
T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

Lehrstuhl VI: Echtzeitsysteme und Robotik

PA R A M E T E R E X P L O R I N G P O L I C Y G R A D I E N T S
A N D T H E I R I M P L I C AT I O N S

Frank Sehnke

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ-Prof. Dr. D. Cremers

Prüfer der Dissertation:

1. Univ.-Prof. Dr. P. van der Smagt

2. Univ.-Prof. Dr. H. J. Schmidhuber, IDSIA/Schweiz

Die Dissertation wurde am 03. 05. 2012 bei der Technischen Universität München eingereicht und
durch die Fakultät für Informatik am 09. 10. 2012 angenommen.

Frank Sehnke: Parameter Exploring Policy Gradients and their Implications,
Dipl. Inf., © April 2012

Dedicated to my loving wife Susanne Sehnke.

Science is like sex:
sometimes something useful comes out, but that is not the reason we

are doing it.

— Richard P. Feynman

iv

A B S T R A C T

Reinforcement Learning is the most commonly used class of learning
algorithms which lets robots or other systems autonomously learn
their behaviour. Learning is enabled solely through interaction with
the environment. Today’s learning systems are often confronted with
high-dimensional and continuous problems. To solve those, so-called
Policy Gradient methods are used more and more often.

The PGPE algorithm developed in this thesis, a new type of Policy
Gradient algorithm, allows model-free learning in complex, continuous,
partially observable and high-dimensional environments. We show that
tasks like grasping of glasses and plates with a human-like arm can be
learned with this method without prior knowledge, solely with pure
model-free reinforcement learning in a simulation environment. Also,
the balancing of a humanoid robot perturbed by external forces, as
well as dynamic walking behaviour of a mass-spring system could be
learned. In all experiments, PGPE learned the given tasks more effi-
ciently than well-established methods. In addition, the use of PGPE is
not restricted to robotics. Among several investigated methods, it was
the most successful in cracking non-differentiable physical cryptogra-
phy systems. PGPE is suitable for training multidimensional recurrent
neural networks to play Go, or for fine-tuning deep neural nets for
computer vision.

In the scope of this thesis, the principles used, the advantages and
disadvantages as well as the differences with regard to well-established
methods are derived and analysed in detail.

Z U S A M M E N FA S S U N G

Reinforcement Learning (Bestärkendes Lernen) ist die am häufigsten
verwendete Klasse von Lernalgorithmen, um Robotern oder anderen
Systemen das selbständige Erlernen ihres Verhalten zu ermöglichen.
Lernen geschieht hierbei allein durch Interaktion des Systems mit seiner
Umwelt. Heutige lernende Systeme haben es oft mit hochdimensionalen
und kontinuierlichen Problemen zu tun. Hierfür kommen vermehrt die
so genannten Policy Gradient Methoden zum Einsatz.

Der in dieser Arbeit entwickelte PGPE-Algorithms, ein neuer Typ von
Policy Gradients, ermöglicht modellfreies Lernen in komplexen, kon-
tinuierlichen, nur teilweise beobachtbaren und hochdimensionalen
Umgebungen. Wir zeigen, dass hiermit ohne Vorwissen, durch rei-
nes modellfreies bestärkendes Lernen in einer Simulationsumgebung,
Aufgaben wie das Greifen von Gläsern und Tellern mit einem dem
menschlichen Arm nachempfundenen Roboter erlernt werden. Auch
das Balancieren eines humanoiden Roboters der von externen Kräften
gestört wird, sowie das dynamische Laufen eines Masse-Feder Systems
wurden erlernt. In allen Experimenten lernte PGPE die Aufgaben effizi-
enter als etablierte Methoden. Der Einsatz von PGPE beschränkt sich
dabei nicht auf die Robotik. Sie ist die erfolgreichste Methode unter den

v

untersuchten um nicht differenzierbare physikalische Kryptographie
Systeme zu brechen. Sie ist geeignet um multidimensionale rekurrente
neuronale Netze zu trainieren, Go zu spielen oder um tiefe neuronale
Netze für die Bildverarbeitung nachzutrainieren.

Die Prinzipien, welche hierbei zur Anwendung kamen, die Vor- und
Nachteile sowie die Unterschiede gegenüber den etablierten Methoden
werden im Rahmen der Arbeit im Detail hergeleitet und analysiert.

vi

P U B L I C AT I O N S

During this thesis the following publications were published:

• Frank Sehnke, Alex Graves, Christian Osendorfer, and Jürgen
Schmidhuber. Multimodal Parameter-exploring Policy Gradi-
ents. The Ninth International Conference on Machine Learning
and Applications, ICMLA 2010.
Derivation of the MultiPGPE method incorporated in chapter 5

• Frank Sehnke, Journal PublicationChristian Osendorfer, Thomas Rückstieß, Alex
Graves, Jan Peters, and Jürgen Schmidhuber. Parameter-exploring
policy gradients. Neural Networks, 23(2), March 2010.
Incorporated as the main publication of this thesis in chapters 2, 3, 5, 6,
8

• Frank Sehnke, Christian Osendorfer, Jan Sölter, Jürgen Schmid-
huber, and Ulrich Rührmair. Policy gradients for cryptanalysis.
In W. Duch K. Diamantaras and L. Iliadis, editors, Proceedings
of the International Conference on Artificial Neural Networks,
ICANN 2010. Springer-Verlag Berlin Heidelberg, 2010.
Ideas, figures and tables incorporated in chapter 9

• Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srini De-
vadas, and Jürgen Schmidhuber. Modeling attacks on physical
unclonable functions. In Proceedings of the 17th ACM Confer-
ence on Computer and Communications Security, ACM CCS 2010

• Mandy Grüttner, Frank Sehnke, Tom Schaul, and Jürgen Schmid-
huber. Multi-dimensional deep memory go-player for parame-
ter exploring policy gradients. In W. Duch K. Diamantaras and
L. Iliadis, editors, Proceedings of the International Conference on
Artificial Neural Networks, ICANN 2010. Springer-Verlag Berlin
Heidelberg, 2010.
Incorporated in chapter 11

• Thomas Rückstieß, Journal PublicationFrank Sehnke, Tom Schaul, Daan Wierstra,
Sun Yi, and Jürgen Schmidhuber. Exploring parameter space in
reinforcement learning. Paladyn Journal of Behavioral Robotics,
1(1):14-24, 2010.

• Tom Schaul, Journal PublicationJustin Bayer, Daan Wierstra, Yi Sun, Martin Felder,
Frank Sehnke, Thomas Rückstieß, and Jürgen Schmidhuber. Py-
Brain. Journal of Machine Learning Research, 2010.

• Thomas Rückstieß, Martin Felder, Frank Sehnke, and Jürgen
Schmidhuber. Robot learning with state-dependent exploration.
In 1st International Workshop on Cognition for Technical Systems,
2008.

• Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex
Graves, Jan Peters, and Jürgen Schmidhuber. Policy gradients
with parameter-based exploration for control. In J. Koutnik V.
Kurkova, R. Neruda, editor, Proceedings of the International Con-
ference on Artificial Neural Networks, ICANN 2008, Part I, LNCS

vii

5163, pages 387-396. Springer-Verlag Berlin Heidelberg, 2008.
Incorporated in chapters 5

• Frank Sehnke, Thomas Rückstieß, Martin Felder, and Jürgen
Schmidhuber. Parametric policy gradients for robotics. In 1st
International Workshop on Cognition for Technical Systems, 2008.

viii

A C K N O W L E D G M E N T S

There are several people I would like to thank because without them
this thesis would not exist or it would not have turned out the same.
First of all, I want to thank Jürgen Schmidhuber, my supervisor and
"Doktorvater" for the opportunity to write my PhD studies with his
guiding advice and assistance. His rather strong opinions influenced
me a lot and his input allowed me to become exposed to many inspiring
topics and people. I also want to thank Patrick van der Smagt for his
very valuable advice and for the fact that he was willing to be my
supervisor. His suggestions for improving my thesis were worth his
weight in gold. I also want to thank Alexander Graves who had endless
patience in correcting my less-than-perfect English and was a source of
priceless advice and inspiration. Special thanks also goes to Christian
Osendorfer who was a constant sparring partner and I also want to
thank him especially for his well-founded mathematical knowledge
which was extremely helpful. I also want to thank Thomas Rückstieß
and Martin Felder for their stimulating ideas and fruitful discussions.

Thanks go also to my students. Especially I want to thank Ahmed
Mahmoud and Mandy Grüttner, whose help was very inspiring and
much appreciated. I also want to thank two students of our group, Ralf
Stauder and Jan Sölter for the fruitful discussions.

I thank Jan Peters from MPI Tübingen, Daan Wierstra and Tom Schaul,
both at that time from IDSIA Lugano, for introducing me to policy
gradient methods and for teaching me everything necessary to get
started. I want to thank all three of them for the very kind cooperation,
for the helpful discussions and for their constant good advice. I want
to thank Jan Peters for acting almost like an additional supervisor.

Furthermore, I want to thank Alois Knoll for giving me the opportunity
to conduct my PhD thesis at his chair and to use the chairs resources. I
also want to thank him for his way of helping me with organizational
issues, and for keeping all the red tape to a minimum. Special thanks
go to Gerhard Schrott, who was a great help with his kind, calming
character and his endless wisdom. Unconventional thanks go to our
"secretoids" Amy Bücherl, Gisela Hibsch and Monika Knürr. I cannot
imagine how I would have ever conducted my thesis without them.
They supported me both in an administrative capacity and emotionally.

I also want to thank Michael Klimke, head of IGSSE, very much for his
ongoing support and sympathy. I thank Srini Devadas from MIT for
his insights and his help and the very pleasant cooperation.

I want to thank all my colleagues and friends for their endless patience
and encouragement which was required to write a PhD thesis.

Finally, I want to thank my parents and my wife who, with their
continual support, gave me the opportunity to take the necessary steps
that resulted in this thesis.

ix

C O N T E N T S

i problem definition and state of the art 1

1 introduction 3

1.1 Motivation 3

1.1.1 Reinforcement Learning for Robotics 4

1.1.2 Policy Gradients 5

1.1.3 Exploration in Parameter Space 5

1.1.4 Our Approach 7

1.2 Thesis Contribution 7

1.3 Notation 8

2 problem definition 9

2.1 Markov Decision Processes 9

2.2 Partially Observable Markov Decision Processes 9

2.3 Long Term Reward and Episodic Tasks 10

3 state of the art 13

3.1 Reinforcement Learning 13

3.1.1 Classical 13

3.1.2 Evolution 14

3.1.3 Policy Gradients 17

3.2 Exploration 22

3.2.1 Exploration in Reinforcement Learning 22

3.2.2 Exploration in Policy Gradients 22

3.2.3 Exploring in Evolution 24

3.2.4 Exploring in Parameter Space 24

4 part summary and conclusion 27

ii new contribution 29

5 parameter exploring policy gradients 31

5.1 Unimodal Parameter Distributions—PGPE 33

5.1.1 Sampling with a baseline 33

5.1.2 Symmetric sampling 34

5.1.3 Reward Normalisation 35

5.2 Multimodal Parameter Distributions — MultiPGPE 36

5.2.1 Simplified MultiPGPE 36

5.2.2 Sampling with a baseline 37

5.2.3 Symmetric sampling 37

5.2.4 Reward Normalisation 38

5.3 Infinite Horizon PGPE 41

5.3.1 Simplified Infinite Horizon PGPE 42

5.3.2 Sampling with a baseline 43

5.3.3 Reward Normalisation 43

6 pgpe properties 45

6.1 Relationship to Other Algorithms 45

6.1.1 From SPSA to PGPE 45

6.1.2 From ES to PGPE 47

6.1.3 From REINFORCE to PGPE 47

6.2 Central Search Property 48

6.3 Flat Minima Property 49

6.4 Overestimation 50

7 part summary and conclusion 53

xi

xii contents

iii results and comparisons 57

8 robotic benchmarks 59

8.1 Standard Benchmarks 60

8.1.1 Rastrigin Function 61

8.1.2 Ackley Function 64

8.1.3 Inverted Pendulum 66

8.1.4 Enhanced Pole Balancing 67

8.1.5 Ship Steering 69

8.2 The FlexCube Environment 69

8.2.1 Mass-Spring Systems 69

8.2.2 FlexCube Environment 70

8.2.3 FlexCube Tasks 71

8.2.4 FlexCube Results 74

8.3 The Johnnie Environment 74

8.3.1 Johnnie Environment 74

8.3.2 Johnnie Tasks 75

8.3.3 Johnnie Results 76

8.4 The CCRL Environment 77

8.4.1 CCRL Environment 77

8.4.2 CCRL Tasks 77

8.4.3 CCRL Results 78

9 physical cryptography 81

9.1 Physical Cryptography 81

9.1.1 Physical Unclonable Functions 82

9.1.2 Attacking PUFs with Machine Learning 83

9.2 Results 84

9.2.1 Standard Arbiter PUF 84

9.2.2 XOR Arbiter PUF 86

9.2.3 Feed Forward PUF 88

10 pattern recognition with deep networks for rein-
forcement learning 91

10.1 RBM Online Learning 93

10.2 RBM Learning with Ordered Patterns 94

10.3 Post Training of RBMs with PGPE 97

10.4 Discussion 99

11 artificial go player 101

11.1 The Board Game Go 101

11.2 MDRNN Representation 102

11.3 Experiments and Results 105

12 part summary and conclusion 109

iv conclusion and future work 111

13 conclusion and summary 113

13.1 Conclusion 113

13.2 Summary 115

14 future work 119

v appendix 123

a pybrain 125

a.1 UDP Interface 125

a.2 FlexCube and Viewer 125

a.3 ODE and Viewer 128

a.4 PGPE Implementations 128

b the pgpe algorithm 133

contents xiii

bibliography 135

A C R O N Y M S

Arb-PUF - Standard Arbiter PUF

CMA-ES - Covariance Matrix Adaptation - Evolution Strategies

CoSyNE - Cooperative Synapse Neuro-Evolution

CRP - Challenge Response Pair

ES - Evolution Strategies

ESP - Enforced Sub-Population

ET - Eligibility Trace

FD - Finite Difference

FF-loop - Feed-Forward loop

FF-PUF - Feed-Forward Arbiter PUF

GA - Genetic Algorithm

GPOMDP - Gradient of a Partially Observable Markov Decision Process

GUI - Graphical User Interface

IM - Importance Mixing

LR - Logistic Regression

LSTM - Long Short Term Memory

MDLSTM - Multi Dimensional Long Short Term Memory

MDP - Markov Decision Process

MDRNN - Multi Dimensional Recurrent Neural Network

ML - Machine Learning

MLP - Multi Layer Perceptron

NAC - Natural Actor Critic

NES - Natural Evolution Strategies

NN - Neural Network

NumPy - Numeric Python (Library)

ODE - Open Dynamics Engine

PEPG - Parameter Exploring Policy Gradients

PG - Policy Gradients

PGPE - Policy Gradients with Parameter-based Exploration

POMDP - Partially Observable Markov Decision Processes

PUF - Physical Unclonable Function

PyBrain - Python-Based Reinforcement learning,

Artificial Intelligence and Neural network library

RBM - Restricted Boltzmann Machines

REINFORCE - REward Increment = Nonnegative Factor times

Offset Reinforcement times Characteristic Eligibility

RL - Reinforcement Learning

RNN - Recurrent Neural Network

Rprop - Resilient backPROPagation

xv

xvi contents

SANE - Symbiotic Adaptive Neuro-Evolution

SDE - State Dependent Exploration

SPSA - Simultaneous Perturbation Stochastic gradient Approximation

SVM - Support Vector Machine

TCP/IP - Transmission Control Protocol / Internet Protocol

UDP - User Datagram Protocol

XOR-PUF - XOR Arbiter PUF

Part I

P R O B L E M D E F I N I T I O N A N D S TAT E O F
T H E A RT

1I N T R O D U C T I O N

1.1 motivation

A practical robot should be capable of both adapting to new situations, Properties of practical robots

and of being adjusted by the users to suit their needs. To make robots
accessible in this manner (also for non-specialists) it must be possible to
guide their behaviour without having to program a computer. Ideally,
it should be possible for a user to teach a robot by example, just as they
would teach a fellow human.

Currently, the situation is that robots learn new tasks mainly by a
specialist programming the required behaviour by hand or by using
a technique called Teach-In. Teach-In means that a human guides the
robot (usually a robot arm) in executing a certain task. The robot records
the movement and reproduces it from there on.

If robots should be introduced into households and the like, this has
to change drastically. Non-specialists must be able to teach robots the
tasks they want them to do.

To achieve this, several problems have to be solved. One of them is how Problems in creating practical
robotsto define new goals for the robot using natural human communication.

Another one is how to show a robot naturally how a human would
do something, i.e. in such a way that the robot can learn by imitation.
Thirdly, how to learn new behaviours assuming the task is known
and well defined. And finally, how to build an adaptive model of the
environment, which helps to predict the consequences of certain actions
in a changing environment.

The main problem this thesis focuses on is the third problem domain—
the actual learning of new tasks. As we will see later in this thesis,
realistic learning via trial and error—known as model-free Reinforce-
ment Learning (RL)—typically needs about 10,000 to 100,000 trials to
learn even simple tasks like grasping an object from a table. This seems
like a lot at first glance and the main issue is to reduce the number
of trials needed by making the learning methods more effective. If an
effective learning method can be found the number of trials needed can
be further reduced by employing an internal world model (much like
humans do in the grown-up stage).

Computation time gets cheaper every year. Nonetheless one of the The importance of effective
model-free learningmajor tasks of Machine Learning (ML) is to make as efficient use as

possible of the computational resources at hand. This is especially true
for systems that have to learn without models, because a good exact
model is truly hard to come by. But it is also true for systems that learn
with a model, because it reduces computation time that can instead be
used to exploit better models or explore larger search spaces.

3

4 introduction

This thesis will investigate all of the four aforementioned problems toAim of the thesis

some extent, but the main focus will be on how to learn as effectively as
possible in a model-free framework for sophisticated high-dimensional
robot behavioural tasks. As we will see, the techniques developed to
achieve this goal are also effective in other problem domains.

This thesis will demonstrate how one can train a robot arm to grasp
plates and glasses from arbitrary positions in the workspace—how to
train a humanoid robot to stand robustly while perturbed by external
forces and how to train mass-spring systems shaped like a cube to
learn a variety of tasks, such as running and finding food, to name
only a few. These tasks are within the computational scope of today’s
computer technology and this thesis develops a method that can be
used out of the box to learn these kinds of behaviours by pure, model-free
reinforcement learning and it explains in detail how to do this.

1.1.1 Reinforcement Learning for Robotics

RL generally tries to optimise an agent’s behaviour in its environment.In RL the system is ignorant
how the optimal behaviour

looks like
But in contrast to supervised learning, the optimal behaviour is un-
known. The system is just told how good the executed actions were.
This is usually done by giving the system a scalar value, often in every
time step, that is called reward. This kind of learning setting is ideal
for robotic behaviour learning, because a behaviour can be learned just
by means of trial and error without prior knowledge of the optimal
behaviour that is in most cases unknown. Especially if one follows the
above goal to teach robots new behaviours in a natural human way
by demonstrating what one wants the robot to do, RL is the kind of
learning class that is certainly most appropriate.

Learning in RL comprises a cycle of interactions with the environment.
Within every time step the system observes its environment via its
sensors. The situation that the system and the environment are in, is
called state. The part of this state which is visible for the system is the
so called observation.

The system and the environment change into a new state by the execu-The system learns by getting
reward for good behaviour and

punishment for less optimal
behaviour

tion of an action by the system. Every state-action pair is coupled with a
reward based on how appropriate the action was in the corresponding
state.

The goal of RL is to maximise the expected future reward. Classical RL
operates in discrete state and action spaces. For that reason, tables are
usually used for the state-action transitions in classical RL. The entries
of the table resemble the so called Q-value, that is an estimate of the
expected future reward for the particular state-action pair.

After some experience with the environment the Q-values are goodPolicy

estimates of the future reward. The strategy with which the actions
are chosen in the current states is called policy. The best policy for the
system to follow (if the reactions of the environment are sufficiently
well known), is to choose the action in every state that promises the
highest future reward.1

1 This is called a greedy policy, because it allows only actions that promise the most reward
income.

1.1 motivation 5

1.1.2 Policy Gradients

There exists a wide variety of methods in the field of RL. The classical Classical RL is difficult to
apply to problems with
unlimited continuous state and
action spaces

methods (see Section 3.1.1) act by estimating what action promises the
most reward in the long run. This estimation of the so called value
function is hard to do if we do not have discrete distinguishable actions
to take, but instead have the infinite possibilities of choosing continuous
actions, like for instance which movement direction and speed is to
be taken for a robot arm to approach the target object. Reinforcement
learning algorithms based on value function approximation are very
successful if actions and states are discrete, and therefore value ap-
proximation can be performed with discrete lookup tables. If the same
techniques are applied to continuous action state spaces (and hence con-
tinuous function approximation has to be used), most of the algorithms
fail to generalise. Additionally, only under a few constraint situations
convergence guarantees could be obtained theoretically [Sutton and
Barto, 1998]. The main problem lies in the use of the ε-greedy (see
Section 3.2.1) policy updates of the usual classical RL method. Without
going too much into detail at this point, the ε-greedy strategy does not
ensure an improvement of the behaviour when applied to approximate
value functions [Bertsekas and Tsitsiklis, 1996]. The approximation er-
rors can result in oscillations or divergence of the algorithms. Several
simple toy problems were investigated where this ill behaviour can be
found [Baird and Moore, 1999; Bertsekas and Tsitsiklis, 1996].

We therefore concentrate on Policy Gradients (PG, see Section 3.1.3). A PG methods are well suited for
continuous state-action spacespolicy in this respect is the strategy by which the actions are taken. PG

methods do not take actions due to the estimation of future reward—
they use the reward they gather directly to decide which policy to use in
the future without estimating any values of future reward. PG methods
are in fact among the few feasible optimisation strategies for complex,
high-dimensional reinforcement learning problems with continuous
states and actions [Benbrahim and Franklin, 1997; Peters and Schaal,
2006; Schraudolph et al., 2006; Peters et al., 2005].

PG methods have strong convergence guarantees in continuous state-
action spaces. A theoretically solid framework for policy gradient esti-
mation from sampled data has already been found [Konda and Tsitsiklis,
2000; Sutton et al., 2000].

All these reasons led to the decision for the use of PG methods rather
than classical RL approaches.

1.1.3 Exploration in Parameter Space

A significant problem of policy gradient algorithms such as REIN- PG methods have a rather slow
convergence behaviour due to
high variance in the gradient
estimate

FORCE [Williams, 1992] is, however, that the high variance in their
gradient estimates leads to slow convergence. To understand why the
PG gradient has a high variance (i.e. why it is noisy) one has to know
how exploration in PG methods work. Exploration in PG methods is
done by (roughly speaking) adding noise to the taken action—so the
system always acts a bit differently than it would normally without
this explorative noise. The reward gathered will differ depending on
environmental factors that the system cannot control and because the
system acts always a bit differently. This coupled reward-to-taken-action

6 introduction

information is used to derive the gradient. To get to a new behaviour
that executes the task in a notably different way, these random changes
to the actions have to be done frequently over time. In this exploration
strategy lies one of the main sources of the high noise in the gradient
estimate. It is hard to define which parts of the randomly changed
policy are responsible for the changed reward. As one example for il-
lustrating this problem, let us assume the system re-lives the exact same
situation twice. Each time a different random change to the action is
chosen. Afterwards the system receives a reward. In the same situation
the system did two different things—what action is now responsible for
the changed reward? This is just one illustration of the overall problem
of the special PG credit assignment problem.

Various approaches have been proposed to reduce this variance [Baxter
and Bartlett, 2000; Aberdeen, 2003; Peters and Schaal, 2006; Sutton
et al., 2000]. However, none of these methods address the underlying
cause of the high variance, which is that repeatedly sampling from a
probabilistic policy has the effect of injecting noise into the gradient
estimate at every time step. Furthermore, the variance increases linearly
with the length of the history [Munos and Littman, 2006], that is the
time steps one trial takes to solve the task, since each state depends on
the entire sequence of previous samples.

As an alternative, we propose to define the policy by a distribution overExploring in parameter space
reduces the high variance in

the gradient estimate
drastically

the parameters of a controller. That means that we explore by changing
the parameters directly and test how this new set of parameters changes
the behaviour of the system and how the reward received is affected by
that. The parameters are sampled from this distribution only once at the
start of each sequence, and after that, the controller doesn’t change over
one episode or history—it is deterministic during the trial. Since the
reward for each sequence depends on a single sample only, the gradient
estimates are significantly less noisy, even in stochastic environments.

Among the advantages of exploring in parameter space by these means
is that we do not have the same credit assignment problem. In contrast,
a standard policy gradient method must first determine the reward
gradient with respect to the policy—it must judge how the changed
actions resulted in the changed reward. Then the system has to differen-
tiate the parameters with respect to that reward gradient—that means
the system has to figure out how the parameters have to be changed
in order to make the good behaviour which was just executed more
likely or the bad behaviour less likely in the future. This results in two
drawbacks. Firstly, it assumes that the controller is always differentiableExploration in parameter space

allows the use of
non-differentiable controllers

with respect to its parameters, otherwise the parameters cannot be
continuously changed due to the changed actions. Secondly, it makes
optimisation more difficult, because very different parameter settings
can determine very similar policies, and vice-versa. So, it can be hard to
decide what parameter set to choose in order to generate the observed
behaviour because there are several different parameter sets producing
this behaviour.

Based on these reasons, we see great potential in using Parameter
Exploring Policy Gradients (PEPG) and the thesis will focus on this
class of algorithms.

1.2 thesis contribution 7

1.1.4 Our Approach

Our approach is called Policy Gradients with Parameter-based Explo-
ration (PGPE). PGPE and its variants are derived in detail in Chapter 5.
As mentioned above in PGPE we will define the policy by a distribution
over the parameters of a controller. The parameters are sampled from
this distribution at the start of each sequence, and afterwards the con-
troller is deterministic. We will also introduce refinements for sampling
and reward normalisation. We will present variants with multi-modal
parameter distributions and refinements that make PGPE usable in
infinite horizon settings. We will show in the course of this thesis that
PEPG methods and especially PGPE and its variants have superior
properties in dealing with complex high-dimensional robotic RL tasks
and that PGPE can also be applied to RL tasks that are as distinct from
robotics as crypt-analysing Physical Cryptography Systems or learning
to play Go with Multidimensional Recurrent Neural Networks.

1.2 thesis contribution

This section outlines the rest of this document, explaining the contribu-
tions that were made in this thesis.

• Part I, Chapter 2: Defines the problem domains we try to cope
with PEPG methods and gives some implications.

• Part I, Chapter 3: Depicts the state of the art in robotic RL and RL
as a whole.

• Part I, Chapter 4: Concludes and gives an overview of the intro-
duction, problem definition and state of the art part.

• Part II, Chapter 5: Derives PGPE and its variants from the general
framework of episodic reinforcement learning in a Markovian
environment.

• Part II, Chapter 6: Highlights the properties of PGPE and shows
the relation to other ML fields.

• Part II, Chapter 7: Concludes and summarises the methods and
new contributions part.

• Part III, Chapter 8: Explains the robotic benchmarks we used
and gives results and comparisons to competing methods on this
benchmarks.

• Part III, Chapter 9: Explains Physical Cryptography, its currently
existing variants and gives results and comparisons to competing
methods on this problem domain.

• Part III, Chapter 10: Explains how Deep Nets with Restricted
Boltzmann Machines can be used for RL and how PGPE can be
used to fine-tune the Deep Net weights.

• Part III, Chapter 11: Explains the board game Go and shows how
an artificial Go player can be learned with PGPE and how PGPE
competes to other methods on this problem domain.

• Part III, Chapter 12: Concludes and summarises the experimental
part.

8 introduction

• Part IV, Chapter 13: Gives a conclusion of the experience gathered
in this thesis with PEPG methods an summarises the properties
of PEPGs in comparison to the RL field.

• Part IV, Chapter 14: Gives ideas of interesting fields of future
work with PEPGs.

• Part V, Appendix A: Gives the implementation details of PGPE
and the used robotic benchmarks in the open source ML Library
PyBrain.

• Part V, Appendix B: Gives condensed Python code for the stan-
dard (SyS) PGPE implementation, ready to use as stand alone RL
learner.

1.3 notation

We use the standard notation throughout the thesis with some excep-
tions:

• We write vectors in bold like σ instead of using upper case letters
or using vector arrows to highlight that we talk about a vector
and not a single value.

• We use bold upper case letters for matrices like Σ.

• We use for the index of used samples a superscript instead of a
subscript for readability. rnt is therefore the reward r gathered in
sample n at time step t.

