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Abstract

Acute Lung Injury (ALI) and its more severe form Acute Respiratory Distress Syndrome
(ARDS) are serious diseases of the lung, with mortality rates of up to 33%. Typically,
patients suffering from ALI/ARDS need mechanical ventilation. However, the mechani-
cal ventilation may lead to regional, inhomogeneous overstraining of the lung tissue, es-
pecially in the alveolar region. The damage caused by this overstraining is a so-called
ventilator-associated lung injury (VALI), which contributes significantly to the high mor-
tality rates of ALI/ARDS patients.

The goal of this study is to develop mathematical models that enable the quantification
of strains and stresses of the lung tissue during ventilation. These models can be used to
optimize mechanical ventilation strategies in the future.

Therefore, in a first step, the material behavior of lung parenchyma is experimentally char-
acterized. By treating the tissue with specific enzymes, the contribution of the individual
load-bearing components and their interaction is quantified for the first time. In a second
step, suitable non-linear, compressible and elastic mathematical models are formulated,
which reproduce the experimentally determined behavior in an adequate way. The model
parameters are determined using an inverse analysis approach. Thereby, the experiments
are simulated using the finite element (FE) method and the parameters of the models are
optimized until the computational and the experimental results match. Different material
models are compared, regarding their suitability to model the complex elastic behavior of
lung tissue. Based on this comparison two optimal material models for lung parenchyma
are defined. While the first model is purely phenomenological, the second model considers
the individual contributions of the tissue components, i.e. ground substance, collagen and
elastin fibers, as well as the fiber-fiber interaction. With this constituent-based material
model, diseased states involving pathologic changes of the composition of the tissue, e.g.
fibrosis, can be modeled in a straight forward manner. Using one of the proposed models
the global strains and stresses within lung parenchyma can be determined.

In the next step, the correlation between global strains within the lung parenchyma and
local stains within individual alveolar walls is investigated, by performing FE simulations
of three-dimensional image-based alveolar geometries. With these simulations, the three-
dimensional strain-state within alveolar walls is determined for the first time. It turns out
that the local strains are a multiple of the global tissue expansion and areas of slim wall
places have a higher risk of overstretch. Consequently, resolving the realistic alveolar
morphology is crucial when investigating phenomena like VALI.
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Zusammenfassung

Die akute Lungenschädigung (Acute Lung Injury, ALI) und das daraus resultierende akute
Lungenversagen (Acute Respiratory Distress Syndrome, ARDS) sind schwere Erkrankun-
gen der Lunge, mit Sterblichkeitsraten von bis zu 33%. ALI/ARDS-Patienten müssen in
der Regel künstlich beatmet werden. Dabei kann es jedoch zu regionalen, inhomogenen
Überdehnungen des Lungengewebes, besonders im Alveolarbereich, kommen. Die, durch
diese Überbeanspruchung hervorgerufenen, Verletzungen werden als beatmungsinduzier-
te Lungenschäden bezeichnet. Sie tragen wesentlich zu der hohen Sterblichkeitsrate von
ALI/ARDS-Patienten bei.

In dieser Studie sollen mathematische Modelle entwickelt werden, um die Spannungen
und Dehnungen im Lungengewebe während der Beatmung zu quantifizieren. Mit Hilfe
dieser Modelle kann die künstliche Beatmung in Zukunft optimiert werden.

Zu diesem Zweck wird zunächst das Materialverhalten des Lungengewebes experimentell
untersucht. Durch die Behandlung des Lungengewebes mit Enzymen können die Beiträ-
ge der einzelnen Gewebebestandteile zur Lastabtragung erstmalig quantifiziert werden.
Anschließend werden geeignete nichtlineare, kompressible und elastische mathematische
Modelle formuliert, die das beobachtete Verhalten abbilden können. Durch lösen eines in-
versen Problems werden die zugehörigen Modellparameter bestimmt. Dabei werden die
Experimente mit der Methode der Finiten Elemente (FE) simuliert und die Modellpa-
rameter optimiert, bis die Ergebnisse der Modelle mit den experimentellen Ergebnissen
übereinstimmen. Anschließend werden verschiedene Materialmodelle bezüglich ihrer Eig-
nung, das Verhalten des komplexen Lungengewebes optimal abzubilden, verglichen. Die-
ser Vergleich lieferte zwei optimale Materialmodelle für das Lungengewebe. Während das
erste Model rein phänomenologisch ist, berücksichtigt das zweite Modell die individuel-
len Beiträge der einzelnen Gewebebestandteile, wie die Grundsubstanz, die Kollagen- und
Elastinfasern und deren Interaktion. Mit diesem Materialmodell der Gewebebestandteile
können Krankheiten, bei denen sich die Gewebezusammensetzung pathologisch verän-
dert, direkt modelliert werden. Mit Hilfe eines der beiden Modelle können die globalen
Spannungen und Dehnungen im Lungengewebe bei der künstlichen Beatmung berechnet
werden.

In einem weiteren Schritt wird der Zusammenhang zwischen globalen Dehnungen des
Lungengewebes und die lokalen Dehnungen in den Alveolarwänden bestimmt. Mit einer
auf gescannten dreidimensionalen Alveolargeometrien basierenden FE-Simulation können
die dreidimensionalen Verzerrungen des Alveolargewebes erstmalig quantifiziert werden.
Dabei zeigt sich, dass die lokalen Verzerrungen in den Aveloarwänden ein Vielfaches der
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globalen Verzerrungen erreichen und dass besonders für schlanke Strukturen ein erhöhtes
Überdehnungsrisiko besteht. Folglich ist die Berücksichtigung der realen alveolaren Mor-
phologie entscheidend für die Unteruchung von beatmungsinduzierten Lungenschäden.
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1 Introduction and Motivation

“The acute respiratory distress syndrome continues as a contributor to

the morbidity and mortality of patients in intensive care units throughout

the world, imparting tremendous human and financial costs.”(Bernard et al.,

1994)

Acute Lung Injury (ALI) and its more severe form Acute Respiratory Distress Syndrome
(ARDS) are severe respiratory diseases with mortality rates of up to 33%, as reported by
the groundbreaking study of The Acute Respiratory Distress Syndrome Network (2000).
The diseases can be caused by any major inflammation or injury to the lung, for example
breathing vomit into the lung (aspiration), inhaling chemicals, pneumonia, septic shock,
or trauma. The main problem of this disease is the accumulation of fluid within the air
sacs, preventing oxygen transport into the blood stream. Additionally, due to the surface
tension of the fluid, the lungs become stiffer and the ability to expand decreases. Hence,
the lung functions very inefficiently. This causes the oxygen level in the blood stream to
drop dangerously low, even when the patient is artificially ventilated. The deathly form
of ALI/ARDS often occurs in combination with the failure of other vital organs, such as
the liver or kidneys. Typically, patients suffering from ALI/ARDS need to be mechanically
ventilated in the intensive care unit (ICU). The goal of the treatment is to provide breathing
support and cure the underlying processes. This involves medication to reduce the infection
and the resulting inflammation as well as the removal of the fluid from the lungs.

However, although mechanical ventilation is a mandatory life saving treatment, it is un-
fortunately the cause of further complications. The problem is that the damage during
ALI/ARDS is inhomogeneous. Therefore, the air distributes unevenly throughout the lung,
which leads to regional overstretching during mechanical ventilation. The damage and in-
flammation, caused by this overstretching, is a so-called ventilator-associated lung injury
(VALI) which contributes significantly to the high mortality rates of ALI/ARDS patients.
The introduction of protective ventilation protocols, including positive end-expiatory pres-
sure (PEEP) and a decrease of tidal volume, has led to a reduction in associated mortality
rates but they still remain unsatisfactorily high (The Acute Respiratory Distress Syndrome
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Network, 2000). The usage of PEEP should prevent the lungs from partly collapsing (at-
electrauma), by not letting the pressure drop to zero at the end of expiration. The reduction
of tidal volume should prevent the tissue from being overstretched during ventilation (vo-
lutrauma). Due to the unevenly distributed air within the lung, the optimal level of PEEP,
tidal volume etc. are extremely difficult to determine for individual ALI/ARDS patients.

VALI includes both mechanical damage of the tissue and activation of an inflammatory
signaling cascade (biotrauma). How the ventilation exactly induces its deleterious effects
still remains unclear. Studies both in vitro and in vivo have found that both the pattern and
the degree of stretching are important (Dos Santos and Slutsky, 2000, 2006; Dassow et al.,
2010).

The work presented in this thesis is part of the German Research Foundation (DFG) pri-
ority program “Protective Artificial Respiration”. The main goal of this interdisciplinary

initiative is to further improve mechanical ventilation in order to reduce the high mortality

rate due to VALI. For this purpose, a detailed “virtual lung model” is developed jointly at
the Institute for Computational Mechanics (TUM). One important part involves the mod-
elling of the lung tissue behavior.

In this thesis, sophisticated material models for the lung parenchyma are be deduced
from experimental studies of lung parenchyma. Based on these models global strains
and stresses within the lung parenchyma can be determined. As a next step, the rela-
tion between the global strains of the lung parenchyma and the local deformation in in-
dividual alveolar walls is investigated by performing finite element (FE) simulations on
three-dimensional image-based alveolar geometries. Using these simulations, a three-
dimensional strain state within the alveolar walls is determined for the first time. This
approach will improve the understanding of the underlying processes causing the inflam-
mation during VALI.
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2 Anatomy, Physiology and Pathology

of the Lung

In this chapter, all the necessary background concerning anatomy, physiology and pathol-
ogy of the lung will be provided as well as the pathology of Acute Lung Injury (ALI)
and Acute Respiratory Distress Syndrome (ARDS) and ventilator-associated lung injury
(VALI). This is in order to put the wider goals (see chapter 5) of this research into context.

2.1 Anatomy of the Lung

The primary function of the lung is gas exchange, i.e. introducing oxygen into and remov-
ing carbon dioxide from the blood stream. In addition, the lung has other functions, e.g.
filtering of unwanted materials. It is essential to understand the complex features of the
lung structure, in order to understand how the lung reacts to injury and diseases.

Therefore, a brief introduction of the anatomy of the lung, from the upper airways, over
the conducting airways, down to the respiratory zone, is provided below.

2.1.1 Upper Airways

The upper airways are all conducting structures above the trachea (windpipe). They in-
clude the nasal cavity, the pharynx (throat), and the larynx. The pharynx belongs to both
the respiratory and the digestive system. It splits into the larynx and the esophagus leading
to the digestive track. The nasopharynx humidifies the inhaled gas, clears out inhaled par-
ticles and reactive substances, as well as contributes to senses like smell and taste (Crapo,
2000).
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Figure 2.1: Front view of cartilages in the trachea and bronchi. Figure taken from Gray
and Bannister (1995).

2.1.2 Airways - Conducting Zone

The primary airways consist of the trachea, the bronchi, and the bronchioles (see Figure
2.1). The trachea is a cartilaginous and membranous tube of about 100− 150mm length
of around 20mm in diameter. It divides into the two mainstem bronchi, one for each lobe
of the lung. The bronchi rapidly divide, in an irregular pattern, into progressively smaller
bronchi (see Figure 2.2). After about 16 generations of branching, the terminal bronchioles
are reached. The terminal bronchioles are the smallest units in the lungs with a solely
conducting function. Because the conducting airways do not participate in gas exchange,
their volume is referred to as the anatomic dead space, which, in a normal adult, is around
150ml. (Weibel, 1963; Horsfield et al., 1971; Gray and Bannister, 1995; Crapo, 2000;
Ethier and Simmons, 2007; West, 2008).

Despite the fact that the cross-sectional area of the daughter branches decreases, the in-
creasing number of branches leads to an almost exponential increase in total cross-sectional
area. This increase leads to a fall in airway resistance, as well as a reduction in the flow
velocity.

2.1.3 Transitional and Respiratory Zone

The actual gas exchange takes place in the transitional and respiratory zone. It consists of
the respiratory bronchioles, the alveolar ducts and the alveolar sacs, see Figure 2.2.
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2.1.3.1 Alveolar Acinus

Distal to the terminal bronchioles, the respiratory bronchioles, and the alveolar ducts the
alveolar sacs are organized in individual alveolar acini. Despite the name acini, from
the Latin word for “bunch of grapes”, alveoli do not look like grapes, rather they are
polygonal in shape and interconnected by shared walls and pores of Kohn (Prange, 2003).
The primary function of the acinar region is gas exchange, in particular oxygen transfer
into and carbon dioxide removal from the blood stream. Although, the distance from the
terminal bronchioles to the alveoli is only a few millimeters, the respiratory zone represents
the biggest portion of the lung volume, with about 2.5−3.0l during rest.

Figure 2.2: Schematic diagram of the airway tree, showing the different functional zones,
i.e. the conducting zone, the transitional zone, and the respiratory zone. The
number of airways is actually larger than that listed here, since the tabulated
values are based on a simple bifurcating model of the airways; the reality is
more complex. The Figure is adapted from Weibel (1963, 1984); Ethier and
Simmons (2007); West (2008).

2.1.3.2 Alveoli

Alveoli are the smallest gas exchanging unit in the lung. According to recent estimations,
the average number of alveoli is around 480 million with an average volume of 4.2×
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106µm3 and a diameter of 100µm (Ochs et al., 2004). The total surface has been quoted to
be between 100−140m2 (Weibel, 1984; Crapo, 2000; West, 2008), which is of uppermost
importance for the gas exchange.

Alveoli are arranged in a foam-like structure, the so-called parenchyma, and fill the entire
volume of the lungs surrounding the airways. A part of a typical alveolar structure recon-
structed from synchrotron-based X-ray tomography images, is shown in Figure 2.3 (B). It
shows the complicated construction of the parenchymal tissue.

The individual alveoli are separated by a thin wall, the inter-alveolar septum which is
referred to as the alveolar wall or the single alveolar wall in the following text. This wall
is not only the separation of alveoli but also part of the blood-gas barrier, separating the air
space from the capillaries filled with red blood cells and blood plasma. It consisting of:

1. a monolayer of epithelial cells lining the alveolar wall, with a supporting basement
membrane,

2. the interstitium including collagen fibers (CF) and elastin fibers (EF), and

3. a layer of endothelial cells lining the capillaries, also supported by a basement mem-
brane,

see Figure 2.3 (C).

In this study, the focus lies on biomechanics. For this reason, we are especially interested
in the structures dominating the elastic behavior of the alveolar tissue, i.e. the main load-
bearing constituents. According to Suki et al. (2005), these constituents are the CF and EF
in the interstitium. Similar results were found by Yuan et al. (1997, 2000), who showed
that CF and EF have a dominant influence, on the mechanical behavior of alveolar tissue, in
comparison with the interstitial cells. The dominance of these fibers on the mechanical be-
havior of tissue is not specific to the lung, it actually occurs in most soft biological tissues,
e.g. the cornea and the sclera of the eyes (Fung, 1993), the arterial walls (Holzapfel et al.,
2000), the tendons (Kastelic et al., 1978), or the articular cartilage (Basser et al., 1998).
Although these fiber networks exist in many soft biological tissues, their organization (di-
ameter, inner structure and orientation) varies greatly (Ottani et al., 2001). The situation
for alveolar tissue is comparatively more complicated, due to its sponge-like geometry.

Collagen Fibers Collagen is the basic structural element in both hard and soft biological
tissue. It gives mechanical integrity and strength to the tissue. CF are the main load
carrying elements in many biological tissues, like blood vessels, skin, tendons, cornea,
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2.1 Anatomy of the Lung

Figure 2.3: The makeup of parenchymal and alveolar tissue - On the macro-scale (A), the
lung parenchyma appears as a continuous tissue but zooming further down
to, the meso-scale (B) or the tissue has a sponge-like structure, consisting of
only 20% tissue and 80% air (Tschanz et al., 2003). At a micro-scale (C), the
actual tissue components are visible. The collagen and elastin fibers, indicated
in yellow, are within the interstitium (dark blue). The endothelial cells are
indicated in light blue with a green nucleus. The blood plasma is indicated with
a light red and the red blood cells with a darker red. The basement membrane
(light gray), and the surfactant layer, which is the liquid lining on the tissue-air
interfaces (see section 2.1.3.4), is indicated by shades of gray. The endothelial
cells are not shown.
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sclera, bone. The CF make up 10% to 20% of the dry weight of an adult lung (Crystal
et al., 1975).

Figure 2.4: Electron microscopy pictures of collagen fiber (CF) networks in rat lungs. Fig-
ures taken from Toshima et al. (2004). (A) CF network at the alveolar entrances
(AE) in the collapsed lung. (B) CF network at the AE in the inflated rat lung.
Both scale bars correspond to 100µm.

CF exhibit a strongly non-linear mechanical behavior. At low levels of strain (in the so-
called “toe” region of the stress-strain curve), the CF take a wavelike configuration, see
Figure 2.4, and are easily extended, see Ethier and Simmons (2007); Toshima et al. (2004);
Mercer and Crapo (1990). At higher levels of strain (in the “heel” and “linear” region),
however, CF become straight and resist further stretch by increasing the stiffness of the
fiber significantly. Compared to EF, the Young’s modulus (E) (see Appendix A.2.1) of
collagen is about 10,000 to 100,000 times higher (Ethier and Simmons, 2007). Thus,
collagen is assumed to provide a mechanical framework to limit excess distension.

Orientation of the Collagen Fibers

Toshima et al. (2004) investigated the fiber structure in rat and human lungs. They found
the CF form a continuum, see Figure 2.4, extending throughout the lung and pleura. They
are condensed into the alveolar mouths and subdivided into smaller fibers in the alveolar
septa, where they form basket-like networks. The fibers are wavy in the collapsed state,
whereas they become straight in the inflated state, see Figure 2.4(A) and (B). Furthermore,
Mercer and Crapo (1990) investigated the spatial distribution of the fibers in rat and human
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lungs. They found a high fiber concentration in the alveolar duct walls. Despite the fact that
the fibers may have a predominant direction in the individual septum, there is no preferred
fiber direction, if a large number of alveoli is considered. Hence, it seems reasonable to
assume an isotropic fiber distribution within the lung parenchyma (Sobin et al., 1988).

Elastin Fibers Elastin has a linear stress-strain curve, even for strains larger than 1.5,
thus, making it the most “linearly” elastic biosolid material known (Fung and Sobin, 1981).
The E of EF is between 30kPa (Ethier and Simmons, 2007) and 600kPa (Fung and Sobin,
1981). EF are much softer than CF and can be extended up to 2.3 times their unloaded
length (Carton et al., 1962; Weibel, 1986). Elastin provides elasticity to the lung tissue
(Fung and Sobin, 1981), allowing the lungs to effectively recoil in the normal breathing
range (Ethier and Simmons, 2007). A similar role of EF can be found in arteries, veins,
and skin (Fung and Sobin, 1981).

Figure 2.5: Electron micrograph scans of the elastin fiber (EF) network in the human lung.
Figures taken from Toshima et al. (2004). The EF form bands at the entrances
of the alveoli (*). Blood vessels (V) can also been seen in the scan. Both scale
bars correspond to 100µm.

Orientation of the Elastin Fibers

The orientation of the EF is similar to the CF orientation, except for a band of EF around
the alveolar mouth, which forms an entrance ring into the single alveolus (Mercer and
Crapo, 1990). Similar to CF, EF do not show a preferred fiber direction, see Figure 2.5,
meaning they can be assumed to be distributed isotropically. The EF also form a contin-
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uum, with a higher density in the alveolar mouths than in the alveolar septa, however, they
were always found to be rather straight than wavy.

Connection Between Collagen and Elastin Fibers Detailed material descriptions
based on micro-structural considerations are scarce in the literature.

In ligaments, Brown et al. (1994) found the CF and the EF to be mechanically connected.

Mercer and Crapo (1990) reported very close spatial proximity between EF and CF. They
also quantified the percentage of interwoven elastin in rats to be 51%, leading to the as-
sumption that they are most likely mechanically connected as well.

The close proximity between CF and EF found by Toshima et al. (2004), suggests that
both fiber families are mechanically connected. Furthermore, their findings suggest that
the two fiber families act as parallel mechanical elements. Similar to Mercer and Crapo
(1990), they believe the extension of the connective matrix to be in two stages. At low
strain levels, the wavy CF are easily extended and the main stress is carried by the EF. At
high strain levels, the CF become straight and act as a limit to further deformations of the
tissue.

The review of Faffe and Zin (2009) discusses the influence of the two fiber families on the
mechanical behavior of the parenchymal tissue as well as the importance of modeling the
fiber-fiber interaction (FF). However, to our best knowledge, none of these contributions
have yet been precisely quantified for the parenchymal tissue.

Ground Substance and Other Constituents In the inter cellular space, the two
fiber families are embedded in a hydrophilic gel, the ground substance (GS) (Fung and
Sobin, 1981). Beside CF and EF, the GS contains proteoglycans and glycosaminoglycans
(GAGs). Proteoglycans are macromolecules, consisting of protein cores, to which GAG
side chains are covalently attached. The side chains can attract water molecules into the
matrix, which can change the material properties of the tissue (Jamal et al., 2001).

2.1.3.3 Capillaries and Gas Exchange

The gas exchange occurs across the alveolar wall. Within the alveolar walls, the capillaries
form a dense network, which is almost a continuous sheet of blood. In normal humans,
200 ml of blood are distributed in the total surface area of the alveolar region, which is
about 100− 140m2, i.e. approximately the size of a tennis court (Weibel, 1984; Crapo,
2000; West, 2008).
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2.1.3.4 Surface Tension and Surfactant

The alveoli are lined with a thin liquid film, which creates a surface tension acting against
an increase of alveolar surface area. When an interface is expanded, the minimum amount
of work required to create the additional surface area is the product of the inter-facial ten-
sion and the increase in area of the interface. This surface tension leads, amongst other
phenomena, to a hysteresis between pressure-volume (p-V) curves for inflation and defla-
tion.

In the alveolar wall there are two types of alveolar epithelial cells (type I and II). Type
II cells are responsible for the production of surfactant, a surface active agent. Surfactant
reduces the surface tension of the liquid lining at the tissue-gas interface (see Figure 2.3)
and thereby, significantly changes the amount of work required to expand those surfaces
(Rosen, 2004; West, 2008). Its absence drastically reduces the compliance of the lung
(West, 2008).

2.2 Physiology and Pathology of the Lung

In this section a short overview over healthy respiration is given, before introduction the
diseases ALI and ARDS and therefrom resulting VALI.

2.2.1 Respiration

During inspiration, the volume of the thoracic cavity is increased by lifting the rib cage
and contracting the diaphragm. This causes the pressure in the pleural space to drop to
more negative values causing air to flow into the lungs. The air flows down to the terminal
bronchioles. At this point, the overall cross-sectional area is so big, due to the large number
of branches, that the convective velocity of the gas becomes very small and diffusion takes
over in the respiratory zone (West, 2008). During expiration, the diaphragm relaxes, which
increases the pressure in the pleural space, resulting in airflow out of the lungs.

A number of clinically measured volumes are defined in Figure 2.6. The total lung capacity
(TLC), which is the maximum air volume in the lung, is between 6 and 8l in a healthy
adult. However, during normal breathing only 0.5l (tidal volume) are exchanged. Taking
a deep breath, the whole vital capacity can be exchanged. The residual volume, including
the anatomical dead space, is the volume remaining in the lung after maximal expiration
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Figure 2.6: Lung volumes and capacities for normal humans. Figure taken from West
(2008).

(∼ 1.2l). The functional residual capacity (FRC) is the volume of air in the lung after
passive expiration (Ethier and Simmons, 2007; West, 2008).

