
Flatness-based predictive and optimal control
for electrical drives

Jean-François Stumper





Lehrstuhl für elektrische Antriebssysteme und Leistungselektronik
der Technischen Universität München

Flatness-based predictive and optimal control
for electrical drives

Jean-François Stumper

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informations-
technik der Technischen Universität München zur Erlangungdes akademischen
Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Hans-Georg Herzog
Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. Ralph Kennel
2. Univ.-Prof. Dr.-Ing. Mario Pacas, Universität Siegen
3. Prof. Dr.-Ing. Holger Voos, Universität Luxemburg

Die Dissertation wurde am 28.03.2012 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
04.12.2012 angenommen.





I

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit am Lehrstuhl für elek-
trische Antriebssysteme und Leistungselektronik der Technischen Universität Mün-
chen.

Zunächst möchte ich Herrn Prof. Ralph Kennel für die großzügige Unterstützung
und die Anregungen während meiner Promotion danken. Besonders dankbar bin ich
für das entgegengebrachte Vertrauen und den Freiraum während allen Abschnit-
ten dieser Arbeit. Die vielen ermöglichten Konferenzreisen waren eine zusätzliche
Bereicherung mit bleibenden Eindrücken.

Sehr gefreut habe ich mich darüber, dass Herr Prof. Holger Voos von der Uni-
versität Luxemburg und Herr Prof. Mario Pacas von der Universität Siegen die
Anfertigung der Gutachten übernommen haben. Ich bedanke mich bei Ihnen für Ihr
reges Interesse an der Arbeit.

Des Weiteren danke ich dem Fonds National de la Recherche in Luxemburg für
die finanzielle Unterstützung dieser Arbeit in Form eines Stipendiums.

Diese Arbeit wäre ohne die tatkräftige Unterstützung meiner Kollegen nicht mög-
lich gewesen. Herrn Dirk Paulus danke ich für die Starthilfebei den vielen praxis-
bezogenen Angelegenheiten. Es war eine große Freude gemeinsam dem Labor des
Vorgängerlehrstuhls neues Leben einzuhauchen. Weiterhindanke ich Herrn Peter
Stolze und Herrn Sascha Kühl für die hervorragende Atmosphäre im Büro sowie
für die vielen fachlichen Hilfen und Diskussionen.

All meinen Studenten, insbesondere aber Herrn Alexander Dötlinger und Herrn
Janos Jung, möchte ich für ihre arbeitsintensiven Beiträge danken.

Auch außerhalb unseres Lehrstuhls fand ich Unterstützung.So danke ich Herrn
Dr. Veit Hagenmeyer für die kritische und zugleich konstruktive Diskussion über
die Arbeit in den Kapiteln 3 und 4.

Luxemburg, Frühjahr 2013



II



CONTENTS III

Contents

Kurzfassung VII

Abstract IX

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Differential flatness . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Flatness-based control . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Machine models and conventional control methods 11
2.1 Representation with space vectors . . . . . . . . . . . . . . . . . . 12
2.2 Model of synchronous machines . . . . . . . . . . . . . . . . . . . 14
2.3 Model of induction machines . . . . . . . . . . . . . . . . . . . . . 16
2.4 Systematic constraints . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Model discretization and delay compensation . . . . . . . . .. . . 22
2.6 Limitations of linear flux models . . . . . . . . . . . . . . . . . . . 25
2.7 Conventional control: Optimized PI controller . . . . . . . .. . . . 26
2.8 Flatness of electrical drives . . . . . . . . . . . . . . . . . . . . . .30

3 Robust deadbeat current control for AC drives 33
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Deadbeat current control for AC drives: State of the art . . . 34
3.1.2 Basic deadbeat current controller design . . . . . . . . . . .37
3.1.3 Overall control structure . . . . . . . . . . . . . . . . . . . 37

3.2 Deadbeat control in the flatness-based context . . . . . . . .. . . . 40
3.2.1 Principles of deadbeat control and relation to flatness . . . . 40



IV CONTENTS

3.2.2 Conventional deadbeat current controller design . . . .. . . 43
3.2.3 Deadbeat design using feedforward linearization . . .. . . 44
3.2.4 Deadbeat design using mixed feedback and feedforwardlin-

earization . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Analytical robustness considerations . . . . . . . . . . . . . .. . . 48

3.3.1 Transfer function of deadbeat controller . . . . . . . . . .. 49
3.3.2 Transfer function of deadbeat controller including adistur-

bance estimator . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Interaction of disturbance estimator and deadbeat controller:

Low pass filter . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.4 Steady-state accuracy . . . . . . . . . . . . . . . . . . . . . 50

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Experimental evaluation of deadbeat control 53
4.1 Comparative evaluation of the proposed controllers . . . .. . . . . 54

4.1.1 Evaluation of the conventional deadbeat controller .. . . . 54
4.1.2 Evaluation of the deadbeat controller using feedforward lin-

earization . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.3 Evaluation of the deadbeat controller using mixed feedback

and feedforward linearization . . . . . . . . . . . . . . . . 63
4.1.4 Conclusions on the comparative evaluation . . . . . . . . . 68
4.1.5 Structural difference between deadbeat and PI control . . . 70

4.2 Implementation and performance evaluation . . . . . . . . . .. . . 72
4.2.1 Results on a permanent-magnet synchronous machine . . .72
4.2.2 Results on a synchronous reluctance machine . . . . . . . . 74
4.2.3 Results on an induction machine . . . . . . . . . . . . . . . 77

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Linear model predictive control for PMSMs 85
5.1 Benefits of optimal control . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Preliminaries: Loss modeling in PMSMs . . . . . . . . . . 86
5.1.2 Optimization of the power efficiency . . . . . . . . . . . . . 87
5.1.3 Optimization of the dynamic response . . . . . . . . . . . . 88
5.1.4 Problem statement: Receding horizon formulation . . . .. 89

5.2 Linear model predictive control . . . . . . . . . . . . . . . . . . . .93
5.2.1 Predictive control, MPC, and flatness . . . . . . . . . . . . 93
5.2.2 Online optimization: A real-time problem . . . . . . . . . .94
5.2.3 A simple and efficient LQ optimization algorithm . . . . .. 97
5.2.4 Implementation and control structure . . . . . . . . . . . . 102



CONTENTS V

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . 106
5.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . 107

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Nonlinear optimal control for IMs 111
6.1 Potential of optimal control . . . . . . . . . . . . . . . . . . . . . . 112

6.1.1 Preliminaries: Loss modeling in IMs . . . . . . . . . . . . . 112
6.1.2 Efficiency optimization in steady-state . . . . . . . . . . .. 113
6.1.3 Efficiency optimization – transient operation . . . . . .. . 115
6.1.4 Problem statement: Optimal torque control for transients . . 117

6.2 Real-time trajectory generation . . . . . . . . . . . . . . . . . . . .118
6.2.1 Formulation of a real-time optimization problem . . . .. . 118
6.2.2 Calculus of variations . . . . . . . . . . . . . . . . . . . . 120
6.2.3 Approximate solution using prototype fitting . . . . . . .. 121
6.2.4 Control structure: Trajectory generation and tracking . . . . 124

6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.1 Torque response . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.2 Efficiency evaluation: A servo application . . . . . . . . .. 130

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Conclusions and outlook 135

A List of symbols and abbreviations 139
A.1 List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.2 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B Experimental setup 143
B.1 Parameters of the test machines . . . . . . . . . . . . . . . . . . . . 145

C Detailed machine model deductions 147
C.1 Synchronous machine . . . . . . . . . . . . . . . . . . . . . . . . . 147
C.2 Induction machine . . . . . . . . . . . . . . . . . . . . . . . . . . 149

D Robustness calculations for deadbeat control 155
D.1 Transfer function of deadbeat controller . . . . . . . . . . . .. . . 155
D.2 Transfer function including a disturbance estimator . .. . . . . . . 156
D.3 Interaction of disturbance estimator and deadbeat control . . . . . . 159
D.4 Steady-state accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 159



VI CONTENTS

E Outlook: Feedforward linearization for PTC 161

F Mathematical complements to chapters 5& 6 167
F.1 Analysis of steady state accuracy of the cost function. .. . . . . . . 167
F.2 Convexity of cost function with polynomial parameterization . . . . 169
F.3 Parameterization of the constraints with a polynomial basis: Suffi-

cient affine conditions . . . . . . . . . . . . . . . . . . . . . . . . . 170
F.4 Analysis: Remainder of the Euler-Lagrange equation . . . .. . . . 171

G Related works 173
G.1 Advised student theses . . . . . . . . . . . . . . . . . . . . . . . . 173
G.2 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Bibliography 177



VII

Kurzfassung

Die vorliegende Arbeit befasst sich mit der modellbasierten Regelung elektrischer
Antriebe. Aufgrund der gegenwärtigen hohen Rechenleistungsowie der großen
Fortschritte der Regelungstechnik eröffnen sich neue Möglichkeiten, insbesondere
zur prädiktiven und optimalen Regelung. Die wesentliche Grundlage der vorgestell-
ten Entwürfe bildet der aus der Regelungstheorie stammende Ansatz der differen-
tiellen Flachheit.

Als prädiktive Regelung wird die deadbeat-Regelung behandelt. Diese Methode
findet in hochdynamischen Strom- und DrehmomentregelungenAnwendung, ist je-
doch sehr empfindlich gegen Parameterfehler. Des Weiteren bilden konstruktions-
bedingte Oberwellenschwingungen ein Problem. Durch einenerneuerten Regleren-
twurf, welcher auf der exakten Steuerungslinearisierung basiert, wird die Robustheit
der Regelung maßgeblich verbessert. Hohe Parameterabweichungen werden zuläs-
sig. Zudem ergibt sich die Möglichkeit, den begleitenden Störgrößenbeobachter
deutlich schneller einzustellen, wodurch Oberwellenschwingungen quasi komplett
gedämpft werden. Die deadbeat-Regelung wird somit ausreichend zuverlässig und
leistungsfähig für einen industriellen Einsatz. Dieses Ergebnis wird analytisch und
experimentell bestätigt. Die Methode ist auf andere modellbasierte Regelungsver-
fahren übertragbar.

Die optimale Regelung stellt die Zustandsgrößen nicht auf vorgegebene Soll-
werte, sondern führt sie gemäß Optimalitätskriterien. Ziel ist es, soweit physika-
lisch möglich, gleichzeitig die Dynamik und die Energieeffizienz zu verbessern.
Hierzu können bestehende Freiheitsgrade über die Regelung ausgenutzt werden.

Für die Synchronmaschine wird eine lineare modellprädiktive Regelung (MPC)
realisiert. Entscheidend für die praktische Umsetzbarkeit dieser Methode bei der-
maßen hohen Abtastraten ist ein schneller Algorithmus zum Lösen linear-quadrati-
scher Optimierungsprobleme. Die Regelung nutzt als Freiheitsgrad die Feldschwä-
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chung aus, um die Verluste zu minimieren und in einigen Situationen die Dynamik
zu verbessern.

Für die Asynchronmaschine muss eine nichtlineare Optimierung durchgeführt
werden. Zur besseren Realisierbarkeit wird eine approximative Lösung auf der
Grundlage der Variationsrechnung angewandt. Im Gegensatzzu den bekannten
Verfahren werden auch Transienten im Drehmoment hinsichtlich der Effizienz op-
timiert, wodurch sich Vorteile und weitere Einsparungen für dynamische Prozesse
ergeben.

Die Anwendung der differentiellen Flachheit in den einzelnen Gebieten ermög-
licht demnach die Verbesserung bestehender Lösungen sowiedie Einführung neuer
Verfahren.
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Abstract

The underlying thesis deals with model-based control for electrical drives. Due
to the availability of extended computational power and to the progress of control
systems technology, today, there are new possibilities forpredictive and optimal
control. Fundamental to the proposed designs is the use of differential flatness, an
approach from control systems theory.

Deadbeat control is treated as predictive control scheme. This scheme is used
in highly dynamic current and torque controllers, but is very sensitive to parame-
ter errors. Furthermore, harmonic oscillations caused by the machine construction
represent a problem. By a design change that applies feedforward linearization, the
robustness of the controller is significantly improved. High parameter offsets be-
come tolerable. Additionally, the accompanying disturbance estimator can be tuned
up, resulting in almost complete damping of the harmonic oscillations. The control
system thereby becomes sufficiently robust and performant for an industrial appli-
cation. This result is confirmed analytically and experimentally. The method is
applicable to other model-based control schemes.

In the optimal control schemes, the state variables are not controlled to prede-
fined references, but according to optimality criteria. Thegoal is the simultaneous
improvement of the dynamics and the energy efficiency, as faras this is physically
possible. To do this, the controller can exploit existing degrees of freedom.

For the synchronous machine, a linear model predictive controller (MPC) is real-
ized. The enabling factor for feasibility on such a fast system is the introduction of
a fast algorithm to solve linear-quadratic optimization problems. The control sys-
tem exploits field weakening as degree of freedom to minimizethe losses and to
improve the dynamics in certain situations.

For the induction machine, a nonlinear optimization has to be performed. In
order to realize this in a simple way, an approximate solution is proposed based
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on calculus of variations. In contrast to the known methods,torque transients are
also considered in the optimization, resulting in further savings and advantages for
dynamic processes.

In all these different areas, the use of differential flatness enables the improve-
ment of existing solutions and the introduction of new procedures.
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CHAPTER 1

Introduction

Flatness, in the broadest sense, is a simplification. A control designer is not stuck
in front of a bunch of equations; using flatness, the problem can be clarified and
reduced to one core problem. Flatness is a very fundamental characteristic natural
to many systems, and the designer may have come up with the same solution while
ignoring this property – but he did not because the original problem has been ob-
scure. Too obscure to figure out where the real problem is, toocomplicated such
that his solution was too demanding. Insight and inventive ideas come if problems
are simple. This makes flatness to a powerful design tool.

The term ’flatness’ does not describe a specific control algorithm, it is a quite
general approach in the analysis and design of dynamical systems. Introduced in
1992, this concept has rapidly become a new and important branch in the design
of nonlinear continuous-time control systems. Apart from this academic success, it
has found its way into industrial applications as well.

This thesis applies the flatness-based design methods to electrical drive systems.
Two high performance control schemes are studied, predictive and optimal control.
Existing designs are recasted and improved, and new designsare proposed. It is a
difficult task to show that a fundamental theory, such as flatness, gives any merits
to the practicing engineer. This is why it has to be put on a practical test stand.
The control problems in electrical drives are of physical nature, therefore, from the
resulting performance it can be clearly judged whether the proposed designs are
good or not.
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The behavior of a system can be improved by exploiting the system model more
extensively. While feedback controllers use a model in the design to determine the
feedback gains, the model is not used explicitly in the control policy. Modern mi-
croprocessors provide a great amount of computational capacity and performance
that can be used to extract more information online from the model. Furthermore,
a number of advanced algorithms is available to either impress a desired behavior
or to optimize the future behavior on the system to be controlled. These two tools,
computational power and a well-developed control theory, enable further improve-
ments in the field of electrical drive systems.

Predictive control is a family of advanced control strategies that had a tremen-
dous impact on industrial practice in many technical fields.Its main advantage is its
simple basic concept. Beyond that, it outperforms classicalcontrol methods such
as standard PID control even on simple systems. In predictive and optimal con-
trol, the best possible operation of an electrical drive according to a defined perfor-
mance criterion within the physical limits is achieved. Performance criteria may be
fastest possible satisfaction of a control target or maximization of power efficiency.
Physical limitations are the maximum values for voltage andcurrents. Using these
methods, benefits can be obtained regarding issues such as energy saving and safety.

1.1 Contributions

All the works in this thesis consider the design of control systems in the field-
oriented frame for rotating three-phase alternating-current (AC) machines. These
include permanent-magnet synchronous machines (PMSM), a widespread drive for
highly dynamical servo systems, squirrel-cage induction machines (IM), the most
common type for reliable and low-cost servo and standard applications, and the
synchronous reluctance machine (SynRM), a rather exotic variant of a synchronous
machine that does not require permanent-magnets.

The design of model-based predictive and optimal control schemes is carried out
for these drive systems. Specific goals are highly performant control, i.e. a fast and
precise reference response, and optimal control, i.e. the exploitation of the highest
possible energy efficiency. Here, however, some limitations apply. A key issue
is the sensitivity to uncertainties, arising from nonlinearities, disturbances, noise,
unmodeled interactions of the variables or simply from approximate and inaccurate
models. Furthermore, the high computational demands of some methods are an
obstacle in the implementation. In this thesis, efficient solutions to these problems
are proposed using flatness as design aid in order to make these techniques suitable
for industrial practice.
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Robustness of predictive control to both model parameter uncertainties and time-
varying disturbances is discussed in chapters 3 and 4. The example of deadbeat
current control is treated. The methods are assumed to be applicable to many pre-
dictive control schemes. Chapter 3 presents the theory and chapter 4 the experimen-
tal evaluation and application. An outlook on a different predictive control scheme
is presented in appendix E.

The conventional design of deadbeat current control can be classified as flatness-
based predictive control. This design relies on exact feedback linearization, a method
known to be very sensitive to parametric uncertainties. In flatness-based control, a
substitute has been proposed, exact feedforward linearization. This method is an
open-loop control method and therefore invariant to parametric uncertainties, how-
ever, it also reduces performance. A mix between exact feedback and feedforward
linearization is proposed, leading to a tradeoff between both methods. It can im-
prove parametric robustness to a sufficient extent while maintaining good control
performance. Furthermore, it robustly decouples the controller from the disturbance
estimator, such that the disturbance attenuation mechanism can be tuned extremely
fast. Then, time-varying disturbance effects such as thosearising from flux harmon-
ics can be attenuated without explicitly identifying them.

The resulting control scheme is very performant, it has a strong tracking capabil-
ity and at the same time provides good disturbance rejection. Furthermore, it is very
robust to parametric uncertainties and less sensitive to measurement noise. These
advantages are highlighted by a comparison to a PI feedback controller in chapter
2 and by the experimental evaluation on the three named typesof AC machines in
chapter 4.

Chapters 5 and 6 discuss optimal control of electrical drives. A focus is given
on dynamics, transient operation is central in the design. Both, dynamic operation
and energy efficiency, are regarded. As such aims are closelyrelated to the physical
principles of the respective machine type, optimal controlof PMSM and squirrel-
cage IM are separately treated.

Optimal control of permanent-magnet synchronous machinesis treated in chap-
ter 5. It is shown that fast torque tracking and energy efficiency are two goals that
can be simultaneously obtained, they do not contradict. By formulating an optimal
torque control problem, the cost function appears as quadratic type, with a linear
system model and linear constraints. A receding horizon problem is formulated,
the optimization horizon is set very high, such that closed-loop optimality can be
claimed. A long-horizon linear model predictive control scheme (MPC) can there-
fore provide optimal control.

MPC is based on direct optimal control. The states and inputsare parameterized,
and a parametric optimization problem is solved online to meet the actual demands
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(torque reference) at the actual condition (speed and initial currents). The major
problem in implementing MPC on an electrical drive is the limited computational
power, inherited by the high sampling rates. To cope this, a simplified approach is
developed based on differential flatness, on continuous-time polynomial parameter-
ization and on linearization and subsequent use of an efficient linear programming
solver. This can solve the computation problem, contrary tothe standard approach
of piecewise constant (discrete-time) parameterization and use of the computation-
ally more intensive quadratic programming solvers. The simplified method is sub-
optimal, but still leads to very good results, demonstratedin the experiments.

The experimental implementation can be seen as the first realization of long-
range MPC with online-optimization for an electrical drive. There have already
been successful implementations, however, they are eitherwith a short (one step)
prediction horizon, or based on unconstrained optimization, or an offline calcu-
lated explicit solution. Compared to the existing schemes, the experimental re-
sults show different and improved behavior, especially regarding the use of dynamic
field-weakening – this novelty is to be attached to the high prediction horizon with
constraints.

Optimal control of induction machines is treated in chapter6. Here, fast torque
tracking and energy efficiency stand in physical contradiction, however. Reducing
losses requires reduction of the flux, preventing a fast torque increase because of
the current limitation. The optimization problem has to be defined in a special way,
the torque dynamics are fixed by defining a desired trajectory. For this prescribed
transient, the optimal flux and current trajectories are determined. The optimization
problem is of highly nonlinear nature.

Because of the nonlinearities and the difficulties of nonlinear solvers, indirect
optimal control is chosen. Calculus of variations is appliedto derive the necessary
and sufficient conditions of optimality. A nonlinear two-point boundary value prob-
lem (BVP) appears that must be solved. As this is a hard numerical task, a simple
heuristic solution is proposed. Based on observations, it isfound that the optimal
flux resembles an exponential function. The time-dependentbehavior of the torque
is described as an exponential function from its initial to the desired value with an
arbitrary prescribed time constant. This function is fittedsuch that the BVP is ap-
proximately solved, the boundary conditions define the initial and final value, and
the optimal time constant is determined numerically using Newton-Raphson search.
The computational burden of the method is quite small and theresults are fine.

It is the first efficiency optimization scheme that considerslosses during torque
transients and that operates without a-priori knowledge ofspeed and load trajec-
tories. Optimization is based solely on actual measurements and references. It is
known that flux reduction may result in more losses than operation at rated flux,
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however, the proposed method is always more efficient than steady-state optimiza-
tion. The potential improvements are demonstrated on a flywheel experiment.

The most important aspects of the work are concluded in chapter 7, where also
an outlook on possible future works is given.

1.2 Differential flatness

Differential flatness is a concept introduced in 1992 by the researchers Fliess, Lévine,
Martin and Rouchon [FLMR92,FLMR95]. It is a new approach for theanalysis and
design of nonlinear continuous-time control systems. Froma mathematical perspec-
tive, flatness has its roots in differential-algebraic methods, and from control theo-
retic perspective, it is strongly related to controllability. The general introduction of
this theory has had a strong academical impact1.

Differential flatness is a property of a nonlinear system. Differential flatness is
an extension of the term ’controllability’ for nonlinear systems. For linear systems,
it is equivalent to controllability, but for nonlinear systems, it is a self-standing
property. A given dynamical system is either flat or not, depending on whether it
fits the following definition of flatness.

Definition: Differential flatness. Assuming a smooth nonlinear conti-
nuous-time system is given in state-space form

d
dt

x = f(x,u), (1.1)

with state vectorx ∈ R
n, input vectoru ∈ R

m and the system function
vectorf ∈ R

n. The system is further assumed to havem independent
inputs, therefore rank

(
∂

∂u
f(x,u)

)
= m. This system is said to be

differentially flat if there exists an output function

yf = λ(x,u, ẋ, . . . ,x(α)) , (1.2)

with yf ∈ R
m that satisfies the following two conditions:

1) All statesx and inputsu can be expressed in terms of the flat
outputyf and a finite number of its derivatives:

x = Γx

(

yf , ẏf , . . . ,y
(n−1)
f

)

, (1.3)

u = Γu

(

yf , ẏf , . . . ,y
(n)
f

)

. (1.4)

1The Google Scholar entry of the paper [FLMR95], which is the introduction of flatness to the
broad audience, lists nearly1500 citations as of March 2012, a remarkable number for a theoretical
control systems contribution.
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2) Asdim(u) = dim(yf ) = m, the components of the flat outputyf

are differentially independent, meaning, there is no non-trivial differen-
tial equation of the form

ψ(yf , ẏf , . . . ,y
(n)
f ) = 0. (1.5)

The set of equations (1.3) and (1.4) is denoted as differential parameterization of
the system variables and is used in the controller design.

A necessary condition for flatness is that the system must be controllable. A fur-
ther necessary and sufficient condition is that the system must be linearizable by
endogeneous feedback, i.e. either static or dynamic state feedback. If a controller
canonical form (CCF) exists, then the CCF outputs are flat outputs[SRA04]. There
are nonlinear systems that are controllable but not flat; no flat output and no differ-
ential parameterization can be found [FLMR95]. For electrical drives, however, a
deep theoretical study is not required, virtually all electrical drives are controllable
and differentially flat, as will be described later in section 2.8.

Differential flatness originates from continuous-time nonlinear systems. De-
spite this, throughout the thesis, other system classes such as linear and time-
discrete systems will be studied. It was shown that flatness is an useful property
for continuous-time linear systems as well [FM00a], even though it is equivalent
to contollability, the flatness-based approach to a probleminspires different proce-
dures. It was also shown that the theory can be directly applied to discrete-time
linear [SRA04, FM00b] and nonlinear systems [Nih07, RCA01]. Chapters 3 and 4
apply flatness to discrete-time systems in both linear and nonlinear form. Chap-
ter 5 is a continuous-time linear method, and chapter 6 continuous-time nonlinear
method, the home area of flatness.

To the opinion of the author, the widespread definition already somehow resem-
blesconditionsfor flatness rather than a general definition of that term. Therefore, a
generalized definition – in the typical way technical terms are defined – is proposed.
It shall give insight to the purpose of flatness.

Generalized Definition: Differential flatness. A system is differen-
tially flat if there is a basic variable (a flat output) whose motion de-
scribes the complete motion of the system. An explicit invertible trans-
formation leads to an equivalent algebraic system with the basic variable
and its derivatives that is free of dynamics.

The connection between the outputsyf and the statesx or inputsu can be done
without that differential equations must be integrated or solved, instead, explicit
algebraic functions are used. It is the transformation fromthe original state-space
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description to the flat output form that represents the most useful simplification, for
instance, in a nonlinear system, it may be very difficult to solve differential equa-
tions. In the flat output, the dynamics are nothing but a chainof integrators, all
effects are descibed by straightforward differentiation of yf . So, if an output trajec-
tory is known, by differentiating it, all states and inputs are given in straightforward
algebraic manner.

The theory of flatness is well developed and has been made accessible by several
books [SRA04, Lév09], in parallel, a high number of applications have been stud-
ied, many of them in mechatronics, power electronics and electrical drives. Other
application fields are chemical reactors, flight control systems, control and design
of mechanical systems, path planning for vehicles, and manymore.

1.3 Flatness-based control

The following definition is proposed to clarify the flatness-based approach in a gen-
eral controller design.

Definition: Flatness-based control.The term ’flatness based control’
denotes that in at least one step in the design of a control algorithm,
the explicit algebraic relation between full states or inputs (x respu)
and the flat outputs and a number of its derivatives (yf , ẏf ,..) has been
applied.

Differential flatness can be used for control system design in many ways. Dif-
ferential flatness is conceptually related to system inversion [SDP96], equations
(1.3) and (1.4) may also be seen as an explicit inverse systemmodel. In the typi-
cal state-space description with differential equations (1.1), with the knowledge of
the control input, the states and outputs can be calculated by integrating or solving
these equations. It can be very dificult to solve nonlinear differential equations with
an a-priori unknown input, and then determine an input that satisfies the control
task. In contrast, in an inverse model like (1.3) and (1.4), with knowledge of the
output, the corresponding states and inputs are calculateddirectly in an algebraic
manner. Inverse models are more convenient for controller design as they better fit
the task, which is, finding an input that will satisfy the control goal. However, as
a number of derivatives is required in the design, one must bear in mind that the
resulting controllers may be useless, as measurement signals should generally not
be differentiated. The problem of derivatives has been solved by the introduction of
several general control structures, the most common continuous-time methods for
continuous-time systems are presented in the following.
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PSfrag

y∗
f yfuy∗

f , ..,y
∗(n)
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Figure 1.1: Flatness-based feedforward control.

The most straightforward application of flatness in controldesign is feedforward
control, as shown in Fig. 1.1. Given a desired output trajectory y∗

f (t) that describes
for instance a setpoint change, by differentiating this trajectory and placing it into
the input parameterization (1.4), the corresponding control input u(t) is calculated
directly without solving any equations. The control goal issatisfied only if the
plant is stable, if the parameters are exactly known and if there are no disturbances.
Therefore, in the practice, this open-loop controller mustbe extended with an addi-
tional feedback mechanism in order to obtain satisfactory results.

y∗
f yfy

∗(n)
f

y∗
f , ..,y

∗(n−1)
f yf , ..,y

(n−1)
f

uvdn

dtn

xk

d
dt

Γu

Γ
−1
x

plant

Figure 1.2: Flatness-based trajectory tracking control.

An extension of this design is trajectory tracking control [SL91, SRA04], shown
in Fig. 1.2. A ’linearizing input’ is implemented using (1.3) and (1.4), this tech-
nique is denoted as feedback linearization. The dynamics are compensated such
that a new input appears asv = dn

dtn y∗
f , this means that the dynamics become an

integrator chain. Similar as for feedforward control, based on then-th derivative of
the reference trajectory, a feedforward signal is calculated. Additionally, the track-
ing error, which is the control errory∗

f −yf and a finite number of its derivatives, is
weighted with feedback gainsk and added to the feedforward command. An initial
offset from the reference trajectory is asymptotically decreasing with the desired
error dynamics, defined by the feedback gain design. Therefore, with feedback lin-
earization, well-known tools from linear control theory can be applied for nonlinear
control design. The required output derivatives are not calculated from the mea-
surement derivatives, but with the inverse state parameterization (1.4). A drawback



1.3. FLATNESS-BASED CONTROL 9

is the extremely high sensitivity to parametric uncertainties and disturbances. It has
prevented the industrial acceptance of this design method.

y∗
f yfu

x

u∗y∗
f , ..,y

∗(n)
fd

dt Γu plant

robust
control

Figure 1.3: Flatness-based two-degree-of-freedom control.

The related two-degree-of-freedom (2DoF) design, shown inFig. 1.3, has been
much more successful [vNM98]. Here, the feedforward command u∗, calculated
like in foeedforward control based on a nominal model and references, is combined
with a robust feedback controller. An offset of the measuredtrajectory from the
reference trajectory, caused by either parametric uncertainties or disturbances, is
robustly compensated. This design has been widely accepted, also as existing PID
controllers can be used as robust feedback mechanism. In many applications, the
pure extension from existing controllers to a 2DoF controller by adding a feed-
forward path has shown good performance improvements. Thisstructure will be
analyzed for current control in section 2.7.

The mentioned designs all track a predefined trajectory. If the goal is not to track
a predefined path precisely, but if there is some freedom on the output trajectory,
extending the structure to predictive control as shown in Fig. 1.4 makes sense.

yref
f yfu

x

u∗y∗
f , ..,y

∗(n)
f

Γu plant

robust
control

trajectory
generation

Figure 1.4: Flatness-based predictive control.

Flatness-based methods can be applied to predictive control as well, by using an
inverse model such as (1.3) and (1.4) the prediction is inherent [FM00a, HD08].
The reference trajectoryy∗

f is adapted to the measured statesx at every sampling
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step, the measurements are the initial conditions for the trajectory generation. The
reinitialization of trajectories enables better adaptionto uncertainties, disturbances
and input saturation. The found trajectory is then applied in (1.4) to find a feed-
forward signal. This mechanism can be adopted in a two-degree-of-freedom con-
troller where it is extended with robust feedback control toaccount for parametric
uncertainties and disturbances. The scheme provides both good performance and
robustness [FM00a,HD08].

Apart from the trajectory tracking problem, trajectory generation is a major field
of flatness-based control [SRA04,Lév09,GF06]. Here, again,the use of the differ-
ential parameterization (1.3) and (1.4) simplifies the task. Planning of trajectories
is simplified, it can respect the dynamics of the system, but without the need of
solving or integrating differential equations. The trajectory generation problem is
reduced to an algebraic problem of the output functionyf and a finite number of its
derivatives.

The most basic method is setpoint interpolation where a predefined path is ar-
bitrarily given, such as a polynomial over a time interval, and the initial and final
conditions are imposed. Input saturations can be quite easily accounted, for in-
stance by a time-scaling algorithm that slows down the output [FM00a]. Flatness-
based trajectory generation methods come with the advantage of low complexity
and computationally efficient implementation. Because of this, they represent an
interesting alternative to optimization-based methods, which again involve the so-
lution of (differential) equations. But even if optimization is applied for trajectory
generation, which should be done if really good performanceis required, the use of
flatness is advantageous [GF06]. Especially for nonlinear systems, the reduction of
the number of variables to the outputs and the inherited reduction of parameters and
equality constraints simplifies the calculations.

To conclude, while flatness-based design could be applied toany control scheme
because flatness is such a general property, the two fields that are in the center
of flatness-based controlare trajectory generationand trajectory tracking. These
aspects can be integrated in either simple structures such as feedforward control or
in advanced control systems such as predictive and optimal control systems.
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CHAPTER 2

Machine models and conventional control
methods

A prerequisite for model-based controller design is the availability of a sufficiently
accurate model. It should contain all necessary information about the time-dependent
behavior of the plant to be controlled. On the other hand, it should not be overloaded
with details in order to keep the design procedure simple. Also, only model param-
eters that are simple to identify should be included.

Therefore, in these design models, secondary effects and exact details are not
included. Some simplifications apply regarding the spatially distributed windings
and magnetic coupling, foremost:

• The windings are assumed to be spatially sinusoidally and symetrically dis-
tributed.

• Iron saturation and magnetical cross-couplings are neglected, only linear mag-
netic models are applied (Ψ = Li with L as constant).

• The resistance is assumed to be constant (i.e. no skin effect).

• Iron losses, represented by a not necessarily constant ’iron resistance’ in the
equivalent electric circuit, are neglected.

• The field distribution along the air gap is assumed to be spatially sinusoidal.
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Some more advanced models have been designed for applications such as sensor-
less control, where the rotor position and speed are calculated based on the voltage
commands and the current measurements. In such an application, these secondary
effects may play a major role. For control, the primary effects are sufficiently well
described by the model, undescribed secondary effects are compensated by robust
feedback mechanisms.

The machines are modeled as continuous-time systems. Discretization of the
models is then detailed, the digital control platform is analyzed in terms of the
appearing delays. For the design of predictive controllers, accurate accounting of
measurement and control timing is crucial.

Furthermore, the inverter is assumed to operate perfectly,i.e. with a constant
source voltage, without conduction losses and without switching nonlinearities.
Switching dead-times compensation methods are at a very mature stage and stan-
dard in nearly all modern devices.

For the purpose of efficiency optimization, later in chapters 5 and 6, loss models
for the machines will be discussed. Inverter losses, however, consisting mostly of
switching and conduction losses, will not be discussed as insmall-power drives,
they only have marginal influence on the results [Abr00,MYKT99].

2.1 Representation with space vectors

The key function of space vectors is to simplify analysis andcontrol of the spatially
and timely distributed effects in electrical machines.

Regarded are three-phase alternating-current machines. Asshown in Fig. 2.1,
each of the three phasesu, v andw (in the respective color green, red and blue)
constitutes an independent winding in the stator. Each winding is more or less sinu-
soidally distributed along the air gap. To describe the electrical and electromechan-
ical behavior of the drive, the time-varying current in the three different windings
and the respective spatial distribution over the air gap must be respected. As this is
a difficult task, the behavior is simplified by introducing space vectors.