2P R O B L E M D E F I N I T I O N

In all robotic problem domains in this thesis we assume that the envi- In all robotic problems we
assume a MDP or POMDP
setting

ronment the agent is working in can be modelled as a Markov Decision
Process (MDP). Most environments provide thereby only partial infor-
mation of their state to the agent, therefore called Partially Observable
Markov Decision Processes (POMDP). This means that not all environ-
mental variables are available but a selection that is accessible i.e. via
realistic sensors. This makes recurrence or memory in the controllers
necessary to some degree to access time dependent hidden variables or
the like.

2.1 markov decision processes

We follow the principal definition of MDP and POMDP from Planning Def.: MDP

and acting in partially observable stochastic domains [Kaelbling et al., 1998].
Our setting is that of an agent taking actions in an environment follow-
ing a policy. Denote the state of the environment at time t as st and the
action at time t as at. Because we are interested in continuous state and
action spaces (usually required for robotic control tasks), we represent
both at and st with real-valued vectors. Each state–action pair gives
the agent a scalar reward rt(at, st). The agent’s actions stochastically
depend on the current state and some real-valued parameter vector
Θ: at ∼ p(at|st,Θ). We assume that the environment is Markovian,
i.e. that the probability distribution over the possible next states is
conditionally independent of all previous state-action pairs given the
current one: st+1 ∼ p(st+1|st,at). We refer in most cases to a sequence
h of state-action pairs of length T produced by an agent as a history:
h = [s1:T ,a1:T]. In this MDP framework the agent can fully observe the
whole environment.

2.2 partially observable markov decision processes

In POMDP the agent perceives the environment by means of sensors or Def.: POMDP

the like, that provides only a partial view of the complete state of the
environment. In a POMDP the agent needs to estimate so called hidden
states by means of calculation from observable variables or by means
of memory (i.e. the speed of a joint if only a position sensor exists).

One still denotes the state of the environment at time t as st and the The agent can only use
observations instead of the true
state in a POMDP

action at time t as at. In contrast to 2.1 we cannot observe state st
directly, instead we have to work with the observation ot. The history
changes now to: h = [o1:T ,a1:T]. We also define the history up to the
time step t as h(t) = [o1:t,a1:t] with t < T . Because the reward is
still dependent on the state-action pair the agent must find a reliable
estimate for rt(at, st). Now the agent’s actions stochastically depend on
the history h(t) and parameter vector Θ: at ∼ p(at|h(t),Θ) if some form
of recurrence or memory can be assumed or on the current observation

9

10 problem definition

Figure 2.1: ll
The POMDP setting.

The world is assumed
to be Markovian. The

agent is only provided
partly with the

information of the
world (usually

through the available
sensors), the so called

observation. The agent
must decide on a

good action due to its
observation.

ot and parameter vector Θ: at ∼ p(at|ot,Θ) if not. We still assume that
the environment is Markovian, i.e. that the probability distribution over
the possible next states is conditionally independent of all previous
state-action pairs given the current one.

2.3 long term reward and episodic tasks

Rewards come often after some time delay or after a series of good
actions. In this thesis this is not a major point, because we use in nearly
all cases a strictly episodic approach. In an episodic task definition theEpisodic reward

agent receives reward only once after a complete history or episode.
This has the advantage that the complete behaviour is evaluated. In
a non-episodic task definition there rewards are received frequently
an additional credit assignment problem arises—the temporal credit
assignment problem. The temporal credit assignment problem describesTemporal Credit Assignment

Problem the difficulty to assign the reward to the distinct action that lead to
the reward. Reward, and the action(s) responsible for the reward are
often not timely aligned. In an episodic task definition one evaluates
the overall policy directly while in an non-episodic or infinite horizon
task one evaluates certain actions. There are a lot of cases there the
higher amount of information of the infinite horizon reward leads
to faster learning, while there are also a lot of examples there the
temporal delayed structure of the reward is misleading and can result
in suboptimal convergence. With episodic task definitions the learning
is in most cases more robust. For InfHorPGPE (see Chapter 5.3) we
cope with the problem of time delayed reward in a special way.

We used a wide spectra of robotic benchmarks to elaborate our new
method class, reaching from simple optimisation functions like the
Rastrigin function over simple standard benchmarks like the Pole Bal-
ancing and Ship Steering up to sophisticated robotic simulations, like
grasping objects with a 7-DoF robotic arm or standing robust against
perturbations with an 11-DoF humanoid robot.

2.3 long term reward and episodic tasks 11

See chapter 8 for the different kind of robotic scenarios used and the
details on the involved controllers.

3S TAT E O F T H E A RT

3.1 reinforcement learning

As mentioned in section 1.1.1 Reinforcement Learning (RL) is the RL - high need of evaluations

method of choice for learning robotic behaviours. Unfortunately, as
no direct information about the optimal behaviour like in the case of
supervised learning is available, learning requires a large number of
trials.

Modelling and exploration are therefore critical components of RL,
affecting both the number of required trials and the quality of the
found solution. The kind of exploration heavily depends on the kind
of learning algorithm that is used and also on the kind of modelling
involved. Standard RL methods like SARSA [Sutton and Barto, 1998] or
Q-Learning [Watkins and Dayan, 1992] use discrete sets of states and
a discrete set of actions to respond to the states the agent is in. This
makes it possible to use a value table assigning every state-action pair Classical RL is discrete and

uses value tablesan expected reward in the long run, a so called value. This is already a
model because it predicts the outcome in terms of a reward if a certain
action is taken in a certain state, though it does not say something about
the details how this reward comes to be.

Exploration in this case can be done either completely random—a Exploration in classical RL by
random action selectionstrategy that is surprisingly common—by performing a random action

with a predefined probability. Or exploration can be done by choosing
an action proportional likely to its reward value. Also one can think of
exploring actions there the reward outcome is rather uncertain for the
given state to achieve a better model.

This kind of RL methods are hard to extend into domains with continu- Exploration of classical RL is
hard to extend to continuous
domains

ous state and action spaces, though fruitful efforts have been made by
clever clustering the state space and/or using function approximators
[Sutton and Barto, 1998].

3.1.1 Classical

sarsa In classical value based RL we usually work with discrete sets
of states and actions. For that reason, every action ai taken in state sj
has a, to the agent, unknown expected reward. This expected reward
is called a Q-value. Usually these Q-values are updated by experience.
This update does not only take the reward for the action taken in Def.: Q-value, expected future

reward for certain action in
certain state

the current state into account, but also the expected future reward
by the discounted future reward received from the next state-action
observation. SARSA updates the Q-values by a so called on-policy
strategy. That means that the discounted rewards of the really taken SARSA is an on-policy

strategyactions are used to update the current Q-value.

From this technique the name SARSA stems. For updating the Q-value
one needs the current State, the Action taken, the resulting Reward,

13

14 state of the art

the next State the agent will find himself in and the next Action the
agent will choose in the new state. The update rule for SARSA is the
following:

Def.: SARSA update
rule

Q(st,at)← Q(st,at) +α[rt+1 +γQ(st+1,at+1) −Q(st,at)] (3.1)

q-learning The main drawback of SARSA is the on-policy learning.
During high rates of explorations the Q-values will be estimated too
low, compared to the greedy policy. Therefore in Q-Learning the updateQ-Learning is an off-policy

strategy of the Q-values is done off-policy [Watkins and Dayan, 1992], meaning
that not actually chosen actions are used to estimate the Q-values, but
the best action available. The update rule changes to:

Q(st,at)← Q(st,at)(1−α) +α[rt+1 + γmax
a
Q(st+1,a)) (3.2)

or written in the form of Eq. (3.1)

Def.: Q-Learning
update rule

Q(st,at)← Q(st,at)+α[rt+1+γmax
a
Q(st+1,a)−Q(st,at)] (3.3)

Now the Q-value related to a state action pair resembles the expected
reward if always the optimal actions are taken in the future.

3.1.2 Evolution

Evolutionary methods use even less information from the environmentFitness replaces the reward of
RL in evolution then RL methods usually do. They discard the temporally information

given by the standard RL environment that gives a reward signal at
every time-step during learning. In evolution an overall reward called
fitness is calculated that describes the performance of the agent or
solution over a complete trial or episode. Surprisingly this still leads in
a lot of cases to faster and most of the time to a more robust convergence
on good solutions than RL methods. Examples are the lead of CMA-
ES [Hansen and Ostermeier, 2002] in the standard benchmark list of
pole balancing. Sometimes—so it seems—the temporal distribution of
reward in RL is misleading even over the consideration of eligibility
traces.

Exploration in evolutionary algorithms is done by using changed pa-Exploration in evolution —
creating changed parameter

sets
rameter sets that define the behaviour of the agent. The changes are
called mutations (sometimes mixing of parameter sets is involved called
crossover). The exploration is controlled by means of how frequent mu-
tations occur and to which extend the mutations change the parameters.
In comparison to PG this seems to be the main advantage of evolution.

However drawbacks of evolutionary algorithms are that they do notThe evolutionary method is not
derived mathematically from

the basic principles of RL
derive their methodology from the basic principle of maximising the
expected reward in a mathematical straight forward way and that they
use a population where the information of the non surviving solutions
is just discarded (model based evolution [Streichert, 2007] makes here a
notable difference).

All evolutionary algorithms work according to the so-called evolution-
ary cycle: The differences between the different evolutionary algorithms
is the coding, if or to which extend crossover and mutation is used and
the different strategies for mutation and selection.

3.1 reinforcement learning 15

Figure 3.1: ll
All evolutionary
algorithms follow the
evolutionary cycle.
Based on Weicker
[2002].

genetic algorithm The most famous representative of evolution- GA works best on discrete
genomesary algorithms is the Genetic Algorithm (GA). Historically GAs use

binary or at least discrete coding. Nowadays also continuous GAs are
used, but for discrete genomes the principle holds that all alleles needed
for the optimal solution are already present in the initial population
and need only to be combined by crossover. The crossover operator as
primary operator is originated from this philosophy while mutation is
more or less employed to recover lost alleles.

For continuous genomes this assumption does not hold and therefore GA works also on continuous
genomesmutation must work differently and must have more impact.

By using crossover as primary operator GAs use medium sized pop-
ulations and a medium selection pressure to have a good chance of
combining good alleles together. This resembles the divide and conquer
approach.

evolution strategy In robotic behaviour learning, we deal with ES is specialised on continuous
genomescontinuous controllers like NN. For this reason we chose Evolution

Strategies (ES; [Schwefel, 1993]) as the representative of the evolutionary
field. ES is well suited to learn NN controllers due to the kind of
mutation, the independence of a crossover operator and most prominent
the strategy parameters that allow for fast exploration.

Figure 3.2: ll
Different kinds of
search strategy for the
ES mutation operator
and how the search
pattern changes.
(Source [Streichert and
Ulmer, 2005])

16 state of the art

Algorithm 1 The Genetic Algorithm with a population size of λ, m-
Tournament selection and n problem parameters.

Initialise θ1...λ randomly

while TRUE do
” Evaluation
evaluate r1...λ = r(h(θ1...λ))

” m-Turnament Selection
for j = 1 to λ do

for j = 1 to m do
im ∼ [1 . . . λ]

end for
θ
′,j = max(θi|ri)

end for

” 1-Point Crossover and Mutation
for j = 1 to λ do
i ∼ [1 . . . λ]; k ∼ [1 . . . λ]

c ∼ [1 . . . n]

θj := θ
′,i
[1...c[

◦ θ
′,k
[c...n]

” ◦ = concatenation

Mutate θj accordingly
end for

end while

sane, esp, cosyne There are a lot more evolutionary approaches.
Some are not fixed to a certain parameter set size like Genetic Pro-
gramming (GP) or in the case of NeuroEvolution (NE) the algorithm
called NeuroEvolution of Augmenting Topologies (NEAT; [Stanley and
Miikkulainen, 2002]). We stick to problems with fixed parameter sets
because also PGPE operates in this domain.

A line of NE algorithms is the SANE, ESP, CoSyNE line. We want
to point to this field of NE because the most sophisticated and effec-
tive algorithm from this group, Cooperatively Coevolved Synapses
(CoSyNE; [Gomez et al., 2008]), has some similarities to MultiPGPE
(see Section 5.2).

In NN the weights tend to be highly correlated. Crossover is thereforeCrossover is destructive in
highly correlated search spaces

like NN weight matrices
a highly destructive force if one deals with NN. As a result one can
optimise the NN by mutation strategies only (e.g. ES) or one can try to
use cooperative coevolution to make a more parallel search. For the later
one has to find separable subunits of the problem. In NN the subunits
are straight forward the neurones with their connecting weights. Every
neurone solves in this view a subproblem—combining good neurones
together in one network results in a good NN. CoSyNE goes with this
view to the maximum and views every weight in the network as one
subunit. The result is that every weight is in fact a population of real
values. If good values for every weight are selected they build a good
NN. The several subpopulations have to work cooperatively together.

For more details on the subject we would like to point the reader
to the corresponding publications of Faustino Gomez [Gomez and
Miikkulainen, 1999; Gomez et al., 2006; Gomez and Schmidhuber, 2005;
Gomez et al., 2008]

3.1 reinforcement learning 17

Algorithm 2 The Evolution Strategy with a population size of λ, a par-
ent pool of size µ with (µ, λ)-Best Selection and n problem parameters.

Initialise θ1...λ randomly
Initialise σ to σinit

while TRUE do
” Evaluation
evaluate r1...λ = r(h(θ1...λ))

” Best Selection
for j = 1 to µ do
i = maxarg(r)

θ
′,j = θi

σ
′,j = σi

set ri to rmin
end for

” Mutation
curIndi = 1

for j = 1 to λ do
θj = θ

′,curIndi

σj = σ
′,curIndi

Mutate σj accordingly
θj = N(θj,σj)
curIndi = (j mod µ) + 1

end for
end while

3.1.3 Policy Gradients

Policy Gradient (PG) methods, so called because they follow the gra-
dient in policy space instead of deriving the policy directly from a
value function, are among the few feasible optimisation strategies for
complex, high-dimensional reinforcement learning problems with con-
tinuous states and actions [Benbrahim and Franklin, 1997; Peters and
Schaal, 2006; Schraudolph et al., 2006; Peters et al., 2005]. They are Policy Gradients are not bound

to discrete action and state
spaces

not bound to discrete action and state spaces, they use for instance
the parameter set of a continuous function approximator as basis of
optimisation.

The goal of PG as for all RL methods is to find the parameters θ of the
controller or model of the agent that maximise the agent’s expected
reward

J(θ) =

∫
H
p(h|θ)r(h)dh. (3.4)

Because we assume a stochastic environment the expected reward
depends on the probabilities that a certain role out or history h is
observed given the set parameters, denoted with p(h|θ). Maximising
the expected reward, however, is done in very different ways throughout
the PG methods. In the following we roughly outline the discussion in
[Peters and Schaal, 2008a].

18 state of the art

Algorithm 3 The Finite Difference algorithm.

Initialise ∆θ,0 to ∆θinit

while TRUE do
adapt ∆θ,t accordingly
i ∼ [0, 1, . . . ,number of parameters− 1]

θ+ =

θt, j+∆θ,t if j = i

θt, j else.

θ− =

θt, j−∆θ,t if j = i

θt, j else.

evaluate r+ = r(h(θ+))

evaluate r− = r(h(θ−))

update θt+1 = θt +α∆θ,t
r+−r−

2
end while

finite differences Finite Difference (FD) methods originate from
the field of stochastic optimisation. The approach is straight forward
and important to understand for this thesis, because PGPE is strictly
speaking a FD method. FD are the oldest policy gradient methods used
already in the 1950s. In the basic FD approach, a set of parametersIn basic FD one parameter is

changed by a small value at a
time for exploration

θ that define the problem solution is varied by a small value ∆θ for
one parameter θi at a time. Therefore we have a vector ∆θ with ∆θ at
position i and 0 at all other positions of the vector. For each such single
changed parameter set θ+∆θ the quality of the solution is evaluated
generating an estimate for

Jn = J(θ+∆θ).

The expected reward of the solution can be defined as

∆Jn ≈ J(θ+∆θ) − Jbase.

We chose the central difference approach to get Jbase, because it is used
in SPSA in the next paragraph as well as in PGPE in its most current
form. Therefore we carry out 2 samples instead of one with the form

Def.: Sample creation θ+ = θ+∆θ, θ− = θ−∆θ.

The expected return is then

∆Jn ≈
J(θ+) − J(θ−)

2
.

The corresponding update rule for parameter θi is therefore defined by

Def.: FD update rule ∆θi = α∆θi
(J(θ+) − J(θ−))

2
. (3.5)

This simple approach is already very powerful. However FD has also
some major drawbacks. ∆θ and its evolution during learning is a man-
ually set parameter that needs a lot of experience of the experimentator

3.1 reinforcement learning 19

Algorithm 4 The Simultaneous Perturbation Stochastic gradient Ap-
proximation algorithm.

Initialise ∆θ,0 to ∆θinit

while TRUE do
adapt ∆θ,t accordingly
b ∼ B(−1, 1)
θ+ = θt + b∆θ,t
θ− = θt − b∆θ,t

evaluate r+ = r(h(θ+))

evaluate r− = r(h(θ−))

update θt+1 = θt +α∆θ,t
r+−r−

2
end while

and knowledge about the problem. Otherwise the learning process is
likely to get unstable and the learning will fail. Also in problems with
highly correlated parameters the change of one parameter at a time is
prone to get stuck. Choosing ∆θ in a constant manner also can easily
lead into local optima and last the method is more prone to stochastic
environments as standard PG methods are, although this effect on
realistic robotic applications was widely overestimated.

simultaneous perturbation stochastic gradient approx-
imation Especially in robotics, most RL problems are highly cor-
related in the parameters so that changing one parameter at a time is
not leading efficiently to a solution. For that reason in Simultaneous In SPSA all parameters are

changed by a small value for
exploration

Perturbation Stochastic gradient Approximation (SPSA; [Spall, 1998a,b])
all parameters are changed simultaneously. The parameter sets for eval-
uation are now θ+ = θ+∆θ,θ− = θ−∆θ where ∆θ is drawn from a
Bernoulli distribution scaled by the time dependent step size ε(t), i.e.
∆θi(t) = ε(t) rand(−1, 1). In addition, a set of meta-parameters is used
to help SPSA converge. The step size ε decays according to ε(t) =

ε(0)
tγ

with 0 < γ < 1. Similarly, the step size α decreases over time with
α = a/(t+A)E for some fixed a, A and E [Spall, 1998a]. The choice of
initial parameters ε(0),γ, a, A and E is critical to the performance of
SPSA. In [Spall, 1998b] some guidance is provided for the selection of
these coefficients (note that the nomenclature differs from the one used
here). With the commonly used central difference approach the final
update rule looks very similar to FD:

Def.: SPSA update
rule

∆θ = α∆θ
(J(θ+) − J(θ−))

2
. (3.6)

SPSA performs much more stable in a lot of robotic RL tasks than
FD, but still there are the drawbacks of the uniformly distributed
exploration that is prone to local minima and the sensitivity to noise in
the environment. Also SPSA has a lot of meta-parameters that have to
be manually tuned and again a lot of experience is needed here.

reinforce While FD methods explore by changing the parameter Likelihood ratio methods
explore in action spaceset directly, likelihood ratio methods explore by changing the determin-

istic output of the controller in a random way (mostly by defining the

20 state of the art

actions as a normal distribution with µ being the deterministic output
of the controller and a given Σ). Thereby the PG method is learning the
extend of the noise and better actions by the reward received from the
environment.

The most basic and most prominent likelihood ratio method is REIN-
FORCE [Williams, 1992]. REINFORCE again tries to maximise J(Θ) by
estimating ∇θJ and use it to carry out gradient ascent optimisation.
Noting that the reward for a particular history is independent of Θ, we
can use the standard identity ∇xy(x) = y(x)∇x log x (sometimes called
the log trick) to obtain

∇θJ(θ) =

∫
H
p(h|θ)∇θ logp(h|θ)r(h)dh. (3.7)

Since the environment is Markovian (as stated in section 2.1 in chapter
2), and the states are conditionally independent of the parameters given
the agent’s choice of actions, we can write

p(h|θ) = p(s1)Π
T
t=1p(st+1|st,at)p(at|st, θ).

Substituting this into Eq. (3.7) yields

∇θJ(θ) =

∫
H
p(h|θ)

T∑
t=1

∇θp(at|st, θ)r(h)dh. (3.8)

Clearly, integrating over the entire space of histories is unfeasible, andSampling is used for the
gradient estimate we therefore resort to sampling methods

∇θJ(θ) ≈
1

N

N∑
n=1

T∑
t=1

∇θp(ant |snt , θ)r(hn). (3.9)

where the histories hi are chosen according to p(hi|θ). The question
then is how to model p(at|st, θ). In policy gradient methods such as RE-
INFORCE, the parameters θ are used to determine a probabilistic policy
πθ(at|st) = p(at|st, θ). A typical policy model would be a parametric
function approximator whose outputs define the probabilities of taking
different actions. In this case the histories can be sampled by choosing
an action at each time step according to the policy distribution, and
the final gradient is then calculated by differentiating the policy with
respect to the parameters.

By assuming a normal distribution ρ over the actions at the derivative
results in:

Def.: REINFORCE

update rule

∇µ logp(at|ρ) =
(at − µ)

σ2
,

∇σ logp(at|ρ) =
(at −σ)2 −σ2

σ3
. (3.10)

This log-likelihoods can be propagated through the controller to deter-
mine the parameter change.

There are several advantages to this concept compared to FD methods.
PG methods are less prone to noise in the environment, they are less
prone to get stuck in a local minima. Also PG methods can be applied
to infinite horizon tasks, while FD methods are strictly episodic.

However, this approach has also some drawbacks. Sampling from theThe REINFORCE exploration
leads to a high variance in the

gradient estimate

3.1 reinforcement learning 21

Algorithm 5 The REINFORCE algorithm with state independent explo-
rational noise.

Initialise θ to θinit
Initialise σ to σinit

while TRUE do
for t = 1 to T do

calculate deterministic action at ∼ p(a|st,θ)

outt ∼ N(at, Iσ2)
execute outt
append [outt,at, st] to h

end for
r = r(h)

define Teach = (r− b)(out−a) as teaching signal for BackProp

update σ = σ+ασ(r− b)
I(out−a)2−Iσ2

σ
execute BackProp with Teach
update baseline b accordingly

end while

policy on every time step leads to a high variance in the sample over
histories, and therefore to a noisy gradient estimate, like we already
discussed briefly in the introduction of this thesis. Also one needs a
differentiable controller while a FD method can also optimise non-
differentiable controllers.

gpomdp GPOMDP takes into consideration that future actions do Future actions do not depend
on past rewardsnot depend on past rewards. If this is taken into account, the variance

can be reduced compared to REINFORCE. Because we only handle
episodic tasks we do not go into details about GPOMDP and refer the
reader to [Baxter and Bartlett, 2001].

natural actor critic Natural Actor Critic (NAC) uses the nat-
ural gradient instead of the REINFORCE gradient for optimising the
parameters of the agent. The raw or vanilla gradient is normalised by
the Fisher information matrix:

∇ΘJnat(Θ) = G(Θ)−1J(Θ) (3.11)

Estimation of the Fisher matrix G(Θ) is hard, but curiously [Sutton et al.,
2000] could demonstrate that the estimate of the return can be replaced
by a compatible (linear) function approximatior with parameters w.
If the return is replaced by the function approximator the derivation
simplifies drastically to:

∇ΘJnat(Θ) = w (3.12)

So that the resulting policy improvement step is simply ∆Θ = αw, and
w is easy to estimate. For details please refer to [Peters and Schaal,
2008b].

22 state of the art

Figure 3.3: ll
Standard Neural

Network. The output
of the output

neurones is the
deterministic action of
the agent. This is how

the controller is
defined for FD, ES

and the like.

NAC has the advantage of faster convergence and avoids prematureThe natural gradient is the
more direct path to the optimal

solution
convergence of vanilla gradients. This is due to choosing a more direct
path to the optimal solution in parameter space by using the natu-
ral gradient. The natural policy gradient is also independent of the
coordinate frame chosen for expressing the policy parameters.

But still NAC uses for exploration perturbations of the actions in every
time step that results further in noisy gradient estimates for tasks with
very long episodes/histories.

3.2 exploration

A principle problem in Reinforcement Learning is the exploration/ex-
ploitation dilemma. The agent needs to explore to find better solutions.
The critical question is how big should the amount of exploration be
and how long should an agent explore before it settles for the best found
solution. A good exploration strategy carefully balances exploration
and greedy policy execution.

3.2.1 Exploration in Reinforcement Learning

In classical RL like SARSA and Q-Learning we deal with discrete
actions. There are several techniques to handle exploration for this
learning methods [Thrun, 1992; Wiering and Schmidhuber, 1998]. The
most prominent method is ε-greedy exploration. In ε-greedy a randomε-greedy exploration

action is chosen with the probability ε, otherwise the action with the
best value (with the highest expected reward) is chosen. Usually the
value for ε decreases over time.

3.2.2 Exploration in Policy Gradients

In PG and other RL methods that deal with continuous action-state
spaces one cannot use ε-greedy anymore or executing a complete
random action with ε probability is not effective. The most commonStandard PG explores by

adding noise to the actions way of exploring in such cases is to add normal distributed noise to
the deterministic (greedy) action of the agent. The executed action

3.2 exploration 23

Figure 3.4: ll
Neural Network with
state independent
stochastic output. The
output of the output
neurones is perturbed
by normal distributed
noise. The
deterministic output
of the network is
thereby the mean of
the normal
distribution. The
standard deviations
are free parameters
that have to be learned
also. This is how the
controller is defined
for PG methods in the
state independent
exploration noise case.

is so to speak always a bit different to the action the agent would
execute without the explorative noise. The amount of noise is adapted
during learning, usually by the same mechanisms that change the
parameters of the agent itself. The exploration noise can thereby be
independent of the state or state dependent. A positive side effect
is that this kind of exploration realises also a stochastic policy. So if
stochastic actions are favourable in some situations, the agent will keep
a certain standard deviation for the exploration noise forever, thereby
automatically realising a stochastic policy.

The major disadvantage of this kind of exploration is that a new differ-
ence vector for the action is drawn in every time step. This leads to a
very noisy trajectory and therefore to a very noisy gradient estimate.
One can introduce a probability of changing the actions for every time
step so that the actions are perturbed less frequently, but this also
hampers exploration and the use of stochastic policies.

Despite these problems, many current algorithms [Williams, 1992; The PG gradient is noisy due
to the kind of exploration usedPeters and Schaal, 2008b; Riedmiller et al., 2007b] use this kind of

Gaussian, action-perturbing exploration. Various approaches have been
proposed to reduce the high variance that stems from this kind of ex-
ploration [Baxter and Bartlett, 2000; Aberdeen, 2003; Peters and Schaal,
2006; Sutton et al., 2000]. However, none of these methods address
the underlying cause of the high variance, which is that repeatedly
sampling from a probabilistic policy has the effect of injecting noise
into the gradient estimate at every time step. Furthermore, the variance
increases linearly with the length of the history [Munos and Littman,
2006], since each state may depend on the entire sequence of previous
samples.

An alternative to the action-perturbing exploration is to directly manip- Exploration can also be done
by perturbing the parametersulate the parameters θ of the policy. This is done in FD methods. Here

a certain ∆ is used to change a single parameter at a time (FD) or all
parameters simultaneously (SPSA) at the beginning of an episode and
execute the agent with this new parameter set. This eliminates the noise
in the gradient estimate from the above exploration method, but it has

24 state of the art

Figure 3.5: ll
Neural Network with

state dependent
stochastic output. The

output of the output
neurones is perturbed
by normal distributed

noise. The
deterministic output

of the network is
thereby the mean of

the normal
distribution. The

standard deviations
are the output of

additional output
neurones. A good

choice for the
standard deviations is
therefore achieved by

setting the right
weights/parameters in

the network. This is
how the controller is

defined for PG
methods in the state

dependent
exploration noise case.

other drawbacks. First of all, the exploration space is bigger. An agent
usually has more parameters than action dimensions, most of the time
several orders of magnitudes bigger. This is not so much a drawback for
finding the right parameters, because the search space is for both the
final parameter set, but if one tracks the amount of exploration for every
exploration dimension the effort for doing exploration in parameter
space is bigger. Second, learning in stochastic environments is more
difficult for FD methods than for standard PG. This effect was however
overestimated as also our experiments show. Otherwise a stochastic
policy can easily be realised by using an agent with state dependent
(exploration) noise as used for standard PG methods, but in contrast
this noise isn’t used for exploration anymore.

3.2.3 Exploring in Evolution

Exploration in Evolution is similar to the FD exploration in the way that
the parameter set is changed at the beginning of an episode and then
is evaluated. In contrast to FD in evolution a population of solution
candidates (individuals) is used. The single parameter sets (called
genomes) are derived by adding a normal distributed difference vector
to the parent parameter sets. In evolution no gradient is estimated.
The n best individuals are taken over and the exploration continues
from these parameter sets on. But the main difference that makes
evolution superior over FD methods in most cases is that they use
normal distributed changes in the parameter sets rather then using
fixed ∆ changes.

