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1. Introduction 

In civil engineering applications, it is often necessary to model vectors of random variables drawn from a 
random field. For example, in investigating the seismic risk of a lifeline, the earthquake-induced ground 
motion intensities at the locations of the system components constitute a vector of random variables 
drawn from the ground motion random field. Similarly, factors determining the progress of deterioration 
in elements of concrete surfaces are random variables drawn from environmental and material property 
random fields. Proper modeling of the dependence structure of vectors of random variables is essential for 
accurate probabilistic analysis. In the special case when the field is Gaussian, or derived from a Gaussian 
field, the spatial dependence structure of the field is completely defined by the autocorrelation function 
and the correlation matrix fully defines the dependence structure of the random vector drawn from the 
field. Typically, this correlation matrix is fully populated. Although this paper only deals with Gaussian 
random fields, the methods developed are equally applicable to non-Gaussian fields that are derived from 
Gaussian fields, e.g., [1]. 

In some applications, including the aforementioned examples, it is of interest to update a probabilistic 
model in light of available or assumed observations of the random field. For example, in the case of a 
lifeline subjected to an earthquake, one might be interested in updating the reliability of the system when 
ground motion intensities at one or more locations are observed, or when evidence is available on the 
performance of individual components based on the output from structural health monitoring sensors or 
observations made by inspectors [2]. In the case of a concrete surface subject to deterioration, the reliabil-
ity of the system can be updated, e.g., when cracking (or no cracking) of the concrete in some of the ele-
ments is observed. The Bayesian network (BN) methodology is a powerful tool for such updating purpos-
es, particularly when the available information evolves in time and the updating must be done in (near) 
real time, see, e.g., [3] [4]. However, there is a limiting characteristic of the BN that poses a challenge 
when modeling random variables drawn from a random field:  due to the full correlation structure of the 
random variables, the BN becomes densely connected. When combining these random variables with 
system models that involve additional random variables, the computational and memory demands of the 
resulting BN rapidly grow with the number of points drawn from the random field. In this paper, we de-
velop approximate methods to overcome this difficulty. Specifically, we present methods for reducing the 
density of the BN model of the random field by selectively eliminating nodes and links. The aim is to 
minimize the number of links in the BN while limiting the error in the representation of the correlation 
structure of the random variables drawn from the Gaussian random field. 

When the random field as well as the observed random variables are jointly Gaussian, a well-known 
analytical solution exists for computing the conditional probabilistic model. However, the random field 
model often is part of a larger problem involving mixtures of continuous and discrete random variables 
and fields. For example, in seismic risk assessment of a lifeline, a random field may define the ground 
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motion intensity across a geographic region, while discrete random variables define the performance or 
damage states of the lifeline and its constituent components. When evidence is entered on non-Gaussian 
or discrete random variables in such a model, e.g., the observed damage state of a component, the existing 
analytical solution for updating the distribution of the Gaussian variables is no more applicable. It is in 
this context that the BN is useful for modeling and updating of Gaussian random fields.  

The paper begins with a brief introduction to BNs as a means for probabilistic inference and describes 
their advantages and limitations. Next, BN models of random variables drawn from a Gaussian random 
field are described. Approximation methods are then developed to achieve computationally tractable BN 
models. Using several generic and systematic spatial configuration models, numerical investigations are 
performed to compare the relative effectiveness of the proposed approximation methods. Finally, the ef-
fects of the random field approximation on estimated reliabilities of example spatially distributed systems 
are investigated. The paper ends with a set of recommendations for BN modeling of random variables 
drawn from a random field. More details on development of BN models for random fields and application 
to infrastructure seismic risk assessment can be found in [2] .  

2. Brief Introduction to Bayesian Network 

Bayesian networks are probabilistic graphical models consisting of nodes representing random variables 
and directed links describing probabilistic dependencies. Throughout the paper, the terms “node” and 
“random variable” are used interchangeably. Consider the simple two-node BN in Figure 1a, which mod-
els random variables ܺ and ܻ. The directed link indicates that ܻ is probabilistically dependent on ܺ.  
Node ܻ is a child of node ܺ, while node ܺ is a parent of node ܻ. Attached to node ܻ is the conditional 
probability distribution of  ܻ given ܺ. Because node ܺ has no parent, a marginal probability distribution is 
attached to it. If the two variables are discrete, then probability mass functions (PMFs) define their distri-
butions. In particular, a conditional PMF defines the probability that ܻ is in each of its mutually exclusive 
states, given each mutually exclusive state of ܺ, i.e., the probabilities Prሺܻ ൌ ܺ|௜ݕ ൌ -௜ indiݕ ௝ሻ, whereݔ
cates the ݅௧௛ state of ܻ and ݔ௝ indicates the ݆௧௛ state of ܺ. In the BN terminology, this conditional PMF is 
called a conditional probability table (CPT). If node ܻ has multiple parents, as in Figure 1b, the size of 
the CPT for node ܻ becomes large because the PMF of ܻ must be defined for all combinations of the 
states of the parent nodes ଵܺ, … , ܺ௡. If each of the nodes in Figure 1b has ݉ states, then the CPT attached 
to node ܻ has ݉௡ାଵ entries. It is seen that the size of the CPT attached to a node grows exponentially as 
the number of parents increases. These CPTs generally must be stored in memory. Therefore, as ݊ in-
creases, computational bottlenecks are encountered due to physical memory constraints. 

 

 
 

Figure 1: (a) Two-node BN with ܻ dependent on ܺ, (b) BN with ܻ dependent  
on a vector of random variables X ൌ ሼ ଵܺ, … , ܺ௡ሽ 
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BNs are most useful in answering probabilistic queries, e.g., determining the posterior distributions of 
the random variables in the BN, when one or more variables are observed. The process of updating the 
BN given available evidence is known as probabilistic inference. Updating occurs consistent with the d-
separation properties of the BN, which characterize the way in which information flows through different 
types of connections (see [5,6] for more details). Conceptually, inference may be thought of as efficient 
application of Bayes Rule and the Total Probability Theorem on a large scale.   

Many applications in civil engineering require mixtures of continuous and discrete nodes. For exam-
ple, as described earlier, in seismic applications the distribution of the ground motion intensity at a site is 
modeled by a continuous random variable, while the damage state of a component at that location may be 
represented by a discrete random variable. However, existing exact inference algorithms for BNs and 
software applications utilizing these algorithms [7,8] impose severe limitations on the use of continuous 
random variables. Specifically, they only permit linear functions of Gaussian random variables that have 
no discrete children, for which case analytical solutions exist for computing the conditional probability 
distribution [9]. The necessity of modeling discrete children of continuous nodes, e.g., the damage state of 
a component that is causally dependent on the ground motion intensity at its site, prohibits the use of the 
aforementioned algorithms. Furthermore, inference algorithms for BNs with mixtures of discrete and 
continuous random variables are computationally far more demanding than those for BNs with only dis-
crete nodes [10,11]. Hence, when using BNs, there is often significant advantage in discretizing all con-
tinuous random variables. The examples utilized in this paper are solved using exact inference algorithms 
that require all nodes to be discretized. 