First the spatial distribution of a single phase is described by a vector representing
the sinusoidal current distribution, defined such that the direction is orthogonal to
the maximum magnitude (Foriu(t) directionϕ = 0) and such that the magnitude
is the phase current provided by the inverter. The space vector is defined as the
superposition of the three phase currents [Leo74,Sch09,KKM03],

is =
2

3
(iu(t) + iv(t) + iw(t)), (2.1)
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Figure 2.1: Definition of space vectors: Left: Spatial distribution of stator windings
in a three-phase stator, Right: Spatial distribution of stator current vectoris.

where the factor2
3

is introduced for norming. If the space vector is expressed in the
stator fixed(α, β) coordinates, theα axis is aligned to theu axis, and knowing that
iv andiw are rotated by±120◦ (electrical degrees), the space vector is found as

(

isα

isβ

)

=
2

3

(

1 −1
2

−1
2

0
√

3
2

−
√

3
2

)





iu

iv

iw




 . (2.2)

This transformation from the three phase components(u, v, w) to the two space
vector components(α, β) is the Clarke transformation and is given by the transfor-
mation matrix

is,αβ = Auvw
αβ iuvw =

(
2
3

−1
3

−1
3

0
√

3
3

−
√

3
3

)

iuvw. (2.3)

Futhermore it is assumed that the three windings are in wye (Y) connection, there-
fore iu(t) + iv(t) + iw(t) = 0. With this constraint the transformation from a three-
component vector to two-component vector is uniquely invertible and it follows for
the back-transformation

iuvw = Aαβ
uvwis,αβ =






1 0

−1
2

√
3

2

−1
2

−
√

3
2




 is,αβ, (2.4)
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thereforeAuvw
αβ = 3

2

(
Aαβ

uvw

)T
.

The transformation is applicable also to the voltage and fluxvectors [Leo74,
Sch09].

A space vector is a fictitious value for the description of a machine. Some care
needs to be applied when referring to physical values. For intance, it can be shown
that when power is calculated, the factor3

2
reappears. The power absorbed by the

stator windings, for instance, is

Pstator(t) =
3

2
us(t) · is(t). (2.5)

Similarly, the factor3
2

appears in the description of the output torque and the power
losses.

2.2 Model of synchronous machines

A surface-mounted permanent-magnet synchronous machine (SMPMSM) is sketched
in Fig. 2.2. The permanent magnets are fixed on the rotor such that in the air gap,
a more or less sinusoidal magnetic flux appears. The north pole of the rotor is or-
thogonal to where the highest (positive) flux density appears in the stator. Based
on this simplified representation, the field-orientation can be motivated. The rotor
reference frame is denoted by the two orthogonal axesd andq, where the directd
axis is aligned to the north pole position. If a current spacevector is aligned to this
d axis, based on the previous definition of the spatial currentdistribution, it can be
seen that no torque is generated based on Lorentz’s law. If, in contrast, a current
vector is aligned to theq axis, a force is generated on each of the active current
windings, and the counteracting force is the generated rotor torqueτM . Therefore
an arbitrary stator current vectoris can be decomposed into a direct component
isd, denoted as field-generating current, and a quadrature componentisq, denoted
as torque-generating current. The decomposition into direct and quadrature current
decouples torque and flux control, the transformed dynamicson theq axis (those
of isq) are equal to those of a DC motor if the direct current is constant. As the
permanent-magnet rotor flux is mechanically fixed to the rotor, the transformation
angle from stator to rotor reference frameϕ is determined from the measured rotor
position. The detailed derivation of the model equations isprinted in appendix C.1.

For the electrical subsystem, the voltage equation of the stator windings is given
by

us,αβ = Rsis,αβ +
d
dt

Ψs,αβ. (2.6)
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Figure 2.2: Surface-mounted permanent-magnet synchronous machine
(SMPMSM): Left: Stator flux generated by PM rotor magnet, Right: direct
d and quadratureq axis.

The flux linkage equation is applied. The total flux is the sum of the mutual flux gen-
erated by the stator windings and the permanent-magnet rotor flux. For this model,
leakage inductances and magnetic cross-couplings are neglected. Even though the
stator windings are assumed symmetrical, the stator inductance may depend on the
rotor position, due to a possibly magnetically unsymmetrical rotor construction and
the difference in susceptibility between iron and permanent magnet material, or due
to magnetic saturation effects. The stator flux linkage is described for simplicity in
the rotor reference frame and given by

Ψs,dq =

(

Ld 0

0 Lq

)

is,dq +

(

ΨPM

0

)

. (2.7)

The state-space model of the electrical subsystem follows as

d
dt

isd = −Rs

Ld

isd + npωM
Lq

Ld

isq +
1

Ld

usd, (2.8)

d
dt

isq = −Rs

Lq

isq − npωM
Ld

Lq

isd − npωMΨPM +
1

Lq

usq. (2.9)

The output equation is the generated torque

τM =
3

2
npΨPM isq +

3

2
np(Ld − Lq)isdisq. (2.10)
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The first component is the electromagnetic torque, based on the interaction between
the permanent-magnet rotor flux and the stator current. The second is the so-called
reluctance torque, it is a purely magnetic effect based on the minimum energy prin-
ciple, the system will tend to the state with minimum potential energy, in this case,
the rotor position where minimal magnetical energy is stored. Interestingly, both
effects are covered by Lorentz’s law.

To complete the state-space model, the mechanical equation

d
dt

ωM =
1

Θ
(τM − τL) (2.11)

must be included, whereΘ is the moment of inertia andτL is the load torque. In the
following, this mechanical equation will not be applied forthe design of the current
or torque controllers. The reason is that in practice, the involved parameters are not
known, for instance, the moment of inertia will change whenever a load is attached
to the machine, and the load torque can be a time-varying function. Instead, in the
current and torque controllers, the speed is measured and regarded as known time-
varying parameter, and for speed control, experimentally tuned PI controllers will
be used. This somehow corresponds to a linearization of the model.

2.3 Model of induction machines

The construction of the induction machine may be compared toa transformer, if
the rotor is at standstill, it is nothing but two coupled three-phase windings, a stator
currentis can induce a rotor currentir. If the rotor turns synchronously to the
excitation field, the rotor windings are subject to a constant magnetic field and so
there is no induced current in the rotor,ir = 0, and no torque is generated. If
the rotor is rotating with a certain slip versus the excitation frequency, which is
the typical case, the rotor turns and simultaneously there is an induction such that
torque is generated. The detailed calculation of the model equations is printed in
appendix C.2.

There are two windings to be regarded on the stator and the rotor respectively,
and the corresponding voltage equations read as

us,αβ = Rsis,αβ +
d
dt

Ψs,αβ, (2.12)

ur,ab = Rrir,ab +
d
dt

Ψr,ab, (2.13)

where the rotor voltage isur,ab = 0 as only the squirrel-cage induction motor is
regarded. The index (α, β) denotes the stator-fixed frame and (a, b) the frame ma-
chanically fixed to the rotor.
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Figure 2.3: Squirrel-cage induction machine (IM): Top left: stator current and cor-
responding flux, top right: rotor current and correspondingflux, bottom left: Mutual
flux generated by superposition, Right: directd and quadratureq axis. Thed axis is
not aligned to the mutual flux because of the leakage flux.

The mutual flux in an induction machine consists of the superposition of the
stator-current-generated mutual fluxLmis (Fig. 2.3 top left) and the rotor-current-
generated mutual fluxLmir (Fig. 2.3 top right). The total mutual flux is the total
flux passing through both the stator and the rotor windings (Fig. 2.3 bottom left),
it is denoted asΨm = Lm(is + ir) = Lmim. The leakage flux in stator and rotor
is only passing through the respective winding and is denoted asLsσis andLrσir,
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respectively. The flux linkages in the stator and the rotor are therefore

Ψs,αβ = Ψsσ,αβ + Ψsm,αβ = Lsσis,αβ + Lm(is,αβ + ir,αβ), (2.14)

Ψr,ab = Ψrσ,ab + Ψrm,ab = Lrσir,ab + Lm(ir,ab + is,ab). (2.15)

The rotor fluxΨr reference frame is used for field-oriended control, it is denoted
by the two orthogonal axesd andq, the directd axis is about orthogonal to where
the highest positive rotor flux density appears in the stator. If a current space vector
is aligned to thisd axis, based on the previous definition of the spatial currentdistri-
bution, it can be seen that no torque is generated based on Lorentz’s law, however,
the flux magnitude is affected. If, in contrast, a current vector is aligned to theq
axis, a force is generated on the respective current windings, and the counteracting
force is the generated rotor torqueτM . Therefore an arbitrary stator current vector
is can be decomposed into a direct componentisd, denoted as field-generating cur-
rent, it is solely responsible for maintaining the rotor fluxat a certain magnitude,
and a quadrature componentisq, denoted as torque-generating current. The decom-
position into direct and quadrature current completely decouples torque and flux
control, the transformed dynamics on theq axis can be shown to be equal to those
of a DC motor if the rotor flux magnitude is constant.

There are four vectors, stator and rotor flux, and stator and rotor current. The
stator currentis,αβ and rotor fluxΨr,αβ are chosen as state variables. This is senseful
asis,αβ is directly measured, andΨr,αβ is directly used for the field-orientation and
flux magnitude control. The stator fluxΨs,αβ and rotor currentir,αβ can easily be
replaced by expressions of the two state vectors.

Due to the many interactions in the machine, the model reads as a set of rather
complicated equations, which are simplified by some parameter definitions, typical
in the literature [KKM03]. The four constants are defined by:

Inverse rotor time constant η = Rr

Lr

Leakage (dispersion) coefficientσ = 1 − L2
m

LsLr

Coupling factor β = Lm

σLsLr

Inverse stator time constant γ = 1
σLs

(Rs + L2
m

L2
r
Rr)

With these definitions and the two vector differential equations, the state-space
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model in stator-fixed frame is found as

d
dt

isα = −γisα + βηΨrα + βnpωMΨrβ +
1

σLs

usα, (2.16)

d
dt

isβ = −γisβ + βηΨrβ − βnpωMΨrα +
1

σLs

usβ, (2.17)

d
dt

Ψrα = −ηΨrα − npωMΨrβ + ηLmisα, (2.18)

d
dt

Ψrβ = −ηΨrβ + npωMΨrα + ηLmisβ. (2.19)

The stator current vectorisαβ and the speedωM are measured. The voltage com-
mandsusαβ are also known sufficiently well if the inverter nonlinearities are com-
pensated. Only the rotor fluxΨrαβ is unknown, unlike in synchronous motor it is
not related to the rotor position and not even to the rotor current, a model-based ob-
server is required. The last equations (2.18) and (2.19) aredenoted as ’rotor model’
any may be used for open-loop rotor flux estimation [MR96b]. For improved accu-
racy, the first equations (2.16) and (2.17), denoted as ’stator model’, are applied as
well for the design of a full-order observer.

The torque is given by

τM =
3

2
np

Lm

Lr

(Ψrαisβ − Ψrβisα), (2.20)

and the mechanical equation is

d
dt

ωM =
1

Θ
(τM − τL), (2.21)

whereΘ is the moment of inertia andτL is the load torque.
In the second step, the model is transformed into the field-oriented frame, also

denoted as Park transformation. The transformation into the rotor field oriented
frame is a physically motivated coordinate transformationto decouple the torque
and flux dynamics. The term ’field-oriented control’ denotesthat a control system
is designed in this reference frame, rather than referring to a specific control method,
for instance cascaded PI controllers.

The coordinate frame is rotated to the synchronous frame, where the direct axisd
is aligned to the rotor flux vectorΨr, as shown in (Fig. 2.3 bottom right). Therefore
the rotor flux in the transformed coordinates is defined as

Ψr,dq =

(

Ψrd

0

)

, (2.22)
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whereΨrd is the rotor flux magnitude. This is in fact a transformation from carte-
sian coordinates, where the flux is descibed by two orthogonal vector components,
to polar coordinates, where the flux is described as magnitude Ψrd and angleρ.
This angleρ is the rotation angle between the stator fixed frame and the rotor field
oriented frame.

The complete model in field-oriented coordinates is given byfive differential
equations [KKM03, QD08]. The first three equations are explicitly used for the
current and flux controller design,

d
dt

isd = −γisd + βηΨrd + npωM isq + ηLm

i2sq
Ψrd

+
1

σLs

usd, (2.23)

d
dt

isq = −γisq − βnpωMΨrd − npωM isd − ηLm
isdisq
Ψrd

+
1

σLs

usq, (2.24)

d
dt

Ψrd = −ηΨrd + ηLmisd, (2.25)

and the fourth equation, which is in general not used for field-oriented controller de-
sign, is giving the rotor flux angle derivative, or the electrical excitation frequency,

d
dt

ρ = npωM + ηLm
isq
Ψrd

. (2.26)

The output equation for the torque simplifies to

τM =
3

2
np

Lm

Lr

Ψrdisq, (2.27)

and the fifth equation, the mechanical equation, is still

d
dt

ωM =
1

Θ
(τM − τL). (2.28)

This mechanical equation will not be applied for controllerdesign with the same
arguments as in the previous section. The speed is measured and regarded as known
time-varying parameter for the electrical subsystem.

Even though the induction machine is a quite complex system,control in the
field-oriented frame is simple. Flux and torque can be controlled independently
by imposing a currentisd or isq, respectively. Furthermore, for current control, it
is seen thatusd affects d

dtisd and thatusq affects d
dtisq, so control of the currents is

somehow input independent. However, even though flux and torque are decoupled,
the current dynamics are strongly interacting, and a multivariable current controller
is desirable for high-performance control.
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2.4 Systematic constraints

Designing a controller in the field-oriented frame is a fundamental choice, leading
to a number systematic characteristics. The main aspects ofthis design compared to
direct and stator-oriented control designs is well described in the literature [Qua93,
QD08,Leo74,Sch09].

Control in the field-oriented frame is inherently simple and intuitive. A contin-
uous input voltage is generated by a modulation scheme and aninverter. The key
strengths are:

• Simple decoupling of torque and flux magnitude control by dividing the cur-
rent vector in two orthogonal directd and quadratureq components. Each
current component will only influence one output.

• High steady-state accuracy as the controller does not operate in transient op-
eration. In the (d, q)-frame, at constant speed and torque, all states (voltages,
currents, flux magnitude) are constant.

• Independent control of bothd andq axis currents can be guaranteed by imple-
menting independent saturation functions, such that voltage saturation on one
axis shall not influence control of the other axis. In most practical cases, only
the voltage inq axis will be close to its saturation limit because of the back-
EMF, and a well-designed saturation function ensures that sufficient voltage
is present on thed axis for good control. This simplifies operation close to
the saturation limits, and in high-speed operation, this prevents misorienta-
tion and ensures safe torque and flux decoupling. Obviously,for the rare case
where voltage saturation appears on both axes, this advantage disappears.

• A constant and well-defined switching frequency ensures lownoise in all op-
eration modes.

However, control in the field-oriented frame with continuous voltage commands
also has some disadvantages, not appearing for instance in direct control schemes
that directly specify the inverter switches without modulation:

• Conventional direct control (DTC) is faster than conventional control with a
modulator (cascaded PI control), as ’full’ voltage can be applied throughout a
sampling interval instead of switching patterns that fall back to zero-voltage.

• While torque and flux are decoupled, the current dynamics themselves are
strongly coupled. This coupling may be more intense and morenonlinear in
the field-oriented frame, for instance in induction machines.
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• Limitations in the measurement circuit, such as analog-digital conversion la-
tency in the current measurements or switching dead times, limit maximum
modulation and thereby the maximum applicable voltage. Obtaining full volt-
age is technically possible, however, hard to implement [QD08]. This prob-
lem does not appear in DTC (and PTC).

• The voltage saturation is not naturally included in the controllers. The volt-
age commands generated by a controller could be higher than the maximum
inverter output, as a result, the output does not follow as foreseen, and inte-
grators in the controller further increase the voltage command. This effect
results in a controller wind-up. To prevent this, anti-windup mechanisms and
artificial voltage command limitations must be implemented.

Here, direct control is not discussed (except in appendix E which is a follow-up
to chapters 3 and 4). Each method has its advantages and issues, pointed out for
instance in [RKE+12]. For small-power drives, however, field-oriented control is
the standard vector control principle.

2.5 Model discretization and delay compensation

The models derived in the previous sections are continuous-time models. In chap-
ters 3 and 4, however, discrete-time controllers are designed. For this purpose, after
an analysis of the digital control platform and measurementand control timing, the
models are discretized.

A digital current control loop on the used standard interrupt-synchronized digital
control platform has a delay of two sampling steps [MKY03]. This is seen in the
timing diagram in Fig. 2.4. The interrupt-based control system triggers an interrupt
at every sampling step. The interrupt handling is quite slowdue to the system laten-
cies and the slow A/D converter. The actual voltage commandu[k] is modulated at
the marked instantsk and the switching times determined for the power electronics.
After that, the interrupt handling software is started and the A/D-conversion of the
current measurementsi[k] is immediately performed to avoid the impact of current
ripples on the measurements. Once the current samplei[k] is available, the inter-
rupt handler finishes and the control algorithm is started tocompute the next voltage
commandu[k + 1], this signal must, however, wait until the next interruptk + 1 to
be modulated, the switching times cannot be changed betweenthe interrupts.

This means that the voltageu[k + 1] has been calculated with an old current
samplei[k]. This delay of measurement fromi[k] until the application of control
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Figure 2.4: Timing of interrupt, control, voltage commandsand current measure-
ments of a digital control system.

actionu[k + 1] to the system is denotedcomputational delay. It has to be compen-
sated, otherwise, oscillations will appear in a closed-loop predictive control system
as seen in Fig. 2.5 (a). Here, after the reference step,140 V are applied, and as
the feedback signal shows no change after one step, the voltage is still applied in
the next step. The delay leads to the fact that any control error is compensated by
a voltage command of correct magnitude, but of double duration than required, this
results in an oscillation of the output even though the controller is correctly tuned.
The delay must be compensated, the technique is straightforward, the current of the
next stepk is predicted at the timek − 1 by integrating the discrete-time system
model

i[k|k − 1] = f(i[k − 1]) + Bu[k − 1], (2.29)

and this prediction is applied as feedback to the control algorithm to calculate the
next control actionu[k]. This implementation is possible asi[k − 1] andu[k − 1]
are known during the time of execution. In Fig. 2.5 (b) the predicted (blue) current
signali[k|k − 1] is applied for feedback instead of the measured currenti[k − 1]
(red) to avoid the mentioned problem.

The technique is known as Smith-predictor. Although the one-step delay is a
state, and the system therefore a second-order system, the current control loop is
assumed as first-order system for the design of a current controller. With this tech-
nique, the delay can be ignored for controller design. In practice, the reference is
delayed by one sampling interval, such that two steps delay are still present between
reference and output.
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(a) Without delay compensation. (b) With delay compensation.

Figure 2.5: Experimental results: Deadbeat control without and with delay com-
pensation.

In Fig. 2.4, it is further seen that the response to a modulated voltage peaku[k +
1] is not directly seen at the output but only appears one step later at i[k + 2].
This is denoted asplant delay, it is respected in the predictive control system if the
continuous model is linearized using Euler forward discretization. Accordingly, the
continuous time current variation is redefined such that it reflects the physics,

L
d
dt

i(t) = u(t) ⇒ L(i[k + 1] − i[k])/Ts ≈ u[k]. (2.30)

The Euler approximation of the continuous derivative generates a lag error that
corresponds exactly to the delay in the real system, and the step response of the
designed predictive (deadbeat) controller is as desired asseen in Fig. 2.5 (b).

Another assumption that is done for discretization is that the open-loop time con-
stant L

Rs
is much larger than the samling intervalTs. During the sampling interval,

the response of the current to a constant input voltage is assumed to be of constant
slope. The real response is asymptotic, however, assuming the voltageu is constant,
the continuous-time current response is

i(t) = i0 +

(
u

Rs

− i0

) (

1 − e−
Rs
L

t
)

, (2.31)

and by assuminge−
Rs
L

Ts ≈ (1 − Rs

L
Ts), valid if the expressionRs

L
Ts is small, the

above described discretization appears,

i[k + 1] =

(

1 − Ts
Rs

L

)

i[k] +
Ts

L
u[k]. (2.32)
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For systems with low sampling rates or without delay, other techniques exist, fore-
most based on approximating the continuous-time response analytically [LKKS10].

2.6 Limitations of linear flux models

In the deduction of the models in the previous sections, a linear flux model has been
assumed. However, due to size and cost constraints in the machine construction,
magnetic saturation effects appear and inherit flux nonlinearities. Two sketches are
shown in Fig. 2.6 for typical drives, left for a PMSM and rightan IM, both in the
direct axis.

isdisd

ΨsdΨsd

Ψsd,NΨPM

Figure 2.6: Saturation effects in electrical machines, sketch. Left: permanent-
magnet synchronous machine, saturation is disregarded in the linear flux model
(red). Right: induction machine, saturation is accounted byadjusting the secantial
inductance in rated operation (red), the tangential inductance (green) will have a
different value.

Saturation effects result in current-dependent inductances [GGPL98]. In drive
systems, a convention has appeared that transforms the problem of one nonlinear
flux curve in two linear models with setpoint-dependent inductances. These are:

• The tangential inductance (or dynamic inductance)LT . It describes the small-
signal behavior at a setpoint,

LT =
∂Ψ

∂i
⇒ u = LT d

dt
i. (2.33)

• The secantial inductance (or static inductance)LS. It describes the large-
signal behavior at a setpoint,

LS =
Ψ

i
⇒ Ψ = LS · i. (2.34)
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To account for this saturation, lookup tables must be identified and stored in the
real-time system. The model derivation must account for thetwo different induc-
tance values. This makes controller design complicated andis only done if really
necessary, for instance in sensorless control applications, or for synchronous reluc-
tance machines.

In this thesis, saturation effects are not accounted in the design, the controller
design is made robust against this uncertainty source. As shown in Fig. 2.6, the
inductance values for PMSMs are identified at zero current, thus ignoring any sat-
uration influence. The inductance value for the IM is the secantial inductance at
rated flux, such that in rated operation, the secantial inductance is correct. This
is important for correct flux calculation by the observer, and is also the industrial
standard.

2.7 Conventional control: Optimized PI controller

Often it is assumed that a predictive controller is less robust than a feedback con-
troller [PLR05]. This is true for very slow PI controllers, however, as inductance
uncertainties result in dynamic gain uncertainty, PI controllers also suffer from
such uncertainties. This section analyzes parametric robustness of a fast PI reg-
ulator, tuned according to the symmetrical optimum criterion. The tuning rule is
quite widespread in field-oriented control and should give afair comparison to the
later presented model-based designs, especially as good disturbance response is
claimed [Sch09]. The evaluation is based on the PMSM described in appendix B.1.

Controller tuning

The continuous design starts by approximating the transferfunction of the plant by

G(s) =
I(s)

U(s)
=

1
R

(1 + sTσ)(1 + sL
R
)
, (2.35)

wheres is the Laplace operator,1
R

the DC gain,L
R

is the open-loop time constant and
Tσ is the time constant that approximates the delay consistingof computational and
plant delay. In this design, the delay of two sampling steps is thereby approximated
as lowpass filter with a time constantTσ ≈ 2Ts as proposed in [Sch09].

Very often, current controllers are tuned according to the magnitude optimum cri-
terion. Both designs can be applied to the unerlying dynamicsand lead to a PI con-
troller. Which design should be used depends on the machine parameters [Sch09].
For the case that the open-loop time constant is smaller thanfour times the delay,
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L
R

< 4Tσ, the magnitude optimum criterion is preferable because it does not need
a prefilter and has a similar disturbance rejection as the symmetric optimum crite-
rion. In the other case where the open-loop time constant is larger, L

R
> 4Tσ, the

symmetric optimum criterion will have a considerably better disturbance rejection.
For instance, in the presented experimental example, the symmetric optimum crite-
rion leads to a disturbance settling time of1.25 ms compared to5.44 ms with the
magnitude optimum criterion. The required reference prefilter is not a problem for
cascaded control.

As the open-loop time constant is considerably higher than the delay, the resis-
tance is ignored in the design, and the optimum continuous-time controller accord-
ing to [Sch09] is

R(s) =
U(s)

I∗(s) − I(s)
= VR

1 + sTn

sTn

, (2.36)

where the tuning rules prescribeTn = 8Ts andVR = L
4Ts

. The proportinal part
is responsible for fast reference tracking, the integratorcompensates steady-state
offsets, and there is no need for a delay compensation technique. Even though the
model parameters are used in the design, there is no explicitusage of the model in
the control, the PI controller is not of the class of model-based controllers.

Robustness analysis

The influence of a difference between correct inductanceL and inductance assumed
for gain tuningL̂ is analyzed. The continuous controller is discretized (Euler ap-
proximation) and its closed-loop behavior is calculated based on the discrete model.
The discrete-time transfer function of the closed loop control system is

G(z) =

{
I(z)

I∗(z)

}

=
b2z

2 + b1z

a3z3 + a2z2 + a1z1 + a0

, (2.37)

where
a3 = 32 , b2 = 9 L̂

L
,

a2 = −64 + 32Ts
R
L

, b1 = −8 L̂
L

,
a1 = −32Ts

R
L

+ 9 L̂
L

+ 32 ,
a0 = −8 1

L
L̂ .

Fig. 2.7 shows thez-space polemap deducted from this transfer function for an
inductance uncertainty∆ = L̂−L

L
. It is already seen that at nominal parameters, the

bandwidth of this controller quite low. Sensitivity toL is high, the stability limit is
at ∆ = 1.7, and any∆ > 0 inherits oscillations. For∆ < 0 a slowdown appears.
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Figure 2.7: Discrete frequency domain polemap of PI controller tuned with sym-
metric optimum criterion under inductance uncertainty.

If the inductancêL is assumed too high, the command voltage is too high as the
open-loop dynamic gain of the plant1

L
is assumed too small.

Fig. 2.8 shows experimental results. In subfigure (a) the response with nominal
parameters is shown, the characteristic overshoot of40.4% appears as no reference
prefilter was applied. Subfigure (b) shows the response with∆ = 1, or L̂ = 2L, a
badly damped oscillation and a much stronger overshoot appear. In subfigure (c),
an underestimated inductance∆ = 0.5, or L̂ = 1

2
L, is applied, the settling time is

thereby doubled. These results are all a zero speed, where nodisturbance appears.
Subfigure (d) shows the response at2000 rpm. The current has a strong ripple of600
Hz, these are harmonic effects caused by the non perfectly sinusoidal distribution
of the stator windings, six times the excitation frequency which is 100 Hz. The
magnitude of the ripple is about140 mA (RMS) on theq-axis and50 mA on the
d-axis.

Thus the fast PI controller is sensitive to modeling errors.Furthermore the distur-
bance bandwidth of the PI controller is insufficient to compensate flux harmonics,
as already remarked in [SH98]. Both characteristics, tracking performance and dis-
turbance rejection, are not really satisfactory and could be improved.

Performance improvement: Two-degree-of-freedom control

The tracking performance can be improved by using a two-degree-of-freedom con-
trol structure. As described in Fig. 1.3, the tracking performance is given by a
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(a) PI control with correct̂Lq = Lq at0 rpm. (b) PI control withL̂q = 2Lq at0 rpm.

(c) PI control withL̂q = 0.5Lq at0 rpm. (d) PI control with correct̂Lq = Lq at2000 rpm.

Figure 2.8: Experimental results: PI controller tuned withsymmetric optimum cri-
terion.

feedforward controller. The PI controller compensates thedifference between the
reference and measured trajectory, knowing that the systemhas a delay of two steps,
the reference is delayed accordingly for the PI controller.The experimental results
are shown in Fig. 2.9, the tests are identical to those of the PI controller. Subfig-
ure (a) shows a very satisfactory reference response, the feedforward path is good
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such that the PI controller only has a small task. Under uncertainties, however, the
feedforward controller does not operate precisely, and thePI controller, also subject
to the uncertainty, has to compensate the offset. In subfigure (b) the error of the
feedforward controller is very high, and the PI controller does not operate safely as
the stability limit is very close. The response is subject tothe same oscillations as
without feedforward control. In subfigure (c), both controlpaths have a too small
action. Subfigure (d) shows that the disturbance response isidentical to the sole PI
controller.

To conclude, the reference tracking performance of the two-degree-of-freedom
controller is improved compared to the sole PI controller. However, the results are
still not satisfactory, especially under uncertainties. The parametric sensitivity is
high and the disturbance rejection capability is low. This motivates the following
work, which aims at obtaining a good reference tracking, even under uncertainties,
and simultaneously, a strong disturbance rejection to compensate the effects of the
flux harmonics.

2.8 Flatness of electrical drives

Virtually all electrical drives are differentially flat systems. This includes the DC
machine [SRA04], PMSMs [SRA04], induction machines [MR96b], and some more
exotic designs such as linear torquers or magnetic bearings[vL02].

Control of electrical drives is of high practical importance, and more than that,
they are interesting from theoretical point of view. This has motivated a number of
research projects in both the electrical drives and the control systems communities.
The induction machine is a high-order nonlinear multivariable system. The two
outputs strongly interact and nonlinear terms appear, and the flux dynamics are of
second order. Additionally, one of the outputs, the flux, cannot be measured and
must be calculated with an observer. As multivariable system, its flat output vector
is not unique but there is a certain choice, for instance:

• The rotor flux magnitudeΨrd and the torqueτM (or the speedωM or rotor
positionϕM , depending whether one discusses torque, speed or positioncon-
trol).

• The rotor positionϕM and the ’slip’ angleδ = npϕM − ρ, i.e. the angle of
the rotor flux with respect to the rotor-fixed (a, b)-frame [MR96b,DLO01].

• The output to be controlled (eitherτM , ωM or ϕM ) and the ’controllable’
lossesPloss (defined in chapter 6).
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(a) 2DoF control with correct̂Lq = Lq at0 rpm. (b) 2DoF control withL̂q = 2Lq at0 rpm.

(c) 2DoF control withL̂q = 0.5Lq at0 rpm. (d) 2DoF control with correct̂Lq at 2000 rpm.

Figure 2.9: Experimental results: Two-degree-of-freedom(2DoF) controller using
a PI controller tuned with symmetric optimum criterion.

Which flat output is the best choice is mostly matter of the control goal. It may be
possible to avoid nonlinearities in the design by choosing an appropriate output. In
most cases, however, one should choose a vector with physical meaning to simplify
the design task.

Many flatness-based control schemes were proposed for the induction machine.
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A general exposition of its flatness is found in [DLO01]. Someworks were done
on discretization and discrete-time control of the nonlinear model [MR96a], as well
as on improved rotor flux observers [MR96b]. Efficiency-optimal control of the
squirrel-cage IM is described in [HRD03] and of the doubly-fed induction generator
in [Gen08]. It also served as benchmark example to study robustness of predictive
control in [HD08].

The synchronous machine is a much simpler system, all statescan be measured if
a position encoder is available. Again, as multivariable system, its flat output vector
is not unique but can be chosen from:

• The field-generating stator currentisd and the torque-generating stator current
isq (or the speedωM or rotor positionϕM ) [SRA04].

• The field-generating stator currentisd and the torqueτM as sum of elec-
tromagnetic and reluctance torque (or the speedωM or rotor positionϕM )
[DS04].

• The stator current magnitude
√

i2sα + isβ2 and the stator current anglearctan 2(isβ/isα)
[SRA04] in the case of torque or current control.

The first choice is the simplest because it relies on the variables applied in any field-
oriented controller. Latter choice of stator current magnitude led to the successful
design of a ’nonlinear position estimator’ for back-EMF-based sensorless control.

For the synchronous machine, a quite small number of flatness-based controller
designs have been proposed. It seems as the simplicity of this drive prevents the in-
terest of control engineers with a more theoretical orientation. Nevertheless, PMSM
control design can be challenging, especially for advancedand robust algorithms.
A maximum-torque-per-ampere controller accounting for reluctance torque is pre-
sented in [DS04] and robust tracking control has been studied in [LML03].

Apart from current and torque control, higher-order systems have been studied,
for instance resonant loads [TF11] or the combination of drives and boost converters
[AD06].
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CHAPTER 3

Robust flatness-based predictive control:
Deadbeat current control for AC drives

Predictive control is a powerful control method that makes extensive use of the
model information. The closed-loop performance can be designed to be close to
the physical limits of the controlled system. A major restriction, however, is the
high sensitivity to errors in the model. This chapter demonstrates a method inspired
from flatness-based control which improves robustness without decreasing control
performance. The scheme is applicable to many other predictive control systems.

Deadbeat control is chosen to present the method. Deadbeat control is consid-
ered as one of the fastest current control schemes, it provides extremely fast control
and simple straightforward design. It only requires a simple model of the current
dynamics, consisting of the time constant, the gain and cross-coupling. Problems
in the design are, however, delays, disturbances, and high sensitivity to modeling
errors and noise. Since deadbeat control is a very aggressive scheme, these prob-
lems require more consideration than if conventional control schemes are applied.
Indeed, these disturbances prevent an industrial application of deadbeat control. So
far it is only used in few applications such as active power filters or uninteruptible
power supplies, but in industrial drives, although it is useful, it is, with just a few ex-
ceptions [Nus99], mostly used in laboratories. Improving robustness of predictive
controllers and more specifically of deadbeat control is a major point in transferring
this theory to practice.
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3.1 Preliminaries

3.1.1 Deadbeat current control for AC drives: State of the art

The first designs of deadbeat current control have been published already around
40 years ago, but research is still active. Problems of the design are, as mentioned,
delays in the digital system, leading to oscillations, modeling errors, leading to
performance reduction or instability, and the high sensitivity to noise. The deadbeat
controller has been sequentially improved, step by step.

While the first works were designed on special controller hardware, in order to
use more standard hardware, the delay problem was addressed. A flux and current
observer with adaptive poles was proposed in [BBK92] to avoid the oscillations
caused by the delay, shown in Fig. 2.5. As alternative, model-free delay com-
pensation was proposed, the current is predicted based on second-order interpo-
lation [KMY90] or on Lagrange interpolation [Kuk96] using the past current mea-
surements. The interpolation method is robust to parameteruncertainties and solves
the problem in steady-state, however, not in transient operation. The model-based
delay compensation was finally proposed in [MKY03], alreadypresented in section
2.5. It is the most simple, performant and most common method, today applied in
almost all deadbeat and predictive control schemes. Any well-known delays in the
system can be compensated by prediction, including for instance the position mea-
surements for the synchronous frame transformation [MKY03], further improving
performance.

The sensitivity to model errors was addressed as well, mostly aiming at remov-
ing steady-state offsets. The introduction of a disturbance estimator, named ’input
delay approach’ and acting like an integral term that compensates the model errors
and disturbances, is of very high relevance. The original presentation was on spe-
cial hardware without delay [KY01], but the same design can be easily repeated
to account for the delay, and steady-state accuracy is improved. The system with
disturbance estimator provides good parametric robustness to the resistance and the
back-EMF, however, inductance uncertainty remains a problem [YL02], the stabil-
ity limit is at 100% parameter error. This means if the estimated inductance has
double value than the real inductance, the system is unstable. Other problems are
the line voltage, as the stability limit was reported at20%, an estimation method
that additionally accounts inductance and inverter effects was proposed [MMB99].
Using such disturbance estimators, the steady-state erroris practically zero.

Time-varying disturbances, such as those arising from flux linkage harmonics,
are not well treated with the disturbance estimator. The disturbance terms are as-
sumed constant in the disturbance estimator design (randomwalk model) [KY01],
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furthermore, the estimated disturbance is lowpass-filtered to reduce dependence on
model parameters (time-scale decoupling). For instance in[KY01] the disturbance
cutoff frequency is at318 Hz for a PMSM excited at100 Hz, such cutoff frequencies
are typical in the respective literature. In this case, the bandwidth of the disturbance
estimator becomes too small and time-varying disturbancescannot be compensated.
Such effects arise from nonperfect stator construction, mainly the non-perfectly si-
nusoidal distribution of the windings. In the stator frame,these imply a thirt, fifth
and seventh harmonic on the respective phase current or voltage [ML92]. In the
space vector representation in the synchronously rotatingdq-frame, it can be shown
by calculation [Wal01] and measurement [HS96, SH98] that the main components
are6 and12 times the fundamental excitation frequency. It is possibleto measure
this high-frequency disturbance and compensate it [SH98],an additional voltage
signal dependent on the speed and the rotor position is applied. To bypass the
limitations of this off-line method with fixed prameters, on-line torque estimation
combined with fast torque control has been proposed [CKKY98]. If the mechani-
cal system is well known and the sensors are sufficiently good, the torque ripple is
considerably suppressed.

