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Zusammenfassung

Diese Arbeit enthält Resultate sowohl bezüglich Übertragung von Verschränkung sowie Unterräumen
als auch Erzeugung von Verschränkung im Grenzwert unendlich vieler Nutzungen zweier Klassen von
Quantenkanälen. Die Gemeinsamkeit beider Klassen ist am besten beschrieben als “Kanalunsicherheit“.
Des weiteren wird die Verbindung zwischen einer der beiden Kanalklassen und der Null-Fehler Kapazität
stationärer gedächtnisloser Kanäle untersucht.

Kapitel 3 behandelt das Modell des Compound-Quantenkanals. Dieser besteht aus einer Menge
stationärer, gedächtnisloser Quantenkanäle. Jede der oben genannten Aufgabenstellungen wird in einem
Zweinutzerszenario (ein Sender, ein Empfänger) bearbeitet. Kommunikation zwischen Sender und
Empfänger ist nur in einer Richtung erlaubt.
Ein Code wird nur dann als “gut” betrachtet, wenn er gut ist für jeden einzelnen stationären
gedächtnislosen Kanal aus der vorgegebenen Menge.
Es werden drei Grundszenarien unterschieden. Im ersten weiss der Empfänger exakt, welcher Kanal
verwendet wird. Im zweiten kennt nur der Sender den Kanal, im dritten ist keiner der Beiden informiert.
Für alle neun verschiedenen Kombinationen von Kommunikationsaufgabe und Zustand von Sender und
Empfänger wird jeweils die Umkehrung und der direkte Teil eines Kodierungssatzes bewiesen.
Diese Resultate können interpretiert werden als Stetigkeitsaussage für die Kapazitätsfunktion der
stationären gedächtnislosen Kanäle auf dem Kodierungslevel.
Die Gleichheit der Kapazitäten für Verschränkungs- und für (starke) Unterraumübertragung wird gezeigt.
Abschliessend wird der Begriff der Symmetrisierbarkeit eines Kanals, der ursprünglich für beliebig vari-
ierende klassische Kanäle (AVCs) entwickelt wurde, erweitert auf den Fall des Compound Quantenkanals.
Überraschenderweise findet er hier eine nichttriviale Anwendung und beantwortet die Frage, wann genau
ein solcher Kanal positive Kapazität für klassische Nachrichtenübertragung hat.

In Kapitel 4 wird der beliebig variierende Quantenkanal (AVQC) untersucht. Eine (unter an-
derem permutationsinvariante) Menge gedächtnisloser Quantenkanäle wird vorgegeben, und nur diese
Menge ist sowohl Sender als auch Empfänger bekannt. Wieder ist nur Vorwärtskommunikation erlaubt,
aber diesmal dürfen Sender und Empfänger eine beliebig grosse Menge gemeinsamen Zufalls verwenden.
So wie schon im vorhergehenden Modell wird auch hier ein Code nur dann als “gut” betrachtet, wenn er
“gut” für jeden Kanal aus der Menge ist.
Aufgrund der erhöhten Komplexität der Situation liegt der Fokus ausschliesslich auf dem Fall, in dem
weder Sender noch Empfänger über erweiterte Kanalkenntnis verfügen. Für die drei Kommunikation-
sszenarien, die sich aus dieser Situation ergeben, wird sowohl die Umkehrung als auch der direkte Teil
eines Kodierungssatzes bewiesen.
Durch die Reduktion der verfügbaren Menge an gemeinsamem Zufall auf Null erfolgt schliesslich der
Übergang zu den wohlbekannten deterministischen Kodierungsverfahren. Es wird gezeigt das, für den
Fall, dass asymptotisch fehlerfreie Übertragung von nur polynomiell vielen klassische Nachrichten (in der
Anzahl der Kanalnutzungen) möglich ist, der gemeinsam genutzte Zufall keinen Kapazitätsgewinn bringt,
da er durch die Übertragung klassischer Nachrichten simuliert werden kann.
Dies führt zu einer Quantenversion der klassischen Ahlswede-Dichotomie für AVCs.
Ein erstaunliches Resultat in diesem Abschnitt der Arbeit ist die Äquivalenz von (starker) Unterraum-
und Verschränkungsübertragungskapazität.
Zwei Fragen werden lediglich angeschnitten: Erstens, wann die deterministische Kapazität für Ver-
schränkungsübertragung über einen AVQC gleich ihrer randomisierten Version ist. Dies beinhaltet die
Definition unterschiedlicher Varianten der “Symmetrisierbarkeit”, die notwendige und hinreichende bzw.
hinreichende Kriterien für die Positivität verschiedener Kapazitäten eines AVQCs liefern. Zweitens
wird die Frage aufgeworfen, wann die Kapazitätsformel eine nicht regularisierte Form annimmt. Zwei
Bedingungen hierfür werden angegeben.
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Ein Nicht-triviales Beispiel eines AVQCs wird anhand des Erasure-AVQCs diskutiert.
Die Verbindung (in Analogie zu der von Ahlswede für AVCs gefundenen) von AVQCs zur Null-Fehler-
Verschränkungsübertragung über stationäre gedächtnislose Kanäle wird untersucht. Es wird gezeigt, dass
eine einfache Verallgemeinerung nicht möglich ist. Die Arbeit schliesst mit einer kurzen Beschreibung des
qualitativen Verhaltens von Null-Fehler-Kapazitäten.
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Abstract

These pages summarize results concerning transmission of entanglement and subspaces as well as
generation of entanglement in the limit of asymptotically many uses of two classes of quantum channels.
The unifying feature of both of these classes is, in plain words, best described as channel uncertainty.
Additionally, the connection of one of the two classes to the theory of zero-error communication over
stationary memoryless quantumchannels is examined.

Chapter 3 starts with the compound quantum channel. This is a collection of stationary, memo-
ryless quantum channels. The task is either one of the above and communication is strictly restricted to
forward communication over the compound quantum channel. A code is considered to be good only, if it
is good for every single one of the stationary memoryless channels taken from the collection.
Three different situations are investigated. In the first one, the receiver knows exactly which channel is
in use. In the second situation, only the sender knows the exact channel. Thirdly, the case where both
users are uninformed is considered.
For all the nine possible different combinations of communication task and situation that sender and
receiver are in, both the converse and the direct part of a coding theorem are proven.
These results can also be interpreted as a continuity result for the capacity function of stationary
memoryless quantum channels on the operational or coding level.
Equality of strong subspace transmission- and entanglement transmission capacity is proven.
The notion of symmetrizability that was developed for classical arbitrarily varying channels in order
to tell exactly when a given communication task is possible at a positive rate is extended and, rather
surprisingly, finds an application for compound quantum channels.

Chapter 4 considers an even more complex model: The arbitrarily varying quantum channel
(AVQC). A specific set of non-stationary, but still memoryless quantum channels is given, and only
this set is known to both sender and receiver. Again, only forward communication is allowed, but
this time sender and receiver may use an arbitrary amount of shared classical randomness during their
communication. Like before, a code is considered to be good only if it performs well for every channel
out of the whole set. Due to the increased complexity of the situation, attention is restricted to the case
of uninformed users. For the three communication scenarios arising for uninformed users with common
randomness, a coding theorem is proven.
By restricting the amount of shared randomness to zero, the connection to the usual deterministic coding
schemes is made. Moreover, in case that asymptotically error-free deterministic transmission of only
polynomially (in channel uses) many classical messages is possible, it is shown that shared classical
randomness is superfluous since it can be simulated by sending classical messages.
This leads to a quantum version of the classical Ahlswede-dichotomy for arbitrarily varying channels.
As a little surprise, it is shown that the strong subspace transmission capacity of an AVQC equals its
entanglement transmission capacity.
Two questions are addressed but not completely solved: First, when exactly the deterministic capacity
for transmission of entanglement over an AVQC equals the random version thereof. This includes
several different notions of symmetrizability which are defined in order to clarify exactly when certain
communication tasks are possible at a positive rate. Second, under which conditions a single-letter
capacity formula holds. Two conditions for the existence of such a formula are given.
As a nontrivial example, the erasure - arbitrarily varying quantum channel is examined.
The connection to zero-error communication over quantum channels is made and the zero-error capacity
of a certain channel (depending on the AVQC one is analyzing) established as a lower bound on the
capacity for transmission of entanglement over that particular AVQC. Some light is shed on the qualitative
behaviour of zero-error capacities.

v



Contents

1 Notation and conventions 1

2 Introduction 4
2.1 The quantum compound channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Why should we talk about that model at all? . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Outline (basic ideas and results for quantum compound channels) . . . . . . . . . 6

2.2 The arbitrarily varying quantum channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 A system-theoretic motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Outline (basic ideas and results for arbitrarily varying quantum channels) . . . . . 9
2.2.3 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The compound quantum channel 12
3.1 Definitions and main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 The informed decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 The informed encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 The case of uninformed users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 One-shot results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 One-shot coding result for a single channel . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 One-shot coding result for uninformed users . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 One-shot coding result for informed encoder . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Entanglement fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Direct part of the coding theorem for finitely many channels . . . . . . . . . . . . . . . . . 28
3.3.1 Typical projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Typical kraus operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 The case of uninformed users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 The informed encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Finite approximations in the set of quantum channels . . . . . . . . . . . . . . . . . . . . 34
3.4.1 The compound BSST-lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Direct parts of the coding theorems for general compound quantum channels . . . . . . . 39
3.5.1 The case of informed decoder and uninformed users . . . . . . . . . . . . . . . . . 39
3.5.2 The informed encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Converse parts of the coding theorems for general quantum compound channels . . . . . . 46
3.6.1 Converse for informed decoder and uninformed users . . . . . . . . . . . . . . . . . 46
3.6.2 The informed encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Continuity of compound capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.8 Entanglement-generating capacity of compound channels . . . . . . . . . . . . . . . . . . . 50
3.9 Equivalence of strong subspace and entanglement transmission . . . . . . . . . . . . . . . 51
3.10 A symmetrizability condition for compound quantum channels . . . . . . . . . . . . . . . 55

4 The arbitrarily varying quantum channel 57
4.1 Basic definitions and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Entanglement transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Strong subspace transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.3 Zero-error capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.4 Entanglement generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Equivalence of strong subspace and entanglement transmission . . . . . . . . . . . . . . . 62

vi



4.3 Proof of the converse part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Converse for the finite AVQC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Case |I| =∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Achievability of entanglement transmission rate I: Random codes . . . . . . . . . . . . . . 65
4.5 Achievability of entanglement transmission rate II: Derandomization . . . . . . . . . . . . 72
4.6 Zero-capacity-conditions: Symmetrizability . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.1 Classical capacity with deterministic codes and average error . . . . . . . . . . . . 76
4.6.2 Classical capacity with deterministic codes and maximal error . . . . . . . . . . . . 78
4.6.3 Entanglement transmission capacity with random codes . . . . . . . . . . . . . . . 82

4.7 Conditions for single-letter-capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.8 An example and an application to zero-error capacities . . . . . . . . . . . . . . . . . . . . 87

4.8.1 Erasure-AVQC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8.2 Qualitative behavior of zero-error capacities . . . . . . . . . . . . . . . . . . . . . . 89
4.8.3 Discontinuity of quantum Lovász θ̃ function & zero-error distillable entanglement . 93

4.9 Entanglement generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Conclusions and open problems 97
5.1 Conclusion for the compound quantum channel . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Conclusion for the arbitrarily varying quantum channel . . . . . . . . . . . . . . . . . . . 97
5.3 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Appendix 100

7 References 102

vii



1 Notation and conventions

Hilbert space. All Hilbert spaces are assumed to have finite dimension and are over the field C.

Linear operator. The set of linear operators from H to H is denoted B(H). The adjoint to
b ∈ B(H) is marked by a star and written b∗.

States. S(H) is the set of states, i.e. positive semi-definite operators with trace 1 acting on the
Hilbert space H.
Pure states are given by projections onto one-dimensional subspaces. A vector x ∈ H of unit length
spanning such a subspace will therefore be referred to as a state vector, the corresponding state will be
written |x〉〈x|.
To each subspace F of H we associate the unique projection qF whose range is the subspace F and we
write πF for the maximally mixed state on F , i.e. πF := qF

tr(qF ) .

Unit sphere. For an arbitrary Hilbert space H with inner produckt 〈·, ·〉, we write S(H) for its
unit sphere, e.g. S(H) := {x ∈ H : 〈x, x〉 = 1}.

Completely positive trace preserving maps. The set of completely positive trace preserving
maps (CPTP maps) between B(H) and B(K) is denoted C(H,K). They are also called channels. The
hilbert space H plays the role of the input system to the channel (traditionally owned by Alice) and K is
the channel’s output Hilbert space (usually in Bob’s possession).
Completely positive trace decreasing maps. C↓(H,K) stands for the set of completely positive
trace decreasing maps between B(H) and B(K).

Unitary operators. U(H) will denote in what follows the group of unitary operators acting on
H. For a Hilbert space G ⊂ H we will always identify U(G) with a subgroup of U(H) in the canonical way.
Projections. A projection q ∈ B(H) is an operator satisfying q = q2 and p = p∗ (non-orhtogonal
projections do simply not occur).
For any such projection q we set q⊥ := 1H − q.
Each projection q ∈ B(H) defines a completely positive trace decreasing map Q ∈ C(H,H) given by
Q(a) := qaq for all a ∈ B(H).
In a similar fashion any u ∈ U(H) defines a U ∈ C(H,H) by U(a) := uau∗ for a ∈ B(H).

Entropy. We use the base two logarithm which is denoted by log. The von Neumann entropy of
a state ρ ∈ S(H) is given by

S(ρ) := −tr(ρ log ρ). (1)

Coherent information. The coherent information for N ∈ C(H,K) and ρ ∈ S(H) is defined by

Ic(ρ,N ) := S(N (ρ))− S((idH ⊗N )(|ψ〉〈ψ|)), (2)

where ψ ∈ H ⊗ H is an arbitrary purification of the state ρ. Following the usual conventions we let
Se(ρ,N ) := S((idH⊗N )(|ψ〉〈ψ|)) denote the entropy exchange. A useful equivalent definition of Ic(ρ,N )

is given in terms of N ∈ C(H,K) and a complementary channel N̂ ∈ C(H,He) where He denotes the
Hilbert space of an environment: Due to Stinespring’s dilation theorem N can be represented as N (ρ) =
trHe(vρv

∗) for ρ ∈ S(H) where v : H → K ⊗ He is a linear isometry. The complementary channel

N̂ ∈ C(H,He) corresponding to the specific choice of isometry and the given N is then defined by

N̂ (ρ) := trH(vρv∗) (∀ρ ∈ S(H)). (3)

1



Using a complementary channel, the coherent information can be written as

Ic(ρ,N ) = S(N (ρ))− S(N̂ (ρ)) (4)

or, equivalently,
Ic(ρ,N ) = −Ic(ρ, N̂ ). (5)

Fidelity. As a measure of closeness between two states ρ, σ ∈ S(H) we use the fidelity F (ρ, σ) :=
||√ρ
√
σ||21. The fidelity is symmetric in the input and for a pure state ρ = |φ〉〈φ| we have F (|φ〉〈φ|, σ) =

〈φ, σφ〉.
It is related (see [32]) to the one-norm ‖ · ‖1 by the inequalities

1−
√
F (ρ, σ) ≤ 1

2
‖ρ− σ‖1 ≤

√
1− F (ρ, σ), (6)

which hold independent of dimH for arbitrary Hilbert spaces H and every pair ρ, σ ∈ S(H).

Entanglement fidelity. A closely related quantity is the entanglement fidelity. For ρ ∈ S(H)
and N ∈ C↓(H,H) it is given by

Fe(ρ,N ) := 〈ψ, (idH ⊗N )(|ψ〉〈ψ|)ψ〉, (7)

with ψ ∈ H ⊗H being an arbitrary purification of the state ρ.

Diamond norm. For the approximation of arbitrary sets of channels by finite sets we use the
diamond norm || · ||♦, which is given by

||N ||♦ := sup
n∈N

max
a∈B(Cn⊗H),||a||1=1

||(idn ⊗N )(a)||1, (8)

where idn : B(Cn) → B(Cn) is the identity channel, and N : B(H) → B(K) is any linear map, not
necessarily completely positive.
The merits of || · ||♦ are due to the following facts (cf. [46]). First, ||N ||♦ = 1 for all N ∈ C(H,K). Thus,
C(H,K) ⊂ S♦, where S♦ denotes the unit sphere of the normed space (B(B(H),B(K)), || · ||♦). Moreover,
||N1 ⊗N2||♦ = ||N1||♦||N2||♦ for arbitrary linear maps N1,N2 : B(H)→ B(K). Finally, the supremum in
(8) needs only be taken over n that range over {1, 2, . . . ,dimH}.

Norm closure. For a set I ⊂ C(H,K) we write I for its closure in ‖ · ‖♦.

Distance between sets of channels. We use the diamond norm to define the function D♦(·, ·)
on {(I, I′) : I, I′ ⊂ C(H,K)}, which is for I, I′ ⊂ C(H,K) given by

D♦(I, I′) := max{ sup
N∈I

inf
N ′∈I′

||N −N ′||♦, sup
N ′∈I′

inf
N∈I
||N −N ′||♦}. (9)

The function D♦, when restricted to {I : I ⊂ C(H,K), I = I}, defines a metric which is basically the
Hausdorff distance induced by the diamond norm.
Obviously, for arbitrary I, I′ ⊂ C(H,K), D♦(I, I′) ≤ ε implies that for every N ∈ I (N ′ ∈ I′) there exists
N ′ ∈ I′ (N ∈ I) such that ||N − N ′||♦ ≤ 2ε. If I = Ī, I′ = Ī′ holds we even have ||N − N ′||♦ ≤ ε. In
this way D♦ gives a measure of distance between two compound channels.

For any set I ⊂ C(H,K) and l ∈ N we set

I⊗l := {N⊗l : N ∈ I}. (10)
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Probability distributions. For a finite set A the notation P(A) is reserved for the set of probability
distributions on A.

Cardinality of a set. For a set A, |A| denotes its cardinality.

Cartesian product of sets. For an arbitrary set S and l ∈ N, Sl := {(s1, . . . , sl) : si ∈ S ∀i ∈ {1, . . . , l}}.
We also write sl for the elements of Sl.

Convex hull. For an arbitrary set I of CPTP maps we denote by conv(I) its convex hull (see
[68] for the definition) and note that in case that I = {Ns}s∈S is a finite set we have

conv(I) =

{
Nq ∈ C(H,K) : Nq =

∑
s∈S

q(s)Ns, q ∈ P(S)

}
, (11)

an equality that we will make use of in the approximation of infinite AVQC’s by finite ones.

Relative interior. Finally, we need some simple topological notions for convex sets in finite di-
mensional normed space (V, || · ||) over the field of real or complex numbers which we borrow from [68].
Let F ⊂ V be convex. x ∈ F is said to be a relative interior point of F if there is r > 0 such that
B(x, r) ∩ aff F ⊂ F . Here B(x, r) denotes the open ball of radius r with the center x and aff F stands
for the affine hull of F . The set of relative interior points of F is called the relative interior of F and is
denoted by riF .

Relative boundary. The relative boundary of F , rebdF , is the set difference between the clo-
sure of F and riF .

Blow-up. For a set A ⊂ V and δ ≥ 0 we define the parallel set or the blow-up (A)δ of A
by

(A)δ := {x ∈ V : ||x− y|| ≤ δ for some y ∈ A} . (12)
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2 Introduction

The following two sections motivate, describe and put into a historical context the two channel models
that will be dealt with in the rest of this thesis. Although the compound quantum channel later on serves
as a building block in the derivation of our results for arbitrarily varying quantum channels, the situation
described by that model is interesting in its own right, as will be made clear from our argumentation.

2.1 The quantum compound channel

2.1.1 Why should we talk about that model at all?

Channel uncertainty is a big issue in the design of reliable communication systems. As an example, let
us take a look at the rather simple scenario that arises from considering an optical fibre which is, for
communication purposes, described by a handful of mathematical parameters. Each single one of these
parameters will be known only with a certain precision due to measurement errors. Any coding scheme
used with this fibre will thus have to work for every possible set of parameters within some specified
range, and the true value of the parameters remains unknown. This is a possible example for a compound
quantum channel.
One could expect that, at least in principle, it should be possible to gain perfect channel knowledge. We
will argue below that this is not the case. This shows that the compound quantum channel not just merely
serves as a building block in the proof of achievability of the random entanglement transmission capacity
of the arbitrarily varying quantum channel, but rather is an important model in its own right.
Consider the following scenario. Sender and receiver are given some channel for forward communication
(This might for example be a USB cable and the sender wants to save some data on a portable harddrive
belonging to the receiver). They are guaranteed that, for the task of sending classical information over it,
it can be described by either one of two stochastic matrices (W1(b|a))a∈A,b∈B or (W2(b|a))a∈A,b∈B (where
both A and B are finite sets) and, clearly, W2 6= W1.
Now sender and receiver talk to each other and they both agree that this is unbearable. In fact, they
would like it much better to perfectly know which channel it is before the start of their communication
task. We assume that this kind of direct communication between them is costly. Therefore, they want
to set up some procedure that, using forward communication over the channel, figures out which of the
two possible descriptions is the proper one (at receivers side). After that, the receiver tells the sender the
index (1 or 2) of the proper description, and they start their second task (the one they originally intended
to perform: saving data to the portable harddrive).
Although in this work we shall be concerned with variants of the second task only, let us briefly formalize
what they are up to now in order to fulfill their first task:

1. Find the smallest l ∈ N such that there exist al ∈ Al, D1, D2 ⊂ Bl, D1

⋂
D2 = ∅ such that for

i = 1, 2 we get

2.
∑
bl∈Di

∏l
k=1Wi(bk|ak) = 1.

For sake of simplicity, let A = {a} (yes, this is trivial). Then, setting p1(b) := W1(b|a), p2(b) := W2(b|a)

(for all b ∈ B) and p⊗li (X) :=
∑
b∈X

∏l
i=1 pi(bi) (for all X ⊂ Bl) we see that our task turns into

1’. Find the smallest l ∈ N such that there exist D1, D2 ⊂ Bl, D1

⋂
D2 = ∅ such that

2’. p⊗li (Di) = 1 for i = 1, 2.

Let us have a look at a reformulation of Corollary 1.2 in [20]:

4



Theorem 1 (Stein’s Lemma). For every 0 < ε < 1,

lim
l→∞

1

l
log( min

D1⊂Bl:p⊗l1 (D1)≥1−ε
p⊗l2 (D1)) = −

∑
b∈B

p1(b) log(
p1(b)

p2(b)
). (13)

We make the technical assumption that p1(b) > 0 ⇒ p2(b) > 0 (∀b ∈ B). Take some fixed ε ∈ (0, 1).
Then by the above Theorem and our assumption there is c > 0 such that for all large enough l, for every
set D1 such that p⊗l1 (D1) ≥ 1− ε holds, and for every D2 with D2

⋂
D1 = ∅ we get

p⊗l2 (D2) = 1− p⊗l2 (D{2) ≤ 1− p⊗l2 (D1) ≤ 1− 2−lc. (14)

This should convince the reader that our task is not possible at all in general. The best result we can
hope for in general is that with probability exponentially close (in l) to one we can be sure that the index
i is correctly identified.
Assuming that each use of the channel takes some time we see, that we can in fact never be totally sure
in our whole life which channel we are transmitting over.
Let us switch to a more general situation, where an arbitrary possibly infinite set of stochastic matrices is
the set of possible proper descriptions of the channel. Then by the above discussion, the best we should
look out for is that (without giving or intending to give any proof here, since this would lead us far away
from our original goal), again, with probability exponentially close (in l) to one, the compound channel
we will be transmitting over after a test taking the time of l channel uses is given (for some stochastic
matrix W ) by a set W = {W (·|·) :

∑
b∈B |W (b|a) −W (b|a)| ≤ δl ∀a ∈ A}, where (δl)l∈N is a sequence

satisfying δl ↘ 0.
Now that the compound channel is fully established as a fundamental model for communication, let us
get into some more detail on this object. Especially, from now on our basic objects will be quantum
channels.

2.1.2 Previous work

The determination of capacities of quantum channels in various settings has been a field of intense work
over the last decade. To any quantum channel we can associate a complete zoo of different notions of
capacity depending on what is to be achieved by transmitting something over the channel and which
figure of merit is chosen as the criterion for the success of the particular quantum communication task.
For example we may try to determine the maximum number of classical messages that can be reliably
distinguished at the output of the channel. This leads to the notion of classical capacity of a quantum
channel.
Instead, we might wish to establish secure classical communication over a quantum channel, giving rise
to the definition of a channel’s private capacity.
In both cases, the two commonly used measures of success for transmission of classical messages are
average- and maximal error probability.
On the other hand, in the realm of quantum communication, one may also ask what the maximal amount
of entanglement is that can be generated or transmitted over a given quantum channel, leading to the
notions of entanglement generation and entanglement transmission capacity. Other examples of quantum
capacities are strong subspace transmission and average subspace transmission capacities.
Such quantum communication tasks are needed, for example, to support computation in quantum circuits
or to provide the best possible supply of pure entanglement in a noisy environment. Fortunately, these
genuinely quantum mechanical capacities are shown to be equal for perfectly known single user channels
[10], [50].
Most of the work done so far on quantum channel capacities relies on the assumption that the channel
is perfectly known to sender and receiver, and as we just found out, this is hardly ever the case in any
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application.
First results indicating that coherent information was to play a role in the determination of the quantum
capacity of memoryless channels were established by Schumacher and Nielsen [60] and, independently, by
Lloyd [53] who was the first to conjecture that indeed the regularized coherent information would give the
correct formula for the quantum capacity and gave strong heuristic evidence to his claim. In 1998 and
2000 Barnum, Knill, and Nielsen and Barnum, Nielsen, and Schumacher [10], [11] gave the first upper
bound on the capacity of a memoryless channel in terms of the regularized coherent information. Later
on, Shor [65] and Devetak [24] offered two independent approaches to the achievability part of the coding
theorem. Despite the fact that the regularized coherent information was identified as the capacity of mem-
oryless quantum channels many other approaches to the coding theorem have been offered subsequently,
for example Devetak and Winter [26] and Hayden, Shor, and Winter [36]. Of particular interest for the
present work were the developments by Klesse [47] and Hayden, Horodecki, Winter, and Yard [35] based
on the decoupling idea which can be traced back to Schumacher and Westmoreland [62]. In fact, the main
purpose of this work was to show that the decoupling idea can be utilized to prove the existence of reliable
universal quantum codes for entanglement transmission and generation.
The capacity for transmission of classical messages over memoryless quantum channels has been deter-
mined in the pioneering work by Holevo [37], [38] and Schumacher and Westmoreland [61]. Their results
have been substantially sharpened by Winter [70] and Ogawa and Nagaoka [57] who gave independent
proofs of the strong converse to the coding theorem.
The capacity of compound channels in the classical setting was determined by Wolfowitz [72, 73] and Black-
well, Breiman, and Thomasian [17]. The full coding theorem for transmission of classical information via
compound quantum channels was proven in [14]. Subsequently, Hayashi [34] obtained a closely related
result with a completely different proof technique based on the Schur-Weyl duality from representation
theory and the packing lemma from [20].

2.1.3 Outline (basic ideas and results for quantum compound channels)

While the classical capacity of compound quantum channels has been determined only recently in [14], in
the first part of this work the focus will be on entanglement-generation, entanglement transmission and
strong subspace transmission capacities.
All three of them will be shown to be equal and a regularized formula not unlike that for a single memo-
ryless channel will be given.
Let us now dive a little deeper into the technical issues.
The underlying idea of the coding theorems for the compound quantum channel is, as in the case of a
single memoryless channel: decoupling.
This fundamental idea is explained in great detail in [28]. We give a brief scetch as follows. For a channel
N ∈ C(H,K) and a state ρ ∈ S(H), take an environment E, a stinespring isometry W for that particular

environment, the corresponding complimentary channel N̂ ∈ C(H, E) and a purification ψ ∈ H′ ⊗H of ρ,

where H′ is just a copy of H. If idH′ ⊗N̂ (|ψ〉〈ψ|) is almost a product state, then Uhlmanns Theorem [66]
guarantees the existence of a unitary U acting on K ⊗ E′ for some cleverly chosen second environment
E′ such that a recovery R ∈ C(K,H) defined using an isometry V in the stinespring representation of R
which is itself induced by U allows approximate transmission of entanglement over N .
More informally, write W(·) := W (·)W ∗. If we start from a highly correlated pure state |ψ〉〈ψ| and trans-
form it to id ⊗W(|ψ〉〈ψ|), then this state must still hold strong correlations between E ⊗ K and H. So,
if its reduction to E ⊗H is almost decorrelated, then all the correlations must be in K ⊗H, hence there
must be a way to recover them. A thorough application of this idea can be found in [47].
We derive two modification of Klesse’s one-shot coding result [47] that are adapted to arithmetic averages
of channels in section 3.2. One guarantees existence of good codes for uninformed users, the other for
an informed encoder. By noting that entanglement fidelity is affine in the channel, this delivers a tool to
(asymptotically) cope with finite compound channels in these two cases.
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There is an issue with the dependence of the so derived bounds on the block length in section 3.3: in
order to get the correct asymptotics, we have to project onto typical subspaces of suitable output states of
the individual channels. Therefore, it turns out that we effectively end up in the scenario with informed
decoder.
Luckily, we found that these projections can simply be removed without decreasing the entanglement
fidelity too much (see the end of section 3.2) and we really get universal (i.e. uninformed) decoders for
our coding problems. The direct part for the informed decoder follows directly from that for uninformed
users, since by the converse part their capacity is upper bounded by the same number.
In order to get the correct capacity formula, one has to pass from a maximization over maximally mixed
states to one over arbitrary states. This is in the case of a single memoryless channel done by an applica-
tion of the BSST Lemma [12]. In our case, an additional minimization over the set of channels prevents a
direct application of the BSST Lemma. Therefore, an appropriate generalization (called compound BSST
Lemma) is provided in section 3.4.
This generalization is possible thanks to discretization and approximation techniques based on τ -nets in
the set of quantum channels that get applied also when passing from finite to infinite compound channels
in section 3.5, which also contains an application of the continuity result [51] for the entanglement trans-
mission capacity of the stationary memoryless channel.
This continuity result is used as well in order to establish a corresponding result for the entanglement
transmission capacity of compound quantum channels in section 3.7. Once we know this capacity, it is
only a short distance of two pages to get the corresponding result for entanglement generation.
From there, we pass to the equivalence of strong subspace and entanglement transmission. The corre-
sponding fundamental Lemma 66 can in its original form be found in the work [5] done together by R.
Ahlswede, I. Bjelakovic, H. Boche and the author. Its proof exploits concentration phenomena on the unit
sphere of high dimensional Hilbert spaces and the fact that the success criterion entanglement fidelity can
approximately be seen as an averaged form of the success criterion strong subspace transmission [42].
Finally, the notion of symmetrizability is defined for compound quantum channels in section 3.10. This
definition gives us a criterion saying exactly when the capacity for transmission of classical messages using
the average error criterion of a compound quantum channel equals zero. Symmetrizability has originally
been developed to cope with the zero-capacity question in the case of arbitrarily varying channels and this
is the reason why the proof of the statement of this section is delayed until section 4.6.
At this point, it has to be said that symmetrizability is, in its present form, comparable to someone trying
to eat without knowing what food is. We are trying to give criteria for the entanglement transmission
capacity of highly complex channel models to be equal to zero (or some other number), without even
knowing when this is the case for such simple stationary memoryless channels as the depolarizing chan-
nel. Or, to put it in the words of Ahlswede, when he started questioning his collaborators about known
and unknown facts, finding out that there was no simple criterion telling exactly when the entanglement
transmission capacity of a single, stationary and memoryless quantum channel equals zero: ”Wenn wir
noch nicht einmal das wissen...”.
Maybe, saying that he had in mind the classical symmetrizability criterion (Separation Lemma) from [2]
underlying that given for AVQCs in subsection 4.6.2 for classical messages and the maximal error prob-
ability criterion. The proof connecting the definition to its statement about the corresponding capacity
explicitly uses the fact that the class of binary symmetric channels is very well understood - something
we can only dream of for its counterpart, the depolarizing channels.
This clearly is an area for future research. A more detailed description of the problem will be given in
section 5.1.
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2.2 The arbitrarily varying quantum channel

2.2.1 A system-theoretic motivation

The second part of the thesis contains work of R. Ahlswede, I. Bjelakovic, H. Boche and the author. Let
us start with a rather simple situation. We are given three parties - a legitimate sender and receiver (S1

and R1) and an evil guy (S2), who is trying to interrupt the communication between S1 and R1. The
situation can be described in mathematical terms by Hilbert spaces H1,H2 and K1 which are accessed by
S1, S2 and R1, while the connection between them is given by a channel N ∈ C(H1 ⊗H2,K1).
For arbitrary l ∈ N and ρ ∈ S(H⊗l2 ) we further define the channels

N l
ρ(·) := N⊗l(· ⊗ ρ). (15)

Using these channels, S1 will try to send one half of a maximally entangled state to R1, no matter what
the bad guy S2 puts in on his side of the channel. There are no restrictions to the powers of S2, except
that he can only access his Hilbert space H2.

Figure 1: The full model of an arbitrarily
varying quantum channel (The good, the bad
and the receiver).

A coarse description of the usual (quantum) Shannon-information theoretic setup is given by the following
task:
Given a sequence (πFl)l∈N of maximally mixed states on Hilbert spaces Fl satisfying
lim inf l→∞

1
l log dimFl = R ∈ R+, show the existence of sequences of encoding and recovery maps

(P l)l∈N, (Rl)l∈N such that
lim
l→∞

inf
ρ∈S(H⊗l2 )

Fe(πFl ,Rl ◦ N l
ρ ◦ P l) = 1. (16)

The structure of the sets
{N l

ρ}ρ∈S(H⊗l2 ) (l ∈ N) (17)

being rather complex, we reduce the abilities of S2 - he shall be given a subset S2 ⊂ S(H2) and his inputs
get restricted to states taken from the sets

S2,l := {ρ1 ⊗ . . .⊗ ρl : ρi ∈ S2 ∀i ∈ {1, . . . , l}} (l ∈ N). (18)

It is evident that (16) then reduces to

lim
l→∞

inf
sl∈Sl

Fe(πFl ,Rl ◦ (⊗li=1Nsi) ◦ P l) = 1, (19)
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where S is an index set for S2 (implying S2 = {ρs}s∈S) and Ns := N 1
ρs for all s ∈ S. In the classical

case, due to non-existence of entanglement, the restriction (18) is not necessary at all and the approach
directly leads to the model of an AVC as introduced in [18].
In our case, the full model will be stated as an open problem in section 5.2.

A slightly different look at the situation stemming from todays cellular networks is given by the
following. We assume that there are two non-cooperating senders S1 and S2, each of which is transmit-
ting quantum states to a corresponding receiver (R1 and R2). Usually, this leads to ’interference’: The
actions of S2 have an influence on the communication between S1 and R1 and vice versa.
Let us concentrate on the first communication link and simply regard the second one as some complicated
form of noise. Our starting point is a stationary memoryless quantum channel specified by

E ∈ C(H1 ⊗H2,K1 ⊗K2), (20)

where the senders Si have access to H⊗li and the receivers act on the output Hilbert spaces K⊗li , i = 1, 2,
l ∈ N. Since we concentrate on the first link, our basic model is the (stationary and memoryless) channel
N ∈ C(H1 ⊗H2,K1) defined by

N := trK2 ◦ E . (21)

Again, for arbitrary l ∈ N and ρ ∈ S(H⊗l2 ) we define the channels

N l
ρ(·) := N⊗l(· ⊗ ρ), (22)

and once more, S1 will try to send one half of a maximally entangled state to R1, no matter what S2

puts in on his side of the channel.

Figure 2: How to derive the model of an ar-
bitrarily varying quantum channel from a sta-
tionary memoryless one with four users.

In this model, S1 and R1 may come to the conclusion that S2, although not being helpful at all, is at
least following basic rules or standards that have been predefined. Thus, they may conclude, there will
be certain states that S2 will never send. This could lead to the model of an arbitrarily varying quantum
channel with state constraints.

For now, using our reduced quantum model, we are led to the following setup:

2.2.2 Outline (basic ideas and results for arbitrarily varying quantum channels)

There is a set of quantum channels I = {Ns}s∈S which is known to both the (legitimate) sender and
receiver (S1 and R1). The goal of the sender is to transmit one half of a maximally entangled pure
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state ψ, suitably encoded, by l-fold usage of the (unknown) channel. An entity (S2), which we now
call the adversary for simplicity, can choose a sequence sl = (s1, . . . , sl) ∈ Sl at her/his will which
results in the selection of the channel Nsl = ⊗li=1Nsi . The encoded version of ψ is then fed into Nsl
and the receiver’s goal is to recover the input state, of course without knowing the sequence sl being
selected by the adversary. Implicit in this informal description of the communication scenario is that
we suppose that the adversary knows the code which is used for entanglement transmission. Therefore,
the communicators are forced to use entanglement transmission protocols that are reliable for the
whole family I(l) = {Nsl}sl∈Sl of memoryless and partly non-stationary channels. In other words, the
desired entanglement transmission protocol should be resistant to the effect of arbitrarily varying noise
represented by the family I(l) = {Nsl}sl∈Sl . Even in the simplest non-trivial case of a finite set I with
|I| > 1 we have to deal for each block length l with exponentially many quantum channels simultaneously.
The main contribution of this second part of the thesis is a generalization of Ahlswede’s dichotomy [2]
which can be stated as follows:
First, the common-randomness-assisted entanglement transmission capacity of the AVQC (I(l))l∈N is
equal to the entanglement transmission capacity of the compound channel built up from conv(I), i.e. the
uncountable family of stationary, memoryless channels that lie in the convex hull of I.
Second, if the deterministic capacity for transmission of messages with asymptotically vanishing
average error over an AVQC is greater than zero, its capacity for transmission of entanglement with
deterministic codes is equal to its common-randomness-assisted capacity for transmission of entanglement.