3.2.4 Exploring in Parameter Space

Some of the mentioned methods above used exploration in action spaceExploration in parameter space
is more robust while some used exploration in parameter space. While studying the

different methods in practice it can be roughly observed that the param-

3.2 exploration 25

eter exploring methods are learning more robustly. That is especially
true for the evolutionary methods. On the other hand, they are more
prone to noise in the environment and tend more to overfitting. Also
it is a bit more involved to learn stochastic policies with parameter
exploration.

The simplest way of exploring in parameter space is the FD or SPSA
way. But one quickly realises that the uniformly perturbation of FD
methods is not sufficient. The methods are likely to get stuck in local
minima or have problems with highly correlated search spaces. The
approach of ES is much more robust against these problems and in the
case of CMA-ES it is one of the top methods of solving complex robotic
tasks. CMA-ES on the other hand has the problem that the genome We concentrate in methods

without covariance matrix for
exploration

grows quadratically with the number of problem parameters due to
the covariance matrix that is used for exploration. We are especially
interested in high-dimensional learning tasks like the later explained
grasping with a 7-DoF arm or the robust standing of a 11-DoF hu-
manoid robot. Controllers are likely to have over 1000 parameters and
so we refer to the local mutation operator of ES. Here we already have
the possibility of the learning method to adjust a normal distribution
to the properties in each problem dimension separately.

In our method we will derive the update rules from the basic setting
of RL in contrast to ES. In principle the algorithm will fall in the class
of FD, but will use normal distributed independent perturbations as is
usual in PG and ES. We will show that this combination of 3 worlds
has several advantages over the state of the art in robot behavioural RL.

An interesting alternative to the black and white distinction between State Dependent Exploration
as an alternativeexploration in action and in parameter space is the so called State

Dependent Exploration (SDE) [Rückstieß et al., 2008]. Here one can
use standard PG methods with all the recently developed improve-
ments without change. The exploration however is done by an extra
exploration module that is itself parameterised and generates difference
vectors that are a function of the state. The parameters of the explo-
ration module can be learned similar to PGPE. The main advantages
are (i) that one can use the standard PG methods and just replace the
exploration; (ii) The exploration module can often be parameterised
with less parameters than the controller of the agent (but not too small
to have still complex exploration).

The disadvantages are that one cannot use this method for non-differentiable
controllers anymore and that one needs to propagate the log-likelihoods
via back-propagation or similar gradient decent methods through the
controller.

To date the two methods have not been compared directly, but from per-
sonal communication we assume that SDE is superior in flat controllers
with a low action to parameter dimension ratio, while PGPE is superior
in deep controller architectures with a higher action to parameter di-
mension ratio. Exploring the properties of the different exploration and
learning strategies is in our opinion an interesting field of future work.

4PA RT S U M M A RY A N D C O N C L U S I O N

We motivated the use of RL in robotics in Chapter 1, especially the use
of PG. We motivated the use of parameter based exploration and gave
considerations of the advantages and drawbacks.

In Chapter 2, we explained the MDP/POMDP setting RL takes place in.
We highlighted the difference between episodic and ongoing tasks/re-
wards.

In Chapter 3, we explained the classical RL methods SARSA and Q-
Learning, artificial evolution with the specific algorithms GA and ES
and some insights in SANE, ESP and CoSyNE. We showed how PG
methods work starting with FD over SPSA to REINFORCE and gave
some insights into GPOMDP and NAC.

We highlighted how exploration works in the different kinds of ML
methods and we identified the two principal ways of exploration in PG:
exploration by perturbing the actions of the agent and exploration by
perturbing the parameters of the agent.

We gave a short discussion in several passages in this Part explaining
why exploring in parameter space is the better exploration strategy for
the field of RL we are interested in.

27

Part II

N E W C O N T R I B U T I O N

5PA R A M E T E R E X P L O R I N G P O L I C Y G R A D I E N T S

The core contribution of this thesis is the derivation of the new class The class of Parameter
Exploring Policy Gradientsof Policy Gradient (PG) methods called Parameter Exploring Policy

Gradients (PEPG). The defining property of all PEPG methods is that
they explore by using samples in parameter space and estimate a log-
likelihood gradient directly on parameter level. The basic method of
PEPGs is the so called Policy Gradients with Parameter-based Explo-
ration (PGPE) algorithm.

In this Chapter we derive the PGPE algorithm and its variants from the Goal: Deriving PGPE

general framework of episodic reinforcement learning in a Markovian
environment (see 2.1 for MDP and POMDP explanations). In doing
so we highlight the differences between PGPE (and its variants) and
standard policy gradient methods such as REINFORCE (see 3.1.3).
Consider an agent interacting with an environment. Denote the state of
the environment at time t as st and the action at time t as at. Because
we are interested in continuous state and action spaces (usually required
for control tasks), we represent both at and st with real valued vectors.
Each state–action pair gives the agent a scalar reward rt(at, st). The
agent’s actions stochastically depend on the current state and some real
valued parameter vector θ, with:

Def.: at, action
selection

at ∼ p(a|st,θ). (5.1)

We assume that the environment is Markovian, i.e. that the probability
distribution over the possible next states is conditionally independent
of all previous state–action pairs given the current one:

Def.: st+1, state
transition

st+1 ∼ p(s|st,at). (5.2)

We refer to a sequence h of state–action pairs of length T produced by
an agent as a history:

Def.: h, historyh = [s1:T ,a1:T]. (5.3)

Given the above formulation we can associate a cumulative reward
with each history h by summing over the rewards at each time step:

Def.: r, episodic
reward

r(h) =

T∑
t=1

rt. (5.4)

In this setting, the goal of reinforcement learning is to find the parame-
ters θ that maximise the agent’s expected reward

Def.: J, expected
reward

J(θ) =

∫
H
p(h|θ)r(h)dh. (5.5)

An obvious way to maximise J(θ) is to find ∇θJ and use it to carry out
gradient ascent. Noting that r(h) is independent of θ, and using the
standard identity

∇xy(x) = y(x)∇x logy(x),

31

32 parameter exploring policy gradients

we can write

∇θJ(θ) =

∫
H
p(h|θ)∇θ logp(h|θ)r(h)dh. (5.6)

Since the environment is Markovian, and the states are conditionally
independent of the parameters given the agent’s choice of actions, we
can write

p(h|θ) = p(s1)Π
T
t=1p(st+1|st,at)p(at|st,θ).

Substituting this into Eq. (5.6) yields

∇θJ(θ) =

∫
H
p(h|θ)

T∑
t=1

∇θ logp(at|st,θ)r(h)dh. (5.7)

Clearly, integrating over the entire space of histories is unfeasible, and
we therefore resort to sampling methods

∇θJ(θ) ≈ 1

N

N∑
n=1

T∑
t=1

∇θ logp(ant |snt ,θ)r(hn), (5.8)

where the histories hi are chosen according to p(hi|θ). The question
then is how to model p(at|st,θ). In policy gradient methods such as
REINFORCE the parameters θ are used to determine a probabilistic
policy

πθ(at|st) = p(at|st,θ).

A typical policy model would be a parametric function approximatorGradient estimation with
policy distribution whose outputs define the probabilities of taking different actions. In this

case the histories can be sampled by choosing an action at each time
step according to the policy distribution, and the final gradient is then
calculated by differentiating the policy with respect to the parameters.
However, sampling from the policy on every time step leads to a high
variance in the sample over histories, and therefore to a noisy gradient
estimate.

PGPE addresses the variance problem by replacing the probabilisticGradient estimation with
parameter distribution policy with a probability distribution over the parameters θ, i.e.

p(at|st,ρ) =

∫
θ
p(θ|ρ)δFθ(st),atdθ, (5.9)

where ρ are the parameters determining the distribution over θ, Fθ(st)

is the (deterministic) action chosen by the model with parameters θ
in state st, and δ is the Dirac delta function. The advantage of thisOne sample per history reduces

variance approach is that the actions are deterministic, and an entire history
can therefore be generated from a single parameter sample. This re-
duction in samples-per-history is what reduces the variance in the
gradient estimate (see [Sehnke et al., 2010a]). As an additional benefitDirect parameter

perturbations allow the use of
non-differentiable controllers

the parameter gradient is estimated by direct parameter perturbations,
without having to backpropagate any derivatives, which allows the use
of non-differentiable controllers.

The expected reward with a given ρ is

J(ρ) =

∫
Θ

∫
H
p(h,θ|ρ)r(h)dhdθ. (5.10)

5.1 unimodal parameter distributions—pgpe 33

Differentiating this form of the expected return with respect to ρ and
applying the log trick as before we obtain

∇ρJ(ρ) =

∫
Θ

∫
H
p(h,θ|ρ)∇ρ logp(h,θ|ρ)r(h)dhdθ. (5.11)

Noting that h is conditionally independent of ρ given θ, we have

p(h,θ|ρ) = p(h|θ)p(θ|ρ)

and therefore

∇ρ logp(h,θ|ρ) = ∇ρ logp(θ|ρ),

we have

∇ρJ(ρ) =

∫
Θ

∫
H
p(h|θ)p(θ|ρ)∇ρ logp(θ|ρ)r(h)dhdθ, (5.12)

where p(h|θ) is the probability distribution over the parameters θ and
ρ are the parameters determining the distribution over θ. Integrating
over the entire space of histories and parameters is again unfeasible,
and we therefore resort to sampling methods. This is done by first
choosing θ from p(θ|ρ), then running the agent to generate h from
p(h|θ):

Sampling with
parameter distribution

∇ρJ(ρ) ≈
1

N

N∑
n=1

∇ρ logp(θ|ρ)r(hn). (5.13)

5.1 unimodal parameter distributions—pgpe

In the original formulation of PGPE, ρ consisted of a set of means {µi}

and standard deviations {σi} that determine an independent normal
distribution for each parameter θi in θ of the form

p(θi|ρi) = N(θi|µi,σ2i).

Some rearrangement gives the following forms for the derivative of
logp(θ|ρ) with respect to µi and σi:

PGPE update rules∇µi logp(θ|ρ) =
(θi − µi)

σ2i
,

∇σi logp(θ|ρ) =
(θi − µi)

2 − σ2i
σ3i

, (5.14)

which can then be substituted into (5.13) to approximate the µ and
σ gradients that gives the PGPE update rules. Note the similarity to
REINFORCE [Williams, 1992]. But in contrast to REINFORCE, θ defines
the parameters of the model, not the probability of the actions.

5.1.1 Sampling with a baseline

Given enough samples, Eq. (5.13) will determine the reward gradient to
arbitrary accuracy. However each sample requires rolling out an entire
state–action history which is expensive. Following [Williams, 1992], Moving average baseline

we obtain a cheaper gradient estimate by drawing a single sample θ
and comparing its reward r to a baseline reward b given by a moving
average over previous samples. Intuitively, if r > b we adjust ρ so as to
increase the probability of θ, and r < b we do the opposite.

34 parameter exploring policy gradients

If, as in [Williams, 1992], we use a step size αi = ασ2i in the direction of
positive gradient (where α is a constant) we get the following parameter
update equations:

Baseline PGPE update

rules

∆µi = αµ(r− b)(θi − µi),

∆σi = ασ(r− b)
(θi − µi)

2 − (σi)
2

σi
. (5.15)

5.1.2 Symmetric sampling

While sampling with a baseline is efficient and reasonably accurate for
most scenarios, it has several drawbacks. In particular, if the reward
distribution is strongly skewed then the comparison between the sample
reward and the baseline reward is misleading. A more robust gradient
approximation can be found by measuring the difference in reward
between two symmetric samples on either side of the current mean.
That is, we pick a perturbation ε from the distribution N(0,σ), then
create symmetric parameter samples

Def.: Symmetric
Samples

θ+ = µ+ ε, θ− = µ− ε.

Defining r+ as the reward given by θ+ and r− as the reward given by
θ−, we can insert the two samples into Eq. (5.13) to obtain

∇µiJ(ρ) ≈
εi(r

+ − r−)

2(σi)2
, (5.16)

which resembles the central difference approximation used in finite dif-
ference methods. Using the same step sizes as before gives the following
update equation for the µ terms

SyS-PGPE µ update
rule

∆µi =
αµεi(r

+ − r−)

2
. (5.17)

The updates for the standard deviations are more involved. As θ+ and
θ− are by construction equally probable under a given σ, the difference
between them cannot be used to estimate the σ gradient. Instead we
take the mean (r+ + r−)/2 of the two rewards and compare it to the
baseline reward b. This approach yields

SyS-PGPE σ update

rule

∆σi = ασ

(
r+ + r−

2
− b

)(
ε2i − (σi)

2

σi

)
. (5.18)

Compared to the method in Section 5.1.1, symmetric sampling removes
the problem of misleading baselines, and therefore improves the µ
gradient estimates. It also improves the σ gradient estimates, since
both samples are equally probable under the current distribution, and
therefore reinforce each other as predictors of the benefits of altering σ.
Even though symmetric sampling requires twice as many histories per
update, our experiments show that it gives a considerable improvement
in convergence quality and time.

5.1 unimodal parameter distributions—pgpe 35

Algorithm 6 The PGPE algorithm with Reward Normalisation and
Symmetric Sampling. T and S are P×N matrices with P the number
of parameters and N the number of histories. The baseline is updated
accordingly after each step. α is the learning rate or step size.

Initialise µ to µinit
Initialise σ to σinit

while TRUE do
for n = 1 to N do

draw perturbation εn ∼ N(0, Iσ2)
θ+,n = µ+ εn

θ−,n = µ− εn

evaluate r+,n = r(h(θ+,n))

evaluate r−,n = r(h(θ−,n))

if r+,n > m then m := r+,n

if r−,n > m then m := r−,n

end for

T = [tij] ij with tij := ε
j
i

S = [sij] ij with sij :=
(εji)

2−σ2i
σi

rT =
[

(r+,1−r−,1)
2m−r+,1−r−,1 , ..., (r+,N−r−,N)

2m−r+,N−r−,N

]T

rS =
[

(r+,1+r−,1−2b
2(m−b)), ..., ((r+,N+r−,N−2b

2(m−b))
]T

update µ = µ+αTrT
update σ = σ+αSrS
update baseline b accordingly

end while

5.1.3 Reward Normalisation

As a final refinement, we make the step size independent from the
(possibly unknown) scale of the rewards by introducing a normalisation
term. Let m be the maximum reward the agent can receive, if this Normalising gradient with the

maximal (observed) rewardis known, or the maximum reward received so far if it is not. We
normalise the µ updates by dividing them by the difference between m
and the mean reward of the symmetric samples, and we normalise the
σ updates by dividing by the difference between m and the baseline b,
yielding

Standard PGPE

update rules

∆µi =
αµεi(r

+ − r−)

2m− r+ − r−
,

∆σi =
ασ

m− b

(
r+ + r−

2
− b

)(
(εi)

2 − (σi)
2

σi

)
, (5.19)

where

εi
def
= θi − µi.

36 parameter exploring policy gradients

5.2 multimodal parameter distributions — multipgpe

In MultiPGPE ρ consists of a set of mixing coefficients {πki }, means
{µki } and standard deviations {σki } defining an independent mixture of
Gaussians for each parameter θi:

p(θi|ρi) =

K∑
k=1

πkiN(θi|µ
k
i , (σki)

2), (5.20)

where

K∑
k=1

πki = 1, πki ∈ [0, 1] ∀i,k.

The derivatives of logp(θ|ρ) are now as follows:

MultiPGPE update

rules

∇πki logp(θ|ρ) = lki ,

∇µki logp(θ|ρ) = lki
(θi − µki)

(σki)
2

,

∇σki logp(θ|ρ) = lki
(θi − µki)

2 − (σki)
2

(σki)
3

, (5.21)

where

lki
def
=

N(θi|µ
k
i , (σki)

2)

p(θi|ρi)
.

These can again be substituted into Eq. (5.13) to approximate ∇ρJ(ρ).

We use a fix number of 10 Gaussians per mixture. The µ and σ of
each Gaussian is chosen in a way that the mixture forms a uniform
distribution over the search interval like shown in Fig. 5.1.

5.2.1 Simplified MultiPGPE

From the sum and product rules follows that sampling from a mixture
distribution like defined in (5.20) is equivalent to first choosing a com-

Figure 5.1: ll
10 Gaussians forming

the closest possible
approximation to an
equal distribution in

the interval -4 – 4.

5.2 multimodal parameter distributions — multipgpe 37

ponent according to the probability distribution defined by the mixing
coefficients, then sampling from that component:

p(θi|ρi) =

K∑
k=1

p(k|π)N(θi|µ
k
i , (σki)

2),

if we define πk = p(k|π) as the prior probability of picking the kth

Gaussian.

This suggests the following simplification to the MultiPGPE gradient
calculations: first pick k with probability πki , then set

Simplificationlki = 1, lk
′
i = 0 ∀k ′ 6= k.

Substituting into Eq. (5.21) we see that

∇πki logp(θ|ρ) = 1

and the other gradients reduce to their unimodal form in Eq. (5.36).

As well removing the computational effort of calculating the lki terms,
this simplification has other advantages. First, it tends to push the
mixing coefficients towards one or zero, which prevents multiple com-
ponents with similar means and variances shadowing each other, and
speeds up the decision between overlapping components (see Fig. 6.6).
Second, as we will see in Section 5.2.3, it allows us to improve conver- Simplification allows

Symmetric Sampling in
MultiPGPE

gence by picking symmetric parameter samples from either side of the
mean of the chosen component.

5.2.2 Sampling with a baseline

As for PGPE we can use a step size αi = ασ2i in the direction of
positive gradient (where α is a constant) in combination with a baseline
b. In doing so we get the following parameter update equations for
MultiPGPE:

MultiPGPE baseline

update rules

∆πki = απ(r− b)lki ,

∆µki = αµ(r− b)lki (θi − µki),

∆σki = ασ(r− b)lki
(θi − µki)

2 − (σki)
2

σki
. (5.22)

5.2.3 Symmetric sampling

For the simplified version of MultiPGPE we also can use SyS. That
is, we pick again a perturbation ε from the distribution N(0,σ), then
create symmetric parameter samples

θ+ = µ+ ε, θ− = µ− ε.

This is only possible for the simplified version of MultiPGPE described
in Section 5.2.1, since the full mixture distribution used for MultiPGPE
is not symmetrical. Again defining r+ as the reward given by θ+ and
r− as the reward given by θ−, we can insert the two samples into
Eq. (5.13) and make use of Eq. (5.21) with lki = 1 to obtain

∇µki J(ρ) ≈
εi(r

+ − r−)

2(σki)
2

, (5.23)

38 parameter exploring policy gradients

which resembles again the central difference approximation used in
finite difference methods. Using the same step sizes as before gives the
following update equation for the µ terms

Simplified MultiPGPE
µ update rule

∆µki =
αµεi(r

+ − r−)

2
. (5.24)

Equivalently to the unimodal case θ+ and θ− are by construction
equally probable under a given σ and result from the same distribution
with mixing coefficient π, the difference between them cannot be used
to estimate the σ or π gradient. Instead we take the mean (r+ + r−)/2

of the two rewards and compare it to the baseline reward b. This
approach yields

Simplified MultiPGPE

σ update rule

∆σki = ασ

(
r+ + r−

2
− b

)(
ε2i − (σki)

2

σki

)
,

∆πki = απ

(
r+ + r−

2
− b

)
. (5.25)

Note again that SyS is only possible for the simplified version of Mul-
tiPGPE. This is the reason that no lki term appears in above equations
because it is assumed to be 1.

5.2.4 Reward Normalisation

Also for the multimodal case it is important to make the step sizeNormalising gradient with
maximal (observed) reward independent from the (possibly unknown) scale of the rewards by

introducing a normalisation term. Let m be the maximum reward the
agent can receive, if this is known, or the maximum reward received
so far if it is not. We normalise the µ updates by dividing them by the
difference between m and the mean reward of the symmetric samples,
and we normalise the π and σ updates by dividing by the difference
between m and the baseline b, yielding

Standard MultiPGPE

update rules

∆πki =
απ

m− b

(
r+ + r−

2
− b

)
,

∆µki =
αµε

k
i (r

+ − r−)

2m− r+ − r−
,

∆σki =
ασ

m− b

(
r+ + r−

2
− b

)(
(εki)

2 − (σki)
2

σki

)
, (5.26)

where

εki
def
= θi − µki .

For non-simplified MultiPGPE the reward normalisation is applied to
the baseline sampling of Sec. 5.2.2:

∆πki = απl
k
i
r− b

m− b
,

∆µki = αµl
k
i
r− b

m− b
(θi − µki)

∆σki = ασl
k
i
r− b

m− b

(θi − µki)
2 − (σki)

2

σki
. (5.27)

5.2 multimodal parameter distributions — multipgpe 39

Algorithm 7 The simplified MultiPGPE algorithm with Reward Nor-
malisation and Symmetric Sampling. T and S are P×N matrices with P
the number of parameters and N the number of histories. The baseline
is updated accordingly after each step. α is the learning rate or step
size.

Initialise π to πinit
Initialise µ to µinit
Initialise σ to σinit

while TRUE do
for n = 1 to N do

draw Gaussians kn ∼ p(k|π)

draw perturbation εn ∼ N(0, Iσ2k)

θ+,n = µk + εn

θ−,n = µk − εn

evaluate r+,n = r(h(θ+,n))

evaluate r−,n = r(h(θ−,n))

if r+,n > m then m := r+,n

if r−,n > m then m := r−,n

end for

T = [tij] ij with tij := ε
j
i

S = [sij] ij with sij :=
(εji)

2−σ2
i,kj
i

σ
i,kj
i

rT = [
(r+,1−r−,1)
2m−r+,1−r−,1 , . . . , (r+,N−r−,N)

2m−r+,N−r−,N]T

rS = [
(r+,1+r−,1−2b
2(m−b)), . . . , ((r+,N+r−,N−2b

2(m−b))]T

update π = π+αrS
update µ = µ+αTrT
update σ = σ+αSrS
update baseline b accordingly

end while

40 parameter exploring policy gradients

Figure 5.2: ll
Convergence example

of PGPE. The green
markers are the

samples. The magenta
markers are the means

over the learning
process. One can

nicely see that PGPE
goes directly for the

global optima
ignoring all local

optima on the way.

Figure 5.3: ll
Convergence example

of MultiPGPE. The
green markers are the
samples. The magenta
markers are the means

over the learning
process. One can see

that MultiPGPE
conducts a global
search eventually

condensing on the
global optima.

5.3 infinite horizon pgpe 41

5.3 infinite horizon pgpe

In the original formulation of PGPE, ρ consisted of a set of means PGPE is episodic

{µi} and standard deviations {σi} that define the parameters θ chosen
from ρ at the beginning of each episode. The original PGPE algorithm
is therefore strictly episodic. To apply PGPE to infinite horizon set-
tings, this mechanism has to be changed. In so-called Infinite Horizon Simultaneous exploration and

learning for Infinite Horizon
PGPE

PGPE (IHPGPE), changing the parameters and learning are carried out
simultaneously, while interacting with the environment.

The agent still receives a scalar reward rt(at, st) for each state–action
pair (at, st). However this reward is no longer summed over an episode.
Furthermore, the agent’s actions now depend stochastically on a real
valued parameter vector θ that changes over time, as well as on the
current state. Eq. (5.1) therefore changes to:

Def.: at,
time-dependent
action selection

at ∼ p(a|st,θt). (5.28)

The state transition is independent of θ, so Eq. (5.2) is also valid for
IHPGPE. Since we no longer have a cumulative reward over an episode,
and the parameter set is time-dependent, the expected reward changes
to:

Time-dependent
expected reward

J(θ) =

T∑∫
a
p(a|st,θt)rt(at, st)da. (5.29)

Note that Eq. (5.29) does not take into account that the reward rt at
time step t was also earned by earlier state action-pairs. The backward Eligibility traces

dependency of rewards is well known in RL, and the standard solution
is to use Eligibility Traces (ET, [Sutton and Barto, 1998] Ch.7). With an ET
one defines a decay constant γ with 0 < γ < 1. The so-called backward
view of ET is that the influence of past state action pairs, and therefore
the credit assignment to past θs, decays over time with:

rθu = rtγ
t−u, (5.30)

where t is the current time step and u is a previous time step.

The forward view of ET is obtained by summing over all weighted future
rewards for the state action pair a certain time step:

Def.: ru, weighted
future reward

ru = (1− γ)

T∑
t=u

rtγ
t−u. (5.31)

The term (1− γ) is used for normalisation, because of the following
statement:∞∑

x=0

γx → 1

1− γ
.

If we substitute this definition of credit assignment into (5.29) we get:

J(θ) = (1− γ)

T∑
u=0

T∑
t=u

∫
a
p(a|su,θu)rt(at, st)γt−uda. (5.32)

By following the same argumentation that led to Eq. (5.13) for the
episodic case we get:

∇ρJ(ρ) ≈
1

T
(1− γ)

T∑
u=0

T∑
t=u

∇ρu logp(θu|ρu)rtγ
t−u. (5.33)

42 parameter exploring policy gradients

In normal PGPE the parameters θt are drawn them from the distribu-
tion p(θ|ρ) at the beginning of an episode. In the infinite horizon case
the parameters θt can be drawn consecutively as follows:

Drawing parameters
consecutively

p(θi,t+1|ρi,t) =

N(θi,t+1|µi,t,σ2i,t) if randi,t < c,

θi,t else.
(5.34)

where randi,t < c is the likelihood of changing a single parameter at a
given time step. Most commonly a random number from the interval
[0 . . . 1[is drawn and compared to a constant 0 6 c < 1. The constant cPerturbation frequency

should be chosen so that the expected frequency of changing a single
parameter is in the same order of magnitude as an episode length
would be in a similar episodic task definition.

Alternatively, one could draw all parameters at a certain time step
simultaneously:

Drawing parameters
simultaneously

p(θt+1|ρt) =

N(θt+1|µt,σ2t) if randt < c,

θt else.
(5.35)

This is equivalent to subdividing the state–action sequence into artificial
episodes, which is the standard way of obtaining fitness estimates for
evolutionary algorithms in an infinite horizon setting. Given that PGPE
does not have individuals or candidate solutions that must have a fixed
genome or parameter set over the evaluation time, it seems preferable
to perturb the parameters consecutively. The main drawback of using
simultaneous perturbations is that every artificial episode starts with
a different initial condition, namely the end result of the behaviour of
the last parameter set. This introduces large amounts of noise to the
evaluation.

During asynchronous perturbation the behaviour changes slightly but
continuously. This means that the final reward is much closer to the
reward that would be obtained with a fixed parameter set, thereby
drastically reducing the noise in evaluation.

Some rearrangement yields the following forms for the derivative of
logp(θu|ρu) with respect to µi,u and σi,u:

IHPGPE derivatives ∇µi,u logp(θu|ρu) =
(θi,u − µi,u)

σ2i,u
,

∇σi,u logp(θu|ρu) =
(θi,u − µi,u)2 − σ2i,u

σ3i,u
, (5.36)

which can then be substituted into (5.33) to approximate the µ and σ
gradients that gives the IHPGPE update rules.

5.3.1 Simplified Infinite Horizon PGPE

We assume that c is sufficiently small that the average perturbation
frequency per parameter is comparable with the episode length in an
episodic version of the same task. In this case, one can observe that theSimplification: Ignoring

eligibility traces parameters remain roughly constant until far enough in the future that
the contributions of the single summands of Eq. (5.31) are negligible.

5.3 infinite horizon pgpe 43

One can therefore assume that the impact of the eligibility traces is not
very large (or to put it another way, that the error caused by ignoring
the effect of previous parameter values on the current reward is small,
since the parameters are changing slowly).

Furthermore, tracking the whole parameter set over several time steps
and calculating the full eligibility trace over these sets is computation-
ally costly.

We therefore suggest a simplified version of IHPGPE that neglects the
eligibility traces and assumes that c and γ are chosen in a ratio that the
negative effect of doing so can be neglected.

We can then use Eq. (5.29) directly as the expected reward, allowing us
to derive the following gradient estimate:

IHPGPE gradient
estimate

∇ρJ(ρ) ≈
1

T

T∑
∇ρt logp(θt|ρt)rt. (5.37)

5.3.2 Sampling with a baseline

For the same reasons given in Section 5.1.1, we obtain a cheaper gradient
estimate by using a single parameter set θ at time step t and comparing
its reward rt to a baseline reward b. Again intuitively, if rt > b we Moving average baseline

adjust ρ so as to increase the probability of θt, and rt < b we do the
opposite. Again we use a step size αi = ασ2i in the direction of positive
gradient (where α is a constant). This gives the following parameter
update equations for simplified IHPGPE:

IHPGPE baseline

update rules

∆µi = αµ(rt − b)(θi,t − µi,t),

∆σi = ασ(rt − b)
(θi,t − µi,t)

2 − (σi,t)
2

σi,t
. (5.38)

5.3.3 Reward Normalisation

We can once again make the step size independent of the (possibly Normalising gradient with
maximal (observed) rewardunknown) scale of the rewards by introducing a reward normalisation

term. Let mt be the maximum reward the agent can receive at time step
t, if this is known, or the maximum reward received so far if it is not.
We normalise the µ and σ updates by dividing them by the difference
between m and the baseline b, yielding

Normalised baseline

IHPGPE update rules

∆µi = αµ
rt − b

mt − b
(θi,t − µi,t)

∆σi = ασ
rt − b

mt − b

(θi,t − µi,t)
2 − (σi,t)

2

σi,t
. (5.39)

44 parameter exploring policy gradients

Algorithm 8 The simplified IHPGPE algorithm with Reward Normali-
sation. T and S are P×N matrices with P the number of parameters
and N the number of histories. The baseline is updated accordingly
after each step. α is the learning rate or step size.

