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ABSTRACT

We propose a novel multi-stream framework for continuous con-
versational speech recognition which employs bidirectional Long
Short-Term Memory (BLSTM) networks for phoneme prediction.
The BLSTM architecture allows recurrent neural nets to model long-
range context, which led to improved ASR performance when com-
bined with conventional triphone modeling in a Tandem system. In
this paper, we extend the principle of joint BLSTM and triphone
modeling to a multi-stream system which uses MFCC features and
BLSTM predictions as observations originating from two indepen-
dent data streams. Using the COSINE database, we show that this
technique prevails over a recently proposed single-stream Tandem
system as well as over a conventional HMM recognizer.

Index Terms— Long Short-Term Memory, Context Modeling,
Conversational Speech Recognition, Recurrent Neural Networks

1. INTRODUCTION

Since automatic speech recognition (ASR) is increasingly applied in
systems for natural human-machine interaction, such as conversa-
tional agents [1], robustly recognizing spontaneous, conversational,
disfluent, and noisy speech is a challenge that has to be addressed
by today’s research on ASR systems. Thus, in recent years a large
number of different strategies to cope with conversational and noisy
speech has been proposed, including the disciplines of speech sig-
nal preprocessing, feature enhancement, as well as speech and non-
linguistic vocalization modeling [2, 3].

Most studies concentrate on improving the front- or back-end of
ASR systems based on Hidden Markov Models (HMM), however,
strategies towards improving ASR in challenging conditions by com-
bining the HMM principle with multilayer perceptrons (MLP) or re-
current neural networks (RNN) are gaining more and more attention
[4, 5, 6]. These techniques can be roughly categorized into hybrid
approaches that apply neural networks to generate state posteriors
for HMMs, and Tandem approaches that use the network output as
features instead of (or in combination with) standard cepstral fea-
tures. However, conventional recurrent neural networks have some
drawbacks which limit the performance of hybrid or Tandem tech-
niques. One such shortcoming is the so-called vanishing gradient
problem that causes the backpropagated error in RNNs to either blow
up or exponentially decay over time [7] and restricts the amount of
context that RNNs can access and model. Yet, due to co-articulation
effects in human speech, modeling a sufficient amount of context
during speech feature generation and processing is essential. On a
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higher level, context in speech is usually modeled via triphones and
language models, while on the feature level most ASR systems in-
corporate only a very limited and inflexible amount of context, e. g.
by using first and second order regression coefficients of low-level
features as additional observations or by ‘stacking’ a fixed number
of successive feature frames. Considering a higher amount of con-
text on the feature level has only been attempted in a few studies,
including [8].

An elegant and efficient way to enable long-range context mod-
eling with recurrent neural networks has been proposed in [9] and
refined in [10]: bidirectional Long Short-Term Memory (BLSTM)
networks are able to model a self-learned amount of contextual infor-
mation by using memory blocks in the hidden layer of RNNs. This
technique overcomes the vanishing gradient problem and was shown
to prevail over the triphone principle [11]. Furthermore, the usage
of BLSTM phoneme prediction has led to significant performance
gains for phoneme classification and keyword spotting [12, 13, 1].
A first study on incorporating BLSTM networks in a Tandem sys-
tem for continuous speech recognition has been presented in [14].

Building on the Tandem technique proposed in [14], which uses
BLSTM phoneme predictions as additional feature vector compo-
nents, this paper introduces a multi-stream BLSTM-HMM architec-
ture that models the BLSTM phoneme estimate as a second inde-
pendent stream of observations. We show that the proposed multi-
stream approach allows for more accurate modeling of observed
phoneme predictions and outperforms the Tandem strategy outlined
in [14] when trained and tested on the COSINE corpus [15] contain-
ing noisy conversational speech. An on-line version of the proposed
multi-stream technique is currently applied in the SEMAINE1 sys-
tem (version 3.0), a multimodal conversational agent based on our
open-source speech processing toolkit openSMILE [16].

This paper is structured as follows: Section 2 outlines the prin-
ciple of Long Short-Term Memory (LSTM), Section 3 introduces
our multi-stream BLSTM-HMM architecture, Section 4 gives an
overview over the COSINE corpus which we used to evaluate our
system, and Section 5 shows experimental results.