Steady state accuracy and ripple can be compensated, however, the problem of
sensitivity to inductance remains very strong. The deadbeat condition states that the
control error should vanish in the next sampling step, making this controller very
aggressive. The objective can be reformulated to make the controller less aggressive
and therefore also less sensitive. In [BLNH05] the design condition is that the
control error is reduced by50% in the next sampling step, resulting in asymptotic
convergence. In [Qua93] a finite settling time of not one, buttwo or three steps is
proposed. It is well known that the robustness is increased by making the deadbeat
interval longer than the order of the system [Föl85]. Therefore, both methods render
the system less sensitive, and errors around50% in the inductance are no problem.

Furthermore, depending on the operation condition, due to the voltage saturation,
the deadbeat condition of zero error in the next sampling step may not be practica-
ble. Various voltage saturation methods are discussed in [OS02]. It is important to
regard the voltage saturation for the delay compensation algorithm, any difference
between voltage command and applied voltage leads to errors. Several methods
are discussed regarding the two main aspects, which are independent control of
both current components and fast response. Simple saturation of the axis guaran-
tees independent control, but less restrictive methods exist, namely dynamic vector
limitation or methods regarding the multivariable dynamics of the drive.

Interestingly, there are only few works on online parameteridentification. Al-
though deadbeat control and online identification is possible [JP97], simultane-
ous estimation of disturbance and parameters is not directly possible. A heuristic
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method was proposed, in [MES07] the deadbeat controller is started with nominal
parameters and the correct parameters estimated offline, then, at a certain instant,
the parameter set is updated. The absence of real online-identification on the given
system, however, strengthens the motivation to improve robustness.

Alternative fast control schemes to deadbeat control were and are still developed.
Using specialized hardware, such as field programmable gatearray (FPGA) and
an extremely fast A/D converter that samples10 times faster than the controller,
the inductance and back-EMF can be identified online from themeasured current
slopes [WB08, FBB12]. There, it was shown that simultaneous estimation of pa-
rameters and disturbances is possible, a fundamental limitation of deadbeat control
when implemented on standard hardware [JP97]. However, apart from the expen-
sive electronics, this interesting scheme cannot yet handle rotor anisotropies or non-
linear cross-coupling terms, therefore it cannot handle interior permanent-magnet
SMs or induction motors in field-oriented frame. Furthermore, the maximum out-
put voltage is limited to the range10− 90% as a rising and falling slope is required
within each sampling interval. Nevertheless, online parameter identification is an
upcoming topic.

Deadbeat direct torque control [KL03] was proposed, the machine equations are
solved in similar way as for the deadbeat design, the analytic version of the well-
known direct torque control method (DTC) simplifies the incorporation of current
and voltage constraints and gives the possibility to combine injection-based sen-
sorless methods. Indeed, the deadbeat design method, because of its simple and
straightforward analytic design, is the core of many control systems, such as adap-
tive controllers etc.

Because of the simple design, however, deadbeat control is still popular. Simplic-
ity and the fact that the method is easy to embed in existing field-oriented controllers
on an arbitrary drive might be the major advantages of the conventional deadbeat
controller.

The goal of this chapter is to solve the delay, noise and parameter sensitivity prob-
lem. The standard delay compensation [MKY03] and disturbance estimator [KY01]
will be applied as they are simple to implement. Performanceshould be maximum,
the deadbeat condition that control error vanishes at the next step is maintained.
Furthermore, the disturbance estimator is tuned so fast that it also compensates the
named harmonics and current ripples additionally to the steady-state offset. These
criteria lead to an extremely fast but also sensitive control system. Using the results
from flatness-based control on robustness, however, the deadbeat controller can be
made considerably more robust while maintaining the superior control performance.
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3.1.2 Basic deadbeat current controller design

A discrete-time model of the current dynamics is written as

i[k + 1] = f(i[k]) + Bu[k], (3.1)

wherei[k] is the current at instantk, u[k] the voltage,f(i[k]) the current dynamic
vector andB the input matrix. The output is the currenti[k]. The deadbeat condi-
tion is

i[k + 1] = i∗[k], (3.2)

which defines the desired closed-loop performance. The linearizing inputv[k] is
found asv[k] = i[k + 1], or, with (3.1),

v[k] = f(i[k]) + Bu[k], (3.3)

where the deadbeat condition leads to the control law

v[k] = i∗[k]. (3.4)

With the deadbeat condition and by rearranging (3.1), the physical realization of the
deadbeat control law is

u[k] = B+i∗[k] − B+f(i[k]), (3.5)

whereB+ is the pseudo-inverse of the input matrixB. With the delay compensa-
tion technique of section 2.5, asi[k] is not available, it becomes

u[k] = B−1i∗[k] − B−1f(i[k|k − 1]). (3.6)

Using this controller, the control error is eliminated in one step.

3.1.3 Overall control structure

The structure of the state-of-the-art deadbeat controllerwith delay compensation,
disturbance estimator and saturation is sketched in Fig. 3.1. All variables such as
i[k] andu[k] are referred to in field-oriented coordinates. The deadbeatcontroller
is a predictive controller, as such, it does not have an integral action. Unmodeled
disturbances lead to steady-state offsets, because of this, the extension with a distur-
bance estimator is necessary. The delay compensation technique has been presented
in section 2.5, the disturbance estimator and saturation are presented in the follow-
ing.
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i∗[k] uR[k] u[k]

ê[k]
TLP

i[k|k-1]

i[k-1]

z−1

Drive
deadbeat
control

delay
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disturb.
estim.

stator coordinatesfield-oriented coordinates

Figure 3.1: Control structure of a conventional deadbeat controller.

Disturbance estimator

The current control loop is subject to a number of disturbances. To the major part,
this is the induced voltage, consisting of back-EMF terms. Additionally, if the
cross-coupling and voltage drop terms are not correctly modeled due to modeling
uncertainties, these terms are also seen as a disturbance, just like any unmodeled
terms in the right hand side of the model. In section 2.7 it turned out that flux
harmonics lead to a time-varying back-EMF and also represent an important distur-
bance. Generally, such disturbances do not lead to stability problems, but to offsets
between the measurements and the references, and to currentripples.

The full model of the current dynamics is written as

i[k + 1] = f(i[k]) + Bu[k] − Be[k], (3.7)

where the disturbancee[k] is assumed quasi-constant. The control input is divided
in two parts

u[k] = uR[k] + ê[k], (3.8)

whereuR[k] is the control input of the deadbeat controller andê[k] the estimated
disturbance. The disturbance estimator of choice is based on the well-known input
delay approach [KY01], redesigned accounting for the computational delay. The
disturbance is calculated from the model with available past measurement and con-
trol values, therefore, asi[k − 1] andu[k − 1] are the most recent available values,
the equation follows from (3.7), (3.8) as

ê[k] = ê[k − 1] + uR[k − 2] − B+i[k − 1] + B+f(i[k − 2]). (3.9)
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If the disturbancee[k] and the currenti[k] are constant, the influence of parameter
errors is minimal. Inductance values are only relevant if the current changes signif-
icantly. To attenuate this, a lowpass filter is added to the estimated disturbance; if it
is slow enough, it is extremely robust and can be seen as quasi-invariant to induc-
tance uncertainties. The inductance is only required if thecurrent is time-varying,
for constant current it cancels, therefore the low-pass filter enforces a time-scale
decoupling. This will be demonstrated in the experiments later. The disturbance
estimator with first-order lowpass-filter reads as

ê[k] = ê[k − 1] + α
(
uR[k − 2] − B+i[k − 1] + B+f(i[k − 2])

)
, (3.10)

whereα = Ts

Ts+TLP
with TLP as time-constant of the lowpass filter andTs as sam-

pling time. On the other hand, if disturbances such as flux harmonics should be
compensated too, the lowpass filter must be very fast, close to the sampling fre-
quency. The assumption that the controller and disturbanceestimator do not inter-
act is then not satisfied under uncertain parameters, this isanalyzed in the following
developments.

Control input saturation

As mentioned, a careful saturation of the voltage commands must be implemented,
otherwise errors appear in the delay compensation.

In this chapter, this task is kept simple to guarantee independent control of the
two current componentsi[k]. A rectangular saturation is implemented as

−Uq ≤ usq[k] ≤ Uq, (3.11)

−Ud ≤ usd[k] ≤ Ud. (3.12)

More advanced methods are available, for instance, circular limitationsu2
sd + u2

sq ≤
U2, but then, however, the current controllers interact [Qua93]. Further improve-
ments are to respect the dynamics and the multivariable structure [OS02].

It is clear that for the delay compensation and disturbance estimation algorithm,
the saturated voltage is applied. Furthermore, the estimated disturbance must be
respected.

A sum of two commands,uR[k] andê[k], must be implemented. To assure inde-
pendence of the disturbance compensation from the control,the method implements
saturation in the disturbance estimator first, saturatingê[k]. In the second step, ac-
cording tou[k] = uR[k]+ ê[k], uR[k] is saturated such that the output voltageu[k]
is within the limits.
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3.2 Deadbeat control in the flatness-based context

3.2.1 Principles of deadbeat control and relation to flatness

Deadbeat control is from a theoretic viewpoint alinear state feedback controlfor
discrete-time systems. Unlike continuous-time linear feedback controllers, a dis-
crete time linear controller can be designed for finite settling time [Ack88]. The
step response of a deadbeat controlled system is defined asn delays for a degree
n system (with full relative degree), otherwise said, the control error should vanish
aftern steps. For the current control loop, which is a first-order plant, the control
error is eliminated aftern = 1 step.

Deadbeat control as linear feedback controller

The discrete-time linear single-input single output (SISO) system is described by

x[k + 1] = Ax[k] + Bu[k], (3.13)

y[k] = Cx[k], (3.14)

wherex[k] ∈ R
n is the state at instantk, u[k] ∈ R the control input,y[k] ∈ R

the output,A, B and C are the system matrix, input vector and output vector,
respectively,x[0] ∈ R

n is an arbitrary initial state and the goal isx[n] = 0. This is
the typical regulator problem. The linear state controlleris

u[k] = −Kx[k], (3.15)

where vectorK is designed such that the closed-loop dynamics

x[k + 1] = (A − BK)x[k] (3.16)

lead - aftern steps - to

x[n] = (A − BK)nx[0] = 0 ∀x[0] ∈ R
n. (3.17)

For the design, the equation(A − BK)n = 0 must be solved. The simplicity of
deadbeat control only becomes clear if the system (3.13) is in controller canonical
form, i.e. the system matrixA and input vectorB are in the form

A =









0 1 0 ... 0

0 0 1 ... 0
...

...

−a0 −a1 −a2 ... −an−1









,B =









0

0
...

b









, (3.18)
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and the output isy[k] = x1[k]. Then, the deadbeat controller gains are

K = −[a0, a1, ..., an−1]/b. (3.19)

The controller design then follows straightforward from the model, and no solving
of equations is necessary for the design.

This linear state feedback control is a predictive controller. The control law
u[k] = −Kx[k] includes the output and a number of predictions, in the case of a
system with flat outputy, the state vector isx[k] = (y[k], y[k+1], ..., y[k+n−1])T ,
see [SRA04]. Whether the controller is categorized as feedback or predictive con-
troller is purely a matter of implementation, but most engineers nowadays clearly
classify it as predictive controller [JP97], as the predicted outputs are used in the
control law. Obtaining those predictions is an application-specific problem that is
addressed in predictive control implementations.

Extension to nonzero reference

In the case of nonzero reference, just as for any linear statecontroller, the design
is applied by redefining the state vector as ’error state’x[k] = ξ∗[k] − ξ[k], where
ξ∗[k] is the reference andξ[k] the state. The results from the regulator problem
which hadx = 0 as goal can be reused for the special control problemξ = ξ∗. The
reference is assumed to be knownn − 1 steps in advance asξ∗[k] = (ξ∗[k], ξ∗[k +
1], .., ξ∗[k + n − 1]). Then the system is

ξ[k + 1] = Aξ[k] + Bw[k], (3.20)

where the input must be rewritten as

w[k] = −u[k] − B+Aξ∗[k] + B+ξ∗[k + 1]. (3.21)

Here w[k] is the physical control input andu[k] a ’fictitious’ input merely used
for the control design. The pseudo-inverseB+, following (3.18), is the vector
[0, 0, .., 1

b
]. This way, the design procedure can repeated for the transformed system

to design a deadbeat controller for a nonzero reference, thecontrol law (3.15) can
be applied. This is the classical control method, in the following, a flatness-based
design is presented.

Design with feedback linearization

This alternative design method is very close to feedback linearization basedtracking
control, typically applied in continuous-time systems [SL91] but also applicable to
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discrete-time systems [RCA01, FM00b]. The underlying deadbeat controller has
the control goaly[k + n] = y∗[k], whereas a real trajectory tracking controller has
the goaly[k] = y∗[k], but in discrete time, the design is absolutely equal except
that the reference should be predicted for tracking controlwhereas the reference is
directly overtaken for deadbeat control.

Starting from the system description (3.20), the system is linearized, in a sense
that a new input is defined such that the system results in a delay chain

ξ1[k + n] = v[k], (3.22)

called the ’linearized system’. This ’linearizing input’v[k] is realized by

w[k] =
1

b
v[k] − B+Aξ[k]. (3.23)

The procedure originates from nonlinear continuous-time control systems and is
called feedback linearization (dt.exakte Zustandslinearisierung), the new inputv[k]
is called Brunovsky - or linearizing - input. It is applied in linear systems as well,
here, the term means not only compensating nonlinear terms,but transforming the
dynamical system to a chain of delays, therefore to the simplest possible dynamics.

The controller consists of a feedforward partvff [k] and an error dynamics feed-
back partvfb[k], given by

vff [k] = ξ∗[k + n], (3.24)

vfb[k] = −M (ξ∗[k] − ξ[k]). (3.25)

The feedback gain vectorM results from a direct pole placement. The feedback
part is only active if the initial state does not correspond to the reference, i.e. if there
is an initial control error. The resulting controller is thereforev[k] = vff [k]+vfb[k]
and the physical implementation reads as

w[k] =
1

b
ξ∗[k + n] − 1

b
M (ξ∗[k] − ξ[k]) − B+Aξ[k]. (3.26)

Equivalence of the classical and the feedback-linearization-based design

For the special case that the desired error dynamics are minimum-step (deadbeat),
M is given byM = bB−1A − bK, the resulting controller (3.26) is absolutely
equal to the deadbeat controller for an arbitrary reference(3.21). More specifi-
cally, the result isM = 0. This shows that deadbeat control design and feedback-
linearization based tracking control design are strongly related. While deadbeat
control is rather a feedback gain tuning method, whereas tracking control is rather
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a way to account time-varying references, the equations andcontrollers gains are
equivalent.

The mentioned difference in the control goal is based on the practical fact that
trajectory tracking control, the reference is predicted toobtain the same output as
reference, whereas in deadbeat control, it is directly overtaken, leading to a fixed
delay ofn steps between the reference trajectory and the output.

Parametric robustness is a well known problem of feedback linearization. Conse-
quently, the vast literature does not coincide with an appropriate number of indus-
trial applications. A new concept for a more robust design that stems from flatness-
based control is feedforward linearization (dt.exakte Steuerungslinearisierung)
[HD03]. Flatness is somehow related to feedback linearization, but the linearization
(transformation fromu[k] to v[k]) can be performed in an open-loop control man-
ner, thus, as feedforward control. The advantages of the method have already been
shown in continuous-time formulation on power electronicssystems [Gen08] and
drive system motion control [HD08].

In this chapter the concept is used in discrete time to improve deadbeat control.
For application to current control, a first-order plant, thedeadbeat condition in the
design is that the control error is zero in the next time step,leading to the design
rule i[k + 1] = i∗[k]. Deadbeat current control is classified as a one-step predictive
controller [CKK+08], the discrete-time model is used explicitly to calculate the
voltage command, so the voltage command is based on a model-based prediction
rather than on a compensation based on previous control errors.

3.2.2 Conventional deadbeat current controller design

The classical design follows the basic description of the previous section, and in-
cludes delay compensation and disturbance estimator. The model of the current
dynamics, with compensated delay and disturbance, is givenas

i[k + 1] = f(i[k|k − 1]) + BuR[k]. (3.27)

The deadbeat condition describes the desired closed-loop performance

i[k + 1] = i∗[k]. (3.28)

Defining a new control input

v[k] = f(i[k|k − 1]) + BuR[k], (3.29)

which is the ’linearizing input’, the deadbeat control law is

v[k] = i∗[k]. (3.30)
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Rearranging these equations with the model, the physical implementation of the
deadbeat control law is

uR[k] = B+i∗[k] − B+f(i[k|k − 1]). (3.31)

Characteristics of conventional deadbeat control

The control law compensates the dynamics of the system, withv[k], the system
dynamics are made equal to a simple delay

i[k + 1] = f(i[k|k − 1]) + BuR[k] = v[k]. (3.32)

The arising dynamicsi[k] = z−1v[k] are called the linearized dynamics, in a sense
that the output is a chain ofn delays of the linearizing inputv[k]. The compensation
of the system dynamics is done using measurements and the model, illustrated in
Fig. 3.2. This technique is known as feedback linearization. The new inputv[k] is
the Brunovsky input. The parametric sensitivity of this feedback compensation is
well-known and the concept has difficulties in industrial applications [SL91].

i∗[k] i[k]

i[k|k-1]

1 +
v[k] uR[k]

BB̂ z−1

f(i[k])f̂(i[k|k-1])

Delay- and disturbance-compensated drive

Figure 3.2: Structural diagram of standard deadbeat with feedback linearization.

The notions of feedback linearization and Brunovsky input are generally applied
in continuous control. The notion can, however, be directlyextended to the discrete-
time case [SRA04].

3.2.3 Deadbeat design using feedforward linearization

The new design follows the basic description of the previoussection, thus includes
delay compensation and disturbance estimator, and only hasa small difference in
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the design. It will be shown that, however, this small difference has an important
impact on behavior and performance. The model of the currentdynamics is given
as

i[k + 1] = f(i[k|k − 1]) + BuR[k]. (3.33)

The deadbeat condition describes the desired closed-loop performance

i[k + 1] = i∗[k]. (3.34)

Defining a new control input

v[k] = f(i∗[k − 1]) + BuR[k], (3.35)

which only differs from the previous design by usingi∗[k − 1] insteadi[k|k −
1] to implement the ’linearizing input’. Note that both valuesi∗[k − 1] and i[k]
(respectivelyi[k|k − 1]) are equal in the ideal case. The deadbeat control law is

v[k] = i∗[k]. (3.36)

These equations are rearranged with the model, and the physical implementation of
the feedforward-linearization based deadbeat control lawis

uR[k] = B+i∗[k] − B+f(i∗[k − 1]). (3.37)

A reference governor must be implemented. In the case that the referencei∗[k]
can not be imposed because of voltage saturation inuR[k], the situation that the
feedforward controller generates one single infeasible voltage peak which is simply
cut off by the saturation must be prevented. If it is detectedthat i[k + 1] can not
(based on the model prediction, independently from any uncertainty) reachi∗[k], the
referencei∗[k] is reduced accordingly. This way, the feedforward voltage command
generated from a large reference step is distributed over multiple sampling intervals.
This algorithm is very simple to implement and not further discussed.

Characteristics of deadbeat design using feedforward linearization

Again, the control law compensates the dynamics of the system, with the definition
of the new inputv[k], the system is transformed into a simple delay

i[k + 1] = f(i∗[k − 1]) + BuR[k] = v[k]. (3.38)

The compensation of the system dynamics respectively the linearization is done us-
ing the model, but is based on references instead of measurements. The new input
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v[k] is again a Brunovsky input. The method is denoted as feedforward lineariza-
tion, and was introduced in the context of flatness-based control as a substitute for
feedback linearization to reduce parametric sensitivity [HD03]. The robustness im-
provement was demonstrated on continuous-time tracking controllers as well as on
flatness-based predictive controllers [HD08]. As illustrated in Fig. 3.3, the resulting
controllers are feedforward controllers, feedback is not taken into account at all.

i[k]

i[k

+
B̂

Delay- and disturbance-compensated drive

i∗[k]
1

v[k] uR[k]
B

z−1

z−1

f(i[k])f̂(i∗[k-1])

Figure 3.3: Structural diagram of deadbeat using feedforward linearization.

However, one issue is obvious, as there is no feedback, the feedforward controller
may not satisfy the control objective. An additional controller is required. Two
choices are possible, the disturbance estimator typical for predictive controllers, or
as proposed in the literature, the well-established PI controller which is integrated
in a two-degree-of-freedom control structure [HD03]. The difference between the
delayed reference and the measured output is controlled by the additional feed-
back mechanism. The resulting control structure is still a predictive controller, even
though the predictive part is implemented as feedforward [HD08].

It will be shown later that while the robustness problem is solved, quite some
performance is lost. To help out this issue, an intermediatesolution of feedback and
feedforward linearization is proposed in the following.

3.2.4 Deadbeat design using mixed feedback and feedforward
linearization

The proposed design again includes the delay compensation and the disturbance
estimator. The model of the current dynamics is given as

i[k + 1] = f(i[k|k − 1]) + BuR[k]. (3.39)
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Defining an initial condition for the current

iFB[k] = q i[k|k − 1] + (1 − q) i∗[k − 1], (3.40)

where0 ≤ q ≤ 1, the valueiFB[k] is a weighted sum of the measurement and the
reference. The weight isq, settingq = 1 equals the original deadbeat controller,
andq = 0 equals the deadbeat controller based on feedforward linearization.

The deadbeat condition describes the desired closed-loop performance

i[k + 1] = i∗[k]. (3.41)

Defining a new control input

v[k] = f(iFB[k − 1]) + BuR[k], (3.42)

the deadbeat control law is

v[k] = i∗[k], (3.43)

Rearranging these equations, the physical implementation of the deadbeat control
law is

uR[k] = B+i∗[k] − B+f (qi[k|k − 1] + (1 − q)i∗[k − 1]) . (3.44)

Same as for the feedforward linearization, a reference governor must be imple-
mented, to account for the voltage saturation in the feedforward path by adjusting
i∗[k].

Characteristics of deadbeat design using mixed feedback and feedforward lin-
earization

The mix aims at obtaining the robustness advantage of feedforward linearization,
but maintaining feedback control. As the feedback of the deadbeat controller is still
partially active, the task of the disturbance estimator is simplified as it is not the
only feedback mechanism, as shown in Fig. 3.4.

For an open-loop stable system, the feedforward control approach is more robust,
the feedback terms are simply less affected by uncertainties. The basic idea is that
in an open-loop stable system, the destabilizing mechanismis erroneous feedback.

One question is how to tune the ’mix’ parameterq. It is the only tuning parameter
of this design, apart from the time constant of the disturbance estimatorTLP , all
other parameters are physical parameters of the drive.

The robustness improvement of this design could, to some extend, be compared
to [BLNH05], where the feedback gain of the deadbeat controller has been reduced
by replacing the deadbeat condition (3.41) by the conditionthat the control error is
halved in the next sampling step. However, in this design, the tracking performance
remains untouched, the deadbeat condition is still active.
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q

Figure 3.4: Structural diagram of deadbeat using mixed feedforward and feedback
linearization.

3.3 Analytical robustness considerations

In this section, the robustness regarding disturbances andparameter uncertainties
is analyzed. As simplification, a linear single-input single-output (SISO) analysis
is performed for a single RL-load. For this simplified analysis, the results already
describe the advantages and issues of the three proposed methods. Of course, in
the practical application to a drive, there is an interaction of the orthogonal com-
ponents (cross-coupling), and nonlinearities appear for instance in the induction
motor. Here, in a simple way, the results are presented and interpreted which are
also found later in the experiments.

The model is given as

i[k + 1] = (1 − a)i[k] + bu[k] − be[k], (3.45)

where the parameters are

a = Ts
R

L
, b = Ts

1

L
, (3.46)

ande[k] is a possibly time-varying disturbance signal. For a perfectly sinusoidal
stator winding, the disturbance is constant, but harmonic effects, transients on the
orthogonal axis, etc., generate a time-varying disturbance e[k].

This section derives transfer functions that account for constant parametric off-
sets. The detailed calculations are found in appendix D. Their evaluation and inter-
pretation will be given in the next chapter.
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3.3.1 Transfer function of deadbeat controller

First, the transfer function of a deadbeat controller with delay compensation but
without disturbance estimator is calculated. This neglection is valid when the output
is lowpass filtered with a highTLP . The simplicity of the sole deadbeat controller
enables more insight. Parametric offsets in the controllerand the plant are regarded,
the estimated parameters are denoted asâ andb̂, respectively.

The resulting closed-loop dynamics in the discrete-time frequency domain is cal-
culated in appendix D.1 and the transfer function appears as

Gdb(z) =
I(z)

I∗(z)
. (3.47)

Under correct parameters and withq = 1, the transfer function isGdb(z) = z−1,
the deadbeat conditioni[k + 1] = i∗[k] is therefore satisifed. If the parameters do
not match, there are additional dynamics, as it is a second-order plant consisting
of delay plus current dynamics. Two poles and one transfer zero determine the
dynamics.

3.3.2 Transfer function of deadbeat controller including a dis-
turbance estimator

Now the complete transfer function including the disturbance estimator is calcu-
lated. It is necessary to analyze the behavior under a fast disturbance estimator (i.e.
small TLP ) to see the interaction under parameter faults. The closed-loop system
has one reference inputi∗[k], one disturbance inpute[k] and one outputi[k].

Two transfer functions of the closed-loop system appear, the first one is the re-
sponse from the reference to the output and the second one is from the disturbance
to the output,

I(z) = Gi∗iI
∗(z) + GeiE(z). (3.48)

The calculations are again shown in appendix D.2.

3.3.3 Interaction of disturbance estimator and deadbeat con-
troller: Low pass filter

Under ideal conditionŝa = a, b̂ = b and if e[k] is constant, the deadbeat controller
and the disturbance estimator are decoupled. Under uncertainties, however, decou-
pling is affected, especially in transient operation. The lowpass filter for̂e attenuates
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the effect and considerably increases parametric robustness of the disturbance esti-
mator. This is known as time-scale decoupling.

The closed-loop transfer function of the disturbance responseGei(z) shows that
the poles under ideal conditions are real for valuesTLP ≥ 3Ts, as calculated in
appendix D.3. If the lowpass has a smaller time constant thanthis, the poles become
complex and the step response is subject to oscillations, furthermore, the magnitude
of the poles approaches the stability limit and parametric sensitivity becomes higher.
Therefore, a senseful condition to the lowpass filter is

TLP ≥ 3Ts, (3.49)

respectivelyα ≤ 1
4
. In standard deadbeat control, if the system is subject to strong

uncertainties, the filter must be set even slower, however, at the cost of performance.
In the literature, it is claimed the sole purpose is to attenuate parametric uncer-

tainty influence [KY01]. This time-scale decoupling makes sense as the inductance
sensitivity only appears in current transients. A comparison is difficult as the ana-
lyzed systems do not have a computational delay, they are notstandard DSP plat-
forms. If the two delays are present in the system, however, it becomes clear that
the filter is required for stability and for an oscillation-free step response even in the
case of perfect parameter knowledge.

3.3.4 Steady-state accuracy

Steady-state accuracy of the deadbeat controllers with delay compensation and dis-
turbance estimator is analyzed. In steady-state, the reference, disturbance and the
output are constant. The steady-state offset is calculatedin appendix D.4 and found
to be

i∗[k]

i[k]
=

â + q

â + q − âq
=

1

1 − âq
â+q

≈ 1 +
âq

â + q
. (3.50)

This shows that the errors arising from uncertainties in allparameters are mostly
compensated, to one part as some parameters do not affect steady-state values, to
the other part as the disturbance estimator compensates these errors. Noting that
â << 1, only a small prediction error remains. For fast sampling systems with
large open-loop time constants, the steady-state offset isnegligible.

Interestingly, in the feedforward linearization approachq = 0, there is no more
steady-state offset, soq < 1 is, even though a small, improvement.
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3.4 Conclusions

This chapter has exposed the state-of-the-art and the detailed design of deadbeat
control, a very performant control method. However, it suffers from some limi-
tations. Problems in the design are delays, disturbances, and high sensitivity to
modeling errors and noise. Therefore, in the literature, the controller was extended
with a model-based delay compensation technique and a disturbance estimator to
avoid current ripples and to improve steady-state accuracy, respectively. However,
the sensitivity to model parameters, especially with respect to the inductance, has
only been addressed by tuning the deadbeat controller slower.

It is shown that the deadbeat current controller is a flatness-based predictive con-
troller, as presented in [FM00a], but designed in the discrete-time domain. The
sensitivity of the deadbeat controller is caused by the use of feedback linearization.
In flatness, an open-loop substitute for feedback linearization has been proposed to
solve the robustness problem, feedforward linearization [HD08]. On the other hand,
this method as open-loop controller comes with some performance loss.

Three variants are presented, the conventional deadbeat design, then, a deadbeat
design based on feedforward linearization, and as a tradeoff of the respective issues
and advantages, a mix between both methods.

The analytical fundaments have been derived to study the robustness, respectively
the influence of parameter errors and disturbances. As first results, steady-state
accuracy and tuning limits for the disturbance estimator have been found out. The
analysis of these three methods is completed in the following chapter by providing
experimental results.
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CHAPTER 4

Robust flatness-based predictive control:
Experimental evaluation of deadbeat control

This chapter completes the developments of the previous chapter by an experimen-
tal evaluation to obtain a clear result on robustness and performance. The three
presented designs of conventional deadbeat control, deadbeat control with feedfor-
ward linearization, and deadbeat control using mixed feedback and feedforward
linearization, are studied.

In the first part, successively, each design is analyzed in terms of tracking per-
formance under both correct parameters and uncertainties,an analytic robustness
consideration is discussed with pole maps, and the disturbance rejection capability
is tested. The calculations and experiments are based on theparameters of a PMSM,
described in appendix B.1.

In the second part, the deadbeat controller is evaluated on three different AC
drives, the PMSM, the SynRM and the IM. While the previous experiments limit
to a step response analysis, here, a more serious application scenario is analyzed.
Different speeds and full load are studied. Some problems appear, namely magnetic
saturation effects, general parameter deflection effects,control input saturation and
flux harmonics.
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4.1 Comparative evaluation of the proposed controllers

4.1.1 Evaluation of the conventional deadbeat controller

Resistance uncertainty

It is known from the literature that the influence of resistance uncertainties is ne-
glectable [YL02]. Two arguments support this: The first one is that the open-loop
time constant of a drive is much higher than the closed-loop one, in this case ap-
proximately two times the sampling interval. The influence on dynamical behavior
is therefore marginal. From the transfer functions of section 3.3 it can be seen that
the resistance influence applies toâ and is marginal aŝa << 1. The second argu-
ment is that the resulting steady-state error is almost completely compensated by
the disturbance estimator.

Experimental results are shown in Fig. 4.1. Subfigure (a) is the response with
nominal parameters, the response is almost perfect and the disturbance estimator
only has a small reaction. In (b) the resistance is assumed one tenth of the nomi-
nal value. The steady-state value ofuR is slightly too small and consequently the
current offset is compensated by a higher disturbance estimator output̂e. In (c) the
resistance is assumed10 times higher than the nominal value. The deadbeat con-
troller calculates a too high voltageuR for the steady-state, the resulting offset is
compensated by a lower disturbance estimator outputê.

This shows that the errors arising from resistance uncertainty in both the distur-
bance estimator and in the predictive controller compensate.

Inductance uncertainty

Contrary to resistance, the influence of inductance uncertainty is very important
and deserves more discussion. Uncertainties can arise fromidentification errors
or from unmodeled magnetic saturation effects, amongst others. They result in
two effects. The first one is the influence on the magnetic flux and the induced
voltage, it appears on the right hand side of the system equation, subsequently, it
is compensated by the disturbance estimator. This effect isonly indirectly related
to the dynamics and therefore rather decreases accuracy than stability. The second
effect is the influence on the dynamic gain of the system, in the model the current
derivatives are multiplied by the inductance, this can leadto either a slowdown,
badly damped oscillations, or instability.
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(a) Correct resistancêR = R andTLP = 3Ts. (b) Underestimated̂R = 0.1R andTLP = 3Ts.

(c) Overestimated̂R = 10R andTLP = 3Ts.

Figure 4.1: Experimental results of conventional deadbeatcontrol under resistance
uncertainty.

To analyze the effect on the gain, a constant inductance error ∆ with

∆ =
L̂ − L

L
(4.1)

is assumed to simplify the analysis, however, the results are also valid for a setpoint-
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(a) Reference response without disturbance esti-
matorGdb(z).
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(b) Reference response with fast disturbance es-
timatorGi∗i(z).
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(c) Disturbance response with fast disturbance
estimatorGei(z).
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(d) Reference response with slow disturbance es-
timatorGi∗i(z).

Figure 4.2: Discrete frequency domain polemaps of conventional deadbeat control
under inductance uncertainty.

dependent inductance error∆L(i) as it will be shown later. Using the transfer
functions presented in section 3.3, the effect of inductance variations can be studied.

In Fig. 4.2 thez space pole maps are plotted. Subfigure (a) is the deadbeat con-
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troller without disturbance estimatorGdb(z). For correct inductance, the transfer
function is one zero and two poles at the origin. The two polesare the reference
delay and the closed-loop deadbeat response, the zero arises from the delay compen-
sation (Smith predictor). For overestimated inductances∆ > 0, a pair of imaginary
poles appears while the zero remains in the origin. The delaycompensation does
not operate correctly and the deadbeat controller generates too high control actions,
resulting in overshoots and oscillations. The stability limit is reached once∆ = 1 or
L̂ = 2L. For underestimated inductances, a pair of real poles appears, resulting in
a slowdown of the reference response. The stability limit isreached once∆ = −1
or L̂ = 0, which does never appear in practice.

Subfigure (b) is the deadbeat controller with a fast disturbance estimatorTLP =
3Ts, Gi∗i(z). There is one additional pole and zero, as the order of the closed-loop
dynamics is increased by the disturbance estimator. Apart from that, the charac-
teristics are similar to (a), the sensitivity is slightly increased as for overestimated
inductances the stability limit is noŵL = 1.7L, and for underestimated inductances,
there are some additional slow oscillations.

Subfigure (c) is the disturbance responseGei(z). It looks very similar to the ref-
erence response, except for the zeros. This also means that the sensitivity is the
same, logically, if either controller or estimator destabilize, the complete system is
unstable. Subfigure (d) is the deadbeat controller with a slow disturbance estima-
tor TLP = 2 ms. If the pole-zero cancelation atz = 1 is ignored, it is equal to
the deadbeat controller without disturbance estimator: The disturbance estimator is
fully decoupled from the reference response if it is sufficiently slowed down.

