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Kurzfassung

Die vorliegende Arbeit befasst sich mit der modellbasreRegelung elektrischer
Antriebe. Aufgrund der gegenwartigen hohen Rechenleisaavge der grof3en

Fortschritte der Regelungstechnik eréffnen sich neue Mbgéiten, insbesondere
zur pradiktiven und optimalen Regelung. Die wesentlichen@lage der vorgestell-
ten Entwirfe bildet der aus der Regelungstheorie stammendatA der differen-

tiellen Flachheit.

Als pradiktive Regelung wird die deadbeat-Regelung behanDedse Methode
findet in hochdynamischen Strom- und DrehmomentregeluAgerendung, ist je-
doch sehr empfindlich gegen Parameterfehler. Des Weiteldemtkonstruktions-
bedingte Oberwellenschwingungen ein Problem. Durch eznee@uerten Regleren-
twurf, welcher auf der exakten Steuerungslinearisierwasydst, wird die Robustheit
der Regelung mafR3geblich verbessert. Hohe Parameteralmngmiwerden zulas-
sig. Zudem ergibt sich die Moglichkeit, den begleitendetr@bl3enbeobachter
deutlich schneller einzustellen, wodurch Oberwellensoungen quasi komplett
gedampft werden. Die deadbeat-Regelung wird somit ausmetchuverlassig und
leistungsfahig fur einen industriellen Einsatz. Diesegebnis wird analytisch und
experimentell bestéatigt. Die Methode ist auf andere mbdslerte Regelungsver-
fahren tGbertragbar.

Die optimale Regelung stellt die ZustandsgréRen nicht aujegebene Soll-
werte, sondern fuhrt sie gemal Optimalitatskriterien.| Biees, soweit physika-
lisch moglich, gleichzeitig die Dynamik und die Energiea#@énz zu verbessern.
Hierzu kdnnen bestehende Freiheitsgrade Uber die Regelsggiautzt werden.

Fir die Synchronmaschine wird eine lineare modellpraggkRegelung (MPC)
realisiert. Entscheidend fiir die praktische Umsetzbaikeser Methode bei der-
malden hohen Abtastraten ist ein schneller Algorithmus z@eeh linear-quadrati-
scher Optimierungsprobleme. Die Regelung nutzt als Fitsigpaid die Feldschwé-
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chung aus, um die Verluste zu minimieren und in einigen 8dnan die Dynamik
zu verbessern.

Fur die Asynchronmaschine muss eine nichtlineare Optimggrdurchgefihrt
werden. Zur besseren Realisierbarkeit wird eine approxmnatésung auf der
Grundlage der Variationsrechnung angewandt. Im Gegemsat'en bekannten
Verfahren werden auch Transienten im Drehmoment hingithdler Effizienz op-
timiert, wodurch sich Vorteile und weitere Einsparungendyinamische Prozesse
ergeben.

Die Anwendung der differentiellen Flachheit in den einesliGebieten ermog-
licht demnach die Verbesserung bestehender Lésungen d@gnfiihrung neuer
Verfahren.



Abstract

The underlying thesis deals with model-based control fecteical drives. Due
to the availability of extended computational power andhi® progress of control
systems technology, today, there are new possibilitiepfedictive and optimal
control. Fundamental to the proposed designs is the usdfefatitial flatness, an
approach from control systems theory.

Deadbeat control is treated as predictive control scheniés dcheme is used
in highly dynamic current and torque controllers, but isyveensitive to parame-
ter errors. Furthermore, harmonic oscillations causedbymachine construction
represent a problem. By a design change that applies feealfdtuaearization, the
robustness of the controller is significantly improved. liHgarameter offsets be-
come tolerable. Additionally, the accompanying distudzestimator can be tuned
up, resulting in almost complete damping of the harmonidlasons. The control
system thereby becomes sufficiently robust and perfornmararf industrial appli-
cation. This result is confirmed analytically and experitaip The method is
applicable to other model-based control schemes.

In the optimal control schemes, the state variables are owttraled to prede-
fined references, but according to optimality criteria. Goal is the simultaneous
improvement of the dynamics and the energy efficiency, aaddhis is physically
possible. To do this, the controller can exploit existingrées of freedom.

For the synchronous machine, a linear model predictiverotbet (MPC) is real-
ized. The enabling factor for feasibility on such a fast sgsts the introduction of
a fast algorithm to solve linear-quadratic optimizatioolgems. The control sys-
tem exploits field weakening as degree of freedom to minirtheelosses and to
improve the dynamics in certain situations.

For the induction machine, a nonlinear optimization hasdagpbrformed. In
order to realize this in a simple way, an approximate sotuttoproposed based
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on calculus of variations. In contrast to the known methdoigjue transients are
also considered in the optimization, resulting in furtherisgs and advantages for
dynamic processes.

In all these different areas, the use of differential flagnesables the improve-
ment of existing solutions and the introduction of new prhoes.



CHAPTER 1

Introduction

Flatness, in the broadest sense, is a simplification. A obd#signer is not stuck
in front of a bunch of equations; using flatness, the problam lme clarified and
reduced to one core problem. Flatness is a very fundamedmghcteristic natural
to many systems, and the designer may have come up with treesaation while
ignoring this property — but he did not because the origimabjem has been ob-
scure. Too obscure to figure out where the real problem is¢cooaplicated such
that his solution was too demanding. Insight and inventikeas come if problems
are simple. This makes flatness to a powerful design tool.

The term ’flatness’ does not describe a specific control dlyuar it is a quite
general approach in the analysis and design of dynamictregs Introduced in
1992, this concept has rapidly become a new and importancbhria the design
of nonlinear continuous-time control systems. Apart fréms icademic success, it
has found its way into industrial applications as well.

This thesis applies the flatness-based design methodscto@&édrive systems.
Two high performance control schemes are studied, prediatid optimal control.
Existing designs are recasted and improved, and new designsoposed. Itis a
difficult task to show that a fundamental theory, such asdlsgngives any merits
to the practicing engineer. This is why it has to be put on &tpal test stand.
The control problems in electrical drives are of physicauna, therefore, from the
resulting performance it can be clearly judged whether tlopgsed designs are
good or not.
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The behavior of a system can be improved by exploiting theegysnodel more
extensively. While feedback controllers use a model in thegieto determine the
feedback gains, the model is not used explicitly in the adngolicy. Modern mi-
croprocessors provide a great amount of computationalctgpend performance
that can be used to extract more information online from tloeleh Furthermore,
a number of advanced algorithms is available to either isgpeedesired behavior
or to optimize the future behavior on the system to be cdetiolThese two tools,
computational power and a well-developed control theamgbée further improve-
ments in the field of electrical drive systems.

Predictive control is a family of advanced control stragésgihat had a tremen-
dous impact on industrial practice in many technical fieltsmain advantage is its
simple basic concept. Beyond that, it outperforms classicatrol methods such
as standard PID control even on simple systems. In predietnd optimal con-
trol, the best possible operation of an electrical driveaging to a defined perfor-
mance criterion within the physical limits is achieved. fBenance criteria may be
fastest possible satisfaction of a control target or mazation of power efficiency.
Physical limitations are the maximum values for voltage emaents. Using these
methods, benefits can be obtained regarding issues suchrgy saving and safety.

1.1 Contributions

All the works in this thesis consider the design of contradteyns in the field-
oriented frame for rotating three-phase alternatingentr(AC) machines. These
include permanent-magnet synchronous machines (PMSMyespread drive for
highly dynamical servo systems, squirrel-cage inducti@cinmes (IM), the most
common type for reliable and low-cost servo and standardicgtions, and the
synchronous reluctance machine (SynRM), a rather exotiantaof a synchronous
machine that does not require permanent-magnets.

The design of model-based predictive and optimal contieésees is carried out
for these drive systems. Specific goals are highly perfotroamtrol, i.e. a fast and
precise reference response, and optimal control, i.e.xpieigation of the highest
possible energy efficiency. Here, however, some limitatiapply. A key issue
is the sensitivity to uncertainties, arising from nonlinges, disturbances, noise,
unmodeled interactions of the variables or simply from agjpnate and inaccurate
models. Furthermore, the high computational demands oksmethods are an
obstacle in the implementation. In this thesis, efficiemtitsons to these problems
are proposed using flatness as design aid in order to maketdemiques suitable
for industrial practice.
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Robustness of predictive control to both model parameteznminties and time-
varying disturbances is discussed in chapters 3 and 4. Tamme of deadbeat
current control is treated. The methods are assumed to bieagp to many pre-
dictive control schemes. Chapter 3 presents the theory apteid the experimen-
tal evaluation and application. An outlook on a differerggtictive control scheme
is presented in appendix E.

The conventional design of deadbeat current control cafessitied as flatness-
based predictive control. This design relies on exact faeklbnearization, a method
known to be very sensitive to parametric uncertainties. dtméiss-based control, a
substitute has been proposed, exact feedforward lind@rzaThis method is an
open-loop control method and therefore invariant to patemencertainties, how-
ever, it also reduces performance. A mix between exact tegdand feedforward
linearization is proposed, leading to a tradeoff betweeth Ipsethods. It can im-
prove parametric robustness to a sufficient extent whilentamiing good control
performance. Furthermore, it robustly decouples the otlatrfrom the disturbance
estimator, such that the disturbance attenuation meaharas be tuned extremely
fast. Then, time-varying disturbance effects such as tanseg from flux harmon-
ics can be attenuated without explicitly identifying them.

The resulting control scheme is very performant, it hasansttracking capabil-
ity and at the same time provides good disturbance rejedtorthermore, it is very
robust to parametric uncertainties and less sensitive sarement noise. These
advantages are highlighted by a comparison to a PI feedlmaukotler in chapter
2 and by the experimental evaluation on the three named tfp&€ machines in
chapter 4.

Chapters 5 and 6 discuss optimal control of electrical drivegocus is given
on dynamics, transient operation is central in the desigrh,Btynamic operation
and energy efficiency, are regarded. As such aims are closalgd to the physical
principles of the respective machine type, optimal condfdPMSM and squirrel-
cage IM are separately treated.

Optimal control of permanent-magnet synchronous mach@gsated in chap-
ter 5. It is shown that fast torque tracking and energy efiicyeare two goals that
can be simultaneously obtained, they do not contradict. Byéitating an optimal
torque control problem, the cost function appears as qtiadyge, with a linear
system model and linear constraints. A receding horizoblpro is formulated,
the optimization horizon is set very high, such that clokep optimality can be
claimed. A long-horizon linear model predictive controheme (MPC) can there-
fore provide optimal control.

MPC is based on direct optimal control. The states and irgnatparameterized,
and a parametric optimization problem is solved online tettiee actual demands
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(torque reference) at the actual condition (speed andhiratirrents). The major
problem in implementing MPC on an electrical drive is theiled computational
power, inherited by the high sampling rates. To cope thisnplgied approach is
developed based on differential flatness, on continuans-piolynomial parameter-
ization and on linearization and subsequent use of an effitireear programming
solver. This can solve the computation problem, contrampéostandard approach
of piecewise constant (discrete-time) parameterizati@huse of the computation-
ally more intensive quadratic programming solvers. Thep$ifted method is sub-
optimal, but still leads to very good results, demonstratdtie experiments.

The experimental implementation can be seen as the firszagah of long-
range MPC with online-optimization for an electrical driv&here have already
been successful implementations, however, they are eitliiera short (one step)
prediction horizon, or based on unconstrained optimizatmr an offline calcu-
lated explicit solution. Compared to the existing schemles, experimental re-
sults show different and improved behavior, especiallardmg the use of dynamic
field-weakening — this novelty is to be attached to the higidjmtion horizon with
constraints.

Optimal control of induction machines is treated in chapteHere, fast torque
tracking and energy efficiency stand in physical contraalicthowever. Reducing
losses requires reduction of the flux, preventing a fastumigcrease because of
the current limitation. The optimization problem has to leértkd in a special way,
the torque dynamics are fixed by defining a desired trajectéoy this prescribed
transient, the optimal flux and current trajectories aremeined. The optimization
problem is of highly nonlinear nature.

Because of the nonlinearities and the difficulties of nor@msolvers, indirect
optimal control is chosen. Calculus of variations is apptederive the necessary
and sufficient conditions of optimality. A nonlinear two+pbboundary value prob-
lem (BVP) appears that must be solved. As this is a hard nuaiaask, a simple
heuristic solution is proposed. Based on observations fiued that the optimal
flux resembles an exponential function. The time-depenieimavior of the torque
is described as an exponential function from its initiallie tesired value with an
arbitrary prescribed time constant. This function is fitteth that the BVP is ap-
proximately solved, the boundary conditions define theahénd final value, and
the optimal time constant is determined numerically usiegiddn-Raphson search.
The computational burden of the method is quite small andabelts are fine.

It is the first efficiency optimization scheme that considesses during torque
transients and that operates without a-priori knowledgsepafed and load trajec-
tories. Optimization is based solely on actual measuresremd references. It is
known that flux reduction may result in more losses than djmerat rated flux,
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however, the proposed method is always more efficient theadgtstate optimiza-
tion. The potential improvements are demonstrated on a tgexperiment.

The most important aspects of the work are concluded in eh&ptwhere also
an outlook on possible future works is given.

1.2 Differential flatness

Differential flatness is a concept introduced in 1992 by #searchers Fliess, Lévine,
Martin and Rouchon [FLMR92,FLMR95]. Itis a new approach fordnalysis and
design of nonlinear continuous-time control systems. Faeonathematical perspec-
tive, flatness has its roots in differential-algebraic met) and from control theo-
retic perspective, it is strongly related to controllaliliThe general introduction of
this theory has had a strong academical impact

Differential flatness is a property of a nonlinear systemifdbential flatness is
an extension of the term ’controllability’ for nonlinearsdgms. For linear systems,
it is equivalent to controllability, but for nonlinear sgsts, it is a self-standing
property. A given dynamical system is either flat or not, aejdeg on whether it
fits the following definition of flatness.

Definition: Differential flatness. Assuming a smooth nonlinear conti-
nuous-time system is given in state-space form

o= fleu) (1.1)

with state vectorr € R”, input vectoru € R™ and the system function
vector f € R". The system is further assumed to havendependent
inputs, therefore rankZ f(x,u)) = m. This system is said to be

differentially flat if there exists an output function
yr = Az, u, z, . .. (@) 1.2)

with y, € R™ that satisfies the following two conditions:
1) All statesx and inputsu can be expressed in terms of the flat
outputy, and a finite number of its derivatives:

. —1
u = ]-_‘u ('yf,yf,,y(n)> . (14)
1The Google Scholar entry of the paper [FLMR95], which is thedduction of flatness to the

broad audience, lists nearl00 citations as of March 2012, a remarkable number for a theaiet
control systems contribution.
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2) Asdim(u) = dim(yy) = m, the components of the flat output
are differentially independent, meaning, there is no noat differen-
tial equation of the form

(Y gs.. .y = 0. (1.5)

The set of equations (1.3) and (1.4) is denoted as diffexigdirameterization of
the system variables and is used in the controller design.

A necessary condition for flatness is that the system musbbiatlable. A fur-
ther necessary and sufficient condition is that the systest tmel linearizable by
endogeneous feedback, i.e. either static or dynamic statébfck. If a controller
canonical form (CCF) exists, then the CCF outputs are flat oufpiR804]. There
are nonlinear systems that are controllable but not flat;atefitput and no differ-
ential parameterization can be found [FLMR95]. For eleatrdrives, however, a
deep theoretical study is not required, virtually all eleet drives are controllable
and differentially flat, as will be described later in senti8.

Differential flatness originates from continuous-time Igar systems. De-
spite this, throughout the thesis, other system classds asidinear and time-
discrete systems will be studied. It was shown that flatressiuseful property
for continuous-time linear systems as well [FM00a], evewutih it is equivalent
to contollability, the flatness-based approach to a probemires different proce-
dures. It was also shown that the theory can be directly epib discrete-time
linear [SRA04, FM0OOb] and nonlinear systems [Nih07, RCAOQ1]. iibes 3 and 4
apply flatness to discrete-time systems in both linear amdimear form. Chap-
ter 5 is a continuous-time linear method, and chapter 6 coatis-time nonlinear
method, the home area of flatness.

To the opinion of the author, the widespread definition alyesomehow resem-
blesconditionsfor flatness rather than a general definition of that term r&floee, a
generalized definition — in the typical way technical termes@efined — is proposed.
It shall give insight to the purpose of flatness.

Generalized Definition: Differential flathess. A system is differen-
tially flat if there is a basic variable (a flat output) whosetioiw de-
scribes the complete motion of the system. An explicit itilaé trans-
formation leads to an equivalent algebraic system with &sedwvariable
and its derivatives that is free of dynamics.

The connection between the outpytsand the states or inputsu can be done
without that differential equations must be integrated @ved, instead, explicit
algebraic functions are used. It is the transformation ftbenoriginal state-space
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description to the flat output form that represents the mestul simplification, for
instance, in a nonlinear system, it may be very difficult ttvadifferential equa-
tions. In the flat output, the dynamics are nothing but a cledimtegrators, all
effects are descibed by straightforward differentiatiby g So, if an output trajec-
tory is known, by differentiating it, all states and inputs given in straightforward
algebraic manner.

The theory of flatness is well developed and has been madssiloieeby several
books [SRA04, Lév09], in parallel, a high number of applicat have been stud-
ied, many of them in mechatronics, power electronics anctretal drives. Other
application fields are chemical reactors, flight controkeyss, control and design
of mechanical systems, path planning for vehicles, and mzorne.

1.3 Flatness-based control

The following definition is proposed to clarify the flathdsased approach in a gen-
eral controller design.

Definition: Flatness-based control.The term ’flatness based control’
denotes that in at least one step in the design of a controlidig,
the explicit algebraic relation between full states or itspie respu)
and the flat outputs and a number of its derivativgs ¢/;,..) has been
applied.

Differential flatness can be used for control system desigmany ways. Dif-
ferential flathness is conceptually related to system inwar§SDP96], equations
(1.3) and (1.4) may also be seen as an explicit inverse systedel. In the typi-
cal state-space description with differential equatidng)( with the knowledge of
the control input, the states and outputs can be calculatéatégrating or solving
these equations. It can be very dificult to solve nonlinetieigintial equations with
an a-priori unknown input, and then determine an input thésses the control
task. In contrast, in an inverse model like (1.3) and (1.4)h\knowledge of the
output, the corresponding states and inputs are calcuthtectly in an algebraic
manner. Inverse models are more convenient for controdisigth as they better fit
the task, which is, finding an input that will satisfy the amhigoal. However, as
a number of derivatives is required in the design, one must imemind that the
resulting controllers may be useless, as measurementisigimauld generally not
be differentiated. The problem of derivatives has beenesbhby the introduction of
several general control structures, the most common aomigrtime methods for
continuous-time systems are presented in the following.
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yf d yf7 '-7yf
dt r, plant

Figure 1.1: Flatness-based feedforward control.

The most straightforward application of flatness in contlesign is feedforward
control, as shown in Fig. 1.1. Given a desired output trajgey’; (¢) that describes
for instance a setpoint change, by differentiating thigetrmry and placing it into
the input parameterization (1.4), the corresponding cbimput«(t) is calculated
directly without solving any equations. The control goakatisfied only if the
plant is stable, if the parameters are exactly known anceifetlare no disturbances.
Therefore, in the practice, this open-loop controller ninesextended with an addi-
tional feedback mechanism in order to obtain satisfactesults.

Yy d- Y (Y u Yy
ar ! ? r, plant ——
k €T
d /I\' !
dt . w(n—1) — (n—1) @
yf7"7yf yf77yf

Figure 1.2: Flatness-based trajectory tracking control.

An extension of this design is trajectory tracking cont®L91, SRA04], shown
in Fig. 1.2. A’’linearizing input’ is implemented using (3.8nd (1.4), this tech-
nique is denoted as feedback linearization. The dynamesa@ampensated such
that a new input appears as= g%y}, this means that the dynamics become an
integrator chain. Similar as for feedforward control, lshea then-th derivative of
the reference trajectory, a feedforward signal is caledlafdditionally, the track-
ing error, which is the control erray; — y; and a finite number of its derivatives, is
weighted with feedback gairksand added to the feedforward command. An initial
offset from the reference trajectory is asymptotically réesing with the desired
error dynamics, defined by the feedback gain design. Thexefoth feedback lin-
earization, well-known tools from linear control theoryndae applied for nonlinear
control design. The required output derivatives are natudated from the mea-
surement derivatives, but with the inverse state paraimatem (1.4). A drawback
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is the extremely high sensitivity to parametric unceriamtind disturbances. It has
prevented the industrial acceptance of this design method.

Yy d | Y5 Yy u'_u Y
gt r, T plant
robust x
control

Figure 1.3: Flatness-based two-degree-of-freedom dontro

The related two-degree-of-freedom (2DoF) design, showkign 1.3, has been
much more successful [vNM98]. Here, the feedforward conumat calculated
like in foeedforward control based on a nominal model andregfces, is combined
with a robust feedback controller. An offset of the measurapectory from the
reference trajectory, caused by either parametric unoéda or disturbances, is
robustly compensated. This design has been widely accegdserlas existing PID
controllers can be used as robust feedback mechanism. Iy aptications, the
pure extension from existing controllers to a 2DoF congmoby adding a feed-
forward path has shown good performance improvements. sthisture will be
analyzed for current control in section 2.7.

The mentioned designs all track a predefined trajectorielgpal is not to track
a predefined path precisely, but if there is some freedom erotitput trajectory,
extending the structure to predictive control as shown g Ei4 makes sense.

ref . * *(n) x
Yy trajectory | Y5> - Yy u o u Yy
- : r, plant ——~
generation T
| robust r
control

Figure 1.4: Flatness-based predictive control.

Flatness-based methods can be applied to predictive ¢astmell, by using an
inverse model such as (1.3) and (1.4) the prediction is aritefFM00a, HDO08].
The reference trajectory; is adapted to the measured stateat every sampling
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step, the measurements are the initial conditions for @jedtory generation. The
reinitialization of trajectories enables better adaptmuncertainties, disturbances
and input saturation. The found trajectory is then applredli4) to find a feed-
forward signal. This mechanism can be adopted in a two-éegfdéreedom con-
troller where it is extended with robust feedback contrch¢gount for parametric
uncertainties and disturbances. The scheme provides boith gerformance and
robustness [FM00a, HDO8].

Apart from the trajectory tracking problem, trajectory geation is a major field
of flatness-based control [SRA04, Lév09, GF06]. Here, agaemuse of the differ-
ential parameterization (1.3) and (1.4) simplifies the tdlanning of trajectories
is simplified, it can respect the dynamics of the system, hthout the need of
solving or integrating differential equations. The traggg generation problem is
reduced to an algebraic problem of the output funcgerand a finite number of its
derivatives.

The most basic method is setpoint interpolation where agfireedd path is ar-
bitrarily given, such as a polynomial over a time intervaidahe initial and final
conditions are imposed. Input saturations can be quitdyeastounted, for in-
stance by a time-scaling algorithm that slows down the dy§fMO00a]. Flatness-
based trajectory generation methods come with the advardbtpw complexity
and computationally efficient implementation. Because o, tthey represent an
interesting alternative to optimization-based methodscivagain involve the so-
lution of (differential) equations. But even if optimizatias applied for trajectory
generation, which should be done if really good performascequired, the use of
flatness is advantageous [GF06]. Especially for nonlingstesms, the reduction of
the number of variables to the outputs and the inheritedateztuof parameters and
equality constraints simplifies the calculations.

To conclude, while flatness-based design could be appliadyta@ontrol scheme
because flatness is such a general property, the two fieltlsathan the center
of flatness-based contralretrajectory generatiorandtrajectory tracking These
aspects can be integrated in either simple structures suidedforward control or
in advanced control systems such as predictive and optiomita systems.
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Machine models and conventional control
methods

A prerequisite for model-based controller design is thelabdity of a sufficiently
accurate model. It should contain all necessary informattmut the time-dependent

behavior of the plant to be controlled. On the other handhatiéd not be overloaded

with details in order to keep the design procedure simplsoAbdnly model param-
eters that are simple to identify should be included.

Therefore, in these design models, secondary effects aact eetails are not
included. Some simplifications apply regarding the spatidistributed windings
and magnetic coupling, foremost:

The windings are assumed to be spatially sinusoidally antesycally dis-
tributed.

Iron saturation and magnetical cross-couplings are negleonly linear mag-
netic models are applied = Lz with L as constant).

The resistance is assumed to be constant (i.e. no skin)effect

Iron losses, represented by a not necessarily constantrasistance’ in the
equivalent electric circuit, are neglected.

The field distribution along the air gap is assumed to be alpasinusoidal.
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Some more advanced models have been designed for appigatioh as sensor-
less control, where the rotor position and speed are caémitzased on the voltage
commands and the current measurements. In such an applictitese secondary
effects may play a major role. For control, the primary afeare sufficiently well
described by the model, undescribed secondary effectsoanpensated by robust
feedback mechanisms.

The machines are modeled as continuous-time systems. efiition of the
models is then detailed, the digital control platform is lgpad in terms of the
appearing delays. For the design of predictive contrgllacsurate accounting of
measurement and control timing is crucial.

Furthermore, the inverter is assumed to operate perfaaly,with a constant
source voltage, without conduction losses and withoutching nonlinearities.
Switching dead-times compensation methods are at a veyrenatage and stan-
dard in nearly all modern devices.

For the purpose of efficiency optimization, later in chapteand 6, loss models
for the machines will be discussed. Inverter losses, howeomsisting mostly of
switching and conduction losses, will not be discussed asnall-power drives,
they only have marginal influence on the results [Abr00, MAQ].

2.1 Representation with space vectors

The key function of space vectors is to simplify analysis emaitrol of the spatially
and timely distributed effects in electrical machines.

Regarded are three-phase alternating-current machineshadven in Fig. 2.1,
each of the three phasesv andw (in the respective color green, red and blue)
constitutes an independent winding in the stator. Eachiwgnid more or less sinu-
soidally distributed along the air gap. To describe thetdl=ad and electromechan-
ical behavior of the drive, the time-varying current in theee different windings
and the respective spatial distribution over the air gaptiesespected. As this is
a difficult task, the behavior is simplified by introducingasp vectors.

First the spatial distribution of a single phase is descriiea vector representing
the sinusoidal current distribution, defined such that tinection is orthogonal to
the maximum magnitude (Far,(¢) directiony = 0) and such that the magnitude
is the phase current provided by the inverter. The spacewvecdefined as the
superposition of the three phase currents [Leo74, SchOM®&3q,

i — g(z’u(t) Fay(t) + (), 2.1)
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Figure 2.1: Definition of space vectors: Left: Spatial disition of stator windings
in a three-phase stator, Right: Spatial distribution ofostatirrent vectog,.

where the facton} is introduced for norming. If the space vector is expresedte
stator fixed(«, () coordinates, the: axis is aligned to the axis, and knowing that
i, andz,, are rotated byt-120° (electrical degrees), the space vector is found as

o \ 2 (1
iss ] 3\ 0

This transformation from the three phase componéants, w) to the two space
vector component&y, 3) is the Clarke transformation and is given by the transfor-
mation matrix

_1 bu
o > W |- (2.2)
- .

|
=

Lw

wWino

is,aﬂ = Zgwiuvw - ( O @ _@ ) iuvwc (23)
3

W=
ol

3
Futhermore it is assumed that the three windings are in wyeg¥nection, there-
forei,(t) +i,(t) + i, (t) = 0. With this constraint the transformation from a three-
component vector to two-component vector is uniquely itgkr and it follows for
the back-transformation

is,a,@ ) (2 4)

) 0B -
Luvw = Aufwzs,aﬁ = -

N~ N
ofgy Vo =
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uvw

The transformation is applicable also to the voltage and ¥estors [Leo74,
Sch09].

A space vector is a fictitious value for the description of ahiiae. Some care
needs to be applied when referring to physical values. Ranae, it can be shown
that when power is calculated, the fac@breappears. The power absorbed by the
stator windings, for instance, is

thereforeAus” = 3 (A2 )"

S ualt) (1), (2.5)

Pstator(t) = 9

Similarly, the factor% appears in the description of the output torque and the power
losses.

2.2 Model of synchronous machines

A surface-mounted permanent-magnet synchronous machiieISM) is sketched

in Fig. 2.2. The permanent magnets are fixed on the rotor $wathirt the air gap,

a more or less sinusoidal magnetic flux appears. The northgidhe rotor is or-

thogonal to where the highest (positive) flux density appéathe stator. Based

on this simplified representation, the field-orientation ba motivated. The rotor

reference frame is denoted by the two orthogonal axasdq, where the direct

axis is aligned to the north pole position. If a current spaseor is aligned to this

d axis, based on the previous definition of the spatial cumeésttibution, it can be

seen that no torque is generated based on Lorentz’s lawn tiomtrast, a current

vector is aligned to the axis, a force is generated on each of the active current

windings, and the counteracting force is the generated totquer,,. Therefore

an arbitrary stator current vect@r can be decomposed into a direct component

isq, denoted as field-generating current, and a quadrature aeoenpi,,, denoted

as torque-generating current. The decomposition intctaed quadrature current

decouples torque and flux control, the transformed dynaomcteq axis (those

of i,) are equal to those of a DC motor if the direct current is camist As the

permanent-magnet rotor flux is mechanically fixed to therrdte transformation

angle from stator to rotor reference fragpés determined from the measured rotor

position. The detailed derivation of the model equatiorgiisted in appendix C.1.
For the electrical subsystem, the voltage equation of #ieistvindings is given

by

) d
Us ap = Rsls,aﬁ + a\:[js,oaﬂ~ (26)
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G

PM ;
B :

Figure 2.2: Surface-mounted permanent-magnet synchsonowachine
(SMPMSM): Left: Stator flux generated by PM rotor magnet, Rigllirect
d and quadrature axis.

The flux linkage equation is applied. The total flux is the sdthe mutual flux gen-
erated by the stator windings and the permanent-magnetfhoxo For this model,
leakage inductances and magnetic cross-couplings areated! Even though the
stator windings are assumed symmetrical, the stator iadaetmay depend on the
rotor position, due to a possibly magnetically unsymmatniotor construction and
the difference in susceptibility between iron and permansgnet material, or due
to magnetic saturation effects. The stator flux linkage s&cdbed for simplicity in
the rotor reference frame and given by

Ly O . v
\Ils,dq — < Od L ) 'Ls,dq + ( SM ) . (27)
q

The state-space model of the electrical subsystem follews a

d. R L,. 1

aisd = —L—dlsd + nprL_zqu + L—dusd7 (2.8)
d. R, . Lg .

d—t'LSq = —L—qlsq - nprL—qzsd - npr\I/pM + L—qusq. (29)

The output equation is the generated torque

3 . 3 o
T — §np\I/lesq + §np(Ld — Lq)lsdlsq' (210)
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The first component is the electromagnetic torque, basekeoimteraction between
the permanent-magnet rotor flux and the stator current. #bens is the so-called
reluctance torque, it is a purely magnetic effect based emtimimum energy prin-
ciple, the system will tend to the state with minimum potainéinergy, in this case,
the rotor position where minimal magnetical energy is storeterestingly, both
effects are covered by Lorentz’s law.

To complete the state-space model, the mechanical equation

S = (o =) (2.12)
must be included, whei@ is the moment of inertia ang}, is the load torque. In the
following, this mechanical equation will not be applied tbe design of the current
or torque controllers. The reason is that in practice, thielired parameters are not
known, for instance, the moment of inertia will change whemne load is attached
to the machine, and the load torque can be a time-varyingibmcinstead, in the
current and torque controllers, the speed is measured gadded as known time-
varying parameter, and for speed control, experimentaligd Pl controllers will
be used. This somehow corresponds to a linearization of toeem

2.3 Model of induction machines

The construction of the induction machine may be compareal transformer, if
the rotor is at standstill, it is nothing but two coupled #yghase windings, a stator
currentz, can induce a rotor current.. If the rotor turns synchronously to the
excitation field, the rotor windings are subject to a constaagnetic field and so
there is no induced current in the rotaey, = 0, and no torque is generated. If
the rotor is rotating with a certain slip versus the examatirequency, which is
the typical case, the rotor turns and simultaneously tresmiinduction such that
torque is generated. The detailed calculation of the mogleatons is printed in
appendix C.2.

There are two windings to be regarded on the stator and tloe mespectively,
and the corresponding voltage equations read as

) d

Us ap = Rszs,aﬁ + a\:[’s,ocﬁa (212)
d

WUy ap = Rrir,ab + d_tqlr,aba (213)

where the rotor voltage is, ,, = 0 as only the squirrel-cage induction motor is
regarded. The index( () denotes the stator-fixed frame and{) the frame ma-
chanically fixed to the rotor.
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Figure 2.3: Squirrel-cage induction machine (IM): Topleftator current and cor-
responding flux, top right: rotor current and correspondiiumg, bottom left: Mutual
flux generated by superposition, Right: dird@nd quadrature axis. Thed axis is
not aligned to the mutual flux because of the leakage flux.

