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Chapter 1

Introduction

The design of integrated circuits (ICs) is a core challenge in today’s electronics industry.
Especially in the field of automotive and communication, a high innovation rate is
required. The limiting factor in today’s design flow is the designers’ productivity, which
is much lower than technology capabilities. This discrepancy between technological
capabilities and designer productivity is called the hardware design gap [ITR09] and is
visualized in Figure 1.1. To exploit technology capabilities, which follow the expansion
rate known as Moore’s law [Moo65], designers’ productivity must be increased by a
factor of 50 [ITR09]. However, it can be seen that the productivity gap is growing.
One method to counteract the increasing design gap is an advance in circuit design
automation.

In contrast to the well advanced automation in the design of digital circuits, the design
of analog circuits, like amplifiers or A/D- and D/A-converters, is still predominantly
manual work in practice [ITR10]. One reason for the lack of automation is affiliated
to the problem that many important issues are not covered satisfactorily in today’s
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Figure 1.1: Technology capabilities and hardware design productivity over time follow-

ing [ITR09] (technology capabilities are doubled after 3 years)
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1 Introduction

commercial analog design tools. Among other things, [ITR10] mentions that discrete
parameters, and yield and reliability requirements are not or insufficiently considered
by interactive design solutions.

Along with the low level of automation, the design of an analog circuit is a highly
complex task, although analog components typically consist of only 10 to 100 devices
[RGR07]. The high complexity is predominantly caused by the consideration of many
circuit performances behaving competitively and measured in a continuous domain.
As a consequence, the design of analog components requires a high percentage of the
overall design effort, is error prone, and causes approximately half of the redesigns
[Rut]. Additionally, the growth rate of non-memory ICs containing analog and RF
components (≈ 66% in 2008 [Rut]) is higher than the growth rate of non-mixed-signal
ICs. Consequently, analog design strongly contributes to the increasing design gap.

To reduce the design effort for analog design and to help designers to avoid errors which
cause redesigns, the automation of analog circuit design must be enhanced. This can
only be achieved if the problems described in [ITR10] are solved. This thesis contributes
to that goal by presenting an algorithm which considers discrete design parameters,
different operating conditions of a circuit, and variations in the manufacturing process
during the step of analog sizing.

1.1 Analog Design Flow and Its Automation

Developing a new system on chip, one of the first project decisions is which parts of the
system should be realized in hardware and software, respectively. The hardware part is
further divided into several functional blocks, and it must be decided which digital and
analog components are required. For each component, the behavior of the circuit must
be specified. For analog circuits, this typically includes minimum and maximum values
for performances, e.g., maximum power consumptions or minimum gain for an amplifier,
and environmental conditions, e.g., the temperature range or the required range for the
supply voltage the circuit should be designed for. Additionally, the technology used for
the system is defined at this point.

Afterward, a designer must decide for analog components if a known schematic can be
reused or if a new schematic must be built for the required functionality. This is done in
the topology generation step. To support the designer taking this decision, several ap-
proaches have been presented to estimate the capabilities of a circuit, e.g., by computing
the Pareto front (e.g., [MGG10,MG09,TTR06]). However, despite several attempts to
automate the generation of a circuit schematic (e.g., [KH06,SMF02,SKK03]), no general
approach has been found as yet, which can be used in practice.

To decide if a circuit schematic is sufficient for the specified functionality, an initial
sizing is required, i.e., initial values must be assigned to transistor lengths and widths,
resistances, etc. However, the initial sizing typically does not fulfill all specifications.

2
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Specifications
Topology

Selection
Topology Sizing

Sized

Topology

Layout and

Routing
Mask Data

Re-Designs

©

Figure 1.2: Visualization of the analog design flow

Therefore, after defining the structure which should be used for a new circuit, the
parameters of the circuit must be sized. The resulting sizing should not only fulfill
specifications but should also ensure that the circuit is robust against variations in the
manufacturing process [GR00]. For this highly complex task, several commercial and
non-commercial approaches have been developed which support the designer to compute
such a sizing (cf. Chapter 1.3). However, these approaches are sparsely used in practice
due to several open problems [ITR10].

After computing the sizing of an analog circuit, the layout and routing can be done.
In this stage of the analog design flow, transistor geometries and positions are finalized
and mask data are extracted which can be used to manufacture the circuit. For this
task, a small number of approaches can be found to support the designer (e.g., [Str11,
YD09,ZJBS08]).

The complete analog design flow is shown in Figure 1.2. In each step of the flow, the
circuit is evaluated and its functionality is verified using simulations. If the specifications
of a circuit can not be fulfilled in a certain design step, a modification of the circuit in
one of the previous steps is required. The cost for such a redesign typically increases if
the problem is detected in one of the last steps. Therefore, it is necessary to consider
as much information as possible in the first design steps, e.g., to consider information
about the layout during the sizing step to develop a layout-friendly sizing, or to consider
process variations during the sizing step to make the circuit robust.

1.2 Problem Description

1.2.1 Technical Problem

Automating the task of analog sizing has been an important field of research in electronic
design automation for many years. In automatic approaches, the parameter values of
the devices in a circuit, e.g., transistor widths and lengths, should be derived under
nominal operating and nominal process conditions as well as under consideration of
different operating conditions and process variations. This thesis especially focuses on
the enhancement of these approaches by considering discrete parameters.

Discrete design parameters can be classified with respect to their origin. In the analog
sizing task, discrete parameters appear due to:

3
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(b) Layout of transistors A and B as two

single transistors

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

����������
����������
����������

����������
����������
����������

��
��
��

��
��
��

�����������
�����������
�����������

�����������
�����������
�����������

������
������
������
������

��
��
��

��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

G©

DA©
DB©

S©

AA BB

Dummy Dummy

(c) Layout of transistors A and B en-

larged by dummy transistors using

multiple fingers in parallel [Has01]
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Figure 1.3: Schematic and layout for two transistors with equal lengths and total widths

wtotal

• Layout: In the traditional sizing step, parameter values, e.g., lengths and widths
of transistors, are assigned. However, in the subsequent layout step the single
elements from the sizing step are frequently split into multiple elements. Typical
examples are the layout of transistors as multi-finger structures or as common
centroid structures (Figure 1.3) to receive a more compact design and to increase
matching. Transistors are also realized as multi-finger transistors to reduce the
source bulk and the drain bulk capacitance CSB and CDB, respectively. However,
if a transistor with a total width wtotal is split into m equal transistors in parallel
with a finger width of wtotal

m
each, the resulting device behaves differently from the

actually designed transistor. Thus, the number of transistors connected in parallel
should be considered in the analog sizing and not only in the layout step. The
dependency of the transistor on the realization is visualized in Figure 1.4. The
figure shows the drain current of a CMOS-Transistor in a 180nm technology with a
total width wtotal but different values for m, i.e., different values for the number of
transistors connected in parallel. Further examples which show the effect of split-
ting transistors during the layout can be found in [KKC+08] and [YKC+05]. To
model the number of transistors connected in parallel, e.g., BSIM models [BSI11]

4



1.2 Problem Description

Figure 1.4: Simulation of the drain current over drain-source voltage for a NMOS-

Transistor in a 180nm technology with a total width wtotal = 10µm, gate

source voltage VGS = 1.5V , and finger numbersm ∈ {1, 5, 10} using a BSIM3

model

provide a variable referred to as multiplier. The number of transistors connected
in parallel is obviously integer, i.e., discrete.

Additionally, the edges of the devices of a circuit, e.g., the edges of the transistor
gate, must lie on a manufacturing grid and the parameters of the devices, e.g.,
transistor lengths and widths, are discrete in some processes. This grid is typically
in the range of several nanometers and the effect of snapping the parameters to the
grid was negligible for previous technologies. However, with shrinking transistor
sizes, the impact must be considered in the sizing step.

A further layout-specific discrete parameter appears if integrated inductors have
to be realized. The number of winding turns in such devices can typically only
be changed in discrete, e.g., eighth, quarter, or whole windings. This can be
considered in the sizing step if appropriate models are provided.

The consideration of multipliers and parameter grid is also mentioned in [ITR10]
as an open point for automated sizing of analog circuits.

• New technologies: In some new technologies, the parameters of the devices can
only be scaled discretely. Considering, e.g., FinFETs (e.g., [LAG+03]), the width
of the gate area controlled by a single fin can be computed as 2 · hfin, where hfin
is the height of the fin [SH06]. This is illustrated in Figure 1.5. However, the fin
height should be equal throughout the device and, consequently, the gate width
for a multi-gate FinFET can be determined by the (integral) number of fins. This

5
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hfin

l

Gate

Drain

Source

Figure 1.5: Illustration of a FinFET with two fins, fin height hfin and length l

integral number can only be considered as a discrete parameter in the circuit sizing
step [NAL+04].

• Modeling: One important basis to compute the sizing of circuits is the existence
of sufficiently accurate device models. However, in some cases the models are
accurate only for certain discrete points or are piecewise continuously defined in
practice. To consider this problem in an automatized design flow, the sizing task
must be formulated as a discrete problem.

It can be seen that in practical circuit sizing approaches many discrete parameters may
appear. However, today the automation of analog sizing considering discrete parameters
has not yet been solved in a practicable way (cf. Chapter 1.3).

1.2.2 Mathematical Problem
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Figure 1.6: Optimization classes

The task of sizing an analog circuit is typically formulated as an optimization prob-
lem (cf. Chapter 2.5). These optimization problems can be subdivided into different
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classes, depending on the parameters used (Figure 1.6). The terminology for the dif-
ferent problem classes is not always unique. Within this thesis, the terms are used as
follows:

• Continuous Problems are optimization problems, which must be solved on an con-
tinuous parameter domain, i.e., parameters can take each value between a lower
bound and an upper bound. Such formulations were used, e.g., in many previ-
ous analog sizing tasks (cf. Chapter 1.3) where it was assumed that all circuit
parameters could be scaled continuously.

• Integer Problems consider only integer values as variables in the optimization
task. Compared to discrete problems the parameter values are always ordered
and equidistant.

• Mixed-Integer Problems consider integer parameters, as well as continuous param-
eters. In circuit sizing, such problems arise if – besides continuous parameters –
only parameters on an equidistant parameter grid or multipliers are used.

• Binary Problems or 0-1 problems are problems where parameters can only take
the values true and false. Such problems are often used to model, e.g., knapsack
or assignment problems [NW88]. It can be found that each optimization problem
considering exclusively discrete or integer values can be converted into a binary
problem.

• Mixed-Binary Problems consider binary variables and continuous parameters.
Such problems arise, e.g., if piecewise linear functions are used in the optimization
task or if disjunctive constraints arise in an optimization task.

• Discrete Problems are problems which can include continuous parameters, inte-
ger parameters, and additionally arbitrary discrete parameters. In contrast to
integer parameters, discrete parameters are not necessarily equidistant. During
analog sizing, such problems arise, e.g., if the parameter grid is not constant over
the parameter space or if the model of a transistor is only valid for certain non-
equidistant parameter points. Also non-numerical parameters to model switching
between different technologies might appear and can be modeled as discrete pa-
rameters, but are not explicitly considered in this work. It is assumed in this
thesis that the discrete values of each discrete parameter can be ordered by size
and that this order has a physical meaning (cf. Chapter 2.1.1).

Due to the definition of the terms above, the analog sizing task considering parameters as
described in Chapter 1.2.1 must be formulated as a discrete optimization problem. One
difficulty that results from the formulation of the sizing task as a discrete optimization
problem is that there is no optimality criterion like the Karush-Kuhn-Tucker conditions
to check whether the solution found is optimum [LS06]. As a consequence, algorithms
to solve the discrete sizing task typically compare different solution candidates, until no
further improvement can be seen.

Additionally, it can be expected – although it has not been proved yet – that the discrete
optimization task is an NP-hard problem and no algorithm can be found to solve the
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problem in polynomial-time complexity. The assumption is derived from the fact that
NP-hardness has been proved for certain binary and integer problems [LS06] which are
typically easier to solve than a general discrete optimization problem.

Despite the required discreteness of the solution, continuous optimization can be fre-
quently performed on the analog sizing task to compute a continuous solution. It might
be assumed that in these cases continuous optimization with subsequent rounding is
an approach to solve the task. However, it can be shown that the solution of the dis-
crete problem may be far away from the solution of the continuous optimization prob-
lem [LS06]. An example of this problem is shown in Appendix A.1. But also in case the
discrete solution is one of the points next to the continuous solution, the solution can
be one out of 2Nd points, where Nd is the number of discrete parameters. Therefore, a
more sophisticated approach must be developed and is presented in this thesis, which
solves the discrete sizing task within a practicable runtime.

1.3 State of the Art

1.3.1 Approaches for Automated Sizing

Unlike previous knowledge-based approaches, modern approaches formulate the task of
sizing an analog circuit as an optimization problem (cf. Chapter 2.5) [GR00]. Iterative
methods are used to solve this optimization task. The methods require algorithm pa-
rameters and – in some cases – initial solutions as inputs and compute one or multiple
intermediate solutions in each iteration. These intermediate solutions must be evaluated
using a description of the circuit. The results of the evaluation are used to improve the
intermediate solutions until the sizing algorithm terminates and, e.g., a sizing has been
found which fulfills specifications and constraints. This proceeding is presented in Fig-
ure 1.7. In this figure, the algorithm used to solve the optimization task is implemented
in the Optimization Engine, the evaluation of the intermediate solutions takes place in
the Circuit Evaluation Engine.

Symbolic vs Simulation-Based Approaches

Concerning the description used and the method to evaluate the description of an analog
circuit during the circuit sizing process, approaches for analog sizing can be roughly
subdivided into approaches which use a symbolic or formal description (called symbolic
approaches in the following) and approaches which evaluate the circuit using simulations
(referred to as simulation-based approaches).

Symbolic approaches require an explicit formulation of the circuit performances depend-
ing on the design parameters of the circuit. However, the explicit description of the
performance models must be set up either manually or using automated model genera-
tion approaches (e.g., [DGS03,WFG+95,YS96,TCF96]). In both cases, the description
of the circuit properties is simplified and the resulting formulation may be inaccurate.
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Figure 1.7: General structure of an approach for automated analog sizing

Therefore, a good symbolic description can typically only be given for near linear circuit
properties and, e.g., not for transient characteristics [GR00]. Additionally, deriving a
model is time-consuming and the resulting model is valid only for one circuit and for the
parameter range considered during model construction. However, after generating the
model, circuit behavior can be approximated very fast. Additionally, the sizing task can
be formulated as a geometrical program (e.g., [BKVH07,MV01, dMH04]) if the model
is formed by posynomial functions. In case of a formulation as a geometrical program,
the problem has a unique solution and the global optimum of the problem can be found
efficiently. However, due to the simplification in the model, the optimum computed on
the model does not necessarily solve the original sizing task.

In contrast, simulation-based approaches evaluate the given circuit using SPICE-like
circuit simulators [NKZB94]. Using such simulators, time consumption is relatively
high for each circuit evaluation. However, the result is accurate and the sizing approach
does not require the designer to provide a model for each new circuit. In this thesis a
simulation-based approach is realized due to its higher accuracy and generality.

Stochastic vs Deterministic Approaches

Depending on the algorithm implemented in the optimization engine, current sizing
approaches can be subdivided into stochastic and deterministic approaches. Stochastic
approaches use random numbers to determine intermediate solutions for an optimization
problem. The most popular approaches in this field are the Simulated-Annealing ap-
proaches [KGV83], which imitate the cooling of fluids to solve an optimization problem,
and evolutionary algorithms which try to imitate the Darwinian evolution. In contrast,
deterministic approaches try to improve the intermediate solution based on explicit
knowledge regarding the mathematical problem. Popular approaches in this field, e.g.,
Sequential Quadratic Programming (SQP) and the Conjugate Gradient method, use
gradients and explicitly computed performance and constraint values to solve the prob-
lem iteratively.
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Comparing stochastic and deterministic approaches, stochastic approaches typically
have the potential to find a global optimal point, whereas deterministic approaches
(without enhancement) often get stuck at the next local optimum. However, in stochas-
tic approaches, a trade-off must be made between globality and convergence, and the
number of function evaluations is typically much higher than the number of function
evaluations required for deterministic approaches.

For most analog sizing tasks, a good initial solution can be provided by the designer.
In these cases, it is sufficient to provide an algorithm which converges to the next lo-
cal optimum solution. Additionally, the time required for the evaluation of the circuit
properties strongly contributes to the runtime of the algorithm if a simulation-based ap-
proach is used, as it was decided for this thesis. Considering the typically much higher
number of function evaluations for stochastic approaches, which often leads to an im-
practicable high runtime of the sizing algorithm, a deterministic approach is established
in this work to solve the sizing task.

1.3.2 Discrete Sizing of Analog Circuits

Analog circuit sizing is currently mostly considered to be a continuous sizing approach.
However, the following selection shows that stochastic approaches often have the capa-
bility to solve discrete problems.

In [GWS90] an approach is presented which solves the task of analog sizing without
considering the operating region and process variations. The approach uses Simulated
Annealing to solve the optimization task and symbolic analysis to evaluate the circuit.
To run Simulated Annealing efficiently, the design variables are forced to lie on a grid,
i.e., all design parameters are discrete. Consequently the result is always on an initially
chosen grid and can not be a continuous solution in between. The discrete values in this
work are assumed to be equidistant, although Simulated Annealing has the capability
to solve problems with parameters on a non-uniform grid. The runtime of the algorithm
in this work strongly depends on the parameter range and the user is required to limit
this range properly. Due to the use of Simulated Annealing, the approach allows to find
a near global optimum. However, the result is inaccurate due to the symbolic analysis
used, which requires simplifying the formulation of the circuit properties.

[ORC96] also suggests a Simulated Annealing approach. The circuit properties in this
approach are evaluated using accurate circuit models (referred to as encapsulated device
evaluators). As a consequence, evaluation time is shorter and the result less accurate
than in traditional simulation-based approaches. At the same time, evaluation time
is higher and the result more accurate than in traditional symbolic approaches. The
evaluation method used limits the approach to essentially linear performances. Due to
the use of Simulated Annealing, the approach can be used for discrete problems, although
they are not explicitly considered. Additionally, although focusing on computing a
nominal design for the circuit, the authors mention that, in theory, the approach is able
to to consider operation regions and process variations.
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In contrast to the methods above, [PKR+00] accepts the much higher runtime of a
simulation-based evaluation of the circuit to gain a more accurate result. The algorithm
combines an evolutionary approach with a pattern search strategy to find the global
optimum. It is claimed that the algorithm can find the global solution and can consider
process variations and operating conditions by constraints (cf. Chapter 2.2), which
ensure that the transistors work in the envisaged operation region. Additionally, the
approach is said to be able to consider discrete parameters, such as multipliers. But
one of the key mechanisms in the algorithm is a coordinate search with randomized
direction and step size. Since a coordinate search does not necessarily find the optimum
or a near optimal point of a discrete problem, this might affect the convergence of the
algorithm in a discrete sizing task.

In [ABD03] an evolutionary approach for the task of circuit sizing is presented which
uses a Simulated Annealing modification in the selection step of the algorithm. The
approach considers discrete design parameters as well as process variations. To consider
process variations, neural-fuzzy performance models are used. However, the approach
considers only DC- and AC-performances of the circuits which are simulated by a fast
in-house simulator.

A large number of further approaches, such as [SCP07, DCR05, VSBM04, HC04,
YWLF95] can be found, which use stochastic approaches partly in combination with
deterministic approaches (e.g., [GDL+95]). One advantage of most of these approaches
is their capability to find a global optimum point. Additionally, these approaches typi-
cally have the theoretical capability to solve a discrete sizing task. However, stochastic
approaches require a large number of function evaluations. Therefore, they are often
too slow in practical applications if the circuit is evaluated by simulations. To overcome
this problem, in many statistical approaches more abstract models are used to approxi-
mate the properties of the circuit. However, as the effort to generate a sufficiently good
abstract model is high, methods using such abstract models are uncommon in practice.

Another idea to overcome the problem of the slow convergence of stochastic approaches
for a discrete sizing task has been presented in [PMG08] and [PG09]. In these works,
a simulation-based approach is presented which determines step direction and step size
based on gradient information on the circuit performances and based on random num-
bers. The approach can guarantee to find intermediate solutions which are discrete.
However, due to the use of a gradient direction, the approach might get stuck at
suboptimal discrete points where the circuit specifications are not fulfilled, and Tabu-
Search [GL97] is required to guarantee convergence. As a consequence, the convergence
of the algorithm is slow in many cases.

Due to the high runtime of evolutionary approaches, continuous sizing approaches (e.g.,
[Sch02, SSGA00, CCH+96]) are often used in practice and the result is rounded to a
discrete solution. However, as discussed in Chapter 1.2.2, this often results in suboptimal
discrete points and the specifications might not be fulfilled for the solution point.
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In some cases mixed-integer approaches have already been used for problems related to
discrete analog sizing:

In [SHA+05] a standard Mixed-Integer Nonlinear Programming (MINLP) approach is
used to consider multipliers for the gate sizing of digital circuits using FinFETs. In this
work, only the power consumption of the circuit is optimized and the complexity of the
approach is therefore much lower than in typical analog sizing tasks. The problem formu-
lation in this work was given as a geometrical program [BKVH07], i.e., the formulation
of performance and constraints was explicitly given using symbolic equations. However,
the runtime of the MINLP-solver is stated to be very high and advanced rounding is
used in later works to solve the task, accepting an inaccuracy of the result [SH06].

For analog synthesis, the approaches in [MCR92] and [MCR95] use integer nonlinear pro-
gramming and MINLP, respectively. Discrete parameters are used in these approaches to
model different structures which can be selected. Design parameters (cf. Chapter 2.1.1)
are considered to be continuous. Hence, the cardinality of the discrete domain, i.e., the
number of allowed values for each discrete design parameter, is low in these works. The
problem is formulated as a geometrical problem, which requires simplified descriptions
of the performances as functions of the design parameters.

Concluding, it can be found that the problems related to analog sizing and solved by
MINLP are less complex than the task considered in this thesis. Evolutionary ap-
proaches are often slow in practice if simulations are used for circuit evaluation and too
inaccurate if not. Current deterministic approaches which solve the continuous sizing
problem and add subsequent rounding are fast but might end up with a solution that
does not solve the sizing task even though a solution exists.

In commercial tools, deterministic and statistic approaches are realized (e.g., [WIC11,
CAD11]). However, if discrete parameters are considered in these tools, the deterministic
approaches use rounding or advanced rounding to discretize the final solution or each
intermediate solution.

1.3.3 Tolerance Design

During the sizing of an analog circuit, the parameters of the circuit should be assigned
so as to fulfill the performances for the complete operation region. Additionally, the per-
formances should be robust against variations in the subsequent manufacturing process.
Current approaches mostly solve this task using yield optimization (e.g., [Gra07,Sch04]).
The approaches can be subdivided into different groups with respect to the used ap-
proximation method for the yield [LFG11].

The most common approaches to approximate the yield are Monte-Carlo analysis and
yield analysis based on worst-case approximation [Gra07]. Although Monte-Carlo analy-
sis is the most general and – using a sufficiently high number of samples – most accurate
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method, it is usually computationally too expensive to be used within an iterative al-
gorithm for yield optimization. Therefore, in practice mostly methods based on worst-
case approximation are used [AG, AEG+00, DK95]. Other approaches use capability
indexes [AS94] or linearized performance penalties [KD95] to approximate the yield.

In practice, it is sufficient in many cases to obtain a predefined required yield. Obviously,
such a solution can be found by stopping a yield optimization as soon as the yield
requirements are met. An alternative method is presented in [SSPG02] and used in
[MG09]. In this approach, the required yield is initially specified and a successively
refined approximation of the worst cases is used to ensure that the predefined yield
requirements are finally fulfilled. The approach uses a gradient method combined with
a trust-region approach for sizing.

[LFG11] also allows the direct consideration of a required yield in an optimization prob-
lem without optimizing over the yield. This approach uses a Monte Carlo analysis to
approximate the yield and differential evolution to compute the sizing for the circuit.

1.4 Contribution of this Work

In previous works, the task of analog sizing is considered a discrete task only if a statis-
tical approach has been used or if the circuit performances were formulated as symbolic
functions. However, stochastic approaches are inefficient if a good initial solution can
be provided, and the symbolic formulation of circuit performances requires simplifi-
cations which lead to inaccuracies. Additionally, symbolic formulations of the circuit
performances are only valid for a single circuit and the construction of the symbolic
description is time-consuming.

In contrast, this work solves the task of sizing an analog circuit with discrete parameters
by two new deterministic approaches. Due to the higher generality and accuracy, the
circuit properties are evaluated by simulations. The approaches are related to MINLP
approaches. No previous approach uses MINLP or related approaches for analog siz-
ing with simulation-based evaluation of the circuit performances. However, it can be
expected that the runtime is much higher than for continuous sizing using determin-
istic approaches. To avoid an impracticable high runtime, two new, highly efficient
approaches were developed in this thesis. Both new approaches use carefully adapted
and enhanced Sequential Quadratic Programming and Branch-and-Bound algorithms.

For the first approach – referred to as Branch-and-Bound for analog sizing – it is as-
sumed that simulation is possible for each continuous value in the design space. This is
a common case in many practical problems, e.g., if the multiplier of a transistor which
is described by a BSIM model [BSI11] should be considered as a design parameter. The
assumption allows the computation of a continuous intermediate solution although the
final result should be discrete. To find a discrete solution, an outer Branch-and-Bound
approach is used to guarantee (local) convergence, and a new method is introduced to
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predict the discrete solution quickly. The outer Branch-and-Bound approach computes
in each recursion a solution for the continuous sizing task using a simulation-based Se-
quential Quadratic Programming (SQP) approach. The size of the search space for the
continuous solution is recursively reduced by rounding constraints. As a consequence,
the continuous optimum in the search space is a discrete point after a finite number of
recursions. For the prediction of a discrete solution, a linearly constrained quadratic
model of the sizing task is used. Such a model is computed during the SQP approach.
Solving the model over the discrete parameter domain, a discrete solution for the siz-
ing task can be predicted quickly with a low number of additional simulations. The
Branch-and-Bound approach is modified for the consideration of variations in process
and operating conditions, which requires predominantly a modification of the SQP ap-
proach.

For the second approach – referred to as model-based analog sizing – it is assumed
that the circuit cannot be evaluated for parameter points which are not in a predefined
discrete set. This task is harder to solve because it requires the computation of a discrete
solution in each step. To tackle this problem, a quadratic model for each performance
and for each constraint is built up iteratively based on gradients. Afterward, a new
discrete solution which fulfills the constraints and improves the circuit performances is
computed on the model. Sequential Quadratic Programming and Branch-and-Bound
are used to compute the discrete solution on the model.

To guarantee that each intermediate point in the optimization on the continuous domain
is feasible, a Feasible Sequential Quadratic Programming [LT01] implementation is used
as SQP approach. The approach is enhanced in this thesis by a gradient computation
of the performances and the constraints and by a step size computation, both highly
parallelized with respect to the required simulations.

Branch-and-Bound is used in the new Branch-and-Bound approach for analog sizing to
compute a discrete sizing based on simulations and on a quadratic model of the sizing
task to predict the discrete solution of the task efficiently. For the new model-based ana-
log sizing approach, Branch-and-Bound is used to find improved intermediate solutions
on a nonlinear model. The Branch-and-Bound approach on a simulation-based level
must be focused predominantly on the computation of a solution for the sizing task,
using a low number of computationally expensive simulations. In contrast, the Branch-
and-Bound approach used to solve the quadratic model in the Branch-and-Bound ap-
proach for analog sizing and used to solve the nonlinear model in the model-based analog
sizing approach should compute a close to optimal solution of the model efficiently but
can use a higher number of function evaluations to achieve this goal. To consider the
different requirements for the applications, two new Branch-and-Bound algorithms are
presented which differ in the used branching heuristics and pruning conditions.

The computational complexity of a Branch-and-Bound algorithm is exponential in the
worst case [TDG09]. Therefore, the typical assumption that the runtime of the algorithm
is dominated by the time required for simulations might not be true anymore if the
quadratic and the nonlinear model in the new approaches are solved by Branch-and-
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Bound. A trade-off between the number of simulations and the time required by other
numerical operations is presented in this thesis to consider the potentially high runtime
of Branch-and-Bound as well as the simulation time.

For the two new algorithms, different formulations with respect to the objective functions
are useful. The selection of these functions is motivated and explained in this work.

The analog sizing task in this thesis is solved for nominal operating and nominal process
conditions and considering different operating conditions and process variations. The
consideration of different operating conditions and process variations allows the design
of a robust circuit but requires more simulations and a higher runtime than the design
under nominal conditions. Thus, the design under nominal conditions is used to compute
a good initial solution for determining a robust design. For the computation of a robust
design an approach similar to [SSPG02] is used in this thesis. However, the approach
was adapted to Feasible Sequential Quadratic Programming and Branch-and-Bound,
and was enhanced for the application in the new model-based analog sizing approach.

The two new approaches presented in this thesis are verified and evaluated by simulation-
based experiments on four different circuits. In the experiments a nominal sizing as well
as a tolerance sizing is computed for each of the circuits. The quality of the tolerance
sizing was evaluated by Monte Carlo analyses.

1.5 Previous Publications

One of the algorithms presented in this thesis deals with an analog sizing problem under
the assumption that the circuit can be evaluated at each continuous point. A previous
version of the method presented in this thesis, which was developed for sizing under
nominal operating and nominal process conditions, has been published in [PZG10] and
[PG11]. The enlarged approach for sizing under consideration of tolerances is published
in [PZG11].

Parts of the problem formulation in this thesis date back to an earlier approach and
have been published in [PMG08] and [PG09].

1.6 Structure of this Thesis

In Chapter 2, the task of analog sizing in consideration of discrete parameters and vari-
ations in operation and process conditions is formalized and defined as an optimization
task. The optimization methods which are the basis for the new approaches in this the-
sis are introduced and discussed in Chapter 3 and new enhancements are shown which
are required for analog sizing. The two new approaches for analog sizing are introduced
in Chapters 4 and 5 and verified and evaluated by simulation-based experiments in
Chapter 6. Chapter 7 concludes.
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Chapter 2

Analog Sizing Task

Starting from the definition of design parameters, operating parameters, and pro-
cess parameters (Section 2.1), this chapter gives a mathematical formulation of
the analog sizing task as an optimization problem. For this purpose, sizing rules
[Eck98,Ziz01,MGS08,Mas10] for an analog circuit are formulated as constraints for the
optimization task (Section 2.2). Additionally, the performances of a circuit are defined
and a performance-to-specification gap is introduced as the normalized distance from a
performance value to the corresponding performance specification bound (Section 2.3).

In a typical analog sizing task, many counteracting circuit properties must be considered
at the same time. As a result, the task of sizing an analog circuit is a multi-objective
task in general. However, most optimization algorithms require a scalar formulation of
the optimization problem. For this purpose, a mapping from the multi-objective sizing
task to a scalar is shown in Section 2.4. This mapping is used in Section 2.5 to formulate
the design task for different design objectives.

2.1 Circuit Parameters

The circuit parameters described in this section are subdivided into design parameters
d, which can be influenced by the designer, operating parameters o, which are part
of the circuit specification, and process parameters s, which are used to model process
variations. The three types of parameters are collected in an Np-dimensional vector p

p =




d

o

s


 (2.1)
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2.1.1 Design parameters

During the sizing step in the analog design flow, the parameter values of the devices, e.g.,
transistor widths and lengths, must be assigned so as to fulfill certain circuit properties.
The parameters which can be influenced by the designer are referred to as design param-
eters or tuning parameters and labeled by d. The N design parameters of a circuit can
be subdivided into Nc continuous parameters, e.g., transistor lengths and widths with-
out considering a manufacturing grid, and Nd discrete parameters (cf. Chapter 1.2.1).
Each N -dimensional parameter point consisting of discrete design parameters dd and
continuous design parameters dc can be written as

d =

[
dd

dc

]
∈ D

N = D
Nd
d × D

Nc
c (2.2)

D
N is referred to as the design space. DNd

d and D
Nc
c are the design space for the discrete

and for the continuous parameters, respectively. Without loss of generality, it can be
assumed that the first Nd parameters are discrete.

The design space for continuous parameters dc ∈ D
Nc
c can be defined by lower bounds

dc,l and upper bounds dc,u:

dc ∈ D
Nc
c =

{
d ∈ R

Nc |dc,l ≤ d ≤ dc,u

}
(2.3)

In contrast, to define the design space for discrete parameters dd ∈ D
Nd
d , it must be

considered that each discrete parameter dd,i is an element of a discrete domain Dd,i with

cardinality
∣∣Dd,i

∣∣ = ni:
dd,i ∈ Dd,i = {d1, ..., dni

} (2.4)

The design space for Nd discrete parameters can be defined as

dd ∈ D
Nd
d =

Nd×
i = 1

Dd,i (2.5)

According to Chapter 1.2.1, the discrete design parameters can be ordered with respect
to their physical meaning. Thus, the design space Dd,i for each discrete parameter dd,i
is a strictly totally ordered set

Dd,i := (Dd,i, <) (2.6)

where the relation < is (cf. [PD00])

1. irreflexive: dd,i ∈ Dd,i ⇒ ¬ (dd,i < dd,i)

2. asymmetric: dd,i < dd,j ⇒ ¬ (dd,j < dd,i)

3. transitive: (dd,i < dd,j ∧ dd,j < dd,k) ⇒ (dd,i < dd,k)

4. connex: dd,i 6= dd,j ⇒ (dd,i < dd,j ∨ dd,j < dd,i)
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As a consequence, for each discrete parameter set Dd,i in (2.4) an index set Ii

Ii = {1, ..., ni} (2.7)

can be defined such that

∀
j, k ∈ Ii

dd,j ∈ Dd,i ∧ dd,k ∈ Dd,i ∧ (j < k ⇔ dd,j < dd,k) (2.8)

In addition, a lower bound di,l and an upper bound di,u can be defined for each discrete
parameter:

di,l = d1 = minDd,i (2.9)

di,u = dni
= maxDd,i (2.10)

The lower and upper bounds for continuous and discrete parameters can be collected in
the vectors dL and dU , respectively, i.e.,

dL =

[
dd,l

dc,l

]
; with dd,l = [d1,l, ..., dNd,l]

T (2.11)

dU =

[
dd,u

dc,u

]
; with dd,u = [d1,u, ..., dNd,u]

T (2.12)

As finite upper bounds di,u and lower bounds di,l for the parameters are given in an
analog sizing task, e.g., by physical limitations or by the range where a device model is
valid, each parameter can be normalized by

d̃i :=
di − di,l

di,u − di,l
(2.13)

This normalization is essential for the comparability of the parameters and for the
numerical robustness of the optimization algorithms. Hence, it is assumed for the re-
mainder of this thesis that all parameters are normalized although their normalization
is not explicitly labeled for the sake of a simple description.

For many discrete optimization algorithms, a relaxation of the discrete design space
is required, i.e., for discrete parameters also continuous intermediate values must be
allowed (see Figure 2.1 for an example with one continuous and one discrete design pa-
rameter). The design space is a discrete parameter domain D

N (2.2) which is composed
of continuous and discrete dimensions, and which is bounded according to (2.11), (2.12).
The relaxation D

N
rel of this discrete parameter domain D

N can be defined as

D
N
rel = {d |dL ≤ d ≤ dU } (2.14)

I.e., the domain for each continuous parameter is left unchanged while for discrete
parameters the parameter domain is enlarged to continuous values between the lower
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D
2

D
2
rel

dc,l

dc,u

dd,1 dd,2 dd,3 dd,4 dd,5

Figure 2.1: Design space D
2 and its relaxation D

2
rel for one continuous and one discrete

parameter.

and the upper bound for the parameter. As a consequence, the discrete parameter
domain is always a subset of its relaxation and rounding operators can be used to get
from a point in the relaxed domain back to a discrete parameter point. To round a
single parameter value di in the relaxed domain with i = 1, ..., Nd to a value in the
non-uniform discrete domain, the operators ⌈•⌉ and ⌊•⌋ are used:

⌈di⌉ = min
dk∈Dd,i

dk s.t. dk ≥ di; ⌊di⌋ = max
dk∈Dd,i

dk s.t. dk ≤ di (2.15)

Accordingly, to round a single component of a parameter vector

d = [d1, ..., di, ..., dN ]
T ∈ D

N
rel (2.16)

in the relaxed domain to a value in the discrete domain, the operators ⌈•⌉i and ⌊•⌋i
with i = 1, ..., Nd are defined

⌈d⌉i = [d1, ..., di−1, ⌈di⌉, di+1, ..., dN ]
T (2.17)

⌊d⌋i = [d1, ..., di−1, ⌊di⌋, di+1, ..., dN ]
T (2.18)

The operator to round a parameter in the relaxed domain to the next point in the
discrete domain is defined by

⌈d⌋ = [⌈d1⌋ , ..., ⌈dNd
⌋ , dNd+1, ..., dNd+Nc ]

T (2.19)

with
⌈di⌋ = arg min

dk∈Dd,i

|dk − di| ; i ∈ {1, ..., Nd} (2.20)

The different rounding operations are visualized in Figure 2.2.
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Figure 2.2: Rounding operators applied to a parameter point d0 in the relaxed domain
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2.1.2 Operating Parameters

The functionality of a circuit must be guaranteed for different operating conditions, e.g.,
for temperatures from −55 ◦C to 125 ◦C or for variations in the supply voltage. During
analog sizing, operating or range parameters o are used to model the dependency of a
circuit from operating conditions.

