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Abstract. The field of computational paralinguistics is currently emerg-
ing from loosely connected research in speech analysis, including speaker
classification and emotion recognition. Starting from a broad perspec-
tive on the state-of-the-art in this field, we combine these facts with a
bit of ‘tea leaf reading’ to identify ten trends that might characterise
the next decade of research: taking into account more tasks and task in-
terdependencies, modelling paralinguistic information in the continuous
domain, agglomerating and evaluating on large amounts of heteroge-
neous data, exploiting more and more types of features, fusing linguistic
and non-linguistic phenomena, devoting more effort to optimisation of
the machine learning aspects, standardising the whole processing chain,
addressing robustness and security of systems, proceeding to evaluation
in real-life conditions, and finally overcoming cross-language and cross-
cultural barriers. We conjecture that following these trends we will see
an increase in the ‘social competence’ of tomorrow’s technical systems.
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1 Introduction

Social competence, i. e., the ability to permanently analyse and re-assess dia-
logue partners with respect to their traits (e. g., personality or age) and states
(e. g., emotion or sleepiness), and to react accordingly (by adjusting the dis-
course strategy, or aligning to the dialogue partner) remains one key feature
of human communication that is not found in most of today’s technical sys-
tems. By simulating such capabilities through signal processing and machine
learning techniques, the emerging field of computational paralinguistics aims to
increase the perceived social competence of technical systems for human-machine
communication. One main application is to increase efficiency and hence, user
satisfaction in task oriented dialogue systems by enabling naturalistic interac-
tion. Furthermore, recognition of paralinguistic information in human signals
can be used for multimedia retrieval (enabling queries by certain speaker traits),
in surveillance applications (e. g., to monitor customer satisfaction or potential
attackers), for efficient audio or video coding and speech-to-speech translation
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(e. g., resolving semantic ambiguities by recognising intention, or synthesising
translated speech with the original speaker’s affect) and finally entertainment
(e. g., to render states and traits in the voice of an avatar in accordance to the
player).

As can be seen from these applications, computational paralinguistics com-
prise a variety of tasks [84]. A taxonomy can be established along the time axis,
distinguishing long term traits from medium-term phenomena and short-term
states. Long term traits include biological primitives such as height, weight, age,
gender or race [55, 77, 81]. Interestingly, humans seem to exploit acoustic corre-
lates of these primitives in their reasoning. For instance, age, height, and weight
of speakers could be assigned by listeners to voices in repeated studies [22, 42];
acoustic correlates of body shape, size and weight include fundamental frequen-
cies and other formant parameters [28, 35]. Other trait concepts such as group
membership, ethnicity and culture overlap with linguistic phenomena such as di-
alect or nativeness [57]. For instance, the output of a speech recognition system
can be used for classification of demographic traits including education level,
ethnicity, and geographic region [33]. Besides, analysis of personality is an in-
creasingly popular area of research [34,53,59] comprising acoustic and linguistic
phenomena [65]. Medium term speaker attributes refer to temporary conditions,
including sleepiness [41], (alcohol) intoxication [45,68,78], health [50] or depres-
sion [25], but also group roles [43], friendship and identity [38]. Finally, important
short term states from an application point of view include voice quality, speak-
ing style, and affect. In typical applications, one will rarely encounter full-blown,
prototypical emotions such as sadness or disgust, but rather affect-related states
including interest [98], uncertainty [47], frustration [2], stress level [37] or pain [5].

In summary, we hope that this unified view on the aspects of computational
paralinguistics in speech may help to bridge the gap between some of the loosely
connected fields in speech processing, including speech and speaker recognition,
and the emerging domain of speaker classification. Further, this view enables us
to outline ten trends that might characterise the field of computational paralin-
guistics in the following years. These trends are partially motivated by technolog-
ical development—first and foremost, drastic decreases in the cost of computing
power and storage space, the latter enabling access to virtually infinite amounts
of speech data—but also conceptual advances in machine learning and signal
processing. Altogether, we believe, these will allow technologies for computa-
tional paralinguistics to penetrate into daily life, which poses, in turn, several
‘grand challenges’ connected to real-life applications as opposed to ‘in-the-lab’
usage. While we put a strong focus on speech analysis in this chapter, many of
the trends might be relevant for speech synthesis as well.