The mutual flux in an induction machine consists of the supstipn of the
stator-current-generated mutual fliy,z, (Fig. 2.3 top left) and the rotor-current-
generated mutual flux,,z, (Fig. 2.3 top right). The total mutual flux is the total
flux passing through both the stator and the rotor windingg. (.3 bottom left),
it is denoted asb,, = L,,(is + ¢,) = L,%,,. The leakage flux in stator and rotor
is only passing through the respective winding and is deha$d.,, ¢, and L, , %,
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respectively. The flux linkages in the stator and the rotertherefore

‘Ils,aﬂ - lI’sa,aﬁ + ‘Ilsm,aﬁ - Lsais,aﬁ + Lm(is,aﬁ + ir,aﬂ)u (214)
lIlr,ab - ‘Ilrcr,ab + \Ilrm,ab - Lrair,ab + Lm(ir,ab + is,ab)- (215)

The rotor flux®, reference frame is used for field-oriended control, it iscded
by the two orthogonal axesandgq, the directd axis is about orthogonal to where
the highest positive rotor flux density appears in the stétarcurrent space vector
is aligned to thisl axis, based on the previous definition of the spatial cutestii-
bution, it can be seen that no torque is generated based entz&r law, however,
the flux magnitude is affected. If, in contrast, a currenttoeds aligned to they
axis, a force is generated on the respective current wisdeugd the counteracting
force is the generated rotor torqug. Therefore an arbitrary stator current vector
i, can be decomposed into a direct compongntdenoted as field-generating cur-
rent, it is solely responsible for maintaining the rotor flatxa certain magnitude,
and a quadrature componépy, denoted as torque-generating current. The decom-
position into direct and quadrature current completelyodgtes torque and flux
control, the transformed dynamics on thaxis can be shown to be equal to those
of a DC motor if the rotor flux magnitude is constant.

There are four vectors, stator and rotor flux, and stator atat current. The
stator current; .3 and rotor flux®, ,; are chosen as state variables. This is senseful
ast, s is directly measured, andl, 5 is directly used for the field-orientation and
flux magnitude control. The stator fluk, .5 and rotor current, s can easily be
replaced by expressions of the two state vectors.

Due to the many interactions in the machine, the model readsst of rather
complicated equations, which are simplified by some parantgtfinitions, typical
in the literature [KKMO3]. The four constants are defined by:

Inverse rotor time constant n="

Leakage (dispersion) coefficieno = 1 —

Coupling factor 8= =

Inverse stator time constant v = UL (R + LLQQ R,)

L7,
LsL,

With these definitions and the two vector differential equa, the state-space
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model in stator-fixed frame is found as

d. . 1
azsa = —Visa + ﬁﬁqu + ﬁnpr\I/rﬁ + O_—Lsusom (216)
d. . 1
azsﬁ = —Yiss + ﬁnquﬁ - Bnpr\Ijra + O_—LSUsﬁa (217)
d
allfm = —nV,q — npwnVes + Nlnisa, (2.18)
d .
a\lfrg = NV, 5+ nywnVrq + Nlyisp. (2.19)

The stator current vectat,; and the speed,, are measured. The voltage com-
mandsu,.s are also known sufficiently well if the inverter nonlineg# are com-
pensated. Only the rotor flu¥, 3 is unknown, unlike in synchronous motor it is
not related to the rotor position and not even to the rotorer a model-based ob-
server is required. The last equations (2.18) and (2.19emeted as 'rotor model’
any may be used for open-loop rotor flux estimation [MR96Db}. ifproved accu-
racy, the first equations (2.16) and (2.17), denoted a®istabdel’, are applied as
well for the design of a full-order observer.

The torque is given by

3 Ly . ,
™ = §an—T(\IJTaZS’6 — \Ijrﬂlsa); (220)
and the mechanical equation is
d 1
aWM = 6(7'M — L), (2.21)

where© is the moment of inertia and}, is the load torque.

In the second step, the model is transformed into the figkehted frame, also
denoted as Park transformation. The transformation ingorttor field oriented
frame is a physically motivated coordinate transformatmmlecouple the torque
and flux dynamics. The term 'field-oriented control’ dendtest a control system
is designed in this reference frame, rather than referamgsipecific control method,
for instance cascaded PI controllers.

The coordinate frame is rotated to the synchronous framerene direct axig
is aligned to the rotor flux vectoP,., as shown in (Fig. 2.3 bottom right). Therefore
the rotor flux in the transformed coordinates is defined as

v,
U, 4y = ( . > , (2.22)
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whereV,, is the rotor flux magnitude. This is in fact a transformatiocont carte-
sian coordinates, where the flux is descibed by two orthdgawor components,
to polar coordinates, where the flux is described as magnifyg and anglep.
This anglep is the rotation angle between the stator fixed frame and tioe field
oriented frame.

The complete model in field-oriented coordinates is giverfiby differential
equations [KKMO03, QD08]. The first three equations are eighfi used for the
current and flux controller design,

d. . . i 1
gilsd = ~Yisa+ BNVY,q + npwarisg + N L, \pfd + L e (2.23)
d, sy — O3 U : L, b (2.24)
—lgg = —YVisg — ONpwWrsVrd — NpWisled — Nl ——Ugg, .
T Visq pW M ¥ rd pWMlsd — 1] U, oL, q
d )
_\Ijrd = —n\lfrd —|— 77Lm25d, (225)

dt

and the fourth equation, which is in general not used forfagldnted controller de-
sign, is giving the rotor flux angle derivative, or the elagl excitation frequency,

d isq
gif = oW + 1Ly, T, (2.26)

The output equation for the torque simplifies to

3 L, .
™™ — §an—r\Ijrdqu, (227)

and the fifth equation, the mechanical equation, is still

S = lrw =71, (2.28)
This mechanical equation will not be applied for controliesign with the same
arguments as in the previous section. The speed is measwtedgarded as known
time-varying parameter for the electrical subsystem.

Even though the induction machine is a quite complex systamirol in the
field-oriented frame is simple. Flux and torque can be cdlietfandependently
by imposing a current,, or i, respectively. Furthermore, for current control, it
is seen thati,y affectsd%z’sd and thatu,, affectsd%z'sq, so control of the currents is
somehow input independent. However, even though flux amgiéoare decoupled,
the current dynamics are strongly interacting, and a maritable current controller
is desirable for high-performance control.
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2.4 Systematic constraints

Designing a controller in the field-oriented frame is a fuméatal choice, leading
to a number systematic characteristics. The main aspetisafesign compared to
direct and stator-oriented control designs is well degctiin the literature [Qua93,
QDO08, Leo74, Sch09].

Control in the field-oriented frame is inherently simple antlittive. A contin-
uous input voltage is generated by a modulation scheme antarter. The key
strengths are:

e Simple decoupling of torque and flux magnitude control bydiing the cur-
rent vector in two orthogonal direat and quadrature@ components. Each
current component will only influence one output.

e High steady-state accuracy as the controller does not per&ransient op-
eration. In the d, ¢)-frame, at constant speed and torque, all states (voltages
currents, flux magnitude) are constant.

¢ Independent control of bothandq axis currents can be guaranteed by imple-
menting independent saturation functions, such thatgel&aturation on one
axis shall not influence control of the other axis. In mostpcal cases, only
the voltage iny axis will be close to its saturation limit because of the back
EMF, and a well-designed saturation function ensures tiifitent voltage
is present on théd axis for good control. This simplifies operation close to
the saturation limits, and in high-speed operation, the@nts misorienta-
tion and ensures safe torque and flux decoupling. Obvioigslyhe rare case
where voltage saturation appears on both axes, this adyadisappears.

e A constant and well-defined switching frequency ensuresioise in all op-
eration modes.

However, control in the field-oriented frame with continsowltage commands
also has some disadvantages, not appearing for instanaeat dontrol schemes
that directly specify the inverter switches without modiala:

e Conventional direct control (DTC) is faster than conventlamantrol with a
modulator (cascaded PI control), as 'full’ voltage can bgliggd throughout a
sampling interval instead of switching patterns that faltlkto zero-voltage.

e While torque and flux are decoupled, the current dynamics $kebres are
strongly coupled. This coupling may be more intense and mon¢inear in
the field-oriented frame, for instance in induction machine
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e Limitations in the measurement circuit, such as analogaligonversion la-
tency in the current measurements or switching dead tinmag, rhaximum
modulation and thereby the maximum applicable voltageafdbtg full volt-
age is technically possible, however, hard to implement@8ID This prob-
lem does not appear in DTC (and PTC).

e The voltage saturation is not naturally included in the calférs. The volt-
age commands generated by a controller could be higher tigamaximum
inverter output, as a result, the output does not follow asseen, and inte-
grators in the controller further increase the voltage camdn This effect
results in a controller wind-up. To prevent this, anti-wipdnechanisms and
artificial voltage command limitations must be implemented

Here, direct control is not discussed (except in appendii€hvis a follow-up
to chapters 3 and 4). Each method has its advantages and,ipsuileted out for
instance in [RKE 12]. For small-power drives, however, field-oriented cohts
the standard vector control principle.

2.5 Model discretization and delay compensation

The models derived in the previous sections are contintimesmodels. In chap-
ters 3 and 4, however, discrete-time controllers are desigRor this purpose, after
an analysis of the digital control platform and measurenaedtcontrol timing, the
models are discretized.

A digital current control loop on the used standard intersymchronized digital
control platform has a delay of two sampling steps [MKYOQ3higTis seen in the
timing diagram in Fig. 2.4. The interrupt-based controkegstriggers an interrupt
at every sampling step. The interrupt handling is quite slae to the system laten-
cies and the slow A/D converter. The actual voltage commghdlis modulated at
the marked instantis and the switching times determined for the power electnic
After that, the interrupt handling software is started amel A/D-conversion of the
current measurement§:] is immediately performed to avoid the impact of current
ripples on the measurements. Once the current saifiglés available, the inter-
rupt handler finishes and the control algorithm is startembtapute the next voltage
commandu|k + 1], this signal must, however, wait until the next interript 1 to
be modulated, the switching times cannot be changed betieenterrupts.

This means that the voltage[k + 1] has been calculated with an old current
samplei[k]. This delay of measurement froif| until the application of control
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Figure 2.4: Timing of interrupt, control, voltage commaraisl current measure-
ments of a digital control system.

actionulk + 1] to the system is denotembmputational delayit has to be compen-
sated, otherwise, oscillations will appear in a closegIpredictive control system
as seen in Fig. 2.5 (a). Here, after the reference dtépyV are applied, and as
the feedback signal shows no change after one step, theygaliastill applied in
the next step. The delay leads to the fact that any controf ercompensated by
a voltage command of correct magnitude, but of double damdtian required, this
results in an oscillation of the output even though the ailetris correctly tuned.
The delay must be compensated, the technique is straiglafdy the current of the
next stepk is predicted at the timé — 1 by integrating the discrete-time system
model

i[k|k — 1] = f(i[k — 1]) + Bulk — 1], (2.29)

and this prediction is applied as feedback to the contradrétlgm to calculate the
next control actioru[k]. This implementation is possible &g — 1] andu[k — 1]
are known during the time of execution. In Fig. 2.5 (b) thedprted (blue) current
signali[k|k — 1] is applied for feedback instead of the measured curignt 1]
(red) to avoid the mentioned problem.

The technique is known as Smith-predictor. Although the-ste@ delay is a
state, and the system therefore a second-order systemymtesiccontrol loop is
assumed as first-order system for the design of a currentati@nt With this tech-
nique, the delay can be ignored for controller design. Ircice, the reference is
delayed by one sampling interval, such that two steps detagtdl present between
reference and output.
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Figure 2.5: Experimental results: Deadbeat control witremd with delay com-
pensation.

In Fig. 2.4, it is further seen that the response to a modiilatéiage peaku |k +
1] is not directly seen at the output but only appears one step &k + 2].
This is denoted aglant delay it is respected in the predictive control system if the
continuous model is linearized using Euler forward diszegton. Accordingly, the
continuous time current variation is redefined such thagflects the physics,

Ldgti(t) — u(t) = L(i[k + 1) — i[k]) /T, ~ ulk]. (2.30)

The Euler approximation of the continuous derivative gate= a lag error that
corresponds exactly to the delay in the real system, andtéperesponse of the
designed predictive (deadbeat) controller is as desirsgas in Fig. 2.5 (b).

Another assumption that is done for discretization is thatdpen-loop time con-
stantR% is much larger than the samling intervi@l During the sampling interval,
the response of the current to a constant input voltage israss$ to be of constant
slope. The real response is asymptotic, however, assuimengttageu is constant,
the continuous-time current response is

i(t) = do + (% - io) (1 - e*%t> , (2.31)

and by assuming—%Ts ~ (1-— %TS), valid if the expressiorﬁ—STS is small, the
above described discretization appears,
Ry

ik +1) = (1 - TST> ilk] + %u[k:]. (2.32)
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For systems with low sampling rates or without delay, otkehhiques exist, fore-
most based on approximating the continuous-time respoaragtally [LKKS10].

2.6 Limitations of linear flux models

In the deduction of the models in the previous sections,ealiflux model has been
assumed. However, due to size and cost constraints in thhimeaconstruction,
magnetic saturation effects appear and inherit flux noatities. Two sketches are
shown in Fig. 2.6 for typical drives, left for a PMSM and rigint IM, both in the
direct axis.

q]sd \I]sd

/% 1 \I}sd’N

/ Vpnr

lsd ) lsd

Figure 2.6: Saturation effects in electrical machinestdke Left: permanent-
magnet synchronous machine, saturation is disregardeeitirtear flux model
(red). Right: induction machine, saturation is accounteddjysting the secantial
inductance in rated operation (red), the tangential irghaz (green) will have a
different value.

Saturation effects result in current-dependent induesfGGPL98]. In drive
systems, a convention has appeared that transforms thieprah one nonlinear
flux curve in two linear models with setpoint-dependent ctdnces. These are:

e The tangential inductance (or dynamic inductanice) It describes the small-
signal behavior at a setpoint,

ov rd.
=5 = u=1>L d—tz. (2.33)

e The secantial inductance (or static inductante) It describes the large-
signal behavior at a setpoint,

L = E = U =151 (2.34)

1

LT
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To account for this saturation, lookup tables must be ifiedtand stored in the
real-time system. The model derivation must account fortwwedifferent induc-
tance values. This makes controller design complicatedsandly done if really
necessary, for instance in sensorless control applicgtmrfor synchronous reluc-
tance machines.

In this thesis, saturation effects are not accounted in #sgd, the controller
design is made robust against this uncertainty source. Awrstn Fig. 2.6, the
inductance values for PMSMs are identified at zero curréns tgnoring any sat-
uration influence. The inductance value for the IM is the sgahinductance at
rated flux, such that in rated operation, the secantial itaoshoe is correct. This
is important for correct flux calculation by the observerl amalso the industrial
standard.

2.7 Conventional control: Optimized PI controller

Often it is assumed that a predictive controller is less solian a feedback con-
troller [PLRO5]. This is true for very slow PI controllers, wever, as inductance
uncertainties result in dynamic gain uncertainty, Pl colférs also suffer from
such uncertainties. This section analyzes parametricstobss of a fast Pl reg-
ulator, tuned according to the symmetrical optimum crateri The tuning rule is
quite widespread in field-oriented control and should givaimcomparison to the
later presented model-based designs, especially as gstadliince response is
claimed [Sch09]. The evaluation is based on the PMSM desgiibappendix B.1.

Controller tuning

The continuous design starts by approximating the trarfigfeation of the plant by

_ 1) _ 7
Gls) = U(s) (1+ sTgl)%(l + s&) (2.35)

wheres is the Laplace operatof; the DC gain % is the open-loop time constant and
T, is the time constant that approximates the delay consisficgmputational and
plant delay. In this design, the delay of two sampling stefkereby approximated
as lowpass filter with a time constdfit ~ 27, as proposed in [Sch09].

Very often, current controllers are tuned according to thgnitude optimum cri-
terion. Both designs can be applied to the unerlying dynaamcslead to a Pl con-
troller. Which design should be used depends on the machnaenggers [Sch09].
For the case that the open-loop time constant is smallerfthartimes the delay,
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% < 4T,, the magnitude optimum criterion is preferable becauseeéscdot need
a prefilter and has a similar disturbance rejection as thevstnic optimum crite-
rion. In the other case where the open-loop time constamget,% > 4T,, the
symmetric optimum criterion will have a considerably bettsturbance rejection.
For instance, in the presented experimental example, thenggric optimum crite-
rion leads to a disturbance settling timelo25 ms compared t6.44 ms with the
magnitude optimum criterion. The required reference pegfis not a problem for
cascaded control.

As the open-loop time constant is considerably higher thardelay, the resis-
tance is ignored in the design, and the optimum continuimas-tontroller accord-
ing to [Sch09] is

Ul(s) _vl—l—sTn
I*(s)—1I(s) " sT,

R(s) = (2.36)

where the tuning rules prescrile = 87, and Vi = ﬁ The proportinal part
is responsible for fast reference tracking, the integratompensates steady-state
offsets, and there is no need for a delay compensation gabdnEven though the
model parameters are used in the design, there is no exm&age of the model in

the control, the PI controller is not of the class of modeddzhcontrollers.

Robustness analysis

The influence of a difference between correct inductdnaad inductance assumed
for gain tuningL is analyzed. The continuous controller is discretized ¢Eap-
proximation) and its closed-loop behavior is calculatesioieon the discrete model.
The discrete-time transfer function of the closed loop rargystem is

Glz) = { 1(2) } _ byz? + b1z (2.37)

I(2) asz + asz? + a12' + ag’
where .
az = 32, by = 9%,
ay = —64 + 32T, 2 , by = —8L,
ar = —321, % + 9L 1 32,
ag = —8%fz .

Fig. 2.7 shows the-space polemap deducted from this transfer function for an
inductance uncertaint = L;LL It is already seen that at nominal parameters, the
bandwidth of this controller quite low. Sensitivity fois high, the stability limit is
atA = 1.7, and anyA > 0 inherits oscillations. FoA < 0 a slowdown appears.
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Figure 2.7: Discrete frequency domain polemap of PI colrauned with sym-
metric optimum criterion under inductance uncertainty.

If the inductancel. is assumed too high, the command voltage is too high as the
open-loop dynamic gain of the pla%tis assumed too small.

Fig. 2.8 shows experimental results. In subfigure (a) thearese with nominal
parameters is shown, the characteristic overshoad df;, appears as no reference
prefilter was applied. Subfigure (b) shows the responsedvith 1, or L = 2L, a
badly damped oscillation and a much stronger overshootaape subfigure (c),
an underestimated inductande= 0.5, or . = 5L, is applied, the settling time is
thereby doubled. These results are all a zero speed, whetistndbance appears.
Subfigure (d) shows the respons@@i0 rpm. The current has a strong ripplecof)
Hz, these are harmonic effects caused by the non perfeatgasidal distribution
of the stator windings, six times the excitation frequendyich is 100 Hz. The
magnitude of the ripple is aboutt0 mA (RMS) on theg-axis and50 mA on the
d-axis.

Thus the fast Pl controller is sensitive to modeling errérgithermore the distur-
bance bandwidth of the PI controller is insufficient to comgege flux harmonics,
as already remarked in [SH98]. Both characteristics, tragkierformance and dis-
turbance rejection, are not really satisfactory and coelthiproved.

Performance improvement: Two-degree-of-freedom control

The tracking performance can be improved by using a twoesegf-freedom con-
trol structure. As described in Fig. 1.3, the tracking perfance is given by a
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(c) Pl control withZ, = 0.5L, at0 rpm.  (d) PI control with correct, = L, at2000 rpm.

Figure 2.8: Experimental results: PI controller tuned vgyimmetric optimum cri-
terion.

feedforward controller. The PI controller compensatesdifference between the
reference and measured trajectory, knowing that the syisésra delay of two steps,
the reference is delayed accordingly for the PI controllére experimental results
are shown in Fig. 2.9, the tests are identical to those of thew®troller. Subfig-

ure (a) shows a very satisfactory reference response, ¢aéoisvard path is good
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such that the PI controller only has a small task. Under daicgies, however, the
feedforward controller does not operate precisely, anéPtlo®ntroller, also subject
to the uncertainty, has to compensate the offset. In sulgfiffurthe error of the
feedforward controller is very high, and the PI controlleed not operate safely as
the stability limit is very close. The response is subjedh® same oscillations as
without feedforward control. In subfigure (c), both contpalths have a too small
action. Subfigure (d) shows that the disturbance respondensical to the sole Pl
controller.

To conclude, the reference tracking performance of thedegree-of-freedom
controller is improved compared to the sole PI controlleowdver, the results are
still not satisfactory, especially under uncertaintiehe Parametric sensitivity is
high and the disturbance rejection capability is low. Thistivates the following
work, which aims at obtaining a good reference trackingneweder uncertainties,
and simultaneously, a strong disturbance rejection to emsgte the effects of the
flux harmonics.

2.8 Flatness of electrical drives

Virtually all electrical drives are differentially flat siggms. This includes the DC
machine [SRA04], PMSMs [SRA04], induction machines [MR96hj aome more
exotic designs such as linear torquers or magnetic begwhg2].

Control of electrical drives is of high practical importaneed more than that,
they are interesting from theoretical point of view. This maotivated a number of
research projects in both the electrical drives and therabsystems communities.
The induction machine is a high-order nonlinear multivaleasystem. The two
outputs strongly interact and nonlinear terms appear, laadux dynamics are of
second order. Additionally, one of the outputs, the flux, nahbe measured and
must be calculated with an observer. As multivariable sysits flat output vector
is not unique but there is a certain choice, for instance:

e The rotor flux magnitudel,, and the torque,, (or the speed,, or rotor
positiony,,, depending whether one discusses torque, speed or pasiten
trol).

e The rotor positionp,, and the 'slip’ angled = n,¢\ — p, i.€. the angle of
the rotor flux with respect to the rotor-fixed, p)-frame [MR96b, DLOO1].

e The output to be controlled (eithet,;, wy, or ¢,,) and the 'controllable’
lossesP,,.s (defined in chapter 6).
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Figure 2.9: Experimental results: Two-degree-of-freed@moF) controller using
a PI controller tuned with symmetric optimum criterion.

Which flat output is the best choice is mostly matter of the imgjoal. It may be
possible to avoid nonlinearities in the design by choosmgpropriate output. In
most cases, however, one should choose a vector with physgeaing to simplify
the design task.

Many flatness-based control schemes were proposed fordhetion machine.
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A general exposition of its flatness is found in [DLO01]. Sowwarks were done
on discretization and discrete-time control of the nordimaodel [MR96a], as well
as on improved rotor flux observers [MR96b]. Efficiency-o@imontrol of the
squirrel-cage IM is described in [HRDO03] and of the doublg-iieduction generator
in [Gen08]. It also served as benchmark example to studystabss of predictive
control in [HDO8].

The synchronous machine is a much simpler system, all statelse measured if
a position encoder is available. Again, as multivariabkte, its flat output vector
is not unique but can be chosen from:

e The field-generating stator curregi and the torque-generating stator current
isq (Or the speed,, or rotor positiony,,) [SRAOA4].

e The field-generating stator currefif; and the torquer,; as sum of elec-
tromagnetic and reluctance torque (or the spegdor rotor positiony,,)
[DS04].

e The stator current magnitudgi2, + i,5> and the stator current anglectan 2(i,s /74
[SRAO04] in the case of torque or current control.

The first choice is the simplest because it relies on the biwsaapplied in any field-
oriented controller. Latter choice of stator current magpe led to the successful
design of a 'nonlinear position estimator’ for back-EMFsbd sensorless control.

For the synchronous machine, a quite small number of flatb@ssd controller
designs have been proposed. It seems as the simplicitysoditive prevents the in-
terest of control engineers with a more theoretical origma Nevertheless, PMSM
control design can be challenging, especially for advaracetrobust algorithms.
A maximum-torque-per-ampere controller accounting fduetance torque is pre-
sented in [DS04] and robust tracking control has been sdudif.MLO3].

Apart from current and torque control, higher-order systdrave been studied,
for instance resonant loads [TF11] or the combination ofadrand boost converters
[ADOG].



33

CHAPTER 3

Robust flathess-based predictive control:
Deadbeat current control for AC drives

Predictive control is a powerful control method that maketemesive use of the
model information. The closed-loop performance can begdesi to be close to
the physical limits of the controlled system. A major redtan, however, is the
high sensitivity to errors in the model. This chapter deni@tss a method inspired
from flatness-based control which improves robustnessowitiecreasing control
performance. The scheme is applicable to many other preglimbntrol systems.

Deadbeat control is chosen to present the method. Deadbetnolcis consid-
ered as one of the fastest current control schemes, it ew@ritremely fast control
and simple straightforward design. It only requires a sanpbdel of the current
dynamics, consisting of the time constant, the gain andsetosipling. Problems
in the design are, however, delays, disturbances, and eigsitsity to modeling
errors and noise. Since deadbeat control is a very aggeessheme, these prob-
lems require more consideration than if conventional adrsthemes are applied.
Indeed, these disturbances prevent an industrial apiplicat deadbeat control. So
far it is only used in few applications such as active powéersl or uninteruptible
power supplies, but in industrial drives, although it isfuget is, with just a few ex-
ceptions [Nus99], mostly used in laboratories. Improviagustness of predictive
controllers and more specifically of deadbeat control is pn@oint in transferring
this theory to practice.
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3.1 Preliminaries

3.1.1 Deadbeat current control for AC drives: State of the art

The first designs of deadbeat current control have beenghddialready around
40 years ago, but research is still active. Problems of tsgydere, as mentioned,
delays in the digital system, leading to oscillations, mimgeerrors, leading to
performance reduction or instability, and the high sewvigjtio noise. The deadbeat
controller has been sequentially improved, step by step.

While the first works were designed on special controller waré, in order to
use more standard hardware, the delay problem was addreés$iect and current
observer with adaptive poles was proposed in [BBK92] to avbal dscillations
caused by the delay, shown in Fig. 2.5. As alternative, mbdel delay com-
pensation was proposed, the current is predicted basedconderder interpo-
lation [KMY90] or on Lagrange interpolation [Kuk96] usinge past current mea-
surements. The interpolation method is robust to parametssrtainties and solves
the problem in steady-state, however, not in transientadjger. The model-based
delay compensation was finally proposed in [MKY03], alrepdysented in section
2.5. It is the most simple, performant and most common mettoathy applied in
almost all deadbeat and predictive control schemes. Anitkmelwn delays in the
system can be compensated by prediction, including foants the position mea-
surements for the synchronous frame transformation [MKYfuBther improving
performance.

The sensitivity to model errors was addressed as well, gnastliing at remov-
ing steady-state offsets. The introduction of a disturkaggtimator, named ’input
delay approach’ and acting like an integral term that coraptss the model errors
and disturbances, is of very high relevance. The origine$@ntation was on spe-
cial hardware without delay [KYOQ1], but the same design carebsily repeated
to account for the delay, and steady-state accuracy is wegroThe system with
disturbance estimator provides good parametric robustiogbe resistance and the
back-EMF, however, inductance uncertainty remains a proji¥L02], the stabil-
ity limit is at 100% parameter error. This means if the estimated inductance has
double value than the real inductance, the system is uest&ither problems are
the line voltage, as the stability limit was reported2@t, an estimation method
that additionally accounts inductance and inverter effecs proposed [MMB99].
Using such disturbance estimators, the steady-stateisqoactically zero.

Time-varying disturbances, such as those arising from fhikabe harmonics,
are not well treated with the disturbance estimator. Thauthance terms are as-
sumed constant in the disturbance estimator design (ramgdknmodel) [KYO01],
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furthermore, the estimated disturbance is lowpass-fdtezeeduce dependence on
model parameters (time-scale decoupling). For instanfi€Yi01] the disturbance
cutoff frequency is at18 Hz for a PMSM excited at00 Hz, such cutoff frequencies
are typical in the respective literature. In this case, tedwidth of the disturbance
estimator becomes too small and time-varying disturbacaesot be compensated.
Such effects arise from nonperfect stator constructionnimée non-perfectly si-
nusoidal distribution of the windings. In the stator frartteese imply a thirt, fifth
and seventh harmonic on the respective phase current @geolML92]. In the
space vector representation in the synchronously rotdtiffgame, it can be shown
by calculation [Wal01] and measurement [HS96, SH98] thatrttain components
are6 and12 times the fundamental excitation frequency. It is possiblmeasure
this high-frequency disturbance and compensate it [SH@8Jadditional voltage
signal dependent on the speed and the rotor position isempplio bypass the
limitations of this off-line method with fixed prameters,-bne torque estimation
combined with fast torque control has been proposed [CKKY#8he mechani-
cal system is well known and the sensors are sufficiently gtnedtorque ripple is
considerably suppressed.

Steady state accuracy and ripple can be compensated, howev@roblem of
sensitivity to inductance remains very strong. The deatdtwadition states that the
control error should vanish in the next sampling step, nkins controller very
aggressive. The objective can be reformulated to make thteatier less aggressive
and therefore also less sensitive. In [BLNHO5] the designditmm is that the
control error is reduced b§0% in the next sampling step, resulting in asymptotic
convergence. In [Qua93] a finite settling time of not one, tiuat or three steps is
proposed. It is well known that the robustness is increageddking the deadbeat
interval longer than the order of the system [F6185]. Thaerefboth methods render
the system less sensitive, and errors aroui¥d in the inductance are no problem.

Furthermore, depending on the operation condition, duegedltage saturation,
the deadbeat condition of zero error in the next sampling istay not be practica-
ble. Various voltage saturation methods are discussed®@2] It is important to
regard the voltage saturation for the delay compensatgori#thm, any difference
between voltage command and applied voltage leads to er@eseral methods
are discussed regarding the two main aspects, which ar@endent control of
both current components and fast response. Simple satumaitithe axis guaran-
tees independent control, but less restrictive methods,examely dynamic vector
limitation or methods regarding the multivariable dynasmt the drive.

Interestingly, there are only few works on online paraméetentification. Al-
though deadbeat control and online identification is pdsdibP97], simultane-
ous estimation of disturbance and parameters is not dirpotisible. A heuristic
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method was proposed, in [MESO07] the deadbeat controlldarsesl with nominal

parameters and the correct parameters estimated offliee, & a certain instant,
the parameter set is updated. The absence of real onlin&fidation on the given

system, however, strengthens the motivation to improvasiiess.

Alternative fast control schemes to deadbeat control wedeaae still developed.
Using specialized hardware, such as field programmable agety (FPGA) and
an extremely fast A/D converter that sampléstimes faster than the controller,
the inductance and back-EMF can be identified online fromntleasured current
slopes [WBO08, FBB12]. There, it was shown that simultaneousnesiton of pa-
rameters and disturbances is possible, a fundamentaationtof deadbeat control
when implemented on standard hardware [JP97]. Howevert fipen the expen-
sive electronics, this interesting scheme cannot yet leanadibr anisotropies or non-
linear cross-coupling terms, therefore it cannot handierior permanent-magnet
SMs or induction motors in field-oriented frame. Furthereydhe maximum out-
put voltage is limited to the rang®) — 90% as a rising and falling slope is required
within each sampling interval. Nevertheless, online pat@midentification is an
upcoming topic.

Deadbeat direct torque control [KLO3] was proposed, thelmmecequations are
solved in similar way as for the deadbeat design, the acalhgtision of the well-
known direct torque control method (DTC) simplifies the irpamation of current
and voltage constraints and gives the possibility to comlmjection-based sen-
sorless methods. Indeed, the deadbeat design method,skechits simple and
straightforward analytic design, is the core of many cdrgystems, such as adap-
tive controllers etc.

Because of the simple design, however, deadbeat contrdl gogtular. Simplic-
ity and the fact that the method is easy to embed in existitdrfisented controllers
on an arbitrary drive might be the major advantages of theational deadbeat
controller.