The proof of the direct part as well as the proof of the converse rely substantially on the corre-
sponding results for compound quantum channels developed in the first part of the thesis. The link
between the compound and arbitrarily varying channel models needed in the achievability proofs is given
by the powerful robustification technique of [3] and [4], which is stated as Theorem 94 in section 4.4.
The idea behind the second part of the theorem is the following. If the deterministic capacity for message
transmission, with average error probability as the success criterion, of I is greater than zero, then sender
and receiver can use a few (sub-exponentially many) bits to derandomize a given common-randomness-
assisted code for transmission of entanglement. A mathematically rigorous treatment of this idea is found
in section 4.5.
As a supplement to the coding theorem, we derive a multi-letter necessary and sufficient condition for
the deterministic capacity, with average error, for message transmission of a (finite) AVQC to be zero in
section 4.6. For sake of completeness, we also include a necessary and sufficient condition for the deter-
ministic capacity for message transmission with maximal error probability to be equal to zero. Moreover,
we present a first attempt to derive a non-trivial sufficient condition for the common-randomness-assisted
capacity for transmission of entanglement to be zero, which we call qc-symmetrizability. Our feeling in
this matter is that the definition of that kind of symmetrizability is too narrow to have any chance to
be necessary and sufficient. This is basically because according to that definition the adversary does
not use all the freedom he is given by the channel model to prevent the common-randomness-assisted
entanglement transmission.
The most surprising result included here is a striking difference to the classical theory: entanglement
transmission with entanglement fidelity as the criterion of success is widely acknowledged as a fully
quantum counterpart to message transmission with average error as a criterion for failure of transmission,
while the counterpart of strong subspace transmission should be maximal error probability.
The two classical criteria have been proven to be asymptotically equivalent e.g. for single memoryless
channels. For transmission over an AVC they lead to different capacities, as can be seen from Example
2 in [2]. The AVC given there has zero capacity for message transmission with asymptotically vanishing
maximal error probability, but from Theorem 3, part a) it can be seen that it has positive capacity for
message transmission with asymptotically vanishing average error.
In the quantum case, asymptotic equivalence of entanglement and strong subspace transmission for single
quantum channels has already been proven in [10]. Our results from section 4.2 show, that they are - in
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contrast to the classical theory - also (asymptotically) equivalent criteria w.r.t. AVQCs.
It is no surprise then, that the connection between arbitrarily varying channels and zero-error capacities
that is valid in the classical case [1] only partly survives in the quantum regime. This connection is
explored in the last part of the paper. It is a personal interest of the author to point out that it contains
one of only few applications of the extremality condition for completely positive maps that was developed
by Choi in [19]. Additionally, we show in section 4.8 that quantum, classical, and entanglement-assisted
zero-error capacities of quantum channels are generically zero and are discontinuous at every positivity
point. This is obvious for the classical zero-error capacity in Shannon’s original setting [63]. In the
quantum case we employ some simple facts from convex geometry combined with methods motivated by
the theory of arbitrarily varying channels to obtain this conclusion in an extremely simple way directly
from the corresponding definitions of zero-error quantum capacities. It should be mentioned at this point
that these results can as well be obtained rather easily using the concept of non-commutative graphs
(again accompanied by some convex geometry) that has been systematically explored in the recent work
[27]. The fact that the quantum zero-error capacity is generically zero shows that the channels for which
it is possible to satisfy the Knill-Laflamme condition [48] on a subspace of dimension greater or equal
than 2 are exceptional.
We also list two properties that lead to a single-letter capacity formula of an AVQC in section 4.7 and
compute the (deterministic) entanglement transmission capacity of an erasure AVQC (section 4.8).
A small add-on is given in section 4.9, where we show that the common-randomness-assisted entanglement
generation capacity of an AVQC equals its random entanglement transmission capacity.

2.2.3 Previous work

The model of an arbitrarily varying channel has been introduced by Blackwell, Breiman and Thomasian
[18] in 1960. They derived a formula for the capacity of an AVC with random codes and asymptotically
vanishing average error probability. They also wrote down an explicit example of an AVC whose deter-
ministic capacity is zero, while having nonzero capacity when using random codes.
Later landmarks in the development of coding theorems for AVCs have been the papers by Kiefer and
Wolfowitz [45], who found a necessary and sufficient condition for an AVC to have nonzero capacity with
deterministic codes and asymptotically vanishing maximal error probability.
The maximal error probability criterion was further investigated in [7] by Ahlswede and Wolfowitz, who
completely determined the capacity of AVCs with binary output alphabet under that criterion. A solu-
tion for arbitrarily large alphabets does not seem to exist until now. It should be mentioned that such a
solution would include the solution to Shannon’s zero error capacity problem [63], as pointed out in [1].
In our approach we use the powerful elimination technique developed by Ahlswede in 1978 [2] that, to-
gether with the random coding results of [18] enabled him to prove the following dichotomy result for
AVCs: It stated that the capacity of an AVC (under the average error probability criterion) is either zero
or equals its random coding capacity. Together with Ahlswede’s robustificaion technique [3, 4], the elimi-
nation technique led to a rather streamlined approach that, in this combination, has first been successfully
used in [4].
After the discoveries of [2], an important open question was, when exactly the deterministic capacity with
vanishing average error is equal to zero. In 1985, a first step towards a solution was made by Ericson [29],
who came up with a sufficient condition that was proven to be necessary by Csiszar and Narayan [21] in
1989.
The model of an arbitrarily varying channel with classical input and quantum output has first been con-
sidered in 2007 by Ahlswede and Blinovsky [6]. They considered the transmission of messages under the
average error criterion and gave a complete solution of the problem, i.e. a single-letter capacity formula,
including a necessary and sufficient condition for the case of zero capacity.
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3 The compound quantum channel

3.1 Definitions and main result

Let I ⊂ C(H,K). The memoryless compound channel associated with I is given by the family {N⊗l :
S(H⊗l) → S(K⊗l)}l∈N,N∈I. In the rest of this work we will simply write I or, if ambiguities have to be
avoided, the compound channel I for that family.
Each compound channel can be used in three different scenarios:

1. the informed decoder

2. the informed encoder

3. the case of uninformed users.

In the following three sections we will give definitions of codes and capacity for these cases.

3.1.1 The informed decoder

Definition 2. An (l, kl)-code for I with informed decoder is a pair (P l, {RlN : N ∈ I}) where:

1. P l : B(Fl)→ B(H)⊗l is a CPTP map for some Hilbert space Fl with kl = dimFl.

2. RlN : B(K)⊗l → B(F ′l ) is a CPTP map for each N ∈ I where the Hilbert space F ′l satisfies Fl ⊂ F ′l .

Remark 3. In what follows the operations RlN are referred to as recovery (or decoding) operations. Since
the decoder knows which channel is actually used during transmission, they are allowed to depend on the
channel.
Note at this point that we deviate from the standard assumption that Fl = F ′l . We allow Fl ( F ′l for
convenience only since it allows more flexibility in code construction. It is readily seen from the definition
of achievable rates and capacity below that the assumption Fl ( F ′l cannot lead to a higher capacity of I
in any of the three cases that we are dealing with.

Definition 4. A non-negative number R is called an achievable rate for transmission of entanglement
over I with informed decoder if there is a sequence of (l, kl)-codes such that

1. lim inf l→∞
1
l log kl ≥ R, and

2. liml→∞ infN∈I Fe(πFl ,RlN ◦ N⊗l ◦ P l) = 1

holds.

Definition 5. The entanglement transmission capacity QID(I) of the compound channel I with informed
decoder is given by

QID(I) := sup

{
R ∈ R+ :

R is an achievable rate for transmission of
entanglement over I with informed decoder

}
. (23)

Definition 6. A non-negative number R is said to be an achievable strong subspace transmission rate for
I with informed decoder if there is a sequence of (l, kl)− codes for I with informed decoder such that

1. lim inf l→∞
1
l log kl ≥ R and

2. liml→∞ infN∈I minψ∈S(Fl) F (|ψ〉〈ψ|,RlN ◦ N⊗l ◦ P l(|ψ〉〈ψ|)) = 1.

12



Definition 7. The strong subspace transmission capacity Qs,ID(I) of I with informed decoder is defined
by

Qs,ID(I) := sup

{
R ∈ R+ :

R is an achievable strong subspace trans-
mission rate for I with informed decoder

}
. (24)

Definition 8. An entanglement-generating (l, kl)-code for the compound channel I ⊂ C(H,K) with in-
formed decoder consists of a pair ({RlN }N∈I, ϕl) where Rl ∈ C(K⊗l,Fl) with kl = dimFl and ϕl is a pure
state on Fl ⊗H⊗l.

Definition 9. R ∈ R+ is called an achievable entanglement generation rate for I with informed decoder
if there is a sequence of (l, kl) entanglement-generating codes with

1. lim inf l→∞
1
l log kl ≥ R, and

2. liml→∞ infN∈I F (|ψl〉〈ψl|, (idFl⊗RlN ◦N⊗l)(|ϕl〉〈ϕl|)) = 1 where ψl denotes the standard maximally
entangled state on Fl ⊗Fl and F (·, ·) is the fidelity.

Definition 10. The entanglement-generating capacity E(I) of I with inforemd decoder is then defined as

EID(I) := sup

{
R ∈ R+ :

R is an achievable entanglement generation
rate for I with informed decoder

}
. (25)

3.1.2 The informed encoder

Definition 11. An (l, kl)-code for I with informed encoder is a pair ({P lN : N ∈ I},Rl) where:

1. P lN : B(Fl)→ B(H)⊗l is a CPTP map for each N ∈ I for some Hilbert space Fl with kl = dimFl.
The maps P lN are the encoding operations which we allow to depend on N since the encoder knows
which channel is in use.

2. Rl : B(K)⊗l → B(F ′l ) is a CPTP map where the Hilbert space F ′l satisfies Fl ⊂ F ′l .

Definition 12. A non-negative number R is called an achievable rate for entanglement transmission over
I with informed encoder if there is a sequence of (l, kl)-codes such that

1. lim inf l→∞
1
l log kl ≥ R, and

2. liml→∞ infN∈I Fe(πFl ,Rl ◦ N⊗l ◦ P lN ) = 1

holds.

Definition 13. The entanglement transmission capacity QIE(I) of the compound channel I with informed
encoder is given by

QIE(I) := sup

{
R ∈ R+ :

R is achievable for entanglement
transmission over I with informed encoder

}
. (26)

Definition 14. A non-negative number R is said to be an achievable strong subspace transmission rate
for I with informed encoder if there is a sequence of (l, kl)− codes for I with informed encoder such that

1. lim inf l→∞
1
l log kl ≥ R and

2. liml→∞ infN∈I minψ∈S(Fl) F (|ψ〉〈ψ|,Rl ◦ N⊗l ◦ P lN (|ψ〉〈ψ|)) = 1.
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Definition 15. The strong subspace transmission capacity Qs,ID(I) of I with informed encoder is defined
by

Qs,IE(I) := sup{R : R is an achievable strong subspace transmission rate for I with informed encoder}.
(27)

Definition 16. An entanglement-generating (l, kl)-code for the compound channel I ⊂ C(H,K) with in-
formed encoder consists of a pair (Rl, {ϕl,N }N∈I) where Rl ∈ C(K⊗l,Fl) with kl = dimFl and {ϕl,N }N∈I
is a set of pure states on Fl ⊗H⊗l.

Definition 17. R ∈ R+ is called an achievable entanglement generation rate for I with informed encoder
if there is a sequence of (l, kl) entanglement-generating codes with

1. lim inf l→∞
1
l log kl ≥ R, and

2. liml→∞ infN∈I F (|ψl〉〈ψl|, (idFl ⊗Rl ◦N⊗l)(|ϕl〉〈ϕl|)) = 1 where ψl denotes the standard maximally
entangled state on Fl ⊗Fl and F (·, ·) is the fidelity.

Definition 18. The entanglement-generating capacity EIE(I) of I with informed encoder is then defined
as

E(I) := sup

{
R ∈ R+ :

R is an achievable entanglement
generation rate for I with informed encoder

}
. (28)

3.1.3 The case of uninformed users

Codes and capacity for the compound channel I with uninformed users are defined in a similar fashion.
The only change is that we neither allow the encoding nor the recovery operations to depend on N :

Definition 19. An (l, kl)− code for I with uninformed users is a pair (P l,Rl) of CPTP maps P l ∈
C(Fl,H⊗l) where Fl is a Hilbert space with kl = dimFl and Rl ∈ C(K⊗l,F ′l ) with Fl ⊂ F ′l .

Definition 20. A non-negative number R is called an achievable rate for transmission of entanglement
over I with uninformed users if there is a sequence of (l, kl)-codes such that

1. lim inf l→∞
1
l log kl ≥ R, and

2. liml→∞ infN∈I Fe(πFl ,Rl ◦ N⊗l ◦ P l) = 1.

Definition 21. The capacity Q(I) of the compound channel I with uninformed users is given by

Q(I) := sup

{
R ∈ R+ :

R is achievable for transmission of
entanglement over I with uninformed users

}
. (29)

Definition 22. A non-negative number R is said to be an achievable strong subspace transmission rate
for I with uninformed users if there is a sequence of (l, kl)− codes for I with uninformed users such that

1. lim inf l→∞
1
l log kl ≥ R and

2. liml→∞ infN∈I minψ∈S(Fl) F (|ψ〉〈ψ|,Rl ◦ N⊗l ◦ P l(|ψ〉〈ψ|)) = 1.

The strong subspace transmission capacity Qs(I) of I with uninformed users is defined by

Qs,IE(I) := sup

{
R ∈ R+ :

R is an achievable strong subspace trans-
mission rate for I with uninformed users

}
. (30)

14



Definition 23. An entanglement-generating (l, kl)-code for the compound channel I ⊂ C(H,K) with
uninformed users consists of a pair (Rl, ϕl) where Rl ∈ C(K⊗l,Fl) with kl = dimFl and ϕl is a pure state
on Fl ⊗H⊗l.

Definition 24. R ∈ R+ is called an achievable entanglement generation rate for I with uninformed users
if there is a sequence of (l, kl) entanglement-generating codes with

1. lim inf l→∞
1
l log kl ≥ R, and

2. liml→∞ infN∈I F (|ψl〉〈ψl|, (idFl ⊗Rl ◦N⊗l)(|ϕl〉〈ϕl|)) = 1 where ψl denotes the standard maximally
entangled state on Fl ⊗Fl and F (·, ·) is the fidelity.

Definition 25. The entanglement-generating capacity E(I) of I with uninformed users is then defined as

E(I) := sup

{
R ∈ R+ :

R is an achievable entanglement generation
rate for I with uninformed users

}
. (31)

Remark 26. A first simple consequence of these definitions is given by the following relations among the
capacities of I:

Q(I) ≤ min{QID(I), QIE(I)}, (32)

Qs(I) ≤ min{Qs,ID(I), Qs,IE(I)}, (33)

E(I) ≤ min{EID(I), EIE(I)}, (34)

(35)

3.1.4 Main result

With these definitions at our disposal, we are ready now to state the main result of the paper.

Theorem 27. Let I ⊂ C(H,K) be an arbitrary set of quantum channels where H and K are finite
dimensional Hilbert spaces.

1. The entanglement transmission capacities of I satisfy

Q(I) = QID(I) = lim
l→∞

1

l
max

ρ∈S(H⊗l)
inf
N∈I

Ic(ρ,N⊗l) (36)

and

QIE(I) = lim
l→∞

1

l
inf
N∈I

max
ρ∈S(H⊗l)

Ic(ρ,N⊗l). (37)

2. For the entanglement-generating capacities of I we get

E(I) = EID(I) = Q(I) (38)

and
EIE(I) = QIE(I). (39)

3. Strong subspace transmission is equivalent to entanglement transmission:

Qs(I) = Qs,ID(I) = Q(I) (40)

and
Qs,IE(I) = QIE(I). (41)

In the main part of the rest of chapter 3, we give a step-by-step proof of Theorem 27.
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3.2 One-shot results

In this section we will establish the basic building blocks for the achievability parts of the coding theorems
for compound channels with and without channel knowledge. The results are formulated as one-shot
statements in order to simplify the notation.

3.2.1 One-shot coding result for a single channel

Before we turn our attention to quantum compound channels we will shortly describe a part of recent
developments in coding theory for single (i.e. perfectly known) channels as given in [47] and [35]. Both
approaches are based on a decoupling idea which is closely related to approximate error correction. In
order to state this decoupling lemma we need some notational preparation.
Let ρ ∈ S(H) be given and consider any purification ψ ∈ Ha⊗H, Ha = H, of ρ. According to Stinespring’s
representation theorem any N ∈ C↓(H,K) is given by

N ( · ) = trHe((1H ⊗ pe)v( · )v∗), (42)

where He is a suitable finite-dimensional Hilbert space, pe is a projection onto a subspace of He, and
v : H → K⊗He is an isometry.
Let us define a pure state on Ha ⊗K ⊗He by the formula

ψ′ :=
1√

tr(N (πF ))
(1Ha⊗K ⊗ pe)(1Ha ⊗ v)ψ. (43)

We set
ρ′ := trHa⊗He(|ψ′〉〈ψ′|), ρ′ae := trK(|ψ′〉〈ψ′|), (44)

and
ρa := trK⊗He(|ψ′〉〈ψ′|), ρ′e := trHa⊗K(|ψ′〉〈ψ′|). (45)

The announced decoupling lemma can now be stated as follows.

Lemma 28 (Cf. [47],[35]). For ρ ∈ S(H) and N ∈ C↓(H,K) there exists a recovery operation R ∈ C(K,H)
with

Fe(ρ,R ◦N ) ≥ w − ||wρ′ae − wρa ⊗ ρ′e||1, (46)

where w = tr(N (ρ)).

The striking implication of Lemma 28 is that if the so called quantum error ||ρ′ae − ρa ⊗ ρ′e||1 for
ρ ∈ S(H) and N ∈ C(H,K) is small then almost perfect error correction is possible via R.
Lemma 28 was Klesse’s [47] starting point for his highly interesting proof of the following theorem which
is a one-shot version of the achievability part of the coding theorem. In the statement of the result we
will use the following notation.

Fc,e(ρ,N ) := max
R∈C(K,H)

Fe(ρ,R ◦N ), (47)

where ρ ∈ S(H) and N ∈ C↓(H,K).

Theorem 29 (Klesse [47]). Let the Hilbert space H be given and consider subspaces E ⊂ G ⊂ H with
dim E = k. Then for any N ∈ C↓(H,K) allowing a representation with n Kraus operators we have∫

U(G)

Fc,e(uπEu
∗,N )du ≥ tr(N (πG))−

√
k · n||N (πG)||2, (48)

where U(G) denotes the group of unitaries acting on G and du indicates that the integration is with respect
to the Haar measure on U(G).
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We will indicate briefly how Klesse [47] derived the direct part of the coding theorem for memoryless
quantum channels from Theorem 29. Let us choose for each l ∈ N subspaces El ⊂ G⊗l ⊂ H⊗l with

dim El =: kl = 2l(Ic(πG ,N )−3ε). (49)

To given N ∈ C(H,K) and πG Klesse constructed a reduced version Nl of N⊗l in such a way that Nl has
a Kraus representation with nl ≤ 2l(Se(πG ,N )+ε) Kraus operators. Let ql ∈ B(K⊗l) be the entropy-typical
projection of the state (N (πG))⊗l and set N ′l (·) := qlNl(·)ql. Then we have the following properties (some
of which are stated once more for completeness)

1. kl = 2l(Ic(πG ,N )−3ε),

2. tr(N ′l (π
⊗l
G )) ≥ 1− o(l0)1,

3. nl ≤ 2l(Se(πG ,N )+ε), and

4. ||N ′l (π
⊗l
G )||22 ≤ 2−l(S(πG)−ε)

An application of Theorem 29 to N ′l shows heuristically the existence of a unitary u ∈ U(G⊗l) and a
recovery operation Rl ∈ C(K⊗l,H⊗l) with

Fe(uπElu
∗,Rl ◦ N ′l ) ≥ 1− o(l0)− 2−

l
2 ε. (50)

This in turn can be converted into

Fe(uπElu
∗,Rl ◦ N⊗l) ≥ 1− o(l0), (51)

which is the achievability of Ic(πG ,N ). The passage from πG to arbitrary states ρ is then accomplished
via the Bennett, Shor, Smolin, and Thapliyal Lemma from [12] and the rest is by regularization.

3.2.2 One-shot coding result for uninformed users

Our goal in this subsection is to establish a variant of Theorem 29 that works for finite sets of channels.
Since the entanglement fidelity depends affinely on the channel it is easily seen that for each set I =
{N1, . . . ,NN} any good coding scheme with uninformed users is also good for the channel

N :=
1

N

N∑
i=1

Ni (52)

and vice versa. Since it is easier to deal with a single channel and we do not loose anything if passing to
averages we will formulate our next theorem for arithmetic averages of completely positive trace decreasing
maps instead of the set {N1, . . . ,NN}.

Theorem 30 (One-Shot Result: Uninformed Users and Averaged Channel). Let the Hilbert space H be
given and consider subspaces E ⊂ G ⊂ H with dim E = k. For any choice of N1, . . .NN ∈ C↓(H,K) each
allowing a representation with nj Kraus operators, j = 1, . . . , N , we set

N :=
1

N

N∑
j=1

Nj , (53)

1Here, o(l0) denotes simply a non-specified sequence tending to 0 as l → ∞, i.e. we (ab)use the Bachmann-Landau little-o
notation.
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and and for any u ∈ U(G)

Nu :=
1

N

N∑
j=1

Nj ◦ U . (54)

Then ∫
U(G)

Fc,e(πE ,Nu)du ≥ tr(N (πG))− 2

N∑
j=1

√
knj ||Nj(πG)||2, (55)

where the integration is with respect to the normalized Haar measure on U(G).

Remark 31. It is worth noting that the average in this theorem is no more over maximally mixed states
like in Theorem 29, but rather over encoding operations.

Proof.

Lemma 32. Let L and D be N ×N matrices with non-negative entries which satisfy

Ljl ≤ Ljj , Ljl ≤ Lll, (56)

and
Djl ≤ max{Djj , Dll} (57)

for all j, l ∈ {1, . . . , N}. Then
N∑

j,l=1

1

N

√
LjlDjl ≤ 2

N∑
j=1

√
LjjDjj . (58)

Proof. Note that (57) implies
Djl ≤ Djj +Dll. (59)

Therewith we obtain

N∑
j,l=1

1

N

√
LjlDjl ≤

N∑
j,l=1

1

N

√
Ljl(Djj +Dll) (60)

≤
N∑

j,l=1

1

N

√
LjjDjj + LllDll (61)

≤
N∑

j,l=1

1

N

(√
LjjDjj +

√
LllDll

)
(62)

= 2

N∑
j=1

√
LjjDjj , (63)

where in (60) we have used (59), in (61) we employed (56), and (62) holds because
√
a+ b ≤

√
a+
√
b for

all non-negative real numbers a, b.

Proof. We can assume without loss of generality that the numbering of the channels is chosen in such a
way that n1 ≤ n2 ≤ . . . ≤ nN holds for the numbers of Kraus operators of the maps N1, . . . ,NN . From
Lemma 28 we know that there is a recovery operation R such that

Fe(πF ,R ◦N ) ≥ w − ||wρ′ae − wρa ⊗ ρ′e||1, (64)
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where we have used the notation introduced in the paragraph preceeding Lemma 28.
For each j ∈ {1, . . . , N} let {aj,i}

nj
i=1 be the set of Kraus operators of Nj . Let {f1, . . . , fN} and

{e1, . . . , enN } be arbitrary orthonormal bases of CN and CnN . Let the projection pe and unitary v in
(42) be chosen in such a way that for each φ ∈ H the relation

(1K ⊗ pe)v(φ⊗) =

N∑
j=1

nj∑
i=1

1√
N

(aj,iφ)⊗ ei ⊗ fj , (65)

holds. For a purification ψ ∈ Ha ⊗H of the state πF we consider a Schmidt representation

ψ =
1√
k

k∑
m=1

hm ⊗ gm, (66)

with suitable orthonormal systems {h1, . . . , hk} and {g1, . . . , gk}. A calculation identical to that performed
by Klesse [47] shows that the states on the right hand side of (64) can be expressed with the help of
representation (65) as

wρ′ae =
1

k

N∑
j,l=1

nj ,nl∑
i,r=1

k∑
s,t=1

tr(aj,i|gs〉〈gt|a∗l,r)
N

|xs,i,j〉〈xt,r,l|, (67)

with xs,i,j := hs ⊗ ei ⊗ fj , and

wρa ⊗ ρ′e =

N∑
j,l=1

nj ,nl∑
i,r=1

tr(aj,iπFa
∗
l,r)

kN
ρa ⊗ |yi,j〉〈yr,l|, (68)

where yi,j := ei ⊗ fj .
If we perform the unitary conjugation induced by the unitary map xs,i,j = hs ⊗ ei ⊗ fj 7→ x′s,i,j =
gs ⊗ ei ⊗ fj followed by the complex conjugation of the matrix elements with respect to the matrix units
{|x′s,i,j〉〈x′t,k,l|}s,i,j,t,k,l we obtain an anti-linear isometry I with respect to the metrics induced by the
trace distances on the operator spaces under consideration. A calculation identical to that in [47] shows
that under this isometry the sub-normalized states in (67) and (68) transform to

I(wρ′ae) =
1

kN

N∑
j,l=1

nj ,nl∑
i,r=1

pa∗j,ial,rp⊗ |yi,j〉〈yr,l|, (69)

and

I(wρa ⊗ ρ′e) =
1

k

N∑
j,l=1

nj ,nl∑
i,r=1

tr(pa∗j,ial,rp)

kN
p⊗ |yi,j〉〈yr,l|, (70)

with p = kπF and yi,j = ei ⊗ fj for j = 1, . . . , N and i = 1, . . . , nj . In summary, using the isometry I,
(69), and (70) the inequality (64) can be formulated as

Fe(πF ,R ◦N ) ≥ w − ||D(p)||1, (71)

with w = tr(N (πF )) and

D(p) :=

N∑
j,l=1

1

N

nj ,nl∑
i,r=1

D(ij)(rl)(p)⊗ |ei〉〈er| ⊗ |fj〉〈fl| (72)
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where

D(ij)(rl)(p) :=
1

k

(
paj,ia

∗
l,rp−

1

k
tr(pa∗j,ial,rp)p

)
. (73)

Let us define

Dj,l(p) :=

nj ,nl∑
i=1,k=1

D(ij)(kl)(p)⊗ |ei〉〈ek| ⊗ |fj〉〈fl|. (74)

The triangle inequality for the trace norm yields

||D(p)||1 ≤
N∑

j,l=1

1

N
||Dj,l(p)||1 (75)

≤
N∑

j,l=1

1

N

√
kmin{nj , nl}||Dj,l(p)||2, (76)

=

N∑
j,l=1

1

N

√
kmin{nj , nl}||Dj,l(p)||22, (77)

where the second line is justified by the standard relation between the trace and Hilbert-Schmidt norm,
||a||1 ≤

√
d||a||2, d being the number of non-zero singular values of a.

In the next step we will compute ||Dj,l(p)||22. A glance at (74) shows that

(Dj,l(p))
∗ =

nj ,nl∑
i=1,k=1

(D(ij)(kl)(p))
∗ ⊗ |ek〉〈ei| ⊗ |fl〉〈fj |, (78)

and consequently we obtain

||Dj,l(p)||22 = tr((Dj,l(p))
∗Dj,l(p)) (79)

=

nj ,nl∑
i=1,r=1

tr((D(ij)(kl)(p))
∗D(ij)(kl)(p)) (80)

=
1

k2

nj ,nl∑
i=1,r=1

{tr(p(a∗j,ial,r)∗pa∗j,ial,r)−
1

k
|tr(pa∗j,ial,r)|2}. (81)

Let U be a random variable taking values in U(G) according to the Haar measure of U(G). Then we can
infer from (75) that

E(||D(UpU∗)||1) ≤
N∑

j,l=1

1

N

√
LjlE(||Dj,l(UpU∗)||22), (82)

where we have used the concavity of the function
√
· and Jensen’s inequality and, additionally, we

abbreviated kmin{nj , nl} by Ljl. Now, starting with (79) and arguing as Klesse [47] we obtain that

E(||Dj,l(UpU
∗)||22) ≤ tr(Nj(πG)Nl(πG)) (83)

= 〈Nj(πG),Nl(πG)〉HS , (84)

where 〈 · , · 〉HS denotes the Hilbert-Schmidt inner product. Similarly

E(tr(N (UπFU
∗))) = tr(N (πG)). (85)
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Now, using (64), (71), (79), (82), (83), and (85) we arrive at

E(Fc,e(UπFU
∗,N )) ≥ tr(N (πG))−

N∑
j,l=1

1

N

√
LjlDjl, (86)

where for j, l ∈ {1, . . . , N} we introduced the abbreviations

Ljl = kmin{nj , nl}, (87)

and
Djl := 〈Nj(πG),Nl(πG)〉HS . (88)

It is obvious that
Ljl ≤ Ljj and Ljl ≤ Lll (89)

hold. Moreover, the Cauchy-Schwarz inequality for the Hilbert-Schmidt inner product justifies the follow-
ing chain of inequalities

Djl = 〈Nj(πG),Nl(πG)〉HS (90)

≤ ||Nj(πG)||2||Nl(πG)||2 (91)

≤ max{||Nj(πG)||22, ||Nl(πG)||22} (92)

= max{Djj , Dll}. (93)

Therefore, an application of Lemma 32 allows us to conclude from (86) that

E(Fc,e(UπFU
∗,N )) ≥ tr(N (πG))− 2

N∑
j=1

√
knj ||Nj(πG)||2, (94)

which is what we aimed to prove.

3.2.3 One-shot coding result for informed encoder

We will focus now on the scenario where the sender or encoder knows which channel is in use. Consequently,
the encoding operation can depend on the individual channel. The idea behind the next theorem is that
we perform an independent, randomized selection of unitary encoders for each channel in the finite set
I = {N1, . . . ,NN}. This explains why the averaging in (96) is with respect to products of Haar measures
instead of averaging over one single Haar measure as in Theorem 30.

Theorem 33 (One-Shot Result: Informed Encoder and Averaged Channel). Let the finite-dimensional
Hilbert spaces H and K be given. Consider subspaces E ,G1, . . . ,GN ⊂ H with dim E = k such that for
all i ∈ {1, . . . , N} the dimension relation k ≤ dimGi holds. Let N1, . . .NN ∈ C↓(H,K) each allowing a
representation with nj Kraus operators, j = 1, . . . , N . Let {vi}Ni=1 ⊂ U(H) be any fixed set of unitary
operators such that viE ⊂ Gi holds for every i ∈ {1, . . . , N}. For an arbitrary set {ui}Ni=1 ⊂ U(H), define

Nu1,...,uN :=
1

N

N∑
i=1

Ni ◦ Ui ◦ Vi. (95)

Then∫
U(G1)×...×U(GN )

Fc,e(πE ,Nu1,...,uN )du1 . . . duN ≥
N∑
j=1

[ 1

N
tr(Nj(πGj ))− 2

√
knj ||Nj(πGj )||2

]
, (96)

where the integration is with respect to the product of the normalized Haar measures on U(G1), . . . ,U(GN ).
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Proof. Our first step in the proof is to show briefly that Fc,e(πE ,Nu1,...,uN ) depends measurably on
(u1, . . . , uN ) ∈ U(G1) × . . . × U(GN ). For each recovery operation R ∈ C(K,H) we define a function
fR : U(G1)× . . .× U(GN )→ [0, 1] by

fR(u1, . . . , uN ) := Fe(πE ,R ◦Nu1,...,uN ). (97)

Clearly, fR is continuous for each fixed R ∈ C(K,H). Thus, the function

Fc,e(πE ,Nu1,...,uN ) = max
R∈C(K,H)

fR(u1, . . . , uN ) (98)

is lower semicontinuous, and consequently measurable.
We turn now to the proof of inequality (96). From Lemma 28 we know that there is a recovery operation
R such that

Fe(πE ,R ◦Nu1,...,uN ) ≥ w − ||wρ′ae − wρa ⊗ ρ′e||1, (99)

where we have used the notation introduced in the paragraph preceding Lemma 28, and

w = w(u1, . . . , uN ) = tr(Nu1,...,uN (πE)). (100)

For each j ∈ {1, . . . , N} let {bj,i}
nj
i=1 be the set of Kraus operators of Nj . Clearly, for every set u1, . . . , uN

of unitary matrices, Nj ◦ Uj ◦ Vj has Kraus operators {aj,i}
nj
i=1 given by aj,i = bj,iujvj . Utilizing the

very same calculation that was used in the proof of Theorem 30, which in turn is almost identical to the
corresponding calculation in [47], we can reformulate inequality (99) as

Fe(πE ,R ◦Nu1,...,uN ) ≥ w − ||D(u1, . . . , uN )||1, (101)

with w = tr(Nu1,...,uN (πE)) and

D(u1, . . . , uN ) :=

N∑
j,l=1

1

N

nj ,nl∑
i,r=1

D(ij)(rl)(uj , ul)⊗ |ei〉〈er| ⊗ |fj〉〈fl| (102)

where

D(ij)(rl)(uj , ul) :=
1

k

(
paj,ia

∗
l,rp−

1

k
tr(pa∗j,ial,rp)p

)
, (103)

and p := kπE is the projection onto E . Let us define

Dj,l(uj , ul) :=

nj ,nl∑
i=1,k=1

D(ij)(kl)(uj , ul)⊗ |ei〉〈ek| ⊗ |fj〉〈fl|. (104)

The triangle inequality for the trace norm yields

||D(u1, . . . , uN )||1 ≤
N∑

j,l=1

1

N
||Dj,l(uj , ul)||1 (105)

≤
N∑

j,l=1

1

N

√
kmin{nj , nl}||Dj,l(uj , ul)||2, (106)

=

N∑
j,l=1

1

N

√
kmin{nj , nl}||Dj,l(uj , ul)||22, (107)
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where the second line follows from ||a||1 ≤
√
d||a||2, d being the number of non-zero singular values of a.

In the next step we will compute ||Dj,l(uj , ul)||22. We set pl := vlpv
∗
l which defines new projections {pl}Nl=1

with supp(pl) ⊂ Gl for every l ∈ {1, . . . , N}. A glance at (104) shows that

(Dj,l(uj , ul))
∗ =

nj ,nl∑
i=1,k=1

(D(ij)(kl)(uj , ul))
∗ ⊗ |ek〉〈ei| ⊗ |fl〉〈fj |, (108)

and consequently we obtain

||Dj,l(uj , ul)||22 = tr((Dj,l(uj , ul))
∗Dj,l(uj , ul)) (109)

=

nj ,nl∑
i=1,r=1

tr((D(ij)(kl)(uj , ul))
∗D(ij)(kl)(uj , ul)) (110)

=
1

k2

nj ,nl∑
i=1,r=1

{tr(p(a∗j,ial,r)∗pa∗j,ial,r)−
1

k
|tr(pa∗j,ial,r)|2} (111)

=
1

k2

nj ,nl∑
i=1,r=1

{tr(plu∗l b∗l,rbj,iujpju∗j b∗j,ibl,rul)−
1

k
|tr(pv∗ju∗j b∗j,ibl,rulvl)|2}. (112)

It is apparent from the last two lines in (109) that ||Dj,l(uj , ul)||22 depends measurably on (u1, . . . , uN ) ∈
U(G1)× . . .×U(GN ). Let U1, . . . , UN be independent random variables taking values in U(Gi) according to
the normalized Haar measure on U(Gi) (i ∈ {1, . . . , N}). Then using Jensen’s inequality and abbreviating
Ljl := kmin{nj , nl} we can infer from (105) that

E(||D(U1, . . . , UN )||1) ≤
N∑

j,l=1

1

N

√
LjlE(||Dj,l(Uj , Ul)||22). (113)

Note that the expectations on the RHS of (113) are only with respect to pairs of random variables
U1, . . . , UN .
Our next goal is to upper-bound E(||Dj,l(Uj , Ul)||22).
Case j 6= l: Since the last term in (109) is non-negative and the random variables Uj and Ul are indepen-
dent we obtain the following chain of inequalities:

E(||Dj,l(Uj , Ul)||22) =
1

k2

nj ,nl∑
i,r=1

[
Etr(plU

∗
l b
∗
l,rbj,iUjpjU

∗
j b
∗
j,ibl,rUl)−

1

k
E|tr(pv∗jU∗j b∗j,ibl,rUlvl)|2

]
(114)

≤ 1

k2

nj ,nl∑
i=1,r=1

Etr(plU
∗
l b
∗
l,rbj,iUjpjU

∗
j b
∗
j,ibl,rUl) (115)

=
1

k2

nj ,nl∑
i=1,r=1

Etr(UlplU
∗
l b
∗
l,rbj,iUjpjU

∗
j b
∗
j,ibl,r) (116)

=
1

k2

nj ,nl∑
i=1,r=1

tr(E(UlplU
∗
l )b∗l,rbj,iE(UjpjU

∗
j )b∗j,ibl,r) (117)

=
1

k2

nj ,nl∑
i=1,r=1

tr(k · πGlb∗l,rbj,ik · πGj b∗j,ibl,r) (118)

= 〈Nj(πGj ),Nl(πGl)〉HS , (119)
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where 〈 · , · 〉HS denotes the Hilbert-Schmidt inner product, and we used the fact that

E(UlplU
∗
l ) = k · πGl and E(UjpjU

∗
j ) = k · πGj . (120)

Case j = l: In this case we obtain

E(||Dj,j(Uj , Uj)||22) =
1

k2

nj ,nj∑
i,r=1

[
Etr(pjU

∗
j b
∗
j,rbj,iUjpjU

∗
j b
∗
j,ibj,rUj)−

1

k
E|tr(pv∗jU∗j b∗j,ibj,rUjvj)|2

]
(121)

=
1

k2

nj ,nj∑
i=1,r=1

Etr(UjpjU
∗
j b
∗
j,rbj,iUjpjU

∗
j b
∗
j,ibj,r)−

1

k
E|tr(UjpjU∗j b∗j,ibj,r)|2

]
.(122)

Thus, the problem reduces to the evaluation of

E{bUpU∗(x, y)}, (x, y ∈ B(H)) (123)

where p is an orthogonal projection with tr(p) = k and

bUpU∗(x, y) := tr(UpU∗x∗UpU∗y)− 1

k
tr(UpU∗x∗)tr(UpU∗y), (124)

for a Haar distributed random variable U with values in U(G) where supp(p) ⊂ G ⊂ H.
Here we can refer to [47] where the corresponding calculation is carried out via the theory of group
invariants and explicit evaluations of appropriate integrals with respect to row-distributions of random
unitary matrices. The result is

E{bUpU∗(x, y)} =
k2 − 1

d2 − 1
tr(pGx

∗pGy) +
1− k2

d(d2 − 1)
tr(pGx

∗)tr(pGy), (125)

for all x, y ∈ B(H) where pG denotes the projection onto G with tr(pG) = d. In Appendix 6 we will give
an elementary derivation of (125) for the sake of completeness.
Inserting (125) with x = y = b∗j,ibj,r into (121) yields with dj := tr(pGj )

E(||Dj,j(Uj , Uj)||22) =
1− 1

k2

d2
j − 1

[ nj ,nj∑
i=1,r=1

tr(pGj b
∗
j,rbj,ipGj b

∗
j,ibj,r)−

1

dj
|tr((pGj b∗j,ibj,r)|2

]
(126)

≤
1− 1

k2

d2
j − 1

nj ,nj∑
i=1,r=1

tr(pGj b
∗
j,rbj,ipGj b

∗
j,ibj,r) (127)

≤ 1

d2
j

nj ,nj∑
i=1,r=1

tr(pGj b
∗
j,rbj,ipGj b

∗
j,ibj,r) (128)

=
1

d2
j

nj ,nj∑
i=1,r=1

tr(bj,rpGj b
∗
j,rbj,ipGj b

∗
j,i) (129)

= 〈Nj(πGj ),Nj(πGj )〉HS . (130)

Summarizing, we obtain

E(||Dj,j(Uj , Uj)||22) ≤ 〈Nj(πGj ),Nj(πGj )〉HS = ||Nj(πGj )||22. (131)
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Similarly

E(tr(NU1,...,UN (πE))) =
1

N

N∑
j=1

E(tr(Nj(Uj
1

k
pjU

∗
j ))) (132)

=
1

N

N∑
j=1

tr(Nj(πGj )). (133)

(101), (105), (114), (131), and (133) show that

E(Fc,e(πE ,NU1,...,UN )) ≥ 1

N

N∑
j=1

tr(Nj(πGj ))−
N∑

j,l=1

1

N

√
LjlDjl, (134)

where for j, l ∈ {1, . . . , N} we introduced the abbreviation

Djl := 〈Nj(πGj ),Nl(πGl)〉HS , (135)

and, as before,
Ljl = kmin{nj , nl}. (136)

It is obvious that
Ljl ≤ Ljj and Ljl ≤ Lll (137)

hold. Moreover, the Cauchy-Schwarz inequality for the Hilbert-Schmidt inner product shows that

Djl = 〈Nj(πGj ),Nl(πGl)〉HS (138)

≤ ||Nj(πGj )||2||Nl(πGl)||2 (139)

≤ max{||Nj(πGj )||22, ||Nl(πGl)||22} (140)

= max{Djj , Dll}. (141)

Therefore, an application of Lemma 32 allows us to conclude from (134) that

E(Fc,e(πE ,NU1,...,UN )) ≥ 1

N

N∑
j=1

tr(Nj(πGj )) (142)

−2

N∑
j=1

√
knj ||Nj(πGj )||2, (143)

and we are done.