Initialise µ to µinit
Initialise σ to σinit

while TRUE do
for i = 1 to number of parameters do

if rand ∼ [0 . . . 1[< c

draw perturbation εi ∼ N(0,σ2i)
θi = µi + εi

end for
evaluate r = r(h(θ))

if r > m then m := r

update µ = µ+α r−bm−b (θ− µ)

update σ = σ+α r−bm−b
I[(θ−µ)2−(σ)2]

σ .
update baseline b accordingly

end while

6P G P E P R O P E RT I E S

6.1 relationship to other algorithms

In this section we attempt to evaluate the differences between PGPE,
SPSA, ES and REINFORCE. Figure 6.1 shows an overview of the re-
lationship of PGPE to the other compared learning methods. Starting
with each of the other algorithms, we incrementally alter them so that Going from SPSA, ES,

Reinforce to PGPEtheir behaviour (and performance) becomes closer to that of PGPE. In
the case of SPSA we end up with an algorithm identical to PGPE; for
the other methods, the transformed algorithm is similar but still inferior
to PGPE. For details of the used benchmarks please refer to Chapter 8

of Part "Results and Comparisons".

Figure 6.1: ll
Relationship of PGPE
to other stochastic
optimisation methods.

6.1.1 From SPSA to PGPE

Three changes are required to transform SPSA into PGPE. First, the
uniform sampling of perturbations is replaced by Gaussian sampling.
Second, the finite differences gradient is correspondingly replaced by Changes needed to go from

SPSA to PGPEthe likelihood gradient. Third, the variances of the perturbations are
turned into free parameters and trained with the rest of the model.
Initially the Gaussian sampling is carried out with fixed variance, just
as the range of uniform sampling is fixed in SPSA.

Figure 6.2 shows the performance of the three variants of SPSA on the
walking task. Note that the final variant is identical to PGPE (solid line).
For this task the main improvement results from the switch to Gaus-
sian sampling and the likelihood gradient (circles). Adding adaptive Impact of changes

45

46 pgpe properties

Figure 6.2: ll
Three variants of

SPSA on the FlexCube
walking task: the

original algorithm
(SPSA Orig.), the

algorithm with
normally distributed

sampling and
likelihood gradient

(SPSA LikeGrad.), and
with adaptive variance

(SPSA LocExp.). All
plots show the mean

and half standard
deviation of 40 runs.

variances actually gives slightly slower learning at first, although both
methods converge later on.

The original parameter update rule for SPSA is

θi,t+1 = θi,t −α
y+ − y−

2εt
(6.1)

with y+ = r(θ+∆θ) and y− = r(θ−∆θ), where r(θ) is the evaluation
function and ∆θ is drawn from a Bernoulli distribution scaled by the
time dependent step size εt, i.e. ∆θi,t = εt rand(−1, 1). In addition,
a set of meta-parameters is used to help SPSA converge. The step
size ε decays according to εt = ε0

tγ with 0 < γ < 1. Similarly, the
step size α decreases over time with α = a/(t+A)E for some fixed
a, A and E [Spall, 1998a]. The choice of initial parameters ε0,γ, a, A
and E is critical to the performance of SPSA. In [Spall, 1998b] some
guidance is provided for the selection of these coefficients (note that
the nomenclature differs from the one used here).

To switch from uniform to Gaussian sampling we simply modify theFrom uniform to Gaussian
sampling perturbation function to ∆θi,t = N(0, εt). We then follow the derivation

of the likelihood gradient outlined in Section 5.1, to obtain the same
parameter update rule as used for PGPE (Eq. (5.22)). The correspon-Including standard deviation

update rule dence with PGPE becomes exact when we calculate the gradient of
the expected reward with respect to the sampling variance, giving the
standard deviation update rule of Eq. (5.22).

As well as improved performance, the above modifications greatlyReduction of meta parameters
from 6 to 3 for going from

SPSA to PGPE
reduce the number of hand-tuned meta-parameters in the algorithm,
leaving only the following: a step size αµ for updating the parameters,
a step size ασ for updating the standard deviations of the perturbations
and an initial standard deviation σinit. We found that the parameters
αµ = 0.2, ασ = 0.1 and σinit = 2.0 worked very well for a wide variety
of tasks.

6.1 relationship to other algorithms 47

Figure 6.3: ll
Three variants of ES
applied on the
FlexCube walking
task: the original
algorithm (ES
Original),
derandomised ES (ES
Derandom) and
gradient following (ES
Gradient). PGPE is
shown for reference.
All plots show the
mean and half
standard deviation of
40 runs.

6.1.2 From ES to PGPE

We now examine the effect of two modifications that bring ES closer to
PGPE. First, we switch from standard ES to derandomised ES [Hansen
and Ostermeier, 2001], which somewhat resembles the gradient-based Changes needed to go from ES

to PGPEvariance updates found in PGPE. Then we change from population-
based search to following a likelihood gradient. The results are plotted
in Figure 6.3.

As can be seen, both modifications bring significant improvements,
although neither can match PGPE. While ES performs well initially, it
is slow to converge to good optima. Partly this is because, as well as Impact of changes

having stochastic mutations, ES has stochastic updates to the standard
deviations of the mutations and the coupling of these terms slows down
convergence. Derandomised ES addresses that problem by using a de-
terministic standard deviation update rule instead, based on the change
in parameters between the parent and child. Population-based search
has advantages in the early phase of search, when broad, relatively
undirected exploration is desirable. This is particularly true for the
multimodal fitness spaces typical of realistic control tasks. However in
later phases convergence is usually more efficient with gradient based
methods. Applying the likelihood gradient, the ES parameter update
rule becomes

∆θi = α

M∑
m=1

(rm − b)(ym,i − θi), (6.2)

where M is the number of samples and ym,i is parameter i of sample
m.

6.1.3 From REINFORCE to PGPE

We previously asserted that the lower variance of PGPE’s gradient
estimates is partly due to the fact that PGPE requires only one parame-
ter sample per history, whereas REINFORCE requires samples every

48 pgpe properties

Figure 6.4: ll
REINFORCE applied
on the pole balancing

task, with various
action perturbation
probabilities (1, 0.5,

0.25, 0.125). PGPE is
shown for reference.

All plots show the
mean and half

standard deviation of
40 runs.

time step. This suggests that reducing the frequency of REINFORCEDo less frequent perturbations
improve REINFORCE? perturbations should improve its gradient estimates, thereby bringing

it closer to PGPE.

Fig. 6.4 shows the performance of episodic REINFORCE with a pertur-
bation probability of 1, 0.5, 0.25, and 0.125 per time step. In general,
performance improved with decreasing perturbation probability. How-
ever the difference between 0.25 and 0.125 is negligible. This is becauseReducing policy perturbation

frequency constrains
exploration

reducing the number of perturbations constrains the range of explo-
ration at the same time as it reduces the variance of the gradient, leading
to a saturation point beyond which performance does not increase.

Note that the above trade off does not exist for PGPE, because a single
perturbation of the parameters can lead to a large change in the overall
behaviour.

A related approach is taken in [Rückstieß et al., 2008] where the ex-State Dependent Exploration
as alternative ploratory noise in each time step is replaced by a state-dependent

exploratory function (SDE) with additional parameters. Rather than
generating random noise in each time step, the parameters of this ex-
ploration function are drawn at the beginning of each episode and kept
constant thereafter, which leads to smooth trajectories and reduced vari-
ance. SDE allows to use any gradient estimation technique like Natural
Actor-Critic or the classical REINFORCE algorithm by Williams, while
still ensuring smooth trajectories, a property that PGPE naturally has.

6.2 central search property

An important difference between PGPE and MultiPGPE is that PGPE
uses a single normal distribution that is centred at the origin of the
search space while MultiPGPE uses a uniform distribution over a certain
search interval.

While assuming in PGPE the origin of the search space as good startingPGPE searches centred around
the origin of the search space point and global search can be substituted in growing the standard

deviation for exploration to a big enough amount is in a lot of cases a
very good and beneficial one, it can also be an disadvantage. We will

6.3 flat minima property 49

Figure 6.5: In the left figure an example reward function is shown (upper
curve, blue) with the baseline (red) that is to be expected by using
the normal distribution over the parameter θ (bold, green). The
expected reward frequency can be seen for the baselined reward
(lower curve, red). The reward integral is clearly bigger for the left
part of the centre between the two optima (black vertical line). This
gives an example why PGPE tends to be more attracted by broad
optima (in relation to the current search distribution). Broad optima
produce more better than baseline rewards than a narrow optima does.

see in section 8.1 that the use of an arbitrary distribution is beneficial
in at least two cases: (i) If there is a global structure in the search space
that leads the way to the global optima that is not near the origin of the
search space. (ii) If the search space is truly multi modal.

6.3 flat minima property

PGPE was originally designed for robot control. In this context it is
vitally important to find a solution that is robust to sensor noise and
environmental perturbations. A very general way to improve robustness Flat optima are more robust

against sensor noisein parametric models is to search for a flat optimum in parameter
space [Hochreiter and Schmidhuber, 1997] where the model remains
in a local optimum even if its parameters are slightly modified. PGPE
shows a strong tendency to favour flat optima over optima having a
very narrow attractor. The reason is that the weight perturbations used
by PGPE to determine the gradient approximate an integral over a
small region of weight space. This automatically favours flat optima, PGPE prefers flat optima

since the expected reward in broad flat regions is higher than in deep
narrow ones. See Fig. 6.5 for an example.

However, in some situations (such as the balancing solutions described
in Section 8.1.3) deep narrow optima should not be overlooked. In this User has no control over flat

optima property in PGPEcontext PGPE suffers because there is no way to control its preference
for flat minima. With MPGPE on the other hand, increasing the number
of Gaussians allows the algorithm to focus on smaller regions on
parameter space and therefore to find narrower and deeper optima.

In Section 8.1.1 PGPE was unable to find the global optima because of
the very broad local optimum at the edge of parameter space. It could
only escape the local optimum by greatly increasing the variances of its
single Gaussians per parameter. However, with such a large variance, it
would be very unlikely to collect enough samples from the attractors of

50 pgpe properties

Figure 6.6: The figures show an example of MultiPGPE (left) succeeding PGPE
(right) failing to find a global maximum in a multimodal landscape.
In both cases the different coloured lines show successive stages of
optimisation, in the order blue, green, red, aqua and purple. Mul-
tiPGPE adjusts the means of its components to match the locations
of the multiple optima, then homes in on the two global optima
by increasing the corresponding mixing coefficients and reducing
the variances, before eventually choosing one of them. PGPE, on
the other hand, can only move its single mean left or right. This
results in a much cruder search through parameter space, guided
by the average gradient leading up to both sides, rather than the
precise values at the individual peaks. This coarse-grained search
misses the global optimum and finds the broad local optimum at
the extreme left instead.

the global optima to motivate it to move towards them. For MPGPE,
using 10 Gaussians per mixture is sufficient to overcome this effect.

6.4 overestimation

PGPE substitutes a global search by growing each search standard
deviation to a suitable amount. Therefore PGPE could follow too fastPGPE follows the global

structure in the search space —
sometimes too fast

the direction given by the global structure in the search space, thereby
"overlooking" the global optimum. This drawback is illustrated in sec-
tion 8.1.3. While this problem can be handled by adjusting (decreasing)
the two step size parameters, it still conflicts with the convergence
speed.

MultiPGPE however is doing a global search and therefore adapting
an arbitrary search distribution to the gathered experience or reward.
It is obvious that an "overlooking" of the global optima is much less
likely for MultiPGPE because there is no fast directed adaptation of the
parameter set.

However, this global search comes at a price in terms of convergence
speed. This results in the fact that MultiPGPE is slower in convergence
where this global search is not needed, because the assumptions of
PGPE hold.

Also, how much Gaussians per mixture are optimal for a given problem
is a completely open question and very hard to estimate. We will use in
Part III "Results and Comparisons" 10 Gaussians per Mixture. This was
a good number to counter the overestimation problem, but maybe in
some examples this rather high number of Gaussians weakens the flat
optimum property too much and results in finding extreme, unstable
solutions.

6.4 overestimation 51

As we show in section 8.1 the slowdown is not large though. The con-
vergence speed up in cases where the PGPE assumptions do not hold
combined with the increase in the likelihood to find better solutions
in addition with the possibility to have control over the flat minimum
property should be worth the slowdown in convergence if the PGPE
assumptions hold.

On the other hand the PGPE algorithm is much simpler and (in cases
where the reward evaluation is not computational expensive) it is much
faster to compute.

7PA RT S U M M A RY A N D C O N C L U S I O N

In Chapter 5, we derived the PGPE algorithm and its variants Mul-
tiPGPE and IHPGPE from the general framework of episodic reinforce-
ment learning in a Markovian environment. In doing so, we highlighted
the differences between PGPE and standard policy gradient methods
such as REINFORCE. We showed how to use a baseline approach and
how to use symmetric sampling, if possible, for all variants of PGPE.
We also provided a Reward Normalisation scheme and simplifications
of the algorithms for every PGPE variant where such are useful. An
algorithm in pseudo code was provided for the best instance of every
PGPE variant.

MultiPGPE was designed to cope with one of the problems of PGPE,
namely that a normal distributed search is sometimes not sufficient
in highly multimodal search spaces. It uses a mixture of Gaussians to
counter this problem.

IHPGPE lifts PGPE’s restriction to episodic tasks, by using asynchronous
parameter perturbations over time and thus generating gradients con-
tinuously.

In Chapter 6, we evaluated the differences between PGPE, SPSA, ES, as
well as REINFORCE, and discussed the properties of PGPE.

To transform SPSA into PGPE, we identified three changes that are
required. First, the uniform sampling of perturbations is changed into a
Gaussian sampling, with the effect of the method being less likely to get
stuck in a local optima, and correlated parameters are easier to track.
Second, the finite difference gradient is replaced correspondingly by
the likelihood gradient, yielding a speed-up in convergence time. Third,
the variances of the perturbations are turned into free parameters and
trained with the rest of the model, thus enabling to learn effectively
in problems with parameters that are very different in their order of
magnitude.

We also examined the effect of two modifications that bring ES closer
to PGPE. First, we switch from standard ES to derandomised ES, re-
sembling the gradient based variance updates found in PGPE. Then we
change from population based search to following a likelihood gradient,
resulting in a speed-up in convergence time.

Another experiment was to change the exploration in REINFORCE
by transferring the explorational noise to the parameters of the con-
troller. This resulted in a speed-up in convergence time that couldn’t be
explained by the less frequent perturbations alone.

We discussed the use of SDE as an alternative to PGPE. With SDE one
can use standard PG methods with all the developed improvements of
the last years by still keeping the exploration parameter based.

We stated that the central search property of PGPE can be a drawback, if
several good optima lie in opposite directions. MultiPGPE can overcome
this problem.

53

54 part summary and conclusion

The flat optima property of PGPE was discussed, where we identified
a possible drawback. There is no control over the extend to which the
algorithm tends to converge to flat shallow optima instead of going for
narrow deep ones. We showed that MultiPGPE can overcome this issue
by using different numbers of Gaussians per mixture.

We also examined if PGPE tends to overestimate the gradients’ reach if
the global error surface constantly slopes in a certain direction, even-
tually moving too fast in parameter space and overlooking the global
optimum. It is open for discussion to which extent this problem is
mainly an artificial one.

Overall, PGPE and its variants are mathematically soundly based on
the principles of general Reinforcement Learning (in contrast to ES),
more flexible than Finite Difference methods and provide a less noisy
gradient compared to Policy Gradient methods. The idea is that PGPE
should conserve the robustness of ES, the simplicity in use of SPSA and
the flexibility of PG. The empirical data in PART III will tell us whether
these assumptions hold.

part summary and conclusion 55

Part III

R E S U LT S A N D C O M PA R I S O N S

8R O B O T I C B E N C H M A R K S

In the last chapters we introduced and derived the class of Parameter
Exploring Policy Gradients (PEPG) and discussed their properties. A
Machine Learning (ML) method that claims to be a general usable
Reinforcement Learning (RL) method has also to be tested on real life
problems and standard benchmarks.

In this chapter we show that PEPGs are indeed very effective, especially This chapter shows how
effective PEPGs arein high-dimensional robotic RL tasks. The main advantage of PGPE

in complex robotic RL tasks is that it does not have the same credit
assignment problem than standard PG methods have. By contrast,
a standard policy gradient method must first determine the reward
gradient with respect to the policy, then differentiate the parameters
with respect to that reward gradient resulting in two drawbacks. First,
it assumes that the controller is always differentiable with respect
to its parameters, which our approach does not. Second, it makes
optimisation more difficult since very different parameter settings can
determine very similar policies and vice-versa.

In the following we use benchmark scenarios with increasing complex- We compare PGPE and its
variants to several state of the
art RL methods

ity to show the properties of PGPE and its dis-/advantages compared
to other applicable fields in detail. These scenarios allow us to model
problems of similar complexity to today’s real-life RL problems [Müller
et al., 2007; Peters and Schaal, 2006]. For some experiments we also
compare the performance of PGPE with and without symmetric sam-
pling (SyS). In sections below we test PGPE therefore on several control
experiments and compare its performance with REINFORCE [Williams,
1992], Evolution Strategies (ES, [Schwefel, 1993]), Simultaneous Per-
turbation Stochastic Adaptation (SPSA, [Spall, 1998a]) and episodic
Natural Actor Critic (eNAC, [Peters and Schaal, 2008b,a]).

For all experiments we plot the agent’s reward against the number We compare by reward against
episodes (common ground for
all RL methods)

of training episodes. An episode is a sequence of T interactions of the
agent with the environment where T is fixed for each experiment
during which the agent makes one attempt to complete the task. For
all methods, the agent and the environment are reset at the beginning
of every episode.

For eNAC and REINFORCE we employed an improved algorithm
that perturbs the actions at randomly sampled time steps instead of
perturbing at every time step.

For all the ES experiments we used a local mutation operator. In most We compare mainly to ES with
local mutation operatorcases we did not examine correlated mutation and covariance matrix

adaptation-ES because both mutation operators add n(n− 1) strategy
parameters to the genome; given the more than 1000 parameters for the
largest controller, this approach would lead to a prohibitive memory
and computation requirement. In addition, the local mutation opera-
tor is more similar to the perturbations in PGPE, making it easier to
compare the algorithms.

59

60 robotic benchmarks

Figure 8.1: ll
The 2D Rastrigin

function for
~x ∈ (−5.12, 5.12). Note

the four global
maxima near the

corners and the single
global minimum in

the centre.

All plots are showing the average results of 40 independent runs if
not stated otherwise. All the experiments were conducted with hand-
optimised meta-parameters, including the perturbation probabilities
for eNAC and REINFORCE. For PGPE we used the meta-parameters
αµ = 0.2,ασ = 0.1 and σinit = 2.0 in all tasks.

8.1 standard benchmarks

In this section we use standard benchmarks to test the details of the
PGPE variants. The standard benchmarks are computationally less
complex than sophisticated robot simulations and can highlight distinct
features of the PGPE variants.

We used the Rastrigin and Ackley functions as well as the invertedWe compare the PGPE
variants with the Rastrigin,

Ackley and Inverted Pendulum
benchmarks

pendulum benchmark for demonstrating the differences in learning
behaviour between MultiPGPE and PGPE (we also used ES for compari-
son). We used 10 Gaussians per mixture for MultiPGPE and its variants
in all experiments.

The ship steering benchmark was used to investigate the differencesShip Steering is used to
evaluate SyS between PGPE with and without Symmetric Sampling (SyS).

We used the enhanced pole balancing benchmark for comparison withCompariing to eNAC and
REINFORCE with enhanced

Pole Balancing benchmark
eNAC and REINFORCE. This standard benchmark was already used
by [Riedmiller et al., 2007b] for evaluating eNAC.

We will use the following abbreviations throughout to distinguish the
PGPE algorithm variants:

• PGPE: standard PGPE (Sec. 5.1) with baseline sampling (Sec. 5.1.1)

• SyS-PGPE: PGPE (Sec. 5.1) with symmetric sampling (Sec. 5.1.2)

• MPGPE: standard MultiPGPE (Sec. 5.2) with baseline sampling
(Sec. 5.2.2)

• SyS-MPGPE: simplified MultiPGPE (Sec. 5.2.1) with symmetric
sampling (Sec. 5.2.3)

8.1 standard benchmarks 61

Figure 8.2: ll
PGPE, MPGPE and
SyS-MPGPE
maximising the 200

dimensional Rastrigin
function. All plots
show the mean and
standard deviation of
40 runs.

8.1.1 Rastrigin Function

As is standard practice for the Rastrigin benchmark, our experiments
restrict all the xi values to the interval [−5.12, 5.12]. This ensures that
the global maxima lie close to, but not at, the extremal values of the
domain.

Our first experiments compared the ability of PGPE, MPGPE and Sys-
MPGPE to maximise the 200 dimensional Rastrigin function. For this
task the meta parameters were αµ = ασ = 0.0125 and απ = 0.00625
for SyS-MPGPE and PGPE and αµ = ασ = 0.025 and απ = 0.0125 for
MPGPE. The results, presented in figure 8.2, show that PGPE converges
to a suboptimal solution. As we will see, its failure stems from its use of
unimodal parameter distributions, which are confused by the 2n equal

Figure 8.3: ll
SyS-MPGPE, PGPE
and ES minimising
(left) and maximising
(right) the Rastrigin
function. All plots
show the mean and
standard deviation of
100 runs.

62 robotic benchmarks

Figure 8.4: ll
SyS-MPGPE

maximising the 200

dimensional Rastrigin
function with different

meta-parameters. All
plots show the mean

and half standard
deviation of 100 runs.

but widely separated global optima. This results in an overextension of
the parameter variances during the search process.

MPGPE also fails to find a global optimum in the timeframe we set for
computational reasons. In particular it is very slow at the initial stages
of adaptation. The switch to SyS-MPGPE brings a dramatic speedup,
reaching a global optimum in about 1.5 · 105 evaluations.

Our second set of experiments compared SyS-MPGPE, PGPE and ES at
both maximising and minimising the 200 dimensional Rastrigin func-
tion with the standard meta parameters. The PGPE and SyS-MPGPE
meta parameters were therefore αµ = ασ = 0.2 and απ = 0.1. For ES
we hand-optimized the meta parameters to give the best performance
possible within the time-frame set by the PGPE experiments; in particu-
lar we chose the best population size found in a thorough search in the
range from (6, 36) to (600, 3600). As can be seen from Figure 8.3, the
advantage of SyS-MPGPE over PGPE in the maximisation task vanishes
in the minimisation task.

At first glance this seems surprising, since one would expect the mul-
timodal surface of the Rastrigin function to favour MPGPE for both
kinds of optimisation. However, while the Rastrigin function has 2n

global maxima, it has only one global minimum. Therefore PGPE no
longer needs to overextend the variance in its parameter distributions to
successfully optimise; all it needs is enough variance to escape the local
minima—just like MPGPE. Although ES slightly outperforms PGPE at
maximisation, SyS-MPGPE is clearly better than ES at both tasks.

Figure 8.4 shows how the performance of SyS-MPGPE varies with
different meta parameters. While its ability to find an optimum ap-
pears robust to parameter choice, the time taken to converge can vary
substantially.

Figure 8.5 shows how the number of evaluations required for con-
vergence grows with the dimension of the problem for SyS-MPGPE.
The meta parameters were halved for every factor of 10 by which the
dimensionality was increased (from αµ = ασ = 0.025 and απ = 0.0125
for 20 dimensions to αµ = ασ = 0.00625 and απ = 0.003125 for 2000

8.1 standard benchmarks 63

Figure 8.5: ll
SyS-MPGPE
maximising the n
dimensional Rastrigin
function for different
values of n. All plots
show the mean and
half standard
deviation of 40 runs.

dimensions). Note that training time grows sub-linearly with the num-
ber of dimensions (increasing the number of dimensions by a factor of
10 increases the number of required evaluations by a factor about 6.5).
Given that the number of local optima in the Rastrigin function grows
exponentially with the number of dimensions, this bodes well for the
scalability of SyS-MPGPE to high-dimensional parameter spaces. The
n-dimensional Rastrigin function, illustrated in Fig 8.1, is a well-known
optimisation benchmark with one global minimum, 2n global maxima,
and a exponential growing number of local optima. It is defined as
follows:

Def.: Rastrigin

function

Ras(~x) = 10n+ 10 ·
n∑
i=1

cos(2πxi) −

n∑
i=1

x2i . (8.1)

Figure 8.6: ll
The 2D Ackley
function for ~x ∈ −20−

−20×−20− −20.
Note the huge amount
of local minima and
the sharp global
minimum.

64 robotic benchmarks

Figure 8.7: ll
SyS-MPGPE, PGPE

and ES minimising the
Ackley (left) and

guided Ackley (right)
functions. All plots
show the mean and

standard deviation of
40 runs.

8.1.2 Ackley Function

The Ackley function, illustrated in Fig. 8.6, is another well-known op-
timisation benchmark. In this case the challenge is that the attractor
basin for the single global minimum gets narrower as the number of
dimensions increases. At very high dimensions, finding the minimum
becomes the proverbial search for a "needle in a haystack". Like the Ras-

Figure 8.8: ll
SyS-MPGPE, PGPE

and ES minimising the
Ackley functions. All
plots show the mean

and standard
deviation of 40 runs.

8.1 standard benchmarks 65

Figure 8.9: ll
SyS-MPGPE, PGPE
and ES minimising the
guided Ackley
function. All plots
show the mean and
standard deviation of
40 runs.

trigin function it also has many local minima to deceive the optimiser.
It is defined as follows:

f1(~x) = exp

−0.2

√√√√ 1

n

n∑
i=1

xi
2


f2(~x) = exp

(
1

n

n∑
i=1

cos(2πxi)

)
Ack(~x) = 10n+ e− 10nf1(~x) − f2(~x). (8.2)

To accentuate the property of MultiPGPE we want to demonstrate here,
namely that global structure enables MultiPGPE to aim much faster for
the optimal region of the search space, we consider a variant g(~x) of
the Ackley function, in which an additional term is added to Eq. (8.2)
as follows

Def.: Guided Ackley
function

g(~x) = Ack(~x) +
1

n

n∑
i=1

~|xi|. (8.3)

We refer to this function as the guided Ackley function, because the extra
term guides the optimiser towards the global minimum by adding a
global gradient. We restricted the xi values to the interval [−32, 32], as
is standard for the Ackley benchmark.

We evaluated SyS-MPGPE, PGPE and ES on the 2000 dimensional
guided Ackley function. For SyS-MPGPE and PGPE the standard meta
parameters of αµ = ασ = 0.2 and απ = 1.0 were used. For ES we hand-
optimised the meta parameters as before, this time giving a population
size of (2000,12000), because the standard population size was to small
to give good results. The results are presented in Fig. 8.9. As can be
seen in this figure, MultiPGPE converges more quickly by a wider
margin than PGPE. This is because the global structure we added
(Eq. (8.3)) helps MultiPGPE to decide early for the "right" search region,
and therefore for the right Gaussian in the mixture. Here MultiPGPE
searches directly with much less exploration than PGPE does (one
Gaussian of the mixture has a smaller starting σ than the broad single

66 robotic benchmarks

Figure 8.10: ll
A 2D slice of the

reward space for the
inverted pendulum

task. The plot shows
how the reward varies

with the pendulum
angle and the bias

weight while the
angular velocity is

fixed at 25. Note the
sharp global optimum

and the smooth
gradients leading

towards the multiple
local optima (which

correspond to
spinning the pole).

Gaussian of PGPE). This effect is increased if the global optimum lies
far away from the centre of the search space, because PGPE needs to
increase the exploration to reach the optimal region and then needs to
shrink the exploration again to converge on the optimum.

8.1.3 Inverted Pendulum

The Inverted Pendulum is another well-known benchmark scenario.
The task is to swing a pendulum to an upright position, and balance it
there, using a motor attached to its axis. The motor is not strong enough
to move the pendulum up directly, so that the only way to solve the task
is to swing back and forth several times to gain momentum. The agent
receives a reward only while the pendulum is almost completely vertical
(meaning that the absolute value of the joint angle is less than 0.14

Figure 8.11: ll
SyS-MPGPE and

PGPE on the Inverted
Pendulum. All plots
show the mean and

standard deviation of
10 runs.

8.1 standard benchmarks 67

Figure 8.12: ll
PGPE with and
without SyS compared
to ES, SPSA and
eNAC on the pole
balancing benchmark.
All plots show the
mean and half
standard deviation of
40 runs.

