > bnzn)

nP(Y1 > bnzn)
= 1. (2.3.2)

Obviously the limit in (2.3.1) is greater or equal than one because
∑n

t=1 Yt > max16t6n Yt. Thus
it is only left to prove that it is also smaller. Denote by Y(1) > . . . > Y(n) the order statistics of
Y1, . . . , Yn. By decomposing

∑
t Yt into the sum of maxt Yt and lower order terms we see that,

for any θ ∈ (0, 1),

P
(∑n

t=1 Yt > bnxn, max16t6n Yt > bnyn
)

nP(Y1 > bn max{xn, yn})
6

P(max16t6n Yt > bn max{θxn, yn})

nP(Y1 > bn max{xn, yn})

+
P

(∑n
t=2 Y(t) > bnxn(1 − θ)

)
nP(Y1 > bn max{xn, yn})

.

By an application of [96, Proposition 0.8 (iii)] one can show similarly as in the proof of (2.3.2)
that

lim
θ→1

lim
n→∞

P(max16t6n Yt > bn max{θxn, yn})

nP(Y1 > bn max{xn, yn})
= 1.

Hence, it is only left to show that the second summand vanishes as n → ∞. To this end we
partition the underlying probability space into {Y(2) 6 εbnxn} ∪ {Y(2) > εbnxn}, ε > 0, to obtain

P
(∑n

t=2 Y(t) > bnxn(1 − θ)
)

nP(Y1 > bn max{xn, yn})
6

P
(∑n

t=2 Y(t)1{Y(2)6εbnxn} > bnxn(1 − θ)
)

nP(Y1 > bn max{xn, yn})

+
P

(
Y(2) > εbnxn

)
nP(Y1 > bn max{xn, yn})

= Σ1 + Σ2.

Denote by Mn = max16t6n Yt and zn = max{xn, yn}. Then easy combinatorics and (2.3.2)
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yield

Σ2 =
1 − P

(
Y(2) 6 εbnxn

)
nP(Y1 > bnzn)

=
1 − P (Mn 6 εbnxn)

nP(Y1 > bnzn)
−

nP (Mn−1 6 εbnxn) P(Y1 > εbnxn)

nP(Y1 > bnzn)

=
P (Mn > εbnxn)

nP(Y1 > εbnxn)

P(Y1 > εbnxn)

P(Y1 > bnzn)
−

P(Y1 > εbnxn)

P(Y1 > bnzn)
P (Mn−1 6 εbnxn)

∼
P(Y1 > εbnxn)

P(Y1 > bnzn)
(1 − P (Mn−1 6 εbnxn)) −→

n→∞
0.

The convergence to zero follows from P (Mn−1 6 εbnxn) → 1 and, by [96, Proposition 0.8
(iii)], P(Y1>εbnxn)

P(Y1>bnzn)
→ ε−α max{1, γ−α}. Thus it is only left to show that Σ1 goes to zero. By

Markov’s inequality and Karamata’s Theorem [96, Theorem 0.6] we have that

Σ1 6
P

(∑n
t=1 Yt1{Yt6εbnxn} > bnxn(1 − θ)

)
nP(Y1 > bn max{xn, yn})

6
1

bnxn(1 − θ)
E(Y11{Y16εbnxn})

P(Y1 > bnzn)

∼
1

(1 − θ)
α

1 − α
εP(Y1 > εbnxn)

P(Y1 > bnzn)
−→
n→∞

1
(1 − θ)

α

1 − α
ε1−α max{1, γ−α},

which converges to zero as ε goes to zero, since α < 1. Thus for 0 < α < 1 the proof is
complete. If 1 6 α < 2, only Σ1 has to be treated differently. The truncated mean µn =

E(Y11{Y16εbnxn}) either converges to a constant or is a slowly varying function. In either case,
we have that bnxn/(nµn) = bnxnn−1−δ nδ/µn → ∞ by assumption. Thus, a mean-correction
argument and Karamata’s Theorem imply

lim sup
n→∞

Σ1 6 lim sup
n→∞

P
(∑n

t=1 Yt1{Yt6εbnxn} − nµn > bnxn(1 − θ) − nµn
)

nP(Y1 > bnzn)

6
1

(1 − θ)2 lim sup
n→∞

1
b2

nx2
n

Var(Y11{Y16εbnxn})

P(Y1 > bnzn)

6
1

(1 − θ)2
α/2

1 − α/2
ε2−α max{1, γ−α} −→

ε→0
0,

since α < 2. This completes the proof. �

We finish this section with a few consequences of Proposition 2.3.1. Note that (2.2.1) im-
plies

pnP(Z2
11 > a2

npx) −→
n→∞

x−α/2 for each x > 0. (2.3.3)
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2. Limit Theory for the largest eigenvalues of sample covariance matrices

Choosing Yt = Z2
1t, bn = a2

n, xn = xa2
np/a2

n and yn = ya2
np/a2

n, we have from Proposition 2.3.1
and (2.3.3), for α ∈ (0, 2), that

pP

 n∑
t=1

Z2
1t > a2

npx, max
16t6n

Z2
1t > a2

npy

 −→n→∞
max{x, y}−α/2 for each x, y > 0.

Therefore, by [96, Proposition 3.21], we obtain the point process convergence

p∑
i=1

εa−2
np(

∑n
t=1 Z2

it,max16t6n Z2
it)

D
−→
n→∞

∞∑
i=1

εΓ−2/α
i (1,1), (2.3.4)

with (Γi) as in (2.2.9). For another application of Proposition 2.3.1, set Yt = |Z1t|, bn = an,
xn = xanp/an and yn = yanp/an. Under the additional assumption

lim inf
n→∞

p
n
∈ (0,∞]

we have bnxn/n1+γ → ∞ for some γ < (2 − α)/α, thus, for α ∈ (0, 2),

pP

 n∑
t=1

|Z1t| > anpx, max
16t6n

|Z1t| > anpy

 −→n→∞
max{x, y}−α for each x, y > 0.

Therefore we obtain as before
p∑

i=1

εa−1
np(

∑n
t=1 |Zit |,max16t6n |Zit |)

D
−→
n→∞

∞∑
i=1

εΓ−1/α
i (1,1). (2.3.5)

The result of the following proposition is also a consequence of Proposition 2.3.1.

Proposition 2.3.2. Let (Zit) be as in (2.2.1) with 0 < α < 2. Suppose that (2.2.8) is satisfied
for some 0 < β < ∞. Then

a−2
np max

16i< j6p

n∑
t=1

|ZitZ jt|
P
−→
n→∞

0.

Proof. By [47], the iid random variables Yt = |Z1tZ2t| are regularly varying with tail index α
with some normalizing sequence bn. Thus, there exists a slowly varying L1 such that P(Y1 >

x) = x−αL1(x). Using (2.2.2) this implies

p2nP(Y1 > a2
npε) = n−1ε−α L(np)−2α L1

(
(np)2/αL(np)2ε

)
.

By Potter’s bound, see, e.g., [96, Proposition 0.8 (ii)], for any slowly varying function L̃ and
any δ > 0 there exist c1, c2 > 0 such that c1n−δ < L̃(n) < c2nδ for n large enough. An
application of this bound together with assumption (2.2.8) shows that

p2nP(Y1 > a2
npε) −→n→∞

0. (2.3.6)
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Hence, using Proposition 2.3.1 with xn = a2
np/bnε and yn = 0 yields

P

 max
16i< j6p

n∑
t=1

|ZitZ jt| > a2
npε

 6 p2P

 n∑
t=1

Yt > a2
npε

 −→n→∞
0,

since bnxn/n1+γ = a2
np/n1+γ → ∞ for α < 2 and some γ < (2 − α)/α. �

2.3.2. Convergence in Operator Norm

Denote by D = diag(XXT) the diagonal of the matrix XXT, i.e., Dii = (XXT)ii and Di j = 0
for i , j. In this section we show that a−2

np XXT converges in probability to a−2
np D in oper-

ator norm. This implies that the off-diagonal elements of a−2
np XXT do not contribute to the

limiting eigenvalue spectrum. Recall that, for a real p × n matrix A, the operator 2-norm
‖A‖2 is the square root of the largest eigenvalue of AAT, and the infinity-norm is given by
‖A‖∞ = max16i6p

∑n
t=1 |Ait|. The following result holds under a much more general setting

than assumed in Theorem 2.1 by allowing for an arbitrary dependence structure within the
rows of X.

Proposition 2.3.3. Let X = (Xit)i,t be a p × n random matrix whose entries are identically
distributed with tail index α ∈ (0, 2) and normalizing sequence (an). Assume that the rows
of X are independent. Suppose that (2.2.8) holds for some β > 0. If 1 < α < 2, assume
additionally that β < 2−α

α−1 . Then we have

a−2
np

∥∥∥XXT − D
∥∥∥

2
P
−→
n→∞

0. (2.3.7)

Proof. Since
∥∥∥XXT − D

∥∥∥
2 6

∥∥∥XXT − D
∥∥∥
∞

, it is enough to show that for every ε ∈ (0, 1),

P

 max
i=1,...,p

p∑
j=1
j,i

∣∣∣∣∣∣∣
n∑

t=1

XitX jt

∣∣∣∣∣∣∣ > a2
npε

 6 pP

 p∑
j=2

n∑
t=1

|X1tX jt| > a2
npε

 −→n→∞
0.

By partitioning the underlying probability space into {max j,t |X1tX jt| 6 a2
np} and its comple-

ment, we obtain that

pP

 p∑
j=2

n∑
t=1

|X1tX jt| > a2
npε

 6pP

 p∑
j=2

n∑
t=1

|X1tX jt|1{|X1tX jt |6a2
np}

> a2
npε


+ pP

(
max
26 j6p

max
16t6n

|X1tX jt| > a2
npε

)
= I + II.
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The same argument used for (2.3.6) shows that II 6 p2nP(|X11X21| > a2
np) −→n→∞

0 by inde-
pendence of the rows of X. To deal with term I we first assume that α > 1 and choose some
γ ∈ (α, 2). Hölder’s inequality shows that p∑

j=2

n∑
t=1

|X1tX jt|


γ

6

 p∑
j=2

n∑
t=1

|X1tX jt|
γ

 (np)γ−1,

and therefore

I 6 pP

 p∑
j=2

n∑
t=1

|X1tX jt|
γ1{|X1tX jt |6a2

np}
>

a2γ
np

(np)γ−1 ε

 .

Note that |X1tX jt|
γ has regularly varying tails with index α/γ < 1. Hence we can apply

Markov’s Inequality and Karamata’s Theorem to infer that

I 6 c1
p2n(np)γ−1

a2γ
np

E
(
|X11X21|

γ1{|X11X21|6a2
np}

)
∼ c2 p2n(np)γ−1P(|X11X21| > a2

np). (2.3.8)

Therefore, the proof of Proposition 2.3.2 shows that the term in (2.3.8) goes to zero if (np)γ−1/n
does. In view of assumption (2.2.8) this is true for β < (2 − γ)/(γ − 1). Since we can choose
γ arbitrary close to α it suffices that β < (2 − α)/(α − 1). If α < 1 we do not need Hölder’s
inequality since the above argument can be applied with γ = 1, thus it suffices that (2.2.8)
holds for some β < ∞. For the remaining case α = 1, observe that, for any given β < ∞, we
choose γ arbitrarily close to 1 so that (np)γ−1/n→ 0. �

The above result can be improved for 5/3 < α < 2 if we assume the rows of X to be
realizations of a linear process.

Proposition 2.3.4. The assumptions of Theorem 2.1 (i) imply (2.3.7).

Proof. By Proposition 2.3.3 it suffices to show that, for α ∈ (5/3, 2), the assumption

lim
n→∞

p
√

n
= 0 (2.3.9)

implies convergence in operator norm in the sense of (2.3.7). In this proof, c denotes a positive
constant that may vary from expression to expression. Define

ZL
it = Zit1{|Zit |6anp}, XL

it =
∑

k

ckZL
i,t−k,

ZU
it = Zit1{|Zit |>anp}, XU

it =
∑

k

ckZU
i,t−k.
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Using
∥∥∥XXT − D

∥∥∥
2 6

∥∥∥XXT − D
∥∥∥
∞

as before we have

P
(∥∥∥XXT − D

∥∥∥
2 > a2

npε
)
6pP

 p∑
j=2

∣∣∣∣∣∣∣
n∑

t=1

X1tX jt

∣∣∣∣∣∣∣ > a2
npε


6pP

 p∑
j=2

∣∣∣∣∣∣∣
n∑

t=1

XL
1tX

L
jt

∣∣∣∣∣∣∣ > a2
np

4
ε

+ pP

 p∑
j=2

∣∣∣∣∣∣∣
n∑

t=1

XL
1tX

U
jt

∣∣∣∣∣∣∣ > a2
np

4
ε


+ pP

 p∑
j=2

∣∣∣∣∣∣∣
n∑

t=1

XU
1t X

L
jt

∣∣∣∣∣∣∣ > a2
np

4
ε

+ pP

 p∑
j=2

∣∣∣∣∣∣∣
n∑

t=1

XU
1t X

U
jt

∣∣∣∣∣∣∣ > a2
np

4
ε


=I + II + III + IV.

We will show that each of theses terms converges to zero. To this end, note that E|ZL
11| con-

verges to a constant, and, by Karamata’s Theorem,

E|ZU
11| ∼ canpP(|Z11| > anp) ∼ canp(np)−1, n→ ∞.

Therefore, by Markov’s inequality, we have

II 6
4p

a2
npε

p∑
j=2

n∑
t=1

∑
k,l

|ckcl| E|ZL
1,t−k| E|Z

U
j,t−l| ∼ c

∑
k

|ck|

2
p2n
a2

np
anp(np)−1 = c

p
anp

,

and, by (2.2.2), we obtain that this is equal to c L(np)−1 p1−1/αn−1/α → 0 as n → ∞. By
symmetry, III can be handled the same way. It is easy to see that term IV is of even lower
order, namely

c
p2n
a2

np
(anp(np)−1)2 = cn−1 → 0.

Thus it is only left to show that I converges to zero. To this end, we use Karamata’s Theorem
to obtain

E
[
(ZL

11)
2
]
= E

[
Z2

111{|Z11|6anp}

]
∼ ca2

npP(|Z11| > anp) ∼ ca2
np(np)−1.

Since Z11 satisfies the tail balancing condition (2.2.3), and EZ11 = 0, we can apply Karamata’s
Theorem to the positive and the negative tail of ZL

11, thus, for q < {0, 1
2 , 1},

ξn BE[ZL
11] = E[Z111{|Z11|6anp}] = −E[Z111{|Z11|>anp}]

= − E[Z111{Z11>anp}] + E[−Z111{−Z11>anp}]

∼ − q
α

α − 1
anpP(|Z11| > anp) + (1 − q)

α

α − 1
anpP(|Z11| > anp)

∼(1 − 2q)
α

α − 1
anp(np)−1.
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Clearly, for any 0 6 q 6 1, one therefore has

npξn

anp
→ (1 − 2q)

α

α − 1
.

As a consequence we obtain for µn = E(XL
11XL

21) = (EXL
11)

2 = (
∑

k ck)
2
ξ2

n that

µn pn
a2

np
= (np)−1

(
npξn

anp

)2
∑

k

ck

2

→ 0.

Therefore we obtain for summand I that

I = pP

 p∑
j=2

∣∣∣∣∣∣∣
n∑

t=1

XL
1tX

L
jt

∣∣∣∣∣∣∣ > a2
np

4
ε

 6p2P


∣∣∣∣∣∣∣

n∑
t=1

XL
1tX

L
2t

∣∣∣∣∣∣∣ > a2
np

4p
ε


∼p2P


∣∣∣∣∣∣∣

n∑
t=1

XL
1tX

L
2t − nµn

∣∣∣∣∣∣∣ > a2
np

4p
ε

 .

Since we correct by the mean, Markov’s inequality yields

p2P


∣∣∣∣∣∣∣

n∑
t=1

XL
1tX

L
2t − nµn

∣∣∣∣∣∣∣ > a2
np

4p
ε

 (2.3.10)

6
16p4

a4
npε

2
Var

 n∑
t=1

XL
1tX

L
2t


=

16p4

a4
npε

2

n∑
t,t′=1

∑
k,k′,l,l′

ckck′clcl′Cov
(
ZL

1,t−kZL
2,t−l, ZL

1,t′−k′Z
L
2,t′−l′

)
. (2.3.11)

Due to the independence of the Z’s, the covariance in the last expression is non-zero iff t− k =

t′ − k′ or t − l = t′ − l′. This gives us three distinct cases we deal with separately. First,
assume that both t − k = t′ − k′ and t − l = t′ − l′. Then the covariance in (2.3.11) is equal to
Var(ZL

11ZL
2,1) and so bounded by

E[(ZL
11)

2(ZL
21)

2] = (E(ZL
11)

2)2 ∼ (ca2
np(np)−1)2 ∼ ca4

np(np)−2.

Second, let t − k = t′ − k′ but t − l , t′ − l′. Then the covariance becomes

Cov(ZL
1,t−kZL

2,t−l, ZL
1,t′−k′Z

L
2,t′−l′) =E((ZL

1,t−k)
2ZL

2,t−lZ
L
2,t′−l′) − ξ

4
n

=E((ZL
1,t−k)

2)ξ2
n − ξ

4
n

∼ca2
np(np)−1(±c anp(np)−1)2 − (±c anp(np)−1)4

∼ca4
np(np)−3 − ca4

np(np)−4 ∼ ca4
np(np)−3,
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which is of lower order than in the case considered before. By symmetry, the third case, where
t − l = t′ − l′ but t − k , t′ − k′, can be dealt with in exactly the same way. In all cases t′ can
be assumed to be fixed, thus we can bound (2.3.11) by

c
p4

a4
np

∑
k

|ck|

4 n∑
t=1

a4
np(np)−2 = c

p2

n
→ 0, n→ ∞.

�

2.3.3. Extremes of diag(XXT )

In this section we analyze the extremes of the diagonal entries of XXT , which are partial sums
of squares of linear processes. To this end, we start with an auxiliary result.

Proposition 2.3.5. Let (Zt) be an iid sequence such that nP(|Z1| > anx) → x−α with α ∈

(0, 2). For any sequence (c j) satisfying (2.2.5) we have, if p and n go to infinity, that

pP

 n∑
t=1

∞∑
j=−∞

c2
jZ

2
t− j > a2

npx

→
 ∞∑

j=−∞

c2
j


α
2

x−α/2

Proof. Fix some x > 0. Observe that Proposition 2.3.1 and (2.3.3) imply for n → ∞ that
pP(

∑n
t=1 Z2

t > a2
npx) → x−α/2. We begin by showing the claim for a linear process of finite

order. For any η > 0 we have

P


∣∣∣∣∣∣∣∣

m∑
j=−m

c2
j

n∑
t=1

Z2
t −

n∑
t=1

m∑
j=−m

c2
jZ

2
t− j

∣∣∣∣∣∣∣∣ > a2
npη

 6P

 m∑
j=−m

c2
j

j∑
t=1− j

Z2
t > a2

npη

 −→n→∞
0.

Consequently,

lim
n→∞

pP

 n∑
t=1

m∑
j=−m

c2
jZ

2
t− j > a2

npx

 = x−α/2

 m∑
j=−m

c2
j


α
2

. (2.3.12)

This and the positivity of the summands implies

lim inf
n→∞

pP

 n∑
t=1

∞∑
j=−∞

c2
jZ

2
t− j > a2

npx

 > x−α/2

 ∞∑
j=−∞

c2
j


α
2

. (2.3.13)

Thus it is only left to show that the limsup is bounded by the right hand side of (2.3.13). Using
Markov’s inequality yields

pP

 n∑
t=1

∞∑
j=−∞

c2
jZ

2
t− j > a2

npx

 6 ∞∑
j=−∞

pnP
(
c2

jZ
2
1 > a2

npx
)
+

∞∑
j=−∞

c2
j

pn
a2

npx
E

(
Z2

11{c2
j Z

2
16a2

npx}

)
.
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Since E
(
Z2

11{Z2
16·}

)
is a regularly varying function with index α/2 − 1 we obtain, by Potter’s

bound, Karamata’s Theorem and (2.2.5), that, for some constant C1 > 0,

c2
j

pn
a2

npx
E

(
Z2

11{c2
j Z

2
16a2

npx}

)
=

c2
j

x

E
(
Z2

11{c2
j Z

2
16a2

npx}

)
E

(
Z2

11{Z2
16a2

npx}

) pn
a2

np
E

(
Z2

11{Z2
16a2

npx}

)

6C1
c2

j

x

(
c−2

j

)1−α/2+(α/2−δ/2)
x1−α/2 = C1x−α/2|c j|

δ.

Likewise, pnP(a−2
npZ2

1 > ·) is a regularly varying function with index α/2, thus we obtain, by
the same arguments as before, that

pnP
(
c2

jZ
2
1 > a2

npx
)
6 C2x−α/2|c j|

δ.

With C = C1 +C2 this therefore implies

lim sup
n→∞

pP

 n∑
t=1

∞∑
j=−∞

c2
jZ

2
t− j > a2

npx

 6 C
∞∑

j=−∞

|c j|
δx−α/2. (2.3.14)

Hence, by (2.3.12) and (2.3.14), we finally have, for some ε ∈ (0, 1), that

lim sup
n→∞

pP

 n∑
t=1

∞∑
j=−∞

c2
jZ

2
t− j > a2

npx

 6 lim sup
n→∞

pP

 n∑
t=1

m∑
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 . (2.3.15)

Assumption (2.2.5) shows that the last two terms in (2.3.15) vanish for m→ ∞. Letting ε → 0
thereafter completes the proof. �

By virtue of the previous proposition we obtain the point process convergence of the di-
agonal elements of the sample covariance matrix XXT. This immediately characterizes their
extremal behavior. Note that this result holds without any restriction on β even if α > 1.

Proposition 2.3.6. Let X = (Xit) be as in equations (2.2.1), (2.2.4) and (2.2.5) with α ∈ (0, 2),
and suppose that (2.2.8) holds for some β > 0. Then

p∑
i=1

εa−2
np

∑n
t=1 X2

it

D
−→
n→∞

N =
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i=1

εΓ−2/α
i

∑∞
j=−∞ c2

j
, (2.3.16)

with (Γi) as in (2.2.9).
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Proof. For notational simplicity we assume without loss of generality that

Xit =
∞∑

j=0

c jZi,t− j.

The extension to the non-causal case is obvious. We first prove the claim for finite linear
processes Xit,m =

∑m
j=0 c jZi,t− j. From Proposition 2.3.5 we already have that

p∑
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np
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j Z
2
i,t− j

D
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εΓ−2/α
i

∑m
j=0 c2

j
. (2.3.17)

Thus it is only left to show that all terms involving cross products are negligible. By [72,
Theorem 4.2] it suffices to show, for any η > 0, that

lim
n→∞
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for any continuous function f : R+ → R+ with compact support supp( f ) ⊂ [c,∞] and c > 0.
Choose some 0 < γ < c and let K = [c − γ,∞]. On the set

Aγn =
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2
i,t− j < K, then the absolute difference in (2.3.18) is

zero, else it is bounded by the modulus of continuity ω(γ) = sup{| f (x) − f (y)| : |x − y| 6 γ}.
Hence, the probability in (2.3.18) is bounded by
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.

By (2.3.17), the first summand converges to
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j Γ
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(K) < ∞ and ω(γ) → 0 as γ → 0, this probability approaches zero as

γ tends to zero. To show that

P
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Aγn
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we use the following observation for fixed j ∈ {0, . . . , m − 1} and k ∈ { j + 1, . . . , m}: the
product Zi,t− jZi,t−k has, because of independence, tail index α, and Zi,t− jZi,t−k and Zi,s− jZi,s−k

are independent if and only if |s − t| , k − j. Thus, we partition the natural numbers N into
k − j + 1 pairwise disjoint sets s + (k − j + 1)N0, s ∈ {0, . . . , k − j}. Then we have, by
Proposition 2.3.2 and the independence of the summands, that

a−2
np max

16i6p

∑
t∈s+(k− j+1)N0

|Zi,t− jZi,t−k|
P
−→
n→∞

0,

for each s ∈ {0, . . . , k − j}. Since j, k only vary over finite sets this implies (2.3.19). Therefore
we have shown (2.3.16) for a finite order moving average Xit,m.

Now we let m go to infinity. Clearly, we have that
∞∑
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εΓ−2/α
i
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j=0 c2

j

D
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∑∞
j=0 c2

j
. (2.3.20)

Thus, by [17, Theorem 3.2], it is only left to show that
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By repeating the previous arguments, it suffices to show

lim sup
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as m→ ∞. Clearly, we have that
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(2.3.22)

For the first summand on the right hand side of equation (2.3.22) we have, by Proposition 2.3.5,
that
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Using Proposition 2.3.5 and the elementary inequality 2|ab| 6 a2 + b2, we obtain for the
second term in equation (2.3.22) that
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and since
∑∞

j=0 |c j| < ∞, this term converges to zero as m → ∞. The third term in equation
(2.3.22) can be handled similarly. Thus the proof is complete. �

2.3.4. Proof of Theorem 2.1

In this section we use the foregoing results to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. (i) Denote by S k = (XXT)kk =
∑n

t=1 X2
kt the diagonal entries of XXT

and by S (1) > . . . > S (p) their order statistics. Then Weyl’s Inequality, cf. [15, Corollary
III.2.6], and Proposition 2.3.4 imply that
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2
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0, (2.3.23)

where D = diag(XXT). From Proposition 2.3.6 we have
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Thus, by [72, Theorem 4.2], it suffices to show that
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0

for a nonnegative continuous function f with compact support supp( f ) ⊂ [c,∞], for some c >
0. Since N((c/2,∞]) < ∞ almost surely, we can choose some i ∈ N large enough such that
the probability P(N((c/2,∞]) > i) < δ/2. By (2.3.24), it follows that P(a−2

npS (i) > c/2) =
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which becomes arbitrarily small due to equation (2.3.23) and the fact that f is uniformly con-
tinuous.

