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Zusammenfassung (German)

Das Hauptziel dieser Arbeit ist die numerische und analytische Modellierung Fourierdomänen mod-

engekoppelter (FDML) Laser. Diese Aufgabe wird durch numerische Simulationen bewerkstelligt, welche

die FDML-Propagationsgleichung mit Hilfe eines split-step Fourier Algorithmus in C++ löst. Basierend

auf der vorhergehenden Arbeit von Dr. Christian Jirauschek, wird dieser Simulationscode weiteren-

twickelt und modi�ziert, um die Erforschung der instantanen Linienbreite von FDML-Lasern zu er-

möglichen. Dadurch kann die instantane Linienbreite zum ersten Mal theoretisch untersucht und mit den

experimentellen Daten eines existierenden FDML-Lasers von Dr. Robert Hubers Gruppe an der LMU

München verglichen werden. Die Linienform der FDML-Laserstrahlung wird untersucht, und physikalis-

che E�ekte, die zur Linienform beitragen, werden identi�ziert. Eine sehr gute Übereinstimmung mit

den experimentellen Daten wird vorgefunden, was die Gültigkeit der numerischen Simulation der FDML-

Propagationsgleichung untermauert. Sogar Veränderungen der Linienform durch eine Verstimmung des

Lasers kann korrekt vorhergesagt werden. Zusätzlich ermöglicht es die Simulation, gezielt Laserparam-

eter ein- und auszuschalten, um deren Auswirkung auf die Linienform zu untersuchen. Auf diese Weise

wird entdeckt, dass in einem FDML-Laser die verstärkte spontane Emission (ASE) keinen Beitrag zur

instantanen Linienbreite liefert, im Gegensatz zu anderen bekannten Laserquellen. Diese neue Entdeck-

ung ermöglicht eine zusätzliche Einsicht in die Funktionsmechanismen von FDML-Lasern.

Weiterhin wird unter Verwendung numerischer Simulationen die Bildung eines stationären Betrieb-

szustandes untersucht, und das Gleichgewicht der physikalischen E�ekte, die zu dessen Entstehung

führen. Durch die systematische Untersuchung, welchen Ein�uss eine physikalische Gröÿe auf die spek-

trale Leistungsdichte hat, wird analysiert, welche E�ekte sich einander ausgleichen und zur Bildung eines

stationären Zustands führen. Es zeigt sich, dass durch die Linienverstärkung im Verstärkermedium,

in Kombination mit der Verstärkerdynamik eine Verschiebung des instantanen Leistungsspektrums zu

niedrigeren Frequenzen hin, verursacht wird. Die Dispersion führt zusätzlich zu einer zeitabhängigen

spektralen Verschiebung. Dem wird durch die asymmetrische Absorption des spektralen Bandpass�l-

ters entgegengewirkt. Der zweite E�ekt der auftritt, ist dass die Selbstphasenmodulation in der langen

Verzögerungsfaser zu einer spektralen Verbreiterung führt, was wiederum durch den Bandpass�lter kom-

pensiert wird. Die Linienverstärkung und die Dispersion beein�ussen das instantane Leistungsspektrum

zusätzlich. Diese Ergebnisse werden wieder detailliert mit den experimentellen Daten von Robert Hubers

7



Zusammenfassung (German) 8

Gruppe verglichen und zeigen eine gute Übereinstimmung.

Zum ersten Mal wird die Möglichkeit eines gepulsten Betriebs von FDML-Lasern untersucht. Eine

modi�zierte Variante der vorhergehenden numerischen Simulation und ein selbst geschriebenes Mat-

lab Programm wird verwendet um die Dispersionskompensation des Experiments zu simulieren. Dies

wird durch die exakte Nachbildung aller E�ekte im Experiment, das wieder von Robert Hubers Gruppe

durchgeführt wird, erreicht. Auf diese Art und Weise kann die Pulskompression simuliert werden, und

eine gute Übereinstimmung mit dem Experiment wird erreicht, wobei die kürzest möglichen Pulse eine

Länge von 60 ps haben. Auch die Abhängigkeit der Pulslänge von Parametern wie zum Beispiel der

Filterbandbreite und der Filterverzögerung werden untersucht und richtig vorhergesagt. Die Simula-

tion ermöglicht zudem die zusätzliche Optimierung des existierenden Aufbaus durch die Vorhersage dass

kleinere Filterbandbreiten und eine noch bessere Dispersionskompensation die Leistung eines gepulsten

FDML-Lasers bei weitem verbessern können, mit Pulsdauern im Bereich des Zeit-Bandbreite Produkts.

Abschlieÿend wird zum ersten Mal ein analytisches Modell für einen FDML-Laser hergeleitet. Hier-

bei wird ein Gauÿmodell als Ansatz benutzt. Es wird die FDML-Propagationsgleichung gelöst, wobei

die Bewegungsgleichungen sowohl mittels des Variationsprinzips als auch mit der Methode der Momente

hergeleitet werden. Beide Methoden führen zu den gleichen Bewegungsgleichungen. Es wird gezeigt,

dass das simple Gauÿmodell nicht ausreicht, um korrekt jeden E�ekt des FDML-Betriebs vorherzusagen,

sondern ein allgemeinerer Ansatz, wie zum Beispiel ein Hermite-Gauÿ-Ansatz, benötigt wird.



Abstract (English)

The main objective of this thesis is the numerical and analytical modeling of Fourier domain mode-locked

(FDML) lasers. This task is achieved by employing a numerical simulation, that solves the FDML evo-

lution equation based on a split-step Fourier algorithm, written in C++. Based on the previous work by

Dr.Christian Jirauschek, this simulation is further developed and modi�ed in order to enable the exami-

nation of the instantaneous linewidth of FDML lasers. Using this numerical simulation, the instantaneous

linewidth is for the �rst time theoretically investigated and then compared to experimental data of an

existing FDML laser setup provided by Dr. Robert Huber and his group from LMU Munich. The line-

shape of the FDML laser output is investigated, and physical e�ects that contribute to the lineshape are

identi�ed. Very good agreement with the experimental data is found, validating the numerical simulation

of the FDML evolution equation. Even deformations of the lineshape by a detuning of the laser setup

can correctly be predicted by the simulation. In addition to the experiment, the simulation enables the

subsequent on- and o�-switching of laser parameters, in order to study their impact on the lineshape. It

is so found that in an FDML laser, the ampli�ed spontaneous emission (ASE) does not contribute to the

instantaneous linewidth, in contrast to other known laser sources. This novel discovery gives additional

insight into the working principles of FDML lasers.

Further, using numerical simulations, the formation of a stationary state is investigated, and the

balance of physical e�ects that enable the formation of a steady state is studied. By systematically inves-

tigating what e�ect the various physical quantities have on the spectral power density, it is found which

e�ects balance each other and lead to the formation of a steady-state �eld. It is here found that a shift

of the instantaneous power spectrum towards lower frequencies is caused by the linewidth enhancement

of the gain medium in combination with the gain recovery dynamics. Also the dispersion induces a time

dependent spectral shift. These e�ects are then counterbalanced by the asymmetric absorption of the

tunable spectral bandpass �lter. Furthermore, self-phase modulation in the long �ber delay line causes

a spectral broadening, which is counterbalanced by the bandpass �lter. Also the linewidth enhancement

and dispersion in�uence the instantaneous power spectrum. These results are also carefully validated

with experimental data from the Robert Huber group, again showing good agreement.

For the �rst time, the possibily of a compression of the FDML output to short pulses is investigated.

Using a modi�ed version of the previous numerical simulation and a specially developed Matlab code,

9
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the dispersion compensation of the experiment is simulated. This is done by exactly emulating every

e�ect which occurs in the experiment, again performed by the Robert Huber group. In this way, the

pulse compression itself can be simulated and good agreement to the experimental data is found, with

the shortest achievable pulses being 60 ps. Also the dependence of the pulse length on parameters such as

the sweep �lter bandwidth and detuning are investigated and correctly predicted. In addition, the sim-

ulation enables a further optimization of the existing setup by predicting that smaller �lter bandwidths

and a better dispersion compensation can result in greatly reduced pulse durations in the range of the

time-bandwidth product.

In the last step, for the �rst time an analytical model for an FDML laser is presented based on a

chirped Gaussian ansatz. Here, the FDML evolution equation is solved, where the equations of motion

are being derived using a variational approach, as well as the method of moments. Both methods yield

the same equations of motion. It is then found that the simple chirped Gaussian model does not su�ce

to correctly predict every e�ect of FDML operation, but a more general approach is needed, such as a

Hermite-Gaussian model.



Chapter 1

Introduction

In 1958 a new era for science began, when Townes and Schawlow �rst formulated the concept of a novel

light source based on ampli�cation of visible light by stimulated emission[Sch58]. Only two years later the

�rst laser was built by Maiman [Mai60]. Since then, the laser has become a fundamental tool not only in

science and engineering, but also in everyday life. One example for a scienti�c application is laser cooling,

the most prominent example being the possibility of cooling ensembles of bosons to such temperatures

that Bose-Einstein condesates can form [Ket03]. Also for precision time and length measurments, a laser

is irreplacable [Did01][Kik86][Beh86]. Other �elds of application include newly emerged high energy laser

physics for creating nuclear fusion [Hay07], or sensing applications. Laser sensors are used for example

for gas detection [Toe97] or even for the detection of land mines [Boh06].

A great evolution step for lasers came in 1964, when Hargrove et al. [Har64] were able to create ultra

short laser pulses by means of mode-locking. This opened up a whole new �eld of applications, ranging

from ultra precise measurements of physical quantities [Wit05][Jon05], (e.g in femtochemistry) to com-

mercial applications, e.g. in optical communication [Mur10] [Kat11], and also medical applications, such

as tissue ablation [Nee96] and optical coherence tomography [Kra08][Lim05]. One of the mechanisms for

achieving very short pulses is called mode-locking, where a �xed phase relationship between the laser

modes is achieved by passive [Moc65] or active amplitude modulation [Har64] of the laser light.

Another �eld where high precision laser interferometry is crucial, is astronomy. Using laser interfer-

ometry, LISA is a proposed mission which aims to �nd gravitational waves in the cosmos [Arm99][Ben98].

Lasers also play a role for large telescopes, where atmospheric turbulences are suppressed by the use of

a laser guide star [Max97][Par94] in adaptive optics [Tys10]. In everyday life lasers have been playing an

increasing role within the last decades, e.g, small semiconductor lasers in DVD players or laser pointers.

A novel way of mode-locking was introduced in 2006 [Hub06], when Fourier domain-mode locking (FDML)

was �rst demonstrated as a means of achieving a modulation of the modes in the frequency or Fourier

domain, hence the name. The method used was to employ a tunable Fabry-Perot bandpass �lter [Ath81],

which is driven in such a way that it exactly matches the roundtrip time of the laser light within the

11
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cavity. This new means of mode-locking overcame the limitations of conventional swept-laser sources with

respect to the maximum achievable sweep rate [Hub05]. In conventional lasers, the maximum achievable

sweep rate is given by the buildup time of the laser modes within the cavity [Tel75]. In Fourier domain

mode-locking however, the tunable bandpass �lter is synchronously driven, matching the exact frequency

of the laser light. This leads to a �xed phase relation of the modes in the frequency domain, hence the

name Fourier domain mode-locking, since it represents a novel mode-locking regime for lasers by frequency

rather than amplitude modulation. The FDML laser produces a continuous wave (cw) output [Jav61].

In addition, FDML is true lasing, rather than being a light source based on ampli�ed spontaneous emis-

sion (ASE) [Jir08]. Because FDML lasers emit a near infrared cw light output with a coherence length

of several millimeters, it is highly suitable for numerous applications, ranging from sensing applications

[Lau07], to medical imaging applications such as optical coherence tomography (OCT). The very high

sweep rates of FDML lasers compared to standard tunable lasers of seveal hundred kHz [Jeo08], make it

the imaging tool of choice for OCT.

A record sweep rate of above 5 MHz has been achieved using a 325 kHz FDML laser and multiplying

the sweep repetition rate by using the so called bu�ering technique [Hub06][Hub06B][Wie10]. Besides

restrictions in the tuning speed of the �lter, no fundamental sweep speed limitations arise in FDML.

In principle, many types of rapidly tunable �lters can be applied, such as Sampled Grating Distributed

Bragg Re�ector (SGDBR) based �lters [Kle11], rotating polygon mirror based �lters [Der08], �lters based

on resonant galvanometer mirrors [Yun03], MEMS-based tunable Fabry Perot �lters [Hub05C] etc. Typ-

ical instantaneous linewidths of <0.1 nm, corresponding to a coherence length of several millimeters up

to centimeters [Vai95], together with the high sweep rates currently make the FDML laser the system

of choice for many high speed OCT and sensing applications [Hub06][Sri08][Liu08][Mao09]. To date,

other very promising approaches that do not su�er from the inherent limitation of sweep speed have

not achieved the combination of speed, tuning range, low noise and output power. A 5 MHz swept

source realized by temporally stretching an ultrashort laser pulse achieved an extremely wide tuning

range, but had too high noise for high quality OCT imaging [Tsa11]. A wavelength swept ASE source

achieved >300 kHz tuning rate, but also exhibited too much noise to fully achieve shot noise limited

detection in OCT [Moo06][Eig09]. Tunable VCSELs with a MEMS mirror achieve up to 760 kHz sweep

rate [Eig11][Yan09][Jay11] with very good coherence length but smaller sweep range and output power

than FDML lasers. Classical swept lasers for OCT have been demonstrated at sweep rates up to 400kHz

[Ove11].

The scope of this thesis is to gain further insight into the physical working principles of FDML lasers.

Based on previous work by Christian Jirauschek, a numerical simulation is used for this task, which is

then further modi�ed for the di�erent analyses. Comparison to the experiments from the Robert Huber

group at the LMU are throughout the thesis an important cornerstone to validate the results. Further-

more, a derivation of an analytical model for FDML operation is discussed. The main results of this
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thesis are listed below.

� An analysis of the instantaneous linewidth of the FDML laser is presented, in which the central governing 

mechanisms  are found. By  subsequently  turning on and o�  certain  physical  quantities,  a unique 

property of FDML  operation is found: The linewidth  is not governed by amplified spontaneous  emission 

(ASE)  or external  noise sources, but is based  entirely  on the  intrinsic properties  of the laser.

� The investigation of the spatio-temporal dynamics yields insight into the balance of the physical

e�ects that lead to stationary operation of FDML lasers. Every e�ect is analyzed and its contribu-

tion to the temporal and spatial behavior is listed. A quantitative analysis is presented on how the

various e�ects balance each other, leading to a stable spectrum and output power.

� A numerical method is developed to simulate pulse compression in an FDML laser. Comparison

to theory shows good agreement. The minimal achievable pulse length is found to be limited only

by the sweep �lter bandwidth and the remaining dispersion in the laser setup. Thus, much shorter

pulse lengths seem achievable in future laser setups.

� The FDML evolution equation is solved for instantaneous gain saturation without nonlinearity,

revealing that a chirped Gaussian solution describes such a setup very well. Numerical simulations

are performed in order to validate the result. The FDML equation is then solved for a simpli�ed gain

saturation model and additional nonlinearity. The results shows that the chirped Gaussian solution

does not su�ce to describe this FDML setup, and a more general Hermite-Gaussian solution is

needed.

The outline of this thesis is as follows:

In Chapter 2, the basic principles of optical pulse propagation are described. Starting point are the

Maxwell equations, the foundation of every classical treatment of electrodynamics. First, the linear prop-

agation of electromagnetic waves in linear media is explained. Then, the role of dispersion and gain is

discussed, as these e�ects are important for the treatment of the FDML laser. As gain and loss play an

important role in the FDML laser, these e�ects are also explained for general electromagnetic �elds. We

also have to treat nonlinear optical propagation occuring in the �ber part of the FDML setup. This is

done by �rst describing the Kerr e�ect and the e�ect of self-phase modulation (SPM). In the last step,

the nonlinear Schródinger equation (NSE) is derived, which is the foundation for the later derivation of

the FDML evolution equation.

Another cornerstone of this thesis is presented in chapter 3, which comprises the theoretical frame-

work developed by Christian Jirauschek in [Jir08]. There, an analytical equation for FDML operation

based on the NSE ansatz is derived. A central step is the simpli�cation of the NSE ansatz, considering

for example the role of the sweep �lter in FDML operation. As will be seen, the transformation from
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the laboratory to the reference frame of the sweep �lter will greatly reduce the complexity of the FDML

equation, enabling more e�cient computation. This leads us to a simpli�ed evolution equation that will

be the central governing equation for FDML operation and the starting point for further analytical und

numerical investigation. Furtheron, the numerical simulation on which the results are based, and the

split-step Fourier algorithm which is necessary for the simulation, is explained. The simulation utilizes

the FFTW (fastest Fourier transform in the west) [Fri05] algorithm, with a resolution of 8 million grid

points.

In Chapter 4, the most important parameter of FDML operation, the instantaneous lineshape will be

analyzed. This property of the FDML laser is indirectly related to the coherence length of the emitted

laser light, an increase of the coherence length would be a very desirable goal, with the possibility of

enabling new applications for FDML lasers. First, the experimental setup is shown, and the method for

experimentally extracting the instantaneous lineshape is explained. The lineshape of the instantaneous

power spectrum is then numerically investigated, determining the central governing mechanisms and

yielding good agreement between theory and experiment. This is done also for the case that the sweep

�lter and the cavity roundtrip time are detuned, revealing further insight into the FDML dynamics.

Finally it is found that, in contrast to other known laser sources, the instantaneous linewidth is governed

by the intrinsic dynamics of the FDML laser, such as the sweep �lter and gain action, dispersion and

self-phase modulation, and is thus not dominated by ASE or external noise sources.

In Chapter 5, the balance of the physical e�ects leading to stationary FDML operation is investigated.

After explaining the experimental setup of the laser, the temporal propagation of the optical light �eld

within the laser cavity is analyzed. The implementation of the Gaussian gating used in the experiment to

retrieve the instantaneous linewidth into the numerical analysis is discussed. Then the experimental and

numerical linewidths, as well as the mean frequencies of the instantaneous power spectra are extracted.

Good agreement is found between theory and experiment, further validating the theoretical work. Af-

terwards, all physical e�ects are discussed that contribute to the shape of the instantaneous linewidth.

It is found that the linewidth enhancement of the SOA in combination with the gain recovery dynamics

play an important role for the observed shift of the instantaneous power spectrum. Another important

physical property is the dispersion, which induces a time dependent spectral shift. It is found that these

e�ects are counteracted by the asymmetric absorption of the tunable bandpass �lter. Another important

mechanism that is found, is the broadening of the instantaneous power spectrum by the self-phase modu-

lation in the delay �ber. The linewidth enhancement and the dispersion also in�uence the spectrum. The

broadening is again counteracted by the repetitive �ltering after each roundtrip in the bandpass �lter.

In Chapter 6, the compression of the FDML output is discussed. In regular mode, the FDML laser

emits a highly chirped cw output. However, often short pulses are needed. Compression is experimen-

tally achieved by the inclusion of a dispersion compensation �ber (DCF) into the laser setup and external

compression with a high dispersion �ber. On the theoretical side ideal external compression is ca be
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obtained by compensating the phase of the complex �eld envelope. A perfect compensation of the phase

leads to perfect compression, which is not possible in the experiment, but will be done numerically and

also shown analytically. For non-perfect compensation we �nd typical pulse lengths of 20-40 picoseconds,

which is in good agreement with the experimental results.

In Chapter 7, an analytical model for FDML operation is derived, based on the evolution equation 

from Chapter 2. First, the general solutions of the FDML equation are discussed, coming to the conclu-

sion that they are unsuitable for a straight-forward analytical model, because with our laser parameters, 

the function arguments become so large that the numerical function evaluation is inhibited. Then, the 

exact solution of a simpli�ed FDML equation is derived using a chirped Gaussian ansatz. This yields 

the equations of motion for FDML operation. After that, the equations of motion are derived for the 

full FDML equation, using the variational principle [Jir06], known from theoretical mechanics, by mini-

mizing the action of the Lagrangian. For comparison, another ansatz for the derivation of the equations of motion 

is discussed, being the method of moments [Jir11]. Then, the solutions of the equations of motion are discussed 

and the impact of altering  certain  parameters  of FDML  operation  is investigated  and the e�ects  are discussed.

In Chapter 8, this thesis is summarized and an outlook for FDML lasers is given. In this thesis, several

new insights into FDML lasing are gained. It is found that the instantaneous linewidth is an intrinsical

property of the FDML laser, determined by the lasing parameters, rather than ASE or external noise

sources. Then there is a very good agreement between theory and experiment concerning the position

and time dependent propagation of the instantaneous linewidth within the laser cavity. Also, based on

the presented analytical model, a future optimization of the FDML laser, especially a reduction of the

instantaneous linewidth, seems achievable. This would open up a whole new �eld of applications for

FDML lasers, with sensory applications beyond OCT.
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Chapter 2

Propagation of electromagnetic waves

in linear and nonlinear media

In the following, the propagation of electromagnetic waves through linear and nonlinear media is ex-

plained. The starting point for this are the Maxwell equations, the cornerstone of electrodynamics.

Using the Maxwell equations, we then derive the wave equation for the propagation of electromagnetic

waves in linear media. The role of dispersion is treated, as well as the role of loss and gain. These are

important physical e�ects that will also be analyzed in detail later for the case of the FDML laser. Then,

the propagation of electromagnetic waves in nonlinear media is explained. As the FDML laser has a long

delay �ber where nonlinear e�ects play a role, the Kerr e�ect is explained in detail. The last step is

the derivation of the nonlinear Schrödinger equation, which is later on used as the starting point for the

derivation of the FDML evolution equation.

2.1 Linear propagation of electromagnetic waves

2.1.1 Maxwell equations

The Maxwell equations for the propagation of electromagnetic waves in media can be written as [Max64]:

~∇× ~H = ~j +
∂

∂t
~D; (2.1.1)

~∇× ~E = − ∂

∂t
~B; (2.1.2)

~∇ · ~D = ρ; (2.1.3)

~∇ · ~B = 0; (2.1.4)

17



Chapter 2. Propagation of electromagnetic waves in linear and nonlinear media 18

where ~E is the electric �eld, ~D is the dielectric �ux, ~B is the magnetic �ux and ~H is the magnetic

�eld. The current density is denoted as ~j, the charge density is ρ. The Maxwell equations must be

supplemented by material equations that describe the interaction of the �elds with the medium:

~D = ε0 ~E + ~P ; (2.1.5)

~B = µ0
~H + ~M ; (2.1.6)

where ε0 is the permittivity, µ0 is the permeability, ~P is the polarization and ~M is the magnetization.

