
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatik XIX

Facilitating Emergent and Adaptive Information

Structures in Enterprise 2.0 Platforms

Christian Alexander Neubert

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. M. Bichler

Prüfer der Dissertation:
1. Univ.-Prof. Dr. F. Matthes

2. Univ.-Prof. Dr. J. Schlichter

Die Dissertation wurde am 29.05.2012 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 21.09.2012 angenommen.

II

Zusammenfassung

Enterprise 2.0 bezeichnet den Einsatz von Plattformen für soziale Software in Unternehmen
oder zwischen Unternehmen und ihren Partnern oder Kunden. Dazu gehören Wikis, Blogs,
Dateifreigaben und soziale Netzwerke. Da häufig nur textuelle Inhalte auf diesen Plattfor-
men verwaltet werden, wird mit steigender Anzahl an Nutzern, die Inhalte beitragen,
der effiziente Zugang zu und die Suche nach Informationen erschwert. In neueren En-
terprise 2.0 Lösungen können IT-Experten Vorlagen, Tabellen oder semantische Anno-
tationen erstellen, um diese Situation zu verbessern. Dies führt allerdings zu bekannten
Kommunikationsproblemen zwischen der IT und dem Geschäft (Missverständnisse, Verzug,
Kosten) und einer Diskrepanz zwischen rigiden Informationsstrukturen und dem schnellen
und einfachen Erstellen von Inhalten.

Die in dieser Forschungsarbeit entwickelten hybriden Wikis befähigen Nutzer Inhalte (z.B.
Wikiseiten, Blogeinträge) und Links mittels Attributen, Typen und Integritätsbedingun-
gen inkrementell zu strukturieren und zu klassifizieren, um diese Herausforderungen zu
adressieren. Nutzer interagieren mit diesen Konzepten über eine ihnen vertraute Oberfläche
unter der Verwendung von Formularen, Tabellen, Autovervollständigung und attribut-
basierten Anfragen. Aus diesen Interaktionen entstehen emergente Informationsstrukturen
als Teil der täglichen Geschäftsaktivitäten. Bei Bedarf können Informationsstrukturen von
Nutzern auch fest definiert werden, ähnlich einem objektorientierten Datenbankschema.

Im Rahmen dieser Arbeit wird ein konzeptuelles Modell zur Unterstützung emergenter
Informationsstrukturen vorgestellt, welches orthogonal auf nutzererstellte Inhalte in En-
terprise 2.0 Plattformen anwendbar ist. Es werden Methoden präsentiert, die unter der
Verwendung von Vorschlägen das Strukturieren von Informationen erleichtern. Des Weit-
eren werden Mechanismen eingeführt, mit denen strukturelle Abweichungen erkannt und
vereinheitlicht werden können. Die Innovativität von hybriden Wikis wird anhand eines
Vergleichs mit 28 verwandten Forschungsarbeiten sowie einer Analyse der Funktionen
von neun prominenten Enterprise 2.0 Lösungen demonstriert. Ein weiterer Bestandteil
dieser Arbeit ist die Implementierung hybrider Wikis basierend auf einer bestehenden,
kommerziellen, in Java geschriebenen Enterprise 2.0 Plattform. Zunächst wird die zu-
grundeliegende Systemarchitektur sowie die Schnittstellen zur Basisplattform erklärt. An-
schließend wird das Zusammenwirken von Typen, Attributen und Integritätsbedingun-
gen mit Persistenzschicht, Systementwicklung, dynamischer Zugriffskontrolle, Suche, Link
Management, Tagging, Versionshistorie und der Benutzeroberfläche diskutiert.

Zur Validierung wird die Qualität emergenter Informationsstrukturen über die Durch-
führung eines kontrollierten Laborexperiments bewertet. Der produktive Einsatz hybrider
Wikis in sechs Organisationen aus verschiedenen Anwendungsbereichen zeigt, dass Nutzer
in Unternehmen tatsächlich ohne Unterstützung von IT-Experten Informationsstrukturen
gemäß sich ändernder Anforderungen erstellen und anpassen.

III

IV

Abstract

Enterprise 2.0 is the use of emergent social-software platforms within companies, or between
companies and their partners or customers, including wikis, blogs, file sharing, and social
networks. Due to the free-form nature of the content managed on these platforms, efficient
information retrieval and access becomes a challenge once a significant number of users
contribute content. In more recent Enterprise 2.0 systems, IT experts can define templates,
structured tables, or semantic annotations to improve this situation. However, this leads
to well-known problems of business-IT communication (misunderstandings, delay, costs)
and a mismatch between rigid information structures and fluid content authoring.

To address this issue, we developed the concept of Hybrid Wikis, which empower business
users to incrementally structure and classify content objects (e.g., wiki pages, blog posts)
and links using attributes, types, and constraints. Business users interact with these
concepts using a familiar interface based on forms, spreadsheet-like tables, autocompletion,
and attribute-based queries. From these interactions, information structures evolve as part
of the users’ day-to-day business activities. If required, business users can make these
information structures explicit and enforce them like an object-oriented database schema.

We introduce a conceptual model supporting emergent information structures orthogonally
applicable to user-generated content in Enterprise 2.0 platforms. Furthermore, we present
techniques facilitating information structuring using suggestions and introduce mechanisms
to detect and consolidate deviations in structures. The novelty of Hybrid Wikis is shown by
a comparison with 28 related research works and an analysis of the functional capabilities of
nine prominent Enterprise 2.0 vendor solutions. As part of this thesis, Hybrid Wikis have
been implemented based on an existing commercial Enterprise 2.0 platform written in Java.
We first explain the underlying system architecture and the interfaces to the base platform.
We then discuss how types, attributes, and constraints interact with persistence manage-
ment, system evolution, dynamic access-control, search mechanisms, link administration,
tagging services, version history, and user interface design.

To validate our approach, we present the results of a controlled laboratory experiment
evaluating the quality of the emerging information structures compared to UML models.
The productive use of Hybrid Wikis in six organizations from different application domains
shows that business users indeed create and adapt information structures according to
changing demands without the need to involve IT experts.

V

VI

Acknowledgment
This thesis emerged from my work as a research assistant at the Chair for Informatics 19
(sebis) at the Department of Informatics of the Technische Universität München. At this
point, I would like to express my gratitude to all those, who supported me in my work during
the last four years.

First, I would like to thank my doctoral advisor, Prof. Dr. Florian Matthes, for providing me
the opportunity to work on this interesting research topic and for his suggestions and advice
that greatly contributed to the success of this work. I would also like to thank Prof. Dr.
Johann Schlichter for his conversations about the subject and for being the second supervisor
of my thesis.

My thanks goes to my colleagues for their time for discussions that greatly helped to develop
the ideas underlying Hybrid Wikis. I would like to thank Dr. Sabine Buckl and Dr. Christian
Schweda from the enterprise architecture management team for being the ‘obstetricians’ of
Hybrid Wikis. In particular, I thank Dr. Thomas Büchner and Alexander Steinhoff from
the social software team for helping me to bring up Hybrid Wikis, from a clumsy infant to a
young, confident adult. I would also like to thank my colleagues Ivan Monahov, Sascha Roth,
Alexander Schneider, and Christopher Schulz for the constructive cooperation in teaching and
researching as well as for annoying me by constantly submitting bugs. This really helped to
improve Hybrid Wikis.

I would like to thank the students, whose thesis I supervised the last four years. Thanks
to Jacob Class, Pawel Dacka, Markus Dauberschmidt, Andy Großmann, Matthias Hunecker,
Julian Lebherz, Matti Maier, Andreas Mirbeth, Julian Sommerfeldt, Katharina Rau, Thomas
Reschenhofer, Claudia Sroke, Manuel Tremmel, Alexej Utz, and Bernhard Waltl. I really
enjoyed working with you.

I also want to express my gratitude to my partner, Claudia Beer. Thanks for your love, being
so patient, and constantly reminding me that there is life outside of my computer. Finally, I
am most grateful to my family. Thanks to my parents Brigitta and Wolfram, and my sister,
Kristina Neubert. Without your support, encouragement, and love during my whole life this
work would not have been possible.

Garching b. München, 15.05.2012

Christian Neubert

VII

VIII

Contents

1 Introduction and Overview 1

1.1 Motivation and problem statement . 1
1.2 Research questions . 3
1.3 Research design . 4
1.4 Outline of the thesis . 7

2 Towards Hybrid Wikis 9

2.1 Principles guiding the development of Hybrid Wikis 11
2.1.1 Simplicity over expressivity . 12
2.1.2 Data over schema . 12
2.1.3 Evolution over rigidity . 13

2.2 Example scenario . 13

3 Hybrid Wikis 17

3.1 Concepts supporting emergent information structures 17
3.1.1 Spaces . 18
3.1.2 Content objects . 18
3.1.3 Attributes . 23
3.1.4 Types . 23
3.1.5 Values . 24
3.1.6 Structured . 30
3.1.7 Attribute definitions . 30
3.1.8 Constraints . 33

3.2 Emergent structures in Enterprise 2.0 platforms 40
3.2.1 Participation model . 40
3.2.2 Evolution of emergent information structures 41
3.2.3 Access control for structuring concepts 44
3.2.4 Integration of structuring concepts in Enterprise 2.0 services 46

3.3 Techniques facilitating information structuring 49
3.3.1 Suggestions . 49

IX

Contents

3.3.2 Transitions . 56
3.3.3 Schema-based information consolidation 66
3.3.4 Data-based schema adaption . 68

3.4 Views based on structured information . 68
3.4.1 Built-in views . 69
3.4.2 Custom views . 77
3.4.3 Structured search . 79
3.4.4 Advanced UI operations . 80

4 Implementing Hybrid Wikis in Tricia 83

4.1 Introduction to Tricia . 83
4.1.1 Architecture . 84
4.1.2 Data modeling framework . 86
4.1.3 Interaction framework . 90
4.1.4 Access control framework . 90
4.1.5 Plugins and extension points . 91
4.1.6 Enterprise 2.0 platform Tricia . 91

4.2 Implementing Hybrid Wikis . 91
4.2.1 Data model . 92
4.2.2 Extended architecture . 110
4.2.3 Suggestions . 112
4.2.4 Transitions . 116
4.2.5 Consolidation . 118
4.2.6 Export and import of structured content 119
4.2.7 Collaborative information management on federated data sources 120

5 Related Work 123

5.1 Semantic Web . 126
5.2 Wiki templates . 128
5.3 DynaTable . 131
5.4 DBpedia . 132
5.5 Semantic wikis . 133

5.5.1 Semantic MediaWiki . 134
5.5.2 Semantic Enterprise Wiki (SWM+) . 135
5.5.3 AceWiki . 136
5.5.4 OntoWiki . 137
5.5.5 Kaukolu . 139
5.5.6 Artificial Memory . 140
5.5.7 HYENA . 141
5.5.8 IkeWiki . 143
5.5.9 Makna . 144
5.5.10 KiWi . 145
5.5.11 Rhizome . 147
5.5.12 SHAWN . 147
5.5.13 RISE . 148
5.5.14 SemperWiki . 149
5.5.15 SweetWiki . 149

X

Contents

5.5.16 SOBOLEO . 150
5.5.17 KnowWE . 152

5.6 Corporate Semantic Web . 152
5.7 Freebase . 152
5.8 MoKi . 154
5.9 SnoopyDB . 155
5.10 Social Infobox . 156
5.11 TWiki . 157
5.12 DBWiki . 158
5.13 Summary and comparison with Hybrid Wikis 159

5.13.1 Semantic annotations . 159
5.13.2 Towards simplicity . 160
5.13.3 Structures for public use . 161
5.13.4 Social tagging . 161
5.13.5 Applicability in enterprises . 162

6 Application and Evaluation 163

6.1 Applying Hybrid Wikis . 163
6.1.1 Wiki4EAM Community . 163
6.1.2 InfoAsset AG . 173
6.1.3 TU München (sebis) . 174
6.1.4 Pixida GmbH . 176
6.1.5 Summary . 178

6.2 Experimental examination of models created with Hybrid Wikis 179
6.3 Evaluating and visualizing the structural evolution of Hybrid Wikis 182

7 Conclusion 185

7.1 Summary . 185
7.2 Outlook . 186

7.2.1 Type hierarchies . 186
7.2.2 Empirical evaluation of the use of Hybrid Wikis 187
7.2.3 Towards user-adaptive information systems 188

A Appendix 189

Bibliography 191

XI

XII

List of Figures

1.1 Cooperative information management activities of persons and groups in an
Enterprise 2.0 platform based on unstructured content. 2

1.2 Communication problems can lead to a mismatch between demands and re-
quirements, latency between demand and release, and a cold start after schema
migration. 3

1.3 Information systems research framework according to [He04]. 5

2.1 Hybrid Wikis combine schema-based structured information with unstructured
information provided by Enterprise 2.0 platforms. 10

2.2 Enterprise 2.0 platform extended with structuring concepts (attributes, types,
constraints) provided by Hybrid Wikis. 11

2.3 Exemplary information model used within a small company’s intranet for
project and customer management. 15

3.1 Core concepts provided by Hybrid Wikis. 18
3.2 Access control for content objects. 21
3.3 Access control model according to [BMN10a]. 21
3.4 Default access rights derived from a space. 22
3.5 Concepts supporting the structuring of content objects. 25
3.6 String values. 26
3.7 Internal and external link values. 27
3.8 Hypertext values. 28
3.9 Record values. 29
3.10 Structured link values. 30
3.11 Simplified model representing structured content objects. 31
3.12 Core concepts specifying types and integrity constraints. 32
3.13 Simplified model specifying types and integrity constraints. 34
3.14 Applying constraints when displaying a content object. 35
3.15 Alternative validation model using a context for applying integrity rules. 36
3.16 Enumeration constraint. 38

XIII

List of Figures

3.17 Constraints for records, internal links, and structured links. 39
3.18 Integrated data-driven information management and schema evolution via col-

laboration. 42
3.19 Degrees of the structure’s consolidation. 43
3.20 Implicit and explicit schema in Hybrid Wikis. 43
3.21 Changing a value’s data type from string to (internal) link. 57
3.22 Transitions from type to attribute (a), tag to attribute (b), and built-in markup

to attribute. 59
3.23 Transition supporting the merge of two attributes. 61
3.24 Objectification of structured values. 62
3.25 Objectification of a semi-structured table. 64
3.26 Objectification of unstructured content. 65
3.27 The content view shows unstructured information, links, and tags of a wiki page. 70
3.28 The hybrid view shows unstructured content on the left and structured content

on the right. 71
3.29 Autocomplete suggestions for attribute values. 72
3.30 Attributes, types, and built-in content presented in the structured view enlarged

to the full size of the webpage. 73
3.31 The structured link view allows to attach attributes and types to hyperlinks. . . 73
3.32 The type table view shows all instances of a type. 74
3.33 The attributes view shows all attributes of a type. 75
3.34 The types view shows the all available structures within a space. 76
3.35 Visualizing emergent information structures according to [Ut11]. 77
3.36 Custom table and list view embedded in the built-in content of a wiki page. . . 78
3.37 The search interface allows a faceted drill-down based on the structured contents. 79
3.38 Query and view configuration embedded in wiki text. 80

4.1 Architectural overview of a typical web application implemented based on the
Tricia platform. 84

4.2 Example data model consisting of wikis and wiki pages and their relations. . . . 86
4.3 Concepts of Tricia’s data modeling framework. 87
4.4 MVC pattern realized in Tricia. 90
4.5 Plugins provided by Tricia before Hybrid Wikis. 91
4.6 Data model underlying Hybrid Wikis. 92
4.7 Mixin Structured applied to some content objects. 93
4.8 Assignment of a type by means of tagging services. 94
4.9 The mixin Structured is based on the mixin Taggable. 96
4.10 Storing and indexing of key-value pairs. 99
4.11 Link structures are represented by an entity with mixins 100
4.12 Attributes and constraints integrated in the Tricia data model. 102
4.13 Tricia’s validation model checking the consistency of entities with properties

and roles. 103
4.14 Attributes integrated in the Tricia data model. 104
4.15 Tricia’s validation model extended with attributes and constraints. 105
4.16 Interactive management of values with data types. 106
4.17 Formatting values according to data type and user language. 107
4.18 Validation while editing values. 108

XIV

List of Figures

4.19 Attribute definition with constraints. 109
4.20 Plugins provided by Tricia including Hybrid Wikis. 110
4.21 Constituents of the structured plugin. 111
4.22 Constituents of the hybrid wiki plugin. 111
4.23 Autocomplete suggestions for attribute keys. 113
4.24 Autocomplete suggestions for attribute values. 113
4.25 Data type suggestions are provided while entering values. 114
4.26 Suggestions and autocomplete support for types. 115
4.27 Improved input support for values based on attribute definitions and constraints.115
4.28 Facilitating data entry based on attribute definitions and constraints. 116
4.29 Transferring unstructured content to an attribute. 117
4.30 Objectification of a semi-structured table from the built-in content of a wiki page.118
4.31 Applying changes in the schema to the instances. 119
4.32 An external object (from SharePoint) describing a lecture with unstructured,

additional content, external attributes (e.g., Speaker), and locally stored at-
tributes (e.g., Betreuer) which are linking to external objects (from Exchange)
representing persons (e.g., Neubert Christian) according to [RW11]. 121

5.1 sebis Enterprise 2.0 Tool Survey result matrix 2010 showing some categories,
services, and vendor ratings. 124

5.2 An RDF triple represented by subject, predicate, and object according to [Ha04].126
5.3 Layers of the Semantic Web. Source: http://www.w3.org/2007/03/layerCake-

small.png; visited on February 10th 2012. 127
5.4 Wikipedia template representing Austrian towns applied to Innsbruck according

to [AL07]. 128
5.5 Wiki edit template specifying two sections by using wiki markup (Bibliographic

Data and Summary) with properties (e.g., Author) and placeholder input fields
(wikiTextInput) according to [HLS05] . 130

5.6 A wiki page using Lightly Constrained Templating mechanisms indicating
validation errors caused by deviations from the master template according
to [DIVZ08]. 131

5.7 Code embedded in a wiki page (lower part of the figure) to render a table (upper
part of the figure), named Companies, with data defined in a separate space
according to [Ar09]. 132

5.8 DBpedia as a hub of interlinked data according to [Bi09]. 133
5.9 Semantic annotations used in the markup editor provided by Semantic MediaWiki.135
5.10 Semantic Toolbar provided by SWM+ showing categories and properties. . . . 136
5.11 Predictive editor in AceWiki using the controlled natural language ACE to

create sentences. 137
5.12 Resource editor provided by OntoWiki. 138
5.13 Kaukolu’s page editor showing suggestions based on imported ontologies ac-

cording to [Ki06]. 140
5.14 Hierarchical document in Artificial Memory showing the triples of a paper en-

titled ArtificialMemory Prototype for Personal Semantic Subdocument Knowl-
edge Management. 141

5.15 HYENA’s Eclipse-based offline RDF editor according to [Ra10b]. 142

XV

List of Figures

5.16 HYENA’s web editor showing a wiki page selected in the list of available RDF
resources according to [Ra10b]. 143

5.17 The main window of IkeWiki showing navigation functionality on the left,
wiki content in the middle, and meta data (e.g., incoming links) on the right.
Source: http://www.wikimatrix.org/screenshots/screen_28_1.png; visited on
February 19th 2012. 144

5.18 Makna assistant to insert predicates in the wiki text according to [DST06]. . . . 145
5.19 A semantic wiki page created based on the KiWi platform according to [Sc09]. . 146
5.20 Editor provided by Rhizome showing semantic annotations in its own markup

language (ZML) according to [So05]. 147
5.21 Editor provided by SHAWN using colon-separated key-value pairs for informa-

tion structuring embedded in the page content according to [Au05b]. 148
5.22 SemperWiki editor showing keys (e.g., dc:author) and values (e.g., "Explana-

tion") in the wiki page content according to [Or05]. 150
5.23 Editor provided by SweetWiki showing tag suggestions as the user enters key-

words according to [Bu11a]. 151
5.24 Editor provided by SOBOLEO showing tag suggestions as the user enters key-

words. 151
5.25 Editor provided by KnowWE showing knowledge used for problem-solving pur-

poses and recommended solutions according to [BRP11]. 153
5.26 A Freebase topic Development Project DISS with attribute Budget typed as

Project. 154
5.27 MoKi editor showing a wiki page with textual description, hierarchical struc-

ture, and properties according to [Gh09]. 155
5.28 Editor provided by SnoopyDB supporting structured tags (in key:value format)

applied to a Flickr photo (http://www.flickr.com; visited on February 22nd 2012).156
5.29 Editor of Social Infobox showing a resource with properties and suggestions. . . 157
5.30 Editing a template for contacts in TWiki. 158
5.31 Embedded queries and update forms in DBWiki’s pages according to [Bu11b]. . 159

6.1 Cluster map embedded in a wiki page provided by the SyCa-Tool based on
models derived from structured pages in Hybrid Wikis 165

6.2 Information model used by the KVB for the management of the EA. 168
6.3 Emergent information model used by UniCredit Business Integrated Solutions

S.C.p.A. (formerly UniCredit Global Information Services S.C.p.A.) for the
management of infrastructure elements. 170

6.4 Emergent information model used by Miles Group GmbH for the management
of invoices. 172

6.5 Emergent information model used by InfoAsset AG for the management of issues.174
6.6 Emergent information model used by sebis to manage students and exercises of

a course. 175
6.7 Emergent information structures used by Pixida GmbH in the human resource

department for business process documentation according to [Gr12]. 177
6.8 Default values used as placeholders facilitating the data entry of customer ad-

dresses according to [Gr12]. 178
6.9 Metric used to experimentally evaluate the quality of UML models and models

created with Hybrid Wikis according to [GP01, Kr95, Ra11]. 181

XVI

List of Figures

6.10 Visualizing the structural evolution of a wiki page with attributes, types, and
tags according to [Tr12]. 183

A.1 The conceptual model of Hybrid Wikis. 190

XVII

XVIII

List of Tables

3.1 Transitions to data types String, Date, Number, and Hypertext. 58
3.2 Transitions to data types Record and ExternalLink. 58
3.3 Transitions to data types InternalLink and StructuredLink. 58
3.4 Transitions from plain text. 60
3.5 Transitions from hypertext. 60
3.6 Transitions from a link. 61
3.7 Table as part of the built-in content describing two projects with their budgets. 64

4.1 Mandatory mixins and their usage in the core plugin and in the wiki plugin. . . 89
4.2 Internal and external representation of values according to [Ma11]. 108

6.1 Hybrid Wikis used for enterprise architecture management. 179
6.2 Hybrid Wikis applied in enterprises supporting customer-relationship-

management, human resources, events, meetings, and accounting. 179
6.3 Hybrid Wikis applied in enterprises supporting the management of projects,

tasks, configurations, and templates. 180
6.4 Hybrid Wikis applied in enterprises supporting personal information manage-

ment, licenses, lectures, and publications. 180

XIX

XX

CHAPTER 1

Introduction and Overview

1.1. Motivation and problem statement

In order to keep pace with the growing amount of digital information that has to be managed
enterprises have to adopt new tools and methods [EM00]. Enterprise 2.0 platforms are increas-
ingly being used as lightweight shared content repositories that allow users to collaboratively
gather, manage, and consolidate information that was previously scattered across emails, files
on personal computers, and paper documents [Mc09]. “Enterprise 2.0 is the use of emer-
gent social-software platforms within companies, or between companies and their partners or
customers” [Mc06], including wikis, blogs, file sharing, and social networks (cf., Figure 1.1).

Having this information integrated in a central place, being able to search it, and to connect
related pieces of information with hyperlinks is a major advance. “Enterprise 2.0 technolo-
gies have the potential to let an intranet become what the Internet already is: an online
platform with a constantly changing structure built by distributed, autonomous and largely
self-interested peers. On this platform, authoring creates content; links and tags knit it to-
gether; and search, extensions, tags and signals make emergent structures and patterns in the
content visible, and help people stay on top of it all.” [Mc06]

Content managed on such platforms is characterized by its free-form nature. For example,
wikis consist of plain textual, unstructured, user-generated content [O’05]. This makes it
convenient for business users to immediately react to constantly changing demands resulting
from the growing dynamics of today’s business: since content is not captured in a rigid schema
in these platforms, users can flexibly share and organize it according to their needs. However,
due to the unstructured form of such content, efficient information retrieval and access becomes
challenging once a significant number of users contribute content. Soon, information needs to
be accessible in more structured ways. For example, it is not possible to query the contents
for a company’s research projects that started back in 2010 or to export data about these

1

1. Introduction and Overview

Cooperative Information
Management Activities

Idea: Treat information system evolution also as a
cooperative information management activity

IT Project A IT Project B IT Dept. Arch. Board

Personal Spaces Team Spaces Enterprise Spaces

fine-grained access control
(read, edit, contribute)

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Unstructured Content

Persons

Groups

search, link, tag,
version, comment, view, watch, rate

Documents Wiki Pages Blog Posts Tweets …

Content with
Emergent Structures

Projects Customers Contacts Issues … [Ma11b]

Figure 1.1.: Cooperative information management activities of persons and groups in an En-
terprise 2.0 platform based on unstructured content.

projects to a spreadsheet. So even if only rudimentary structured querying functionality is
required, enterprises have to resort to separate applications, usually specialized to manage
information of particular domains (like employees, projects, or customers) or they have to
develop customized solutions. In both cases the advantages of storing information in a central
repository are lost.

In more recent Enterprise 2.0 systems, users are enabled to provide structured information, for
example by using wiki templates [DIVZ08, HLS05] or table extensions [Ar09] to fill in data.
This way, diverging knowledge acquisition is counteracted and information redundancies are
avoided. Recently, semantic technologies [Fe11] have been integrated in Enterprise 2.0 appli-
cations [Pa11]. For instance, semantic wikis allow to combine textual contents with structured
data [KVV06]. Typically, their users have to manually provide data in the form of semantic
annotations to wiki pages or parts thereof. The structured part of the information in the wiki
can then be queried similar to the contents of a database.

Templates, table enhancements, and semantic extensions can be used to structure arbitrary
information. However, they are rarely used as general structuring means that users dynami-
cally adapt to new needs in practice. Instead, structures are often pre-configured and adapted
by IT experts in order to solve rather specific problems [Gh09, Ho09, TGP11]. In many cases
this leads to well-known problems of business-IT communication as for example when carrying
out classical software engineering projects [Bo91] (cf., Figure 1.2):

∙ Mismatch between demand and realization: The structures delivered do not fulfill the
requirements.

∙ Latency between demand and release: The structures are not available when they are
required.

∙ Cold start after schema migration: No data is provided when the changed structures are
available.

2

1. Introduction and Overview

Demands regarding information structures
New business objects types
Changed attributes
New business rules
Changed data types
…

Problem statement: Classical information systems do not
keep pace with the accelerating speed of business changes

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Use

Developer

Business User

ReleaseChange Request

D IA

Demand Demand Demand

Change Request

D IA

Release

…

Demand

Analysis
Design
Implementation

Figure 1.2.: Communication problems can lead to a mismatch between demands and re-
quirements, latency between demand and release, and a cold start after schema
migration.

In this thesis, we present a novel approach to mitigate these challenges: Hybrid Wikis.

1.2. Research questions

In order to make our research objective more manageable we split the goals of this thesis
in six research questions. These provide guidance to the overall research process and build a
foundation for the evaluation of our results. Moreover, answering the answers to our questions
add value to an existing knowledge base [GL10].

Research question 1: Is it possible to facilitate emergent and adaptive informa-
tion structures in Enterprise 2.0 platforms?

This is the overall research question. We break it down into the following subquestions:

Research question 2: Which concepts support information structuring in En-
terprise 2.0 platforms?

This question focuses on the identification of concepts necessary to support business users in
information structuring. We introduce the relevant structuring concepts in Section 3.1.

Research question 3: Which techniques facilitate information structuring in
Enterprise 2.0 platforms?

This question aims at finding a set of mechanisms applicable to the identified structuring
concepts (cf., research question 2). In particular, we examine how business users interact with
these structuring concepts, how information structuring can be facilitated for business users,
and how emergent information structures can be adapted by them. The identified techniques
are presented in Section 3.3.

Research question 4: How can information structuring be realized in an Enter-
prise 2.0 tool?

This question aims at finding an appropriate way of implementing information structuring
in Enterprise 2.0 platforms. It focuses on technical aspects in particular, such as an efficient
support for structuring information or technical integration of information structuring into

3

1. Introduction and Overview

existing Enterprise 2.0 platforms. In Chapter 4, we discuss how information structuring can
be supported from a technical point of view.

Research question 5: How do approaches proposed by scientific literature and
commercial vendors support information structuring compared to our solution?

This question aims at finding out what the information structuring capabilities of already
existing tools and prototypes are, what they have in common with our approach, and in what
ways they differ. In Chapter 5, we introduce several approaches and relate them with our
solution.

Research question 6: What is the experience gained in applying our solution
in practice? Does the application lead to emergent information structures? What
quality have structures created with our solution?

These questions aim at the application and evaluation of the developed artifact in practice. In
particular, the questions’ purpose is to find out which structures emerge and how structures
evolve when our solution is applied in business contexts. Furthermore, the questions help to
compare structures of our solution with those of other structuring approaches. In Chapter 6
we introduce practical experiences made with our approach. In particular, we present selected
industry case studies and results of an experimental examination.

In order to address these six research questions we applied the research methodology as intro-
duced in Section 1.3.

1.3. Research design

The research conducted in this thesis is based on the design science approach. The research
questions given in Section 1.2 directly point to the design science approach as introduced
by [He04]. The authors of this article describe design science as a problem-solving process
based on the principle “that knowledge and understanding of a design problem and its solution
are acquired in the building and application of an artifact”. They point out that “design
science addresses research through the building and evaluation of artifacts designed to meet
the identified business need”. An overview of the proposed information systems research
framework is depicted in Figure 1.3.

This thesis provides an analysis of scientific literature concerned with tools and prototypes
supporting information structuring. Furthermore, it presents the results of a survey on promi-
nent open source and commercial Enterprise 2.0 platforms (cf., Chapter 5). These efforts can
be considered as “framing research activities to address business needs”. This way, we assured
research relevance.

The artifact designed in this thesis consists of a set of concepts and techniques facilitating
the evolution and adaption of information structures in Enterprise 2.0 platforms. An instan-
tiation is provided by implementing these concepts and mechanisms based on an existing
Enterprise 2.0 platform, resulting in an innovative solution.

The developed solution is applied to several enterprises from the problem domain in order to
evaluate our approach and to show its usefulness. Since “truth and utility are inseparable” we

4

1. Introduction and Overview

Figure 1.3.: Information systems research framework according to [He04].

continuously justified and adapted our solution based on the feedback we received from our
industry partners. We also conducted a controlled experiment in order to examine the quality
of our approach.

Since research “rigor is achieved by appropriately applying existing foundations and method-
ologies” this thesis follows scientific methods and standards as well as state-of-the-art devel-
opment methods for constructing the artifact, as subsequently outlined.

Since “a justified theory that is not useful for the environment contributes as little to the
IS literature as an artifact that solves a nonexistent problem”, the research presented in this
thesis conforms with the guidelines for design science as introduced by [He04]:

1. Design as an Artifact: The research conducted in this theses results in an innovative
extension of an existing Enterprise 2.0 platform. This extension facilitates the structur-
ing of information and empowers users to flexibly adapt structured information. The
introduced structuring mechanisms are also applicable to other Enterprise 2.0 platforms.
Therefore, they can be considered as general means for applying structure to information
in integrated Enterprise 2.0 environments.

2. Problem Relevance: Problem relevance is primarily derived from an analysis of
the problem domain, that is, tool-based information structuring in enterprise con-
texts. The analysis considers approaches theoretically described in literature as well
as those which are realized as working solution and used in practice. The litera-
ture analysis is introduced in Chapter 5, tool-based approaches have been evaluated
in [BMN09, BMN10b, Da11, Mi10].

3. Design Evaluation: Utility, quality, and efficacy of the approach are demonstrated in
Chapter 6. We show that the structuring concepts and mechanisms provided by the

5

1. Introduction and Overview

extended Enterprise 2.0 platform are beneficial in practice. This is achieved by intro-
ducing several industry case studies. Additionally, the quality of the emerging structures
is evaluated in a controlled laboratory experiment.

4. Research Contributions: The main contribution of this thesis consists of the developed
artifacts. That is, a conceptual model supporting emergent information structures, a set
of techniques facilitating information structuring, and an implementation based on an
existing Enterprise 2.0 platform. Since these artifacts are applicable to similar contexts
(e.g., the conceptual model can also be integrated in other Enterprise 2.0 platforms in
order to support information structuring), the expanded, more general applicability can
also be considered a research contribution.

5. Research Rigor: The evaluation of the research artifact follows scientific methods
and standards. Utility is shown by means of case studies, quality via a controlled
laboratory experiment according to [Kr95], and efficacy by providing a tool that al-
lows to conduct quantitative analyses. The developed extension providing information
structuring capabilities is based on Tricia, a generic framework1 for model-driven de-
velopment of domain-specific web applications supporting standardized web technolo-
gies [BMN10a, Bü07]. The process constructing the research artifacts follows an agile
development approach [Ma03] in order to be able to directly collaborate with and receive
feedback from users within the problem domain as well as to quickly respond to changes
in the environment.

6. Design as a Search Process: We designed the artifact incrementally by applying several
prototypes to different environments (e.g., in the Faculty of Informatics at Technische
Universität München2 or at our chair3). Furthermore, we established a community4 for
enterprise architects [MN11b]. This community facilitates the exchange of experience
in applying our artifact in the context of enterprise architecture management [La09].
We regularly gathered feedback from users from the problem domain. According to this
feedback, we adapted our prototype and applied it to the problem domain again. We
continuously applied this feedback loop during the research process. The thesis also
draws conclusions from selected case studies (cf., Chapter 6) which encourage further
research endeavors.

7. Communication of Research: In order to present the research results to a management-
oriented audience we introduce selected industrial case studies. We describe which struc-
tures (i.e., domain models) emerge in practice (e.g., a domain model for the management
of issues) by using the extended Enterprise 2.0 platform and how these structures are
adapted. Furthermore, we show how individual users, teams, and enterprises benefit
from our approach by demonstrating how the provided concepts and mechanisms help
to fulfill business demands in structuring information (cf., efficiency in [He04]). The
technology-oriented audience is addressed by introducing a model consisting of concepts
that support information structuring (cf., language in [He04]) and by discussing how

1The most prominent application build based on the web application framework Tricia is an Enter-
prise 2.0 platform. Therefore, the name Tricia is often used as a synonym for this platform. In this
thesis, the name Tricia refers to the Enterprise 2.0 platform and not to the web application framework.

2http://intranet.in.tum.de; visited on March 10th 2012.
3http://wwwmatthes.in.tum.de; visited on March 10th 2012.
4http://wwwmatthes.in.tum.de/wikis/sebis/wiki4eam; visited on March 10th 2012.

6

1. Introduction and Overview

these concepts are integrated in the Enterprise 2.0 platform Tricia with regard to the
impact on the overall system architecture. Furthermore, we sketch the benefits of inte-
grating our solution with the existing IT landscape of an enterprise.

1.4. Outline of the thesis

Chapter 2 presents the general ideas and design rationale underlying our approach. We sketch
the notion of Hybrid Wikis by briefly introducing the core structuring concepts and by exem-
plifying how business users interact with these concepts.

In Chapter 3 we design concepts required to support information structuring in Enter-
prise 2.0 platforms. Based on these concepts, we show how information structuring is fa-
cilitated and how emergent information structures can be adapted by business users. To
illustrate our approach, we present the main user interface views of Hybrid Wikis. This
chapter addresses research questions 2 and 3.

In Chapter 4 we discuss how the concepts presented in Chapter 3 can be implemented based
on an existing Enterprise 2.0 platform. Firstly, we explain the platform’s underlying system
architecture. Subsequently, we explain how Hybrid Wikis interact with this system from a
technical point of view. This chapter answers research question 4.

Chapter 5 compares Hybrid Wikis to other tool-based approaches that support information
structuring. We present the results of a literature study as well as findings from a survey on
integrated Enterprise 2.0 applications. This chapter addresses research question 5.

In Chapter 6, which is concerned with research question 6, we validate Hybrid Wikis. We
introduce case studies from different application domains and present our experience gained
in six organizations. The quality of emergent structures is evaluated through a controlled
laboratory experiment.

In Chapter 7 we respond to research question 1 by summarizing the key findings of this thesis.
The thesis concludes with an outlook on future research directions.

7

8

CHAPTER 2

Towards Hybrid Wikis

In this chapter, we present the general ideas underlying our approach. First, we present the
key considerations Hybrid Wikis are based on and briefly explain how users are intended to
interact with the provided structuring concepts. Subsequently, in Section 2.1 the guiding de-
sign principles of Hybrid Wikis are introduced. In Section 2.2 we demonstrate the structuring
capabilities of Hybrid Wikis by means of a small example scenario.

The main research objective of this thesis is to find a way to facilitate emergent and adap-
tive information structures in Enterprise 2.0 platforms. In particular, we want to encour-
age business users to provide structures and empower them to manage structures without
the help of IT specialists. As currently Enterprise 2.0 platforms successfully support user-
generated [O’05], user-managed contents, our goal is to extend these platforms to additionally
support user-generated [HV09], content-driven, and user-managed structures. By empowering
users to create and manage structures by themselves, the challenges discussed in Section 1.1
are mitigated.

The general idea is to make the contents in Enterprise 2.0 platforms accessible like in a
database. The goal is to combine the characteristics of Enterprise 2.0 platforms (e.g., free-
form content with hypertext and links; full text search) with those of database systems
(e.g., structured tables with attributes and integrity constraints; structured queries) by in-
tegrating structured information in unstructured contents (cf., Figure 2.1). Our approach is
called Hybrid Wikis. The term hybrid expresses that unstructured content is enriched with
structured elements that allow to query content similar to a databases. Even if the name sug-
gests that our approach is only applicable to wiki systems, it is possible to structure all types
of unstructured content objects in Enterprise 2.0 platforms, such as blog posts, tweets, and
documents. The name Hybrid Wikis originates from the first implementation of our approach,
an extended wiki supporting content structuring integrated in an existing Enterprise 2.0 plat-
form.

9

2. Towards Hybrid Wikis

Hybrid Wikis empower users to incrementally structure and to classify content objects and
links using a small set of concepts. The core concepts are

∙ attributes,

∙ types, and

∙ constraints (cf., Figure 2.2).

Suggestions

Inverse links

 enhance traditional Wikis with a small set of
concepts to capture information structures,
namely attributes, type tags, and
constraints,

 provide mechanisms facilitating the
emergence and the evolution of information
structures with suggestions and auto-
completion,

 help to avoid information redundancies by
combining structured and unstructured
queries to facetted hybrid searches,

 foster users to access structured information
by providing default views based on hybrid
searches, and

 allow the flexible adaption of information
structures without any need for expensive IT
projects.

Hybrid Wikis – Enterprise Collaboration and
Information Management

Schema-based structured information Unstructured information in traditional Wikis

Types

Attributes

Constraints

Data over schema
 data first, schema second
 bottom-up data-driven schema emergence

instead of top-down modeling
 data gardening instead of data entry

prevention
Simplicity over expressivity
 reduced set of structuring concepts instead

of universal description languages
 management of structures with familiar views

instead of formal and textual annotations
 in-place editing for particular information

chunks instead of overloaded web forms
 default views for accessing structures

instead of manual configuration
Evolution over rigidity
 vivid schema instead of rigid typing
 small incremental schema adaption instead

of large migration steps

Contact: Christian Neubert (neubert@in.tum.de)
Software Engineering for Business Information Systems (sebis), Prof. Dr. Florian Matthes, http://wwwmatthes.in.tum.de

Unstructured information Structured information &

Hybrid Wikis

Queries

Types
&

Constraints

Hypertext
&

Links

Principles underlying Hybrid Wikis

Hybrid Wikis
 enhance traditional Wikis with a small set of
concepts to capture information structures,
namely attributes, type tags, and
constrains,
provide mechanisms facilitating the
emergence and the evolution of information
structures with suggestions and auto-
completion,
help to avoid information redundancies by
combining structured and unstructured
queries to facetted hybrid searches,
foster users to access structured information
by providing default views based on hybrid
searches, and
allow the flexible adaption of information
structures without any need for expensive IT
projects.

Data over schema
 data first, schema second
 bottom-up data-driven schema emergence
 instead of top-down modeling
 data gardening instead of data entry
 prevention
Simplicity over expressivity
 reduced set of structuring concepts instead
 of universal description languages
 management of structures with familiar
 views stead of formal and textual
 annotations
 in-place editing for particular information
 chunks instead of overloaded web forms
 default views for accessing structures
 instead of manual configuration
Evolution over rigidity
 vivid schema instead of rigid typing
 small incremental schema adaption instead
 of large migration steps

Hybrid Wikis Principles underlying Hybrid Wikis

Hybrid Wikis - Enterprise Collaboration
and Information Management

Contact: Christian Neubert (neubert@in.tum.de)
Chair of Informatics 19, Software Engineering for Business Information Systems (sebis)
Prof. Dr. Florian Matthes, http://wwwmatthes.in.tum.de

Figure 2.1.: Hybrid Wikis combine schema-based structured information with unstructured
information provided by Enterprise 2.0 platforms.

Business users interact with these concepts using a familiar interface based on forms,
spreadsheet-like tables, and autocompletion. Our assumption is that they feel familiar with
these representations and in consequence are less inhibited in contributing structured infor-
mation. Attributes are simple key-value-pairs that can be assigned to content objects, types
provide means to classify objects, and constraints validate structured content. From these in-
teractions, information structures (e.g., structured objects representing projects or customers)
evolve as part of the users’ day-to-day cooperative business activities, bottom-up as a byprod-
uct (cf., Figure 2.2). For querying and browsing we provide a general search interface that
allows a faceted drill-down based on the structured contents. By means of this interface, users
can access emergent structures by using attribute- and type-based queries to generate custom
views (e.g., lists, tables) and graphical visualizations (e.g., maps, graphs) of structured objects
according to their specific information needs.

Business users can incrementally increase the structure’s rigidity once a significant number
of users provided structured content and a core information model has emerged. If required,
they even can make these structures explicit and enforce them like an object-oriented database
schema (cf., Types & Constraints in Figure 2.2). However, in contrast to a database schema
in our approach users can change structures, even explicitly defined, at runtime without being

10

2. Towards Hybrid Wikis

restrained by hard integrity constraints and data migration steps. The potential risk that
structured information diverges from an explicitly defined schema is mitigated by generating
suggestions (e.g., attribute suggestions based on schema information) and giving users the
possibility to find and resolve inconsistencies. Furthermore, a set of techniques helps to unify
and consolidate derivations in structures. The level of the explicitly defined structures’ rigidity
can be adjusted by the business users anytime (i.e., rigidity can be softened, if needed). This
way, users are rather guided to follow an explicit information schema but never forced.

Cooperative Information
Management Activities

Idea: Treat information system evolution also as a
cooperative information management activity

IT Project A IT Project B IT Dept. Arch. Board

Personal Spaces Team Spaces Enterprise Spaces

fine-grained access control
(read, edit, contribute)

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Unstructured Content

Persons

Groups

search, link, tag,
version, comment, view, watch, rate

Documents Wiki Pages Blog Posts Tweets …

Content with
Emergent Structures

Projects Customers Contacts Issues …

Structuring Concepts

[Ma11b]

+ Attributes, Types, Constraints

+ structure, classify, constrain,
unify, resolve inconsistencies

Figure 2.2.: Enterprise 2.0 platform extended with structuring concepts (attributes, types,
constraints) provided by Hybrid Wikis.

2.1. Principles guiding the development of Hybrid Wikis

As described in Chapter 5, there are many other approaches (i.e., tools and prototypes) that
already support various forms of information structuring in a collaborative web-based environ-
ment. We consciously decided to develop Hybrid Wikis not based on these tools or prototypes
in order to explore a new approach to support information structuring in Enterprise 2.0 plat-
forms by following a different set of guiding principles. In the subsequent sections, we make
our design principles explicit. After the description of the design (cf., Chapter 3) and the im-
plementation (cf., Chapter 4) of Hybrid Wikis, in Chapter 5 we compare Hybrid Wikis with
other approaches to highlight the distinguishing, innovative aspects of our approach and some
commonalities.

11

2. Towards Hybrid Wikis

2.1.1. Simplicity over expressivity

This principle aims at lowering the barriers for non-expert users in contributing structured
content. This means for using our approach neither special knowledge about the structuring
concepts should be required nor should the user be forced to learn a query language to utilize
the structured part of the contents. We try to find ways to enable all business users to enter
structured data, in contrast to a two-phase process where unexperienced users enter textual
content that is later enriched with formalized meta data (e.g., provided by the Resource
Description Framework (RDF)) by experts. From our point of view, all attempts to translate
between the expressivity of existing formalisms and the user by the means of new interfaces
are unsatisfactory.

Hybrid Wikis primarily focuses on the user and accepts that there are limitations in the
complexity of modeling concepts users can be expected to understand. We try to start from
lightweight structuring concepts and metaphors that users are familiar with and then, in a
second step, we examine how the data users provide by these simple means can be exploited
by the system to offer features that usually require a formally defined data model.

Our approach mainly relies on simple keyword-like annotations of content, dynamically com-
piled and easily extensible forms for data entry, and the presentation of structured data in
automatically generated tabular views. In turn, we try to avoid the notion of semantic anno-
tations being something that is optionally appended to pure text content and that is defined
in a separately maintained ontology or schema. Instead, we attempt to allow the user to im-
plicitly provide semantics by filling data in particular fields of a form or a table, by optionally
creating new such fields on demand, and by the way the data is queried and displayed in
different contexts.

The principle simplicity over expressivity implies:

∙ A reduced set of structuring concepts instead of universal description languages.

∙ Default views to access structures instead of manual query-view configurations.

∙ Implicit management of information structures by means of views familiar to the users
instead of formal and textual annotations.

2.1.2. Data over schema

Since we do not require the users to explicitly maintain a data model, we focus on dynamically
mining the structured content to ‘guess’ the model and provide users with input options to
guide them towards a consistent data model and vocabulary. The data model then emerges
bottom-up from the cooperative information management activities of the business users.
However, if required, advanced users can impose a schema and define certain integrity con-
straints.

Furthermore, we assume that it is even better that users provide invalid or inconsistent data
than preventing them from data entry in order to satisfy restrictive schema definitions. Users
should never be disturbed by hard integrity constraints during their daily cooperative infor-
mation management activities. We rather provide means to detect inconsistencies by allowing

12

2. Towards Hybrid Wikis

them to explicitly search for violations. Additionally, we increase the users’ awareness by
notifying them in case of violations via for example Really Simple Syndication (RSS) mes-
sages. Once inconsistencies are detected we provide mechanisms to harmonize derivations in
structures by aligning data and schema.

The principle data over schema implies:

∙ Bottom-up, data-driven schema emergence instead of top-down meta modeling.

∙ Data first, schema second.

∙ Data gardening instead of data entry prevention.

2.1.3. Evolution over rigidity

Our approach focuses on structures that can flexibly be adapted. On the one hand, users are
never prevented to change structured content according to their specific information needs,
even in case of an explicitly defined information schema. We rather warn them if changed
structures contradict any conventions. This way, structure continuously evolves, resulting
in a ‘vivid’ information model. This model does not require any data migration steps when
structure changes since it is directly derived (i.e., guessed) from the structured content objects.
That is, the model always implicitly reflects the objects’ structure. Additionally, users are
never forced to enter information in a structured way, they are rather urged by providing a
familiar user interface based on forms and spreadsheet-like tables.

On the other hand, if users impose a schema with integrity constraints, they are never forced
to propagate changes in the schema to the data instances. Only if explicitly requested by the
user schema adaption operations can be applied to instance data.

The principle evolution over rigidity implies:

∙ A vivid schema instead of rigid typing.

∙ Incremental structural adaption instead of large migration steps.

∙ Data migration on demand instead of data migration as obligation.

2.2. Example scenario

In the following, we illustrate the structuring capabilities of Hybrid Wikis taking the example
of a small company’s intranet. The example is originally described in [MNS11]1, the article in
which Hybrid Wikis have been introduced. We slightly adapted that article’s example in this
thesis since Hybrid Wikis have been developed further in the meantime.

Among other things, the company’s intranet is used for gathering the knowledge about projects
and people relevant for the company. We assume that while there may be many content
objects (e.g., wiki pages) holding information about a person or project, there is one dedicated
object for each such entity that can be considered the primary object which holds the basic

1Some parts of [MNS11] are also used in Chapters 1 and 2.

13

2. Towards Hybrid Wikis

information about it and optionally links to objects with more specific information. We
further assume that in the beginning, there is only little content in the intranet and no types
and attributes are used. As the number of projects increases over time, there is a growing
demand for a more structured view on project related content. Attributes for project start and
end dates are thus added to the respective objects and the type project is assigned. Having
marked all project objects with the type, an overview table of all projects is instantly available
showing sortable columns for the date attributes. Attribute values can be changed directly in
this overview table. By this means, consolidating the project data is facilitated (e.g., adding
missing information or standardizing the representation of attribute values).

Let’s assume many of the company’s employees have structured their profiles for themselves
to provide some information about their specific skills and experiences. Some of them in-
dependently start to add attributes to the project objects to express their relationship with
these projects, for example that they were members of the project team or project manager.
In the beginning, people use different terms to describe their roles. As these inconsistencies
become visible in the overview table, they are quickly harmonized by the users. It is not
necessary to navigate to the respective objects since the table cells can be edited directly. As
a result, if somebody now creates an object and assigns the type project, she is offered to
provide values for the attributes start, end, manager and member. If she now adds a link to
her profile to the manager attribute, this reference will be automatically visible in her profile
in the incoming links section. A new entry manager of with a single value being the link to
the project is displayed (analogous to Project of depicted in Figure 2.1). If she is already
manager of other projects, the list will simply be extended by one entry. Additionally, she
decides to reference the other project members in order to have their contact information near
by, records the bonus persons involved additionally received for their work, and documents
the date the members started working in the project.

Finally, she relates the project to the ordering customer and to the primary customer contact
for this project. The primary contact is additionally flagged to express that this person is
a decision maker. The modeling of customers and external contacts can be considered as a
simple Customer-Relationship-Management (CRM) system. This brings benefits since those
pages can even be referenced in other contexts, resulting in a web of knowledge. For instance,
meeting notes can include links to the participants by referencing pages describing customer
staff.

Starting from this basic schema, the company can further adapt it to new needs: Besides
adding more attributes, the existing ones can be refined. The attribute manager can be made
mandatory for the type project so users are additionally reminded to provide this attribute.
If it is omitted, the object is flagged as invalid. It can be further specified that only a single
link to an object having the type internal is accepted as a value. New types can be added
to distinguish different types of projects like internal project or research project. On the one
hand, this allows the generation of lists and tables containing only the respective subset of the
projects, on the other hand, the system is supported in offering the user more relevant attribute
suggestions (cf., Figure 2.1) when editing structured data. For example, for a research project
the attribute area could be suggested whereas attributes only relevant for internal projects
are not shown. It is also possible to add a temporal dimension to the project types by adding
types like project in preparation, current project, or completed project. Using types instead of
a status attribute has the advantage that attribute constraints can be related to the types.

14

2. Towards Hybrid Wikis

For example, each object of a completed project can be required to contain the actual end
date of the project. However, it is also possible to define an enumeration constraint that only
allows specific values to be used, such as planned and active.

The model underlying this example is depicted in Figure 2.3. The example is used to illustrate
Hybrid Wikis in the subsequent chapters of this thesis.

Project
name:String
description:String
status:Status
start:Date
end:Date
budget:Amount

«enum»
Status

{planned,active,
completed,canceled}

Customer
name:String
customerNumber:Number
adress:String

Internal
personnelNumber:Number

 1 manager

 *

 1..* member

 *

External
decisionMaker:Boolean

1 *

orders

 *

 1

 works for
Staff

firstName:String
lastName:String
postition:String
eMail:String

* sub-project

0..1 super-project

 * contact

 *

ResearchProject
area:String

Participation
bonus:Amount
since:Date
until:Date

Figure 2.3.: Exemplary information model used within a small company’s intranet for project
and customer management.

15

16

CHAPTER 3

Hybrid Wikis

In this chapter, we present our approach, Hybrid Wikis. In Section 3.1, we present the
core concepts required to support information structuring in Enterprise 2.0 platforms. We
incrementally introduce the conceptual model underlying Hybrid Wikis and discuss important
design decisions. Based on this model, in Section 3.2 we discuss how information structuring
can be integrated in Enterprise 2.0 platforms, in Section 3.3 we describe how users interact
with the these concepts. In particular, we show how information structuring is facilitated and
how structures can flexibly be adapted. To illustrate our approach, in Section 3.4 we present
screenshots of the current implementation of Hybrid Wikis.

3.1. Concepts supporting emergent information structures

In this section, we introduce the concepts underlying Hybrid Wikis. The core model is depicted
in Figure 3.1. This model can be considered as the conceptual design of Hybrid Wikis and
serves as the basis for the implementation as introduced in Chapter 4. We explain the model’s
concepts step-by-step, discuss important design decisions, and sketch some alternative solu-
tions. The core model shown in Figure 3.1 is extended incrementally by introducing additional
concepts necessary to support emergent information structures. Concepts supporting the
structuring of concrete content objects are colored in orange, concepts representing informa-
tion structures on a meta level are colored in green. Grey colored concepts represent elements
built-in given by the underlying Enterprise 2.0 platform, that is, elements not developed as
part of this thesis. We consider the model as orthogonal applicable to Enterprise 2.0 platforms.
However, a concrete implementation most probably requires to slightly change it according to
the platform’s underlying architecture. In Chapter 4, we explain which changes we applied in
order to implement the model based on the Tricia1[BMN10a] architecture.

1http://www.infoasset.de; visited on January 2st 2012.