2.2.2 Acute Lung Injury and Acute Respiratory Distress Syndrome

ARDS and its lighter form ALI are both severe forms of diffuse lung disease. A variety
of direct and indirect triggers, e.g. aspiration, inhalation of chemicals, pneumonia, septic
shock, or trauma, lead to this condition. Both forms are characterized by inflammation
of the lung parenchyma leading to reduced gas exchange. For this reason, the patients
usually require mechanical ventilation and admission to an intensive care unit. Associated
phenomena are the systemic release of inflammatory mediators causing inflammation of
other organs, hypoxemia, i.e. reduction of oxygen transfer into the arterial blood stream,
and frequently resulting in multiple organ failure. However, due to the fact that ARDS/ALI
are syndromes, rather than diseases, a precise definition is difficult and has changed over
the years.

The first definition was given in 1967 by Ashbaugh et al. (1967). They defined ARDS to
have the following symptoms:

• dyspnea (shortness of breath),

• tachypnea (rapid breathing),

• hypoxemia (deficient oxygenation of the blood), and

• loss of compliance of the lung tissue.

In 1991, the American-European consents conference on ARDS was held, in order to
establish a clear and uniform definition. Their specifically recommended criteria are,
amongst others,
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• the acute onset,

• bilateral infiltration, seen on the front chest radiograph,

• a threshold value for the oxygenation (different values for ALI and ARDS), and

• a threshold value for the hypertension (different values for ALI and ARDS).

The details can be found in the consents report, see Bernard et al. (1994).

Due to the wide range of definitions, the reported mortality rates vary between 10 and
90%.

2.2.2.1 Pathogenesis

There is a great diversity of initiating causes of ALI and ARDS, like sepsis, trauma, aspi-
ration, multiple blood transfusion, acute pancreatitis, inhalation injury, and drug toxicity.
Although the initiating injury might be different, the resulting inflammation causes the
injury to propagate, especially when it is paired with additional trauma, like high-tidal
volume of the mechanical ventilation or hypoxemia, see section 2.2.3.

The pathogenesis of ARDS can be split into two phases:

• the earlier exudate phase, also called the acute inflammation; and

• the later fibrosing-alveolitis phase,

see Figure 2.7.

In the first phase, the alveolar wall barrier becomes more permeable, leading to an inflow
of fluid and neutrophils into the alveolar air space. As mentioned above, the alveolar wall
consists, amongst others, of capillary endothelial and alveolar epithelial cells, the damage
of which, could have a variety of reasons, results in ARDS. Injury of the endothelium (e.g.
in case of sepsis) increases the capillary permeability, leading to an influx of protein-rich
fluid into the alveolar space (see Figure 2.7). Injury of the alveolar epithelium also leads to
the formation of pulmonary edema. As mentioned above, there are two types of alveolar
epithelial cells. The alveolar type I cells are at high risk of damage. Their damage leads to
an increased inflow of fluid into the alveoli and a decreased clearance of this fluid from the
alveolar space. The alveolar type II cells are more resistant to damage; however, they have,
amongst others, the task of producing surfactant, transporting ions, and the proliferation
and differentiation into type I cells to replace them after injury. Injury of type II cells can
lead to a reduced production of surfactant molecules, which increases the surface tension
(see section 2.1.3.4), resulting in a decrease of compliance and alveolar collapse.
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In the second phase, the alveolar wall gets transparent, with varying degrees of interstitial
fibrosis, leading to the resolution of the individual walls (Tsushima et al., 2009; Harman,
2011).

2.2.2.2 Treatment

The standard treatment of ALI and ARDS is towards identification and management of
pulmonary and non-pulmonary dysfunction. In some cases, the underlying cause can be
treated directly, e.g. in the case of pneumonia. However, the majority of cases, e.g. aspira-
tion, cannot be treated except to provide essential supportive care.

Most ALI and ARDS patients develop a life-threatening hypoxemia. Furthermore, the high
breathing effort caused by the reduced lung compliance may lead to ventilatory failure. For
these reasons, mechanical ventilation is the mainstay of the supportive care. The stabiliza-
tion of the respiration allows time for the evolution of the natural healing process and, if
possible, the treatment of the underlying cause (Brower et al., 2001).

2.2.3 Ventilator Associated Lung Injuries

Although mechanical ventilation is a lifesaving treatment, it can cause further lung dam-
age itself. These injuries are called ventilator-induced lung injury (VILI) or ventilator
associated lung injury (VALI).

VILI is defined as an acute lung injury directly caused by mechanical ventilation, whereas
in VALI, the injury is not necessarily caused by mechanical ventilation but is associated
with it. This means VALI is a lung injury that comes along with diseases like ARDS, where
mechanical ventilation is a mandatory treatment (American Thoracic Society, European
Society of Intensive Care Medicine, Societé de Réanimation Langue Française, 1999).

2.2.3.1 Pathogenesis

VALI damage the lung in an inhomogeneous manner. Supposedly healthy alveoli, which
are more compliant than affected alveoli, are at risk of becoming over distended during
mechanical ventilation. Furthermore, affected alveoli may experience further injury due
to shear forces arising from a cycle of collapse and re-expansion during the breathing
cycle. In addition to mechanical damage, mechanical stimulation causes the cells to secrete
proinflammatory cytokines, leading to an increase of inflammation and pulmonary edema.
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The clinical course of VALI is different; while some patients recover within a couple of
weeks, others need a long therapy, including mechanical ventilation. These patients face
the risk of superimposed infections or multi-organ failure, leading to the high mortality
rates (American Thoracic Society, European Society of Intensive Care Medicine, Societé
de Réanimation Langue Française, 1999). The majority of patients suffering from VALI
do not die of primary respiratory causes rather of sepsis or multi-organ dysfunction (Ware
and Matthay, 2000).

2.2.3.2 Prophylaxis and Treatment

The use of protective ventilation protocols, including positive end-expiatory pressure
(PEEP) to prevent alveolar collapse, the use of low tidal volumes, and limited levels of
inspiratory filling pressures appear to be beneficial in diminishing the observed VALI. The
change of “normal” mechanical ventilation to these protocols reduced the mortality rates
from 55− 65%, as reported in the 1980s and early 1990s, to 31% (Abel et al., 1998;
Tsushima et al., 2009). This indicates that some cases were related to lung injury due
to VALI. A more effective treatment of sepsis and improvement in the supportive care of
critically ill patients also influenced this reduction.

Dreyfuss et al. (1988) studied the effects of different ventilation strategies on pulmonary
edema, i.e. the respective effects of high airway pressure and high inflation with and with-
out PEEP on the water content, micro-vascular permeability, and ultra-structure of the
lungs on mechanically ventilated rats. They found, that the edema was only related to
changes in the lung volume and not the airway pressure.

Additionally, they found PEEP to:

• have a positive effect on the alveolar epithelial layer,

• prevent the animals from edema or reduce the amount of edema, and

• improve the arterial oxygenation during pulmonary edema.

The protein concentration within the edema fluid remained the same and the lung water
was not decreased by PEEP, sometimes it even increased.

2.2.3.3 Conclusion

Despite these improvements, the mortality rates remain unacceptably high. A better under-
standing of the connection between mechanical ventilation and implications of overstrain-
ing the alveolar tissue is essential.
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2 Anatomy, Physiology and Pathology of the Lung

Figure 2.7: Normal alveolus (left) and injured alveolus in the exudate or acute phase of ALI
and ARDS (right). Neutrophils migrate through the injured capillary endothe-
lium via the interstitium into the airspace, which is filled with edema fluid. The
influx of the fluid in the alveolar space leads to the inactivation of surfactant.
Figure taken from Ware and Matthay (2000).
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3 Theoretical Framework

This chapter provides the necessary theoretical background knowledge to understand this
work. In the first section a brief introduction into solid continuum mechanics is presented.
In the second section the theoretical framework for hyperelastic material models is intro-
duced.

3.1 Solid Continuum Mechanics

In continuum mechanics, a body B is considered as a continuous object. The fact that
it is actually built of discrete constituents, like atoms and molecules, is neglected. This
assumption is valid if there is a large scale difference between the macro-scale, i.e. the
continuous body, and the micro-scale, i.e. the molecules or atoms.

The theory of continuum mechanics is applicable for both solid and fluid mechanics and
not limited to Cartesian coordinates. However, here, the focus is restricted to solid me-
chanics in Cartesian coordinates.

The aim of this section is to give a brief overview of the continuum mechanical background
of this work and to introduce the used notation. For a detailed background, the reader is
referred to Wall et al. (2010a) and Holzapfel (2004).

3.1.1 Kinematics

In the undeformed or material configuration, the body B0 ⊂ R3 is parametrized with X. In
the deformed, current, or spatial configuration, the body Bt ⊂ R3 at t ∈ R+ is parametrized
with x. The boundary of B is denoted with ∂B. The motion of the body B is described by
the particle motion mapping ϕ(X, t) : B0→ Bt, which relates the points X ∈ B0 with the
points x ∈Bt at a fixed time t ∈ R+, i.e.

x = ϕ(X, t). (3.1.1)
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3 Theoretical Framework

The transformation is invertible with

X = ϕ−1(x, t). (3.1.2)

The partial derivative of ϕ with respect to X is one of the most important kinematic quan-
tities. The resulting tensor

∇Xϕ :=
∂x
∂X

=


∂x1

∂X1
∂x1

∂X2
∂x1

∂X3

∂x2

∂X1
∂x2

∂X2
∂x2

∂X3

∂x3

∂X1
∂x3

∂X2
∂x3

∂X3

 := F(X, t) (3.1.3)

is called deformation gradient F. In order to be invertible the deformation gradient F, it
needs to be non-singular, i.e.

J = detF , 0 (3.1.4)

with J being the determinant of the deformation gradient or the Jacobian determinant. In
that case the inverse motion ϕ−1 with respect to the current position x of a material point
exists, the inverse deformation gradient F−1 reads

F−1 = F−1(x, t) :=∇xϕ
−1 =

∂X
∂x

=


∂X1

∂x1
∂X1

∂x2
∂X1

∂x3

∂X2

∂x1
∂X2

∂x2
∂X2

∂x3

∂X3

∂x1
∂X3

∂x2
∂X3

∂x3

 . (3.1.5)

Based on the deformation gradient, there are three fundamental geometric mappings. The
deformation gradient F itself defines a linear transformation of an infinitesimal line ele-
ment dX ∈ B0 in the material configuration to an infinitesimal line element dx ∈ Bt in the
current configuration, i.e.

dx = FdX. (3.1.6)

Due to the fact that the deformation gradient F transforms points between two configura-
tions, it is also called two-point tensor.

The change of volume of an infinitesimal volume element in the material configuration
dV ⊂ B0 and the current configuration dv⊂ Bt at time t is defined as

dv = JdV = det(F)dV. (3.1.7)
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3.1 Solid Continuum Mechanics

For this reason, the Jacobian determinant J is also called the volume ratio. Since F is
invertible and the volume elements cannot have negative volumes, the determinant J needs
to be positive. An isochoric or volume preserving deformation is characterized by J = 1.
In order to transform vector elements of infinitesimal area nda⊂ Bt and NdA⊂ B0 in the
current and the material configuration, respectively, with n and N being the material and
spatial unit normal vector of the area element, respectively, the Nanson’s formula is used,
i.e.

nda = JF−T NdA. (3.1.8)

Figure 3.1: Material and current configuration with corresponding geometric mapping.

The displacement fields in the current and in the material configuration, u(x, t) and U(X, t),
respectively, are defined as

u(x, t) = x−X(x, t) and U(X, t) = x(X, t)−X. (3.1.9)

In order to determine the velocity fields in the current and in the material configuration,
v(x, t) and V(X, t), respectively, the rate of change of the spatial position x(X, t) of a point
X ∈ B0, are calculated by

v(x, t) := V(X, t) =
dx(X, t)

dt
=
∂x(X, t)
∂t

= ẋ(X, t). (3.1.10)

The material velocity field V(X, t) at a material point X is by definition identical to the
spatial velocity field v(x, t) at the spatial point x. The total derivative of the velocity field,
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3 Theoretical Framework

with respect to the time t, defines the acceleration field. The acceleration field in the current
and the material configuration a(x, t) and A(X, t), respectively, are calculated by

A(X, t) = a(x, t) =
dV(X, t)

dt
=

d2x(X, t)
d2t

(3.1.11)

or, equivalently,

a(x, t) = v̇(x, t) =
dv(x, t)

dt
=

∂v(x, t)
∂t︸  ︷︷  ︸

partial derivative

+ (∇xv) ·v︸   ︷︷   ︸
convective derivative

. (3.1.12)

The partial and the convective derivative are also called the local and convective accelera-
tion, respectively.

3.1.2 Strain and Stress Measures

In order to determine the volume and shape change of a body, displacements are not suffi-
cient. For this reason, strain measures based on the deformation gradient F are introduced
in the following. The polar decomposition of the deformation gradient reads

F = RŨ = ṽR, (3.1.13)

with R being a rotation tensor, i.e. an orthogonal tensor (R−1 = RT ) and Ũ and ṽ are the
symmetric right and left stretch tensors, respectively. For this reason, the deformation
gradient F is not invariant with respect to rigid body rotations, in contrast to the right
Cauchy-Green strain tensor

C := FT F = ŨT RT R︸︷︷︸
1

Ũ = ŨT Ũ, (3.1.14)

with 1 being the second-order identity tensor. The strain tensor C exclusivly depends on
the right stretch tensor Ũ and, is therefore, well suited for describing the internal state of a
body. Similar to the right Cauchy-Green strain tensor, the left Cauchy-Green strain tensor
b is given as

b = FFT = ṽT ṽ. (3.1.15)
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3.1 Solid Continuum Mechanics

In many cases, it is usefully to have a strain measure, that is zero for the undeformed
configuration (F = 1). For this reason the Green-Lagrange strain tensor E and the Euler-
Almansi strain tensor e are given as

E :=
1
2

(C−1) =
1
2

(
FT F−1

)
(3.1.16)

and

e :=
1
2

(
1−b−1

)
. (3.1.17)

The Green-Lagrange strain tensor E and the right Cauchy-Green strain tensor C are defined
in the material configuration and are material objective, whereas the Euler-Almansi strain
tensors e and the left Cauchy-Green b are defined in the current configuration and are
spatial objective.

Table 3.1: Selection of different strain measures.
Strain Measure Definition
Right Cauchy-Green C := FT F = ŨT Ũ
Left Cauchy-Green b = FFT = ṽT ṽ
Green-Lagrange E := 1

2 (C−1)
Euler-Almansi e := 1

2

(
1−b−1

)

An overview over the most common strain measures can be found in Table 3.1. It is
important to note that due to the fact, that strain is not a physical quantity, other strain
measures could possibly be used.

The objective material strain rate, calculated from the Green-Lagrange strain tensor E, is

Ė =
d
dt

(
1
2

(C−1)
)

=
d
dt

(
1
2

(
FT F−1

))
=

1
2

(
ḞT F + FT Ḟ

)
=

1
2

Ċ. (3.1.18)

The other possible strain rates can be defined accordingly and are not shown.

To describe the internal stress state of a body, the surface traction vector t is introduced as

t(x, t) = lim
∆a→0

∆f
∆a

=
df
da
, (3.1.19)
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with ∆f being the resultant force acting on an area element ∆a ⊂ ∂Bt, including the point
x ∈ ∂Bt. According to Cauchy’s fundamental lemma, there exists a uniquely defined
second-order stress field σ, such that

t(x, t,n) = σ(x, t) ·n. (3.1.20)

The tensor σ is called Cauchy stress tensor. Due to the fact that the Cauchy stress tensor σ
refers to an unknown configuration, alternative stress measures were introduced. The 1st

Piola-Kirchhoff stress tensor P is given as uniquely defined tensor field with

T = PN (3.1.21)

with T = da
dA t being the pseudo-traction vector. The Cauchy stress tensor σ can be restated

to the 1st Piola-Kirchhoff stress tensor P by

P = detFσF−T . (3.1.22)

The 1st Piola-Kirchhoff stress tensor P is a two-point tensor, i.e. it is defined in both con-
figurations. In contrast, the 2nd Piola-Kirchhoff stress tensor

S = F−1P = detFF−1σF−T , (3.1.23)

which is defined solely in the material configuration. The interpretation of the 1st and the
2nd Piola-Kirchhoff stress tensor are not trivial. However, they are frequently used because
they refer to the a priori known material configuration. For this reason, in the following,
especially in chapter 6, the term stress will be used as an equivalent to the 2nd Piola-
Kirchhoff stress S. An overview over the most common stress measures can be found in
Table 3.2.

Table 3.2: Selection of different stress measures.
Stress Measure Symbol Definition Conversion
Cauchy σ t = σn
1st Piola-Kirchhoff P T = PN P = detFσF−T

2nd Piola-Kirchhoff S S = F−1P = detFF−1σF−T
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3.1 Solid Continuum Mechanics

3.1.3 Balance Principles

Conservation laws and balance principles are the physical basis of continuum mechanics.
They are material independent, i.e. valid for every continuum. In detail, there are four
balance equations and one inequality. The balance equations are the conservation of mass,
the balance of linear momentum, the balance of angular momentum, and the balance of
energy. The entropy inequality will be further discussed in more detail in the following
section 3.2.

3.1.3.1 Conservation of Mass

The law of conservation of mass states that, in a closed system, the mass M of the body B
remains constant during a deformation process. The first global form is given as

M :=
∫
B0

ρ0(X)dV︸    ︷︷    ︸
dM

=

∫
Bt

ρ(x, t)dv︸   ︷︷   ︸
dm

= m = const., (3.1.24)

where ρ0 and ρ are the material and current density, respectively. Using equation (3.1.7),
the first local form is derived to be

ρ0 = Jρ. (3.1.25)

Since the mass does not change over time (ṁ = 0), the first global form can be equally
written as

ṁ = 0 =
d
dt

∫
Bt

ρdv =

∫
Bt

(ρ̇+ρ∇ ·v) dv, (3.1.26)

where the Reynolds transport theorem has been applied, see Appendix A.1.1.

The corresponding local forms reads

ρ̇+ρ∇ ·v = 0. (3.1.27)

3.1.3.2 Balance of Momentum

The balance of momentum state that the change over time of the linear momentum L and
the angular momentum JY equal the external forces fext

0 and the external momentum mext
0 ,

respectively.
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Balance of Linear Momentum The linear momentum L is defined as

L :=
∫
B0

ρ0VdV. (3.1.28)

The change of linear momentum L̇ in time leads to

L̇ = fext
0 :=

∫
B0

fbody
V dV +

∫
∂B0

TdA (3.1.29)

where fbody
V is the material volume type body load. With some lengthy transformations,

including Gauss’ divergence theorem, see Appendix A.1.2, it is derived as

∫
B0

ρ0V̇dV =

∫
B0

(
fbody

V +∇ · (F ·S)
)

dV. (3.1.30)

The local material form of this equation reads

∇ · (F ·S) + fbody
V −ρ0V̇ = 0. (3.1.31)

This equation is called the linear momentum equation or Cauchy’s first equation of motion
and is the starting point of the numerical method.

Balance of Angular Momentum The angular momentum relative to a fixed point
(characterized by the position vector Y) is defined as

JY :=
∫
B0

R̃×ρ0VdV (3.1.32)

with the identity of the velocity fields (equation (3.1.10)) and the position vector R̃ = X−Y.
The change of angular momentum J̇Y with respect to time leads to

J̇Y = mext
0 :=

∫
∂B0

R̃×TdA +

∫
B0

R̃× fbody
V dV. (3.1.33)

With a lengthy transformation, Cauchy’s second equation of motion results in

S = ST (3.1.34)

or
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3.1 Solid Continuum Mechanics

σ = σT . (3.1.35)

Thus, the balance of angular momentum is satisfied if the Cauchy stress tensor σ and the
2nd Piola-Kirchhoff stress tensor S are symmetric.

3.1.3.3 Balance of Energy (First Principle of Thermodynamics)

The change over time of the sum of the internal energy εint and kinetic energy εkin equals
the sum of the external mechanical power Pext and the non-mechanical power Qext

d
dt

(εint + εkin) = Pext−Qext. (3.1.36)

Since only mechanical effect are considered within this work, Qext is set to zero. For
simplicity, in the following the summands are given in the material configuration. In detail,
equation (3.1.36) can be reformed as

d
dt


∫
B0

εint, Mρ0 dV︸             ︷︷             ︸
εint

+

∫
Bt

1
2
ρ0

(
V ·VT

)
dV︸                   ︷︷                   ︸

εkin

 =

∫
∂B0

T ·VT dA +

∫
B0

fbody
V ·VT dV︸                                     ︷︷                                     ︸

Pext

(3.1.37)

with εint, M being the specific internal energy, i.e. internal energy per unit mass. With some
transformations, the local form reads

S : Ė +ρ0
(
V̇ ·VT

)
=∇ ·

((
S : Ė

)
·VT

)
+ fbody

V ·VT . (3.1.38)

3.1.3.4 Initial and Boundary Conditions

In order to solve the differential equation (3.1.31) initial and boundary conditions are re-
quired. The boundary conditions account for the external stresses and displacements on B
and the initial conditions define the stresses and displacements for the material state.

The initial conditions are given as

u(x, t0) = û0(x) (3.1.39)
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and

v(x, t0) = v̂0(x) (3.1.40)

on the Dirichlet boundary B0. Prescribed displacements û0 and an initial velocity v̂0 are
needed, since equation (3.1.31) is a second-order differential equation of the time.

The boundary conditions are given as

S ·N = T̂, (3.1.41)

on the Neumann boundary ∂SB0,

and

u = û (3.1.42)

on the Dirichlet boundary ∂uB0. It is important to note that every point of ∂B0 needs to be
assigned to either a stress or displacement boundary condition, i.e. ∂SB0∪∂uB0 = ∂B0 and
∂SB0∩∂uB0 = ∅.

3.2 Constitutive Equations for Hyperelastic Materials

The second law of thermodynamics states that heat always flows from the warmer to the
colder region of a body; friction converts mechanical energy into heat, which cannot be
converted back into mechanical energy. Based on this principle, the Clausius-Planck In-
equality is

Dint = S : Ė−ρ0Ψ̇M + Tρ0ṠM ≥ 0 (3.2.1)

with the internal dissipation Dint, the specific Helmholtz free energy ΨM which is a mea-
sure for the work per unit mass obtainable from a closed thermodynamic system at constant
temperature and volume, the absolute temperature T and the specific entropy SM. The
contraction S : Ė is the rate of internal mechanical work or stress-power per unit reference
volume. The absolute temperature multiplied by the rate of entropy ρ0ṠMT is zero for this
adiabatic process. This leads to the reversible process of

26



3.2 Constitutive Equations for Hyperelastic Materials

Dint = S : Ė−ρ0Ψ̇M = 0. (3.2.2)

In the following, this study is restricted to Green-elastic or hyperelastic materials. In this
case, the Helmholtz free energy ΨM solely depends on the current state of deformation
relative to an arbitrary material configuration. Besides this, the work needed to get to a
particular state of deformation is path independent. Consequently, the stress is derivable
from a scalar potential function, the strain energy density function (SEF) Ψv, defined as

Ψv = ρ0ΨM. (3.2.3)

For homogeneous materials, the SEFs solely depend on the Green-Lagrange stress tensor
E, i.e. Ψv = Ψv(E). With the material time derivation of Ψv being

Ψ̇v(E(X, t)) =
dΨv

dt
=
∂Ψv

∂t
+
∂Ψv

∂E
:

dE
dt

=
∂Ψv

∂E
: Ė, (3.2.4)

equation (3.2.2) can be reformulated into

S =
∂Ψv

∂E
. (3.2.5)

Other forms of this so-called constitutive equation can be found in Table 3.3.

Table 3.3: Calculating the different stress measures from a strain energy density function
(SEF).