We can now derive the wave equation from Maxwell's equation by taking the vector rotation of (2.1.2)

and using the relation ~∇×
(
~∇× ~E

)
= ~∇

(
~∇ · ~E

)
−∆ ~E from vector analysis. We then arrive at

∆ ~E − µ0
∂

∂t

(
~j + ε0

∂

∂t
~E +

∂

∂t
~P

)
=

∂

∂t
~∇× ~M − ~∇

(
~∇ · ~E

)
. (2.1.7)

By introducing the velocity constant of light in vacuum

c0 =

√
1

ε0µ0
(2.1.8)

we then arrive at the wave equation

(
∆− 1

c20

∂2

∂t2

)
~E = µ0

(
∂

∂t
~j +

∂2

∂t2
~P

)
+
∂

∂t
~∇× ~M − ~∇

(
~∇ · ~E

)
. (2.1.9)

2.1.2 Wave equation for linear propagation in isotropic media

The wave equation (2.1.9) greatly simpli�es for the case of a dielectric and nonmagnetic medium. In such

a medium, with no free charges and thus no currents, we have ~M = ~j = ~0 and ρ = 0. The wave equation

(2.1.9) now simpli�es to

(
∆− 1

c20

∂2

∂t2

)
~E = µ0

∂2

∂t2
~P (2.1.10)

because we have ~∇ · ~E = 0 for a homogenous medium. Also in the case of weak inhomogenities or weak

nonlinearities, this term can be neglected [Gra91][Yar89][Boy03]. A scalar constant χ, the susceptibility,

can now be introduced that relates the polarization and the electric �eld with each other by ~P = χ~E. The

susceptiblity can also be linked to the refractive index of the medium. Here, it is convenient to switch to

the frequency domain by means of Fourier transformation (see Appendix A). We have the simple relation

1 + χ(ω) = n2(ω); (2.1.11)

where ω denotes the angular frequency ω = 2πf and n is the refractive index of the medium. With
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the velocity of light in the medium c = c0/n we can write (2.1.10) in the Fourier domain, which can be

written in a very simple form as

(
∆ +

ω2

c2

)
~̃E(ω) = 0; (2.1.12)

where ~̃E(ω) is the electric �eld in the Fourier domain.

2.1.3 Dispersion

For the propagation of an optical pulse, which means a temporally limitited electromagnetic wave, we

can write the electric �eld as a product of the envelope and a carrier function [DrJ05]

~E(~r, t) = R
[
~A(~r, t)ei(~kc~r−ωct)

]
. (2.1.13)

The envelope function is denoted by ~A(~r, t), and the carrier is described by the angular carrier frequency

ωc. The wavevector of the carrier is denoted by ~kc. The envelope function can be written as

~A(~r, t) =

ˆ ∞
−∞

~̃A(~r, ω)ei(~k(ω)~r−ωt)dω; (2.1.14)

with a wavevector ~k(ω) depending on the angular frequency ω of the envelope function. In the following,

we assume that the wavevector is parallel to the z-axis, so that ~k(ω) = k(ω)êz. We can now expand the

wavenumber k(ω) in the vicinity of the center frequency ωc with ω = ωc + Ω into a Taylor series,

k(ω) = k(ωc) + Ω

(
dk

dω

)
ω=ωc

+
1

2
Ω2

(
d2k

dω2

)
ω=ωc

+ ... =

kc + Ωk
′
(ωc) +

1

2
Ω2k

′′
(ωc) + ..., (2.1.15)

where Ω << ωc. We therefore have a rapidly oscillating carrier, and a slowly oscillating envelope [Zin98].

The phase velocity is given by vph = ωc
kc
. The group velocity vg denotes the velocity of the envelope given

by

vg = 1/

(
dk

dω

)
ω=ωc

. (2.1.16)

We can now introduce a dispersion function, which contains terms higher than the �rst order in

(2.1.15) [DrJ05]:

D(Ω) =
∑
m≥2

DmΩm; (2.1.17)

with the dispersion coe�cients
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Dm =
1

m!

(
dmk(ω)

dωm

)
ω=ωc

. (2.1.18)

For the analysis of the FDML laser in later chapters, the second- and higher order dispersion coe�cients

will play a crucial role in understanding the properties of FDML dynamics.

2.2 Linear and nonlinear media

In linear isotropic media, we have the relation ~P = ε0χ~E ful�lled, where χ is the scalar susceptibility. In

linear anisotropic media however, we �nd

Pi =
∑
j

ε0χijEj ; (2.2.1)

with the susceptibility tensor χmn. The electric �eld and the polarization can now have di�erent directions

with respect to each other. For anisotropic, nonlinear materials we can write the relation for linking the

polarization and the �eld as a Taylor series [Abr70]:

Pi = ε0

∑
j

χ
(1)
ij Ej +

∑
jk

χ
(2)
ijkEjEk +

∑
jkl

χ
(3)
ijklEjEkEl + ...

 . (2.2.2)

The susceptibility tensors have di�erent orders, where χ(1)
ij denotes the linear susceptibility, χ(2)

ijk is the

second order susceptibility. The Pockels e�ect [Poc68], for example, is a second order e�ect. The Kerr

e�ect, discussed in the next subsection is for example an e�ect of the third order susceptibility χ
(3)
ijkl

[Agr06].

2.2.1 Kerr e�ect

If the refractive index is dependent on the pulse intensity, we can split the refractive index into two parts, 

one that behaves like in (2.1.11), and one that is dependent on the intensity. We can then write as an 

approximation [Kae05]:

n = n(ω, |A|2) ≈ n0(ω) + n2,L|A|2. (2.2.3)

The pulse envelope A(z, t) is here normalized, so that |A|2 is the intensity of the pulse. The intensity

dependent refractive index is denoted by n2,L. As a consequence of the Kerr e�ect, we have to discuss

the self-phase modulation, that also plays an important role in the FDML laser.
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2.2.2 Self-phase modulation

As a consequence of the Kerr e�ect, n2,L induces a phase-shift on the pulse envelope during the propa-

gation of the pulse. We can introduce the self-phase modulation (SPM) coe�cient γ = kcn2,L and write

for the �eld envelope

∂

∂z
A(z, t) = iγ|A(z, t)|2A(z, t). (2.2.4)

SPM only leads to a phase shift in the time-domain [Kae05], which means that in general only the

spectrum of the pulse changes, not the intensity pro�le.

2.2.3 Nonlinear Schrödinger equation

The simplest form of a nonlinear Schrödinger equation (NSE) [Zak68][Zak74] can be found by combining

the e�ects of second order dispersion and self-phase modulation, which yields the simplest form of a NSE:

i
∂

∂z
A(z, t) = D2

∂2

∂t2
A(z, t)− γ|A(z, t)|2A(z, t). (2.2.5)

This equation has the form of a Schrödinger equation from quantum mechanics [Mes03]. For the

case of ~r = zêz, the wavefunction Ψ(z, t) corresponds to the �eld envelope A(z, t), and the potential

V (z, t) becomes in this case −γ|A(z, t)|2. The potential is in this case dependent on the intensity of the

�eld envelope itself, therefore the equation is called nonlinear. The NSE can now be analogously derived

for additional physical e�ects. In the simplest case of (2.2.5), analytical solutions to this di�erential

equation can be found [Has73] for anomalous dispersion. In this case, the SPM and the dispersion act on

the pulse, both counteracting the e�ects of one another and leading to a stable pulse formation. These

steady-state solutions are called solitons. Nonlinear Schrödinger equations can now be found for more

complex scenarios by investigating the e�ect of a physical quantity on the �eld envelope A(z, t). Assuming

that the e�ects act simultaneously on the optical system, the NSE can be accordingly derived by adding

up the di�erent e�ects into the NSE. For example, we can add the e�ect of a gain medium, arriving at

i
∂

∂z
A(z, t) = ig

(
z, i

∂

∂t

)
+D2

∂2

∂t2
A(z, t)− γ|A(z, t)|2A(z, t).. (2.2.6)

Here, we made use of a property of the Fourier transform (see Appendix A.1), where the gain g(z, ω) in

the frequency domain becomes g
(
z, i ∂∂t

)
in the time domain.

In this manner, more complex NSEs can be derived, describing more complex optical systems. For

FDML operation, we have a NSE that takes into account all physical e�ects that occur within the laser,

see chapter 3.3.
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Chapter 3

Fourier domain mode-locking:

Applications, experimental setup,

governing equation and numerical

simulation

First, typical applications are presented, where the FDML laser is of great bene�t, even surpassing cur-

rently available options with respect to performance. Such applications are in general sensing applications,

where the high frequency swept infrared light with a large tuning range is of bene�t. Besides using FDML

lasers for thermometry [Kra07], or for the detection of chemicals [Kra07B], the main focus lies on the ap-

plications in optical coherence tomography (OCT). This procedure is analogous to ultrasound sonography

but with electromagnetic waves instead of sound waves. This technique allows for ultra-high resolution

images of biological tissue in real-time in vivo, with unprecedented detail and frame-rates [Hub10]. With

a coherence length of up to 2.1 cm, the limitation of FDML lasers having a too low coherence length of

only a few millimeters, has recently been overcome [Adl11], enabling much deeper scanning of biological

tissue than previously possible. With possibilities of future optimizations, new �elds for FDML lasers

could open up, enabling a whole new range of potential applications. In the following, a typical setup of

an FDML laser is shown, on which our work is based, except for the laser setup which is used for the pulse

compression in Chapter 6. In Chapters 4 and 5, every comparison with experimental data is done using

measurements performed with this FDML setup. We derive the central FDML governing equation from

the nonlinear Schrödinger equation (NSE) ansatz presented in the previous chapter, which will be the

central governing equation in this thesis. We then present the numerical simulation that is used to solve

the FDML evolution equation, using a split-step Fourier method [Agr06]. Because a straight-forward
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simulation is inhibited in the case of an FDML laser, we do a transformation from the laboratory frame

into the reference frame of the tunable bandpass �lter, in order to greatly reduce the computational e�ort.

3.1 Applications of FDML lasers

3.1.1 Chemical detection and sensing applications

FDML lasers have several bene�ts that make them a good choice in general for sensing applications

that require infrared light with a very large tuning spectrum and high frequency sweep speeds. With

the limitation of FDML lasers recently overcome, being that the coherence length is now up to 2.1 cm

[Adl11], the imaging depth is greatly increased, making FDML lasers not only a feasible option for

biological imaging applications, but for sensing applications in general.

FDML lasers have recently been used for engine gas thermometry [Kra07], where they are used to

investigate molecular absorption spectra in an engine. Here, the low-noise and high speed properties of

the FDML laser enable real time spectroscopy with a data acquisition speed of about 100 kHz. Aside

from engine gas thermometry, the real-time investigation of molecular absorption spectra would also

allow FDML lasers for the detection of chemicals in general [Kra07B], for example for the �nding of

explosive chemicals in security.

3.1.2 Optical coherence tomography

The main application of FDML lasers however, is for biological imaging applications such as optical coher-

ence tomography (OCT) [Sch99][Fer93][Swa93], where a rapidly swept laser source with a large spectral

tuning range is of great bene�t [Hub06]. In its main application, OCT, the FDML laser is far superior

to standard tunable laser sources, because of the much higher sweep speed. This is possible, because in

FDML lasers, the sweep speed is only limited by the mechanical response time of the FDML laser, and

not by the buildup time of lasing in the cavity as in the standard tunable laser. Here, the lasing has to

build up repetetively from noise successively after each roundtrip. The maximum achievable sweep speed

is thus limited by the buildup time of lasing within the cavity. Because this is overcome in FDML lasers,

sweep speeds in the MHz range have recently been achieved, and tuning ranges of over 200 nm [Wie10].

This enables in this case high quality 2D and 3D scans of biological samples in vivo and in vitro at a very

high scanning speed. The acquired resolution is in the range of ≈ 10 µm.

In OCT, a long wavelength (typically near infrared) light source with a low coherence length is pointed

towards a biological sample that is to be analyzed. Because the coherence properties of the light are

destroyed when it is refracted on the sample, only the non-refracted light retains its coherence properties.

With an interferometer, the scattered light ist then overlapped with the non-scattered light and by means

of Fourier analysis of the interference pattern, the initial image of the sample can then be reconstructed.
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This technique is analogous to the principle of ultrasound scanning [Don58], only with coherent electro-

magnetic waves instead of sound waves [Hua91]. The re�ective pro�le of a sample is called an A-scan or

axial scan [Kim11], which represents the re�ected amplitude of the light along the optical propagation

axis. This terminology is directly derived from the ultrasound terminology, because this technique is

older than the OCT technique, but based on the same imaging principles with sound waves instead of

light waves. In B-scan mode [Per00], the brightness of the image represents the amplitude of the re�ected

light. In this mode, a cross-sectional image is aquired, by combining a number of a-scans. A greyscale

image then shows the amplitude of the re�ected light, revealing the structure of the biological sample. In

C-scan or "en face" imaging mode [Pod04], structures are visualized, that have the same optical delay.

Some bene�ts of OCT include the high acquired resolution in the micrometer range, the capability of

direct imaging of the tissue without need of previous preparation ("in vivo") and the non-hazardous

attributes of the used optical waves. Here, FDML proves to deliver even more bene�ts, allowing with its

coherence length a scanning depth of up to centimeters [Adl11], and with its very high sweep speeds, a

very high data aquisition rate, which in turn translates to a high frame-per-second count. As in regular

OCT, the samples can be scanned also "in vivo", because of the very low energy of the laser light in the

mW regime, which is also di�use when used for OCT. Special �elds are for example ophthalmology where

it can be used to obtain detailed images from a human eye in motion. In general, it can be applied to

all biological samples. In Fig. 3.1.1, an OCT image is shown for an "in vivo" image of a human �nger

[Hub06]. The resolution of this image is 4096x1024, and the axial scanning rate is 42000 axial scans per

second which corresponds to 0.097 s per image. With 10 frames per second and such a high resolution,

FDML delivers unprecedented image properties. This is only possible due to the very high data aquisition

rates that the high sweep speeds of FDML lasers allow.

Figure 3.1.1: Image of a human �nger "in vivo". The image resolution is 4096x1024 pixels which is aquired in 0.097 s. This
corresponds to 42000 axial scans per second and 10 frames per second. Image courtesy of Robert Huber (Ludwig-Maximilians
Universität München).
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Newer FDML OCT setups enable even better performance. As shown in [Wie10], OCT setups with

sweep ranges of up to 5.2 MHz can deliver scanning rates of about 20 million axial scans per second.

3D scans of biological tissue posed until recently a high challenge, because the acquisition time was too

long or the 3D data sets were unevenly distributed in each of the three dimensions. For high de�nition,

real-time 3D scans, very large data sets of up to 4.5 GVoxels/s are aquired. In Fig. 3.1.2, three OCT

images of the human �nger are shown at di�erent data aquisition speeds [Wie10].

Figure 3.1.2: Examples of 3D images aquired by an FDML OCT setup as in [Wie10] with di�erent setups. The left image
is an OCT image of the human �nger near the nail aquired at a 1 MHz scanning rate. The image in the middle is at a
scanning range of 2.6 MHz. The right image is taken using a setup that operates at 5.2 MHz scanning rate. Images courtesy
of Robert Huber (Ludwig-Maximilians Universität München)

A �eld where OCT is especially suited for imaging is in retinal OCT, where the human eye can be

scanned "in vivo" without potential risks. Here, FDML laser setups provide the necessary high data

acquisition rates, with over 1 million axial scans per second (1.37 MHz scanning rate)[Wie10]. Such

high speeds enable the aquisition of wide-�eld, densely packed data sets within only a few seconds. The

resolution of this setup is 11 µm at 684 kHz scanning speed or 19 µm at 1.37 MHz. As shown in Fig.

3.1.3, the images aquired by the FDML setup in [Wie10] provide a very high detail of the macula of the

human eye, an oval shaped spot near the center of the retina. Here, the two setups are compared, both

consisting of 1900x1900 axial scans.
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Figure 3.1.3: The top image shows a rendering of the 3D data set aquired by the FDML setup in [Wie10]. The data set
consists of 1900x1900 axial scans and an ultra-wide imaging �eld of 70◦. The middle pictures show a reconstruction of the
macula in front view. The second last row shows a cross-sectional image through the macula and the optics disc. The bottom
row shows enlarged images of the macula and the optical nerve. Images courtesy of Robert Huber (Ludwig-Maximilians
Universität München).

3.2 Experimental setup of the FDML laser used for our simula-

tions

Fourier domain mode-locking is achieved in our case by the implementation of a tunable narrow bandpass

�lter (FFP-TF, Lambda Quest, LLC.) with a bandwidth of 0.15 nm into a �ber laser ring geometry,
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Figure 3.2.1: Experimental setup of FDML laser. The central elements are the tunable Fabry-Perot narrow bandpass or
sweep �lter (FFP-TF), the solid state optical ampli�er (SOA) as a gain medium, and the 3.4 km single mode �ber (SMF)
delay line. This laser has a center wavelength of 1320 nm, a sweep frequency of 57 kHz, and a tuning range of 105 nm.

with a solid state optical ampli�er (SOA, Covega Corp., "BOA 1132") as a gain medium and a single

mode �ber (SMF) as a delay length. The setup used for this thesis is shown in Fig. 3.2.1. The �lter is

driven around a center wavelength of 1320 nm. The tuning range is 105 nm, and the sweep frequency

is 57 kHz. This corresponds to a roundtrip time of 17.32 µs of the laser light in the cavity. The

roundtrip time is directly proportional to the length of the SMF. In this setup, the length of the delay

line is doubled by the implementation of the Faraday rotating mirror (FRM), after the light has passed

through the polarizing beam splitter (PBM). This beam splitter maintains the polarization of the laser

light. In addition the elements are connected by a polarization maintaining (PM) �ber. Light can

be coupled out at three di�erent points within the laser cavity, which is useful for the analysis of the

optical �eld dynamics in Chapter 4. The �rst one is after the SOA, where 50 % of the light is coupled

out, the second one is after the SMF, where 40 % is coupled out, and the third one is after the sweep

�lter, where 50 % of the light can be coupled out. If for example, the light after the SOA is analyzed,

the other outcouplers remain deactivated, so that only outcoupler number 1 would couple out light.

This can be done analogously for the other outcouplers. To ensure unidirectional lasing, and to reduce

light scattering within the �ber, two optical isolators (ISO) are mounted directly before and after the SOA.

The sweep �lter itself is driven sinusoidally, or can be alternatively driven with any periodic function

such as sine, cosine and ramp- or step-functions. The period of this �lter drive function is chosen such,

that it exactly matches the roundtrip time of the laser light. The roundtrip time is in turn determined

by the distance the light travels within the cavity, which in this case is two times the length of the

SMF �ber (3.4 km). A shorter SMF would directly result in a shorter roundtrip time and a higher

sweep frequency. Basically, the upper limit is only given by the mechanical response time of the sweep

�lter. This overcomes the limitations in standard tunable lasers, where the maximum sweep frequency
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is limited by the buildup time of the lasing, enabling far higher sweep frequencies. Sweep frequencies for

OCT applications typically range from several 100 kHz [Jeo08], to frequencies beyond 5 MHz [Kle11],

that have recently been achieved.

The sweep �lter, with its bandwidth of 0.15 nm, lets only modes of the wavelength pass, that are within

this narrow transmission window. Therefore, only light waves are allowed that have a certain frequency

at a certain time. This leads to a �xed phase relationship directly in the frequency domain, hence the

name Fourier domain mode-locking. In contrast to standard mode-locked lasers, the FDML laser emits

a train of higly chirped pulses, producing a cw output.

In this setup, the sweep �lter is driven with the angular driver frequency ω0(t) = −∆ω
2 cos(ωst). The

�lter drive function is shown in Fig. 3.2.2. As can be seen, it is symmetrical around the center angular

frequency of 1.428 · 1015 s−1, corresponding to 1320 nm.
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Figure 3.2.2: The �lter is driven with an angular frequency of ω0(t) = −∆ω
2

cos(ωst), with ωs being the sweep frequency of
57 kHz. The center frequency of the sweep is 1320 nm.