Radians). The input variables to the agent are a bias signal, the angle of
the pendulum and the angular velocity of the pendulum. The starting
search interval was [−20, 20] for all parameters in our experiments, but
they were allowed to exceed these limits during learning. We used
the ODE physics engine [ODE, 2010] to simulate the motion of the
pendulum. Note that we used a much harder version of this benchmark. The enhanced Inverted

Pendulum benchmarkIn the standard task the pendulum needs only one extra swing to
gather enough momentum to finally swing up. Here the motor is
under-powered such that at least 3 extra swings are needed to gain
enough momentum.

The main difficulty of the task is the gradient of most of the reward
space leads to suboptimal solutions, as illustrated in Fig. 8.10. These
solutions correspond to parameters that will spin the pendulum around
the axis, thereby collecting a reward only during the brief period when
the pendulum passes through the upright position. To put it simply,
most RL methods end up spinning rather than balancing the pendulum.

We compared SyS-MPGPE and PGPE on this benchmark with the
meta parameters αµ = 0.05,ασ = απ = 0.025. As can be seen from
figure 8.11, PGPE converges to a much lower reward (the spinning
behaviour) than SyS-MPGPE. In fact, SyS-MPGPE only failed once in
ten trials to find the global optimum. As with the Rastrigin function,
PGPE is confused by the multi-modal reward surface and the sharp
global optimum. SyS-MPGPE, on the other hand, uses its multi-modal
distributions to track both regions of the reward space simultaneous
and eventually choose the better one.

8.1.4 Enhanced Pole Balancing

The next scenario is the extended pole balancing benchmark as de-
scribed in [Riedmiller et al., 2007a]. In contrast to [Riedmiller et al.,
2007a] however, we do not initialise the controller with a previously
chosen stabilising policy but rather start with random policies. In this
task the agent’s goal is to maximise the length of time a movable cart

68 robotic benchmarks

Figure 8.13: ll
The ship steering

simulation. The colour
of the "cargo

container"
corresponds to the

agent’s reward. The
colour changes

continuously from
green for maximal

reward to red for
minimal reward. The

scale in the
background shows the

distance the ship has
travelled.

can balance a pole upright in the centre of a track. The agent’s inputs
are the angle and angular velocity of the pole and the position and
velocity of the cart. The agent is represented by a linear controller with
four inputs and one output unit. The simulation is updated 50 times a
second. The initial position of the cart and angle of the pole are chosen
randomly.

Figure 8.12 shows the performance of the various methods on the pole
balancing task. All algorithms quickly learned to balance the pole, and
all eventually learned to do so in the centre of the track. PGPE with SyS
was both the fastest to learn and the most effective algorithm on this
benchmark. In this benchmark the advantage of PGPE over SPSA is very
clear. From the pure "balancing" optimum the "canyon" to the "balance
in the middle of the track" optimum is narrow and highly correlated
in the problem dimensions. The probability to find the way from one

Figure 8.14: ll
PGPE with SyS,

without SyS, with two
samples batch size
and with classical

reward normalisation.
All plots show the

mean and half
standard deviation of

40 runs.

8.2 the flexcube environment 69

Table 1: ll
Overview of
algorithms used in the
ship steering task. The
results are plotted in
Fig. 8.14 with
respective marker
shapes and colours.

markers SyS reward normalisation # samples

1 red circle yes yes 2

2 green triangle no yes 1

3 blue diamond no yes 2

4 yellow square yes no 2

optima to the other is very unlikely with uniform sampling—thus SPSA
gets stuck in the "balancing only" optima.

8.1.5 Ship Steering

In this task an ocean-going ship with substantial inertia in both forward
motion and rotation (plus noise resembling the impact of the waves)
is simulated. The task in this scenario was to keep the ship on course
while keeping maximal speed. While staying on a predefined course
with an error less than 5 degrees, the reward is equal to the ship’s speed.
Otherwise the agent receives a reward of zero. The framework has 2

degrees of freedom and a 3-dimensional observation vector (velocity,
angular velocity, error angle). The agent is represented by a linear
controller with 3 inputs and 2 output units. The simulation is updated
every 4 seconds. The initial angle of the ship is chosen randomly.

In this experiment we only compare different versions of our algorithm
with each other. Table 1 gives an overview of the different properties
used. As can be seen from the results in Fig. 8.14, the task could
be solved easily with PGPE. PGPE with SyS (version 1) is faster in
convergence speed than its non-symmetric counterpart (version 2).
However, both versions 1 and 2 reach the same optimal control strategy.

The improvement cannot be explained by the fact that SyS uses 2 Symmetric Sampling is a very
effective exploration strategysamples rather than one, as can be seen when comparing it to the

third version: PGPE with random sampling and 2 samples batch size.
This algorithm performs even worse than the two others. Hence the
improvement does in fact come from the symmetry of the two samples.
Version 4 of the algorithm assumes that the maximum reward rmax is
known in advance. Instead of the reward normalisation introduced in
Eq. (5.39) the reward is then simply divided by rmax. Our experiments
show, that even if knowledge of rmax is available, it is still beneficial to
use the adaptive reward normalisation instead of the real maximum,
since it accelerates convergence during the early learning phase. In
[Wierstra et al., 2008a] other beneficial reward normalisation techniques
are discussed, especially for bigger batch sizes.

8.2 the flexcube environment

8.2.1 Mass-Spring Systems

State of the art reinforcement learning methods deal with complex, The need for fast but complex
robotic benchmarksonly partial observable and noisy problems. Implementing new ways

70 robotic benchmarks

Figure 8.15: ll
The FlexCube

mass-spring system.

of reinforcement learning and trying to compare different learning
methods, requires a framework that is adequate complex. On the other
hand the framework must be fast, so that comparing methods can be
done just in time.

We investigated in how simple mass-spring systems can be used forMass-spring systems are fast
to calculate but can provide

complex RL environments
fast but complex benchmarking in robotic RL. The physics of mass-
spring systems are governed by linear equations the so called spring
laws that can be calculated very efficiently on a computer. We were
interested if one can build some form of simulated physical agent
out of mass points and springs that can learn tasks comparable in
complexity to today’s robotic tasks. We therefore constructed one of
the simplest basic form, a cube. Surprisingly, with this basic form as
agent tasks like growing, jumping, static and dynamic walking and
approaching food sources with different sensors can be achieved already.
The spring morphology provides thereby a noisy, partial observable
and also continuous state space. The framework is a test case for all
methods that should be capable of handling partial observable Markov
decision processes (POMDPs) with mapping from continuous state- to
continuous action space. But despite of that principal complexity, the
framework is still fast and easy to compute. The success of this basic
form convinced us to stay with it for now and we termed the setting
FlexCube.

8.2.2 FlexCube Environment

The FlexCube environment is a mass-particle system with 8 particles.
The particles are modelled as point masses on the vertices of a cube,
with every particle connected to every other by a spring (see Fig. 8.15).
The agent can set the desired lengths of the 12 edge springs to be
anywhere between 0.5 to 1.5 times the original spring lengths. Included
in the physics simulation are gravity, collision with the floor, a simple
friction model for particles colliding with the floor and the spring
forces. We refer to this scenario as the FlexCube framework. Though
relatively simple, FlexCube can be used to perform sophisticated tasks
with continuous state and action spaces.

8.2 the flexcube environment 71

Figure 8.16: ll
From left to right, a
typical solution which
worked well in the
walking task is shown:
1. Stretching forward.
2. Off the ground.
3. Landing on front.
4. Retracting back.
5. Bouncing off front
vertices, landing on
back vertices.
6. Stretching forward
(cycle closed).

The FlexCube Environment provides therefore twelve synchronous,
continuous controllable edges that provide a complex continuous action
space. The available sensors are contact sensors for the mass points,
length sensors for the springs, "smell" sensors that give distance to food
source, a visual sensor, that gives via a ray-tracer a 32x32 picture of the
world.

8.2.3 FlexCube Tasks

grow shrink The grow task is the most simple one we imple- The FlexCube can learn to
grow and shrinkmented for the FlexCube environment. The goal is to "grow" the cube to

a maximum volume with the optimal solution, obviously to maximise
the edge spring lengths. The task is not very complex especially because
there is no dynamic behaviour needed and it was mainly used to check
if new learners are working at all. Its inputs are the 12 current edge
spring lengths and the 12 previous desired edge spring lengths (fed
back from its own output at the last time step). The policy of the agent
is represented by a Jordan network [Jordan, 1986] with 24 inputs, 1

hidden unit and 12 output units.

walk In this case the task is to make the cube walk—that is, to The FlexCube can learn to
walk statically and
dynamically

maximise the distance of its centre of gravity from the starting point. Its
inputs are the 12 current edge spring lengths, the 12 previous desired
edge spring lengths (fed back from its own output at the last time step)
and the 8 floor contact sensors in the vertices. The policy of the agent
is represented by a Jordan network [Jordan, 1986] with 32 inputs, 10

hidden units and 12 output units.

The task exists in two different flavours, the static and the dynamic
walking task. The difference is in how fast the desired spring lengths
are allowed to change. For a slow change only static walking is possible,
for fast changes a dynamic walking pattern is expected.

jump For the jumping task the goal is to maximise the distance The FlexCube can learn to
jumpbetween the floor and the lowest mass point of the cube at any time step

during the episode. Its inputs are the 12 current edge spring lengths, the

72 robotic benchmarks

Figure 8.17: ll
From left to right, two

typical solutions
which worked well in

the jumping task are
shown:

Upper row:
1. Squeezing to the

ground.
2. Expanding rapidly.
3. Squeezing together

in the air to reach
maximum distance

from the floor.
Lower row:

1. Jumping of right to
gain momentum.

2. Jumping off left to
gain more momentum.
3. Final jump from the

right.

12 previous desired edge spring lengths (fed back from its own output
at the last time step) and the 8 floor contact sensors in the vertices. The
policy of the agent is represented by a Jordan network [Jordan, 1986]
with 32 inputs, 10 hidden units and 12 output units. The task does not
seem very complex at first glance, but surprisingly complex dynamical
behaviours result out of learning this task. The most effective behaviour
was leaning on one side, then jumping on the other to gain momentum
or better to gain extra spring contraction in the absorbing springs and
then make the final jump (see Figure 8.17 and video [Sehnke, 2010]).

target approach In the target approach task, so called food sourcesThe FlexCube can learn to
navigate to food sources are put into the simulation. The name however is just for intuition. The

goal of the task is to reach the food source as fast as possible with either
static or dynamic directed walking. The sensory inputs for this task are
the 12 current edge spring lengths, the 12 previous desired edge spring
lengths (fed back from its own output at the last time step), the 8 floor
contact sensors in the vertices and 4 smell sensors that give the distance
to the food source but not the direction. The agent has to triangulate
the direction to the food source. Therefore the 4 sensors are placed
on the 4 top mass points. The policy of the agent is represented by a
Jordan network [Jordan, 1986] with 36 inputs, 10 hidden units and 12

output units. This task is the most sophisticated one we created in this
environment. The behaviour solving the task must develop a directed
walking behaviour that not only moves the cube as fast as possible, but
also changes the cube’s orientation due to the values of the 4 smell
sensors. The task could be learned at least by PGPE with surprising

Figure 8.18: ll
The FlexCube "retina"

projected in the GL
viewer.

8.2 the flexcube environment 73

Figure 8.19: ll
PGPE with and
without SyS compared
to ES, SPSA and
REINFORCE on the
FlexCube walking
task. All plots show
the mean and half
standard deviation of
40 runs.

accuracy. The most effective behaviour moved the cube in a dynamic
walking pattern to the food sources with different locations and even
stopped walking on the food source. A behaviour that gives a strange
live like impression if watched in the viewer (see video [Sehnke, 2010]).

optical target approach For the optical target approach task Can the FlexCube learn to
navigate to a food source by
sight only?

we included a ray-tracer to generate a visual input for the FlexCube.
The "retina" is a 32× 32 pixel plane that is aligned to the front face of
the cube (distortions through the squeezing of the cube are common).
The ray-tracer only tracks the chessboard floor and the food sources.
No shadows are included and also the irrelevant markers and different
shadings are excluded to keep the ray-tracer fast. A typical image of the
retina activation can be seen in Figure 8.18. The FlexCube agent gets a
new picture as input at every time step. For this task the smell sensors
from the last paragraph are not available for the agent. A problem
that can be observed is that due to the low resolution of the retina the
maximum distance of the food source to be detected reliably in the
picture is rather low. A fovea approach could counter this issue, but
that is material for future work.

To give the user an impression what the cube currently "sees", the retina
is projected in the OpenGL world, shown in Figure 8.18.

The remaining sensory inputs for this task are the 12 current edge
spring lengths, the 12 previous desired edge spring lengths (fed back
from its own output at the last time step) and the 8 floor contact sensors
in the vertices. The agent has to extract the direction to the food source
from the images. The policy of the agent is represented by a Jordan
network [Jordan, 1986] with 36 inputs, 10 hidden units and 12 output
units. However, 4 of the inputs are not direct inputs from sensors,
but the outputs of visual preprocessing. We investigated the use of
Restricted Boltzmann Machines (RBM) as preprocessing networks. This
task is suited for testing agents that use preprocessing of visual data
before the actual RL step.

The task itself was not learned to this day and remains future work.
However, some interesting insights in using RBMs in a time continuous

74 robotic benchmarks

Figure 8.20: ll
The real Johnnie robot

(left) and its
simulation (right).

environment that provides ordered inputs instead of the usual used
randomised input patterns could be gained already.

8.2.4 FlexCube Results

Figure 8.19 shows the results on the walking task. All the algorithms
learn to move the FlexCube. PGPE substantially outperforms the other
methods, both in learning speed and final reward. Here SyS has a big
impact on both as well. Figure 8.16 shows a typical scenario of the
walking task. Figure 8.17 shows the optimal jumping behaviour. For
better understanding please refer to the video on [Sehnke, 2009] and
[Sehnke, 2010].

8.3 the johnnie environment

8.3.1 Johnnie Environment

The Johnnie environment is one of several ODE environments devel-
oped for PyBrain [pyb; Schaul et al., 2010]. The ODE environment
resembles a physical world, in which arbitrary objects can be placed to
interact with each other and the surrounding. The physical behaviour
is simulated with the ODE Physics Engine while the scene is rendered
using OpenGL. Objects in the world can be easily built using the XODE
XML specification. Forces can be applied to every joint and custom
sensors can return every value from ODE. The simulation is based on
the biped robot Johnnie [Ulbrich, 2008]. The lengths and masses of
the body parts, the location of the connection points and the range of
allowed angles and torques in the joints were matched with those of the
original robot. Due to the difficulty of accurately simulating the robot’s
feet, the friction between them and the ground was approximated by a
Coulomb friction model. The framework has 11 degrees of freedom and
a 41-dimensional observation vector (11 angles, 11 angular velocities, 11

forces, 2 pressure sensors in feet, 3 degrees of orientation and 3 degrees
of acceleration in the head).

The Johnnie environment is already very sophisticated and the simula-
tion is rather slow compared to the benchmarks presented in the last
sections. The Johnnie environment is therefore not suitable for testing,
its rather a final benchmark for evaluating different learning methods
on a realistic robotic application field. The work on the Johnnie sim-
ulation was the project of the author of this thesis for the Cognitive

8.3 the johnnie environment 75

Figure 8.21: ll
PGPE with and
without SyS compared
to ES, SPSA and
REINFORCE on the
robust standing
benchmark. All plots
show the mean and
half standard
deviation of 40 runs.

Technical Systems (CoTeSys) excellence cluster of the Technische Uni-
versität München. The goal was to improve walking behaviours of the
real Johnnie Robot, that is an humanoid biped walking robot with a
hight of 1.80m and 26 Kg weight (see [Sehnke, 2010] 3:35min for a real
life video of Johnnie). The Johnnie environment demonstrates therefore
a real today’s robotic application.

8.3.2 Johnnie Tasks

The controller for all following Johnnie tasks was a Jordan network [Jor-
dan, 1986] with 41 inputs, 20 hidden units and 11 output units.

standing task The first task in the Johnnie environment is the Johnnie can learn to stand

standing task. The goal of the task is to keep the robot standing. Due
to the existence of the feet that have a noticeable size, the task can be
completed by finding a stable posture.

jumping task In the jumping task, the goal is to maximise the Johnnie can learn to jump

height of the head at any point in the episode. A jumping behaviour
is the usual solution. The most common learned behaviour is a step
forward to gain some momentum followed by a single legged upward
jump.

robust standing task The task in this scenario was to keep a Johnnie can learn to keep
standing even if perturbed by
external forces

simulated biped robot standing while perturbed by external forces. The
aim of the task is to maximise the height of the robot’s head, up to the
limit of standing completely upright. The robot is continually perturbed
by random forces (depicted by the particles in Figure 8.22) that would
knock it over unless it counterbalanced.

walking task In this case the task is to make the robot walk—that Can Johnnie learn to walk from
scratch?is, to maximise the distance of its centre of gravity from the starting

point. To prevent the robot from learning a crawling behaviour, the

76 robotic benchmarks

Figure 8.22: ll
From left to right, a

typical solution which
worked well in the

robust standing task is
shown:

1. Initial posture.
2. Stable posture.

3. Perturbation by
heavy weights that are

thrown randomly at
the robot.

4. - 7. Backsteps right,
left, right, left.

8. Stable posture
regained.

distance travelled is multiplied by the height of the head. This task is
not learnable from scratch in one go, at least not with the available
methods. Therefore we implemented two horizontal bars that guided
the head of the robot. The robot could still lose balance and fall, but
only a few centimetres, so that it was easily able to recover.

8.3.3 Johnnie Results

As can be seen from the results in Fig. 8.21, the task was relatively
easy, and all the methods were able to quickly achieve a high reward.
REINFORCE learned especially quickly, and outperformed PGPE in
the early stages of learning. However PGPE overtook it after about 500

training episodes. Figure 8.22 shows a typical scenario of the robust
standing task. For more details please refer to the video on [Sehnke,
2009].

Figure 8.23: ll
The real CCRL robot

(left) and its
simulation (right).

8.4 the ccrl environment 77

8.4 the ccrl environment

8.4.1 CCRL Environment

The simulation based on the CCRL robot [Buss and Hirche, 2008] is
the second Open Dynamics Engine environment used. The lengths and
masses of the body parts and the location of the connection points were
matched with those of the original robot. Friction was approximated by
a Coulomb friction model. The framework has 8 degrees of freedom
(per arm) and a 35-dimensional observation vector (8 angles, 8 angular
velocities, 8 forces, 2 pressure sensors in hand, 3 degrees of orientation
and 3 values of position in hand, 3 values of position of object). This
environment is well suited to learn object grasping and manipulation
tasks. Like for the Johnnie environment, the CCRL environment is not
suitable for testing, its rather a final benchmark for evaluating different
learning methods on a realistic robotic application field. The work on
the CCRL simulation was part of a project proposal of the author of
this thesis for the Cognitive Technical Systems (CoTeSys) excellence
cluster of the Technische Universität München. The goal was to show
that adaptive behaviour is possible with the CCRL architecture by our
means of learning methods (see [Sehnke, 2010] 2:25min for a real life
video of CCRL robot). The CCRL environment demonstrates therefore
a real today’s robotic application.

8.4.2 CCRL Tasks

The controller for all tasks was a Jordan network [Jordan, 1986] with 35

inputs, 10 hidden units and 8 output units.

pointing task The task is to bring the hand to target positions The CCRL simulation can
learn to reach a given position
with the gripper

in the work space of the arm. The task was learned in 3 phases, with
progressively more difficult initial positions for the target. In the first
phase, the target was always at the same place in the centre of the
workspace. In the second phase it was normally distributed around
the centre of the work space (standard deviation of 10cm). In the last
phase it was placed with equal probability anywhere in the work space.
Every phase required 10.000 episodes and used the final controller of
the preceding phase.

simple grasping task In the simple grasping task a table is added The CCRL simulation can
learn to grasp an object from a
fixed position

to the scenery. An object is placed at the very edge of the table. The
task then is similar to the first phase of the pointing task, the hand
has to reach the object position. However, the hand has to reach this
position in a horizontal aligned manner, not to push away the object.
The grasping itself is done as a "reflex" if the distance of the hand to
the object undergoes a certain threshold. This task is designed in this
way because in that manner it can be learned from scratch in one phase
in about 10.000 episodes.

grasping task The task in this scenario was to grasp an object The CCRL simulation can
learn to grasp different objects
from arbitrary position

from different positions on a table. The task was learned in 4 phases,
with progressively more difficult initial positions for the object. In the

78 robotic benchmarks

Figure 8.24: ll
From left to right, a

typical solution which
worked well in the

grasping task is
shown for 2 different

positions of the object
with the same

controller:
1. Initial posture.

2. Approach.
3. Enclose.

4. Take hold.
5. Lift.

first phase, the object was always in the same place on the edge of the
table.

In the second phase it was still in a fixed position, but away from the
edge. In the third phase it was normally distributed around the centre
of the reachable region (standard deviation of 10cm). In the last phase
it was placed with equal probability anywhere in the reachable area.
Every phase required 10.000 episodes and used the final controller of
the preceding phase.

In contrast to the simple grasping task the actual grasping was done
by the controller and so the timing of the grasping had to be learned.
Figure 8.24 shows a typical solution of the grasping task. For more
detailed views of the solution please see the video on [Sehnke, 2009].

8.4.3 CCRL Results

We used the simple grasping task for evaluation because the incremen-
tal learning of the variable grasping tasks makes it hard to visualise the
results in a diagram. We compared PGPE to a related method called
Natural Evolution Strategies (NES, [Wierstra et al., 2008b]) that is a
modification of CMA-ES but converged on surprisingly similar princi-
ples than PGPE. Because NES was developed for optimising problems
with small to mid-dimensional tasks, there are some important differ-
ences. NES uses the natural gradient and therefore big sample batches
and a covariance matrix for optimisation, while PGPE uses the vanilla
gradient and only two samples per learning update step and only the
diagonal of the covariance matrix to circumvent the quadratic growth
in memory requirements. Therefore NES is more effective in problem

8.4 the ccrl environment 79

Figure 8.25: ll
The performance of
PGPE on the simple
grasping task
compared to the
related method
Natural Evolution
Strategies.
Source: Rückstieß et al.
[2010]

domains with less then about 50 dimensions while PGPE is more effec-
tive for problem domains with more than about 50 dimensions. For this
experiment we used, in contrast to the above setup, a controller with
less parameters. The task could be learned with a NN with only 48

weights, what is directly in the interval where both kinds of algorithms
should behave similar effective. As it can be seen in Figure 8.25 both
algorithms perform nearly the same. Both algorithms manage to learn
to grasp the object from scratch in reasonable time. After about 5,000

episodes the controller grasps the object securely, just the time it needs
to get hold of the object is improved from there on.

9P H Y S I C A L C RY P T O G R A P H Y

9.1 physical cryptography

Modern cryptography uses so-called one-way functions. One-way func-
tions are named by their defining property that they are easy to evaluate
but hard to invert. A cryptographic usable one-way function should
be easy to access and to compute, but it should be practically infeasi-
ble to invert. Usually modern cryptography uses numerical one-way
functions. Their advantages are obvious if it comes to accessibility. The
famous public key method is maybe the most prominent instance of
cryptography that uses a numerical one-way function.

Physical Unclonable Functions (PUF) replace the numerical one-way
function by a physical one. The defining properties stay thereby the
same. A physical system is needed that is easy to access and fast
to evaluate, but practically impossible to invert, or to use a more
intuitive word in the case of physical systems, it should be impossible
to predict. Several candidates for PUFs have been proposed. In this
thesis, we concentrate on the electrical PUFs proposed. [Pappu et al.,
2002], [Gassend et al., 2002].

Beside several other reasons, there is one main reason to omit the
comfortable numerical one-way functions in favour of a physical one-
way function: Numerical one-way functions are based one a secret key.
If the secret key and the cryptography method is known to an attacker,
the security of the cryptography system is completely broken. The user
can also be completely unaware that a third person got knowledge of
the secret key. Also secret keys can be extracted by a variety of methods
in todays computer systems, like viruses and the like.

If one replaces the one-way function with a physical one, the complex
internal structure of the PUF replaces the role of the secret key in usual
crypto systems. Because the user will sooner or later be aware that
the physical device that implements the physical one-way function is
missing, retrieving the secret part of the crypto system unnoticed is
much harder. Therefore the secure storing of the PUF is not the main
issue anymore. Because of that new constraints arise. If an attacker gets
access to the device for a short time (so that the owner is not aware of
the missing device) it should be practically impossible to read out the
complete information. It also should be very unlikely that the attacker
can predict the complete input-output behaviour of the PUF with the
knowledge he gathered in that short time.

Naturally the last point is where machine learning techniques are
promising candidates for successfully attacking the security proper-
ties of PUFs. We will investigate to which extend PGPE is an effective
method of attacking PUF security by learning a sufficient model of the
PUF and therefore predicting its input-output behaviour by using a
limited amount of read out information from the PUF that can be gath-
ered in a very short period of time. We focus on PUFs that implement

81

82 physical cryptography

Figure 9.1: ll
Illustration of the
architectures of a

Standard Arbiter PUF
(a), XOR Arbiter PUF
(b) and Feed Forward

Arbiter PUF (c). The
challenge bits bi at
each stage decide if

the two incoming
signals propagate in
parallel through the

stage, or if their paths
are crossed. All signal

paths have slightly
different run time
properties due to

uncontrollable, small
fabrication variations.

An arbiter element
depicted as yellow at

the end of the
Standard Arbiter PUF

(a) decides which of
the two signals

arrived first, and
correspondingly

outputs 0 or 1. In an
XOR Arbiter PUF (b),
the output of several

Standard Arbiter
PUFs is XORed. In FF
Arbiter PUFs, signals

at earlier stages of the
circuit are fed into an

arbiter element, whose
output is applied as
external bit at later

stages of the circuit.

a non-differentiable model where supervised learning methods can not
be applied.

9.1.1 Physical Unclonable Functions

All electrical PUFs analysed in this thesis have some common char-
acteristics (see figure 9.1): The PUF consists of a number of switches.
The challenge bits bi decide if the switch i is switched or not. The
two incoming signals propagate therefore either in parallel through the
stage, or their paths are crossed. All signal paths have slightly different
run time properties due to uncontrollable, small fabrication variations
like the exact width or the precise length of the path. An arbiter ele-
ment at the end of the PUF decides which of the two signals arrived
first, and correspondingly outputs 0 or 1. This is the basic layout of an
arbiter PUF. If one assumes that the delay of a complete path from the
signal start to the arbiter is the sum of the single delays at each stage,
the PUF can be described by a very simple linear model that is also
differentiable. Gassend et al. established a compact parametric linear
model that subsumms the delays into a notation of delay differences so
that only one parameter is left per stage instead of 4 and an additional
parameter for the whole PUF that functions like a bias [Gassend et al.,
2004]. The notation Gassend uses is:

∆ = ~wT ~Φ (9.1)

where ~w and ~Φ are of dimension k+ 1. The parameter vector ~w encodes
the delays differences for every stage. The feature vector ~Φ encodes the
challenge transformed in a way that it also encodes the parity up to the
given bit. See [Gassend et al., 2004] [Lim, 2004] [Majzoobi et al., 2008a]
[Majzoobi et al., 2008b] for details.

It was shown by [Lim, 2004] that the linear delay model represents
an in-silicon PUF sufficiently well. We therefore focus on finding the
parameters of a given linear delay model like suggested in [Majzoobi
et al., 2008b].

standard arbiter puf. The Standard Arbiter PUF (Arb-PUF)
is completely described by the above mentioned linear delay model
eq. (9.1). For an n-stage Arb-PUF we need to find an n+ 1 sized pa-
rameter vector that describes the input-output behaviour of the PUF
best.

xor arbiter puf. Because the Arb-PUF was very easy to model
even with simple approaches like a perceptron, ways to make the model

9.1 physical cryptography 83

more complex were investigated. [Suh and Devadas, 2007] therefore
suggested using several Arb-PUFs (see Fig. 9.1 b) and XOR their output
to a final output of the so called XOR-PUF. Interestingly, this rather
simple appearing measure proves to result in one of the most resilient
PUF structures.

feed forward arbiter puf. Feed Forward Arbiter PUFs (FF-
PUF) are another approach to strengthen the resistance against ML
modeling attacks [Gassend et al., 2004; Lee et al., 2004; Lim, 2004; Ma-
jzoobi et al., 2008b]. Again, this PUF type is based on the Arb-PUF.
Additional arbiters are used to transmit signals from earlier stages of
the PUF to replace challenge bits at later stages of the PUF. This change
in architecture makes the PUF not only more resilient to ML modeling
attacks, it also makes the model non-differentiable and so resistant to
supervised learning approaches.

