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Prüfer der Dissertation:

1. Univ.-Prof. Dr. N. Navab

2. Prof. A. Noble, DPhil,
University of Oxford, UK

Die Dissertation wurde am 29.05.2012 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 21.11.2012
angenommen.





Abstract

Ultrasonography is often the modality of choice in terms of e.g. diagnostic
and intra-operative applications due to reasons such as safety, mobility and
inexpensiveness compared to other imaging techniques. This together with the
steady increase in image quality has made it a widely used diagnostic method
in various medical disciplines in recent years. However, the interpretation of
ultrasound imagery is typically of quite subjective nature and further data
processing not straightforward. This largely stems from the physical mech-
anisms at the heart of ultrasound imaging. The underlying process yields
imagery that is above all view-dependent and heavily subject to noise as well
as prone to containing various types of artifacts. Conventional ultrasound
images, commonly referred to as B-Mode, are the result of many processing
steps optimizing data for visual assessment by physicians. However, at the
core of ultrasound imaging pipeline lies the radio frequency (RF) data. Just
lately, RF data has become more readily available to the research community
such that its potential has not fully unveiled yet. From a data processing
standpoint using RF data over B-Mode suggests many advantages. First of
all, it is generally much richer in information due to the comparably higher
resolution. Furthermore, it is not affected by non-linear post-processing steps
such as log-compression and proprietary filter algorithms that change the
noise statistics for reasons of improved visual appeal. In addition, it has nice
probabilistic properties facilitating various ways of distributional modeling of
ultrasound specific texture patterns, referred to as speckle noise.
In this thesis various methods are investigated of how to take advantage of this
rich pool of information. Thereby special focus is devoted to the applications of
correct spatial alignment of ultrasound data, referred to as registration. At first
methods are presented that reside in 2D domain addressing issues of textural
and probabilistic description with possible applications in tissue classification,
elastography, speckle tracking and motion recovery. Later this is expanded to
3D ultrasound freehand data and its reconstruction with a particular view on
transcranial scans that are recorded in order to perform an early diagnosis of
Parkinson’s disease.
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Zusammenfassung

Ultraschall ist häufig die Modalität der Wahl für diagnostische und intra-
operative Anwendungen. Dies kann zurückgeführt werden auf seine vielen
positiven Eigenschaften, wozu Faktoren zählen wie Sicherheit, Mobilität und
niedriger Anschaffungs- und Unterhaltspreis. Dies hat in Verbindung mit der
stetig verbesserten Bildqualität dazu geführt, dass Ultraschall mittlerweile ein
breites Anwendungsgebiet aufweist. Allerdings ist die Ultraschallbildgebung
mit dem großen Nachteil verbunden, dass die Interpretation der erzeugten
Bilddaten sehr subjektiv und die Weiterverarbeitung der Daten im Allgemeinen
nicht einfach ist. Dies ist weitestgehend auf die physikalischen Mechanismen
zurückzuführen, auf die der medizinische Ultraschall basiert. So zeichnen sich
Ultraschallbilder vor allem durch die Eigenschaft der Blickwinkelabhängigkeit
sowie der starken Rauschanfälligkeit aus. Darüber hinaus beinhalten die Bilder
häufig eine Vielzahl an Artefakten.
Gewöhnliche Ultraschallbilder, auch als B-Mode Bilder bekannt, sind dabei
das Produkt einer Vielzahl von Verarbeitungsschritten in der Ultraschallma-
schine, die darauf abzielen die Signalmessdaten für das menschliche Auge
ansprechend und anschaulich zu machen. Diesbezüglich stellen die sog. Ra-
diofrequenz (RF) Daten die weitestgehend unbearbeitete Signalgrundlage in
der Processing-Pipeline von Ultraschallmaschinen dar. Erst in jüngster Zeit
sind mehr und mehr Hersteller von Ultraschallmaschinen bereit der Wissen-
schaft Zugang zu diesen Daten zu gewähren, sodass das ganze Potential
der Daten noch alles andere als ausgeschöpft und erforscht ist. Vom Da-
tenverarbeitungsaspekt aus bieten RF Daten gegenüber den gewöhnlichen
B-mode Daten eine große Reihe von Vorteilen. So ist primär der Informati-
onsgehalt in RF Daten viel größer als bei B-mode Bildern, was auf die höhere
Auflösung zurückgeführt werden kann. Zum anderen sind die Daten noch
keinen stärkeren Verarbeitungenschritten unterworfen, wie z.B. nicht lineare
Filteroperationen, log-Kompression sowie ähnliche i.d.R. proprietäre Datenmo-
difizierungsschritte, die das Bild für den Betrachter anschaulich machen. Diese
Tatsache ist einer der entscheidenden Vorteile von RF Daten gegenüber B-Mode,
bei deren Erzeugung oben genannte Operationen zum Einsatz kommen und
so die statistischen Eigenschaften der Daten massiv beeinflusst werden.
Im Rahmen dieser Dissertation wurden mehrere Mittel und Möglichkeiten
eruiert, wie RF Daten genutzt werden können. Fokus dieser Arbeit liegt da-
bei in der Entwicklung von Verfahren zur verbesserten räumlich korrekten
Überlagerung von Bilddaten, auch als Registrierung bekannt. Zu Beginn wer-
den Methoden zur statistischen Analyse und Beschreibungen von Texturen
im zweidimensionalen Raum beschrieben mit potentiellen Anwendungsge-
bieten in Gewebeklassifizierung, Elastographie, Speckle-Tracking und Motion-
Recovery. Im Anschluss daran wird sich konkreten Problemstellungen von 3D
Freehand Ultraschalldaten gewidmet, wie Rekonstruktion und Registrierung,
die vorwiegend im Rahmen zur Frühdiagnose von Parkinson erstellt werden.
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‘Certain books seem to be written, not that we might learn from
them, but in order that we might see how much the author knows.’

[Johann Wolfgang von Goethe, 1749–1832]
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Chapter 1

Introduction

Until the beginning of the twentieth century the ability to investigate structure
and functions within an intact human body were largely far beyond imagina-
tion. Back then the discovery of the X-ray by the German physicist Wilhelm
Röntgen was the first great milestone that made the unimaginable possible and
simultaneously was the igniting spark for a new research domain to develop -
medical imaging. Now in the twenty-first century, technological inventions and
developments have created many new possibilities and similar breakthroughs
in the medical domain with an ever increasing number of modalities available.
As a result, medical diagnosis and treatment is nowadays unthinkable without
the support of medical imagery. In this respect, radiology has long been domi-
nated by the two established imaging technologies, namely magnetic resonance
imaging (MRI) and Computed tomography (CT). Simultaneously, ultrasound
has for a very long time been the red-haired stepchild, with the result that
for years it had established itself probably as the most poorly used imaging
technology, in spite of its wide potential applicability.
However, there has been a process of change noticeable in medical treatment
due to factors such as the ever increasing greater importance that is attached
to cost effectiveness and the strong trend towards minimally invasive surgery,
where ultrasound technology has the potential to come into play and promises
extensive applicability. This has led to developments such that these days ultra-
sonography is often the modality of choice in terms of e.g. intra-operative and
screening applications, which can be further attributed to its safety, mobility
and inexpensiveness compared to other imaging techniques. This together with
the steady increase in image quality promises ultrasound in future to become
an even more widely used diagnostic method in various medical disciplines.
Lately, there has been drive to make ultrasound equipment more and more
compact. This has led to down shrinking of bulky-cart based systems to the
size of portable and hand-held devices, such that they are easily accessible,
which is of prime importance e.g. in emergencies when seconds count. Given
that those devices are still far from widespread use, they are nowadays often
referred to as the stethoscopes of the future. However, in contrast to their
historical counterpart they do not only allow to listen, but rather to see and
thereby expand the spectrum of medical care by a new dimension. This devel-
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Chapter 1: Introduction

opment might actually conjure up memories of the famous television series
Star Trek, in which the first officer Mr. Spock and the chief medical officer
McCoy used a hand-held device called a ’tricorder’ to scan people and amongst
other things assess their health status - a technology which was back then far
beyond imagination.
Further current development trends in the field of ultrasound are the 2D arrays,
which allow for the real-time acquisition of 3D images. In such 2D arrays,
several thousand piezo elements are typically arranged in a grid. Controlled
triggering of the elements then allows focusing and steering of ultrasound
beams in both elevation and azimuth, acquiring pyramid-shaped volumes.
Although such 2D arrays still do not provide the same image resolution as
conventional ultrasound system and are still extremely expensive, this clearly
indicates the future path with exciting applications. The bottom line is that
ultrasound imaging is a rapidly changing field, with ongoing research of new
technologies in various directions. This development will most likely lead to a
multitude of new applications for diagnostic purposes in the years to come.
Because of the complex physical processes underlying ultrasound imaging,
it is necessary to create methods that take all characteristics of the modality
into account. Consequently, this requires a precise understanding of the data
acquisition process, ranging from the physical signal properties to the data
processing pipeline that generates the output data. As a result, algorithms
can be devised that take into account the specifics of the system. Therefore
in this dissertation, we consider ultrasound imaging in more detail - espe-
cially the use of the raw echo signal data, referred to as radio frequency
(RF) data. This is of particular interest, as just lately RF data has become
more readily available by ultrasound machine vendors. RF data as opposed
to traditional ultrasound images, known as B-mode, comes with the benefit
of being unaffected by non-linear post-processing steps. At first glance this
might seem not very spectacular. However, the data processing pipeline in
conventional machines is made up of a series of steps such as log-compression
and application-dependent proprietary filter as well as algorithms that change
speckle statistics for reasons of improved visual appeal. But there is a lot of
information content relevant for diagnostics that is beyond the easily visualiz-
able content that make up current 2D or 3D images. Hence, employing RF data
allows for better and more predictable statistical data analysis and processing,
making full use of the available information content in the signal. In spite of
its clear advantages, RF data processing has not been paid much attention for
a long time. Beside the limited availability, this can also be attributed to its
large volume, which is a result of the comparably much higher resolution as
B-mode that made the required massive data processing seem intractable for a
long time. Given the rise in computing power in desktop machines and the
developments in the domain of graphic processing units (GPU) that allow for
massive parallelization, there is no longer the bottleneck of data processing.
Thus there exists no longer any obvious reason not to exploit the extra infor-
mation in RF data - in the otherwise information-poor ultrasound images.
In this respect, focus of this thesis is particular on statistical methods of ul-
trasound data processing of RF data. These methods are able to facilitate the
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1.1 Main Topics

description of both the image and disturbances underlying in the recording pro-
cess. This is in particular important for ultrasound imagery with its noise-like
image acquisition artifacts. Special significance is thereby attributed to multi-
view transcranial ultrasound imaging. That is ultrasound data acquisition
using a low-frequency transducer, where images are obtained through the tem-
poral lobe of the skull. These relatively new type of transcranial examinations
are performed for amongst others, the early diagnosis of Parkinson’s as well
as other severe and progressive neurodegenerative diseases. This is of prime
interest in medical research against the background that neurodegenerative
diseases become more and more prominent within our aging societies and
successful treatment depends on early detection.

1.1 Main Topics

The main topics of this thesis are registration and 3D reconstruction of ultra-
sound imagery as will be briefly outlined in the following. Thereby we will
explicitly elaborate on the associated challenges.

Registration

The process of obtaining the correct spatial alignment between two or more
datasets is referred to as registration. There are lots of applications that re-
quire the registration of ultrasound images. First of all, the limited view of
ultrasound images can be resolved by combining multiple images with over-
lapping image content. Furthermore, there is application for regular staging
of structures in tissue, whereby it is necessary to have perfectly registered
images to track changes. Similarly, in the domain of elastography and motion
recovery the identification of corresponding structures is required. However, in
ultrasound, there are several challenges that complicate image registration. On
the one hand, the imaging process is view dependent and subject to non-linear
processes. On the other hand, ultrasound images are prone to contain a wide
range of artifacts, such that imaging of the same structure from differing views
can lead to totally different image content. In particular, strong ultrasound
reflectors such as bone, ligaments or muscular tissue result in shadow artifacts
that reinforce such effects. Moreover, if insonofied orthogonally, those areas
are then further prone to contain mirroring and reverberation artifacts.

3D Reconstruction

Given that conventional ultrasound machines are restricted to produce 2D
images, there is a desire to add a further dimension by acquiring a series of
images with spatial information. This data pool then permits the generation of
volumes. However, similar as in the registration case, issues like ultrasound
view dependency complicate this process. If an object has a different appear-
ance depending on the point of view, the question is what representation
should be taken. Within the context of this thesis, a particular focus is devoted
to bilateral transcranial ultrasound reconstructions, which are performed to
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Chapter 1: Introduction

facilitate a more objective early diagnosis of Parkinson’s disease. This type
of imagery is in particular challenging due to the low signal-to-noise ratio,
which is a result of the ultrasound transmission through the skull bone at
low frequency in order to avoid total signal reflection due to high acoustic
impedance difference.

6



1.2 Contributions

1.2 Contributions
The research activity that was conducted within the scope of this dissertation
has led to several contributions to the field of medical image analysis. In the
following we will briefly summarize them and indicate those contribution that
already have been presented to the scientific community.

• Advanced 3D Ultrasound Reconstruction: We present several tech-
niques for improved 3D ultrasound reconstruction. This ranges from
multi-view reconstruction for neurological applications to the incorpo-
ration of confidence information and the multi-view freehand modeling
employing a mixture model, leading to superior image quality and more
accurate volume registration. [Plate et al., 2012, Plate et al., 2010, Ahmadi
et al., 2011, Klein et al., 2012b, Karamalis et al., 2012b]

• Ultrasound Specific Feature Descriptor: We propose a novel type of
feature descriptor for radio frequency ultrasound data, with potential
applications in segmentation and registration. Use is showcased in the
application of shadow detection in presence of mirroring/reverberation
artifacts as well as texture-based distance metric learning. [Klein et al.,
2011, Klein et al., ]

• Ultrasound Specific Similarity Measures: We present similarity mea-
sures specifically designed for the alignment of ultrasound images. In
this respect, the specific noise distributions of ultrasound radio frequency
(RF) images as well as the differentiation between local and global charac-
teristics is taken into account, which leads to superior registration results
as compared to conventional methods. [Wachinger et al., 2012b, Klein
et al., 2012a]

• 2D Envelope Detection in Ultrasound: The 2D analytic signal is an ex-
tension to commonly applied 1D analytic signal for the step of envelope
detection of ultrasound radio frequency data in the processing pipeline.
In contrast to the conventional approach, this method considers informa-
tion from both across scanlines in lateral and axial direction. This allows
for a more robust estimation of the local amplitude. We present the 2D
analytic signal, where a particular focus is devoted to the statistical anal-
ysis, which suggests comparably better modeling properties. [Wachinger
et al., 2011, Wachinger et al., 2012a]
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Chapter 1: Introduction

1.3 Thesis Outline

Chapter 2: An overview is given about ultrasound physics. This is followed by
a detailed explanation of the image formation processes in conventional
machines. Furthermore, fundamental ultrasound speckle scenarios and
associated statistical models are introduced.

Chapter 3: This chapter deals with the 2D analytic signal, which suggests
improved envelope detection. This is due to the fact that the proposed
method considers information from across scanlines in both lateral as
well as in axial direction, and therefore produces spatially more consistent
output. The resulting images further suggest better statistical modeling
properties as is confirmed in goodness-of-fit tests. The chapter is based
on the papers The 2D Analytic Signal for Envelope Detection and Feature
Extraction on ultrasound images [Wachinger et al., 2011] and The 2D Analytic
Signal on RF and B-mode Ultrasound Images [Wachinger et al., 2012a].

Chapter 4: We present an overview about texture modeling in ultrasound. At
first we provide an overview of common techniques applied. Then the
Markov Random Field texture models are introduced. Several issues
are discussed such as texture generation as well as parameter estima-
tion for specific texture models. This is followed by an introduction of
Local Binary Patterns. Next, an example application using the Markov
Random Field Nakagami Auto-Model is presented in combination with
a learning based distance metric to discriminate between different tis-
sues. Finally, an approach of shadow detection containing mirroring
and reverberation artifacts is presented. Within this context we also
present ultrasound confidence maps and give a detailed explanation
of Expectation-Maximization (EM) algorithm. The chapter is based on
the papers Spatial Statistics Based Feature Descriptor For RF Ultrasound
Data [Klein et al., 2011] and Shadow Detection in Ultrasound RF Data. [Klein
et al., ].

Chapter 5: This chapter deals with similarity metrics. In this respect, two
different approaches are presented. The first approach presented is a
combination of global and local similarity measures. On the global scale,
distribution matching is performed, which is robust towards intensity
changes due to noise. On the local scale, a variant of Local Binary
Patterns is employed to increase the accuracy by matching small scale
textural details. The second method is an adaptive bivariate Nakagami
distribution based measure. By local adaptation of the parameters, this
approach yields superior registration performance. The chapter is based
on the papers Locally Adaptive Nakagami-based Ultrasound Similarity Mea-
sures [Wachinger et al., 2012b] and Registration of RF Ultrasound Data
Using Hybrid Local Binary Patterns [Klein et al., 2012a].

Chapter 6: In this chapter we give an overview of 3D freehand ultrasound.
At first different reconstruction methods are outlined. Next we present
the results of a first patient study for the early detection of Parkinson’s
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1.3 Thesis Outline

disease by making use of novel type of bilateral 3D reconstructions. This
is followed by advanced reconstruction methods. The first is based on
confidence maps as a means of weighting intensity information. The
second approach presented is a novel type of multi-view reconstruction
method based on finite mixture modeling. Mixture modeling facilitates
improved reconstruction in terms of more coherent images as well as
comparably better registration performance. In this context, an in-depth
presentation of Nakagami Expectation-Maximization algorithm is pro-
vided. The chapter is based on the papers Towards a More Objective
Visualization of the Midbrain and its Surroundings Using 3D Transcranial
Ultrasound [Plate et al., 2010], Modeling of Multi-View 3D Freehand Radio
Frequency Ultrasound [Klein et al., 2012b], Ultrasound Confidence Maps using
Random Walks [Karamalis et al., 2012b] and 3D Sonographic Examination
of the Midbrain for Computer-Aided Diagnosis of Movement Disorders [Plate
et al., 2012].
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Chapter 2

Fundamentals of Ultrasound

This chapter gives an overview about ultrasound. Starting from the beginning of
ultrasound research to an explanation of how conventional US systems work, including
the underlying physical processes. In addition, statistical models describing the
backscatter signal, particular in the radio frequency domain, are presented.

2.1 Brief History of Ultrasound

The origins of sonography can be traced back in history to the times of the an-
cient Greek philosophers and scientists when the fundamental principles were
developed. It was Pythagoras (c.570–c.495 BC) who conducted experiments on
the sounds produced by vibrating strings and invented the so called Sonometer
to study sounds [Brooks and Chan, 2002]. Eventually he established a rela-
tionship between pitch and frequency. Aristotle (384–322 BC) discovered that
the propagation of sound requires a medium and how its properties affect the
transmission [Long et al., 2005]. Later it was the Roman Philosopher Boethius
(c.480–c.525 AD) who established that sound travels as a wave, comparing
sound waves to waves, produced by dropping a pebble into water [Long et al.,
2005]. A scenario where it is observable that waves grew fainter as they move
away from their origin.
However, the first milestone towards modern ultrasonography was achieved
by Pierre Curie (1859–1906) and Jacques Curie (1856–1941) with the discovery
of the piezoelectric effect. It describes the creation of electric potential by com-
pression of crystals and the reverse process, crystals deforming upon applying
electrical charge. From the discovery of the piezoelectric effect it was only one
small further step to the actual development of ultrasonography. However, it
was not until two major striking events until the development, in particular of
underwater sonography, gained major momentum: the sinking of the Titanic
(1912) and World War I (1914).
After all, it was the french physicists Paul Langévin (1872–1946) and the Rus-
sian researcher Constantin Chilowsky (1880–1958), who developed a high
frequency ultrasonic echo-sounding device called ’hydrophone’ that allowed to
detect underwater objects and submarines [Raichel, 2006]. Outbreak of World
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Figure 2.1: Dussik’s transmission ’Ventriculograms’. The ultrasound image on
the left was initially thought to correspond the lateral ventricles as depicted on
the right. Reprinted from [Dussik, 1952], with kind permission from Springer
Science and Business Media.

War II further stimulated rapid research activities resulting in great advances
in sophisticated naval and military radar sonar as well as radar techniques.
Finally, the invention of transistors in 1947 allowed for the miniaturization of
electronic devices, which eventually paved the way to applications of ultra-
sound beyond the military scope.
In spite of that, the first medical applications of ultrasound already took place
in the 1940s. The American neurosurgeons William Fry and Russell Meyers
performed interventions in which they tried to destroy the basal ganglia of
patients suffering from Parkinson’s disease for symptom relief. About the same
time, the Austrian neurologist Karl Theo Dussik and his brother Friederich
Dussik, a physicist began first experiments in the domain of ultrasound diag-
nosis. They tried to locate brain tumors and the cerebral ventricles as well as
visualize intracranial structures [Dussik, 1952, Thomas et al., 2005]. Eventually
they developed a through-transmission technique with two transducers placed
on either side of the head, yielding so called ’ventriculograms’. This required
the immersion of the transducers and part of the patient’s head in a water
bath. However, the images they produced were later found not to really show
cerebral ventricles but merely having been the result of reflection of the skull
and attenuation patterns [Thomas et al., 2005] - see Fig. 2.1 for Dussik’s ven-
triculograms. This misinterpretation was exposed by a team of researchers that
performed similar acquisitions on an empty skull, yielding identically looking
imagery. Although the results obtained by Dussik were of no real diagnostic
value, they were the first to obtain rudimentary 2D images. Basically this
unveiled the potential of ultrasound for medical diagnostics. However, the
ineffectiveness of Dussik’s technique, led to the abandoning of the transmission-
based ultrasound approach. From now on, research focus was techniques based
on the properties of ultrasound reflection [Thomas et al., 2005]. Essentially,
this technology is the basis of nowadays modern medical ultrasound systems
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found in almost every hospital. In this respect, further developments continued
such that within a short time frame technology had advanced to the stage
that machines could be built capable of acquiring 2D images. However, this
acquisition still took approximately a minute before an image was generated.
It was not until the mid 1960s when the first real breakthrough occurred, which
heralded a new era in modern ultrasound diagnostics. At that time, largely
due to the research work by the German engineer Richard Soldner, the first
real-time ultrasound imaging device came to the market - the Siemens Vidoson.
It was capable in producing images at a respectable frame rate of 15 Hz. By
comparison, modern machines of today reach a frequency, depending on the
depth, up to approximately 60 Hz. From an application point of view, the
Vidoson machine was mainly tailored for ultrasound imaging in the domain
of obstetrics and gynecology. However, this soon began to change as this new
modality gained acceptance and the underlying technology improved step by
step. Basically, the arrival of real-time imaging marked the onset of medical
ultrasound as we know it today. Further developments in the years to come
then paved the way for the production of ever more powerful and smaller
machines. Simultaneously, advances in transducer technology led to better as
well as more specific ultrasound probes. These developments taken together
then widened the domain of application - a development that has continued
until today.
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2.2 Ultrasound Physics

Ultrasound refers to sound waves in the range between 20 kHz and 1 GHz,
far beyond the capability of the human ear, which is sensitive in the rather
narrow interval between 20 Hz and 20 kHz. Conventional medical ultrasound
transducers, however, operate in the frequency interval between 1–40 MHz.
The propagation of sound can be nicely described given the simple relationship
between velocity of sound, frequency and wavelength

c = f · l, (2.1)

where c denotes the speed of sound, f the frequency and l the wavelength.
Assuming a constant speed of sound c = 1540m/s, the wavelength for medical
ultrasound ranges from 1.54 mm to 0.04 mm. As a consequence, ultrasound
allows to image objects with sub-millimeter accuracy, which is one of the
reasons why it is such a widely accepted clinical imaging modality today.
In this respect, important for ultrasound machines is the lateral resolution,
which directly depends on the wavelength. The lateral resolution describes the
characteristic to distinguish adjacent objects. It is not constant over the image
domain and depends on the beam width. The beam width w itself is defined
as

w =
1.4 · lFc

2a f
, (2.2)

where a is the aperture (diameter of the piezo crystal) and F is the focal
length (distance from the front face of the transducer to the focal point). In
this respect the focal zone is defined as the region where intensity has a value
within 3dB of the maximum along the transducer axis. Lateral resolution can
be improved by focusing the transducer, which is a controlled delay-triggered
pulsing and summation of adjacent piezo crystals. Focusing typically leads
to a grossly hourglass shaped insonofied beam region, which is most narrow
at the focus point. Within the beam, sound propagates through medium as
longitudinal pressure wave, inducing local motions. While passing through
the propagation medium, ultrasound waves modify the local medium density.
This change in density is associated with motion by particle vibration, whereby
ultrasound propagates more or less parallel to the direction of vibrating parti-
cles. Transversal vibration or shear waves also occur, however, as they do not
travel as effectively as longitudinal pressure waves through soft tissue, they
are not important for medical ultrasound [Zagzebski, 1996]. Given the basics
about wave traveling, next we will derive the basic wave equations. For the
following, we typically assume the Euler formalism. Therefore field variables
are expressed with respect to a fixed coordinate system in space. As mentioned
above, sound propagation induces a change in medium density. The first part
in the derivation of the basic wave equation is the motion equation. It relates
the force acting on any element of the continuous medium to the pressure
gradient on which it depends. In this respect, we employ Newton’s second
law, which describes the relationship between the forces acting on a body and
its motion due to those forces. It can be written as [Hill et al., 2004]
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�∂p
∂x

= r0
u

Dt
, (2.3)

where p denotes the pressure, r0 the ambient density and u(x, t) the velocity
in the medium at location x at time t. Beside the motion equation describing
the forces, the second relevant principle in the derivation of the wave equation
is the conservation of mass. This implies that any change of density within the
medium must be associated with an exchange of mass in its surroundings. It
can be written as [Hill et al., 2004]

�∂r

∂t
= r0

u
x

. (2.4)

For describing the motion of fluid substances the Navier-Stokes equations
are often employed in physics, which basically arise from applying Newton’s
second law to fluid motion. The Navier-Stokes equation for incompressible
viscous flow phenomena in Eulerian form can be written as

r

✓

∂u
∂t

+ u ·ru
◆

= �rp + µr2u, (2.5)

where µ denotes the viscosity of the medium.
Now combining the Navier-Stokes equation with the equation of motion

Eq. 2.3 and the continuity equation Eq. 2.4, one yields the wave propagation
equation for inviscid fluids [Hill et al., 2004, Cobbold, 2007].

Furthermore, one is able to obtain a wave equation in p alone defined as

1
c2

∂

2 p
∂t2 �r2 p = 0. (2.6)

This equation models only the propagation of models ultrasound pulses in
a lossless homogeneous medium, particularly neglecting absorption effects.
Another restriction is the non-coverage of non-linear wave propagation. That
is a phenomena in which the speed depends on the amplitude of the wave.
Specifically, while ultrasound waves travel through the body, regions of high
pressure move slightly faster than regions of lower pressure and result in a
progressive distortion of the transmitted waves. Wave travels faster during
the high pressure phase of the oscillation than during the lower pressure
phase [Hamilton, 1998]. This is associated with a change of the shape from
sinusoidal to non-sinusoidal wave. The non-sinusoidal waves thereby contain
additional frequencies, which are multiples of the fundamental originating
frequency. In this respect, the even and odd multiples of the fundamental
frequency are referred to as harmonic frequencies. This effect is exploited in
Tissue Harmonic Imaging (THI), where the fundamental frequency is filtered
out and only the second harmonic waves are used for the creation of the
image [Boon, 2011]. Among the models incorporating the non-linearity effects
are the Khokhlov-Zabolotskaya-Kuznetsov (KZK) [Bakhvalov et al., 1987],
Burgers [Burgers, 1948] and notably the Westervelt [Taraldsen, 2001] equation.
The former derived from the fluid motion equation by keeping up to quadratic
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order terms is defined as [Hamilton, 1998, Taraldsen, 2001]

r2 p� 1
c2

∂

2 p
∂t2 +

d

c4
∂

3 p
∂t3 = � b

rc4
∂

2 p2

∂t2 , (2.7)

where d denotes the the sound diffusivity and b is the non-linearity coefficient.
Next we will discuss different scenarios of wave interaction. For medical
ultrasound there are two important wave interaction phenomena: reflection
and transmission. The former being the major interest in diagnostic ultrasound.
Assuming that the wavelength is small compared to the object being hit, the
wave is redirected upon hitting the object. When the sound beam hits the
interface with normal incidence it will be partially reflected towards its origin,
whereas the other part continues traveling (transmission). However, when the
beam hits the interface with non-normal incidence, the reflection angle equals
the angle of incidence and the energy is diffracted away in that direction.
In this regard, Snell’s law describes the relationship between the angles of
incidence qi, transmission qt and reflection qr, when referring to light or other
waves passing through a boundary between two different isotropic media. The
law states that the ratio of the sines of the angles of incidence and transmission
is equivalent to the ratio of velocities c1, c2 in the two media that the waves are
passing,

sin qi
sin qt

=
c1
c2

. (2.8)

This can be rewritten as

sin qi
c1

=
sin qr

c1
=

sin qt
c2

. (2.9)

See Fig. 2.2b for an illustration of the reflection scenario with associated
angles. A similar relationship can be established for tissue interfaces in medical
ultrasound. Thereby different tissues are characterized by their speed of sounds
ci and their respective densities r. Their product marks an important property
for ultrasound imaging, which is referred to as acoustic impedance defined as

Zi = ri · ci. (2.10)

Beside Snell’s law, another possibility to describe the relationship between
the incident pi, transmitted pt and reflected pr pressure amplitudes is by means
of amplitude reflection Rp and transmission Tp coefficients, respectively. They
are governed by the two underlying fundamental principles [Postema, 2011]:
(1) Continuity of velocity, which states that the normal components of the
particle velocity must be equal on either side of the interface. (2) Continuity of
pressure, which states that the pressure variation must be equal on either side
of the interface. In this respect, the reflection and the transmission coefficients
can be written as [Postema, 2011]

Rp =
pr
pi

=
Z2 cos q1 � Z1 cos q2
Z2 cos q1 + Z1 cos q2

(2.11)

Tp =
pt
pi

=
2Z2 cos q1

Z2 cos q1 + Z1 cos q2
, (2.12)
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(a) (b)

Figure 2.2: Ultrasound wave interaction: (a) Scatterer in resolution cell pro-
ducing backscatter with wave interference. (b) Ultrasound reflection following
Snell’s law: qi angle of incidence, qr angle of reflection, qt angle of transmission

where Rp and Tp are the ratios of the amplitudes of the reflected and
transmitted waves to the incident wave. Similarly, the intensity reflection Ri
and transmission coefficients Ti are defined as [Postema, 2011]

Ri =
Ir
Ii

= R2
p = (Z2 cos q1 � Z1 cos q2)2

(Z2 cos q1 + Z1 cos q2)
(2.13)

Ti =
It
Ii

=
4Z2Z1 cos2

q1

(Z2 cos q1 + Z1 cos q2)2 , (2.14)

where Ir, It and Ii are the reflected, transmitted and incident intensity,
respectively. It should be noted that at normal incidence the expression for R
and T simplify significantly, such that we yield the following intensity terms

Ri =
✓

Z2 � Z1
Z2 + Z1

◆2
and Ti =

4Z2Z1

(Z2 + Z1)2 . (2.15)

The most important scenario occurs, when the interface is larger than the
beam width and the beam intersects the interface at normal incidence. Then
the interface acts as a specular reflector, reflecting a certain amount of energy
directly back to the transducer - depending on the acoustic impedance. It is
exactly this phenomena, which is responsible for producing the clear outlines
of objects in medical ultrasound. At other angles than normal incidence, the
wave will be reflected away from the transducer.

Beside reflection and refraction there are also other important interaction
effects that influence US imaging such as attenuation, absorption and scattering.

In this respect, scattering can be considered a specific type of reflection. It
occurs at the encounter of ultrasound waves at impedance gradients of objects
the size of the wavelength or much smaller [Zagzebski, 1996]. Scattered waves
have the tendency to spread in all directions as each scatterer acts as a separate
sound source, which leads to a large weakening of the signal as compared to
normal reflection. The omni directionality of sound redirection contrasts with
the reflection of the echo, which is view dependent. Speckle is responsible for
generating textural patterns that are characteristic for ultrasound providing the
internal texture of organs. It is noteworthy, that shadow regions result when
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scattered waves and the incident wave interfere destructively. See Fig. 2.2a
for an illustration of an insonofied resolution cell with scatterers producing
backscatter.

While passing through media, the wave loses energy due absorption. More
specifically, during the process of wave travel, particles are excited in cycles
of medium compression-dilation. This particle vibration and wave motion is
linked with a loss of acoustic energy, which is converted into heat or chemical
energy. The energy loss in the pressure amplitude is related exponentially to
the distance from the source. Generally, all the effects that lead to the gradual
loss of wave amplitude such as absorption and scattering are summarized as
attenuation. Put more formally, attenuation can be formulated as [Cobbold,
2007, Hedrick et al., 2004]

p(x) = pmax · exp(�ax), (2.16)

where x denotes the distance travelled by the wave and pmax the initial peak
of amplitude pressure and a is the absorption coefficient, which depends on
frequency, temperature and pressure. Consequently, attenuation necessitates
compensation by the ultrasound machine to avoid related intensity gradients
over the image. Therefore, in order to obtain images that have an overall
consistent brightness, ultrasound machines apply time gain compensation
(TGC) during the signal acquisition process. Thereby the signal is amplified
increasingly with the time.

Summing up, visible structures are the result of echo, which is generated by
scattering or reflection that lead to redirection of some of acoustic energy back
to the transducer. Particular, the characteristic texture patterns due to scattering
will be investigated in more detail in the following chapters. A special focus is
thereby devoted to the statistical modeling of ultrasound backscatter.
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Figure 2.3: Transmission pulse creation from modulated carrier wave and
focusing by synchronized delay of pulsation w.r.t. adjacent piezo elements
(red).

2.3 Image Formation

Conventional ultrasound transducers are built from an array of up to 250 piezo
crystal elements, which altogether yield 2D imagery. Piezoeletric elements can
be triggered individually or in groups, which allows focusing and steering of
beams by controlled delaying of signal pulsing. Typically, a group of 10-20
elements is trigged synchronized to create a strong and focused beam. Focusing
and steering requires that each piezo element fires the transmit signal with
an associated time lag with respect to the other elements. The transmitted
pulse forming the beam is a signal convolved with a carrier wave created in a
modulation process. This in turn requires demodulation upon receiving the
echo back at the transducer. Fig. 2.3 shows the process of modulation and
sending of a pulse. During modulation, a sinusoidal wave is convolved with a
Gaussian modulator.
After crystal excitation the transducers switch mode from sending to receiving.
Thereby the transducer stays listening depending on the depth the user set
on the machine. More specifically, the receiving period lasts the sufficient
amount of time such that echoes from distal areas can be received. Similarly
like for the sending process, individual time lags are applied to the crystal
elements to compensate for the varying run times of the pulses. The receiving
process is also associated with several amplification steps. The first amplifier
scales the signal from microvolt/millivolt up to a range of 1-10 Volts [Hedrick
et al., 2004]. Afterwards, in order to compensate for the attenuation of the
signal a time based correction is applied - referred to time gain compensation
(TGC). For more detail on attenuation see Sec. 2.2. Finally, the delayed signals
of neighboring elements are summed up to yield a strong echo, producing
a beam in the RF image. Optionally, the amplification is followed by a so
called frequency-compounding step. Thereby the echo frequency spectrum is
subdivided into sub-bands and processed independently. Subsequently, the
sub-bands are recombined together, yielding a frequency averaged image of
improved quality [Hedrick et al., 2004]. See Fig. 2.5 for an illustration of the
receive process in a US transducer.
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Figure 2.4: Left: RF image build up from 256 A-lines. Right: Corresponding
A-line to highlighted zone (green) in the RF image (left). Top-right: RF A-line.
Bottom-right: Envelope detected A-line, indicating reduced oscillations as
compared to non-enveloped signal.

In order to obtain a 2D image, a series of adjacent beams (A-line) are
recorded from which a RF matrix is built. This RF matrix is then further
processed in the machine’s pipeline, ultimately leading to the B-mode image,
which is visualized on the screen. See Fig. 2.4 for an RF matrix and a single
beam (A-line) extracted. The real modulated signal as acquired from the US
transducer can be written as [Misaridis, 2001]

x(t) = A(t) · cos [2p fct + f(t)] , (2.17)

where A(t) corresponds to the amplitude function, fc to the carrier fre-
quency and f(t) to the phase function.

However, often it is advantageous to reformulate Eq. 2.17 to obtain a
compact complex representation

z(t) = x(t) + jxH(t), (2.18)

which is referred to as the analytic signal. Here xH(t) corresponds to the
Hilbert transformed signal of x(t) [Shiavi, 2007, Misaridis, 2001, Oppenheim
and Schafer, 2010]. Equation 2.18 can also be reformulated in an expanded
manner as

z(t) = A(t) · cos [2p fct + f(t)] + j · A(t) sin [2p fct + f(t)] . (2.19)
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Figure 2.5: Transmission pulse reception. Signal received at adjacent piezo
elements (red) are individually delayed then added together. The summed
signed is Hilbert transformed and finally envelope detected.

It is noteworthy that the analytic signal has only components in the pos-
itive frequency range. All the negative frequency components are deemed
superfluous due to symmetry [Shiavi, 2007, Oppenheim and Schafer, 2010].

Equation 2.19 can also be rewritten in a more condensed form yielding the
following term

z(t) = A(t)e[j2p( fct+f(t))] = c(t)ej2p fc , (2.20)

where the complex function c(t) = A(t)ejf(t) is referred to as complex envelope,
combining the amplitude and phase information of the signal.

