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Abstract

We use transfer operators, a standard tool in dynamical systems theory, together with
the theory of orthogonal polynomials, polynomial hypergroups and harmonic analysis
to define a new transfer operator. We define this transfer operator via the preimages
of certain orthogonal polynomials, namely the Chebyshev polynomials of the first kind.
This transfer operator acts on various function spaces which are determined by orthogo-
nal polynomials. We find that the defined transfer operator is bounded on the function
spaces that we study and that the transformation operator coincides with the adjoint op-
erator and the right inverse, respectively. Using a quadratic transformation which is given
by the second order Chebyshev polynomial of the first kind, we construct an orthogonal
polynomial sequence which generates a polynomial hypergroup the transfer operator acts
on. Similarly, we construct an orthogonal polynomial sequence using a cubic transforma-
tion. However, in the cubic case, the orthogonal polynomial sequence does not generate
a hypergroup. Furthermore, a brief investigation of the inverse branches of the Cheby-
shev polynomials shows that these are infinite. The concepts we established can serve as
a starting point for an orthogonal polynomial point of view in transfer operator theory
and can be transferred to the classical transfer operator theory in dynamical systems and
wavelet theory.



Zusammenfassung

Wir verwenden Transfer Operatoren, ein Standradwerkzeug aus dem Gebiet der dynami-
schen Systeme, in Kombination mit der Theorie von orthogonalen Polynomen, polynom-
ialen Hypergruppen und harmonischer Analysis, um einen neuen Transfer Operator zu
definieren. Wir definieren diesen Transfer Operator durch die Urbilder bestimmter ortho-
gonaler Polynome, der Tschebyscheff Polynome erster Art. Dieser Transfer Operator
operiert auf verschieden Funktionenraumen, die durch orthogonale Polynome bestimmt
sind. Wir erhalten, dass der Transfer Operator auf den untersuchten Funktionenraumen
beschrankt ist, und dass der Einsetzoperator mit dem adjungierten Operator beziehungs-
weise mit der Rechtsinversen iibereinstimmt. Mit Hilfe einer quadratischen Transforma-
tion, die durch das zweite Tschebyscheff Polynom erster Art gegeben ist, konstruieren wir
eine Folge orthogonaler Polynome, die eine polynomiale Hypergruppe erzeugt, auf der der
Transfer Operator operiert. In gleicher Weise verwenden wir eine kubische Transforma-
tion, um eine Folge orthogonaler Polynome zu konstruieren. Im kubischen Fall erzeugt die
Folge orthogonaler Polynome jedoch keine Hypergruppe. Des weiteren zeigt eine kurze
Untersuchung der Inversenzweige der Tschebyscheff Polynome erster Art, dass diese un-
endlich sind. Die Konzepte, die wir eingefiihrt haben, kénnen als Ausgangspunkt fiir eine
Sichtweise vom Standpunkt der orthogonalen Polynome in der Theorie der Transfer Op-
eratoren dienen und iibertragen werden in die klassische Theorie von Transfer Operatoren
im Kontext von dynamischen Systemen und Wavelet-Theorie.
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Introduction

Transfer operators, also called Ruelle transfer operators, Ruelle operators or Ruelle-
Perron-Frobenius operators,

Ro(y)= >, ¥(x)¢(x) (0.1)

zef~(y)

have first been introduced by David Ruelle in the 1960s in the context of thermody-
namical formalism (see [55]). He proved in [47], [49] that the Ruelle-Perron-Frobenius
operator acting on a Holder continuous function space has a unique maximal positive
eigenvalue with a positive eigenfunction if the given dynamical system f is the one-side
shift on a symbolic space of finite type and when the given function is positive and Holder
continuous (see also [8]). D. Ruelle used this result to complete a mathematical under-
standing of the existence and the uniqueness of the equilibrium measure, the so-called
Gibbs measure, for a Holder continuous positive function on a symbolic space of finite
type in thermodynamical formalism. His theorem is an important result in modern ther-
modynamical formalism. Since then, transfer operators have become a standard tool in
dynamical systems, ergodic theory and other branches of mathematics as well as math-
ematical physics. P. Walters proved Ruelle’s theorem in a more general setting, that is,
the dynamical system can be a positive summable variational function (see [60]). There
are many textbooks and articles about Ruelle’s theorem, see for example [5], [8], [18],
[19], [20], [40]. The spectral properties of transfer operators have been used to obtain
results on various types of dynamical systems and to study their ergodic properties. D.
Ruelle himself used transfer operators to investigate various types of dynamical systems,
e.g. piecewise monotone maps (see [53]), Axiom A flows (see [48]), expanding maps
and Anosov flows (see [50]) and to established correspondences of transfer operators to
the so-called dynamical zeta function (see [52], [54]) and to Fredholm determinants (see
[51]). V. Baladi, G. Keller and F. Hofbauer also employed transfer operators to study
dynamical zeta functions (see [4],[3], [25]) as well as C. Liverani who gained new results
on certain dynamical systems using the spectral properties of transfer operators (see [35],
[36]).

In the 1990s P.E.T. Jorgensen started using a transfer operator in harmonic analysis and
wavelet theory in order to find orthogonal wavelet bases. In [29], he found an interconnec-
tion between the cascade refinement operator, which is well-known in wavelet theory, and
a transfer operator, as well as a one-to-one correspondence between the eigenfunctions
of a transfer operator to the eigenvalue 1 and representations of certain C*-algebras. In
[9], O. Bratteli and P.E.T. Jorgensen obtained a relation between the spectral properties
of a transfer operator and the question of convergence of the cascade algorithm for the
approximation of the corresponding scaling function.

More recently, transfer operators have also been utilized in applied mathematics, e.g. in
the analysis of biomolecular systems (see [56]).

In this thesis, we achieve synergies of the theory of orthogonal polynomials, polynomial



Introduction

hypergroups, harmonic analysis and transfer operators. We define a new transfer operator
which is based on certain orthogonal polynomials rather than using the dynamical sys-
tems context. The underlying preimage for the transfer operator which is usually given
by a dynamical system f, will in our case be given by an orthogonal polynomial. We
investigate the action of this transfer operator on function spaces determined by various
orthogonal polynomial sequences, e.g. on homogeneous Banach spaces like the Wiener al-
gebra and its p-versions. The orthogonal polynomials which we use to define our transfer
operator will be the Chebyshev polynomials of the first kind as up to similarity they and
the powers are the only chains, that is, they are a sequence of polynomials, each of positive
degree which contains at least one of each degree and such that every two polynomials
in it are permutable (see Theorem 1.1.42). Furthermore, they exhibt a symmetric distri-
bution of the preimages in the even case which will be crucial for our invstigation. The
Chebyshev polynomials of the first kind also form a polynomial hypergroup (see Example
1.2.27 (1)) which our transfer operator will act on. This case can be compared to P.E.T.
Jorgensen’s invstigations on the torus as for the Chebyshev polynomials of the first kind,
the transfer operator and the corresponding transformation operator map the spaces they
operate on into themselves. Moreover, the transformation operator coincides with the
adjoint operator for the case of the Chebyshev polynomials of the first kind. We do not
stop our investigation at this point, but consider the ultraspherical case which carries our
studies over to the polynomial hypergroup induced and function spaces determined by
the generalized Chebyshev polynomials. In this case, the spaces the transfer operator and
the corresponding transformation operator as well as their iteratives operate on and the
spaces they map into are not the same. We will consider an unweighted version of the
transfer operator, that is, the function which corresponds to ¢ in (0.1) is identical one,
and a weighted version.

Furthermore, we even consider the case of arbitrary orthogonal polynomials which are
symmetric. We construct an orthogonal polynomial sequence based on a quadratic trans-
formation which is given by the second order Chebyshev polynomial of the first kind,
Ty (z) = 22> — 1. We can show that the constructed orthogonal polynomial sequence
induces a hypergroup structure on Ny, and we study the transfer operator on this poly-
nomial hypergroup as well as the Wiener algebra induced by these polynomials.

In the same way, we construct an orthogonal polynomial sequence based on a cubic
transformation which is given by the third order Chebyshev polynomial of the first kind,
Ts (z) = 423 — 3z.

Finally, we briefly analyze the inverse branches of the Chebyshev polynomials of the first
kind and give an outlook on future work.

The first chapter of this thesis will provide the necessary background on orthogonal poly-
nomials and hypergroups which will be needed in the subsequent chapters. We will give an
introduction to orthogonal polynomials following the general setting of T.S. Chihara (see
[11]) who uses a linear functional, the moment functional, to prove some main results
on orthogonal polynomials. In this context, we will prove the fundamental recurrence
formula (see Theorem 1.1.14) which will in Chapter 3 be crucial for the construction of
the orthogonal polynomial sequences based on quadratic and cubic transformations, re-
spectively, as well as Favard’s theorem (see Theorem 1.1.21), which states that there is a
unique moment functional for a polynomial sequence that satisfies the fundamental recur-
rence formula, and the Perron-Favard theorem, which states that there exists an unique
measure which the polynomial sequence is orthogonal for if the fundamental recurrence



formula is satisfied (see Theorem 1.1.23). Based on the Riesz representation theorem, we
will give a proof of the Perron-Favard theorem. We also deal with the question of symme-
try for an orthogonal polynomial sequence. Since the Chebyshev polynomials of the first
kind are a symmetric orthogonal polynomial sequence, symmetry will play a crucial role
throughout Chapter 3 when we study a transfer operator based on orthogonal polynomi-
als. Referring to T.J. Rivlin (see [43]), we provide that the Chebyshev polynomials of
the first kind and the powers are up to similarity the only orthogonal polynomials which
pairwise commute, which will be essential for our study of the transfer operator.

In the second part of the first chapter, we give a brief introduction to hypergroups and
homogeneous Banach spaces following an unpublished book manuscript of R. Lasser as
well as [32], [33], [34] and G. Fischer and R. Lasser (see [22]). We first give some general
facts on hypergroups and discrete hypergroups and then turn to the study of polynomial
hypergroups, which our transfer operator in Chapter 3 will be defined on. We will also
provide some material on the linearization coefficients of polynomial hypergroups which
we need in Section 3.7 for the orthogonal polynomial sequences defined through cubic
transformations. The remainder of the first chapter is dedicated to the introduction of
homogeneous Banach spaces which our transfer operator will act on.

The second chapter of this thesis will give a short glimpse of the theory of transfer opera-
tors both of the dynamical systems and the harmonic analysis point of view. This chapter
will be the inspiration and the starting point for the framework that we develop in Chap-
ter 3 concerning a transfer operator defined via orthogonal polynomials. However, we do
not mean to extend the deep results on transfer operators provided here. The first section
of Chapter 2 introduces transfer operators in the context of dynamical systems following
Y.P. Jiang (see [27]). We will discuss Ruelle’s theorem which consists of two parts. The
first part states the existence and the simplicity of a unique maximal eigenvalue for a
Ruelle-Perron-Frobenius operator acting on a Holder continuous function space. The sec-
ond part concerns the existence and uniqueness of the Gibbs measure. Y.P. Jiang found
an elementary but elegant proof to the first part of Ruelle’s theorem (see [26]) and the
proof of the second part is a combination of the ideas in [26] and in [14] (see [19]).