3.3 FDML equation

This system can be described by a nonlinear Schrödinger equation in the slowly varying amplitude

approximation [Agr06]. As described in chapter 2.2.3, the NSE Ansatz can be modi�ed in order to

incorporate the physical e�ects that take place within a laser. The simplest example of a NSE in optics

is for a laser where there acts only second order dispersion and self-phase modulation simultaneously on

the envelope A(z, t), as in (2.2.5). However, in an FDML laser, several e�ects occur that have to be taken

into account. The FDML equation for the complex �eld envelope A(z, t) in the laboratory frame can be

written as [Jir08]:
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∂

∂z
A(z, t) =

[
g

(
z, i

∂

∂t

)
(1− iα)− a

(
z, i

∂

∂t

)
− iD2(z)

∂2

∂t2
+D3(z)

∂3

∂t3
+ iγ(z)|A(z, t)|2

]
A(z, t);

(3.3.1)

This equation is a partial di�erential equation with respect to the retarded time t and the propagation

direction along z. This simpli�cation can be done because this is a �ber laser where the transverse mode

pro�le is approximately constant. Therefore we can assume a 1-dimensional propagation direction. The

coe�cient α describes the Henry- or linewidth enhancement factor [Hen82], D2 and D3 are the second-

and third order dispersion coe�cients and γ is the self-phase modulation caused by nonlinear optical

propagation, as discussed in chapter 2.2.2. It has only a constant, non-zero value in the delay �ber and

vanishes in the other laser components. The gain and loss in the laser have also to be taken into account

and are described by g(z, i ∂∂t ) and a(z, i ∂∂t ). They are functions of the position z but also of the frequency

in the Fourier domain. Inverse Fourier transforming this frequency dependency to the time-domain,

yields the dependency on i ∂∂t , which is a mathematical property of the Fourier transform (See Appendix

A.1). As will be seen in the next section, a straight-forward numerical simulation based on (3.3.1) is not

possible because of the huge time-bandwidth product of this laser setup. Therefore, in order to reduce

the numerical complexity of this problem, a tranformation of the complex �eld envelope A(z, t) into the

reference frame of the sweep �lter is needed. This reference frame is now moving along with the sweep

�lter center frequency as seen in Fig. 3.2.2. Because the spectral width of the sweep �lter is with 0.15 nm

only 0.1% of the tuning range of 105 nm, we can greatly reduce the time-bandwidth product by a factor

of 1000. The instantaneous frequency of the carrier wave is now adjusted to the sweep �lter position, it

therefore gives the transformation for the complex �eld envelope into the new reference frame [Jir08]:

u(z, t) = A(z, t)exp

(
i

ˆ t

ω0(t′)dt′
)
. (3.3.2)

Inserting this relation into (3.3.1) yields the tranformed FDML equation

∂

∂z
u(z, t) = exp

(
i

ˆ t

ω0(t′)dt′
)[

g

(
z, i

∂

∂t

)
(1− iα)− a

(
z, i

∂

∂t

)
− iD2(z)

∂2

∂t2
+D3(z)

∂3

∂t3

]

· exp

(
−i

ˆ t

ω0(t′)dt′
)[

iγ|u(z, t)|2 − as
(

i
∂

∂t

)]
u(z, t). (3.3.3)

The sweep �lter loss is described by as(i ∂∂t ). In the frequency domain, the sweep �lter can be implemented

as a static loss coe�cient as(ω). The sweep frequency fs is in our setup slow, so that the two terms

∝ u ∂
∂tω0 and ∝ ω0

∂
∂tu can be neglected, which further simpli�es the FDML evolution equation. The

spectral width of u is now given by the narrow sweep �lter bandwidth and not by the bandwidth induced

by the whole sweep range. Therefore, we can assume that the frequency dependent gain and loss of
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(3.3.1) do not change much over the frequency range of the tranformed �eld envelope u(z, t). We then

arrive at a simpli�ed FDML evolution equation in the swept-�lter reference frame, which is the central

equation also for other theoretical and numerical considerations in later chapters:

∂

∂z
u(z, t) =

[
g(ω0)(1− iα)− a(ω0) + iω2

0D2 + iω3
0D3 − iD2

∂2

∂t2
+ iγ|u|2 − as

(
i
∂

∂t

)]
u(z, t). (3.3.4)

The �lter drive function depends on time, ω0 = ω0(t) (Fig. 3.2.2). This simpli�ed equation is much

more accessible for numerical simulations and is used in the next section as a basis for that. In the next

section, a numerical simulation is presented for solving (3.3.4).

3.4 Numerical simulation

3.4.1 Split-step Fourier algorithm

The huge time-bandwidth product in (3.3.1) of 17.32 µs ·18 THz would require about 3·108 grid points for

the simulation, an amount too large to be feasible currently. The FDML equation in the swept-reference

�lter frame (3.3.4) on the other hand, requires a considerably lower amount of grid points for computation.

By the transformation, the amount of necessary grid points has been reduced by a factor of about 100.

Because the �lter blocks all light far outside the passband, not the entire spectral sweep bandwidth has

to be taken into account; instead, a spectral window of 2.8 nm around the �lter center frequency is here

considered, corresponding to 500 GHz. Since the temporal simulation window is adapted to the roundtrip

time T=17.32 µs, due to the implicit periodic boundary conditions of the algorithm [Jir08], the frequency

resolution is f=1/T=57.7 kHz. Thus, about 8 million grid points are used, as compared to 300 million

without switching to the swept-�lter reference frame. The 8 million grid points are used in a split-step

Fourier method [Agr06] with the FFTW algorithm [Fri05] to simulate the FDML laser on the basis of

(3.3.4). The number of grid points has been chosen as a power of 2 (223 ≈ 8 million), because the FFTW

algorithm requires a power of 2 in order to reduce the computing time. The basic idea of the split-step

Fourier scheme is to split up a general partial di�erential equation into a linear and a nonlinear part.

The simplest NSE from Chapter 2.2.3 for example, can be written as

∂

∂z
A(z, t) =

(
L̂+ N̂

)
A(z, t); (3.4.1)

where L̂ denotes the linear part given by the second-order dispersion, and N̂ denotes the nonlinear part

given by the self-phase modulation. The same also applies for (3.3.4), only with greater complexity. The

self-phase modulation and the gain saturation in the FDML laser are nonlinear e�ects, whereas the other

parts of (3.3.4) are linear e�ects. The solution is then computed in small steps, while the linear and the

nonlinear parts are treated separately [Agr06]. Because the linear part is computed in the time domain,
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Figure 3.4.1: The split-step Fourier method splits a nonlinear partial di�erential equation into linear and nonlinear parts,
which are treated consecutively in the time and in the frequency domain. The step size is h, while L and N denote the
linear and nonlinear part of the di�erential equation, in our case 3.4.1.

and the nonlinear part is treated in the frequency domain, the solution is aquired by consecutively Fourier

transforming and back-transforming in small steps. This is visualized in Fig. 3.4.1, where L and N denote

the linear and nonlinear parts, respectively, and h is the step size. At the beginning and at the end we

have to be in the time domain, therefore the step size here is only half the step size h. The resolution of

8 million grid points means that the process of consecutive Fourier and inverse Fourier transforms takes

place 8 million times.

3.4.2 Implementation of the various elements of the FDML laser

The SOA is implemented as a lumped element in the simulation, which means that the SOA that has

a spatial elongation, is treated as a point-like structure. By integrating over the length of the SOA, we

obtain the amplitude gain G given by

G = e
´ z gdz′ . (3.4.2)

For modeling the gain, the spectral gain pro�le of the SOA is experimentally determined, as well as the

frequency dependent saturation behavior. This is shown in Fig. 3.4.2. There, the spectral gain pro�le

for di�erent incident powers of the optical light �eld as measured in the experiment is shown. Another

e�ect that has to be taken into account when modeling the gain, is the gain recovery dynamics. We

use a quasi-instantaneous gain saturation model [Jir08] in order to take into account the following two

e�ects: First, the carrier lifetime τc in the SOA is much faster than the optical power modulations that

are caused by tunable bandpass �lter. Secondly, optical �uctuations caused by ASE can be faster than τc.

This circumstance is taken into account by a moving average value for the optical power Pav(t) instead

of the power P (t):

Pav(t) = τ−1
c

ˆ t

−∞
P (t)e

τ−t
τc dτ ; (3.4.3)

where τc acts as an exponential memory decay time [Jir08]. For the carrier lifetime and the Henry factor,

typical values are implemented, τc = 380ps and α = 5 [Bil06].
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ASE has two e�ects: The simulation can self-start from ASE, and a constant noise �oor is added to

the output of the laser. We take a noise source with a constant spectral power density Pf at the SOA

input, which is then implemented as additive white Gaussian noise [Cas00]. The spectral power of the

noise source is experimentally measured to Pf = 3.2 mW. Also, the gain properties of the SOA and

the overall cavity power loss have been carefully measured, and the results are also implemented into

the simulation. The gain and loss curve with the frequency dependency and also the power saturation

properties of the gain, are shown in Fig. 3.4.2.

Figure 3.4.2: (a) Experimentally measured SOA power gain (linear scale) as a function of the optical frequency for di�erent
values of the incident optical power. (b) Experimentally measured overall cavity power loss (linear scale) as a function of
the optical frequency. The sweep �lter has been tuned to maximum transmission at each measured frequency.

The delay �ber is an SMF28 �ber, and is implemented according to the speci�cations from the

manufacturer Corning, with the corresponding dispersion, loss, and self-phase modulation. The self-phase

modulation has a value of γ = 0.00136 W−1m−1, and the second and third order dispersion coe�cients

are D2 = −2.7603 · 10−28s2/m and D3 = 1.2183 · 10−41s3/m, respectively.

The last element of the FDML laser, that has to be modeled is the sweep �lter. It is modeled also as

a lumped element (like the SOA), which has a Lorentzian transmission characteristic:

ts = e−
´
asdz =

√
Tmax(

1− 2iω
∆

) ; (3.4.4)

with ∆ = 169 ps−1 and Tmax = 0.5.

The total loss in the laser cavity a(ω) is a function of the frequency and has also been experimentally

measured and built into the simulation [Jir08].

The simulation typically converges after a few hundred roundtrips, and convergence is ensured in

the time, as well as in the frequency domain by consecutively comparing the simulated outputs for each

roundtrip. Small �uctuations are remaining from the ASE noise, so that the output has very small

changes from roundtrip to roundtrip. All laser parameters are taken either from literature or retrieved

directly from the experiment. This means that the simulation is totally self-consistent, it thus does not
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Figure 3.4.3: Simulated power output for an FDML laser centered at 1320 nm with a sweep range of 105 nm, a roundtrip
time of 17.32 µs, and a �lter drive function according to Fig. 3.2.2.

depend on �tting parameters. A typical time-dependent power output of a simulation for the FDML

laser centered at 1320 nm with a sweep range of 105 nm, a roundtrip time of 17.32 µs, and a �lter drive

function according to Fig. 3.2.2 is shown in Fig. 3.4.3. Based on the comparison of the simulated power

output with the experimental data in [Jir08], a good agreement between theory and simulation is found,

which will be continued in this thesis for other investigations of FDML properties.

3.4.3 C++ code

The code itself is written in C++, where a subroutine is written for every element of the laser. The basis

of the whole simulation is the complex FFTW �eld, which is a complex valued array with the real part

u[0], and the imaginary part u[1]. This �eld is now consecutively computed for every element of the laser.

The �rst element is the gain, and because the gain is a nonlinear e�ect, its e�ect on the �eld u[0] and u[1]

is computed in the time domain. As already mentioned in the previous subsection, the gain curve has

been experimentally obtained, together with its saturation behaviour. Also, the gain lifetime has been

taken into account. These e�ects are implemented into the code accordingly, where the gain curve is

calculated with a cubic spline interpolation routine from the experimental data points. Then, the e�ect

on the �elds is calculated in the time, and after that, the �eld is Fourier transformed into the frequency

domain. Then, the �eld is fed into the next subroutine, representing the next element of the laser. This

would in our case be the delay �ber. Because in the delay �ber, linear e�ects such as dispersion, and

nonlinear e�ects such as SPM are acting on the complex �eld u(z, t), the linear part is treated in the

subroutine for dispersion, and the nonlinear part in another subroutine. Here again we have the principle

that the nonlinear part is treated in the time domain. Now, this consecutive Fourier transforming, and

backtransforming is done for the 223 or 8388608 grid points. So, the complex FFTW �eld is computed
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for every element of the laser consecutively, starting with the gain, then the delay �ber and then the

sweep �lter. Every physical e�ect from the FDML evolution equation (3.3.4) is implemented accordingly,

as explained in subsection 3.4.2. When the complex �eld has been computed after passing every single

element of the FDML laser, meaning that every subroutine of the code has been passed, a complete

roundtrip has been completed. Then, the �eld is passed into the �rst element of the laser again, starting

the second roundtrip in the laser. This procedure can be applied in�nitely many times, with convergence

of the �eld typically achieved within a few hundred roundtrips. The output of the simulation, the complex

FFTW �eld, is saved into a �le, with a typical size of 230 MB, due to the large amount of grid points.

The �eld is then read into Matlab, where the power can be easily plotted by calculating the absolute

square |u(z, t)|2 of the complex FFTW �eld. Convergence of the output is assured by plotting the power

output consecutively for each roundtrip, with the point of convergence reached when the output does not

change any more for di�erent roundtrips.

The complex FFTW �eld saved into the 230 MB data �les, is also the starting point for every later

analysis, or simulation plot in this thesis. In Fig. 3.4.3 for example, the complex FFTW �eld is read

into Matlab, and the absolute square of the �eld is plotted, giving the power over time. Later on, the

�eld is computed in the Fourier domain, and segregated into smaller subintervals, in order to retrieve the

instantaneous linewidth (see Chapter 4.2 and Chapter 5).



Chapter 3. Fourier domain mode-locking: Applications, experimental setup, governing equation and

numerical simulation 36



Chapter 4

Instantaneous lineshape analysis of

FDML lasers

Using the previously presented FDML governing equation (3.3.4) from Chapter 3, the �rst goal of this

chapter is to investigate the dependence of the FDML linewidth on cavity parameters and relevant physical

e�ects. In contrast to the experiment, the numerical simulation allows us to change the laser parameters

easily. We then can examine the e�ect that this change has on properties such as the instantaneous

linewidth and thus the coherence length of the laser, which is inversely proportional to the instantaneous

linewidth. The gained insight from this method of changing the laser parameters can then be used to

�nd ways to increase the instantaneous coherence length from the mm range to the cm or m range in the

future, enabling a whole new variety of biological and non-biological imaging and sensing applications.

The second goal is to investigate if ASE and environmental instabilities ultimately limit the FDML

linewidth performance, as in typical semiconductor based lasers.

The simulations are performed employing the procedure described in chapter 3. Linewidths around

10 GHz are found, which is signi�cantly below the sweep �lter bandwidth of 27 GHz [Tod11]. The e�ect

of detuning between the sweep �lter driver frequency and the cavity roundtrip time is studied revealing

features that cannot be resolved in the experiment. Shifting of the instantaneous power spectrum against

the sweep �lter center frequency is also analyzed. It is then shown that in contrast to most other

semiconductor based lasers, the instantaneous linewidth is governed neither by external noise sources nor

by ampli�ed spontaneous emission, but it is directly determined by the complex FDML dynamics. This

is in contrast to other known laser sources and is found to be a speci�c property of FDML lasers.

37
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Figure 4.1.1: The experimental setup shown in (a) is the same as in Fig. 3.2.1, and in (b) the measurement of the
instantaneous lineshape is performed. The function generator drives the sweep �lter and is linked to a pulse generator,
which in turn is coupled to the electro-optical modulator (EOM). The EOM takes the outcoupled light and feeds it then
into the optical spectrum analyzer.

4.1 Experimental setup and measurement of the instantaneous

linewidth

The experimental setup in 4.1.1(a) is the setup shown in Fig. 3.2.1, with a few additions for the mea-

surement of the instantaneous lineshape, which is shown in Fig. 4.1.1(b). In swept laser sources, such

as the FDML, the instantaneous linewidth is the most important parameter, because it determines the

coherence length. In contrast to the time-integrated linewidth, the instantaneous linewidth is de�ned as

the spectral linewidth that the laser emits at a given point in time. In order to measure the instantaneous

linewidth experimentally, the setup of Fig. 4.1.1(b) is additionally employed.

As seen, the function generator drives not only the sweep �lter, but also triggers a 1.6 ns pulse in

the pulse generator (Picosecond Pulse Labs, model 2600). The pulse generator in turn is connected to

the electro-optical modulator (EOM, Photline "MX13"), in such a way that it always cuts out a 1.6 ns

long optical waveform at the same spectral position of the sweeps. The laser light can be coupled out

at the three di�erent points within the laser cavity, and is fed into the EOM, where the 1.6 ns gating of

the laser light takes place. Several e�ects lead to a broadening of the measured instantaneous linewidth,

compared to the numerical simulation. First, the optical spectrum analyzer has a �nite resolution of 20

pm, corresponding to a spectral width of 3.5 GHz at 1310 nm. Furthermore, the 1.6 ns gating window

leads to a Fourier broadening of 1 GHz according to the time-bandwidth product. Longer gating times

would suppress this e�ect, but lead to considerable smearing of the linewidth due to the sweep �lter

dynamics. For a sweep �lter driven by a cosine wave, the broadening has its maximum value of 3.81

GHz at 5.3 and 3.3 µs, whereas at 1.3 and 7.3 µs, it is only 1.85 GHz due to the slower sweep speed at

that point. The combination of all these e�ects leads to a broadening of the experimentally measured

spectrum by about 4-8 GHz compared to the theoretically calculated values.
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4.2 Calculation of the instantaneous linewidth

The starting point for the analysis of the instantaneous linewidth is the FDML propagation equation

(3.3.4) in the swept-�lter reference frame. The experimental setup used for the simulation is the one

presented in chapter 2. The simulation that is described in chapter 3, calculates the complex �eld envelope

u(z, t) of (3.3.4) in the swept-�lter reference frame. The instantaneous linewidth can now be obtained

from the simulation data by Fourier transforming the complex �eld envelope, yielding the instantaneous

power spectrum |u(z, f)|2, where f denotes the frequency with respect to the center frequency of the sweep

�lter. The duration T of one roundtrip can now be segregated into a given number of subintervals, and

the instantaneous power spectrum at di�erent times can be calculated by Fourier transforming u(z, t) for

each interval. Here, we divide the axis into 16 intervals of 1.08 µs, summing up to the total roundtrip

time of 17.32 µs. This way we can simulate the temporal evolution of the instantaneous power spectrum.

Because the simulation is performed in the swept-�lter reference frame, the simulation is not broadened

by the ongoing sweeping action during a time-gate as it is in the experiment. The instantaneous power

spectrum is here computed after the SOA. The instantaneous linewidth corresponds to the full width at

half maximum (FWHM) of the instantaneous power spectrum.

4.3 Results

4.3.1 Agreement with the experiment

In Fig. 4.3.1, the instantaneous power spectra are compared at di�erent times t for the nondetuned case,

where the sweep �lter frequency matches exactly the roundtrip time. In Fig. 4.3.1(a), t = 1.3 µs, where

the sweep �lter center frequency varies only slowly, and in Fig. 4.3.1(b) t = 3.3 µs, where the cosine

function is the steepest, thus the frequency changes fast. For this reason, the experimental spectrum

in Fig. 4.3.1(b) is considerably broadened as compared to the simulated spectrum, with a full width

at half-maximum (FWHM) of 12.07 GHz for the experimental result vs. 5.81 GHz for the simulation

[Tod11].

For further validation, the detuned case is investigated, where the sweep �lter is not completely

synchronous to the roundtrip time of the light �eld in the laser cavity. A positive detuning means that

the sweep �lter is ahead of the light �eld, whereas a negative detuning means that the light �eld is ahead

of the sweep �lter in time. For the detuned case, also good agreement between theory and experiment

is obtained under various conditions. In Fig. 4.3.2(a), Fig. 4.3.2(b) and Fig. 4.3.2(c), the instantaneous

power spectrum is displayed at t = 7.3 µs for zero, -2 Hz and + 2 Hz detuning, respectively. The

detuning between the sweep period and the roundtrip time a�ects not only the time dependent output

power [Jir08], but also the instantaneous power spectrum. More speci�cally, we observe a pronounced

high-frequency tail for both negative and positive detuning, see Fig. 4.3.2(b) and Fig. 4.3.2(c). This
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Figure 4.3.1: Experimental (red) and simulated (blue) instantaneous power spectra after the SOA at (a) 1.3 µs and (b) 3.3
µs for no detuning.

asymmetry gets reduced for a smaller amount of detuning, as can be seen by comparison with the non-

detuned case shown in Fig. 4.3.1(a). The main source of this asymmetry is found to be the third order

dispersion term D3. In chapter 5, we analyze the impact of the third order dispersion in more detail. In

Fig. 4(b), the asymmetry manifests itself as a small side peak, which is not resolved in the experiment

due to the limited resolution as discussed above [Tod11].

4.3.2 Timing o�set, linewidth enhancement factor and spectral shift

In our simulation, where the frequency axis moves along with the sweep, a broadening of the instan-

taneous power spectrum due to the sweep �lter dynamics is eliminated. Thus, we can analyze the

instantaneous power spectrum averaged over the whole roundtrip time, which is not possible in the

experiment. In the experimental setup, only small "cut-outs" of the output can be examined. In Fig.

4.3.3(a), the instantaneous power spectrum is plotted for zero detuning and with the laser parameters

as in the experiment, where the linewidth enhancement factor is assumed to be α = 5 (red) [Hen82]

and α = 0 (blue). The sweep �lter transmission function is also shown for comparison. Figure 4.3.3(b)
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Figure 4.3.2: Theoretical (blue) and experimental (red) power spectra at 7.3 µs for (a) no detuning, for (b) a detuning of
-2 Hz and for (c) a detuning of +2 Hz.

shows the same simulation, but now with ASE only used at the start of the simulation to seed lasing.

From Fig. 4.3.3(a) we can extract that the frequency shift of the power spectrum is due to the linewidth

enhancement in the SOA, as also observed for conventional swept laser sources. The cause of this

frequency shift is explained in detail in Chapter 5. Tere it is found that a combination of the linewidth

enhancement and the carrier decay lifetime in the SOA are the sources of this phenomenon.
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Figure 4.3.3: (a) Simulated instantaneous power spectrum for α = 5 (red) and α = 0 (blue), the sweep �lter transmission
function is drawn in black. (b) The instantaneous power spectrum for α = 5 (red) and α = 0 (blue) but without ASE.

Here, we additionally observe a signi�cant broadening of the linewidth from 7.25 GHz (without ASE) and

7.41 GHz (with ASE) to 10.08 and 9.99 GHz, respectively, indicating that SOAs with low or optimized

values for α might be preferred. This �nding might also indicate that for light sources with very narrow

instantaneous linewidth, post ampli�cation as presented in [Hub05B] might lead to decreased coherence

properties, depending on α. The qualitative and quantitative agreement of experimental and simulation

results presented above show the validity of our model. Furthermore, these results clearly indicate that

the linewidth is not dominated by external noise sources, such as �uctuations of the pump current,

frequency or amplitude instabilities of the �lter drive waveform or acoustic vibrations, since such e�ects

are not contained in the simulation. Our model can now be used to identify the physical e�ects governing

the instantaneous linewidth by successively switching on and o� the e�ects in the simulation, which is not

possible in experiment. The central question is if the linewidth is dominated by ASE, as is usually the

case for semiconductor and other lasers in the absence of external noise sources [Hen82]. In Fig. 4.3.3(b),

the linewidth is displayed as obtained with ASE used only for initial seeding. Comparison with Fig.
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4.3.3(a) shows that the power spectrum is virtually unchanged without ASE. Rather, the instantaneous

lineshape is governed directly by the FDML dynamics. Thus, the linwewidth is an inherent property of

the FDML laser caused by the interplay of the various physical e�ects taking place simultaneously in the

laser, such as the sweep �lter and gain action, dispersion and self-phase modulation.