To clarify these results, experimental results are shown inFig. 4.3. Subfigure
(a) is the response with nominal inductance. The reference is reached after two
sampling steps, the delay of the control system. Subfigure (b) shows the stability
limit at L̂ = 1.7L with a fast disturbance estimator. The overestimated inductance
results in a too high control voltage. Two sampling steps after the reference step,
feedback is available and the controller counteracts the overshoot, however, because
of the model error, with a too strong action. This faulty behavior repeats and the
parameter leads to an undamped oscillation. Subfigure (c) shows the response at
L̂ = 0.5L, the control voltage is too low, after two sampling steps thecontroller re-
peats the action, resulting in a series of peaks onuq. The slow overshoot is caused by
the disturbance estimator, the error is interpreted as disturbance, such an overshoot
does not appear for a slow estimator. Subfigure (d) finally shows the response at
an overestimated inductancêL = 1.7L with a slow disturbance estimatorTLP = 2
ms. As the stability limit is at∆ ≈ 1, a badly damped oscillation appears. These
experimental results confirm the correctness and explain the characteristics of the
transfer function and of the polemaps.
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(a) Correct inductancêLq = Lq andTLP = 3Ts. (b) Overestimated̂Lq = 1.7Lq andTLP = 3Ts.

(c) Underestimated̂Lq = 0.5Lq andTLP = 3Ts. (d) Overestimated̂Lq = 1.7Lq andTLP = 2 ms.

Figure 4.3: Experimental results of conventional deadbeatcontrol under inductance
uncertainty.

High speed effects

Operation in high speed leads to two disturbing effects. Thefirst is that the cross-
coupling between the two current components is increased. Cross-coupling is mod-
eled for deadbeat design, however, under uncertainties, the decoupling is not pre-
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cise. This effect can be seen as fast time-varying disturbance on the respective axis.

The second effect in high speed is that flux harmonics appear.These are caused
by the non perfectly sinusoidal distribution of the stator windings, the effect is po-
sition dependent with six periods (and integer multiples) per electrical rotation. At
high speed, if the controller cannot compensate these harmonic effects, the harmon-
ics will be seen in the currents causing a torque ripple.

(a) CorrectL̂ andR̂ andTLP = 3Ts.

Figure 4.4: Experimental results of conventional deadbeatcontrol in high speed
(2000 rpm).

In Fig. 4.4 the performance is evaluated experimentally at 2000 rpm for the
conventional deadbeat design. Current tracking is very goodand in the estimated
disturbance, a frequency component of 600 Hz is seen, which is the compensated
flux harmonics as the fundamental excitation frequency at 2000 rpm is100 Hz.
During the quadrature current transient, the direct current is well maintained at0 A.
It is obvious that compensating harmonics is a matter of the disturbance estimator,
the deadbeat controller is a linear feedback controller without integral action, it
cannot fully reject a disturbance. Still, the deadbeat controller shows some reaction.
Compared to the PI controller of Fig. 2.8, the disturbance estimator is a remarkable
improvement ifTLP is small.
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4.1.2 Evaluation of the deadbeat controller using feedforward
linearization

Inductance uncertainty

As mentioned, when using feedforward linearization, the deadbeat controller turns
into a feedforward controller. Interestingly, parameter faults do not impact stability.
The only feedback mechanism that counteracts uncertainty effects by feedback is
then the disturbance estimator. The disturbance estimatoris assumed to be sufficient
in order to compensate for the lack of feedback.
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(a) Reference response with fast disturbance es-
timatorGi∗i(z).
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(b) Disturbance response with fast disturbance
estimatorGei(z).

Figure 4.5: Discrete frequency domain polemaps of deadbeatcontrol using feedfor-
ward linearization under inductance uncertainty.

In Fig. 4.5 thez space pole maps are plotted. The analysis of the deadbeat con-
troller without disturbance estimator is skipped, as the poles of the transfer function
Gdb(z) are unaffected atq = 0. The analysis with a slow estimator is also skipped
as performance is too low. Subfigure (a) shows the controllerwith a fast distur-
bance estimatorGi∗i(z), and (b) is the corresponding disturbance responseGei(z).
The disturbance response is slowed down, even though the lowpass filter is un-
touched. However, it is also seen that both the controller and the estimator remain
stable even for strong inductance errors. The stability limit is reached at̂L = 4L,
even thoughTLP is kept extremely low. Hence, not only the deadbeat controller
becomes more robust, but also the disturbance estimator. Feedforward linearization
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(a) Correct inductancêLq = Lq andTLP = 3Ts. (b) Overestimated̂Lq = 1.7Lq andTLP = 3Ts.

(c) Underestimated̂Lq = 0.5Lq andTLP = 3Ts. (d) Overestimated̂Lq = 1.7Lq andTLP = 2 ms.

Figure 4.6: Experimental results of deadbeat control usingfeedforward lineariza-
tion under inductance uncertainty.

decouples deadbeat control and disturbance estimation / compensation. Even higher
stability limits are obtained by increasingTLP .

In Fig. 4.6 the sensitivity is analyzed experimentally. Fig. 4.6 (a) shows the
response with correct inductance, there is not much difference to the conventional
deadbeat controller. Subfigure (b) shows the response for anoverestimated induc-
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tanceL̂ = 1.7L, there is an overshoot which is corrected by the disturbanceesti-
mator. Two sampling steps after the reference step feedbackis available and the
disturbance estimator commands a negative voltage, the three negative steps on̂e
compensate the excessive initial voltage onuRq. In contrast to the conventional
controller, there is no oscillation, so this is a remarkablygood response regarding
that the overshoot of+70% cannot be reduced due to the system delay of two steps.
In (c), for an underestimated inductanceL̂ = 0.5L, the disturbance estimator also
compensates the too small control action, this time there isno overshoot and the
response is too slow. Subfigure (d) shows the same scenario as(b) but with a slow
disturbance estimatorTLP = 2 ms, obviously the response is slowed down too
much.

High speed effects

(a) CorrectL̂ andR̂ andTLP = 3Ts.

Figure 4.7: Experimental results of deadbeat control usingfeedforward lineariza-
tion in high speed (2000 rpm).

Fig. 4.7 shows the behavior of the deadbeat controller with feedforward lineariza-
tion at2000 rpm. While the disturbance estimator compensates the flux harmonics
less well, i.e. with a smaller voltage than in Fig. 4.4, also,current tracking be-
comes very poor. The disturbance estimator, as only feedback mechanism, cannot
compensate the cross coupling and the disturbance simultaneously. These consider-
able current excursions only appear in high speed operation. The lack of feedback
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in this deadbeat controller reduces performance too much, this experimental test
disqualifies the approach of pure feedforward linearization.

To conclude the experiments, pure feedforward linearization comes with con-
siderable robustness improvements. Uncertainties only provoke a steady-state er-
ror, but no oscillations. This steady-state offset must be compensated by a feed-
back mechanism, namely the disturbance estimator. However, in high speed, where
cross-coupling effects and time-varying disturbances arepresent, the performance
loss is apparently too strong.

4.1.3 Evaluation of the deadbeat controller using mixed feed-
back and feedforward linearization

As feedback linearization is performant but sensitive, andfeedforward linearization
is robust but less performant under disturbances, a mix between both methods has
been proposed. The new tuning parameter which describes thetradeoff between
both methods is set toq = 0.5.

Resistance uncertainty

(a) Overestimated̂R = 10R andTLP = 3Ts.

Figure 4.8: Experimental results of deadbeat control usingmixed feedback and
feedforward linearization under resistance uncertainty.

Experimental results of a resistance error test are shown inFig. 4.8. The response
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is identical than with conventional deadbeat in Fig. 4.1 (c), the resistance error is
compensated by the disturbance estimator. The test is just for the sake of complete-
ness, to show that the resistence is no problem for the proposed method just like as
for the conventional method.

Inductance uncertainty

To analyze the influence of an inductance error, in Fig. 4.10,thez space pole maps
are plotted. Subfigure (a) is again the deadbeat controller without disturbance esti-
matorGdb(z). Compared to the conventional deadbeat controller, for overestimated
inductances, damping is improved absolutely by about0.3 for the same uncertain-
ties. From the transfer function follows that the stabilityboundary is noŵL = 3L
instead ofL̂ = 2L, in fact the stability limit depends onq and, when neglecting
the estimator, it is at∆ = 1

q
for inductance uncertainties. Subfigure (b) repre-

sents the results of the controller with a fast disturbance estimatorGi∗i(z). Here,
damping is also higher for the same error, compared to the conventional deadbeat
controller, and the disturbance estimator generates some additional slow dynamics
for underestimated inductances. Subfigure (c) shows the disturbance response with
a fast lowpass filterGei(z). Disturbances are compensated quickly and robustness is
same as in (b). Subfigure (d) then shows the controller with a very slow disturbance
estimator, it is almost identical to (a) except for an additional pole and zero around
z = 1.

In Fig. 4.10 the sensitivity is shown by experiments. Subfigure (a) shows the
response with correct inductance, there is not much difference to the conventional
deadbeat controller. Subfigure (b) shows the response for anoverestimated induc-
tanceL̂ = 1.7L, the current overshoot remains for two sampling steps, but is then
controlled to its reference value by combined action of the deadbeat controller and
the disturbance estimator. In contrast to the conventionalcontroller, there is nearly
no oscillation. In (c) the response for an underestimated inductanceL̂ = 0.5L is
shown, the initial voltage peak is too small and both the disturbance estimator and
the deadbeat controller compensate the remaining control error. The slow overshoot
is caused by the disturbance estimator, as it was shown in thetransfer function anal-
ysis. Subfigure (d) shows the response with a slow disturbance estimator. The sys-
tem response is excellent, as robustness of the disturbanceestimator is increased for
higherTLP , and the overshoot error almost completely vanishes after two sampling
steps.

This shows that the gain errors arising from inductance uncertainty still result
in stability problems, but the problem is visibly attenuated with the help of feedfor-
ward linearization. By choosing an intermediate between feedback and feedforward
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(a) Reference response without disturbance esti-
matorGdb(z).
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(b) Reference response with fast disturbance es-
timatorGi∗i(z).
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(c) Disturbance response with fast disturbance
estimatorGei(z).
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(d) Reference response with slow disturbance es-
timatorGi∗i(z).

Figure 4.9: Discrete frequency domain polemaps of deadbeatcontrol using mixed
feedback and feedforward linearization under inductance uncertainty.

linearization with0 < q < 1, the robustness advantages of feedforward lineariza-
tion are obtained to some extend without the performance disadvantage that the
feedback control task is left fully to the disturbance estimator.
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(a) Correct inductancêLq = Lq andTLP = 3Ts. (b) Overestimated̂Lq = 1.7Lq andTLP = 3Ts.

(c) Underestimated̂Lq = 0.5Lq andTLP = 3Ts. (d) Overestimated̂Lq = 1.7Lq andTLP = 2 ms.

Figure 4.10: Experimental results of deadbeat control using mixed feedback and
feedforward linearization under inductance uncertainty.

Following the theoretical results, it can be shown that the stability limit becomes
∆ = 1

q
without disturbance estimator, therefore, for smallerq, robustness increases.

On the other hand, performance decreases withq, as more work is left to the distur-
bance estimator. The new parameterq describes a compromise between robustness
and control performance. However, forq ≈ 0.5, all characteristics such as tracking
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performance, disturbance rejection and robustness are allsimultaneously at a very
good level.

High speed effects

(a) CorrectL̂ andR̂ andTLP = 3Ts. (b) CorrectL̂ andR̂ andTLP = 2 ms.

Figure 4.11: Experimental results of deadbeat control using mixed feedback and
feedforward linearization in high speed (2000 rpm).

Fig. 4.11 shows the behavior of the deadbeat controller withmixed feedforward
and feedback linearization at2000 rpm. In (a), where a fast disturbance estimator
is applied, the harmonics are compensated almost as well as with the conventional
deadbeat controller in Fig. 4.4, at the same time, current tracking is very good. The
difference is very small, so that can be assumed that the performance loss of the
mixed method is marginal compared to the conventional deadbeat controller.

Subfigure (b) shows the same controller with a slow disturbance estimatorTLP =
2 ms. Obviously, the bandwidth of the estimator is not sufficient to compensate
the flux harmonics, resulting in a current ripple. This proves that harmonics are
compensated by the disturbance estimator to the major part,not by the deadbeat
controller as sometimes assumed in the literature [YL02].

These experiments demonstrate that the proposed method of mixed feedforward
and feedback linearization shows good tracking performance and disturbance rejec-
tion capability.
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4.1.4 Conclusions on the comparative evaluation

The major sources of uncertainty, consisting of resistanceand inductance uncer-
tainty, as well as the influence of flux harmonics, have been investigated.

The resistance uncertainty, as known, is not a problem for any of the controllers.
The inductance uncertainty, on the other hand, turns out as akey stability issue.

The conventional deadbeat controller destabilizes atL̂ = 1.7L. The controller
design based on feedforward linearization could solve thisproblem, even with the
fast disturbance estimator, the limit is shifted toL̂ = 4L, and by tuning the estimator
slower withTLP , it can be made even more robust. The mixed approach is a tradeoff
and the limit is shifted tôL = (1 + 1

q
)L, here withq = 0.5, it is at L̂ = 3L.

Therefore, the inductance uncertainty problem can now be handled.
The analytical study of the previous chapter leads to a couple of pole maps that

clarify and support these results for the inductance uncertainty. Even though this
study was performed on a simplified model, the obtained information describes the
advantages and problems of the controllers sufficiently well. The general validity
of these comparative results is therefore given.

The disturbance rejection capability is important to obtain good results in high
speed operation. Here, flux harmonics appear, and as the analyzed servo drive has
a small inductance, these cause a considerable current ripple. To compensate this
fast disturbance, the estimator must be sufficiently fast, the proposed setting was
TLP = 3Ts. The conventional deadbeat controller can handle this uncertainty well
and only leaves a ripple of about50 mA (RMS) magnitude. The mixed approach
comes with a similar performance. The design based on feedforward linearization,
however, leaves a ripple of more than100 mA (RMS), one part is caused by the
flux harmonics and the other part by the cross-coupling, where also an oscillating
interaction between the current componentsisd andisq appears.

So it can be concluded that the conventional deadbeat controller is highly perfor-
mant but too sensitive. On the other hand feedforward linearization is highly robust
but suffers from reduced performance, especially regarding disturbance rejection.
The approach of mixed feedforward and feedback linearization is a compromise
between both methods and turns out to be both performant and robust. It has an ex-
cellent tracking and disturbance rejection capability while it can handle parametric
uncertainty.

Another important aspect, not yet discussed, is measurement noise. Because
deadbeat is a very aggressive scheme and tries to immediately compensate output
offsets, noise may render the system unstable. In Fig. 4.12,the standard dead-
beat controller in (a) is compared to the mixed feedforward-feedback linearization
approach in (b). The current measurement signal lines were unshielded and placed
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(a) Conventional deadbeat control. (b) Deadbeat control using mixed feedback and
feedforward linearization.

Figure 4.12: Experimental results under measurement noise.

nearby a device that generates an identical electromagnetic ping regularly. As result,
the current measurement signal is subjected to noise. While the deadbeat controller
reacts with about40% of available voltage to this ping, the mixed approach only re-
acts with about15% and does not influence the real current signal that much. This
is quite logical as the noise is amplified less in the feedbackloop (q < 1) of the
proposed control system.

The analyzed error sources are the major problems in a moderndrive system.
Apart from them, some other problems may appear.

The scheme is unable to compensate sensor errors, for instance current sensor
offsets or absolute and differential position sensor errors. The outputs are enforced
to the measured outputs.

Voltage modulation also deserves some discussion. Using space vector modula-
tion techniques, a linear space vector can be modulated until 0.866 of the maximum
voltage, which is2

3
of the DC-link voltage. This means any voltage vectorudq with

magnitude lower than0.8662
3
UDC and arbitrary angle can be generated. Beyond

this magnitude, the inverter operates in the overmodulation regime resulting in har-
monics. Because of the physical limitation of the voltage, such harmonics cannot
be compensated. Furthermore, if the switching frequency isslow compared to the
fundamental excitation frequency, harmonic effects with the switching frequency
appear.
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Voltage variations on the DC link have been disregarded during this work. In
typical servo inverters, the DC link voltage is measured andthe saturation limit and
the switching times can be adjusted. However, this error source seems to be of
secondary relevance.

Furthermore, the switching dead times of the inverter are assumed to be com-
pensated, as this technique is established in most industrial servo drives nowadays.
Without dead time compensation, a ’zero-current’ oscillation problem appears, as
reported in the literature [KMY90].

4.1.5 Structural difference between deadbeat and PI control

Formally, a deadbeat controller might be compared to a PI controller, as it consists
of a linear component, the actual deadbeat control law, for instance (3.15), and an
integrating component, the disturbance estimator. However, there are some key
differences.

The performance and robustness of the PI controller with symmetrical optimum
criterion has been shown in section 2.7. The stability limitwas atL̂ = 2.7L. The PI
controller also had a large ripple cause by the flux harmonics, about140 mA (RMS).
While the reference tracking was fine in the 2DoF extension with a feedforward
controller, robustness and disturbance rejection are not sufficient. The PI controller
has been outperformed by all three discussed deadbeat controller designs. This can
be traced back to some systematic limitations of feedback compensators.

A classical PI controller has one single input, the control error i∗ − i. The con-
troller commands are generated from the error signal, however, this controller does
not make a difference between a reference change or a disturbance, therefore it does
not know about the cause of a control error. The PI controllerreacts with two com-
pensation mechanisms, the P- and the I-part. Many tuning rules exist, for instance
the magnitude optimum criterion, which has good reference tracking performance
as it has a quite high proportional gain, but a less good disturbance rejection. The
implemented symmetric optimum criterion, on the other hand, has good disturbance
rejection as the integrator gain is higher, but less good reference tracking. While it
must be noticed that an experimentally tuned PI controller,that accounts saturation
by anti-windup techniques, may have better performance than these algebraic tuning
rules, generally, a PI regulator has to trade off reference tracking versus disturbance
rejection. This gives rise to a fundamental limitation.

Two-degree-of-freedom extensions exist which aim at improving this trade off,
by splitting the controller in two different systems, either a feedforward and a feed-
back path, or two cascaded systems. However, the tuning effort becomes complex
and the decoupling is somehow limited.
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Contrary to this, a deadbeat controller has a more general controller structure
with two different inputs, the referencei∗ and the measurement feedbacki. The
deadbeat controller is responsible for tracking performance and is designed ignoring
any disturbance. The tracking performance is the best possible, only limited by the
voltage saturation. For disturbance rejection, a disturbance estimator is added to
the system. It is decoupled explicitly from the deadbeat controller and therefore
has, in the case of good parameter knowledge, a completely independent action.
This additional feedback mechanism with integral action isalso close to the best
possible physical dynamics – only limited by the delays in the feedback loop. The
controller can make a difference between a reference changeand a disturbance, and
has independent and decoupled mechanisms for each purpose that operate each at
the physical system limit.

Therefore the deadbeat controller can break the fundamental limitation of classi-
cal linear controllers. This fact has been stated for many model-based and predictive
control designs [PLR05].
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4.2 Implementation and performance evaluation

In this section, the proposed deadbeat controller is evaluated on three types of AC
drives, namely a permanent magnet synchronous machine (PMSM) servo drive, a
synchronous reluctance machine (SynRM) and an induction machine (IM).

The controller is based on the classical deadbeat design, combined with a distur-
bance estimator [KY01] and delay compensation [MKY03]. Theonly difference
is that feedforward linearization is partially applied to increase robustness to para-
metric uncertainties, and the lowpass filter for the disturbance estimator is kept
extremely fast.

4.2.1 Results on a permanent-magnet synchronous machine

The model applied for the deadbeat current controller is based on Euler forward
discretization of the continuous model and is

is,dq[k + 1] = f(is,dq[k]) + Bus,dq[k], (4.2)

where the system function vector is

f(is,dq[k]) =

(

(1 − Ts
Rs

Ld
)isd[k] + TsnpωM

Lq

Ld
isq[k]

(1 − Ts
Rs

Lq
)isq[k] − TsnpωM

Ld

Lq
isd[k]

)

, (4.3)

and the input vector is

B = Ts

(
1

Ld

1
Lq

)

. (4.4)

The induced voltage term on theq-axis (e = KnpωM ) is neglected, it is compen-
sated by the disturbance estimator. Apart from that, the major task of the disturbance
estimator is to compensate the flux harmonics. As the inductances are very small,
the flux harmonics result in a quite considerable current (and torque) ripple at high
speed, the compensation of this effect is a significant quality improvement.

For the controller, the nominal model parameters from appendix B.1 are applied.
The only two tuning parameters areq = 0.5 and andTLP = 3Ts = 0.1875 ms.

The deadbeat controller therefore consists of50% feedback and50% feedforward
linearization, to reduce the influence of parametric uncertainties and the sensitivity
to noise. The closed-loop cut-off frequency of the disturbance estimator is suffi-
ciently high. Therefore, the major part of the flux harmonics(6 times the excitation
frequency, or600 Hz at2000 rpm) is canceled.
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(a) Zero to max. torque, 0 rpm. (b) Zero to max. torque, 2000 rpm, short time.

(c) Zero to max. torque, 2000 rpm, long time.(d) Simultaneous transient ond andq, 2000 rpm.

Figure 4.13: Proposed deadbeat control (q = 0.5, TLP = 3Ts = 0.1875 ms) on a
surface-mounted permanent magnet synchronous machine (PMSM).

Fig. 4.13 shows the experimental results. In (a) a referencestep from zero to
nominal torque is applied at zero speed. Because of some smallparameter uncer-
tainties and as the speed is not perfectly0, the disturbance estimator is active. The
sum of the control voltageuRq and the estimated disturbanceêq is at the maximum
voltage during the transient. In (b) the same scenario is repeated at2000 rpm. Be-
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cause of the induced voltage (back-EMF), which is about150 V, the control voltage
uRq is smaller and the transient is slower. A slow oscillation appears on̂eq which
is the compensation of the flux harmonics. In (c) the same situation is shown over
a longer time, it is seen that the oscillation onêq is about600 Hz (superimposed by
about300 Hz), which indicates the compensation of the harmonics, theremaining
current ripple is less than about100 mA or 1.25% of the rated current. Finally,
(d) shows a simultaneous transient from zero to nominal torque and fromisd = 0
to −4 A that is performed at2000 rpm. Because of imperfect parameters and the
nonconstant disturbance, performance is deteriorated during the simultaneous tran-
sient. This could only be improved by accounting for the multivariable structure of
the system, however, as only two current components are available, the information
for the (simple) estimator is also limited to two disturbances, but not the interaction.
Performance is still convincing.

To conclude, the deatbeat current controller is a very powerful method on a
PMSM. Parameter knowledge of this machine type is very reliable, although even
small uncertainties and secondary effects have a high influence on the output as the
inductances are very small. The fast disturbance estimatorproves as powerful tool
to compensate such errors.

4.2.2 Results on a synchronous reluctance machine

The model applied for the deadbeat current controller is thesame as for the PMSM.
As the SynRM has no permanent magnet, there is no back-EMF and no electro-
magnetic torque. The generated torque is purely the so-called reluctance torque, as
described in section 2.2.

In Fig. 4.14 the flux curves of the applied motor are shown. Theinductances
are subject to very strong saturation effects, and additionally, to magnetic cross-
coupling effects. Furthermore the SynRM has quite strong fluxharmonics, as the
stator is originally from a norm induction motor. The harmonics, however, generate
only a small current ripple because of the high inductance.

So far, only few works are available on high-performance control of this very
special AC drive. Model-based designs which take saturation effects into account
by advanced modeling exist and obviously have a much higher performance [KP02,
MCP07], such as extremely low overshoot and short settling time. However, the
presented work should serve as benchmark for robustness of adeadbeat controller
with a linear flux model, for standard control schemes these simple models lead to
bad performance and instabilities [KP02].

Identification of these nonlinear flux curves is sometimes performed for sensor-
less control schemes, however, this procedure is time-consuming. For current con-
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(a) Flux curvesΨsd. (b) Flux curvesΨsq.

Figure 4.14: Nonlinear flux curves of a synchronous reluctance machine (SynRM).
(Source: D. Paulus,Optimierung eines drehgeberlosen auf Hochfrequenzinjektion basieren-
den Regelverfahrens, Diploma thesis, University of Wuppertal, Germany, 2006.)

trol, the identification should be as simple as possible. Forthe design, the unsatu-
rated inductance is identified, meaning,Lq is identified atisd = 0 A and from the
step response ofisq from 0 to 0.1 A. The inductance is then halved to somehow
account for the saturation, the values areLd = 350 mH andLq = 280 mH, how-
ever, depending on the setpoint, this leads to a considerable inductance uncertainty
as seen on the flux curves.

In order to still obtain reliable deadbeat control,q = 0.25 is set on theisd-
controller andq = 0.125 is set on theisq-controller. The lowpass filter of the
disturbance estimator is slightly enlarged toTLP = 6Ts. These means will al-
low a considerable improvement in robustness, with a rathermoderate impact on
performance. It is not possible to implement such a fast disturbance estimator with
standard deadbeat, also it is not possible to run the conventional deadbeat controller,
only the introduction of feedforward linearization and theparameterq << 1 makes
this possible.

Figs. 4.15 show the experimental results. Subfigures (a) and(b) show the small-
signal step response fromisq = 0 to 0.5 A in order to show the impact of saturation.
The first step is unsaturated atisd = 0 A, the second step is saturated atisd = 2 A.
The response is very fast and reliable. While (a) is at standstill, (b) is at 1000 rpm,
the estimated disturbance is average about zero while the steady-state voltageusq
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(a) Test steps at 0 rpm. (b) Test steps at 1000 rpm.

(c) Zero to max. torque, 0 rpm. (d) Zero to max. torque, 600 rpm.

Figure 4.15: Proposed deadbeat control (q = 0.25/0.125, TLP = 6Ts = 0.375 ms)
on a synchronous reluctance machine (SynRM). Top: test of saturation influence,
bottom: from zero to maximum torque.

becomes considerable, this is specific for the SynRM which hashigh cross-coupling
terms because of the high inductance, but no back-EMF.

Subfigures (c) and (d) show the more typical application scenario where the
SynRM is operated in maximum-torque-per-ampere (MTPA) mode. First a step
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from zero current toisd = 1 A is performed, which is called premagnetization.
Then the torque is increased to its rated value by adjusting an optimal current an-
gle of 60◦. Because of the strong saturation at rated current, the command voltage
oscillates slightly. Simultaneous change on both axes is not a problem this time, as
the inductance values are higher and the transient is slower.

To conclude, the deadbeat current controller has some problems on the SynRM.
Saturation effects are extreme on the chosen motor, resulting in a very high induc-
tance uncertainty, and the controller based on a linear flux model suffers of reduced
performance. However, the proposed deadbeat controller operates reliable and with
nice performance over the complete current range.

4.2.3 Results on an induction machine

The deadbeat controller is somewhat more involved for the induction machine, as
a rotor flux observer is necessary and a number of nonlinearities appear for field-
oriented control.

As rotor flux observer, a full-order observer in stator reference frame is de-
signed. Even though simple integration of the rotor model represents a stable ob-
server [MR96b], a full-order observer is required for precise flux estimation under
uncertainties, appearing for instance in field-weakenig operation. The full-order ro-
tor flux observer in the stator reference frame [MR00] is a Luenberger observer and
is given by the nonlinear discrete-time equations

Ψ̃rα[k] = (1 − Tsη)Ψ̃rα[k − 1] − TsnpωMΨ̃rβ[k − 1] + TsηLmisα[k − 1]

+ Tsξ(̃isα[k − 1] − isα[k − 1]), (4.5)

Ψ̃rβ[k] = (1 − Tsη)Ψ̃rβ[k − 1] + TsnpωMΨ̃rα[k − 1] + TsηLmisβ[k − 1]

+ Tsξ(̃isβ[k − 1] − isβ[k − 1]), (4.6)

ĩsα[k] = (1 − Tsγ)̃isα[k − 1] + TsβηΨ̃rα[k − 1] + TsβnpωMΨ̃rβ[k − 1]

+
1

σLs

usα[k − 1] + Tsξ(̃isα[k − 1] − isα[k − 1]), (4.7)

ĩsβ[k] = (1 − Tsγ)̃isβ[k − 1] + TsβηΨ̃rβ[k − 1] − TsβnpωMΨ̃rα[k − 1]

+
1

σLs

usβ[k − 1] + Tsξ(̃isβ[k − 1] − isβ[k − 1]). (4.8)

If the observer feedback parameterξ is set zero, the eigenvalues of this observer are
−η ± jnP ωM , meaning it converges with the rotor time constant1

η
. The integra-

tion of the rotor model leads to an open-loop value. For positive values ofξ, this
information is corrected by the stator model (4.7) and (4.8), where the rotor flux is
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generating a voltage component useful for feedback. The observer will converge
faster while parametric robustness will increase. The chosen feedback parameter
value isξ = 4 for the machine described in appendix B.1. Timing is very impor-
tant if the observer shall be used for deadbeat control – it isnoted that the input
signalsis,αβ[k − 1] andus,αβ[k − 1] are all available at instantk. Furthermore, it is
seen that, as the controller design is based on Euler forwarddiscretization, the rotor
model in the flux observer acts as delay compensation (or prediction) algorithm for
the rotor flux signalΨr,αβ. Therefore, if the feedback parameterξ is not too large,
no additional delay compensation system is required for deadbeat flux control.

Current control

The model used for deadbeat current control is based on Eulerforward discretiza-
tion of the continuous model and is

is,dq[k + 1] = f(is,dq[k]) + Bus,dq[k], (4.9)

where the nonlinear system function vector is

f(is,dq) =

(

(1 − Tsγ)isd + TsnpωM isq + TsηLm
i2sq

Ψrd

(1 − Tsγ)isq − TsnpωM isd − TsηLm
isdisq

Ψrd

)

, (4.10)

and the input vector is

B = Ts

(
1

σLs

1
σLs

)

. (4.11)

All terms independent of the currentis,dq, meaning the induced voltage and the
flux coupling, are classified as disturbance and ignored in the model. They will be
compensated by the disturbance estimator. The terms described by the fundamental
model are quite slow. The disturbance generated by the flux harmonics, however,
which are not described in the fundamental model, representa fast disturbance and
therefore a challenge for the disturbance attenuation mechanism.

The nominal machine parameters are found in appendix B.1. Just like for the
PMSM, the two tuning parameters are setq = 0.5 and TLP = 3Ts. It should
be remarked that the chosen motor is of low efficiency (’eff3’) and of rather com-
pact size. This implies that secondary effects, such as saturation, are considerable.
The inductance applied for deadbeat control,Lm, is the fundamental inductance,
as described in section 2.6, the automatic parameter identification from the inverter
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(a) Conventional deadbeat at 0 rpm. (b) Conventional deadbeat at 1500 rpm.

(c) Proposed deadbeat (q = 0.5) at 0 rpm. (d) Proposed deadbeat (q = 0.5) at 1500 rpm.

Figure 4.16: Deadbeat control on an induction machine. Top:conventional dead-
beat control, bottom: proposed method (q = 0.5, TLP = 3Ts = 0.1875 ms).

compensates the saturation. However, the parameterLm is higher than the tangen-
tial inductance (which is the dynamic gain), therefore the deadbeat controller will
be in the situation̂L > L where the stability problems appear.

In Fig. 4.16 a torque step from zero to nominal torque is analyzed. The top two
figures (a) and (b) are the results of a conventional deadbeatcontroller (q = 1).
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Clearly, in (a) the parametric uncertainty leads to an instability problem resulting in
an undamped oscillation of the torque. An oscillation is also seen on the disturbance
estimator, it tries to compensate the oscillation but does not manage to. In (b) in
high-speed operation this instability phenomenon is reduced as the available voltage
is quite small, but still, an oscillation is seen after the end of the transient. The lower
two figures (c) and (d) are the results in identical situationof the proposed deadbeat
controller (q = 0.5). The instability phenomenon does not appear at all in both
cases. Apart from that, performance is identical.

(a) PI controller (symetric optimum) at 1500
rpm.

(b) Proposed deadbeat (q = 0.5, TLP = 3Ts) at
1500 rpm.

Figure 4.17: High-speed operation and harmonic effects on an induction machine.

The low-frequency oscillation of the estimated disturbance êq in subfigures (b)
and (d) is the compensation of flux harmonics. This effect is further studied in
Fig. 4.17, where (a) is the response of a PI controller and (b)the response of the
proposed deadbeat controller. The PI controller is again tuned according to the
symmetric optimum condition as discussed in section 2.7, sothe tuning parameters
areVR = σLs

4Ts
andTn = 8Ts. The flux harmonics have a frequency of150 Hz at25

Hz excitation, respectively1500 rpm. Although they are of low frequency and the
inductance is high, they result in a current ripple of0.2 A with the PI controller, but
less than0.1 A with the deadbeat controller.

To conclude on current control, while the conventional deadbeat controller is
unstable on the induction machine, the proposed method is well stable and shows
good tracking performance and disturbance rejection.
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Rotor flux control

i∗

(a) Conventional deadbeat at 0 rpm. (b) Conventional deadbeat at 1500 rpm.

estim.

(c) Proposed deadbeat (q = 0.5) at 0 rpm. (d) Proposed deadbeat (q = 0.5) at 1500 rpm.

Figure 4.18: Deadbeat flux control on an induction machine. Top: conventional
deadbeat control, bottom: proposed deadbeat control (q = 0.5, TLP = 3Ts =
0.1875 ms).

The induction motor further offers the chance to analyze second-order dynamics
by using flux control in the field-oriented frame. The design of a deadbeat flux con-
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troller is very simple because of the flatness of the dynamics. The design is equiv-
alent to two cascaded first-order deadbeat controllers. Furthermore it is strongly
simplified as the flux observer, designed based on Euler forward discretization of
the rotor model, already acts as delay compensation technique – the value of the flux
magnitudeΨrd[k] is available at the instant where the referencei∗sd[k] is computed.
The model for flux control is

Ψrd[k + 1] = (1 − Tsη)Ψrd[k] + (TsηLm)isd[k], (4.12)

from which the deadbeat control law is derived as

i∗sd[k] =
1

ηLmTs

Ψ∗
rd[k] − 1 − ηTs

ηLmTs

Ψrd[k]. (4.13)

The disturbance estimator is designed using exactly the same procedure as for the
current controller, but knowing that the latest available value isΨrd[k] and therefore
only one single sampling step delay is involved, it reads as

ê[k] = ê[k − 1] + α

(

i∗sd[k − 1] − 1

ηLmTs

Ψrd[k] +
1 − ηTs

ηLmTs

Ψrd[k − 1]

)

, (4.14)

with α = Ts

Ts+TLP
andTLP = 3Ts as lowpass filter time constant. Saturation is

implemented by limitingi∗sd[k].
In Fig. 4.18, deadbeat flux control is analyzed. Again the toptwo subfigures

(a) and (b) are the results of a regular deadbeat controller (q = 1). At a flux level
of Ψrd = 0.45 Vs, the controller is stable, but once atΨrd = 0.9 Vs, saturation
is so strong that the current and voltage are subject to undamped oscillations. This
appears for zero and high speed, furthermore, in both situations the instability trans-
fers to theq axis. The lower two figures (c) and (d) are the results of the proposed
deadbeat controller (q = 0.5). Again there is no more instability while the good
performance is untouched.