 One of the most common exact inference algorithms is Junction Tree [5,12]. When performing exact 
probabilistic inference using this algorithm, graphical constructs known as cliques are formed, which 
contain subsets of nodes in the BN. Each clique is assigned a clique table, created by taking the product 
of the CPTs of all nodes in the clique. Common general-purpose BN software, such as Hugin [7],[13], 
require that clique tables formed during probabilistic inference be stored in memory. For BNs with dis-
crete nodes, the memory demand of the Junction Tree algorithm is exponential in the size of the largest 
clique generated when performing inference. Therefore, it is preferable to work with cliques, and conse-
quently clique tables, that are as small as possible. The sizes of cliques generated when performing infer-
ence calculations are related to the sizes of the CPTs associated with nodes in the graph as well as the 
density of dependency (links) between the nodes. Thus, discrete-node BNs with broadly dependent ran-
dom variables (i.e. densely connected nodes) and/or nodes with many states (i.e. large CPTs) result in 
large cliques and, consequently, exponential increases in computational demands. The reader is referred 
to [5] for more details on clique sizes and the Junction Tree algorithm. Although our interest is in the 
application of exact inference algorithms, it is noted that small CPTs are also preferable when working 
with approximate sampling-based algorithms, e.g. [14,15]. Therefore, by reducing CPT sizes, the methods 
described in this paper are also useful when applying approximate inference algorithms. 

A BN representing a vector of random variables drawn from a random field, which has a fully popu-
lated correlation matrix, necessarily has densely connected nodes. The exponential increase in computa-
tional demand with the number of nodes in a clique can quickly render the BN computationally intracta-
ble as the number of random variables increases. Computational efficiency may be achieved by two 
means: (1) reducing the density of links in the BN; and/or (2) reducing the number of discretized states 
associated with each node in the BN. Reducing the number of links in the BN introduces inaccuracy in 
modeling variable interdependencies. Reducing the number of states associated with a node increases 
discretization error. Therefore, a trade-off exists between computational demand and model accuracy. The 
focus of this paper is on developing methods for reducing the number of links in the BN rather than on 
issues related to discretization. Guidance on discretization of continuous random variables is provided in 
[3,4][4,3].  
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3. Bayesian Network Modeling of Random Fields 

Let ܻሺܠሻ, ܠ ∈ Ω, be a multi-dimensional Gaussian random field defined within the domain Ω with mean 
function ߤ௒ሺܠሻ , standard deviation function ߪ௒ሺܠሻ, and auto-correlation coefficient function ߩ௒௒ሺܠଵ,  ,ଶሻܠ
ሺܠଵ,ܠଶሻ ∈ Ω.  Without loss of generality, hereafter we work with the normalized random field 

ܼሺܠሻ ൌ
ܻሺܠሻ െ ሻܠ௒ሺߤ

ሻܠ௒ሺߪ
 (1)

ܼሺܠሻ is a Gaussian random field with zero mean, unit variance and, because of the linearity of the trans-
formation, auto-correlation coefficient function ߩ௓௓ሺܠଵ, ଶሻܠ ൌ ,ଵܠ௒௒ሺߩ     .ଶሻܠ

Consider random variables ܼ௜ ൌ ܼሺܠ௜ሻ, ݅ ൌ 1,… , ݊, drawn from ܼሺܠሻ at selected points ܠ௜ within Ω. 
The Gaussian vector ܈ ൌ ሾܼଵ, ܼଶ, … , ܼ௡ሿ୘ has zero means, unit standard deviations and correlation matrix 
܀ ൌ ሾߩ௜௝ሿ, where ߩ௜௝ ൌ ,௜ܠ௒௒ሺߩ ,݅ ,௝ሻܠ ݆ ൌ 1,… , ݊.  We consider the general case where the correlation 
matrix is fully populated. Figure 2 shows a BN model of vector ܈. The correlation structure implies links 
between all pairs of ܼ-nodes. The particular formulation in Figure 2 requires specification of the condi-
tional distribution of each ܼ௜ given its parent nodes ܼଵ, … , ܼ௜ିଵ. That is, the conditional probability 
Prሺܼ௜ ൌ ௜|ܼଵݖ ൌ …,ଵݖ , ܼ௜ିଵ ൌ  ௜ିଵሻ must be specified for each combination of the mutually exclusiveݖ
states of ܼଵ, … , ܼ௜ିଵ, ܼ௜. It should be clear that the CPT of node ܼ௡ can become extremely large as ݊ in-
creases.  

 

 
 

Figure 2: BN model of vector Z drawn from Gaussian random field ܼሺxሻ 

Vector ܈ may be decomposed as a product of an ݊ ൈ ݊ transformation matrix ܂ and an ݊ ൈ 1 vector 
of statistically independent, standard normal random variables ܃: 

܈ ൌ ܃܂ ൌ ൥
ଵଵݐ ⋯ ଵ௡ݐ
⋮ ⋱ ⋮
௡ଵݐ ⋯ ௡௡ݐ

൩ ൝
ଵܷ
⋮
ܷ௡
ൡ (2)

The transformation matrix ܂ may be determined using an Eigenvalue (Karhunen–Loève) expansion, 
Cholesky factorization, or other decomposition methods that diagonalize the covariance matrix [16]. Al-
ternatively, the transformation matrix may be determined approximately via numerical optimization 
[17,18], as described later in this paper. The BN corresponding to the above transformation is shown in 
Figure 3, where the latent ܷ-nodes are introduced as parents of the ܼ-nodes. Here, an element of the 
transformation matrix, ݐ௜௝, is interpreted as a factor on the link between ௝ܷ and ܼ௜. A value of ݐ௜௝ ൌ 0 
corresponds to no link between ௝ܷ and ܼ௜. Due to the unit covariance matrix of ܃, we have ܀ ൌ  ୘. The܂܂
CPTs required by the BN in Figure 3 are easier to specify than those required for the BN in Figure 2, be-
cause each ܼ௜ is a deterministic function of its parent ܷ-nodes. 
 

Z1 Z2 Z3 Zn
...
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Figure 3: BN model of the decomposition of vector Z drawn from Gaussian random field ܼሺxሻ 

The BNs in Figure 2 and Figure 3 are densely connected and, therefore, exact inference with these 
BNs becomes computationally intractable as the number ݊ of random variables increases. To achieve 
computational tractability, the number of links in the BN must be reduced. However, removal of links 
introduces error. Hence, in developing a procedure for link elimination, the goal is to balance computa-
tional efficiency and model accuracy by removing as many links as possible without causing significant 
loss of accuracy. A procedure must be defined to identify and eliminate links that are least critical for 
accurately modeling the vector ܈. 