The goal of this chapter is to solve the delay, noise and petemsensitivity prob-
lem. The standard delay compensation [MKY 03] and distucbastimator [KY01]
will be applied as they are simple to implement. Performastaild be maximum,
the deadbeat condition that control error vanishes at tlé step is maintained.
Furthermore, the disturbance estimator is tuned so fasittalso compensates the
named harmonics and current ripples additionally to thadstestate offset. These
criteria lead to an extremely fast but also sensitive cosirstem. Using the results
from flatness-based control on robustness, however, thadbdatacontroller can be
made considerably more robust while maintaining the sopedntrol performance.
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3.1.2 Basic deadbeat current controller design
A discrete-time model of the current dynamics is written as
i[k + 1] = f(i[k]) + Bulk], (3.1)

wheres k] is the current at instarit, u[k| the voltage f (¢[%]) the current dynamic
vector andB the input matrix. The output is the curreiit]. The deadbeat condi-
tion is

ik + 1] = " [k], (3.2)

which defines the desired closed-loop performance. Thatirieg inputv[k] is
found asv[k] = ik + 1], or, with (3.1),

v[k] = f(i[k]) + Bulk], (3.3)
where the deadbeat condition leads to the control law
vlk] = ¢ [k]. (3.4)

With the deadbeat condition and by rearranging (3.1), tlysighl realization of the
deadbeat control law is

ulk] = BT4"[k] — B f(i[k]), (3.5)

whereB™ is the pseudo-inverse of the input matfk With the delay compensa-
tion technique of section 2.5, d%]| is not available, it becomes

ulk] = B™*[k] — B f(i[k|k — 1)). (3.6)

Using this controller, the control error is eliminated inecstep.

3.1.3 Overall control structure

The structure of the state-of-the-art deadbeat contralidr delay compensation,
disturbance estimator and saturation is sketched in Fily. Bl variables such as
i[k] andu[k] are referred to in field-oriented coordinates. The deadb@atoller

is a predictive controller, as such, it does not have an ratexction. Unmodeled
disturbances lead to steady-state offsets, because ghhiextension with a distur-
bance estimator is necessary. The delay compensatiorigeetmas been presented
in section 2.5, the disturbance estimator and saturatepi@sented in the follow-

ing.
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Figure 3.1: Control structure of a conventional deadbeatrother.

Disturbance estimator

The current control loop is subject to a number of disturleando the major part,
this is the induced voltage, consisting of back-EMF termaddifionally, if the
cross-coupling and voltage drop terms are not correctlyeteatidue to modeling
uncertainties, these terms are also seen as a disturbasték¢ any unmodeled
terms in the right hand side of the model. In section 2.7 ihedrout that flux
harmonics lead to a time-varying back-EMF and also reptesemportant distur-
bance. Generally, such disturbances do not lead to syapiliblems, but to offsets
between the measurements and the references, and to aippbes.
The full model of the current dynamics is written as

ilk + 1) = f(i[k]) + Bulk] — Belk], (3.7)

where the disturbanag/k] is assumed quasi-constant. The control input is divided
in two parts

ulk] = uglk] + €[], (3.8)

wherewu k] is the control input of the deadbeat controller ai4] the estimated
disturbance. The disturbance estimator of choice is basedeowell-known input
delay approach [KYO01], redesigned accounting for the cdatmnal delay. The
disturbance is calculated from the model with availabld pssasurement and con-
trol values, therefore, ask — 1] andu[k — 1] are the most recent available values,
the equation follows from (3.7), (3.8) as

é[k] = e[k — 1) + uglk — 2] — BYi[k — 1]+ B f(i[k —2]).  (3.9)
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If the disturbances[k] and the current|k] are constant, the influence of parameter
errors is minimal. Inductance values are only relevantafd¢brrent changes signif-
icantly. To attenuate this, a lowpass filter is added to thienased disturbance; if it

is slow enough, it is extremely robust and can be seen as-gwasiant to induc-
tance uncertainties. The inductance is only required ifctimeent is time-varying,
for constant current it cancels, therefore the low-passrféinforces a time-scale
decoupling. This will be demonstrated in the experimentsrlaThe disturbance
estimator with first-order lowpass-filter reads as

élk] = élk — 1]+ a (uglk — 2] — BYi[k — 1]+ B* f(ilk —2])),  (3.10)

wherea = P + with 77, p as time-constant of the lowpass filter a@fidas sam-
pling time. On ‘the other hand, if disturbances such as flumbaics should be
compensated too, the lowpass filter must be very fast, clmsleet sampling fre-
guency. The assumption that the controller and disturbasttimator do not inter-
act is then not satisfied under uncertain parameters, thaisiyzed in the following
developments.

Control input saturation

As mentioned, a careful saturation of the voltage commangs be implemented,
otherwise errors appear in the delay compensation.

In this chapter, this task is kept simple to guarantee indéget control of the
two current componentgk]. A rectangular saturation is implemented as

—U, < ug[k] < U, (3.11)
—Ud S usd[k;] S Ud. (312)

More advanced methods are available, for instance, cirtiméations w2, + u2, <
U?, but then, however, the current controllers interact [@la%urther improve-
ments are to respect the dynamics and the multivariabletatel[OS02].

It is clear that for the delay compensation and disturbastienation algorithm,
the saturated voltage is applied. Furthermore, the estondisturbance must be
respected.

A sum of two commandsy i [k| andé[k], must be implemented. To assure inde-
pendence of the disturbance compensation from the cottteolmethod implements
saturation in the disturbance estimator first, saturatidgy In the second step, ac-
cording tou[k] = ug|[k] + €[k], ugr[k] is saturated such that the output voltagé|
is within the limits.
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3.2 Deadbeat control in the flathess-based context

3.2.1 Principles of deadbeat control and relation to flatness

Deadbeat control is from a theoretic viewpoinlireear state feedback contrébr
discrete-time systems. Unlike continuous-time lineadbBsek controllers, a dis-
crete time linear controller can be designed for finite sejttime [Ack88]. The
step response of a deadbeat controlled system is definediakays for a degree
n system (with full relative degree), otherwise said, thetadrerror should vanish
aftern steps. For the current control loop, which is a first-ordanplthe control
error is eliminated after = 1 step.

Deadbeat control as linear feedback controller
The discrete-time linear single-input single output (S)S@stem is described by
xz[k + 1] = Az[k] + Bulk], (3.13)
ylk] = Cz[k), (3.14)

wherex[k] € R" is the state at instarit, u[k] € R the control inputylk] € R

the output,A, B and C are the system matrix, input vector and output vector,
respectivelyx[0] € R™ is an arbitrary initial state and the goaki$:| = 0. This is
the typical regulator problem. The linear state contralier

ulk] = —Kxl[k], (3.15)
where vectorK is designed such that the closed-loop dynamics
zlk + 1] = (A — BK)z[k] (3.16)
lead - aftem steps - to
zn] = (A— BK)"z[0] =0 Vz[0] € R". (3.17)

For the design, the equatidtd — BK)" = 0 must be solved. The simplicity of
deadbeat control only becomes clear if the system (3.18)eéemtroller canonical
form, i.e. the system matrid and input vectoB are in the form

0 1 0 .. 0 0

0 0 1 .. 0 0
a-| -] e

—Qayp —a; —Aaz ... —Ap_1 b
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and the output ig[k] = x1[k]|. Then, the deadbeat controller gains are
K = —[ao,al,...,an_l]/b. (319)

The controller design then follows straightforward frore thodel, and no solving
of equations is necessary for the design.

This linear state feedback control is a predictive corgroll The control law
ulk] = —Kx[k] includes the output and a number of predictions, in the chse o
system with flat outpug, the state vector is[k] = (y[k], y[k+1], ..., y[k+n—1])T,
see [SRAO04]. Whether the controller is categorized as feddbtapredictive con-
troller is purely a matter of implementation, but most ergirs nowadays clearly
classify it as predictive controller [JP97], as the preslicbutputs are used in the
control law. Obtaining those predictions is an applicatspecific problem that is
addressed in predictive control implementations.

Extension to nonzero reference

In the case of nonzero reference, just as for any linear stat&oller, the design

is applied by redefining the state vector as ‘error sta{é] = £*[k] — £[k], where
&*[k] is the reference ang[k] the state. The results from the regulator problem
which hadx = 0 as goal can be reused for the special control prolgem&*. The
reference is assumed to be known- 1 steps in advance & [k] = (£*[k], & [k +
1],..,&*[k + n — 1]). Then the system is

Elk + 1] = Ag[k] + Bwlk], (3.20)
where the input must be rewritten as
wlk] = —ulk] — BT AE*[k] + BT€ [k + 1]. (3.21)

Here w[k] is the physical control input and[k] a ‘fictitious’ input merely used
for the control design. The pseudo-inverBe', following (3.18), is the vector
0,0, .., %}. This way, the design procedure can repeated for the transtbsystem
to design a deadbeat controller for a nonzero referencesahigol law (3.15) can
be applied. This is the classical control method, in theofeihg, a flathess-based

design is presented.

Design with feedback linearization

This alternative design method is very close to feedbadaliization basetiacking
control, typically applied in continuous-time systems [SL91] bisioeapplicable to
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discrete-time systems [RCAO1, FM0Ob]. The underlying deatibentroller has
the control goal[k + n] = y*[k], whereas a real trajectory tracking controller has
the goaly[k] = y*[k], but in discrete time, the design is absolutely equal except
that the reference should be predicted for tracking conmtta@reas the reference is
directly overtaken for deadbeat control.

Starting from the system description (3.20), the systenmeatized, in a sense
that a new input is defined such that the system results inegy dbkin

&k +n) = vlk], (3.22)
called the ’linearized system’. This ’linearizing input’%| is realized by

wlk] = %v[k;] _ B AE[k]. (3.23)

The procedure originates from nonlinear continuous-timetrol systems and is
called feedback linearization (dtxakte Zustandslinearisierupghe new inpub|[k|
is called Brunovsky - or linearizing - input. It is applied inéar systems as well,
here, the term means not only compensating nonlinear tdamsransforming the
dynamical system to a chain of delays, therefore to the gistjplossible dynamics.

The controller consists of a feedforward payfi[k| and an error dynamics feed-
back part,[k], given by

vrslk] = § [k +nl, (3.24)
vpplk] = —M (&7 [k] — &[k]). (3.25)

The feedback gain vecta¥Z results from a direct pole placement. The feedback
part is only active if the initial state does not correspamthe reference, i.e. if there

is an initial control error. The resulting controller is teorev[k] = vg[k] 4+ v (k]

and the physical implementation reads as

Wk = 1€k 4]~ TMETH ~ €K]) - BYACH.  (3.26

Equivalence of the classical and the feedback-linearizatiebased design

For the special case that the desired error dynamics arenmmistep (deadbeat),
M is given byM = bB~'A — bK, the resulting controller (3.26) is absolutely
equal to the deadbeat controller for an arbitrary referdBc2l). More specifi-
cally, the result isM = 0. This shows that deadbeat control design and feedback-
linearization based tracking control design are stronghated. While deadbeat
control is rather a feedback gain tuning method, whereagitrg control is rather
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a way to account time-varying references, the equationscanttollers gains are
equivalent.

The mentioned difference in the control goal is based on thetigal fact that
trajectory tracking control, the reference is predictedlbtain the same output as
reference, whereas in deadbeat control, it is directlytaken, leading to a fixed
delay ofn steps between the reference trajectory and the output.

Parametric robustness is a well known problem of feedbaelatization. Conse-
guently, the vast literature does not coincide with an appate number of indus-
trial applications. A new concept for a more robust desig shems from flatness-
based control is feedforward linearization (dkxakte Steuerungslinearisieryng
[HDO3]. Flatness is somehow related to feedback lineadmabut the linearization
(transformation fromu[k] to v[k]) can be performed in an open-loop control man-
ner, thus, as feedforward control. The advantages of theaddtave already been
shown in continuous-time formulation on power electrorggstems [Gen08] and
drive system motion control [HDOS].

In this chapter the concept is used in discrete time to impadbeat control.
For application to current control, a first-order plant, teadbeat condition in the
design is that the control error is zero in the next time skegding to the design
rule¢[k + 1] = i*[k]. Deadbeat current control is classified as a one-step pirelic
controller [CKK"08], the discrete-time model is used explicitly to calceléte
voltage command, so the voltage command is based on a masettprediction
rather than on a compensation based on previous contreserro

3.2.2 Conventional deadbeat current controller design

The classical design follows the basic description of thevjpus section, and in-
cludes delay compensation and disturbance estimator. Tuelnof the current
dynamics, with compensated delay and disturbance, is gisen

ik + 1] = f(ik|k — 1)) + Bug[k]. (3.27)
The deadbeat condition describes the desired closed-kedprmance
ik + 1] = 3" [k]. (3.28)
Defining a new control input
v[k] = f(ilk|k —1]) + Buglk], (3.29)
which is the ’linearizing input’, the deadbeat control lasv i

v[k] = i*[k]. (3.30)
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Rearranging these equations with the model, the physicdkemmgntation of the
deadbeat control law is

uglk] = BTi*[k] — BT £(ilk|k — 1)). (3.31)

Characteristics of conventional deadbeat control

The control law compensates the dynamics of the system, wjith the system
dynamics are made equal to a simple delay

i[k + 1) = F(i[k|k — 1]) + Bug[k] = v[k]. (3.32)

The arising dynamic#k| = »~'v[k| are called the linearized dynamics, in a sense
that the output is a chain afdelays of the linearizing input[k]. The compensation

of the system dynamics is done using measurements and thel,nihctrated in
Fig. 3.2. This technique is known as feedback linearizatidre new inpuw[%] is

the Brunovsky input. The parametric sensitivity of this feack compensation is
well-known and the concept has difficulties in industrigbigations [SL91].

Delay- and disturbance-compensated drive

|-~ —————————~

i*[k] : ' >—>0—> o i
klku mew

Figure 3.2: Structural diagram of standard deadbeat watildack linearization.

The notions of feedback linearization and Brunovsky inpatganerally applied
in continuous control. The notion can, however, be direethegnded to the discrete-
time case [SRA04].

3.2.3 Deadbeat design using feedforward linearization

The new design follows the basic description of the preverdion, thus includes
delay compensation and disturbance estimator, and only Isasall difference in
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the design. It will be shown that, however, this small ddfece has an important
impact on behavior and performance. The model of the cuchgmamics is given
as

ik + 1] = f(i[k|k — 1)) + Buglk]. (3.33)
The deadbeat condition describes the desired closed-ldprmance
ik + 1] = i*[k]. (3.34)
Defining a new control input
vlk] = (i [k — 1]) + Buglk], (3.35)

which only differs from the previous design by usiggk — 1] insteadi[k|k —
1] to implement the ’linearizing input’. Note that both valu&$t — 1] and é[k]
(respectivelyi[k|k — 1]) are equal in the ideal case. The deadbeat control law is

v[k] = i*[k]. (3.36)

These equations are rearranged with the model, and thegahysplementation of
the feedforward-linearization based deadbeat controldaw

uglk] = BTi*[k] — BT £(i*[k — 1]). (3.37)

A reference governor must be implemented. In the case teatelerence*[k]
can not be imposed because of voltage saturation#it], the situation that the
feedforward controller generates one single infeasibleage peak which is simply
cut off by the saturation must be prevented. If it is dete¢ted <[k + 1] can not
(based on the model prediction, independently from anymaicey) reach* k], the
referenca*[k] is reduced accordingly. This way, the feedforward voltag@mand
generated from a large reference step is distributed oviipteuisampling intervals.
This algorithm is very simple to implement and not furthesatdissed.

Characteristics of deadbeat design using feedforward lingrization

Again, the control law compensates the dynamics of the systath the definition
of the new input[k], the system is transformed into a simple delay

i[k + 1) = F(@*[k — 1)) + Bug[k] = v[k]. (3.38)

The compensation of the system dynamics respectivelyriatization is done us-
ing the model, but is based on references instead of measatenThe new input
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v[k] is again a Brunovsky input. The method is denoted as feedfdriieeariza-
tion, and was introduced in the context of flatness-basettaas a substitute for
feedback linearization to reduce parametric sensitiHip(3]. The robustness im-
provement was demonstrated on continuous-time trackingaiters as well as on
flathess-based predictive controllers [HDO8]. As illustthin Fig. 3.3, the resulting
controllers are feedforward controllers, feedback is akéh into account at all.

Delay- and disturbance-compensated drive

—_——

Figure 3.3: Structural diagram of deadbeat using feedfahwaearization.

However, one issue is obvious, as there is no feedback, ¢édédievard controller
may not satisfy the control objective. An additional colfénois required. Two
choices are possible, the disturbance estimator typicadridictive controllers, or
as proposed in the literature, the well-established Plrobat which is integrated
in a two-degree-of-freedom control structure [HDO3]. Tligedence between the
delayed reference and the measured output is controlledhdyadditional feed-
back mechanism. The resulting control structure is stilleajctive controller, even
though the predictive part is implemented as feedforwaid(8i.

It will be shown later that while the robustness problem ilvesth, quite some
performance is lost. To help out this issue, an intermedialigtion of feedback and
feedforward linearization is proposed in the following.

3.2.4 Deadbeat design using mixed feedback and feedforward
linearization

The proposed design again includes the delay compensatibitha disturbance
estimator. The model of the current dynamics is given as

i[k + 1) = f(i[k|k — 1]) + Buglk). (3.39)
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Defining an initial condition for the current
ipplk] = qilklk — 1] + (1 —q) &*[k — 1], (3.40)

where0 < ¢ < 1, the valueiz5[k] is a weighted sum of the measurement and the
reference. The weight ig, settingg = 1 equals the original deadbeat controller,
andq = 0 equals the deadbeat controller based on feedforward inaian.

The deadbeat condition describes the desired closed-kedprpance

ik + 1] = 2" [k]. (3.41)
Defining a new control input
v[k] = f(irplk —1]) + Bug[k], (3.42)
the deadbeat control law is
vlk] = [k, (3.43)

Rearranging these equations, the physical implementafittimeadeadbeat control
law is

wr[k] = B*i* k] — B f (qgilklk — 1] + (1 — )" [k — 1]). (3.44)

Same as for the feedforward linearization, a reference rgovenust be imple-
mented, to account for the voltage saturation in the feedfodt path by adjusting
i [k].

Characteristics of deadbeat design using mixed feedback drfeedforward lin-
earization

The mix aims at obtaining the robustness advantage of fegdfd linearization,
but maintaining feedback control. As the feedback of theldeat controller is still
partially active, the task of the disturbance estimatoringpéified as it is not the
only feedback mechanism, as shown in Fig. 3.4.

For an open-loop stable system, the feedforward contraloaah is more robust,
the feedback terms are simply less affected by uncertainiiee basic idea is that
in an open-loop stable system, the destabilizing mechaisi@moneous feedback.

One question is how to tune the 'mix’ paramejett is the only tuning parameter
of this design, apart from the time constant of the distuckagstimatofl;,p, all
other parameters are physical parameters of the drive.

The robustness improvement of this design could, to sonendxbe compared
to [BLNHO5], where the feedback gain of the deadbeat comtrdids been reduced
by replacing the deadbeat condition (3.41) by the conditian the control error is
halved in the next sampling step. However, in this desigatidcking performance
remains untouched, the deadbeat condition is still active.
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Delay- and disturbance-compensated drive

—— e

~.
*
i

Figure 3.4: Structural diagram of deadbeat using mixedfteadrd and feedback
linearization.

3.3 Analytical robustness considerations

In this section, the robustness regarding disturbancegparaineter uncertainties
is analyzed. As simplification, a linear single-input seglutput (SISO) analysis
is performed for a single RL-load. For this simplified anatyshe results already
describe the advantages and issues of the three proposkddsetOf course, in
the practical application to a drive, there is an interactid the orthogonal com-
ponents (cross-coupling), and nonlinearities appearrstance in the induction
motor. Here, in a simple way, the results are presented aatpneted which are
also found later in the experiments.
The model is given as

ilk + 1] = (1 — a)i[k] + bulk] — be[k], (3.45)
where the parameters are

R 1
L’ L
ande[k] is a possibly time-varying disturbance signal. For a peffesinusoidal
stator winding, the disturbance is constant, but harmoffécts, transients on the
orthogonal axis, etc., generate a time-varying disturbafig.

This section derives transfer functions that account forstant parametric off-

sets. The detailed calculations are found in appendix DirBvaluation and inter-
pretation will be given in the next chapter.

a = Ts b= Ts (346)
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3.3.1 Transfer function of deadbeat controller

First, the transfer function of a deadbeat controller widtagt compensation but
without disturbance estimator is calculated. This negdeds valid when the output
is lowpass filtered with a higld;, ». The simplicity of the sole deadbeat controller
enables more insight. Parametric offsets in the contraherthe plant are regarded,
the estimated parameters are denoteg @sdb, respectively.

The resulting closed-loop dynamics in the discrete-tiregiiency domain is cal-
culated in appendix D.1 and the transfer function appears as

_1(2)
I (2)

Under correct parameters and with= 1, the transfer function i&/ 4 (z) = 271,
the deadbeat conditioifik + 1] = i*[k] is therefore satisifed. If the parameters do
not match, there are additional dynamics, as it is a secoter@lant consisting
of delay plus current dynamics. Two poles and one transfey determine the
dynamics.

Gap(2) : (3.47)

3.3.2 Transfer function of deadbeat controller including a dis-
turbance estimator

Now the complete transfer function including the disturdemestimator is calcu-
lated. It is necessary to analyze the behavior under a fastrdance estimator (i.e.
small 7, p) to see the interaction under parameter faults. The clésmusystem
has one reference inptitk], one disturbance inputk| and one outputk]|.

Two transfer functions of the closed-loop system appearfitet one is the re-
sponse from the reference to the output and the second ormridlie disturbance
to the output,

I(z) = GiiI"(2) + Go E(2). (3.48)
The calculations are again shown in appendix D.2.
3.3.3 Interaction of disturbance estimator and deadbeat con-
troller: Low pass filter

Under ideal conditions = a, b = b and ife[k] is constant, the deadbeat controller
and the disturbance estimator are decoupled. Under uimtesta however, decou-
pling is affected, especially in transient operation. Tdvedass filter fog attenuates
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the effect and considerably increases parametric robsswfehe disturbance esti-
mator. This is known as time-scale decoupling.

The closed-loop transfer function of the disturbance resp6r.;(z) shows that
the poles under ideal conditions are real for valiigs > 37, as calculated in
appendix D.3. If the lowpass has a smaller time constanttthigjthe poles become
complex and the step response is subject to oscillatiortheitmore, the magnitude
of the poles approaches the stability limit and paramegmsgivity becomes higher.
Therefore, a senseful condition to the lowpass filter is

Trp = 375, (3.49)

respectivelyn < i In standard deadbeat control, if the system is subjecttmgt
uncertainties, the filter must be set even slower, howev#reaost of performance.

In the literature, it is claimed the sole purpose is to até@yparametric uncer-
tainty influence [KYO1]. This time-scale decoupling makease as the inductance
sensitivity only appears in current transients. A comeris difficult as the ana-
lyzed systems do not have a computational delay, they arstaontiard DSP plat-
forms. If the two delays are present in the system, howevbedomes clear that
the filter is required for stability and for an oscillatioreé step response even in the
case of perfect parameter knowledge.

3.3.4 Steady-state accuracy

Steady-state accuracy of the deadbeat controllers widyadsimpensation and dis-
turbance estimator is analyzed. In steady-state, theerter disturbance and the
output are constant. The steady-state offset is calculat@popendix D.4 and found
to be

i* k] atq 1 ~14 aq
ik] a+g-ag 1-2 itq

(3.50)

This shows that the errors arising from uncertainties ipathmeters are mostly
compensated, to one part as some parameters do not affedy-stete values, to
the other part as the disturbance estimator compensates ¢neors. Noting that
a << 1, only a small prediction error remains. For fast samplingtems with
large open-loop time constants, the steady-state offsetghgible.

Interestingly, in the feedforward linearization approack 0, there is no more
steady-state offset, o< 1 is, even though a small, improvement.
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3.4 Conclusions

This chapter has exposed the state-of-the-art and theetketdesign of deadbeat
control, a very performant control method. However, it stgffrom some limi-

tations. Problems in the design are delays, disturbanceshi@h sensitivity to

modeling errors and noise. Therefore, in the literature ciintroller was extended
with a model-based delay compensation technique and alastce estimator to
avoid current ripples and to improve steady-state accuraspectively. However,
the sensitivity to model parameters, especially with respethe inductance, has
only been addressed by tuning the deadbeat controller slowe

It is shown that the deadbeat current controller is a flathesgd predictive con-
troller, as presented in [FMO0Oa], but designed in the disetiene domain. The
sensitivity of the deadbeat controller is caused by the ssedback linearization.
In flatness, an open-loop substitute for feedback linetwizdas been proposed to
solve the robustness problem, feedforward linearizatiting8]. On the other hand,
this method as open-loop controller comes with some pedaon®a loss.

Three variants are presented, the conventional deadbsighdéen, a deadbeat
design based on feedforward linearization, and as a trhdktbfe respective issues
and advantages, a mix between both methods.

The analytical fundaments have been derived to study thestobss, respectively
the influence of parameter errors and disturbances. As ésstlts, steady-state
accuracy and tuning limits for the disturbance estimateehseen found out. The
analysis of these three methods is completed in the follgwhapter by providing
experimental results.
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CHAPTER 4

Robust flathess-based predictive control:
Experimental evaluation of deadbeat control

This chapter completes the developments of the previoysehhy an experimen-
tal evaluation to obtain a clear result on robustness anfbipeance. The three
presented designs of conventional deadbeat control, daadbntrol with feedfor-
ward linearization, and deadbeat control using mixed faeklkand feedforward
linearization, are studied.

In the first part, successively, each design is analyzedrms@f tracking per-
formance under both correct parameters and uncertaimtieanalytic robustness
consideration is discussed with pole maps, and the distagbeejection capability
is tested. The calculations and experiments are based patameters of a PMSM,
described in appendix B.1.

In the second part, the deadbeat controller is evaluatedhr@e twifferent AC
drives, the PMSM, the SynRM and the IM. While the previous eixpents limit
to a step response analysis, here, a more serious appiicagmario is analyzed.
Different speeds and full load are studied. Some problempsapnamely magnetic
saturation effects, general parameter deflection effeotstrol input saturation and
flux harmonics.
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4.1 Comparative evaluation of the proposed controllers

4.1.1 Evaluation of the conventional deadbeat controller
Resistance uncertainty

It is known from the literature that the influence of resisgmincertainties is ne-
glectable [YLO2]. Two arguments support this: The first an¢hat the open-loop

time constant of a drive is much higher than the closed-laog @ this case ap-

proximately two times the sampling interval. The influenoedgnamical behavior

is therefore marginal. From the transfer functions of ®ec8.3 it can be seen that
the resistance influence appliesitand is marginal a8 << 1. The second argu-

ment is that the resulting steady-state error is almost ¢etely compensated by
the disturbance estimator.

Experimental results are shown in Fig. 4.1. Subfigure (ahesresponse with
nominal parameters, the response is almost perfect andshelsnce estimator
only has a small reaction. In (b) the resistance is assumedeotth of the nomi-
nal value. The steady-state valuewgf is slightly too small and consequently the
current offset is compensated by a higher disturbance aimoutpute. In (c) the
resistance is assumed times higher than the nominal value. The deadbeat con-
troller calculates a too high voltage; for the steady-state, the resulting offset is
compensated by a lower disturbance estimator output

This shows that the errors arising from resistance unceytan both the distur-
bance estimator and in the predictive controller compensat

Inductance uncertainty

Contrary to resistance, the influence of inductance uncgytés very important
and deserves more discussion. Uncertainties can ariseitfentification errors
or from unmodeled magnetic saturation effects, amongstreth They result in
two effects. The first one is the influence on the magnetic fluxk e induced
voltage, it appears on the right hand side of the system mauaubsequently, it
is compensated by the disturbance estimator. This effemtlisindirectly related
to the dynamics and therefore rather decreases accuracgtdtality. The second
effect is the influence on the dynamic gain of the system, enntiodel the current
derivatives are multiplied by the inductance, this can leaéither a slowdown,
badly damped oscillations, or instability.
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Figure 4.1: Experimental results of conventional deadbeatrol under resistance
uncertainty.

To analyze the effect on the gain, a constant inductance Armith

L—1L
A:T (4.1)

is assumed to simplify the analysis, however, the resudtalsio valid for a setpoint-
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Figure 4.2: Discrete frequency domain polemaps of congeatideadbeat control
under inductance uncertainty.

dependent inductance errdr(:) as it will be shown later. Using the transfer
functions presented in section 3.3, the effect of induaasmeiations can be studied.

In Fig. 4.2 thez space pole maps are plotted. Subfigure (a) is the deadbeat con



4.1. COMPARATIVE EVALUATION OF THE PROPOSED CONTROLLERS 57

troller without disturbance estimat®¥,(z). For correct inductance, the transfer
function is one zero and two poles at the origin. The two palesthe reference
delay and the closed-loop deadbeat response, the zersfaosethe delay compen-
sation (Smith predictor). For overestimated inductankes 0, a pair of imaginary
poles appears while the zero remains in the origin. The dadaypensation does
not operate correctly and the deadbeat controller gerssi@benigh control actions,
resulting in overshoots and oscillations. The stabilityitiis reached onc& = 1 or

L = 2L. For underestimated inductances, a pair of real poles appesulting in

a slowdown of the reference response. The stability limiegched oncé = —1

or L = 0, which does never appear in practice.

Subfigure (b) is the deadbeat controller with a fast distackaestimato, » =
3T, Gi+;(2). There is one additional pole and zero, as the order of theedioop
dynamics is increased by the disturbance estimator. Apamt that, the charac-
teristics are similar to (a), the sensitivity is slightlycreased as for overestimated
inductances the stability limitis now = 1.7L, and for underestimated inductances,
there are some additional slow oscillations.

Subfigure (c) is the disturbance respon&gz). It looks very similar to the ref-
erence response, except for the zeros. This also meansthaenmsitivity is the
same, logically, if either controller or estimator deskabi the complete system is
unstable. Subfigure (d) is the deadbeat controller with & slisturbance estima-
tor T,p = 2 ms. If the pole-zero cancelation at= 1 is ignored, it is equal to
the deadbeat controller without disturbance estimatoe dikturbance estimator is
fully decoupled from the reference response if it is suffiieslowed down.

To clarify these results, experimental results are showign 4.3. Subfigure
(a) is the response with nominal inductance. The referemcedched after two
sampling steps, the delay of the control system. Subfigyrehbws the stability
limit at L = 1.7L with a fast disturbance estimator. The overestimated ithee
results in a too high control voltage. Two sampling stepsratfie reference step,
feedback is available and the controller counteracts teestoot, however, because
of the model error, with a too strong action. This faulty bebarepeats and the
parameter leads to an undamped oscillation. Subfigure (sysithe response at
L = 0.5L, the control voltage is too low, after two sampling stepsdbetroller re-
peats the action, resulting in a series of peaks 0 he slow overshoot is caused by
the disturbance estimator, the error is interpreted aantiahce, such an overshoot
does not appear for a slow estimator. Subfigure (d) finallyvshive response at
an overestimated inductanée= 1.7 with a slow disturbance estimat®y , = 2
ms. As the stability limit is at\ ~ 1, a badly damped oscillation appears. These
experimental results confirm the correctness and explairchiaracteristics of the
transfer function and of the polemaps.
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Figure 4.3: Experimental results of conventional deadbeiatrol under inductance
uncertainty.

High speed effects

Operation in high speed leads to two disturbing effects. firseis that the cross-
coupling between the two current components is increasexssaroupling is mod-
eled for deadbeat design, however, under uncertaintiesjehoupling is not pre-
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cise. This effect can be seen as fast time-varying distwdan the respective axis.

The second effect in high speed is that flux harmonics apféese are caused
by the non perfectly sinusoidal distribution of the statanaings, the effect is po-
sition dependent with six periods (and integer multiple=) gdectrical rotation. At
high speed, if the controller cannot compensate these macratiects, the harmon-
ics will be seen in the currents causing a torque ripple.

1.2 ’ ’ ’ ’
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—_— measured
= rﬁMJ\WM]
— 1,
S
teS
0.8 - - - - - -
_. 20 i T T T T T
= bl g
-~ 0
=
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(a) Correctl andk andTp = 3T.

Figure 4.4: Experimental results of conventional deadiseatrol in high speed
(2000 rpm).

In Fig. 4.4 the performance is evaluated experimentallyCGt0O2rpm for the
conventional deadbeat design. Current tracking is very goatlin the estimated
disturbance, a frequency component of 600 Hz is seen, whitlei compensated
flux harmonics as the fundamental excitation frequency 802@m is100 Hz.
During the quadrature current transient, the direct ctiisawell maintained ab A.

It is obvious that compensating harmonics is a matter of iskeidance estimator,
the deadbeat controller is a linear feedback controllehouit integral action, it

cannot fully reject a disturbance. Still, the deadbeatradler shows some reaction.
Compared to the PI controller of Fig. 2.8, the disturbancenegor is a remarkable
improvement ifl; p is small.
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4.1.2 Evaluation of the deadbeat controller using feedforward
linearization

Inductance uncertainty

As mentioned, when using feedforward linearization, thedtbeat controller turns
into a feedforward controller. Interestingly, parametarifs do not impact stability.

The only feedback mechanism that counteracts uncertaifggte by feedback is

then the disturbance estimator. The disturbance estinsassumed to be sufficient
in order to compensate for the lack of feedback.