2 Ten Recent and Future Trends

2.1 More Tasks and Coupling of Tasks

Relevant tasks in computational paralinguistics are manifold, and we have men-
tioned a non-exhaustive list of relevant tasks above. Still, the lion’s share of
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research is devoted to emotion and emotion-related states, followed by physical
traits (age, height) and personality1. It can be conjectured that addressing addi-
tional tasks will largely depend on the availability of annotated data. However,
it could turn out that taking into account more and more seemingly novel tasks
would be reinventing the wheel: A number of inderdependencies is already visi-
ble in the above list of paralinguistic states and traits. Following the taxonomy
along the time axis, many dependencies on long term traits can be found. Long
term traits themselves are coupled to some degree, e. g., height with age, gen-
der and race. Medium term phenomena can depend on long term traits as well,
e. g., health state can deteriorate with age, and group roles arguably depend on
personality traits such as leadership emergence. Finally, also short term states
are dependent on long term traits: The manifestation of emotion is dependent
on personality [62,63]; in [54], it was revealed that human listeners consistently
associate different tones of voice with certain speaker personalities. Further-
more, gender-dependencies of non-linguistic vocalisations have been repeatedly
reported, e. g., in [60] for laughter.

Indeed, it has been repeatedly confirmed that modelling ‘contextual’ knowl-
edge from different paralinguistic tasks benefits the performance in practice. Such
knowledge can be integrated by building age, gender or height dependent models
for any of the other tasks. For example, several studies indicate that considering
gender information enables higher accuracy of automatic speech emotion recog-
nition [93,95]; however, it is an open question whether this can be attributed to
low-level acoustic differences in the pitch registers of male and female voices, or
to higher-level differences in the expression of emotion. To exploit mutual infor-
mation from the speaker identity, speaker adaptation or normalisation can be
performed [9]. Finally, related state and trait information can be added as a fea-
ture: In [81] first beneficial effects are shown by providing knowledge on speaker
dialect region, education level and race as ground truth along with acoustic fea-
tures in the assessment of speaker traits including age, gender and height. Such
addition of speaker traits as ground truth features can be relevant in practical
situations, where for example height can be determined from camera recordings.

An alternative to such explicit modelling of dependencies using prior knowl-
edge is to automatically learn them from training data. For example, the rather
simple strategy of using pairs of age and gender classes as learning target in-
stead of each attribute individually can already be advantageous, as has been
proven in the first Paralinguistic Challenge [77]. In the future, enhanced mod-
elling of multiple correlated target variables could be performed through multi-
task learning [15]. Here, a representation of the input features is shared among
tasks, such as the internal activations in the hidden layer of a neural network.
Recurrent neural networks, in particular, allow accessing past predictions for
any of the variables for analysing the current time frame [89]—in some sense,
this is similar to replacing the ground truth speaker features in the above setup
by (time-varying) classifier predictions. In this context, one of the peculiarities

1 According to a Scopus search for the title (‘speech’ or ‘speaker’) AND . . . in February
2011.
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of computational paralinguistics is found in the representation of task variables
by various data types (continuous, ordinal, nominal), which additionally often
differ by their time scale (e. g., gender is constant in a speech turn while emo-
tion or speaking style may vary). Considering methods for multi-scale fusion,
one could also exploit multi-task learning for integrating phoneme recognition
with analysis of paralinguistic information, in order to increase robustness of
conversational speech recognition. Coupling the speech recognition task with,
for example, gender or dialect recognition could be beneficial since in [10] it was
shown that both these traits affect speech rate, flapping and central vowels.