3.2.4 Entanglement fidelity

The purpose of this subsection is to develop a tool which will enable us to convert a special kind of
recovery maps depending on the channel into such that are universal, at least for finite compound channels.
Anticipating constructions in section 3.3 below the situation we will be faced with is as follows. For finite
set I = {N1, . . . ,NN} of channels, block length l ∈ N, and small ε > 0 we will be able to find one single
recovery map Rl and a unitary encoder W l such that for each i ∈ {1, . . . , N}

Fe(πFl ,Rl ◦ Ql,i ◦ N
⊗l
i ◦W

l) ≥ 1− ε, (144)

where Ql,i(·) := ql,i(·)ql,i with suitable projections ql,i acting on K⊗l. Thus we will effectively end up with
the recovery maps Rli := Rl ◦ Ql,i. Consequently, it turns out that the decoder is informed. Lemma 34
below shows how to get rid of the maps Ql,i ensuring the existence of a universal recovery map for the
whole set I while decreasing the entanglement fidelity only slightly.
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Lemma 34. Let ρ ∈ S(H) for some Hilbert space H. Let, for some other Hilbert space K, A ∈
C(H,K), D ∈ C(K,H), q ∈ B(K) be an orthogonal projection.

1. Denoting by Q⊥ the completely positive map induced by q⊥ := 1K − q we have

Fe(ρ,D ◦ A) ≥ Fe(ρ,D ◦ Q ◦ A)− 2
√
Fe(ρ,D ◦ Q ◦ A)Fe(ρ,D ◦ Q⊥ ◦ A). (145)

2. If for some ε > 0 the relation Fe(ρ,D ◦ Q ◦ A) ≥ 1− ε holds, then

Fe(ρ,D ◦ Q⊥ ◦ A) ≤ ε, (146)

and (145) implies
Fe(ρ,D ◦ A) ≥ 1− ε− 2

√
ε ≥ 1− 3

√
ε. (147)

3. If for some ε > 0 merely the relation tr{qA(ρ)} ≥ 1− ε holds then we can conclude that

Fe(ρ,D ◦ A) ≥ Fe(ρ,D ◦ Q ◦ A)− 2
√
ε. (148)

The following Lemma 35 contains two inequalities one of which will be needed in the proof of Lemma
34.

Lemma 35. Let D ∈ C(K,H) and x1 ⊥ x2, z1 ⊥ z2 be state vectors, x1, x2 ∈ K, z1, z2 ∈ H. Then

|〈z1,D(|x1〉〈x2|)z1〉| ≤
√
|〈z1,D(|x1〉〈x1|)z1〉| · |〈z1,D(|x2〉〈x2|)z1〉| ≤ 1, (149)

and
|〈z1,D(|x1〉〈x2|)z2〉| ≤

√
|〈z1,D(|x1〉〈x1|)z1〉| · |〈z2,D(|x2〉〈x2|)z2〉| ≤ 1. (150)

We will utilize only (149) in the proof of Lemma 34. But the inequality (150) might prove useful in
other context so that we state it here for completeness.

Proof of Lemma 35. Let dimH = h, dimK = κ. Extend {x1, x2} to an orthonormal basis {x1, x2, . . . , xκ}
of K and {z1, z2} to an orthonormal basis {z1, z2, . . . , zh} on H. Since x1 ⊥ x2 and z1 ⊥ z2, this can
always be done. By the theorem of Choi [19], a linear map from B(H) to B(K) is completely positive if

and only if its Choi matrix is positive. Write D(|xi〉〈xj |) =
∑h
k,l=1D

ij
kl|zk〉〈zl|. Then the Choi matrix of

D is, with respect to the bases {x1, . . . , xk} and {z1, . . . , zh}, written as

CHOI(D) =

κ∑
i,j=1

|xi〉〈xj | ⊗
h∑

k,l=1

Dij
kl|zk〉〈zl|. (151)

If CHOI(D) is positive, then all principal minors of CHOI(D) are positive (cf. Corollary 7.1.5 in [40]) and
thus

|Dij
kl| ≤

√
|Dii

kk| · |D
jj
ll | (152)

for every suitable choice of i, j, k, l. Thus

|〈z1|D(|x1〉〈x2|)z2〉| = |D12
12| (153)

≤
√
|D11

11| · |D22
22| (154)

=
√
|〈z1,D(|x1〉〈x1|)z1〉| · |〈z2,D(|x2〉〈x2|)z2〉|, (155)

and similarly
|〈z1,D(|x1〉〈x2|)z1〉| ≤

√
|〈z1,D(|x1〉〈x1|)z1〉| · |〈z1,D(|x2〉〈x2|)z1〉|. (156)

The fact that D is trace preserving gives us the estimate 〈zi,D(|xj〉〈xj |)zi〉 ≤ 1 (i, j suitably chosen) and
we are done.
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Proof of Lemma 34. Let dimH = h, dimK = κ, |ψ〉〈ψ| ∈ Ha⊗H be a purification of ρ (w.l.o.g. Ha = H).
Set D̃ := idHa ⊗ D, Ã := idHa ⊗ A, q̃ := 1Ha ⊗ q and, as usual, q̃⊥ the orthocomplement of q̃ within
Ha ⊗K. Obviously,

Fe(ρ,D ◦ A) = 〈ψ, D̃ ◦ Ã(|ψ〉〈ψ|)ψ〉 (157)

= 〈ψ, D̃([q̃ + q̃⊥]Ã(|ψ〉〈ψ|[q̃ + q̃⊥]))ψ〉 (158)

= 〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃)ψ〉+ 〈ψ, D̃(q̃⊥Ã(|ψ〉〈ψ|)q̃⊥)ψ〉 (159)

+〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃⊥)ψ〉+ 〈ψ, D̃(q̃⊥Ã(|ψ〉〈ψ|)q̃)ψ〉 (160)

≥ 〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃)ψ〉+ 2<{〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃⊥)ψ〉} (161)

≥ 〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃)ψ〉 − 2|〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃⊥)ψ〉| (162)

= Fe(ρ,D ◦ Q ◦ A)− 2|〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃⊥)ψ〉|. (163)

We establish a lower bound on the second term on the RHS of (163). Let

Ã(|ψ〉〈ψ|) =

κ·h∑
i=1

λi|ai〉〈ai|, (164)

where {a1, . . . , aκ·h} are assumed to form an orthonormal basis. Now every ai can be written as ai =
αixi + βiyi where xi ∈ supp(q̃) and yi ∈ supp(q̃⊥), i ∈ {1, ..., κ · h}, are state vectors and αi, βi ∈ C.
Define σ := Ã(|ψ〉〈ψ|), then

σ =

κ·h∑
j=1

λj(|αj |2|xj〉〈xj |+ αjβ
∗
j |xj〉〈yj |+ βjα

∗
j |yj〉〈xj |+ |βj |2|yj〉〈yj |). (165)

Set X := |〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃⊥)ψ〉|. Then

X = |〈ψ, D̃(q̃σq⊥)ψ〉| (166)

a
= |

κ·h∑
i=1

λi〈ψ, D̃(q̃|ai〉〈ai|q̃⊥)ψ〉| (167)

= |
κ·h∑
i=1

λiαiβ
∗
i 〈ψ, D̃(|xi〉〈yi|)ψ〉| (168)

≤
κ·h∑
i=1

|λiαiβ∗i | · |〈ψ, D̃(|xi〉〈yi|)ψ〉| (169)

b
≤

κ·h∑
i=1

|
√
λi|〈ψ, D̃(|xi〉〈xi|)ψ〉αi

√
λi〈ψ, D̃(|yi〉〈yi|)ψ〉β∗i | (170)

c
≤

√√√√κ·h∑
i=1

λi|αi|2〈ψ, D̃(|xi〉〈xi|)ψ〉
κ·h∑
j=1

λj |βj |2〈ψ, D̃(|yj〉〈yj |)ψ〉. (171)

Here, a follows from using the convex decomposition of Ã(|ψ〉〈ψ|), b from utilizing inequality (149) from
Lemma 35 and c is an application of the Cauchy-Schwarz inequality.
Now, employing the representation (165) it is easily seen that

Fe(ρ,D ◦ Q ◦ A) = 〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃)ψ〉 =

κ·h∑
i=1

λi|αi|2〈ψ, D̃(|xi〉〈, xi|)ψ〉 (172)
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and similarly

Fe(ρ,D ◦ Q⊥ ◦ A) =

κ·h∑
j=1

λj |βj |2〈ψ, D̃(|yj〉〈yj |)ψ〉. (173)

The inequalities (173), (172), (171), and (163) yield

Fe(ρ,D ◦ A) ≥ Fe(ρ,D ◦ Q ◦ A)− 2
√
Fe(ρ,D ◦ Q ◦ A)Fe(ρ,D ◦ Q⊥ ◦ A) (174)

which establishes (145).
Let us turn now to the other assertions stated in the lemma. Let tr{qA(ρ)} ≥ 1 − ε. This implies
tr(q⊥A(ρ)) ≤ ε. A direct calculation yields

tr(q̃⊥σ) = trHa(trK((1Ha ⊗ q⊥)idHa ⊗A(|ψ〉〈ψ|))) (175)

= trK(q⊥A(trHa(|ψ〉〈ψ|))) (176)

= trK(q⊥A(ρ)) (177)

≤ ε. (178)

Using (165), we get the useful inequality

ε ≥ tr(q̃⊥σ) (179)

=

κ·h∑
i=1

λi|βi|2tr(q̃⊥|yi〉〈yi|) (180)

=

κ·h∑
i=1

λi|βi|2. (181)

Using Lemma 35 and (181) we get

X ≤

√√√√κ·h∑
i=1

λi|αi|2
κ·h∑
j=1

λj |βj |2 (182)

≤
√
ε, (183)

thus by equation (163) we have

Fe(ρ,D ◦ A) ≥ Fe(ρ,D ◦ Q ◦ A)− 2
√
ε. (184)

3.3 Direct part of the coding theorem for finitely many channels

In the next two pages we briefly collect some well-known properties of frequency typical projections and
reduced operations.

3.3.1 Typical projections

In this subsection we will collect some well-known results on typical projections.
Let ρ ∈ S(H) be a state and consider any diagonalization

ρ =

d∑
i=1

λi|ei〉〈ei|, (185)
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where d := dimH. Using this representation the state ρ⊗l can be written as

ρ⊗l =
∑
xl∈Al

λxl |exl〉〈exl |, (186)

with A = {1, . . . , d}, xl := (x1, . . . , xl) ∈ Al, λxl := λx1 · . . . · λxl , and exl := ex1 ⊗ . . .⊗ exl .
The frequency-typical set of eigenvalues of ρ is given by

Tδ,l := {xl ∈ Al : ||pxl − λ||1 < δ, pxl � λ}, (187)

where pxl denotes the empirical probability distribution on A generated by xl, i.e.

pxl(x) :=
|{j ∈ {1, . . . , l} : xj = x}|

l
, (188)

λ is the probability distribution on A defined by the eigenvalues of ρ, and pxl � λ means that pxl(x) = 0
whenever λx = 0.
The frequency-typical projection qδ,l of ρ given by

qδ,l :=
∑

xl∈Tδ,l

|exl〉〈exl | (189)

has the following well-known properties:

Lemma 36. There is a real number c > 0 such that for every Hilbert space H there exist functions
h : N → R+, ϕ : (0, 1/2) → R+ with liml→∞ h(l) = 0 and limδ→0 ϕ(δ) = 0 such that for any ρ ∈
S(H), δ ∈ (0, 1/2), l ∈ N there is an orthogonal projection qδ,l ∈ B(H)⊗l called frequency-typical projection
that satisfies

1. tr(ρ⊗lqδ,l) ≥ 1− 2−l(cδ
2−h(l)),

2. qδ,lρ
⊗lqδ,l ≤ 2−l(S(ρ)−ϕ(δ))qδ,l

3. ηl(δ)2
l(S(ρ)−ϕ(δ)) ≤ tr(qδ,l) ≤ 2l(S(ρ)+ϕ(δ)) where

ηl(δ) := 1− 2−l(cδ
2−h(l)). (190)

The inequality 2. implies
||qδ,lρ⊗lqδ,l||22 ≤ 2−l(S(ρ)−ϕ(δ)). (191)

Moreover, setting d := dimH, ϕ and h are given by

h(l) =
d

l
log(l + 1) ∀l ∈ N, ϕ(δ) = −δ log

δ

d
∀δ ∈ (0, 1/2). (192)

The proof of the lemma is fairly standard and rests on purely classical reasoning. It combines the
Bernstein-Sanov trick (cf. [64], sect. III.1) and the type counting methods from [20].

3.3.2 Typical kraus operators

According to Kraus’ representation theorem we can find to any N ∈ C(H,K) a family of operators
a1, . . . , an ∈ B(H,K) with

∑n
i=1 a

∗
i ai = 1H and

N (ρ) =

n∑
i=1

aiρa
∗
i (193)
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for all ρ ∈ S(H).
We fix the maximally mixed state πG supported by the subspace G of H. It is easily seen (cf. [56]) that
the Kraus operators a1, . . . , an of N can always be chosen such that

tr(aiπGa
∗
j ) = δijtr(aiπGa

∗
i ), (194)

for all i, j ∈ {1, . . . , n}. With this choice of Kraus operators we can define a probability distribution r on
the set B := {1, . . . , n} by

r(i) := tr(aiπGa
∗
i ), (i ∈ B). (195)

It is shown in [59] that the Shannon entropy of r is nothing else than the entropy exchange Se(πG ,N ), i.e.

H(r) = Se(πG ,N ). (196)

In a similar vein as in the previous subsection we introduce the notion of frequency-typical subset for r,
i.e we set

Kδ,l := {yl ∈ Bl : ||pyl − r||1 < δ, pyl � r} (197)

with δ > 0. With this we can introduce the notion of the reduced operation by setting

Nδ,l(ρ) :=
∑

yl∈Kδ,l

aylρa
∗
yl , (198)

where ayl := ay1 ⊗ . . .⊗ ayl and ρ ∈ S(H⊗l). Moreover, we set

nδ,l := |Kδ,l|, (199)

which is the number of Kraus operators of the reduced operation Nδ,l. The properties of frequency-typical
sets (cf. [20, 64])) lead immediately to

Lemma 37. Let H,K be finite dimensional Hilbert spaces. There are functions γ : (0, 1/2) → R+,
h′ : N→ R+ satisfying limδ→0 γ(δ) = 0 and h′(l)↘ 0 such that for each N ∈ C(H,K), δ ∈ (0, 1/2), l ∈ N
and maximally mixed state πG on some subspace G ⊂ H there is an operation Nδ,l ∈ C↓(H⊗l,K⊗l) called
reduced operation with respect to N and πG that satisfies

1. tr(Nδ,l(π⊗lG )) ≥ 1− 2−l(c
′δ2−h′(l)), with a universal positive constant c′ > 0,

2. Nδ,l has a Kraus representation with at most nδ,l ≤ 2l(Se(πG ,N )+γ(δ)+h′(l)) Kraus operators.

3. For every state ρ ∈ S(H⊗l) and every two channels I ∈ C↓(H⊗l,H⊗l) and L ∈ C↓(K⊗l,H⊗l) the
inequality Fe(ρ,L ◦ Nδ,l ◦ I) ≤ Fe(ρ,L ◦ N⊗l ◦ I) is fulfilled.

Setting d := dimH and κ := dimK, the function h′ : N→ R+ is given by h′(l) = d·κ
l log(l+ 1) ∀l ∈ N and

γ by γ(δ) = −δ log δ
d·κ , ∀δ ∈ (0, 1/2).

3.3.3 The case of uninformed users

Let us consider a compound channel given by a finite set I := {N1, . . . ,NN} ⊂ C(H,K) and a subspace
G ⊂ H. For every l ∈ N, we choose a subspace El ⊂ G⊗l. As usual, πEl and πG denote the maximally
mixed states on El, respectively G while kl := dim El gives the dimension of El.
For j ∈ {1, . . . , N}, δ ∈ (0, 1/2), l ∈ N and states Nj(πG) let qj,δ,l ∈ B(K)⊗l be the frequency-typical
projection of Nj(πG) and Nj,δ,l be the reduced operation associated with Nj and πG as defined in Lemma
37.
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These quantities enable us to define a new set of channels that is more adapted to our problem than the
original one. We set for an arbitrary unitary operation ul ∈ B(H⊗l)

N̂ l
j,ul,δ := Qj,δ,l ◦ Nj,δ,l ◦ U l (200)

and, accordingly,

N̂ l
ul,δ :=

1

N

N∑
j=1

N̂ l
j,ul,δ. (201)

We will show the existence of good codes for the reduced channels Qj,δ,l ◦Nj,δ,l in the limit of large l ∈ N.
An application of Lemma 34 and Lemma 37 will then show that these codes are also good for the original
compound channel.
Let U l be a random variable taking values in U(G⊗l) which is distributed according to the Haar measure.
Application of Theorem 30 yields

EFc,e(πEl , N̂ l
U l,δ) ≥ tr(N̂ l

δ(π
⊗l
G ))− 2

N∑
j=1

√
klnj,δ,l||N̂ l

j,δ(π
⊗l
G )||2, (202)

where nj,δ,l stands for the number of Kraus operators of the reduced operation Nj,δ,l (j ∈ {1, . . . , N}) and

N̂ l
j,δ := Qj,δ,l ◦ Nj,δ,l, (203)

N̂ l
δ :=

1

N

N∑
j=1

N̂ l
j,δ. (204)

Notice that Qj,δ,l ◦ Nj,δ,l trivially has a Kraus representation containing exactly nj,δ,l elements. We will
use inequality (202) in the proof of the following theorem.

Theorem 38 (Direct Part: Uninformed Users and |I| < ∞). Let I = {N1, ...,NN} ⊂ C(H,K) be a
compound channel and πG the maximally mixed state associated to a subspace G ⊂ H. Then

Q(I) ≥ min
Ni∈I

Ic(πG ,Ni). (205)

Moreover, for any R < minNi∈I Ic(πG ,Ni) there is cR > 0, l0 ∈ N and at least one sequence of (l, kl)
codes such that both

lim inf
l→∞

1

l
log(kl) = R and min

1≤i≤N
Fe(πFl ,Rl ◦ N

⊗l
i ◦ P

l) ≥ 1− 2−cRl (206)

Proof. We show that for every ε > 0 the number minNi∈I Ic(πG ,Ni)− ε is an achievable rate for I.
1) If minNi∈I Ic(πG ,Ni)− ε ≤ 0, there is nothing to prove.
2) Let minNi∈I Ic(πG ,Ni)− ε > 0.
Choose δ ∈ (0, 1/2) and l0 ∈ N satisfying γ(δ) + ϕ(δ) + h′(l0) ≤ ε/2 with functions γ, ϕ, h′ from Lemma
36 and 37.
Now choose for every l ∈ N a subspace El ⊂ G⊗l such that

dim El =: kl = b2l(minNi∈I Ic(πG ,Ni)−ε)c. (207)

By S(πG) ≥ Ic(πG ,Nj) (see [11]), this is always possible.
Obviously,

min
Ni∈I

Ic(πG ,Ni)− ε− o(l0) ≤ 1

l
log kl ≤ min

Ni∈I
Ic(πG ,Ni)− ε. (208)
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We will now give lower bounds on the terms in (202), thereby making use of Lemma 36 and Lemma 37:

tr(N̂ l
δ(π
⊗l
G )) ≥ 1− 2−l(cδ

2−h(l)) − 2−l(c
′δ2−h′(l)). (209)

A more detailed calculation can be found in [15] or [47]. Further, and additionally using the inequality
||A+B||22 ≥ ||A||22 + ||B||22 valid for non-negative operators A,B ∈ B(K⊗l) (see [47]), we get the inequality

||N̂ l
j,δ(π

⊗l
G )||22 ≤ 2−l(S(Nj(πG))−ϕ(δ)). (210)

From (202), (209), (210) and our specific choice of kl it follows that

EFc,e(πEl , N̂ l
U l,δ) ≥ 1− 2−l(cδ

2−h(l)) − 2−l(c
′δ2−h′(l))

−2

N∑
j=1

√
2l(

1
l log kl+γ(δ)+ϕ(δ)+h′(l)−Ic(πG ,Nj) (211)

≥ 1− 2−l(cδ
2−h(l)) − 2−l(c

′δ2−h′(l)) − 2N
√

2−l(ε−γ(δ)−ϕ(δ)−h′(l)). (212)

Since ε − γ(δ) − ϕ(δ) − h′(l) ≥ ε/2 for every l ≥ l0, this shows the existence of at least one sequence of
(l, kl)−codes for I with uninformed users and

lim inf
l→∞

1

l
log kl = min

Ni∈I
Ic(πG ,Ni)− ε (213)

as well as (using that entanglement fidelity is affine in the channel), for every l ∈ N,

min
j∈{1,...,N}

Fe(πFl ,Rl ◦ N̂ l
j,δ ◦W l) ≥ 1−N 1

3
εl (214)

where wl ∈ U(G⊗l) ∀l ∈ N and

εl = 3 · (2−l(cδ
2−h(l)) + 2−l(c

′δ2−h′(l)) + 2N
√

2−l(ε−γ(δ)−ϕ(δ)−h′(l))). (215)

Note that liml→∞ εl = 0 exponentially fast, as can be seen from our choice of δ and l0. We let cR > 0
denote the largest real number such that

εl ≤ 2−cRl. (216)

For every j ∈ {1, . . . , N} and l ∈ N we thus have, by property 3. of Lemma 37, construction of N̂ l
j,wj ,δ,

and equation (214),

Fe(πFl ,Rl ◦ Qj,δ,l ◦ N
⊗l
j ◦W

l) ≥ Fe(πFl ,Rl ◦ Qj,δ,l ◦ Nj,δ,l ◦W l) (217)

= Fe(πFl ,Rl ◦ N̂ l
j,wj ,δ) (218)

≥ 1−N 1

3
εl. (219)

By the first two parts of Lemma 34, this immediately implies

min
Nj∈I

Fe(πFl ,Rl ◦ N
⊗l
j ◦W

l) ≥ 1−
√

3Nεl ∀l ∈ N. (220)

Since ε > 0 was arbitrary, we have shown that minNi∈I Ic(πG ,Ni) is an achievable rate.
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3.3.4 The informed encoder

In this subsection we shall prove the following Theorem:

Theorem 39 (Direct Part: Informed Encoder and |I| < ∞). For every finite compound channel I =
{N1, . . . ,NN} ⊂ C(H,K) and any set {πG1 , . . . , πGN } of maximally mixed states on subspaces {G1, . . . ,GN}
with Gi ⊂ H for all i ∈ {1, . . . , N} we have

QIE(I) ≥ min
Ni∈I

Ic(πGi ,Ni). (221)

Proof. Let a compound channel be given by a finite set I := {N1, . . . ,NN} ⊂ C(H,K) and let G1, . . . ,GN
be arbitrary subspaces of H. We will prove that for every ε > 0 the value

R(ε) := min
1≤i≤N

Ic(πGi ,Ni)− ε (222)

is achievable. If R(ε) ≤ 0, there is nothing to prove. Hence we assume R(ε) > 0. For every l ∈ N and all
i ∈ {1, . . . , N} we choose the following. First, a subspace El ⊂ H⊗l of dimension kl := dim El that satisfies
kl ≤ dimG⊗li . Second, a set {vl1, . . . , vlN} of unitary operators with the property vliEl ⊂ G

⊗l
i . Again, the

maximally mixed states associated to the above mentioned subspaces are denoted by πEl on El and πGi
on Gi.
For j ∈ {1, . . . , N}, δ ∈ (0, 1/2), l ∈ N and states Nj(πGj ) let qj,δ,l ∈ B(K)⊗l be the frequency-typical
projection of Nj(πGj ) and Nj,δ,l be the reduced operation associated with Nj and πGj as considered in
Lemmas 36 and 37.
Let, for the moment, l ∈ N be fixed. We define a new set of channels that is more adapted to our problem
than the original one. We set, for an arbitrary set {ul1, . . . , ulN} of unitary operators on H⊗l

Ñ l
j,δ := Qj,δ,l ◦ Nj,δ,l, (223)

N̂ l
j,ulj ,δ

:= Ñ l
j,δ ◦ U lj ◦ V lj (224)

and, accordingly,

N̂ l
ul1,...,u

l
N ,δ

:=
1

N

N∑
j=1

N̂ l
j,ulj ,δ

. (225)

we will first show the existence of good unitary encodings and recovery operation for {Ñ l
1,δ, . . . , Ñ l

N,δ}.
Like in the previous subsection, application of Lemma 34 will enable us to show the existence of reliable
encodings and recovery operation for the original compound channel I.
Let U l1, . . . , U

l
N be independent random variables such that each U li takes on values in U(G⊗li ) and is

distributed according to the Haar measure on U(G⊗li ) (i ∈ {1, . . . , N}). By Theorem 33 we get the lower
bound

EFc,e(πEl , N̂ l
U l1,...,U

l
N ,δ

) ≥
N∑
j=1

[
1

N
tr(Ñ l

j,δ(πG⊗lj
))− 2

√
klnj,δ,l||Ñ l

j,δ(πG⊗lj
)||2], (226)

where nj,δ,l denotes the number of Kraus operators in the operations Ñj,δ,l (j ∈ {1, . . . , N}). By Lemmas
36,37 for every j ∈ {1, . . . , N} the corresponding term in the above sum can be bounded from below
through

1

N
tr(Ñ l

j,δ(πG⊗lj
)) ≥ 1

N
(1− 2−l(cδ

2−h(l)) − 2−l(c
′δ2−h′(l))) (227)
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and

−2
√
klnj,δ,l||Ñ l

j,δ(πG⊗lj
)||2 ≥ −2

√
kl · 2l(−min1≤j≤N Ic(πGj ,Nj)+γ(δ)+ϕ(δ)+h′(l)). (228)

Set kl := b2lR(ε)c. Obviously, for any j ∈ {1, . . . , N},

kl · 2l(−min1≤j≤N Ic(πGj ,Nj)) ≤ 2−lε. (229)

This implies

EFc,e(πEl , N̂ l
U l1,...,U

l
N ,δ

) ≥ 1− 2−l(cδ
2−h(l)) − 2−l(c

′δ2−h′(l)) − 2N
√

2l(−ε+γ(δ)+ϕ(δ)+h′(l)). (230)

Now choosing both the approximation parameter δ and an integer l0 ∈ N such that −ε+γ(δ)+ϕ(δ)+h′(l) <
− 1

2ε holds for every l ≥ l0 and setting

εl := 2−l(cδ
2−h(l)) + 2−l(c

′δ2−h′(l)) + 2N
√

2l(−ε+γ(δ)+ϕ(δ)+h′(l)) (231)

we see that

EFc,e(πEl , N̂ l
U l1,...,U

l
N ,δ

) ≥ 1− εl, (232)

where again εl ↘ 0 and our choice of δ and l0 again shows that the speed of convergence is exponentially
fast. Thus, there exist unitary operators wl1, . . . , w

l
N ⊂ U(H⊗l) and a recovery operation Rl such that,

passing to the individual channels, we have for every j ∈ {1, . . . , N}

Fe(πEl ,Rl ◦ Qj,δ,l ◦ Nj,δ,l ◦W l
j) ≥ 1−Nεl. (233)

By property 3. of Lemma 37 and Lemma 34, we immediately see that

Fe(πEl ,Rl ◦ N
⊗l
j ◦W

l
j) ≥ 1− 3

√
Nεl ∀j ∈ {1, . . . , N} (234)

is valid as well. We finally get the desired result: For every set {πG1 , . . . , πGN } of maximally mixed states
on subspaces G1, . . . ,GN ⊂ H and every ε > 0 there exists a sequence of (l, kl) codes for I with informed
encoder with the properties

1. lim inf l→∞
1
l log kl = minNj∈I Ic(πGj ,Nj)− ε,

2. minNj∈I Fe(πEl ,Rl ◦ N
⊗l
j ◦W l

j) ≥ 1− 3
√
Nεl.

Since ε > 0 was arbitrary and εl ↘ 0, we are done.

3.4 Finite approximations in the set of quantum channels

Our goal in this section is to discretize a given set of channels I ∈ C(H,K) in such a way that the results
derived so far for finite sets can be employed to derive general versions of coding theorems for compound
channels.
The first concept we will need is that of a τ -net in the set C(H,K) and we will give an upper bound on the
cardinality of the best τ -net in that set. Best τ -nets characterize the degree of compactness of C(H,K).
A τ -net in C(H,K) is a finite set {Ni}Ni=1 with the property that for each N ∈ C(H,K) there is at least
one i ∈ {1, . . . , N} with ||N −Ni||♦ < τ . Existence of τ -nets in C(H,K) is guaranteed by the compactness
of C(H,K). The next lemma contains a crude upper bound on the cardinality of minimal τ -nets.
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Lemma 40. For any τ ∈ (0, 1] there is a τ−net {Ni}Ni=1 in C(H,K) with N ≤ ( 3
τ )2(d·d′)2 , where d = dimH

and d′ = dimK.

Proof. The lemma is proved by simply imitating the proof of Lemma 2.6 in [55] where the corresponding
result is shown for spheres in arbitrary finite dimensional normed spaces. We give the full argument for
convenience.
Let {Mi}Mi=1 be an arbitrary subset of C(H,K) with the property that

||Mi −Mj ||♦ ≥ τ, (235)

for all i 6= j, i, j ∈ {1, . . . ,M}. We will establish an upper bound on the integer M now.
The open balls B♦(Mi,

τ
2 ), i = 1, . . . ,M , with centers at Mi and radii τ/2 are mutually disjoint and are

contained in the ball B♦(0, 1 + τ
2 ) since C(H,K) ⊂ S♦. So,

M⋃
i=1

B♦(Mi,
τ

2
) ⊂ B♦(0, 1 +

τ

2
). (236)

Let µ be the Borel-Lebesgue measure (or equivalently the Haar measure) on (B(B(H),B(K)),ΣBorel)
where B(B(H),B(K)) denotes the set of linear maps from B(H) to B(K) and ΣBorel is the σ−algebra of
Borel sets. Computing the volume of the sets in (236) we obtain

M ·
(τ

2

)2(d·d′)2

µ(B♦(0, 1)) ≤
(

1 +
τ

2

)2(d·d′)2

µ(B♦(0, 1)), (237)

where B♦(0, 1) is the open unit ball with respect to the ♦−norm and 2(d · d′)2 is the dimension of
B(B(H),B(K)) as a vector space over the field R. This last inequality is equivalent to

M ≤
(

1 +
2

τ

)2(d·d′)2

. (238)

Now, let {Ni}Ni=1 be a maximal set in C(H,K) with the property that ||Ni−Nj ||♦ ≥ τ for all i 6= j. Then,
clearly, {Ni}Ni=1 is a τ−net and (238) holds. Due to our assumption that τ ∈ (0, 1] we obtain

N ≤
(

1 +
2

τ

)2(d·d′)2

≤
(

3

τ

)2(d·d′)2

(239)

and we are done.

Let I ⊆ C(H,K) be an arbitrary set. Starting from a τ/2−net N := {Ni}Ni=1 with N ≤ ( 6
τ )2(d·d′)2 as

in Lemma 40 we can build a τ/2−net I′τ that is adapted to the set I given by

I′τ := {Ni ∈ N : ∃N ∈ I with ||N −Ni||♦ < τ/2} , (240)

i.e. we select only those members of the τ/2-net that are contained in the τ/2-neighborhood of I. Let
T ∈ C(H,K) be the useless channel given by T (ρ) := 1

dimK1K, ρ ∈ S(H), and consider

Iτ :=
{

(1− τ

2
)N +

τ

2
T : N ∈ I′τ

}
, (241)

where I′τ is defined in (240). For I ⊆ C(H,K) we set

Ic(ρ, I) := inf
N∈I

Ic(ρ,N ), (242)

for ρ ∈ S(H). We list a few more or less obvious results in the following lemma that will be needed in the
following.
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Lemma 41. Let I ⊆ C(H,K). For each positive τ ≤ 1
e let Iτ be the finite set of channels defined in (241).

1. |Iτ | ≤ ( 6
τ )2(d·d′)2 with d = dimH and d′ = dimK.

2. For N ∈ I there is Ni ∈ Iτ with
||N⊗l −N⊗li ||♦ < lτ. (243)

Consequently, for N , Ni, and any CPTP maps P : B(F) → B(H)⊗l and R : B(K)⊗l → B(F ′) the
relation

|Fe(ρ,R ◦N⊗l ◦ P)− Fe(ρ,R ◦N⊗li ◦ P)| < lτ (244)

holds for all ρ ∈ S(H⊗l) and l ∈ N.

3. For all ρ ∈ S(H) we have

|Ic(ρ, I)− Ic(ρ, Iτ )| ≤ τ + 2τ log
d · d′

τ
. (245)

Proof. 1. This is clear from definition of Iτ .
2. It is clear from construction of Iτ that there is at least one Ni ∈ Iτ with

||N −Ni||♦ < τ. (246)

We know from [46, 58] that ||R1 ⊗ R2||♦ = ||R1||♦ · ||R2||♦ holds, i.e. ♦−norm is multiplicative. The
inequality (243) is easily seen using repeatedly the tensor identity

a1 ⊗ b1 − a2 ⊗ b2 = a1 ⊗ (b1 − b2) + (a1 − a2)⊗ b2, (247)

the multiplicativity of the ♦−norm, and the fact that ||R||♦ = 1 for all CPTP maps.
Let ψ ∈ H⊗l ⊗ H⊗l be a purification of ρ ∈ S(H⊗l). Let us denote the left hand side of (244) by 4Fe.
By the definition of the entanglement fidelity we have

4Fe = |〈ψ, id⊗ld ⊗ (R ◦ (N⊗l −N⊗li ) ◦ P)(|ψ〉〈ψ|)ψ〉|. (248)

An application of the Cauchy-Schwarz inequality (writing ‖ · ‖ for the euclidean norm) shows that

4Fe ≤ ‖id⊗ld ⊗ (R ◦ (N⊗l −N⊗li ) ◦ P)(|ψ〉〈ψ|)ψ‖ (249)

≤ ‖id⊗ld ⊗ (R ◦ (N⊗l −N⊗li ) ◦ P)(|ψ〉〈ψ|)‖∞ (250)

≤ ‖id⊗ld ⊗ (R ◦ (N⊗l −N⊗li ) ◦ P)(|ψ〉〈ψ|)‖1 (251)

= ‖(id⊗ld ⊗R) ◦ (id⊗ld ⊗ (N⊗l −N⊗li )) ◦ (id⊗ld ⊗ P(|ψ〉〈ψ|))‖1 (252)

≤ ‖R‖♦‖N⊗l −N⊗li ‖♦‖id
⊗l
d ⊗ P(|ψ〉〈ψ|)‖1 (253)

< lτ, (254)

where we have used ‖R‖♦ = 1, ‖|ψ〉〈ψ|‖1 = 1, and (243).
3. The proof of (245) is based on Fannes inequality [30] and uses merely standard conclusions. So, we
will confine ourselves to a brief outline of the argument. Fannes inequality states that |S(σ1)− S(σ2)| ≤
τ log d − τ log τ for all density operators with ||σ1 − σ2||1 ≤ τ ≤ 1/e. To the given τ we can always find
an N ′ ∈ I with

Ic(ρ,N ′) ≤ Ic(ρ, I) + τ. (255)

On the other hand there is Ni ∈ Iτ with ||N ′ −Ni||♦ < τ . This implies immediately

||N ′(ρ)−Ni(ρ)||1 < τ, (256)
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and
||idd ⊗N ′(|ψ〉〈ψ|)− idd ⊗Ni(|ψ〉〈ψ|)||1 < τ (257)

by the definition of ♦−norm where ψ ∈ H ⊗H is a purification of ρ ∈ S(H). Since

Ic(ρ,N ′) = S(N ′(ρ))− S(idd ⊗N ′(|ψ〉〈ψ|)) (258)

with a similar relation for Ni, an application of Fannes inequality leads to

Ic(ρ,Ni) ≤ Ic(ρ,N ′) + 2(τ log(d · d′)− τ log τ). (259)

This and (255) show that

Ic(ρ, Iτ ) ≤ Ic(ρ, I) + τ + 2(τ log(d · d′)− τ log τ). (260)

The inequality
Ic(ρ, I) ≤ Ic(ρ, Iτ ) + 2(τ log(d · d′)− τ log τ) (261)

is shown in a similar vein.