17

3. Hybrid Wikis

Space

Content

Attribute
key:String
{unique for content}

 1 content

 * {ordered}

 1
 1..* {ordered}

 1

 *
Type

key:String {unique for space}
description:String

 * {ordered}*

Constraint
validationMessage:String
type:AtomicType

Value
representation:String
type:AtomicType

**

«enum»
AtomicType

{StringValue,InternalLink,
ExternalLink,Hypertext,...}

AttributeDefinition
key:String {unique for type}
description:String

 1

 *

 1 type

 * {ordered}

 1 space

 *

Legend

Concept provided by Hybrid Wikis
supporting structuring of objects

Concept provided by Hybrid Wikis
representing schema structures

Concept provided by the underlying
Enterprise 2.0 platform

Figure 3.1.: Core concepts provided by Hybrid Wikis.

3.1.1. Spaces

A space primarily serves as a container for a set of content objects (cf., Section 3.1.2). It
typically encapsulates those kinds of objects which are homogeneous with regard to their
context, for example objects which are modified within a specific group of person for pur-
pose of collaboration. Therefore, a space can be considered as the namespace [Te09] for
its objects. This means each content object can only by unambiguously identified within a
space’s context. Additionally, a space can be used to define defaults for its containing objects,
such as default access rights (e.g., default readers cf., Figure 3.4) for newly created objects
(cf., Section 3.1.2) or to generate overview lists of the contained objects shown in the User
Interface (UI). Furthermore, it provides a unique name as well as a Uniform Resource Loca-
tor (URL). The URL typically is an encoded representation of the space’s name by default
(cf., URLs in Section 3.1.2). The space with its properties is depicted in Figure 3.4.

3.1.2. Content objects

Content objects refer to objects containing unstructured user-generated information [O’05].
The term and its definition are primary taken from [BMN09], in which a unifying multi-

18

3. Hybrid Wikis

dimensional classification and evaluation framework of Enterprise 2.0 platforms is presented.
For instance, content consists of plain textual information or embedded rich media objects,
such as videos. A content object is located in exactly one space, which represents the container
for a specific set of objects in the application (cf., Section 3.1.1). Typical content objects are
for example wiki pages and blog posts.

In many Enterprise 2.0 applications content is represented by and stored in form of a markup
language. Typical markup languages are wiki markup [AMY08]2 or simple hypertext [BLC95].
In order to prevent users directly getting in touch with that markup editing is supported by
a so-called WYSIWYG Editor [Du05]. Such an editor allows to manipulate the markup by
means of a graphical user interface and serves as a more user-friendly abstraction. The content
object with its properties is depicted in Figure 3.2.

User-generated in this context means that the content is provided and maintained by the indi-
vidual users themselves and not statically given by a third-party web provider. Furthermore,
user-generated content here differs from that in content management systems [Bo04] since it
is immediately visible on the web site instead of being reviewed and revised from other users
for reasons of quality assurance in a separate process before publication.

Moreover, we assume that content is primarily created in two kinds of contexts: in a col-
laborative environment in which different users closely work together on shared topics, such
as in wiki applications for collaboratively work on shared articles, and in an author-centric
environment in which authors usually produce contents without the intention of collaborating
with others, such as in blogging platforms.

Besides the information’s plain unstructured parts (e.g., text and embedded media objects),
content can consist of semi-structured elements, such as links or tables (i.e., hyperlinks and
HTML tables in case of using Hypertext Markup Language (HTML) as markup language).
Semi-structured in our model means that there is no additional information explicitly given
about the meaning of the data, such as semantic annotations [KVV06]. This means plain
textual unstructured content including semi-structured elements (e.g., links and tables) and
structured elements (cf., Section 3.1.3) are clearly separated from each other. That is, markup
only consist of pure information (and in case of HTML as markup language some information
regarding the text formatting, e.g., bold) and is not additionally enriched with meta data rep-
resenting the structured parts, such as in [KVV06]. In this thesis, the content object’s markup
containing unstructured as well as semi-structured information is referred to as the built-in
markup or full text respectively.

3.1.2.1. Links

We distinguish two kinds of links within the built-in markup. Internal links referencing content
objects within the application and external links pointing to resources outside of it. Further-
more, we distinguish outgoing and incoming links. Outgoing links are internal or external
links pointing from the built-in markup to other resources, whereas for incoming links this is
exactly the opposite way around, that is, internal or external links that point to a content
object from the full text of other objects. Incoming links in this thesis are used as synonyms

2http://wikicreole.org; visited on February 1st 2012.

19

3. Hybrid Wikis

for backlinks or inverse links respectively. Furthermore, for reason of simplification we use the
terms link and internal link synonymously.

A link defined in a specific context we refer to as a contextualized link. For instance, a context
can be a semi-structured element, such as a hypertext table embedded in the built-in markup,
or a link value of a structured attribute (cf., Section 3.1.5). In many Enterprise 2.0 applications
this context is shown as part of an incoming link. For example, if a link is embedded in a
hypertext table providing a header row the incoming link of the referenced object could show
the column name from that header as the context in addition to the link to the referencing
object. If no additional context is specified, we refer to it as an anonymous link, that is, the
context of an anonymous link is the content object itself. Except external incoming links, all
kinds of these links can be maintained be the application itself and are treated as first class
objects.

In Enterprise 2.0 applications internal incoming links are often explicitly shown for an indi-
vidual content object. For instance, the degree of incoming links can serve as an indicator
for the importance of a resource. Furthermore, readers of a content object get an overview
in which other contexts it is used and additionally the navigation is facilitated. Internal links
between content objects (i.e., from the markup of a content object to another internal content
object) are depicted in Figure 3.2 indicated by the role named links, internal incoming links
are represented by the role referenced by, and internal outgoing links by the role references.
External outgoing links are not depicted there. However, in the simplest form they would be
represented as a set of URLs in our model.

3.1.2.2. Access control

In contrast to traditional Web 2.0 applications [O’05], such as wikis, in an enterprise en-
vironment it is particularly important to protect certain information from unwanted access
(e.g., for reasons of confidentiality). Therefore, for all content objects discretionary access con-
trol mechanisms can be applied. This means for an individual content object can be specified
who is allowed to see it (i.e., read access) and who is allowed to apply changes to it (i.e., write
access) by using an Access Control List (ACL) [BMN09, PT11]. Some applications provide
additional access right roles, such as contributors which are allowed to create new content ob-
jects within a space. Figure 3.2 depict the access rights model underlying this thesis in order
to protect objects from unauthorized access. The model corresponds to that used in the web
collaboration system Tricia. However, we could also apply a different access control model.
In Section 3.2.3, we discuss how access control mechanisms impact information structures.

The readers role specifies the principals which are allowed to see the content object and the
writers role the principals which are authorized to modify it. In this access control model, a
principle serves as an abstraction of persons and groups. Figure 3.3 shows the complete access
control model consisting of persons, groups, and principals. A membership as depicted in this
figure contains additional information about the current state of the relation between a group
and its person (e.g., the date a person has joined a group). It does not have an own identity
since its existence depends on the life-cycle of the associated group and person. Both kinds
of principals (i.e., readers and writers) are globally available in the application. The privilege
to create new principals can be limited to specific groups within the organization.

20

3. Hybrid Wikis

Content
content:Markup
name:String {unique for space}
url:URL {unique}

Principal

*
readers

*

*
writers

*

 *

references

 *

referenced by

links

Figure 3.2.: Access control for content objects.

Group Person

* *

Membership

Principal

Figure 3.3.: Access control model according to [BMN10a].

In some Enterprise 2.0 applications the access rights of a space also serve as a default for
the contained content objects. Otherwise, it would be tedious to maintain access rights for
each content object individually. This means if a new content object is created, the access
rights from the corresponding space are passed to the new object (cf., Figure 3.4). However,
in these applications individual access control lists (with readers and writers) can be defined
for objects by overriding the space’s default settings. Readers and writers in this model are
disjoint, that is, a principal (person or group) can either be a reader or a writer. However, it is
obvious that writers are also allowed to read content objects. This means that the principals
from the readers role are always additionally specified with regard to the writers role.

3.1.2.3. Identity

Each content object provides a textual name, which in most cases corresponds to the page title
or to the caption being shown on the web page respectively. For instance, in the Wikipedia
encyclopedia3 the name corresponds to the article’s topic which also is used as the page’s cap-
tion. In the Wikipedia project the name is unique within the entire application, in the model
as depicted in Figure 3.1 the name of a content object is unique with regard to other content

3http://www.wikipedia.org; visited on January 2st 2012.

21

3. Hybrid Wikis

Principal

*
writers

*

*
readers

*

Space
name:String {unique}
url:URL {unique}
urlPattern:String

Figure 3.4.: Default access rights derived from a space.

objects within its associated space. This means that the name also serves as a conceptual
identity within the space it belongs to. The content object’s name is depicted in Figure 3.2.

In order to provide uniform access to a content object it provides a human-readable, stable,
and unique URL. Since content in Enterprise 2.0 applications is frequently modified by the
users, such as wiki pages in wikis, these applications typically provide version control support.
By doing so, it is possible to trace the evolution of content and to revert changes, if necessary.
Therefore, stable in our context means that each individual version of a content object is
accessible by a URL, which will never change. This means a resource underlying a stable
URL can be referenced even outside of the application without being concerned about losing
the context caused by changing content. For instance, in this thesis the date of access is
always given when referencing a web resource by URL since the underlying website might
have changed when reading this thesis. This would not be necessary if stable URLs would be
provided. Another example is the usage of URLs as bookmarks in the web browser. However,
a URL is only stable within the life-cycle of the content object, that is, even a stable URL
becomes invalid if the associated content object is deleted. Stable URLs in literature are
referred to as permalinks [Li09], which is shortened from two words: permanent links.

A permalink referencing a specific version of a content object is only partially human-readable
since it needs to contain information about the individual version, which in most cases con-
sists of a numeric identifier. Therefore, the URL of the latest version of the content object
often is shortened to a human-readable representation which does not contain any informa-
tion about the version history. For instance, the URL of the Wikipedia article explaining
permalinks is represented as http://en.wikipedia.org/wiki/Permalink and always points
to the most latest version of this article, a permalink of a specific version is represented as
http://en.wikipedia.org/w/index.php?title=Permalink&oldid=453810449, whereas the
oldid attribute contains the specific version information. Considering applications without
version control capabilities a stable URL implies that the content of the underlying resource
never changes over time.

Since some applications allow to modify URLs of a resource, stable in our model also means
that the application needs to provide mechanisms to ensure that all other objects pointing to
this resource do not become outdated afterwards, that is, the URLs of these referencing objects
stay valid after renaming the referenced resource. These mechanisms have to consider both
kinds of referencing objects, internal content objects, which are maintained by the application
itself, as well as external objects, which are persisted in different applications, for example

22

http://en.wikipedia.org/wiki/Permalink
http://en.wikipedia.org/w/index.php?title=Permalink&oldid=453810449

3. Hybrid Wikis

bookmarks stored in the web browser of a user. Internal objects can be directly updated by
the application, for external objects different mechanisms need to be applied, such as moving
the original content to the object with the new URL and leaving a unmodifiable stub having
the old URL saying that the original content is accessible at a different URL now.

Human-readable here means that the URL mainly consists of meaningful words giving users of
the application an indication of the resource’s content. Typically in Enterprise 2.0 applications
the URL corresponds to an encoded representation of the content object’s name by default.
For instance, the URL of the Wikipedia article describing a uniform resource locator is encoded
as http://de.wikipedia.org/wiki/Uniform_Resource_Locator. If the path4 of the content
object’s URL is composed of the encoded name of the object itself and the encoded name of
its containing space (cf., Section 3.1.2), the path is unique with regard to its associated space
by default (i.e., for newly created content objects), just the same as for the uniqueness of the
content object’s name. This means that the URL path can also serve as a conceptual identity
for a content object within the space it belongs to, even if the URL might change within the
content object’s life cycle. For example, the default encoded URL path of a wiki page with
name a b in space x y would be represented as /wiki/x_y/a_b. The content object’s URL is
depicted in Figure 3.2.

Content objects provide an arbitrary ordered set of attributes (cf., Section 3.1.3). By means
of attributes objects can be structured.

3.1.3. Attributes

In their simplest form, attributes are key-value pairs that can be added to content objects.
They consist of an attribute name – the key – and a value (cf., Section 3.1.5). The key is
a simple character sequence which is depicted in Figure 3.1. Furthermore, an attribute is
unique with regard to its key and within its corresponding content object. The attribute key
can serve as the default ordering criterion for the attributes of a content object, for example
by default attributes are sorted alphabetically by key. However, the order of attributes can
diverge from the default order.

An attribute belongs to exactly one content object. Attributes in our model do not represent
meta data but constitute the structured part of the content object. For instance, a wiki page
describing (i.e., in the full text of the page) the purpose of a customer project Development
Project A within an enterprise additionally provides an attribute Budget indicating the amount
of money available. In our model this attribute is not part of the content’s markup integrated
as annotated meta data, it represents the content’s structure separately.

Individual attributes provide an ordered set of values (cf., Section 3.1.5). This set contains at
least one element, that is, an attribute cannot exist without a value.

3.1.4. Types

In our model a type serves as a classifier for content objects. For instance, the type of
the object describing Development Project A would be project. Additionally, a type has a

4http://www.w3.org/Addressing/URL/url-spec.txt; visited on November 1st 2011.

23

http://de.wikipedia.org/wiki/Uniform_Resource_Locator
/wiki/x_y/a_b

3. Hybrid Wikis

description in order to make a statement about its meaning. For example, the description can
be used to give users a hint regarding the type’s meaning before assign it to a content object.
The type with its properties is depicted in Figure 3.1. The key represents the type as a simple
character sequence (i.e., in our example project). Types can be shared across multiple content
objects, but not among different spaces. An individual content object can be related to an
ordered set of types, called type assignments in the following. Content objects with types we
refer to as typed content objects. Typed content objects represent instances of that type. In
some Enterprise 2.0 applications the types are sorted alphabetically by default. However, the
order can diverge from the default for individual content objects. Types in our model do not
represent meta data but constitute the structured part of the content, similar to attributes.

It is important to note that types are basically independent of attributes. Independent here
means that the content object’s types can always be changed without having an impact on
the object’s attributes. For instance, a type can be removed from a content object without
removing its attributes and attribute values (cf., Section 3.1.5). Conversely, this also means
that attributes can arbitrarily be added to or removed from a content object. Furthermore,
types can also exists without the existence of a content object having this type assigned. In
this way, types and attributes can be flexibly combined with each other and therefore also
be considered as a more flexible alternative to template-based approaches, such as introduced
in [HLS05].

This flexibility implies that in our model content objects having the same set of attributes
not necessarily belong to the same type. While this is not quite unusual, this also means that
different content objects can have the same type but differ with regard to their attributes,
that is, in the most extreme case two content objects with the same type can have a com-
pletely disjoint set of attributes. If these types are intended to have same semantics, this
fact contradicts the idea of types - encapsulating objects with similar properties. However, in
Sections 3.3 and 3.1.7 we introduce several techniques in order to counteract this disparity of
types and attributes.

Furthermore, it is important to mention that on the one hand it is consciously avoided to
explicitly create relationships between types and attributes as it would be done when defining
a template [HLS05] or in classical type-oriented approaches such as semantic wikis [Vö06].
On the other hand, in some cases it is still reasonable to assign a list of attributes to a type,
for example in order to specify integrity constraints for an attribute in the context of a type,
like the number of values or allowed value ranges. In Sections 3.1.7 and 3.1.8 we explain how
attributes can be bound to a type in order to specify integrity constraints without losing the
flexibility of our approach.

3.1.5. Values

A value is the second part of a key-value pair as introduced in Section 3.1.3, it belongs to
exactly one attribute. Furthermore, all values provide a textual representation (i.e., can be
represented as a simple character sequence). Regarding the project example from Section 3.1.3
Budget would be represented by the value 200.000. That character representation can serve
as the default ordering criterion for the values of an attribute (e.g., by default the values

24

3. Hybrid Wikis

are sorted alphabetically). However, the values’ order can diverge from the default order for
individual attributes.

Additionally, each value has a specific data type, such as string or link. The enumeration
AtomicType (cf., Figure 3.5) illustrates possible data type variations. For instance, the type
of Budget would most likely be integer. Since the data type is directly bound to an individual
value and not to the corresponding attribute the values of an attribute can differ regarding
their types. For instance, an attribute can have two values, one with data type string and the
other with data type (internal) link.

«enum»
AtomicType

{StringValue,InternalLink,
ExternalLink,Hypertext,...}

Content
content:Markup
name:String {unique for space}
url:URL {unique}

 0..1content

 *
links

 {Value.type is InternalLink} Attribute
key:String
{unique for content}

 1 content

 * {ordered}

 1
 1..* {ordered}

 *
contents

 *
links

 {Value.type is Hypertext}

 *

references

 *

refereced by

links

Value
representation:String
type:AtomicType

Figure 3.5.: Concepts supporting the structuring of content objects.

In the following, we sketch the most important data types in the context of our model. The
value’s type attribute and the elements of the enumeration AtomicType are replaced by cor-
responding subclasses, one class for each individual data type. Subsequently, the specific
characteristics of each data type are highlighted. We replace the value’s textual representa-
tion by a more data type-specific one for purpose of illustration. However, it is still necessary
to have different representations of an individual value (especially that a value can be repre-
sented as a simple string). For instance, the representation in the user interface differs from
the internal representation in the storage. This is discussed in Chapter 4 in detail.

3.1.5.1. StringValue

In the simplest form a value is a string literal, that is, a simple character sequence (cf., Fig-
ure 3.6). String is a value’s default data type since this is the most common one. Besides

25

3. Hybrid Wikis

strings, many further literals can be imagined. Especially in the context of enterprises we con-
sider the literals number and date to be important. Since attributes can consist of multiple
values with possibly different data types, it would be difficult to sort these values correctly
(e.g., in a table view showing multiple attributes with the same key) if we would not dis-
tinguish between strings, numbers, and dates. Date and number are not explicitly depicted
in our model since they provide similar characteristics as a string value. We are aware that
the definition of number and date as given here is not very precise. For instance, a number
could either be an integer or a floating-point number. In the latter case it would be neces-
sary to specify the number’s precision. However, in Chapter 4 we explain how the different
characteristics and formats of values can be handled.

Content
name:String {unique for space}
url:URL {unique}
content:Markup

StringValue
text:String

 1
 * {ordered}

{abstract}
Value

Attribute
key:String
{unique for content}

 1
 1..* {ordered}

 *

references

 *

refereced by

links

Figure 3.6.: String values.

3.1.5.2. InternalLink

An internal link is a link value referencing a content object. The difference to an internal link
as introduced in Section 3.1.2 is that the context of an internal link is always given by its
corresponding attribute. For instance, the name of this attribute can be shown in addition to
the link to the referencing object in order to give the users more precise information about the
context of the incoming link. Incoming links originating from an internal link value we refer
to as structured incoming links in the following. Since the referenced object can be deleted
independent of the link value an internal link is either pointing to exactly one content object

26

3. Hybrid Wikis

or to none (cf., Figure 3.7: the cardinality is defined as (0..1)). The internal link is depicted
in Figure 3.7.

InternalLink ExternalLink
url:URL

{abstract}
Value

Attribute
key:String
{unique for content}

Content
name:String {unique for space}
url:URL {unique}
content:Markup

 *
referenced by

0..1references

 1
 * {ordered}

 1
 1..* {ordered}

 *

references

 *

refereced by

links

Figure 3.7.: Internal and external link values.

3.1.5.3. ExternalLink

An external link is a link value referencing a resources outside of the application. The difference
to an external link as introduced in Section 3.1.2 is that the context of an external link is always
given by its corresponding attribute. The external link is depicted in Figure 3.7.

3.1.5.4. Hypertext

A hypertext value contains arbitrary unstructured as well as semi-structured information, but
does not contain further structured elements, similar to the built-in markup as introduced in
Section 3.1.2. The difference to the built-in markup is that the context of a link within the
markup is always defined by the markup’s attribute. However, the context of these links can
be more specific, for example if a link is embedded in a (HTML) table. A markup value can
also contains external links, but are not depicted in the model. The hypertext is depicted in
Figure 3.8.

27

3. Hybrid Wikis

Content
name:String {unique for space}
url:URL {unique}
content:Markup

 1
 * {ordered}

{abstract}
Value

Attribute
key:String
{unique for content}

 1
 1..* {ordered}

Hypertext
content:Markup

*
refereced by

*
references

 *

references

 *

refereced by

links

Figure 3.8.: Hypertext values.

3.1.5.5. Record

A record value is an ordered list of key-value pairs consisting of at least one pair. Record
values can also be nested, that is, the attribute list of a record value can contain an attribute
which itself contains record values. Since it might cause difficulties when evaluating record
values, it is not allowed that the record’s owning attribute is contained in the list of the
record’s attributes. For this reason the relation between record and attribute is declared as
acyclic. This restriction also applies to transitive relations between attributes and records
(i.e., for nested records). For instance, if an attribute a1 having a record value which contains
an attribute a2 also having a record value then a2’s record must not contain attribute a1.
The record’s attribute list is existentially dependent on the record, that is, all attributes are
deleted if the record is deleted. Additionally, a record value can be typed, that is, it can have
an ordered set of types (cf., Section 3.1.4).

Since a record consists of structured attributes and types it is very similar to the structured
part of the content object. The difference is that a record does not provide a built-in markup
property and only exists in the context of its owning content object, that is, it does not have an
own identity and cannot be referenced by a URL. Therefore, a record value can be considered
as an anonymous object within a content object. The record is depicted in Figure 3.9.

Regarding the Development Project A example from Section 3.1.3, additionally an attribute
Customer Address might be given. This attribute could be represented as a record consisting
of the two attributes Street and Street number typed with Address.

28

3. Hybrid Wikis

{abstract}
Value

Record

Attribute
key:String
{unique for content} 1..* {ordered}

0..1

{acyclic}

 1

 1..* {ordered}

Type
key:String {unique for space}
description:String

*

 * {ordered}

Content
name:String {unique for space}
url:URL {unique}
content:Markup

 * {ordered} *

 * {ordered}

 0..1

 *

references

 *

refereced by

links

Figure 3.9.: Record values.

3.1.5.6. StructuredLink

A structured link is an internal link, that is, a link referencing a content object. Additionally,
a structured link consists of structured attributes and types, similar to record values. Thus, a
structured link can also be considered as an anonymous object, but in this case its existence
primarily depends on the relation between two content objects. This means, if the link between
these objects is deleted, the types and structured attributes are deleted as well. The structured
link is depicted in Figure 3.10.

Regarding the Development Project A example from Section 3.1.3, additionally an attribute
project lead might be given referencing a content objectMax Leader, which is a person working
in the company. This attribute could be represented as a structured link additionally providing
an attribute bonus in order to express the amount of money he additionally receives for leading
the project. In this example, the information about his bonus gets lost if the project lead
changes since the link to Max Leader is replaced by another one. In Section 3.3 we introduce
a technique in order to prevent that this additional information gets lost if a structured link
is replaced or deleted.

Besides internal links, external links can also provide structured attributes and types. But
since external structured links have the same characteristics as internal structured links they
are not further detailed in our model.

29

3. Hybrid Wikis

{abstract}
Value

Record

Attribute
key:String
{unique for content}

 1..* {ordered}

0..1

{acyclic}

 1

 1..* {ordered}

*

 * {ordered}

Content
name:String {unique for space}
url:URL {unique}
content:Markup

 * {ordered} *

 0..1

 * {ordered}

 *

references

 *

refereced by

links

StructuredLink

InternalLink

0..1

* {ordered}

{acyclic}

 *

referenced by

0..1references

*

 * {ordered}

Type
key:String {unique for space}
description:String

Figure 3.10.: Structured link values.

3.1.6. Structured

As mentioned in Section 3.1.5.6, the data types structured link and record are quite similar
since both provide a list of attributes and an ordered set of types. The same applies to the
content object, it also provides both relations, to types and to attributes (cf., Figure 3.10). In
order to simplify the model’s representation we subsume these common properties (types and
attributes) of content object, structured link, and record to one concept, namely structured
(cf., Figure 3.11). This concept represents the ability of an object to capture structured
information (i.e., attributes and types). We return to this simplified representation of the
model in Chapter 4, but do not refer to it in the following. Since in this simplified model
a structured object consists of an ordered set of attributes of any size, we have to ensure
that at least one attribute is specified when an object of type structured belongs to a record
value (since a record provides at least one attribute). This could be ensured by for example
providing an Object Constraint Language (OCL) expression, but is not depicted in Figure 3.11
for reasons of simplicity.

3.1.7. Attribute definitions

As discussed in Section 3.1.4, the flexibility of assigning types and attributes independently
can lead to a mismatch between them. Attribute definitions facing this problem by allowing
a fix assignment of attributes to types. Fix in our model does not mean that the connection

30

3. Hybrid Wikis

{abstract}
Value

Record

Attribute
key:String
{unique for content}

1

0..1

{acyclic}
 1

 1..* {ordered}

Type
key:String {unique for space}
description:String

Content
name:String {unique for space}
url:URL {unique}
content:Markup

 * {ordered} *

 1
 * {ordered}

 *

references

 *

refereced by

links

StructuredLink

InternalLink
 *

referenced by

0..1references

Structured

 0..1

 0..1

0..1

1

{acyclic}

Figure 3.11.: Simplified model representing structured content objects.

between them is immutable, like in a schema of a relational database [Ha09], but rather that
the attributes are loosely associated with a type and can be changed anytime. Furthermore,
the declaration of attributes for individual content objects is still optional even if the content
object is related to a type with a fixed set of attribute definitions.

An attribute definition belongs to exactly one type and has a key which is unique with regard
to its corresponding type. Additionally, an attribute definition has a description in order to
make a statement about its meaning. For instance, the description can be used to give users
a hint regarding the attribute’s meaning while assign it to a content object. The attribute
definition with its properties is depicted in Figure 3.12. An attribute definition conforms to
an attribute of an individual content object by type and key. This means, an attribute of
a content object is related to an attribute definition if both have the same keys and if the
content object is typed with the same type the attribute definition belongs to. Since multiple
types can be assigned to a content object an attribute can also be related to multiple attribute
definitions. However, attributes and attribute definitions can only be related if the content
object is typed.

31

3. Hybrid Wikis

Content Type
key:String {unique for space}
description:String

 * {ordered}types
 *

Attribute
key:String
{unique for content}

AttributeDefinition
key:String {unique for type}
description:String

Space

 1
 type

 * {ordered}

 1

 *

 1

 *

 0..1

 1..* {ordered}

{abstract}
Value

 * *

 0..1
 content

 * {ordered}

{Attribute.key equals AttributeDefinition.key
&
Attribute.content.types contains
AttributeDefinition.type}

...Value
...

 1

 *

 {consistent}

Constraint
validationMessage:String

 *

 *

validates

Figure 3.12.: Core concepts specifying types and integrity constraints.

Although attribute definitions allow a stronger binding between attributes an types, they
alone are not enough to ensure a more consistent usage of attribute-type combinations for
individual content objects. For that reason we introduce the technique of attribute suggestions
later. For example, attributes are suggested for individual typed content objects by means of
corresponding attribute definitions. Attribute suggestions are introduced in Section 3.3.1.

As indicated in Figure 3.12, the attribute definitions of a type are ordered. In most cases
the single-typed content objects should have the same attribute order as given by the order
of the type’s attribute definitions. However, the attribute order of individual content objects
can diverge from the order given by the related definitions (cf., Figure 3.12). In Section 3.3
we explain how different attribute orders can be consolidated, in Chapter 4 we introduce how
they are implemented.

Besides the closer binding of types and attributes, attribute definitions are used to validate
the content object’s attributes and values by means of integrity constraints (cf., Section 3.1.8).
Any number of constraints can be assigned to an attribute definition. A constraint applies to
an attribute and its values if the attribute is related to its attribute definition, that is, both
are using the same key and the same type. If the attribute or its values do not conform to the
rules of the constraint, the constraint’s validation message is used to indicate this violation.
In our model the set of constraints is declared as consistent for each attribute definition. This
means that an individual attribute definition must not specify conflicting validation rules.

32

3. Hybrid Wikis

Therefore, the set of all validation rules is consistent per type. However, since an attribute
can be related to attribute definitions of different types, contradicting constraints are not
completely excluded from our model.

It is important to note that attribute definitions and constraints are independent from the
attributes of concrete content objects. On the one hand, this means that attribute definitions
and constraints can exist even if no corresponding attribute exists for any content object. On
the other hand, attribute definitions and constraints can also be defined even if some attributes
and values violating the specified validation rules. The latter also means that the validity of
a content object can change by defining integrity constraints without changing the content
object itself.

Since constraints in our model do not force integrity of the structured information (i.e., at-
tributes and values), they are called soft constraints. However, in Section 3.1.8 we explain
how constraints can be defined more restrictive. Due to the fact that a typed content object
not necessarily provides the attributes given by corresponding attribute definitions and that
integrity is not forced by means of soft constraint, we refer to types as non-rigid.

In the following, we introduce some of the constraints in more detail. We refine them to more
precise subtypes for purpose of illustration and in order to ensure consistency in our model.
However, we keep the general model, that is, an attribute definition consists of an arbitrary
number of constraints.

3.1.8. Constraints

The refined model as depicted in Figure 3.13 consist of two kinds of constraints. The multiplic-
ity constraint allows to specify how many values an attribute should have. A lower bound and
an upper bound can be defined, for example at-least-one (1..*), at-most-one (0..1), exactly-one
(1..1).

The data type constraint validates if the data types of an attribute’s values conform to a
given type. For each basic data type as introduced in Section 3.1.5 a corresponding data
type constraint is provided. For instance, for the basic data type string a corresponding string
constraint can be specified. Besides the basic constraints for data types, additional constraints
can be defined, such as the enumeration constraint (cf., Section 3.1.8.6).

Although the values of an attribute can differ regarding their data types, for example link
and string (cf., Section 3.1.3), we consider constraining attributes to multiple different data
types not to be beneficial. For this reason an attribute definition must not consists of more
than one data type constraint. The same applies to the multiplicity constraint since it would
not be reasonable if an attribute definition provides more than one multiplicity constraint.
Therefore, at most one multiplicity constraint is allowed to be specified.

3.1.8.1. Default values

Besides the specification of validation rules for attributes and values, the data type constraint
is used for the definition of defaults for attributes. Basically, defaults represent a set of
anonymous values potentially having different data types. Anonymous means that these values

33

3. Hybrid Wikis

Content Type
key:String {unique for space}
description:String
rigid:Boolean
strict:Boolean

 * {ordered}types
 *

Attribute
key:String
{unique for content}

 1
 type

 * {ordered}

 0..1
 content

 * {ordered}

AttributeDefinition
key:String {unique for type}
description:String
strict:Boolean

 0..1

 1..* {ordered}

 0..1 * {ordered} defaults

{abstract}
DataTypeConstraint

1

0..1

MultiplicityContraint
min:Number
max:Number

{abstract}
Constraint

validationMessage:String
strict:Boolean

{abstract}
Value

...Value
...

...Contraint
...

1

0..1

 * *

{Attribute.key equals AttributeDefinition.key
&
Attribute.content.types contains
AttributeDefinition.type}

Figure 3.13.: Simplified model specifying types and integrity constraints.

are never related to any individual attribute. Therefore, the relation from value to attribute
is declared optional (0..1) in our model as from now. For instance, defaults can be used
while editing attributes in order to urge users to apply a specific value. By doing so, defaults
facilitate the consistent usage of terms (cf., Section 3.3.1).

In order to ensure consistency in our model the data type of the defaults should match the data
type constraint. For example, if the data type constraint is limited to links (cf., Section 3.1.8.8),
the defaults should only be link values. Therefore, we decided that a data type-specific
constraint is directly referencing only default values having the correct data type. For example,
this means that a link constraint is directly pointing to link values for the definition of defaults.
Alternatively, the defaults could also be bound to the attribute definition. The benefit of this
alternative solution is that defaults can be specified independent of an individual data type
constraint, that is, an attribute definition’s data type constraint can be changed without
losing the current default values. But in this case it would be more difficult to ensure that
the defaults correspond to a potentially given data type constraint. However, we decided to
relate the defaults directly to the data type-specific constraints for purpose of illustration.

3.1.8.2. Validation model

Since attributes are basically independent of the constraints, individual attributes do not
know about their current validation status. Therefore, for the discussion in this chapter the
validation status of an attribute always has to be evaluated if it is needed. The simplest way

34

3. Hybrid Wikis

of applying constraints is on evaluating them always when displaying a content object. This
means when a content object is requested by URL the related constraints are determined for
each attribute and the validation status is calculated. For failing constraints then a validation
message is displayed in the context of the corresponding attributes.

Figure 3.14 illustrates this simple validation model. A user requests a structured content
object to be displayed (1), the platform determines the object and applies its constraints for
purpose of validation (2). In case of violations, validation messages are shown (3b) in the
context of the affected attributes, otherwise the content object is displayed as normal (3a).

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Constraints

Validate (2)View (1)

Enterprise 2.0 Platform

Valid Structured
Content Object (3a)

Invalid Structured
Content Object (3b)

Figure 3.14.: Applying constraints when displaying a content object.

Since evaluating constraints only on demand potentially would slow down displaying content
objects, the experience for users might get reduced while reading content, which is one of
the most frequent use cases in Enterprise 2.0 platforms [AC10]. Another drawback of this
solution is that searching for integrity violations would require to evaluate the constraints of
all attributes in the entire platform on demand. Searching for invalid attributes in particular
becomes necessary since a valid content object can change into invalid by defining an integrity
constraint but without modifying the object itself. Therefore, it is important to provide search-
based mechanisms in order to make the users aware of such implicit changes of the validity.
Furthermore, users should not only see validation errors when reading a content object, they
should also get informed about violations while editing it. Otherwise, they would need to
save it in order to see if it is valid. In Chapter 4, we explain how to make the validation of
content objects more efficient by persistently caching the current validation status within the
attributes, how to explicitly search for constraint validations by using this cache, and how to
check constraints while editing structured content.

Typically Enterprise 2.0 platforms provide a built-in validation model for content objects. For
instance, it is most likely that the unstructured markup of a content object is validated by some
rules, for example spell checking rules or limitations regarding the length of the content. Since
the constraints as introduced in this chapter only refer to attributes and values, it is interesting
to discuss how both models can be combined consistently. For example, if the models are
integrated well the rule used for validating the built-in markup of a content object might be
reused for validating the markup of a hypertext attribute. Since the integration of these models
strongly depends on the given validation model of the underlying Enterprise 2.0 platform we
return to this topic in Chapter 4.

35

3. Hybrid Wikis

3.1.8.3. Context-based constraints

The context of a constraint as proposed in our model is always given by a type and an attribute
key. While this approach is more type-oriented, that is, limited to rules in the context of a type,
and therefore limited in its flexibility of applying constraints, other more flexible models for
the definition of constraints can be imagined. For example, the context in which a constraint
is applied could also consists of exactly one attribute key as well as multiple types and spaces
(cf., Figure 3.15). This attribute-centric solution would allow to share a constraint across
different types and spaces. However, this flexibility would also cause more complexity in
the management of constraints for the end-users. For example, it would be more difficult to
communicate to the end-user which constraint applies in which context, in contrast to the
type-centric approach, in which the context is always directly given by the type. In order to
preserve simplicity we keep the type-centric approach in this thesis (cf., Section 2.1).

Constraint
validationMessage:String
type:AtomicType

Context
spaces:Space[*]
types:Type[*]
atttributeKey:String[1]

 1
 1

Figure 3.15.: Alternative validation model using a context for applying integrity rules.

3.1.8.4. Strict constraints

As depicted in Figure 3.13, constraints can be marked as strict. Strict means that a structured
content object can only be saved if it does not contain invalid attributes or values. Thereby,
users are forced to enter valid structured content by using strict constraints. Since this would
contradict “an open editing philosophy that allows users to freely write and collaborate on
web content without any restriction” [DIZ06] in Section 3.2.3 we explain how to support strict
constraints without sacrificing the wiki way [LC01].

Furthermore, it is important to note that strict does not mean that the platform only contains
valid structures. Since constraints can be defined and changed independent of individual at-
tributes, an existing constraint can be set to strict even if some related attributes are violating
this constraint afterwards. Considering the validation model introduced in Figure 3.14 this
results in showing a validation message when matching content objects are displayed. Ad-
ditionally, these content objects cannot be saved by users until all attributes and values are
turned to valid ones or the constraint is changed to non-strict.

Types and attribute definitions can also be flagged as strict (cf., Figure 3.13). Basically, mark-
ing one of them as strict has the same meaning as described before, that is, content objects
related to strict types or strict attribute definitions can only be saved if no corresponding

36

3. Hybrid Wikis

constraint is violated. But in detail their flags rather serve as defaults for the individual
constraints. That means, individual constraints can be flagged as non-strict even if the corre-
sponding attribute definition or type is declared as strict.

3.1.8.5. Rigid constraints

Types additionally can be marked as rigid (cf., Figure 3.13). A rigid type consists of strict
constraints only, that is, a constraint cannot be declared as non-strict if its corresponding
type is rigid. Furthermore, the set of attributes of a rigid typed content object cannot be
changed, that is, attributes cannot be removed or added. Therefore, the set of attributes of a
rigid typed content object at least contains the attributes defined in the context of the rigid
type (i.e., the attributes which correspond to the type’s attribute definitions). But it is not
required that the attributes demanded by the attribute definitions have a value, because an
attribute definition not necessarily provides a multiplicity constraint requiring at least one
value. Since this is conflicting our model, in which each attribute consists of at least one
value, these attributes are treated as suggestions (cf., Section 3.3.1).

If a rigid typed content object provides additional types (rigid or non-rigid), the attributes
of these types are also included in that set of attributes. But even if all of these additional
types are declared as non-rigid, this attribute set cannot be reduced or further extended for
individual content objects, only by changing the type assignments. The limited adaptability
of the attribute set only applies to individual, rigid typed content objects. This means that
it is still possible to add or remove attribute definitions to or from rigid types.

Although the usage of rigid types seriously limits our approach in its flexibility (i.e., allowing
users to freely assign and remove key-value pairs to or from content objects) it is crucial
to solidify the state of the types at some point of time. For instance, it can be helpful to
freeze the state of a set of typed pages for a certain period of time for purpose of analyzing
their structured content or in order to generate a business report without being disturbed by
changing attributes. However, in Section 3.2.3 we explain how this rigidity can be softened
again in order to restore the possibility of flexible adaption and thus still to conform to the
wiki way [LC01].

It is important to note that in our model explicitly marking a type as rigid expresses a certain
concern of a business user and rigid typing is not caused by the technical limitation not being
able to change the underlying information structures (or data model respectively) at runtime.
Therefore, the dialog between the participants is facilitated regarding the composition of
the information structures (i.e., types, attributes, and constraints). Basically, constraints in
our model are not intended to hinder users in entering data they rather should guide them
while managing information. In Section 4.2.3 we explain how users immediately benefit from
constraints by providing advanced input controls for values.

In the following, we sketch the most important data type constraints with regard to this
thesis. We focus on constraints having special properties whose purpose is not obvious. The
other data type constraints namely string, number, hypertext, external link, and date are not
described in detail, because they are all very similar, that is, only provide a set of default
values with compatible data type. For instance, the defaults of a date constraint consist of

37

3. Hybrid Wikis

date values only. The complete model showing all constraints used in this thesis is depicted
in Figure A.1.

3.1.8.6. EnumConstraint

The enum constraint checks if the values of an attribute conform to a given set of anonymous
values. We refer to this set as enum values in the following. Anonymous means that enum
values only exist in the context of an individual enumeration constraint and do not belong to
a specific attribute. For that reason the relation between value and attribute is declared as
optional (0..1) (cf., default values in Section 3.1.8) as from now.

 0..1

 1..* {ordered}

EnumConstraint

 {subset}

 0..1

 * {ordered} defaults
{abstract}

DataTypeConstraint

{abstract}
Constraint

validationMessage:String
strict:Boolean

{abstract}
Value

...Value
...

Attribute
key:String
{unique for content}

 0..1

 1..* {ordered}

Figure 3.16.: Enumeration constraint.

Enum values can differ regarding their data types. Since individual attribute values of a
content object would never be declared to be of type enumeration the set of basic data types
(cf., AtomicType in Section 3.1.5) is not extended with an enumeration type. But even if for
an enumeration constraint no corresponding type exists in the set of basic data types, it is also
defined as part of the data type constraint inheritance hierarchy. This is because the types
of the given set of values are also checked when validating concrete values of an individual
content object. Additionally, an enumeration constraint can provide a set of default values.
In order to ensure consistency these defaults have to be a subset of the enum values. The
enum constraint is depicted in Figure 3.16.

An enumeration constraint is similar to an attribute because it consists of an ordered set of
values. Therefore, it is imaginable that constraints can also be applied to the validation of
constraints themselves, in this case for the validation of enumeration constraints. For example,
if an attribute definition provides a multiplicity constraint and an enumeration constraint, the
multiplicity constraint could be applied to the enumeration constraint in order to ensure
that the number of default values is not violating the given multiplicity. However, these
considerations are not part of the model as introduced here for reasons of simplicity.

38

3. Hybrid Wikis

3.1.8.7. RecordConstraint

The record constraint checks if an attribute only consists of key-value pairs. Furthermore, it
checks if the types of a record attribute conform to a given set of types, which we refer to
as record types in the following. The validation of the record types is disjunctive. That is,
if a record specifies a set of types T and the constraint is restricted to a set of types T ’ the
validation of this record fails if the intersection of T and T ’ is empty. Additionally, a record
constraint can provide a set of default key-value pairs and a set of default types. Default types
have to be a subset of the record types. The record constraint is depicted in Figure 3.17.

Type
key:String {unique for space}
description:String
rigid:Boolean
strict:Boolean

 * {ordered} *

Attribute
key:String
{unique for content}

 1

 * {ordered}

 0..1

 1..* {ordered}

{abstract}
Value

InternalLinkConstraint

StructuredLinkConstraint

 *

 *
link target types

 *

 *
record types

 *

 *
default types

{subset}

 * *

 0..1

 1..* {ordered}

Content

InternalLink

 *
referenced by

0..1references

AttributeDefinition
key:String {unique for type}
description:String
strict:Boolean

{abstract}
Constraint

validationMessage:String
strict:Boolean

 1

 0..1

{abstract}
DataTypeConstraint

 *

 *
default record types

{subset}

 0..1

 * {ordered}defaults

 0..1* {ordered} defaults

RecordConstraint

Figure 3.17.: Constraints for records, internal links, and structured links.

3.1.8.8. InternalLinkConstraint

The internal link constraint checks if an attribute only consists of link values. Furthermore,
it checks if a content object’s types a link value is pointing to conform to a given set of types,
which we refer to as link target types in the following. The validation of the link target types
is disjunctive. That is, if a link value is pointing to a content object having a set of types T
and the constraint is restricted to a set of types T ’ the validation of this link value fails if the
intersection of T and T ’ is empty. Additionally, an internal link constraint can provide a set
of default links and a set of default types. It has to be ensured that the default links conform
to the link target types, that is, the types of the content object a default link is pointing to
have to contain at least one element of the link target types. Furthermore, the default types
have to be a subset of the link target types. What the default types are needed for is for
example explained in Section 4.2.4.

39

3. Hybrid Wikis

Moreover, internal link constraints can also be used to refine context information of link values.
For instance, the context of a structured incoming link is implicitly given by the attribute
the link value belongs to. In this case, the link constraint could specify a more meaningful
name which is shown when viewing the incoming links of the target content object instead of
showing the name of the corresponding attribute. Internal link constraints could also be used
to provide additional restrictions regarding the inverse relationship between content objects.
For instance, the inverse multiplicity could be defined with at-most-one (0..1). That is, a
content object must not be referenced by more than one link value whose attribute name
corresponds to attribute definition’s name of the internal link constraint. However, we do not
include advanced inverse properties, such as inverse role names or inverse multiplicity, in our
model for reasons of simplicity. Internal link constraints are depicted in Figure 3.17.

A structured link constraint checks if an attribute only consists of structured links. Addition-
ally, it inherits all properties from the link constraint as well as from the record constraint,
that is, default links, default records, link target types, default types, record types, and default
record types. Structured link constraints are depicted in Figure 3.17.

3.2. Emergent structures in Enterprise 2.0 platforms

In this section, we discuss how information structuring can be supported by Enterprise 2.0 plat-
forms. First, in Section 3.2.1 we introduce different kinds of user participation in Enter-
prise 2.0 platforms. Based on this participation model, in Section 3.2.2 we describe the
evolution of information structures provided by Hybrid Wikis. In Sections 3.2.3 and 3.2.4 we
show the impact of Hybrid Wikis on existing Enterprise 2.0 services.

3.2.1. Participation model

In collaborative environments, such as in Enterprise 2.0 applications, users typically act in
different roles. In Hybrid Wikis we distinguish three roles: visitors, authors, and tailors. The
definition of these roles is taken form [DIZ06].

Visitors are users who read the actual content of an object. Their main activities within an
Enterprise 2.0 application can be considered as view, search, navigate, and explore structured
and unstructured information. Visitors use structured information primarily when viewing
a set of similar object as part of a built-in view (cf., Section 3.4) or when searching for
information by means of structured queries (cf., Section 3.2.4.1).

Authors are users who modify the actual content of an object. Their main activities within an
Enterprise 2.0 application can be considered as edit, link, tag, discuss, and comment structured
and unstructured information. Authors modify structured information only as part of the
content objects, that is, they only add or remove attributes or assign types. Types, attribute
definitions, and constraints are modified by tailors.

Tailors are users who modify the elements of the schema. Their main activities within an En-
terprise 2.0 application can be considered as unify, constrain, and clean up data by maintaining
types, attribute definitions, and constraints.

40

3. Hybrid Wikis

In [DIZ06] these three roles are used to differentiate between the users’ activities in a wiki.
In particular, persons acting as tailors configure and select validators, which are similar to
integrity constraints in Hybrid Wikis. Therefore, it is most likely that tailors are also the
users modifying the constraint’s container (i.e., attribute definitions and types).

It is important to note that the same user can play different roles at different times. For
instance, the same user who added an attribute to a content object can specify a related
constraint later.

While visitors, authors, and tailors as introduced above represent human actors, these roles
can also be played by an internal or external system accessing structured or unstructured in-
formation. This differentiation in particular becomes important in Section 4.2.7 when systems
interact with Hybrid Wikis.

3.2.2. Evolution of emergent information structures

Hybrid Wikis provide a small set of structuring concepts, namely attributes, types, attribute
definitions, and constraints (cf., Section 3.1). While attributes and type assignments enrich
content objects with structured information on the data level, attribute definitions and con-
straints represent the constituents of the data’s schema. That is, typed content objects can
be considered as instances of these schema elements. However, in Hybrid Wikis the integrity
of the data cannot be guaranteed by means of a schema, even when using rigid types or strict
constraints (cf., Section 3.1.8). But due to the loose coupling of data and schema, both can
be changed independently without being restricted by each other. In the following, the term
data is used as a synonym for structured data or structured information respectively, subsum-
ing structured content objects with attributes and type assignments. Furthermore, the term
schema stands for types with attribute definitions and constraints. Therefore, on the schema
level a type bundles a set of attributes with constraints, on the data level the assignment of a
type expresses that a content object is an instance of this type.

Since in Hybrid Wikis the data’s integrity cannot be ensured by means of the schema, we
distinguish two kinds of schemata. The explicit schema is represented by types with attribute
definitions and constraints, that is, all elements which are explicitly defined on the schema
level. Whereas the implicit schema is based on the data. That means, the schema is implicitly
given by the types (i.e., type assignments), attributes, and values of the structured content
objects. Regarding the project example from Section 3.1.5.6 the content object Max Leader
might be typed as person. In this case, the implicit schema would be represented by the types
project and person connected by the link attribute project lead, even if both types do not
specify any attribute definitions or constraints. Since the implicit schema is represented by
structured data it can always be considered as the ‘true’ schema, whereas the explicit schema
rather has a complementary character.

One goal of Hybrid Wikis is that the (explicit) schema incrementally emerges from the struc-
tured data (i.e., from the implicit schema). That is, emerging structures on the data level
facilitate the evolution of the schema by giving recommendations which elements to explicitly
define in the schema. For instance, if most of an attribute’s values are dates it is suggested to
define a date constraint for the related attribute definitions. Or the other way around, besides
validating data the usage of types with attribute definitions and constraints also facilitates

41

3. Hybrid WikisIntegrated data-driven information management
and schema evolution via collaboration

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Schema emerges
from data and
relationships

Schema
constrains,
suggests, and
consolidates data

Research Project

Acronym:String
Project start:Date

Staff

E-Mail:String
Position:Position

<<enum>>
Position

{Professor,Assistant}

1* Contact

AuthorsAuthors

TailorsTailors

Figure 3.18.: Integrated data-driven information management and schema evolution via
collaboration.

the consistent usage of data structures. For instance, if a date constraint is related to an
attribute, users are urged to enter date values only. Additionally, schema elements are also
used to provide structures by means of suggestions (cf., Section 3.3) and to increase the com-
fort for users when entering structured information (cf., Section 4.2.3). Figure 3.18 depicts
Hybrid Wikis’ two levels of structured elements, data and schema, and illustrates the interplay
between them.

Hybrid Wikis support five stages of schema evolution (cf., Figure 3.19) in order to facilitate
the bottom-up development of the schema. Bottom-up means that the schema incrementally
emerges from the interplay of the individual structured content objects.

∙ Stage I: Key-values pairs (attributes) are specified for individual content objects.

∙ Stage II: Types are assigned to individual content objects.

∙ Stage III: Attributes are bound to types.

∙ Stage IV: Integrity constraints are defined for bound attributes.

∙ Stage V: Types and attribute definitions are declared as strict or rigid.

Each of these stages represents the degree of the schema’s rigidity. The first two stages, Stage
I and Stage II, are represented by structuring elements from the data level, the other stages
consist of elements from the schema. For instance, if content objects are only structured by
means of attributes and types the schema is only implicitly given by the data, that is, the
content objects are lightly structured. In contrast, if most of the data is related to rigid types
with attributes and constraints the schema is explicitly defined, that is, the content objects
are heavily structured (cf., Figure 3.19). We assume (cf., Section 3.2.1) that authors primarily
interact with elements from the data level (e.g., by structuring content objects) and tailors

42

3. Hybrid Wikis

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Deegree of the Structure‘s Consolidation

Stage I
(Attributes)

Stage II
(Types)

Stage III
(Attribute Definitions)

Stage IV
(Constraints)

Stage V
(strict & rigid)

tLightly structured Heavily structuredUnstructured

Data structures
Schema structures

Authors
Tailors

Figure 3.19.: Degrees of the structure’s consolidation.

with elements from the schema (e.g., by managing constraints). Types (and type assignments)
represent the connection between data and schema and therefore a connection between authors
and tailors.

Although Hybrid Wikis facilitate the evolution of information structures and therefore in-
formation becomes more structured over time, they are not indented to replace unstructured
content completely. Structured and unstructured information is rather complementary to each
other. This also means that rigid structures can also be softened again. For instance, if types
are declared to be non-rigid anymore, this is moving from Stage V back to Stage IV or remov-
ing types and attributes from an individual content object means moving from Stage II back
to an unstructured state. However, Hybrid Wikis aim at constructing a well-defined schema
by incrementally adapting information structures whereas the explicit schema emerges from
the data. This way, the core information model continuously evolves and is hardening over
time (cf., Figure 3.20).

n Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Deegree of the Structure‘s Consolidation

Implicit schema
(Attributes, Types)

Explicit schema
(Types, Attribute Definitions, Constraints)

Legend

Type

Relation

Figure 3.20.: Implicit and explicit schema in Hybrid Wikis.

43

3. Hybrid Wikis

3.2.3. Access control for structuring concepts

In the following, we discussed how the structuring concepts of Hybrid Wikis can be integrated
into the access control model as introduced in Section 3.1.2.2. We differentiate between access
control for information structures on the data level as well as for elements as part of the
schema.

3.2.3.1. Access control for structuring individual content objects

As introduced in Section 3.1.2, content objects are protected from unauthorized access by
means of access control permissions. Since attributes and the type assignments are fully
integrated as parts of a content object these permissions are also applicable for them. That
is, if a user is allowed to modify a content object she is also allowed to add, remove and
modify attributes or to assign or remove types to it. The same applies to the read access.
If a user is not allowed to read a content object, she does not see any of its attributes or
types5. This means that in our model it is not possible to explicitly define access control lists
for attributes or to specify who is allowed to assign a specific type. Which types are available
for the assignment depends on their access rights and is discussed in Section 3.2.3.2. We
consciously decided that an attribute only inherits the access rights from its owning content
object, that is, it is not possible to define diverging permissions for it.

Especially in the context of an enterprise in many cases it is not required to exclude a set of
attributes to be shown for a specific group of users due to reasons of confidentiality, it is rather
required to create custom views showing only relevant information according to their business
demands. How custom view can be created is introduced in Section 3.4.2. Furthermore, role-
based hiding of attributes increases the overall complexity of Hybrid Wikis. For users it is
more difficult to understand the different access right configurations, in particular if they are
very fine-grained such as in case of different access rights for different attributes, even if they
only differ for one individual content object. For instance, let p1 be a content object which
can be viewed and edited by a user Mayer. Furthermore, let budget be an attribute having a
value 100.000 which is not visible to Mayer. Mayer also might want to add budget to p1 since
he is not aware of p1 already has such an attribute. Then an error message has to be shown
saying that there already exists an attribute with the same key which is invisible for him. In
this case, he is not even able to contact the attribute’s owner (e.g., in order to ask about the
attribute’s current value or its purpose) since he cannot find out who has created the attribute.
The main reason why view restrictions for attributes are avoided is that the collaboration on
shared content object would become much more complicated and therefore would contradict
the principles underlying Hybrid Wikis (cf., Section 2.1). Additionally, even if it would be
possible to distinguish which user has created which attribute with which values in order to
support duplicated keys (or values) this would seriously increase the overall complexity from
a technical point of view.

In contrast, edit rights for individual attributes are rather comprehensible for users than

5This means that a user cannot reproduce if a type is assigned to any content objects. However, whether
a type in general is visible depends on the access rights of the space the content object is related to
(cf., Section 3.2.3.2).