2.2 More Continuous Modelling

The classic approach to computational paralinguistics is classification into 2-n
classes, e. g., the big 6 emotions, gender, or age groups [77]. However, this often
corresponds to an artificial discretisation, implying loss of information. For in-
stance, the ground truth is continuous in case of intoxication (blood or breath
alcohol concentration) or physical speaker traits (age, weight and height). Con-
cepts to measure emotion and personality are often based on continuous valued
dimensions, of which the most common are the arousal-valence model [66], or
the five-factor ‘OCEAN’ model of personality [20]. For some states, annotation
is performed using ordinal scales, e. g., using the Karolinska Sleepiness Scale
(KSS), resulting in a quasi-continuum when ratings from multiple annotators
are fused, e. g., by averaging; emotion annotation is sometimes performed di-
rectly in continuous dimensions, e. g., by the Feeltrace toolkit [19]. Conversely,
machine learning research provides a rich set of tools for predicting continuous
quantities including (extensions of) logistic regression, support vector regression,
(recurrent) neural networks or random forests (ensembles of regression trees)
which can be applied to paralinguistic analysis [77, 98]. Evaluation procedures
for regression are readily available as well, and include correlation (Pearson),
rank-correlation (Spearman) and determination coefficients (R2), mean absolute
or (root) mean squared error. In addition to continuous valued annotation, short-
term variations of speaker states can be captured by a representing them as a
function of time. For example, the Feeltrace toolkit [19] allows annotating emo-
tion with a ‘sampling frequency’ of 10 ms. On the recognition side, this allows
for dynamic classification or regression techniques, and investigation of diverse
units of analysis including syllables, words or turns [97].

2.3 More, Synthesised, Agglomerated, and Cross Data

While it is a common belief in pattern recognition that there is ‘no data like
more data’, publicly available speech data with rich annotation of paralinguistic
information are still sparse. In fact, there are increasingly more databases ready
for experimentation; the crux is that these often come with different labelling
schemes (discrete, continuous, dimensional, categorical) and, in the context of
speaker states, different strategies for elicitation (acted, induced, natural). This
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makes data agglomeration and evaluation across multiple corpora less straight-
forward than for other tasks, such as automatic speech recognition. On the other
hand, multi-corpus and cross-corpus evaluation, such as done in [56] for age and
gender and recently in [79,91] for emotion, is crucial to assess generalisation of the
models. In fact, experiments in cross-corpus emotion recognition suggest some
overfitting to single corpora [79] which can only partly be alleviated by corpus
or speaker normalisation. To make things worse, common techniques to reduce
overfitting such as feature selection may exhibit low cross-data generalisation
themselves [29]. Hence, acquiring more data for building robust and generalising
emotion models can be seen as one of the great challenges for the future. Recent
results show that combining different databases in a unified labelling scheme
through data agglomeration or voting significantly improves performance [85].
Still, such unification of the labelling schemes introduces ‘information loss’; late
fusion techniques for multiple classifiers trained on single corpora using distinct
labelling schemes could be an interesting direction for the future. In addition,
the efficacy of semi-supervised learning2 to leverage unlabelled speech data for
emotion recognition has been repeatedly demonstrated [39, 48, 100, 103]; yet,
large-scale studies across multiple speaker states and traits, and using large
amounts of data acquired from the web, are still to follow. Finally, a promising
technique is synthesis of training data: In fact, it has been shown that general-
isation properties of emotion models in a cross-corpus setting can be improved
through joint training with both human and synthetic speech [72]. This result is
very promising since synthetic speech can be easily produced in large quantities,
and a variety of combinations of speaker states and traits can be simulated. It is
hoped that this will yield good generalisation of models and facilitate learning
of multiple tasks and their interdependencies (cf. above).