(ii) By assumption X = (Zit). First we consider the case (a) and assume that κ > 1. We will
show that, for any fixed positive integer k,

λ(k)

S (k)

P
−→
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1. (2.3.25)

Equations (2.3.4) and (2.3.25) then imply∣∣∣∣∣∣∣S (k)
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a2
np

P
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0,

and hence Nn → N as in the proof of Theorem 2.1 (i). Define Mi = max16t6n X2
it and denote

by M(1) > . . . > M(p) the order statistics of M1, . . . , Mp. Observe that the continuous mapping
theorem applied to (2.3.4) and (2.3.5) yields, for any fixed k,

S (k)

M(k)

P
−→
n→∞

1, and
‖X‖2∞
M(1)

P
−→
n→∞

1,

because κ > 1. Now we start showing (2.3.25) by induction. For k = 1 we have, on the one
hand, that

λ(1)

S (1)
=

∥∥∥XXT
∥∥∥

2

S (1)
6
‖X‖22
S (1)
6
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=
‖X‖2∞
M(1)

M(1)

S (1)

P
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1.

Let us denote by e1, . . . , ep the standard Euclidean orthonormal basis in Rp and by i1 the
(random) index that satisfies S i1 = S (1). Then we have, on the other hand, by the Minimax
Principle [15, Corollary III.1.2], that

λ(1)

S (1)
=

maxv∈Rp

〈
v, XXTv

〉
S (1)

>

〈
ei1 , XXTei1

〉
S (1)

=
S i1

S (1)
= 1.

This shows (2.3.25) for k = 1. To keep the notation simple, we describe the induction step only
for k = 2. The arguments for the general case are exactly the same. Denote by i2 the random
index such that S i2 = S (2). Let X(2) be the (p−1)×n matrix which is obtained from removing
row i1 from Xn and denote by %(1) the largest eigenvalue of X(2)(X(2))T. Since we have already
shown the claim for the largest eigenvalue, it follows that %(1)/S (2) → 1 in probability. By the
Cauchy Interlacing Theorem [15, Corollary III.1.5] this implies λ(2)/S (2) 6 %(1)/S (2) → 1.
Another application of the Minimax Principle yields

λ(2) = max
M⊂Rp

dim(M)=2

min
v∈M
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v∈span{ei1 ,ei2 }
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(µ2
1 + µ2

2)
−1

(
µ2

1S (1) + µ2
2S (2) + 2µ1µ2(XXT)i1i2

)
.
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Since, by Proposition 2.3.2 and equation (2.3.4),∣∣∣∣∣ 2µ1µ2
µ2

1+µ
2
2
(XXT)i1i2

∣∣∣∣∣
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6
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npS (2)

P
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uniformly in µ1, µ2 ∈ R, an application of the the continuous mapping theorem finally yields
that λ(2)/S (2) > 1 + oP(1), where oP(1) → 0 in probability as n → ∞. Thus the proof
for κ > 1 is complete. Now let κ ∈ (0, 1). Since XTX and XXT have the same non-trivial
eigenvalues, we consider the transpose XT of X. This inverts the roles of p and n. Therefore,
using Potter’s bounds and 1/κ > 1, the result follows from the same arguments as before.
Note that we are in a special case of Theorem 2.1 (i) if κ = 0. In case (b) we have that
n ∼ (1/c log(p/C))1/κ is a slowly varying function in p, thus an application of Theorem 2.1
(ii) (a) to XT gives the result. �

2.3.5. Proof of Theorem 2.2

As we shall see, the proof of Theorem 2.2 will more or less follow the same lines of argument
as given for Theorem 2.1. We focus on the setting of Theorem 2.2 (i) here and mention (ii)
and (iii) later. The next result is a generalization of Proposition 2.3.6 allowing for random
coefficients.

Proposition 2.3.7. Define X = (Xit) with Xit satisfying (2.2.11) and (2.2.12). Suppose (2.2.8)
holds for some β > 0. If (θi) is a stationary ergodic sequence, then, conditionally on (θi) as
well as unconditionally, we have

p∑
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np
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)2/α (2.3.26)

with (Γi) as in (2.2.9).

Proof. We first prove that, conditionally on (θi),
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by showing a.s. convergence of the Laplace functionals. By arguments from the proof of
[96, Proposition 3.17] it suffices to show (2.2.13) only for a countable subset of the space
of all nonnegative continuous functions with compact support. Thus we fix one nonnegative
continuous function f with compact support supp( f ) ⊂ [c,∞], c > 0. Conditionally on the
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2. Limit Theory for the largest eigenvalues of sample covariance matrices

process (θm), the points of the point process are independent, and thus

E
(
e−

∑p
i=1 f (a−2

np
∑n

t=1
∑

j c2
j (θi)Z2

i,t− j)
∣∣∣(θm)

)
(2.3.28)

=
p∏

i=1

1 − 1
p

∫
(1 − e− f (x))pP

a−2
np

n∑
t=1

∑
j

c2
j(θi)Z2

1,t− j ∈ dx
∣∣∣∣∣θi




=
p∏

i=1

(
1 −

1
p

Bi,p

)
, (2.3.29)

where Bi,p =
∫
(1 − e− f (x))pP(a−2

np
∑n

t=1
∑

j c2
j(θi)Z2

1,t− j ∈ dx|θi). First assume

1
p

p∑
i=1

Bi,p
a.s.
−→
n→∞

B B
∫

(1 − e− f (x))ν(dx) (2.3.30)

with ν given by ν((x,∞]) B x−α/2E
∣∣∣∣∑ j c2

j(θ1)
∣∣∣∣α/2

, and

1
p2

p∑
i=1

B2
i,p

a.s.
−→
n→∞

0. (2.3.31)

Both claims will be justified later. By assumption (2.2.11), we have, using Proposition 2.3.5,
almost surely

Bi,p 6 pP

a−2
np

n∑
t=1

∑
j

c̃2
jZ

2
1,t− j > c

 −→n→∞
c−α/2

∣∣∣∣∣∣∣∣
∑

j

c̃2
j

∣∣∣∣∣∣∣∣
α/2

,

and hence there exists a C > 0 such that Bi,p 6 C for all i, p ∈N a.s. The elementary inequality

e
−x
1−x 6 1 − x 6 e−x ∀x ∈ [0, 1], equivalently e

−x2
1−x 6 (1 − x)ex 6 1 ∀x ∈ [0, 1], implies together

with (2.3.31), for some c1 > 0, that

1 >
p∏

i=1

(
1 −

Bi,p

p

)
e

Bi,p
p >

p∏
i=1

e
−

B2
i,p

p2−pBi,p >

p∏
i=1

e
−

B2
i,p

p2−pC > e
−c1
p2

∑p
i=1 B2

i,p a.s.
−→
n→∞

1.

As a consequence we have that the product in (2.3.29) is asymptotically equivalent to

p∏
i=1

e−
1
p Bi,p = e−

1
p
∑p

i=1 Bi,p a.s.
−→
n→∞

e−B = e−
∫
(1−e− f (x))ν(dx),

where the convergence follows from (2.3.30). This implies the almost sure convergence of the
conditional Laplace functionals, therefore (2.3.27) holds conditionally on (θi). Using (2.2.11)
one shows similarly as in the proof of Proposition 2.3.6, conditionally on (θi), that (2.3.27)
implies (2.3.26). Taking the expectation yields that (2.3.26) also holds unconditionally.
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2.3. Proofs and auxiliary results

Proof of (2.3.30) and (2.3.31). As a function in x, pP(
∑n

t=1 Z2
1t > a2

npx) is decreasing and
converges pointwise to the continuous function x−α/2 as n → ∞. Therefore this convergence
is uniform on compact intervals of the form [x0,∞] with x0 > 0. Now fix x > 0 and let
di =

∑
j c2

j(θi). Since di 6 d =
∑

j c̃2
j < ∞ for all i ∈ N, x

di
> x

d > 0 is bounded from below,
and thus

sup
i∈N

∣∣∣∣∣∣∣pP

 n∑
t=1

Z2
1t > a2

np
x
di

∣∣∣∣∣di

 − x−α/2dα/2
i

∣∣∣∣∣∣∣ a.s.
−→
n→∞

0. (2.3.32)

Since (di) is an instantaneous function of the ergodic sequence (θi), it is also ergodic and thus

1
p

p∑
i=1

dα/2
i

a.s.
−→
n→∞

E|d1|
α/2. (2.3.33)

As a consequence of (2.3.32) and (2.3.33) we obtain∣∣∣∣∣∣∣1p
p∑

i=1

pP

 n∑
t=1

Z2
1t > a2

np
x
di

∣∣∣∣∣di

 − x−α/2E|d1|
α/2

∣∣∣∣∣∣∣ a.s.
−→
n→∞

0.

Then it is straightforward to show, as in the proof of Proposition 2.3.5, using (2.2.11), that

1
p

p∑
i=1

pP

 n∑
t=1

∑
j

c j(θi)Z2
1,t− j > a2

npx
∣∣∣∣∣θi

 a.s.
−→
n→∞

x−α/2E|d1|
α/2.

The vague convergence of above sequence of measures implies p−1 ∑p
i=1 Bi,p → B almost

surely. In exactly the same way one can show that p−1 ∑p
i=1 B2

i,p converges, thus

p−2
p∑

i=1

B2
i,p → 0 a.s.,

which establishes (2.3.30) and (2.3.31) as claimed. �

Proof of Theorem 2.2. Proof of (i). If we condition on (θi), the proofs of Propositions 2.3.3
and 2.3.4 easily carry over to this more general setting when we make use of assumption
(2.2.11). Taking the expectation then yields convergence in operator norm unconditionally. A
combination of this together with Proposition 2.3.7 completes the proof.

Proof of (ii). Note that (2.3.33) is the only step in the proof of Proposition 2.3.7 where we
use the ergodicity of the sequence (θi). But also if (θi) is just stationary, the ergodic theorem
implies that the average in (2.3.33) converges to the random variable Y = E

(
|d1|

α/2|G
)
, where

G is the invariant σ-field generated by (θi). By construction, Y depends on α and c j(·), but it
is independent of (Γi), since (θi) is independent of (Zit).
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2. Limit Theory for the largest eigenvalues of sample covariance matrices

Proof of (iii). In this setting (θi) is a Markov chain which may not be stationary. But
since we derive all results in the proof of Theorem 2.2 (i) conditionally on (θi) and then
take the expectation, stationarity is in fact not needed. The theory on Markov chains, see
[83], in particular their Theorem 17.1.7 for Markov chains on uncountable state spaces, shows
that (2.3.33) holds if the expectation is taken with respect to the stationary distribution of the
Markov chain. �
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CHAPTER 3

Limit theory for sample covariance matrices of observations
with finite variance but infinite fourth moment

3.1. Introduction and main results

In the statistical analysis of high-dimensional data one often tries to reduce its dimensional-
ity while preserving as much of the variation in the data as possible. One important example
of such an approach is the Principal Component Analysis (PCA). PCA makes a linear trans-
formation of the data to a new set of variables, the principal components, which are ordered
such that the first few retain most of the variation. Therefore one obtains a lower dimensional
representation of the data by retaining only the first few principal components.

The variances of the first k principal components are given by the k-largest eigenvalues of
the covariance matrix. Let us collect the samples of our multivariate data in a p × n matrix
X, where we refer to p as the dimension of the data and to n as the sample size. In practice,
the true underlying covariance matrix is not available, thus one usually replaces it with the
sample covariance matrix 1

n XXT. To account for large high-dimensional data sets, we study
the k-largest eigenvalues of the sample covariance matrix when both the dimension of the data
as well as the sample size go to infinity. In Chapter 2 this has been done for observations which
are regularly varying with index α ∈ (0, 2), i.e., observations with infinite variance. However,
in many applications where data typically exhibits heavy-tails, like finance, the assumption
of an infinite variance might be too strong. Therefore we focus in this article on the case
where the observations have finite variances but infinite fourth moments. This assumption is
also consistent with the motivation to derive a theoretical framework for the use of PCA for
high-dimensional data.
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3. Observations with finite variance but infinite fourth moment

For more details on PCA we refer the reader to one of the many textbooks available on this
topic, see [5] or [71], for example. The field of research that investigates the spectral properties
of large dimensional random matrices has become known as Random Matrix Theory (RMT).
There exist several survey articles which stress the close relationship between Random Matrix
Theory and multivariate statistics, including PCA, see e.g. [45] and [70]. Some authors have
already employed tools from Random Matrix Theory to correct traditional tests or estimators
which fail when the dimension of the data cannot be assumed to be negligible compared to the
sample size. For example, Bai et al. [8] gives corrections on some likelihood ratio tests that
even fail even for moderate dimension (around 20), and El Karoui [46] consistently estimates
the spectrum of a large dimensional covariance matrix using Random Matrix Theory.

In the following we assume that X is a p × n matrix with entries

Xit =
∞∑

j=−∞

c jZi,t− j, m ∈N (3.1.1)

where the sequence (c j) is absolutely summable,
∑∞

j=−∞ |c j| < ∞, and (Zit)i,t is an array of iid
mean zero random variables with marginal distribution that is regularly varying with tail index
α ∈ [2, 4) and normalizing sequence an, i.e.,

EZ11 = 0 and lim
n→∞

nP(|Zit| > anx) = x−α, for each x > 0. (3.1.2)

In other words, for each i ∈ N, (Xit)t is a infinite order moving average process driven by
some regularly varying noise with finite variance but infinite fourth moment. Note that it
follows from classical extreme value theory that the sequence an is necessarily characterized
by

an = n1/αL(n), (3.1.3)

for some slowly varying function L : R+ → R+, i.e., a function with the property that, for
each x > 0, limt→∞ L(tx)/L(t) = 1. Moreover we assume that Z11 satisfies the tail balancing
condition given by

lim
x→∞

P(Z11 > x)
P(|Z11| > x)

= q = 1 − lim
x→∞

P(Z11 6 −x)
P(|Z11| > x)

(3.1.4)

for some 0 6 q 6 1.

Definition 3.1.1. The (normalized) sample covariance matrix of the sample X is defined as
the p × p matrix S = a−2

np

(
XXT − nµXIp

)
, where µX = EZ2

11
∑

j c2
j and Ip is the identity. We

denote by λ1, . . . , λp the unordered, and by λ(1) > . . . > λ(p) the ordered eigenvalues of S .

In the following we are going to show that XXT is dominated by its diagonal entries. If
α > 2, the diagonal entries have a finite mean nµX = nEZ2

11
∑

j c2
j , which has to be subtracted

in order to obtain a non-trivial limiting result.
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3.1. Introduction and main results

Remark 3.1.1. If α = 2 it is possible that EZ2
11 = ∞. In this case we replace µX in the above

definition by the sequence of truncated means µn
X =

∑
j c2

j E(Z
2
111{Z2

116a2
np}
).

We will always assume that p = pn is an integer-valued sequence in n that goes to infinity
as n → ∞ in order to obtain results for high-dimensional data. In the following we suppress
the dependence of p on n so as to simplify the notation wherever this does not cause any
ambiguity. The following theorem is a generalization of the result of [7] to non-independent
entries, except that [7] assume that p/n goes to some positive finite constant, while we assume
that p is bounded by some small power of n.

Theorem 3.1. Define the matrix X = (Xit) as in equations (3.1.1), (3.1.2) and (3.1.4) with
α ∈ [2, 4). Suppose n, p→ ∞ such that

lim sup
n→∞

pn

nβ
< ∞ (3.1.5)

for some β > 0 satisfying

(i) β < max
{

1
3 , 4−α

4(α−1)

}
if 2 6 α < 3, or

(ii) β < 4−α
3α−4 if 3 6 α < 4.

Then the point process Nn B
∑p

i=1 ελi of the eigenvalues of S converges in distribution to a
Poisson point process N with intensity measure ν which is given by

ν((x,∞]) = EN(x,∞] = x−α/2

∣∣∣∣∣∣∣∣
∑

j

c2
j

∣∣∣∣∣∣∣∣
α/2

, x > 0.

In particular, the theorem shows that the k largest eigenvalues λ(1) > . . . > λ(k) of S , i.e.,
the variances of the k-largest principal components, converge jointly to a random vector with a
distribution that only depends on k, the tail index α and the coefficients (c j). Let (E j) be an iid
sequence of exponentially distributed random variables with mean one, i.e., P(E j > x) = e−x

for x > 0, and denote by Γi = E1 + . . .+ Ei their successive sum. Then we have that

(
λ(1), . . . , λ(k)

) D
−→
n→∞

(
Γ−2/α

1 , . . . , Γ−2/α
k

) ∑
j

c2
j

 .

The proof of the theorem splits up into two parts: the convergence of S to its diagonal DS ,
and the point process convergence of the entries of DS . Note that some of the techniques and
methods employed in the proof of Theorem 3.1 have also been used in Chapter 2.

Theorem 3.1 can be extended to a random matrix model where, conditionally on a latent
process, the processes in the rows have varying coefficients. To this end, let (θi)i∈N be a
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3. Observations with finite variance but infinite fourth moment

stationary ergodic process that is independent of (Zit). Further assume that there is a family of
measurable functions (c j : Θ → R) j∈N such that

sup
θ∈Θ
|c j(θ)| 6 c̃ j, for some absolutely summable (̃c j). (3.1.6)

The matrix X = (Xit) is then defined by

Xit =
∞∑

j=−∞

c j(θi)Zi,t− j (3.1.7)

where (Zit) is given as in (3.1.2) with α ∈ [2, 4).
We say that a sequence of point processes Mn converges, conditionally on a sigma-algebra

H , in distribution to a point process M , if the conditional Laplace functionals converge almost
surely, i.e., if there exists a measurable set B with measure one such that for all ω ∈ B and all
nonnegative continuous functions f with compact support,

E
(
e−Mn( f )

∣∣∣H)
(ω)→ E

(
e−M( f )

∣∣∣H)
(ω) as n→ ∞. (3.1.8)

Theorem 3.2. Define X = (Xit) with Xit as given in (3.1.7) and suppose that (3.1.6) is sat-
isfied. Under the conditions of Theorem 3.1 we have that the point process

∑p
i=1 ελi of the

eigenvalues of S converges in distribution to a Poisson point process with intensity measure
given by

ν((x,∞]) = x−α/2E

∣∣∣∣∣∣∣∣
∞∑

j=−∞

c2
j(θ1)

∣∣∣∣∣∣∣∣
α/2

, x > 0.

The convergence also holds true if we condition on (θi).

Remark 3.1.2. Suppose that (θi) is an irreducible Markov chain on a countable state space or
a positive Harris process in the sense of [83]. If (θi) posseses a stationary distribution π, then
above theorem also holds true for (θi) when the expectation is taken with respect to π.

One can view Theorem 3.2 in a Bayesian framework in which the parameters of the observed
process are drawn from an unknown prior distribution. Models of this kind are refered to as
random coefficient models , see, e.g., [74] for an overview. In the case when (θi) is a Markov
chain these models are called Hidden Markov Models.

3.2. Proof

3.2.1. Approximation of S by its diagonal

Proposition 3.2.1. Let DS be the diagonal of S , i.e., (DS )ii = S ii and (DS )i j = 0 for i , j.
Under the conditions of Theorem 3.1 we have that ‖S − DS ‖2 → 0 in probability.
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3.2. Proof

Proof. First we define the truncated process

XL
it =

∑
k

ckZL
i,t−k, ZL

it = Zit1{|Zit |6anp}.

This proof is parallel to the proof of Proposition 2.3.4 up to the point where it is left to show
that

p2P


∣∣∣∣∣∣∣

n∑
t=1

XL
1tX

L
2t − nµn

∣∣∣∣∣∣∣ > a2
np

4p
ε

→ 0, (3.2.1)

with

µn = (EXL
11)

2 =

∑
k

ck

2

(EZL
11)

2 = O

 a2
np

(np)2

 .

By Markov’s inequality we have that

p2P


∣∣∣∣∣∣∣

n∑
t=1

XL
1tX

L
2t − nµn

∣∣∣∣∣∣∣ > a2
np

4p
ε


6

16p4

a4
npε

2

n∑
t,t′=1

∑
k,k′,l,l′

ckck′clcl′Cov
(
ZL

1,t−kZL
2,t−l, ZL

1,t′−k′Z
L
2,t′−l′

)
. (3.2.2)

The above covariance is only non-zero if t − k = t′ − k′ or t − l = t′ − l′. In this case it
converges to a constant if α > 2. If α = 2 with EZ2

11 = ∞, then it is a slowly varying function.
In any case (3.2.2) is of order

O

 p4

a4
np

n s(np)

 6 O
(
nβ(4−4/α)n1−4/αs(np)

)
→ 0,

since β < 4−α
4(α−1) , where s(·) is some slowly varying function. Let us now assume that α ∈

(2, 3). By Markov’s inequality applied to (3.2.1) we have

p2P


∣∣∣∣∣∣∣

n∑
t=1

XL
1tX

L
2t − nµn

∣∣∣∣∣∣∣ > a2
np

4p
ε


6

64
ε3

p5

a6
np

n∑
t1,t2,t3=1

E

 3∏
i=1

(
XL

1,ti X
L
2,ti − µn

)
=

64
ε3

p5

a6
np

n∑
t1,t2,t3=1

∑
k1,k2,k3

∑
l1,l2,l3

3∏
j=1

(ck jcl j)E

 3∏
i=1

(
ZL

1,ti−ki
ZL

2,ti−li − ξ
2
n

) , (3.2.3)

where

ξ2
n =

µn

(
∑

k ck)
2 = (EZL

11)
2 = O

 a2
np

(np)2

 . (3.2.4)

39



3. Observations with finite variance but infinite fourth moment

To determine the order of the expectation in (3.2.3) we have to distinguish various cases. In
the following we say that two index pairs (a, b) and (c, d) overlap if a = c or b = d. If there
exists a j = 1, 2, 3 such that the index pair (t j − k j, t j − l j) does not overlap with both the other
two, then, due to independence, we are able to factor out the corresponding term and obtain

E

 3∏
i=1

(
ZL

1,ti−ki
ZL

2,ti−li − ξ
2
n

) = E

∏
i, j

(
ZL

1,ti−ki
ZL

2,ti−li − ξ
2
n

) E
(
ZL

1,t j−k j
ZL

2,t j−l j
− ξ2

n

)
= 0,

since ξ2
n = (EZL

11)
2 = E

(
ZL

1,t j−k j
ZL

2,t j−l j

)
. Thus, in any non-trivial case, each index pair does

overlap with (at least) one of the other two. Therefore we have at least two equalities of the
form ti − ki = t(i+1)mod 3 − k(i+1)mod 3 or ti − li = t(i+1)mod 3 − l(i+1)mod 3 for i = 1, 2, 3. Hence
t2 and t3 are immediately determined by some linear combination of t = t1 and the k′i s or
l′i s. Therefore the triple sum

∑n
t1,t2,t3=1 is, if we only count terms where the covariance is

non-zero, in fact a simple sum
∑n

t=1 and so only has a contribution of order n. Now we have
to determine the order of the products E

(∏3
i=1 ZL

1,ti−ki
ZL

2,ti−li

)
. If we only have a single power

then, by (3.2.4), this gives us

E
(
ZL

1,ti−ki
ZL

2,ti−li

)
= ξ2

n = o(1).

Since α > 2, powers of order two converge to a constant,

E
((

ZL
1,ti−ki

ZL
2,ti−li

)2
)
→ Var(Z11)

2.

An application of Karamata’s theorem yields that

E
((

ZL
1,ti−ki

ZL
2,ti−li

)3
)
∼ a6

np(np)−2.

Using the above facts, it is easy to see that

E

 3∏
i=1

ZL
1,ti−ki

ZL
2,ti−li

 = O
(
a6

np(np)−2
)

. (3.2.5)

Thus we have, using (3.2.4) and (3.2.5), for the expectation in (3.2.3) that

E

 3∏
i=1

(
ZL

1,ti−ki
ZL

2,ti−li − ξ
2
n

) = 3∑
k=0

(−1)k
∑
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3.2. Proof

The last calculation shows that the expectation in (3.2.3) is equal to E
(∏3

i=1 ZL
1,ti−ki

ZL
2,ti−li

)
plus lower order terms, and that the leading term is of order a6

np(np)−2. With this observation
we can finally conclude for (3.2.3) that
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ε3 O

(
p3

n

)
→ 0,

which goes to zero by assumption. This completes the proof for α ∈ [2, 3). The method to
deal with α ∈ [3, 4) is similar and thus only described briefly. We use Markov’s inequality
with power four to obtain that the term in (3.2.1) is bounded by
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) . (3.2.6)

Observe that the expectation in (3.2.6) is only non-zero if either

(i) all index pairs {(ti − ki, ti − li)}i=1,2,3,4 overlap, or

(ii) there exist exactly two sets of overlapping index pairs, such that no index pair from one
set overlaps with an index pair from the other set. We call these two sets disjoint.

