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ABSTRACT

Music Mood Classification is frequently turned into ‘Mu-
sic Mood Regression’ by using a continuous dimensional
model rather than discrete mood classes. In this paper we
report on automatic analysis of performances in a mood
space spanned by arousal and valence on the 2.6 k songs
NTWICM corpus of popular UK chart music in full real-
ism, i. e., by automatic web-based retrieval of lyrics and di-
verse acoustic features without pre-selection of prototypical
cases. We discuss optimal modeling of the gold standard
by introducing the evaluator weighted estimator principle,
group-wise feature relevance, ‘tuning’ of the regressor, and
compare early and late fusion strategies. In the result, cor-
relation coefficients of .736 (valence) and .601 (arousal) are
reached on previously unseen test data.

1. INTRODUCTION

Music mood analysis, i. e., automatic determination of the
perceived mood in recorded music, has been an active field
of research in the last decade. For instance, it can en-
able browsing through music collections for music with a
specific mood, or to automatically select music best suited
to a person’s current mood as determined manually or au-
tomatically. In this study, we describe music mood by
Russell’s circumplex model of affect consisting of a two-
dimensional space of valence (pleasure–displeasure) and
degree of arousal which allows to identify emotional tags,
such as the ones used for the MIREX music mood evalua-
tions [9], as points in the ‘mood space’, avoiding the am-
biguity of categorical taxonomies [21]. Note that in re-
cent research, e. g. [11], new models have been proposed
specifically for music emotion, which go beyond the tra-
ditional emotion models by including non-utilitaristic or

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

eclectic emotions. However, the valence / arousal model
is an emerging standard for describing human emotions in
automatic analysis [4]. Thus, from an application point of
view, it is, e. g., useful for matching human emotions and
music mood, such as for automatic music suggestion [16].
For automatic music mood recognition, a great variety of
features have been proposed, comprising low-level acous-
tic, such as spectral, cepstral, or chromagram features [18],
higher-level audio features such as rhythm [14], as well as
textual features derived from the lyrics [12]. Early (feature-
level) and late (classifier-level) fusion techniques for the
acoustic and textual modalities have been compared in [8].

A first major contribution of this study is to investigate
regression in the continuous arousal / valence space by sin-
gle modalities (spectrum, rhythm, lyrics, etc.), and by early
as well as late fusion. To briefly relate our work to recent
performance studies on music mood regression: In [18] re-
gression in a purely acoustic feature space has been inves-
tigated; [10] evaluates automatic feature selection and clas-
sifiers, but not various feature groups individually; [2] com-
pares prediction of dimensional and categorical annotation
and highlights the relevance of single features without re-
porting their actual performance. In summary, the majority
of research still deals with classification [8, 12, 14, 19], to
refer to a few recent studies. Besides, to deal with relia-
bility issues of human music mood annotation [9], we in-
troduce the evaluator weighted estimator (EWE) [3] to the
Music Information Retrieval domain and evaluate its influ-
ence on regression performance. The EWE has been pro-
posed as a weighted decision taking into account reliabili-
ties of individual annotators for emotion recognition from
speech [3]. Furthermore, we extend late fusion approaches
such as [8] by considering the regression performance of
single modalities on the development set for determination
of fusion weights, in analogy to the EWE used for reaching
a robust ground truth estimate.

We evaluate our system on the “Now That’s What I Call
Music!” (NTWICM) database introduced in [19], contain-
ing 2 648 songs annotated by four listeners on 5-point scales
for perceived arousal and valence on song level. In con-



trast to some earlier work on music mood recognition such
as [2], no instance pre-selection has been performed in or-
der to simulate real-life conditions where an automatic sys-
tem has to deal with non-prototypical instances, in particu-
lar those characterized by low emotional intensity [10]. Our
evaluation measure is the correlation coefficient between the
regression output and the estimated continuous ground truth.

The remainder of this contribution briefly describes the
evaluation database (Section 2), with a particular focus on
annotation reliability, and the acoustic and linguistic fea-
tures used for automatic regression (Section 3). Results of
extensive regression runs are given in Section 4 before con-
cluding in Section 5.

2. NTWICM DATABASE

2.1 Data Set

For building the NTWICM music database the compilation
“Now That’s What I Call Music!” (U. K. series, volumes
1–69) is selected. It contains 2 648 titles — roughly a week
of total play time — and covers the time span from 1983
to 2010. Likewise it represents very well most music styles
which are popular today; that ranges from Pop and Rock
music over Rap, R&B to electronic dance music as Techno
or House. The stereo sound files are MPEG-1 Audio Layer
3 (MP3) encoded using a sampling rate of 44.1 kHz and a
variable bit rate of at least 128 kBit/s as found in many typ-
ical use-cases of an automatic mood classification system.