44

3. Hybrid Wikis

restricted read access6. This is due to the fact that it is clear which attributes are available
and who is the owner of an attribute. Therefore, different users can contact each other
in case of doubts regarding the current state of an attribute, for example they can ask for
changing the access rights. However, when providing versioning and awareness capabilities
for information structures, changes to attributes can be tracked (cf., Section 3.2.4.3) and
reverted (cf., Section 3.2.4.4), if necessary. In enterprises the degree of trust is higher when
collaborating within an Enterprise 2.0 application [KGI08] than in open spaces such as in the
Wikipedia, where in some cases so-called edit-wars emerge [VWD04]. Therefore, unauthorized
modifications to individual attributes are rather unlikely in an enterprise context. For all these
reasons Hybrid Wikis do not support edit access control for attributes.

Support of individual access control lists for attribute would seriously decreases the under-
standability of Hybrid Wikis from an end-user point and increase the complexity from technical
perspective. Therefore, protecting attributes from unauthorized read or write access for any
reasons (e.g., confidentiality) in Hybrid Wikis is only possible by means of defining a separate
content object containing these attributes.

3.2.3.2. Access control for the schema

As described in Section 3.1.2, the access rights of a space primarily serve as defaults for the
contained content objects, but can be specified for individual objects differently (cf., Fig-
ure 3.2). In case of types, the permissions of a space also apply to all its containing types,
but cannot be overridden individually. That is, in our model types have derived access rights
only, similar to the permissions of attributes. This means that users who are allowed to read
object objects within a space are also allowed to see all contained types. The same way write
access is derived. That means, users who are allowed to modify content objects within a space
are allowed to modify all contained types. In particular, this also means that users with write
access within a space can create new types or delete them. However, if a type can be assigned
to an individual content object depends on the write permissions of this object.

The access control for attribute definitions and constraints works the same as for a type, that
is, the access rights are inherited from the space. Since both are only indirectly associated
with a space, the permissions are inherited from the related type or the related attribute
definition respectively. This also means that the rigidity of constraints (or types and attribute
definitions) can be changed by the editors (i.e., the authors) within a space, that is, constraints
can be declared as non-rigid or non-strict, if needed (cf., Section 3.1.8).

Since types, attributes, and constrains are related to exactly one space (cf., Figure 3.1) they
are only applicable to content objects within this space. This holds, even if a user is allowed
to see (i.e., read) multiple spaces. For instance, let Mayer be a user who is allowed to read
the two space Management and Intranet. Furthermore, let c1 be a content object within
Management, c2 a content object in Intranet, and contract a type within Management. Then
contract can only be applied to c1, even if Mayer is allowed to read contract in the context of
c2. Of course, he could create a type contract within Intranet and assign it to c2. However,
this would require to also duplicate the contract ’s attribute definitions and constraints most

6For example, the Budget attribute of the Development Project A can only be changed by the responsible
project manager.

45

3. Hybrid Wikis

probably resulting in diverging type structures over time. This issue could be addressed by
providing a mechanism that allows to synchronize or to share (cf., Section 3.1.8.3) types across
spaces but is currently not supported by Hybrid Wikis.

3.2.4. Integration of structuring concepts in Enterprise 2.0 services

Enterprise 2.0 applications provide a set of built-in services which are orthogonal operations on
the content objects, such as tagging [GH05]. Orthogonal means that they can be applied to all
content objects uniformly [BMN09]. In the following, we discuss the orthogonal applicability
of theses built-in services to the structuring concepts, namely attributes, types, attribute
definitions, and constraints.

3.2.4.1. Searching and linking

Search services can be used to find content objects fulfilling specified criteria [Bi12]. In tra-
ditional Enterprise 2.0 platforms these criteria primarily target the full text (i.e., built-in
markup) of content objects. That is, users can search for specific keywords within the unstruc-
tured content. In Hybrid Wikis these search capabilities are extended in order to additionally
search for structured information. In particular, users can specify searches filtering content
objects

∙ having a specific type,

∙ with a specific attribute, and

∙ providing a specific value.

These search filters can be combined by using boolean operators7. For example, it is possible
to search for content objects having a specific set of types and additionally providing a specific
set of key-value pairs. It is important to note that unstructured and structured queries can
also be used in combination. For instance, it can be search for content objects with a specific
type additionally containing a specific keyword in the full text of these typed objects. By doing
so, structured and unstructured information can be accessed uniformly by means of queries.
The ability to combine structured and unstructured queries is particularly important for “rich
information repositories” [We09], such as Enterprise 2.0 platforms. Queries only related to the
structured part of the contents we refer to as structured queries, queries referring to structured
and unstructured elements are called hybrid queries. In particular, structured queries are used
to produce dynamic views. Dynamic here means that the views are based on a set of data
resulting from an executed query. In Section 3.4, we explain how custom views can be produced
by using structured queries.

As introduced in Section 3.1.5.5 and 3.1.5.6, record and structured link values can be consid-
ered as anonymous objects in the context of its owning content object. Since both concepts
provide attributes and types it is also required to include them when searching for structured
information. Since these objects only exists in the context of its owning content object, that
is, they do not have an own identity and do not provide a URL, they only can be accessed via

7Which combinations of search filters are currently supported by Hybrid Wikis is explained in Chapter 4.

46

3. Hybrid Wikis

the owning object. However, when searching for a specific type the search result potentially
contains both kinds of typed objects, fully fledged content objects and anonymous objects,
such a records and structured links. In such a case, accessing an anonymous object is only
possible via the link of its owning content object.

As explained in Section 3.1.4, a type provides a description in order to give users the possibility
to make a statement about its meaning. Therefore, the type can also be considered as content
since the type’s description, which is currently given as string, can also be modeled as rich
text, similar to the built-in markup of a content object. Therefore, it is important to be able
to search for keywords within this textual description in order to find types. For this reason
it is required that types are treated as fully fledged object having an own identity and can be
referenced by a URL. For instance, it can be helpful to link from a term within the full text of
a content object to a type in order to explain the meaning of this term. In particular, this is
useful when terms are overloaded and a more detailed description is required, such as in case
of using the term service. The same also applies to attribute definitions (cf., Section 3.1.7),
that is, it is possible to search for them and they can be referenced by URL. Constraints only
exist in the context of its owning attribute definition. Since they do not provide a full text
description they are not searchable and cannot be referenced by a URL.

Types, attribute definitions, and content objects are quite similar since all provide rich text,
are searchable, and can be referenced by a URL. However, types and attribute definitions differ
from content objects in so far that they cannot be structured by themselves, for example it is
not possible to type a type again. We consciously avoided the structuring of structure since this
would allow modeling on a meta level [St08] and most probably decrease the understandability
of Hybrid Wikis from an end-user perspective.

As indicated in Section 3.1.8, it is possible to search for values violating one or more con-
straints. In particular, Hybrid Wikis allow to search for

∙ invalid attributes and

∙ objects containing any invalid attributes.

By combining different search filters it is possible to search for constraint violations within
a specific context. For instance, it can be searched for typed content objects having invalid
values for a specific attribute key (e.g., search for projects having more than one project
lead). However, the user can only search for invalid attributes in general. It is not possible
to define a query counting the attribute’s number of values and comparing it to the bounds
of a given multiplicity constraint. This is due to the fact that each attribute only provides
a set of validation messages indicating the reason of the validation failure (cf., Chapter 4).
The user has to manually check which constraint is responsible for the indicated violation.
That means in the example the user has to manually check within the set of failing attributes
whether the multiplicity constraint caused the violation or another constraint also applying
to the attribute.

3.2.4.2. Tagging

Types and attribute definitions are similar to content objects since both can be searched,
referenced by a URL, and provide a full text description. However, they cannot be structured

47

3. Hybrid Wikis

in order to avoid meta modeling (cf., Section 3.2.4.1). In [BMN09] tagging is described as
“the process of collaboratively building a bottom-up categorization system”. This means by
applying tags to types and attribute definitions it is possible to categorize them. For instance,
tagging a type can be used for task organizing purposes [GH05]. In particular, when using
“what-it-is” tags [GH05] tags can also be used to specify a type for a type, which is similar to
meta modeling. However, since a tag in many cases is not used with type semantics (i.e., as
a classifier), Hybrid Wikis support the tagging of types and attribute definitions. This is also
due to the fact that it is still prevented to explicitly type a type or an attribute definition.

3.2.4.3. Versioning

Version management in [BMN09] is referred to as services “tracing the evolution of the con-
tent objects within their life-cycle”. That is, by means of versioning it can be traced which
user has changed which parts of a content object at which time and for what reason. In
Hybrid Wikis attributes and type assignments are recored as part of the version history of
the content object itself. This means, it is additionally recorded which attributes and types
changed (i.e., added, removed, updated) within the content object’s history.

Furthermore, the history also includes information about the validation status of a content
object. That is, if the validation status of an object changes (e.g., by changing the value of
an attribute) the validation message of the related constraint is recored. By doing so, it is
reproducible at which point of time a content object turned into invalid and which constraint
caused the violation. Changes of a content object’s validation status are even traced if the
content object becomes invalid indirectly (i.e., without changing its types and attributes). For
instance, a content object (i.e., one of its attributes) can turn into invalid if a constraint is
specified separately. Versioning in this case serves the purpose of tracing a content object’s
validation status. However, in most cases restoring a validation message is not useful since the
causing constraint might have changed in the meantime. Therefore, the validation messages
are always recalculated if restoring a content object from the version history in order to avoid
inconsistencies.

Types and attribute definitions provide their own version history. The history of a type
includes information about changes to its description, attribute definitions and tags. For an
attribute definition it is traced which tags, constraints, and parts of the description have
changed. The version history of a constraint is only part of its owning attribute definition.

3.2.4.4. Watching

Watching a content object means that users can register in order to receive a notification
(e.g., via email) in case of changes to individual objects (cf., Section 3.2.4.3). Attributes and
type assignments can only be watched indirectly by observing changes of state of content
objects. This means that an attribute or a type cannot be watched individually. In contrast,
it is possible to observe changes to types and attribute definitions directly.

48

3. Hybrid Wikis

3.3. Techniques facilitating information structuring

In this section, we explain how users interact with the structuring concepts introduced in
Section 3.1. We focus on techniques that facilitate the structuring of information. In partic-
ular, we explain how suggestions for types, attributes, and data types on the instance level
urge users to contribute structured content and how contextualized autocomplete mechanisms
for terms and links provide means to develop a consistent schema in a bottom-up fashion.
Additionally, we introduce a model describing transitions between unstructured and struc-
tured content that enables users to incrementally structure their information. Furthermore,
we introduce consolidation mechanisms to unify data by means of the schema and show how
structures defined for individual content objects can be transferred to the schema. Finally, we
explain how built-in views reward users in providing information structures for example by
providing better navigation capabilities through structured backlinks or tabular views listing
the instances of a specific type.

3.3.1. Suggestions

One goal of Hybrid Wikis is to encourage users to structure information. Suggestions are a
lightweight possibility to urge users to provide structures without forcing them. Additionally,
suggestions in Hybrid Wikis help to

∙ reuse existing information structures,

∙ discover new information structures,

∙ indicate information structures for similar business demands, and

∙ unify terms and information structures.

In the following sections, we introduce suggestions for attribute keys, types, values, and con-
straints. Basically, the introduced suggestions are founded on an analysis of the structural
similarity of content objects. For instance, two content objects have a high structural similar-
ity if they have many of their attributes in common. In this case, if one object provides only
one additional attribute this attribute (i.e., its key with an empty value field) is suggested to
the user in the context of the other object.

Several variants of determining the similarity can be imagined. As in the previous example,
the number of shared attribute key can indicate similarity, but also the number of types and
shared attribute definitions can be used. Some of these variants are subsequently discussed,
which we consider to be the most relevant. But the introduced suggestions are only based on
the similarity of already existing structures, suggestions based on other information (e.g., based
on an analysis of unstructured content [Ku08a]) are not considered in this thesis.

Due to reasons of usability (e.g., restricted space in the UI) as well as users’ limited cognitive
ability, only a small set of suggestions is offered to the users. Therefore, the similarity of
content objects is used to determine a ranking within that set. The more similar a content
object is to a content object in a specific context, the higher the probability that its structure
is suggested to users in the context of the latter one. In this section, we sketch how the
ranking of suggestions can be determined by proposing different priorities. In Chapter 4 it

49

3. Hybrid Wikis

is explained how suggestions can be calculated efficiently and how their ranking is actually
implemented.

3.3.1.1. Attribute suggestions

We consider types to be the most important indicator for structural similarity. In the simplest
case, exactly one type is assigned to a content object. Then the set of attributes used in
combination with this type for other content objects is determined and the most frequent
attribute keys are offered to the users as suggestions. For instance, let p1 and p2 be content
objects both with type project. When p2 provides an attribute budget, then budget is suggested
in the context of p1, for example budget is suggested when p1 is displayed.

In the case of multiple types per content object, not only the attribute frequency is considered
but also if an attribute occurs for content objects having all or several of the types assigned.
Such attributes are preferred in the list of suggestions. For example, let p1 and p2 be content
objects each with type project and research project, and p3 a content object with type project.
Assuming p2 provides an attribute budget and p3 an attribute status, then both attributes,
budget and status, are suggested in the context of p1, but the ranking of budget is higher since
p2 provides both types (project and research project), whereas p3 only provides project.

If no types are present for a given content object, similar content objects are determined
by taking into account only the attribute keys used. For instance, let p1 and p2 be content
objects. p1 provides the attributes budget and status, p2 provides an attribute budget. Then
status is suggested in the context of p2.

An attribute is more likely to be suggested if it occurs for content objects having all or several
of the attributes currently assigned. Such an attribute is preferred in the list of suggestions,
similar as in case of multiple types. For instance, let p1, p2, and p3 be content objects.
p1 provides the attributes budget, status, start, p2 the attributes budget, status, and p3 the
attributes budget, end. Then start is more likely to be suggested in the context of p2 than
end.

Attributes are also suggested for typed content objects with attributes related to attribute
definitions and constraints. Since these definitions are part of the explicitly defined schema,
they have the highest ranking of all attribute suggestions. For example, let p1 and p2 be
content objects each with type project. p2 provides an attribute budget and project an attribute
definition status. Then it is more likely that status is suggested in the context of p1 than budget.
It is important to note that attribute suggestions originating from attribute definitions can
be related to constraints. This means that a suggestion can become mandatory if using
strict constraints or rigid types. For instance, if an attribute suggestion is related to a strict
multiplicity constraint requiring exactly one value then a value has to be provided for the
suggested attribute.

In [GH05] a classification for different kinds of tags is introduced, which are used throughout
a collaborative tagging environment. One class of tags is classified as what-it-is. Theses tags
are very similar to types with the difference that they are only plain keywords and cannot
be used to specify any additional information, such as a description or attribute definitions.
Since most of today’s Enterprise 2.0 platforms support tagging of content objects tags are

50

3. Hybrid Wikis

also used in order to determine attribute suggestions. The determination works exactly as
for types (single or multiple), but is based on tags instead. However, the ranking of attribute
suggestions based on tags is lower than for those which are determined by the types since a
tag not necessarily is intended to be used as a what-it-is tag. It is important to note that
types can be considered as explicitly defined what-it-is tags. In Chapter 4 we introduce the
concept of type tags as a lightweight connection between types and tags.

As mentioned before, attributes could also be suggested based on an analysis of the un-
structured content. For instance, like in [Ku08a] the content could be analyzed using nat-
ural language processing methods in order to generate attribute suggestions. However, in
Hybrid Wikis suggestions are only based on an analysis of existing information structures
including tags.

The priority the ranking of the attribute suggestions is based on is given by:

1. Attribute definitions

2. Multiple types

3. Single types

4. Tags

5. Attributes

That is, an attribute is more likely to be suggested if it is related to an attribute definition
and less probable if it is based on the analysis of the attribute keys only.

3.3.1.2. Data type suggestions

As explained in Section 3.1.5, each value provides a string representation. For instance, a
hypertext value would be represented as a markup string including all formatting information,
such as styles. In some cases the textual representation of a value with a specific data type
can be interpreted as expected by another data type. In such cases the latter data type is
suggested. For example, let budget be an attribute having a string value 100. If the value’s
text is interpretable as a number, the data type number is suggested. Since all values have a
textual representation, the data type string is not suggested. However, it is of course possible
to change the data type to string (cf., Section 3.3.2.1).

3.3.1.3. Type suggestions

Types are suggested for a content object if it has all or some of the attributes other typed
content objects provide. For instance, let p1 and p2 be content objects each with attributes
budget and status, p2 additionally provides the types project and research project. Then project
and research project are suggested as types for p1.

Types are preferably suggested for a content object if its attributes corresponds to all or
some of the attributes other typed content objects provide and attribute definitions are given
for all or some of these attributes. For instance, let p1, p2, and p3 be content objects each
with attributes budget and status. p2 additionally provides the type project and p3 the type

51

3. Hybrid Wikis

research project. Furthermore, budget and status are attribute definitions of research project.
Then both types, project and research project, are suggested as types for p1, but research
project is preferred in the ranking of suggestions.

Types are suggested for a typed content object if other content objects with the same types
provide additional types. For instance, let p1 and p2 be content objects each with types project
and research project, p2 additionally provides the types current project and completed project.
Then current project and completed project are suggested as types for p1.

Furthermore, a type is suggested if a content object provides a tag and other content objects
using this tag as a type instead. For example, let p1 and p2 be content objects. p1 provides
a tag project, p2 a type project. Then for p1 is suggested to use project as a type instead of
using it as a tag.

A type is suggested if a content object has structured incoming links (cf., Section 3.1.5.2)
and the key of the referencing link attribute is used in other content objects as a type. For
instance, let p1, p2, and p3 be content objects. p1 is referencing p2 by means of an attribute
with key project and p3 provides a type project. Then project it is suggested as type for p2.

The priority the ranking of the type suggestions is based on is given by:

1. Multiple types

2. Attribute definitions

3. Attributes

4. Incoming structured links

5. Tags

That is, a type is more likely to be suggested if other content objects provide additional types
and less probable if it is using a plain tag instead of a type.

3.3.1.4. Autocompletion

In [LFZ09] autocomplete is described as a method “which predicts a word or phrase that the
user may type in based on the partial string the user has typed”. In this thesis, autocomplete
techniques are intended to guide the users while they enter structured information. Further-
more, autocompletion helps to use structures and terms consistently. Basically, three kinds of
structuring elements are supported by autocompletion

∙ attribute keys,

∙ attribute values, and

∙ types.

Since potentially quite a lot of suggestions can be predicted based on a partial string, in
particular in case of attribute values, the autocompletion results have to be determined by
using a ranking. Subsequently, we sketch how autocompletion is supported in Hybrid Wikis,
in Chapter 4 we explain how the ranking is determined from a technical point of view.

52

3. Hybrid Wikis

Autocompletion is provided for an attribute key if other content objects exist having attribute
keys starting with the partial string the user has typed in. For instance, let p1 and p2 be content
objects. p2 provides an attribute with key budget. Then budget is suggested for p1 as attribute
key when typing bu while editing the key.

Autocompletion is provided for an attribute value if other content objects exist having at-
tributes with the same keys and values starting with the partial string the user has typed in.
For example, let p1 and p2 be content objects. p2 provides an attribute with key budget and
value 100.000. Then 100.000 is suggested for p1 as attribute value when typing 100. while
editing an attribute with key budget.

Autocompletion is provided for a type if other content objects exist having types starting with
the partial string the user has typed in. For instance, let p1 and p2 be content objects. p2
provides a type project. Then project is suggested for p1 as type when typing pro while editing
the types.

3.3.1.5. Constraint-based suggestions

Information specified by constraints (cf., Section 3.1.8) can also be utilized to provide sugges-
tions. We consider suggestions for data types, values, types, and multiplicities to be relevant.
The difference to the previously described kinds of suggestions is that constraint-based sug-
gestions are user-defined and not generated by the system. In particular, constraint-based
suggestions result from data type constraints, multiplicity constraints, and the constraint’s
defaults.

A data type is suggested if an attribute is related to an attribute definition with a data type
constraint. For instance, let p1 be a content object related to an attribute definition with
key manager additionally specifying an internal link constraint (cf., Section 3.1.8.8). Then
internal link is suggested as data type for the values of an attribute manager in p1.

Furthermore, additional information of the data type constraints is used to provide suggestions
for values and types:

∙ Users are urged to contribute the values given by an enumeration constraint by preferably
suggesting these values.

∙ If an internal link constraint with a specific set of link target types is specified, users
are urged to provide only links with matching types by preferably suggesting matching
links.

∙ Users are urged to use specific types for a record value (and for a structured link value
accordingly) if a record constraint is restricted to a specific set of record types by prefer-
ably suggesting matching types.

For example, urging can be achieved by preferring constraint-based values and types in the
suggestions’ ranking or by using specific UI controls when editing values (e.g., present the
enumeration values as a drop-down list).

A specific number of values is suggested to be filled out if an attribute is related to an attribute
definition with a multiplicity constraint. For instance, let p1 be a content object related to

53

3. Hybrid Wikis

an attribute definition with key manager additionally specifying a multiplicity constraint
(cf., Section 3.1.8). Then it is suggested to provide the same number of values as specified by
the constraint for an attribute manager in p1.

The defaults as introduced in Section 3.1.8 can also be considered as suggestions. We differ-
entiate between defaults for values and types.

A default-based value is suggested if an attribute is related to an attribute definition (or to
a constraint respectively) specifying a default value. For instance, let p1 be a content object
related to an attribute definition with key status additionally specifying a constraint with
value open as default. Then open is suggested as value for an attribute status in p1. For
example, when a user decides to create a new attribute from an attribute suggested in the UI
(cf., Section 3.3.1.1) a default value can be initially filled as the attribute suggestion’s value.

A default-based type is suggested if an attribute is related to an attribute definition (or to
a constraint respectively) specifying a default type. For example, let p1 be a content object
related to an attribute definition with key manager additionally specifying a constraint with
type participation as default (e.g., a structured link constraint, cf., Section 3.1.8.8). Then
participation is suggested as type for an attribute manager in p1.

It is important to note that all constraint-based suggestions as well as attribute suggestions
originating from attribute definitions with constraints (cf., Section 3.3.1.1) become mandatory
if using strict constraints or rigid types (cf., Section 3.1.8). In this case, the same suggestions
techniques can be applied, but with the difference that the users are rather forced to provide
matching structures than they are urged only. However, wiki authors are free to declare
constraints and types as non-strict or non-rigid any time.

3.3.1.6. Suggestions for attribute definitions and constraints

As described in Sections 3.3.1.5, 3.3.1.1, and 3.3.1.3, information from the explicitly defined
schema, in particular from attribute definitions and constraints, can be used to provide sug-
gestions on the data level. In order to facilitate the definition and evolution of information
structures on the schema level attribute definitions and constraints are also suggested. By do-
ing so, the schema and the data keep close together and the disparity of types and attributes
is mitigated (cf., Section 3.1.4).

Basically, suggestions for the schema are derived from the concrete data instances (e.g., struc-
tured wiki pages). This means the determination of suggestions can be considered as guessing
the schema. For instance, if a set of typed content objects all provide the same attribute8 with
the same data type then it is reasonable to suggest a corresponding attribute definition with
data type constraint. But even if only a few content objects in this exemplary set provide
the same attribute, but differ regarding their values’ data types (e.g., most of the values are
links and only a few are plain strings), suggesting a data type constraint according to the data
type of most of the values is still reasonable. Therefore, it is necessary to define thresholds for
suggestions regarding the schema. That is, a schema suggestion is only provided if a certain
threshold is exceeded. For instance, if a certain percentage of the instances’ values are internal
links then an internal link constraint is suggested, otherwise not. In the following, we intro-

8That means, they provide the same attribute key, but their values can differ.

54

3. Hybrid Wikis

duce suggestions for attribute definitions, data types, default values, and multiplicities. For
all of them it is reasonable to define an individual threshold. However, we do not provide a
concrete value for each of these thresholds in the following, we leave them as variables. This is
also due to the fact that schema suggestions are currently being developed but not yet applied
and evaluated in practice.

An attribute definition is suggested for type t if x percent of content objects typed with t
specify the same attribute. For instance, let p1, p2, and p3 be content objects, all typed with
project. p1 and p2 provide an attribute with key budget. Furthermore, let 50 percent be the
threshold for suggesting attribute definitions. Then budget is suggested as attribute definition
for project since about 66 percent of project ’s instances provide budget.

A data type constraint is suggested for an attribute definition ad if x percent of related
attribute values provide the same data type. For example, let p1, p2, and p3 be content objects,
all are typed with project and provide an attribute manager. The data type of manager in p1
is string, the data type of manager in p2 and p3 is link. Furthermore, let 50 percent be the
threshold for suggesting data type constraints. Then an internal link constraint is suggested
for the attribute definition manager since about 66 percent of its related attributes are of data
type internal link.

Furthermore, additional type-specific elements are suggested for data type constraints:

∙ A link target type t is suggested for an internal link constraints if x percent of corre-
sponding link values point to content objects with type t. For instance, let p1 and p2
be content objects, both with an attribute manager which is related to an attribute
definition with an internal link constraint ilc. Furthermore, p2’s attribute manager has
a link value referencing a content object Max Leader with type internal. Let 50 percent
be the threshold for suggesting link target types. Then internal is suggested as link
target type for ilc since 50 percent of the link values referencing content objects with
type internal.

∙ A record type t is suggested for a record constraints if x percent of the corresponding
record values using t as record type. For example, let c1 and c2 be content objects,
both with an attribute address which is related to an attribute definition with a record
constraint rc. Furthermore, c2’s attribute address has a record value with type address.
Let 50 percent be the threshold for suggesting record types. Then address is suggested
as record type for rc since 50 percent of the record values are typed with address.

∙ A value is suggested as part of an enumeration constraint if x percent of corresponding
values are matching. That is, if an enumeration constraint already exists, this value is
additionally suggested, otherwise a new enumeration constraint is suggested with exactly
one value. For instance, let p1, p2, and p3 be content objects. p1 and p2 provide the
value open for an attribute status, p3 provides closed as status. Then an enumeration
constraint with value open is suggested since more than 50 percent of the values are the
same.

∙ A value is suggested as default of a data type constraint if x percent of the related
attributes provide the same value. For instance, let p1, p2, and p3 be content objects.
p1 and p2 provide an attribute manager each having a link value referencing a content
object Max Leader, p3 provides a string value Müller for attribute manager. Then, as

55

3. Hybrid Wikis

described above, an internal link constraint ilc is suggested. Additionally, the default
link valueMax Leader is suggested for ilc since about 66 percent of the related attributes
provide Max Leader as link.

∙ A type is suggested as default link target type of an internal link constraint (the same
applies to the default types of a record constraint and for the defaults of a structured link
constraint) if x percent of corresponding link values point to content objects with type t.
For example, let p1 and p2 be content objects, both with an attribute manager which is
related to an attribute definition with an internal link constraint ilc. Furthermore, p2’s
attribute manager has a link value referencing a content object Max Leader with type
internal. Let 50 percent be the threshold for suggesting default types. Then internal is
suggested as default link target type for ilc since 50 percent of the link values referencing
content objects with type internal.

A multiplicity constraint is suggested for an attribute definition ad if x percent of the related
attributes provide the same number of values. In this case, the bounds (i.e., minimum and
maximum) of the constraint are suggested. This means that the threshold must hold for
both of these bounds. For example, let p1, p2, p3, and p4 be content objects all typed with
project. p1 and p2 provide an attribute status each having exactly one value. Furthermore,
let 50 percent be the threshold for suggesting multiplicity constraints. Then a multiplicity
constraint is suggested with lower bound 0 and upper bound 1 since 50 percent holds for
both bounds as threshold. In case of an additional content object p5, typed with project and
providing an attribute status with one value, the multiplicity constraint is not suggested since
two of five attributes do not provide a value, that is, the threshold for the lower bound breaks.
In this case, it would be reasonable to use 1 as the lower bound as well. However, in Chapter 4
we introduce a solution how this can be archived.

Suggestions for attribute definitions and constraints are intended to avoid that data and
schema diverge over time. In particular, persons acting as tailors should become aware of
the structural evolution and be encouraged to adapt the schema according to changing data.
However, the previous introduced suggestions (i.e., in Section 3.3.1.6) can be considered as
proposals since they are not applied in practice up to now.

3.3.2. Transitions

In the following, we first describe allowed transitions between structured attributes having
different data types. Subsequently, we explain how unstructured and semi-structured infor-
mation contained in the built-in markup of a content object can be transformed into attributes
and objects, how attributes can be merged, and how attribute values can be transferred to
objects. Finally, we sketch how these transformations and transitions can be combined in
order to enable bulk operations.

3.3.2.1. Transitions between data types

All possible transitions for changing a value’s data type to another one are depicted in Ta-
bles 3.1-3.3. As explained in Section 3.1.5, each value can be represented as a character
sequence (i.e., as a string). For this reason, each value can be converted into a string in-

56

3. Hybrid Wikis

dependent of its actual data type (cf., first column of Table 3.1). For instance, changing
a hypertext value into a string value would result in a textual representation of the plain
hypertext including all formatting information, such as styles.

The transition between some of the data types is only possible if the value’s string represen-
tation according to the source data type can be interpreted as required by the target. That
means changing a data type to another one is only possible if the values’ string represen-
tations are compatible. Data types which can be converted by interpretation are indicated
in Tables 3.1-3.3. For instance, changing a string value to an external link is possible if the
string can be interpreted as a URL, that is, if the string is matching the typical URL pattern
(cf., Table 3.2). Another example is, transferring the string value Mayer to an internal link is
allowed if the text Mayer conforms to the identifier of a content object, that is, the content
object’s name (or its URL) (cf., Table 3.3). In such a case, the text Mayer is replaced by an
internal link to this content object (cf., Figure 3.21).

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Project Diss

project

manager Mayer

open

Text…

MayerProject Diss

project

manager Mayer

open

Text…

New Object

Transition
Link to

Object
Legend

Figure 3.21.: Changing a value’s data type from string to (internal) link.

In some cases a transition is only possible by providing additional information. For instance,
a link additionally needs to be provided for the transition from record to structured link.
But in some cases a transition is not possible without losing information. For instance, when
changing a structured link to an internal link the additional structure (i.e., types and at-
tributes) gets lost. However, in Section 3.3.2.4 we introduce a technique that allows to keep
this information.

We say a transition t of a value v from a data type dt1 to dt2 is executable if v ’s string
representation according to dt1 can be interpreted as required by dt2.

3.3.2.2. Transitions to attributes

The allowed transitions in order to transfer elements from the unstructured content to struc-
tured attributes are depicted in Tables 3.4-3.6. In particular, we consider the elements plain
text, links, and hypertext to be relevant (cf., Figure 3.22 (c)) since they are most frequent
and typical in unstructured content. Plain text differs from hypertext insofar that it does not

57

3. Hybrid Wikis

Table 3.1.: Transitions to data types String, Date, Number, and Hypertext.

From, To String Date Number Hypertext

String - if interpretable if interpretable yes
Date as string - if interpretable yes

Number as string if interpretable - yes
Hypertext as string if interpretable if interpretable -

Record as string no no no
ExternalLink as string no no yes
InternalLink as string no no yes

StructuredLink as string no no no

Table 3.2.: Transitions to data types Record and ExternalLink.

From, To Record ExternalLink

String as string record value if interpretable
Date as date record value no

Number as number record value no
Hypertext as hypertext record value if interpretable

Record - no
ExternalLink as external link record value -
InternalLink as link record value yes

StructuredLink with losing the link no

Table 3.3.: Transitions to data types InternalLink and StructuredLink.

From, To InternalLink StructuredLink

String if interpretable if interpretable or as string
record value

Date if interpretable if interpretable or as date
record value

Number if interpretable if interpretable or as number
record value

Hypertext if interpretable if interpretable or as hyper-
text record value

Record no yes
ExternalLink if interpretable if interpretable or as exter-

nal link record value
InternalLink - as link or as link record

value
StructuredLink with losing the records -

contain any information regarding the layout. How a semi-structured table can be transferred
to structured elements is explained in Section 3.3.2.5.

Additionally, we consider the transition between tags and attributes to be relevant (cf., Fig-
ure 3.22 (b)). For instance, it can be reasonable to transform a who-owns-it tag [GH05] to a

58

3. Hybrid Wikis

value of an attribute with key owner in order to explicitly make the purpose of this tag visible.
However, a tag is a simple textual keyword and the transformation works the same way as
transforming plain text from unstructured content to an attribute (cf., Table 3.4). Therefore,
we do not explicitly explain the transformation of tags in the following.

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Project Diss

projectopen

Text…

Project Diss

Text...description

projecttype

openstatus

New Object

Transition
Link to

Object
Legend

a)

b)

c)

Figure 3.22.: Transitions from type to attribute (a), tag to attribute (b), and built-in markup
to attribute.

Similar to tags, types can be transformed to an attribute’s value (cf., Figure 3.22 (a)). For
instance, in some cases a type indicates temporal dimensions (e.g., completed project) but
does not provide any attribute definitions9 (e.g., the actual end date of the project). Then
it can be reasonable to transform this type into a value of an attribute with for example key
status. This has the advantage that constraints can be related to that attribute, such as an
enumeration constraint specifying further status variations (e.g., in preparation, started) or a
multiplicity constraints requiring that exactly one status is defined. Since the type’s key is a
simple string literal, the transformation (from type to attribute values) works the same way
as transforming plain text from unstructured content to an attribute (cf., Table 3.4).

Since a structured attribute has to provide both, a key and a value, besides transforming the
value (or a tag) to a matching data type, executing a transition additionally requires to provide
a key. Furthermore, when structuring an unstructured element we decided that it is always
completely transferred (i.e., deleted from the built-in content) to the structured attribute. This
is different than additionally annotating unstructured information with meta data (i.e., merg-
ing data and meta data). This means, in Hybrid Wikis structured and unstructured infor-
mation always remains clearly separated from each other. Transferring a tag or a type to a
value is similar, both are completely replaced by an attribute after executing the transition.
Deleting the source elements after a successfully executed transition helps to avoid information
redundancies.

However, in case of removing elements from the built-in markup executing a transition po-
tentially leads to fragmentary sentences, for example in case of removing the words research

9If the transferred type is related to any attribute definitions, the connection to the attributes would get lost
after executing the transition.

59

3. Hybrid Wikis

project from the sentence this page describes a research project10. A possible solution would be
to let the user decide whether to modify the source content or not. But this would require to
always ask the user before executing a transition, which is potentially annoying and limits the
agility of user interactions. Additionally, if users choose to keep the original text this would
lead to information redundancies. Therefore, we decided to delete the transformed source
element by default, even if users need to manually repair fragmented sentences in the built-in
content in some cases. Another advantage of this decision is that users are encouraged to
consciously distinguish between facts and descriptive contents.

In case of transforming text from the built-in content to an attribute, it is also conceivable to
use the text as the attribute’s key instead of as a value. For instance, the words has a budget
from the sentence has a budget of 200.000 can be used as attribute key. However, since an
attribute can only be stored if at least one value is provided the value (e.g., 200.000) needs to
be entered manually in this case. Furthermore, the user needs to manually repair the sentence
after executing the transition, similar as described above.

Table 3.4.: Transitions from plain text.

To, From String

String yes
Date if interpretable

Number if interpretable
Hypertext yes

Record as string record value
ExternalLink if interpretable
InternalLink if interpretable

StructuredLink if interpretable or as string record value

Table 3.5.: Transitions from hypertext.

To, From Hypertext

String as string
Date if interpretable

Number if interpretable
Hypertext yes

Record if interpretable or as hypertext record value
ExternalLink if interpretable
InternalLink if interpretable

StructuredLink if interpretable or as hypertext record value

All previously introduced transitions can also be performed if the target attribute is already
existing, instead of creating a new one. This means, if the source element is is taken as a
value it is appended to the target’s existing values, if it is taken as the key the target’s key is
replaced.

Finally, transitions between attributes are relevant (cf., Figure 3.23). That means two at-
tributes can be merged by appending the source values to the target. For instance, let leader

10In this example, the words research project could be used as an attribute’s value with key is a.

60

3. Hybrid Wikis

Table 3.6.: Transitions from a link.

To, From Link

String as string
Date no

Number no
Hypertext yes

Record if interpretable or as link record value
ExternalLink if interpretable
InternalLink if interpretable

StructuredLink if interpretable or as link record value

be the source attribute with value Müller and manager be the target with value Mayer. Then
merging leader with manager means that the values’ sequence of manager is Mayer, Müller
after executing the transition (cf., Figure 3.23). Merging two attributes can be helpful for
example in case of synonyms or for purpose of harmonizing keys in different languages.

We say a transition of a value v (or a tag t) to an attribute value of data type dt is executable
if v ’s (or t ’s) string representation can be interpreted as required by dt.

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Project Diss

project

manager Mayer

open

Text…

Project Diss

project

manager Mayer
Müller

open

Text…
Müllerleader

New Object

Transition
Link to

Object
Legend

Figure 3.23.: Transition supporting the merge of two attributes.

3.3.2.3. Transitions to types

Unstructured content, tags, and attributes can be transformed in order to type a content
object. On the instance level transforming one of these elements to a type means that a type
is assigned to a content object using the element’s string representation as the type’s key. If
no corresponding type exists, one is created before. Unstructured content mainly consist of
hypertext including plain text and links. Even if hypertext and links can be represented in
a textual manner it is most unlikely that this representation is used as the type’s key. This
is due to the fact that it potentially contains some layout information. Therefore, it is only
reasonable to transform plain text into a type in most of the cases. For instance, it could be

61

3. Hybrid Wikis

reasonable to transform the two words research project from the built-in content into a type.
However, in this case the problem of fragmented sentences occurs (cf., Section 3.3.2.2).

Additionally, it is possible to transform a tag into a type. For instance, it can be reasonable
to transfer a what-it-is tag [GH05] to a type in order to make the purpose of the tag explicit,
that is, the tag is used as a classifier.

In some cases it can even be beneficial to transform an attribute to a type. For instance,
if using an attribute with key type its value is most probably a classifier. Then it is helpful
to explicitly type the object with this value, for example in order to obtain better attribute
suggestions (cf., Section 3.3.1). However, in some cases the value’s string representation is not
appropriate to be used as the key of a type (e.g., in case of a hypertext value).

3.3.2.4. Objectification of structured values

As described in Section 3.3.2.1, the data type of attributes can be changed. One possibility
described is to change attributes to links, that is, if the string representation of a value can
be interpreted as a reference to an existing content object. Instead of referencing an existing
object when changing to data type link creating a new object is also a possibility. In this case,
the attribute’s value is merged into the newly created object and the link is pointing to this
new object (cf., Fi gure 3.24). We differentiate three kinds of merging a value into the new
object:

1. The value is taken as the name of the new object (cf., Figure 3.24).

2. The value is taken as the built-in markup of the new object.

3. The value is transferred to structured information within the new object.

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Project Diss

project

manager Mayer

open

Text…

MayerProject Diss

project

manager Mayer

open

Text…

New Object

Transition
Link to

Object
Legend

Figure 3.24.: Objectification of structured values.

By means of this technique an anonymous value is transferred into an fully fledged object
having its own identity. Therefore, we call it the objectification of a value [Bi12]. How the
value is merged into the new object depends on the attribute’s data type.

62

3. Hybrid Wikis

In case of string, date, number, and external link, the value’s string representation is taken
as the name of the newly created object. A hypertext value is transferred to the built-in
content of the new object since otherwise information would get lost (e.g., using a textual
representation of the hypertext as the content object’s name would only be reasonable if un-
necessary formatting information is removed). When objectifying a record value its structure
is transferred to corresponding types, attributes, and values in the new object. An internal
link cannot be objectified since the new object would have the same name as the already
referencing object (i.e., it is already a link).

The objectification of a structured link and a record are very similar, that is, types, attributes,
and values of the link are transferred to the new object. In the first case (i.e., the objectification
of a structured link), when replacing the original link with a link to the new structured object,
the original referenced object would lose the information from which context it was referenced
by, that is, the inverse link would get lost and the connection between the objects would get
broken. One possibility to prevent this information loss, is the definition of an additional
attribute in the originally referenced object also linking to the newly created object, whereas
the key of the new attribute reflects the original context. For instance, let p1 and Max Leader
be content objects. p1 provides an attribute manager which is a structured link toMax Leader.
The structure of the link only consists of a type participation. When objectifying the link a
new content object p3 with type participation is created and the link from p1 to Max Leader
is replaced by an internal link to p3, in Max Leader additionally an attribute for example
participation is specified referencing p3. However, in some cases the referenced object cannot
be modified (e.g., due to access control restrictions). Therefore, an additional attribute cannot
be specified in Max Leader. In such a case, the connection between p1 and Max Leader can
alternatively be preserved by specifying additional links in p3. That is, instead of replacing
the links from p1 to Max Leader by links from p1 to p3 and from Max Leader to p3, two
additional links can be defined in p3, one from p3 to p1 and one from p3 to Max Leader. In
this case, the original link from p1 to Max Leader is indirectly replaced by an incoming link
from p3.

The objectification technique of structured links can also be applied when changing a value’s
data type from structured link to internal link (cf., Section 3.3.2.4). By doing so, changing
the data types can be realized without losing structured information.

We say a transition t of a value v to an object o is executable if o can be created11 success-
fully.

3.3.2.5. Objectification of semi-structured information

Besides transferring links, hypertext, and plain text from unstructured built-in content to
structured attributes within the same object (cf., Section 3.3.2.2), a semi-structured table as
part of the built-in content can be resolved by transforming it to newly created structured
objects. The table is resolved by creating a new content object for each table row. The
values of each row are transferred to values of structured attributes each of them having the
corresponding column header as a key. Since this technique is transforming a table to fully

11For example, an object cannot be created if the persistence layer raises an exception when storing it (e.g., due
to reasons of concurrent write access).

63

3. Hybrid Wikis

fledged objects with own identity each this technique can be considered as the objectification
of semi-structured information.

In many cases a table represents a set of similar objects having the same type. In case of a
semi-structured (HTML) table, this type is only implicitly given or separately described in the
full text (e.g., it is likely that the type of Table 3.7 is project). Therefore, a type (or multiple)
can optionally be specified when objectifying a semi-structured table in Hybrid Wikis.

For instance, given the following table:

Table 3.7.: Table as part of the built-in content describing two projects with their budgets.

Project Budget

Project A 10.000
Project B 100.000

When objectifying this table two content objects p1 and p2 are newly created. p1 provides two
attributes, Project with value Project A and Budget with value 10.000, p2 provides these two
attributes accordingly. The data type of the attributes can be determined as introduced in
Section 3.3.2.2. Since each content object must provide a unique name (cf., Section 3.1.2) it is
also possible to explicitly designate one column (or more) to be used as the name of the new
content objects. For instance, when using the Project column the values Project A and Project
B are taken as the name of p1 and p2. In this case, the newly created objects only provide
the Budget attribute, otherwise redundant information would be given (cf., Figure 3.25).

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Legacy Projects

legacy

Project Budget

Project A

Project B

10.000

100.000

Project B

100.000Budget

projectProject A

10.000Budget

project

Legacy Projects

legacy

Budget

Project A

Project B

10.000

100.000

New Object

Transition
Link to

Object
Legend

Figure 3.25.: Objectification of a semi-structured table.

But resolving a table to individual structured objects alone is not sufficient since otherwise the
information originally contained in a single table would be scattered across multiple objects.
Therefore, after executing the transition it is required to provide a view showing the same
information as in the original semi-structured table, but using the newly created structured

64

3. Hybrid Wikis

objects instead (cf., Figure 3.25). In Section 3.4.2 we explain how this can be achieved by
using embedded structured queries with different kinds of views.

We say a transition t of a value v to a set of objects O={o1, ..., on} is executable if each o in
O can be created successfully.

3.3.2.6. Objectification of unstructured information

The technique of objectification can also be applied to elements of the unstructured content
(cf., Figure 3.26). In particular, the elements plain text and hypertext are relevant to be
explained. Plain text is used as the name of the new created content object and hypertext is
transferred to the built-in content of the new object. In the latter case a name for the new
object has to specified manually. For instance, it is beneficial to objectify a paragraph (i.e., a
hypertext section) if this piece of information should be referred to also in another context.
For example, in case of textual describing multiple tasks on a wiki page one of these tasks can
be objectified in order to associate it with the responsible person. Even if the objectification
of unstructured information is not related to any of the introduced structuring concepts it is
an important technique in order to create cross-linking knowledge.

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Project Diss

open

Text…

TextProject Diss

open

Text…

New Object

Transition
Link to

Object
Legend

Figure 3.26.: Objectification of unstructured content.

3.3.2.7. Chaining transitions

In the previous sections we described different kinds of techniques that allow to transfer
(structured or unstructured) values to structured attributes or structured objects. In some
cases it can be helpful to execute multiple transitions at once. For instance, let t1 be a
transition from a value 100 (plain unstructured text) to a number (structured attribute) and
t2 be the objectification of a number. Then by chaining t1 and t2 100 can be transformed into
an object in one step (i.e., a new object with name 100). In this case, t1 and t2 are dependent
since t2 can only be executed if t1’s execution succeeded before.

We say a set T of (chained) transitions is executable if each t in T is executable individually
and all dependent transitions can be executed successively. Chaining allows to flexibly combine
different transitions in order to change the degree of structure for individual values or objects.

65

3. Hybrid Wikis

In particular, chaining of transitions allows to propagate changes within the schema to a set
of related objects (cf., Section 3.3.3). For instance, a number constraint can be propagated to
the related attributes if all attributes’ data types are compatible with number.

3.3.3. Schema-based information consolidation

As discussed in Section 3.1, schema and data are only loosely connected in Hybrid Wikis.
In this section, we explain how types, attribute definitions, and constraints can be utilized
to consolidate and unify information structures on the data level. In particular, we show
the consequences of applying, renaming, or deleting one of these schema elements for related
objects and their information structures. We focus on how to propagate changes in the schema
to the data. However, it is important to note that all introduced consolidation techniques are
optional, that is, when changing the schema users can decide whether to consolidate the data
or not.

3.3.3.1. Using constraints for data consolidation

The definition of a data type constraint implies that related attributes are validated corre-
spondingly. However, the data types of these attributes can diverge from the data type of
the constraint. Therefore, when defining a data type constraint it is possible to apply the
constraint’s data type to the related attributes. For this purpose the technique of chained
transitions can be used (cf., Section 3.3.2.7). The type of a constraint can be propagated to
related attributes if all data type transitions of the individual attributes are executable.

For instance, let p1 and p2 be content objects. p1 provides a string attribute manager, p2
provides a link attribute manager. Then when defining a link constraint lc which is related
to manager the data type link can only be propagated if the data type transition for both at-
tributes are executable, that is, in this case only if the manager ’s value of p1 can be interpreted
as a link since the transition of the manager ’s value of p2 (link to link) is uncritical.

The propagation of data types can also be applied when replacing a data type constraint.
For example, if the link constraint lc is replaced with a number constraint nc, the data type
number can only be applied to manager if the link values of both attributes can be interpreted
as numbers.

Similar to propagating data types, the technique of objectification can be applied to related
attributes (cf., Sections 3.3.2.4 and 3.3.2.5). For this purpose the technique of chained transi-
tions is used (cf., Section 3.3.2.7). For instance, let p1 and p2 be content objects. p1 provides a
string attribute manager, p2 provides a link attribute manager, both attributes are related to
the same data type constraint. Then the objectification of manager can only be propagated if
the objectification is executable for both attributes, that is, in this case only if the manager ’s
value of p1 can be objectified since the objectification of the manager ’s value of p2 (link to
link) is uncritical.

It is also conceivable that a multiplicity constraint is propagated to related instances. However,
applying a multiplicity constraint requires the definition or the deletion of values in some cases.
For instance, if a multiplicity constraint with maximum 1 is applied to an attribute having

66

3. Hybrid Wikis

two values, one of them is required to be deleted. Therefore, this operation is not supported
in Hybrid Wikis.

3.3.3.2. Using attribute definitions for data consolidation

Renaming the key of an attribute definition can be propagated to related attributes. For
instance, letmanager be an attribute of content object p1 and ad1 a related attribute definition
(i.e., an attribute definition with key manager). Then when renaming ad1 to leader p1’s
manager attribute is renamed accordingly (i.e., is renamed to leader). In case of p1 already has
an attribute leader, the values of manager are added to leader. Since attribute definitions are
unique for a type, the key of an attribute definition can only be changed to an already existing
key if both attribute definitions are merged together. Merging two attribute definitions means
that all constraints of the source definition are added to the target, even if they contradict
each other. Furthermore, the keys of related attributes of the source are renamed to the key
of the target. For example, let manager and leader be two attribute definitions, manager
provides a link constraint lc and leader provides a multiplicity constraint mc. Furthermore,
let p1 be a content object with attribute manager which is related to the attribute definition
manager. Then leader provides both constraints, lc and mc, after merging the attribute
definition manager into leader. Additionally, p1’s manager attribute is renamed to leader.
When merging two attribute definitions, the merged constraints can simultaneously be applied
to related attributes of the target (cf., Section 3.3.3.1).

3.3.3.3. Using types for data consolidation

Since types can be shared among multiple content objects (cf., Section 3.1.4), renaming a type
can be considered as changing the type of related content objects (i.e., the type’s instances).
Since types are unique within a space, the key of a type can only be changed to an already
existing key when both types are merged together. Merging two types means that all attribute
definitions and constraints of the source type are added to the target type, even if they
contradict each other (cf., Section 3.3.3.2). Furthermore, the type of all source instances
is changed to the target type. For example, let p1 be a content object with type project
and p2 a content object with type research project. project provides an attribute definition
manager with a link constraint lc, research project provides an attribute definition area with
a multiplicity constraint mc. Then merging project into research project means that research
project provides an attribute definition manager with both constraints lc and mc afterwards.
Furthermore, both content objects, p1 and p2, are of type research project after the merge.
When deleting a type it can be decided whether to delete all related instances or only to
remove the type assignment from related content objects.

Finally, the order of a type’s attribute definitions can be applied to related instances. For
example, let p1 be a content object with type project and two attributes budget and status,
ordered as status, budget. project provides two attribute definitions ordered as budget, status.
Then applying the order of project ’s attribute definitions to its instances results in changing
p1’s attribute order to budget, status.

67

3. Hybrid Wikis

3.3.4. Data-based schema adaption

Besides propagating changes in the schema to the data (cf., Section 3.3.3), it is also possible
to apply structures from individual content objects to the schema. In this way, it is convenient
for users to adopt suggestions regarding the schema (cf., Section 3.3.1.6).

If the key of an attribute changes (i.e., the key is renamed), it is possible to apply the rename
operation to related attribute definitions. For instance, let p1 be a content object having
an attribute budget which is related to an attribute definition (i.e., with key budget). Then
renaming of budget can be applied to the key of that definition.

The data type of an attribute’s value can be passed to the schema as a corresponding data
type constraint. For instance, let budget be an attribute with a number value. Then the data
type number can be passed to related attribute definitions as a number constraint.

The number of an attribute’s values can be passed to the schema as a corresponding multi-
plicity constraint. For instance, let budget be an attribute with one value. Then a multiplicity
constraint can be specified for related attribute definitions requiring exactly one value for the
attribute.

The attribute order of a typed content object can be applied to a type. For example, let p1
be a content object with type project and two attributes ordered as status, budget. project
provides two attribute definitions ordered as budget, status. Then applying the order of p1’s
attributes to the schema results in changing the order of project ’s attribute definitions to
status, budget.

In general, a rename operation can be expressed by executing two atomic operations, delete
and (re)create. Therefore, changing the assignment of types can be interpreted as renaming
a type, that is, removing a type from a content object and using another one instead. In
such cases renaming of the removed type can be induced. For instance, let p1 be a content
object typed with project. When p1’s assignment of project is replaced by research project
the renaming of type project to research project can be induced. However, renaming a type
cannot be applied automatically in this case. This is due to the fact that the user consciously
wants to change an object’s type assignment but leaving the types untouched. Therefore, the
user explicitly needs to confirm such a rename operation.

The introduced techniques of schema adaption based on changes in the data can also be com-
bined with the consolidation mechanisms introduced in Section 3.3.3. For instance, changing
the key of an attribute definition resulting from renaming the key of an individual content
object’s attribute can be propagated to all other related attributes of the definition.

3.4. Views based on structured information

In order to access structured information Hybrid Wikis provide two kinds of views. Built-in
views are provided by the system as defaults and custom views are tailored for user-specific
information needs.

68

3. Hybrid Wikis

3.4.1. Built-in views

Built-in views primarily pursue two objectives with regard to the user:

∙ Facilitate information structuring.

∙ Create immediate benefit from structured information.

Since users are only willing to structure information if they obtain a benefit from it, that is,
if the effort in structuring is less than the benefits, in Hybrid Wikis information structuring
is stimulated by using UI elements users are familiar with, such as forms and spreadsheet-like
tables. Our assumption is that they feel familiar with these representations and in consequence
are less inhibited in contributing and manipulating structured data [MNS11].

In order to give users immediate access to the information structures a set of built-in views
is provided mainly using forms and spreadsheet-like representations. Basically, four differ-
ent built-in views can be utilized to represent the content (structured and unstructured) of
individual objects.

∙ In the content view only the unstructured built-in markup is shown.

∙ The hybrid view is split in two equal parts, the left shows the unstructured built-in
markup, the right the attributes and assigned types in form of a simple table.

∙ In the structured view attributes and type assignments are represented enlarged over
the full size of the webpage.

∙ The link view shows structured information attached to outgoing links.

Furthermore, four views are provided to represent schema elements:

∙ The type table view shows all objects of a specific type in a table.

∙ In the attributes view a type’s (derived) attributes and attribute definitions are shown.

∙ The types view shows all available structures within a space.

∙ The UML view shows all available structures within a space by means of a Unified
Modeling Language (UML)-like class diagram.

3.4.1.1. Content view

The content view (cf., Figure 3.27) displays unstructured information (cf., Figure 3.27 (5)) with
for example internal (cf., Figure 3.27 (3)) and external links (cf., Figure 3.27 (4)). Additionally,
tags (cf., Figure 3.27(2)) and the object’s name (cf., Figure 3.27 (6)) are shown. In order to
append structured content users can activate the hybrid view (cf., Figure 3.27 (1)).