To conclude, the proposed deadbeat current controller is a very powerful method
on the induction motor. Surprisingly, although induction motors are very common,
the standard deadbeat design cannot be applied, it is unstable. Even though parame-
ter knowledge is pretty good, the omnipresent saturation effect prevents the standard
method to work. The proposed, only slightly modified deadbeat controller, however,
works fine and shows excellent performance, in both current and flux control.

The fast disturbance estimator again proves to be a powerfultool to compensate
harmonic effects. It is therefore a competitor for the conventional scheme which
consists of modeling, identification and compensation of this position-and speed-
dependent disturbance [SH98]. Its simplicity also makes itinteresting regarding the
more involved online methods for this purpose [CKKY98].
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4.3 Conclusions

This chapter has provided the experimental results and interpretations necessary for
a through study of deadbeat control.

Robustness of the controller was studied analytically and experimentally. While
the conventional deadbeat scheme works well on easily modelable drives, such as
surface-mounted PMSMs, it is too sensitive for applicationto more complex drives
such as the SynRM or the IM. The limitations arise from the omnipresent magnetic
saturation effects and the high sensitivity to inductance uncertainty.

A more robust design variant for deadbeat control has been proposed based on
feedforward linearization. This concept has been introduced in flatness-based con-
trol to improve robustness of model-based control schemes.It basically transforms
the model-based controller into a feedforward controller,then, differences between
the estimated and the real parameters do not destabilize thesystem anymore. How-
ever, the scheme must be fitted with an additional robust feedback controller to com-
pensate offsets between the predicted and the measured output. In the experiments
it turns out that robustness is outstanding, however, available feedback mechanisms
such as the disturbance estimator or a PI controller are not sufficiently performant
to compensate the time-varying disturbances present in AC drive systems. The per-
formance loss is strong compared to the conventional deadbeat controller.

To help out, an intermediate between the conventional feedback-linearization and
feedforward linearization based design was proposed. It aims at giving the robust-
ness advantage but without loosing control performance. A ’mix’ parameterq was
introduced, which can be seen as trade-off parameter between conventional feed-
back linearization and the more robust feedforward linearization, or differently said,
a trade-off between control performance and robustness.

The proposed deadbeat controller is sufficiently robust to handle any AC machine
type, including PMSM, SynRM or IM. The new deadbeat controller is considerably
less sensitive to errors, stability range is extended and oscillations caused by er-
rors are well damped. It can handle extreme inductance uncertainties, which appear
for instance from saturation effects. Furthermore, the control performance is good
enough to reject time-varying disturbances, such as flux harmonics, which result in
current and torque ripples when using conventional feedback controllers. A nice
side-effect of the proposed method is that the disturbance estimator is better decou-
pled from the deadbeat controller, especially under parametric uncertainties. This
makes the disturbance estimator more robust and the typicallowpass filter, nec-
essary for robustness and time-scale decoupling of the estimator in conventional
deadbeat control, can be tuned very fast – at a time constant of only three sampling
intervals. Furthermore, sensitivity to measurement noiseis considerably improved.
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CHAPTER 5

Optimal control of permanent-magnet
synchronous machines using linear model
predictive control

The control principle of the previous chapter is intended for single-variable sys-
tems. If the design is applied to an electrical drive, the twooutputs are decoupled
and controlled independently. While this is fine in the unconstrained case, one might
encounter restrictions if the voltage limitation is active. To avoid performance dete-
rioration in this case, control of the two outputs should notbe independent.

While the speed and torque are controlled via the quadrature currentisq, the direct
currentisd is more an internal variable. The direct current is a degree of freedom
whose precise value is less important. A non-salient PMSM isgenerally controlled
with isd = 0, however, the direct current can be used to improve power efficiency
[MXM00, CTM+05] or to improve torque dynamics [CKS95, CS98]. Dedicated
control algorithms have been developed in the past for theserespective purposes,
each algorithm is a solution to the respective optimizationproblem.

Linear model predictive control is a technique that can combine different operator
requirements, such as efficiency and dynamics, respect limitations such as voltage
and current constraints, and find an optimal system behaviorwhile regarding the
complete multivariable system model, including the interaction of the outputs. In
this chapter this advanced technique will be applied to improve the efficiency and
the dynamic responses of a PMSM.
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5.1 Benefits of optimal control

5.1.1 Preliminaries: Loss modeling in PMSMs

The losses of an electrical drive system can be divided into controllable and non-
controllable losses [KG83]. Controllable losses are, for instance, the ohmic and iron
losses, and can be influenced by the controlled variables. By optimizing voltage and
current, the controllable losses can be minimized for an arbitrary speed and torque
setpoint.

Uncontrollable losses are friction and windage losses, butalso stray load losses.
Stray load losses describe losses caused by the non-sinusoidal field distribution in
the air gap, stator slotting effects and conductor skin effects, they primarily depend
on torque, secondarily on the stator voltage frequency and temperature [KG83].
The uncontrollable losses can only be influenced by changingthe motor design or
by additional hardware, such methods are disregarded in this work.

A simple empirical model of the controllable losses is derived. The ohmic losses
are the heating losses of the stator windings and are described by

POhm,S =
3

2
Rs(i

2
sd + i2sq). (5.1)

The factor 3
2

appears asisd and isq are described in peak values in space vector
notation as described in section 2.1.

The iron losses are mainly caused by the time-varying magnetic flux in the sta-
tor [CTM+05]. The hysteresis losses are generally proportional to the area enclosed
by the characteristic hysteresis curve and the frequency inwhich that curve is peri-
odically cycled. They are described by

PHyst =
3

2
khnpωM(Ψ2

sd + Ψ2
sq) =

3

2
khnpωM((Ldisd + ΨPM)2 + (Lqisq)

2), (5.2)

wherekh is a constant. The eddy currents are induced electric currents in the stator
iron, the inherent losses are described by

PEddy =
3

2
ke(npωM)2(Ψ2

sd + Ψ2
sq) =

3

2
ke(npωM)2((Ldisd + ΨPM)2 + (Lqisq)

2),

(5.3)

whereke is a constant. The two constantskh andke are not part of standard motor
parameters, thus they have to be identified. The regular determination of power
efficiency of a drive is performed with a wattmeter to determine the input power,
and a torque and speed meter to measure the mechanical outputpower. With such a
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measurement, all losses, controllable and non-controllable, are respected, therefore
they are not suitable to determine the iron loss coefficients. Instead the method in
[USU03] is applied, it leads to the insight that the eddy current losses are neglectable
compared to the hysteresis losses. This is due to the optimized stator design of
the PMSM which suppresses eddy currents (unlike the low-cost stator of a norm
induction motor, for instance). The hysteresis losses, however, are considerable,
they are much higher than the ohmic losses. For the PMSM described in appendix
B.1, at rated speed and torque, one hasPOhm,S = 47 W andPHyst = 200 W. This is
typical for PMSMs, and also motivates the use of control methods to minimize these
losses. Still, possible identification errors must be notedas any errors in the DC link
voltage, inverter nonlinearities or machine parameters influence the measurements,
which are sensitive because of the quite small value ofLd.

The model of the controllable losses applied for the controller design is

PLoss =
3

2
Rs(i

2
sd + i2sq) +

3

2
khnpωM

(
(Ldisd + ΨPM)2 + (Lqisq)

2
)
. (5.4)

5.1.2 Optimization of the power efficiency

The direct currentisd is a degree of freedom that can minimize the losses [CTM+05].
For a given setpoint, defined by speed and torque, the quadrature currentisq and the
iron losses caused by the rotating PM flux are fixed. Ifisd is now decreased, the
ohmic losses increase quadratically, as shown in Fig. 5.1 (red). At the same time,
however, the flux magnitude in the air gap is decreased, thereby the cycle in the hys-
teresis curve is smaller and the hysteresis losses reduce slightly (black). The total
losses (green) decrease to some extent. This field weakeninghas no influence on
the torque, assuming the reluctance torque is negligible (ΨPM >> (Ld − Lq)isd).

The efficiency improvement on the analyzed drive is quite small, about4% loss
reduction is obtained at rated speed resulting in an efficiency improvement of only
0.5%. If a PMSM with higher inductance is chosen, less current is needed to weaken
the field, and higher improvements are possible. Additionally, if the drive is subject
to rotor anisotropyLd < Lq, the occurring reluctance torque supports the electro-
magnetic torque [DS04]. For instance in [CTM+05] the efficiency improvement at
rated speed and torque is3.5%. The physical design of the analyzed drive, which
can be seen as typical cost-efficient industrial servo drive, do not allow such good
results. Still, as there are no additional costs to this method of efficiency improve-
ment, the method is of interest.

However, inverter losses must be discussed. Efficiency improvement of a PMSM
implies a higher stator current magnitude and therefore increases the inverter losses.
As the switching frequency is fixed, in this case one has8 kHz sampling frequency
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Figure 5.1: Ohmic and iron losses as function of direct current isd of a PMSM at
2000 rpm and rated torque.

and a4 kHz switching frequency, a simple loss model of the invertermay be given
asPLoss,Inv = k1|i| + k2|i|2. The coefficientsk1 andk2 are determined from the
parameters of the inverter IGBTs. Whilek2 is negligible and a similar term already
included withPOhm,S, k1 stems from the constant voltage drop of these IGBTs, as-
suming a constant1.5 V drop, it is k1 = 3. Then the additional losses from the
nonzeroisd are6 W in no-load full speed, and1.5 W in full load full speed opera-
tion. Even though the loss improvement is extremely small for the chosen machine,
the additional inverter losses are even smaller. For small power servo drives these
losses are not relevant and can be neglected [Abr00]. In mid-voltage applications,
however, these losses should be considered and it was shown that reducing switch-
ing frequency is advantageous.

5.1.3 Optimization of the dynamic response

Apart from efficiency, dynamics are an important feature of servo drives. A high
torque bandwidth can be advantageous, for example for compensation of mechani-
cal vibrations, or for special applications. In low speed, this is never a problem, but
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in high speed, where the induced voltage is close to the maximum voltage, torque
dynamics are considerably slowed down. In the model equation

Lq
d
dt

isq = −Risq + usq − npΨPMωM − LdisdnpωM , (5.5)

the termnpΨPMωM dominates in high speed. If it comes close to the maximum
value for the control inputusq, the quadrature currentisq can only be increased
slowly. The deadbeat controllers proposed in the previous chapter are fast con-
trollers, but as they are SISO controllers they cannot bypass this physical limit.
Also controllers operating purely on the MTPA trajectory are generally slower in
transient operation.

To help out, the direct currentisd can be exploited as a degree of freedom to
improve dynamics if the setpoint is close to maximum voltage. The disturbance
voltage isnpωM(ΨPM + Ldisd), and in high speed, it can be reduced by impos-
ing field-weakeningisd < 0. The gap between disturbance voltage and maximum
voltage increases, thereforeddtisq increases and the torque dynamics are improved.
Thus, by exploiting cross coupling in high speed operation,optimal adjustion of
isd can improve dynamics. A minimum-time control algorithm based on calculus
of variations was proposed in [CKS95, CS98], this controller enforcesisd = 0 in
steady state but an appropriateisd 6= 0 during torque transients.

5.1.4 Problem statement: Receding horizon formulation

The stated goals for the optimal controller are formulated as a receding-horizon op-
timization problem, which is solved at every sampling step.Both goals are obtained
by field-weakening, therefore, qualitatively, both goals can be obtained.

To obtain the optimization benefits, a torque controller is sufficient. Although ef-
forts were done to design predictive controllers without a cascaded structure [BBPZ09],
this is not necessary. The degree of freedomisd is fully available at the torque con-
trol level. Furthermore, the torque controller formulation enables some key simpli-
fications to formulate a linear-quadratic optimization problem.

Linearization of the machine model

As linear-quadratic optimization problems with linear constraints are simpler to
solve in real-time, the machine model is linearized. Assuming that the rotor speed
does not change too much over the optimization horizonT ,

d

dt
ωM(t) ≈ 0 ⇒ ωM(t) = const. ∀ t ∈ [0, T ], (5.6)
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the PMSM model and the voltage equations become linear. The assumption is jus-
tified if the current control loop is faster than the speed control loop. The electrical
subsystem of the machine, consisting of the quadrature and direct currentsisq and
isd, is given as

Ld
d
dt

isd = −Risd + npωMLqisq + usd, (5.7)

Lq
d
dt

isq = −Risq − npωMLdisd − npωMΨPM + usq, (5.8)

τM =
3

2
npΨPM isq. (5.9)

The nomenclature and parameters are found in appendix B.1. Itis noted that the
reluctance torqueτR

M = 3
2
np(Ld − Lq)isdisq is neglected, as this term is very small

compared to the electromagnetic torque in surface-mountedPMSMs or in machines
with small saliency. Furthermore, it would render the modelnonlinear, requiring
either nonlinear optimization methods [DS04] or more extensive linearization by
defining the nonlinear terms as external disturbances [BBPZ09,BKKP11].

Cost functional and tuning

The formulation of a suitable cost functional is a key point in predictive control,
as it is the only tuning possibility of the control scheme. Both goals, the control
error for good dynamical performance and the machine lossesfor better efficiency,
are included in the cost functional. By choosing the cost functional and weights
well, it is possible to find a good trade-off between both goals during transients, and
eventually to fulfill both goals in steady-state. The cost functional for the predictive
torque controller is

J =

∫ t

0

(PCtrl(t) + wLPLoss(t)) dt + TPLoss(T ), (5.10)

which trades off the squared control error from the constanttorque referenceτ ∗
M ,

PCtrl(t) = (τM(t) − τ ∗
M)2, (5.11)

with the machine lossesPLoss(t) defined above. The last term inJ is the end-weight
of the control error, it enforces a better convergence in some operation points. It is
weighted with the horizonT such that it has a similar weight as the control error
term in the integral; assuming the control error decreases,however, the end-weight
term is of course much smaller. In appendix F.1 an analysis ofsteady-state accu-
racy is shown, while efficiency optimization is guaranteed,a negligible steady-state
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offset appears on the torque. More important, however, is behavior during transient
operation.

There are two tuning parameters, the weightwL and the prediction (and control)
horizonT . The weightwL trades off losses and torque tracking, it was set0.05, the
value was determined heuristically. The optimization horizon is set toT = 2 ms
such that the cost functionalJ includes the complete torque setpoint change if speed
is not too high. It is important that the optimization horizon is high enough, other-
wise the open-loop and closed-loop trajectories differ andthe behavior is strongly
suboptimal. This is illustrated in Fig. 5.2. The optimized open-loop trajectory
differs from the closed-loop trajectory, latter one results from regeneration at every
sampling step. If the horizon is too small, due to the end-weight of the control error,
a significant difference appears. Then, the closed-loop trajectories simply don’t fit
the cost functional anymore and are suboptimal. For a horizon higher than required
for the setpoint change, the difference between open- and closed-loop trajectories
becomes smaller, and the closed-loop trajectories can be assumed optimal regarding
the open-loop cost functionalJ .

t=0

t=T

t=2T

t=3T

s

s

s

τMτM

τ ∗
M τ ∗

M

tt

TT

Figure 5.2: Exemplary torque setpoint change to describe open- and closed-loop
trajectories in model predictive control. Left: small horizon, right: high horizon.
Circles: reinitialization points of each trajectory planning iteration.

System constraints

The most important nonlinearities of a PMSM, in view of control, are the voltage
and current limitations. The current constraints prevent overheating of the machine
and protect the inverter, and the voltage is limited by the maximum output voltage
of the voltage source inverter. The voltage constraints limit rotor speed as well as
current dynamics in high-speed operation. Both constraintsare linearized, in order
to be computationally efficiently treated.
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The current range for the direct currentisd is limited to imin
sd ≤ isd ≤ 0. Only

negative values ofisd are desirable, as they improve power efficiency and reduce the
induced voltage by weakening the flux magnitude in the stator[CTM+05,BBPZ08].
The lowest valueimin

sd is the optimum value at rated speed (∂
∂isd

Ploss = 0) and is
given as

imin
sd = − LdΨPM

L2
d + R

npωMNkFe

, (5.12)

which is independent of the quadature currentisq if the reluctance torque (the
saliency in the torque equation [MKM04]) is neglected. The value is doubled to en-
able further field-weakening to improve dynamics in high speed. For the quadrature
currentisq, the largest possible range of values should be available. The resulting
linear constraints in trapezoid form are shown in Fig. 5.3, they almost completely
fill the current region of interest. A linearization in the synchronously rotating frame
is thus acceptable, and is also used in other MPC implementations [BBPZ09].

The approximation of the voltage constraints is a bit more difficult. The q-axis
should not be restricted, as the induced voltage is aligned to it and is the largest
value that will appear. A steady-state analysis of the system equations (5.7), (5.8)
shows that a rectangular voltage area results

Rimin
sd − npLqω

max
M imax

sq ≤ usd ≤ npLqω
max
M imax

sq , (5.13)

−Rimax
sq + npLdω

max
M imin

sd − npΨPMωmax
M ≤ usq ≤ Rimax

sq + npΨPMωmax
M .

(5.14)

This rectangle (dark gray on Fig. 5.3) is expanded such that the outer circle of the
voltage limitation is hit (light gray on Fig. 5.3). During dynamical transients, the
voltage vector points to one of the outer corners, subsequently touching the outer
limiting circle. Therefore, a linear approximation of the voltage limits as a rectangle
in field-oriented frame by the presented method, as shown on Fig. 5.3, does not
limit the steady-state operational range and only marginally affects dynamics. A
less restrictive method is presented in [RMM10], where a time-varying constraint
in form of a hexagon in stator frame is proposed. While such a linearization is
possible with the underlying predictive control algorithm, the method in the (d, q)-
frame is chosen for simplicity and to prevent possible current ripples.
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Figure 5.3: Affine approximation of the current and voltage constraints. Circle:
feasible set of current and voltage vectors, gray: feasibleset after linearization of
the constraints.

5.2 Linear model predictive control

5.2.1 Predictive control, MPC, and flatness

The term ’predictive control’ denotes a large class of controllers rather than a spe-
cific algorithm, with the sole common characteristic that there is a prediction in
some sense. Especially in electrical drives, a vast varietyof predictive controllers
exist. These include direct torque control (DTC), predictive torque control (PTC),
generalized predictive control (GPC), deadbeat control, and many more, overviews
are found in [LKKS10, CKK+08]. The algorithms can be divided by a continuous
or discrete control set, their ability to handle constraints, and more.

Even though some authors call their works model predictive control because they
include model-based predictions in some sense, the term model predictive control
(MPC) is a well-defined controller design in the control literature [ML99, Lee11].
MPC is therefore a specialized variant of predictive control, and only a handful of
recent works study MPC for electrical drives [LK05, BBPZ09, BKKP11, RMM10,
LKKS10]. The reason is that MPC comes with a high computational burden and
is hard to implement due to the high sampling rates, furthermore, interest has been
low as it was long unclear what the advantages of such a designcould be. So far, the
discovered advantages are the possibility of cascade-freespeed control [BBPZ09]
and the simplified inclusion of sensor filters [LKKS10].

In [FM00a] three salient features that characterize MPC uniquely amongst the
many optimal or predictive control methods are proposed:

• The systembehavior is predicted by a modeland the prediction is explicitly
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included in the control.

• The problem includesinput and output constraintswhich are treatedin the
controller design.

• A feedback mechanismdeals with perturbations and uncertainties.

The categorization makes sense and is both precise and abstract, although it is not
accurate, for instance, generalized predictive control (GPC) is also seen as MPC
even though it is unconstrained.

The definition in [ML99] is more technical. Accordingly, linear model predictive
control is a control method which is based on formulating andsolving repeatedly
at everysampling step an open-loop optimization problem. It includes constraints
by defining inequality constraints in the optimization problem, differing it from
optimum LQ state controller design.

With the definition of [FM00a], however, the optimization problem may be seen
as one mean amongst many alternatives to generate trajectories by predictions that
also account for the constraints, the optimizer as such is not the core of MPC. The
generalized definition and the mathematical framework in [FM00a] leaves more
freedom and extends flatness-based control, which, in the classical sense, means
trajectory generation and trajectory tracking [Lév09], such that continuous-time
flatness-based methods can be applied for MPC. Several computationally efficient
continuous-time trajectory generation methods exist [vNM98, vL02, GF06], incor-
porating prediction, optimality, constraints and setpoint changes in some way, but
not necessarily quadratic programming (QP) and the relatedhigh computational
burden.

Full-fledged MPC design based on flatness therefore consistsof an extended tra-
jectory generation stage that includes prediction based onthe model (not just set-
point interpolation) and the explicit respect of constraints (not just saturation), com-
bined with a robust tracking controller.

5.2.2 Online optimization: A real-time problem

The major obstacle in implementing predictive control schemes is the limited com-
putational power, inherited by the high sampling rates. Themost widespread schemes
trade computational feasibility against compromises in the problem formulation, for
instance, generalized predictive control (GPC) has a high prediction horizon but is
unconstrained [LKKS10], whereas predictive torque control (PTC) is constrained
but so far only reaches2 steps of prediction [CKK+08]. To obtain the advantages
claimed by the classical MPC formulation on constrained multivariable systems,
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both, inclusion of constraints and a high prediction horizon are required. In this
application, these two requirements also make physical sense, as discussed in the
previous section. The problem formulation shall not be simplified, but the solution
of it.

Using the continuous control set in the field-oriented frame, the analytical prob-
lem description enables the use of efficient optimization algorithms to maximize the
obtained information for a given computational power. The online solution of the
linearly constrained linear-quadratic problem, typical for MPC, requires quadratic
programming (QP) algorithms, which are, however, computationally too expensive
for drive systems.

In the efforts performed to apply MPC to mechatronical systems, the many ex-
tensions and advances of optimizers (warm start, etc.) wererecombined and it was
shown that QP can be improved to operate at sampling rates up to 200 Hz [WB10].
This also means that even though all available means were implemented on the best
computers, the sampling rates for electrical drives are outof sight for QP.

A recent development is the use of explicit MPC, where an offline solution is
computed and stored as look-up table in the real-time controller [BBPZ09]. The
scheme reaches5 prediction steps with constraints. However, the design is subject
to some issues. The complexity of the controller increases exponentially with the
number of constraints and state variables, so that the problem formulation must be
kept compact. A high complexity increases the size of the look-up table and leads to
real-time problems. Furthermore, from a practical perspective, the explicit solution
does not allow fine tuning of weights and model parameters during commissioning,
the lengthy offline precalculations must be repeated, a major limitation to explicit
MPC [Lee11].

Development of fast online MPC algorithms and their application to new systems,
including mechatronic and power electronic systems, has been declared as major
research objective of the decade for MPC [Lee11].

Recently, an online algorithm based on a fast-gradient method (FGM) was pro-
posed for reference tracking control of a grid-connected inverter [RMM10]. The
optimizer is of a different class than QP. In [RMM10], open-loop software tests
show that the runtime of the controller is acceptable, and simulations indicate su-
perior performance compared to explicit MPC. An advantage ofonline optimiza-
tion is the possibility to manipulate or adapt parameters, which results in simplified
commissioning. Another advantage are time-varying constraints, which are better
adopted to the physical voltage limitation.

Some other QP-like algorithms that are specifically designed for MPC applica-
tions are in research. The main assumption therein is that the solution of the actual
optimization problem is not much different from that of the previous sampling step,
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and only few additional iterations are required at each sampling step. This makes
sense for the typical MPC tracking formulation [ML99], but for electrical drives, it
turns out the physically motivated optimization problem could change drastically at
a reference step, so that a warm-start technique only has marginal improvement.

Before discussing in detail the real-time feasible optimization algorithm, the run-
time of available optimizers is discussed. This is necessary to determine the high-
est possible amount of optimization parameters. The fastest optimizer with con-
straints is still the good old and widely known linear programming (LP) method.
Table 5.1 shows some worst-case computational results of LP(simplex method
from [PTVF92]) as a function of the number of free parameters(CPU: 1.4 GHz
Pentium M in an industrial PC104+ computer). More parameterslead to a higher
number of iterations which are also more complex; the worst-case number of iter-
ations is the number of parameters plus the number of constraints [Pie69]. As in
the underlying application, the constraints are decoupled, however, this worst-case
is not to be expected. The maximum runtime is given by the sampling rate minus
latency of input/output, therefore at8 kHz sampling rate, it must be less than about
110 µs. Thus, at best,12 parameters can be optimized if an LP method is used.

Table 5.1: Runtime of a linear program for some worst-case problems on a1.4 GHz
CPU

Parameters Constraints Iterations Runtime [µs]

20 44 67 769

12 28 34 165

8 20 10 35

As comparison, the results of a quadratic programming solver are shown in table
5.2. The QP algorithm is from the open-source mathematics library ’GSL GNU
Scientific Library’, version 1.15, released in spring 2011.The results with6 pa-
rameters compare to those of12 parameters in the LP, it is a similar optimization
problem and in QP the variables can be positive and negative,while in the LP these
are limited to positive values [Pie69]. Clearly, the runtimeis too high for real-time
application, the LP solver shows to be about20 to 30 times faster than the QP solver.

By solving the computational problem without compromising the MPC formula-
tion, meaning with both a high horizon and constraints, the merits of this controller
can be studied. The main contribution of the chapter is a fastnear-optimal trajectory
generator, which, embedded in the framework of [FM00a], leads to a full-fledged
MPC. This leads to the first MPC with online optimization experimentally applied
to a drive system.
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Table 5.2: Runtime of a quadratic program on a1.4 GHz CPU
Parameters Constraints Iterations Runtime [µs]

6 28 19 3621

4 20 10 1151

5.2.3 A simple and efficient LQ optimization algorithm

A trajectory generation algorithm related to flatness-based methods [GF06] is devel-
oped. It can optimize a quadratical cost function like (5.10) with linear constraints
like in Fig. 5.3. As major differences to standard algorithms, it is applying a con-
tinuous parameterization instead discretization, and thecomputationally efficient
linear programming solver is used instead of quadratic programming or iterative
gradient search. Even though LP is used, it is still quadratic optimization; the un-
constrained solution to the quadratic cost is calculated first, then, constraints are
included using the LP solver.

As a first simplification the trajectories for the current aredefined as degreen
power series with undetermined coefficientsαij,

isd(t) =
n∑

k=0

αdk
tk

T k
, isq(t) =

n∑

k=0

αqk
tk

T k
, t ∈ [0, T ]. (5.15)

This definition reduces the dimensionality of the generatedtrajectories rather than
their length and is referred to as Ritz parameterization [Pie69]. It is an alterna-
tive parameterization to the typical Euler discretization. While some applications
use more sophisticated basis functions, for instance higher-order polynomials (La-
guerre and Legendre polynomials), because of higher numerical stability. The sim-
ple choice of power series is adequate for this application.Moreover, in [BS97]
it was shown that only the polynomial degree but not the type of polynomials is
important for convergence.

The first coefficientsαd0 andαq0 are the initial conditions, and the remaining6
coefficients are determined by optimization. A high prediction horizon is obtained
for a relatively small number of parameters. Due to the analyzed computational
limitations,

n = 3 (5.16)

is chosen as polynomial degree. Fig. 5.4 illustrates the computational advantage,
with 3 parameters at8 kHz sampling rate, using a discrete description, the prediction
horizon is0.375 ms, but with a degree3 polynomial, a well-conditioned setpoint
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change can basically be described over the desired prediction horizon of2 ms. More
complex trajectories may not be expected for the underlyingapplication.
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Figure 5.4: A trajectory described by3 free parameters. Discrete-time horizon is
0.375 ms, continuous polynomial-based trajectory is well-conditioned at the desired
horizon length2 ms.

As second simplification, the voltagesus,dq(t) are substituded in the optimization
problem. The model equations (5.7) and (5.8) are equality constraints in the opti-
mization problem, they describe the relationship between the outputs and the inputs,
and in the case of a flat system, these equality constraints can be substituted directly
without solving a differential equation [SRA04]. By algebraically differentiating
the currents (5.15), the expression for the current derivatives is

d
dt

isd(t) =
n∑

k=1

kαdk
tk−1

T k
,

d
dt

isq(t) =
n∑

k=1

kαqk
tk−1

T k
. (5.17)

Substituting the algebraic expressions ofis,dq and d
dtis,dq in the model equations

(5.7) and (5.8), the expressions for the voltage

usd = Risd + Ld
d
dt

isd − npωMLqisq, (5.18)

usq = Risq + Lq
d
dt

isq + npωMLdisd + npωMΨPM , (5.19)

are used directly to replace these two variables in the constraints by functions of the
undetermined coefficientsα. This way the voltages do not need to be represented
by additional parameters, and equality constraints are avoided in the optimization.
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The cost functionalJ is then a quadratic function of the unknown parameters
α and of the parameters which were assumed constant, namely the motor param-
eters, the measured currents, the speedωM and the torque referenceτ ∗

M . Defining
the vector of undetermined coefficients asα = (αd1, αd2, αd3, αq1, αq2, αq3)

T , it is
rewritten as

J = αT Qα + qT α + q0. (5.20)

Because of the parameterization with a polynomial basis, convexity must be dis-
cussed [GF06], in (5.10) the weight matrix wasR

2×2 whereas now it is extended to
Q ∈ R

6×6. The proof that convexity is maintained with this transformation is given
in appendix F.2 for the unconstrained case. As only linear inequality constraints are
regarded, which always form a convex set, the result is also valid in the constrained
case. To illustrate the further developments,J is represented graphically in Fig. 5.5
(left).

f
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α2

β1β1

β2β2

α∗
1

α∗
2

α1-α∗
1α1-α∗

1

α2-α∗
2α2-α∗

2

Figure 5.5: Transformation and linearization of the optimization problem. Lines
are equimagnitude contours of the cost function. Left: original problem, middle:
transformed least-distance problem, right: transformed and linearized problem.

The inequality constraints are also parameterized with thepolynomial. Exact
parameterization requires linear matrix inequality (LMI)methods, which are, how-
ever, computationally too demanding for this application.Necessary and sufficient
conditions for such univariate polynomials over an interval t ∈ [0, T ] exist, but
require numerically intensive algorithms to establish corresponding linear matrix
inequalities [HL03]. A computationally more efficient way is to sample the trajec-
tories foris,dq(t) andus,dq(t) at an intervalT

n
as shown in Fig. 5.6. A degree3

polynomial is simply constrained at4 points to be negative. In appendix F.3 it is
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proven that if an additional interlay∆ is added, the transformation guarantees main-
tenance of the original constraints. For instance, a constraint i(t) ≤ I ∀t ∈ [0, T ]
is parameterized as the four inequality constraints

i(0) ≤ I, (5.21)

i

(

k
T

n

)

− ∆i(0) ≤ I, k = 1..3, (5.22)

where∆ = 0.064 is the respective interlay constant forn = 3 (as calculated in the
appendix F.3). While the transformed constraints are sufficient, meaning guaranteed
to be maintained, they are not necessary, therefore a bit toorestrictive. The restric-
tion of 6.4% of the initial distance to the constraint is acceptable, however, also as it
shrinks asi converges to its boundaryI. The first constraint on the initial condition
does not need to be included, and the remaining3 conditions are affine functions of
α, but not oft, such that they can directly be included in linear-quadratic optimiza-
tion in the parameter spaceα.
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Figure 5.6: A degreen polynomial trajectory (black) constrained atn + 1 points to
be nonpositive (orange arrows) can not exceed the upper bound of −∆ · P (0) (red
line) (Proof: appendix F.3). Here,n = 3, P (0) = −1 and∆ = 0.064.

As J is convex, the unconstrained optimumα∗
0 is found algebraically by solving

first-order necessary conditions,

α∗
0 = −1

2
Q−1q. (5.23)

Then, by an affine coordinate transformation to a new coefficient vector

β = A(α − α∗
0), (5.24)
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the problem can be reformulated as least-distance problem,i.e. a quadratical cost
describing the distance to the unconstrained optimum. The linear transformation
includes both a coordinate rotation as well as scaling, and is found with

AT A = Q, (5.25)

which can be solved with the Cholesky decompositionAT = Cholesky(QT ). As
result, the cost functional looks much simpler and reduces to a sum of squares

J = βT β, (5.26)

and can be represented as in Fig. 5.5 (middle). This constrained least-distance
problem is already simpler to solve than the original problem. In the next step, the
least-distance problem is linearized around the unconstrained optimum, see Fig. 5.5
(right). The squares in the cost function are replaced by absolute values

J = βT β =
∑

i

β2
i ≈

∑

i

|βi| = J ′. (5.27)

In the LP standard form, furthermore, only positive parameters are possible, there-
fore the variables are replaced byβi = βip − βin, with βip, βin ≥ 0. If βi is positive,
βip ≥ 0 andβin = 0, and vice versa [Pie69]. The absolute value can then be re-
placed by|βi| = βip + βin. Equivalence is guaranteed by minimizing the (positive)
sum, such that at least one variable of each pair(βip, βin) will be zero [Pie69]. The
linearization of the cost function inherits a large difference (and error) in the value
of J [RR00], but the values of the coefficientsβ are not affected that much: the
least-distance problem is not so different in the linear form as it would have been
in the quadratical form. Furthermore, a difference only appears if a constraint is
active, the unconstrained optimum is the same. It can be shown that the resulting
cost inherited by the linearization is

J ′ = J0 + 2n · JC (5.28)

in the worst case, whereJ0 is the unconstrained cost, andJC the extra cost when
considering constraints. The suboptimality is therefore bounded.

The linear constraints onα are as well transformed to the new variablesβ with
(5.24). Therefore, after all the transformations, the problem is available in standard
form for linear programming, say a linear cost with linear inequality constraints in
the parameter space(βp,βn), and a simplex solver [PTVF92] can be run. The op-
timal solutionβ∗, the output of the LP, has to be retransformed to find the optimum
in the original coordinates

α = α∗
0 + A−1β∗. (5.29)
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The optimal resultα is used in (5.15) and the motor model to obtain the optimal
trajectories for the currents and voltages.

To conclude, the algorithm consists of a continuous parameterization using a de-
gree3 power series with undetermined coefficientsα. The problem is transformed
to a constrained least-distance problem using the Cholesky decomposition and the
unconstrained optimum. Then, the quadratic cost is approximated by a linear cost
to apply linear programming (LP). The constraints become univariate polynomi-
als because of the transformation, they were sampled and rewritten as parametric
inequalities.

5.2.4 Implementation and control structure

Software implementation aspects

All computations of the previous section are done using a computer algebra tool
(Maplesoft’sR© MapleTM). From the initial optimization problem and the transfor-
mation, the matrices (initialization of floating-point arrays) for the LP solver are
generated using the C code generation toolbox. The real-time software thus consists
of array assignments, which is automatically generated code to initialize one matrix
and two vectors of floating-point variables, a simplex LP solver from [PTVF92],
and some post-processing again from algebraic math. As the assignment is based
on symbolic calculations, the motor parameters can be changed online. However,
the majority of parameters is defined as constant, the compiler can then optimize
code size as well as runtime of the initialization stage. Theimplementation flow is
sketched in Fig. 5.7.

Alternatives to this procedure were evaluated. The direct use of a quadratic pro-
gram (QP) is too slow, as shown in table 5.2, with6 parameters,28 constraints and
19 iterations it requires3621 µs. The proposed method is therefore considerably
faster than QP. If the problem is first transformed to least-distance, the number of
iterations and the runtime reduce by about50%. It should be remarked that due to
the more specific cost function and the polynomial parameterization, the resulting
optimization problem is more complex than the regular MPC problem with Euler
parameterization, which is a major reason why the good timing results from QP
found in the literature cannot be obtained here.