3.4.1 The compound BSST-lemma

The following lemma is the compound analog of a result discovered by Bennett, Shor, Smolin, and Thap-
liyal in [12] (BSST lemma for short). We will use the following abbreviations: For any I ⊂ C(H,K) and
l ∈ N we set

I⊗l :=
{
N⊗l : N ∈ I

}
. (262)

Recall also our earlier shortcut notation

Ic(ρ, I) = inf
N∈I

Ic(ρ,N ) (263)

for ρ ∈ S(H).

Lemma 42 (Compound BSST Lemma). Let I ⊂ C(H,K) be an arbitrary set of channels. For any
ρ ∈ S(H) let qδ,l ∈ B(H⊗l) (l ∈ N) be the frequency-typical projections of ρ and set

πδ,l :=
qδ,l

tr(qδ,l)
∈ S(H⊗l) (l ∈ N). (264)

Then there is a positive sequence (δl)l∈N satisfying liml→∞ δl = 0 and a ρ ∈ S(H) with

lim
l→∞

1

l
inf
N∈I

Ic(πδl,l,N⊗l) = inf
N∈I

Ic(ρ,N ). (265)

Proof. The proof is via reduction to Holevo’s proof [39] of the BSST lemma for single channel supplemented
by a discretization argument. We choose a decreasing sequence (τl)l∈N, with τl > 0, liml→∞ lτl = 0, and
consider the finite set of channels Iτl = {N1, . . . ,NNτl } defined in (241) associated to I.
By our construction of the set Iτl we know that

Ni(ρ) ≥ τl
d′2

1K (266)

holds for all i ∈ {1, . . . , Nτl}, which implies

logNi(ρ) ≥ log
( τl
d′2

)
1K (267)
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uniformly in i ∈ {1, . . . , Nτl}. On the other hand let Iτl,e = {E1, . . . ENτl } ⊂ C(H,He) denote the
complementary set of channels associated to Iτl . We alter Iτl,e by mixing a part of useless channel
Ue ∈ C(H,He) to each Ei ∈ Iτl,e, i.e. we set

I′τl,e :=
(

1− τl
2

)
Iτl,e +

τl
2
Ue. (268)

Note that then for each E ′i ∈ I′τl,e

E ′i(ρ) ≥ τl
2 dim(He)

1He , (269)

and consequently

log E ′i(ρ) ≥ log

(
τl

2 dim(He)

)
1He . (270)

Applying Holevo’s argument from [39] to each channel from Iτl and I′τl,e with our notation from lemma
36 and uniform bounds (267), (270) we obtain for each i ∈ {1, . . . , Nτl}∣∣∣∣1l S(T ⊗li (πδ,l))− S(Ti(ρ))

∣∣∣∣ ≤ −1

l
log ηl(δ) + 2ϕ(δ)

−dδ log
( τl

2D

)
(271)

=: Θl(δ,D) (272)

where (Ti, D) ∈ {(Ni, d′), (E ′i ,dimHe)}.
Since for each i ∈ {1, . . . , Nτl}

||Ei − E ′i ||♦ ≤ τl, (273)

we obtain
||E⊗li − E

′
i
⊗l||♦ ≤ lτl. (274)

Hence choosing l sufficiently large we can ensure that lτl ≤ 1
e and an application of Fannes inequality

shows that

|S(E ′i(ρ))− S(Ei(ρ))| ≤ τl log
dimHe
τl

, (275)

and ∣∣∣∣1l S (E ′i⊗l(πδ,l))− 1

l
S
(
E⊗li (πδ,l)

)∣∣∣∣ ≤ lτl log
dimHe
lτl

. (276)

Inequalities (271), (275), and (276) show that∣∣∣∣1l Ic(πδ,l,N⊗li )− Ic(ρ,Ni)
∣∣∣∣ ≤ Θl(δ, d

′) + Θl(δ, dimHe)

+τl log
dimHe
τl

+lτl log
dimHe
lτl

=: ∆l(δ, d
′,dimHe) (277)

for each i ∈ {1, . . . , Nτl}. It is then easily seen utilizing (277) that∣∣∣∣1l Ic(πδ,l, I⊗lτl )− Ic(ρ, Iτl)
∣∣∣∣ ≤ ∆l(δ, d

′,dimHe). (278)
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Applying (245 ) to ρ, I and πδ,l, I
⊗l we obtain

|Ic(ρ, Iτl)− Ic(ρ, I)| ≤ τl + 2τl log
d

τl
, (279)

and ∣∣∣∣1l Ic(πδ,l, I⊗lτl )− 1

l
Ic(πδ,l, I

⊗l)

∣∣∣∣ ≤ τl + 2lτl log
d

lτl
. (280)

Using triangle inequality, (278), (279), and (280) we see that∣∣∣∣1l Ic(πδ,l, I⊗l)− Ic(ρ, I)

∣∣∣∣ ≤ ∆l(δ, d
′,dimHe)

+τl + 2lτl log
d

lτl

+τl + 2τl log
d

τl
. (281)

We are done now, since for any positive sequence (δl)l∈N with liml→∞ δl = 0, liml→∞ ηl(δl) = 1, and
liml→∞ δl log τl = 0 we can conclude from (281) that

lim
l→∞

1

l
inf
N∈I

Ic(πδl,l,N⊗l) = inf
N∈I

Ic(ρ,N ). (282)

holds.

3.5 Direct parts of the coding theorems for general compound quantum chan-
nels

3.5.1 The case of informed decoder and uninformed users

The main step towards the direct part of the coding theorem for quantum compound channels with
uninformed users is the following theorem.

Lemma 43. Let I ∈ C(H,K) be an arbitrary compound channel and let πG be the maximally mixed state
associated with a subspace G ⊂ H. Then

Q(I) ≥ inf
N∈I

Ic(πG ,N ). (283)

Proof. We consider two subspaces El,G⊗l of H⊗l with El ⊂ G⊗l ⊂ H⊗l. Let kl := dim El and we denote
as before the associated maximally mixed states on El and G by πEl and πG .
If infN∈I Ic(πG ,N ) ≤ 0 there is nothing to prove. Therefore we will suppose in the following that

inf
N∈I

Ic(πG ,N ) > 0 (284)

holds. We will show that for each ε ∈ (0, infN∈I Ic(πG ,N )) the number

inf
N∈I

Ic(πG ,N )− ε (285)

is an achievable rate.
For each l ∈ N let us choose some τl > 0 with τl ≤ 1

e , liml→∞ lτl = 0, and such that Nτl grows sub-
exponentially with l. E.g. we may choose τl := min{1/e, 1/l2}. We consider, for each l ∈ N, the finite
set of channels Iτl := {N1, . . . ,NNτl } associated to I given in (241) with the properties listed in Lemma
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41. We can conclude from the proof of Theorem 38 that for each l ∈ N there is a subspace Fl ⊂ G⊗l of
dimension

kl = b2l(mini∈{1,...,Nτ} Ic(πG ,Ni)−
ε
2 )c, (286)

a recovery operation R, and a unitary encoder W l such that

min
i∈{1,...,Nτl}

Fe(πFl ,R ◦N
⊗l
i ◦W

l) ≥ 1−
√
Nτlεl (287)

where εl is defined in (215) (with the approximation parameter ε replaced by ε/2), and we have chosen
l, l0 ∈ N with l ≥ l0 large enough and δ > 0 small enough to ensure that both

min
i∈{1,...,Nτl}

Ic(πG ,Ni)−
ε

2
> 0, (288)

and
ε

2
− γ(δ)− ϕ(δ)− h′(l0) > ε/4 > 0. (289)

By our construction of Iτl we can find to each N ∈ I at least one Ni ∈ Iτl with

|Fe(πFl ,R ◦N
⊗l
i ◦W

l)− Fe(πFl ,R ◦N⊗l ◦W l)| ≤ l · τl (290)

according to Lemma 41. Moreover, by the last claim of Lemma 41 we obtain the following estimate on
the dimension kl of the subspace Fl:

kl ≥ b2l(infN∈I Ic(πG ,N )− ε2−τl−2τl log d
τl c. (291)

The inequalities (287) and (290) show that

inf
N∈I

Fe(πFl ,R ◦N⊗l ◦W l) ≥ 1−
√

3Nτlεl − lτl, (292)

which in turn with (291) shows that infN∈I Ic(πG ,N ) is an achievable rate.

In order to pass from the maximally mixed state πG to an arbitrary one we will employ the compound
generalization Lemma 42 of the Bennett, Shor, Smolin, and Thapliyal Lemma (BSST Lemma for short).
With these preparations it is easy now to finish the proof of the direct part of the coding theorem for the
quantum compound channel with uninformed users.
First notice that for each k ∈ N

Q(I⊗k) = kQ(I) (293)

holds. For any fixed ρ ∈ S(H⊗m) let qδ,l ∈ B(H⊗ml) be the frequency-typical projection of ρ and set
πδ,l =

qδ,l
tr(qδ,l)

. Lemma 43 implies that for any δ ∈ (0, 1/2) we have

Q(I⊗ml) ≥ Ic(πδ,l, I⊗ml), (294)

for all m, l ∈ N. Utilizing (293), (294) and Lemma 42 we arrive at

Q(I) =
1

m
lim
l→∞

1

l
Q(I⊗ml) (295)

≥ 1

m
lim
l→∞

1

l
inf
N∈I

Ic(πδl,l, (N⊗m)⊗l) (296)

=
1

m
Ic(ρ, I

⊗m). (297)

From (295) and since QID(I) ≥ Q(I) trivially holds we get without further ado the direct part of the
coding theorem.
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Theorem 44 (Direct Part: Informed Decoder and Uninformed Users). Let I ⊂ C(H,K) be an arbitrary
set. Then

QID(I) ≥ Q(I) ≥ lim
l→∞

1

l
max

ρ∈S(H⊗l)
inf
N∈I

Ic(ρ,N⊗l). (298)

Remark 45. It is quite easy to see that the limit in (298) exists. Indeed it holds that

max
ρ∈S(H⊗l+k)

inf
N∈I

Ic(ρ,N⊗l+k) ≥ max
ρ∈S(H⊗l)

inf
N∈I

Ic(ρ,N⊗l) + max
ρ∈S(H⊗k)

inf
N∈I

Ic(ρ,N⊗k) (299)

which implies the existence of the limit via standard arguments.

3.5.2 The informed encoder

The main result of this subsection will rely on an appropriate variant of the BSST Lemma. To this end
we first recall Holevo’s version of that result. For δ > 0, l ∈ N, and ρ ∈ S(H) let qδ,l ∈ B(H⊗l) denote the
frequency typical projection of ρ⊗l. Set

πδ,l = πδ,l(ρ) :=
qδ,l

tr(qδ,l)
. (300)

Moreover, let
λmin(ρ) := min{λ ∈ σ(ρ) : λ > 0}, (301)

where σ(ρ) stands for the spectrum of the density operator ρ.

Lemma 46 (BSST Lemma [12], [39]). For any δ ∈ (0, 1
2 dimH ), any N ∈ C(H,K), and every ρ ∈ S(H)

with associated state πδ,l = πδ,l(ρ) ∈ S(H⊗l) we have∣∣∣∣1l S(N⊗l(πδ,l))− S(N (ρ))

∣∣∣∣ ≤ θl(δ, λmin(ρ), λmin(N (ρ))) (302)

where

θl(δ, λmin(ρ), λmin(N (ρ))) =
dimH
l

log(l + 1)− dimH · δ log δ

−dimH · δ · (log λmin(ρ) + log λmin(N (ρ))). (303)

Before we present our extended version of BSST Lemma we introduce some notation. For t ∈ (0, 1
e )

and any set I ⊂ C(H,K) let us define

I(t) := {N (t) = (1− t)N + tTK : N ∈ I} = (1− t)I + tTK, (304)

where T ∈ C(H,K) is given by TK(x) := tr(x)
dimK1K.

On the other hand, to each N ∈ I ⊂ C(H,K) we can associate a complementary channel Nc ∈ C(H,He)
where we assume w.l.o.g. that He = CdimH·dimK. Let I′ ⊂ C(H,He) denote the set of channels comple-
mentary to I and set

I′(t) := (I′)(t) = {N (t)
c = (1− t)Nc + tTHe : Nc ∈ I′} = (1− t)I′ + tTHe , (305)

where THe ∈ C(H,He) is the defined in a similar way as TK. Finally, for N ∈ I let

ρN := arg max
ρ∈S(H)

Ic(ρ,N ), (306)
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and for t ∈ (0, 1
e ), δ > 0, and l ∈ N define

π
(t)
δ,l,N := πδ,l

(
ρ

(t)
N

)
, (307)

where we have used the notation from (300) and

ρ
(t)
N := (1− t)ρN +

t

dimH
1H. (308)

Lemma 47 (Uniform BSST-Lemma). 1. Let l ∈ N, t ∈ (0, 1
l·e ), and δ ∈ (0, 1

2 dimH ). Then with the
notation introduced in the preceding paragraph we have∣∣∣∣1l inf

N∈I
Ic(π

(t)
δ,l,N ,N

⊗l)− inf
N∈I

max
ρ∈S(H)

Ic(ρ,N )

∣∣∣∣ ≤ ∆l(δ, t), (309)

with

∆l(δ, t) = 2θl

(
δ,

t

dimH
,

t

dimK

)
+ 2θl

(
δ,

t

dimH
,

t

dimHe

)
(310)

−4t log
t

dimK · dimHe
− 2lt log

lt

dimK · He
, (311)

(312)

where θl
(
δ, t

dimH ,
t

dimK
)

and θl

(
δ, t

dimH ,
t

dimHe

)
are from Lemma 46.

2. Consequently, choosing suitable positive sequences (δl)l∈N, (tl)l∈N with

1. liml→∞ δl = 0 = liml→∞ ltl, and

2. liml→∞ δl log tl = 0

we see that for νl := ∆l(δl, tl)∣∣∣∣1l inf
N∈I

Ic(π
(tl)
δl,l,N ,N

⊗l)− inf
N∈I

max
ρ∈S(H)

Ic(ρ,N )

∣∣∣∣ ≤ νl (313)

holds with liml→∞ νl = 0.

Proof. Our proof strategy is to reduce the claim to the BSST Lemma 46. Let t > 0 be small enough to
ensure that l · t ∈ (0, 1

e ) and let δ ∈ (0, 1
2 dimH ) be given. From (304) and (305) we obtain that

λmin(N (t)(ρ)) ≥ t

dimK
, λmin(N (t)

c (ρ)) ≥ t

dimHe
∀ ρ ∈ S(H), (314)

and (308) yields that

λmin(ρ
(t)
N ) ≥ t

dimH
(315)

for all N ∈ I. The bounds (314) and (315) along with Lemma 46 show that∣∣∣∣1l S((N (t))⊗l(π
(t)
δ,l,N ))− S(N (t)(ρ

(t)
N ))

∣∣∣∣ ≤ θl(δ, t

dimH
,

t

dimK

)
, (316)

and ∣∣∣∣1l S((N (t)
c )⊗l(π

(t)
δ,l,N ))− S(N (t)

c (ρ
(t)
N ))

∣∣∣∣ ≤ θl(δ, t

dimH
,

t

dimHe

)
. (317)
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On the other hand, by definition we have

||N (t) −N||♦ ≤ t, ||(N (t))⊗l −N⊗l||♦ ≤ l · t, (318)

and similarly
||N (t)

c −Nc||♦ ≤ t, ||(N (t)
c )⊗l −N⊗lc ||♦ ≤ l · t, (319)

for all N ∈ I. Since l · t ∈ (0, 1
e ) we obtain from this by Fannes inequality

|S(N (t)(ρ
(t)
N ))− S(N (ρ

(t)
N ))| ≤ −t log

t

dimK
, (320)

|S(N (t)
c (ρ

(t)
N ))− S(Nc(ρ(t)

N ))| ≤ −t log
t

dimHe
(321)

and ∣∣∣∣1l S((N (t))⊗l(π
(t)
δ,l,N ))− 1

l
S(N⊗l(π(t)

δ,l,N ))

∣∣∣∣ ≤ −l · t log
l · t

dimK
, (322)

as well as ∣∣∣∣1l S((N (t)
c )⊗l(π

(t)
δ,l,N ))− 1

l
S(N⊗lc (π

(t)
δ,l,N ))

∣∣∣∣ ≤ −l · t log
l · t

dimHe
, (323)

for all N ∈ I. Since
Ic(ρ

(t)
N ,N ) = S(N (ρ

(t)
N ))− S(Nc(ρ(t)

N )) (324)

and
Ic(π

(t)
δ,l,N ,N

⊗l) = S(N⊗l(π(t)
δ,l,N ))− S(N⊗lc (π

(t)
δ,l,N )), (325)

the inequalities (316),(317), (320), (321), (322), (323) and triangle inequality show that uniformly in
N ∈ I we have∣∣∣∣1l Ic(π(t)

δ,l,N ,N
⊗l)− Ic(ρ(t)

N ,N )

∣∣∣∣ ≤ θl

(
δ,

t

dimH
,

t

dimK

)
+ θl

(
δ,

t

dimH
,

t

dimHe

)
−t log

t

dimK · dimHe
− l · t log

l · t
dimK · He

. (326)

Now, by (308) we have

||ρ(t)
N − ρN ||1 ≤ t (327)

which implies

||N (ρ
(t)
N )−N (ρN )||1 ≤ t, ||Nc(ρ(t)

N )−Nc(ρN )||1 ≤ t, (328)

since the trace distance of two states can only decrease after applying a trace preserving completely positive
map to both states. Thus Fannes inequality leads us to the conclusion that∣∣∣Ic(ρ(t)

N ,N )− Ic(ρN ,N )
∣∣∣ ≤ −t log

t

dimK · dimHe
. (329)

This and (326) shows that uniformly in N ∈ I∣∣∣∣1l Ic(π(t)
δ,l,N ,N

⊗l)− Ic(ρN ,N )

∣∣∣∣ ≤ θl

(
δ,

t

dimH
,

t

dimK

)
+ θl

(
δ,

t

dimH
,

t

dimHe

)
−2t log

t

dimK · dimHe
− l · t log

l · t
dimK · He

(330)

=:
∆l(δ, t)

2
. (331)
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Finally, it is clear from the uniform estimate in (330) that∣∣∣∣1l inf
N∈I

Ic(π
(t)
δ,l,N ,N

⊗l)− inf
N∈I

max
ρ∈S(H)

Ic(ρ,N )

∣∣∣∣ =

∣∣∣∣1l inf
N∈I

Ic(π
(t)
δ,l,N ,N

⊗l)− inf
N∈I

Ic(ρN ,N )

∣∣∣∣ (332)

≤ ∆l(δ, t), (333)

which concludes the proof.

Lemma 47 and Theorem 39 easily imply the following result.

Lemma 48. Let I ⊂ C(H,K) be an arbitrary set of quantum channels. Then

QIE(I) ≥ inf
N∈I

max
ρ∈S(H)

Ic(ρ,N ). (334)

Proof. Take any set {πGN }N∈I of maximally mixed states on subspaces GN ⊂ H. In a first step we will
show that this yields

QIE(I) ≥ inf
N∈I

Ic(πGN ,N ). (335)

Notice that we can assume w.l.o.g. that infN∈I Ic(πGN ,N ) > 0.

Denote, for every τ > 0, by Iτ a τ -net for I as given in (241) of cardinality Nτ := |Iτ | ≤ ( 6
τ )2(d·d′)2 , where

d, d′ are the dimensions of H,K. Starting from this set Iτ it is easy to construct a finite set I◦τ with the
following properties:

1. I◦τ ⊂ I,

2. |I◦τ | ≤ ( 6
τ )2(d·d′)2 , and

3. to each N ∈ I there is at least one N ′ ∈ I◦τ with ||N −N ′||♦ ≤ 2τ .

Let (τl)l∈N be defined by τl := 1
l2 and consider the sets I◦τl , l ∈ N.

Take any η ∈ (0, infN∈I Ic(πGN ,N )) and set

R(η) := inf
N∈I

Ic(πGN ,N )− η, (336)

and
Rl(η) := min

N∈I◦τl
Ic(πGN ,N )− η. (337)

Then for every l ∈ N,
Rl(η) ≥ R(η) (338)

since I◦τl ⊂ I.

Fix some δ′ ∈ (0, 1/2) such that γ(δ′) + ϕ(δ′) < η/4. For every l ∈ N, choose a subspace El ⊂ H⊗l of
dimension

kl(η) := dim El = b2lRl(η)c. (339)

The proof of Theorem 39 then shows the existence of a recovery operation Rl and for each N ′ ∈ I◦τl a

unitary encoder W l
N ′ such that for each l ∈ N

Fe(πEl ,Rl ◦ N ′⊗l ◦W l
N ′) ≥ 1− 3

√
Nτl · εl ∀ N ′ ∈ I◦τl , (340)

where εl := 2−l(cδ
′2−h(l)) +2−l(c

′δ′2−h′(l)) +2Nτl

√
2l(−

3η
4 +h′(l))). From Lemma 41 along with the properties

of I◦τl and our specific choice of (τl)l∈N it follows that there exist unitary encodings W l
N (for every l ∈ N

and each N ∈ I), such that

Fe(πEl ,Rl ◦ N⊗l ◦W l
N ) ≥ 1− 3

√
Nτl · εl −

2

l
∀l ∈ N, N ∈ I. (341)
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Clearly, liml→∞ Fe(πEl ,Rl ◦ N⊗l ◦W l
N ) = 1 and (338) implies for each η ∈ (0, infN∈I Ic(πGN ,N )) that

lim inf
l→∞

1

l
log kl(η) = lim inf

l→∞

1

l
log dim El ≥ R(η). (342)

Consequently infN∈I Ic(πGN ,N ) is achievable.
We proceed by repeated application of the inequality

QIE(I) ≥ 1

l
QIE(I⊗l) (∀l ∈ N). (343)

From (335) and (343) we get that for each l ∈ N and every set {πlN }N∈I of maximally mixed states on
subspaces of H⊗l,

QIE(I) ≥ 1

l
inf
N∈I

Ic(π
l
N ,N⊗l). (344)

We now make a specific choice of the states πlN , namely, for every N ∈ I and l ∈ N, set πlN := π
(tl)
δl,l,N

with π
(tl)
δl,l,N taken from the second part of Lemma 47. By an application of the second part of Lemma 47

it follows

QIE(I) ≥ lim
l→∞

1

l
inf
N∈I

Ic(π
l
N ,N⊗l) (345)

≥ lim
l→∞

( inf
N∈I

Ic(ρN ,N )− νl) (346)

= inf
N∈I

Ic(ρN ,N ) (347)

= inf
N∈I

max
ρ∈S(H)

Ic(ρ,N ). (348)

Employing inequality (343) one more time we obtain from Lemma 48 applied to I⊗l

QIE(I) ≥ 1

l
QIE(I⊗l) (349)

≥ 1

l
inf
N∈I

max
ρ∈S(H⊗l)

Ic(ρ,N⊗l). (350)

Consequently we obtain the desired achievability result.

Theorem 49 (Direct Part: Informed Encoder). For any I ∈ C(H,K) we have

QIE(I) ≥ lim
l→∞

1

l
inf
N∈I

max
ρ∈S(H⊗l)

Ic(ρ,N⊗l). (351)

Remark 50. Note that the limit in (351) exists. Indeed, set

Cl(N ) := max
ρ∈S(H⊗l)

Ic(ρ,N⊗l). (352)

Then it is clear that
Cl+k(N ) ≥ Cl(N ) + Ck(N ) (353)

and consequently

inf
N∈I

Cl+k(N ) ≥ inf
N∈I

(Cl(N ) + Ck(N )) (354)

≥ inf
N∈I

Cl(N ) + inf
N∈I

Ck(N ), (355)

which implies the existence of the limit in (351).
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3.6 Converse parts of the coding theorems for general quantum compound
channels

In this section we prove the converse parts of the coding theorems for general quantum compound channels
in the three different settings concerned with entanglement transmission that are treated in this paper.
The proofs deviate from the usual approach due to our more general definitions of codes.

3.6.1 Converse for informed decoder and uninformed users

We first prove the converse part in the case of a finite compound channel, then use a recent result [51]
that gives a more convenient estimate for the difference in coherent information of two nearby channels
in order to pass on to the general case.
For the converse part in the case of a finite compound channel we need the following lemma that is due
to Alicki and Fannes [8]:

Lemma 51 (Cf. [8]). For two states σ, ρ ∈ S(H1 ⊗H2) with trace distance f = ‖σ − ρ‖1,

|∆S(ρ)−∆S(σ)| ≤ 4f log dimH1 + 2η(f) + 2η(1− f) (356)

where
∆S( · ) := S(trH1 [ · ])− S( · ) (357)

and η : [0, 1]→ R is given by the formula η(x) := −x log x.

We shall now embark on the proof of the following theorem.

Theorem 52 (Converse Part: Informed Decoder, Uninformed Users, |I| <∞). Let I = {N1, . . . ,NN} ⊂
C(H,K) be a finite compound channel. The capacities QID(I) and Q(I) of I with informed decoder and
uninformed users are bounded from above by

Q(I) ≤ QID(I) ≤ lim
l→∞

max
ρ∈S(H⊗l)

min
Ni∈I

1

l
Ic(ρ,N⊗li ). (358)

Proof. The inequality Q(I) ≤ Q(I)ID is obvious from the definition of codes. We give a proof for the
second inequality. Let for arbitrary l ∈ N an (l, kl) code for a compound channel I = {N1, . . . ,NN} with
informed decoder and the property min1≤i≤N Fe(πFl ,Rli ◦ N

⊗l
i ◦ P l) ≥ 1 − εl be given, where εl ∈ [0, 1].

Let |ψl〉〈ψl| ∈ S(El ⊗ Fl) be a purification of πFl where El is just a copy of Fl. We use the abbreviation

Dl := 1
N

∑N
i=1Rli ◦ N

⊗l
i . Obviously, the above code then satisfies

〈ψl, idEl ⊗Dl(idEl ⊗ P l(|ψl〉〈ψl|))ψl〉 =
1

N

N∑
i=1

Fe(πFl ,Rli ◦ N
⊗l
i ◦ P

l) (359)

≥ 1− εl. (360)

Let σPl := idEl ⊗ P l(|ψl〉〈ψl|) and consider any convex decomposition σPl =
∑(dimFl)2
i=1 λi|ei〉〈ei| of σPl

into pure states |ei〉〈ei| ∈ S(Fl ⊗H⊗l). By (360) there is at least one i ∈ {1, . . . , (dimFl)2} such that

〈ψl, idEl ⊗Dl(|ei〉〈ei|)ψl〉 ≥ 1− εl (361)

holds. Without loss of generality, i = 1. Turning back to the individual channels, we get

〈ψl, idEl ⊗Rli ◦ N
⊗l
i (|e1〉〈e1|)ψl〉 ≥ 1−Nεl ∀i ∈ {1, . . . , N}. (362)
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We define the state ρl := trEl(|e1〉〈e1|) ∈ S(H⊗l) and note that |e1〉〈e1| is a purification of ρl. Application
of recovery operation and individual channels to ρl now defines the states σlk := idEl ⊗Rlk ◦N

⊗l
k (|e1〉〈e1|)

(k ∈ {1, . . . , N}) which have independently of k the property

F (ψl, σlk) = 〈ψl, idEl ⊗Rlk ◦ N
⊗l
k (|ei〉〈ei|)ψl〉 ≥ 1−Nεl, (363)

which by application of the well-known estimate ‖a− b‖1 ≤
√

1− F (a, b) for a, b ∈ S(El ⊗ F ′l ) (see [32]),
yields

‖ψl − σlk‖1 ≤
√
Nεl. (364)

Now, set c3 := max{−x log(x) : x ∈ [0, 1]}. This puts us into position for an application of Lemma 51,
which together with the data processing inequality for coherent information [60] for small enough εl (or,
alternatively, large enough l) establishes the following chain of inequalities for every k ∈ {1, . . . , N}:

log dimFl = S(πFl) (365)

= ∆S(|ψl〉〈ψl|) (366)

≤ ∆S(σlk) + 4c3 + 4 log(dimF2
l )
√
Nεl (367)

= S(trEl(idEl ⊗Rlk ◦ N⊗l(|e1〉〈e1|))− S(idEl ⊗Rlk ◦ N
⊗l
k (|e1〉〈e1|))

+4c3 + 8 log(dimFl)
√
Nεl (368)

= Ic(ρ
l,Rlk ◦ N⊗lk ) + 4c3 + 8 log(dimFl)

√
Nεl (369)

≤ Ic(ρ
l,N⊗lk ) + 4c3 + 8 log(dimFl)

√
Nεl. (370)

Thus,

log dimFl ≤ min
k∈{1,...,N}

Ic(ρ
l,N⊗lk ) + 4c3 + 8 log(dimFl)

√
Nεl (371)

≤ max
ρ∈S(H⊗l)

min
1≤k≤N

Ic(ρ,N⊗lk ) + 4c3 + 8 log(dimFl)
√
Nεl. (372)

Let a sequence of (l, kl) codes for I with informed decoder be given such that lim inf l→∞
1
l log dimFl =

R ∈ R and liml→∞ εl = 0. Then by (372) we get

R = lim inf
l→∞

1

l
log dimFl (373)

≤ lim inf
l→∞

1

l
max

ρ∈S(H⊗l)
min

k∈{1,...,N}
Ic(ρ,N⊗lk ) + lim inf

l→∞

1

l
4c3 + lim inf

l→∞

1

l
16 log(dimFl)

√
2Nεl (374)

= lim
l→∞

1

l
max

ρ∈S(H⊗l)
min

k∈{1,...,N}
Ic(ρ,N⊗lk ), (375)

Let us now focus on the general case. We shall prove the following theorem:

Theorem 53 (Converse Part: Informed Decoder, Uninformed Users). Let I ⊂ C(H,K) be a compound
channel. The capacities QID(I) and Q(I) for I with informed decoder and with uninformed users are
bounded from above by

Q(I) ≤ QID(I) ≤ lim
l→∞

max
ρ∈S(H⊗l)

inf
N∈I

1

l
Ic(ρ,N⊗l). (376)

For the proof of this theorem, we will make use of the following Lemma:
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Lemma 54 (Cf. [51]). Let N ,Ni ∈ C(H,K) and dK = dimK. Let Hr be an additional Hilbert space ,
l ∈ N and φ ∈ S(Hr ⊗H⊗l). If ||N − Ni||♦ ≤ ε, then

|S(idHr ⊗N⊗l(φ))− S(idHr ⊗N⊗li (φ))| ≤ l(4ε log(dK) + 2h(ε)). (377)

Here, h(·) denotes the binary entropy.

This result immediately implies the following Lemma:

Lemma 55. Let H,K be finite dimensional Hilbert spaces. There is a function ν : [0, 1] → R+ with
limx→0 ν(x) = 0 such that for every I, I′ ⊆ C(H,K) with D♦(I, I′) ≤ τ ≤ 1/2 and every l ∈ N we have
the estimates

1.

|1
l
Ic(ρ, I

⊗l)− 1

l
Ic(ρ, I

′⊗l)| ≤ ν(2τ) ∀ρ ∈ S(H⊗l) (378)

2.

|1
l

inf
N∈I

max
ρ∈S(H⊗l)

Ic(ρ,N⊗l)−
1

l
inf
N ′∈I′

max
ρ∈S(H⊗l)

Ic(ρ,N ′⊗l)| ≤ ν(2τ) (379)

The function ν is given by ν(x) = x+ 8x log(dK) + 4h(x). Again, h(·) denotes the binary entropy.

Proof of Theorem 53. Again, the first inequality is easily seen to be true from the very definition of
codes in the two cases, so we concentrate on the second. Let I ⊂ C(H,K) be a compound channel and
let for every l ∈ N an (l, kl) code for I with informed decoder be given such that lim inf l→∞

1
l log kl = R,

and liml→∞ infN∈I Fe(πFl ,RlN ◦ N⊗l ◦ P l) = 1 hold.
Take any 0 < τ ≤ 1/2. Then it is easily seen that starting with a τ

2 -net in C(H,K) we can find a set

I′τ = {N1, . . . ,NNτ } ⊂ I with |Nτ | ≤ ( 6
τ )2(dimH·dimK)2 such that for each N ∈ I there is Ni ∈ I′τ with

||N −Ni||♦ ≤ τ. (380)

Clearly, the above sequence of codes satisfies for each i ∈ {1, . . . , Nτ}

1. lim inf l→∞
1
l log kl = R, and

2. liml→∞minNi∈Iτ Fe(πFl ,Rl ◦ N
⊗l
i ◦ P l) = 1.

From Theorem 52 it is immediately clear then, that

R ≤ lim
l→∞

max
ρ∈S(H⊗l)

min
Ni∈I′τ

1

l
Ic(ρ,N⊗li ) (381)

and from the first estimate in Lemma 55 we get by noting that D♦(I, I′τ ) ≤ τ holds

R ≤ lim
l→∞

max
ρ∈S(H⊗l)

inf
N∈I

1

l
Ic(ρ,N⊗l) + ν(2τ). (382)

Taking the limit τ → 0 proves the theorem.
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3.6.2 The informed encoder

The case of an informed encoder can be treated in the same manner as the other two cases. We will just
state the theorem and very briefly indicate the central ideas of the proof.

Theorem 56 (Converse Part: Informed Encoder). Let I ⊂ C(H,K) be a compound channel. The capacity
QIE(I) for I with informed encoder is bounded from above by

QIE(I) ≤ lim
l→∞

1

l
inf
N∈I

max
ρ∈S(H⊗l)

Ic(ρ,N⊗l). (383)

Proof. The proof of this theorem is a trivial modification of the one for Theorem 53. Again, the first part
of the proof is the converse in the finite case, while the second part uses the second estimate in Lemma
55.
For the proof in the finite case note the following: due to the data processing inequality, the structure of
the proof is entirely independent from the decoder. A change from an informed decoder to an uninformed
decoder does not change our estimate. The only important change is that there will be a whole set
{e1
i1
, . . . , eNiN } of vector states satisfying equation (361), one for each channel in I. This causes the state

ρl in equation (370) to depend on the channel.

3.7 Continuity of compound capacity

This section is devoted to a question that has been answered only recently in [51] for single-channel
capacities, namely that of continuity of capacities of quantum channels.
The question is relevant not only from a mathematical point of view, but might also have a strong impact
on applications. It seems a hard task in general to compute the regularized capacity formulas obtained
so far for quantum channels. There are, however, cases where the regularized capacity formula can be
reduced to a one-shot quantity (see for example [22] and references therein) that can be calculated using
standard optimization techniques.
Knowing that capacity is a continuous quantity one could raise the question how close an arbitrary
(compound) channel is to a (compound) channel with one-shot capacity and thereby get an estimate on
arbitrary capacities.
We will now state the main result of this section.

Theorem 57 (Continuity of Compound Capacity). The compound capacities Q( · ), QID( · ) and QIE( · )
are continuous. To be more precise, let I, I′ ⊂ C(H,K) be two compound channels with D♦(I, I′) ≤ ε ≤
1/2. Then

|Q(I)−Q(I′)| = |QID(I)−QID(I′)| ≤ ν(2ε), (384)

|QIE(I)−QIE(I′)| ≤ ν(2ε), (385)

where the function ν is taken from Lemma 55.

Remark 58. Let I ⊂ C(H,K). Then D(I, Ī) = 0, implying that the three different capacities of I coincide
with those for Ī. We may thus define the equivalence relation I ∼ I′ ⇔ Ī = Ī′ and even use D♦ as a
metric on the set of equivalence classes without losing any information about our channels.

Proof. Let D♦(I, I′) ≤ ε. By the first estimate in Lemma 55 and the capacity formula QID(I) = Q(I) =
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liml→∞
1
l maxρ∈S(H⊗l) Ic(ρ, I

⊗l) we get

|Q(I)−Q(I′)| = |QID(I)−QID(I′)| (386)

= | lim
l→∞

1

l
[ max
ρ∈S(H⊗l)

Ic(ρ, I
⊗l)− max

ρ∈S(H⊗l)
Ic(ρ, I

′⊗l)]| (387)

= lim
l→∞

|1
l

max
ρ∈S(H⊗l)

Ic(ρ, I
⊗l)− 1

l
max

ρ∈S(H⊗l)
Ic(ρ, I

′⊗l)| (388)

≤ lim
l→∞

ν(2ε) (389)

= ν(2ε). (390)

For the proof in the case of an informed encoder let us first note that QIE(I) =
liml→∞ infN∈I maxρ∈S(H⊗l) Ic(ρ,N⊗l) holds. The second estimate in Lemma 55 justifies the following
inequality:

|QIE(I)−QIE(I′)| = | lim
l→∞

1

l
[ inf
N∈I

max
ρ∈S(H⊗l)

Ic(ρ,N⊗l)− inf
N ′∈I

max
ρ∈S(H⊗l)

Ic(ρ,N ′⊗l)]| (391)

= lim
l→∞

|1
l

inf
N∈I

max
ρ∈S(H⊗l)

Ic(ρ,N⊗l)−
1

l
inf
N ′∈I

max
ρ∈S(H⊗l)

Ic(ρ,N ′⊗l)| (392)

≤ lim
l→∞

ν(2ε) (393)

= ν(2ε). (394)

3.8 Entanglement-generating capacity of compound channels

In this last section we will apply the results obtained so far to derive the second statement of Theorem 27.
Namely, we will determine the entanglement-generating capacity of quantum compound channels. We
give the definitions of codes and capacity only for the most interesting case of uninformed users because
there is no doubt that the reader will easily guess the definitions in the remaining cases. Nevertheless, we
will state the coding result in all three cases.