For 1 937 of 2 648 songs in the database (cf. Sec-
tion 2.3, Table 2) lyrics can automatically be collected
from two on-line databases: In a first run lyricsDB,
(http://lyrics.mirkforce.net/) is applied, which delivers lyrics
for 1 779 songs, then LyricWiki, (http://www.lyricwiki.org/)
is searched for all remaining songs, which delivers lyrics for
158 additional songs. The only manual post-processing car-
ried out was normalization of transcription inconsistencies,
e. g., markers for chorus lines, among the databases.

2.2 Annotation and Reliability

Songs were annotated as a whole, i. e., without selection of
characteristic song parts, to stick to real world use cases –
such as music suggestion – as closely as possible. Respect-
ing that mood perception is generally judged as highly sub-
jective [9], we decided for four labellers. While mood may
well change within a song, as change of more and less lively
passages or change from sad to a positive resolution, anno-
tation in such detail is particularly time-intensive. Yet, we
are assuming the addressed music type – mainstream pop-
ular and by that usually commercially oriented – music to
be less affected by such variation as, for example, found in
longer arrangements of classical music. In fact, this can be
very practical and sufficient in many application scenarios,

age, g ρ CC CC-LORO
Val Aro Val Aro Val Aro

A 34, m .828 .749 .827 .763 .678 .456
B 23, m .267 .623 .304 .640 -.012 .366
C 26, m .797 .633 .800 .656 .651 .442
D 32, f .797 .717 .819 .733 .640 .474

Table 1: NTWICM Database: Raters A–D by age and
g(ender), and reliability of val(ence) and aro(usal) annota-
tion by Spearman’s ρ and correlation coefficient (CC) with
mean (A–D), as well as CC in leave-one-rater-out (LORO)
analysis.

as for automatically suggestion that fits a listener’s mood.
Details on the chosen raters (three male, one female, aged
between 23 and 34 years; average: 29 years) and their pro-
fessional and private relation to music are provided in Ta-
ble 1. As can be seen, they were picked to form a well-
balanced set spanning from rather ‘naive’ assessors without
instrument knowledge and professional relation to ‘expert’
assessors including a club disc jockey (D. J.). The latter can
thus be expected to have a good relationship to music mood,
and its perception by the audiences. Further, young raters
prove a good choice, as they were very well familiar with
all the songs of the chosen database. They were asked to
make a forced decision according to the two dimensions in
the mood plane assigning values in -2, -1, 0, 1, 2 for arousal
and valence, respectively. They were further instructed to
annotate according to the perceived mood, that is, the ‘rep-
resented’ mood, not to the induced, that is, ‘felt’ one, which
could have resulted in too high labelling ambiguity. The an-
notation procedure is described in detail in [19], and the an-
notation along with the employed annotation tool are made
publicly available 1 .

In this study, we aim at music mood assessment in the
continous domain as determined by the four raters. Thus,
a consensus has to be derived from the individual labellings
for valence and arousal. A continuous quantity as needed for
regression is obtained as follows. As a first step, we calcu-
lated the agreement (reliability) of rater k ∈ {A,B,C,D}
with respect to the arithmetic mean label l(d)n for each in-
stance n, d ∈ {valence, arousal},

l
(d)
n =

1

4

∑
k

l
(d)
n,k (1)

where l(d)n,k ∈ {−2,−1, 0, 1, 2} is the label assigned by rater
k to instance n. As a measure of reliability for each k,
we computed the correlation coefficient CCk between (l

(d)
n,k)

and (l
(d)
n ). Results are shown in Table 1, where we also pro-

1 http://openaudio.eu/NTWICM-Mood-Annotation.
arff



vide the values for Spearman’s rho (ρ) for reference: No-
table differences between CC and ρ can mainly be seen for
the valence annotation by rater B.