0.5mT 0.4

T

08r 0.71T Oogbrw

A=1 %‘1{ a2
A=-0.5 A=0.5ﬁ§% A=-0.5

\ 05 |

0.6F
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(a) Reference response with fast disturbancg@sDisturbance response with fast disturbance
timatorG;«;(2). estimatorG;(z).

Figure 4.5: Discrete frequency domain polemaps of deadiogsitol using feedfor-
ward linearization under inductance uncertainty.

In Fig. 4.5 thez space pole maps are plotted. The analysis of the deadbeat con
troller without disturbance estimator is skipped, as thegof the transfer function
Ga(z) are unaffected atf = 0. The analysis with a slow estimator is also skipped
as performance is too low. Subfigure (a) shows the contralihr a fast distur-
bance estimatafz;+;(z), and (b) is the corresponding disturbance respoise:).

The disturbance response is slowed down, even though theaksafilter is un-
touched. However, it is also seen that both the controlldrtha estimator remain
stable even for strong inductance errors. The stabilitjtliswreached af, = 4L,
even thoughl; p is kept extremely low. Hence, not only the deadbeat comtroll
becomes more robust, but also the disturbance estimatedféegvard linearization
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Figure 4.6: Experimental results of deadbeat control useglforward lineariza-
tion under inductance uncertainty.

decouples deadbeat control and disturbance estimationgensation. Even higher
stability limits are obtained by increasifig p.

In Fig. 4.6 the sensitivity is analyzed experimentally. .F§6 (a) shows the
response with correct inductance, there is not much diitex¢o the conventional
deadbeat controller. Subfigure (b) shows the response fovemstimated induc-
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tancel = 1.7L, there is an overshoot which is corrected by the disturbaste
mator. Two sampling steps after the reference step feedbamkailable and the
disturbance estimator commands a negative voltage, tke tiegative steps an
compensate the excessive initial voltage:gp. In contrast to the conventional
controller, there is no oscillation, so this is a remarkaipiypd response regarding
that the overshoot 6f 70% cannot be reduced due to the system delay of two steps.
In (c), for an underestimated inductante= 0.5L, the disturbance estimator also
compensates the too small control action, this time ther@isvershoot and the
response is too slow. Subfigure (d) shows the same scengit) kst with a slow
disturbance estimatdf,» = 2 ms, obviously the response is slowed down too
much.

High speed effects

reference

. 12 ! ‘ ‘ measured
< |
o
e
0.8 i i i i i ’

time [ms]

(a) CorrectL and? andTp = 3T,.

Figure 4.7. Experimental results of deadbeat control useglforward lineariza-
tion in high speed2000 rpm).

Fig. 4.7 shows the behavior of the deadbeat controller weiglforward lineariza-
tion at2000 rpm. While the disturbance estimator compensates the flurdracs
less well, i.e. with a smaller voltage than in Fig. 4.4, alsorrent tracking be-
comes very poor. The disturbance estimator, as only fe&din@chanism, cannot
compensate the cross coupling and the disturbance sireoliigly. These consider-
able current excursions only appear in high speed operaifiba lack of feedback
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in this deadbeat controller reduces performance too mingh,experimental test
disqualifies the approach of pure feedforward linearizatio
To conclude the experiments, pure feedforward lineaopatomes with con-

siderable robustness improvements. Uncertainties omygbe a steady-state er-
ror, but no oscillations. This steady-state offset must mmmensated by a feed-
back mechanism, namely the disturbance estimator. Homeuveigh speed, where
cross-coupling effects and time-varying disturbancesagesent, the performance
loss is apparently too strong.

4.1.3 Evaluation of the deadbeat controller using mixed feed-
back and feedforward linearization

As feedback linearization is performant but sensitive, f@edforward linearization
is robust but less performant under disturbances, a mixdetviboth methods has
been proposed. The new tuning parameter which describesattheoff between
both methods is set ip= 0.5.

Resistance uncertainty
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(a) Overestimated = 10R and7},p = 37.

Figure 4.8: Experimental results of deadbeat control usiged feedback and
feedforward linearization under resistance uncertainty.

Experimental results of a resistance error test are showigim.8. The response
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is identical than with conventional deadbeat in Fig. 4.1 {lc§ resistance error is
compensated by the disturbance estimator. The test isjuid sake of complete-
ness, to show that the resistence is no problem for the pedpoethod just like as
for the conventional method.

Inductance uncertainty

To analyze the influence of an inductance error, in Fig. 4H€); space pole maps
are plotted. Subfigure (a) is again the deadbeat controltbowut disturbance esti-
matorG g (z). Compared to the conventional deadbeat controller, forestenated
inductances, damping is improved absolutely by aliotifor the same uncertain-
ties. From the transfer function follows that the stabibityundary is nowl. = 3L
instead ofL = 2L, in fact the stability limit depends op and, when neglecting
the estimator, it is a\ = é for inductance uncertainties. Subfigure (b) repre-
sents the results of the controller with a fast disturbarstematorG,-;(z). Here,
damping is also higher for the same error, compared to theectional deadbeat
controller, and the disturbance estimator generates sddiganal slow dynamics
for underestimated inductances. Subfigure (c) shows therdence response with
a fast lowpass filtet:.;( ). Disturbances are compensated quickly and robustness is
same as in (b). Subfigure (d) then shows the controller wittra slow disturbance
estimator, it is almost identical to (a) except for an addisil pole and zero around
z=1.

In Fig. 4.10 the sensitivity is shown by experiments. SulvBg{@) shows the
response with correct inductance, there is not much diffsx¢o the conventional
deadbeat controller. Subfigure (b) shows the response fovemrestimated induc-
tancel = 1.7L, the current overshoot remains for two sampling steps,stiten
controlled to its reference value by combined action of teadbeat controller and
the disturbance estimator. In contrast to the conventiocoatroller, there is nearly
no oscillation. In (c) the response for an underestimateddtancel. = 0.5L is
shown, the initial voltage peak is too small and both theudiince estimator and
the deadbeat controller compensate the remaining comtool & he slow overshoot
is caused by the disturbance estimator, as it was shown tnathgfer function anal-
ysis. Subfigure (d) shows the response with a slow distudgastimator. The sys-
tem response is excellent, as robustness of the disturleastiogator is increased for
higherT, p, and the overshoot error almost completely vanishes aftesampling
steps.

This shows that the gain errors arising from inductance wairgy still result
in stability problems, but the problem is visibly attenwhtath the help of feedfor-
ward linearization. By choosing an intermediate betweedldaek and feedforward
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Figure 4.9: Discrete frequency domain polemaps of deadimadtol using mixed
feedback and feedforward linearization under inductamoetiainty.

linearization with0 < ¢ < 1, the robustness advantages of feedforward lineariza-
tion are obtained to some extend without the performancaddantage that the
feedback control task is left fully to the disturbance estion.
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Figure 4.10: Experimental results of deadbeat controlguanixed feedback and
feedforward linearization under inductance uncertainty.

Following the theoretical results, it can be shown that tabisty limit becomes
A = 1 without disturbance estimator, therefore, for smajleobustness increases.
On the other hand, performance decreases gyifts more work is left to the distur-
bance estimator. The new paramet&lescribes a compromise between robustness
and control performance. However, fpr: 0.5, all characteristics such as tracking
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performance, disturbance rejection and robustness as@ralltaneously at a very
good level.

High speed effects
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Figure 4.11: Experimental results of deadbeat controlguanixed feedback and
feedforward linearization in high spee2D(0 rpm).

Fig. 4.11 shows the behavior of the deadbeat controller mied feedforward
and feedback linearization 2000 rpm. In (a), where a fast disturbance estimator
is applied, the harmonics are compensated almost as weltlashe conventional
deadbeat controller in Fig. 4.4, at the same time, curranking is very good. The
difference is very small, so that can be assumed that therpeshce loss of the
mixed method is marginal compared to the conventional deatdtontroller.

Subfigure (b) shows the same controller with a slow disturbastimatofl; p =
2 ms. Obviously, the bandwidth of the estimator is not suffiti® compensate
the flux harmonics, resulting in a current ripple. This pWeat harmonics are
compensated by the disturbance estimator to the major petrt)y the deadbeat
controller as sometimes assumed in the literature [YLOZ2].

These experiments demonstrate that the proposed methooted feedforward
and feedback linearization shows good tracking perforraama disturbance rejec-
tion capability.
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4.1.4 Conclusions on the comparative evaluation

The major sources of uncertainty, consisting of resistama® inductance uncer-
tainty, as well as the influence of flux harmonics, have beegsiigated.

The resistance uncertainty, as known, is not a problem fpithe controllers.

The inductance uncertainty, on the other hand, turns outkay atability issue.
The conventional deadbeat controller destabilized at 1.7L. The controller
design based on feedforward linearization could solveghoblem, even with the
fast disturbance estimator, the limit s shiftedte= 47, and by tuning the estimator
slower with77, p, it can be made even more robust. The mixed approach is affade
and the limit is shifted tal. = (1 + 1)L, here withg = 0.5, itis at L = 3L.

. . 4
Therefore, the inductance uncertainty problem can now belbd.

The analytical study of the previous chapter leads to a eappole maps that
clarify and support these results for the inductance uac#yt Even though this
study was performed on a simplified model, the obtained métion describes the
advantages and problems of the controllers sufficiently.wigte general validity
of these comparative results is therefore given.

The disturbance rejection capability is important to abtgood results in high
speed operation. Here, flux harmonics appear, and as thgzadadervo drive has
a small inductance, these cause a considerable currefg.ripp compensate this
fast disturbance, the estimator must be sufficiently féet,groposed setting was
T.p = 3T,. The conventional deadbeat controller can handle thisrtaiogy well
and only leaves a ripple of abobi® mA (RMS) magnitude. The mixed approach
comes with a similar performance. The design based on fegdfd linearization,
however, leaves a ripple of more thae0 mA (RMS), one part is caused by the
flux harmonics and the other part by the cross-coupling, e/laé&so an oscillating
interaction between the current componegisindi,, appears.

So it can be concluded that the conventional deadbeat dlentiohighly perfor-
mant but too sensitive. On the other hand feedforward linagon is highly robust
but suffers from reduced performance, especially reggrdisturbance rejection.
The approach of mixed feedforward and feedback lineagmas a compromise
between both methods and turns out to be both performantdnogt: It has an ex-
cellent tracking and disturbance rejection capabilitylev/itican handle parametric
uncertainty.

Another important aspect, not yet discussed, is measurtenuese. Because
deadbeat is a very aggressive scheme and tries to immegdiatelpensate output
offsets, noise may render the system unstable. In Fig. 4hE2standard dead-
beat controller in (a) is compared to the mixed feedforwiaetiback linearization
approach in (b). The current measurement signal lines weskielded and placed
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Figure 4.12: Experimental results under measurement noise

nearby a device that generates an identical electromagpieg regularly. As result,

the current measurement signal is subjected to noise. Wialde¢adbeat controller
reacts with about0% of available voltage to this ping, the mixed approach only re
acts with about 5% and does not influence the real current signal that much. This
is quite logical as the noise is amplified less in the feedbdack (7 < 1) of the
proposed control system.

The analyzed error sources are the major problems in a maltaen system.
Apart from them, some other problems may appear.

The scheme is unable to compensate sensor errors, for géastamrent sensor
offsets or absolute and differential position sensor srrdhe outputs are enforced
to the measured outputs.

\oltage modulation also deserves some discussion. Usiggesgector modula-
tion techniques, a linear space vector can be modulateldoustit of the maximum
voltage, which i% of the DC-link voltage. This means any voltage veaigy with
magnitude lower thaﬁ.866§UDC and arbitrary angle can be generated. Beyond
this magnitude, the inverter operates in the overmodulatgime resulting in har-
monics. Because of the physical limitation of the voltagehsiarmonics cannot
be compensated. Furthermore, if the switching frequenesjois compared to the
fundamental excitation frequency, harmonic effects wité switching frequency
appeatr.
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\oltage variations on the DC link have been disregardednduittiis work. In
typical servo inverters, the DC link voltage is measuredthedsaturation limit and
the switching times can be adjusted. However, this errorcgoseems to be of
secondary relevance.

Furthermore, the switching dead times of the inverter aseiraed to be com-
pensated, as this technique is established in most indusénvo drives nowadays.
Without dead time compensation, a 'zero-current’ osddlaproblem appears, as
reported in the literature [KMY90].

4.1.5 Structural difference between deadbeat and PI control

Formally, a deadbeat controller might be compared to a Piralber, as it consists
of a linear component, the actual deadbeat control law,fstance (3.15), and an
integrating component, the disturbance estimator. Howelere are some key
differences.

The performance and robustness of the Pl controller withnsgtrical optimum
criterion has been shown in section 2.7. The stability livas atl = 2.7L. The PI
controller also had a large ripple cause by the flux harmealasutl 40 mA (RMS).
While the reference tracking was fine in the 2DoF extensioh wifeedforward
controller, robustness and disturbance rejection areutfitient. The PI controller
has been outperformed by all three discussed deadbeabibentesigns. This can
be traced back to some systematic limitations of feedbankpenmsators.

A classical Pl controller has one single input, the contrabe:* — i. The con-
troller commands are generated from the error signal, hewévis controller does
not make a difference between a reference change or a disteptherefore it does
not know about the cause of a control error. The Pl controdlacts with two com-
pensation mechanisms, the P- and the I-part. Many tunirgg rexist, for instance
the magnitude optimum criterion, which has good refereraeking performance
as it has a quite high proportional gain, but a less good rtiahce rejection. The
implemented symmetric optimum criterion, on the other h&iad good disturbance
rejection as the integrator gain is higher, but less gooereeice tracking. While it
must be noticed that an experimentally tuned Pl contrdhet accounts saturation
by anti-windup techniques, may have better performanaettiese algebraic tuning
rules, generally, a Pl regulator has to trade off refererazzking versus disturbance
rejection. This gives rise to a fundamental limitation.

Two-degree-of-freedom extensions exist which aim at inmmg this trade off,
by splitting the controller in two different systems, ettlaefeedforward and a feed-
back path, or two cascaded systems. However, the tuning ecomes complex
and the decoupling is somehow limited.
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Contrary to this, a deadbeat controller has a more generatatien structure
with two different inputs, the referendé and the measurement feedbackThe
deadbeat controller is responsible for tracking perforceaand is designed ignoring
any disturbance. The tracking performance is the bestlpessinly limited by the
voltage saturation. For disturbance rejection, a disturbaestimator is added to
the system. It is decoupled explicitly from the deadbeatrodier and therefore
has, in the case of good parameter knowledge, a completégpandent action.
This additional feedback mechanism with integral actioalgo close to the best
possible physical dynamics — only limited by the delays mfieedback loop. The
controller can make a difference between a reference chardja disturbance, and
has independent and decoupled mechanisms for each puhadsgperate each at
the physical system limit.

Therefore the deadbeat controller can break the fundamaniiation of classi-
cal linear controllers. This fact has been stated for mangehbased and predictive
control designs [PLRO5].
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4.2 Implementation and performance evaluation

In this section, the proposed deadbeat controller is eteduan three types of AC
drives, namely a permanent magnet synchronous machine NB&&vo drive, a
synchronous reluctance machine (SynRM) and an inductiomimad¢|M).

The controller is based on the classical deadbeat desigrioed with a distur-
bance estimator [KY01] and delay compensation [MKY03]. Tmdy difference
is that feedforward linearization is partially applied twiease robustness to para-
metric uncertainties, and the lowpass filter for the distude estimator is kept
extremely fast.

4.2.1 Results on a permanent-magnet synchronous machine

The model applied for the deadbeat current controller i®thas Euler forward
discretization of the continuous model and is

tsaglk + 1] = F(2saqlk]) + Bus aqlk], 4.2)

where the system function vector is

(4.3)

— T2 )igg snpr%isq
f(is,dq[kb _ ( (1 TSLd) [k] + T, y [k] > |

(1 — T Yigg k] — Tumpons $2ialk]

B:TS<E>. (4.4)
Lq

The induced voltage term on theaxis € = Kn,wys) is neglected, it is compen-
sated by the disturbance estimator. Apart from that, thenasgk of the disturbance
estimator is to compensate the flux harmonics. As the indaetare very small,
the flux harmonics result in a quite considerable currerd arque) ripple at high
speed, the compensation of this effect is a significant tyuatprovement.

For the controller, the nominal model parameters from agpeB.1 are applied.
The only two tuning parameters aye= 0.5 and andl',p = 37, = 0.1875 ms.

The deadbeat controller therefore consistsigh feedback and0% feedforward
linearization, to reduce the influence of parametric uieties and the sensitivity
to noise. The closed-loop cut-off frequency of the distadeestimator is suffi-
ciently high. Therefore, the major part of the flux harmorf@smes the excitation
frequency, 0600 Hz at2000 rpm) is canceled.

and the input vector is
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Figure 4.13: Proposed deadbeat contgo 0.5, T,p = 3T, = 0.1875 ms) on a
surface-mounted permanent magnet synchronous machineNgM

Fig. 4.13 shows the experimental results. In (a) a referstee from zero to
nominal torque is applied at zero speed. Because of some paralneter uncer-
tainties and as the speed is not perfe6ilyhe disturbance estimator is active. The
sum of the control voltager, and the estimated disturbanggis at the maximum
voltage during the transient. In (b) the same scenario isatga a2000 rpm. Be-
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cause of the induced voltage (back-EMF), which is aliéatV, the control voltage
ug, is smaller and the transient is slower. A slow oscillatiopegrs org, which
is the compensation of the flux harmonics. In (c) the samatsain is shown over
a longer time, it is seen that the oscillation @ns about600 Hz (superimposed by
about300 Hz), which indicates the compensation of the harmonicsreéhgining
current ripple is less than abou®0 mA or 1.25% of the rated current. Finally,
(d) shows a simultaneous transient from zero to nominau®@nd fromi,; = 0
to —4 A that is performed a2000 rpm. Because of imperfect parameters and the
nonconstant disturbance, performance is deterioratadgitive simultaneous tran-
sient. This could only be improved by accounting for the matiable structure of
the system, however, as only two current components arabigithe information
for the (simple) estimator is also limited to two disturbascbut not the interaction.
Performance is still convincing.

To conclude, the deatbeat current controller is a very pawenethod on a
PMSM. Parameter knowledge of this machine type is verybtdiaalthough even
small uncertainties and secondary effects have a high mfkien the output as the
inductances are very small. The fast disturbance estinpatees as powerful tool
to compensate such errors.

4.2.2 Results on a synchronous reluctance machine

The model applied for the deadbeat current controller isétmee as for the PMSM.
As the SynRM has no permanent magnet, there is no back-EMF @mdentro-
magnetic torque. The generated torque is purely the seecedluctance torque, as
described in section 2.2.

In Fig. 4.14 the flux curves of the applied motor are shown. iRdeictances
are subject to very strong saturation effects, and addilignto magnetic cross-
coupling effects. Furthermore the SynRM has quite strongHammnonics, as the
stator is originally from a norm induction motor. The harnusnhowever, generate
only a small current ripple because of the high inductance.

So far, only few works are available on high-performanceti@brof this very
special AC drive. Model-based designs which take saturaftects into account
by advanced modeling exist and obviously have a much higéréomance [KP02,
MCPOQ7], such as extremely low overshoot and short settlimg.ti However, the
presented work should serve as benchmark for robustnesdezdbeat controller
with a linear flux model, for standard control schemes thesple models lead to
bad performance and instabilities [KP02].

Identification of these nonlinear flux curves is sometima$gpmed for sensor-
less control schemes, however, this procedure is timewroing). For current con-
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Figure 4.14: Nonlinear flux curves of a synchronous relumanachine (SynRM).
(Source: D. Paulu®)ptimierung eines drehgeberlosen auf Hochfrequenzinjektion basieren
den Regelverfahren®iploma thesis, University of Wuppertal, Germany, 2006.)

trol, the identification should be as simple as possible.tRerdesign, the unsatu-
rated inductance is identified, meanirg, is identified ati,; = 0 A and from the
step response af, from 0 to 0.1 A. The inductance is then halved to somehow
account for the saturation, the values are= 350 mH andZ, = 280 mH, how-
ever, depending on the setpoint, this leads to a considenmatilictance uncertainty
as seen on the flux curves.

In order to still obtain reliable deadbeat contrgl,= 0.25 is set on thei -
controller andg = 0.125 is set on thei,,-controller. The lowpass filter of the
disturbance estimator is slightly enlargedfpr = 67,. These means will al-
low a considerable improvement in robustness, with a rathe@erate impact on
performance. It is not possible to implement such a fastidhsince estimator with
standard deadbeat, also it is not possible to run the caovehtdeadbeat controller,
only the introduction of feedforward linearization and fegameter; << 1 makes
this possible.

Figs. 4.15 show the experimental results. Subfigures (aj@mshow the small-
signal step response froiy, = 0to 0.5 A in order to show the impact of saturation.
The first step is unsaturatedigi = 0 A, the second step is saturated gt= 2 A.
The response is very fast and reliable. While (a) is at stdhdb) is at 1000 rpm,
the estimated disturbance is average about zero while ¢lagl\ststate voltage,,



76

CHAPTER 4. EXPERIMENTAL EVALUATION OF DEADBEAT CONTROL

0.4}

iq [A]
o o
on D
iq [A]
S ocoo
°:"’""

— 2 ‘ —  2f ‘
= =
— Ay 1r
s reference | \ reference
S S

il

0 : measurcd 0 : easured
0 10 0 10
tlme [ms] tlme [ms]
(a) Test steps at O rpm. (b) Test steps at 1000 rpm.
——
=
2,
.&U‘
0
— 200f
Z.
- 0
&
=-200
100
Zog
o
«Q
-100
— 4r —
|<_Cn 2, B — 2, N 4
= reference 3 reference
) . : ‘ measured o! : : ‘ measured
0 20 40 60 80 100 120 0 20 40 60 80 100 12
time [ms] time [ms]
(c) Zero to max. torque, O rpm. (d) Zero to max. torque, 600 rpm.

Figure 4.15: Proposed deadbeat contgoH0.25/0.125, Trp = 67, = 0.375 ms)
on a synchronous reluctance machine (SynRM). Top: test afatain influence,
bottom: from zero to maximum torque.

becomes considerable, this is specific for the SynRM whiclnlggscross-coupling
terms because of the high inductance, but no back-EMF.

Subfigures (c) and (d) show the more typical application agernwhere the
SynRM is operated in maximum-torque-per-ampere (MTPA) moéest a step
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from zero current to,;, = 1 A is performed, which is called premagnetization.
Then the torque is increased to its rated value by adjustingpéimal current an-
gle of 60°. Because of the strong saturation at rated current, the cochra@tage
oscillates slightly. Simultaneous change on both axestis pooblem this time, as
the inductance values are higher and the transient is slower

To conclude, the deadbeat current controller has somegrabbn the SynRM.
Saturation effects are extreme on the chosen motor, neguitia very high induc-
tance uncertainty, and the controller based on a linear floatahsuffers of reduced
performance. However, the proposed deadbeat controlezatgs reliable and with
nice performance over the complete current range.

4.2.3 Results on an induction machine

The deadbeat controller is somewhat more involved for tdedtion machine, as
a rotor flux observer is necessary and a number of nonlimesappear for field-
oriented control.

As rotor flux observer, a full-order observer in stator refere frame is de-
signed. Even though simple integration of the rotor modptasents a stable ob-
server [MR96Db], a full-order observer is required for predisix estimation under
uncertainties, appearing for instance in field-weakengraton. The full-order ro-
tor flux observer in the stator reference frame [MRO0O0] is a lnezger observer and
is given by the nonlinear discrete-time equations

o lk] = (1 = Tan)W,0 [k — 1] — TunpwnsV,s[k — 1] + TynLopisa[k — 1]

+ Tsf(%sa[kz - 1] - Z.soz[kz - 1])7 (45)
U,5lk] = (1 = Ton) W, 5[k — 1] + Tanpwnr Wk — 1] + TunLoiss[k — 1]
+ Tsf(%sﬂ[k - 1] - isﬁ[k - 1])7 (4.6)

isa [k] - (1 - TSV)%sa[kj - 1] + Tsﬁn@rcx [k - 1} + ,Tsﬁnpr\ijrﬂ[k - 1}

+ U%um [k — 1)+ Tl (isa[k — 1] —isalk — 1]),  (4.7)
isglk] = (1 = Tuy)isglk — 1] + T80T, 5[k — 1] — TyfnpwaV,alk — 1]
1L wgplk — 1]+ Tul(igp[k — 1] — igg[k — 1]).  (4.8)

S

+

If the observer feedback paramegas set zero, the eigenvalues of this observer are
—n £ jnpwyr, Meaning it converges with the rotor time constantThe integra-
tion of the rotor model leads to an open-loop value. For p@sitalues of¢, this
information is corrected by the stator model (4.7) and (4Mere the rotor flux is
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generating a voltage component useful for feedback. Therebswill converge
faster while parametric robustness will increase. The ehdeedback parameter
value is¢ = 4 for the machine described in appendix B.1. Timing is very impo
tant if the observer shall be used for deadbeat control —nbted that the input
signalsi, .k — 1] andu, .5k — 1] are all available at instait Furthermore, it is
seen that, as the controller design is based on Euler forshacdetization, the rotor
model in the flux observer acts as delay compensation (oighi@u) algorithm for
the rotor flux signal,. 5. Therefore, if the feedback parameges not too large,
no additional delay compensation system is required fodloeat flux control.

Current control

The model used for deadbeat current control is based on Euleard discretiza-
tion of the continuous model and is

is,dq[k + 1] = f(is,dq[k]) + Bus,dq[k]7 (49)

where the nonlinear system function vector is

Flisaa) = ( (1= T+ T + Lol ) @
(1 - TSV)qu - Tsan]V[st - TsT]meI,d—TZq
and the input vector is
1
B:TS<‘iS>. (4.11)
oL

All terms independent of the curreft,,, meaning the induced voltage and the
flux coupling, are classified as disturbance and ignoredamtbhdel. They will be
compensated by the disturbance estimator. The terms deddy the fundamental
model are quite slow. The disturbance generated by the fltmdracs, however,
which are not described in the fundamental model, represéast disturbance and
therefore a challenge for the disturbance attenuation aresim.

The nominal machine parameters are found in appendix B.1t lilasfor the
PMSM, the two tuning parameters are get= 0.5 and7,p = 37,. It should
be remarked that the chosen motor is of low efficiency ('8ft8id of rather com-
pact size. This implies that secondary effects, such asatain, are considerable.
The inductance applied for deadbeat contrg),, is the fundamental inductance,
as described in section 2.6, the automatic parameter fabatiton from the inverter
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Figure 4.16: Deadbeat control on an induction machine. Topventional dead-
beat control, bottom: proposed methqd< 0.5, T, = 3T, = 0.1875 ms).

compensates the saturation. However, the paranigtaes higher than the tangen-
tial inductance (which is the dynamic gain), therefore teadbeat controller will
be in the situation, > L where the stability problems appear.

In Fig. 4.16 a torque step from zero to nominal torque is arealy The top two
figures (a) and (b) are the results of a conventional deadiwedtoller ¢ = 1).
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Clearly, in (a) the parametric uncertainty leads to an inktaproblem resulting in

an undamped oscillation of the torque. An oscillation i®&een on the disturbance
estimator, it tries to compensate the oscillation but dagshmanage to. In (b) in
high-speed operation this instability phenomenon is redas the available voltage

is quite small, but still, an oscillation is seen after thd efhthe transient. The lower
two figures (c) and (d) are the results in identical situatibthe proposed deadbeat
controller ¢ = 0.5). The instability phenomenon does not appear at all in both
cases. Apart from that, performance is identical.
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Figure 4.17: High-speed operation and harmonic effectsxanduction machine.

The low-frequency oscillation of the estimated disturl@ficin subfigures (b)
and (d) is the compensation of flux harmonics. This effecurshier studied in
Fig. 4.17, where (a) is the response of a Pl controller andh@yesponse of the
proposed deadbeat controller. The PI controller is agameduaccording to the
symmetric optimum condition as discussed in section 2.fheduning parameters
areVi = "LS andT,, = 8T. The flux harmonics have a frequencyléf) Hz at25
Hz excitatlon respectively500 rpm. Although they are of low frequency and the
inductance is high, they result in a current ripplé)af A with the PI controller, but
less thar.1 A with the deadbeat controller.

To conclude on current control, while the conventional dead controller is
unstable on the induction machine, the proposed methodlisstable and shows
good tracking performance and disturbance rejection.
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The induction motor further offers the chance to analyzesdorder dynamics
by using flux control in the field-oriented frame. The desifja deadbeat flux con-
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troller is very simple because of the flatness of the dynaniibge design is equiv-
alent to two cascaded first-order deadbeat controllersth€umore it is strongly
simplified as the flux observer, designed based on Euler fordecretization of
the rotor model, already acts as delay compensation teehrithe value of the flux
magnitudel, ,[k] is available at the instant where the referef{gg| is computed.
The model for flux control is

Uoalk + 1) = (1 = Tsn)V,qlk] + (Tsn Ly, )isal k], (4.12)
from which the deadbeat control law is derived as
st[k] - anTg ‘;[JT‘d[k] anTS "'d{k]‘ (4'13)

The disturbance estimator is designed using exactly the saotedure as for the
current controller, but knowing that the latest availatdére isV, k] and therefore
only one single sampling step delay is involved, it reads as

) 1 —nT;
elk] =éelk — 1 k=1 — ———W, 4]k v.qlk—1]), (4.14
i = élk = 11 a (il = 1= w4 k- 1), @)
with o = TSETLP and7Ty,p = 37T, as lowpass filter time constant. Saturation is

implemented by limiting?, [x].

In Fig. 4.18, deadbeat flux control is analyzed. Again thettop subfigures
(a) and (b) are the results of a regular deadbeat contraller (). At a flux level
of ¥,, = 0.45 Vs, the controller is stable, but once &f; = 0.9 Vs, saturation
is so strong that the current and voltage are subject to upedmscillations. This
appears for zero and high speed, furthermore, in both sngthe instability trans-
fers to theg axis. The lower two figures (c) and (d) are the results of tlppsed
deadbeat controllery(= 0.5). Again there is no more instability while the good
performance is untouched.

To conclude, the proposed deadbeat current controllerésyapowerful method
on the induction motor. Surprisingly, although inductiootors are very common,
the standard deadbeat design cannot be applied, it is leisElen though parame-
ter knowledge is pretty good, the omnipresent saturati@cgbrevents the standard
method to work. The proposed, only slightly modified deatibeatroller, however,
works fine and shows excellent performance, in both curneatlax control.

The fast disturbance estimator again proves to be a poweduto compensate
harmonic effects. It is therefore a competitor for the conimal scheme which
consists of modeling, identification and compensation of gosition-and speed-
dependent disturbance [SH98]. Its simplicity also makegeatresting regarding the
more involved online methods for this purpose [CKKY98].
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4.3 Conclusions

This chapter has provided the experimental results antpirgtions necessary for
a through study of deadbeat control.

Robustness of the controller was studied analytically aqeementally. While
the conventional deadbeat scheme works well on easily rabl#etrives, such as
surface-mounted PMSMs, it is too sensitive for applicatmmore complex drives
such as the SynRM or the IM. The limitations arise from the gresent magnetic
saturation effects and the high sensitivity to inductanoeeutainty.

A more robust design variant for deadbeat control has begmoged based on
feedforward linearization. This concept has been intreduo flatness-based con-
trol to improve robustness of model-based control schefhbessically transforms
the model-based controller into a feedforward controtlegn, differences between
the estimated and the real parameters do not destabilizysiem anymore. How-
ever, the scheme must be fitted with an additional robusbiadcontroller to com-
pensate offsets between the predicted and the measurad.dutphe experiments
it turns out that robustness is outstanding, however, @viglfeedback mechanisms
such as the disturbance estimator or a PI controller areuffatisntly performant
to compensate the time-varying disturbances present inrA€ gystems. The per-
formance loss is strong compared to the conventional deadbetroller.

To help out, an intermediate between the conventional fagldbnearization and
feedforward linearization based design was proposedmis ait giving the robust-
ness advantage but without loosing control performanceniX’’parameter; was
introduced, which can be seen as trade-off parameter bete@®/entional feed-
back linearization and the more robust feedforward lirezgion, or differently said,
a trade-off between control performance and robustness.