Case (i) is similar to the previous case, so that one can see that

E
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and that the contribution of
∑n

t1,t2,t3,t4=1 is of order n. Therefore, in this case, the term in (3.2.6)
is of the order
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 = 256
ε4 O

(
p4

n

)
→ 0.

Thus, we only have to determine the contribution in case (ii). Since the two sets of overlapping
index pairs are disjoint, we obtain that

E
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)2
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.

Since α > 2 this converges to a constant. In contrast to case (i), the contribution of
∑n

t1,t2,t3,t4=1
is of order n2. This is due to the fact that the two sets of overlapping index pairs are disjoint,
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3. Observations with finite variance but infinite fourth moment

hence only two out of the four indices t1, . . . , t4 are given by linear combinations of the other
two and the k′s and l′s. Therefore (3.2.6) is of the order

256
ε4

p6

a8
np

O
(
n2

)
→ 0.

The convergence to zero is justified by

p6

a8
np

n2 = n2−8/αp6−8/αL(np)−8 6 O
(
n2−8/α+β(6−8/α)L(nβ+1)−8

)
→ 0,

since β < 4−α
3α−4 . This completes the proof of Proposition 3.2.1. �

3.2.2. Point process convergence and the proof of Theorem 3.1

For any iid sequence (Zt) with tail index 2 < α < 4 we have that
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Z2
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npx

→ x−α/2 (3.2.7)

where µZ = EZ2
1 . Indeed, [62], and in greater generality also [37], show that, for any x > 0,
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With P
(
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1 − µZ > a2
npx

)
∼ P

(
Z2

1 > a2
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)
∼ p−1x−α/2, the result follows. Note that (3.2.8)

also holds for α = 2 if EZ2
11 < ∞. In case EZ2

11 = ∞ (which can only happen if α = 2), one
has to replace µZ by the sequence of truncated means µn

z = E(Z2
111{Z2

116a2
np}
). For notational

simplicity, we exclude infinite variance case in the following. It is treated analogously to the
finite variance case, except that everywhere µZ has to be replaced by µn

Z , µX by µn
X =

∑
k c2

kµ
n
Z ,

and finally µX,m by µn
X,m =

∑
|k|6m c2

kµ
n
Z .

First we show the Point process convergence of the entries of DS in the case where the
observations are m-dependent.

Lemma 3.2.1 (Finite moving-average). Assume that there exists an m ∈ N such that c j = 0
if | j| > m. Then we have, for 2 < α < 4 and p, n going to infinity, that

p∑
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j EZ2

11.
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3.2. Proof

Proof. By the stationary of the Z’s we have that
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Hence, using (3.2.7), this yields
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Thus it is only left to show that, for any continuous f : R+ → R+ with compact support,
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Hence, by the arguments of the proof of Proposition 2.3.6, it suffices to show that
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3. Observations with finite variance but infinite fourth moment

The previous Lemma can be extended to the general case where (Xit)t is an infinite order
moving-average.

Proposition 3.2.2 (General case). For 2 < α < 4 and p, n going to infinity we have that
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Proof. For notational convenience we assume without loss of generality that c j = 0 for j < 0.
To build upon the result of Lemma 3.2.1 we introduce the truncated process
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we only have to show that
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3.2. Proof

We will show in turn that I, II, III → 0. We begin with I. Clearly, there either exist a t and a
k such that |ckZ1,t−k > anp|, or |ckZ1,t−k 6 anp| for all t, k. This simple fact and Chebyshev’s
inequality yield
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3. Observations with finite variance but infinite fourth moment

Using Karamata’s theorem and Potter’s bound we obtain that there exists a C > 0 and an ε > 0
such that
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k=0 ck < ∞. For the second term observe that it follows, using Chebyshev’s inequality,
EZ11 = 0 and the independence of the Z’s, that
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0,

since 2 < α < 4. The remaining term III can be dealt with similarly to the previous term II.
Hence the proof is complete. �

Proof of Theorem 3.1. The proof is essentially the proof of Theorem 2.1 (i). In short, Proposi-
tion 3.2.1 and Weyl’s inequality ([15, Theorem III.2.6]) imply that the distance of the eigenval-
ues of S and DS converges to zero uniformly in probability. Of course, the eigenvalues of the
diagonal matrix DS are just its entries. By Proposition 3.2.2, the point process of the entries
of DS converges to N. Therefore Nn also converges to N. �
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3.2. Proof

3.2.3. Proof of Theorem 3.2

Proposition 3.2.3. Under the conditions of Theorem 3.2 we have, conditionally on (θi) as well
as unconditionally, that
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Proof. As in Proposition 2.3.7 one can show, for any m < ∞, that

1
p

p∑
i=1

pP


∣∣∣∣∣∣∣∣

n∑
t=1

m∑
j=−m

c j(θi)(Z2
i,t− j − µZ)

∣∣∣∣∣∣∣∣ > a2
npx

∣∣∣∣∣θi

 a.s.
−→
n→∞

x−α/2E|dm
1 |
α/2,

where dm
1 =

∑m
j=−m c2

j(θ1). Hence, an adaptation of the proof of Lemma 3.2.1 yields, for the
truncated process

Xit,m =
m∑

k=−m

ckZi,t−k, µX,m = EX2
11,m =

m∑
j=−m

c2
jµZ ,

that, conditionally on the sequence (θi),

p∑
i=1

εa−2
np(

∑n
t=1 X2

it,m−nµX,m) →
∞∑

i=1

ε
Γ−2/α

i

(
E
∣∣∣∣∑m

j=−m c2
j (θ1)

∣∣∣∣α/2
)2/α . (3.2.13)

It is only left to show that this result extends to the more general setting where m = ∞. By
Proposition 3.2.2 it suffices to show that

lim
m→∞

lim sup
n→∞

p∑
i=1

P


∣∣∣∣∣∣∣

n∑
t=1

(X2
it − X2

it,m − (µX − µX,m))

∣∣∣∣∣∣∣ > a2
npγ

∣∣∣∣∣(θr)

 = 0.

To proof this claim, follow the string of arguments of Proposition 3.2.2 and make use of the
fact that ∣∣∣∣∣∣∣

p∑
i=1

c j(θi)

∣∣∣∣∣∣∣ 6 pc̃ j.

Taking expectations shows that (3.2.12) also holds unconditionally. �

Proof of Theorem 3.2. By conditioning on (θi), the proofs of Proposition 3.2.1 carry over to
this more general setting. The result then follows immediately from the previous proposition.

�
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CHAPTER 4

On the spectral norm of heavy-tailed random matrices with
strongly dependent rows and columns

4.1. Introduction and main results

In Chapter 2 we studied the asymptotic properties of the extreme singular values of a heavy-
tailed random matrix X the rows of which are given by independent copies of some linear
process. This was motivated by the statistical analysis of observations of a high-dimensional
linear process with independent components. Typically, the linear processes used in multivari-
ate stochastic modeling have the more general form

Xt =
∑

j

A( j)Zt− j, t = 1, . . . , n,

where A( j) is a sequence of deterministic p × p matrices and Zt is a noise vector containing
p independent and identically distributed (iid) random variables Z1t, . . . , Zpt. Of course, the
process X does not have independent components except when A( j) is a multiple of the identity
matrix. Let us denote by X̃ the matrix with columns X1, . . . , Xn. Then the it-th entry of X̃ is
given by

X̃it =
∑

j

p∑
k=1

A( j)
ik Zk,t− j.

This motivates to study the general random matrix model

X̃it =
∑

j

∑
k

d(i, j, k)Zi−k,t− j
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4. Random matrices with strongly dependent rows and columns

with some iid array (Zit) and some function d : N ×Z2 → R, (i, j, k) 7→ d(i, j, k) such that
the above double sum converges. This can be seen as a two dimensional filter applied to some
noise matrix and has been studied for d(i, j, k) = d̃( j, k) and Gaussian matrices by [60], and
for more general distributions by [3] under the assumption that d̃( j, k) = 0 if j or k is larger
than some fixed constant.

It will be our objective to investigate the random matrix model X̂ = (X̂it) ∈ Rp×n with

X̂it =
∑

j

∑
k

c jθkZi−k,t− j, (4.1.1)

for two real sequences (c j) and (θk), i.e., the case where the function d can be factorized in
the form d(i, j, k) = c jθk. In contrast to the model X = (Xit) considered in Chapter 2, with

Xit =
∑

j

c jZi,t− j,

the matrix X̂ has not only dependent columns but also dependent rows. Indeed, writing the
model (4.1.1) in the form

X̂it =
∑

j

c jξi,t− j, (4.1.2)

ξit =
∑

k

θkZi−k,t, (4.1.3)

one can see that, by going from X to X̂, the noise sequence Z in the processes along the rows
is replaced by a linear process ξ along the columns.

Since we want to investigate heavy-tailed random matrix models we assume that (Zit)i,t is
an array of iid random variables with tail index α ∈ (0, 4) satisfying

nP(|Z11| > anx)→ x−α. (4.1.4)

Furthermore, let (c j) and (θk) be sequences of real numbers such that∑
j

|c j|
δ < ∞, and (4.1.5)∑

k

|θk|
δ < ∞ for some δ < min{α, 1}. (4.1.6)

For some values of α we also require that Z11 satisfies the tail balancing condition, i.e., the
existence of the limits

lim
x→∞

P(Z11 > x)
P(|Z11| > x)

= q and lim
x→∞

P(Z11 6 −x)
P(|Z11| > x)

= 1 − q (4.1.7)
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4.1. Introduction and main results

for some 0 6 q 6 1. By the above definitions, X̂ is a p × n random matrix with heavy-tailed
entries. Based on our statistical motivation we will refer to p as the dimension and to n as the
sample size of our observations. In order to get results which are useful for the analysis of
high-dimensional data we assume that both p = pn and n go to infinity such that

lim sup
n→∞

pn

nβ
< ∞ (4.1.8)

for some β > 0 satisfying

β < ∞ if α ∈ (0, 1],

β < max
{

2 − α
α − 1

,
1
2

}
if α ∈ (1, 2),

β < max
{

1
3

,
4 − α

4(α − 1)

}
if 2 6 α < 3, or

β <
4 − α

3α − 4
if 3 6 α < 4.

For X̂ given by (4.1.1), our main theorem investigates the asymptotic behaviour of the largest
eigenvalue (spectral norm) λmax =

∥∥∥X̂X̂T
∥∥∥

2 of X̂X̂T when p and n jointly go to infinity.

Theorem 4.1. Consider the random matrix model given by equations (4.1.2) to (4.1.6) with
α ∈ (0, 4). If α ∈ (5/3, 4) then assume that Z11 has zero mean and satisfies the tail balancing
condition (4.1.7).
For α < 2 let λmax be the largest eigenvalue of X̂X̂T. In case α > 2, denote by λmax the
largest eigenvalue of (X̂X̂T − nµX̂HHT), where µX̂ = EZ2

11
∑

j c2
j and H = (Hi j) ∈ Rp×3p

is given by Hi j = θp−( j−i)1{06 j−i62p}. If α = 2 and EZ2
11 = ∞, then replace µX̂ by µn

X̂
=∑

j c2
j E(Z

2
111{Z2

116a2
np}
). Let Γ1 be an exponentially distributed random variable with mean one

and x > 0. If p and n go to infinity such that condition (4.1.8) is satisfied then we have for the
largest eigenvalue λmax that

P

Γ−2/α
1 max

k
θ2

k

∑
j

c2
j > x

 6 lim inf
n→∞

P
(
λmax > a2

npx
)

6 lim sup
n→∞

P
(
λmax > a2

npx
)

6P

Γ−2/α
1 max

l
|θl|

∑
k

|θk|
∑

j

c2
j > x

 (4.1.9)

Remark 4.1.1. (i) If all θk’s except one are zero, one has equality and therefore recovers
the result from Theorem 2.1 (i). If two or more θk are non-zero, then

P

Γ−2/α
1 max

k
θ2

k

∑
j

c2
j > x

 < P

Γ−2/α
1 max

l
|θl|

∑
k

|θk|
∑

j

c2
j > x

 .
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4. Random matrices with strongly dependent rows and columns

Whether the lim inf and lim sup are equal in this case and attain one of its boundaries
remain open problems.

(ii) Since P(Γ−2/α
1 6 x) = e−x−α/2

, inequality (4.1.9) can equivalently be written as

exp

−x−α/2 max
l
|θl|

α/2

∑
k

|θk|
∑

j

c2
j


α/2 6 lim inf

n→∞
P

(
λmax 6 a2

npx
)

6 lim sup
n→∞

P
(
λmax 6 a2

npx
)

6 exp

−x−α/2 max
k
|θk|

α

∑
j

c2
j


α/2 .

(iii) Clearly, for 0 < α < 2, the theorem can easily be rephrased for the largest singular value
of X, that is, the spectral norm of X. In this case one has that

P

Γ−1/α
1 max

k
|θk|

√∑
j

c2
j > x

 6 lim inf
n→∞

P (‖X‖2 > anpx)

6 lim sup
n→∞

P (‖X‖2 > anpx)

6P

Γ−1/α
1 max

l

√
|θl|

√∑
k

|θk|

√∑
j

c2
j > x

 .

4.2. Dependence of successive rows

To understand the basic principle of our method it is beneficial to first investigate the case
where only successive rows of X̂ are dependent and where α ∈ (0, 2). Thus we start with the
model

X̂it =
∑

j

c jξi,t− j, (4.2.1)

ξit = Zit + θZi−1,t. (4.2.2)

It is easy to see that X̂it = Xit + θXi−1,t, where Xit =
∑

j c jZi,t− j for i = 0, 1, . . . , p, and
t = 1, . . . , n. To proceed further we define the matrices X̂ = (X̂it) ∈ Rp×n, X = (X(i−1),t) ∈

R(p+1)×n and H = (Hi j) ∈ Rp×(p+1), where all entries of H are zero except Hii = θ and
Hi,i+1 = 1. Then we clearly have the matrix equality

X̂ = HX. (4.2.3)
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4.2. Dependence of successive rows

Moreover, we denote by D = (Di) = diag(XXT) ∈ R(p+1)×(p+1) the diagonal of XXT, that is
the diagonal matrix which consists of the diagonal entries of XXT. For the convenience of the
reader, we restate the result from Proposition 2.3.4.

Proposition 4.2.1. Under the conditions of Theorem 4.1 we have that

a−2
np

∥∥∥XXT − D
∥∥∥

2
P
−→
n→∞

0.

Thus, since ‖H‖2 6 ‖H‖∞ 6 1 + |θ|, we immediately conclude, by (4.2.3), that

a−2
np

∥∥∥X̂X̂T − HDHT
∥∥∥

2 6 ‖H‖
2
2 a−2

np

∥∥∥XXT − D
∥∥∥

2 → 0. (4.2.4)

Hence, by Weyl’s inequality ([15, Theorem III.2.6]), the largest eigenvalue λmax of the sample
covariance matrix X̂X̂T based on the observations X̂ is asymptotically equal to the largest
eigenvalue of the tridiagonal matrix

HDHT =



D1 + θ2D2 θD2 0
θD2 D2 + θ2D3 θD3

0 . . . . . . 0
Dp−1 + θ2Dp θDp

0 θDp Dp + θ2Dp+1


∈ Rp×p. (4.2.5)

It is our goal to find an asymptotic upper and lower bound for λmax. First we prove a lower
bound. Clearly, λmax is asymptotically larger or equal than the largest diagonal entry of HDHT,
i.e.,

λmax > max
16i6p

(Di + θ2Di+1) + oP(1), (4.2.6)

where oP(1) denotes some generic random variable that converges to zero in probability as n
goes to infinity. Since Di+1 =

∑n
t=1 X2

it, we have to find the maximum of an MA(1) process
of partial sums of linear processes. By Proposition 2.3.6 we already know that

p∑
i=0

εa−2
np Di+1

=
p∑

i=0

εa−2
np

∑n
t=1 X2

it

D
−→
n→∞

∞∑
i=1

εΓ−2/α
i

∑
j c2

j
. (4.2.7)

Since (Di) is an iid sequence, this result can be generalized as follows.

Lemma 4.2.1. Under the conditions of Theorem 4.1 we have that

Ip =
p∑

i=1

εa−2
np(Di+1,Di)

D
−→
n→∞

I =
∞∑

i=1

(
εΓ−2/α

i
∑

j c2
j (1,0) + εΓ−2/α

i
∑

j c2
j (0,1)

)
.
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4. Random matrices with strongly dependent rows and columns

Proof. By the continuous mapping theorem applied to (4.2.7), we immediately conclude that

I∗p =
p∑

i=1

(
εa−2

np(Di+1,0) + εa−2
np(0,Di)

)
D
−→
n→∞

I.

Thus, we only have to show that |Ip( f ) − I∗p( f )| → 0 in probability for any continuous
function with supp( f ) ⊂ {x = (x1, x2) ∈ R2 : max{|x1|, |x2|} > δ}. To this end, let
L = {x : min{|x1|, |x2|} < δ} and observe that, by independence of (Di),

EIp(Lc) 6 pP(|Di+1| > a2
npδ, |Di| > a2

npδ) = O(δ−αp−1)→ 0.

Thus Ip( f ) =
∫

L f dIp + oP(1) and, by definition of I∗p, I∗p( f ) =
∫

L f dI∗p. Since f (z) = 0 if
max{|x1|, |x2|} < δ, it suffices to show that

A + B =
p∑

i=1

∣∣∣∣ f (a−2
np(Di+1, Di))1{a−2

np |Di+1|>δ}∩{a−2
np |Di|<δ}

− f (a−2
np(Di+1, 0))1{a−2

np |Di+1|>δ}

∣∣∣∣
+

p∑
i=1

∣∣∣∣ f (a−2
np(Di+1, Di))1{a−2

np |Di+1|<δ}∩{a−2
np |Di|>δ}

− f (a−2
np(0, Di))1{a−2

np |Di|>δ}

∣∣∣∣ P
−→
n→∞

0.

We only treat term A, as B can be handled essentially the same way. To this end, observe that

A 6
p∑

i=1

∣∣∣ f (a−2
np(Di+1, Di)) − f (a−2

np(Di+1, 0))
∣∣∣ 1{a−2

np |Di+1|>δ}∩{a−2
np |Di|<δ}

+
p∑

i=1

| f (a−2
np(Di+1, 0))|1{a−2

np |Di+1|>δ}∩{a−2
np |Di|>δ}

= I + II.

Clearly, by independence,

E(II) 6 sup f (x)pP(a−2
np |Di+1| > δ)P(a−2

np |Di| > δ) = O(p−1)→ 0.

Furthermore, we have, for any 0 < η < δ, that

1{a−2
np |Di+1|>δ}∩{a−2

np |Di|<δ}
6 1{a−2

np |Di+1|>δ}∩{a−2
np |Di|<η}

+ 1{a−2
np |Di+1|>η}∩{a−2

np |Di|>η}
.

Thus, for some c > 0,

E(I) 6 sup{| f (x1, x2) − f (x1, 0)| : |x1| > δ, |x2| < η}pP(|Di+1| > a2
npη)

+ cpP(|Di+1| > a2
npη)P(|Di| > a2

npη).

Obviously, the second summand converges, for fixed η > 0, to zero as n → ∞. The first
summand can be made arbitrarily small by choosing η small enough, since f is uniformly
continuous. �
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4.3. Proof of the theorem

The continuous mapping theorem applied to Lemma 4.2.1 gives
p∑

i=1

εa−2
np(θ2D(i+1)+Di)

D
−→
n→∞

∞∑
i=1

(
εΓ−2/α

i
∑

j c2
jθ

2 + εΓ−2/α
i

∑
j c2

j

)
.

Therefore, by (4.2.6), the asymptotic lower bound of λmax is given by

a−2
np max

16i6p
(Di + θ2Di+1)

D
−→
n→∞

max{1, θ2}Γ−2/α
1

∑
j

c2
j . (4.2.8)

Regarding the upper bound, we make use of the fact that
∥∥∥HDHT

∥∥∥
2 6

∥∥∥HDHT
∥∥∥
∞

. Observe
that ∥∥∥HDHT

∥∥∥
∞
= max

16i6p

(
1{i,1}|θ|Di + Di + θ2Di+1 + |θ|Di+11{i,p}

)
= max

16i6p

(
(1 + |θ|1{i,1})Di + (|θ|1{i,p} + θ2)Di+1

)
.

So once again we have to determine the maximum of an MA(1) of partial sums of linear
processes. An application of Lemma 4.2.1 yields that

a−2
np

∥∥∥HDHT
∥∥∥
∞

D
−→
n→∞

max{1 + |θ|, |θ|+ θ2}Γ−2/α
1

∑
j

c2
j . (4.2.9)

The lower and upper bound (4.2.8) and (4.2.9) together with equation (4.2.4) finally yield that

P

max{1, θ2}Γ−2/α
1

∑
j

c2
j > x

 6 lim inf
n→∞

P
(
λmax > a2

npx
)

6 lim sup
n→∞

P
(
λmax > a2

npx
)

6P

(|θ|+ max{1, θ2}
)

Γ−2/α
1

∑
j

c2
j > x

 .

Clearly, this result is a special case of Theorem 4.1 when the process ξit is a moving average
process of order one.

4.3. Proof of the theorem

In this section we will proof Theorem 4.1 in its full generality.We start with the case where
α < 2. To this end we define an approximation X̂(p) of X and so that

(i) a−2
np

∥∥∥∥X̂(p)(X̂(p))T − HDHT
∥∥∥∥

2

P
−→
n→∞

0, (4.3.1)

(ii) a−2
np

∥∥∥∥X̂X̂T − X̂(p)(X̂(p))T
∥∥∥∥

2

P
−→
n→∞

0, (4.3.2)

(iii) and finally we derive upper and lower bounds for
∥∥∥HDHT

∥∥∥
2 .
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4. Random matrices with strongly dependent rows and columns

Note that, for notational convenience, we will assume that θk = 0 for k < 0, since the exten-
sion of the proof to the case where the dependence in (4.1.3) is two-sided is analogous.

(i). First we define the approximation X̂(p) = (X̂(p)
it ) ∈ Rp×n by X̂(p)

it =
∑p

k=0 θkXi−k,t, where
Xit =

∑
j c jZi,t− j. Furthermore we define X = (Xi−p,t) ∈ R2p×n, and H = (Hi j) ∈ Rp×2p by

Hi j =

 θp−( j−i) if 0 6 j − i 6 p,
0 else.

(4.3.3)

Then we have that HX = X̂(p). Indeed,

(HX)it =
2p∑

l=0

HilXl−p,t =
i+p∑
l=i

HilXl−p,t =
p∑

l=0

Hi,i+lXi+l−p,t =
p∑

l=0

θp−lXi−(p−l),t

=
p∑

k=0

θkXi−k,t = X̂(p)
it .

Thus, if we let D = (Di) = diag(XXT) ∈ R2p×2p, then we obtain (4.3.1) by virtue of Propo-
sition 4.2.1 and ‖H‖2 6 ‖H‖∞ 6

∑∞
k=0 |θk| < ∞ .

(ii). In order to proceed we will require the following lemma.

Lemma 4.3.1. Under the conditions of Theorem 4.1 we have that
p∑

i=1

εa−2
np

∑∞
k=0 θk

∑n
t=1 X2

i−k,t

D
−→
n→∞

∞∑
i=1

∞∑
k=0

εΓ−2/α
i θk

∑
j c2

j
.

Proof. A straight-forward generalization of Lemma 4.2.1 yields, for any m < ∞, that

p∑
i=1

εa−2
np

∑n
t=1(X

2
it,X

2
i−1,t,...,X

2
i−m,t)

D
−→
n→∞

m∑
k=0

∞∑
i=1

εΓ−2/α
i

∑
j c2

j ek+1
, (4.3.4)

where ek denotes the k-th unit vector of R∞, i.e, the k-th component of ek is one and all others
are zero. By an application of the continuous mapping theorem we obtain the claim for a finite
order moving average of the partial sums (

∑n
t=1 X2

it)i, i.e.,

p∑
i=1

εa−2
np

∑m
k=0 θk

∑n
t=1 X2

i−k,t

D
−→
n→∞

∞∑
i=1

m∑
k=0

εΓ−2/α
i θk

∑
j c2

j
,

On the other hand we have, for m→ ∞, that

∞∑
i=1

m∑
k=0

εΓ−2/α
i θk

∑
j c2

j

D
−→

m→∞

∞∑
i=1

∞∑
k=0

εΓ−2/α
i θk

∑
j c2

j
.
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To finish the proof of the lemma it is therefore only left so show that

lim
m→∞

lim sup
n→∞

ρ

 p∑
i=1

εa−2
np

∑m
k=0 θk

∑n
t=1 X2

i−k,t
,

p∑
i=1

εa−2
np

∑∞
k=0 θk

∑n
t=1 X2

i−k,t

 = 0,

where ρ denotes a metric of the vague topology on the space of point processes. To this end,
observe that ∣∣∣∣∣∣∣

m∑
k=0

θk

n∑
t=1

X2
i−k,t −

∞∑
k=0

θk

n∑
t=1

X2
i−k,t

∣∣∣∣∣∣∣ 6∑
k>m

|θk|

n∑
t=1

X2
i−k,t.