Stress Measure Constitutive Equation

Cauchy σ = J−1F
(
∂Ψv
∂F

)T
= 2J−1F∂Ψv

∂C FT

1st Piola-Kirchhoff P = ∂Ψv
∂F = 2F∂Ψv

∂C

2nd Piola-Kirchhoff S = ∂Ψv
∂E = 2∂Ψv

∂C

Since some materials, like lung parenchyma, show a compressible material behavior, i.e.
their volume changes considerably during the deformation, it can be useful to split the
deformation locally into a volumetric and an isochoric part. To do so, the deformation
gradient F multiplicatively splits into a volume-changing and a volume-preserving part.
This leads to

F =

(
J

1
3 1

)
F̄ = J

1
3 F̄, C =

(
J

2
3 1

)
C̄ = J

2
3 C̄, (3.2.6)
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with J
1
3 1 and J

2
3 1 being associated with the volume-changing deformation. The isochoric

deformation gradient F̄ and the isochoric right Cauchy-Green strain tensor C̄, are associ-
ated with the volume-preserving deformation.

In order to solve the initial boundary value problem with the FEM, the linearized consti-
tutive equation is needed. For this reason, the forth-order elasticity tensor is introduced
as

C :=
∂S
∂E

=
∂2Ψv

∂E∂E
= 4

∂2Ψv

∂C∂C
. (3.2.7)

For more details the reader is referred to textbooks (Holzapfel, 2004; Schröder and Neff,
2003; Ogden, 1997).

There are two fiber families in the alveolar tissue, the CF and EF. However, as discussed
above, see section 2.1.3.2, the fiber orientation within the alveolar tissue can be assumed
to be isotropic. For this reason, the focus of this work is put on isotropic SEFs. In this
case, the SEF is by definition invariant with respect to rotation, i.e.

Ψv (C) = Ψv (RCR) , (3.2.8)

for any rotation tensor R.

This invariance towards rotation allows Ψv to be expressed in terms of the principle in-
variants of its argument C. In the following section, coupled and decoupled SEFs will be
presented, where the decoupled forms are split into an isochoric and a volumetric contri-
bution.

3.2.1 Coupled Strain Energy Density Functions

The coupled SEFs considered in this work, are formulated as

Ψv(C) = Ψv (I1, I2, I3) (3.2.9)

where I1, I2, and I3 are the invariants of the right Cauchy–Green strain tensor C, defined
as

I1 := trC, I2 := 1
2

[
(trC)2− tr(C2)

]
, I3 := detC. (3.2.10)

This leads to the calculation of the 2nd Piola-Kirchhoff stress tensor
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S = 2
∂Ψv (C)
∂C

= 2
(
∂Ψv

∂I1
+ I1

∂Ψv

∂I2

)
︸               ︷︷               ︸

γ1

1 + (−2)
∂Ψv

∂I2︸     ︷︷     ︸
γ2

C + 2I3
∂Ψv

∂I3︸   ︷︷   ︸
γ3

C−1 (3.2.11)

and the elasticity tensor

C = 2
∂S (C)
∂C

= 4
∂2Ψv (I1, I2, I3)

∂C∂C
= δ11⊗1 +δ2 (1⊗C + C⊗1) +δ3

(
1⊗C−1 + C−1⊗1

)
+δ4C⊗C +δ5

(
C⊗C−1 + C−1⊗C

)
+δ6C−1⊗C−1 +δ7C−1�C−1 +δ8

I+ I

2
. (3.2.12)

In this context the symbols ⊗ and � denote the tensor products given by

(G⊗G)JKLM = GJKGLM (3.2.13)

and

(G�G)JKLM =
1
2

(GJLGKM + GJMGKL) . (3.2.14)

The forth-order tensors I and I are defined as I = δIMδKL and I = δIMδKL, respectively. The
coefficients δ1−δ8 are defined as
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δ1 = 4
(
∂2Ψv

∂I1∂I1
+ 2I1

∂2Ψv

∂I1∂I2
+
∂Ψv

∂I2
+ I2

1
∂2Ψv

∂I2∂I2

)
, (3.2.15)

δ2 =−4
(
∂2Ψv

∂I1∂I2
+ I1

∂2Ψv

∂I2∂I2

)
, (3.2.16)

δ3 = 4
(
I3
∂2Ψv

∂I1∂I3
+ I1I3

∂2Ψv

∂I2∂I3

)
, (3.2.17)

δ4 = 4
∂2Ψv

∂I2∂I2
, (3.2.18)

δ5 =−4I3
∂2Ψv

∂I2∂I3
, (3.2.19)

δ6 = 4
(
I3
∂Ψv

∂I3
+ I2

3
∂2Ψv

∂I3∂I3

)
, (3.2.20)

δ7 =−4I3
∂Ψv

∂I3
, and (3.2.21)

δ8 =−4
∂Ψv

∂I2
. (3.2.22)

3.2.2 Decoupled Strain Energy Density Functions

The decoupled SEFs, which are split up into a volumetric part Ψvol and an isochoric part
Ψiso, are formulated as

Ψv(Ī1, Ī2, J) = Ψiso(Ī1, Ī2) +Ψvol(J), (3.2.23)

with
Ī1 = I1J−

2
3 and Ī2 = I2J−

4
3 , (3.2.24)

being the first and the second modified invariant of C̄. The modified third invariant Ī3 is
zero by definition since an isochoric deformation is volume preserving. The volumetric
part of the SEF Ψvol depends solely on J, i.e. the change of volume. The decoupled stress
tensor is defined as

S = Siso + Svol. (3.2.25)

The isochoric stress contribution Siso is given by
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Siso = 2
∂Ψiso

(
C̄
)

∂C
= J−2/3S̄-

1
3

[
S̄ : C̄

]
C̄−1 (3.2.26)

with the fictitious second Piola-Kirchhoff stress tensor S̄ being defined by

S̄ = 2
∂Ψiso

(
C̄
)

∂C̄
= 2

(
∂Ψiso

∂Ī1
+ Ī1

∂Ψiso

∂Ī2

)
︸                   ︷︷                   ︸

γiso, 1

1−2
∂Ψiso

∂Ī2︸    ︷︷    ︸
γiso, 2

C. (3.2.27)

The volumetric stress stress contribution Svol is given by

Svol = J
∂Ψvol

∂I3︸︷︷︸
γvol, 1

C−1. (3.2.28)

Based on equation (3.2.25), the elasticity tensor for a decoupled hyperelastic SEF is

C = Ciso +Cvol. (3.2.29)

The isochoric part Ciso depends on the isochoric stress contribution Siso and thus is defined
as

Ciso = 2
∂Siso

∂C
= P : C̄ : PT +

2
3

((
I
− 1

3
3 S

)
: C

)
P̃− 2

3

(
C−1⊗Siso + Siso ⊗C−1

)
(3.2.30)

with P =I− 1
3C−1⊗C and P̃ = C−1�C−1− 1

3C−1⊗C−1 being a forth-order projection
and a forth-order modified projection tensor, respectively, and C̄ denoting the fourth-order
fictitious elasticity tensor

C̄ = 2J−
4
3
∂S̄
∂C̄

= 4J−
4
3
∂2Ψiso

(
Ī1, Ī2

)
∂C̄∂C̄

= J−
4
3

δiso, 11⊗1 +δiso, 2
(
1⊗ C̄ + C̄⊗1

)
+δiso, 3C̄⊗ C̄ +δiso, 4

I+ I

2

 . (3.2.31)

The coefficients δiso, 1−δiso, 4 are defined as
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δ̄iso, 1 = 4
(
∂2Ψiso

∂Ī1∂Ī1
+ 2Ī1

∂2Ψiso

∂Ī1∂Ī2
+
∂Ψiso

∂Ī2
+ Ī2

1
∂2Ψiso

∂Ī2∂Ī2

)
, (3.2.32)

δ̄iso, 2 =−4
(
∂2Ψiso

∂Ī1∂Ī2
+ Ī1

∂2Ψiso

∂Ī2∂Ī2

)
, (3.2.33)

δ̄iso, 3 = 4
∂2Ψiso

∂Ī2∂Ī2
, and (3.2.34)

δ̄iso, 4 =−4
∂Ψiso

∂Ī2
. (3.2.35)

The volumetric part of the elasticity tensor can be expressed as follows

Cvol = 2
∂Svol

∂C
= J

(
∂Ψvol

∂J
+ J

∂2Ψvol

∂J∂J

)
︸                  ︷︷                  ︸

δ̄vol, 1

C−1⊗C−1−2J
∂Ψvol

∂J︸︷︷︸
δ̄vol, 2

C−1�C−1. (3.2.36)

The coefficients δvol, 1 and δvol, 2 are defined as

δ̄vol, 1 =
∂Ψvol

∂J
+ J

∂2Ψvol

∂J∂J
and (3.2.37)

δ̄vol, 2 =
∂Ψvol

∂J
. (3.2.38)

More detailed derivations can be found in Holzapfel (2004).

3.2.3 Requirements for Strain Energy Density Functions

The SEFs have to fulfill different requirements in order to produce thermodynamically
stable and physically reasonable results. The following contains a brief overview over the
most important aspects.

Strain Energy Density Functions Must be Positive For any state of deformation,
the stored energy,

Ψv(C , 1) > 0, (3.2.39)
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must be positive (Doll and Schweizerhof, 2000).

Stress Free Reference Configuration The requirement of a stress free reference con-
figuration is physically reasonable, since in hyperelastic materials only deformations in-
duce stresses. This condition can be written as

S(C = 1) = 0. (3.2.40)

Limit Cases In the limit of a completely degenerated continuum to a single point, the
strain energy needs to tend towards positive infinity and the volumetric stress to negative
infinity. Accordingly, in the limit of an infinite stretch the continuum the strain energy as
well as the volumetric stress have to tend towards positive infinity.

Principle of Material Frame Indifference - Objectivity The description of a physical
quantity associated with the motion of a body is generally dependent on the observer. In
contrast, the constitutive equation has to be independent of the particular observer, i.e.
indifferent to a change of the reference system.

Hence, rigid body movements should not change the internal quantities. An arbitrary
movement ϕ(•) should lead to the same internal state as the same movement superimposed
with a rigid body movement ψ(•), leading to ϕ+(•) = ψ(ϕ(•)). Due to the superposition,
the spatial point X gets mapped to x+ = ϕ+(X). In case of

x+ = c(t) + R(t)x, (3.2.41)

where c(t) can be interpreted as a translation and R(t) as a rotation, the deformation gradi-
ent F+ can be obtained as

F+ =
∂x+

∂x
∂x
∂X

= RF. (3.2.42)

The principle of material frame indifference requires both observers to register the same
amount of energy and the same state of stress of the deformed body, i.e.

Ψv (RF) = Ψv (F) , S (RF) = RS (F) . (3.2.43)
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With the right Cauchy-Green tensor being a priori frame objective, i.e. C+ = F+T F+ =

RT FT RF = C, the SEF introduced above fulfills the below requirement as well

Ψv (C) = Ψv
(
C+

)
. (3.2.44)

Existence of a Minimizer It has to be assured that the boundary value problem has
at least one solution. It has been been shown that, polyconvexity is the most suitable
restriction for the construction of physically reasonable SEFs, guaranteeing the existence
of at least one minimum.

The polyconvexity requires

Ψv(F) = f (F, JFT , J), (3.2.45)

i.e. a function of the 19-dimensional space, to be convex. In a more descriptive way, this
means that the transformations of line, area and volume elements, see equations (3.1.6),
(3.1.8) and (3.1.7), need to be unique. An additional advantage is that polyconvex functions
can be constructed by summing up polyconvex summands. More details on polyconvexity
can be found in Ball (1977); Schröder (2004); Balzani (2006).

For more details on hyperelastic materials, the reader is referred to Ogden (1997);
Holzapfel (2004).
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This chapter provides an overview of previous work done in this field and what is still
missing in order to achieve the aims of this study (see chapter 5). The first section gives
a literature overview over experimental characterization of the lung. The second section
gives a literature overview of lung modelling.

4.1 Experimental Characterization of the Lung Tissue

This section gives an literature overview of the experimental characterization of lung tis-
sue, from the organ level down to the cell level. The focus of this section is on the ex-
perimental determination of elastic stress-strain curves, since this study is concerned with
developing a hyperelastic material model for lung parenchyma. Experimental characteri-
zation methods, that are less targeted in this study are the p-V curves of the whole lung and
cell culture experiments, they are described only superficially. A short definition of associ-
ated common constants of physiology and material science can be found in Appendix A.2
and A.3.

4.1.1 Pressure-Volume (p-V) Curves

In the literature, many approaches to characterize respiratory mechanics at the organ level
with p-V curves are reported. In this study, only selected examples are presented to give a
general impression of this type of experiments.

Hildebrandt (1969, 1970) investigated p-V curves of cat lungs. To do this, he placed the
examined lungs in a fluid filled plethysmograph, in which the lung volume was cyclically
changed, while the amount of gas within the lung was fixed. In total seven isolated cat
lungs were used for this study. He found

1. stress relaxation and an almost symmetrical stress recovery to occur respectively,
after volume increase and decrease;
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2. dynamic elastance (Appendix A.3.2), to increase linearly with the logarithm of cyclic
frequency (0.1 increase in elastance a 10-fold increase in frequency); and

3. hysteresis loop area, i.e. the area between the loading and unloading p-V curve, to
vary with the square of the tidal volume but to be independent of the cyclic frequency.

Stamenovic and Yager (1988) studied the mechanical properties of the parenchymal tis-
sue with and without surface tension, in air and saline filled rabbit lungs, respectively. In
the first step, the lungs were inflated to transpulmonary pressure of 30mmH2O. The as-
sociated volume was defined as the volume at TLC. The pressure was then successively
reduced down to zero. At every step, small p-V loops were performed to determine the
local bulk moduli. They found little difference in the shape of the curves describing the
elastic behavior of air and saline filled lungs, suggesting that the mechanism of resisting
deformation in both cases is similar. However, the air-filled lungs showed stiffer behavior,
which they explained with the surface tension at the air-liquid interface.

Bates et al. (1989) determined the resistance (Appendix A.3.3) and elastance of the res-
piratory system using data obtained from healthy anesthetized dogs during mechanical
ventilation at different frequencies and tidal volumes. They found resistance and elastance
to decrease with increasing frequency. The variations of resistance and elastance with fre-
quency are similar to the variations determined from regular ventilation data. There were,
however, some systematic differences between the actual values of resistance and elastance
obtained by the two methods, which may reflect certain non-linear characteristics. They
also found a slight decrease for both resistance and elastance with increasing tidal volume
at all frequencies.

Suki et al. (1989) measured the lung impedance in six healthy humans for frequencies
between 0.01−0.1Hz. They superimposed small amplitude signals in order to force oscil-
lations on spontaneous breathing. They did not find a difference between applying a force
or a pressure. They found the compliance to decrease from 0.97kPa/l via 0.27kPa/l to
0.23kPa/l at 0.01Hz, 0.03Hz, and 0.1Hz, respectively. It is remarkable that at very small
frequencies, the change in compliance is much larger than at higher frequencies, which are
closer to actual breathing frequencies.

Summing up, the p-V curves are an adequate way to understand global lung mechanics,
which is especially important for adjusting the ventilator towards the needs of a venti-
lated patient. However, the focus of this work is on a more local behavior of the lung
parenchyma and even further down to the individual alveolar walls. For this reason p-V
curves of the whole lung, including airways etc., are too coarse for this purpose.
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4.1.2 Tensile Tests on Lung Parenchyma Specimens

To investigate the local material behavior of lung parenchyma, tests on isolated samples
are required. In the literature, a wide range of experiments have been presented such as
uni-, bi-, or triaxial tensile tests in a saline bath or in air. Consequently, this section gives
an overview of the most important tensile tests on parenchymal tissue specimens.

4.1.2.1 Uniaxial Tensile Tests

Fukaya et al. (1968) performed uniaxial tensile tests on cat lung specimens with the di-
mensions 30×30×200µm, see Figure 4.1. Contrary to the title ”Mechanical properties of
alveolar walls”, they investigated the material behavior of the parenchymal tissue and not
of the individual alveolar wall. The tests were performed in a saline bath, in order to obtain
the osmolarity of the cells, at room temperature. Their findings are briefly summarized in
the following.

• The length-tension relationship did not change within the first 36h after dissection
of the lungs.

• A strong hysteresis occurred in the length-tension relationship.

– The hysteresis depends on final force and length-tension history, see Figure
4.2(A) (Remark: The hysteresis measured is not due to the air-liquid interface,
because the tests were performed in a saline bath).

– However, the hysteresis is not dependent on cyclic frequencies between
6cycles/min and 0.2cycles/min. The independence of the cyclic frequency has
been previously reported by Hildebrandt (1966).

• The length increase of the specimens is limited to an extension of 100−130% over
the initial length; stretch beyond this length resulted in tissue damage.

• Stress relaxation and recovery, with the fast component of stress relaxation, is com-
plete within 60s after the initial deformation.

• The hysteresis, in a quasi-static experiment, is reduced but does not disappear, see
Figure 4.2(B). This shows that the hysteresis is not solely dependent on the fast
component of stress relaxation.

• A 5min resting period is necessary to reset the tissue back to its initial state prior to
testing.
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Figure 4.1: Comparison of specimens utilized in uniaxial tensile tests. First row from left
to right: Rausch et al. (2011b), Fukaya et al. (1968), Sugihara et al. (1971),
Navajas et al. (1995), Karlinsky et al. (1985), and Jamal et al. (2001). Second
row from left to right: Bates et al. (1994), Yuan et al. (1997), Mijailovich
et al. (1994), Cavalcante et al. (2005), and Faffe et al. (2001). The dashed
lines indicate that the specimen dimensions were not clearly defined in the
corresponding paper. The units are given in mm.
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(A) (B)

Figure 4.2: (A) Length-tension characteristics of cat lungs for different maximal forces.
(B) Determination of the time dependent portion of the hysteresis loop, by
letting stress relaxation and stress recovery occur. Figures were taken from
Fukaya et al. (1968)

Sugihara et al. (1971)performed uniaxial tension tests on human lung parenchyma. The
focus of their study was to characterize the change of material properties with age, sex
and expiratory flow. In total, they tested 170 specimens from 25 individuals (14 male, 11
female), between 18 and 88 years old. They used the same testing apparatus as Fukaya
et al. (1968). Their findings are briefly summarized in the following.

• Due to the history dependence of the length-tension relationship, preconditioning
was necessary. To do so, they stretched the tissue with 3g force (=̂32.7·106 Pa) to
provide a small extension. After 10 preconditioning cycles the length-tension curves
did not change anymore.

• Forces of 15g
(
=̂163.5·106 Pa

)
caused irreversible damage to the tissue.

• There is no difference between specimens gained from autopsy or surgery.

• The maximum length increase, for a given force, of the specimens was between
133% and 260%, with a mean of 175%.

• The maximum extensibility decreased with age.

Sugihara et al. (1971) propose that the maximum extensibility, for an applied force, is an
important tissue property. They assumed the limit for the tissue elongation could arise
from two possible mechanisms
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1. the tissue is not as extensible anymore, i.e. the tissue component responsible for the
stop of the extension has shortened or

2. the initial length of the tissue has increased, whereas the maximal extension does not
change.

Due to the fact that the diameter and the volume of the alveoli increase with age, the second
option seems more reasonable. A shortcoming of this study is that they assumed the tissue
to be incompressible, which is not the case for lung parenchyma.

Figure 4.3: Photograph of lung strip, with the dimension 1× 1× 5mm, used for uniaxial
tensile tests by Karlinsky et al. (1985).

Karlinsky et al. (1985) studied the thermoelastic properties of uniaxially deformed ham-
ster lung strips. The idea being that, since macromolecules in the tissue, i.e. CF and EF,
have different thermoelastic moduli, variation in temperature would affect their respective
contributions to the tissue elastic properties. To investigate this question, they performed
the experiments on hamster lung strips, see Figure 4.3, with the dimension 1×1×5mm,
see Figure 4.1. They assumed that lung tissue is a homogeneous, isotropic and nearly
incompressible material. They found that

• freezing or refrigerating increases the stiffness of the lung strips,

• over the temperature range 23−42◦C, the material behavior does not change, and

• above 50◦C, not only the CF melt and denatured but also the mechanical properties
of the EF change with respect to lower temperatures.

The results supported their hypothesis that high non-physiological temperatures alter the
distribution of water in lung connective tissue, thus, influencing the micro-mechanical be-
havior of the fibers alter the macro-mechanical behavior of the lung strips. Their findings
demonstrated that performing experiments at room temperature instead of body tempera-
ture does not affect the mechanical behavior, while freezing changes the material properties
of the tissue.
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Bates et al. (1994) investigated time dependent effects in lung tissue. They cut their spec-
imens, with the dimension of 30× ∼ 1.4× ∼ 1.4mm, from saline filled dog lungs. Their
main finding was that some aspects of organ behavior arise from the connectivity between
the organ components, i.e. it is not enough to only understand the behavior of the individ-
ual components. There is not much information about the elongation of their specimens
after preconditioning, the lateral contraction nor how many samples were tested.

Mijailovich et al. (1994) investigated whether the material behavior of rabbit lung
parenchyma, especially the viscoelastic properties, could be simplified by a previously
described model of two fibers in contact (Mijailovich et al., 1993). In their model, the
load was transferred from one fiber to the next by friction acting at slipping interfaces. To
verify the model assumptions, they performed uniaxial tensile tests on rabbit lung strips,
compared their analytical results with experimentally determined data and found

• E to increase linearly with the logarithm of frequency,

• E to decrease with strain amplitude,

• the hysteresis to decrease moderately with increasing frequency, and

• a disparate mechanical response after the tissue was exposed to a hyper tonic solu-
tion.

All the above effects are consistent with the predicted effects of their model, for example if
the tissue is swelling in a hyper tonic solution, the contact between the two fibers changes.
All experiments were performed in a temperature controlled tissue bath, i.e. there are no
surface tension effects.

The specimens were cut, in the degassed state, to a length-width-height ratio of 5:1:1. With
the length of the specimen being between 20− 25mm, the cross-sectional area Acut was
between 0.16−0.25cm2, see Figure 4.1 dashed line. After the cutting process, the cross-
sectional area A was recalculated, based on the tissue density ρ = 1.06g/cm3, the mass M

of the tissue, and the initial length L, i.e. A = M
ρ0L = 0.19±0.02cm2. Unfortunately, there

is no information about how the cutting and weighing of the specimen were performed
and about, how L and ρ0 were determined. Based on the value of ρ0, it can be assumed to
be the density of the alveolar walls rather than the parenchymal tissue, i.e. the calculated
stresses referrers solely to the tissue fraction of the strip and not to the homogenized lung
parenchyma. However, comparing the force-strain curve with other results reported in
literature, the tissue appears to be much softer, see Figure 4.4. This might be caused by
strains above 100%, which can damage the tissue (Fukaya et al., 1968).

41



4 State of the Art

Figure 4.4: Force-elongation loops of rabbit lung parenchymal strip. Figure taken from
Mijailovich et al. (1994).

Navajas et al. (1995) investigated the dynamic viscoelasticity of dog lung tissue, i.e. the
time and frequency response of isolated parenchymal strips. They studied five strips of
five different dogs. The lungs were degassed, filled with a Krebs-Ringer solution, and
specimen of the dimension ∼ 30× 3× 3mm were cut, yielding a cross-sectional area of
Acut=9mm2, see Figure 4.1. However, due to the softness of the tissue, these dimensions
were not very accurate. For this reason, they calculated the cross-sectional area similar
to Mijailovich et al. (1994). They get a mean ± sd of the cross-sectional area of Acut of
21.66±1.37mm2, with sd being a standard derivation, see Figure 4.1 dashed line. Similar
to Mijailovich et al. (1994), they also did not give any information on how the weight or
initial length of the tissue was determined. Furthermore, in comparison to Mijailovich
et al. (1994), where the ratio between the cut and the calculated cross-sectional area was
between 0.84 and 1.31, the ratio of Navajas et al. (1995) was only 0.42.