Recall from the proof of Theorem 43 that to each subspace G ⊂ H and ε > 0 we always can find
a subspace Fl ⊂ G⊗l ⊂ H⊗l, a recovery operation Rl ∈ C(K⊗l,Fl), and a unitary operation U l ∈
C(H⊗l,H⊗l) with

kl = dimFl ≥ b2l(infN∈I Ic(πG ,N )− ε2−o(l
0))c, (395)

and
inf
N∈I

Fe(πFl ,Rl ◦ N⊗l ◦ U l) = 1− o(l0). (396)

Notice that the maximally entangled state ψl in Fl⊗Fl purifies the maximally mixed state πFlon Fl and
defining |ϕl〉〈ϕl| := U l(|ψl〉〈ψl|), the relation (396) can be rewritten as

inf
N∈I

F (|ψl〉〈ψl|, idFl ⊗Rl ◦ N⊗l(|ϕl〉〈ϕl|)) = 1− o(l0). (397)

This together with (395) shows that
E(I) ≥ inf

N∈I
Ic(πG ,N ). (398)

Thus, using the compound BSST Lemma 42 and arguing as in the proof of Theorem 44, we can conclude
that

E(I) ≥ Q(I) = lim
l→∞

1

l
max

ρ∈S(H⊗l)
inf
N∈I

Ic(ρ,N⊗l). (399)
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Since E(I) ≤ EID(I) holds it suffices to show

EID(I) ≤ Q(I) = lim
l→∞

1

l
max

ρ∈S(H⊗l)
inf
N∈I

Ic(ρ,N⊗l) (400)

in order to establish the coding theorem for EID(I) and E(I) simultaneously.
The proof of (400) relies on Lemma 51 and the data processing inequality. Indeed, let R ∈ R+ be
an achievable entanglement generation rate for I with informed decoder and let ((RlN )N∈I, ϕl)l∈N be a
corresponding sequence of (l, kl)-codes, i.e we have

1. lim inf l→∞
1
l log kl ≥ R, and

2. infN∈I F (|ψl〉〈ψl|, (idFl ⊗ RlN ◦ N⊗l)(|ϕl〉〈ϕl|)) = 1 − εl where liml→∞ εl = 0 and ψl denotes the
standard maximally entangled state on Fl ⊗Fl with Schmidt rank kl.

Set ρl := trFl(|ϕl〉〈ϕl|) and
σlN := idFl ⊗RlN ◦ N⊗l(|ϕl〉〈ϕl|). (401)

Then (remembering that c3 = max{−x log(x) : x ∈ [0, 1]}) the data processing inequality and Lemma 51
imply for each N ∈ I

Ic(ρ
l,N⊗l) ≥ Ic(ρ

l,RlN ◦ N⊗l) (402)

= ∆(σlN ) (403)

≥ ∆(|ψl〉〈ψl|)− 4c3 − 8 log(kl)
√
εl (404)

= log kl − 4c3 − 16 log(kl)
√

2εl. (405)

Consequently, for every l ∈ N,

(1− 8
√
εl)

1

l
log kl ≤

1

l
max

ρ∈S(H⊗l)
inf
N∈I

Ic(ρ,N⊗l) + c3/l (406)

and we end up with

R ≤ lim inf
l→∞

1

l
log kl ≤ lim

l→∞

1

l
max

ρ∈S(H⊗l)
inf
N∈I

Ic(ρ,N⊗l), (407)

which implies (400). The expression for EIE(I) is obtained in a similar fashion. We summarize the results
in the following theorem.

Theorem 59 (Entanglement-Generating Capacities of I). For arbitrary compound channels I ⊂ C(H,K)
we have

E(I) = EID(I) = Q(I) = lim
l→∞

1

l
max

ρ∈S(H⊗l)
inf
N∈I

Ic(ρ,N⊗l), (408)

and

EIE(I) = QIE(I) = lim
l→∞

1

l
inf
N∈I

max
ρ∈S(H⊗l)

Ic(ρ,N⊗l). (409)

3.9 Equivalence of strong subspace and entanglement transmission

We will now use results from convex high-dimensional geometry to show that every sequence of asymp-
totically perfect (random) codes for entanglement transmission for I yields another sequence of (random)
codes that guarantees asymptotically perfect strong subspace transmission.
First, we state the following theorem which is the complex version of a theorem that can essentially be
picked up from [55], Theorem 2.4 and Remark 2.7:
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Theorem 60. For δ,Θ > 0 and an integer n let k(δ,Θ, n) = bδ2(n−1)/(2 log(4/Θ))c. Let f : S(Cn)→ R
be a continuous function and νk the uniform measure induced on the Grassmannian Gn,k := {G ⊂ Cn :
G is subspace and dimG = k} by the normalized Haar measure on the unitary group on Cn then, for all
δ,Θ > 0, the measure of the set Ek ⊂ Gn,k of all subspaces E ⊂ Cn satisfying the three conditions

1. dimE = k(δ,Θ, n)

2. There is a Θ−net N in S(E) = S(Cn)
⋂
E such that |f(x)−Mf | ≤ ωf (δ) for all x ∈ N

3. |f(x)−Mf | ≤ ωf (δ) + ωf (Θ) for all x ∈ S(E)

satisfies νk(Ek) ≥ 1−
√

2/πe−δ
2(n−1)/2.

Here, S(Cn) is the unit sphere in Cn, ωf (δ) := sup{|f(x) − f(y)| : D(x, y) ≤ δ} is the modulus
of continuity, D the geodesic metric on S(Cn) and Mf the median of f , which is the number such that
with ν the Haar measure on S(Cn) both ν({x : f(x) ≤Mf}) ≥ 1/2 and ν({x : f(x) ≥Mf}) ≥ 1/2 hold.

Remark 61. The proof of Theorem 60 uses the identification Cn ' R2n under the map
∑n
i=1 ziei 7→∑n

i=1(Re{zi}ei + Im{zi}ei+n), where {e1, . . . , en} and {e1, . . . , e2n} denote the standard bases in Cn and
R2n.

Second, we use the following lemma which first appeared in [42]:

Lemma 62. Let N ∈ C(H,H), G a d-dimensional subspace of H and φ ∈ G with euclidean norm ‖φ‖ = 1.
Then ∫

U(G)

〈Uφ,N (U |φ〉〈φ|U∗)Uφ〉dU =
1

d+ 1
(d · Fe(πG ,N ) + 1). (410)

Third, we need a well behaving relation between the median and the expectation of a function f :
S(Cn)→ R. This is given by Proposition 14.3.3 taken from [54]:

Lemma 63. Let f : S(Cn)→ R be Lipschitz with constant one (w.r.t. the geodesic metric). Then

|Mf − E(f)| ≤ 12√
2(n− 1)

. (411)

Remark 64. Obviously, this implies |Mf−E(f)| ≤ 12·L√
2(n−1)

for Lipschitz functions with constant L ∈ R+.

The function that we will apply Lemma 63 to is given by the following:

Lemma 65. Let Λ ∈ C(H,H). Define fΛ : S(H)→ R by

fΛ(x) := 〈x,Λ(|x〉〈x|)x〉, x ∈ S(H). (412)

Then fΛ is Lipschitz with constant L = 4 (w.r.t. the geodesic metric).

Proof. Let x, y ∈ S(H). Then by Hölder’s inequality,

|fΛ(x)− fΛ(y)| = |tr(|x〉〈x|Λ(|x〉〈x|))− tr(|y〉〈y|Λ(|y〉〈y|))| (413)

= |tr(|x〉〈x|Λ(|x〉〈x| − |y〉〈y|))|+ |tr((|x〉〈x| − |y〉〈y|)Λ(|y〉〈y|))| (414)

≤ ‖ |x〉〈x| ‖∞ · ‖Λ(|x〉〈x| − |y〉〈y|)‖1 + ‖ |x〉〈x| − |y〉〈y| ||1 · ‖Λ(|y〉〈y|)‖∞ (415)

≤ ‖Λ(|x〉〈x| − |y〉〈y|)‖1 + ‖|x〉〈x| − |y〉〈y|‖1 (416)

≤ 2‖ |x〉〈x| − |y〉〈y| ‖1. (417)

It further holds, with ‖ · ‖ denoting the euclidean norm,

‖ |x〉〈x| − |y〉〈y| ‖1 ≤ 2‖x− y‖ ≤ 2D(x, y). (418)
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We now state the main ingredient of this section.

Lemma 66. Let (Il)l∈N be a sequence of finite sets of channels such that for every l ∈ N the following,
mostly technical, assumptions hold:

1. (w.l.o.g.) Il is indexed such that Il = {N1, . . . ,N|Il|}

2. There is a set of measures {µl,i}|I
l|

i=1 s.t. each µl,i is a measure on (C(Fl,H⊗l)×C(K⊗l,F ′l ), σl) where
Fl,F ′l are Hilbert spaces, Fl ⊂ F ′l

3. The sigma-algebra σl is chosen such that the function (Pl,Rl) 7→ Fe(πFl ,Rl ◦N ◦Pl) is measurable
w.r.t. σl for every N ∈ Il.

4. All singleton sets are contained in σl. An example of such a sigma-algebra σl is given by the product
of sigma-algebras of Borel sets induced on C(Fl,H) and C(K,F ′l ) by the standard topologies of the
ambient spaces.

Additionally, we require that

A1 min1≤i≤|Il|
∫
Fe(πFl ,Rl ◦ Ni ◦ P l)dµl,i(Rl,P l) = 1− fl,

where (fl)l∈N is any sequence of real numbers in the interval [0, 1].

Let (εl)l∈N be a sequence with εl ∈ (0, 1] ∀l ∈ N satisfying

A2 There is l̂ ∈ N such that |Il|
√

2/πe−ε
2
l (kl−1)/128 < 1 and kl ≥ 2 hold for all l ≥ l̂

(where, as usual, kl := dimFl).

Then for any l ≥ l̂ there is a subspace F̂l ⊂ Fl with the properties

P1 dim F̂l = b ε2l
256 log(32/εl)

· klc,

P2 min1≤i≤|Il|minφ∈S(F̂l)
∫
〈φ,Rl ◦ Ni ◦ P l(|φ〉〈φ|)φ〉dµl,i(Rl,P l) ≥ 1− fl − 4·12√

2(kl−1)
− εl.

Proof. Let l ∈ N. For an arbitrary i ∈ {1, . . . , |Il|} define fl,i : S(Fl)→ R by

fl,i(φ) :=

∫
〈φ,Rl ◦ Ni ◦ P l(|φ〉〈φ|)φ〉dµl,i(Rl,P l) (φ ∈ S(Fl)). (419)

Since fl,i is an affine combination of functions with Lipschitz-constant L = 4, it is itself Lipschitz with
L = 4.
Also, by the Theorem of Fubini, Lemma 62 and our assumption A1 we have

E(fl,i) =

∫
U(Fl)

fl,i(Uφ)dU (420)

=

∫
U(Fl)

[

∫
〈Uφ,Rl ◦ Ni ◦ P l(|Uφ〉〈Uφ|)Uφ〉dµl,i(Rl,P l)]dU (421)

=

∫ ∫
U(Fl)

[〈Uφ,Rl ◦ Ni ◦ P l(|Uφ〉〈Uφ|)Uφ〉dU ]dµl,i(Rl,P l) (422)

=

∫
klFe(πFl ,Rl ◦ Ni ◦ P l) + 1

kl + 1
dµl,i(Rl,P l) (423)

≥
∫
Fe(πFl ,Rl ◦ Ni ◦ P l)dµl,i(Rl,P l) (424)

= 1− fl. (425)

53



By Lemma 63 and Lemma 65 we now get a good lower bound on the median of fsl :

Mfl,i ≥ E(fl,i)−
4 · 12√

2(kl − 1)
(426)

≥ 1− fl −
4 · 12√

2(kl − 1)
. (427)

We now apply Theorem 60 with n = kl and δ = Θ = εl/8 to fsl . Then k(εl/8, εl/8, kl) ≥ b ε2l
256 log(32/εl)

klc
holds due to the second estimate in A2.
We set k′l := b ε2l

256 log(32/εl)
klc.

Since the fact that fl,i is 4-Lipschitz implies ωfl,i(δ) ≤ 4δ we get the following:

νk({E ∈ Gkl,k(εl/8,εl/8,kl) : |fl,i(φ)−Mf
sl
| ≤ εl ∀φ ∈ S(E)}) ≥ 1−

√
2/πe−ε

2
l (kl−1)/128. (428)

The last inequality is valid for each choice of 1 ≤ i ≤ |Il|, so we can conclude that

νk({E ∈ Gkl,k(
εl
8 ,

εl
8 ,kl)

: |fl,i(φ)−Mfl,i | ≤ εl ∀φ ∈ S(E), 1 ≤ i ≤ |I l|}) ≥ 1− |Il|
√

2

π
e−

ε2l (kl−1)

128 .

(429)

Thus for all l ≥ l̂ we have

νk({E ∈ Gkl,k(εl/8,εl/8,kl) : |fl,i(φ)−Mfl,i | ≤ εl ∀φ ∈ S(E), ∀1 ≤ i ≤ |Il|}) > 0 (430)

by assumption A2, implying the existence of a subspace E ⊂ Fl of dimension dimE = k(εl/8, εl/8, kl)
such that

|fl,i(φ)−Mfl,i | ≤ εl ∀ φ ∈ S(E), i ∈ {1, . . . , |Il|}. (431)

Let F̂l ⊂ E be any subspace of dimension k′l. Then P1 holds and equation (427) together with (431)
establishes P2 :

fl,i(φ) ≥ 1− fl −
4 · 12√

2(kl − 1)
− εl ∀ φ ∈ S(F̂l), ∀1 ≤ i ≤ |Il|. (432)

We turn to an application of Lemma 66.

Lemma 67. [Third statement in Theorem 27] Let I be a compound channel. Then

1. QID(I) = Qs,ID(I), 2. QIE(I) = Qs,IE(I), 3. Q(I) = Qs(I). (433)

Proof. We first show that the l.h.s. is upper bounded by the r.h.s. in all three of the above cases. This is
trivially true in case that the l.h.s. equals zero, so we concentrate on the case where the l.h.s. is strictly
greater than zero.
We then uniformly describe the codes in the three settings by probability measures. But first, a few
approximations have to be carried out. For every number l ∈ N, we letN ′τl denote a τl-net with τl := 2−lR/4

and cardinality bounded by |N ′τl | ≤ (3/τl)
2(dd′)2 in C(H,K). Set Nτl := N ′τl

⋂
I. Then

D♦(Nτl , I
⊗l) ≤ 2τl (434)
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and, what is more, multiplicativity of ‖ · ‖♦ also grants us, for all N ∈ I, Rl ∈ C(K⊗l,F ′l ) and P l ∈
C(Fl,H⊗l), the estimate

min
Ni∈Nτl

max
x∈S(Fl)

〈x, [Rl ◦ (N⊗li −N
⊗l) ◦ P l](|x〉〈x|)x〉 ≤ l2τl. (435)

We set Il := Nτl and take an arbitrary sequence of sets of measures ({µl,i}
|Nτl |
i=1 )l∈N satisfying all of the

four technical assumptions in Lemma 66.
Additionally, let the sequence (fl)l∈N in Lemma 66, A1 be such that fl ↘ 0. The dimensions of the
subspaces Fl shall satisfy lim inf l→∞

1
l log kl ≥ R > 0 and we set εl := 2−lR/4.

A short calculation reveals that |Nτl | ≤ 2lR(dd′)2/2, so A2 is clearly satisfied for some fixed l̂ ∈ N and it
follows

fl,i(φ) ≥ 1− fl −
4 · 12√

2(kl − 1)
− εl ∀ l ≥ l̂, φ ∈ S(F̂l), 1 ≤ i ≤ |Nτl |. (436)

Under application of (435), this translates to

inf
N∈I

min
φ∈F̂l

∫
〈φ,Rl ◦ N⊗li ◦ P

l(|φ〉〈φ|)φ〉dµl,i(Rl,P l) ≥ 1− fl −
4 · 12√

2(kl − 1)
− εl − l2τl ∀ l ≥ l̂. (437)

Additionally, we obviously have

lim inf
l→∞

1

l
log dim F̂l = lim inf

l→∞

1

l
log dimFl ≥ R. (438)

Let R > 0 be achievable for transmission of entanglement over I with informed decoder. Thus, there
exists a sequence of (l, kl) codes for I with informed decoder such that 1. lim inf l→∞

1
l log kl ≥ R, and

2. liml→∞ infN∈I Fe(πFl ,RlN ◦ N⊗l ◦ P l) = 1
Define Rli := RlNi and µl,i := δ(Rli,Pl), where δa as usually denotes the point measure at the point a.

Our above discussion shows the existence of a sequence (F̂l)l∈N of subspaces F̂l ⊂ Fl such that (compare
equations (437) and (438))

min
1≤i≤N

min
φ∈F̂l
〈φ,Rli ◦ N⊗li ◦ P

l(|φ〉〈φ|)φ〉 ≥ 1− fl −
4 · 12√

2(kl − 1)
− εl − 2lτl ∀ l ≥ l̂. (439)

and

lim inf
l→∞

1

l
log dim F̂l = lim inf

l→∞

1

l
log dimFl ≥ R. (440)

This shows that not only is R an achievable rate for strong subspace transmission over I with informed
decoder, but moreover, if fl → 0 exponentially fast, then the convergence on the r.h.s. of (439) is
exponentially fast as well.
The cases of informed encoder and of uninformed users can be handled by setting either µl,i := δ(Rl,Pli)
or µl,i = µl := δ(Rl,Pl). Conclusions we drew about the speed of convergence for the informed decoder
remain valid for the other two cases as well.
That the r.h.s. is upper bounded by the l.h.s. in all the three cases of Lemma 67 follows from an application
of ([10], Theorem 2).

Having proven Lemma 67, we are also finally finished with the proof of Theorem 27.

3.10 A symmetrizability condition for compound quantum channels

The notion of symmetrizability stems from the theory of classical arbitrarily varying channels (AVCs). A
more detailed description of the topic can be found in chapter 4. In this section, we give an example of the
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impact that the symmetrizability criteria (see section 4.6) for arbitrarily varying quantum channels could
have on compound quantum channels. We concentrate on classical message transmission with average
error criterion and entanglement transmission and abstain from defining other notions of symmetrizablity
for compound quantum channels than those that are necessary for this specific task.
This is mostly due to limited belief in the relevance of these notions in our focus, the field of entanglement
and strong subspace transmission or entanglement generation - they seem to be designed to either cope
with classical message transmission only (see subsections 4.6.1, 4.6.1) or are too restrictive to be necessary
and sufficient at the same time (see subsection 4.6.3).
Let us further restrict to the case of uninformed users for a finite compound quantum channel I =
{N1, . . . ,NN}. The capacity for transmission of classical messages using the average error probability
criterion can be defined as follows.

Definition 68. An (l,Ml)-(deterministic) code for message transmission is a family of pairs Cl =
(ρi, Di)

Ml
i=1 where ρ1, . . . , ρMl

∈ S(H⊗l), and positive semi-definite operators D1, . . . , DMl
∈ B(K⊗l) satis-

fying
∑Ml

i=1Di = 1K⊗l .
The worst-case average probability of error of a code Cl is given by

P̄e,l(I) := max
1≤j≤N

P̄e(Cl, j), (441)

where for 1 ≤ j ≤ N we set

P̄e(Cl, j) :=
1

Ml

Ml∑
i=1

(1− tr(Nj(ρi)Di)) . (442)

The achievable rates and the classical deterministic capacity Ccompound(I) of I, with respect to the error
criterion given in (442), are then defined in the usual way.

Definition 69. Let l ∈ N. The compound channel I is called l-symmetrizable, if for each finite set
{ρ1, . . . , ρK} ⊂ S(H⊗l), K ∈ N, there is a map p : {ρ1, . . . , ρK} → P({1, . . . , N}), ρi 7→ p[ρi] such that
for all i, j ∈ {1, . . . ,K}

N∑
m=1

p[ρi](m)N⊗lm (ρj) =

N∑
m=1

p[ρj ](m)N⊗lm (ρi) (443)

holds. We call I symmetrizable if it is l-symmetrizable for all l ∈ N.

Given these definitions, we can state the following theorem.

Theorem 70. The finite compound channel I is symmetrizable if and only if Ccompound(I) = 0. If I is
symmetrizable, then also Q(I) = 0.

Remark 71. If I is l-symmetrizable, it is not at all clear that it is (l + 1)-symmetrizable as well (this
follows from the fact that only channels of the form N⊗li enter the definition (compare Definition 104,
where this incompatibility is in principle due to non-separability of some quantum states). Even if a
compound channel {N1,N2} satisfies λN1 + (1−λ)N2 = T for some λ ∈ (0, 1) and T (·) := πKtr(·), which
implies 1-symmetrizability, it is not automatically clear that it is 2-symmetrizable.
It is also clear that the case Q(I) = 0 and Ccompound(I) > 0 can occur - just let I consist of one single
channel and let this channel be entanglement breaking.

Proof. The proof is an immediate consequence of the proof of Theorem 105, which simply has to be read
with Sl replaced by {1, . . . , N} (for every l ∈ N).

The topic will be further discussed in Chapter 5.
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4 The arbitrarily varying quantum channel

This chapter evolves around the task of entanglement transmission over an unknown channel in the
presence of a third party (called the adversary), which is enabled to choose the channel from a given set
of memoryless but non-stationary channels without informing the legitimate sender and receiver about
the particular choice that he made. This channel model is called arbitrarily varying quantum channel
(AVQC).
A quantum version of Ahlswede’s dichotomy for classical arbitrarily varying channels is derived. This
includes a regularized formula for the common randomness-assisted capacity for entanglement transmission
of an AVQC. Quite surprisingly and in contrast to the classical analog of the problem involving the maximal
and average error probability, it turns out that the capacity for entanglement transmission of an AVQC
always equals its strong subspace transmission capacity.
These results are accompanied by different notions of symmetrizability (zero-capacity conditions) as well
as by conditions for an AVQC to have a capacity described by a single-letter formula. In the final
part of the paper the capacity of the erasure-AVQC is computed and some light shed on the connection
between AVQCs and zero-error capacities. Additionally, it is shown by entirely elementary and operational
arguments motivated by the theory of AVQCs that the quantum, classical, and entanglement-assisted zero-
error capacities of quantum channels are generically zero and are discontinuous at every positivity point.
In the last part of this chapter a quick sidestep to the entanglement generation capacities of an AVQC is
made. Some results are proven to hold by trivial modifications of the proofs for entanglement transmission,
only the question whether Gdet(I) > Adet(I) can occur for an AVQC I is left open.

4.1 Basic definitions and main results

We now introduce the quantities that we will be dealing with in the rest of the paper: Arbitrarily varying
quantum channels and codes for transmission of entanglement and subspaces. Since they will be of im-
portance for our derandomization arguments, we will also include definitions of the capacities for message
transmission with average and maximal error probability criterion.
Our most basic object is the arbitrarily varying quantum channel (AVQC). It is generated by a set
I = {Ns}s∈S of CPTP maps with input Hilbert space H and output Hilbert space K and given by the
family of CPTP maps {Nsl : B(H)⊗l → B(K)⊗l}l∈N,sl∈Sl , where

Nsl := Ns1 ⊗ . . .⊗Nsl (sl ∈ Sl). (444)

Thus, even in the case of a finite set I = {Ns}s∈S, showing the existence of reliable codes for the
AVQC determined by I is a non-trivial task: For each block length l ∈ N we have to deal with |I|l, i.e.
exponentially many, memoryless partly non-stationary quantum channels simultaneously.

In order to relieve ourselves from the burden of complicated notation we will simply write I = {Ns}s∈S
for the AVQC. If instead I shall denote a compound channel, this will be stated explicitly to avoid severe
notational collisions.

4.1.1 Entanglement transmission

For the rest of this subsection, let I = {Ns}s∈S be an AVQC.

Definition 72. An (l, kl)−random entanglement transmission code for I is a probability measure µl on
(C(Fl,H⊗l)×C(K⊗l,F ′l ), σl), where Fl,F ′l are Hilbert spaces, dimFl = kl, Fl ⊂ F ′l and the sigma-algebra
σl is chosen such that the function (Pl,Rl) 7→ Fe(πFl ,Rl ◦ Nsl ◦ Pl) is measurable w.r.t. σl for every
sl ∈ Sl.
Moreover, we assume that σl contains all singleton sets. An example of such a sigma-algebra σl is given
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by the product of sigma-algebras of Borel sets induced on C(Fl,H) and C(K,F ′l ) by the standard topologies
of the ambient spaces.

Definition 73. A non-negative number R is said to be an achievable entanglement transmission rate
for the AVQC I = {Ns}s∈S with random codes if there is a sequence of (l, kl)−random entanglement
transmission codes such that

1. lim inf l→∞
1
l log kl ≥ R and

2. liml→∞ infsl∈Sl
∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(P l,Rl) = 1.

The random entanglement transmission capacity Arandom(I) of I is defined by

Arandom(I) := sup

{
R ∈ R+ :

R is an achievable entanglement trans-
mission rate for I with random codes

}
. (445)

Having defined random codes and random code capacity for entanglement transmission we are in the
position to introduce their deterministic counterparts: An (l, kl)−code for entanglement transmission over
I is an (l, kl)−random code for I with µl({(P l,Rl)}) = 1 for some encoder-decoder pair (P l,Rl)2 and
µl(A) = 0 for any A ∈ σl with (P l,Rl) /∈ A. We will refer to such measures as point measures in what
follows.

Definition 74. A non-negative number R is a deterministically achievable entanglement transmission
rate for the AVQC I = {Ns}s∈S if it is achievable in the sense of Definition 73 for random codes with
point measures µl.
The deterministic entanglement transmission capacity Adet(I) of I is given by

Adet(I) := sup{R : R is a deterministically achievable entanglement transmission rate for I}. (446)

Finally, we shall need the notion of the classical deterministic capacity Cdet(I) of the AVQC I =
{Ns}s∈S with average error criterion.

Definition 75. An (l,Ml)-(deterministic) code for message transmission is a family of pairs Cl =
(ρi, Di)

Ml
i=1 where ρ1, . . . , ρMl

∈ S(H⊗l), and positive semi-definite operators D1, . . . , DMl
∈ B(K⊗l) satis-

fying
∑Ml

i=1Di = 1K⊗l .
The worst-case average probability of error of a code Cl is given by

P̄e,l(I) := sup
sl∈Sl

P̄e(Cl, s
l), (447)

where for sl ∈ Sl we set

P̄e(Cl, s
l) :=

1

Ml

Ml∑
i=1

(1− tr(Nsl(ρi)Di)) . (448)

The achievable rates and the classical deterministic capacity Cdet(I) of I, with respect to the error
criterion given in (447), are then defined in the usual way.

For any AVQC (finite or infinite), the compound quantum channel generated by the set conv(I) (cf.
[16] for the relevant definition) shall play the crucial role in our derivation of the coding results below. In
the relevant cases we will have |I| > 1 and, therefore, conv(I) will be infinite.
Our main result, a quantum version of Ahlswede’s dichotomy for finite AVQCs, goes as follows:

2This explains our requirement on σl to contain all singleton sets.
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Theorem 76. Let I = {Ns}s∈S be an AVQC.

1. With conv(I) denoting the convex hull of I we have

Arandom(I) = lim
l→∞

1

l
max

ρ∈S(H⊗l)
inf

N∈conv(I)
Ic(ρ,N⊗l). (449)

2. Either Cdet(I) = 0 or else Adet(I) = Arandom(I).

Proof. The claim made in (449) follows from Theorem 92 and Corollary 100.
The proof that Cdet(I) > 0 implies Adet(I) = Arandom(I) requires a derandomization argument which is
presented in section 4.5.

We conclude this subsection with some explaining remarks:
1. Coherent information depends continuously on the state, therefore ρ 7→ infN∈conv(I) Ic(ρ,N⊗l) is upper

semicontinuous and thus maxρ∈S(H⊗l) infN∈conv(I) Ic(ρ,N⊗l) exists due to the compactness of S(H⊗l).
The limit in (449) exists due to superadditivity of the sequence (maxρ∈S(H⊗l) infN∈conv(I) Ic(ρ,N⊗l))l∈N.
2. It is clear that Adet(I) ≤ Cdet(I), so that Cdet(I) = 0 implies Adet(I) = 0. Therefore, Theorem
76 gives a regularized formula for Adet(I) in form of (449), and the question remains when Cdet(I) = 0
happens. We derive a non-single-letter necessary and sufficient condition for the latter in section 4.6.
3. Continuous dependence of the coherent information on the channel reveals that for each l ∈ N and
ρ ∈ S(H⊗l)

inf
N∈conv(I)

Ic(ρ,N⊗l) = min
N∈conv(I)

Ic(ρ,N⊗l), (450)

4.1.2 Strong subspace transmission

Let I = {Ns}s∈S be an AVQC. An (l, kl)−random strong subspace transmission code for I is a probability
measure µl on (C(Fl,H⊗l) × C(K⊗l,F ′l ), σl), where Fl, F ′l are Hilbert spaces, dimFl = kl, Fl ⊂ F ′l and
the sigma-algebra σl is chosen such that the function (P l,Rl) 7→ Fe(πFl ,Rl ◦Nsl ◦P l) is measurable w.r.t.
σl for every sl ∈ Sl. Again, we assume that σl contains all singleton sets.

Definition 77. A non-negative number R is said to be an achievable strong subspace transmission rate
for the AVQC I = {Ns}s∈S with random codes if there is a sequence of (l, kl)−random strong subspace
transmission codes such that

1. lim inf l→∞
1
l log kl ≥ R and

2. liml→∞ infsl∈Sl minψ∈S(Fl)
∫
F (|ψ〉〈ψ|,Rl ◦ Nsl ◦ P l(|ψ〉〈ψ|))dµl(P l,Rl) = 1.

The random strong subspace transmission capacity As,random(I) of I is defined by

As,random(I) := sup

{
R ∈ R+ :

R is an achievable strong subspace trans-
mission rate for I with random codes

}
. (451)

As before we also define deterministic codes: A deterministic (l, kl)−strong subspace transmission
code for I is an (l, kl)−random strong subspace transmission code for I with µl({(P l,Rl)}) = 1 for some
encoder-decoder pair (P l,Rl) and µl(A) = 0 for any A ∈ σl with (P l,Rl) /∈ A. We will refer to such
measures as point measures in what follows.

Definition 78. A non-negative number R is a deterministically achievable strong subspace transmission
rate for the AVQC I = {Ns}s∈S if it is achievable in the sense of Definition 77 for random codes with
point measures µl.
The deterministic capacity As,det(I) for strong subspace transmission over an AVQC I is given by

As,det(I) := sup{R : R is a deterministically achievable rate for I}. (452)
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If we want to transmit classical messages, then the error criterion that is most closely related to strong
subspace transmission is that of maximal error probability. It leads to the notion of classical deterministic
capacity with maximal error:

Definition 79. Let Cl be an (l,Ml)-(deterministic) code for message transmission as given in Definition
75. The worst-case maximal probability of error of the code Cl is given by

Pe,l(I) := sup
sl∈Sl

Pe(Cl, s
l), (453)

where for sl ∈ Sl we set
Pe(Cl, s

l) := max
i∈Ml

(1− tr(Nsl(ρi)Di)) . (454)

The achievable rates and the classical deterministic capacity Cdet,max(I) of I, with respect to the error
criterion given in (453), are then defined in the usual way.

The perhaps surprising result is that the strong subspace transmission capacity of a (finite) AVQC
always equals its entanglement transmission capacity:

Theorem 80. For every AVQC I = {Ns}s∈S we have the equalities

As,random(I) = Arandom(I), (455)

As,det(I) = Adet(I). (456)

4.1.3 Zero-error capacities

In this subsection we only give definitions of zero-error capacities. Through the ideas of [1] these capacities
are connected to arbitrarily varying channels, though this connection is not as strong as in the classical
setting.
Results concerning these capacities are stated in subsections 4.8.2 and 4.8.3.

Definition 81. An (l, k) zero-error quantum code (QC for short) (F ,P,R) for N ∈ C(H,K) consists of
a Hilbert space F , P ∈ C(F ,H⊗l), R ∈ C(K⊗l,F) with dimF = k such that

min
x∈F,||x||=1

〈x,R ◦N⊗l ◦ P(|x〉〈x|)x〉 = 1. (457)

For fixed block length l ∈ N define

k(l,N ) := max{dimF : ∃(l, k) zero-error QC for N}. (458)

The zero-error quantum capacity Q0(N ) of N ∈ C(H,K) is then defined by

Q0(N ) := lim
l→∞

1

l
log k(l,N ). (459)

The existence of the limit follows from standard arguments based on Fekete’s Lemma, which can be picked
up in [31].

Next we pass to the zero-error classical capacities of quantum channels.
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Definition 82. Let σFF ′ be a bipartite state on F ⊗ F ′ where F ′ denotes a unitary copy of the Hilbert
space F . An (l,M) entanglement assisted code (ea-code for short) (σFF ′ , {Pm, Dm}Mm=1) consists of a
bipartite state σFF ′ , Pm ∈ C(F ,H⊗l), m = 1, . . . ,M , and a POVM {Dm}Mm=1 on F ′ ⊗ K⊗l. A given
(l,M) entanglement assisted code (σFF ′ , {Pm, Dm}Mm=1) is a zero-error code for N ∈ C(H,K) if

tr((N⊗l ◦ Pm ⊗ idF ′)(σFF ′)Dm) = 1 (460)

holds for all m ∈ [M ] := {1, . . . ,M}. For l ∈ N we set

MEA(l,N ) := max{M : ∃ zero-error (l,M) ea-code for N}. (461)

Definition 83. The entanglement assisted classical zero-error capacity C0EA(N ) of N ∈ C(H,K) is given
by

C0EA(N ) := lim
l→∞

1

l
logMEA(l,N ). (462)

If we restrict the definition of zero-error ea-code to states σFF ′ with dimF = dimF ′ = 1 we obtain
the perfomance parameter M(l,N ) as a special case of MEA(l,N ) in (461) and the classical zero-error
capacity C0(N ) of a quantum channel N .

Definition 84. Given a bipartite state ρ ∈ S(HA ⊗HB). An (l, kl) zero-error entanglement distillation
protocol (EDP for short) for ρ consists of an LOCC operation D ∈ C(H⊗lA ⊗H

⊗l
B ,Ckl⊗Ckl) and a maximally

entangled state vector ϕkl = 1√
kl

∑kl
i=1 ei ⊗ ei ∈ Ckl ⊗ Ckl with an orthonormal basis {e1, . . . , ekl} of Ckl

such that
〈ϕkl ,D(ρ⊗l)ϕkl〉 = 1. (463)

Let for l ∈ N
d(l, ρ) := max{kl : ∃(l, kl) zero-error EDP for ρ}, (464)

and we define the zero-error distillable entanglement of ρ ∈ S(HA ⊗HB) as

D0(ρ) := lim
l→∞

1

l
log d(l, ρ). (465)

4.1.4 Entanglement generation

Definition 85. An entanglement-generation (l, kl)-code for the AVQC I = {Ns}s∈S consists of a pair
(Rl, ϕl) where Rl ∈ C(K⊗l,Fl) with kl = dimFl and ϕl is a state on Fl ⊗H⊗l.
Definition 86. R ∈ R+ is called a deterministically achievable entanglement generation rate for I if there
is a sequence of (l, kl) entanglement-generating codes with

1. lim inf l→∞
1
l log kl ≥ R, and

2. liml→∞ infsl∈Sl F (|ψl〉〈ψl|, (idFl ⊗Rl ◦ Nsl)(ϕl)) = 1 where ψl denotes the standard maximally en-
tangled state on Fl ⊗Fl and F (·, ·) is the fidelity.

Randomly achievable entanglement generation rates are defined in analogy to Definitions 72 and 77.

Definition 87. The entanglement-generation capacities of I are defined as

Gdet(I) := sup{R ∈ R+ : R is deterministically achievable entanglement generation rate for I}, (466)

Grandom(I) := sup{R ∈ R+ : R is randomly achievable entanglement generation rate for I}.

For these entanglement generation capacities, the following theorem holds.

Theorem 88. Let I ⊂ C(H,K) be an AVQC. Then

1. Grandom(I) = Arandom(I)

2. If Cdet(I) > 0 then Gdet(I) = Grandom(I).
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4.2 Equivalence of strong subspace and entanglement transmission

We will now use results from section 3.9 to show, that strong subspace- and entanglement transmission
are also equivalent criteria w.r.t. AVQCs.

Proof of Theorem 80. First we set, for every l ∈ N, Il := Sl. Assuming that R > 0 is an achievable
rate for entanglement transmission over a finite AVQC I (with random codes), we show that it is also
an achievable strong subspace transmission rate (with random codes) for I. The proof does not depend
on the form of the sequence of probability distributions assigned to the codes, so it applies to the case of
deterministically achievable rates as well.
So, let there be a sequence of (l, kl) random entanglement transmission codes with

lim inf
l→∞

1

l
log kl ≥ R, (467)

min
sl∈Sl

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(P l,Rl) = 1− fl, where fl ↘ 0. (468)

Thus, there is l′ ∈ N such that kl ≥ 2l3R/4 + 1 for all l ≥ l′. Choose εl = 2−lR/4 (this is just one of many

possible choices). Obviously, since R is strictly greater than zero there is l̂ ∈ N such that

|S|l
√

2/πe−ε
2
l (kl−1)/128 ≤ |S|l

√
2/πe−ε

2
l 2
l3R/4/128 (469)

= |S|l
√

2/πe−2lR/4/128 (470)

< 1 (471)

holds for all l ≥ l̂. Application of Lemma 66 then yields a sequence of subspaces F̂l with dimensions k̂l
such that

lim inf
l→∞

1

l
log k̂l = lim inf

l→∞

1

l
log kl ≥ R, (472)

min
sl∈Sl

min
φ∈S(F̂l)

∫
〈φ,Rl ◦ Nsl ◦ P l(|φ〉〈φ|)φ〉dµl(Rl,P l) ≥ 1− fl −

4 · 12√
2(kl − 1)

− 1

l
∀ l ≥ max{l′, l̂}. (473)

Since the right hand side of (473) goes to zero for l going to infinity, we have shown that R is an achievable
rate for strong subspace transmission (with random codes).
In case that |I| =∞ holds we have to take care of some extra issues that arise from approximating I by
a finite AVQC. Such an approximation is carried out in detail in the proof of Lemma 102 or in that of
Lemma 67 .
Now let R = 0 be an achievable rate for entanglement transmission with (random) codes. We show that
it is achievable for strong subspace transmission by demonstrating that we can always achieve a strong
subspace transmission rate of zero:
Choose any sequence (|xl〉〈xl|)l∈N of pure states such that |xl〉〈xl| ∈ S(H⊗l) ∀l ∈ N. Set Fl := C · xl
(l ∈ N). Define a sequence of recovery operations by Rl(a) := tr(a) · |xl〉〈xl| (a ∈ B(K⊗l), l ∈ N). Then
Fe(πFl ,Rl ◦ Nsl) = 1 for all l ∈ N, sl ∈ Sl and lim inf l→∞

1
l log(dimFl) = 0.