The proposed deadbeat controller is sufficiently robusatalle any AC machine
type, including PMSM, SynRM or IM. The new deadbeat contraieeonsiderably
less sensitive to errors, stability range is extended andlaitons caused by er-
rors are well damped. It can handle extreme inductance taicges, which appear
for instance from saturation effects. Furthermore, thdrobperformance is good
enough to reject time-varying disturbances, such as flumbaics, which result in
current and torque ripples when using conventional feddloaatrollers. A nice
side-effect of the proposed method is that the disturbasitaator is better decou-
pled from the deadbeat controller, especially under pam@nencertainties. This
makes the disturbance estimator more robust and the tylowglass filter, nec-
essary for robustness and time-scale decoupling of theattr in conventional
deadbeat control, can be tuned very fast — at a time constantythree sampling
intervals. Furthermore, sensitivity to measurement nigisensiderably improved.
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CHAPTER 5

Optimal control of permanent-magnet
synchronous machines using linear model
predictive control

The control principle of the previous chapter is intendeddimgle-variable sys-
tems. If the design is applied to an electrical drive, the twtputs are decoupled
and controlled independently. While this is fine in the unt@ised case, one might
encounter restrictions if the voltage limitation is actife avoid performance dete-
rioration in this case, control of the two outputs shouldlm®independent.

While the speed and torque are controlled via the quadraturertt:,, the direct
currenti,y is more an internal variable. The direct current is a degfdecedom
whose precise value is less important. A non-salient PMS@érgerally controlled
with i, = 0, however, the direct current can be used to improve powalieitty
[MXMO0O0, CTM*05] or to improve torque dynamics [CKS95, CS98]. Dedicated
control algorithms have been developed in the past for thesgective purposes,
each algorithm is a solution to the respective optimizagicblem.

Linear model predictive control is a technique that can domdifferent operator
requirements, such as efficiency and dynamics, respecations such as voltage
and current constraints, and find an optimal system behavde regarding the
complete multivariable system model, including the intécan of the outputs. In
this chapter this advanced technique will be applied to owerthe efficiency and
the dynamic responses of a PMSM.
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5.1 Benefits of optimal control

5.1.1 Preliminaries: Loss modeling in PMSMs

The losses of an electrical drive system can be divided iatdrollable and non-
controllable losses [KG83]. Controllable losses are, fetance, the ohmic and iron
losses, and can be influenced by the controlled variablespByizing voltage and
current, the controllable losses can be minimized for aitrarlg speed and torque
setpoint.

Uncontrollable losses are friction and windage lossesalaat stray load losses.
Stray load losses describe losses caused by the non-glatfield distribution in
the air gap, stator slotting effects and conductor skincestehey primarily depend
on torque, secondarily on the stator voltage frequency empérature [KG83].
The uncontrollable losses can only be influenced by charth@gnotor design or
by additional hardware, such methods are disregardedsmibrik.

A simple empirical model of the controllable losses is dedivThe ohmic losses
are the heating losses of the stator windings and are desdoyp

POhm,S = gRs(sz + qu) (51)
The factor% appears as,; andi,, are described in peak values in space vector
notation as described in section 2.1.

The iron losses are mainly caused by the time-varying magflex in the sta-
tor [CTM™05]. The hysteresis losses are generally proportionaktatba enclosed
by the characteristic hysteresis curve and the frequenaioh that curve is peri-
odically cycled. They are described by

3 3 ) )
Pryst = ikhanM(\Ijid +02) = §khnpr((Ldlsd + Upu ) + (Lyisg)?), (5.2)

wherek,, is a constant. The eddy currents are induced electric dsrietthe stator
iron, the inherent losses are described by

3 3 ) )
Praay = §ke(”pr)2(‘I’§d +V2) = §k’e(”pr)2((Ldst + Upnr)® + (Lyisg)?),
(5.3)

wherek, is a constant. The two constarkisandk, are not part of standard motor
parameters, thus they have to be identified. The regularrdetation of power
efficiency of a drive is performed with a wattmeter to deterenihe input power,
and a torque and speed meter to measure the mechanical pogpert With such a
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measurement, all losses, controllable and non-contiellaloe respected, therefore
they are not suitable to determine the iron loss coefficielmstead the method in
[USUO3]is applied, it leads to the insight that the eddy enttosses are neglectable
compared to the hysteresis losses. This is due to the optihstator design of
the PMSM which suppresses eddy currents (unlike the low-stasor of a norm
induction motor, for instance). The hysteresis losses,elvew are considerable,
they are much higher than the ohmic losses. For the PMSM ibescin appendix
B.1, at rated speed and torque, one Rag,, s = 47 W and Py, = 200 W. This is
typical for PMSMs, and also motivates the use of control mésto minimize these
losses. Still, possible identification errors must be natedny errors in the DC link
voltage, inverter nonlinearities or machine parametdtsence the measurements,
which are sensitive because of the quite small valug,of

The model of the controllable losses applied for the colgralesign is

3 o . 3 ‘ )
Poss = §Rs(z§d +io,) + ik‘hnpr ((Laisa + Upnr)® + (Lgisg)?) - (5.4)

5.1.2 Optimization of the power efficiency

The direct current,, is a degree of freedom that can minimize the losses [CTUB).
For a given setpoint, defined by speed and torque, the quadm@irrent,, and the
iron losses caused by the rotating PM flux are fixedi,Jfis now decreased, the
ohmic losses increase quadratically, as shown in Fig. &d).(rAt the same time,
however, the flux magnitude in the air gap is decreased,lili¢he cycle in the hys-
teresis curve is smaller and the hysteresis losses redgbdlysiblack). The total
losses (green) decrease to some extent. This field weakbasigo influence on
the torque, assuming the reluctance torque is negligibje{ >> (L — L,)isq)-

The efficiency improvement on the analyzed drive is quitelsrabout4% loss
reduction is obtained at rated speed resulting in an eftgi@mprovement of only
0.5%. If a PMSM with higher inductance is chosen, less curren¢eded to weaken
the field, and higher improvements are possible. Additignélthe drive is subject
to rotor anisotropyL, < L,, the occurring reluctance torque supports the electro-
magnetic torque [DS04]. For instance in [CTBE] the efficiency improvement at
rated speed and torquedss%. The physical design of the analyzed drive, which
can be seen as typical cost-efficient industrial servo ddeenot allow such good
results. Still, as there are no additional costs to this oeetf efficiency improve-
ment, the method is of interest.

However, inverter losses must be discussed. Efficiencyougment of a PMSM
implies a higher stator current magnitude and thereforeases the inverter losses.
As the switching frequency is fixed, in this case one $kblz sampling frequency
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Figure 5.1: Ohmic and iron losses as function of direct arig, of a PMSM at
2000 rpm and rated torque.

and a4 kHz switching frequency, a simple loss model of the invemery be given
as Pross.mo = k1|t| + k2|22, The coefficientss; andk, are determined from the
parameters of the inverter IGBTs. Whitg is negligible and a similar term already
included withPpy,,, s, k1 stems from the constant voltage drop of these IGBTS, as-
suming a constant.5 V drop, it isk; = 3. Then the additional losses from the
nonzeroi,y are6 W in no-load full speed, antl.5 W in full load full speed opera-
tion. Even though the loss improvement is extremely smallife chosen machine,
the additional inverter losses are even smaller. For snaalep servo drives these
losses are not relevant and can be neglected [Abr00]. Involidge applications,
however, these losses should be considered and it was shatweducing switch-
ing frequency is advantageous.

5.1.3 Optimization of the dynamic response

Apart from efficiency, dynamics are an important featureesf/s drives. A high
torque bandwidth can be advantageous, for example for casapien of mechani-
cal vibrations, or for special applications. In low spediks ts never a problem, but
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in high speed, where the induced voltage is close to the maxrivoltage, torque
dynamics are considerably slowed down. In the model equatio

d

qu—tisq = —Risq + usg — np¥pyuwn — Latsanpwi, (5.5)

the termn, U py,wy, dominates in high speed. If it comes close to the maximum
value for the control input.,,, the quadrature currerig, can only be increased
slowly. The deadbeat controllers proposed in the previdwapter are fast con-
trollers, but as they are SISO controllers they cannot byplais physical limit.
Also controllers operating purely on the MTPA trajectorg generally slower in
transient operation.

To help out, the direct currenit; can be exploited as a degree of freedom to
improve dynamics if the setpoint is close to maximum voltadée disturbance
voltage isn,wy (Vpar + Laisq), @and in high speed, it can be reduced by impos-
ing field-weakening,; < 0. The gap between disturbance voltage and maximum
voltage increases, therefoﬁp’sq increases and the torque dynamics are improved.
Thus, by exploiting cross coupling in high speed operataptimal adjustion of
isq Can improve dynamics. A minimum-time control algorithm éa®n calculus
of variations was proposed in [CKS95, CS98], this controllgioecesi,; = 0 In
steady state but an appropriatge # 0 during torque transients.

5.1.4 Problem statement: Receding horizon formulation

The stated goals for the optimal controller are formulated eeceding-horizon op-
timization problem, which is solved at every sampling st&pth goals are obtained
by field-weakening, therefore, qualitatively, both goals be obtained.

To obtain the optimization benefits, a torque controlleui§isient. Although ef-
forts were done to design predictive controllers withoudsoaded structure [BBPZ09],
this is not necessary. The degree of freedgps fully available at the torque con-
trol level. Furthermore, the torque controller formulatienables some key simpli-
fications to formulate a linear-quadratic optimizationkgemn.

Linearization of the machine model

As linear-quadratic optimization problems with linear straints are simpler to
solve in real-time, the machine model is linearized. Assugnthat the rotor speed
does not change too much over the optimization horizpn

d

%wM(t) ~0 = wpy(t)=-const. Vte[0,T], (5.6)
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the PMSM model and the voltage equations become linear. 3fia@ption is jus-
tified if the current control loop is faster than the speedichoop. The electrical
subsystem of the machine, consisting of the quadrature @eck durrents,, and

isq, IS given as

d
Ldaisd = —Risd + nprLqiSq + Usd, (57)
d. . .
Lq&lsq = _stq - nprLdlsd - npr\IJP]W + Usq, (58)
™ = §np‘I’PMisq- (5.9)

The nomenclature and parameters are found in appendix Bid.ntted that the
reluctance torquel® = %np(Ld — L,)isqisq IS Neglected, as this term is very small
compared to the electromagnetic torque in surface-molt&8Ms or in machines
with small saliency. Furthermore, it would render the madahlinear, requiring
either nonlinear optimization methods [DS04] or more egiemn linearization by
defining the nonlinear terms as external disturbances [BBFRZKRP11].

Cost functional and tuning

The formulation of a suitable cost functional is a key pomipredictive control,

as it is the only tuning possibility of the control scheme. tBgbals, the control
error for good dynamical performance and the machine Idesdxetter efficiency,

are included in the cost functional. By choosing the cost tional and weights

well, it is possible to find a good trade-off between both gahiring transients, and
eventually to fulfill both goals in steady-state. The cosiclional for the predictive
torque controller is

J = / (PCtTl (t) + wLPLoss(t)) dt + TPLOSS(T)7 (510)

which trades off the squared control error from the condtangue reference;,,
PCtrl(t) = (TM(t) — T&){ (511)

with the machine losse, s (t) defined above. The last term.his the end-weight

of the control error, it enforces a better convergence inesoperation points. It is
weighted with the horizofl” such that it has a similar weight as the control error
term in the integral; assuming the control error decredsmsever, the end-weight
term is of course much smaller. In appendix F.1 an analyssgtesfdy-state accu-
racy is shown, while efficiency optimization is guarantesedegligible steady-state
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offset appears on the torque. More important, however,haer during transient
operation.

There are two tuning parameters, the weightand the prediction (and control)
horizonT'. The weightw;, trades off losses and torque tracking, it wasis@i, the
value was determined heuristically. The optimization hamiis set tol’ = 2 ms
such that the cost functiondlincludes the complete torque setpoint change if speed
is not too high. It is important that the optimization horizigs high enough, other-
wise the open-loop and closed-loop trajectories differ tuedbehavior is strongly
suboptimal. This is illustrated in Fig. 5.2. The optimizegea-loop trajectory
differs from the closed-loop trajectory, latter one restlbm regeneration at every
sampling step. If the horizon is too small, due to the endyhisdf the control error,
a significant difference appears. Then, the closed-logedi@ies simply don’t fit
the cost functional anymore and are suboptimal. For a hotgher than required
for the setpoint change, the difference between open- awkdtioop trajectories
becomes smaller, and the closed-loop trajectories carnsberesl optimal regarding
the open-loop cost functiondl.

TM| ™
T =y |
— t=0
*~—— tsz
T ' T ' >~ t:2TS
t:3T\
| | | t; | | | t;

Figure 5.2: Exemplary torque setpoint change to descrilem-opnd closed-loop
trajectories in model predictive control. Left: small hmom, right: high horizon.
Circles: reinitialization points of each trajectory plamgiiteration.

System constraints

The most important nonlinearities of a PMSM, in view of cohtare the voltage

and current limitations. The current constraints prevestioeating of the machine
and protect the inverter, and the voltage is limited by th&imam output voltage

of the voltage source inverter. The voltage constraintd liotor speed as well as
current dynamics in high-speed operation. Both constrairgdinearized, in order
to be computationally efficiently treated.
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The current range for the direct currep is limited toi™" < i,; < 0. Only
negative values of,,; are desirable, as they improve power efficiency and redwce th
induced voltage by weakening the flux magnitude in the sf@®éM*05,BBPZ08].
The lowest value™" is the optimum value at rated speead;’;(l%oss = 0) and is
given as

lsgg = _LZ + R (512)

which is independent of the quadature curréptif the reluctance torque (the
saliency in the torque equation [MKMO04]) is neglected. Th&ue is doubled to en-
able further field-weakening to improve dynamics in highexpd~or the quadrature
currenti,,, the largest possible range of values should be availaliie. r@sulting
linear constraints in trapezoid form are shown in Fig. Sh@ytalmost completely
fill the current region of interest. A linearization in thexronously rotating frame
is thus acceptable, and is also used in other MPC implenmensgBBPZ09].

The approximation of the voltage constraints is a bit mofecdit. The g-axis
should not be restricted, as the induced voltage is alignatdand is the largest
value that will appear. A steady-state analysis of the systquations (5.7), (5.8)
shows that a rectangular voltage area results

-man max ,;max max ;max
Rigy™ — np Ly g™ < usq < nypLawif ™ ig,™, (5.13)
—Rig™ + np Lawyr ity — npyUpywif™ < usg < Rig™ + npWppywi™.
(5.14)

This rectangle (dark gray on Fig. 5.3) is expanded such kieaotiter circle of the
voltage limitation is hit (light gray on Fig. 5.3). During dgmical transients, the
voltage vector points to one of the outer corners, subsedlyueniching the outer
limiting circle. Therefore, a linear approximation of thatage limits as a rectangle
in field-oriented frame by the presented method, as shownigan3=3, does not
limit the steady-state operational range and only martyiredfects dynamics. A
less restrictive method is presented in [RMM10], where a tuaing constraint
in form of a hexagon in stator frame is proposed. While suchealiization is
possible with the underlying predictive control algorithtime method in thed ¢)-
frame is chosen for simplicity and to prevent possible qurripples.
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Figure 5.3: Affine approximation of the current and voltagastraints. Circle:
feasible set of current and voltage vectors, gray: feasbteafter linearization of
the constraints.

5.2 Linear model predictive control

5.2.1 Predictive control, MPC, and flathess

The term 'predictive control’ denotes a large class of aalldrs rather than a spe-
cific algorithm, with the sole common characteristic thatrénis a prediction in
some sense. Especially in electrical drives, a vast vagkepredictive controllers
exist. These include direct torque control (DTC), predetiorque control (PTC),
generalized predictive control (GPC), deadbeat contral,;aany more, overviews
are found in [LKKS10, CKK 08]. The algorithms can be divided by a continuous
or discrete control set, their ability to handle constrgiand more.

Even though some authors call their works model predicirgrol because they
include model-based predictions in some sense, the ternelnpoedictive control
(MPC) is a well-defined controller design in the control iere [ML99, Leell].
MPC is therefore a specialized variant of predictive cdntind only a handful of
recent works study MPC for electrical drives [LKO5, BBPZ09, BRKL, RMM10,
LKKS10]. The reason is that MPC comes with a high computaticarden and
is hard to implement due to the high sampling rates, furtioeemnterest has been
low as it was long unclear what the advantages of such a desigd be. So far, the
discovered advantages are the possibility of cascadesfreed control [BBPZ09]
and the simplified inclusion of sensor filters [LKKS10].

In [FMOOa] three salient features that characterize MPQugly amongst the
many optimal or predictive control methods are proposed:

e The systenbehavior is predicted by a modahd the prediction is explicitly
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included in the control.

e The problem includegsput and output constraintehich are treatedh the
controller design.

e A feedback mechanisdeals with perturbations and uncertainties.

The categorization makes sense and is both precise andethsithough it is not
accurate, for instance, generalized predictive contrét@is also seen as MPC
even though it is unconstrained.

The definition in [ML99] is more technical. Accordingly, Bar model predictive
control is a control method which is based on formulating solding repeatedly
ateverysampling step an open-loop optimization problem. It inelidonstraints
by defining inequality constraints in the optimization desh, differing it from
optimum LQ state controller design.

With the definition of [FMOOa], however, the optimizatioroptem may be seen
as one mean amongst many alternatives to generate tragsdbgrpredictions that
also account for the constraints, the optimizer as suchtisheocore of MPC. The
generalized definition and the mathematical framework iK(Ba] leaves more
freedom and extends flatness-based control, which, in #Esiclal sense, means
trajectory generation and trajectory tracking [Lév09]¢clsuhat continuous-time
flathess-based methods can be applied for MPC. Several catigmatly efficient
continuous-time trajectory generation methods exist [\@8M/L02, GF06], incor-
porating prediction, optimality, constraints and setpaimanges in some way, but
not necessarily quadratic programming (QP) and the relaigil computational
burden.

Full-fledged MPC design based on flatness therefore comdiats extended tra-
jectory generation stage that includes prediction baseth@model (not just set-
point interpolation) and the explicit respect of constraimot just saturation), com-
bined with a robust tracking controller.

5.2.2 Online optimization: A real-time problem

The major obstacle in implementing predictive control sohe is the limited com-
putational power, inherited by the high sampling rates. mbst widespread schemes
trade computational feasibility against compromises @ytoblem formulation, for
instance, generalized predictive control (GPC) has a higHiption horizon but is
unconstrained [LKKS10], whereas predictive torque cdnird C) is constrained
but so far only reache steps of prediction [CKK08]. To obtain the advantages
claimed by the classical MPC formulation on constrainedtimariable systems,
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both, inclusion of constraints and a high prediction hamizme required. In this
application, these two requirements also make physicaeseas discussed in the
previous section. The problem formulation shall not be $ifineg, but the solution
of it.

Using the continuous control set in the field-oriented frathe analytical prob-
lem description enables the use of efficient optimizatigoathms to maximize the
obtained information for a given computational power. Thére solution of the
linearly constrained linear-quadratic problem, typical MPC, requires quadratic
programming (QP) algorithms, which are, however, compurtatly too expensive
for drive systems.

In the efforts performed to apply MPC to mechatronical systethe many ex-
tensions and advances of optimizers (warm start, etc.) reeanbined and it was
shown that QP can be improved to operate at sampling ratesanp Hz [WB10].
This also means that even though all available means weleimngnted on the best
computers, the sampling rates for electrical drives arebsight for QP.

A recent development is the use of explicit MPC, where an @ffBolution is
computed and stored as look-up table in the real-time chetrffBBPZ09]. The
scheme reachésprediction steps with constraints. However, the desigulgesct
to some issues. The complexity of the controller increagpsreentially with the
number of constraints and state variables, so that the gmofidrmulation must be
kept compact. A high complexity increases the size of thk-igontable and leads to
real-time problems. Furthermore, from a practical perspeche explicit solution
does not allow fine tuning of weights and model parametersig@wommissioning,
the lengthy offline precalculations must be repeated, a mhiapitation to explicit
MPC [Leell].

Development of fast online MPC algorithms and their appitcato new systems,
including mechatronic and power electronic systems, has loeclared as major
research objective of the decade for MPC [Leell].

Recently, an online algorithm based on a fast-gradient ndetRGM) was pro-
posed for reference tracking control of a grid-connecte@riter [RMM10]. The
optimizer is of a different class than QP. In [RMM10], opewyosoftware tests
show that the runtime of the controller is acceptable, andikitions indicate su-
perior performance compared to explicit MPC. An advantagentihe optimiza-
tion is the possibility to manipulate or adapt parametefscivresults in simplified
commissioning. Another advantage are time-varying camgs, which are better
adopted to the physical voltage limitation.

Some other QP-like algorithms that are specifically desigioe MPC applica-
tions are in research. The main assumption therein is teagdhution of the actual
optimization problem is not much different from that of theyious sampling step,
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and only few additional iterations are required at each saggtep. This makes
sense for the typical MPC tracking formulation [ML99], bot electrical drives, it
turns out the physically motivated optimization problenuicochange drastically at
a reference step, so that a warm-start technique only hagmadmprovement.
Before discussing in detail the real-time feasible optimdaalgorithm, the run-
time of available optimizers is discussed. This is necgssadetermine the high-
est possible amount of optimization parameters. The fasf@snizer with con-
straints is still the good old and widely known linear pragraing (LP) method.
Table 5.1 shows some worst-case computational results ofsitRplex method
from [PTVF92]) as a function of the number of free parame{@BU: 1.4 GHz
Pentium M in an industrial PC104+ computer). More paramdéad to a higher
number of iterations which are also more complex; the woase number of iter-
ations is the number of parameters plus the number of comistii®ie69]. As in
the underlying application, the constraints are decoygiedever, this worst-case
is not to be expected. The maximum runtime is given by the §agpate minus
latency of input/output, therefore &kHz sampling rate, it must be less than about
110 us. Thus, at best,2 parameters can be optimized if an LP method is used.

Table 5.1: Runtime of a linear program for some worst-casblpnas on a .4 GHz
CPU

Parameters Constraints| Iterations| Runtime [us]
20 44 67 769
12 28 34 165
8 20 10 35

As comparison, the results of a quadratic programming sa@lkeshown in table
5.2. The QP algorithm is from the open-source mathematicarly 'GSL GNU
Scientific Library’, version 1.15, released in spring 20The results with6 pa-
rameters compare to those 1of parameters in the LP, it is a similar optimization
problem and in QP the variables can be positive and negathiée in the LP these
are limited to positive values [Pie69]. Clearly, the runtiméoo high for real-time
application, the LP solver shows to be ab2uito 30 times faster than the QP solver.

By solving the computational problem without compromising MPC formula-
tion, meaning with both a high horizon and constraints, tleeitsof this controller
can be studied. The main contribution of the chapter is anket-optimal trajectory
generator, which, embedded in the framework of [FM0Oa]d$et® a full-fledged
MPC. This leads to the first MPC with online optimization expentally applied
to a drive system.
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Table 5.2: Runtime of a quadratic program oh4GHz CPU
Parameters Constraints| Iterations| Runtime [us]
6 28 19 3621
4 20 10 1151

5.2.3 A simple and efficient LQ optimization algorithm

Atrajectory generation algorithm related to flatness-tasethods [GFO06] is devel-
oped. It can optimize a quadratical cost function like (»MM@h linear constraints
like in Fig. 5.3. As major differences to standard algoritht is applying a con-
tinuous parameterization instead discretization, andctimaputationally efficient
linear programming solver is used instead of quadratic @mging or iterative
gradient search. Even though LP is used, it is still quaci@ttimization; the un-
constrained solution to the quadratic cost is calculated, fihen, constraints are
included using the LP solver.

As a first simplification the trajectories for the current defined as degree
power series with undetermined coefficieats,

. = ke " tk
isat) = D 0ar s Gsgl) = Y g 7, tE€0.T]. (5.15)
k=0 k=0

This definition reduces the dimensionality of the generatagctories rather than
their length and is referred to as Ritz parameterizationg®ie It is an alterna-
tive parameterization to the typical Euler discretizatiéihile some applications
use more sophisticated basis functions, for instance higiteer polynomials (La-
guerre and Legendre polynomials), because of higher naalatiability. The sim-

ple choice of power series is adequate for this applicatidioreover, in [BS97]

it was shown that only the polynomial degree but not the typpotynomials is

important for convergence.

The first coefficientsyy, anda,, are the initial conditions, and the remainifig
coefficients are determined by optimization. A high praditthorizon is obtained
for a relatively small number of parameters. Due to the aeycomputational
limitations,

n=3 (5.16)

is chosen as polynomial degree. Fig. 5.4 illustrates thepctational advantage,
with 3 parameters atkHz sampling rate, using a discrete description, the ptiedic
horizon is0.375 ms, but with a degre8 polynomial, a well-conditioned setpoint
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change can basically be described over the desired pradiodirizon o2 ms. More
complex trajectories may not be expected for the underlgppication.

1.25
1,

= 0.75p

>
@
~

~ 0.57

0.25¢

O i i i i i i i i i i i i
0O 025 05 075 1 125 15 175 2
time [ms]

Figure 5.4: A trajectory described I3yfree parameters. Discrete-time horizon is
0.375 ms, continuous polynomial-based trajectory is well-ctinded at the desired
horizon length2 ms.

As second simplification, the voltages 4,(¢) are substituded in the optimization
problem. The model equations (5.7) and (5.8) are equalitgtraints in the opti-
mization problem, they describe the relationship betwhemutputs and the inputs,
and in the case of a flat system, these equality constraintisecaubstituted directly
without solving a differential equation [SRA04]. By algelwaiy differentiating
the currents (5.15), the expression for the current devesis

st Zkadk Tk s dtlsq Zk&qk Tk . (517)

Substituting the algebraic expressions:of, and d%is,dq in the model equations
(5.7) and (5.8), the expressions for the voltage

d
Usd = Risd + Ldais

. d. .
Usqg = Rigg + Lq&[zsq + npwnr Latsqg + npwnr ¥ par, (5.19)

d — nprqu'Sq, (518)

are used directly to replace these two variables in the caingt by functions of the
undetermined coefficienis. This way the voltages do not need to be represented
by additional parameters, and equality constraints argladan the optimization.
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The cost functional/ is then a quadratic function of the unknown parameters
« and of the parameters which were assumed constant, naneefgdtor param-
eters, the measured currents, the spegdand the torque refereneg,. Defining
the vector of undetermined coefficients@s= (a1, a2, aas, g1, g, gz) it is
rewritten as

J=a"Qoa+ q"a+ q. (5.20)

Because of the parameterization with a polynomial basisyedty must be dis-
cussed [GF06], in (5.10) the weight matrix wa$*? whereas now it is extended to
Q < R%<5, The proof that convexity is maintained with this transfation is given
in appendix F.2 for the unconstrained case. As only linezgurality constraints are
regarded, which always form a convex set, the result is afd in the constrained
case. To illustrate the further developmentss represented graphically in Fig. 5.5
(left).

A2 Y6 Ay

T Q2-0r5 Qo-0r
*
// 70
(PZ \ /Jﬁl B
~—-.
\

-] -0

Figure 5.5: Transformation and linearization of the optation problem. Lines
are equimagnitude contours of the cost function. Left: inagproblem, middle:
transformed least-distance problem, right: transfornretilimearized problem.

The inequality constraints are also parameterized withpthlgnomial. Exact
parameterization requires linear matrix inequality (LMigthods, which are, how-
ever, computationally too demanding for this applicatibiecessary and sufficient
conditions for such univariate polynomials over an intenvac [0, 7] exist, but
require numerically intensive algorithms to establishresponding linear matrix
inequalities [HLO3]. A computationally more efficient wag/to sample the trajec-
tories fore, 4,(t) andu, 4,(t) at an interval% as shown in Fig. 5.6. A degree
polynomial is simply constrained dtpoints to be negative. In appendix F.3 it is
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proven that if an additional interla is added, the transformation guarantees main-
tenance of the original constraints. For instance, a camsti(¢) < [ vVt € [0, 7]
is parameterized as the four inequality constraints

i(0) < 1, (5.21)
i (kz) —Ni(0) < I, k=1.3, (5.22)

n
whereA = 0.064 is the respective interlay constant for= 3 (as calculated in the
appendix F.3). While the transformed constraints are safftcmeaning guaranteed
to be maintained, they are not necessary, therefore a bie&toctive. The restric-
tion of 6.4% of the initial distance to the constraint is acceptable, é&x@v, also as it
shrinks ag converges to its boundarty The first constraint on the initial condition
does not need to be included, and the remaisingnditions are affine functions of
a, but not oft, such that they can directly be included in linear-quadrapitimiza-
tion in the parameter space

0.2
-A P(0)

.<

Polnomial P(t)

0 0.4 0.6 12 16 2
time t [ms]

Figure 5.6: A degree polynomial trajectory (black) constrainedrat- 1 points to
be nonpositive (orange arrows) can not exceed the uppedbaiunA - P(0) (red
line) (Proof: appendix F.3). Here,= 3, P(0) = —1 andA = 0.064.

As J is convex, the unconstrained optimu) is found algebraically by solving
first-order necessary conditions,

* 1 —
oy = _§Q q. (5.23)
Then, by an affine coordinate transformation to a new coefftorector

B=Aa—- o), (5.24)
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the problem can be reformulated as least-distance problema quadratical cost
describing the distance to the unconstrained optimum. He&ad transformation
includes both a coordinate rotation as well as scaling, aufiouind with

ATA = Q, (5.25)

which can be solved with the Cholesky decompositibh = Cholesky@Q”). As
result, the cost functional looks much simpler and redua@ssum of squares

J=p"8, (5.26)

and can be represented as in Fig. 5.5 (middle). This consttdeast-distance
problem is already simpler to solve than the original problén the next step, the
least-distance problem is linearized around the uncanstlaptimum, see Fig. 5.5
(right). The squares in the cost function are replaced bglatsvalues

J=0"8=2 i~} 8= (5.27)

In the LP standard form, furthermore, only positive pararseare possible, there-
fore the variables are replaced By= 3, — 5, With 3,,,, 3;,, > 0. If 3; is positive,

Bip > 0 andg;, = 0, and vice versa [Pie69]. The absolute value can then be re-
placed byi5;| = 5, + Bin. Equivalence is guaranteed by minimizing the (positive)
sum, such that at least one variable of each @ajy; 3;,) will be zero [Pie69]. The
linearization of the cost function inherits a large diffece (and error) in the value
of J [RROO], but the values of the coefficientsare not affected that much: the
least-distance problem is not so different in the lineanfas it would have been
in the quadratical form. Furthermore, a difference onlyespp if a constraint is
active, the unconstrained optimum is the same. It can be rshioat the resulting
cost inherited by the linearization is

J = Jo+2n- Jo (5.28)

in the worst case, wherg, is the unconstrained cost, adg the extra cost when
considering constraints. The suboptimality is therefarertnled.

The linear constraints oxx are as well transformed to the new variabhiwvith
(5.24). Therefore, after all the transformations, the fEobis available in standard
form for linear programming, say a linear cost with lineagquality constraints in
the parameter spa¢@,, 3,,), and a simplex solver [PTVF92] can be run. The op-
timal solution3*, the output of the LP, has to be retransformed to find the aptim
in the original coordinates

a=a)+AF (5.29)
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The optimal resulix is used in (5.15) and the motor model to obtain the optimal
trajectories for the currents and voltages.

To conclude, the algorithm consists of a continuous paranzetion using a de-
gree3 power series with undetermined coefficieatsThe problem is transformed
to a constrained least-distance problem using the Choleségrdposition and the
unconstrained optimum. Then, the quadratic cost is appratad by a linear cost
to apply linear programming (LP). The constraints becomigauiate polynomi-
als because of the transformation, they were sampled anitteewas parametric
inequalities.

5.2.4 Implementation and control structure

Software implementation aspects

All computations of the previous section are done using aprder algebra tool
(Maplesoft's®® Maple™). From the initial optimization problem and the transfor-
mation, the matrices (initialization of floating-point ays) for the LP solver are
generated using the C code generation toolbox. The realdoftware thus consists
of array assignments, which is automatically generatee tothitialize one matrix
and two vectors of floating-point variables, a simplex LPveplfrom [PTVF92],
and some post-processing again from algebraic math. Assfigranent is based
on symbolic calculations, the motor parameters can be @thogline. However,
the majority of parameters is defined as constant, the cemgén then optimize
code size as well as runtime of the initialization stage. ilp@ementation flow is
sketched in Fig. 5.7.

Alternatives to this procedure were evaluated. The dirsetaf a quadratic pro-
gram (QP) is too slow, as shown in table 5.2, witharameters28 constraints and
19 iterations it requires621 us. The proposed method is therefore considerably
faster than QP. If the problem is first transformed to leastiadce, the number of
iterations and the runtime reduce by abd0ftc. It should be remarked that due to
the more specific cost function and the polynomial paraneetion, the resulting
optimization problem is more complex than the regular MPQbjem with Euler
parameterization, which is a major reason why the good gmesults from QP
found in the literature cannot be obtained here.