Navajas et al. (1995) found the quasi-static elastic behavior of lung parenchyma to be
strongly non-linear and well described by an exponential curve, see Figure 4.5. Their
results concerning viscoelasticity are not discussed in detail here, because viscoelasticity is
not part of this work. Similar to Mijailovich et al. (1994), they also strained the tissue over
100%, which might, according to Fukaya et al. (1968), damage the tissue. Furthermore,
neither reported the elongation of the tissue strip after the preconditioning. The viscoelastic
effects are not further discussed since they are not part of the presented work.

Maksym et al. (1993) and Maksym and Bates (1997) performed uniaxial tensile tests in
order to calibrate their tissue model of section 4.2.1. They took specimens from five dif-
ferent degassed dog lungs, with the dimensions 1.5×1.5×28mm. The experiments were
performed in a tissue bath, i.e. without surface tension, after preconditioning. The deter-
mined stress-strain curves can be found in Figure 4.6. There is no information about the
cutting technique or the elongation of the tissue after a preconditioning phase.
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Figure 4.5: Stress-stretch curve for dog lung parenchyma during preconditioning. The strip
was cyclically stretched with a constant rate of 0.021/s from its resting length
up to a maximum stress of 5 ·103 Pa. Subsequently, the cycling was stopped at
a stress ratio of 1.683 where the tissue had a nominal stress of 1kPa and the
deformation remained constant for 6min to stabilize the tissue. Figure taken
from Navajas et al. (1995).

Yuan et al. (1997) investigated the contributions of cellular elements and the fiber network
to the macroscopic mechanical properties of parenchymal tissue. They measured the dy-
namic material properties in viable and nonviable tissue. They also assessed the influence
of metabolically active cells on tissue mechanics under the induction of MCh, a parasym-
pathomimetic drug stimulating smooth muscle activity. In total, they investigated eight
strips from eight guinea pigs with dimensions of 4.5×4.5×10mm, see Figure 4.1.

The tests were performed in an organ bath and the specimens were glued to small metal
clips. They found the tissue mechanics at the macroscopic level to be mainly influenced
by the connective tissue fiber network, whereas interstitial cells played only a minor roll.

Three years later, another paper was published by Yuan et al. (2000), where the influence
of CF and EF was investigated in more detail. To do so, they treated similar tissue strips
with the enzymes collagenase and elastase. These two enzymes destroy the associated
fiber family as will be discussed in section 4.1.2.4. Yuan et al. (2000) found that

• the fraction of intact fibers decreases after enzyme treatment and

• the decrease in intact fibers leads to a decrease in stiffness, see Figure 4.7.

This led them to the assumption that the two fiber families dominate the mechanical behav-
ior of lung parenchyma. Results concerning viscoelastic material properties are not further
discussed in this study.
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Figure 4.6: Five individual stress-strain curves of lung parenchyma strips, obtained from
five different dogs. The curves were recorded a frequency of 0.005L1/s. The
solid lines indicate the experimentally determined curve, while the dashed line
is a curve fit. Figure taken from Maksym and Bates (1997).

Kononov et al. (2001) investigated collagen failure and the changes in mechanical prop-
erties in the development of elastase-induced emphysema. They measured the stress-
strain properties of a rat lung tissue section while simultaneously visualizing the collagen-
elastin network. They filled the lungs with 55◦C warm agarose and cut specimens of
4×4×10mm. Preliminary studies showed that the agarose did not influence the mechan-
ical properties. They found that, in the elastase treated tissue

• significant remodeling leads to thickened CF and EF, which undergo larger distortion
than in normal tissue;

• the threshold for mechanical failure of collagen is reduced.

Their results indicate that mechanical forces during breathing are capable of causing failure
in the remodelled tissue, leading to a progression of the emphysema.

Jamal et al. (2001) examined whether GAGs affect the tissue viscoelasticity. Rat
parenchyma strips were exposed to a specific degenerative enzyme and it was evaluated
if the material behavior changes. They performed uniaxial tensile tests in an organ bath
on parenchyma strips with the dimensions of 1.5× 1.5× 12mm, see Figure 4.1. They
calculated the initial cross-sectional area of their specimen similar to the method of Mi-
jailovich et al. (1994). The strips were preconditioned but there was no adjustment of
the resting length prior to testing. The maximal strain amplitude was 5%. They found
the degeneration to have an impact on the viscoelastic material behavior but compared to
the influence of elastance (dynamic and static) it was found to be neglectible. The quasi-
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Figure 4.7: Quasi-static stress-strain curves of guinea pig tissue strips before and after en-
zymatic digestion. One of the strips was treated with collagenase and the other
one with elastase. Figure taken from Yuan et al. (2000).

static-stress strain curves are shown in Figure 4.8. Unfortunately, they did not report the
change in cross-sectional area in comparison with the dimensions of the cut area or how
they determined the wet weight.

Figure 4.8: Quasi-static stress-strain curve. Figure taken from Jamal et al. (2001)

Cavalcante et al. (2005) studied the influence of proteoglycans and found that the mechan-
ical behavior of the parenchymal tissue is not only dependent on the CF, EF, and their
interaction but also on their interaction with the proteoglycans. Contrary to CF and EF,
the proteoglycans can resist compression and shear. They assume that the elasticity of the
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lung tissue primarily arises from:

1. the topology of the collagen-elastin network, and

2. the mechanical interaction of proteoglycans and fibers.

To investigate these hypothesis, they measured a quasi-static, uniaxial stress-strain curve
in a hypotonic, normal and hypertonic solution. They degassed rat lungs and filled them
with 55◦C warm agarose and cut tissue strips of 5× 5× ∼ 0.4mm, see Figure 4.1. The
agarose was removed and one out of three samples per lung was used for determining a
stress-strain curve, whereas the other two were used for imaging. The samples were glued
to the force transducer and the experiments were performed within a saline solution. They
stretched the samples up to an extension of 30%. They found rat tissue to be sensitive to the
osmolarity, however, this sensitivity decreased with digestion of the proteoglycans. They
determine rather linear stress-strain curves for strains of up to 30%. Since the measured
stresses are much lower than others reported in literature, their results are excluded from
further comparisons.

Faffe et al. (2001, 2006) investigated the influence of the extracellular matrix composition
on the viscoelastic material properties of mouse parenchyma. In their first study they ex-
amined 23 male mice. After the lungs were rinsed in a modified Krebs-Henseleit solution,
they cut specimens with the dimensions of 3×3×10mm, see Figure 4.1. The initial area A

was determined from the volume and the initial length L0. However, how these quantities
were measured was not specified. They remeasured the resting length L of the specimen
after the preconditioning protocol was completed. After the experiments, a morphological
study was performed on the tested specimens. They found the elastance to have a positive
dependence on frequency. In the second paper, they used slightly smaller mice specimens
with the dimensions 2×2×10mm, see Figure 4.1. They also found a positive frequency
dependence as well as a correlation between the elastance and the content of both the CF
and EF. However, they stated that not only the absolute amount of fibers but also their
organization is responsible for the tissue stiffness.

4.1.2.2 Biaxial Tensile Tests

Vawter et al. (1978) investigated the difference between uniaxial and biaxial loading. They
cut pieces of frozen, saline filled dog lungs to 50× 50× 5mm specimens. These speci-
mens were stretched in-plane. The in-plane deformations and the thickness change were
measured with an optical electromechanical system. All tests were performed in a tissue
bath. Their main findings are listed bellow.
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• For small strains, the tissue is stiffer for biaxial than for uniaxial tension.

• For larger strains, beyond a cross-over point, this behavior reverted and the tissue
becomes stiffer for uniaxial loading.

Figure 4.9: Schematic drawing of the biaxial tensile tests performed by Vawter et al.
(1978). The specimens are loaded with a constant stress in the one direction
(black arrows), while the stress in the perpendicular direction is varied cycli-
cally (red arrows).

normal
shifted
shifted and stiffer

Figure 4.10: Comparison of stress-strain curves. The black curve is generally generated,
showing a similar behavior than the experimental results by Vawter et al.
(1978). The pink curve shows the same behavior but is shifted to the right.
This happens if two different initial lengths L are utilized. The red curve has
the same shift as the pink curve but with stiffer behavior, which arises from
the different loading state. The black and the red curves show similar cross-
over behavior than that which Vawter et al. (1978) found in their experiments.

These specimens were stretched in-plane. The in-plane deformations and the thickness
change were measured with an optical electromechanical system. All tests were performed
in a tissue bath.

Having a closer look at their testing protocol, this finding becomes less surprising. For their
biaxial testing, they pre-stressed the specimen in one direction and cyclically loaded in the
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perpendicular direction, see Figure 4.9. They compared the extension ratio λ = l
L in the

direction of the varied load. However, when the pre-stretched state, i.e. the second drawing
in Figure 4.9, is taken for determining the initial length L, the stress-strain curve shifts to
the right, see Figure 4.10. Furthermore, not only the loading but also the strain state
is three-dimensional, i.e. a strain measure including only one direction is not sufficient.
For this reason, the material behavior appears stiffer for biaxial loading than for uniaxial
loading. An additional problem could be the freezing of the tissue, since according to
(Karlinsky et al., 1985), this changes the material properties of the tissue.

This work was followed up by Zeng et al. (1987), who tested postmortem human lungs.
They also performed biaxial tests, where uniaxial modes were included as a special case.
The lungs were filled with saline, frozen, and cut into specimens with the dimensions of
30× 30× 4mm. The load was applied with 8 silk threads, which could spread out and
allowed large deformations. The forces were measured with force transducers and the de-
formation was tracked optically in a target area at the center of the specimen, see Vawter
et al. (1978). A specified load was applied first in one direction and then in perpendic-
ular direction The specimen was stretched sinusoidally between fixed limits at a given
frequency of 0.04Hz. They found

• a strongly non-linear stress-strain relationship with hysteresis,

• the strain-rate effect to be small between three tested frequencies, see Figure 4.11
(left),

• the human lung to be stiffer than dog lungs, by comparing their data to those obtained
by Vawter et al. (1978), and

• regional differences in the stress-strain curves, by comparing specimens obtained
from the five different lobes, see Figure 4.11 (right).

Similar to Vawter et al. (1978), there was the problem of the tissue being frozen before
testing.

Yager et al. (1992) stretched liquid-filled human and dog lungs biaxially. They investigated
the effects of macroscopic biaxial stretch on local deformation. The specimens were filled
with saline, frozen, and cut into specimens with the dimensions of 50× 50× 5mm. The
dimensions are quite similar to the ones of Vawter et al. (1978). In total, they investigated
182 duct rings, 151 from humans and 31 from dog specimens. They measured the relative
deformation of ducts versus alveoli in a plane section of the lung under biaxial loading
conditions. The deformation of the ducts was measured and compared to the macroscopic
deformation. To the author’s knowledge this is the only paper measuring ductal deforma-
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Figure 4.11: Left, stress-strain curves of human lung specimens under biaxial loading. The
load in one direction is fixed, whereas the load in the perpendicular direction
(y) is applied sinusoidally. Although, the loading changed frequency, the tis-
sue shows almost no frequency dependence. Right, comparison of the stress-
strain curves for the different lobes. Both Figures were taken from Zeng et al.
(1987).

tion. They discussed the point that biaxial testing without the influence of surface tension,
does not represent the actual loading state in the lung. Nevertheless, they measured a re-
vised notion of the interaction between the ducts and the surrounding alveoli, as well as
their mechanical role in the saline filled lung. They found

• all septal walls to be stretched, despite the absence of surface-tension and

• the local deformation to be significantly larger than the global deformation.

They concluded that the fiber reinforcement in the alveolar mouths could compensate for
the missing structural stability due to the absent alveolar wall, which would lead to a
uniform deformation state all over the lung. Unfortunately, no stress-strain curves were
shown in this work but they can be expected to be similar to the ones presented earlier by
Vawter et al. (1978) and Zeng et al. (1987).

Debes and Fung (1992) investigated the influence of temperature on the mechanical prop-
erties of dog lung parenchyma. Preparing the specimens, the lungs were degassed, frozen,
and cut into specimens to the dimension of 50×50×5mm. After the specimen preparation
the exact specimen dimensions were measured to be 42± 0.4× 42± 0.4× 3.6± 0.8mm.
Repeated freezing and thawing caused a reduction of 20−50% of the compliance of p-V
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curves. Debes and Fung (1992) used the same testing device as Yager et al. (1992). They
were especially interested in the mechanics of CF and EF, for this reason they eliminated
the surface tension prior to testing. They performed biaxial tensile tests, where they varied
the strains between 0−30% and the temperature between 10−40◦C. They found

• the stress-strain relationship to be linear,

• the mechanical properties of the lung changed slowly and linearly with temperature,
and

• the elastic modulus increased by 1.6% during cooling from body to room tempera-
ture.

These results showed that testing at room temperature does not significantly influence the
outcome of the experiments.

Gao et al. (2006) performed their experiments on postmortem human specimens. In total,
they had 17 specimens of seven cadavers. The specimens were filled with saline, frozen,
and cut to specimens with the dimensions of 50× 50× 4mm. The dimensions are quite
similar to the ones of Vawter et al. (1978) and Yager et al. (1992). The strain was measured
with a rectangular mark of four 300-µm-diameter steel wires at the center of the specimen,
see Figure 4.12. All experiments were performed in a saline bath.

Figure 4.12: The left picture shows the set up of the biaxial testing of Gao et al. (2006).
The right picture shows a top view of the central region of the tested specimen
utilized to calculate local strains. Figure taken from Gao et al. (2006).

They performed two types of experiments, one with equi-biaxial loading and one similar
to the experiments of Vawter et al. (1978), with one direction being constantly loaded and
the perpendicular direction being cyclically loaded. One concern about the experimental
results is the long post-mortem time of the cadavers, which is 3.0 ± 1.1month. The tissue
might have been degenerated and changed the mechanical properties during this time.
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4.1.2.3 Triaxial Tensile Tests

Hoppin et al. (1975) performed triaxial tensile tests on dog lung specimens. The tissue
was frozen and cut in cubes of 10×10×10mm. In total, they tested three specimens. The
force was induced by placing 16 small fishhooks evenly into each of the six surfaces, see
Figure 4.13.

Figure 4.13: Photograph of a specimen under triaxial loading. Figure taken from Hoppin
et al. (1975).

They found:

• a greater hysteresis in air-filled than in saline filled specimens,

• moderate differences in extensibility during equi-triaxial loading, i.e. loading the
specimen with the same force in all three directions but they could not determine a
specific preferred direction, and

• a greater tissue compliance and less hysteresis during asymmetric loading, in com-
parison with symmetric loading.

The experiments showed a slightly anisotropic behavior. However, the direction of the
anisotropy was not consistent. In the discussion, they stated two possible explanations for
this anisotropy. First, it is small and real but not systematic, and second, the anisotropy
could be due to variations in the preparation of the tissue specimens, placing of the hooks,
mechanical linkage, or other effects. Reasons for isotropy could be the homogeneous dis-
tribution of alveoli under the microscope and the observation that the excised lung deflates
symmetrically. This lead them to the assumption that at a macro level, parenchyma may
well be isotropic to the extent that the respiratory units are randomly orientated. Problems
are the inaccuracy in cutting, placing of the fishhooks, the small number of specimens, and
the freezing of the tissue.
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Later, the same protocol was used by Tai and Lee (1981) for additional investigation con-
cerning anisotropy, age dependence, and homogeneity of dog lung parenchyma. For the
anisotropy they found that:

• it is more noticeable in air than in saline filled specimens and

• it decreases with age.

However, the only significant anisotropy was found in young dogs tested in air and they
stated that this anisotropy is not significant enough to justify additional measurements.
For age dependence, they found the maximal extension ratio to increase with age. These
results are in agreement with the study of Sugihara and Martin (1975) on human lungs.
For homogeneity they tested different specimens of different positions within the lungs
but, they did not find significant changes between the different locations. Additionally,
they investigated the influence of gravity by changing the orientation of the specimen in
the machine but they did not find a significant influence.

4.1.2.4 Enzyme Treatment of Lung Parenchymal Tissue

Using an electron microscopy, Karlinsky et al. (1976) observed disruption of CF and EF
after both were, respectively treated with either collagenase or elastase. They also found
collagenase not to be active against EF and the other way round. Based on their results, the
degeneration of the two fiber families is appropriate to study their mechanical contribution.

As mentioned above, Yuan et al. (2000) performed uniaxial tensile tests on guinea pig lung
parenchyma. They investigated the origin of tissue elastic and hyperelastic properties.
To achieve this, they investigated the linear and non-linear mechanical contributions of the
main load-bearing constituents of the lung parenchyma, i.e. CF, EF, and their fiber network.
To determine the contribution of the individual constituents they treated the parenchymal
tissue with collagenase and elastase, which respectively destroyed the CF and EF. For the
enzymatic treatment they used collagenase (1mg Sigma Chemical) or pancreatic elastase
(5µg Sigma Chemical). During the digestion, the specimens were placed in a chamber
filled with phosphate buffered saline (37◦C, pH7.4) to which the respective enzyme so-
lution was added. The incubation times were 30min and 60min for the collagenase and
elastase, respectively. One of their main findings was that both CF and EF have a strong
influence on the slope of the entire stress-strain curve, see Figure 4.7. This is in contradic-
tion with the observations of Karlinsky et al. (1976), who found the compliance of elastase
treated lungs is only reduced at low to medium lung volumes, whereas the compliance of
collagenase treated lungs decreased at high lung volumes. Additionally, the stiffness of
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the intact tissue strip is lower than of the individual fiber families, which is most likely a
network effect.

Furthermore, the above discussed studies by Kononov et al. (2001); Jamal et al. (2001);
Cavalcante et al. (2005); Faffe et al. (2001, 2006) also investigate enzyme treated speci-
mens, see section 4.1.2.1.

4.1.3 Determining Deformations of the Alveolar Wall

Brewer et al. (2003) investigated the influence of in vivo elastance treatment on micro-
scopic and macroscopic deformation. They performed uniaxial tensile tests on immunoflu-
orescently labeled tissue strips. Utilizing a fluorescent microscope, they were able to fol-
low the microscopic length change and angular orientation, see Figure 4.14. Additionally,
the macroscopic strain was measured and a network simulation, based on the network
model introduced by Mishima et al. (1999) (section 4.2.1), was performed.

Figure 4.14: An example of the measurements of microstrain and change in angle of indi-
vidual alveolar wall segments. At 0% strain (A), the alveolar wall segments
are traced and their lengths L and angles with respect to the direction of strain
α0 are measured. At 30% strain (B), the new lengths l and angles α are
measured. Microstrain is defined for each segment as the change in length
divided by the length at 0% strain, and change in angle is the current angle
minus the angle at 0% strain. Bar equals 100µm. Figure taken from Brewer
et al. (2003).

They found considerable heterogeneity within the micro strains and the change in angle of
the alveolar walls, see Figure 4.14, which they interpreted based on their network model.
However, due to the imaging technique, the authors were only able to investigate two-
dimensional images of a three-dimensional deformation state.
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A similar method was used by Cavalcante et al. (2005). They investigated the influence
of the tissue constituents in the alveolar wall. Among others, they compared the local
extension of the alveolar wall with the global deformation of the strip.

DiRocco et al. (2006) investigated the dynamics of rat alveoli in vivo. They utilized
videomicroscopy to image the alveoli located directly beneath the pleura. The change
in area between inspiration and expiration of manually outlined alveoli was calculated for
healthy and diseased lungs. The imaging technique is again two-dimensional and addi-
tional only subpleural alveoli can be investigated, which are pathologically not as impor-
tant during ARDS.

Perlman and Bhattacharya (2007) utilized real time confocal microscopy to determine the
micro mechanics of alveolar perimeter distension in perfused rat lungs. They were able
to image a 2-µm-thick optical section 20µm under the pleura. They identified the alve-
oli to be polygons with five to eight corners, which is in contrast to the abovementioned
authors who claimed that the alveoli are hexagons. The average length of these segments
was compared for normal and hyper inflation. They found the segment distension to be
heterogeneous within the single alveolus. Two shortcomings of this technique are that the
alveolar extension is measured only in two dimensions and due to the imaging technique,
only alveoli located close to the pleura can be included.

4.1.4 Cell Experiments (Mechanotransduction)

As mentioned above, mechanical stimulation of cells, for example during mechanical ven-
tilation, can cause biochemical and biomolecular alterations. This mechanism is called
mechanotransduction. The lung is a dynamic organ being exposed to varying mechanical
forces throughout life. However, the magnitude of mechanical deformation observed dur-
ing injurious mechanical ventilation are unlikely to occur during natural breathing. For
this reason, the inflammation is probably not due to evolutionarily developed processes,
rather is an unwanted reaction. For more details see Dos Santos and Slutsky (2006).

To get a better understanding of the kind of stretching causing inflammation, in vitro ex-
periments on cells were performed. In this section, selected studies are briefly reviewed to
present the variety of outcomes.

Vlahakis et al. (1999) found cyclic cell stretch to cause an inflammatory response in hu-
man alveolar epithelium in the absence of structural cell damage stimulation. In their ex-
periments, they cultured alveolar epithelial cells on a deformable silicoelastic membrane.
When stretched by 30% for up to 48h, the cells released 49 ± 34% (P < 0.001) more
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IL-8, a major mediator of the inflammatory response, than static controls. This led to the
conclusion that deformation itself can trigger inflammatory signaling.

Ning and Wang (2007) investigated the influence of the pathological state of human alve-
olar epithelium on cell response to different mechanical stretches. In contrast to Vlahakis
et al. (1999), they found IL-8 release already after 5% strain.

Copland and Post (2007) performed cyclic continuous radial elongations, of 5, 10, and
17% on fetal lung epithelial cells. These stretches were applied with a frequency of
30cycles/min. Control cells were grown on Bioflex collagen I plates, treated in the same
manner as stretched cells but were not subjected to stretch. They compared the appearance
of diverse signaling mechanisms of the stretched and the control group.

Summing up, there is a disagreement in the literature: the strain magnitudes, which cause
an inflammatory reaction, vary between 5 and 30% during cyclic loading.

4.2 Lung modeling

A major problem is that there is no possibility to measure local deformations in vivo. For
this reason, a connection between the global deformation of a tissue strip or the whole or-
gan and the strains occurring in individual cells lining the alveolar walls is needed. How-
ever, due to the complex alveolar geometry, the determination of this relationship is not
straightforward.

There are several different approaches for modeling the individual alveolar wall and lung
parenchymal tissue. Due to the large number of modeling approaches, only some selected
examples will be introduced in this section. In the following, two different approaches will
be distinguished: first, network models and second, continuum mechanical models.

4.2.1 Network Models of Lung Parenchyma

Network models assume that the resistance to deformation is provided solely by the sup-
porting fiber network (CF and EF). Corresponding models approximate alveolar tissue by
an arrangement of discrete elements representing the connective tissue fibers without con-
sidering the effect of the surrounding GS. In this section, three exemplarily network models
are introduced.

Wilson and Bachofen (1982) developed a two-dimensional model for the mechanical struc-
ture of alveolar ducts. Their model consists of two networks: the first one is solely depen-
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dent on changes of the lung volume; the second one is composed of line-elements, forming
the rims of the alveolar openings, which are extended by the outward force of surface ten-
sion. The alveolar walls themselves are neglected as mechanical components, although
they are the place, where for surface-tension on the air-liquid interface occures. Their
model mimics the relations between surface area, recoil pressure, lung volume, and sur-
face tension. It shows consistent results with published data of lung volumes below 80%
TLC. Furthermore, the model shows qualitative agreement with the p-V curves presented
by Budiansky and Kimmel (1987).

Maksym and Bates (1997) presented an one-dimensional material model for lung tissue in-
cluding the load-bearing constituents, CF and EF. The fiber pair is modeled as a spring for
the EF and a non-linear string element, extending to a limited length for the CF. Multiple
fiber pairs can be used in series to create analytical and numerical models. The calibration
of the model was performed on stress-strain curves of dog lungs and can also be applied to
p-V curves of human lungs.