4.3.3 Conclusions

In conclusion, the instantaneous power spectrum of an FDML laser is theoretically and experimentally

investigated. The linewidth enhancement factor results in a frequency shift relative to the sweep �lter

center frequency as well as a broadening, and third order dispersion leads to an asymmetry of the

instantaneous power spectrum. Good agreement between simulation and measurement is obtained for

both the non-detuned and the detuned case, con�rming the validity of our theoretical model. The

simulations reveal that the instantaneous linewidth is not governed by external noise sources or ASE, but

results directly from the FDML dynamics due to the sweep �lter and gain action, dispersion and self-phase

modulation [Tod11]. Such a theoretical understanding of the e�ects governing the instantaneous power

spectrum is important for a further optimization of the linewidth and thus the coherence properties of

FDML lasers. An improvement of the coherence length from the mm range up to cm or even tens of cm

would result in the accessability of new areas for FDML lasers, such as industrial sensing applications or

the use of FDML lasers as scanning devices for larger areas.



Chapter 4. Instantaneous lineshape analysis of FDML lasers 44



Chapter 5

Balance of physical e�ects causing

stationary operation of FDML lasers

For this chapter, the experimental setup is the same as in Fig. 4.1.1. However, now the focus lies on

what physical e�ects lead to the formation of a stationary �eld [Tod11B]. As in the previous chapter, we

divide the roundtrip time into subintervals and then Fourier transform the output power in each of these

intervals separately, so that we can examine the temporal evolution of the instantaneous power spectrum.

The number of the intervals should be su�ciently high to obtain a good temporal resolution. On the

other hand, in order to avoid Fourier broadening of the instantaneous power spectra, the subintervals

should not be too short. We choose 16 subintervals with a duration of 1.08 µs each, so that the e�ect of

Fourier broadening is still negligible.

The �nite time-gating of 1.6 ns (full width at half-maximum) in the measurement setup in Fig. 4.1.1

leads to Fourier broadening as well as spectral broadening due to the sweep �lter dynamics during the

measurement. As discussed above, both e�ects can be suppressed in the simulation: The time gating is

chosen long enough as to avoid Fourier broadening, and the �eld envelope u in (3.3.4) is described in the

swept �lter reference frame where the frequency axis moves along with the sweep �lter center frequency.

However, for direct comparison of the simulated and the experimentally measured spectra, the e�ects of

�nite time gating should be considered in the simulation. For the implementation of these e�ects, the

relation between the complex �eld envelope u in the swept �lter reference frame and the untransformed

envelope function A has to be used [Jir08],

u = A · exp

(
i

ˆ t

ω0(t′)dt′
)
. (5.0.1)

The sweep �lter is driven by a cosine function, given by ω0(t) = −∆ω/2cos(2πt/T ). For a measurement

at time t0, we can use a Taylor expansion and write the integral in the exponent of (5.0.1) as

45
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ˆ t

t0

ω0(t′)dt′ = ω0(t0)(t− t0) +
1

2

∂ω0

∂t
|t=t0(t− t0)2 + ...; (5.0.2)

where the �rst term induces merely a spectral shift in the Fourier domain and is not further considered,

while the second term induces spectral broadening. We therefore obtain for the gated �eld envelope the

relation

A = u · exp

[
− (t− t0)2

2σ2
− i

2

∂ω0

∂t
|t=t0(t− t0)2

]
; (5.0.3)

with the Gaussian pulse duration σ = 1.6ns/2/ln(2)1/2 = 0.961 ns. The power spectrum is given by

|A(z, f)|2, where A(z, f) denotes the Fourier transform of A(z, t), and the frequency axis is here centered

around the sweep �lter center frequency at the time t0.

An additional e�ect which has to be considered, is that the experimentally obtained power spectra

are averaged over several thousands of roundtrips, thus eliminating �uctuations which arise during the

short gating time. In order to take into account this e�ect, we average the simulated gated spectra

over 20 non-subsequent roundtrips, starting from roundtrip 900 to ensure convergence of the simulation.

This proves su�cient for eliminating �uctuations. On the other hand, averaging turns out to be

unnecessary for the simulated spectra obtained without gating, since there �uctuations are eliminated

due to the much longer time intervals over which the spectra are extracted. Furthermore, the optical

spectrum analyzer used in the experimental setup shown in Fig. 4.1.1 has a �nite resolution of 20 pm,

corresponding to a spectral width of 3.5 GHz at 1310 nm. To imitate this e�ect, the obtained numerical

spectra are smoothened over 4000 points.

In Fig. 5.0.1, the simulated instantaneous power spectrum after the SOA at t=5.3 µs is shown for

gating and averaging considered (blue dotted curve) and without taking these e�ects into account (green

dotted curve), and compared to the experimental data (dash-dotted curve). The FWHM values are 13.77

GHz, 10.13 GHz and 15.81 GHz, respectively. As can be seen, the consideration of the time gating in the

simulation is essential for a precise comparison to experiment. Without the inclusion of these e�ects, the

simulated FWHM linewidth does not match the experimental data very well, as expected.

5.1 Temporal and spatial evolution of the optical cavity �eld

In Fig. 5.1.1, the simulated temporal evolution of the instantaneous power spectra is shown after the

SOA. The spectra change with time, but show an overall shift towards negative frequencies. In this

section, we theoretically and experimentally investigate the temporal evolution of the spectral properties,

as well as the spatial evolution along the resonator axis. In particular, we investigate how the interplay

of the various e�ects leads to the formation of a steady state light �eld.
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Figure 5.0.1: Instantaneous power spectrum at t=5.3 µs after the SOA for the simulation with gating considered (blue dotted
curve), for the simulation without gating (green dotted curve), and as obtained from experiment (dash-dotted curve). The
sweep �lter transmission (solid curve) is shown for comparison.
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Figure 5.1.1: Simulated temporal evolution of the instantaneous power spectrum after the SOA over a full roundtrip without
gating included.

5.1.1 Discussion of the spectral shaping e�ects

FDML simulations indicate that the temporal and spatial evolution of the laser �eld, here characterized by

its instantaneous power spectrum, is dominated by the gain dynamics including linewidth enhancement,

the dispersion and self-phase modulation in the optical �ber, and the sweep �lter action [Jir08, Tod11B].
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In the following, we investigate how each of these e�ects contributes to the spectral shaping of the light

�eld. First, we analyze the contribution of the linewidth enhancement factor to the spectral shaping,

which has been observed to cause a shift of the power spectral peak to lower frequencies [Tod11B]. This

e�ect is here more closely investigated. We can solve (3.3.4) keeping only the term associated with the

optical gain, and obtain

u = u0 ·G(1−iα)/2 (5.1.1)

where the total power gain is related to the gain coe�cient by integrating over the length of the gain

medium, G = exp
[
2
´
g(ω0)dz

]
. For the modeling of the gain dynamics, we have to consider both the

saturation behavior and the spectral dependence [Tod11B], which is done by using an ansatz

G(t) =
G0[ω0(t)]

1 + Pav(t)/Psat[ω0(t)]
. (5.1.2)

The spectral dependence enters through the frequency dependent peak gain G0 and saturation power

Psat. The saturation is modeled based on a quasi-instantaneous gain saturation approach [Tod11B],

accounting for the �nite carrier lifetime in the SOA which governs the gain recovery dynamics, assuming

a typical value τc = 380 ps [Bil06]. In this approach, the saturation level of the gain at a time t is not

directly determined from the instantaneous optical power P (t), but rather based on a moving average

value, introduced in (3.4.3). In this way, relaxation processes in the gain medium, which lead to a

non-instantaneous gain recovery for changes of the optical power on timescales faster than the carrier

lifetime, can be adequately taken into account [Tod11B]. Such fast changes can arise due to the complex

FDML dynamics itself, and are also induced by ASE and other noise sources. For the simulated optical

power shown in Fig. 3.4.3, these high frequency contributions are largely suppressed because of the

smoothing applied there, corresponding to a sampling rate of 500 MHz to imitate the experimental

measurement setup. However, these contributions give rise to a broadened instantaneous linewidth, as

shown in Fig. 5.0.1 We investigate the in�uence of the linewidth enhancement factor, taking a Gaussian

spike P0 = u2
0 = Pgexp(−t2/T 2

g ) where the peak power is set to Pg = 10Psat and Tg is chosen so that

the corresponding power spectrum has a full width at half-maximum value of 10 GHz, similarly to the

observed instantaneous linewidths [Tod11B].

In Fig. 5.1.2(a),  the  Gaussian  spike P0(t) and the  moving  average  value  Pav(t)  from (3.4.3) for τc = 380 ps  is shown. 

As can be seen,  the  relaxation   process  induces  an asymmetry   in form of a slow decay  of Pav(t).  In Fig. 

5.1.2(b), the  power  spectrum  of the  Gaussian  input  pulse  is shown along with  the  output  power spectrum  after  

the  gain medium,  obtained  with (5.1.1)  for α = 5. The  peak of the  output  spectrum  is shifted  by -3.6 GHz. 
Further  simulations  show that  the  shift is almost  exclusively  due to the linewidth  enhancement,  i.e.,  the 
imaginary  part of the  term (1 − iα) in (5.1.1),  and not the  real  part  corresponding  to the  ampl i�cation.  In 
other  words,  the  combination   of linewidth   enhancement   and  the
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Figure 5.1.2: (a) Gaussian   input  pulse  and  the  corresponding   averaged   power  as a function  of time. (b) Power  spectrum  of 
the  Gaussian   input  pulse  and  output  power spectrum  after  the  gain  medium.

recovery dynamics in the gain medium leads to the spectral red shift.

Now we focus on the dispersive e�ect in the optical �ber. In previous simulations we found that if the

sweep rate is detuned with respect to the roundtrip time of the light within the cavity, the third order

dispersion D3 causes a spectral asymmetry, which is however greatly reduced for the non-detuned case

considered here [Tod11B]. In the following, we investigate the time dependent in�uence of dispersion for

no detuning. Considering only the relevant terms in (3.3.4), we can obtain a closed analytical solution.

For the propagation through a dispersive �ber of length L, the �eld envelope at the end of the �ber is

given by

u(z + L) = u(z)exp{i
[
ω2

0(t)D2 + ω3
0(t)D3

]
L} = u(z)exp [iφ(t)] . (5.1.3)

Here we have neglected the term −iD2
∂2

∂t2u, which by itself does not a�ect the power spectrum. As

described in subsection 3, the instantaneous power spectrum at a time t0 is obtained by dividing the

roundtrip time into subintervals and Fourier transforming the output power in the corresponding interval

separately. In the subinterval centered around t0, the exponent in (5.1.3) can be approximated by a

Taylor expansion,
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φ(t) ≈ φ(t0) +
∂

∂t
φ(t0)(t− t0) + ... (5.1.4)

While the 0th order term φ(t0) just represents a constant phase shift, the 1st order term containing

∂
∂tφ(t0), which corresponds to the instantaneous frequency, induces a spectral shift by the amount

δf = −
∂
∂tφ(t0)

2π
= − 1

2π

[
2D2ω0(t0) + 3D3ω

2
o(t0)

] ∂
∂t
ω0(t0)L (5.1.5)

in the Fourier domain. It should be pointed out that dispersion as a linear e�ect does not change the

photon energy, but causes an additional delay of the optical �eld in the �ber. Due to the sweep dynamics,

this re-timing of the optical �eld leads to an additional spectral shift of the instantaneous power spectrum

with respect to the sweep �lter center frequency, as described by (5.1.5). In Fig. 5.1.3, the spectral

shift according to (5.1.5) as a function of t0 is shown for a single propagation through the optical �ber

with D2 = −276 fs2/m, D3 = 12183 fs3/m, and L = 3400 m. Since the center wavelength in our

simulation is 1320 nm, which is close to the zero dispersion point D2 = 0, the in�uence of D3 is dominant.
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Figure 5.1.3: Temporal dependence of the frequency shift caused by the �ber dispersion.

The self-phase modulation in the optical �ber is well known to induce spectral broadening [Agr06]. For

a very slowly varying output power level, as in the ideal FDML laser, this e�ect might be negligible.

However, in real operation, the optical power exhibits high frequency �uctuations as discussed above. As

a consequence, self-phase modulation has a considerable in�uence on the instantaneous power spectrum.
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In the following, we investigate this e�ect, using a Gaussian spike as a model for optical power �uctuations.

Considering only the relevant term in (3.3.4), we obtain the solution

u(z + L) = u(z)exp
(
iγ|u(z)|2L

)
. (5.1.6)

The e�ect of the self-phase modulation is illustrated in Fig. 5.1.4 for γ = 0.00136 W/m and again a �ber

length of L=3400 m, assuming the same Gaussian input pulse as in Fig. 5.1.2, here with a peak power of

200 mW. While self-phase modulation does not induce a frequency shift, it causes spectral broadening.

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

S
pe

ct
ra

l p
ow

er
 d

en
si

ty
 [a

rb
. u

.]

 

 
Input
Output

Figure 5.1.4: Power spectrum of the Gaussian input pulse and output power spectrum after self-phase modulation.

Next we investigate the e�ect of the sweep �lter, which, as we will show in the following, acts as a bandpass

�lter and balances the frequency shift induced by the dispersion and the linewidth enhancement. We solve

(3.3.4) in frequency domain keeping only the term associated with the sweep �lter and using ω = 2πf ,

and obtain the pulse envelope in Fourier domain

U(ω) = ts(ω)U0(ω). (5.1.7)

The sweep �lter is modeled as a lumped optical element, where the transmission characteristic is related

to the sweep �lter coe�cient by integrating over the length of the sweep �lter [Tod11B], with

ts(ω) = exp

[
−
ˆ
as(ω)dz

]
=

T
1/2
max

1− 2i/∆
. (5.1.8)

Here, we choose ∆ = 0.169 ps−1, corresponding to a Lorentzian �lter with an FWHM bandwidth of 0.156

nm. The e�ect of the sweep �lter is illustrated in Fig. 5.1.5 for the same Gaussian input pulse as in Fig.

5.1.2, but shifted by -10 GHz relative to the sweep �lter center frequency. The low frequency wing of the
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spectrum is "cut o�" by the sweep �lter, which induces an e�ective shift of the output spectrum towards

higher frequencies. Similarly, spectra centered around positive frequencies are e�ectively shifted to lower

frequencies, thus reducing the spectral shift. Furthermore, the sweep �lter acts as a bandpass, narrowing

the linewidth of the instantaneous power spectrum.

Due to its complex transmission characteristic (see (5.1.8)), the �lter induces not only absorption,

but also a frequency dependent phase o�set φ = arctan(2ω/∆). Approximating the phase by a �rst order

Taylor series expansion in analogy to (5.1.4), U(ω) in (5.1.7) acquires an additional linear phase, which

corresponds to a delay of the optical �eld in time domain. Due to the sweep dynamics, this re-timing of

the optical �eld is associated with an additional spectral shift. However, for the sweep �lter parameters

of the investigated laser, this time delay amounts to only 10 ps at the center and even less in the wings

of the �lter, corresponding to a maximum frequency shift of 30 MHz, which is much smaller than the

e�ective shift caused by the sweep �lter absorption. We have con�rmed this by comparing simulations

with and without considering the phase in (5.1.8), yielding very similar results and thus showing the

negligible in�uence of these phase contributions.

The resulting instantaneous power spectra in steady state operation are thus determined by a balance

between the frequency shift induced by dispersion and linewidth enhancement on the one hand, and the

compensating e�ect of the sweep �lter on the other hand.
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Figure 5.1.5: Power spectrum of the Gaussian input pulse and output power spectrum after the sweep �lter. The sweep
�lter transmission (dotted curve) is shown for comparison.
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5.1.2 Analysis of the FDML dynamics in steady state operation

In order to better understand the interplay of the various optical cavity elements leading to the formation

of a steady state light �eld, the temporal evolution of the instantaneous power spectrum at various points

in the cavity is monitored. The simulation results are shown in Fig. 5.1.6 for the mean frequency and

full width at half-maximum (FWHM) linewidth, extracted from the obtained spectra without gating. In

Fig. 5.1.6(a), the temporal evolution of the mean frequency, extracted from the obtained power spectra,

is shown after the SOA, the �ber and the sweep �lter. By comparing the results after the sweep �lter and

the SOA, it can be seen that the SOA causes a negative frequency shift at all times. This is due to the

linewidth enhancement, as shown in Fig. 5.1.2. The �ber dispersion induces a negative frequency shift

during the forward sweep, and a positive shift during the backward sweep, as illustrated in Fig. 5.1.3.

However, the linewidth enhancement dominates, leading to negative mean frequency values at all times.

Finally, the sweep �lter partly compensates this negative shift, stabilizing the operation and leading to the

formation of a steady state. In Fig. 5.1.6(b), the temporal evolution of the FWHM linewidth is shown,

as obtained for a single roundtrip. The sweep �lter acts as a bandpass (see Fig. 5.1.5), thus narrowing

the linewidth and compensating for the broadening induced by the SOA and the �ber. The linewidth

maxima coincide with the power maxima (see Fig. 3.4.3). The reason is that the phase o�set due to self-

phase modulation, and thus the resulting spectral broadening, depends on the optical power, see (5.1.6).

The investigated setup operates at around 1320 nm close to the zero dispersion point D2=0. For lasers

operating at di�erent wavelengths, the second order dispersion can play a major role. To investigate this

e�ect, simulations have been performed using the value of D2 at 1550 nm (anomalous dispersion regime)

and at 1060 nm (normal dispersion regime). In both cases the overall linewidth increases signi�cantly,

and also the linewidth change during a roundtrip is more pronounced. For the D2 at 1550 nm, the

instantaneous linewidth varies between 7.10 and 27.15 GHz, and similar values are obtained for the D2

corresponding to 1060 nm.

5.1.3 Comparison to experiment

In order to verify the validity of our simulation approach, we compare the numerical results to the

experimental data. To enable a quantitative comparison, we include in our simulations the experimental

e�ects of time gating, averaging and limited measurement resolution as in Section 4.1. First, we extract

the full width at half-maximum (FWHM) linewidth of the simulated and experimental spectra as a

function of time. In Fig. 5.1.7, the theoretical and experimental linewidth is plotted versus time. The

experimental data indicates an asymmetry of the linewidth evolution for the forward and the backward

sweep, with maxima obtained at around 4.3 µs and 13.7 µs, the positions where the sweep �lter speed is

maximum. This trend is also con�rmed for the simulations with gating included, which yield reasonable

qualitative and quantitative agreement with the experiment. The simulation data without gating reveal

a much smaller linewidth dependence, demonstrating that the observed maxima are mainly due to the
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Figure 5.1.6: Simulation results for the temporal evolution of (a) mean frequency and (b) linewidth.

fast sweep �lter dynamics at these positions, leading to a maximum broadening e�ect during the �nite

time gating.

In the following, we compare the instantaneous power at various positions in the laser cavity. The

time is �xed to t = 5.3 µs. In Fig. 5.1.8, the experimental (dashed curve) and theoretical (dotted

curve) spectral power density is plotted after the SOA, the �ber and the sweep �lter, respectively. Since

the instantaneous power spectrum is measured on an absolute frequency scale and the time dependent

sweep �lter center frequency at the measurement time is not known with su�cient accuracy, it is not

possible to determine the frequency shift of the experimental power spectra. Thus, the frequency axis of

the experimental spectra is chosen so that the experimental and simulated peak positions coincide. In

Fig. 5.1.8(a), the FWHM spectral width after the SOA is 15.81 GHz for the experimental spectrum and

13.77 GHz for the simulated spectrum, respectively. The mean frequency of the simulated spectrum is

located at -2.28 GHz with respect to the sweep �lter reference frame. In Fig. 5.1.8(b), the spectral power

density is plotted after the SMF. The FWHM is 13.82 GHz for the experimental data, and 13.83 GHz

for the simulation, respectively. The simulated mean frequency shift is -2.39 GHz. Fig. 5.1.8(c) shows

the instantaneous power spectra after the sweep �lter. Now the FWHM is 12.68 and 13.19 GHz for the

experimental and theoretical data, respectively, while the simulated mean frequency shift is -1.71 GHz.
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Figure 5.1.7: Simulated and measured temporal evolution of the linewidth. Shown are simulation results with gating
considered (dashed curve) and without gating (dotted curve), as well as experimental data (crosses).

Altogether, the results displayed in Fig. 5.1.7 and Fig. 5.1.8 show good qualitiative and quantitative

agreement between the simulation and experiment, con�rming the validity of the chosen simulation

approach. The inclusion of optical gating, averaging over several roundtrips and limited measurement

resolution in the simulation enables us to evaluate the additional linewidth broadening caused by these

e�ects, thus allowing for a closer comparison with experiment, and an assessment of the in�uence of these

e�ects on the experimental data. Remaining deviations between theoretical and experimental results are

mainly ascribed to uncertainties in some of the used laser parameters. For example, the relaxation time

and linewidth enhancement factor of the SOA may deviate somewhat from the assumed typical values.

Furthermore, the spectral features depend strongly on the detuning of the sweep �lter with respect to the

cavity roundtrip time [Tod11B]. While the zero detuning point can be exactly �xed in the simulation, it

can only be approximately determined in the experiment based on criteria such as the maximum obtained

output power.

5.2 Conclusion

In conclusion, the chapter provides an answer to the question, why FDML lasers operate in a stationary

regime. A quantitative analysis is given about which e�ects balance each other, leading to a stable spec-

trum and output power: (1) A red shift of the instantaneous power spectrum towards lower frequencies

is caused by the linewidth enhancement of the SOA in combination with the gain recovery dynamics.

Also the dispersion induces a time dependent spectral shift. These e�ects are counterbalanced by the
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Figure 5.1.8: Experimental (dashed) and theoretical (dotted) instantaneous power spectra after (a) the SOA, (b) the SMF
and (c) the sweep �lter at t=5.3 µs.

asymmetric absorption of the tunable spectral bandpass �lter. For a red-shifted spectrum, the sweep

�lter transmission function causes an e�ective shift to higher frequencies by reducing the low-frequency

spectral wing. (2) Self phase modulation in the long �ber delay line causes a spectral broadening, and also

the linewidth enhancement and dispersion in�uence the instantaneous power spectrum. The broadening

is counterbalanced by the bandpass �lter, narrowing the spectrum again by the repetitive �ltering event

at each roundtrip.