Prior to further processing the signal data has to be demodulated, which
removes the oscillatory carrier part of the signal. Put in other words, the
original information containing signal is separated from the modulated carrier
wave that is required to convey the signal pulse. In this respect, ultrasound
machines commonly perform this step, referred to as envelope detection, by
taking absolute value of the analytic signal given by

AEnvelope = |z(t)| =
q

x(t)2 + xH(t)2, (2.21)

yielding the envelope detected radio frequency data.
It should be noted that this is performed for each scanline independently.

The envelope detected signal is the basis of further processing such as the
production of B-mode image as presented to the user on screen.

Enveloped data typically is represented as 16-Bit values on conventional ma-
chines. However, computers can usually only display on 8-Bit wide grayscale
intensities. Therefore the dynamic range of the data must be reduced to match
those of monitors. This is achieved by a non-linear mapping referred to as
logarithmic compression. A common way to formalize the log-compression
is [Kaplan and Ma;, 1993, Dutt, 1995]

fcompress(x) = D ln(x) + G, (2.22)
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Figure 2.6: Ultrasound data processing chain - from radio frequency (RF) data
to B-mode image.

where D is the parameter of the amplifier, representing the input dynamic
range to be shown in the output and G is a linear gain parameter of the
amplification. Following [Dutt, 1995], given the minimum and maximum input
values Amin and Amax mapped to the corresponding output values Xmin and
Xmax, respectively, the dynamic range DRdB can be estimated with

DRdB = 10 log

 

A2
max

A2
min

!

= 20 log
✓

Amax
Amin

◆

. (2.23)

Furthermore, the amplifier parameter D can be computed according to

D =
20

DRdB
(Xmax � Xmin) . (2.24)

It should be noted that this type of non-linear mapping totally changes
the speckle statistics of the envelope detected input signal and in turn makes
speckle modeling complicated [Dutt, 1995]. Therefore RF data is quite attractive
for directly modeling speckle. Another option to get similarly distributed data,
when access to RF data is not possible, is to invert the log-compression of
B-mode images in order to obtain an RF data approximation. However, the
quality of the approximation is largely dependent on the steps of the processing
pipeline.
After the log-compression is applied data must be re-arranged to bring it
into geometrical and spatial correct position, which is referred to as scan
conversion. That is, data acquired with convex and phased-array transducers
must be converted from polar coordinate system to rectangular coordinates as
adjacent elements in the RF matrix are not necessarily spatially adjacent. Strictly
speaking, spatially adjacency applies only to linear transducers, where beams
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are close together and above all parallel. This process entails interpolation
steps to fill in the gaps between the beams in order to produce a consistent
looking image. At the end of the processing chain typically further proprietary
filters are operated on the image data, specific for the application to enhance
the visual appeal. Potential filters are speckle reduction and edge enhancement.
See Fig. 2.6 for a schematic illustration of the processing chain and results of
each step.
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Figure 2.7: Random walk representation for various speckle scenarios. Re-
sultant phasor shown in red; From left to right: Destructive interference,
constructive interference and interference with a coherent component/constant
phasor (green).

2.4 Ultrasound Image Statistics

Speckle is the result of a random deterministic interference process resulting in
characteristic texture patterns [Sanches et al., 2011]. It occurs at structures that
are rough in scale as compared to the wavelength - that is inhomogeneities
at microscale [Cobbold, 2007]. This noise-like phenomenon affects multiple
modalities such as synthetic aperture radar (SAR), optics and ultrasound. For
medical ultrasound, the generated speckle patterns are largely characteristic
for specific tissue and organ types. Strictly, speaking speckle does not have
the characteristics of noise but is rather having noise-like properties [Oliver
and Quegan, 2004]. That is, images taken from the same position will look the
same, expressing the identical speckle patterns [Soergel, 2010]. This contrasts
with the notion of noise, which is associated with an inherent random process.

In the subsequent sections we largely follow the exposition of [Goodman,
2007, Dutt, 1995] in describing the statistics of ultrasound backscatter. Looking
at the physical process underlying speckle, those ultrasound characteristic
patterns arise in regions where the resolution cell contains a larger number
of scatterers. There the ultrasound wave interacts with each scatterer, each in
return producing its own backscatter echo; a sinusoidal wave with a phase
and amplitude change. The individual amplitudes {ai} and phases {fi} of the
scatterers are not directly observable, because of their small scale as compared
to the resolution cell and wavelength. Therefore the received signal A basi-
cally consists of the superposition of all the phases and amplitudes from each
scatterer [Goodman, 2007, Dutt, 1995],

A = A · ejq =
1p
N

N

Â
i=1

ai =
1p
N

N

Â
i=1

aiejfi , (2.25)

where ai is the ith of N complex phasor components with associated length ai
and phase fi. In this regard, 1p

N
serves just a normalization constant needed

to preserve second-order moment [Goodman, 2007].
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However, since the interference between the scatterers can be either construc-
tive or destructive, the observed signal bears randomness in the phase [Soergel,
2010]. It should be noted that this process of interference itself is purely de-
terministic, but due the permanent change in interference leads to observable
spatial randomness. This in turn is responsible for the noise-like behavior.
As the principal source of the noise-like quality of the observed data is the
distribution of the phase terms, scatterers at different parts of the resolution
cell will contribute very differently, even when having identical backscatter
properties [Oliver and Quegan, 2004]. Following this notion, the received
backscatter echo can be assumed to behave like a random walk in the complex
plane, where each step of length ai is in a completely random direction fi.
See Fig. 2.7 for a visualization of random walk scatterer interference scenar-
ios. Since the received signal A is a complex random phasor sum, it can be
decomposed into a real R and imaginary I component, respectively,

R = Re {A} =
1p
N

N

Â
i=1

ai cos fi (2.26)

I = Im {A} =
1p
N

N

Â
i=1

ai sin fi, (2.27)

where Re {.} and Im {.} extract the real and imaginary component.
In practice for describing the speckle by means of random walks it is

convenient to adopt certain assumptions about the amplitudes and phases.
At first we assume that the phase is uniformly distributed in [�p, p] and
independent of the amplitude, which will be distributed around a specific
mean value [Oliver and Quegan, 2004,Soergel, 2010,Goodman, 2007]. The next
assumption is that the amplitudes ai and phases fi are statistically independent
of any aj and phases fj with i 6= j. Furthermore, beside uniformly distributed
phases, we assume independence between the amplitudes and phases. This in
turn allows a series of simplifications in modeling. As a direct consequence
of the assumptions above, the mean and variance of R and I can be written
as [Goodman, 2007],
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where E[.] denotes the expectation. This in turns allows to infer the following
terms for the variances
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These results will be of use for the following sections.
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Figure 2.8: Various scattering conditions. From left to right: Large number of
scatterers, larger number of scatterers with coherent component, small number
of scatterers, small number of scatterers with coherent component.

2.4.1 Distributions for Basic Scattering Scenarios

In the following subsection distributions for various common scattering scenar-
ios will be derived. Derivations are based on the random phasor representation
referring to Eq. 2.25, 2.26 and 2.27. See Fig. 2.8 for an illustration of scattering
conditions modeled with distributional models.

Large Number of Scatterers

Given the random walk interpretation and assuming the number of scatterers
N very large, with scattering cross-sections approximately uniform [Shankar,
1995], Eqns. 2.25 and 2.26 yield very large sums. Applying the Central Limit
Theorem with N ! • and the independence assumption of each random walk
step, the real R and imaginary parts I of the summed backscatter phasor A
become approximately Gaussian distributed. Therefore the joint distribution
for R and I can be written as [Goodman, 2007]

pR,I (R, I) =
1

2ps

2 exp
✓

�R
2 + I2

2s

2

◆

(2.32)

with s

2 = s

2
R = s

2
I due to Eq. 2.30 and 2.31. However, we are rather

interested in the distributions for the amplitude A and the phase q, which have
the following relation to the real and imaginary quantities.

A =
p

R2 + I2 (2.33)

q = arctan
✓ I
R
◆

(2.34)

and

R = A · cos f (2.35)
I = A · sin f. (2.36)

The joint distribution for the amplitude A and the phase q can be derived
from the joint distribution pR,I by transformation of random variables [Flury,
1997],
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pA,q (A, q) = pR,I (A · cos f, A · sin q) |det(J)| (2.37)

where J is the Jacobian matrix relating the two variable sets, defined as

J =

 

∂R
∂A

∂R
∂f

∂I
∂A

∂I
∂f

!

and |det(J)| = A. (2.38)

Applying the transformation theorems, we yield

pA,q (A, q) =
A
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2 exp
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From the joint distribution pA,q (A, q) for amplitude and phase one can
derive the corresponding probability density function by marginalizing w.r.t.
the other random variable. The resulting probability density function for the
amplitude A is therefore

pA(A) =
Z +p

�p

pA,q (A, q) dq =
A
s

2 exp
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� A2

2s

2

◆

s.t. A 2 R+, (2.40)

which corresponds to the Rayleigh distribution.

Large Number of Scatterers with Constant Phasor

If the scattering scenario from the previous section is slightly modified by
assuming the presence of a coherent component in the resolution cell, we yield
a different model. The coherent component might arise due to strong specular
scattering or unresolved structures such as periodically located scatterers [Dutt,
1995]. This slight modification of the previous model implicates a different
model, however, with very similar derivation. The coherent component can be
formalized by extending real part of the resulting phasor from Eq. 2.26 with
an additional constant amplitude part A0, yielding

R = A0 +
1p
N

N

Â
i=1

ai cos fi, (2.41)

with the following associated joint distributions
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Marginalization over the phase q yields the probability density distribution for
the envelope
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s.t. A 2 R+, (2.44)
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where I0(.) represents the modified Bessel function of first kind and order zero.
The resulting probability density function is also known as the Rice distribution,
which is also referred to as the Rician or Ricean distribution. Unsurprisingly, for
very small constant phase A0 (A0 ! 0) we yield again a Rayleigh distribution,
therefore the Rice distribution is a generalization of the Rayleigh distribution.
Parameter estimation can be performed in various ways such as closed form
based on moments and iterative maximum-likelihood [Talukdar and Lawing,
1991, Sijbers et al., 1998, Benedict and Soong, 1967].

Limited Number of Scatterers

Previous models assumed a large number of scatters per resolution cell. Shed-
ding this assumption, which is only satisfied in very limited situations, by
reducing the number of scatters to around 10 per resolution cell, we yield an
unlike more realistic but also much more complicated model - for more detail
and the derivation see [Jakeman and Pusey, 1976, Jakeman, 1980, Jakeman and
Tough, 1987b]. Making again use of the random walk phasor sum representa-
tion endowed with the negative binomial distribution to model the number of
N scatterers, one yields the K-Distribution modeling the echo envelope A. The
probability density function defined as [Jakeman and Tough, 1987a, Dutt, 1995]

pA(A) = 2
✓

A
2

◆

a ba+1

G(a)
K

a�1(bA) s.t. A 2 R+, (2.45)

where K
a

represents the modified Bessel function of second kind of order a and
b =

q

4a

E[A2] . It is noteworthy that the parameter a can be directly related to the
physical property underlying ultrasound speckle generation. It corresponds
to the number of effective scatterers in the resolution cell influencing the echo
envelope. Unlike it counterpart for a large number of scatterers, it can also
model variations in scattering cross-sections [Shankar, 1995], which are more
likely to change in regions of abnormality and are therefore of interest for
tissue characterization [Joynt, 1979]. Furthermore, for large a (a ! •) the
K-distribution converges to the Rayleigh distribution, which further highlights
that the K-distribution is a generalization of the Rayleigh distribution. In spite of
its inherent complexity, the parameters of the K-distribution can be estimated
in closed from directly from the sample moments, due to the closed form
expressions of its moments, or iteratively following a maximum-likelihood
approach [Dutt, 1995].

Limited Number of Scatterers with Constant Phasor

Similarly to the scenario with a large number of scatterers, where switching from
Rayleigh to Rice distribution is due to added coherence, the previous case of
limited number of scatterers can be extended to cope with coherence. This is
achieved by incorporating a constant phasor component, which represents a
coherent component in the backscatter echo. Model extension leads from the K
distribution to the homodyned-K distribution, defined as [Jakeman and Tough,
1987b, Dutt and Greenleaf, 1994]
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which evaluates to the rather complex term
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Here Jp denotes the Bessel function of the first kind of order p, K
a

represents
the modified Bessel function of second kind of order a and s2 corresponds to
the coherent and s

2 to the diffuse signal energy. Similarly to the K distribution,
the parameter a corresponds to the effective number of scatterers. Furthermore,
it should be noted that the K distribution is a special case of the homodyned-K
and the latter converging for large a (a ! •) to a Rice distribution. As a result
it can model a wide range of scattering scenarios such as the ones described by
Rice, Rayleigh and K distributions.
Although computationally adverse, parameters of the homodyned-K distribution
can be computed based on fractional order moments [Hruska, 2009, Prager
et al., 2002].
Beside the homodyned-K distribution, similar speckle conditions can be modeled
by the so called Generalized K distribution [Barakat, 1986, Jakeman and Tough,
1987a], however, not always modeling weakly scattering media properties
reasonably. A case in point is the that predicted mean intensity of the scattered
field is subject to fluctuation due to variations in the number of scatterers,
even for the case of the mean intensity of the scatterers approaching zero
[Destrempes and Cloutier, 2010, Jakeman and Tough, 1987a]. Additionally, it
is stated in [Destrempes and Cloutier, 2010] that strictly speaking only the
parameters of the homodyned K distribution can be reasonably associated with
a physical meaning. It is exactly this property that makes this distribution very
attractive for application domains such as tissue characterization.

2.4.2 Further Statistical Models for RF Data

Beside the established models for modeling RF data as presented in the previ-
ous subsections, there also exist several relatively new models. These models
typically capture various speckle scenarios. At first we present the Nakagami
distribution and then the Rician Inverse Gaussian distribution.

Nakagami Distribution

Due to their inherent complexity, the practical applicability of distributions
such as the Generalized-K or homodyned-K is often limited. Simpler but nonethe-
less extremely versatile, the Nakagami distribution [Nakagami, 1960] (also
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Figure 2.9: Nakagami distribution for various shape parameter ranges. Top-left:
Pre-Rician with 0 < µ < 1/2, Bottom-left: Generalized Rician with 1/2 < µ < 1,
Top-right: Rayleigh with µ = 1, Bottom-right: Rician with 1 < µ.

known as the Nakagami-m distribution) was proposed originally for model-
ing the fading of radio signals, admitting an explicit analytical expression of
various speckle scenarios. In particular it allows modeling of large number
of scatterers with and without constant phasor as well as small number of
scatterers with varying scatterer cross-sections. Merely the scenario of limited
number of scatterers in combination with a constant phasor cannot be modeled
fully. In this respect, it should be noted that by varying the shape parameter of
the Nakagami distribution, it is possible to emulate other distributions such as
Rayleigh, Rician or homodyned-K [Shankar et al., 2001, Destrempes and Cloutier,
2010]. See Fig. 2.9 for an illustration of the shape parameter affecting the
look of the Nakagami distribution. It was shown that the Nakagami distri-
bution accurately models backscatter characteristics of ultrasound envelope
data [Shankar, 2000] and hence is used in various applications such as segmen-
tation and classification, see [Destrempes et al., 2009, Shankar et al., 2002] and
references therein. Furthermore, it was also shown that its parameters can also
be directly used for applications such as tissue classification [Shankar et al.,
2002]. The Nakagami distribution N (x | µ, w) belongs to the exponential family
and requires the specification of two parameters, µ and w, determining shape
and scale, respectively,

N (x | µ, w) =
2µ

µx2µ�1

G(µ)w

µ

exp
⇣

� µ

w

x2
⌘

, 8x 2 R+. (2.48)

Its parameters can be estimated among other options using the method of
moments (MOM) [Cheng and Beaulieu, 2002] and iteratively, following a
maximum-likelihood (MLE) approach [Cheng and Beaulieu, 2001]. For the
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Figure 2.10: Nakagami parameter estimation. Left: Maximum-likelihood
estimation, Right: Small-window estimation with different kernel sizes (Kernel
size [red to green]: 0.001 - 2.5). Top: Large number of samples, Bottom: Small
number of samples.

method of moments approach one considers the 2nd and 4th moments,

w = E[x2] (2.49)

and

µ =
[E(x2)]2

E[x2 � E(x2)]2
(2.50)

with the latter being referred to as inverse normalized variance estimator [Abdi
and Kaveh, 2000] . Again, E[.] denotes the expected value. In order to increase
the locality of the parameters, a small window kernel regression based on the
non-symmetric Gamma kernel was proposed in [Larrue and Noble, 2011,Chen,
2000]. It allows the estimation of the Nakagami parameters given only a small
amount of sample data. See Fig. 2.10 for an illustration of parameter estimation.
Assuming data follows Nakagami distribution, the Gamma distribution may
be used instead as they are related by a simple transformation given by

Y ⇠ GA(x | µgam, wgam), X ⇠ N (x | µnak, wnak) (2.51)

)
p

X = Y(µnak, wnak/µnak). (2.52)

This transformation will employed throughout this thesis. It can be derived
by applying the transformation of random variables theorems [Papoulis and
Pillai, 2002],
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This representation is often case more convenient and permits various sim-
plifications. Furthermore, the Gamma distribution is more of a standard and
therefore typically contained in all popular mathematical software programs.
For the sake of completeness it should also be mentioned that there exists
also the so-called Generalized Nakagami distribution [Shankar, 2001], which is
defined as

N (x | µ, w, s) =
2sµ

µx2sµ�1

G(µ)w

µ

exp
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� µ

w

x2s
⌘

, 8x 2 R+. (2.53)

Compared to the standard Nakagami distribution, it has an additional parameter
s referred to as shape adjustment parameter. By applying the transformation
x1/s on the data one yields again Nakagami distributed values. It should be
noted that the mean intensity of the Generalized Nakagami does not have an
analytic expression unless the parameter s is an integer [Destrempes and
Cloutier, 2010].

Rician Inverse Gaussian Distribution

In [Eltoft, 2003,Eltoft, 2005] a three-parameter distribution referred to as Rician
Inverse Gaussian (RIG) is proposed, which is constructed as a mixture of the
Rician probability density function with the Inverse Gamma (IG), defined as

pA(A|a, b, g) =
Z

pA|Z(a|z, b)pZ(z|d, g)dz, (2.54)

where the conditional distribution of A given Z is Rician
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with b denoting a skewness parameter and I0(.) denoting the modified Bessel
function of first kind and zero order. Furthermore, the Inverse Gamma distri-
bution is defined as [Barndorff-Nielsen, 1997]
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Figure 2.11: Left: Image with region highlighted in red, from which histograms
are computed. Right-top: Histogram from B-mode. Right-bottom: Histogram
from envelope detected RF data. Clearly visible the comparably increased
sparsity and roughness in the B-mode histogram due to quantization and
reduced resolution.

Beside the analytical expression given in Eq. 2.54, the RIG distribution can also
be represented in closed form defined as

pA(a|a, b, g) =
2
p

a

3/2
g exp(dg)

a
(d

2 + a2)3/4 K3/4
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q

(d
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◆

Io(ba),

(2.57)
where Kx(.) denotes the modified Bessel function of second kind and order x.
Using the RIG distribution, non-Rayleigh amplitude statistics can be modeled,
which are all scenarios except fully developed speckle. Parameter estimation
of the RIG distribution is possible in an iterative fashion, either based on
maximum likelihood or based on moments, the latter less computationally
demanding [Eltoft, 2005].

2.4.3 Statistical Models for B-Mode

All the above mentioned models basically only apply to envelope detected
RF ultrasound data. However, typical ultrasound machines provide access
only to B-Mode images, although lately, raw US radio frequency (RF) data has
become more readily available to the research community. Compared to RF
data, B-Mode imagery is affected by non-linear post-processing steps, such as
log-compression and other proprietary filter algorithms that change the speckle
statistics for reasons of improved visual appeal as was discussed at length in
Sec. 2.3 - see Fig. 2.11 for an illustration of changed speckle statistics in B-mode

33



Chapter 2: Fundamentals of Ultrasound

vs. RF data. However, there exist several approaches that employ statistical
models for B-mode imagery. One possibility is to decompress the B-mode
image in order to approximate the original enveloped RF data, whereby the
challenge is to recover the parameter D from Eq. 2.22, which represents the
input dynamic range to be shown in the output. More specifically, the envelope
x can be obtained approximately by inverting the log-compression given the
B-mode intensity y by

x = exp
⇣ y

D

⌘

, (2.58)

where according to [Wagner et al., 1983], in regions of fully developed speckle
the recovered intensities follow exponential distribution

p(y|s) =
1

2s
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✓�y

2s

2

◆

, (2.59)

which is exploited in the decompression approach proposed in [Prager et al.,
2003]. However, this process is further complicated by the proprietary filtering,
interpolation and image quantization steps specific for different US machine
manufacturers. In the approach proposed in [Prager et al., 2003], the image is
decompressed whereby the dynamic range parameter is computed iteratively
based on fractional moments, which is followed by speckle detection employing
a homodyned-K distributional model. In [Dutt and Greenleaf, 1996] a distribution
for the log-compressed envelope is derived, assuming envelope statistics to
follow K-distribution. In [Kaplan and Ma;, 1993] the log-compressed B-Mode
under the assumption of Rayleigh scattering is modeled employing a Fisher-
Tippet distribution, which is defined as [Abramowitz and Stegun, 1964]
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(2.60)
However, their approach requires access to the ultrasound data before

scan conversion. Finally, in [Crawford et al., 1993] the processing pipeline
characteristics are analyzed assuming an underlying Rayleigh model and using
a phantom. Beside decompression, the log-compression can also be directly
integrated into the noise models as was done for similarity metrics in the
works of [Cohen and Dinstein, 2002a] and [Myronenko et al., 2009a]. Similarly,
in [Sanches and Marques, 2003] non-linear compression was integrated in a
3D freehand reconstruction system in order to improve the quality of volumes,
under the assumption that the envelope detected RF data follows Rayleigh
distribution.
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2D Analytical Signal

Underlying the statistical image processing of radio frequency data is the analytic
signal. Whereas conventionally, the analytic signal is computed in 1D, on a scanline
per scanline basis, this chapter illustrates the advantages of an improved concept for
RF demodulation, which permits modeling of the analytic signal in 2D and herein
intrinsic structures. Furthermore, the 2D analytical signal suggests superior statistical
modeling properties, as is shown by subsequent goodness-of-fit tests to a Nakagami
distributional model, which indicate a clear advantages and improved applicability.
This chapter is based on the papers ’The 2D Analytic Signal for Envelope Detection
and Feature Extraction on ultrasound images’ [Wachinger et al., 2011] and ’The 2D
Analytic Signal on RF and B-mode Ultrasound Images’ [Wachinger et al., 2012a].

3.1 Introduction

The analytic signal (AS) facilitates the extraction of local, low-level features
from images, whereby featuring the fundamental property of split of identity -
separation of qualitative and quantitative information of a signal in form of the
local phase and the local amplitude, respectively. These quantities further fulfill
invariance and equivariance properties [Felsberg and Sommer, 2001]. This
in turn allows for an extraction of structural information that is invariant to
brightness or contrast changes. It is exactly those favorable properties in image
analysis that have led to a multitude of applications in computer vision and
medical imaging. Notably among them is employment in registration [Carneiro
and Jepson, 2002, Grau et al., 2007, Mellor and Brady, 2005, Zang et al., 2007,
Zhang et al., 2007], detection [Estepar et al., 2006, Mulet-Parada and Noble,
2000, Szilágyi and Brady, 2009, Xiaoxun and Yunde, 2006], segmentation [Ali
et al., 2008, Hacihaliloglu et al., 2008, Wang et al., 2009], and stereo [Fleet et al.,
1991]. In this respect, phase-based processing is particularly interesting for
ultrasound imagery due to the significant brightness variations [Grau et al.,
2007,Hacihaliloglu et al., 2008,Mellor and Brady, 2005,Mulet-Parada and Noble,
2000].

For 1D domain, the local phase is calculated with the 1D analytic signal.
However, for 2D several extensions of the analytic signal are proposed. In
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(a) i0D

µμ

(b) i1D (c) i2D

Figure 3.1: Illustration of 2D signals with different intrinsic dimensionality. For
i1D, we show the local orientation

this respect, the monogenic signal [Felsberg and Sommer, 2001] represents an
isotropic extension. The description of the signal’s structural information
(phase and amplitude) is extended by a geometric component, the local orien-
tation. As the name suggests it indicates the orientation of intrinsic 1D (i1D)
structures in 2D images - see Fig. 3.1 for an illustration of various intrinsic
structures. Herein, exactly lies the limitation of the monogenic signal - it is
restricted to the subclass of i1D signals. Recently, however, [Wietzke et al.,
2009] proposed the 2D analytic signal, which is a natural extension to the mono-
genic signal permitting the analysis of intrinsic two dimensional (i2D) signals.
Therefore, the 2D signal analysis is embedded into 3D projective space and
a new geometric quantity, the apex angle, is introduced. Furthermore, the 2D
analytic signal also has the favorable property of more accurately estimating
local features from i1D signals [Wietzke et al., 2009].

In the remainder of this chapter, we show the advantages of the calculation
of the 2D analytic signal for in particular radio frequency (RF) as well as
B-mode ultrasound images. Notably, the first obvious difference compared to
standard RF demodulation approaches is that it is not performed for each scan
line separately. Rather, the demodulation is performed in its natural 2D context
with 2D Hilbert filters of first- and second-order. Therefore the structural
integrity of structures in the 2D domain such as speckle is preserved. Since all
further processing steps of the creation of the B-mode image are based on the
envelope detected RF data, improvement of this critical step propagates through
the entire ultrasound pipeline and directly affects the quality of the ultrasound
imagery. Moreover, beside better and more coherent visual appearance, the
result from the 2D envelope detection bears better statistical properties, as
we illustrate with goodness-of-fit tests w.r.t. the Nakagami distributional
model. This in turn has advantageous implications in diverse fields such as
classification, registration and segmentation, which is of particular interest for
statistical modeling approaches as presented in this thesis. Finally, we show the
advantages of the 2D analytic signal for estimating local features on B-mode
images, whereby all experiments are performed on clinical ultrasound images.

36



3.2 2D Analytic Signal
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Figure 3.2: Illustration of the analytic signal in the complex plane. Real signal
g, Hilbert transformed signal H(g), phase f, and amplitude A.

3.2 2D Analytic Signal
There are various concepts to analyze the phase of signals, such as Fourier
phase, instantaneous phase, and local phase [Granlund and Knutsson, 1995].
However, we are primarily interested in the last two. For 1D signals, g 2 L2(R),
the instantaneous phase is defined as the argument of the analytic signal

f = arg(g + i · H{g}),

with H being the Hilbert transform and i =
p�1. See Fig. 3.2 for an illustration

of the analytic signal with phase and amplitude in the complex plane. In this
respect, the instantaneous amplitude A is the absolute value of the analytic
signal

A =
q

g2 +H{g}2.

Since real signals consist of a superposition of multiple signals of different
frequency components, the instantaneous phase, although local, can lead to
wrong estimates. Therefore, the signal has to be split up into multiple frequency
bands in order to achieve meaningful results. This can be achieved by means
of bandpass filters as is further described in Sec. 3.2.2.

Considering 2D signals, f 2 L2(R2), the intrinsic dimension represents the
number of degrees of freedom describing local structures [Zetsche and Barth,
1990]. Intrinsic zero dimensional (i0D) signals are constant signals, i1D signals
are structures such lines and edges, and i2D are all other patterns in 2D - see
Fig. 3.1 for an illustration of intrinsic structures. As already mentioned above,
the monogenic signal is restricted to i1D signals. It is calculated with the two-
dimensional Hilbert transform, which is also known as the Riesz transform. In
the frequency domain, the first-order 2D Hilbert transform is obtained with
the multiplication of

H1
x(u) = i · x

||u|| , H1
y(u) = i · y

||u|| , (3.1)

with u = (x, y) 2 C\{(0, 0)}.
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Figure 3.3: Magnitude of 2D Hilbert transforms with log-Gabor kernels in
frequency domain. From left to right: B, B� H1

x , B� H1
y , B� H2

xx, B� H2
xy,

B� H2
yy.

For the calculation of the 2D analytic signal, higher order Hilbert transforms
are used [Wietzke et al., 2009]. The Fourier multipliers of the second-order
Hilbert transform are defined as

H2
xx(u) = � x · x

||u||2 , H2
xy(u) = � x · y

||u||2 , H2
yy(u) = � y · y

||u||2 , (3.2)

again with u = (x, y) 2 C\{(0, 0)}. In contrast to [Wietzke et al., 2009], we do
not present the formulas of the Hilbert transforms in spatial domain. Rather
we employ representation in frequency domain, which is more versatile and
therefore favorable for applications such as filtering - see Sec. 3.2.2. Throughout
this chapter we use upper case letters for filters and signals in frequency domain
and lower case ones for their representation in spatial domain.

3.2.1 Structural and Geometrical Features

The proposed extension of the 2D analytic signal is obtained by an embedding
in 3D projective space. This allows for a differentiation of geometrical features
(local orientation, local apex) and structural features (local phase, local ampli-
tude). The filtered signal Fp, the first-order Hilbert transformed signals Fx, Fy,
and the second-order Hilbert transformed signals Fxx, Fxy, Fyy are calculated
with the bandpass filter B and the point wise multiplication � in frequency
domain as

2

4

Fp
Fx
Fy

3

5 =

2

4

B� F
H1

x � B� F
H1

y � B� F

3

5 (3.3)
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Figure 3.4: Log-Gabor filter bank consisting of 5 filters (red) and ultrasound
signal spectrum (x-axis: frequency in MHz). Ultrasound acquisition frequency:
3.3 MHz.

and
2

4

Fxx
Fxy
Fyy

3

5 =

2

4

H2
xx � B� F

H2
xy � B� F

H2
yy � B� F

3

5 . (3.4)

We illustrate the Hilbert transforms in frequency domain multiplied with
log-Gabor bandpass filters in Fig. 3.3. In order to enable an interpretation of
second-order Hilbert transformed signals in projective space, an isomorphism
between the Hesse matrix and a vector valued representation is used [Wietzke
et al., 2009], leading to fs = 1

2 [ fxx + fyy], f+ = fxy, and f+� = 1
2 [ fxx � fyy].

Finally, the local features are calculated as follows. The apex angle a

permits a differentiation between features of different intrinsic dimensionality,
is defined as

a = arccos

q

f 2
+ + f 2

+�
|| fx|| . (3.5)

With the apex angle, the homogeneous signal component fh of the signal fp in
projective space is defined as

fh =
r

1 + cos a

2
. (3.6)

Furthermore, the features such as local orientation q, local phase f, and local
amplitude A are calculated with

q =
1
2

arctan
f+

f+�
, (3.7)

f = atan2
✓

q

[ f�1
h fx]2 + [ f�1

h fy]2, fp

◆

, (3.8)

A =
1
2

q

f 2
p + [ f�1

h fx]2 + [ f�1
h fy]2. (3.9)

In case of i1D signals, the homogeneous component simplifies to fh = 1 and
the formulas above reduce to the ones known from the monogenic signal.
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RF Signal B-modeEnvelope
Detection

Non-Linear
Intensity Map

Frequency
Compounding Filtering

Figure 3.5: Exemplary ultrasound processing pipeline for RF to B-mode con-
version.

3.2.2 Frequency Selection

Each signal f can be described with the Fourier series, decomposing the signal
into components of different frequency components, each having its own phase
and amplitude. The direct application of the Hilbert transform on the entire
original signal at once, which represents an accumulation of local signals from
different frequencies, does therefore not adequately permit an extraction of
local features. Theoretically, we would need to calculate the analytic signal
for infinitely narrow bandwidths, i.e., Dirac deltas in the frequency domain.
However, following the uncertainty principle this results in filters with global
support. Here bandpass filters can be employed as they facilitate an appropriate
approximation for localization in spatial and frequency domain. [Felsberg and
Sommer, 2001] apply the difference of Poisson kernels for frequency selection.
An interesting property of the Poisson filter is that it creates a linear scale-
space [Felsberg and Sommer, 2004]. Another filter that is commonly applied,
especially in ultrasound, is the log-Gabor filter [Boukerroui et al., 2004,Grau
et al., 2007, Hacihaliloglu et al., 2008, Mulet-Parada and Noble, 2000].

Also in our analysis on ultrasound images, we achieve better results with
the log-Gabor filter, which is therefore employed in the following. A drawback
of the log-Gabor filter is, however, that it does not permit an analytic expression
in the spatial domain, which is also the reason why we present the Hilbert
transforms in Eq. 3.1 and 3.2 in frequency and not in spatial domain, as it is
done in [Wietzke et al., 2009].

See Fig. 3.4 for an illustration of a filter bank with five log-Gabor filters. A
study of alternative bandpass filters is presented by [Boukerroui et al., 2004].
For the further analysis, it is either possible to focus on the signal at one specific
scale, or accumulate all responses from various scales, as it is e.g. done for the
phase congruency [Kovesi, 1999].
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(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Figure 3.6: Magnified region of envelope detected 2D image for various en-
velopes.

3.3 2D Analytic Signal on RF Data

In the last section the concepts of the 2D analytic signal were introduced.
Now these concepts are applied for estimating the envelope of ultrasound RF
data. An overview of the transmission and reception principles in conventional
ultrasound machines is presented in Sec. 2.3 and herein in particular Fig. 2.3
and 2.5 illustrate the processes, respectively. Important for the analytic signal
generation in the RF processing pipeline (see Fig. 2.6) is the so called signal
demodulation.

During this step the information bearing part of the signal is extracted by re-
moval of the modulated carrier wave that is required to convey the information.
In ultrasound processing, the step demodulation is commonly performed by
an envelope detection. Hereby, the amplitude of the analytic signal is calculated
for each of the 1D scan lines separately. Interestingly, calculating the amplitude
of the 1D analytic signal is equivalent to the instantaneous amplitude. In the
literature of ultrasound imaging, it is noted that the quality of ultrasound
images can be increased by multi-frequency decomposition and compounding
of the received signal, simply referred to as frequency compounding [Cincotti
et al., 2001]. This is in fact equivalent to the local amplitude estimation. At a
closer look, this constitutes an interesting analogy, between the advantages of
the frequency compounded signal to the normal one. Furthermore, it bears
the advantage of the local amplitude in the 2D case in comparison to the
instantaneous amplitude for 1D case. We have neither seen this analogy noted
in the literature before, nor the application of local amplitude and local phase
techniques to RF data.

It is particularly noteworthy that in contrast to the usual approach where
each scan line is processed separately, in the 2D approach all scan lines are
considered at once with the resulting 2D analytic signal to estimate the local
amplitude. This in fact facilitates an improved envelope detection because the
signal is analyzed in its natural 2D context. In particular the information from
neighboring scanlines in lateral direction is considered. As a result speckle
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(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Figure 3.7: Magnified regions of images after log-compression.

(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Figure 3.8: Magnified regions of images after log-compression and MUCRO.
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patterns are not artificially broken up and distorted between neighboring
scanlines, leading to more consistent structures in the images featuring a
reduced proneness in the formation of artifacts. The balance between influence
from lateral and axial direction can be adjusted by the bandwidth in each
direction of the bandpass filter. Parameter adaptation should consider the
smaller spacing in axial direction accordingly.

3.3.1 Envelope and B-mode Results

We acquired 9 ultrasound RF datasets from different patients with an ultra-
sound system from Ultrasonix (Vancouver, Canada) using a linear transducer.
Each dataset consists of three acquisitions. We experimented with three dif-
ferent acquisition frequencies, 3.3MHz, 6MHz, and 10MHz, and two different
depth settings, 4 cm and 6 cm, in order to evaluate the universality of our
method. The sampling frequency of the RF data is 40 MHz. We compare the
envelope detection for: (i) 1D analytic signal (1D AS), (ii) 1D analytic signal
with filter bank (1D ASF), (iii) monogenic signal (MS), and (iv) monogenic
signal with filter bank (MSF), (v) 2D AS, and (vi) 2D ASF. Exemplarily, we show
the frequency spectrum of one dataset acquired at 3.3Mhz together with the
log-Gabor filter bank in Fig. 3.4. We present magnified regions of the various
envelope images in Fig. 3.6. Note that we do not show the results of the MS,
because the more interesting improvement is for 2D AS. However, we include
them into the analysis of noise statistics in Sec. 3.3.2. We can clearly observe
that the 2D analytic signal leads to a more accurate and consistent extraction
of structures. This becomes particularly clear on the circular structure on the
top left, which appears rather ellipsoidal on the estimates from the 1D analytic
signals. We also note the positive influence of the filter bank for the estimation
of the 2D analytic signal.

We perform an RF to B-mode conversion of local amplitude images A
with a log-compression including a translation of 25, log(A + 25). The results
for 1D ASF and 2D ASF are shown in Fig. 3.7. The B-mode image resulting
from the 2D analytic signal clearly shows more consistent structures and less
noise. Typically, further filtering steps are applied to the log-compressed image
to improve its visual appearance. These processing steps are proprietary to
the manufacturer and generally not publicly accessible. Ultrasonix, however,
distributes a particular research system with a specific SDK including their post-
processing filter, called MUCRO. We apply MUCRO to the log-compressed
images, with the results shown in Fig. 3.8. Even after the application of
MUCRO, the advantages of the images from the 2D analytic signal are clearly
visible. This is not self-evident because the post-processing methods are
designed to be applied to 1D envelope detected images, still leaving room
for improvement by adapting the post-processing to 2D envelope estimation.
Finally, one of the reasons for applying the post-processing filtering is to
establish consistency between scan lines, which we already achieve by the 2D
envelope detection.
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3.3.2 Analysis of Envelope Statistics

Next to the visual assessment of the 2D envelope detection, we are interested
in supporting the improvement by quantitative measurements. This is chal-
lenging because of the non existing ground truth envelope signal that would
permit comparison with our results. As presented in Sec. 2.4, various noise
distributions were derived from a theoretical analysis of speckle, which ap-
pears as if the signal is composed of a multitude of independently phased
additive complex component, whose accumulation creates random walks [Dutt,
1995, Goodman, 2007]. In the following, we analyze the effects of the 2D en-
velope detection on the speckle statistics choosing the Nakagami model - see
Sec. 2.4.2. For assessing the impact of the 2D analytic signal quantitative
goodness-of-fit tests are performed. This allows, on the one hand, to evaluate
the correspondence between the theoretical speckle model and the calculated
envelope, and on the other hand, to show the potential for the aforementioned
applications based on Nakagami modeling.