Mishima et al. (1999) developed a two-dimensional elastic spring network model repre-
senting a slice of lung tissue. The model consisted of a 500× 500 grid of nodes connected
in a square grid with prestressed springs, capable of stress relaxation or adaption. The
border nodes of the grid were fixed and the internal nodes were free to move. Areas of
low tissue density in a Computed tomography (CT) image, were mimicked by randomly
removed nodes from the grid.

Cavalcante et al. (2005) developed a two-dimensional network model of non-linear springs
connected with pin joints, see Figure 4.15. This model is not only able to reproduce ex-
perimentally determined stress-strain curves but also to predict microscopic distortion of
alveolar constituents, CF and EF. Based on microscopic images, the springs are arranged
as hexagons. Each spring represents the combined material behavior of the CF and EF
with a second-order force-length relationship. The nodes at the top and bottom of the
network are fixed. Due to the hexagonal shape, the network itself is unstable. For this
reason, the springs were constrained against rotation. This model shows good agreement
with experimentally determined stress-strain curves from the same paper.

4.2.2 Continuum Mechanical Models

The continuum mechanical approach models a body as a continuum mass, rather than re-
solving its micro-structure. For the alveolar tissue, there are several possibilities: first, the
individual alveolar wall is modeled as a continuum, which is numerically very expensive
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Figure 4.15: Elastic network model at 30% strain in the vertical direction. (A) A stiff
network. (B) A soft network. Color is proportional to the energy carried by
the springs. The maximum energy values corresponding to dark red on A and
B are different. Figure taken from Cavalcante et al. (2005).

but includes geometric information; second, the parenchymal tissue is modeled as a com-
pressible homogeneous material; and third, the whole lung is modelled as a continuum. In
this section, SEFs, see section 3.2, which were proposed in the literature for lung tissue
will be introduced, before giving some examples of finite element (FE) models.

4.2.2.1 Strain Energy Density Functions

In this section, is split up into a part for homogenized or phenomenological and one part
for constituent-based SEFs. Homogenized SEF relates to SEFs, which phenomenological
describes the behavior of the lung parenchyma. Constituent-based SEF relates to SEFs,
which are split up into summands representing the contribution of the parenchymal con-
stituents, like the CF and EF. The differentiation between homogenized and constituent-
based material models is a differentiation of mechanical effects which are or are not in-
cluded within the models, it must not be mistaken for the isochoric volumetric split intro-
duced in section 3.2, which is a solely mathematical transformation.

Homogenized Strain Energy Density Functions Frankus and Lee (1974) and Lee
and Frankus (1975) proposed the following coupled SEF for lung parenchymal tissue,
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with c1 − c9 being material parameters and I1 − I3 are the invariants of the right
Cauchy–Green strain tensor C, see equation (3.2.10). In general, the presented SEF does
result in a stress free reference state (see equation (3.2.40)), however, they argue that this
is less significant from the physiological point of view.

Gao et al. (2006) determined an exponential SEF but no information was given on how
they controlled the volume change of the compressible tissue.

Constituent-Based Strain Energy Density Functions Mijailovich et al. (1993) de-
veloped a model, which mimics elastic and dissipative phenomena of the parenchymal tis-
sue based on geometry and material properties. Their hypothesis was that the dissipative
phenomena are mainly influenced by the FF within the parenchymal tissue. The complex
three-dimensional fiber network was modeled with two ideal fibers with slipping interface
surfaces leading to energy dissipation. This model is meant to reproduce stiffening with
rate of deformation (Barnas et al., 1989b; Bates et al., 1989; Hildebrandt, 1969; Kikuchi
et al., 1991; Navajas et al., 1992; Suki et al., 1989), softening with increasing cycle strain
amplitude (Barnas et al., 1989a; Navajas et al., 1992), stress-strain loops for sinusoidal
behavior, energy dissipation, stress relaxation function, and preconditioning effects. How-
ever, not all of these experimentally determined effects are reproduced adequately enough.

Lanir (1983) suggested that the SEF can be composed of a sum of two terms, one for the
alveolar walls and another one for the surfactant film. However, he did not differ between
the individual load-bearing elements within the alveolar wall. Sobin et al. (1988) proposed
a SEF for the parenchymal tissue. This SEF was determined by adding up contributions for
SEFs of the CF and the EF, cells, GS and interfacial tension. Grytz and Meschke (2009)
suggested a SEF formulation especially for the contribution of CF in collagenous tissue.

However, the remaining problem is to determine the associated material parameters. To
quantify the contribution of the individual load-bearing constituents, their contribution
needs to be measured individually. One possibility is to destroy the corresponding con-
stituent utilizing proteases (see section 4.1.2.4).
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4.2.2.2 Finite Element Models

The finite element method (FEM) provides the possibility to simulate the deformation of
the whole lung, the parenchymal tissue and the individual alveolar wall.

There are several studies investing the deformation of the whole lung. However, this work
is focused on the local deformations, for this reason, only one example is mentioned,
namely the work of West and Matthews (1972). They investigated the deformation of
lungs caused by gravity. Additionally, they showed that due to the large deformation of the
lung during ventilation, a non-linear analysis is needed.

The number of studies concerned with the local deformation of the lung parenchyma is
very limited and mainly uses artificially generated geometries. A short overview is given
in the following.

Denny and Schroter (1997, 2000) investigated the oscillatory behavior of an isolated alve-
olar duct. Their model includes discrete fibers as well as the surface tension acting over
the air-liquid interface. The tissue is simulated using a visco-elastic model involving non-
linear quasi-static stress-strain behavior combined with a reduced relaxation function. The
surface tension force is simulated with a time and area dependent model of surfactant be-
havior. They used artificially generated geometries composed of truncated octahedra.

There are also several other groups investigating the mechanical behavior of artificially
generated three-dimensional geometries (Karakaplan et al., 1980; Kowe et al., 1986).

Because of missing realistic images of alveolar geometries, all these methods used sym-
metric, generated octahedra and miss the complexity of the real geometry. In summary,
none of the abovementioned studies were able to determine the local three-dimensional
deformation state of the alveolar wall.

To the author’s knowledge, the only simulation performed on image-based two-
dimensional alveolar geometries was performed by Gefen et al. (1999). The major ad-
vantage of this method is that it allows for the investigation of the strain distribution within
the alveolar wall, whereas the abovementioned experimental methods only investigated
overall wall extension. Despite these advantages they used a very simplified linear elastic
constitutive model and a two-dimensional simulation. However, since the lung undergoes
a three-dimensional deformation state, three-dimensional simulations are essential.
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5.1 Long Term Goal

This work is part of the priority program ”Protective Artificial Respiration” funded by
the German Research Foundation (DFG). The priority project consists of several groups
with medical, biological, imaging and engineering backgrounds. Its main goal is to further

improve mechanical ventilation in order to reduce the high mortality rates due to VALI. For
this purpose, the Institute for Computational Mechanics (TUM) is developing a detailed
“virtual lung model”, see Figure (5.1).

Our virtual lung model starts with the tracheo-bronchial region. Here, the airflow interact-
ing with the deformation of the airway walls and the surrounding parenchymal tissue, the
fluid-structure interaction (FSI), is simulated. The FSI is important to reproduce in vivo

fluid mechanics in the tracheo-bronchial region, as well as stresses and strains in the airway
wall, which are potentially associated with the onset of inflammation and remodeling of the
epithelium (Wall and Rabczuk, 2008). Due to limitations on the number of visible airways
in CT scans, only a part of the airway tree can be resolved in three-dimensions. Therefore,
realistic boundary conditions at the outlets of the three-dimensional domain are developed.
To take the peripheral region into account simplified reduced-dimensional airway trees are
coupled to every outlet of the three-dimensional region (Comerford et al., 2010; Ismail
et al., 2012). The flow in individual acini can be linked to the structural deformation of the
parenchyma, utilizing a newly developed volume-coupling method (Yoshihara and Wall,
2012). From these deformations, strains and stresses in the individual alveolar walls can be
determined by using a multi-scale approach (Wiechert and Wall, 2010). The deformation
within the alveolar walls is our main interest, since this is the area where the inflamma-
tion during VALI initiates. For more details of our virtual lung model, e.g. see Wall et al.
(2010b).
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Figure 5.1: Schematic of the ”virtual lung” model developed at the Institute for Com-
putational Mechanics (TUM). This model considers the effects of airflow in
the tracheo-bronchial region on the parenchymal deformation, via volume-
coupling and, thereby, on stresses and strains in individual alveolar walls using
a multi-scale approach.

5.2 Specific Goal

The specific goal of this study is to develop material models for the alveolar parenchyma
that will enable to determine the global stresses and strains in the tissue. Based on these
strain states, the relevant strains within the alveolar wall will be determined utilizing a FE
simulation of image-based alveolar geometries. The deformation within the alveolar wall
is of utmost importance, since overstretching of the alveolar walls is the primary cause of
inflammation during VALI. Since the alveolar wall is too small and inaccessible to allow
direct measurements of its material behavior (Wilson and Bachofen, 1982), computational
models can provide essential insight into involved phenomena.

To develop a sophisticated material model, the lung tissue is first experimentally charac-
terized. To determine the influence of the load-bearing tissue constituents, like CF, EF,
FF, and GS, the tissue is treated with enzymes, destroying the fiber families, during the
tests. In the next step, several non-linear, compressible and elastic material models are op-
timized using an inverse analysis approach. The experiment is numerically simulated with
the material parameters being iteratively improved until the experimental and numerical
results match. Based on this approach the two bet suited material models are selected, a
phenomenological material model and a model accounting for the individual contribution
of the load-bearing tissue components and their interaction. The presented methodology
is not limited to lung parenchyma but can be applied to other materials in an equivalent
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manner.

The actual damage during VALI occurs due to overstraining of the alveolar wall. For this
reason, the strain state within the individual alveolar wall needs to be quantified. Because
of the foam-like structure of the lung parenchyma, the local deformation of the alveolar
wall cannot be directly deduced of the global deformation of the lung parenchyma. Fur-
thermore, the currently available classical imaging techniques, i.e. CT, magnetic resonance
imaging (MRI) etc., do not have a sufficient resolution to image the deformation state in
vivo. However, using the novel imaging techniques presented by Schittny (2008) the in-
dividual alveolar walls of fixated rat lungs are visible with adequate resolution. Based on
these images and a prescribed global strains a three-dimensional deformation state can be
determined by FE simulations.

In this work, all simulations are based on the FEM. For more details on this method the
interested reader is referred to textbooks from Belytschko et al. (2005); Hughes (2000),
and lecture notes from Wall et al. (2010a, 2012).

All material models of this work were implemented in the in-house FE software platform
Bavarian Advanced Computational Initiative (BACI, Wall and Gee (2010)). This multi-
purpose parallel research-code is written in C++ and integrates open-source libraries of
the Trilinos Project (Heroux et al., 2005). BACI has been and is developed jointly at the
Institute for Computational Mechanics (Technische Universität München).

It has to be noted, though, that the introduced material models are based on general solid
continuum mechanics, i.e. they are not limited to the FEM.

5.3 Specific Aims

The above introduced goals can be narrowed down to the following five specific aims:

AIM 1

To develop an experimental testing protocol in order to determine the elastic material be-
havior of lung parenchyma.
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AIM 2

To extend the experimental methodology to investigate the influence of the individual tis-
sue constituents (CF and EF).

AIM 3

To develop an inverse analysis methodology in order to deduce a hyperelastic material
model for soft biological tissue from experiments.

AIM 4

To determine a phenomenological and a constituent-based material model for lung
parenchyma.

AIM 5

To perform a FE simulation on image-based alveolar geometries, in order to determine the
deformation within the alveolar walls for a given global deformation state.
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Although experiments on lung parenchymal tissue have been carried out since the late
1960s, they mainly focused on the qualitative mechanical behavior. Thus, from these
results it is difficult to determine a quantitative stress-strain relationship for computational
simulations. The major drawbacks of previous experimental approaches are:

• Global p-V measurements are too coarse to determine a sophisticated material model
for lung parenchyma. The problem is that a distinction between the individual con-
tribution of the airways and the parenchymal tissue is not possible.

• Only a few studies use viable tissue. However, it has not been satisfactorily shown
that cell death does not change the material behavior of parenchymal tissue.

• The production of the tested specimens was performed by hand rather than fully
automated, which can cause large variations in the dimensions of the specimens.

• In many studies the tissue was frozen in order to cut the specimen, which has been
shown before to change the material properties of the tissue.

• Many studies perform their experiments only on one single specimen, i.e. there is no
information about the repeatability of the experiment or the statistical spread of the
measured values.

• The lateral contraction or other measurements determining the volume change of
the compressible lung parenchyma have only been determined in multi-axial tensile
tests.

• In some studies critical information, i.e. cross-sectional area or length, were not
provided at all or their determination was not further specified.

• In most cases, it was poorly documented, which initial length (before or after precon-
ditioning) or initial cross-sectional area (including the air-space or not) was taken, or
how these quantities were determined. This is very important, since these quantities
have an essential influence on the scaling and position of the determined stress-strain
curves.
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For all these reasons, it appears necessary to perform additional experiments. In this chap-
ter, the experimental methodology utilized in this study is introduced followed by the ex-
perimental results, their discussion, and a short conclusion.

6.1 Methodology

In this section, an overview of the experimental methodology is given. For the experiments,
living precision-cut lung slices (PCLS) are used. Their preparation will be described in
detail below. As several studies (Hoppin et al., 1975; Tai and Lee, 1981; Sobin et al., 1988;
Toshima et al., 2004) have shown that lung parenchymal tissue is isotropic, uniaxial tensile
tests can be considered sufficient. The lateral contraction of the specimens is measured in
addition to determine the volume change of the specimen.

6.1.1 Specimen Preparation

(a) (b) (c) (d)

Figure 6.1: Preparation of living precision-cut lung slices (PCLS). (a) Lungs are dissected
from the rats and filled with agarose solution (1.5%). (b) Utilizing a cor-
ing tool, cylindrical cores with a diameter of 14mm are cut. (c) The cores
are placed in a Krumdieck tissue slicer (Alabama Research and Development,
Munford, AL) and 0.5mm thick slices are cut as shown in (d).

The PCLS are prepared from isolated rat lungs as described by Martin et al. (1996). All
animal experiments are approved by the local authorities. Female Wistar rats obtained
from Harlan Winkelmann (Borchen, Germany) are maintained on laboratory food and tap
water ad libitum in a regular 12h dark night cycle at a temperature of 22◦C. Briefly, the
lungs are dissected from the animals, filled with agarose solution (1.5%) via the trachea,
and put on ice to allow the agarose to cool and solidify. The lung lobes are separated
and cut into tissue cores utilizing a coring tool. These cores with a diameter of 14.0mm
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are cut into 0.5mm thick slices with a Krumdieck tissue slicer (Alabama Research and
Development, Munford, AL), see Figure 6.1.

Figure 6.2: The left hand picture shows the dimensions of precision-cut lung slices (PCLS)
in mm. The right hand picture shows how the specimen is clamped into the
uniaxial tensile tester. The extension direction is vertical.

The thickness of the slices is measured with a light microscope. For this purpose, the
change of the focus in the presence and absence of a slice between two microscopic slides
is determined. The two sides of the round slices are trimmed with two parallel razor
blades giving a tissue strip with a width of 7.0mm, leading to a cross-sectional area A of
3.5mm2, see Figure 6.2. These strips are incubated in minimal essential medium (MEM)
and the agarose is washed out by frequently changing the medium within the first 4h and
completing an overnight incubation. Kononov et al. (2001) have shown that the agarose
does not change the mechanical properties of the parenchymal tissue.

Previous tests have shown that PCLS are viable for more than three days and the experi-
ments in this study are performed within 48h after removing the lung (Martin et al., 1996).

PCLS have several advantages: first, since they are very thin, it is possible to get multi-
ple specimens of the same animal, allowing statistical analysis to be performed; second,
the cutting method does not change the material behavior of the tissue, since there is no
need to further fixate the tissue during cutting; and third, the dimensions of the individual
specimens can be adjusted very precisely.

6.1.2 Testing Apparatus

The specimens are probed with the uniaxial tensile tester Bose ElectroForce 3100 (Bose
Corporation, Eden Prairie, USA), see Figure 6.3. For testing, the specimens are fixed be-
tween two clamps (Figure 6.2 and 6.3), which are specifically designed and manufactured
for the use with PCLS. The advantage of these clamps is that they prevent both slipping
and tissue damage. One of the clamps is connected to a force transducer and the other one
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to a displacement transducer. The force transducer has a range of ±0.5N and a resolu-
tion of 2.5mN and the displacement transducer has a range of ±2.5mm and a resolution
of 12.5µm. In order to minimize external influences, such as gravity and vibrations, all
tests are performed in the horizontal plane. Frequencies higher than 20Hz are filtered out
utilizing a low pass Butterworth filter.

For mounting of the specimens in the machine, the following protocol is used: first, the
specimens are straightened out on a piece of aluminum foil, second, the aluminum foil
with the tissue on top is lightly fixed between the clamps, and third, the foil is removed
before the two clamps are completely fastened. This procedure assures that the PCLS are
mounted without internal stresses or sagging. The initial length of the test domain of the
specimen is exactly L0 = 2.0mm, the distance between the two clamps.

In the following, the direction of the clamp movement will be referred to as x-direction
and the perpendicular direction in the horizontal plane as y-direction, see Figure 6.4.

Due to the compressibility of parenchymal tissue it is not enough to determine the displace-
ment in x-direction exclusively. An additional measurement related to the volume change
is needed. However, since the material model is determined utilizing an inverse analysis,
see section 7.1.3, the y-displacement at one individual point over time is sufficient. One
example point is shown in Figure 6.4.

While the displacement in x-direction is directly measured via the displacement of the
clamps, the y-displacement of an individual point has to be determined with a videomi-
croscopy. To do so, the following steps are needed:

• During the tensile test a movie is recorded.

• The movie is cut to the right length, in order to include exactly one sinusoidal oscil-
lation and split into individual images.

• The images are then straightened and cropped to the region of interest.

• The scaling factor is determined by measuring the number of pixels of the perpendic-
ular connection between the two clamps, which is known to be exactly L = 2.5mm
at the start of the measurement after preconditioning, see section 6.1.3.

• The point P is tracked, using the image processing software ImageJ (Abràmoff

et al., 2004) and its module ”Manual Tracking”. This software tool returns the y-
displacements of P.

These measurements are then used as an additional input parameter for the inverse analysis,
see section 7.1.3.
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Figure 6.3: Bose ElectroForce 3100 (Bose Corporation, Eden Prairie, USA) is a uniaxial
tensile tester. The force transducer has a range of ±0.5N and a resolution of
2.5mN and the displacement transducer has a range of ±2.5mm and a resolu-
tion of 12.5µm.

Figure 6.4: Definition of x- and y-direction in the experiment and the simulations. The
x-direction is the direction of the clamp movement and the y-direction is the
corresponding perpendicular direction in the horizontal plane. P marks an ex-
emplary point where the y-displacement is measured during the experiment.
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6.1.3 Testing Protocol

For a reliable characterization of parenchymal lung tissue, a sound testing protocol is es-
sential. For this reason, some additional preliminary tests are performed. Based on these
preliminary studies and on results presented in the literature, see section 4.1.2, an appro-
priate testing protocol is developed.

The testing is further split up in two testing series: first, the homogenized material be-
havior of lung parenchyma is determined in order to study repeatability, variation between
animals, etc.; second, similar tests are performed on proteinase treated PCLS in order to
determine the influence of the individual load-bearing constituents.

All experiments are performed at room temperature.

6.1.3.1 Preliminary Studies

Strain Rate Dependency The strain rate dependency is tested for 0.5, 1.0, and 2.0Hz,
which represent breathing rates between 70− 115breath/min. The variation in frequency
shows no significant influence, see Figure 6.5. These findings are in line with the results
of Fung (1993); Fredberg and Stamenovic (1989).

Influence of Surface Tension The effect of surface tension is tested by performing the
same experiments in air and in fluid. As can be seen in Figure 6.5, there is no significant
difference between the stress-strain curves. Hence, it is assumed that surface tension effects
do not play a role in this experimental setting. Consequently, the methodology proposed in
this work is suitable to characterize the behavior of tissue alone. The resulting parenchyma
model can be combined with a previously developed model accounting for the contribution
of the surface tension (Wiechert et al., 2009). This way, both effects can be incorporated
yet remain clearly distinguishable and their respective influence can be studied.

6.1.3.2 Preconditioning

Although lung tissue, like most soft biological tissues, is to a certain extent viscoelastic,
the overall material behavior is dominated by the elastic response. Viscoelasticity in the
lung parenchyma is associated with both relaxation and creep phenomena, which have
been described before by several authors, e.g. Fukaya et al. (1968); Fung (1984); Suki
et al. (1994). Since description of these viscoelastic phenomena is not trivial, in this work
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the focus is on the elastic effects as a first step, although viscoelasticity may be included in
the future. For this reason, a preconditioning protocol it used, which reduces the viscous
effects. Hence, they can be neglected in the following analysis.
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Figure 6.5: Influence of different strain rates and surface tension on stress-strain curves.
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Figure 6.6: Preconditioning of the parenchymal tissue strips for eliminating viscoelastic
material behavior. (left) Phase 1: The tissue slice is stretched with a constant
velocity of 0.5mm/s until a force of 15mN is reached followed by a 30s relax-
ation phase. This procedure is repeated 10 times. (right) Phase 2 and 4: the
specimen is sinusoidally loaded. The dashed lines show the course of length of
the specimen before preconditioning and L0, whereas the solid line shows the
length after preconditioning and L.

The protocol consists of four phases:

Phase1: The tissue slice is stretched with a constant velocity of 0.5mm/s until a force of
15mN is reached. The displacement is held constant for 30s. During this re-
laxation time the tissue adjusts itself to the deformation, thus it relaxes and the
force drops. This loading and relaxation is repeated approximately 10 times
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until the force remains constant at a plateau of ∼ 14mN (Figure 6.6(left))
i.e. 1mN below the originally applied 15mN. Thus, the drop due to viscous
release is only 1/15.

Phase2: The tissue is loaded with a displacement controlled sinusoidal curve with a
peak amplitude of 0.5mm, a mean of L0 + 0.5mm and a frequency of 1.0Hz,
see Figure 6.6(right).

Phase3: Due to relaxation phenomena, the tissue strip elongates during the first two
preconditioning phases. For this reason, the new initial length L is deter-
mined by slowly extending the tissue strip until a small force of ≈ 0.005mN
is reached; the new initial length L≈ 2.5mm, see Figure 6.6(right).

Phase4: The tissue is again loaded with the same sinusoidal oscillations as described
in Phase 3 but the mean value is shifted to L, meaning the minimum of the
sine wave is the new initial length of the tissue strip.

Preliminary studies have shown that after performing this preconditioning protocol, the
time dependent effects of the lung tissue in the following experiments are negligible.

6.1.3.3 Homogenized Lung Parenchyma

In total, 47 PCLS, from five exbreeder female rats between nine and 15 months (Table 6.1),
were examined. After preconditioning, the tissue is loaded with sinusoidal oscillations,
similar to the one used during preconditioning, i.e. with a peak amplitude of 0.5mm, a
mean of l0 + 0.5mm, and a frequency of 2.0Hz. Forces and displacements are sampled at
100Hz.

Table 6.1: Weights of the rats and number of tested specimens per rat.

Rat 1 2 3 4 5
weight [g] 303.7 307.8 308.1 334.9 293.8

number of tested PCLS 6 10 8 7 16

6.1.3.4 Constituent-based Lung Parenchyma

In total, 21 PCLS are examined, 10 of them are treated with collagenase first and the
remaining 11 are treated with elastase first. This testing protocol allows to individually
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determine the influence of the two fiber families and the GS on the mechanical behavior of
the parenchymal tissue.