2.4 More and Novel Features

The features used in early research on speaker states and traits were motivated
by the adjacent fields of automatic speech and speaker recognition. Thus, us-
age of spectral or cepstral features (Mel frequency cepstral coefficients, MFCCs)
prevailed. In the meantime, a plethora of novel, mostly expert-crafted acous-
tic features, including perceptually motivated ones [49,78,99] or such that base
on pre-classification [64] have been proposed and evaluated for paralinguistic
analysis, along with the addition of more or less brute forced linguistic features
(e. g., Bag of Words or Bag of N-grams). Furthermore, it has repeatedly been
shown that enlarging the feature space can help boost accuracy [78, 80]. An
alternative direction is supervised generation of features through evolutionary
algorithms [74] or unsupervised learning of features, e. g., through deep belief
networks or sparse coding. Still, the challenge is less the efficient computation,

2 In the context of automatic speech recognition, this is often referred to as unsuper-
vised learning—we prefer the more common term semi-supervised to highlight the
difference to purely unsupervised techniques such as clustering or latent semantic
analysis.
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or combination of features in more or less brute force approaches, but to system-
atically investigate the relations between different types of features, especially in
terms of generalisation to cross-corpus or cross-task analyses: After all, it is not
clear whether novel features indeed add new information, or observed increases
in performance stem from (over-)fitting to specific data sets, acoustic conditions,
speakers or content (such as in fixed language speaker state corpora).

2.5 More (Coupling of) Linguistics and Non-Linguistics

Transmitting information through non-verbal channels is a crucial part of
human-human communication. Besides the low-level acoustic manifestations of
speaker states and traits, such non-verbal channels also include the use of non-
linguistic vocalisations. Recently, there is renewed interest in the use of such
vocalisations in computer-mediated human-human and human-machine commu-
nication [12,83]. Just as human communication uses both non-verbal and verbal
expression, the ultimate solution will, of course, not be to define new research do-
mains dealing only with non-verbal phenomena (Social Signal Processing [94]),
or to differentiate between non-linguistic vocalisations alone (such as in [13]),
but to attain joint access to the linguistic / non-linguistic channels by machines.
On the analysis side, there are already a couple of studies on fusion of linguistic
with non-linguistic information. The simplest, yet effective and efficient strategy
is to integrate non-linguistic vocalisations as word-like entities into the linguistic
string [83,98]; in contrast, a late fusion approach has been investigated in [32].

2.6 More Optimisation

With the increased maturity of computational paralinguistics, and an estab-
lished basic methodology, more and more efforts are devoted to optimisation
of the whole processing chain. First, the systematic optimisation of machine
learning algorithms including feature selection, reduction and classification is
facilitated through the increasing availability of public corpora with well-defined
partitioning into training and test sets, such as the ones used for the first par-
alinguistic challenges [76–78]. More precisely, such optimisation steps can involve
‘global’ as well as ‘local’ feature selection for sub-sets of classes in hierarchi-
cal classification [44] or for different sub-units of speech [7]. Additionally, more
and more optimisations are applied in classifier training, including balancing of
skewed class distributions (e. g., by synthetic minority oversampling [16, 76] or
similar techniques), or instance selection, i. e., pruning of noisy training data
or outliers [26, 82]. The importance of selecting appropriate classifier parame-
ters is well known in machine learning and consequently also for paralinguistic
information retrieval, as reported, e. g., in [78]. Besides, there is an increasing
trend towards fusion of multiple systems, as has been evident in the sequence of
paralinguistic challenges [76–78]. Fusion can be applied to classifier decisions in
hierarchical [44, 101], hybrid [75] or ensemble architectures [73, 86]; at an even
higher level, fusing the output of entire recognition systems can successfully ex-
ploit their complementarity; for instance, majority voting among the systems
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from the best participants in the Interspeech 2009 Emotion Challenge yields the
best result reported so far on the challenge corpus [71].