Define ܂෡ ൌ -௜௝൧ as an approximate transformation matrix with some of its elements set to zero. Setݐ̂ൣ
ting ̂ݐ௜௝ ൌ 0 implies removal of the link connecting ௝ܷ and ܼ௜. If column ݆ of ܂෡ has all zero entries, then 
node ௝ܷ has no children and can be eliminated from the BN. The removal of links and nodes in the BN 
results in an approximation of the covariance matrix of ܈, including the on-diagonal variance terms. The 
errors in the variances are corrected by introducing an additional ݊1 vector of statistically independent 
standard normal random variables ܄ and a diagonal transformation matrix ܁, 

෠܈ ൌ ܄܁ ൅ ܃෡܂ ൌ ൥
ଵݏ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ௡ݏ

൩ ൝
ଵܸ
⋮
௡ܸ

ൡ ൅ ൥
ଵଵݐ̂ ⋯ ଵ௠ݐ̂
⋮ ⋱ ⋮
௡ଵݐ̂ ⋯ ௡௠ݐ̂

൩ ൝
ଵܷ
⋮
ܷ௠

ൡ (3)

where ܈෠ denotes the approximated vector. Note that, after elimination of barren ܷ-nodes, ܂෡ is an ݊݉ 
matrix and ܃ is and ݉ ൈ 1 vector, where ݉ ൑ ݊. To achieve unit variances for ܈෠, we set the condition  

௜ݏ ൌ ඩ1 െ෍ ௜௞ݐ̂
ଶ

௠

௞ୀଵ

, ݅ ൌ 1,… , ݊ (4)

This correction does not affect the off-diagonal terms of the covariance matrix. Furthermore, the approx-
imated correlation coefficients are given by 

ො௜௝ߩ ൌ ෍ ௜௞ݐ̂

௠

௞ୀଵ

,௝௞ݐ̂ ݅ ൌ 1,… , ݊ (5)

The BN corresponding to the formulation in (3) is shown in Figure 4. We note that the addition of the ܸ-
nodes does not significantly increase the computational complexity of the BN. 
 

Z1 Z2 Z3 Zn...

U1 U2 U3 Un...
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Figure	4:	BN	model	of	the	approximate	decomposition	Z෠ ൌ SV ൅ T෡U	

 
As suggested by Song and Kang [17] and Song and Ok [18], the transformation in (3) may be regard-

ed as a generalization of the Dunnett-Sobel (DS) class of Gaussian random variables [19]. This class of 
random variables is defined by  

ܼ௜ ൌ ௜ݏ ∗ ௜ܸ ൅ ௜ݐ ∗ ܷ, ݅ ൌ 1…݊ (6)
where ௜ܸ and ܷ are independent standard normal random variables and ݏ௜ and ݐ௜ are variable-specific 

coefficients satisfying the conditions ݏ௜ ൌ ൫1 െ ௜ݐ
ଶ൯
ଵ/ଶ
	 and	െ1 ൑ ௜ݐ ൑ 1.  Note that ܷ is common to all 

ܼ௜ and, therefore, is the source of the correlation among them. For this model, one can easily show that ܼ௜ 
are standard normal random variables having the correlation coefficients ߩ௜௝ ൌ ௜ݐ ∗ ݅	for		௝ݐ ് ݆ and  
௜௝ߩ ൌ 1	for	݅ ൌ ݆. As a special case, ܼ௜ are equi-correlated when all ݐ௜  are identical. The transformation in 
(6) corresponds to that in (3) with ܂෡ being an ݊ ൈ 1 vector. The associated BN is similar to that in Figure 
4 with a single ܷ-node being a common parent to all the ܼ nodes as shown in Figure 5. 
 

	

Figure	5:	BN	model	of	DS	class	of	random	variables	

Z1 Z2 Z3 Zn...

U1 U2 Um...

V1 V2 V3 Vn
...

Z1 Z2 Zn
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4. Construction of Approximate Transformation Matrix ܂෡ 

As described above, setting elements of the transformation matrix ܂෡ to zero corresponds to removing 
links in the BN. Link removal may be accomplished by three means: (1) selectively removing ܷ-nodes 
and all associated links by setting entire columns of the transformation matrix to zero; (2) selectively re-
moving links by setting the corresponding elements of the transformation matrix to zero; or (3) combina-
tion of the first two, i.e., first reducing the number of ܷ-nodes and then selectively removing links from 
the remaining ܷ-nodes.We explore all three methods in this paper. 

To select nodes and links for elimination, we introduce node and link importance measures. For a 
transformation matrix ܂ (or ܂෡), the node importance measure (NIM) for node ௜ܷ is defined as 

௜ܯ ൌ ෍෍|Δ௜

௡

௟ୀ௞

௡

௞ୀଵ

ሺ݇, ݈ሻ| (7)

where Δ௜ሺ݇, ݈ሻ is the ሺ݇, ݈ሻ୲୦ element of the matrix 

ઢ௜ ൌ ௜ܜ௜ܜ
୘ (8)

in which ܜ௜ is the ݅th  column of ܂ or ܂෡. ઢ௜ quantifies the contribution of ௜ܷ to the correlation matrix of ܈. 
Thus, ܯ௜ is a measure of the information contained in the correlation matrix ܀ that is lost by removing ௜ܷ. 
Clearly, eliminating the ܷ-node associated with the smallest NIM will result in the least loss of accuracy. 
Nodes may be eliminated based on their NIM values until a pre-selected number of nodes remain, or until 
a pre-defined threshold on NIM is exceeded.  

Similarly, a link importance measure (LIM) associated with element ݐ௜௝ of the transformation matrix 
 ෡ is defined as܂ or ܂

݉௜௝ ൌ ෍෍|δ௜௝

௡

௟ୀ௞

௡

௞ୀଵ

ሺ݇, ݈ሻ| (9)

where ߜ௜௝ሺ݇, ݈ሻ is the ሺ݇, ݈ሻ௧௛ element of the matrix 

઼௜௝ ൌ ௜ܜ௜ܜ
୘ െ ௜,௝ܜ௜,௝ܜ

୘  (10)
in which ܜ௜ is the ݅th column of ܂ or ܂෡ and ܜ௜,௝ is equal to ܜ௜ but with its ݆th element set equal to zero. Thus, 
݉௜௝ is a measure of the information contained in the correlation matrix that is lost by eliminating the link 
from node ௝ܷ to node ܼ௜. It follows that eliminating the link associated with the smallest LIM will result 
in the least loss of accuracy. Links are eliminated based on their LIM until a pre-selected number remain, 
or until a pre-defined threshold on the LIM is exceeded. The node- and link-based approaches can be 
combined: ܷ-nodes are first eliminated based on their NIMs, followed by selective elimination of links 
associated with the remaining nodes based on their LIMs. Below, we describe three methods for con-
structing the transformation matrix ܂ and its approximation ܂෡ by use of the above measures.  