Figure 6.7: Schematic drawing of the experiment protocol. 11 of the 21 tested precision-
cut lung slices (PCLS) are tested with elastase prior to collagenase treatment
(“elastase treated”), whereas 10 are tested with collagenase prior to elastase
treatment (“collagenase treated”).

collagenase first

CF + EF + FF + GS

EF + GS

GS

CF + FF

EF

untreated
collagenase treated

both treated

untreated
elastase treated

both treated

elastase first

CF + EF + FF + GS

CF + GS

GS

EF + FF

CF

Figure 6.8: The first treatment destroys the first fiber family as well as the fiber-fiber in-
teraction (FF) between the collagen fibers (CF) and elastin fibers (EF). After
the second treatment, the only remaining load-bearing element is the ground
substance (GS). By subtracting the individual determined stress-strain curves
from each other, the contribution of the individual components can be calcu-
lated, e.g. EF+FF, CF, CF+FF and EF.

The actual testing is similar as described above for the homogenized lung parenchyma.
However, after the untreated PCLS are tested the specimens undergoes the protease treat-
ment with either elastase (i.e. “elastase treated” in Figure 6.7) or collagenase (i.e. “colla-
genase treated” in Figure 6.7) to destroy the respective fiber family.

The protease incubation takes place with the specimens remaining mounted within the ten-
sile tester, to ensure that the exact same part of the specimen is tested again. For elastase
treatment, the PCLS are incubated for 30min in E7885 elastase from porcine pancreas-
lyophilized powder, suitable for cell culture (Sigma-Aldrich). For the collagenase treat-
ment, the PCLS are incubated for 30min in collagenase H from Clostridium histolyticum
(Roche). Due to the fact, that the PCLS are mounted in the tensile tester during the incuba-
tion, solution is repeatably drizzled on the specimen keeping the liquid film closed. After
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the first protease treatment, the specimens are tested again, including the preconditioning
protocol, before they are treated with the corresponding other protease (indicated as “both
treated” in Figure 6.8) and tested for the third time.

6.2 Results

In the following section the experimental results will be presented, which are used as a
target for the material fitting. First, the results of the homogenized lung parenchyma are
provided, in order to get a better understanding and a solid establishment and verifica-
tion of the experimental protocol. Second, the results of the proteinase treated PCLS are
presented.

In the following section strain and stress refers to l
L and T

A .

6.2.1 Homogenized Lung Parenchyma

First, the experimentally determined stress-strain curves of each of the five tested animals
are compared. Figure 6.9 shows the mean curve, averaged over all tested PCLS of one
individual animal, and the area between the mean ± one standard deviation (sd) (mean ±
sd) and the mean ± 1.96sd, i.e. 95% of all values, highlighted as lighter and darker color,
respectively. For a short explanation of the statistical measures, see Appendix A.4.1 and
A.4.2. All shown curves are similar in shape and order of magnitude. However, a variation
of curves for each animal exists. This variation does not correlate with the number of tested
PCLS per animal.
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Figure 6.9: Comparison of stress-strain curves of each of the five rats The central line in-
dicates the mean of all tested precision-cut lung slices (PCLS), the darker area
represents mean ± sd and the lighter area represents mean ± 1.96sd.

Second, the coefficient of variation (CV) of the individual rats is compared with the CV of
all rats, see Appendix A.4.3. Figure 6.10 shows that the CV within the individual animals
does not differ of the CV of all tested specimens.

Third, the mean, mean ± sd, and mean ± 1.96sd stress-strain curves over all tested spec-
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Figure 6.10: Comparison of the coefficient of variation (CV) of the individual rats with
the CV of all rats.

imens are compared with the mean stress-strain curves of the individual rats. Figure 6.11
shows that the mean stress-strain curve is of similar shape than the stress-strain curves of
the individual animals.
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Figure 6.11: Comparison of mean stress-strain curves of each of the five tested rats with the
mean, mean± sd and mean± 1.96sd of all tested specimens. The central line
indicates the mean of all tested precision-cut lung slices (PCLS), the darker
area mean ± sd and the lighter area mean ± 1.96sd.

6.2.2 Constituent-based Lung Parenchyma

As a next step, the contribution of the individual load-bearing constituents is investigated.
For the analysis of the experiments, the PCLS are split up into two groups: the first group
consists of the PCLS which are treated with elastase prior to collagenase (“elastase first”)
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and the second group consists of the PCLS which are treated with collagenase prior to
elastase (“collagenase first”).
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Figure 6.12: Comparison between the two analysed precision-cut lung slices (PCLS)
groups for the untreated state (untreated) and after treatment with both pro-
teases (“both treated”). The error bars indicate one standard derivation (sd).

Figure 6.13: Comparison between the two possible calculation methods to determine the
collagen fiber (CF) contribution within the lung parenchyma. The corre-
sponding stress-strain curves are shown on the right hand side. The first
method is to subtract the mean stress-strain curve of the “both treated” spec-
imens from the collagenase specimens. The second method is to subtract the
mean stress-strain curve of the collagenase treated specimens from the un-
treated specimens. The gap between the two possibilities is assumed to be
due to the fiber-fiber interaction (FF).
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First, the stress-strain curves of the untreated PCLS and of the “both treated” PCLS are
compared, see Figure 6.12. The figure clearly shows that there is no difference between
“elastase first” and “collagenase first” treatment.

Second, it is investigated, if there is difference calculating the CF contribution of the curves
of the specimens treated with “elastase first” or with “collagenase first”. The CF contribu-
tion can be determined by the change of stress-strain curves after the collagenase treatment,
see Figure 6.8. The idea behind this is: if there is no interaction between the two fiber fam-
ilies, there should be no difference in the change caused by the collagenase treatment. To
investigate the stress-strain curve obtained by subtracting

• the elastase treated and the “both treated” curves for the “elastase first” treated group

• the untreated and the collagenase treated curves for the “collagenase first” treated
group,

see Figure 6.13. Additionally, the according opposite scenario is investigated for the con-
tribution of EF, see Figure 6.14. It can be clearly seen that there is a significant difference
between the two calculation methods.

Third, the mean stress-strain curves of untreated PCLS, PCLS treated with elas-
tase/collagenase, and PCLS treated with both enzymes are compared, see Figure 6.15.
The untreated PCLS exhibit the stiffest behavior. The elastase treated PCLS show a softer
mechanical behavior. The PCLS treated with collagenase are even softer than the elastase
treated specimens. The PCLS treated with both enzymes show the softest behavior.

6.3 Discussion

In this section, a discussion about the experimental results is given, including a comparison
with literature results.

6.3.1 Homogenized Lung Parenchyma

Investigating the differences between the various animals the mean stress-strain curves as
well as their sd, are found to be similar in shape and magnitude, see Figure 6.9. This
observation is backed up by the comparison of the CV, which turned out to be of similar
order of magnitude within the individual animals and within all tested specimens, see
Figure 6.10 and Figure 6.11. These results have several advantages: first, there is no
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Figure 6.14: Comparison between the two possible calculation methods to determine the
elastin fiber (EF) contribution within the lung parenchyma. The correspond-
ing stress-strain curves are shown on the right hand side. The first method is
to subtract the mean stress-strain curve of the elastase treated specimens from
the untreated specimens. The second method is to subtract the mean stress-
strain curve of the “both treated” specimens from the collagenase treated spec-
imens. The gap between the two possibilities is assumed to be due to the
fiber-fiber interaction (FF).

need to further distinguish between the individual animals, and second, the testing and the
specimen preparation method are both robust and repeatable.

A comparison of the results of this work with stress-strain curves found in the literature
(Fukaya et al., 1968; Sugihara et al., 1971; Hoppin et al., 1975; Vawter et al., 1978; Karlin-
sky et al., 1985; Mijailovich et al., 1994; Sata et al., 1995; Yuan et al., 2000; Jamal et al.,
2001; Gao et al., 2006) is shown in Figure 6.16. This comparison revealed a rather large
diversity of results of different studies. There are several reasons for this: first, consid-
erable variations are observed between the specimens tested (i.e. dimensions, preparation
method, preconditioning etc.); second, different species and testing methods (uniaxial, bi-
axial and triaxial) were used. However, all experimentally determined stress-strain curves
are similar in shape, i.e. they show stiffening for large strain.

It is obvious that the stress-strain curves suggested by Mijailovich et al. (1994) and Kar-
linsky et al. (1985) differ most, see Figure 6.16. The stress-strain curve suggested by
Mijailovich et al. (1994) has a much smaller magnitude than the other ones. However, the
reason for this could be the way they calculated the undeformed surface area A of their
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Figure 6.15: Averaged experimentally determined stress-strain curves of all untreated
precision-cut lung slices (PCLS) (black), all collagenase treated PCLS
(green), all elastase treated PCLS (red), and all collagenase as well as elastase
treated PCLS (gray). The error bars indicate one standard derivation (sd). The
graph shows a clear stress reduction if one or both of the load-bearing macro-
molecules are degenerated. The collagenase influences the initial slope as
well as the curvature of the stress-strain curve, whereas the elastase reduces
the initial slope of the curve.

strips, see section 4.1.2.1. Briefly, their A is based solely on the tissue area and not on a
homogenisation of tissue and air area, leading to an about five times smaller area result-
ing in five time higher stresses than the ones in the present study. The stress-strain curve
suggested by Karlinsky et al. (1985) also has a much smaller magnitude than the other
ones. One explanation for this difference could be the measurement of the initial length.
Karlinsky et al. (1985) determined the initial length with the specimen being adjusted in
the machine, meaning under pretension (including the weight of the clamp and its own
weight) which is neglected in the following measurements. Furthermore, the extension of
100% over the initial length might have damaged the tissue in their study.

To sum up; the variation within the stress-strain curves presented in literature is rather big.
The curve obtained in this study lies close to the majority of realistic curves in the upper
third of the range.

6.3.2 Constituent-based Lung Parenchyma

The untreated and the “both treated” stress-strain curves for both treatment groups show
good agreement, see Figure 6.12. For the untreated specimens, this is expected since in
this case, both groups underwent no treatment at all. For the “both treated” specimens
both groups underwent the same treatment but in different order, which did not influence
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imens from this study and the gray area represents ± one standard deviation
(sd).
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CF
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EF
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Figure 6.17: Comparison of the stiffness for the two calculated elastin contributions and
the two calculated collagen contributions. The arrows are pointing towards
the stiffer contribution.

the overall result. This shows that once treated with both proteases, the specimens show
similar stress-strain curves, within tolerances comparable to the untreated specimens.

In the second comparison, the difference between the two calculated stress-strains curves,
concerning CF and EF, is investigated. The two curves show different stress-strain behav-
ior, see Figure 6.13 and 6.14. This change can be explained by the interaction between
the two fiber families, i.e. fiber-fiber interaction (FF). This means the two fiber families
do not act independently. There are two additional arguments supporting this hypothesis.
First, both CF+FF and EF+FF are stiffer than CF and EF, respectively. Since the fibers can
only interact if both fiber families are present, the contribution of the FF is only present in
the first calculation method when the corresponding other fiber family still exists, whereas
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in the second calculation method the corresponding other fiber family has been destroyed
in advance. Second, upon closer investigation of the stiffness of the individual measured
PCLS (data not shown), it turned out that for the “elastase first” treated specimens, where
EF+FF and CF are calculated, EF+FF is always stiffer than CF. However, for the “colla-
genase first” treated specimens, where CF+FF and EF are calculated, CF+FF is always
stiffer than EF. This means the first determined fiber contribution is stiffer than the second
determined fiber contribution independent of which fiber family this is. By comparing the
mean stress-strain curve of the CF and EF with the same calculation method, i.e. EF+FF
with CF+FF and EF with CF, the CF turned out to be stiffer, see Figure 6.17. This seams
reasonable, since the CF are known to be stiffer than the EF. This again backs up the as-
sumption that with the first treatment not only one of the fiber family was destroyed but
also the FF.

In the third comparison, the differences between the different treated PCLS are investi-
gated, see Figure 6.15. The untreated PCLS still include all major load-bearing elements
(CF+EF+GS) and FF, and hence, exhibit the stiffest behavior. The elastase treated PCLS
which lack the structural support of the EF and the FF show a softer mechanical behavior.
The PCLS treated with collagenase are even softer than the elastase treated specimens.
The PCLS treated with both enzymes show the softest behavior. Another interesting fact
is that the stress-strain curves of the PCLS treated with collagenase have a reduced curva-
ture. This agrees with the study of Haut and Little (1972), who showed that the CF exhibit
strongly non-linear material behavior.

A comparison with the results found in the literature is essentially impossible, since the
only paper presenting relevant results (Yuan et al., 2000) provided only two static stress-
strain curves; these curves additionally showed a variation of over 100% between each
other. However, the general trend, meaning the shape of the curve, the order of magnitude
and the behavior after collagenase/elastase treatment is similar.

Other interesting aspects are: the contribution of the FF is always more dominant than the
contribution of the EF; for small strains. the FF is stiffer than the CF as well as the EF. This
can be explained with the CF not being fully extended, i.e. their waviness can potentially
inhibit their own extension as well as the extension of the EF.

Due to these findings, the material law presented in the following section will not only ac-
count for the three major load-bearing constituents but also include an additional summand
representing the FF. In order not to get too much influence of intersubject variability, the
material model is fitted to the averaged curves rather than to the individually determined
curves, see Figure 6.18.
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Figure 6.18: Averaged stress-strain curves for each of the four load-bearing constituents.
GS: ground substance; CF: collagen fibers EF: elastin fibers and FF: fiber-
fiber interaction.

6.4 Conclusion

Living PCLS of isolated rat lungs are experimentally investigated via uni-axial tension
tests. Compared with previous experimental methods found in literature (Jamal et al.,
2001; Yuan et al., 2000; Fukaya et al., 1968; Mijailovich et al., 1994; Sugihara et al.,
1971; Vawter et al., 1978; Hoppin et al., 1975; Gao et al., 2006), the experimental protocol
developed in this work has three major advantages. First, the slice dimensions are repro-
ducible, second, several specimens, dissected from one animal, can be tested and third, the
specimens are still viable during testing.

In addition, with this study a measure of the contribution arising from fiber-fiber interaction
(FF) has been provided for the first time. Previously, Mijailovich et al. (1993) presented
a very simplified model, based on two isolated fibers, for the FF. However, they did not
quantify the influence. The quantification is very important because it turned out that
the FF contribution is larger than the contribution of the elastin fibers themselves, i.e.
the interaction of the constituents is as important as the classification of the constituents
themselves. This finding is consistent with the observations of Mercer and Crapo (1990).

However, to get a better understanding of the processes occurring during FF, dynamic
scanning methods will be essential in the future. Another interesting point is the interaction
between the GS and the fiber families. Unfortunately, due to the fact that the GS consists
of a plethora of different components, this contribution cannot be determined individually.
In the presented model the contribution of this interaction is included in the SEFs of the
fiber families.
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In this chapter, a sophisticated material model adequately reproducing the experimental re-
sults presented in chapter 6 is derived. Since the optimal constitutive model is not known
a priori, this study is not limited to the optimization of one predetermined SEF, but rather
compares several possible SEFs, which will be referred to as “potential SEF” in the latter.
For this reason, a material toolbox is implemented in the research-code BACI. This mate-
rial toolbox allows implemented SEFs to be arbitrarily combined. For each of these “po-
tential SEFs”, the individual material parameters are optimized to fit the experimentally de-
termined behavior. For the parameter optimization, an inverse analysis is performed. The
corresponding algorithm is also included in BACI. In the last step, the “potential SEFs” are
compared with each other, in order to obtain the optimal description of the experimental
material behavior.

7.1 Methodology

This section is divided in four subsections. The first one introduces the material toolbox
and the included SEFs. The second one describes the utilized FE model. The third one
describes the inverse analysis algorithm, i.e. the parameter optimization for the “potential
SEFs”. The fourth one describes the comparison between the different “potential SEFs”
for the homogenized as well as for the constituent-based material model.

7.1.1 Material Toolbox

Due to the fact that a SEF can be composed of additive summands (Balzani, 2006), a
material toolbox has been implemented in the research-code BACI. In the following, Ψ

will replace Ψv, for simplicity. Each SEF can be defined as the sum of its individual
summands implemented in the toolbox, i.e.

Ψtotal =
∑

Ψsummand. (7.1.1)
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This toolbox has several advantages: first, the implementation of new material models is
simplified, since only the respective coefficients δ, see section 3.2, have to be adjusted.
Second, material models can be adjusted, e.g. by adding new summands, without having
to implement a new material formulation. Third, the individual summands can be arbi-
trarily combined and recombined, thereby allowing an easy comparison between several
“potential SEFs”.

In the following, a short overview of the implemented SEF summands is given, starting
with coupled SEF summands, before introducing decoupled isochoric and volumetric SEF
summands. It is worth noting that each part of the SEFs fulfills the principles of objectivity,
material symmetry, the requirements of polyconvexity and has a stress–free reference state.

7.1.1.1 Coupled Strain Energy Density Functions

The two implemented, coupled SEFs are established functions which can be frequently
found in literature. These SEFs have been developed to describe the material behavior of
compressible, foam-like structures such as polyurethane foams.

The first coupled SEF introduced by Blatz and Ko (1962) for foam-like elastomeres reads

Ψblako = f
G
2

[
(I1−3) +

1
β

(J−2β−1)
]
+ (1− f )

G
2

[(
I2

J2 −3
)
+

1
β

(J2β−1)
]

(7.1.2)

with G and ν denoting the shear modulus and Poisson’s ratio, respectively, β = ν− 0.5
denoting a material parameter, and f ∈ [0,1] being an interpolation parameter. For the
definition of the constants see Appendix A.2.4 and A.2.3.

The second coupled SEF is the compressible Neo-Hookean formulation

Ψneo =
G
2

(I1−3)−G ln J +
λ

2
(
ln J

)2 (7.1.3)

where λ and G are respectively, the first and the second Lamé’s parameter, as suggested by
Bonet and Wood (1997). For the definition of the constants see Appendix A.2.3 and A.2.5.

7.1.1.2 Decoupled Strain Energy Density Functions

As mentioned in section 3.2.2, decoupled SEFs are additively split into a volumetric Ψvol

and an isochoric part Ψiso. For each part, different summands have been implemented,
which will be introduced in the following.
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Isochoric Strain Energy Density Functions There are several possibilities for the
isochoric summands Ψiso of the SEF. For this work we have chosen a subset of the most
commonly used SEFs in literature. The simplest one is the isochoric part of the Neo-
Hookean formulation

Ψiso, neo = c
(
Ī1−3

)
(7.1.4)

where c > 0 represents a stress–like parameter. Slightly more complicated is the formula-
tion suggested by Yeoh (1993)

Ψiso, yeoh = cyeoh, 1(Ī1−3) + cyeoh, 2(Ī1−3)2 + cyeoh, 3(Ī1−3)3 (7.1.5)

where cyeoh, 1 > 0, cyeoh, 2 > 0 and cyeoh, 3 > 0 are stress-like parameters. For convenience,
this formulation is split up into a linear (which equals Ψiso, neo) Ψiso, lin, quadratic Ψiso, quad,
and cubic part Ψiso, cub, i.e.

Ψiso, lin = clin(Ī1−3), Ψiso, quad = cquad(Ī1−3)2, Ψiso, cub = ccub(Ī1−3)3 (7.1.6)

where clin > 0, cquad > 0 and ccub > 0 are stress-like parameters. It should be mentioned that
“linear” here only refers to the expression in parenthesis being linear and not to a linear
constitutive model.

Additionally, the following power functions have been implemented

Ψiso, pow4 = cpow4(Ī1−3)4, (7.1.7)

Ψiso, pow5 = cpow5(Ī1−3)5, (7.1.8)

Ψiso, pow6 = cpow6(Ī1−3)6, and (7.1.9)

Ψiso, pow7 = cpow7(Ī1−3)7 (7.1.10)

where cpow4 > 0, cpow5 > 0, cpow6 > 0 and cpow7 > 0 are stress-like parameters. These
SEFs were chosen because, due to their simplicity, they are well suited for the purpose
of combining several summands. Additionally, SEFs which are commenly used for soft
biological tissue shall be investigated. An exponential expression

Ψiso, exp =
cexp, 1

2cexp, 2

exp

cexp, 2

(
1
3

Ī1−1
)2−1

 (7.1.11)

which has been implemented with cexp, 1 ≥ 0 being a stress-like parameter and cexp, 2 > 0
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being a dimensionless parameter, that can be found in slightly different form in Delfino
et al. (1997).

Finally the Mooney-Rivlin SEF

Ψiso, mori = cmori, 1(Ī1−3) + cmori, 2(Ī2−3) (7.1.12)

where cmori, 1 > 0 and cmori, 2 > 0 are stress-like parameters.

Volumetric Strain Energy Density Functions In the literature, many different for-
mulations for Ψvol can be found, for a detailed comparison see (Doll and Schweizerhof,
2000). However for convenience the focus in this work is on the three most common ones.

The first one suggested by Ogden (1974) is defined as

Ψvol, ogd =
κ

4
(−2ln J + J2−1) (7.1.13)

withκ being the bulk modulus. The volumetric Ogden SEF Ψvol, ogd is chosen, because it
is suitable for compressible materials.

Another option suggested by Balzani et al. (2006) is defined as

Ψvol, pen = ε

(
Jγ +

1
Jγ
−2

)
(7.1.14)

where ε is a stress-like parameter and γ is a dimensionless parameters.

The third option is the SEF suggested by Sussman and Bathe (1987)

Ψvol, suba =
κ

2
(J−1)2, (7.1.15)

with κ being the bulk modulus.

7.1.2 Finite Element Model

To find the optimal material description for lung parenchyma, an inverse analysis is per-
formed see section 7.1.3. For this purpose previously described experiments, see chapter
6, are simulated utilizing the FEM.
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Figure 7.1: Simulation of uniaxial tensile test of a precision-cut lung slice (PCLS). The
lower clamp is simulated with a Dirichlet boundary condition and the up-
per clamp with a Neumann and a Dirichlet boundary condition. The x-
displacements at the top of the specimen, which equals the displacement of
the second clamp and the y-displacement at point P are recorded as target for
the material optimization.

The tested specimen, with the dimensions 7.0×2.5×0.5mm, is discretized with 288 linear
hexahedral elements, see Figure 7.1. For the simulation, the following boundary conditions
are chosen:

• The resting clamp is represented with a Dirichlet boundary condition. All displace-
ment degrees of freedom (dofs) of the nodes with x=0, are set to zero.

• The moving clamp during the experiment is represented with a combination of Neu-
mann and Dirichlet boundary conditions. All displacement dofs in y- and z- direction
are set to zero and the experimentally determined stresses are applied in x-direction.

According to Tschanz et al. (2003), the tissue consists of 80.4% air. The alveolar wall
contains mainly water with the density ρw = 1.0kg/dm3. Hence, the parenchymal density
used in the simulation was chosen to be ρpar = (1−0.804)kg/dm3 = 0.196kg/dm3.

7.1.3 Inverse Analysis

For each “potential SEF” the material parameters p can be written in the general vector
form

p = [pi, ..., pk]T , (7.1.16)

with k being the number of material parameters. To determine optimal parameters p, an
inverse analysis is performed (see Figure 7.2). For example, for the “potential SEF” Ψex =

Ψiso, yeoh +Ψvol, ogd = cyeoh, 1(Ī1−3)+cyeoh, 2(Ī1−3)2 +cyeoh, 3(Ī1−3)3 + κ
4 (−2ln J + J2−1)

the parameters pex = [cyeoh, 1,cyeoh, 2,cyeoh, 3, κ]T would be optimized.
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Beginning with an initial guess of the material parameters p0, the following displacements
are calculated and compared to those obtained from the experiment:

• the displacement in x-direction ux of the moving clamp and

• the displacements in y-direction uy at point P as measure of the lateral contraction of
the specimen.