Apart from such general machine learning techniques, speech analysis pro-
vides specific starting points for optimisation, including speech clustering by
emotional state for speaker identification [23,46] and speaker adaptation / nor-
malisation, which is nowadays observed particularly for speaker state analysis [9].
Finally, also the process of capturing speech signals itself can be optimised, e. g.,
by using silent speech interfaces for stress detection and speaker verification [58].

2.7 More Standardisation

Arguably, the more mature and closer to real-life application the field of compu-
tational paralinguistic gets, the greater is the need for standardisation. Similarly
as in the argument made in the previous section, standardisation efforts can
be categorised along the signal processing chain. They include documentation
and well-motivated grouping of features such as the CEICES Feature Coding
Scheme [4], standardised feature sets as provided by the openSMILE [31] and
openEAR [30] toolkits in this field, and machine learning frameworks such as
the Weka environment [36]. Such Standardised feature extraction / classifica-
tion allows to evaluate the feature extraction and classification components of a
recognition system separately. To further increase the reproducibility and com-
parability of results, well-defined evaluation settings are needed, such as the ones
provided by recurring ‘challenge’ events [76–78]. Finally, communication between
system components in real-life applications requires standardisation of recogni-
tion results for dialogue management or speech synthesis, etc. This is currently
achieved by markup languages for description of emotional states (EMMA [3],
EmotionML [69], MIML [51]) or extensions of VoiceXML to model speaker states
in dialogue systems.

2.8 More Robustness

Robustness issues in the context of paralinguistic analysis can be categorised
into technical robustness on the one hand and security on the other hand. Tech-
nical robustness refers to robustness against signal distortions including additive
noise, e. g., environmental noise or interfering speakers (cocktail party problem)
and reverberation, but also artefacts of transmission due to package loss and
coding. Many of these issues have been extensively studied in the context of
automatic speech recognition, and a wealth of methods is available, including
speech enhancement, robust feature extraction, model-based techniques (i. e.,
learning the distortions) and novel recognition architectures such as graphical
models. On another level, the security of paralinguistic analysis systems pertains
to recognising malicious mis-use, i. e., attempted fraud. Examples for fraud in-
clude feigning of age (e. g., in an audio-based system for parental control), degree
of intoxication, or emotion (e. g., by faking anger in an automated voice portal
system in order to be redirected to a human operator).
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Still, the majority of research in computational paralinguistics assumes lab-
oratory conditions, i. e., a direct connection to the recogniser via high-quality
audio interfaces, and data is recorded from (often paid) volunteers instead of real
users with potentially malicious intentions. There do exist a few studies on tech-
nical robustness of affect analysis, e. g., [70, 92, 96]—other speaker classification
tasks are yet to follow. Yet, studies on the security of computational paralin-
guistics are currently sparse; these include detection of fake emotions from facial
expressions [102] and recognition of feigned depression and sleepiness [14, 61].
This is in stark contrast to the efforts devoted to speaker verification, i. e., ro-
bustness of speaker recognition systems against feigning speaker identity [11].
Besides, little attention has been paid to the ‘goats’ of paralinguistic analysis:
This is how non-malicious system users that systematically cause false alarms
have been termed in the ‘zoo’ of speaker verification [21]. For instance, it is
known that speaker identification is hindered by emotion [87], and personality
analysis is influenced by the use of second language [18]. Future research should
broaden this analysis to other influence factors such as tiredness or intoxication;
multi-task learning of paralinguistic information could help systems to model
these influences.