Evidently, the reliability in terms of CCk differs among
the raters – especially for valence, where it ranges from .828
(rater A, club D. J.) down to .267 (rater B). Hence, as a ro-
bust estimate of the desired ground truth mood of each in-
stance n, we additionally considered the EWE [3], denoted
by l(d)n , in further analyses:

l(d)n =
1∑

k CCk

∑
k

CCkl
(d)
n,k. (2)

We hypothesize that the EWE provides a robust ground truth
estimate especially for the NTWICM database with only
four annotators, where a single ‘unreliable’ annotator does
not simply ‘average out’. Note that we refrain from report-
ing the agreement of the raters with the EWE, as in the EWE
information about their reliability is already integrated. Fur-
thermore, the CC of raters with the mean of all raters is ar-
guably a slight overestimate of the true reliability, since the
rating to be evaluated is included in the ground truth esti-
mate. Thus, we additionally performed a ‘leave-one-rater-
out’ (LORO) reliability analysis. Thereby for each rater
k the CC is calculated between (l

(d)
n,k) and the EWE of all

raters except k. It turns out that human agreement is con-
siderably lower when measured in a LORO fashion – partly,
this can be attributed to the fact that in the LORO analysis,
each ground truth estimate is made up from only three raters.
Again, rater A exhibits the highest reliability whereas rater
B is ranked last, both for valence and arousal (cf. Table 1).

2.3 Partitioning

We partitioned the 2 648 songs into training, development,
and test partitions through a transparent definition that al-
lows easy reproducibility and is not optimized in any re-
spect: Training and development are obtained by selecting
all songs from odd years, whereby development is assigned
by choosing every second odd year. By that, test is defined
using every even year. The distributions of instances per
partition are displayed in Table 2, together with the number
of instances for which lyrics are missing – it can be seen that
their proportion is roughly equal for all partitions.

Once development was used for optimization of classi-
fier parameters, the training and development sets are united
for training. Note that this partitioning resembles roughly
50 % / 50 % of overall training / test in order to favor statisti-
cally meaningful findings.

3. FEATURES

A summary of the feature groups discussed in this study is
given in Table 3. They can be roughly categorized into fea-
tures derived from the lyrics (Sections 3.1, 3.2), the song

Set # songs # lyrics
Train 690 515 (75 %)
Devel 686 509 (74 %)
Train+Devel 1 376 1 024 (74 %)
Test 1 272 913 (72 %)
Sum 2 648 1 937 (73 %)

Table 2: Partitioning of the NTWICM Database, and avail-
ability of lyrics.

meta-information (Section 3.3), and finally the audio itself
(Sections 3.5, 3.4, 3.6). A detailed explanation of the fea-
tures is given in [19].

3.1 Emotional Concepts

Semantic features are extracted from the lyrics by the Con-
ceptNet [13] text processing toolkit, which makes use of a
large semantic database automatically generated from sen-
tences in the Open Mind Common Sense Project 2 . The
software is capable of estimating the most likely emotional
affect in a raw text input, which has already been shown
quite effective for valence prediction in movie reviews [20].

The underlying algorithm starts from a subset of con-
cepts that are manually classified into one of six emo-
tional categories (happy, sad, angry, fearful, disgusted, sur-
prised), and calculates the emotion of unclassified concepts
extracted from the song’s lyrics by finding and weighting
paths which lead to those classified concepts. The algo-
rithm yields six discrete features indicating a ranking of
the moods from highest to lowest dominance in the lyrics,
and six continuous-valued features contain the correspond-
ing probability estimates.

3.2 Linguistic Features: From Lyrics to Vectors

Linguistic features are obtained from the lyrics by text pro-
cessing methods proven efficient for sentiment detection
[20]. The raw text is first split into words while remov-
ing all punctuation. In order to recognize different flex-
ions of the same word (e. g. loved, loving, loves should be
counted as love) the conjugated word has to be reduced to
its word stem. This is done using the Porter stemming algo-
rithm [15].

Word occurences are converted to a vector (Bag-of-
Words, BoW) representation where each component repre-
sents a word stem that occurs at least 10 times. For each
song, the relative frequency of the stem is computed, i. e.,
the number of occurences is normalized by the total num-
ber of words in the song’s lyrics. The dimensionality of the
resulting feature set is 393.

2 http://openmind.media.mit.edu/



3.3 Metadata

Additional information about the music is sparse in this
work because of the large size of the music collection used:
Besides the year of release only the artist and title informa-
tion is available for each song. While the date is directly
used as a numeric attribute, the artist and title fields are pro-
cessed in a similar way as the lyrics (cf. previous section):
Only the binary information about the occurrence of a word
stem is retained. While the artist word list looks very spe-
cific to the collection of artists in the database, the title word
list seems to have more general relevance with words like
“love”, “feel” or “sweet”. In total, the size of the metadata
feature set is 152.