The displacements ui =
[
ux,uy

]
T
i are calculated at each time step i, leading to the displace-

ment vector

u =


u1
...

un

 =


[
ux,uy

]
T
1

...[
ux,uy

]
T
n

 , (7.1.17)

where n denotes the number of time steps.

The residual vector r is defined as the difference between calculated and experimentally
determined displacements

r =


r1
...

r2n

 =



ux,1,cal−ux,1,exp

uy,1,cal−uy,1,exp
...

ux,i,cal−ux,i,exp

uy,i,cal−uy,i,exp
...

ux,n,cal−ux,n,exp

uy,n,cal−uy,n,exp



. (7.1.18)

To minimize the target function

T (p) =

2n∑
i=1

(ri(p)·ri(p)), (7.1.19)

the procedure developed by Levenberg (1944) and Marquardt (1963), the so-called Lev-
enberg–Marquardt algorithm, is used. Briefly, in order to determine the minimum the root
of the gradient vector g being the derivative of the target function T with respect to the
parameters p

g :=
∂T (p)
∂p

, (7.1.20)
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initial guess

no

simulation

yes

fit

calculate new parameters

equation (7.1.29)

Figure 7.2: Flow chart of the inverse analysis to determine the optimal set of material pa-
rameters for each “potential SEF”. Starting with an initial guess of material
parameters p0, a finite element simulation mimicking the experiment is per-
formed. The target function T is calculated from the experimentally and nu-
merically determined displacements. If the target function T is larger than a
given tolerance and the maximal number of iterations jmax is not reached yet,
a new set of material parameters pi+1 is calculated utilizing the Levenberg-
Marquardt algorithm, see equation (7.1.30), and the simulation is performed
again. If the target function T is smaller than the tolerance or the maximal
number of iterations jmax is reached, the procedure is aborted and the optimal
fit is obtained.
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need to be determined. The individual components of the gradient vector g are calculated
as

gl = 2
2n∑
i=1

ri
∂ri

∂pl
. (7.1.21)

The Hessian matrix H is the second derivation of the target function T with respect to the
parameters p

H :=
∂2T (p)

(∂p)2 . (7.1.22)

The individual components of the Hessian matrix H are calculated as

Hkl = 2
2n∑
i=1

(
∂ri

∂pk

∂ri

∂pl
+ ri

∂2ri

∂pk∂pl

)
. (7.1.23)

In order to solve the non-linear problem

g (p) !
= 0 (7.1.24)

the problems is linearized and iteratively solved using the well-known Newton’s method
(also called Newton-Raphson method). The approximation p j+1 is calculated from p j as

p j+1 = p j−H−1g. (7.1.25)

For the Gauss-Newton method the second-order derivative terms are ignored, leading to
the approximation of the Hessian matrix of

Hkl ≈ H̃kl = 2
2n∑
i=1

(
∂ri

∂pk

∂ri

∂pl

)
. (7.1.26)

Introducing the Jacobian-matrix as

Jr =

[
∂ri
∂p j

]
=


∂r1
∂p1

... ∂r1
∂pk

...
...

∂r2n
∂p1

... ∂r2n
∂pk

 , (7.1.27)
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the gradient vector g and the approximate Hessian matrix H̃ can be written as

g = 2Jr
T r, H̃ = 2Jr

T Jr. (7.1.28)

Substituting this in the recurrence equation (7.1.25) yields

p j+1 = p j−
(
Jr

T Jr
)−1

Jr
T r (7.1.29)

which is known as the Gauss-Newton procedure. This methodology can be further im-
proved by introducing a damped version, the Levenberg–Marquardt algorithm

p j+1 = p j−
(
Jr

T Jr +λdiag
(
Jr

T Jr
))−1

Jr
T r, (7.1.30)

with λ being a damping factor that is adjusted at each iteration j. For a fast reduction of the
target function T a small damping factor λ brings the algorithm closer to the Gauss-Newton
method, whereas a larger damping factor λ brings the algorithm closer to the gradient
descent direction. The damping factor λ factor is initially set to 1.0 and adapted with
the help of the relative error, such that λ = λold

T
Told

, with λold and Told being the damping
factor and the target function of the last iteration, respectivly. The loop of simulation
and the calculation of a new set of material parameters terminates once maximal number
of iterations jmax is reached. For the optimization, presented in this study, the maximal
number of iterations jmax is chosen to be 25, since preliminary studies have shown that
by then the target function T has converged to a constant value. Furthermore the stop
criteria of a predefined tolerance turned out to be contra productive for the comparison of
the quality of fit for the “potential SEFs”.

For a better comparison of the error, a normalized form of the target function is used, i.e.

Tn =
1
L

√
T
2n

=
1
L

√∑2n
i=1(ri(p)·ri(p))

2n
. (7.1.31)

This algorithm has already shown good results for soft biological tissue (Kauer et al., 2002;
Mahnken and Stein, 1996; Moulton et al., 1995; Seshaiyer and Humphrey, 2003). How-
ever, one common drawback of most optimization algorithms is that it might only converge
to a local minimum instead of a global minimum. Therefore, in a preliminary study, the
parameter optimization was performed with several randomly picked initial guesses of p.
For example, for the coupled SEF Ψblako, the initial values were chosen in the range of
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G = 5 ... 20 and ν = 0.01 ... 0.49. The result of the optimization procedure was similar in
all six tested cases, yielding G = 8.778±0.01535 and ν= 0.32944±0.00156. Over 90% of
initial guesses converged to the same solution with a minimal error and 10% to a different
solution with a higher error.

This methodology has the advantage that the same deformation and loading state are pro-
duced in the simulation as in the experiment. This means, there is no need for additional
assumption, like a state of uniaxial tension, a plain stress or strain state. This leads to a
globally applicable material model.

7.1.4 Strain Energy Density Function Comparison

In order to evaluate the suitability of a material model, both minimization of the target
function T and limitation of the number of material parameters is of interest. Therefore,
to compare the fitted “potential SEFs”, a variation of the Bayesian information criterion
(BIC) (Hastie et al., 2009) is chosen. This criterion is a measure of the quality of the fit
including the number of model parameters k. It is given by

BIC= log
(

T
2n

)
+

k
2n

log(2n) . (7.1.32)

7.2 Results

7.2.1 Homogenized Lung Parenchyma Model

To obtain an optimal material model for lung parenchymal tissue different coupled and
decoupled SEFs are compared. First, the suitability of the two coupled SEFs given in
equation (7.1.2) and (7.1.3), is investigated. As a next step, several combinations of the
isochoric SEFs Ψiso in combination with the volumetric Ogden SEF Ψvol, ogd are investi-
gated. Thus, the comparison is not restricted to “potential SEFs” presented in literature but
also new recombinations of their summands are tested. Finally, the influence of the three
suggested volumetric SEFs Ψvol is investigated in combination with determined the best fit
for the isochoric SEF Ψiso.

Coupled Strain Energy Density Functions As can be seen in Figure 7.3 and Tab.
7.1, the coupled SEFs (Ψblako and Ψneo) are not able to reproduce the material behavior of
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lung parenchyma in an adequate way. The normalised target function Tn did not converge
towards a comparable low value as for the decoupled SEFs.
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Figure 7.3: Comparison of the parameter optimization of potential coupled strain energy
density functions (SEFs). Comparison between experiment and simulations for
the optimal parameter set. The displacements ux and uy are given in red and
green, respectively.

Decoupled Strain Energy Density Functions As the next step, combinations of iso-
choric SEFs (Ψiso, neo, Ψiso, neo + Ψiso, exp, Ψiso, yeoh and Ψiso, mori) with the volumetric Og-
den SEF Ψvol, ogd are investigated. Due to their higher order terms both Ψiso, neo + Ψiso, exp

and Ψiso, yeoh reproduce the stiffening of the parenchymal slice better than Ψiso, neo and
Ψiso, mori. The combination of Ψiso, yeoh and Ψvol, ogd is the optimal fit in this comparison,
as it is able to reproduce both ux and uy (Figure 7.4 and Table 7.1).
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Figure 7.5: Comparison of the parameter optimization of potential recombined strain en-
ergy density functions (SEFs). Comparison between experiment and simula-
tions for the optimal parameter set. The displacements ux and uy are given in
red and green, respectively.
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The SEFs investigated so far consist of individual summands. For example the isochoric
SEF suggested by Yeoh (1993) Ψiso, yeoh. However, it is unclear whether all summands
are needed for an adequate fit and whether another combination of SEFs summands would
produce a better fit. Therefore different recombinations of the individual summands are
investigated. Most of the SEFs show a good fit to the experimental results (Figure 7.5 and
Tab. 7.1). For clarity, not all tested combinations are shown. Of all tested alternatives,
the combinations Ψiso, lin +Ψiso, quad +Ψiso, cub, Ψiso, mori +Ψiso, quad +Ψiso, cub and Ψiso, lin +

Ψiso, cub were found to have the smallest target function T . This implies that neither the
quadratic summand, nor the Mooney-Rivlin summand, including Ī2, improves the fit.

Figure 7.6 shows the BIC comparison of all “potential SEFs”. The combination Ψiso, lin +

Ψiso, cub has the lowest BIC which implies the best fit.

Volumetric Strain Energy Density Functions Finally, the influence of different vol-
umetric contributions to the overall fit is investigated. It is immediately evident that the
volumetric part has very little influence on the overall error (see Figure 7.7), however, the
convergence behavior is affected by the choice. The fastest rate of convergence is obtained
with the volumetric Ogden SEF Ψvol, ogd. Moreover, this part also turns out to be the most
robust one during the simulations.

Optimal Material Model The comparison of SEFs can be found in Table 7.1 and Figure
7.6. Based on the investigations discussed before, the optimal material model for lung
parenchyma is found to be

96



7.2 Results

Figure 7.6: Comparison of selected “potential SEFs” based on the Bayesian information
criterion (BIC). The crosses indicate the four “potential SEFs” with the lowest
BIC. A detailed comparison between those four “potential SEFs” can be found
in the zoomed window.

Ψpar
(
Ī1, J

)
= Ψiso, lin

(
Ī1
)
+Ψiso, cub

(
Ī1
)
+Ψvol, ogd (J)

= clin
(
Ī1−3

)
+ ccub

(
Ī1−3

)
+
κ

4

(
−2ln J + J2−1

)
(7.2.1)

with the material parameters clin = 1.78kPa, ccub = 18.10kPa, and κ = 44.39kPa.
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Figure 7.7: Comparison of volumetric strain energy density functions (SEFs). Although
the three tested volumetric SEFs Ψvol showed rather similar results, the volu-
metric Ogden SEF Ψvol, ogd is robuster within the simulation and the error de-
creases faster during the optimization process. The zoom window shows that
the differences of the target function Tn between the three volumetric SEFs
Ψvol in the converged state is marginal.

7.2.2 Constituent-Based Lung Parenchyma Model

Although the material model derived in the previous section reliably describes the material
behavior of lung parenchyma it is a purely phenomenological description: To assess the
individual contributions of the load-bearing constituents, a constituent-based model will
be derived in the following. For this purpose the SEF is split up into four individual parts,
representing the load-bearing constituents of the lung parenchyma. The SEF reads

Ψv(C) = ΨCF
(
Ī1, Ī2

)
+ΨEF

(
Ī1, Ī2

)
+ΨFF

(
Ī1, Ī2

)
+ΨGS

(
Ī1, Ī2, J

)
(7.2.2)

where ΨCF represents the contribution of the CF, ΨEF represents the contribution of the
EF, ΨFF represents the contribution of the FF, and ΨGS represents the rest of the tissue
constituents, including the air-spaces. Since the fibers themselves and their interaction do
not contribute to the volume change, the corresponding SEFs only depend on the modified
first invariant Ī1 and second invariant Ī2. For the isochoric parts of the SEFs Ψiso several
“potential SEFs” are investigated. For the volumetric part Ψvol, ogd is chosen, based on the
results of section 7.2.1.
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Table 7.1: Comparison of the normalized target function Tn of optimized “potential SEFs”.

Type of SEF “potential SEF” Tn
Coupled SEFs Ψblako 4.05

Ψneo 3.84
Decoupled SEFs Ψiso, lin +Ψvol, ogd 4.15

Ψiso, lin +Ψiso, exp +Ψvol, ogd 0.86
Ψiso, yeoh +Ψvol, ogd 0.78
Ψiso, mori +Ψvol, ogd 4.15

Recombinations of SEF summands Ψiso, lin +Ψiso, quad +Ψvol, ogd 0.93
Ψiso, lin +Ψiso, quad +Ψiso, exp +Ψvol, ogd 0.89
Ψiso, lin +Ψiso, cub +Ψvol, ogd 0.79
Ψiso, quad +Ψvol, ogd 2.22
Ψiso, quad +Ψiso, cub +Ψvol, ogd 2.26
Ψiso, mori +Ψiso, quad +Ψvol, ogd 0.95
Ψiso, mori +Ψiso, quad +Ψiso, cub +Ψvol, ogd 0.80

7.2.2.1 Contribution of the Individual Constituents

For each of the three tissue constituents, i.e. CF (ΨCF), EF (ΨEF), GS (ΨGS), and FF (ΨFF)
an individual material description (combination of SEFs) is determined. Due to fact that
neither the fibers, nor their interaction influence the volumetric deformation of the tissue,
their SEFs can only be determined in combination with the contribution of the GS, i.e.
ΨGS. For this reason, ΨGS and the corresponding material parameters are determined.
Subsequently, the other two constituents (CF and EF) and the FF are determined, as a
combination of ΨGS and ΨCF, ΨEF, or ΨFF, respectively, are determined. The input stress-
strain curves for the different constituents are shown in Figure 7.8 (cf. chapter (6)).

The BIC comparison of the “potential SEFs” is shown in Figure 7.9. It turns out, that the
combination of Ψiso, lin + Ψiso, pow5 is the best fit for GS, CF, and EF, whereas Ψiso, lin +

Ψiso, pow4 shows the best agreement for FF. The errors and according material parameters
are shown in Table 7.3. The material constants of the EF are the lowest ones, which
correlates to the fact that the calculated stress-strain curve for the EF is the most compliant,
see Figure 7.8.

Hence, the optimal constituent-based material description of homogenized lung
parenchyma is given by
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Figure 7.8: Curves used for the inverse analysis to determine the contribution of the four
individual constituent. GS: ground substance; CF: collagen fibers; EF: elastin
fibers; FF: fiber-fiber interaction.

Table 7.3: Comparison of four different strain energy density function (SEF) combinations
for the isochoric part Ψiso.

SEF SEF terms BIC Tn clin cpow4 cpow5 κ

ΨGS Ψiso, lin +Ψiso, pow5 6.43 0.93 1.629 1.740·102 8.946
ΨCF Ψiso, lin +Ψiso, pow5 7.38 1.53 0.565 1.186·103

ΨEF Ψiso, lin +Ψiso, pow5 6.84 1.17 0.342 4.503·102

ΨFF Ψiso, lin +Ψiso, pow4 7.22 1.41 0.789 1.458·102

Ψpar = ΨCF +ΨEF +ΨFF +ΨGS (7.2.3)

with

ΨCF = 0.565
(
Ī1−3

)
+ 1.186·103

(
Ī1−3

)5
, (7.2.4)

ΨEF = 0.342
(
Ī1−3

)
+ 4.503·102

(
Ī1−3

)5
, (7.2.5)

ΨFF = 0.789
(
Ī1−3

)
+ 1.458·102

(
Ī1−3

)4
, and (7.2.6)

ΨGS = 1.629
(
Ī1−3

)
+ 1.740·102

(
Ī1−3

)5
+

8.946
4

(
−2lnJ + J2−1

)
. (7.2.7)

At small strains the GS shows the stiffest behavior, this can also be seen in the material pa-
rameters, since clin is more than twice as high for the GS than for CF, EF or FF. This means
that at small strains the GS dominates the material behavior, whereas at larger strains the
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Figure 7.9: Comparison of combinations of strain energy density function (SEF) terms for
ΨGS, ΨCF, ΨEF, and ΨFF based on the Bayesian information criterion (BIC).
The black cross indicates the lowest BIC, i.e. the best agreement.
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7 Material Identification

contribution of the fibers rises significantly. Comparing the stress-strain curves of the CF
with the FF, a cross-over point exists, meaning the CF are more compliant at the start but
become stiffer for large strains; this effect is reflected in the material parameters since clin

is smaller for the CF, whereas the higher order term is the smallest for the FF.

7.3 Conclusion

In this chapter, a method to determine a homogenized and a constituent-based material
model for lung parenchyma has been presented. The proposed methodology allows us
to compare the suitability of different existing and new models with each other. In the
literature no SEF can be found that is capable of sufficiently reproducing the complex
compressible, stiffening behavior observed in the experiments presented in chapter 6. To
the author’s knowledge, previously only Gao et al. (2006) determined material parameters
for a SEF describing the homogenized lung parenchyma. However, as mentioned in the
introduction, this approach has some major limitations and an exponential SEF (as they
proposed) is found to be incapable to reproduce the experimental results adequately.

A mayor advantage of this study is that not only the material parameters of one preselected
SEF are optimized but rather many “potential SEF” are compared with each other, in order
to find the optimal material model. Another advantage is the usage of the FEM, because
it reproduces the same loading states for the fitting as the specimen experienced during
the experiment. This means, there is no need for additional assumption, like a state of
uniaxial tension, a plain stress or strain state. This leads to a globally applicable material
model. In order to validate our determined material model a simulation of the biaxial
tensile test performed by Vawter et al. (1978) is performed (data not shown). Qualitatively,
our material model showed good agreement.

Therefore, the constitutive models proposed in this work are the first material models for
lung parenchymal tissue that adequately reflects the complex behavior of lung parenchymal
tissue.

Additionally, the constituent-based material model is the first material model for lung
parenchyma including quantified contributions for the three major load-bearing con-
stituents, i.e. the EF, the CF and the GS, as well as their interaction, i.e. FF.

It is important to note that the methodology presented here can also be used for the de-
velopment of any material model, homogenized as well as constituent-based and hence
should have a large range of applications in the future.
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7.3 Conclusion

The presented material models are used within our virtual lung model (Wall et al., 2010b),
in order to realistically determine the loading of the lung tissue during mechanical ventila-
tion. The homogenized material model can be used to model the influence of the healthy
lung parenchyma, whereas the constituent-based material model can be applied to simulate
healthy as well as diseased parenchymal tissue, e.g. for simulations of fibrosis, where the
fiber density changes dramatically. To do so, the corresponding constituent contribution,
can be increased or completely removed.

To conclude, the development of novel sophisticated constitutive models for homogenized
lung parenchyma and for the individual load-bearing constituents was presented. This
approach will help to model the behavior of the lung tissue and quantify its strains and
stresses during mechanical ventilation.
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8 Local Strain Distribution in Real

Three-Dimensional Alveolar

Geometries

So far, the majority of models found in literature was quantifying the global loading of
the parenchymal tissue. However, for diseases like VALI especially the local loading of
the tissue is important. Hence, there is the need to investigate the connection between
local and global deformation in the lung parenchyma, i.e. how does the complex micro-
structure influence the loading of the tissue at the alveolar and even further down at the
cell level. Therefore, in this section, a FE simulation of alveolar geometries, obtained from
Synchrotron-based X-ray tomographic microscopy (SRXTM), is presented. This scanning
method produces, for the first time, three-dimensional images of alveoli. Due to the high
resolution, it is possible to model the alveolar walls in three-dimensions, including the
actual wall thickness. Additionally, due to the scanning method the imaged specimen can
be extracted from the central region of the lung, i.e. this method is not limited to the pleural
region of the lung. This allows us to obtain a detailed insight into the three-dimensional
deformation of the individual alveolar walls, see Rausch et al. (2011a).

8.1 Methodology

To enable the FE analysis of the deformation behavior of real alveolar geometries, sev-
eral steps are necessary. First, PCLS are prepared from isolated rat lungs, see section
6.1.1 and Martin et al. (1996); Schittny (2008). Second, the slices are scanned in the
Tomographic Microscopy and Coherent Radiology Experiments (TOMCAT) beamline of
the Swiss Light Source (SLS). Third, a three-dimensional volume representation of the
scanned images is created. Fourth, the three-dimensional volume is discretized with a vol-
ume mesh, boundary conditions are applied, and the problem is solved utilizing BACI. In
the following, these steps are explained in more detail.
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8.1.1 Rat Lung Sample Preparation

The samples are prepared according to Schittny (2008). Briefly, the lung of a rat at postna-
tal day 36 is intratracheally filled with 2.5% glutaraldehyde (CH2(CH2CHO)2) in 0.03mol
potassium-phosphate buffer (pH7.4) by instillation via tracheotomy at a constant pressure
of 20cmH2O. In order to prevent recoiling of the lung, this pressure is maintained during
glutaraldehyde-fixation. Subsequently, the lungs are dissected free and immersed into in
the same fixative at a temperature of 4◦C for at least 24h.

The samples are postfixed with 1% osmium tetroxide (OsO4) and stained with 4% uranyl
nitrate (UO2(NO3)2) to increase the x-ray absorption contrast. After dehydration in a
graded series of ethanol, the samples are embedded in Epon 812 using acetone as in-
termedium. The lung samples are glued onto small metal rods of 3.2mm diameter using
AralditeTM.

The handling of animals before and during the experiments, as well as the experiments
themselves, are approved and supervised by the local authorities.

8.1.2 Beamline and Tomographic Imaging

The scanning is performed at the TOMCAT beamline (Stampanoni et al., 2006) at the SLS,
Paul Scherrer Institute, Villigen, Switzerland. The samples are scanned at a beam energy
of 12.601keV, corresponding to a wavelength of 1 Å. After penetration of the sample, the
x-rays are converted into visible light by a scintillator, magnified by diffraction limited mi-
croscope optics (10× magnification) and digitized by a high-resolution 2048×2048 pixel
CCD camera (pco.2000, PCO AG, Kelheim, Germany) with 14bit dynamic range. The
detector is operated in 2×2 binning mode. As a result, each recorded projection has a size
of 1024×1024 pixels corresponding to 1.48µm, the exposure time is 108ms.

1501 projections, at equiangular positions between 0◦C and 180◦C, are recorded. The
projections are post-processed and rearranged into flat field-corrected sinograms prior to
being reconstructed into tomographic slices on a 16-node computing cluster using a highly
optimized filtered back-projection routine. Details of the imaging workflow and recon-
struction setup were described by Hintermüller et al. (2010). The resulting tomographic
data set is a stack of 1024 16-bit-tiff-images, see Figure 8.1.
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Figure 8.1: Synchrotron-based X-ray tomographic microscopy image of rat lung
parenchyma. The specimen is imaged in the TOMCAT beamline of the Swiss
Light Source with a voxel size of 1.48×1.48×1.48µm.

8.1.3 Segmentation

In the next step, the images are segmented utilizing the commercially available software
Amira 4.1.2 (Mercury Computer Systems, (Stalling et al., 2005)). For the segmentation
itself the ’magic wand’ tool, which is a combination of a threshold and region growth,
is the most efficient. In order to assess the accuracy of the segmented geometry, the air-
tissue ratio is compared with previously published data of Tschanz et al. (2003). The ratio
determined for the segmented geometry shows good agreement with these results.

8.1.4 Meshing and Boundary Conditions

After creation of the geometry, a mesh is generated with the Surface Tesselation Language
(STL) meshing package Harpoon (www.sharc.co.uk). Due to the complexity of the ge-
ometry, tetrahedral elements are utilized for the FE discretization. For the calculations
presented in the following, a newly developed uniform nodal strain tetrahedral element
with isochoric stabilization is used. The element is based on the linear interpolation used
in the classical displacement-based tetrahedral element formulation but applies nodal av-
eraging of the deformation gradient to improve the mechanical behavior. Especially in the
regime of near-incompressibility, where classical linear tetrahedral elements perform very
poorly, this element shows good performance (Gee et al., 2009).