2. BIDIRECTIONAL LONG SHORT-TERM MEMORY

This section briefly introduces the principle of Long Short-Term
Memory networks which we use in order to generate context-
sensitive phoneme predictions in our multi-stream ASR system
(see Section 3).

The analysis of the error flow in conventional recurrent neural
nets led to the finding that long range context is inaccessible to stan-
dard RNNs since the backpropagated error either blows up or decays
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Fig. 1. LSTM memory block consisting of one memory cell: input,
output, and forget gate collect activations from inside and outside the
block which control the cell through multiplicative units (depicted as
small circles); input, output, and forget gate scale input, output, and
internal state respectively; ai and ao denote activation functions; the
recurrent connection of fixed weight 1.0 maintains the internal state.

Fig. 2. Structure of a bidirectional network with input i, output o, as
well as two hidden layers (hf and hb).

over time (vanishing gradient problem [7]). This led to the intro-
duction of Long Short-Term Memory RNNs [9]. They are able to
overcome the vanishing gradient problem and can learn the optimal
amount of contextual information relevant for the classification task.

An LSTM layer is composed of recurrently connected memory
blocks, each of which contains one or more memory cells, along
with three multiplicative ‘gate’ units: the input, output, and forget
gates. The gates perform functions analogous to read, write, and
reset operations. More specifically, the cell input is multiplied by the
activation of the input gate, the cell output by that of the output gate,
and the previous cell values by the forget gate (see Figure 1). The
overall effect is to allow the network to store and retrieve information
over long periods of time.

Another problem with standard RNNs is that they have access
to past but not to future context. This can be overcome by using
bidirectional RNNs, where two separate recurrent hidden layers scan
the input sequences in opposite directions. The two hidden layers
are connected to the same output layer, which therefore has access
to context information in both directions. The amount of context
information that the network actually uses is learned during training,
and does not have to be specified beforehand. Figure 2 shows the
structure of a simple bidirectional network.

Combining bidirectional networks with LSTM gives bidi-
rectional LSTM, which has demonstrated excellent performance
in many sequence labeling or pattern recognition tasks such as
phoneme recognition [10], keyword spotting [12], and emotion
recognition from speech [17].

3. MULTI-STREAM BLSTM-HMM

The structure of our multi-stream decoder can be seen in Figure 3:
st and xt represent the HMM state and the acoustic (MFCC) feature
vector, respectively, while bt corresponds to the discrete phoneme
prediction of the BLSTM network (shaded nodes). Squares denote
observed nodes and white circles represent hidden nodes. In ev-
ery time frame t the HMM uses two independent observations: the
MFCC features xt and the BLSTM phoneme prediction feature bt.
The vector xt also serves as input for the BLSTM, whereas the size
of the BLSTM input layer it corresponds to the dimensionality of
the acoustic feature vector. The vector ot contains one probability
score for each of the P different phonemes at each time step. bt is
the index of the most likely phoneme:

bt = argmax
j

(ot,1, ..., ot,j , ..., ot,P ) (1)

In every time step the BLSTM generates a phoneme prediction ac-
cording to Equation 1 and the HMM models x1:T and b1:T as two
independent data streams. With yt = [xt; bt] being the joint feature
vector consisting of continuous MFCC and discrete BLSTM obser-
vations and the variable a denoting the stream weight of the first
stream (i. e., the MFCC stream), the multi-stream HMM emission
probability while being in a certain state st can be written as

p(yt|st) =
[

M∑
m=1

cstmN (xt;μstm,Σstm)

]a

× p(bt|st)2−a. (2)

Thus, the continuous MFCC observations are modeled via a
mixture of M Gaussians per state while the BLSTM prediction is
modeled using a discrete probability distribution p(bt|st). The in-
dex m denotes the mixture component, cstm is the weight of the
m’th Gaussian associated with state st, and N (·;μ,Σ) represents
a multivariate Gaussian distribution with mean vector μ and covari-
ance matrix Σ. The distribution p(bt|st) is trained to model typi-
cal phoneme confusions that occur in the BLSTM network. In our
experiments, we restrict ourselves to the 15 most likely phoneme
confusions per state and use a floor value of 0.01 for the remaining
confusion likelihoods.