Online calculation of the trajectory generation algorithminstead of computer al-
gebra generated code was also analyzed. The online calculated matrix inversion
with 6 parameters takes13 µs and the Cholesky decomposition40 µs. Addition-
ally, this requires the use of a scientific mathematics library. The runtime of the
initialization stage is thereby expanded from about10µs for the proposed computer
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J =   ... dt

Design Commissioning Real-time system
offline

computer algebra

Problem

Transformation
i =

∑
αit

i

Code generation

c,A,B

Parameters
Ldq, Rs,ΨPM

wL, T

Software
small LP solver

Initialization
is,dq, ωM , τ∗

M

loadc,A,B

Optimization
min J ′ = cT x

s.t.Ax ≤ B

Post-processing
i(t),u(t)

us,dq[k]

Figure 5.7: Implementation of the proposed trajectory generation resp. MPC algo-
rithm. The tasks in the left column are done once, those in themiddle column are
done for every new drive system, and those in the right columnare carried out in
real-time at each sampling step.

algebra method to more than50µs.
The choice to use a computer algebra tool and automatic code generation turns

out as the easiest way to implement and as well as the computationally most ef-
ficient way. The automatically generated code is copy-and-pasted to the real-time
software, only a small LP solver like [PTVF92] has to be added. The chosen LP
implementation, however, seems to be a somewhat slow implementation, runtime
improvements are possible.

Predictive control structure

The control structure is shown in Fig. 5.8. A cascaded control structure is chosen
as speed is assumed constant for trajectory generation. As the mechanical plant
is generally only roughly known, this overlying speed controller is advantageous.
An optimizing model-based controller is used for the electrical subsystem of the
motor as the parameters are known, but for the mechanical part, any robust feedback
controller can be chosen.

The trajectory generation algorithm is embedded in the framework proposed in
[FM00a] to realize continuous-time flatness-based MPC. As described in section
2.5, the current measurements are delay-compensated [MKY03]. Then they are
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used as initial conditions, along with the updated speed andreference, to generate a
new trajectory at every sampling step. The optimal control input trajectoryus,dq(t)
is discretized andus,dq[k] is modulated at the next interrupt.

Additionally, for steady-state accuracy, a disturbance observer is necessary, for
instance to compensate modeling errors of the parameters and harmonic effects.
Even though the induced voltage is modeled, variations inΨPM caused by either
heating or identification errors cause an offset of the current isq. The design is
identical as in the previous chapter [KY01]. Furthermore, robustness to parametric
uncertainties can be improved in exactly the same way as proposed in the previous
chapter, i.e. by replacingis,dq[k − 1] by a weighted sum of measurements and
reference trajectories.

, ω

speed
control

trajectory
generation

delay
comp.

discret. PMSM

disturb.
estim.

rotor coordinates stator coordinates

ωM

ω∗
M

τ ∗
M us,dq(t) us,dq[k]

is,dq[k|k-1]

is,dq[k-1]

z−1

Figure 5.8: Control structure of the predictive torque controller cascaded by PI
speed control.

5.3 Results

The proposed control scheme was implemented in numerical simulations and in ex-
periments on the test bench. The numerical simulations shall give insight in both
the trajectory generation algorithm and in the suboptimality of the method. The
experimental results demonstrate the performance of the scheme. The PMSM is de-
scribed in appendix B.1, tuning is as described in the developments of this chapter.
The sampling rate is reduced to8 kHz (compared to16 kHz in the previous chapter)
to have a longer sampling interval.
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(a) Unconstrained withn = 5. (b) Unconstrained withn = 3.

min

(c) Constrained QP withn = 5. (d) Constrained QP withn = 3.

(e) Constrained LP withn = 5. (f) Constrained LP withn = 3.

Figure 5.9: Simulation results: Open- and closed-loop trajectories, with uncon-
strained optimization (top), quadratic programming (QP, middle) and linear pro-
gramming (LP, bottom), and different polynomial degrees (n = 5 on the left resp.
n = 3 on the right side). Orange: reference, Black/gray: Current, Black circles:
re-initialization points. Operation pointωM = 0 rpm, 8 kHz sampling rate. Con-
straints:τM ≤ 11 Nm, |us,dq| ≤ 330 V.
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5.3.1 Simulation results

Fig. 5.9 shows simulations to demonstrate the behavior of the polynomial-based
parameterization, especially regarding the influence of the low polynomial degree,
the linearization and the difference between open- and closed-loop trajectories. A
torque reference step is represented atωM = 0. The black line is the first trajectory,
the circles are the reinitialization points and the lighterlines are the recalculated
trajectories at the respective later instants.

Subfigures (a) and (b) show the step response with deactivated voltage con-
straints. (a) is a degreen = 5 polynomial, and (b) is a degreen = 3 polynomial
like in the implementation. In (a) the response is very fast,but slower than deadbeat
as a tradeoff of control error and the losses are included in the planning. In (b) the
response is considerably slowed down because of the low degree, even though there
is no constraint.

Subfigures (c) and (d) are the response with QP. The response is slower as volt-
age limitations are respected. Furthermore, oscillationsare smaller in the predicted
open-loop trajectories. Again, (d) is slower than (c) because of the low-order poly-
nomials.

Subfigures (e) and (f) are the response with the simplification and the LP, which is
also implemented in the experiments. Interestingly, thereis virtually no difference
in the closed-loop response compared to the QP results. There is a considerable
difference in the predicted open-loop trajectories, however, especially at the end
of the prediction horizon. The linearization results in a certain suboptimality on
the parametersα. This parameter variation∆α = αopt − αsubopt influences the
polynomial by an additional error∆P (t), as

P subopt(t) =
∑

αsubopt
i ti =

(∑

αopt
i ti

)

︸ ︷︷ ︸

P opt(t)

−
(∑

∆αit
i
)

︸ ︷︷ ︸

∆P (t)

, ∀ t ∈ [0, T ]. (5.30)

In the polynomial, this suboptimality only has a small influence at the beginning of
the trajectory as the parameters∆αi in the error∆P (t) are multiplied byti, at the
end, however, this influence can become very large.

To conclude, the results in Fig. 5.9 indicate that the influence of the polynomial
order3 is quite considerable, but it was shown that the computational restrictions
prevent higher orders. Furthermore, it was shown that the influence of the cost
function linearization is quite small.
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(b) Timing at 2000 rpm.

Figure 5.10: Experimental results on timing of the predictive controller.

5.3.2 Experimental results

From the timing sequences in Fig. 5.10, interesting insightinto the computational
demands of the algorithm is gained. The figures are generatedin the same way as
already for Fig. 2.1. The first part of the controller signal (bottom signal, blue) in
(a) shows the calculation time for the simplex tableau initialization, it takes about
10µs. Included in these calculations, which is automatically generated code result-
ing from symbolical calculations, is a calculation of the unconstrained optimum and
the linearization of the problem. The second and biggest part of the controller signal
is the runtime of the linear program (LP solver from [PTVF92]). At the beginning
of (a), where voltage and current are both zero, it is only about 20µs, but to calcu-
late the voltage step at2000 rpm shown in (b), more iterations are involved as many
constraints are active, and the computation time rises to almost60µs. The total time
of the interrupt handling, latency, the simplex initialization, the LP solver and the
post-processing sum up to almost100µs in the worst case, therefore up to80% of
the available time is used.

Experimental results of the proposed scheme are shown in Fig. 5.11. Subfigure
(a) shows the response to two subsequent speed reference steps, the load drive is
deactivated. The cascaded PI speed controller is very fast,the speed reference step
results in a voltage peak, and the torque is increased rapidly. The direct current
isd depends on the speed and thereby reduces iron losses which are considerable at
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(b) Torque step at 0 rpm.
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(c) Torque step at 2000 rpm.
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(d) Torque step at 2400 rpm.

Figure 5.11: Experimental results: (a): Response of speed controller, (b)-(d): re-
sponse of torque controller.

high speeds. At2000 rpm, losses are decreased by about2.5%, and the efficiency
is improved by about0.25% , as already indicated in Fig. 5.1. Even though these
improvements are small, modeling the losses is mandatory todesign a convex cost
function, both currentsisd andisq must be weighted. Better results are only obtained
on motors with higher inductances [CTM+05].
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The next three subfigures (b), (c) and (d) show fast torque transients at zero,
medium and high speed, respectively. The PMSM is in torque control mode while
the load drive keeps speed constant at0, 2000 or2400 rpm, respectively. The current
components are well decoupled, a fast current change on the quadrature axis does
not affect the direct axis in (b) and (c). Again, the current on the direct axisisd is
dependent on the speed. Furthermore, the torque change is fast and at the same time
smooth, the voltage becomes smoothly smaller for smaller control errors – a nice
characteristic of quadratic cost functions with a high horizon, compared to linear
cost functions which result in deadbeat behavior.

On subfigures (b) and (c), the behavior with active voltage constraint is the same
as when using standard saturation or anti-windup strategies. On subfigure (d), how-
ever, a different behavior is seen, the direct currentisd is reduced during the torque
transient to perform field-weakening. This implies that thestator induced voltage is
reduced on the quadrature axis, see eq. (5.8). Thereby the gap between induced and
maximum voltage increases, the derivative of the quadrature currentd

dtisq is higher
and the torque-generation dynamics are increased, at the cost of higher ohmic losses
on the direct axis. Without additional field-weakening, thereference torque would
not be reached after the prediction horizon of2 ms, thereby the end-weight of the
control error inJ oversizes the loss term. Therefore, in this predictive control im-
plementation, field-weakening not only improves efficiency, but also improves dy-
namics by exploiting the cross coupling between the orthogonal current components
to optimally bypass the voltage saturation [CKS95, CS98]. Thesituation described
above is the one where the highest number of constraints is active, and thus, also
where the suboptimality of the proposed trajectory generation method is the highest,
but still, behavior is very good.

It is also possible to operate the PMSM beyond rated speed with steady field-
weakening to bypass the voltage saturation on the quadrature axis, as shown in
[BBPZ08]. Some safety concerns have been mentioned, a PMSM operating under
field-weakening beyond rated speed will generate a beyond-rated voltage if the in-
verter fails, however, the safety buffer is sufficiently high on standard servo drives
to prevent destruction.

It should be highlighted that the current on the direct axisisd has no reference,
its value is obtained from the optimization of the cost functional. Therefore, the
method works well and is numerically stable; the optimal value follows inherently.
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5.4 Conclusions

Two questions are central to this chapter:

• Is it possible to implement linear model predictive control(MPC) with online
optimization, a promising advanced control algorithm?

• Does this controller give any merit that justifies the additional design and
implementation effort?

A model predictive control scheme for torque control of a PMSM was intro-
duced. The core differences to existing MPC schemes are the online solver which
simplifies commissioning, the specific cost function formulation that aims at opti-
mal efficiency and dynamics, and the high prediction horizonnecessary to claim
optimality. Based on suboptimal real-time optimization, the currents and voltages
are computed according to a cost functional at every sampling step. The scheme
is very close to the MPC formulation applied in process control, only two differ-
ences apply, the cost function is physically motivated to obtain advantages, and a
continuous-parameterization-based optimization was applied. The prediction hori-
zon is2 ms at a sampling rate of8 kHz, and voltage and current constraints are
respected. Therefore it is very well possible to implement long-range MPC with
constrained online-optimization even on fast-sampling systems such as electrical
drives. According to the definition in [FM00a], the proposedscheme is the first
realization of long-range online MPC for a drive, apart fromthe explicit solution.

The merits of the control scheme are seen in the experimentalresults. The ad-
vantages of the scheme are these of any predictive controller, namely precise ac-
counting for timing of measurement and control, decoupling, respecting current and
voltage constraints safely and very fast control. More specifically, long-range con-
strained predictive MIMO control leads to improved accounting of cross coupling,
fast and smooth dynamical behavior, improved power efficiency by field weaken-
ing, and improved dynamics close to voltage saturation by additional short-time
field-weakening.

As negative point, the high demands to computational power must be named, and
the rather involved implementation.
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CHAPTER 6

Optimal control of induction machines using
nonlinear trajectory optimization

Induction machines are the most widely used type of AC drives. Their biggest
advantage is the low price and the possibility to apply the very simple V/f-control
scheme. These two characteristics made it the favorite drive in the industry, and it
is responsible for about60% of the total electric power consumption in the industry.

However, the power efficiency of an induction machine is lower than that of a
permanent-magnet synchronous machine, especially in the small power area below
20 kW. In operation below rated load, the efficiency is decreasing even more. In
many applications, the drive operates on rated torque only during limited time, but
most of the time in partial load, such drives are running below their rated efficiency.

To bypass this drawback, the power efficiency can be improvedin partial load
by control means [KG83]. The established efficiency improvement methods are de-
signed for steady-state operation, meaning if the drive is operating in constant speed
and torque. This chapter introduces and discusses a power efficiency improvement
method designed for dynamic operation, meaning torque transients.

A scheme including behavior in dynamic operation is helpfulto obtain improve-
ments in servo applications, it will be shown in the experiments that a steady-state
optimization scheme can lead to higher losses than a drive without an additional
optimization scheme.
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6.1 Potential of optimal control

6.1.1 Preliminaries: Loss modeling in IMs

Again, according to [KG83], the machine losses are divided into uncontrollable and
controllable losses. The controllable losses, manipulable by the controlled variables
voltage, flux and current, are then minimized by control methods. The uncontrol-
lable losses are basically only accessible by the inductionmotor design, and not
further discussed.

The ohmic losses are the heating losses of the copper stator windings

POhm,S =
3

2
Rs(i

2
sd + i2sq), (6.1)

and the heating losses of the aluminium rotor bars of the squirrel cage

POhm,R =
3

2
Rr(i

2
rd + i2rq). (6.2)

The rotor current vectorir,dq is not represented as a state vector, but can be substi-
tuted by the expression (C.21) as function of stator current and rotor flux.

The iron losses basically consist of4 terms, the eddy current and hysteresis losses
in both the stator and rotor [LN04]. They are given by

PEddy,S =
3

2
kstator

e (ωs)
2Ψ2

s, (6.3)

PHyst,S =
3

2
kstator

h ωsΨ
2
s, (6.4)

PEddy,R =
3

2
krotor

e (ωrotor
s )2Ψ2

r, (6.5)

PHyst,R =
3

2
krotor

h ωrotor
s Ψ2

r. (6.6)

However, knowing that the iron losses depend on the frequency, and that for a typi-
cal design the stator excitation frequencyωs = pωM + ηLm

isq

Ψrd
is much larger than

the frequency of flux in the rotor, which is the slip frequencyωrotor
s = ηLm

isq

Ψrd
, the

iron losses in the rotor can be neglected. The slip speed is generally less than about
5% of the rated speed.

Furthermore, due to the unoptimized low-cost stator design, the eddy current
losses are much larger than the hysteresis losses once the excitation frequency is
higher than few Hertz. Hysteresis losses are still present,but lower than for instance
in PMSMs as the frequency is lower. The iron loss coefficientskes andkhs are
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about the same order of magnitude in SI units (although they have different units),
but the eddy currents rise quatratically with the frequency[LY92b]. Therefore, the
hysteresis losses in the stator,PHyst,S, are also negligible.

Only the stator eddy current lossesPEddy,S are of interest. As simplification, the
losses caused by the leakage inductances can be neglected [LY92b] and the stator
flux magnitude is approximated asΨs = Lm

Lr
Ψrd. Furthermore, the influence of

slip frequency is neglected for the loss model, and the flux frequency is assumed as
npωM . The loss coefficientks

e is part of standard motor parameters and is modeled
as ’iron loss resistance’Rm, thusks

e = 1
Rm

. This parameterRm can be identified
with sufficient accuracy by any upper class servo inverter. In the ’T’ equivalent
circuit, the iron loss resistance is parallel to the mutual inductanceLm, therefore
the voltage drop is about3

2
ωs

Lm

Lr
Ψrd, the losses dissipated in this resistance are

PRm
= 3

2
ω2

s
L2

m

L2
r

Ψ2

rd

Rm
which fully correlate with the stator current eddy losses under

the named simplifications.
As in several existing works [LY92b,LN04,QD08], the iron losses are described

by the simplified model

PIron =
3

2
n2

pω
2
M

L2
m

L2
r

Ψ2
rd

Rm

. (6.7)

To conclude, the model of the controllable losses applied for the control-based
loss minimization is

PLoss = POhm,S + POhm,R + PIron

=
3

2

(

Rs + Rr
L2

m

L2
r

)

i2sd − 3Rr
Lm
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r

Ψrdisd +
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(
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r

)

i2sq

+
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(
Rr
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r

+ n2
pω

2
M
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m

RmL2
r

)

Ψ2
rd. (6.8)

Inverter losses are not discussed as they only marginally influence the results
[Abr00, MYKT99]. Technically it is possible to include a loss model as well. As
the switching frequency is fixed, this is quite simple. However, for small drives,
the converter losses are unimportant compared to the motor losses (in contrast to
medium-size drives), especially as IM optimization inherits a reduced stator current
magnitude.

6.1.2 Efficiency optimization in steady-state

In steady-state, optimization of power efficiency is quite simple, especially in the
field-oriented frame. The basic principle is to optimize thecurrents and flux mag-
nitude so that a minimum of losses is dissipated while still maintaining the desired
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torque at the given speed. In steady-state, the relationship between the outputs and
the current is

τM =
3

2
np

Lm

Lr

Ψrdisq, (6.9)

Ψrd = Lmisd, (6.10)

and it is seen that the flux magnitudeΨrd is actually a degree of freedom. The flux
magnitudeΨrd can be decreased and the torque-generating currentisq increased
while the same torqueτM is generated. This is illustrated in Fig. 6.1. On the
left side are the power losses as function of rotor flux magnitude, and at the right
the corresponding power efficiency calculation regarding only controllable losses,
each curve for a specific load torque. It is seen that no improvement is possible at
rated torque and speed, as the rated flux valueΨrd = 0.9 Vs is about the optimal
value. However, for operation at half rated torque, already, a slight improvement
is possible by reducing the flux toΨrd = 0.75 Vs. For even lower torque, further
reduction of the rotor flux is possible and leads to better results, for instance at10%
load torque, the efficiency can be controlled to90% with an optimal flux compared
to about60% at rated flux.
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Figure 6.1: Controllable losses and efficiency of an induction machine in steady-
state as function of rotor flux at rated speed for differend loads. Left: Ohmic and
iron losses, Right: Power efficiency.

From the loss model (6.8), the optimal steady-state value ofthe flux is found by
solving

∂Ploss

∂Ψrd

= 0, (6.11)
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by substituting the currents with expressions (6.9) and (6.10), the optimal flux is a
function of torque, speed and the machine parameters,

Ψrd,Opt =

√
√
√
√
√τ ref

M

2

3

Lr

np

√
√
√
√

RsL2
r + RrL2

m

RsL2
r + L4

m
n2

pω2

M

Rm

. (6.12)

To account for saturation effects, the applied value of the flux is limited to

ΨSat
rd =







Ψrd,N , if Ψrd,N ≤ Ψrd,Opt

Ψrd,Opt, if Ψrd,Min < Ψrd,Opt < Ψrd,N

Ψrd,Min, if Ψrd,Opt ≤ Ψrd,Min

, (6.13)

where the limits are the rated valueΨrd,N = 0.9 Vs and an arbitrarily chosen mini-
mum valueΨrd,Min = 0.2 Vs. Imposing a minimum value is necessary to maintain
a certain flux level, otherwise the field-orientation might be disarranged. Further-
more it prevents an excessive current demand in high torque steps. To account for
voltage saturation in operation beyond rated speed, the rated valueΨrd,N is further
adapted according to a flux-weakening curve.

The existing methods to implement such a flux-adaptation canbe divided into
three classes: model-based methods which directly apply anequation such as (6.12)
[GLSW94,LN04], self-optimizing (physics-based) methods which measure the in-
put power and minimize it by adapting the flux online [KNL85],and so-called hy-
brid methods which combine both methods and try to bypass thedisadvantages
of the respective methods. A complete coverage of existing steady-state methods,
with experimental validation including converter losses,is found in [Abr00]. A ma-
jor disadvantage of model-based methods is that they do not account for magnetic
saturation effects, an error on the mutual inductanceLm has a direct influence on the
calculated torque and flux. It is nevertheless possible to identify these parameters
online. Physics-based methods, on the other hand, do not rely that much on param-
eters, but may have poor performance and may require experimental determination
of tuning parameters.

The proposed method is a model-based method, thus also sensitive to parametric
uncertainties. The results, however, will show that the error arising from parameter
errors are acceptable, especially if a good rotor flux observer is applied. Further-
more, the scheme could be extended with parameter adaptation methods.

6.1.3 Efficiency optimization – transient operation

The previous discussion was on steady-state operation, meaning constant torque and
speed. According to (6.12), the optimal flux is directly proportional to the square
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root of the torque. However, it is seen from the motor model that

isd =
1

Lm

Ψrd +
1

ηLm

d
dt

Ψrd, (6.14)

therefore the expression (6.10) is not valid for a time-varying flux. To change the
flux fast, a strong field-generating currentisd is required. A fast flux variation also
inherits a strong currentird in the rotor, what is seen in (C.21). In the steady-
state efficiency considerations, these two effects have been ignored. Therefore, if a
torque transient is controlled with a steady-state-optimized flux, a fast flux variation
is imposed, and high losses appear in both stator and rotor onthed axis. Steady-
state optimization is therefore inefficient during torque transients.

Furthermore, the torque response is slowed down. The generation of the torque
is the product of flux and torque-generating current (6.9). If the flux is at a quite
low level, the torqueτM is limited if the current saturation onisq is respected. Then,
the torque cannot increase faster than the flux. However, it is clear that the flux
is always slower than the current, and therefore an efficiency-improved induction
machine has a slower response than if it is operating at ratedflux.

Combining efficiency optimization and fast flux control makesnot much sense
for efficiency. Quite some work exists for the purpose of optimized dynamics re-
spectively torque regarding the current and voltage limitations [BCN95]. Some pub-
lications claim simultaneous optimization of efficiency and dynamics, these works
implement the flux optimization (6.12) with somewhat more performant model-
based controllers [KHK92]. However, the term ’simultaneous optimization’ is not
correct as one has to decide for either efficiency or dynamics. As fast flux control
generates losses any implementation cannot be more than a tradeoff. Both goals are
in a physical contradiction.

The only combination of efficiency and dynamics that is senseful is to switch be-
tween optimal efficiency and minimum time control [MYKT99,VL03]. If a torque
transient is detected, efficiency optimization according to (6.12) is deactivated, and
a minimum-time controller (similar to deadbeat control) isactivated. This attenu-
ates the drawback of slow response to torque steps. However efficiency optimality
is never claimed for the transients.

So the state of the art is that efficiency optimization is wellgiven at steady state,
especially if simultaneous parameter identification is performed [KHK92], but in
transient, these works only consider the time response. Efficiency is disregarded
in transient operation. So, induction machines used in servo drives are not yet
efficiency optimized.
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6.1.4 Problem statement: Optimal torque control for transients

The problem addressed in this chapter is how optimal efficiency control can be
obtained during a torque transient. This problem is discussed quite rarely in the
literature, as in the typical optimization problem, the load torque and flux are sup-
posed to be constant. Furthermore, induction machines in servo drives are operated
with constant norm flux to bypass the current limitation problem.

The first treatment of this problem in [LY92a, LY92b] assumedfull knowledge
of the speed and torque trajectories of a periodic process. Offline optimization on
a PC is used to calculate a time-varying rotor flux that minimizes the losses (6.8)
regarding the full induction motor model . These optimized trajectories are then
uploaded to a real-time controller. Foremost the experimental study shows that
this method, in the case of a time-varying torque reference,obtains considerable
loss improvements compared to constant norm flux operation.However, the offline
optimization limits applicability, as the optimal flux trajectories are only valid for
one specific predefined load and speed curve.

An analytic study of the problem of optimal efficiency duringtransient operation
is presented in [dWR99]. Conditions of optimality are calculated for minimizing
the total energy losses while satisfying torque tracking constraints. As the non-
linear optimization is too difficult to solve analytically,only analytic results for
the steady-state are given. The dynamic operation problem,where an optimal flux
trajectory is found for a given torque transient, requires numerical algorithms. To-
day, however, computational power has expanded such that a numerical scheme can
be applied online. The works have been recasted in the context of flatness-based
control [HRD03], where the results are put into practice using trajectory tracking
control.

These works are used as fundament for the underlying chapter, foremost, the
analytical results from [dWR99]. An asymptotic torque transient with a desired dy-
namical behavior (i.e. a desired time constant) is prescribed. Based on the analytical
results on optimality conditions, a simple numerical algorithm is proposed to find a
good approximation of the optimal flux trajectory. The algorithm is sufficiently fast
to recalculate the optimal trajectory at every sampling step, and trajectory tracking
control is applied to impose the optimal behavior to the machine.

This problem is well-suited for flatness-based control. Trajectory generation
and trajectory tracking are two key strengths of this control method, especially
for continuous-time nonlinear systems. Furthermore, several procedures were pro-
posed for computationally efficient trajectory generation. As the optimization has
to be repeated at every sampling step, computational burdenis quite a problem. For
instance, the implementation of a full-fledged nonlinear model predictive control
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(NMPC) scheme (a nonlinear counterpart to the scheme of the previous chapter) is
out of sight for the sampling rates.

6.2 Real-time trajectory generation

6.2.1 Formulation of a real-time optimization problem

The currents – regarded as internal states rather than outputs – are replaced by the
differential parameterizations of the flat outputs torqueτM and rotor fluxΨrd,

isq =
τM

Ψrd

Lr

Lm

1

np

2

3
, (6.15)

isd =
1

Lm

Ψrd +
1

ηLm

d
dt

Ψrd. (6.16)

Then the loss function (6.8) can be rewritten as

PLoss =
3

2

(

k1Ψ
2
rd + k2Ψrd(

d
dt

Ψrd) + k3(
d
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Ψrd)
2 + k4

τ 2
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, (6.17)

where
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, (6.18)
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, (6.20)
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RsL
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m

+ Rr

)

. (6.21)

It is further assumed that speed is constant, such thatk1 can be treated as a constant.
This cost function is then a function of the outputsτM andΨrd and their derivatives.

The outputs of the system are the torque and the flux, for now two free functions
τM(t) andΨrd(t). They have to be found such that the losses are minimized, the
minimum-energy problem is described by the cost function

J =

∫ T

0

Ploss(t)dt, (6.22)

which is constrained with the tracking objectives, i.e. thedesired torque.
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This general problem has too many degrees of freedom. To castthe problem
into a simpler optimization problem with boundary conditions, the desired torque
transient is described as

τM(t) = m0 + (m1 − m0)(1 − e−λt), (6.23)

wherem0 is the initial (measured) torque,m1 = τ ∗
M is the desired final value of

the torque andλ the eigenvalue of the transient, i.e. this parameter definesthe
dynamics.

Definingλ is left up to the commissioning engineer. However, it is not completely
free but subject to some limitations. If it is set too low, thetorque response might
be too slow for a given application, as it is proportional to the torque bandwidth.
On the other hand, if it is too high, the trajectory can possibly not be tracked if the
current limitation is reached. Experience shows that a goodchoice is to orient with
the open-loop rotor eigenvalue by aboutλ ≈ 10..20 · η, i.e. to make the torque
transient10 to 20 times faster than the open-loop flux transient.

The simple definition (6.23) is especially well suited if theresulting controller is
embedded in a cascaded control structure. It is clear that field-weakening influences
the gain of the torque control loop and makes the torque control loop nonlinear,
cascading with a linear speed controller becomes more difficult. However, if the
torque response is asymptotic, the nonlinearity is compensated and the closed-loop
torque control system acts like a linear system. Another advantage is that, in the
case of constant referenceτ ∗

M , the open- and closed-loop trajectories are the same.
This is very important to preserve the optimality from the open-loop calculation in
the closed-loop behavior, as already discussed in section 3.1.4.

Now that the torque trajectory is defined, two things are known of the flux trajec-
tory Ψrd(t). First, obviously the initial conditionΨrd(0), which is the observed flux
magnitude. Second, as the torque transient was defined with the assumption that
the system will go to steady-state, the final value ofΨrd(t → ∞) can be defined
by the steady-state optimumΨrd,Opt, as calculated in (6.13). Other initial condi-
tions, such as the initial currentisd, are not regarded, they would overconstrain the
problem. Actually, the induction machine is treated as it isfed by a current source
inverter [dWR99], the currentsis,dq are the control inputs, they will be impressed
on a cascaded control structure if a voltage-source-inverter is applied.

With knowledge of the torque trajectoryτM(t) and the initial and final value of the
rotor flux, the general problem is transformed and simplifiedinto an optimization
problem with one free functionΨrd(t) and two-point boundary conditionsΨrd(0)
andΨrd(T ).
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6.2.2 Calculus of variations

The fact that the cost function and the involved functionsτm(t) and Ψrd(t) are
continuous allow to use a famous result from calculus of variations [Pie69], the
Euler-Lagrange-equation. This equation gives the necessary condition on optimality
of the flux trajectoryΨrd(t) regarding the afore defined optimization problem. The
flux trajectory has to satisfy the condition

∂

∂Ψrd

PLoss −
d
dt

(

∂

∂( d
dtΨrd)

PLoss

)

= 0, (6.24)

which, with the intermediate calculation steps

∂
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2

3
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2τ 2

M

Ψ3
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)

, (6.25)
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)

, (6.26)

reads as

k1Ψ
4
rd(t) − k3Ψ

3
rd(t)

(
d2

dt2
Ψrd(t)

)

= k4τ
2
M(t). (6.27)

The condition is constrained to the torque trajectoryτM(t) in (6.23) as well as to
the initial and final value of the flux trajectoryΨrd(0) andΨrd(T ). The ’horizon’T
is assumed sufficiently high to have quasi steady-state att = T . This is a two-point
boundary value problem (BVP).

In differentially flat systems, calculus of variations leads to a directly usable con-
dition [SRA04]. More general control systems may require more advanced theoret-
ical results, such as Pontryagin’s maximum principle [Pie69], but flat systems are
simpler, as the differential equations can be substituted using the parameterization
of the output, what has been done with (6.15) and (6.16).

The condition (6.27) is a necessary but not sufficient condition. To be sufficient,
the optimization problem must be convex, this is the case as∂

2

∂( d
dtΨrd)2

PLoss > 0,

as shown in [dWR99]. So, to find the unique and optimal solution,solving (6.27)
regarding the constraints is sufficient.

The condition of optimality for the flux is a second-order nonlinear time-varying
boundary value problem (BVP). Solving a BVP is different than direct optimization
of a cost function, for instance, as in the previous chapter,by parameterization of
the trajectories and subsequentially solving the parametric optimization problem.
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Especially for nonlinear continuous-time systems, the BVP can represent a helpful
simplification.

BVPs are typically solved numerically. A key technique is theshooting method.
The problem is transformed into an intitial value problem (IVP), so the initial condi-
tionsΨrd(0) and d

dtΨrd(0) are given. Then, the differential equation can be solved,
for instance by numerical integration. In a loop, the unknown value for d

dtΨrd(0)
is adapted iteratively until the final valueΨrd(T ) corresponds to the desired final
value. This technique is, however, not suitable for this application, foremost be-
cause of the high computational burden coming from successive numerical integra-
tion. Instead, an approximate analytical solution is searched.

6.2.3 Approximate solution using prototype fitting

In a numerical study, whose results are displayed later (in Fig. 6.2 resp. in appendix
F.4), it turns out that the numerical, accurate, solution tothe BVP has a strong
similarity to an exponential function. IfΨrd(t) is an exponential function, then
the second derivatived

2

dt2
Ψrd(t) is also exponential and the Euler-Lagrange equation

(6.27) could become satisfied. Therefore, the idea is close to define an analytic
prototype of the flux trajectory as

Ψrd(t) = f0 + (f1 − f0)(1 − e−µt), (6.28)

where the initial and final conditions are met by imposingf0 = Ψrd(0) andf1 =
Ψrd(T ) = ΨOpt

rd , and the eigenvalueµ is a free parameter to be determined such that
the condition of optimality (6.27) is approximately satisfied.

The Euler-Lagrange equation (6.24) should – for an optimal flux – be satisfied at
every instant, however, as the prototype (6.28) is not perfectly suited, there will be
remaining terms. The remainder of (6.27), defined by

e(µ, t) = k1Ψ
4
rd − k3Ψ

3
rd(

d2

dt2
Ψrd) − k4τ

2
M , (6.29)

is explicitly calculated in appendix F.4.
Determination of the optimal flux eigenvalueµ is done in a very simple way. A

time instantts is determined at whichµ is fixed such that the remainder of (6.27)
is zero at this time, thuse(µ, ts) = 0. So, first a suitablets is searched. Based on
the developments in appendix F.4, where is known that for a constant torque the

optimal flux eigenvalue is in the area
√

k1

k3

< µ < 2
√

k1

k3

. This is far too rough as

final solution as the equation for a nonconstantτM is much different, however, it is
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suitable to determine the instantts. Therefore, define

ts =

√

k3

k1

. (6.30)

Then e(µ, ts) is nothing but a univariate function of the undetermined fluxtime
constantµ. In a numerical search, then, determineµ such that the remainder of
(6.27) becomes

e(µ, ts) = 0. (6.31)

This gives a good approximation to the optimal flux trajectory. To solvee(µ, ts) =
0, Newton-Raphson search [Pie69,PTVF92] is applied, starting from the open-loop
rotor eigenvalueµk=0 = η, the iterative law

µk+1 = µk − e(µk, ts)
∂
∂µ

e(µk, ts)
(6.32)

leads to a good approximation already after few iteration steps (i.e.k = 10). To
improve reliability, the search area is limited to

η < µ < λ, (6.33)

which is reasonable; the optimal flux transient will not be faster than the torque
transient and neither slower than the open-loop rotor time constant. Furthermore,
to prevent nonconvergent cycles, the step size|µk+1 − µk| is limited to λ

10
. In a

numerical study, it turned out that this simple search method is both accurate and
reliable.

In Fig. 6.2 this procedure is evaluated for three case scenarios. They are all
performed at rated speed, the time constant of the torque function is5 ms (orλ =
2001

s
).

Subfigure (a) presents the resulting flux trajectories of a torque step from0 to
rated torque. The flux starts at the lower limitΨrd(0) = 0.2 Vs and rises to its
steady-state optimum. The red trajectory is that calculated with the steady-state
optimality condition (6.12), it is very fast and therefore requires a strong field-
generating currentisd, generating high losses. The green trajectory is the optimal
flux trajectory resulting from the dynamic optimization problem, it is the exact so-
lution of the BVP (6.24). It is much slower. It is the optimal-efficiency transient,
it considers all losses generated by all currents, and the stator eddy current losses.
The blue trajectory is the approximate solution to the BVP, also applied for the ex-
periments. It is close to the green trajectory, however, at the beginning it is too slow
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(a) Zero to max torque at nominal speed:
Flux trajectories.

(b) Zero to max torque at nominal speed:
Error functione(µ, ts).

(c) Max to zero torque at nominal speed:
Flux trajectories.

(d) Max to zero torque at nominal speed:
Error functione(µ, ts).

(e) Negative half to max torque at nominal
speed: Flux trajectories.

(f) Negative half to max torque at nominal
speed: Error functione(µ, ts).