The operating region where the functionality of the circuit must be ensured is part of
the specification and given by lower bounds ol and upper bounds ou for each parameter.
With these bounds, the operating region can be defined as the No dimensional domain

o ∈ T
No
o = {o |ol ≤ o ≤ ou} (2.21)

The operating parameters can be normalized according to (2.13).

Operating conditions are typically defined in a continuous space and consequently mod-
eled by continuous variables in this thesis. However, if a discrete or piecewise continuous
specification of an operating condition is given, it can be relaxed (cf. Section 2.1.1). As
the discrete domain is a subset of its relaxation, it is sufficient to guarantee the func-
tionality of the circuit in the relaxed domain. Only if the circuit cannot be simulated
for each operating condition in a relaxed domain, the sizing task must be considered
to be discrete with respect to the operating parameters. However, it can be seen in
Chapters 4.4 and 5.4 that – under mild assumptions – the algorithm in Chapter 4.4
may be applied to problems with discrete operating parameters without further mod-
ifications and that the approach in 5.4 requires only slight modifications to consider
discrete operating parameters.
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β2 (s) = 3

s1

s2

s0,1

s0,2

Figure 2.3: Contour lines of a Gaussian normal distribution with mean [s0,1, s0,2]
T for

β2 (s) ∈ {1, 2, 3} (as an example the value of β2 (s) = 3 is labeled)

2.1.3 Process Parameters

The influence of variations in the manufacturing process of a circuit increases with
shrinking technology size. Variations can be considered in the sizing step by Ns process
or statistical parameters s:

s ∈ R
Ns (2.22)

Process variations can be modeled by random variables [PDML94] which can be ar-
bitrarily distributed. However, it is assumed in this thesis that the random variables
s are Gaussian normally distributed s ∼ N (s0,C) with mean value s0 and variance-
covariance matrix C. I.e., the probability density function for the process parameters
is defined as

pdf(s) =
1

√
2π

Ns
√

det(C)
· exp

(
−1

2
β2 (s)

)
(2.23)

with
β2 (s) = (s − s0)

T ·C−1 · (s − s0) (2.24)

The assumption of a Gaussian normal distribution of s is valid because the considered
process parameters are either Gaussian or can be transformed into a Gaussian normal
distribution [Esh92].

The value of β2 (s) in (2.23) and (2.24) corresponds to the contour lines of the Gaussian
distribution in the two-dimensional case (see Figure 2.3) and to the surface of a hyper-
ellipsoid in higher dimensional cases. It can be noted that the value of β2 (s) also
corresponds to a certain yield (cf. Section 2.5.4).

Within this thesis, the process parameter vector s is assumed to be element of an
Ns-dimensional continuous real valued domain. This assumption is valid if the device
models can be simulated for each continuous process parameter point (cf. Section 2.1.2).
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Figure 2.4: Sizing rules for a simple current mirror [Mas10] with minimum area Amin,

minimum width wmin, and minimum length lmin, threshold voltage Vth, min-

imum saturation voltage Vsat,min and maximum drain source voltage offset

VDS,max

However, discrete models, e.g., device corner models [CM10], are used in some design
scenarios to model the process conditions. To consider such discrete models, the process
conditions must be treated like operating conditions (cf. Section 2.1.2). Thus, the
performance specifications must be fulfilled for each recombination of the discrete process
parameters and no minimum yield requirements (cf. Section 2.5.4) are supported.

2.2 Sizing Rules and Constraints

Given the schematic of an analog circuit, a set of rules can be defined which must be
fulfilled to ensure the robustness of a circuit and to avoid its degeneration. These sizing
rules [Eck98,Ziz01,MGS08,Mas10] describe relations between the geometries or between
the electrical properties of devices or groups of devices in a circuit. As an example, the
set of sizing rules for a simple current mirror is shown in Figure 2.4.

Sizing rules contribute to the efficiency of an automatic design tool in two ways:

1. Parameter reduction: The set of sizing rules often contains equalities which force
one design parameter to be equal to a fixed multiple of another parameter. In
this case, one of the parameters is redundant and can be substituted by the other.
Therefore, the number of independent parameters and, as a consequence, the
complexity of the sizing task is reduced.

2. Design space reduction: Other sizing rules can be formulated as inequality con-
straints c (p):

c (p) ≥ 0 (2.25)
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Figure 2.5: Constraints, discrete design space, and relaxed design space in the parameter

domain (left) and in the constraint domain (right)

c (p) is a surjective mapping from the parameter domain to the constraint domain
(see Figure 2.5):

c : p 7→ c (p) (2.26)

As device geometries are typically defined as design parameters (cf. Section 2.1.1),
the mapping for geometrical properties can be derived explicitly. In contrast, the
mapping for electrical constraints – in a simulation-based approach – must be
computed using simulations.

Considering inequality constraints in an automatic sizing approach can prevent the
approach from entering unrewarding regions in the design space. Hence, fulfilling
the constraints during the whole sizing process can be interpreted as cutting off
non-promising parts from the design space.

Considering the requirements for the layout in the discrete sizing problem, the sizing
rules presented in [Mas10] can be enlarged with respect to the transistor geometries
[Has01]: Different lengths and widths of transistors strongly influence the matching of
the transistors. As a consequence, each transistor of a matched transistor pair should
have the same length and width. Additionally, all widths and lengths in a multi-finger
structure must be equal.

This claim can be fulfilled by setting the lengths and widths of matched transistors
equal during analog sizing. Consequently, the relation between the devices can only be
influenced by multipliers (cf. Chapter 1.2.1). Considering this rule leads to a reduction
of free parameters in the discrete sizing task.

Besides sizing rules, other circuit properties, e.g., a maximum area or a maximum power
consumption, can be formulated as constraints for the sizing task. Within this thesis,
such circuit properties are considered as performances.
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2.3 Circuit Performances

2.3 Circuit Performances

Circuit performances f (p) refer to circuit properties which specify the required
application-specific characteristics of the circuit. Typical examples are the gain, phase
margin, or slew rate of an amplifier or the power consumption and area of a circuit.
In this thesis, circuit performances are evaluated by simulations which perform a sur-
jective mapping from the parameter domain into the performance domain analogous to
the mapping presented for the constraints (cf. Figure 2.5):

f : p 7→ f (p) (2.27)

2.3.1 Performance Specifications

The requirements for each performance fi (p) of a circuit can be specified by upper
and lower performance specification bounds fu,i and fl,i, respectively. In the following
it is assumed that for each performance fi (p) exactly one upper bound fi (p) ≤ fu,i is
defined. This assumption is valid because

1. a performance which is specified by upper and lower bounds can be split into two
performances with one upper or lower bound each:

fl,i ≤ fi (p) ≤ fu,i ⇔ (fl,i ≤ fi (p)) ∧ (fi (p) ≤ fu,i) (2.28)

I.e., the performance fi (p) appears twice in the performance vector f (p) if this
transformation is applied: once as performance specified by the lower bound fl,i
and once as performance specified by the upper bound fu,i.

2. lower bounds can be transformed into equivalent upper bounds

fl,i ≤ fi (p) ⇔ f̂u,i := −fl,i ≥ −fi (p) =: f̂i (2.29)

2.3.2 Sensitivity of Performances

For gradient-based optimization approaches, the sensitivities of the performances with
respect to changes in the parameters are required. Some simulators for analog circuits
can compute the sensitivities of performances directly if sufficient device models are
provided. However, to be independent of the simulator and of the model, the central form
of a finite differences approach is used within this thesis. The approach is enlarged below
to capture discrete parameters. It is assumed that design and operating parameters are
normalized according to (2.13).

The central form of the finite differences approach is used in this thesis to compute a
highly accurate approximation for the gradient. However, the number of simulations
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2 Analog Sizing Task

required for the central form of a finite differences approach is twice the number of
simulations required for the less accurate forward or backward form.

Using the central form of finite differences, the gradient or sensitivity jk,i of a perfor-
mance fk with respect to a parameter pi is approximated by:

jk,i =
∂fk

∂pi
≈ fk(pi +∆pi)− fk(pi −∆pi)

2 ·∆pi
(2.30)

∆pi refers to a finite positive deflection for design parameter pi. fk(pi + ∆pi), and
fk(pi −∆pi) refers to the change of performance fk if parameter pi is deflected and all
other parameters are kept constant. The finite difference for ∆pi → 0 is by definition
the partial derivative. However, if fk(pi +∆pi) and fk(pi − ∆pi) are computed by
simulations, the value of ∆pi must be large enough to reduce the effects of numerical
inaccuracies in the simulation. In addition, ∆pi must be small enough to ensure that
the local approximation of sensitivity is good enough. Within this thesis, a fixed value
of 0.1% of the parameter range has been found experimentally as a good trade-off and is
used for ∆pi. However, this value can be directly influenced by the user of the developed
tool.

It is assumed in this thesis that discrete parameters are ordered with respect to their
physical meaning. Thus, it can be supposed that for the relaxation of the discrete
domain (2.14) the performances f (p) are differentiable. It can be followed that also for
each point in the discrete domain a gradient can be defined. However, the approximation
of the gradient must consider that in a discrete problem the points where an evaluation
of the performances is possible can lie on a non-uniform grid, and – in some cases – no
intermediate points can be evaluated.

To overcome this problem, each performance fk at a point p is approximated in direction
of parameter pi by a quadratic function

fk(pi +∆pi) ≈ ak ·∆p2i + bk ·∆pi + ck (2.31)

The values of ak, bk, and ck can be calculated if the performance is evaluated for three
values of ∆pi (cf. Appendix B.1). In this thesis the values are chosen as ∆pi,0 = 0,
∆pi,1 > 0, and ∆pi,2 < 0, where ∆pi,0 = 0 corresponds to an evaluation at the point p
where the gradient should be computed. With this assumption, the sensitivity jk,i of
performance k against variations in parameter pi can be approximated by

jk,i =
∂fk
∂pi

≈ bk =

=
∆pi,2

∆pi,2−∆pi,1
· fk(pi+∆pi,1)−fk(pi)

∆pi,1
+

∆pi,1
∆pi,1−∆pi,2

· fk(pi+∆pi,2)−fk(pi)

∆pi,2

(2.32)

It can be seen that this formula to compute the gradient approximation is equal to
the central form for finite differences if ∆pi,1 = −∆pi,2, i.e., if the deflection of the
parameter is symmetric around ∆pi,0 = 0. However, for discrete parameters which can
only be evaluated on a non-uniform grid, ∆pi,1 must be chosen as ∆pi,1 6= −∆pi,2 to
ensure that the performances can be computed.
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2.3 Circuit Performances

In addition to the approximated sensitivity given by bk, the value of ak – and thus an
approximation of the curvature of the performance function in direction of parameter
pi – can be computed. This is used in Chapter 5.

Collecting the sensitivities of a performance fk in a sensitivity vector

jk =
[
jk,1, ..., jk,Np

]T
(2.33)

the Jacobian matrix Jf for Nf performances can be defined:

Jf =
[
j1, ..., jNf

]T
(2.34)

Analogously, a Jacobian matrix Jc for the constraints in Chapter 2.2 can be defined.

2.3.3 Performance Normalization

To support tools for automatic sizing and to avoid numerical difficulties, the values of the
performances must be comparable. This requires a normalization of the performances.
For an ideal normalization, the minimum and maximum possible performance values
fmax,i and fmin,i are used and the normalized performance can be computed by:

f̃ (p) =
fi (p)− fmin,i

fmax,i − fmin,i

(2.35)

This type of normalization is used for the parameters in (2.13). However, the maximum
and minimum values are not available for performances in general.

In other analog sizing approaches a measure referred to as parameter distance γi(p) is
suggested (e.g., [Eck98]). Considering only upper bounds, using the sensitivity vectors
in (2.33), and following [Eck98], the parameter distance for performance fi (p) can be
given as:

γi(p) =
fi (p)− fu,i√

jTi ji
(2.36)

The parameter distance can be interpreted as the distance from a point in the parameter
domain to the next point where the performance specification is exactly fulfilled using
a linear performance model (see Figure 2.6a). As the sensitivity of the performances is
computed in each step of an iterative algorithm, the norm for a performance changes
in each iteration step. As a consequence, the quality of the quadratic model used in
Chapter 5 and in the Sequential Quadratic Programming approach in Chapters 3 and 4
may be affected if the parameter distance is used.

In this thesis, a normalization with respect to the parameter bounds is used. I.e.,
assuming only upper bounds with fu,i 6= 0:

εi(p) =
fi (p)− fu,i

|fu,i|
(2.37)
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specification gap

The value of εi(p) is referred to as the size of the performance-to-specification gap or
performance gap and is a measure for the distance from the performance value to the
performance specification bound (see Figure 2.6b). It can be seen that the value for
the gap size is positive if the performance violates the bound fu,i and negative if a
specification is fulfilled. The performance-to-specification gaps are collected in an Nε-
dimensional vector

ε(p) = [ε1(p), ..., εNε(p)]
T (2.38)

Assuming that the number of performances is equal to the number of performance-to-
specification gaps, the Jacobian matrix for the performance gaps Jε can be computed
directly from (2.33) by

Jε =

[
1

|fu,1|
j1, ...,

1

|fu,Nε |
jNε

]T
(2.39)

2.4 Objective Functions

Using the definition of a performance-to-specification gap in Section 2.3.3, the task of
analog sizing can be considered as a multi-objective minimization problem. I.e., all
performance-to-specification gaps should be minimized at the same time. However, the
optimization algorithms in Chapters 3, 4, and 5 require a formulation of the sizing task
as a scalar optimization problem. For this mapping from a multi-objective optimization
problem to a scalar one, an objective function ϕ (ε (p)) := ϕ (p) is used1:

ϕ : ε(p) 7→ ϕ (p) (2.40)

1In this thesis, the constraints are not considered as part of the objective function.
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The usability of an objective function strongly depends on the optimization task consid-
ered and on the optimization algorithm used. The properties of the objective function,
which are claimed for the formulation of an analog sizing task as a minimization problem
of the form

min
p
ϕ (p) s.t. c (p) ≥ 0 (2.41)

are described in the next section.

2.4.1 Claims for Scalar Objective Functions in Analog Sizing

The following claims are formulated for the objective functions in this thesis:

1. The objective function should not add discontinuities or points of non-
differentiability to the problem.

Assuming that the design objectives, i.e., the performances, are continuous and
differentiable, gradient-based methods can be used. This property should not be
affected by the objective function.

2. The objective function should not penalize the over-fulfillment of specifications.

A point which fulfills all specifications can have a worse objective function value
than a point which violates some specification if over-fulfillment is penalized. How-
ever, in some design scenarios one specification can only be fulfilled if another
specification is over-fulfilled. In such a case, an optimization of an objective func-
tion which penalizes over-fulfillment cannot be used to reliably find a solution for
the sizing task (cf. Appendix A.2).

Penalizing the over-fulfillment of performances can also be critical if the objective
function value for each point which fulfills the specifications is smaller than for
each point which violates a specification (cf. claim 4)2: In this case, the penaliza-
tion can cause a barrier which must be overcome to enter the domain where the
specifications are fulfilled. I.e., local minima can be added where a gradient-based
method may get stuck.

3. Given two objectives, an alteration of the worse objective should have a higher
influence on the objective function value than an equally large alteration of the
better objective.

For an analog sizing task, a trade-off solution for different design objectives must
be computed. If not all specifications can be fulfilled, it is preferable to have all
performances close to the specification bounds rather than getting many very good
performances at the cost of a few, strongly violated specifications. This goal can
typically be achieved if the worst performance has the highest influence on the
objective function value.

2Objective functions which fulfill claim 4 but do not fulfill claim 2 can be constructed, e.g., if weights

are adapted dynamically to the size of each performance-to-specification gap during an optimization.
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4. The objective function value at a point which fulfills the specifications should be
better than the objective function value at any point where a specification is vio-
lated.

Comparing two points by an objective function which is constructed according to
the third claim, the alteration of a worse objective has a greater influence compared
to the same alteration of a better one. However, some worse objectives might be
deteriorated while improving the objective function if the improvement of a better
objective is large enough or if more than one better objectives are improved.

This characteristic of an objective function is acceptable as long as no point where
specifications are violated has a lower objective function value than a point which
solves the sizing task. In other cases, the minimization of the objective function
starting at a point where all specifications are fulfilled might end up at a point
where some specification is violated. As a consequence, no minimization – nei-
ther local nor global – can be used to solve the sizing task reliably and without
additional effort if this fourth claim is violated (cf. Appendix A.2).

2.4.2 Objective Function Types

To convert a multi-objective problem into a scalar objective function, min-norm ap-
proaches can be used [Lin05]. A general form of min-norm objective functions for Nε

performance-to-specification gaps (2.37) can be given by:

ϕ =

(
Nε∑

i=1

(ηi |εi(p)|)κ
) 1

κ

(2.42)

This class of norms is referred to as weighted Hölder norms. ηi ≥ 0 represents a weight
which can be used to increase the influence of a single term. κ is a positive integer.
Within this thesis the weight ηi = 1 is used for all performances. The norms for κ = 1,
κ = 2, and κ → ∞ are outlined and discussed in this section. Table 2.1 shows an
overview of the discussed functions in order of appearance in this section.

κ = 1

For κ = 1 and ηi = 1, the objective function is equal to a sum over the absolute values of
the performance-to-specification gaps. The use of the absolute value causes a negative
value of a gap – i.e., a performance which fulfills its specification – to increase the
value of the objective function. As a consequence, the weighted sum of absolute errors
violates claim 2 in Section 2.4.1, i.e., penalizes an over-fulfillment of the performances.
In addition, this objective function is not differentiable at the axes εi(p) = 0 (claim 1).

An objective function which does not penalize the over-fulfillment of the performances
can be derived by replacing the absolute value by the non-absolute value εi(p) or by
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Table 2.1: Overview of important objective functions, and corresponding contour lines

for two performance-to-specification gaps ε1, ε2 with ηi = 1, γ = 0.

Objective

Function

Formal

Description
Contour Lines

Weighted

Sum of Errors (2.43)

Nε∑
i=1

ηi · εi(p) −1

−1

1

1

ϕ = 1
ε1

ε2

Truncated Weighted

Sum of Errors (2.44)

Nε∑
i=1

ηi ·max (0, εi(p)) 1

1

−1

−1

ϕ = 1
ε1

ε2

Least-Squares (2.45)
Nε∑
i=1

ηi · εi(p)2 1−1

1

−1

ϕ = 1
ε1

ε2

Truncated

Least-Squares (2.47)

Nε∑
i=1

(ηi ·max (0, εi(p) + γ))2 1

1

−1

−1

ϕ = 1
ε1

ε2

Max-Norm (2.49) max
i=1,...,Nε

(εi(p)) 1

1

−1

−1

ϕ = 1

ε1

ε2
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a truncated value max (0, εi(p)) for each performance gap. The resulting objective
functions are referred to as the weighted sum of errors

ϕ =
Nε∑

i=1

ηi · εi(p) (2.43)

and the truncated weighted sum of errors

ϕ =
Nε∑

i=1

ηi ·max (0, εi(p)) (2.44)

In both cases, an alteration in the size of the performance-to-specification gap with
εi(p) > 0 contributes linearly to the objective function value and is independent of the
value of εi(p). I.e., claim 3 is violated in both cases. As a consequence, a trade-off
solution computed by these objective functions may over-fulfill some specifications at
the cost of a few strongly violated performances if no solution for the sizing task exists
where all specifications and constraints are fulfilled.

In addition, claim 4 is violated for (2.43). This can be observed, e.g., if two performance-
to-specification gaps are assumed which can take values in the range −10 < ε1(p) < 1
and −1 < ε2(p) < 1. In such an example, a solution p1 with ε1(p1) = −10 and
ε2(p1) = 1 obviously has a lower (better) objective function value for (2.43) than a
solution p2 with ε1(p2) = −1 and ε2(p2) = −1. However, a negative value of the perfor-
mance gap implies that the corresponding specification is fulfilled (cf. Section 2.3.3) such
that only p2 is a point which fulfills all specifications. It can be concluded that an opti-
mization over (2.43) might not find a solution of the sizing task where all specifications
are fulfilled (cf. Appendix A.2).

To overcome this problem, negative values of the performance gaps are set to zero in
the truncated weighted sum of errors (2.44). As a consequence, this objective function
is always zero if all specifications are fulfilled and greater zero if any specification is
violated. E.g., in the example above, the objective function value of (2.44) is zero for
p2 but one for p1. It follows that claim 4 is fulfilled for (2.44). However, Table 2.1
shows that (2.44) is not differentiable at points along the axes εi(p) = 0, i.e., claim 1 in
Section 2.4.1 is violated.

It can be concluded that – concerning the claims in Section 2.4.1 – the min-norm ob-
jective function for κ = 1 and the derived objective functions (2.43) and (2.44) should
not be selected for the analog sizing task.

κ = 2

Setting κ in (2.42) to κ = 2, the Euclidean norm of the performance gaps is used. The
resulting objective function is referred to as Least-Squares approach. The square root
and the absolute value in (2.42) can be omitted such that this objective function can be
written as:

ϕ =
Nε∑

i=1

ηi · εi(p)2 (2.45)

32



2.4 Objective Functions

ε1
ε2

ε1, ε2, k

min k

k > ε1 ∧ k > ε2

k

p

Figure 2.7: Interpretation of the min-max formulation

The Least-Squares objective function penalizes the over-fulfillment of the specifications
(cf. Appendix A.2) because a negative value of a performance gap contributes to the
objective function by a positive value. Analogously to (2.44) this problem can be solved
by replacing each value of a performance gap εi(p) in (2.45) by max (0, εi(p)):

ϕ =
Nε∑

i=1

(ηi ·max (0, εi(p)))
2 (2.46)

This modified objective function is differentiable at each point if the performances
are differentiable (claim 1). It does not penalize the over-fulfillment of specifications
(claim 2) and puts – due to the squared form – greater weight on higher values of the
performance gaps (claim 3). Due to the truncation it guarantees that the (global) mini-
mum of the objective functions is a point which fulfills the specifications if such a point
exists (claim 4). A slightly modified version of the objective function is used within this
thesis for the new approach in Chapter 4 and is referred to as truncated least squares
objective function:

ϕlsq (p) =
Nε∑

i=1

(ηi ·max (0, εi(p) + γ))2 (2.47)

γ can be set to a small positive value and can be interpreted as a forced over-fulfillment
of the performances. In the experiments of this thesis this value is set to γ = 0.005, i.e.,
the specifications are forced to be over-fulfilled by 0.5% of the specified value.

κ→ ∞

Setting in (2.42) κ → ∞ results in the Chebyshev norm of the performance-to-
specification gap sizes. The absolute value in (2.42) causes the function not to support
the over-fulfillment of specifications. However, the function can be modified according
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to (2.43), i.e., the value of each performance gap is used directly instead of the absolute
value. The resulting objective function

ϕ = lim
κ→∞

(
Nε∑

i=1

(ηiεi(p))
κ

) 1
κ

(2.48)

can be interpreted for ηi = 1 as

ϕmax (p) = max ε(p) := max
i=1,...,Nε

(εi(p)) (2.49)

and is referred to as max-norm in the following. It can be seen in Table 2.1 that ϕmax (p)
might be non-differentiable if the greatest two or more values of performance gaps are
equal. To overcome this problem, an optimization problem of the form (2.41), i.e., for
ϕ (p) = ϕmax (p)

min
p

max ε(p) s.t. c (p) ≥ 0 (2.50)

can be rewritten (e.g., [EG02]) as a goal attainment optimization problem:

min
k ,p

k s.t.: c (p) ≥ 0

k − εi(p) ≥ 0; i = 1, ..., Nε

(2.51)

A graphical interpretation of this optimization is given in Figure 2.7. The rewritten
formulation – referred to as min-max formulation – fulfills all claims in Section 2.4.1
and is used for the new approach in Chapter 5. The pro of the min-max formulation
is that – assuming reasonable normalized values of εi(p) – it guarantees a uniform
minimization of the values of all performance-to-specification gaps. However, due to
the formulation in (2.51) additional constraints are added and the minimization over
the max-norm is harder to solve in many cases than a minimization of the least squares
objective function.

Exponentially Weighted Sum

Besides the weighted Hölder norms other objective functions can be found in literature.
One function which was frequently used in former approaches for analog sizing is an
exponentially weighted sum over the values of the performance gaps (e.g. [AEG+00]).
However, it can be found that claim 4 in Section 2.4.1 is violated for this objective func-
tion (cf. Appendix A.2). In addition, the exponential function may result in objective
function values of high magnitude and may cause numerical problems if the normaliza-
tion should be kept unchanged over more than one iteration step. Therefore, it is not
used in this thesis.

2.5 Design Objectives

Using the formal descriptions mentioned above, a formulation of the design task as a
minimization problem can be given. This formulation depends on the design scenario
considered.
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2.5.1 Optimality of a Design

The design of analog circuits is a multi-objective task. In general, not every performance
can be at its individual optimum at the same time and a trade-off solution is required.
To distinguish between different options for this trade-off, the following definitions can
be made:

Definition 2.1:

A discrete design point d0 ∈ D
N is a c-feasible point if all constraints of the design task

(cf. Section 2.2) are fulfilled at this point.

Definition 2.2:

A discrete design point d0 ∈ D
N is an s-feasible point if all specifications and constraints

of the design task (cf. Sections 2.3 and 2.2) are fulfilled at this point.

Definition 2.3:

A c-feasible discrete design point d0 ∈ D
N is a Pareto-optimal point if at this point no

performance can be improved without worsening any other performance (cf. [MG09]).

Definition 2.4:

A c-feasible discrete design point d0 ∈ D
N is a local Pareto-optimal point if in a neighbor-

hood D
N
neighbor = {d |d1 < d < d2}, with d1,d2 ∈ D

N , no performance can be improved
without worsening any other performance (cf. [Wan75]). A Pareto-optimal solution
point is always local Pareto-optimal.

Definition 2.5:

A local Pareto-optimal design is a design at a local Pareto-optimal point.

Definition 2.6:

An optimal design is a design at an s-feasible and local Pareto-optimal point.

Definition 2.7:

A suboptimal design is a design at any s-feasible point.

The defined demands for an optimal design are more restrictive than for a suboptimal
design and require the objective function to support the improvement of performances
which fulfill the specifications. Therefore, the truncated least squares objective function
(2.47) – wherein each term is zero if the corresponding performance fulfills its specifi-
cation – cannot be used without further modifications to compute an optimal design.
In contrast, a local optimum of the max-norm objective function is always an optimal
design if it is s-feasible. For the task of finding a suboptimal design, the truncated least
squares objective function can be used as well as the max-norm formulation.

The quality of an optimal design is obviously better than the quality of a suboptimal
design. However, the computational cost of finding an optimal design typically is much
higher and it is sufficient for most design scenarios to find any s-feasible design. This
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2 Analog Sizing Task

thesis focuses on the computation of a suboptimal design. This task is equivalent to the
task of finding a c-feasible point p∗ which fulfills:

∀
i = 1, ..., Nε

εi(p
∗) ≤ 0 (2.52)

(2.52) can be used as a stop criterion in the optimization algorithms described in Chap-
ters 3, 4 and 5.

2.5.2 Design for Feasibility

The term design for feasibility refers to the computation of a c-feasible sizing, i.e., to
a sizing which fulfills the constraints defined in Section 2.2. The constraints should
be typically fulfilled for the nominal point of the operating parameters o = o0 and the
mean value of the process parameters s = s0. I.e., any design parameter point d∗ should
be found such that

d∗ ∈ Ac =
{
d ∈ D

N
∣∣ c(d,o0, s0) ≥ 0

}
(2.53)

Ac is referred to as the acceptance region with respect to the constraints. This task must
be solved, e.g., to find an initial solution for the computation of the nominal design
described below. The minimization problem can be formulated as

min
d∈DN

ϕ(d,o0, s0) (2.54)

For ϕ(d,o0, s0) the max-norm formulation as well as a truncated least squares formula-
tion can be used if the performance-to-specification gaps are replaced by the gap sizes
regarding the constraints.

2.5.3 Nominal Design

A nominal design is s-feasible – i.e., fulfills the constraints defined in Section 2.2 as well
as the specifications for the performances defined in Section 2.3 – for nominal operating
conditions o = o0 and mean values of the process parameters s = s0. Using (2.52) and
(2.53), a design parameter point d∗ should be found which fulfills:

d∗ ∈ Anom = Ac ∩



d ∈ D

N

∣∣∣∣∣∣
∀

i = 1, ..., Nε

εi(d,o0, s0) ≤ 0



 (2.55)

Anom is referred to as the acceptance region with respect to the constraints and perfor-
mances. To find such a point the minimization problem

min
d∈DN

ϕ(d,o0, s0) s.t. c(d,o0, s0) ≥ 0 (2.56)
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2.5 Design Objectives

is used.

ϕ = ϕlsq (2.47) or ϕ = ϕmax (2.48) together with stop criterion (2.52) can be used to
find any nominal design. A nominal design is required, e.g., as initial solution for a
tolerance design task or if no operating and process parameters should be considered.

In some scenarios also an optimal design is of interest, e.g., if power and area of a circuit
should be optimized. For this task all performance specifications which should not be
optimized can be considered as constraints in (2.56) and the remaining performances
can be optimized, e.g., using ϕ = ϕmax. With slight modifications, the algorithms in
Chapters 4 and 5 can also be used to find an optimal nominal design.

2.5.4 Tolerance Design

For a typical analog sizing task, operating conditions are defined where the performances
of a circuit must fulfill the specifications. In addition, process variations should be
considered to make the circuit robust and to achieve a high yield during manufacturing.
The design considering operating conditions and predefined yield requirements is referred
to as tolerance design.

Considering a single performance gap, the parametric yield Yi of an analog circuit with
respect to the corresponding performance specification, i.e., the probability that the
value of the corresponding performance-to-specification gap εi(p) is smaller than 0, can
be computed by:

Yi =

0∫

−∞

pdf (εi) dεi (2.57)

This integral cannot be solved directly because the probability density function pdf (εi)
is not explicitly known. However, using (2.24) for a fixed value β2 (s) = β2

W , the yield
can be approximated by

Yi ≈ Ȳi =

βW∫

−∞

1√
2π

exp

(
−1

2
β2

)
dβ (2.58)

if the specifications are exactly fulfilled at one point of the hull of the ellipsoid defined
by (2.24) and βW . For the approximation, the acceptance region in the domain of the
process parameters – i.e., the subdomain of the process parameter domain where the
specifications are fulfilled – is assumed to be linearly bounded. This is visualized in
Figure 2.8 where the approximated yield corresponds to the integral over the proba-
bility density function of s in the linearly approximated area where the specification is
fulfilled. A derivation following [Gra07] is provided in Appendix B.2. It can be seen
from Figure 2.8 that – due to the assumed linearity of the acceptance region bound – an
error occurs in the yield approximation (integral over pdf(s) in hatched area). However,
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s0,1

s0,2

swc

Linearly bounded

approximation of the

acceptance region

Difference between

linearly bounded approximation

and actual acceptance region

εi = 0

(s − s0)
T ·C−1 · (s − s0) = β2

W

Figure 2.8: Acceptance region (gray and hatched area) and its linearly bounded ap-

proximation (gray area) in the process parameter domain (cf. (2.63)). The

linear bound is computed at the boundary point swc between a contour line

of pdf(s) and the actual performance specification bound εi = 0.

Table 2.2: Relation of βW and approximated yield Ȳi

βW 0 1 2 3 4 5

Ȳi [%] 50.00 84.13 97.72 99.87 99.997 >99.999

the integral over the probability density function in this area is small and the error is
negligible in practical approaches.

Using (2.58) a predefined yield can be expressed in terms of βW (see Table 2.2). I.e.,
using (2.24), the requirement of a certain yield can be interpreted as the claim to fulfill
the specifications of the performances for all process parameter points in a tolerance
domain

T
Ns
s =

{
s| (s − s0)

T ·C−1 · (s − s0) ≤ β2
W

}
(2.59)

I.e., for fixed design parameters d = d̂ and operating parameters o = ô, the performance
specifications must be fulfilled and the size of the performance-to-specification gap εi(p)
must be negative for each performance i at its worst case process parameter point swci

swci = arg max
s∈TNs

s

εi

(
d̂, ô, s

)
(2.60)

In practical cases swci typically lies on the hull of the ellipsoid defined by β2
W . Therefore,

βW is referred to as the worst-case distance.
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Satisfying the claim that swci fulfills the specifications and constraints can only guarantee
that the yield for an analog circuit with respect to a single variable is at least

Yi ≥
∫

· · ·
∫

s∈TNs
s

pdf(s)ds (2.61)

wherein pdf(s) is defined according to (2.23). Although the yield which can be guaran-
teed due to (2.61) is typically lower than the predefined yield requirements (an approx-
imation is provided in [Gra07]), the approximation in (2.58) is sufficiently accurate in
practice.

Analogous to (2.60), the requirement to fulfill the performance specifications for all op-
erating conditions can be formulated as the claim to fulfill the performances at the worst
case operating points owci. For fixed design parameters d = d̂ and process parameters
s = ŝ the worst case operating point for performance i is defined with (2.21) as

owci = arg max
o∈TNo

o

εi

(
d̂,o, ŝ

)
(2.62)

For a tolerance design the performance specifications should be fulfilled considering
operating and process parameters. This can be formulated as the claim that for a design
parameter point d = d∗ the specifications must be fulfilled at the worst case points with
respect to operating parameters and process parameters. Using (2.37), (2.60), (2.62)
the objective of finding a tolerance design can be formulated as the task of computing
a point in the acceptance region for a tolerance design

d∗ ∈ Atol = Ac ∩



d ∈ D

N

∣∣∣∣∣∣
∀

i = 1, ..., Nε

εi(d,owci, swci) ≤ 0



 (2.63)

Thus, the optimization task can be formulated as

min
d∈DN

ϕ(d,owc1, ...,owcNε
, swc1, ..., swcNε

) s.t. c(d,o0, s0) (2.64)

Herein owc1, ...,owcNε
and swc1, ..., swcNε

depend on the design parameter point, i.e., must
be re-computed in each step of an iterative optimization algorithm.

Analogous to the nominal design, ϕ can be the truncated least squares objective function
ϕlsq or the max-norm ϕmax (2.52). Also, the computation of an optimal tolerance design
is possible as discussed for a nominal design in Section 2.5.3.

2.5.5 Yield Optimization

If the yield is supposed to be as high as possible and no predefined yield is given, the
task of analog sizing can be formulated as a maximization of the distances to the worst
case parameter points. This task is not considered in this thesis. However, using the
formulation of a geometric-yield optimization [Gra07], the presented algorithms can be
applied to this task with only slight modifications.
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Chapter 3

Optimization Algorithms

The analog sizing task can be formulated as an optimization problem. In this chapter the
basic algorithms implemented within this thesis are introduced and new enhancements
are presented which are required to apply these algorithms to the analog sizing task.
The presented algorithms are used in Chapters 4 and 5 for the new methods to solve
the discrete sizing task.

In Section 3.1 the optimality conditions for continuous optimization are introduced
which are the basis for the continuous optimization algorithms in Sections 3.2, 3.3,
and 3.4. In Sections 3.2, 3.3, and 3.4 a linear, a quadratic, and a general nonlinear
optimization problem on a continuous domain are formulated and appropriate solution
methods are presented. Continuous problems appear in a discrete analog sizing task,
e.g., if an optimization problem is to be solved in the relaxed domain of the design
parameters (cf. (2.14) in Chapter 2.1.1).

In Section 3.5 the discrete nonlinear optimization problem is characterized and the
Branch-and-Bound algorithm is introduced to solve it.