9.1.2 Attacking PUFs with Machine Learning

We investigated the scenario where an attacker has obtained the PUF
for a limited time and could read out a certain amount of responses to
given challenges, so-called Challenge-Response-Pairs (CRP), or that the
attacker gains knowledge of a certain number of CRPs by intercepting
the communication of the PUF owner. The goal of the attacker is to
construct a model with the given CRPs that predicts the complete input-
output behaviour of the PUF sufficiently well to pose a threat to the
PUFs security.

supervised approaches SVMs and Perceptrons were successfully
used to cryptanalyse Arb-PUFs, XOR-PUFs with only 2 XOR inputs
and FF-PUFs with only one FF-Loop (Gassend et al. [2004]; Lim [2004];
Majzoobi et al. [2008b]). This approaches failed however on XOR-PUFs
with more than 2 XORed Arb-PUFs and on FF-PUFs with more than one
loop. In [Rührmair et al., 2010] and [Sölter, 2009] Logistic Regression
(LR) was successfully applied to higher order XOR-PUFs. But on higher
order FF-PUFs also the LR approach failed. This architecture resisted
any approach to interpret the model in a differentiable way to make
supervised learning possible.

reinforcement learning approaches No methods from the
field of RL have been used to attack PUFs, mainly because the value
functions usually implemented are not applicable to the highly discrete
nature of the PUF output.

Policy Gradients make an exception here, but they assume a differen-
tiable model to back-propagate the log-likelihoods to the parameters of
the model. If that property of the PUF model is given supervised tech-
niques can be applied that have much better convergence properties.

PGPE however can be applied in the RL framework to non-differential
models like the FF-PUF. That was done in [Sehnke et al., 2010b] and
the results are presented here in more details.

evolutionary approaches Evolutionary Algorithms have the
same property with respect to the model they can train - they can be

84 physical cryptography

Figure 9.2: ll
The reproduction
error of Arb-PUF

instances with certain
euclidean distance to
the original instance.

applied to non-differential models. Evolutionary Algorithms, in this
case Evolution Strategies (ES) were used in [Rührmair et al., 2010] for
cryptanalysing PUFs. In this thesis we will show that ES is a strong tool
for attacking PUFs, but that PGPE is the more reliable and faster choice
in all investigated cases.

9.2 results

Again we used the standard implementation of PGPE with the PGPE
standard meta-parameters: 2-Sample Symmetric Sampling, starting
standard deviation for exploration as the standard deviation assumed
for the PUFs and step sizes of 0.2 and 0.1 for the parameter and the
sigma update. We also applied the usual reward normalisation for
PGPE.

For ES we used a comma-best selection with population size (6,36) like
in previous chapters and the usual values for τ dependent on the PUF
model dimension.

Table 2: lll
The evaluations

needed to achieve an
average prediction

rate of 90% and 95%
with ES and PGPE. "E"

marks the columns
with the average

evaluations, while
"E/Bit" marks the

columns that show the
evaluations needed
per number of bits.

ES on Arb-PUFs PGPE on Arb-PUFs

90% 95% 90% 95%

Bit E E/Bit E E/Bit E E/Bit E E/Bit

16 446 27.88 720 45.00 118 7.38 190 11.88

32 878 27.44 1530 47.81 219 6.84 384 12.00

64 1879 29.36 3589 56.08 467 7.30 834 13.03

128 4230 33.05 9480 74.06 1080 8.44 1890 14.77

9.2.1 Standard Arbiter PUF

properties. To give some information on how hard the modeling
problem is for the different PUF architectures, we show how the repro-
duction error grows with increasing distance to the original parameter

9.2 results 85

Figure 9.3: ll
The histogram of
10,000 samples,
sampled with 100,000

CRPs. The samples
were drawn from a
normal distribution
and compared with
the original instance.
The histogram shows
the prediction error
distribution for
Arb-PUFs.

set like shown in figure 9.2. We also provide an histogram for each PUF
architecture that shows the distribution of reproduction errors with ran-
domly initialised models like in figure 9.3 (same standard deviation as
assumed for the PUFs fabrication variances). Both figures give already
a hint that the Arb-PUF is very easy to model.

results . A prediction rate of 99% could be achieved in 20,000 evalu-
ations for all investigated PUF dimensions like shown in table 2. Fur-
thermore, the results suggest that the number of evaluations needed,
grows only linearly with increasing number of bits. PGPE needs only
a forth of the evaluations to converge compared to ES. The figures 9.4
depict this result nicely.

Figure 9.4: ll
The best of 10 runs on
each Arb-PUF
architecture with ES
and PGPE.

86 physical cryptography

Table 3: lll
The number of

evaluations needed to
achieve a prediction
rate of 90% and the

rate of runs that
achieved this

prediction rate in the
given maximal

number of evaluations
with ES and PGPE. "E"

marks the columns
with the evaluations
needed, while "Rate"

marks the column that
shows the rate of

successful runs.

ES on XOR-PUFs PGPE on XOR-PUFs

E Rate E Rate

XOR 16 Bit 64 Bit 16 Bit 64 Bit 16 Bit 64 Bit 16 Bit 64 Bit

2 1080 5508 100% 100% 315 1350 100% 100%

3 3031 17460 90% 50% 556 5620 50% 90%

4 5796 - 30% 0% 1690 - 40% 0%

5 - - 0% 0% 2810 - 40% 0%

9.2.2 XOR Arbiter PUF

properties . The reproduction error grows much faster with increas-
ing distance to the original parameter set than in the Arb-PUF case
(figure 9.5). This has major effects on the histogram for the XOR-PUF ar-
chitecture as well (figure 9.6). Both figures give a hint that the XOR-PUF
is much harder to model than the Arb-PUF. Noteworthy is how fast the
number of samples that significantly divert from 0.5 reproduction error
drops with the number of XORed Arb-PUFs.

results. A prediction rate of 90% could be achieved for ES in less
than 20,000 evaluations for 16-bit up to 4 XORed Arb-PUFs and for
64-bit up to 3 XORed Arb-PUFs like shown in table 3. Furthermore
the results suggest that the number of evaluations needed, grows ex-
ponentially with increasing number of XORed Arb-PUFs. PGPE needs
in average only a third of the evaluations to converge compared with
ES. With PGPE we were also be able to learn the 16-bit 5 XOR PUF. The
figures 9.7 and 9.8 depict this result nicely.

Figure 9.5: ll
The reproduction

error of 64Bit
XOR-PUF instances

with certain euclidean
distance to the

original instance. Here
the distance is

normalised for the
exponential growth

with distance.
Obviously, the error

increases very rapidly
with the number of

dimensions.

9.2 results 87

Figure 9.6: ll
The histogram of
10,000 samples,
sampled with
10,000,000 CRPs. The
samples were drawn
from a normal
distribution and
compared with the
original instance (also
normal distributed
drawn). The
histogram shows the
prediction error
distribution.

Figure 9.7: ll
The best of 10 runs on
each XOR-PUF
architecture with a
16-bit input vector
with ES and PGPE.

Figure 9.8: ll
The best of 10 runs on
each XOR-PUF
architecture with a
64-bit input vector
with ES and PGPE.

88 physical cryptography

Table 4: lll
The evaluations

needed to achieve a
prediction rate of 90%

and 95% for the best
run out of 40 (80 for
9+10 FF) for ES and

out of 10 (20 for 9+10

FF) for PGPE. E stands
for the required

number of evaluations,
and E/FF symbolises

the required
evaluations divided by

the number of FF
loops. "Best" marks

the columns with the
best results after

72,000 evaluations (ES)
and 36,000 evaluations

(PGPE).

ES on FF-PUFs PGPE on FF-PUFs

90% 95% Best 90% 95% Best

FF E E/FF E E/FF Result E E/FF E E/FF Result

5 10200 2040 17100 3420 99.3% 2900 580 3730 746 99.6%

6 21200 3533 42300 7050 97.7% 7840 1307 9340 1557 99.5%

7 10100 1443 22700 3243 97.4% 4710 673 6580 940 98.2%

8 17600 2200 53100 6638 95.5% 4840 605 21350 2669 96.1%

9 - - - - 89.2% - - - - 89.3%

10 37500 3750 - - 93.4% 15480 1548 - - 90.9%

9.2.3 Feed Forward PUF

properties . The reproduction error grows much faster with increas-
ing distance to the original parameter set than in the Arb-PUF case
(figure 9.11), although the growth in the XOR-PUF case seems to be
more extreme. This also effects the corresponding histogram for this
architecture (figure 9.12). The histogram also shows that local minima
arise in the search space of this PUF architecture. To show this in more
detail we refer to figure 9.13. This sketch of the FF-PUF search space
is achieved by learning 40 individual solutions with PGPE. The found
delay sets (and the original one) were ordered by means of similarity
via a one dimensional self organising map [Kohonen, 1995]. The areas
between two sets is evaluated with the linearly interpolated parameter
sets. All 3 figures give a hint that the FF-PUF is much harder to model
than the Arb-PUF. Noteworthy is that the FF-PUF architecture has the
additional advantage of having a non-differentiable model.

Figure 9.9: ll
The architecture of the

FF-PUFs that we
employed in our ML
experiments, shown

for the 8 FF-loop case.

results. A prediction rate of 90% could be achieved for ES in less
than 40,000 evaluations for 64-bit FF-PUFs up to 10 FF-loops and for
PGPE in less than 20,000 evaluations like shown in table 4. Furthermore,

Figure 9.10: ll
The best of 40 runs (80

for 9+10 FF) with ES
and PGPE on each

FF-PUF architecture.

9.2 results 89

Figure 9.11: ll
The reproduction
error of 64 Bit FF-PUF
instances with certain
euclidean distance to
the original instance.
Because the
dimensionality is not
changing much for
increasing numbers of
FF-Loops, we skip a
normalised plot for
briefness.

the results suggest that the number of evaluations needed grows at
least polynomial with increasing numbers of FF-loops. PGPE needs in
average only a third of the evaluations to converge compared to ES.
The figure 9.10 depict this result nicely.

Figure 9.12: ll
The histogram of
10,000 samples,
sampled with 100,000

CRPs. The samples
were drawn from a
normal distribution
and compared with
the original instance.
The histogram shows
the prediction error
distribution for
FF-PUFs.

90 physical cryptography

Figure 9.13: ll
Sketch of the FF-PUF

search space. 40

individual solutions
were learned with

PGPE until
convergence. The so

found delay sets (and
the original) were

ordered by similarity
via a one dimensional

self organising map.

.

10PAT T E R N R E C O G N I T I O N W I T H D E E P N E T W O R K S
F O R R E I N F O R C E M E N T L E A R N I N G

In Reinforcement Learning (RL) if the sensor variables get too complex Sensor information can get to
complex for direct RLto use them for RL directly, one usually uses a modular setup. For

example if a robot has to learn to navigate using vision (a camera
picture), usually computer vision modules are used to preprocess the
image and present the agent a feature vector that contains the relevant
information that was extracted from the image.

In the last years deep believe nets became very popular for extracting
high-level information out of complex input data in a completely un-
supervised way. The name part deep stems from the fact that this nets
are build with many layers and are therefore deep nets. The name part
believe stems from the fact that this nets are generative.

The most prominent learning method for deep believe nets is the so RBM deep believe nets are well
suited to transform complex
data like camera pictures in for
RL usable representations

called Restricted Boltzmann Machines (RBM). This is a completely
unsupervised learning method. The construction of higher representa-
tions of information content in the net is therefore determined by the
structure in the data itself.

RBMs have shown to produce very impressive results for classification
in vision tasks. They are abel to produce localised receptive fields and
can, on higher levels of the net, generate translation independent output
to visual stimuli.

For this thesis our attention got to RMBs, because we could use deep
neural nets that can also be learned by PGPE because PGPE can cope
with the extremely high-dimensional space such a deep net produces.
The idea was to use RBM learning in combination with RL in an online

Figure 10.1: ll
The distribution of
digits processed by
the deep net after
standard RBM
training.
Red = 0;
Green = 1;
Blue = 2;
Black = 3.

91

92 pattern recognition with deep networks for reinforcement learning

Figure 10.2: ll
The weight vectors of
the first hidden layer

for standard RBM
training. Every square

is the weight vector of
one neurone

represented in the 2D
structure of the digit

images (28x28).

fashion and let PGPE fine-tune even the deep net weights due to the
RL gradient.

Figure 10.3: ll
The distribution of
digits processed by

the deep net after
online RBM training.

Red = 0;
Green = 1;

Blue = 2;
Black = 3.

10.1 rbm online learning 93

Figure 10.4: ll
The weight vectors of
the first hidden layer
for online RBM
training. Every square
is the weight vector of
one neurone
represented in the 2D
structure of the digit
images (28x28).

10.1 rbm online learning

RBMs are usually trained layer by layer. If the weight matrix of the
first layer has converged, it is fixed and the next layer is learned by
calculating the activations through the first now fixed layer and using
this activations as inputs for the second layer. For RL it would be Learning all layers at once

advantageous that the deep net learns online all layers so that the net
produces an output (that will change over time) that the agent can use.
Making a random walk through the lab of several hours first, then train
the deep net layer by layer and then let the agent learn via RL seems
kind of impractical.

The first question we had to answer therefore is if a deep net can be
learned online for all layers at once. The danger could be that later
layers could adapt already to the noisy nonsense activations of not
converged earlier layers.

To evaluate the effects of online learning we used (for reasons of visi-
bility, only) the first 4 digits from the MNIST set [LeCun and Cortes,
1998]. So we had 6,000 hand written numbers for the digits 0–3 each.

94 pattern recognition with deep networks for reinforcement learning

Figure 10.5: ll
The distribution of
digits processed by

the deep net after 6,
12, 50 and 100 epochs

of online RBM
training.
Red = 0;

Green = 1;
Blue = 2;

Black = 3.

If we use the standard RBM learning method with the following meta-
parameters:

• learning step size = 0.1

• sparseness factor = 0.001

• L1 regularisation factor = 0.001

• L2 regularisation factor = 0.0001

• no momentum

We get a clear ordered and separated output for the different digits
while using a deep net of the following architecture: Input, 784 →
Hidden1, 500→ Hidden2, 500→ Hidden3, 500→ Output, 2

Because we narrowed the output down to only 2 output neurones, their
activity can be easily plotted, like can be seen in Figure 10.1. Also we
visualised the weight vectors of the neurones in the fist hidden layer to
give an impression how well the needed local features were formed by
the RBM, like can be seen in Figure 10.2.

If we now switch from the standard layer by layer learning method to
learning all layers at once we see that the quality of the output doesn’t
change. We still observe a good clustering of the different digits (see
Figure 10.3).

Online learning with RBMs seems to be no obstacle for the use in RL.

One additional advantage for practical reasons is that one can observe
the evolution of the distribution of the deep net, because from the first
epoch on one gets an output of the whole net. Figure 10.5 shows such
an development of the deep net output.

10.2 rbm learning with ordered patterns

RBMs are usually trained by presenting the whole training set as a batch
or in mini-batches with randomly permutated order. This guarantees
that the network sees the different patterns distributed evenly. For RL

10.2 rbm learning with ordered patterns 95

Figure 10.6: ll
The distribution of
digits processed by
the deep net after
ordered online RBM
training.
Red = 0;
Green = 1;
Blue = 2;
Black = 3.

this would change dramatically. Assuming a robot with a camera on top
that tries to navigate via the camera picture would see one part of the
lab for many frames before it moves and sees a different part of the lab
again for many frames. The patterns would be presented to the deep
net in an highly ordered fashion. Thus it would adapted to the new
patterns and most likely would forget the old patterns. The questions

Figure 10.7: ll
The weight vectors of
the first hidden layer
for ordered online
RBM training. Every
square is the weight
vector of one neurone
represented in the 2D
structure of the digit
images (28× 28).

96 pattern recognition with deep networks for reinforcement learning

Figure 10.8: ll
The weight vectors of
the first hidden layer

after the first four
stages of RBM

training.

therefore arises how one can train an RBM with highly ordered pattern
sequences. We approached the solution of using a memory. For our tests
we used a memory that can hold 6000 patterns. The memory should
consist of a pattern distribution that represents the up to now presented
patterns evenly. For achieving this, we introduce a counter variable c
that keeps track of the number of patterns presented to the deep net
from the environment. The probability that a new pattern is stored in
the memory is then straight forward p = MemSize

c . If the memory size
is exceeded, a random element is deleted from the memory.

By using a memory the data can be presented in a highly ordered
fashion as long as the memory is big enough to store every main
category of patterns. For the first 4 digits of the MNIST set a good
solution is found with a memory size bigger than 3000 and the quality
is no further improving with a memory size of about 5000 – 6000.

The training of the deep net was done in the following order:

• 50 epochs of training only 0s

• 50 epochs of training only 1s and the memory patterns of 0s

• 50 epochs of training only 2s and the memory patterns of 0s and
1s

• 50 epochs of training only 3s and the memory patterns of 0s, 1s
and 2s

• 50 epochs of training the memory patterns of all 4 digits

10.3 post training of rbms with pgpe 97

Figure 10.9: ll
The distribution of
digits processed by
the deep net after the
first four stages of
RBM training.
Red = 0;
Green = 1;
Blue = 2;
Black = 3.

As can be seen in Figure 10.6 the quality is not reduced by this kind
of learning. Interestingly also the weight vectors of the first hidden
layer look very similar (see Figure 10.7). With the use of the memory
an evenly feature generation could be achieved in the RBM. Figure 10.8
shows how the features evolve. Every subfigure shows the status of the
hidden units after one of the above stages. Figure 10.9 shows how the
distribution of the net output evolves under this conditions.

This brief experiments suggest therefore that deep RBM nets can be
trained in an RL setting without loss of efficiency.

10.3 post training of rbms with pgpe

Now that we have all ingredients to make a deep RBM net for RL we use Deep nets can be fine tuned by
PGPE efficiently

Figure 10.10: ll-
ll

The distribution of
digits processed by
the deep net after
ordered online RBM
training and PGPE
training.
Red = 0;
Green = 1;
Blue = 2;
Black = 3.

98 pattern recognition with deep networks for reinforcement learning

Figure 10.11: ll
The weight vectors of
the first hidden layer
of the deep net after
ordered online RBM

training and PGPE
training.
Red = 0;

Green = 1;
Blue = 2;

Black = 3.

the fact that PGPE can cope with NN with thousands of weights. Fine-
tuning in RBM classification is usually done by using Backpropagation.
This is possible even for a deep net, because the unsupervised RBM
training step brought the weight near to a good optima so that the
Backpropagation algorithm doesn’t suffer from the vanishing gradient
problem anymore. Because we want to test the usability of deep RBM
nets in RL we don’t use the labels if the MNIST set directly. We define a
reward function that draws 100 random point pairs and calculates their
distance. Pairs with equal label add their distance as negative number
while pairs with different labels add their distance as positive number.
This definition of reward reinforces output distributions there patterns
from the same class are projected near together and patterns from
different classes are projected far away. It also includes the in robotic
RL tasks often encountered noise in the reward by choosing random
pattern pairs. It is also a rather fast way of evaluating the quality of the
deep net.

Figure 10.10 shows the improvement by retraining the deep net with
PGPE. Interestingly the retraining with PGPE changes only very little
in the weight vectors of the hidden neurones, like can be seen in
Figure 10.11, while it makes drastically changes in the weight vectors
of the output neurones.

10.4 discussion 99

10.4 discussion

It is certainly far fetched to claim that the MNIST test set is representa-
tive for testing if deep RBM nets are usable in RL tasks. On the other
hand the MNIST data set is well known and its properties related to
RBMs are well understood. So it is an easy way to test if in principle
deep RBM nets are trainable in an online and ordered fashion. We hope
(and are convinced) that the findings here hold also if a sophisticated
e.g. optical RL task is executed in this manner. The optical target ap-
proach task of the FlexCube environment (see Section 8.2) would be an
ideal candidate in our opinion to test this. This kind of experiments is
a promising field of future work.

11A RT I F I C I A L G O P L AY E R

In Artificial Intelligence frequent benchmarks are different kinds of
board games. Artificial board-game players are therefore a widely-
studied area of research. While board games like checker and chess
have nowadays expert level artificial players, the Asian game of Go
has eluded the development of artificial expert players. This is curious,
because Go has quite simple rules that govern the game.

In this chapter an attempt is shown to provide a framework with
which an expert level Go player could be learned by means of a
Multi-Dimensional Recurrent Neural Networks (MDRNN) with Long
Short-Term Memory cells (LSTM, in combination called MDLSTM) as
controller and PGPE as learning method.

The choice of MDRNNs as controllers was made because they naturally
handle the 2D data of the board and the rotational invariance of the
game.

PGPE is well suited to train the parameter rich MDLSTM networks PGPE can train MDLSTM
networks that seem best suited
for an artificial Go player

with its standard and multiplicative weights as well as the recurrent
weights. This chapter is—from the viewpoint of this thesis—the proof
that PGPE can elegantly cope with this kind of complicated structure
and is therefore well suited to learn recurrent networks with multiplica-
tive weights without changing the learning algorithm in any way. For
PGPE the weight matrix of MDLSTMs is a set of parameters like all
the parameter sets we saw in the last chapters. Still PGPE learns the
involved weight matrices very effectively.

11.1 the board game go

In contrast to Checkers, that has been recently solved completely by Go is one of the least
board-games with no artificial
expert players

brute force, or Chess where expert-level artificial players are around for
some time that achieve their skill by intelligently altered tree searches,
Go has resisted an AI solution (at least in the expert-level). Monte

Figure 11.1: The figure shows a typical situation in Go. On the left hand side
the white player has to make a move. He decides to capture a
group of black stones (second figure) which is removed from the
board (third figure)(source [Grüttner, 2008]).

101

102 artificial go player

Carlo Tree Search in combination with Reinforcement Learning (see
e.g. [Bouzy and Chaslot, 2006; Gelly and Silver, 2007]) showed some
success recently and may well be a good way to the final goal. Also a lot
of research has been done using Neural Networks (see e.g. [Grüttner,
2008] for an overview).

Evaluating different methods by playing full Go games is much tooFor faster evaluation the
capture game is used time consuming. We therefore use the so called Capture Game. The

Capture Game is a simplified version of Go that conserves some main
strategies and is played out much faster.

How to play the Capture Game is well explained in [Grüttner et al.,
2010]:

The players alternately make a move by placing a stone on
the board and try to enclose a group of opposing stones
which is called capturing. There are some rules which spec-
ify where a stone can be placed on the game board, see [Grüt-
tner, 2008] for details. The goal of Go is to capture more
stones than the opponent player, Figure 11.1 illustrates a
capturing scenario.

The Capture Game, also called Atari-Go or Ponnuki-Go, has
the same rules as Go, except passing is not allowed and the
goal of the game changed: to win the game one has to be
the first who captures at least one opposing stone.

This kind of Go is often used for teaching new players.
It is easier to learn the basic strategies, because the goal is
achieved earlier and easier than for regular Go. Furthermore
the Capture Game is a subproblem of Go and therefore can
be used very well in computer science to compare different
techniques.

[...]

The original game board consists of 361 (19× 19) fields, but
it is possible to use smaller board sizes to teach the game or
to shorten the play time of the game. Nevertheless the main
strategies stay the same. Therefore it is possible to train on
a small board size and play on bigger ones.

The last part of the quote suggests that one can train MDRNNs on
small board sizes and use this players on bigger boards.

Following publications on how Go and subtypes of Go are used as
benchmarks for ML algorithms are suggested: [Bouzy and Chaslot,
2006], [Konidaris et al., 2002] and [Stanley and Miikkulainen, 2004].

11.2 mdrnn representation

In [Graves, 2007] a new Neural Network architecture, MDRNN, wasMDRNNs are naturally suited
for the 2 dimensional nature of

the board game and can be
scaled to bigger boards

developed that has been shown to be highly suited for problems with
multi-dimensional inputs. It naturally represents the 2-dimensional
board of Go. Unlike standard Recurrent Neural Networks (RNN),
MDRNNs can easily learn to represent spacial structures and recognise
patterns under translations and rotations by 90◦. Also MDRNNs have
the very useful property that they can be scaled to higher dimensions
while preserving their behaviour [Schaul and Schmidhuber, 2009]. So

11.2 mdrnn representation 103

for instance one can train an MDLSTM on a small (e.g. 5× 5) Go board
and later play on a bigger one (e.g. 7× 7). The MDLSTM will still show
the same basic strategies on the bigger board that it learned on the
small one.

An approach to train Neural Networks to play Go, that is relevant to
our approach is the recent work of [Schaul and Schmidhuber, 2009]
that has used black-box optimisation methods like CMA-ES [Hansen
and Ostermeier, 2001], which unfortunately does not scale well to larger
numbers of weights.

For the network representation of the agent we follow the terminology
and discussion of [Graves, 2007; Grüttner, 2008; Schaul and Schmidhu-
ber, 2009; Grüttner et al., 2010]. Multi-dimensional Recurrent Neural
Networks (MDRNN) are able to use higher dimensional data directly,
they can easily be scaled to bigger problem instances. MDRNNs were
used successfully for vision [Graves et al., 2007], handwriting recog-
nition [Liwicki et al., September 2007] and different applications of
Go [Schaul and Schmidhuber, 2009], [Wu and Baldi, 2007], [Schaul and
Schmidhuber, 2008], [Grüttner, 2008].

To fit this class of NN to the game Go we define the problem as two
dimensional and represent the board directly as 2D input. To fit in the
MDRNN scheme the width and height of the board are represented as
sequences like described in [Grüttner et al., 2010]:

Therefore we introduce swiping hidden layers which swipe
diagonally over the board. The four directions that arise out
of the described situation are the following: D = {↗,↘,↖
,↙}.

As exemplary hidden layer we describe the layer h↗, which
swipes diagonally over the board from bottom-left to top-
right, in detail. At each position (i, j) of the board we define
the activation h↗(i,j) as a function of the weighted input
in(i,j) and the weighted activations of the previous steps
h↗(i−1,j) and h↗(i,j−1) which leads to:

h↗(i,j) = f(wi ∗ in(i,j) +wh ∗ h↗(i−1,j) +wh ∗ h↗(i,j−1))

(11.1)

where f is a function (e.g. f = tanh). On the boundaries
fixed values are used: h↗(i,0) = h↗(0,i) = wb. An illustra-
tion of h↗ for the game Go can be found in Figure 11.2.

The output layer resembles all swiping directions by combining them.
The output is described by:

outi,j = g

(∑
�∈D

wo ∗ h�(i,j)

)
(11.2)

g is the logistic function in our case, but could be any sigmoid function.

Using Eq. (11.2) the network has access to the whole board. This access LSTM cells tackle the problem
of occasionally high influence
of far away stones in Go

decays however by iterating over the recurrent connections. This prob-
lem is known as short-term memory effect of standard RNNs and solved
by using so called Long Short-Term Memory (LSTM) cells [Graves,
2007]. LSTMs are using the aforementioned multiplicative weights
as gates to protect the stored information over time. LSTMs have a

104 artificial go player

Figure 11.2: ll
On the left hand side

the schematic
illustration of a

MDRNN shows how
the output consists of

a swiping hidden
layer in one direction.

The right hand side
illustrates the output

(top) to the
corresponding input

(bottom). The brighter
the square, the lower

the preference to
perform the

corresponding move
(source [Schaul and

Schmidhuber, 2009]).

long history of successes, some examples are [Graves, 2007], [Grüttner,
2008], [Graves et al., 2007].

Combining LSTMs with MDRNNs by using swiping layers were named
MDLSTM [Schaul and Schmidhuber, 2009].

[Grüttner et al., 2010] calculates the number of free parameters for this
experiment with:

With the given suggested architectures of MDRNNs (MDL-
STMs) it follows that we have 12 (52) parameters which
have to be evaluated. We will give a short calculation for
MDRNNs. Our network consists of four (identical) hidden
layers. The hidden layer is modelled by k neurones. Each
neurone is connected with a weight wo to the output layer
and with two weights wi to the input layer. Furthermore
the neurones of the hidden layer are fully connected to
each other which leads to k2 weights which we call wh.
Additionally we have k weights wb which are fixed and
model the borders of the recurrent connections. All together
we get k+ 2k+ k2 + k = 4k+ k2 weights. The calculation
for LSTMs is similar. With consideration of the additional
weights of the LSTM-cells it follows that we have 16k+ 5k2

weights.

We decided to use two neurones which leads to 12 (52)
parameters or weights.

Note the important fact that the number of parameters or weights is
independent of the board size. It depends only on the amount of used
hidden neurones. If we use a bigger board, the sequence the network
has to compute is longer, everything else stays the same. This is the
reason why one can learn on small boards and still play on bigger ones.

11.3 experiments and results 105

Figure 11.3: ll
Performance of a
MDRNN network on
a 5× 5 board. The
plots give the fitness
to every of the 12000

episodes as well as the
standard deviation
and min/max-values
(average over 10

independent
experiments).
Source [Grüttner et al.,
2010]

11.3 experiments and results

In this chapter we compare PGPE with ES as well as CMA-ES. We
compare the different algorithms on several small board sizes and
with different MDRNNs. For ES we used µ = 5 and λ = 30 with local
mutation for standard ES. The Capture Game, the MDRNNs as well
as ES and PGPE were used from the open-source Machine Learning
library PyBrain [Schaul et al., 2010].