Online calculation of the trajectory generation algoritimstead of computer al-
gebra generated code was also analyzed. The online caldulsdtrix inversion
with 6 parameters takes3 s and the Cholesky decompositidf ps. Addition-
ally, this requires the use of a scientific mathematics hord he runtime of the
initialization stage is thereby expanded from abbyis for the proposed computer
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Figure 5.7: Implementation of the proposed trajectory gatinen resp. MPC algo-
rithm. The tasks in the left column are done once, those imrtigelle column are
done for every new drive system, and those in the right colanencarried out in
real-time at each sampling step.

algebra method to more thafnus.

The choice to use a computer algebra tool and automatic cexkeration turns
out as the easiest way to implement and as well as the congnaly most ef-
ficient way. The automatically generated code is copy-aastqul to the real-time
software, only a small LP solver like [PTVF92] has to be add&de chosen LP
implementation, however, seems to be a somewhat slow ingpitation, runtime
improvements are possible.

Predictive control structure

The control structure is shown in Fig. 5.8. A cascaded cbostracture is chosen
as speed is assumed constant for trajectory generationheAméchanical plant
is generally only roughly known, this overlying speed colir is advantageous.
An optimizing model-based controller is used for the eleatrsubsystem of the
motor as the parameters are known, but for the mechanidagpegrrobust feedback
controller can be chosen.

The trajectory generation algorithm is embedded in the éwark proposed in
[FMOOa] to realize continuous-time flatness-based MPC. Asiileed in section
2.5, the current measurements are delay-compensated [BKYThen they are
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used as initial conditions, along with the updated speed@fiedence, to generate a
new trajectory at every sampling step. The optimal contrplit trajectoryu 4,(¢)
is discretized andk 4,[%] is modulated at the next interrupt.

Additionally, for steady-state accuracy, a disturbancgeober is necessary, for
instance to compensate modeling errors of the parametdrdiaimonic effects.
Even though the induced voltage is modeled, variation$ #j, caused by either
heating or identification errors cause an offset of the curig. The design is
identical as in the previous chapter [KY01]. Furthermoofustness to parametric
uncertainties can be improved in exactly the same way asopeapin the previous
chapter, i.e. by replacing, 4,[k — 1] by a weighted sum of measurements and
reference trajectories.

wir | speed| ™[ trajectory |Us.dq(t)] ;: Us g [K] :
— ccE)ntrol —| generation discret. T —| PMSM

T dq|K|k-1] | disturb.|

Wy de|ay [ estim. !

comp. ] f '

’Ls’dq[l{i'l] E

-— | —-

rotor coordinates' stator coordinates

Figure 5.8: Control structure of the predictive torque colter cascaded by PI
speed control.

5.3 Results

The proposed control scheme was implemented in numermoalations and in ex-
periments on the test bench. The numerical simulations ghal insight in both
the trajectory generation algorithm and in the suboptityalf the method. The
experimental results demonstrate the performance of thense. The PMSM is de-
scribed in appendix B.1, tuning is as described in the dewedms of this chapter.
The sampling rate is reduced&d&Hz (compared td6 kHz in the previous chapter)
to have a longer sampling interval.
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Figure 5.9: Simulation results: Open- and closed-loopett@ries, with uncon-
strained optimization (top), quadratic programming (QRidte) and linear pro-
gramming (LP, bottom), and different polynomial degrees= 5 on the left resp.
n = 3 on the right side). Orange: reference, Black/gray: CurrerdaciBkircles:
re-initialization points. Operation poiaty; = 0 rpm, 8 kHz sampling rate. Con-
straints:7y, < 11 Nm, |u, 4, < 330 V.
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5.3.1 Simulation results

Fig. 5.9 shows simulations to demonstrate the behavior efptilynomial-based
parameterization, especially regarding the influence ®idlv polynomial degree,
the linearization and the difference between open- ancedidsop trajectories. A
torque reference step is representedat= 0. The black line is the first trajectory,
the circles are the reinitialization points and the ligHtees are the recalculated
trajectories at the respective later instants.

Subfigures (a) and (b) show the step response with deadivatiéage con-
straints. (a) is a degree = 5 polynomial, and (b) is a degree = 3 polynomial
like in the implementation. In (a) the response is very fast slower than deadbeat
as a tradeoff of control error and the losses are includedamptanning. In (b) the
response is considerably slowed down because of the loveeggven though there
iS no constraint.

Subfigures (c) and (d) are the response with QP. The respsstaner as volt-
age limitations are respected. Furthermore, oscillatewasmaller in the predicted
open-loop trajectories. Again, (d) is slower than (c) beeaof the low-order poly-
nomials.

Subfigures (e) and (f) are the response with the simplifinatia the LP, which is
also implemented in the experiments. Interestingly, tiekertually no difference
in the closed-loop response compared to the QP results.eTivier considerable
difference in the predicted open-loop trajectories, haveespecially at the end
of the prediction horizon. The linearization results in ata@@ suboptimality on
the parameters. This parameter variationa = o' — a***°P! influences the
polynomial by an additional errak P(¢), as

Pror(t) = P = (Z a;’ptti> —~ (Z Aa#’), Yt e [0,7]. (5.30)
port(t) AP(1)
In the polynomial, this suboptimality only has a small infige at the beginning of

the trajectory as the parameteks,; in the errorA P(t) are multiplied by, at the
end, however, this influence can become very large.

To conclude, the results in Fig. 5.9 indicate that the infb@eof the polynomial
order3 is quite considerable, but it was shown that the computatiogstrictions
prevent higher orders. Furthermore, it was shown that tHeeince of the cost
function linearization is quite small.
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Figure 5.10: Experimental results on timing of the preg&tontroller.

5.3.2 Experimental results

From the timing sequences in Fig. 5.10, interesting insigiat the computational
demands of the algorithm is gained. The figures are geneiratbeé same way as
already for Fig. 2.1. The first part of the controller signabttom signal, blue) in
(a) shows the calculation time for the simplex tableauafi#ation, it takes about
10us. Included in these calculations, which is automaticaijerated code result-
ing from symbolical calculations, is a calculation of theanstrained optimum and
the linearization of the problem. The second and biggesgb#ne controller signal
is the runtime of the linear program (LP solver from [PTVFER2t the beginning
of (a), where voltage and current are both zero, it is onlyudboyus, but to calcu-
late the voltage step @000 rpm shown in (b), more iterations are involved as many
constraints are active, and the computation time risesiostt0.s. The total time
of the interrupt handling, latency, the simplex initialiba, the LP solver and the
post-processing sum up to almdsbus in the worst case, therefore up&@% of
the available time is used.

Experimental results of the proposed scheme are shown in5Fld. Subfigure
(a) shows the response to two subsequent speed referepsetbie load drive is
deactivated. The cascaded Pl speed controller is verytfesspeed reference step
results in a voltage peak, and the torque is increased yapidie direct current
isq depends on the speed and thereby reduces iron losses whicbresiderable at
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Figure 5.11: Experimental results: (a): Response of speptiatier, (b)-(d): re-
sponse of torque controller.

high speeds. A2000 rpm, losses are decreased by atibats, and the efficiency

is improved by aboud.25% , as already indicated in Fig. 5.1. Even though these
improvements are small, modeling the losses is mandatatgsmn a convex cost
function, both currents; andi,, must be weighted. Better results are only obtained
on motors with higher inductances [CTNI5].
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The next three subfigures (b), (c) and (d) show fast torquesieats at zero,
medium and high speed, respectively. The PMSM is in torqugrocbmode while
the load drive keeps speed constarit, @000 or 2400 rpm, respectively. The current
components are well decoupled, a fast current change orutdragure axis does
not affect the direct axis in (b) and (c). Again, the currenttloe direct axis,, is
dependent on the speed. Furthermore, the torque change anthat the same time
smooth, the voltage becomes smoothly smaller for smalletraberrors — a nice
characteristic of quadratic cost functions with a high bomi, compared to linear
cost functions which result in deadbeat behavior.

On subfigures (b) and (c), the behavior with active voltagestaint is the same
as when using standard saturation or anti-windup strage@a subfigure (d), how-
ever, a different behavior is seen, the direct curignis reduced during the torque
transient to perform field-weakening. This implies thatdtetor induced voltage is
reduced on the quadrature axis, see eq. (5.8). Thereby phgeaeen induced and
maximum voltage increases, the derivative of the quachsaiurrentd%z‘sq is higher
and the torque-generation dynamics are increased, atshefdugher ohmic losses
on the direct axis. Without additional field-weakening, te&erence torque would
not be reached after the prediction horizorRohs, thereby the end-weight of the
control error inJ oversizes the loss term. Therefore, in this predictive rabrin-
plementation, field-weakening not only improves efficiermyt also improves dy-
namics by exploiting the cross coupling between the orthafjourrent components
to optimally bypass the voltage saturation [CKS95, CS98]. Siteation described
above is the one where the highest number of constraintdii®aand thus, also
where the suboptimality of the proposed trajectory germrahethod is the highest,
but still, behavior is very good.

It is also possible to operate the PMSM beyond rated speddsigiady field-
weakening to bypass the voltage saturation on the quadraitis, as shown in
[BBPZ08]. Some safety concerns have been mentioned, a PMShMtopmeunder
field-weakening beyond rated speed will generate a beyatadivoltage if the in-
verter fails, however, the safety buffer is sufficiently thign standard servo drives
to prevent destruction.

It should be highlighted that the current on the direct axjshas no reference,
its value is obtained from the optimization of the cost fumtal. Therefore, the
method works well and is numerically stable; the optimaledbllows inherently.
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5.4 Conclusions

Two questions are central to this chapter:

e Isit possible to implement linear model predictive con{MPC) with online
optimization, a promising advanced control algorithm?

e Does this controller give any merit that justifies the addiél design and
implementation effort?

A model predictive control scheme for torque control of a RW®&as intro-
duced. The core differences to existing MPC schemes arenfiveecsolver which
simplifies commissioning, the specific cost function foratidn that aims at opti-
mal efficiency and dynamics, and the high prediction horinenessary to claim
optimality. Based on suboptimal real-time optimizatiore tturrents and voltages
are computed according to a cost functional at every sagsliep. The scheme
is very close to the MPC formulation applied in process adnwnly two differ-
ences apply, the cost function is physically motivated ttawbadvantages, and a
continuous-parameterization-based optimization wadieghpThe prediction hori-
zon is2 ms at a sampling rate & kHz, and voltage and current constraints are
respected. Therefore it is very well possible to implemengtrange MPC with
constrained online-optimization even on fast-samplingteayis such as electrical
drives. According to the definition in [FM0Oa], the propossdheme is the first
realization of long-range online MPC for a drive, apart frora explicit solution.

The merits of the control scheme are seen in the experimeggalts. The ad-
vantages of the scheme are these of any predictive comfrodenely precise ac-
counting for timing of measurement and control, decoupliegpecting current and
voltage constraints safely and very fast control. More dadly, long-range con-
strained predictive MIMO control leads to improved accangof cross coupling,
fast and smooth dynamical behavior, improved power effayey field weaken-
ing, and improved dynamics close to voltage saturation kitiathal short-time
field-weakening.

As negative point, the high demands to computational powest ime named, and
the rather involved implementation.
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CHAPTER 6

Optimal control of induction machines using
nonlinear trajectory optimization

Induction machines are the most widely used type of AC drivékeir biggest
advantage is the low price and the possibility to apply the eemple V/f-control
scheme. These two characteristics made it the favorite dnithe industry, and it
is responsible for abow0% of the total electric power consumption in the industry.

However, the power efficiency of an induction machine is lothan that of a
permanent-magnet synchronous machine, especially imia# gower area below
20 kW. In operation below rated load, the efficiency is decreggven more. In
many applications, the drive operates on rated torque amiyg limited time, but
most of the time in partial load, such drives are running Wetweir rated efficiency.

To bypass this drawback, the power efficiency can be impravezhrtial load
by control means [KG83]. The established efficiency improgat methods are de-
signed for steady-state operation, meaning if the driv@é&ating in constant speed
and torque. This chapter introduces and discusses a polieemty improvement
method designed for dynamic operation, meaning torquaigats.

A scheme including behavior in dynamic operation is helpdubtain improve-
ments in servo applications, it will be shown in the expenitsdhat a steady-state
optimization scheme can lead to higher losses than a dritreout an additional
optimization scheme.
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6.1 Potential of optimal control

6.1.1 Preliminaries: Loss modeling in IMs

Again, according to [KG83], the machine losses are diviaéo uncontrollable and
controllable losses. The controllable losses, manipalbplthe controlled variables
voltage, flux and current, are then minimized by control radth The uncontrol-
lable losses are basically only accessible by the indugtiotor design, and not
further discussed.

The ohmic losses are the heating losses of the copper statdings

B it + i), 61

Ponm,s = 5

and the heating losses of the aluminium rotor bars of the'isjwage

3. .
POhm,R = §Rr(l72~d —+ Z3q>. (62)
The rotor current vecto, 4, is not represented as a state vector, but can be substi-
tuted by the expression (C.21) as function of stator curredtrator flux.
The iron losses basically consistotferms, the eddy current and hysteresis losses
in both the stator and rotor [LNO4]. They are given by

Pragys = gkjt“t”(ws)Q\Ifi, (6.3)
Pityos = SH"w0, 02, (6
Prady.n = gkgom(wgot‘”)?qf%, (6.5)
Pitys = SHT W0, (6.6)

However, knowing that the iron losses depend on the frequand that for a typi-

cal design the stator excitation frequency= pwy; + 1Ly, ;fqd is much larger than

the frequency of flux in the rotor, which is the slip frequen¢y”” = nL,, ;jjd, the
iron losses in the rotor can be neglected. The slip speecergly less than about
5% of the rated speed.

Furthermore, due to the unoptimized low-cost stator dediga eddy current
losses are much larger than the hysteresis losses oncedit&tier frequency is
higher than few Hertz. Hysteresis losses are still prebemtpwer than for instance
in PMSMs as the frequency is lower. The iron loss coefficiénisand k;,, are
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about the same order of magnitude in Sl units (although tlae klifferent units),
but the eddy currents rise quatratically with the frequelh{®2b]. Therefore, the
hysteresis losses in the statby;,; s, are also negligible.

Only the stator eddy current lossEs,4, s are of interest. As simplification, the
losses caused by the leakage inductances can be negle¥@b]land the stator
flux magnitude is approximated ds, = LL—M\IIM. Furthermore, the influence of
slip frequency is neglected for the loss model, and the flegdency is assumed as
npr The loss coefficient? is part of standard motor parameters and is modeled
as 'iron loss resistancey,,, thusk: = . This parameteR?,, can be identified
with sufficient accuracy by any upper class servo invertarthe 'T’ equivalent
circuit, the iron loss resistance is parallel to the mutaductancel,,, therefore
the voltage drop is abOngsLL 4, the losses dissipated in this resistance are

Pg, = 3u? 122 R:d which fully correlate with the stator current eddy lossedem
the named simplifications.
As in several existing works [LY92b, LN04, QDO08], the irors&es are described

by the simplified model

3 n2w? Ly, Vi
MR

To conclude, the model of the controllable losses appliedife control-based
loss minimization is

PIron -

(6.7)

PLoss - POhm,S + POhm Rt PIron

3 L2, L 3 L2
(R +R, L2) — 3R, LQ\Ide@Sﬁ <R +R, L?)

3 (R, L?

Inverter losses are not dlscussed as they only margindilyeimce the results
[Abr00, MYKT99]. Technically it is possible to include a ®snodel as well. As
the switching frequency is fixed, this is quite simple. Hoem\or small drives,
the converter losses are unimportant compared to the madee$ (in contrast to
medium-size drives), especially as IM optimization inteea reduced stator current
magnitude.

6.1.2 Efficiency optimization in steady-state

In steady-state, optimization of power efficiency is quitefde, especially in the
field-oriented frame. The basic principle is to optimize therents and flux mag-
nitude so that a minimum of losses is dissipated while st@intaining the desired
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torque at the given speed. In steady-state, the relatiprtiveen the outputs and
the current is

3 L, .
™ = 5” L—T‘I’mﬂsq» (6-9)
U,q = Lnisa, (6.10)

and it is seen that the flux magnitude, is actually a degree of freedom. The flux
magnitude¥,, can be decreased and the torque-generating cuisgiricreased
while the same torque,, is generated. This is illustrated in Fig. 6.1. On the
left side are the power losses as function of rotor flux magieit and at the right
the corresponding power efficiency calculation regardinly gontrollable losses,
each curve for a specific load torque. It is seen that no imgm@ant is possible at
rated torque and speed, as the rated flux valye= 0.9 Vs is about the optimal
value. However, for operation at half rated torque, alreadslight improvement
is possible by reducing the flux t6,, = 0.75 Vs. For even lower torque, further
reduction of the rotor flux is possible and leads to bettasltgsfor instance at0%

load torque, the efficiency can be controlled @y with an optimal flux compared
to about60% at rated flux.
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Figure 6.1: Controllable losses and efficiency of an indurctitachine in steady-
state as function of rotor flux at rated speed for differeratl® Left: Ohmic and
iron losses, Right: Power efficiency.

From the loss model (6.8), the optimal steady-state valubeoflux is found by
solving

8Ploss
aqud

=0, (6.11)



6.1. POTENTIAL OF OPTIMAL CONTROL 115

by substituting the currents with expressions (6.9) anti0)6 the optimal flux is a
function of torque, speed and the machine parameters,

refg& RSL% + RTL%n

v, = . 6.12
R T\ N2 7} i o
To account for saturation effects, the applied value of tineif limited to
Voan, i Wy < Yegop
\ijgt - \Ilrd,Opta if \Ijrd,Min < \Ijrd,Opt < \Ijrd,N ) (613)

\Ilrd,]\hna if \I]rd,Opt S \I[T’d,Min

where the limits are the rated vallg, y = 0.9 Vs and an arbitrarily chosen mini-
mum value¥, ; s, = 0.2 Vs. Imposing a minimum value is necessary to maintain
a certain flux level, otherwise the field-orientation migktdisarranged. Further-
more it prevents an excessive current demand in high torgps.sTo account for
voltage saturation in operation beyond rated speed, ted ratlueV,, v is further
adapted according to a flux-weakening curve.

The existing methods to implement such a flux-adaptationbeadivided into
three classes: model-based methods which directly appygaation such as (6.12)
[GLSW94, LN04], self-optimizing (physics-based) methodsak measure the in-
put power and minimize it by adapting the flux online [KNL8&hd so-called hy-
brid methods which combine both methods and try to bypassligevantages
of the respective methods. A complete coverage of existiegdy-state methods,
with experimental validation including converter losse$pund in [Abr00]. A ma-
jor disadvantage of model-based methods is that they doawouat for magnetic
saturation effects, an error on the mutual inductaingdnas a direct influence on the
calculated torque and flux. It is nevertheless possibleeatitl these parameters
online. Physics-based methods, on the other hand, do ydhelmuch on param-
eters, but may have poor performance and may require expetaindetermination
of tuning parameters.

The proposed method is a model-based method, thus alstieetsparametric
uncertainties. The results, however, will show that therearising from parameter
errors are acceptable, especially if a good rotor flux olesassapplied. Further-
more, the scheme could be extended with parameter adapitaéthods.

6.1.3 Efficiency optimization — transient operation

The previous discussion was on steady-state operatiomingeeonstant torque and
speed. According to (6.12), the optimal flux is directly psdponal to the square



116

CHAPTER 6. NONLINEAR OPTIMAL CONTROL FOR IMS

root of the torque. However, it is seen from the motor modat th

1 1 d
>3 — —\Ijr _‘IIT Y
fed = o Srd T

(6.14)
therefore the expression (6.10) is not valid for a time-wagyflux. To change the
flux fast, a strong field-generating current is required. A fast flux variation also
inherits a strong current.; in the rotor, what is seen in (C.21). In the steady-
state efficiency considerations, these two effects have igg®red. Therefore, if a
torque transient is controlled with a steady-state-oadiflux, a fast flux variation

is imposed, and high losses appear in both stator and rottveahaxis. Steady-
state optimization is therefore inefficient during torquansients.

Furthermore, the torque response is slowed down. The geredd the torque
is the product of flux and torque-generating current (6.9the flux is at a quite
low level, the torque, is limited if the current saturation an, is respected. Then,
the torque cannot increase faster than the flux. Howeves, dtaar that the flux
is always slower than the current, and therefore an effigiamproved induction
machine has a slower response than if it is operating at flabed

Combining efficiency optimization and fast flux control maked much sense
for efficiency. Quite some work exists for the purpose of mjed dynamics re-
spectively torque regarding the current and voltage litioites [BCN95]. Some pub-
lications claim simultaneous optimization of efficiencydatynamics, these works
implement the flux optimization (6.12) with somewhat moref@enant model-
based controllers [KHK92]. However, the term 'simultang@yptimization’ is not
correct as one has to decide for either efficiency or dynanfissfast flux control
generates losses any implementation cannot be more thatesff. Both goals are
in a physical contradiction.

The only combination of efficiency and dynamics that is seiseto switch be-
tween optimal efficiency and minimum time control [MYKT99,.03]. If a torque
transient is detected, efficiency optimization accordm(6t12) is deactivated, and
a minimum-time controller (similar to deadbeat controlactivated. This attenu-
ates the drawback of slow response to torque steps. Howtiaermrcy optimality
is never claimed for the transients.

So the state of the art is that efficiency optimization is \gelen at steady state,
especially if simultaneous parameter identification iSgrened [KHK92], but in
transient, these works only consider the time responseciéiifiy is disregarded
in transient operation. So, induction machines used inosdrives are not yet
efficiency optimized.
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6.1.4 Problem statement: Optimal torque control for transients

The problem addressed in this chapter is how optimal effagiesontrol can be

obtained during a torque transient. This problem is dissdigpiite rarely in the

literature, as in the typical optimization problem, theddarque and flux are sup-
posed to be constant. Furthermore, induction machineswo skeives are operated
with constant norm flux to bypass the current limitation peof

The first treatment of this problem in [LY92a, LY92b] assunfell knowledge
of the speed and torque trajectories of a periodic proceffin®optimization on
a PC is used to calculate a time-varying rotor flux that mimesithe losses (6.8)
regarding the full induction motor model . These optimizesjectories are then
uploaded to a real-time controller. Foremost the expertaiestudy shows that
this method, in the case of a time-varying torque referenb&ins considerable
loss improvements compared to constant norm flux operatowever, the offline
optimization limits applicability, as the optimal flux tegjtories are only valid for
one specific predefined load and speed curve.

An analytic study of the problem of optimal efficiency durimngnsient operation
is presented in [dWR99]. Conditions of optimality are caloethfor minimizing
the total energy losses while satisfying torque trackingst@ints. As the non-
linear optimization is too difficult to solve analyticallpnly analytic results for
the steady-state are given. The dynamic operation probdrare an optimal flux
trajectory is found for a given torque transient, requiresarical algorithms. To-
day, however, computational power has expanded such thahancal scheme can
be applied online. The works have been recasted in the dootdbatness-based
control [HRDO3], where the results are put into practice gsnajectory tracking
control.

These works are used as fundament for the underlying chdptemost, the
analytical results from [dWR99]. An asymptotic torque tramsiwith a desired dy-
namical behavior (i.e. a desired time constant) is presdriBased on the analytical
results on optimality conditions, a simple numerical aitpon is proposed to find a
good approximation of the optimal flux trajectory. The alguon is sufficiently fast
to recalculate the optimal trajectory at every sampling,séad trajectory tracking
control is applied to impose the optimal behavior to the nraeh

This problem is well-suited for flatness-based control. jélatory generation
and trajectory tracking are two key strengths of this cdntnethod, especially
for continuous-time nonlinear systems. Furthermore, rs¢y@ocedures were pro-
posed for computationally efficient trajectory generatiés the optimization has
to be repeated at every sampling step, computational busdgrite a problem. For
instance, the implementation of a full-fledged nonlineadeigredictive control
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(NMPC) scheme (a nonlinear counterpart to the scheme of thequs chapter) is
out of sight for the sampling rates.

6.2 Real-time trajectory generation

6.2.1 Formulation of a real-time optimization problem

The currents — regarded as internal states rather thanteutare replaced by the
differential parameterizations of the flat outputs toreeand rotor fluxw ..,

TM Lr 12
o = -, 6.15
" Ly 3 (6.15)
1 1 d
g = — Vg + ——V,4. 6.16
(2 I d+ Lo dt d ( )
Then the loss function (6.8) can be rewritten as
3 d d T2
PLoss - 5 (qujzd + kQ\Prd(d_t\I/Td) + k3(d_t\11rd)2 + k4qj—]\§;) ) (617)
where
R, nlwi L2
R
ky=2—>- 1
R, Ry
ks = 22 e (6.20)
4 (R,L?
= — | =< : 21

Itis further assumed that speed is constant, suchkthedn be treated as a constant.

This cost function is then a function of the outputsand¥,, and their derivatives.
The outputs of the system are the torque and the flux, for nanfri@e functions

v (t) andW,4(t). They have to be found such that the losses are minimized, the

minimum-energy problem is described by the cost function

T
J:/ Poss(t)dt, (6.22)
0

which is constrained with the tracking objectives, i.e. desired torque.
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This general problem has too many degrees of freedom. Totlvagiroblem
into a simpler optimization problem with boundary condito the desired torque
transient is described as

T]y[(t) =My + (m1 — mo)(l — €_>\t), (623)

wherem, is the initial (measured) torquen, = 7;, is the desired final value of
the torque and\ the eigenvalue of the transient, i.e. this parameter detimes
dynamics.

Defining\ is left up to the commissioning engineer. However, it is raohpletely
free but subject to some limitations. If it is set too low, theque response might
be too slow for a given application, as it is proportional he torque bandwidth.
On the other hand, if it is too high, the trajectory can pdgsilot be tracked if the
current limitation is reached. Experience shows that a gbadice is to orient with
the open-loop rotor eigenvalue by about~ 10..20 - n, i.e. to make the torque
transientl 0 to 20 times faster than the open-loop flux transient.

The simple definition (6.23) is especially well suited if tesulting controller is
embedded in a cascaded control structure. Itis clear theiieakening influences
the gain of the torque control loop and makes the torque cbltdop nonlinear,
cascading with a linear speed controller becomes more wlitfi¢tiowever, if the
torque response is asymptotic, the nonlinearity is comgtedsand the closed-loop
torque control system acts like a linear system. Anothemaathige is that, in the
case of constant referencg, the open- and closed-loop trajectories are the same.
This is very important to preserve the optimality from theogoop calculation in
the closed-loop behavior, as already discussed in sectios. 3

Now that the torque trajectory is defined, two things are kmo#the flux trajec-
tory W,4(t). First, obviously the initial conditio®,.;(0), which is the observed flux
magnitude. Second, as the torque transient was defined athssumption that
the system will go to steady-state, the final valuelpf(t — oo) can be defined
by the steady-state optimum,,o,:, as calculated in (6.13). Other initial condi-
tions, such as the initial curreny;, are not regarded, they would overconstrain the
problem. Actually, the induction machine is treated as fes by a current source
inverter [dWR99], the currents, 4, are the control inputs, they will be impressed
on a cascaded control structure if a voltage-source-ievetapplied.

With knowledge of the torque trajectory, (¢) and the initial and final value of the
rotor flux, the general problem is transformed and simplified an optimization
problem with one free functio®,,(¢) and two-point boundary condition,.,(0)
andV,.,(7).



120

CHAPTER 6. NONLINEAR OPTIMAL CONTROL FOR IMS

6.2.2 Calculus of variations

The fact that the cost function and the involved functiopgt) and V,.,(¢) are
continuous allow to use a famous result from calculus ofatamns [Pie69], the
Euler-Lagrange-equation. This equation gives the necgseadition on optimality

of the flux trajectory,4(¢) regarding the afore defined optimization problem. The
flux trajectory has to satisfy the condition

0 d 0
——Pross — — | — Pross | = 07 6.24

which, with the intermediate calculation steps

0 2 d 272

—— Proe = = | 2k, T ky—W, 5 — ky—M 6.25
8\11”1 Loss 3 ( 1 ¥rd + th rd 4 ‘llid> 3 ( )

o 2 d
P, 0ss — 5 k \I/r + 2k _‘Ijr s 6.26
o(aw,,) " 3 ( 25rd A g d) (6.26)

reads as
d2

B (1) — k(1) (@wt)) — k(). (6.27)

The condition is constrained to the torque trajectory(t) in (6.23) as well as to
the initial and final value of the flux trajectofy,.;(0) and¥,(7"). The 'horizon’T’
is assumed sulfficiently high to have quasi steady-state-df’. This is a two-point
boundary value problem (BVP).

In differentially flat systems, calculus of variations |lsad a directly usable con-
dition [SRAO04]. More general control systems may requireeramtvanced theoret-
ical results, such as Pontryagin’s maximum principle [B]e6ut flat systems are
simpler, as the differential equations can be substitugtiguthe parameterization
of the output, what has been done with (6.15) and (6.16).

The condition (6.27) is a necessary but not sufficient camditTo be sufficient,
the optimization problem must be convex, this is the casg{%—PLoss > 0,

as shown in [dWR99]. So, to find the unique and optimal solumﬂvlng (6.27)
regarding the constraints is sufficient.

The condition of optimality for the flux is a second-order losar time-varying
boundary value problem (BVP). Solving a BVP is different thaect optimization
of a cost function, for instance, as in the previous chajgiparameterization of
the trajectories and subsequentially solving the parameptimization problem.
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Especially for nonlinear continuous-time systems, the B¥R represent a helpful
simplification.

BVPs are typically solved numerically. A key technique is sheoting method.
The problem is transformed into an intitial value probleMK), so the initial condi-
tionsW,.4(0) andd%\llrd(o) are given. Then, the differential equation can be solved,
for instance by numerical integration. In a loop, the unknowalue fordﬂt\llrd(o)
is adapted iteratively until the final valul,,(7") corresponds to the desired final
value. This technique is, however, not suitable for thisliappon, foremost be-
cause of the high computational burden coming from suceessimerical integra-
tion. Instead, an approximate analytical solution is desalc

6.2.3 Approximate solution using prototype fitting

In a numerical study, whose results are displayed lateriing-2 resp. in appendix
F.4), it turns out that the numerical, accurate, solutioth® BVP has a strong
similarity to an exponential function. WW,,(¢) is an exponential function, then
the second derivativgé\lfm(t) is also exponential and the Euler-Lagrange equation
(6.27) could become satisfied. Therefore, the idea is clos#etine an analytic
prototype of the flux trajectory as

U,q(t) = fo+ (fi = fo) (1 —e ™), (6.28)

where the initial and final conditions are met by imposjfyjg= ¥, 4(0) and f; =
U,.q(T) = \Iffdpt, and the eigenvalueis a free parameter to be determined such that
the condition of optimality (6.27) is approximately satsfi

The Euler-Lagrange equation (6.24) should — for an optinnal-fl be satisfied at
every instant, however, as the prototype (6.28) is not p#yfsuited, there will be
remaining terms. The remainder of (6.27), defined by

d2

e(p,t) = kW, — kS‘I’id(@

W,q) — kyTip, (6.29)
is explicitly calculated in appendix F.4.

Determination of the optimal flux eigenvalueis done in a very simple way. A
time instantt, is determined at whicly is fixed such that the remainder of (6.27)
is zero at this time, thus(u, t;) = 0. So, first a suitable, is searched. Based on
the developments in appendix F.4, where is known that forrstemt torque the

optimal flux eigenvalue is in the arev(% < < 24 /ﬁ—;. This is far too rough as

final solution as the equation for a nonconstatis much different, however, it is
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suitable to determine the instant Therefore, define

k3
tS::\/%:. (6.30)

Thene(u,ts) is nothing but a univariate function of the undetermined fiuxe
constantu. In a numerical search, then, determjnesuch that the remainder of
(6.27) becomes

e(p,ts) = 0. (6.31)

This gives a good approximation to the optimal flux trajegtdio solvee(u, t;) =
0, Newton-Raphson search [Pie69,PTVF92] is applied, staftom the open-loop
rotor eigenvalue:*=° = 1), the iterative law

k
e(p”, ts
Mk+1 _ Iuk . % (6.32)
a_u6<:u 7t8>
leads to a good approximation already after few iteratiepsti.e.k = 10). To
improve reliability, the search area is limited to

n<p<A, (6.33)

which is reasonable; the optimal flux transient will not bstéa than the torque
transient and neither slower than the open-loop rotor tiorestant. Furthermore,
to prevent nonconvergent cycles, the step $ize! — ;*| is limited to 110 Ina
numerical study, it turned out that this simple search neisdoth accurate and
reliable.

In Fig. 6.2 this procedure is evaluated for three case smEnaiThey are all
performed at rated speed, the time constant of the torquetifumis 5 ms (or\ =
2001).