We begin the second part of Chapter 2 with a short introduction to wavelet theory follow-
ing I. Daubechies [13]. We give the definitions for wavelets and multiresolution analysis
and conditions for the existence of an orthonormal wavelet basis both for infinitely sup-
ported wavelets and compactly supported wavelets. After having introduced the basic
notions of wavelet theory, we discuss the results of P.E.T. Jorgensen [29] and O. Bratteli
and P.E.T. Jorgensen [9] on the harmonic analysis of transfer operators. The spectral
properties of the transfer operator which arise from polynomial wavelet filters are studied.
In [29] P.E.T. Jorgensen defined a transfer operator of the form

Rf(z)= ) Imo@) *f(w),  fel'(T),z€T, (0.2)

wN=z

where mq (2) = Y., , axz" is a polynomial wavelet filter. There is a one-to-one correspon-
dence between representations of a C*-algebra and functions which are harmonic for the
transfer operator (0.2), that is, functions h € L' (T), h > 0 that satisfy R (h) = h. In [9]
the transfer operator (0.2) is studied for the case that N = 2. The spectral properties of
the transfer operator are related to the convergence question for the cascade algorithm
for approximation of the corresponding wavelet scaling function. In Chapter 3, we de-
fine a transfer operator which is based on the Chebyshev polynomials of the first kind,
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{1 (2)}oo, by
R(mN,TN)f (v) = Z my (z) f (x), (0.3)
Tn(z)=y
with the weight function my (z) = 3,7 b T} (z) h (k). We get for the unweighted Ruelle
operator
Tn, n=NlleN

0, else

Ramyy (1) = {

We find that the Ruelle operator acting on C'([—1,1]) is a bounded linear operator and
that |Ra,ry)| = 1. For the Ruelle operator acting on the Wiener algebra A ([—1,1])
we have that Ry € B(A([-1,1]), |[Rary| = 1 and Ruryf (y) = S, f (Nn)
T, (y) h(n) for each f € A([—1,1]). We also prove similar results for the p-versions
AP ([-1,1]) of the Wiener algebra and for L (|—1,1], 7). Corresponding to the action
of the Ruelle operator R ry) on L* ([—1,1],7) we study an adjoint operator E of the
Ruelle operator and obtain for f,g € C (5),

| Rasof 0)a@in ) = | 1@ Bal@ar @), (0.9

We find that E o R 7y) is a Morkovian projection as well as that the spectral radius of
R(1,7y) equals 1.

We obtain for the weighted Ruelle operator based on the Chebyshev polynomials of the
first kind

R(mN TIN) (Tn)

(T, n—= NIleN,
N S (M2 12+ X7 200 Tk (20)) b (20)] T () ) n, N even
¥ Zﬁ/f [> et 2bok—1Ton—1 (23) h (2k — 1)] T, (%)) : n odd, N even’
|~ (2L [(1 + 3 Yy br T (a:i)) h(k + j)] T, (xi)) . NoddneN

as well as that Ry, ry) is a bounded operator on C ([-1,1]), A([-1,1]), AP ([-1,1])
with the operator norm equal to 1 and on L? ([—1, 1], 7) with the p-norm equal to |my|.
Furthermore, we investigate the unweighted and the weighted Ruelle operator on function
spaces determined by the generalized Chebyshev polynomials {T o) ()}, and get for
even N for the unweighted Ruelle operator that

Ly V2 9 plad) (x(N/”) k=2n
R(LTN) (Trga,ﬁ)) (y) _ {N =1 k i

0, E=9on+1

For N=2, we can prove that R 1,y € B (A(a’ﬁ) ([-1,1]), A(a’ﬂ) ([-1, 1])) and |Rumyy| =
1 as well as Rapy € B(LP ([-1,1],7%5), LP ([-1,1],7%5)) and |[Ramyl = 1, 1 <
p < oo. We also investigate a transformation operator E for the unweighted Ruelle
operator and get that E is the right inverse of R 1. In the weighted case, we deal
with two different kinds of weight functions my (x) defined as above, and niy (z) given
by min () = X0, l;kT,Ea’ﬁ) () h (k). We obtain that for niy (z), the Ruelle operator



Ry 1y) acting on {T,&‘“ ) x)}oo o coincides with the unweighted case as well as Ry, 1)
Moreover, we construct an orthogonal polynomial sequence {Q, ()}, from a given

orthogonal polynomial sequence {P, (x)}*_, which satisfies

Qon () = P (T2 (1))

using the fundamental recurrence formula. We establish conditions for the recurrence
coefficients so that {Q, (z)}r_, generates a polynomial hypergroup and find that the
Ruelle operator satisfies

Pg, n even

Ror (@n) = {O, nodd

We can also show that the Wiener algebra generated by the polynomials @), is a Banach
space and that Ry 1) € B (Ag ([—1,1]), Ap ([—1,1])). For its right inverse £, we see that
E e B(Ap([-1,1]),Aq ([-1,1])). For the operator norms, we have |Rp,)| = 1 and
|E| = 1. Moreover,

[ Roanf s @ane ) = [ 1009 @@ dng )= [ 1) B @) ) drg (o)

For the weighted case, we consider three different kinds of weight functions, ms (), msy (),

defined as above, and my (x) given by my (x) = S bkQy (2) hg (). For 1y () we find
again that Ry, 1, acting on {Q, (z)}>_, coincides with the unweighted case. Considering
the other weight functions, we get that

20Ty (1) 1 (0)] P2 () = P (w). n =2l

Rm, Qn Yy) = )
e OO [ o (o) k)] Bt
1

N= N

and

P (y), n =2l
(m2 Tz) (Qn) ( ) - % [ZZO:O 262k+1 Pk+1(i/();)rpk(y) hQ (2]{ + 1)] Plﬂ(i/();)rpl(y)’ n=2l+1"
1 1

We obtain for both weights that R, 1) € B (Ag (S), Ap (S)) and for its right inverse £,
Ee B(Ap(S),Aq(S)). For the operator norms, we have | R, n,)| =1 and |E| = 1.
Then we construct another orthogonal polynomial sequence {C, (z)}*_, from a given
orthogonal polynomial sequence {P, (z)}*_, in the same way as in the quadratic case,
but this time we use a cubic transformation

Csn () = P, (T3 (x)) .

We find a representation for the polynomials {Cs,, (2)}>_,, and for the products, we calcu-

late the corresponding linearization coefficients. For the connection coefficients we obtain

Csn () = Py (T3 (2 Z ki Te (T3 (2 Z Kk T (2
k=0

for P, (x) = > _o knxTk ().
For the cubic Ruelle operator R 1,y acting on {C,, (z)}r_, we get

R 1T3 (O3n) = na R(I,Tg) (O3n+1) = 0 = R(I,Tg) (O3n+2) .
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Moreover, for the cubic Ruelle operator R z;) and the cubic transformation operator £,
Eg = goTs, we have:

| Rams @ awdne ) = | £ @) By (@) dno (@),
S S

and R 1) € B(Ac(5),Ap(S)), E € B(Ap(S),Ac(S)). For the operator norms, we
find [Rapy| =1 and |E| = 1.

In Chapter 4 we conclude with the result that the inverse branches of the Chebyshev
polynomials of the first kind are infinite and give a short outlook.

The concepts we established in Chapter 3 and 4 serve as a starting point for an orthogonal
polynomial point of view in transfer operator theory and can be transferred to the classical
transfer operator theory in dynamical systems and wavelet theory introduced in Chapter
2 which will be work that goes beyond the amount of a dissertation.



1 Orthogonal polynomials and
hypergroups

1.1 Orthogonal polynomials

In this section, we will introduce orthogonal polynomials following Chihara [11] and pro-
vide the background that we will need for the study of polynomial hypergroups in Section
1.2.3 and throughout Chapter 3 for the Ruelle operator that we define as well as for the
function spaces our Ruelle operator will act on and for the construction of certain orthog-
onal polynomial sequences. For some additional properties of the Chebychev polynomials
of the first kind and for the generalized Chebychev polynomials we will consult [43], [23],
[31], [33] and [2].

Chihara’s approach to the theory of orthogonal polynomials using a so-called moment
functional is motivated by a high level of generality which will be illustrated on the fol-
lowing two pages.

Let w be a nonnegative and integrable function on an interval (a,b) which satisfies
w (x) > 0 on a sufficiently large subset of (a,b) and

wa(x)dx>0.

a

If (a,b) is unbounded, then the moments u, are additionally required to satisfy

b
fn, = J 2w (z) dx < oo, n € Np. (1.1)

a

el
n=0’

If there is a sequence of polynomials {P, (x)} P, of degree n, such that

J P, (z) P, (x)w (z)dx =0, m # n, (1.2)

a

then {P, (z)}_, is called an orthogonal polynomial sequence with respect to the weight

function w on (a,b). Now, we can write for any function f,

MIf] = j f (2) w () do, (1.3)

and thus we get for (1.1) and (1.2)
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M is a linear functional
Mlaf () +bg (z)] = aM [f ()] + bM [g ()] (1.6)

for arbitrary constants a, b and integrable functions f, g, and (1.4) and (1.6) suffice to
define M [@ (x)] for any polynomial @ (z), i.e.

M [Z Ckl‘k] = Z Ch k-
k=0 k=0

Thus, more generally, we consider an arbitrary sequence of real or complex numbers
{pn} . Hence a linear functional M on the vector space of all polynomials in one
real variable can be defined by (1.4) and (1.6), and if there is a sequence {P, (z)}>_, of
polynomials satisfying (1.5) and

M [P2(z)] #0,

then it is called an orthogonal polynomial sequence with respect to M.
In order to illustrate the generality of the use of the functional M to define orthogonal
polynomial sequences, we will introduce an orthogonality relation which seems to be of a
different type than (1.2):
Let
_ : & ()" G ([
G(z,w) =e " (1+w) =Z—Z(>w” (1.7)

|
m=0 m: n=0 n

with parameter a # 0. Then when forming the Cauchy product of the two series in (1.7),
we have

G (z,w) = Z P, (z)w", (1.8)

where

P, (z) = ,Czn;) (i) E;Ci)nk; (1.9)

Since (}) = Lo (x—1)-+-(z —k+1) for k =1,2,...,n, we get that P, (z) is a polyno-

mial of degree n. P, (x) or some constant multiple of P, (z) is called a Charlier polynomial
and G (z,w) is said to be the generating function for {P, (x)}r_.
With (1.7) we have that
a®G (z,v) G (z,w) = e ) [ (1 4+ v) (1 + w)]",
thus

efa(er'w) ea(1+v)(1+w)

|
= k!
X a,n n
a _avw e a (/Uw)
= e e = —' s
ot n.



1.1. Orthogonal polynomials

and with (1.8) we have

k=0 k=0 m,n=0
w ok
= > D Pu(k)Py(k) e
m,n=0 k=0
Comparison of the coefficients of v™w" yields
o k
0

NP RS-, T (1.10)
k=0 k! ena! y M=n

Then we call {P, ()}, an orthogonal polynomial sequence with respect to the discrete
mass distribution which has mass a*/k! at the point k, k € Ny. Now, we write

= CL
Z 7 "N (1.11)

and define M for all polynomials by linearity. Then, we see that (1.10) can be written as

M [Pm (l’) Pn (JZ)] = %6mna m,ne N0~

Hence both (1.2) and (1.10) can be described by the linear functional M.