3.1 First-Order and Second-Order Optimality

Conditions

For continuous optimization problems the first-order necessary optimality conditions
and the second-order necessary and sufficient optimality conditions are used to qualify
the local optimality of a point.
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The first-order necessary conditions are also referred to as Karush-Kuhn-Tucker con-
ditions or KKT conditions. To formulate these conditions, a constrained optimization
problem of the form

min
d
ϕ(d) s.t. cl(d) ≥ 0; for l ∈ I

cl(d) = 0; for l ∈ E
(3.1)

with the Lagrangian function

L(d,λ) = ϕ(d)−
∑

l∈(E∪I)

λlcl(d) (3.2)

is assumed. λl is the Lagrangian multiplier which corresponds to constraint cl(d). E
and I are the index sets for the equality and inequality constraints, respectively. The
objective function and the constraints are assumed to be differentiable. It can be proved
(e.g., [NW99]) that – if a point d∗ is optimal – the first-order necessary conditions

∇dL(d∗,λ∗) = 0 (3.3)

cl(d
∗) ≥ 0 l ∈ I (3.4)

cl(d
∗) = 0 l ∈ E (3.5)

λl ≥ 0 l ∈ I (3.6)

λlcl(d
∗) = 0 l ∈ (E ∪ I) (3.7)

must be fulfilled. For further discussion, the following definition is used:

Definition 3.1:

A constraint cl(d) is active at d∗ if cl(d
∗) = 0. The index set of active constraints at d∗

A := A(d∗) = E ∪ {l ∈ I |cl(d∗) = 0} (3.8)

is referred to as active set.

The KKT conditions are necessary conditions for local optimality. Thus, only the locally
limiting constraints, i.e., equality constraints and active inequality constraints, must be
considered. For this purpose, the Lagrangian multipliers are defined to be λk = 0 for
all non-active constraints. As each active constraint fulfills cl(d

∗) = 0 and each λl = 0
for inactive constraints, (3.7) must be fulfilled. Furthermore, (3.4) and (3.5) must be
fulfilled if d∗ is a feasible solution. The remaining equations (3.3) and (3.6) can be
derived, using that - if d∗ defines a minimum - no feasible descent direction can exist
at d∗ (see, e.g., [NW99]). A negative Lagrangian multiplier for an inequality constraint
– i.e., a violation of (3.6) – implies that the solution can be further improved if the
corresponding constraint is forced to be inactive.

The KKT conditions might be fulfilled although d∗ is no local solution for (3.1) if
∇dϕ(d

∗)T∆d = 0 is fulfilled for some direction ∆d 6= 0. Thus, the second derivative of
the Lagrangian function (3.2) is used to identify the optimality of a point.
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Let the KKT conditions be fulfilled at d∗ and let direction ∆d lead to a feasible point
different from d∗. If such a direction ∆d exists and if ∆d leads to an improvement of
the objective function, it must fulfill (e.g., [NW99]):

∆d ∈ F =

{
∆d 6= 0

∣∣∣∣∣
∇dcl (d

∗)T ∆d = 0 ; if l ∈ E ∪ {l ∈ I ∩ A |λ∗l > 0}

∇dcl (d
∗)T ∆d ≥ 0 ; if l ∈ {l ∈ I ∩ A |λ∗l = 0}

}
(3.9)

With (3.9), the Taylor approximation of (3.2) cut after the second term and determined
at d∗ can be given as

L(d∗ +∆d,λ∗) ≈ L(d∗,λ∗) +∇dL(d∗,λ∗)T∆d + 1
2
∆dT∇2

ddL(d∗,λ∗)∆d

(3.3),(3.7),(3.9)
= ϕ(d∗) + 1

2
∆dT∇2

ddL(d∗,λ∗)∆d

(3.10)

Due to (3.2) and λ∗l · cl (d∗ +∆d) ≥ 0, the value of the Lagrangian function at d∗ +∆d

must also fulfill L(d∗ +∆d,λ∗) ≤ ϕ(d∗ +∆d). Thus, the point d∗ is a strict optimum
for problem (3.1) if

∀
∆d ∈ F

∆dT∇2
ddL(d∗,λ∗)∆d > 0 (3.11)

This condition is referred to as the second-order sufficient condition. If instead of the
strict inequality

∀
∆d ∈ F

∆dT∇2
ddL(d∗,λ∗)∆d ≥ 0 (3.12)

is fulfilled, the inequality is referred to as the second-order necessary condition. The
equality implies that the point might not be a local optimum for (3.1) if a higher order
term in the Taylor approximation causes an improvement of the objective function.

For discrete optimization algorithms neither the first-order nor the second-order optimal-
ity conditions can be used to qualify the optimum. This assertion can be easily verified
because in many cases a direction of improvement can be found for the relaxation of the
discrete problem at the discrete optimum.

3.2 Linear Programming in a Continuous Domain

3.2.1 Linear Programming Task

A linear program refers to an optimization problem with linear objective function and
linear constraints and can be given as:

min
d

kT · d s.t. Ag · d ≥ bg

Al · d ≤ bl

Ae · d = be

(3.13)

43



3 Optimization Algorithms

d1

d2

d1 + η (d2 − d1)

for 0 ≤ η ≤ 1

(a) Convex domain (shaded area)

d1

d2
d1 + η (d2 − d1)

for 0 ≤ η ≤ 1

(b) Non-convex domain (shaded area)

Figure 3.1: Convex vs. non-convex domain

k,bg,bl,be,Ag,Al, and Ae are constant vectors and matrices, respectively.

The feasible region of a linear program is the domain

D
N
lin,feas = {d |Ag · d ≥ bg ∧Al · d ≤ bl ∧Ae · d = be} (3.14)

If this domain is not empty, it is convex, i.e., each point on a straight line between two
feasible points is also feasible (cf. Figure 3.1):

d1,d2 ∈ D
N
lin,feas ⇒ ∀

0 ≤ η ≤ 1

d1 + η (d2 − d1) ∈ D
N
lin,feas (3.15)

As a consequence, the solution is a vertex of the polytope which is defined by the
constraints if an unique solution exists for (3.13). It follows that the task of finding the
optimum of the problem is equivalent to the task of finding a set of constraints which
defines the vertex where the optimum is. This is used in the simplex algorithm.

3.2.2 Preprocessing for Simplex Algorithm

For the simplex method an optimization problem of the form

min
d

kT · d s.t. A · d = b

d ≥ 0
(3.16)

is required. The following operations can be applied to get from the general form of a
linear program (3.13) to (3.16) (e.g., [NW99]):
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1. The inequalities in (3.13) can be transformed into equivalent equalities by sub-
tracting or adding slack variables ϑ ≥ 0:

Agd ≥ bg can be transformed into
[
Ag −I

]
·
[

d

ϑg

]
= bg (3.17)

Ald ≤ bl can be transformed into
[
Al I

]
·
[

d

ϑl

]
= bl (3.18)

I is the identity matrix.

2. If any variable dm can be smaller than zero, i.e., dm ≥ 0 is not fulfilled, the
variable can be split into a positive part d+m = max(0, dm) and a negative part
d−m = max(0,−dm), and can be expressed by dm = d+m− d−m. I.e., the optimization
program of the form (3.16) with some dm ∈ R

min
d




k1
...
km
...
kN




T

·




d1
...
dm
...
dN




s.t. [a1, ..., am, ...aN ] ·




d1
...
dm
...
dN



= b

dm ∈ R

di ≥ 0 for i 6= m

(3.19)

can be transformed into

min
d




k1
...
km
−km
...
kN




T

·




d1
...
d+m
d−m
...
dN




s.t. [a1, ..., am,−am, ...aN ] ·




d1
...
d+m
d−m
...
dN



= b

d+m ≥ 0; d−m ≥ 0

di ≥ 0 for i 6= m

(3.20)

Due to the minimization, either d+m or d−m is equal to zero and the operators
d+m = max(0, dm) and d

−
m = max(0,−dm) can be omitted.

In addition to the required form of the optimization problem in (3.16), the number
of parameters in the simplex algorithm is assumed to be greater than the number of
equality constraints in (3.16). Otherwise some constraints are redundant, the solution
of the optimization problem is uniquely defined by the constraints, or no solution exists.
For practical approaches this means that redundant constraints must be deleted before
the simplex algorithm is executed. The resulting set of constraints is referred to as the
working set.
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3.2.3 Simplex Algorithm

For the simplex algorithm, an optimization problem of the form (3.16) with r linearly
independent constraints and N > r parameters is assumed. The optimal solution is a
vertex of the ploytope which is defined by the constraints if a unique solution exists.
For a problem of this form the following definitions can be made:

Definition 3.2:

A basic feasible point is feasible, i.e., d ∈ {d |A · d = b}, it is uniquely defined by r

linearly independent columns of A, and has at most r non-zero elements. Each non-
zero element corresponds to a column of A that defines the basic feasible point. A basic
feasible point corresponds to a vertex of the polytope defined by the constraints [NW99].

Definition 3.3:

The basis set B is the index set of the r linearly independent columns of A which define
a basic feasible point.

Definition 3.4:

The non-basis set B̄ is the index set of the N − r columns of A which do not define the
basic feasible point. I.e., B̄ = {1, ..., N} \ B.

Definition 3.5:

A basis variable is a variable which corresponds to an index in B.

Definition 3.6:

A non-basis variable is a variable which corresponds to an index in B̄. Due to Defini-
tion 3.2, the value of a non-basis variable is zero.

Definition 3.7:

The matrix of basic columns is a matrix that consists of the columns of A which define
the basic feasible point.

To compute the basic feasible points, the columns ai of A with index i ∈ B can be
collected in a matrix B and all columns of A with index i ∈ B̄ can be collected in a
matrix N. Correspondingly, the vectors k and d can be split into vectors kB and kN and
dB and dN , respectively. Therefore, the optimization problem (3.16) can be formulated
as:

min
d

[
kT
B kT

N

]
·
[
dB

dN

]
s.t.

[
B N

]
·
[
dB

dN

]
= b

dB ≥ 0; dN ≥ 0

(3.21)

With Lagrange multipliers λ and µT =
[
µT

B,µ
T
N

]
, the corresponding Lagrangian func-

tion is:

L(d,λ,µ) = kT
BdB + kT

NdN − λT · (BdB +NdN − b)− µT
BdB − µT

NdN (3.22)

46



3.2 Linear Programming in a Continuous Domain

Algorithm 1: Simplex Algorithm (cf. [NW99])

Input: B, B̄, k, A, b

1compute d using dB

(3.26)
= B−1b and dN

(3.25)
= 0

2repeat

3build matrices B, N and vectors kB, kN from B, B̄, A, and k

4compute µN using (3.24)

5if µN ≥ 0 then // optimal solution found

6return d

7else

8choose n ∈ B̄ such that corresponding Lagrange multiplier µn < 0

9set an = n-th column of A

10compute δ = B−1an

11set d∗ = min
i

dB,i

δi
s.t. δi > 0; with dB,i, δi is i-th component of dB and δ,

respectively, and set p = index i ∈ B that corresponds to d∗ =
dB,i

δi

12set B = {n} ∪ B \ {p} and B̄ = {p} ∪ B̄ \ {n}
13update d using dn = d∗, δ = B−1an, and (3.27)

14end

15until Maximum number of loops exceeded

16return d

At the optimum µT
BdB = 0 must be fulfilled (cf. (3.7)). Assuming that the constraints

for the bounds dB ≥ 0 are inactive, µB is set to be µB = 0. With µB = 0, it follows
from the KKT conditions (cf. Section 3.1) that

∇dB
L(d,λ,µ) = kB −BTλ

!
= 0 ⇒ λ = B−TkB (3.23)

∇dN
L(d,λ,µ) = kN −NTλ− µN

!
= 0

(3.23)⇒ µN = kN −
(
B−1N

)T
kB (3.24)

dN
!
= 0 (3.25)

BdB +NdN − b
!
= 0

(3.25)⇒ dB = B−1b (3.26)

and that µN ≥ 0 if the basic feasible point dT = [dT
B,d

T
N ] is optimal. I.e., µN ≥ 0

implies that the choice µB = 0 was correct and that a solution of the problem has
been found. Otherwise, i.e., if some µN < 0, there is a different basis set B which
defines a better solution for the optimization problem. Such a point can be found by
exchanging basis and non-basis variables. The simplex algorithm defines a systematic
way to perform this exchange. A simplified algorithm is given in Algorithm 1.

The algorithm requires a basic set – i.e., a basic feasible point is given initially – and
a description of the optimization problem as an input. In each step, the computations
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3 Optimization Algorithms

derived in (3.23) and (3.24) are used to decide if the solution is optimal (line 5). If the
point is not optimal, the algorithm improves the solution (lines 8 to 13).

For this purpose, a non-basic variable is chosen (line 8) which corresponds to a negative
Lagrangian multiplier. This choice is not only intuitively reasonable – because all La-
grangian multipliers must be greater or equal to zero at the optimum – but it can also
be shown that this selection results in an improvement of the objective function [NW99].
Several heuristics can be used to decide which parameter should be chosen if more than
one Lagrangian multiplier is negative (e.g., [Tho94]). Within this thesis, the parameter
which corresponds to the smallest component of µ, i.e., to the most sensitive constraint,
is used. This method is suggested, e.g., in [Dan66] and referred to as Dantzig’s rule or
Non-Basic Gradient Method [Tho94].

Using the newly selected variable, a basis variable is computed which should become
a non-basis variable (line 10 and 11): Defining B(m) as the matrix of basic columns

in iteration m, d
(m)
B,m and d

(m+1)
B,m as the basis variables from iteration m evaluated in

iteration m and m + 1, d
(m+1)
n as the new basis variable in iteration m + 1, and an as

the column of A that corresponds to d
(m+1)
n ,

B(m)d
(m)
B,m = B(m)d

(m+1)
B,m + and

(m+1)
n = b ⇒ d

(m)
B,m = d

(m+1)
B,m +B(m)−1

an · d(m+1)
n (3.27)

must be fulfilled (cf. (3.26)). I.e., the influence of an increase of d
(m+1)
n on each compo-

nent of d
(m)
B,m can be determined by

δ = B(m)−1
an (3.28)

A component δi ≤ 0 of δ implies that the value of a basis variable is not decreased if
d
(m+1)
n is increased and that the variable can not become a non-basis variable. As a

consequence, d
(m+1)
n can be increased until the first basis variable d

(m+1)
B,i which belongs

to a positive component of δ is zero. Considering (3.27) line by line and setting the

corresponding component of the vector of basis variables d
(m+1)
B,m in iteration m + 1 to

d
(m+1)
B,i = 0, the increase in parameter d

(m+1)
n to reach d

(m+1)
B,i = 0 can be computed as

d
(m)
B,i = δi · d(m+1)

n ⇔ d(m+1)
n =

d
(m)
B,i

δi
(3.29)

To ensure that all variables are positive after the iteration, as required in (3.16), the

basis variable d
(m+1)
B,i which belongs to the smallest positive value of d

(m+1)
n is selected as

new non-basis variable and the value of the new basis variable d
(m+1)
n can be computed

by (cf. line 11 of Algorithm 1)

d(m+1)
n = min

i

d
(m)
B,i

δi
s.t. δi > 0 (3.30)

dB,i and δi is i-th component of dB and δ, respectively.
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3.2 Linear Programming in a Continuous Domain

After selecting the basis and non-basis variable, the basis and non-basis set are computed
and the basis feasible point is updated (lines 12 and 13). The loop is repeated until
either a solution has been found (line 6) or the maximum number of loops is reached
(line 15).

The algorithm presented so far is not computationally efficient because matrix inversions
are required in lines 4 and 10. A more efficient way can be demonstrated using the
simplex tableau.

The simplex tableau can be established by writing (3.21) in the form

dT
B dT

N

B N b

kT
B kT

N 0

(3.31)

The columns which correspond to dB and dN are referred to as basis and non-basis
columns, respectively. Applying a block-wise Gaussian elimination by multiplying the
second row by B−1 from the left and forcing the elements at the position of kT

B in the
last row (referred to as objective function row) to be 0T yields

dT
B dT

N

I B−1N B−1b
(3.26)
= dB

0T kT
N − kT

B(B
−1N)

(3.24)
= µT

N −kT
BdB

(3.32)

Line 8 of Algorithm 1 can now be interpreted as choosing a negative entry in the objective
function row. The corresponding column is referred to as the pivot column.

Each non-basis column corresponds to a vector δ = B−1a. Hence, line 11 can be
interpreted as the task of finding the minimum positive quotient of the value on the
right-hand side divided by the value in the pivot column. The corresponding row is
referred to as the pivot row. Exchanging a basis and a non-basis variable can be realized
by a step of the Gaussian elimination, i.e., the equation system is transformed in such
a way that the pivot column is a unity vector with a single one in the pivot row. As a
consequence, it is necessary to execute only a Gaussian elimination step instead of the
two matrix inversions in Algorithm 1.

For the simplex algorithm presented so far, an initial basis feasible solution must be
given. However, the simplex algorithm can be used again to find such a solution. For
this purpose, the problem to find a feasible point can be formulated analogously to
(3.16) as

min
χ,d

χ s.t. A · d + χ = b

χ ≥ 0
(3.33)

Initially χ = b−A · d0 ≥ 0 is the violation of the constraints at a starting point d0.
The solution of this optimization problem is a basis feasible solution of (3.16). I.e.,
after solving (3.33), the last line of the simplex tableau can be replaced by the objective
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3 Optimization Algorithms

function of (3.16) and the simplex algorithm can be applied after a transformation which
ensures that the objective function row is zero for all basis variables. The procedure
of computing a basic feasible solution and of solving the equation system afterward is
known as the two phases simplex algorithm.

3.3 Quadratic Programming in a Continuous Domain

3.3.1 Quadratic Programming Task

A quadratic programming task (QP) refers to an optimization problem with quadratic
objective function and linear constraints:

min
d

1
2
dTHd + gTd s.t. aT

l d ≥ bl; for l ∈ I
aT
l d = bl; for l ∈ E

(3.34)

H is referred to as Hessian matrix, the vector g describes the linear part of the objective
function. The constraints – defined by constant vectors al and constant values bl – define
a convex feasible set (cf. (3.15) and (3.14)).

The quadratic programming problem must be solved in this thesis within the Sequen-
tial Quadratic Programming algorithm (Section 3.4.2) and within the new Branch-and-
Bound approach in Chapter 4. In both cases, a strictly convex model of the Hessian
matrix is used. Assuming a strictly convex Hessian matrix, there is exactly one global
minimum for the quadratic optimization problem which can be computed, e.g., by the
active set method presented in Section 3.3.2.

3.3.2 Active Set Method for Convex Quadratic Programming

Convex quadratic minimization tasks are problems of the form (3.34) with positive
definite Hessian matrix H. Such optimization problems have a unique solution which is
a global optimum of the problem. This optimum can either be on the surface or inside
the polytope which is defined by the constraints.

Similar to the Simplex algorithm (cf. Section 3.2.3), a major task in solving the op-
timization problem is to identify the set of constraints – if any – which prevent the
objective function at the optimum from further improvement. Each of these linear
constraints ci(d) fulfills ci(d) = 0, i.e., is active (cf. Definition 3.1). If the set of lin-
early independent, limiting, active constraints can be found, the unique solution for the
optimization problem can be computed using the KKT conditions (cf. [NW99]).

In the following, the constraints in an active set are assumed to be linearly independent.
However, in practice the claim of linear independence requires preprocessing to delete
redundant constraints from the set of constraints and to receive a working set.
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3.3 Quadratic Programming in a Continuous Domain

Assuming that the active set A
(
d(µ)

)
at a feasible point d(µ) is given, the optimum

of the quadratic objective function in (3.34) subject to these active constraints can be
found by solving the equality constraint optimization problem

min
d(µ+1)

1
2
· d(µ+1)T ·H · d(µ+1) + gT · d(µ+1)

s.t. aT
l · d(µ+1) − bl = 0; for l ∈ A

(
d(µ)

) (3.35)

The vectors al and the values bl which correspond to the active constraints can be
collected in the matrix A(µ) and the vector b(µ), respectively. The Lagrangian function
of (3.35) can be defined as

L(d(µ+1),λ(µ)) = 1
2
· d(µ+1)T ·H · d(µ+1) + gT · d(µ+1) − ∑

l∈A(d(µ))
λ
(µ)
l

(
aT
l d

(µ+1) − bl
)

= 1
2
· d(µ+1)T ·H · d(µ+1) + gT · d(µ+1) − λ(µ)T

(
A(µ)d(µ+1) − b(µ)

)

(3.36)
The Lagrangian function can also be determined from (3.34) by setting all Lagrangian
factors for inactive constraints to zero:

∀
l ∈ (E ∪ I) \ A

(
d(µ)

) λl = 0 (3.37)

From the KKT conditions (3.3) and (3.5) applied to (3.35) and (3.36) it follows that

[
∇dL(d(µ+1),λ(µ))

A(µ) · d(µ+1) − b(µ)

]
=

[
0

0

]
⇒
[

H −A(µ)T

A(µ) 0

]
·
[
d(µ+1)

λ(µ)

]
=

[ −g

b(µ)

]
(3.38)

or with d(µ+1) = d(µ) +∆d(µ)

[
H −A(µ)T

A(µ) 0

]
=

[
∆d(µ)

λ(µ)

]
=

[
−g −Hd(µ)

b(µ)

]
(3.39)

The values of λ(µ), d(µ+1), and ∆d(µ) can be computed efficiently, e.g., using the range-
space method [NW99]. The result d(µ+1) is optimal for (3.35). In addition, it fulfills
the KKT conditions (3.3), (3.5), and (3.7) for the optimization problem (3.34) if the
Lagrangian factors for the inactive constraints are chosen according to (3.37). Three
cases can be observed for the solution of the equation system considering the remaining
KKT conditions:

1. KKT condition (3.4) is violated for the optimization problem (3.34):

∃
l ∈ (E ∪ I) \ A

(
d(µ)

)
aT
l d

(µ+1) − bl < 0 (3.40)

(3.40) implies that d(µ+1) is no optimum of (3.34) and that the objective function
at the optimum is limited by at least one additional constraint. I.e., the active set
A
(
d(µ)

)
is not complete and any constraint must be added.
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3 Optimization Algorithms

2. KKT condition (3.6) is violated for (3.34):

∃
l ∈ A

(
d(µ)

)
\ E
λl < 0 (3.41)

This implies that d(µ+1) is no optimum of (3.34) and that the objective function
can be further improved if the constraint corresponding to λl < 0 is removed from
(3.35). I.e., at least one index of the active set A

(
d(µ+1)

)
– namely one which

corresponds to λl < 0 – should be deleted from the active set.

3. All KKT conditions are fulfilled for (3.34). Due to the positive definiteness of H,
the point d∗ = d(µ+1) defines the unique minimum of (3.34) in this case.

The three observations are used to define the active set algorithm for convex quadratic
programming in Algorithm 2 (cf. [NW99]) which is explained below.

Given a feasible initial solution d(0), which can be computed, e.g., by the simplex al-
gorithm in Section 3.2.3, the set of active constraints can be defined (line 2). Some
methods to solve the equation system (3.39) allow the computation of ∆d(µ) and a sub-
sequent computation of the Lagrangian factors [NW99]. In addition, the Lagrangian
factors are only required to decide if some constraint in the active set should be forced
to be inactive. Therefore, as long as ∆d(µ) 6= 0 (lines 5 to 14) no values for λ(µ) must
be computed.

However, if ∆d(µ) 6= 0, KKT condition (3.4) must be tested for problem (3.34) to
ensure that each point d(µ+1) = d(µ) + ∆d(µ) is feasible (lines 6 and 7). If the new
point is feasible, the new solution can be accepted and the active set is left unchanged
(line 12 to 14). Otherwise, a constraint which is violated at d(µ)+∆d(µ) must be added
to the active set.

The equality constraint subproblem (3.35) may be unsolvable if all constraints which
are violated at d(µ) + ∆d(µ) are added to the active set. Thus, only that constraint
is selected which is violated first in direction of ∆d(µ). The bound of an inequality
constraint is reached for some d(µ) and ∆d(µ) if

aT
l ·
(
d(µ) + δ∆d(µ)

)
− bl = 0 ⇔ δ =

bl − aT
l d

(µ)

aT
l ∆d(µ)

(3.42)

aT
l ∆d(µ) 6= 0 must be true as the considered constraints are fulfilled at d(µ) and vio-

lated at d(µ) +∆d(µ). Computing the value of δ by (3.42) for all constraints which are
violated at d(µ) +∆d(µ), the constraint which corresponds to the smallest value of δ is
the first constraint which is violated in direction of ∆d(µ). For this smallest value of
δ, all constraints are fulfilled at d(µ) + δ∆d(µ) and the constraint which corresponds to
the selected value of δ is active. The corresponding constraint index is computed in
line 8 and added to the active set in line 9. As ∆d(µ) is a descent direction for the
objective function, the iterative solution of the optimization problem can be updated to
d(µ+1) = d(µ) + δ∆d(µ) (lines 10 and 11).
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3.3 Quadratic Programming in a Continuous Domain

Algorithm 2: Active Set Algorithm (cf. [NW99])

Input: optimization problem (3.34), feasible initial solution d(0)

1set µ = 0

2compute initial active set A
(
d(µ)

)
= E ∪

{
l ∈ I

∣∣ald
(µ) − bl = 0

}

3while µ < µmax do

4compute ∆d(µ) using (3.39)

5if ∆d(µ) 6= 0 then

6set V =
{
l
∣∣∣aT

l ·
(
d(µ) +∆d(µ)

)
− bl < 0

}

7if V 6= ∅ then

8set i = argmin
l∈V

bl−aT
l d(µ)

aT
l ∆d(µ)

9set A
(
d(µ+1)

)
= A

(
d(µ)

)
∪ {i}

10set δ =
bi−aT

i d(µ)

aT
i ∆d(µ)

11set d(µ+1) = d(µ) + δ∆d(µ)

12else

13A
(
d(µ+1)

)
= A

(
d(µ)

)

14d(µ+1) = d(µ) +∆d(µ)

15end

16else

17compute λ(µ) using (3.39)

18if ∃
l∈A(d(µ))\Eλ

(µ)
l < 0 then

19choose i = arg min
l∈A(d(µ))\E

λ
(µ)
l

20set d(µ+1) = d(µ)

21set A
(
d(µ+1)

)
= A

(
d(µ)

)
\ {i}

22else

23return d(µ)

24end

25end

26set µ := µ+ 1

27end

28return d(µ)

If no descent direction can be computed for (3.35), i.e., ∆d(µ) = 0 (line 16), the La-
grangian multipliers are computed (line 17) and used to decide if KKT condition (3.6)
is violated for problem (3.34) (line 18). In case that (3.6) is violated, the most negative
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Lagrangian factor is chosen – similar to the choice in the simplex algorithm above –
to be deleted from the active set (lines 19 and 21). Otherwise – i.e., if all Lagrangian
factors are positive or zero – a solution of optimization problem (3.34) has been found
and can be returned (line 23).

The computational efficiency of the algorithm can be further improved if the value ∆d(µ)

is only computed when the active set has changed, i.e., before the while loop and after
line 9 and line 21. Alternatively, the algorithm can be simplified if the Lagrangian
multipliers are computed in each loop by leaving out the outer if-clause (lines 5 and 16)
and reordering the instructions.

3.4 Nonlinear Optimization using Sequential

Quadratic Programming

3.4.1 Nonlinear Programming Task

A nonlinear programming problem is an optimization problem of the form (3.1), i.e.,

min
d
ϕ(d) s.t. cl(d) ≥ 0; for l ∈ I

cl(d) = 0; for l ∈ E
(3.43)

with nonlinear objective function and nonlinear constraints. The optimization task in
analog sizing formulated in Chapter 2 belongs to this class of optimization problem.
Within this section, the problem is considered as a problem in a continuous parameter
domain.

A nonlinear optimization problem may have many local optima. One of these local
optima can be computed by the Sequential Quadratic Programming (SQP) approach
which is used in this thesis. The global optimum is typically not required for analog
sizing tasks if the task is to fulfill given specifications. Hence, the SQP approach can
be used if a good initial solution can be provided for the optimization problem and if
local optimality of the solution is sufficient. This can be assumed for most analog sizing
problems.

3.4.2 Sequential Quadratic Programming Algorithm

Sequential Quadratic Programming uses a sequence of quadratic approximations of ob-
jective function and constraints to find a local optimal solution for the optimization
problem (3.43). As in the previous sections, the KKT conditions are used to motivate
the algorithm. For this purpose, the Lagrangian function of the optimization problem

L(d,λ) = ϕ(d)−
∑

l∈(E∪I)

λlcl(d) (3.44)
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is formulated. At an optimum d∗ of (3.43), the active inequality constraints must fulfill
cl(d

∗) = 0 and the Lagrangian factor λ∗l for inactive inequality constraints cl(d
∗) ≥ 0

must be λ∗l = 0 (cf. (3.7)). In addition, (3.3) and (3.5) must be fulfilled at d∗, i.e.,

∇dL(d∗,λ∗) = ∇dϕ(d
∗)− ∑

l∈A(d∗)

λ∗l∇dcl(d
∗)

!
= 0 (3.45)

cl(d
∗)

!
= 0; l ∈ A (d∗) (3.46)

Given some point d(µ) with a corresponding active set equal to the active set at the
optimum, i.e., A

(
d(µ)

)
= A (d∗), the Newton-Raphson approach to find the zero of a

function can be formulated to solve (3.45) and (3.46). Therefore, (3.45) and (3.46) are
linearized using a Taylor approximation and are set to zero:

∇dL(d(µ+1),λ(µ+1)) ≈ ∇dL(d(µ),λ(µ)) +∇2
ddL(d(µ),λ(µ))

(
d(µ+1) − d(µ)

)

+ ∇2
dλL(d(µ),λ(µ))

(
λ(µ+1) − λ(µ)

) !
= 0

(3.47)

cl(d
(µ+1)) ≈ cl(d

(µ)) +∇dcl(d
(µ))
(
d(µ+1) − d(µ)

) !
= 0; l ∈ A

(
d(µ)

)
(3.48)

With

H(µ) := ∇2
ddL(d(µ),λ(µ)) = ∇2

ddϕ(d
(µ))−

∑

l∈A(d(µ))

λ
(µ)
l ∇2

ddcl(d
(µ)) (3.49)

setting ∆d(µ) = d(µ+1) − d(µ), and collecting the vectors ∇dcl(d
(µ)) and the values

cl(d
(µ)) in JT

c (d
(µ)) and c(d(µ)), (3.47) and (3.48) can be rewritten as

[
H(µ) −JT

c (d
(µ))

−Jc(d
(µ)) 0

] [
∆d(µ)

λ(µ+1)

]
!
=

[
−∇dϕ(d

(µ))

c(d(µ))

]
(3.50)

However, in general the active set at the optimum is not equal to the active set at
d(µ), i.e., A

(
d(µ)

)
6= A (d∗). Thus, the active set A

(
d(µ)

)
must be modified for the

computation of ∆d(µ) to avoid negative Lagrangian factors and constraint violations in
the linearization (3.47), (3.48). The modification of the active set can also be interpreted
as a modification of the equation system: Considering some inactive constraints as
active, i.e., λ

(µ+1)
l > 0, and some active constraints as inactive, i.e., λ

(µ+1)
l = 0 can

be interpreted as adding and deleting variables λ
(µ+1)
l and the corresponding rows and

columns from or to the equation system (3.50). At the same time H(µ) and ∇dϕ(d
(µ))

are constant as long as the initial point d(µ) is left unchanged.

As a consequence, considering a non-constant active set, the computation of ∆d(µ) can
be interpreted as solving a linearly constrained quadratic optimization problem (cf.
Section 3.3.2):

min
∆d(µ)

1
2
·∆d(µ)TH(µ)∆d(µ) +∇dϕ(d

(µ)∆d(µ)

s.t. ∇dcl(d
(µ))∆d(µ) + cl(d

(µ)) ≥ 0; for l ∈ I

∇dcl(d
(µ))∆d(µ) + cl(d

(µ)) = 0; for l ∈ E

(3.51)
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Algorithm 3: Sequential Quadratic Programming

Input: optimization problem (3.43), feasible initial solution d(0)

1initialize approximation of Hessian matrix H(0)

2set µ = 0

3compute gradients ∇dϕ(d
(0)) and ∇dcl(d

(0)), and values cl(d
(0)) for l ∈ E ∪ I

4while Stop criterion not fulfilled do

5compute ∆d(µ) using Algorithm 2

6compute step length δ (cf. Section 3.4.4)

7compute d(µ+1) = d(µ) + δ∆d(µ)

8compute active set A
(
d(µ+1)

)
= E ∪

{
l ∈ I

∣∣cl(d(µ+1)) = 0
}

9compute gradients ∇dϕ(d
(µ+1)) and ∇dcl(d

(µ+1)), and values cl(d
(µ+1)) for

l ∈ E ∪ I
10compute Lagrangian factors λ(µ+1) // for update of Hessian matrix

11update Hessian matrix H(µ) → H(µ+1) (cf. Section 3.4.3)

12set µ := µ+ 1

13end

14return d(µ)

This subproblem of the nonlinear optimization problem can be solved by the active
set method in Algorithm 2 if the Hessian matrix H(µ) is convex. As the accurate
computation of H(µ) is computationally too expensive and thus the Hessian matrix is
approximated by a model, the convexity can be guaranteed, e.g., if the BFGS (Broyden
Fletcher Goldfarb Shanno) approach in Section 3.4.3 is used.

The result of subproblem (3.51) is a descent direction for the optimization problem.
Nevertheless, the full step ∆d(µ) can result in an insufficient decrease or also an in-
crease of the objective function due to inaccuracies in the model of H(µ) and due to
the linearization in (3.47). Therefore, an additional effort must be made to find a good
solution in the descent direction (cf. Section 3.4.4).

A simplified line search SQP algorithm is presented in Algorithm 3. Besides the active set
method explained in Section 3.3.2 (line 5 of Algorithm 3), the mentioned approximation
of the Hessian matrix (line 11) and the computation of a step length (line 6) are required
which are explained in the next sections. In addition, the Lagrangian factors at the
optimum must be estimated in each step of the SQP algorithm to approximate the
Hessian matrix. For this estimate the result from the linearly constrained quadratic
subproblem can be used (cf. Section 3.4.5). Other approximations (e.g., [GM79]) can
also be used. However, these alternative methods require additional computational
effort.
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The SQP algorithm presented so far can be used for many applications. However, the
descent direction computed by the SQP algorithm in this section may lead to a direction
where the constraints are always violated, i.e., not only for d(µ+1) = d(µ) + ∆d(µ) but
also for each possible step length δ > 0. In analog sizing additional problems may arise
if an infeasible intermediate solution is accepted, e.g., if the simulation models of the
circuit elements are not defined or if the performances behave strongly nonlinear in an
infeasible domain. Hence, no infeasible intermediate solution should be chosen. Con-
cerning this problem, a modification of the SQP algorithm, which guarantees feasibility
of all intermediate solutions, is presented in Section 3.4.5.

3.4.3 Approximation of the Hessian Matrix

For the SQP algorithm an approximation of the Hessian matrix is required. Two meth-
ods – the Broyden Fletcher Goldfarb Shanno (BFGS) approach and the symmetric rank 1
(SR1) update – are derived in the following (cf. [NW99]). The Lagrangian multipliers
are always set to the latest available values and neglected in the following notation, i.e.,
L(d) := L(d,λ(µ+1)).

Given a step ∆d(µ) in the parameter domain, the gradient ∇dL(d(µ)) at the point
d(µ), and the gradient ∇dL(d(µ) + ∆d(µ)) at d(µ) + ∆d(µ), the Lagrangian function
L(d(µ) +∆d(µ)) can be quadratically approximated by

L(d(µ) +∆d(µ)) ≈ L(d(µ)) +∇dL(d(µ))T∆d(µ) +
1

2
∆d(µ)TH(µ+1)∆d(µ) (3.52)

The gradient for the quadratic model at ∆d(µ) must fulfill

∇dL(d(µ) +∆d(µ)) = ∇dL(d(µ)) +H(µ+1)∆d(µ) (3.53)

or, with ∆g(µ) = ∇dL(d(µ) +∆d(µ))−∇dL(d(µ)):

H(µ+1)∆d(µ) = ∆g(µ) (3.54)

Each formula to approximate the Hessian matrix iteratively should modify a given ap-
proximation H(µ) such that the secant equation (3.54) is fulfilled for the update H(µ+1).