In a refinement study, four different meshes are compared. A summary of mesh details
is given in Table 8.1. The base level represents the average size of one side of a regular
tetrahedron. Example slices through the meshes with base levels of 4.23µm and 2.11µm
are shown in Figure 8.2. The study shows that with a base level of 3.17µm, the FE solution
can be considered as being converged, see Figure 8.3.
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Figure 8.2: Cut through the mesh (a) with base level 2.11µm and (b) with base level
4.23µm.
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Figure 8.3: Refinement study to test the mesh quality. Four different mesh sizes are com-
pared. The base level represents the average size of one side of a regular tetra-
hedron. The strains over a line within the cube are plotted. The strain magni-
tude does not change significantly between the base levels 2.11 and 3.17µm,
i.e. the solution can be considered as being converged.

To evaluate the influence of boundary effects, two different cubes, one with 158.57µm and
the other one with 317.14µm side length, are compared, see Figure 8.4. These cubes will
be referred to as the “small cube” and the “large cube”, respectively.

To investigate the relation of global and local deformations in the lung tissue, two different
loading stats, i.e. uniaxial tension and shear deformation, are applied to the samples. In
both cases, the deformation is applied as a Dirichlet boundary condition. While the defor-
mation of the bottom surface is completely fixed, the top surface is either pulled upwards
or pushed in the transverse direction depending on the considered load case, see Figure
8.5.
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Table 8.1: Alveolar meshing statistics
Base level Elements Degrees of freedom
5.29µm 577990 397020
4.23µm 1164023 750297
3.17µm 2727686 1669446
2.11µm 8573680 5003121

Figure 8.4: Two tested cubes of lung tissue, the “small cube” has a side length of 158.57µm
and the “large cube” has a side length of 317.14µm. Both cubes are elongated
5% of their initial side length. The coloring shows strain hotspot areas of the
1st principal strain which are larger than 10%.

8.1.5 Simulation

The computations are performed with BACI. To model the material behavior of the in-
dividual alveolar walls, a Neo-Hookean formulation suggested by Holzapfel and Gasser
(2001) is used

Ψneo, Holzapfel = E
1

4(1− ν)
(I1−3) + E

(1−2ν)
4ν(1 + ν)

(I
− ν

1−2ν
3 −1), (8.1.1)

with ν being the Poisson’s ratio and E being the Young’s modulus. For the definition
of the constants see Appendix A.2.4 and A.2.1. Due to the fact that the tissue mainly
consists of water, it is considered as nearly incompressible (ν = 0.49). The value for E
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Figure 8.5: The tested deformation states are uniaxial tension and simple shear deforma-
tion of the cubes.

is fitted to experimentally determined curves (E ≈ 6.75kPa), see chapter 6. The material
model is only the first approximation, more detailed investigations will follow in the future.
However, since the presented study is interested in the local strain distribution, rather than
the local stress field, the material model is of secondary interest.

Due to the negative hydrostatic pressure in the pleural space, it can be assumed that the
tissue is under tension all the time (Suki and Bates, 2008). Hence, tissue folding and
unfolding at lower volumes is not considered.

8.2 Results

In a first step, strain hotspots i.e. the regions of the tissue cube with the highest strain
values, are identified. Figure 8.4 shows a comparison of the strain hotspots for both cube
sizes under 5% uniaxial elongation. Due to the complex geometry, only the 1st (largest)
strain eigenvalues which are larger than 0.1, are shown, the remaining tissue is set to be
transparent.

The most important finding is that local strains are much higher than the global extension
of the cubes. This is of course expected but now can be quantified for the first time. It turns
out that local strains can be up to four times higher than global strains. Additionally, the
strain hotspots occur within the thinnest parts of the cube since there is less tissue to resist
the deformation. This leads to an uneven strain distribution throughout the parenchymal
tissue. Thin regions become overstretched, whereas regions with tissue accumulation re-
main relatively unchallenged. A further observation is that there are higher peak strains in
the “large cube” than in the “small cube”. This is potentially due to boundary effects as
will be discussed in the latter. This hypothesis is supported by the fact that in both cubes
the hotspots occurred predominantly in the central regions.

In a next step, a local hotspot is investigated in more detail. Figure 8.6 shows the distribu-
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tions of the 1st, 2nd, and 3rd strain eigenvalues. The 1st eigenvalues are positive, whereas
the 2nd and the 3rd eigenvalues are both negative and of much smaller magnitude. How-
ever, the strain patterns are similar for all three eigenvalues, i.e. the peak values occur in
the thinnest part of the structure.

Figure 8.6: 1st, 2nd, and 3rd strain eigenvalues of a hotspot, with the arrow indicating the
direction of the uniaxial stretch. To enable a better comparison, the color-maps
of the 2nd and 3rd strain eigenvalue are inverted.

Figure 8.7: Comparison between uniaxial tension and shear deformation of the “small
cube” (side length 158.57µm). The colors indicate the first (largest) eigenvalue
of the strain tensor.

The corresponding eigenvectors for a slice through this hotspot show the 1st eigenvectors
pointing towards the pulling direction, whereas the 2nd and 3rd eigenvectors lie within the
normal plane of the pulling direction (data not shown). It is noteworthy that within the
plane the eigenvectors do not follow a preferred direction. This behavior can be explained
by the incompressibility of the tissue, i.e. if the tissue is stretched in one direction it has to
be compressed in another direction. The compression seems to be quite evenly distributed
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within the normal plane of the pulling direction, therefore no preferred direction could be
determined within this plane.

Furthermore, uniaxial tension and simple shear deformation are compared. In both cases,
there is a deformation of 5% of the initial cube side length, see Figure 8.5. This deforma-
tion is oriented in transversal direction for the shear deformation and in axial direction for
the tensile deformation, as can be seen in Figure 8.7.

Clearly the peak strain values are much higher for the uniaxial tension than for the shear
deformation. However, they occur in similar regions within the geometry, i.e. the above-
mentioned thinner parts of the structure. These observations are valid for all three strain
eigenvalues. Additionally, the distribution of the eigenvectors in a strain hotspot (data
not shown) is investigated. The distribution is found to be similar for shear and tensile
displacement, although there is a difference in magnitude.

Finally, the influence of the boundary conditions is investigated by comparing the strain
distributions of the following four different cases:

1. the “small cube” under 5% uniaxial elongation (small cube);

2. the “large cube” under 5% uniaxial elongation (large cube);

3. the “small cube” under 5% shear deformation (shear); and

4. the center region of the “large cube”, i.e. the region of equivalent size to the “small
cube” in the center of the “large cube”, under 5% uniaxial elongation (center region),

see Figure 8.8. It is obvious and expected that all distributions are skewed towards lower
strain values, since there are only a few strain hotspots. One of the main findings is that
even though the mean and the standard deviation are higher for the “small cube”, the
extreme values are higher for the “large cube”, see Figure 8.8. If only the central region of
the “large cube” is considered, the mean, standard deviation, and median are higher than
all other scenarios. Additionally, the difference between the mean and the median which
can be seen as a measure of the skewness of the distribution, is greatest. This backs up our
assumption that more strain hotspots are developed in the “large cube”, due to a reduction
of boundary effects. However, to put this in perspective, it has to be mentioned that this
mainly affects the outliers whereas the main distributions are rather similar.

Another interesting fact is that the mean values of all four evaluated distributions are at
least twice as small as the 5% global strain. Furthermore, 90% of the local strains are
below 5%. This shows clearly that there are only certain hotspots in the tissue, which
have much higher strain values, whereas the majority of the tissue remains in a rather low
deformation state.
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Figure 8.8: Comparison of the statistical distribution of the 1st principal strain for four
different cases. First, the “small cube” under 5% uniaxial elongation (small
cube), second, the “large cube” under 5% uniaxial elongation (large cube),
third, the “small cube” under 5% shear deformation (shear) and fourth, the
center region of the “large cube”, i.e. a region of equivalent size to the “small
cube” in the center of the “large cube”, under 5% uniaxial elongation (center
region). The whiskers include 99.98% and the boxes 50% of all measurement
points (outliers are not shown). The red lines in the center of the boxes are the
medians and the dots denote the means.

Finally, the distribution of the shear deformation is found to have a much smaller mean and
standard deviation. The smaller standard deviation is expected due to the more uniform
deformation in the cube and the lower mean is a consequence of the smaller amount of
hotspots.

8.3 Discussion

In this chapter FE simulations of SRXTM-based alveolar geometries are presented. This
method allows us, for the first time, to determine local three-dimensional strain states in
high-resolution image-based alveolar geometries.

In contrast to previous experimental approaches (Brewer et al., 2003; Cavalcante et al.,
2005; DiRocco et al., 2005; Perlman and Bhattacharya, 2007), which can only calculate
an averaged extension for each of the alveolar walls, the method presented in this work is
able to determine a three-dimensional strain state throughout the thickness of the tissue.

A direct comparison with other numerical approaches is difficult, since the studies in lit-
erature are investigating very regular artificially generated geometries, which of course
reduces the heterogeneity of the strain field. Furthermore, they mainly investigate specific
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effects, rather than developing a general model, see Cavalcante et al. (2005); Denny and
Schroter (2006). The only other FE study on real alveolar geometries was performed by
Gefen et al. (1999). However their model was limited to two-dimensional geometries.

A further advantage of the presented method is the quality of the newly developed sta-
bilized node-based uniform strain tetrahedron. The problem with normal tetrahedral ele-
ments is that they produce parasitic stresses for nearly incompressible materials, leading to
too stiff behavior. With the nodal strain tetrahedron, however, these so-called volumetric
locking effects can be neglected.

8.4 Conclusion

From the FE analysis, two main conclusions can be drawn. First, there are certain hotspots
in the alveolar geometry which are especially at risk for overstretching. These obviously
tend to be in the thinnest regions. Second, a small global strain can lead to significantly
larger local strains. These conclusions are found to be independent of the loading type.

Looking at in vitro experiments on alveolar type II cells (Ning and Wang, 2007; Vlahakis
et al., 1999; Chandel and Sznajder, 2000; Copland and Post, 2007), there is disagreement
on how much stretch causes inflammatory reactions. The numbers range from strains
of 0.05 up to strains of 0.3, see section 4.1.4. Comparing these values with the local
peak strains found in the presented simulations, a global strain of 0.05 turns out to be
sufficient to cause inflammation in any cases, since it causes local strains of up to 0.4 which
is higher than every threshold value reported in literature. This presents an interesting
observation as it suggests that the amount of stretching done in these experiments may not
be representative of the in vivo environment or at the very least maybe an underestimation.
This large increase in strain from the global to the local level shows that inflammatory
reactions potentially initiate much earlier than previously thought.

For this reason, the presented simulations will be included within a multi-scale approach
for alveolar ensemble (Wiechert and Wall, 2010). This allows us to project the global
parenchymal deformation down to the level of a single alveolar ensemble, in order to
provide realistic boundary conditions. This method has the advantage that local alveolar
strain fields in large geometries, for example PCLS, can be determined.

Dassow et al. (2010) recently measured calcium fluxes, which are known to be induced by
lung stretch, within the alveolar walls of these PCLS in a bioreactor. With this experimental
approach and our computational models, the local strain fields in PCLS could be directly
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compared with the locations of increased calcium fluxes, hence providing a mechanical-
biological pathway for the initiation of ventilator-induced lung inflammation.

The presented model does not include any surface tension effects. Hence in reality, an
overall stiffer behavior can be expected. To investigate these effects further, a surface
tension model developed previously by Wiechert et al. (2009) will be included in the future.
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9 Summary and Outlook

In this thesis, sophisticated material models for alveolar parenchyma were developed. With
these material models stresses and strains in the parenchymal tissue can be determined.
Furthermore, the relation between these global stresses and strains and the deformation
within individual alveolar walls was determined by performing FE simulations of image-
based three-dimensional alveolar geometries.

In the following, a short overview of the achievement of the specific aims, defined in
section 5, is given.

AIM 1 To develop an experimental testing protocol in order to determine the

elastic material behavior of lung parenchyma.

This aim was achieved. An experimental protocol in order to determine the material be-
haviour of lung parenchyma is developed. This testing procedure includes a precondi-
tioning protocol, needed to eliminate viscous effects. The three major advantages of the
proposed testing protocol are:

1. The slice dimensions are reproducible.

2. Several specimens per animal can be tested.

3. The specimens are still viable during testing.

A drawback of the testing protocol is the lateral contraction is very coarse. This is due to
the low time and space resolution of the utilized camera. For the future, image tracking
with a high-resolution camera is suggested. This could further improve the experimental
results, for the reasons described below:

1. The higher spatial resolution increases the accuracy of the measured values.

2. The higher time resolution increases the number of measured values.

3. Automatic image tracking, in comparison to the manual tracking used in this work,
can reduce the post-processing time of the experiment.
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4. Image tracking allows to determine a strain field, rather than individual points, which
would increase the accuracy of the fit.

AIM 2 To extend the experimental methodology to investigate the influence of

the individual tissue constituents (CF and EF).

This aim was achieved. An experimental protocol, which allows the determination of
the influence of the individual tissue components and their interaction was developed It
determines the influence of the ground substance (GS), the collagen fibers (CF), the elastin
fibers (EF) and their interaction (FF). The presented protocol allows for the first time to
quantify the contribution of these components. Despite the fact that it was tested that the
individual fiber networks were destroyed, it remains unclear if leftover fibers remain in
the tissue. These remnants could cause artificial changes in the determined stress-strain
curves. A possibility to investigate the influence of the remaining fiber parts would be to
perform the tensile tests under a 2-photon microscope. This has the advantage that fibers
are visible and the amount of remaining fibers could be documented and included in the
studies.

Furthermore, since the lung tissue is viscoelastic the experimental protocol will need to be
extended, in order to enable the characterization of time-dependent effects.

AIM 3 To develop an inverse analysis methodology in order to deduce a

hyperelastic material model for soft biological tissue from experiments.

This aim was achieved. An inverse analysis methodology to determine hyperelastic ma-
terial models for soft biological tissues from experimental results was developed. Suit-
able non-linear, compressible and elastic mathematical models were formulated (“poten-
tial SEF”), which reproduce the experimentally determined behavior in an adequate way.
To optimize the material parameters of a “potential SEF”, the experiment is simulated with
varying material parameters, according to an optimization algorithm, until the optimal fit
for a predefined target function is achieved. Using this methodology several “potential
SEFs” were compared with each other in order to determine the material model that is
suited best to describe the complex behavior of lung parenchyma. The advantages of this
methodology are described below:

1. Due to the fact that a three-dimensional deformation state of the specimen during
the experiment can be accurately mapped with the FE simulation, the approach is
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not limited to a specific strain or stress state, like for example uni-axial tension. As
a consequence, the determined SEF can predict other strain-states as well.

2. The optimization is implemented directly in the FE code. Hence, no additional pro-
grams are necessary.

3. The methodology is not limited to lung tissue. It can be applied to any material and
is suitable for arbitrary behavior including viscoelastic and anisotropic materials.

AIM 4 To determine a phenomenological and a constituent-based material

model for lung parenchyma.

This aim was achieved. Two material models for lung parenchyma, a phenomenological
and a constituent-based approach, were determined. The constituent-based material model
is the first material model quantitatively accounting for the contribution of individual fiber
families and their interaction. The material models will be used within our virtual lung
model for the following applications:

• Simulation of diseases, like fibrosis, in order to get a better understanding of the
underlying processes.

• Comparison of the influence of different ventilation protocols on stresses and stains
in the parenchymal tissue, in order to compare the outcome of different ventilation
strategies.

In the future, further experiments are needed in order to validate the predictive behavior
of the material models. Furthermore, the material models need to be extended, in order to
include viscoelastic effects. Additionally, due to the fact that a constituent-based material
model includes individual summands for both fiber families, the fiber density distribution
can be included in our virtual lung model. This means that the contribution of the individ-
ual constituents can be correlated with the fiber density distribution gained from imaging.
This would allow us to consider spatial differences and improve the localization of risk
areas within the alveolar tissue.

AIM 5 To perform a FE simulation on image-based alveolar geometries, in

order to determine the deformation within the alveolar walls for a given global

deformation state.

This aim was achieved. The deformation within the alveolar wall was determined, using
FE simulations with image-based alveolar geometries. The two main conclusions of the
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FE analysis are that:

1. There are certain hotspots in the alveolar geometry, which are especially at risk of
overstretching.

2. A small global strain can cause up to a fourfold as high local strains within thin
tissue regions.

One major problem with this type of simulations is the large size of the discretization,
making the simulation numerically very expensive. For this reason, it should be investi-
gated whether the image-based alveolar geometries could be replaced by artificially gen-
erated alveolar geometries, see Wall et al. (2010b). The advantage of artificially generated
geometries is that, due to their regular shape, they can be meshed with less hexahedral
elements, which reduces the computational effort.

Furthermore, the influence of the surface tension on the strain-peaks will need further
attention. Since the surface tension always works against the deformation it needs to be
investigated whether including the surface tension effects will even out the deformations
and reduce the peak strains. This could be further investigated by including a previously
developed surfactant model in the simulations (Wiechert et al., 2009).

In the next step, a material model for the individual alveolar wall will be determined. For
this reason, the material model fitting procedure will be combined with a previously de-
veloped multi-scale approach (Wiechert and Wall, 2010). With this method, the behavior
on the parenchymal level and on the alveolar level can be simulated simultaneously. The
macro-scale (parenchymal level) gives its deformation state (F) to the micro-scale (alve-
olar level), thereby defining a boundary condition for alveolar simulations similar to the
scenario investigated in chapter 8. After having performed the alveolar simulation, the ho-
mogenized parenchymal stresses are determined by averaging over the cube volume. The
resulting stresses (S) are returned to the macro-scale. Hence, the micro-scale acts like a
material model for the macro-scale. In order to determine the material parameters for the
micro-scale, a similar simulation as introduced in chapter 7 is performed. However, in
this case the material parameters of the micro-scale are fitted. A preliminary study, with
a simplified micro-structure has already shown that the methodology is suitable to deduce
micro-scale parameters from macroscopic experiments, see Figure 9.1.
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Figure 9.1: Preliminary study for combining a multi-scale approach with the inverse anal-
ysis methodology developed as part of this work. The micro-scale, i.e. the
alveolar geometry is simplified with a cube with a whole in the middle. The
material parameters are fitted on the micro-scale such that the macroscopic
response is in optimal agreement with the experiment. The locally different
states of deformation in the micro-scale can be clearly seen on the exemplarily
displayed micro-scale cubes.

Summing up, in this study a general methodology for determining material models for
soft biological tissues was introduced. Furthermore, two sophisticated material models
for lung parenchyma were determined, a phenomenological one and a model accounting
for the contribution of the individual constituents of the micro-structure. These material
models can be utilized within our virtual lung model in order to determine global strains
and stresses in the lung tissue. Another major achievement of this work is the quantitative
correlation of these global deformation states with three-dimensional strain distributions in
individual alveolar walls. These strains are of utmost importance, since they are the trigger
causing inflammatory reactions during VALI. Hence, the developed approaches are essen-
tial to promote further understanding of this disease and formulate improved protective
ventilation protocols in the future.
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A Appendix

A.1 Important Theorems

A.1.1 Reynolds Transport Theorem

d
dt

∫
Bt

(•)dv =

∫
Bt

(
˙(•) + (•)∇ ·v

)
dv =

∫
∂Bt

(•) (v ·n) da (A.1.1)

A.1.2 Gauss’ Divergence Theorem∫
Bt

∇ ·Gdv =

∫
∂Bt

G ·nda. (A.1.2)

A.2 Common Constants in Material Science

In solid mechanics, there are multiple commonly used stiffness measures which can also
be transformed into each other.

A.2.1 Young’s Modulus

The slope of the stress-strain curve at any point is called the tangent modulus, it is a mea-
sure of the stiffness of the material. The tangent modulus of the initial, linear portion of
a stress-strain curve is called Young’s modulus E. It can be experimentally determined
from the slope of a stress-strain curve created during tensile tests. It is always positive and
defined as the ratio of the uniaxial stress over the uniaxial strain, see

E =
tensile stress
tensile strain

[
N

mm2

]
. (A.2.1)

Anisotropic materials have different Young’s moduli depending on the direction of the
applied force with respect to the material’s structure.
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A.2.2 Bulk Modulus

The bulk modulus κ describes the resistance of a material against compression. It is always
positive and defined as

κ =−V
∂p
∂V

[
N

mm2

]
(A.2.2)

with p being the pressure and V being the volume. The minus arises from the fact that with
increasing pressure the volume decreases, however the bulk modulus κ is defined positive.
The inverse of the bulk modulus is a measure for the compressibility of a substance.

A.2.3 Shear Modulus

The shear modulus G, also known as modulus of rigidity or Lamé’s second parameter,
describes the resistance against shear deformation. It is always positive and defined as

G =
shear stress
shear strain

[
N

mm2

]
(A.2.3)

in the range of a linear stress-strain curve.

A.2.4 Poisson’s Ratio

The Poisson’s ratio ν is the ratio of the strain perpendicular to the applied load (εtrans), to
the strain in the direction of the applied load (εaxial), i.e.

ν =−εtrans

εaxial
[−] . (A.2.4)

The Poisson’s ratio of a stable material cannot be less than −1.0 or greater than 0.5 due to
the requirement that E, G, and κ have positive values.

A.2.5 Lamé’s first parameter

Lamé’s first parameter λ is is defined as

λ =
E

(1 + ν) (1−2ν)
. (A.2.5)
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Although, Lamé’s first parameter λ can be negative in principal, it is positive for most
materials.

A.2.6 Transformation of Stiffness Measures

The transformation of the above introduced stiffness measures into each other is shown in
Table A.1.

Table A.1: Transformation of the different stiffness moduli into each other.
Young’s modulus E bulk modulus κ shear modulus G Lamé’s first parameter λ

E 3κ(1−2ν) 2G(1 + ν) λ(1+ν)(1−2ν)
ν

κ E
3(1−2ν)

2G(1+ν)
3(1−2ν)

λ(1+ν)
3ν

G E
2(1+ν)

3κ(1−2ν)
2(1+ν)

λ(1−2ν)
2ν

λ Eν
(1+ν)(1−2ν)

3κν
1+ν

2Gν
1−2ν

A.3 Common Constants in Physiology

A.3.1 Compliance

The tendency of a hollow organ to resist recoil towards its original dimensions is called
compliance. The compliance of the lung is defined as the slope of the p-V curve, it can be
approximated with

compliance =
∆V
∆p

[
l

kPa

]
,

[
ml

cmH2O

]
. (A.3.1)

As most other relationships in medicine, the p-V curve of the lung is non-linear, i.e. the
compliance changes according to the loading stage of the system.

A.3.2 Elastance

The reciprocal value of the compliance is called elastance.
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A.3.3 Resistance

To keep gas flowing through a pipe (V̇ > 0), a pressure change (∆p) is needed. The ratio
between pressure change and resulting flow is defined as resistance. The resistance equals
the slope of the pressure-flow curve and can be calculated as

resistance=
∆p
V̇
. (A.3.2)

A.4 Common Statistical Measures

A.4.1 Mean

In this work, the term mean refers to the arithmetic mean, which is calculated as

mean =
1
n

·
n∑

i=1

xi, (A.4.1)

with n being the number of measurements and xi being the individual measurement values.

A.4.2 Standard Deviation

The standard deviation (sd) of a sample calculates as

sd =

√√
1
n

n∑
i=1

(xi−mean)2 (A.4.2)

with the mean given in equation (A.4.1), n being the number of measurements, and xi

being the individual measurement values.

A.4.3 Coefficient of Variation

The coefficient of variation (CV) is defined as

CV =
sd

mean
(A.4.3)

the mean and sd given in equation (A.4.1) and (A.4.2), respectively.
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