Note that the usage of bidirectional context implies a short look-
ahead buffer, meaning that recognition cannot be performed truly
on-line. However, for many recognition tasks it is sufficient to obtain
an output, e. g., at the end of an utterance, so that both, forward and
backward context can be used during decoding.

4. THE COSINE CORPUS

All experiments presented in Section 5 are speaker-independent and
were carried out using the ‘COnversational Speech In Noisy Envi-
ronments’ (COSINE) corpus [15] which is a relatively new database
containing multi-party conversations recorded in real world environ-
ments. The recordings were captured on a wearable recording sys-
tem so that the speakers were able to walk around during record-
ing. Since the participants were asked to speak about anything they
liked and to walk to various noisy locations, the corpus consists
of natural, spontaneous, and highly disfluent speaking styles partly
masked by indoor and outdoor noise sources such as crowds, vehi-
cles, and wind. The recordings were captured using multiple micro-
phones simultaneously, however, to match most application scenar-
ios, we exclusively used speech recorded by a close-talking micro-
phone (Sennheiser ME-3).
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Fig. 3. Architecture of the multi-stream BLSTM-HMM decoder:
st: HMM state, xt: acoustic feature vector, bt: BLSTM phoneme
prediction feature, it, ot, h

f
t /hb

t : input, output, and hidden nodes
of the BLSTM network; squares correspond to observed nodes,
white circles correspond to hidden nodes, shaded circles represent
the BLSTM network.

We used all ten transcribed sessions, containing 11.40 hours of
pairwise conversations and group discussions. All 37 speakers are
fluent, but not necessarily native English speakers. Each speaker
participated in only one session and the speakers’ ages range from
18 to 71 years (median 21 years).

For our experiments, we used the recommended test set (ses-
sions 3 and 10) which comprises 1.81 hours of speech. Sessions
1 and 8 were used as validation set (2.72 h of speech) and the re-
maining six sessions made up the training set. The vocabulary size
is 4.8 k, whereas the out-of-vocabulary (OOV) rate in the test set is
3.4 %. Apart from our preliminary results reported in [14], to the
best of our knowledge, there exist no benchmark ASR results for the
COSINE corpus so far.

5. EXPERIMENTS AND RESULTS

Using the COSINE corpus, we evaluated the framewise phoneme
recognition rate of different network architectures and compared it
to a triphone HMM phoneme recognizer. Furthermore, we compared
the word accuracy obtained by the multi-stream system introduced
in Section 3 with the performance of the Tandem approach proposed
in [14] and a baseline HMM system using only MFCC features.

As network input xt we used MFCCs 1 to 12 including log.
energy together with first and second order regression coefficients.
To compensate for stationary noise effects, we applied cepstral mean
normalization.

5.1. Framewise Phoneme Prediction with BLSTM

Since the networks were trained on framewise phoneme targets, we
used an HMM system (see Section 5.2) to obtain phoneme borders
via forced alignment. We evaluated four different network architec-
tures: conventional recurrent neural networks, bidirectional neural

network phoneme RR word accuracy
type (framewise) Tandem multi-stream

BLSTM 66.41 % 45.04 % 46.50 %
LSTM 58.91 % 44.46 % 46.45 %
BRNN 50.51 % 42.59 % 46.27 %
RNN 48.91 % 43.79 % 46.25 %

triphone HMMs 56.91 % 43.36 %

Table 1. Framewise phoneme recognition rate (RR) for BLSTM,
LSTM, BRNN, and RNN predictors as well as for triphone HMMs;
word accuracies obtained for a baseline single-stream HMM, the
Tandem system proposed in [14], and the multi-stream recognizer
(a = 1.1) using different network architectures.

networks (BRNN), unidirectional LSTM networks, and bidirectional
LSTM networks. All networks consisted of three hidden layers (per
input direction) with a size of 78, 128, and 80 hidden units, respec-
tively. Thereby each memory block contained of one memory cell.

For training we used a learning rate of 10−5 and a momentum of
0.9. As a common means to improve generalization for RNNs, we
added zero mean Gaussian noise with standard deviation 0.6 to the
inputs during training. Prior to training, all weights were randomly
initialized in the range from -0.1 to 0.1. Input and output gates used
tanh activation functions, while the forget gates had logistic activa-
tion functions. We trained the networks on the standard (CMU) set
of 41 different English phonemes, including targets for silence and
short pause. Training was aborted as soon as no improvement on
the validation set (sessions 1 and 8) could be observed for at least 50
epochs, and we chose the network that achieved the best framewise
phoneme error rate on the validation set.