For these investigations, a detailed analysis of the optical �eld propagation in the FDML laser is pre-

sented. The temporal evolution of characteristic spectral parameters at various positions in the cavity,
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such as the frequency shift and the linewidth, is investigated, yielding the described insight into the forma-

tion of a steady state light �eld. All relevant physical e�ects are considered in our model. A comparison

of numerical results to experimental data shows good agreement, validating the theoretical model. These

new insights represent an important step towards understanding the fundamental mechanisms governing

the steady state dynamics in the FDML regime, and are helpful towards a further optimization of the

FDML laser.
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Chapter 6

Pulse compression in an FDML laser

6.1 Types of ultrashort pulsed lasers

As has been shown in the previous chapters, the FDML laser has a cw power output. This means that

the power does not �uctuate too much over the course of time. The power output can of course have a

time-dependency, however the power does not fall to zero, so that separate pulses would evolve. This is

the case for a pulsed laser. Laser pulsing can be achieved in several ways. One way is Q-switching, which

has �rst been proposed in 1958 [Tay00], with �rst experimental realisations in the early 1960s [Clu62].

Here, ultrashort pulses are achieved via the integration of an attenuator into the laser resonator, which

suppresses lasing so that inversion can build up. In active Q-switching, the attenuator is externally

controlled. The pulse duration is therefore controlled externally. In passive Q-switching, a saturable

absorber is inserted into the laser cavity. By varying the pump power, the repetition rate of the

pulses can be controlled, and also by the amount of saturable absorber in the cavity. Another way is

mode-locking. Here, the phase relationship between the distinct laser modes is �xed in such a way, that

the power output is pulsed [Lam64][Kui70]. This can be achieved by active or passive mode-locking

techniques [Har64][Moc65], where by a modulation of the amplitude of the light-�eld, the phase relation

between the di�erent modes gets �xed, or locked.

In active mode-locking for example, an acousto-optic modulator is placed into the laser cavity. This

device can be driven with an electrical signal, which in turn modulates the light �eld in the cavity

sinusoidally. The modes in the cavity have a frequency-spacing ∆v. Now the modulator is driven in such

a way, that the driver frequency exactly matches ∆v. The amplitude modulation itself causes sidebands

at frequencies which have the same spacing. If this process is now applied for a long enough time-span,

all the modes will be phase-locked at some point in time.

In passive mode-locking, a saturable absorber is placed into the cavity in order to block out low

intensity light. High intensity light is preferably transmitted. Because of random intensity oscillations,

this process repeats, and the high intensity light is ampli�ed selectively, wherease the low-intensity light

59
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is absorbed. After a long enough time-span this then leads again to a pulse-train with a �xed frequency

spacing ∆v.

For both cases, a �xed phase relation in the frequency domain then leads to distinct, separate

pulses in the time-domain. These pulses can get very short, with shortest pulses in the atto-second

range [Ant96], and commercial applications with femtosecond lasers are already emerging. Femtosecond

lasers can be divided into di�erent types, the �rst one being bulk lasers. This type of laser is passively

mode-locked with pulse lengths typically in the range of 30 fs to 30 ps. Typical output powers lie

between 100 mW and 1 W and repetition rates of 50 to 500 MHz. The most prominent lasers in this

category are titanium-sapphire lasers [Mou86][Gib96][Sut99], which have achieved pulse durations of

below 10 fs [Sti95], with the lowest achieved pulse length of 5 fs [Ell01][Nog08].

Another type of laser for short pulse durations are �ber lasers [Koe64], which are mostly passively

mode-locked. They have pulse durations of 50 to 500 fs and repetition rates of 10 to 100 MHz

[Bur73][Sto74][Mea85].

Dye lasers are another example of mode-locked lasers, which are however not so common since they pose

high technical disadvantages in comparison to bulk lasers. They are capable of producing pulses below

1 ps length, with shortest pulses of ≈ 20 fs length [Val85][Sha74][Sha75]. Recently, continuous wave

operation of a dye laser has been achieved [Bor06].

Semiconductor lasers can generate very short pulses by means of active mode-locking, below 500

fs [Gar02], but have very high repetition rates of above 1 THz [Ara96]. This makes them suitable for

applications in optical �ber communication for very fast data transmission.

6.2 Ideal pulse compression

In an FDML laser, the �xed phase relationship between the di�erent intracavity modes is achieved directly

in the frequency domain by the use of the sweep �lter as described in chapter 2 in detail. The output

of the FDML laser is cw, and in order to operate the laser in pulsed mode, dispersion compensation is

a crucial element to achieve this. In order to generate very short pulses, the phase of the complex �eld

envelope u(z, ω) has to be cancelled out almost completely in the frequency domain, so that the resulting

�eld in the time domain is very short. A regular Gaussian pulse in the time domain can be written as:

u(t) = u0e
−t2

2σ2
T . (6.2.1)

Via Fourier transform, the envelope in the frequency domain has the following relation:

ũ(ω) = F [u(t)] = u0

ˆ ∞
−∞

e
−t2

2σ2
T eiωtdt = u0

√
2πσ2

T e
−ω2σ2

T
2 . (6.2.2)
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In comparison, a frequency chirped Gaussian of the form

uch(ω) = u0e
−ω2σ2

T
2 −iDω2

, (6.2.3)

with a quadratic dispersion relation leads to a wider pulse in the time domain:

uch(t) = F−1 [uch(ω)] = u0

√
1

σ2
T + 2iD

exp

[
−t2

2(σ2
T + 2iD)

]
. (6.2.4)

The power spectrum Pch(t) is then given by

Pch(t) =
|u0|2√
σ4
T + 4D2

exp

(
− t2

σ2
T + 4D2/σ2

T

)
= |u0|2e

−t2

2σ2
T,ch . (6.2.5)

It follows that for D 6= 0, σT,ch > σT . This means that the additional dispersive phase in the frequency

domain leads to a longer pulse in the time domain.

In order to compensate the e�ect of the frequency chirp, the pulse from (6.2.3) can now be led throught

a dispersive medium so that the e�ect of the phase is cancelled out (ideal compression):

ucomp(ω) = u0e
−ω2σ2

T
2 −iDω2

eiDω2

= u0e
−ω2σ2

T
2 , (6.2.6)

which yields the shorter pulse in the time domain. This form of ideal compression is of course not

achievable under real circumstances, because the phase is not entirely smooth, but has a �ne structure.

Therefore a compensation of the phase can never cancel out the complete phase. The shortest achievable

pulse in the time domain is always limited by the time-bandwidth product of the system. For a Gaussian

shaped pulse, the following relation su�ces:

tlimit ·∆f ≈ 0.44. (6.2.7)

In our case, ∆f = 18 THz which yields in the Fourier limit a pulse length of tlimit = 24.4 fs. This

can be checked by computing the expression (6.3.5), and extracting the phase angle using Matlab. The

unwrap routine can compute the correct phase angle, which then can be subtracted. Then, we Fourier

backtransform into the time domain and get the compressed pulse.

6.3 Analytical treatment of pulse compression for the example of

a linear ramp

We now investigate the compression of a linear ramp. The sweep �lter drive function ω0(t) is now given

by



Chapter 6. Pulse compression in an FDML laser 62

ω0(t) =
∆ω

T
t, (6.3.1)

with the sweep range ∆ω and the roundtrip time T . According to (3.3.2), the envelope in the laboratory

is given by

A(z, t) = u(z, t)exp

(
−i

ˆ t

ω0(t′)dt′
)
. (6.3.2)

For this example we set u(z, t) = 1, because we are only interested in the mathematical properties of the

phase, which are relevant for pulse compression and assume a time-constant amplitude A for an "ideal"

FDML �eld. Further, we are not interested in the spatial dependency of the envelope, so that we can

write:

A(t) = exp

(
−i

ˆ t

ω0(t′)dt′
)

= e−i ∆ω
2T t

2

. (6.3.3)

We now want to calculate the Fourier transform of a single sweep

A(t)single = [Θ(t+ T/2)−Θ(t− T/2)] e−i ∆ω
2T t

2

, (6.3.4)

where Θ(t) denotes the Heavyside step-function.

Ã(ω)single = F [A(t)single] =

ˆ ∞
−∞

[Θ(t+ T/2)−Θ(t− T/2)] e−i ∆ω
2T t

2

eiωtdt =

ˆ T/2

−T/2
e−i ∆ω

2T t
2

eiωtdt =

√
πT

2∆ω
eiTω

2

2∆ω

[
erfi

((
1
2 −

i
2

)
(∆ωt− Tω)
√

∆ωT

)]T/2
−T/2

, (6.3.5)

with the imaginary error function erfi(z) = −i · erf(iz), z ∈ C. For the numerical evaluation of (6.3.5), we

need to make use of the asymptotic expansion of the error function for large values of R(z) and I(z). In

our example, with the laser setup explained in Chapter 3.2 and 4.1, we have values of ∆ω = 1.135 · 1014

s−1, T = 17.32 µs, and ω ∈
[
1.373 · 1015; 1.487 · 1015

]
s−1. For ω = 1320 s−1, at the center frequency

which is also the steepest point of the sweep curve, we have values in the order of 105 for R(z) and I(z),

respectively. Therefore we need an asymptotic expansion for (6.3.5).

The envelope of the single sweep in the frequency domain ũ(ω)single is a complex �eld, that can be

written in the form

ũ(ω)single = |ũ(ω)single|eiΦ(ω). (6.3.6)
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In order to compress the pulse in the time domain, we have to cancel out the phase Φ(ω)i as was shown

in the previous example with the chirped Gaussian. A constant phase factor does not change the width of

the pulse in the time domain, therefore a constant phase is analogous to the case of zero phase. This form

of ideal compression is not achievable under real circumstances, but only shows the maximal achievable

limit of compression. The resulting �eld where the phase is subtracted, is then Fourier transformed back

into the time domain, where we then get the compressed pulse.

The compressed pulse in the time domain is then given by

u(t)comp =
T

2π

ˆ ∞
−∞
|ũ(ω)single|ei·conste−iωtdω. (6.3.7)

We can now plot the intensity of the complex �eld u(t)comp, which is given by the absolute square

|u(t)comp|2. The intensity of the ideally compressed pulse is shown in Fig. 6.3.1. A pulse length of 49 fs

can be extracted, which is about twice the pulse length for the estimate of a Gaussian in the previous

example. However, even though the pulse shape for the linear ramp di�ers from a Gaussian, it su�ces

as a rough estimate.
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Figure 6.3.1: Fourier limited pulse compression in an FDML laser for the example of a linear ramp. The extracted FWHM
pulse length is 49 fs, for the laser parameters of the laser setup explained in chapter 2.2.

6.4 Experimental setup for pulse compression

The experimental setup for pulse compression is in its structure similar to Fig. 3.2.1 or Fig. 4.1.1, in

that the same mechanisms apply for the working of the FDML laser itself. The laser setup for the pulse

compression is shown in Fig. 6.4.1(a). This laser operates at a center wavelength of 1560 nm, with

a tuning range of 211 nm [Eig11B]. The sweep frequency is also much higher with 390 kHz. This is

accomplished by using a much shorter delay �ber, which comprises of 246 meters of single mode �ber
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(Corning SMF 28), as in the previous setup, but additionally 16 meters of dispersion compensation �ber

(DCF,Corning HFDK). The reason for the additional DCF �ber is to reduce the remaining dispersion

in the delay line to almost zero in order to improve the coherence properties of the laser. We have a

sigma-ring con�guration [Jir08B], where the optical circulator (CIR) passes the light along to the delay

�ber. The light is then re�ected at the Faraday rotation mirror (FRM), and it passes the CIR again,

so that the delay length is passed twice, resulting in a total delay length of 524 m. The total time

TR = 2.56 µs which the light needs to pass the delay length results in a sweep frequency of fs = 390

kHz. The optical isolators (ISO) ensure unidirectional lasing by cancelling out unwanted re�ections. The

polarization controllers (PC) enable the adjustment of the polarization in the �ber.

Figure 6.4.1: (a) The FDML laser setup operated at 1560 nm center wavelength and a sweep frequency of 390 kHz. The
post-ampli�cation devices are used to amplify the output signal. The dispersion compensation �ber (DCF) is used for
temporal compression and the detection system detects the short pulses. The SOA denotes the semiconductor optical
ampli�er, ISO denotes the optical isolator, PC is the polarization controller, FRM is the Faraday rotation mirror, CIR
denotes the optical circulator and FFP-TF denotes the fast Fabry-Perot tunable �lter, built by Robert Hubers group at
LMU München. (b) Typical wavelength over time characteristics of the FDML output, including the part used for temporal
compression.

The SOA in the sigma-ring is polarization independent as in the previous setup and has the gain maximum

at ≈ 1550 nm. The last element in the sigma-ring is the sweep �lter, where a very fast sweep �lter (FFP-

TF) is used, self-built by the group of Robert Huber at LMU München [Eig11B]. This type of sweep
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�lter o�ers a very high sweep of 250 nm/µs needed for these high repetition rates. 50% of the light

from the sigma-ring is outcoupled, and the laser light is passing along to another ISO and PC as in the

sigma-ring. Then the laser output arrives at the booster SOA, which serves as a switch for the laser

output. This means that it only ampli�es and transmits a fraction of each forward sweep, in order to

determine the bandwidth ∆λ, the temporal width ∆τ and the center wavelength λc = 1560 nm, which is

then used for the temporal compression. We here have ∆λ = 6 nm and ∆τ = 24 ns. The booster SOA is

voltage controlled by a fast current modulator, which in turn is fed by the voltage control. The voltage

control is also driving the sweep �lter, so that the booster SOA is linked to the wavelength-position of

the sweep �lter, which then enables the SOA to amplify and transmit the exact same location in the

forward sweep as intended. In contrast to the SOA in the sigma-ring, the booster SOA is polarization

dependent, so that the polarization of the light changes the ampli�cation. ISOs are positioned all along

the way in order to focus the laser beam even more. The temporal compression itself is then achieved in

the 15 km long DCF �ber positioned after the booster SOA. In the last step, the pulses are then analyzed

with an analog sampling oscilloscope or with an intensity autocorrelator, reading the signals of the fast

photodiode. In Fig. 6.4.1(b), the wavelength-time characteristics of a laser output is shown for a center

wavelength of 1560 nm and passing the DCF spool on time (1x). It can be seen that the ampli�ed part is

a very small fraction of the total forward sweep. The compression itself takes place by the use of the DCF

�ber. As explained in the previous section, the dispersion slope of the DCF �ber is used to compensate

the phase of the FDML optical �eld. A compensation of the phase in the frequency domain results in a

signi�cantly shorter pulse in the time domain. Theoretically, the achievable limit is given by the time-

bandwidth product, and is below 100 fs for this setup. However, technical limitations inhibit reaching

this limit. For one thing, the voltage feed-back system that couples the SOA boost with the sweep �lter

is not 100% accurate. An active FDML frequency feed-back stabilization could overcome this limitation.

Another limiting factor is the sweep �lter performance. An even faster responding sweep �lter with a

narrower transmission window would also result in a greatly reduced pulse length. Lastly, the remaining

dispersion in the resonator also lengthens the pulse. Thus, an even better dispersion compensation would

also reduce the pulse length again. In Section 6.5, di�erent methods are discussed that could overcome

those limitations, resulting in a pulse length that would reach the time-bandwidth limit [Eig11B]. An

FDML laser with such a performance might open up whole new �elds of applications.
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6.5 Simulation of pulse compression and comparison to the ex-

periment

6.5.1 Simulation

The simulation is technically identical to the simulation described in Chapter 3.4.1 and 3.4.2. However,

we have here included the laser parameters from this setup, meaning that we have a di�erent tuning range,

center frequency and also di�erent dispersion slopes and gain characeristics. The SOA gain characteristics

have again been measured experimentally, as in Chapter 3.4.2. Also, the dispersion has been measured

experimentally and implemented into the code. Because we now have a delay line consisting of 246 m

of SMF �ber and 16 m of DCF �ber, we have di�erent dispersion values. Because of the dispersion

compensation, the values for D2 and D3 are much lower than in the previous simulations, at values

of D2 = −3.0835 · 10−28 s2/m, D3 = 5.7187 · 10−42 s3/m. We also take the fourth order dispersion

into account, making the simulation more precise. We have a fourth order dispersion coe�cient of

D4 = −1.3731 · 10−55 s4/m. The tuning range is now 211 nm, and the center wavelength is at 1560

nm. Another important factor in this experimental setup, is that although in the sigma-ring, the setup is

polarization independet, the booster SOA is polarization dependent. This is neglected in the simulation,

because the simulation is for the sigma-ring, and the compression afterwards is done separately. However,

it is possible that the polarization dependence of the compression setup after the sigma-ring, could have

an e�ect on the pulses in the experiment, which are not accounted for in the simulation. However, as

will be seen, the results from the simulation indicate that this e�ect is small, because they match the

experimental data very well.

As in the previous simulation code, we save the resulting complex FFTW �eld into �les, which are

then read using Matlab. In the next subsection, it is explained how the mechanism of emulating the pulse

compression in the experiment, is achieved for our simulation.

6.5.2 Compression routine and emulation of the experiment

The emulation of the compression is done using Matlab. The complex FFTW �eld u[0] and u[1] is read

into Matlab from the data �les from the simulation itself. They contain the complex FFTW �eld in the

time domain for the experimental setup of Fig. 6.4.1 for the sigma-ring, thus without compensation. The

compensation itself is now performed in Matlab.

6.5.2.1 Transformation to the laboratory frame

As stated, the complex FFTW �eld u[0] and u[1], is the output of the simulation for the �eld u(z, t),

which is the �eld in the swept-�lter reference frame. In the experimental setup however, the �eld A(z, t)

in the laboratory frame is used for the compression. We therefore have to backtransform the �eld u(z, t)
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into the laboratory frame, using the relation (6.5.1), so that we have for A(z, t):

A(z, t) = u(z, t)exp

(
−i

ˆ t

ω0(t′)dt′
)

; (6.5.1)

with ω0(t) = −−∆ω
2 cos(2π/T · t). This is also implemented into the Matlab code accordingly.

6.5.2.2 Emulation of the analog sampling oscilloscope

The complex �eld is averaged over 20 roundtrips, in order to simulate the e�ect that the analog sampling

oscilloscope has in the experiment. Here, the output is not displayed for single roundtrips, but is instead

averaged over many roundtrips. Therefore we simulate this e�ect by averaging over 20 roundtrips. A

higher number of roundtrips would result in too large data �les, given that one roundtrip data �le already

contains 238 MB, so that an averaged FFTW �eld output has more than 4 GB of data.

6.5.2.3 Emulation of the �ne-tuning of the tuning range

Another e�ect that can easily be done in the experiment, is changing the tuning range of 211 nm,

which corresponds to ∆ω0 = 1.6343 · 1014s−1. When viewing the compressed pulse on the sampling

oscilloscope, in the experiment the optimal point of the tuning can be found, where the pulse is shortest.

In the simulation however, a change of the tuning range would impose the need for a di�erent tuning

range, and this again would result in the need for a complete new simulation. A complete simulation for

every small detuning however is simply not feasible. Therefore, the tuning range detuning is accounted

for in the Matlab routine by multiplying ∆ω0 with a factor that corresponds to the experimental detuning

factor. We can then emulate this �ne-tuning of the experiment for our pulse compression. It is always

the case that the best result for the pulse length is very near to ∆ω = ∆ω0, with a deviation in the range

of 1%.

6.5.2.4 Unwrapping of the phase

In order to unwrap the phase Φ(ω) from the Fourier transformed �eld Ã(z, ω) in the frequency domain,

we use Matlab's unwrap routine, which extracts the phase from a complex valued array, displaying the

�eld in the form Ã(z, ω) = |Ã(z, ω)|eiΦ(ω). In the simulation, the position z is �xed after the SOA,

corresponding to the light being coupled out in the experiment via the 50/50 FC 6.4.1. Therefore the

position dependency is eliminated, so that we have Ã(ω) = |Ã(ω)|eiΦ(ω).

6.5.2.5 Cut-out window and compensation of phase oscillations

Before performing the phase compensation itself, another e�ect is taken into account that could possibly

lead to phase oscillations. The cut-out window in the experiment is ∆τ = 24 ns. We take this into

account by dividing the �eld Ã(ω) into 128 subintervals, so that one subinterval corresponds to TR/128 =
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2.56/128µs=20 ns. Because of the FFTW algorithm, the number of subintervals has to be a power of

2, with 128 being most suitable, yielding a subinterval length that is with 20 ns very near to the actual

cut-out window of 24 ns. As in the experiment, we now cut-out a 20 ns portion of A(t) at the steepest

point of the sweep, then Fourier transform this portion of A(t) into the frequency domain, yielding Ã(ω).

However, now the problem can arise that to the left and to the right of Ã(ω), the pulse is immediately

cut-o�, giving rise to oscillations when Fourier transforming. This can be overcome by adding zero-valued

entries to the left and the right of Ã(ω). Afterwards, this e�ect is subtracted again. By this method,

arti�cially caused phase oscillations are supressed.

6.5.2.6 Compensation of the phase

After all these steps, the last step is to compensate the pulse. This is achieved by subtracting the average

phase from the 20 roundtrips Φ(ω)avg from the phase Φ(ω) that we have unwrapped from Ã(ω). We

then have only a very small residual phase left. This process is analogous to a phase compensation with

the best possible �t curve. Then, we Fourier transform back into the time domain, and now have the

compressed pulse �eld

A(t)comp = F−1[|Ã(ω)|ei(Φ(ω)−Φ(ω)avg)]. (6.5.2)

6.5.2.7 Frequency detuning

In the experimemt, the no-detuning case is found by �ne-tuning the sweep �lter driver frequency so that

the instantaneous power spectrum has the highest intensity. This is also the case where we have the best

compression. However, it is not pre-de�ned that the case for no detuning in the experiment, matches also

the case for no detuning, e.g ∆f = 0 Hz in the simulation. The no detuning condition in the experiment

is not 100% accurate, so that we can witness in the simulation the best case compression at a detuning

di�erent than zero. This case then corresponds to the experimentally witnessed case. Later on we also

investigate the role of detuning on the pulse length.