Now let R ≥ 0 be an achievable rate for strong subspace transmission over some AVQC I (with
random codes). Thus, there exists a sequence of (random) strong subspace transmission codes with

lim inf
l→∞

1

l
log kl ≥ R, (474)
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inf
sl∈Sl

min
φ∈S(Fl)

∫
〈φ,Rl ◦ Nsl ◦ P l(|φ〉〈φ|)φ〉dµl(Rl,P l) = 1− fl ∀l ∈ N, where fl ↘ 0. (475)

Now consider, for every l ∈ N and sl ∈ Sl, the channels
∫
Rl ◦ Nsl ◦ P ldµl(Rl,P l). Then (475) implies

that for these channels we have the estimate

inf
sl∈Sl

min
φ∈S(Fl)

〈φ,
∫
Rl ◦ Nsl ◦ P ldµl(Rl,P l)(|φ〉〈φ|)φ〉 = 1− fl, (476)

and by a well-known result ([10], Theorem 2) we get

inf
sl∈Sl

Fe(πFl ,

∫
Rl ◦ Nsl ◦ P ldµl(Rl,P l)) ≥ 1− 3

2
fl, (477)

which by convex-linearity of the entanglement fidelity in the channel implies

inf
sl∈Sl

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(Rl,P l) ≥ 1− 3

2
fl. (478)

But liml→∞
3
2fl = 0 by assumption, implying that R is an achievable rate for entanglement transmission

(with random codes) as well.

4.3 Proof of the converse part

The basic technical obstacle we are faced with is that the converse part of the coding theorem for an
AVQC cannot be reduced immediately to that of the single stationary memoryless quantum channel via
Minimax Theorem (cf. [18] and [20]). In order to circumvent this problem we derive a relation between
Arandom(I) and the corresponding random capacity of a suitable compound channel.
To be explicit, let us consider a finite AVQC I = {Ns}s∈S and let (µl)l∈N be a sequence of random (l, kl)−
codes for the AVQC I with

lim
l→∞

inf
sl∈Sl

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(P l,Rl) = 1. (479)

On the other hand, for the infinite channel set conv(I), defined in (11), and each Nq ∈ conv(I) we obtain∫
Fe(πFl ,Rl ◦ N⊗lq ◦ P l)dµl(P l,Rl) =

∑
sl∈Sl

l∏
i=1

q(si)

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(P l,Rl) (480)

≥ inf
sl∈Sl

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(P l,Rl). (481)

Consequently, (479) and (480) imply

lim
l→∞

inf
q∈P(S)

∫
Fe(πFl ,Rl ◦ N⊗lq ◦ P l)dµl(P l,Rl) = 1. (482)

Defining the random entanglement transmission capacity Qcomp, random(conv(I)) for the compound quan-
tum channel with uninformed users (see the definitions in subsection 3.1.3) built up from conv(I) in a
similar fashion to Arandom(I) we can infer from the considerations presented above that

Arandom(I) ≤ Qcomp, random(conv(I)). (483)

Since the inequality Adet(I) ≤ Arandom(I) is obvious, we obtain the following basic lemma.

Lemma 89. Let I = {Ns}s∈S be any finite set of channels and let conv(I) be the associated infinite set
given in (11). Then

Adet(I) ≤ Arandom(I) ≤ Qcomp, random(conv(I)). (484)

Thus, our remaining task is to show that right-most capacity in (484) is upper bounded by the last
term in (449). This is done in the following two subsections for finite and infinite AVQCs respectively.
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4.3.1 Converse for the finite AVQC

First, we prove the converse to the coding theorem for finite compound quantum channels with random
codes.

Theorem 90 (Converse Part: Compound Channel, |I| < ∞). Let I = {N1, . . . ,NN} ⊂ C(H,K) be a
finite compound channel. The capacity Qcomp, random(I) of I is bounded from above by

Qcomp, random(I) ≤ lim
l→∞

max
ρ∈S(H⊗l)

min
Ni∈I

1

l
Ic(ρ,N⊗li ). (485)

Proof. Let for arbitrary l ∈ N a random (l, kl) code for a compound channel I = {N1, . . . ,NN} with the
property

min
1≤i≤N

∫
Fe(πFl ,Rl ◦ N

⊗l
i ◦ P

l)dµl(P l,Rl) ≥ 1− εl (486)

be given, where εl ∈ [0, 1] and liml→∞ εl = 0. Obviously, the above code then satisfies∫
Fe(πFl ,Rl ◦

1

N

N∑
i=1

N⊗li ◦ P
l)dµl(P l,Rl) =

1

N

N∑
i=1

∫
Fe(πFl ,Rl ◦ N

⊗l
i ◦ P

l)dµl(P l,Rl) (487)

≥ 1− εl. (488)

This implies the existence of at least one pair (Rl,P l) such that

Fe(πFl ,Rl ◦
1

N

N∑
i=1

N⊗li ◦ P
l) ≥ 1− εl, (489)

hence for all i = 1, . . . , N
Fe(πFl ,Rl ◦ N

⊗l
i ◦ P

l) ≥ 1−Nεl. (490)

The rest of the proof is identical to that of Theorem 52.

Using the approximation techniques developed in the previous (sub)sections, we will now prove the
converse for random codes and general compound channels.

Theorem 91 (Converse Part: Compound Channel). Let I ⊂ C(H,K) be an arbitrary compound quantum
channel. The capacity Qcomp, random(I) of I is bounded from above by

Qcomp, random(I) ≤ lim
l→∞

max
ρ∈S(H⊗l)

inf
N∈I

1

l
Ic(ρ,N⊗l). (491)

Proof of Theorem 91. Let a sequence (l, kl)l∈N of random codes for I be given such that

• lim inf l→∞
1
l log dimFl = R

• infN∈I
∫
Fe(Fl,Rl ◦ N⊗l ◦ P l)dµl(P l,Rl) = 1− εl,

where the sequence (εl)l∈N satisfies liml→∞ εl = 0. Let, for some τ > 0,
⋃
N∈IB♦(N , τ) be an open cover

for I. Clearly, it also covers the compact set Ī. Thus, there exist finitely many channels N1, . . . ,NMτ

such that
⋃Mτ

i=1B♦(Ni, τ) ⊃ Ī and, therefore, Mτ := {N1, . . . ,NMτ
} is a τ -net for I.

By Mτ ⊂ I we get, for every τ > 0, the following result:

• lim inf l→∞
1
l log dimFl = R

• minNi∈Mτ

∫
Fe(Fl,Rl ◦ N⊗li ◦ P l)dµl(P l,Rl) ≥ 1− εl.
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By Theorem 90, this immediately implies

R ≤ lim
l→∞

1

l
max

ρ∈S(H⊗l)
min
Ni∈Mτ

Ic(ρ,N⊗li ). (492)

From Lemma 55 we get, by noting that D♦(I,Mτ ) ≤ τ the estimate

R ≤ lim
l→∞

1

l
max

ρ∈S(H⊗l)
inf
N∈I

Ic(ρ,N⊗l) + ν(2τ). (493)

Taking the limit τ → 0 proves the theorem.

Theorem 92 (Converse: finite AVQC). Let I = {Ns}s∈S be a finite AVQC. Then

Arandom(I) ≤ Qcomp, random(conv(I)) = lim
l→∞

1

l
max

ρ∈S(H⊗l)
inf

N∈conv(I)
Ic(ρ,N⊗l). (494)

Proof. Just combine Lemma 89 and Theorem 91 applied to conv(I).

4.3.2 Case |I| =∞

The proof of the converse part of Theorem 76 requires just a bit of additional work. Let I = {Ns}s∈S be
an arbitrary AVQC and let Pfin(S) denote the set of probability distributions on S with finite support.
Then

conv(I) =

{
Nq ∈ C(H,K) : Nq :=

∑
s∈S

q(s)Ns, and q ∈ Pfin(S)

}
. (495)

The argument that led us to the inequality (480) accompanied by the continuity of the entanglement
fidelity with respect to || · ||♦ and an application of the dominated convergence theorem show that for each
N ∈ conv(I)∫

Fe(πFl ,Rl ◦ N⊗l ◦ P l)dµl(P l,Rl) ≥ inf
sl∈Sl

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(P l,Rl) (496)

holds. Then Lemma 89 holds mutatis mutandis with conv(I) replaced by conv(I). Additionally, if we
apply Theorem 91 to conv(I) we are led to the following theorem.

Theorem 93 (Converse: general AVC). Let I = {Ns}s∈S be an arbitrary AVQC. Then

Arandom(I) ≤ lim
l→∞

1

l
max

ρ∈S(H⊗l)
min

N∈conv(I)
Ic(ρ,N⊗l). (497)

4.4 Achievability of entanglement transmission rate I: Random codes

We show in this section how the achievability results for compound quantum channels obtained in sections
3.3 and 3.5 imply existence of reliable random codes for AVQC via Ahlswede’s robustification technique
[3].
Let l ∈ N and let Perml denote the set of permutations acting on {1, . . . , l}. Let us further suppose that we
are given a finite set S. Then each permutation σ ∈ Perml induces a natural action on Sl by σ : Sl → Sl,
σ(sl)i := sσ(i). Moreover, let T (l,S) denote the set of types on S induced by the elements of Sl, i.e. the

set of empirical distributions on S generated by sequences in Sl. Then Ahlswede’s robustification can be
stated as follows.
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Theorem 94 (Robustification technique, cf. Theorem 6 in [3]). If a function f : Sl → [0, 1] satisfies∑
sl∈Sl

f(sl)q(s1) · . . . · q(sl) ≥ 1− γ (498)

for all q ∈ T (l,S) and some γ ∈ [0, 1], then

1

l!

∑
σ∈Perml

f(σ(sl)) ≥ 1− (l + 1)|S| · γ ∀sl ∈ Sl. (499)

Remark 95. Ahlswede’s original approach in [3] gives

1

l!

∑
σ∈Perml

f(σ(sl)) ≥ 1− 3 · (l + 1)|S| · √γ ∀sl ∈ Sl. (500)

The better bound (499) is from [4].

Proof. Because the result of Theorem 94 is a central tool in this work and the proof given in [4] is
particularly simple we reproduce it here in full for reader’s convenience.
Notice first that (498) is equivalent to∑

sl∈Sl
(1− f(sl))q(s1) · . . . · q(sl) ≤ γ ∀q ∈ T (l,S), (501)

which in turn is equivalent to∑
sl∈Sl

(1− f(σ(sl)))q(sσ(1)) · . . . · q(sσ(l)) ≤ γ ∀q ∈ T (l,S), (502)

and σ ∈ Perml, since σ is bijective. Clearly, we have

q(sσ(1)) · . . . · q(sσ(l)) = q(s1) · . . . · q(sl) ∀σ ∈ Perml,∀sl ∈ Sl, (503)

and therefore, we obtain

∑
sl∈Sl

(
1− 1

l!

∑
σ∈Perml

f(σ(sl))

)
q(s1) · . . . · q(sl) ≤ γ ∀q ∈ T (l,S). (504)

Now, for q ∈ T (l,S) let T lq ⊂ Sl denote the set of sequences whose empirical distribution is q. Since f

takes values in [0, 1] we have 1− 1
l!

∑
σ∈Perml

f(σ(sl)) ≥ 0 and thus from (504)

∑
sl∈T lq

(
1− 1

l!

∑
σ∈Perml

f(σ(sl))

)
q(s1) · . . . · q(sl) ≤ γ ∀q ∈ T (l,S). (505)

It is clear from definition that for each sl ∈ T lq we have
⋃
σ∈Perml

{σ(sl)} = T lq and, consequently,∑
σ∈Perml

f(σ(sl)) does not depend on sl ∈ T lq. Therefore, from (505) we obtain(
1− 1

l!

∑
σ∈Perml

f(σ(sl))

)
q⊗l(T lq) ≤ γ ∀q ∈ T (l,S), ∀sl ∈ T lq. (506)

On the other hand

q⊗l(T lq) ≥
1

(l + 1)|S|
∀q ∈ T (l,S) (507)
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holds (cf. [20] page 30), which, by (506), implies(
1− 1

l!

∑
σ∈Perml

f(σ(sl))

)
≤ (l + 1)|S| · γ ∀q ∈ T (l,S), ∀sl ∈ T lq. (508)

This is the inequality we aimed to prove since Sl =
⋃
q∈T (l,S) T

l
q.

The function f appearing in Theorem 94 will be built up from the entanglement fidelities of the
channels constituting a finite AVQC that approximates our AVQC I = {Ns}s∈S.
As another ingredient for the arguments to follow we need an achievability result for compound channels.

Lemma 96. Let k ∈ N and T ⊂ C(H,K). For each η > 0 there is a sequence of (l, kl)-codes (P l,Rl)l∈N
and an l0(η) ∈ N) such that for all l ≥ l0(η)

Fe(πFl ,Rl ◦ N⊗l ◦ P l) ≥ 1− 2−lc ∀N ∈ T, (509)

and
1

l
log dimFl ≥

1

k
max

ρ∈S(H⊗k)
inf
N∈T

Ic(ρ,N⊗k)− η, (510)

hold with a real constant c = c(k,dimH,dimK,T, η) > 0.

Remark 97. Lemma 96 is a strengthening of Theorem 44 insofar as it explicitly points out the following:
For any compound channel, at any rate below its capacity for transmission of entanglement, there exist
sequences of codes such that entanglement fidelity goes to one exponentially fast.
The importance of this result for the investigations at hand can be understood by looking at equation (528)
in Theorem 98.

Proof. We will give the details for the case k = 1 only. The proof for arbitrary k follows by an almost
identical argument.
According to the compound BSST Lemma (cf. [15], Lemma 6.1) to any η > 0 we can find m = m(T, η) ∈ N
and a subspace G ⊂ H⊗m such that

1

m
inf
N∈T

Ic(πG ,N⊗m) ≥ max
ρ∈S(H)

inf
N∈T

Ic(ρ,N )− η

3
. (511)

Explicitly stated, G is the eigenspace to eigenvalue one of a frequency typical projection of the maximizer
on the r.h.s. of (511) with suitably chosen parameters.
Let us consider the compound quantum channel built up from {N⊗m : N ∈ T}.

Looking at the last equation in the proof of Lemma 43 we see, that for this channel, for large enough
t ∈ N, there exists a sequence of (t, kt)-codes (P̄t, R̄t)t∈N, P̄t ∈ C(Ft,H⊗mt), R̄t ∈ C(K⊗mt,F ′t) with

inf
N∈T

Fe(πFl ,Rt ◦ N⊗mt ◦ Pt) ≥ 1−Nτtεt − tτt (512)

holds. Here, εt ≤ 2−tc1 for some c1 > 0 (compare equation (216) in the proof of Theorem 38), while Nτt ≤
(3/τt)

2(d·d′)2 , where d = dimH and d′ = dimK. Although the proof of Lemma 9 uses a subexponential
growth of Nτt , this is not at all necessary. Set

c2 := c1/(2 · d · d′)2, τt := 2−tc2 (t ∈ N). (513)

Then
inf
N∈T

Fe(πFl ,Rt ◦ N⊗mt ◦ Pt) ≥ 1− 32(d·d′)22t · 2−tc1/2 (514)
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and thus, defining c′ := c1/4, we know that for each η > 0 there exists t(η) ∈ N such that

inf
N∈T

Fe(πFt , R̄t ◦ N⊗mt ◦ P̄t) ≥ 1− 2−tc
′

∀t ≥ t(η), (515)

as well as
1

t
log kt =

1

t
log dimFt ≥ ( inf

N∈T
Ic(πG ,N⊗m)− η

3
) ·m ∀t ≥ t(η) (516)

where, clearly, c′ = c′(dimH,dimK,T, η).
For t, l ∈ N let r ∈ {0, 1, . . . ,m−1} be the unique non-negative integer such that l = mt+r. Furthermore,
let us choose for each r ∈ {0, 1, . . . ,m− 1} a state vector xr ∈ H⊗r and set

Fl := Ft ⊗ C · {xr}. (517)

Then
πFl = πFt ⊗ |xr〉〈xr|. (518)

Moreover we set
P l := P̄t ⊗ idB(H⊗r) and Rl := R̄t ⊗ T r, (519)

where T r ∈ C(K⊗r,H⊗r) is given by T r(a) := tr(a)|xr〉〈xr|. Then it is clear that

Fe(πFl ,Rl ◦ N⊗l ◦ P l) = Fe(πFt , R̄t ◦ N⊗mt ◦ P̄t) (520)

≥ 1− 2−tc
′

(521)

= 1− 2−
l−r
m c′ (522)

≥ 1− 2−lc ∀N ∈ T (523)

for all l ≥ l1(η) with c := c′

2m , and where in the second line we have used (515).
On the other hand, from equations (511), (516) and (517) we obtain for t ≥ t(η)

1

l
log dimFl =

1

tm+ r
log dimFt (524)

≥ 1

1 + r
tm

( max
ρ∈S(H)

inf
N∈T

Ic(ρ,N )− η

3
− η

3m
) (525)

≥ max
ρ∈S(H)

inf
N∈T

Ic(ρ,N )− η (526)

if t and consequently l is sufficiently large. Therefore there is an l0(η) ∈ N such that (520) and (524) hold
simultaneously for all l ≥ l0(η) which concludes the proof in the case k = 1.

In the next step we will combine the robustification technique and Lemma 96 to prove the existence
of good random codes for the AVQC I = {Ns}s∈S.
Recall that there is a canonical action of Perml on B(H)⊗l given by Aσ,H(a1 ⊗ . . . ⊗ al) :=
aσ−1(1) ⊗ . . . ⊗ aσ−1(l). It is easy to see that Aσ,H(a) = UσaU

∗
σ , (a ∈ B(H)⊗l) with the unitary

operator Uσ : H⊗l → H⊗l defined by Uσ(x1 ⊗ . . .⊗ xl) = xσ−1(1) ⊗ . . .⊗ xσ−1(l).

Theorem 98 (Conversion of compound codes). Let I = {Ns}s∈S be an AVQC. For each k ∈ N and any
sufficiently small η > 0 there is a sequence of codes (P l,Rl)l∈N, P l ∈ C(Fl,H⊗l),Rl ∈ C(K⊗l,F ′l ), for the
compound channel built up from conv(I) (cf. (11)) satisfying

1

l
log dimFl ≥

1

k
max

ρ∈S(H⊗k)
inf

N∈conv(I)
Ic(ρ,N⊗k)− 2 · ν(8η), (527)
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1

l!

∑
σ∈Perml

Fe(πFl ,Rl ◦Aσ−1,K ◦ Nsl ◦Aσ,H ◦ P l) ≥ 1− (l + 1)Nη · 2−lc ∀sl ∈ Sl (528)

for all sufficiently large l with a positive number c = c(k,dimH,dimK, conv(I), η), ν : [0, 1] → R defined
by ν(x) := x + 8x log(dK) + 4 · h(x) (h(·) being the binary entropy) and an integer Nη which depends on
the set I as well.

The idea of the proof is the following. We want to approximate the set conv(I) from the outside by
using a polytope Pη with Nη extreme points. Then, our results for compound codes and an application
of the robustification technique yield a sequence of codes which have asymptotically optimal performance
for the AVQC Pη. Since conv(I) ⊂ Pη, they will also have asymptotically optimal performance for I.
A problem occurs if conv(I) touches the boundary of the set of quantum channels because parts of
that boundary are curved and the approximating polytope Pη may contain maps that are not channels.
Therefore, an intermediate step consists of slightly moving conv(I) away from the boundary. This may be
seen as application of a completely positive map and can therefore be absorbed into the recovery operation.
During the proof we are going to make use of the following Lemma, that will be proven first:

Lemma 99. Let A,B be compact convex sets in Cn with A ⊂ B and

d(rebdB,A) := inf{||b− a|| : b ∈ rebdB, a ∈ A} = t > 0, (529)

where || · || denotes any norm.
Let P ⊃ A be a polytope with D(A,P ) ≤ δ, where δ ∈ (0, t] and D is the Hausdorff distance induced by
|| · ||. Then P ′ := P ∩ aff B is a polytope and P ′ ⊂ B.

Proof of Lemma 99. The assertion that P ′ is a polytope is clear. Suppose ∃p ∈ P ′\B. Then since
D(A,P ) ≤ δ we have P ⊂ (A)δ (cf. [68], Theorem 2.7.3). But this means, since P ′ ⊂ P , that to our
p ∈ P ′\B we can find aδ ∈ A with

||p− aδ|| ≤ δ. (530)

For λ ∈ [0, 1] define
xλ := (1− λ)aδ + λp. (531)

Then there is λ∗ ∈ (0, 1) such that
x := x∗λ ∈ rebdB. (532)

This is seen as follows: Since d(rebdB,A) = t > 0 we have A ⊂ riB. Set

L := {λ ∈ (0, 1] : (1− λ)aδ + λp ∈ B}. (533)

From aδ ∈ riB it follows that L 6= ∅ and from the fact that B is compact and convex we then get that
L = (0, λ∗]. Now,

||x− aδ|| = ||(1− λ∗)aδ + λ∗p− (1− λ∗)aδ − λ∗aδ|| (534)

= λ∗||p− aδ|| (535)

≤ λ∗ · δ (536)

< t, (537)

where the last line follows from λ ∈ (0, 1). This is a contradiction to d(rebdB,A) = t.

Proof of Theorem 98. We can suppose that

max
ρ∈S(H⊗k)

inf
N∈conv(I)

Ic(ρ,N⊗k) > 0, (538)
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because otherwise our claim is obviously true. We will further assume that I, and therefore conv(I) as
well, is compact. Since the Hausdorff-distance of conv(I) to its closure (in || · ||♦) is zero, this does not
change the left hand side of equation (538), due to the estimates in Lemma 55. Since I is a subset of
its norm-closure, good codes for the norm-closure will also work for I. Thus, our assumption is a pure
technicality and, indeed, without loss of generality.
Now let us, for ε ≤ 1, by Dε denote the operation Dε(·) := (1− ε)idB(K)(·) + ε

dimK1Ktr(·). If ε ≥ 0, this
is nothing but a depolarizing channel.
By Lemma 2.3.3 in [68] and since D1 ◦ N /∈ rebd C(H,K) for arbitrary N ∈ C(H,K) and η > 0, we have

Dη(conv(I)) ⊂ ri C(H,K). (539)

Since Dη(conv(I)) is compact, we know that

c′ := min{||N −N ′||♦ : N ∈ Dη(conv(I)),N ′ ∈ rebd C(H,K)} (540)

satisfies c′ > 0. Thus, by Lemma 99 and Theorem 3.1.6 in [68] there exists a polytope Pη ⊂ C(H,K) such
that Dη(conv(I)) ⊂ Pη and

D♦(Dη(conv(I)), Pη) ≤ 2η. (541)

The set of extremal points of Pη we denote by ext(Pη) = {Ne}e∈Eη , where Eη is a finite set indexing
the extremal points, the number of which we label Nη. Consider the compound quantum channel Pη. It
follows from Lemma 96 that there exists a sequence of (l, kl)-codes (P l,Rl)l∈N such that for all l ≥ l0(η)

Fe(πFl ,Rl ◦ N⊗l ◦ P l) ≥ 1− 2−lc ∀N ∈ Pη, (542)

and
1

l
log dimFl ≥

1

k
max

ρ∈S(H⊗k)
inf
N∈Pη

Ic(ρ,N⊗k)− η, (543)

with a positive number c = c(k, dimH,dimK, conv(I), η).
Let us define f : Elη → [0, 1] by

f(el) := Fe(πFl ,Rl ◦ Nel ◦ P l). (544)

Then (542) implies that ∑
el∈Elη

f(el)q(e1) · . . . · q(el) ≥ 1− 2−lc ∀q ∈ T (l, Eη). (545)

But (545) and Theorem 94 yield

1

l!

∑
σ∈Perml

Fe(πFl ,Rl ◦ Nσ(el) ◦ P l) ≥ 1− (l + 1)Nη · 2−lc ∀el ∈ Elη. (546)

By (543) and (546) we are guaranteed the existence of a good random code for Pη if we can somehow
consider permutations as part of the encoding and recovery procedure. More precisely, we will now show
that

Nσ(el) = Aσ−1,K ◦ Nel ◦Aσ,H ∀el ∈ Elη. (547)

To this end, let ψ = ψ1 ⊗ . . .⊗ ψl, ϕ = ϕ1 ⊗ . . .⊗ ϕl ∈ H⊗l. Then

Aσ−1,K ◦ Nel ◦Aσ,H(|ψ〉〈ϕ|) = (Aσ−1,K ◦ Nel)(|ψσ−1(1)〉〈ϕσ−1(1)| ⊗ . . .⊗ |ψσ−1(l)〉〈ϕσ−1(l)|) (548)

= Aσ−1,K(⊗li=1Nsi(|ψσ−1(i)〉〈ϕσ−1(i)|)) (549)

= ⊗li=1Nsσ(i)(|ψi〉〈ϕi|) (550)

= Nσ(el)(⊗li=1|ψi〉〈ϕi|) (551)

= Nσ(el)(|ψ〉〈ϕ|). (552)
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Therefore,
Aσ−1,K ◦ Nel ◦Aσ,H = Nσ(el). (553)

By construction of Pη we know that for every Ns ∈ I there exists a probability distribution q(·|s) ∈ P(Eη)
such that

Dη ◦ Ns =
∑
e∈Eη

q(e|s)Ne (554)

holds. We define
R̃lσ := Rl ◦Aσ−1,K ◦D⊗lη , P̃ lσ := Aσ,H ◦ P l. (555)

Combining the equations (546),(547),(554),(555) we get for every sl ∈ Sl:∑
σ∈Perml

Fe(πFl , R̃lσ ◦ Nsl ◦ P̃ lσ) =
∑

σ∈Perml

Fe(πFl ,Rl ◦Aσ−1,K ◦D⊗lη ◦ Nsl ◦Aσ,H ◦ P l) (556)

=
∑

σ∈Perml

Fe(πFl ,Rl ◦Aσ−1,K ◦
∑
el∈Elη

l∏
i=1

q(ei|si)Nel ◦Aσ,H ◦ P l)

=
∑
el∈Elη

l∏
i=1

q(ei|si)
∑

σ∈Perml

Fe(πFl ,Rl ◦Aσ−1,K ◦ Nel ◦Aσ,H ◦ P l)

=
∑
el∈Elη

l∏
i=1

q(ei|si)
∑

σ∈Perml

Fe(πFl ,Rl ◦ Nσ(el) ◦ P l) (557)

≥ (l!)(1− (l + 1)Nη · 2−lc) (558)

Now, defining a discretely supported probability measure µl, l ∈ N by

µl :=
1

l!

∑
σ∈Perml

δ(R̃lσ,P̃lσ), (559)

where δ(R̃lσ,P̃lσ) denotes the probability measure that puts measure 1 on the point (R̃lσ,P lσ), we obtain for

each k ∈ N a sequence of (l, kl)-random codes for I achieving

1

k
max

ρ∈S(H⊗k)
inf
N∈Pη

Ic(ρ,N⊗k)− η. (560)

It remains to show that this last number is close to (527). This in turn is true mostly because, by
construction, D♦(Pη,Dη(conv(I))) ≤ 2η holds and, as will be shown, D♦(conv(I),Dη(conv(I))) ≤ 2η
holds.
We start with the upper bound on D♦(conv(I),Dη(conv(I))), which will be derived in a slightly more
general way. For arbitrary s ≤ 1 and a compact A ⊂ C(H,K)

D♦(Ds(A), A) ≤ |s| ·max
x∈A
||x−D1 ◦ x|| ≤ 2|s| (561)

holds, where the second inequality follows from A ⊂ C(H,K) in an obvious way and we only prove the
first one:

max
x∈Ds(A)

min
y∈A
||x− y||♦ = max

x∈A
min
y∈A
||Ds(x)− y||♦ (562)

= max
x∈A

min
y∈A
||(1− s)x+ sD1 ◦ x− (1− s)y − sy||♦ (563)

≤ max
x∈A

min
y∈A

(||(1− s)x− (1− s)y||♦ + ||sy − sD1 ◦ x||♦) (564)

≤ max
x∈A
|s| · ||x−D1 ◦ x||♦. (565)
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A similar calculation leads to

max
x∈A

min
y∈Ds(A)

||x− y||♦ ≤ |s| ·max
x∈A
·||x−D1 ◦ x||♦. (566)

Application of the triangle inequality for D♦ gives us the estimate

D♦(Pη, conv(I)) ≤ 4η. (567)

Lemma c-lemma:estimate-for-coherent-information (originating back to [51]), finally makes the connection
between our set-theoretic approximations and the capacity formula:

|1
k

max
ρ∈S(H⊗k)

inf
N∈Pη

Ic(ρ,N⊗k)− 1

k
max

ρ∈S(H⊗k)
inf

N∈conv(I)
Ic(ρ,N⊗k)| ≤ ν(8η) (568)

with ν(x) = x+ 8x log(dK) + 4h(x). It is obvious that −η ≥ −ν(8η) holds, therefore for l large enough

1

l
log dimFl ≥

1

k
max

ρ∈S(H⊗k)
inf

N∈conv(I)
Ic(ρ,N⊗k)− 2ν(8η). (569)

This leads to the following corollary to Theorem 98.

Corollary 100. For any AVQC I = {Ns}s∈S we have

Arandom(I) ≥ lim
l→∞

1

l
max

ρ∈S(H⊗l)
inf

N∈conv(I)
Ic(ρ,N⊗l). (570)

Together with Theorem 91 this proves the first part of Theorem 76.

4.5 Achievability of entanglement transmission rate II: Derandomization

In this section we will prove the second claim made in Theorem 76 by following Ahlswede’s elimination
technique. The main result of this section is the following Theorem.

Theorem 101. Let I = {Ns}s∈S be an AVQC. Then Cdet(I) > 0 implies Adet(I) = Arandom(I).

The proof of Theorem 101 is based mainly on the following lemma, which shows that not much of
common randomness is needed to achieve Arandom(I).

Lemma 102 (Random Code Reduction). Let I = {Ns}s∈S be an AVQC, l ∈ N, and µl an (l, kl)-random
code for the AVQC I with

e(µl, I) := inf
sl∈Sl

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(P l,Rl) ≥ 1− εl (571)

for sequence (εl)l∈N such that εl ↘ 0.
Let ε ∈ (0, 1). Then for all sufficiently large l ∈ N there exist l2 codes {(P li ,Rli) : i = 1, . . . , l2} ⊂
C(Fl,H⊗l)× C(K⊗l,F ′l ) such that

1

l2

l2∑
i=1

Fe(πFl ,Rli ◦ Nsl ◦ P li) > 1− ε ∀sl ∈ Sl. (572)
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Proof. Before we get into the details, we should note that the whole proof can be read much more easily
if one restricts to the case |I| <∞ and sets each of the approximating sets occurring in the sequel equal
to I.
Let (Λi,Ωi), i = 1, . . . ,K, be independent random variables with values in C(Fl,H⊗l)×C(K⊗l,F ′l ) which
are distributed according to µ⊗Kl . Let (Pl)l∈N be a sequence of polytopes with, for all l ∈ N, the properties

1. Pl ⊂ conv(I)

2. D♦(Pl, conv(I)) ≤ 1/l2.

Denote by ext(Pl) the extremal points of Pl. Consider an indexing such that we can write ext(Pl) =
{Ne}e∈El and note that the polytope Pl can be chosen in such a way that Nl := |El| satisfies Nl ≤
(6l)4 dim(H)2 dim(K)2 (see, for example, Lemma 5.2 in [15]).
For every el ∈ Ell and corresponding channel Nel , an application of Markov’s inequality yields for any
ε ∈ (0, 1) and any γ > 0 the following:

P

(
1− 1

K

K∑
i=1

Fe(πFl ,Λi ◦ Nel ◦ Ωi) ≥ ε/2

)
= P

(
2Kγ−γ

∑K
i=1 Fe(πFl ,Λi◦Nel◦Ωi) ≥ 2Kγ(ε/2)

)
(573)

≤ 2−Kγ(ε/2) · E
(

2γ(K−
∑K
i=1 Fe(πFl ,Λi◦Nel◦Ωi))

)
.(574)

We will derive an upper bound on the expectation in the preceding line:

E
(

2γ(K−
∑K
i=1 Fe(πFl ,Λi◦Nel◦Ωi))

)
= E

(
2γ(

∑K
i=1(1−Fe(πFl ,Λi◦Nel◦Ωi)))

)
(575)

(a)
=

[
E
(

2γ(1−Fe(πFl ,Λ1◦Nel◦Ω1))
)]K

(576)

(b)

≤ [E(1 + 2γ(1− Fe(πFl ,Λ1 ◦ Nel ◦ Ω1)))]K (577)

(c)

≤ [1 + 2γεl]
K . (578)

We used (a) independence of the (Λi,Ωi), (b) the inequality 2γt ≤ (1 − t)2γ·0 + t2γ ≤ 1 + t2γ , t ∈ [0, 1],
where the first inequality is simply the convexity of [0, 1] 3 t 7→ 2γt, (c) holds by (571) and by Pl ⊂ conv(I).
Now, for K = l2, γ = 2 there is an l0(ε) ∈ N such that for all l ≥ l0(ε) we have

(1 + 22εl)
l2 ≤ 2l

2(ε/2). (579)

Therefore, we obtain from (573), (575), and (579) that for all sufficiently large l ∈ N

P

1− 1

l2

l2∑
i=1

Fe(πFl ,Λi ◦ Nel ◦ Ωi) ≥ (ε/2)

 ≤ 2−l
2(ε/2) (580)

uniformly in el ∈ Ell . It follows from (580) that

P

 1

l2

l2∑
i=1

Fe(πFl ,Λi ◦ Nel ◦ Ωi) > 1− ε/2 ∀el ∈ Ell

 ≥ 1−N l
l · 2−l

2(ε/2) (581)

implying the existence of a realization (P li ,Rli)l
2

i=1 with

1

l2

l2∑
i=1

Fe(πFl ,Rli ◦ Nel ◦ P li) > 1− ε/2 ∀el ∈ El
l (582)

73



whenever N l
l · 2−l

2ε < 1, which is clearly fulfilled for all sufficiently large l ∈ N.
Finally, we note that for every l ∈ N and Ns ∈ I there is Ne ∈ El such that ||Ns − Ne||♦ ≤ 1

l2 and,
therefore, to every Nsl there exists Nel (with each Nei ∈ El) such that (see the proof of Lemma 41 for
details)

||Nsl −Nel ||♦ ≤
l∑
i=1

||Nsi −Nei ||♦ ≤
1

l
, (583)

and therefore for every sl ∈ Sl we have, for a maybe even larger l as before (satisfying 1/l < ε/2,
additionally),

1

l2

l2∑
i=1

Fe(πFl ,Rli ◦ Nsl ◦ P li) > 1− ε ∀sl ∈ Sl. (584)

We proceed with the proof of Theorem 101. Since Cdet(I) > 0 according to the assumption of

the theorem, there is an (ml, l
2)-deterministic code Cml = (ρi, Di)

l2

i=1 with ρ1, . . . , ρl2 ∈ S(H⊗ml),
D1, . . . , Dl2 ∈ B(K⊗ml) with ml = o(l) and

P̄e,ml = sup
sml∈Sml

Pe(Cml , s
ml) ≤ ε. (585)

On the other hand, let us consider an (l, kl)-random code as in Lemma 102, i.e. with

1

l2

l2∑
i=1

Fe(πFl ,Rli ◦ Nsl ◦ P li) > 1− ε ∀sl ∈ Sl. (586)

Define CPTP maps P l+ml ∈ C(Fl,H⊗l+ml), Rl+ml ∈ C(K⊗l+ml ,F ′l ) by

P l+ml(a) :=
1

l2

l2∑
i=1

P li(a)⊗ ρi and Rl+ml(b⊗ d) :=

l2∑
i=1

tr(Did)Rli(b). (587)

Then for each sl+ml = (vl, uml) ∈ Sl+ml

Fe(πFl ,Rl+ml ◦ (Nvl ⊗Numl ) ◦ P l+ml) =
1

l2

l2∑
i,j=1

tr(DjNuml (ρi))Fe(πFl ,Rlj ◦ Nvl ◦ P li) (588)

≥ 1

l2

l2∑
i=1

tr(DiNuml (ρi))Fe(πFl ,Rli ◦ Nvl ◦ P li), (589)

where in the last line we have used that all involved terms are non-negative. In order to show that the
fidelity on the left-hand side of (588) is at least 1− 2ε we need the following lemma from [2].

Lemma 103. Let K ∈ N and real numbers a1, . . . , aK , b1, . . . , bK ∈ [0, 1] be given. Assume that

1

K

K∑
i=1

ai ≥ 1− ε and
1

K

K∑
i=1

bi ≥ 1− ε, (590)

hold. Then

1

K

K∑
i=1

aibi ≥ 1− 2ε. (591)
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Applying this lemma with K = l2,

ai = tr(DiNuml (ρi)), and bi = Fe(πFl ,Rli ◦ Nvl ◦ P li) (592)

along with (585), (586), and (588) shows that

Fe(πFl ,Rl+ml ◦ (Nvl ⊗Numl ) ◦ P l+ml) ≥ 1− 2ε. (593)

On the other hand we know from Theorem 98 that for each sufficiently small η > 0 there is a random
code µl for the AVQC I with

1

l
log dimFl ≥

1

k
max

ρ∈S(H⊗k)
inf

N∈conv(I)
Ic(ρ,N⊗k)− η, (594)

and

e(µl, I) = inf
sl∈Sl

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(P l,Rl) ≥ 1− (l + 1)Nη2−lc (595)

for all sufficiently large l with c = c(k,dimH,dimK, conv(I), η) and Nη ∈ N. Thus the arguments that
led us to (593) show that for all sufficiently large l there is a deterministic (l+ml, kl)-code for the AVQC
I with

Fe(πFl ,Rl+ml ◦ (Nvl ⊗Numl ) ◦ P l+ml) ≥ 1− 2ε, (596)

and
1

l +ml
log dimFl ≥

1

k
max

ρ∈S(H⊗k)
inf

N∈conv(I)
Ic(ρ,N⊗k)− 2η (597)

by (594) and since ml = o(l). This shows that Adet(I) ≥ Arandom(I). Since the reverse inequality is
trivially true we are done.