2.9 More Realism

Basically, there is agreement that in order to evaluate systems for paralinguis-
tic analysis in conditions close to real-life application, realistic data are needed:
That is, natural occurrences of states and traits such as sleepiness or person-
ality, recorded in real-life acoustic environments and interaction scenarios, are
required. Still, progress is slow; one of the reasons might be the high effort of col-
lecting and annotating such data. Of course, the required type of data depends
on the particular application; in many cases, realistic data corresponds to spon-
taneous and conversational, i. e., verbally unrestricted speech. Besides, realism
concerns the choice of testing instances. In order to obtain a realistic estimate
of system performance, these should not be restricted to prototypical, straight-
forward cases, such as ones with high human agreement [90]. If pre-selection is
applied, e. g., to gain performance bounds, this should follow transparent, objec-
tive criteria instead of an ‘intuitive’ selection by experts. Realism further relates
to pre-processing of data such as chunking according to acoustic, phonetic or
linguistic criteria. Such chunking should either be oriented on low-level acoustic
features (i. e., a voice activity based chunking, which can already be challeng-
ing in reverberant or noisy acoustic conditions). Alternatively, if linguistic or
phonetic criteria are employed, these should be evaluated on speech recognition
output, such as in [52], not forced alignment based on manual transliteration,
such as in many of today’s emotional corpora, e. g., [76]. If additional meta-
information or common knowledge is exploited in the analysis process, this in-
formation should be obtained from publicly available sources, e. g., by web-based
queries, rather than by including expert knowledge. Finally, real-life applications
imply the requirement of speaker independence in most cases. This can be estab-
lished by partitioning into train, development and test sets [76]; however, often
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cross-validation is employed especially in case of small data sets, in order to
ensure significance of results and to avoid overfitting in case of small data sets.
Using a three-fold speaker independent and stratified subdivision according to
simple criteria (e. g., splitting according to subject IDs) seems to be a reasonable
compromise between transparency and statistical significance in that case.

2.10 More Cross-Cultural and Cross-Lingual Evaluation

One of the barriers to overcome if paralinguistic information retrieval systems
are to be widely employed is to enable their use across cultural borders. Yet,
cross-cultural effects make this task even more challenging. Concerning speech,
it is still an open question which speaker states and traits manifest consistently
across cultures and languages [8]. It seems intuitive that, for example, linguis-
tic features used to express certain emotional states differ; yet, often one-to-one
mappings between languages can be found. However, generally little attention
is paid to the more subtle effects of the cultural background. Among others,
the relative robustness of speaker identification to the language being spoken
has been confirmed [6], resulting in performance differences that are small in
magnitude, although they may be statistically significant [40]. Emotion recog-
nition, on the other hand, has been shown to depend strongly on the language
being spoken [17,27,88]; multimodal fusion might be a promising approach since
some non-verbal behavioural signals, including laughter [67] or facial expres-
sions [24] have been found to be largely independent of cultural background.
Indeed, there is evidence that multimodality helps humans in cross-cultural emo-
tion recognition [1]. In general, it might turn out that cross-cultural recognition
of paralinguistic information is just another instance of learning correlated tasks:
Recognising the race, ethnicity, dialect region, etc. of a person could help in de-
termining his or her emotion state, but possibly even biological primitives such
as age or gender. Thus, while the most obvious strategy to perform cross-cultural
recognition is to build specifically adapted models, any of the other strategies
discussed above in Section 2.1 could be promising as well.

3 Conclusions

Starting from a broad and unified overview of the field of computational paralin-
guistics, we outlined ten trends that can be summarised as: extending the field to
new tasks and more variety in data, taking into account recent paradigms in ma-
chine learning, and moving from ‘out-of-the-lab’ to real-life application contexts.
Despite these recent developments, there remain some ‘black spots’ in literature.
These include the generalisation of features and models across paralinguistic in-
formation retrieval tasks; determination of meaningful confidence measures for
paralinguistics in general, for instance, for use in dialogue systems; and finally,
bridging the gap between analysis and synthesis of speaker states and traits, by
transferring methodologies and the broader view on computational paralinguis-
tics to enable multi-faceted speech synthesis. Following these trends, we expect
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higher generalisation abilities of future systems for computational paralinguis-
tics, and we look forward to experiencing their increasing application in real
world contexts.
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