3.4.1.2. Hybrid view

The structured part of the hybrid view (cf., Figure 3.28) is presented as a box (cf., Figure 3.28
(1)) containing the list of key-value pairs at the right border of the webpage in two com-

69

3. Hybrid Wikis

Figure 3.27.: The content view shows unstructured information, links, and tags of a wiki page.

partments. Attributes related to attribute definitions are shown in the first compartment
(cf., Figure 3.28 (2)), attributes not related to a definition in the second (cf., Figure 3.28 (3)).
Validation violations of attribute values are indicated accordingly (cf., Figure 3.27 (9)). The
types are placed at the top of this box (cf., Figure 3.28 (4)). The appearance of the box is
inspired by a kind of templates widely used in the MediaWiki software12 – and thus in the
Wikipedia [AL07] project. Since the box forms the structured part of the webpage, it can also
be compared to the so-called fact box of Semantic MediaWiki [KVV06], that summarizes the
facts being expressed by annotations in the text. However, in Hybrid Wikis neither does the
attribute box reflect facts defined somewhere else nor is the selection of attributes specified
by a template. Attributes and types represent the structured part of the content.

The box also contains attribute suggestions (cf., Section 3.3.1). Attribute suggestions are
shown below the section containing the key-value pairs of an object. An attribute suggestion
is presented in the same style as a normal key-value pair, having a key according to the
suggestion, but showing an empty field for the value. By presenting an empty field for the
value users are encouraged to fill out this field and information structuring is facilitated.
Attribute suggestions originating from attribute definitions are displayed first (cf., Figure 3.28
(5)), other attribute suggestions below them (cf., Figure 3.28 (6)).

Additionally, the box always provides an empty row presented as an empty key-value pair, that
is, providing an empty field for both, the key and the value (cf., Figure 3.28 (7)). Similar to
attribute suggestions, users are encouraged to contribute new attributes and values by filling
out these empty fields, like filling out the fields of a form.

Structured incoming links are the last part of the structured box. If the content object is
referenced by a link value or a structured link (cf., Section 3.1.5), this is indicated in the
box. In particular, the context of the referencing value is shown as a key (e.g., the value’s
attribute key) and the link to the referencing content object as value (cf., Figure 3.28 (8)).
Representing a structured incoming link as a key-value pair integrated in the box also facilitates

12http://www.mediawiki.org; visited on January 3rd 2012.

70

3. Hybrid Wikis

Figure 3.28.: The hybrid view shows unstructured content on the left and structured content
on the right.

the structuring of information since users are encouraged to enter additional key-value pairs
in the box by following the same pattern. This is especially the case if a content object
does not provide own attributes since then the structured box is even shown if the object is
referenced by at least one structured link. In order to differentiate between keys of incoming
structured links and simple attributes (i.e., the object’s own attributes) within the structured
box, the key of an incoming structured link is extended with the postfix of. For instance, let
Thesis - Alexej Utz be a content object with attribute Project referencing a content object
Hybrid Wikis. Then in the box of Hybrid Wikis the key Project of is shown having Thesis -
Alexej Utz as link value (cf., Figure 3.28).

Incoming structured links are shown in a separate section of the box and can only be changed
or deleted within the referencing content object. This box’s section is similar to the incoming
and outgoing links as displayed in the KiWi system13. Inverse links help to avoid redundancies,
and thus inconsistencies, and to foster navigation in the system. Therefore, users are rewarded
for structuring information.

Furthermore, the input fields for attribute names and values support autocompletion by dis-

13http://www.kiwi-project.eu; visited on January 2nd 2012.

71

3. Hybrid Wikis

Figure 3.29.: Autocomplete suggestions for attribute values.

playing suggestions as the user is typing (cf., Section 3.3.1.4). When an attribute value is
typed, the respective attribute name is factored in to improve the quality of the suggestions
(cf., Figure 3.29). This makes it comfortable to contribute structured content and additionally
fosters consistent usage of terms. The same applies to types, that is, the user is assisted by
autocompletion when assigning a type.

3.4.1.3. Structured view

If using the hybrid view in case of a heavily structured content object (i.e., an object mainly
consisting of structured content), splitting the webpage would be a waste of space and addi-
tionally limits the readability of the structured content. In such a case the representation can
be changed to the structured view (cf., Figure 3.30), that is, enlarging the structured box with
attributes (cf., Figure 3.30 (1)) and types (cf., Figure 3.30 (2)) to the full size of the webpage.
Built-in attributes (e.g., built-in content) are integrated in the enlarged box as key-value pairs
(cf., Figure 3.30 (3)).

3.4.1.4. Link view

The link view shows structured information (i.e., attributes and types) attached to (outgoing)
links in a table (cf., Figure 3.31). The link target (cf., Figure 3.31 (1)), its context (i.e., the
attribute key, cf., Figure 3.31 (2)), its types (cf., Figure 3.31 (3)), and its attributes (cf., Fig-
ure 3.31 (4)) are displayed as a table column each. The link’s source is not displayed since it
is the same for all links. The attribute keys are sorted in descending order by the frequency of
provided values in order to indicate the degree of the attributes’ importance (cf., Figure 3.31
(5)). Each link is represented by exactly one table row. Above of the table the links’ types
are presented in a tag cloud in order to filter for links with a specific type (cf., Figure 3.31
(6)). This way, attributes of other types can be hidden.

These four different built-in views can be activated for content objects individually. Per default
the content view is activated. However, if at least one attribute or type is assigned, the content
object is presented in the hybrid view. The hybrid view is also taken as default if at least

72

3. Hybrid Wikis

Figure 3.30.: Attributes, types, and built-in content presented in the structured view enlarged
to the full size of the webpage.

Figure 3.31.: The structured link view allows to attach attributes and types to hyperlinks.

one incoming link is structured. Users can change to the structured view and the link view
manually.

3.4.1.5. Type table view

Besides the representation of a single content object, a set of content objects having the
same type can be shown in a built-in tabular view. Since this table contains all instances
of a particular type we refer to it as type table view or type table respectively. Each table
row corresponds to one content object and its structure (cf., Figure 3.32 (1)), whereas the
first column shows a link to the object (i.e., the name of the object as the link’s text). The
other columns represent the attributes’ keys sorted in descending order by the frequency of
provided values in order to indicate the degree of the attributes’ importance (cf., Figure 3.32

73

3. Hybrid Wikis

(2)). Additionally, it is indicated which attributes originate from the data only and which are
statically bound to the type by means of an attribute definition (cf., Figure 3.32 (3)). Similar
to the hybrid view, constraint violations are highlighted (cf., Figure 3.32 (7)). New instance of
the type underlying the table can easily be added (cf., Figure 3.32 (4)). The type’s description
is shown above of the table (cf., Figure 3.32 (5)). The tags of a type can for example be used
to generate an enterprise glossary (cf., Figure 3.32 (6)).

Figure 3.32.: The type table view shows all instances of a type.

Users can access the type table view by clicking on a type, for example in the hybrid view
(cf., Figure 3.28 (4)). Thereby, authors immediately benefit from typing an object since they
obtain a tabular overview of all objects having the same type and they can manage (i.e., create,
edit, delete) attributes like in a spreadsheet using in-place editing (cf., Section 3.4.4). Tailors
can use the type table to manage (i.e., create, edit, delete) attribute definitions and constraints.
The indication of the frequency of provided values helps to identify candidates for attribute
definitions, that is, frequently used attributes that might be bound to the type by means of an
attribute definition. Furthermore, tailors can reflect the quality of their decisions regarding
the schema by checking the usage of currently bound attributes. For example, if a tailor
introduces a new attribute definition which is only rarely used by the authors after a while
(i.e., only a few content objects provide a value for this attribute) this may indicate that the
‘invented’ attribute is rather less suitable. By means of the type table view tailors and authors
can enter into dialogue which helps to cure the so-called ivory tower syndrome [Bu10], that

74

3. Hybrid Wikis

is, the creation of ‘invented’ information models unsuitable for persons that provide the data
is avoided.

3.4.1.6. Attributes view

By means of the attributes view users can manage the attributes of a type. Figure 3.33
depicts the attributes of the type project. It is indicated which attributes are related to
an attribute definition (cf., Figure 3.33 (1)). By default the attribute keys are sorted in
descending order by the frequency of provided values (cf., Figure 3.33 (2)). Attribute keys can
be changed (cf., Figure 3.33 (3)) in order to support schema-based consolidation techniques
(cf., Section 3.3.3), in this case renaming of an attribute can be applied to related instances.
For each attribute its defined constraints (cf., Figure 3.33 (4)) and the suggested constraints
(cf., Figure 3.33 (5)) are shown. In this example, no constraint is defined for the attribute
Manager, but since 100 percent of the current values are links to objects typed with internal
and staff a corresponding link constraint is suggested. This way, tailors are urged to specify
constraints based on instance data (cf., Section 3.3.1.6).

Figure 3.33.: The attributes view shows all attributes of a type.

3.4.1.7. Types view

In order to get an overview of all available structures within an individual space (e.g., wiki) the
so-called types view is provided built-in (cf., Figure 3.34). This view shows all types (cf., Fig-
ure 3.34 (1)) of a space with their descriptions (cf., Figure 3.34 (2)), attributes (cf., Figure 3.34
(3)), and constraints (cf., Figure 3.34 (4)) in a table.

Each table row represents one type and the first column shows a link to this type. In the second

75

3. Hybrid Wikis

Figure 3.34.: The types view shows the all available structures within a space.

column the types’ attributes and constraints are shown sorted by the frequency of provided
values, whereas attributes related to a definition are shown above simple attributes.

3.4.1.8. UML view

In [Ut11] the author introduces web-based visualizations of models created with Hybrid Wikis.
The solution is inspired by UML class diagrams and considers information from the explicitly
defined schema (i.e., types, attributes definitions, and constraints) as well as from the im-
plicit schema which is derived from instance data only (i.e., structured content objects with
attributes and type assignments).

The author developed a mechanism to combine these two schemes in a single Eclipse Modeling
Framework (EMF)14 model. In this model, explicitly defined elements (e.g., attribute defini-
tions) hide elements which are derived from the data, also in cases if the derived information is
more specific than the defined one. For instance, let p be an content object with attribute bud-
get having a link value. Furthermore, let budget be related to an attribute definition (i.e., with
key budget) having a number data type constraint. Then in the combined model the more
specific data type (link) is hidden by the defined one (number) and budget is represented as
an attribute with data type number. However, in cases if no corresponding information is
defined the derived element (e.g., the derived multiplicity) is used in the model.

Figure 3.35 depicts the extended UML class diagram representing the structures within a
wiki used for project management (cf., Section 2.2). Defined elements are presented in green,
derived elements in blue. Strict elements show an exclamation mark. For classes and properties
the number of instances is indicated. The number of invalid (orange) and wrong (red) instances
is indicated separately.

The developed solution helps to get an overview of existing information structures within a
space. Additionally, the UML view facilitates the navigation within the structures since some

14http://www.eclipse.org/modeling/emf; visited on April 05th 2012.

76

3. Hybrid Wikis

Figure 3.35.: Visualizing emergent information structures according to [Ut11].

elements are ‘clickable’. For instance, the type table view is shown when clicking on a class in
the diagram. In Chapter 6, we use these extended UML class diagrams to illustrate information
structures that emerged from the application of Hybrid Wikis in different enterprises.

3.4.2. Custom views

Built-in views (cf., Section 3.4.1) in Hybrid Wikis give users immediate access to structured
information with little effort. However, in some cases these views are not sufficient since they
most likely contain information which is not relevant for the specific demands of an individual
business user. For instance, the type table view is restricted to exactly one type and always
contains all attributes ordered by the frequency of the values. But a user might be interested
in a tabular view related to more than one type only showing of a few attributes in a specific
order. This is achieved by providing user-specific views, that is, views that can be customized
according to a user’s specific information needs.

All custom views are based on structured queries as introduced in Sections 3.4.3 and 3.2.4.1.
This means different search filters can be combined in order to obtain a set of relevant content
objects. Based on this set, the view additionally filters (by using projection) irrelevant struc-
tured information according to the user’s needs. That is, a view basically consists of two filter
parts, a search filter (or multiple) and a projection filter. Hybrid Wikis support two kinds of
custom views.

The list view produces a simple list according to the underlying query’s search result showing
a link for each hit (cf., Figure 3.36 (1)). No structured information is shown in the list, that
is, the list view can be considered as a projection that filters all structured elements.

The custom table view produces a table according to the underlying query’s search result
showing a link for each hit in the first column (cf., Figure 3.36 (2)). Additionally, users can
customize which attributes are shown as table columns in which order (e.g., Budget and End

77

3. Hybrid Wikis

Figure 3.36.: Custom table and list view embedded in the built-in content of a wiki page.

as in Figure 3.36). They can also define which column to use for sorting the search results
(cf., Figure 3.36 (3)). It is important to note that a hit not necessarily has to provide one of the
attributes specified by the view’s projection filter. For instance, if a view filters by attribute
budget and the search result does not contain any content object having an attribute budget
then budget ’s table column only consists of empty cells, which are presented as input fields.
This way, users are encouraged to fill out these empty fields. Even if none of these objects
provide an attribute budget as in this case, filling out an empty field results in the creation of an
attribute with key budget within the content object underlying the table row. Therefore, the
custom table view significantly contributes to managing and providing structured information
consistently. Finally, users can add new table entries (e.g., structured wiki pages) according
to the query underlying the table (cf., Figure 3.36 (5)). For instance, the custom table view
depicted in Figure 3.36 filters for finished projects managed by Hans Maier. Then adding a
row means that a new content object is created having two attributes, status with string value
finished and manager with a link to Hans Maier. Subsequently, the new object is shown in
this table providing empty input fields for the attributes Budget and End.

A third kinds of views based on structured information are graphical. However, since graphical
views are not provided by Hybrid Wikis built-in15, they are introduced later in this thesis
(cf., Section 6.1.1).

All search-based custom views (i.e., the query and view configuration) can be embedded in
the full text of any content object. When displaying such an object the underlying query is
executed and the search results are depicted for example as a custom table (or a simple list)
according to the view’s filters. By combining multiple such views it is possible to configure

15Built-in here refers to the basic capabilities of Hybrid Wikis. From a technical perspective, graphical views
are only available by using a specific plugin (cf., Section 4.2.2).

78

3. Hybrid Wikis

a content object that can be used as a dashboard [Ma05] with little effort. This custom
dashboard empowers users to observe relevant and business critical information according to
their specific needs. For instance, the dashboard can be utilized to monitor violations of
integrity constraints.

3.4.3. Structured search

A general search interface allows a faceted drill-down [Ha10, Yi08] based on the structured
contents (cf., Figure 3.37). By means of this interface, users can specify queries by combining
different type- (cf., Figure 3.37 (1)) and attribute-filter (cf., Figure 3.37 (2)). Furthermore,
the interface allows to search for invalid values, that is, values violating integrity constraints
(cf., Figure 3.37 (3)). A query configuration can then be embedded in the wiki text (cf., Fig-
ure 3.37 (4)).

Figure 3.37.: The search interface allows a faceted drill-down based on the structured contents.

The configuration resulting from the example depicted in Figure 3.37 is shown in Figure 3.38.
The query (i.e., search filter) is given in the first part of this configuration (cf., Figure 3.38
(1)), the second part specifies how the search results are presented (cf., Figure 3.38 (2)). In
this example, the results would be displayed as a table with two columns (Budget, End) in

79

3. Hybrid Wikis

descending order by Budget. This configuration is also underlying the custom table view
depicted in Figure 3.36.

Figure 3.38.: Query and view configuration embedded in wiki text.

3.4.4. Advanced UI operations

In [Po07] in-place editing is described as a technique that gives “web page readers with editing
permissions the ability to ‘live edit’ a page’s modifiable fields without having to go to a separate
web page or form”. Hybrid Wikis support in-place editing for all structuring concepts, that is,
attributes, type assignments, types, attribute definitions, and constraints. The main purpose
in supporting in-place editing is to encourage users to provide new information structures and
manage existing ones in a lightweight way.

On the instance level, types (i.e., type assignments) as well as attributes with keys and values
can be added, changed, and deleted quickly and easily by means of in-place editing (i.e., with
a few clicks in the UI). Furthermore, attribute suggestions can also be filled out ‘in-place’
(cf., Figure 3.27 (10)). Since it is convenient to contribute new attributes and change types
using in-place editing techniques for individual content objects the bottom-up evolution of an
information schema is additionally facilitated.

It is important to note that in-place editing of the content objects’ structures is orthogonally
applicable to all built-in views (cf., Section 3.4.2) and custom views as well (cf., Section 3.4.1).
For instance, it is possible to change (add, delete) an attribute’s value ‘in-place’ even if it is
shown in a built-in type table view (cf., Figure 3.34) or as part of a custom embedded table
view within a dashboard (cf., Figure 3.36 (4)).

In order to ease the transitions introduced in Section 3.3.2 we propose using the technique
of drag and drop [LSA11]. Since structured and unstructured information in all views is
clearly separated from each other transitions between them are well suitable to be supported

80

3. Hybrid Wikis

by drag and drop, for example transitions to create new attributes from unstructured text
(cf., Section 3.3.2.2) or creating a type from an attribute (cf., Section 3.3.2.3). However, in
Hybrid Wikis drag and drop is currently only supported for the transitions between

∙ tags and types (i.e., transforming a tag into a type),

∙ unstructured content (including links) and attributes, and

∙ two attributes (i.e., merging attributes).

The other transitions are supported by conventional UI elements (e.g., combo boxes) or have
to be performed manually.

81

82

CHAPTER 4

Implementing Hybrid Wikis in Tricia

In this chapter, we present the current implementation of Hybrid Wikis. In particular, we
describe how the concepts and techniques introduced in Section 3 are realized based on the
Enterprise 2.0 platform Tricia. In Section 4.1, we explain the underlying system architecture
and the interfaces to the base platform. In Section 4.2, we introduce the extended architecture
and discuss important design decisions from a technical point of view.

4.1. Introduction to Tricia

In the following, we give an overview of Tricia, a framework for the development of web
applications. We introduce the core concepts of the framework relevant for the implementation
of Hybrid Wikis as described in Section 4.2. First, in Section 4.1.1 we give an overview
of Tricia’s architecture by explaining the framework’s constituents supporting the model-
driven development of web applications1. In particular, in Section 4.1.2 we focus on the
data modeling framework which enables the modeling of the application’s domain objects,
such as wiki pages or blog posts. Subsequently, in Section 4.1.5 we sketch how existing
applications can be customized by using plugins and extension points. In Section 4.1.6 we
briefly introduce an Enterprise 2.0 application built based on the Tricia framework which
is commercialized by the InfoAsset AG2. This application is also named Tricia, since it is
currently the only productive implementation based on the web application framework Tricia.
This implementation is the foundation for the development of Hybrid Wikis.

1Tricia’s frameworks as introduced here are originally described in [BMN10a].
2http://www.infoasset.de; visited on January 13th 2012.

83

4. Implementing Hybrid Wikis in Tricia

4.1.1. Architecture

Figure 4.1 provides an architectural overview of a typical web application implemented on the
Tricia platform using a notation similar to a UML deployment diagram. Such an application
provides Hypertext Transfer Protocol (HTTP)(S) access for its web clients possibly including
Asynchronous JavaScript and XML (AJAX)-style asynchronous interactions, a Representa-
tional state transfer (REST)-ful web Application programming interface (API) to allow third
parties to query and update the content managed by the application, and a model intro-
spection [BM06] interface to allow third parties to discover and query the data model, the
access control model, and the interaction model implemented by the application. Tricia’s cur-
rent implementation supports a single server (up to fifteen page requests per second on stock
hardware [Ad09]) but the architecture is designed for a scale-out to multiple servers using a
cluster database. A Tricia application requires a Java 1.6 runtime environment on Windows
or Linux, a database server, and a Lucene full text search engine [MHG10]. Currently Tricia
supports MySQL [WAM02], Oracle [PM07], and for testing purposes the in-memory database
HSQLDB3. There also exists a prototypical implementation which persists data using the
NoSQL database MongoDB [DC10].

Data
Model

...

Plugin File

Interaction
Model

Plugin Wiki

HTML REST Model Introspection

Database Lucene

Interaction
Model

Interaction
Model

Access
Control
Model

Data
Model

Data
Model

Interaction
Modeling

Framework

Legend

Access
Control

Framework

Data
Modeling

Framework

Depends on

Hand-written customization

Framework

Declarative Model

Core

Access
Control
Model

Access
Control
Model

Figure 4.1.: Architectural overview of a typical web application implemented based on the
Tricia platform.

A Tricia application consists of a core and one or more plugins that define the application

3http://hsqldb.org; visited on January 13th 2012.

84

4. Implementing Hybrid Wikis in Tricia

in a modular fashion (cf., shaded areas in Figure 4.1). Each plugin specifies the plugins
it depends on. Cyclic dependencies between plugins are not allowed and are detected at
construction time. For example, the wiki plugin depends on the file plugin, since files may be
attached to wiki pages and wiki management thus requires file management. The core defines
abstractions required by virtually all applications of the domain, for example user profiles,
groups, memberships, login and registration procedures. Both plugins, wiki and file, use such
user profiles to identify the last editor of a wiki or a file. Other abstractions provided by the
core are discussed in Section 4.1.2.

Each plugin and the core define a data model, an access control model, and an interaction
model. Each model defines a fragment of the data structures and behavior of the entire
application. These models are expressed by graphical and textual notations and are available
at runtime for introspection (cf., ovals in Figure 4.1). If necessary, they can be augmented by
customizations written in Java (e.g., to express business logic). Models from a plugin p may
reference models in p and in plugins imported by p (cf., arrows in Figure 4.1). The following
rules apply: Interaction models may reference other interaction models, access control models,
or data models. Access control models may reference other access control models or data
models. Data models may reference other data models only.

The core is provided as part of the Tricia platform and consists of three layered Java frame-
works (cf., layered architecture in [Bu96]) for data modeling, access control, and user interac-
tion (i.e., views and controllers). Each framework provides abstractions and extension points,
which have to be instantiated or customized in order to build a Tricia application. Frameworks
are developed and maintained by the Tricia core developers as part of the core development
process, customizations are developed by application developers as part of the application
development process [Fr98]. There are two different kinds of customizations. The majority of
customizations can be done in a declarative, model driven way. This results in models to be
created. For some aspects to be customized it is more convenient to specify them using the
full expressive power of the base language, which is Java in our case. An example for this kind
of customization is complex business logic. Figure 4.1 emphasizes the central role of the data
modeling framework as the foundation for model driven web application development. In the
following sections, we focus on the concepts of the data modeling framework, since most of
the extensions provided by Hybrid Wikis are related to the data model.

The following examples should suffice to highlight the use of the application-specific data
model in all frameworks:

∙ For each entity type, the Tricia interaction framework can generate multilingual element-
oriented CRUD views (i.e., create, read, update, delete) and set-oriented table controls.
These views may include rich text and media attachments (e.g., images, files).

∙ Associations between entities can be navigated in an element-oriented (via hyperlinks)
or set-oriented (declarative queries) style. End users can interactively create full text
and structured queries for entities of a given type or any type.

∙ Tricia can also expose these views and controllers as REST-ful web APIs to allow external
systems to interact with Tricia applications.

∙ The Tricia access control framework allows application developers or end users to asso-
ciate access control policies with entity types or even individual entities. These policies

85

4. Implementing Hybrid Wikis in Tricia

can restrict read, write, and administration rights to user groups or to individual users
(role based access control or discretionary access control). The policies are automatically
enforced at the user interface and at the web API level.

∙ The Tricia data modeling framework automates the data migration steps necessary after
(series of) typical incremental schema changes.

4.1.2. Data modeling framework

In the following, we incrementally introduce the elements and concepts of the Tricia data
modeling framework as shown in Figure 4.3 by means of a simplified model taken from the
domain of social software web applications. In [BMN10a] the data modeling capabilities of
Tricia are described in more detail.

The example data model is presented in Figure 4.2. It consists of the concepts wiki and wiki
page. The application based on this model allows registered users to manage a collection of
wikis. Each individual wiki contains an arbitrary set of wiki pages. Wikis and wiki pages
both are identified by a unique name. For instance, this name is shown in the web user
interface when listing all available wikis or all wiki pages of an individual wiki respectively.
Furthermore, a readable, structured, and persistent URL is provided by both, wikis and wiki
pages. One of the wiki’s pages can be defined as the home page. The home page represents
the default view of the wiki and is shown when the URL of the wiki is called. The content of
a wiki page consists of rich (hyper-)text, that is, markup, embedded hyperlinks, and attached
media files (cf., Section 3.1.2). The given sample application consists of an individual plugin
with a data model defining the entities wiki and wiki page. Subsequently, we describe how
developers can build this application, in particular the application’s data model, by means of
the concepts and elements provided by the Tricia data modeling framework.

Wiki
name : String
urlName : UrlName

WikiPage
name : String
urlName : UrlName
content : RichString

 wiki
*

pages

0..1 wikiIfHome 1home

Figure 4.2.: Example data model consisting of wikis and wiki pages and their relations.

Tricia’s domain objects are represented as objects of type Entity. Entities provide a name
and an internationalized label. In our example application two entities are given, wiki and
wiki page. The name of an entity identifies the concept in the data model, in our example
the concepts’ names are wiki and wiki page. The internationalized label is used to generate
custom views according to the users’ language.

Properties of domain objects are represented as objects of type Property. The data mod-
eling framework provides the following predefined basic property types: BooleanProperty,
IntProperty, StringProperty, DomainValueProperty, DateProperty, TimestampProperty. Each
property type may introduce certain attributes, which can be customized. For instance, String-
Property represents a character sequence with a size limited by the maxLength attribute. The

86

4. Implementing Hybrid Wikis in Tricia

Asset
name : String

0..1

*

extends

Entity
label : I18nString

Mixin

*

*

requires

OptionalMixinMandatoryMixin

**

Feature
name : String
isPersistent : boolean
label : I18nString
longHelp : I18nString
shortHelp : I18nString

*

Role
isCascadeOneDelete : boolean

Property

OneRole ManyRole

Directionality

Unidirectional
oppositeMultiplicity : Multiplicity[1]

Bidirectional

1

oppositeRole

1

to

1

Validator
name : String
errorMessage : I18nString

ChangeListener
name : String

*

...PropertyStringProperty
isIndexed : boolean
maxLength : int

*

Base property types
(e.g., IntProperty,
DateProperty)

Built-in property
types

RichStringPropertyUrlNameProperty

«enum»
Multiplicity

ONE, MANY

«datatype»
I18nString

Translation
language : String
name : String*

Figure 4.3.: Concepts of Tricia’s data modeling framework.

attribute isIndexed indicates whether an index should be created to speed up value-based
queries for that property. Building on the basic property types (e.g., StringProperty) the
Tricia core provides the following domain-specific property types (extract):

∙ A RichStringProperty is a subtype of StringProperty, which holds HTML content
(cf., Section 3.1.2). The implementation of RichStringProperty ensures that the con-
tent does not contain malicious scripts, automatically detects dangling hyperlinks, and
supports a consistent application-wide URL renaming.

∙ A UrlNameProperty is used to provide meaningful URLs for domain objects (cf., Sec-
tion 3.1.2.3). URLs should match as closely as possible the name of the object, but may
be subject to additional constraints due to character set limitations for URLs.

In our example (cf., Figure 4.2), the properties of a wiki are name of type StringProperty and
urlName of type UrlNameProperty. A wiki page also has the properties name, urlName, and
additionally a content property of type RichStringProperty.

Associations between domain objects are represented in Tricia by modeling the association
ends as objects of type Role. A role specifies the type of the associated entity, which is
represented in the data model framework of 4.3 by the to reference. There are two kinds of
multiplicities: A single-valued association is modeled using the class OneRole and a multi-
valued association through the class ManyRole. The directionality of a role is expressed by
the mandatory concept Directionality. Bidirectional roles reference the corresponding opposite
role. In this case, the multiplicity of the counterpart is implicitly given through the type of
the opposite role instance (i.e., OneRole or ManyRole). Since a unidirectional role does not
specify an opposite role, its multiplicity cannot be derived and has to be explicitly defined
through the otherMultiplicity attribute. The attribute isCascadeOnDelete indicates to delete

87

4. Implementing Hybrid Wikis in Tricia

the referenced entities if the owning entity is deleted (cf., composition in UML). In our example
(cf., Figure 4.2), a wiki is used as a container for a set of wiki pages.

Properties and roles share some common attributes, which are captured by the abstract super
concept Feature. Each feature has a name, an internationalized label (cf., entity attributes), as
well as the two internationalized attributes longHelp and shortHelp. These labels are used in
generated views to describe the meaning of a feature to end users in their own language. The
flag isPersistent indicates whether the value of a feature is persistently stored in a database,
by default this flag is set. A non-persistent property can for example be used for derived
values, which are calculated depending on the values of other persistent properties and can
be shown in certain views. The Tricia data modeling framework also supports inheritance,
that is, a derived entity inherits all features of its parent entity. By default, a single-table
strategy [Fo03] is used to map the inheritance tree to a single database table.

An important aspect of data modeling is the specification of constraints to ensure data in-
tegrity. In the Tricia data modeling framework constraints can be modeled through Validators.
As part of the declarative model, a validator has a name and provides error messages, which
are shown to end users in case of a validation failure. Validators can be specified for all fea-
tures, that is, for both, roles and properties. As an example, a validator verifies whether the
value of a StringProperty satisfies a specific pattern (e.g., email address). An example for role
validation is to constrain the cardinality of an association. In our example, a wiki page has
to be part of a wiki. This can be realized by a role validator applied to role wiki. The Tricia
data modeling framework provides a set of built-in property validators (e.g., EmailValida-
tor, MinimalLengthValidator) as well as predefined role validators (e.g., NotNullOneValidator,
NotEmptyManyValidator). Validators can be parameterized with values.

In the Tricia data modeling framework ChangeListeners are used to propagate data model
changes through the system. A change listener has a name and is registered on a feature
in order to be notified when the value of the feature changes. Change listeners apply to
both kinds of features, that is, for both, roles and properties. For example, a change listener
updateUrlName can be defined for the name property (i.e., StringProperty) of a wiki page.
Then, if the name property is set (i.e., the name changes) for a newly created page and no
URL is given by the end user, the value of the name property is used as the URL’s default.
This operation is performed by the change listener, which is notified when the name property
changes.

The only way of realizing reuse at the data model level introduced so far is the mechanism
of inheritance. Since models in Tricia are realized by subclassing framework classes, this
mechanism is constrained by having a single inheritance chain, which means that an entity
can have only one entity it inherits from. This imposes a severe limitation, and is not sufficient
for real-world modeling problems. To enable reuse on a more fine-grained level, Tricia utilizes
the concept of Mixins [ALZ03]. Mixins extend entities with additional properties and roles.
As shown in Figure 4.3, the entity and mixin classes are subtypes of the abstract class asset,
which provides the capability of having features. Mixins can be assigned to other entities
and vice versa, which is expressed by a many-to-many association between entity and mixin
as shown in the class diagram in Figure 4.3. We distinguish two kinds of mixins, which are
realized by the framework classes, MandatoryMixin and OptionalMixin. Mandatory mixins
are statically assigned to a certain entity and cannot be removed at runtime.

88

4. Implementing Hybrid Wikis in Tricia

Table 4.1.: Mandatory mixins and their usage in the core plugin and in the wiki plugin.

Linkable Searchable Taggable Commentable Versionable

Group x x x
Membership

Person x x x
Principal x x
Comment x x
Search x x x
Version x
Wiki x x
WikiPage x x x x x

In Table 4.1 an extract of existing mandatory mixin types and their use by entity classes is
shown. These mixins enable fine-grained reuse of cross-cutting aspects. A mixin can depend
on other mixins, for example a searchable entity (i.e., an entity using the mandatory mixin
Searchable) requires to be linkable (i.e., to have a URL) too, otherwise the asset cannot be
accessed if it is shown for example in a search result list. In this example, it is not permitted
to define searchable entities, which are not linkable.

In contrast, optional mixins can be assigned to objects and can be removed at runtime by end
users. An example of an optional mixin is the class CalendarItem, which can be assigned to
wiki pages. It marks the assigned wiki page as representing a temporal event, which is char-
acterized by additional features such as startDate, endDate, and eventCategory. As opposed
to mandatory mixins, this capability is not required for all wiki pages, but can be assigned by
end users at runtime. The existence of this mixin type then indicates whether a specific wiki
page is displayed in a calendar view. As shown in Table 4.1, the Tricia core includes predefined
entity types which are essential for the domain of enterprise web applications. They comprise
entities for modeling users and user groups: Person, Group, Membership, and Principal. These
entities are the foundation for the access control framework (cf., Section 4.1.4). Other built-in
entities are Link, Comment, and Version, which are associated with the respective mandatory
mixin types. For example, the mixin Commentable establishes an one-to-many association to
entities of type Comment.

Tricia’s data modeling framework as introduced in Section 4.1.2 represents an abstraction
layer in order to develop the domain objects of the web application. This layer also ensures
an encapsulation of the domain objects from the physical access to the data storage. The
data modeling framework provides a built-in mechanism to map an entity with its properties,
mixins, and roles to corresponding elements in the data store. Currently, Tricia’s default
storage implementation is an object relational mapping of the entities and its constituents to
corresponding Structured Query Language (SQL) elements, in particular to MySQL elements.
Entities are mapped to database tables, properties to table columns, and roles to foreign key
constraints or tables in case of m:n-relations. Since a mixin does not have an own object
identity its properties and roles are stored as part of the table of its owning entity. For
instance, if a wiki page entity supports comments by means of a Commentable mixin and this
mixin provides a StringProperty to represent (i.e., store) the comments, this property will be

89

4. Implementing Hybrid Wikis in Tricia

mapped to a column of the wiki page’s database table. Additional storage implementations
supporting object relational mapping in SQL are Oracle, MSSQL, DB2, HSQL.

Besides object relational mapping, the Tricia framework provides a prototypical implementa-
tion of the open source database MongoDB, a key-value store supporting document-oriented
database access. The class of document-oriented databases in literature is often referred to as
NoSQL databases or structured storages [Ch08a, LM10].

4.1.3. Interaction framework

The Tricia framework is based on the architectural patternModel-View-Controller (MVC) [BD09].
The model in this pattern is represented by a domain object (i.e., an entity, such as wiki
page or blog post) from the modeling framework (cf., Section 4.1.2). The view and the
controller are represented by concepts provided by the interaction framework (cf., Figure 4.4).
A Tricia handler4 is responsible for the processing of an individual client’s request. A handler
primarily contains the business logic. Additionally, a handler checks if the requesting client is
authorized to execute this business logic (cf., Section 4.1.4). A template5 is in most cases a
HTML page which is returned to the client according to its request.

Interaction Framework

Controller

View

Template

Handler

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Data Modeling
Framework

Model

Entity

Legend

Access

Figure 4.4.: MVC pattern realized in Tricia.

4.1.4. Access control framework

Access control in Tricia basically works as introduced in Section 3.1.2.2. This means it can
be specified who is allowed to read and to write content objects by using a set of principals
as readers and writers. In particular, individual entities can be protected from unauthorized
read access by using the mixin ReadProtected6.

4http://www.infoasset.de/wikis/javadoc-import-wiki/platform-handler-handler; visited on January 13th
2012.

5http://www.infoasset.de/wikis/javadoc-import-wiki/platform-documentation-templatedoc; visited on Jan-
uary 13th 2012.

6http://www.infoasset.de/wikis/javadoc-import-wiki/platform-assets-readprotected; visited on January 13th
2012.

90

4. Implementing Hybrid Wikis in Tricia

4.1.5. Plugins and extension points

Plugins in Tricia can be used in order to provide functionality in a modular fashion. A plugin
can contribute new concepts, such as entities, templates, and handler. In addition, it is also
possible to extend existing concepts from other plugins to customize them according to specific
demands. This is achieved by using extension points provided by the Tricia framework7. For
instance, an extension point within a plugin depending on the wiki plugin (cf., Section 4.1.2)
can specify an additional property for a wiki page. Since the entity’s additional properties are
likely to be visible in a view it is also possible to extend templates and handler.

4.1.6. Enterprise 2.0 platform Tricia

The Enterprise 2.0 platform Tricia is the basis for the development of Hybrid Wikis. Figure 4.5
depicts the plugins provided by the Tricia platform before the development of Hybrid Wikis.
The core plugin contains predefined entity types, such as persons and groups (cf., Sec-
tion 4.1.2). Based on the core, the file plugin supports the management of documents and
folders. The wiki plugin mainly consists of the entities wiki page and wiki. A wiki represents
the container for a set of individual pages. The relation between blog and blog post is the
same as between wiki and wiki pages. Documents, wiki pages and blog posts represent the
content objects of Tricia, wiki, blog, and folder their corresponding spaces (cf., Section 3.1.1).
Since principals (i.e., persons and groups) are globally available in the application (cf., Sec-
tion 3.1.2.2) they are part of a special system space. However, they can also be considered as
content objects, since both provide a full text description.

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Wiki Blog

File

Core

Wiki Blog

File

Structured

HybridWiki

Core
Existing Plugin
New Plugin

Plugin
Legend

Legend

Figure 4.5.: Plugins provided by Tricia before Hybrid Wikis.

Tricia provides a set of built-in services orthogonal applicable to the content objects provided
(i.e., wiki pages, blog posts, and documents). Services are for example tagging, versioning,
and commenting. The complete service catalog provided by the Enterprise 2.0 platform Tricia
is described in [BMN09]. How the services relevant for this thesis can be applied to attributes,
types, attribute definitions, and constraints is discussed in Section 3.2.4.

4.2. Implementing Hybrid Wikis

In this section, we explain how Hybrid Wikis are realized based on the Enterprise 2.0 plat-
form Tricia. We introduce the data model the implementation is based on in Section 4.2.1 and

7http://www.infoasset.de/wikis/javadoc-import-wiki/platform-services-extension; visited on January 13th
2012.

91

4. Implementing Hybrid Wikis in Tricia

Tricia’s extended architecture in Section 4.2.2. Subsequently, we technically explain how sug-
gestions can be calculated efficiently (cf., Section 4.2.3) and illustrate how transitions (cf., Sec-
tion 4.2.3) and consolidation techniques (cf., Section 4.2.5) are supported in Hybrid Wikis. In
Section 4.2.6 we describe how information structures can be exchanged by means of import
and export interfaces. In Section 4.2.7 we show that the concepts of Hybrid Wikis support fed-
erated data integration scenarios. In particular, we demonstrate how information objects from
third-party business applications can be accessed and extended by means of Hybrid Wikis.
This way, we show how different information islands within enterprises can be integrated.

4.2.1. Data model

Figure 4.6 depicts the data model that the current implementation of Hybrid Wikis is based
on. The data model is quite similar to the conceptual model introduced in Section 3.1. In
the following, we describe the main differences between both models and discuss important
design decisions from a technical point of view.

«json»
Attribute

key:String
{unique for structured}
validationMessages:String[*]

«mixin»
Structured

«json»
{abstract}

Value

 1 structured

 *

 0..1
 1..* {ordered}

«json»
TypeTag

key:String
{unique for structured}

 * types

 1

{TypeTag.key equals Type.key}

 * 0..1
«entity,linkable,searchable,

readprotected»
Type

key:String {unique for space}

«entity,linkable,searchable,
readProtected»

AttributeDefinition
key:String {unique for type}

**

«json»
{abstact}

Constraint
validationMessage:String

 *

 *

validates

 1
 type

 *

 1

 *

{Attribute.key equals AttributeDefinition.key
&
Attribute.structured.types.key equals
AttributeDefinition.type.key}

...Value

Figure 4.6.: Data model underlying Hybrid Wikis.

4.2.1.1. Using mixins for structuring support

In order to support information structuring we decided to implement a mixin (cf., Sec-
tion 4.1.2). By doing so, information structuring is applicable to any kind of content object
and therefore can be considered as an orthogonal Enterprise 2.0 service, similar to other ser-

92

4. Implementing Hybrid Wikis in Tricia

vices such as tagging or commenting [BMN09]. For instance, the mixin can be applied to wiki
pages. However, not every content object needs to use this mixin (cf., Figure 4.7). The mixin
Structured is depicted in Figure 4.6. It primarily encapsulates the ability to assign types and
attributes to content objects. Therefore, it can be considered as the concrete implementation
of the concepts introduced in Section 3.1.6. But using a mixin in consequence also means that
concepts supporting information structuring always have to be of type entity, since a mixin
can only be applied to entities according to the Tricia data modeling framework (cf., Sec-
tion 4.1.2). In particular, this design decision has an impact on the realization of structured
links since attributes and values are not stored as first class entities. However, this is discussed
in Section 4.2.1.5 in detail.

«entity»
Space

«entity,linkable,searchable,
readProtected»

AttributeDefinition
key:String {unique for type}

«json»
{abstract}
Constraint

validationMessage:String

 1

 *

1 space

 *

 1 type

 *

 1

 *

«entity,
searchable,linkable»

Content

«entity,linkable,searchable,
readprotected»

Type
key:String {unique for space}

«structured»
WikiPage

...

«structured»
...

Figure 4.7.: Mixin Structured applied to some content objects.

4.2.1.2. Type tags

The main difference between the data model shown in Figure 4.6 and the conceptual model
introduced in Section 3.1 is that two concepts for the representation of types exist in the
implementation. The type represents the concept according to Section 3.1.4 and the type tag
an assignment of a type. A type tag is similar to a plain tag (cf., Section 3.2.4.2) with the
difference that it serves as a classifier. Assigning it means to explicitly make a statement
about a content object’s type by using a tag.

The management of type tags is completely handled by the tagging module provided by the
Tricia platform, including

∙ UI controls,

93

4. Implementing Hybrid Wikis in Tricia

∙ writing type tags to the datastore, and

∙ indexing type-tagged content by means of the Lucene search engine.

Only little extensions were applied to the tagging module. In order to distinguish between
plain tags and type tags a namespace is used when assigning or querying tags (cf., Figure 4.9).
When assigning a type tag to a content object a different namespace is specified as if assigning
a conventional tag. That is, by means of the namespace type tags and normal tags are
distinguished. Figure 4.8 exemplifies the assignment of a type by means of tagging services.
Since the current implementation of Hybrid Wikis is based on tagging services the mixin
Structured depends on the mixin Taggable as indicated in Figure 4.9. Additionally, the plugin
providing structuring support (cf., Section 4.2.2) contains some style sheets (e.g., in order to
represent type tags in a different color within the tagging UI controls).

:Structured :Taggable

assignTag(type,namespace)

Assign type as tag

:Handler

assignType(type)

:Lucene

update(entity,type,namespace)

entity:Entity

opt
[entity.hasStructuredMixin = true]

 toJSON(type)

Figure 4.8.: Assignment of a type by means of tagging services.

We decided to support typing of content objects by using tagging services due to the following
reasons: As explained in [GH05], what-it-is tags are used for the classification of resources.
However, when applying conventional tags only it is not possible to explicitly make a statement
about the content object’s type. This means type tags contribute to make implicitly given
what-it-is tags explicitly visible. Additionally, users immediately gain benefits from type tags
by means of built-in views, better suggestions, and the ability to specify more precise queries.
Furthermore, users of an Enterprise 2.0 platform are likely to be familiar with tagging services.
Therefore, they are also familiar with the existing tagging UI control and only need to learn
what the benefits are when using type tags instead of conventional tags in Hybrid Wikis. From
a user’s perspective, type tags are lightweight means to classify a resource on the instance
level. This is due to the fact that they are simple keywords (i.e., similar to conventional
tags) and users do not necessarily need to act as a tailor when assigning them. That means
neither users need to create a type definition (with description, attribute definitions, and
constraints) nor they have to know which types already exist8 before assigning a type tag.
Our assumption is that editors are more familiar with tagging an object than with schema
management activities and therefore less inhibited in assigning a type tag. Type tags facilitate

8Even if users not necessarily need to know the already existing types they are supported by autocompletion
to choose one of them.

94

4. Implementing Hybrid Wikis in Tricia

the classification (i.e., typing) of a resources for authors, tailors can subsequently specify
that classifier (i.e., type) more precisely (e.g., by providing a description, specifying further
constraints, or binding attributes to the type).

As depicted in Figure 4.8, when using the tagging module type assignments are automatically
serialized to the database (as JavaScript Object Notation JSON (JSON)) and additionally
indexed by means of the Lucene search engine. An important reason for using tag-based
types is the performance of the Lucene index when querying data. As discussed in [JZW09],
the Lucene engine in most cases is faster than a relational database when performing exact
queries, even when using indexes in the database. Exact here means that a given value equals
the value of a field specified in a query. Exact queries in this thesis are required to determine
the set of content objects with a specific type, for example in order to generate a type table
view showing all instance of a selected type (cf., Section 3.4.1). For instance, in order to
determine all projects in the application it is required to define a query selecting all content
objects exactly typed as project.

A conceivable alternative to using tags in order to type a content object would be to define
a Tricia many role (m..n) between the mixin Structured and the entity Type (cf., Figure 4.6).
However, in this case it would be necessary to join the table underlying the mixin’s owning
entity with the table of Type in order to determine a set of specifically typed objects. Ad-
ditionally, more than one content object can be structured. This means a set of specifically
typed objects can only be determined by executing multiple join operations when querying
against a relational database. Since performing multiple joins in a relational database is cer-
tainly more expensive than executing a query in a flat key-value store asking for a specific
field (representing the type tag) we decided to (re)use the Lucene-based querying capabili-
ties of the tagging module in order to determine a set of specifically typed content objects.
Furthermore, the management (e.g., persistence management) of simple keywords (i.e., type
tags) is more lightweight than the management of first class entities. For instance, in case of
type tags removing a type from a content object (i.e., changing an object’s type assignments)
means that only the content object itself needs to be updated in the database. This is due to
the fact that the serialized type tags are stored as part (i.e., as a property) of that object. In
case of using first class entities, it has to be determined if the removed type is still related to
other objects (by using database queries). Only if not, the type can be deleted. Therefore,
from a technical point of view, when using entities changing an object’s type assignments is
more heavyweight than in case of type tags.

The tagging module additionally allows to specify queries selecting objects with multiple tags.
This mechanism can also be used to query content objects having multiple types. However, it
is currently only possible to specify conjunctive queries. For instance, it is not possible to ask
for content objects typed as project or typed as research project. This is due to the fact that
the tagging module is limited to conjunctive queries although the Lucene index also supports
disjunction. Another advantage of using Lucene for defining queries is its scalability9. This is
especially important in case of growing user-generated (structured) content.

The tagging module provides tag suggestions built-in. Therefore, types are automatically
suggested when reusing the existing tagging mechanisms. It is only necessary to restrict the
namespace to type tags when calculating suggestions. However, the built-in mechanisms only

9http://www.lucidimagination.com/content/scaling-lucene-and-solr; visited on January 15th 2012.

95

4. Implementing Hybrid Wikis in Tricia

generate type suggestions based on multiple types and based on normal tags. The other type
suggestions as proposed in Section 3.3.1.3 are not implemented up to now.

As indicated in Figure 4.6, type tags are not shared across multiple content objects since
they are literals. That means, every content object provides its own set of type tags (i.e., its
type assignments). Additionally, type tags and types are not connected by using a Tricia
role (cf., Section 4.1.2) since tags are not stored as first class entities in Tricia. Therefore,
the determination of types related to a content object requires to query the datastore. For
instance, it is required to execute a database query in order to show a user the description
of a type as help text when assigning a type tag. In this case, only one additional database
is required to determine the current object’s schema information (e.g., description from a
type or related attribute definitions). Therefore, this operation is not critical for a single
object. However, in case of more than one object executing multiple database queries can
cause performance issues. For instance, validating the values shown in the type table view
(cf., Section 3.4) would require to execute a database query for each cell10 in order to determine
the constraints related to the attribute underlying the cell. In Section 4.2.1.6, this potential
performance issue is addressed by caching schema-based information directly in the object.

Structured
attributesAsJSON:StringProperty
assignType(String type):void
getAttribute(String key):Attribute
...

Mixin

Taggable
tagsAsJSON:StringProperty
assignTag(String key,String namespace)
...

requires

Figure 4.9.: The mixin Structured is based on the mixin Taggable.

Another difference between the data model (cf., Figure 4.6) and the conceptual model (cf., Sec-
tion 3.1) is that it is not possible to define an order for type assignments. This is due to the
fact that Tricia’s tagging module does not support specifying an order for tags, by default
they are ordered alphabetically.

4.2.1.3. Attribute order

As indicated in Figure 4.6, a content object’s attributes and a type’s attribute definitions are
not ordered. As discussed in Chapter 3, the definition of an order for attributes requires

∙ specifying an order for individual content objects,

∙ passing the order of typed content objects to the type, and

∙ consolidating diverging orders by applying the type’s order to its instances.

10This can be optimized by caching the attribute definitions for each table column.

96

4. Implementing Hybrid Wikis in Tricia

Theses harmonization techniques are required since content objects can be related to multiple
types with different or even conflicting orders. For instance, a content object p can be typed
with project and research project. project provides two attribute definitions ordered as bud-
get, manager, research project two attribute definitions ordered as manager, budget. In this
example, p’s attribute order cannot be derived from the types.

We see the following solution facing these conflicts: Attributes and attribute definitions can be
ordered individually. If not explicitly specified, attribute definitions are ordered alphabetically.
This also applies to attributes if no type is assigned. In case of a typed content object,
attributes are displayed grouped by type. Within each group the order as given by the type
applies. An attribute is displayed multiple times (i.e., in multiple groups) if it is related to
multiple definitions11. If the content object’s attribute order is explicitly defined, the order
given by the definitions is ignored.

However, attributes and attribute definitions cannot be ordered in the current implementation
of Hybrid Wikis. That is, the order of attributes is always computed when an individual
content object is displayed. Currently the order is given alphabetically within two groups.
The first group contains attributes related to definitions, the second group attributes not
related to any definition. For instance, let p be a content object with three attributes budget,
manager, area and two types (i.e., type tags) project and research project. Furthermore, let
budget be related to an attribute definition of project and area to an attribute definition of
research project. Then the first group contains budget, area and the second group manager.
Determining the first group’s attributes means determining the set of attribute definitions
related to that object. This means, in a first step for each type tag a database query needs
to be executed in order to find the set of related types. Subsequently, the keys of these types’
attribute definitions are compared with the keys of the object’s attributes. In case of matching
keys, the attribute is shown in the first group. Even if a database query is required for each
type tag in order to determine the set of related types, this is not the case for determining the
related attribute definitions. This is due to the fact that the role between type and attribute
definition is cached by the Tricia framework.

But even the database queries for determining the types can be eliminated. Similar to the
mechanism used for caching of validation messages (cf., Section 4.2.1.6), the first group’s order
could be cached in the object. Then this cached order would be updated by means of Tricia
batch jobs12 in case of changes in the schema13. However, this mechanism is currently not
implemented in Hybrid Wikis.

4.2.1.4. Storing and indexing attributes and values

Similar to type tags, attributes and values are not stored as first class entities. Otherwise,
it would be required to join the database tables of content object, attribute, and value in
order to get the key-value pairs of an individual object. Since this would not scale for huge
sets of structured data (or even in some built-in views showing multiple attributes, such as in

11Attributes not related to any definition can for example be shown in a special group undefined
12http://www.infoasset.de/wikis/javadoc-import-wiki/platform-orm-batchdeferredchangelistener; visited on

January 13th 2012.
13For example, the cached order would be updated if a type’s attribute definition is deleted. In this case all

instances of that type would be updated.)

97

4. Implementing Hybrid Wikis in Tricia

the type table view introduced in Section 3.4.1), we decided to use a different representation
of key-value pairs in the datastore. In this situation, it is not possible to reuse the storing
capabilities of the tagging module since a key-value pair cannot be considered as a simple
textual tag (e.g., it is additionally required to store the data type of each value) as in case of
the types. Therefore, we decided to store the key-value pairs of a content object as a JSON
string. This string, representing all serialized attributes of a content object in JSON format,
is stored as part of the mixin Structured by using a Tricia string property (cf., Figure 4.9).
JSON is used as representation format since this is the primary mechanism for serializing
objects (e.g., tags) in the Tricia framework.

In order to specify queries for accessing attributes with values tagging mechanisms are applied,
similar to specifying queries for types. For the key as well as for each of its values, a tag is
assigned to the content object using an individual namespace each (i.e., keys and values have
different namespaces). In addition, tags representing values are prefixed with the key in order
to conserve their connection. For instance, the key of an attribute budget is represented as
a tag budget in the namespace ATTRIBUTE_KEYS and the attribute’s value 200.000 as a
tag budget:200.000 in the namespace ATTRIBUTE_VALUES.

By assigning these tags (i.e., for keys and values), the Lucene index is updated accordingly.
Therefore, it is possible to define exact queries [JZW09] for attributes and values by using
the Lucene engine, just the same as for type tags. However, tags representing keys or values
respectively are used for querying purposes only and are not visible in the UI, except for
specifying queries. Finally, the tag-based querying capabilities are limited in so far that results
can only be filtered according to the very attributes of content objects. It is for example not
possible to express a query targeting all content objects having the attribute owned by set to
a content object with the type tag company. Combining attribute, value, and type queries
in conjunction is of course possible. For instance, it is possible to query for research projects
which are owned by Christian Neubert.

Attributes and attribute definitions are not connected by means of a Tricia role (cf., Sec-
tion 4.1.2) since attributes are serialized as JSON and not stored as first class entities in
Tricia. Therefore, the determination of related attribute definitions requires to query the
datastore. For instance, it is required to execute a database query in order to determine the
attribute’s constraints including a join operation between type and attribute definition. For a
single object these database operations are less critical, but in case of multiple objects (e.g., in
the type table view) this can cause performance issues. How constraint-based information is
cached to avoid performance problems is explained in Section 4.2.1.6.

Even if representing attributes as entities and connecting them to corresponding attribute
definitions by means of a Tricia role, it would be laborious to keep this role valid, since the
Tricia framework uses caching mechanisms for roles. For instance, if a type is renamed all roles
from its attribute definitions to attributes need to be updated and additionally the role-caches
have to be invalidated accordingly. This operation cannot be performed synchronously since
potentially a huge set of content objects is affected. But asynchronous execution potentially
leads to inconsistencies in the datastore for example in case of concurrent access when using
a role which is not yet invalidated. Therefore, we consciously decided to separate concepts
representing the data (i.e., attributes, type tags) from the schema (i.e., types, attribute def-
initions, and constraints) and query schema information (or data information respectively)

98

4. Implementing Hybrid Wikis in Tricia

always on demand. However, as discussed before representing attributes as entities is not an
option anyway.