The experiments are set up in the following order:

• MDRNN network on 5× 5 board

• MDRNN network on 7× 7 board

• MDLSTM network on 5× 5 board

• MDLSTM network on 7× 7 board

A depth first search greedy Go player is used as opponent for evaluating We compare to the greedy
playerthe individuals. The Greedy Go Player follows simple rules in an

orderly fashion. We define the liberties of a group of stones owned by
the Greedy Player as p and the liberties of a group of stones owned by
the opponent as q. The rules of the Greedy Player are executed in the
following order:

• Count q.

• Check if group with q = 1 exists→ capture, victory.

• Count p.

• If group with p = 1 exists (loss on next opponent move) place
stone to enlarge group.

• If all groups have p > 1 choose a move which maximises the sum
p− q.

The used implementation of the greedy player has the possibility to
pass. The Capture Game, however, does not allow passing. We decided
therefore in [Grüttner et al., 2010] to do a random move instead.

106 artificial go player

Figure 11.4: ll
Performance of a

MDRNN network on
a 7× 7 board. The

plots give the fitness
to every of the 12000

episodes as well as the
standard deviation

and min/max-values
(average over 10

independent
experiments).

Source [Grüttner et al.,
2010]

Every agent played 40 games against the greedy player. The outcomes
were averaged over the 40 games and scaled between -1 (for never wins)
and 1 (for always wins).

Figures 11.3 to 11.6 illustrate the results published in [Grüttner et al.,
2010]:

As we can see PGPE mostly converges faster than ES and
CMA-ES. Primarily with the increasing of the number of
parameters the advantages of PGPE towards ES increase.

Nevertheless neither ES nor PGPE has converged within
the 12000 episodes to the maximum fitness value 1. This
holds for the best individuals of each generation, too. In
our experiments the best result of a single run of PGPE
converges to 0.5 which is equivalent to a victory rate of 75%
(see Figure 11.5). While 75% is already a good result (better

Figure 11.5: ll
Performance of a

MDLSTM network on
a 5× 5 board. The

plots give the fitness
to every of the 12000

episodes as well as the
standard deviation

and min/max-values
(average over 10

independent
experiments).

Source [Grüttner et al.,
2010]

11.3 experiments and results 107

Figure 11.6: ll
Performance of a
MDLSTM network on
a 7× 7 board. The
plots give the fitness
to every of the 12000

episodes as well as the
standard deviation
and min/max-values
(average over 10

independent
experiments).
Source [Grüttner et al.,
2010]

than human beginner level) ongoing learning could (and
should) still improve the results.

Furthermore the use of MDLSTMs leads to better results
than MDRNNs. This strength of MDLSTMs is accompanied
by a long training time towards MDRNNs. Our observations
are similar to [Graves, 2007], [Schaul and Schmidhuber,
2009], [Grüttner, 2008].

Another fact we could read from our resulting plots is a big
standard deviation. This observation leads to the suggestion
that the standard meta parameters for PGPE and ES are not
optimal for this problem domain and that meta parameters
that favour a more thorough exploration combined with
longer learning cycles should provide better and more stable
results.

The last issue is seen as promising future work also from the stand
point of this thesis.

12PA RT S U M M A RY A N D C O N C L U S I O N

In Chapter 8 we presented several robotics benchmarks: From test
functions like the Rastrigin and the Ackley function, over simple robotic
tasks like the inverted pendulum or enhanced cartpole balancing, to
sophisticated tasks like robust balancing of a humanoid robot or the
grasping of several objects with a 7 DoF robot arm.

The benchmark functions served to demonstrate the properties of PGPE
and MultiPGPE, because these benchmarks are quick to calculate and
can easily be scaled in their dimensionality. We verified our findings on
the inverted pendulum.

On the enhanced cartpole benchmark, we demonstrated that PGPE
outperforms NAC, SPSA, ES and Reinforce. We showed that this cannot
be explained by the lower perturbation frequencies alone.

On the Johnnie and the CCRL Benchmark, we finally showed that not
only is PGPE able to learn sophisticated tasks—like robust standing or
grasping of objects—model-free from scratch, but it also does so faster
and more reliable then all other compared methods.

In Chapter 9, PGPE’s ability to cope with different kinds of search
spaces present in arbiter PUFs was examined. We highlighted that
PGPE can also be used for PUFs with non-differentiable models. We
investigated the performance of PGPE in the cryptoanalysis of electrical
PUFs.

In Chapter 10, we showed how to combine RBMs with PGPE by first
demonstrating how to learn RBMs unsupervised in an online-fashion,
and then how to fine tune the resulting network by means of RL, using
PGPE.

In Chapter 11, it was shown that PGPE can also be utilised to train
recurrent networks, even if they possess multiplicative weights. PGPE
is also able to train MDRNNs as well as the so called MDLSTMs. We
showed a way of learning the asian board game Go with this two multi
dimensional recurrent network architectures.

109

Part IV

C O N C L U S I O N A N D F U T U R E W O R K

13C O N C L U S I O N A N D S U M M A RY

13.1 conclusion

From the intensive study of parameter exploring policy gradients,
especially from the studies of PGPE we have gathered a wide variety of
observations. The most visible difference to standard PG methods was PGPE has very few

meta-parameters that could be
used with the standard settings
in nearly all problems

that PGPE could be used with the unchanged standard meta-parameters
for nearly all problems. Especially in robotic tasks there standard NN
were used as controllers the set of standard meta-parameters was always
optimal. This makes PGPE very useful as "out of the box" method.

Also parameter-based exploration led to a very robust convergence PGPE is very robust

behaviour, comparable to the robustness of evolutionary methods. Be-
cause the gradient is normalised in a way so that the hypothesis nether
exceeds the sampling range, we never observed runaway gradients
or situations of wild oscillations that can be observed if standard PG
methods are used with ill chosen meta-parameters. In very few cases
we encountered problems with premature convergence. In this rare
cases setting the two step sizes to a smaller value than standard was
enough to cope with the too early convergence.

As a guideline for setting the 3 meta-parameters we propose the fol- How to set the 2-3
meta-parameters for PGPElowing procedure: Set the step size for the µ adaptation αµ = 0.2. Set

the step size for the σ adaptation (the exploration adaptation) ασ = 0.1.
Finally set the starting σs to 20% of the as useful interpreted search
interval for each dimension or to the standard deviation of the assumed
solution space if that is known. For standard NN, MLP for example,
with logistic or tanh output function a starting σ of 2.0 was found to
be optimal. If the results show that the algorithm converges too fast to
an suboptimal solution, decrease the two step sizes accordingly. In all
cases the two step sizes were best chosen if the ratio of 2 was kept. So
one could define only one step size and derive the two single step sizes
from that without the danger of using an algorithm that shows an ill
convergence behaviour.

Interestingly the estimation for the starting σs is exactly the same as
for the strategy parameters in ES that fulfil the same role of adapting
the exploration.

One general observation from our experiments was that the longer The longer the episodes the
more parameter exploring
methods outperform standard
PG methods

the episodes of the investigated learning task, the more PGPE out-
performed policy gradient methods. This was also true for FD and
Evolution. So generally one could broaden the statement to "the longer
the episodes of the investigated learning task, the more methods with
parameter-based exploration outperformed methods with action-based
exploration. This effect is a result of the variance increase in REIN-
FORCE gradient estimates with the number of time steps per episode.
As most interesting real-world problems require much longer episodes
than in our experiments, this improvement can have a strong impact.
For example, in biped walking [Benbrahim and Franklin, 1997], ob-
ject manipulation [Peters and Schaal, 2006] and other robot control

113

114 conclusion and summary

tasks [Müller et al., 2007] update rates of hundreds of Hertz and task
lengths of several seconds are common.

As a summary of the standard PG versus PGPE comparison we claimAction based normal
distributed exploration is not
effective in complex RL tasks!

that exploration by adding normal-distributed noise to the actions is
not effective. At least a state dependent exploration like suggested
by [Rückstieß et al., 2008] should be used so that at least a new policy
is tested with every episode. We think that one should go even one step
further and don’t derive the parameter changes by backpropagating
changed actions through the controller but directly derive the param-
eter changes. This is a straight forward and robust solution (like our
experiments and several publications by other researchers show, e.g.
[Miyamae et al., 2010; Fasel et al., 2010])

Another observation was that symmetric sampling has a stronger im-
pact on tasks with more complex, multi-modal reward functions, such
as in the FlexCube walking task.

A possible objection to parameter-based exploration in general andParameter based exploration
has higher sampling

complexity
to PGPE is that the parameter space is generally higher dimensional
than the action space, and therefore has higher sampling complexity.
However, standard policy gradient methods in fact train the same num-
ber of parameters—in PGPE they are just trained explicitly instead of
implicitly. Additionally, results of the last years [Riedmiller et al., 2007a]
as well as our results indicate that this drawback was overestimated
in the past. In this thesis we presented experiments where PGPE suc-
cessfully trained a controller with more than 1000 parameters, but only
11 output/action dimensions. Another issue is that PGPE, at least inPGPE is episodic

its basic and most effective form, is episodic, because the parameter
sampling is carried out once per history. This contrasts with policy
gradient methods, which can be applied to infinite horizon settings
as long as frequent rewards can be computed. IHPGPE should be an
alternative to tackle this problem, but firstly we estimate that IHPGPE
is not so effective than PGPE on a comparable episodic task and the
practicability hasn’t been shown in experiments up to now. So the main
field of PGPE will at least in the near future be episodic in nature (like
all other parameter-based methods).

We see PGPE as convergence of the different related fields. In Evolution
Strategies the tendency to use derandomised strategies is obvious. With
derandomised ES the change of the exploration is derived directly from
the experience gathered in the last samples (like in PGPE).

Natural Gradients need a batch of samples that tends to be rather big
in high-dimensional problems. While the gradient itself is more direct
pointed to the optimum, we realised that this advantage is superseded
by the drawback of having a batch. One can use moving batches and
important mixing [Sun et al., 2009] to weaken this drawback to some
extend, but in our experience to be able to use an update every two
samples is a much bigger advantage then using the natural gradient.
This is especially true for high-dimensional problems. Also the natural
gradient made the convergence process less robust in our experience
and robustness is one key feature of PGPE. However, recent studies of
[Miyamae et al., 2010] and [Wierstra et al., 2008b] show that there are
indeed examples there using the natural gradient is favourable.

Using Rprop [Riedmiller and Braun, 1993] has the same drawback
than using the natural gradient, it needs a rather big batch of samples.

13.2 summary 115

Because the PGPE gradient does not tend to get stuck in local minima
anyway, using the Rprop gradient brings in our optinion no advantages
in this case.

Using a covariance matrix is of a big advantage and would fit easily
in the PGPE framework (the σ vector is just replaced by the Σ covari-
ance matrix). Sadly the covariance matrix grows quadratically with
the problem dimension and therefore is not suitable for the problem
classes PGPE aims for. Again [Miyamae et al., 2010] and [Wierstra et al.,
2008b] show that for problem instances with small dimensions using a
covariance matrix can be very effective.

PGPE therefore inherited the robustness Evolution is renown for, due PGPE is robust as ES, fast as
PG and simple like FDto the parameter based sampling. It inherits further more the fast

gradients from PG while being simple or even simpler then a standard
finite difference algorithm like SPSA.

In our opinion PGPE is the perfect merge of this 3 fields of RL and
is one of the best today existing algorithms for high-dimensional rein-
forcement learning. PGPE has therefore drawn also attention in the ML
community like several citations in journals and high rated conference
publications show [Du et al.; Miyamae et al., 2010; Boularias, 2010; Fasel
et al., 2010; van Hasselt, 2011; Zhao et al., 2011a,b].

13.2 summary

We have motivated why RL is important in robotics in Chapter 1 and
highlighted why especially Policy Gradients are useful. We motivated
the use of parameter based exploration and gave considerations of the
advantages and drawbacks.

In Chapter 2, we explained the MDP/POMDP setting RL takes place in.
We highlighted the difference between episodic and ongoing tasks/re-
wards.

In Chapter 3, we explained the classical RL methods SARSA and Q-
Learning, artificial evolution with the specific algorithms GA and ES as
well as giving some insights in SANE, ESP and CoSyNE. We showed
how PG methods work starting with FD over SPSA to REINFORCE
and gave some insights into GPOMDP and NAC.

We highlighted how exploration works in the different kinds of ML
methods and we identified the two principal ways of exploration in PG:
exploration by perturbing the actions of the agent and exploration by
perturbing the parameters of the agent. We gave a short discussion in
several passages explaining why exploring in parameter space is the
better exploration strategy for the field of RL we are interested in.

In Chapter 5, we derived the PGPE algorithm and its variants Mul-
tiPGPE and IHPGPE from the general framework of episodic reinforce-
ment learning in a Markovian environment. In doing so, we highlighted
the differences between PGPE and standard policy gradient methods
such as REINFORCE. We showed how to use a baseline approach or
how to use symmetric sampling, if possible, for all variants of PGPE.
We also provided a reward normalisation scheme and simplifications
of the algorithms for every PGPE variant where this was useful. An
algorithm in pseudo code was provided for the best instance of every
PGPE variant.

116 conclusion and summary

We showed that MultiPGPE copes with the problem of PGPE that a nor-
mal distributed search is sometimes not sufficient in highly multimodal
search spaces. It uses a mixture of Gaussians to counter this problem.

IHPGPE negates the restriction of PGPE to be used only in episodic
tasks by using asynchronous parameter perturbations over time and
generating continually gradients.

Furthermore, we evaluated the differences between PGPE, SPSA, ES
and REINFORCE and discussed the properties of PGPE in Chapter 6.

To transform SPSA into PGPE, we identified three changes that are
required. First, we changed the uniform sampling of perturbations to a
Gaussian sampling, with the effect that the method is less likely to get
stuck in a local optima, and correlated parameters are easier to track.
Second, the finite difference gradient was replaced correspondingly by
the likelihood gradient with a speed up in convergence time. Third, the
variances of the perturbations were turned into free parameters and
trained with the rest of the model making it possible to learn effectively
in problems with parameters that are very different in their order of
magnitude.

We also examined the effect of two modifications that bring ES closer
to PGPE. First, we switched from standard ES to derandomised ES,
resembling the gradient based variance updates found in PGPE. Then
we changed from population based search to following a likelihood
gradient resulting in a speed up in convergence time.

We also changed the exploration in REINFORCE by transferring the
explorational noise to the parameters of the controller. This resulted in
a speed up in convergence time that couldn’t be explained by the less
frequent perturbations alone.

We discussed the central search property of PGPE and that it can be a
drawback, if several good optima lie in opposite directions. We showed
that MultiPGPE can overcome this problem.

We discussed the flat optima property of PGPE and the drawback that
one cannot control to which extend the algorithm tends to converge to
flat shallow optima instead of going for narrow deep ones. We showed
that MultiPGPE can overcome also this issue by using different numbers
of Gaussians per mixture.

We also discussed that PGPE tends to overestimate the gradients reach,
if the global structure leads constantly in a certain direction, eventually
moving to fast in the parameter space and overlooking the global
optima.

Overall, PGPE and its variants are mathematically soundly based on
the principals of general Reinforcement Learning (in contrast to ES),
more flexible than Finite Difference methods and provide a less noisy
gradient compared to Policy Gradient methods.

We presented in Chapter 8 several robotic benchmarks: from test func-
tions like the Rastrigin and the Ackley function, over simple robotic
tasks like the inverted pendulum or the enhanced cartpole balancing to
sophisticated tasks like the robust balancing of an humanoid robot or
the grasping of several objects with an 7-DoF robot arm.

On the benchmark functions, we could demonstrate the properties of
PGPE and MultiPGPE because this benchmarks are fast to calculate and

13.2 summary 117

can easily be scaled in their dimensionality. We verified our findings on
the Inverted Pendulum.

On the enhanced Cartpole benchmark, we have demonstrated that
PGPE outperforms NAC, SPSA, ES and REINFORCE and that this
cannot be explained with less perturbation frequencies alone.

On the Johnnie and the CCRL Benchmark, we have finally shown that
not only PGPE is able to learn sophisticated tasks like robust standing
or grasping of objects model-free from scratch, but it also does so faster
and more reliable then all other compared methods.

We furthermore have shown in Chapter 9 how PGPE can cope with dif-
ferent kinds of search spaces that are present in arbiter PUFs today. We
highlighted that PGPE can also be used for PUFs with non-differentiable
models. We investigated the performance of PGPE in the cryptanalysis
of electrical PUFs.

In Chapter 10, we showed how to combine RBMs with PGPE by first
showing how to learn RBMs unsupervised in an online-fashion and
then how to fine tune the resulting network by RL with PGPE.

In Chapter 11, it was shown that PGPE can also learn recurrent net-
works even ones with multiplicative weights. PGPE is also able to learn
MDRNNs or the so called MDLSTMs. We showed a way of learning
the asian board game Go with this kind of architecture.

14F U T U R E W O R K

We investigated a lot of topics and questions that couldn’t be all an-
swered in this thesis and resemble therefore topics of future work.

First of all, there are the unanswered questions regarding PGPE and
its variants itself. One issue for future work would be to establish
whether Williams’ local convergence proofs for REINFORCE can be
generalised to PGPE. Another would be to combine PGPE with recent
improvements in policy gradient methods, such as natural gradients
and base-line approximation [Peters et al., 2005]. However, a very nice
work has been published recently that shows how to apply optimal
baselines to PGPE and that this optimal baseline versions of PGPE
performs better than standard PGPE Zhao et al. [2011a].

MultiPGPE and Infinite Horizon PGPE are easy to combine and should
improve the Infinite Horizon PGPE in the same way it improved the raw
PGPE algorithm. But first, Infinite Horizon PGPE should be verified
experimentally. Here, the FlexCube environment with the Optical Target
Approach Task seems to be very well suited for future investigations.

Glasmachers et al. [2010] has developed a method called Important
Mixing (IM) in a PGPE related, multi-sample/population-based method
called Natural Evolution Strategies (NES, Wierstra et al. [2008b]). IM
reuses old samples in a way that keeps the current distribution intact,
saving the evaluation for this sample. This results in a great speed up
for NES .

Because in PGPE one gets a band of symmetric samples, it is obvious
that PGPE could be improved by this technique too. A merging of
symmetric sampling and IM is therefore a very promising field of
future work for NES and PGPE.

MultiPGPE introduces a new meta parameter, the step size απ for ad-
justing the mixing coefficients πki . This new meta parameter seems to
be more dependent on the actual problem than the other meta parame-
ters already present in PGPE. This is actually the major drawback of
MultiPGPE, since PGPE convinces with its very limited number of meta
parameters that are also very stable over a wide field of problems. With
MultiPGPE, we increase the set of meta parameters from 3 to 4, and
the new parameter is not as stable. Therefore, an important issue for
future work is to show how this step size can be estimated for certain
problem domains.

It also has to be assessed how much impact this enhancement of PGPE
has on real-world applications, now that the theoretical benefits have
been demonstrated.

State Dependent Exploration (SDE) as mentioned in Chapter 3.2.4 is an
interesting exploration alternative. To date, the two methods haven’t
been compared directly, but from personal communication we assume
that SDE is superior in flat controllers with a low action to parameter
dimension ratio, while PGPE is superior in deep controller architec-
tures with a higher action to parameter dimension ratio. Exploring the

119

120 future work

properties of the different exploration and learning strategies is in our
opinion an interesting field of future work.

Secondly, there are also still open questions regarding the problems
we have solved with PGPE. A problem that can be observed in the
FlexCube environment is that due to the low resolution of the retina
the maximum distance of the food source to be detected reliably in
the picture is rather low. A fovea approach could counter this issue.
The optical target approach task itself was not learned to this day and
remains also future work.

For general Go and other real-world problems, there are a lot of open
problems. First of all, more episodes are necessary. Furthermore, fu-
ture applications with a stack of MDRNNs are possible as suggested
in [Schaul and Schmidhuber, 2008]. For such applications PGPE seems
appropriate.

An interesting future application for Go would be the research of the
influence of PGPE on scaling MDRNNs as well as determining the best
ratio between game board size and PGPE setup (especially using non-
standard meta parameters like smaller step sizes for more thorough
exploration and better end behaviour). Besides, PGPE could be used
for relearning the scaled controllers.

As suggested for ES in [Grüttner, 2008], one could use Co-Evolution
to further improve the PGPE results. For PGPE, this would mean the
fitness is evaluated not only against the Java-Player but also against
the best up to now observed learned controller and the current mean
parameter set controller.

Furthermore, Lazy Evaluation could be used to speed up learning in the
Go scenario. This approach adapts the number of games per evaluation
depending on the fitness. In the beginning, 3 or 4 games could be
enough for an evaluation step, whereas at the end of convergence, it
would be profitable to use up to 100 games to calculate the fitness value
in order to distinguish the slight changes in performance at that point
of learning.

Like already briefly mentioned, the high standard deviation suggests
that a higher rate of exploration would be favourable for the overall
performance and stability of the Go agents. For PGPE, this would mean
to decrease the values for the two step sizes that are normally set to
αµ = 0.2 and ασ = 0.1. More thorough exploration comes at the price
of longer convergence time. Therefore, the already mentioned Lazy
Evaluation approach is furthermore helpful.

We suggest for a future investigation of the Go scenario to use PGPE
on a 5x5 field with MDLSTMs, in a combined Co-Evolution evaluation
setting with optimised meta parameters and incremental scaling up the
field size and retraining, till full field size and optimal game behaviour
for this setting is reached.

We hope that we can investigate some of the questions ourself, but we
hope even more that other researchers may find some topics worth
investigating.

future work 121

.

Part V

A P P E N D I X

AP Y B R A I N

PyBrain is a versatile machine learning library for Python. Its goal is
to provide flexible, easy-to-use yet still powerful algorithms for ma-
chine learning tasks, including a variety of predefined environments
and benchmarks to test and compare algorithms. Implemented al-
gorithms include Long Short-Term Memory (LSTM), policy gradient
methods, (multidimensional) recurrent neural networks and deep belief
networks. [Schaul et al., 2010] PyBrain is an open source product. More
details can be found at [pyb].

We included all variants of PGPE from the former Chapters in PyBrain
as well as all described robotic benchmarks and RL test functions.

a.1 udp interface

To prevent a slowdown in simulation time we started by dividing the
graphical output of the simulation from the physical simulation itself.
The goal was to have a server that calculates the simulation as fast as
possible and an external client that can connect on the server to observe
the progress of the learning. Therefore we developed an UDP-Interface
that could connect a client to a server via UDP and transmit numpy
arrays.

The UDPServer waits until at least one client is connected. Then it
sends a list to the connected clients (can also be a list of numpy arrays!).
Several clients can be connected to the server and the same data is sent
to all clients.

Options for the constructor for the server are the server IP and the
starting port (2 adjacent ports are used). The UDPClient tries to connect
to a UDPServer till the connection is established. The client then receives
data from the server and parses it.

The options for the client constructor are server-, client IP and the
starting port (again 2 adjacent ports will be used).

The requirements for server and client are the packages socket and scipy.
FlexCube environment, all ODE environments and the ShipSteering
environment are examples that use the UDP connection.

a.2 flexcube and viewer

The FlexCube environment was included in the RL environments under
pybrain/rl/environments/. The flexcube folder contains the files mass-
point.py (the basic class of a masspoint and its methods for use in a
spring particle system), objects3d.py (defines basic forms for OpenGL),
sensors.py (defines all sensors that can be used in the FlexCube environ-
ment), tasks.py (defines all task definitions) and viewer.py (the OpenGL
viewer that can be connected to the server via the above described UDP
connection.)

125

126 pybrain

1 # The server class

class UDPServer(object):

def __init__(self, ip=" 127 .0 .0 .1 ", port="21560", buf="1024"):
#Socket settings

self.host = ip

6 self.inPort = eval(port) + 1

self.outPort = eval(port)

self.buf = eval(buf) #16384

self.addr = (self.host, self.inPort)

11 #Create socket and bind to address

self.UDPInSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

self.UDPInSock.bind(self.addr)

#Client lists

16 self.clients = 0

self.cIP = []

self.addrList = []

self.UDPOutSockList = []

21 # Adding a client to the list

def addClient(self, cIP):

self.cIP.append(cIP)

self.addrList.append((cIP, self.outPort))

self.UDPOutSockList.append(socket.socket(socket.AF_INET, socket.SOCK_DGRAM))

26 self.clients += 1

Listen for clients

def listen(self):

if self.clients < 1:

31 self.UDPInSock.settimeout(60)

try:

cIP = self.UDPInSock.recv(self.buf)

self.addClient(cIP)

except: pass

36 else:

At least one client has to send a sign during 2 seconds

self.UDPInSock.settimeout(60)

try:

cIP = self.UDPInSock.recv(self.buf)

41 newClient = True

for i in self.cIP:

if cIP == i:

newClient = False

break

46 #Adding new client

if newClient:

self.addClient(cIP)

except:

self.clients = 0

51 self.cIP = []

self.addrList = []

self.UDPOutSockList = []

Sending the actual data to all clients

56 def send(self, arrayList):

sendString = repr(arrayList)

count = 0

for i in self.UDPOutSockList:

i.sendto(sendString, self.addrList[count])

61 count += 1 �
Listing 1: The UDP Server Class

A.2 flexcube and viewer 127

The client class

class UDPClient(object):

def __init__(self, servIP=" 127 .0 .0 .1 ", ownIP=" 127 .0 .0 .1 ", port="21560", buf="
2048"):

4 #UDP Sttings

self.host = servIP

self.inPort = eval(port)

self.outPort = eval(port) + 1

self.inAddr = (ownIP, self.inPort)

9 self.outAddr = (self.host, self.outPort)

self.ownIP = ownIP

self.buf = eval(buf) #16384

Create sockets

14 self.createSockets()

Listen for data from server

def listen(self, arrayList=None):

Send alive signal (own IP adress)

19 self.UDPOutSock.sendto(self.ownIP, self.outAddr)

if there is no data from Server for 10 seconds server is propably down

self.UDPInSock.settimeout(60)

data = self.UDPInSock.recv(self.buf)

24 try:

try:

arrayList = eval(data)

return arrayList

except:

29 print "Unsupported data format received from", self.outAddr, " ! "
return None

except:

print "Server has quit ! "
34 return None

Creating the sockets

def createSockets(self):

self.UDPOutSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

39 self.UDPOutSock.sendto(self.ownIP, self.outAddr)

self.UDPInSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

self.UDPInSock.bind(self.inAddr) �
Listing 2: The UDP Client Class

128 pybrain

The code is by far to extensive to state it here. We therefore refer the
reader to the open source code at [pyb]. For details on the implemented
simulation, the available sensors and the viewer please refer to Chap-
ter 8.

a.3 ode and viewer

The Open Dynamics Engine for Python was mainly included into Py-
Brain by Thomas Rückstieß. He also implemented the first OpenGL
view of the ODE environments. Martin Felder and Thomas Rückstieß
also implemented a parser that can parse simple rigid body and joint
definitions into the XML code required by ODE. As part of this thesis,
the OpenGL viewer was enhanced by the possibility of colouring differ-
ent body elements. It was integrated in the UDP connection framework
which was already used for the FlexCube. Several instantiations of
robots in ODE were generated, like the Johnnie and the CCRL frame-
work. Therefore also new sensors were implemented like poise sensors.
As before, the code is to extensive to state here and we therefore refer
again to [pyb].

a.4 pgpe implementations

The PGPE variants fitted very well in the PyBrain framework. Especially
because a class of algorithms called optimisation methods already
existed in PyBrain (created by Tom Schaul and Daan Wierstra). In this
class of algorithms Thomas Rückstieß and Tom Schaul had already
created a Finite Difference class (see Listing 3) that we only had to
adapt slightly to our requirements to have a basis for PGPE:

So for PGPE we could inherit from FiniteDifferences with overwriting
the parts that define PGPE in the field of FD. That is for the constructor
the exploration type (global for one standard deviation for all param-
eter perturbations, local for a standard deviation per parameter), the
learning rates for the µ and the σ update and the initial value of the
sigmas. Also the extra memory for the standard deviations has to be
allocated and a baseline has to be defined. See Listing 4.

The perturbation method has to be overwritten because we now use a
normal distributed perturbation with the defined σs as standard devi-
ation. In contrast the learning method has to be completely rewritten.
First of all we generate the two symmetric samples, then we use the
evaluations for generating a reward normalised log likelihood gradient.
See Listing 5.