Therefore, by the arguments of the proof of Proposition 2.3.6, we only have to show, for any
γ > 0, that

lim
m→∞

lim sup
n→∞

P((Aγn)
c) = 0,

where

Aγn =

max
16i6p

∑
l>m

|θl|

n∑
t=1

X2
i−l,t 6 a2

npγ

 .

Observe that

P((Aγn)
c) 6pP

∑
l>m

|θl|

n∑
t=1

X2
lt > a2

npγ

 6 pP

∑
l>m

|θl|
∑

j

c2
j

n∑
t=1

Z2
l,t− j > a2

np
γ

2


+ pP

∑
l>m

|θl|
∑

j

∑
k> j

|c jck|

n∑
t=1

|Zl,t− jZl,t−k| > a2
npγ

 = I + II. (4.3.5)

We have

lim
m→∞

lim sup
n→∞

I = lim
m→∞

∑
l>m

|θl|

α/2 2 ∑
j

c2
j


α/2

γ−α/2 = 0

by a slight modification of the proof of Proposition 2.3.5. In fact, one can also map the array
(Zit) to a sequence and then apply Proposition 2.3.5 directly. Regarding the second term, note
that

II 6pP

∑
l>m

|θl|
∑

j

∑
k> j

|c jck|

n∑
t=1

Z2
l,t− j > a2

npγ


+pP

∑
l>m

|θl|
∑

j

∑
k> j

|c jck|

n∑
t=1

Z2
l,t−k > a2

npγ

 = II1 + II2.
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4. Random matrices with strongly dependent rows and columns

As before we conclude that

lim
m→∞

lim sup
n→∞

II1 = lim
m→∞

∑
l>m

|θl|

α/2 ∑
j

∑
k> j

|c jck|


α/2

γ−α/2 = 0,

and clearly term II2 can be handled similarly. �

We will now prove equation (4.3.2). By definition of the matrices X̂ and X̂(p) we have that

(X̂X̂T − X̂(p)(X̂(p))T)i j =
∑

l,l′k,k′∈Z2×(N0\{0,1,...,p})2

clcl′θkθk′

n∑
t=1

Zi−k,t−lZ j−k′,t−l′ .

Therefore we have the bound∥∥∥∥X̂X̂T − X̂(p)(X̂(p))T
∥∥∥∥

2
6

∥∥∥∥X̂X̂T − X̂(p)(X̂(p))T
∥∥∥∥
∞

= max
16i6p

p∑
j=1

∑
l,l′,k,k′∈Z2×(N0\{0,1,...,p})2

|clcl′θkθk′ |

n∑
t=1

|Zi−k,t−lZ j−k′,t−l′ |.

Observe that the product |Zi−k,t−lZ j−k′,t−l′ | has tail index α/2 if and only if j − k′ = i − k and
l = l′. In this case we can treat this term like the first term in I in (4.3.5) and obtain

a−2
np max

16i6p

∑
l,k,k′∈Z×{p+1,p+2,...}2

|c2
l θkθk′ |

n∑
t=1

|Z2
i−k,t−l|

P
−→
n→∞

0,

since
∑

k>p |θk| → 0. If the product |Zi−k,t−lZ j−k′,t−l′ | does not have tail index α/2, i.e.,
j − k′ , i − k′ or l , l′, the product has only tail index α and can then be treated similarly
as the second term II in (4.3.5).

(iii). By a combination of (i) and (ii) we have that

a−2
np

∥∥∥X̂X̂T − HDHT
∥∥∥

2
P
−→
n→∞

0.

Thus, by Weyl’s inequality, the difference of the largest eigenvalue of X̂X̂T and HDHT con-
verges to zero. As in the previous section, the final step is to find lower and upper bounds on∥∥∥HDHT

∥∥∥
2. By definition of H, we have

(HDHT)i j =
min{i, j}+p∑
l=max{i, j}

θp−(l−i)θp−(l− j)Dl.
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4.3. Proof of the theorem

Hence HDHT is no longer a tridiagonal matrix. Recall that the entries of the diagonal matrix
D are given by Di =

∑n
t=1 X2

i−p,t. By virtue of Lemma 4.3.1 an asymptotic lower bound is
given by

a−2
np

∥∥∥HDHT
∥∥∥

2 >a−2
np max

16i6p
(HDHT)ii

=a−2
np max

16i6p
(θ2

pDi + . . .+ θ2
0D2

i+p)
D
−→
n→∞

Γ−2/α
1 max

k
θ2

k

∑
c2

j .

Regarding the upper bound, observe that

∥∥∥HDHT
∥∥∥

2 6
∥∥∥HDHT

∥∥∥
∞
= max

16i6p

p∑
j=1

|(HDHT)i j|

6 max
16i6p

p∑
j=1

l=min{i, j}+p∑
l=max{i, j}

|θp−(l−i)θp−(l− j)|Dl

= max
16i6p

2p∑
l=1

Dl

p∑
j=1

1{l−p6 j6l,i6l6i+p}|θp−(l−i)θp−(l− j)|

= max
16i6p

i+p∑
l=i

Dl|θp−(l−i)|

l∑
j=l−p

|θp−(l− j)|

= max
16i6p

p∑
l=0

Di+l|θp−l|

p∑
k=0

|θk|,

so we have to determine the maximum of a moving average of order p of (Di), with coefficients
|θp−l|

∑p
k=0 |θk|. By Lemma 4.3.1,

a−2
np max

16i6p

p∑
l=0

Di+l|θp−l|

p∑
k=0

|θk|
D
−→
n→∞

Γ−2/α
1 max

06l6∞
|θl|

∞∑
k=0

|θk|
∑

j

c2
j . (4.3.6)

This completes the proof of Theorem 4.1.

Proof of Theorem 4.1 for α > 2 and EZ2
11 < ∞. Since we now consider the largest eigenvalue

λmax of X̂X̂T − nµXHHT, one has to replace D by the centralized diagonal matrix D̃ = D −
nµXIp, i.e,

D̃i =
n∑

t=1

(X2
i−p,t − µX).

Then one has that

a−2
np

∥∥∥(X̂X̂T − nµXHHT) − HD̃HT
∥∥∥

2 =a−2
np

∥∥∥H(XXT − nµXIp)HT − H(D − nµXIp)HT
∥∥∥

2

6a−2
np ‖H‖

2
2

∥∥∥(XXT − nµXIp) − (D − nµXIp)
∥∥∥

2
P
−→
n→∞

0,
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4. Random matrices with strongly dependent rows and columns

by an application of Proposition 3.2.1. The remainder of the proof is then a straightforward
combination of the results from the foregoing chapter with the methods used in the proof of
Theorem 4.1. The case where α = 2 and EZ2

11 = ∞ is treated analogously with µX̂ replaced
by µn

X̂
. �
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Part II.

Spectral Distribution of Light-tailed
Random Matrices
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CHAPTER 5

Eigenvalue distribution of large sample covariance matrices of
linear processes2

5.1. Introduction and main result

A typical object of interest in many fields is the sample covariance matrix (n − 1)−1XXT of a
data matrix X = (Xi,t)it, i = 1, . . . , p, t = 1, . . . , n. The matrix X can be seen as a sample
of size n of p-dimensional data vectors. For fixed p one can show, as n tends to infinity, that
under certain assumptions the eigenvalues of the sample covariance matrix converge to the
eigenvalues of the true underlying covariance matrix [5]. However, the assumption p � n
may not be justified if one has to deal with high dimensional data sets, so that it is often more
suitable to assume that the dimension p is of the same order as the sample size n, that is
p = pn → ∞ such that

lim
n→∞

n
p
C y ∈ (0,∞). (5.1.1)

For a symmetric matrix A with eigenvalues λ1, . . . , λp, we denote by

FA =
1
p

p∑
i=1

δλi

the spectral distribution of A, where δx denotes the Dirac measure located at x. This means that
pFA(B) is equal to the number of eigenvalues of A that lie in the set B. From now on we will

2This chapter is based on O. Pfaffel and E. Schlemm: Eigenvalue distribution of large sample covariance matri-
ces of linear processes, Probab. Math. Statist., 31(2), 313–329, 2011.
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5. Sample covariance matrices of linear processes

call p−1XXT the sample covariance matrix. Due to Eq. (5.1.1), this change of normalization
can be reversed by a simple transformation of the limiting spectral distribution. For notational
convenience we suppress the explicit dependence of the occurring matrices on n and p where
this does not cause ambiguity.

The distribution of Gaussian sample covariance matrices of fixed size was first computed in
[113]. Several years later, it was Marčenko and Pastur [77] who considered the case where the
random variables {Xi,t} are more general i. i. d. random variables with finite second moments
EX2

11 = 1, and the number p of variables is of the same order as the sample size n. They
showed that the empirical spectral distribution (ESD) F p−1XXT

of p−1XXT converges, as n →
∞, to a non-random distribution F̂, called limiting spectral distribution (LSD), given by

F̂(dx) =
1

2πx

√
(x+ − x)(x − x−)1{x−6x6x+}dx, (5.1.2)

and point mass F̂({0}) = 1 − y if y < 1; in this formula, x± = (1 ±
√

y)2. Here and in the
following, convergence of the ESD means almost sure convergence as a random element of the
space of probability measures on R equipped with the weak topology. In particular, the eigen-
values of the sample covariance matrix of a matrix with independent entries do not converge
to the eigenvalues of the true covariance matrix, which is the identity matrix and therefore
only has eigenvalue one. This leads to the failure of statistics that rely on the eigenvalues of
p−1XXT which have been derived under the assumption of fixed p, and random matrix theory
is a tool to correct these statistics [8, 69]. In the case where the true covariance matrix is not
the identity matrix, the LSD can in general only be given in terms of a non-linear equation for
its Stieltjes transform, which is defined by

mF̂(z) =
∫

1
λ − z

dF̂ ∀z ∈ C+ B {z = u + iv ∈ C : =z = v > 0}.

Conversely, the distribution F̂ can be obtained from its Stieltjes transform mF̂ via the Stieltjes–
Perron inversion formula ([9, Theorem B.8]), which states that

F̂([a, b]) =
1
π

lim
ε→0+

∫ b

a
=mF̂(x + iε)dx. (5.1.3)

for all continuity points a < b of F̂. For a comprehensive account of random matrix theory we
refer the reader to [2], [9], [81], and the references therein.

Our aim in this chapter is to obtain a Marčenko–Pastur type result in the case where there is
dependence within the rows of X. More precisely, for i = 1, . . . , p, the ith row of X is given
by a linear process of the form

(Xi,t)t=1,...,n =

 ∞∑
j=0

c jZi,t− j


t=1,...,n

, c j ∈ R.
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5.1. Introduction and main result

Here, (Zi,t)it is an array of independent random variables that satisfies

EZi,t = 0, EZ2
i,t = 1, and σ4 B sup

i,t
EZ4

i,t < ∞, (5.1.4)

as well as the Lindeberg-type condition that, for each ε > 0,

1
pn

p∑
i=1

n∑
j=1

E

(
Z2

i,t1{Z2
i,t>εn}

)
→ 0, as n→ ∞. (5.1.5)

Clearly, Eq. (5.1.5) is satisfied if all {Zi,t} are identically distributed.
The novelty of our result is that we allow for dependence within the rows, and that the

equation for mF̂ is given in terms of the spectral density

f (ω) =
∑
h∈Z

γ(h)e−ihω, ω ∈ [0, 2π],

of the linear processes Xi only, which is the Fourier transform of the autocovariance function

γ(h) =
∞∑

j=0

c jc j+|h|, h ∈ Z.

Potential applications arise whenever data is not independent in time such that the well-known
Marčenko–Pastur law is not a good approximation. This includes e. g. wireless communica-
tions [109] and mathematical finance [23, 93]. Note that a similar question is also discussed in
[10]. However, they have a different proof which relies on a moment condition to be verified.
Furthermore, they assume that the random variables {Zi,t} are identically distributed so that
the processes within the rows are independent copies of each other. More importantly, their
results do not yield concrete formulas except in the AR(1) case and are therefore not directly
applicable. In the context of free probability theory, the limiting spectral distribution of large
sample covariance matrices of Gaussian ARMA processes is investigated in [30].

Before we present the main result of this article, we explain the notation used in this article.
The symbols Z, N R, and C denote the sets of integers, natural, real, and complex numbers,
respectively. For a matrix A, we write AT for its transpose and trA for its trace. Finally, the
indicator of an expression E is denoted by I{E} and defined to be one if E is true, and zero
otherwise; for a set S , we also write IS (x) instead of I{x∈S }.

Theorem 5.1. For each i = 1, . . . , p, let Xi,t =
∑∞

j=0 c jZi,t− j, t ∈ Z, be a linear stochastic
process with continuously differentiable spectral density f . Assume that

i) the array (Zi,t)it satisfies conditions (5.1.4) and (5.1.5),

ii) there exist positive constants C and δ such that |c j| 6 C( j + 1)−1−δ for all j > 0,
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5. Sample covariance matrices of linear processes

iii) for almost all λ ∈ R, f (ω) = λ for at most finitely many ω ∈ [0, 2π], and

iv) f ′(ω) , 0 for almost every ω.

Then the empirical spectral distribution F p−1XXT
of p−1XXT converges, as n tends to infinity,

almost surely to a non-random probability distribution F̂ with bounded support. Moreover,
there exist positive numbers λ−, λ+ such that the Stieltjes transform z 7→ mF̂(z) of F̂ is the
unique mapping C+ → C+ satisfying

1
mF̂(z)

= −z +
y

2π

∫ λ+

λ−

λ

1 + λmF̂(z)

∑
ω∈[0,2π]: f (ω)=λ

1∣∣∣ f ′(ω)∣∣∣dλ. (5.1.6)

The assumptions of the theorem are met, for instance, if (Xi,t)t is an ARMA or fractionally
integrated ARMA process; see Section 5.3 for details.

Theorem 5.1, as it stands, does not contain the classical Marčenko–Pastur law as a special
case. For if the entries Xi,t of the matrix X are i. i. d., the corresponding spectral density f is
identically equal to the variance of X1,1, and thus condition iv is not satisfied. We therefore
also present a version of Theorem 5.1 that holds if the rows of the matrix X have a piecewise
constant spectral density.

Theorem 5.2. For each i = 1, . . . , p, let Xi,t =
∑∞

j=0 c jZi,t− j, t ∈ Z, be a linear stochastic
process with spectral density f of the form

f : [0, 2π] → R+, ω 7→

k∑
j=1

α j1A j(ω), k ∈N, (5.1.7)

for some positive real numbers α j and a measurable partition A1 ∪ · · · ∪ Ak of the interval
[0, 2π]. If conditions i and ii of Theorem 5.1 hold, then the empirical spectral distribution
F p−1XXT

of p−1XXT converges, as n → ∞, almost surely to a non-random probability dis-
tribution F̂ with bounded support. Moreover, the Stieltjes transform z 7→ mF̂(z) of F̂ is the
unique mapping C+ → C+ that satisfies

1
mF̂(z)

= −z +
y

2π

k∑
j=1

|A j|α j

1 + α jmF̂(z)
, (5.1.8)

where |A j| denotes the Lebesgue measure of the set A j. In particular, if the entries of X
are i. i. d. with unit variance, one recovers the limiting spectral distribution (5.1.2) of the
Marčenko–Pastur law.

Remark 5.1.1. In applications one often considers processes of the form

Xi,t = µ+
∞∑

j=0

c jZi,t− j
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with mean µ , 0. If we denote by xt ∈ Rp the tth column of the matrix X, and define
the empirical mean by x = p−1 ∑n

t=1 xt, then the sample covariance matrix is given by the
expression p−1 ∑n

t=1(xt − x)(xt − x)T instead of p−1XXT . However, by [9, Theorem A.44],
the subtraction of the empirical mean does not change the LSD, and thus Theorems 5.1 and 5.2
remain valid if the underlying linear process has a non-zero mean.

Remark 5.1.2. The proof of Theorems 5.1 and 5.2 can easily be generalized to cover non-
causal linear processes, which are defined as Xi,t =

∑∞
j=−∞ c jZi,t− j. For this case one obtains

the same result except that the autocovariance function is now given by
∑∞

j=−∞ c jc j+|h|.

Remark 5.1.3. If one considers a matrix X which has independent linear processes in its
columns instead of its rows, one obtains the same formulas as in Theorems 5.1 and 5.2 except
that y is replaced by y−1. This is due to the fact that XT X and XXT have the same non-trivial
eigenvalues.

In Section 5.2 we proceed with the proofs of Theorems 5.1 and 5.2. Thereafter we present
some interesting examples in Section 5.3.

5.2. Proofs

In this section we present our proofs of Theorems 5.1 and 5.2. Dealing with infinite-order
moving average processes directly is dfficult, and we therefore first prove a variant of these
theorems for the truncated processes X̃i,t =

∑n
j=0 c jZi,t− j. We define the p × n matrix X̃ =

(X̃i,t)it, i = 1, . . . , p, t = 1, . . . , n.

Theorem 5.3. Under the assumptions of Theorem 5.1 (Theorem 5.2), the empirical spectral
distribution of the sample covariance matrix of the truncated process X̃ converges, as n tends to
infinity, to a deterministic distribution with bounded support. Its Stieltjes transform is uniquely
determined by Eq. (5.1.6) (Eq. (5.1.8)).

Proof. The proof starts from the observation that one can write X̃ = ZH, where Rp×2n 3 Z =

(Zi,t)it, i = 1, . . . , p, t = 1 − n, . . . , n, and

H =


cn cn−1 . . . c1 c0 0 . . . 0

0 cn . . . c2 c1 c0
...

... . . . ...
... . . . 0

0 . . . 0 cn cn−1 . . . . . . c0



T

∈ R2n×n. (5.2.1)

In particular, X̃X̃T = ZHHT ZT . In order to prove convergence of the empirical spectral
distribution F p−1X̃X̃T

and to obtain a characterization of the limiting distribution, it suffices, by
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5. Sample covariance matrices of linear processes

[86, Theorem 1], to prove that the spectral distribution FHHT
of HHT converges to a non-trivial

limiting distribution. This will be done in Lemma 5.2.1, where the LSD of HHT is shown to
be F̂HHT

= 1
2δ0 +

1
2 F̂Γ; the distribution F̂Γ is computed in Lemma 5.2.2 if we impose the

assumptions of Theorem 5.1, respectively in Lemma 5.2.3 if we impose the assumptions of
Theorem 5.2. Inserting this expression for F̂HHT

into equation (1.2) of [86] shows that the
ESD F p−1X̃X̃T

converges, as n → ∞, almost surely to a deterministic distribution, which is
determined by the requirement that its Stieltjes transform z 7→ m(z) satisfies

1
m(z)

= −z + 2y
∫ λ+

λ−

λ

1 + λm(z)
dF̂HHT

= −z + y
∫ λ+

λ−

λ

1 + λm(z)
dF̂Γ. (5.2.2)

Using the explicit formulas of F̂Γ computed in Lemmas 5.2.2 and 5.2.3, one obtains Eqs. (5.1.6)
and (5.1.8). Uniqueness of a mapping m : C+ → C+ solving Eq. (5.2.2) was shown in [9,
p. 88]. We complete the proof by arguing that the LSD of p−1X̃X̃T has bounded support. For
this it is enough, by [9, Theorem 6.3], to show that the spectral norm of HHT is bounded in n,
which is also done in Lemma 5.2.1. �

Lemma 5.2.1. Let H = (cn−i+ j1{06n−i+ j6n})i j be the matrix appearing in Eq. (5.2.1), and
assume that there exist positive constants C, δ such that |c j| 6 C( j + 1)−1−δ (assumption ii
of Theorem 5.1). Then the spectral norm of the matrix HHT is bounded in n. If, moreover,
the spectral distribution of the Toeplitz matrix Γ = (γ(i − j))i j converges weakly to some
limiting distribution F̂Γ, then the spectral distribution FHHT

converges weakly, as n → ∞, to
1
2δ0 +

1
2 F̂Γ.

Proof. We first introduce the notationH B HHT ∈ R2n×2n as well as the block decomposition

H =

 H11 H12

HT
12 H22

, Hi j ∈ Rn×n. We prove the second part of the lemma first. There are

several ways to show that the spectral distributions of two sequences of matrices converge
to the same limit. In our case it is convenient to use [9, Corollary A.41] which states that
two sequences An and Bn, either of whose empirical spectral distribution converges, have the
same limiting spectral distribution if n−1tr(An − Bn)(An − Bn)T converges to zero as n tends
to infinity. We shall employ this result twice: first to show that the LSDs of H = HHT and
H̃ B diag(0,H22) agree, and then to prove equality of the LSDs of H22 and Γ. Let ∆H =

n−1tr(H −H̃)(H −H̃)T ; a direct calculation shows that ∆H = n−1
[
trH11H

T
11 + 2trH12H

T
12

]
,

and we will consider each of the two terms in turn. From the definition of H it follows that the
(i, j)th entry ofH is given by

H i j =
n∑

k=1

cn−i+kcn− j+k1{max (i, j)−n6k6min (i, j)}.
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The trace of the square of the upper left block ofH therefore satisfies

trH11H
T
11 =

n∑
i, j=1

{
H i j

}2
=

n∑
i, j=1

min (i, j)∑
k=1

cn−i+kcn− j+k


2

6
n∑

i, j,k,l=1

|ci+k−1||c j+k−1||ci+l−1||c j+l−1|

6C4
n+1∑

i, j,k,l=2

i−1−δ j−1−δl−1−δk−1−δ

< [Cζ(1 + δ)]4 < ∞,

where ζ(z) denotes the Riemann zeta function. As a consequence, the limit of n−1trH11H
T
11

as n tends to infinity is zero. Similarly, we obtain for the trace of the square of the off-diagonal
block ofH the bound

trH12H
T
12 =

n∑
i=1

2n∑
j=n+1

{
H i j

}2
=

n∑
i=1

n+i∑
j=n+1

 i∑
k= j−n

cn−i+kcn− j+k


2

6
n∑

i=1

n∑
j=1

n−i+1∑
k= j

n−i+1∑
l= j

ci+k−1ck− jci+l−1cl− j

6
n∑

i=1

n∑
j=1

n∑
r=0

n∑
s=0

|ci+r+ j−1||cr||cs+ j−1||cs|

6C4
n+1∑

i, j,r,s=1

i−1−δr−1−δs−1−δ j−1−δ

< [Cζ(1 + δ)]4 < ∞,

which shows that the limit of n−1trH12H
T
12 is zero. It follows, as n goes to infinity, that

∆H , as defined in Lemma 5.2.1, converges to zero, and therefore that the LSDs of H and
H̃ = diag(0,H22) coincide. The latter distribution is clearly given by FH̃ = 1

2δ0 +
1
2 FH22 ,

and we show next that the LSD of H22 agrees with the LSD of Γ = (γ(i − j))i j. As before it
suffices to show, by [9, Corollary A.41], that ∆Γ = n−1tr(H22 − Γ)(H22 − Γ)T converges to
zero as n tends to infinity. It follows from the definitions ofH and Γ that n∆Γ can be estimated
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as

n∆Γ =
n∑

i, j=1

 n∑
k=max (i, j)

ck−ick− j −

∞∑
k=1

ck−1ck+|i− j|−1


2

=
n∑

i, j=1

 n∑
k=max (i, j)

ck−ick− j −

∞∑
k=max (i, j)

ck−ick− j


2

=
n∑

i, j=1

∞∑
k,l=1

ck+i−1ck+ j−1cl+i−1cl+ j−1

6C4
n+1∑
i, j=2

∞∑
k,l=2

i−1−δ j−1−δk−1−δl−1−δ < [Cζ(1 + δ)]4 < ∞.

Consequently, ∆Γ converges to zero as n goes to infinity, and it follows that F̂H = 1
2δ0 +

1
2 F̂Γ.

In order to show that the spectral norm ofH = HHT is bounded in n, we use Gerschgorin’s
circle theorem ([52, Theorem 2]), which states that every eigenvalue ofH lies in at least one of
the balls B(H ii, Ri) with centreH i and radius Ri, i = 1, . . . , 2n, where the radii Ri are defined
as Ri =

∑
j,i

∣∣∣H i j
∣∣∣. We first note that the centresH ii satisfy

H ii =
min{i,n}∑

k=max{1,i−n}

c2
n−i+k 6

n∑
k=0

c2
k 6 [Cζ(2 + 2δ)]2 < ∞.

To obtain a uniform bound for the radii Ri we first assume that i = 1, . . . , n. Then

|Ri| 6
n∑

j=1

min{i, j}∑
k=1

|cn−i+k||cn− j+k|+
2n∑

j=n+1

i∑
k= j−n

|cn−i+k||cn− j+k|

6
n∑

j,k=1

|cn−i+k||c j+k−1|+
2n−i∑

j=n+1−i

n− j∑
k=0

|ck+ j||ck| 6 2 [Cζ(1 + δ)]2 < ∞.