Figure 6.2: Evaluation of the optimization problem. Left: calculated flux trajec-
tories, red: steady-state calculation, green: optimal dynamic calculation, blue: ap-
proximated dynamic calculation. Right: corresponding error functione(µ, ts) that
has to be solved numerically.

and at the end too fast, a better prototype would therefore bee−µtα with 0 < α < 1,
however, then, a more complicated numerical search must be performed. It is seen
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that the time constant is not the solution of the autonomous differential equation
√

k3

k1

= 0.103 s. Also at the ’strategic’ instantts = 0.052 s the flux is not exact,

only the differential equation is zero there. Subfigure (b) shows the nonlinear func-
tion e(µ, ts) that is used to find the eigenvalue of the flux trajectoryµ. This function
is well suited for a Newton-Raphson search, as it is very smooth, monotonic and
somewhat linear at the beginning.

Subfigure (c) shows the resulting flux trajectories of a torque step from rated to
almost zero torque. Again, the steady-state optimality condition gives an extremely
fast trajectory that requires a strong negative field-generating current to reduce the
flux. The optimal trajectory is much slower, the time constant is not too different to
the open-loop rotor time constantLr

Rr
= 0.11 s, so here almost no field-generating

current is applied. The approximated solution again fits theoptimal value quite well.
Subfigure (d) shows the nonlinear functione(µ, ts), which is again no problem for
a numerical search.

Subfigure (e) shows the resulting flux trajectories of a torque step from negative
half to positive rated torque. The steady-state optimalitycondition tries to reduce
the flux to the minimum and then reinduce it, however, this is not very senseful. The
optimal trajectory is much slower and monotonic. The approximated trajectory is
almost identical, so the approximation works well. Subfigure (f) again demonstrates
that the numerical search is no problem.

There is one limitation, however, caused by the simple choice of prototype func-
tion. If the situation from subfigure (e) is repeated with a slower torque transient,
say a time constant of20 ms, the optimal flux is first lower and increased later than
the approximation calculates, as shown in Fig. 6.3. So, at very slow sign changes
of the torque, the simple prototype is suboptimal, nevertheless, it is still better than
the result of the steady-state optimality condition.

6.2.4 Control structure: Trajectory generation and trajectory
tracking

Putting optimal control, as from optimization theory [Pie69], into practice is not an
easy task. The fact that open-loop trajectories are calculated and that the closed-loop
trajectories may be different is a key problem. Flatness-based control, however, of-
fers a simple solution with nonlinear trajectory tracking control [vNM98,HRD03].

The trajectory generation is an algebraic scheme with only few numerical calcu-
lations that are performed online. Thus it is possible to perform fine-tuning during
commissioning or to include parameter adaptation schemes,for instance of the rotor
time constant [QD08].
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(a) Negative half to max torque at nominal
speed: Flux trajectories.

(b) Negative half to max torque at nominal
speed: Error functione(µ, ts).

Figure 6.3: Evaluation of a case where the prototype is not suited, i.e. a very slow
torque transientλ = 501

s
. Left: calculated flux trajectories, red: steady-state cal-

culation, green: optimal dynamic calculation, blue: approximated dynamic calcula-
tion. Right: corresponding error functione(µ, ts) that has to be solved numerically.
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Figure 6.4: Flatness-based optimal torque control: Real-time trajectory generation
and trajectory tracking control.

The applied control structure is shown in Fig. 6.4. In the field-oriented frame, the
actual values of the flux magnitude and the torque can be easily calculated based
on the observed flux and measured currents. These serve as initial conditions to
definem0 andf0 in the trajectory generation algorithm. The desired flux transient
and the corresponding (near-)optimal flux trajectory are calculated, and discretized
with knowledge of the sampling timeTs. The future values of the torque and flux
are then fed, as references, to a tracking controller. The deadbeat controller pro-
posed in chapter 3 is chosen as it provides very precise tracking (except for a fixed



126 CHAPTER 6. NONLINEAR OPTIMAL CONTROL FOR IMS

delay between reference and output) and good suppression ofdisturbance effects.
However, any fast flux or current controller may be used, as long as it can adapt
to the problems arising from time-varying rotor flux and the inherited parametric
uncertainties.

The scheme somewhat reminds the MPC controller in Fig. 5.8, however, this is
not model predictive control as constraints are not explicitly included in the con-
troller design and only a part of the model is used in the optimization. Still, it is a
predictive controller. Furthermore, it is an optimal controller, as the prediction hori-
zon is quasi infinite. The open-loop trajectories, calculated by the trajectory genera-
tor, and the closed-loop trajectories, which result from recalculating the trajectories
at every sampling step, are quasi identical. Only differences are the simplifications
of the design model and the real machine model, meaning the iron resistance, satu-
ration, harmonic effects, etc.

Stator current limitations were not included in the trajectory generation. Tech-
nically, this is possible, for instance by a coordinate transformation as proposed
in [GP09]. However, the inclusion of current constraints, no matter with which
technique, makes the nonlinear optimization problem even more complicated. Fur-
thermore, in the case of an active current constraint, one has to decide for either
minimum-time behavior (or best torque tracking), or to slowdown the desired
torque trajectory to minimize losses. Here, current limitation is implemented by
saturating the references for the currents. For simplicity, a quadratic saturation is
chosen of the type−Imax ≤ is,dq ≤ Imax.

About10% of the computational resources are used at8 kHz sampling rate, there-
fore a200 MHz DSP should provide more than sufficient computational power to
implement the scheme.

6.3 Experimental results

For the results, the proposed dynamic optimization scheme is compared to the reg-
ular operation with rated fluxΨrd = 0.9 Vs and the steady-state optimal control
where the flux is directly depending on the torque [dWR99].

It is applied to a low-efficiency induction machine whose parameters are given
in appendix B.1, already applied in section 4.2.3. This machine features a strong
magnetic saturation, which is deteriorating the results asthe model assumes linear
flux.

The first analysis is in standstill in order to use a torque transducer to compare the
calculated and the real torqueτM . A second analysis covers a servo drive application
scenario.
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6.3.1 Torque response
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Figure 6.5: Optimal efficiency control: Torque step response at zero speed, small
stepsτM = 0..1 Nm. Comparison between dynamic, steady-state and no optimiza-
tion.

In Fig. 6.5, the small-signal response from zero to1 Nm (13.5% of the rated
torque) is analyzed. Subfigure (a) shows the results of the proposed method. While
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the calculated torque (dark blue) exactly corresponds to the desired asymptotic tra-
jectory with a time constant of5 ms, the measured torque (cyan) is slightly larger.
This error is caused by a misestimation from the rotor flux observer because of the
magnetic saturation, however, in steady-state the flux is estimated correctly. As
discussed in section 2.6, the inductance valueLm is designed such that it is the se-
cantial inductance at rated flux, therefore the parameter applied for the observer and
the torque calculation will be smaller than the real parameter. The flux is controlled
slowly from the lower saturation limitΨrd = 0.2 Vs to its optimal value forωM = 0
rpm andτM = 1 Nm, which isΨrd = 0.47 Vs. Only a small field-generating current
is necessary to perform the flux increase.

Subfigure (b) shows the response if the optimization is performed according to
the steady-state criterion. The flux is supposed to be adjusted proportionally to the
torque, thus with a time constant of5 ms [dWR99]. Because of the current limi-
tation, however, it is slower, and the field-generating current isd is at the saturation
limit. The following saturation law is active: if the field-generating current is at
the maximum, the torque-generating current is increased such that the torque is still
tracked. Again, the measured torque is not exactly the desired transient, foremost
because of the highisd and the magnetic saturation, sensitivity is higher for high
field-generating currents.

Subfigure (c) shows the response with norm operation at the rated flux level
Ψrd = 0.9 Vs. There is no problem of current saturation during the transient, and
as the flux is constant and well-estimated, the calculated torque corresponds well to
the measured torque.

Subfigure (d) compares the three measurements in terms of instantaneous power
loss and energy loss. In norm operation (red), the losses arehigh in steady-state but
quasi unchanged during the transient. The power loss is constant and overall, much
energy is lost (17 J). In operation with the steady-state criterion (blue), the losses
are much lower during constant torque. However, the losses become extremely
high during the transient, caused by the high field-generating current in the stator
and the rotor. While energy is saved in steady-state, a lot is lost during the transient,
resulting in a loss of12 J. In operation with the dynamic criterion (green), losses are
low during both the steady-state and the transient. As the flux transient is performed
slower, the losses have a lower peak value but are of longer duration. Overall the
scheme is the best and results in only9 J energy loss (obviously depending on the
considered period).

In Fig. 6.6, the step response from zero to3.7 Nm (50% of the rated torque) is
analyzed. The optimal flux at this desired torque is at the rated levelΨrd,Opt = 0.9
Vs as the experiments are performed at zero speed, therefore, a flux change from
the lower to the upper saturation limit is required.



6.3. EXPERIMENTAL RESULTS 129

(a) Dynamic optimum (b) Steady-state optimum

comp.

(c) Norm operation

0

200

400

600

800

P
ow

er
lo

ss
es

[W
]

0 0.1 0.2 0.3 0.4
0

10

20

30

40

E
n
er

gy
lo

ss
es

[W
s]

time [s]

Norm operation

Dynamic optimum

Steady-state optimum

(d) Comparison: instantaneous power losses

Figure 6.6: Optimal efficiency control: Torque step response at zero speed, large
stepsτM = 0..50%. Comparison between dynamic, steady-state and no optimiza-
tion.

In subfigures (a) and (b), again, the measured (cyan) and calculated (dark blue)
torque differ during flux variation because of magnetic saturation. This effect does
not appear at norm operation in (c). The required current is very high, and in (b),
the field-generating current is in saturation for a long time. Nevertheless, the de-
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sired asymptotic torque trajectory is well tracked. In subfigure (d) the instantaneous
power and energy losses are shown. This time the steady-state criterion is closer
to the dynamic criterion, as the current saturation slows down the flux transient.
The norm operation (red) is better than both optimizing schemes, clearly, the flux
change inherits a considerable energy loss. The boundary condition of steady-state
optimality in these two schemes enforces the flux variation.Still, the dynamic op-
timization criterion is better than the steady-state criterion, it will always be better.
The norm operation results in an energy loss of27.5 J, the steady-state criterion in
39 J and the dynamic criterion in37 J. The savings potential is much better at high
speeds, however.

6.3.2 Efficiency evaluation: A servo application

Whether efficiency can be improved by flux adaptation, and how much the dynamic
optimization is an improvement compared to the stationary optimization is a matter
of the application. In [LY92a], a fixed-distance fixed-time point-to-point positioning
process is proposed to evaluate the efficiency of a dynamic optimization procedure.
It gives a good trade-off between the improvements of field-weakening in steady-
state and the losses inherited by dynamically adapting the flux. It is a typical servo
application. The setup is shown in Fig. 6.7, it is an induction machine with a torque
transducer and a flywheel.

Figure 6.7: Setup for closed-cycle efficiency evaluation: Induction machine with
torque transducer and flywheel.

It is a closed-cycle process, as shown in Fig. 6.8, kinetic energy will be charged
during acceleration and electrical energy recovered during deceleration. From the
electric powerPIn, in the induction machine, the controllable and uncontrollable
lossesPLoss andP unctr

Loss are detracted and the rotor absorbes some kinetic energy
via PRotor

Kin , the remaining powerPOut is the output power measured with the torque
transducer. This output power is partially lost due to friction Pwheel

loss , the restP kin
Wheel

is transformed into cinetic energy of the flywheel.
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Figure 6.8: Power flow: Measured electrical input powerPin, measured output
powerPout.

The process, shown in Fig. 6.9 (a), is an s-curve from zero to41.6 rounds that is
performed within2.5 s. The speed trajectories, as degree of freedom, are sized with
the ’duty cycle’d. A high d inherits a high torque at the beginning and at the end,
but almost zero in the middle, whereas a low duty cycle comes with a continuous
but low torque. The settling time is chosen such that ford = 0.8, rated torque is
required to track the speed reference. The odd traveling distance of41.6 rounds
stems from the chosen settling time, which again depends on the flywheel, and the
fact that2000 rpm is the maximum speed.

The input power is calculated from the voltage commands and the current mea-
surements. The results, shown in subfigure (b), show that it makes sense to reduce
the flux magnitude in such a process. Only the input energy is shown, the average
output energy is about120 J which is the friction of the flywheel bearing, it is almost
the same for anyd. The input energy is spent to a good portion to the uncontrollable
losses, mainly the friction of the induction motor bearingsand the air cooling fan.
The total energy absorbed by and recovered from the flywheel is280 J atd = 1 and
70 J atd = 0.8, as the inertia isΘ = 0.044 kgm2. Considering this, the controllable
losses shrink considerably while the drive is doing the samejob. Steady-state flux
adaptation is an improvement versus norm operation as most of the time, the drive
is operating below half rated torque, full torque may only berequired during the
speed variation. Dynamic optimization is a further improvement as the four torque
changes and the time-varying speed, inheriting flux variation, are also considered.

Figs 6.9 (c) and (d) show the time response for the duty cyclesd = 0.2 and
d = 0.6 with the proposed dynamic optimization scheme. The electrical input
power (red) peaks during the torque transient. Energy is required to accelerate the
rotor and the flywheel, the mechanical power required for thelatter is shown in
green. In the middle, only a low torque is required to keep speed constant, and the
flux can be reduced. There is a certain torque ripple due to a small imbalance of the
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(d) Dynamic optimization: response ford = 0.6.

Figure 6.9: Fixed-distance fixed-time point-to-point positioning process: 41.6
rounds in2.5 s.

flywheel. During deceleration, then, the energy is recovered from the flywheel, it
can be fed back to the inverter. Losses are high during the fluxvariation phases and
if the flux is kept at a high level.



6.4. CONCLUSIONS 133

6.4 Conclusions

This chapter discusses the controllable losses appearing in induction motors. A
model-based method for loss minimization was proposed thatconsiders time-varying
torque. For an asymptotic torque response with an arbitrarydefined time constant,
the losses are minimized. So far, only a numerical scheme exists that optimizes
time-varying torque and flux trajectories offline, the speedand load trajectories must
already be known in the design phase. Here, an online trajectory generation scheme
is proposed that generates optimal flux and current trajectories to meet demands
appearing on-line.

The optimization problem is a hard-to-tackle nonlinear optimization problem.
However, using the simplifications from flatness-based optimal control, and an ef-
ficient approximation with a function prototype, a simple solution is found, only
few iterations of a Newton-Raphson search procedure and somealgebraic equations
must be evaluated online. Even though the optimal solution has been heuristically
approximated, the solution is apparently fine. The optimization procedure is em-
bedded in a flatness-based trajectory generation and tracking control scheme.

The merits of the dynamic optimization were pointed out by experimental results.
Losses are higher during torque transients if the flux is adapted, and in contrast
to the existing schemes optimizing only the steady-state values, these losses are
also reduced by the proposed method. However, the improvement is limited by the
current saturation, such that it is only visible for small torque steps. A point-to-point
positioning process was chosen to demonstrate the improvements in a servo drive
application. The process covers a typical servo application as it includes torque
steps, speed variation and both motor and generator mode. Here, the advantages
of flux adaptation versus rated flux operation, and the improvements of considering
the dynamics, have become clear.

The method is suitable for energy- and cost-efficient servo drives with induction
machines.
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CHAPTER 7

Conclusions and outlook

Differential flatness has been used to design advanced control systems for electri-
cal drives. Based on existing basic algorithms, such as spacevector theory, field-
oriented control, flux observers, etc., that are extensively covered in the literature,
some new advanced algorithms have been proposed.

A drive operates to some satisfaction using the named basic algorithms, together
with standard control systems such as PI control. However, by applying advanced
algorithms, the performance and efficiency of a drive can be significantly improved.
Using high-performance predictive control, the tracking and disturbance rejection
capability is improved, the resulting current and torque isquickly adjusted to an op-
erator’s reference and current ripples are suppressed. Furthermore, by using optimal
control, efficiency and dynamic response may be further improved. A drive system
can be exploited to its physical limits, while still operating safely and robustly.

Chapters 3 and 4 studied deadbeat control, one of the most widespread predic-
tive current control methods. The sensitivity of this scheme to noise and parametric
uncertainties is well-known, especially the sensitivity to the inductance value. Fur-
thermore such a scheme is supposed to compensate undesired secondary effects,
such as torque ripples caused by non-ideal sinusoidal windings, without explicitly
identifying them. Using results from flatness-based control, the concept of feed-
forward linearization considerably reduces parametric sensitivity and decouples the
disturbance estimator from the controller. A mix between the standard method and
feedforward linearization is proposed to trade off robustness increase and perfor-
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mance reduction. From an implementation point of view, the method is just a minor
modification to a standard deadbeat controller, but with a big impact on the per-
formance. As a result, the robustness to resistance and especially to inductance
uncertainties is improved to a satisfactory level, even highly saturating drives can
be controlled. The problem of inductance uncertainties appears on SynRMs and
IMs and is so strong that it prevents the application of standard deadbeat without
adjusting the parameters. Furthermore, the disturbance estimator is made faster
such that torque ripples can be well suppressed, this problem appears on IMs and
PMSMs. Without the decoupling inherited from feedforward linearization, this is
not possible because of noise sensitivity and the destabilizing interaction between
controller and estimator. Because of the good robustness andperformance proper-
ties which have been pointed out both analytically and experimentally, the proposed
deadbeat controller is suitable for an industrial application.

A future work is the application of online-identification ofthe machine parame-
ters. Some works on this issue exist, based on either extended hardware or heuristic
methods. However, more general methods, for instance basedon time-scale decou-
pling, would be of interest.

Another possible future work is a comparative evaluation ofhigh-performance
field-oriented control to direct torque control (DTC) and predictive torque control
(PTC). These control systems come up with a similar performance compared to
field-oriented deadbeat control, however, the parametric sensitivity problem is less
strong, or at least, less discussed. The proposed method is applicable to these
schemes as well, some preliminary experimental results aregiven in appendix E.
An analytical invesigation is still missing, however, the method of ’equivalent con-
trol’ has been proposed for variable structure systems as powerful analysis tool for
switching control systems, which could serve as an analytical tool to study these
schemes.

Chapter 5 studied model predictive control (MPC) for a PMSM. This optimal
torque controller design aims at improving the power efficiency and the dynamics.
It is a widely known control method in some industrial application areas, however,
rather new for electrical drives. This method comes with a quite involved implemen-
tation effort, foremost because an online optimization algorithm is required. There
are two problems of this scheme, the first is whether it is possible to implement
because of the computational requirements. Second, the results must show merits
in order to justify the increased implementation effort. Existing schemes either did
not respect the voltage constraints (GPC), were of a short horizon (1 step, dead-
beat or PTC) or applied offline optimization (explicit MPC with a look-up-table).
The proposed implementation is the first running constrained long-range scheme
with online optimization. The computational burden has been reduced to a certain
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level by using flatness and some approximations in the optimization problem, lead-
ing to a simple to solve linear programming problem. The results show a fast but
at the same time smooth torque response, steady-state efficiency optimization by
field-weakening, and in high-speed operation, improved torque dynamics because
of dynamical field-weakening to bypass the voltage saturation. Such results can
only be obtained by including constraints and a high horizon. Especially the dy-
namic use of field-weakening, known from minimum-time current control, is newly
seen on predictive controllers.

However, the computational demands are still quite high, such that the contri-
bution should be seen as academic benchmark rather than industry-ready scheme.
While it should be clear now that even more merits of MPC are seen with con-
strained long-horizon optimization, a future work is the further reduction of com-
putational burden, for instance by implementing heuristicmethods.

Chapter 6 proposed a trajectory optimization scheme for IMs.The torque con-
troller aims at best energy efficiency for torque transientswith a predefined asymp-
totic shape. This problem is rarely discussed, servo induction drives are operated
in rated operation, therefore they do not profit from the potential efficiency im-
provement in steady state. Efficiency-improved drives, on the other hand, do not
consider efficiency during transients, thus, transients are either slow and somehow
efficient, or fast and inefficient. The proposed scheme is efficient in steady-state but
also enforces energy efficiency during torque transients, as far as this is physically
possible. An implementation of the method requires the solution of a nonlinear
optimization problem. An eye was kept on the most simple possible implementa-
tion, therefore no fancy nonlinear optimization schemes were chosen, only basic
and widely known methods. This is important for a method to bereproducible. It
is known and shown that the efficiency improvement based on field-weakening is
only senseful in partial load operation, and that a flux adaptation may result in more
losses than norm operation, however, the proposed method isalways better than the
widespread steady-state optimization. On an experimentalflywheel test, it is shown
that the dynamic optimization scheme can lead to a good efficiency improvement in
a servo application.

Again, future improvements are possible. Current saturation was disregarded in
the optimization, however, it could improve results, foremost for reference steps
from low to high torque. It could further extend the improvement versus steady-
state and rated operation.

Throughout these advanced designs, differential flatness has proved as a very
helpful and enabling tool. Flatness is natural to an electrical drive, the outputs used
in field-oriented control are flat outputs, application of this theory is straightforward.
This theory aims at very complex problems, the drive controldesign task is, from
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a theoretical standpoint, less difficult. Still, using the ideas from flatness-based
control, considerable improvements in the design and in theresults are obtained.

The design is simplified, the problem is simplified, this leads to simpler solutions,
a crucial point as the key issues are the complex implementation and the high com-
putational demands. Without the simplifications in the theoretical elaboration of the
optimization problems, it would not be possible to obtain a feasible solution, in the
sense of calculation effort. The implementation of MPC and of induction machine
optimization with the online problem solvers would not havebeen possible.

Flatness-based control has coped major challenges of model-based control de-
sign. Foremost the results of robustness are helpful for predictive controllers. The
deadbeat controller has not yet made the way to a broad industrial application, it
is only found in some narrow fields, the major obstacle has been the robustness
problem.

The flatness-based approach leads to significant improvements in the design and
performance of advanced drive control algorithms. This theory is really helpful in
applications.
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APPENDIX A

List of symbols and abbreviations

A.1 List of symbols

The following list only contains relevant symbols.

The applied convention is as follows:

Scalars are italic letters: x
Vectors are bold lower case lettersx

Matrices are bold upper case lettersX

References are with a star superscriptx∗

Observed values are with a tilde x̃
Estimated values are with a hat x̂

The reference frame (coordinate system) is denoted with a subscript after a comma
for vectors:

Stator fixed frame ,αβ

Rotor fixed frame ,ab

Synchronous (rotor field oriented) frame,dq

For more concise notation, no comma is used in the subscript for scalars.
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General symbols:

x State vector
u Input vector
v Brunovsky input (linearizing input)
y Output vector
yf Flat output vector
e Disturbance vector
f System function (vector)
A System matrix
B Input vector
K Feedback gain vector
G Transfer function
∆ Variation
Γx Differential parameterization of the states
Γu Differential parameterization of the inputs
t Time (continuous)
k Time (discrete)
Θ Moment of inertia

General electrical variables:

iu, iv, iw Phase currents [A]
iu, iv, iw Phase current vectors (in (α, β) plane) [A]
is Stator current space vector [A]
isd Direct (field-generating) stator current component [A]
isq Quadrature (torque-generating) stator current component[A]
ir Rotor current space vector (stator normed) [A]
us Stator voltage space vector [V]
Ψs Stator flux space vector [Vs]
Ψr Rotor flux space vector (stator normed) [Vs]
Auvw

αβ Clarke transformation matrix from 3-phase to stator frame [-]
A

αβ
dq Park transformation matrix from stator frame to synchronous frame [-]

np Number of pole pairs [-]

ωM Mechanical speed [rad
s ]

Ts Sampling time [s]
TLP Time constant of lowpass filter [s]
τM Generated torque [Nm]
T Prediction resp. optimization horizon [s]
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Synchronous machine parameters:

Ld Mutual stator inductance in direct axis [H]
Lq Mutual stator inductance in quadrature axis [H]
ΨPM Flux magnitude of rotor permanent magnet [Vs]
Rs Stator resistance [Ω]

kFe Hysteresis loss coefficient [AVs]

Induction machine parameters:

Lsσ Stator leakage inductance [H]
Lrσ Rotor leakage inductance (stator normed) [H]
Lm Mutual inductance (stator normed) [H]
Ls = Lm + Lsσ Stator inductance [H]
Lr = Lm + Lrσ Rotor inductance (stator normed) [H]
Rr Rotor resistance (stator normed) [Ω]
Rs Stator resistance [Ω]
Rm Iron loss resistance (Mutual resistance) [Ω]

η = Rr

Lr
Inverse rotor time constant [1

s]

σ = 1 − L2
m

LsLr
Leakage coefficient [-]

β = Lm

σLsLr
Coupling factor [AVs]

γ = 1
σLs

(Rs + L2
m

L2
r
Rr) Inverse stator time constant [1

s]
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A.2 Abbreviations

2DoF Two-degree-of-freedom (control)
A/D Analog-to-digital (conversion)
AC Alternating current
back-EMF back electromotive force
BVP Boundary value problem
CCF Controller canonical form
CPU Central processing unit
DC Direct current
DSP Digital signal processor
DTC Direct torque control
FGM Fast gradient method
FPGA Field programmable gate array
GPC Generalized predictive control
IGBT Insulated gate bipolar transistor
IM Induction machine
IVP Initial value problem
LMI Linear matrix inequality
LP Linear programming (solver)
LQ Linear-quadratic (problem)
MIMO Multi-input multi-output (system)
MPC Model predictive control
MTPA Maximum torque per Ampere
PI Proportional-integral (controller)
PM Permanent-magnet
PMSM Permanent-magnet synchronous machine
PTC Predictive torque control
RL Resistive-inductive
RMS Real mean square
QP Quadratic programming (solver)
SISO Single-input single-output (system)
SynRM Synchronous reluctance machine
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APPENDIX B

Experimental setup

The test bench is shown in Fig. B.1. The real-time system is a PC104-based in-
dustrial computer with a 1.4 GHz Pentium M CPU and1 GB Ram memory. The
sytem is running Linux with an RTAI (real-time application interface) extension.
Programming is done in the languageC.

The rest of this system is as described in [ANK10]. Via a 16-bit ISA bus, some
devices specific for drive system control are connected. An FPGA is responsible for
space-vector modulation and interrupt generation, it alsosends the switching signals
to the inverter. Two synchronous A/D converters are appliedto digitalize the analog
current measurement signals from a current transducer. An encoder interface card is
available to read the position of the shaft. There are four D/A channels and a digital
scope to output and record internal controller signals in real-time. The system was
originally designed at the University of Wuppertal, the only modification are an
upgraded CPU and software, as well as an improvement of the real-time application
system.

The system is nice and powerful, however, this version suffers from a major lim-
itation. As described in [ANK10], the interrupt latency (the delay in the response)
is about6 µs, caused by both a slow A/D converter and the interrupt handling soft-
ware. The system must be in the zero-voltage-vector mode during quite some time
in order to obtain current samples of acceptable quality. Furthermore only a sinus-
triangle modulation is implemented. Because of this, the switchig times and – as
consequence – the voltage commands are limited. The maximumvoltage vector
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Figure B.1: Test bench: Real-time computer, power inverters,coupled synchronous
and induction machine.

magnitude is limited to220 V. If the system is redesigned such that the current mea-
surement is improved and A/D conversion is faster, with a sinus-triangle modulation
the maximum linear voltage would have been280 V, and by implementing space
vector modultation, the maximum linear voltage would have been325 V [QD08].
The voltage limitation enforces a reduction of the maximum speed.

The test bench further consists of two industrial servo inverters, first a12.5 A
SEW-Eurodrive inverter where the IGBT switching signals canbe directly transmit-
ted, and second an unmodified Danfoss VLD FC-302 inverter. TheSEW inverter is
used for all experimental tests and the Danfoss inverter forthe load drive to impose
either a load torque or speed. The DC link voltage is not read by the control sys-
tem. The Danfoss inverter is also used for identification of the induction machine
parameters.
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B.1 Parameters of the test machines

Table B.1: Nominal Parameters of the Synchronous Machine
Manufacturer& Model Merkes MT5 1050

Rated PowerPN 2760 W
Rated TorqueτMN 10.5 Nm
Rated Current (peak) 8 A
Rated SpeedωMN 3000 rpm
Rated VoltageUN (peak) 560 V
Pole Pairsnp 3

Stator InductanceLd, Lq 4.8, 7.2 mH
Stator ResistanceR 0.92 Ω

Motor ConstantΨPM (peak) 0.334 Vs
Hysteresis Loss ConstantkFe 1.27 A

Vs

Table B.2: Nominal Parameters of the Induction Machine
Manufacturer MSF Vathauer GmbH& Co KG

Rated PowerPN 2200 W
Rated TorqueτMN 7.4 Nm
Rated Current (peak) 7 A
Rated SpeedωMN 2840 rpm
Power Factorcos ϕ 0.85

Rated VoltageUN (peak) 560 V
Pole Pairsnp 1

Mutual InductanceLm 245 mH
Stator InductanceLs 255 mH
Rotor InductanceLr 255 mH
Stator ResistanceRs 2.66 Ω

Rotor ResistanceRr 2.27 Ω

Iron Loss ResistanceRFe 1400 Ω
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APPENDIX C

Detailed machine model deductions

C.1 Synchronous machine

For the electrical subsystem, the first step is the voltage equation of the stator wind-
ings

us,αβ = Rsis,αβ +
d
dt

Ψs,αβ. (C.1)

Second, the flux linkage equation is applied. The total flux isthe sum of the mutual
flux generated by the stator windings and (possibly) the permanent-magnet rotor
flux. For this model, leakage inductances and magnetic cross-couplings are ignored.
The stator flux is given for simplicity in rotor reference frame, here, the dependency
of the inductance values to the rotor position is simpler to represent. The equation
is given by

Ψs,dq =

(

Ld 0

0 Lq

)

is,dq +

(

ΨPM

0

)

. (C.2)

Transformation from stator to rotor reference frame is performed with the rotation
matrix A

αβ
dq , where the rotation angleϕ is from α to d axis in positive direction, as
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defined in Fig. 2.2, and defined by

A
αβ
dq =

(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)

, (C.3)

The electrical rotor angleϕ relates to the (measured) mechanical rotor angle by
ϕ = npϕM calibrated such that forϕ = 0 theα andd axis are aligned. The notation
is such that two current (or voltage or flux) vectors relate bythe equation

is,dq = A
αβ
dq is,αβ. (C.4)

The stator voltage equation transformed to rotor referenceframe is therefore given
by

A
αβ
dq us,αβ = RsA

αβ
dq is,αβ + A

αβ
dq

d
dt

Ψs,αβ, (C.5)

where the last term is developed as

A
αβ
dq

d
dt

Ψs,αβ = A
αβ
dq

d
dt

(Adq
αβΨs,dq) (C.6)

= A
αβ
dq

(
d
dt

A
dq
αβ

)

Ψs,dq + A
αβ
dq A

dq
αβ

(
d
dt

Ψs,dq

)

(C.7)

= ωe

(

0 −1

1 0

)

Ψs,dq +
d
dt

Ψs,dq (C.8)

= ωe

(

−Ψsq

Ψsd

)

+
d
dt

(

Ldisd

Lqisq

)

, (C.9)

where the electrical speed relates to the (measured) mechanical speed byωe =
npωM . The state-space model of the electrical subsystem in rotorreference frame
follows as

d
dt

isd = −Rs

Ld

isd + npωM
Lq

Ld

isq +
1

Ld

usd, (C.10)

d
dt

isq = −Rs

Lq

isq − npωM
Ld

Lq

isd − npωMΨPM +
1

Lq

usq. (C.11)
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The torque is calculated by the cross product of stator flux and current (vectors are
extended toR3)

τM =
3

2
np(Ψs,dq × is,dq) (C.12)

=
3

2
np

(
(Ψsd, Ψsq, 0)T × (isd, isq, 0)T

)
(C.13)

=
3

2
npΨPM isq +

3

2
np(Ld − Lq)isdisq. (C.14)

The first component3
2
npΨPM isq is the electromagnetic torque, based on the inter-

action between rotor flux and stator current. The second term3
2
np(Ld − Lq)isdisq

is the so-called reluctance torque, it is based on the minimum energy principle, the
system will tend to the state with minimum potential energy,in this case, the rotor
position where minimal magnetical energy is stored. The reluctance torque only ap-
pears if the inductances have different values. Interestingly, both effects are covered
by Lorentz’s law.

The state-space model is completed by the mechanical equation

d
dt

ωM =
1

Θ
(τM − τL), (C.15)

whereΘ is the moment of inertia andτL is the load torque.

C.2 Induction machine

For the electrical subsystem, the voltage equations of the stator and rotor windings
read as

us,αβ = Rsis,αβ +
d
dt

Ψs,αβ, (C.16)

ur,ab = Rrir,ab +
d
dt

Ψr,ab, (C.17)

whereur,ab = 0 as only the squirrel-cage induction motor is regarded. Alterna-
tive induction machines are for instance the doubly-fed induction generator (DFIG)
[Gen08], used in wind turbine systems, where rotor windingsare fed by an inverter
and therefore a nonzero input voltage. An outdated alternative induction machine
is a wound-rotor slip-ring machine where an external 3-phase resistance is attached
to the rotor during speedup to reduce the peak current, such thatur,ab = Rextir,ab.
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The flux linkage is the sum of the mutual flux, which is the flux passing through
both stator and rotor windings, and the leakage flux which is only passing through
one respective winding. The equations in both the stator androtor are

Ψs,αβ = Ψsσ,αβ + Ψsm,αβ = Lsσis,αβ + Lm(is,αβ + ir,αβ), (C.18)

Ψr,ab = Ψrσ,ab + Ψrm,ab = Lrσir,ab + Lm(ir,ab + is,ab). (C.19)

As state variables, the stator current vectoris,αβ and the rotor flux vectorΨr,αβ

are chosen. These are used in direct field-oriented control,where the measured
stator current vector is decomposed in one component aligned to and orthogonal to
the rotor flux. Therefore one needs to eliminate the two remaining vectors of the
stator fluxΨs,αβ and the rotor currentir,αβ.

The transformation from rotor (a, b) to stator (α, β) is performed by rotating by
the electrical rotor angle. To find the rotor current vector,the rotor flux linkage is
rewritten in stator fixed frame by multiplication withAab

αβ,

Ψr,αβ = (Lrσ + Lm)ir,αβ + Lmis,αβ, (C.20)

from where the rotor current is found as

ir,αβ =
1

Lr

Ψr,αβ − Lm

Lr

is,αβ. (C.21)

This result is inserted into the flux linkage equation of the stator flux to find

Ψs,αβ =

(

Ls −
L2

m

Lr

)

is,αβ +
Lm

Lr

Ψr,αβ. (C.22)

Therefore both vectors – stator flux and rotor current – can besubstituted by expres-
sions of the two chosen state vectors, the stator current andthe rotor flux, without
solving any differential equation and without consideringany time dependency.