The Nakagami distribution with shape µ and scale w parameters is defined
as

p(x | µ, w) =
2µ

µx2µ�1

G(µ)w

µ

exp
⇣

� µ

w

x2
⌘

, 8x 2 R+. (3.10)

Goodness-of-Fit Test

A goodness-of-fit (GOF) test evaluates if the data d1, . . . , dn, under the assump-
tion of i.i.d. samples, comes from the given theoretical probability distribution
p [D’Agostino and Stephens, 1986]. Note that conventional GOF tests are
restricted to the case of single distributions. For inhomogeneous regions in
the image, however, a mixture of Nakagami is more appropriate. Figure 3.9
illustrates a misfit of a single Nakagami to mixture Nakagami data as well as a
perfect mixture fit. Consequently, we can only achieve good results with the
GOF test on homogeneous image regions. The mixture case has to be further
evaluated, with similar results to be expected. In order to determine to what
kind of (mixture) model is most appropriate, e.g. reversible-jump Markov
chain Monte Carlo can be used to infer the parameters [Green, 1995]. For
the particular case of a Gamma/Nakagami mixture, a specific adaptation was
proposed in [Wiper et al., 2001].

For the GOF test, the range of the data is partitioned into M bins bi, i =
1, . . . , M, with Ni and the number of samples per bin. Moore suggests to divide
the data into M = 2n

2
5 bins [D’Agostino and Stephens, 1986]. Furthermore, we

assume the bins to be equiprobable as suggested in [Bock and Krischer, 1998].
In this regard, we let pi be the integral of the distribution in the range bi given
the parameters of the distribution q = {µ, w}

pi =
Z

bi
p(x | q) dx. (3.11)

Hence, pi expresses the likelihood of a sample to be in the bin bi (identical for
all bins). The test statistics underlying the GOF test is the sum of differences
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Figure 3.9: RF image with sample distributions estimated for two areas. Data
in region 1 is mixture of Nakagami distributed and data of region 2 is single
Nakagami distributed. Whereas MLE can fit nicely in region 2 (d) it expectedly
performs poorly in region 1 (c), that can only be represented properly by
mixture (b).

between observed and expected outcome frequencies

X2 =
M

Â
i=1

(Ni � npi)2

npi
. (3.12)

This yields a quadratic form in Ni that has approximately a c distribution with
M� N � 1 degrees of freedom and N = 2 the number of parameters of the
distribution, where [Rachev et al., 2010]

c(x|k) =

8

<

:

x(k/2)�1e�x/2

2k/2G( k
2 )

, x  0

0, otherwise,
(3.13)

denotes the c distribution with k degrees of freedom and G(.) corresponds to
the Gamma-function.

In order to assess the GOF quantitatively, we employ the P-value based
hypothesis test. The P-value serves as an indicator of how likely the null
hypothesis H0 is true. In our case, H0 is the hypothesis that the observations
are Nakagami distributed, leading to the following calculation of the P-value

P =
Z •

X2
c

2(M� N � 1) dx, (3.14)

employing Eq. 3.12 as the lower bound of integration.
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(a) 1D AS (b) 1D ASF (c) MS

(d) MSF (e) 2D AS (f) 2D ASF

Figure 3.10: The P-values are calculated for all patches of an envelope image.
Pixel brightness indicates P-value. We perform the calculation for various
envelope detection techniques. Comparing the P-value images to the B-mode
image in Fig. 3.9, we see that the bright regions correspond to homogeneous
regions in the ultrasound image. The results shown correspond to patient 1,
acquisition 1, and a large window size.

Rao-Robson Statistic

Given the data, we first have to estimate the parameters µ, w of the Nakagami
distribution before the GOF test is performed. This is, however, opposing the
general assumption that the parameters of the distribution are a-priori given
before the test is performed. Therefore, another quadratic form in Ni has to
be used, with the Rao-Robson statistic being one possibility [D’Agostino and
Stephens, 1986, Lin et al., 2005, Tao et al., 2006]. Considering the parametric
form of the distribution p(x | q) and the maximum likelihood estimate q̂, the
Rao-Robson statistic is

RR = V>(q̂)Q(q̂)V(q̂) (3.15)
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with

V(q) =
Ni � npi
(npi)1/2 (3.16)

Q(q) = I + D(q)[J(q)� D>(q)D(q)]�1D>(q) (3.17)

Dij(q) = pi(q)
1
2

∂pi(q)
∂qj

. (3.18)

Here J(q) denotes the N ⇥ N Fisher information matrix and I is an M ⇥
M identity matrix. The partial derivative with respect to the distribution
parameters ∂pi(q)

∂qj
is involved, which is given below with Eq. 3.20 and Eq. 3.21.

Making use of the Nakagami-Gamma relationship

Y ⇠ N (x | µ, w) ) Y2 ⇠ G(x | µ,
w

µ

), (3.19)

the data can be transformed to follow the Gamma distribution. Hence, the
required derivatives w.r.t. to the parameters can be performed on the Gamma
distribution. In this regard, the Gamma distribution is defined as

G (x | a, b) =
b

axa�1e�xb

G (a)
. (3.20)

Then the partial derivative of the binned distribution in the interval [ai, bi] with
respect to both parameters {a, b} is required. The derivation with respect to
the first parameter a yields

∂

R bi
ai

G (x | a, b) dx
∂a

= (bib)a e�bi b � (aib)a e�ai b

b G (a)
. (3.21)

Denoting the generalized hypergeometric function by 2F2, we obtain equa-
tion

∂

R bi
ai

G (x | a, b) dx
∂b

= �(a

2G (a))�1 ⇥� (aib)a

2F2(a, a; 1 + a, 1 + a; �aib)

+ (bib)a

2F2(a, a; 1 + a, 1 + a; �bib) + a

2G (a, bib) ln (bib)� a

2G (a) ln (bib)

� a

2G (a, aib) ln (aib) + a

2G(a) ln(aib)� a

2G(a, bib)Y(a) + a

2G(a, aib)Y(a)
i

.

for the derivation with respect to b.
The Rao-Robson statistic is c

2 distributed with M � N � 1 degrees of
freedom, leading to P-values computed by

P =
Z •

RR
c

2(M� N � 1) dx, (3.22)

with the Rao-Robson statistic RR as lower bound of integration.
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Figure 3.11: Box plot of P-values for different envelope detections and window
sizes for patient 1, acquisition 1.
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Figure 3.12: Box plot of P-values for different envelope detections and window
sizes for patient 1, acquisition 3.

Distribution Parameter Estimation

An essential step before the Rao-Robson statistics can be calculated is the
fitting of the Nakgami distribution to the data, resulting in the distribution
parameters q. As mentioned in Sec. 2.4.2 there exist several methods to calculate
the parameters of the Nakagami distribution. Notably, the maximum likelihood
and the method of moments approach.

The distribution parameters are estimated for local windows in the images.
Thereby constitutes the size of the window a trade-off between sufficient
statistics for the estimation and homogeneous structures in the patch. As
presented in detail previously, a mixture model fit is more appropriate for
certain regions (see Fig. 3.9), whereas it is more likely to have homogeneous
structures within smaller windows. Moreover, for applications such as tissue
characterization and segmentation, the interest lies in working with small
windows to achieve a high spatial resolution of the parameter map [Noble,
2010]. The moment-based estimation depends on local histograms, which
are not good approximations to the actual distribution for small windows,
and further, the estimation of the parameters is unstable. The same holds for
MLE. [Larrue and Noble, 2011] therefore propose the Gamma kernel density
estimation (GKDE) for Nakagami imaging in order to achieve a more stable
fit for a very limited number of data points. See Fig. 2.10 for a visualization
of the parameter estimation approaches and their corresponding results. The
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Figure 3.13: Box plot of P-values for different envelope detections and window
sizes for patient 2, acquisition 3.
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Figure 3.14: Box plot of P-values for different envelope detections and window
sizes for patient 3, acquisition 3.

usage of non-symmetric Gamma kernels such as

Kx/b+1,b(t) =
tx/b · e�t/b

bx/b+1 · G(x/b + 1)
, (3.23)

was shown to lead to better results for the estimation of highly asymmetric
distributions such as Nakagami or Gamma [Chen, 2000]. The resulting Gamma
kernel estimator for a window W containing the data d1, . . . , dl is

p(x) =
1
l

l

Â
j=1

Kx/b+1,b(dj). (3.24)

The smoothness is controlled by the parameter b, behaving similarly to the vari-
ance in Gaussian-based density estimation. [Larrue and Noble, 2011] achieved
good results by setting b = 0.05, which performed favorably in our experiments
as well.

In our analysis, we work with three different window sizes, 80⇥ 10, 60⇥ 6,
and 20⇥ 3, with more pixels being considered along the axial direction. For
the two larger patch sizes, we achieve similar results for MLE and GKDE with
moments, so that we work with the MLE estimates. For the smallest patch size,
we use GKDE with moments because it leads to more robust estimates than
MLE.
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Statistical Results

We perform the statistical evaluation on all 9 datasets, each one consisting of 3
different acquisitions, resulting in 27 different images. Further, we use three
different window sizes in order to evaluate the dependency on the window
size. This leads to 81 different configurations for the estimation, where the Rao-
Robson GOF test is performed densely throughout the image for all 6 types of
envelope detections. By performing the test densely throughout the image, we
can create a new image with the intensity values being the P-values. We show
these images in Fig. 3.10 for the various envelope detection schemes for one
configuration. Brighter images indicate higher P-values, which consequently
results in better statistical usability due to better fits. We note that the bright
regions are corresponding to the homogeneous areas in the ultrasound image,
because only these areas are appropriately modeled with a single distribution,
as discussed previously.

Additionally, we calculate the statistics of the P-values. We show the box
plot for four different configurations in Fig. 3.11-3.14. The red line indicates
the median and the box is constructed from the interquartile range. Our
results therefore show that the envelope detection without the filter bank
produces better fits, which makes sense, because log-Gabor filters influence
the distribution. More importantly, however, we note the improvement from
1D AS to MS, and further from MS to 2D AS. This shows on the one hand,
the advantage of applying 2D Hilbert transforms in contrast to 1D ones, and
on the other hand, the advantage of the 2D analytic signal in contrast to the
monogenic signal. This confirms the visually improved results for 2D envelope
detection from the previous section.

While the images give a good overview about the spatial distribution of
the P-values and the boxplots nicely illustrates their statistics, it is difficult to
show the results for all 81 configurations compactly. Consequently, we quantify
the percentage of P-values that are above 0.85 for each image, corresponding
to appropriate fits. The results are shown in Tab. 4.1 and Tab. 3.2. Generally,
better fits are achieved for smaller window sizes. This is comprehensible,
because smaller windows are more likely to contain homogeneous tissue. In
the tables, we highlight the percentage of the envelope detection scheme in
bold that performed best. Furthermore, the pie diagram in Fig. 3.15 illustrates
the percentages of envelope detection schemes performing best. The envelope
detection with the 1D AS is best in 3.7%, the MS in 2.5%, the 2D AS in 91.4%,
and 2D ASF in 2.5% of the cases. This clearly shows that the application of
the 2D analytic signal leads to advantages in the statistical analysis in most
of the cases. Just regarding these numbers, one is tempted to assume that 1D
AS performs better than MS. This is, however, not the case because the MS
outperforms the 1D AS in most of the cases that 2D AS performs best.
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Table 3.1: The tables shows the percentage of P-Values above 0.85 for the
various images and envelope detection schemes. The highest percentage across
the envelope detection techniques is marked in bold.

Patient Acqu Frequency Depth Window 1D AS 1D ASF MS MSF 2D AS 2D ASF

1 1 3.3Mhz 4cm
Large 1.61 1.83 4.10 0.66 4.76 1.83
Medium 2.77 2.38 5.04 1.83 6.59 2.60
Small 5.70 3.32 6.98 4.60 7.25 4.49

1 2 3.3Mhz 4cm
Large 1.83 1.50 2.16 0.78 4.71 1.27
Medium 2.60 1.77 4.60 1.38 6.37 2.60
Small 4.60 3.38 6.48 4.37 7.81 5.76

1 3 3.3Mhz 4cm
Large 1.38 2.38 2.99 0.83 4.37 1.38
Medium 2.60 1.77 4.60 1.38 6.37 2.60
Small 4.76 2.38 6.92 4.26 7.14 4.49

2 1 6Mhz 5cm
Large 2.77 0.78 3.32 1.11 4.32 2.55
Medium 3.10 1.11 4.43 1.66 5.43 2.21
Small 6.98 4.32 5.43 4.76 5.32 5.54

2 2 6Mhz 5cm
Large 3.10 1.66 2.66 1.55 3.88 1.66
Medium 3.43 1.00 4.54 1.55 4.65 3.21
Small 6.31 3.65 3.99 4.87 7.75 4.43

2 3 6Mhz 5cm
Large 4.21 0.78 2.44 1.22 3.54 1.33
Medium 2.88 1.77 3.77 2.88 6.31 3.10
Small 4.98 3.54 4.65 5.43 6.53 5.98

3 1 10Mhz 4cm
Large 3.29 0.68 3.00 0.78 3.59 1.36
Medium 5.04 1.55 4.65 0.58 6.40 1.94
Small 3.29 3.39 5.52 3.88 5.91 3.68

3 2 10Mhz 4cm
Large 3.00 0.39 2.33 0.87 3.39 0.58
Medium 3.59 1.84 3.88 1.74 5.91 1.16
Small 6.30 2.81 4.46 3.59 6.69 3.88

3 3 10Mhz 4cm
Large 2.33 0.87 1.74 0.97 3.29 0.87
Medium 3.78 1.16 4.26 2.03 6.30 2.52
Small 4.17 2.91 5.04 4.17 7.17 3.78

4 1 6Mhz 5cm
Large 1.74 0.10 1.26 0.68 1.94 0.58
Medium 2.62 0.78 2.62 1.36 4.26 1.65
Small 3.88 3.00 4.46 4.65 5.43 4.26

4 2 6Mhz 5cm
Large 1.26 0.29 1.55 0.78 3.00 1.45
Medium 2.81 1.74 2.91 2.13 3.59 1.84
Small 4.26 3.10 5.23 3.59 5.91 3.10

4 3 6Mhz 5cm
Large 1.55 0.39 1.45 0.58 2.62 0.68
Medium 2.52 0.48 4.07 1.55 5.33 1.65
Small 4.94 2.62 4.55 4.84 4.65 5.23

5 1 10Mhz 4cm
Large 0.97 0.19 1.55 0.48 2.23 0.87
Medium 2.23 1.16 1.94 1.26 4.94 1.65
Small 4.46 2.23 4.65 3.49 5.91 3.59

5 2 10Mhz 4cm
Large 1.55 0.39 2.13 0.87 2.23 0.87
Medium 2.03 0.87 2.33 0.29 5.23 1.55
Small 5.04 3.59 6.10 4.55 4.07 3.68
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Table 3.2: The tables shows the percentage of P-Values above 0.85 for the
various images and envelope detection schemes. The highest percentage across
the envelope detection techniques is marked in bold.

Patient Acqu Frequency Depth Window 1D AS 1D ASF MS MSF 2D AS 2D ASF

5 3 10Mhz 4cm
Large 0.97 0.19 1.07 0.58 2.42 0.48
Medium 2.62 0.97 3.00 1.07 3.68 1.36
Small 3.88 2.23 4.07 3.29 5.62 3.88

6 1 6Mhz 4cm
Large 2.13 0.68 2.62 1.55 3.68 1.84
Medium 4.55 1.74 4.46 1.65 5.72 3.39
Small 5.43 2.71 5.23 4.17 4.75 5.52

6 2 6Mhz 4cm
Large 3.49 0.78 2.81 2.13 4.65 1.65
Medium 4.84 1.36 4.84 1.84 6.30 2.23
Small 5.81 3.49 5.23 4.17 6.69 4.65

6 3 6Mhz 4cm
Large 2.91 0.78 3.20 1.45 3.78 1.74
Medium 4.26 1.26 4.07 2.42 5.72 2.71
Small 6.20 3.10 5.91 4.75 6.10 5.04

7 1 10Mhz 4cm
Large 2.62 0.58 3.59 0.78 4.36 1.94
Medium 3.88 1.84 4.36 1.55 5.04 2.91
Small 5.04 3.10 5.62 4.46 6.10 5.04

7 2 10Mhz 4cm
Large 3.20 0.87 3.49 1.45 3.88 1.07
Medium 4.55 1.84 4.07 1.45 5.33 2.42
Small 5.43 3.00 5.43 4.26 6.59 3.88

7 3 10Mhz 4cm
Large 2.62 0.78 3.00 0.87 4.46 2.33
Medium 3.49 1.45 5.04 1.55 5.62 2.13
Small 3.88 2.91 5.91 4.75 5.72 5.14

8 1 6Mhz 5cm
Large 2.23 0.68 2.52 0.78 3.97 3.00
Medium 3.00 1.36 3.59 2.42 5.72 3.39
Small 4.94 2.33 4.84 5.14 6.10 4.17

8 2 6Mhz 5cm
Large 2.13 0.68 2.71 1.16 4.65 1.16
Medium 3.59 0.87 4.36 2.52 5.43 3.59
Small 5.72 3.20 5.33 5.04 6.20 3.78

8 3 6Mhz 5cm
Large 2.81 0.48 3.29 1.74 3.97 0.97
Medium 3.29 1.36 3.97 2.33 5.81 2.81
Small 4.36 3.10 5.72 4.75 6.01 3.29

9 1 10Mhz 5cm
Large 1.45 0.48 2.23 0.78 2.52 0.78
Medium 2.03 0.97 2.91 0.78 3.29 1.84
Small 3.39 2.71 5.33 4.55 6.59 4.84

9 2 10Mhz 5cm
Large 0.78 0.97 2.23 0.58 3.29 0.78
Medium 3.10 1.65 3.59 1.07 4.75 1.36
Small 3.49 3.00 5.14 3.20 6.20 3.97

9 3 10Mhz 5cm
Large 1.16 0.48 1.36 0.29 2.62 1.26
Medium 2.03 0.68 2.42 1.55 4.75 2.13
Small 3.78 3.20 4.75 4.36 6.20 4.36
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Figure 3.15: Pie diagram showing the percentages that envelope detection
techniques performed best in tables 4.1 and 3.2. The envelope detection with
the 2D analytic signal performed best in 91.4% of the cases.

3.4 2D Analytic Signal on B-mode Images
Next to the benefits of the 2D analytic signal for the demodulation of RF
data, it also allows for a more accurate estimation of local features on B-mode
images [Wietzke et al., 2009]. This has the potential to increase the quality
of follow-up applications such as registration [Grau et al., 2007, Mellor and
Brady, 2005, Zhang et al., 2007], segmentation [Hacihaliloglu et al., 2008], and
detection [Mulet-Parada and Noble, 2000], which use the local features as
input. To demonstrate this, we calculate the local orientation on B-mode
images showing a biopsy needle. In Fig. 3.16, we illustrate the local orientation
that is estimated from the monogenic signal and the 2D analytic signal, both
with filtering. The estimation from the monogenic signal shows no consistent
orientation information in the region of the needle. In contrast, the improved
concept of the 2D analytic signal indicates a consistent result.
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3.5 Conclusion
We demonstrated that the application of the 2D analytic signal leads to multiple
advantageous properties in RF as well as B-mode data. The demodulation of
RF signals with the 2D analytic signal enables a more consistent extraction of
structures. This can be attributed to the fact that the signal is analyzed in its
natural 2D context. We further showed that the improved envelope detection
enables the creation of B-mode images of enhanced quality. To validate this,
we applied a proprietary post-processing filtering for ultrasound on the log-
compressed images and compared the result of 1D and 2D analytic signal.
Additionally, we illustrated the improved statistical properties of envelope data
resulting from the 2D analytic signal by performing goodness-of-fit tests w.r.t.
to the Nakagami distributional model.

Finally, the advanced signal model of the 2D analytic signal leads to benefits
in the estimation of local features in B-mode images, as we have illustrated for
the case of needle detection.

For the demodulation, we focused on scans from a linear transducer. For
curved linear transducers, the application of 2D Hilbert transforms without
a previous scan conversion can be achieved with the polar Fourier trans-
form [Averbuch et al., 2006]. This, together with the incorporation of mixture
models in the statistical analysis, remains as future work.

Figure 3.16: Ultrasound image with biopsy needle (top). Calculated local
orientation for monogenic signal (middle) and 2D analytic signal (bottom).
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Chapter 4

2D Texture Modeling

Modeling of texture seems to be attractive way of modeling objects in images as this
beside shape is the main property that characterizes objects and therefore seems most
natural to us. In this chapter we give an overview about methods of texture modeling
with a particular focus on Markov Random Field texture models and Local Binary
Patterns. General models are then presented in the specific context of ultrasound
data together with sample applications such as texture learning and shadow detection.
Within this chapter we also explain the Expectation-Maximization (EM) algorithm,
which is used in various adaptations in this thesis. However, in context of this chapter
it is used for the detection of shadow regions. This chapter is based on the papers
’Spatial Statistics Based Feature Descriptor For RF Ultrasound Data’ [Klein et al.,
2011] and ’Shadow Detection in Ultrasound RF Data’ [Klein et al., ].

4.1 Introduction

Texture is typically referred to the small scale detail of objects of interest,
although there seems to be no generally agreed upon definition [Petrou and
Sevilla, 2006]. More formally, it can also be considered as a function, which
exhibits spatial variation in pixel intensities or color. Despite this somehow
vague definition, textures can be divided into two classes. Broadly speaking,
those classes are based on the inherent texture regularity: statistical textures
and regular structured textures [Paget, 2009]. See Fig. 4.1 for an illustration of
this two types of textures.

Statistical texture modeling tries to model patterns by means of a proba-
bility function, which can be either parametric or non-parametric. Whereas
structured textures are more or less composed of repetitive structures or texture
elements. Those structured elements are often referred to as texels. Modeling
of textures plays an important role in computer vision and image processing
applications. Particular for natural scene images, where objects often exhibit a
certain structure or pattern, approaches modeling textures are widely appli-
cable. Among the major application in texture processing are classification,
segmentation and synthesis. In the domain of ultrasound imagery, textures
are a particular interesting source of information given the general lack of rich
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Figure 4.1: Different textures from the Brodatz database. Left: a stochastic
texture. Right: a regular and structured texture

features in this noisy modality. As mentioned in detail in Sec. 2.2, different
tissues in the body exhibit specific backscatter patterns due to characteristic
micro-scale inhomogeneities. Modeling those patterns is in turn employed for
applications such as tissue classification and segmentation. In this respect, it is
often interesting to discriminate healthy from non-healthy tissue, as backscatter
properties are often subject to change induced by an illness [Joynt, 1979].
Focus of this chapter is on statistical methods as those facilitate to describe
both the image and disturbances data has been subject to [Lindgren, 2002].
This is in particular important for ultrasound imagery with is noise-like image
acquisition artifacts. In this chapter we provide at first an overview about
Markov Random Field textures models in Sec. 4.3 with an example machine
learning approach, in which pattern (dis-)similarity is learned in Sec. 4.4. This
is followed by a first introduction of the Local Binary Pattern (LBP) texture
descriptor in Sec. 4.5. Introduction of ultrasound specific LBPs, however, is
deferred to Ch. 5, as there they are used in context of a similarity metric.
Finally, in Sec. 4.6 we present a shadow detection application, in which shadow
regions due to total reflectors containing mirroring and reverberations artifacts
are modeled, employing among others a Nakagami MRF texture model.
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4.2 Related Work
Due to for ultrasound images comparably high feature richness and highly pro-
nounced distinctive patterns, liver has been studied extensively in the domain
of ultrasound texture analysis. However, most of the research activity addresses
texture analysis in B-Mode rather than RF data. This can partly be attributed
to the added computational cost that comes when working with large volume
RF data as well as the fact that only relatively few vendors so far have granted
unlimited access to RF signal data [Noble, 2010]. For the sake of readability,
in the following, we assume ultrasound data to be B-mode if not stated oth-
erwise. In this respect, in [Wu et al., 1992] classification between normal and
diffuse liver diseases is performed based on multi resolution fractal features in
ultrasound data. This ties together the concept of multiple resolution with frac-
tional Brownian motion model. The former describing the relationships among
texture and contextual tone information, and the latter serving as a measure of
roughness or granularity. In this respect, the Brownian motion model, which
was originally proposed in [Mandelbrot, 1983], regards naturally occurring
rough surfaces as product of random walks, thus resembling the ultrasound
speckle model. For the purpose of discrimination between normal and fatty
liver tissue, in [Huang et al., 2008] ultrasound textures are analyzed using dis-
crete wavelet transformation (DWT) with classification based on probabilistic
neural networks. Similarly, in [Ahmadian et al., 2004,Ahmadian et al., 2005]
liver tissue classification employing Gabor Wavelets is proposed. Also making
use of Gabor filters, in [Zhan and Shen, 2006] a set of Gabor-support vector
machines is used to discriminate voxels around the surface of deformable
model into prostate or non-prostate in 3D ultrasound data. Thereby each
Gabor-support vector machine consists of a Gabor filter bank for description
of rotation-invariant texture features and a kernel support vector machine for
texture classification. In [Bleck et al., 1996] autoregressive periodic random
field models are used in order to discriminate between liver with and without
microfocal lesions. Using a fuzzy variant of local binary patterns as feature
descriptor, in [Iakovidis et al., 2010] areas in ultrasound images of the thyroid
are used to detect nodules of high malignancy risk employing a support vector
machine.

Making use of RF data, in [Bouhlel and Sevestre-Ghalila, 2009] a Markov
Random Field texture model is used to discriminate the area inside and outside
of choroidal malignant melanoma. In [Moradi et al., 2010] tissue typing on
a multitude of animal tissues is performed making us of spectral and fractal
features of ultrasound RF time series.
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4.3 Markov Random Field Model

A popular technique of texture modeling is the representation as a Markov
Random Field (MRF), especially in the domain of synthetic aperture radar (SAR)
image analysis they enjoy wide-spread use. The underlying assumption for
those models thereby is that the value of a single pixel is conditionally depen-
dent on the pixels in its neighborhood. Thereby is the inherent complexity of
the system regulated by the size of neighborhood. Theoretically each pixel
could depend on all other pixels in the image domain resulting in maximum
interaction or with dependence on no other pixel leading to no interaction. Due
to its structure MRFs are optimal for modeling homogeneous textures. How-
ever, beside for modeling of texture [Hassner and Sklansky, 1980, Cross and
Jain, 1983, Derin and Elliott, 1987], MRFs have been used for a large spectrum
of applications such as image restoration [Geman and Geman, 1984], texture
segmentation [Derin and Elliott, 1987, Hu and Fahmy, 1992] as well as for
texture classification [Schroder et al., 1998, Serpico and Moser, 2006, Dellepiane,
,Farag et al., 2005,Bouhlel and Sevestre-Ghalila, 2009,Chellappa and Chatterjee,
1985]. For MRF texture modeling as well as synthesizing there exist numerous
approaches for formalizing the underlying distributions, ranging from para-
metric [Bouhlel et al., 2004, Bouhlel and Sevestre-Ghalila, 2009, Chellappa and
Chatterjee, 1985] to non-parametric [Paget, 2004]. Inherent to all of them is the
idea of combining the notion of distribution and neighborhood dependency.

4.3.1 Random Field Preliminaries

Following [Ancona et al., 1990] an image is represented as a lattice S =
{s1, ..., sN} of N sites si (= pixel position). Each site s 2 S is associated
with a random variable Xs, which gets assigned a value (=pixel intensity) xs
from the state space at the site Ls. For simplicity the joint label association
{X1 = x1, ..., XN = xn} is abbreviated as X = x. The family of random vari-
ables {X1, ..., XN} is referred to as Random Field. For the entire lattice we obtain
the configuration space W

W = ’
s2S

Ls s.t. Ls ⇢ R, (4.1)

representing all possible realization of the random field.
However, in image processing one commonly assumes a simplified state

space that is identical at all sites with elements corresponding to the available
gray-values e.g. L = {0, ..., 255} for 8-bit intensity range. As a consequence we
yield the state space W = LN . Furthermore, we define a probability measure P
on W with P(X = x) > 0, 8x 2 W, which measures the probability associated
with a specific configuration x. The corresponding conditional probability
density function incorporating dependency on the neighbors is thereby defined
as

Pi(xi|xS�{i}) = P(Xi = xi|Xs = xs, s 6= i), s 2 S , x 2 W, (4.2)
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Figure 4.2: Neighborhood illustration of various orders ranging from first to
fourth order.

where S � {i} denotes the set difference. Put in other words, xS�{i} represents
the set of all labels at sites S � {i}, which is all sites in S except i.

The sites in S are all related to each other w.r.t. a neighborhood system V .
In this regard, the neighborhood system for the entire lattice is defined as

V = {Vi|i 2 S} , (4.3)

where Vi represents the neighboring sites of i and for a regular lattice is
defined as

V r =
�

i0 2 S|0  |si � si0 |  r, i 6= i0
 

. (4.4)

Here |.| denotes the Euclidean distance and r some integer-valued distance
threshold, defining the order of the neighborhood. The notion of neighboring
induces two properties: (1) a site cannot be a neighbor to itself: i /2 V . (2) the
neighboring relationship is always mutual: i 2 Vj , j 2 Vi. Two common
neighborhood system are the first-order neighborhood, consisting of 4 nearest
neighboring sites (2 vertical, 2 horizontal), and the second-order neighborhood,
consisting of 8 neighboring sites (2 vertical, 2 horizontal, 4 vertical). See Fig. 4.2
and 4.3 for a an illustration of various neighborhood systems.

Figure 4.3: Neighborhood structures. Left: the hierarchical neighborhood.
Right: Parametrical neighborhood for auto-models.
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Figure 4.4: Cliques for different neighborhood systems. Left: first order
neighborhood cliques. Right: second order neighborhood cliques.

Given the graph-like structure of (S ,V), the neighborhood system can be
broken down in subcomponents referred to as cliques C, such that C ✓ S
with distinct points in the cliques being neighbors. Put another way, a clique
defines a subset of points that stands in relationship via a neighborhood
system - see Fig 4.4. for an illustration of cliques. More formally, given
i, i0 2 C, i 6= i0 =) i0 2 Vi. In this respect, one distinguishes the cliques by the
number of points that simultaneously share the neighborhood relation. That is
a single site clique C1 and pair-site C2 are defined as

C1 = {i|i 2 S} (4.5)
C2 =

��

i, i0
 |i0 2 V , i 2 S . (4.6)

Triple-site C3 cliques and high orders are defined analogously by extending
the pair-site case. It should be noted that the number of possible cliques grows
exponentially with the order of the neighborhood system.

4.3.2 Markov Random Fields

Given the definition of random fields and neighborhood system in the previous
subsection, we are now able to define a Markov Random Field (MRF). Let
X = {X1, ..., XN} be a random field. Then X is said to be a Markov Random
Field on S w.r.t. a neighborhood system V , if the following two conditions are
satisfied:

P(y) > 0, 8y 2 W (positivity condition) (4.7)
P(yi|yS�{i}) = P(yi|yVi ) (Markovianity) (4.8)

The positivity condition arises from technical reasons and requires that any
configuration must have a non-zero probability. If this condition is fulfilled it
was shown in [Besag, 1974] that any random field is uniquely determined by
local conditional probability distribution. The Markov property describes the
locality of conditional dependence that is the interaction range is limited by
the neighborhood.
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4.3.3 Gibbs Random Fields

Let X = {X1, ..., XN} be a random field. Then X is said to be a Gibbs Ran-
dom Field (GRF) on S w.r.t. a neighborhood system V , if and only if its
configurations follow a Gibbs distribution, which has the following form

P(x) = Z�1 · exp
✓

� 1
T

U(x)
◆

(4.9)

Z = Â
x2W

exp
✓

� 1
T

U(x)
◆

(4.10)

with {X = x} being a particular realization, T a constant called temperature,
Z normalization constant/particion function. Furthermore, the energy term U
is defined as

U(x) = � Â
c2C

Vc(x), (4.11)

where Vc is referred to as the clique potential w.r.t. to clique c 2 C and thereby
depends on the local configuration. Often case a homogeneous GRF is assumed,
then the Vc(.) are independent of the relative position of the clique c in S , such
that the energy term is split a up w.r.t. to the size of the cliques e.g.

U(x) = Â
{i}2C1

V1(xi) + Â
{i,i0}2C2

V2(xi, xi0) + Â
{i,i0 ,i00}2C3

V2(xi, xi0 , xi00) + ... (4.12)

It should be noted that due to the large configuration space, even for
small random fields, the computation of normalization factor Z is typically
intractable both analytically and numerically. However, there exist several
approach that allow an approximation of Z.

The equivalence between MRFs and GRFs, also known as the Hammersley-
Clifford theorem, was originally established by Hammersley and Clifford
although their proof was never published. However, there exists a multitude
of alternative proofs that can be found in [Besag, 1974, Grimmett, 1973, Ancona
et al., 1990, Moussouris, 1974]. The Hammersley-Clifford theorem states that
the family of random variables X is a MRF on the lattice S w.r.t. to the
neighborhood system V , if and only if X is a GRF on the lattice S w.r.t. to the
neighborhood system V [Li, 2009]. Practical consequence of the theorem is
that one can specify the joint probability P(X = x) of a random field with an
appropriate energy function and potential functions Vi(.), thereby encoding
desired behavior [Li, 2009].

4.3.4 Auto-Models

A particular MRF model arises when assuming energy formulation of a config-
uration, where dependency is limited to unary and pairwise potentials. This
reduces the general formulation of Eq. 4.12 to

U(x) = Â
{i}2C1

V1(xi) + Â
{i,i0}2C2

V2(xi, xi0) = Â
i2S

V1(xi) + Â
i2S

Â
i02Vi

V2(xi, xi0).

(4.13)
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Further, assuming that the conditional distribution of the MRF P(yi|yS�{i})
now belongs to the exponential family, then the corresponding log-likelihood
can be decomposed as [Besag, 1974],

P(yi|yVi) = Ai(yVi )Bi(yi) + Ci(yi) + Di(yVi ) (4.14)

Moreover, then it is possible to write Ai(yVi ) as weighted sum of neighboor
intensities defined as

Ai(yVi ) = ai + Â
i 6=i0

bi,i0Bi0(yi0) s.t. 8i, i0 2 S , i 6= i0. (4.15)

Furthermore, the unary fi(.) and pairwise fi,i0(., .) dependency functions can
be written as

fi(yi) = aiBi(yi) + Ci(yi) (4.16)
fi,i0(yi, yi0) = bi,i0Bi(yi)Bi0(yi0), (4.17)

where ai and bi,i0 are specific constants reflecting the single site influence and
the interaction relationship between neighboring pixels, respectively. See Fig.
4.3 for the distribution of the parameters on a grid reflecting the different
spatial relationships. Intuitively one can think of every pixel in the texture as a
random draw from a distribution whereby the distribution changes spatially
governed by the neighboring pixels. In particular it is the case that pair-wise
interaction parameters have positive values when the respective neighbors and
the central site tend to have similar intensities, otherwise they are negative.
Additionally, given a texture pattern one can instantiate the MRF texture model
on it and use obtained parameters for classification of the texture. Given the
interaction coefficients, the energy formulation of Eq. 4.13 can be written as

U(x) = Â
{i}2C1

yiGi(yi) + Â
{i,i0}2C2

Gi,i0(yi, yi0)yiyi0 = (4.18)

Â
i2S

yiGi(yi) + Â
i2S

Â
i02Vi

Gi,i0(yi, yi0)yiyi0 , (4.19)

where Gi and Gi,i0 are functions for the unary and pairwise energy term that
are specific for the underlying distributional model. This altogether is referred
to as the Auto-Model as porposed in [Besag, 1974]. Several auto-models have
been developed, among the prominent ones is the auto-binomial [Cross and Jain,
1983] defined as

P(yi|yVi ) =
✓

M� 1
yi

◆

qyi (1� q)M�1�yi s.t. q =
e

ai+Âi02Vi bi,i0 yi0

1 + e
ai+Âi02Vi bi,i0 yi0

, (4.20)

with corresponding energy term

U(y) = Â
{i}2C1

ln
✓

M� 1
yi

◆

� Â
{i}2C1

aiyi � Â
{i,i0}2C2

bi,i0yiyi0 (4.21)
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assuming that yi 2 {0, 1, ..., M� 1}. A further frequently used MRF is the
Gaussian auto-model also known as auto-normal model [Chellappa and Chatterjee,
1985, Cohen and Cooper, 1987] with

P(yi|yVi ) =
1p

2ps

2
exp

0

@� 1
2s

2

"

yi � ai � Â
i02Vi

bi,i0(yi0 � ai0)

#2
1

A (4.22)

and the associated conditional expectation

E
⇥

yi|yVi

⇤

= yi � ai � Â
i02Vi

bi,i0(yi0 � ai0). (4.23)

There exist a multitude of further auto-models such as Auto–Poisson, Auto–
Exponential and so on. Whereas the above mentioned models apply to general
imaging, an ultrasound specific auto-model was devised in [Bouhlel et al., 2004,
Bouhlel and Sevestre-Ghalila, 2009], namely the Auto-K and the Auto-Nakagami
model. In the following we will elaborate more on the Auto-Nakagami model.