BFGS update

For the BFGS update, the Hessian matrix – and as a consequence the inverse Hessian
matrix – is assumed to be a symmetric, positive definite matrix. In each step the
inverse of the Hessian matrix should be modified as little as possible subject to the
constraints that the secant equation is fulfilled and the inverse Hessian matrix is still

positive definite. To achieve this goal, the new inverse Hessian matrix H(µ+1)−1
must

solve
min
H

∥∥∥H−1 −H(µ)−1
∥∥∥
W

s.t. H−1 = H−T

H−1∆g(µ) = ∆d(µ)
(3.55)
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where ‖•‖W is the weighted Forbenius norm (cf. [NW99]) with weighting matrix W. A
solution for this optimization problem for an arbitrary matrix W is provided in [Gre70].
Setting W to a matrix that fulfills W∆d(µ) = ∆g(µ), the BFGS update formula for the
inverse Hessian matrix can be derived as

H(µ+1)−1
=

(
I− ∆d(µ)∆g(µ)T

∆g(µ)T∆d(µ)

)
H(µ)−1

(
I− ∆g(µ)∆d(µ)T

∆g(µ)T∆d(µ)

)
+

∆d(µ)∆d(µ)T

∆g(µ)T∆d(µ)
(3.56)

where I is the identity matrix. This approach can be transformed to an update formula
for the Hessian matrix H(µ+1) by applying the Sherman-Morrison-Woodbury formula
(cf. [NW99]):

H(µ+1) = H(µ) − H(µ)∆d(µ)∆d(µ)TH(µ)

∆d(µ)TH(µ)∆d(µ)
+

∆g(µ)∆g(µ)T

∆g(µ)T∆d(µ)
(3.57)

However, the assumption of positive definiteness of each approximation H(µ) implies
that the curvature condition

∆d(µ)TH(µ)∆d(µ) = ∆d(µ)T∆g(µ) > 0 (3.58)

must be fulfilled. This cannot be guaranteed in general if a constrained nonlinear op-
timization problem is to be solved by an SQP algorithm. To solve this problem, e.g.,
Powell’s modification [Pow78] can be applied which suggests replacing the value of ∆g

in (3.57) and (3.56) by

η(µ) = Θ∆g(µ) + (1−Θ)H(µ)∆d(µ) (3.59)

with

Θ =





1, ∆d(µ)T∆g(µ) ≥ 0.2∆d(µ)TH(µ)∆d(µ)

0.8∆d(µ)TH(µ)∆d(µ)

∆d(µ)TH(µ)∆d(µ)−∆d(µ)T∆g(µ)
, otherwise

(3.60)

This modification guarantees that

∆d(µ)Tη(µ) ≥ 0.2∆d(µ)TH(µ)∆d(µ) (3.61)

and that H(µ+1) is positive definite if H(µ) is positive definite.
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SR1 update

In contrast to the BFGS update, the SR1 update does not assume positive definiteness
of the Hessian matrix. However, the Hessian matrix should be symmetric and must
fulfill the secant equation.

A corresponding update can be derived using the outer product of a vector v, i.e.,

H(µ+1) = H(µ) ± vvT (3.62)

Substituting (3.62) into (3.54), it can be concluded that v is a multiple of
∆g(µ) −H(µ)∆d(µ) [NW99]. Furthermore, it can be derived that the resulting update
formula for the Hessian matrix is

H(µ+1) = H(µ) +

(
∆g(µ) −H(µ)∆d(µ)

)(
∆g(µ) −H(µ)∆d(µ)

)T

(
∆g(µ) −H(µ)∆d(µ)

)T
∆d(µ)

(3.63)

An update for the inverse matrix can also be derived using the Sherman-Morrison-
Woodbury equation. However, it will not be discussed any further because it is not
required in this thesis.

The approximation of the Hessian matrix derived by the SR1 update is not guaranteed
to be positive definite. This is a drawback if the update is used in an SQP approach
which uses line search (cf. Section 3.4.4) because the quadratic subproblem in the SQP
approach can have multiple local optima if the Hessian matrix is indefinite or negative
definite. However, if no positive definite model is required, the ability of the SR1 update
to generate indefinite models can be seen as an advantage, allowing a more accurate
model of nonlinear (possibly indefinite) functions in many cases (cf. Chapter 5).

3.4.4 Step Computation

In each step of the SQP approach in Section 3.4.2 the optimum of a quadratic subprob-
lem is computed. The direction to this optimum is a descent direction for the actual,
nonlinear optimization problem. However, due to inaccuracies of the quadratic model,
the full step does not necessarily yield sufficient improvement of the optimization task.
This problem can be solved using line search or trust region approaches.

Line Search Approaches

Typically, the computation of the minimum in a given descent direction of a minimiza-
tion problem is computationally too expensive. Therefore, line search approaches take
the descent direction ∆d(µ) of the optimization problem and search for a step size δ such
that the newly computed point

d(µ+1) = d(µ) + δ ·∆d(µ) (3.64)
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ϕ(d(µ) + δ ·∆d(µ))

0

ϕ̄ (α1, δ)

ϕ̄ (α2, δ)
ϕ̄ (α3, δ)

Armijo condition fulfilled

for α3

Armijo condition fulfilled for α1

δ

Figure 3.2: Visualization of the Armijo condition for α1 = 0, α2 = 1, and 0 < α3 < 1,

with ϕ̄(αi, δ) = ϕ
(
d(µ)

)
+ αi · δ · ∇ϕT

(
d(µ)

)
·∆d(µ)

provides sufficient improvement. Such a step is typically defined as a step that fulfills
the Armijo condition

ϕ
(
d(µ) + δ ·∆d(µ)

)
≤ ϕ

(
d(µ)

)
+ α · δ · ∇ϕT

(
d(µ)

)
·∆d(µ) (3.65)

with a small positive scalar 0 < α < 1, e.g., α = 10−4 [NW99] (cf. Figure 3.2). The
Armijo condition does not guarantee a sufficiently large step δ. Thus, the Wolfe condi-
tions or the Goldstein conditions are used in many practical approaches as a criterion
to identify suitable step lengths. However, within this thesis a backtracking approach
(cf. [NW99] and Section 3.4.5) is used and no further criterion is required to ensure
sufficiently large step lengths.

Trust Region Approaches

Trust region approaches ensure sufficient accuracy of the model, using an additional
constraint which limits the step size in each iteration step. This constraint is, e.g.,
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d1

d2
Bound of a trust region

with size ‖∆d‖ = δ

Quadratic model

of an objective

function

d(µ)

∆d(µ)

Trust region and computed step ∆d(µ) for
∥∥∥∆d(µ)

∥∥∥ ≤ δ

Trust region and computed step ∆d(µ) for
∥∥∥∆d(µ)

∥∥∥ ≤ δ
2

Trust region and computed step ∆d(µ) for
∥∥∥∆d(µ)

∥∥∥ ≤ δ
4

Figure 3.3: Visualization of the influence of a trust region

defined as the Euclidean norm of the step, which should be smaller than a certain
scalar δ > 0 (cf. [NW99]). If this simple form of a trust region approach should be
used within the SQP approach in Section 3.4.2, the quadratic subproblem (3.51) can be
rewritten as:

min
∆d(µ)

1
2
·∆d(µ)TH(µ)∆d(µ) +∇dϕ(d

(µ))∆d(µ)

s.t. ∇dcl(d
(µ))∆d(µ) + cl(d

(µ)) ≥ 0; for l ∈ I

∇dcl(d
(µ))∆d(µ) + cl(d

(µ)) = 0; for l ∈ E
∥∥∥∆d(µ)

∥∥∥ ≤ δ

(3.66)

The size of the trust region δ is adjusted in each step of a trust-region based algorithm
such that ∆d(µ) is sufficiently large and the model at ∆d(µ) is sufficiently accurate.
Modifying the value of δ does not only change the step size – as in line search approaches
– but can also influence the search direction (cf. Figure 3.3).

To decide if a model is accurate enough, the value of the model for a given step size
is compared with the actual value of the problem at this point. Defining the quadratic
model in (3.66) as m(∆d(µ)) and the real function value as ϕ(d(µ) +∆d(µ)), a measure
for the similarity ψ of model and reality can be formulated as (cf. [NW99])

ψ =
ϕ
(
d(µ)

)
− ϕ

(
d(µ) +∆d(µ)

)

m(0)−m
(
∆d(µ)

) (3.67)
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6
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Computed SQP step

c1(d1, d2)

linearized constraint
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of Lagrangian

function

current

solution

feasible region

Figure 3.4: Infeasible descent direction in an SQP algorithm (cf. Appendix A.3.1)

Where ψ ≈ 1 indicates a high similarity of model and real function, ψ ≪ 1 indicates an
insufficient model, and ψ > 1 indicates a model which overestimates the real function.
Therefore, in case of ψ ≪ 1 the size of the trust region δ in (3.66) must be decreased.
If ψ ≈ 1 or ψ > 1 the trust region can be increased.

3.4.5 Feasible Sequential Quadratic Programming

The SQP approach presented so far can solve an optimization problem only if the con-
straints can be violated at intermediate solutions of the optimization run. Otherwise,
the algorithm may get stuck at suboptimal points (cf. Figure 3.4). However, for the ana-
log sizing task the objective function is often strongly nonlinear if the sizing constraints
are violated, e.g., if some transistors are in the sub-threshold region. As a consequence,
the SQP approach can end up with solutions that violate some performance specifica-
tions and even constraints. To overcome this problem, a Feasible Sequential Quadratic
Programming (FSQP) [LT01,Law98] approach is used within this thesis. This approach
guarantees that each intermediate solution of the optimization run is feasible. The pre-
sented algorithm does not consider equality constraints, which are, however, not required
to model the constraints of analog sizing tasks formulated in Chapter 2.2.

The FSQP algorithm is presented in Algorithms 4 and 5 and explained in the following.
The values used for the heuristic parameters in this thesis are directly given in the
Algorithms. The values are defined as suggested from [LT01] and were evaluated and
validated for usage in analog sizing. Alternative value ranges are provided in [LT01].
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Algorithm 4: Feasible Sequential Quadratic Programming (cf. [LT01])

Input: optimization problem (3.43), feasible initial solution d(0)

1set µ = 0, α = 0.1, β = 0.5, τ = 2.5, ǫ = 10−6, ǫ̂ = 10−2 (cf. [LT01])

2get c(d) and sensitivities of constraints and performances Jc and Jε at d = d(0)

3initialize Hessian matrix H(0) and gradient g(0) of Lagrangian function

4initialize tilting factor ηl = ǫ̂2, Cl = 0 for linear constraints, and Cl = 1 for

nonlinear constraints with l = 1, ..., Nc

5repeat

6compute ∆d, γ, λ, and active set A by solving (3.68) with Algorithm 2

7if ‖∆d‖ ≤ ǫ then

8break

9else if for all l ∈ I: cl(d(µ) +∆d) ≥ 0 then

10set correction ∆̂d = 0

11else

12compute correction ∆̂d by solving (3.70) with Algorithm 2

13if

∥∥∥∆̂d

∥∥∥ ≥ ‖∆d‖ then set correction ∆̂d = 0

14end

15set i = 0; set of violated constraints W = ∅
16repeat

//arc-search

17set δ = βi; i = i+ 1

18set W = W ∪
{
l
∣∣∣cl
(
d(µ) + δ∆d + δ2∆̂d

)
< 0

}

19until ϕ
(
d(µ) + δ∆d + δ2∆̂d

)
≤ ϕ

(
d(µ)

)
+ α · δ · ∇dϕ

(
d(µ)

)T
∆d

∧ cl

(
d(µ) + δ∆d + δ2∆̂d

)
≥ 0 for l ∈ I

20set d(µ+1) = d(µ) + δ∆d + δ2∆̂d

21get c(d) and sensitivities of constraints Jc and performances Jε at d = d(µ+1)

22compute g(µ+1)

23compute H(µ+1) using (3.57) and (3.59)

24get values Cl, ηl for l ∈ I using Algorithm 5

25set µ := µ+ 1

26until maximum number of iterations exceeded

27return d(µ)

FSQP Algorithm

After the initialization of the FSQP algorithm (Algorithm 4, lines 1 to 4) a descent
direction for the optimization problem is computed in each step of the algorithm. In
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d1

d2
η = 0

η = 0.1

η = 1

η = 2

η = 4

c1(d1, d2)

increase of η

Figure 3.5: Effect of tilting for the example in Figure 3.4 (cf. Appendix A.3.1)

contrast to a standard SQP algorithm – which solves the subproblem (3.51) – the descent
direction (line 6) is computed using

min
∆d,γ

1
2
·∆dTH(µ)∆d + γ

s.t. γ −∇dϕ(d
(µ)) ·∆d ≥ 0

γ · ηl +∇dcl(d
(µ)) ·∆d + cl(d

(µ)) ≥ 0; for l ∈ I

(3.68)

I.e., the linear term of the objective function in the quadratic subproblem is substituted
by an additional parameter γ which is bound to be greater than the linear term. Due to
the minimization γ ≤ 0 is fulfilled if H(µ) is positive definite and if the current point, i.e,
a step with size ∆d = 0, is feasible [Law98]. As a consequence, the resulting direction
∆d is a descent direction for the minimization problem.

Compared to the quadratic subproblem of a standard SQP approach (3.51), the con-
straints are modified in (3.68) by adding the value of γ weighted by the individual tilting
factors ηl with l ∈ I. Choosing ηl > 0, i.e., γ · ηl ≤ 0, the tilting factor can be inter-
preted as an additional safety margin to avoid a constraint violation (cf. Figure 3.5).
The values ηl are dynamically assigned during the optimization algorithm (line 24) using
Algorithm 5 which is explained below.

Besides the step direction ∆d, an approximation for the active set A and for the La-
grange multipliers λ at the optimum is computed if (3.68) is solved. Considering the
Lagrangian multiplier λ0 as the multiplier for the additional constraint in (3.68) – i.e.,
the multiplier corresponding to γ −∇dϕ(d

(µ)) ·∆d ≥ 0 – the approximation of the La-
grangian multipliers can be further improved by setting (cf. [LT01])

λ =
1

λ0
λ (3.69)
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d1
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step ∆̂d

Figure 3.6: Effect of correction for the example in Figure 3.5 with η = 0.1 (cf. Ap-

pendix A.3.1)

if λ0 is sufficiently large1. In this thesis the modification is used for λ0 > 10−2.

Using the formulation of (3.68) with a subsequent line search ensures that some step
can be found which leads to an improvement of the objective function if such a step
exists. However, the step can still be small. To increase the step size, a step correction
∆̂d (cf. Figure 3.6) is computed if some constraints are violated for the full step ∆d

(line 12). The correction is computed by a second order correction [Law98,NW99] and
is the solution of (cf. [LT01]):

min
∆̂d

1
2
·
(
∆d + ∆̂d

)T
·H(µ) ·

(
∆d + ∆̂d

)
+∇dϕ(d

(µ))T ·
(
∆d + ∆̂d

)

s.t. ∇dcl(d
(µ)) · ∆̂d + cl(d

(µ) +∆d) ≥ 0; l ∈ VL

∇dcl(d
(µ)) · ∆̂d + cl(d

(µ) +∆d) ≥ min (10−2 ‖∆d‖ , ‖∆d‖τ ) ; l ∈ VNL

(3.70)

VNL is the index set of nonlinear constraints which are active or violated at d(µ) +∆d.
VL is the index set of active linear constraints at d(µ) + ∆d. The right-hand side for
the nonlinear constraints in (3.70) is heuristically chosen for sufficiently large step sizes
in non-linearly constrained problems. The correction is set to zero if all constraints are
fulfilled for the full step ∆d (line 10) or if the correction tends to dominate the resulting
step (line 13).

1It can be deduced from the KKT conditions that at the optimum λ0 = 1. However, the corresponding

constraint must be active for the approximation and λ0 should be sufficiently large to avoid numerical

difficulties.
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Figure 3.7: Arc search for tilted direction and correction step in Figure 3.6 with η = 0.1

(cf. Appendix A.3.1)

After the computation of a tilted direction ∆d and a correction step ∆̂d, the new point
is computed using an arc search (lines 15 to 19) along

d(µ) + δ∆d + δ2∆̂d (3.71)

where delta is the step length along the arc (cf. Figure 3.7). This arc search is a
generalization of the line search in Section 3.4.4 and searches for a point which does
not only fulfill the constraints but also provides sufficient improvement (cf. (3.65)). A
sufficiently large step is guaranteed by starting from the full step and shrinking this
step until the first sufficient solution has been found. The set of violated constraints
during the arc search W (line 18) is required for the reassignment of the tilting factors
explained below.

After the computation of the new point (line 20) the quadratic model is updated
(lines 21 to 23) and the tilting factors are reassigned (line 24). The loop is repeated,
until a maximum number of iterations is reached (line 26) or the step ∆d becomes too
small (line 7). Further stop criteria can be added at these positions.

Computation of Tilting Parameters

One key parameter for the efficiency of the FSQP algorithm is the size of the tilting
factor ηl for each constraint. These factors are initialized by a small value (Algorithm 4,
line 4) and updated in each step as shown in Algorithm 5. The tilting factors for linear
constraints are kept at zero2.

The tilting parameters are reassigned during the FSQP run so that each value is large
enough to consider the non-linearity of the corresponding constraint. At the same

2Tilting factors are not used, i.e., ηl = 0, for linear constraints because they are introduced to consider

non-linearity.
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Algorithm 5: Reassign Tilt (cf. [LT01])

Input: d(µ+1), quadratic subproblem at d(µ+1), ∆d, δ, A, W , Cl with l ∈ I
1set ǫ̂ = 10−2, κ = 2, C = 10−3, C = 103, D = 10−3

2if δ < 1 ∧W 6= ∅ then // δ < 1 and constraint violation for any δ̂ > δ

3set Cl = min(κ · Cl, C) for each l ∈ W
4else if δ < 1 then // δ < 1 due to insufficient improvement for all δ̂ > δ

5set Cl = max(Cl

κ
, C) for each l ∈ I and cl(d) nonlinear

6end

7if ‖∆d‖ < ǫ̂ then

8compute approximated next step ∆̃d and Lagrangian multipliers λ̃ using

the quadratic subproblem at d(µ) and the active set A,

and solving (3.72)

9if an unique solution ∆̃d, λ̃ exists ∧
∥∥∥∆̃d

∥∥∥ < D ∧ λ̃ ≥ 0 then

10set ηl = Cl ·
∥∥∥∆̃d

∥∥∥
2

11else

12set ηl = Cl · ‖∆d‖2
13end

14end

15if ‖∆d‖ ≥ ǫ̂ then

16set ηl = Cl · ǫ̂2
17end

18return new values of Cl and ηl for l ∈ I

time the tilting should be small enough so that it does not prevent the algorithm from
converging to an optimum which is close to the constraints. To achieve this goal, the
value of ηl is controlled by a factor Cl and the step length, where Cl is bounded to
C ≤ Cl ≤ C .

In the first part of Algorithm 5 (line 1 to 6), the value of the controlling factor Cl is
modified. Three cases can be considered:

1. δ = 1, i.e., the full step has been chosen during the arc search: This indicates that
the selection of the tilting factors was good in the previous step and the controlling
parameters Cl are left unchanged.

2. δ < 1∧W 6= ∅, i.e., the full step was not accepted during the arc search and at least
one constraint has been violated for a step δ̂ with δ < δ̂ ≤ 1: This indicates that
the non-linearity of the constraints violated during the arc search – the indexes
are stored in W (cf. Algorithm 4, line 18) – is underestimated. To improve the
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estimate in the next iteration, the controlling factor Cl for each constraint violated
during the arc search is increased by a factor κ if it does not exceed the upper
bound C.

3. δ < 1 ∧W = ∅, i.e., the full step was not accepted during the arc search and no
constraint has been violated for a step δ̂ with δ < δ̂ ≤ 1: This indicates that the
full step was not accepted due to insufficient improvement at larger step lengths δ̂.
Better results might be found if the tilting allows solutions closer to the bounds.
Thus, the controlling factor Cl for each nonlinear constraint is decreased by a
factor κ as long as it does not fall below the lower bound C.

After assigning the controlling factors, the new value of ηl is computed (Algorithm 5,
lines 7 to 17). As long as the step into the tilted direction ∆d is sufficiently large, the tilt
ηl is directly computed as a fixed multiple of the controlling factors (line 16). However,
as the value Cl for nonlinear constraints is bounded from below, a fixed multiple of this
value can prevent the algorithm from converging to a local optimum which is at the
bounds of the feasible region. Hence, if the length of ∆d falls below a certain level
(line 7), the value of ηl is chosen depending on the step size ∆̃d which is predicted for
the next step by solving the least squares problem:

min
∆̃d

1
2
· ∆̃d

T
H(µ+1)∆̃d +∇dϕ(d

(µ+1))T · ∆̃d

s.t. ∇dcl(d
(µ+1)) · ∆̃d + cl(d

(µ+1)) = 0; l ∈ A(µ)

(3.72)

I.e., the step in the next iteration is approximated using the model for the next step
(µ+ 1) and the active set A(µ) from the last computation of the tilted step. The predic-
tion is locally valid if none of the constraints becomes inactive in the next step. Thus,
an (existing) solution for the prediction is only accepted if the predicted step ∆̃d is
small, and if no considered constraint is predicted to be inactive after the step (i.e.,

the Lagrangian multipliers for the constraints in (3.72) are λ̃ ≥ 0). If the prediction is

accepted, the value of ηl is set proportional to the length of ∆̃d (line 10). Otherwise,
the value of ηl is set proportional to ∆d, which ensures a decrease of the tilting factors
for the next step (line 12).

Parallelization for Simulation-Based Optimization

The FSQP algorithm presented solves a nonlinear optimization task and guarantees that
each intermediate solution is feasible. Therefore, it is an appropriate approach to solve
an analog sizing task in a continuous domain However, the computation of a solution
requires many computationally expensive simulations. Thus, as many simulations as
possible should be executed in parallel. The new approach presented in the following is
similar to the one presented in [MG09].

Circuit simulations are required for automated sizing of analog circuits whenever the
circuit parameters are mapped onto performances or constraints (cf. Chapter 2). An
analysis of the FSQP approach shows that simulations are required for the computation
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of constraints and sensitivities (lines 2 and 21 of Algorithm 4), for the computation of
the correction (line 9 of Algorithm 4), and during the arc search (line 19 of Algorithm 4).

For the computation of the sensitivities the central form of finite differences is used in
this thesis (cf. Chapter 2.3.2). As a consequence, 2·N points must be simulated where N
is the number of parameters considered in the FSQP approach3, 4. The simulations can
be subdivided into different simulation types, e.g., AC, DC, and transient simulations,
such that the total number of simulations sums up to 2 · N · Nsim where Nsim is the
number of simulation types. All these simulations can be executed in parallel and the
simulations in lines 2 and 21 of Algorithm 4 can be considered as fully parallelizable.

For the computation of the correction in line 12, only one simulation is required to
evaluate the constraints at the full tilted step ∆d. As a consequence, no parallelization
is possible at this point of the algorithm.

It follows that the most critical point with respect to parallelization is the arc search.
In the approach in [LT01] the points are sequentially evaluated. However, the candidate
step sizes are known before the first simulation is executed. As a consequence, all
required simulations could be executed in parallel. For practical approaches, however,
parallelization is typically limited – especially for small and medium-sized enterprises
– by the number of resources, e.g., the number of CPUs or simulator licenses. To
consider this limitation for parallelization, the arc search (lines 16 to 19 of Algorithm 4)
is replaced by the parallelized arc search in Algorithm 6.

In the parallel arc search algorithm, the degree of parallelization can be defined by
an integral factor Npar. This value can be, e.g., the number of resources. As long as
no solution has been found and the step lengths do not get too small, Npar steps are
computed (line 5) and evaluated in each iteration of the parallel arc search.

The constraints for an analog sizing task can often be evaluated much faster than other
circuit properties, e.g., if only DC properties of the circuit are used as constraints
(cf. [Mas10]). As a consequence, it is useful to evaluate only the constraints at a certain
parameter point and to avoid the more expensive computation of the performances if any
constraint is violated. This is realized in line 6, where the constraints are tested for each
of the Npar step lengths in the current iteration, and in line 7, where the performances
are evaluated only for feasible step lengths. In certain cases it may also be reasonable
to execute the simulations for the computation of performances and constraints in one
step. However, this can be influenced by the setup for the simulator and does not affect
the algorithm if known simulation results are stored.

Similar to the standard line search, each feasible point which fulfills the modified Armijo
condition (3.65) is considered as a possible solution. The best solution can be taken
from all of these candidates to consider as much information as possible (line 9). As a

3The performance and constraint values at the central point are – except for the initialization – known

from the result of the previous arc search.
4It is assumed in this section that operating and process conditions do not vary. If this assumption is

not true, the number of points which must be simulated is further increased (cf. Chapter 4.4).
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Algorithm 6: Parallel arc search

Input: current point d(µ), tilted direction ∆d, correction ∆̂d

1set α = 0.1, β = 0.5, ǫ = 10−6, i = 0

2initialize W = ∅, δresult = 0

3get parallelization factor Npar

4while βi > ǫ ∧ δresult = 0 do

5compute step lengths T = {δj = βj |j = i, ..., i+Npar − 1}
6set set of feasible candidate step lengths

Tc =



δj ∈ T

∣∣∣∣∣∣
∀
l ∈ I

cl

(
d(µ) + δj∆d + δ2j ∆̂d

)
≥ 0





7set set of possible solution step lengths

Tϕ =
{
δj ∈ Tc

∣∣∣ϕ
(
d(µ) + δj∆d + δ2j ∆̂d

)
≤ ϕ

(
d(µ)

)
+ αδj∇dϕ

(
d(µ)

)T
∆d
}

8if Tϕ 6= ∅ then

9set δresult = arg min
δj∈Tϕ

ϕ
(
d(µ) + δj∆d + δ2j ∆̂d

)

10end

11set W = W ∪




l

∣∣∣∣∣∣∣
∃

δj ∈ T ∧ δj > δresult

cl

(
d(µ) + δj∆d + δ2j ∆̂d

)
< 0





12set i = i+Npar

13end

14return step length δresult and set of violated constraints W

consequence, better step lengths can be found if more step lengths are considered in one
iteration, i.e., if more resources are available and Npar is increased.

For the computation of the tilting factors, the indexes of the constraints which are
violated during the arc search are required. For this purpose, the index set of these
constraints is also stored during the parallel arc search (line 11).

3.5 Discrete Programming using Branch-and-Bound

The approaches presented so far are used to find an optimal solution in a continuous
design space. However, this thesis focuses on the sizing of circuits considering discrete
parameters. To solve this task, nonlinear discrete optimization is required which is
tackled by a Branch-and-Bound approach (e.g., [NW88]) within this thesis.
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3.5 Discrete Programming using Branch-and-Bound

3.5.1 Discrete Programming Task

It is assumed within this thesis that the discrete parameters of the sizing problem are
ordered (cf. Chapter 2.1.1). It is further assumed that the first Nd parameters are
elements of a discrete valued domain dd ∈ D

Nd
d and that the subsequent Nc parameters

are defined on a continuous domain dc ∈ D
Nc
c . The domain for the continuous and

discrete parameters is defined as D
N = D

Nd
d × D

Nc
c with parameter point d ∈ D

N .
Additionally, it has been stated in Chapter 1 and Chapter 2 that the performances
and constraints over the relaxed parameter domain D

N
rel (2.14) can be assumed to be

continuously differentiable.

Under these assumptions, an optimization problem over the discrete domain D
N can be

formulated similar to (3.43) as

min
dd,dc

ϕ(dd,dc) s.t. cl(dc,dd) ≥ 0; for l ∈ I
cl(dc,dd) = 0; for l ∈ E
dc ∈ D

Nc
c ; dd ∈ D

Nd
d

(3.73)

I is the index set of inequality constraints. E is the index set of equality constraints,
which is typically an empty set for analog sizing approaches. The relaxation of problem
(3.73) can be given as

min
d
ϕ(d) s.t. cl(d) ≥ 0; for l ∈ I

cl(d) = 0; for l ∈ E

d =

[
dc

dd

]
∈ D

N
rel

(3.74)

I.e., the relaxed problem is a nonlinear optimization problem on a continuous parameter
domain.

3.5.2 Bounding

For discrete optimization problems no optimality criterion like the KKT conditions can
be given to evaluate whether a point is optimal. The optimality criterion for the discrete
minimization problem (3.73) can only be formulated as:

Definition 3.8:

A discrete point d∗ is a minimum for (3.73) if for each feasible discrete solution d ∈ D
N

ϕ(d) ≥ ϕ(d∗) is fulfilled.

It follows that a solution must be compared with every other potential solution to deter-
mine whether the solution is optimal. If a sequence of solution candidates is generated
during an algorithm, it is obviously sufficient only to compare each new candidate with
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∥∥∥∥∥∥∆
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function

Figure 3.8: Bounds for a discrete optimum at d∗

the best solution found so far. In a Branch-and-Bound algorithm, this best solution is
referred to as incumbent dinc.

Definition 3.9:

The incumbent dinc ∈ D
N is the best feasible discrete solution found so far during

a Branch-and-Bound algorithm. The objective function value at dinc, i.e., ϕ(dinc), is
referred to as the incumbent value.

It follows from the definitions above that each incumbent value ϕ(dinc) is an upper
bound for the minimum value ϕ(d∗). In addition to this upper bound, a lower bound
can be given for the optimum solution: Using the definition of the relaxed domain D

N
rel,

which guarantees D
N ⊆ D

N
rel, it can be concluded that the objective function value

ϕ(d∗
rel) at the optimal point d∗

rel for the relaxed optimization problem (3.74) fulfills
ϕ(d∗

rel) ≤ ϕ(d∗). I.e., the optimal solution is bounded by

ϕ(d∗
rel) ≤ ϕ(d∗) ≤ ϕ(dinc) (3.75)

for some feasible dinc ∈ D
N and the solution of (3.74) d∗

rel (see Figure 3.8).

The properties defined so far are also valid for any subdomain D̃
N ⊆ D

N . I.e., given the
relaxation

D̃
N
rel =

{
d

∣∣∣d̃L ≤ d ≤ d̃U

}
(3.76)

of the subdomain D̃
N with the component-wise upper and lower parameter bounds d̃L

and d̃U , respectively, the optimum of (3.74) over this relaxed subdomain is

d̃∗
rel = argmin

d
ϕ(d) s.t. cl(d) ≥ 0; for l ∈ I

cl(d) = 0; for l ∈ E
d ∈ D̃

N
rel

(3.77)
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and ϕ(d̃∗
rel) is a lower bound for the minimum in the discrete subdomain D̃

N ⊆ D
N . d̃∗

rel

can be used to qualify whether the subdomain D̃
N can contain a discrete solution which

is better than a known discrete solution dinc ∈ D
N : A discrete solution better than

dinc ∈ D
N can be contained in D̃

N if and only if a feasible solution d̃∗
rel ∈ D̃

N
rel exists such

that ϕ(d̃∗
rel) < ϕ(dinc).

If the qualification shows that D̃
N does not contain a solution better than dinc, D̃

N

can be pruned from the parameter domain D
N without affecting the solution of the

optimization problem. The rules to define which subdomains can be pruned – called
pruning rules – can be formulated as:

Pruning Rules:

1. If D̃N
rel does not contain any feasible point, it follows that also D̃

N ⊆ D̃
N
rel cannot

contain a feasible solution and that the subdomain D̃
N can be pruned from D

N .
This is referred to as pruning by infeasibility.

2. If the optimum d̃∗
rel ∈ D̃

N
rel of a relaxed subdomain is worse than or equal to the

incumbent dinc ∈ D
N , i.e., ϕ(d̃∗

rel) ≥ ϕ(dinc), D̃
N ⊆ D

N cannot contain a point

better than dinc and the subdomain D̃
N can be pruned from D

N . This is referred
to as pruning by value dominance.

3. d̃∗
rel is a new incumbent if d̃∗

rel is discrete and a better solution than dinc, i.e.,

d̃∗
rel ∈ D

N and ϕ(d̃∗
rel) < ϕ(dinc). However, assuming that d̃∗

rel is a global solution

for the current subdomain, D̃N cannot contain any solution better than d̃∗
rel and

thus D̃
N \

{
d̃∗
rel

}
can be pruned from D

N . This is referred to as pruning by

optimality.

The pruning rules allow for a given discrete optimization problem, a given domain
D

N , and a given subdomain D̃
N to qualify whether D̃N can be deleted from D

N without
affecting the optimum. In addition, they define which discrete points must be considered
as solution candidates (pruning rule 3). However, the questions of how to generate the
subdomains of DN and how to ensure that discrete solution candidates are generated in
this process are still open.

3.5.3 Branching

To generate subdomains and discrete solution candidates, a given relaxed domain
D̃

N
rel ⊆ D

N
rel is considered in each step of the Branch-and-Bound algorithm. The result-

ing relaxed problem is given in (3.77) and can be solved, e.g., by the FSQP algorithm

in Section 3.4.5. D̃
N
rel can contain a discrete solution better than dinc if and only if a

feasible solution d̃∗
rel ∈ D̃

N
rel exists and ϕ(d̃

∗
rel) < ϕ(dinc). Thus, the search in D̃

N
rel must

be refined and new subdomains of D̃N
rel must be generated if the domain can contain a

new incumbent and if d̃∗
rel is not discrete. Otherwise the computational effort to search

for a discrete solution in D̃
N
rel can be saved.
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The subdomains which are generated should be non-overlapping and should contain the
same discrete solutions as D̃

N
rel, i.e., if D̃

N
rel is subdivided into two subdomains D

N
A and

D
N
B , the subdomains must fulfill:

((
D

N
A ∪ D

N
B

)
∩ D

N = D̃
N
rel ∩ D

N
)
∧
(
D

N
A ∩ D

N
B = ∅

)
(3.78)

The first part of this logic equation ensures that all discrete points in D̃
N
rel are also

considered in the subdomains; the second part guarantees that each point is considered
only once in the Branch-and-Bound algorithm below. In addition to claim (3.78), the
method to subdivide the relaxed domain should ensure that after a finite number of
subdivisions the solution for each subdomain is discrete.

To generate such subdomains, D̃
N
rel can be subdivided by rounding constraints. For

rounding constraints, one component d̃j of d̃
∗
rel is chosen which should, but does not yet

take a discrete value. For this component the value is forced to be greater than the next
higher discrete value or smaller than the next lower discrete value. I.e., with (2.15):

cup(dj) = dj −
⌈
d̃j

⌉
≥ 0 (3.79)

cdown(dj) =
⌊
d̃j

⌋
− dj ≥ 0 (3.80)

Two subdomains which fulfill (3.78) can be defined as

D
N
up =

{
d ∈ D̃

N
rel

∣∣∣dj −
⌈
d̃j

⌉
≥ 0

}
(3.81)

D
N
down =

{
d ∈ D̃

N
rel

∣∣∣
⌊
d̃j

⌋
− dj ≥ 0

}
(3.82)

Figure 3.9 shows that the claim in (3.78) is fulfilled if the relaxed domain is subdivided

according to (3.81), (3.82). It can also be seen that a strip
⌊
d̃j

⌋
≤ dj ≤

⌈
d̃j

⌉
is not

considered in the subdomains such that after a finite number of subdivisions the result
of each subdomain is discrete.

The subdomains, which are generated during a Branch-and-Bound algorithm, can also
be interpreted in terms of a tree structure (cf. Section 3.5.4 Figure 3.10). The branches
in this graph correspond to the rounding constraints which define the subdomains.
Thus, the step of subdividing the parameter domain is referred to as branching. The
subdomains are considered in the subproblems of the form (3.77), which correspond
to the nodes of the graph. The solution of the subproblem in each node gives an
approximation of the lower bound for this node and the child nodes. The generation
of lower and upper bounds for the solution is also referred to as bounding. Pruning a
subdomain from the parameter domain can be interpreted as cutting a node from the
tree or – in case of pruning rule 3 – as a leaf of the tree.

3.5.4 Branch-and-Bound Algorithm

With the strategies explained above, a general Branch-and-Bound approach for a dis-
crete optimization problem can be realized. In this thesis a recursive depth-first search
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d1

d2

rounding constraints

D
N
down D

N
up

D
N
rel

c1(d1, d2)

c2(d1, d2)

d̃∗

rel

Figure 3.9: Non-overlapping subdomains generated by rounding constraints

is used which is shown in Algorithm 7 and illustrated in Figure 3.10. The computation
strategy for a discrete solution can be interpreted as a discretization of a continuous so-
lution using a sequence of successive branching steps. During branching, (3.81), (3.82)
are used to subdivide the current domain into subdomains. Two degrees of freedom,
namely the parameter which is chosen for branching (line 10) and the decision as to
which subdomain is considered next (lines 12 and 13) can be identified in the algorithm.
These choices do not affect the general convergence of the algorithm but can significantly
influence the efficacy of the algorithm in practical cases. Some typical methods are pre-
sented in [AKM05]. In the example below, always the first non-discrete parameter is
selected for branching and a discrete solution is searched for at first in the subdomain
constructed by (3.82). However, the branching heuristic should be tailored to the prob-
lem considered. Thus, the heuristics used within this thesis are explained in Chapter 4
where the Branch-and-Bound algorithm is used to solve different discrete optimization
problems.