Similarly we find that, for i = n + 1, . . . , 2n,

|Ri| 6
n∑

j=1

j∑
k=i−n

|cn−i+k||cn− j+k|+
2n∑

j=n+1

n∑
k=max{i, j}−n

|cn−i+k||cn− j+k|

6
i−1∑

j=i−n

n+1− j∑
k=0

|ck+ j||ck|+
2n∑

j=n+1

n−max{i, j}∑
k=0

|ck||ck+| j−i|| 6 3 [Cζ(1 + δ)]2

is bounded, which completes the proof. �

In the following two lemmas, we argue that the distribution F̂Γ exists and we prove explicit
formulas for it in the case that the assumptions of Theorem 5.1 or Theorem 5.2 are satisfied.

70



5.2. Proofs

Lemma 5.2.2. Let (c j) j be a sequence of real numbers, γ : h 7→
∑∞

j=0 c jc j+|h|, and f : ω 7→∑
h∈Z γ(h)e−ihω. Under the assumptions of Theorem 5.1 it holds that the spectral distribution

FΓ of Γ = (γ(i − j))i j converges weakly, as n → ∞, to an absolutely continuous distribution
F̂Γ with bounded support and density

g : (λ−, λ+)→ R+, λ 7→
1

2π

∑
ω: f (ω)=λ

1∣∣∣ f ′(ω)∣∣∣ . (5.2.3)

Proof. We first note that under assumption ii of Theorem 5.1 the autocovariance function γ is
absolutely summable because

∞∑
h=0

|γ(h)| 6
∞∑

h=0

∞∑
j=0

|c j||c j+h| 6 C2
∞∑

h, j=1

h−1−δ j−1−δ < [Cζ(1 + δ]2 < ∞.

Szegő’s first convergence theorem ([59] and [58, Corollary 4.1]) then implies that F̂Γ exists,
and that the cumulative distribution function of the eigenvalues of the Toeplitz matrix Γ asso-
ciated with the sequence h 7→ γ(h) is given by

G(λ) B
1

2π

∫ 2π

0
1{ f (ω)6λ}dω =

1
2π

Leb({ω ∈ [0, 2π] : f (ω) 6 λ}), (5.2.4)

for all λ such that the level sets {ω ∈ [0, 2π] : f (ω) = λ} have Lebesgue measure zero. By
assumption iii of Theorem 5.1, Eq. (5.2.4) holds for almost all λ. In order to prove that the
LSD F̂Γ is absolutely continuous with respect to the Lebesgue measure, it suffices to prove
that the cumulative distribution function G is differentiable almost everywhere. Clearly, for
∆λ > 0,

G(λ+ ∆λ) −G(λ) =
1

2π
Leb({ω ∈ [0, 2π] : λ < f (ω) 6 λ+ ∆λ}).

Due to assumption iv of Theorem 5.1, the set of all λ ∈ R such that the set {ω :∈ [0, 2π] :
f (ω) = λ and f ′(ω) = 0} is non-empty is a Lebesgue null-set. Hence it is enough to consider
only λ for which this set is empty. Let f −1(λ) = {ω : f (ω) = λ} be the pre-image of λ, which
is a finite set by assumption iii. The implicit function theorem then asserts that, for every
ω ∈ f −1(λ), there exists an open interval Iω around ω such that f restricted to Iω is invertible.
It is no restriction to assume that these Iω are disjoint. By choosing ∆λ sufficiently small it can
be ensured that the interval [λ, ∆λ] is contained in

⋂
ω∈ f−1(λ) f (Iω), and from the continuity of

f it follows that outside of
⋃
ω∈ f−1(λ) Iω, the values of f are bounded away from λ, so that

lim
∆λ→0

1
∆λ

[G(λ+ ∆λ) −G(λ)]

=
1

2π
lim

∆λ→0

1
∆λ

Leb

 ⋃
ω∈ f−1(λ)

{ω′ ∈ Iω : λ < f (ω′) 6 λ+ ∆λ}


=

1
2π

∑
ω∈ f−1(λ)

lim
∆λ→0

1
∆λ

Leb ({ω′ ∈ Iω : λ < f (ω′) 6 λ+ ∆λ}) .
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In order to further simplify this expression, we denote the local inverse functions by f −1
ω :

f (Iω) → [0, 2π]. Observing that the Lebesgue measure of an interval is given by its length,
and that the derivatives of f −1

ω are given by the inverse of the derivative of f , it follows that

lim
∆λ→0

1
∆λ

[G(λ+ ∆λ) −G(λ)] =
1

2π

∑
ω∈ f−1(λ)

lim
∆λ→0

1
∆λ

∣∣∣ f −1
ω (λ+ ∆λ) − f −1

ω (λ)
∣∣∣

=
1

2π

∑
ω∈ f−1(λ)

∣∣∣∣∣ d
dλ

f −1
ω (λ)

∣∣∣∣∣
=

1
2π

∑
ω∈ f−1(λ)

1∣∣∣ f ′(ω)∣∣∣ .
This shows that G is differentiable almost everywhere with derivative

g : λ 7→
1

2π

∑
ω∈ f−1(λ)

1∣∣∣ f ′(ω)∣∣∣ .
It remains to argue that the support of F̂Γ is bounded. The absolute summability of γ(·) implies
boundedness of its Fourier transform f . The claim then follows from Eq. (5.2.4), which shows
that the support of g is equal to the range of f . �

Lemma 5.2.3. Let f : ω 7→
∑k

j=1 α j1A j(ω) be the piecewise constant spectral density of
the linear process Xt =

∑∞
j=0 c jZt− j, and denote the corresponding autocovariance function

by γ : h 7→
∑∞

j=0 c jc j+|h|. Under the assumptions of Theorem 5.2 it holds that the spectral
distribution FΓ of Γ = (γ(i − j))i j converges weakly, as n → ∞, to the distribution F̂Γ =

(2π)−1 ∑k
j=1 |A j|δα j .

Proof. Without loss of generality we may assume that 0 < α1 < . . . < αk. As in the proof of
Lemma 5.2.2 one sees that F̂Γ exists, and that F̂Γ(−∞, λ) is given by

G(λ) B
1

2π
Leb({ω ∈ [0, 2π] : f (ω) 6 λ}), ∀λ ∈ [0, 2π]\

k⋃
j=1

{α j}.

The special structure of f thus implies that G(λ) = (2π)−1 ∑kλ
j=1 |A j|, where kλ is the largest

integer such that αkλ 6 λ. Since G must be right-continuous, this formula holds for all λ in the
interval [0, 2π]. It is easy to see that the function G is the cumulative distribution function of
the discrete measure (2π)−1 ∑k

j=1 |A j|δα j , which completes the proof. �

Proof. of Theorems 5.1 and 5.2 It is only left to show that the truncation performed in Theo-
rem 5.3 does not alter the LSD, i. e. that the difference of F p−1XXT

and F p−1X̃X̃T
converges to

zero almost surely. By [9, Corollary A.42], this means that we have to show that

1
p2 tr(XXT + X̃X̃T )︸                   ︷︷                   ︸

=I

1
p2 tr((X − X̃)(X − X̃)T )︸                          ︷︷                          ︸

=II

(5.2.5)
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converges to zero. To this end we show that I has a limit, and that II converges to zero, both
almost surely. By the definition of X and X̃ we have

II =
1
p2

p∑
i=1

n∑
t=1

∞∑
k=n+1

∞∑
m=n+1

ckcmZi,t−kZi,t−m.

We shall prove that the variances of II are summable. For this purpose we need the following
two estimates which are implied by the Cauchy–Schwarz inequality, the assumption that σ4 =

supi,t EZ4
i,t is finite, and the assumed absolute summability of the coefficients (c j) j:

E

p∑
i=1

n∑
t=1

∞∑
k,m=1

|ckcmZi,t−kZi,t−m| 6 pn

 ∞∑
k=1

|ck|

2

< ∞, (5.2.6a)

E

p∑
i,i′=1=1

n∑
t,t′=1

∞∑
k,k′,m,m′=1

|ckcmck′cm′Zi,t−kZi,t−mZi′,t′−k′Zi′,t′−m′ | (5.2.6b)

6(np)2σ4

 ∞∑
k=1

|ck|

4

< ∞.

Therefore we can, by Fubini’s theorem, interchange expectation and summation to bound the
variance of II as

Var(II) 6
1
p4

p∑
i,i′=1

n∑
t,t′=1

∞∑
k,k′

m,m′=n+1

ckcmck′cm′E(Zi,t−kZi,t−mZi′,t′−k′Zi′,t′−m′).

Considering separately the terms where i = i′ and i , i′, we can write

Var(II) 6
1
p4

p∑
i,i′=1
i,i′

n∑
t,t′=1

∞∑
k,k′

m,m′=n+1

ckcmck′cm′E(Zi,t−kZi,t−mZi′,t′−k′Zi′,t′−m′)

+
1
p4

p∑
i=1

n∑
t,t′=1

∞∑
k,k′

m,m′=n+1

ckcmck′cm′E(Zi,t−kZi,t−mZi,t′−k′Zi,t′−m′).

For the expectation in the first sum not to be zero, k must equal m and k′ must equal m′, in
which case its value is unity. The expectation in the second term can always be bounded by
σ4, so that we obtain

Var(II) 6
p2 − p

p4 n2

 ∞∑
k=n+1

c2
k

2

+ σ4
pn2

p4

 ∞∑
k=n+1

|ck|

4

.
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Due to Eq. (5.1.1) and the assumed polynomial decay of ck there exists a constant K such that
the right hand side is bounded by Kn−1−4δ, which implies that

∞∑
n=1

Var (II) 6 K
∞∑

n=1

n−1−4δ < ∞,

and therefore, by the first Borel–Cantelli lemma, that II converges to a constant almost surely.
In order to show that this constant is zero, it suffices to shows that the expectation of II con-
verges to zero. Since EZi,t = 0, and the {Zi,t} are independent, one sees, using Eq. (5.2.6a)
and again Fubini’s theorem, that E(II) = np−1 ∑∞

k=n+1 c2
k , which converges to zero because

the {ck} are square-summable.
We now consider factor I of expression (5.2.5) and define ∆X = XXT − X̃X̃T . Then

I =
1
p2 tr(∆X)︸     ︷︷     ︸

=Ia

+2
1
p2 tr(X̃X̃T )︸        ︷︷        ︸

=Ib

. (5.2.7)

Because of

(XXT )ii =
n∑

t=1

X2
i,t =

n∑
t=1

∞∑
k=0

∞∑
m=0

ckcmZi,t−kZi,t−m,

and similarly (X̃X̃T )ii =
∑n

t=1
∑n

k=0
∑n

m=0 ckcmZi,t−kZi,t−m, we have that

tr(∆X) =
p∑

i=1

[
(XXT )ii − (X̃X̃T )ii

]
=

p∑
i=1

n∑
t=1

∞∑
k=n+1

∞∑
m=n+1

ckcmZi,t−kZi,t−m︸                                         ︷︷                                         ︸
=II→0 a.s.

+ 2
p∑

i=1

n∑
t=1

∞∑
k=n+1

n∑
m=1

ckcmZi,t−kZi,t−m. (5.2.8)

Equation (5.2.6b) allows us to apply Fubini’s theorem to compute the variance of the second
term in the previous display as

4
p4

p∑
i,i′=1

n∑
t,t′=1

∞∑
k,k′=n+1

n∑
m,m′=1

ckcmck′cm′E(Zi,t−kZi,t−mZi′,t′−k′Zi′,t′−m′),

which is, by the same reasoning as we did for II, bounded by

4σ4
p
p4 n2

 ∞∑
k=n+1

|ck|

2  n∑
m=1

|cm|

2

6 Kn−1−2δ,
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Figure 5.1.: Limiting spectral densities λ 7→ p(λ) of p−1XXT for the MA(1) process Xt =

Zt + ϑZt−1 for different values of ϑ and y = n/p

for some positive constant K. Clearly, this is summable in n. Having, by Eq. (5.2.6a), ex-
pected value zero, the second term of Eq. (5.2.8) and, therefore, also tr(∆X) both converge to
zero almost surely. Thus, we only have to look at the contribution of Ib in expression (5.2.7).
From Theorem 5.3 we know that F p−1X̃X̃T

converges almost surely weakly to some non-ran-
dom distribution F̂ with bounded support. Hence, denoting by λ1, . . . , λp the eigenvalues of
p−1X̃X̃T ,

Ib =
1
p

tr
(

1
p

X̃X̃T
)
=

1
p

p∑
i=1

λi =

∫
λdF

1
p X̃X̃T

→

∫
λdF̂ < ∞,

almost surely. It follows that, in Eq. (5.2.5), factor I is bounded, and factor II converges to
zero, and so the proof of Theorems 5.1 and 5.2 is complete. �

5.3. Illustrative examples

For several classes of widely employed linear processes, Theorem 5.1 can be used to obtain
an explicit description of the limiting spectral distribution. In this section we consider the
class of autoregressive moving average (ARMA) processes as well as fractionally integrated
ARMA models. The distributions we obtain in the case of AR(1) and MA(1) processes can be
interpreted as one-parameter deformations of the classical Marčenko–Pastur law.

5.3.1. Autoregressive moving average processes

Given polynomials a : z 7→ 1 + a1z + . . . apzp and b : z 7→ 1 + b1z + . . . + bqzq, an
ARMA(p,q) process X with autoregressive polynomial a and moving average polynomial b
is defined as the stationary solution to the stochastic difference equation

Xt + a1Xt−1 + . . .+ apXt−p = Zt + b1Zt−1 + . . .+ bqZt−q, t ∈ Z.
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Figure 5.2.: Limiting spectral densities λ 7→ p(λ) of p−1XXT for the AR(1) process Xt =

ϕXt−1 + Zt for different values of ϕ and y = n/p

If the zeros of a lie outside the closed unit disk, it is well known that X has an infinite-order
moving average representation Xt =

∑∞
j=0 c jZt− j, where {c j} are the coefficients in the power

series expansion of b(z)/a(z) around zero. It is also known ([24]) that there exist positive
constants ρ < 1 and K such that |c j| 6 Kρ j, so that assumption ii of Theorem 5.1 is satisfied.
While the autocovariance function of a general ARMA process does not in general have a
simple closed form, its Fourier transform is given by

f (ω) =

∣∣∣∣∣∣∣∣
b
(
eiω

)
a (eiω)

∣∣∣∣∣∣∣∣
2

, ω ∈ [0, 2π]. (5.3.1)

Since f is rational, assumptions iii and iv of Theorem 5.1 are satisfied as well. In order to
compute the LSD of Γ, it is necessary, by Lemma 5.2.2, to find the roots of a trigonometric
polynomial of possibly high degree, which can be done numerically.

We now consider the special case of the ARMA(1,1) process Xt = ϕXt−1 + Zt + ϑZt−1,
|ϕ| < 1, for which one can obtain explicit results. By Eq. (5.3.1), the spectral density of X is
given by

f (ω) =
1 + ϑ2 + 2ϑ cosω
1 + ϕ2 − 2ϕ cosω

, ω ∈ [0, 2π].

Equation (5.2.3) implies that the LSD of the autocovariance matrix Γ has a density g, which is
given by

g(λ) =
1

2π

∑
ω∈[0,2π]: f (ω)=λ

1∣∣∣ f ′(ω)∣∣∣
=

1

π(ϑ+ ϕλ)
√
[(1 + ϑ)2 − λ(1 − ϕ)2] [λ(1 + ϕ)2 − (1 − ϑ)2]

1(λ−,λ+)(λ),

where

λ− = min (λ−, λ+), λ+ = max (λ−, λ+), λ± =
(1 ± ϑ)2

(1 ∓ ϕ)2 .
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5.3. Illustrative examples
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Figure 5.3.: Histograms of the eigenvalues and limiting spectral densities λ 7→ p(λ) of
p−1XXT for the ARMA(1,1) process Xt = 1

2 Xt−1 + Zt + Zt−1 for different val-
ues of y = n/p, p = 1000

By Theorem 5.1, the Stieltjes transform z 7→ mz of the limiting spectral distribution of p−1XXT

is the unique mapping m : C+ → C+ that satisfies the equation

1
mz

= − z + y
∫ λ+

λ−

λg(λ)
1 + λmz

dλ

= − z +
ϑy

ϑmz − ϕ
(5.3.2)

−
(ϑ+ ϕ)(1 + ϑϕ)y

(ϑmz − ϕ)
√
[(1 − ϕ)2 + mz(1 + ϑ)2] [(1 + ϕ)2 + mz(1 − ϑ)2]

.

This is a quartic equation in mz ≡ m(z) which can be solved explicitly. An application of the
Stieltjes inversion formula (5.1.3) then yields the limiting spectral distribution of p−1XXT .

If one sets ϕ = 0, one obtains an MA(1) process; plots of the densities obtained in this case
for different values of ϑ and y are displayed in Fig. 5.1. Similarly, the case ϑ = 0 corresponds
to an AR(1) process; see Fig. 5.2 for a graphical representation of the densities one obtains
for different values of ϕ and y in this case. For the special case ϕ = 1/2, ϑ = 1, Fig. 5.3
compares the histogram of the eigenvalues of p−1XXT with the limiting spectral distribution
obtained from Theorem 5.1 for different values of y.

Equation (5.3.2) for the Stieltjes transform of the limiting spectral distribution of the sample
covariance matrix of an ARMA(1,1) process should be compared to [10, Eq. (2.10)], where the
analogous result is obtained for an autoregressive process of order one. They use the notation
c = lim p/n and consider the spectral distribution of n−1XXT instead of p−1XXT . If one
observes that this difference in the normalization amounts to a linear transformation of the
corresponding Stieltjes transform, one obtains their result as a special case of Eq. (5.3.2).

77



5. Sample covariance matrices of linear processes

5.3.2. Fractionally integrated ARMA processes

In many practical situations, data exhibit long-range dependence, which can be modelled by
long-memory processes. Denote by B the backshift operator and define, for d > −1, the
(fractional) difference operator by

∇d = (1 −B)d =
∞∑

j=0

j∏
k=1

k − 1 − d
k

B j, B j Xt = Xt− j.

A process (Xt)t is called a fractionally integrated ARMA(p,d,q) processes with d ∈ (−1/2, 1/2)
and p, q ∈ N if (∇dXt)t is an ARMA(p,q) process. These processes have a polynomially
decaying autocorrelation function and therefore exhibit long-range-dependence, cf. [24, The-
orem 13.2.2] and [56, 66]. We assume that d < 0, and that the zeros of the autoregressive
polynomial a of (∇dXt)t lie outside the closed unit disk. Then it follows that X has an infinite-
order moving average representation Xt =

∑∞
j=0 c jZt− j, where the (c j) j have, in contrast to our

previous examples, not an exponential decay, but satisfy K1( j + 1)d−1 6 c j 6 K2( j + 1)d−1,
for some K1, K2 > 0. Therefore, if d < 0, one can apply Theorem 5.1 to obtain the LSD of the
sample covariance matrix, using that the spectral density of (Xt)t is given by

f (ω) =

∣∣∣∣∣∣∣∣
b
(
eiω

)
a (eiω)

∣∣∣∣∣∣∣∣
2 ∣∣∣1 − e−iω

∣∣∣−2d
, ω ∈ [0, 2π].
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CHAPTER 6

Limiting spectral distribution of a new random matrix model
with dependence across rows and columns3

6.1. Introduction

Random matrix theory studies the properties of large random matrices A = (Ai, j)i j ∈ Kp×n,
for some field K. In this article, the entries Ai j are real random variables unless otherwise
specified. Commonly, the focus is on asymptotic properties of such matrices as their dimen-
sions tend to infinity. One particularly interesting object of study is the asymptotic distribution
of their singular values. Since the squared singular values of A are the eigenvalues of AAT,
this is often done by investigating the eigenvalues of AAT, which is called a sample covari-
ance matrix. The spectral characteristics of a p × p matrix S are conveniently studied via its
empirical spectral distribution, which is defined as FS = p−1 ∑p

i=1 δλi; here, {λ1, . . . , λp} are
the eigenvalues of S , and δx denotes the Dirac measure located at x. For some set B ⊂ R, the
figure FS (B) is the number of eigenvalues of S that lie in B. The measure FS is considered a
random element of the space of probability distributions equipped with the weak topology, and
we are interested in its limit as both n and p tend to infinity such that the ratio p/n converges
to a finite positive limit y.

The first result of this kind can be found in the remarkable paper of Marčenko and Pas-
tur [77]. They showed that F p−1AAT

converges to a non-random limiting spectral distribution
F̂ p−1AAT

if all Ai j are independent, identically distributed, centred random variables with finite

3This chapter is based on O. Pfaffel and E. Schlemm: Limiting spectral distribution of a new random matrix
model with dependence across rows and columns. Linear Algebra and Its Applications 436 (2012) pp. 2960-
2973.
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6. A new random matrix model with dependent rows and columns

fourth moment. Interestingly, the Lebesgue density of F̂ p−1AAT
is given by an explicit formula

which only involves the ratio y and the common variance of Ai j and is therefore universal with
respect to the distribution of the entries of A. Subsequently [110, 114], the same result was
obtained under the weaker moment condition that the entries Ai j have finite variance. The
requirement that the entries of A be identically distributed has later been relaxed to a Linde-
berg-type condition, cf. Eq. (5.1.5). For more details and a comprehensive treatment of random
matrix theory we refer the reader to the text books [2, 9, 81].

Recent research has focused on the question to what extent the assumption of independence
of the entries of A can be relaxed without compromising the validity of the Marčenko–Pastur
law. In [6] it was shown that for random matrices A whose rows are independent Rn-valued
random variables uniformly distributed on the unit ball of lq(Rn), q > 1, the empirical spectral
distribution F p−1AAT

still converges to the same law as in the i. i. d. case. The Marčenko–Pastur
law is, however, not stable with respect to more substantial deviations from the independence
assumptions.

A very useful tool to characterize the limiting spectral distribution in random matrix models
with dependent entries is the Stieltjes transform which, for some measure µ, is defined as the
map sµ : C+ → C+, sµ(z) =

∫
R
(t − z)−1µ(dt). A particular, very successful random matrix

model exhibiting dependence within the rows was investigated already by [77] and later in
greater generality by [86, 98]: they modelled dependent data as a linear transformation of
independent random variables which led to the study of the eigenvalues of random matrices
of the form AHAT, where the entries of A are independent, and H is a positive semidefinite
population covariance matrix whose spectral distribution converges to a non-random limit F̂H .
They found that the Stieltjes transform of the limiting spectral distribution of p−1AHAT can
be characterized as the solution to an integral equation involving only F̂H and the ratio y =

lim p/n. Another approach, suggested in [10] and further pursued in Chapter 5, is to model
the rows of A independently as stationary linear processes with independent innovations. This
structure is interesting because the class of linear processes includes many practically relevant
time series models, such as (fractionally integrated) ARMA processes, as special cases. The
main result of Chapter 5 shows that for this model the limiting spectral distribution depends
only on y and the second-order properties of the underlying linear process.

All results for independent rows with dependent row entries also hold with minor modifica-
tions for the case where A has independent columns with dependent column entries. This is
due to the fact that the matrices AAT and ATA have the same non-zero eigenvalues.

In contrast, there are only very few results dealing with random matrix models where the
entries are dependent across both rows and columns. The case where A is given as the result of
a two-dimensional linear filter applied to an array of independent complex Gaussian random
variables is considered in [60]. They use the fact that A can be transformed to a random
matrix with uncorrelated, non-identically distributed entries. Because of the assumption of
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6.1. Introduction

Gaussianity the entries are in fact independent, and so an earlier result by the same authors
[61] can be used to obtain the asymptotic distribution of the eigenvalues of p−1AA∗. In the
context of operator-valued free probability theory, [95] succeeded in characterizing the limiting
spectral distribution of block Wishart matrices through a quadratic matrix equation for the
corresponding operator-valued Stieltjes transform.

A parallel line of research focuses on the spectral statistics of large symmetric or Hermitian
square matrices with dependent entries, thus extending Wigner’s [112] seminal result for the
i. i. d. case. Models studied in this context include random Toeplitz, Hankel and circulant
matrices [21, 27, 80, and references therein] as well as approaches allowing for a more general
dependence structure [3, 63].

In Chapter 5, we considered sample covariance matrices of high-dimensional stochastic pro-
cesses, the components of which are modelled by independent infinite-order moving average
processes with identical second-order characteristics. In practice, it is often not possible to
observe all components of such a high-dimensional process, and the sample covariance ma-
trix can then not be computed. To solve this problem when only one component is observed,
it seems reasonable to partition one long observation record of that observed component of
length pn into p segments of length n, and to treat the different segments as if they were
records of the unobserved components. We show that this approach is valid and leads to the
correct asymptotic eigenvalue distribution of the sample covariance matrix if the components
of the underlying process are modelled as independent moving averages.

We are thus led to investigate a model of random matrices X whose entries are dependent
across both rows and columns, and which is not covered by the results mentioned above. The
entries of the random matrix under consideration are defined in terms of a single linear stochas-
tic process, see Section 6.2 for a precise definition. Without assuming Gaussianity we prove
almost sure convergence of the empirical spectral distribution of p−1XXT to a deterministic
limiting measure and characterize the latter via an integral equation for its Stieltjes transform,
which only depends on the asymptotic aspect ratio of the matrix and the second-order prop-
erties of the underlying linear process. Our result extends the class of random matrix models
for which the limiting spectral distribution can be identified explicitly by a new, theoretically
appealing model. It thus contributes to laying the ground for further research into more general
random matrix models with dependent, non-identically distributed entries.