4.3.5 Auto-Nakagami

As was described in Sec. 2.2 and 2.4 backscatter intensities within an organ
are of stochastic nature, however, follow a certain distribution. The resulting
speckle pattern texture give rise to modeling those properties. In particular the
analysis of spatial interaction relationship within a neighborhood underlying
the MRF models seems particularly appealing for ultrasound. Assuming the
enveloped RF data Y to be Nakagami distributed Y ⇠ N (x | mnak, wnak),
it follows from the application of the random variable transformation that
Y2 = X ⇠ GA(x | µgam, wgam) is Gamma distributed (see Eq. 2.53 for the
Nakagami-Gamma relationship). For sake of convenience we will assume the
Gamma model, knowing that it is equivalent to Nakagami by transformation.
This allows for a series of simplifications not least the availability of Gamma
related functionality in most mathematical software programs. Given the
transformed data, then the log-likelihood of the Gamma is defined as

logGA(x | µgam, wgam) = µgam log(wgam)+
(µgam � 1) log(x)� log(G(µgam))� (wgamx).

(4.24)

Applying the log-decomposition theorem (see Eq. 4.14) we yield the following
dependencies

Ai(xVi ) = µgam � 1 (4.25)
Bi(xi) = log(xi) (4.26)

Ci(xi) = �wgamxi + wgam. (4.27)

As a consequence, we obtain the following energy term for a configuration
{X = x}

U(Y = y) = Â
s2S

�

a log x�wgamxs + wgam
�

+ Â
s,r2C2

bs,r log xs log xr. (4.28)

63



Chapter 4: 2D Texture Modeling

Then combining the Gamma property of E[x] = µgam
wgam

with the auto-model
property of Eq. 4.15, we arrive at the following conditional expectation

E[xi|xVi ] =
µgam

wgam
=

Ai(xVi ) + 1
wgam

=
1

wgam

 

ai + 1 + Â
i02Vi

bi,i0 log yi0

!

. (4.29)

The Auto-Nakagami model was first derived in [Bouhlel and Sevestre-Ghalila,
2009] and used for tissue classification of ultrasound images. According to
the author the a parameter can be related to the density and amplitudes of
scatterers and thereby directly reflecting spatial properties. In contrast to
that, the b parameters represent the interaction of the diametrically opposite
neighbor pixels influencing the center pixel and therefore are closely related to
scatterer spacing. This is similar to the case of the generalized and homodyned
K-distribution, whose parameters can be given a physical interpretation [De-
strempes and Cloutier, 2010]. However, these distributions are not part of the
exponential family, due to the Bessel function in their formulation, and thus
do not fit into the auto-model framework.

4.3.6 Parameter Estimation

Having set up a MRF texture model with appropriate neighborhood and sites
instantiated, the final step is to compute the interaction parameters, that is

y =
�

a , b1 , ... , bn
� 2 Rn+1 , (4.30)

employing a neighborhood system with n cliques. In the following we as-
sume that a parameter set is computed for homogeneous texture patches. If
homogeneity is not fulfilled in texture patterns, pixels require classification
prior to estimation, as otherwise strictly speaking the model does not hold.
However, this constitutes a non-trivial problem and becomes even more com-
plex when the number of underlying texture models is not known a priori.
In the following we relax this assumption and always assume a single and
homogeneous texture model. Basically, this is controlled by the patch size on
which the parameters are estimated. The smaller the patch, the more likely a
homogeneous texture is present. In contrast, larger patches are more likely to
have heterogenous texture but otherwise permit a more stable estimation.

Maximum-Likelihood-Estimation

Given a MRF with configuration {X = x} a MLE estimator seeks to maximize
the conditional probability P(x|q) w.r.t. to the parameters of the auto-model
yielding q =

�

a, bi,i0
 

, that is

q̂ = arg max
q

P(x|q). (4.31)

Generally, in order to compute the parameters via the MLE estimator the first
step is to define the log-likelihood of the configuration in Gibbs representation
using Eq. 4.9 and 4.10
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4.3 Markov Random Field Model

Figure 4.5: Scheme of ultrasound MRF model - from right to left (a) Sparse
grid placed on ultrasound image; Example patch Pi with sub-grid and grid
points S (filled } symbols); second-order neighborhood of a sub-grid point (b)
Interaction parameters and the associated neighborhood relation.

log P(x|q) = �U(x|q)� log Z(q). (4.32)

Consequently, optimum values can be found by setting ∂ log P(x|q)
∂q

= 0 and
solving for q. However, this requires the evaluation of the partition function
Z(q). Due to the general computational intractability of the partition function,
this method is not widely applicable, and is already prohibitive even for MRFs
of moderate size. Specifically, the computational complexity of the partition
function arises due to the large combinatorial number of elements in the
configuration space W.

Conditional-Least-Squares

The conditional-least squares (CLS) approach provides a tractable solution
to compute the MRF parameters. The idea is to find a set of auto-model
parameters q =

�

a, bi,i0
 

that minimize the variance between the expected
value from the model and the observed intensities, that is [Schroder et al.,
1998]

ŷ = argmin
q

Â
i
(xi � E[Xi])2, qi = {ai, bi,i0} (4.33)

E[X2
i ] =

1
2wi

(ai + Â
i 6=i0

bi,i0 log x0i) , (4.34)

with E[.] being the expected value. It should be noted that CLS implicitly
assumes a Gaussian variation around xi. Each pixel location xs supplies an
equation w.r.t. to its neighbors xV and the parameters q. This can be written as
a linear system of equations such as [Petrou and Sevilla, 2006]

b = Ax, (4.35)

where x contains the unknown parameters, i.e. the parameters of the auto-
model,

x =
�

1 + a b1... bM
�

. (4.36)
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In the following the method is show-cased for a Nakagami/Gamma Auto-
Model making use of the parameter relationship provided by Eq. 4.29. At first
step the the N intensities from all lattice position scaled by the scale parameter
wgam of the Gamma distribution are stacked up in a vector

b =
�

x1 ·wgam ... xN ·wgam
�

. (4.37)

In the next step the summed intensities from each of the M cliques are stacked
up for each corresponding pixel lattice position yielding the following matrix

A =

2

6

6

6

6

6

4

1 Âi2C1
1

log xi ... Âi2C1
M

log xi

. . .

. . .

. . .
1 Âi2CN

1
log xi ... Âi2CN

M
log xi

3

7

7

7

7

7

5

, (4.38)

where CX
Y denotes the clique type Y at location X.

Having defined the vector b in Eq. 4.37 and the matrix A in Eq. 4.38, a linear
system of equations as given by Eq. 4.35 can be set up. This can be solved for
vector x by simply computing the pseudo-inverse defined as

x̂ =
⇣

AT A
⌘�1

ATb. (4.39)

However, when the lattice is large building the corresponding large vectors
and vectors might be cumbersome. A more memory efficient method avoiding
the stacking up process is described in [Björck, 1996, Chapter 2.2], yielding

Js =
�

1 , Âi2C1
log xi , ... , Âi2Cn log xi

�

x̂ =

"

Â
s2S

J

T
s Js

#�1

Â
s2S

J

T
s
�

wgamxs
�

.
(4.40)

The result supplied by the least squares estimator basically assumes that
each pixel takes the most probable value permitted in consistence by all other
pixels and therefore represents an averaged compromise solution.

Maximum-Pseudo-Likelihood

Given that the MLE parameter estimation is in general intractable an alternative
method was proposed in [Besag, 1975, Besag, 1986], which is referred to as
the Maximum-Pseudo-Likelihood (MPL). In order to avoid the computation
of the computational prohibitive partition function Z(q) (see Eq. 4.9 and 4.10),
the pseudo-likelihood is simply the product of the conditional probabilities
defined as

P(x) ⇠ PL(x) = ’
s2S

P(xi | xN i ) = ’
s2S

exp
⇥�Ui(xi, xVi )

⇤

Âxs2L exp [�Ui(xs, xVs)]
. (4.41)
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Figure 4.6: Ultrasound image of human neck; left training image, right test
image.

Algorithm 4.1 Metropolis Sampler

random initialization {X = x} s.t. 8i 2 S : xi 2 L
repeat

i  i + 1
for all i 2 S do

choose random label: xi 2 L
update label at site i obtaining a test configuration x0
Compute probability of new configuration p = min {1, P(x0)/P(x)}
x  x0 with probability p

end for
until i = N

Similarly to the MLE approach the MPL seeks to maximize the corresponding
likelihood that is

ŷ = arg max
q

P(xs)
s2S

, s.t. qi = {ai, bi,i0}, (4.42)

where the optimum is found by zero-setting of the corresponding derivatives
∂PL(x)

∂a

= 0 and ∂PL(x)
∂b

= 0. However, the pseudo-likelihood is just an approxi-
mation of the real likelihood as of course xi and xVi , 8i 2 S are not independent
as suggested by the product. Basically, this inherently assumes textural locality
such that implicitly long-range dependencies will get lost. However, in [Geman
and Graffigne, 1986] it was shown that for large lattices S the MPL solution
converges to the true optimum. Given the independent product terms in the
MPL, optimization is quite attractive for GPU-processing such that efficient
and fast solving is tractable.

4.3.7 Texture Synthesis

Beside estimation the parameters and analyzing existing textures, it is also
possible to synthetically generate textures by random sampling, whereby
common approaches perform stochastic relaxation (SR) of a Markov chain

67



Chapter 4: 2D Texture Modeling

Algorithm 4.2 Gibbs Sampler

random initialization {X = x} s.t. 8i 2 S : xi 2 L
repeat

i  i + 1
for all i 2 S do

for j = 1 ! |L| do
pj = P(xi = j|xVi )

end for
xi  k with probability pk

end for
until i = N

(MC) [Cross and Jain, 1983, Geman et al., 1990, Geman and Geman, 1984].
Following [Bharucha-Reid, 2010,Kemeny and Snell, 1960], SR is a process of
generating a MC, that is a sequence of random variables (st : t = 0, 1, 2, ...)
with Markov property, which in the equilibrium state yield a distribution P(s).
In this respect, two common approaches for generation are the Metropolis
sampler [Metropolis et al., 1953] and the Gibbs sampler [Geman and Geman,
1984] - see Fig. 4.1 and 4.2 for corresponding pseudo-code of the samplers. Both
algorithms replicate all but one label of the random field at one step. The non-
replicated site, however, is updated according to the local conditional likelihood
depending on the neighboring replicated intensities. The difference between
the algorithm lies in the assignment of new samples. Whereas the Metropolis
sampler randomly chooses a label from the set L and computes the probability
for the new configuration, acceptance for this new configuration is proportional
to the change in equilibrium. In contrast to that, the Gibbs Sampler computes
the conditional probability P(xi = j|xVi ), 8j 2 L and then accepts a new label
by random draw with proportional label probability. As the Gibbs sampler
needs to compute |L| probabilities in each iteration, it can be computationally
quite expensive. Furthermore, when the number of labels is quite large, the
probabilities tend to become very small and the algorithm inaccurate due to
numerical inaccuracies. In such cases the Metropolis Sampler is typically the
favored approach. However, the Gibbs sampler has the tendency to converge
faster to the equilibrium state than the Metropolis sampler [Petrou and Sevilla,
2006]. See Fig. 4.7 for some example synthesized textures generated using
a Metropolis sampler. It should be noted that not every set of parameters
q =

�

a, bi,i0
 

yields a corresponding texture pattern. Rather the inherent
constraints suggest that the parameters need to be compliant e.g. lie on a
valid manifold. In particular this requires the MRF to be self-consistent and
equivalent to a Gibbs distribution such that its neighborhood structure can
be expressed in terms of cliques in order to be realizable [Petrou and Sevilla,
2006].
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4.3 Markov Random Field Model

Figure 4.7: Textures generated with a Metropolis sampler with 300 iterations
and a second-order neighborhood system. Top: µgamma = 1.4, wgamma =
1.5E3, a = 2, b1 = 0.5, b2 = 0.5, b3 = �0.5, b4 = �0.5. Bottom: µgamma =
3.4, wgamma = 2.3E3, a5 =, b1 = 0.9, b2 = 0.9, b3 = �0.3, b4 = �0.3. Whereas
the texture at the top resembles more or less like random structures, the
texture at the bottom shows more slightly more pronounced characteristics
in the horizontal and vertical direction, as induced by higher magnitude in
interaction features b1 and b2 related to those directions.

69



Chapter 4: 2D Texture Modeling

4.4 Markov Random Field Descriptor for RF Ultra-
sound

In the following we formulate and analyze a MRF-based feature descriptor for
RF ultrasound data. Basis for the method is the assumption of an underlying
Nakagami model for the data, which is fulfilled in many clinical scenarios. The
closest work, which shares analogy with our method but, however, does not
formulate a global feature descriptor, see [Bouhlel and Sevestre-Ghalila, 2009].
There have been attempts at using texture for segmentation of ultrasound,
see [Noble, 2009] for an overview. However, these models do not use Besag’s
auto-model, essential to this work; instead they employ simpler statistics like
local mean and variance as feature descriptors. Feature descriptors, such as the
one discussed here have many potential uses, e.g. classification, segmentation
and most important of all registration.

4.4.1 General Background

As thoroughly described in Sec. 2.2 speckle in ultrasound is the result of
the wave-front interference characterized by the spacing and organization
of scatterers in tissue [Burckhardt, 1978, Wagner et al., 1983]. The resulting
stochastic patterns are distinctive for organs. Backscatter intensities within
an organ are of stochastic nature, however, follow a certain distribution and
therefore are subject to a spatial interaction relationship within a neighborhood.
This spatial interaction within a statistical framework can be nicely modeled
with a MRF texture model described in Sec. 4.3.5. Following the approach
in [Bouhlel and Sevestre-Ghalila, 2009], the feature descriptor to be discussed
employs the descriptive nature of the interaction parameters of auto-models.
This contrasts with the conventional MRF based SAR image analysis, where
one set of interaction parameters is sought providing the best classification
results.
In the sequel we assume all intensities x 2 W in the RF envelope image W to
follow a Nakagami distribution

N (x | µ, w) =
2µ

µx2µ�1

G(µ)w

µ

exp
⇣

�
⇣

µ

w

⌘

x2
⌘

, 8x 2 R+, (4.43)

with µ, w the shape and scale parameters, respectively. When the data follows
the Nakagami distribution, it can be readily embedded into an auto-model,
since the Nakagami belongs to the exponential family. See Sec.4.3.5 for details
on the Auto-Nakagami model.

4.4.2 Method

The goal of this approach is to derive a descriptor for a small region of
the image referred to as patch. As a first step, in order to decompose the
image, a sparse grid is placed on the entire image W subdividing the data
into patches Pi 2 W, s.t.

S

i Pi = W. Subsequently, a Nakagami MLE is
operated on a patch containing area (or Gamma MLE, making use of the
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4.4 Markov Random Field Descriptor for RF Ultrasound

close Nakagami-Gamma relationship Y ⇠ G(x, m, q), X ⇠ N (x, µ, w),
p

X =
Y(m = µ, q = w

µ

). Having obtained the MLE for the Nakagami distribution,
another more dense grid is placed on the patch, with S ⇢ Pi denoting the
set of all grid points on a specific patch. This is followed by an instantiation
of the MRF interaction model centered on each sub-grid point s 2 S . We
define the cliques to be spatially opposite segments of an annulus of varying
radius (depending on the degree of neighborhood) centered on sub-grid points,
similar to work proposed in [Bouhlel and Sevestre-Ghalila, 2009]. In the
following we assume a second-order neighborhood on which the MRF is
instantiated - see Fig.4.5 for an schematic illustration of the model. After
having computed the MRF parameters y =

�

a , b1 , ... , bn
� 2 Rn+1 using

CLS (see Sec. 4.3.6) and MPL (see Sec. 4.3.6) a distance function has to be
defined on the parameter space. In order to cope with the different variation
statistic among the individual components, a learning based approach was
selected. Concretely, we employed the boosting based learned metric DistBoost
proposed in [Hertz et al., 2006, Hertz et al., 2004, Hertz, 2006]. For training the
metric, out of a sequence of ultrasound images one was selected and used for
supervised-learning. Therefore features X = {xi}i=1..N with xi 2 Rw+h+n+1,
assuming texture patches of size [w, h] and each feature vector with dim(y) =
n + 1, from various texture areas were manually segmented and supplied with
labels Y = {yi}i=1..N where yi = {�1, +1, ⇤} (denoting negative, positive and
unknown equivalence relation). Consequently, one yields two equivalence sets
that is pairs of index classes that are positively

n

(p1
j , p2

j )
o

j=1..Np
or negatively

n

(n1
j , n2

j )
o

j=1..Nn
correlated, where Np, Nn denote the number of corresponding

features.

4.4.3 DistBoost

In the following we give a brief summary of the functionality of the learning
based distance approach DistBoost as proposed in [Hertz et al., 2006, Hertz
et al., 2004, Hertz, 2006]. Looking at its core structure, DistBoost is basically an
augmentation of the AdaBoost algorithm [Freund and Schapire, 1995, Schapire
and Singer, 1999]. In this regard, the idea underlying AdaBoost is to create
a series of weak classifiers, which can have substantial error as long as their
overall performance is better than random guess. Furthermore, training is
performed in a series of iterations. In each round of the training, the impor-
tance of the samples is modified, giving misclassified training points higher
weight in order to shift focus in the next training iteration to the wrongly
classified points. In the end the classifiers is composed of a weighted sum
of weak classifiers with the weight related to the error rate. Similarly, the
distance function built by DistBoost is based on the weighted majority vote of
weak partition functions. Within the training process the weak learner tries to
find reasonable partitions of the input space that comply with the equivalence
constraints provided for training. The training process is performed in a loop,
whereby each iteration t = 1..T produces a weak classifier with associated
weight. At the end, the distance metric is represented as a weighted sum of
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the feedback of the individual classifiers. After having described the rough
functionality of DistBoost, we next explain the individual steps in more detail.
Given the data associated with equivalence constraints as well as unlabeled
data, the first step is to obtain a weak classifier. Therefore a Gaussian-Mixture-
Model (GMM) is computed using the so called constrained Expectation-
Maximization (cEM) [Shental et al., 2003] algorithm, which enforces the given
equivalence constraints during parameter inference (see Sec. 4.6.6 and 4.6.7 for
a detailed overview about the EM algorithm). The joined distribution on a set
of n points is estimated by cEM is defined as

p(X, H|Q, W) =
1
Z

n

’
i=1

ahi p(xi|qhi )
Np

’
j=1

dhp1
j

hp2
j

Nn

’
k=1

(1� dhn1
k

hn2
k
), (4.44)

where X is the set of data points with corresponding data constraints W (see
above, Sec.4.4.2) and Q =

�

ai, qhi

 

i=1..M the mixture parameter set with overall
M components. The mixture is computed from a sample of size Nv, whereby
each point xi is associated with a weight wi. As a result, during training
each point xi appears wi · Nv times in the sample set. By this mechanism
importance of mis-classified points can be reinforced. Having obtained a
mixture model by means of cEM fitting, the next step is to compute a weak
distance function. This is achieved by maximum a posteriori (MAP) class
assignment, ht : X ! [�1, +1], returning positive distance when the points
(xi, xi0) 2 X are from the same Gaussian source and negative, otherwise. The
MAP based classifier gives

pMAP(xi) = arg max
j

+ p(hi = j|xi, Q), (4.45)

then the weak classifier is composed of

h̃t(x1, x2) =

(

+pMAP(x1) · pMAP(x2), h1 = h2

�pMAP(x1) · pMAP(x2), h1 6= h2
, (4.46)

where h1, h2 are the hidden parameters associated with the data points x1, x2
obtained from GMM. By transformation of the weak classifier h̃t(., .), we yield
the weak distance function ht(., .) defined as

ht(xi, xi0) =
1
2
�

1� h̃t(xi, xi0)
� 2 [0, 1] . (4.47)

Having obtained the weak distance function ht, the next step is to compute
a corresponding weight parameter at (not to be confused with the mixture
weight) that scales the output of the weak distance function. It is defined as

at =
1
2

log
✓

1 + r
1� r

◆

with r =
N

Â
xi ,xi0 ,yi=±1

Wt(i)h(i) > 0 (4.48)

Wt
xi ,xi0 = 1/(n2) , w1

k = 1/n. (4.49)

Next the weighting function W(.) is updated,

Wt+1
xi ,xi0 (i) =

(

Wt
xi ,xi0 (i) exp(�atyiht(xi, xi0), yi 2 {�1, 1}

Wt
xi ,xi0 (i) exp(�at), yi = ⇤ , (4.50)
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Figure 4.8: Distance map of the feature descriptor. The feature highlighted with
a cross is compared with all other feature vectors in the image. Shades from
blue to red indicate increasing dissimilarity. Histograms show the distribution
in various areas and their similarity as can be seen from the feature vector
distance.

where yi again the denote the manual labels provided for the training. Having
computed the weight function, the next step is to compute a normalization fac-
tor Z. As a result the weight function output is adapted to provide normalized
weighting as defined by

Wt+1
xi ,xi0 (i) = Wt+1

xi ,xi0 (i)/Zt+1 s.t. Zt+1 =
N

Â
i

Wt+1
xi ,xi0 . (4.51)

As the boosting process computes weights W(.) for pairs of points, one needs to
deduce weights for points in order to adapt the sample set which is presented
to the cEM algorithm. This is achieved by simple marginalization of all point
pairs,

wt+1
k = Â

j
Wt

j,k (4.52)

After T iterations the final distance function is the weighted sum of weak
classifiers given by

f (xi, xi0) =
T

Â
t=1

atht(xi, xi0). (4.53)

4.4.4 Results

In order to analyze the feature descriptor we computed a feature image (size:
206 x 40 x 5) for an ultrasound image of the human neck1(size: 2080 x 256)
- see Fig. 4.5 and 4.6. The image was recorded using a linear transducer,

1courtesy of Ultrasonix Medical Corporation, Richmond, Canada
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Figure 4.9: Texture data for training DistBoost - consisting of synthesized
pattern from real ultrasound data.

Figure 4.10: Distribution of the interaction parameters for the second-order
neighborhood within a homogenous texture.

avoiding the issue of locally varying neighborhood, e.g. prominent in convex
or phased array transducers. The descriptive power of the feature description
is visualized using distance maps. Thereby a designated feature is chosen in
a characteristic area and compared to all other feature vectors - see Fig. 4.8
and 4.6.

We learn the metric on synthesized patches with distributions acquired
from the image data, see Fig. 4.9. Although sufficient for our purposes, it
would be desirable to train the metric directly on the image. This will require
a refinement of our MRF model, to take into account the highly heterogeneous
nature of real RF-data. From the comparably low computational complexity,
calculating the interaction parameters using the CLS method seems attractive.
The underlying local Gaussian variation assumption of CLS is generally not
fulfilled due to e.g. heavy tailed distributions. In our case, however, esti-
mates provided by CLS proved to be sufficiently regular in homogeneous
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areas. Parameters derived using MPL tend to show even more regularity in
homogeneous areas. It is this property that facilitates the learning of distance
metric and the computation of distance maps. However, MPL optimization
is quite time consuming. Employing other metrics such as Mahalanobis was
considered, but deemed inappropriate due to the non-Gaussian distribution
of the parameters - see Fig. 4.10. An example distance map is shown in Fig.
4.8. It indicates high similarity in the proximity in to the neighborhood of the
comparison feature (marked with X). With increasing distance and growing
pattern dissimilarity the feature distance grows. On the border regions, one can
also find regions of similar distributions, which is correctly expressed by the
feature descriptor with low distance. Furthermore, dissimilarity to the feature
of interest is captured correctly as can be seen in regions of high intensity
streaks, resulting in high distance peaks in the map.
It should be noted that we are not assuming that the proposed procedure is
independent of specific machine settings (gain, frequency etc). In fact, it is quite
evident that there is a strong inherent dependency between machine settings
and features. Therefore we have formulated a procedure for computing a
feature descriptor by which one can learn tissue specific similarities for images
obtained using a specific machine setting. For future work, improvement of the
generality of the model is envisaged.

4.4.5 Conclusion

We presented MRF-based feature descriptor for RF ultrasound data. Modeling
the ultrasound speckle patterns promises to capture the underlying nature
of the ultrasound data. Further research will be devoted on improving the
reliability of the descriptor as well as investigating the influence of different
neighborhood systems on the descriptive power. Potential fields of applications
of this feature descriptor could be registration and segmentation as will be
studied in future.
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4.5 Local Binary Pattern

Figure 4.11: Illustration of circular LBP neighborhood system. The gray box
denotes the central site gc. Black dots indicatores neighbors gi that are obtained
using interpolation. Left: 8-neighbor system. Right: 16-neighbor system.

Texture classification is a wide domain in which numerous approaches
exist. A relatively simple, but powerful and popular technique in computer
vision, are the so called Local Binary Patterns (LBP), which were originally
introduced in [Ojala et al., 1994, Ojala et al., 1996]. Later this work was
extended to a multi-resolution and rotation-invariant feature descriptor [Ojala
et al., 2002]. Since then it has found a wide range of application in diverse
computer vision domains such texture segmentation [Ojala and Pietikäinen,
1999] or face recognition [Ahonen et al., 2004, Zhang et al., 2005]. Beside
the analysis of static textures, recently application in employing of LBPs
for spatio temporal texture modeling has come up for motion and activity
analysis [Zhao and Pietikainen, 2007], facial dynamics [Zhao and Pietikainen,
2007] and human activity recognition [Kellokumpu et al., 2008, Kellokumpu
et al., 2009, Kellokumpu et al., 2011].
In its standard formulation a LBP encodes a second order neighborhood of
a pixel into a 28 bits code. Encoding is based on the inequality relationship
between the central site gc intensity and its N neighbors {gi}i=0..N�1, that is

s(x� gc) =

(

1, x � 0
0, x < 0

. (4.54)

A pixel position with lower intensity than the central one xc is attributed the
binary code 0, otherwise 1. Concatenation of those binary digits then yields an
integer-valued descriptor of the neighborhood, defined as [Ojala et al., 2002]

LBP =
N�1

Â
i=0

s(gi � gc)2i. (4.55)
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The nature of the descriptor results in a certain invariance of the codes towards
gray scale transformations. As long as the order of the gray values remains
unchanged, the generated LBP code will always be identical. Instead of using a
single code built from binary digits for describing a region, rather a histogram
of codes is employed serving as regional descriptor. Given that the origin of
LBPs lies in computer vision, their application is mainly tailored to natural
scene images. However, there also exist adaptations to cope with images that
are inherently subject to noise. Apart from traditional hierarchical systems,
any type of neighborhood can be employed such as circular ones where the
intensities are obtained by interpolation, such as

xp = x + R · cos (2pp/P)
yp = y� R · sin (2pp/P) ,

(4.56)

with gi = (xi, yi), where P denotes the number of sampling points and R is the
radius - see Fig. 4.11 for an illustration of circular neighborhood system with
different numbers of elements. In this formulation the LBP associates with
each distinct neighbor position a binary digit. Rotating the image or patch
would lead to the same identical distribution of binary digits but in different
order. To account for that, one can also generate rotation invariant codes. A
very simple method is to rotate the bits until the most significant bits in the
bit string have the maximum number of leading zero series. As a result, this
produces the smallest integer-valued descriptor for a patch [Ojala et al., 2002],

LBPri = min {ROR(LBP, i) | i = 0, 1, ..., P� 1} , (4.57)

where ROR(., i) denotes a circular bit-wise right shift operator, performing
i shifts on a P bits wide code. This, however, also reduces the number of
unique codes drastically. For the case of 8 neighbors, the numbers of codes
is reduced from non-rotation invariant number of codes being 28 to merely
36 for rotation invariant codes. An alternative to the bit-rotation, providing
better performance are the so-called uniform patterns. They achieve rotation
invariance by simply counting the number of (0/1) bit transitions [Ojala et al.,
2002]

LBPuni f orm =

(

Â(P�1)
p=0 s(gp � gc), if U(LBP)  2

P + 1, otherwise,
(4.58)

with

U(LBP) = |s(gP�1� gc)� s(g0� gc)|+
P

Â
p=1

|s(gp� gc)� s(gp�1� gc)|. (4.59)

The improved discriminative power compared to the rotational operator can
be attributed to the fact that such codes are not so prone to crude quantization
and high variance in the occurrence frequency of the individual patterns as
LBPri codes are [Pietikäinen et al., 2000, Ojala et al., 2002]. Using uniform
patterns will result in P + 2 unique codes for 2P wide binary input values.
Whereas the traditional LBPs are made for general computer vision applications
making use of natural scene imaginary, a fuzzy LBP was proposed [Iakovidis
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et al., 2010] specifically for ultrasound and classification of patterns in thyroid
images. Due to the noisy nature of the images, regions may not only be
encoded by a single LBP, but various codes can represent a region depending
on the uncertainty. Therefore less histogram variation is achieved, providing a
more robust descriptor for noisy image domains. In this respect, a threshold
F specifies an intensity range in which fuzziness is assumed and a ramp
(membership function) associates the probability or confidence for the binary
class encoding. This leads to the following membership function for class
0 [Iakovidis et al., 2010] ,

µ0(gi) =

8

>

<

>

:

0, if (gi � gc) � F
F�(gi�gc)

2·F , if � F < gi � gc < F
1, if (gi � gc)  �F,

(4.60)

and similarly for class 1, defined as

µ1(gi) =

8

>

<

>

:

1, if (gi � gc) � F
F+(gi�gc)

2·F , if � F < gi � gc < F
0, if (gi � gc)  �F.

(4.61)

Given the membership values for each digit {di}i=1..N = {s(gi)}i=1..N ,
individual LBPs are generated according to the confidence in their appearance
proportionally in the histogram according to

cLBP =
N

’
i=1

µdi . (4.62)

Common to all the approaches, once a histogram is built from the indi-
vidual codes, similarity has to estimated. For measuring similarity between
LBP histograms, several methods have been proposed such as Histogram
intersection

D(S, M) = Â
i

min(si, mi), (4.63)

Log-likelihood statistic

L(S, M) = �Â
i

si log mi, (4.64)

and Chi-square statistic

c

2(S, M) = Â
i

(si �mi)2

si + mi
(4.65)

where S, M denote the LBP histograms, containing the individual bins S =
{si}i=1..N and M = {mi}i=1..N . A comparative study of these measures w.r.t.
face recognition was performed in [Ahonen et al., 2004].
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4.6 Shadow Detection in Ultrasound RF Data

Acoustic shadowing is an ultrasound specific artifact caused by an abrupt and
large change in acoustic impedance at transmission medium interfaces, e.g.
tissue and bone. A large difference causes strong reflection and limited or
even zero energy transmission of sound into underlying tissue and results
in shadow [Hedrick et al., 2004]. Although largely considered an artifact, it
can also be of use in diagnosis. In particular it has shown useful for detect-
ing gallstones, calcifications, and bone structures [Hedrick et al., 2004, Hellier
et al., 2010]. However, on the downside it influences the efficiency of image
processing algorithms negatively, including registration and 3D reconstruction.
In particular multi-view 3D reconstruction of ultrasound in the presence of
shadow artifacts requires processing in order to yield useful results. Conse-
quently, it is important for many applications to accurately and reliably detect
these artifacts for both diagnostic and image processing applications [Hellier
et al., 2010].

Automatic ultrasound shadow detection has received relatively limited
attention. In [Penney et al., 2004] each ultrasound scanline is sampled and
marked as artifact/shadow region until an empirical threshold is reached.
Afterwards, the resulting mask is utilized for multi-modal US-MR registration.
In [Leroy et al., 2004] a heuristic exponential function is correlated to the
ultrasound scanline profile and shadow is detected when correlation reaches
an empirical threshold. Subsequently, the detection is used to reduce the
impact of shadow regions in multi-modal US-CT registration. Furthermore,
in [Madabhushi et al., 2006] breast lesions are discriminated on the basis of
posterior acoustic shadowing in a machine learning approach by previously
extracting multi-scale texture features from a training dataset. In [Hellier et al.,
2010] possible shadow starting points are detected along each scanline and
tested for shadowing by evaluating local robust patch statistics. Examples
are presented that illustrate the benefit of integrating shadow detection into
mono-modal ultrasound registration and US reconstruction. There acoustic
shadow areas are assumed to have low signal and noise. Although, this
assumption is generally valid for intraoperative brain images [Hellier et al.,
2010], it does not hold for shadow regions that occur after highly reflective
interfaces. The ultrasound image area after such interfaces, like bone-tissue
and lung-liver interface, typically contains a broad range of texture patterns
and noise (see Fig. 4.16). Among the prominent patterns are reverberation,
mirroring, and backscattered echo [Hedrick et al., 2004]. As these effects lead to
non-homogeneous shadow regions, which in turn complicate shadow detection
and necessitate specialized approaches to handle them.

In the following we present a fully automatic shadow detection approach
for both, regions with low and high noise (we will refer to reverberation and
mirror artifacts also as noise). The approach is based on envelope detected RF
data, which has the advantage of not being subject to post-processing steps
such as log-compression and proprietary filters that change the noise statistics.
The higher information content compared to conventional B-mode makes it
attractive for statistical analysis.
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Figure 4.12: Illustration of the shadow detection pipeline consisting of five
steps.

For robust detection a series of components is required. A fundamental step
is the estimation of confidence in the acquired signal and to pre-determine
possible shadow candidates. This information is further utilized to suppress
the influence of noise in shadow areas, in order to produce accurate and robust
shadow detection results. Coupled together with statistical pattern analysis,
this yields a robust shadow detection. In our evaluation we demonstrate the
applicability of this method on datasets with different imaging settings and
levels of noise in shadow regions.

4.6.1 Method

In order to detect the shadow region(s) the image data undergoes several
processing steps. The pipeline for shadow detection consists of five steps
ranging from confidence estimation, putative shadow generator detection to
the final classification of shadow regions followed by a thresholding operation
on re-estimated confidence maps - see Fig. 4.12 for an schematic illustration of
the individual steps. The first step is the computation of a confidence image C1
of the data W, taking into account intensity gradients and the associated atten-
uation effects - see Sec. 4.6.2. Varying on the degree of noise and artifacts, this
yields already a reasonable map of potential shadow regions only disturbed by
major reverberations.
In the next stage of the image processing chain, strong reflection causing inter-
faces, potentially generating shadow, are localized and segmented, yielding a
list L of putative shadow generating elements. The localization/segmentation
step is performed on the Nakagami image corresponding to the RF data by
means of a mixture modeling - see Sec. 4.6.3 for details on segmentation of
reflectors. Furthermore, see Sec. 4.6.6 and 4.6.7 for an introduction to the
EM algorithm that is used to obtain mixture estimation. Additionally, within
the context of mixture-based segmentation see Sec.4.6.4 for the maximum-a-
posteriori MRF formalism and an outline of the alpha-expansion algorithm in
Sec. 4.6.5 that is used for obtaining the segmentation.
After having obtained the putative shadow generating interface segments,
inconsistent elements are discarded from L. In particular, implausible potential
reflectors that are located in high confidence regions as well as isolated and
blocky elements are removed. The remaining interface segments are more
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in-depth analyzed based on associated spatial statistics. Thereby scoring is
performed of the region stretching from the interface to the distal end de-
noted as Si with {Si}i=1..N s.t. Si ⇢ W and N = |L|, quantifying the
potential of containing shadow. This is achieved by analyzing texture and
statistical features for shadow specific patterns. Regions that exceed a certain
score-threshold t are considered as shadow. In this respect see Sec. 4.6.8 for
details on the computation of the shadow texture descriptor and Sec. 4.6.9 for
information about the scoring function.
After classification of shadow regions, reverberations and mirroring artifacts
are removed in the designated shadow regions. This is achieved by ran-
dom re-sampling intensities from the fourth quartile - Q4 : H(0.75  X  1)
- of the cumulative intensity histogram H from up to the third quartile,
Qi3 : H(0  X < 0.75) in the designated areas. This virtually removes
the high intensity artifacts by artificial attenuation and eventually generates
consistently distributed data. On the resulting image data that consists of
replicated non-shadow regions and resampled shadow regions, a new confi-
dence map C2 is estimated providing more reliable maps as in the first step
of the pipeline. Finally, shadow classification can be directly performed on
the new confidence map. More precisely, pixels with confidence from the first
confidence quartile, Q1 : H(0  X  0.25) are assumed to be shadow and
simple thresholding is sufficient for segmentation. See Fig. 4.3 for a pseudo
code listing of the processing pipeline.