The Branch-and-Bound algorithm (Algorithm 7) is started with the incumbent value
ϕ(dinc) set to infinity such that the first discrete feasible solution is always an incumbent.
Additionally, the discrete parameter domain D

N and the relaxed parameter domain D
N
rel

are given and the relaxed domain is defined as the current subdomain D̃
N
rel = D

N
rel.

In each step of the algorithm, the solution d̃∗
rel of problem (3.77) is computed for the

current subdomain (cf. line 4 and Figure 3.10a), which defines a lower bound ϕ(d̃∗
rel) for
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Algorithm 7: Branch-and-Bound

Input: discrete domain D
N , current subdomain D̃

N
rel, incumbent dinc

1if



d ∈ D̃

N
rel

∣∣∣∣∣∣


 ∀

l ∈ E
cl(d) = 0


 ∧


 ∀

l ∈ I
cl(d) ≥ 0





 = ∅ then

//pruning by infeasibility

2return dinc

3end

4compute d̃∗
rel using (3.77)

5if ϕ(d̃∗
rel) ≥ ϕ(dinc) then

//pruning by value dominance

6return dinc

7else if d̃∗
rel ∈ D

N then

//pruning by optimality

8return d̃∗
rel

9else

10Select branching parameter dj

11set D
N
up, D

N
down according to (3.81) and (3.82)

12set dinc = Branch-and-Bound(DN , DN
down, dinc)

13set dinc = Branch-and-Bound(DN , DN
up, dinc)

14return dinc

15end

the current subproblem. If d̃∗
rel is a feasible, non-discrete solution and if ϕ(d̃∗

rel) is better
than the incumbent value, rounding constraints are used to generate new subdomains
according to (3.81) and (3.82), and the Branch-and-Bound algorithm is called recursively
for both subdomains (lines 9 to 14). In Figure 3.10, this happens in 3.10a and 3.10b.
The subproblem in Figure 3.10b and 3.10c is generated using rounding constraint (3.80)
and solved in the first and second recursion of the algorithm which is started by the
function call in line 12. In Figure 3.10d and 3.10e the subdomains are generated by
(3.79).

Before new subdomains are constructed, the pruning rules are applied in each recursion
of the algorithm (lines 1 to 2 and 5 to 8):

1. If d̃∗
rel is discrete and ϕ(d̃

∗
rel) is the best solution as yet, d̃∗

rel is the new incumbent
(line 7 and Figure 3.10c; pruning rule 3). The assignment as new incumbent is
performed in the parent recursion (lines 12 and 13).
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Figure 3.10: Visualization of a Branch-and-Bound algorithm (cf. Appendix A.3.2)
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2. If the optimal point in a subdomain is feasible and not better than the incumbent,
the subdomain should be pruned (pruning rule 2; Figure 3.10d). This is achieved
by returning from the current recursion without modifying the incumbent in line 5.

3. Also, if the current subdomain does not include any feasible point (Figure 3.10e),
the subdomain should be pruned (pruning rule 1). In this case, the algorithm re-
turns from the current recursion in line 1. The optimal solution for the subdomain
(line 4) does not have to be computed in this case.

The pruning of the current subdomain is achieved in each case by considering non-
overlapping domains in each recursion (cf. (3.78)). Figure 3.10f shows the visualization
of the algorithm as a branching tree. Each node in this figure corresponds to a recursion
of the algorithm. In each of these nodes the optimum for the current subdomain is
computed, which defines a lower bound for the discrete solution in the current and in
the subsequent nodes. Each time a leaf of the tree is reached, the current subdomain is
pruned.
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Chapter 4

Branch-and-Bound for Analog Sizing

In this chapter, the algorithms described in Chapter 3 are used within a new approach
to solve the discrete analog sizing problem introduced in Chapter 2. It is assumed for
the new Branch-and-Bound approach for analog sizing that the circuit can be evaluated
for each point in a bounded continuous domain although the final result of the sizing
must be a discrete point. Typical examples for parameters in such a discrete sizing task
are the lengths and widths of transistors which should be snapped to a manufacturing
grid or the multipliers of CMOS transistors if BSIM [BSI11] models are used. Such a
discrete sizing task can also be solved by a Branch-and-Bound approach as presented in
Chapter 3.5. However, to increase the efficiency of the new approach, several innovations
are applied to develop a new Branch-and-Bound approach for analog sizing.

The general structure of the new method, which consists of an outer Branch-and-Bound
approach and a prediction method for the discrete solution of the problem, is explained
in Section 4.1. A detailed description of the outer Branch-and-Bound approach and the
new prediction method is given in Sections 4.2 and 4.3.

For the sake of a simple description, only design parameters are considered in Sections 4.1
to 4.3. Section 4.4 enlarges the approach to consider variations in operating and process
parameters.

4.1 Structure of the New Approach

The approach for analog sizing presented in this section consists of a new simulation-
based Branch-and-Bound approach – referred to as outer Branch-and-Bound – and of
a new prediction method for the discrete solution. The prediction method predicts a
discrete solution of the sizing task, using a non-simulation-based Branch-and-Bound
approach – referred to as inner Branch-and-Bound. In this concept for analog sizing,
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4 Branch-and-Bound for Analog Sizing

the outer Branch-and-Bound approach ensures the (local) convergence of the algorithm
while the prediction method is used to reduce the number of required simulations and,
as a consequence, the required runtime of the approach significantly.

The sizing task which should be solved by the new approach can be formulated as a
minimization problem according to (2.56) on Page 36

min
d∈DN

ϕlsq (d) s.t. c(d) ≥ 0 (4.1)

The mapping of the multi-objective problem to a scalar is realized by the truncated
least squares objective function (cf. (2.47) on Page 33):

ϕlsq (d) =
Nε∑

i=1

(ηi ·max (0, εi(d) + γ))2 (4.2)

4.1.1 Simulation-Based Branch-and-Bound

The outer, simulation-based Branch-and-Bound algorithm (cf. Figure 4.1) is also a new
stand-alone method to solve the analog sizing task according to (4.1). It consists of a
simulation-based approach for sizing in a continuous domain and of additional blocks
which realize the innovations of the new Branch-and-Bound approach.

The continuous sizing approach is realized as a simulation-based FSQP approach accord-
ing to Chapter 3.4.5 and ensures an efficient computation of the sizing in the continuous
domain by solving a minimization problem of the form (cf. (4.1), (2.14))

min
d∈DN

rel

ϕlsq (d) s.t. c(d) ≥ 0 (4.3)

The structure of this continuous approach is identical to the structure of state-of-the-art
approaches (cf. Figure 1.7 on Page 9).

The objective function value of (4.3) at the solution computed by the FSQP approach
is a lower bound for the discrete solution in the currently considered continuous domain
and could be used in a standard Branch-and-Bound approach to solve the analog sizing
task (cf. Chapter 3.5.4). However, in such an approach many subproblems must be
solved and the runtime would be impracticable high if the solution of each subproblem
was computed by a simulation-based FSQP approach. In the new simulation-based
Branch-and-Bound approach in Figure 4.1, the components of the Branch-and-Bound
approach are improved to reduce the runtime by considering the specific characteristics
of the analog sizing task:

1. The pruning rules are revised for analog sizing (Section 4.2.1), considering that the
sizing task according to (2.52) is to fulfill the specifications for the performances
rather than to find an optimal sizing. This leads to the new Branch-and-Bound
algorithm in Algorithm 8 (Section 4.2.1).
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Figure 4.1: Structure of the new discrete sizing approach for continuously simulated

parameters

2. New branching heuristics are developed for the analog sizing task to reduce the
number of subproblems which must be solved to find a discrete solution (Sec-
tion 4.2.2). For this purpose, a direction of improvement is computed for the
sizing task and branching into this direction is preferred.

In Figure 4.1, the new pruning rules are realized by the decision blocks in the diagram.
If a subdomain does not contain a solution for the sizing task or if a discrete point has
been found – i.e., if the new pruning rules are applied – the decisions either lead to a
result which is returned or cause the pruning of the current subdomain. The returned
result can be non-optimal but solves the sizing task if such a solution exists locally.
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The new branching rules are realized in the ”Selection of next subdomain” block in
Figure 4.1 which also implements the recursive call of the Branch-and-Bound approach.
Branching is only applied if a continuous solution for the sizing task exists in the current
subdomain and if the result computed by the FSQP approach is non-discrete.

Besides the modifications above which are used to speed up the Branch-and-Bound algo-
rithm – predominantly by reducing the number of required simulations – the approach
must also be modified for the use of the efficient, simulation-based FSQP algorithm:
The FSQP approach requires a c-feasible initial solution, i.e., a solution which fulfills
the constraints of the optimization problem. However, in each recursion of the Branch-
and-Bound approach, rounding constraints are added to construct two new subdomains.
These rounding constraints are generated by forcing one component of the design point
to be greater or lower than this component of the continuous solution d̃∗

rel rounded to

the next discrete values (cf. (3.79) and (3.80)). As a consequence, d̃∗
rel is not feasible in

both new subdomains and cannot be taken as initial solution for the FSQP approach.

A new, fast, three-step approach is implemented in the Branch-and-Bound algorithm
for analog sizing to find a c-feasible initial solution for the FSQP approach, keeping
the required number of simulations low (cf. Section 4.2.3). The approach starts with a
discretization of the continuous solution, using a rounding operation. If the point which
is computed this way violates some constraints, a goal attainment approach is used
to find a feasible solution without additional simulations. Computationally expensive
simulations are only required if none of the previously computed candidates can be used
as initial solution for FSQP.

4.1.2 Discrete Sizing Approach for Continuously Simulated

Parameters

The enhancements presented in Section 4.1.1 lead to a significant reduction of the run-
time of the outer Branch-and-Bound algorithm. However, the number of subproblems
which must be solved by a simulation-based FSQP approach can be still high. For fur-
ther reduction of the runtime of the algorithm, another new enhancement is added to the
structure of the Branch-and-Bound algorithm for analog sizing (cf. Figure 4.1) which
predicts the discrete solution of the sizing task using only a low number of simulations
(cf. Section 4.3). The inner structure of the new block is shown in Figure 4.2.

The prediction algorithm requires a linearly constrained quadratic model of the opti-
mization problem as an input. Such a model is computed during the FSQP approach
and can be used without additional effort. A prediction for the discrete solution of
the sizing task is computed on this model by an inner Branch-and-Bound approach (cf.
Section 4.3.3).

The inner Branch-and-Bound approach uses an active set algorithm (cf. Chapter 3.3.2)
to compute a continuous solution of the model. The pruning rules are defined according
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Figure 4.2: Structure of the prediction algorithm for a discrete solution

to Chapter 3.5.2. For branching, a new heuristic is used which considers the requirements
of the task to predict a discrete solution. To increase efficiency, the inner Branch-and-
Bound approach is revised and a new algorithm is presented in Algorithm 10 which
is, in addition, highly parallelized. Without further modifications, the inner Branch-
and-Bound algorithm would compute the discrete optimum on the linearly constrained
quadratic model provided. However, the computation of the optimum can be costly due
to the exponential runtime behavior of Branch-and-Bound approaches, and optimality
is not required to predict a solution of the sizing task (cf. Section 4.3).
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4 Branch-and-Bound for Analog Sizing

To keep runtime low, the linearly constrained quadratic program is formulated in such a
way that each feasible discrete point in the model is a solution candidate for the sizing
task (cf. Section 4.3.2). I.e., a discrete solution which is computed by the active set
algorithm on the model is a potential solution. Each solution candidate is evaluated
by simulations. If it solves the sizing task, the inner Branch-and-Bound algorithm is
stopped.

To find solution candidates for the analog sizing task early in the inner Branch-and-
Bound algorithm, the – possibly continuous – solution of the active set algorithm is
rounded to the next discrete point, and the rounded point is considered as a potential
solution for the sizing task if it is feasible in the model. Experiments have shown
that the runtime of the inner Branch-and-Bound algorithm can be typically reduced by
considering these rounded solutions of the active set algorithm.

Comparing the inner Branch-and-Bound algorithm in Figure 4.2 to the outer Branch-
and-Bound algorithm in Figure 4.1, the main differences in the structure are the use of an
active set algorithm instead of the computationally expensive, simulation-based FSQP
approach and the consideration of the rounded solution. In addition, the incumbent so-
lution is considered and the solution of the active set algorithm is tested for discreteness
– by comparing the rounded solution to the continuous solution – to decide if further
branching is required or if the current subdomain should be pruned. These differences
are due to the modified pruning rules in the outer Branch-and-Bound approach and to
the sub-optimality of the rounded solution in the inner Branch-and-Bound approach: A
solution which does not solve the sizing task in the outer Branch-and-Bound approach
corresponds to a domain which cannot contain a solution of the sizing task, i.e., the cor-
responding domain can be pruned. In contrast, the inner Branch-and-Bound approach
searches for the optimum of the model and is stopped sooner only if a solution of the
sizing task has been found. I.e., the three pruning rules in Chapter 3.5.2 are applied
instead of the two new pruning rules in Section 4.2.1 and the incumbent solution is
required for the inner Branch-and-Bound algorithm. In addition, the rounded solution
of the active set algorithm is not necessarily optimal and the corresponding domain can
contain better discrete solutions for the model. Therefore, only the result of the active
set algorithm is considered for pruning. Nevertheless, each discrete point can become
an incumbent if it is better than the currently best discrete point and the incumbent
can be updated by the rounded solution before branching.

Due to inaccuracies of the model, the prediction algorithm cannot guarantee that an
existing solution for the discrete sizing task is found and the outer Branch-and-Bound
approach is required to ensure the convergence of the new Branch-and-Bound based
approach for analog sizing. However, the prediction of the discrete solution yields good
results in practical experiments, where a significant speed-up can be achieved using this
method. In many cases, a discrete solution of the sizing task can be found in the first
recursion of the outer Branch-and-Bound approach, i.e., the computationally expensive
simulation-based FSQP approach must be executed only once.
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4.2 Outer Branch-and-Bound approach

4.2 Outer Branch-and-Bound approach

The outer Branch-and-Bound approach described in this section guarantees the (local)
convergence of the presented approach. Specific characteristics of the discrete analog
sizing task are considered to make the approach efficient. For this purpose, the pruning
rules are revised and a new Branch-and-Bound algorithm is presented in Section 4.2.1.
Furthermore, a new branching heuristic is presented in Section 4.2.2 and the computa-
tion of a feasible initial solution is discussed in Section 4.2.3, which is required to enable
the use of the highly efficient FSQP approach presented in Chapter 3.4.5.

4.2.1 Pruning Rules for Analog Sizing

The sizing task is fulfilled according to (2.52) if a discrete design parameter point d∗

has been computed where each design constraint and each performance specification is
fulfilled. Applying the Branch-and-Bound algorithm in Chapter 3.5.4 to such a problem,
the pruning rules can be simplified to:

1. If the relaxed subdomain D̃
N
rel does not contain any solution d̃∗

rel for the sizing task

in the continuous domain, it follows that the current discrete subdomain D̃
N ⊆ D̃

N
rel

cannot contain a solution for the sizing task. Hence, D̃N can be pruned. This is
referred to as pruning by non-satisfiability in the following.

2. If the optimum in the relaxed subdomain D̃
N
rel is discrete and solves the sizing task,

the result can be accepted as solution for the complete problem. I.e., no further
subdomain has to be considered and each possible subdomain can be pruned. This
is referred to as pruning by acceptance in the following.

The first pruning rule proposed can be interpreted as the combination of the rules for
pruning by value dominance and pruning by infeasibility in Chapter 3.5.2, where the
value dominance is anticipated by the assumption that a solution for the sizing task
exists according to (2.52). The second pruning rule proposed can be interpreted as
pruning by optimality applied to the analog sizing task.

The proposed Branch-and-Bound algorithm for analog sizing is shown in Algorithm 8.
In addition to the modified pruning conditions, a stop criterion is added in line 1 which
stops the algorithm if any discrete solution for the sizing task has been found. Two
further key points in the algorithm are the computation of a solution in the relaxed
domain (line 3) and the branching rules which are used in lines 9 and 10 to define the
subdomains of the current domain in each recursion (lines 11 and 12). The enhancements
for these open points are discussed in Sections 4.2.2 and 4.2.3.
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4 Branch-and-Bound for Analog Sizing

Algorithm 8: Outer Branch-and-Bound Approach (cf. Figure 4.1)

Input: discrete domain D
N , current subdomain D̃

N
rel, incumbent dinc

1if dinc solves the sizing task then

//solution has been found in any subdomain

2return dinc

3compute feasible solution d̃∗
rel using (4.3), D̃N

rel, and FSQP

4if No feasible solution exists or d̃∗
rel does not solve continuous sizing task then

//pruning by non-satisfiability

5return dinc

6else if d̃∗
rel ∈ D

N then

//pruning by acceptance

7return d̃∗
rel

8else

9Select branching parameter dj

10set D
N
1 , D

N
2 according to (4.5) and (4.6)

11set dinc = Outer Branch-and-Bound(DN , DN
1 , dinc)

12set dinc = Outer Branch-and-Bound(DN , DN
2 , dinc)

13return dinc

14end

4.2.2 Branching Rules for Analog Sizing

The new gradient-based heuristic which is used for the branching rules in Algorithm 8
considers that – to avoid unnecessary simulations – the FSQP approach is stopped as
soon as any solution d̃∗

rel for the sizing task has been found. However, due to the offset
value γ 6= 0 which is used in the objective function (4.2), the gradient of the Lagrange
function at this continuous solution is typically not equal to zero, and a direction of
improvement ∆d – i.e., an SQP step – can be computed for the objective function
at d̃∗

rel (cf. (3.51) on Page 55). The idea of the branching rule presented is to prefer
solutions in direction of ∆d.

For this purpose, a parameter is selected for branching so that it corresponds to a
component d̃j of d̃∗

rel, which should be discretized, and so that it corresponds to an
absolute value of the components ∆dj of ∆d which is as large as possible. I.e., the index
j of the branching parameter is computed by:

j = argmax
i

|∆di| s.t. d̃i should be discretized (4.4)

The largest component is selected, as the current parameter point would be modified
mostly in this direction if another SQP step were performed at d̃∗

rel. I.e., the next step
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4.2 Outer Branch-and-Bound approach

of an SQP approach would cause the strongest modification of d̃∗
rel toward the next

discrete value for the component with the greatest value |∆di|.
With the result of (4.4), the new subdomains D

N
1 , D

N
2 in line 10 of Algorithm 8 are

generated from the current relaxed domain D̃
N
rel by:

D
N
1 =





{
d ∈ D̃

N
rel

∣∣∣dj −
⌈
d̃j

⌉
≥ 0

}
if ∆dj > 0

{
d ∈ D̃

N
rel

∣∣∣
⌊
d̃j

⌋
− dj ≥ 0

}
if ∆dj ≤ 0

(4.5)

D
N
2 =





{
d ∈ D̃

N
rel

∣∣∣
⌊
d̃j

⌋
− dj ≥ 0

}
if ∆dj > 0

{
d ∈ D̃

N
rel

∣∣∣dj −
⌈
d̃j

⌉
≥ 0

}
if ∆dj ≤ 0

(4.6)

d̃j and dj is the j-th component of d̃∗
rel and d, respectively.

The subdomains are defined in (4.5) and (4.6) such that the direction of improvement
of the objective function is considered first in the recursive Branch-and-Bound approach
in Algorithm 8. If the gradient of the Lagrangian function at the solution found by the
FSQP approach is zero and no direction of improvement can be computed1, the first
parameter which should be discretized is selected for branching, and the subdomain{
d ∈ D̃

N
rel

∣∣∣
⌊
d̃j

⌋
− dj ≥ 0

}
is considered first.

4.2.3 Computation of Feasible Initial Solutions

In each recursion of Algorithm 8 the sizing task must be solved for the current relaxed
(i.e., continuous) subdomain (line 3). In this thesis, the simulation-based FSQP al-
gorithm described in Chapter 3.4.5 is used to compute such a solution2. The FSQP
algorithm requires a feasible initial solution as a starting point. Such a feasible initial
solution must be computed for each subproblem which is considered in a Branch-and-
Bound recursion because the rounding constraints implanted additionally are violated
for the solution of the previous recursion. The number of simulations required to find
such a feasible initial point should be as low as possible. Thus, it is computed using a
linear model of the constraints if a rounding operation is not sufficient:

Assuming that d̃∗
rel is the solution of the relaxed problem for the current recursion,

Jc(d̃
∗
rel) and c(d̃∗

rel) are the Jacobian matrix of the constraints and the constraint values

1Such cases appeared in practical experiments only if the specifications for the circuits were weak, i.e.,

if the sizing task was easy to solve.
2It can be noted that – contrary to the assumption in the FSQP approach – equality constraints appear

during the Branch-and-Bound approach if the upper and the lower bound has the same value for

any parameter. Such equality constraints do not affect the usability of the FSQP approach because

they can be considered by parameter reductions.

87



4 Branch-and-Bound for Analog Sizing

at d̃∗
rel. If branching constraints are added for component j according to (3.79), (3.80)

on Page 74, a feasible point in one of the resulting subdomains can be approximated
using a goal attainment approach of the form

min
χup,d

χup s.t. Jc(d̃
∗
rel) ·

(
d − d̃∗

rel

)
+ c

(
d̃∗
rel

)
≥ 0

dj − ⌈d̃j⌉+ χup ≥ 0

χup ≥ 0

(4.7)

if the branching constraint is dj − ⌈d̃j⌉ ≥ 0 (cf. (3.79)) and of the form

min
χdown,d

χdown s.t. Jc(d̃
∗
rel) ·

(
d − d̃∗

rel

)
+ c

(
d̃∗
rel

)
≥ 0

⌊d̃j⌋ − dj + χdown ≥ 0

χdown ≥ 0

(4.8)

if the branching constraint is ⌊d̃j⌋ − dj ≥ 0 (cf. (3.80)). In (4.7) and (4.8), d̃j is

a component of d̃∗
rel. The additional parameters χup and χdown describe the minimum

required change in parameter dj to fulfill the rounding constraint and can be interpreted
as slack variables which are used to relax the additional constraint. The optimization
problems can be solved by the simplex algorithm in Chapter 3.2.3. This optimization
can be interpreted as restricting the relaxed constraint.

The linear problems (4.7), (4.8) have an initial solution for d = d̃∗
rel and χup = ⌈d̃j⌉− d̃j

and χdown = d̃j−⌊d̃j⌋ (cf. Figure 4.3). The minima of (4.7) and (4.8) are approximations
for feasible points in the corresponding subdomains of the sizing task if χup = 0 for
(4.7) and χdown = 0 for (4.8) (cf. χdown in Figure 4.3b), respectively. Otherwise, i.e., if
χup 6= 0 or χdown 6= 0, the linear model of the corresponding subdomain does not contain
a feasible point (cf. χup in Figure 4.3b).

It cannot be guaranteed that the approximated feasible solution fulfills the nonlinear
design constraints of the underlying sizing task. To overcome this problem, a feasi-
ble solution is computed for the relaxed subdomain by applying the simulation-based
FSQP approach to an optimization problem of the form (2.53) if the initial point com-
puted on linearized constraints does not fulfill the constraints of the actual sizing task
(cf. Chapter 2.5.2). However, the higher computational effort of the simulation-based
FSQP approach can typically be avoided by using the approximation derived by (4.7),
(4.8).

In practical cases, the area where the specifications are fulfilled is typically a connected
domain. As a consequence, the continuous solution of the sizing task in a newly con-
structed subdomain is often close to the continuous solution of the subdomain in the
previous recursion. It can be deduced that it is preferable for the feasible initial solution
for a newly generated subproblem to be close to the solution d̃∗

rel of the problem in this

previous recursion. For this purpose, a line search in the directions from d̃∗
rel to the

feasible initial solution which is computed by the approach presented in this section is
applied in the outer Branch-and-Bound algorithm.
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Figure 4.3: Visualization of a linear model of the feasible domain computed at d̃∗
rel and

of optimization problems (4.7), (4.8).

4.3 Prediction of a Discrete Solution

The approach presented in Section 4.2 solves the discrete sizing task if local optimization
is sufficient. However, in each recursion of the outer Branch-and-Bound approach a
simulation-based optimization must be executed to find the solution of the relaxed
problem.

To increase the efficiency of the new Branch-and-Bound algorithm for analog sizing, the
discrete solution is predicted on a linearly constrained quadratic model of the sizing task
and the circumstance that the objective function value at each discrete feasible point is
an upper bound for the discrete optimum is made use of. In a standard Branch-and-
Bound approach this means that a feasible approximation of the discrete solution can be
considered as an incumbent (cf. Chapter 3.5.4) if it is better than each discrete solution
found previously. As a consequence, each subdomain with a continuous solution worse
than the incumbent solution can be pruned. In case the analog sizing task is defined
as in this thesis and using the proposed pruning rules for analog sizing, the simulation-
based Branch-and-Bound approach can be stopped as soon as the approximated discrete
solution fulfills specifications and constraints of the underlying problem.
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4 Branch-and-Bound for Analog Sizing

4.3.1 Consideration of a Rounded Solution

The first idea to approximate the discrete solution is to compute the relaxed solution
d̃∗
rel for each subproblem, using the simulation-based FSQP approach, then to round

each of these relaxed solutions to the next discrete point
⌈
d̃∗
rel

⌋
(cf. (2.19)), and to stop

the algorithm if a point
⌈
d̃∗
rel

⌋
fulfills the specifications and constraints. The rounded

solution does not solve a discrete optimization problem or a discrete sizing task in general
(cf. Chapter 1.2.2). However, experiments have shown that – due to the significant

runtime reduction which can be achieved if
⌈
d̃∗
rel

⌋
solves the sizing task – the rounded

solution should be considered as an extension of the Branch-and-Bound algorithm in
practice. It can also be observed that the rounded solution is typically a good choice if
d̃∗
rel is close to a discrete solution.

Cases where the relaxed solution d̃∗
rel is close to

⌈
d̃∗
rel

⌋
appear in particular in later

recursions of the Branch-and-Bound algorithm when many rounding constraints have
been added to the problem and, as a consequence, many parameters are discretized. It
follows that considering the rounded solution can help to reduce the number of recursions
– i.e., the number of subproblems to be solved and the runtime – of a Branch-and-Bound
approach. In addition, it guarantees that the suggested Branch-and-Bound approach
is as fast as continuous optimization with subsequent rounding if this state-of-the-art
approach can find a solution, but can still solve the sizing task if the state-of-the-art
approach fails.

4.3.2 Model-Based Prediction Approach

The number of subproblems and, as a consequence, the runtime of the algorithm is
still high in practical cases if only the rounded solution is considered in each recursion.
To increase the efficiency of the algorithm for analog sizing, a prediction method is
suggested in this thesis to speed up the search for a discrete solution. This is shown in
the structure of the new approach in Figure 4.1 which consists of the outer Branch-and-
Bound approach and a block which realizes the prediction of a discrete solution. The
structure in this figure is realized by replacing the computation of a relaxed solution in
line 3 of Algorithm 8 by Algorithm 9. I.e., not only the solution of the relaxed problem
but also a discrete solution candidate is computed in each step of the Branch-and-Bound
algorithm. The approximation of the discrete solution in Algorithm 9 is realized in two
steps:

1. The relaxed solution computed by the FSQP approach is rounded to the next
point (line 2).

2. The discrete solution is predicted by an inner Branch-and-Bound algorithm applied
to a linearly constrained quadratic model (line 5).
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4.3 Prediction of a Discrete Solution

Algorithm 9: Solve Subproblem (replaces line 3 of Algorithm 8)

Input: discrete domain D
N , current subdomain D̃

N
rel

1compute feasible solution d̃∗
rel for (4.3) and D̃

N
rel using FSQP

2if c
(⌈

d̃∗
rel

⌋)
≥ 0 and d̃∗

rel fulfills performance specifications then

//return rounded solution

3return
⌈
d̃∗
rel

⌋

4else

5compute approximated discrete solution dapprox by solving (4.9) for D̃N
rel ∩ D

N

6end

7if c (dapprox) ≥ 0 and dapprox fulfills performance specifications then

//return approximation computed by solving (4.9)

8return dapprox

9else

//return non-discrete solution

10return d̃∗
rel

11end

The consideration of the rounded solution discussed in Section 4.3.1 requires the simu-
lation of only one additional – namely the rounded – point. Due to this small additional
effort the rounded solution is considered before the prediction of a discrete solution us-
ing the inner Branch-and-Bound algorithm, although it is neglected in the structure of
Figure 4.1 for the sake of a simple description. The prediction algorithm returns either
a discrete solution for the sizing task or the solution in the relaxed domain computed
by the FSQP approach.

For the approximation of the discrete solution in line 5 advantage is taken of the inner
structure of the FSQP approach: In each step of an SQP approach a linearly constrained
quadratic optimization problem (cf. (3.51)) is computed. This problem is an approxi-
mation for the optimization task which must be solved to compute the required sizing of
the analog circuit. As a consequence, the discrete optimum of this model is a candidate
for the discrete solution of the sizing task if the last model is used which was computed
during the FSQP approach. Additional linear approximations of the performances can
be used as further constraints for the model to reduce the size of the feasible domain in
the quadratic optimization problem and to avoid a search in regions where no solution
for the sizing task is to be expected.

Using the linearly constrained quadratic model from the FSQP approach and linear
approximations of the performances, the discrete solution for the current subproblem in
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a certain Branch-and-Bound recursion of Algorithm 8 can be approximated by solving
the optimization problem

min
d∈DN∩D̃N

rel

ϕ̂ (d) := 1
2

(
d − d̃∗

rel

)T
H
(
d − d̃∗

rel

)
+ gT

(
d − d̃∗

rel

)

s.t. −Jε ·
(
d − d̃∗

rel

)
− ε

(
d̃∗
rel

)
≥ 0

Jc ·
(
d − d̃∗

rel

)
+ c

(
d̃∗
rel

)
≥ 0

(4.9)

over the discrete domain D
N ∩ D̃

N
rel. In (4.9) H is the Hessian matrix of the Lagrangian

function which is computed during the FSQP approach, Jε and Jc are the Jacobian
matrices for performance-to-specification gaps, and for constraints at the solution in the

relaxed domain d̃∗
rel. ε

(
d̃∗
rel

)
and c

(
d̃∗
rel

)
are the values of the performance gaps and of

the constraints at d̃∗
rel. The additional performance constraints are formulated in such

a way that the values of the performance gaps should be negative, i.e., the performance
specifications should be fulfilled, in the linear model. The linearly constrained quadratic
optimization problem over a discrete domain in (4.9) is solved by the inner Branch-and-
Bound algorithm in Section 4.3.3.

The new Branch-and-Bound approach for analog sizing predicts a discrete solution by
the model-based approach in each recursion of the outer Branch-and-Bound approach
in Section 4.2. As a consequence, the incumbent – i.e., the upper bound for the discrete
solution – can be updated in each recursion. Hence, the pruning rules can be applied
sooner and a speed-up of the algorithm can be achieved also in case the approach is
used to find an optimal solution if the approximation can be computed fast enough.
For the analog sizing task according to (2.52) – i.e., with the objective of finding any
discrete point which fulfills specifications and constraints – experiments show that in
many cases already the first approximation of the discrete solution solves the problem.
I.e., in many cases the simulation-based FSQP approach must be executed only once.

4.3.3 Inner Branch-and-Bound Algorithm

The discrete solution of the sizing task can be approximated in each recursion of Al-
gorithm 8 by solving the linearly constrained quadratic model in (4.9). To solve the
problem, an inner Branch-and-Bound algorithm is used. This inner Branch-and-Bound
approach uses an active set method to compute relaxed solutions d̂rel on the model (cf.
Chapter 3.3.2). In addition, the branching heuristic is adapted to the requirements of
the inner Branch-and-Bound algorithm and, as a consequence of the changed branching
heuristics, the Branch-and-Bound algorithm is restructured.

Given a non-discretized optimum d̂rel of the relaxation of (4.9), branching constraints
of the form (3.79), (3.80) should be added in each recursion of the Branch-and-Bound
algorithm for some parameter which must be discretized. In the presented approach for
the inner Branch-and-Bound algorithm the parameters which have the highest influence
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4.3 Prediction of a Discrete Solution

on the objective function of the model ϕ̂ (d) should be considered first. This heuristic
to select a branching parameter – together with the selection heuristic for the next
subdomain – has shown a low recursion depth in practice. In addition, the influence
of the parameters which must be discretized is low after a low number of recursions.
As a consequence, considering the relaxed solution rounded to the next discrete point
as possible incumbent for the Branch-and-Bound algorithm on the model leads to good
results (similar to Section 4.3.1).

To select a parameter with a high influence, the mean influence Φj of parameter j on
the objective function during branching is defined as the mean value of the absolute
influences in both possible branching directions:

Φj =

∣∣∣∣ϕ̂
(⌈

d̂rel

⌉
j

)
− ϕ̂

(
d̂rel

)∣∣∣∣+
∣∣∣∣ϕ̂
(⌊

d̂rel

⌋
j

)
− ϕ̂

(
d̂rel

)∣∣∣∣
2

(4.10)

The value of the mean influence defined in this way depends on the distance from d̂rel to

the rounded values
⌈
d̂rel

⌉
j
and

⌊
d̂rel

⌋
j
and on the sensitivity of the objective function

at d̂rel against variations of parameter j. I.e., the mean influence of a parameter is high
if a small change in the parameter causes a great increase or decrease of the objective
function or if the distance to the next discrete values of the component is large. Based
on (4.10), the branching index b is defined as the index corresponding to the largest
value of Φj:

b = arg max
j∈Iadd

Φj (4.11)

Iadd is the index set of all parameters, which should be discretized but are not discrete
in the current recursion.

After choosing a branching parameter, one of the two possible subdomains
(cf. (3.81), (3.82)) must be selected to be considered first. This decision is made for
the inner Branch-and-Bound approach based on the best achievable objective function
values for the two relaxed subproblems. To compute these values for both subdomains,
the linearly constrained quadratic problem for each subdomain must be solved before
the next recursion is started. However, it can be seen in the Branch-and-Bound algo-
rithm in Algorithm 7 on page 76 that in a standard Branch-and-Bound approach both
subproblems are considered as well. Therefore, the decision which relaxed subdomain
contains the better solution can be made without any additional computational effort
by restructuring the Branch-and-Bound algorithm3. The resulting Branch-and-Bound
algorithm denoted as Best-Child-First Branch-and-Bound is provided in Algorithm 10.

In contrast to the standard Branch-and-Bound algorithm introduced in Chapter 3.5.4,
the new algorithm requires the optimum for the current domain as an input and starts
with the pruning rules (lines 3 to 8). Afterwards, the branching parameter is selected
(line 10) and the two possible subproblems which can be generated by branching along

3This restructuring is not shown in Figure 4.2 for the sake of a clear structure.

93



4 Branch-and-Bound for Analog Sizing

Algorithm 10: Best-Child-First Branch-and-Bound

Input: discrete domain D
N , current subdomain D̂

N
rel, incumbent dinc,

optimum d̂rel for relaxed domain D̂
N
rel

1if constraints and specifications are fulfilled for the sizing task at dinc then

//Solution found; break Branch-and-Bound

2return dinc

3else if any cl(d̂rel) < 0 then

//pruning by infeasibility

4return dinc

5else if ϕ̂
(
d̂rel

)
≥ ϕ̂ (dinc) then

//pruning by value dominance

6return dinc

7else if d̂rel ∈ D
N then

//pruning by optimality

8return d̂rel

9else

10compute branching parameter index b using (4.11)

11set D
N
down =

{
d ∈ D̂

N
rel

∣∣∣
⌊
d̂b

⌋
− db ≥ 0

}
and D

N
up =

{
d ∈ D̂

N
rel

∣∣∣db −
⌈
d̂b

⌉
≥ 0

}

12compute optima of subdomains d̂down and d̂up by solving (4.9) for

D
N
down and D

N
up using the active set algorithm in Algorithm 2

13if ϕ̂
(
d̂down

)
≤ ϕ̂

(
d̂up

)
then

14set dinc = Best-Child-First Branch-and-Bound(DN , DN
down, dinc, d̂down)

15set dinc = Best-Child-First Branch-and-Bound(DN , DN
up, dinc, d̂up)

16else

17set dinc = Best-Child-First Branch-and-Bound(DN , DN
up, dinc, d̂up)

18set dinc = Best-Child-First Branch-and-Bound(DN , DN
down, dinc, d̂down)

19end

20return dinc

21end

this parameter (line 11) are evaluated (line 12). The order for the consideration of these
subproblems is determined in lines 13 to 18 such that the subproblem with the better
relaxed optimum is preferred. The new recursion is started with an already computed
optimal solution for the subproblem and with the subdomain under consideration. To
simplify the algorithm, infeasible solutions are treated as feasible solutions with infinite
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4.4 Discrete Tolerance Design

objective function values in the current recursion and the corresponding subdomains are
pruned if a recursion is started with an infeasible point.