4.1. Decomposition Using Eigenvalue Expansion 

Using an eigenvalue expansion, the transformation matrix can be obtained in the form [20] 

܂ ൌ ઴઩૚/૛ (11)
where ઴ ൌ ሾ૖ଵ,… ,૖௡ሿ is the matrix of eigenvectors and ઩ ൌ diagሾߣ௜ሿ is the diagonal matrix of eigen-
values obtained by solving the eigenvalue problem 

૖௜܀ ൌ ૖௜ߣ௜, ݅ ൌ 1, … , ݊ (12)
In this case the transformation matrix is generally full and the resulting BN takes the form in Figure 3. 
The eigenvalues ߣ௜ may be interpreted as factors associated with the ܷ-nodes, while the elements in the 
eigenvectors are interpreted as factors on the links. It is well known that the order of contribution of the 
eigenvectors to the covariance matrix is consistent with the order of magnitudes of the corresponding 
eigenvalues. (This property is exploited in Principal Component Analysis [20].) Our numerical investiga-
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tions reveal that the order of the NIMs generally agrees with the eigenvalue ordering. In the remainder of 
this paper, the approach in which the transformation is defined via eigenvalue decomposition and ܷ-
nodes are eliminated based on their NIMs is referred to as the node-based eigenvalue approach (NEA). 
When the elimination is performed on individual links based on their LIMs, the approach is referred to as 
a link-based eigenvalue approach (LEA). It is noted that the use of a link-based elimination procedure in 
conjunction with eigenvalue decomposition was first suggested in Straub et al. [21].  However, the im-
portance measure defined there is less general than the one introduced above, as the former is only appli-
cable to transformation matrices obtained via eigenvalue decomposition.     

4.2. Decomposition Using Cholesky factorization 

The decomposition approach using Cholesky factorization results in a transformation matrix ܂ that is 
triangular [16]. Assuming ܂ is a lower triangular matrix, the corresponding BN takes the form shown in 
Figure 6, where  node ܼ௜ has the parents ଵܷ, … , ௜ܷ. By virtue of the triangular form of the transformation 
matrix, the BN in Figure 6 is less densely connected than the BN is Figure 3. However, the sizes of the 
largest CPT and the largest clique, { ଵܷ, … , ܷ௡, ܼ௡}, remain unchanged. Consequently, the order of com-
putational complexity of exact inference associated with the formulations in Figure 3 and Figure 6 are the 
same. Using a node-elimination approach, the nodes corresponding to the rightmost columns of the trans-
formation matrix are typically associated with the smallest NIMs and are eliminated first. Hereafter, the 
elimination of nodes based on a transformation matrix determined by Cholesky decomposition is referred 
to as the node-based Cholesky approach (NCA). When individual links are eliminated by zeroing the 
elements in the Cholesky decomposition matrix based on their LIMs, the approach is referred to as the 
link-based Cholesky approach (LCA).  

 

 
Figure 6: BN corresponding a transformation matrix obtained by Cholesky decomposition 

4.3. Node and Link Elimination Using Optimization 

Numerical optimization offers an alternative approach to defining the approximate transformation matrix 
 ෡. We propose an optimization-based node-elimination approach consisting of two steps: (1) specification܂
of the number ݉ ൑ ݊ of ܷ-nodes to include in the BN; and (2) solution of the nonlinear constrained op-
timization problem   

min෍ ෍ ൥ߩ௜௝ െ෍ ௜௞ݐ̂ ∗ ௝௞ݐ̂

௠

௞ୀଵ

൩

ଶ௡

௝ୀ௜ାଵ

௡ିଵ

௜ୀଵ

 

subject	to:	෍ ௜௞ݐ̂
ଶ ൑ 1 , ݅ ൌ 1,… , ݊

௠

௞ୀଵ

 

(13)

Z1 Z2 Z3 Zn...

U1 U2 U3 Un...
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The objective of the above problem is to minimize the sum of squared deviations between the actual 
and approximated coefficients in the upper triangle of the symmetric correlation matrix (excluding the 
diagonal terms, which are later corrected using (3) and (4)). The constraint functions are based on (4). The 
use of nonlinear constrained optimization to determine the terms of an approximate transformation matrix 
was earlier suggested by Song and Ok [18] and Song and Kang [17]. Hereafter, construction of the ap-
proximate transformation matrix by use of the optimization scheme in (13) is referred to as the node-
based optimization approach (NOA).   

Analogously, a link-based optimization problem may be formulated, in which the number of links ra-
ther than nodes is specified. The result is a mixed-integer, non-linear constrained optimization problem, 
which is difficult to solve in practice. Problems with convergence and over-sensitivity to initial values 
were encountered. To avoid solving mixed-integer optimization problems, an alternative might be the use 
of strategies employed in the field of topology optimization, e.g. [22]. There, elements are allowed to 
have intermediate values between void (=0) and solid (=1), but these intermediate values are penalized in 
the optimization. By considering links in the BN as such elements, the binary state of the links (present or 
not) could be avoided in the optimization. Such an approach is not pursued here but may prove to be ef-
fective. Instead, an iterative procedure for link elimination is developed. First, the optimization problem 
in (13) is solved for a specified ݉. Then, the term in the resulting transformation matrix with the lowest 
LIM is set to zero and the remaining terms in the matrix are re-optimized. The link elimination is repeated 
until a pre-set number of links remain. The iterative algorithm is summarized in Figure 7. Hereafter, this 
procedure is referred to as the iterative link-based optimization approach (ILOA). 

  
INITIALIZE 
Specify: 

݉ ൌ maximum number of ܷ-nodes to include  
ܮ ൌ  number of links to eliminate  

ELIMINATE NODES  
1. Determine ݊ ൈ ݉ matrix ܂෡଴ with elements obtained by solving the optimization problem in (13) 
ELIMINATE LINKS 
for 	݌ ൌ 1,…	,   ܮ
1. Calculate LIMs for all elements of ܂෡௣ିଵ  
2. Identify ݌ elements in ܂෡௣ିଵ with the smallest	 LIM values. (These include elements previously set equal to zero.) 
3. Determine the ݊ ൈ ݉  matrix ܂෡௣ by setting all elements identified in step 2 equal to zero and solving for the remaining 

elements according to (13) 
end 
 

 
Figure 7: Iterative algorithm for determining T෡ through node and link elimination 

An alternative to the above iterative scheme is as follows: In each iteration step, all elements in the 
transformation matrix that have LIM values below a threshold are set to zero. The remaining elements in 
the matrix are then re-optimized according to (13). The procedure is repeated until no link has an LIM 
below the specified threshold. Hereafter, this procedure is referred to as the alternative iterative link-based 
optimization approach (AILOA). 

For the numerical analysis reported in this paper, the function ݂݉݅݊ܿ݊݋ in Matlab, which finds the 
minimum of a constrained non-linear multi-variable function, is used to solve the optimization problem 
(13). 

4.4. Qualitative Comparison of Methods for Constructing ܂෡ 

It is important to recognize a significant distinction between the decomposition (eigen-expansion and 
Cholesky factorization) and optimization methods described above. In the former methods, after setting 
selected elements to zero, the remaining elements in the transformation matrix remain unchanged. In con-
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trast, in the optimization methods, the matrix ܂෡ is re-optimized after elimination of each set of nodes or 
links. In this sense, the optimization approaches are “dynamic,” while the decomposition methods are 
“static.” Because of these characteristics, one can expect that the optimization approaches will generally 
outperform the decomposition methods. 