Outline In Section 6.2 we give a precise definition of the random matrix model we inves-
tigate and state the main result about its limiting spectral distribution. The proof of the main
theorem as well as some auxiliary results are presented in Section 6.3. Finally, in Section 6.4,
we indicate how our result could be obtained in an alternative way from a similar random
matrix model with independent rows.
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6. A new random matrix model with dependent rows and columns

Notation We use E and Var to denote expected value and variance. Where convenient, we
also write µ1,X and µ2,X for the first and second moment, respectively, of a random variable
X. The symbol 1m, m a natural number, stands for the m ×m identity matrix. For the trace of
a matrix S we write trS . For sequences of matrices (S n)n we will suppress the dependence
on n where this does not cause ambiguity; the sequence of associated spectral distributions
is denoted by FS , and for their weak limit, provided it exists, we write F̂S . It will also be
convenient to use asymptotic notation: for two sequences of real numbers (an)n, (bn)n we
write an = O(bn) to indicate that there exists a constant C which is independent of n, such
that an 6 Cbn for all n. We denote by Z the set of integers and by N, R, and C the sets
of natural, real, and complex numbers, respectively. =z stands for the imaginary part of a
complex number z, and C+ is defined as {z ∈ C : =z > 0}. The indicator of an expression E is
denoted by I{E} and defined to be one if E is true and zero otherwise.

6.2. A new random matrix model

For a sequence (Zt)t∈Z of independent real random variables and real coefficients
(c j) j∈N∪{0}, the linear process (Xt)t∈Z and the p × n matrix X are defined by

Xt =
∞∑

j=0

c jZt− j

and

X = (Xi,t)it = (X(i−1)n+t)it =


X1 . . . Xn

Xn+1 . . . X2n
...

...
X(p−1)n+1 . . . Xpn

 ∈ Rp×n. (6.2.1)

The interesting feature about this matrix X is that its entries are dependent across both rows and
columns. In contrast to models considered in [10, 61, 89], not all entries far away from each
other are asymptotically independent, e. g., the correlation between the entries Xi,n and Xi+1,1,
i = 1, . . . , p − 1, does not depend on n. We will investigate the asymptotic distribution of the
eigenvalues of p−1XXT as both p and n tend to infinity such that their ratio p/n converges to
a finite, positive limit y. We assume that the sequence (Zt)t satisfies

EZt = 0, EZ2
t = 1, and σ4 B sup

t
EZ4

t < ∞, (6.2.2)

and that the following Lindeberg-type condition is satisfied: for each ε > 0,

1
pn

pn∑
t=1

E
(
Z2

t I{Z2
t >εn}

)
→ 0, as n→ ∞. (6.2.3)
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6.3. Proof of Theorem 6.1

Condition (6.2.3) is satisfied if all {Zt} are identically distributed, but that is not necessary. As it
turns out, the limiting spectral distribution of p−1XXT depends only on y and the second-order
structure of the underlying linear process Xt, which we now recall: its auto-covariance function
γ : Z→ R is defined by γ(h) = EX0Xh =

∑∞
j=0 c jc j+|h|; its spectral density f : [0, 2π] → R

is the Fourier transform of γ, namely f (ω) =
∑

h∈Z γ(h)e−ihω. The following is the main
result of the chapter.

Theorem 6.1. Let Xt =
∑∞

j=0 c jZt− j, t ∈ Z, be a linear stochastic process with continuously
differentiable spectral density f , and let the matrix X ∈ Rp×n be given by Eq. (6.2.1). Assume
that

i) the sequence (Zt)t satisfies conditions (6.2.2) and (6.2.3),

ii) there exist positive constants C, δ such that |c j| 6 C( j + 1)−1−δ, for all j ∈N∪ {0}.

Then, as n and p tend to infinity such that the ratio p/n converges to a finite positive limit
y, the empirical spectral distribution of p−1XXT converges almost surely to a non-random
probability distribution F̂ with bounded support. The Stieltjes transform z 7→ sF̂(z) of F̂ is the
unique mapping C+ → C+ satisfying

1
sF̂(z)

= −z + y
∫ 2π

0

f (ω)
1 + f (ω)sF̂(z)

dω. (6.2.4)

Remark 6.2.1. The assumption that the coefficients (c j) j decay at least polynomially is not
very restrictive; it allows, e. g., for Xt to be an ARMA or fractionally integrated ARMA pro-
cess, which exhibits long-range dependence [56, 66]. In the latter case the entries of the matrix
X are long-range dependent as well.

Remark 6.2.2. It is possible to generalize the proof of Theorem 6.1 so that the result also
holds for non-causal processes, where Xt =

∑∞
j=−∞ c jZt− j. The required changes are merely

notational, the only difference in the result is that the auto-covariance function is then given
by

∑∞
j=−∞ c jc j+|h|.

The distribution F̂ can be obtained from sF̂ via the Perron–Frobenius inversion formula
[9, Theorem B.8], which states that for all continuity point 0 < a < b of F̂, it holds that
F̂([a, b]) = limε→0+

∫ b
a =sF̂(x + εi)dx. In general, the analytic determination of this distri-

bution is not feasible. It is, however, easy to check that for the special case of independent
entries one recovers the classical Marčenko–Pastur law.

6.3. Proof of Theorem 6.1

The strategy in the proof of Theorem 6.1 is to show that the limiting spectral distribution of
p−1XXT is stable under modifications of X which reduce the sample covariance matrix to the
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6. A new random matrix model with dependent rows and columns

form p−1ZHZT, for a matrix Z with i. i. d. entries, and some positive definite H. To this end we
will repeatedly use the following lemma which presents sufficient conditions for the limiting
spectral distributions of two sequences of matrices to be equal.

Lemma 6.3.1 (Trace criterion). Let A1,n, A2,n be sequences of p × n matrices, where p = pn

depends on n such that pn → ∞ as n → ∞. Assume that the spectral distribution F p−1A1,nAT
1,n

converges almost surely to a deterministic limit F̂ p−1A1,nAT
1,n as n tends to infinity. If there exists

a positive number ε such that

i) p−4E
[
tr (A1,n − A2,n) (A1,n − A2,n)

T]2
= O(n−1−ε),

ii) p−2EtrAi,nAT
i,n = O(1), i = 1, 2, and

iii) p−4VartrAi,nAT
i,n = O(n−1−ε), i = 1, 2,

then the spectral distribution of p−1A2,nAT
2,n is convergent almost surely with the same limit

F̂ p−1A1,nAT
1,n .

Proof. The claim is a direct consequence of Chebyshev’s inequality, the first Borel–Cantelli
lemma, and [9, Corollary A.42] �

With the constants C and δ from assumption ii of Theorem 6.1 we define

c j B C( j + 1)−1−δ,

such that |c j| 6 c j for all j. Without further reference we will repeatedly use the fact that
j 7→ c j is monotone, that

∑∞
j=1 cαj is finite for every α > 1, and that

∑∞
j=n cαj is of order

O(n1−α(1+δ)). Since it is difficult to deal with infinite-order moving averages processes di-
rectly, it is convenient to truncate the entries of the matrix X by defining X̃t =

∑n
j=0 c jZt− j and

X̃ = (X̃(i−1)n+t)it; this is different from the usual truncation of the support of the entries of a
random matrix.

Proposition 6.3.1 (Truncation). If the empirical spectral distribution of p−1X̃X̃T converges to
a limit, then the empirical spectral distribution of p−1XXT converges to the same limit.

Proof. The proof proceeds in two steps in which we verify conditions i to iii of Lemma 6.3.1.

Step 1 The definitions of X and X̃ imply that

∆X,X̃ B
1
p2 tr

(
X − X̃

) (
X − X̃

)T
=

1
p2

p∑
i=1

n∑
t=1

[
Xit − X̃it

]2

=
1
p2

p,n∑
i,t=1

∞∑
k,k′=n+1

Z(i−1)n+t−kZ(i−1)n+t−k′ckck′ .
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6.3. Proof of Theorem 6.1

We shall show that the second moment of ∆X,X̃ is of order at most n−2−2δ. Since

∞∑
k,k′

m,m′=n+1

E
∣∣∣Z(i−1)n+t−kZ(i−1)n+t−k′Z(i′−1)n+t′−mZ(i′−1)n+t′−m′

∣∣∣ |ck||ck′ ||cm||cm′ |

6 σ4

 ∞∑
k=0

|ck|

4

< ∞, (6.3.1)

we can apply Fubini’s theorem to interchange expectation and summation in the computation
of

µ2,∆X,X̃
B E∆2

X,X̃

=
1
p4

p,n∑
i,i′
t,t′=1

∞∑
k,k′

m,m′=n+1

E
[
Z(i−1)n+t−kZ(i−1)n+t−k′Z(i′−1)n+t′−mZ(i′−1)n+t′−m′

]
ckck′cmcm′ .

(6.3.2)

Since the {Zt} are independent, the expectation in that sum is non-zero only if all four Z are the
same or else one can match the indices in two pairs. In the latter case we distinguish three cases
according to which factor the first Z is paired with. This leads to the additive decomposition

µ2,∆X,X̃
= µ2,∆X,X̃

+ µ2,∆X,X̃
+ µ2,∆X,X̃

+ µ2,∆X,X̃
, (6.3.3)

where the ideograms indicate which of the four factors are equal. For the contribution from all
four Z being equal it holds that k = k′, m = m′, and (i − 1)n + t − k = (i′ − 1)n + t′ −m, so
that

µ2,∆X,X̃
=
σ4

p4

p∑
i,i′

n∑
t,t′=1

∞∑
m=max{n+1,n+1−(i−i′)n−(t−t′)}

c2
(i−i′)n+(t−t′)+mc2

m.

If we introduce the new summation variables δi B i − i′ and δt B t − t′, we obtain

µ2,∆X,X̃
=
σ4

p4

p−1∑
δi=1−p

(p − |δi|)︸    ︷︷    ︸
6p

n−1∑
δt=1−n

(n − |δt|)︸    ︷︷    ︸
6n

∞∑
m=max{n+1,n+1−δin−δt}

c2
m+δin+δt

c2
m.

If δi is positive, then δin + δt is positive as well; the fact that |c j| is bounded by c j and the
monotonicity of j 7→ c j imply that c2

m+δin+δt
6 c(δi−1)ncδt+n so that the contribution from

δi > 1 can be estimated as

µ ,+
2,∆X,X̃

6
σ4n
p3︸︷︷︸

=O(n−2)

p−1∑
δi=1

c(δi−1)n︸        ︷︷        ︸
=O(n−1−δ)

2n−1∑
δt=1

cδt︸ ︷︷ ︸
=O(1)

∞∑
m=n+1

c2
m︸     ︷︷     ︸

=O(n−1−2δ)

= O(n−4−3δ).
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6. A new random matrix model with dependent rows and columns

An analogous argument shows that the contribution from δi 6 −1, denoted by µ ,−
2,∆X,X̃

, is of the

same order of magnitude. The contribution to µ2,∆X,X̃
from δi = 0 is given by

µ ,∅
2,∆X,X̃

=
σ4n
p3

n−1∑
δt=1−n

∞∑
m=max{n+1,n+1−δt}

c2
mc2

m+δt

6
σ4n
p3︸︷︷︸

=O(n−2)


2

n−1∑
δt=1

c2
δ︸ ︷︷ ︸

=O(1)

∞∑
m=n+1

c2
m︸     ︷︷     ︸

=O(n−1−2δ)

+
∞∑

m=n+1

c4
m︸     ︷︷     ︸

=O(n−3−4δ)


= O(n−3−2δ).

By combining the last two displays, it follows that µ2,∆X,X̃
is of order O(n−3−2δ). The second

term in Eq. (6.3.3) corresponds to k = k′, m = m′, and (i − 1)n + t − k , (i′ − 1)n + t′ −m.
The restriction that not all four factors be equal is taken into account by subtracting µ2,∆X,X̃

;

consequently,

µ2,∆X,X̃
=

1
p4

p∑
i,i′=1

n∑
t,t′=1︸          ︷︷          ︸

=O(1)

∞∑
k,m=n+1

c2
kc2

m︸         ︷︷         ︸
=O(n−2−4δ)

−µ2,∆X,X̃
= O(n−2−4δ).

It remains to analyse µ2,∆X,X̃
which, by symmetry, is equal to µ2,∆X,X̃

. If the first factor is

paired with the third, the condition for non-vanishment becomes k = m + (i − i′)n + t − t′,
k′ = m′ + (i − i′)n + t − t′, and m , m′. Again introducing the new summation variables
δi B i − i′ and δt B t − t′, we obtain that

µ2,∆X,X̃
=

1
p4

p−1∑
δi=1−p

(p − |δi|)︸    ︷︷    ︸
6p

n−1∑
δt=1−n

(n − |δt|)︸    ︷︷    ︸
6n

∑
m,m′

cmcm′cm+δin+δtcm′+δin+δt − µ2,∆X,X̃
,

where the summation of
∑

m,m′ is over the set{
(m, m′) ∈N2 : max{n + 1, n + 1 − δin − δt} 6 m, m′ 6 ∞

}
.

As in the analysis of µ2,∆X,X̃
we obtain the contribution from δi , 0 as

∣∣∣∣∣µ ,+
2,∆X,X̃

∣∣∣∣∣ = ∣∣∣∣∣µ ,−
2,∆X,X̃

∣∣∣∣∣ 6 n
p3︸︷︷︸

=O(n−2)

p−1∑
δi=1

c(δi−1)n︸        ︷︷        ︸
=O(n−1−δ)

2n−1∑
δt=1

cδt︸ ︷︷ ︸
=O(1)

∞∑
m,m′=n+1

cmcm′︸            ︷︷            ︸
=O(n−2δ)

+µ2,∆X,X̃
= O(n−3−2δ).

(6.3.4)
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Finally, for the contribution from δi = 0 one finds that∣∣∣∣∣µ ,∅
2,∆X,X̃

∣∣∣∣∣ 6 n
p3

n−1∑
δt=1−n

∞∑
m,m′=max{n+1,n+1−δt}

|cmcm′cm+δtcm′+δt |+ µ2,∆X,X̃

6
n
p3︸︷︷︸

=O(n−2)


2

n−1∑
δt=1

c2
δt︸ ︷︷ ︸

=O(1)

∞∑
m,n′=n+1

cmcm′︸            ︷︷            ︸
=O(n−2δ)

+
∞∑

m,n′=n+1

c2
mc2

m′︸            ︷︷            ︸
=O(n−2−4δ)


+ µ2,∆ = O(n−2−2δ). (6.3.5)

The last two displays (6.3.4) and (6.3.5) imply that

µ2,∆X,X̃
= µ ,−

2,∆X,X̃
+ µ ,∅

2,∆X,X̃
+ µ ,+

2,∆X,X̃
= O(n−2−2δ).

Thus, µ2,∆X,X̃
is of order O(n−2−2δ), as claimed.

Step 2 Next we verify assumptions ii and iii of Lemma 6.3.1, which means that we show
that both ΣX B p−2trXXT and ΣX̃ B p−2trX̃X̃T have bounded first moments and variances of
order n−1−ε , for some ε > 0; in fact, ε will turn out to be one. For ΣX we obtain

µ1,ΣX B EΣX =
1
p2

p∑
i=1

n∑
t=1

∞∑
k,k′=0

E
[
Z(i−1)n+t−kZ(i−1)n+t−k′

]
ckck′ =

n
p

∞∑
k=0

c2
k ,

where the change of the order of expectation and summation is valid by Fubini’s theorem.
Using Eq. (6.3.1) and Fubini’s theorem, the second moment of ΣX becomes

µ2,ΣX B EΣ2
X

=
1
p4

p∑
i,i′=1

n∑
t,t′=1

∞∑
k,k′

m,m′=0

E
[
Z(i−1)n+t−kZ(i−1)n+t−k′Z(i′−1)n+t′−mZ(i′−1)n+t′−m′

]
ckck′cmcm′ .

This sum coincides with the expression analysed in Eq. (6.3.2), except that here the k, k′, m, m′

sums start at zero, and not at n + 1. A straightforward adaptation of the arguments there
show that µ2,ΣX equals n2 p−2

(∑∞
k=0 c2

k

)2
+ O(n−2), and, consequently, that VarΣX = µ2,ΣX −

(µ1,ΣX)
2 = O(n−2). Analogous computations show that EΣX̃ is bounded, and that VarΣX̃ =

O(n−2). Thus, conditions ii and iii of Lemma 6.3.1 are verified, and the proof of the proposi-
tion is complete. �

Because of Proposition 6.3.1 the problem of determining the limiting spectral distribution
of the sample covariance matrix p−1XXT has been reduced to computing the limiting spectral
distribution of p−1X̃X̃T, where now, for fixed n, the matrix X̃ depends on only finitely many of
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the noise variables Zt. The fact that the entries of X̃ are finite-order moving average processes
and therefore linearly dependent on the Zt allows for X̃ to be written as a linear transformation
of the i. i. d. matrix Z B (Z(i−2)n+t)i=1,...,p+1,t=1,...,n. We emphasize that Z, in contrast to
X and X̃, is a (p + 1) × n matrix; this is necessary because the entries in the first row of
X̃ depend on noise variables with negative indices, up to and including Z1−n. In order to
formulate the transformation that maps Z to X̃ concisely in the next lemma, we define the

matrices Kn =

 0 0
1n−1 0

 ∈ Rn×n, as well as the polynomials χn(z) = c0 + c1z + . . .+ cnzn

and χ̄n(z) = znχ (1/z) = cn + cn−1z + . . .+ c0zn.

Lemma 6.3.2. With X̃, Z, Kn and χn, χ̄n defined as before it holds that

X̃ =
[

0 1p 1p 0
]  Z 0

0 Z

  χn
(
KT

n

)
χ̄n (Kn)

 . (6.3.6)

Proof. Let sN : RN → RN be the right shift operator defined by sN(v1, . . . , vN) = (0, v1, . . . , vN−1)

and for positive integers r, s denote by vecr,s : Rr×s → Rrs the bijective linear operator
that transforms a matrix into a vector by horizontally concatenating its subsequent rows,
starting with the first one. The operator S r,s : Rr×s → Rr×s is then defined as S r,s =

vec−1
r,s ◦srs ◦ vecr,s. This operator shifts all entries of a matrix to the right except for the entries

in the last column, which are shifted down and moved into the first column. For k = 1, 2, . . .,
the operator S k

r,s is defined as the k-fold composition of S r,s. In the following, we write
S B S p+1,n. With this notation it is clear that X̃ =

[
0 1p

]
χn(S )Z. In order to obtain

Eq. (6.3.6), we observe that the action of S can be written in terms of matrix multiplications
as S Z = Kp+1ZE + ZKT

n , where the entries of the n× n matrix E are all zero except for a one
in the lower left corner. Using the fact that E(KT

n )
mE is zero for every non-negative integer m

it follows by induction that S k, k = 1, . . . , n, acts like

S kZ =Z
(
KT

n

)k
+ Kp+1Z

k∑
i=1

(
KT

n

)k−i
E
(
KT

n

)i−1
=

[
1p+1 Kp+1

]  Z 0
0 Z

  (
KT

n

)k

Kn−k
n

 .

This implies that

X̃ =
[

0 1p
] [

1p+1 Kp+1
]  Z 0

0 Z

 n∑
k=0

ck

 (
KT

n

)k

Kn−k
n


=

[
0 1p 1p 0

]  Z 0
0 Z

  χn
(
KT

n

)
χ̄n (Kn)


and completes the proof. �

While the last lemma gives an explicit description of the relation between Z and X̃, it is
impractical for directly determining the limiting spectral distribution of p−1X̃X̃T. The reason
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is that Z appears twice in the central block-diagonal matrix and is moreover multiplied by some
deterministic matrices from both the left and the right. The LSD of the product of three random
matrices has been computed in the literature [115], but this result is not applicable in our
situation due to the appearance of the random block matrix in Eq. (6.3.6). Sample covariance
matrices derived from random block matrices have been considered in [95]. However, they
only treat the Gaussian case and, more importantly, do not cover the case of a non-trivial
population covariance matrix. We are thus not aware of any result allowing to derive the LSD
of p−1X̃X̃T directly from Lemma 6.3.2.

The next proposition allows us to circumvent this problem. It is shown that, at least asymp-
totically and at the cost of slightly changing the size of the involved matrices, one can simplify
the structure of X̃ so that Z appears only once and is multiplied by a deterministic matrix only
from the right.

Proposition 6.3.2. Let Z, Kn and χn, χ̄n be as before and define the matrix X̂ B ZΩ ∈

R(p+1)×(n+1), where

Ω =
[

0 1n 1n 0
]  χn+1

(
KT

n+1

)
χ̄n+1 (Kn+1)

 ∈ Rn×(n+1). (6.3.7)

If the empirical spectral distribution of p−1X̂X̂T converges to a limit, then the empirical spec-
tral distribution of p−1X̃X̃T converges to the same limit.

Proof. In order to be able to compare the limiting spectral distributions of p−1X̃X̃T and p−1X̂X̂T

in spite of their dimensions being different, we introduce the matrix

X =

 0 0
0 X̃

 ∈ R(p+1)×(n+1).

Clearly, F p−1XXT
= (p+ 1)−1δ0 + p(p+ 1)−1F p−1X̃X̃T

, which implies equality of the limiting
spectral distributions provided either of the two, and hence both, exists. It is therefore sufficient
to show that the LSD of p−1X̂X̂T and p−1XX

T
are identical; this will be done by verifying the

three conditions of Lemma 6.3.1. The remainder of the proof will be divided in two parts. In
the first part we check the validity of assumption i about the difference X̂ −X, whereas in the
second one we consider the terms trX̂X̂T and trXX

T
, which appear in conditions ii and iii.
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Step 1 Using the definitions of X̂ and X, it follows that

∆X̂,X B
1
p2 tr

(
X̂ −X

) (
X̂ −X

)T

=
1
p2

p+1∑
i=1

n+1∑
j=1

[
X̂i j −Xi j

]2

6
2
p2

p+1∑
i=2

n+1∑
j=2

n∑
k,k′= j

Z(i−2)n+kZ(i−2)n+k′c j−k+n+1c j−k′+n+1

+
2
p2

p+1∑
i=2

n+1∑
j=2

n∑
k,k′= j−1

Z(i−3)n+kZ(i−3)n+k′c j−k+n−1c j−k′+n−1

+
1
p2

p+1∑
i=1

n∑
k,k′=1

Z(i−2)n+kZ(i−2)n+k′cn−k+2cn−k′+2

+
2
p2

n+1∑
j=2

j−1∑
k,k′=1

Z−n+kZ−n+k′c j−k−1c j−k′−1

+
2
p2

n+1∑
j=2

n∑
k,k′= j

Z−n+kZ−n+k′c j−k+n+1c j−k′+n+1

C
5∑

i=1

∆(i)

X̂,X
, (6.3.8)

where the elementary inequality (a + b)2 6 2a2 + 2b2 was used twice. In order to show
that the variances of expression (6.3.8) are summable, we consider each term in turn. For the
second moment of the first term of Eq. (6.3.8) we obtain

µ
2,∆(1)

X̂,X

BE

(
∆(1)

X̂,X

)2

=
4
p4

p+1∑
i,i′=2

n+1∑
j, j′=2

n− j+1∑
k,k′=1

n− j′+1∑
m,m′=1

E
[
Z(i−1)n−k+1Z(i−1)n−k′+1Z(i′−1)n−m+1Z(i′−1)n−m′+1

]
× c j+kc j+k′c j′+mc j′+m′ .

As before we consider all configurations where above expectation is not zero. The expectation
equals σ4 if i = i′ and k, k′, m, m′ are equal, and, hence,

µ
2,∆(1)

X̂,X

6
4σ4

p4

p+1∑
i=2

n∑
k=1

n+1∑
j=2

c2
j+k


2

6
4σ4

p3

n∑
k=1

c2
k

n+1∑
j=2

c j


2

= O(n−3).
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The expectation is one if the four Z can be collected in two non-equal pairs. The first term
equals the second, and the third equals the fourth if k = k′ and m = m′, and thus

µ
2,∆(1)

X̂,X

=
4
p4

p+1∑
i,i′=2

n+1∑
j, j′=2

n− j+1∑
k=1

n− j′+1∑
m=1

c2
j+kc2

j′+m − µ2,∆(1)

X̂,X

=
4
p2

n+1∑
j=2

n− j+1∑
k=1

c2
j+k


2

− µ
2,∆(1)

X̂,X

= O(n−2).

Likewise, the contribution from pairing the first factor with the third, and the second with the
fourth, can be estimated as∣∣∣∣∣∣∣µ2,∆(1)

X̂,X

∣∣∣∣∣∣∣ 6 4
p4

p+1∑
i′=2

n+1∑
j, j′=2

n∑
k,k′=1

|c j+kc j+k′c j′+kc j′+k′ |+ µ
2,∆(1)

X̂,X

6
4
p3

n+1∑
j=1

c j


4

+ µ
2,∆(1)

X̂,X

= O(n−3).