Algorithm 4.3 Shadow Detection Processing Chaing

Given image W
Compute confidence map C1 = Con f idence(W)
for all

S

i Pi = W do
Compute Nakagami image [µi, wi] = N (Pi)
Compute MRF texture parameters y = CLS(Pi)

end for
Compute putative bone segments L based on Nakagami image [µ, w]
for all li 2 L do

if li implausible then
L  L� {li}

end if
end for
for all li 2 L do

Compute score si based on {y} parameter set in Si ⇢ W and L
if li � t1 then

Shadow detected in region Si
Resample associated region: Si = resample(Si)

end if
end for
Compute confidence map C2 = Con f idence(W)
Shadow = H(0  C2  0.25)
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4.6.2 Confidence Maps

Shadow detection and reduction of artifact influence in shadow area is per-
formed with ultrasound confidence maps [Karamalis et al., 2012a], which were
previously applied for emphasizing uncertainty in Intravascular Ultrasound
(IVUS) acquisitions. The confidence maps are based on the Random-Walk
algorithm [Grady, 2006] in its original formulation proposed for K-way image
segmentation. Later on, the algorithm was applied for several other applica-
tions in computer vision such as mesh segmentation [Zhang et al., 2010], mesh
denoising [Sun et al., 2008] and stereo matching [Shen et al., 2008]. The random
walk algorithm formulates the segmentation task as a graph-based problem,
based on initial user defined K seed points, objects are then segmented in the
image or volume domain. In this respect, the image is modeled as an undi-
rected weighted graph G = (V, E) with pixels/voxels represented as nodes
v 2 V and associated edges eij 2 E connecting neighboring pixels vi and vj.
Based on the local image content each edge eij 2 E is assigned a weight wij > 0,
which represents the likelihood of a random walker crossing the edge. In the
original work [Grady, 2006], a Gaussian weighting function was employed

wij = exp
h

�b(gi � gj)2
i

, (4.66)

where gx denotes the pixel intensity at node x and b a free parameter. In
the segmentation process, for each unlabeled node, i.e. not a seed node, the
probability is computed that a random walker starting at the node will reach
each of the K-seed nodes. As a result, each node will be associated with a
K-tuple vector representing the probabilistic associativity to the respective seed
points. Finally, a segmentation is obtained by assigning each node the most
likely seed point class. As outlined in [Grady, 2006], the solution to the random
walk problem is equivalent to the combinatorial Dirichlet problem, which can
be solved analytically. The underlying framework is quite general belonging
to the class of equilibrium state modeling of discrete systems, applicable in a
wide range of domains such as electrical networks, structural mechanics or in
mass-spring systems [Gao, 2000, Strang, 2007]. This requires the computation
of the so called combinatorial Laplacian matrix [Dodziuk, 1984] or weighted
Graph Laplacian [Strang, 2007], which is used to represent connectivity in a
graph which is defined as

Lij =

8

>

<

>

:

di if i = j
�wij if vi and vj adjacent nodes
0 otherwise

, (4.67)

where di = Âj wij. Noteworthy properties of the Laplacian matrix are sparsity,
symmetry and positive definiteness. As can be seen from the definition,
the elements on the diagonal correspond to the accumulated weights of all
connected neighbors. Adjacent nodes are associated with negative weight,
therefore giving affinity to the neighbor. Non-connected nodes are represented
with a zero. An alternative construction of the Laplacian matrix is possible
as L = ATCA, via the common graphic incidence matrix A in combination
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with diagonal matrix C, consisting of the edge weights, with the elements of A
defined as

Aeijvk =

8

>

<

>

:

+1 if i = k
+1 if i = j
0 otherwise,

(4.68)

for every node vk and edge eij. In the process of solving for the K-tuple proba-
bilities, the matrix L is decomposed in blocks, followed by an rearrangement,
yielding

L =


LM B
BT LU

�

, (4.69)

where M and U correspond to marked (seed points) and unmarked nodes.
Finally, the desired probabilities are obtained by solving the system of linear
equations given as

LU xU = �BTxM, (4.70)

where xU denotes the unknown probabilities for the unmarked nodes and xM
the known unit probabilities of the seeds.

For the confidence/uncertainty estimation of ultrasound imagery, the ran-
dom walk problem is modified in order to incorporate ultrasound specific
constraints. Thereby the notion of seed points as virtual transducer elements
at the beginning of each scanline is employed. Consequently, the random
walk formulation models the problem of obtaining the probability of a random
walker starting from a pixel arriving at the transducer. However, the weights
of the Graph Laplacian L are fundamentally different than in the original
approach due to ultrasound specific properties. First and foremost image
intensity cannot assumed to be constant across the image domain. This is
mainly due to the attenuation effects - see Eq. 2.16 in Sec. 2.2 for more detail.
This necessitates encoding the notion of distance into the model. Practically, the
likelihood of a pixel reaching a virtual transducer should decay with increas-
ing distance to accommodate the physical processes underlying attenuation.
Another important property that has to be considered is that ultrasound is not
propagating in a straight line fashion through the transmission medium. Rather
it is subject to reflection, refraction and scattering. Although this random be-
havior is already partly modeled within the random walk, further modification
is required. Given that most of the ultrasound energy is concentrated in a
narrow beam, contribution from outside this area is unlikely. Therefore the
random walker should be given the freedom to move on the beam, while
accepting limited deviation in horizontal/perpendicular direction. Thereby the
probability of horizontal deviation decreases with distance from the scanline,
thus representing the width of the narrow beam. All those ultrasound specific
constraints taken together lead to a new and specific formulation of the edge
weights that are defined as,

wij =

8

>

>

<

>

>

:

wH
ij if i, j adjacent and eij 2 EH

wV
ij if i, j adjacent and eij 2 EV

0 otherwise

(4.71)
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(a)

(b) (c)

Figure 4.13: (a) shows an illustration of graph setup for the confidence esti-
mation using 8-connected lattice is shown. Virtual transducer elements nodes
are marked with unity and absorption ’no signal’ nodes with zero poten-
tial. (b) shows the envelope detected image from raw RF and (c) shows the
corresponding confidence map.

wH
ij = exp(�b((gi exp(�axi)� gj exp(�axj))2 + g)) (4.72)

wV
ij = exp(�b((gi exp(�axi)� gj exp(�axj))2)), (4.73)

where EH , EV are the edges along the horizontal and vertical graph direction,
respectively. In this respect, see Fig. 4.13 for an illustration of the underlying
graph, with the symmetric difference EH  EV = E, and xi the normalized
closest distance from node vi to the virtual transducer elements (seeds). The
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adaptation of the model with respect to ultrasound physics becomes more
intuitive when discussed in terms of potential theory (as described in [Grady,
2006]). In this respect, the beam-width is represented by the g parameter that
simultaneously acts as a penalty on the random walks, reducing the probability
of a random walk moving in scanline perpendicular direction. Specifically,
as mentioned above the horizontal move probability decays with distance
to scanline is implicitly encoded into this formulation due to the inherent
accumulative increase in circuit resistance, whereby the additive term acts
as resistor. Sharing similarity to the original random walks approach, high
intensity gradients represented by (gi exp(�axi)� gj exp(�axj))2), result in
proportionally reduced energy transmission depending on the echo amplitude.
Regarded from a potential theory viewpoint, the potential along possible circuit
paths is reduced due to high resistances. Taken all together, the random walks
solution [Grady, 2006, Karamalis et al., 2012a] to the graph Laplacian with the
previously defined weights yields the desired ultrasound specific confidence
estimate.

4.6.3 High Reflection Interface Segmentation

In order to find interfaces that are potentially highly reflective in the image
domain we perform a rough segmentation of the corresponding Nakagami
image (see step 2 in 4.6.8) following the observation that the Nakagami scale
parameters can be represented by a log-Normal LN finite mixture model

p(x|q) =
K

Â
i

piLN (x|µi, si) =
K

Â
i

wip
2psix

exp

 

� (ln x� µi)2

2s

2
i

!

s.t.
K

Â
k=1

pk = 1,

(4.74)

which is estimated using the Expectation-Maximization (EM) algorithm [Demp-
ster et al., 1977,McLachlan and Krishnan, 2007]. Specifically, by applying the
logarithm on the data, log(x), a common Gaussian mixture model (GMM)
can be employed to derive the distributional parameters q = {pi, µi, si}i=1..K.
Almost identical to the log-Normal LN finite mixture model, the Gaussian G
mixture model is defined as

p(x|q) =
K

Â
i

piG(x|µi, si) =
K

Â
i

wip
2psix

exp

 

� (x� µi)2

2s

2
i

!

s.t. Â
k=1..K

pk = 1,
(4.75)

by omitting the log(.) on the data. For the number of classes within the mixture
model, we assume a K = 3 model facilitating the discrimination between
high-reflection H0, intermediate H1 and no-reflection H2. The intermediate class
serves to avoid the merger of potential reflectors and thus allows for a more
precise localization of shadow and reverberations. The actual segmentation
is performed using a Markov-Random-Field (MRF) that provides regional
coherence employing the MAP MRF formalism - see Sec. 4.6.4. Given the image
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W consisting of M pixels, we have to determine the labelset {l1, ..., lM} with
li 2 {H0, H1, H2}, which can be solved with any multi-label MRF optimizer,
i.e. graph-cuts based algorithm [Boykov et al., 2001, Kolmogorov and Zabih,
2004, Boykov and Kolmogorov, 2004] - see Sec. 4.6.5 for a brief outline of the
algorithm. Following the Hammersley-Clifford theorem, the segmentation
can therefore be stated as an energy minimization problem given the label
posterior [Dubes and Jain, 1989]

P(lj = Hi|xj,Vj) =
exp

⇥�U(Hi|xj,Vj)
⇤

ÂK�1
t=0 exp

⇥�U(Ht|xj,Vj)
⇤

. (4.76)

Formulated as a second-order isotropic Potts model [Kindermann et al.,
1980, Dubes and Jain, 1989] we yield the corresponding energy term

U(Hi|xj,Vj) = �k lnLN (xj|µi, si) + c Â
j02Vj

d(lj, lj0) s.t. k, c 2 R+, (4.77)

consisting of unary and pairwise potentials. Thereby Vj denotes the neigh-
borhood of point xj, whereas d is the Kronecker delta and lj represents the label
at site j. The unary potential controls the data consistency scaled by parameter
k, whereas the pairwise potentials associated term weights the label consistency
in the neighborhood. As a consequence, a high parameter c enforces larger
and homogeneous regions.

4.6.4 MAP-MRF

The idea of maximum-a-posteriori MRF (MAP-MRF) is strongly related to
the Bayes risk estimation [Li, 2009]. In this respect, for a particular label
configuration {X = x} the Bayes risk can be written as

R(x̃) =
Z

x2W
C(x̃, x)p(x|d)dx =

Z

x2W
C(x̃, x)p(x|d)dx, (4.78)

where d corresponds to the observed data and C(x̃, x) is the cost of obtaining a
labeling x when the ground truth is x̃. Additionally, p(x|d) corresponds to the
probability of a certain labeling given the data. A popular choice for the cost
function is

C(x̃, x) =

(

0, if kx̃� xk  d

1, otherwise ,
(4.79)

such that the associated Bayes risk can be formulated as

R(x̃) =
Z

x:kx̃�xk>d

p(x|d)dx = 1�
Z

x:kx̃�xkd

p(x|d)dx ⇡
d!0

1� tp(x|d),

(4.80)
where t denotes the volume containing points for which the condition kx̃�
xk  d holds. As a result, minimizing the risk is equal to maximization of
the posterior probability p(x|d). Further, making use of the Bayes theorem
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p(x|d) = p(d|x)p(x)
p(d) , this can be rewritten as

x̂ = arg max
x2W

p(d|x)
| {z }

Likelihood

p(x)
|{z}

Prior

(4.81)

Combining that with the findings of the Hammersley-Cliffort theorem

p(x|d) µ e�U(x|d), (4.82)

whereby U(x|d) decomposes as

U(x|d) = U(d|x) + U(x), (4.83)

Eq. 4.81 can be rewritten such that it is formulated w.r.t to energy terms U(.)
as maximization of posterior energy,

x̂ = arg max
x2W

U(x|d). (4.84)

For discrete labels this corresponds to the Generalized Potts model

U(x|d) = � Â
{i,i0}2C2

Jii0d(xi, xi0)
| {z }

Likelihood: log p(d|x)

+ Â
i2S

Hixi
|{z}

Prior: log p(x)

, (4.85)

where Hi and Jii0 correspond to unary and pairwise potential scalars. In
this respect, the unary term corresponds to the data fidelity whereas the
pairwise term assigns a cost with respect to the neighborhood labeling. For
homogeneous fields, where parameters are independent of spatial location, we
have Hi ⌘ H and Jii0 ⌘ J, yielding

U(x|d) = � Â
{i,i0}2C2

Jd(xi, xi0) + Â
i2S

Hxi, (4.86)

which represents an isotropic Potts model.

4.6.5 Energy Minimization via Graph Cuts

The underlying idea of the graph cuts based energy minimization algorithm,
as proposed in [Boykov et al., 2001, Kolmogorov and Zabih, 2004, Boykov and
Kolmogorov, 2004], is that an optimal solution i.e. a specific binary labeling
configuration, can be obtained by solving the minimum-cut/maximum flow
problem. In this respect, minimum cut solving refers to the problem of finding
a binary partition in a graph, which has the minimum cost among all possible
cuts. The flow across the minimum-cut thereby corresponds to the maximum
possible flow, which is stated in the famous maximum-flow/minimum-cut
theorem. Specifically, this corresponds to finding solutions for energy terms of
type

E(L) = Â
p2W

Dp(Lp) + Â
(p,q)2V

Vp,q(Lp, Lq), (4.87)

where L =
�

Lp|p 2 S
 

is a particular label configuration of image S . Here
Dp(.) corresponds to the unary data term and Vp,q to the pairwise interaction

87



Chapter 4: 2D Texture Modeling

Figure 4.14: Illustration of graph-cuts. The cut through the graph induces a
particular label configuration. The binary labeling is achieved by connecting
exclusively to one of the terminal nodes.

potentials, where V indicates the neighboring elements. Similarly to binary
label problems, graph cuts methods can be generalized and applied to multi-
labeling problems, however, requiring the transformation of the problem. In
case of the alpha-expansion algorithm, multi-label problems require solving a
series of iterative binary maximizations. In this respect, it is noteworthy that
in case of alpha-expansion, the binary labeling problem can be solved globally
optimal, whereas the multi-label problem can only be solved locally optimal.
Basic idea behind the algorithm is that cuts through the graph give rise to a
particular labeling. Thus the inherent binary nature of the problem assumes
that the image is represented as a graph, where each pixel/node is initially
connected to a sink and a source, whereby both represent a particular class
association. Any cut through the graph will then sever for any node/pixel in
the graph the connection to a terminal node - either to sink or source. This link
severing or terminal node disconnection then in turn induces a particular label
configuration, as nodes are associated with the label class with retained link.
The min-cut/max-flow label then gives rise to an optimal solution. Specifically,
in each iteration pixels decide whether to change labels or keep the old label
configuration, depending on a data term and the neighborhood configuration.
The neighborhood configuration, however, is subject to change from move to
move due to the relabeling operations. See Fig.4.14 for a schematic illustration
of a binary partition of an image with corresponding connections to source
and sink terminal nodes.
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Figure 4.15: Illustration of Gaussian mixture model fitted to data. The mixture
model consists of three components, represented with solid lines. The dashed
line represents the weighted sum of all components, whereas the multi-modal
data is shown in dark blue.

4.6.6 Expectation Maximization for Gaussian Mixture

In the following we will give a brief outline the Expectation-Maximization (EM)
algorithm specifically showcased on a Gaussian mixture model (see Eq. 4.75).
The EM algorithm is an iterative method for finding maximum likelihood
(ML) (or in a specific adaptation the maximum a posteriori) estimates of
distributional parameters in statistical models. Specifically, the algorithm
tries to determine the distributional components modeling the data as well
associate the data to the respective source distributions. See Fig. 4.15 for an
illustration of data arising from a Gaussian mixture model as well as the
visualization of the components and the distributional model. The underlying
model thereby implicitly assumes unobserved or latent variables that basically
function as indicator variables defining the data source association. In the
iterative estimation process of the algorithm, the latent variables are modeled
probabilistically.
The EM algorithm basically consists of two fundamental steps, whose execution
is alternated during the iterative estimation process: (1) an expectation (E)
step, which computes the expectation of the log-likelihood evaluated using
the estimated parameters of the previous iteration (or the initial values), and
(2) a maximization (M)-step, which computes parameters by maximizing the
expected log-likelihood found in the preceding E-step. In the next iteration,
the resulting parameter-estimates from the M-step are then again used to
determine the distribution of the latent variables in the E-step, and so on until
convergence is reached.
It should be noted that for the derivation of the EM algorithm there exist two
different views, where we largely follow the presentation given in [Bishop,
2009]. At first we will focus on the more intuitive view, whereas the alternative
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general view will take more in account the role of the latent variable.
Input to the EM algorithm is a data set X = {x1, ..., xN} as well as the spec-

ification of the number of components K, from which in case of the Gaussian
distribution the following parameters (see Eq. 4.75) q = {pi, µi, si}i=1..K are
recovered, where µi and s

2
i indicate mean and variance, respectively. Implicitly,

the data will then be augmented by an unknown K-dimensional binary latent
vector zk 2 {0, 1}, under the constraint ÂK

k=1 zk = 1, which for each single data
point indicates component association. For simplicity and sake of presentation
we assume a single point for the moment. At first we can define the marginal
distribution over z

p(zk = 1) =
K

’
k=1

p

zk
k = pk, (4.88)

which corresponds to the component weight of the mixture model. Further-
more, we can define the conditional distribution of x given the latent variable
z, which is defined as

p(x|zk = 1) =
K

’
k=1

N (x|µk, sk)zk = N (x|µk, sk). (4.89)

From this we yield a joint distribution p(z)p(x|z) of the data. Furthermore, the
latent variables can be combined for the mixture representation to

p(x) = Â
z

p(z)p(x|z) =
K

Â
k=1

pkN (x|µk, sk). (4.90)

Additionally, we can define the conditional probability of z given the data x as

p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)

ÂK
j=1 p(zk = j)p(x|zk = j)

=
pkN (x |µk, sk)

ÂK
j=1 pkN (x |µk, sk)

= g(zk),

(4.91)
which denotes the probability of a point x belonging to class k, such that
zk = 1 and 8j 6= k, zj = 0. Having specified the distributional models with the
underlying latent variable, next we focus on the mixture estimation process
itself. Goal of the EM algorithm is to find the distributional parameters that
represent the most probable solution. Therefore the EM algorithm specifically
seeks the maximization of the log-likelihood

p(X|q) =
N

Â
i

"

log
K

Â
j

piN (xi|µj, sj)

#

(4.92)

w.r.t. the parameters q given data X = {x1, ..., xN}. This requires zero-setting of
the derivatives w.r.t. to the parameters to be optimized. The zero-set derivative
of the log-likelihood and the parameter of the mean µk yields

0 = �
N

Â
i=1

pkN (xi|µk, sk)
ÂK

j=1 pjN (xi|µj, sj)
| {z }

g(zik)

sk(xi � µk), (4.93)
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where the parameters g(zik) can be seen as the proportion that component k
takes in explaining the observation xi w.r.t. to all other components [Bishop,
2009]. In other words it equals the class association probability of point i w.r.t.
to class k. Strictly speaking, g(zik) should be written as g(z(t)

ik ), to highlight the
fact that the computation depends on parameters computed at time-step (t),
such that g(zik) is treated as a constant for the steps to follow. Re-arranging of
the variables leads to

µk =
1

Nk

N

Â
i=1

g(zik)xi (4.94)

Nk =
N

Â
i=1

g(zik), (4.95)

where Nk can be seen as the effective number of points associated with class k.
In the same line, zero-setting of the derivative w.r.t. to sk results in

sk =
1

Nk

N

Â
i=1

g(zik)(xi � µk)2. (4.96)

Finally, we need the zero-set derivative with respect to the mixing weights
pk. However, here the constraint of ÂK

i=1 pk = 1 must be incorporated, which
can be achieved using the Lagrange multipliers l. Altogether, we need to
calculate derivative of the following augmented term

log p(X|q) + l

 

K

Â
k=1

pk

!

, (4.97)

yielding

0 =
N

Â
i=1

N (xi|µk, sk)
ÂK

j=1 pjN (xi|µj, sj)
+ l. (4.98)

Multiplying both sides by pk and summing over k, making use of the summed
weight constraint, one finds l = �N. This relation can be used to remove the
Lagrange multipliers such that after re-arrangement of variables we yield

pk =
Nk
N

, (4.99)

which states that the mixing coefficient corresponds to the average responsibil-
ity the corresponding component takes in explaining the data points. Although
it might appear is if Eq. 4.94 - 4.96 and 4.99 might permit a closed-form solution
that is clearly not the case. This is due to the dependency of those terms on
g(.), which in turn again depend on those parameters. Therefore, as mentioned
above, introducing the time-step indicator (t) on the g(z(t)

ik ) variables makes
this dependency much clearer. However, this intrinsic dependency gives rise
to an iterative solution process, which is exactly what the EM algorithm is.
Based on some initial parameters qinit, the distribution of hidden parameters
are computed, corresponding to the E-step. Given the current class association
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probability of each point, represented by g(zik), the maximum-likelihood or
maximum-a-posteriori estimate of the mixture parameters is performed, corre-
sponding to the M-step. This is repeated until convergence. See Fig. 4.4 for an
outline of the complete EM algorithm.

Algorithm 4.4 Expectation Maximization for Gaussian Mixture Model

Input: Data X = {x1, ..., xN}
Definite initial values: q

(0) =
n

p

(0)
i , µ

(0)
i , s

(0)
i

o

i=1..K
repeat

t  t + 1
E-Step: Compute class association probabilities/responsibilities

for all i 2 N, k 2 K do

g(z(t)
ik ) =

p

(t�1)
k N (xi|µ(t�1)

k , s

(t�1)
k )

ÂK
j=1 p

(t�1)
j N (xi|µ(t�1)

j , s

(t�1)
j )

end for

M-Step: Estimate the the parameters given the current class associa-
tions/responsibilities

for all k 2 K do

µ

(t)
k =

1
Nk

N

Â
i=1

g(z(t)
ik )xi

s

(t)
k =

1
Nk

N

Â
i=1

g(zik)t(xi � µ

(t)
k )2

N(t)
k =

N

Â
i=1

g(z(t)
ik )

p

(t)
k =

N(t)
k

N
,

end for
until Convergence of parameters or log-likelihood

4.6.7 General View of Expectation Maximization

In the previous section we already introduced the latent variables zk, which is
a binary K-vector indicating class association with constraint ÂK

k=1 zk = 1. Now
suppose we are given a latent variable for each data point X = {x1, ..., xN}
then we have Z = {z1, ..., zN}. In this respect, we refer to the data set {X, Z} as
the complete data. However, typically we are not given the the latent variables,
therefore we refer to {X} as the incomplete data. As a result, the log-likelihood
for the complete data is p(X, Z|q) and for the incomplete data p(X|q). Since
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we are not given the latent variable, the only information we are left with is
its posterior p(Z|X, q). As as consequence we cannot compute the complete
data log-likelihood directly. However, what we can do is approximate it by
computing its expected value, namely E [log p(X, Z|q)], where E [.] denotes the
expectation.
In case of a Gaussian mixture model, we let q = {pi, µi, si}i=1..K and y =
{µi, si}i=1..K, where again µi and s

2
i denote the mean and variance, respectively.

Then we can write the expected log-likelihood as [Lindgren, 2002]

Q(q, q

t) = E
h

log p(X, Z|q)|X, q

(t)
i

= Â
Z

p(Z|X, q

(t)) log p(X, Z|q). (4.100)

Furthermore, we have the incomplete data likelihood defined as,

p(X|q) =
N

’
i=1

K

Â
k=1

p(yi|zik = 1, yk)pk (4.101)

or in case of known class association the complete data likelihood

p(X, Z|q) =
N

’
i=1

p(xi|zi, yxi )pxi . (4.102)

Then it follows that the complete data likelihood is defined as,

log p(X, Z|q) =
N

Â
i=1

(p(xi|zi, yxi ) + log pxi ) (4.103)

and the class posterior distribution posterior for Z|X, q

(t)

g(zik) = p(zik = 1|X, q

(t)) =
p(xi|zik = 1, y

(t)
k )p

(t)
k

p(xi|q(t))
=

p(xi|zik = 1, y

(t)
k )p

(t)
k

ÂK
j=1 p(xi|zij = 1, y

(t)
j )p

(t)
j

,
(4.104)

where we again use (t) to highlight the parameters that are estimated in
previous time step t. This all taken together corresponds exactly to the E-
step of the EM algorithm. Following the computation of the expectation of
the log-likelihood, we maximize the log-likelihood w.r.t. to the distributional
parameters q, which corresponds to the M step given by

q̂ = arg max
q

Q(q, q

(t)). (4.105)

Applying the general deduction from above to the specific case of a Gaus-
sian mixture we have the following likelihood term

p(X, Z|q) =
N

’
i=1

K

’
k=1

p

zik
k N (xi|yk)zik =

N

’
i=1

K

’
k=1

p

zik
k N (xi|µk, sk)zik (4.107)
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Algorithm 4.5 General Expectation Maximization

Input: Data X = {x1, ..., xN}
Definite initial values: q

(0) =
n

p

(0)
i , µ

(0)
i , s

(0)
i

o

i=1..K
repeat

t  t + 1
E-Step: Compute p(Z|X, q

(t�1)), in particular 8i 2 N, k 2 K compute
g(z(t)

ik ).
M-Step: Evaluate q

t

q

t = arg max
q

Q(q, q

(t�1))

Q(q, q

(t�1)) = E
h

log p(X, Y|q)|X, q

(t�1)
i

= Â
Z

p(Z|X, q

(t�1)) log p(X, Z|q).

(4.106)

until Convergence of parameters or log-likelihood

with the corresponding log-likelihood

log p(X, Z|q) =
N

Â
i=1

K

Â
k=1

zik [log pk + logN (xi|yk)] . (4.108)

The maximum likelihood parameter estimates are obtained analogously to
previous Sec. 4.6.6 from the derivative of the log-likelihood.

The class posterior distribution posterior for Z|X, q

(t) is obtained from

p(Z|X, q) µ p(Z) · p(X|Z) =
N

’
i=1

p

zk
k

K

’
k=1

N (xi|yk)zk =

N

’
i=1

K

’
k=1

[pkN (xi|yk)]
zik

. (4.109)

Furthermore, it follows that the expected value of the class indication
variable zik is defined as

E [zik] =
Âzik

zik [pkN (xi|yk)]
zik

ÂK
k=1 [pkN (xi|yk)]

zik
=

pkN (xi|yk)
ÂK

k=1 (pkN (xi|yk))
= g(zik)

, (4.110)

which is exactly what is computed 8i 2 N, k 2 K during the E-step. Finally, we
yield the expected value of the complete-data log-likelihood as

E [log p(X, Z|q)] =
N

Â
i=1

K

Â
k=1

g(zik) · [log pk + logN (xi|yk)] , (4.111)

which is maximized during the M-step.
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Figure 4.16: Feature descriptor component for lateral direction x2 2 y. Shadow
regions are highly expressed within the feature descriptor domain

4.6.8 RF Shadow Descriptor

The distribution of the envelope of the RF signal, resulting from backscattered
tissue echo, has been shown to be modeled by the Nakagami distribution
[Shankar, 2000]. Thus we assume all intensities in the RF envelope 2D image
W to follow a Nakagami distribution

N (x|µ, w) =
2µ

µx2µ�1

G(µ)w

µ

exp
⇣

� µ

w

x2
⌘

, 8x 2 R+ (4.112)

with µ, w the shape and scale parameters, respectively. The Nakagami distribu-
tion is part of the exponential family of distribution, and as such we can model
the spatial statistics of the RF envelope image, by an auto-model as described
in Sec. 4.3.4 and 4.3.5.

logN (xi|µ, w) = A(xVi )B(xi) + C(xi) + D(xVi ) (4.113)
A(xVi ) = l + Â

i 6=i0
xi,i0Bi(x0i) . (4.114)

Parameters A(.), D(.) depend on the intensities xVi in the neighborhood Vi of
the central pixel xi, whereas B(.), C(.) depend only on xi. Furthermore, l is
the weight of the central site xi and xi,i0 are the interaction weights between
neighboring pixels. Combining the eqns. 4.114 results in

µ =
1
2
(l + 1 + Â

i 6=i0
xi,i0 log x0i) . (4.115)

Inspired by [Bouhlel and Sevestre-Ghalila, 2009], we use the interaction param-
eters of the auto-model as a feature-descriptor for shadow. This model applies
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particularly well for shadow, as those regions have a specific and homogeneous
texture pattern. The RF descriptor characterizes small subpatches of the image
domain, as follows. A sparse 2D grid is placed in the image W subdividing
the data into subpatches Pi 2 W, s.t.

S

i Pi = W. For each subpatch Pi the
following steps are performed: 1) distribution parameters are obtained by a
Nakagami MLE (as whole representing a Nakagami image) 2) a dense 2D grid
is placed on the subpatch, with S ⇢ Pi denoting the set of all grid points 3)
centered on each grid point s 2 S , an MRF interaction model given by Eq. 4.115
is instantiated. In this MRF model, cliques are taken to be spatially opposite
segments of a second-order neighborhood centered on sub-grid points, similar
to the work proposed in [Bouhlel and Sevestre-Ghalila, 2009].

Finally interaction parameters for all subpatches Pi are computed using the
conditional-least-squares (CLS) approach [Bouhlel and Sevestre-Ghalila, 2009],
as presented in Sec. 4.3.6. For each subpatch with a neighborhood system of n
cliques, an interaction feature vector

y =
�

l , x1 , ... , xn
� 2 Rn+1 , (4.116)

is generated. The l parameters can be related to the density and amplitudes of
scatterers, while the x parameters represent the interaction of the diametrically
opposite neighbor pixels influencing the center pixel and therefore are closely
related to scatterer spacing [Bouhlel and Sevestre-Ghalila, 2009]. Noteworthy
within the context of shadow detection is thereby that only the feature corre-
sponding to lateral interaction x2 is of interest. As can be seen in Fig. 4.16, this
feature becomes pronounced in homogeneous shadow areas.

Following CLS, the interaction weights are obtained by minimizing the
variance between observed and expected intensities

ŷ = argmin
{l,xi,i0}

Â
i
(x2

i � E[X2
i ])

2 s.t. E[X2
i ] =

1
2wi

(l + 1 + Â
i 6=i0

xi,i0 log x0i) ,(4.117)

with E[.] being the expected value. The solution for Eq. 4.117, yielding the
interaction feature vector y (see Eq. 4.116), is obtained by least-squares.

4.6.9 Shadow Classification

In order to classify shadow predominant regions, we make use of the ob-
servation that in those areas the MRF-feature corresponding to the speckle
interaction in lateral direction (see Eq. 4.116) becomes highly expressed - see
Fig. 4.16. At first the feature map is classified using a K = 2 Gaussian finite
mixture model (GMM)

p(x|q) =
K

Â
i

piN (x|µi, si) =
K

Â
i

wip
2psix

exp

 

� (x� µi)2

2s

2
i

!

s.t.
K

Â
k=1

pk = 1,

(4.118)

which analogously to Sec. 4.6.3 is estimated using the EM algorithm [Dempster
et al., 1977]. See Sec. 4.6.6 for details on the EM algorithm for Gaussian
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Expert P1 5MHz P1 10MHz P2 5MHz P2 10MHz P3 5MHz P3 10MHz
# 1 0.84± 0.05 0.87± 0.02 0.84± 0.04 0.9± 0.01 0.89± 0.03 0.91± 0.03
# 2 0.78± 0.04 0.82± 0.02 0.83± 0.05 0.88± 0.01 0.87± 0.03 0.86± 0.03

GT Dice 0.92± 0.03 0.93± 0.01 0.96± 0.02 0.95± 0.01 0.94± 0.01 0.93± 0.01

Table 4.1: Dice coefficients for shadow regions on basis of manual segmenta-
tions by two experts for six patient datasets (PX = patient X) - Avg.: 0.86± 0.03.
Last row provides inter-user variability in terms of Dice coefficient - Avg.:
0.94± 0.02.

mixture estimation. Performing this Gaussian mixture model yields a binary
clustering of feature activity, consisting of the two classes inactive C0 and active
C1. Looking at the shadow regions one can see that within those areas the ratio
of active features is higher compared to inactive ones. Only reverberations and
mirroring next to the reflection causing interface interfere that characteristic
feature activity pattern. As a result, next to the reflector the feature ratio is not
higher, as those regions from their patterns resemble regular image texture.
See Fig. 4.16 for example images highlighting the feature activity in shadow
regions. Given the characteristic activity patterns and the interference, we
propose a distance weighted score function S accounting for those conditions,
which is defined as

S =
log(w)

h

h

Â
x



CN(x)
w

e(DN ·x+DN,1) +
CR(x)

w
(DR · x + DR,1)

�

, Di =
Di,2 � Di,1

h
.

Summation is performed over the row space of each segment of size [0, w]⇥
[0, h]. Furthermore, C1(x) and CR(x) denote the number of features in row x
from the specific class of shadow noise or from reflector, respectively. Whereas
C1 is obtained from the Gaussian mixture model as mentioned above to classify
into active and inactive elements, CR(x) is obtained from the initial reflector
segmentation - see Sec. 4.6.3 for details. At last, the parameters Di,1, Di,2 denote
distance weighting scalars specific for shadow noise i = N and reflectors i = R.
Thereby we follow the notion that more distant from the reflector reverberations
are less likely and do not disturb the shadow specific distribution patterns and
vice versa.

4.6.10 Results

For testing the performance of the shadow detection in RF ultrasound, numer-
ous data sequences of the Humerus were acquired from three patients using an
Ultrasonix MDP machine (Ultrasonix Medical Corporation, Richmond, Canada)
in combination with a linear transducer L14-5/38 GPS. Data was recorded
with depth 4 cm yielding RF images of resolution 1304 ⇥ 256 pixels. For
validation, manual segmentation of the shadow regions was performed in 50
frames for each patient dataset by two ultrasound experts. Image sequences for
segmentation were selected to contain various mirroring/reverberation artifact
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Figure 4.17: Segmentation results for different frames.

scenarios ranging from low to high. It should be noted that these artifacts
naturally give rise to ambiguities, which can be seen in the consistent difference
between expert segmentations - see Tab. 4.1. Nevertheless, comparison between
ground-truth and automatic segmentation shows overall high Dice coefficients,
which suggests accurate and robust shadow detection. Qualitative examples
are shown in Fig. 4.17. Occasional slight drop in Dice coefficient is due the over-
segmentation of reflectors caused by highly attenuating ligaments/muscular
tissue attached to the bone that is barely distinguishable from bone itself, but
not causing full reflection. The evaluation dataset was recorded at 5 MHz and
10 MHz to study the effect of frequency dependency, with the result indicating
that frequency does not noticeably affect it. This further demonstrates the
robustness of the method. Finally, comparison with the method in [Hellier
et al., 2010] was conducted. However, the results obtained were inconsistent;
producing strong over-segmentation of shadow areas. We omitted the results as
a direct comparison seems not fair given that the other method was proposed
for brain data only.
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4.6.11 Conclusion

We presented a novel technique for detection of shadow in RF envelope detected
ultrasound images. The combination of confidence estimation and statistical
pattern analysis methods allows accurate detection, even in regions containing
severe reverberation and mirroring artifacts. Evaluation on ultrasound image
series of the Humerus demonstrates good results that are consistent with
manual segmentation. Future work will focus on further evaluation of the
method with different datasets, including femur and tibia acquisitions, and
improved classification of strong reflectors. Furthermore, it is of interest to
study the effect of integrating the proposed shadow detection in registration
and 3D reconstruction approaches.
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Chapter 5

Ultrasound Similarity
Measures

In this chapter we present two similarity measures for 2D ultrasound. At first a
hybrid method combining global statistics with local texture information referred
to as Hybrid Local Binary Patterns (HLBP) is discussed. In this respect, for local
statistics a textural descriptor based on an adaptation of Local Binary Patterns (LBP)
is used. Furthermore, for global statistics a Hellinger distance for Gamma distributions
is employed. The presentation of the hybrid approach is followed by an overview
of ultrasound likelihood functions for registration. Finally, we present the locally
adaptive Nakagami-based similarity measure based on its bivariate distribution. This
chapter is based on the papers ’Locally Adaptive Nakagami-based Ultrasound Similarity
Measures’ [Wachinger et al., 2012b] and ’Registration of RF Ultrasound Data Using
Hybrid Local Binary Patterns’ [Klein et al., 2012a].

5.1 Introduction

Registration of images is a fundamental problem in several fields, particularly
in the domain of medical imaging. However, issues such as noise and artifacts
complicate this process and often make automatic registration processes in-
tractable. In this respect, the alignment of ultrasound images is considered to
be especially challenging due to the inherent omnipresence of speckle noise in
the images. A further issue complicating image processing that is particularly
prevalent in ultrasound imaging is view dependency and non-linear behavior
due to its complex physical nature. Nevertheless, there exist a multitude of
applications in ultrasound registration that require registration. Among the
clinical applications for ultrasound registration are panorama imaging [Henrich
et al., 2003,Wachinger et al., 2008], elastography [Salcudean et al., 2006,Basarab
et al., 2007], tracking [Gee et al., 2006], and motion recovery [Cohen and
Dinstein, 2002b]. Hence, the development of similarity metrics in ultrasound
registration is an active field of research. A common approach in modeling this
problem is to employ statistical methods. Unlike in the conventional vision do-
main, where the Gaussian intensity distribution has been successfully applied
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in a variety scenarios, in ultrasound other models are more appropriate. In
the domain of speckle tracking, the Rayleigh distribution is applied [Strintzis
and Kokkinidis, 1997,Cohen and Dinstein, 2002b,Boukerroui et al., 2003,Revell
et al., 2004]. For segmentation and classification applications, research on
various distribution models for ultrasound scattering has been performed over
the last years [Destrempes and Cloutier, 2010]. Numerous distributions were
introduced that deal with varying numbers of scatterers per resolution cell and
the presence of coherent structures [Goodman, 2007] - see also Sec. 2.4.