Although the surrogate problem in (4.9) is explicitly given and can be solved without
additional simulations, the runtime of an optimization with the inner Branch-and-Bound
approach can still be high due to its exponential behavior. However, the structure of
the underlying problem can be exploited to reduce the runtime: The linear constraints
for the problem do not only consider a linearization for the constraints but also a linear
model of the performances such that not only the optimal but also any other feasible dis-
crete solution in the model is a solution candidate for the sizing task. Thus, suboptimal
discrete solutions for the quadratic problem found during the inner Branch-and-Bound
approach, i.e., each candidate for a new incumbent solution, can be evaluated by simu-
lations and the inner and outer Branch-and-Bound approach can be stopped if such a
suboptimal solution solves the sizing task. The evaluation of such a suboptimal solu-
tion is reasonable in the common case that the runtime of the inner Branch-and-Bound
algorithm is higher than the runtime of a single simulation. To consider suboptimal so-
lutions, an additional stop criterion is added to the inner Branch-and Bound algorithm
(line 2).

On behalf of the implementation, the simulations required to evaluate suboptimal solu-
tions can be parallelized and started in separate threads such that the inner Branch-and-
Bound approach can continue the search for an optimal solution during the simulation.
In addition, the first Ncore recursive calls of the inner Branch-and-Bound algorithm in
this thesis are started in separate threads so that many numerical problems can be solved
at the same time. Ncore can be, e.g., the number of available CPUs or cores. For the
inner Branch-and-Bound approach the rounded relaxed solution is also used to further
speed up the algorithm by considering the rounded solution as possible incumbent if it
is feasible for the optimization problem (4.9).

4.4 Discrete Tolerance Design

The Branch-and-Bound algorithm presented so far solves a discrete analog sizing task
for fixed operating and process conditions and if each continuous point can be simulated.
In this section, the approach is enlarged to consider variations in operating and process
parameters, i.e., to compute a tolerance design as defined in Chapter 2.5.4.

As discussed in Chapter 2.5.4, the task of finding a tolerance design is equivalent to the
task of finding a sizing for the design parameters, which ensures that the performance
specifications are fulfilled at the worst case points with respect to operating and process
parameters (cf. (2.60), (2.62)). As a consequence, a relaxed solution for the required
tolerance design can be computed by the FSQP approach in Chapter 3.4.5 if each per-
formance evaluation – i.e., also each performance evaluation required to compute the
sensitivities of the performances (Algorithm 4 on page 63, line 21) – is done at the
corresponding worst case point.
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4 Branch-and-Bound for Analog Sizing

The worst case points for operating parameters depend on the selected design parameter
point d̂ and the selected process parameters ŝ and can be computed by solving the
optimization problem (cf. (2.62)):

owci = arg max
o∈TNo

o

εi

(
d̂,o, ŝ

)
(4.12)

Analogously, the worst case points for process parameters depend on the selected design
parameter point d̂ and the selected operating parameters ô and can be computed by
solving the optimization problem (cf. (2.60)):

swci = arg max
s∈TNs

s

εi

(
d̂, ô, s

)
(4.13)

A first approach to compute the tolerance design using the FSQP approach in Chap-
ter 3.4.5 could be to determine the worst case points exactly each time a function evalu-
ation is required. However, such a procedure would cause an extremely high runtime of
the algorithm because the accurate computation of the worst case points requires many
time-consuming circuit simulations.

To reduce the runtime for the computation of a tolerance design to a practicable amount,
the concept in [SSPG02] is used in this thesis, i.e., the worst case points are successively
approximated over the iterations of the FSQP algorithm. The following assumptions
are used for the approach described below:

1. The change of the worst case points is small if the design parameter point is shifted
by a small value.

2. The worst case points can be computed using a gradient-based method.

3. The operating and process parameters are on the boundary of the operating region
(2.21) and of the tolerance domain (2.59), respectively.

Although the assumptions can be violated for analog circuits, e.g., if mismatch parame-
ters are considered [Sch04], the approach is applicable in most practical problems. If the
suggested method does not provide the required accuracy for a certain sizing task, the
accuracy of the method can be increased using an advanced but computationally more
expensive method to approximate the worst case points during the FSQP approach.

4.4.1 Approximation of worst case points and worst case

sensitivity

In the presented approach, the worst case points are successively computed based on
a linear model for each performance-to-specification gap. The worst case in this linear
model is unique and results in an approximation of the worst case points on the bounds
of the operating region T

No
o and of the tolerance domain for the process parameters TNs

s

(cf. Figure 4.4a).
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generation

linearization of εi at s0
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(a) Approximation of worst case point s
(µ)
wci based on linear model at s0

and accurately computed worst case point saccuratewc
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(µ)
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Figure 4.4: Approximation of the worst case point for performance gap εi based on linear

models at the nominal point s0 and at a previous approximation of the worst

case point s
(µ)
wci
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4 Branch-and-Bound for Analog Sizing

However, to increase the accuracy of each approximated worst case point, the lineariza-
tion should be done as close to the solution as possible (cf. Figure 4.4b). For this
purpose, the linear model is computed by Algorithm 11 using the worst case points
of the previous step. I.e., after computing a new point in the FSQP algorithm (Algo-
rithm 4 on page 63, line 20), the worst case operating point for each performance is
approximated by solving the linear optimization problem (Algorithm 11 line 3):

owc
(µ+1)
i = arg max

o∈TNo
o

∇oεi

(
d(µ+1),o, swc

(µ)
i

)∣∣∣
T

o=o(µ)
· o (4.14)

The linear model for performance gap i and for variations in the operating parameters
is computed at the design parameter point in the current iteration and at the worst case
operating and process parameter point of the previous iteration. The approximation
of the worst case points over a rectangular tolerance region – but with a linear model
computed at the nominal operating parameters – is also known as classical worst case
analysis [Gra07].

After the computation of the new worst case operating parameters, the worst case
process parameters are approximated by solving (Algorithm 11 line 7):

swc
(µ+1)
i = arg max

s∈TNs
s

∇sεi

(
d(µ+1),owc

(µ+1)
i , s

)∣∣∣
T

s=s(µ)
· s (4.15)

The linear model for performance gap i and for variations in the process parameters
is computed at the design parameter and worst case operating parameter point in the
current iteration and at the worst case process parameter point of the previous iteration.
The approximation of the worst case points over an ellipsoidal tolerance region – but
with a linear model computed at the nominal process parameters – is also known as
realistic worst case analysis [Gra07].

The computation of the worst case points for the operating parameters before the worst
case points for the process parameters can be motivated by the expected change of these
points: A change in a worst case point for the operating parameters owcj which is caused
by a – possibly small – alteration of the linear model of performance j means that owcj

is shifted from one edge of the tolerance box T
No
o to another. As a consequence, the

influence on performance j and on the worst case point for the process parameters swcj

may be high. In contrast, a worst case point of the process parameters swcj lies on an
ellipsoidal boundary curve such that a small alteration of the linear model of performance
j causes only a small change in this parameter and a smaller influence on performance
j and on the worst case point of the operating parameters owcj can be expected. It can
be concluded that it is reasonable for the sake of an accurate approximation to compute
the linear models with respect to the process parameters and the worst case points
for the process parameters after determining the worst case points for the operating
parameters.

Once all worst case points are approximated in Algorithm 11, the sensitivity of each
performance gap size against variations in the process parameters is computed in line 9
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Algorithm 11: Computation of Worst Case Sensitivity

Input: d(µ+1), owc
(µ)
1 , ...,owc

(µ)
Nε

, swc
(µ)
1 , ...,swc

(µ)
Nε

1compute sensitivities against variations in operating conditions

jo,i = ∇oεi

(
d(µ+1),o, swc

(µ)
i

)∣∣∣
o=o(µ)

for each performance i

2foreach i = 1, ..., Nε do

//compute worst case point w.r.t. operating parameters

3compute owc
(µ+1)
i = arg max

o∈TNo
o

jTo,i · o

4end

5compute sensitivities against variations in process parameters

js,i = ∇sεi

(
d(µ+1),owc

(µ+1)
i , s

)∣∣∣
s=s(µ)

for each performance i

6foreach i = 1, ..., Nε do

//compute worst case point w.r.t. operating parameters

7compute swci = arg max
s∈TNs

s

jTs,i · s

8end

9compute sensitivities against variations in design parameters

jd,i = ∇dεi

(
d,owc

(µ+1)
i , swc

(µ+1)
i

)∣∣∣
d=d(µ+1)

for each performance i

10set Jε = [jd,1, ..., jd,Nε ]

11return owc
(µ+1)
1 , ...,owc

(µ+1)
Nε

, swc
(µ+1)
1 , ...,swc

(µ+1)
Nε

, Jε

of Algorithm 11 and the algorithm returns the results to the FSQP algorithm. For
the remainder of the FSQP algorithm it is assumed that the change in the worst case
points due to manipulations of the design parameters, e.g., during the arc search, can be
neglected. Therefore, operating and process parameters are fixed to the latest available
worst case values for the remainder of the FSQP iteration.

To enable high parallelization of the simulations, all worst case operating points are
approximated in a first step and all worst case process parameters are approximated in a
second step. Thus, all simulations required to compute the sensitivity against variations
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4 Branch-and-Bound for Analog Sizing

in the operating parameters can be parallelized, all simulations for the computation of
the sensitivity against variations in the process parameters can be parallelized, and all
simulation to derive the sensitivity against variations in the design parameters can be
parallelized as well.

4.4.2 Branch-and-Bound for Tolerance Design

In addition to the modification in the FSQP approach, slight changes are also required
for the newly developed Branch-and-Bound approach in Section 4: In the inner Branch-
and-Bound approach (Algorithm 10 on page 94) the performances are evaluated at
discrete design points. However, due to the discretization, the design parameter point
is shifted and thus the worst case parameter points can differ from the worst case points
computed during the FSQP algorithm. To consider this problem, the approximation
of the worst case parameters is refined at each discrete point by an algorithm similar
to Algorithm 11 but without computation of the sensitivity against variations in the
design parameters. To avoid unnecessary computations, the refined approximation of
the worst cases is only computed if the specifications of the performances are fulfilled
at the discrete point considering the worst case points computed during the FSQP
algorithm4.

It is worth mentioning that by using Algorithm 11 the approximation of the worst case
operating point is a point on the boundary of the operating region T

No
o also in case

of discrete operating parameters. As a consequence, the result of the approximation
is a discrete operating point if the boundaries of this box are chosen so that they are
values of the discrete operating parameter set. I.e., no modification of the algorithm is
required for discrete operation parameters if assumption 3 holds true. This validates
the statement in Chapter 2.1.2 that discrete operating parameters can be treated as
continuous parameters in the newly developed approach in this section.

4Otherwise any worst case point computed during the FSQP approach violates the corresponding

performance specification for the discretized design parameter point. However, the result at the

real worst case point must be even worse or equal to this result and the discrete point is rejected as

it is no solution for the sizing task.
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Chapter 5

Model-Based Analog Sizing

The approach presented in Chapter 4 is a highly efficient method to solve a discrete
analog sizing task if a circuit can be simulated at each continuous point in a relaxed
design space. However, in some analog sizing scenarios the simulations can only be
executed at discrete points. Such design scenarios are addressed by the new approach in
this chapter. The new method can be classified as a model-based programming approach
and consists of a module to construct a model for the sizing task and a module to solve
this problem.

The structure of the approach is discussed and motivated in Section 5.1. The model
used for the sizing task and the generation of this model is presented in Section 5.2.
Section 5.3 shows the algorithm used to compute a solution for the sizing task on this
model.

The consideration of variations of process and operating parameters to compute a tol-
erance design is presented in Section 5.4 so that these parameters can be neglected in
Sections 5.1 to 5.3 for the sake of a simple description.

5.1 Structure of the New Approach

The required evaluation of points which are not on a predefined discrete grid in ap-
proaches as, e.g., in the approach described in Chapter 4, is reasoned by the computa-
tion of intermediate points in a continuous domain. It follows that a method to solve
problems which can only be evaluated for discrete points must ensure the discreteness
of all intermediate points. A mathematical idea for this problem is presented in [ES]
where a trust-region based SQP approach is used and a discretization of the interme-
diate points of the SQP approach in each step is suggested. However, this method
assumes equidistant grid points and, what is more, does not guarantee and can not be
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5 Model-Based Analog Sizing

easily enlarged such that each intermediate solution is c-feasible, as it is required for the
analog sizing task.

In this chapter, a new method is introduced for the discrete analog sizing task, which
belongs to the class of model-based optimization approaches. The structure of the new
approach is shown in Figure 5.1. It consists of two main parts: one to generate and
to update the model of the sizing task (Section 5.2) and another one to find a discrete
solution on the model (Section 5.3).

A quadratic approximation of each constraint and each performance is used for the
model in the new approach. The model is computed based on gradients which can be
defined for the discrete problem according to (2.32) on page 26. The quadratic terms of
the model are computed using an SR1 update which allows an accurate approximation
of convex and non-convex performances and constraints.

The new algorithm to solve the analog sizing task (Algorithm 12 in Section 5.3) com-
putes an improved discrete intermediate solution based on the provided model in each
iteration. At this point, the model is refined. The steps to improve the intermediate
solution and to refine the model are repeated until the sizing task is solved. This proce-
dure is similar to SQP. However, for an SQP algorithm the performances are merged to
a single-objective function and the – mostly convex – quadratic model is computed for
the Lagrangian function which is influenced only by the single-objective function and
by constraints which are considered as active (cf. Chapter 3.4.2). In contrast, the new
approach models each active and inactive constraint and each performance separately.
As a consequence, the model in the new approach is typically more accurate – without
additional simulation cost – but a nonlinear discrete program must be solved on the
model to find a new intermediate point. In contrast, the intermediate points in an SQP
approach are computed on a linearly constrained quadratic program.

To find a discrete intermediate solution on the nonlinear model, a modified version of
the inner Branch-and-Bound algorithm of the analog sizing approach in Chapter 4 (Sec-
tion 4.3.3) is used. The modifications can be identified by comparing the structure of
the inner Branch-and-Bound approach in Figure 4.2 (page 83) with the structure of the
modified algorithm in Figure 5.1. One difference is the use of an FSQP approach in Fig-
ure 5.1 instead of the active set approach in Figure 4.2 to compute a continuous solution
for the model. The FSQP algorithm is required for the new approach in this chapter
because constraints and performances are modeled by possibly non-convex quadratic
functions.

In addition, the rounded solution of the FSQP and of the active set approach, respec-
tively, is considered differently in the two structures: In both structures, such a solution
candidate is returned as a result if it solves the sizing task. Otherwise, the rounded so-
lution in Chapter 4 is only required if it is equal to the result of the active set algorithm.
In contrast, the rounded solution is always used in this chapter if it is identified as a
candidate for an intermediate solution. Such a candidate for an intermediate solution is
defined as a discrete point where an improvement for the sizing task can be expected.
In case the simulation of this points validates that the candidate point improves the
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solution, it can be accepted as new discrete intermediate solution and the nonlinear
model can be updated at this point. Otherwise, insufficient accuracy of the model has
been detected and a model fitting step (Section 5.3.2) uses the discrete point and the
simulation result at this point to improve the model. It can be noted – cf. Section 5.3.1
– that each discrete solution computed by the FSQP approach is a candidate for an
improved solution. As a consequence, no update of the incumbent solution is required
and the corresponding decision path – which can be found in Figure 4.2 – is left out in
this chapter.

No convergence proof can be presented for the new model-based approach for analog
sizing. However, the approach has reliably computed a discrete solution for the sizing
task in all experiments. Furthermore, the convergence can be made plausible under
mild assumptions and enhancements are suggested in case the assumptions are not
valid (Section 5.3.3).

5.2 Model Generation for the Analog Sizing Task

The choice of a reasonable model is crucial with respect to the performance of the
presented algorithm. Several models can be used for approximation in the analog sizing
task. However, in many practical cases the performances of a circuit can be sufficiently
approximated by a quadratic function. Therefore, a quadratic approximation is used in
this thesis. More complex models, e.g., based on radial basis functions, could be used
in the presented approach instead of the quadratic function and might result in higher
accuracy of the model at the cost of increased runtime. The accuracy of less complex,
e.g., linear models – which would lead to an outer approximation approach [ALL] – is
typically not sufficient.

SQP approaches, which are related to this new approach, compute one quadratic model
of the Lagrangian function, wherein – for an analog sizing task – all performances are
considered in a single-objective function and only active constraints are modeled. In
contrast, the quadratic model in this new approach is built separately for each constraint
and for each performance to achieve high model quality, i.e., Nc+Nε different quadratic
models are used where Nc is the number of constraints of the sizing task and Nε is the
number of performance-to-specification gaps (cf. Chapter 2.3.3).

The quadratic approximation computed for the size of a performance gap εi(d) and for
a constraint cj(d) at a point d0 can be given as

εi (d) ≈ ε̂i (d) =
1
2
(d − d0)

T
Hε,i (d − d0) + jTε,i (d − d0) + εi,0

cj (d) ≈ ĉj (d) =
1
2
(d − d0)

T
Hc,j (d − d0) + jTc,j (d − d0) + cj,0

(5.1)

where Hε,i = ∇2
ddεi(d0) and Hc,j = ∇2

ddcj(d0) are the Hessian matrices, jε,i = ∇dεi(d0)
and jc,j = ∇dcj(d0) are the sensitivities, and εi,0 and cj,0 are the size of performance
gap i and constraint j computed at d0.
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The sensitivities for performances and constraints are approximated using the approach
in Chapter 2.3.2 and can be derived based on simulations at discrete points. Also, the
performance gap sizes and constraint values can be obtained directly by simulations at a
discrete point. However, the computational effort to compute the quadratic term of the
approximation of a multi-dimensional function typically is too high (cf. Chapter 3.4.2).
Hence, the Hessian matrices in this model-based approach are approximated based on
the gradients computed in each iteration step of the optimization process. For this pur-
pose, an SR1 update formula (cf. Chapter 3.4.3) is used which allows the computation
of an accurate model for each convex or non-convex function describing a constraint or
the size of a performance gap1.

To refine the model, the sensitivities of the performances are computed each time a
new feasible discrete intermediate solution has been computed by the approach in Sec-
tion 5.3.1. At this point the SR1 update is executed and a new, improved model of the
quadratic function can be provided which can be used to compute another improved
discrete point.

A critical point in the approximation of the Hessian matrix is its initialization. In
literature this problem is typically solved heuristically by initializing the Hessian matrix
by an identity matrix. However, the drawback of this choice is that the initialization
of the Hessian matrix is convex, although the function which should be approximated
might be non-convex. In addition, the initialization of the Hessian matrix by an identity
matrix does not consider whether some performance gap sizes and some constraints can
be described linearly.

An alternative could be initializing the Hessian matrix with zero and starting the ap-
proximation after one step. But in this case the first step, which is computed on a linear
model, typically is too large and can lead far away from the initial solution, which has
possibly been chosen carefully. To avoid these problems, the curvatures of the func-
tions describing the constraints and the sizes of performance gaps with respect to the
parameters are considered:

As mentioned in Chapter 2.3.2, the curvature of each performance – and as a conse-
quence of each function describing a performance gap size or a constraint – with respect
to the parameters can be computed requiring little additional effort by using the data
already available from the computation of the sensitivities. The computed curvature
information can be used directly to initialize the diagonal of the Hessian matrix. How-
ever, experiments have shown that it is preferable to limit the initial diagonal values
hii of the Hessian matrices to −1 ≤ hii ≤ 1 and to cut off smaller and higher values
to avoid numerical problems and insufficiently small steps in the first iterations of the
algorithm presented in Section 5.3.

1The SR1 update can be used to generate indefinite Hessian matrices, which can be considered as

a disadvantage in line-search approaches but is an advantage in modern trust region approaches

[NW99].
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5.3 Algorithm for Model-Based Analog Sizing

The new algorithm for model-based analog sizing computes improved discrete interme-
diate solutions in each iteration using a Branch-and-Bound approach (cf. Section 5.3.1)
in combination with a trust region like approach (cf. Section 5.3.2). At the computed
intermediate point, the model is refined as discussed in Section 5.2. The two steps are
repeated until the algorithm converges.

5.3.1 Branch-and-Bound Based Model-Solver

The newly developed algorithm is presented in this section for operating conditions and
process parameters fixed to given values. Using a min-max formulation, the optimization
problem which must be solved for the sizing task can be defined as a goal attainment
optimization problem (cf. (2.51)):

min
k ,d

k s.t.: c (d) ≥ 0

k − εi(d) ≥ 0; i = 1, ..., Nε

(5.2)

The model-based algorithm which is used to solve this task is shown in Algorithm 12
and discussed below. It is assumed for the algorithm that a discrete initial point can be
provided which is feasible with respect to the design constraints.

In each iteration, the quadratic model for each performance gap and for each constraint
is computed by the approach in Section 5.2 and a surrogate problem for (5.2) is defined
as (Algorithm 12 lines 3 to 5):

min
k̂ ,d

k̂ s.t. ĉj (d) ≥ 0; j = 1, ..., Nc

k̂ − ε̂i (d) ≥ 0; i = 1, ..., Nε

(5.3)

ε̂i (d) and ĉj (d) are the quadratic models of the functions describing the performance

gap sizes and constraints as defined in (5.1). k̂ is some real valued scalar. (5.3) is
still a nonlinear discrete optimization problem with d ∈ D

N . However, the problem is
explicitly known and, as a consequence, the model can be evaluated for each continuous
point and the cost for function evaluations is low.

In this thesis, the surrogate problem is solved (line 6 of Algorithm 12) by a modifica-
tion of the Branch-and-Bound algorithm in Algorithm 10 on page 942. To adapt the
Branch-and-Bound algorithm to the task in (5.3), lines 1 to 2 of Algorithm 10 – i.e., the
simulation-based test if a discrete point fulfills the specifications and the corresponding
stop criterion – are deleted. In addition, the active set method in line 12 of Algo-
rithm 10 is replaced by the FSQP approach from Section 3.4.5 to consider the stronger
non-linearity of the surrogate optimization problem (5.3).

2Other solution methods to solve the nonlinear programming task can be used at this point, e.g., to

adapt the algorithm to more complex models.
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Algorithm 12: Model-Based Discrete Sizing

Input: discrete domain D
N , discrete feasible point d(0)

1set µ = 0; ǫ = numerical accuracy; k (0) = max
i=1,...,Nε

εi
(
d(0)
)

2while
∥∥d(µ+1) − d(µ)

∥∥ ≥ ǫ ∧ k (µ) > 0 do

3compute values εi
(
d(µ)

)
, cj
(
d(µ)

)
and sensitivities jε,i

(
d(µ)

)
and jc,j

(
d(µ)

)

for i = 1, ..., Nε, j = 1, ..., Nc

4compute quadratic terms Hε,i and Hc,j for i = 1, ..., Nε, j = 1, ..., Nc

using an SR1 update

5set optimization problem of the form (5.3)

6compute discrete point d(µ+1) using (5.3) such that

∀
i = 1, ..., Nε

j = 1, ..., Nc

ε̂i
(
d(µ+1)

)
< k (µ) ∧ ĉj

(
d(µ+1)

)
≥ 0

7set κ = 0

8set mε,i = 1 for i = 1, ..., Nε and mc,j = 1 for j = 1, ..., Nc

9set index sets of modified models to I
(κ)
ε,mod = ∅ and I

(κ)
c,mod = ∅

10while
∥∥d(µ+1) − d(µ)

∥∥ ≥ ǫ ∧ ∃
i = 1, ..., Nε

j = 1, ..., Nc

εi
(
d(µ+1)

)
≥ k (µ) ∨ cj

(
d(µ+1)

)
< 0 do

11set index sets I
(κ+1)
ε,mod and I

(κ+1)
c,mod for modified models according to (5.14)

12for each εi
(
d(µ+1)

)
≥ k (µ) set Ki,1 = 1.1 ·mε,i (5.17); compute si (5.15)

13for each cj
(
d(µ+1)

)
< 0 set Kj,2 = 1.1 ·mc,j (5.18); compute sj (5.16)

14set modified optimization problem according to (5.19), (5.20)

15compute discrete point d(µ+1) using (5.20) such that

∀
i = 1, ..., Nε+

j = 1, ..., Nc+

ε̂i,+
(
d(µ+1)

)
< k (µ) ∧ ĉj,+

(
d(µ+1)

)
≥ 0

16for all models modified in iteration κ set mε,i = 2mε,i or mc,j = 2mc,j

17set κ = κ+ 1

18end

19set k (µ+1) = max
i=1,...,Nε

εi
(
d(µ+1)

)

20set µ = µ+ 1

21end

22return d(µ)
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5 Model-Based Analog Sizing

However, the discrete point which is computed by Algorithm 10 on the quadratic model
does not have to be an optimal solution: The task is finding a discrete solution which
improves the objective function of (5.2) rather than solving problem (5.3) optimally3.
Given the currently best discrete solution d(µ) where the model has been built and where
the performances have been evaluated by simulations, a candidate for such a discrete
point d(µ+1) must fulfill (cf. line 6 of Algorithm 12)

∀
i = 1, ..., Nε

j = 1, ..., Nc

ε̂i
(
d(µ+1)

)
< k (µ) ∧ ĉj

(
d(µ+1)

)
≥ 0

with k (µ) = max
i=1,...,Nε

εi
(
d(µ)

)
= max

i=1,...,Nε

ε̂i
(
d(µ)

)

(5.4)

I.e., d(µ+1) must be a better discrete feasible solution for the model than the discrete
solution d(µ). For this purpose, the Branch-and-Bound algorithm in Algorithm 10 can
be initialized with dinc = d(µ). In this case, the first solution which fulfills the condition
for pruning by optimality is a candidate for an improved discrete intermediate solution
and for a point where the model should be updated. As a consequence, Algorithm 10
can be stopped to reduce the computational effort for solving the optimization problem
on the model if such a point has been found.

The solution candidate which is computed in line 6 of Algorithm 12 is accepted only
if it fulfills the constraints and improves the solution of the underlying optimization
task (5.2). This task is equivalent to the search for a point where each performance gap
size εi

(
d(µ+1)

)
in the current iteration is smaller than an upper bound k (µ) for this value

and where all constraint values are positive:

∀
i = 1, ..., Nε

j = 1, ..., Nc

εi
(
d(µ+1)

)
< k (µ) ∧ cj

(
d(µ+1)

)
≥ 0

(5.5)

k (µ) can be considered as an upper bound for the performance gap size, as its value is
set to the highest value of a performance gap size εi

(
d(µ+1)

)
at the beginning of the

algorithm (line 1) and at the end of each iteration step (line 19). Condition (5.5) is
tested by the inner while loop (line 10).

For a point which fulfills (5.4), condition (5.5) is fulfilled only if the quadratic model
is accurate enough. Otherwise, the inner while loop is entered and the model of the
optimization problem is modified by a new trust region like approach which is described
in Section 5.3.2. The optimization problem in the inner while loop is alternately solved
by the variant of the Branch-and-Bound algorithm described above, and modified until
the stop criterion of the inner while loop (line 10 of Algorithm 12) is fulfilled.

3An analogy to this procedure can be found in line search approaches where for a given search direction

a step of sufficient improvement is computed rather than solving the optimization problem for this

direction exactly.
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5.3 Algorithm for Model-Based Analog Sizing

5.3.2 Model Fitting

If by the approach in Section 5.3.1 a discrete solution d(µ+1) = d(µ)+∆d(µ) is computed
on the nonlinear model and it does not improve the underlying analog sizing task, it can
be concluded that the nonlinear model is not accurate enough. In this case, the model
is fitted by the new approach in this subsection.

For the computation of the quadratic model in Algorithm 12, the sensitivities and func-
tion values for all performance gaps εi

(
d(µ+1)

)
and for all constraints cj

(
d(µ+1)

)
are

computed based on simulations. As a consequence, it can be assumed that these values
are sufficiently accurate. It can be concluded that the difference which can be found
between a value computed on the model and computed by simulation for the same
performance gap or constraint at the same point d(µ) + ∆d(µ) can be assigned to the
quadratic term of the model. To realize the assignment, d0 = d(µ) and d = d(µ)+∆d(µ)

can be applied to (5.1). With this definition, matrices Si can be selected and added to
the quadratic models such that

1

2
∆d(µ)T (Hε,i + Si)∆d(µ) + jTε,i∆d(µ) + εi,0

!
= εi

(
d(µ) +∆d(µ)

)
(5.6)

for each performance and

1

2
∆d(µ)T (Hc,i + Si)∆d(µ) + jTc,i∆d(µ) + ci,0

!
= ci

(
d(µ) +∆d(µ)

)
(5.7)

for each constraint. The matrices Si are not uniquely defined and no suggestions to
define such a matrix can be found in literature. Assuming that Si is a symmetric
matrix, different methods were tested for the new approach to realize this matrix, e.g.,
to use a vector si and to construct the matrix following the idea of an SR1 update by the
outer product Si = sis

T
i . Although the SR1-like method results in good approximations

in mathematical test cases, in the practical experiments of this thesis the approximation
of Si by Si = si · I yielded better results and is used, where si is a scalar value and I is
the identity matrix.

Setting Si = si · I and assuming that d(µ+1) = d(µ) + ∆d(µ) with ∆d(µ) 6= 0, si can be
computed from (5.6) and (5.7) by

1
2
∆d(µ)T si · I∆d(µ) + 1

2
∆d(µ)THε,i∆d(µ) + jTε,i∆d(µ) + εi,0

!
= εi

(
d(µ+1)

)
(5.8)

⇒ si
2
∆d(µ)T I∆d(µ) + ε̂i

(
d(µ+1)

) !
= εi

(
d(µ+1)

)
(5.9)

⇒ si =
2
(
εi
(
d(µ+1)

)
− ε̂i

(
d(µ+1)

))

∆d(µ)T∆d(µ)
(5.10)

for performance gaps and

si =
2
(
ci
(
d(µ+1)

)
− ĉi

(
d(µ+1)

))

∆d(µ)T∆d(µ)
(5.11)
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5 Model-Based Analog Sizing

for constraints.

The fitting method is applied in Algorithm 12 only for performance gaps which would
cause an increase of the objective function value in (5.2) and for constraints which would
be violated if the point d(µ+1) = d(µ)+∆d(µ) were accepted as new intermediate solution,
i.e., for performance gaps and constraints with

εi
(
d(µ+1)

)
≥ k (µ); i = 1, ..., Nε (5.12)

cj
(
d(µ+1)

)
< 0; j = 1, ..., Nc (5.13)

All other models are considered sufficiently accurate. The indexes of the models in (5.3)

which should be modified are stored in an index set for performance gaps I
(κ+1)
ε,mod and an

index set for constraints I
(κ+1)
c,mod , respectively (line 11 of Algorithm 12). I.e., the index

sets in iteration κ+ 1 are defined as

I
(κ+1)
ε,mod = I

(κ)
ε,mod ∪

{
i
∣∣εi
(
d(µ+1)

)
≥ k (µ)

}

I
(κ+1)
c,mod = I

(κ)
c,mod ∪

{
j
∣∣cj
(
d(µ+1)

)
< 0

} (5.14)

where d(µ+1) changes in each iteration κ of the inner while loop and, hence, I
(κ+1)
ε,mod and

I
(κ+1)
c,mod may change in each iteration κ.

Practical experiments performed in this thesis have shown that the discrete optimum of
the quadratically approximated optimization problem converges against a discrete feasi-
ble solution which causes an improvement of the underlying sizing task if the described
fitting method is applied iteratively. However, the number of iterations can be high.
To overcome this problem, in this thesis additional penalty values were introduced in
(5.10) and (5.11) and are used to compute a correction for the Hessian matrix. The
revised computation formulas for Algorithm 12 are defined for performance gaps and
constraints as (lines 12 and 13)

si =
2
(
Ki,1 · εi

(
d(µ+1)

)
− ε̂i

(
d(µ+1)

))

∆d(µ)T∆d(µ)
(5.15)

and

sj =
2
(
Kj,2 · cj

(
d(µ+1)

)
− ĉj

(
d(µ+1)

))

∆d(µ)T∆d(µ)
(5.16)

The values of Ki,1 and Kj,2 are chosen in such a way that the absolute values of the

modified models for performance gaps and constraints at d(µ) + ∆d(µ) are increased
compared to the values computed by simulation. I.e., considering that the model is only
modified if εi

(
d(µ+1)

)
> 0 – otherwise all performances fulfill the specifications and the

algorithm can be stopped – and if cj
(
d(µ+1)

)
< 0, the values of Ki,1 and Kj,2 must be

greater or equal to one. In this thesis the values are initialized from experience with
Ki,1 = Kj,2 = 1.1.
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5.3 Algorithm for Model-Based Analog Sizing

The penalty value for each individual model is increased by a factor mε,i and mc,i,
respectively, if the same model must be fitted multiple times according to condition
(5.12), (5.13). I.e., in the inner loop of Algorithm 12 Ki,1 and Kj,2 become (lines 12
and 13)

Ki,1 = 1.1 ·mε,i (5.17)

Kj,2 = 1.1 ·mc,i (5.18)

where the value of each mε,i and of each mc,i is initialized by one in each iteration µ

(line 8) and doubled each time when the corresponding model is modified (line 16). This
procedure has shown fast convergence, i.e., a low number of required modification steps,
for the inner loop (line 10).

In the presence of nonlinear constraints, it is also suitable to modify the constraints so
that a certain safety margin can be achieved. For this purpose, the constraint value cj,0
of the modified constraints at the point ∆d(µ) = 0 is set to

cj,0
Kj,2

. The resulting modified

optimization problem which must be solved in the inner loop (line 15) can be given with
these modifications, ∆d(µ) = d(µ+1) − d(µ), (5.1), (5.3), (5.14), (5.15), and (5.16) as:

min
k̂ ,∆d(µ)

k̂

s.t. 1
2
∆d(µ)THc,j∆d(µ) + jTc,j∆d(µ) + cj,0 ≥ 0; j = 1, ..., Nc

1
2
∆d(µ)T (Hc,j + sjI)∆d(µ) + jTc,j∆d(µ) +

cj,0
Kj,2

≥ 0; j ∈ I
(κ+1)
c,mod

k̂ − 1
2
∆d(µ)THε,i∆d(µ) − jTε,i∆d(µ) − εi,0 ≥ 0; i = 1, ..., Nε

k̂ − 1
2
∆d(µ)T (Hε,i + siI)∆d(µ) − jTε,i∆d(µ) − εi,0 ≥ 0; i ∈ I

(κ+1)
ε,mod

(5.19)

Assigning all models and modified models for performance gaps in a certain iteration of

the inner loop of Algorithm 12 as ε̂i,+
(
d(µ+1)

)
, with i = 1, ..., Nε +

∣∣∣I(κ+1)
ε,mod

∣∣∣ = 1, ..., Nε+,

and all models and modified models of constraints in a certain iteration of the inner loop

of Algorithm 12 as ĉj,+
(
d(µ+1)

)
, with j = 1, ..., Nc +

∣∣∣I(κ+1)
c,mod

∣∣∣ = 1, ..., Nc+, (5.19) can be

rewritten as
min
k̂ ,d

k̂ s.t. ĉj,+ (d) ≥ 0; j = 1, ..., Nc+

k̂ − ε̂i,+ (d) ≥ 0; i = 1, ..., Nε+

(5.20)

It can be noted that for each ∆d(µ) the modified model of the constraints is smaller than
the model given initially as Kj,2 > 1 and as sj is negative if it is computed by (5.16)
and if (5.13) is fulfilled. The modified models for all performance gap sizes are for each
∆d(µ) greater or equal to the value of the model given initially as si is positive if it is
computed by (5.15) and if (5.12) is fulfilled. I.e., each model given initially is dominated
by its modification. As a consequence, a model given initially can be dropped from the
optimization problem if a modification of this model is considered in the optimization
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5 Model-Based Analog Sizing

task. Therefore, the number of models for constraints and performance gaps in (5.19)
can be reduced to Nc and Nε, respectively, by deleting each model given initially as soon
as it has been modified.