1.1.1 Orthogonal polynomials sequences

Definition 1.1.1. (1) Let {u,}_, be a sequence of complex numbers, called the mo-
ment sequence, and let M be a complex valued function, the moment functional,
defined on the vector space of polynomials with complex coefficients in one variable

P by
M[xn] = Hn; nEN(b
MaQ (z) + fR(2)] = aM[Q(x)]+SM[R(z)]  VR(z),Q(x)eP,a,feC.

The number p,, denotes the moment of order n.

(2) A sequence of polynomials {P, (z)},"_, is called an orthogonal polynomial sequence
(OPS) with respect to the moment functional M if for all nonnegative integers m
and n,

(i) P, () is a polynomial of degree n,
(i) M[P, (z) P, ()]ZOform;én,
(i) M[P7 (z)] #

(3) If {P, (x)}r_, is an OPS for M and M [PZ?(z)] = 1, then {P, (z)}_, is an or-
thonormal polynomial sequence.
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Examples 1.1.2. (1) The Chebyshev polynomials of the first kind, {T,, (z)}"_,, defined

by
Ty (z) = cos (nf) = cos(ncos ' (z))
= cos (narccos (x)), 0e[0,7],z=cosfe[-1,1],
form an OPS with respect to the weight function w (z) = (1 — x2)71/2.
We have
To (z) =1, T (z) = x,
Ty (7) = 2% — 1, Ts (x) = 42 — 3z, etc.

(2) The Chebyshev polynomials of the second kind, {U, (z)}._,, defined by

sin((n+1)0)  sin((n + 1) arccos (z))

Up(x) = sin (0) = sin (arccos (2)) , 0€|0,7],z=cosfe|[-1,1],
are an OPS with respect to the weight function w (x) = (1 — x2)1/2.
We have
U (z) =1, Uy (z) = 2z,
Us (z) = 4a® — 1, Us (z) = 82° — 4z, etc.
Moreover, we have
Up1(x) = %TT'L (x) = S;?n(?:)) x = cos (0), (1.12)
and by an easy calculation
T2 (z)— (2 = 1) Us_y () = 1. (1.13)

(3) The Legendre polynomials, {L, (z)},-_,, are given by

n=0’

L) = gt (2= 1)], we 1]

They form an OPS with respect to the weight function w (z) = x[-1,11. We have

Lo (z) =1, Ly (x) =z,
Ly (x) = % (32° 1), Ls(z) = % (52° — 3z) , etc.

(4) The Jacobi polynomials, {Pfla’ﬁ) ()}, can be defined by

1
Ped) (z) = (()[Z—')HQFI (—n,n+a+ B8+ La+1;(1-2)/2),

where

n"'(O‘p)nJ7

qu (Ozl,...,@p;ﬁlw'-aﬁq;x) = Z ((Oéll)) (ﬂq) n!

n=0

10



1.1. Orthogonal polynomials

is the hypergeometric function and («),, = F(F‘?Z;”) =a(a+1)-- - (a+n—1)is the
Pochhammer symbol.

When «, f > —1, the Jacobi polynomials form an OPS on [—1, 1] with respect to
the weight function w (z) = (1 —2)* (1 + z)”.

For a = g = 0, the Jacobi polynomials equal the Legendre polynomials, for «
b= —%, they equal the Chebyshev polynomials of the first kind and for a = 3 =

they equal the Chebyshev polynomials of the second kind.

N |—

(5) For a = 8 the Jacobi polynomials are called wultraspherical polynomials or Gegen-
bauer polynomials, {PT(LO‘) ()}, and are defined by
2 1
P (1) = %QE (—n, 20+ nja + 5 (1—x) /2) :
n!
For fixed « the ultraspherical polynomials form an OPS on [—1, 1] with respect to

the weight function w (z) = (1 — 22)®. They are related to the Jacobi polynomials
by the following equation:

PO () = (2a)1n P ()
(a+3),
(2A+ 1) O
— —nP ’ — _

(6) The generalized Chebyshev polynomials, {Téa,ﬁ) ()}, a, > —1, are given by

R (222 — 1), n =2k
RO (222 — 1) m=2k+1’

e - |

where

PP () 1
R(a"g)(x)z—k =2F1(—k,k—i—a—l—ﬁ—i—l;a—i—l;—(l—x)).

' B (1) 2
They are orthogonal on [—1, 1] with respect to the weight function w (z) = (1 — 2?)"
|z|?#*1 and are normalized by T# (1) = 1.
For g = —% the generalized Chebyshev polynomials are related to the ultraspherical
polynomials by

(o8) () _ PP ) ol N
T ¥ () P (0 Go v ()

For o = 8 = —% the generalized Chebyshev polynomials equal the Chebyshev
polynomials of the first kind.

Theorem 1.1.3. Let M be a moment functional and let {P, (x)}_, be a sequence of
polynomials. Then the following properties are equivalent:

(i) {P. (x)}_, is an OPS with respect to M,

11



1. ORTHOGONAL POLYNOMIALS AND HYPERGROUPS

(11)) M |Q (x) P, (z)] =0 for every polynomial Q (x) of degree m < n, and
MI[Q(x) P, (x)] #0 if m =n,
(11i)) M [2™P, (z)] = K,0mn, where K,, #0, m =0,1,...,n.

Proof. Let {P, (z)}._, be an OPS for M. Each P (z) is of degree k, thus { P, (z) , P, (z),
.., Pn (z)} is a basis for the vector subspace of polynomials of degree < m. Hence if
Q (x) is a polynomial of degree m, then there exist constants ¢; such that

Q(x) = Z cxPr (), cm # 0.
k=0

The linearity of M implies,

Do kM[Py(x) P, ()] =0, m<n

MIQ (x) P, (v)] = {ck]\/l [P2 ()] m=n

This proves (i) = (i7). Clearly, (1i) = (iii) = (i) follows from the definitions of the
Kronecker delta 9,,,, M and the OPS. O

Theorem 1.1.4. Let {P, ()} _, be an OPS with respect to M. Then for every polyno-
mial Q (z) of degree n,

Q(x) = ) exPy(2)

k=0

MIQ (z) By (v)]
MP(@)]

Proof. 1If Q () is a polynomial of degree n, then there are constants ¢ such that

with

Cp = kE=0,1,...,n. (1.14)

Q(z) =) b (z).

Multiplying both sides of this equation with P, (x) and applying M gives

MIQ () P (2)] = Y kM [Py () P (2)] = cnM [P}, ()]

k=0
By Definition 1.1.1 (2)(iii), M [P2 (z)] # 0, hence (1.14) follows. O

Corollary 1.1.5. If {P, (z)},_, is an OPS for M, then each P, (x) is determined
uniquely up to multiplication with a nonzero constant. That is, if {Qn (z)}._, is another
OPS for M, then there are constants ¢, # 0 such that

Qn (z) = ¢, P, (2), n € No. (1.15)
Proof. If {Q, (z)}_, is an OPS for M, then Theorem 1.1.3 (ii) implies that
M[P; () @, (x)] =0, k <n.
By setting Q) (z) = @y, (z) in Theorem 1.1.4, (1.15) is obtained. O

12



1.1. Orthogonal polynomials

Definition 1.1.6. (1) A polynomial P, (x) is called a monic polynomial if its leading
coefficient equals 1.

(2) Let {P, (z)}>_, be an OPS and let each P, (x) be monic, then {P, (x)}>_, is called
a monic OPS.

Now, we turn to the question of the existence of OPS. For this purpose, we introduce the
determinants

Ho M1 - Hn
H1 H2 Tt M4l

N =det (i)l o=+ (1.16)
MUn  Hny1 - Hon

Theorem 1.1.7. Let M be a moment functional and {,un}fzo the corresponding moment
sequence. There exists an OPS for M if and only if

An750, TLEN().

Proof. We set

n

P, (z) = Z P

k=0
Then by Theorem 1.1.3,
M[z"P, (x)] = Z Crklktm = KpnOmn, K, #0, m<n, (1.17)
k=0
is equivalent to
Mo 251 e Hn Cno 0
H1 M2 o Mg Cnl 0
. . .. . =1 .. (1.18)
Mo Hpt1 -0 Han, Cnn Kn

Thus if an OPS for M exists, then it is uniquely determined by the constants K, in (1.17)
has a unique solution so that A, # 0, n = 0.

Conversely, if A,, # 0, then for K, # 0, (1.18) has a unique solution and P, () satisfying
(1.17) exists. Furthermore,

_ KnAn—l

Cnn A # 0, n =0, (1.19)

where A_; = 1. Hence B, () is of degree n and thus, {P, (z)}_, is an OPS for M. O

As we will use (1.19) later on, we will prove the following theorem:

13



1. ORTHOGONAL POLYNOMIALS AND HYPERGROUPS

Theorem 1.1.8. Let {P, (x)}"_, be an OPS for M. Then for any polynomial Q,, (z) of
degree n,

MQu (@) Py (2)] = M [2" P, ()] = 2=, Ay =1, (1.20)
n—1
with a, the leading coefficient of Q,, and k, the leading coefficient of P, (x).

Proof. 1f we set

Qn (CI)) = anxn + Qn—l (l’) )
where @,,_1 (x) denotes a polynomial of degree n — 1, then
M[Qn (z) P, ()] = anM[z"Fy (2)] + M [@no (2) By (2)]
= apM[z"P, (2)].
Thus for k, = ¢up, (1.19) implies (1.20).
Definition 1.1.9. (1) A moment functional M is called positive-definite, if M [Q (x)] >
0 for every polynomial that is not identical zero and nonnegative for all x € R.
(2) M is called quasi-definite if and only if A, # 0, n > 0.

Theorem 1.1.10. If the moment functional M is positive-definite, then the corresponding
moment sequence {ﬂn}f:o is real and there exists a corresponding OPS which consists of
real polynomials.

Proof. Let M be a positive-definite moment functional, then
ok = M[%] > 0,
and since oy
0< M[(@+1"] - Z<k>u
we get by induction that pog,q is real.

Then by the Gram-Schmidt process (see [11], pp. 13, 14) an OPS can be constructed. [

Lemma 1.1.11. Let Q(x) be a polynomial which is nonnegative for real x. Then there
are real polynomials P (x) and R (x) satisfying

Q () = P*(z) + R*(x).

Proof. Tt Q(x) = 0 for real z, then @ (z) is a real polynomial, its real zeros have even
multiplicity and its non-real zeros occur in conjugate pairs, that is

m

Q(z) =S (@) | [ (& — o — Bid) (v — . + Bi)

k=1

with S (z) a real polynomial and ay, i, € R. By setting

(x — oy — Bri) = A(z) +iB (x),

where A (z) and B (x) are real polynomials, we have

Q (x) = 5% (z) [A2 (z) + B? (x)] )

14



1.1. Orthogonal polynomials

Theorem 1.1.12. M is positive-definite if and only if its moment sequence {u,} . _, is
real and /\,, > 0, n > 0.

Proof. Let pu, be real and A, > 0, n > 0. By Theorem 1.1.7 an OPS {P, (z)}~_, exists
for M. Without loss of generality P, (x) is monic. Then by Theorem 1.1.8 we have
Ay

M|P? (z)] = A > 0.

By (1.18) P, (z) is real and thus if P (x) is a real polynomial of degree m, then

P(a:)zZakPk(a:),

where a; € R for all k£ and a,, # 0. Hence

M[P?(2)] = Z a;axM[P; (z) Py (2)] = > af M [P} (x)] > 0.