The process of assigning an attribute including serialization and indexing steps is exemplified in
Figure 4.10. This figure additionally illustrates how the validation messages for an individual
attribute are determined and stored (cf., Section 4.2.1.6).

opt
[validationMessage not empty]

:Structured :Taggable

Assign an attribute

:Handler

assignAttribute(key, value)

attribute

:Luceneentity:Entity

opt
[entity.hasStructuredMixin = true]

assignTag(key,namespace)
update(entity,key,namespace)

assignTag(value,namespace)
update(entity,value,namespace)

 toJSON(attribute)

v:Value
new(value)

new(key,v) attribute:Attribute

:AttributeDefinition

isValid()

validationMessage

isValid(attribute)
validationMessage

setMessage(validationMessage)

update(entity,key,namespace)
assignTag(key,namespace)

Figure 4.10.: Storing and indexing of key-value pairs.

4.2.1.5. Implementation of data types

As explained in Section 4.2.1.1, values are not stored as first class entities due to reasons of
performance. In particular, this has an impact on structured link values, since in this case
structuring support cannot directly be applied by using a mixin. Therefore, a structured link
value is additionally associated with a first class entity that supports structuring capabilities
by means of a mixin (cf., LinkStructure in Figure 4.11). By doing so, the link’s types and
attributes are indexed by means of Lucene as in case of structured wiki pages. Furthermore,
in this way it is possible to regularly specify queries regarding the link structures (i.e., in
combination with fully fledged structured entities, such as wiki pages). For instance, a search
result based on a query asking for objects having a specific type potentially contains both,
structured wiki pages and structured links. Using an additional entity as the primary store of
structured links also has the advantage that further mixins can be applied. Therefore, from a

99

4. Implementing Hybrid Wikis in Tricia

technical point of view, it is convenient to support search and link capabilities for structured
links by means of corresponding mixins (cf., Figure 4.11).

StructuredLink

«json»
{abstract}

Value

«entity,structured,
searchable,linkable»

LinkStructure

 *referenced by

0..1references

InternalLink

«entity,searchable,
linkable,structured»

Content

11

Figure 4.11.: Link structures are represented by an entity with mixins

Using an additional entity of course requires executing a database query in order to access the
structured part of the link. Therefore, we decided to display structured links as normal links
in the UI only indicating that additional information is contained but not retrieve it from the
database in order to reduce the number of queries. That is, the attributes and types of a
structured link are never shown per default, only if a user explicitly requests to display them.
This is particularly important when displaying multiple values in a single view, such as the
type table view. One way to access the structures attached to a link is using the built-in link
view as introduced in Section 3.4.1.4.

The value representing the link (i.e., the internal reference to the content object) is serialized
as JSON as the other values. It is also conceivable to serialize the attributes and types instead
of using a separate entity. However, in this case linking and searching is not supported built-in
by the Tricia framework.

Finally, we implemented the data types record (cf., Section 3.1.5.5) and hypertext (cf., Sec-
tion 3.1.5.4) in a prototype only, that is, they are not yet applied or evaluated in practice
(cf., Chapter 6).

4.2.1.6. Validation

As introduced in Section 3.1.8, the simplest form of indicating constraint violations for in-
dividual content objects is to determine related attribute constraints on demand (e.g., when
displaying a content object) and apply them to the current attribute values in order to gen-
erate a validation message. Potentially, this reduces the comfort for users when reading a
content object. For example, when a content object has multiple attributes related to at-
tribute definitions from different types calculating all messages potentially need some time.
Therefore, the validation messages are directly stored as part of the attributes (cf., Figure 4.6).

100

4. Implementing Hybrid Wikis in Tricia

By doing so, no additional database queries are required to determine the validation messages
for individual content objects. Thus, an attribute can be considered as a cache providing fast
access to some schema-based information. However, this requires to keep the cached validation
messages up-to-date.

As shown in Figure 4.10, when assigning a key-value pair the validation messages are calculated
and in case of invalid values (initially) set in the attribute. Additionally, cached messages need
to be updated in case of changes to the content object, in particular changes to:

∙ Values, since a changed value can violate or meet related constraints.

∙ Type assignments, since with a changed set of types it is possible that constraints are
not related to attributes anymore or new ones apply to them.

∙ The content object’s space, since it is possible to move the content object to a different
space. In this case, other constraints from different types apply to the object.

Furthermore, updating the validation messages is required in case of changes to the schema,
in particular changes to:

∙ Types, since when changing a type content objects possibly lose their connection to
this type. For instance, renaming a type is not necessarily propagated to the related
instances (cf., Section 3.3.3).

∙ Attribute definitions, for the same reason as for changing types.

∙ Constraints, since it is not required to consolidate related values when changing a con-
straint. Additionally, it is even not possible to propagate changing constraints to all
instances in some cases (cf., Section 3.3.3).

In case of changes to the content object, the set of related constraints need to be deter-
mined in order to update the current validation status of the object. In case of changes to
the schema, the set of the affected content objects needs to be identified for updating their
status accordingly. Since the determination of related elements as well as the update of all
attributes’ validation messages potentially needs some time, especially in case of types with
many instances, both is performed asynchronously by using Tricia batch jobs. By doing so,
the caching of validation messages helps to ensure fast access to content objects thereby fa-
cilitating reading of contents, since no additional database queries are required in order to
calculate the current validation status. But also changes in the schema (or in the data re-
spectively) requiring updates of the cached validation messages do not slow saving operations
from a user’s perspective because of using asynchronous batch jobs. Since a batch job po-
tentially takes some time attributes can contain obsolete validation messages. In such cases,
related content objects show a wrong validation status. In particular, this is a drawback when
explicitly search for constraint violations (cf., Section 3.1.8). However, the delayed execution
of batch jobs never leads to inconsistencies in the data or the schema.

As discussed in Section 3.1.8, it is important that it is possible to explicitly search for constraint
violations (e.g., since the validation status of attributes can change without modifying the
underlying content object). Therefore, the current implementation supports two possibilities
in order to find them:

101

4. Implementing Hybrid Wikis in Tricia

∙ The search for invalid content objects. This means at least one attribute of the object
has invalid values.

∙ The search for attributes (i.e., attribute keys) having invalid values.

As indicated in Figure 4.10, this is also realized by assigning tags with a specific namespace.
By doing so, it is possible to query these tags by means of the Lucene search engine and
additionally to combine queries regarding the validity of objects with queries regarding types
(i.e., type tags) and/or attributes (i.e., attribute tags). For instance, if a project is constrained
to have at most one project manager users can search for research projects which are managed
by Christian Neubert and provide more than one manager. However, the user needs to man-
ually find out which constraint exactly causes the violation (cf., Section 3.2.4.1). In order to
be able to search for content objects having at least one invalid attribute the object is tagged
as invalid within a special namespace. Another namespace is used to tag invalid attributes.
This works similar as for the attributes’ values, that is, using the attribute key as a prefix in
order to distinguish the invalid attribute flags of a content object.

Property

Attribute

Feature
name:String
isPersistent:boolean
label:I18nString
longHelp:I18nString
shortHelp:I18nString

Validator
name:String
errorMessage:I18nString

1 *

AttributeValidator

Figure 4.12.: Attributes and constraints integrated in the Tricia data model.

As discussed in Section 3.1.8, when using strict or rigid types users are not allowed to save a
structured object containing any invalid attributes. In order to ensure this the Tricia valida-
tion model needs to be extended. We decided to implement attributes as subtypes of Tricia
properties in order to integrate them in the existing validation model (cf., Figure 4.12). This
is also because attributes and built-in properties are quite similar, that is, both can be consid-
ered as key value-pairs. However, built-in properties cannot dynamically be changed (i.e., new
properties cannot be added to or existing ones be removed from an object) at runtime as it
is possible for attributes. Due to the deep integration in the framework, attributes in Hy-
brid Wikis can be treat as normal Tricia properties. In particular, this is necessary since the
validity of each feature (roles and properties) is checked by means of Tricia validators when
saving an entity (cf., Figure 4.13). Therefore, an entity is extended in so far that the set of its
features includes both, attributes and built-in properties (cf., Figure 4.14). These two kinds
of features are distinguished by using a specific key, that is, attribute keys are single-quoted
when using them for programming purposes. For instance, the key content refers to a built-in
property, the key ’content’ to an attribute.

102

4. Implementing Hybrid Wikis in Tricia

:Entity feature:Feature validator:Validator

isValid(level)

Persist Entity

:Handler

persist()

validate(level,value)
validationMessage

 getValidators()

validator

 getFeature()

feature

Figure 4.13.: Tricia’s validation model checking the consistency of entities with properties and
roles.

The extended validation model is depicted in Figure 4.15. This representation is simplified.
Of course the validity of all features is checked when saving an entity. However, in case of
an attribute the validity is checked by using its cached validation messages. In this situation,
the attribute validator ensures that a validation message is only returned14 if the attribute
is related to a strict attribute definition. In order to determine if an attribute is related to
a strict attribute definition a database query is required. If persisting an entity results from
a user interaction, this query cannot be executed asynchronously since the user immediately
needs feedback in case of failing validators. This can be optimized by caching the strict flag
within the attributes, similar to the validation messages. This means that the cached flag
needs to be updated when changing the schema. For instance, when declaring a constraint
as strict the flags of all related object needs to be updated accordingly. But this would allow
to enter invalid values for a certain period of time. This is due to the fact that updating of
all related objects potentially needs some execution time and the Tricia framework does not
prevent concurrent data access by providing locking mechanisms. Therefore, caching of the
strict flags is currently not implemented.

As indicated in Figure 4.15, the Tricia framework supports different validation levels. These
levels are necessary to control the granularity of the validators15. Basically, two kinds of
levels are supported. The first level prevents writing invalid values to the datastore, the
second level prevents users from submitting invalid entities in the UI. Attribute validators
only make use from the latter. That is, only in the UI it is permitted to submit entities with
invalid attributes and only in case of strict constraints. This also means that entities can
be stored to the database when processing entities programmatically although they contain
invalid attributes and even in case of strict constraints. For instance, the ability to ignore
validation rules on the programming level is especially important when importing structured
data from external datasources (cf., Section 4.2.6) or when interacting with external systems

14Returning an empty validation message indicates the validity of a content object
15http://www.infoasset.de/wikis/javadoc-import-wiki/platform-orm-validator-validationlevel; visited on Jan-

uary 13th 2012.

103

4. Implementing Hybrid Wikis in Tricia

:Entity :Structured

value:Value

getAttribute(key)

Get feature

:Handler

getFeature(key)

feature

feature

alt

[hasStructuredMixin = true & key is special]

 [else]

new

fromJSON

feature

getFeature(key)

feature

new(value)
feature:Attribute

Figure 4.14.: Attributes integrated in the Tricia data model.

(cf., Section 4.2.7). However, the validation of built-in features can still prevent persisting an
entity (e.g., in case of ambiguous wiki page names within the same space).

Besides the smooth integration in the validation model, another advantage of implementing
attributes as part of the Tricia data model (cf., Figure 4.12) is that it is very convenient to
build advanced controls representing structured information in the UI16 from a programming
perspective. This is facilitated since attributes are fully integrated in Tricia’s data modeling
framework (cf., Figure 4.12).

4.2.1.7. Value formats

In an early version, Hybrid Wikis supported the two data types string and link only in order
to keep it simple from both perspectives, the end-users’ and the software engineer’s. However,
in an enterprise environment additional data types are required, such as number and date. In
particular, it is important that values are represented appropriately in all views. For instance,
the values 1.3, 100.3 would be aligned left in case of storing them as plain strings. But since
they are likely to be numbers it would better to align them right in order to show the decimal
points vertically aligned to each other. Additionally, it is important that values can be sorted

16http://www.infoasset.de/wikis/javadoc-import-wiki/platform-documentation-functionsubstitut; visited on
January 13th 2012.

104

4. Implementing Hybrid Wikis in Tricia

:Entity :Attribute

validator:AttributeValidator

isValid(level)

Persist Entity

:Handler

persist()

validate(level,value)

validationMessage

 getValidators()

validator

 getFeature()

feature

new

getMessage()
validationMessage

:AttributeDefinition

isStrict()
strict

opt
[isStrict = true]

Figure 4.15.: Tricia’s validation model extended with attributes and constraints.

correctly. For example, the values 12 and 1 are sorted incorrectly when storing them as
strings.

In [Ma11] Hybrid Wikis are extended with additional data types, such as number and date.
The research questions underlying that thesis are:

∙ How can users be supported when interacting with values and data types in Hybrid
Wikis?

∙ How can values and data types be stored and displayed in Hybrid Wikis?

The following findings result from responding to these questions according to [Ma11]. The
general process of the values’ interactive management is depicted in Figure 4.16. First, a user
enters a value with data type and submits it to the server. Then, the value is transformed into
an internal representation according to the given data type and stored as a JSON string in the
database. This string contains a canonical representation17 of the value and some additional
information required for formatting the values correctly in a view, such as the precision of a
number. The conversion into a canonical representation potentially results in a reduction of
the originally entered value’s accuracy. That is, the value is potentially represented differently
when it is edited later. Since this might be confusing for users, a preview could be shown
indicating how the value is displayed when it is viewed or edited later. However, such a
preview is currently not implemented.

17http://www.w3.org/TR/2001/REC-xmlschema-2-20010502; visited on January 17th 2012.

105

4. Implementing Hybrid Wikis in Tricia

User

enter value

Hybrid Wikis

display

submit value

format

store to database

create canonical representation create sorting representation

store to lucene

Figure 4.16.: Interactive management of values with data types.

Additionally, the Lucene index is updated twice18. The first update is necessary in order
to define exact queries as described in Section 4.2.1.4, the second in order to efficiently sort
values correctly in the UI. In particular, this is necessary in the tabular overview of a type tag
(cf., Section 3.4.1). A column (representing a key) potentially contains values of different data
types in this view. Since the query underlying this table’s data is based on the Lucene search
engine we decided to also use its sorting capabilities to sort individual columns in ascending or
descending order. Otherwise, it would be necessary to sort the query results programmatically
in a second step, which is more complex from a software engineering perspective.

Since Lucene’s sorting algorithm relies on a lexicographic order each value is indexed in a
canonical lexical representation additionally prefixed with its data type. By doing so, the
values are grouped per data type and sorted within each group according to the canonical
representation. Additionally, the data type prefix determines the order of the groups. We
selected the prefixes in such a way that the group’s order is given as string, date, number, link
(internal, external), structured link, record, and hypertext. For instance, a string value would
be represented as a:value and a date value as b:value. In case of multiple values per attribute,
the data type (i.e., the prefix) of the first value is decisive for determining the group of the
attribute. Additionally, the first value’s canonical representation determines the rank within

18In Figure 4.16 only one Lucene update is depicted for purpose of illustration.

106

4. Implementing Hybrid Wikis in Tricia

a group in case of multiple values per attribute. For example, let p1 and p2 be content objects
typed with project. Both provide an attribute member, p1 with the string values Berta, Dora
and p2 with the string value Chris. When the type table (cf., Section 3.4.1.5) of project then
is sorted in ascending order by member, both member attributes are contained in the same
group (i.e., both attributes are prefixed with a:) and p1 is listed before p2 since the second
value of p1’s member attribute, Dora, is ignored.

In the UI the value is displayed formatted according to the viewing user’s language after
saving it to the database and updating the Lucene index. For formatting purposes the data
model is extended as depicted in Figure 4.17. For each data type a corresponding formatter
is implemented.

Value

StringValue
text:String

 0..1
 1..* {ordered}

Attribute
key:String
{unique for structured}

Formatter

* 0..1

Locale

 *

 *

DateFormatter
DateValue

date:Date

...Formatter...Value
...

Figure 4.17.: Formatting values according to data type and user language.

For example, the different representations of a date are listed in Table 4.2. This example
assumes that the value is edited and viewed by different users, each with different locale.
Otherwise, the displayed value would also be 06.06.2012.

But it is also possible that a value’s representation differs for the same user in both contexts
(i.e., edit and display). For instance, a number displayed as 12.23 can be represented as
12.231 when it is edited [Ma11]. That means the edit representation is the most precise
human-readable representation of a value in Hybrid Wikis. Therefore, this representation is
also used for the interpretation of values as discussed in Section 3.3.

The implementation of the thesis [Ma11] provides further outcomes:

∙ Data type suggestions when editing values (cf., Section 3.3.1.2).

107

4. Implementing Hybrid Wikis in Tricia

Table 4.2.: Internal and external representation of values according to [Ma11].

Context Representation

User input 06.06.12
Database 1338933600000
Lucene (sort) d:1338933600000
Edit 06.06.2012
Display 12/06/06

∙ Advanced data types, such as currency and percentage.

∙ Alignment of values according to their data types (e.g., a number value is aligned right
when it is displayed).

The author also discusses different possibilities to show validation messages while editing a
value. However, the provided solution only indicates errors in case of using strict constraints.
Therefore, the current implementation is adapted as depicted in Figure 4.18. In our solution,
invalid values can only be stored if they are not strict (cf., warning in Figure 4.18). Addition-
ally, validation failures are indicated while editing values, that is, it is not required to store
an attribute in order to show constraint violations to the user. Further insights regarding the
implementation of different data types in Hybrid Wikis can be found in [Ma11].

enter value

submit value

[reject value]

[accept value]

check constraints

store value

display validation
message

[warning]

[invalid]

[value submited]

[value entered]

[valid]

[error]

[value submitted]

[value entered]

Hybrid WikisUser

Figure 4.18.: Validation while editing values.

108

4. Implementing Hybrid Wikis in Tricia

4.2.1.8. Types, attribute definitions, and constraints

Types and attribute definitions are realized as Tricia entities supporting link and search capa-
bilities (cf., Figure 4.6). Additionally, both are protected from unauthorized access by applying
the access control list from the owning space.

Figure 4.19.: Attribute definition with constraints.

As depicted in Figure 4.6, instead of using Tricia entities constraints are stored as simple
JSON strings as part of their owing attribute definitions. This is

∙ due to reasons of performance, since otherwise it would be necessary to perform database
joins in order to determine the attribute definition’s constraints, and

∙ it is not required that constraints can be extended by mixins (e.g., in order to make
them searchable).

For reasons of simplicity the current implementation of Hybrid Wikis only supports three kinds
of multiplicities represented as simple domain values (cf., Figure 4.19). This means that it is
not possible to explicitly specify lower and upper bounds of a constraint (cf., Section 3.1.8).
The following values are supported:

∙ Exactly one value (1..1)

∙ At most one value (0..1)

109

4. Implementing Hybrid Wikis in Tricia

∙ At least one value (1..*)

This is not due to technical restrictions. We consciously decided to provide only the most
common multiplicities to end-users.

4.2.2. Extended architecture

The extended architecture of Tricia is depicted in Figure 4.20. Hybrid Wikis provide two
additional plugins. The first plugin, namely structured, is directly built on top of the Tricia
core in order to support information structuring for all kinds of content objects in higher levels
of the plugin stack, such as wiki pages in the wiki plugin or blog posts in the blog plugin.
However, the core plugin also provides entities having unstructured content (e.g., persons and
groups). In order to enable structuring of these objects all elements necessary for structuring
are directly integrated in the core plugin within a separate package. That is, the structured
plugin in part of Tricia’s core plugin. However, both plugins are separated in Figure 4.20 for
purpose of illustration.

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

Wiki Blog

File

Core

Wiki Blog

File

Structured

HybridWiki

Core
Existing Plugin
New Plugin

Plugin
Legend

Legend

Figure 4.20.: Plugins provided by Tricia including Hybrid Wikis.

The structured plugin consists of additional entities, views, and handlers (cf., Figure 4.21).
The additional views and handlers primarily serve for the generation of the built-in views
(cf., Section 3.4.1). Which of the concepts introduced in Section 3.1 are represented as Tricia
entities is discussed in Section 4.2.1.

Individual content objects can access elements within the structured plugin (e.g., the mixin
Structured, attribute definitions, types) in order to support information structuring. The
current implementation of Hybrid Wikis supports structuring for

∙ wiki pages,

∙ files,

∙ persons, and

∙ groups.

The entities file, person, and group can be structured by default, that is, they directly make
use of the mixin Structured. Wiki pages can only be structured when using an additional
plugin, namely hybrid wiki. This is due to the fact that in some cases it is required that wiki

110

4. Implementing Hybrid Wikis in Tricia

Structured

«access»

«access»

entitiy

«mixin»
Structured.java

...

TypesHandler.java

TypeTableHandler.java

handler

...

typesView.htm

typeTableView.htm

...

view

structured

structured

entity

handler

view

Figure 4.21.: Constituents of the structured plugin.

pages only consist of plain unstructured content19. Therefore, the ability of wiki pages to be
structured is encapsulated in a separate plugin on top of the wiki plugin. By doing so, it is
possible to activate structuring of wiki pages for different Tricia installations selectively.

The hybrid wiki plugin uses the extension mechanisms provided by the Tricia platform (cf., Sec-
tion 4.1.5) in order to extend the wiki page entity by using the mixin Structured and the wiki
page views by showing for example the structured box (cf., Section 3.4.1.2) with attributes,
type assignments, and inverse links. The constituents of the hybrid wiki plugin are sketched
in Figure 4.22.

HybridWiki

hybridWiki

entityExtension

viewExtension

wikiPageViewExtension.htm

wikiPageEditExtension.htm

...

viewExtension

hybridWiki

entityExtension

WikiPageExtension.java

Figure 4.22.: Constituents of the hybrid wiki plugin.

19It is planned to investigate how users interact with Hybrid Wikis compared to traditional wikis (i.e., without
structuring support) in industrial case studies.

111

4. Implementing Hybrid Wikis in Tricia

4.2.3. Suggestions

In Section 3.3.1, we introduced suggestions as lightweight means to encourage users to provide
information structures. In the following, we explain which of these suggestions are currently
provided by Hybrid Wikis and how they are realized from a technical point of view.

4.2.3.1. Attribute suggestions

As described in Section 3.3.1.1, attribute suggestions of an individual content object originate
from its structural similarity to other objects. Types, tags, and attributes are considered when
determining the similarity. Additionally, the keys of attribute definitions are suggested, but
only if the object is related to any. Therefore, determining suggestions is currently imple-
mented in two steps. In the first step, the related attribute definitions are calculated using a
database query.

In the second step, similar content objects are determined by means of the Lucene index. The
types, tags, and attribute keys of the current object are combined in a disjunctive query. That
is, it is searched for the attribute keys (cf., Section 4.2.1.4) of other content objects providing
the same or most of the object’s current types, tags, and attributes. For this purpose Lucene’s
built-in mechanisms for determining the similarity of resources20 is used. These mechanisms
also consider if resources have multiple types, tags, or attributes. This means, for example
attributes are preferred if they occur for content objects having all or several of the current
types assigned over attributes for objects with no types. However, in this way types, attributes,
and tags are not yet prioritized among each other. That is, as proposed in Section 3.3.1.1
attributes resulting from the similarity of objects with multiple types should have a higher
priority than attributes resulting from the similarity of objects with multiple tags. Therefore,
the individual query parts are additionally boosted21. For instance, the part of the query
representing the types is more boosted than the tags part. In this way, it is possible to
influence the search results according to the following ranking: types, tags, attributes. The
most frequent attributes resulting from that combined, boosted queries are suggested.

Finally, the results from both queries (i.e., database and Lucene) are merged together consid-
ering that suggestions resulting from attribute definitions have the highest priority. Besides
attributes, the other suggestions introduced in Section 3.3.1 are realized as follows.

4.2.3.2. Autocompletion

Autocompletion for attribute keys works similar to calculating attribute suggestions. The
main difference is that the query additionally only filters keys starting with the partial string
entered by the user (cf., Section 3.3.1.4, Figure 4.23). The search for prefixes (e.g., the partial
string of an attribute key) is efficiently supported by means of the Lucene index22.

20http://lucene.apache.org/java/2_9_0/api/all/org/apache/lucene/search/Similarity.html; visited on Jan-
uary 29th 2012.

21http://lucene.apache.org/java/3_5_0/scoring.html; visited on January 29th 2012.
22http://lucene.apache.org/java/3_0_0/api/all/org/apache/lucene/analysis/TokenStream.html; visited on

January 29th 2012.

112

4. Implementing Hybrid Wikis in Tricia

Figure 4.23.: Autocomplete suggestions for attribute keys.

Basically, users enter values using a simple input field (cf., Figure 4.24). Autocompletion
is provided when they start typing (cf., Figure 4.24 (1)). Then the autocomplete control
presents a mixture of textual values (cf., Figure 4.24 (2)), such as strings and numbers, and
links (cf., Figure 4.24 (3)). Even if links have a textual representation it is necessary that
users can distinguish them from simple values. Currently the autocomplete control is limited
to five visible hits. This seems very restrictive. However, in [SS11] the authors show “that
users prefer to refine their query rather than scanning the complete list of search results”.
That is, users change the partial search string until the expected value is shown within the
most frequent hits, even if that value is suggested before in a lower position.

Figure 4.24.: Autocomplete suggestions for attribute values.

Values shown in the autocomplete control are determined in three prioritized steps. Each step
is only executed if the given limit of five hits is not yet exceeded. We consciously decided to
prioritize these steps in order to prefer values originating from constraints.

The first step determines matching values according to related constraints. These values are
additionally filtered by the partial string given by the user. For instance, if an attribute is
related to an enumeration constraint (cf., Section 3.1.8.6) the values specified for this constraint

113

4. Implementing Hybrid Wikis in Tricia

(i.e., its enum values) are provided as autocomplete results, but only values starting with the
partial string the user has entered (cf., Figure 4.27). The related constraints are determined
using a database query. In case of a link constraint, link values are suggested filtered by
matching link target types (cf., Section 3.1.8.8). In this case, an additional Lucene access is
required using an exact query according to the constraint’s link target types. That is, it is
searched for content objects having at least one of the given link target types. The filtering
of matching values according to the partial string is currently performed in memory (e.g., the
enum values or the links resulting from the Lucene query).

The second step determines matching textual values, such as strings and numbers. This works
similar to the autocompletion of keys, that is, the search hits are filtered by values starting
with the partial string only. The difference is that the search context is additionally restricted
to values used in combination with the current attribute key in this case. That means values
occurring together with the current key are preferred in the search. Textual values for the
autocompletion of values are determined using the Lucene index.

The third step determines links to other content objects. For this purpose Tricia’s built-in
autocomplete mechanism is utilized which is also based on the Lucene index. The underlying
query considers the partial string within the object’s built-in content, tags, name, attributes,
and values in order to determine the set of relevant link hits. Therefore, it is possible that a
link is suggested even if the partial string is part of an attribute having a different key than
the current attribute.

4.2.3.3. Data type suggestions

Data type suggestions are provided as explained in Section 4.2.1.7. That is, a data type is
suggested when the user enters a value. As depicted in Figure 4.24 (4), a data type is presented
as a combobox. When a user starts typing this box changes to a data type recommended based
on the entered value. Additionally, if the user selects a data type which is rarely used by other
attributes in a similar context (i.e., with the same key and the same type(s)) this is indicated
in the UI (cf., Figure 4.25 (2)) and users can display the distribution of data types on demand
(cf., Figure 4.25 (1)). These mechanisms encourage users to follow the implicit schema.

Figure 4.25.: Data type suggestions are provided while entering values.

114

4. Implementing Hybrid Wikis in Tricia

4.2.3.4. Type suggestions

The realization of type suggestions is completely based on the tagging module and its UI
controls. That means type suggestions are provided when a user changes the type tags of a
content object (cf., Figure 4.26 (1)). The tagging controls also provide autocomplete support
for type tags built-in (cf., Figure 4.26 (2)).

Figure 4.26.: Suggestions and autocomplete support for types.

4.2.3.5. Constraint-based suggestions

As discussed in Section 4.2.3.2, constraints directly impact the autocomplete behavior since
for example values of an enumeration constraint are preferred in the result list (cf., Fig-
ure 4.27 (1)). This way, users are urged to choose constraint-based value suggestions prefer-
ably (cf., Section 3.3.1.5). A data type is suggested if an attribute is related to a data type
constraint. For instance, a user decides to fill out a suggested attribute. Then this attribute
provides a corresponding key in the edit dialog (cf., Figure 4.27 (3)). In this case, the data
type from a related data type constraint is given as default (cf., Figure 4.27 (2)).

Figure 4.27.: Improved input support for values based on attribute definitions and constraints.

115

4. Implementing Hybrid Wikis in Tricia

Furthermore, constraint-based suggestions are realized using advanced UI controls. Values
specified in an enumeration constraint are provided in a drop-down list if a user clicks in the
value input field (cf., Figure 4.28 (1)). In case of a date constraint, a date picker is offered
when clicking in the value field.

Attributes related to a multiplicity constraint show a corresponding number of input fields if
they are edited. In case of 0..1 and 1..1, exactly one input filed is given. However, even if only
one field is shown, users are not prevented to enter multiple values, except when using strict
constraints. In case of 1..* (or if no constraint is given), an empty field is shown allowing users
to enter an additional value (cf., Figure 4.24 (1)).

Default values are shown as part of attribute suggestions. That is, if an attribute suggestion
is related to a constraint the defaults are shown as its values (cf., Figure 4.28 (2)). By doing
so, it is very convenient for users to choose one or more of these values when filling out an
attribute suggestion.

Figure 4.28.: Facilitating data entry based on attribute definitions and constraints.

4.2.4. Transitions

Hybrid Wikis currently provide the following transitions supported by drag and drop:

∙ Transfer unstructured content to attributes (cf., Figure 4.29).

∙ Merge attributes.

∙ Transform a tag into a type tag.

In the first case, users can decide to create a new attribute or to merge the transferred value
into an existing one. In both cases, the data type is guessed and suggested to the user. For
instance, if the transferred value can be interpreted as a number the data type number is
suggested. Furthermore, transitions between data types are supported by manually changing

116

4. Implementing Hybrid Wikis in Tricia

Figure 4.29.: Transferring unstructured content to an attribute.

the combobox depicted in Figure 4.24 (4). The combobox only contains data types from
executable transitions.

The objectification of structured values (cf., Section 3.3.2.4) is integrated in the autocomplete
control. The control always provides an additional entry at the end of the autocomplete
suggestion list (cf., Figure 4.24 (5)). When choosing this entry a new wiki page is created
having the current partial (search) string as the name, for example in Figure 4.24 a new wiki
page with name Test is created. If the attribute is related to a link constraint specifying default
types, these types are additionally applied to the new page. For example, if the attribute Sub-
project (cf., Figure 4.24) is related to a link constraint having the default type project then
the page Test is additionally typed with project. This way, information is structured without
burdening users with additional, unnecessary effort. Furthermore, users are encouraged to
also structure the new page since it is likely that attribute suggestions are provided resulting
from theses additional types. Additionally, in this way extracted links are valid automatically
since they conform to the target types of the link constraint. This makes it very convenient for
users to transform textual values into links (and objects) while entering data. However, the
objectification of an existing value currently is only possible with the help of the autocomplete
control.

Objectification of semi-structured content (cf., Section 3.3.2.5) is currently supported for sim-
ple hypertext tables (cf., Figure 4.30 (1)). A table (cf., Figure 4.30 (2)) is transformed into
structured wiki pages having the first row’s cell as name per convention (cf., Figure 4.30 (3)).
This means that it is not possible to use a combination of multiple columns as the page’s
name as proposed in Section 3.3.2.5. Furthermore, it can be specified which types to assign to
the newly created pages. In case of already existing pages, the structure is updated accord-
ingly23. For instance, if a page already exists having an attribute with a key corresponding to
a column header the cell’s value is merged with the values of that attribute. In order to make
the merging of values more understandable for users and to show them which wiki pages are
updated or newly created we implemented a preview dialog. This way, users can check and

23If a value of a cell in the first row matches the name of an existing page, this page’s structure is updated.
No new page is created in this case.

117

4. Implementing Hybrid Wikis in Tricia

Figure 4.30.: Objectification of a semi-structured table from the built-in content of a wiki
page.

adjust the structures (e.g., change a page name or add additional types) before executing the
transition.

In order to support the objectification of unstructured content (cf., Section 3.3.2.6) we adapted
the Tricia autocomplete control used to insert links in the built-in content. We enhanced this
control with a special entry. Similar to the objectification of structured values, this entry allows
to transform a text value into a new wiki page having the text as its name. Additionally, the
original text is replaced by a link to that page.

4.2.5. Consolidation

Consolidation techniques are currently only realized as introduced in Section 3.3.3. In partic-
ular, changes to types and attribute definitions can be applied to related instances, that is,
users can decide

∙ to change the type tags of related content objects when renaming a type (cf., Figure 4.31
(1)) and

∙ to propagate renaming of an attribute definition to related attributes (cf., Figure 4.31
(2)).

118

4. Implementing Hybrid Wikis in Tricia

Figure 4.31.: Applying changes in the schema to the instances.

These techniques are implemented by using Tricia batch jobs. This is due to the fact that
potentially a huge set of content objects needs to be updated. This also means that such a
job possibly needs some time to be executed. Therefore, this may lead to situations where
structures manually entered by users are overwritten due to the delayed execution of a batch
job. This could be improved by using write locks for entities affected by update jobs until
their execution is finished. But the Tricia framework currently does not support such locking
mechanisms. However, since all changes to the structure are available in the version history
users are aware of unintended modifications and delayed write access is rather less critical.

Using constraints for data consolidation is not possible up to now (cf., Section 3.3.3.1). The
implementation of Hybrid Wikis also does not support data-based consolidation as discussed
in Section 3.3.4. In an earlier version of the implementation, changes in the data were auto-
matically propagated to the schema. For instance, assigning an attribute to a typed content
object automatically led to the creation of an attribute definition in the type(s). However, we
observed that users are more inhibited in contributing or changing information structures on
the data level if this immediately impacts the schema. Even if this was an observation only,
that is, not confirmed by any measurements or controlled user studies, we consciously decided
not to propagate changes in the data immediately to the schema. This is also due to the fact
that data and schema are modified by persons having different roles, that is, authors rather
modify the data whereas tailors tend to change the schema preferably (cf., Section 3.2.1).
However, in a later version of Hybrid Wikis it is conceivable that users can decide whether to
apply changes in data structures to the schema or not. This would bring authors and tailors
more closer together.

4.2.6. Export and import of structured content

Structured information of Hybrid Wikis can be accessed and provided by using the standard-
ized EMF exchange format. Types, attribute definitions, and constraints can be imported

119

4. Implementing Hybrid Wikis in Tricia

and exported by means of Ecore elements24 (e.g., classes, references, data types), data on the
instance level (i.e., wiki pages with type tags and attributes) as XMI files25.

Spreadsheets are frequently used in enterprises since they are lightweight means to create
and manage semi-structured information. Therefore, structured content (i.e., type tags and
attributes of wiki pages) can additionally be imported from and exported to Microsoft Ex-
cel spreadsheets26. In contrast to EMF, the implementation of Hybrid Wikis only allows
to exchange structured information of wiki pages, that is, schema information (i.e., types,
attribute definitions, constraints) cannot be exchanged based on spreadsheets currently. Im-
porting spreadsheets as structured pages has the several advantages, for example collaborative
authoring at a central place, version control, link management, and different tabular views
on the same data sets. By exporting structured pages to spreadsheets users can benefit from
advanced functional capabilities provided by for example Excel, such as calculations or pivot
charts. Structured information can be exported for example in all custom embedded table
views (cf., Figure 3.36 (6)) or in the type table view (cf., Figure 3.32 (4)).

We consciously decided to explicitly disable the validation mechanisms provided by Hy-
brid Wikis (cf., Section 4.2.1.6) when importing data from external sources (e.g., XMI files or
spreadsheet). This means data can be imported without being restrained by hard integrity
constraints, even in case of strict constraints or rigid types. Only if the Tricia framework de-
tects invalid build-in features (e.g., ambiguous wiki page names) the import is aborted. Any
further conflicts with the schema can be fixed after the import. Users are supported in finding
violations (cf., Section 3.2.4.1) and by harmonizing invalid values by means of consolidation
techniques (cf., Section 3.3.3).

4.2.7. Collaborative information management on federated data sources

In [RW11] the authors are facing the problem that information is scattered across a multitude
of special-purpose systems within an enterprise [MCS09]. In particular, they examine how
Hybrid Wikis can support federated data integration [Ko01, SL90] scenarios.

The introduced solution integrates information from the enterprise applications Microsoft
SharePoint 201027 (e.g., People and Documents) by using the OData protocol28 and Mi-
crosoft Exchange 201029 (e.g., Contacts and Emails) by means of the Exchange Web Ser-
vice (EWS)30.

The use cases primarily supported by the extended implementation of Hybrid Wikis are:

∙ View external objects (e.g., Contacts and People) with their structures (i.e., with type
and attributes).

24http://download.eclipse.org/modeling/emf/emf/javadoc/2.7.0/org/eclipse/emf/ecore/package-
summary.html#details; visited on April 05th 2012.

25http://download.eclipse.org/modeling/emf/emf/javadoc/2.4.3/org/eclipse/emf/ecore/xmi/package-
summary.html; visited on April 05th 2012.

26http://office.microsoft.com/en-us/excel; visited on April 05th 2012.
27http://sharepoint.microsoft.com; visited on March 10th 2012.
28http://www.odata.org; visited on March 10th 2012.
29http://microsoft.com/exchange; visited on March 10th 2012.
30http://archive.msdn.microsoft.com/ewsjavaapi; visited on March 10th 2012.

120

4. Implementing Hybrid Wikis in Tricia

∙ Define queries for external objects according to their structures.

∙ Specify links to external objects.

∙ Edit external objects’ attributes and synchronize the changes accordingly.

∙ Change types of external objects locally.

∙ Add additional attributes to external objects. If the underlying protocol allows the
definition of new attributes, synchronize them, if not, store them locally.

∙ Add additional unstructured content to external objects.

Figure 4.32.: An external object (from SharePoint) describing a lecture with unstructured, ad-
ditional content, external attributes (e.g., Speaker), and locally stored attributes
(e.g., Betreuer) which are linking to external objects (from Exchange) represent-
ing persons (e.g., Neubert Christian) according to [RW11].

Figure 4.32 depicts an external object (originating from a SharePoint server) describing a lec-
ture (cf., Figure 4.32 (1)) with unstructured, additional content (cf., Figure 4.32 (2)), external
attributes (e.g., Speaker, cf., Figure 4.32 (3)), and locally stored attributes (e.g., Betreuer,
cf., Figure 4.32 (4)) which are linking to external objects (originating from an Exchange
server) representing persons (e.g., Neubert Christian, cf., Figure 4.32 (5)).

The solution additionally allows to configure the content types (e.g., Lecture, Person) which
are to be integrated from the external datasources (e.g., SharePoint, Exchange). Type tags are
used to indicate the content types and attributes to represent the external objects’ properties.
The mapping between type tag and content type (e.g., for SharePoint Lectures the type tag
lecture is used) as well as the set of attributes that is shown when displaying an external
object (e.g., Title, Speaker, StartTime) can be configured.

In this way, external information is smoothly integrated with the local structures. For instance,
it is possible that objects shown in the type table view are either external objects or local

121

4. Implementing Hybrid Wikis in Tricia

wiki pages if both using the same type tag. Furthermore, queries can be specified uniform
across all structured information, that is, uniform across external and internal objects since
both using the concepts provided by Hybrid Wikis.

The results of that thesis indicate that Hybrid Wikis support federated data integration sce-
narios. However, the concepts provided by Hybrid Wikis are limited with regards to their
expressivity. That means in some cases external information cannot be represented in Hy-
brid Wikis that precise as in the source application (e.g., if the external data source provides
advanced data types, such as currency). Nevertheless, the authors show that Hybrid Wikis pro-
vide a holistic view on information within an enterprise scattered across different application
repositories. It is possible to integrate information from both kinds of data sources, struc-
tured and unstructured. Therefore, by connecting information islands within enterprises Hy-
brid Wikis help to bridge the gap between structured and unstructured information which is
one of the key challenges in knowledge management research [MN11a].

122

CHAPTER 5

Related Work

In this chapter, we present approaches related to Hybrid Wikis. First, we briefly describe
findings from our survey on integrated Enterprise 2.0 applications. Subsequently, we com-
pare Hybrid Wikis with tools and prototypes supporting information structuring described in
scientific literature.

In one of our research projects, called Enterprise 2.0 Tool Survey [BMN09, BMN10b], we
analyzed the functional capabilities of open source and commercial Enterprise 2.0 platforms.
In the first iteration, conducted in 2008, we examined seven prominent social software solutions
selected according to [Dr07], namely Alfresco Labs1, Atlassian Confluence2, Groupswim3, Jive
Clearspace4, Liferay Social Office5, Microsoft Office SharePoint Server 20076, and Socialtext7.
Additionally, we included our Enterprise 2.0 platform Tricia.

We identified the core content objects underlying each platform (e.g., wiki pages) by cre-
ating conceptual class diagrams using reverse engineering techniques and derived 51 Enter-
prise 2.0 services (e.g., tag support for all content objects) orthogonally applicable to the
content objects. Finally, we grouped these services in 13 more general categories (e.g., tag-
ging), resulting in a multi-dimensional classification and evaluation framework for integrated
Enterprise 2.0 applications. Based on this framework, we evaluated to which degree a tool
fulfills individual services by applying ratings between 0 and 4 (i.e., 0 stands for no capabili-
ties, 4 for complete coverage of the service). In [NST09a, NST09b] we put our framework in
context with similar approaches for classifying Enterprise 2.0 platforms.

1http://www.alfresco.com/products/collaboration; visited on February 22nd 2012.
2http://www.atlassian.com/software/confluence; visited on February 22nd 2012.
3The Groupswim product was acquired by salesforce.com in the meantime
(cf., http://www.cloudave.com/1072/breaking-salesforce-com-buys-groupswim).

4http://www.jivesoftware.com; visited on February 22nd 2012.
5http://www.liferay.com/web/guest/products/social_office; visited on February 22nd 2012.
6http://www.microsoft.com/Sharepoint/default.mspx; visited on February 22nd 2012.
7http://socialtext.com; visited on February 22nd 2012.

123

5. Related Work

The results8 from 2008 show that none of the examined approaches provides information
structuring capabilities9. Only MS SharePoint 2007 allows to change some meta data of files,
in particular the title property of a file.

In [Mi10] the author extends the framework from 2008 with additional services and categories
based on the analysis of a newer version of the MS SharePoint server. In particular, the
author shows the evolution of the Enterprise 2.0 services and categories from 2007 to 2010
by examining the functional capabilities of the two platforms Microsoft SharePoint Server
2010 and Tricia. Based on this work, we additionally evaluated the capabilities of XWiki10,
TWiki11, and a newer version of Jive and updated the framework according to our findings.

Figure 5.1.: sebis Enterprise 2.0 Tool Survey result matrix 2010 showing some categories,
services, and vendor ratings.

The findings12 from 2010 (cf., Figure 5.1) show that some vendors already include basic func-
tions to support the structuring of content at this time. However, in SharePoint only predefined
types of attributes can be assigned by adding additional columns to lists and libraries, XWiki
enables users to structure information by programming macros. The fact that leading social
software vendors include structuring capabilities for content indicates an increasing demand in
enterprises. But the results also show that information structuring is not yet well supported.

Based on these findings, in [Hu11] we carried out a literature review taking into account web-

8http://wwwmatthes.in.tum.de/wikis/enterprise-2-0-survey/2008-home; visited on February 22nd 2012.
9In 2008, Tricia provided a traditional wiki only, that is, a wiki without structuring support.

10http://www.xwiki.org; visited on February 22nd 2012.
11http://twiki.org; visited on February 22nd 2012.
12http://wwwmatthes.in.tum.de/wikis/enterprise-2-0-tool-survey-2010/home; visited on February 22nd 2012.

124

5. Related Work

based tools and prototypes supporting information structuring. In a first iteration, the author
identified 19 relevant approaches described in 31 scientific sources, including Hybrid Wikis.
Subsequently, the main characteristics (e.g., data model, input support, views) are extracted
from these sources and summarized in a multi-dimensional catalog. The catalog also indicates
the relation between literature source and characteristic, that is, which characteristic is men-
tioned in which source. Additionally, the characteristics are grouped in three more general
categories, namely system of structure, input & presentation, and navigation & search. Based
on this catalog, the author compared the identified characteristics with Hybrid Wikis. In par-
ticular, he identified characteristics only available in Hybrid Wikis (e.g., import and export
of structured content via EMF), not existing in Hybrid Wikis (e.g., inheritance of types), and
partially existing in Hybrid Wikis (e.g., widgets facilitating data input, such as date picker).
His work concludes with a discussion about how characteristics not or only partially exist-
ing could be beneficially integrated in Hybrid Wikis. For example, he proposes to support
inheritance of types to avoid the assignment of multiple type tags.

[Hu11] focuses on functional aspects of tools and prototypes supporting information structur-
ing discussed in scientific literature. Based on this work, we conducted an additional literature
analysis in order to broaden the scope and to compare Hybrid Wikis with other approaches on
a more conceptual level. The remainder of this chapter presents the results of this analysis.

In the period 1st February 2012 - 29th February 2012, we accessed the databases CiteSeerX13,
Google Scholar14, IEEE Xplore Digital Library15, ISI Web of Knowledge16, SpringerLink17,
Microsoft Academic Search18, and the digital libraries of Technische Universität München.
We focused our study on collaborative information structuring in enterprise web environments
by applying the keywords structure, structured, structuring, data, information, content, wiki,
emergent, adaptive, enterprise, web, collaboration, collaborative in different combinations.

We identified 28 approaches (including 17 semantic wikis) to be relevant for this thesis. The
selection was guided primarily taking into account literature

∙ elaborating on web-based tools or prototypes (or parts thereof) that

∙ support or facilitate information structuring in

∙ a collaborative or personal web environment.

In the next sections, we present the identified approaches using the following structure:

∙ Briefly introduce the core idea and key concepts underlying an approach,

∙ compare it with Hybrid Wikis by highlighting the main differences and commonalities,
and

∙ discuss pros and cons.

13http://citeseerx.ist.psu.edu; visited on February 29th 2012.
14http://scholar.google.com; visited on February 29th 2012.
15http://ieeexplore.ieee.org; visited on February 29th 2012.
16http://wokinfo.com; visited on February 29th 2012.
17http://academic.research.microsoft.com; visited on February 29th 2012.
18http://academic.research.microsoft.com; visited on February 29th 2012.

125

5. Related Work

We also included the W3C standard Semantic Web19 in our results (cf., Section 5.1). Even
if this standard is not directly realized as a tool or prototype its ideas and concepts are the
foundation for several of the other approaches. All approaches are described and discussed to
the best of the authors knowledge based on the sources cited in each section.

5.1. Semantic Web

The Semantic Web is a W3C standard to represent data in the Internet, often referred to as
Linked Data [BHBL09] or Open Data [Au08]. The W3C terms it as “a common framework that
allows data to be shared and reused across application, enterprise, and community boundaries”.
The inventor of the web, Tim Berners-Lee, defines it as “a web of data that can be processed
directly and indirectly by machines” [DSW06], furthermore he describes it as “a web of data,
in some ways like a global database” [BL98].

This means the Semantic Web is an approach to give meaning to web resources represented
as unstructured hypertext using meta data in order to make them processable outside the
environment they were created [KC04].

In particular, the approach aims at:

∙ Link, reuse, and search data across different information (re)sources in the World Wide
Web.

∙ Exploit new data connections using inference techniques [Ha04].

This meta data is represented by concepts provided by RDF [KC04]. The RDF core concept
is a Graph Data Model representing a resource’s meta data as triples, each consisting of a
subject, a predicate, and an object [Ha04]. A resource identified by a Uniform Resource
Identifier (URI) represents the subject. It provides a set of named predicates, its properties.
A predicate can also be a (named) resource. The property’s value represents the object. A
value can either be a literal or a resource again. An RDF graph consists of nodes represented
by the subjects and objects. The graph is directed, this means “it always points toward the
object” [Ha04] (cf., Figure 5.2).

120815 - Christian Neubert - Facilitating Emergent and Adaptive Information Structures in Enterprise 2.0 Platforms

SubjectSubject ObjectObject
Predicate

Figure 5.2.: An RDF triple represented by subject, predicate, and object according to [Ha04].

The RDF Vocabulary Definition Language, also called RDF Schema (RDFS), aims at the
definition of a common vocabulary describing a set of RDF resources within a specific appli-
cation domain. Similar to RDF it is recommended by the W3C [BG04]. The standardized
vocabulary allows the definition of classes and properties. For instance, a resource can be
declared as a class. Then it can be expressed that another resource is an instance of that class
using a property.

19http://www.w3.org/2001/sw; visited on February 2nd 2012.

126

5. Related Work

Due to the fact that RDFS is limited with regards to its expressive power, it is extended
by the Web Ontology Language (OWL). In particular, “OWL adds more vocabulary for de-
scribing properties and classes: among others, relations between classes (e.g. disjointness),
cardinality (e.g. ‘exactly one’), equality, richer typing of properties, characteristics of prop-
erties (e.g. symmetry), and enumerated classes” [MH04]. OWL provides three increasingly
expressive sublanguages, namely OWL Lite, OWL DL, and OWL Full. They are designed to
support specific communities of developers and users [MH04]. For instance, OWL lite enables
users to build a classification hierarchy and simple constraints, OWL DL focuses on compu-
tational completeness and decidability, and OWL Full supports the maximum expressiveness
of RDF [MH04].

In order to access RDF structures the SPARQL Protocol and RDF Query Language (SPARQL)
is utilized. Similar to SQL this language allows to retrieve and manipulate RDF data. Ac-
cording to [PS08], “SPARQL contains capabilities for querying required and optional graph
patterns along with their conjunctions and disjunctions”. Query results are represented as
an RDF graph. The complete technology stack provided by the Semantic Web initiative is
depicted in Figure 5.3.

Figure 5.3.: Layers of the Semantic Web. Source: http://www.w3.org/2007/03/layerCake-
small.png; visited on February 10th 2012.

The Semantic Web approach provides means to represent the concepts of Hybrid Wikis. On
the instance level, a content object with URL, attributes, and values represents an RDF triple.
Types, attribute definitions, and constraints from the schema can be mapped to elements of
RDFS and OWL. Furthermore, the design goals underlying RDF are quite similar to those of
Hybrid Wikis. Some of these goal are [KC04]:

∙ “Having a simple data model”.

∙ Using an extensible vocabulary.

∙ “Allowing anyone to make statements about any resource”.

However, the fact that OWL exists in three variants differing with regard to the expressive-

127

5. Related Work

ness shows that in some cases it matches not exactly the application domain. We developed
Hybrid Wikis starting with a minimal set of structuring concepts which we incrementally ex-
tended according to business users’ needs necessary for their day-to-day work. We consciously
decided to limit Hybrid Wikis regarding the expressiveness in querying data by allowing to
combine simple conjunctive search filters only and avoiding the definition of join operations. In
contrast, the Semantic Web approach supports complex inference and reasoning rules [Ha04].
Furthermore, RDF is a standard intended to share resources across application, enterprise, and
community boundaries. Hybrid Wikis are primarily designed for the application within enter-
prises. That means, in most cases it is not necessary to expose the content objects’ structure
globally in the web. However, in some cases it can be beneficial to make structures available
for external stakeholders, for example in order to share (structured) product descriptions with
customers. Even if Hybrid Wikis currently do not support the RDF standard it would be sim-
ple to map the concepts to RDF and OWL. Then RDF/OWL statements could additionally
be provided as annotated meta data within the page content (hidden from the users) in order
to share structures globally in the web (e.g., to make the content of Hybrid Wikis accessible
to semantic web search engines [GMM03]). Even if Hybrid Wikis are not based on Semantic
Web technologies other wiki approaches follow this idea (cf., Section 5.5).

5.2. Wiki templates

Wiki templates, such as those heavily used in the Wikipedia project (cf., Figure 5.4), enable
authors to reuse content structures among wiki pages.

Figure 5.4.: Wikipedia template representing Austrian towns applied to Innsbruck according
to [AL07].

In [HLS05], the authors discuss the need for structure in wikis by introducing the following
five requirements:

128

5. Related Work

∙ users want to create structured content,

∙ content should be readable for authors (i.e., should not contain any layout elements),

∙ users should be aware of unintended changes to the structure,

∙ users should be able to change the structure according their needs, and

∙ user-created structure should be reusable for similar tasks.

The presented solution to these requirements are wiki templates. Users can assign a template
to a wiki page when a new page is created. A template has a name and consists of two further
parts both defined in an extended wiki markup language. The edit part contains named
placeholder fields that can be filled when a page using this template is edited (cf., Figure 5.5).
The display part defines the appearance of a page for wiki readers. Therefore, a template
describes both the page’s structure as well as its layout.

Although Hybrid Wikis explicitly do not support templates, attribute and type (-tag) sugges-
tions based on a statistical analysis of type tag and attribute combinations enable authors to
reuse well established (type) structures, similar to templates. However, Hybrid Wikis differ
from wiki templates as follows:

∙ Assigning a template to a page can be considered as assigning a type. Therefore, at-
tributes can only be used together with a type, assigning attributes independently is not
possible.

∙ It is only possible to assign one template to a wiki page.

∙ From the author’s knowledge it is not clear if a wiki template can be removed from a
page or replaced by a different template without losing the filled values.

∙ New attributes can only be specified by changing the template which requires the usage
of a specific template editor. This means users need to change the current edit context
(i.e., from page edit to template edit).

∙ Users can tailor templates only by using a wiki markup-like definition language, also
including HTML-like elements. Therefore, customizing a template requires web pro-
gramming experience.

∙ Templates describe the structure and the appearance of wiki pages. In Hy-
brid Wikis structure and content are separated and three different built-in views
are provided in order to represent pages according to their degree of structure.

∙ The approach enables users to define who is allowed to modify a template within a wiki.
Hybrid Wikis follow the wiki way [LC01] since all wiki editors are allowed to modify
types, attribute definitions, and constraints.

∙ When a page is edited the placeholders can only be filled with textual content, that is,
no further data types are provided (e.g., number and date).

As indicated, quite a lot differences between both approaches exists. However, Hy-
brid Wikis meet the requirements as introduced before. In Hybrid Wikis

∙ users can create structured content by using types, attributes, and constraints,

129

5. Related Work

∙ content is readable for authors since built-in content and structure are separated,

∙ tailors are aware of unintended changes since types and attribute definitions can be
observed, are under version control (cf., Figure 3.2.4), and validation messages indicate
derivations from defined structures,

∙ users can change the structure according their needs on the instance level (wiki pages)
or directly in the schema, and

∙ user-created structure can be reused by means of type assignments and attribute sug-
gestions, even across space boundaries.