6.5.2.8 Results from the numerical simulation

Several simulations have been performed, with di�erent detunings, ranging from ∆f = −0.5 Hz to

∆f = 0.5 Hz in steps of 0.1 Hz. This is done in order to investigate the dependence of the pulse

compressibility on the detuning. We can then �nd the case where the pulse length is shortest, which as

stated does not necessarily have to be ∆f = 0 Hz. The pulse length can further be optimized by �ne-

tuning the tuning range ∆ω, analogous to the experiment. In order to check for a potential optimization

of the pulse length, for future applications, cases have been also simulated where the FWHM sweep �lter

bandwidth is changed, ranging from a very narrow bandwidth of 1 pm to 400 pm, with the standard

setting of �gure 6.4.1 being 310 pm. Also, a perfect dispersion compensation has been investigated, in
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order to verify if a potential better dispersion compensation in future experimental setups could have an

impact on the pulse length. In Table 6.1, the FWHM pulse lengths are shown for di�erent settings of

detuning. A strong dependency on the detuning is found, with the dependency decreasing at lower �lter

bandwidths. It is also found that the case with 0% dispersion and very narrow �lter bandwidths delivers

very short pulses, that come down to the range of the time-bandwidth product. In Fig. 6.5.1, a typical

simulated pulse compression is shown, with the tuning for ∆ω = ∆ω0, which means that the detuning

of the tuning range is zero. In Fig. 6.5.1(a), the cut-out of the power over time is shown in the time

domain. The length of the cut-out is 20 ns. In (b), the Fourier transformed spectral power density is

shown in the frequency range where it is di�erent from zero. In (c), the spectral phase Φ(ω) is plotted

in green, whereas the phase that is averaged over 20 roundtrips, Φ(ω)avg is drawn also, but it is directly

covered by Φ(ω), because the phase di�erence is so small.
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Figure 6.5.1: (a) The cut-out of the power over time, with a duration of 20 ns. (b) The spectral power density of the cut-out
in the frequency domain. (c) The spectral phase distribution. The phase Φ(ω) and the averaged phase Φ(ω)avg , which
is then subtracted, are in this plot indistinguishable, because the di�erence is only very small. (d) The compressed pulse
with a length of 84 ps. The �nite resolution of the sampling oscilloscope is emulated by the smoothing of the pulse. This
smoothing lengthens the pulse by 45 ps. This e�ect is then subtracted, which results in the 84 ps pulse length.

Hence, the resulting subtracted phase is small, and when Fourier transforming back into the time-domain,

the compressed pulse, shown in (d), is obtained. The pulse length in total is 129.64 ps (FWHM),

however it is broadened by smoothing. The curve is smoothed in order to emulate the �nite resolution

of the analog sampling oscilloscope. By the process of the smoothing algorithm, the curve is broadened

by an amount of 45.80 ps. In order to obtain the real pulse length, we have to subtract this arti�cial

broadening e�ect, resulting in a pulse length of 83.84 ps. As will be shown in the next section, this result

matches the experimental data well.

The process shown in Fig. 6.5.1 can then be applied to the other simulated data. The shortest

pulses are then found for every case. The results in dependency of the detuning for the standard �lter
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Detuning [Hz] -1.5 -1.0 -0.7 -0.6 -0.5 -0.4
Pulse length [ps] 283.27 188.93 147.65 118.51 106.67 83.84
Detuning [Hz] -0.3 -0.2 0 0.2 0.5 1.0
Pulse length [ps] 142.59 160.91 176.20 179.52 181.35 246.50

Table 6.1: The results of the pulse lengths from the simulation in dependence of the detuning. As can be seen, the pulse
length has the tendency to become larger for larger detunings, with the shortest pulse at -0.4 Hz. It is noteworthy that the
shortest pulse is not located at 0 Hz detuning, but the zero detuning point in the experiment does not necessarily have to
coincide with the zero detuning point in the simulation, as explained in chapter 6.5.2.7.

Detuning [Hz] -0.4 -0.3 -0.2 -0.1 0
Filter bandwidth [pm]
400 120.49 - - - 214
200 75.68 - - - 104.64
100 98.43 91.29 70.95 74.14 88.76
50 72.64 64.44 54.43 59.73 43.67
20 38.81 32.64 24.46 28.85 34.51
10 13.07 13.26 11.64 17.77 14.88
5 - - - - 16.19
2 - - - - 1544
1 - - - - 2 · 104

Table 6.2: The pulse length in ps in dependency of the detuning and the sweep �lter bandwidth. The dashes mean that
these points have not been simulated. As can be seen, the detuning dependency decreases with smaller �lter bandwidths.
It is also noteworthy that below 10 pm �lter bandwidth, the pulse length begins increasing again, and between 5 pm and 2
pm there is a huge increase, resulting in non-existent compression at 1 pm bandwidth. In this case, there is no compression
possible and therefore the pulse length equals the time length of the cut-out window. The pulse length decreases until this
point with smaller �lter bandwidths, reaching the smallest value at 10 pm �lter bandwidth and -0.2 Hz detuning. Because
the detuning is symmetric with respect to the pulse lengths, only the negative detuning has been simulated.

bandwidth of 310 pm are shown in Table 6.1.

In Table 6.2, the results for di�erent sweep �lter bandwidths are shown, and their dependence on the

detuning. Because the detuning is symmetric with respect to the pulse lengths, only the negative detuning

has been simulated. Several conclusions can be drawn from the results. First, the depenceny of the pulse

length from the detuning decreases with smaller �lter bandwidth. Therefore, for small �lter bandwidths

it su�ces to only simulate on detuning, in this case zero detuning. Secondly, the pulse length gets

shorter for smaller �lter bandwidths, with the shortest pulse having a length of 11.64 ps at 5 pm �lter

bandwidth. Therefore, there lies enormous potential for shorter pulses in building sweep �lters with

smaller transmission bandwidths, a challenge for future FDML setups. The third result is that at a

certain lower border for the sweep �lter bandwidth, the pulse length dramatically increases. This barrier

is located between 5 pm and 2 pm bandwidth, and for 1 pm there is already no pulse compression at all,

because no single pulse is established, so that the pulse length equals the time cut-out window of 20 ns.

In order to further investigate possibilities of reducing the pulse length, also a perfect dispersion

compensation has been investigated, resulting in absolute 0% dispersion for the setup. This perfect

dispersion compensation can of course not be achieved under real circumstances, it is however nonetheless
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Detuning [Hz] -0.4 -0.2 0 0.2 0.4
Filter bandwidth [pm]
310 136.92 150.18 11.07 152.17 188.04
5 - - - - 0.563
1 - - - - 0.423

Table 6.3: The pulse length in ps for perfect dispersion compensation (0% remaining dispersion in the cavity) in dependency
of the detuning and the sweep �lter bandwidth. It is noteworthy that now the shortest pulse is at 0 Hz detuning with a
very short pulse length of 11.07 ps even at the standard �lter bandwidth of 310 pm. For smaller �lter bandwidths of 5 pm
and 1 pm, very short pulses of several hundred femtoseconds can be achieved, which is in the order of the time bandwidth
product of 100 fs.

interesting to see what pulse lengths are achievable and where the limit lies. The total limit is given by

the time-bandwidth product, and as will be seen, for no dispersion and very small �lter bandwidths, we

achieve pulse lengths in the order of the time bandwidth product, being about 100 fs. The results are

shown in Table 6.3. For the standard �lter setting of 310 pm, detuning has also been investigated, and

as can be seen very short pulse lengths of 11.07 ps can be achieved. Here however, the shortest pulse

is located exactly at zero detuning. The e�ect that the shortest pulse has previously been located at

detunings di�erent from zero is therefore caused by the remaining dispersion in the cavity. For very short

�lter bandwidths, we reach time regions that are of the order of the time-bandwidth product which is

around 100 fs for this setup.

6.5.3 Comparison with the experiment

In this section we compare the results from the simulated compression with the experimental data from the

Robert Huber group of LMU München. In Fig. 6.5.2, the results for the pulse lengths in the experiment

are shown [Eig11B]. In Fig. 6.5.2(a), a pulse is shown that is achieved for 1x DCF (see 6.4.1(a)) and

a bandwidth of ∆λ ≈ 6 nm. The FWHM pulse length is 68 ps. In Fig. 6.5.2(b), the depencency of

the pulse length from the detuning is shown. The asymmetry in the plot is arti�cially induced by the

sampling oscilloscope. It can be seen that the shortest pulses are achieved for zero detuning. However,

the zero detuning case does not necessarily coincide with the zero detuning from the simulation. The

criterion for �nding the zero detuning case in the experiment is the highest pulse intensity, which is not

100% accurate.

When we now compare the data from our simulations to the experiment, we can see that the pulse

lengths agree well. From Fig. 6.5.2(a) we can extract a pulse length of 68 ps, whereas the shortest pulse

from the simulation with standard �lter bandwidth is 83.84 ps (see Table 6.1), only higher by a small

amount. The deviation can be explained by the fact that the polarization dependency of the experimental

setup is not incorporated into the simulation. Possible e�ects caused by polarization can hence lead to

a higher compressability in the experiment that is not taken into account in the simulation. This could

explain the shorter pulse length in the experiment. We can now plot the numerical results from Table 6.1

for di�erent detunings and Table 6.2 for di�erent �lter bandwiths and compare it with the experimental
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data. This is shown in Fig. 6.5.3.

Figure 6.5.2: (a) Pulse with a length of 68 ps for 1x DCF and ∆λ ≈ 6 nm. (b) The dependency of the pulse length from
detuning. The asymmetry is caused by the sampling oscilloscope.

In Fig. 6.5.3(a), the simulation results for the shortest pulses from Table 6.2 are plotted together with

the two experimentally measured points for di�erent �lter bandwidths. It can be seen that the behaviour

of the pulse length becoming shorter with smaller �lter bandwidth is also present in theory. In theory,

we can additionally lower the bandwidth to points that are not reachable in the experiment, far below

310 pm. It can be seen that the pulse length decreases to a very low 11.64 ps, before increasing again

below 10 pm �lter bandwidth. Therefore there is a lower limit to the pulse length with respect to the

sweep �lter bandwidth.

Figure 6.5.3: (a) The simulation data from Table 6.2 together with the experimental results [Eig11B]. As can be seen, the
pulse length decreases with smaller �lter bandwidths, reaching its minimum at 10 pm. The experimental data also shows
that the pulse length decreases, which is measured for two di�erent �lter bandwiths. (b) The simulation data from Table6.1
together with the experimental results. As can be seen, the general behaviour that the pulse length increases with higher
detuning is also present in theory. In theory, the shortest pulse length is achieved at -0.4 Hz detuning with 83.84 ps. This
is only slightly higher than the experimental result of 68 ps.

In Fig. 6.5.3(b) the simulated results are shown together with the experimental data for di�erent

�lter detunings. As already stated, the asymmetric behaviour in the experiment is an arti�cial e�ect
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induced by the sampling oscilloscope. Therefore, it is not present in the simulation data. However, a

small asymmetry is also visible in the simulation data. The reason for this asymmetry lies in the pulse

form. As can be seen in Fig. 6.5.1(d), the pulse has an asymmetric form itself. For certain cases, this

asymmetry is quite large, so that an extension slope is present at one side of the pulse. If now this

extension is only slightly above the FWHM threshold, the pulse length increases a lot. This is the case

for the detunings -0,3 Hz to +0.2 Hz. Therefore it seems as if the pulse width is strongly increased. The

general behaviour with respect to detuning however is very similar for the experimental and simulation

data. As the point of zero detuning is not measurable with 100 % accuracy, it is acceptable to compare

the -0.4 Hz detuning of the simulation to 0 Hz detuning in the experiment. Considering these e�ects, the

results agree well, and the general behaviour matches also.

6.5.4 Optimization of the performance and future outlook

It has been shown that the FDML laser can be optimized for pulse compression in twofold ways. The

�rst way is to build sweep �lters with smaller bandwidths. In theory, the �lter bandwidth can be changed

in the simulation as wished, under real circumstances however, fabrication processes inhibit sweep �lter

bandwidths below a certain point. However, there is still great potential for smaller �lter bandwidths

and thus shorter pulses. In Table 6.3, the case of perfect dispersion compensation is shown, stating that

perfect dispersion compensation would enable even shorter pulses, at a standard �lter bandwidth of 310

pm, reaching a sharp limit of 11.07 ps at zero detuning. However, if a better dispersion compensation

together with very short �lter bandwidths is achieved at the same time, pulses in the range of the

time-bandwidth product become feasible. In the simulation, the shortest pulse has a length of only 423

femtoseconds, only rougly 4 times the time-bandwidth limit. Even though under real circumstances, total

dispersion compensation and very small �lter bandwidths of below 20 pm cannot be achieved as of today,

there is still great potential for improving both these properties. It is thus possible, that in future FDML

setups, pulse lengths on the order of one picosecond can be achieved. This would open up a whole new

�eld for FDML applications, for example in material processing.



Chapter 6. Pulse compression in an FDML laser 74



Chapter 7

Analytical model for FDML operation

In order to better understand the underlying physical principles of FDML operation, an analytical solution

to the FDML evolution equation (3.3.4) is a very desirable goal. In this chapter, we �rst start with a

simpli�ed form of the FDML evolution equation without self-phase modulation or third order dispersion,

and without the gain saturation behavior. We then use a chirped Gaussian ansatz in order to solve this

equation and investigate some properties of the solution. In the next step, we use the chirped Gaussian

ansatz in order to solve the FDML evolution equation. We do this employing two di�erent methods, �rst

the variational approach [Arn89], and the method of moments [Bur07]. Both methods yield the same

equations of motion, which are then to be solved, delivering the parameters for the chirped Gaussian

ansatz. We can then compare the results from the analytical model with a simulation that solves the

FDML evolution equation numerically. As will be seen, the resulting solution delivers not a cw-solution,

but pulses with a length of about 1 µs for the FDML laser of Fig. 3.2.1 and Fig. 4.1.1. Therefore the

chirped Gaussian solution cannot fully describe the FDML dynamics, but represents the lowest order

solution of the FDML evolution equation. The exact solution has to be more general than the Gaussian

solution. A more general solution is needed, where the Hermite-Gaussian model might be a possbile

ansatz [Pam04].

7.1 FDML laser with slow gain saturation

The FDML evolution equation (3.3.4) without instantaneous gain saturation does not take into account

the gain saturation e�ects taking place in the SOA. This process is nonlinear and more di�cult to solve

than this simpli�ed ansatz, therefore it is a good starting point in order to later on investigate more

complicated solutions. The FDML evolution equation without gain saturation, third order dispersion

and self-phase modulation is of the following form:

∂zu(z, t) = g0(1− iα)− [gω(1− iα)− iD2] · ω2
0(t)− al + (as − iD2)∂2

t u(z, t), (7.1.1)

75
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where ω0(t) denotes the sweep �lter driver function, that here is a ramp function of the form ω0(t) = ∆ω
TR
t.

TR denotes the roundtrip time of the laser, here TR = 17.32 µs. The gain parameters g0 and gω denote

the saturated gain and the frequency dependent gain parameters. The parameters al and as denote the

cavity and the sweep�lter loss coe�cients, respectively. The linewidth-enhancement or Henry factor is

denoted by α [Hen82]. In this model, the sweep �lter is implemented as a Gaussian �lter, therefore it

is multiplied with ∂2
t , instead of a Lorentzian sweep�lter as(i∂t). In our case, the laser parameters are

position independent because the optical elements are here distributed over the resonator. We now choose

a chirped Gaussian ansatz of the form

u(z, t) = u0e
κze−t

2( 1
2T2−ib). (7.1.2)

Here, κ denotes a complex phase parameter, T is the length of the Gaussian pulse, and b is the chirp

parameter. Inserting (7.1.2) into (7.1.1) yields

κu(z, t) =

[
g0(1− iα)− gω(1− iα)

∆ω2

T 2
R

t2 + iD2
∆ω2

T 2
R

t2 − al
]

+ (7.1.3)

(as − iD2) −2

(
1

2T 2
− ib

)
+

[
−2t

(
1

2T 2
− ib

)]2

u(z, t). (7.1.4)

The real part of the phase parameter κ must vanish, else u(z, t) would either vanish for z → ∞ and

R{κ} < 0, or get in�nitely large for z →∞ and R{κ} > 0. Therefore we have the constraint R{κ} = 0

and through comparing the coe�cients we get the two conditions

al +
as
T 2
− g0 = 2D2b; (7.1.5)

as
T 4
− gω

∆ω2

T 2
R

= 4asb
2 +

4D2b

T 2
. (7.1.6)

For the imaginary part I{κ} we get in the same way the two conditions

I{κ}+ g0α−
D2

T 2
= 2bas; (7.1.7)

D2

T 4
− gωα∆ω2

T 2
R

− D2∆ω2

T 2
R

= 4b2D2 −
4bas
T 2

. (7.1.8)

So we have a set of 4 equations for the unknowns g0, I{κ}, T and b, depending on the laser parameters

al, as, D2, gω, ∆ω, TR and α. Solving these four equations with respect to the unknowns, yields four

solutions for every unknown. The physcially relevant solution is the solution where T is real and positive,

and the solutions for the other parameters are the ones linked to this solution. Solving (7.1.6) with

respect to b yields a quadratic equation for b with the solutions
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b1/2 = −4D2 ±

√
16D2

2 − 16asT 2

[
(gω −D2α)

∆ω2T 2

T 2
R

− as
T 2

]
1

8asT 2
. (7.1.9)

Inserting this into (7.1.8) yields a fourth order equation for T that depends only on the laser param-

eters:

∆ω2

T 2
R

[
D2(gω −D2α)

as
− gωα−D2

]
=

1

T 4

[
2D2

(
D2

2

a2
s

+ 1

)
+

(
D2

2

2a2
s

∓ 1

2

)√
16(D2

2 + a2
s)−

16as(gω +D2α)∆ω2

T 2
R

T 4

]
. (7.1.10)

The positive and real solution for T can be written as

T =

(
a− b+ c− d− e− f − g − h+ k

l

)1/4

; (7.1.11)

with a, b, c, d, e, f , g, h, k, l being lengthy terms of the FDML parameters (see Appendix D). The

corresponding chirp is also given in Appendix D. We use the laser parameters as in the experimental

setup, shown in Table 7.1. We �nd that T = 1.216 ns. This is a very short pulse compared to the

roundtrip time TR = 17.32 µs. This simpli�ed model cannot explain the cw output of the FDML laser.

However, it can be used as a model for an FDML laser with a slow saturable gain absorber, vanishing

nonlinearity and third order dispersion. With such an FDML laser, a pulsed mode could be achieved

without the need for additional dispersion compensation as described in the previous chapter.

7.2 FDML laser with gain saturation, self-phase modulation and

dispersion

The more complicated case arises when the gain saturation is also considered. This means that the gain

of the medium is dependent on the power of the light �eld |A(z, t)|2, as explained in chapter 2.4.1. We

here use a linearized gain ansatz, where the nonlinear behavior is accounted for with a nonlinearity factor

r. It is given by the relation r = 1/(2PsatL) [Jir11]. In our case it has a vlue of r = 0.3667 W−1m−1. In

addition, we also take into account the nonlinearity γ and the third order dispersion. We can then write

the FDML evolution equation (3.3.4) as

i∂zu−D2∂
2
t u+ γ|u|2u+D2

∆ω2

T 2
R

t2u− α
(
g0 − r|u|2 − gω

∆ω2

T 2
R

t2
)
u =

= i

(
g0 − r|u|2 − gω

∆ω2

T 2
R

t2 − al + as∂
2
t

)
u. (7.2.1)

In order to solve this equation we again use a chirped Gaussian ansatz. There are now two methods



Chapter 7. Analytical model for FDML operation 78

to deduce the equations of motion for this problem. The �rst one ist the variational principle [Arn89].

It is based on the principle that the action functional of a physical system is extremal [Ham34]. From

this, the Lagrangian equations are derived, which are a set of partial di�erential equations that describe

a conservative, as well as a non-conservative system. In Appendix B, we derive the equations of motion

for (7.2.1) using the variational principle for a chirped Gaussian test-function.

Another possibility of deducing the equations of motion is the use of the method of moments [Bur07],

[Jir11]. In this approach, generalized moments are used to derive the energy and momentum of a test-

function. There are higher order moments also, and relations between the moments are used to derive the

evolution equations [Jir11]. In Appendix C, the derivation of the equations of motion is done using the

method of moments and a chirped Gaussian test-function. Both methods are equivalent, and yield the

exact same equations of motion for (7.2.1). The chirped Gaussian test-function is chosen in both cases,

because it is the exact solution to the example of an FDML laser with instantaneous gain saturation, as

shown in the previous section. Therefore, it is investigated if the chirped Gaussian ansatz is also suited

for the case of gain saturation and additional self-phase modulation and third order dispersion. The

chirped Gaussian ansatz is again of the form

u(z, t) = AeiΦ(z)e−t
2( 1

2T2−ib), (7.2.2)

with an amplitude A, a phase factor Φ, chirp b and the pulse length T . The equations of motion for the

FDML laser of this example can then be written as:

∂b

∂z
= −4asb

T 2
+ 4D2b

2 − D2

T 4
− (γ + αr)A2

√
2

4T 2
+

(D2 + αgω)∆ω2

T 2
R

; (7.2.3)

∂T

∂z
= −4D2bT − gω

∆ω2

T 2
R

T 3 +
as
T
− 4asb

2T 3; (7.2.4)

∂A

∂z
= 2D2bA+ g0A−

rA3

√
2
− alA−

asA

T 2
. (7.2.5)

The evolution equation for Φ is decoupled, and thus can be ignored in the following. A constant phase

factor does not contribute to the physical properties of the pulse, and later on the power is investigated.