The voltage equation of the rotor is transformed to stator frame by multiplication
with Aab

αβ,

RrA
ab
αβir,ab + Aab

αβ

d
dt

Ψr,ab = 0, (C.23)

and by further substitution ofΨr,ab,

RrA
ab
αβir,ab + Aab

αβ

d
dt

(Aαβ
ab Ψr,αβ) = 0. (C.24)
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The last term is developed as

Aab
αβ

d
dt

(

A
αβ
ab Ψr,αβ

)

= Aab
αβ

d
dt

(

A
αβ
ab

)

Ψr,αβ + Aab
αβA

αβ
ab

(
d
dt

Ψr,αβ

)

(C.25)

= ωe

(

0 −1

1 0

)

Ψr,αβ +
d
dt

Ψr,αβ. (C.26)

The first differential equation – the state space description of the rotor flux – there-
fore follows as

d
dt

Ψr,αβ = −npωM

(

−Ψrβ

Ψrα

)

− Rr

Lr

Ψr,αβ +
RrLm

Lr

is,αβ. (C.27)

The voltage equation in the stator with substituted stator flux expression is

us,αβ = Rsis,αβ +
d
dt

((

Ls −
L2

m

Lr

)

is,αβ +
Lm

Lr

Ψr,αβ

)

(C.28)

= Rsis,αβ +

(

Ls −
L2

m

Lr

)
d
dt

is,αβ +
Lm

Lr

d
dt

Ψr,αβ, (C.29)

where d
dtΨr,αβ is replaced by the expression above, rearrangement leads to

d
dt

is,αβ =
1

Ls − L2
m

Lr

(

−Rsis,αβ + us,αβ − Lm

Lr

npωM

(

−Ψrβ

Ψrα

)

+
RrLm

L2
r

Ψr,αβ − RrL
2
m

L2
r

is,αβ

)

. (C.30)

This complicated expression is now simplified with some new parameter definitions,
typical in the literature [KKM03,QD08]. These are:

Inverse rotor time constant η = Rr

Lr

Leakage (dispersion) coefficientσ = 1 − L2
m

LsLr

Coupling factor β = Lm

σLsLr

Inverse stator time constant γ = 1
σLs

(Rs + L2
m

L2
r
Rr)

With these definitions and the two vector differential equations, the state-space
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model in stator-fixed frame is found as

d
dt

isα = −γisα + βηΨrα + βnpωMΨrβ +
1

σLs

usα, (C.31)

d
dt

isβ = −γisβ + βηΨrβ − βnpωMΨrα +
1

σLs

usβ, (C.32)

d
dt

Ψrα = −ηΨrα − npωMΨrβ + ηLmisα, (C.33)

d
dt

Ψrβ = −ηΨrβ + npωMΨrα + ηLmisβ. (C.34)

The first two equations are denoted asstator modelwhereas the last two equations
are denoted asrotor model.

This model is used for the design of the rotor flux observer. The stator current
vector isαβ is known as it is measured, same as for the speedωM . The voltage
usαβ are also known from the voltage commands if the inverter nonlinearities are
compensated. Only the rotor fluxΨrαβ is unknown. It is clear that due to the
many disturbances and parametric uncertainties, a closed-loop full-order observer
is required [MR00], an open-loop observer (for instance, an integration of the ro-
tor model) will be inaccurate and considerably reduce performance of the control
system.

The torque is the cross product of stator flux and stator current,

τM =
3

2
np(Ψs,dq × is,dq) (C.35)

=
3

2
np

(((

Ls −
L2

m

Lr

)

is,αβ +
Lm

Lr

Ψr,αβ

)

× is,dq

)

(C.36)

=
3

2
np

Lm

Lr

(Ψr,αβ × is,dq), (C.37)

explicitly given by

τM =
3

2
np

Lm

Lr

(Ψrαisβ − Ψrβisα). (C.38)

The mechanical equation is

d
dt

ωM =
1

Θ
(τM − τL), (C.39)

whereΘ is the moment of inertia andτL is the load torque.
In the second step, the model is transformed into the field-oriented frame. The

goal is to decouple control of torque and of flux magnitude. The transformation
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into the rotor field oriented frame is therefore a physicallymotivated coordinate
transformation.

Technically, it can be seen that it is a transformation of therotor flux vector from
cartesian to polar representation [DLO01]. The rotor is represented as rotor flux
magnitude

Ψrd =
√

Ψ2
rα + Ψ2

rβ, (C.40)

and as rotor flux angle

ρ = arctan
Ψrβ

Ψrα

(C.41)

for Ψrα ≥ 0 respectivelyρ = arctan
Ψrβ

Ψrα
+ π for Ψrα < 0.

However the typical interpretation is to rotate the coordinate frame to the syn-
chronous frame, where the direct axis is aligned to the rotorflux vector. Therefore
the rotor flux in the transformed coordinates is defined as

Ψr,dq =

(

Ψrd

0

)

, (C.42)

whereΨrd is the rotor flux magnitude.
The transformation from stator to rotor flux (or synchronous) frame is performed

with the rotation matrixAαβ
dq ,

A
αβ
dq =

(

cos ρ sin ρ

− sin ρ cos ρ

)

, (C.43)

where the notation is such that

is,dq = A
αβ
dq is,αβ. (C.44)

The differential equation of the stator current is multiplied by the transformation
matrixA

αβ
dq where additional terms appear from transforming the current derivatives

A
αβ
dq

d
dt

is,αβ = A
αβ
dq

d
dt

(

A
dq
αβis,dq

)

(C.45)

=

(
d
dt

ρ

) (

−isq

isd

)

+
d
dt

is,dq. (C.46)
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The derivative of the rotor flux angle is found as

d
dt

ρ = npωM + ηLm
isq
Ψrd

. (C.47)

The complete model in field-oriented coordinates is given byfive differential equa-
tions [KKM03,QD08]. The first three differential equationsdescribe the dynamics
of the currents and the rotor flux magnitude,

d
dt

isd = −γisd + βηΨrd + npωM isq + ηLm

i2sq
Ψrd

+
1

σLs

usd, (C.48)

d
dt

isq = −γisq − βnpωMΨrd − npωM isd − ηLm
isdisq
Ψrd

+
1

σLs

usq, (C.49)

d
dt

Ψrd = −ηΨrd + ηLmisd, (C.50)

and the fourth differential equation is giving the rotor fluxangle derivative, or the
electrical excitation frequency,

d
dt

ρ = npωM + ηLm
isq
Ψrd

. (C.51)

The output equation for the torque simplifies to

τM =
3

2
np

Lm

Lr

Ψrdisq. (C.52)

The fifth equation describes the dynamics of the mechanical subsystem,

d
dt

ωM =
1

Θ
(τM − τL). (C.53)
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Robustness calculations for deadbeat control

The robustness regarding disturbances and parameter uncertainties is analyzed. As
simplification, a linear single-input single-output (SISO) analysis is performed for
a single RL-load. The model is given as

i[k + 1] = (1 − a)i[k] + bu[k] − be[k], (D.1)

where the parameters are

a = Ts
R

L
, b = Ts

1

L
, (D.2)

ande[k] is a possibly time-varying disturbance signal.

D.1 Transfer function of deadbeat controller

First, the transfer function of a deadbeat controller with delay compensation but
without disturbance estimator is calculated.

The calculation of the feedback value

iFB[k] = qi[k|k − 1] + (1 − q)i∗[k − 1] (D.3)

and the delay compensation

i[k|k − 1] = (1 − â)i[k − 1] + b̂u[k − 1] (D.4)
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are inserted in the deadbeat control law

u[k] =
1

b̂
(i∗[k] − (1 − â)iFB[k]). (D.5)

Inserting the plant equation (D.1) in (D.5), the resulting closed-loop dynamics in
the discrete-time frequency domain appear as

Gdb(z) =
I(z)

I∗(z)
=

b0z + b1

a0z2 + a1z + a2

(D.6)

where

a0 =
1

b
, (D.7)

a1 = −1

b
(1 − a) + q

1

b
(1 − â), (D.8)

a2 = q
1

b̂
(1 − â)2 − q

1

b
(1 − a)(1 − â), (D.9)

and

b0 =
1

b̂
, (D.10)

b1 = −(1 − q)
1

b̂
(1 − â). (D.11)

Under correct parameters,a1 = a2 = b1 = 0, and withq = 1, the transfer
function is the deadbeat conditioni[k + 1] = i∗[k]. If the parameters do not match,
there are additional dynamics, as it is a second-order plantconsisting of delay plus
current dynamics. Two poles and one transfer zero determinethe dynamics.

D.2 Transfer function including a disturbance esti-
mator

Now the complete transfer function including the disturbance estimator is calcu-
lated. It is necessary to analyze the behavior under a fast disturbance estimator (i.e.
small TLP ) to see the interaction under parameter faults. The closed-loop system
has one reference inputi∗[k], one disturbance inpute[k] and one outputi[k].

Two transfer functions of the closed-loop system appear, the first one is the re-
sponse from the reference to the output and the second one is from the disturbance
to the output,

I(z) = Gi∗iI
∗(z) + GeiE(z). (D.12)
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Reference response

The calculations of the feedback value

iFB[k] = qi[k|k − 1] + (1 − q)i∗[k − 1] (D.13)

and the delay compensation

i[k|k − 1] = (1 − â)i[k − 1] + b̂uR[k − 1] (D.14)

are inserted into the deadbeat control law

uR[k] =
1

b̂
(i∗[k] − (1 − â)iFB[k]). (D.15)

Additionally, the disturbance estimator

ê[k] = α(uR[k − 2] − 1

b̂
i[k − 1] +

1

b̂
(1 − â)i[k − 2]) + ê[k − 1] (D.16)

and the plant dynamics

i[k + 1] = (1 − a)i[k] + bu[k] − be[k], (D.17)

whereu[k] = uR[k] + ê[k], are considered. The disturbance inpute[k] is assumed
to be0.

The resulting closed-loop transfer function in the discrete-time frequency domain
reads as

Gi∗i(z) =
I(z)

I∗(z)
=

b1z
2 + b2z + b3

a0z3 + a1z2 + a2z + a3

, (D.18)

where

a0 = b̂, (D.19)

a1 = −b̂ − b̂(1 − a) + b̂q(1 − â), (D.20)

a2 = b(1 − â)2q − b̂(1 − a)q(1 − â) + b̂(1 − a) + bα − b̂q(1 − â), (D.21)

a3 = b̂(1 − a)q(1 − â) − b(1 − â)2q + bαq(1 − â) − bα(1 − â), (D.22)

and

b1 = b (D.23)

b2 = b(−1 − (1 − q)(1 − â)), (D.24)

b3 = b(α + (1 − q)(1 − â)). (D.25)
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Disturbance response

The calculations of the feedback value

iFB[k] = qi[k|k − 1] + (1 − q)i∗[k − 1] (D.26)

and the delay compensation

i[k|k − 1] = (1 − â)i[k − 1] + b̂uR[k − 1] (D.27)

are inserted into the deadbeat control law

uR[k] =
1

b̂
(i∗[k] − (1 − â)iFB[k]) (D.28)

where the reference inputi∗[k] is assumed to be0. Additionally, the disturbance
estimator

ê[k] = α(uR[k − 2] − 1

b̂
i[k − 1] +

1

b̂
(1 − â)i[k − 2]) + ê[k − 1] (D.29)

and the plant dynamics

i[k + 1] = (1 − a)i[k] + bu[k] − be[k], (D.30)

whereu[k] = uR[k] + ê[k], are considered.
The resulting closed-loop transfer function in discrete-time frequency domain

appears as

Gei(z) =
I(z)

E(z)
=

b1z
2 + b2z + b3

a0z3 + a1z2 + a2z + a3

(D.31)

where

a0 = −b̂ (D.32)

a1 = −b̂(1 − â)q + b̂ + (1 − a)b̂ (D.33)

a2 = b̂(1 − â)q + (1 − a)b̂(1 − â)q − (1 − a)b̂ − bq(1 − â)2 − bα (D.34)

a3 = −bα(1 − â)q + bα(1 − â) − (1 − a)b̂(1 − â)q + bq(1 − â)2 (D.35)

and

b1 = −b̂b (D.36)

b2 = bb̂(1 − q(1 − â)) (D.37)

b3 = bb̂(1 − â)q. (D.38)
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D.3 Interaction of disturbance estimator and dead-
beat controller

Under ideal conditions, the deadbeat controller and the disturbance estimator are
decoupled. However, a lowpass filter is still required for stable operation. Assuming
(1 − â) = 1 and(1 − a) = 1, which is satisfied if the open-loop time constantL

R
is

considerably larger than the sampling intervalTs, asa = Ts
R
L

. The denominator of
both the reference responseGi∗i(z) andGei(z) become

(1 − z)z2 + (1 − z)qz − (1 − z)z + (1 − z)α − αq = 0. (D.39)

For the special caseq = 1 (conventional deadbeat control) this simplifies to

z(−z2 + z − α) = 0, (D.40)

and forq = 0 (feedforward linearization) this simplifies to

(z − 1)(−z2 + z − α) = 0. (D.41)

Therefore the two closed-loop poles depending onα = Ts

TLP +Ts
and therefore on the

lowpass filter time constantTLP are

z1/2 =
1 ±

√
1 − 4α

2
. (D.42)

It is seen that these become complex forα ≥ 1
4
, for any value below, the poles

are real and always of magnitude lower than1. As α = Ts

TLP +Ts
it follows that the

conditionα ≥ 1
4

means

TLP ≥ 3Ts. (D.43)

Furthermore it is seen that without lowpass filter, whereTLP = 0 andα = 1, the
poles arez1/2 = 1

2
± j

√
3

2
which both have magnitude1, therefore, the closed-

loop system is unstable without lowpass filter. If the systemis subject to strong
uncertainties, the filter must be set even slower by decreasing α, and continuously
by decreasingα closed-loop performance gets lost.

D.4 Steady-state accuracy

Steady-state accuracy of the deadbeat controllers with delay compensation and dis-
turbance estimator is analyzed. In steady-state, the reference, disturbance and the
output are constant, thusu[k] = ū, i[k] = ī andê[k] = ē ∀k.
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Then, the controller equation turns into

b̂ūR = (1 − (1 − â)(1 − q))̄i∗ − (1 − â)qī[k|k − 1] (D.44)

whereī[k|k − 1] denotes the predicted current from the delay compensation algo-
rithm

ī[k|k − 1] = (1 − â)̄i + b̂ūR. (D.45)

Furthermore, the disturbance estimator ensures

b̂ūR = â̄i. (D.46)

Solving this system of equations by successive substitution, the steady-state ac-
curacy follows as

ī(â + q) = ī∗(â + q − âq), (D.47)

therefore, the steady-state offset is

ī∗

ī
=

â + q

â + q − âq
=

1

1 − âq
â+q

≈ 1 +
âq

â + q
. (D.48)

Noting thatâ << 1, only a small prediction error remains. For fast sampling
systems with large open-loop time constants, this error is negligible.
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APPENDIX E

Outlook: Feedforward linearization for
predictive torque control (PTC)

This appendix applies the method presented in chapters 3 and4 to predictive torque
control (PTC). It is, however, not intended to be a comparisonbetween field-oriented
and direct control methods. The systematic differences, already mentioned in sec-
tion 2.4, are considerable. Field-oriented control has a constant switching frequency
and ignores the ripple of PWM frequency, it is de facto standard in commercial
small-power servo drives. Direct torque control (DTC), as analternative scheme,
comes with a constant ripple which is defined by tolerance bands in the controller
tuning, but the switching frequency is variable, which is anissue as it may cause ex-
cessive noise, especially in the low speed area. Motivated by this, and knowing that
DTC still has advantages, PTC has been developed, here, the current ripple can be
included, while it is also possible to keep the switching frequency constant [PW05].
In any case a fair comparison requires that the switching frequency of both methods
is equal. Such a comparison can be found in [RKE+12].

The PTC method implemented here is very basic and does not adjust the switch-
ing frequency. For that reason, this appendix has the mere purpose of demonstrat-
ing that feedforward linearization, a flatness-based method to increase robustness
of model-based control [HD03], is applicable to PTC and has its merits. The result
is on a pure experimental basis and is not supported by an analytical study.

The comparison of the methods in terms of robustness is interesting, however. In
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order to have a comparable current step response in field-oriented control and DTC
/ PTC, it is necessary to extend the field-oriented controllerwith a fast current con-
troller, as it was done with deadbeat control in chapters 3 and 4. Then, as discussed,
it is well-known that the sensitivity to parameters becomeshigh. An inductance
error leads to overshoots, badly damped oscillations or even instability. For in-
stance, it was shown in chapter 4 that the conventional deadbeat controller cannot
be applied as-is to an induction machine, a robust extensionor an adaptation of the
parameters is required. For DTC and PTC, such a high sensitivity is not known,
even though the torque and current reponse is also extremelyfast. These schemes
do not become unstable on inductance uncertainties. However, some negative side-
effects appear, the switching frequency increases, thereby acoustic noise appears.
Furthermore, a higher current ripple appears if the inductance is overestimated.

Two experimental tests are performed for PTC on a PMSM (Machine: Merkes
MT4 0530, rated values:3000 rpm, np = 3, 5.3 A (peak),Ld = 10 mH, Lq = 14
mH, R = 2.2 Ω). A speedup from0 to rated speed3000 rpm is performed. The
speed controller is a cascaded PI controller, the torque andcurrent is controlled by
PTC (prediction horizon 1 step, cost functionJ = (iq[k + 1] − i∗q[k])2 + i2d[k + 1],
sampling frequency =32.5 kHz). The method is very simple: the continuous current
signal used as initial condition for the predictioni[k|k − 1] is replaced by a mix
between reference and measured signal,iFB[k] = qi[k|k − 1] + (1 − q)i∗[k − 1].
Again, a reference governor is implemented that adjusts (slows down)i∗[k − 1] for
the case that the reference step is so high that it cannot be reached in the next step
due to the voltage limitation. No further modification is necessary. The response
is now analyzed for different values ofq, whereq = 1 is the unmodified PTC
controller andq = 0 would be a feedforward controller, and any0 < q < 1 is a
mixed method.

In the first test, shown in Fig. E.1, the current reference is limited to 10 A. In
subfigures (a)-(c), for the respective valuesq = 1, 0.5 and0.2, not much difference
is seen. This is as expected as there is no error in the model. The magnitude
spectrum of the torque-generating currentiq is shown in subfigure (d) for the time
whereiq ≈ 10 A. The difference between the three methods is small. In Fig.E.3
on subfigures (a)-(c), a zoom of the step response at startup is plotted, it is clearly
seen that the tracking capability is untouched.

The second test is shown in Fig. E.2, here, the current reference is limited to
24 A. The time response in subfigures (a)-(c) shows that for the respective values
q = 1, 0.5 and0.2, current tracking is fine. In subfigure (c), a slight drift is seen
during acceleration in high speed, probably caused by modeling errors, the con-
troller has lost some performance. Subfigure (d) shows the magnitude spectrum of
the torque-generating currentiq for the duration whereiq is at the maximum value.
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Due to the high current, saturation effects appear, as described in section 2.6, the
correct inductance value becomes smaller than the nominal valueLq = 14 mH. This
overestimation leads to an excessive voltage use of the controller, thereby inheriting
a high current ripple. By comparing Figs. E.1 and E.2, it can clearly be seen that the
ripple is much higher atiq = 24 A than atiq = 10 A. In the magnitude spectrum,
a peak appears around6 − 7 kHz that describes this ripple. For the feedforward
linearization approach withq = 0.5, there is not much change compared to PTC,
but atq = 0.2, this peak disappears. In Fig. E.3 on subfigures (d)-(f), again, a zoom
of the step response at startup is plotted, it is clearly seenthat the reference response
is untouched, the good tracking capability of PTC is maintained.

Therefore, the proposed method of mixing feedforward linearization to the con-
ventional predictive controller is also effective here. The negative effects of a pa-
rameter error, foremost of an inductance error, are visiblyattenuated, while the
control performance only marginally decreases. Flatness-based control is interest-
ing for everybody, not only for field-oriented control.

A full evaluation is left open, for that, analytical arguments must be given, and
factors such as frequency, current ripple, suppression of harmonics, etc., must be
studied in detail.
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Figure E.1: PTC on a PMSM, speed control, rated current10 A. From top: mea-
sured speedωM , measured currents in synchronous frame (greenid, red:iq), voltage
commands in synchronous frame (greenud, red:uq, signals are low-pass filtered for
readability).
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Figure E.2: PTC on a PMSM, speed control, overcurrent24 A. From top: measured
speedωM , measured currents in synchronous frame (greenid, red: iq), voltage
commands in synchronous frame (greenud, red: uq, signals are low-pass filtered
for readability).
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Figure E.3: PTC on a PMSM, zooms of the current step response of the previous
figures. From top: measured currents in synchronous frame (greenid, red: iq),
voltage commands in syncronous frame (greenud, red:uq, not filtered).
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APPENDIX F

Mathematical complements to chapters 5& 6

F.1 Analysis of steady state accuracy of the cost func-
tion.

In steady-state, as the two curent components are constantid(t) = id andiq(t) = iq,
the cost function

J =

∫ T

0

(PCtrl(t) + wLPLoss(t)) dt + TPLoss(T ) (F.1)

simplifies to

J = 2TPCtrl + TwLPLoss, (F.2)

with

PCtrl = (
3

2
npΨPM iq − τ ∗

M)2, (F.3)

PLoss =
3

2
npωMkF ((Lqiq)

2 + (Ldid + ΨPM)2) +
3

2
Rs(i

2
d + i2q). (F.4)

The steady-state optimum is found by solving the two equations

∂J

∂id
= 0,

∂J

∂iq
= 0, (F.5)
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which are fully independent (say∂iq
∂id

= 0) as the reluctance torque, resp. the influ-
ence of saliencyLd 6= Lq was neglected in the torque equationτM = 3

2
npΨPM iq,

compare [MXM00,MKM04]. This is untrue for interior PMSMs but fine for surface-
mounted PMSMs.

Solving (F.5) leads to the optimal steady-state value forid

iopt
d = − LdΨPM

L2
d + Rs

npωMkFe

, (F.6)

which is the value forid that minimizes the sum of copper and hysteresis iron losses,
as discussed in section 3.1.2. Solving the second equation in (F.5) leads to the
optimal steady-state value foriq

iopt
q =

2τ ∗
MnpΨPM

3n2
pΨ

2
PM + wLnpωMkF + wLRs

, (F.7)

respectively, the generated torque will be

τ opt
M =

τ ∗
M

1 + 1
3n2

pΨ2

PM

wL(npωMΨPML2
q + Rs)

≈ τ ∗
M

(

1 − wL

npωMkF L2
q + Rs

3n2
pΨ

2
PM

)

.

(F.8)

This means that the reference torque will not be fully reached, because the torque-
generating current will be traded off with the losses inherited by iq, namely the
copper and hysteresis iron losses on theq axis. However, this term is small as
(npωMkF L2

q +Rs) << 3n2
pΨ

2
PM and as the tuning parameterwL is also small (0.05

in this implementation), so it is disregarded in the implementation.

Furthermore, avoidance of this steady-state error is possible, one posibility is to
disregard the losses on theq axis in the cost function, alternatively, as the offset
is only based on known machine parameters and the measured speed, it could be
compensated by adapting the torque reference.

From a steady-state point of view, the weightwL only has a small influence. Nev-
ertheless,wL should be sufficiently large to avoid numerical problems, itmultiplies
the weight forid such that the cost function is convex. Furthermore, its value is
important for dynamic behavior, as it trades off efficiency and dynamic response.
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F.2 Proof that the cost function remains convex after
continuous parameterization with a polynomial

Given is a cost functional

J =

∫ T

0

xT (t)Qx(t)dt, (F.9)

with state vectorx ∈ R
n and weight matrixQ ∈ R

n×n. AssumeQ is positive
definite. Then,

xT (t)Qx(t) > 0, ∀x(t) 6= 0, (F.10)

and

J =

∫ T

0

xT (t)Qx(t)dt > 0, x(t) 6= 0∀t ∈ [0, T ]. (F.11)

The inverse model replacesx(t) by polynomialsp(t) where the coefficients are
affine functions ofα

J =

∫ T

0

pT (t)Qp(t)dt > 0, x(t) = p(t) 6= 0∀t ∈ [0, T ]. (F.12)

It can be shown with the Cauchy products of power series that there exist polyno-
mialsR(T ) with linear coefficients inα, such that

J =

∫ T

0

pT (t)Qp(t)dt = RT (T )QR(T ) > 0, ∀R(T ) 6= 0. (F.13)

These polynomialsR(T ) can be rewritten as

R(T ) = Aα, (F.14)

and we assumerank(A) = n with n = dim(x). It follows that

J = αT AT QAα > 0, ∀R(T ) 6= 0. (F.15)

The matrix of the parameterized cost function isK = AT QA and as we assumed
Q is positive definite we know there is a matrixB such thatQ = BT B (Cholesky
decomposition). The weight matrix is then

K = AT BT BA = (BA)T (BA), (F.16)

which is positive definite as any matrixK = CT C for someC with rank(C) = n
is positive semidefinite [C.D. Meyer, Matrix analysis and applied linear algebra,
SIAM books, 2000, p. 566]. If the weight matrix is positive definite the cost func-
tion is convex. The parameterized cost functionalJ is thus a convex function of the
parametersα.
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F.3 Parameterization of the constraints with a poly-
nomial basis: Sufficient affine conditions

The polynomial

P (s) =
N∑

i=0

cis
i ≤ 0, (F.17)

with coefficientsci ∈ R, s ∈ R, is analyzed on non-positivity over a segment
s ∈ [0, 1]. A necessary and sufficient condition is

P (0) = c0 ≤ 0, (F.18)

which in the following is assumed to be satisfied. Furthermore, theN conditions

P

(
k

N

)

≤ 0, k = 1..N, (F.19)

are also assumed to hold for allci.
These conditions can be rewritten in matrix notation

c0 + Qc ≤ 0, (F.20)

with c0 = (c0, .., c0)
T ∈ R

N , c = (c1, .., cN)T ∈ R
N andQ ∈ R

N×N such that

Q = (qij) =

(
∂

∂cj

P (i/N)

)

=

((
i

N

)j
)

,

i = 1..N, j = 1..N. (F.21)

It can be shown thatdet(Q) 6= 0 for N > 0, and thatQ is positive definite. It
follows that

c ≤ −Q−1c0, (F.22)

which can be placed into the polynomial equation

P (s) = c0 + sT c ≤ c0 − sT Q−1c0 = (−c0)ǫ, (F.23)

with s = (s, .., sN)T ∈ R
N andǫ = −1 + sT Q−1(1, .., 1)T . As we assumedc0 ≤ 0,

the upper bound ofP (s) under the mentioned conditions is whenǫ is at its maxi-
mum. It can be shown that the upper bound ofǫ, ∆ = sup{ǫ} ∀s ∈ [0, 1], is positive
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and only dependent onN , asQ is known. Some values, which were computed nu-
merically, are shown in the table below.
N 2 3 4 10 20
∆ = sup{ǫ} 0.125 0.064 0.041 0.012 0.005

Therefore, if the conditions (F.19) hold, we have

P (s) ≤ −∆P (0). (F.24)

Shifting the conditions by the constant (and negative) factor ∆P (0), the sufficient
conditions for non-positivity of the polynomialP (s) are found:

P (0) ≤ 0, (F.25)

P (
k

N
) − ∆ · P (0) ≤ 0, k = 1..N. (F.26)

F.4 Analysis: Remainder of the Euler-Lagrange equa-
tion

With the arbitrary defined torque trajectory (6.23)

τM(t) = m0 + (m1 − m0)(1 − e−λt), (F.27)

and the prototype flux trajectory (6.28)

Ψrd(t) = f0 + (f1 − f0)(1 − e−µt), (F.28)

the remainder of the Euler-Lagrange equation (6.29)

e(µ, t) = k1Ψ
4
rd − k3Ψ

3
rd

(
d2

dt2
Ψrd

)

− k4τ
2
M , (F.29)

is found to be:

e(µ, t) = e−µtf 3
1 (f0 − f1)(4k1 − k3µ

2) + e−2µtf 2
1 (f0 − f1)

2(6k1 − 3k3µ
2)

+ e−3µtf1(f0 − f1)
3(4k1 − 3k3µ

2) + e−4µt(f0 − f1)
4(k1 − k3µ

2)

+ k1f
4
1 − k4

(
m0 + (m1 − m0)(1 − e−λt)

)2
. (F.30)
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Assuming that the torque is constant,τM(t) = m0, with optimal end valuef1 =
√

m0

√
k4

k1

, it is seen that

e(µ, t) =
4∑

i=1

e−iµt(f1)
4−i(f0 − f1)

iαi, (F.31)

such that the coefficients of the time-varying functionse−µt are all multiplied with
coefficientsα1 = 4k1 − k3µ

2, α2 = 6k1 − 3k3µ
2, α3 = 4k1 − 3k3µ

2 or α4 =
k1 − k3µ

2.

Therefore the optimal eigenvalueµ could be between
√

k1

k3

and2
√

k1

k3

. However

it is unclear where this eigenvalue is, the coefficients depend on bothf0 − f1, the
difference of the actual to the optimal flux, and onf1, the desired final value for
the flux. This nonlinearity prevents finding an exact solution without a numerical
search procedure, even for the simple case of constant torque. Anyhow find that if
τM(t) is constant, the optimal eigenvalue is

√

k1

k3

< µ < 2

√

k1

k3

. (F.32)

In the simplest case of zero torqueτM(t) = m0 = 0 ∀t, the Euler-Lagrange
equation (6.24) simplifies to the homogenous linear equation of second order

d2

dt2
Ψrd(t) =

k1

k3

Ψrd(t) (F.33)

with Ψrd(0) ≥ 0 andΨrd(T ) = 0. Then it is clear that the solution isΨrd(t) =

Ψrd(0)e
−

√
k1

k3
t, the optimal eigenvalue is analytically found as

µ =

√

k1

k3

. (F.34)

These results again show that an analytical solution of the boundary value prob-
lem (6.24) can be found if the torque can be assumed as constant [dWR99], how-
ever, the general time-varying problem is hard to solve. Theunderlying results serve
as initial guess for a numerical search of an approximate solution.
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APPENDIX G

Related works

G.1 Advised student theses

In chronological order:

• F. Birnkammer,Minimum-Zeit Stromregelung für Gleichstrom- und Synchron-
maschinen, Bachelor’s thesis, 2013.

• R. Dost,Laufzeitanalyse der Rechenalgorithmen einer modellprädiktiven Re-
gelung, Studienarbeit, 2012.

• A. Dötlinger,Dynamic Optimization of an Induction Machine, Diploma the-
sis, 2011. Awarded with the ’Studienpreis der SEW-Eurodrive-Stiftung’ 2012.

• R. Leibrandt,Nonlinear Model Predictive Control for Induction Machines,
Bachelor’s thesis, 2011.

• V. Çiftçibasi,Speed-Sensorless Control of Induction Motors using MRAS Ob-
servers, Bachelor’s thesis, 2011.

• H. Sado-Kamgaing,Optimierung einer Asynchronmaschine, Studienarbeit,
2010.

• J. Jung and A. Dötlinger,Implementierung einer MPC für eine Synchronmas-
chine, Lab Project, 2010.
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• A. Dötlinger, Predictive Control of a PMSM based on Real-time Dynamic
Optimization, Bachelor’s thesis, 2010.

• P. Putzer, G. Walder, M. Campestrini,Field-oriented Control with a DSP, Lab
Project, 2010.

G.2 List of publications

The following list includes all peer-review publications,written during the time of
the author’s studies at the institute.

• J-F. Stumper, A. Doetlinger and R. Kennel, Loss minimizationof induction
machines in dynamic operation,IEEE Transactions on Energy Conversion,
accepted for publication, 2013.

• D. Paulus, J-F. Stumper and R. Kennel, Sensorless Control of Synchronous
Machines based on Direct Speed and Position Estimation in Polar Stator-
Current Coordinates,IEEE Transactions on Power Electronics, Vol. 28, No.
5, pp. 2503-2513, 2013.

• J-F. Stumper, E. Fuentes, S. Kuehl and R. Kennel, Predictive Torque Control
for AC Drives: Analysis and Improvement of Parametric Robustness,Proc.
Energy Conversion Congress and Exposition (ECCE), Denver, 2013.

• J-F. Stumper, V. Hagenmeyer, S. Kuehl and R. Kennel, Flatness-based Dead-
beat Control revisited: Robust and High-performance Design for Electrical
Drives,Proc. American Control Conference (ACC), Washington DC, 2013.

• J-F. Stumper and R. Kennel, Real-time Dynamic Efficiency Optimization for
Induction Machines,Proc. American Control Conference (ACC), Washington
DC, 2013.

• J-F. Stumper, A. Doetlinger and R. Kennel, Classical Model Predictive Con-
trol of a Permanent Magnet Synchronous Motor,EPE Journal (European
Power Electronics and Drives), invited paper, Vol. 22, No. 3, pp. 24-31,
2012.

• J-F. Stumper, D. Paulus and R. Kennel, A Nonlinear Estimator for Dynamical
and Robust Sensorless Control of Permanent Magnet Synchronous Machines,
IEEE Conference on Decision and Control and European Control Conference
(CDC-ECC), Orlando, pp. 922-927, 2011.
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• J-F. Stumper, A. Doetlinger, J. Jung and R. Kennel, Predictive Control of
a Permanent Magnet Synchronous Machine based on Real-Time Dynamic
Optimization,Proc. European Conference on Power Electronics and Appli-
cations (EPE - ECCE Europe), Birmingham, paper 99, 2011.

• J-F. Stumper, D. Paulus and R. Kennel, Encoderless Field-Oriented Control of
a Synchronous Reluctance Machine with an Estimator in Polar Stator-Current
Coordinates,Proc. European Conference on Power Electronics and Applica-
tions (EPE - ECCE Europe), Birmingham, paper 106, 2011.

• J-F. Stumper and R. Kennel, Field-Oriented Control of a Speed-Sensorless
Induction Machine for the Complete Speed Range with a Nonlinear Observer,
Proc. IEEE International Symposium on Sensorless Control for Electrical
Drives (SLED), Birmingham, pp. 107-113, 2011.

• J-F. Stumper and R. Kennel, Computationally Efficient Trajectory Optimiza-
tion for Linear Control Systems with Input and State Constraints,Proc. Amer-
ican Control Conference (ACC), San Francisco, pp. 1904-1909, 2011.

• J-F. Stumper, S. Kuehl and R. Kennel, Robust Deadbeat Control for Syn-
chronous Machines rejecting Noise and Uncertainties by Predictive Filtering,
Proc. International Conference on Power Electronics (ICPE - ECCEAsia),
Jeju, pp. 1378-1385, 2011.

• D. Paulus, J-F. Stumper, P. Landsmann and R. Kennel, Encoderless Field-
Oriented Control of a Synchronous Reluctance Machine with Position and
Inductance Estimators,Proc. International Conference on Power Electronics
(ICPE - ECCE Asia), Jeju, pp. 1153-1160, 2011.

• J-F. Stumper and R. Kennel, Inversion of Linear and NonlinearObservable
Systems with Series-defined Output Trajectories,Proc. IEEE Multi-Conference
on Systems and Control (MSC), International Symposium on Computer-Aided
Control System Design (CACSD), Yokohama, pp. 1993-1998, 2010.

• J-F. Stumper, D. Paulus, P. Landsmann and R. Kennel, Encoderless Field-
oriented Control of a Synchronous Reluctance Machine with a Direct Estima-
tor,Proc. IEEE International Symposium on Sensorless Control for Electrical
Drives (SLED), Padova, pp. 18-23, 2010.

• D. Paulus, J-F. Stumper, P. Landsmann and R. Kennel, Robust Encoderless
Speed Control of a Synchronous Machine by direct Evaluation of the Back-
EMF Angle without Observer,Proc. IEEE International Symposium on Sen-
sorless Control for Electrical Drives (SLED), Padova, pp. 8-13, 2010.
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• J-F. Stumper, F. Svaricek and R. Kennel, Trajectory TrackingControl with
Flat Inputs and a Dynamic Compensator,Proc. European Control Conference
(ECC), Budapest, pp. 248-253, 2009.
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