Obviously, the configuration µ
2,∆(1)

X̂,X

can be handled the same way as µ
2,∆(1)

X̂,X

above. Thus we

have shown that the second moment of ∆(1)

X̂,X
, the first term in Eq. (6.3.8), is of order n−2. This

can be shown for the second term in Eq. (6.3.8) in the same way. We now consider the second
moment of the third term in Eq. (6.3.8):

µ
2,∆(3)

X̂,X

BE

(
∆(3)

X̂,X

)2

=
1
p4

p+1∑
i,i′=1

n∑
k,k′

m,m′=1

E
[
Z(i−2)n+kZ(i−2)n+k′Z(i′−2)n+mZ(i′−2)n+m′

]
× cn−k+2cn−k′+2cn−m+2cn−m′+2.

Distinguishing the same cases as before, we have µ
2,∆(3)

X̂,X

= σ4
p+1
p4

∑n
k=1 c4

n−k+2 = O(n−3)

and, thus,

µ
2,∆(3)

X̂,X

=
(p + 1)2

p4

 n∑
k=1

c2
n−k+2

2

− µ
2,∆(3)

X̂,X

= O(n−2),

as well as µ
2,∆(3)

X̂,X

= µ
2,∆(3)

X̂,X

= O(n−3). Thus, the second moment of the third term in

Eq. (6.3.8) is of order O(n−2); repeating the foregoing arguments, it can be seen that the
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second moments of ∆(4)

X̂,X
and ∆(5)

X̂,X
, the two last terms in Eq. (6.3.8), are of order O(n−2) as

well, so that we have shown that

1
p4 E

[
tr

(
X̂ −X

) (
X̂ −X

)T
]2

= E
(
∆X̂,X

)2
6 5

5∑
i=1

µ
2,∆(i)

X̂,X

= O(n−2).

Step 2 In this step we shall prove that both ΣX̂ B p−2trX̂X̂T and ΣX B p−2trXX
T

have
bounded first moments, and that their variances are summable sequences in n, i. e. we check
conditions (ii) and (iii) of Lemma 6.3.1. Since trXX

T
is equal to trX̃X̃T, the claim about ΣX

has already been shown in the second step of the proof of Proposition 6.3.1. For the first term
one finds, by the definition of X̂, that

ΣX̂ =
1
p2

p+1∑
i=1

n+1∑
j=1

 j−1∑
k=1

Z(i−2)n+kc j−k−1 +
n∑

k= j

Z(i−2)n+kc j−k+n+1


2

6
2
p2

p+1∑
i=1

n+1∑
j=1

j−1∑
k,k′=1

Z(i−2)n+kc j−k−1Z(i−2)n+k′c j−k′−1

+
2
p2

p+1∑
i=1

n+1∑
j=1

n∑
k,k′= j

Z(i−2)n+kc j−k+n+1Z(i−2)n+k′c j−k′+n+1 C Σ(1)

X̂
+ Σ(2)

X̂
.

Clearly, the first two moments of Σ(1)

X̂
are given by

µ
1,Σ(1)

X̂

B EΣ(1)

X̂
=

2
p2

p+1∑
i=1

n+1∑
j=1

j−1∑
k,k′=1

E
[
Z(i−2)n+kZ(i−2)n+k′

]
c j−k−1c j−k′−1

=
2(p + 1)

p2

n+1∑
j=1

j−1∑
k=1

c2
k−1,

and

µ
2,Σ(1)

X̂

BE

(
Σ(1)

X̂

)2

=
4
p4

p+1∑
i,i′=1

n+1∑
j, j′=1

j−1∑
k,k′=1

j′−1∑
m,m′=1

E(Z(i−2)n+kZ(i−2)n+k′Z(i′−2)n+mZ(i′−2)n+m′)

× c j−k−1c j−k′−1c j′−m−1c j′−m′−1.

We separately consider the case that all four factors are equal, and the three possible pairings
of the four Z. If all four Z are equal, it must hold that i = i′, k = k′ = m = m′, with
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contribution

µ
2,Σ(1)

X̂

=
4σ4

p4

p+1∑
i=1

n+1∑
j, j′=1

min{ j, j′}−1∑
k=1

c2
j−k−1c2

j′−k−1

6
4σ4(p + 1)

p4

n+1∑
j, j′=1

c j−min{ j, j′}c j′−min{ j, j′}

min{ j, j′}−1∑
k=1

c2
k−1

6
4σ4(p + 1)

p4

n+1∑
j, j′=1

c0c| j− j′|

n∑
k=1

c2
k−1.

Introducing the new summation variable δ j B j − j′, one finds that

µ
2,Σ(1)

X̂

6
4σ4(p + 1)(n + 1)

p4 c0

c0 + 2
n∑

δ j=1

cδ j

 n∑
k=1

c2
k−1 = O(n−2). (6.3.9)

The first factor being paired with the second, and the third with the fourth, means that k = k′,
m = m′, and m , (i − i′)n + k, so that the contribution of this configuration is given by

µ
2,Σ(1)

X̂

=
4
p4

p+1∑
i,i′=1

n+1∑
j, j′=1

j−1∑
k=1

j′−1∑
m=1

c2
j−k−1c2

j′−m−1 − µ2,Σ(1)

X̂

=

(
µ

1,Σ(1)

X̂

)2

+ O(n−2). (6.3.10)

For the pairing, the constraints are i = i′, k = m, k′ = m′, k , k′, and the corresponding
contribution is

µ
2,Σ(1)

X̂

=
4
p4

p+1∑
i=1

n+1∑
j, j′=1

min{ j, j′}−1∑
k,k′=1

c j−k−1c j−k′−1c j′−k−1c j′−k′−1 − µ
2,Σ(1)

X̂

6
4(p + 1)

p4

n+1∑
j, j′=1

c j−min{ j, j′}c j′−min{ j, j′}

min{ j, j′}−1∑
k,k′=1

ck−1ck′−1 + O(n−2)

6
4(p + 1)(n + 1)

p4 c0

c0 + 2
n∑

δ j=1

cδ j

 n∑
k,k′=1

ck−1ck′−1 + O(n−2) = O(n−2). (6.3.11)

Renaming the summation indices shows that µ
2,Σ(1)

X̂

= µ
2,Σ(1)

X̂

. Combining this with the dis-

plays (6.3.9) to (6.3.11), it follows that VarΣ(1)

X̂
= µ

2,Σ(1)

X̂

−µ2
1,Σ(1)

X̂

= O(n−2). Since a very sim-

ilar reasoning can be applied to Σ(2)

X̂
, and p−4VartrX̂X̂T is smaller than 2VarΣ(1)

X̂
+ 2VarΣ(2)

X̂
,

we conclude that p−4VartrX̂X̂T is of order O(n−2). �

The intention behind Proposition 6.3.2 was to allow the application of results about the lim-
iting spectral distribution of matrices of the form ZHZT, where Z is an i. i. d. matrix, and H is
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a positive semidefinite matrix. Expressions for the Stieltjes transform of the LSD of such ma-
trices in terms of the LSD of H have been obtained by [77, 98], and, in the most general form,
by [86]. The next lemma shows that in the current context the population covariance matrix H
has the same LSD as the auto-covariance matrix Γ of the process Xt, which is defined in terms
of the auto-covariance function γ(h) =

∑∞
j=0 c jc j+|h| by Γ = (γ(i− j))i j; this correspondence

is used to characterize the LSD of H by the spectral density f associated with the coefficients
(c j) j.

Lemma 6.3.3. Let Ω be given by Eq. (6.3.7). The limiting spectral distribution of the matrix
ΩΩT exists and is the same as the limiting spectral distribution of the auto-covariance matrix
Γ. It therefore satisfies ∫

h(λ)F̂ΩΩT
(dλ) =

1
2π

∫ 2π

0
h( f (ω))dω, (6.3.12)

for every continuous function h.

Proof. The first claim follows by standard computations from the fact that Ω is, except for
one missing row, a circulant matrix with entries Ωi j = cn+ j−i mod (n+1), and [9, Corollaries
A.41 and A.42]. The second claim is an application of Szegő’s limit theorem about the LSD
of Toeplitz matrices; see [103, Theorem XVIII] for the original result or, e. g., [22, Sections
5.4 and 5.5] for a modern treatment. �

Proof of Theorem 6.1. According to Proposition 6.3.2, the matrix X̂X̂T is of the form ZΩΩTZT,
where Ω is given by Eq. (6.3.7). Using [86, Theorem 1] and the fact that, by Lemma 6.3.3,
the limiting spectral distribution of ΩΩT exists, it follows that the limiting spectral distribu-
tion F̂ p−1X̂X̂T

exists. Therefore, the combination of Propositions 6.3.1 and 6.3.2 shows that
the limiting spectral distribution of p−1XXT also exists and is the same as that of p−1X̂X̂T.
[86, equation (1.2)] thus implies that the Stieltjes transform of F̂ p−1XXT

is the unique mapping
sF̂ p−1XXT : C+ → C+ which solves

1
sF̂ p−1XXT (z)

= −z + y
∫

R

λ

1 + λsF̂ p−1XXT (z)
F̂ΩΩT

(dλ),

and Eq. (6.3.12) from Lemma 6.3.3 completes the proof. �

6.4. Sketch of an alternative proof of Theorem 6.1

In this section we indicate how Theorem 6.1 could be proved alternatively using the methods
employed in Chapter 5. We denote by X̃(α) the matrix which is defined as in Eq. (6.2.1) but
with the linear process being truncated at bnαc with 0 < α < 1, i. e.

X̃(α) =

bn
αc∑

j=0

c jZ(i−1)n+t− j


it

.

94



6.4. Sketch of an alternative proof of Theorem 6.1

If 1 − α is sufficiently small, then an adaptation of the proof of Proposition 6.3.1 to this set-
ting shows that p−1XXT and p−1X̃(α)X̃T

(α)
have the same limiting spectral distribution al-

most surely. The next step is to partition X̃(α) into two blocks of dimensions p × bnαc and
p × (n − bnαc), respectively. If we denote these two blocks by X̃1

(α)
and X̃2

(α)
, i. e. X̃(α) =[

X̃1
(α)

X̃2
(α)

]
, then clearly

X̃(α)X̃T
(α)

= X̃1
(α)

(
X̃1
(α)

)T
+ X̃2

(α)

(
X̃2
(α)

)T
,

and an application of [9, Theorem A.43] yields that

sup
λ∈R>0

∣∣∣∣∣∣∣F p−1XXT
([0, λ]) − F

p−1X̃2
(α)

(
X̃2
(α)

)T

([0, λ])

∣∣∣∣∣∣∣ 61
p

rank
(
X̃1
(α)

(
X̃1
(α)

)T
)

6
1
p

min (bnαc, p) = O
(
p−1nα

)
→ 0.

It therefore suffices to derive the limiting spectral distribution of p−1X̃2
(α)

(
X̃2
(α)

)T
. Since the

matrix X̃2
(α)

has independent rows, this could be done by a careful adaptation of the arguments
given in Chapter 5. We chose, however, to provide a self-contained proof, which also provides
intermediate results of independent interest like Proposition 6.3.2, and we therefore omit the
lengthy details of this alternative proof.
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Part III.

Strong Solutions of Stochastic
Differential Equations
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CHAPTER 7

On strong solutions for positive definite jump diffusions4

7.1. Introduction

A result of the general theory for affine Markov processes on the cone S +
d of symmetric posi-

tive semidefinite matrices developed in [32] is that for a d × d matrix-valued standard Brown-
ian motion B, d × d matrices Q and β, a symmetric constant drift b, and a positive linear drift
Γ : S +

d → S +
d , weak global solutions exist to the stochastic differential equation (SDE)

dXt =
√

XtdBtQ + Q>dB>t
√

Xt + (Xtβ+ β>Xt + Γ(Xt) + b)dt, (7.1.1)

X0 = x ∈ S +
d ,

whenever b − (d − 1)Q>Q ∈ S +
d . Above

√
X denotes the unique positive semidefinite square

root of a matrix X ∈ S +
d . For Γ = 0 solutions to the SDE (7.1.1) are called Wishart processes

and their existence has been considered in detail in the fundamental paper by Marie-France
Bru [26]. Further probabilistic investigations on properties of Wishart processes have been
carried out in [41, 42, 55], for instance, and references therein.

In the present chapter, we focus on the existence of global strong solutions of (7.1.1) and
generalisations of it including jumps and more general diffusion coefficients. Because of the
non-Lipschitz diffusion at the boundary of the cone, this problem is a quite delicate one – a-
priori it is only clear that a unique local solution of (7.1.1) exists until Xt hits the boundary of
S +

d , since the SDE is locally Lipschitz in the interior of S +
d . Furthermore, known results for

pathwise uniqueness, for instance, that of the seminal paper of Yamada and Watanabe [111,

4This chapter is based on E. Mayerhofer, O. Pfaffel and R. Stelzer: On Strong Solutions for Positive Definite
Jump Diffusions, Stochastic Process. Appl., 121(9), 2072–2086, 2011.
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Corollary 3], are essentially one-dimensional, and therefore do not apply. Hence, the present
setting seems to be more complicated than, for instance, the canonical affine one (concerning
diffusions on Rm

+ ×Rn, [50, Lemma 8.2]).

Positive semidefinite matrix valued processes are increasingly used in finance, particularly
for stochastic modelling of multivariate stochastic volatility phenomena in equity and fixed
income models, see [28, 29, 34, 33, 35, 36, 53, 54, 57, 91]. See also [32] and the refer-
ences therein. Most papers mentioned use Bru’s class of Wishart diffusions, as this results in
multivariate analogues of the popular Heston stochastic volatility model and its extensions,
Ornstein-Uhlenbeck type processes ([91]) giving a multivariate generalisation of the popular
model of [12] or a combination of both ([73]). This motivated the research of [32] on posi-
tive semidefinite affine processes including all the aforementioned models and generalising the
results of [43], which covered all of these models in the univariate setting. Appropriate mul-
tivariate models are especially important for issues like portfolio optimisation, portfolio risk
management and the pricing of options depending on several underlyings, which are heavily
influenced by the dependence structure.

Clearly S +
d -valued processes model the covariances, not the correlations, which are, how-

ever, preferable when interpreting the dependence structure. The results of the present chapter
are particularly relevant, when one wants to derive correlation dynamics (see e.g., [28, 29]),
because one needs to assume boundary non-attainment conditions for a rigorous derivation.

The name “Wishart process” is, unfortunately, not always used in the same way in the
literature. We follow the above cited applied papers in finance and call any solution to (7.1.1)
with Γ = 0 “Wishart process” whereas in most of the previous probabilistic literature “Wishart
process” also means β = 0 and the “Wishart processes with drift” of [42] are not even special
cases of our “Wishart processes”. For Γ = β = 0 and b = nQT Q with n ∈ N one may also
speak of a “squared Ornstein-Uhlenbeck process”. In the univariate case the name “Wishart
process” is not used, instead one typically uses “Cox-Ingersoll-Ross process” in the financial
and “squared Bessel process” in the probability literature.

However, in this chapter we do not limit ourselves to the analysis of (7.1.1). Instead, as
a special case of a considerably more general result, we consider a similar SDE allowing for
a general (not necessarily linear) drift Γ and an additional jump part of finite variation. This
implies that many Lévy-driven SDEs on S +

d like the positive semidefinite Ornstein-Uhlenbeck
(OU) type processes (see [13, 92]) or the volatility process of a multivariate COGARCH pro-
cess (see [101]), where the existence of global strong solutions has previously been shown
by path-wise arguments, are special cases of our setting. Thus our results allow to consider
certain “jump diffusions” , viz. mixtures of such jump processes and Wishart diffusions, in
applications. It should be noted that [26] also contains results on strong solutions for Wishart
processes (see our upcoming Proposition 7.3.1 and Remark 7.4.1), however, they are derived
under strong parametric restrictions, because her method requires an application of Girsanov’s
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theorem. The latter is based on a martingale criterion, which in the matrix valued setting seems
hard to verify. Also, the general result (with a non-vanishing linear drift) only holds until the
first time when two of the eigenvalues of the process collide. Our approach generalises her
method of proof for the case β = 0 (vanishing linear drift) and avoids change of measure
techniques.

The most general result of our chapter, Theorem 7.1, also opens the way to use positive
semidefinite extensions of the univariate GARCH diffusions of [84] or of so-called generalised
Cox-Ingersoll-Ross models (cf. e.g. [20, 49]), where the square root in the diffusion part of
(7.1.1) is replaced by the α-th positive semidefinite power with α ∈ [1/2, 1], in applications
(see Corollary 7.3.3).

The remainder of the chapter is structured as follows. In the subsequent section we sum-
marise some notation and preliminaries. In Section 7.3 we state our main result, Theorem 7.1,
and its corollaries applying to Wishart processes, matrix-variate generalised Cox-Ingersoll-
Ross and GARCH diffusions. Moreover, we compare our results to the work of Bru which is
recalled in Proposition 7.3.1. In the following section we gradually develop the proof of our
result. Our method relies on a generalisation of the so-called McKean’s argument, but avoids
the use of Girsanov’s theorem. In Section 7.4.1 we thus provide a self-contained proof of a
generalisation of McKean’s argument and then deliver the proof of Theorem 7.1 in Section
7.4.2. We conclude the chapter with some final remarks in Section 7.5.

7.2. Notation and general set-up

We assume given an appropriate filtered probability space (Ω,F , P, (Ft)t∈R+) satisfying the
usual hypotheses (complete and right-continuous filtration) and rich enough to support all
processes occurring. For short, we sometimes write just Ω when actually referring to this
filtered probability space. B is a d × d standard Brownian motion on Ω and d ∈ N always
denotes the dimension. Furthermore, we use the following notation, definitions and setting:

• R+ := [0,∞), Md is the set of real valued d × d matrices and Id is the identity matrix.

• S d ⊂ Md is the space of symmetric matrices, and S +
d ⊂ S d is the cone of symmetric pos-

itive semidefinite matrices in S d and S ++
d its interior, i.e. the positive definite matrices.

The partial order on S d induced by the cone is denoted by �, and x � 0, if and only if
x ∈ S ++

d . We endow S d with the scalar product 〈x, y〉 := tr(xy), where tr(A) denotes the
trace of A ∈ Md. ‖ · ‖ denotes the associated norm, and d(x, ∂S +

d ) = infy∈∂S +
d
‖x − y‖ is

the distance of x ∈ S +
d to the boundary ∂S +

d .

• The usual tensor (Kronecker) product of two matrices A, B is denoted by A ⊗ B and the
vectorisation operator mapping Md to Rd2

by stacking the columns of a matrix A below
each other is denoted by vec(A) (see [65, Chapter 4] for more details).
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• A function f : S ++
d → U with U being (a subset of) a normed space is called locally

Lipschitz if ‖ f (x) − f (y)‖ 6 K(C)‖x− y‖ ∀ x, y ∈ C for all compacts C ⊂ U. f is said to
have linear growth if ‖ f (x)‖2 6 K(1 + ‖x‖2) ∀ x ∈ S ++

d .

• An S d-valued càdlàg adapted stochastic process X is called S +
d -increasing, if Xt � Xs

a.s. for all t > s > 0. Such a process is necessarily of finite variation on compacts by
[13, Lemma 5.21] and hence a semimartingale. We call it of pure jump type provided
Xt = X0 +

∑
0<s6t ∆Xs, where ∆Xs = Xs − Xs−.

For the necessary background on stochastic analysis we refer to one of the standard ref-
erences like [67, 94, 97]. Moreover, we frequently employ stochastic integrals where the
integrands or integrators are matrix- or even linear-operator valued. Thus, we briefly ex-
plain how they have to be understood. Let (At)t∈R+ in Md, (Bt)t∈R+ in Md be càdlàg and
adapted processes and (Lt)t∈R+ in Md be a semimartingale (i.e. each element is a semi-
martingale). Then we denote by

∫ t
0 As−dLsBs− the matrix Ct in Md which has i j-th element

Ci j,t =
∑d

k=1
∑d

l=1

∫ t
0 Aik,s−Bl j,s−dLkl,s. Equivalently such an integral can be understood in the

sense of [82] by identifying it with the integral
∫ t

0 As−dLs with At being for each fixed t the
linear operator Md → Md, X 7→ AtXBt and L being a semimartingale in the Hilbert space Md.
Stochastic integrals of the form

∫ t
0 K(Xs−)dJs with J being a semimartingale in Md (coordi-

natewise or equivalently as in [82, Section 10] where the equivalence easily follows from [82,
Section 10.9] and by noting that on a finite dimensional Hilbert space all norms are equivalent)
and K(x) : Md → Md a linear operator for all x can be understood again as in [82]. Alter-
natively, one can equivalently identify Md with Rd2

using the vec-operator and K(x) with a
matrix in Md2,d2 and then define the stochastic integral coordinatewise as above.

7.3. Statement of the main results

7.3.1. Wishart diffusions with jumps

In order to illustrate the context of our result and, because it is of most relevance in appli-
cations, we discuss first the special case of Wishart diffusions with jumps. For Q ∈ Md,
δ > d − 1, β ∈ Md and an Md-valued standard Brownian motion B, a Wishart process is the
strong solution of the equation

dXt =
√

XtdBtQ + Q>dB>t
√

Xt + (Xtβ+ β>Xt + δQ>Q)dt, (7.3.1)

X0 = x ∈ S ++
d ,

on the maximal stochastic interval [0, Tx), where Tx is naturally defined as

Tx = inf{t > 0 : Xt ∈ ∂S +
d }.
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That such a unique local strong solution, which does not explode before or at time Tx, exists,
follows from standard SDE theory, since all the coefficients in (7.3.1) are locally Lipschitz
and of linear growth on S ++

d . To be more precise, this follows by appropriately localising the
usual results as e.g. in [94, Chapter V] or by variations of the proofs in [82, Chapter 3]. A
localisation procedure adapted particularly to certain convex sets like S +

d is presented in detail
in [102, Section 6.7].

The following is a summary of the results [26, Theorem 2, 2’ and 2”] – the to the best of our
knowledge only known results regarding strong existence of Wishart processes:

Proposition 7.3.1. Let δ > d + 1.

(i) If Q = Id and β = 0, then Tx = ∞.

Suppose additionally that the d eigenvalues of x are distinct.

(ii) If Q ∈ S ++
d , −β ∈ S +

d such that β and Q commute, then there exists a solution (Xt)t∈R+

of (7.3.1) until the first time τx when two of the eigenvalues of Xt collide.

(iii) If β = β0Id and Q = γId, where β0, γ ∈ R, then Tx = ∞ for the solution of (Xt)t∈R+ of
(7.3.1).

Consequently, for the respective choice of parameters, there exist unique global strong S ++
d -

valued solutions of the SDE (7.3.1) on [0, τx) resp. on all of [0,∞).

The upcoming general Theorem 7.1 implies the following result for a generalisation of the
Wishart SDE allowing for additional jumps and a non-linear drift Γ.

Corollary 7.3.2. Let b ∈ S d, Q ∈ Md, β ∈ Md, and let

• J be an S d-valued càdlàg adapted process which is S +
d -increasing and of pure jump

type,

• Γ : S ++
d → S +

d be a locally Lipschitz function of linear growth and

• K : S ++
d → L(S +

d , S +
d ) (the linear operators on S d mapping S +

d into S +
d ) be a locally

Lipschitz function of linear growth.

If b � (d + 1)Q>Q, then the SDE

dXt =
√

Xt−dBtQ + Q>dB>t
√

Xt− + (Xt−β+ β>Xt− + Γ(Xt−) + b)dt + K(Xt−)dJt, (7.3.2)

X0 = x ∈ S ++
d ,

has a unique adapted càdlàg global strong solution (Xt)t∈R+ on S ++
d . In particular we have

Tx := inf{t > 0 : Xt− ∈ ∂S +
d or Xt < S ++

d } = inf{t > 0 : Xt− ∈ ∂S +
d } = ∞ almost surely.
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Proof. For the term on the right hand side of the upcoming condition (7.3.3) we obtain

tr(2β) + tr(Γ(x)x−1) + tr((b − (d + 1)Q>Q)x−1) > 2tr(β),

noting that x−1, Γ(x) and b − (d + 1)Q>Q are positive semidefinite and that S +
d is a selfdual

cone, which implies that tr(zy) > 0 for any z, y ∈ S +
d . Setting c(t) = 2tr(β) an application of

Theorem 7.1 concludes. �

By choosing Γ linear and J = 0, we obtain a result for (7.1.1) which considerably gener-
alises Proposition 7.3.1.

Remark 7.3.1. (i) In the univariate case the condition b � (d + 1)Q>Q is known to be also
necessary for boundary non-attainment (see [97, Chapter XI]).

(ii) A possible choice for J is a matrix subordinator without drift (see [11]), i.e. an S +
d -

increasing Lévy process. By choosing Γ , 0 in (7.3.2) appropriately our results also
apply to SDEs involving matrix subordinators with a non-vanishing drift.

(iii) Setting Q = 0, Γ = 0, K to the identity and b equal to the drift of the matrix sub-
ordinator, Equation (7.3.2) becomes the SDE of a positive definite OU type process,
[13, 92]. Likewise, it is straightforward to see that the SDE of the volatility process Y of
the multivariate COGARCH process of [101] is a special case of (7.3.2).

(iv) An OU–type process on the positive semidefinite matrices is necessarily driven by a
Lévy process of finite variation having positive semidefinite jumps only (follows by
slightly adapting the arguments in the proof of [92, Theorem 4.9]). This entails that a
generalisation of the above result to a more general jump behaviour requires additional
technical restrictions.