Finally, Lemma 1.1.11 implies that M is positive-definite.

Conversely, if M is positive-definite, then by Theorem 1.1.10 its moment sequence {y,}"
is real and there exists an OPS, {P, (z)},_,, for M. Again {P, (z)},_, is supposed to be
monic, and again we have

Ay

O<./\/l[P5(x)]=A : n = 0.
n—1

Since A 1 = 1, it follows that A, > 0, n > 0. ]
An immediate consequence of the previous theorem is the following corollary:

Corollary 1.1.13. Let {P, (x)}._, be an OPS for M. If P, () is real and M [P? (z)] >
0, then M 1is positive-definite.

1.1.2 The fundamental recurrence formula

The following theorem provides the three-term recurrence formula for orthogonal polyno-
mials, i.e. any three consecutive polynomials can be related by an easy relation. We will
use this recurrence formula throughout Section 3.5 and Section 3.7 in order to construct
orthogonal polynomials via a quadratic and a cubic transformation, respectively, which
induce function spaces the Ruelle operator will act on.

Theorem 1.1.14. Let M be a quasi-definite moment functional and let {P, (x)}’_, be

n=0
the corresponding monic OPS. Then there are constants ¢, and A\, # 0 satisfying

P,(z) = (v —c,) Puey () = NP2 (z), neN, (1.21)

with Py (x) = 0.
Moreover, if M is positive-definite, then ¢, is real and \,+1 > 0 forn = 1.

15



1. ORTHOGONAL POLYNOMIALS AND HYPERGROUPS

Proof. Since zP, (x) is a polynomial of degree n + 1,

w M|zP, (z) P (x
zh, (35) = kZZO Qi Py ({L’) , ple = [M [f(Jk?)(x)]( )]

But P (x) is a polynomial of degree k + 1 so that a,; = 0 for 0 < k < n —1 and as
zP, (x) is monic, @, n+1 = 1. Thus we have

WV
—_

zP, (x) = Py (@) + ann Py () + a1 P () n (1.22)

If we replace n by n — 1, then (1.22) rewrites as
zP, 1 (x) = P (x) + ¢, Py (2) + N\ Pa (), n=2.

which is equivalent to (1.21) for n = 2. If we set P_;(z) = 0 and ¢; = —P; (0) (A is
arbitrary), then (1.21) is also valid for n = 1. We get from (1.21)

M [2" 2P, (2)] = M [2" ' Py (2)] — caM [2" 2Py ()] — XM [2" 2 Pys (2)]

0=M [x”’an,l (:L‘)] - A M [x”’QPn,g (:1:)] )
Now, by Theorem 1.1.8, we get for n > 1,

M [z"P, (x)] JAVIPYANS
Anil = = : Ay =1.
MR (@] AL 1

This implies that A, # 0 if M is quasi-definite and A,, > 0, n = 2, if M is positive-definite.
Since the Py (x) are real, ¢, is real. O

The proof of Theorem 1.1.14 provides additional facts that will be stated in the next
theorem:

Theorem 1.1.15. Letn > 1, then:

()
MPL(@)]  AnaAn

M [qufl (x)] N AR

)‘n-i-l =

(ii) M[P?(z)] = Mg+ Auw1, where Ay := pg = L\,
(iii)

M [mPﬁ_l (az)]
M|P? (2)]

Cp =

(iv) The coefficient of "' in P, (x) is — (c1 + ca + - + ¢p).

Proof. The proof of Theorem 1.1.14 provides the formula in (i), and (ii) follows form
If both sides of (1.21) are multiplied by P, (z) and M is applied, then (iii) follows.

Let d,, be the coefficient of "1 in P, (), then comparison of the coefficients of 2"~ on
both sides of (1.21) provides that d,, = d,,_1 — ¢,, which implies (iv). O
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1.1. Orthogonal polynomials

Remark 1.1.16. In the case that {P, (z)},_, is not monic, then its recurrence formula
is of the form

P, (x) = (Ayz + B,) P, (x) — C,P, 1 (2), n=0 (1.23)
Writing P, (z) = k, P, (z), where P, () is monic, gives
An == k;lkn_;,_l, BTL == _Cn_;'_lk;lkn_;rl, On == )\n—i-lk;ilkn-i-la n Z O, (124)

with k_; = 1, and ¢,, A, given by Theorem 1.1.15 in terms of {P, (x)}*_,.
Particularly, A, # 0, C,, # 0, and the positive-definiteness condition for M can be

rewritten as
C,A,A,_1 >0, n>=1. (1.25)

Example 1.1.17. For the Chebyshev polynomials of the first kind we use the trigono-
metric identity

cos ((n+1)0) + cos ((n — 1) 0) = 2cos (nd) cos (), n

\Y
\‘H

to obtain
Toi1 (z) = 22T, () — T, 1 (), n=1. (1.26)

Since T (z) = 1, T} (x) = x, we obtain from (1.26) by induction that the leading coefficient
of T, (z) is 2"~!. This implies that the corresponding monic polynomials are

~

To(z) = Ty (x), Tp(x)=2""T,(x), n=1.

Thus the recurrence formula (1.21) takes the form

A N 1 -
T.(x) = aT,_1(x)— 702 (z), n =3,
A A 1~

Ty(x) = 2Ty () — §T0 (x).

Definition 1.1.18. A moment functional M is called symmetric if all its moments of
odd order, {u,}, n = 2l + 1 with [ € Ny, are 0.

In the case that M is given in terms of a weight function, then it will be symmetric if
a = —b and w is an even function on [—b, b].
In the following, we will also call the corresponding OPS symmetric.

Examples 1.1.19. (1) The Chebyshev polynomials of the first kind are a symmetric
OPS. T,, (z) is an odd or an even function depending on whether n is odd or even;
all moments of odd order of the corresponding moment functional equal 0. This is
also related to the fact that in its recurrence formula the coefficient corresponding
to ¢, in (1.21) is 0.

(2) The Legendre polynomials are a symmetric OPS.

Theorem 1.1.20. Let {P, (z)},", be the monic OPS with respect to a quasi-definite
moment functional, then the following assertions are equivalent:

(i) M is symmetric,

17



1. ORTHOGONAL POLYNOMIALS AND HYPERGROUPS

(ii) P, (—z) = (=1)" P, (z), n >0,
(i1i) The coefficient ¢, n = 1, in the corresponding recurrence formula equals 0.

Proof. We will prove (i) < (ii) < (ii).
If M is symmetric, then M [Q (—z)] = M [Q ()] for any polynomial @) (z). This implies

M By (=) Bu (=2)] = M [Py (2) By ()]

Thus by Corollary 1.1.5, P, (—z) = a, P, (z) where a, is a constant. Then by comparison
of the leading coefficients, a,, = (—1)".

Conversely, if P, (—z) = (=1)" P, (z), then P, (z) contains only the odd powers of x when
n is odd. Hence

MI[P ()] = =0, MI[Ps;(z)]=pu3=0, etec.,

and we get inductively po,4+1 = 0, n = 0, which completes the proof of (i) < (7).
Now, we prove the second equivalence relation, (i) < (#i7). With (1.21) we get for

(=1)" P, (z) = Qn (2),
Qn(®) =(x+¢)Qn 1 (2) = MQn 2(x), n=1.

It follows that for @, (z) = P, (z) subtraction of the above equation from (1.21) yields
that 2¢, P, 1 (x) = 0 and thus ¢, = 0 for n > 1.

Conversely, if ¢, = 0 in (1.21) for n > 1, then {Q, (z)} _, satisfies the same recurrence
formula as {P, (z)}_,. The fact that Q_; (z) = P_; (z) and Qo () = P (), implies that
Qn () = P, (x) for all n. O

The following theorem will provide the converse to Theorem 1.1.14, that is, that any
polynomial which satisfies a recurrence relation of the form (1.21) is an OPS.

Theorem 1.1.21 (Favard). Let {c,} -, and {\,}._, be sequences of complexr numbers
and let {P,}"_, be defined by the recurrence formula

P,(z) =(x —cp) Poq () — NP2 (7)), neN, (1.27)
P_l(ZE):O, Po(l')zl ‘

Then there is a unique moment functional M such that
M1l =X, MI[P,(z)P,(x)] =0, for m #n, m,n e Ny.

Furthermore, M is quasi-definite and {P, (z)}._, is the corresponding monic OPS if and
only if A, # 0 while M 1is positive-definite if and only if ¢, is real and A, > 0, n > 1.

Proof. We define the moment functional M inductively by
M[1] =p =X, MI[P,(x)] =0, n € N. (1.28)

Thus we have defined p; by the condition, M [Py (z)] = 1 —c1po = 0, g by M [P (z)] =
po — (1 + co) 1 + (Ao — c162) po = 0, ete. Rewriting (1.27) in the form

zP, () = Poy1 (@) + cni1 Po () + A1 Poo1 () n=l1, (1.29)
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(1.28) implies
M|zP, (z)] =0, n=2. (1.30)

Multiplication of both sides of (1.29) by x implies together with (1.30) that
M [2°P, (z)] =0, n = 3.
By induction,

M[z*P, (z)] = 0, 0<k<n,
M[z"P, (2)] = MM [2" 'Py(z)],  n=L

Thus M [P, (z) P, (z)] = 0, for m # n, while as in the proof of Theorem 1.1.8, we have
M[P2 ()] = M[2"P, (z)] = Mda -+ A, n = 0.

Hence M is quasi-definite and {P, (z)},_, is the corresponding OPS if and only if A, 5 0
for n > 1.

The moments {u, (r)}._, are real if ¢, and ), are all real, thus by Theorem 1.1.12 M is
positive-definite if and only if A\, > 0 for n > 1. ]

Next, we will proof the Theorem of Perron-Favard. We first state a lemma that we will
need for the proof. The proof which we will give for the Perron-Favard Theorem, to our
knowledge, is not available in the literature so far.

Lemma 1.1.22. Let {P, (z)}>_, and M be given as in Theorem 1.1.21. Then

(i) P, (x) has n distinct real zeros xpy, . .., Tpy,

(i)
|Tnie| < o hax (14 Xjy1) + [dnax lcji1] =: b, (1.31)

(i1i) For n € N there are numbers A,y > 0 with Ay + -+ + A, = 1 such that

M[Q (x)] = znl AnkQ (1) VQ (x) € P with deg (Q) < 2n — 1.

Proof. (i) and (iii), respectively, will be proven later on in Theorem 1.1.31 and in Theo-
rem 1.1.37 respectively.
In order to prove (ii), we use that

{L‘f)k2 (I) =P, (ZE) Py (ZL’) + Ck-&-lP]? (l’) + Apa1 P (ZL’) P (l’) , k € Ng,

hence
n—1 n—2 n—1
2 PP () = D (14 M) Py (@) Py () + Py (2) Po () + ). ¢ P (2).
7=0 7=0 j=0
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1. ORTHOGONAL POLYNOMIALS AND HYPERGROUPS

Thus for k=1,...,n

n— n—1
k] D P () < odnax (14 A1) DU (k) 1| Pjt () |
=0 = j=0

0<j<n—1

+ max |e;a| Y|P () |
Using the Cauchy-Schwarz inequality, we get for k =1,...,n

n—1 n—1
ol 3072 (o) < (e (14 Ape0) + e [egal ) 3072 o).