Subfigure (a) presents the resulting flux trajectories ofrqui step fronD to
rated torque. The flux starts at the lower limit,(0) = 0.2 Vs and rises to its
steady-state optimum. The red trajectory is that calcdlatgh the steady-state
optimality condition (6.12), it is very fast and thereforequires a strong field-
generating current,;, generating high losses. The green trajectory is the optima
flux trajectory resulting from the dynamic optimization plem, it is the exact so-
lution of the BVP (6.24). It is much slower. It is the optimdfigiency transient,
it considers all losses generated by all currents, and #terstddy current losses.
The blue trajectory is the approximate solution to the BV&y applied for the ex-
periments. Itis close to the green trajectory, howevehabeginning it is too slow
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Figure 6.2: Evaluation of the optimization problem. Lefalaulated flux trajec-
tories, red: steady-state calculation, green: optimabdyin calculation, blue: ap-
proximated dynamic calculation. Right: corresponding refuactione(y, t;) that
has to be solved numerically.

and at the end too fast, a better prototype would therefore e with 0 < o < 1,
however, then, a more complicated numerical search must¢tbermed. It is seen
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that the time constant is not the solution of the autonomaffisrential equation

\/Z:j = 0.103 s. Also at the ’strategic’ instarit = 0.052 s the flux is not exact,
only the differential equation is zero there. Subfigure {lmves the nonlinear func-
tion e(yu, ts) that is used to find the eigenvalue of the flux trajectory his function

is well suited for a Newton-Raphson search, as it is very smauobnotonic and
somewhat linear at the beginning.

Subfigure (c) shows the resulting flux trajectories of a tergtep from rated to
almost zero torque. Again, the steady-state optimalitydd@n gives an extremely
fast trajectory that requires a strong negative field-geimay current to reduce the
flux. The optimal trajectory is much slower, the time constamot too different to
the open-loop rotor time constaé{ = 0.11 s, so here almost no field-generating
currentis applied. The approxime(ted solution again fitoftenal value quite well.
Subfigure (d) shows the nonlinear functiefu, ¢, ), which is again no problem for
a numerical search.

Subfigure (e) shows the resulting flux trajectories of a tersgep from negative
half to positive rated torque. The steady-state optimaldgdition tries to reduce
the flux to the minimum and then reinduce it, however, thioisvery senseful. The
optimal trajectory is much slower and monotonic. The appnaxed trajectory is
almost identical, so the approximation works well. Subfiy{fy again demonstrates
that the numerical search is no problem.

There is one limitation, however, caused by the simple ehofgrototype func-
tion. If the situation from subfigure (e) is repeated with @sdr torque transient,
say a time constant @) ms, the optimal flux is first lower and increased later than
the approximation calculates, as shown in Fig. 6.3. So, 3t slew sign changes
of the torque, the simple prototype is suboptimal, nevées® it is still better than
the result of the steady-state optimality condition.

6.2.4 Control structure: Trajectory generation and trajectory
tracking

Putting optimal control, as from optimization theory [P#6nto practice is not an
easy task. The fact that open-loop trajectories are catmlind that the closed-loop
trajectories may be different is a key problem. Flatnesedaontrol, however, of-
fers a simple solution with nonlinear trajectory trackirantrol [vNM98, HRDO3].

The trajectory generation is an algebraic scheme with awyrfumerical calcu-
lations that are performed online. Thus it is possible tdquar fine-tuning during
commissioning or to include parameter adaptation schefimesstance of the rotor
time constant [QDO08].
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Figure 6.3: Evaluation of a case where the prototype is rnitggu.e. a very slow
torque transienh = 50%. Left: calculated flux trajectories, red: steady-state cal
culation, green: optimal dynamic calculation, blue: apprated dynamic calcula-
tion. Right: corresponding error functiefy, ¢;) that has to be solved numerically.
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Figure 6.4: Flatness-based optimal torque control: Read-trajectory generation
and trajectory tracking control.

The applied control structure is shown in Fig. 6.4. In thedfietiented frame, the
actual values of the flux magnitude and the torque can beyezatulated based
on the observed flux and measured currents. These serveiakaanditions to
definemy and f; in the trajectory generation algorithm. The desired flunsrant
and the corresponding (near-)optimal flux trajectory atewtated, and discretized
with knowledge of the sampling timg,. The future values of the torque and flux
are then fed, as references, to a tracking controller. Tlaellokat controller pro-
posed in chapter 3 is chosen as it provides very preciseitigaé&xcept for a fixed
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delay between reference and output) and good suppressitistofbance effects.
However, any fast flux or current controller may be used, ag las it can adapt
to the problems arising from time-varying rotor flux and theerited parametric
uncertainties.

The scheme somewhat reminds the MPC controller in Fig. ®&gker, this is
not model predictive control as constraints are not expliencluded in the con-
troller design and only a part of the model is used in the ogaton. Still, it is a
predictive controller. Furthermore, it is an optimal catigr, as the prediction hori-
zon is quasi infinite. The open-loop trajectories, caladdiy the trajectory genera-
tor, and the closed-loop trajectories, which result frooateulating the trajectories
at every sampling step, are quasi identical. Only diffeesrare the simplifications
of the design model and the real machine model, meaningdheésistance, satu-
ration, harmonic effects, etc.

Stator current limitations were not included in the trapegtgeneration. Tech-
nically, this is possible, for instance by a coordinate $farmation as proposed
in [GPO9]. However, the inclusion of current constraints, matter with which
technique, makes the nonlinear optimization problem evereraomplicated. Fur-
thermore, in the case of an active current constraint, osetdaecide for either
minimum-time behavior (or best torque tracking), or to sldewn the desired
torque trajectory to minimize losses. Here, current litiota is implemented by
saturating the references for the currents. For simplieituadratic saturation is
chosen of the type-1,,,4: < %545 < Inas-

About10% of the computational resources are usetlidiiz sampling rate, there-
fore a200 MHz DSP should provide more than sufficient computationavgroto
implement the scheme.

6.3 Experimental results

For the results, the proposed dynamic optimization schemempared to the reg-
ular operation with rated flu¥r,; = 0.9 Vs and the steady-state optimal control
where the flux is directly depending on the torque [dWR99].

It is applied to a low-efficiency induction machine whosegmaeters are given
in appendix B.1, already applied in section 4.2.3. This nmaeli¢atures a strong
magnetic saturation, which is deteriorating the resulthasnodel assumes linear
flux.

The first analysis is in standstill in order to use a torqueddaicer to compare the
calculated and the real torqug. A second analysis covers a servo drive application
scenario.
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Figure 6.5: Optimal efficiency control: Torque step resgoaszero speed, small
stepsry; = 0..1 Nm. Comparison between dynamic, steady-state and no optimiz
tion.

In Fig. 6.5, the small-signal response from zeraltbim (13.5% of the rated
torque) is analyzed. Subfigure (a) shows the results of thggsed method. While
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the calculated torque (dark blue) exactly correspondseaalésired asymptotic tra-
jectory with a time constant ¢f ms, the measured torque (cyan) is slightly larger.
This error is caused by a misestimation from the rotor fluxeober because of the
magnetic saturation, however, in steady-state the fluxtismated correctly. As
discussed in section 2.6, the inductance vdlyeis designed such that it is the se-
cantial inductance at rated flux, therefore the paramef@reapfor the observer and
the torque calculation will be smaller than the real paramédthe flux is controlled
slowly from the lower saturation limi,.; = 0.2 Vs to its optimal value fow,; = 0
rpom andr,; = 1 Nm, whichis¥,, = 0.47 Vs. Only a small field-generating current
is necessary to perform the flux increase.

Subfigure (b) shows the response if the optimization is peréa according to
the steady-state criterion. The flux is supposed to be adjystoportionally to the
torque, thus with a time constant 6fms [dWR99]. Because of the current limi-
tation, however, it is slower, and the field-generating enirt,,; is at the saturation
limit. The following saturation law is active: if the fieldegerating current is at
the maximum, the torque-generating current is increasell that the torque is still
tracked. Again, the measured torque is not exactly the eldsiansient, foremost
because of the high, and the magnetic saturation, sensitivity is higher for high
field-generating currents.

Subfigure (c) shows the response with norm operation at tieel ftux level
V., = 0.9 Vs. There is no problem of current saturation during thesiemt, and
as the flux is constant and well-estimated, the calculategigocorresponds well to
the measured torque.

Subfigure (d) compares the three measurements in termstafhiaseous power
loss and energy loss. In norm operation (red), the lossdsginen steady-state but
guasi unchanged during the transient. The power loss igaatrend overall, much
energy is lost {7 J). In operation with the steady-state criterion (blueg, litsses
are much lower during constant torque. However, the lossesrbe extremely
high during the transient, caused by the high field-genagaturrent in the stator
and the rotor. While energy is saved in steady-state, a lostgluring the transient,
resulting in aloss of2 J. In operation with the dynamic criterion (green), losges a
low during both the steady-state and the transient. As tiarfunsient is performed
slower, the losses have a lower peak value but are of longatidn. Overall the
scheme is the best and results in ofly energy loss (obviously depending on the
considered period).

In Fig. 6.6, the step response from zerd3tdo Nm (50% of the rated torque) is
analyzed. The optimal flux at this desired torque is at thedrévelV, ; o, = 0.9
Vs as the experiments are performed at zero speed, theraffitex change from
the lower to the upper saturation limit is required.
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Figure 6.6: Optimal efficiency control: Torque step resgoaszero speed, large
stepsry; = 0..50%. Comparison between dynamic, steady-state and no optimiza-
tion.

In subfigures (a) and (b), again, the measured (cyan) andlatdd (dark blue)
torque differ during flux variation because of magnetic sattan. This effect does
not appear at norm operation in (c). The required curreneryg figh, and in (b),
the field-generating current is in saturation for a long timevertheless, the de-
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sired asymptotic torque trajectory is well tracked. In syinfé (d) the instantaneous
power and energy losses are shown. This time the steadysitgrion is closer
to the dynamic criterion, as the current saturation slowsrdthe flux transient.
The norm operation (red) is better than both optimizing suds clearly, the flux
change inherits a considerable energy loss. The boundadjtem of steady-state
optimality in these two schemes enforces the flux variatiiil, the dynamic op-
timization criterion is better than the steady-state dotg it will always be better.
The norm operation results in an energy los&0b J, the steady-state criterion in
39 J and the dynamic criterion i8i7 J. The savings potential is much better at high
speeds, however.

6.3.2 Efficiency evaluation: A servo application

Whether efficiency can be improved by flux adaptation, and howimthe dynamic
optimization is an improvement compared to the stationgtyn@zation is a matter
of the application. In [LY92a], a fixed-distance fixed-tim@m-to-point positioning

process is proposed to evaluate the efficiency of a dynantimization procedure.
It gives a good trade-off between the improvements of fieddkening in steady-
state and the losses inherited by dynamically adapting tixe It is a typical servo
application. The setup is shown in Fig. 6.7, it is an induttiwachine with a torque
transducer and a flywheel.

Figure 6.7: Setup for closed-cycle efficiency evaluatiamduction machine with
torque transducer and flywheel.

It is a closed-cycle process, as shown in Fig. 6.8, kinetexggnwill be charged
during acceleration and electrical energy recovered duitgceleration. From the
electric powerF;,, in the induction machine, the controllable and uncordiu#
lossesPy,ss and P}7<" are detracted and the rotor absorbes some kinetic energy
via PRotr 'the remaining poweP,,,; is the output power measured with the torque
transducer. This output power is partially lost due to foietP"<| the restPi

loss
is transformed into cinetic energy of the flywheel.
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unctr
PLossPLoss Pwheel

Figure 6.8: Power flow: Measured electrical input pow&y, measured output
power P, ;.

The process, shown in Fig. 6.9 (a), is an s-curve from ze#d rounds that is
performed withir2.5 s. The speed trajectories, as degree of freedom, are siged wi
the 'duty cycle’d. A high d inherits a high torque at the beginning and at the end,
but almost zero in the middle, whereas a low duty cycle com#s avcontinuous
but low torque. The settling time is chosen such thatdiee 0.8, rated torque is
required to track the speed reference. The odd travelingriie of41.6 rounds
stems from the chosen settling time, which again dependbeefiywheel, and the
fact that2000 rpm is the maximum speed.

The input power is calculated from the voltage commands hedattirrent mea-
surements. The results, shown in subfigure (b), show thahkies sense to reduce
the flux magnitude in such a process. Only the input energlgas/s, the average
output energy is abou®0 J which is the friction of the flywheel bearing, it is almost
the same for any. The input energy is spent to a good portion to the uncoiaiote!
losses, mainly the friction of the induction motor beariagsl the air cooling fan.
The total energy absorbed by and recovered from the flyweee&biJ atd = 1 and
70 J atd = 0.8, as the inertia i®© = 0.044 kgm?. Considering this, the controllable
losses shrink considerably while the drive is doing the sprbeSteady-state flux
adaptation is an improvement versus norm operation as mast éime, the drive
is operating below half rated torque, full torque may onlyreguired during the
speed variation. Dynamic optimization is a further impmoeat as the four torque
changes and the time-varying speed, inheriting flux vamatare also considered.

Figs 6.9 (c) and (d) show the time response for the duty cy¢les 0.2 and
d = 0.6 with the proposed dynamic optimization scheme. The eldtinput
power (red) peaks during the torque transient. Energy isired to accelerate the
rotor and the flywheel, the mechanical power required forlditer is shown in
green. In the middle, only a low torque is required to keegedpmnstant, and the
flux can be reduced. There is a certain torque ripple due tcadl smbalance of the
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Figure 6.9: Fixed-distance fixed-time point-to-point piosiing process: 41.6
rounds in2.5 s.

flywheel. During deceleration, then, the energy is recavérem the flywheel, it
can be fed back to the inverter. Losses are high during thevéluation phases and
if the flux is kept at a high level.
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6.4 Conclusions

This chapter discusses the controllable losses appearimgduction motors. A

model-based method for loss minimization was proposedtreiders time-varying
torque. For an asymptotic torque response with an arbittafijned time constant,
the losses are minimized. So far, only a numerical schenstsethat optimizes

time-varying torque and flux trajectories offline, the spaed load trajectories must
already be known in the design phase. Here, an online toajegeneration scheme
is proposed that generates optimal flux and current trajestto meet demands
appearing on-line.

The optimization problem is a hard-to-tackle nonlineariraation problem.
However, using the simplifications from flatness-basednegticontrol, and an ef-
ficient approximation with a function prototype, a simpldusion is found, only
few iterations of a Newton-Raphson search procedure and algmleraic equations
must be evaluated online. Even though the optimal solutambdeen heuristically
approximated, the solution is apparently fine. The optitioraprocedure is em-
bedded in a flatness-based trajectory generation andrigackintrol scheme.

The merits of the dynamic optimization were pointed out pyesknental results.
Losses are higher during torque transients if the flux is tedhpand in contrast
to the existing schemes optimizing only the steady-stabeega these losses are
also reduced by the proposed method. However, the impravieskmited by the
current saturation, such that it is only visible for smattjioe steps. A point-to-point
positioning process was chosen to demonstrate the impevsnm a servo drive
application. The process covers a typical servo applinai® it includes torque
steps, speed variation and both motor and generator mode, te advantages
of flux adaptation versus rated flux operation, and the imgmuants of considering
the dynamics, have become clear.

The method is suitable for energy- and cost-efficient serixes with induction
machines.
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CHAPTER 7/

Conclusions and outlook

Differential flatness has been used to design advancedotaystems for electri-
cal drives. Based on existing basic algorithms, such as sypster theory, field-
oriented control, flux observers, etc., that are extengigelered in the literature,
some new advanced algorithms have been proposed.

A drive operates to some satisfaction using the named blgdtams, together
with standard control systems such as Pl control. Howeweapplying advanced
algorithms, the performance and efficiency of a drive caridrafscantly improved.
Using high-performance predictive control, the trackimgl @isturbance rejection
capability is improved, the resulting current and torquguigkly adjusted to an op-
erator’s reference and current ripples are suppressethdfomore, by using optimal
control, efficiency and dynamic response may be further avgul. A drive system
can be exploited to its physical limits, while still operagisafely and robustly.

Chapters 3 and 4 studied deadbeat control, one of the mosspvieked predic-
tive current control methods. The sensitivity of this sclkedmnoise and parametric
uncertainties is well-known, especially the sensitivdythe inductance value. Fur-
thermore such a scheme is supposed to compensate undesiceaiary effects,
such as torque ripples caused by non-ideal sinusoidal mgsdiwithout explicitly
identifying them. Using results from flatness-based canthe concept of feed-
forward linearization considerably reduces parametms#®ity and decouples the
disturbance estimator from the controller. A mix betweendtandard method and
feedforward linearization is proposed to trade off robasmincrease and perfor-
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mance reduction. From an implementation point of view, tie¢had is just a minor
modification to a standard deadbeat controller, but withgaitmipact on the per-
formance. As a result, the robustness to resistance andiatpdo inductance
uncertainties is improved to a satisfactory level, evemlyigaturating drives can
be controlled. The problem of inductance uncertaintieseappon SynRMs and
IMs and is so strong that it prevents the application of stathdleadbeat without
adjusting the parameters. Furthermore, the disturbartc@ager is made faster
such that torque ripples can be well suppressed, this proafgears on IMs and
PMSMs. Without the decoupling inherited from feedforwardearization, this is
not possible because of noise sensitivity and the destadglinteraction between
controller and estimator. Because of the good robustnespenficfrmance proper-
ties which have been pointed out both analytically and erpetally, the proposed
deadbeat controller is suitable for an industrial appilorat

A future work is the application of online-identification thfe machine parame-
ters. Some works on this issue exist, based on either exddratdware or heuristic
methods. However, more general methods, for instance lmastohe-scale decou-
pling, would be of interest.

Another possible future work is a comparative evaluatiomigh-performance
field-oriented control to direct torque control (DTC) andgotive torque control
(PTC). These control systems come up with a similar perfoomaiompared to
field-oriented deadbeat control, however, the paramegnesitivity problem is less
strong, or at least, less discussed. The proposed methqupleable to these
schemes as well, some preliminary experimental resultgiaes in appendix E.
An analytical invesigation is still missing, however, thetimod of 'equivalent con-
trol’ has been proposed for variable structure systemsagnbol analysis tool for
switching control systems, which could serve as an analytaol to study these
schemes.

Chapter 5 studied model predictive control (MPC) for a PMSMisTdptimal
torque controller design aims at improving the power efficieand the dynamics.
It is a widely known control method in some industrial apation areas, however,
rather new for electrical drives. This method comes withigeqovolved implemen-
tation effort, foremost because an online optimizatioroatgm is required. There
are two problems of this scheme, the first is whether it is ipts$o implement
because of the computational requirements. Second, thksr@sust show merits
in order to justify the increased implementation effortidiing schemes either did
not respect the voltage constraints (GPC), were of a shorzdo(1 step, dead-
beat or PTC) or applied offline optimization (explicit MPC ia look-up-table).
The proposed implementation is the first running constrhineg-range scheme
with online optimization. The computational burden hasnoesgluced to a certain
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level by using flathess and some approximations in the opditiain problem, lead-
ing to a simple to solve linear programming problem. The lteshow a fast but
at the same time smooth torque response, steady-statemdficoptimization by
field-weakening, and in high-speed operation, improveduerdynamics because
of dynamical field-weakening to bypass the voltage sawmmatiSuch results can
only be obtained by including constraints and a high horizBepecially the dy-
namic use of field-weakening, known from minimum-time cuatreontrol, is newly
seen on predictive controllers.

However, the computational demands are still quite higshdtat the contri-
bution should be seen as academic benchmark rather thastipadaady scheme.
While it should be clear now that even more merits of MPC ara seiéh con-
strained long-horizon optimization, a future work is thettier reduction of com-
putational burden, for instance by implementing heuristethods.

Chapter 6 proposed a trajectory optimization scheme for [ torque con-
troller aims at best energy efficiency for torque transievitk a predefined asymp-
totic shape. This problem is rarely discussed, servo indlictrives are operated
in rated operation, therefore they do not profit from the pb& efficiency im-
provement in steady state. Efficiency-improved drives,@ndther hand, do not
consider efficiency during transients, thus, transiergseéther slow and somehow
efficient, or fast and inefficient. The proposed scheme isiefft in steady-state but
also enforces energy efficiency during torque transiest$araas this is physically
possible. An implementation of the method requires thetsomiuwf a nonlinear
optimization problem. An eye was kept on the most simple iptssmplementa-
tion, therefore no fancy nonlinear optimization schemesewashosen, only basic
and widely known methods. This is important for a method tedmroducible. It
is known and shown that the efficiency improvement based tatreakening is
only senseful in partial load operation, and that a flux aatagt may result in more
losses than norm operation, however, the proposed metlabdays better than the
widespread steady-state optimization. On an experiméywaheel test, it is shown
that the dynamic optimization scheme can lead to a goodeifigiimprovement in
a servo application.

Again, future improvements are possible. Current saturatias disregarded in
the optimization, however, it could improve results, foosinfor reference steps
from low to high torque. It could further extend the improwam versus steady-
state and rated operation.

Throughout these advanced designs, differential flathassphoved as a very
helpful and enabling tool. Flatness is natural to an eleaitdrive, the outputs used
in field-oriented control are flat outputs, application a$ttmeory is straightforward.
This theory aims at very complex problems, the drive cordadign task is, from
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a theoretical standpoint, less difficult. Still, using tlieas from flatness-based
control, considerable improvements in the design and imgkelts are obtained.

The design is simplified, the problem is simplified, this le&msimpler solutions,
a crucial point as the key issues are the complex implementahd the high com-
putational demands. Without the simplifications in the tké&oal elaboration of the
optimization problems, it would not be possible to obtaieasible solution, in the
sense of calculation effort. The implementation of MPC ahimhduction machine
optimization with the online problem solvers would not h&aeen possible.

Flatness-based control has coped major challenges of rbaded control de-
sign. Foremost the results of robustness are helpful fatigtiee controllers. The
deadbeat controller has not yet made the way to a broad maluespplication, it
is only found in some narrow fields, the major obstacle has libe robustness
problem.

The flatness-based approach leads to significant improvsrretne design and
performance of advanced drive control algorithms. Thisthés really helpful in
applications.
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List of symbols and abbreviations

A.1 List of symbols
The following list only contains relevant symbols.

The applied convention is as follows:

Scalars are italic letters: T
Vectors are bold lower case letters
Matrices are bold upper case letterX

References are with a star superscript
Observed values are with a tilde T

A

Estimated values are with a hat T

The reference frame (coordinate system) is denoted withscsipt after a comma
for vectors:

Stator fixed frame aB
Rotor fixed frame ,ab
Synchronous (rotor field oriented) framey,

For more concise notation, no comma is used in the subsorigthlars.
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General symbols:

OFTHAPQRNRSOSE S 28

State vector

Input vector

Brunovsky input (linearizing input)
Output vector

Flat output vector

Disturbance vector

System function (vector)

System matrix

Input vector

Feedback gain vector

Transfer function

Variation

Differential parameterization of the states
Differential parameterization of the inputs
Time (continuous)

Time (discrete)

Moment of inertia

General electrical variables:

lus 1y 1y Phase currents [A]

zu ) ZU
i

lsd
qu

, 1, Phase current vectors (in.(3) plane) [A]
Stator current space vector [A]
Direct (field-generating) stator current component [A]
Quadrature (torque-generating) stator current compdAgnt
Rotor current space vector (stator normed) [A]
Stator voltage space vector [V]
Stator flux space vector [Vs]
Rotor flux space vector (stator normed) [Vs]
Clarke transformation matrix from 3-phase to stator frare |-
Park transformation matrix from stator frame to synchranvame [-]
Number of pole pairs [-]

Mechanical speed &

Sampling time [s]

Time constant of lowpass filter [s]
Generated torque [Nm]

Prediction resp. optimization horizon [s]
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Synchronous machine parameters:

Ly Mutual stator inductance in direct axis [H]

L, Mutual stator inductance in quadrature axis [H]
Upy  Flux magnitude of rotor permanent magnet [Vs]
R, Stator resistance ]

kr.  Hysteresis loss coefficiené‘g]

Induction machine parameters:

L, Stator leakage inductance [H]
L,y Rotor leakage inductance (stator normed) [H]
Ly, Mutual inductance (stator normed) [H]
L;=1L,, + Ly, Stator inductance [H]
L,=L,+ L, Rotor inductance (stator normed) [H]
R, Rotor resistance (stator normed))] [
R, Stator resistance]]
R, Iron loss resistance (Mutual resistance) [
n=i Inverse rotor time constan%]
o=1-Jn Leakage coefficient [-]

Lon : A
B =12 2 Coupling factor vs]
v = i(RS + LL’; R,) Inverse stator time constar%I
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A.2 Abbreviations

2DoF
A/D
AC
back-EMF
BVP
CCF
CPU
DC
DSP
DTC
FGM
FPGA
GPC
IGBT
M
IVP
LMI
LP

LQ
MIMO
MPC
MTPA
Pl

PM
PMSM
PTC
RL
RMS
QP
SISO
SynRM

Two-degree-of-freedom (control)
Analog-to-digital (conversion)
Alternating current

back electromotive force
Boundary value problem
Controller canonical form
Central processing unit

Direct current

Digital signal processor

Direct torque control

Fast gradient method

Field programmable gate array
Generalized predictive control
Insulated gate bipolar transistor
Induction machine

Initial value problem
Linear matrix inequality

Linear programming (solver)
Linear-quadratic (problem)
Multi-input multi-output (system)
Model predictive control
Maximum torque per Ampere
Proportional-integral (controller)
Permanent-magnet
Permanent-magnet synchronous machine
Predictive torque control
Resistive-inductive

Real mean square

Quadratic programming (solver)
Single-input single-output (system)
Synchronous reluctance machine
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Experimental setup

The test bench is shown in Fig. B.1. The real-time system is 20BR®Ased in-
dustrial computer with a 1.4 GHz Pentium M CPU an®&B Ram memory. The
sytem is running Linux with an RTAI (real-time applicationteérface) extension.
Programming is done in the language

The rest of this system is as described in [ANK10]. Via a 11I6:8A bus, some
devices specific for drive system control are connected. RGA is responsible for
space-vector modulation and interrupt generation, itsdsals the switching signals
to the inverter. Two synchronous A/D converters are appbetigitalize the analog
current measurement signals from a current transducernéoder interface card is
available to read the position of the shaft. There are fodr @&annels and a digital
scope to output and record internal controller signals ai-tiene. The system was
originally designed at the University of Wuppertal, theyontodification are an
upgraded CPU and software, as well as an improvement of thémesaapplication
system.

The system is nice and powerful, however, this version ssiffem a major lim-
itation. As described in [ANK10], the interrupt latency étdelay in the response)
is about6 us, caused by both a slow A/D converter and the interrupt laggbft-
ware. The system must be in the zero-voltage-vector modeglguite some time
in order to obtain current samples of acceptable qualitytheumore only a sinus-
triangle modulation is implemented. Because of this, theéchig times and — as
consequence — the voltage commands are limited. The maxivoltage vector
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Ti-‘ - '.__ ‘ : ‘I:‘"‘ ‘..

Real-time
W,?Qﬂ‘l’?lﬂﬂ"‘fﬁﬂlu -

PMSM 5 Induction
- machine

Figure B.1: Test bench: Real-time computer, power invertangpled synchronous
and induction machine.

magnitude is limited t@20 V. If the system is redesigned such that the current mea-
surementis improved and A/D conversion is faster, with asitniangle modulation
the maximum linear voltage would have be#st V, and by implementing space
vector modultation, the maximum linear voltage would hageri$25 V [QDO08].

The voltage limitation enforces a reduction of the maximuyreesl.

The test bench further consists of two industrial servonars, first al2.5 A
SEW-Eurodrive inverter where the IGBT switching signals bamlirectly transmit-
ted, and second an unmodified Danfoss VLD FC-302 inverter.SHW inverter is
used for all experimental tests and the Danfoss invertehffoad drive to impose
either a load torque or speed. The DC link voltage is not rgathé control sys-
tem. The Danfoss inverter is also used for identificatiorhefinduction machine
parameters.



B.1. PARAMETERS OF THE TEST MACHINES

B.1 Parameters of the test machines

Table B.1: Nominal Parameters of the Synchronous Machine

Manufacture&; Model

| Merkes MT5 1050

Rated Powery 2760 W
Rated Torque,y 10.5 Nm
Rated Current (peak) 8A
Rated Speed;y 3000 rpm
Rated \Voltagd/y (peak) 560 V
Pole Pairsy, 3
Stator Inductancé, L, 4.8, 7.2 mH
Stator ResistancB 0.92 Q
Motor Constant p,, (peak) 0.334 Vs
Hysteresis Loss Constaht:. 1.27 &

Table B.2: Nominal Parameters of the Induction Machine

| Manufacturer | MSF Vathauer GmbH: Co KG
Rated Powery 2200 W
Rated Torque, x 7.4 Nm
Rated Current (peak) 7TA
Rated Speed),y 2840 rpm
Power Factoros ¢ 0.85
Rated Voltagd/ (peak) 560 V
Pole Pairsy, 1
Mutual Inductancd.,, 245 mH
Stator Inductancé,, 255 mH
Rotor Inductancéd., 255 mH
Stator Resistanci, 2.66 Q)
Rotor Resistance, 2.27 Q)
Iron Loss ResistancBr. 1400 Q
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APPENDIX C

Detailed machine model deductions

C.1 Synchronous machine

For the electrical subsystem, the first step is the voltagatsan of the stator wind-
ings

. d
Us s = Rszs,a,ﬁ + a\:[’s,ocﬁ' (Cl)

Second, the flux linkage equation is applied. The total flukéssum of the mutual
flux generated by the stator windings and (possibly) the paent-magnet rotor
flux. For this model, leakage inductances and magnetic-@agglings are ignored.
The stator flux is given for simplicity in rotor referencerfra, here, the dependency
of the inductance values to the rotor position is simplerfaresent. The equation

is given by
Ly O _ 1\
W, 4 = ( Od , )z&dq%—( SM ) (C.2)
q

Transformation from stator to rotor reference frame is qanied with the rotation
matrix quﬁ, where the rotation angle is from « to d axis in positive direction, as
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defined in Fig. 2.2, and defined by

o cos@ sin
A = ( L ) : (C.3)
sing cos @

The electrical rotor angle relates to the (measured) mechanical rotor angle by

¢ = nyp calibrated such that fap = 0 thea andd axis are aligned. The notation
is such that two current (or voltage or flux) vectors relatehi®yequation

bsdg = Ay Tsap. (C.4)

The stator voltage equation transformed to rotor referéracee is therefore given
by
(03 ap e [0 d
A U 05 = RyAY i a5 + Adfa\ps,aﬁ, (C.5)

where the last term is developed as

ap d ap d
Ay gt ¥sas = Ay) d—t(Ai%‘I’s,dq) (C.6)
ap (d a d
=AY’ (d_tAg%) W+ Ay AL (Et‘l'&dq) (C.7)
0 —1 d
— 7 — P :
we ( 1 0 ) Svdq + dt squ (C 8)

_‘IIsq d Ldisd
= w, — , C.9
w(wsd)+dt<qusq) (C9)
where the electrical speed relates to the (measured) mieehapeed byw, =

np,wy. The state-space model of the electrical subsystem in reterence frame
follows as

d. R, . Ly . 1

a:/lsd = —L—dlsd + nprL—leq + L—dusd7 (ClO)
d. R, Ly .

d—t'LSq = —L—qlsq — nprL—qzsd — npr\I/pM + L—qusq. (Cll)
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The torque is calculated by the cross product of stator flakcamrent (vectors are
extended tdR?)

3 .
™ = inp(‘l’s,dq X 4s.dg) (C.12)
3 o
= énp ((\I/sd» \I[sqa O)T X (sta Lsqs O>T) (C13)
3 . 3 o
= §np\prMzsq + §np(Ld — Ly)isdisg- (C.14)

The first componen§np\11pMz'sq is the electromagnetic torque, based on the inter-
action between rotor flux and stator current. The second ferfiL, — L,)isdis
is the so-called reluctance torque, it is based on the mimranergy principle, the
system will tend to the state with minimum potential energythis case, the rotor
position where minimal magnetical energy is stored. Thectahce torque only ap-
pears if the inductances have different values. Interglstiboth effects are covered
by Lorentz’s law.

The state-space model is completed by the mechanical equati

d 1

d—th = 6(TM - TL)a (C.15)

where© is the moment of inertia andl, is the load torque.