From a practical standpoint, a node-elimination approach is preferable because the effect on the com-
putational complexity of the BN is systematic. The user can easily predict the memory demands of the 
resulting BN prior to performing inference. The same cannot be said when links are individually eliminat-
ed. However, the link-elimination approach is often better able to capture the correlation structure of a 
given configuration of points drawn from a random field because unimportant links are eliminated selec-
tively rather than in large groups, as is the case with the node-elimination approach. These observations 
are borne out by numerical investigations that follow. 

5. Numerical Investigation of Approximation Methods  

In this section, a numerical investigation is performed to determine the relative efficiencies of the pro-
posed methods for approximating the correlation structure of random variables drawn from a Gaussian 
random field in the context of BN analysis. Four generic configurations for the locations of points drawn 
from the random field are considered: 
(1) Points arranged along a line (Figure 8a) 
(2) Points arranged concentrically on a circle (Figure 8b) 
(3) Points arranged in a rectangular grid (Figure 8c) 
(4) Points arranged in clusters (Figure 8d) 

Different sizes of the above configurations are considered by changing the number of points, ݊, and the 
distance between the points. The latter is controlled through a distance measure, ݀, as defined in Figure 8. 
For the cluster configuration, the points in each cluster are distributed uniformly on the circumference of 
a circle of radius ݀, which is centered at a pre-defined coordinate. For the sake of brevity, only results for 
representative cases of the above configurations are shown and general trends are described. 

 

 
 

Figure 8: Generic configurations considered in numerical investigation 

To measure the relative efficiencies of the aforementioned approximation methods (NEA, LEA, 
NCA, LCA, NOA, ILOA, and AILOA), the error measure  
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is used, where ߩ௜௝ is the correlation coefficient between ܼ௜ and ௝ܼ and  ߩො௜௝ is the approximated correlation 
coefficient as defined in (5). Note that the sums are over the upper triangle of the correlation matrix, ex-
cluding the diagonal terms. This error measure was selected because the normalization by the sum of 
absolute values of the correlation coefficients permits comparison of cases with varying sizes of vector ܈ 
and a wide range of correlation values. (Later in the paper, we consider another error measure that is di-
rectly relevant to reliability assessment of an infrastructure system.) For each layout, this error is com-
pared against a measure of the computational complexity of the resulting BN. For simplicity and intuitive 
appeal, we use the number of links in the BN as a proxy for computational complexity. There is not a 
perfect one-to-one relation between the number of links in a BN and direct measures of computational 
complexity, such as the tree width, which is equal to one less than the size of the largest clique [23]. 
However, the number of links is sufficiently indicative to serve our purpose of comparing alternative ap-
proximation methods.  

For the numerical investigation, the Gaussian random field is assumed to be homogenous and iso-
tropic with the autocorrelation coefficient function  

,௜ܠ௏௏ሺߩ ௝ሻܠ ൌ exp ቆെ
Δܠ௜௝
ܽ

ቇ (15)

where Δܠ௜௝ ൌ ௜ܠ| െ  ௝ and ܽ is a measure of the correlation lengthܠ ௜ andܠ ௝| is the distance between sitesܠ
of the random field with value ܽ ൌ 6 in units of distance. This correlation model is taken from [24] and is 
motivated by our interest in applying the BN methodology to seismic risk assessment of infrastructure 
systems. 

5.1 Results 

First consider a line layout system (Figure 8a) with 10 sites. For this system, an exact BN with the eigen-
value expansion method has 10ଶ ൌ 100 links (see Figure 3) and with the Cholesky decomposition meth-
od it has 1 ൅ 2 ൅⋯൅ 10 ൌ55 links (see Figure 6). Figure 9 shows the error measure versus the number 

of links included in the BN for ݀ ൌ 1, 5 and 10 (corresponding to ݀ ൌ
ଵ

଺
ܽ,

ହ

଺
ܽ and 

ହ

ଷ
ܽ) using the decom-

position and optimization methods described above. All methods exhibit similar trends with increasing ݀, 
i.e., the error measure becomes larger and converges to zero at a slower rate. This is partly due to the def-
inition of the error measure: For large ݀, the correlations are small and, therefore, the error measure is 
magnified. For all ݀ values and for both node- and link-elimination approaches, the optimization methods 
consistently achieve smaller errors than the decomposition methods. Within the optimization methods, 
ILOA and AILOA outperform NOA, particularly with regard to the speed of convergence to zero. For 
small ݀, the performances of NEA and LEA are close to those of the corresponding optimization ap-
proaches, but the performance of the eigen-expansion approaches rapidly degrade as ݀ increases. This is 
because, for large ݀, the correlation coefficients are small and the eigenvalues of the resulting correlation 
matrix are of similar magnitude. Furthermore, LEA exhibits non-monotonic convergence. Conversely, the 
approaches based on Cholesky decomposition perform poorly for small distances, but their performance 
approaches those of the optimization methods as ݀ increases. The above investigation was repeated for 5- 
and 15-site line layouts and similar trends were observed. 
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Figure 9: Error in approximating correlation matrix for 10-site line layouts  

Figure 10 and Figure 11 respectively show the results for 10-site circle and 9-site grid layouts. As 
with the line layout, the optimization methods outperform the decomposition methods for all values of ݀.  
For small ݀, all the points in these layouts are closely spaced and, hence, the correlation coefficients are 
large and relatively uniform in magnitude. As a result, the correlation structure is well captured by a few 
ܷ-nodes, or even a single ܷ-node. As ݀ increases, the elements of the correlation matrix become less 
uniform. A larger number of nodes is then required to capture the correlation structure when using node-
based approaches. In this situation, the link-based approaches exhibit better performance because they 
offer versatility in distributing links among different ܷ-nodes. 

   

 
Figure 10: Error in approximating correlation matrix for 10-site circle layouts 
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Figure 11: Error in approximating correlation matrix for 9-site grid layouts 

Finally, the layout in which points are arranged in clusters is considered. Figure 12 shows examples 
of 9-site layouts arranged into three three-site clusters centered at coordinates (0,0), (50,50) and (25,75). 
For each cluster, points are equally distributed around a circle of radius ݀. Thus, ݀ is a measure of how 
tightly the nodes in each cluster are arranged. 