7=0
where we used that P, (x,x) = 0. Finally, we obtain that

roel < o 2 (1H ) + o el

and thus (ii) holds true. O
Theorem 1.1.23 (Perron-Favard). Let {P, (x)}>_, be defined as in (1.27), let b be the

number defined in Lemma 1.1.22 (ii), set a := —b and let K,, be the number in Theorem
1.1.3 (iii). Then there is a unique measure © on [a,b] such that

Jb Py (2) Py () d (2) = Kb (1.32)

a

Proof. The moment functional M is continuous, because by Lemma 1.1.22 for Q) (x) € P,
deg (@) < 2n — 1, we have

z€[a,b]

By the Theorem of Weierstrass (see [61] p. 8) M : P — C has a unique continuous
extension to a continuous positive linear functional on C ([a, b]), which will also be denoted
by M. Then the Riesz representation theorem (see [44] p.130 Theorem 6.19) yields the

existence of a uniquely determined regular complex-valued measure dr (z) on [a,b] with

f P (2) Py () dr () = M [Py () Py (2)] = KBy

a

Since the functional M is positive, the measure 7 is positive. n
The next theorem states the ” Christoffel-Darboux-Identity”.

Theorem 1.1.24. Let {P, (x)}"_, satisfy the recurrence formula (1.27) with X\, # 0,
n=1. Then

= (M- )\n_H)fl P (x) P, (u) — P, (z) Pyya (u)

1.
Z A /\2 /\k+1 r—Uu ( 33)
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Proof. Since {P, (z)}*_, satisfies (1.27), we have

xPy () By (u) = Par1 () Po (0) + cra1 Po (2) By (1) + A1 P (2) P (u)
ubP, (u) By (1) = Poy1(u) Py () + cpy1 P (u) Py () + A1 Py (w) Py ()

Subtracting the second equation from the first, it follows that

(x —u) By (z) P (u) = Posy () Py (w) = o (w) Po (2)
M1 [Po () Py (u) — Py (u) Py ()]

By setting F, (z,u) = (MAz--- Apg1) P"“(x)P”(uiif"(m)P”“("), the above equation can
be rewritten as

Pm(x)Pm(u)

:Fm ) _me ) ) = 0.
Mo At (z,u) @), m

Now, (1.33) follows from the summation of the last equation from 0 to n and by setting
F_y(z,u) =0. O

Remark 1.1.25. For the corresponding orthonormal polynomials p, (z) given by
Do (@) = knPo(z), Ko = (Mo Aur) 72, (1.34)

(1.33) rewrites as

Z . kn Pn+1 (:B) Pn (u) — Pn (ZE) Prnt1 (u)
;:;)pk (@) pr. (u) = = . :

Theorem 1.1.26. The following "confluent form” of (1.33) is also valid.

I L I LA R AL .
= A Az A AtAz s Apga
Proof. We can write the right-hand side of (1.33) as
P (2) Py (u) = P () Poga (u) = [Paya (2) Posa (w)] P (z
— [P (2) Py (u)] Poa ()
Thus for u — x (1.35) follows from (1.33). O

Corollary 1.1.27. Let M be a positive-definite moment functional, then

P ., (x)P,(x) — P, (z) Ppy1(z) > 0, r e R.

1.1.3 Zeros of orthogonal polynomials

We will now explore the zeros of orthogonal polynomials and observe that for a positive
moment functional these zeros exhibit a certain regularity in their behavior. For this
purpose we refine our concept of positive-definiteness.
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Definition 1.1.28. Let E < (—o0, ). A moment functional M is called positive-definite
on E if and only if M [@Q (z)] > 0 for every real polynomial ) (x) which is nonnegative
on E and is not identical zero on E. The set E is the supporting set for M.

Example 1.1.29. The moment functionals for the Chebyshev polynomials of both the
first and second kind are positive-definite on [—1, 1].

The next theorem shows that positive-definiteness on any infinite set implies positive-
definiteness.

Theorem 1.1.30. Let M be positive-definite on E, where E is an infinite set. Then
(i) M is positive-definite on every set that contains E,
(11) M is positive-definite on every dense subset of E.

Proof. Let @ (x) be a real polynomial which is nonnegative and not identical zero on a
set S.

If S o E, then trivially Q (z) > 0on E. If S < E and S dense in F, then @ () = 0 by
continuity. Since @ (x) does not vanish everywhere on an infinite set, it follows in either
case that M [Q (x)] > 0. O

Theorem 1.1.31. Let M be a positive-definite moment functional and {P, (z)},_, the
corresponding monic OPS. Suppose I is an interval which is a supporting set for M. Then

the zeros of P, (x) are all real, simple and located in the interior of 1.

Proof. M |P, ()] = 0 implies that P, (z) must change sign at least once in the interior
of I because of Theorem 1.1.30. That is, P, (x) has at least one zero of odd multiplicity
located in the interior of I. Let x1,xo, ..., x; denote the distinct zeros of odd multiplicity
which are located in the interior of 1. Set

p(x) = (x—z1)- (& — ).

Then p () P, (z) has no zeros of odd multiplicity in the interior of I. Thus p (z) P, (z) = 0
for x € I and M [p () P, (z)] > 0, which is a contradiction to Theorem 1.1.3 (ii) unless
k = n. That is, k = n and P, (z) has n distinct zeros in the interior of I. O

Let us denote the zeros of P, (z) by z,;. We order the zeros z,,; by increasing size:
Tl < Tpo < -+ < Ty, n=1.
P, (x) has a positive leading coefficient, thus
P,(z)>0 for & > p,, sgn (P, (z)) = (—-1)" for © < 1.
Now, P) (x) has exactly one zero on each of the intervals (z, 1, %,;) and the sign of
P! (z,) alternates as k varies from 1 to n. The leading coefficient of P! (z) is also

positive, hence
sgn (P! (xor)) = (=1)"% . k=1,2,... n (1.36)
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1.1. Orthogonal polynomials

Examples 1.1.32. (1) The zeros of the Chebyshev polynomials of the first kind
{T, (z)}°_, are given by

<2i—17r) ‘
Ty = COS — 1, 1=1,...,n.
n 2

The extrema of {T), (x)},_, are given by

k
ynk:COS(_ﬂ>, k=0,1,...,n.

n
The y, are all distinct, lie in [—1, 1] and satisfy

T (yi) = (=1, k=0,...n

(2) The zeros of the Chebyshev polynomials of the second kind {U, (z)},_, are given
by the extrema of {7}, ()},"_y, ynk, for i = 1,...,n.

Theorem 1.1.33 (Separation theorem for the zeros). Let { P, (z)} -_, be the corresponding
monic OPS to a positive-definite moment functional M. The zeros of P, (z) and P, ()
mutually separate each other, that is

Tnt+1i < Tng < Tptl,i+1, 1=1,2,...,n. (1-37)
Proof. Corollary 1.1.27 provides that
P (@) P (2) = P (2) Py () > 0,

which implies
P;Hrl (xn-&-l,k) Pn (xn—i-l,k) > 0, k= 1,2,...,n+ 1.

By (1.36), P, (#ns14) = (—1)"""*. Thus P, () has exactly one zero on each of the n
intervals, (Tn11k Tnt1641), K =1,2,...,n. O

Corollary 1.1.34. Let {P, (z)},"_, be the corresponding monic OPS to a positive-definite
moment functional M. Then for each k > 1, {x.}_, is a decreasing sequence and
{xnﬁn,kﬂ}f:k 18 an increasing sequence. In particular, the limits

& = lim @z, n; = lim 2,41, 1,7 € N,
n—a0 n—a0

exist, at least in [—o0, 0].

Definition 1.1.35. Let M be positive-definite moment functional. The closed interval
[£1,m] is called the true interval of orthogonality of the OPS.

Remark 1.1.36. (1) In the case of Theorem 1.1.23, we have suppm < [&1, m].

(2) The true interval of orthogonality is the smallest closed interval that contains all of
the zeros of all P, (x).
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1.1.4 Gauss quadrature

We will now turn to the Gauss quadrature formula which will serve as a tool to explore
the moment functional M in the positive-definite case and which we used earlier to prove
the Perron-Favard Theorem.

Let {t1,ta,...,t,} be any set of n > 1 distinct numbers and set

Then

is a polynomial of degree n — 1 satisfying
b (t5) = Ojk-

For any set {y1,¥s,...,yn} of numbers, the polynomial

Z Ylk (z

is of degree, at most, n — 1, and satisfies
t])zzykéjk:yja j:1727"'7n
k=1

L, (x) is called the Lagrange interpolation polynomial corresponding to the nodes t; and
the ordinates y;, and provides a unique solution to the problem of constructing a polyno-
mial of degree at most n — 1 passing through the points (¢;,y;), i =1,2,...,n

Theorem 1.1.37 (Gauss quadrature formula). Let M be positive-definite. Then there
are numbers Api, Ana, ..., A such that for every polynomial Q (x) of degree at most
2n —1,

MIQ ()] = ), AukQ (i) (1.38)
k=1
The numbers A, are all positive and have the property,
At + Ao+ -+ App = lo- (1.39)

Proof. Let @ (x) be an arbitrary polynomial of degree at most 2n — 1 and construct
the Lagrange interpolation polynomial corresponding to the nodes x,; and the ordinates

= > 1Q () i (z

k=1
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1.1. Orthogonal polynomials

where

P, (z)

[ = .

M ) PG
Set S(x) = Q(z) — Ln( ), then S (z) is a polynomial of degree at most 2n — 1 which
vanishes at x,,, k= 1,...,n, that is

S(z) = R(x) By (2),
where R (z) is a polynomial of degree at most n — 1. By Theorem 1.1.3,
MIQ (x)] = MLy (x)] + M[R(z) Py (x)] = M[Ly ()]

= Y Q) Ml ().

Thus we have (1.38) with A,;, = M [}, (z)]. If we set Q (z) = [2, (x) in (1.38), then

0< M l2 Z Ankl 'rnk Anm,

hence the A, are all positive. By choosmg Q (x) =1 in (1.38), we obtain (1.39). O
Remark 1.1.38. (1) The weights A, in the Gauss quadrature formula do not depend
on the fact that P, (z) is monic.

(2) If M is defined as in (1.3),

ff

provided the integral converges, then (1.38) suggests the approximation

:J (@) w(z)de ~ ZAnkf(xnk)EMn[f]-

Formulas of this general form in which A, and z,; are numbers independent from
f are called approximate quadrature formulas.

Theorem 1.1.37 can be used to gain additional information about the separation properties
of the zeros of orthogonal polynomials:

Theorem 1.1.39. Between any zeros of Py () there is at least one zero of P, () for
everyn > N = 2.

Proof. Assume that for some n > N, P, (z) has no zero between =y, and xy 1, 1 <
p < N. We have that

Py (z)
T —Tnp) (T — TNpy1)

p(z) = (
is a polynomial of degree N — 2 and

p(x)Pyn(xz) =0  for ¢ (xnp, TNpi1)- (1.40)
With (1.38) we have

Mlp (z) Py (z ZAnkp (@nk) Py (k) -
k=1
Now, (1.40) implies that M [p (z) Py ()] > 0 as p(x) Py (z) cannot vanish at every x,,
but this contradicts the orthogonality properties. O]

25
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1.1.5 Iterative properties of the Chebyshev polynomials of the first
kind

In the rest of this section, we will deal with a special property of the Chebyshev polyno-
mials of the first kind, {7}, ()}, following [43], and if we say Chebyshev polynomials,
we will automatically mean the Chebyshev polynomials of the first kind. The fact that
the Chebyshev polynomials besides the powers are the only orthogonal polynomials up
to similarity that are permutable, will be crucial in Chapter 3 when we study the Ruelle
operator defined by the preimages of the Chebyshev polynomials.