This simpli�es the solution and the steady-state solution is easier to �nd. The condition for the steady

state solution is

∂A

∂z
=
∂b

∂z
=
∂T

∂z
= 0. (7.2.6)

Therefore the condition that has to be ful�lled for the steady-state, is:

− 4asb

T 2
+ 4D2b

2 − D2

T 4
− (γ + αr)A2

√
2

4T 2
+

(D2 + αgω)∆ω2

T 2
R

= 0; (7.2.7)



79 7.2. FDML laser with gain saturation, self-phase modulation and third order dispersion

− 4D2bT − gω
∆ω2

T 2
R

T 3 +
as
T
− 4asb

2T 3 = 0; (7.2.8)

2D2b+ g0A−
rA2

√
2
− al −

as
T 2

= 0; (7.2.9)

After a certain amount of space propagated through the FDML laser, the light in the cavity does not

change any more, except for ASE induced small �uctuations [Jir08]. Therefore, the steady-state solution

is of interest, because it describes the �eld after a certain number of roundtrips. The equations (7.2.7)-

(7.2.9) can now be solved in order to �nd the values of A, b and T in dependence of our laser parameters.

For this, two methods are employed, the �rst one being solving the equation analytically, and the second

one being a numerical simulation in order to �nd the steady-state solution.

7.2.1 Spatial evolution of amplitude, chirp and pulse length

In the following, we investigate the spatial evolution of the amplitude, the chirp and the pulse length.

The equations (7.2.3)-(7.2.5) show the evolution of the parameters for the amplitude A, the chirp b and

the pulse length T over the distance z that has been travelled in the resonator. Solving this set of coupled

partial di�erential equations gives us the spatial evolution of these parameters. This is done by solving

the equations of motion in Matlab, using the built-in ODE45 ordinary di�erential equation solver.
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Figure 7.2.1: The spatial evolution of the amplitude is shown here. It can be seen that after about 104 m, which corresponds
to about three roundtrips, the power does not change any more. It converges towards a value of 34.6 mW.
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Figure 7.2.2: Here, the spatial evolution of the chirp is shown. It can be seen that the chirp �rst decreases with increasing
z, then reaches a minimum after about 6 · 103 m, then rises again and reaches convergence towards a value of 1.649 · 109

s−2 after a distance of about 1.4 · 104 m, which corresponds to about four roundtrips.
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Figure 7.2.3: This is a zoomed in portion of the chirp evolution, in order to better illustrate the point where convergence
is reached.
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Figure 7.2.4: The spatial evolution of the pulse duration. It can be seen that after a few meters, the pulse duration has
already converged towards a value of 19.373 µs.

The spatial  evolution of the parameters is shown in Fig. 7.2.1, in Fig. 7.2.2, in Fig. 7.2.3 and in Fig. 7.2.4 in 

more detail.  For this,  again  the laser  input values  from Table 7.1 are used. As can be seen, the parameters  start  

at a reasonably  chosen initial value,  and then move towards  a static value, they have an asymptotic  behavior. 

They  convergence  towards  the steady-state   with a di� erent speed, where the pulse  duration reaches 

convergence fastest, and the chirp slowest.  The end value is then the steady-state   solution,  described  by (7.2.7)

(7.2.9). The values  for A, b and T can be extracted  and yield |A|2 = 34.6 mW, b = −1.649 · 109s−2 and T = 

19.373 µs. For the FWHM pulse length we therefore have TFWHM = 45.62 µs. This is longer than the sweep 

duration, but this is no contradiction to the model, assuming that the sweep duration is �xed, and that the 

Gaussian  begins  anew with  each sweep.  The  properties  of the  solution are discussed  in the next  section.

7.3 Steady state solution

7.3.1 Analytical solution

In the previous section, the steady-state solution has been found to be the asymptotic limit of the

parameters A, b and T , and the limit has been found by solving the equations of motion with a numerical

ordinary di�erential equation (ODE) solver. But, as in Chapter 7.1, the equations can also be solved

analytically, with solutions for A, T and b in dependence of the laser parameters γ, D2, D3, ∆ω, TR, α,

g0, gω, r, al and as. We start by solving (7.2.8) with respect to b, which yields two solutions, because it
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is a quadratic equation. We then get for b

b1/2 =
−D2T

2T 2
R ±

√
−as∆ω2gωT 8T 2

R + a2
sT

4T 4
R +D2

2T
4T 4
R

2asT 4T 2
R

. (7.3.1)

The solution for A can be directly derived from (7.2.9), and yields

A = ±

√√
2

r

(
2D2b+ g0 − al −

as
T 2

)
. (7.3.2)

We can now insert both solutions into (7.2.7) and we get a polynomial of order 12 in T , which depends

on the laser input parameters. The laser parameters for the experimental setup of Fig. 3.2.1 and Fig.

4.1.1 are listed in Table 7.1. We can then solve the polynomial and �nd all positive and real solutions for

T .

Laser parameter value
∆ω 1.134 · 1014s−1

gω 3.0026 · 10−30s2m−1

as 1.2673 · 10−26s2m−1

α 5
TR 1.732 · 10−5s
al 3 · 10−4 m−1

D2 −2.7603 · 10−28s2m−1

g0 6.104 · 10−4 m−1

γ 0.00136 W−1m−1

r 0.3667 W−1m−1

Table 7.1: The laser parameters for the experimental setup as in Fig. 3.2.1 and Fig. 4.1.1.

We now can retrieve the values for T , b and for A, yielding the same values as in the previous

subsection: |A|2 = 34.6 mW, b = −1.649 · 109s−2 and T = 19.373 µs. This is a crosscheck of the previous

results.

7.3.2 Properties of the steady-state solution

By solving the equations of motion, we have found the steady-state solution for the chirped Gaussian

ansatz (7.1.2). Since the steady-state solution is based on a Gaussian model, the double peaked nature

of the FDML power output, shown in Fig. 3.4.3, cannot be reproduced with this model.

The chirp can be plotted by rewriting the ansatz (7.1.2):

u(z, t) = AeiΦ(z)e−t
2( 1

2T2−ib) = Ae−
t2

2T2
[
cos(bt2 + Φ) + i · sin(bt2 + Φ)

]
. (7.3.3)

Taking the real part yields

u(t) = Ae−
t2

2T2 cos(bt2 + Φ). (7.3.4)
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The chirped nature of the �eld (red curve) is drawn in 7.3.1 together with the power output (blue curve).

Since the output is cw, the output is periodical and repeats with each new sweep.
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Figure 7.3.1: Here, the chirped nature of the �eld (red curve) has been additionally drawn together with the power output
(blue curve).

Now it is interesting to see which parameters of Table 7.1 can be changed and what e�ect this has

on the power output. Also, the uncertainty of the parameters is investigated, in order to check if slightly

changed parameters within error bounds describe the observed FDML output better.

7.3.3 The frequency dependent gain parameter gω

Increasing the frequency dependent gain parameter results in an increase of the chirp and of the pulse

length. Increasing gω by an order of magnitude leads to a chirp that is a factor two smaller, and a pulse

duration that is a factor three smaller.

7.3.4 The gain parameter g0

Increasing this parameter by an order of magnitude leads only to a change in the power amplitude, an

increase of ≈ 10%. The certainty of this parameter is high and leads only to a slight change of the output.

7.3.5 The sweep range ∆ω

This parameter has a very high impact on the chirp and on the pulse duration. Increasing ∆ω by a factor

of two already increases the chirp by a factor of ≈ 3 and reduces the pulse duration by a factor of ≈ 2.

These parameters would describe the observed FDML output better than the standard parameter. Since

the chirped Gaussian model is a simpli�ed model that does not take the full gain dynamics into account,

and also leaves the third order dispersion out, it is possible that an increased ∆ω′ describes the FDML

dynamics better than the standard value. In Fig. 7.3.2, the output is shown for ∆ω′ = 2 ·∆ω, with ∆ω

being the standard value from Table 7.1.
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Figure 7.3.2: The FDML power output (blue curve) and the chirped �eld (red curve) for ∆ω = 2 ·∆ω0. This output �ts the
observed output better, in that the chirp is higher and the variation of the pulse power by a factor of ≈ 2 is also present,
as seen in 3.4.3.

7.3.6 The sweep �lter loss parameter as

Changing this parameter has a moderate impact on the chirp in the order of 10%, the power amplitude

or the duration of the output.

7.3.7 The Henry factor α

A change of this parameter leads to a small change of the chirp. Decreasing α for example by a factor of

5 leads to an increase of 3% for the chirp, which is also negligible.

7.3.8 The sweep length TR

Decreasing the sweep length TR has a similar e�ect on the chirp and the duration as increasing the sweep

range ∆ω. This is another indicator for the limitations of the chirped Gaussian model. A sweep length

which is only half the initial sweep length leads to a power output that is very similar to the one shown

in 7.3.2.

7.3.9 The overall cavity loss al

Increasing the loss leads to a decrease of the power amplitude and vice versa. An increase of an order of

magnitude in the loss leads to a decrease of the output power of 3%, which is way below expectations.

However, the tendency is correctly described by the model.

7.3.10 The second order dispersion coe�cient D2

The second order dispersion coe�cient has a very high impact on the chirp parameter. Changing D2 by

an order of magnitude leads also to a change of b of an order of magnitude into the same direction.
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7.3.11 The nonlinearity γ

Changing the nonlinearity in this model has only a very small impact on the chirp parameter, and does

not change the other parameters

7.3.12 The saturation parameter r

The saturation parameter has an impact on the Amplitude of the steady-state solution. Changing this

parameter by a factor of two leads to a change in the amplitude A by 41 %. It has no impact on the

chirp or the time duration.

7.3.13 The instantaneous linewidth

Since the instantaneous linewidth is one of the most important parameters for FDML operation, and a

large part of this thesis treats the evolution of the instantaneous linewidth, it is here interesting to see

if this model can correctly predict the instantaneous linewidth. For the standard laser parameters of

Table 7.1, we get as a result from the chirped Gaussian via Fourier transformation the spectral width

corresponding to the instantaneous linewidth. The result is 0.11 GHz, about an order of magnitude

lower than typically obtained values from previous chapters, which are in the range of several GHz.

However, this model is simpli�ed compared to the numerical simulation. Since the full gain dynamics is

not implemented in this model, only a linearized ansatz, and the linewidth is in a large part governed

by the gain, the result of 0.11 GHz is acceptable. Further theoretical work is however necessary in

order to better understand the underlying mathematical principles in FDML operation, which govern the

instantaneous linewidth.

7.4 Summary of the model and future outlook

The chirped Gaussian model in this chapter serves as a �rst simple model for describing the FDML

output. As shown, several characteristics of the power output in 3.4.3 could be foretold by this model.

For example the power change over time that is characteristic for the FDML output can be reproduced

to a certain extent. However, the observed �uctuation of almost a factor of 3 can only be reproduced if

∆ω is increased by at least a factor 2 in the model, or if the sweep length is decreased by at least a factor

2. Also, the chirped nature of the output is implemented in this model, however, here also the chirp is

more like the observed chirp when ∆ω or TR are changed. The chirped nature of the output is inherent in

the model, also the power �uctuations. Also, changing the cavity loss leads to a correct prediction of the

power amplitude change, albeit the e�ect being smaller than would be the case in reality. Summarizing

all these points, it is clear that the chirped Gaussian ansatz only serves as a �rst starting point for further

investigations of analytically describing the FDML dynamics. The double-peaked nature of the output,

as well as the correct prediction of the power scale, the correct scale of changes of the laser parameters,
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cannot be satisfactory foretold by the model. Since the gain dynamics are simpli�ed, here a linearized 

gain saturation model is used, and third order dispersion has been neglected, and the ansatz is also only 

the exact solution for the case of an instantaneous gain saturation. In this case however, it has been 

shown that the chirped Gaussian can serve as a model for an FDML laser with almost instantaneous 

gain saturation. Such a laser could emit short pulses without the need for compression by dispersion 

compensation.

The chirped Gaussian  model for gain saturation  can be used as a �rst starting  point for further  analytical 

investigations   of FDML  dynamics,  for example  employing  a Hermite-Gaussian  ansatz . In this  model, the 

solution of the FDML  equation (7.2.1) is a Hermite-Gaussian,  which is similar to a harmonic  potential 

problem  from quantum  mechanics. Such a model may be a starting  point for more complex investigations   

of the FDML dynamics,  and may lead to a full analytical  description of FDML lasers.
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Chapter 8

Summary and future outlook

In this work, several key e�ects of FDML operation are explained, and new insight is gained into the

functioning mechanisms of FDML lasers. The �rst analysis treats the instantaneous lineshape of FDML

lasers. Here, a model is developed in order to correctly predict the instantaneous lineshape, and compar-

ison with the experiment yields good agreement. By subsequently turning on- and o� certain parameters

from the FDML evolution equation, the impact on the instantaneous lineshape is investigated. Here, a

new discovery is made, �nding that the linewidth is not dominated by ASE. This means, that in contrast

to other known laser sources, completely turning o� ASE in the simulation does not lead to an observable

e�ect in the instantaneous lineshape. Therefore, the linewidth in an FDML laser is not generated by ASE

or external noise sources, but is based entirely on the intrinsic physical properties of an FDML laser.

The investigation of the spatio-temporal dynamics gives insight into the balance of the physical e�ects

that lead to stationary operation of FDML lasers. The spectral shaping e�ects are analyzed, and not only

the impact of each physical quantity on the linewidth itself is analyzed, but also on the overall shape and

frequency shift. Here, it is found that the combination of the gain recovery dynamics and the linewidth-

enhancement in the SOA lead to a redshift of the instantaneous power spectrum. It is also found that the

dispersion causes a time-dependent spectral shift. These e�ects are counterbalanced by the asymmetric

absorption of the sweep �lter. For a red-shifted spectrum, the sweep �lter transmission function causes

an e�ective shift to higher frequencies by reducing the low-frequency spectral wing. It is also found that

self-phase modulation in the long delay �ber causes spectral broadening. The broadening on the other

hand is counterbalananced by the tunable bandpass �lter, narrowing the spectrum again by the repetitive

�ltering in each roundtrip. In summary, a detailed analysis of the optical �eld propagation in an FDML

laser is presented for the �rst time. Also good agreement with the experimental data provided by the

Robert Huber's group from LMU München is found, further validating the work. These new insights are

an important step towards understanding the fundamental mechanisms leading to a steady state �eld in

the FDML laser, and these results could lead towards a further optimization of FDML lasers in the near

future.
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In the next step, it is for the �rst time shown that FDML lasers are suited for the emission of short

pulses, with shortest pulses being in the 60 ps range. Based on the numerical simulations also used for

the previous investigations, a new code is developed in order to simulate the pulse compression which

takes place in the experiment. The results are that FDML lasers can be optimized in terms of pulse

compression in twofold ways. The �rst way is to build sweep �lters with smaller bandwidths. In the

experiment, production of �lter bandwidths below a certain point is not possible with current methods,

but theory shows that there is great potential for future optimization in this respect. It is also found that

better dispersion compensation can also lead to better compressability. These two e�ects combined o�er

the chance to get into time regions given by the time-bandwidth product, namely a few hundred picosec-

onds. Comparing the numerical data with the experimental data also shows good agreement. Based on

these results, further optimization of the FDML laser in this �eld is very likely in the near future.

Employing an analytical model for the solution of the FDML evolution equation, yields that a chirped

Gaussian ansatz can be used as a solution for a special case of the FDML laser: an FDML with an

instantaneous gain behavior and without third order dispersion or self-phase modulation. In this case,

the model shows that short pulses in the nanosecond range can be produced without the need for post-

dispersion compensation. Taking into account the above mentioned e�ects, and also including a linearized

gain saturation model, it is shown that the chirped Gaussian ansatz can only describe the most funda-

mental properties of the FDML output, but fails to completely describe the nature of the power output.

However, this model can serve as a �rst starting point for a full analytical model of FDML operation

by generalizing the chirped Gaussian ansatz to a Hermite-Gaussian ansatz, which provides increased

�exibility.



Appendix A: Fourier transform

Given is a complex function U , that can in general depend on the position r = (x, y, z)T and the time

variable t. The Fourier transform is then given by

Ft{U(t)} = Ũ(ω) =

ˆ ∞
−∞

U(t)eiωtdt. (8.0.1)

And correspondingly for the inverse Fourier transform, we have

F−1
ω {Ũ(ω)} = U(t) =

1

2π

ˆ ∞
−∞

U(ω)e−iωtdω. (8.0.2)

A.1 Di�erentiation

A time derivate of order n in time-space can be translated into Fourier space by the following relation:

∂n

∂tn
U(t) =

∂n

∂tn
1

2π

ˆ ∞
−∞

U(ω)e−iωtdω =

1

2π

ˆ ∞
−∞

(−iω)nU(ω)e−iωtdω = F−1
ω {(−iω)nU(ω)}. (8.0.3)

Analogous, a frequency derivative of order n in Fourier space can be translated into the time domain

by

∂n

∂ωn
U(t) =

∂n

∂ωn

ˆ ∞
−∞

U(t)eiωtdt =

ˆ ∞
−∞

(it)nU(t)eiωtdt = Ft{(it)nU(t)}. (8.0.4)
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Appendix B: Variational principle

The �rst step is to �nd a Lagrangian for the system. Here, we have a Lagrangian L which describes

the conservative, i.e. energy-conserving terms, and a non-conservative expression Q, that describes the

non-energy conserving processes. We �nd that the Lagrangian L can be written as [Jir06]

L = − i

2

(
u
∂u∗

∂z
− u∗ ∂u

∂z

)
+D2

∣∣∣∣∂u∂t
∣∣∣∣2 +

(γ + αr)

2
|u|4 + (D2 + αgω)ω0(t)|u|2 − g0α|u|2; (8.0.5)

and the non-conservative term Q is given by

Q = i

(
−g0 + r|u|2 + gωω

2
0(t) + al − as

∂2

∂t2

)
u. (8.0.6)

The reduced Lagrangian is given by [Cer98]

〈L〉 =

ˆ ∞
−∞
Ldt. (8.0.7)

We can now write the Euler-Lagrange equations for the parameters f = A,Φ, b, T as

Rf =
∂ 〈L〉
∂f

− d

dz

∂ 〈L〉

∂
(
∂f
∂z

) . (8.0.8)

Here Rf denotes the non-conservative forces given by

Rf = 2R{Q∂u
∗

∂f
dt}. (8.0.9)

We now can insert the parameters A,Φ, b, T into the non-conservative term Rf and we get for f = A:

RA = 2R
ˆ ∞
−∞

[
i

(
−g0 + r|u|2 + gω

∆ω2

T 2
R

t2 + al − as
∂2

∂t2

)
u

]
∂u∗

∂A
dt . (8.0.10)

The chirped Gaussian ansatz is of the form

u(z, t) = AeiΦe−t
2( 1

2T2−ib); (8.0.11)
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so that we get for the second order partial derivative in RA

∂2u

∂t2
=

∂

∂t

(
AeiΦ

(
−2t

(
1

2T 2
− ib

))
e−t

2( 1
2T2−ib)

)
=

− 2AeiΦ

(
1

2T 2
− ib

)
e−t

2( 1
2T2−ib) +AeiΦ

[
−2t

(
1

2T 2
− ib

)]2

e−t
2( 1

2T2−ib). (8.0.12)

We therefore have

∂2

∂t2

(
∂u∗

∂A

)
= −2e−iΦ

(
1

2T 2
+ ib

)
e−t

2( 1
2T2 +ib) + e−iΦ

[
−2t

(
1

2T 2
+ ib

)]2

e−t
2( 1

2T2 +ib). (8.0.13)

The other derivatives are given by

∂u

∂z
= eiΦe−t

2( 1
2T2−ib)

(
∂A

∂z
+ iA

∂Φ

∂z
+
At2

T 3

∂T

∂z
+ iAt2

∂b

∂z

)
; (8.0.14)

∂u∗

∂z
= e−iΦe−t

2( 1
2T2 +ib)

(
∂A

∂z
− iA

∂Φ

∂z
+
At2

T 3

∂T

∂z
− iAt2

∂b

∂z

)
; (8.0.15)

− i

2

(
u
∂u∗

∂z
− u∗ ∂u

∂z

)
=

i

2
Ae
−t2

T2

(
2iA

∂Φ

∂z
+ 2iAt2

∂b

∂z

)
; (8.0.16)

∣∣∣∣∂u∂t
∣∣∣∣2 =

(
t2

T 4
+ 4b2t2

)
|u|2. (8.0.17)

We then can write the Lagrangian L as

L = −A2e
−t2

T2

(
∂Φ

∂z
+ t2

∂b

∂z

)
+D2

(
t2

T 4
+ 4b2t2

)
e
−t2

T2 +
(γ + αr)

2
A4e

−2t2

T2 +(D2+αgω)
∆ω2

T 2
R

t2A2e
−t2

T2 −g0αA
2e
−t2

T2 .