3.4 Chords

For chord extraction from the raw audio data a fully auto-
matic algorithm as presented by Harte and Sandler [6] is
used. Its basic idea is to map signal energy in frequency
sub-bands to their corresponding pitch class which leads to
a chromagram or pitch class profile. Each possible chord
type corresponds to specific pattern of tones. By comparing
the chromagram with predefined chord templates, an esti-
mate of the chord type (e. g., major, minor, diminished) can
be made. We recognize the nine chord types defined in [19]
along with the chord base tone (e. g. C, F, G]). Each chord
type has a distinct sound which makes it possible to asso-
ciate it with a set of moods [1]: For instance, major chords
often correspond to happiness, minor ones to a more melan-
cholic mood, while diminished chords are frequently linked
to fear or suspense. For each chord name and chord type, the
relative frequency per song is computed and augmented by
the total number of recognized chords (22 features in total).

3.5 Rhythm

The 87 rhythm features rely on a method presented in [17].
It uses a bank of comb filters with different resonant fre-
quencies covering a range from 60 to 180 bpm. The output
of each filter corresponds to the signal energy belonging to a
certain tempo, devliering robust tempo estimates for a wide
range of music. Further processing of the filter output de-
termines the base meter of a song, i. e., how many beats are
in each measure and what note value one beat has. The im-
plementation used can recognize whether a song has duple
(e. g., 2/4, 4/4) or triple (e. g., 3/4, 6/8) meter. A detailed
description of the rhythm features is found in [19].

3.6 Spectral

Spectral features are straightforward and derived from the
Discrete Fourier Transform (DFT) of the songs, which is
mixed down to a monophonic signal. Then, the centre of

Group Description #
Cho rds rel. chord freq.; # distinct chords 22
Con cepts ConceptNet’s mood from lyrics 12
Lyr ics Bag-of-Words (BoW) from lyrics 393
Met a BoW from artist, title; song date 153
Rhy thm Tatum vec. (57); meter vec. (19); 87

tatum cand.; tempo + meter estim.;
tatum max, mean, ratio,
slope, peak dist.

Spec tral DFT centre of gravity, moments 2–4; 24
octave band energies

All Union of the above 691
NoLyr ics All \ ( Lyr ∪ Con ) 286

Table 3: Song-level feature groups and corresponding fea-
ture set sizes (#).

gravity, and the second to fourth moment (i. e., standard de-
viation, skewness, and kurtosis) of the spectrum are com-
puted. Finally, band energies and energy densities for the
following seven octave based frequency intervals are added:
0 Hz–200 Hz, 200 Hz–400 Hz, 400 Hz–800 Hz, 800 Hz–
1.6 kHz, 1.6 kHz–3.2 kHz, 3.2 kHz–6.4 kHz and 6.4 kHz–
12.8 kHz, which yields a total of 24 spectral features.

4. EXPERIMENTS AND RESULTS

4.1 Setup

In our regression experiments we used ensembles of un-
pruned REPTrees with a maximum depth of 25 trained on
random feature sub-spaces [7]. For straightforward repro-
ducibility, we relied on the open-source implementation in
the Weka toolkit [5].

We tuned the ensemble size (number of trees and sub-
space size) on the development set for each combina-
tion of feature set and target (valence/arousal mean/EWE)
to reflect varying sizes and complexities of the fea-
ture sets. The number of trees was chosen from
{10, 20, 50, 100, 200, 500, 1 000, 2 000} and the sub-space
size from {.01, .02, .05, .1, .2, .5}. Results of the parame-
ter tuning for selected feature groups can be seen in Fig-
ures 1 (a)–(b). As expected due to different sizes of the fea-
ture space, optimal parameters vary considerably. Interest-
ingly, the best result for the Met feature set is obtained with
1 000 trees consisting of only 1–2 features, corresponding
to a sub-space size of 1 %. Note that for the smallest fea-
ture set (Con), the number of possible trees is bounded by(
12
6

)
= 924, so a larger number of trees will result in dupli-

cates by the pigeon hole principle.
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Figure 1: Tuning of ensemble size on CC with valence
EWE on development set for All (a) and Rhy (b) feature
groups.