Lemma 1.1.40. For m,n > 0 the Chebyshev polynomials, {T,, (z)}r_,, satisfy the follow-
mg semi-group property:
T (T () = T (). (1.41)

Proof. We have

T (T, (z)) = cos(marccos (cos (narccos (x))))

= cos (m (narccos (z))) = Ty (),
which proves the lemma. O]

Definition 1.1.41. (1) Let P (z), @ (x) be two arbitrary polynomials. P (z), @ (z) are
called permutable if P (Q (z)) = Q (P (z)) for all z. We will denote the composition
P(Q () by PoQ (x), the n-fold composition Po Po...o P (z) by P () and say
that P (x) commutes with @ (z) and vice versa if P (x) and @ (z) are permutable.

(2) A sequence of polynomials, each of positive degree which contains at least one of
each degree and such that every two polynomials in it are permutable is called a
chain.

Since
T (T () = T (Tin (7)) = T (),

the Chebyshev polynomials, {7}, (x)}¥_,, are permutable and they form a chain. So do
the powers 27, j € N.
We will now see that no polynomials other than Chebyshev polynomials commute with a
given T,, (z) if n = 2.

Theorem 1.1.42 (Bertram). Let P (z) be a polynomial of degree k = 1 and let n = 2.
If P (x) commutes with T,, (x), then P (x) = T} (z) for n even and P (x) = £T} (x) forn
odd.

Proof. By Lemma 1.1.43 (see below) +7,, (z) are the only polynomial solutions of
(1—2?) () =m* (1 -7 (1.42)

for m > 0.

We will show that, if P (z) commutes with T,, (z), then y = P (x) satisfies (1.42) with
m = k.

The polynomial

Q(x) = (1—2?) (P (2))° = k> (1 - P2 (z))
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is in Por_1, the polynomials of degree at most 2k — 1, since the coefficient of 22* is zero,
but with the permutability of P (z) and 7T}, (x) and the fact that T, (x) satisfies (1.42)
with m = n, we have

n2QoT,(x) = n®(1—=T2(x)) (P oTy(x))’ —n’k (1 —(PoT, (x))2>
= (1-2°) (T, ()" (P o Tu(2)* = K (1 = P* (1)) (T}, 0 P ()"
Now,
(P'oT, (2)) T, (2) = (Po T, (v) = (T o P(2)) = (T, 0 P (x)) P'(2),
thus
n’QoT, (x) = (1—2%) (P (2))* (T o P(2))” = k> (1 = P2 (2)) (T o P (x))
= (ToP@)" ((1—2) (P @)" = ¥ (1= P*(2))) (1.43)
= (T. o P(2))"Q (x)

Suppose @ (x) # 0 is of degree s < 2k — 1, then by (1.43) sn = 2(n—1)k + s so
that s = 2k > 2k — 1 which is a contradiction. Hence @) (x) is identically zero and
P (x) = £T (z). For n even, T, 0 (=T} (z)) = T, o T} (z) =T}, o T, (x) # =T} o T), (),
thus P (x) = Ty (z). For n odd, T,, o (=T (x)) = =T, o Ty (z) = =T} o T, (z), thus
P (z) = +Tj (2). O

Lemma 1.1.43. For —1 < x < 1 the differential equation
(1-a) () = m? (1— )

is solved by y = +£T,, (x) and has no other polynomial solution for m > 0.

Proof. See [43] pp.87-89, p.39. ]
For
A(x) = ax + b, a#0, (1.44)
we have -
A (x) = —

If P(x)and Q (z) commute, clearly A= o Po A (z) and A™' 0 Q o A (z) also commute.
Definition 1.1.44. We use the same notation as above.
(1) P(x) and \™' o P o A\ (x) are called similar.

(2) Two chains are called similar, if there exists a A (x) satisfying (1.44) such that each
polynomial in one chain is similar to the polynomial in the other chain of the same
degree via A (z) (see also Remark 1.1.47).

In the following, we will see that {T, (z)}’_, and {z"}¥_, are the only chains up to
similarities.
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Theorem 1.1.45. Let n = 2. If P (x) is a polynomial of degree k = 1 which commutes
with z", then P (z) = ¥ for n even and P (x) = 2% for n odd.

Proof. y = x™ satisfies
xy’ = ny. (1.45)

The polynomial Q (z) = zP'(z) — kP (z) is in Py 1 as the coefficient of x* is zero.
Analogously to the proof of Theorem 1.1.42, we get nQ o 2" = (nz"'o P(z))Q (),
and if @ (x) is of degree s = 0, then sn = k(n —1) + s yields that s = k which is a
contradiction. Thus @ (z) is identically zero. Hence y = P (z) satisfies (1.45) with n
replaced by k, that is, P (z) = ca® with ¢ # 0. The commutativity of P (x) and z"
implies that ca®" = c"z*" and ¢ = 1. Since ¢ must be real, ¢ = 1 if n is even and
c=+1if nis odd. O

n—1

Theorem 1.1.46. There is at most one polynomial of degree k = 1 permutable with a
given quadratic, S (x) = ag + a1 + axx?, ay # 0.

Proof. If we put
AMa) = — — L (1.46)

(05} 2@2 ’

then we get
(A oSol(2) =2"+c,

where ¢ = apag + 4 — ‘1—%. Thus in order to prove the theorem it suffices to show that
there are no two distinct polynomials of degree k& which commute with 2% + ¢. If U (2)
and V' (x) are distinct polynomials of degree k& which commute with S (z), then there are
distinct polynomials of degree k similar to U (z) and V (z) via (1.46) commuting with
2 + e

Suppose that P (z) and @ (x) are distinct polynomials satisfying

P(2® +¢) =P*(z) +c,
Q(2° +¢) =Q*(z) +c.

Then by comparison of the leading coefficients on both sides of each equality, we obtain
that P (x) and @ (=) both have leading coefficient 1. Thus R (z) = P (z) — Q (x) € Pr
and

(1.47)

R (xQ + c) = P?(z) - Q*(x) = R(2) (P (2) + Q (2)). (1.48)

If R(z) is of degree t = 0, then by (1.48), 2t =t + k or t = k which is a contradiction.
Therefore, R (x) is identically zero and P (z) = @ (x). This contradiction proves the
theorem. O

Remark 1.1.47. An immediate consequence of Theorem 1.1.46 is that each chain con-
tains exactly one polynomial of each positive degree.

0

Theorem 1.1.48. Every chain is either similar to {7}, or to {T; (z)}7.

Proof. Let {P; (x)}?., be a chain with P, (z) = ap + a1@ + az2* and {Q; (2)}52, a chain
similar to {P; (z)}72, with A () as in (1.46). Then Q, (z) = 2* + ¢, and Q3 (z) commutes
with Qs (z) thus

Qs (2° +¢) = Q5 (x) + c (1.49)
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Hence Q3 (—x) = Q3 (z), and since Q3 (z) is of degree 3, we have that Q3 (—z) = —Q3 (),
that is, Q3 (z) is an odd polynomial. We set

Qs (x) = byx + bsa®. (1.50)
By substitution of (1.50) into (1.49) we obtain bs = 1, b; = 3¢,
clc+2)=0 and c¢(2+¢)(2c—1)=0.

Thus c either equals —2 or 0. For the case that ¢ = 0, Q» (z) = 2% and by Theorem 1.1.45
Q; (z) = 27, j € N. Hence {P; (x)}52, is similar to {27} .

For the case that ¢ = —2, we consider the chain {u~" o Q; o p(x)}%, with u(z) = 2.
Since

(4" 0 Quop(a)) = T (a),
we get with Theorem 1.1.42 that

ploQou(w)=T(x), jeN

Hence {P; ()}, is similar to {7} (z)}3, via the linear transformation A o u (). O

1.2 Hypergroups and homogeneous Banach spaces

In this section, we will introduce hypergroups and some of their basic properties with a
special focus on polynomial hypergroups. First, we will provide a definition and basic facts
on hypergroups in general following an unpublished book manuscript of R. Lasser and [7].
Then, we will turn to discrete hypergoups and polynomial hypergroups on Ny following
R. Lasser’s manuscript as well as [32], [33] and [34]. Polynomial hypergroups will be
most important for us, as in the next chapter, we will define a transfer operator which
acts on polynomial hypergroup structures induced by certain orthogonal polynomials as
well as homogeneous Banach spaces which we will give a short overview in the last part
of this section following [22].

1.2.1 Definition and basic properties of hypergroups

Let K be a locally compact Hausdorff space, Cy (K) the set of continuous functions on
K which vanish at infinity, M (K) the space of complex measures and M*! (K) the subset
of probability measures. By the Riesz representation theorem (see [44], p.130, Theorem
6.19) M (K) is the dual of Cy (K) which will be used throughout this section.

Lemma 1.2.1. Let K be a locally compact Hausdorff space and
w:KxK— M (K)

a continuous map, where M* (K) possesses the weak-+-topology with respect to the duality
MY (K) = Cy(K)*. For pu, ve M (K) we define

u*u<f>:=f w(o ) (Nduxv)(@y)  VfeCo(K).  (L5D)

KxK
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Then
(v) > psv,  M(K)xM(K)— M(K)

is a bilinear extension of the mapping (e,, €,) — w (z,y), where €, is the point measure of
x € K. It is called canonical extension of w. Moreover,

ls vl < uliv

and

e (f JJ w (,y) () dp () dv (y JJ w (@) (F)dv (y) du(x) Ve Co(K).

Proof. For f € Co(K), (z,y) — w(x,y)(f) is continuous and |w (z,y) (f)[ < [ f]e for
all x,y € K, thus

e v ()] <J w (2, y) () | dlp < v](z,y) < | fllofpe > v].

KxK

That is, p+v € Cy (K)* = M (K) and by Fubini’s theorem (see [44] p. 164, Theorem 8.8)

pxv(f JJ w(z,y) (f)du(x)dv (y JJ w(z,y) (f)dv (y)du(z) .

Hence |p = v (f) | < | floo|pe]|v] for all f € Co (K) and thus ||p = v|| < |pul||v]. The rest of
the lemma is evident. O

Lemma 1.2.2. Let K be a locally compact Hausdorff space and x — z, K — K, a
homeomorphism from K onto K. For upe M (K) and E a Borel set, we define

i(E)=u (E) VE C K. (1.52)
Then p— [1 is an isometric isomorphism of M (K) onto M (K) and called the canonical
extension of x — T.
Proof. We have that |fi| = |u|, the rest of the proof is clear. O

Definition 1.2.3. Let K be a locally compact Hausdorff space. The triple (K,w, ™) is
called a hypergroup if it satisfies the following properties:

(H1) w: K x K - M'(K) is a weak-#-topology continuous map such that associativity
holds with respect to the canonical extension, €, * w(y,2) = w(x,y) = €, for all
x,y,z€ K.

(H2) supp (w (z,y)) is compact for every x,y € K.

(H3) ~ : K — K is a homeomorphism such that = z and (w (z,y))~ = w (7, %) for all
x,ye K.