Figure 5.5.: Wiki edit template specifying two sections by using wiki markup (Bibliographic
Data and Summary) with properties (e.g., Author) and placeholder input fields
(wikiTextInput) according to [HLS05]

In [DIVZ08] different approaches using wiki templates are compared to each other. In a first
step, the authors identified user activities that can benefit from wiki templates taking into
account the roles visitor, editor, and tailor. Subsequently, two different templating models
are identified, namely functional templating and creational templating. In the former case,
templates are invoked by name and parameters, such as used in [Pa09]. This has the advan-
tage that changes in the template are automatically available in the instance pages, that is,
templates and instances never diverge. A disadvantage is that the template is not directly
editable in the page instance since the template’s source is maintained in a separate page. In
case of creational templating, a template page is simply copied for purpose of reuse. Therefore,
the template source is always directly available in the instance page. However, this has the
disadvantage that changes in the instance are not reflected in the template (and vise versa)
since they are not connected to each other.

Based on one of the authors earlier works [DIZ06], the notion of Lightly Constrained Templat-
ing is introduced which allows to combine creational templating with integrity constraints. In
this approach a validation rule is created when a template is copied. This rule checks if the

130

5. Related Work

structure of the template conforms to the instance’s structure when the instance page is saved.
User are made aware of rule violations by showing validation messages (cf., Figure 5.6). This
counteracts the deviations of templates and instances.

Hybrid Wikis tend to follow the functional templating approach since a type assignment
results in suggesting attributes related to that type. As mentioned above, this approach has a
disadvantage since the structure (i.e., template) is defined in a different place than the content,
leading to non-linearity of the markup [DIVZ08]. However, in Hybrid Wikis attributes and
types can freely assigned to pages without the need to change the context. Only in case of
defining constraints or binding an attribute to a type, the user needs to leave the current
context. In a future version of Hybrid Wikis, it is conceivable that constraints can be defined
and modified directly on the page level.

Figure 5.6.: A wiki page using Lightly Constrained Templating mechanisms indicating valida-
tion errors caused by deviations from the master template according to [DIVZ08].

Templates provide means to automatically extract structured information from wikis, the
template name can be interpreted as a type, named placeholders as attribute keys, and link
values filled in placeholder fields on instance pages as references between types. Approaches
following this idea in the context of Wikipedia are for example [AL07, IB07, WW08] or the
DBpedia project (cf., Section 5.4).

5.3. DynaTable

In [Ar09] DynaTable is introduced, an extension for the MediaWiki engine supporting struc-
tured data. The authors address the problem that tables directly defined in the page con-

131

5. Related Work

tent are often copied in order to include them in other pages for specific information needs
(e.g., showing only a subset of the original table’s columns in a different order). The solution
provided allows to

∙ maintain named data tables and table data separately and in a dedicated space (i.e., not
in the content of a regular page),

∙ include tables in page content using a specific markup tag referencing their names
(cf., Figure 5.7), and

∙ create custom table views (e.g., by selecting a subset of columns).

The approach is similar to the custom embedded table view as introduced in Section 3.4.2.
The difference is that in DynaTable data cannot be entered at the place the table is displayed.
That means users have to leave the current context to enter data in a dedicated space. In
Hybrid Wikis data can directly be entered in the table view according to the current search
filter resulting in newly created structured wiki pages.

Figure 5.7.: Code embedded in a wiki page (lower part of the figure) to render a table (upper
part of the figure), named Companies, with data defined in a separate space
according to [Ar09].

5.4. DBpedia

In [Au08, Ko09, Le09] DBpedia is introduced as a community-driven project with the objective
to extract structured information from Wikipedia content and to provide this information
publicly in the web. This way, Wikipedia data can be referenced from other web resources
and queried similar to records in a database. This makes it possible to build applications
and websites based on Wikipedia datasets. By interlinking with other open data collections
(cf., Figure 5.8) DBpedia serves “as a nucleus for an emerging Web of open data” [Au08].

MediaWiki, the platform underlying Wikipedia, supports simple wiki markup and wiki tem-
plates in order to present content in a specific way (cf., Section 5.2). Infoboxes are special
kinds of templates describing wiki pages with similar content, such as cities (cf., Figure 5.4).
Templates are represented as wiki markup and embedded in the wiki page content. The DB-
pedia approach syntactically analyses the markup of Wikipedia pages using pattern matching
techniques in order to extract RDF statements from for example templates and links. More
details about the extraction algorithm are described in [AL07].

Even if the attribute box in Hybrid Wikis is inspired by the layout of Wikipedia’s infoboxes20,

20http://en.wikipedia.org/w/index.php?title=Help:Infobox&oldid=479756931; visited on March 15th 2012.

132

5. Related Work

our approach does not support the idea of embedding templates in the content. Structured
and unstructured information is clearly separated and the structure is only presented similar
to infoboxes. Furthermore, in the DBpedia project structured information is automatically
extracted from the wiki contents. In contrast, in Hybrid Wikis information is manually struc-
tured and users are guided by automatically generated suggestions. However, it would be
interesting to evaluate which parts of the built-in content in Hybrid Wikis can be utilized in
order to additionally facilitate information structuring. Since DBpedia is part of the Semantic
Web initiative a primary goal is to make structure publicly available in the web. In a future
version, Hybrid Wikis could expose theirs structures as an RDF graph publicly in the web.
By doing so, Hybrid Wikis could also be a part of the interconnected graph of open datasets
as proposed by the DBpedia approach.

Figure 5.8.: DBpedia as a hub of interlinked data according to [Bi09].

5.5. Semantic wikis

Semantic wikis [Bo09, CCT04, KSV07, Sc08] enhance traditional wikis, such as the Medi-
aWiki [Ba09], with capabilities to access the pages’ content similar to a database. The content
is additionally enriched with meta data represented in a formal language. This language is
interpretable and processable by machines. In most of the existing semantic wikis meta data is
represented by concepts provided by the RDF standard. By means of RDF statements it is
possible to annotate elements within unstructured wiki pages, such as text fragments and links.
For instance, it can be expressed that an individual page represents a concept (e.g., project)
using OWL annotations and another page being an instance of that concept, additionally pro-
viding some attributes (e.g., budget) using RDF properties. The page with its URL represents

133

5. Related Work

the subject, the used annotation the predicate, and the annotated element the object. These
three constituents form an RDF triple (cf., Section 5.1). For purpose of querying data SPARQL
is used. However, some semantic wikis also use their own representation of annotations and
query languages.

Semantic wikis are applied in several domains for different purposes. For instance, in [HL09]
it is evaluated how they bring benefits in the area of requirements engineering, in [TGP11] its
is explained how they support project management activities, in [Ga10a] how quality man-
agement in software development projects is facilitated, in [Or06b] requirements for personal
knowledge management are addressed, and in [DH10] wiki-based modeling of processes and
UML (class-)diagrams is presented. The capabilities of different semantic wiki approaches are
compared in several studies (e.g., [Bu11a, De05a, HL09, Mi08, Sc08]).

In the following, we put the most prominent approaches in the context of Hybrid Wikis and
highlight the main differences and commonalities.

5.5.1. Semantic MediaWiki

The Semantic MediaWiki project21 [KVV06] is the most prominent example in the category of
semantic wikis. This project adds “database-like structuring and querying capabilities on top
of an existing wiki, without requiring users to develop or adhere to a rigid database schema
when authoring content”. Additionally, it “includes various features for browsing, searching,
and aggregating the wiki’s content”22 and allows users to embed queries in the pages. Even if
the annotation language is given in wiki syntax, meta data can be exported to the standardized
format RDF/OWL. In [Vö06] the core concepts of Semantic MediaWiki are introduced:

∙ Categories, to classify pages.

∙ Typed links, to classify links.

∙ Attributes, to represent simple properties of a page.

In that article, the authors propose to use these concepts to make Wikipedia articles accessible
to external applications. Categories corresponds to types, typed links [KVV05] to link values,
and attributes to key-value pairs (not having link as data type) in Hybrid Wikis.

Unlike in Hybrid Wikis, in Semantic MediaWiki this meta data can only be added to the
pages by directly editing the markup in wiki syntax. For instance, in order to express that the
page describing Development Project A is of type project and has a specific budget the user
needs to manually produce the markup as depicted in Figure 5.9.

In this example, only the value 200.000 is shown in the content when the page is displayed, the
attribute key has Budget is hidden. Additionally, it is indicated that the page is categorized as
a Project when viewing the page. The fact that users need to learn and use a special annotation
syntax when editing a page makes it laborious for them to manage structured and unstructured
content. Additionally, users are not assisted when entering attributes and categories. This
means they need to know existing structures in order to (re)use them. This is due to the

21http://semantic-mediawiki.org; visited on February 10th 2012.
22http://semantic-mediawiki.org/wiki/Help:Browsing_and_searching; ; visited on May 10th 2012.

134

5. Related Work

Figure 5.9.: Semantic annotations used in the markup editor provided by Semantic MediaWiki.

fact that neither attribute nor type suggestions are provided built-in. Potentially, this leads
to redundancies and inconsistencies in the usage of vocabulary and terms. Furthermore,
the page’s structure is only available in a special view in Semantic MediaWiki. Instead, in
Hybrid Wikis the structures (types and key-value pairs) are treated as ‘first class content’ and
not as additional meta data hidden in the markup. Therefore, available structures are always
visible when viewing a content object per default (cf., Section 3.4).

Similar to Hybrid Wikis the Semantic MediaWiki approach aims at the collaborative develop-
ment of models. In [Gh08] the approach is used to collaboratively develop an OWL ontology
representing a specific application domain in different evolution phases. In a preliminary phase,
the knowledge about the domain to be modeled is acquired from domain experts resulting in
informal descriptions representing the domain in structured wiki pages. In a subsequent phase,
these descriptions are merged together resulting in a formal model, the OWL ontology. The
authors point out “that the informal model is not kept up-to-date with changes made in the
formal model at this stage because reflecting the changes made into an OWL ontology back
to SMW is not a trivial task”. In Hybrid Wikis it is not required to export ontologies for
merging purposes and re-import the merged ontology afterwards since the consolidation tech-
niques as introduced in Section 3.3.3 facilitate the harmonization of different schemes within
the application, additionally harmonizing related instances accordingly, if needed.

5.5.2. Semantic Enterprise Wiki (SWM+)

The Semantic Enterprise Wiki (SWM+)23 provides a set of open source extensions to compen-
sate some shortcoming of the Semantic MediaWiki approach. In [Pf08] interface enhancements
to Semantic MediaWiki are introduced and evaluated.

23http://www.smwplus.com/index.php/Semantic_MediaWiki_Plus; visited on February 10th 2012.

135

5. Related Work

In particular, this article addresses the research questions:

∙ “How can users unfamiliar with semantic technologies be helped and motivated to specify
the many necessary typed links in a way that results in a useful web of annotations?”

∙ “And how can visitors of the resulting pages be helped to make maximal use of the
added semantic information?”

In this work, the authors introduce a separate graphical annotation mode, called semantic
toolbar. This toolbar helps to provide semantic meta data without the need to manually
annotate contents within the wiki markup, additionally supported by autocompletion. When
activating the toolbar it shows the page’s categories and properties (cf., Section 5.5.1) as a list
(cf., Figure 5.10). Furthermore, it provides attribute suggestions as well as means to specify
queries and to browse the ontology underlying the meta data. In [HSP09] these extensions to
Semantic Media Wiki are further detailed.

Figure 5.10.: Semantic Toolbar provided by SWM+ showing categories and properties.

The approach differs from Hybrid Wikis as follows:

∙ A separate annotation mode (i.e., the semantic toolbar) is needed to enter structured
information. In Hybrid Wikis structures are shown as part of the wiki page and can
directly be edited in-place.

∙ Users have to create and edit both, the content of the wiki page and the semantic
annotations. Additionally, users have to be aware of content and annotations being
synchronized, which is an laborious and error-prone task.

∙ No attribute (property) suggestions based on the types (categories) are provided.

5.5.3. AceWiki

In [Ku08a, Ku08b, Ku08c] AceWiki is introduced. The aim of this project is to create a knowl-
edge base using Natural Language Processing (NLP) techniques. In particular, AceWiki uses

136

5. Related Work

the controlled natural language Attempto Controlled English (ACE)24. A graphical predictive
editor [KS08] helps to create syntactically correct sentences according to the underlying ACE
(cf., Figure 5.11), additionally supported by autocompletion. These sentences can automati-
cally be translated into logic and in most cases in an OWL ontology. In [Ku09] case studies
showed that AceWiki can serve as a tool to support “domain experts with no background in
formal methods” in creating “expressive ontology languages”. Besides AceWiki, many further
approaches [HZG09, WG07, ZMG08] combine NLP with wiki technologies.

Similar to Hybrid Wikis NLP-based wikis try to avoid users, in particular domain experts,
getting in contact with complex technologies, such as OWL and RDF, in order create a
knowledge base. That means, both approaches facilitate the structuring of data. However, in
NLP-based wikis this is achieved by using controlled natural languages, in Hybrid Wikis by
using a familiar interface based on forms and spreadsheet-like tables.

Figure 5.11.: Predictive editor in AceWiki using the controlled natural language ACE to create
sentences.

5.5.4. OntoWiki

In [TFH10, DAR06, HBS06] OntoWiki25 is introduced as a tool supporting “agile, distributed
knowledge engineering scenarios”. Its implementation is based on Powl [Au05a, Au06], a
framework for Semantic Web application development. In [ADR06] the authors motivate
their work by identifying obstacles regarding wikis using semantic annotations within the
markup, such as in the Semantic MediaWiki project (cf., Section 5.5.1).

In particular, they see obstacles regarding

24http://attempto.ifi.uzh.ch/site; visited on February 10th 2012.
25http://ontowiki.net/Projects/OntoWiki; visited on February 10th 2012.

137

5. Related Work

∙ the usability since editors have more syntactic possibilities and

∙ the scalability since changes in the knowledge base require to parse the wiki text and
apply them accordingly.

The main goal of the approach is “to rapidly simplify the presentation and acquisition of
instance data from and for end users”. For this purpose, OntoWiki provides a generic user
interface for viewing and editing RDF resources (cf., Figure 5.12). This interface tries to avoid
mixing “text editing with knowledge engineering”. This goal is similar to Hybrid Wikis in
which unstructured and structured information is clearly separated from each other. But in
consequence this also means that users in OntoWiki can access structured data only. That is,
it is not possible to provide information without giving them a meaning. Even if a property can
have rich text as value (cf., Section 3.1.5.4), it is not possible to create a resource (e.g., wiki
page) only consisting of plain unstructured content. Therefore, users are always forced to
provide a key, even if this is not required in any case. In contrast, Hybrid Wikis support both,
plain unstructured content26 and structured elements (i.e., attributes and types) as well as
transitions between them.

Figure 5.12.: Resource editor provided by OntoWiki.

Furthermore, OntoWiki supports domain specific views, such as maps and calendars, inverse
links, suggestions for similar instances (of the same type), and inplace editing facilitating the
creation of and navigation in information structures.

26Additionally, unstructured content can contain semi-structured information, such as (untyped) links and
tables (cf., Section 3.1.2), but no meta data.

138

5. Related Work

5.5.5. Kaukolu

In [Ki06] Kaukolu27 is introduced as a semantic intranet wiki using RDF annotations to
represent information structures. It is part of the Mymory project [Ki08], following the idea of
contextualized annotations (e.g., reading annotations gathered by means of an eye tracker).

In [Ki06] Kiesel reveals the following problems with existing semantic wiki solutions.

∙ Integration of imported RDF data seams to be amendable since ontologies cannot be
modified by the wiki’s users.

∙ A subject of an RDF triple inevitably represents the URI of the wiki page the triple is
located at. For instance, it is not possible to represent a set of products (with price and
description) within the content of an individual page.

∙ Entering RDF triples is tedious since users need to know the concepts underlying the
ontology. Furthermore, annotated markup is less readable than plain text.

The approach provides mechanisms to “associate arbitrary RDF with a wiki page”. This works
for the definition of new RDF statements and additionally for imported ones. For instance, it
is possible to import an existing ontology (e.g., RDFS) to a wiki page (i.e., the page’s markup
represents the ontology afterwards). This allows users to change an ontology according to the
wiki way [LC01], quick and easy, by simply modifying the wiki text. However, the author also
stated that it is quite difficult to directly change the RDFS without any tool support (e.g., by
means of an ontology editor). In Hybrid Wikis the schema (types, attribute definitions, and
constraints) is represented separately and changing it is supported by an UI.

Furthermore, in Kaukolu a wiki page can represent more than one subject. In particular, it is
possible to mark individual sections within a page as subjects. By doing so, large sets of objects
(e.g., a table of product descriptions) can be represented on a single page without the need
to create an individual page for each object (e.g., one product per page). In Hybrid Wikis it
is not possible to merge multiple individuals on one page28. This is due to the fact that a
page’s URL serves as a conceptual identity in our model (cf., Section 3.1.2), similar to URIs
in Semantic MediaWiki. Therefore, in Hybrid Wikis showing a set of products on a single
page is only possible either by using an embedded custom (table) view (cf., Section 3.4.2) or
by creating a semi-structured table within the built-in content. In the latter case, with little
effort the table can be transformed into fully-fledged objects and an embedded custom table
view showing them (cf., Section 3.3.2.5). Additionally, a custom table view allows to create
a new object according to the view filter with one click and supports in-place editing for all
shown instances. This makes it convenient for users to create and modify structured objects
(e.g., products) without the need to leave the current context.

In order to make annotated content more readable in Kaukolu URI namespaces can be hid-
den by defining aliases for resources and predicates. Based on these aliases, autocompletion
supports the user in annotating the wiki content (cf., Figure 5.13). Even if aliases improve
the readability for authors, this “often leads to awkward sentences”. This is particularly true
when subjects are declared within the content (cf., Figure 5.13). In Hybrid Wikis structured

27http://kaukoluwiki.opendfki.de; visited on February 10th 2012.
28Even if record values can be considered as anonymous objects, they can only be accessed via their owning

content object.

139

5. Related Work

and unstructured content are clearly separated, therefore content is always human-readable
even in edit views.

Figure 5.13.: Kaukolu’s page editor showing suggestions based on imported ontologies accord-
ing to [Ki06].

5.5.6. Artificial Memory

In [LOZ04, Lu05, Lu09] Artificial Memory29 is introduced, a semantic wiki for personal and
organizational knowledge management. The authors identified some drawbacks regarding
annotations and ontologies. In particular, they stated that

∙ ontologies provided as annotated meta data lead to denormalized data since ontology
pages are separated from instances pages,

∙ it is difficult to keep concepts and instances synchronized since authors have additional
maintenance efforts,

∙ information is only partly annotated, and

∙ the connection between a document and the ontology cannot be made explicit.

The approach consciously tries to avoid the annotation of text strings due to potential risk of
redundancies and denormalization of data. This is achieved by storing information as chunks,
which are later serialized to hierarchically (tree-like) structured documents (cf., Figure 5.14).
Therefore, Artificial Memory inverts the process of document creation “by first writing and
semantically networking information chunks and only afterwards serializing those into docu-
ments”. By doing so, documents are always represented by meta data and the relationship
between document and ontology can be maintained more easily and consequently stays con-
sistent. Additionally, redundancies are avoided since information chunks (e.g., parts of the
document’s hierarchy) or complete documents can be reused in other contexts by embedding
them. Furthermore, a triple browser provides means for better navigation and facilitates the
direct manipulation of structured information. When entering or modifying triples autocom-
pletion is provided and consistency is checked in real-time.

Similar to Hybrid Wikis Artificial Memory

29http://www.artificialmemory.net; visited on February 10th 2012.

140

5. Related Work

∙ avoids the usage of annotations by providing a graphical user interface,

∙ facilitates the consistent use of terms and structures by means of autocompletion,

∙ reduces information redundancies by supporting embedded views, and

∙ allows the direct manipulation of structured instances within embedded views.

The main difference is that users in Artificial Memory are forced to structure information in
order to create a document. This is due to the fact that a document is represented by a set of
serialized information chunks only. In contrast, in Hybrid Wikis a content object can consist
of both kinds of information, structured and unstructured. Therefore, wiki authors have the
freedom to structure their objects.

Figure 5.14.: Hierarchical document in Artificial Memory showing the triples of a paper enti-
tled ArtificialMemory Prototype for Personal Semantic Subdocument Knowledge
Management.

5.5.7. HYENA

In [RK06, Ra08, Ra10a, Ra10b] the HYENA platform is introduced as a mixture of RDF editor
and wiki, that is, it combines structured and unstructured data. The approach follows the idea
of incrementally structuring the wiki content (e.g., by tagging wiki pages), but the structure
has a more complementary character and is considered to be optionally added afterwards.
Even if the platform is based on the Semantic Web stack the focus is not to use RDF as
knowledge representation but rather as standardized data structure.

HYENA can be used offline and online. Offline it is an Eclipse project (cf., Figure 5.15) which
consists of directories containing two kinds of content items, files and RDF repositories. A
repository can either be an RDF file or a reference to a central database. Wiki pages and
their contents are also stored in these repositories. Therefore, a repository can contain both,

141

5. Related Work

structured and unstructured data. Additionally, for each data a description is stored. This
description is used by so called inspectors in order to decide how data is presented in edit
views.

Figure 5.15.: HYENA’s Eclipse-based offline RDF editor according to [Ra10b].

Repositories created offline (i.e., by means of the Eclipse desktop application) can be published
to the web. Each repository is displayed as a web site (cf., Figure 5.15). If the repository
represents a wiki page, it is displayed in wiki style accordingly. Resources created online or
offline can be synchronized and merged. In order to structure wiki content (e.g., creating
links to resources or tagging pages) a special syntax is used in HYENA, but the annotation
of content with meta data is not possible.

Compared to other semantic wikis HYENA provides wiki capabilities based on an RDF ed-
itor and does not try to integrate RDF into a wiki. RDF in this approach merely serves
as a standardized storage format (primarily not intended to be used for reasoning purposes).
Therefore, in HYENA there is no need to additionally annotate wiki contents with RDF state-
ments. This is similar to Hybrid Wikis since structured data is stored separately. However, in
Hybrid Wikis an own representation of structure is used instead of RDF. Another difference is
the possibility to maintain resources not only in the web interface but also through an editor
running on the client’s machine as a desktop application.

142

5. Related Work

Figure 5.16.: HYENA’s web editor showing a wiki page selected in the list of available RDF
resources according to [Ra10b].

5.5.8. IkeWiki

IkeWiki [Sc06, SGW05, SWG06]30 and its derivation SWiM [La07, La10, La11, LK06]31 are
semantic wikis supporting collaborative knowledge engineering. The main purpose of these
approaches is to lower the technical barrier for users in creating meta data. This is mainly
achieved by

∙ providing an interactive interface for annotations,

∙ supporting authors with (ontology-based) suggestions (e.g., link and page types),

∙ rewarding annotations with better presentation, navigation, and search capabilities,

∙ hiding advanced features from simple users, and

∙ supporting different stages of formalization (e.g., informal texts and formal ontologies).

While these goals are quite similar to the design principles underlying Hybrid Wikis, the main
difference is that annotations in IkeWiki are associated with elements in the page’s content.
Even if the wiki text and annotations are separated (i.e., meta data and wiki markup are not
syntactically mixed) authors need to change to a special annotation mode (cf., Figure 5.17)
in order to specify meta data. In Hybrid Wikis textual content and structure are clearly
separated from each other but can be maintained together.

30http://sourceforge.net/projects/ikewiki; visited on February 17th 2012.
31http://kwarc.info/projects/swim; visited on February 17th 2012.

143

5. Related Work

Furthermore, the approach aims at reusing existing knowledge sources, primarily articles from
the Wikipedia encyclopedia. Therefore, it relies on the compatibility with the wiki markup
underlying the Wikipedia platform in order to allow users to import articles from there.

Another difference is that pages in IkeWiki can only be associated with types (and properties)
available in the system, that is, with types according to the ontologies currently loaded in the
wiki. Even if new types and properties can be created by extending these ontologies users
always need to leave the current edit context before they can associate individual pages with
that extensions. In Hybrid Wikis any label (type tag) can be used to type a content object,
independent of already existing type definitions. Additionally, in IkeWiki some types cannot
be removed directly by the users since they are determined by reasoning mechanisms and
automatically assigned to the page. “For example, if a link from ‘Mozart’ to ‘Die Zauberflöte’
is annotated by ‘composerOf’, the system will automatically associate the type ‘Composer’
with the page describing ‘Mozart’, and this type cannot be deleted directly by the user”. In
Hybrid Wikis type suggestions are used instead (cf., Section 3.3.1.3). Therefore, authors are
urged but never forced to use a specific type.

Figure 5.17.: The main window of IkeWiki showing navigation functionality on the left, wiki
content in the middle, and meta data (e.g., incoming links) on the right. Source:
http://www.wikimatrix.org/screenshots/screen_28_1.png; visited on February
19th 2012.

5.5.9. Makna

In [DST06, NS06] Makna is introduced as a wiki-based tool supporting knowledge engineering
tasks. The approach focuses on facilitating the creation of semantic content for non-technical

144

5. Related Work

users. This is mainly achieved by providing an interface that supports users to insert RDF
statements in the wiki text. For instance, UIs are provided to insert single predicates or com-
plete triples (even triples that do not appear in the pages). Additionally, these interfaces guide
the users in entering data by supporting autocompletion based on the ontologies underlying
the system. Consistency between the instances and the ontologies can always be guaranteed
since users are rather enforced to enter valid statements only32.

In contrast to this, Hybrid Wikis consciously avoid enforcing validation rules, users are always
free to add structures according to their business demands. Even strict constraints or rigid
types can be softened by the wiki editors if they are disturbing. Furthermore, in Makna
ontologies can only be modified by the wiki administrators, in Hybrid Wikis all wiki editors
can create and change types, attribute definitions, and constraints.

Figure 5.18.: Makna assistant to insert predicates in the wiki text according to [DST06].

5.5.10. KiWi

The EU-project KiWi33 [Da08, Si09] is the successor of IkeWiki (cf., Section 5.5.8). In [Sc09] it
is described as “a flexible and adaptable platform for building different kinds of Social Semantic
Software, powered by Semantic Web technology”. In that article, the authors identified one
main problem of existing Enterprise 2.0 platforms: even if they support different kinds of
content objects, such as wiki articles and blog posts, changing an article to a post or creating
new kinds of content types is not possible without changing the database. This is due to
the fact that each content type is individually represented in the data model underlying the
platform. That problem is addressed by so called “Content Versatility”. The main idea is to
offer different views for the same content item without modifying the underlying data model.
A content item is a piece of information (identified by URI) consisting of human-readable

32The authors plan to support lightweight consistency in a future version.
33http://www.kiwi-project.eu; visited on February 17th 2012.

145

5. Related Work

content and associated meta data. A view is an extension (called “KiWi Application”) to
present content items to users in a specific way, for instance as a wiki page (cf., Figure 5.19).
The complete core data model is represented by content items, tags, and triples.

User-defined tags can be related to content items again. “For example, the content item that
describes ‘Mickey Mouse’ could be tagged with the label ‘Mouse’, thereby associating it with
the content item describing ‘Mouse’ (the animal). The tagged content item would be ‘Mickey
Mouse’, the tagging content item would be ‘Mouse’, and the tag label used for tagging would
be ‘Mouse’, which is a tag label of the content item ‘Mouse’”.

meta data is represented in RDF triples in the KiWi system. In order to maintain additional
information, such as versions or transactions, these triples are extended accordingly. Since it is
not required to use a schema definition in RDF the data model can be changed at runtime.

Figure 5.19.: A semantic wiki page created based on the KiWi platform according to [Sc09].

KiWi is quite similar to Hybrid Wikis since both approaches provide a technological infras-
tructure for building social software applications supporting generic services in the core, such
as versioning, tagging, and information structuring (based on a small set of structuring con-
cepts). These services are orthogonally applicable to any kinds of content objects in the core
or implemented within extension plugins, that is, KiWi Applications or Tricia plugins respec-
tively. The difference is that content objects in Hybrid Wikis are individually represented
in the data model, for example wiki page and blog post are both individual entities. This
means a wiki page cannot be displayed as blog post as it would be possible in KiWi. Ad-
ditionally, a new content type in Tricia can only be created by implementing a new entity
type (e.g., tweet) which requires changing the database accordingly. In KiWi new content
types can be introduced by programmatically extending the data model and implementing
corresponding extension views, but without modifying the database.

Since tags in KiWi are treated as content items it is possible to tag tags. This enables
meta modeling, which is consciously avoided in Hybrid Wikis since content objects, types,
and tags are realized as different concepts. Another difference is that the approach tries to
semi-automatically (i.e., in interaction with the user) extract meta data from the content.

146

5. Related Work

In Hybrid Wikis information can only manually be structured. Furthermore, KiWi provides
the possibility to create custom personalized views of content items based on meta data.
In Hybrid Wikis meta data can be used to create custom views embedded in the content
(cf., Section 3.4.2). Additionally, the presentation of individual content objects can be changed
(e.g., hybrid view, structured view, cf., Section 3.4.1) but is the same for all users (i.e., cannot
not be personalized individually).

5.5.11. Rhizome

In [So05, So06] Rhizome is introduced as a framework to built web application, such as se-
mantic wikis, personal notes, and discussion forums.

The approach particularly addresses two problems:

∙ Create semantically enriched content maintainable even if it is copied or modified.

∙ Ease the use of Semantic Web technology.

The approach provides an own markup language (ZML) similar to wiki text but additionally
allows to define semantics by using formatting conventions (cf., Figure 5.20). Semantic state-
ments are translated to and stored as RDF triples but presented to the user in a simplified
format (RxML).

Hybrid Wikis differ from this approach since structure is not embedded in the wiki page
content. Furthermore, Rhizome simplifies the appearance of RDF elements by introducing
own languages. However, users still need to learn these new languages, especially in a business
context this is challenging.

Figure 5.20.: Editor provided by Rhizome showing semantic annotations in its own markup
language (ZML) according to [So05].

5.5.12. SHAWN

In [AA05, Au05c, Au05b, Au10] SHAWN (Structure Helps AWiki Navigate)34 is introduced as
a semantic wiki prototype application facilitating information structuring for users. One objec-
tive of this approach is to keep the creation of structured content simple. This is addressed by

34http://sourceforge.net/projects/wiksar; visited on February 25th 2012.

147

5. Related Work

introducing colon-separated key-value pairs which can embedded in the page content (cf., Fig-
ure 5.21). A value is either a literal or a link. These key-values pairs are interpreted and
stored by the system as RDF triples when the page is saved. Some keys have a specific mean-
ing. For example, the key InstanceOf can be used to express that a page is an instance of
the type given by the pair’s value, that is, by using the InstanceOf key the page gets typed.
In particular, these keys are used by the wiki engine in order to facilitate the navigation in
the wiki (e.g., by providing breadcrumbs according to concept hierarchies), showing inverse
(contextualized) links, and displaying sample values of shared properties from other pages
(cf., Figure 5.21). This way, users instantly benefit from structuring contents.

In [Au10] the authors pointed out that “the SHAWN wiki is not meant to be a full fledged
RDF/OWL editor”. This means, although an ontology emerges from the structured wiki pages
it is primarily used to improve navigability in the wiki, additionally the structure can be
exported to OWL. But it is not possible to apply that ontology to the data in this approach.
For instance, it is not possible to consolidate data according the underlying schema or to
check the data’s consistency. Furthermore, data in SHAWN needs to be structured manually
by inserting textual key-value-pairs in the page content. Additionally, there is no assistance
for links creation since all words in the content (even the keys and values) are interpreted as
links when the page is displayed.

Figure 5.21.: Editor provided by SHAWN using colon-separated key-value pairs for informa-
tion structuring embedded in the page content according to [Au05b].

5.5.13. RISE

In [De05a, KHD05, KT04] the project RISE is introduced focusing on “reuse of software
engineering knowledge supported by semantic wikis”. In particular, the authors show the

148

5. Related Work

applicability of semantic wikis in the domain of requirements engineering. An ontology is
used to represent the different types of documents (e.g., templates for user stories, actors, and
use cases) and their connections. Wiki templates capture the structure and the relationship
between pages and represent instances of these document types. Changing a template results
in changing the underlying ontology. Additionally, semantic annotations can be used for
checking the consistency.

Furthermore, in [De05a, De05b, KHD05] the authors introduce a paradigm called “Wikitology”.
This paradigm means that it is possible to “semi-automatically derive an ontology” from the
pages in the wiki (i.e., from the templates and the links between the pages). Since the ontology
always reflects the knowledge in the wiki the ontology can be considered as self-adapting.

The idea of a self-adapting schema derived from wiki page instances in RISE is similar to the
implicit schema used by Hybrid Wikis (cf., Section 3.2.2). However, the RISE approach relies
on a set of naming conventions in using templates. These conventions are necessary to auto-
matically determine the current ontology from the wiki pages. Additionally, the annotation
of wiki content and the configuration of templates is not supported by a tool, that is, need to
be performed manually.

5.5.14. SemperWiki

In [OBD06, Or06a, Or05] the authors characterize personal wikis as “simple and lightweight”
by offering only a limited set of features. Furthermore, they support textual (linkable) notes,
integrate desktop data, and provide full text search capabilities. But usually they are not
intended for collaborative work. Semantic wikis are described as means for annotating wiki
text to improve navigation and to offer (“simple or powerful”) querying capabilities. The
introduced approach, namely SemperWiki35, combines both personal information management
and semantic wikis.

SemperWiki is an open source desktop application for Gnome36. It supports pages using
an own simple wiki markup language to express key-value pairs, as depicted in Figure 5.22
(e.g., dc:topic "Explaination"). Values can either be literals or links. These pairs are mapped
to RDF statements using the page’s URL as the subject. Based on these statements, the
system suggests related pages. Unlike Hybrid Wikis , SemperWiki is built for single user
usage.

5.5.15. SweetWiki

In [BG06, Bu11a, Gh07] SweetWiki37 is introduced as a wiki that combines semantic tech-
nologies with social tagging mechanisms [GH05]. The main idea underlying this approach is
to derive an ontology (represented as RDFS) from the wiki pages being tagged. Users merely
can add and remove tags to or from pages instead of using the ontology’s formal concepts
directly. Each tag is mapped to a corresponding class in the ontology. New introduced tags
(i.e., tags which are not yet represented as concepts in the ontology) can be integrated in the

35http://www.eyaloren.org/semperwiki.html; visited on May 8th 2012.
36http://www.gnome.org; visited on February 25th 2012.
37http://www-sop.inria.fr/teams/edelweiss/wiki/wakka.php?wiki=SweetWiki; visited on February 25th 2012.

149

5. Related Work

Figure 5.22.: SemperWiki editor showing keys (e.g., dc:author) and values (e.g., "Explana-
tion") in the wiki page content according to [Or05].

ontology by using a specific editor. This editor is accessible to all users and additionally pro-
vides means to create relationships between tags (e.g., hierarchies) and to merge tags (e.g., in
case of synonymous). Based on these relationships, tags are suggested (e.g., compatible tags
according to the specified hierarchy) when the user enters keywords (cf., Figure 5.23).

In SweetWiki a tag not necessarily needs to be assigned to an ontology class. This is similar
to Hybrid Wikis since type assignments (type tags) and types can be specified independently.
However, the main difference of both approaches is that in Hybrid Wikis a tag can explicitly
be used as a type, that is, a user can explicitly make a statement about a page’s type by using
type tags. This way, the user is aware of typing a page.

Furthermore, in contrast to Hybrid Wikis SweetWiki is using a different way to implement
content objects, called “The Wiki Object Model”. This means, the concepts underlying the
system, such as wiki pages, documents, and files, are represented in a separate ontology. This
ontology is maintained by the wiki developers and corresponding meta data is integrated in
the pages’ contents. By doing so, it is for example possible to specify queries accessing that
declarative content model.

5.5.16. SOBOLEO

In [BSZ07, ZB07] SOBOLEO (Social Bookmarking and Lightweight Engineering of Ontolo-
gies)38 is introduced as a tool that combines social bookmarking with collaborative ontology
engineering. Users can annotate web resources by means of tags. These tags can be organized
in an ontology, for instance it is possible to create tag hierarchies. Additionally, tags can pro-

38http://www.soboleo.com; visited on February 25th 2012.

150

5. Related Work

Figure 5.23.: Editor provided by SweetWiki showing tag suggestions as the user enters key-
words according to [Bu11a].

vide a textual description. Tag-based ontologies improve information retrieval in SOBOLEO
and enable editing of a resource’s tags supported by autocompletion (cf., Figure 5.24).

SOBOLEO is quite similar to SweetWiki (cf., Section 5.5.15). The difference between both
approaches is that SOBOLEO is rather intended to organize existing web resources. However,
the main difference compared to Hybrid Wikis is that a resource cannot explicitly be typed
by using a tag.

Figure 5.24.: Editor provided by SOBOLEO showing tag suggestions as the user enters
keywords.

151

5. Related Work

5.5.17. KnowWE

In [BP08, BRP07a, BRP07b, BRP11, RBP08, Re10] KnowWE (Knowledge Wiki Environ-
ment)39 is introduced as a semantic wiki focusing on the development and the consumption of
knowledge in problem-solving contexts. The approach allows to represent, maintain, and use
an ontology (with classes and user-defined properties) by means of annotations in the page
content. Additionally, it is possible to embed problem-solving descriptions (e.g., derivation
rules or decision trees necessary to calculate solutions) in the content represented in a specific
syntax (cf., Figure 5.25 (1)).

In order to find a solution users are asked questions in an interview session. A question
is related to a concept of the ontology and can be defined by annotating a page’s content.
Therefore, answering a question can be considered as temporarily (i.e., during the interview
session) instantiating an ontology class (cf., Figure 5.25 (2)). Based on the user’s answers
(i.e., the user’s findings) and the embedded problem-solving descriptions, possible solutions
are derived and suggested to the user (cf., Figure 5.25 (3)).

In contrast to Hybrid Wikis, KnowWE is designed for problem-solving purposes and represents
a tool for building decision-support systems.

5.6. Corporate Semantic Web

In [Pa09] the working plan for a project named Corporate Semantic Web is introduced. The
authors propose a lightweight approach to ontology engineering, semantic collaboration, and
semantic search. In particular, the approach aims at

∙ facilitating the ontology creation process by modularizing and versioning ontologies,

∙ enabling knowledge workers to change ontologies without the need to modify the under-
lying formalisms, and

∙ combining searches for semantic data and none semantic data using tagging, text mining,
and personalization techniques.

The Corporate Semantic Web approach facilitates the management of structured data. How-
ever, this is planned to be achieved by using a lightweight ontology editor, which is different
compared to Hybrid Wikis.

5.7. Freebase

Freebase40 is an open graph database to collaboratively create “structured general human
knowledge” for public use [Bo07, Bo08, BCT07]. The ideas underlying this approach are quite
similar to those of Hybrid Wikis, that is, it aims at

∙ collaboratively and incrementally structure information,

39http://sourceforge.net/apps/mediawiki/knowwe/index.php; visited on February 17th 2012.
40http://wiki.freebase.com/wiki/Main_Page; visited on February 2nd 2012.

152

5. Related Work

Figure 5.25.: Editor provided by KnowWE showing knowledge used for problem-solving pur-
poses and recommended solutions according to [BRP11].

∙ facilitating information structuring by providing an easy-to-use web UI, and

∙ supporting structured queries efficiently using suitable storage and index structures.

Basically, the type system underlying Freebase consists of domains, topics, data types
(e.g., string or number), properties, and types (cf., Figure 5.26). Domains correspond to
spaces, topics to content objects, and properties to attributes in Hybrid Wikis. The other
concepts (i.e., data types, and types) correspond to each other. Even if both approaches
follow the same principles and provide almost the same set of concepts the main difference
is that data and schema in Freebase are coupled more closely. That is, in order to add new
attributes to a topic it is required to extend the schema before. Furthermore, it is not possible
to relate attributes to topics without having a type assigned. This means, attributes can
only be related to exactly one type. Therefore, a topic’s author inevitably needs to act as
a tailor (cf., Section 3.2.1) in order to structure information which is consciously avoided in
Hybrid Wikis. Additionally, in Freebase the schema can only be adapted by its creator. This
is to prevent other users from breaking the tailors’ intention of the schema, but obviously
reduces the degree of flexibility in collaborative information structuring. Moreover, a user
not being the owner (i.e., creator) can only improve the schema by duplicating it completely.

153

5. Related Work

Finally, attributes are only suggested if a type is assigned. For these reasons, we consider
Freebase as a more heavyweight approach in structuring information than Hybrid Wikis.

Figure 5.26.: A Freebase topic Development Project DISS with attribute Budget typed as
Project.

5.8. MoKi

In [Gh09, Ca11, Ro09, Ro08] MoKi (Modelling wiKi) is introduced as “a wiki-based tool
for enterprise modeling” built on the basis of Semantic MediaWiki (cf., Section 5.5.1). The
approach’s primary purpose is to collaboratively model the constituents of an enterprise, in
particular domain objects, business processes, and competencies of employed people. Business
users and domain experts collaboratively create such a model. In order to not require these
actors to learn wiki syntax structured data can be entered by using wiki templates and forms.
Depending on the page’s type (i.e., domain object type) predefined templates offer for example
properties intended to be filled out when editing the typed page (cf., Figure 5.27). Additionally,
wiki templates are utilized to transform unstructured content in a formal model.

With Hybrid Wikis we focus on facilitating collaborative data and information management
within enterprises. Our approach is not specifically optimized for modeling information of a
specific domain, such as the constituents of an enterprise41. Models in Hybrid Wikis guide
and support business users in their day-to-day information management activities, emerge
bottom-up as a by-product, and continuously evolve over time.

41In Hybrid Wikis models emerging through data management can also be used to represent enterprise con-
stituents (cf., [Bu09], Section 6).

154

5. Related Work

Figure 5.27.: MoKi editor showing a wiki page with textual description, hierarchical structure,
and properties according to [Gh09].

5.9. SnoopyDB

In [GZS11, Ga10b, ZGS10, ZG10] the research prototype SnoopyDB42 is introduced. The
approach addresses problems in information structuring identified in literature, such as pro-
liferation and divergence of schemas, “by facilitating structure and developing a common
schema by providing recommendations”. The approach particularly focuses on recommending
attributes and values to users while entering data. Recommendations guide users in order
to align entered information to existing structures. They are dynamically calculated based
on the current editing context (i.e., depending on the attributes and values assigned to the
resource currently edited) and the structures (i.e., key-value pairs) already available in the
system. Therefore, existing structures can be considered as an implicit schema. This schema
is also referred to as “self-adapting”. That means the schema is continuously evolving since all
changes to attributes and values impact the algorithm calculating the recommendations and
thereby users (probably) apply (recommended) structures commonly used.

Recommendation for attribute keys in SnoopyDB are similar to attribute suggestions in Hy-
brid Wikis. That is, they are suggested to be used in addition to the attributes already
assigned. Furthermore, SnoopyDB supports autocompletion for attribute keys and values.
Literals as well as links are suggested while a user enters a value. Similar to Hybrid Wikis rec-
ommendations and autocomplete results are calculated based on the current context of the
edited resource and the (implicit) schema. SnoopyDB also provides suggestions regarding data
types. That is, when a user enters a literal that can be interpreted as a number, the data type
number is suggested to be applied. Furthermore, a data type is suggested for a value if the
majority of other attributes (having the same key) use a different one.

Even if both approaches follow quite similar ideas (e.g., suggestions or implicit, adaptive
schema) the main difference of SnoopyDB compared to Hybrid Wikis is that types cannot

42http://dbis-informatik.uibk.ac.at/168-0-SnoopyDB.html; visited on February 22nd 2012.

155

5. Related Work

be specified at all. This makes it difficult to generate tabular overviews of resources covering
certain kinds of things. Furthermore, in that approach it is not possible to explicitly define a
schema, that is, attributes cannot be bound to a type or integrity constraints be specified.

Figure 5.28.: Editor provided by SnoopyDB supporting structured tags (in key:value format)
applied to a Flickr photo (http://www.flickr.com; visited on February 22nd
2012).

5.10. Social Infobox

In [HGT11] the prototype system Social Infobox43 is introduced. The system supports “social
property tagging”, a method to freely add attribute-value pairs to wiki-like resources with-
out using an explicitly defined schema. In that article, a user study showed that property
names were shared among different resources which the authors interpret as the emergence of
implicit types. Furthermore, the system provides property suggestions based on an analysis
of attribute cooccurrences (cf., Figure 5.29). Social Infobox and Hybrid Wikis follow simi-
lar ideas, such as bottom-up schema evolution and attribute suggestions, but there are two
important differences:

∙ By using type tags Hybrid Wikis enable users to explicitly make a statement about the
type. Since attributes can be used independently, this does not limit the flexibility.

∙ Besides the analysis of attribute cooccurrences, attribute suggestions in Hybrid Wikis are
based on the combinations of type tags and attributes used in the system. This means
that not only the frequency of occurrence is considered, but additionally, attributes are
preferred when they occur together with many or all of the type tags.

43http://hamlab0.hpcc.jp/sdow; visited on February 22nd 2012.

156

5. Related Work

Figure 5.29.: Editor of Social Infobox showing a resource with properties and suggestions.

5.11. TWiki

In [Am10, Ch08b, LFL05, JH11, RG02, RS04] the open source project TWiki44 and its fork
Foswiki45 are described as structured wikis combining the advantages of wikis and database
systems. The approach allows users to attach data records to wiki pages. These records can
be defined as a template and embedded (by reference and not copied) in the page’s content.
An embedded template is normally shown as a web form (i.e., as a set of keys and input fields)
when the page is displayed. Templates can be defined within the content of a wiki page using a
mixture of HTML, Javascript, and a special syntax (cf., Figure 5.30). By means of embedded
searches tabular views can be produced showing objects for example using the same type of
template.

Although the schema in TWiki can be changed at runtime the effort is considerably higher
than for Hybrid Wikis since the definition of a template needs to be configured manually.
Additionally, the usage of a special wiki syntax and web development elements is required,
which is comparable to programming the schema.

44http://twiki.org; visited on February 22nd 2011.
45http://foswiki.org; visited on April 27th 2011.

157

5. Related Work

Figure 5.30.: Editing a template for contacts in TWiki.

5.12. DBWiki

In [Bu11c, Bu11b, Pe11] DBWiki46 is introduced as a structured wiki that combines the
advantages of databases (e.g., scalability) and wikis (e.g., convenience). The data model
underlying the approach is represented by a hierarchical Extensible Markup Language (XML)-
like tree. This tree contains both, information about the schema and the data. The schema
describes possible paths in that tree. The tree is stored by mapping its elements (i.e., data
and schema) to concepts of a relational database. The data model (i.e., schema and data) can
be changed by adding or removing subtrees.

Additionally, the approach allows users to create wiki pages containing unstructured content.
By using an extended markup language users can interact with that tree-based data model by
embedding queries in the wiki page content. By doing so, it is possible for example to create
editable views (e.g., editable tables) based on XPath47-like queries (cf., Figure 5.31). Changes
in a view are propagated to the underlying data tree and finally are mapped to corresponding
operations in the relational database (i.e., insert and update statements).

Even if data can be modified by means of editable views embedded in the page content the
query underlying this view needs to refer to existing paths in the data tree. In consequence,
this means that only nodes resulting from a query can directly be modified or deleted in
the wiki pages. Changing the nodes’ hierarchy (e.g., in order to create a new property) is
only possible by using a specific tree browser. In Hybrid Wikis new properties and concepts
can be introduced directly in the wiki pages. Furthermore, Hybrid Wikis provide means to
build custom embedded (table) views referring to none existing types and properties (cf., Sec-
tion 3.4.2). In DBWiki changes in the data model (i.e., in the data tree) lead to updates in
the underlying relational database. This means database policies need to be considered which
potentially makes the data migration process more complicate. In Hybrid Wikis no modifica-

46http://forum.idea.ed.ac.uk/idea/database-wiki; visited on February 25th 2012.
47http://www.w3.org/TR/xpath; visited on May 9th 2012.

158

5. Related Work

tion of the database structure (e.g., changing the structure of a database table) is needed in
case of changing information structures.

To the best of the authors knowledge, DBWiki only allows to specify queries for structures in
the data tree, querying for unstructured information (i.e., wiki page content) is not supported.
But the way the data is stored in DBWiki allows to define queries over the data’s history,
which is different to Hybrid Wikis. However, it would be interesting to investigate how to
support temporal modeling and temporal queries in future research. Especially in the context
of enterprise architecture management (cf., Section 6.1.1) it is often required to define queries
over the history of data (e.g., in case of modeling the current and the future state of an
application landscape within the same wiki).

Figure 5.31.: Embedded queries and update forms in DBWiki’s pages according to [Bu11b].

5.13. Summary and comparison with Hybrid Wikis

In the following, we briefly summarize the key findings of our literature analysis in order to
highlight the distinguishing, innovative aspects of our approach and some commonalities. We
roughly arranged the identified approaches in five categories regarding their key characteris-
tics.

5.13.1. Semantic annotations

The first implementations of semantic wikis, that is, the combination of Semantic Web tech-
nologies [BL98] and wikis [LC01], emerged around 2004. Our literature analysis shows that
this combination is frequently used in order to structure information in wiki systems, 17 of 28
of the identified approaches are semantic wikis. Early semantic wikis, such as the Platypus
wiki [CCT04, TCC04], are more focused on the question how to bring both worlds (i.e., se-
mantics and wikis) together in terms of concepts and technology. Therefore, many of them
introduce semantic annotations as part of the wiki text (e.g., by using a special wiki syntax).
This way, users are enabled to integrate and to use the full expressive power of the Seman-
tic Web (e.g., in terms of modeling and querying capabilities) within a wiki. Today’s most

159

5. Related Work

prominent semantic wiki that supports structured data by using annotated wiki markup is Se-
mantic MediaWiki [KVV06]. However, as described in this chapter researches identified some
drawbacks (in particular for wiki authors) regarding the use of semantic annotations, such as
additional maintenance efforts without having apparent benefits or worsened readability of
the contents. Therefore, we consciously decided not to make use of semantic annotations in
Hybrid Wikis, content and meta data are clearly separated.

5.13.2. Towards simplicity

Around 2006, these previously mentioned drawbacks were addressed by the ‘second generation’
of semantic wikis that try to find ways to

∙ lower the technical barrier for users in creating meta data (cf., Section 5.5.8),

∙ examine how users unfamiliar with semantic technologies can be helped and motivated
to specify the many necessary typed links in a way that results in a useful web of
annotations (cf., Section 5.5.2),

∙ “rapidly simplify the presentation and acquisition of instance data from and for end
users” [ADR06] (cf., Section 5.5.4),

∙ facilitating the creation of semantic content for non-technical users (cf., Section 5.5.9),
and

∙ keep the creation of structured content simple (cf., Section 5.5.12).

For example, this is achieved by hiding the conceptual expressivity of the underlying struc-
turing language (e.g., RDF) from the users, introducing graphical user interfaces to manage
annotations of content (e.g., by means of a graphical annotation toolbar), and rewarding users
for providing structures (e.g., by offering improved navigation capabilities). Although these
means mitigate the drawbacks of annotations all approaches differ from Hybrid Wikis in some
major aspects, for instance:

∙ Some approaches enforce consistency (cf., Section 5.5.9) while others do not provide any
mechanisms to validate structured data (cf., Section 5.5.12).

∙ When providing graphical UIs users are forced to enter data in a structured way (cf., Sec-
tion 5.5.4) or they have to change to a special mode in order to provide structured content
(cf., Section 5.5.2) or to modify the schema (cf., Section 5.5.8).

∙ Only certain persons (e.g., wiki administrators) are allowed to change the schema
(cf., Section 5.5.9).

From our point of view, these restrictions result from the potential risk that schema and data
diverge in case of user-initiated changes.

Besides semantic wikis, other approaches enable users to capture information in a structured
way (e.g., in order to avoid information redundancies), such as wiki templates (cf., Section 5.2)
or table extensions (cf., Section 5.3). There are two major drawbacks of these solutions:

∙ When copying templates (or tables) there is a potential risk that schema and data diverge
over time.

160

5. Related Work

∙ When using templates (or tables) by reference wiki page authors have to leave the current
edit context in order to change to schema (i.e., the referenced template).

In Hybrid Wikis authors can implicitly change the schema by introducing new attributes on the
instance level without leaving the current edit context. Additionally, Hybrid Wikis counteract
structural divergence by guiding users towards a consistent usage of type, attributes, and con-
straints. Hybrid Wikis support context-dependent autocompletion for terms (e.g., attributes
keys depending on the already assigned attributes) and provide suggestions to use schema
elements (e.g., defined attribute keys) on the data level or to transfer frequently used data ele-
ments (e.g., data types) to the schema. Furthermore, Hybrid Wikis warn users if they violate
a (explicit or implicit) convention and support them in finding inconsistencies. Inconsistencies
can be harmonized by using consolidation techniques. By means of these mechanisms it is
not necessary to force users to follow a prescribed schema or to prevent user-initiated schema
changes.

Another observation is that tools and prototypes of the ‘second generation’ tend to use struc-
tures in two different ways. Either they use structured wiki pages to collaboratively create
or (semi-) automatically derive a schema (e.g., an ontology) for different purposes (cf., Sec-
tion 5.5.13) or they integrate a (pre-configured) schema in the wiki in order to improve spe-
cific system functions, such as navigation, authoring, or search capabilities (cf., Section 5.5.9).
However, most48 of these approaches unnecessarily miss the potentials of a smooth, mutually
complementary integration of schema and data. Hybrid Wikis support both ways, that is, the
derived schema helps to improve systems functions.

5.13.3. Structures for public use

Around 2008, DBpedia (cf., Section 5.4) and Freebase (cf., Section 5.7) are introduced. Both
approaches focus on sharing and exchanging structures in the web. Due to the public use of
structures, in Freebase changes to the schema can only be performed by the creators. For
instance, only the creator of a type is allowed to add new attributes to it. Hybrid Wikis are
built for the application in enterprise contexts in which the degree of trust between users
is higher than in the public web. Therefore, in Hybrid Wikis it is not required to restrict
changes to the schema also because users can register to get notified in case of modified
structures (e.g., modifications to types) and or they can keep track of changes by means of
the version history.