In the following we will focus on processing of envelope detected ultra-
sound data. The statistical properties of the echo envelope of ultrasound data
depend on numerous factors. Among them is, in particular, the density and
spatial distribution of scatterers in the medium. As different types of biological
tissue exhibit various characteristics w.r.t. density and scatterer distribution,
this can be utilized for registration purposes. Given enveloped RF data, the
following models have been proposed as was discussed in Sec. 2.4. For fully
developed speckle the Rayleigh distribution [Wagner et al., 1983] applies. The
Rice distribution has been suggested [Wagner et al., 1983,Insana and et al., 1986]
for the case of coherent, or structured, high density scatterers, while for par-
tially developed speckle, the K-distribution [Jakeman, 1999, Shankar, 1993] has
been shown to be appropriate. Moreover, general models have been proposed
in the literature such as the generalized K-distribution and the homodyned
K-distribution (see e.g., [Jakeman, 1999] and [Dutt and Greenleaf, 1994]) and
most recently the Rician Inverse of Gaussian distribution [Eltoft, 2003, Eltoft,
2005] - see Sec. 2.4 for details on various distribution models. These models
can account for a multitude of scattering conditions, however, at the price of
comparatively high analytical complexity. As already mentioned at length in
Sec. 2.4.2 because of its simplicity and versatility we focus on the Nakagami
distribution [Shankar, 2000, Nakagami, 1960], which can account for varying
scattering conditions. Furthermore, it is computationally efficient [Shankar,
2000] as compared to many other models that exhibit a tremendous complexity.
As mentioned above, the advantage of the Nakagami distribution is to model
various scattering scenarios, however, this requires to specify the parameters
adequately. In this regard, recently a Nakagami-based similarity measure
has proposed in [Myronenko et al., 2009b]. Since usually multiple scattering
scenarios are present within an ultrasound image, depending on the depicted
structures, we argue that a local adaptation increases the descriptiveness and
better exploits the benefits of the Nakagami distribution.

In this chapter we present two ultrasound specific similarity measures. At
first we present in Sec. 5.3 the Hybrid Local Binary Patterns (HLBP), which are
a variant of the Local Binary patterns (LBP) presented in Sec. 4.5, employing
confidence maps as introduced in Sec. 4.6.2. This is followed by a locally
adaptive similarity measure based on the bivariate Nakagami distribution in
Sec. 5.4, which further makes use of the 2D analytical signal as presented in
Ch. 3.
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5.2 Related Work

Registration of ultrasound images is addressed in a large number of arti-
cles [Strintzis and Kokkinidis, 1997, Krucker et al., 2002, Cohen and Dinstein,
2002b, Xiao et al., 2002, Boukerroui et al., 2003, Revell et al., 2004, Zikic et al.,
2006, Poon and Rohling, 2005, Wachinger et al., 2007, Grau et al., 2007, Basarab
et al., 2007, Elen et al., 2008, Esther Leung et al., 2008, Myronenko et al., 2009b].
Among the typical application domains are (i) motion measurements in echocar-
diography for detecting and characterizing abnormalities, (ii) breast deforma-
tion analysis to assess the elastic properties of tissues, (iii) assessment of tissue
strain with elastography, and (iv) multi-view compounding. In this respect,
statistics based registration is a common approach. Assuming multiplica-
tive Rayleigh noise for ultrasound images, likelihood functions are presented
in [Strintzis and Kokkinidis, 1997]. This notion is further extended in [Cohen
and Dinstein, 2002b], assuming that both - the moving and the fixed image -
are affected by multiplicative speckle noise. Futhermore, for improved perfor-
mance on B-mode imagery, the log-compression is incorporated in the imaging
model. In [Boukerroui et al., 2003, Revell et al., 2004] these similarity metrics
are successfully applied for motion estimation employing a block matching
approach. Similarly, in [Basarab et al., 2007], block matching is used in com-
bination with normalized cross-correlation (NCC) for flow estimation and
elasticity imaging. Furthermore, in [Krucker et al., 2002, Poon and Rohling,
2005], a block matching approach is applied in context of image quality im-
provement by combining various compounded images. In this respect, several
similarity measures are evaluated in [Krucker et al., 2002], with the conclusion
that sum of squared differences (SSD) is suitable only in imagery that is subject
to low noise levels. However, in the work [Poon and Rohling, 2005] focus
is on NCC for the compounding optimization. Instead of univariate data
modeling, [Myronenko et al., 2009b] presented similarity measures based on
the bivariate Rayleigh and Nakagami distributions. However, in contrast to pre-
vious approaches, [Myronenko et al., 2009b] do not work on B-mode images
but on log-compressed envelope data. This is of importance due to the fact
that B-mode images have corrupted speckle statistics as a result of a series of
applied non-linear transformations and non-linear proprietary filter operations,
as was discussed in detail in Sec. 2.3. Common to all the presented methods is
that the parameters of the distributions are set heuristically on a global basis,
which is at odds with the underlying local data variation. For instance, the
variance of the Rayleigh distribution is set to 2/p in [Cohen and Dinstein,
2002b], or the shape and correlation parameters are set to m = 0.5, r = 0.8
in [Myronenko et al., 2009b].

Next to ultrasound specific approaches, we also want to mention related
work in terms of general registration. A typical situation that challenges the
application of mutual information is the registration of images, which contain
high intensity non-uniformity due to the bias field. Approaches that address
this issue try to estimate the joint density in local regions or do a combination
of local and global estimation [Loeckx et al., 2010,Zhuang et al., 2009]. Recently,
learning-based similarity measure were proposed. In [Babenko et al., 2009] a

103



Chapter 5: Ultrasound Similarity Measures

similarity metric is learned using a boosting approach. Similarly, in [Xiong
et al., 2012] Random Forest [Breiman, 2001] classification was employed for
learning. Metric learning for multi-modal registration was proposed in [Lee
et al., 2009, Bronstein et al., 2010]. In this respect, supervised learning is
performed on previously registered data to learn an appropriate similarity
function. However, these methods require access to correctly aligned data for
training, which is a major drawback of these methods.
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Figure 5.1: The threshold parameter e defining a probability interval around
the central site intensity value.

5.3 Hybrid Local Binary Patterns

5.3.1 Method

Given the noisy nature of ultrasound, using statistical measures for the sake
of robustness seems evident. In order to improve the registration accuracy a
hybrid approach is proposed that couples the global concept of distribution
matching with a local one measuring texture patterns. We refer to this in
the following as hybrid local binary pattern (HLBP). The two components of
HLBP are based on the Gamma Hellinger distance metric, see Sec. 5.3.2, and
Local Binary Patterns, see Sec. 4.5, respectively. Additionally, we make use of
ultrasound confidence maps for parameter estimation, see Sec. 4.6.2.

5.3.2 Gamma Hellinger distance metric

We use the Nakagami distribution [Shankar, 2000,Nakagami, 1960] for mod-
eling the speckle distribution in envelope detected RF ultrasound data. The
Nakagami distribution is closely related to the Gamma distribution, and so
may be used instead, by application of a simple transformation of data (see
Sec. 2.4.2 and 2.53 ), specifically

if Y ⇠ fgam(x | m, k) and X ⇠ fnak(x | µ, w)

then
p

X = Y(µ,
w

µ

) ,
(5.1)

where fgam and fnak denotes the Gamma and Nakagami PDF, respectively.
For measuring the difference between two densities there exist a multitude

of possibilities. One option in distribution matching is the Hellinger distance
metric. Basis for this metric is that for any family of densities {p(x|q)}, the set
n

p

p(.|q), q 2 Q
o

represents a parametric curve on the unit sphere in L2-space,
as can be seen from the basic property of [Korostelev and Korosteleva, 2011]

1 =
Z

R
p(x|q)dx =

Z

R

✓

q

p(x|q)
◆2

dx = k
q

p(.|q)k2
2, (5.2)
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Figure 5.2: Feature histograms for low (left) and high (right) threshold.

where k.k2 denotes the L2-norm. The squared Hellinger metric H2(q0, q1) for
general distributions p(.|q0) and p(.|q1) is then defined as

H(q0, q1) = k
q

p(x|q0)�
q

p(x|q1)k2
2 = 2

✓

1�
Z

R

q

p(x|q0)p(x|q1)dx
◆

,

q0, q1 2 Q,
(5.3)

from which follows that 0  H(q0, q1) 
p

2 (sometimes the Hellinger is
defined normalized in that case one has 0  H(q0, q1)  1).

In the following we employ the Hellinger distance Hgam between two
Gamma probability distributions F and G, as expressed by their associated
probability density functions f ⇠ fgam(x|m1, k1) and g ⇠ fgam(x|m2, k2) as

Hgam( f , g) = 1�
G
✓

(m1+m2)
2

◆



G(m1)G(m2)
�

1
2
·

✓

(k1+k2)
2

◆�( m1+m2
2 )



1
k1

m1 · 1
km2

2

�

1
2

, (5.4)

with Hgam( f , g) 2 [0, 1]. We apply Hellinger distance alone and in conjunction
with Local Binary Patterns (see Sec. 5.3.3) in registration of envelope detected
ultrasound data.

Statistics-based Membership Function

Unlike the original Fuzzy Local Binary Patterns (FLBP) [Iakovidis et al., 2010],
which defines the membership function as a ramp, we propose a non-linear
function associated with the underlying statistical properties of data. Let

fnak(x | µ, w) =
2µ

µx2µ�1

G(µ)w

µ

exp
⇣

� µ

w

x2
⌘

, 8x 2 R+ (5.5)
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be the probability density function of the Nakagami distribution with µ, w the
shape and scale parameters, respectively. Its corresponding cumulative density
function (CDF) is

Fnak(x | q) =
g(µ, µ

w

x2)
G(µ)

, (5.6)

with q = {µ, w} and g being the lower incomplete gamma function, defined as

g(s, x) =
Z x

0
ts�1e�t dx. (5.7)

Following the idea of FLBP, a membership function mj(x) is defined, denoting
the confidence of a class association j 2 {0, 1} given intensity x. Membership
symmetry is assumed, i.e. m0(x) = 1�m1(x). Here the membership function
m1 is non-linear, given by

m1(xi) =

8

>

>

>

>

<

>

>

>

>

:

1, xi > F�1
nak(K + e|q),

Fnak(xi |q)�K
2e

+ 1
2 , xi 2 (xcntr, F�1

nak(K + e|q)]
K�Fnak(xi |q)

2e

, xi 2 [F�1
nak(K� e|q)], xcntr]

0, xi < F�1
nak(K� e|q)

, (5.8)

where K = Fnak(xcntr|q), and xcntr and xi denote the intensity at the center
site and site i, correspondingly. This definition follows the notion that the
uncertainty in membership should be associated with the underlying data
distribution. Thereby the probability adapts to varying distributions, rather
than being tied to a fixed parameter. As a result, within the tail of a distribution
a wider capture range of membership is allowed, whereas in areas next to
the mode, membership association is more concentrated. In this respect, in
the fuzzy region [F�1

nak(K � e|q), F�1
nak(K + e|q)], as illustrated in Fig. 5.1, the

membership function is the normalized cumulative within class probability. As
e increases, more fuzziness is assumed, and thus more noise is compensated
for. It is noteworthy that the influence of e is quite data dependent and there is
flexibility in integrating it. One possibility is to define it as a combination of a
probability threshold T with a confidence value C,

e = T · Cg, (5.9)

where g < 1 allows for some compression, e.g. gamma correction. Here we
employ a confidence map (see Sec. 5.3.2) corresponding to the ultrasound
image, to approximate C. The underlying idea is that low confidence regions
should be compensated in terms of increased fuzziness as there the membership
association is not reliable. See Fig. 5.2 for a visualization how the magnitude
of the threshold e affects the feature histogram.

Confidence Maps

We formulate the ultrasound signal confidence estimation as a random walk
problem. The solution to this is based on the algorithm proposed for image
segmentation [Grady, 2006] as described at length in Sec. 4.6.2. There a

107



Chapter 5: Ultrasound Similarity Measures

Figure 5.3: Confidence map (left) and the corresponding RF image from which
it is computed (right).

multi-label image segmentation is obtained by the analytic computation of
the probabilities for random walks reaching user-defined image labels. For
the confidence estimation we are interested in the probabilities of random
walks reaching the transducer elements under ultrasound specific constraints.
More specifically, the random walks behavior is adjusted by modifying the
graph Laplacian [Karamalis et al., 2012a] to model ultrasound transmission,
beam-width, and depth-dependent attenuation. Subsequently, the analytic
solution expresses the probability of ultrasound energy reaching a point in
the RF data domain. Regions which are associated with low confidence are
prone to contain noise. In turn high noise should be reflected by a wider fuzzy
membership association, as data is more subject to noise in those areas. In
contrast to that, areas with high confidence are less subject to noise artifacts
such that the fuzzy membership function should be more narrow there.

5.3.3 Hybrid Similarity Measure

A common approach to measuring the similarity between LBPs is histogram
intersection

DX,Y = Â
i

min(xi, yi) , (5.10)

where X, Y denote the histograms made up from N individual bins X =
{xi}i=1..N and Y = {yi}i=1..N . However, standard histogram intersection is
prone to yield several local minima. In order to avoid this, we endow the
standard histogram intersection with a component measuring the statistical
similarity of distributions. This follows the notion that patterns, in the two
patches being considered, should be assumed relevant only where the underly-
ing distributions significantly exhibit high similarity. Statistical similarity alone
on the other hand is globally precise (rough scale), but is locally (fine scale) impre-
cise. However, in combination with the in Sec. 5.3.2 proposed statistics-based
FLBP, which has diametrically opposite behavior, i.e. globally imprecise and
locally precise (see Fig. 5.6), we yield overall high reliability. This reasoning is
validated by our results, see Tab. 5.1, which show that superior performance is
achieved by combining Gamma Hellinger measure with statistics-based FLBP,
as opposed to applying them individually. HLBP is able to take into account
very fine textural features in data, which can discriminate between small local
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Figure 5.4: Concept of block matching and derivation of the similarity maps. A
patch is taken in the moving image with the goal to find its best match within
a limited region in the fixed image referred to as block. Moving the patch all
over the block and computing the similarity yields a similarity map, which
provide an idea about cost function smoothness. Optimizers need to find the
optimum within the similarity map.

differences between images. When performing registration, HLBP would then
be a useful measure when performing small-scale alignments. However, when
differences are large between images, fine textural differences are not relevant.
Here a purely statistical (dis-)similarity measure like e.g. Hellinger distance,
is a better candidate for detecting global differences between images. This is
because the distance (divergence) is defined between estimated distributions
on the image. Distributional differences between images is however imprecise,
when images are very similar, or in the case of registration, when close to
alignment. The hybrid Hellinger weighted histogram intersection is defined as

DHybrid = DX,Y · exp(�DH̄gam( f , h)) + H̄gam( f , h), (5.11)

where D denotes the influence radius of the patch-averaged distribution dis-
tance H̄gam, which implies multiple Hellinger distance computations on cor-
responding (homogenous) sub-patches. Furthermore, X, Y contain the LBP
feature histograms (see Sec. 5.3.2). This reinforces the notion that LBP is pri-
marily used to enhance the accuracy of Hellinger, which determines a robust
rough approximation of the location of the global optima.

5.3.4 Experiments

Experiments are performed on 5 human neck datasets each acquired with a 10
MHz linear array probe yielding RF envelope images of size 2048 x 256 pixels.
Images were recorded with an Ultrasonix MDP machine (Ultrasonix Medical
Corporation, Richmond, Canada). The registration dataset consists of pairs of
images constituting a moving and a fixed image for the registration (translation,
2 degrees of freedom). Consequently, block matching (block size 20 x 40
pixels) is performed at 28 regular spaced points on the image domain, yielding
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Figure 5.5: Global registration performance for all datasets combined - error
measured in pixels.

Dataset SSD SSDNAK NCC FLBP HEL HLBP

#1 20.1 23.0 26.1 28.1 4.7 3.5
#2 16.1 19.8 26.3 28.2 7.4 6.3
#3 20.1 12.1 26.2 27.2 7.9 7.4
#4 17.9 16.5 25.0 24.0 8.5 7.4
#5 24.4 19.9 27.2 3.3 1.4 1.3

Table 5.1: Median errors (pixels) of random registration study for various
datasets and similarity metrics.

similarity maps. See Fig. 5.4 for a schematic visualization of the block matching
process. For each block 20 registration runs are performed with random initial
start points to estimate the susceptibility of metrics towards building local
minima. Manual alignment of each dataset pair served as ground truth. The
following methods were used for the registration test: SSD (Sum-Of-Squared
Differences), SSDNAK (SSD on the shape parameter of Nakagami images),
NCC (Normalized Cross-Correlation), FLBP (threshold e = 30, confidence
weighted), Hellinger and HLBP (threshold e = 0.35, confidence weighted).
Finally, the global similarity is computed by accumulating estimates from all
blocks on each dataset - see Tab. 5.1 for median pixel errors. For registration
performance evaluation, comparison results from all datasets are combined -
see Fig.5.5. Additionally, in order to assess the different similarity measures
we extract a patch in the moving image, and compute corresponding similarity
maps - see Fig. 5.6 for an example.
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5.3.5 Conclusion

We presented a similarity metrics Nakagami Hellinger and Hybrid Local Binary
Patterns. Results of the experiments show that HLBP greatly outperforms
standard methods, such SSD and NCC, and also improves upon the result
obtained by use of Hellinger distance metric. The robustness of HLBP is due
to its hybrid local and global strategy. On the one hand, LBP and its variants
are able to take into account very fine textural features in data, which can
discriminate small local differences between images, and are thus suitable for
small-scale alignments. On the other hand, when differences are large between
images, fine textural differences are not relevant. Here a purely statistical
(dis-)similarity measure like e.g. Hellinger distance, is a better candidate for
detecting global differences between images. For future work, optimization of
the neighborhood system of HLBP will be investigated, as this has been shown
in initial experiments to be a source of potential major improvement.

Figure 5.6: Similarity maps from left to right, top to bottom: SSD, SSDNAK,
NCC, FLBP, HEL and HLBP. Circle: ground truth optimum; Cross: optimum
in similarity map.
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Figure 5.7: Illustration of Nakagami MLE parameters shape m and scale w,
calculated densely for one image of a human neck.

5.4 Locally adaptive Nakagami-based ultrasound sim-
ilarity measures

5.4.1 RF Data

One of the first fundamental processing steps of RF data is envelope detection
as described in Sec.2.3. For the envelope detection we apply the approach based
on the 2D analytic signal as presented in Ch.3, although the method is also
applicable to conventionally enveloped data based on 1D Hilbert transform.
However, as was demonstrated the incorporation of lateral information leads
to a more robust estimation of the local amplitude from ultrasound RF data,
which is beneficial in terms of registration. Moreover, the extracted envelope
bears superior statistical properties, as was shown with goodness-of-fit tests to
Nakagami distributions. Since we want to accurately model the statistical prop-
erties of the envelope data in the derived likelihood functions, the calculation
of the 2D analytic signal is therefore advantageous for our application.

5.4.2 Maximum Likelihood Ultrasound Registration

Given ultrasound envelope detected images I, J and the transformation T.
Then registration can be formulated as maximum likelihood estimation [Viola,
1995, Roche et al., 2000] by

T̂ = arg max
T

log p(I | J, T, #), (5.12)

where T̂ corresponds to the estimated transformation of maximum probability
and # to the noise. For the derivation of SSD, correlation ratio, or mutual
information, an additive Gaussian noise is incorporated in the deduction [Roche
et al., 2000].
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5.4.3 Ultrasound Likelihood Functions

Given the general definition of registration as maximum likelihood estimation
problem, we present an overview of ultrasound specific similarity measures
proposed in the literature. This is followed by a derivation of a new locally
adaptive Nakagami-based metric. We list several imaging models and denote
them with the initials of the authors, prevailing in the literature.

SK1: Multiplicative Rayleigh Noise

In [Strintzis and Kokkinidis, 1997], an imaging model based on a multiplicative
Rayleigh noise is presented

I = J · #, (5.13)

where the noise # is assumed to be Rayleigh distributed. It is noteworthy, that
in this noise model only one of the images is assumed to be degraded by noise,
while the other one is assumed to be void of noise. Knowing the distribution
of the noise p(#), we have to find the distribution for the likelihood p(I | J, T).
Assuming that we know the distribution of a random variable x and we want
to calculate the distribution of a random variable y, with both being related
by the function g, so y = g(x). Then applying the fundamental theorem of
random variable transformation [Papoulis and Pillai, 2002, p.93] permits the
derivation of distribution of the random variable y according to

p(y) =
p(x)
|g0(x)| . (5.14)

In our case, this implies setting g(x) = x · J and therefore yielding dg(x)
dx = J.

Altogether, this leads to the likelihood function defined as,

p(I | J, T) =
1
J
· p(#). (5.15)

Furthermore, setting the variance of the Rayleigh distribution to 2
p

leads to the
log-likelihood function of SK1

log p(I | J, T) = log


1
J
· p

✓

I
J

◆�

(5.16)

⇡ log
✓

I
J2

◆

� p

4
I2

J2 . (5.17)

In [Strintzis and Kokkinidis, 1997] a second model is derived with the specific
property of a signal dependent Gaussian noise, which is not further considered
here.

CD1: Division of Rayleigh Noises

A more realistic and sophisticated model is proposed in [Cohen and Dinstein,
2002b]. Here the underlying and more realistic assumption is made that
each image is subject to a multiplicative Rayleigh noise denoted by #1 and #2,
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respectively. Considering the underlying noise-free scene S, the imaging model
is formulated as I = S · #1 and J = S · #2. The relationship can then be written
as

I = J · #1
#2

= J · h, (5.18)

where h = #1
#2

denotes the division of probabilities. Following [Papoulis and
Pillai, 2002, p.138], the distribution of the divisional noise p(h) is defined as

p(h) =
Z •

�•
#2 · p(h#2, #2) d#2. (5.19)

Further, integrating the assumption of the noise in the images being indepen-
dent p(#1, #2) = p(#1)p(#2) with the property of equal variance and underlying
Rayleigh distributional model, the integration results in

p(h) =
2 · h

(h

2 + 1)2 . (5.20)

Given the distribution of the noise p(h), next we have to find the distribution for
the likelihood P(I | J, T). This is again obtained by employing the fundamental
theorem of random variable transformation [Papoulis and Pillai, 2002, p.93].
In particular setting g(x) = x · J the derivative part reduces to dg(x)

dx = J. Taken
together the likelihood is defined as

p(I | J, T) =
1
J

p(h) =
1
J

Z •

�•
#2 · p(h#2, #2) d#2. (5.21)

Furthermore, the log-likelihood function of CD1 is defined

log p(I | J, T) = log


1
J
· p

✓
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J

◆�

(5.22)
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(5.23)

⇡ log I � 2 log J � 2 log

"

✓

I
J

◆2
+ 1

#

. (5.24)

CD2: Logarithm of Division of Rayleigh Noises

The second model proposed in [Cohen and Dinstein, 2002b] considers beside
the noise presence in both images also the log-compression, which is applied
B-mode ultrasound images, yielding

log I = log(J · h) = log J + log h. (5.25)

Denoted the log compressed images as Ĩ = log I and J̃ = log J, respectively,
we can define

h = exp( Ĩ � J̃). (5.26)
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l k

Patch

Block

Figure 5.8: Illustration of the subdivision of the image domain into blocks and
patches.

The likelihood function can then be obtained by applying the fundamental
theorem of random variable transformation. However, this time with respect
to the log-compressed images. Therefore the likelihood for the log-compressed
images is defined as

p( Ĩ | J̃, T) = h · p(h). (5.27)

This is obtained by setting g(h) = log J + log h and the corresponding deriva-
tive g0(h) = 1

h

. As a result, the corresponding log-likelihood function for CD2
is defined as

log p( Ĩ | J̃, T) = log


exp( Ĩ)
exp( J̃)

· p(exp( Ĩ � J̃))
�

(5.28)

= log

"

exp( Ĩ)
exp( J̃)

· 2 · exp( Ĩ � J̃)
⇥

exp( Ĩ � J̃)2 + 1
⇤2

#

(5.29)

= log

"

2 · exp(2( Ĩ � J̃))
⇥

exp(2( Ĩ � J̃)) + 1
⇤2

#

(5.30)

⇡ Ĩ � J̃ � log[exp(2( Ĩ � J̃)) + 1]. (5.31)

5.4.4 Bivariate Nakagami

As explained in Sec. 2.4, the Nakagami distribution is a versatile distribution
well suited for modeling various backscatter scenarios and speckle statistics
in ultrasound. Assuming a divisional noise model in combination with noise
independence between the images, a bivariate distributional model is required -
see Eq. 5.21. Such assumptions are made in [Cohen and Dinstein, 2002b], where
a Rayleigh distributional model is employed. Given the physical principles
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underlying ultrasound imaging, which is speckle arising due to physical inter-
action of the beam with the micro-scale inhomogeneities in tissue, the same
speckle patterns appear under constant and identical acquisition conditions.
Nowadays, modern ultrasound systems provide high frame rates for acquisi-
tions such that for images taken from approximately the same viewing-angle, it
is reasonable to assume assume a correlation between the noise related random
variables #1 and #2 [Cobbold, 2007]. In this respect, following [Myronenko
et al., 2009b] the bivariate Nakagami distribution is defined as

p(#1, #2) =
21�mmm+1(#1#2)m

s

2(m+1)(1� r)r

(m�1)/2G(m)
e
�m(#

2
1+#

2
2)

2(1�r)s

2 Im�1

✓

�mpr#1#2

(1� r)s

2

◆

, (5.32)

where r denotes a squared correlation coefficient, Im�1 is the modified Bessel
function of the first kind of order m� 1, and the distribution widths s

2 are
identical. Next, incorporation of the bivariate Nakagami distribution in the
conditional density in Eq. 5.21, yields the following likelihood

p(I|J, T) =
1
J
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where b(m) is defined as b(m) = G(m)2

G(2m) . More details on the exact deduction,
however, assuming log-compressed envelope data and therefore a different
imaging model, are presented in [Myronenko, 2010]. Finally, the Nakagami-
based similarity measure is defined as the log-likelihood of the bivariate
Nakagami

log p(I|J, T)

= � log J + log
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(5.36)

where the parameter m denotes the shape and r specifies the correlation. In the
next section, an adaptive method is presented that computes the parameters m
and r locally.

5.4.5 Parameter estimation

During each iteration of the similarity computation, the bivariate Nakagami
model has to be instantiated. This requires the specification of a shape pa-
rameter m as well as a correlation coefficient r - see Eq. 5.36. Considering
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the need for high locality in order to obtain reliable registration results, the
patch size has to be kept at minimum. However, this data sparsity constraint is
detrimental for the computation of the m parameter of the bivariate Nakagami
distribution. Additionally, because of the high frequency of this similarity
computation in course of the registration procedure, complexity has to be kept
at bare minimum to keep tractability. Therefore, we decided to use a fast
approximation scheme for the parameters.
In this respect, the distribution parameters are calculated separately for the
moving (mI , wI) and the fixed patches (mJ , wJ) employing a standard maxi-
mum likelihood estimation (MLE) procedure - see Sec. 2.4.2. Then, given the
individual MLE distribution parameters, the joint shape parameter m of the
bivariate Nakagami is approximated by the mean,

m =
(mI + mJ)

2
. (5.37)

For computing the correlation coefficient r for the bivariate Nakagami, probably
the most obvious way is to directly use the corresponding intensities of the
patches. However, due to the noise-susceptibility of ultrasound, a probabilistic
correlation score was chosen in order to increase the overall reliability. In this
respect, we employ the Bhattacharyya coefficient (BC) [Bhattacharyya, 1943],
which is divergence-type measure between distributions and is defined as

BC(p, q) =
Z

q

p(x)q(x) dx, (5.38)

with 0  BC  1. Noteworthy, the BC is related to the Hellinger distance byp
1� BC. The Bhattacharyya coefficient is a measure of the relative overlap

between two probability distributions p and q. In our case, the distributions
correspond to the Nakagami MLE estimates of the moving and the fixed image,
respectively.
In this regard, the Bhattacharyya coefficient has an intuitive geometric in-
terpretation [Comaniciu et al., 2003], as the cosine of the angle between (in
the discrete case) N-dimensional vectors unit vectors

�pp1, ...,ppN
�T and

�pq1, ...,pqN
�T ,

cos(q) =
N

Â
i=1

q

p(i)q(i). (5.39)

Furthermore, BC adopts maximum value in case of identical distributions,
which implies 8i : p(i) = q(i). Then given p and q representing probability
distributions, it naturally follows ÂN

i=1 p(i) = 1. Similarly, following the cosine
angle representation we have

cos(q) =
N

Â
i=1

q

p(i)q(i) =
N

Â
i=1

q

p(i)p(i) =
N

Â
i=1

p(i) = 1. (5.40)

The BC itself is not a proper metric as it does not fulfill all required metric
axioms. However, by slight modification it can be turned into the so called
Bhattacharyya metric DB, defined as

DB(p, q) = � log BC(p, q) = � log
q

p(x)q(x) dx, (5.41)
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NakAdNakFixNCCSSD

NakAdNakFixNCCSSD

Figure 5.9: Similarity plots for various measures. Blue circle: correct alignment,
black cross: similarity maximum.

with 0  DB  •.

5.4.6 Experiments

Performance of the similarity metric is evaluated in experiments that are
performed on several RF datasets. Each dataset is acquired with a linear
transducer at 3.3 MHz, at a sampling rate of 40 MHz. Depending on the
depth transducer setting, the images obtained have a resolution between 1157
and 2080 pixels in axial, and 256 pixels in lateral direction. For registration
procedure evaluation each dataset was set up with two images: a moving
and a fixed image. On this data a block matching procedure is performed.
Specifically, 100 blocks equally distributed across the image are employed for
the matching. The process is schematically illustrated in Fig. 5.8. For each
block alignment in matching manual alignment serves as ground truth data.
Performance is further compared with state of the art ultrasound metrics, SSD
and NCC with the similarity measure presented in Eq. 5.36. Additionally, we
once use heuristic values for the distribution parameters, referred to as NakFix,
and once we estimate them on the images, referred to as NakAd. For the
heuristic case, we choose the parameters used in [Myronenko et al., 2009b]
m = 0.5 and r = 0.8. NakFix is therefore the analogue of the similarity measure
presented in [Myronenko et al., 2009b] for non log-compressed envelope data.

In order to further compare the different similarity measures similarity
maps are generated. For that purpose a patch of 91⇥ 11 pixels is extracted in
the moving image. The extracted image is then in turn shifted it over the block
in the fixed image. Each shift position then yields a similarity value. Taken all
block matchings over the entire image domain one yields a similarity map - see
Fig. 5.4 for an illustration of block matching and similarity maps. For NakAd
the distribution parameters are estimated on these patch intensities. It should
be noted that the patch size is a trade off between sufficient statistics for param-
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Figure 5.10: Boxplots of errors from random registration study for block
matching.

eter estimation and the detection of fine grained deformations. In particular
for heterogeneous texture large patches are detrimental for the registration
procedure as the averaged distributional parameters. We illustrate similarity
plots for two different blocks in Fig. 5.9. As one can observe, in both cases, SSD
and NCC are unable to correctly indicate the correct alignment of the patches.
Moreover, the similarity plot of NCC shows several local minima. The existence
of many local optima impedes the registration procedure. Furthermore, the
maximum of NakFix is also far off the correct alignment. However, the local
adaptation of the parameters in the similarity metric, as it is performed in
NakAd, significantly changed the similarity function. As can be seen in the
figures, the local adaptation leads to good registration results in this case.

The similarity plots provide only a first qualitative impression of the perfor-
mance of similarity metrics. Therefore we further evaluate the performance by
block matching. As already discussed in Sec. 5.2, block matching is commonly
applied in ultrasound registration. For registration, we extract patches from
the moving image and try to find the corresponding or best matching patch
in the fixed image. This procedure is performed for one patch per block, all
in all with 100 different patches. Since we know the alignment of the blocks,
we can calculate the Mahalanobis distance with respect to the ground truth
position, serving as error measure. Here we select the Mahalanobis distance
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Dataset SSD NCC NakFix NakAd

Dataset 1 9.3 9.9 10.4 9.1
Dataset 2 9.8 10.1 10.2 9.2
Dataset 3 9.9 10.4 11.1 9.5
Dataset 4 15.7 15.7 17.0 13.8

Table 5.2: Median errors of random registration study for various datasets and
similarity metrics.
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Figure 5.11: Boxplot of errors from rigid registration study.

to compensate for the significantly higher resolution in axial direction. Fur-
thermore, in order to be able to perform significant statistics on the results
of the registration, we perform a random registration study. In this respect,
we randomly displace the patch 100 times from the ground truth position,
with maximal initial deviation of ±40 pixels in axial and ±10 pixels in lateral
direction. The random displacement serves as initial position of the registration
procedure. As a result, the result of theandom registration study provides an
idea about the robustness of the similarity metric. The errors over all patches
and all runs are shown in the boxplots in Fig. 5.10 for 4 datasets. In Tab. 6.1
we enlist the median errors of the registration experiment. As can be observed
the median, the box, and the whiskers are lowest for NakAd similarity metric
in all cases. The performance of SSD and NCC is comparable, however, with
slight advantages for NCC with respect to the whiskers. Furthermore, the
performance of NakFix for datasets 1 - 3 is slightly worse than NakAd. For
dataset 4, NakFix is not leading to good results.

In previously presented experiments performance was based individual
block matching procedure. Next we also perform experiments for global rigid
registration. Therefore the image is again separated into blocks, as already
discussed previously. Then we again estimate the parameters for each block
and evaluate the similarity measure on the block. However, this time we do not
consider the block matchings individually. Rather we accumulate the similarity
estimates from all blocks together. This in turn leads to the global similarity
estimate. Analogously to the individual block matchings, we also perform
a random registration study with 100 runs in order to assess the robustness.
In this respect, the initial values had deviations up to ±240 pixels in axial
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and ±70 pixels in lateral direction. The results are shown in Fig. 5.11. As
can be seen, the median errors are SSD: 57.8, NCC: 23.4, NakFix: 4.1, and
NackAd: 2.1, respectively. NCC performs better than SSD, but the best results
are obtained for the Nakagami-based similarity measures, with the adaptive
version outperforming the fixed version.

5.4.7 Conclusion

We introduced a locally-adaptive similarity measure based on the bivariate
Nakagami distribution, employing local adaptation of the measure by estimat-
ing the distribution parameters on the ultrasound images. As discussed, the
adaptation of the similarity measure to various scattering scenarios is necessary
to model the noise correctly. Experiments are performed on ultrasound RF data.
The results from block matching indicate the improvement of incorporating the
Nakagami distribution and the necessity in locally adapting the parameters.
Moreover, a clear improvement of the proposed similarity measures is shown
for the case of global rigid registration.
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Chapter 6

3D Freehand Ultrasound

3D freehand ultrasound allows to easily extend the field of view by means of recon-
structed volumes generated from tracked transducer data. Several reconstruction
approaches exist, which are all application dependent. This chapter gives an overview
about various methods of reconstruction and deals with a related application in the
field of neurology - the early diagnosis of Parkinson’s disease. In this regard, advanced
registration approaches such as based on confidence maps and multi-view mixture
models are presented. Furthermore, in context of multi-view mixture modeling, a
derivation for the Nakagami Expectation-Maximization algorithm is presented. This
chapter is based on the papers ’Towards a More Objective Visualization of the Mid-
brain and its Surroundings Using 3D Transcranial Ultrasound’ [Plate et al., 2010],
’Modeling of Multi-View 3D Freehand Radio Frequency Ultrasound’ [Klein et al.,
2012b], ’Ultrasound Confidence Maps using Random Walks’ [Karamalis et al., 2012b]
and ’3D Sonographic Examination of the Midbrain for Computer-Aided Diagnosis of
Movement Disorders’ [Plate et al., 2012].

6.1 Introduction

Nowadays ultrasound examinations are performed mostly with conventional
machines providing two dimensional imagery. However, there exist a multitude
of applications where doctors could benefit from three dimensional ultrasound
providing better judgement, due to the extended spatial view. 3D freehand
ultrasound allows acquisition of images by means of a tracking device attached
to the ultrasound transducer. Unfortunately, ultrasound specificities make the
3D representation of ultrasound a non-trivial task. This is largely due to the
inherent process of ultrasound imaging, which is above all view-dependent,
as well as subject to noise and prone to containing various types of artifacts.
As already mentioned in Sec. 2.2, the characteristic speckle noise is dependent
on factors such as spatial arrangement and size of scatterers. Thereby patterns
are formed, which are largely characteristic for various types of tissue. In
order to represent data in a meaningful way, those ultrasound specific issues
need to be addressed. Because of the same reason, the interpretation of
3D ultrasound imagery is typically not straightforward as well as of quite
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subjective nature, and therefore highly dependent on the expertise of its
investigator. Furthermore, the view dependency is responsible for the limited
repeatability of ultrasound data acquisitions, which is one of the major factors
restricting applicability of this modality.