7.3.2. The general SDE and existence result

The main result of this chapter is the following general theorem concerning non-attainment of
the boundary of S +

d and the existence of a unique global strong solution for a generalisation
of the SDE (7.1.1). The proof of this result is gradually developed in the next sections.

Theorem 7.1. Let

• F, G : R+ × S ++
d → Md, be functions such that G> ⊗ F given by G> ⊗ F(t, x) =

(G(t, x))> ⊗ F(t, x) is locally Lipschitz and of linear growth,

• H : R+ × S ++
d → S d be locally Lipschitz and of linear growth,
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• J be an S d-valued càdlàg adapted process which is S +
d -increasing and of pure jump

type,

• and K : S ++
d → L(S +

d , S +
d ) (the linear operators on S d mapping S +

d into S +
d ) be a

locally Lipschitz function of linear growth.

Suppose that there exists a function c : R+ → R which is locally integrable, i.e.
∫ s

0 |c(t)|dt <
∞ for all s ∈ R+, such that

c(t) 6 tr(H(t, x)x−1) − tr( f (t, x)x−1)tr(g(t, x)x−1) − tr( f (t, x)x−1g(t, x)x−1) (7.3.3)

for all x ∈ S ++
d and t ∈ R+ where f (t, x) := F(t, x)F(t, x)>, g(t, x) = G(t, x)>G(t, x).

Then the SDE

dXt =F(t, Xt−)dBtG(t, Xt−) +G(t, Xt−)
>dB>t F(t, Xt−)

> (7.3.4)

+ H(t, Xt−)dt + K(Xt−)dJt,

X0 =x ∈ S ++
d ,

has a unique adapted càdlàg global strong solution (Xt)t∈R+ on S ++
d .

In particular, we have Tx := inf{t > 0 : Xt− ∈ ∂S +
d or Xt < S ++

d } = inf{t > 0 : Xt− ∈

∂S +
d } = ∞ almost surely.

7.3.3. Positive definite extensions of generalised Cox-Ingersoll-Ross
processes and GARCH diffusions

In the univariate case generalised Cox-Ingersoll-Ross (GCIR) processes given by the SDE
dxt = (b + axt)dt + qxαt dBt with b > 0, q > 0, a ∈ R and α ∈ [1/2, 1] are – as discussed in
the introduction – of relevance in financial modelling. α = 1/2 corresponds, of course, to the
already discussed Bessel case, whereas α = 1 gives the so-called GARCH diffusions. Given
the popularity of the Wishart based models in nowadays finance, it seems natural to consider
also positive semidefinite extensions of the GCIR processes. An application of our general
theorem to the case where F(X) = Xα, G(X) = Q with α ∈ [1/2, 1] yields:

Corollary 7.3.3. (i) Let α ∈ [1/2, 1], b ∈ S d, Q ∈ Md, β ∈ Md, and let

• J be an S d-valued càdlàg adapted process which is S +
d -increasing and of pure jump

type,

• Γ : S ++
d → S +

d be a locally Lipschitz function of linear growth and

• K : S ++
d → L(S +

d , S +
d ) (the linear operators on S d mapping S +

d into S +
d ) be a locally

Lipschitz function of linear growth.
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Suppose that for all x ∈ S ++
d

tr(Γ(x)x−1 + bx−1) > tr(x2α−1)tr(Q>Qx−1) + tr(x2α−2Q>Q). (7.3.5)

Then the SDE

dXt = Xα
t−BtQ + Q>dB>t Xα

t− + (Xt−β+ β>Xt− + Γ(Xt−) + b)dt + K(Xt−)dJt, (7.3.6)

X0 = x ∈ S ++
d ,

has a unique adapted càdlàg global strong solution (Xt)t∈R+ on S ++
d . In particular we have

Tx := inf{t > 0 : Xt− ∈ ∂S +
d or Xt < S ++

d } = inf{t > 0 : Xt− ∈ ∂S +
d } = ∞ almost surely.

(ii) Any of the following sets of conditions implies (7.3.5):

(a) b + Γ(x) � tr(x2α−1)Q>Q + xα−1/2Q>Qxα−1/2 for all x ∈ S ++
d .

(b) b+ Γ(x) � tr(x2α−1)Q>Q+ λQ>Qx2α−1 for all x ∈ S ++
d with λQ>Q denoting the largest

eigenvalue of Q>Q.

(c) α = 1 and b + Γ(x) � tr(x)Q>Q + λQ>Qx for all x ∈ S ++
d .

(d) b � 0 and Γ(x) � 2tr(x2α−1)Q>Q for all x ∈ S ++
d .

(e) b � 0 and Γ(x) � 2
(
tr(x) + d(2α − 1)2−2α

)
Q>Q for all x ∈ S ++

d (and setting 00 := 1
for α = 1/2).

(f) b � 0 and Γ(x) � 2(tr(x) + d)Q>Q for all x ∈ S ++
d .

(g) α > 1/2, d = 1, Γ(x) > 0 for all x ∈ R+ and b > 0.

Proof. One easily calculates the right hand side of (7.3.3) to be equal to tr(2β+ Γ(x)x−1 +

bx−1) − tr(x2α−1)tr(Q>Qx−1) − tr(x2α−2Q>Q) and hence (i) follows from Theorem 7.1.
Turning to the proof of (ii) using the selfduality of S +

d as in the proof of Corollary 7.3.2
gives (a). Next we observe that Q>Q � λQ>QId and, hence, xα−1/2Q>Qxα−1/2 � λQ>Qx2α−1.
This gives (b) and (c) is simply the special case for α = 1.

Since for A, B ∈ S +
d we have that tr(AB) 6 tr(A)tr(B) due to the Cauchy-Schwarz in-

equality and the elementary inequality
√

a + b 6
√

a +
√

b for all a, b ∈ R+, we have that
tr(x2α−2Q>Q) 6 tr(x2α−1)tr(Q>Qx−1). Hence, (7.3.5) is implied by tr(Γ(x)x−1 + bx−1) >

2tr(x2α−1)tr(Q>Qx−1). Using once again the selfduality gives (d).
Since the trace is the sum of the eigenvalues, λ > λ2α−1 for all λ > 1 and α ∈ [1/2, 1] and

λ2α−1 6 λ+ maxλ∈[0,1]

{
λ2α−1 − λ

}
for all λ ∈ [0, 1) and α ∈ [1/2, 1], we immediately obtain

(e) from (d), because maxλ∈[0,1]

{
λ2α−1 − λ

}
= (2α− 1)2−2α. In turn (f) follows from (e) noting

that maxλ∈[0,1]

{
λ2α−1 − λ

}
∈ [0, 1].
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Turning to (g) we have for the right hand side of (7.3.3) in the univariate case

`(x) = 2β+ Γ(x)/x + b/x − 2Q2/x2−2α.

Now one notes that the second term is non-negative and that for b > 0 the term b/x −
2Q2/x2−2α is bounded from below on R+, because limx→0, x>0 x−1/x2α−2 = ∞. Hence,
Theorem 7.3.2 concludes. �

In the different cases of (ii) a valid choice of b and Γ is always obtained by taking them equal
to the right hand side of the inequalities. It should be noted that (c) shows that in the positive
semidefinite GARCH diffusion generalisation one can always take a linear drift. Likewise, (e)
and (f) show that a linear drift is possible for the generalized CIR. For α = 1/2 the case (d) is
again sharp in the univariate setting, but for general dimensions it is a stronger condition than
the one given in Corollary 7.3.2.

The last case (g) in particular recovers the well-known univariate result for dxt = (b +

axt)dt + qxαt dBt with b > 0, q > 0, a ∈ R and α ∈ [1/2, 1]. In our matrix-variate case for
α > 1/2 a result similar to the univariate one, viz. that a strictly positive constant drift is
all that is needed to ensure boundary non-attainment, seems to be out of reach. When one
tries to use arguments similar to (e) in general, one would need something like tr(bx−1) >

ktr(x2α−1)tr(Q>Qx−1) + K with some constants k > 0 and K to ensure (7.3.5). However,
when the process comes close to the boundary of the cone, this only means that at least one
eigenvalue gets close to zero. Hence, tr(bx−1) and tr(Q>Qx−1) should then go to infinity at a
comparable rate. However, all the other eigenvalues of x may still be arbitrarily large and so
there is no appropriate upper bound on the term tr(x2α−1).

7.4. Proofs

In this section we gradually prove our main result. As a priori all processes involved are
only defined up to a stopping time, we collect first some basic definitions regarding stochastic
processes defined on stochastic intervals following mainly [76].

Definition 7.4.1. Let A ∈ F and let T be a stopping time.

• A random variable X on A is a mapping A→ R which is measurable with respect to the
σ-algebra A∩F .

• A family (Xt)t∈R+ of random variables on {t < T } is called a stochastic process on
[0, T ). If Xt is {t < T } ∩ Ft-measurable for all t ∈ R+, then X is said to be adapted.

• An adapted process M on [0, T ) is called a continuous local martingale on the interval
[0, T ) if there exists an increasing sequence of stopping times (Tn)n∈N and a sequence of
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7. On strong solutions for positive definite jump diffusions

continuous martingales (M(n))n∈N (in the usual sense on [0,∞)) such that limn→∞ Tn =

T a.s. and Mt = M(n)
t on {t < Tn}. Other local properties for adapted processes on

[0, T ) are defined likewise.

• A semimartingale on [0, T ) is the sum of a càdlàg local martingale on [0, T ) and an
adapted càdlàg process of locally finite variation on [0, T ).

• For a continuous local martingale on [0, T ) the quadratic variation is the R ∪ {∞}-
valued stochastic process [M, M] defined by

[M, M]t = sup
n∈N

[M(n), M(n)]t∧Tn for all t ∈ R+.

7.4.1. McKean’s argument

In this section we finally establish Proposition 7.4.2 which generalises an argument of [79,
p. 47, Problem 7] concerning continuous local martingales on stochastic intervals used, for
instance, in [25, 26, 85]. We keep the tradition of referring to it as McKean’s argument. Since
it may also be helpful in other situations, we state our result and its proof in detail.

Lemma 7.4.1. Let M be a continuous local martingale on a stochastic interval [0, T ). Then on
{T > 0} it holds almost surely that either limt↑T Mt exists in R or that

lim sup
t↑T

Mt = − lim inf
t↑T

Mt = ∞.

Proof. Combine [76, Theorem 3.5] with analogous arguments to the proof of [97, Chapter V,
Proposition 1.8]. �

Proposition 7.4.2 (McKean’s Argument). Let Z = (Zs)s∈R+ be an adapted càdlàg R+\{0}-
valued stochastic process on a stochastic interval [0, τ0) such that Z0 > 0 a.s. and τ0 =

inf{0 < s 6 τ0 : Zs− = 0}. Suppose h : R+\{0} → R is continuous and satisfies the
following:

(i) For all t ∈ [0, τ0), we have h(Zt) = h(Z0) + Mt + Pt, where

a) P is an adapted càdlàg process on [0, τ0) such that inft∈[0,τ0∧T ) Pt > −∞ a.s. for
each T ∈ R+\{0},

b) M is a continuous local martingale on [0, τ0) with M0 = 0,

(ii) and limz↓0 h(z) = −∞.

Then τ0 = ∞ a.s.
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Above, τ0 = inf{0 < s 6 τ0 : Zs− = 0} is not to be understood as the definition of τ0, but
it means that the already defined stopping time τ0 is also the first hitting time of Zs− at zero.
Since Z is only defined up to time τ0, one cannot take the infimum over R+.

Proof. Since h(Zt)− = h(Zt−) = h(Z0) + Pt− + Mt− and Pt− is a.s. bounded from below
on compacts, we have τ0 = inf{s > 0 : Ms− = −∞} and further τ0 > 0 due to the right
continuity of Z. Assume, by contradiction, that τ0 < ∞ on a set A ∈ F with P(A) > 0. Hence,
limt↗τ0 Mt = −∞ on A and this contradicts Lemma 7.4.1. �

7.4.2. Proof of Theorem 7.1

Before we provide a proof of Theorem 7.1, we recall some elementary identities from matrix
calculus and provide some further technical lemmata. For a differentiable function f : Md →

R, we denote by ∇ f the usual gradient written in coordinates as ( ∂ f
∂xi j

)i j.

Lemma 7.4.2. On S ++
d , we have

(i) ∇ det(x) = det(x)(x−1)> = det(x)x−1,

(ii) ∂2

∂xi j∂xkl
det(x) = det(x)[(x−1)kl(x−1)i j − (x−1)il(x−1) jk].

Proof. The first identity in (i) can be found in [75, Section 9.10] and the second is an im-
mediate consequence of restricting to symmetric matrices. Now (ii) follows using ∂

∂xkl
x−1 =

−x−1
(
∂
∂xkl

x
)

x−1 and finally the symmetry:

∂

∂xklxi j
det(x) =

∂

∂xkl

(
det(x)(x−1) ji

)
= det(x)

(
(x−1)lk(x−1) ji +

∂

∂xkl
(x−1) ji

)
= det(x)

(
(x−1)lk(x−1) ji − (x−1) jk(x−1)li

)
.

�

For a semimartingale X we denote by Xc as usual its continuous part. All semimartingales
in the following will have a discontinuous part of finite variation, i.e.

∑
0<s6t ‖∆Xs‖ is finite

for all t ∈ R+. Thus we define Xc
t = Xt −

∑
0<s6t ∆Xs and note that the quadratic variation of

a semimartingale is the one of its local continuous martingale part plus the sum of its squared
jumps.

The continuous quadratic variation of X solving (7.3.4) is only influenced by the Brownian
terms and, hence, we have a general version of [26, Equation (2.4)] which is proved just as [1,
Lemma 2]:
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Lemma 7.4.3. Consider the solution Xt of (7.3.4) on [0, Tx). Then

d[Xi j, Xkl]ct
dt

= (FF>(t, Xt−))ik(G>G(t, Xt−)) jl + (FF>(t, Xt−))il(G>G(t, Xt−)) jk

+ (FF>(t, Xt−)) jk(G>G(t, Xt−))il + (FF>(t, Xt−)) jl(G>G(t, Xt−))ik.

Here G>G(t, x) := G(t, x)>G(t, x) and FF>(t, x) := F(t, x)F(t, x)> to ease notation.

Moreover, we shall need the following result where a Brownian motion on a stochastic
interval [0, T ) is defined as a continuous local martingale on [0, T ) with [β, β]t = t.

Lemma 7.4.4. Let Xt be a continuous S +
d -valued adapted càdlàg stochastic process on a

stochastic interval [0, T ) with T being a predictable stopping time and let h : Md → Md.
Then there exists a one-dimensional Brownian motion βh on [0, T ) such that

tr
(∫ t

0
h(Xu−)dBu

)
=

∫ t

0

√
tr(h(Xu−)>h(Xu−))dβh

u (7.4.1)

holds on [0, T ).

Proof. We define for t ∈ [0, T ),

βh
t :=

d∑
i, j=1

∫ t

0

h(Xu−)i j√
tr(h(Xu−)>h(Xu−))

dBu, ji,

and since the numerator equals zero, whenever the denominator vanishes, we use the conven-
tion 0

0 = 1. Clearly for each i, j and for all u ∈ [0, T ) we have∣∣∣∣∣∣∣ h(Xu−),i j√
tr(h(Xu−)>h(Xu−))

∣∣∣∣∣∣∣ 6 1

which ensures that βh is well-defined, square-integrable and a continuous local martingale on
[0, T ) by stopping at a sequence of stopping times announcing T . Furthermore, by construction

[βh, βh]t =
d∑

i, j=1

∫ t

0

h(Xu−)2
i j

tr(h(Xu−)>h(Xu−))
du = t

and therefore βh is a Brownian motion on [0, T ).
Finally by the very definition of βh, we have

tr(h(Xt−)dBt) =
d∑

i, j=1

h(Xt−)i jdBt, ji =
√

tr(h(Xt−)>h(Xt−))dβh
t ,

which proves identity (7.4.1). �
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Finally, we state a variant of Itô’s formula which we later employ. It follows easily from the
usual versions like [16, Theorem 3.9.1] by arguments similar to [76, Theorem 5.4] and [13,
Proposition 3.4].

Lemma 7.4.5. Let X be an S ++
d -valued semimartingale on a stochastic interval [0, T ) and

f : S ++
d → R a twice continuously differentiable function. If Xt− ∈ S ++

d for all t ∈ [0, T ) and∑
0<s6t ‖∆Xs‖ < ∞ for t ∈ [0, T ), then f (X) is a semimartingale on [0, T ) and

f (Xt) = f (X0) + tr
(∫ t

0
∇ f (Xs−)

>dXc
s

)
+

1
2

d∑
i, j,k,l=1

∫ t

0

∂2

∂xi j∂xkl
f (Xs−)d[Xi j, Xkl]

c
s

+
∑

0<s6t

( f (Xs) − f (Xs−)) .

We are now prepared to provide a proof of Theorem 7.1. Note that to shorten our formulae
we use in the following differential notation and not integral notation as above.

Proof of Theorem 7.1. Since

vec (F(t, Xt−)dBtG(t, Xt−)) = (G(t, Xt−)
> ⊗ (F(t, Xt−)) vec(dBt),

it is easy to see that all coefficients of (7.3.4) are locally Lipschitz and of linear growth. Hence,
standard SDE theory implies again the existence of a unique càdlàg adapted non-explosive
local strong solution until the first time Tx = inf{t > 0 : Xt− ∈ ∂S +

d or Xt < S ++
d } when X

hits the boundary or jumps out of S ++
d . Hence, we have to show Tx = ∞.

By the choice of K and J, all jumps have to be positive semidefinite and hence the solution
X cannot jump out of S ++

d . This implies that Tx = inf{t > 0 : Xt− ∈ ∂S +
d }.

In the following, all statements are meant to hold on the stochastic interval [0, Tx). Note
that by the right continuity of Xt, a.s. Tx > 0. Moreover, we set Tn = inf{t ∈ R+ :
d(Xt, ∂S +

d ) 6 1/n or ‖Xt‖ > n}. Then (Tn)n∈N is an increasing sequence of stopping times
with limn→∞ Tn = Tx, hence Tx is predictable.

We define the following processes and functions according to the notation of Proposition
7.4.2:

Zt := det(Xt), h(z) := ln(z), rt := h(Zt). (7.4.2)

Then Tx = inf{t > 0 : rt− = −∞}.
By Lemma 7.4.2 (i) and using the abbreviation f = FF>, g = G>G, we obtain

tr(∇(det(Xt−))dXc
t ) = det(Xt−)

[
2
√

tr
(

f (t, Xt−)X−1
t− g(t, Xt−)X−1

t−

)
dWt

+ tr
(
H(t, Xt−)X−1

t−

)
dt

]
,
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7. On strong solutions for positive definite jump diffusions

with some one-dimensional Brownian motion W on [0, Tx), whose existence is guaranteed by
Lemma 7.4.4. Furthermore, by Lemma 7.4.2 (ii), Lemma 7.4.3 and elementary calculations
we have that

1
2

∑
i, j,k,l

∂2

∂xi j∂xkl
det(Xt−)d[Xi j, Xkl]

c
t

=
det(Xt−)

2

∑
i, j,k,l

[(
(X−1

t− )kl(X−1
t− )i j − (X−1

t− )il(X−1
t− ) jk

)(
f (t, Xt−)ikg(t, Xt−) jl

+ f (t, Xt−)ilg(t, Xt−) jk + f (t, Xt−) jkg(t, Xt−)il + f (t, Xt−) jlg(t, Xt−)ik
)]

= det(Xt−)
(
tr( f (t, Xt−)X−1

t− g(t, Xt−)X−1
t− ) − tr( f (t, Xt−)X−1

t− )tr(g(t, Xt−)X−1
t− )

)
dt.

According to Itô’s formula, Lemma 7.4.5, we therefore obtain by summing up the two equa-
tions,

dZt =2 det(Xt−)
√

tr( f (t, Xt−)X−1
t− g(t, Xt−)X−1

t− )dWt + det(Xt) − det(Xt−)

+ det(Xt−)

[
tr(H(t, Xt−)X−1

t− ) + tr( f (t, Xt−)X−1
t− g(t, Xt−)X−1

t− )

− tr( f (t, Xt−)X−1
t− )tr(g(t, Xt−)X−1

t− )

]
dt.

Using again Itô’s formula, we have

drt =2
√

tr( f (t, Xt−)X−1
t− g(t, Xt−)X−1

t− )dWt + ln(det(Xt)) − ln(det(Xt−))

+

[
tr(H(t, Xt−)X−1

t− ) − tr( f (t, Xt−)X−1
t− g(t, Xt−)X−1

t− )

− tr( f (t, Xt−)X−1
t− )tr(g(t, Xt−)X−1

t− )

]
dt.

Hence, we have rt = r0 + Mt + Pt, where

Mt =2
∫ t

0

√
tr( f (s, Xs−)X−1

s−g(s, Xs−)X−1
s− )dWs,

Pt =

∫ t

0

[
tr(H(s, Xs−)X−1

s− ) − tr( f (s, Xs−)X−1
s−g(s, Xs−)X−1

s− )

− tr( f (s, Xs−)X−1
s− )tr(g(s, Xs−)X−1

s− )

]
ds +

∑
0<s6t

(ln(det(Xs)) − ln(det(Xs−))) .

We infer that (M(n)
t )t>0 defined by

M(n)
t := 2

∫ t

0

√
tr( f (s, XTn

s−)(X
Tn
s−)
−1g(s, XTn

s−)(X
Tn
s−)
−1)dWs
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is a continuous martingale. Obviously, Mt = M(n)
t on {t < Tn} and thus M is a continuous

local martingale on [0, Tx). Furthermore, Xs − Xs− � 0 for all s ∈ [0, T ) and hence det(Xs) >

det(Xs−) using [64, Corollary 4.3.3]. Therefore, we have that Pt >
∫ t

0 c(s)ds on [0, Tx).
Finally, by Proposition 7.4.2 we have that Tx = ∞ a.s. noting that c is assumed to be locally

integrable. �

Remark 7.4.1. Bru’s method for proving her proposition 7.3.1 for Wishart diffusions consists
of the following two steps:

(i) First assume β = 0. By applying the original McKean’s argument twice, one derives that
h(det(X)) is a local martingale. This is proved separately for δ = d+ 1 and δ > d+ 1 by
choosing h(z) = ln(z) in the first case and h(z) = zd+1−δ in the second one. Therefore,
the existence of a unique global strong solution on S ++

d is settled.

(ii) One may therefore suppose that Xt is an S ++
d -valued solution on [0,∞) of

dXt =
√

XtdBtQ + Q>dB>t
√

Xt + δQ>Qdt, X0 = x ∈ S ++
d .

where Q ∈ GL(d) and δ > d + 1. Now, Girsanov’s Theorem is applied which allows to
introduce a drift by changing to an equivalent probability measure. This step generalises
a one-dimensional method by Pitman and Yor, see [26, p. 748]. The involved arguments
and calculations, which are not presented in detail in [26], appear rather complicated
and work seemingly only in the special case given in Proposition 7.3.1 (ii), (iii).

The technical details of [26] concerning strong solutions are explained in more detail in [88].

Our proof above circumvented the problems associated to the use of Girsanov’s theorem by
extending the approach outlined in (i).

7.5. Conclusion

In this chapter we have extended the previously known sufficient boundary non-attainment
conditions for certain Wishart processes to more general SDEs on S ++

d , which include affine
diffusions with state-independent jumps of finite variation. This allowed to infer the existence
of strong solutions of a large class of affine matrix valued processes. Moreover, we have thus
obtained strong existence results for SDEs which can be considered as positive semidefinite
extensions of GARCH diffusions and generalised Cox-Ingersoll-Ross processes.

However, this results in several open questions related to our SDE (7.1.1) which will hope-
fully be addressed in future work. The following questions are beyond the scope of the present
chapter, since they are obviously rather non-trivial and apparently need very different tech-
niques than the ones employed here. For d > 1 and the Wishart diffusions it is not clear,
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whether the condition b � (d + 1)Q>Q for the drift is a necessary non-attainability condition
or not. Only in the case β = 0, Γ = 0, Q = Id and b = δId with δ ∈ (d − 1, d + 1) it is
known from [42, Theorem 1.4] that the boundary is hit. On the other hand, one knows that in
the case d = 1 pathwise uniqueness holds, hence there exists a strong solution for all b � 0
(even in the general setting of CBI processes, see [40, Theorem 5.1]). For d > 2, the situation
seems in general to be rather complicated and therefore existence of global strong solutions
remains an open problem when b � (d + 1)Q>Q (and the conditions for the existence of weak
solutions of [32] are satisfied). Likewise, it is a very interesting problem in the case of the
GCIR processes with α > 1/2 whether a state dependent drift away from the boundary is
really necessary and what happens if one has only a constant drift towards the interior of S +

d .
Finally, we remark that our method of proof could be generalised to state-spaces D other

than S +
d , as long as the existence of an appropriate function g : D → R+ is guaranteed,

such that g−1(0) = ∂D. For instance, similar (but simpler) arguments to the ones of the
proof of Theorem 7.1 yield a rigorous proof of the non-attainment condition formulated in
[31, Section 6] for affine jump diffusions on the canonical state space Rm

+ ×Rn. Here one
takes g(x1, x2, . . . , xm) = x1 · x2 · · · · · xm.
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