5.13.4. Social tagging

The ‘third generation’ of identified approaches emerged in the period from 2007 to 2011. These
tools and prototypes are characterized by offering users rather a reduced set of lightweight
structuring concepts than a formal, standardized description language. For example, Sweet-
Wiki (cf., Section 5.5.15) and SOBOLEO (cf., Section 5.5.16) use resources (e.g., wiki pages)
being tagged to derive an ontology, SnoopyDB (cf., Section 5.9) and Social Infobox (cf., Sec-
tion 5.10) allow to freely assign simple key-value pairs to resources without using an explicitly
defined schema. The latter tools guide users towards a consistent vocabulary by providing

48Some approaches consciously decided to pursue only one direction.

161

5. Related Work

key and value suggestions. Suggestions are calculated based on the key-value pairs assigned
to the resources. However, since no types are provided users cannot define consistency rules.
In the former approaches it is not possible to explicitly make a statement about a resource’s
type since tags are always interpreted as types. In Hybrid Wikis type tags are lightweight
means to define an object’s type and types can be used to specify integrity constraints.

5.13.5. Applicability in enterprises

Finally, a remarkable fact is that only two approaches are specifically developed for the ap-
plication in enterprise environments, namely MoKi (cf., Section 5.8) and Semantic Enterprise
Wiki (SWM+) (cf., Section 5.5.2). MoKi’s allows to collaboratively model the constituents
of an enterprise, but is developed for this purpose only. SWM+, as previously described,
mitigates some drawbacks of Semantic MediaWiki by providing for example a graphical UI
to enter semantic annotations for contents, but leaves some open (usability) issues (e.g., the
synchronization of content and annotations).

It is not clear if the other approaches provide the functional capabilities essential for the
application in an enterprise context, such as groups, access control, versioning, awareness, or
if they are prototypes never indented to be applied in an enterprise environment but rather
developed to answer specific research questions.

Our literature analysis shows the novelty of Hybrid Wikis. Although even other approaches
pursue similar objectives, none of them supports user-enabled data and schema alignment as
provided by Hybrid Wikis with for example different stages of rigidity, consolidation tech-
niques, and suggestions.

162

CHAPTER 6

Application and Evaluation

In this chapter, we present the validation of Hybrid Wikis. In Section 6.1, we introduce
selected case studies in six organization from different application domains. In particular,
we sketch the business users’ perceived benefits and highlight the information structures that
emerged by using model visualizations inspired by UML class diagrams. To evaluate the
quality of structures created with Hybrid Wikis, in Section 6.2 we present the results of
a controlled experiment conducted with students at Technische Universität München. In
Section 6.3, we introduce a generic tool that allows to quantitatively analyze structures built
with Hybrid Wikis.

6.1. Applying Hybrid Wikis

In the following, we present the experiences gained with Hybrid Wikis in practice. We ex-
amine usage scenarios of Hybrid Wikis by presenting selected case studies from industry. In
Section 6.1.1, we show how Hybrid Wikis are applied in the context of enterprise architecture
management, in Section 6.1.2 Hybrid Wikis are used as an issue tracker, in Section 6.1.3 Hy-
brid Wikis support the management of course exercises, and in Section 6.1.4 it is analyzed
how business processes of a medium-size enterprise can be documented and carried out with
Hybrid Wikis. To illustrate the structures that emerged in these cases, we use UML-like class
diagrams (cf., Section 3.4.1.8).

6.1.1. Wiki4EAM Community

Enterprise Architecture Management (EAM) is a challenging task modern enterprises have
to face [LKL10]. This task is often addressed via heavy-weight and expensive EAM tools to
collect, structure, visualize, and analyze architectural information, such as business processes,

163

6. Application and Evaluation

applications, organizational units. A major problem in EAM is the mismatch between the
existing unstructured information sources and the rigid information structures and collabo-
ration mechanisms provided by today’s EAM tools [Ma08]. Furthermore, the architectural
knowledge is spread over all the different stakeholders in the company. Therefore, even the
documentation of the current state of the Enterprise Architecture (EA) is difficult.

To mitigate these challenges, in December 2010 at Technische Universität München we es-
tablished a community (Wiki4EAM1 [MN11b]) of experienced enterprise architects from 25
large German enterprises (industry and the public sector) to pursue a lightweight, wiki-based
approach to EAM [Bu09, Bu10, MN12]. The idea is to start with existing unstructured infor-
mation sources (e.g., derived from spreadsheets and Office documents) captured as wiki pages
and then to incrementally and collaboratively enrich these pages with concepts provided by
Hybrid Wikis (i.e., attributes, types, and constraints) as needed for architecture modeling,
visualization, and analysis.

Customizable in-browser visualizations are provided by the open source System Cartogra-
phy (SyCa)-Tool2 developed at Technische Universität München [BMS10]. The SyCa-Tool
provides means to create maps visualizing enterprise landscapes based on arbitrary object-
oriented information models. Both tools interact via REST-ful web services. From a user’s
perspective visualizations can directly be maintained within Hybrid Wikis. The general pro-
cess of creating visualizations based on structured wiki pages is:

By means of the faceted search (cf., Section 3.4.3) users can drill down the search results
to shape the set of structured objects underlying the visualization. This search (i.e., the
query string) can be embedded in the content of wiki pages (cf., Section 3.4.2), additionally
specifying some visualization-specific configuration parameters, such as the map type and the
elements’ colors. For instance, it can be configured to render a cluster map (cf., Figure 6.1)
with outer elements (blue) represented by objects of type organizational unit and inner object
(red) typed with business application. Furthermore, it can be specified which attribute key
(e.g., responsible for) connects inner and outer objects in order to present objects of type
business application nested in organizational unit. When displaying this page the embedded
query is executed and from the structured objects of the result set a model (represented in
Ecore format) is derived. This model, the instance data (i.e., structured wiki pages transformed
to XMI), and the visualization-specific configuration are passed to the SyCa-Tool via a web
service request. The SyCa-Tool answers this request by sending a generated map (in Scalable
Vector Graphics (SVG) format) back to Hybrid Wikis.

Between December 2010 and March 2012 we conducted seven workshops together with the
Wiki4EAM community members. In the initial workshop, the participants were introduced
in the general idea and the core concepts underlying Hybrid Wikis by presenting some slides.
Furthermore, we used a projector to demonstrate the handling of the software by using a small
sample scenario from the EAM domain. For instance, we showed how to structure pages, create
constraints, and embed visualizations. The projector-based introduction to Hybrid Wikis took
about two hours in total (including questions from the audience).

The participants of the initial workshop saw the following potentials in applying Hy-
brid Wikis in their enterprises (extract from an informal discussion during the workshop):

1http://wwwmatthes.in.tum.de/wikis/sebis/wiki4eam; visited on March 10th 2012.
2http://wwwmatthes.in.tum.de/wikis/sebis/sycatool; visited on March 10th 2012.

164

6. Application and Evaluation

Figure 6.1.: Cluster map embedded in a wiki page provided by the SyCa-Tool based on models
derived from structured pages in Hybrid Wikis

∙ Hybrid Wikis are well suited for the initial, collaborative documentation of the EA’s cur-
rent state since information can quickly and easily be structured and structures flexibly
be adapted.

∙ Hybrid Wikis are a useful supplement to existing EAM tools. Models emerge bottom-
up by focusing on contents instead of ‘inventing’ models and filling them with data.
Theses emergent models can be used as an input for a conventional EAM tool in order
to perform for example advanced planning tasks.

The participants saw the following challenges (extract from an informal discussion during the
workshop):

∙ There is a potential risk of data chaos in scenarios with a large number of stakeholders,
especially when using soft constraints only.

∙ It is difficult to integrate ‘another’ tool in the existing IT landscape, for example due to
reasons of data migration efforts or costs in building interfaces to external data sources.

After the initial workshop the software (including some EAM demo data) was made available
to the members. They used it either online hosted at Technische Universität München or

165

6. Application and Evaluation

downloaded3 it for purpose of local installation. In the subsequent workshops, members of the
community presented their existing wiki-based EAM solutions. Based on the experience gained
with the use of Hybrid Wikis, new requirements were collected and discussed. We consolidated
the findings from the application of Hybrid Wikis by the community partners three times a year
into technical reports. These reports were made accessible to the members of the community
only. However, the user feedback helped to incrementally improve Hybrid Wikis, that is,
according to [He04], to continuously refine the developed research artifact.

Some community members evaluated the capabilities of Hybrid Wikis for a certain period of
time and noticed that classical EAM solutions are more suitable for their purposes, for the
following reasons (extract from email conversations with these members):

∙ Hybrid Wikis do not support planning tasks regarding the future EA landscape.

∙ Classical EAM tools follow a top-down modeling approach, thereby minimizing the risk
of data chaos.

∙ Hybrid Wikis are a research prototype and cannot provide for example maintenance and
support in the long-term.

Five participants (i.e., organizations) of the initial workshops left the community. However, in
April 2012 the community has grown to 67 members from 48 different organizations. Ten orga-
nizations regularly attend the workshops, the remaining rather sporadically, but some of them
currently using Hybrid Wikis in research projects in cooperation with the chair (e.g., [Bi12]).

In the 6th workshop in December 2011, we asked (paper-based) the community members4

to provide the main reasons why they are using Hybrid Wikis in their enterprises. The
participants of the workshop stated (most frequent answers) that

∙ the information model is flexibly adaptable (i.e., can be created incrementally and does
not need to be fixed in advance) (6 of 7),

∙ Hybrid Wikis are easy to use (i.e., provide a high level of usability and a clean user
interfaces) (4 of 7), and

∙ hybrid searches (cf., Section 3.2.4.1) provide fast access to unstructured and structured
contents (4 of 7).

Although these survey results do not represent a well-founded qualitative evaluation, they
allow to assume that the adaptability of the structures is the main reason for applying Hy-
brid Wikis in EAM scenarios. Furthermore, the answers indicate that business users under-
stand the concepts underlying Hybrid Wikis since they adapt structures without additional
IT-support facilitated by a web interface that the participants consider to be usable.

In the next sections, we introduce selected case studies5 from enterprises participating in the
Wiki4EAM community using the following structure:

∙ Briefly introduce the enterprise.

∙ Sketch the purpose of application and the perceived benefits.

3http://www.infoasset.de/wikis/infoasset/download-tricia; visited on March 10th 2012.
4Seven members attended the community meeting in December 2011.
5According to [He04], case studies emphasizes research rigor.

166

6. Application and Evaluation

∙ Highlight the structures that emerged.

6.1.1.1. Kassenärztliche Vereinigung Bayerns

“The Bavarian Association of Statutory Health Insurance Physicians (Kassenärztliche Vere-
inigung Bayerns, abbr. KVB or BASHIP) is a statutory body under public law. It is one of
the healthcare system’s self-administration bodies, and its work is under the legal supervision
of the Bavarian Ministry of Health. However, it is not a subordinate government agency. The
KVB ensures that about 10 million compulsory and voluntary SHI-members in Bavaria can
consult a physician or a psychotherapist of their own choice at any time and anywhere in
the state. The KVB guarantees high quality of medical care and ensures that every patient
can reach a doctor within a reasonable distance. It makes medical care available within and
outside consultation hours and continuously works to improve medical services. The KVB rep-
resents about 24,000 doctors and psychotherapists and lobbies for preserving and improving
the medical system.”6

The KVB7 participates in the Wiki4EAM community since June 2011. Its main objective is to
build an integrated EA repository by means of Hybrid Wikis. In this case, integrated means to
collaboratively collect information from three different EA levels, the business level (e.g., busi-
ness units), the application level (e.g., information systems), and the infrastructure level
(e.g., information typically maintained by a Configuration Management Database (CMDB),
such as infrastructure elements) at a central place. In particular, it is required to make the
connections between these different levels visible (e.g., the connection between infrastructure
elements and information systems) in order to obtain an integrated, holistic view of the KVB’s
EA.

The KVB gained access to Hybrid Wikis through a system installed locally. Before working
with Hybrid Wikis, EA information was scattered across the KVB’s technical departments.
If available, in many cases such information was independently organized by the departments
themselves, for example by using a spreadsheet for product portfolio documentation. In order
to gather these information pieces the head enterprise architect of the KVB organized several
workshops with representatives of the technical departments in a first step. The main goal of
the workshops was to create a common information model in which the different model parts
were elaborated and confirmed by the responsible persons of the departments. In this initial
workshop phase, Hybrid Wikis served as a basis for discussions about the model’s constituents
and its terminology. The workshop organizer (i.e., the head enterprise architect) prefilled the
EA wiki with an information model8 provided by iteratec GmbH9, a German IT consulting
company. He mapped this model to types, attribute definitions, and constraints according to
the terminology used by iteratec. Additionally, he added some KVB-specific reference data to
the wiki before the workshops were carried out.

Based on this data, the workshop participants discussed which attributes to transfer from
the department’s own information sources (e.g., spreadsheets) to the wiki, which attributes to
define in addition, and which attributes to delete. It was consciously decided to include only

6http://www.kvb.de/fileadmin/kvb/dokumente/UeberUns/KVB-About-us.pdf; visited on March 3rd 2012.
7http://www.kvb.de; visited on March 3rd 2012.
8http://www.iteraplan.de/wiki/display/iteraplan/iteratec+Best-Practice-EAM; visited on April 3rd 2012.
9http://www.iteratec.de; visited on April 3rd 2012.

167

6. Application and Evaluation

Figure 6.2.: Information model used by the KVB for the management of the EA.

attributes in the wiki relevant for specific EA questions. Furthermore, the iteratec information
model was adapted as required by the technical departments. For instance, type names were
changed according to the terminology normally used in the departments and types provided
by the iteratec model but not required by any department were deleted. The information
model created during the workshops is depicted in Figure 6.2.

After the workshops, members of the departments gained access to Hybrid Wikis. Subse-
quently, they started entering data according to the previously defined information model.
All departments obtained edit access to the EA repository (i.e., the EA wiki). For this reason,
some persons observed (cf., Section 3.2.4.4) the sets of objects they are responsible for in order
to be aware of changes. Even if it is possible with Hybrid Wikis to observe a complete space
(e.g., the EA wiki) or individual content objects (e.g., a specific wiki page) some members
expressed the need getting informed only in case of objects with a specific type are created
or deleted. Additionally, in some cases it was required to specify disjunctive queries. Both
requirements are currently not supported by Hybrid Wikis.

Furthermore, an interesting observation was that even if all members were allowed to modify
the structures defined in the workshops, attributes and types in the EA wiki were only changed
after a short personal consultation with the head architect. This shows that Hybrid Wikis at
the KVB are not primarily used to collaboratively develop an information model bottom-up

168

6. Application and Evaluation

but rather to maintain structures that were previously discussed with the different stakehold-
ers (e.g., members of the technical departments, head enterprise architect). However, the
structures were created and adapted by the users themselves without external help (e.g., IT
experts). Since the KVB did not attend the initial Wiki4EAM workshops, the staff was only
introduced to Hybrid Wikis by means of a 10-minute screencast available at the official re-
search project website10 and some slides explaining the core concepts of Hybrid Wikis. This
shows that business users (i.e., enterprise architects) can productively work (i.e., in particular
structure information) with Hybrid Wikis with little instruction effort.

In addition to the EA repository, the KVB created a second wiki. This wiki serves as a
glossary for master data (e.g., specialist doctors, groups of doctors, offices, personal data)
and the relationships between this data (e.g., between doctors and offices). Each kind of
data is described in an individual wiki page with type tag glossary entry. The page’s name
corresponds to the master data’s kind (e.g., personal data). The KVB consciously decided not
to use a type tag in this case since for example personal data is not intended to be instantiated
in the wiki. The glossary pages are rather used to collaboratively discuss about the meaning
of the master data’s attributes. The discussion about the attributes takes place in the wiki
text (i.e., built-in content). The fact that type tags are only used if it is planned to create
concrete instances of that type shows that business users understand the structuring concepts
underlying Hybrid Wikis.

6.1.1.2. UniCredit Business Integrated Solutions S.C.p.A. (formerly UniCredit Global
Information Services S.C.p.A.)

UniCredit Business Integrated Solutions S.C.p.A. (formerly UniCredit Global Information
Services S.C.p.A.) is the global service company, owned by UniCredit11, and born on the
1st of January 2012. It is dedicated to providing services in the sectors of Information and
Communication Technology (ICT), Back Office and Middle Office, Real Estate, Security and
Procurement. The Company includes about 13.000 people and oversees activities in 11 coun-
tries: Austria, Germany, Italy, Poland, Great Britain, Czech Republic, Romania, Slovakia,
Hungary, New York and Singapore.

In December 2010, UniCredit Business Integrated Solutions S.C.p.A. (formerly UniCredit
Global Information Services S.C.p.A.) started participating in the Wiki4EAM community
to deepen the knowledge about EAM. In particular, the unit Infrastructure Architectures
evaluated whether a previously created infrastructure landscape can be represented in a model
built with Hybrid Wikis. In an additional12 two hours personal lesson with one member of
the unit Infrastructure Architectures, the core concepts (e.g., wikis, wiki pages, type tags,
attributes, constraints) were explained in detail and technical questions about some system
functions (e.g., how to define a search, how to embed a search in a wiki page) were clarified.
Subsequently, UniCredit Business Integrated Solutions S.C.p.A. (formerly UniCredit Global
Information Services S.C.p.A.) gained access to Hybrid Wikis through a system hosted at
TU München including some EAM demo data (e.g., business applications, organizational

10http://wwwmatthes.in.tum.de/wikis/sebis/hybrid-wiki; visited on March 10th 2012.
11https://www.unicreditgroup.eu; visited on April 19th 2012.
12In addition to the initial introduction in the Wiki4EAM workshops.

169

6. Application and Evaluation

units) and some exemplary visualizations (e.g., a cluster map showing the relation between
organizational unit and business applications).

Figure 6.3.: Emergent information model used by UniCredit Business Integrated Solutions
S.C.p.A. (formerly UniCredit Global Information Services S.C.p.A.) for the man-
agement of infrastructure elements.

In a first step, from December 2010 to December 2011, UniCredit Business Integrated Solutions
S.C.p.A. (formerly UniCredit Global Information Services S.C.p.A.) prototypically modeled
the architectural elements of the infrastructure unit in a specific wiki (i.e., separated from the
wiki containing the EAM demo data). The emerged data model representing the infrastructure
architecture (i.e., infrastructure landscape) is depicted in Figure 6.3. The concepts of this
model represent infrastructure elements on a certain level of detail each. The model consists
of 4 levels. On the lowest level (i.e., the most fine-grained), an Infrastructure Component (IC)
(level 4) can either be software (e.g., Windows 2000 Server) or hardware (e.g., Itanium). An
area (level 3) is the logical unit for a set of ICs (e.g., a set of Windows software components),
an area aggregation (level 2) is the composition of areas (e.g., in a mainframe), and a domain
(level 1) composes a set of area aggregations (e.g., a database and middleware composition).

The wiki’s home page is used as a dashboard. It shows all available domains, areas, and area
aggregations as custom embedded lists (cf., Section 3.4.2). ICs were also shown as an embedded
list on that dashboard page in the beginning. However, the list of all ICs became too long
over time. Therefore, the list was replaced by a link to a separate wiki page showing the ICs
as a custom embedded table (cf., Section 3.4.2). It was consciously decided not to link to the
type table view (cf., Section 3.4.1.5) in this case since only a subset of the available attributes
was required to be shown in this table. Furthermore, the dashboard indicates all obsolete

170

6. Application and Evaluation

infrastructure components by using a custom embedded table view. Obsoleteness is indicated
by ICs having a color attribute with value red. In order to ensure that each IC provides a color
a multiplicity constraint (exactly-one) is specified. Additionally, an enumeration constraint is
defined having the values blue, green, red, and yellow. The meaning of each color is given in
the attribute definition’s description field. For instance, the enum value red is explained as
discontinue use: No further investments; plans for migration or deinstallation exist.

Finally, the dashboard shows the relationships between

∙ domains and area aggregations,

∙ area aggregations and areas, and

∙ areas and infrastructure components

as custom embedded tables. Each table shows only a subset of the available attributes. Besides
the tabular representation, these relationships are visualized as a cluster map each. There-
fore, embedded tables and graphical visualizations are means to filter for specific information
according to the business user’s needs.

In April 2011, UniCredit Business Integrated Solutions S.C.p.A. (formerly UniCredit Global
Information Services S.C.p.A.) draws the following lessons learned from their experiences with
Hybrid Wikis in a Wiki4EAM community workshop:

∙ Absolute beginners are not able to start without any introduction, that is, a short lesson
(about 2 hours) or paper is mandatory.

∙ Creating and adapting information models is possible without any further help from IT
experts after an introduction.

∙ Starting with data is simpler than creating a meta model first.

∙ Having a previously developed model (as in this case a model of infrastructure landscape)
in mind is helpful since it provides at least a basic frame for structuring and restructuring
in Hybrid Wikis is time consuming.

∙ Gradually adding attributes to wiki pages works well and creates beneficial structures.

∙ Inverse links shown in the wiki pages facilitate navigation and structuring.

∙ Configuring visualizations manually is cumbersome.

∙ Demo data and exemplary configurations of visualizations are helpful.

6.1.1.3. Miles Group GmbH

Miles Group GmbH13, an Austrian company, was founded in 2002 as property developer for
residential building. In 2007, the company was restructured and focused on commercial prop-
erty as for example hotels and retail parks. Furthermore, the company is running a consulting
division carrying out the redevelopment of already built building according to legal and tech-
nical specifications. Up to 2010 a division IT consulting and computer center operations

13http://www.miles-group.at; visited on April 19th 2012.

171

6. Application and Evaluation

was run, which is nowadays in its own company. This division is primarily concerned with
IT project management offices and operates infrastructure in a computer center for special
applications of costumers.

Hybrid Wikis are mainly used to manage outgoing invoices for example to observe the payment
status. The invoices are kept in typed wiki pages referencing the invoice document (Word and
PDF) originally sent to the customer by using a link attribute. The documents are uploaded
via the SMB protocol-based file share supported by the Tricia platform. Each invoice page
indicates the customer it belongs to by using a structured attribute. In case of large customers,
the attribute is a link to a typed page representing the customer, in case of small ones, a
simple string value is used. String values are transformed to links while the customer grows.
Additionally, several prominent properties of an invoice are denoted as attributes, such as
creation date, state, or invoice amount (cf., Figure 6.4). Finally, the invoice indicates the
company’s division (e.g., information technology, project management).

Figure 6.4.: Emergent information model used by Miles Group GmbH for the management of
invoices.

Based on this simple data model, Miles Group GmbH created a dashboard page by using
custom embedded views. For example, an embedded list view (cf., Section 3.4.2) helps to
detect all unpaid invoices (i.e., invoices with status open) or a list of all invoice numbers
is generated in order to ensure the consistency of all numbers across divisions. These lists
make it easy to keep the accountants department up to date and allow them to access live
information about invoices. Finally, Hybrid Wikis support users in finding specific invoices by
using Tricia’s generic search module14, for instance by entering the invoice number, date, or
customer name. This is necessary for example to answer incoming questions from customers
regarding a specific invoice or to quickly navigate within the wiki in order to update the invoice
status or add additional structured information, such as payment dates.

According to plans, the usage is incrementally broadened to interlink invoices with properties
or to widen the use of customer pages not only with invoices but also with projects and other

14Hybrid Wikis extend Tricia’s generic full text search by also taking into account attributes and types (cf., Sec-
tion 3.2.4.1).

172

6. Application and Evaluation

information. Currently about 250 invoices are kept in the system, with around 500 documents
and around 20 key customers.

6.1.2. InfoAsset AG

InfoAsset AG15 is developing web-based information management solutions since 1999. Since
2010 the company focuses on a scalable product-based business by providing Tricia as Enter-
prise 2.0 platform for commercial use. Among other things (e.g., CRM, license management)
InfoAsset AG uses Hybrid Wikis for its issue management, in particular for the management
of issues regarding the Tricia product.

Customers can send feedback16 to the official InfoAsset server (i.e., a Tricia server having
the Hybrid Wikis plugin activated) on issues (e.g., change requests, error messages) regarding
their installations. For each new emerging issue a structured wiki page is automatically cre-
ated typed as issue, providing an attribute status with value unprocessed, and having some
additional attributes, such as submission date, installation id (i.e., the URL of the installa-
tion), user email. The Tricia developer dashboard shows a list of all unprocessed issues by
using a custom embedded view filtering types and attributes accordingly. When a new entry
appears in this list (i.e., the underlying embedded query yields a new search hit) the developers
are informed by means of a new entry in an RSS feed. A responsible person (i.e., the issue
manager) processes these new entries and categorizes them by assigning additional type tags.
Currently the three additional type tags bug, feature request, and refactoring are primarily
used. Furthermore, a person is assigned responsible for processing this issue by setting the
attribute assigned to to the respective name or directly linking to the developer’s profile page.
Additionally, the status is set to open in order to remove this issue from the dashboard list
view. Further information is given about for example the estimated effort, the priority, and the
related customer project. The responsible developer is in turn informed by an RSS-Feed and
the issue appears in her personal dashboard, showing all issues assigned to her in descending
order by priority.

An extract of the data model used for Tricia’s issue management is shown in Figure 6.5.
The depicted model elements almost completely emerged bottom-up by the management of
structured wiki pages with attributes and types. The following constraints were defined top-
down after the structures had become more stable, as for example:

∙ Enumeration constraints for the attributes status (e.g., open, closed, solved), priority
(e.g., high, low, medium), and effort (e.g., low, medium, high). The enumeration values
were plain strings in the beginning.

∙ exactly-one multiplicity constraint for the attributes status, effort, priority.

∙ exactly-one multiplicity constraint for the link attribute assigned to.

Since the attribute assigned to is declared as required for unprocessed user feedback a valida-
tion message is shown. This additionally encourages the issue manager to specify a responsible
developer.

15http://www.infoasset.de; visited on April 19th 2012.
16Feedback can only be send if the installation uses a specific plugin and is allowed to access the Internet.

173

6. Application and Evaluation

Figure 6.5.: Emergent information model used by InfoAsset AG for the management of issues.

6.1.3. TU München (sebis)

The author’s chair Software Engineering for Business Information Systems (sebis)17, estab-
lished in 2002, is one the 21 chairs of the Informatics Faculty at Technische Universität
München. sebis contributes to the informatics and business informatics education at the
PhD, master, and bachelor level. In March 2012, the chair employed 11 people.

Among many other things (courses, publications, tasks, meeting minutes, paper writing, in-
frastructure and application documentation, contacts, etc.) sebis uses Hybrid Wikis for the
management of course exercises. For instance, in the summer term 2011 Hybrid Wikis were
used to manage a course with about 500 students and 23 weekly exercises held by 12 different
tutors.

The information model used for the management of this course is depicted in Figure 6.6. The
course’s exercises are represented by structured wiki pages (typed with exercise) with some
attributes, such as room, time, tutor, and participants. These pages can be read and edited by
the course organizers and tutors. Tutor attributes contain link values referencing the tutor’s
profile pages, participants are links to pages typed as student. Student pages have attributes
such as first name, last name, and email. Furthermore, a partner attribute indicates that two
students are part of the same team. These pages can be edited by the tutors and additionally
be read by the corresponding student.

The tutors entered the grades of the students’ weekly homework as attributes in the student
pages (e.g., credits exercise 1, credits exercise 2). Additionally, the tutors provided some
correction notes and explanations in the pages’ built-in content. Some students observed their
pages in order to get notified (e.g., by email) in case of changes (e.g., new entered grades).
Some students used comments18 to discuss about their homeworks and grades with their
tutors. In such cases, even the tutors registered to receive change notifications.

17http://wwwmatthes.in.tum.de; visited on April 19th 2012.
18Tricia allows to comment pages even if the read access is restricted to some persons.

174

6. Application and Evaluation

Figure 6.6.: Emergent information model used by sebis to manage students and exercises of a
course.

Some tutors created custom embedded table views within the exercise pages (they were re-
sponsible for) showing the participating student of an exercise (i.e., the exercise represented
by that page). Furthermore, some defined additional columns in the tables (i.e., by means of
projection) knowing that there will be further similar attributes (e.g., credits exercise 10) in
the future. By means of these table views it was convenient for the tutors to manage their
relevant information by entering the grades like in a spreadsheet.

The initial structures (student pages and exercise pages) were defined by the exercise organizer.
The students and exercise assignments were imported based on a spreadsheet exported from a
tool the students use to schedule their semester. Furthermore, an attribute definition credits
exercise 1 was created for type student. The tutors followed this pattern by entering all
grades as structured attributes (e.g., credits exercise 10), but no further attribute definitions
regarding the credits were specified. Only one additional attribute definition was created
indicating that a presentation was held by the students as part of the exercise.

The exercise organizers used the student’s type table view to check if the tutors entered the
grades on time. Furthermore, the structured search helped them to get an overview of the
student’s performance per exercise (e.g., in order to identify high potentials).

175

6. Application and Evaluation

6.1.4. Pixida GmbH

Pixida GmbH19 is a German engineering consultancy. It supports customers from different
engineering disciplines in project management and execution. Costumers for example are
Audi20, BMW Group21, and Schreiner LogiData22. The core disciplines of Pixida GmbH are
infotainment, telematics, mobility, and IT consulting23.

In [Gr12] the author, employed at Pixida GmbH, examines how the business processes of Pixida
GmbH can be supported by Hybrid Wikis. In particular, he examines how business process
can be documented, how quality management of business processes can be supported, and
how business processes can be executed by means of Hybrid Wikis. After a short theoretical
discussion about the potentials of Hybrid Wikis in supporting business processes he describes
the experiences made in applying them at Pixida GmbH in a case study.

Pixida GmbH accessed Hybrid Wikis through a system installed locally. The business pro-
cesses of each organizational unit (e.g., recruiting, quality management) were documented by
using different wikis. The staff gained read access to all wikis, members of a organizational
unit gained write access to their corresponding wiki (i.e., the wiki representing the unit the
members belong to). The author of [Gr12] initially created this basic wiki structure, persons,
groups, and access control lists. In a first step, the business processes (type tag process) of the
human resource department were collaboratively documented, for example leave requests, basic
equipment, and education and training. A process provides for example the attributes status,
responsible person, participants, partner. These attributes were explicitly defined (i.e., by
means of attribute definitions) as part of the type process.

Members of the human resources department created new business processes by cloning a
wiki page (with type tag process) that serves as a template. This template page was initially
created by the author of [Gr12]. The wiki text of the template includes hints about the
structures’ meaning, guidelines for business process documentation, and some example data.
Even if this basic structure was predefined users adapted process pages cloned from this
template according to their needs. For instance, users introduced new attributes or they
embedded images in the built-in content showing the current business process represented in
Business Process Model and Notation (BPMN) 2.0 for purpose of illustration. Additionally,
some processes were described and discussed (e.g., individual process steps) within the wiki
text.

Parts of these process descriptions and some of the attributes should only be visible for the
members of the wiki the process is documented in (i.e., for the members of the organiza-
tional unit) for purpose of readability for staff of other units. Since Hybrid Wikis currently
support access control neither for parts of the built-in content nor for individual attributes,
the members moved these elements (i.e., content parts and attributes) to additionally created
wiki pages. That is, for each documented process they created an additional internal process
page (with type tags process and internal) containing the content parts and attributes only
relevant for the members of the unit. In order to preserve the connection between both pages

19http://www.pixida.de; visited on April 19th 2012.
20http://www.audi.de; visited on April 11th 2012.
21http://www.bmwgroup.com; visited on April 11th 2012.
22http://www.schreiner-logidata.com; visited on April 11th 2012.
23http://www.pixida.de/4/About%20us.html; visited on April 11th 2012.

176

6. Application and Evaluation

Figure 6.7.: Emergent information structures used by Pixida GmbH in the human resource
department for business process documentation according to [Gr12].

the original process page is referenced in the wiki text of the internal page. In these ways, wiki
page readers are not disturbed by irrelevant information. However, the members of the unit
(in particular the authors of the process pages) were burdened with additional information
management and navigation effort.

The structures that emerged in the human resource department are depicted in Figure 6.7.
Pixida GmbH additionally uses the types customer, meeting, and event to manage further
business activities in other wikis. The customer’s address attribute uses default values in
order to provide placeholders facilitating the entry of for example street, city, and country
(cf., Figure 6.8). The system’s home page shows the processes, events, and meetings of all
wikis by using customer embedded lists. The human resources wiki’s home page shows the
unit’s business processes as a custom embedded table and as a cluster map (cf., Section 6.1.1).
Additionally, the author of [Gr12] prepared some custom embedded table views for multiple
purposes. For example, a quality manager can use a table view to generate reports showing
all upcoming internal audits or to display general improvement suggestions from employees.

Finally, some users observed (cf., Section 3.2.4.4) the human resource wiki in order to get
informed in case of newly created business processes or changes to existing ones.

177

6. Application and Evaluation

Figure 6.8.: Default values used as placeholders facilitating the data entry of customer ad-
dresses according to [Gr12].

In [Gr12] the author confirmed that constraints helped to avoid inconsistencies in managing
structured information and types to reduce maintaining efforts by allowing the reuse of ex-
isting structures. Furthermore, he pointed out that the staff learned information structuring
with little introduction effort. The adaptability of structures in Hybrid Wikis empowered
Pixida GmbH to incrementally develop an information model bottom-up without the need to
have a complete model in mind in advance. However, this way increased coordination and
communication efforts regarding the structures were required in the beginning. Additionally,
some users expressed a need to define type-subtype relationships in order to inherit attribute
definitions and constraints, for example in order to share the definition of addresses between
the types customer and partner.

6.1.5. Summary

In this section, we presented the experiences gained in applying Hybrid Wikis in business
contexts by introducing selected case studies. Tables 6.1, 6.2, 6.3, and 6.4 summarize the
different purposes Hybrid Wikis are used for in six enterprises by listing the types primarily
applied. The productive use of Hybrid Wikis showed that business users indeed create and
adapt information structures according to changing demands without the need to involve IT
experts. In most cases, only little introduction effort was required to familiarize users with
the concepts and mechanisms of Hybrid Wikis.

In two cases Hybrid Wikis were well known to the users. sebis is the author’s chair and InfoAs-
set AG a company commercializing the software Hybrid Wikis are based on. We included these
cases not to validate our approach but rather to illustrate the broad range of applicability. In
both cases, we presented only an extract of the types that are used. Particularly interesting
is that most business information management activities in these two organizations are sup-
ported by Hybrid Wikis without the need for special purpose applications (e.g., a CRM tool or
an issue tracker). This has the advantage that most business critical information is integrated
in a central knowledge repository, can be linked, and searched. It would be interesting to

178

6. Application and Evaluation

Table 6.1.: Hybrid Wikis used for enterprise architecture management.

Enterprise,
EA layer

Business &

Organization

Application &

Information

Infrastructure &

Data

KVB business process component,
software product

location,
hardware,
server

UniCredit

Group

area,
area aggregation,
domain,
infrastructure compo-
nent

sebis application,
deployed application

host,
vm-host

Pixida

GmbH

organizational unit,
process

Table 6.2.: Hybrid Wikis applied in enterprises supporting customer-relationship-
management, human resources, events, meetings, and accounting.

Enterprise,
Purpose

CRM HR Events Meeting Accounting

Miles

Group

GmbH

customer investment,
invoice

sebis company,
contact

staff event,
workshop,
presentation

discussion,
meeting,
telco

fond,
payment

Pixida

GmbH

customer,
partner

event meeting

InfoAsset

AG

opportunity,
support

person,
staff

event protocol invoice

examine at which point of time and for what reasons enterprises introduce special purpose
tools for information management that is currently supported by Hybrid Wikis. However, this
is left for future research.

6.2. Experimental examination of models created with

Hybrid Wikis

In [Ra11] we conducted a laboratory experiment with 11 students at Technische Universität
München evaluating the quality of models created with Hybrid Wikis compared to models built
with a UML tool. In particular, the author of [Ra11] analyzed the models created during the
experiment regarding their structural complexity, completeness, and validity.

179

6. Application and Evaluation

Table 6.3.: Hybrid Wikis applied in enterprises supporting the management of projects, tasks,
configurations, and templates.

Enterprise,
Purpose

Project

management

Task

management

Configuration

management

Templates

sebis project,
research project,
student project

issue,
responsibility,
team task

form

Pixida

GmbH

business card

InfoAsset

AG

project task bug,
feature request,
issue,
refactoring,
release,
sprint

Table 6.4.: Hybrid Wikis applied in enterprises supporting personal information management,
licenses, lectures, and publications.

Enterprise,
Purpose

Personal

Information

Management

Licenses Lectures Publications

sebis idea,
note,
thought, todo

course,
exercise,
lab course,
seminar,
staff,
student

article,
bachelor thesis,
book,
conference,
journal,
master thesis,
publication,
thesis

InfoAsset

AG

idea host,
license

According to [Ra11], the research questions underlying that thesis are

∙ Which experimental setting and design are appropriate to evaluate the UML models
generated by Hybrid Wikis?

∙ Which types of measures can be used to determine the quality of models?

∙ Is the structured part of data entered in Hybrid Wikis as good as the structure of UML
models?

The author of [Ra11] identified a set of metrics necessary to determine the models’ prag-
matic quality (complexity) and semantic quality (validity, completeness) in order to answer
these questions. For instance, complexity is determined by the number of modeled classes,

180

6. Application and Evaluation

validity by the number of wrong classes, and completeness by the number of missing classes
(cf., Figure 6.9).

Model quality

Other Metrics

Pragmatic
Quality

Semantic
Quality

Percieved
Semantic
Quality

QS(complexity)
•NC
•NAssoc
•NA
•NGen

QS(validity)
•WC
•WAssoc
•WA
•WTypeA
•WMulA
•WMulAssoc

QS(completeness)
•MC
•MAssoc
•MA
•MMulAssoc

Perceived
completeness
•Completeness asked on
a five-point Likert scale

Perceived Validity
•Correctness asked
on a five-point Likert
scale

Figure 6.9.: Metric used to experimentally evaluate the quality of UML models and models
created with Hybrid Wikis according to [GP01, Kr95, Ra11].

The participating students were randomly divided into two groups (A and B). In the exper-
iment’s first phase, group A was introduced to Hybrid Wikis and group B to UMLet24 (a
lightweight tool supporting UML modeling) using a video tutorial and slides. Subsequently,
the students received an exercise consisting of a textual description from the domain of project
management. The students’ job was to transfer this textual description to the modeling con-
cepts provided by the tool used, in UMLet by creating classes, properties, and associations,
in Hybrid Wikis by creating wiki pages with type tags, attributes, and constraints. In the
second phase, the participants executed the same exercise but using the other tool (i.e., A uses
UMLet and B Hybrid Wikis), also getting introduced in the tools by video and slides before.
Subsequently, the identified metrics were applied to the models resulting from the experiment
in order to determine the best models from both tools in terms of pragmatic quality and
semantic quality. Finally, in order to determine the perceived semantic quality (i.e., perceived
completeness and perceived validity) the participants were asked open and closed (Likert scale)
questions about these two models in a paper-based questionnaire.

The answers given in the questionnaire indicate that the participants perceived the designated
best UML model to be more complete than the best model from Hybrid Wikis. Nevertheless,
the students preferred to work with Hybrid Wikis instead of UMLet: “Four prefer to work
with Hybrid Wiki, four are neutral, and two prefer to work with UML”. Additionally, answers
from the open questions show that Hybrid Wikis are easy to use and understand. However,
the students expressed a need for creating type hierarchies.

Furthermore, a statistical analyses of the results (i.e., all models resulting from the experiment)
based on the metrics shows that models created with Hybrid Wikis

24http://www.umlet.com; visited on March 2nd 2012.

181

6. Application and Evaluation

∙ are slightly less complex (but not statistically significant),

∙ are slightly more complete (but not statistically significant), and

∙ have less wrong constructs (with a probability of 95 percent)

than UML models.

Finally, the author draws the following lessons learned, in particular she claims to

∙ select a larger number of representative subjects (also participants without modeling
skills) in future experiments in order to obtain more statistically significant results,

∙ emphasize the difference between conventional tags and type tags since it was not obvious
for one student,

∙ implement type hierarchies in order to inherit attribute definitions, and

∙ show backlinks in the type table view in order to manage inverse roles (e.g., names,
multiplicities) for attribute definitions.

From the fact that the participants never worked with Hybrid Wikis before and only were
introduced by a fifteen minute video the author concludes that Hybrid Wikis empower users to
model real-world scenarios (e.g., project management) with little introduction effort [Ra11].

6.3. Evaluating and visualizing the structural evolution of

Hybrid Wikis

In [Tr12] the author examines how the structural evolution of Hybrid Wikis can be analyzed.
In the first phase of that thesis, he developed a data structure that allows to query (based
on XPath expressions) the version history of content objects, types, attribute definitions, and
constraints by aggregating change events. This data structure allows to efficiently find out for
example how many and which attributes an individual wiki page has at a certain point of time
within its life-cycle. Based on this data structure, he prototypically developed two graphical
visualization integrated in Hybrid Wikis.

∙ A chart showing the structural evolution of a wiki page (cf., Figure 6.10). By default,
the number of assigned attributes, types, and tags are drawn over time. For each change
event further information is given (e.g., listing removed attributes or assigned types).

∙ A chart showing the evolution of a type. By default, the number of attribute definitions
and number of instances are drawn over time. For each change event further information
is given (e.g., listing added attribute definition or deleted instance).

Even if these charts are simple means to visualize quantitative data, the underlying data struc-
ture and query language give users the possibility to analyze the structures of Hybrid Wikis ac-
cording to their needs. Users can define custom queries and visualize the query results graph-
ically. This way, users are empowered to identify for example correlations in structures or
typical structuring pattern.

182

6. Application and Evaluation

Figure 6.10.: Visualizing the structural evolution of a wiki page with attributes, types, and
tags according to [Tr12].

From a research perspective, the approach is a generic means that can be used to confirm or
reject hypothesis regarding emergent structures. For instance, it would be possible to examine
the hypothesis Attributes emerge before attribute definitions by analyzing the structures of
different installations from our industry partners. In [Tr12] the author analyzes the public
web sites (i.e., wiki pages) of our chair’s wiki25 by means of his solution. Subsequently, he
discusses and interprets the results of this analysis. However, since the number of public web
sites is limited in this wiki analyzing the contents of other application scenarios would be more
interesting, but this is left for future research work.

25http://wwwmatthes.in.tum.de; visited on March 10th 2012.

183

184

CHAPTER 7

Conclusion

This chapter concludes the thesis by summarizing the results in Section 7.1. In Section 7.2,
we provide an outlook on future research based on Hybrid Wikis.

7.1. Summary

In this thesis we presented Hybrid Wikis, an innovative approach to support information
structuring in Enterprise 2.0 platforms. Hybrid Wikis empower users to incrementally and
collaboratively structure linked information, as well as adapt emergent structures according
to changing business demands - both without the need to involve IT experts and without
requiring training in conceptual modeling. In the following, we briefly summarize the findings
of this thesis and explain how they respond to the research questions outlined in Section 1.2.

First, in Chapter 2 we presented the general ideas underlying Hybrid Wikis by briefly intro-
ducing the core structuring concepts (attributes, types, constraints) and exemplifying user
interactions based on these concepts. Then, we introduced three principles that guided both
the design and development of Hybrid Wikis.

In Chapter 3, we designed a conceptual model that supports information structuring in Enter-
prise 2.0 platforms. We explained the model’s concepts in detail and explained how a schema
can be derived from structured content objects with attributes and type assignments. We also
showed how this implicit schema can be made explicit with types, attribute definitions, and
constraints. We discussed the integration of these concepts in current Enterprise 2.0 platforms
and the resulting impacts on typical Enterprise 2.0 services. We explained how the structuring
of information can be facilitated by providing suggestions, autocompletion, and objectifica-
tion mechanisms. We showed how (explicitly defined) information structures can be adapted
and harmonized by proposing transitions and consolidation techniques. For the purpose of
illustration, we presented a set of built-in views of Hybrid Wikis users can interact with. We

185

7. Conclusion

also introduced custom views that allow for showing business critical information according to
user-specific needs. The findings from this chapter addressed our research questions 2 and 3.

Chapter 4 responded to research question 4 by explaining how Hybrid Wikis are implemented
based on the existing Enterprise 2.0 platform Tricia. Firstly, we introduced Tricia’s system
architecture and its interfaces. Secondly, we explained how Hybrid Wikis are integrated in
Tricia by presenting the developed data model and the extended architecture, as well as by
discussing important design decisions. We explained how suggestions can be calculated effi-
ciently. Furthermore, by means of screenshots we illustrated how users can adapt structures
by using transitions and consolidation techniques. We described import and export interfaces
that allow the exchange of information models and structured content. Lastly, we introduced
Hybrid Wikis as means to integrate information scattered across different application reposi-
tories within enterprises.

In Chapter 5, we compared Hybrid Wikis to 28 web-based tools or prototypes described in
scientific literature. We briefly introduced these approaches and highlighted commonalities
and differences. Additionally, we presented findings from a survey on integrated commercial
and open source Enterprise 2.0 applications. This chapter addressed research question 5.

The applicability of Hybrid Wikis is demonstrated in Chapter 6. We listed feedback from a
community of enterprise architects from 25 large German enterprises (industry and the public
sector) shared with us during seven workshops conducted from December 2010 to March
2012. We evaluated Hybrid Wikis by means of case studies in six organizations from different
domains, in particular we presented the information structures that emerged by using UML-
like diagrams. In a controlled experiment with students at Technische Universität München,
we examined the quality of structures created with Hybrid Wikis. The results show that
with a probability of 95 percent models created with a UML tool have more wrong constructs
than models created with Hybrid Wikis [Ra11]. Finally, we presented a tool that allows to
quantitatively analyze structured content in Hybrid Wikis. The chapter responded to research
question 6.

By responding to research questions 2-6 we also responded to this thesis’ overall research
question: We showed that facilitating emergent and adaptive information structures in Enter-
prise 2.0 platforms is possible.

7.2. Outlook

Hybrid Wikis are an innovation in the field of Enterprise 2.0. However, in previous chapters,
we left some questions unanswered and identified potentials for further research. Subsequently,
we sketch how these open questions could be addressed and discuss potential research topics
based on Hybrid Wikis.

7.2.1. Type hierarchies

Type hierarchies are important means in the area of conceptual modeling [ET11]. The ap-
plication and evaluation of Hybrid Wikis (cf., Chapter 6) showed that type hierarchies are
frequently missing. Even if inheritance can be simulated in Hybrid Wikis by means of multi-

186

7. Conclusion

ple tags per object and resulting attribute suggestions, attribute definitions with constraints
are currently not inherited. Since attribute definitions have to be maintained in multiple
types, this might lead to increased efforts and inconsistencies in the explicitly defined schema.
In [MNS12] we discussed how type hierarchies can be detected based on tagged resources.
We identified so-called subsumption relationships between tags. Simply put, a tag project
subsumes a tag research project if the set of resources tagged with research project is a proper
subset of the set of resources tagged with project. That is, project can be considered to be
more general than research project. Based on this relationship, in a prototype we automat-
ically assign a (type) tag project if a (type) tag research project (i.e., the more specific tag)
is assigned to a resource - in order to preserve derived hierarchies of (type) tags. This mech-
anism could also be applied to types in Hybrid Wikis. Attribute definitions could then be
inherited by means of an implicitly defined type hierarchy. Alternatively, type relations could
be explicitly defined per type. For example, for each type could be defined on which other
types it depends on. However, it would be interesting to examine how inheritance can be
supported by Hybrid Wikis in both cases (i.e., implicit or explicit type relations), especially
having in mind that business users still should be able to understand their concepts and user
interface.

7.2.2. Empirical evaluation of the use of Hybrid Wikis

In Chapter 5, we compared Hybrid Wikis to several tools and prototypes by discussing their
similarities and differences. In future research, the structures created with theses tools and
Hybrid Wikis could be analyzed (e.g., regarding the quality of the structures) by means of for
example a controlled experiment, similar to the comparison with UML models introduced in
Section 6.2, or by analyzing structures that emerged from the application of those tools and
Hybrid Wikis in different enterprise contexts.

In Section 6.3, we introduced a tool that allows to quantitatively analyze the structures of
Hybrid Wikis. This tool provides the basis for hypothesis-based research. For instance,
application data obtained from different installations could be analyzed in order to confirm or
reject previously defined hypothesis regarding structures (e.g., in order to identify patterns in
the users’ structuring activities). The results of such an analysis could help to further improve
Hybrid Wikis. For instance, if it turned out that on wiki pages with types and attributes full
text is rarely used structured pages could be displayed differently by default (e.g., hide the
full text by default).

Furthermore, the case studies presented in Section 6.1 could be broadened. It would be in-
teresting to see whether information model patterns emerge in specific application contexts.
Or to find out whether Hybrid Wikis are particularly suitable for specific application do-
mains. In case of enterprises that use Hybrid Wikis for multiple purposes (e.g., projects,
EAM, CRM, meetings), it could be analyzed when and for what reasons special purpose tools
are being introduced for information management activities that are currently supported by
Hybrid Wikis. Also, feedback from Hybrid Wikis’ users could be collected on questionnaires
or in interviews.

Some concepts and mechanisms provided by Hybrid Wikis have not yet been applied in practice
and thus could not yet be evaluated, such as structured links, record and hypertext values,

187

7. Conclusion

structuring of other content objects than wiki pages (e.g., persons, blog posts, files), or different
thresholds for suggestions. For example, the introduction of structured links could reduce user
acceptance due to increasing conceptual expressivity. This could be investigated in future
research.

7.2.3. Towards user-adaptive information systems

Hybrid Wikis empower users to incrementally and collaboratively create and adapt data mod-
els without needing to involve IT-experts. An interesting research topic would be to examine
whether it is possible to develop complete information systems, in terms of data, process,
and user interface modeling by following the paradigm of user-adaptability. In particular,
it could be examined whether it is possible to implement a user-centered and model-based
information system environment that supports both the execution and user-driven evolution
of information systems by means of domain-specific modeling languages. It could be tested
if information systems built in this environment can be adapted more rapidly and with fewer
errors to unforeseen changes in business requirements when a significant number of the neces-
sary system changes can be implemented by business users themselves and if it is even possible
that changes to these systems can be applied by users without the involvement of software
engineers.

188

APPENDIX A

Appendix

189

A. Appendix

T
yp

e
ke

y:
S

tr
in

g
{u

ni
qu

e
fo

r
sp

ac
e}

de
sc

rip
tio

n:
S

tr
in

g
rig

id
:B

oo
le

an
st

ric
t:B

oo
le

an

*
{o

rd
er

ed
}

*

A
ttr

ib
ut

e
ke

y:
S

tr
in

g
{u

ni
qu

e
fo

r
co

nt
en

t}

 1
 t

yp
e

 *

 {
or

de
re

d}

 0

..1

1.

.*
 {

or
de

re
d}

{a
bs

tr
ac

t}
V

al
ue

In
te

rn
al

Li
nk

C
on

st
ra

in
t

S
tr

uc
tu

re
dL

in
kC

on
st

ra
in

t

*

*

lin
k

ta
rg

et
 ty

pe
s

*

*

re
co

rd
 ty

pe
s

*

*

de
fa

ul
t t

yp
es

{s
ub

se
t}

*
*

 0

..1
 c

on
te

nt

1.
.*

 {
or

de
re

d}

C
on

te
nt

na
m

e:
S

tr
in

g
{u

ni
qu

e
fo

r
sp

ac
e}

ur
l:U

R
L

{u
ni

qu
e}

co
nt

en
t:M

ar
ku

p

In
te

rn
al

Li
nk

*

re
fe

re
nc

ed
 b

y

0.
.1

re
fe

re
nc

es

A
ttr

ib
ut

eD
ef

in
iti

on
ke

y:
S

tr
in

g
{u

ni
qu

e
fo

r
ty

pe
}

de
sc

rip
tio

n:
S

tr
in

g
st

ric
t:B

oo
le

an
{a

bs
tr

ac
t}

C
on

st
ra

in
t

va
lid

at
io

nM
es

sa
ge

:S
tr

in
g

st
ric

t:B
oo

le
an

 1

 0

..1

{a
bs

tr
ac

t}
D

at
aT

yp
eC

on
st

ra
in

t

*

*

de
fa

ul
t r

ec
or

d
ty

pe
s

{s
ub

se
t}

0.
.1

co
ns

tr
ai

nt

*
 {

or
de

re
d}

de
fa

ul
ts

0.

.1
co

ns
tr

ai
nt

*
 {

or
de

re
d}

de
fa

ul
ts

R
ec

or
dC

on
st

ra
in

t

M
ul

tip
lic

ity
C

on
tr

ai
nt

m
in

:N
um

be
r

m
ax

:N
um

be
r

H
yp

er
te

xt
C

on
st

ra
in

t

S
tr

in
gV

al
ue

C
on

st
ra

in
t

E
nu

m
C

on
st

ra
in

t

D
at

eC
on

st
ra

in
t

N
um

be
rC

on
st

ra
in

t

S
tr

in
gV

al
ue

te
xt

:S
tr

in
g

H
yp

er
te

xt
co

nt
en

t:M
ar

ku
p

D
at

eV
al

ue
da

te
:D

at
e N

um
be

rV
al

ue
nu

m
be

r:
N

um
be

r

0.
.1

1.
.*

 {
or

de
re

d}

 0
..1

co
ns

tr
ai

nt

*
 {

or
de

re
d}

de
fa

ul
ts

{s
ub

se
t}

0.
.1

co
ns

tr
ai

nt
*

 {
or

de
re

d}
de

fa
ul

ts

R
ec

or
dV

al
ue

*

re
fe

re
nc

ed
 b

y

*
re

fe
re

nc
es

S
tr

uc
tu

re
dL

in
k

1.
.*

 {
or

de
re

d}

0.
.1

{a
cy

cl
ic

}

*

*
{o

rd
er

ed
}

E
xt

er
na

lL
in

k
ur

l:U
R

L

1

0.
.1

ty
pe

0.
.1

co
ns

tr
ai

nt
*

 {
or

de
re

d}
de

fa
ul

ts

0.
.1

co
ns

tr
ai

nt
*

 {
or

de
re

d}
de

fa
ul

ts

0.
.1

co
ns

tr
ai

nt
*

 {
or

de
re

d}
de

fa
ul

ts

E
xt

er
na

lL
in

kC
on

st
ra

in
t

0.
.1

co
ns

tr
ai

nt
*

 {
or

de
re

d}
de

fa
ul

ts

S
pa

ce
 1

 s
pa

ce

*

 1
 s

pa
ce

*

*re
fe

re
nc

ed
 b

y *
re

fe
re

nc
es

*
{o

rd
er

ed
}

0.
.1

{a
cy

cl
ic

}

*

*
{o

rd
er

ed
}

Figure A.1.: The conceptual model of Hybrid Wikis.