 

Figure 12: Example cluster layouts with ݀ = 1, 5, 10 

Figure 13 shows the errors for the 9-site cluster layouts with ݀ ൌ 1, 5	and 10. Among the node-based 
approaches, NCA and NOA perform similarly while NEA performs poorly, particularly for large ݀. 
Overall, the link-based approaches, excluding LEA, offer much better performance for the cluster layouts. 
This is because link-based approaches are able to distribute links among different ܷ-nodes consistent with 
the geometry of the clusters. To illustrate this concept, consider the two BNs shown in Figure 14, which 
represent alternative approximations of the 9-node cluster system with 9 links. The top BN uses the 
ILOA, which distributes the 9-links such that the points in each cluster are connected to a common ܷ-
node and points in different clusters are uncorrelated. The bottom BN uses a node-based approach, in 
which 9 links connect a single ܷ-node to all the ܼ-nodes. While both BNs in Figure 14 have the same 
number of links, ILOA distributes them more efficiently, consistent with the geometry of the layout. If 
clusters are sufficiently far apart, it is not necessary to include information paths (i.e. common ܷ-nodes) 
between sites located in different clusters. This is why the link-based methods outperform node-based 
methods.  
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Figure 13:Error in approximating correlation matrix for 9-site cluster layouts 

 

 

Figure 14: 9-link BN approximations for 9-site cluster layouts using ILOA  (top) and NOA (bottom) 

For comparison, select BNs obtained using the ILOA for the ݊ ൌ 10-site line and circle and ݊ ൌ 9-
site grid layouts for ݀ ൌ 5 are shown next. For the line and circle layouts, each BN contains 2݊ ൌ 20 
links; the BN corresponding to the grid layout contains 2݊ ൌ 18 links. Note that the ILOA is an iterative 
procedure for identifying important links. The iterative procedure is used in lieu of considering the full 
link-based optimization problem, which is difficult to solve in practice. Therefore, the BNs obtained from 
the procedure may not be globally optimal. Geometric interpretations of the resulting BNs for the line, 
circle, and grid layouts are not as clear as that for the cluster configuration, however trends do exist. 
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For the line layout the BN using 20 links is shown in Figure 15a. In this BN, links are distributed so 
that there are over-lapping information paths between nodes in close proximity. Sites located farther apart 
do not share a common ܷ-node. Figure 15b graphically illustrates the sites that are linked by common ܷ-
nodes. Shaded circles in this diagram indicate sites that share a common ܷ-node. The BN for the 10-site 
circle layout with 20 links is shown in Figure 16a and the corresponding diagram of sites sharing common 
ܷ-nodes is shown in Figure 16b. Because points are spaced concentrically in this layout, the sites are 
linked by a single common ܷ-node when as few as 10 links are considered (see the second diagram from 
the left in Figure 16b). When more than 10 links are included, overlapping information paths around the 
circle are added, similar to the trend seen for the line-layout. For the grid layout, the BN containing the 18 
most important links defined by ILOA is shown in Figure 17a and the diagram of sites sharing common 
ܷ-nodes is shown in Figure 17b. For this layout with 18 links, the links are distributed so that adjacent 
sites share at least one ܷ-node.  

(a) 

 
(b) 

 

Figure 15: (a) BN approximation using ILOA with 20 links; (b) illustration of sites linked by common U-node for 
10-site line layout with d=5 
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(a) 

(b) 
 

Figure 16: (a) BN approximation using ILOA with 20 links; (b) illustration of sites linked by common U-node for 
10-site circle layout with d=5 

(a) 

 
(b) 

 

Figure 17: (a) BN approximation using ILOA with 18 links; (b) illustration of sites linked by common U-node for 9-
site grid layout with d=5 
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6. Effect of Correlation Approximations on System Reliability 

The objective in BN analysis is usually some sort of probabilistic assessment involving risk or reliability 
evaluation, life cycle cost analysis, statistical inference, or expected-utility decision-making. Thus, the 
effect of approximating the correlation structure of random variables drawn from a Gaussian random field 
should be evaluated within such a context. Towards that end, we investigate the effect of the correlation 
approximation on the estimates of reliability of example systems. The points in the layouts in Figure 8 are 
assumed to represent the locations of components of infrastructure systems subjected to an earthquake 
demand. Two system performance criteria are considered: (1) all components must survive for the system 
to survive (series system); (2) only one component needs to survive to ensure survival of the system (par-
allel system). 

A limit-state function is assigned to each component of the system to model its performance. For 
component ݅, ݅ ൌ 1,… , ݊,	the limit-state function has the form 

݃௜ ൌ lnሺܴ௜ሻ െ lnሺ ௜ܵሻ (16)

where ܴ௜  is the capacity of the component and ௜ܵ is the demand on the component. The natural logarithms 
lnሺܴ௜ሻ are assumed to be statistically independent normal random variables with common means ߣோ and 
common standard deviations ߞோ. The natural logarithm of the demand on component ݅ is expressed as 

lnሺ ௜ܵሻ ൌ lnሺ పܵഥሻ ൅ ߳஼ ൅ ߳ௌ,௜ (17)

where పܵഥ  is the median demand, ߳஼  is a normally distributed error term with zero mean and variance ߪ஼
ଶ 

that is common to all components in the system, and ߳ௌ,௜ is a site-specific error term drawn from a homo-
geneous Gaussian random field with zero mean, variance ߪௌ

ଶ and autocorrelation function ߩఢఢሺ|ܠ௜ െ  ௝|ሻܠ
distributed over the spatial domain within which the system is located. It is assumed that పܵഥ 	is the same for 
all sites in the system. This assumption, as well as the earlier assumption of identical distributions for 
component capacities, ensures that all components have equal importance with regard to the performance 
of the system. This allows us to focus solely on the effect of the approximation of the correlation struc-
ture. Readers familiar with seismic applications will recognize (17) as the general formulation of a 
ground-motion prediction equation (also known as an attenuation relation), see, e.g. [25].   

For a system of ݊ components, there exist ݊ limit state functions. Component ݅ is in the fail state if 
݃௜ ൑ 0. Thus, for a series system, the failure probability is given by 

Prሺܨ௦௘௥௜௘௦ሻ ൌ Prሾሺ݃ଵ ൑ 0ሻ ∪ ሺ݃ଶ ൑ 0ሻ ∪ …∪ ሺ݃௡ ൑ 0ሻሿ ൌ Φ௡ሺെۻ௚, ઱௚௚ሻ (18)

while for a parallel system the failure probability is given by 

Pr൫ܨ௣௔௥௔௟௟௘௟൯ ൌ Prሾሺ݃ଵ ൑ 0ሻ ∩ ሺ݃ଶ ൑ 0ሻ ∩ …∩ ሺ݃௡ ൑ 0ሻሿ ൌ 1 െ Φ௡ሺۻ௚, ઱௚௚ሻ (19)

The right-hand sides of the above equations are exact solutions of the system failure probabilities ex-
pressed in terms of the ݊-variate multinormal cumulative probability function Φ௡ሺۻ௚, ઱௚௚ሻ with the 
mean vector ۻ௚ having common elements ߣோ െ ln ܵ̅ and the covariance matrix ઱௚௚ having variances 
ோߞ
ଶ ൅ ஼ߪ