The modified models are only used to determine a feasible intermediate solution d(µ+1)

which improves the performances of the underlying analog sizing task. I.e., all modified
models are discarded after the inner while loop, and the SR1 update in line 4 is computed
based on the models computed by the SR1 update in the previous iteration. This
procedure guarantees that the convergence properties of the SR1 update are not affected.

5.3.3 Discussion of the Algorithm

The new approach which was presented in Algorithm 12 belongs to the class of model-
based algorithms and uses a trust region like approach to guarantee feasible intermediate
solutions which improve the solution of the underlying problem. Simulations are required
to test the computed intermediate solutions in line 10 and to compute a sensitivity in
line 3. The simulations for the computation of a sensitivity can be fully parallelized.

Although no convergence proof can be given for the approach, the convergence in prac-
tical cases can be made plausible under the assumption that the use of quadratic models
and of local optimization on the nonlinear model is sufficient: It has been proved for
Quasi-Newton and SQP approaches that the quadratic model computed by the SR1
update converges (locally) against the underlying problem. This must also hold true for
the new approach if the number of computed intermediate solutions is sufficiently high
and if the quadratic model can be used. As a consequence, the discrete optimum of the
underlying task must be the discrete optimum of the model as soon as the quadratic
model is accurate enough. However, such a solution of the optimization problem de-
fined by the models can be found by the approach presented if the local optimum of the
relaxed optimization problem – which is computed by an FSQP approach – is sufficient.

The feasibility and the improvement of each intermediate step is guaranteed by the trust
region like approach in the inner while loop of Algorithm 12. It could be assumed that
the trust region like approach prevents the algorithm from converging against a solution
of the analog sizing task if step size gets too small, particularly as – in contrast to
continuous approaches – the step can be non-zero but smaller than the distance to the
next discrete point. Such a case could occur if a strongly nonlinear constraint prevents
the algorithm from further improvement or if no improvement can be found for any
performance. However, the presented approach tries to improve the quadratic model
in this case. Therefore, it can be assumed that the algorithm can only get stuck at a
constraint if the quadratic model is not sufficient, i.e., if one of the assumptions made
for the convergence is violated. In case the algorithm cannot find a solution for the
problem, any step to a feasible discrete point can be used so that the model can be
further improved. A method to realize such a minimum step was implemented in this
thesis. However, in practical experiments no case was observed where it was required.
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Practical experiments have shown that – due to the non-convex model – a new in-
termediate point may be far away from the previous point. This may slow down the
convergence as the quadratic model might not be valid at such a new point. As a con-
sequence, a limitation of the maximum step size is realized in this thesis, which limits
the maximum step length to at most ten percent of the parameter range. Parameters
which can take only a low number of discrete points are excluded from this limitation.

If the quadratic model or the local solution for the relaxed model is not sufficient, the
modularity of the algorithm allows replacing the corresponding parts easily. Especially
the FSQP approach can be replaced easily, e.g., by global stochastic solvers which typi-
cally require many function evaluations and can benefit most from the low computational
cost of the model evaluation. However, for all results in Chapter 6 quadratic models
and local optimizations on the models using FSQP were sufficient.

5.4 Model-Based Tolerance Design

The model-based approach described in Section 5.3 computes a discrete solution for
nominal operating and process conditions. In this section, it is enlarged to consider
variations in operating and process parameters and for the computation of a tolerance
design as defined in Chapter 2.5.4. This task is equivalent to the task of finding a
design parameter point where the performance specifications are fulfilled at the worst
case points.

The first additional requirement for computing a tolerance design by the model-based
approach is considering operating and process parameters in the model. Assuming
that an approximation of the worst case points is available for each performance, the
quadratic models for the performances introduced in Section 5.2 are extended to

εi (p) ≈ ε̂i (p) =
1
2
(p − pwc,i)

T
Hε,i (p − pwc,i) + jTε,i (p − pwc,i) + εi,wc

with pT =
[
dT ,oT , sT

]T

and pT
wci

=
[
dT
0 ,owc

T
i , swc

T
i

]
(5.21)

This quadratic model to compute a tolerance design can be constructed iteratively in
lines 3 and 4 of Algorithm 12 if the sensitivities in line 3 are computed with respect to
design, operating, and process parameters.

Using the quadratic model, the worst case points with respect to operating and process
parameters can be approximated in iteration µ+ 1 by

owc
(µ+1)
i = arg max

o∈TNo
o

ε̂i

(
d(µ),o, swc

(µ)
i

)
(5.22)

for operating parameters and by

swc
(µ+1)
i = arg max

s∈TNs
s

ε̂i

(
d(µ),owc

(µ)
i , s

)
(5.23)
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Algorithm 13: Computation of Worst Case Points on Model

Input: d(µ), owc
(µ)
1 , ...,owc

(µ)
Nε

, swc
(µ)
1 , ...,swc

(µ)
Nε

1set ν = 0, ǫ =numerical accuracy

2set owc
(µ,ν)
i = owc

(µ)
i , swc

(µ,ν)
i = swc

(µ)
i for i = 1, ..., Nε

3for i = 1, ..., Nε do

4repeat

5compute Sensitivity jTo,i = ∇o ε̂i

(
d(µ),o, swc

(µ,ν)
i

)∣∣∣
o=owc

(µ,ν)
i

6compute Sensitivity jTs,i = ∇s ε̂i

(
d(µ),owc

(µ,ν)
i , s

)∣∣∣
s=swc

(µ,ν)
i

7compute owci,lin = arg max
o∈TNo

o

jTo,i · o

8compute swci,lin = arg max
s∈TNs

s

jTs,i · s

9compute sufficient large step size ti using line search such that

ε̂i

(
d(µ),owc

(µ,ν)
i , swc

(µ,ν)
i

)
< ε̂i

(
d(µ),owc

(µ,ν+1)
i , swc

(µ,ν+1)
i

)
with

owc
(µ,ν+1)
i = owc

(µ,ν)
i + ti

(
owci,lin − owc

(µ,ν)
i

)

swc
(µ,ν+1)
i = swc

(µ,ν)
i + ti

(
swci,lin − swc

(µ,ν)
i

)

10set ν = ν + 1

11until

∥∥∥owc
(µ,ν)
i − owc

(µ,ν−1)
i

∥∥∥ < ǫ ∧
∥∥∥swc

(µ,ν)
i − swc

(µ,ν−1)
i

∥∥∥ < ǫ

12set owc
(µ+1)
i = owc

(µ,ν)
i , swc

(µ+1)
i = swc

(µ,ν)
i for i = 1, ..., Nε

13end

14return owc
(µ+1)
1 , ..., owc

(µ+1)
Nε

, swc
(µ+1)
1 , ..., swc

(µ+1)
Nε

for process parameters.

As the Hessian matrix for each performance constructed by the SR1 update formula
may be non-convex, the solution of this optimization problem must be computed by
nonlinear optimization. It is assumed within this thesis that a local optimization is
sufficient to solve this task. For this purpose, Algorithm 13 is applied.

Linear worst case analyses are used to compute the worst case points for operating and
process parameters with respect to each performance in lines 5 to 8 (cf. (4.14), (4.15)).
However, the linearly approximated worst case points are only accepted if they result in
model values which are worse than the values at the previous approximations of these
points. Otherwise a line search is used in line 9 to compute a new approximation of the
worst case points. At the new approximation of the worst case point again a linear worst
case analysis is used and the approximation is improved until the algorithm converges.

It is worth noting that – due to the quadratic approximation and in contrast to the
approach in Section 4.4 – the worst case points might not lie on the bounds of the
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operating region and of the tolerance domain for process parameters. Therefore, the ap-
proach can be expected to be more general than the linear approximation in Section 4.4.
However, in the presence of multiple local maxima in the tolerance region or if discrete
operating parameters should be considered, a more complex search algorithm than the
one in Algorithm 13 might be required.

To extend Algorithm 12 for the computation of a tolerance design, the approximation of
the worst case points is computed if the model has been updated by the SR1 approach
(line 5 of Algorithm 12). Afterward, the worst case parameters are fixed to the new
computed values and the parameters of the quadratic models can be reduced to the
design parameters. The Branch-and-Bound approach is used without modifications
to find a discrete solution on the model, i.e., lines 6 to 18 of Algorithm 12 remain
unchanged and operate only on design parameters. Especially, the modification of the
quadratic model in the inner while loop is computed with exclusive consideration of
design parameters, i.e., only the sub-matrix of the Hessian matrix belonging to the
design parameters is modified.

After the computation of a new design point d(µ+1) (line 19 of Algorithm 12), the worst
case points are again updated using Algorithm 13 at the new design point d(µ+1) but
using the initial model for the iteration. This second update ensures that the new
sensitivities against variations in operating and process conditions are computed at the
expected worst case points after the step in the design parameters. In addition, it
reduces the risk of a design parameter point being accepted as a solution although the
computed sizing does not provide the predefined yield.

During the algorithm, the worst case points are computed before and after the
simulation-based computation of the sensitivities. Alternatively, the worst case points
for the quadratic model could be computed exactly for each design parameter point
which is considered during the FSQP approach. Also, the modification of the FSQP
approach presented in Section 4.4 could be used to approximate the worst case points
successively with the computation of a new design parameter point on the model. How-
ever, experiments during this thesis showed that both alternative approaches involve
a significantly increased runtime to solve the numerical model. At the same time, no
reduction in the number of required iterations and in the number of required simulations
was observed.

To ensure a sufficient accuracy of the approximated worst case points, a small number of
additional steps is used in this thesis at the end of the algorithm if the worst case points
did not converge during the sizing approach. In these steps, no modification of the design
parameters is computed but the sensitivities of the performances against variations in
operating and process parameters are computed by simulations, the quadratic models
are refined, and the worst case points are recalculated using Algorithm 12.

The model-based approach presented in this section can be considered as the first deter-
ministic analog sizing approach which requires simulations only at discrete points and
allows the computation of a sizing with discrete parameters at the side with variations
in operating and process parameters. The experimental results in the next chapter show
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that – predominantly due to the time required to solve the nonlinear model by Branch-
and-Bound – the runtime of the algorithm is longer than the runtime of the approach
presented in Section 4. However, the runtime is still acceptable for practical problems.
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Chapter 6

Simulation Results

Two new deterministic approaches to size analog circuits considering discrete parameters
were presented in Chapter 4 and 5. These new approaches were implemented in Python
2.X [PYT12] and are applied to simulation-based experiments in this chapter. Four
different amplifiers, two differential amplifiers – the Miller amplifier in Section 6.1.2 and
the low voltage amplifier in Section 6.1.3 – a sense amplifier (Section 6.1.4), and a low
noise amplifier (Section 6.1.5) are used to demonstrate the functionality and effectiveness
of the new approaches.

The setup for the experiments is shown in Section 6.1 together with the circuits to
be sized. In Sections 6.2 and 6.3 the results for the computation of a nominal and of
a tolerance sizing are analyzed with respect to solution quality and runtime, and the
efficiency and efficacy of the new approaches is clearly shown.

6.1 Experimental Setup

In the first part of this section, the general setup of the experiments is shown. Af-
terward, the considered amplifiers are introduced and the corresponding performance
specifications, constraints, and design parameters are outlined as well as the operating
conditions and process variations considered.

6.1.1 General Setup

The circuits in this chapter are designed in a 180nm CMOS technology. For all lengths
and widths of the transistors a 10nm manufacturing grid is assumed. The transistor
lengths are selected in the range from 300nm to 1µm, transistor widths can be scaled
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Table 6.1: Overview of design parameter definitions in the experiments

Device Type Parameter Type Minimum Value Maximum Value Grid

transistor

length 300nm 1µm 10nm

width 300nm 10µm 10nm

multiplier 1 100 1

inductor

inner diameter 20µm 200µm 0.25µm

turn width 2µm 50µm 0.25µm

space between turns 1µm 5µm 0.25µm

number of turns 1.5 20 0.5

inductor sides 4 8 2

capacitor capacitance 100fF 100pF continuous

resistor resistance 100Ω 10kΩ continuous

voltage source voltage 0 VDD continuous

from 300nm to 10µm. In addition, transistor multipliers were used and considered in the
range from 1 to 100. Considering multipliers and a manufacturing grid for lengths and
widths allows a layout-friendly sizing of the transistors because rounding can be avoided
if the edges of the transistor gates are to be snapped onto a grid or if the transistors are
to be realized as multi-finger or common centroid structures.

The capacitors, resistors, and voltage sources, whose values were considered as design
parameters in the sizing task, were assumed to be continuously scalable ideal devices.
The parameter range for capacitors and resistors was defined from 0.1pF to 100pF and
from 100Ω to 10kΩ, respectively. Voltage sources were scaled depending on the supply
voltage VDD from 0% to 100% of VDD.

For the inductors in Section 6.1.3 a realistic inductor model according to [PFC09] was
used. This inductor model allows a design of the inductor with respect to inner diameter,
width of the winding turns, spacing between the turns, number of turns, and with respect
to the number of sides of the inductor in the later layout. The first three parameters
were defined in a range from 20µm to 200µm for the inner diameter, from 2µm to 50µm
for the width of the turns, and from 1µm to 5µm for the space between the turns. For
each of the three parameters a 0.25µm grid was used, as suggested by [PFC09]. The
winding turns were scaled in half turns from 1.5 to 20. For the number of sides in the
layout step squared, hexagonal, and octagonal designs were considered, i.e., the inductor
was allowed to be implemented with 4, 6, or 8 sides. The influence of the inductor
layout configuration can be computed using a look-up table. As a consequence, no
intermediate solutions can be simulated and the number of sides can only be considered
by the approach in Chapter 5.

All design parameters for the different devices are listed in Table 6.1.

For the sizing of all circuits in this chapter, a three-step approach was used to compute
the sizing:

118



6.1 Experimental Setup

Vout
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Figure 6.1: Miller amplifier

Table 6.2: Design parameters for the sizing of the Miller amplifier

Device M1 M2 M5 M6 M7 M3 M4 M8 C

Lengths lp ln —

Widths w1 w5 w3 w8 —

Multipliers m1 m5 m6 m7 m3 m8 —

Capacitances — CMiller

1. In the first step a pre-sizing was computed which guaranteed that the initial point
for the subsequent steps was a discrete feasible point. However, each algorithm
considered found such an initial point within a few seconds such that the results
have no significance and this step is neglected in the remainder of this chapter.

2. A nominal design was computed, i.e., a discrete solution was computed where the
performance specifications and constraints were fulfilled for nominal operating and
process parameters.

3. Finally, a tolerance design was computed for each circuit starting from a sizing
computed during the nominal design step. For this purpose, a predefined yield re-
quirement at the worst case operating points was set to a minimum of 99.87% (3σ)
for each performance.

The algorithms were parallelized up to 16 times and the experiments were run on an
8 Core Intel R Xeon R X5500 2.67 GHz CPU with hyper-threading.

6.1.2 Miller Amplifier

In this section the setup of the Miller amplifier in Figure 6.1 is shown. To define rea-
sonable design parameters, the structure of the amplifier should be considered initially.

The first structure considered is the differential pair built by transistors M1 and M2.
To guarantee the functionality of the circuit, the lengths, widths, and multipliers of
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Table 6.3: Operating parameters for the sizing of the Miller amplifier

Parameter Minimum Nominal Maximum

Temperature T in ◦C -40 27 125

Supply Voltage VDD in V 2.3 2.5 2.7

Bias Current Ibias in µA 9 10 11

Load Capacitance CL in pF 15 20 25

these two transistors were equalized. For the same reason, the drain currents of the two
transistors in the current mirror M3-M4 should be equal and the lengths, widths, and
multipliers of M3 and M4 were matched. For the current mirror bank M6-M7-M8 the
transistor lengths must be equal to guarantee functionality. In addition, the widths of
the three transistors were matched to allow a multi-finger or common centroid structure
of the current mirror bank in a subsequent layout step without using additional rounding
operations. Thus, the relation of the drain currents was determined only by using three
different multipliers. In addition to this structure-based reduction of the parameters, the
lengths of all PMOS transistors and the lengths of all NMOS transistors were set equal,
such that the total number of parameters summed up to 13 if the width and multiplier of
transistor M8 and the Miller capacitance CMiller were considered as further parameters.
The Nc = 1 continuous and Nd = 12 discrete design parameters are summarized in
Table 6.2.

Variations of the operating temperature T , the supply voltage VDD, the bias current
Ibias, and the load capacitance CL were considered operating parameters for the sizing
task. The specified nominal values, lower and upper bounds for the operating parameters
are shown in Table 6.3. In addition, normally distributed global variations of the oxide
thickness, of the electron mobility for NMOS and PMOS transistors, and of the threshold
voltage for NMOS and PMOS transistors were considered as well as normally distributed
local variations of electron mobility and threshold voltage for each transistor. Thus, 5
global process parameters and 16 local process parameters (also referred to as mismatch
parameters) were considered in this sizing task.

Besides the equality constraints used above to reduce the number of free parameters,
57 sizing constraints were found for the circuit, using the approach in [MGS08]. In
addition, the eight performances listed in Table 6.4 were specified for the sizing of the
amplifier.

6.1.3 Low Voltage Amplifier

The second amplifier considered in this section is the low voltage amplifier introduced by
[Mar98] in Figure 6.2. For this experiment, one length was considered for all transistors.
As with the Miller amplifier, the structure of the amplifier was considered to define the
design parameters.
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Table 6.4: Performance specifications for Miller amplifier; fT is the transit frequency,

ϕR is the phase margin, SR+ and SR− are slew rate rising and falling

Performance Specification

Power [mW ] < 5

PSRR [dB] > 140

Gain [dB] > 75

CMRR [dB] > 120

fT [MHz] > 10

ϕR [◦] > 60

|SR−| [ V
µs
] > 8

SR+ [ V
µs
] > 8

Vout

M1 M2M3 M4

M5 M6M7 M8

M9

M10

M11 M12

M13 M14

M15 M16
M17 M18

M19M20

M21

M22

VDD

Vbias,1

Vbias,2

C

gnd

v+ v−

Figure 6.2: Low voltage amplifier [Mar98]

Table 6.5: Design parameters for the sizing of the low voltage amplifier

Device M1 M2 M3 M4 M9 M10 M13 M14 M15 M16 M17 M18 M21

Lengths l0

Widths w1 w3 w9 w10 w13 w15 w21

Multipliers m1 m3 m9 m10 m13 m15 m17 m21

Device M5 M6 M19 M20 M7 M8 M11 M12 M22 C Vbias,1 Vbias,2

Lengths l0 (same as in first part of table) —

Widths w5 w7 w11 w22 —

Multipliers m5 m19 m7 m8 m11 m22 —

Capacitances — Cc —

Voltages — v1 v2
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Table 6.6: Operating parameters for the sizing of the low voltage amplifier

Parameter Minimum Nominal Maximum

Temperature T in ◦C -40 27 125

Supply Voltage VDD in V 1.9 2.0 2.1

Load Capacitance CL in pF 19 20 21

Table 6.7: Performance specifications for low voltage amplifier; fT is the transit fre-

quency, ϕR is the phase margin, SR+ and SR− are slew rate rising and

falling

Performance Specification

Power [mW ] < 7

PSRR [dB] > 90

Gain [dB] > 75

CMRR [dB] > 90

fT [MHz] > 20

ϕR [◦] > 60

|SR−| [ V
µs
] > 12

SR+ [ V
µs
] > 12

The amplifier contains a PMOS and an NMOS differential pair built by the transis-
tors M1-M2 and M3-M4, respectively, so that only one multiplier and one transistor
width was considered for each differential pair. As discussed for the Miller amplifier,
the widths of the transistors in a current mirror were set equal to allow a layout of
the transistors, e.g., as multi-finger structures, without using additional rounding oper-
ations. In addition, due to the symmetry of the amplifier, some of the transistors were
sized equally. Considering this symmetry, the widths of the transistorsM5-M6-M19-M20,
M15-M16-M17-M18,M7-M8,M11-M12, andM13-M14 and the multipliers of the transistors
M5-M6, M19-M20, M15-M16, M17-M18, M11-M12, and M13-M14 were matched. Thus, 11
widths and 14 multipliers were used as discrete design parameters for the sizing task.
In addition, the bias voltages Vbias,1 and Vbias,2, and the capacitance C were considered
as continuous parameters such that the number of parameters used for the sizing of the
low voltage amplifier summed up to the 3 continuous and 26 discrete design parameters
listed in Table 6.5.

For the tolerance design of the low voltage amplifier, the operating temperature T ,
the supply voltage VDD, and the load capacitance CL were considered as operating
parameters. The specified values of nominal conditions and lower and upper bounds
are shown in Table 6.6. In addition, five normally distributed global variations were
considered as process variations: the variation of the oxide thickness, of the electron
mobility for NMOS and PMOS transistors, and of the threshold voltage for NMOS and
PMOS transistors.
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Figure 6.3: Sense amplifier [YM06]

Table 6.8: Design parameters for the sizing of the sense amplifier

Device M1 M2 M3 M4 M7 M8 M5 M6 M9

Lengths lp ln

Widths wp wn

Multipliers m1 m3 m7 m5 m9

Besides the constraints used above to match the design parameters, 93 design constraints
were computed by the approach in [MGS08]. Again eight performances were specified for
the sizing of the amplifier. These performance specifications are outlined in Table 6.7.

6.1.4 Sense Amplifier

The sense amplifier in Figure 6.3 represents an example from the field of mixed-signal
circuits and can be used, e.g., to read values from an SRAM cell. The amplifier contains
two cross coupled inverters (M3-M5, M4-M6) which force the signal at the positive
output to be the inverse of the negative output and which cause two stable states and
one unstable state of the circuit. The transistors M1 and M2 disconnect the bit lines at
in+ and in− from the output nodes if the enable signal is set to VDD – i.e., if a signal
at the input should be amplified – and the output signal depends on the discharge of
the corresponding nodes due to the leakage current over M1 and M2. Transistor M9

disconnects the circuit from ground if the enable signal is on ground level, i.e., if no
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Table 6.9: Operating parameters for the sizing of the sense amplifier

Parameter Minimum Nominal Maximum

Temperature T in ◦C -40 27 85

Supply Voltage VDD in V 2.4 2.5 2.6

Bit-Line Capacitance CL in fF 90 100 110

Load Capacitance CL in fF 14 15 16

Table 6.10: Performance specifications for the sense amplifier; SR+ and SR− are slew

rate rising and falling, ts is the settling time

Performance Specification

DC-Power [nW ] < 1

ts[ps] < 500

Area [µ2m2] < 10

|SR−| [ V
ns
] > 7

SR+ [ V
ns
] > 7

input signal should be amplified. At the same time, the transistors M7 and M8 connect
the output and – as M1 and M2 are open if the enable signal is at ground level – the
input to the supply voltage and the bit-lines at the input are preloaded.

To allow a layout which is insensitive to local variations, e.g., using a common cen-
troid structure, without using additional rounding operations, all lengths and widths of
PMOS and all lengths and widths of NMOS transistors were set equal. In addition, the
symmetry of the circuit was considered and the multipliers of the transistors M1-M2,
M3-M4, M5-M6, and M7-M8 were set equal. Thus, the sizing task had the nine discrete
design parameters listed in Table 6.8

Besides variations in the supply voltage VDD and in the temperature, the capacitance
values of the input capacitance and of the output capacitance were considered as op-
erating parameters for the tolerance design (cf. Table 6.9). The capacitance value at
the input, which is typically formed by the parasitic capacitors of the bit-lines and – if
the sense amplifier is used in an SRAM design – of the SRAM cells connected to these
bit-lines, was assumed to be significantly higher than the capacitive load at the output,
which is typically dominated by the parasitic capacitance of one single subsequent gate.
For the variation of the process parameters, normally distributed global variations of
the oxide thickness, of the electron mobility for NMOS and PMOS transistors, and of
the threshold voltage for NMOS and PMOS transistors were assumed such that five
statistical parameters are considered in this example.

For the sense amplifier, the five performances in Table 6.10 were specified. Using the
parameters in Table 6.8, the area was approximated by:

area ≈ (m1 +m3 +m7) · wp · lp + (m5 +m9) · wn · ln (6.1)
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Figure 6.4: Low noise amplifier [Lee04]

The DC-Power was measured for the enabled signal set to VDD, i.e., assuming that
transistor M9 connects the circuit to ground. This power consumption can be assumed
to be always higher than the power consumption for enable set to ground level.

For the sense amplifier, no DC-constraints were required. However, six transient con-
straints were used which ensured that the output signal was in the expected range.
These constraints prevented the output signals from switching into the wrong direction
and ensured that the output signals reached the required voltage levels in time.

6.1.5 Low Noise Amplifier

The last amplifier investigated is the low noise amplifier (LNA) in Figure 6.4. In con-
trast to the previous circuits, no symmetry can be considered to reduce the number of
parameters. Hence, only the lengths of all transistors were matched and the number of
parameters for the sizing task shown in Table 6.11 summed up to 2 continuous and 22
discrete parameters if the sides of the inductors were considered. However, the influence
of the sides can only be considered by the approach in Chapter 5 because this influence
is modeled based on a look-up table (cf. [PFC09]) and no intermediate points can be
simulated. For comparability, the number of sides was fixed to four and the number of
parameters considered in the experiments was reduced to 21 if the consideration of the
number of sides is not mentioned explicitly.
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Table 6.11: Design parameters for the sizing of the low noise amplifier

Device M1 M2 M3

Lengths l0

Widths w1 w2 w3

Multipliers m1 m2 m3

Device R1 R2

Resistances r1 r2

Device L1 L2 L3

Turns n1 n2 n3

Line

Width
wL1 wL2 wL3

Line

Spacing
s1 s2 s3

Inner

Diameter
d1 d2 d3

Sides N1 N2 N3

Table 6.12: Operating parameters for the sizing of the LNA

Parameter Minimum Nominal Maximum

Temperature T in ◦C -40 27 85

Supply Voltage VDD in V 2.4 2.5 2.6

Load Capacitance CL in fF 450 500 550

For the tolerance design of the circuit, the values of supply voltage, temperature, and
load capacitance were considered as operating parameters as shown in Table 6.12. As in
the previous examples, normally distributed global variations of oxide thickness, electron
mobility, and threshold voltage were considered for the NMOS transistors. In addition,
normally distributed local variations of electron mobility and threshold voltage were
assumed for each transistor such that nine process parameters were considered in this
example.

To provide for basic functionality, nine constraints were formulated to ensure that all
transistors operate in the saturation region. Moreover, six performances were specified
as shown in Table 6.13. The specifications were defined for a center frequency of 2.4GHz
and describe the circuit properties using the s-parameters. In addition, the noise factor
and the third-order input intercept point (IIP3) were considered.

Table 6.13: Performance specifications for the low noise amplifier for a center frequency

of 2.4GHz

Performance Specification

Gain(S21)[dB] > 15

S11[dB] < −9

S22[dB] < −5

S12[dB] < −30

NF [dB] < 2.5

IIP3[dBm] > −5
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6.2 Nominal Design

To compute a nominal design, the sizing task is formulated as an optimization prob-
lem with fixed operating and process parameters as described in Chapter 2.5.3. The
objective of the nominal design is to compute a discrete sizing which fulfills all speci-
fications and constraints. For this purpose, a feasible point was computed for each of
the circuits in Section 6.1, and the approach in Chapter 4 (referred to as Branch-And-
Bound for Analog sizing or BABA) as well as the approach in Chapter 5 (referred to
as Model-based Programming for analog Sizing or MoPS) were applied. In addition,
continuous sizing with subsequent rounding was applied as a commonly used state-of-
the-art method and was compared to the new methods. To show the benefit of using the
prediction method in Chapter 4.3 in the Branch-and-Bound approach for analog sizing,
a comparison with the outer Branch-and-Bound approach in Chapter 4.2 is shown. For
this comparison, the outer Branch-and-Bound is enlarged so that the continuous result
of the simulation-based FSQP approach in each recursion is rounded to the next discrete
point and so that this rounded point is considered as a solution candidate for the sizing
task.

A fair comparison to commonly used statistical approaches is not possible – and is there-
fore not discussed in detail in this thesis – because these approaches do typically not
consider continuous parameters. However, if all continuous parameters are discretized,
comparisons for the Miller amplifier and for a BiCMOS operational transconductance
amplifier have shown that the runtime of statistical approaches is higher than the run-
time of the BABA approach by a factor 8 to 36 (cf. [PZG10]). Further experiments with
the Miller amplifier and with the low voltage amplifier have shown that the commer-
cially used statistical approaches applied did not find an existing solution for the sizing
task in some cases. However, a solution for the same tasks can be found by the new
approaches in this thesis. The statistical approaches failed to find such a solution in
the experiments, especially when the number of discrete points in the design space was
large and when the number of possible solutions was small. The first case appears, e.g.,
if the grid size for some parameters is small. The second case can be observed, e.g., if
the specifications for the circuit are restrictive.

6.2.1 Nominal Design Using Discretely Simulated Parameters

Most of the parameters used to compute a sizing of the circuits in Section 6.1 can be
scaled continuously although the final result should be in a discrete domain. How-
ever, the influence of the number of sides of an integrated inductor on the inductance
value is computed by using correction factors which can be read from a look-up table
(cf. [PFC09]). As a consequence, the inductance value is not defined and the low noise
amplifier in Section 6.1.5 can not be evaluated for intermediate values for the number
of sides.
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For the experiment in this subsection, the upper bound for the inner diameter and for
the number of winding turns of the inductors are restricted to di ≤ 40µm and ni ≤ 5
with i = 1, 2, 3, respectively, and the line spacings and line widths are set to the fixed
values si = 1.5µm and wL,i = 5µm1. The most important influence of this modification
to the sizing task is that the maximum available inductance is reduced.

A solution for the sizing task with the specifications as given in Section 6.1.5 but with
the modified parameter ranges should be computed by the four approaches mentioned
above. However, a sizing in the continuous domain can only be computed if the circuit
can be evaluated for each point in the relaxed design space (2.14). As a consequence, the
three parameters which describe the numbers of sides of the integrated inductors in the
low noise amplifier cannot be considered for continuous sizing and subsequent rounding,
for the BABA approach, and for the outer Branch-and-Bound approach. Only the MoPS
approach can consider these three additional degrees of freedom for the sizing task. For
the other approaches the number of sides of each inductor is set to eight.

Applying the FSQP approach to this sizing problem, the best result which can be
computed in the continuous domain gains performance values for the s-parameters S11
and S21 of S11 = −8.7dB and S21 = 14.3dB, respectively. I.e., the specifications
cannot be fulfilled by the continuous sizing approach. However, the FSQP approach is
used for continuous sizing and rounding as well as for the Branch-and-Bound approaches
in Chapter 4. As a consequence, no discrete solution for the sizing task – which can
exist only if a continuous solution exists – was computed by rounding, BABA, and the
outer Branch-and-Bound approach.

In contrast, the new MoPS approach did find a solution for the sizing task if the addi-
tional three parameters for numbers of sides of the inductors were considered. Figure 6.5
shows that the runtime to find such a solution was 32 minutes and thus only 10 minutes
higher than the runtime required by the continuous approach which converged after 20
minutes at a point which did not solve the problem. The runtime consists of a part
required for the simulations and of a part required for other numerical operations (re-
ferred to as numerical runtime). It can be seen that the numerical runtime of the MoPS
approach contributes significantly to the overall runtime. This phenomenon is discussed
in detail in Section 6.2.2

It can be observed that the number of sides for the inductors L1 and L3 is changed to
four, i.e., to a squared design, if the MoPS approach is used. The number of sides for
inductor L2 is kept at eight, i.e., a octagonal design is selected. This result corresponds
to the expectation as – if all other parameters are equal – the inductance can take the
highest value for the squared design, and as the inductance of L1 and L3 is typically
larger than the inductance of L2 in the considered design of a low noise amplifier.

With the results in this section and considering the discussion of the integrated inductor
in [PFC09], the numbers of sides were set to four for the experiments in Sections 6.2.2
and 6.3. Using this setting and the parameter ranges as defined in Section 6.1.5, a
discrete solution for the sizing task exists.

1Such a setup could be used, e.g., to limit the area required by the inductors.
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Figure 6.5: Runtime of MoPS (Chapter 5) for the sizing of the low noise amplifier con-

sidering the inductor sides. The runtime of the continuous approach is given

as a reference although it did not find a valid solution for the task.

6.2.2 Nominal Design Using Continuously Simulated Parameters

The previous section has shown that from the four algorithms presented only the MoPS
approach can be used to compute the sizing of a circuit reliably if the circuit cannot
be evaluated for each continuous point in the relaxed design space (2.14). However, in
many practical cases an evaluation of each continuous point is possible. Such cases are
discussed in this section. For the comparability of the approaches in case of the low
noise amplifier, the numbers of sides were set to a fixed value and only the remaining
21 design parameters – which can be relaxed and evaluated for continuous intermediate
points – were considered for the experiments below.

Solution Quality

The first approach which is used to find a solution for the sizing tasks in Chapter 6.1
is the computation of a sizing in the continuous domain and rounding the result to
the next point. This state-of-the-art approach is frequently used in practice due to the
high efficiency of continuous approaches if the sizing is to be computed in a continuous
domain. However, the results in Table 6.14 show that the discrete point computed by
this method violates one or more specifications in three of the four experiments. In the
fourth experiment – the sizing of the low voltage amplifier – two sizing constraints were
violated. I.e., no discrete point which was computed by continuous optimization and
subsequent rounding is a valid solution for the corresponding sizing task.

However, such a valid discrete solution for the sizing task exists. This can be seen
in Table 6.14 if the results of the BABA, the outer Branch-and-Bound, or the MoPS
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Table 6.14: Number of violated specifications and constraints after the computation of

a nominal sizing with continuous sizing and rounding (C+R), BABA, outer

Branch-and-Bound (outer BAB), and MoPS

Circuit

Specifications

violated/overall

Constraints

violated/overall

C+R
outer

BAB
BABA MoPS C+R

outer

BAB
BABA MoPS

Miller

Amplifier
3/8 0/8 0/8 0/8 0/57 0/57 0/57 0/57

Low Voltage

Amplifier
0/8 0/8 0/8 0/8 2/93 0/93 0/93 0/93

Sense

Amplifier
1/5 0/5 0/5 0/5 0/8 0/8 0/8 0/8

Low Noise

Amplifier
1/6 0/6 0/6 0/6 0/9 0/9 0/9 0/9

approach are considered. Each of these new approaches was able to find a solution for
the sizing task which fulfills all specifications and constraints2.

The outer Branch-and-Bound approach did not find a solution for the discrete sizing task
in the first recursion because the procedure in this recursion is identical to continuous
sizing and subsequent rounding. However, using additional rounding constraints, a
solution was found after a low number of recursions. In the search process, considering
the rounded solution did reduce the number of considered subdomains. Nevertheless, in
each example more than one simulation-based FSQP run was required to find a solution,
which leads to a significantly increased runtime of the approach compared to continuous
sizing and subsequent rounding as discussed below.

The BABA approach enlarges the outer Branch-and-Bound approach by the prediction
method for a discrete solution described in Chapter 4.3. As a consequence, it can be
guaranteed that it finds a solution for the sizing task if the outer Branch-and-Bound
approach converges against such a solution. However, in each of the experiments the
first prediction found a discrete solution for the sizing task. Therefore, only one FSQP
run was required and the discrete solution was computed on the linearly constrained
quadratic model.

The MoPS approach also converged in each example to a solution which solves the
sizing task. In contrast to outer Branch-and-Bound and BABA, it does not require the
computation of discrete intermediate points to find such a solution. Therefore, it is the

2A comparison of the performance values is not provided because each of the algorithms is stopped

as soon as a solution has been found. As a consequence the performance values achieved at a point

which fulfills all specifications and constraints are not significant.
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only approach which can still be used and which will still solve the sizing problem if
some of the parameters can only be evaluated at discrete points (cf. Section 6.2.1).

From the fact that a discrete solution exists for each sizing task and that this solution
cannot be found by continuous optimization and subsequent rounding, it can be con-
cluded that this state-of-the-art approach should not be used for discrete analog sizing.
In contrast, in all experiments the new approaches converged reliably against a discrete
solution for the sizing task.