(8.0.18)

The reduced Lagrangian is then given by

〈L〉 = −A2 ∂Φ

∂z

ˆ ∞
−∞

e
−t2

T2 dt−A2 ∂b

∂z

ˆ ∞
−∞

t2e
−t2

T2 dt+
D2A

2

T 4

ˆ ∞
−∞

t2e
−t2

T2 dt+

4D2b
2A2

ˆ ∞
−∞

t2e
−t2

T2 dt+
(γ + αr)A4

2

ˆ ∞
−∞

e
−2t2

T2 dt+ (D2 + αgω)
∆ω2

T 2
R

A2

ˆ ∞
−∞

t2e
−t2

T2 dt− g0αA
2

ˆ ∞
−∞

e
−t2

T2 dt =

A2
√
π

(
−∂Φ

∂z
T − T 3

2

∂b

∂z
+
D2

2T
+ 2D2b

2T 3 +
(γ + αr)A2T

2
√

2
+ (D2 + αgω)

∆ω2T 3

2T 2
R

− g0αT

)
. (8.0.19)

We can now calculate RA by inserting every term and calculating the in�nite integral subsequently:
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RA = 2R ig0A

ˆ ∞
−∞

e
−t2

T2 dt− irA3

ˆ ∞
−∞

e
−t2

T2 dt− igω
∆ω2

T 2
R

A

ˆ ∞
−∞

t2e
−t2

T2 dt− ialA

ˆ ∞
−∞

e
−t2

T2 dt

−2iasA

(
1

2T 2
− ib

)ˆ ∞
−∞

e
−t2

T2 dt+ 4iasA

(
1

4T 4
− ib

T 2
− b2

)ˆ ∞
−∞

t2e
−t2

T2 dt =

− 2asAb
√
πT + 2asAb

√
πT = 0. (8.0.20)

We can now apply the same principle for RΦ:

∂2

∂t2
2iA2

(
1

2T 2
− ib

)
e
−t2

T2 − 4iA2t2
(

1

4T 4
− ib

T 2
− b2

)
e
−t2

T2 ; (8.0.21)

so that we get for RΦ

RΦ = 2R g0A
2

ˆ ∞
−∞

e
−t2

T2 dt− irA4

ˆ ∞
−∞

e
−2t2

T2 dt− gω
∆ω2

T 2
R

A2

ˆ ∞
−∞

t2e
−t2

T2 dt− alA2

ˆ ∞
−∞

e
−t2

T2 dt

−2asA
2

(
1

2T 2
− ib

)ˆ ∞
−∞

e
−t2

T2 dt+ 4asA
2

(
1

4T 4
− ib

T 2
− b2

)ˆ ∞
−∞

t2e
−t2

T2 dt =

2g0A
2
√
πT − 2rA4

√
π

2
T − gω

∆ω2

T 2
R

A2
√
πT 3 − 2alA

2
√
πT − asA

2

T

√
π − 4asA

2b2
√
πT 3. (8.0.22)

The same principle is applied to b, and we get analogously

Rb = 2R g0A
2

ˆ ∞
−∞

t2e
−t2

T2 dt− rA4

ˆ ∞
−∞

t2e
−2t2

T2 dt− gω
∆ω2

T 2
R

A2

ˆ ∞
−∞

t4e
−t2

T2 dt− alA2

ˆ ∞
−∞

t2e
−t2

T2 dt

−2asA
2

(
1

2T 2
− ib

)ˆ ∞
−∞

t2e
−t2

T2 dt+ 4asA
2

(
1

4T 4
− ib

T 2
− b2

)ˆ ∞
−∞

t4e
−t2

T2 dt =

g0A
2
√
πT 4 − rA4

√
π

2
T 3 − gω

3∆ω2

2T 2
R

A2
√
πT 5 − alA2

√
πT 3 − asA2

√
πT + asA

2 3

2

√
πT − 6asA

2b2
√
πT 5.

(8.0.23)

For T we then get analogously

RT = ... = 4asA
2b
√
π. (8.0.24)

The conservative components can then be calculated by applying the Euler-Lagrange equation (8.0.8)

for every parameter A, T,Φ, b on the reduced Lagrangian. We then �nd for RA the following condition

ful�lled:
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RA =
∂ 〈L〉
∂A

− d

dz

∂ 〈L〉
∂
(
∂A
∂z

)︸ ︷︷ ︸
=0

=

2A
√
π

(
−∂Φ

∂z
T − T 3

2

∂b

∂z
+
D2

2T
+ 2D2b

2T 3 +
(γ + αr)A2T

2
√

2
+ (D2 + αgω)

∆ω2T 3

2T 2
R

− g0αT

)
. (8.0.25)

Analogously we get for RΦ that

RΦ =
∂ 〈L〉
∂Φ︸ ︷︷ ︸
=0

− d

dz

∂ 〈L〉
∂
(
∂Φ
∂z

) =
d

dz
(A2T

√
π) =

2A
√
πT

∂A

∂z
+A2

√
π
∂T

∂z
(8.0.26)

is ful�lled. For Rb we have

Rb =
∂ 〈L〉
∂b
− d

dz

∂ 〈L〉
∂
(
∂b
∂z

) = 4D2bT
3A2
√
π − d

dz
(−A2T

3

2

√
π) =

4D2bT
3A2
√
π +A

√
πT 3 ∂A

∂z
+A2

√
π

3T 2

2

∂T

∂z
. (8.0.27)

The last condition that has to be ful�lled is

RT =
∂ 〈L〉
∂T

− d

dz

∂ 〈L〉
∂
(
∂T
∂z

)︸ ︷︷ ︸
=0

=

A2
√
π

(
−∂Φ

∂z
− 3T 2

2

∂b

∂z
− D2

2T 2
+ 6D2b

2T 2 +
(γ + αr)A2

2
√

2
+ (D2 + αgω)

3∆ω2T 2

2T 2
R

− g0α

)
. (8.0.28)

The four resulting equations then are:

2A
√
π

(
−∂Φ

∂z
− T 3

2

∂b

∂z
+
D2

2T
+ 2D2b

2T 3 +
(γ + αr)A2T√

2
+ (D2 + αgω)

∆ω2T 3

2T 2
R

− g0αT

)
= 0; (8.0.29)

2A
√
πT

∂A

∂z
+A2
√
π
∂T

∂z
= 2g0A

2
√
πT−2rA4

√
π

2
T−gω

∆ω2

T 2
R

A2
√
πT 3−2alA

2
√
πT−asA

2

T

√
π−4asA

2b2
√
πT 3;

(8.0.30)
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4D2bT
3A2
√
π +A

√
πT 3 ∂A

∂z
+A2

√
π

3T 2

2

∂T

∂z
=

g0A
2
√
πT 3 − rA4

√
π

2
T 3 − gω

3∆ω2

2T 2
R

A2
√
πT 5 − alA2

√
πT 3 + asA

2 1

2

√
πT − 6asA

2b2
√
πT 5; (8.0.31)

A2
√
π

(
−∂Φ

∂z
− 3T 2

2

∂b

∂z
− D2

2T 2
+ 6D2b

2T 2 +
(γ + αr)A2

2
√

2
+ (D2 + αgω)

3∆ω2T 2

2T 2
R

− g0α

)
= −4asA

2b
√
π.

(8.0.32)

The equations of motion are now retrieved from these 4 equations. We get by multiplying (8.0.29) with

A/T and subtracting from this two times (8.0.32) the equation of motion for b. The equation of motion

for T is calculated by multiplying (8.0.30) with T 2 and subtracting two times (8.0.31). The equation

of motion for A is calculated by multiplying (8.0.30) with T 2 and subtracting 2/3 times (8.0.31). The

equation of motion for Φ is neglected here, because we are interested in the stationary state, where the

phase is constant. A constant phase factor however does not contribute to the properties of the spectral

power |u(z, t)|2. The three resulting equations of motion for A, T and the chirp b are then given by:

∂b

∂z
= −4asb

T 2
+ 4D2b

2 − D2

T 4
− (γ + αr)A2

√
2

4T 2
+

(D2 + αgω)∆ω2

T 2
R

; (8.0.33)

∂T

∂z
= −4D2bT − gω

∆ω2

T 2
R

T 3 +
as
T
− 4asb

2T 3; (8.0.34)

∂A

∂z
= 2D2bA+ g0A−

rA3

√
2
− alA−

asA

T 2
. (8.0.35)



Appendix 96



Appendix C: Method of moments

The method of moments [Jir11] uses generalized moments and relations between them in order to derive

the evolution equations. For u(z, t) from (7.1.2) we can introduce the energy Q0 and the momentum P0

as

Q0 =

ˆ ∞
−∞
|u|2dt; (8.0.36)

P0 =
1

2

ˆ ∞
−∞

(
u
∂

∂t
u∗ − u∗ ∂

∂t
u

)
. (8.0.37)

Higher order generalized moments are given by

Q1 =

ˆ ∞
−∞

t|u|2dt; (8.0.38)

Ql =

ˆ ∞
−∞

(t− t0)l|u|2dt; (8.0.39)

Pl =

ˆ ∞
−∞

(t− t0)l
(
u∗

∂

∂t
u− u ∂

∂t
u∗
)
. (8.0.40)

with the condition that l > 1 for Ql and l > 0 for Pl. Here, t0 denotes the center of gravity. Based on

the FDML evolution equation (7.2.1), we can de�ne the dissipative, i.e non-energy conserving term as

R =

(
g0 − r|u|2 − gω

∆ω2

T 2
R

t2 − al + as∂
2
t

)
. (8.0.41)

It then follows that ([Jir11])

i
∂

∂z
|u|2 +D2

∂

∂t

(
u
∂

∂t
u∗ − u∗ ∂

∂t
u

)
= u∗R− uR∗. (8.0.42)

Furthermore we get from R
[
(7.2.1) · ∂∂tu

∗ − u∗ ∂∂t (7.2.1)
]

= 0:
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R{D2
∆ω2

T 2
R

(
t2u

∂

∂t
u∗ − t2u∗ ∂

∂t
u− 2t|u|2

)
− α

(
g0 − r|u|2 − gω

Deltaω2

T 2
R

t2
)
u
∂

∂t
u∗ +

αu∗
(
g0
∂

∂t
u− r ∂

∂t
(u∗uu)− gω

∆ω2

T 2
R

(2tu+ t2
∂

∂t
u)

)
} =

− 2t|u|2D2
∆ω2

T 2
R

− 2αr|u|2
(
u∗

∂

∂t
u+ u

∂

∂t
u∗
)
− 2t|u|2αgω

∆ω2

T 2
R

= 0. (8.0.43)

⇒ i

(
u
∂

∂t
u∗ − u∗ ∂

∂t
u

)
− 4D2

∂

∂t

∣∣∣∣ ∂∂tu
∣∣∣∣2 +D2

∂3

∂t3
|u|2 − γ ∂

∂t
|u|4 − 2D2

∆ω2

T 2
R

t|u|2

−αr|u|2
(
u∗

∂

∂t
u+ u

∂

∂t
u∗
)
− 2t|u|2αgω

∆ω2

T 2
R

=

2

(
R∗

∂

∂t
u+R

∂

∂t
u∗
)
− ∂

∂t
(uR∗ + u∗R) . (8.0.44)

We can now rewrite (8.0.42) using the generalized moments as

∂

∂z
Q0 = i

ˆ ∞
−∞

(uR∗ − u∗R)dt; (8.0.45)

∂

∂z
Q2 = 2iD2P1 + i

ˆ ∞
−∞

t2(uR∗ − u∗R)dt. (8.0.46)

Rewriting (8.0.44) with the generalized moments yields

∂

∂z
P1 = i

ˆ ∞
−∞

(
−4D2

∣∣∣∣ ∂∂tu
∣∣∣∣2 − γ |u|4

)
dt+ 2iD2

∆ω2

T 2
R

ˆ ∞
−∞

t2|u|2dt+

2iαr

ˆ ∞
−∞

t|u|2
(
u∗

∂

∂t
u+ u

∂

∂t
u∗
)

dt+ 2iαgω
∆ω2

T 2
R

(ˆ ∞
−∞

t2|u|2dt

)
+

2i

ˆ ∞
∞

t

(
R∗

∂

∂t
u+R

∂

∂t
u∗
)

dt+ i

ˆ ∞
−∞

(uR∗ + u∗R)dt. (8.0.47)

We then get from (8.0.45) the condition

∂

∂z
Q0 = 2AT

√
π
∂A

∂z
+A2

√
π
T

∂z
. (8.0.48)

The integral term becomes

i

ˆ ∞
−∞

(uR∗ − u∗R)dt = ... =
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2g0A
2
√
πT − 2rA4

√
π

2
− gω

∆ω2

T 2
R

A2
√
πT 3 − alA2

√
πT − asA

2

T

√
π − 4asA

2b2
√
πT 3. (8.0.49)

⇒ 2AT
∂A

∂z
+A2 ∂T

∂z
= 2g0A

2T − 2rA4T

2
− gω

∆ω2

T 2
R

A2T 3 − 2alA
2T − asA

2

T
− 4asA

2b2T. (8.0.50)

From (8.0.46) it follows that

∂

∂z
Q2 =

∂A

∂z

(
A2T 3

√
2

2

)
= AT 3

√
π
∂A

∂z
+

3

2
A2T 2 ∂T

∂z
. (8.0.51)

Furthermore we have

2iD2P1 = 2iD2

ˆ ∞
−∞

t

(
u∗

∂

∂t
u− u ∂

∂t
u∗
)

dt =

2iD2A
2

ˆ ∞
−∞

t

[
−2t

(
1

2T 2
− ib

)
e
−t2

T2 + 2t

(
1

2T 2
+ ib

)
e
−t2

T2

]
dt =

− 4D2bA
2T 3
√
π. (8.0.52)

The integral term yields

i

ˆ ∞
−∞

t2(uR∗ − u∗R)dt = ... =

g0A
2
√
πT 3 − rA4

√
π

2
T 3 − gω

3∆ω2

2T 2
R

A2
√
πT 5 − alA2

√
πT 3 − asA2

√
πT + asA

2 3

2

√
πT − 6asA

2b2
√
πT 5.

(8.0.53)

Then we can write the second condition as

AT 3 ∂A

∂z
+

3

2
A2T 2 ∂T

∂z
=

g0A
2T 3 − rA4

√
1

2
T 3 − gω

3∆ω2

2T 2
R

A2T 5 − alA2T 3 − asA2T + asA
2 3

2
T − 6asA

2b2T 5. (8.0.54)

From (8.0.47) it follows that

∂

∂z
P1 =

∂

∂z

ˆ ∞
−∞

t

(
u∗

∂

∂t
u− u ∂

∂t
u∗
)

dt =
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∂

∂t

ˆ ∞
−∞

t

[
−2t

(
1

2T 2
− ib

)
A2e

−t2

T2 + 2t

(
1

2T 2
+ ib

)
A2e

−t2

T2

]
dt =

2i
√
π

(
2AT 3b

∂A

∂z
+ 3bA2T 2 ∂T

∂z
+A2T 3 ∂b

∂z

)
; (8.0.55)

i

ˆ ∞
−∞

(
−4D2

∣∣∣∣ ∂∂tu
∣∣∣∣2 − γ|u|4

)
dt = i

ˆ ∞
−∞

[
−4D2

(
t2

T 4
+ 4b2t2

)
A2e

−t2

T2 − γA4e
−2t2

T2

]
dt =

i

(
−2A2D2

T

√
π − 8A2b2D2

√
πT 3 − γA4

√
π

2
T

)
. (8.0.56)

Analogously we have in (8.0.47) that

2i

ˆ ∞
−∞

t

(
R∗

∂

∂t
u+R

∂

∂t
u∗
)

dt = ... =

−8iasbA
2
√
πT + 4ib

(
g0A

2
√
πT 3 − rA4

√
π

2
T 3 − gω

3∆ω2

2T 2
R

A2
√
πT 5

−alA2
√
πT 3 − asA2

√
πT + asA

2 3

2

√
πT − 6asA

2b2
√
πT 5

)
. (8.0.57)

From symmetry it follows that the term

i

ˆ ∞
−∞

(uR∗ + u∗R)dt

from (8.0.47) vanishes. The other terms are:

2iD2
∆ω2

T 2
R

ˆ ∞
−∞

t2|u|2dt = iD2
∆ω2

T 2
R

A2T 3
√
π; (8.0.58)

2iαr

ˆ ∞
−∞
|u|2t

(
u∗

∂

∂t
u+ u

∂

∂t
u∗
)

dt = ... = −1

2
iαA4rT

√
2π; (8.0.59)

iαgω
∆ω2

T 2
R

(
2

ˆ ∞
−∞

t2|u|2dt

)
= iαgω

∆ω2

T 2
R

A2T 3
√
π. (8.0.60)

All the terms inserted into (8.0.47) yield the equation

2i

(
2AT 3b

∂A

∂z
+ 3bA2T 2 ∂T

∂z
+A2T 3 ∂b

∂z

)
= i

(
−2A2D2

T
− 8A2b2D2T

3 − γA4

√
1

2
T

)
+
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D2
∆ω2

T 2
R

A2T 3 − 1

2
iαA4rT

√
2 + iαgω

∆ω2

T 2
R

A2T 3. (8.0.61)

From this it follows together with (8.0.54) that

∂b

∂z
= −4asb

T 2
+ 4D2b

2 − D2

T 4
− (γ + αr)A2

√
2

4T 2
+

(D2 + αgω)∆ω2

T 2
R

. (8.0.62)

From (8.0.50) and (8.0.54) it follows the relations for T and A:

∂T

∂z
= −4D2bT − gω

∆ω2

T 2
R

T 3 +
as
T
− 4asb

2T 3; (8.0.63)

∂A

∂z
= 2D2bA+ g0A−

rA3

√
2
− alA−

asA

T 2
. (8.0.64)

Comparison of (8.0.62)-(8.0.64) with (8.0.33),(8.0.34) and (8.0.35) shows that the resulting equations of

motion are the same. Therefore the method of moments is analogous to the variational principle and

results in the same equations of motion.
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Appendix D: Laser parameter terms

The coe�cients a, b, c, d, e, f , g, h, k, l are given by:

a = 2αas3D2∆ω2T 2
R;

b = 2a2
sD

2
2∆ω2T 2

R;

c = 2αasD
3
2∆ω3∆ω2T 2

R;

d = 2D4
2∆ω2T 2

R;

e = 2a3
s∆ω

2gωT
2
R;

f = 2αa2
sD2∆ω2gωT

2
R;

g = 2asD
2
2∆ω2gωT

2
R;

k = 2T 2
R(a6

sD
2
2∆ω4 + α2a6

sD
2
2∆ω4 +

3a4
sD

4
2∆ω4 + 3α2a2

sD
6
2∆ω4 +D8

2∆ω4T 4
R + α2D8

2∆ω4 +

a6
s∆ω

4g2
ω + α2a6

s∆ω
4g2
ω + 3a4

sD
2
2∆ω4g2

ω + 3α2as4D2
2∆ω4g2

ω +

3a2
sD

4
2∆ω4g2

ω +

3α2a2
sD

4
2∆ω4g2

ω +

D6
2∆ω4g2

ω + α2D6
2∆ω4gω2)1/2.

l = a2
sD

2
2∆ω4 + 2αasD

3
2∆ω4 + α2D4

2∆ω4 +

2αa2
sD2∆ω4gω − 2asD

2
2∆ω4gω + 2α2asD

2
2∆ω4gω −

2αD3
2∆ω4gω + α2a2

s∆ω
4g2
ω − 2αasD2∆ω4g2

ω +D2
2∆ω4g2

ω.
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The chirp b is given by

b =
T 2(asD2∆ω2 + αD2

2∆ω2 + αas∆ω
2gω −D2∆ω2gω)

4(a2
s +D2

2)T 2
R



Nomenclature

Acronyms

ASE Ampli�ed spontaneous emission

BFP-TF Bulk Fabry-Perot tunable �lter

CIR Optical circulator

cw Continuous wave

DCF Dispersion compensation �ber

EDFA Erbium doped �ber ampli�er

EOM Electro optical modulator

FC Fused �ber coupler

FDML Fourier domain mode-locked

FFP-TF Fast Fabry-Perot tunable �lter

FFTW Fastest Fourier transform in the west

FRM Faraday rotating mirror

FWHM Full width at half maximum

ISO Optical isolator

NSE Nonlinear Schrödinger equation

OCT Optical coherence tomography

PBS Polarizing beam splitter

PC Polarization controller

PM Polarization maintaining

SOA Solid state optical ampli�er

SMF Single mode �ber

SPM Self phase modulation
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Special symbols

∂
∂t

partial derivative with respect to t

∂
∂z

partial derivative with respect to z

∇ nabla operator

R{u} real part of u

I{u} imaginary part of u

u∗ complex conjugate of u

Calligraphic symbols

F Fourier transform

F−1 inverse Fourier transform

L Lagrangian

〈L〉 reduced Lagrangian

Greek symbols

α Henry factor/linewidth-enhancement

γ self-phase modulation coe�cient

δ detuning of the sweep �lter with respect to the light �eld

∆ Lorentzian angular frequency width

∆f frequency tuning range

∆ω angular frequency tuning range

∆ωg FWHM linewidth of gain transition

∆ωl FWHM linewidth of optical transition

∆v frequency spacing of cavity modes

ε0 permittivity constant

κ complex phase parameter in the chirped Gaussian ansatz

λ wavelength

µ0 permeability constant

ρ charge density

τc carrier lifetime

Φ(z) spatial phase factor, analogous to κ

Φ(ω) spectral phase

Φ(ω)avg averaged spectral phase
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χ susceptibility

χmn susceptibility tensor

ω circular frequency

Ω circular frequency in Taylor expansion

ωc center angular frequency

ωs angular sweep frequency

ω0(t) sweep �lter drive function

Latin symbols

A(t) space independent complex �eld envelope in stationary frame

Ã(ω) space independent complex �eld envelope in stationary frame in Fourier domain

A(z, t) space dependent complex �eld envelope in stationary frame

Ã(z, ω) space dependent complex �eld envelope in stationary frame in Fourier domain

al �ber loss

as sweep �lter loss

b frequency chirp

~B magentic �ux

c0 velocity of light in vacuum

c velocity of light in matter

~D dielectric �ux

D2 second order dispersion coe�cient

D3 third order dispersion coe�cient

Dm dispersion coe�cient of order m

D(Ω) dispersion function

~E electric �eld

erf(z) error function

erfi(z) imaginary error function

êz unity vector in z-direction

G amplitude gain

G0 frequency dependent peak gain

~H magnetic �eld

~j current density

~kc carrier wavevector

~k(ω) angular wavevector

L �ber length
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L̂ linear operator in NSE

~M magnetization

N̂ nonlinear operator in NSE

n refractive index

n2,L intensity dependent refractive index

~P polarization

P0 peak power

Pav(t) moving average of optical power

Pf spectral power density

Pl generalized moment of momentum

Psat saturation power

P (t) optical power

r nonlinearity factor in linearized gain ansatz

Rf non-conservative forces

tlimit time-bandwidth limit

TR total roundtrip time of the light �eld in the laser

Q non-conservative term in variational ansatz

Ql generalized moment of energy

u[0] real part of complex FFTW �eld

u[1] imaginary part of complex FFTW �eld

uch frequency chirped Gaussian �eld envelope

ucomp compressed �eld envelope

Ũ(kx) generalized complex �eld envelope in wavevector space

u(t) space independent complex �eld envelope in swept �lter reference frame, time domain

ũ(ω) space independent complex �eld envelope in swept �lter reference frame, Fourier domain

Ũ(ω) generalized space independent complex �eld envelope in Fourier domain

U(x) generalized complex �eld envelope in position domain

u(z, t) space dependent complex �eld envelope in swept �lter reference frame, time domain

ũ(z, ω) space dependent complex �eld envelope in swept �lter reference frame, Fourier domain

vph group velocity
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