A.4 pgpe implementations 129

__author__ = ’Thomas Rueckstiess , ruecksti@in .tum.de, Tom Schaul ’

from scipy import ones, zeros, dot, ravel, random

4 from scipy.linalg import pinv

from pybrain.auxiliary import GradientDescent

from pybrain.optimization.optimizer import ContinuousOptimizer

9 class FiniteDifferences(ContinuousOptimizer):

""" Basic finite difference method. """

epsilon = 1.0

gamma = 0.999

batchSize = 10

14

gradient descent parameters

learningRate = 0.1

learningRateDecay = None

momentum = 0.0

19 rprop = False

def _setInitEvaluable(self, evaluable):

ContinuousOptimizer._setInitEvaluable(self, evaluable)

self.current = self._initEvaluable

24 self.gd = GradientDescent()

self.gd.alpha = self.learningRate

if self.learningRateDecay is not None:

self.gd.alphadecay = self.learningRateDecay

self.gd.momentum = self.momentum

29 self.gd.rprop = self.rprop

self.gd.init(self._initEvaluable)

def perturbation(self):

""" produce a parameter perturbation """

34 deltas = random.uniform(-self.epsilon, self.epsilon, self.numParameters)

reduce epsilon by factor gamma

self.epsilon *= self.gamma

return deltas

39 def _learnStep(self):

""" calls the gradient calculation function and executes a step in

direction of the gradient, scaled with a small learning rate

alpha. """

44 # initialize matrix D and vector R

D = ones((self.batchSize, self.numParameters))

R = zeros((self.batchSize, 1))

calculate the gradient with pseudo inverse

49 for i in range(self.batchSize):

deltas = self.perturbation()

x = self.current + deltas

D[i, :] = deltas

R[i, :] = self._oneEvaluation(x)

54 beta = dot(pinv(D), R)

gradient = ravel(beta)

update the weights

self.current = self.gd(gradient) �
Listing 3: The Finite Difference Class

130 pybrain

class PGPE(FiniteDifferences):

60 """ Policy Gradients with Parameter Exploration (ICANN 2008)."""

#:exploration type

exploration = " local "
#: specific settings for sigma updates

learningRate = 0.2

65 #: specific settings for sigma updates

sigmaLearningRate = 0.1

#: Initial value of sigmas

epsilon = 2.0

#:lasso weight decay (0 to deactivate)

70 wDecay = 0.0

#:momentum term (0 to deactivate)

momentum = 0.0

#:rprop decent (False to deactivate)

rprop = False

75

def _additionalInit(self):

if self.sigmaLearningRate is None:

self.sigmaLearningRate = self.learningRate

self.gdSig = GradientDescent()

80 self.gdSig.alpha = self.sigmaLearningRate

self.gdSig.rprop = self.rprop

#Stores the list of standard deviations (sigmas)

self.sigList = ones(self.numParameters) * self.epsilon

self.gdSig.init(self.sigList)

85 self.baseline = None �
Listing 4: The PGPE Class Constructor

A.4 pgpe implementations 131

def perturbation(self):

""" Generate a difference vector with the given standard deviations """

return random.normal(0., self.sigList)

90

def _learnStep(self):

""" calculates the gradient and executes a step in the direction

of the gradient, scaled with a learning rate alpha. """

deltas = self.perturbation()

95 #reward of positive and negative perturbations

reward1 = self._oneEvaluation(self.current + deltas)

reward2 = self._oneEvaluation(self.current - deltas)

self.mreward = (reward1 + reward2) / 2.

100 if self.baseline is None:

first learning step

self.baseline = self.mreward

fakt = 0.

fakt2 = 0.

105 else:

#calc the gradients

if reward1 != reward2:

#gradient estimate with likelihood gradient and normalization

fakt = (reward1-reward2)/(2.*self.bestEvaluation-reward1-reward2)

110 else: fakt=0.

#normalized sigma gradient with moving average baseline

norm = (self.bestEvaluation-self.baseline)

if norm != 0.0:

fakt2=(self.mreward-self.baseline)/(self.bestEvaluation-self.baseline)

115 else: fakt2 = 0.0

#update baseline

self.baseline = 0.9 * self.baseline + 0.1 * self.mreward

update parameters and sigmas

self.current = self.gd(fakt*deltas-self.current*self.sigList*self.wDecay)

120 if fakt2 > 0.: #for sigma adaption alg. follows only positive gradients

if self.exploration == "global ":
#apply sigma update globally

self.sigList = self.gdSig(fakt2 * ((self.deltas ** 2).sum() - (self.

sigList ** 2).sum())/(self.sigList * float(self.numParameters)))

elif self.exploration == " local ":
125 #apply sigma update locally

self.sigList = self.gdSig(fakt2 * (deltas * deltas - self.sigList * self

.sigList) / self.sigList)

else:

raise NotImplementedError(str(self.exploration) + " not a known
exploration parameter setting . ") �

Listing 5: The PGPE Class Methods

BT H E P G P E A L G O R I T H M

We wanted to give you a stand alone PGPE code that one can use
directly for its problem (Listing 1). Note that the PGPE class needs
NumPy. We also assume that a problem class exists that provides the
problem dimension and an evaluation method that returns an episodic
reward. Make an instance of PGPE with the problem as an attribute and
call cycle() with the number of world-interactions you assume suitable.

class PGPE():

def __init__(self, problem):

self.prop = problem #The broblem instance

self.proSize = self.prop.proSize #The size of the problem

self.pop = random.rand(self.proSize,2).astype(’ f ’).copy() #The batch

self.epsilon = 2.0 #Initial value of sigmas, adapted to rpoblem

self.baseline=0.0 #Suitable starting baseline (e.g. 0.99 * first reward)

self.best=-1000000.0 #Replace with -inf or whatever suits your problem

self.original = zeros((self.proSize), ’ f ’) #Stores the parameter set

self.sigList=ones((self.proSize), ’ f ’)*self.epsilon #Stores sigmas

self.deltas=zeros((self.proSize), ’ f ’) #Difference vector for exploration

self.alphaT = 0.2 #The parameter update stepsize

self.alphaS = 0.1 #The sigma update stepsize

def learn(self):

#check if reward is the best observed up to now and ident. better reward

if self.fit[0] > self.fit[1]: self.reward=self.fit[0]

else: self.reward=self.fit[1]

if self.reward > self.best: self.best = self.reward

#calc the gradients

if self.fit[0] != self.fit[1]:

#PGPE symmetric gradient estimate and normalization

gM=(self.fit[0]-self.fit[1])/(2.0*self.best-self.fit[0]-self.fit[1])

else: gM=0.0

#normalized sigma gradient with moving average baseline

gS=(self.reward-self.baseline)/(self.best-self.baseline)

self.baseline=0.9*self.baseline+0.1*self.reward #update baseline

update parameters and sigmas

self.original += self.alphaT*gM*self.deltas

if gS > 0.0: #For sigma adaption alg. follows only positive gradients

dif = (self.deltas**2).sum()-(self.sigList**2).sum()

self.sigList+=self.alphaS*gS*(dif)/self.sigList

def cycle(self, worldInteractions):

for lkj in range(worldInteractions/2):

self.deltas=random.normal(0.0, self.sigList) #Perturbations

self.pop[:,0] = self.original+self.deltas #"positive" sample

self.pop[:,1] = self.original-self.deltas #"negative" sample

self.fit = self.prop.evaluate(self.pop) #Evaluate samples

self.learn() #Use new information for parameter update �
Listing 1: Stand alone standard PGPE algorithm

133

B I B L I O G R A P H Y

www.pybrain.org. (Cited on pages 74, 125, and 128.)

Open Dynamics Engine, Jan 2010. URL http://www.ode.org/. (Cited
on page 67.)

D.A. Aberdeen. Policy-Gradient Algorithms for Partially Observable
Markov Decision Processes. PhD thesis, Australian National University,
2003. (Cited on pages 6 and 23.)

L. Baird and A.W. Moore. Gradient Descent for General Reinforcement
Learning. Advances in neural information processing systems, pages
968–974, 1999. (Cited on page 5.)

J. Baxter and P. Bartlett. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research, 15:319–350, 2001. (Cited on
page 21.)

J. Baxter and P.L. Bartlett. Reinforcement learning in POMDPs via direct
gradient ascent. In Proc. 17th International Conf. on Machine Learning,
pages 41–48. Morgan Kaufmann, San Francisco, CA, 2000. (Cited on
pages 6 and 23.)

H. Benbrahim and J. Franklin. Biped dynamic walking using reinforce-
ment learning. Robotics and Autonomous Systems Journal, 1997. (Cited
on pages 5, 17, and 113.)

D.P. Bertsekas and J.N. Tsitsiklis. Neuro-dynamic programming. Mas-
ter’s thesis, Athena Scientific, Belmont, MA, 1996. (Cited on page 5.)

A. Boularias. Predictive Representations For Sequential Decision Making
Under Uncertainty. PhD thesis, Universite Laval, Quebec, 2010. (Cited
on page 115.)

B. Bouzy and G. Chaslot. Monte-Carlo Go Reinforcement Learning
Experiments. In In IEEE 2006 Symposium on Computational Intelligence
in Games, pages 187–194. IEEE, 2006. (Cited on page 102.)

M. Buss and S. Hirche. Institute of Automatic Control Engineering,
TU München, Germany, 2008. http://www.lsr.ei.tum.de/. (Cited on
page 77.)

X. Du, J. Zhai, and K. Lv. Algorithm Trading using Q-Learning and
Recurrent Reinforcement Learning. positions, 1:1. (Cited on page 115.)

I. Fasel, A. Wilt, N. Mafi, and C. Morrison. Intrinsically motivated infor-
mation foraging. In Proceedings of the IEEE International Conference on
Development and Learning (ICDL), 2010. (Cited on pages 114 and 115.)

B. Gassend, DE Clarke, M. van Dijk, and S. Devadas. Silicon physical
random functions. In ACM Conference on Computer and Communica-
tions Security-CCS, pages 148–160, 2002. (Cited on page 81.)

135

http://www.ode.org/

136 bibliography

B. Gassend, D. Lim, D. Clarke, M. Van Dijk, and S. Devadas. Identi-
fication and authentication of integrated circuits. Concurrency and
Computation: Practice & Experience, 16(11):1077–1098, 2004. (Cited on
pages 82 and 83.)

S. Gelly and D. Silver. Combining online and offline knowledge in UCT.
In ICML; Vol. 227, 2007. URL http://portal.acm.org/citation.

cfm?id=1273496.1273531. (Cited on page 102.)

T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, and J. Schmidhuber. Ex-
ponential natural evolution strategies. In Proceedings of the 12th an-
nual conference on Genetic and evolutionary computation, pages 393–400.
ACM, 2010. (Cited on page 119.)

F. Gomez, J. Schmidhuber, and R. Miikkulainen. Efficient non-linear
control through neuroevolution. 2006. (Cited on page 16.)

F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural
evolution through cooperatively coevolved synapses. The Journal of
Machine Learning Research, 9:937–965, 2008. ISSN 1532-4435. (Cited
on page 16.)

F. J. Gomez and J. Schmidhuber. Co-evolving recurrent neurons learn
deep memory POMDPs. In Proc. of the 2005 conference on genetic
and evolutionary computation (GECCO), Washington, D. C. ACM Press,
New York, NY, USA, 2005. (Cited on page 16.)

F.J. Gomez and R. Miikkulainen. Solving non-Markovian control tasks
with neuroevolution. In International Joint Conference on Artificial In-
telligence, volume 16, pages 1356–1361. Citeseer, 1999. (Cited on
page 16.)

A. Graves. Supervised Sequence Labelling with Recurrent Neural Net-
works. PhD thesis, Technische Universität München, 2007. (Cited on
pages 102, 103, 104, and 107.)

A. Graves, S. Fernández, and J. Schmidhuber. Multi-Dimensional Re-
current Neural Networks, 2007. (Cited on pages 103 and 104.)

M. Grüttner. Evolving Multidimensional Recurrent Neural Networks
for the Capture Game in Go, 2008. (Cited on pages 101, 102, 103, 104,
107, and 120.)

M. Grüttner, F. Sehnke, T. Schaul, and J. Schmidhuber. Multi-
dimensional deep memory go-player for parameter exploring pol-
icy gradients. In W. Duch K. Diamantaras and L. Iliadis, editors,
Proceedings of the International Conference on Artificial Neural Networks.
ICANN 2010, Springer-Verlag Berlin Heidelberg, 2010. (Cited on
pages 102, 103, 104, 105, 106, and 107.)

N. Hansen and A. Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation, 9:159–
195, 2001. (Cited on pages 47 and 103.)

N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation dis-
tributions in evolution strategies: The covariance matrix adaptation.
In Evolutionary Computation, 1996., Proceedings of IEEE International
Conference on, pages 312–317. IEEE, 2002. ISBN 0780329023. (Cited
on page 14.)

http://portal.acm.org/citation.cfm?id=1273496.1273531
http://portal.acm.org/citation.cfm?id=1273496.1273531

bibliography 137

S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9

(1):1–42, 1997. (Cited on page 49.)

M.I. Jordan. Attractor dynamics and parallelism in a connectionist
sequential machine. Proc. of the Eighth Annual Conference of the Cog-
nitive Science Society, 8:531–546, 1986. (Cited on pages 71, 72, 73, 75,
and 77.)

L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101

(1-2):99–134, 1998. (Cited on page 9.)

T. Kohonen. Self-Organizing Maps. Springer-Verlag, 1995. (Cited on
page 88.)

V. Konda and J. Tsitsiklis. Actor-critic algorithms. In Advances in Neural
Information Processing Systems, 12, 2000. URL citeseer.ist.psu.edu/

konda01actorcritic.html. (Cited on page 5.)

G. Konidaris, D. Shell, and N. Oren. Evolving Neural Networks for the
Capture Game. In Proceedings of the SAICSIT Postgraduate Symposium,
2002. (Cited on page 102.)

Y. LeCun and C. Cortes. The MNIST database of handwritten digits,
1998. (Cited on page 93.)

J.W. Lee, D. Lim, B. Gassend, G.E. Suh, M. Van Dijk, and S. Devadas.
A technique to build a secret key in integrated circuits for identifica-
tion and authentication applications. In Proceedings of the IEEE VLSI
Circuits Symposium, pages 176–179. Citeseer, 2004. (Cited on page 83.)

D. Lim. Extracting Secret Keys from Integrated Circuits. Msc thesis, MIT,
2004. (Cited on pages 82 and 83.)

M. Liwicki, A. Graves, S. Fernández, H. Bunke J., and Schmidhuber. A
novel approach to on-line handwriting recognition based on bidirec-
tional long short-term memory networks. In Proc. 9th Int. Conf. on
Document Analysis and Recognition, pages 367–371, September 2007.
(Cited on page 103.)

M. Majzoobi, F. Koushanfar, and M. Potkonjak. Lightweight secure
PUFs. In Proceedings of the 2008 IEEE/ACM International Conference on
Computer-Aided Design, pages 670–673. IEEE Press, 2008a. (Cited on
page 82.)

M. Majzoobi, F. Koushanfar, and M. Potkonjak. Testing techniques for
hardware security. In Proceedings of the International Test Conference
(ITC), pages 1–10, 2008b. (Cited on pages 82 and 83.)

A. Miyamae, Y. Nagata, I. Ono, and S. Kobayashi. Natural policy gradi-
ent methods with parameter-based exploration for control tasks. In
Proceedings of the Twenty-Fourth Annual Conference on Neural Informa-
tion Processing Systems (NIPS), 2010. (Cited on pages 114 and 115.)

H. Müller, M. Lauer, R. Hafner, S. Lange, A. Merke, and M. Riedmiller.
Making a robot learn to play soccer. Proceedings of the 30th Annual
German Conference on Artificial Intelligence (KI-2007), 2007. (Cited on
pages 59 and 114.)

citeseer.ist.psu.edu/konda01actorcritic.html
citeseer.ist.psu.edu/konda01actorcritic.html

138 bibliography

R. Munos and M. Littman. Policy gradient in continuous time. Journal of
Machine Learning Research, 7:771–791, 2006. (Cited on pages 6 and 23.)

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical one-way
functions. Science, 297(5589):2026, 2002. (Cited on page 81.)

J. Peters and S. Schaal. Policy gradient methods for robotics. In
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2006. (Cited on pages 5, 6, 17, 23, 59, and 113.)

J. Peters and S. Schaal. Reinforcement learning of motor skills with
policy gradients. In Neural Networks, pages 682–697, 2008a. (Cited on
pages 17 and 59.)

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):
1180–1190, 2008b. ISSN 0925-2312. doi: http://dx.doi.org/10.1016/j.
neucom.2007.11.026. (Cited on pages 21, 23, and 59.)

J. Peters, S. Vijayakumar, and S. Schaal. Natural actor-critic. In Pro-
ceedings of the Sixteenth European Conference on Machine Learning, 2005.
(Cited on pages 5, 17, and 119.)

M. Riedmiller and H. Braun. A direct adaptive method for faster
backpropagation learning: The RPROP algorithm. In Proceedings
of the IEEE international conference on neural networks, volume 1993,
pages 586–591. San Francisco: IEEE, 1993. (Cited on page 114.)

M. Riedmiller, J. Peters, and S. Schaal. Evaluation of policy gradient
methods and variants on the cart-pole benchmark. In ADPRL-2007,
2007a. (Cited on pages 67 and 114.)

M. Riedmiller, J. Peters, and S. Schaal. Evaluation of policy gradient
methods and variants on the cart-pole benchmark. In Proceedings of
the 2007 IEEE Symposium on Approximate Dynamic Programming and
Reinforcement Learning, 2007b. (Cited on pages 23 and 60.)

T. Rückstieß, M. Felder, and J. Schmidhuber. State-Dependent Explo-
ration for policy gradient methods. In European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
2008, Part II, LNAI 5212, pages 234–249, 2008. (Cited on pages 25, 48,
and 114.)

T. Rückstieß, F. Sehnke, T. Schaul, D. Wierstra, Y. Sun, and J. Schmidhu-
ber. Exploring parameter space in reinforcement learning. Paladyn, 1

(1):14–24, 2010. (Cited on page 79.)

U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmid-
huber. Modeling attacks on physical unclonable functions. In
Proceedings of the 17th ACM conference on Computer and communica-
tions security, CCS ’10, pages 237–249, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0245-6. doi: 10.1145/1866307.1866335. URL
http://doi.acm.org/10.1145/1866307.1866335. (Cited on pages 83

and 84.)

T. Schaul and J. Schmidhuber. A scalable neural network architecture for
board games. In Proceedings of the IEEE Symposium on Computational
Intelligence in Games (CIG 08), 2008. (Cited on pages 103 and 120.)

http://doi.acm.org/10.1145/1866307.1866335

bibliography 139

T. Schaul and J. Schmidhuber. Scalable neural networks for board games.
In International Conference on Artificial Neural Networks (ICANN), 2009.
(Cited on pages 102, 103, 104, and 107.)

T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, and
T. Rückstießand J. Schmidhuber. PyBrain. Journal of Machine Learning
Research, 11:743–746, 2010. (Cited on pages 74, 105, and 125.)

N. Schraudolph, J. Yu, and D. Aberdeen. Fast online policy gradient
learning with smd gain vector adaptation. In Y. Weiss, B. Schölkopf,
and J. Platt, editors, Advances in Neural Information Processing Systems
18. MIT Press, Cambridge, MA, 2006. (Cited on pages 5 and 17.)

H.P.P. Schwefel. Evolution and Optimum Seeking: The Sixth Generation.
John Wiley & Sons, Inc. New York, NY, USA, 1993. (Cited on pages 15

and 59.)

F. Sehnke. PGPE – Policy Gradients with Parameter-based Explo-
ration – Demonstration video: Learning in Robot Simulatons., 2009.
http://www.pybrain.org/videos/jnn10/. (Cited on pages 74, 76,
and 78.)

F. Sehnke. PyBrain – Demonstration video: Learning in Robot Simu-
latons., 2010. http://www.youtube.com/watch?v=fEM7YDNonSE.
(Cited on pages 72, 73, 74, 75, and 77.)

F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and
J. Schmidhuber. Parameter-exploring policy gradients. Neural Net-
works, 23(4):551–559, 2010a. (Cited on page 32.)

F. Sehnke, C. Osendorfer, J. Sölter, J. Schmidhuber, and U. Rührmair.
Policy gradients for cryptanalysis. In Proceedings of the International
Conference on Artificial Neural Networks, 2010b. (Cited on page 83.)

J. Sölter. Cryptanalysis of Electrical PUFs via Machine Learning Algorithms.
Msc thesis, Technische Universität München, 2009. (Cited on page 83.)

J.C. Spall. An overview of the simultaneous perturbation method
for efficient optimization. Johns Hopkins APL Technical Digest, 19(4):
482–492, 1998a. (Cited on pages 19, 46, and 59.)

J.C. Spall. Implementation of the simultaneous perturbation algorithm
forstochastic optimization. Aerospace and Electronic Systems, IEEE
Transactions on, 34(3):817–823, 1998b. (Cited on pages 19 and 46.)

K.O. Stanley and R. Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2):99–127, 2002.
ISSN 1063-6560. (Cited on page 16.)

K.O. Stanley and Risto Miikkulainen. Evolving a Roving Eye for
Go, 2004. URL http://www.cs.utexas.edu/users/nn/downloads/

papers/stanley.gecco04.pdf. (Cited on page 102.)

F. Streichert. Evolutionary Algorithms in Multi-Modal and Multi-Objective
Environments. Logos verlag berlin, isbn 978-3832515522, 2007, Uni-
versity of Tübingen, 2007. (Cited on page 14.)

F. Streichert and H. Ulmer. JavaEvA - a java framework for evo-
lutionary algorithms. Technical Report WSI-2005-06, Centre for
Bioinformatics Tübingen, University of Tübingen, 2005. URL http:

http://www.cs.utexas.edu/users/nn/downloads/papers/stanley.gecco04.pdf
http://www.cs.utexas.edu/users/nn/downloads/papers/stanley.gecco04.pdf
http://w210.ub.uni-tuebingen.de/dbt/volltexte/2005/1702/
http://w210.ub.uni-tuebingen.de/dbt/volltexte/2005/1702/

140 bibliography

//w210.ub.uni-tuebingen.de/dbt/volltexte/2005/1702/. (Cited
on page 15.)

G.E. Suh and S. Devadas. Physical unclonable functions for device
authentication and secret key generation. In Proceedings of the 44th
annual Design Automation Conference, page 14. ACM, 2007. (Cited on
page 83.)

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Efficient Natural Evo-
lution Strategies. In Genetic and Evolutionary Computation Conference
(GECCO), 2009. (Cited on page 114.)

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998. (Cited on pages 5, 13, and 41.)

R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient
methods for reinforcement learning with function approximation.
In Advances in Neural Information Processing Systems, 2000. (Cited on
pages 5, 6, 21, and 23.)

S.B. Thrun. The role of exploration in learning control. Handbook of
Intelligent Control: Neural, Fuzzy and Adaptive Approaches, pages 527–
559, 1992. (Cited on page 22.)

H. Ulbrich. Institute of Applied Mechanics, TU München, Germany,
2008. http://www.amm.mw.tum.de/. (Cited on page 74.)

H. van Hasselt. Insights in reinforcement learning: formal analysis
and empirical evaluation of temporal-difference learning algorithms.
SIKS dissertation series, 2011(04), 2011. (Cited on page 115.)

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:
279–292, 1992. (Cited on pages 13 and 14.)

K. Weicker. Evolutionäre Algorithmen. Vieweg + Teubner, 2002. ISBN
3519003627. (Cited on page 15.)

M. Wiering and J. Schmidhuber. Efficient Model-Based Exploration.
From Animals to Animats 5: Proceedings of the Fifth International Con-
ference on Simulation of Adaptive Behavior, 1998. (Cited on page 22.)

D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Fitness expectation
maximization. In Parallel Problem Solving from Nature. 2008a. (Cited
on page 69.)

D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Natural evolution
strategies. In Proceedings of the Congress on Evolutionary Computation
(CEC08), Hongkong. IEEE Press, 2008b. (Cited on pages 78, 114, 115,
and 119.)

R.J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8:229–256, 1992.
(Cited on pages 5, 20, 23, 33, 34, and 59.)

L. Wu and P. Baldi. A scalable machine learning approach to go. In in
Advances in Neural Information Processing Systems 19, pages 1521–1528.
MIT Press, 2007. (Cited on page 103.)

http://w210.ub.uni-tuebingen.de/dbt/volltexte/2005/1702/
http://w210.ub.uni-tuebingen.de/dbt/volltexte/2005/1702/

bibliography 141

T. Zhao, H. Hachiya, G. Niu, and M. Sugiyama. Analysis and im-
provement of policy gradient estimation. Neural networks : the of-
ficial journal of the International Neural Network Society, pages 1–30,
October 2011a. ISSN 1879-2782. doi: 10.1016/j.neunet.2011.09.005.
URL http://www.ncbi.nlm.nih.gov/pubmed/22019189. (Cited on
pages 115 and 119.)

T. Zhao, H. Hachiya, G. Niu, and M. Sugiyama. Analysis and improve-
ment of policy gradient estimation. In NIPS, October 2011b. doi:
10.1016/j.neunet.2011.09.005. URL http://www.ncbi.nlm.nih.gov/

pubmed/22019189. (Cited on page 115.)

http://www.ncbi.nlm.nih.gov/pubmed/22019189
http://www.ncbi.nlm.nih.gov/pubmed/22019189
http://www.ncbi.nlm.nih.gov/pubmed/22019189

This thesis was typeset with LATEX 2ε using Hermann Zapf’s Palatino
and Euler type faces (Type 1 PostScript fonts URW Palladio L and FPL
were used). The listings are typeset in Bera Mono, originally developed
by Bitstream, Inc. as “Bitstream Vera”. (Type 1 PostScript fonts were
made available by Malte Rosenau and Ulrich Dirr.)

The typographic style was inspired by Bringhurst’s genius as presented
in The Elements of Typographic Style. It is available for LATEX via CTAN as
“classicthesis”.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/

	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	Acronyms
	Problem Definition and State of the Art
	1 Introduction
	1.1 Motivation
	1.1.1 Reinforcement Learning for Robotics
	1.1.2 Policy Gradients
	1.1.3 Exploration in Parameter Space
	1.1.4 Our Approach

	1.2 Thesis Contribution
	1.3 Notation

	2 Problem Definition
	2.1 Markov Decision Processes
	2.2 Partially Observable Markov Decision Processes
	2.3 Long Term Reward and Episodic Tasks

	3 State of the Art
	3.1 Reinforcement Learning
	3.1.1 Classical
	3.1.2 Evolution
	3.1.3 Policy Gradients

	3.2 Exploration
	3.2.1 Exploration in Reinforcement Learning
	3.2.2 Exploration in Policy Gradients
	3.2.3 Exploring in Evolution
	3.2.4 Exploring in Parameter Space

	4 Part Summary and Conclusion

	New Contribution
	5 Parameter Exploring Policy Gradients
	5.1 Unimodal Parameter Distributions—PGPE
	5.1.1 Sampling with a baseline
	5.1.2 Symmetric sampling
	5.1.3 Reward Normalisation

	5.2 Multimodal Parameter Distributions — MultiPGPE
	5.2.1 Simplified MultiPGPE
	5.2.2 Sampling with a baseline
	5.2.3 Symmetric sampling
	5.2.4 Reward Normalisation

	5.3 Infinite Horizon PGPE
	5.3.1 Simplified Infinite Horizon PGPE
	5.3.2 Sampling with a baseline
	5.3.3 Reward Normalisation

	6 PGPE Properties
	6.1 Relationship to Other Algorithms
	6.1.1 From SPSA to PGPE
	6.1.2 From ES to PGPE
	6.1.3 From REINFORCE to PGPE

	6.2 Central Search Property
	6.3 Flat Minima Property
	6.4 Overestimation

	7 Part Summary and Conclusion

	Results and Comparisons
	8 Robotic Benchmarks
	8.1 Standard Benchmarks
	8.1.1 Rastrigin Function
	8.1.2 Ackley Function
	8.1.3 Inverted Pendulum
	8.1.4 Enhanced Pole Balancing
	8.1.5 Ship Steering

	8.2 The FlexCube Environment
	8.2.1 Mass-Spring Systems
	8.2.2 FlexCube Environment
	8.2.3 FlexCube Tasks
	8.2.4 FlexCube Results

	8.3 The Johnnie Environment
	8.3.1 Johnnie Environment
	8.3.2 Johnnie Tasks
	8.3.3 Johnnie Results

	8.4 The CCRL Environment
	8.4.1 CCRL Environment
	8.4.2 CCRL Tasks
	8.4.3 CCRL Results

	9 Physical Cryptography
	9.1 Physical Cryptography
	9.1.1 Physical Unclonable Functions
	9.1.2 Attacking PUFs with Machine Learning

	9.2 Results
	9.2.1 Standard Arbiter PUF
	9.2.2 XOR Arbiter PUF
	9.2.3 Feed Forward PUF

	10 Pattern Recognition with Deep Networks for Reinforcement Learning
	10.1 RBM Online Learning
	10.2 RBM Learning with Ordered Patterns
	10.3 Post Training of RBMs with PGPE
	10.4 Discussion

	11 Artificial Go Player
	11.1 The Board Game Go
	11.2 MDRNN Representation
	11.3 Experiments and Results

	12 Part Summary and Conclusion

	Conclusion and Future Work
	13 Conclusion and Summary
	13.1 Conclusion
	13.2 Summary

	14 Future Work

	Appendix
	A PyBrain
	A.1 UDP Interface
	A.2 FlexCube and Viewer
	A.3 ODE and Viewer
	A.4 PGPE Implementations

	B The PGPE Algorithm
	Bibliography