In this chapter we will give at first an overview of conventional freehand
systems as found in recent articles - see Sec. 6.2. Thereby different recon-
struction approaches are reviewed. Next we elaborate on backward-warping
reconstruction in Sec. 6.3. This is followed by a brief introduction into the
brain anatomy, which is succeeded by a discussion of an application using
of transcranial ultrasound in neurology in Sec. 6.4. Subsequently, in Sec. 6.5
we present an advanced reconstruction method, employing confidence maps
to weight intensity information from ultrasound images. In Sec. 6.6 follows
a presentation of statistically motivated multi-view reconstruction using raw
ultrasound radio frequency (RF) data, in order to take full advantage of speckle
statistics of ultrasound. This is advantageous against the background that
the underlying data is unaffected by non-linear post-processing steps, such as
log-compression and other proprietary filter algorithms that change speckle
statistics for reasons of improved visual appeal. Furthermore, when used in
compounding, RF data also avoids multiple interpolations of data (compared
to ultrasound compounding from B-mode see e.g. [Wein et al., 2006]), which
is detrimental to analysis. In this respect, Nakagami finite mixture model is
discussed in-depth in Sec. 6.6.3. Employing the Nakagami finite mixture model
for 3D freehand provides improved reconstruction and registration capabilities
and further allows the embedding of the view-dependency property of ultra-
sound in a statistical formulation. Performance and use is again show-cased
on transcranial ultrasound brain data.
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6.2 Related Work

Generation of 3D ultrasound volumes from the pooled data acquired by means
of tracking a 2D probe has been performed since the end of the 90s. A good
overview over state-of-the art reconstruction techniques is available in the
review article [Solberg et al., 2007], whereby we largely follow the exposition
presented therein. Following this article reconstruction methods can be divided
into three basic types: (i) Voxel-Based, (ii) Pixel-Based and (iii) Function-Based
methods.
Voxel-based (also known as backward-warping) methods generate a 3D voxel
grid space covering all spatially organized tracked 2D slices. In [McCann
et al., 1988, Sherebrin et al., 1996, Rohling et al., 1999] a voxel nearest neighbor
scheme is proposed, where each voxel of the grid is traversed and for the
nearest pixel(s) on one or several slices is searched. In [Trobaugh et al., 1994]
the two nearest surrounding slices of each voxels are determined and then
a distance weighted interpolation scheme is employed to compute the voxel
intensity value. Instead of using an orthogonal projection of the nearest slices,
assuming constant speed a trajectory between the nearest planes is estimated
in [Coupé et al., 2007], which in turn is used to find corresponding points for
interpolation. An efficient reconstruction approach with different weighting
functions is proposed in [Wein et al., 2006]. Instead of interpolating from the
scan-converted 2D images, nearest neighbor 1D scanline interpolations can be
used as proposed in [Berg et al., 1999,Martens and Gilja, 2005], which avoids
multiple interpolation steps. Similarly, 1D scanline interpolation is proposed
in [Thune et al., 1996], however, in combination with a trilinear interpolation
scheme.
The other major group of reconstruction algorithms is referred to as Pixel-Based
(also known as forward-warping). In this approach each pixel in each the input
domain is traversed and the intensity values distributed to the correspond-
ing associated voxels. In [Hottier and Billon, 1990] a pixel nearest neighbor
approach is proposed that associates each pixel to its nearest voxel. Multiple
pixel intensities contribution with averaging was proposed in [Nelson and
Pretorius, 1997, Gobbi and Peters, 2002]. Beside averaging there are also ap-
proaches proposing the most recent [Nelson and Pretorius, 1997] or maximum
value [Ohbuchi et al., 1992]. As the pixel-based methods are prone to produce
holes in the volume, there exist a multitude of strategies to encounter this
problem. Taking the average, maximum value or median in a local neighbor-
hood was proposed in [San Jose Estepar et al., 2003]. Furthermore, kernel
based methods have been proposed. In doing so a 3D kernel is placed on each
filled voxel and the intensity is applied with a distance-based weight in a local
neighborhood (kernel) [José-Estépar et al., 2003]. In contrast to the voxel-based
methods, the pixel-based methods do not require all data before reconstruction
can be initiated, facilitating real-time reconstruction on CPU [Gobbi and Peters,
2002] and GPU [Karamalis et al., 2009].
Last but not least the Function-Based methods employ functional interpolation.
This requires the selection of an interpolation function and during the recon-
struction the computation of associated coefficients, such that the function
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passes through the irregular spaced input data. Having computed the coeffi-
cients, the function can be evaluated at regular 3D grid points, yielding a dense
and smooth 3D reconstruction. In this respect, Radial Basis Functions (RBF)
were proposed in [Rohling et al., 1999]. Moreover, in [Sanches and Marques,
2000] a Rayleigh distribution-based reconstruction is proposed, employing a
Bayesian framework, which is further improved in terms of speed by making
use of a multi-scale approach [Sanches and Marques, 2002]. Furthermore, multi-
angle ultrasound compounding , also referred to as spatial compounding, has
demonstrated improvement in image quality, i.e., an increase in signal-to-noise
ratio (SNR) and reduction of ultrasound speckle, as described in the works
of [Shankar, 1986, Wilhjelm et al., 2000, Behar and Nikolov, 2006].
Having covered related work on general 3D freehand reconstruction, next we
provide an overview about applications in the domain of neurosurgery and
neurology. Due to the skull and its inhomogeneities ultrasound defocuses in
course of transcranial examinations, which results in loss of spatial resolution
and increased blur. Using a 2D array probe real-time phase aberration correc-
tion for transcranial imaging is proposed in [Ivancevich et al., 2004, Ivancevich
et al., 2006, Dahl et al., 2005]. The work was later extended in a helmet with
multiple transducer, for the early detection of stroke [Smith et al., 2009]. 3D
freehand ultrasound imaging technique has also been suggest and used for neu-
rosurgical interventions. In this respect, in [Unsgaard et al., 2006] an overview
of related target application is provided. In [Reinertsen et al., 2007], based
on a phantom data a vessel tree is reconstructed from Doppler ultrasound
images and registered to the corresponding structures obtained from MRI for
the purpose of brain shift analysis.
Beyond the reconstruction of multi-view ultrasound as applied in this thesis,
(Nakagami/Gamma) finite mixture models represent a widely used method
for data analysis. In this respect, finite mixture modeling has already been
applied successfully to ultrasound data, however, only for the case of 2D
data. Specifically, a Nakagami mixture model was used for segmentation of
the carotid artery in [Destrempes et al., 2009]. Beyond the medical domain,
mixture models enjoy wide-spread use. Furthermore, in [Copsey and Webb,
2003,Webb, 2000] Gamma mixture models are used for target detection in naval
radar imaging (multi-view). In [Hanson, 2006] a mixture of Gamma was used
to model censored lifetime data.
The target applications of models to be presented in the next sections are
registration and reconstruction. In particular a parametric statistical approach
in conjunction with similarity measures (in our case the J-divergence distance
metric) to registration of 3D ultrasound data is shown. Previous works [Ijaz
et al., 2011] have applied similarity metrics, e.g Kullback-Leibler (KL), Hellinger
and Bhattacharyaa directly, however, without any parametric distributional
assumptions on the data.
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Figure 6.1: System setup for a 3D freehand system using an optical tracker
with associated coordinate system Tworld. Illustrated is the special setup of a
transcranial freehand ultrasound system for bilateral reconstructions. Here
the patient wears a reference target, allowing the establishment of a reference
coordinate system denoted as Tre f . Multiple sweeps such as obtained for bilat-
eral scans can be merged into a single volume. Tracking data (transducer TUS,
reference Tre f ) is supplied by the camera and together with ultrasound image
data sent to a computer, where streams are synchronized. After acquisition,
3D reconstruction is performed on a computer.

6.3 Backward-Warping Reconstruction

In this section we will elaborate on the fundamentals of the voxel-based method
for 3D freehand ultrasound reconstruction. Three-dimensional freehand ultra-
sound reconstruction usually refers to the process of interpolating a series of
spatially arbitrarily arranged 2D ultrasound slices into a regular 3D Cartesian
grid, i.e. a regular voxel volume. The acquisition of 3D freehand ultrasound
follows a general setup - see Fig. 6.1 for an illustration of a freehand system
for bilateral reconstructions. In order to obtain the ultrasound data within a
spatial context, the ultrasound transducer needs the attachment of a tracking
device. Typically this is either a tracking target for an optical system or some
sensor such as for electromagnetic tracking devices. With this setup ultrasound
images can be acquired in 3D space. The purpose of this acquisition setup is
primarily to extend the field-of-view of ultrasound and to image anatomies
from different angles to provide complementary imaging information.
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In the following we will formalize the 3D reconstruction process. Concerning
this matter, we will denote the transformation from coordinate frame A to
coordinate frame B as BTA. Furthermore, we adopt the following scheme
of abbreviations to denote coordinate frames for transformations: (T)racker,
(P)robe (U)S Plane, (C)alibration phantom. The transformations are supposed
to be Euclidean with 6 degrees of freedom (DOF) consisting of 3 rotations
(a, b, g) and 3 translations (x, y, z), such that BTA decomposes to

BTA(a, b, g, x, y, z) =
0
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B

@
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(6.1)

Rigidly attaching a tracking object to the transducer probe provides the spatial
position of the transducer with respect to the tracking device coordinate
system, TTP. However, as one needs to correlate the pixel position in 2D
on the ultrasound plane to the 3D space, an ultrasound calibration needs to
be performed, providing TTU . See [Prager et al., 1998, Hsu et al., 2007, Mercier
et al., 2005] for a good review over different calibration methods and their
expected accuracy. Due to its simplicity and relatively good accuracy the single
wall calibration method is a frequently used method. Thereby a planar object
such as a nylon membrane immersed in a water tank requires being imaged at
different positions and angles. The imaged membrane appears as a (distorted)
line in the ultrasound image. Placing the phantom coordinate origin within
the plane one yields the following constraints for the kth image
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, (6.2)

where xk, yk, zk denote the 3D positions on the image plane, which has the con-
straint of z = 0 and uk, vk are 2D image coordinates of the imaged ultrasound
plane (obtained from B-mode image) in pixels that are mapped to metric scale
(mm) using scale factors sx, sy. Each imaged line gives up to two equations
(that are not necessarily independent) subject to the constraint zk = 0. For
calibration 11 parameters need to be estimated. That is CTP (2 rotations, 1
translation), TTU (3 rotations, 3 translations) as well as the scale factors sx
and sy require estimation. Having obtained a series of images such that an
overdetermined set of equations can be constructed, the parameters can be
obtained using an optimizer such as Levenberg-Marquardt.
Given the calibrated probe and tracking data, each pixel on the ultrasound
plane can be spatially located w.r.t to a 3D reference coordinate system. Com-
monly, the reference coordinate system by the tracking device is used, such
that we have the following chain of transformations, TTP · PTU = TTU , pro-
viding for each pixel the position in the coordinate system of the tracker.
Having a acquired a series of images in combination with their spatial location,
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a 3D volume can be generated from the measurements. Placing a grid in
the set of measurements and subsequently for each grid-position looking for
measurements within a certain range corresponds to the backward-warping
reconstruction process. This in contrast to forward-warping is less prone in
producing holes. In the following Sec. 6.3.1 we will explain several methods
that deal with the intensity reconstruction given the measurement collection
determined for each voxel.

6.3.1 Intensity Reconstruction Methods

As presented in Sec. 6.2 there exist a multitude of algorithms for determining
the voxel intensity from multiple measurements. In the following we will
formalize some popular methods as can also be found in [Wein et al., 2006].
For each voxel xi 2 X, where X denotes the 3D volume containing all slices
collected during an freehand acquisition phase, we have a set of tuples Ai =
�

(dj, yj)
 

denoting the measurements that are in range of xi, consisting of
distance values dj and intensity values yj as obtained from the ultrasound
slices. Then reconstruction methods are function f that map for each voxel xi
the corresponding tuples Ai to an intensity value f (Ai).

Nearest Neighbor

One of the simplest possibilities of reconstruction is the nearest neighbor ap-
proach. Thereby only the intensity value, which comes from the closest sample
point to the voxel centroid is considered [Sherebrin et al., 1996]. Therefore the
corresponding mapping function is defined as

f (A) = yj|dj = min
�

dj
 

. (6.3)

The absence of smoothing in this approach generally leads to sharp im-
ages [Rohling et al., 1999] and due to its simplicity facilitates rapid image
reconstruction.

Inverse Distance

Originally proposed for the interpolation of irregular spaced data [Shepard,
1968], in the inverse distance weighting approach, intensities are proportionally
weighted according to their relative distance to the voxel centroid with respect
to all other associated measurements. In the extreme case of dj ! 0 the
reconstruction fairly well approximates the original measured intensities.

f (A) = Â
j

yj
d�µ

j

Âk d�µ

k

, (6.4)

where µ > 1 is a smoothness parameter.
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Gaussian Kernel Smoothing

In order to obtain smooth images, kernel smoothing approaches are appropri-
ate. By placing a 3D Gaussian kernel on each voxel and distance-weighting the
intensities accordingly, smooth images can be generated. The corresponding
mapping function is defined as

f (A) =
Âj yje

�d2
j /s

2

Âj e�d2
j /s

2 , (6.5)

where s determines the width of the kernel and thus affects the strength of the
smoothing.
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Figure 6.2: MRI slices of the brain. Highlighted are the main structures in
the forebrain (cerebral cortex, corpus callosum, thalamus, hypothlamus and
brainstem (midbrain, pons, medula).

6.4 Application in Neurology

6.4.1 Brief Overview of Brain Anatomy

In the following we give a brief overview of the brain parts and their func-
tionality - see Fig. 6.2 for an illustration of the main structures of the brain.
The brain is the center of the nervous system in human beings, housing an
estimated number of 100 billion neurons, which are the biological processing
units [Sherwood, 2012]. Neurons are electrically excitable cells with the ability
to transmit and process information by means of electric and chemical means.
Assembled together into a complex network they build up a sophisticated
system that in its entirety provides important functionality such as cognition
and emotionality. Protected by the skull bone, the brain is suspended in a
liquid referred to as the cerebrospinal fluid (CSF), which fills the space between
the skull and the brain surface. Thereby the CSF fulfills a series of functions
such mechanical protection as shock absorber and immunological purposes.
Next we will have a closer look at the major structures that build up the brain.
At first we start with the brainstem, which broadly speaking connects the brain
to the body via the spinal coord. Despite its relatively small size compared
to the rest of the brain, the brainstem is an extremely important part as it
mainly acts as a relay station. Thereby it is largely responsible for activities
such as information transmission of the the motor and sensory signals from
the main part of the brain to the rest of the body. In this respect, the brainstem
is build up from several structural components with characteristic functions,
whereby we largely follow the description in [Saladin, 2010]. Being part of
the brainstem, the midbrain is responsible for the control of sensory processes
as well as providing signal relay functionality for vision and hearing [Barry
E. Stein and Stanford, 2000]. Next the medulla is involved in the control
of unconscious, essential functions such as blood circulation and breathing.
Finally, the pons is involved in the control of sleep, thereby playing a role in
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dream formation. Furthermore, the pons is responsible for the regulation of the
change of inspiration to expiration and to relay signals [Saladin, 2010]. Located
next to the pons, the cerebellum is responsible for precise and temporally
well-coordinated execution of motor processes as well as regulatory control
over muscle tone [Baehr and Frotscher, 2012].
Having covered the brain stem, we next discuss the main structures summa-
rized as the forebrain. Within the forebrain, the cerebral cortex constitutes the
largest part, which basically is the surface of the cerebrum. Broadly speaking, it
is a complex folded neuronal tissue sheet with a thickness of 1-2 mm in human
beings, which is often referred to as gray matter [Kandel et al., 2000]. Within
this structure important information processing functionality is located such
as memory, thought, language and thought. The other tissue in the cerebrum,
below the cerebral cortex is referred to as white matter and mainly serves
as interconnection between the neurons of the cortex. Another distinguished
structure is the hypothalamus. It is responsible for the control of hunger, thirst,
body temperature, aggression, fatigue, sleep as well as sexual behavior [Clark
et al., 2010]. Last but not least, the thalamus has sensory relaying functions to
the ceberal cortex related to vision, touch, hearing and taste, and it is involved
in the regulation of consciousness and sleep [Nevid, 2012].

6.4.2 3D Freehand Ultrasound for Neurology

A promising domain for 3D freehand ultrasound technology is transcranial
ultrasound for applications such as early diagnosis of Parkinson’s disease.
Within the corresponding data acquisition procedure image sequences are
taken through a narrow bone window at the temporal lobe of the patient. Ob-
tained imagery is capable of providing information about pathological changes
within the midbrain and its surroundings - see Fig. 6.2 for images of the brain,
highlighting certain major brain structures. Broadly speaking, the midbrain
constitutes are part of the brainstem (midbrain, pons, medulla) which connects
to the forebrain (cerebral cortex, corpus callosum, thalamus, hypothlamus),
which is clearly visible in transcranial ultrasound. This has already been an
active domain of research since the mid 90’s [Becker et al., 1994a], however,
only based on 2D images. Among the diseases that can be diagnosed using
this ultrasound-based technique are Parkinson’s [Becker et al., 1995b], atypical
Parkinson syndromes [Behnke et al., 2005,Walter et al., 2003,Walter et al., 2004],
depression [Becker et al., 1994b,Becker et al., 1995a], Dystonia [Naumann et al.,
1996] as well as multiple sclerosis [Horowski et al., 2011, Walter et al., 2009].
Concerning Parkinson’s disease, it has been established that the in 90% of the
cases, its development process is correlated with a hyperechogenic substantia
nigra [Berg et al., 2008, Walter et al., 2007]. Recent findings suggest that the
process related to the development of Parkinson’s disease is associated with
the agglomeration of ferrite deposits [Berg et al., 2002], which is responsible
for the formation of hyperechogenic areas in the midbrain region of substantia
nigra that are visible in transcranial ultrasound. Noteworthy, beside related to
serious and progressive movement disorder pathologies, the iron accumulation
in midbrain structures as such is associated with the normal aging process of
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Figure 6.3: Schematic illustration of midbrain and structures within.

the brain [Hof and Mobbs, 2001].
Transcranial ultrasound for the early detection of Parkinson’s disease is cur-
rently still performed using conventional 2D imagery, which makes the eval-
uation quite subjective due to the required experience in the method as well
on the ultrasound machine. During the diagnosis, a specific ultrasound plane
cutting through the midbrain is sought. On this plane the circumference of
the hyperechogenetic substantia nigra is measured - see Fig. 6.3 for an illus-
tration of the midbrain and structures herein. Risk is then assessed based on
empirical thresholds. In this respect, machine settings and imaging properties
clearly affect the differential threshold. Furthermore, user-experience affects
the choice of the appropriate ultrasound plane, which is another element of
uncertainty in the 2D based approach. The resulting subjectivity is therefore
responsible for a limited inter- and intra-observer reliability as was recently
shown in [Školoudı́k et al., 2007, Vlaar, 2011]. Altogether this typically leads to
a wide range of sensitivity varying between varying from 48-100% compared
to the final clinical diagnosis. Furthermore, the quality of the bone window
through which the transcranial ultrasound is performed leads to a fairly high
number of inconclusive results as reported in [Vlaar et al., 2009]. In this regard,
3D freehand ultrasound can be helpful to increase the diagnostic yield. See
an illustration of the 3D freehand setup for the acquisition of bilateral scans
Fig. 6.1. Noteworthy, in this setup a reference target is attached to the patient.
This allows for the reconstruction of volumes w.r.t. to this specific target. As a
result, multiple ultrasound sweeps can be merged to a single volume. In par-
ticular this facilitates the reconstruction of bilateral volumes that have shown
useful to physicians. This is due to the fact that in bilateral reconstructions
the outline of almost the entire skull is visible, which is helpful in getting an
orientation. Furthermore, the skull represents a feature that potentially can be
employed for registration tasks. See Fig. 6.4 for a 3D bilateral transcranial scan
reconstruction and midbrain structures therein.
Generating 3D data from 2D images by means of a tracked transducer sug-

gests being useful in (1) reducing the subjectivity in diagnosis, as no specific
ultrasound plane has to be selected for classification and (2) reducing the
drop out rate related to poor imaging of intracranial structures. Furthermore,
accurate registration of data is required to perform continuous staging of hy-
perechogenic substantia nigra regions in patients. This is quite problematic in
case of 2D due to the general limited repeatability of ultrasound acquisitions,
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(a)

(b)

Figure 6.4: Ultrasound slices obtained from transcranial reconstructions. (a)
shows image reconstructed from a bilateral 3D freehand ultrasound transcranial
brain scan, highlighted structure in the center corresponds to midbrain. (b)
shows corresponding magnified midbrain area with hyperechogenic substantia
nigra segments highlighted in red, which are used for the classification of
Parkinson’s disease.

as this requires the recovery of virtually same plane position.
In order to assess the applicability of 3D ultrasound data for Parkinson’s dis-
ease a first pilot study was conducted. Therefore data was classified based on
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measurements of the midbrain and the substantia nigra echogenicities. The
data set consisted of 23 subjects from which 3D freehand transcranial scans
were acquired: 11 subjects with Parkison’s disease, 11 healthy controls and 1
drop out (due to no or partially visualizable intracranial structures). Evalu-
ation was performed on blinded segmentations of relevant structures in the
remaining 22 subjects.
For classification a support vector machine (SVM) was employed using Radial
Basis Functions (RBF) with associated variance parameters G as well as complex-
ity parameter C (determining the smoothness of the classifying hyper-plane).
The optimal parameter set for G and C were obtained using an automatic grid
search with associated ranges G 2 ⇥

10�8, 106⇤, C 2 ⇥

10�2, 10.9
⇤

. Given the 3D
freehand reconstructed volumes, several features were tested for classification,
including volumetric as well as planar properties. However, best results were
achieved using a multi-dimensional feature vector consisting of the volumes
of substantia nigra echogenicities in the left and right hemispheres, and the
midbrain volume. Thereby classification yielded 90.9% sensitivity and 72.7%
specificity. Furthermore, we obtained a drop-out rate of around 4%, signifi-
cantly lower than using the 2D method, which is commonly reported to be in
a range of 10-20% [Walter et al., 2007]. However, independent studies based
on classification of substantia nigra area measurements directly obtained from
B-mode imagery (on more than 100 subjects) have shown similar performance:
sensitivity and specificity of around 90% were reported in [Berg, 2006]. Con-
cerning this matter, employing volumetric features instead of only measuring
2D image properties promises powerful in diagnostics. First results in the
pilot study suggest comparable classification performance to the B-mode based
method, simultaneously being less dependent on the investigator’s experience
and bone window quality.
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6.5 Confidence Weighted Reconstruction

Given that one of the main purposes of 3D freehand ultrasound is to extend
the field-of-view of ultrasound and to visualize image anatomies from different
angles, the reconstruction process is often confronted with complementary
imaging information. This is particular the case in the presence of shadow arti-
facts, which occur in images due to among others total reflection of ultrasound
beams. Shadow areas in image might cause severe reconstruction artifacts,
if not treated properly. In the following we present a method incorporating
confidence maps as presented in Sec. 4.6.2, to guide the reconstruction process
for images that are prone to contain shadow regions.

In our example application we acquired 3D-freehand ultrasound sequences
of the human femur from different acquisition angles. The acquisition was
performed with an Ultrasonix MDP machine (Ultrasonix Medical Corporation,
Richmond, Canada) in combination with a convex C5-2/60 transducer that was
tracked with an optical NDI Polaris Spectra system (Northern Digital, Waterloo,
Canada). For the purpose of the experiment and the sake of simplicity the leg
of the volunteer was immobilized, i.e., tied up to a bed to ensure consistent
acquisitions from different angles. Clearly, this is not an advisable procedure for
patients, however, clinically viable solutions exist in this direction. In [Rohling
et al., 1997] a pre-registration of volumes was proposed for the purpose of
spatial compounding. Thereby multiple volumes are merged to a single
improved on featuring higher quality.

Within the ultrasound scans of the femur, beside muscle tissue pretty
much only the bone surface perpendicular to the ultrasound beam direction
is visible because of the view-dependency and shadowing after the tissue-
bone interface. Therefore, acquiring the bone from different views allows
to obtain the missing bone surface and finally after reconstruction recover
the complete bone structure. Such advanced reconstructions could be of use
for a series of applications such as computer-aided orthopedic surgery with
ultrasound guidance, as described in the works of [Penney et al., 2006, Barratt
et al., 2006, Barratt et al., 2008].

As the images with view of the bone from different directions are containing
complimentary information, the question of how to weight the contribution of
overlapping or close ultrasound slices arises during the reconstruction process
[Rohling et al., 1999, Grau et al., 2006]. This is of particular interest considering
the presence of artifacts, i.e. shadow areas that contain low-confidence intensity
information. Specifically, in the case of overlap between bone and shadow
information due to view dependency issues, it is desirable to suppress shadow
information in order not to lose important intensity information from relevant
structures.

6.5.1 Method

In the following we will describe the process of reconstruction more formally.
During the 3D freehand acquisition, a series of 2D images B-mode or RF
images is obtained. During the phase of reconstruction, the image intensity is
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distributed on a 3D lattice W, where at each discrete voxel position i 2 W an
intensity is computed from a set of measurements denoted as Ai. Thereby Ai
is a set of tuples Ai =

�

(yj, dj)
 

, where each a 2 Ai consists of a distance dj
and associated pixel intensity value yj. Specifically, dj denotes the Euclidean
distance between the voxel center and the pixel position. Thereby all points in
the tuple set fulfill the distance constraint di  D, where D denotes the radius
of a sphere limiting the measurements range of each voxel. A common choice
for intensity-based reconstruction is to employ a Gaussian weighting function
as given by

RG(A) = Âi yied2
i /s

2

Âj ed2
i /s

2 , (6.6)

where RG(A) is the reconstructed voxel intensity given the set of tuples A,
containing the measurements. As a result, the reconstruction is a combination
of a smoothed distance-weighted sum of pixel intensities in proximity to
the voxel y. However, this results in pixels from shadow areas and tissue
areas to contribute alike in the reconstructed voxel intensity. In the optimal
case, one would like to reduce the contribution of shadow areas to areas
were complementary anatomical information is available. Here the confidence
estimation can be directly used for exactly this purpose. More specifically,
for each 2D ultrasound image acquired (either B-mode or RF), we estimate
a confidence map, which for each pixel gives the probability of containing
reliable intensity information - see Sec. 4.6.2 for details on the confidence maps
and their computation. Subsequently, in the reconstruction process we take the
confidence into account to weight the intensity information accordingly. More
formally, we define a confidence-based weighting function as

RC(A) = Â
j

yi exp
✓

� (ci �max(C))2

(max(C))2

◆

, (6.7)

where A =
�

(yj, dj, cj)
 

is now a triple, augmented by the confidence values
cj, where C =

�

cj
 

denotes the set of all confidence values associated to the
voxel. Taking the confidence maps into account, the corresponding weighting
function allows to weight the contribution of different slices based on their
confidence; reducing significantly the contribution of low confidence regions.
In this respect, regions like shadow are typically associated with low confidence
values and are therefore down weighted in the confidence based reconstruction
approach. This in turn provides predominance to useful structural information.

6.5.2 Results

Integration of confidence-weighting into the reconstruction process leads to im-
ages of superior quality with comparatively higher contrast than conventional
approaches. Figure 6.5 and 6.6 show transverse and sagittal slices from an
ultrasound volume of a human femur, reconstructing with a Gaussian (RG) and
the confidence-based (RC) weighting function. The improvement in contrast
is evident for the reconstruction utilizing the confidence estimate, especially
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for the bone region. We measure the improvement with the Weber contrast as
given by

W =
I � Ib

Ib
, (6.8)

where I is the mean intensity inside the femur, Ib the background intensity
outside the femur, and I, Ib 2 [0..1]. For the reconstruction using the RG
function the contrast is W = 0.32 and using the RC function it improves to
W = 0.45. Noteworthy, the improvement in contrast is not the result of a
linear intensity remapping, but the result of reducing the contribution of low
confidence region. This is evident when examining the joint histogram, shown
in Fig. 6.5(c), between two volumes reconstructed with RC and RG.

6.5.3 Conclusion

We presented confidence-based weighting approach for the process of 3D
ultrasound reconstruction. The weighting aims to mitigate the effect of imaging
artifacts and noise. Applicability was demonstrated on reconstructions of the
femur due to the large presence of shadowing behind bone surface, which
is obviously detrimental for standard reconstruction approaches. However,
further fields of application are conceivable such as ultrasound of the brain
where signal drop-out is prominent. This and further domains have to be
evaluated in future studies.
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6.5 Confidence Weighted Reconstruction

(a) Gaussian RG

(b) Confidence RC

(c) Joint Histogram

Figure 6.5: Image (a) and (b) show a transverse slice of a human femur from a
reconstructed volume using the RG and the confidence-based RC weighting
function, respectively. Image (c) shows the joint histogram of two volumes, one
reconstructed with RG and the other with RC.
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(a) Gaussian RG (b) Gaussian Enlarged

(c) Confidence RC (d) Confidence Enlarged

Figure 6.6: Image (a) and (c) show a sagittal slice of a human femur from
a reconstructed volume using the RG and using the confidence-based RC
weighting function, respectively. Image (b) and (d) show an enlarged version
of the regions marked with the white box.
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6.6 Mixture Modeling of Multi-View 3D RF Ultrasound

Figure 6.7: Distributional change for cones f1 and f2 within a single view of
midbrain.

6.6 Mixture Modeling of Multi-View 3D RF Ultra-
sound

6.6.1 Freehand 3D RF Data

In order to obtain 3D ultrasound RF freehand data we follow the approach
of [Wein et al., 2006], with the important and fundamental distinction of using
RF data rather than B-mode data. Due to the different spatial relationship of
the data, RF requires disintegration into individual scanlines such that the
reconstruction process becomes ray-based - see Fig. 6.7. Beside the intensity
data we also record geometric information such as view point and direction.
This additional data is used in a follow-up processing step. Using RF instead
of B-mode is advantageous, since we have access to the unfiltered native signal,
uncorrupted by proprietary filters.

The distribution of the envelope of the RF signal, resulting from backscat-
tered tissue echo, has been shown to be modeled, in a simple and versatile way,
by the Nakagami distribution [Shankar, 2000]. Thus we assume all intensities
in the RF envelope image W to follow a Nakagami distribution

N (x|µ, w) =
2µ

µx2µ�1

G(µ)w

µ

exp
⇣

� µ

w

x2
⌘

s.t. 8x 2 R+ , (6.9)

with µ, w denoting the shape and scale parameters respectively.

6.6.2 Mixture Model Motivation

It is well-known that ultrasound is highly view-dependent [Hedrick et al.,
2004], and thus it desirable to incorporate this property when modeling back-
scatter. However, we are not interested in the individual backscatter intensities,
but in the distribution within a small finite volumetric element (voxel) w.r.t
views of a data point x, i.e.

p(x) =
Z

D(x)
p(x|f)p(f)df , (6.10)
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where D(x) is the set of all possible viewing cones f of x. The distribution
p(x) is approximated by a finite mixture model of K Nakagami densities
[Destrempes et al., 2009],

p(x) ⇡
K

Â
k=1

p(fk)p(x|fk) =
K

Â
k=1

wkN (x|µk, wk) s.t.
K

Â
k=1

wk = 1 , (6.11)

where the distribution p(fk) of the kth cone is represented by a mixture weight.
The K viewing cones are assumed approximately evenly spaced around the
object of interest. See Fig. 6.7 for illustration of viewing cones of the mid-
brain with beams originating at different skull positions. A popular choice for
finite mixture model estimation is the Expectation-Maximization (EM) algo-
rithm [Dempster et al., 1977]. However, as the EM algorithm can potentially
over-fit the data and is also quite flexible in component modeling, we do not
instantiate it on the pooled data from all views. Rather, we instantiate individ-
ual mixture estimations within geometrical subspaces obtained from each view
(each containing viewing cones) that were recorded during the acquisition
process. Altogether this yields robust component estimation, s.t.

p(x) =
N

Â
i=1

Ki

Â
k=1

wk p(x|fi,k) =
N

Â
i=1

Ki

Â
k=1

wkN (x|µi,k, wi,k) . (6.12)

Specifically, within each view i 2 N we determine the number of components
K  Kmax, following the approach of Frayley and Raftery [Fraley and Raftery,
2002]. Here the Asymptotic Minimum Description Length (AMDL / BIC) prin-
ciple selects the finite mixture model with d free parameters, which minimizes
the quantity �2 logL+ d log n, where L is the likelihood of data given model
parameters and n the number of observations. As a direct consequence the
number of components naturally varies from point to point. This estimation
process is performed voxelwise in the entire volume, yielding a mixture model
representation for each voxel.

6.6.3 Mixture of Nakagami

In the following section we will elaborate on the gamma mixture estimation for
envelope detected RF data as proposed in [Destrempes et al., 2009]. Although
the data follows Nakagami distribution, the Gamma distribution may be used
instead as they are related by a simple random variable transformation [Pa-
poulis and Pillai, 2002, p.93], given by Y ⇠ GA(x | µgam, wgam), X ⇠ N (x |
µnak, wnak) )

p
X = Y(µnak, wnak/µnak). The mixture of gamma is defined as

p(x) ⇡
K

Â
k=1

p(fk)p(x|fk) =
K

Â
k=1

wkGA(x|µk, wk) s.t.
K

Â
k=1

wk = 1 , (6.13)

where q = {wi, µi, wi}i=1..K. See Fig. 6.8 for an illustration of a Nakagami
mixture model. Following the Bayesian paradigm we need to define a prior
distribution for the parameters in q. In this respect, the mixture weights wk are
modeled using a Dirichlet prior [Escobar, 1994]

p(w1, ..., wK) = D(w1, ..., wK|A0, a1, ..., aK), (6.14)
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Figure 6.8: Illustration of Nakagami mixture model. The mixture model
consists of three components, represented with solid lines. The dashed line
represents the weighted sum of all components.

where D denotes the Dirichlet distribution defined as

D(x1, ..., xK|A0, a1, ..., aK) =
G(A0)

’K
i=1 G(A0ai)

K

’
i=1

xA0ai�1
i s.t.

K

Â
k=1

xk = 1, xi � 0 ,

(6.15)
where A0 denotes a confidence level. Given p1, ..., pK ⇠ D it follows that the
mean of pi corresponds to ai, with the associated variance of ai(1� ai)/(A0 +
1). Furthermore, we assume an uniform prior for the shape µk and the scale
wk parameters of each Gamma component GA defined as

p(µ1, w1, ..., µK, wK) µ

(

1, on U
0, otherwise

, (6.16)

which is restricted to a compact set U = ([µmin, µmax]⇥ [wmin, wmax])K. Given
the priors on the distributional parameters q, we are now able to estimate
parameters using a maximum a posteriori (MAP)

q̃ = arg max p(y|q)
| {z }

Likelihood

· p(q)
|{z}

Prior

= arg max p(q|y)
| {z }

Posterior

, (6.17)

estimator by employing the EM-algorithm - see Sec. 4.6.7. The maximum-a-
posterior EM (MAP-EM) approach was originally proposed in [Green, 1990]
for reconstructions of emission tomography. Note, estimation without the
prior corresponds to the normal EM-algorithm as proposed in [Dempster et al.,
1977]. In particular, computing the MAP-EM instead of the standard EM leaves
the E-step unchanged. Only the M-step is affected, as in case of MAP-EM
not the expected log-likelihood (see Eq. 4.100 ) is maximized but the expected
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posterior probability,

Q(q, q

(t)) = E
h

log p(X, Z|q) + log p(q)|X, q

(t)
i

=

Â
z2Z

log {p(X, z|q)p(q)} p(z|X, q

(t)),
(6.18)

which in case of a Gamma mixture is up to a constant equal to the following
term

N

Â
j=1

K

Â
i=1

�

logGA(xj|µi, wi) + log wi
�

p(zj = i|X, q

(t))

+
K

Â
i=1

(A0ai � 1) log wi.

(6.19)

As outlined in Sec. 4.6.7 the E-step consists in computing the class association
probability, which corresponds to p(zj = i|X, q

(t)) and in the case of a Gamma
mixture is defined as

p(zj = i|X, q

(t)) =
wiGA(xj|µi, wi)

ÂK
i=1 wiGA(xj|µi, wi)

. (6.20)

For the M-step we need to augment Eq. 6.19 with Lagrange-multipliers l

in order to accommodate for the constraints ÂK
i=1 wi = 1, such that we yield

N

Â
j=1

K

Â
i=1

�

logGA(xj|µi, wi) + log wi
�

p(zj = i|X, q

(t))

+
K

Â
i=1

(A0ai � 1) log wi + l

 

1�
K

Â
i=1

wi

!

.

(6.21)

Next we have to find the parameter maxima by zero-setting the derivatives
of Q(q, q

(t)) - Eq. 6.21 - w.r.t. the parameters in q. First we start with the
derivatives w.r.t. the mixing weights wi.

0 =
∂Q(q, q

(t))
∂wi

=
1
wi

 

N

Â
j=1

p(zj = i|X, q

(t)) + A0ai � 1

!

� l (6.22)

Setting Pi = ÂN
j=1 p(zj = i|X, q

(t)) we yield Pi + A0ai � 1 = wil. With l =
N + A0 � K that we obtained by reformulation,

N

Â
j=1

p(zj = i|X, q

(t)) + A0ai � 1 = wil , (6.23)

K

Â
i=1

�

N

Â
j=1

p(zj = i|X, q

(t)) + A0ai � 1
�

=
K

Â
i=1

wil , (6.24)

N

Â
j=1

l

Â
i

p(zj = i|X, q

(t)) + A0

K

Â
i=1

ai �
K

Â
i=1

=
K

Â
i=1

wil , (6.25)

N + A0 � K = l (6.26)

144



6.6 Mixture Modeling of Multi-View 3D RF Ultrasound

(since Âl
i=1 p(zj = i|X, q

(t)) = 1 and Âl
i=1 ai = 1) we yield the following

expression

wi =
Pi + A0ai � 1
N + A0 + K

. (6.27)

Next the derivative w.r.t to the shape parameter µi is defined as

0 =
∂Q(q, q

(t))
∂µi

=
N

Â
j=1

�� log wi � y(µi) + log xj
�

p(zj = i|X, q

(t)). (6.28)

Finaly, the derivative w.r.t. to the scale parameter wi is given by

0 =
∂Q(q, q

(t))
∂wi

=
N

Â
j=1

 

� µi
wi

+
xj

w

2
i

!

p(zj = i|X, q

(t)). (6.29)

Setting Qi = ÂN
j=1 xj p(zj = i|X, q

(t)) in combination with Eq. 6.29 implies

wi = Qi
µi Pi

. Furthermore, setting Ri = ÂN
j=1 log xj p(zj = i|X, q

(t)) and substitut-
ing this together with Qi in Eq. 6.28, one yields the updating equation for the
shape parameter µi defined as

log µi � y(µi) = log(Qi/Pi)� (Ri/Pi), (6.30)

with y(x) denoting the digamma function. Given the concavity property of
the log function on (0, •) and Jensen’s inequality, it follows that log(Qi/Pi)�
(Ri/Pi) � 0, where equality holds if and only if all xj are equal, which has
probability 0. Furthermore, since log x�y(x) is a decreasing function on (0, •)
with the properties limx!0 log x� y(x) = • and limx!• log x� y(x) = 0, the
scale parameters with µi > 0 can be found using binary search.