C.2 Induction machine

For the electrical subsystem, the voltage equations oftdtersand rotor windings
read as

) d

Us ap = Rszs,aﬂ + a\:[’s,oaﬁa (Cl6)
d

Uprab = Rrir,ab + a\:[lr,abu (C17)

wherew, ,, = 0 as only the squirrel-cage induction motor is regarded. rAde
tive induction machines are for instance the doubly-fediatidn generator (DFIG)
[Gen08], used in wind turbine systems, where rotor windimgsfed by an inverter
and therefore a nonzero input voltage. An outdated alteatduction machine
is a wound-rotor slip-ring machine where an external 3-phiasistance is attached
to the rotor during speedup to reduce the peak current, Siatht,, = Reoitr ap-
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The flux linkage is the sum of the mutual flux, which is the flusgiag through
both stator and rotor windings, and the leakage flux whichlg passing through
one respective winding. The equations in both the statoretad are

\Ils,aﬁ = \Ilsa,aﬁ + \Ilsm,aﬂ = Lsais,aﬂ + Lm(is,aﬁ + ir,aﬂ)a (C18)
‘I”r,ab - lI’ra,ab + ‘I’rm,ab = Lrair,ab + Lm(ir,ab + 7:s,ozb)' (Clg)

As state variables, the stator current veatgy; and the rotor flux vecto®, s
are chosen. These are used in direct field-oriented contta¢re the measured
stator current vector is decomposed in one component aigmeand orthogonal to
the rotor flux. Therefore one needs to eliminate the two ramgivectors of the
stator flux¥, .z and the rotor current. , .

The transformation from rotow(b) to stator ¢, 3) is performed by rotating by
the electrical rotor angle. To find the rotor current vectiog rotor flux linkage is
rewritten in stator fixed frame by multiplication Wimg%,

‘Ilr,aﬁ — (Lro + Lm)ir,aﬁ + Lm’i’s,aﬂa (CZO)

from where the rotor current is found as

. 1 L.
trag = L—‘I’naﬂ - L—’L&a/@. (C21)

T s

This result is inserted into the flux linkage equation of ttaa flux to find

L2\ . L,,
‘1’57046 = (LS — L—:'L) ’LS,a/@ ‘l— L—‘I’naﬁ. (C22)

Therefore both vectors — stator flux and rotor current — casubstituted by expres-
sions of the two chosen state vectors, the stator currentrengbtor flux, without
solving any differential equation and without consideramy time dependency.

The voltage equation of the rotor is transformed to staomf by multiplication
with Ag”ﬁ,

d
RoA o + Ag%d—t U, ., =0, (C.23)

and by further substitution o¥, ,,

abd

R, A%+ ALy
ot T Lab gy

(AW, .5) = 0. (C.24)
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The last term is developed as

d d d
ab = af _ ab ¥ of ab 40 (@
Aaﬁ dt (Aab qlr,a,@) Aaﬂ dt (Aab ) ‘Il'r,aﬂ + AaﬁAab (dt\I’T7aﬂ) (C25)
0 -1 d
= We ( 1 0 ) lI"r‘,ogﬁ + Et\:[’naﬁ. (C26)

The first differential equation — the state space descnpiidhe rotor flux — there-
fore follows as

%\Ilr,oéﬁ = —NpWi ( _\IJ\I:T ) - Jj—: ras + RrL—fm’is,aﬁ- (C.27)
The voltage equation in the stator with substituted statordkpression is
. d L2\ . Ly,
Usop = Rstsop + ai <(LS - L—Z‘) 1503 + L—T\Ilwﬁ) (C.28)
= Ryls 05 + (LS - %) dgtis’o‘ﬁ + Z;—ngtllfwg, (C.29)

Wheredﬂt\IlT,aﬁ is replaced by the expression above, rearrangement leads to

als,aﬂ - m _Rszs,aﬂ + Us o — L—ranM \I]ra

s L,
R, L, R,.L2, .
7 raf — T’LSAQ) . (030)
This complicated expression is now simplified with some navameter definitions,
typical in the literature [KKMO03, QDO08]. These are:

Inverse rotor time constant n = 12—:

Leakage (dispersion) coefficieno = 1 — %
Coupling factor 3= gf—"L

Inverse stator time constant v = U; (Ry + LL_?; )

With these definitions and the two vector differential equa, the state-space
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model in stator-fixed frame is found as

d. . 1
azsa = —Vlsa t+ ﬁn\ljra + ﬁnpr\I]rﬁ + O_—Lsusaa (C31)
d. . 1
azsﬁ = =755 + ﬁnquﬁ - ﬁnpr\Ijra + O—Lsusﬂa (C32)
d
aq/ra - _nqua - npr\Ilrﬁ + anisaa (C33)
d
a\prﬁ = _77\1/7'5 + anM\I]ra + anisﬁ- (C34)

The first two equations are denotedsséator modelwhereas the last two equations
are denoted a®tor model

This model is used for the design of the rotor flux observere Stator current
vector .5 iS known as it is measured, same as for the spggd The voltage
us,3 are also known from the voltage commands if the inverterineatities are
compensated. Only the rotor fluk,.s is unknown. It is clear that due to the
many disturbances and parametric uncertainties, a closgdfull-order observer
is required [MROO], an open-loop observer (for instance,r@gration of the ro-
tor model) will be inaccurate and considerably reduce perémce of the control

system.
The torque is the cross product of stator flux and stator ntjyrre
3 .
™ = §np(‘1’s7dq X Ts,dg) (C.35)
3 L2 . L, )
= 577/;0 (((LS — L_T) 15,08 + L_qur’aﬁ> X Zs,dq) (C36)
3 Ly, :
= §an—T(\I’r7a5 X ’I's,dq)y (C37)
explicitly given by
L
TV = §Tlp—m(\praisg — \Ilrg’isa). (C38)
2 "L,
The mechanical equation is
d 1
d—th = 6(7—M —7L), (C.39)

whereO is the moment of inertia and}, is the load torque.
In the second step, the model is transformed into the figkehted frame. The
goal is to decouple control of torque and of flux magnitude e Tiansformation



C.2. INDUCTION MACHINE 153

into the rotor field oriented frame is therefore a physicatligtivated coordinate
transformation.

Technically, it can be seen that it is a transformation ofrtter flux vector from
cartesian to polar representation [DLOO1]. The rotor igespnted as rotor flux

magnitude
g = /U2, + V7, (C.40)

and as rotor flux angle

W
p = arctan \1;—6 (C.42)

for ¥, > 0 respectivelyp = arctan oo 4 7 for v,., <0.

However the typical mterpretatlon is to rotate the cooatinframe to the syn-
chronous frame, where the direct axis is aligned to the fbd&rvector. Therefore
the rotor flux in the transformed coordinates is defined as

v,
W, 4 = ( od ) , (C.42)

whereV ., is the rotor flux magnitude.
The transformation from stator to rotor flux (or synchrondwsme is performed
with the rotation matrixA;.,

COS sin
ASP = ( PP ) , (C.43)
—sinp cosp
where the notation is such that
/i's,dq - quﬁis,ozﬁ' (C44)

The differential equation of the stator current is mulgpliby the transformation
matrixAjf where additional terms appear from transforming the ctidenvatives

ap d . 0 d
A san = A (Adqzsdq> (C.45)

d g d.
_ (ap) ( - ) + Syl (C.46)
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The derivative of the rotor flux angle is found as

d Is
ap = npwy + Nl 7 qd- (C.47)

The complete model in field-oriented coordinates is givewydifferential equa-
tions [KKMO03, QDO08]. The first three differential equatiodsscribe the dynamics
of the currents and the rotor flux magnitude,

2

. . . U 1
d_tZSd = —Vlsd + ﬁnqud + NpWprisq + an \Iljd + O__Lsusdv (C48)
d . . . ZAsdis 1
azsq = —Yisq — BrpwrnVrqg — Npwarisq — Nl ‘Ifrdq + a—LSuSq’ (C.49)
d
d_t‘Ijrd - _U\Ilrd + anisda (CSO)

and the fourth differential equation is giving the rotor flamgle derivative, or the
electrical excitation frequency,
d isq

qt? = Tewm an\I} " (C.51)

The output equation for the torque simplifies to

3 Ly .
™M = §TL L—T\I[lesq. (C52)

The fifth equation describes the dynamics of the mechanidaystem,

d 1
d_tCUM = 6(7’]\4 - TL). (C53)
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Robustness calculations for deadbeat control

The robustness regarding disturbances and parametettaintes is analyzed. As
simplification, a linear single-input single-output (SIS&halysis is performed for
a single RL-load. The model is given as
ik + 1] = (1 — a)ilk] + bulk] — be[k], (D.1)
where the parameters are
R 1
=T,— b="T,—

a S L7 SL’

ande[k] is a possibly time-varying disturbance signal.

(D.2)

D.1 Transfer function of deadbeat controller

First, the transfer function of a deadbeat controller widtag compensation but
without disturbance estimator is calculated.
The calculation of the feedback value

irplk] = qilk|k — 1] + (1 — q)i*[k — 1] (D.3)
and the delay compensation

ilklk —1] = (1 — a)ilk — 1] + bulk — 1] (D.4)
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are inserted in the deadbeat control law
1, ., N
ulk] = g(@ [k] — (1 — a)ipp[k]). (D.5)
Inserting the plant equation (D.1) in (D.5), the resultilgsed-loop dynamics in

the discrete-time frequency domain appear as

[(Z) b02+bl
p— pr— D_
Gap(2) I*(z)  apz?+ a1z +ap (-6)
where
1
ag = g, (D7)
1 1 R
a1 =—3(1—a) +q5(1-a), (D.8)
1 1
@ =21 - ~ gy (1 —a)(1 - 4) (D.9)
and
1
by = =, (D.10)
b
1 .
by = —(1—q)g(1—a). (D.11)

Under correct parameters; = a, = by = 0, and withg = 1, the transfer
function is the deadbeat conditioft + 1] = i*[k]. If the parameters do not match,
there are additional dynamics, as it is a second-order ptamgisting of delay plus
current dynamics. Two poles and one transfer zero detertnendynamics.

D.2 Transfer function including a disturbance esti-
mator

Now the complete transfer function including the disturdemestimator is calcu-
lated. It is necessary to analyze the behavior under a fastrdance estimator (i.e.
small 7, p) to see the interaction under parameter faults. The clésmusystem
has one reference inptitk], one disturbance inputk| and one output%]|.

Two transfer functions of the closed-loop system appearfitet one is the re-
sponse from the reference to the output and the second ormridlie disturbance
to the output,

I(z) = GiiI"(2) + G E(2). (D.12)
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Reference response

The calculations of the feedback value
irplk] = qilklk — 1] + (1 — q)i"[k — 1] (D.13)
and the delay compensation
ilk|k — 1] = (1 — a)i[k — 1] + bug[k — 1] (D.14)

are inserted into the deadbeat control law
1

unlk] = 3 (0°0K) = (1 = @irs k). (D.15)
Additionally, the disturbance estimator
e[k = alunlk — 2] - %i[k )+ %(1 C@ik— ) +ek—1  (D.16)
and the plant dynamics
ik + 1) = (1 — a)ilk] + bulk] — be[H], (D.17)

whereu[k] = ug[k] + é[k|, are considered. The disturbance inpif] is assumed
to beO.

The resulting closed-loop transfer function in the disefteine frequency domain
reads as

2
Gii(2) = II*<(ZZ)) B aoz?’bfa;fzj ;;j:_ as’ (D-18)
where
ap = b, (D.19)
a1 = —b—b(1 —a) + bg(1 — a), (D.20)
ay = b(1 —a)%qg — b(1 —a)g(1 —a) + b(1 —a) + ba — bg(1 —a),  (D.21)
as = b(1 —a)q(1 — a) — b(1 — a)%q + bag(l — a) — ba(1 — @), (D.22)
and
by =b (D.23)
by =b(—1— (1 —¢q)(1—a)), (D.24)

by = b(a+ (1 —q)(1 — a)). (D.25)
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Disturbance response

The calculations of the feedback value
irplk] = qilk|k — 1] + (1 — q)i"[k — 1] (D.26)
and the delay compensation
ilklk — 1] = (1 — a)i[k — 1] + bug[k — 1] (D.27)

are inserted into the deadbeat control law
1

unlk] = +(0" K] = (1 = @)irs[k]) (D.28)
where the reference input[k] is assumed to be. Additionally, the disturbance
estimator

o1kl = a(unlk — 2] — %z’[k: )+ %(1 C k-2 k-1 (D.29)
and the plant dynamics
ik + 1] = (1 — a)ilk] + bulk] — be[k], (D.30)

whereuk| = ug[k] + é[k], are considered.
The resulting closed-loop transfer function in discréteet frequency domain

appears as
I(z) b1z + boz + b3
Gei - - D31
(Z) E(Z) CL(]Z3 + (1122 + asz + as ( )
where
ag = —b (D.32)
a1 = —b(1—a)g+b+ (1—a)b (D.33)

as =b(1 —a)g+ (1 —a)b(l —a)g— (1 —a)b—bg(1 —a)> —ba  (D.34)
az = —ba(1l — a)q + ba(l — a) — (1 — a)b(1 — a)q + bg(1 — a)? (D.35)

and

~

by = —bb (D.36)
by = bb(1 — q(1 — &) (D.37)
by = bb(1 — a)q. (D.38)
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D.3 Interaction of disturbance estimator and dead-
beat controller

Under ideal conditions, the deadbeat controller and theurdiance estimator are
decoupled. However, a lowpass filter is still required fab$ operation. Assuming
(1 —a) =1and(1—a) = 1, which is satisfied if the open-loop time constgnis
considerably larger than the sampling inter¥alasa = TS% The denominator of
both the reference responSe;(z) andG.;(z) become

(1—-2)22+1—-2)gz—(1—2)z+ (1 —2)a—ag=0. (D.39)
For the special casg= 1 (conventional deadbeat control) this simplifies to
2(—22+z2—a)=0, (D.40)
and forq = 0 (feedforward linearization) this simplifies to
(z—1)(—2*+2z—a)=0. (D.41)

Therefore the two closed-loop poles depending.ea TL;F;TS and therefore on the
lowpass filter time constant;, » are

1++/1 -4«
ApT 5 (D.42)
It is seen that these become complex for> i for any value below, the poles
are real and always of magnitude lower thamAs o = TLZiTS it follows that the
conditiona > 1 means
Trp > 3T;. (D.43)

Furthermore it is seen that without lowpass filter, wh€re = 0 anda = 1, the
poles arez;, = % + j@ which both have magnitudg, therefore, the closed-
loop system is unstable without lowpass filter. If the systeraubject to strong
uncertainties, the filter must be set even slower by deargasiand continuously
by decreasing: closed-loop performance gets lost.

D.4 Steady-state accuracy

Steady-state accuracy of the deadbeat controllers witdtyadsimpensation and dis-
turbance estimator is analyzed. In steady-state, theerter disturbance and the
output are constant, thusk] = @, i[k] = i andé[k] = € Vk.



160

APPENDIX D. ROBUSTNESS CALCULATIONS FOR DEADBEAT CONTROL

Then, the controller equation turns into
bip = (1— (1-a)(1—q))i* — (1 —a)qgilklk — 1] (D.44)

wherei[k|k — 1] denotes the predicted current from the delay compensalion a
rithm

i[k|k — 1] = (1 — a)i + big. (D.45)
Furthermore, the disturbance estimator ensures
biip = ai. (D.46)

Solving this system of equations by successive substitutiee steady-state ac-
curacy follows as

i(a+q) =1"(a+q—aq), (D.47)

therefore, the steady-state offset is

~l 4L (D.48)

7 at+q 1 aq
i a+q—aqg 1— 29 a+q

Noting thata << 1, only a small prediction error remains. For fast sampling
systems with large open-loop time constants, this erroeggigible.
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Outlook: Feedforward linearization for
predictive torque control (PTC)

This appendix applies the method presented in chapters 8 smpredictive torque
control (PTC). Itis, however, not intended to be a comparisgiween field-oriented
and direct control methods. The systematic differencesadly mentioned in sec-
tion 2.4, are considerable. Field-oriented control hagstamt switching frequency
and ignores the ripple of PWM frequency, it is de facto statidarcommercial
small-power servo drives. Direct torque control (DTC), asaliernative scheme,
comes with a constant ripple which is defined by tolerancelgamthe controller
tuning, but the switching frequency is variable, which isssue as it may cause ex-
cessive noise, especially in the low speed area. Motivatedis, and knowing that
DTC still has advantages, PTC has been developed, hereytitentripple can be
included, while it is also possible to keep the switchingjfrency constant [PWO05].
In any case a fair comparison requires that the switchirguiacy of both methods
is equal. Such a comparison can be found in [RKE].

The PTC method implemented here is very basic and does naitdldg switch-
ing frequency. For that reason, this appendix has the mepope of demonstrat-
ing that feedforward linearization, a flatness-based ntetbancrease robustness
of model-based control [HDO3], is applicable to PTC and tasierits. The result
iS on a pure experimental basis and is not supported by agptexadstudy.

The comparison of the methods in terms of robustness isistiag, however. In
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order to have a comparable current step response in fieddted control and DTC
/ PTC, itis necessary to extend the field-oriented contreliér a fast current con-
troller, as it was done with deadbeat control in chaptersd3amhen, as discussed,
it is well-known that the sensitivity to parameters becorhigh. An inductance
error leads to overshoots, badly damped oscillations on @vetability. For in-
stance, it was shown in chapter 4 that the conventional ageddiontroller cannot
be applied as-is to an induction machine, a robust extermsian adaptation of the
parameters is required. For DTC and PTC, such a high senhgitsvihot known,
even though the torque and current reponse is also extrdastlyThese schemes
do not become unstable on inductance uncertainties. Hows&wae negative side-
effects appear, the switching frequency increases, thieaebustic noise appears.
Furthermore, a higher current ripple appears if the incheas overestimated.

Two experimental tests are performed for PTC on a PMSM (MezhMerkes
MT4 0530, rated values3000 rpm,n, = 3, 5.3 A (peak),L; = 10 mH, L, = 14
mH, R = 2.2 Q). A speedup fron? to rated speed000 rpm is performed. The
speed controller is a cascaded PI controller, the torquecarrént is controlled by
PTC (prediction horizon 1 step, cost functidn= (i,[k + 1] — i[k])* + i3[k + 1],
sampling frequency 32.5 kHz). The method is very simple: the continuous current
signal used as initial condition for the predictioft|k — 1] is replaced by a mix
between reference and measured sighat/k| = qi[k|k — 1] + (1 — q)i*[k — 1].
Again, a reference governor is implemented that adjustsvéstown):*[k — 1] for
the case that the reference step is so high that it cannotlbbed in the next step
due to the voltage limitation. No further modification is aesary. The response
is now analyzed for different values qf whereq = 1 is the unmodified PTC
controller andg = 0 would be a feedforward controller, and aby< ¢ < 1is a
mixed method.

In the first test, shown in Fig. E.1, the current referencénmtéd to 10 A. In
subfigures (a)-(c), for the respective valyes 1, 0.5 and0.2, not much difference
is seen. This is as expected as there is no error in the modst. nfagnitude
spectrum of the torque-generating currgnis shown in subfigure (d) for the time
wherei, ~ 10 A. The difference between the three methods is small. In Eig.
on subfigures (a)-(c), a zoom of the step response at starpiptied, it is clearly
seen that the tracking capability is untouched.

The second test is shown in Fig. E.2, here, the current maferes limited to
24 A. The time response in subfigures (a)-(c) shows that for éspective values
g = 1, 0.5 and0.2, current tracking is fine. In subfigure (c), a slight drift e
during acceleration in high speed, probably caused by nmagekrors, the con-
troller has lost some performance. Subfigure (d) shows tlgniale spectrum of
the torque-generating curreijtfor the duration whereg, is at the maximum value.
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Due to the high current, saturation effects appear, as ibescin section 2.6, the
correct inductance value becomes smaller than the nomahsg iz, = 14 mH. This
overestimation leads to an excessive voltage use of theadlentthereby inheriting
a high current ripple. By comparing Figs. E.1 and E.2, it caaxy be seen that the
ripple is much higher ai, = 24 A than ati, = 10 A. In the magnitude spectrum,
a peak appears aroutid— 7 kHz that describes this ripple. For the feedforward
linearization approach with = 0.5, there is not much change compared to PTC,
but atq = 0.2, this peak disappears. In Fig. E.3 on subfigures (d)-(fjinagazoom
of the step response at startup is plotted, it is clearly Hestrihe reference response
is untouched, the good tracking capability of PTC is mamedi

Therefore, the proposed method of mixing feedforward liizesion to the con-
ventional predictive controller is also effective here.eTiegative effects of a pa-
rameter error, foremost of an inductance error, are visttgnuated, while the
control performance only marginally decreases. Flatbhasgd control is interest-
ing for everybody, not only for field-oriented control.

A full evaluation is left open, for that, analytical arguntemust be given, and
factors such as frequency, current ripple, suppressioramhbnics, etc., must be
studied in detail.
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Figure E.1: PTC on a PMSM, speed control, rated curtém. From top: mea-
sured speed,,;, measured currents in synchronous frame (gigened:,), voltage
commands in synchronous frame (gregnred: «,, signals are low-pass filtered for
readability).
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APPENDIX F

Mathematical complements to chapters 3 6

F.1 Analysis of steady state accuracy of the cost func-

tion.

In steady-state, as the two curent components are congtant iy andi,(t) = i,

the cost function

T
J = / (PCtrl(t) + wLPLoss(t)) dt + TPLoss(T)
0

simplifies to
J = 2T Potr + Twr Pross,
with

3 . .
Powi = (énp\l/PAﬂq — i)

3 . . 3 a9 .
PLoss = 5nprkF((quq)2 + (LdZd + \IJPM)2) + éRS(ZZ + Zg)

The steady-state optimum is found by solving the two equatio

oJ 0]

= —0,2-=0
dig 0i,

(F.1)

(F.2)

(F.3)

(F.4)

(F.5)
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which are fully independent (s%% = () as the reluctance torque, resp. the influ-

ence of saliency., # L, was neglected in the torque equation = %np\prMiq,
compare [MXM00,MKMO04]. This is untrue for interior PMSMs tiine for surface-
mounted PMSMs.

Solving (F.5) leads to the optimal steady-state value for

L LIJ
~opt d PM
Zd = — 75 . R. (F 6)
LQi npr:kFe

which is the value fof,; that minimizes the sum of copper and hysteresis iron losses,
as discussed in section 3.1.2. Solving the second equatigh.%) leads to the
optimal steady-state value fay

*

P — F.7
a 37112)\1’%3]\/[ +wanka:F —i—wLRs’ ( )
respectively, the generated torque will be
opt T X nprkFLg + Ry
V= T 5 ~Tyl|l—wL 53 .
1+ me(npr\I/pMLq -+ RS) 3np\IlPM
(F.8)

This means that the reference torque will not be fully red¢cbhecause the torque-
generating current will be traded off with the losses inteeriby i,, namely the
copper and hysteresis iron losses on ghaxis. However, this term is small as
(npwakp L2+ Rs) << 3n2¥%), and as the tuning parametey is also small (.05

in this implementation), so it is disregarded in the implata&on.

Furthermore, avoidance of this steady-state error is plesane posibility is to
disregard the losses on theaxis in the cost function, alternatively, as the offset
is only based on known machine parameters and the measuweed, spcould be
compensated by adapting the torque reference.

From a steady-state point of view, the weightonly has a small influence. Nev-
erthelessyw;, should be sufficiently large to avoid numerical problemsutitiplies
the weight fori, such that the cost function is convex. Furthermore, itsevadu
important for dynamic behavior, as it trades off efficienag @ynamic response.
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F.2 Proof that the cost function remains convex after
continuous parameterization with a polynomial

Given is a cost functional
T
J = / xT(1)Qx(t)dt, (F.9)
0

with state vectox € R™ and weight matrixQ € R™*". AssumeQ is positive
definite. Then,

xT(1)Qx(t) > 0, ¥x(t) # 0, (F.10)
and

= / U T Q) > 0, X(t) £ 0%t € [0.T]. (F.11)
0

The inverse model replacegt) by polynomialsp(¢) where the coefficients are
affine functions ofx

J = /T p” (t)Qp(t)dt > 0, x(t) = p(t) # OVt € [0, 7). (F.12)

It can be shown with the Cauchy products of power series tleaetbxist polyno-
mialsR(T") with linear coefficients ire, such that

T
J = / p" (1)Qp(t)dt = R"(T)QR(T) > 0, VR(T) # 0. (F.13)
0
These polynomial®(T") can be rewritten as
R(T) = Aa, (F.14)
and we assumeank(A) = n with n = dim(x). It follows that
J=a"ATQAa > 0, VR(T) # 0. (F.15)

The matrix of the parameterized cost functiorkis= A”QA and as we assumed
Q is positive definite we know there is a mati such thatQ = B”B (Cholesky
decomposition). The weight matrix is then

K = ATB'BA = (BA)'(BA), (F.16)

which is positive definite as any matrik = C*'C for someC with rank(C) = n
is positive semidefinite [C.D. Meyer, Matrix analysis and laplinear algebra,
SIAM books, 2000, p. 566]. If the weight matrix is positivefidée the cost func-
tion is convex. The parameterized cost functioha thus a convex function of the
parametersx. g
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F.3 Parameterization of the constraints with a poly-
nomial basis: Sufficient affine conditions

The polynomial

N
P(s) =) es' <0, (F.17)
=0
with coefficientse; € R, s € R, is analyzed on non-positivity over a segment
s € [0,1]. A necessary and sufficient condition is
P(0) = ¢o <0, (F.18)

which in the following is assumed to be satisfied. Furtheemtire/NV conditions
P k <0, k=1.N (F.19)
~ ) <0 k=1.N, :

are also assumed to hold for ajl
These conditions can be rewritten in matrix notation

c+Qc<o, (F.20)

with ¢y = (co, .., co)T € RY, c= (cy,..,cn)t € RY andQ € RV*Y such that

Q= (a5) = (5 P(iIM)) = ((ﬁ)) ,

i=1.N,j=1.N. (F.21)

It can be shown thadet(Q) # 0 for N > 0, and thatQ is positive definite. It
follows that

c<—-Q 'c, (F.22)
which can be placed into the polynomial equation
P(s) =cy+sc<c—sQ'cy=(—cop)e, (F.23)

with s = (s,..,s™)7 € RN ande = —1 +s"Q!(1,..,1)". As we assumed, < 0,
the upper bound oP(s) under the mentioned conditions is whers at its maxi-
mum. It can be shown that the upper bound,ak = sup{¢} Vs € [0, 1], is positive
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and only dependent oN, asQ is known. Some values, which were computed nu-
merically, are shown in the table below.
N 2 3 4 10 20
A =sup{e} || 0.125| 0.064| 0.041| 0.012| 0.005
Therefore, If the conditions (F.19) hold, we have

P(s) < —AP(0). (F.24)

Shifting the conditions by the constant (and negative)diadtP(0), the sufficient
conditions for non-positivity of the polynomidt(s) are found:

P(0) <0, (F.25)
)—A-P(0)<0, k=1.N. (F.26)

F.4 Analysis: Remainder of the Euler-Lagrange equa-
tion
With the arbitrary defined torque trajectory (6.23)
T (t) = mo + (myg —mo)(1 — ™), (F.27)
and the prototype flux trajectory (6.28)

Upa(t) = fo+ (fi — fo)(1 —e ™), (F.28)
the remainder of the Euler-Lagrange equation (6.29)

d2

@\I/,.d> — Kyt (F.29)

6(/uba t) = kl\llﬁd - k3‘1’§d <
is found to be:

e(pt) = e " 7 (fo — fu)(4ky — kspi®) + e f2(fo — f1)? (6ky — kap®)
+ e M1 (fo — f1)?(4ky — 3kap®) + e (fo — f1) (R — ksp®)
+ ke fi =k (mo + (my —mo)(1— ). (F.30)
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Assuming that the torque is constant;(t) = m, with optimal end valugf; =

moy /5 it is seen that
k1

e(p,t) = Z e ()T (fo — fi) e, (F.31)

such that the coefficients of the time-varying functieng’ are all multiplied with
CoefﬁCientSOél = 4k — ]{?3/L2, oy = 6k; — 3k‘3,u2, as = 4k — 3/€3M2 or oy =
]{?1 - k3,u2.

Therefore the optimal eigenvalyecould be betweerq/% and2, /Z—;. However

it is unclear where this eigenvalue is, the coefficients ddpmn bothf, — fi, the
difference of the actual to the optimal flux, and ¢n the desired final value for
the flux. This nonlinearity prevents finding an exact solutwathout a numerical
search procedure, even for the simple case of constantetofuyhow find that if
Ty (t) is constant, the optimal eigenvalue is

Ky Ky
= 2/ —. F.32
L Vi (F.32)

In the simplest case of zero torqug (t) = my = 0 V¢, the Euler-Lagrange
equation (6.24) simplifies to the homogenous linear eqnaticecond order

o k
@\pm(t) = 12w, (F.33)

ks
with ¥,;(0) > 0 and¥,4(T) = 0. Then it is clear that the solution iB,,(t) =

k1
\I/Td(o)e’\/%t, the optimal eigenvalue is analytically found as

= \/Zi; (F.34)

These results again show that an analytical solution of tmary value prob-
lem (6.24) can be found if the torque can be assumed as copd¥eR99], how-
ever, the general time-varying problem is hard to solve. Uriderlying results serve
as initial guess for a numerical search of an approximatgisol
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Related works

G.1 Advised student theses

In chronological order:

e F. BirnkammerMinimum-Zeit Stromregelung fur Gleichstrom- und Synchron
maschinenBachelor’s thesis, 2013.

R. Dost,Laufzeitanalyse der Rechenalgorithmen einer modelltaain Re-
gelung Studienarbeit, 2012.

A. Détlinger, Dynamic Optimization of an Induction Machin@iploma the-
sis, 2011. Awarded with the 'Studienpreis der SEW-Eurag@®tiftung’ 2012.

R. Leibrandt,Nonlinear Model Predictive Control for Induction Machines
Bachelor’s thesis, 2011.

V. Ciftgibasi, Speed-Sensorless Control of Induction Motors using MRAS Ob-
servers Bachelor’s thesis, 2011.

H. Sado-KamgaingOptimierung einer Asynchronmaschjrgtudienarbeit,
2010.

J. Jung and A. Ddétlingetmplementierung einer MPC flr eine Synchronmas-
ching Lab Project, 2010.



174 APPENDIX G. RELATED WORKS

e A. Dotlinger, Predictive Control of a PMSM based on Real-time Dynamic
Optimization Bachelor’s thesis, 2010.

e P. Putzer, G. Walder, M. CampestriRield-oriented Control with a DSR.ab
Project, 2010.

G.2 List of publications

The following list includes all peer-review publicationgtitten during the time of
the author’s studies at the institute.

e J-F. Stumper, A. Doetlinger and R. Kennel, Loss minimizatidinduction
machines in dynamic operatiotEEE Transactions on Energy Conversjon
accepted for publication, 2013.

e D. Paulus, J-F. Stumper and R. Kennel, Sensorless Controlrafhgnous
Machines based on Direct Speed and Position Estimation liar Fator-
Current CoordinateSEEE Transactions on Power Electronjégol. 28, No.
5, pp. 2503-2513, 2013.

e J-F. Stumper, E. Fuentes, S. Kuehl and R. Kennel, Predictvgugé Control
for AC Drives: Analysis and Improvement of Parametric Robass,Proc.
Energy Conversion Congress and Exposition (ECTEnver, 2013.

e J-F. Stumper, V. Hagenmeyer, S. Kuehl and R. Kennel, Flatbased Dead-
beat Control revisited: Robust and High-performance DesigrEfectrical
Drives,Proc. American Control Conference (AG@Yashington DC, 2013.

e J-F. Stumper and R. Kennel, Real-time Dynamic Efficiency Oiattion for
Induction MachinesProc. American Control Conference (AG@Yashington
DC, 2013.

e J-F. Stumper, A. Doetlinger and R. Kennel, Classical Modetietize Con-
trol of a Permanent Magnet Synchronous MotGRE Journal (European
Power Electronics and Drives)nvited paper, Vol. 22, No. 3, pp. 24-31,
2012.

e J-F. Stumper, D. Paulus and R. Kennel, A Nonlinear EstimatdDi/namical
and Robust Sensorless Control of Permanent Magnet Syncledfachines,
IEEE Conference on Decision and Control and European Controf€ence
(CDC-ECC) Orlando, pp. 922-927, 2011.
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Optimization,Proc. European Conference on Power Electronics and Appli-
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tions (EPE - ECCE EuropeBirmingham, paper 106, 2011.
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Jeju, pp. 1378-1385, 2011.
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(ICPE - ECCE Asia)Jeju, pp. 1153-1160, 2011.
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sorless Control for Electrical Drives (SLEDPadova, pp. 8-13, 2010.
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Flat Inputs and a Dynamic Compensatimpc. European Control Conference
(ECC), Budapest, pp. 248-253, 2009.
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