(H4) There exists a (necessarily unique) element e € K such that w (e,z) = ¢, = w (z,e)
for all x € K.

(H5) We have e € supp (w(x,7)) if and only if x = y.
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(H6) Let C (K) denote the space of nonempty compact subsets of K given the Michael
topology (see below). The mapping (x,y) — supp (w(z,y)), K x K — C(K), is
continuous.

~

We call the mapping w and its extension to M (K) a convolution, ~ and its extension to
M (K) an involution and e the unit element. The convolution w (x,y) can also be written
as €; * €, Or py # py. f w(z,y) = w(y,x) for all z,y € K, then K is called a commutative
hypergroup.

We will just use K to denote the hypergroup (K,w, ™).

Definition 1.2.4. Let C (K) denote the space of nonempty compact subsets of K and
write C4 (B) :={C € C(K): Cn A # & and C < B}. Then C(K) can be given the
Michael topology which is generated by the subbasis of all Cyy (V) for which U and V' are
open subsets of K.

Remark 1.2.5. The Michael topology has the following properties:
(i) If K is compact, then C (K) is compact.
(ii) C(K) is a locally compact Hausdorff space.
(iii) The mapping x — {z} is a homeomorphism of K onto a closed subset of C (K).
)
)

(iv) The collection of nonempty finite subsets of K is dense in C (K).

(v) If Q is a compact subset of C (K), then B := U{A: A€ Q} is a compact subset
of K.

Example 1.2.6. Every locally compact group together with its usual convolution struc-
ture is a hypergroup.

Using the convolution w, we can define generalized translation operators, the left-translation
L, and the right-translation R,,

Lof(y):=w(x,y)(f) and  R.f(y):=w(y2)(f), zyek, (1.53)

where f is a continuous complex-valued function on K. By (H2) the integrals in (1.53)
are well-defined.

Lemma 1.2.7. Let f : K — C be a continuous function. Then (z,y) — w(z,y) (f),
K x K — C, 1s a continuous function, i.e. L,f and R, f are continuous functions on K.

Proof. Let zo,yo0 € K, ¢ > 0 and U an open set with compact closure U such that
supp (w (zo,y0)) € U. By (H6) there are neighborhoods V,,, V,, of zy and y, such that
supp (w(z,y))) € U for all z € V,, and y € V,,. Applying Urysohn’s lemma (see [61],
p.7), we have that there is a function g € C, (K) satisfying g|U = f|U. By (H1) there are
neighborhoods U,, of z¢ and U, of y, with U,, < V,, and U,, < V,, such that

w (z,y) (9) —w (@0, %0) (9) | <, T € Uy, Y € Uy,

For each z € U,,, y € Uy, we also have supp w (z,y) < U, thus w(z,y) (9) = w (z,y) (f),
which implies the statements of the lemma. ]

31



1. ORTHOGONAL POLYNOMIALS AND HYPERGROUPS

In order to deal with convolutions of sets, we define

A+ B = U supp w (z,y) and  A:={i:ze A}

z€A,yeB

If A,B <€ K are compact, then A = B is also compact which follows from Remark 1.2.5
(v). By (H6) the collection {supp w(x,y) : z € A,y € B} is a compact subset in C (K),
and (A= B)«=C = A= (B=*C).

Lemma 1.2.8. For A, B,C < K we have that (A + B)nC # & if and only if (fl x C) N
B # .

Proof. (A+B)nC # Fifand only if e € (A= B)~ s C = B« (A*C) if and only if
Bn (,21* (J) £ & O
Proposition 1.2.9. Let p,v e M (K), u,v = 0. Then

supp (p»v) = ((supp p) * (supp v))°.

If, moreover, u and v have compact support, then p = v has compact support, too, and
supp (p+v) = (supp pt) = (supp v).

Proof. If z ¢ ((supp p) = (supp v)), then we choose a neighborhood U of z such that
U~ ((supp ) = (supp v)) = &. Hence for every continuous function f with supp f < U,
we have w (z,y) (f) = 0 for all x € supp p, y € supp v. Thus p=v(f) =0, ie. z ¢
supp (1 * V).

In order to show the other inclusion, suppose z € (supp p)*(supp v), i.e. z € supp w (z,y)
for some x € supp pu, y € supp v. Given a neighborhood U of z there exists a continuous
function f > 0 with supp f € U and w(z,y) (f) > 0. By Lemma 1.2.7 p = v (f) >
0, that is, z € supp (p=*v). If supp u and supp v are compact subsets of K, then
(supp ) * (supp v) is compact and thus it is closed. ]

Theorem 1.2.10. Let x,y € K, L, and R, the translation operators defined in (1.53). If
feC.(K), then L,f € C.(K) and R, f € C.(K). If f € Co(K), then L,f € Cy (K) and
R.f e Cy(K), and if f € C*(K), then L,f € C°(K) and R,f € C*(K). Furthermore, if
feC'K), then |Lafloo < [ flloo and | Rofloo < [[f]cc-

Proof. By Lemma 1.2.7 L,f and R,f are continuous functions. Evidently, for f €
C*(K), |Lef|lo < |f|e holds. Suppose that f € C.(K). If L,f # 0, then supp f n
supp (w(z,y)) # &, that is, supp fn ({z} = {y}) # &. By Lemma 1.2.8 this is equivalent
to y € {Z} = supp f, and thus

{ye K: L.f(y) # 0} < {&} = supp f.

The compactness of supp f implies that supp L, [ is also compact, thus L,f € C. (K).
Since C. (K) is dense in Cy (K), we have that L, f € Cy (K) for every f € Cy(K). The
proof for the right translation can be done analogously. O

Theorem 1.2.11. The measure space M (K) together with the convolution and the invo-
lution defined in Definition 1.2.3 is a Banach-+-algebra with unit.
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Proof. We will only check the associativity law. (H1) is equivalent to

w (Y, 2) (Laf) = w(2,y) (R-f) (1.54)
for all z,y,z € K and f € Cy (K). Hence for A\, u,v e M (K) and f € Cy (K), we have

A (uev)(f) = ffo d (prv)(v) dA (u)
| ] | et ananma @ anw
- | | | etn Rnanma
Jo )7

| Rr@anem@ar )
= (hewen(f).

O
Proposition 1.2.12. Let z,y € K and f € C*(K), then
Lo Lf () = | Luf (2)deo(y.0) ) (1.55)
and
ReoByf () = | Ruf () (0.0) (0) (1.56)
for all z € K.
Proof. Using (1.54) we get
LooLyf(z) = w(z,2)(Lyf) =w(y z)(R.[)
| R @ n) @ = | Luf () v () @),
K K
Analogously (1.56) can be shown. O

The translation by elements of the hypergroup K can be extended to a module operation
of M (K) on C*(K) and Cy (K). For pe M (K) and f € C°(K), we define

Luf (1) = o f (1) = L“ (3,2) (F) du(y) = i (R f) (1.57)

and
Ruf (@)= f @)= | i) (D) = (L) (1.58)
forx € K. We have ¢« f = L, f and f+¢; = R, f.

Theorem 1.2.13. For p € M (K) and f € C*(K), L, and R,, defined in (1.57)
and (1.58), are bounded linear operators from C®(K) into C®(K) and from Cy (K) into
Co (K).

For f € C°(K), we have additionally | L, fle < |/l fle and | Ry flao < Il f]co-

If pe M (K) has compact support and f € C. (K), then L,f € C.(K) and R, f € C. (K).
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Proof. We first prove L, f € C* (K) for f € C* (K) and u € M (K) with compact support.
Let g € K and € > 0. Since supp u is compact by Lemma 1.2.7, we get that there exists
a neighborhood U of z( such that

w (@, 2) (f) =w (@ 20) ()| <€ welUyesupp p.

Thus
= fx) —p= fzo)| <elpll, zel,

which shows L,f € C®(K). Moreover, the measures u € M (K) with compact support
are dense in M (K), thus L, f is also continuous. Evidently, || L, |« < ||p] f]e holds.
Now, let f € C.(K) and p € M (K) with compact support. If L,f (z) # 0, then we
have supp ft nsupp R, f # . Since supp R, f < supp f = {Z}, we have that supp i n
(supp f+{z}) # . Using Lemma 1.2.8, we get supp f = supp i n {&} # ¢, hence
x € supp p *supp f by means of (H3). Thus L, f € C. (K).

Finally, we let f € Cy (K), f # 0 and u € M (K) arbitrary. For given € > 0, we choose a
measure v € M (K') with compact support, v # 0, such that ||g — v| < €/|f|lw and then
g€ C.(K) with |f — gl < €/||v|. Thus |L,f — L,gllew < 2¢, and L, f € Cy (K) follows.
The assertions for Iz, can be proven analogously. O]

1.2.2 Discrete hypergroups

We will now turn to discrete hypergroups, following [34], which will enable us to com-
pletely avoid notions of measure theory. What we have proven for general hypergroups
above, of course, also holds for discrete hypergroups.

Let K be a set and for x € K, let ¢, be the Dirac function on K, that is, €, (z) = 1
and €, (y) = 0 for y € K with y # z. The Banach space of all functions f : K — C,
f =" ane, with a, € C, > |a,| < o and z, distinct points in K with the norm
IfI = >, |an| will be denoted by ¢'. If f € ¢! is a finite convex combination of Dirac
functions, we write f € £} f = 25:1 €z, With a,, = 0 and 27]:[:1 a, = 1. Now, we
define the discrete versions of the convolution, the involution and their extensions defined

in definition 1.2.3. In the discrete case, the convolution w : K x K — £ is defined by

0

W(f )= Y Anbnw (T, Ym), (1.59)

n,m=1

a0 o0 .
where f = > ane,, and g = > bye,,.. Any rearrangement of the series can be

applied, thus we have

ee]

lo (£ ) 1< Y lanllbml|w (@ ym) | = [ 119l

n,m=1

and the bilinear extension w : /! x £ — ¢! of w defined in (1.59) is well-defined. We define
the involution ~ : K — K, x — & and extend it to /! by setting

0
f = Z G/nﬁfn,
n=1
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1.2. Hypergroups and homogeneous Banach spaces

where f =377 ané€,, .
We will now provide the definition of a discrete hypergroup which is much simpler than

the definition of hypergroups in general.

Definition 1.2.14. Let K be a set. The triplet (K,w,”) is called a discrete hypergroup
if it satisfies the following properties:

(DH1) w : K x K — (! is a mapping such that associativity holds, w (e,,w (y,2)) =
w(w(z,y),¢€,) forall z,y,z € K.

(DH2) ~ : K — K is a bijective mapping such that = 2 and w (z,y)~ = w (7, %) for all
r,ye K.

(DH3) There exists a (necessarily unique) element e € K, the unit element, such that
wle,r) =€, =wlx,e) forall ze K.

(DH4) We have e € supp (w (x, 7)) if and only if z = y.

We will also define the left-translation and the right-translation operators for the discrete
case. Let f: K — C be a function and x € K. Then the left-translation is defined by

N

Lf: K—>C,  Lif(y) =Y anf (u),

n=1

A€y, . Since L€, (y) = w(z,y) (u) for each u € K, we can write

Lof (y) =w(z,y) (f)-

where w (z,y) = 3V

n=1

The right-translation will be defined by
M
Rof : K —C,  Ruf(y) =) buf(va),
n=1

where w (y,7) = XM baey,.