6.6.4 Registration

For registration we perform a voxel-wise distribution matching employing the
J-divergence in conjunction with a data fidelity term. This provides higher
robustness compared to a pure intensity-based model, as was also observed
in [Ijaz et al., 2011]. Considering a fixed volume (A) and moving volume
(B), we seek the rigid transformation T̂ that yields optimal spatial alignment
between the two, s.t. T̂ = arg minT DPJD(A, T(B)) for the pseudo-distance

DPJD(C, D) = arg min
i,j

Z

Â
k=1

J ( f i
Ck

, f j
Dk

) · exp
⇣

l ·
⇣

(1� wi
Ck

) + (1� wj
Dk

)
⌘⌘

,

(6.31)
where wi, wj � t. We refer to this pseudo-distance as Pseudo-J-Divergence (PJD).
For each voxel k 2 Z it takes the mixture components pair f i

Ck
and f j

Dk
from

the two volumes C and D, respectively, to be registered with least J-divergence
1 [Jeffreys, 1946] times the exponentially scaled sum of corresponding mixture
weights wi

Ck
, wj

Dk
(with minimum weight t, and a scaling parameter l). The

1Jeffreys (J) divergence is also known as symmetric KL distance.
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Algorithm 6.1 Expectation Maximization for Gamma Mixture Model

Input: Data X = {x1, ..., xN}
Define initial values: q

(0) =
n

wi, µ

(0)
i , s

(0)
i , s

(0)
i

o

i=1..K
for j=1,..,N do

Random draw of cj = i with uniform probability wi = 1/K
end for
for i=1,...,K do

Set wi = Ni+A0ai�1
N+A0�K , with Ni denoting the number of elements in X

associated with class i
Compute the MLE estimates µi, qi for class i based on the associated data

end for
repeat

t  t + 1
E-Step: Compute class association probabilities/responsibilities

for all j 2 N, k 2 K do

p(zj = k|X, q

(t)) =
wiGA(xj|µi, wi)

ÂK
i=1 wiGA(xj|µi, wi)

end for

M-Step: Estimate the the parameters given the current class associa-
tions/responsibilities

for all k 2 K do
Update class probabilities:

w(t)
k =

Pi + A0ai � 1
N + A0 � K

with Pk =
N

Â
j=1

p(zj = k|X, q

(t))

Compute the shape parameter µk using binary search

Solve: log x� y(x) = log
Qk
Pk
� Rk

Pk

Qk =
N

Â
j=1

xj p(zj = k|X, q

(t))

Rk =
N

Â
j=1

log xj p(zj = k|X, q

(t))

x ! µk
Update the scale parameter wk: qk = Qk

µk Pk
end for

until Convergence of parameters or log-posterior
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pseudo-distance DPJD does not satisfy the triangle inequality, but inherits
symmetry and uniqueness from the J-divergence J ( f , g). The exponential
weight in Eq. 6.31 is a measure of confidence for the pseudo-distance, punishing
distances formed from components with low mixture weights, since these
components are assumed to be less descriptive of the underlying distribution.
The J-divergence between two Gamma distributions f , g 2 GA, is the sum of
two non-symmetric KL distances with switched arguments, s.t.

J ( f , g) = KL( f , g) + KL(g, f ) =
Z

log
f (x)
g(x)

( f (x)� g(x))dx =

(µa � 1)q(µa)� log wa � µa � log
G(µa)
G(µb)

+ µb log wb � (µb � 1)(q(µa) + log wa) +
waµa

wb
.

(6.32)

Although the data follows Nakagami distribution, the Gamma distribution
may be used instead as they are related by a simple transformation, given by
Y ⇠ GA(x | µgam, wgam), X ⇠ N (x | µnak, wnak) )

p
X = Y(µnak, wnak/µnak).

6.6.5 Reconstruction

Given the voxel finite mixture model representation we can perform a novel
type of reconstruction. Therefore a reference component is chosen from the
mixture model for each voxel. Here we opted for the component associated
with the maximum mean intensity, although other approaches are conceivable.
However, this criterion guarantees that no high intensity backscatter is missed
during reconstruction. Note that artifacts, such as shadows, might require
specific treatment. By optimizing the reference component parameters, s.t.
the sum of geodesic distances to neighbors component parameters, on the
manifold G of Gamma model parameters, is minimized, smoothness of the
reconstructed volume is achieved. Thus, given a point qa = (µa, wa) 2 G, the
geodesic distance Dgeodesic to a locally neighboring point qb = (µb, wb) 2 G is
bounded s.t.

Dgeodesic(GA(x|qa),GA(x|qb)) 
�

�

�

�

d2 log G
dµ

2 (µb)� d2 log G
dµ

2 (µa)
�

�

�

�

+
�

�

�

�

wa · log
wa
µb

�

�

�

�

,

(6.33)
[Arwini et al., 2008, Ch. 7] and [Dodson and Matsuzoe., 2002]. Applying

Eq. 6.33, the reference distribution qref is optimized by minimizing the sum of
geodesic distances to all of its neighbors s.t.

q̂ref = argmin
qref

Â
k2Nref

Dgeodesic(qref, qk) , (6.34)

keeping the neighbours qk 2 Nref fixed, where Nref defines the neighborhood
of a reference voxel. This yields a spatially consistent image without over-
smoothing or loss of detail in terms of highlights. Typically a few optimization
steps are sufficient and allow for a fast reconstruction.

147



Chapter 6: 3D Freehand Ultrasound

For data reconstruction within a voxel we apply a Gaussian-weighted (GW)
[Wein et al., 2006] reconstruction scheme in order to increase homogeneity,

yj =
1
Z

N

Â
i=1

xie�d2
i /s

2
s.t. Z =

N

Â
i=1

e�d2
i /s

2
, (6.35)

yielding the reconstructed intensity yj at voxel position j. Here the intensities
xi are sampled from the reference distribution, where di are the distances from
the voxel centroid that can be obtained by regression from the measured data.

6.6.6 Results

Registration

For testing the registration performance multiple transcranial 3D volumes
for several patients were acquired. An acquisition consisted of bilateral scans
using an Ultrasonix MDP (Ultrasonix Medical Corporation, Richmond, Canada)
ultrasound machine in combination with an optical tracking system NDI Polaris
Spectra (Northern Digital, Waterloo, Canada); in doing so various sweeps
from numerous possible views were obtained. Furthermore, each patient was
recorded with a reference target rigidly attached to the head, which allows to
establish ground truth position between numerous volumes.

The three-dimensional RF datasets were acquired with a phased-array probe
with a frequency of 3.3 MHz and depth 14 cm. RF data is sampled with 40
MHz. Each 3D RF data set is built from approximately 4000 RF images (approx.
2000 images from each side of the skull), each having a resolution of 3648 x 96
pixels. Volumes were reconstructed with isotropic voxel size of 0.65 mm. For
the mixture modeling we assumed N = 2 views (bilateral) as well as Kmax = 2.
This yielded a maximum of four mixture components per voxel and sufficiently
modeling the data while avoiding over-fits.

For evaluating the quality of the proposed approach, we performed reg-
istration by block matching, which is commonly used for ultrasound [Poon
and Rohling, 2005, Krucker et al., 2002]. For each patient two multi-view
volumes are constructed for distinct ultrasound data. These two distinct vol-
umes are then registered by taking 27 equally distributed blocks (each of size
6⇥ 6⇥ 6 voxels) for matching, within each multi-view volume. Parameters
for our distance metric were set to l = 2 and t = 0.3. In order to be able
to perform statistics on the quality of the registration approach, we perform
a random rigid-registration study with 10 runs per individual block. For
each run we randomly displace the moving block with initial deviation of
±6 cm in each spatial direction from its ground-truth position. This is fol-
lowed by registration runs at each position using state of the art similarity
metrics for ultrasound, aligning the moving and the fixed volume. In spite
of rigidity, registration of transcranial brain ultrasound brain data is quite
challenging due to the relative low SNR as a result of variable transmission
through skull bone and the low transducer frequency required. Nevertheless,
the proposed pseudo-J-Divergence (PJD) yields up to 15% better registration
results compared to NCC and SSD [Poon and Rohling, 2005, Krucker et al.,
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Dataset SSD NCC PJD
#1 3.2± 1.3 3.0± 1.3 2.7± 1.1
#2 2.7± 1.3 2.7± 1.2 2.4± 1.2
#3 3.2± 1.2 3.3± 1.1 2.9± 1.1
#4 3.7± 1.1 3.4± 1.1 3.0± 1.1
#5 3.4± 1.1 3.2± 1.1 2.9± 1.1
#6 3.3± 1.2 3.4± 1.2 2.9± 1.1

Table 6.1: Median errors (mm) and standard deviation of registration study

2002] (intensity volumes created using GW [Wein et al., 2006]), as can be seen
in Tab. 6.1. In order to assess the significance of the results statistical tests
were performed. The Hodges-Lehmann (HL) confidence interval for difference
in median error between PJD and NCC is (-0.25, -0.08), at confidence level
0.95. The corresponding confidence interval for PJD/SDD is (-0.3, -0.12). The
P-value for a Mann-Whitney U-test for PJD/NCC is 0.14E-3, and for PJD/SSD
the P-value is 0.2E-6. Thus it is clear that the median error of PJD is statistical
significantly lower than both SSD and NCC, at level 0.05. Obtained results are
quite close to technical possible limits due to the errors that are propagated
through the processing chain. In this respect, ultrasound calibration affects the
accuracy significantly, depending largely on the approach used. In our setup,
calibration was performed using a single wall phantom, yielding an estimated
error between 1-2 mm [Hsu et al., 2007, Mercier et al., 2005].

Reconstruction

As reconstruction methods are difficult to compare due to the highly subjec-
tive nature of ultrasound image analysis, we will elaborate on the obvious
differences between a state of the art method (Gaussian-weighted, increased
homogeneity favorable for segmentation and registration [Wein et al., 2006])
and our approach as well as discuss the potential implications. Reconstructions
following the geodesic approach yield more coherent and homogeneous im-
ages - see Fig. 6.9. Furthermore, checker-board and radial artifacts disappear,
which are visible in the Gaussian-weighted approach due to the multi-view
mixture nature of the signal. Additionally, areas like the midbrain exhibit
sharp edges. Regions that are clinically relevant for classification such as the
substantia nigra, where the level of hyperechogenicity is a risk-assessment
criterion for Parkinson’s disease [Walter et al., 2007], are more pronounced
and less blurred (see Fig. 6.3 for a schematic illustration of the midbrain and
structures within). The clinical benefit for applications such as classification,
however, remains to be evaluated in further clinical trials.

6.6.7 Conclusion

We have presented a finite mixture model representation of 3D RF data exploit-
ing its view-dependent statistical properties. Making use of view-dependency
has potential to facilitate several applications; specifically, results from a block-
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Figure 6.9: Transcranial ultrasound reconstructions. Butterfly-shaped region in
the image center corresponds to the midbrain. Left: Gaussian-weighted. Right:
Geodesic.
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matching based rigid registration study suggest improvements in terms of
accuracy compared to conventional similarity metrics. Moreover, image recon-
struction promises to be an interesting domain of application. In this respect
further application scenarios will be studied. A possible domain could be
ultrasound for the bone, where 3D could prove beneficial for fracture reduction
images taken from multiple views.
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Chapter 7

Conclusion

In this dissertation, we discussed several issues in the field of ultrasound imaging.
The main focus was reconstruction of 3D ultrasound from 2D images and the image
registration by incorporating ultrasound specific statistical properties. In this respect,
issues of ultrasound specific texture modeling incorporating modality specific statistic
properties. Furthermore, we also presented the 2D analytic signal and its positive effect
on statistical modeling of ultrasound data.

Ultrasound Data Modeling

We presented an overview of the ultrasound processing pipeline in conven-
tional machines. The underlying concepts served as basis for the following
adaptation of methods to ultrasound, in particular the usage of RF data in-
stead of B-mode. This was followed by an overview over the various existing
distributional models for RF data, from which due to its versatility and sim-
plicity the Nakagami was chosen for follow-up methods. Next the application
of the 2D analytic signal was proposed for computing the envelope of RF
data. The resulting improved statistical properties were illustrated by means of
goodness-of-fit tests. Incorporation of the 2D analytic signal ultrasound spe-
cific similarity measures then allowed us to directly benefit from the advanced
statistical properties.

Ultrasound Texture Modeling

Next we presented an overview about texture modeling in ultrasound imaging.
Particular focus was devoted to statistical approaches. We showed how texture
patterns can be tied together with a learning based metric to model the notion
of textural similarity. This was followed by an application of shadow detection
in ultrasound images containing mirroring and reverberation artifacts due to
total reflection. The proposed method made use of statistical texture analysis,
mixture modeling of Nakagami images as well as confidence maps.
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Ultrasound Similarity Metrics

In this chapter we presented two similarity metrics for 2D ultrasound images.
At first we presented a hybrid similarity metric, combining local and global
properties. In this respect, distribution matching was performed on global scale
due to its robustness towards noise. On the local scale, a statistics-based variant
of the Fuzzy Local Binary Patterns was used to capture small textural details.
This was followed by a similarity metric based on the bivariate Nakagami
distribution, for which we proposed a locally adaptive parameter estimation
scheme, implicitly making use of the 2D analytic signal. All proposed similarity
metrics yielded superior results in random registration studies as compared to
conventional metrics such as SSD and NCC.

3D Freehand Ultrasound

We discussed the use of 3D freehand ultrasound systems and how its use can
lead to a qualitative better and more subjective early diagnosis of Parkinson’s
disease. This was followed by the presentation of several advanced techniques
for improved 3D freehand ultrasound reconstruction. In this respect, we con-
sidered the creation of bilateral ultrasound volumes for neurological diagnosis.
Next the incorporation of confidence maps as an intensity weight function
for the reconstruction process. Finally, we concluded the chapter with the
multi-view 3D RF ultrasound data representation employing Nakagami finite
mixture model formalism. This allowed for more coherent images with reduced
artifacts, while increasing the accuracy in registration procedures.
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Chapter 8

Perspectives

In this dissertation, we discussed several topics in the domain of ultrasound image
analysis and presented extensions or alternatives to state of the art approaches. In the
following we discuss further possible steps on how to continue this line of research.

3D Multi-View Ultrasound

We presented an approach for multi-view data representation of 3D freehand
ultrasound employing a finite mixture model under Nakagami distribution
assumption. We believe that his modeling approach has many potential applica-
tions that should be investigated. At first, the influence of different reconstruc-
tion methods based on the mixture components should be evaluated. Different
applications require reconstructions methods that are tailored to the specific
needs. For multi-view transcranial imaging we chose the maximum-mean
component approach, which seemed attractive for the envisaged diagnostic
purpose of early detection of Parkinson’s disease. Given that the target struc-
ture e.g. substantia nigra, becomes more echogenic with an increased risk of
Parkinson’s disease, high intensities should be preserved, while not degrading
the overall image contrast. In this respect, it has to be investigated in a clinical
study how different reconstructions method affect sensitivity and specificity, in
particular for the case of early detection of Parkinson’s disease.
Based on the mixture model assumption we proposed the Pseudo-J-Divergence
(PJD) similarity measure making use of the distributional J-Divergence measure
and the mixture weights. However, PJD does not fulfill the triangle inequality
and therefore is only a pseudo metric. Future work could consider the deriva-
tion of a real metric, which has the potential to further improve the registration
accuracy and thus even more exploit the robustness of the statistical data
representation.
The mixture distributions in this thesis have all been estimated using the
Expectation-Maximization (EM) algorithm. However, the computational com-
plexity is not negligible in particular when the reconstruction is performed
on large scale 3D volumes. In this respect, it might be interesting to develop
strategies to port estimation to GPU.
In near future, 2D arrays will probably, at least partially, replace conventional
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transducers and make the acquisition of 3D data less cumbersome. The issue of
multi-view data representation will prevail, however, under slightly modified
conditions. In this respect, mixture modeling of 3D RF data acquired from 2D
arrays will have to be investigated.
Moreover, the mixture representation of 3D RF data might be relevant for
multi-modal image registration. Instead of using purely intensity-based ap-
proaches, employing mixture representation as 3D feature descriptor might
prove beneficial.

Ultrasound Data and Texture Modeling

Beside being an application for the modeling of multi-view data, finite mixture
representations seem also very attractive in the domain of texture modeling.
That is the case for e.g. Markov Random Field auto-models, as stationarity is
assumed in the texture. However, unless in very homogeneous regions this
assumption is usually violated. Unfortunately, Markov Random Field texture
auto-models defy a simple integration of the finite mixture modeling, as this
type of distributional representation is not part of the exponential family, which
is a necessary requirement. Therefore alternative means and ways have to be
found to employ a mixture model as part of texture representation. Continuing
this line of thought, mixture models could be the basis for superior similarity
measures, similarly as was proposed for the 3D multi-view data.

Ultrasound Similarity Metric

Apart from the already mentioned possibility of integrating mixture model
assumptions in ultrasound similarity metrics, there exist several possibilities
of extension. On the one hand, it would be reasonable to incorporate the
ultrasound machine acquisition parameters into a similarity measure, as those
directly affect the image generation. Besides from very obvious influences,
such as amplification, speckle and other phenomenons are directly affected
by parameters such as frequency. On the other hand, it is obvious that the
measures presented in the thesis could be extended from the 2D to 3D domain.
This again might require the incorporation of view-information.
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‘Properly speaking, such work is never finished; one must declare it
so when, according to time and circumstances, one has done one’s
best.’

[Johann Wolfgang von Goethe, 1749–1832]
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[Coupé et al., 2007] Coupé, P., Hellier, P., Morandi, X., and Barillot, C. (2007).
Probe trajectory interpolation for 3d reconstruction of freehand ultrasound.
Medical Image Analysis, 11(6):604 – 615.

[Crawford et al., 1993] Crawford, D. C., Bell, D. S., and Bamber, J. C. (1993).
Compensation for the signal processing characteristics of ultrasound b-mode
scanners in adaptive speckle reduction. Ultrasound in Medicine & Biology,
19(6):469–485.

[Cross and Jain, 1983] Cross, G. and Jain, A. (1983). Markov random field
texture models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(1):25–39.

[D’Agostino and Stephens, 1986] D’Agostino, R. and Stephens, M. (1986).
Goodness-of-fit techniques. Marcel Dekker, Inc. New York, NY, USA, page 560.

[Dahl et al., 2005] Dahl, J., Ivancevich, N., Keen, C., Trahey, G., and Smith, S.
(2005). Phase correction of skull aberration with 1.75-d and 2-d arrays using
speckle targets. IEEE Ultrasonics Symposium, 2:1323–1326.

[Dellepiane, ] Dellepiane, S. Image segmentation: Errors, sensitivity, and
uncertainty. Engineering in Medicine and Biology Society.

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood for incomplete data via the EM algorithm. J. Roy.
Statist. Soc. Ser. B, 39:1–38.

[Derin and Elliott, 1987] Derin, H. and Elliott, H. (1987). Modeling and seg-
mentation of noisy and textured images using gibbs random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 9(1):39 – 55.

[Destrempes and Cloutier, 2010] Destrempes, F. and Cloutier, G. (2010). A
critical review and uniformized representation of statistical distributions
modeling the ultrasound echo envelope. Ultrasound in Medicine & Biology,
36(7):1037–1051.

[Destrempes et al., 2009] Destrempes, F., Meunier, J., Giroux, M.-F., Soulez,
G., and Cloutier, G. (2009). Segmentation in ultrasonic b-mode images
of healthy carotid arteries using mixtures of nakagami distributions and
stochastic optimization. IEEE Transactions on Medical Imaging, 28(2):215–229.

172



BIBLIOGRAPHY

[Dodson and Matsuzoe., 2002] Dodson, C. and Matsuzoe., H. (2002). An affine
embedding of the gamma manifold. InterStat.

[Dodziuk, 1984] Dodziuk, J. (1984). Difference equations, isoperimetric in-
equality and transience of certain random walks. Transactions of the American
Mathematical Society, 284(2):787–794.

[Dubes and Jain, 1989] Dubes, R. C. and Jain, A. K. (1989). Random field
models in image analysis. Journal of Applied Statistics, 16(2):131–164.

[Dussik, 1952] Dussik, K. T. (1952). Weitere ergebnisse der ultraschallunter-
suchung bei gehirnerkrankungen. Acta Neurochirurgica, 2:379–401.

[Dutt, 1995] Dutt, V. (1995). Statistical analysis of ultrasound echo envelope. PhD
thesis, Mayo Graduate School, Rochester, MN, USA.

[Dutt and Greenleaf, 1994] Dutt, V. and Greenleaf, J. (1994). Ultrasound echo
envelope analysis using a homodyned k distribution signal model. Ultrasonic
Imaging, 16(4):265 – 287.

[Dutt and Greenleaf, 1996] Dutt, V. and Greenleaf, J. F. (1996). Statistics of the
log-compressed echo envelope. The Journal of the Acoustical Society of America,
99(6):3817–3825.

[Elen et al., 2008] Elen, A., Choi, H. F., Loeckx, D., Gao, H., Claus, P., Suetens,
P., Maes, F., and D’hooge, J. (2008). Three-dimensional cardiac strain esti-
mation using spatio temporal elastic registration of ultrasound images: A
feasibility study. IEEE Transactions on Medical Imaging, 27(11):1580 –1591.

[Eltoft, 2003] Eltoft, T. (2003). Speckle: Modeling and filtering. In Norwegian
Signal Processing Symposium.

[Eltoft, 2005] Eltoft, T. (2005). The rician inverse gaussian distribution: a new
model for non-rayleigh signal amplitude statistics. IEEE Transactions on
Image Processing, 14(11):1722–1735.

[Escobar, 1994] Escobar, M. D. (1994). Estimating normal means with a dirich-
let process prior. Journal of the American Statistical Association, 89(425):268–277.

[Estepar et al., 2006] Estepar, R., Washko, G., Silverman, E., Reilly, J., Kikinis,
R., and Westin, C. (2006). Accurate airway wall estimation using phase
congruency. International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI), 9:125–134.

[Esther Leung et al., 2008] Esther Leung, K., van Stralen, M., Nemes, A., Voor-
molen, M., van Burken, G., Geleijnse, M., ten Cate, F., Reiber, J., de Jong,
N., van der Steen, A., and Bosch, J. (2008). Sparse registration for three-
dimensional stress echocardiography. IEEE Transactions on Medical Imaging,
27(11):1568–1579.

[Farag et al., 2005] Farag, A., Mohamed, R., and El-Baz, A. (2005). A unified
framework for map estimation in remote sensing image segmentation. IEEE
Transactions on Geoscience and Remote Sensing, 43(7):1617 – 1634.

173



BIBLIOGRAPHY

[Felsberg and Sommer, 2001] Felsberg, M. and Sommer, G. (2001). The mono-
genic signal. IEEE Transactions on Signal Processing, 49(12):3136–3144.

[Felsberg and Sommer, 2004] Felsberg, M. and Sommer, G. (2004). The mono-
genic scale-space: A unifying approach to phase-based image processing in
scale-space. Journal of Mathematical Imaging and vision, 21(1):5–26.

[Fleet et al., 1991] Fleet, D., Jepson, A., and Jenkin, M. (1991). Phase-based
disparity measurement. CVGIP: Image Understanding, 53(2):198–210.

[Flury, 1997] Flury, B. (1997). A first course in multivariate statistics. Springer
texts in statistics. Springer.

[Fraley and Raftery, 2002] Fraley, C. and Raftery, A. E. (2002). Model-based
clustering, discriminant analysis, and density estimation. Journal of the
American Statistical Association, 97(458):611–631.

[Freund and Schapire, 1995] Freund, Y. and Schapire, R. E. (1995). A decision-
theoretic generalization of on-line learning and an application to boosting.
In European Conference on Computational Learning Theory (EuroCOLT), pages
23–37.

[Gao, 2000] Gao, D. (2000). Duality principles in nonconvex systems: theory,
methods, and applications. Nonconvex optimization and its applications.
Kluwer Academic Publishers.

[Gee et al., 2006] Gee, A. H., Housden, R. J., Hassenpflug, P., Treece, G. M.,
and Prager, R. W. (2006). Sensorless freehand 3d ultrasound in real tis-
sue: Speckle decorrelation without fully developed speckle. Medical Image
Analysis, 10(2):137 – 149.

[Geman et al., 1990] Geman, D., Geman, S., Graffigne, C., and Dong, P. (1990).
Boundary detection by constrained optimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(7):609 – 628.

[Geman and Geman, 1984] Geman, S. and Geman, D. (1984). Stochastic re-
laxation, gibbs distributions, and the bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6(6):721 – 741.

[Geman and Graffigne, 1986] Geman, S. and Graffigne, C. (1986). Markov
random field image models and their applications to computer vision. In
International Congress of Mathematicians, volume 1, pages 1496–1517.

[Gobbi and Peters, 2002] Gobbi, D. G. and Peters, T. M. (2002). Interactive
intra-operative 3d ultrasound reconstruction and visualization. International
Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI), pages 156–163.

[Goodman, 2007] Goodman, J. (2007). Speckle phenomena in optics: theory and
applications. Roberts & Co.

[Grady, 2006] Grady, L. (2006). Random walks for image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(11):1768–1783.

174



BIBLIOGRAPHY

[Granlund and Knutsson, 1995] Granlund, G. H. and Knutsson, H. (1995). Sig-
nal Processing for Computer Vision. Kluwer Academic Publishers.

[Grau et al., 2006] Grau, V., Becher, H., and Noble, J. (2006). Phase-based
registration of multi-view real-time three-dimensional echocardiographic se-
quences. In International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI), pages 612–619.

[Grau et al., 2007] Grau, V., Becher, H., and Noble, J. (Sept. 2007). Registration
of multiview real-time 3-d echocardiographic sequences. IEEE Transactions
on Medical Imaging, 26(9):1154–1165.

[Green, 1990] Green, P. J. (1990). Bayesian reconstructions from emission
tomography data using a modified em algorithm. IEEE Transactions on
Medical Imaging, pages 84–93.

[Green, 1995] Green, P. J. (1995). Reversible jump markov chain monte carlo
computation and bayesian model determination. Biometrika, 82(4):711–732.

[Grimmett, 1973] Grimmett, G. R. (1973). A theorem about random fields.
Bulletin of the London Mathematical Society, 5(1):81–84.

[Hacihaliloglu et al., 2008] Hacihaliloglu, I., Abugharbieh, R., Hodgson, A.,
and Rohling, R. (2008). Bone segmentation and fracture detection in ultra-
sound using 3d local phase features. In International Conference on Medical
Image Computing and Computer-Assisted Intervention (MICCAI), pages 287–295.

[Hamilton, 1998] Hamilton, M. F. (1998). Nonlinear Acoustics. Academic Press.

[Hanson, 2006] Hanson, T. (2006). Modeling censored lifetime data using a
mixture of gammas baseline. Bayesian Analysis, 1:575–594.

[Hassner and Sklansky, 1980] Hassner, M. and Sklansky, J. (1980). The use of
markov random fields as models of texture. Computer Graphics and Image
Processing, 12(4):357 – 370.

[Hedrick et al., 2004] Hedrick, W. R., Hykes, D. L., and Starchman, D. E. (2004).
Ultrasound Physics and Instrumentation. Mosby.
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editors, Acoustical Imaging, volume 30 of Acoustical Imaging, chapter 36, pages
315–323. Springer Netherlands, Dordrecht.

[Insana and et al., 1986] Insana, M. and et al. (1986). Analysis of ultrasound
image texture via generalized rician statistics. Optical Engineering, 6(4-5):743–
748.

176



BIBLIOGRAPHY

[Ivancevich et al., 2004] Ivancevich, N., Chu, K., Dahl, J., and Light, E. (2004).
Real time 3d ultrasound imaging of the brain. IEEE Ultrasonics Symposium,
1:110–113.

[Ivancevich et al., 2006] Ivancevich, N., Dahl, J., Trahey, G., and Smith, S.
(2006). Phase-aberration correction with a 3-d ultrasound scanner: Fea-
sibility study. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency
Control, 53(8):1432–1439.

[Jakeman, 1980] Jakeman, E. (1980). On the statistics of k-distributed noise.
Journal of Physics A: Mathematical and General, 13(1):31–48.

[Jakeman, 1999] Jakeman, E. (1999). K-distributed noise. Journal of Optics A:
Pure and Applied Optics, 1(4-5).

[Jakeman and Pusey, 1976] Jakeman, E. and Pusey, P. (1976). A model for non-
rayleigh sea echo. IEEE Transactions on Antennas and Propagation, 24(6):806 –
814.

[Jakeman and Tough, 1987a] Jakeman, E. and Tough, R. (1987a). Generalized
k distribution: a statistical model for weak scattering. Journal of the Optical
Society of America A, 4(9):1764–1772.

[Jakeman and Tough, 1987b] Jakeman, E. and Tough, R. J. A. (1987b). Gener-
alized k distribution: a statistical model for weak scattering. Journal of the
Optical Society of America A, 4(9):1764–1772.

[Jeffreys, 1946] Jeffreys, H. (1946). An Invariant Form for the Prior Probability
in Estimation Problems. Proc. R. Soc. A. Series A, Mathematical and Physical
Sciences, 186:453–461.
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[Pietikäinen et al., 2000] Pietikäinen, M., Ojala, T., and Xu, Z. (2000). Rotation-
invariant texture classification using feature distributions. Pattern Recognition,
33:43–52.

[Plate et al., 2010] Plate, A., Ahmadi, S.-A., Klein, T., Navab, N., Weisse, J.,
Mehrkens, J., and Boetzel, K. (2010). Towards a more objective visualization
of the midbrain and its surroundings using 3d transcranial ultrasound. In
54. Jahrestagung der Deutschen Gesellschaft für Klinische Neurophysiologie und
Funktionelle Bildgebung (DGKN).

[Plate et al., 2012] Plate, A., Ahmadi, S.-A., Pauly, O., Klein, T., Navab, N.,
and Boetzel, K. (2012). Three-dimensional sonographic examination of the
midbrain for computer-aided diagnosis of movement disorders. Ultrasound
in Medicine & Biology, 38(12):2041–2050.

[Poon and Rohling, 2005] Poon, T. and Rohling, R. (2005). Three-dimensional
extended field-of-view ultrasound. Ultrasound in Medicine & Biology,
32(3):357–369.

[Postema, 2011] Postema, M. (2011). Fundamentals of Medical Ultrasonics. Taylor
& Francis Group.

[Prager et al., 2002] Prager, R., Gee, A., Treece, G., and Berman, L. (2002).
Analysis of speckle in ultrasound images using fractional order statistics
and the homodyned k-distribution. Ultrasonics, 40(1-8):133–137.

[Prager et al., 2003] Prager, R., Gee, A., Treece, G., and Berman, L. (2003).
Decompression and speckle detection for ultrasound images using the
homodyned k-distribution. Pattern Recognition Letters, 24(4-5):705–713.

[Prager et al., 1998] Prager, R. W., Rohling, R. N., Gee, A. H., and Berman, L.
(1998). Rapid calibration for 3-d freehand ultrasound. Ultrasound in Medicine
& Biology, 24(6):855–869.

[Rachev et al., 2010] Rachev, S., Hoechstoetter, M., Frank J. Fabozzi, C., and
Focardi, S. (2010). Probability and Statistics for Finance. Frank J. Fabozzi Series.
John Wiley & Sons.

182



BIBLIOGRAPHY

[Raichel, 2006] Raichel, D. R. (2006). The Science And Applications of Acoustics.
Springer US.

[Reinertsen et al., 2007] Reinertsen, I., Lindseth, F., Unsgaard, G., and Collins,
D. L. (2007). Clinical validation of vessel-based registration for correction of
brain-shift. Medical Image Analysis, 11(6):673–684.

[Revell et al., 2004] Revell, J., Mirmehdi, M., and McNally, D. (2004). Com-
bined ultrasound speckle pattern similarity measures. In Medical Image
Understanding and Analysis, pages 149–153. BMVA Press.

[Roche et al., 2000] Roche, A., Malandain, G., and Ayache, N. (2000). Unifying
maximum likelihood approaches in medical image registration. International
Journal of Imaging Systems and Technology: Special Issue on 3D Imaging, 11(1):71–
80.

[Rohling et al., 1997] Rohling, R., Gee, A., and Berman, L. (1997). Three-
dimensional spatial compounding of ultrasound images. Medical Image
Analysis, 1(3):177–193.

[Rohling et al., 1999] Rohling, R., Gee, A., and Berman, L. (1999). A compar-
ison of freehand three-dimensional ultrasound reconstruction techniques.
Medical Image Analysis, 3(4):339 – 359.

[Saladin, 2010] Saladin, K. (2010). Anatomy & physiology: the unity of form and
function. McGraw-Hill.

[Salcudean et al., 2006] Salcudean, S., French, D., Bachmann, S., Zahiri-Azar,
R., Wen, X., and Morris, W. (2006). Viscoelasticity modeling of the prostate
region using vibro-elastography. Medical Image Computing and Computer-
Assisted Intervention, pages 389–396.

[San Jose Estepar et al., 2003] San Jose Estepar, R., Martin-Fernandez, M.,
Alberola-Lopez, C., Ellsmere, J., Kikinis, R., and Westin, C.-F. (2003). Free-
hand ultrasound reconstruction based on roi prior modeling and normalized
convolution. In Ellis, R. E. and Peters, T. M., editors, International Conference
on Medical Image Computing and Computer-Assisted Intervention (MICCAI),
pages 382–390.

[Sanches et al., 2011] Sanches, J., Sanches, J., Laine, A., and Suri, J. (2011).
Ultrasound Imaging: Advances and Applications. Springer.

[Sanches and Marques, 2000] Sanches, J. M. and Marques, J. S. (2000). A
rayleigh reconstruction/interpolation algorithm for 3d ultrasound. Pattern
Recognition Letters, 21(10):917 – 926.

[Sanches and Marques, 2002] Sanches, J. M. and Marques, J. S. (2002). A mul-
tiscale algorithm for three-dimensional free-hand ultrasound. Ultrasound in
Medicine & Biology, 28(8):1029–1040.

[Sanches and Marques, 2003] Sanches, J. M. and Marques, J. S. (2003). Com-
pensation of log-compressed images for 3-d ultrasound. Ultrasound in
Medicine & Biology, 29(2):239 – 253.

183



BIBLIOGRAPHY

[Schapire and Singer, 1999] Schapire, R. E. and Singer, Y. (1999). Improved
Boosting Using Confidence-rated Predictions. Machine Learning, 37(3):297–
336.

[Schroder et al., 1998] Schroder, M., Rehrauer, H., Seidel, K., and Datcu, M.
(1998). Spatial information retrieval from remote-sensing images. ii. gibbs-
markov random fields. IEEE Transactions on Geoscience and Remote Sensing,
36(5):1446–1455.

[Serpico and Moser, 2006] Serpico, S. and Moser, G. (2006). Weight parameter
optimization by the ho–kashyap algorithm in mrf models for supervised
image classification. IEEE Transactions on Geoscience and Remote Sensing,
44(12):3695 – 3705.

[Shankar, 1986] Shankar, P. (1986). Speckle reduction in ultrasound B-scans
using weighted averaging in spatial compounding. IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control, 33(6):754–758.

[Shankar, 1993] Shankar, P. (1993). Use of non-rayleigh statistics for the identi-
fication of tumors in ultrasonic b-scans of the breast. IEEE Transactions on
Medical Imaging, 12(4-5):687–692.

[Shankar, 1995] Shankar, P. (1995). A model for ultrasonic scattering from
tissues based on the k distribution. Physics in medicine and biology, 40(10):1633–
1649.

[Shankar et al., 2001] Shankar, P., Dumane, V., Reid, J., Genis, V., Forsberg, F.,
Piccoli, C., and Goldberg, B. (2001). Classification of ultrasonic B-mode
images of breast masses using Nakagami distribution. IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control, 48(2):569–580.

[Shankar et al., 2002] Shankar, P., Dumane, V., Reid, J., Genis, V., Forsberg, F.,
Piccoli, C., and Goldberg, B. (2002). Classification of ultrasonic b-mode
images of breast masses using nakagami distribution. IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control, 48(2):569–580.

[Shankar, 2000] Shankar, P. M. (2000). A general statistical model for ultrasonic
scattering from tissues. IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control, 47(3):339–343.

[Shankar, 2001] Shankar, P. M. (2001). Ultrasonic tissue characterization using
a generalized nakagami model. IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, 48(6):1716–20.

[Shen et al., 2008] Shen, R., Cheng, I., Li, X., and Basu, A. (2008). Stereo match-
ing using random walks. In International Conference on Pattern Recognition
(ICPR)., pages 1–4.

[Shental et al., 2003] Shental, N., Bar-hillel, A., Hertz, T., and Weinshall, D.
(2003). Computing gaussian mixture models with em using equivalence
constraints. In In Advances in Neural Information Processing Systems 16. MIT
Press.

184



BIBLIOGRAPHY

[Shepard, 1968] Shepard, D. (1968). A two-dimensional interpolation function
for irregularly-spaced data. In ACM National Conference, pages 517–524.

[Sherebrin et al., 1996] Sherebrin, S., Fenster, A., Rankin, R. N., and Spence,
D. (1996). Freehand three-dimensional ultrasound: implementation and
applications. In Metter, R. L. V. and Beutel, J., editors, SPIE Medical Imaging,
volume 2708, pages 296–303.

[Sherwood, 2012] Sherwood, L. (2012). Human Physiology: From Cells to Systems.
Cengage Learning.

[Shiavi, 2007] Shiavi, R. (2007). Introduction to applied statistical signal analysis:
guide to biomedical and electrical engineering applications. Academic Press Series
in Biomedical Engineering. Academic.

[Sijbers et al., 1998] Sijbers, J., Dekker, A. J. D., Scheunders, P., and Dyck, D. V.
(1998). Maximum likelihood estimation of rician distribution parameters.
IEEE Transactions on Medical Imaging, 17(3):357–361.
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