The second column of Table 1 shows the framewise phoneme
recognition rates on the test set of the COSINE corpus obtained with
the different network architectures. Generally, bidirectional context
prevails over unidirectional context and LSTM context modeling
outperforms conventional RNN architectures. The best framewise
recognition rate can be achieved with a BLSTM network (66.41 %).
When using a triphone HMM system as described in Section 5.2
for framewise phoneme transcription, the recognition rate is sig-
nificantly lower (56.91 %) which is in line with related studies on
phoneme recognition with BLSTM [10]. Yet, triphone HMMs were
able to outperform a conventional RNN phoneme predictor (recogni-
tion rate of 50.51 % and 48.91 % for bidirectional and unidirectional
RNNs, respectively).

5.2. Single-stream HMM System

As explained in Section 3, we incorporate the BLSTM phoneme es-
timates as an additional feature stream into an HMM framework for
continuous speech recognition. Each phoneme of the underlying
HMM system is represented by three emitting states (left-to-right
HMMs) with 16 Gaussian mixtures. The initial monophone models
consisted of one Gaussian mixture per state and were trained us-
ing four iterations of embedded Baum-Welch re-estimation. After
that, the monophones were mapped to tied-state cross-word triphone
models with shared state transition probabilities. Two Baum-Welch
iterations were performed for re-estimation of the triphone models.
Finally, the number of mixture components of the triphone models
was increased to 16 in four successive rounds of mixture doubling
and re-estimation (four iterations in every round). Both, acoustic
models and a back-off bigram language model were trained on the
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network stream word
type weight (a) accuracy

BLSTM 0.8 45.55 %
BLSTM 0.9 45.94 %
BLSTM 1.0 46.36 %
BLSTM 1.1 46.50 %
BLSTM 1.2 46.31 %
BLSTM 1.3 45.84 %

Table 2. Word accuracies on the COSINE test set using the multi-
stream BLSTM-HMM system with different MFCC stream weight
parameters a.

training set of the COSINE corpus. As can be seen in Table 1, the
word accuracy of the single-stream HMM is 43.36 %.

5.3. Multi-stream System

Using the multi-stream BLSTM-HMM approach outlined in Section
3, we experimentally determined the optimal MFCC stream weight
parameter a (see Equation 2). According to Table 2 the best perfor-
mance on the test set can be obtained using a = 1.1. The third and
fourth column of Table 1 show the word accuracies on the COSINE
test set using the Tandem system described in [14] and the multi-
stream approach, based on different network architectures. Using
the multi-stream BLSTM-HMM leads to the highest word accuracy
(46.50 %), outperforming the baseline single-stream HMM and the
Tandem system. Interestingly, modeling the phoneme confusions
of the neural networks as described in Section 3 has the effect that
the resulting word accuracy seems to be less sensitive to the frame-
wise phoneme recognition rate of the applied networks, since the
performance gap between a multi-stream recognizer using BLSTM
predictions and a system using RNN-based phoneme estimates is
comparably small.

6. CONCLUSION AND FUTURE WORK

We introduced a multi-stream ASR system that uses context-
sensitive phoneme estimates generated by a bidirectional Long
Short-Term Memory network as an additional feature stream. Our
technique was evaluated on a challenging continuous speech recog-
nition task using the COSINE database which contains spontaneous,
conversational, and disfluent speech. The proposed multi-stream
ASR architecture leads to higher word accuracies than a single-
stream MFCC-based recognition system and outperforms a recently
proposed Tandem approach that models both, cepstral features and
BLSTM predictions via Gaussian mixtures in a single stream of
observations. Explicitly modeling typical phoneme confusions that
occur in the BLSTM network was shown to reduce the sensitivity to
phoneme recognition errors.

Future experiments will include the design of bottle-neck [5]
BLSTM networks as well as the combination of multi-stream
BLSTM-HMM systems with techniques for feature enhancement
in order to allow further performance gains in noisy conditions. A
further promising aspect for future research is to use the principle
of connectionist temporal classification [6] for continuous speech
recognition.
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