Runtime Comparison

A discrete solution for the sizing task must be found reliably. However, the second
important criterion for the quality of an algorithm for analog sizing is the required
runtime. To evaluate this criterion for the new algorithms, the time required to solve
the four sizing problems mentioned above is considered. To make the comparison of
the algorithms as fair as possible, all algorithms are started from the same initial point.
Although the continuous approach with subsequent rounding did not find a solution for
any of the nominal sizing tasks defined in Section 6.1, the required computation time for
this state-of-the-art approach is given as a reference. The runtime to compute a nominal
design for all four sizing tasks is presented in Figure 6.6. The Figure shows the overall
runtime of each approach and the amount of time which was required for simulations –
i.e., to evaluate the circuit – as well as the amount of time required for other numerical
operations (referred to as numerical runtime in the following). It is worth noting that
the time required for the simulations can be greatly reduced if more CPUs are used and
if the algorithm can therefore be parallelized to a higher degree.

At first, the runtime for the nominal sizing using the BABA approach should be dis-
cussed. Figure 6.6 shows that the additional runtime required by this new approach is –
compared to the state-of-the-art approach of continuous sizing and subsequent rounding
– always below 1 minute and can be neglected in comparison to the complete runtime
of the algorithm. In all cases, the solution was computed on the quadratic model in
Chapter 4.3 and the simulation-based FSQP run was executed only once.

The results also show that using the quadratic model the runtime is considerably lower
than the runtime required by the outer Branch-and-Bound approach in Chapter 4.2,
which is stopped as soon as the rounded solution of a subproblem fulfills the specifica-
tions. The reason for the longer runtime is that typically more than one subproblem
must be solved by the simulation-based FSQP approach if the discrete solution is not
computed on the quadratic model.

In contrast to the Branch-and-Bound approach, the runtime required to solve the sizing
task using the MoPS approach from Chapter 5 is always – in the results approximately
by a factor two – longer than the runtime of the BABA approach. However, for the
MoPS approach no simulations between the discrete grid points are required such that
the additional runtime is acceptable if the circuit can only be evaluated at discrete
points, i.e., if the BABA approach cannot be used.
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6 Simulation Results

(a) Miller Amplifier (b) Low Voltage Amplifier

(c) Sense Amplifier (d) Low Noise Amplifier (without considera-

tion of inductor sides)

Figure 6.6: Runtime of the state-of-the-art approach (Continuous + Rounding), the ap-

proach in Chapter 4 (BABA), outer Branch-and-Bound (outer BAB), and

the approach in Chapter 5 (MoPS) for a nominal design of the circuits in

Section 6.1

In the results two reasons can be observed which cause a longer runtime to compute
a nominal design by using the new MoPS approach: The first reason which can be
clearly identified in Figures 6.6a and 6.6b is due to an increased runtime of the algorithm
excluding the simulation-based circuit evaluations. The increased runtime in these cases
is due to the high number of nonlinear models of the underlying optimization problem
which must be solved over the discrete domain (cf. Chapter 5.3). E.g., for the Miller
amplifier, the MoPS approach requires the computation of eight sensitivities – one fewer
than the FSQP approach – for each performance and for each constraint, which make
up the greatest part of the simulation effort. However, during this run 24 non-linear
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6.3 Tolerance Design

models of the problem were solved where each of these numerical problems had a high
number of performances and constraints which made the numerical problem complex.
As a consequence, the effort to solve these subproblems is typically the reason for the
increased runtime if the non-linear model of the problem is hard to solve. Besides the
high number of performances and constraints, one of the major reasons which can be
observed for an increased numerical runtime is the correlation of design parameters:
E.g., if the multiplier and the width of one transistor are used as design parameters for
the sizing task, the effect of scaling multiplier and width is not equal but similar. As a
consequence, if one of the parameters is forced by branching to be discrete, the other
– possibly currently discrete – parameter has a high chance of becoming non-discrete,
and the number of subproblems to solve the discrete optimization problem increases.

The second reason for the increased runtime in the examples is an increased simulation
effort and can be observed in the result in Figure 6.6d. Also in this case, the numerical
effort of the MoPS approach cannot be neglected. However, the main reason for the
increased runtime is the higher number of sensitivities which must be computed to model
the performances (10 for each performance and each constraint in the MoPS approach
compared to 6 for the BABA approach). This reason for an increased runtime can be
observed if the effort to compute a good quadratic model for each performance is high,
i.e., if the considered performances and constraints are stronger non-linear.

It can be concluded that both new approaches can be used to solve the nominal sizing
task, but – due to the lower runtime – the BABA approach is preferable if a simulation
of the circuit at continuous intermediate points is possible.

6.3 Tolerance Design

For the computation of a tolerance design, the mathematical formulation in Chap-
ter 2.5.4 was used. The problem was solved by the new approaches in Chapters 4 and 5
and is compared to continuous sizing with subsequent rounding, which can be considered
as a state-of-the-art approach used to compute a tolerance design along with the consid-
eration of discrete design parameters. For each sizing task, the algorithms were started
with the same sizing at a design parameter point where the specified performances were
fulfilled for nominal operating and process conditions. The outer Branch-and-Bound ap-
proach without prediction of the discrete solution is not considered in this section due
to the observation in Section 6.2 that it is always slower than the Branch-and-Bound
approach for analog sizing using the prediction.

Solution Quality

As mentioned above, the required yield for the problem is set to 99.87% per performance
(3σ or βW = 3 in (2.59)), i.e., the analog sizing task is solved for the Miller amplifier
and for the low voltage amplifier if the overall yield measured at the worst case oper-
ating points is higher than 99.878 ≈ 99.0%, where 8 is the number of performances.
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6 Simulation Results

Table 6.15: Yield Y after nominal design, state-of-the-art tolerance design (Continu-

ous + Rounding), and tolerance design with the approaches in Chapter 4

(BABA) and Chapter 5 (MoPS) for the circuits in Section 6.1

Circuit Nominal
Continuous +

Rounding
BABA MoPS

Miller

Amplifier

Low

Voltage

Amplifier

Sense

Amplifier

Low

Noise

Amplifier

generation

Analogously, the tolerance sizing task is solved for the sense amplifier and for the low
noise amplifier if a yield of at least3 99.874 ≈ 99.5% and 99.876 ≈ 99.2%, respectively, is
reached. Higher yield than the minimum yield defined in this example can be achieved
if the value of βW in (2.59) is increased.

The results of the sizing approach listed in Table 6.15 were evaluated by a Monte Carlo
analysis with 2500 samples executed at the worst case operating points and using the
tool WiCkeD [WIC11]. Hence, if a yield of 100% was measured and is given in the table,
the yield is – with a probability of 95% – higher than 99.85%.

Starting from an initial solution which does not fulfill the yield requirements (shown in
the left column of Table 6.15), the results clearly show that both new sizing approaches

3None of the considered process parameters influences the area of the circuit. Thus, the worst case

point for the area is equal to the nominal point for the area and only four performances can cause

a loss of yield for the sense amplifier.
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6.3 Tolerance Design

(listed in the two columns on the right) can find a solution where the specified yield
can be reached. At the same time it can be seen that continuous sizing with subsequent
rounding does not solve the task in three of the four cases. Especially, the sizing of the
Miller amplifier and of the low noise amplifier shows that a more sophisticated approach
than the state-of-the-art approach is required to compute a tolerance design for analog
circuits.

The reason for the much higher yield in the design computed by BABA and MoPS
compared to the low yield of the sizing computed by continuous optimization and sub-
sequent rounding is further analyzed for the low noise amplifier. For this purpose, the
s-parameter S11 – which is predominantly responsible for the low yield of the low noise
amplifier if it is sized by the rounding approach – is shown in Figure 6.7. This s-
parameter can be considered as a measure for the input matching of the amplifier where
a good matching corresponds to a low value of S11. However, due to the rounding, e.g.,
the number of winding turns is changed from an arbitrary float number to a discrete
value. As a consequence, the matching gets worse and the minimum for S11 is no longer
at the center frequency of 2.4GHz but is shifted to higher frequencies. In addition, the
value of the minimum of S11 is increased. These effects can be observed for the nominal
value of operating and process parameters (Figure 6.7a) and are increased considering
the worst case conditions (Figure 6.7b). In contrast, S11 has its minimum exactly at
the center frequency if nominal conditions are considered for the solution computed by
the new algorithms (in the figure the result of the BABA approach is shown). Further-
more, the minimum value is lower than after continuous optimization with subsequent
rounding. As a consequence, the minimum for the worst case points is also closer to
the center frequency and the specification is fulfilled. It can be noted, that cases can
be observed also where, after continuous sizing with subsequent rounding, the specifica-
tions are violated at the nominal point although the specifications were fulfilled at the
worst case points after the sizing in the continuous domain. Thus, it can be concluded
that considering discrete design parameters is crucial if the matching of the circuit is
important.

The only circuit in the examples where the yield requirements are fulfilled after contin-
uous optimization and subsequent rounding was the sense amplifier from Section 6.1.4.
The reason for the low influence of the rounding operation can be found in the problem
size and in the structure of the problem: As stated in Chapter 4.3, the rounding oper-
ation often yields good results if the number of parameters which should be discretized
is low. However, for the sense amplifier the number of discrete parameters is only nine.
In addition, the sizing of a sense amplifier is typically good if all lengths, widths, and
multipliers are as low as possible. Thus, after the continuous sizing three parameters
are already close to the lower bound and can be considered as discrete such that only 6
parameters must be discretized by the rounding operation. However, in this case as well
it cannot be guaranteed in general that this rounded solution solves the sizing task such
that the fact that the rounded solution fulfills the task can be considered as random
behavior.
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6 Simulation Results

(a) S-parameter S11 at nominal operating and process parameter values

(b) S-parameter S11 at worst case operating and process parameter values

Figure 6.7: S-parameter S11 of the low noise amplifier plotted over frequency for sizing

computed by BABA and by continuous optimization and rounding
.
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(a) Miller Amplifier (b) Low Voltage Amplifier

(c) Sense Amplifier (d) Low Noise Amplifier

Figure 6.8: Runtime comparison of the state-of-the-art approach (Continuous + Round-

ing) with the approach in Chapter 4 (BABA), and the approach in Chapter 5

(MoPS) for a tolerance design of the circuits in Section 6.1

Runtime Comparison

Both new approaches can compute a tolerance design in the analog sizing step. Thus,
the efficiency of the new approaches with respect to the computational time can be
evaluated. As in the nominal case, continuous sizing and subsequent rounding is given
as a reference, although it has been shown that the state-of-the-art approach cannot
find a solution for the tolerance design task in general.

The runtime to compute a tolerance design for the different circuits is given in Figure 6.8.
The results show that the additional runtime of the BABA approach compared to the
state-of-the-art approach of continuous optimization and subsequent rounding is, with
seven minutes at most, still small and can be neglected in all examples, especially if the
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benefit of the increased yield is taken into account. Comparing the runtime to compute
a tolerance design with the runtime to compute a nominal design, predominantly the
time required for simulating the circuit is increased for the Branch-and-Bound approach
for analog sizing. The reason for this behavior is that for the tolerance design the
sensitivities of the performances are not only computed against variations of the design
parameters but also against variations of statistical and operating parameters.

The runtime comparison of BABA and MoPS shows that – although the runtime of
the MoPS approach can be lower than the runtime of the BABA approach for small
size problems – the runtime of MoPS is up to a factor three higher than the runtime
of the BABA approach. The increase is typically due to a large number of nonlinear
models of the discrete optimization problem which must be solved. This can be observed
especially for the low voltage amplifier where the effort for simulation-based evaluations
is only a forth of the overall runtime. The high runtime without circuit evaluations can
be explained by the fact that on the one hand, the time to solve the nonlinear model
of the sizing task in the continuous domain is high (several seconds) if the number
of performances, constraints, and parameters is large. On the other hand, the discrete
intermediate solutions computed on many nonlinear models considered during this sizing
task were close to the discrete optimum such that a large number of Branch-and-Bound
recursions was required to solve the model of the underlying problem in the MoPS
approach. As a consequence, a large number of continuous optimization problems must
be solved with a high runtime each.

It follows that the application of the MoPS approach is reasonable only in case the
designed circuit can be evaluated only at discrete design parameter points and not
at continuous intermediate points, i.e., if the BABA approach cannot be used. The
most important reason for this conclusion is that – as in the nominal design case – the
time required to solve the problem without considering the simulation time strongly
contributes to the runtime of the MoPS approach. As in the nominal case, this time
is predominantly required to solve the discrete non-linear model of the optimization
problem and cannot be avoided, although it might be reduced by certain modifications
of the MoPS algorithm.

As the results show that the runtime for the tolerance design is always significantly longer
than the computational time for a nominal design, it should finally be demonstrated why
a tolerance design is required and why it is not sufficient to increase the performances at
the nominal point with respect to operation and process parameters until the required
yield is reached. The reason can be observed, e.g., if the positive slew rate of the
low voltage amplifier in Section 6.1.3 is considered. The slew rate is measured from the
transient response of the output shown in Figure 6.9. In Figure 6.9a, the output curve for
a sizing is given where the specification for the slew rate is fulfilled for nominal operating
and process parameters. Figure 6.9b shows the transient response for a tolerance design.
In both figures, the transient response is plotted for nominal values for operating and
process parameters and for the worst case values which are computed for the positive
slew rate. A comparison of the curves shows that the amplifier is much faster for the
nominal design than for the tolerance design if operating and process parameters are
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6.3 Tolerance Design

(a) Transient response for nominal and worst case point of the positive slew rate with design

parameters chosen such that the slew rate specification is fulfilled at the nominal point

(b) Transient response for nominal and worst case point of the positive slew rate after

computation of a tolerance design

Figure 6.9: Transient response of the low voltage amplifier in voltage follower configu-

ration for a unit step from 0.5V to 1.5V at the input
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considered at the nominal point (the measured values of the slew rate are more than
40 V

µs
for the nominal design compared to approximately 24 V

µs
for the tolerance design).

However, at the computed worst case point for a 3σ design, the tolerance design of
the circuit still fulfills the specification with a slew rate of 16 V

µs
whereas the nominal

design can only achieve a slew rate of less than 10 V
µs

and does not solve the task.
Thus, a nominal design with more restrictive specifications might not gain the required
yield either because the computation of the tolerance design does not only improve the
performances at the nominal point but it also makes the circuit less sensitive against
variations of operating and process conditions.

It can be concluded from the results that the Branch-and-Bound approach for analog
sizing is the first highly efficient approach to solve the analog sizing task for nominal
and tolerance design. As it is restricted to problems where the circuit can be evaluated
at each continuous point between lower and upper bound of the design parameters, an
additional effort must be made if the circuit can only be evaluated for discrete points.
For this case the model-based programming approach for analog sizing is presented in
this thesis, which is less efficient than the Branch-and-Bound approach but still fast
enough to solve both sizing tasks in practice.
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Chapter 7

Conclusion

The design of new circuits is one of the most challenging and most complex tasks in
the IC industry. To make the task easier to handle, the system to be designed is
partitioned into several functional blocks which can be designed separately and which
can be classified into analog, digital, and mixed-signal blocks. Nevertheless, tools to
automate the design of these functional blocks are crucial to support the designer, to
increase productivity, and to avoid the more error-prone manual design.

In contrast to the widely automated digital design flow, the design of analog blocks is
still predominantly manual work. The first step in the analog design flow, the synthesis
of the design schematic, is not automated at all, whereas the subsequent steps, the sizing
and the layout of a circuit, are partly automated in practice.

This thesis is focused on the sizing of analog circuits. Although this step is partly
automated, available commercial tools are of limited usability as none of these tools
can consider variations in operating and process conditions along with discrete scalable
parameters. However, discrete parameters are unavoidable if layout information, e.g.,
the number of winding turns of an integrated inductor, a parameter grid, or the transistor
multiplier, should be considered in the sizing step to support the subsequent layout step.
At the same time, considering variations in process and operating conditions in the
sizing step is crucial to ensure the functionality of a circuit for the specified operation
conditions after manufacturing. This problem is addressed in this thesis by means of
two new deterministic approaches for analog sizing.

For this purpose, the sizing task was initially formulated as a discrete minimization prob-
lem. In this context, the computation of a gradient by finite differences was enlarged
for a discrete sizing task and available objective functions were discussed and selected
which are required to map the multi-objective sizing task to a single objective optimiza-
tion problem. Furthermore, the required state-of-the-art optimization algorithms were
introduced and the required enhancement for analog sizing was shown.
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7 Conclusion

Two new algorithms, which are constructed for two different applications, were devel-
oped in this thesis:

• A fast Branch-and-Bound algorithm was realized for the sizing of analog circuits,
assuming that the circuits can be evaluated for each continuous design point. This
case can be found in practical problems if multipliers or manufacturing grids are
to be considered during sizing.

• A model-based algorithm was implemented for the sizing of analog circuits where
some parameters must be considered which can only be evaluated at discrete
points. Such problems typically arise if the influence of a parameter on a device
– in the examples the sides of an integrated inductor – is measured or computed
for a certain discrete point and stored in a look-up table rather than modeled in
a continuous scalable model as, e.g., BSIM.

Both approaches were enlarged by a successive approximation of the worst case points
which allow the computation of a tolerance design, i.e., of a design which is robust
against variations in operating and process conditions. At the same time, special care
has been taken to keep the number of computationally expensive circuit simulations
required to evaluate the circuit performances low.

The simulation results of the sizing of two operational amplifiers, one sense amplifier,
and one low noise amplifier show that the new Branch-and-Bound based approach is
highly efficient and was able to compute a nominal design – i.e., a design with all
operating and process parameters set to fixed (nominal) values – as well as a tolerance
design within approximately the same time as it is required for a sizing in the continuous
domain. The results also show that the runtime required by the model-based approach
to solve the nominal and tolerance design task is up to three times the time of the
Branch-and-Bound based approach. However, this additional runtime is sustainable for
the case that the circuit can be evaluated at discrete points only.

Comparing the newly developed algorithms with the state-of-the-art approach of con-
tinuous optimization and subsequent rounding, it can be observed that in contrast to
the state-of-the art approach, which did not solve the sizing task in seven of the eight
nominal and tolerance design cases shown, the result computed by the new approaches
did always solve the specified design tasks.

Besides their relevance in practice, the approaches presented in this thesis can be seen
as a basis for optimization and for the computation of Pareto fronts for analog circuits
with discrete parameters. The application of the newly developed algorithms in these
fields would require only a small number of modifications and enhancements. However,
a considerable increase in computational time can be expected compared to the results
shown in this thesis.

From a practical point of view, the results of this thesis can be used to enlarge current
deterministic state-of-the-art tools in such a way that in the sizing step of the analog
design flow discrete parameters, process variations, and operating conditions can be
considered at the same time. The relevance of this ability can be expected to rise
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further in future because it can be expected that with decreasing structure sizes and
new technologies more and more discrete parameters must be considered along with an
increasing importance of the consideration of process variations. At the same time, an
increasing need for analog design automation, which can only be satisfied by approaches
as presented in this thesis, is to be anticipated to keep productivity in the IC industry
at a high level.
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Appendix A

Numerical Examples

A.1 Continuous Optimization and Rounding vs

Discrete Optimization

Figure A.1 illustrates that rounding of a continuous point may not solve a discrete
optimization problem in general. The following simple linear optimization problem is
considered:

min−(x+ y) s.t.: x ∈ {0, 1, 2, 3}
0 ≤ y ≤ 3
x+ 2y ≤ 6

20x+ 4y ≤ 45

(A.1)

The discrete solution of this optimization problem is point F in Figure A.1 with
(x, y) = (1, 2.5) and objective function value −(x+ y) = −3.5. This value is obviously
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Figure A.1: Linear discrete optimization example
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larger than the value at the continuous solution (x, y) ≈ (1.83, 2.08) (point A in Fig-
ure A.1) which is derived after replacing x ∈ {0, 1, 2, 3} by the relaxation 0 ≤ x ≤ 3 and
which has the objective function value −3.91.

If the discretization of the continuous solution is to be done by rounding to the next
discrete point (point B in Figure A.1 with (x, y) ≈ (2, 2.08)), two constraints are vio-
lated. Also rounding the continuous solution to the next discrete point and a subsequent
optimization over the continuous parameters to find the best point which fulfills the con-
straints might not solve the task. The point which can be found in this way for the
example (point C in Figure A.1 with (x, y) = (2, 1.25)) has an objective function value of
−3.25 and is significantly worse than the discrete optimum. For graphical comparison,
point D is added to Figure A.1 which has the same objective function value as point C
but has the same value for x as the discrete optimum.

Point E with (x, y) ≈ (1, 2.08) shows that a discretization of the continuous point by
rounding to the next lower value does not solve the discrete optimization problem either.
In this example, the objective function value of this point with −3.08 is even worse than
the objective function value of every other solution which was considered in the example.

The example shows that – although a simple linear discrete optimization task was consid-
ered – discrete optimization cannot be replaced by continuous optimization and round-
ing.

A.2 Examples for Objective Functions

A multi-objective problem with two real-valued continuous parameters p1, p2 ∈ R
2 and

four performances f1(p), ..., f4(p) is given. Constraints are not considered in this exam-
ple as they are not included into the objective function within this thesis and are not
required for the following observations. A specification is defined for each performance:

Performance Specification
f1 = p21 + p22 f1 ≤ 1
f2 = p1 + p2 f2 ≤ −1
f3 = p1 + p2 f3 ≥ −2
f4 = p1 f4 ≥ −1

(A.2)

Using (2.37), the performance-to-specification gap can be defined:

Performance-to-Specification Gap Specification
ε1 = p21 + p22 − 1 ε1 ≤ 0
ε2 = p1 + p2 + 1 ε2 ≤ 0

ε3 = −1
2
p1 − 1

2
p2 − 1 ε3 ≤ 0

ε4 = −p1 − 1 ε4 ≤ 0

(A.3)
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p1

p2

psum

plsq

pexp

pmax

ε1 = 0

ε2 = 0ε3 = 0

ε4 = 0

Figure A.2: Example for a multi-objective problem

The problem is visualized in Figure A.2 where the task is to find a point in the shaded
area. The problem should be solved by a minimization problem of the form

minϕ(p) (A.4)

To realize the mapping from a multi-objective problem to a scalar, a sum of errors

ϕsum(p) =
4∑

i=1

εi(p) (A.5)

a least-squares approach

ϕlsq(p) =
4∑

i=1

ε2i (p) (A.6)

an exponentially weighted sum

ϕexp(p) =
4∑

i=1

exp (εi(p)) (A.7)

and a max-norm formulation

ϕmax(p) = max
i=1,...,4

(εi(p)) (A.8)

are used.

Following the claims in Chapter 2.4.1, the objective function should attach greater
weight to the alteration of the worse of two objectives if both alterations are comparably
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large in size. As each term in the sum of errors contributes linearly to the objective
function, the sum of errors violates this claim. As a consequence, and as also claim 4
in Chapter 2.4.1 is violated, the optimum of this function (point psum in Figure A.2) is
far away from the specified (shaded) region and the specification for ε2 is violated. In
contrast, the claim is fulfilled for all other objective functions in this section because
each size of a performance gap in the least-squares approach and in the exponentially
weighted sum is weighted quadratically and exponentially, respectively, and only the
worst value is considered by the max-norm.

The second claim in Chapter 2.4.1 requires the objective function not to penalize the
over-fulfillment of specifications. This claim is not fulfilled for the least-squares objective
function: Considering that a performance fulfills the specification if εi ≤ 0 and putting
such a value into the four objective functions above, it can be observed that only the
least-squares approach is increased if a negative size of the performance gap is further
decreased. As a consequence, the least-squares distance to all bounds is minimized for
objective function (A.6) and an over-fulfillment of the specifications is not supported.
In the example this leads to a solution plsq (cf. Figure A.2) which does not fulfill the
specification for ε1.

The last claim in Chapter 2.4.1 is to use an objective function ensuring that a point
which fulfills the specifications has a better objective function value than any point
where a specification is violated. The results for the least-squares approach – which
is penalized if some specifications are over-fulfilled – and the sum of errors – which
attaches the same weight to the improvement of each performance – show that this
claim is violated for these two objective functions. However, the exponential sum also
violates this claim because the exponential weighting of each size of a performance gap
can result in a case where the influence of many over-fulfilled specifications prevents some
other performances from achieving the specified value. Such a case can be observed in
the example where the optimum of the exponential sum (pexp in Figure A.2) does not
fulfill all specifications.

It can be seen that in the example only for the max-norm formulation all performance
specifications are fulfilled. Due to the formulation of the performance-to-specification
gap – i.e., as the value of the gap is always negative if the specifications are fulfilled and
positive if not – a global minimum of the max-norm is always a point which fulfills the
specifications if such a point exists.

The truncated forms of an objective function – especially the truncated least squares
approach (cf. Chapter 2.4.2) – can also be used to solve the problem. In this case, any
point in the shaded area in Figure A.2 can be found because each of these points has an
objective function value of zero. The result found if a truncated function is used depends
on the starting point and on the algorithm used to solve the optimization program.
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A.3 Optimization Example

In this section the following non-linear discrete optimization problem is considered:

min ϕ(d1, d2) :=
1
2
· (d21 + d22)− 6 · (d1 + d2)

s.t. c1(d1, d2) := 36− d21 − d22 ≥ 0

c2(d1, d2) := 0.5− d1 + d2 ≥ 0

d1, d2 ∈ {0, 1, 2, 3, 4, 5, 6}

(A.9)

The discrete solution of the problem can be found at (d∗1, d
∗
2) = (4, 4).

A.3.1 Example for Feasible Sequential Quadratic Programming

If the problem is to be solved by a standard Branch-and-Bound algorithm, a solution
for the relaxed optimization problem is required. As constraint c2 does not influence the
result of the relaxed problem, it is neglected in this section. I.e., the following relaxation
of (A.9) must be solved:

min ϕ(d1, d2) :=
1
2
· (d21 + d22)− 6 · (d1 + d2)

s.t. c1(d1, d2) := 36− d21 − d22 ≥ 0

0 ≤ d1 ≤ 6

0 ≤ d2 ≤ 6

(A.10)

The optimum of the problem is (d∗1, d
∗
2) ≈ (4.24, 4.24)

To solve the optimization problem, an FSQP algorithm (cf. Chapter 3.4.5) can be
used. For this purpose an initial feasible point must be given. Let the initial point
be d(0) = [d

(0)
1 , d

(0)
2 ]T = [0, 6]T such that the gradient for the objective function and the

non-linear constraint at this point can be computed as

∇dϕ(d1, d2)|d1=0,d2=6 = [−6, 0]T

∇dc1(d1, d2)|d1=0,d2=6 = [0,−12]T
(A.11)

Typically, the identity matrix is used to initialize the Hessian matrix of the Lagrangian
function. Thus, the quadratic subproblem for a standard SQP approach which is solved
in the first iteration step is

min
∆d(0)

1
2
·
(
∆d

(0)
1

2
+∆d

(0)
2

2
)
− 6 ·∆d(0)1

s.t. −12 ·∆d(0)2 ≥ 0

0 ≤ ∆d
(0)
1 ≤ 6

−6 ≤ ∆d
(0)
2 ≤ 0

(A.12)
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A Numerical Examples

with optimum ∆d(0)T = [∆d
(0)
1 ,∆d

(0)
2 ]T = [6, 0]T . It can be seen in Figure 3.4 on Page 62

that no step length δ 6= 0 along d(0) + δ∆d(0) leads to a feasible point.

To overcome this problem, a tilted direction is computed in each step of an FSQP
algorithm by solving subproblem (3.68). As a consequence – instead of subproblem
(A.12) – the following quadratic problem is solved in the first step of the FSQP algorithm
for the given problem:

min
∆d(0)

1
2
·
(
∆d

(0)
1

2
+∆d

(0)
2

2
)
+ γ

s.t. γ + 6 ·∆d(0)1 ≥ 0

γ · η − 12 ·∆d(0)2 ≥ 0

0 ≤ ∆d
(0)
1 ≤ 6

−6 ≤ ∆d
(0)
2 ≤ 0

(A.13)

for some η > 0. The step can be computed depending on η as:

∆d(0)T =
[

6
1+ 1

4
η2

, −3·η

1+ 1
4
η2

]T
(A.14)

It can be seen that for η → 0 the computed step ∆d(0) is equal to the result of (A.12)
and for η → ∞ the step goes to zero. Some examples for different values of η are shown
in Figure 3.5 on Page 64. It can be seen that for typical values 0 < η ≪ 1 only a small
step length δ can be chosen along d(0) + δ∆d(0) if the resulting point is to be feasible.
Thus, a correction is computed for the step in the FSQP algorithm.

Setting the value of η to η = 0.1 results in a step ∆d(0)T ≈ [5.99,−0.30]T . For the full
step ∆d(0) the non-linear constraint is violated and a correction step is computed in the
FSQP algorithm. Optimization problem (3.70) must be solved to compute the correction
step in the FSQP algorithm. For the example, the explicit optimization problem can be
given as:

min
∆̂d

1
2
·
(
∆d̂21 +∆d̂22

)T
− 0.01 ·∆d̂1 − 0.30∆d̂2

s.t. −12 ·∆d̂2 − 32.43 ≥ 0

(A.15)

This results in a correction step ∆̂d
T
= [∆d̂1,∆d̂2]

T = [0.01,−2.70]T . Although the step

∆d(0) + ∆̂d is closer to the bound, it does not fulfill the constraint. The correction step
is shown in Figure 3.6 on page 65.

After the computation of tilted direction and correction step, an arc search along this
direction is executed. This is shown in Figure 3.7 on page 66. It can be seen that a
feasible step can be computed along the arc, and that the step is larger and yields more
improvement of the objective function than the longest feasible step along the tilted
direction.
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A.3 Optimization Example

A.3.2 Example for Standard Branch-and-Bound

Now the complete optimization problem (A.9) is considered. Using the Branch-and-
Bound algorithm from Chapter 3.5.4, the steps to solve the given problem are as follows:

1. Initially, the relaxed problem is solved, which results in the relaxed solution
(d∗1, d

∗
2) ≈ (4.24, 4.24) with objective function value ϕ(4.24, 4.24) = −32.90 (cf.

Figure 3.10a on Page 77). This result is a lower bound for the discrete solution.

2. Using the solution of the relaxed problem, a rounding constraint is added which
ensures that d1 ≤ 4 (cf. Figure 3.10b on Page 77). The solution in this subproblem
is (d∗1, d

∗
2) ≈ (4, 4.47) with ϕ(4, 4.47) = −32.82. The result is a lower bound for the

discrete solution in the subdomain with d1 ≤ 4, but not for the original domain.

3. The next rounding constraint which is added is d2 ≤ 4. The discrete solution
of this subproblem is (d∗1, d

∗
2) ≈ (4, 4) with ϕ(4, 4) = −32 ((cf. Figure 3.10c on

Page 77). This result is not only a lower bound for the discrete solution in the
subdomain, but also – as it is discrete and no better discrete solution has been
found yet – an upper bound for the discrete optimum.

4. As a discrete solution has been found, the next subdomain considered is defined
by the rounding constraints d1 ≤ 4 and d2 ≥ 5 (cf. Figure 3.10d on Page 77). The
result for this subdomain is (d∗1, d

∗
2) ≈ (3.32, 5) with ϕ(3.32, 5) = −31.91. As the

result is worse than the result of the incumbent solution, it can be concluded that
the discrete optimum cannot be in this subdomain.

5. The last subdomain which must be considered is defined by the rounding constraint
d1 ≥ 5 (cf. Figure 3.10e on Page 77). This subdomain does not include any feasible
solution. However, after considering this subdomain, all required subproblems
have been examined. It follows that the best solution yet, i.e., (d∗1, d

∗
2) ≈ (4, 4), is

the discrete optimum for the problem.
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Appendix B

Derivations

B.1 Gradient Computation using Quadratic

Performance Approximation

The performances which are evaluated in this thesis are assumed to be differentiable if
the discrete problem is relaxed. Thus, at each point in the discrete domain a derivative
of every performance fk with respect to each parameter pi can be defined.

For continuous parameters and discrete parameters on a uniform grid the approximation
of the gradient can be computed by the central form of finite differences. However, if
a parameter can only take non-equidistant discrete values, the symmetrically defined
central form of finite differences can not be computed.

To overcome this problem, each performance fk is modeled at a point p and in direction
of parameter pi by a function

fk(pi +∆pi) ≈ ak ·∆pi2 + bk ·∆pi + ck (B.1)

The parameters ak, bk, and ck can be computed using three sampling points. Without
loss of generality, one sampling point can be set to ∆pi = 0 with performance value fk,0.
I.e., the performance is evaluated at the point where the gradient should be computed.
Two additional points can be set to ∆p1 6= 0 and ∆p2 6= 0 with performance value fk,1
and fk,2, respectively, assuming that ∆p1 and ∆p2 lead to points which can be evaluated.

Using ∆p1,∆p2 6= ∆p1, fk,0, fk,1, and fk,2, and assuming a quadratic form (B.1) for the
underlying function, a linear equation system in ak, bk, and ck can be established:

0 · ak + 0 · bk + ck = fk,0
∆p21 · ak + ∆p1 · bk + ck = fk,1
∆p22 · ak + ∆p2 · bk + ck = fk,2

(B.2)
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B Derivations

This linear equation system has a unique solution for ak, bk, and ck:

ck = fk,0

bk =
∆p2

∆p2−∆p1
· fk,1−fk,0

∆p1
+ ∆p1

∆p1−∆p2
· fk,2−fk,0

∆p2

ak =
fk,1−fk,0

∆p21
− b

∆p1

(B.3)

The sensitivity of a performance fk,1 with respect to a parameter pi at a point p can be
defined as:

jk,i =
∂fk

∂pi

∣∣∣∣
p

≈ ∂

∂∆pi

(
ak ·∆pi2 + bk ·∆pi + ck

)∣∣∣∣
∆pi=0

= bk (B.4)

It can be observed that for a symmetric deflection ∆p = ∆p1 = −∆p2 > 0 the value of
bk is equal to

bk =
fk,1 − fk,2

2 ·∆p (B.5)

i.e., the approximation is equal to the central form of finite differences.

B.2 Yield Approximation

This section shows the derivation of the yield approximation for N (s0,C)-distributed
process parameters s according to [Gra07].

Let swci be the worst point – i.e., the point with the highest value of εi(s) – in an
ellipsoid defined by setting β2 (s) in (2.24) to β2 (s) = β2

W . Then swci solves

max
s
εi(s) s.t. (s − s0)

T ·C−1 · (s − s0) ≤ β2
W (B.6)

Establishing the Lagrangian function for (B.6) and applying the first-order optimality
conditions (cf. Section 3.1), swci can be expressed as [Gra07]:

(swci − s0) =
βW√

jTwc,i ·C · jwc,i

C · jwc,i (B.7)

with

jwc,i =
∂εi(s)

∂sT

∣∣∣∣
s=swci

· (B.8)

A linearized model for the performance-to-specification gap εi with respect to the process
parameters at swci can be given as:

εi(s) ≈ ε̄i(s) = εi(swci) + jTwc,i · (s − swci) (B.9)
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B.2 Yield Approximation

For the variance V {ε̄i(s)},

σ2
ε̄i
:= V {ε̄i(s)} = V {εi(swci) + jwc,i · (s − swci)} = jTwc,iV {s} jwc,i = jTwc,i ·C · jwc,i

(B.10)
must hold true [Gra07,Koc99]. From (B.7) and (B.9) follows

ε̄i(s0) = εi(swci) + jTwc,i · (s0 − swci)

⇔ εi(swci) = ε̄i(s0) + jTwc,i · (swci − s0)

(B.7)
= ε̄i(s0) + βW

√
jTwc,i ·C · jwc,i

(B.10)
= ε̄i(s0) + βWσε̄i

⇔ βW = εi(swci)−ε̄i(s0)
σε̄i

(B.11)

The values of the linearly modeled performance gap sizes according to (B.9) are – due
to the linearity of ε̄i(s) and the normal distribution of s – N

(
ε̄i(s0), σ

2
ε̄i

)
-distributed

[Gra07]. Therefore, the probability of the value of the performance gap size being
smaller than a certain value εi(swci) can be approximated as

Ȳi =

εi(swci)∫

−∞

1√
2π · σε̄i

exp

(
−1

2

(
ε̄i − ε̄i(s0)

σε̄i

)2
)
dε̄i (B.12)

or, substituting ε̄i−ε̄i(s0)
σε̄i

by β,

Ȳi =

εi(swci)−ε̄i(s0)

σε̄i∫

−∞

1√
2π

exp

(
−1

2
β2

)
dβ

(B.11)
=

βW∫

−∞

1√
2π

exp

(
−1

2
β2

)
dβ (B.13)

In the special case that εi(swci) = 0 – i.e., if performance specification i is fulfilled exactly
at swci – Ȳi is an approximation for the yield of the circuit with respect to performance
i and for a given specification bound.
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