4.6 Zero-capacity-conditions: Symmetrizability

The most basic quality feature of an information processing system is whether it can be used for
communication at a positive rate or not. This applies especially to such rather complex systems as AVCs
or AVQCs. The notion of symmetrizability stems from the theory of classical AVCs and it addresses
exactly that question. A classical AVC has deterministic capacity for message transmission equal to zero
if and only if it is symmetrizable (with the definition of symmetrizability adjusted to the two different
scenarios ’average error criterion’ and ’maximal error criterion’) [29] and [21], [45].
Of course, a similar statement for Adet would be of great interest.

In this section we give three different conditions for three different capacities of an AVQC to be
equal to zero. We restrict ourselves to the case |I| <∞. Starting with the statement that has the weakest
information theoretic consequences, we proceed to stronger statements. The case |I| = ∞ requires some
involved continuity issues which shall be carried out elsewhere.
All three conditions have in common that they enable the adversary to simulate, on average over some
probability distribution, a different output at the receiver side than the one that was originally put
into the channel by the sender. The first two conditions, dealing with message transmission, exhibit a
possibly nonlinear dependence between message set and probability distribution. They are direct (but
not single-letter) analogs of their classical counterparts.
The third one is a sufficient condition for Arandom to be equal to zero. It employs a linear dependence
between input state and probability distribution. If this condition is valid, the adversary is not only able
to simulate a wrong output, he can also simulate an entanglement breaking channel between sender and
receiver. In contrast to the first two criteria, this third one is a single-letter criterion.
There is a fourth and, at first sight, trivial condition, given by the following: An AVQC I = {Ns}s∈S has
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(deterministic and random) capacity for transmission of entanglement equal to zero if there is an s ∈ S
such that Ns has zero capacity for transmission of entanglement.
We note that this fourth condition is nontrivial only because of the following reason: there is, until now,
no way of telling exactly when a given (memoryless) quantum channel has a capacity greater than zero
(except for calculating (449) for a single channel, an awkward task in general). This is in sharp contrast
to the classical case, where the question can be trivially answered: A classical memoryless channel has a
nonzero capacity if and only if there are at least two input states that lead to different output states.
Since our results do not answer the question whether it can happen that Cdet(I) = 0, Adet(I) = 0 and
Arandom(I) > 0 hold simultaneously for a given AVQC I, we are left with two interesting and intimately
related questions:
First, there is the zero-capacity question for single memoryless channels. Second, we need to find a
criterion telling us exactly when Adet is equal to zero.

4.6.1 Classical capacity with deterministic codes and average error

We now introduce a notion of symmetrizability which is a sufficient and necessary condition for Cdet(I) = 0.
Our approach is motivated by the corresponding concept for arbitrarily varying channels with classical
input and quantum output (cq-AVC) given in [6].
A nontrivial example of a non-symmetrizable AVQC can be found in subsection 4.8.1, see step D in the
proof of Lemma 113.

Definition 104. Let S be a finite set and I = {Ns}s∈S an AVQC.

1. I is called l-symmetrizable, l ∈ N, if for each finite set {ρ1, . . . , ρK} ⊂ S(H⊗l), K ∈ N, there is a
map p : {ρ1, . . . , ρK} → P(Sl) such that for all i, j ∈ {1, . . . ,K}∑

sl∈Sl
p(ρi)(s

l)Nsl(ρj) =
∑
sl∈Sl

p(ρj)(s
l)Nsl(ρi) (598)

holds.

2. We call I symmetrizable if it is l-symmetrizable for all l ∈ N.

We now state the main statement of this subsection.

Theorem 105. Let I = {Ns}s∈S, |S| < ∞, be an AVQC. Then I is symmetrizable if and only if
Cdet(I) = 0.

Proof. 1. “Symmetrizability implies Cdet(I) = 0”.
The proof follows closely the corresponding arguments given in [29], [21], and [6]. We give the full proof
for reader’s convenience. Suppose that I = {Ns}s∈S is symmetrizable and let (ρi, Di)

M
i=1, M ≥ 2, be a

code for transmission of messages over I with {ρ1, . . . , ρM} ⊂ S(H⊗l) and POVM {Di}Mi=1 on H⊗l. Since
I is symmetrizable there is a map p : {ρ1, . . . , ρM} → P(Sl) such that for all i, j ∈ {1, . . . ,M}∑

sl∈Sl
p(ρi)(s

l)Nsl(ρj) =
∑
sl∈Sl

p(ρj)(s
l)Nsl(ρi) (599)

For sl ∈ Sl and i ∈ {1, . . . ,M} we set

e(i, sl) := 1− tr(Nsl(ρi)Di) =

M∑
j=1
j 6=i

tr(Nsl(ρi)Dj). (600)
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For k ∈ {1, . . . ,M} let Slk be a random variable taking values in Sl and which is distributed according to
(p(ρk)(sl))sl∈Sl . Then using relation (600) we can write

E(e(i, Slk)) =
∑
sl∈Sl

M∑
j=1
j 6=i

p(ρk)(sl)tr(Nsl(ρi)Dj) (601)

=

M∑
j=1
j 6=i

tr{
∑
sl∈Sl

p(ρk)(sl)Nsl(ρi)Dj} (602)

=

M∑
j=1
j 6=i

tr(
∑
sl∈Sl

p(ρi)(s
l)Nsl(ρk)Dj) (603)

=

M∑
j=1
j 6=i

∑
sl∈Sl

p(ρi)(s
l)tr(Nsl(ρk)Dj), (604)

where the third line is by (599). On the other hand we have

E(e(k, Sli)) =
∑
sl∈Sl

M∑
j=1
j 6=k

p(ρi)(s
l)tr(Nsl(ρk)Dj). (605)

Since {Di}Mi=1 is a POVM (601) and (605) imply that for i 6= k

E(e(i, Slk)) + E(e(k, Sli)) ≥ 1 (606)

holds. Let us abbreviate C := (ρi, Di)
M
i=1, then with

P̄e(C, s
l) =

1

M

M∑
k=1

(1− tr(Nsl(ρk)Dk)) (607)

for sl ∈ Sl we obtain

E(P̄e(C, S
l
j)) =

∑
sl∈Sl

p(ρj)(s
l)

1

M

M∑
k=1

(1− tr(Nsl(ρk)Dk)) (608)

=
1

M

M∑
k=1

E(e(k, Slj)). (609)

(606) and (608) yield

1

M

M∑
j=1

E(P̄e(C, S
l
j)) =

1

M2

M∑
i,j=1

E(e(k, Slj)) (610)

≥ 1

M2

(
M

2

)
(611)

=
M − 1

2M
≥ 1

4
(612)
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for M ≥ 2. Thus it follows that there is at least one j ∈ {1, . . . ,M} with

E(P̄e(C, S
l
j)) ≥

1

4
(613)

and consequently there is at least one sl ∈ Sl with

P̄e(C, s
l) ≥ 1

4
(614)

implying that Cdet(I) = 0.
2. “Cdet(I) = 0 implies symmetrizability”.

Suppose that I is non-symmetrizable. Then there is an l̂ ∈ N and a finite set {ρx}x∈X ⊂ S(H⊗l̂) such

that for no map p : {ρx}x∈X → P(Sl̂) the relation (598) holds. Let us define for each sl̂ ∈ Sl̂ a cq-channel

X 3 x 7→ Wsl̂(x) := Nsl̂(ρx) ∈ S(K⊗l̂), and consider the cq-AVC generated by the set Icq := {Wsl̂}sl̂∈Sl̂ .
Then, due to the assumed non-symmetrizability of I, our new cq-AVC Icq is non-symmetrizable in the
sense of [6].
Since Icq is non-symmetrizable the reduction argument from [6] to the results of [21] show that the cq-
AVC Icq has positive capacity. This implies the existence of a sequence (Km, fm, Dm, εm)m∈N, where
Km ∈ N, fm : {1, . . . ,Km} → Xm, Dm ∈ B+(H⊗l·m), limm→∞ εm ↘ 0, lim infm→∞

1
m logKm = c > 0

and 1
Km

∑Km
i=1(1− tr(DiW

m
sl̂

(f(i)))) = εm.

We may use this sequence to construct another sequence (ρi, Di)
Ml
i=1 of deterministic codes for message

transmission over I, thereby achieving a capacity of 1
l̂
c > 0. A similar construction is carried out explicitly

at the end of the proof of the following Theorem 107.

Corollary 106. If the AVQC I = {N}s∈S is symmetrizable then Adet(I) = 0.

Proof. Note that Adet(I) ≤ Cdet(I) and apply Theorem 105.

4.6.2 Classical capacity with deterministic codes and maximal error

We will now investigate, when exactly it is possible to send classical messages at positive rate over a
finite AVQC, with the error criterion being that of maximal rather than average error.

Theorem 107. Let I = {Ns}s∈S ⊂ C(H,K) be a finite AVQC. The classical deterministic maximal error
capacity Cdet,max(I) of I is equal to zero if and only if for every l ∈ N and every set {ρ1, ρ2} ⊂ S(H⊗l)
we have

conv({Nsl(ρ1)}sl∈Sl) ∩ conv({Nsl(ρ2)}sl∈Sl) 6= ∅. (615)

Proof. We closely follow the line of proof given in [45]. Let us begin with the ’if’ part. Let K, l ∈ N,

{ρ1, . . . , ρK} ⊂ S(H⊗l) and D1, . . . , DK ∈ B+(K⊗l) with
∑K
i=1Di = 1K⊗l be a code for transmission of

classical messages over I.
We show that the maximal error probability of this code is bounded away from zero for large enough l.
Let, without loss of generality, l be such that

tr(D1Nsl(ρ1)) > 1/2 ∀ sl ∈ Sl (616)

tr(D2Nsl(ρ2)) > 1/2 ∀ sl ∈ Sl. (617)

We show that there is a contradiction between (616) and (617). By assumption, there exist probability
distributions p1, p2 ∈ P(Sl) such that∑

sl∈Sl
p1(sl)Nsl(ρ1) =

∑
sl∈Sl

p2(sl)Nsl(ρ2). (618)
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Of course, (616) implies ∑
sl∈Sl

p1(sl)tr(D1Nsl(ρ1)) > 1/2. (619)

Together with (618) this leads to

1/2 <
∑
sl∈Sl

p1(sl)tr(D1Nsl(ρ1)) (620)

=
∑
sl∈Sl

p2(sl)tr(D1Nsl(ρ2)) (621)

≤
∑
sl∈Sl

p2(sl)tr((D1 +

K∑
i=3

Di)Nsl(ρ2)) (622)

=
∑
sl∈Sl

p2(sl)tr((1−D2)Nsl(ρ2)) (623)

= 1−
∑
sl∈Sl

p2(sl)tr(D2Nsl(ρ2)) (624)

< 1− 1/2, (625)

a clear contradiction. Thus, for every code the maximal error probability is bounded from below by 1/2.
Let us turn to the ’only if’ part.

Assume there is an l̂ ∈ N and a set {ρ1, ρ2} ⊂ S(H⊗l̂) such that

conv({Nsl̂(ρ1)}sl̂∈Sl̂) ∩ conv({Nsl̂(ρ2)}sl̂∈Sl̂) = ∅. (626)

Thus, there exists a self adjoint operator A ∈ B(K⊗l̂) such that

tr(Aρ) < 0 ∀ ρ ∈ conv({Nsl̂(ρ1)}sl̂∈Sl̂), tr(Aρ) > 0 ∀ ρ ∈ conv({Nsl̂(ρ2)}sl̂∈Sl̂). (627)

Let A have a decomposition A =
∑d
x=1 axAx, where ax are real numbers (including the possibility of

ax = 0 for some x) and Ax are one dimensional projections fulfilling
∑d
x=1Ax = 1K⊗l̂ . For every m ∈ N,

define

Pm1 :=
∑

xm: 1
m

∑m
i=1 axi<0

Ax1
⊗ . . .⊗Axm , Pm2 :=

∑
xm: 1

m

∑m
i=1 axi≥0

Ax1
⊗ . . .⊗Axm . (628)

Then Pm1 + Pm2 = 1K⊗l̂·m . Let us denote elements of Sl̂m by sl̂m = (sl̂1, . . . , s
l̂
m), where each sl̂i ∈ Sl̂.

To every sl̂ ∈ Sl̂, define probability distributions psl̂ , qsl̂ ∈ S({1, . . . , d}) according to

psl̂(x) := tr(AxNsl̂(ρ1)), qsl̂(x) := tr(AxNsl̂(ρ2)), ∀ x ∈ {1, . . . , d} (629)

and to every sl̂m ∈ Sl̂m we associate two real numbers Āsl̂m(ρ1), Āsl̂m(ρ2) by

Āsl̂m(ρ1) :=
∑
sl̂∈Sl̂

1

m
N(sl̂|sl̂m)tr(ANsl̂(ρ1)), Āsl̂m(ρ2) :=

∑
sl̂∈Sl̂

1

m
N(sl̂|sl̂m)tr(ANsl̂(ρ2)), (630)

with natural numbers N(sl̂|sl̂m) := |{i : sl̂i = sl̂, i ∈ {1, . . . ,m}}| for every sl̂m ∈ Sl̂m and sl̂ ∈ Sl̂.
Obviously, Āsl̂m(ρ1) < 0 and Āsl̂m(ρ2) > 0. Setting

C := max
(sl̂,X)∈Sl̂×{ρ1,ρ2}

(tr(ANsl̂(X))/2)−2(tr(A2Nsl̂(X))− tr(ANsl̂(X))2) (631)
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we arrive, by application of Chebyshev’s inequality and for every sl̂m = (sl̂1, . . . , s
l̂
m) ∈ Sl̂m at

tr(Pm1 Nsl̂m(ρ⊗m1 )) =
∑

xm: 1
m

∑m
i=1 axi<0

tr(Ax1
⊗ . . .⊗AxmNsl̂1(ρ1)⊗ . . .⊗Nsl̂m(ρ1)) (632)

=
∑

xm: 1
m

∑m
i=1 axi<0

p
sl̂1

(x1) · . . . · psl̂m(xm) (633)

≥
∑

xm:| 1m
∑m
i=1 axi−Āsl̂m (ρ1)|≤|Ā

sl̂m
(ρ1)/2|

p
sl̂1

(x1) · . . . · psl̂m(xm) (634)

≥ 1− 1

m
(Āsl̂m(ρ1)/2)−2

∑
sl̂∈Sl̂

1

m
N(sl̂|sl̂m)(tr(A2Nsl̂(ρ1))− tr(ANsl̂(ρ1))2)(635)

≥ 1− 1

m
max
sl̂

(tr(ANsl̂(ρ1))/2)−2(tr(A2Nsl̂(ρ1))− tr(ANsl̂(ρ1))2) (636)

≥ 1− 1

m
· C. (637)

In the very same way, we can prove that

tr(Pm2 Nsl̂m(ρ⊗m2 )) =
∑

xm: 1
m

∑m
i=1 axi≥0

tr(Ax1
⊗ . . .⊗AxmNsl̂1(ρ2)⊗ . . .⊗Nsl̂m(ρ2)) (638)

=
∑

xm: 1
m

∑m
i=1 axi≥0

q
sl̂1

(x1) · . . . · qsl̂m(xm) (639)

≥
∑

xm:| 1m
∑m
i=1 axi−Āsl̂m (ρ2)|≤|Ā

sl̂m
(ρ2)|/2

qsl1(x1) · . . . · qsl̂m(xm) (640)

≥ 1− 1

m
max
sl̂

(tr(ANsl̂(ρ2))/2)−2(tr(A2Nsl̂(ρ2))− tr(ANsl̂(ρ2))2) (641)

≥ 1− 1

m
· C. (642)

Take any 0 < ε < 1/4. Let m′ = min{m ∈ N : 1
m · C < ε}. Then

tr(Pm
′

1 Nsl̂m′ (ρ
⊗m′
1 )) ≥ 1− ε tr(Pm

′

2 Nsl̂m′ (ρ
⊗m′
2 )) ≥ 1− ε (643)

hold. Consider the classical AVC given by the family J := {cν,δ}δ,ν∈[3/4,1] of classical channels cν,δ :
{0, 1} → {0, 1} with stochastic matrices defined via cν,δ(1|1) := 1 − ν, cν,δ(2|2) := 1 − δ. Clearly, J is a
convex set and, for every cν,δ ∈ J we have that

max
p∈P({0,1})

I(p, cν,δ) ≥ 1− 1

2
(h(ν) + h(δ)) (644)

≥ 1− h(3/4) (645)

> 0, (646)

where I(p, cν,δ) is the mutual information of the probability distribution q on {1, 2} × {1, 2} which is
generated by p and cν,δ through q(i, j) := p(i)cν,δ(j|i) ((i, j) ∈ {1, 2} × {1, 2}). The lower bound given
here is calculated using an equidistributed input. Note further that for this special AVC, with notation
taken from [7], ¯̄J = conv(J) = J .
At this point in their proof of the classical zero-capacity-condition for AVCs [45], Kiefer and Wolfowitz
made reference to a result by Gilbert [33], who proved existence of codes that achieve a positive rate.
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Kiefer and Wolfowitz used these codes for message transmission over an AVC with binary input and
output alphabet. Our strategy of proof is to use the existence of codes for AVCs with binary input
and output that is guaranteed by Theorem 1 of [7] instead. Together with (646) this theorem gives
us the existence of a number C ′ > 0, a function κ : N → R with limr→∞ κ(r) = 0 and a sequence
(Mr, fr, εr, (D

r
1, . . . , D

r
|Mr|))r∈N where for each r ∈ N:

1. Mr = {1, . . . , N} is a finite set of cardinality N = |Mr| = 2r(C
′−κ(r)),

2. fr : Mr → {1, 2}r,

3. εr ≥ 0 and limr→∞ εr = 0,

4. Dr
1, . . . , D

r
|Mr| ⊂ {1, 2}

n are pairwise disjoint and

5. for every sequence xr ∈ ([3/4, 1]× [3/4, 1])r and every i ∈Mr we have that∑
yn∈Dri

r∏
j=1

cxj (yj |fr(i)j) ≥ 1− εr. (647)

For n ∈ N, take the unique numbers r ∈ N, t ∈ {0, . . . ,m′ − 1} such that n = m′r+ t holds. The code for
I is then defined as follows:

Mn := Mr, (648)

fn(i) := (ρfr(i)1)⊗m
′
⊗ . . .⊗ (ρfr(i)r )

⊗m′ ⊗ σ⊗t, (649)

Pni :=
∑
yr∈Dri

Pm
′

y1 ⊗ . . .⊗ P
m′

yr ⊗ 1⊗tK . (650)

Let, for every sm
′ ∈ Sm

′
, x = (ν, δ) ∈ [3/4, 1]2 be such that

cν,δ(0|0) := tr(Pm
′

1 Nsnm′ (ρ
⊗m′
1 )) = 1− ν cν,δ(1|1) := tr(Pm

′

1 Nsnm′ (ρ
⊗m′
2 )) = 1− δ. (651)

Then for every sn ∈ Sn we use the decomposition sn = (sm
′

1 , . . . , sm
′

r , st) and get, using equation (647)
and the definition (651), for every i ∈Mn,

tr{Pni fn(i)} = tr{[
∑
yr∈Dri

Pm
′

y1 ⊗ . . .⊗ P
m′

yr ⊗ 1⊗tK ](ρfr(i)1)⊗m
′
⊗ . . .⊗ (ρfr(i)r )

⊗m′ ⊗ σ⊗t} (652)

=
∑
yr∈Dri

r∏
j=1

tr{Pm
′

yj (ρfr(i)j )
⊗m′} (653)

=
∑
yr∈Dri

r∏
j=1

cν,δ(yj |fr(i)j) (654)

≥ 1− εr. (655)

Obviously, this implies
lim
n→∞

min
sn∈Sn

max
i∈Mn

tr{Pni fn(i)} = 0. (656)

Together with

lim
n→∞

1

n
log |Mn| =

1

m′
C ′ > 0 (657)

we have shown that Cdet,max(I) > 0 holds.

Notice that the statements made in (618) and (615) are equivalent and a glance at Definition 104
reveals that the assertion of (618) is nothing else than the symmetrizability restricted to sets of states
consisting of two elements.
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4.6.3 Entanglement transmission capacity with random codes

The final issue in this section is a sufficient condition for Arandom(I) = 0 which is based on the notion of
qc-symmetrizability.
Let FC(S) stand for the set of C-valued functions defined on S in what follows and we consider the set of
channels with quantum input and classical output (qc-channels)3

QC(H,S) := {T : B(H)→ FC(S) : T is linear, positive, and trace preserving}. (658)

The condition that T ∈ QC(H,S) is trace preserving means that∑
s∈S

[T (b)](s) = tr(b) (659)

holds for all b ∈ B(H). By Riesz’ representation theorem there is a one-to-one correspondence between
elements T ∈ QC(H,S) and (discrete) positive operator-valued measures (POVM) {Es}s∈S.
For a given finite set of quantum channels I = {Ns}s∈S and T ∈ QC(H,S) we define a CPTP map
MT,S : B(H)⊗ B(H)→ B(K) by

MT,S(a⊗ b) :=
∑
s∈S

[T (a)](s)Ns(b) (660)

=
∑
s∈S

tr(Esa)Ns(b), (661)

where {Es}s∈S is the unique POVM associated with T .

Definition 108. An arbitrarily varying quantum channel, generated by a finite set I = {Ns}s∈S, is called
qc-symmetrizable if there is T ∈ QC(H,S) such that for all a, b ∈ B(H)

MT,S(a⊗ b) =MT,S(b⊗ a) (662)

holds, where MT,S : B(H)⊗ B(H)→ B(K) is the CPTP map defined in (660).

The best illustration of the definition of qc-symmetrizability is given in the proof of our next theorem.

Theorem 109. If an arbitrarily varying quantum channel generated by a finite set I = {Ns}s∈S is qc-
symmetrizable, then for any sequence of (l, kl)-random codes (µl)l∈N with kl = dimFl ≥ 2 for all l ∈ N
we have

inf
sl∈Sl

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(Rl,P l) ≤

1

2
, (663)

for all l ∈ N. Thus
Arandom(I) = 0, (664)

and consequently
Adet(I) = 0. (665)

Proof. We have to show that for the codes (P l,Rl) with the properties as stated in the lemma the
inequality

inf
sl∈Sl

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(Rl,P l) ≤

1

2
(666)

3Mere positivity is sufficient here because FC(S) is commutative, cf. [58].
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holds for all l ∈ N.
Let ψl ∈ S(Fl ⊗ Fl) be a purification of πFl which is, clearly, maximally entangled. Inequality (666) can
then be equivalently reformulated as

inf
sl∈Sl

∫
〈ψl, (idFl ⊗ (Rl ◦ Nsl ◦ P l))(|ψl〉〈ψl|)ψl〉dµl(Rl,P l) ≤

1

2
. (667)

We fix σ ∈ S(H) and define CPTP maps E1, E2 : B(H)→ B(K) by

E1(a) :=MT,S(σ ⊗ a) =
∑
s∈S

tr(Esσ)Ns(a) (668)

and
E2(a) :=MT,S(a⊗ σ) =

∑
s∈S

tr(Esa)Ns(σ). (669)

Then ∫
Fe(πFl ,Rl ◦ E

⊗l
1 ◦ P l)dµl(Rl,P l) =

∑
sl∈Sl

tr(Eslσ
⊗l)

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(Rl,P l) (670)

≥ inf
sl∈Sl

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(Rl,P l), (671)

where Esl := Es1 ⊗ . . .⊗ Esl . Therefore, we are done if we can show that∫
Fe(πFl ,Rl ◦ E

⊗l
1 ◦ P l)dµl(Rl,P l) ≤

1

2
(672)

for all l ∈ N.
On the other hand, choosing bases {ei,j}kli,j=1 and {fk,m}d

l

k,m=1 of B(Fl) and B(H)⊗l respectively, we can
write

idFl ⊗ P l(|ψl〉〈ψl|) =: ρl =
∑
i,j,k,m

ρi,j,k,mei,j ⊗ fk,m, (673)

and obtain

idFl ⊗ (Rl ◦ E⊗l1 )(ρl) =
∑
i,j,k,m

ρi,j,k,mei,j ⊗Rl(M⊗lT,S(σ⊗l ⊗ fk,m)) (674)

=
∑
i,j,k,m

ρi,j,k,mei,j ⊗Rl(M⊗lT,S(fk,m ⊗ σ⊗l)) (675)

=
∑
i,j,k,m

ρi,j,k,mei,j ⊗Rl(E⊗l2 (fk,m)) (676)

= idFl ⊗ (Rl ◦ E⊗l2 )(ρl), (677)

where the second equality follows from the assumed qc-symmetrizability. Thus, we end up with

Fe(πFl ,Rl ◦ E
⊗l
1 ◦ P l) = Fe(πFl ,Rl ◦ E

⊗l
2 ◦ P l), (678)

for any encoding operation P l and any recovery operation Rl. Consequently, by (678) and (670) we have
to show that for all l ∈ N ∫

Fe(πFl ,Rl ◦ E
⊗l
2 ◦ P l)dµl(Rl,P l) ≤

1

2
(679)
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holds. But the channel
E2(a) =

∑
s∈S

tr(Esa)Ns(σ) (a ∈ B(H)) (680)

is entanglement breaking implying that the state

(idFl ⊗Rl ◦ E
⊗l
2 ◦ P l)(|ψl〉〈ψl|) (681)

is separable. A standard result from entanglement theory implies that

〈ψl, (idFl ⊗Rl ◦ E
⊗l
2 ◦ P l)(|ψl〉〈ψl|)ψl〉 ≤

1

kl
(682)

holds for any Rl and P l since ψl is maximally entangled with Schmidt rank kl. Now, our assumption that
for each l ∈ N the relation kl ≥ 2 holds implies along with (682) that for all l ∈ N∫

Fe(πFl ,Rl ◦ E
⊗l
2 ◦ P l)dµl(Rl,P l) =

∫
〈ψl, (idFl ⊗Rl ◦ E

⊗l
2 ◦ P l)(|ψl〉〈ψl|)ψl〉dµl(Rl,P l) ≤

1

2
, (683)

and by (678) and (670) we obtain

inf
sl∈Sl

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµl(Rl,P l) ≤

1

2
(684)

which concludes the proof.

Our Definition 108 addresses the notion of qc-symmetrizability for block length l = 1. Thus the
question arises whether a less restrictive requirement, as stated in the following definition, gives a better
sufficient condition for an arbitrarily varying quantum channel to have capacity 0.

Definition 110. An arbitrarily varying quantum channel, generated by a finite set I = {Ns}s∈S, is called
l-qc-symmetrizable, l ∈ N, if there is T ∈ QC(H⊗l,Sl) such that for all a, b ∈ B(H)⊗l

Ml
T,S(a⊗ b) =Ml

T,S(b⊗ a) (685)

holds, where Ml
T,S : B(H)⊗l ⊗ B(H)⊗l → B(K)⊗l is the CPTP map defined by

Ml
T,S(a⊗ b) :=

∑
sl∈Sl

tr(Esla)Nsl(b), (686)

and {Esl}sl∈Sl is the unique POVM corresponding to T ∈ QC(H⊗l,Sl).

Obviously, qc-symmetrizability implies l-qc-symmetrizability for all l ∈ N. The next lemma states that
the reverse implication is true too.

Lemma 111. For any finitely generated AVQC given by I = {Ns}s∈S l-qc-symmetrizability implies qc-
symmetrizability for any l ∈ N.

Proof. For a given finite set of quantum channels I = {Ns}s∈S and l ∈ N let T ∈ QC(H⊗l,Sl) be such
that for all a, b ∈ B(H)⊗l

Ml
T,S(a⊗ b) =Ml

T,S(b⊗ a), (687)

where Ml
T,S is defined in (686).

Let b ∈ B(H) and for each s ∈ S define a linear functional

φs(b) := tr

(b⊗ ( 1

dimH
1H

)⊗l−1
) ∑
sl2∈Sl−1

Essl2

 , (688)
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where ssl2 := (s, s2, . . . , sl) ∈ Sl. Clearly, φs is positive. Consequently, Riesz’ representation theorem
shows that there is a unique positive Ẽs ∈ B(H) with

φs(b) = tr(Ẽsb) (b ∈ B(H)). (689)

Obviously, {Ẽs}s∈S is a POVM and let T̃ ∈ QC(H,S) denote the associated qc-channel.
Some simple algebra shows that for each a, b ∈ B(H)

MT̃ ,S(a⊗ b) = trK⊗l−1Ml
T,S

((
a⊗

(
1

dimH
1H

)⊗l−1
)
⊗

(
b⊗

(
1

dimH
1H

)⊗l−1
))

(690)

where trH⊗l−1 denotes the partial trace over the last l− 1 tensor factors. The relation (690) immediately
implies that for all a, b ∈ B(H)

MT̃ ,S(a⊗ b) =MT̃ ,S(b⊗ a), (691)

and

MT̃ ,S(a⊗ b) =
∑
sl∈Sl

tr

((
b⊗

(
1

dimH
1H

)⊗l−1
)
Esl

)
Ns1(a) (692)

=
∑
s1∈S

tr

(b⊗ ( 1

dimH
1H

)⊗l−1
) ∑
sl2∈Sl−1

Esl

Ns1(a) (693)

=
∑
s1∈S

φs1(b)Ns1(a) (694)

=
∑
s1∈S

tr(bẼs1)Ns1(a). (695)

Equations (691) and (692) show that I is qc-symmetrizable.

4.7 Conditions for single-letter-capacities

In this section we give two conditions on the structure of a finite AVQC which guarantee that their
quantum capacity is given by a single-letter formula. The first one is empty in the case of a single channel,
while the second one generalizes the degradability condition from [25] that we repeat here for readers
convenience:
A channel N ∈ C(H,K) is called degradable if for any Hilbert space KE and any partial isometry V :
H → K ⊗ KE such that N (·) = trKE (V · V ∗) there is NV ∈ C(K,KE) such that NV ◦ N = trK(V · V ∗).
The above definition is in fact independent from the choice of KE and V - if it holds for only one such
choice, then it holds for all possible choices.

Lemma 112. Let I = {Ns}s∈S satisfy Adet(I) = Arandom(I) (for example, I might be non-
symmetrizable). We have a single-letter formula for Adet(I) in any of the following two cases:

1. There is N∗ ∈ conv(I) such that for any N ∈ conv(I) there is DN ∈ C(K,K) with the property N∗ =
DN ◦ N and, additionally, Q(N∗) = maxρ∈S(H) Ic(ρ,N∗) holds for the entanglement transmission
capacity Q(N∗) of the memoryless channel N∗.

2. Each N ∈ conv(I) is degradable.

Proof. 1. It is clear that
Adet(I) ≤ Q(N∗) = max

ρ∈S(H)
Ic(ρ,N∗). (696)
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By assumption, we have

Adet(I) = Arandom(I) = lim
l→∞

1

l
max

ρ∈S(H⊗l)
min

N∈conv(I)
Ic(ρ,N⊗l). (697)

On the other hand by application of the data-processing inequality [60] we have, for all ρ ∈ S(H⊗l),
N ∈ conv(I) and l ∈ N,

Ic(ρ,N⊗l) ≥ Ic(ρ,D⊗lN ◦ N
⊗l) (698)

= Ic(ρ,N⊗l∗ ). (699)

It follows that

1

l
max

ρ∈S(H⊗l)
Ic(ρ,N⊗l) ≥

1

l
max

ρ∈S(H⊗l)
Ic(ρ,N⊗l∗ ) (700)

and by (697):

Adet(I) ≥ lim
l→∞

1

l
max

ρ∈S(H⊗l)
Ic(ρ,N⊗l∗ ) (701)

= Q(N∗) (702)

= max
ρ∈S(H)

Ic(ρ,N∗). (703)

Equations (696) and (703) give us the desired result:

Adet(I) = max
ρ∈S(H)

Ic(ρ,N∗). (704)

2. It is well known that the following three properties are valid:

P1 If a N ∈ C(H,K) is degradable, then the map ρ 7→ Ic(ρ,N ) is concave ([74], Lemma 5).

P2 For every fixed ρ ∈ S(H), N 7→ Ic(ρ,N ) is convex (see [52], Theorem 1).

P3 Let N ∈ C(H,K) be degradable. For an arbitrary l ∈ N, write H⊗l = H1 ⊗ . . . ⊗Hl with Hi := H
for every i ∈ N. Let ρ ∈ S(H⊗l) with marginal states ρi := trH1⊗...⊗Hi−1⊗Hi+1⊗...⊗Hl(ρ). Then the
inequality Ic(ρ,N⊗l) ≤

∑n
i=1 Ic(ρi,N ) holds [25].

P4 The coherent information is continuous in both of its entries.

By the minimax-theorem [67, 44], properties P1, P2 and P4 imply that

max
ρ∈S(H)

min
N∈conv(I)

Ic(ρ,N ) = min
N∈conv(I)

max
ρ∈S(H)

Ic(ρ,N ). (705)

Suppose now, that each N ∈ conv(I) is degradable. It then holds, for every l ∈ N,

1

l
max

ρ∈S(H⊗l)
min

N∈conv(I)
Ic(ρ,N⊗l) ≤

1

l
min

N∈conv(I)
max

ρ∈S(H⊗l)
Ic(ρ,N⊗l) (706)

≤ min
N∈conv(I)

max
ρ∈S(H)

Ic(ρ,N ) (707)

= max
ρ∈S(H)

min
N∈conv(I)

Ic(ρ,N ), (708)

where the second inequality follows from P3 and the equality from P1, P2 via the minimax-theorem. It
follows that

Adet(I) ≤ Arandom(I) ≤ max
ρ∈S(H)

min
N∈conv(I)

Ic(ρ,N ). (709)

By assumption, we also have Adet(I) = Arandom(I). The obvious relation Arandom(I) ≥
maxρ∈S(H) minN∈conv(I) Ic(ρ,N ) then implies the reverse inequality.
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4.8 An example and an application to zero-error capacities

4.8.1 Erasure-AVQC

As an application and illustration of most of the results obtained so far we calculate the quantum capacity
of finite AVQC I consisting of erasure quantum channels. As expected, we obtain that Adet(I) equals the
capacity of the worst erasure channel in the set I.

Lemma 113. Let d ∈ N, d ≥ 2 and denote by {e1, . . . ed}, {e1, . . . , ed+1}, the standard basis of Cd,Cd+1.
Set H = Cd, K = Cd+1. Define, for p ∈ [0, 1], the erasure channel Ep ∈ C(H,K) by

Ep(x) := (1− p)x+ p · tr(x)|ed+1〉〈ed+1| ∀x ∈ B(H). (710)

Let, for a finite collection {ps}s∈S ⊂ [0, 1], an AVQC be given by I = {Eps}s∈S.
The following are true.

1. If ps ≥ 1/2 for some s ∈ S, then Adet(I) = Arandom(I) = 0.

2. If ps < 1/2 for every s ∈ S, then Adet(I) = Arandom(I) = mins∈S(1− 2ps) log(d).

Proof. We start with 2. by showing the validity of the following properties.

A. For q ∈ P(S), we have
∑
s∈S q(s)Eps = Eq(p), where q(p) :=

∑
s∈S q(s)ps.

B. There is a set {Êps}s∈S of complementary maps given by Êps = E1−ps , s ∈ S.

C. Ep is degradable for p ∈ [0, 1/2).

D. {Eps}s∈S is non-symmetrizable if ps ∈ [0, 1) for all s ∈ S.

A.: For every x ∈ B(Cd),∑
s∈S

q(s)Eps(x) =
∑
s∈S

q(s)[(1− ps)x+ ps · tr(x)|ed+1〉〈ed+1|] (711)

= (1−
∑
s∈S

q(s)ps)x+
∑
s∈S

q(s)ps · tr(x)|ed+1〉〈ed+1|. (712)

B.: Consider an environment defined by Kenv := K. For every p ∈ [0, 1] we can give a Stinespring isometry
Vp : H → K⊗Kenv of Ep by

Vpu :=
√

1− p · u⊗ ed+1 +
√
p · ed+1 ⊗ u, u ∈ B(H). (713)

The claim becomes clear by tracing out the first or second subsystem, depending on whether one wants
to calculate Êp or Ep.
C.: Set µ := 1−2p

1−p and define Eµ ∈ C(K,K) by

Eµ(x) := (1− µ) · x+ µ · tr(x) · |ed+1〉〈ed+1|, x ∈ B(K). (714)

Then by p ∈ [0, 1/2) we have µ ∈ (0, 1]. We show that E1−p = Eµ ◦ Ep holds. Let x ∈ B(H), then

Eµ ◦ Ep(x) = (1− p)Eµ(x) + pEµ(|ed+1〉〈ed+1|) (715)

= (1− p)(1− µ) · x+ µ(1− p) · |ed+1〉〈ed+1|+ p|ed+1〉〈ed+1| (716)

= (1− p− 1 + 2p) · x+ (1− 2p)|ed+1〉〈ed+1|+ p|ed+1〉〈ed+1| (717)

= p · x+ (1− p) · |ed+1〉〈ed+1| (718)

= E1−p(x). (719)
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D.: Let ρ1 := |e1〉〈e1|, ρ2 := |e2〉〈e2| ∈ S(H). We show by contradiction that there are no two probability
distributions r1, r2 ∈ P(S) such that∑

s∈S

r1(s)Eps(ρ1) =
∑
s∈S

r2(s)Eps(ρ2). (720)

Assume there are r1, r2 ∈ P(S) such that (720) is true. This is equivalent to∑
s∈S

(1− ps)[r1(s)|e1〉〈e1| − r2(s)|e2〉〈e2|] = 0,
∑
s∈S

ps[r1(s)− r2(s)] · |ed+1〉〈ed+1| = 0. (721)

By linear independence of |e1〉〈e1|, |e2〉〈e2| and since ps ∈ [0, 1) for every s ∈ S the first equality implies
r1(s) = r2(s) = 0 ∀s ∈ S, in clear contradiction to the assumption r1, r2 ∈ P(S).
Thus, {Eps}s∈S with all ps ∈ [0, 1) is non-symmetrizable.