CC Valence Arousal
mean EWE mean EWE

Train vs. Devel .652 .680 .600 .593
Train+Devel vs. Test .701 .736 .613 .601

Table 4: Early fusion (All feature set): CC of regression
on continuous valence and arousal (mean / EWE of anno-
tators) by random sub-space learning with unpruned REP-
Trees. Ensemble size tuned on development set (20 % sub-
space, 500 trees, 2 000 for mean valence).

Valence Arousal
#t×sss CC #t×sss CC

Dev Test Dev Test
Cho 2k×.2 .331 .409 2k×.5 .299 .380
Con 500×.5 .047 .027 50×.2 .079 .081
Lyr 100×.1 .249 .266 200×.2 .244 .312
Met 1k×.01 .209 .241 500×.05 .212 .193
Rhy 100×.2 .589 .620 2k×.2 .520 .541
Spe 2k×.2 .518 .565 500×.2 .452 .418
NoL 2k×.2 .678 .735 1k×.2 .594 .602

Table 5: Single feature groups: CC of regression on contin-
uous valence and arousal (EWE of annotators) by random
sub-space learning with unpruned REPTrees. Number of
trees (#t) and sub-space size (sss) optimized on development
partition.

CC Valence Arousal
ALL NOL ALL NOL

Train vs. Devel .693 .690 .599 .593
Train+Devel vs. Test .725 .720 .598 .588

Table 6: Late fusion of modalities: CC of regression on
continuous valence and arousal (EWE of annotators). REP-
Tree ensembles for each modality parameterized as in Table
5. Fusion weights corresponding to CC on development set.

4.2 Results and Discussion

With the full feature set, CCs of .680 and .736 are obtained
for valence on the development and test sets, respectively
(cf. Table 4)—this corresponds to R2 statistics of .462 resp.
.542. In that case, regression on the EWE is considerably
more robust than regression on the mean (absolute CC gains
of .028 and .035 on development and test), which is proba-
bly due to the different reliabilities of the annotators. In con-
trast, for arousal, where annotator reliability is more consis-
tent, the CC with the EWE is even slightly lower (by .007
and 0.012 absolute on development and test). In other terms,
R2 statistics of up to .36 (development) and .376 (test set)
are obtained. For the sake of clarity, we will exclusively
report on CC with the EWE in the following discussion.

Analysis of single feature groups (Table 5) reveals that
spectral and rhythm features contribute most to the regres-
sion performance (CCs of .620 and .565 with the valence
EWE on test). Chords (CC of .409) are in the mid-range
while lyrics, meta information and concepts lag behind (CCs
of .266, .241, .027). The same ranking of feature groups is
obtained when considering the CC with the arousal EWE.
We conclude that the feature groups that enable robust re-
gression can be obtained directly from the audio (chords,
spectral and rhythm information), and thus in full realism—
though lyrics likely contribute to the annotation since the
annotators were not explicitly told to ignore lyrics and all of
them are experienced English speakers. In fact, the CC on
the test set by the NoLyrics feature set (.735) is only slightly
lower than that with the full feature set (.736).

The noticeable differences between the reliability of dif-
ferent modalities motivate a late fusion technique where the
fused prediction is a weighted sum of the predictions of uni-
modal regressors. Thereby weights correspond to the indi-
vidual regressors’ CC on the development set, analogously
to the EWE (Eqn. 2). Results obtained by this technique
are shown in Table 6. On the development set, early fusion
(cf. Table 4) is clearly outperformed for both recognition of
valence (CC of .693 vs. .680) and arousal (CC of .599 vs.
.593). However, this effect is almost reversed on the test
set, where a CC of .725 as opposed to .735 (early fusion)
is obtained for valence; results are similar for arousal. The
latter result cannot be fully explained by overfitting fusion



weights on the development set, as there is no considerable
mismatch between the reliabilities on the development com-
pared with the test set.

5. CONCLUSIONS

We analyzed regression of music mood in contiuous dimen-
sional space. Particular emphasis was laid on realism in
the sense of automatically retrieving textual lyric informa-
tion automatically from the web and by chosing a music
database that is well defined in its own: 69 consecutive dou-
ble CDs without pre-selection of high annotator agreement
cases. As expected, the observed performances are clearly
below the ones reported in studies on prototypical exam-
ples such as [2], yet in line with other studies on real-life
data sets [10, 21]. To establish a reliable gold standard,
i. e., ground truth, we proposed the usage of the evaluator
weighted estimator. The best individual feature group were
rhythm features based on comb-filter banks. In future work
we will address unsupervised and semi-supervised learning
for music mood analysis to exploit the huge quantities of
popular music available on the internet.
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