ଶ ൅ 	ௌߪ
ଶ and covariances ߪ஼

ଶ ൅ 	ௌߪ௜௝ߩ
ଶ, where ߩ௜௝ ൌ ௜ܠ|ఢఢሺߩ െ  ௝|ሻ is the autocorrelation coefficientܠ

function of the random field from which ߳ௌ,௜ are drawn. For the latter function, the form in (15) is used. 
Furthermore, ߣோ ൌ െ0.9, ݈݊ܵ̅ ൌ െ1.8, ௠ߪ ൌ 0.2	and	ߪ௥ ൌ 0.5	are used, while for ߞோ two values as de-
scribed below are selected. The multinormal probabilities are computed by an algorithm available in the 
general-purpose reliability code CalREL [26]. Figure 18 shows the BN model of the system performance. 
Each node ݃௜ is binary, indicating failure or survival of component ݅. It is a child of nodes representing 
the component capacity (ܴ௜) and demand ( ௜ܵ). Node ௜ܵ is a child of nodes representing the common medi-
an demand ܵ̅, the common error term (߳஼) and the site-specific error term (߳ௌ,௜). The correlations among 
the site-specific error terms are accounted for through the latent ܷ- and ܸ-nodes according to the formula-
tion in (3), as exemplified in Figure 4. The performance of the system is represented by a single node 
 which is a child of all the component limit-state nodes ݃௜. Note that the inclusion of the discrete state ,ݏݕܵ
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nodes ݃௜ and ܵݏݕ results in a problem that is no longer jointly Gaussian. It is noted that the converging 
structure of links going into node ܵݏݕ, as shown in Figure 18, is computationally inefficient. We have 
developed other methods for efficiently constructing the system performance portion of the BN (e.g. see 
[2]), the description of which is beyond the scope of this paper.  
 

 
 

Figure 18: BN model of system performance  

When using the proposed approximation methods, the correlation coefficients ߩ௜௝ are replaced by 
their approximations ߩො௜௝. In order to avoid mixing the discretization error of the BN with the error due to 
elimination of nodes and links, failure probabilities are computed by the same formulas as in (18) and 
(19) but using the approximate covariance matrix. In the following analysis, the error in computing the 
system failure probability is measured as 

Percent	Error ൌ
෠ܲ௙,௦௬௦ െ ௙ܲ,௦௬௦

௙ܲ,௦௬௦
∗ 100 (20)

where ௙ܲ,௦௬௦ is the true system failure probability and ෠ܲ௙,௦௬௦ is the approximate failure probability com-
puted based on the approximate correlation matrix. A negative (positive) error implies underestimation 
(overestimation) of the system failure probability.  

For a 10-site line layout system, Figure 19 and Figure 20 plot the percent errors in estimating the fail-
ure probabilities for series and parallel systems, respectively, versus the number of links included for each 
of the approximation methods. These are shown for two values of ߞோ, which approximately represents the 
coefficient of variation of the component capacities. Consistent with the results shown in the previous 
section, the optimization approaches outperform the decomposition approaches for both the parallel and 
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series configurations. Among the decomposition approaches, the eigen-expansion methods are uncon-
servative for the series system and the Cholesky factorization methods are unconservative for the parallel 
system. Overall, the errors associated with the series system are significantly smaller than those associat-
ed with the parallel system. This is because the series system failure probability is less sensitive to the 
correlation between component demands than that of a parallel system with the same components -- a  
fact that has also been observed by other investigators [27]. Comparing the graphs in parts (a) and (b) of 
Figure 19 and Figure 20, it is evident that the error due to the approximation in the correlation matrix of 
the component demands becomes less critical when the uncertainty in the component capacities is large 
ோߞ) ൌ 0.6 versus ߞோ ൌ 0.3). Thus, accurate modeling of the correlation structure of the random field is 
less critical when important sources of uncertainty other than the random field are present. 

(a) 

(b) 
 

Figure 19: Percent error in estimating failure probability for a 10-site line series system 
when (a) ߞோ ൌ 0.3 and (b) ߞோ ൌ 0.6 
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(a) 

(b) 
 

Figure 20: Percent error in estimating failure probability for a 10-site line parallel system 
when (a) ߞோ ൌ 0.3 and (b) ߞோ ൌ 0.6 

 
To aggregate and compare the results of the numerical investigation for the various layouts, we con-

sider the minimum number of links required in the BN model of each layout to achieve an error less than 
10% in the estimate of the system failure probability. Table 1 and Table 2 present the required minimum 
number of links for series and parallel systems, respectively, for each of the layouts and each of the seven 
approximation methods considered. Tables on the left list the results for ߞோ ൌ 0.3, while those on the right 
list the results for ߞோ ൌ 0.6. Results for ݀ ൌ 10 are not shown for the series system because, for this rela-
tively long distance, the target accuracy threshold of 10% is achieved without including random field 
effects. For shorter correlation lengths, similar accuracy is obtainable when neglecting random field ef-
fects for some layouts, particularly for ߞ ൌ 0.6, as indicated by a symbol (*) in Table 1. 
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Table 1: Number of links required to achieve less than 10% error in estimate of  

failure probability for series system when 0.3=ߞ (left) and 0.6=ߞ (right) 
(Bold numbers indicate the minimum number of links obtained with any approximation method) 

                                                                                                                                     
 

Table 2: Minimum number of links required to achieve less than 10% error in estimate of  
failure probability for parallel system when ߞோ=0.3 (left) and ߞோ=0.6 (right) 

(Bold numbers indicate the minimum number of links obtained with any approximation method) 

                                                                                                                                        
It is known that series systems are not strongly sensitive to neglecting correlation in demands.  This 

observation is reflected in Table 1, which demonstrates that the accuracy threshold is met when consider-
ing very few links, if any. Note that, for the cases in which the threshold is met without inclusion of ran-
dom field effects, an asterisk (*) is included in the table. These cases essentially require zero links. Fur-
thermore, for the series system, the optimization-based methods are generally not associated with signifi-
cant gains in efficiency relative to the decomposition approaches, particularly LEA.  Because the optimi-
zation approaches are computationally more expensive than the decomposition approaches, it may not be 
of value to compute transformation matrices using optimization techniques when working with series 
systems. 

Conversely, it is well established that parallel systems are sensitive to inclusion of correlation in de-
mands. This finding is reflected in Table 2 by the relatively large number of links that are needed in each 
case to achieve the required threshold of accuracy in the estimate of the system failure probability. With 
only a few exceptions, the optimization approaches are more efficient than the decomposition approaches. 

Layout N NEA LEA NCA LCA NOA ILOA AILOA Layout N NEA LEA NCA LCA NOA ILOA AILOA

Line 5 5 5 9 9 5 5 5 Line 5 5 4 5 4 5 4 5
Line 10 10 9 40 40 10 9 10 Line 10 10 7 19 21 10 8 10

Circle 5 5 5 5 5 5 5 5 Circle 5 5 4 5 4 5 4 5
Circle 10 10 10 27 22 10 10 10 Circle 10 10 9 10 9 10 9 10

Cluster 9 9 6 15 7 18 6 9 Cluster 9 * * * * * * *
Grid 9 9 9 17 18 9 9 9 Grid 9 9 8 9 9 9 8 9

Layout N NEA LEA NCA LCA NOA ILOA AILOA Layout N NEA LEA NCA LCA NOA ILOA AILOA

Line 5 5 2 5 6 5 2 5 Line 5 * * * * * * *
Line 10 10 2 10 11 10 2 10 Line 10 * * * * * * *

Circle 5 5 3 5 6 5 3 5 Circle 5 * * * * * * *
Circle 10 10 8 27 24 10 8 10 Circle 10 10 5 10 8 10 4 10

Cluster 9 9 1 6 1 9 1 3 Cluster 9 * * * * * * *
Grid 9 9 6 17 20 9 6 9 Grid 9 * * * * * * *

d  = 1 d  = 1

d  = 5 d  = 5

* Percent error below 10%  acheiveable when neglecting random field effects.