Using A and the fact that {ps}s∈S ⊂ [0, 1/2) we see that for an arbitrary q ∈ P(S) we have∑
s∈S q(s)Eps = Eq(p) with q(p) ∈ [0, 1/2).

Now B implies that for every q ∈ P(S) the channel
∑
s∈S q(s)Eps is degradable.

Thus by Lemma 112, 2., the regularization in the identity

Arandom(I) = lim
l→∞

1

l
max

ρ∈S(H⊗l)
inf

N∈conv(I)
Ic(ρ,N⊗l) (722)

is not necessary, so

Arandom(I) = max
ρ∈S(H)

inf
N∈conv(I)

Ic(ρ,N ). (723)

Further, for a fixed degradable channel, the coherent information is concave in the input state [74] and
thus by the minimax theorem for concave-convex functions [44, 67] we can interchange min and max

in (723). Now, to any given ρ ∈ S(H), we may write ρ =
∑d
i=1 λi|vi〉〈vi| for some set {v1, . . . , vd} of

orthonormal vectors that satisfy, by standard identification of Cd and Cd+1, vi ⊥ ed+1 (1 ≤ i ≤ d) and

write a purification of ρ as |ψρ〉〈ψρ| =
∑d
i,j=1 λiλj |vi〉〈vj | ⊗ |vi〉〈vj |. Then for every Ep ∈ conv(I) we have

max
ρ∈S(H)

Ic(ρ, Ep) = max
ρ∈S(H)

(S(Ep(ρ))− S(IdH ⊗ Ep(|ψρ〉〈ψρ|)) (724)

= max
ρ∈S(H)

(S((1− p)ρ+ p|ed+1〉〈ed+1|)− S((1− p)|ψρ〉〈ψρ|+ pρ⊗ |ed+1〉〈ed+1|)) (725)

= max
ρ∈S(H)

((1− p)S(ρ) + pS(|ed+1〉〈ed+1|) +H(p) (726)

− (1− p)S(|ψρ〉〈ψρ|)− pS(ρ⊗ |ed+1〉〈ed+1|)−H(p)) (727)

= max
ρ∈S(H)

((1− p)S(ρ)− pS(ρ⊗ |ed+1〉〈ed+1|)) (728)

= max
ρ∈S(H)

(1− 2p)S(ρ) (729)

= (1− 2p) log(d). (730)

This leads to

Arandom(I) = min
s∈S

(1− 2ps) log(d), (731)

a formula that was first discovered for the case of a single memoryless channel and d = 2 by [13].
From D it follows that Adet(I) = Arandom(I).
We can now prove 1.: Set pmax := maxs∈S ps. It holds pmax ≥ 1/2, therefore the channel Emax := Epmax

satisfies Adet({Emax}) = Arandom({Emax}) = 0, since by B and C Êmax is degradable, hence Emax is anti-
degradable. Thus, for every l ∈ N, the adversary can always choose E⊗lmax to ensure that transmission of
entanglement will fail.
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4.8.2 Qualitative behavior of zero-error capacities

Let us, first, embark on the connection between AVQCs and zero-error capacities. Classical information
theory exhibits an interesting connection between the zero-error capacity of stationary memoryless chan-
nels and the deterministic capacity with asymptotically vanishing maximal error probability criterion of
certain arbitrarily varying channels. This connection was first described by Ahlswede in [1].
Ahlsedes result can be formulated using the following notation. For two finite sets A,B, C(A,B) stands for
the set of channels from A to B, i.e. each element of W ∈ C(A,B) defines a set of output probability distri-
butions {W (·|a)}a∈A. With slight abuse of notation, for eachD ⊂ B and a ∈ A, W (D|a) :=

∑
b∈DW (b|a).

The (finite) set of extremal points of the (convex) set C(A,B) will be written E(A,B).
For two channels W1,W2 ∈ C(A,B), their product W1 ⊗ W2 ∈ C(A2,B2) is defined through
(W1⊗W2)(b2|a2) := W1(b1|a1)W2(b2|a2). An arbitrarily varying channel (AVC) is, in this setting, defined
through a set W = {Ws}s∈S ⊂ C(A,B) (we assume S and, hence, |W|, to be finite). The different
realizations of the channel are written

Wsl := Ws1 ⊗ . . .⊗Wsl (sl ∈ Sl) (732)

and, formally, the AVC W consists of the set {Wsl}sl∈Sl, l∈N.

An (l,Ml)-code for the AVC W is given by a set {ali}
Ml
i=1 ⊂ Al called the ’codewords’ and a set {Dl

i}
Ml
i=1

of subsets of Bl called the ’decoding sets’, that satiesfies Dl
i ∩Dl

j = ∅, i 6= j.
A nonnegative number R ∈ R is called an achievable maximal-error rate for the AVC W, if there exists a
sequence of (l,Ml) codes for W such that both

lim inf
l→∞

1

l
logMl ≥ R and lim

l→∞
min
sl∈Sl

min
1≤i≤Ml

Wsl(D
l
i|xli) = 1. (733)

The (deterministic) maximal error capacity Cmax(W) of the AVC W is, as usually, defined as the supremum
over all achievable maximal-error rates for W.
Much stronger requirements concerning the quality of codes can be made. An (l,Ml)-code is said to have
zero error for the AVC W, if for all 1 ≤ i ≤Ml and sl ∈ Sl the equality Wsl(D

l
i|xli) = 1 holds.

The zero error capacity C0(W) of the AVC W is defined as

C0(W) := lim
l→∞

max{1

l
logMl : ∃ (l,Ml)−code with zero error for W}. (734)

The above definitions carry over to single channels W ∈ C(A,B) by identifying W with the set {W}.
In short form, the connection [1, Theorem 3] between the capacity of certain arbitrarily varying channels
and the zero-error capacity of stationary memoryless channels can now be reformulated as follows:

Theorem 114. Let W ∈ C(A,B) have a decomposition W =
∑
s∈S q(s)Ws, where {Ws}s∈S ⊂ E(A,B)

and q(s) > 0 ∀s ∈ S. Then for the AVC W := {Ws}s∈S:

C0(W ) = Cmax(W). (735)

Conversely, for every AVC W = {Ws}s∈S ⊂ E(A,B) and every q ∈ P(S) with q(s) > 0 ∀s ∈ S, equation
(735) holds for the channel W :=

∑
s∈S q(s)Ws.

Remark 115. Let us note at this point, that the original formulation of the theorem did not make reference
to extremal points of the set of channels, but rather used the equivalent notion ”channels of 0− 1-type“.

Remark 116. By choosing W ∈ E(A,B), one gets the equality C0(W ) = Cmax(W ). The quantity
Cmax(W ) being well-known and easily computable, it may seem that Theorem 114 solves Shannons’s zero-
error problem. This is not the case, as one can verify by looking at the famous pentagon channel that
was introduced in [63, Figure 2.]. The pentagon channel is far from being extremal. That its zero-error
capacity is positive [63] is due to the fact that it is not a member of the relative interior riE(A,B).
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We can now formulate a straightforward analogy of Theorem 114 for quantum channels:

Conjecture 117. Let N ∈ C(H,K) have a decomposition N =
∑
s∈S q(s)Ns, where each Ns is extremal

in C(H,K) and q(s) > 0 ∀s ∈ S. Then for the AVQC I := {Ns}s∈S:

Q0(N ) = As,det(I). (736)

Conversely, for every AVQC I = {Ns}s∈S with Ns being extremal for every s ∈ S and every q ∈ P(S)
with q(s) > 0 ∀s ∈ S, equation (736) holds for the channel N :=

∑
s∈S q(s)Ns.

Remark 118. One could formulate weaker conjectures than the one above. A crucial property of extremal
classical channels that was used in the proof of Theorem 114 was that Wsl(·|xli) is a point-measure for
every codeword xli, if only {Wsl}s∈S ⊂ E(A,B).
This property gets lost for the extremal points of C(H,K) (see the channels that are used in the proof of
Theorem 119), but could be regained by restriction to channels consisting of only one single Kraus operator.

This conjecture leads us to the following theorem:

Theorem 119. Conjecture 117 is wrong.

Remark 120. As indicated in Remark 118, there could still be interesting connections between (for exam-
ple) the deterministic strong subspace transmission capacity of AVQCs and the zero-error entanglement
transmission of stationary memoryless quantum channels.

Proof. Let H = K = C2. Let {e0, e1} be the standard basis of C2. Consider, for a fixed but arbitrary
x ∈ [0, 1] the channel Nx ∈ C(H,K) defined by Kraus operators A1 :=

√
1− x2|e0〉〈e1| and A2 :=

|e0〉〈e0|+ x|e1〉〈e1|. As was shown in [71], this channel is extremal in C(H,K). It is also readily seen from
the definition of Kraus operators, that it approximates the identity channel idC2 ∈ C(H,K):

lim
x→1
‖Nx − idC2‖♦ = 0. (737)

Now, on the one hand, Nx being extremal implies span({A∗iAj}2i,j=1) = M(C2) for all x ∈ [0, 1) (where

M(C2) denotes the set of complex 2 × 2 matrices) by [19, Theorem 5]. This carries over to the channels
N⊗lx for every l ∈ N: Let the Kraus operators of N⊗lx be denoted {Ail}il∈{1,2}l , then

span({A∗ilAjl}il,jl∈{1,2}l) = {M : M is complex 2l × 2l−matrix}. (738)

On the other hand, it was observed e.g. in [27], that for two pure states |φ〉〈φ|, |ψ〉〈ψ| ∈ S((C2)⊗l), the
subspace spanned by them can be transmitted with zero error only if

|ψ〉〈φ| ⊥ span({A∗ilAjl}il,jl∈{1,2}l). (739)

This is in obvious contradiction to equation (738), therefore Q0(Nx) = 0 ∀x ∈ [0, 1).
On the other hand, from equation (737) and continuity of coherent information in the channel [51] we
see that there is an X ∈ [0, 1) such that for all x ≥ X we have Q(Nx) > 0. Letting x = X we obtain
Q0(NX) = 0 andQ(NX) > 0, soQ0(NX) 6= Q(NX) in contradiction to the statement of the conjecture.

We now show (following closely the lines of [1]) what remains of Theorem 114 in the quantum case:
Let I = {Ns}s∈S be a finite AVQC. Consider

NI :=
1

|S|
∑
s∈S

Ns. (740)
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By definition of zero-error capacity, to any δ > 0 there exists an l ∈ N, a maximally mixed state πFl with
1
l log dimFl ≥ Q0(NI)− δ and a pair (Rl,P l) of recovery and encoding map such that

min
x∈Fl,||x||=1

〈x,Rl ◦ N⊗lI ◦ P(|x〉〈x|)x〉 = 1 (741)

holds. But this directly implies

min
x∈Fl,||x||=1

〈x,Rl ◦ Nsl ◦ P(|x〉〈x|)x〉 = 1 ∀sl ∈ Sl, (742)

so (πFl ,Rl,P l) gives a zero-error code for the AVQC I as well and therefore

Adet(I) ≥ Q0(NI)− δ ∀δ > 0. (743)

This in turn is equivalent to
Adet(I) ≥ Q0(NI). (744)

One may now ask when exactly this is a meaningful (nonzero) lower bound. The answer is given by the
proof of Lemma 124: On any face of C(H,K) the zero-error capacities are constant and the encoding and
recovery maps are universal. Thus, if I is a subset of a face and I ⊂ ri(C(H,K)){ then there is good hope
to get a nonzero lower bound by means of inequality (743). So far for the connection between AVQCs and
zero-error capacities.
Motivated by the above observation, a closer study of zero-error capacities reveals some additional facts
that are interesting in their own right.
To be more precise, we investigate continuity of zero-error capacities. This property is a highly desirable
property both from the practical and the theoretical point of view. It is of particular importance in
situations where full knowledge of the communication system cannot be achieved but only a narrow
confidence set containing the unknown channel is given. In [51] it has been shown that the ordinary
capacities of stationary memoryless quantum channels are continuous in the finite-dimensional setting
and it was demonstrated by examples that these functions become discontinuous in infinite dimensional
situations.
In this section we show that quantum, entanglement-assisted, and classical zero-error capacities of quantum
channels are discontinuous at every positivity point. Our approach is based on two simple observations.
The first one is that the zero-error capacities mentioned above of each quantum channel belonging to the
relative interior of the set of quantum channels are equal to 0. The second one is the well known fact that
the relative interior of any convex set is open and dense in that set, i.e. generic. Hence any channel can
be approximated by a sequence belonging to the relative interior implying the discontinuity result.
Similar arguments can be applied to the recently introduced Lovász θ̃ function and zero-error distillable
entanglement as well, leading to analogous conclusions as shall be shown in the last part of this section.
We now show that all the zero-error capacities defined in subsection 4.1.3 are generically equal to 0 and
are discontinuous at any positivity point. Then we demonstrate that the zero-error capacities of quantum
channels can be thought of as step functions subordinate to the partition built from the relative interiors
of the faces of C(H,K).

Discontinuity of zero-error capacities

Theorem 121. Let N ∈ ri C(H,K). Then k(l,N ) = M(l,N ) = MEA(l,N ) = 1 for every l ∈ N.
Consequently, Q0(N ) = C0(N ) = C0EA(N ) = 0.

In the proof of Theorem 121 we shall make use of the following elementary fact:

Lemma 122. Let F be a non-empty convex set and N0,N ∈ riF with N0 6= N . Then there exists N1 ∈ F
and λ0, λ1 ∈ (0, 1), λ0 + λ1 = 1 with N = λ0N0 + λ1N1.
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Proof of Lemma 122. Since N ∈ riF there is µ′ > 1 such that

N1 := (1− µ′)N0 + µ′N ∈ F. (745)

We define now

λ1 :=
1

µ′
∈ (0, 1), λ0 := 1− λ1, (746)

and obtain using N1 given in (745) the desired convex decomposition

N = λ0N0 + λ1N1. (747)

Proof of Theorem 121. Let N ∈ ri C(H,K). Observing that the fully depolarizing channel N0(a) =
tr(a)
dK

1K, a ∈ B(H), belongs to ri C(H,K) we obtain from Lemma 122 a convex decomposition of N
as

N = λ0N0 + λ1N1, (748)

where λ0, λ1 ∈ (0, 1), λ0 + λ1 = 1.
Clearly, this decomposition implies that

N⊗l =
∑

sl∈{0,1}l
λslNsl , (749)

with λsl := λs1 · . . . · λsl > 0 and Nsl := Ns1 ⊗ . . .⊗Nsl for all sl ∈ {0, 1}l. Then for any zero-error (l,M)
ea-code (σFF ′ , {Pm, Dm}Mm=1) for N we get for each m ∈ [M ]

1 = tr((N⊗l ◦ Pm ⊗ idF ′)(σFF ′)Dm) (750)

=
∑

sl∈{0,1}l
λsltr((Nsl ◦ Pm ⊗ idF ′)(σFF ′)Dm) (751)

and, consequently, since λsl > 0 for all sl ∈ {0, 1}l

tr((Nsl ◦ Pm ⊗ idF ′)(σFF ′)Dm) = 1 ∀sl ∈ {0, 1}l, (752)

for all m ∈ [M ]. Choosing s̄l = (0, . . . , 0) we obtain from Eqn. (752) that (σFF ′ , {Pm, Dm}Mm=1) is a
zero-error ea-code for N0. Since MEA(l,N0) = 1 for all l ∈ N we can conclude that MEA(l,N ) ≤ 1 and
thus MEA(l,N ) = 1 holds. Consequently C0EA(N ) = 0. The other assertions follow from the observation
that 1 ≤ k(l,N ) ≤M(l,N ) ≤MEA(l,N ).

Corollary 123. The function Q0 : C(H,K) → R+ that assigns the zero-error quantum capacity to each
quantum channel is discontinuous at any N ∈ C(H,K) with Q0(N ) > 0. The same conclusion holds true
for C0 and C0EA.

Proof. If Q0(N ) > 0 holds then necessarily N ∈ rebd C(H,K) by Theorem 121. On the other hand
ri C(H,K) is dense in C(H,K) (cf. Theorem 2.3.8 in [68]). So there is a sequence of channels (Ni)i∈N ⊂
ri C(H,K) with limi→∞ ||Ni − N||♦ = 0 and by Theorem 121 we have Q0(Ni) = 0 for all i ∈ N. The
arguments for C0 and C0EA follow the same line of reasoning.
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Relation to the facial structure of the set of quantum channels Here we shall show that the
considered zero-error capacities are basically step functions, the underlying partition consisting of the
relative interiors of the faces of C(H,K).

Lemma 124. Let F ⊂ C(H,K) be convex and let Ñ ∈ riF . Then for any N ∈ riF , Q0(N ) = Q0(Ñ ),
C0EA(N ) = C0EA(Ñ ), and C0(N ) = C0(Ñ ) hold.

Proof. We assume w.l.o.g. that N 6= Ñ to avoid trivialities. Then setting N0 := N we can find N1 ∈ F
and λ0, λ1 ∈ (0, 1), λ0 + λ1 = 1, with

Ñ = λ0N0 + λ1N1 (753)

just by applying Lemma 122 to N0, Ñ ∈ riF .
Let (Fl,P,R) be an (l, kl) zero-error quantum code for Ñ . Then using the representation (753) we obtain
for any x ∈ Fl, ||x|| = 1

1 = 〈x,R ◦ Ñ⊗l ◦ P(|x〉〈x|)x〉 (754)

=
∑

sl∈{0,1}l
λsl〈x,R ◦Nsl ◦ P(|x〉〈x|)x〉 (755)

and consequently, since λsl > 0 for all sl ∈ {0, 1}l, we are led to

〈x,R ◦Nsl ◦ P(|x〉〈x|)x〉 = 1 (756)

for all sl ∈ {0, 1}l and all x ∈ Fl, ||x|| = 1. Choosing the sequence sl = (0, . . . , 0) and recalling that
N0 = N we arrive at

Q0(N ) ≥ Q0(Ñ ). (757)

The reverse inequality is derived by interchanging the roles of N and Ñ . The remaining assertions are
shown in the same vein.

We shall now pass to the set of faces F := {F : face of C(H,K)} of C(H,K).

Theorem 125. To each N ∈ C(H,K) there is a unique F ∈ F with N ∈ riF . Moreover, each of the
capacity functions Q0, C0EA, and C0 is constant on riF .

Proof. According to Theorem 2.6.10 in [68] the family of sets {riF : F ∈ F} forms a partition of C(H,K).
This shows the first assertion of the theorem. The second follows from Lemma 124.

Remark 126. Notice that the results obtained so far show that the optimal (i.e. capacity achieving) code
for any channel N in the relative interior of any face F of C(H,K) is also optimal for any other channel
in ri F .

4.8.3 Discontinuity of quantum Lovász θ̃ function & zero-error distillable entanglement

In this final subsection we show that our methods are not only bound to the zero-error capacities of
quantum channels. They apply to the quantum Lovász θ̃ function from [27] and also to zero-error distillable
entanglement.
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Discontinuity of quantum Lovász θ̃ function Preliminarily, following [27], for a given channel
N ∈ C(H,K) with a corresponding set of Kraus operators {Ej}j∈[K] we define the non-commutative
confusability graph following [27] by

S(N ) := span{E∗jEi : i, j ∈ [K]} (758)

= N̂∗(B(E)), (759)

where N̂∗ is the adjoint of the complementary channel N̂ ∈ C(H, E) defined via the Stinespring isometry
V : H → K⊗ E

V x :=

K∑
j=1

Ejx⊗ fj (760)

with an ONB {f1, . . . , fK} in E .
Also, let us recite their definition of the quantum Lovász θ̃ function and its most fundamental property:

Definition 127 (Quantum Lovász θ̃ function). The quantum Lovász θ̃ function is, for a given confusability
graph S defined by

θ̃(S) := sup
n∈N

max{‖1H⊗Cn + T‖ : T ∈ S⊥ ⊗ B(Cn), 1 + T ≥ 0, T = T ∗}, (761)

where S⊥ := {a ∈ B(H) : tr(ab) = 0 ∀b ∈ S}.

This function gives an upper bound on the entanglement-assisted capacity for transmission of classical
messages with zero error: For every channel N ∈ C(H,K):

C0EA(N ) ≤ log θ̃(S(N )) (762)

(Lemma 7 and Corollary 10 in [27]). It can be characterised as a semidefinite program ([27], Theorem 8).
We are going to employ the dual formulation:

Theorem 128 (Theorem 9 in [27]). For any N ∈ C(H,K) we have

θ̃(S(N )) = min {||trHY || : Y ∈ S(N )⊗ B(H′), Y ≥ |Φ〉〈Φ|} , (763)

where H′ is just a copy of H and Φ =
∑dimH
i=1 ei ⊗ e′i with ONBs {e1, . . . , edimH} and {e′1, . . . , e′dimH} of

H and H′.

In the following we shall also need the next simple lemma.

Lemma 129. Let N ∈ ri C(H,K). Then S(N ) = B(H).

Proof. Again we can represent N as
N = λ0N0 + λ1N1 (764)

with λ0, λ1 ∈ (0, 1), λ0 + λ1 = 1, N0 being the fully depolarizing channel, and N1 ∈ C(H,K). The proof
is concluded by the following simple observation: Given any two channels N0,N1 and λ0, λ1 ∈ (0, 1) with
λ0 + λ1 = 1. Then for the channel N := λ0N0 + λ1N1 it holds that

S(N ) ⊇ S(N0), S(N1). (765)

Since in our case S(N0) = B(H) we are done.

fWith Theorem 128 and Lemma 129 at our disposal we can deduce the following discontinuity result for
θ̃:
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Theorem 130. The function θ̃ : C(H,H)→ R+ assigning the number θ̃(S(N )) to each quantum channel
N is discontinuous at any N with C0EA(N ) > 0.

Proof. Note that for N ∈ ri C(H,K) S(N ) = B(H) by Lemma 129. Hence |Φ〉〈Φ| ∈ S(N ) ⊗ B(H′) =
B(H)⊗B(H) and ||trH|Φ〉〈Φ||| = 1 = θ̃(S(N )). On the other hand, (762) implies that for anyN ∈ C(H,K),
θ̃(S(N )) > 1 if C0EA(N ) > 0.
Since ri C(H,K) is dense in C(H,K) and since θ̃(S(N )) = 1 for each N ∈ ri C(H,K) we are done.

Notice that the arguments given for the Lovász θ̃ function apply to any other upper bound to the
entanglement-assisted zero-error capacity vanishing in the relative interior of C(H,K).

Zero-error distillation of entanglement The simple methods employed so far can also be applied to
the problem of zero-error distillation of entanglement as we shall briefly indicate below. Assuming that
ρ ∈ riS(HA ⊗HB) we can find λ0, λ1 ∈ (0, 1), λ0 + λ1 = 1 such that

ρ = λ0ρ0 + λ1ρ1, (766)

with ρ0 = 1
dA

1HA ⊗ 1
dB

1HB ∈ riS(HA ⊗HB), dA = dimHA, dB = dimHB , and ρ1 ∈ S(HA ⊗HB). Then

ρ⊗l =
∑

sl∈{0,1}l
λslρsl , (767)

and for any (l, kl) zero-error EDP (D, ϕkl) for ρ we obtain

1 =
∑

sl∈{0,1}l
λsl〈ϕkl ,D(ρsl)ϕkl〉, (768)

leading to
1 = 〈ϕkl ,D(ρsl)ϕkl〉 (769)

for all sl ∈ {0, 1}l. Choosing sl = (0, . . . , 0) and noting that due to the fact that D is a LOCC operation
the state D(ρ⊗l0 ) is separable, we obtain from [41]

1 = 〈ϕkl ,D(ρ⊗l0 )ϕkl〉 ≤
1

kl
. (770)

Thus kl = 1 and d(l, ρ) = 1 for all l ∈ N. We collect these observations in the following corollary.

Corollary 131. Let ρ ∈ riS(HA ⊗ HB). Then d(l, ρ) = 1 for all l ∈ N and D0(ρ) = 0. Moreover, the
function D0 is discontinuous at any ρ ∈ S(HA ⊗HB) with D0(ρ) > 0.

4.9 Entanglement generation

Let ($l)l∈N be a sequence of (l, kl)-entanglement generation codes for the AVQC I = {Ns}s∈S and (εl)l∈N
a sequence with εl ↘ 0 such that∫

F (|ψl〉〈ψl|,Rl ◦ Nsl(φl))d$(Rl, φl) ≥ 1− εl ∀ l ∈ N, sl ∈ Sl. (771)

Clearly then, as in section 4.3∫
F (|ψl〉〈ψl|,Rl ◦ N⊗lq (φl))d$(Rl, φl) ≥ 1− εl ∀ Nq ∈ conv(I), l ∈ N. (772)

Thus, we now have a common-randomness-assisted entanglement generation code for the compound chan-
nel conv(I). Taking a look at the proof of Theorem 91 will convince the reader that, with the obvious
definition of the common-randomness-assisted entanglement generating capacity Ecompound,random of a
compound quantum channel, the following theorem holds:
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Theorem 132 (Entanglement generation converse for an AVQC). Let I be an AVQC. Then

Grandom(I) ≤ Ecompound,random(I) ≤ lim
l→∞

1

l
max

ρ∈S(H⊗l)
inf

N∈conv(I)
Ic(ρ,N⊗l). (773)

Also, the following theorem holds:

Theorem 133 (Entanglement generation direct part for an AVQC). Let I be an AVQC. Then

Grandom(I) ≥ Arandom(I). (774)

Proof. Let ε > 0 and (µl)l∈N be a sequence of (l, kl) entanglement transmission codes for I with
lim inf l→∞

1
l log kl = Arandom(I)− ε and liml→∞

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµ(Rl,P l) = 1.

Then, defining the measure $l by

$l(A) := µl({(Rl,P l) : (Rl, idFl ⊗ P l(|ψl〉〈ψl|)) ∈ A}) (775)

we get for every l ∈ N∫
F (|ψl〉〈ψl|, idFl ⊗Rl ◦ Nsl(φl))d$l(Rl, φl) =

∫
Fe(πFl ,Rl ◦ Nsl ◦ P l)dµ(Rl,P l) (776)

and it follows that, for every ε > 0, Grandom(I) ≥ Arandom(I)− ε, implying Theorem 133.

Especially, the above proof is entirely independent from the structure of the sequence (µl)l∈N, it might
well consist of pointmeasures. Thus,

Arandom(I) = Grandom(I) ≥ Gdet(I) ≥ Adet(I). (777)

On the other hand, if Cdet(I) > 0, then Adet(I) = Arandom(I) and it follows Gdet(I) = Grandom(I).
This finally proves Theorem 88.
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5 Conclusions and open problems

5.1 Conclusion for the compound quantum channel

The results presented are analogous to those well known related results from the classical information
theory obtained by Wolfowitz [72], [73], and Blackwell, Breiman and Thomasian [17]. In contrast to the
classical results on compound channels there is, in general, no single-letter description of the quantum
capacities for entanglement transmission and generation over compound quantum channels. Notice, how-
ever, that for compound channels with classical input and quantum output (cq-channels) a single-letter
characterization of the capacity is always possible according to the results of [14].
A little surprise is contained in section 3.10, where it becomes clear that a symmetrizability condition
analoguous to those given in section 4.6 for arbitrarily varying quantum channels leads to a necessary and
sufficient condition for the capacity for transmission of classical messages using the average error criterion
over a compound quantum channel to be equal to zero.
This is in contrast to the results for compound channels in classical informaiton theory and will be further
disucssed in section 5.3.

5.2 Conclusion for the arbitrarily varying quantum channel

We have been able to derive a multi-letter analog of Ahlswede’s dichotomy for quantum capacities of
arbitrarily varying quantum channels: Either the classical, deterministic capacity of such a channel with
average error criterion is zero, or else its deterministic and common-randomness-assisted entanglement
transmission capacities are equal. Moreover, we have shown that the entanglement and strong subspace
transmission capacities for this channel model are equal. It should be noted, however, that our proof of
this does not rely on a strategy of “hiding” randomness in the encoding operation. In fact, by using a
probabilistic variant of Dvoretzky’s theorem we achieve this equality of capacities just by restricting to
an appropriate code subspace of comparable dimension on the exponential scale.
Simple conditions that guarantee single-letter capacity formulas have been provided. They are general-
izations of those for memoryless and stationary quantum channels.
The results for entanglement transmission have been extended to the task of entanglement generation.

5.3 Open problems

We will now enlist the open problems together with some explanatory remarks.

A) Single letter capacity formulae for compound quantum channels Natural candidates of
compound quantum channels that might admit a single-letter capacity formula are given by sets of quan-
tum channels consisting entirely of degradable channels. While it is quite easy to see from the results in
[22] that the degradable compound quantum channels with informed encoder have a single-letter capacity
formula for entanglement transmission and generation, the corresponding statement in the uninformed
case seems to be less obvious.

B) Classical message transmission over compound quantum channels Apart from the work [14],
there is little we know about the classical message transmission capacity of compound quantum channels.
An investigation of the model with arbitrary states as inputs would be of great interest, especially in the
light of symmetrizability conditions. This leads us to the next point:

C) Symmetrizability for compound quantum channels It is clear from Theorem 70 and the
following remark that Definition 69 does not give a tool to answer the question exactly when a given
compound quantum channel has a capacity for transmission of entanglement that is strictly greater than
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zero.
So, although we could hope that the answer to such a simple question would be given by a rather simple
formula, apart from the notoriously intransparent capacity formulae stated in Theorem 27, there is not
much that can be said.
But, as it turned out in section 3.10 by exemplary application of one of them, the symmetrizability
conditions from section 4.6 can be used to gain at least some information about compound quantum
channels.
We did not at all perform a full investigation of the topic in section 3.10. It is clear, that the obvious
variant of Definition 69 (see Theorem 107 for more information) can be used to cope with classical
message transmission and maximal error.
It also seems highly likely, that one can write down variants of Definition 108 and Theorem 109 that
directly give a sufficient condition for Q(I) to be equal to zero. A look at equation (670) should warn the
reader that such a generalization could possibly be a non-single letter condition.
At this point, it is also worth taking a look at the classical case. Here, the situation is the following. For
a set W := {Wi}Ni=1 of channels with corresponding conditional distributions {w(·|a|i)}Ni=1, a∈A ⊂ P(B)
for finite alphabets A and B, it holds

C1 The compound channel W has zero capacity for message transmission (with average or maximal error
probability criterion) if and only if there is an i ∈ {1, . . . , N} such that w(·|a|i) = w(·|a′|i) ∀a, a′ ∈ A
(see [73]).

C2 It immediately follows that if the compound channel W has zero deterministic capacity for message
transmission, then the same holds for the AVC W and, again, this is regardless of which one of the
above two success criteria one uses.

C3 For A = B = {0, 1} the set V := {V1, V2} with v(0|0, 1) = v(1|1, 1) = 1 and v(1|0, 2) = v(0|1, 2) = 1
has the following properties: The compound channel V has a capacity of one, while the AVC W has
a capacity of zero ( 1

2 (V1 + V2) is the completely useless channel, but one channel use is sufficient to
distinguish V1 from V2!).

We conclude that for classical compound channels, (single-letter) symmetrizability is a useless criterion,
while in the quantum case, symmetrizability turns out to be a useful criterion for compound quantum
channels as well.
This is, at least at first sight, due to the non-single letter character of our symmetrizability criteria for
quantum channels.
Under these circumstances, it would be very interesting to find a handy criterion telling us exactly when
Q(I) = 0 occurs. It is possible that this question can only be answered after one finds such a criterion for
stationary memoryless quantum channels (compound quantum channels with |I| = 1).
Therefore, we are led to the following two open problems:

D) Find a handy criterion telling us exactly when the capacity for transmission of entan-
glement for a stationary memoryless channel vanishes And, since it might be easier to attack a
special, but nontrivial case first:

E) Solve problem D) for the case of the depolarizing qubit channel

F) Isometric encodings for the AVQC We have left open the question whether the entanglement
transmission capacity of arbitrarily varying quantum channels can be achieved with isometric encoding
operations.
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G) Common randomness and the entanglement transmission capacity of an AVQC The
major unresolved problem that we are left with seems to be the question whether there are AVQCs I for
which Cdet(I) = 0 and Arandom(I) > 0 can occur.
Or to put the question into different words: Does common randomness really help to transmit entanglement
through arbitrarily varying quantum channels?

H) Entanglement generation over AVQCs Another open question is, whether Adet(I) = Gdet(I)
holds for arbitrary AVQCs I. If this was the case, then the quantum Ahlswede dichotomy would hold
with A replaced by G in every statement. However, it is unclear whether the case Adet(I) < Gdet(I) can
occur - a question that will have to be addressed in future work as well.

I) Capacity formula for the “complete” AVQC Going back to the model that we started with
in the introduction, we can formulate an even more ambitious goal: prove a capacity formula for the
transmission of entanglement over a channel defined by the sets given in equation (17) with criterion of
success given in equation (16) (Equivalence of strong subspace- and entanglement transmission within this
model should hold by arguments analogous to those used in the proof of Theorem 80).
Taking a look at the estimates on the output states and numbers of Kraus operators of our channels in
subsections 3.3.1 and 3.3.2 shows that solving this question could become difficult, since we make explicit
use of the product structure of our channels.
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6 Appendix

Let E and G be subspaces of H with E ⊂ G ⊂ H where k := dim E , dG := dimG. p and pG will denote the
orthogonal projections onto E and G. For a Haar distributed random variable U with values in U(G) and
x, y ∈ B(H) we define a random sesquilinear form

bUpU∗(x, y) := tr(UpU∗x∗UpU∗y)− 1

k
tr(UpU∗x∗)tr(UpU∗y). (778)

In this appendix we will give an elementary derivation of the formula

E{bUpU∗(x, y)} =
k2 − 1

d2
G − 1

tr(pGx
∗pGy) +

1− k2

dG(d2
G − 1)

tr(pGx
∗)tr(pGy) (779)

for all x, y ∈ B(H) and where the expectation is taken with respect to the random variable U .
Let us set

pU := UpU∗. (780)

Since tr(pUx
∗pUy) and tr(pUx

∗)tr(pUy) depend sesquilinearly on (x, y) ∈ B(H) × B(H) it suffices to
consider operators of the form

x = |f1〉〈g1| and y = |f2〉〈g2| (781)

with suitable f1, f2, g1, g2 ∈ H. With x, y as in (781) we obtain

tr(pUx
∗pUy) = 〈f1, pUf2〉〈g2, pUg1〉 (782)

= 〈f1 ⊗ g2, (U ⊗ U)(p⊗ p)(U∗ ⊗ U∗)f2 ⊗ g1〉, (783)

and

tr(pUx
∗)tr(pUy) = tr((pU ⊗ pU )(|g1〉〈f1| ⊗ |f2〉〈g2)) (784)

= 〈f1 ⊗ g2, (U ⊗ U)(p⊗ p)(U∗ ⊗ U∗)g1 ⊗ f2〉. (785)

Since the range of the random projection (U ⊗U)(p⊗p)(U∗⊗U∗) is contained in G⊗G we see from (782)
and (784) that we may (and will) w.l.o.g. assume that f1, f2, g1, g2 ∈ G. Moreover, (782) and (784) show,
due to the linearity of expectation, that the whole task of computing the average in (779) is boiled down
to the determination of

A(p) := E((U ⊗ U)(p⊗ p)(U∗ ⊗ U∗)) (786)

=

∫
U(G)

(u⊗ u)(p⊗ p)(u∗ ⊗ u∗)du. (787)

Obviously, A(p) is u ⊗ u-invariant, i.e. A(p)(u ⊗ u) = (u ⊗ u)A(p) for all u ∈ U(G). It is fairly standard
(and proven by elementary means in [69]) that then

A(p) = αΠs + βΠa, (788)

where Πs and Πa denote the projections onto the symmetric and antisymmetric subspaces of G ⊗G. More
specifically

Πs :=
1

2
(id + F) Πa =

1

2
(id− F), (789)

with id(f ⊗ g) = f ⊗ g and F(f ⊗ g) = g ⊗ f , for all f, g ∈ G.
Since Πs and Πa are obviously u⊗ u-invariant, and ΠsΠa = ΠaΠs = 0 holds, the coefficients α and β in
(788) are given by

α =
1

tr(Πs)
tr((p⊗ p)Πs) =

2

dG(dG + 1)
tr((p⊗ p)Πs), (790)
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and

β =
1

tr(Πa)
tr((p⊗ p)Πa) =

2

dG(dG − 1)
tr((p⊗ p)Πa), (791)

where dG = dimG and we have used the facts that

tr(Πs) = dim ran(Πs) =
dG(dG + 1)

2
(792)

and

tr(Πa) = dim ran(Πa) =
dG(dG − 1)

2
. (793)

It is easily seen by an explicit computation with a suitable basis that

tr((p⊗ p)Πs) =
1

2
(k2 + k) and tr((p⊗ p)Πa) =

1

2
(k2 − k). (794)

For example choosing any orthonormal basis {e1, . . . , edG} of G with e1, . . . , ek ∈ ran(p) we obtain

tr((p⊗ p)Πs) =

dG∑
i,j=1

〈ei ⊗ ej , (p⊗ p)Πsei ⊗ ej〉 (795)

=

k∑
i,j=1

〈ei ⊗ ej , (p⊗ p)Πsei ⊗ ej〉 (796)

=
1

2

( k∑
i,j=1

〈ei, ei〉〈ej , ej〉+ 〈ei, ej〉〈ej , ei〉
)

(797)

=
1

2
(k2 + k), (798)

with a similar calculation for tr((p⊗ p)Πa). Utilizing (790), (791), (794), and (788) we end up with

A(p) =
k2 + k

dG(dG + 1)
Πs +

k2 − k
dG(dG − 1)

Πa. (799)

Now, (799), (786), (784), (782), and some simple algebra show that

E{tr(UpU∗x∗UpU∗y)− 1

k
tr(UpU∗x∗)tr(UpU∗y)} =

k2 − 1

d2
G − 1

tr(x∗y) (800)

+
1− k2

dG(d2
G − 1)

tr(x∗)tr(y). (801)
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