190

Bibliography

[AA05] Aumueller, D.; Auer, S.: Towards a Semantic Wiki Experience - Desktop Integra-
tion and Interactivity in WikSAR. In Proceedings of 1st Workshop on The Semantic
Desktop - Next Generation Personal Information Management and Collaboration
Infrastructure, Galway, Ireland, Nov. 6th. November 2005.

[AC10] Antin, J.; Cheshire, C.: Readers are not free-riders: reading as a form of partic-
ipation on wikipedia. In Proceedings of the 2010 ACM conference on Computer
supported cooperative work. CSCW ’10. pages 127–130. New York, NY, USA.
2010. ACM.

[Ad09] Adami, M.: Performance engineering and analysis for a web-based collabora-
tion platform. Diploma thesis. Fakultät für Informatik, Technische Universität
München. 2009.

[ADR06] Auer, S.; Dietzold, S.; Riechert, T.: OntoWiki - A Tool for Social, Semantic Col-
laboration. In (Cruz, I. F.; Decker, S.; Allemang, D.; Preist, C.; Schwabe, D.; Mika,
P.; Uschold, M. et al., Ed.): The Semantic Web - ISWC 2006, 5th International
Semantic Web Conference, ISWC 2006, Athens, GA, USA, November 5-9, 2006,
Proceedings. volume 4273 of Lecture Notes in Computer Science. pages 736–749.
Berlin / Heidelberg. 2006. Springer.

[AL07] Auer, S.; Lehmann, J.: What Have Innsbruck and Leipzig in Common? Extracting
Semantics from Wiki Content The Semantic Web: Research and Applications. In
(Franconi, E.; Kifer, M.; May, W., Ed.): The Semantic Web: Research and Ap-
plications. volume 4519 of Lecture Notes in Computer Science. chapter 36, pages
503–517. Springer. Berlin, Heidelberg. 2007.

[ALZ03] Ancona, D.; Lagorio, G.; Zucca, E.: Jam - designing a Java extension with mixins.
ACM Trans. Program. Lang. Syst. 25(5):641–712. 2003.

[Am10] Amram, N.; Antonelli, S.; Haywood, S.; Lloyd, S.; Luehring, F.; Poulard, G.: The
use of the TWiki Web in ATLAS. Journal of Physics: Conference Series. 219(8).
2010.

191

Bibliography

[AMY08] Ayers, P.; Matthews, C.; Yates, B.: How Wikipedia Works: And How You Can Be
a Part of It. No Starch Press. September 2008. 159327176X.

[Ar09] Arnold, C.; Fleming, T.; Largent, D.; Lüer, C.: DynaTable: a Wiki extension for
structured data. In Proceedings of the 5th International Symposium on Wikis and
Open Collaboration. WikiSym ’09. pages 26:1–26:2. New York, NY, USA. 2009.
ACM.

[Au05a] Auer, S.: Powl - A Web Based Platform for Collaborative Semantic Web Devel-
opment. In Proc. of 1st Workshop Workshop Scripting for the Semantic Web
(SFSW’05), Hersonissos, Greece, May 30, 2005. May 2005.

[Au05b] Aumueller, D.: SHAWN: Structure helps a wiki navigate. In Proceedings of the
BTW-Workshop WebDB Meets IR. 2005.

[Au05c] Aumueller, D.: Semantic authoring and retrieval within a Wiki. In ESWC. 2005.

[Au06] Auer, S.: Powl - Framwork für Entwicklung von semantischen Web-Applikationen
/ Ontowiki - semantische Community-Kollaborationsplattform. In (Blumauer, A.;
Pellegrini, T., Ed.): Semantic Web Fibel 06 - Leitfaden und Einstiegspunkte für
die Praxis. Semantic Web School - Zentrum für Wissenstransfer. Wien. 2006.

[Au08] Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z.: DBpedia: A
Nucleus for a Web of Open Data. In Proceedings of the 6th International Semantic
Web Conference (ISWC). volume 4825 of Lecture Notes in Computer Science.
pages 722–735. Springer. 2008.

[Au10] Aumueller, D.: Usability Meets Instant Gratification on the Semantic Web. CoRR.
abs/1011.2386. 2010.

[Ba09] Barrett, D. J.: MediaWiki - Wikipedia and beyond. O’Reilly Media. 2009. 978-0-
596-51979-7.

[BCT07] Bollacker, K. D.; Cook, R. P.; Tufts, P.: Freebase: A Shared Database of Structured
General Human Knowledge. In AAAI. pages 1962–1963. AAAI Press. 2007.

[BD09] Bruegge, B.; Dutoit, A. H.: Object Oriented Software Engineering Using UML,
Patterns, and Java. Prentice Hall. 2009. 0136061257.

[BG04] Brickley, D.; Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema
W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-schema
(cited 2012-02-04). 2004.

[BG06] Buffa, M.; Gandon, F.: SweetWiki: Semantic Web Enabled Technologies in Wiki.
Proceedings of the international symposium on Symposium on Wikis, ACM Press.
page 10. 2006.

[BHBL09] Bizer, C.; Heath, T.; Berners-Lee, T.: Linked Data – The Story So Far. Interna-
tional Journal on Semantic Web and Information Systems. 5(3):1–22. 2009.

[Bi09] Bizer, C.; Auer, S.; Kobilarov, G.; Lehmann, J.; Becker, C.; Hellmann, S.: DB-
pedia - Querying Wikipedia like a Database and An Interlinking-Hub in the Web
of Data. April 2009. Querying Wikipedia Like a Database (4/4/2009) FU Berlin,
Universität Leipzig.

192

Bibliography

[Bi12] Birkmeier, D.; Buckl, S.; Gehlert, A.; Matthes, F.; Neubert, C.; Overhage,
S.; Roth, S. et al.: The Role of Services in Governmental Enterprise Architec-
tures – The Case of the German Federal Government. Anthopoulos, L.: An
Investigative Assessment of the role of Enterprise Architecture in realizing E-
Government Transformation. In Saha, P. (Ed.). Enterprise Architecture for Con-
nected E-Government: Practices and Innovations. Hershey, PA: IGI Global. 2012.
9781466618244.

[BL98] Berners-Lee, T.: Semantic Web Road Map. 1998.

[BLC95] Berners-Lee, T.; Connolly, D.: Hypertext Markup Language - 2.0. RFC Editor.
United States. 1995.

[BM06] Büchner, T.; Matthes, F.: Introspective Model-Driven Development. In EWSA.
pages 33–49. 2006.

[BMN09] Büchner, T.; Matthes, F.; Neubert, C.: A Concept and Service based Analysis of
Commercial and Open Source Enterprise 2.0 Tools. In International Conference
on Knowledge Management and Information Sharing. pages 37–45. Madeira, Por-
tugal. 2009.

[BMN10a] Büchner, T.; Matthes, F.; Neubert, C.: Data model driven implementation of web
cooperation systems with Tricia. In Proceedings of the Third international confer-
ence on Objects and databases. ICOODB’10. pages 70–84. Berlin, Heidelberg.
2010. Springer.

[BMN10b] Büchner, T.; Matthes, F.; Neubert, C.: Functional Analysis of Enterprise 2.0 Tools
- a Services Catalog. In Lecture Notes of Communications in Computer and Infor-
mation Science (CCIS). 2010.

[BMS10] Buckl, S.; Matthes, F.; Schweda, C.: A Generative Approach for Creating
Stakeholder-specific Enterprise Architecture Views. In Electronic Proceedings of
Forum of the 22nd International Conference on Advanced Information Systems
Engineering (CAiSE 2010). volume 72 of Lecture Notes in Business Information
Processing (LNBIP). pages 136–149. Hammamet. 2010. Springer.

[Bo91] Boehm, B. W.: Software Risk Management: Principles and Practices. IEEE Soft-
ware. 8(1):32–41. 1991.

[Bo04] Boiko, B.: Content Management Bible (Bible). John Wiley & Sons. November
2004. 0764573713.

[Bo07] Bollacker, K.; Tufts, P.; Pierce, T.; Cook, R.: A Platform for Scalable, Collab-
orative, Structured Information Integration. In Sixth International Workshop on
Information Integration on the Web Association for the Advancement of Artificial
Intelligence. 2007.

[Bo08] Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of data. SIG-
MOD ’08. pages 1247–1250. New York, NY, USA. 2008. ACM.

[Bo09] Boulos, M.: Semantic Wikis: A Comprehensible Introduction with Examples from

193

Bibliography

the Health Sciences. Journal of Emerging Technologies in Web Intelligence. 1(1).
2009.

[BP08] Baumeister, J.; Puppe, F.: Web-based Knowledge Engineering using Knowledge
Wikis. In Proceedings of Symbiotic Relationships between Semantic Web and
Knowledge Engineering (AAAI 2008 Spring Symposium). 2008.

[BRP07a] Baumeister, J.; Reutelshoefer, J.; Puppe, F.: KnowWE - Community-based Knowl-
edge Capture with Knowledge Wikis. In K-CAP ’07: Proceedings of the 4th inter-
national conference on Knowledge capture. pages 189–190. New York, NY, USA.
2007. ACM.

[BRP07b] Baumeister, J.; Reutelshoefer, J.; Puppe, F.: Markups for Knowledge Wikis. In
(Handschuh, S.; Collier, N.; Groza, T.; Dieng, R.; Sintek, M.; de Waard, A., Ed.):
SAAKM. volume 289 of CEUR Workshop Proceedings. CEUR-WS.org. 2007.

[BRP11] Baumeister, J.; Reutelshoefer, J.; Puppe, F.: KnowWE: a Semantic Wiki for
knowledge engineering. Appl. Intell. 35(3):323–344. 2011.

[BSZ07] Braun, S.; Schmidt, A.; Zacharias, V.: SOBOLEO: vom kollaborativen Tagging
zur leichtgewichtigen Ontologie. In (Gross, T., Ed.): Mensch & Computer - 7.
Fachübergreifende Konferenz - M&C 2007. pages 209–218. München. 2007. Old-
enbourg Verlag.

[Bu96] Buschmann, G.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M.: Pattern-
Oriented Software Architecture: a system of patterns. volume 1. John Wiley &
Sons. 1996.

[Bü07] Büchner, T.: Introspektive Modellgetriebene Softwareentwicklung. PhD thesis.
Technische Universität München. 2007.

[Bu09] Buckl, S.; Matthes, F.; Neubert, C.; Schweda, C. M.: A Wiki-based Approach
to Enterprise Architecture Documentation and Analysis. In The 17th European
Conference on Information Systems (ECIS) – Information Systems in a Globalizing
World: Challenges, Ethics and Practices, 8. – 10. June 2009, Verona, Italy. pages
2192–2204. Verona, Italy. 2009.

[Bu10] Buckl, S.; Matthes, F.; Neubert, C.; Schweda, C. M.: A Lightweight Approach
to Enterprise Architecture Modeling and Documentation. In (Soffer, P.; Proper,
E., Ed.): CAiSE Forum. volume 72 of Lecture Notes in Business Information
Processing (LNBIP). pages 136–149. Springer. 2010.

[Bu11a] Buffa, M.; Gandon, F.; Sander, P.; Faron, C.; Ereteo, G.: SweetWiki: a semantic
wiki. Web Semantics: Science, Services and Agents on the World Wide Web. 6(1).
2011.

[Bu11b] Buneman, P.; Cheney, J.; Lindley, S.; Müller, H.: The database Wiki project: a
general-purpose platform for data curation and collaboration. SIGMOD Record.
40(3):15–20. 2011.

[Bu11c] Buneman, P.; Cheney, J.; Lindley, S.; Müller, H.: DBWiki: a structured wiki for
curated data and collaborative data management. In (Sellis, T. K.; Miller, R. J.;
Kementsietsidis, A.; Velegrakis, Y., Ed.): SIGMOD Conference. pages 1335–1338.

194

Bibliography

ACM. 2011.

[Ca11] Casagni, C.; Francescomarino, C. D.; Dragoni, M.; Fiorentini, L.; Franci, L.;
Gerosa, M.; Ghidini, C. et al.: Wiki-Based Conceptual Modeling: An Experience
with the Public Administration. In (Aroyo, L.; Welty, C.; Alani, H.; Taylor, J.;
Bernstein, A.; Kagal, L.; Noy, N. F. et al., Ed.): International Semantic Web
Conference (2). volume 7032 of Lecture Notes in Computer Science. pages 17–32.
Springer. 2011.

[CCT04] Campanini, S. E.; Castagna, P.; Tazzoli, R.: Platypus Wiki: a Semantic Wiki Wiki
Web. In Semantic Web Applications and Perspectives, Proceedings of 1st Italian
SemanticWeb Workshop. December 2004.

[Ch08a] Chang, F.; Dean, J.; Ghemawat, S.; Hsieh, W. C.; Wallach, D. A.; Burrows, M.;
Chandra, T. et al.: Bigtable: A Distributed Storage System for Structured Data.
ACM Trans. Comput. Syst. 26:1–26. June 2008.

[Ch08b] Chu, S. K.-W.: TWiki for knowledge building and management. Online Information
Review. 32(6):745–758. 2008.

[Da08] Damiani, E.; Ceravolo, P.; Corallo, A.; Elia, G.; Zilli, A.: KIWI: A Framework for
Enabling Semantic Knowledge Management. In Semantic Knowledge Management:
An Ontology-Based Framework. pages 1–23. Idea Group Reference. 2008.

[Da11] Dacka, P.: Functional Analysis of Enterprise 2.0 Tools - Expectations, Experiences
and Valuations from an End-User Perspective. Bachelor’s thesis. Fakultät für
Informatik, Technische Universität München. 2011.

[DAR06] Dietzold, S.; Auer, S.; Riechert, T.: Kolloborative Wissensarbeit mit OntoWiki. In
Proceedings of the INFORMATIK 2006 Workshop: Bildung von Sozialen Netzw-
erken in Anwendungen der "Social Software". 2006.

[DC10] Dirolf, M.; Chodorow, K.: MongoDB: The Definitive Guide. O’Reilly Media. 1
edition. 2010. 1449381561.

[De05a] Decker, B.; Ras, E.; Rech, J.; Klein, B.; Hoecht, C.: Self-organized Reuse of
Software Engineering Knowledge Supported by Semantic Wikis. Proceedings of
the Workshop on Semantic Web Enabled Software Engineering (SWESE), held at
the 4th International Semantic Web Conference (ISWC 2005) November 6th-10th.
2005.

[De05b] Decker, B.; Ras, E.; Rech, J.; Klein, B.; Reuschling, C.; Höcht, C.; Kilian, L.
et al.: A Framework for Agile Reuse in Software Engineering using Wiki Technol-
ogy. In (Althoff, K.-D.; Dengel, A.; Bergmann, R.; Nick, M.; Roth-Berghofer, T.,
Ed.): Wissensmanagement. pages 411–414. DFKI. 2005.

[DH10] Dengler, F.; Happel, H.-J.: Collaborative modeling with semantic MediaWiki. In
(Ayers, P.; Ortega, F., Ed.): Int. Sym. Wikis. ACM. 2010.

[DIVZ08] Di Iorio, A.; Vitali, F.; Zacchiroli, S.: Wiki content templating. In WWW ’08:
Proceeding of the 17th international conference on World Wide Web. pages 615–
624. New York, NY, USA. 2008. ACM.

195

Bibliography

[DIZ06] Di Iorio, A.; Zacchiroli, S.: Constrained Wiki: an Oxymoron? In Proceedings of the
2006 international symposium on Wikis. WikiSym ’06. pages 89–98. New York,
NY, USA. 2006. ACM.

[Dr07] Drakos, N.: Magic Quadrant for Team Collaboration and Social Software. Gartner
Research, ID Number: G00151493. 2007.

[DST06] Dello, K.; Simperl, E. P. B.; Tolksdorf, R.: Creating and using Semantic Web
information with Makna. In (Völkel, M.; Schaffert, S., Ed.): SemWiki. volume 206
of CEUR Workshop Proceedings. CEUR-WS.org. 2006.

[DSW06] Davies, J.; Studer, R.; Warren, P., Ed.Semantic Web Technologies: Trends and
Research in Ontology-Based Systems. John Wiley & Sons. Chichester, UK. 2006.
978-0-470-02596-3.

[Du05] Dueck, G.; Ebersbach, A.; Glaser, M.; Heigl, R.; Adelung, A.: Wiki: Web Collab-
oration. Springer. Secaucus, NJ, USA. 2005. 3540259953.

[EM00] Edmunds, A.; Morris, A.: The problem of information overload in business organ-
isations: a review of the literature. International Journal of Information Manage-
ment. 20(1):17–28. 2000.

[ET11] Embley, D. W.; Thalheim, B.: Handbook of Conceptual Modeling: Theory, Practice,
and Research Challenges. Springer. 2011. 3642158641.

[Fe11] Fensel, D.; Facca, F. M.; Simperl, E.; Toma, I.; Fensel, D.; Facca, F. M.; Simperl,
E. et al.: Semantic Web. In Semantic Web Services. pages 87–104. Springer. 2011.
10.1007/978-3-642-19193-0_6.

[Fo03] Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley. 2003.
With contributions from Rice, D., Foemmel, M., Hieatt, E., Mee, R. and Stafford,
R.

[Fr98] Froehlich, G.; Hoover, H.; Liu, L.; Sorenson, P.: Designing object-oriented frame-
works. CRC Handbook of Object Technology. pages 25:1–25:21. 1998.

[Ga10a] García, R.; Gil, R.; Gimeno, J. M.; Granollers, T.; López, J. M.; Oliva, M.; Pascual,
A.: Semantic wiki for quality management in software development projects. IET
Software. 4(6):1–19. 2010.

[Ga10b] Gassler, W.; Zangerle, E.; Tschuggnall, M.; Specht, G.: SnoopyDB: narrowing the
gap between structured and unstructured information using recommendations. In
Proceedings of the 21st ACM conference on Hypertext and hypermedia. HT ’10.
pages 271–272. New York, NY, USA. 2010. ACM.

[GH05] Golder, S. A.; Huberman, B. A.: The Structure of Collaborative Tagging Systems.
CoRR. abs/cs/0508082. 2005.

[Gh07] Ghali, A. E.; Tifous, A.; Buffa, M.; Giboin, A.; Dieng-Kuntz, R.: Using a Semantic
Wiki in Communities of Practice. In 2nd Intern. Workshop on Building Technology
Enhanced Learning Solutions for Communities of Practice. 2007.

[Gh08] Ghidini, C.; Rospocher, M.; Serafini, L.; Kump, B.; Pammer, V.; Faatz, A.; Zin-
nen, A. et al.: Collaborative Knowledge Engineering via Semantic MediaWiki. In

196

Bibliography

(Auer, S.; Schaffert, S.; Pellegrini, T., Ed.): International Conference on Semantic
Systems (I-SEMANTICS ’08). pages 134–141. Graz, Austria. September 2008.

[Gh09] Ghidini, C.; Kump, B.; Lindstaedt, S.; Mahbub, N.; Pammer, V.; Rospocher, M.;
Serafini, L.: MoKi: The Enterprise Modelling Wiki. In (Aroyo, L.; Traverso, P.;
Ciravegna, F.; Cimiano, P.; Heath, T.; Hyvönen, E.; Mizoguchi, R. et al., Ed.):
The Semantic Web: Research and Applications. volume 5554. chapter 65, pages
831–835. Springer. Berlin, Heidelberg. 2009.

[GL10] Gläser, J.; Laudel, G.: Experteninterviews und qualitative Inhaltsanalyse: als In-
strumente rekonstruierender Untersuchungen. VS Verlag für Sozialwissenschaften.
4th edition. 2010. 978-3531172385.

[GMM03] Guha, R.; McCool, R.; Miller, E.: Semantic search. pages 700–709. 2003.

[GP01] Genero, M.; Piattini, M.: Empirical validation of measures for class diagram struc-
tural complexity through controlled experiments. 5th International ECOOP Work-
shop on Quantitative Approaches in Object-Oriented Software Engineering. 2001.

[Gr12] Großmann, A.: Usage of HybridWikis for Business Processes Support - A Case
Study in a Medium-Sized Enterprise. Bachelor’s thesis. Fakultät für Informatik,
Technische Universität München. 2012.

[GZS11] Gassler, W.; Zangerle, E.; Specht, G.: The Snoopy Concept: Fighting Heterogeneity
in Semistructured and Collaborative Information Systems by using Recommenda-
tions. In International Conference on Collaboration Technologies and Systems.
Philadelphia, PE. 2011.

[Ha04] Hayes, P.: RDF Semantics W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-mt (cited 2012-02-04). 2004.

[Ha09] Harrington, J.: Relational Database Design and Implementation: Clearly Ex-
plained. Elsevier. 3 edition. 2009. 0123747309.

[Ha10] Hahn, R.; Bizer, C.; Sahnwaldt, C.; Herta, C.; Robinson, S.; Bürgle, M.; Düwiger,
H. et al.: Faceted Wikipedia Search. In (Abramowicz, W.; Tolksdorf, R., Ed.):
BIS. volume 47 of Lecture Notes in Business Information Processing. pages 1–11.
Springer. 2010.

[HBS06] Hepp, M.; Bachlechner, D.; Siorpaes, K.: OntoWiki: community-driven ontology
engineering and ontology usage based on Wikis. In WikiSym ’06: Proceedings of
the 2006 international symposium on Wikis. pages 143–144. New York, NY, USA.
2006. ACM.

[He04] Hevner, A. R.; March, S. T.; Park, J.; Ram, S.: Design Science in Information
Systems Research. MIS Quarterly. 28(1):75–105. 2004.

[HGT11] Hamasaki, M.; Goto, M.; Takeda, H.: Social Infobox: collaborative knowledge con-
struction by social property tagging. In (Hinds, P. J.; Tang, J. C.; Wang, J.;
Bardram, J. E.; Ducheneaut, N., Ed.): CSCW. pages 641–644. ACM. 2011.

[HL09] Hoenderboom, B.; Liang, P.: A Survey of Semantic Wikis for Requirements Engi-
neering. Architecture. 2009.

197

Bibliography

[HLS05] Haake, A.; Lukosch, S.; Schümmer, T.: Wiki-templates: adding structure support
to wikis on demand. In WikiSym ’05: Proceedings of the 2005 international sym-
posium on Wikis. pages 41–51. New York, NY, USA. 2005. ACM.

[Ho09] Hoehndorf, R.; Bacher, J.; Backhaus, M.; Gregorio, S.; Loebe, F.; Prufer, K.;
Uciteli, A. et al.: BOWiki: an ontology-based wiki for annotation of data and
integration of knowledge in biology. BMC Bioinformatics. 10(Suppl 5). 2009.

[HSP09] Hansch, D.; Schnurr, H.-P.; Pissierssens, P.: Semantic MediaWiki+ als Wis-
sensplattform für Unternehmen. In (Hinkelmann, K.; Wache, H., Ed.): Wissens-
management. volume 145 of LNI. pages 211–221. GI. 2009.

[Hu11] Hunecker, M.: A Comparison of Web-based Approaches for Structuring Information
- A Literature Analysis. Bachelor’s thesis. Fakultät für Informatik, Technische
Universität München. 2011.

[HV09] Hagemann, S.; Vossen, G.: Categorizing User-Generated Content (extended ab-
stract). Proceedings of the WebSci’09: Society On-Line. 2009.

[HZG09] Hoffart, J.; Zesch, T.; Gurevych, I.: An architecture to support intelligent user
interfaces for Wikis by means of Natural Language Processing. In (Riehle, D.;
Bruckman, A., Ed.): Int. Sym. Wikis. ACM. 2009.

[IB07] Isbell, J.; Butler, M. H.: Extracting and Re-using Structured Data from Wikis.
Technical Report HPL-2007-182. Hewlett-Packard. 2007.

[JH11] Jones, P. L.; Høimyr, N.: TWiki a collaboration tool for the LHC. In (Ortega, F.;
Forte, A., Ed.): Int. Sym. Wikis. pages 207–208. ACM. 2011.

[JZW09] Jing, Y.; Zhang, C.; Wang, X.: An Empirical Study on Performance Comparison
of Lucene and Relational Database. In Proceedings of the 2009 International Con-
ference on Communication Software and Networks. ICCSN ’09. pages 336–340.
Washington, DC, USA. 2009. IEEE Computer Society.

[KC04] Klyne, G.; Carroll, J. J.: Resource Description Framework (RDF): Concepts and
Abstract Syntax. http://www.w3.org/TR/rdf-concepts (cited 2012-02-04). 2004.

[KGI08] Kramer, M.; Gregorowicz, A.; Iyer, B.: Wiki trust metrics based on phrasal anal-
ysis. In Proceedings of the 4th International Symposium on Wikis. WikiSym ’08.
pages 24:1–24:10. New York, NY, USA. 2008. ACM.

[KHD05] Klein, B.; Höcht, C.; Decker, B.: Beyond Capturing and Maintaining Software En-
gineering Knowledge-“Wikitology” as Shared Semantics. InWorkshop on Knowledge
Engineering and Software Engineering, KI. 2005.

[Ki06] Kiesel, M.: Kaukolu: Hub of the Semantic Corporate Intranet. In (Völkel, M.;
Schaffert, S., Ed.): SemWiki. volume 206 of CEUR Workshop Proceedings. CEUR-
WS.org. 2006.

[Ki08] Kiesel, M.; Schwarz, S.; van Elst, L.; Buscher, G.:Mymory: Enhancing a Semantic
Wiki with Context Annotations. In (Bechofer, S.; Hauswirth, M.; Hoffmann, J.;
Koubarakis, M., Ed.): The Semantic Web: Research and Applications, 5th Eu-
ropean Semantic Web Conference, ESWC 2008, Tenerife, Canary Islands, Spain,

198

Bibliography

June 1-5, 2008. volume 5021 of LNAI. pages 817–821. Springer. 2008.

[Ko01] Koch, C.: Data Integration against Multiple Evolving Autonomous Schemata. PhD
thesis. Technische Universität Wien. 2001.

[Ko09] Kobilarov, G.; Bizer, C.; Auer, S.; Lehmann, J.: DBpedia - A Linked Data Hub and
Data Source for Web Applications and Enterprises. In Proceedings of Developers
Track of 18th International World Wide Web Conference (WWW 2009), April
20th-24th, Madrid, Spain. April 2009.

[Kr95] Krogstie, J.: Conceptual Modeling for Computerized Information Systems Support
in Organizations. PhD thesis. University of Trondheim. 1995.

[KS08] Kuhn, T.; Schwitter, R.: Writing Support for Controlled Natural Languages. In
Proceedings ALTA 2008. pages 46–54. 2008.

[KSV07] Krötzsch, M.; Schaffert, S.; Vrandecic, D.: Reasoning in Semantic Wikis. In (An-
toniou, G.; Aßmann, U.; Baroglio, C.; Decker, S.; Henze, N.; Patranjan, P.-L.;
Tolksdorf, R., Ed.): Reasoning Web. volume 4636 of Lecture Notes in Computer
Science. pages 310–329. Springer. 2007.

[KT04] Klein, B.; Traphöner, R.: A Practical Application of Ontologies for Knowledge
Sharing and Trading. In (Abecker, A.; Bickel, S.; Brefeld, U.; Drost, I.; Henze, N.;
Herden, O.; Minor, M. et al., Ed.): LWA. pages 259–266. Humbold-Universität
Berlin. 2004.

[Ku08a] Kuhn, T.: AceWiki: A Natural and Expressive Semantic Wiki. CoRR.
abs/0807.4618. 2008.

[Ku08b] Kuhn, T.: AceWiki: Collaborative Ontology Management in Controlled Natural
Language. CoRR. abs/0807.4623. 2008.

[Ku08c] Kuhn, T.: Combining Semantic Wikis and Controlled Natural Language. In (Bizer,
C.; Joshi, A., Ed.): International Semantic Web Conference (Posters & Demos).
volume 401 of CEUR Workshop Proceedings. CEUR-WS.org. 2008.

[Ku09] Kuhn, T.: How Controlled English can Improve Semantic Wikis. In (0002, C. L.;
Schaffert, S.; Skaf-Molli, H.; Völkel, M., Ed.): SemWiki. volume 464 of CEUR
Workshop Proceedings. CEUR-WS.org. 2009.

[KVV05] Krötzsch, M.; Vrandecic, D.; Volkel, M.: Wikipedia and the Semantic Web-The
Missing Links. Proceedings of Wikimania. 2005. 2005.

[KVV06] Krötzsch, M.; Vrandecic, D.; Völkel, M.: Semantic MediaWiki. In (Cruz, I.; Decker,
S.; Allemang, D.; Preist, C.; Schwabe, D.; Mika, P.; Uschold, M. et al., Ed.): The
Semantic Web - ISWC 2006. volume 4273 of Lecture Notes in Computer Science.
pages 935–942. Springer. 2006.

[La07] Lange, C.: Towards Scientific Collaboration in a Semantic Wiki. In Bridging the
Gep between Semantic Web and Web 2.0 (SemNet 2007). pages 119–126. 2007.

[La09] Lankhorst, M., Ed.Enterprise Architecture at Work: Modelling, Communication
and Analysis. Springer. Berlin. 2. edition. 2009. 978-3-642-01309-6.

199

Bibliography

[La10] Lange, C.: SWiM – A Semantic Wiki for Mathematical Knowledge Management.
CoRR. abs/1003.5196. 2010.

[La11] Lange, C.: Enabling Collaboration on Semiformal Mathematical Knowledge by Se-
mantic Web Integration. PhD thesis. Jacobs University Bremen. 2011.

[LC01] Leuf, B.; Cunningham, W.: The Wiki Way: Quick Collaboration on the Web.
Addison-Wesley. April 2001. 020171499X.

[Le09] Lehmann, J.; Bizer, C.; Kobilarov, G.; Auer, S.; Becker, C.; Cyganiak, R.; Hell-
mann, S.: DBpedia - A Crystallization Point for the Web of Data. Journal of Web
Semantics. 7(3):154–165. 2009.

[LFL05] Lio, E. D.; Fraboni, L.; Leo, T.: TWiki-based facilitation in a newly formed aca-
demic community of practice. In (Riehle, D., Ed.): Int. Sym. Wikis. pages 85–111.
ACM. 2005.

[LFZ09] Li, G.; Feng, J.; Zhou, L.: Interactive search in XML data. In Proceedings of the
18th international conference on World wide web. WWW ’09. pages 1063–1064.
New York, NY, USA. 2009. ACM.

[Li09] Lincoln, S. R.: Mastering Web 2.0: Transform Your Business Using Key Website
and Social Media Tools. Kogan Page Ltd. London, UK, UK. 2009. 0749454660,
9780749454661.

[LK06] Lange, C.; Kohlhase, M.: A Semantic Wiki for Mathematical Knowledge Man-
agement. In (Völkel, M.; Schaffert, S., Ed.): Proceedings of the First Workshop
on Semantic Wikis – From Wiki To Semantics. Workshop on Semantic Wikis.
ESWC2006. June 2006.

[LKL10] Lucke, C.; Krell, S.; Lechner, U.: Critical Issues in Enterprise Architecting - A
Literature Review. In (Santana, M.; Luftman, J. N.; Vinze, A. S., Ed.): AMCIS.
page 305. Association for Information Systems. 2010.

[LM10] Lakshman, A.; Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44:35–40. April 2010.

[LOZ04] Ludwig, L.; O’Sullivan, D.; Zhou, X.: Artificial Memory Prototype for Personal
Semantic Subdocument Knowledge Management. In 3rd International Semantic
Web Conference (ISWC2004). Hiroshima, Japan. 2004.

[LSA11] Lubbers, P.; Salim, F.; Albers, B.: Pro Html5 Programming. Springer. 2011.
143023864X.

[Lu05] Ludwig, L.: Semantic personal knowledge management. Technical report. DERI
Galway. 2005.

[Lu09] Ludwig, L.: Artificial Memory - Eine kurze Einführung in Struktur, Aufgaben und
Erfolgskennzahlen. In (Knut Hinkelmann, H. W., Ed.): Lecture Notes in Informat-
ics WM2009: 5th Conference on Professional Knowledge Management, Solothurn
(2009). 2009.

[Ma03] Martin, R. C.: Agile software development: principles, patterns, and practices.
Prentice Hall. 2003.

200

Bibliography

[Ma05] Malik, S.: Enterprise Dashboards: Design and Best Practices for IT. John Wiley
& Sons. 2005. 0471738069.

[Ma08] Matthes, F.; Buckl, S.; Leitel, J.; Schweda, C. M.: Enterprise Architecture Man-
agement Tool Survey 2008. Chair for Informatics 19 (sebis), Technische Universität
München. Munich, Germany. 2008.

[Ma11] Maier, M.: Interactive Management of Attributes with Types, Formats, and Con-
straints in an Enterprise 2.0 Tool - Design and Implementation. Bachelor’s thesis.
Fakultät für Informatik, Technische Universität München. 2011.

[Mc06] McAfee, A. P.: Enterprise 2.0: The Dawn of Emergent Collaboration. MITSloan
Management Review. 47(3):21–28. 2006.

[Mc09] McAfee, A.: Enterprise 2.0: New Collaborative Tools for Your Organization’s
Toughest Challenges. Harvard Business Press. 1 edition. 2009. 1422125874.

[MCS09] Matthes, F.; C., N.; Steinhoff, A.: Federated Application Lifecycle Management
Based on an Open Web Architecture. In Workshop Design for Future - Langlebige
Softwaresysteme, GI-Arbeitskreis Langlebige Softwaresysteme (L2S2). Karlsruhe,
Germany. 2009.

[MH04] McGuinness, D. L.; van Harmelen, F.: OWL Web Ontology Language Overview
W3C Recommendation 10 February 2004. http://www.w3.org/TR/owl-features
(cited 2012-02-04). 2004.

[MHG10] McCandless, M.; Hatcher, E.; Gospodnetic, O.: Lucene in Action. Manning Pub-
lications. 2 edition. May 2010. 1933988177.

[Mi08] Millard, D. E.; Bailey, C.; Boulain, P.; Chennupati, S.; Davis, H. C.; Howard,
Y. M.; Wills, G.: Semantics on demand: Can a Semantic Wiki replace a knowledge
base? The New Review of Hypermedia and Multimedia. 14(1):95–120. 2008.

[Mi10] Mirbeth, A.: Review and extension of the sebis Enterprise 2.0 Tool survey. Bach-
elor’s thesis. Fakultät für Informatik, Technische Universität München. 2010.

[MN11a] Matthes, F.; Neubert, C.: Enabling Knowledge Workers to Collaboratively Add
Structure to Enterprise Wikis. In Proceedings of the 12th European Conference on
Knowledge Management. pages 617–625. 2011.

[MN11b] Matthes, F.; Neubert, C.: Wiki4EAM: Using Hybrid Wikis for Enterprise Archi-
tecture Management. In 7th International Symposium on Wikis and Open Collab-
oration (WikiSym). Mountain View, California, USA. 2011.

[MN12] Matthes, F.; Neubert, C.: Hybride Wikis als Repository für IT-
Unternehmensarchitektur. chapter 5.4.2, pages 174–182. Dpunkt. 2012.

[MNS11] Matthes, F.; Neubert, C.; Steinhoff, A.: Hybrid Wikis: Empowering Users to Col-
laboratively Structure Information. In Proceedings of the 6th International Confer-
ence on Software and Data Technologies. pages 250–259. 2011.

[MNS12] Matthes, F.; Neubert, C.; Steinhoff, A.: Structuring Folksonomies with Implicit
Tag Relations. In Proceedings of the 23nd ACM conference on Hypertext and hy-
permedia. 2012.

201

Bibliography

[NS06] Nixon, L. J. B.; Simperl, E. P. B.: Makna and MultiMakna: towards semantic and
multimedia capability in wikis for the emerging web. In Semantics’06. Vienna,
Austria. 2006.

[NST09a] Neubert, C.; Stecher, M.; Taing, S.: Enterprise 2.0 - Eine Typologisierung. In
Mensch und Computer 2009 - Workshop-Tagungsband, Enterprise 2.0 - Web 2.0
im Unternehmen. Berlin. 2009.

[NST09b] Neubert, C.; Stecher, M.; Taing, S.: Typology Approaches for Enterprise 2.0 Ap-
plications and Technologies. In IWM / ZEW workshop, The potential of social
software for knowledge creation and economic performance. Mannheim. 2009.

[O’05] O’Reilly, T.: What Is Web 2.0. Design Patterns and
Business Models for the Next Generation of Software.
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-
20.html. September 2005. Stand 12.5.2009.

[OBD06] Oren, E.; Breslin, J. G.; Decker, S.: How semantics make better wikis. In (Carr,
L.; Roure, D. D.; Iyengar, A.; Goble, C. A.; Dahlin, M., Ed.): WWW. pages
1071–1072. ACM. 2006.

[Or05] Oren, E.: SemperWiki: a semantic personal Wiki. In Proc. of 1st WS on The
Semantic Desktop, Galway, Ireland. 2005.

[Or06a] Oren, E.; Delbru, R.; Möller, K.; Völkel, M.; Handschuh, S.: Annotation and
navigation in semantic wikis. In Proceedings of the SemWiki2006 - From Wiki to
Semantics Workshop, in conjunction with ESWC2006. Budva, Montenegro. June
2006.

[Or06b] Oren, E.; Völkel, M.; Breslin, J. G.; Decker, S.: Semantic Wikis for Personal
Knowledge Management. Lecture Notes in Computer Science. 4080:509–518. 2006.

[Pa09] Paschke, A.; Coskun, G.; Luczak-Rösch, M.; Oldakowski, R.; Harasic, M.; Heese,
R.; Schäfermeier, R. et al.: Realizing the Corporate Semantic Web: Concept Paper.
Technical report. Freie Universität Berlin. Berlin. April 2009.

[Pa11] Passant, A.: Semantic Web Technologies for Enterprise 2.0. IOS Press. 2011.

[Pe11] Peter; Cheney, J.; Lindley, S.; Müller, H.: Using Links to prototype a Database
Wiki. 13th International Symposium on Database Programming Languages. 2011.

[Pf08] Pfisterer, F.; Nitsche, M.; Jameson, A.; Barbu, C.: User-Centered Design and
Evaluation of Interface Enhancements to the Semantic MediaWiki. In Workshop
on Semantic Web User Interaction at CHI 2008. 2008.

[PM07] Price, J.; McClain, L.: Oracle Database 11g SQL: Master SQL and PL/SQL in the
Oracle Database. Mcgraw-Hill Professional. 2007. 0071498508.

[Po07] Powers, S.: Adding Ajax. Making Existing Sites More Interactive. O’Reilly Media.
2007. 0596529368.

[PS08] Prud’hommeaux, E.; Seaborne, A.: SPARQL Query Language for RDF W3C Rec-
ommendation 15 January 2008. http://www.w3.org/TR/rdf-sparql-query (cited
2012-02-04). 2008.

202

Bibliography

[PT11] Priedhorsky, R.; Terveen, L. G.: Wiki grows up: arbitrary data models, access
control, and beyond. In (Ortega, F.; Forte, A., Ed.): Int. Sym. Wikis. pages
63–71. ACM. 2011.

[Ra08] Rauschmayer, A.: Next-Generation Wikis: What Users Expect; How RDF Helps.
In (0002, C. L.; Schaffert, S.; Skaf-Molli, H.; Völkel, M., Ed.): SemWiki. volume
360 of CEUR Workshop Proceedings. CEUR-WS.org. 2008.

[Ra10a] Rauschmayer, A.: Connected Information Management. PhD thesis. Ludwig-
Maximilians-Universität München. 2010.

[Ra10b] Rauschmayer, A.: Structure your wiki: Improving support for structured data in
wikis. Technical report. Ludwig-Maximilians-Universität München, Institut für
Informatik. München. 2010.

[Ra11] Rau, K.: Analysis and Evaluation of the Model Accuracy in Hybrid Wikis. Bache-
lor’s thesis. Fakultät für Informatik, Technische Universität München. 2011.

[RBP08] Reutelshoefer, J.; Baumeister, J.; Puppe, F.: Ad-Hoc Knowledge Engineering with
Semantic Knowledge Wikis. In SemWiki’08: Proceedings of 3rd Semantic Wiki
workshop - The Wiki Way of Semantics (CEUR Proceedings 360). 2008.

[Re10] Reutelshoefer, J.; Lemmerich, F.; Baumeister, J.; Wintjes, J.; Haas, L.: Taking
OWL to Athens – Semantic Web Technology takes Ancient Greek History to Stu-
dents. In ESWC’10: Proceedings of the 7th Extended Semantic Web Conference.
pages 333–347. Springer. 2010.

[RG02] Raygan, R.; Green, D.: Internet collaboration: TWiki. In SoutheastCon, 2002.
Proceedings IEEE. pages 137–141. 2002.

[RK06] Rauschmayer, A.; Kammergruber, W. C.: A Wiki as an Extensible RDF Presen-
tation Engine. In ESWC Wsh. Semantic Wikis—From Wiki to Semantics. June
2006.

[Ro08] Rospocher, M.; Ghidini, C.; Serafini, L.; Kump, B.; Pammer, V.; Lindstaedt,
S.; Faatz, A. et al.: Collaborative Enterprise Integrated Modelling. In (Gangemi,
A.; Keizer, J.; Presutti, V.; Stoermer, H., Ed.): Proceedings of the 5th Work-
shop on Semantic Web Applications and Perspectives (SWAP2008). CEUR Work-
shop Proceedings. Rome, Italy. December 2008. online http://ceur-ws.org/Vol-
426/swap2008_submission_62.pdf.

[Ro09] Rospocher, M.; Ghidini, C.; Pammer, V.; Serafini, L.; Lindstaedt, S. N.: MoKi:
the Modelling wiKi. In (0002, C. L.; Schaffert, S.; Skaf-Molli, H.; Völkel, M., Ed.):
SemWiki. volume 464 of CEUR Workshop Proceedings. CEUR-WS.org. 2009.

[RS04] Radziwill, N.; Shelton, A.: TWiki as a Platform for Collaborative Software Devel-
opment Management. Proc. SPIE 5496, Glasgow Scotland. 2004.

[RW11] Reschenhofer, T.; Waltl, B.: Enabling Collaborative Information Management on
Federated Data Sources Analysis, Design and Prototypical Implementation for MS-
SharePoint and MS-Exchange. Bachelor’s thesis. Fakultät für Informatik, Tech-
nische Universität München. 2011.

203

Bibliography

[Sc06] Schaffert, S.: IkeWiki: A Semantic Wiki for Collaborative Knowledge Management.
In WETICE. pages 388–396. IEEE Computer Society. 2006.

[Sc08] Schaffert, S.; Bry, F.; Baumeister, J.; Kiesel, M.: Semantic Wikis. IEEE Software.
25(4):8–11. 2008.

[Sc09] Schaffert, S.; Eder, J.; Grünwald, S.; Kurz, T.; Sint, R.; Stroka, S.: KiWi – A
Platform for Semantic Social Software. In SemWiki2009: Proceedings of the Fourth
Workshop on Semantic Wikis. June 2009.

[SGW05] Schaffert, S.; Gruber, A.; Westenthaler, R.: A Semantic Wiki for collaborative
knowledge formation. presentation. 2005.

[Si09] Sint, R.; Stroka, S.; Schaffert, S.; Ferstl, R.: Combining Unstructured, Fully Struc-
tured and Semi-Structured Information in Semantic Wikis. In (0002, C. L.; Schaf-
fert, S.; Skaf-Molli, H.; Völkel, M., Ed.): SemWiki. volume 464 of CEUR Workshop
Proceedings. CEUR-WS.org. 2009.

[SL90] Sheth, A. P.; Larson, J. A.: Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Comput. Surv. 22(3):183–236.
1990.

[So05] Souzis, A.: Building a Semantic Wiki. IEEE Intelligent Systems. 20(5):87–91.
2005.

[So06] Souzis, A.: Bringing the "Wiki-Way" to the Semantic Web with Rhizome. In
(Völkel, M.; Schaffert, S., Ed.): Proceedings of the First Workshop on Seman-
tic Wikis – From Wiki To Semantics. Workshop on Semantic Wikis. ESWC2006.
June 2006.

[SS11] Schneider, A.; Steinhoff, A.: Applying Web Analytics Tools in the Context of En-
terprise Social Software. In 11th European Conference on Knowledge Management
(ECKM 2011). Passau, Germany. 2011.

[St08] Steinberg, D.; Budinsky, F.; Paternostro, M.; Merks, E.: EMF: Eclipse Modeling
Framework (2nd Edition). Addison-Wesley. 2 edition. January 2008. 0321331885.

[SWG06] Schaffert, S.; Westenthaler, R.; Gruber, A.: IkeWiki: A user-friendly semantic
wiki. In 3rd European Semantic Web Conference (ESWC06). 2006.

[TCC04] Tazzoli, R.; Castagna, P.; Campanini, S. E.: Towards a Semantic WikiWikiWeb.
In 3rd International Semantic Web Conference (ISWC2004). Hiroshima, Japan.
2004.

[Te09] Textuality, T. B.; Hollander, D.; Layman, A.; Tobin, R.; Thompson, H. S.: Names-
paces in XML 1.0 (Third Edition) W3C Recommendation 8 December 2009.
http://www.w3.org/TR/REC-xml-names (cited 2012-02-04). 2009.

[TFH10] Tramp, S.; Frischmuth, P.; Heino, N.: OntoWiki – a Semantic Data Wiki En-
abling the Collaborative Creation and (Linked Data) Publication of RDF Knowl-
edge Bases. In (Corcho, O.; Voelker, J., Ed.): Demo Proceedings of the EKAW
2010. October 2010.

[TGP11] Talas, J.; Gregar, T.; Pitner, T.: Semantic Wiki in Environmental Project Man-

204

Bibliography

agement. In ISESS. pages 437–444. 2011.

[Tr12] Tremmel, M.: Usage Analysis of Structuring Techniques in Hybrid Wikis based on
Application Data. Bachelor’s thesis. Fakultät für Informatik, Technische Univer-
sität München. 2012.

[Ut11] Utz, A.: Extended UML Class Diagrams for Modeling Emergent Information Struc-
tures - Analysis and Prototypical Web-based Implementation. Bachelor’s thesis.
Fakultät für Informatik, Technische Universität München. 2011.

[Vö06] Völkel, M.; Krötzsch, M.; Vrandecic, D.; Haller, H.; Studer, R.: Semantic
Wikipedia. In Proceedings of the 15th international conference on World Wide
Web. WWW ’06. pages 585–594. New York, NY, USA. 2006. ACM.

[VWD04] Viégas, F. B.; Wattenberg, M.; Dave, K.: Studying cooperation and conflict between
authors with history flow visualizations. In Proceedings of the SIGCHI conference
on Human factors in computing systems. CHI ’04. pages 575–582. New York, NY,
USA. 2004. ACM.

[WAM02] Widenius, M.; Axmark, D.; Mysql, A. B.: MySQL Reference Manual. O’Reilly
Media. 1 edition. 2002. 0596002653.

[We09] Weikum, G.; Kasneci, G.; Ramanath, M.; Suchanek, F.:Database and Information-
Retrieval Methods for Knowledge Discovery. Communications of the ACM.
52(4):56–64. 2009.

[WG07] Witte, R.; Gitzinger, T.: Connecting wikis and natural language processing systems.
In (Désilets, A.; Biddle, R., Ed.): Int. Sym. Wikis. pages 165–176. ACM. 2007.

[WW08] Wu, F.; Weld, D. S.: Automatically refining the wikipedia infobox ontology. In
WWW ’08: Proceeding of the 17th international conference on World Wide Web.
pages 635–644. New York, NY, USA. 2008. ACM.

[Yi08] Yitzhak, O. B.; Golbandi, N.; Har’El, N.; Lempel, R.; Neumann, A.; Koifman,
S. O.; Sheinwald, D. et al.: Beyond basic faceted search. In Proceedings of the
international conference on Web search and web data mining. WSDM ’08. pages
33–44. New York, NY, USA. 2008. ACM.

[ZB07] Zacharias, V.; Braun, S.: SOBOLEO – Social Bookmarking and Lighweight Engi-
neering of Ontologies. In (Noy, N. F.; Alani, H.; Stumme, G.; Mika, P.; Sure, Y.;
Vrandecic, D., Ed.): CKC. volume 273 of CEUR Workshop Proceedings. CEUR-
WS.org. 2007.

[ZG10] Zangerle, E.; Gassler, W.: Recommendation-Based Evolvement of Dynamic
Schemata in Semistructured Information Systems. In (Balke, W.-T.; Lofi, C.,
Ed.): Grundlagen von Datenbanken. volume 581 of CEUR Workshop Proceedings.
CEUR-WS.org. 2010.

[ZGS10] Zangerle, E.; Gassler, W.; Specht, G.: Recommending structure in collaborative
semistructured information systems. In Proceedings of the fourth ACM conference
on Recommender systems. RecSys ’10. pages 261–264. New York, NY, USA. 2010.
ACM.

205

Bibliography

[ZMG08] Zesch, T.; Müller, C.; Gurevych, I.: Extracting Lexical Semantic Knowledge from
Wikipedia and Wiktionary. In LREC. European Language Resources Association.
2008.

206

Nomenclature

ACE Attempto Controlled English

ACL Access Control List

AJAX Asynchronous JavaScript and XML

API Application programming interface

BPMN Business Process Model and Notation

CMDB Configuration Management Database

CRM Customer-Relationship-Management

EA Enterprise Architecture

EAM Enterprise Architecture Management

EMF Eclipse Modeling Framework

EWS Exchange Web Service

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IC Infrastructure Component

JSON JavaScript Object Notation JSON

MVC Model-View-Controller

NLP Natural Language Processing

207

Bibliography

OCL Object Constraint Language

OWL Web Ontology Language

RDF Resource Description Framework

RDFS RDF Schema

REST Representational state transfer

RSS Really Simple Syndication

sebis Software Engineering for Business Information Systems

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SVG Scalable Vector Graphics

SyCa System Cartography

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

208

	Table of Content
	List of Figures
	List of Tables
	1 Introduction and Overview
	1.1 Motivation and problem statement
	1.2 Research questions
	1.3 Research design
	1.4 Outline of the thesis

	2 Towards Hybrid Wikis
	2.1 Principles guiding the development of Hybrid Wikis
	2.1.1 Simplicity over expressivity
	2.1.2 Data over schema
	2.1.3 Evolution over rigidity

	2.2 Example scenario

	3 Hybrid Wikis
	3.1 Concepts supporting emergent information structures
	3.1.1 Spaces
	3.1.2 Content objects
	3.1.3 Attributes
	3.1.4 Types
	3.1.5 Values
	3.1.6 Structured
	3.1.7 Attribute definitions
	3.1.8 Constraints

	3.2 Emergent structures in Enterprise 2.0 platforms
	3.2.1 Participation model
	3.2.2 Evolution of emergent information structures
	3.2.3 Access control for structuring concepts
	3.2.4 Integration of structuring concepts in Enterprise 2.0 services

	3.3 Techniques facilitating information structuring
	3.3.1 Suggestions
	3.3.2 Transitions
	3.3.3 Schema-based information consolidation
	3.3.4 Data-based schema adaption

	3.4 Views based on structured information
	3.4.1 Built-in views
	3.4.2 Custom views
	3.4.3 Structured search
	3.4.4 Advanced UI operations

	4 Implementing Hybrid Wikis in Tricia
	4.1 Introduction to Tricia
	4.1.1 Architecture
	4.1.2 Data modeling framework
	4.1.3 Interaction framework
	4.1.4 Access control framework
	4.1.5 Plugins and extension points
	4.1.6 Enterprise 2.0 platform Tricia

	4.2 Implementing Hybrid Wikis
	4.2.1 Data model
	4.2.2 Extended architecture
	4.2.3 Suggestions
	4.2.4 Transitions
	4.2.5 Consolidation
	4.2.6 Export and import of structured content
	4.2.7 Collaborative information management on federated data sources

	5 Related Work
	5.1 Semantic Web
	5.2 Wiki templates
	5.3 DynaTable
	5.4 DBpedia
	5.5 Semantic wikis
	5.5.1 Semantic MediaWiki
	5.5.2 Semantic Enterprise Wiki (SWM+)
	5.5.3 AceWiki
	5.5.4 OntoWiki
	5.5.5 Kaukolu
	5.5.6 Artificial Memory
	5.5.7 HYENA
	5.5.8 IkeWiki
	5.5.9 Makna
	5.5.10 KiWi
	5.5.11 Rhizome
	5.5.12 SHAWN
	5.5.13 RISE
	5.5.14 SemperWiki
	5.5.15 SweetWiki
	5.5.16 SOBOLEO
	5.5.17 KnowWE

	5.6 Corporate Semantic Web
	5.7 Freebase
	5.8 MoKi
	5.9 SnoopyDB
	5.10 Social Infobox
	5.11 TWiki
	5.12 DBWiki
	5.13 Summary and comparison with Hybrid Wikis
	5.13.1 Semantic annotations
	5.13.2 Towards simplicity
	5.13.3 Structures for public use
	5.13.4 Social tagging
	5.13.5 Applicability in enterprises

	6 Application and Evaluation
	6.1 Applying Hybrid Wikis
	6.1.1 Wiki4EAM Community
	6.1.2 InfoAsset AG
	6.1.3 TU München (sebis)
	6.1.4 Pixida GmbH
	6.1.5 Summary

	6.2 Experimental examination of models created with Hybrid Wikis
	6.3 Evaluating and visualizing the structural evolution of Hybrid Wikis

	7 Conclusion
	7.1 Summary
	7.2 Outlook
	7.2.1 Type hierarchies
	7.2.2 Empirical evaluation of the use of Hybrid Wikis
	7.2.3 Towards user-adaptive information systems

	A Appendix
	Bibliography