Layout N NEA LEA NCA LCA NOA ILOA AILOA Layout N NEA LEA NCA LCA NOA ILOA AILOA

Line 5 10 9 14 14 5 5 5 Line 5 10 7 12 13 5 5 5
Line 10 50 14 52 53 20 21 20 Line 10 30 22 52 53 10 19 10

Circle 5 15 9 12 13 5 5 5 Circle 5 10 8 12 13 5 5 5
Circle 10 10 10 45 45 10 10 10 Circle 10 10 10 45 44 10 10 10

Cluster 9 72 35 33 18 27 9 9 Cluster 9 63 33 31 17 27 9 9
Grid 9 27 13 39 39 9 9 9 Grid 9 18 13 35 37 9 9 9

Layout N NEA LEA NCA LCA NOA ILOA AILOA Layout N NEA LEA NCA LCA NOA ILOA AILOA

Line 5 25 20 14 14 5 7 5 Line 5 25 4 14 13 5 7 5
Line 10 100 85 54 39 30 24 20 Line 10 90 12 54 38 30 20 20

Circle 5 25 19 14 14 5 5 5 Circle 5 25 17 14 14 5 5 5
Circle 10 90 71 52 50 20 13 18 Circle  10 80 61 52 49 10 10 10

Cluster 9 81 5 33 18 27 9 9 Cluster 9 81 5 31 17 27 9 9
Grid 9 81 56 42 41 9 19 9 Grid 9 72 50 42 40 9 18 9

Layout N NEA LEA NCA LCA NOA ILOA AILOA Layout N NEA LEA NCA LCA NOA ILOA AILOA

Line 5 25 20 14 10 5 7 5 Line 5 25 3 14 9 5 7 5
Line 10 100 13 54 25 30 19 12 Line 10 100 13 52 23 20 15 12

Circle 5 25 21 14 13 5 9 5 Circle 5 25 3 12 11 5 8 5
Circle 10 100 81 54 47 10 23 10 Circle 10 100 77 52 44 10 21 10

Cluster 9 81 4 23 17 27 10 ■ Cluster 9 54 4 23 16 9 8 ■
Grid 9 81 55 42 37 9 32 9 Grid 9 81 51 42 34 9 31 9

d = 10 d  = 10

■ indicates  method was not able to achieve a percent error belowspecified threshold

d = 5 d  = 5

d  = 1 d   = 1
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For small values of ݀ (high correlations), the node- and link-based optimization approaches offer similar 
performance, except in the case of the cluster layout system. For large ݀ values (low correlations), NOA 
and AILOA are more efficient than ILOA.  In most cases, more links are required to achieve a percent 
error below the specified threshold when ߞோ ൌ 0.3 than when	ߞோ ൌ 0.6, particularly for larger systems.   

7. Discussion 

The BN representation of a Gaussian random field developed in this paper is aimed at engineering appli-
cations where observations become available on a spatially distributed system. Consider again the exam-
ple of assessing the seismic risk of an infrastructure system. The value of using the BN for such a system 
stems from the ease with which the BN facilitates information updating, particularly in near-real time 
applications in the immediate aftermath of an earthquake. In that context, let nodes ௜ܵ in the BN of Figure 
18 correspond to ground motion intensities at the locations of the components of a geographically distrib-
uted infrastructure system. The ground motion intensity at a location is a function of a median value ܵ̅ (a 
function of the earthquake magnitude, source-to-site distance, and other geologic characteristics) and 
inter- and intra-event error terms as shown in (17). Consider that an observation has been made on ଵܵ in 
Figure 18, e.g., through a ground motion sensor located near component 1 in the infrastructure system. 
This information propagates in the forward direction by updating the probability of failure of component 
1. The information also propagates in the backward direction by updating the site-specific term ߝ௦,ଵ as 
well as the common terms ߝ௖ and ܵ̅. The strength of the observation on the posterior distributions of these 
quantities is governed by the conditional relationships that is a priori specified between them. For the 
example here, they are governed by attenuation relationships that define the CPTs. Thus, an observation 
on ଵܵ provides uncertain information on the value of ߝ௦,ଵ. The updated distribution of ߝ௦,ଵ in turn updates 
the distributions of its parent nodes ଵܸ and ௜ܷ. This information propagates through the BN, updating the 
distributions of the other ߝ௦,௜ terms that share a common ܷ-node with ߝ௦,ଵ. Consequently the other ௜ܵ and 
component performance nodes are also updated, yielding updated posterior distributions that take into 
account the information that is known about the ground motion at the location of the sensor. Ultimately, 
the system failure probability is updated in light of the updated component failure probabilities. The ob-
servation of ଵܵ need not be exact. By adding additional nodes to the BN, we can easily account for meas-
urement error.  

It is emphasized that observations on any selection of random variables can be incorporated in the 
BN. Examples of other sources of information include observations of component performance (e.g. from 
a health monitoring instrument or from an inspection report), system performance, as well as information 
about the earthquake (e.g. observed magnitude and location). The use of BNs is of particular value when 
observations have been made on non-Gaussian nodes. For example, an observation of component perfor-
mance (i.e. on a node ݃௜) updates its ancestor nodes in such a way that they are no longer Gaussian. In 
these cases, conventional conditional Gaussian matrix equations, which are useful when all variables are 
jointly Gaussian, are no longer applicable for information updating. Thus, the power of the BN is in the 
facility it provides for information updating in problems involving mixtures of different types of depend-
ent random variables. The methods developed in this paper for BN representation of random fields are 
particularly useful for such applications. 

 

8. Summary and Conclusions 

Methods for efficient Bayesian network (BN) modeling of correlated random variables drawn from a 
Gaussian random field, such as those arising in seismic risk assessment of spatially distributed infrastruc-
ture systems, are investigated. The modeling of broadly dependent random variables results in a BN that 
is densely connected. Because exact inference algorithms in densely connected BNs are demanding of 
computer memory, approximate methods are necessary to make the BN computationally tractable for 
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large systems. This paper develops methods for reducing the density of connections in a BN by eliminat-
ing nodes and/or links, while minimizing the error in the representation of the correlation structure. Meth-
ods based on classical decomposition techniques as well as numerical optimization are developed and 
compared. It is found that optimization methods are able to achieve the best trade-off of accuracy versus 
computational efficiency. The effects of the approximation methods on estimates of failure probability for 
idealized infrastructure systems are also considered. It is found that the optimization-based approaches 
offer significant increases in efficiency when modeling the performance of parallel systems. For series 
systems, which are known to be less sensitive to the correlation structure of component demands, classi-
cal decomposition approaches may suffice. While the work done in this paper has been performed as part 
of an effort to develop a BN-based framework for seismic infrastructure risk assessment, it is believed 
that the findings are useful for more general applications involving correlated Gaussian random variables. 
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