Definition 1.2.15. Let K be a set. A positive function h : K — [0,00) is called left-
invariant if for each f: K — C with |supp f| < o0 and y € K

D Lyf@h(z) =) fo)h(x).

zeK zeK

A left-invariant positive function h : K — [0,00), h # 0, is called Haar function.
Right-invariance can be defined in the same way.

Theorem 1.2.16. Let K be a set and (K,w,™) a discrete hypergroup, then there exists
a Haar function h : K — [0,00). If h(e) =1, then

hz) = (w(Z,2) ()", re K.

The Haar function is unique and positive up to multiplication by a positive constant.
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Proof. Applying the associativity, we obtain for z,y,z € K

D@ t) (Q)w(y.2) (t) = wlenw(y,2)) ()
=w(w(r,y),e)(e) (1.60)
=D wlzy) (w(t,2)(e).

teK

By (DH4) we have w (z,y) (e) > 0 if and only if = § and thus (1.60) reduces to

w(z, 1) (e)w (Y, 2) (7) = w(z,y) (D) w(2,2) (). (1.61)

By setting
h(z) = (w(%,2) (e)

and with (DH2) (1.61) can be rewritten as

h(z)w (y, 2) (2) = h(B)w (z,y) (). (1.62)
Summation over all z € K (1.62) gives
S 2) (@) h () = N way) (B h (@) = (@), (1.63)
zeK zeK
where the last equation in (1.63) follows by the fact that w(z,y) € £}, particularly
Diexw (T,y) (2) = 1.
Since Lye, (2) = w (y, 2) (x), we have for each y € K
DLy (2)h(2) = D e (2)h(2).
zeK zeK
The uniqueness follows immediately, as we have for any Haar function A’/
w (@, 3) (e) W (&) = ). La€c (2) W' (2) = D e (2) W (2) = W' (),
zeK zeK
that is, b’ (z) = W' (e) h (z). O

We will usually use a Haar function which is normed by h(e) = 1, i.e. h(z) = 0 for all
re K.
By (DH2) (1.62) can be rewritten as

h(z)w(y,2)(z) =h(Z)w(g,z)(z), x,y,z € K, (1.64)

which we will use in the rest of this section. In the next theorem, we will use (1.64) to
prove a stronger property of the Haar function.

Theorem 1.2.17. Let f : K - C, g : K — C be functions with finite support. Then

N LfEg@hE) =Y F)Lg@h(z), yek

zeK zeK
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Proof. 1t is sufficient to consider f = ¢, and g = ¢,. By the application of (1.64), we
obtain

Y Lyea(2)eu(2)h(z) = Lyes (w)h(u) = w(y,u) (x)h(u)
= h(z)w (@ ) (u) = Lyeu (x) h (z)
= Z €z (2) Lyey (2) h(2).

zeK

[]

By Theorem 1.2.11 ¢! is a Banach-#-algebra with unit e, where the algebra operations are
given by the convolution f # g := w(f,g) for f,g € ¢! and the *-operation by f* = (f)

for f e/t
The corresponding Banach space to the L'-algebra is the Banach space

(' (h) :={f: K —>C: ) |f(2)|h(2) < oo} with the norm |f[1 = > |f (2) [h(2).

zeK zeK
The Banach space ¢! (h) together with the operations

= > f(2) Lzg () h(2) (1.65)

zeK

and f* = ? becomes a Banach-#-algebra. We will show that f «ge ¢! (h) and |f * g, <
Iflli]g]li: The functions with finite support are dense in ¢! (h), thus

Z L,f(z)h(z) = Z f(z)h(z) for every f e (*(h).

zeK zeK

Hence

ILyflh = D ILyf (2) < D Lylfl(2)

zeK zeK
= Y I RE =1fh
zeK

therefore, L, is a norm-decreasing operator in ¢! (h). By changing the summation, we get

Ifxgli = D 1f+g(@)|h(2)

zeK

< 2 2 I Lzg @) [h () b () < | fllgls.

zeK zeK
The following theorem summarizes the above results:
Theorem 1.2.18. (i) The Banach space £* (k) together with the convolution f =g (see
(1.65)) and the =-operation f* = (f) is a Banach-+-algebra with unit €,.
(1) The mapping f — fh, (* (h) — €' is an isometric isomorphism from the Banach

space (* (h) onto the Banach space (*. It is also an algebra homomorphism. If
h(x) = h(Z) for all z € K, then it is also a »-homomorphism.
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Proof. Only (ii) is left to prove. We have

(€xh) = (eyh) = h(z) h (y)w (z,y)
and by (1.64)
(€xwey) (W h(u) = (Laey (u)h () h(u) =w(Z,u)(y)h(x)h ()
= w@y)(Wh(@)hy), wek
Evidently, f*h = (fh)*, if h(z) = h (7). O
The Banach-#-algebras ¢! and ¢! (h) act on the Banach spaces ¢* (h), 1 < p < oo, where
Ch)={f:K—->C: ) |f(2)Ph() <}, 1<p<oo

and
(*(h)=(*={f: K — C: f bounded}

with the norms |[f], = (X.ex 1f (2) PR ()77 and | ]l = supyex | f () |-

Proposition 1.2.19. Let 1 < p < o0, K be a set and y € K. For f € (* (h) we have
L,fe(h) and
| Ly fllp < 1l

Proof Let 1 < p < o and w(y,2) = S, dnés,. Since Y a, = 1, the Holder
inequality implies

N p N
Lyf ()1 =D anf ()| < D anlfIP (xa) = LylfIP ().
n=1 n=1
Thus
N
1Ly f1E = D ILf (2) PR (2) < ) Lyl S (2) k()
zeK zeK
= 2P ERE) =11
zeK

for f: K — C with |[supp f| < oo. Since the functions with finite support are dense in
¢? (h), this proves the proposition for 1 < p < o0,

For p = o
N

Lyf ()] <D aulf (@) | < | flos  2€ K.

n=1

Lemma 1.2.20. Let pe (*, =0, and f€ (P (h), f =0, with 1 < p < oo. If we set

= N Lf @ ul2)

zeK

then ju+ f (2) is finite for all € K, o+ f € () and |+ [l < |1l ],

38



1.2. Hypergroups and homogeneous Banach spaces

Proof. Suppose p = o, then by Proposition 1.2.19 ||L; f| e < ||f]le, and thus

pe f )< pllfle, ve K

For 1 < p < 0, we know that u = f (x) is finite since % (h) < ¢*. In order to prove that
p# fel?(h), we can assume that >, . p(2) = 1. Then the Holder inequality yields

(e fP (x) < Y (Laf) (2 <D L: (f7) (2) p(2)

= px (") ().

Hence by the left-invariance of h

D Y @h(z) < 3 Y L (f7) (@) (=) h(2)

xeK reK zeK
= Z fP(x)h(z
xeK
that i, e« Fl, < 1. -

Now, p * f (z) can be defined for arbitrary p € ¢* and f € £ (h), 1 < p < o0, as above by

= S LS @) (). (1.66)

zeK

Theorem 1.2.21. Let pe (', fe P (h), 1 <p<o. Then p=fe€ P (h) and |u=* fll, <
[l -

Proof. Since |« f(x) | < ||« |f[ (), p+ f(x) is finite.
We assume that Y, |¢(2)| = 1. Then we get as in the proof of Lemma 1.2.20
e fIP(x) < (lul = ] ()" < [l = [P (2)

and thus

Dol S @ h(z) < Yl ISP (@) h(2)

zeK zeK

= D P@h

zeK

O
Proposition 1.2.22. Let 1 <p < o0, 1 < ¢ < o0 with %—ké =1, felP(h)and g€ (7 (h).

For x € K we define
=D [ () Lag () h (2).

zeK

Then f =g is a bounded function and | f+glo < |f[,lgls- Moreover, f«g can be uniformly
approzimated by functions with finite support.
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Proof. The Holder inequality and Proposition 1.2.19 imply

2 f @) Lag (2) b (2)| < I F ol Laglly < £ 19

zeK

Therefore, f =g is defined for every z € K and ||f * g < | flpllglq- If f and g have finite
support, then so does f * g and by Theorem 1.2.10 supp Lzg < w ({x},supp g). Hence
Lemma 1.2.8 implies

supp f+g < {xe K :supp fnw({z},supp g)}
< w(supp f,supp g).

Let f € 7 (h), g € {9 be arbitrary and choose f,,, g, with finite support and | f — f.[l, — 0,
lg — gnllg — O for n — 0. Then

Hf * (g - gn) ||OO + H (f - fn) * gnHOO
| fllplg = gnllg + 1.f = Fulplgnle — O,

Hf*g_fn*gn”oo <
<

for n — co. O

1.2.3 Polynomial hypergroups

We will now introduce polynomial hypergroups referring to an unpublished book manuscript
of R. Lasser, [32] and [33].

Let {P, (z)}*_, be an OPS defined on R with respect to a probability measure 7 € M! (R)
and

J P, (z) Py, () dm () = dpmfm, L, > 0.
R
We assume that P, (1) # 0 and that (after renorming)

Pn(l)zl, nENo.

Since the degree of P, (x) is n for each n € Ny and {P, (z)}>_, is an OPS, we have the
following recurrence relation (see (1.22))

Py (z) P, (z) = apPri1 () + b, P, (z) + ¢ Py () (1.67)
for n e N and .
Py (x) =1, P (z) = ” (x — bo) (1.68)

with a,, > 0 for all n € Ny, ¢, > 0 for all n € N and b,, € R for all n € Nj.

Conversely, the Theorem of Perron-Favard (see Theorem 1.1.23) states that a polynomial
sequence {P, (x)}> , which is defined recursively by (1.67) and (1.68) is an OPS with
respect to a certain measure 7 € M! (R). The condition P, (1) = 1 implies that a,, +
b, + ¢, = 1 for each n € N and ag + by = 1. The following lemma extends the recurrence
relation in (1.67).
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Lemma 1.2.23. Let {P, (x)}*_, be an OPS with respect to a measure © € M (R) satis-
fying P, (1) = 1. Then the products P, (z) P, (x) can be linearized by

n+m
P (z)Py(x) = > g(m,nik) Py (x) (1.69)
k=|n—m|
with g (m,n; k) € R for k = |n—m|,...,n +m. Furthermore, g(m,n;|n —m|) # 0 and

g (m,n;n+m) # 0.

Proof. The OPS {P, (z)}*_, forms a basis in the real vector space of all polynomials.
As the degree of P, (x) is n for each n € Ny, we have a unique representation

Py (x) P, (z) = Y g(m,n;k) Py (v)

where g (m,n;k) e R for k =0,...,n+m and g (m,n;n +m) # 0. It remains to show
that g (m,n;k) =0for k =0,...,|n—m|—1and g (m,n;|n —m|) # 0. In order to show
that g (m,n; k) =0 for k =0,...,|n—m|—1, we assume that m < n. If k <n —m, then

the degree of (P, Py) (x) is strictly smaller than n, and thus

0— J P (@) Pe () P (@) dr (1) =S g (m,mi ) j P, (2) Py (x) dr ()
R oy R
= g(m,n;k) . (1.70)
Since ug > 0, we have g (m,n;k) =0 for k =0,...,|n —m| — 1. Now, we want to show

that g (m,n;|n —m|) # 0 and assume g (m,n;n —m) = 0. Then we have

n

0 = JR P, (z) Py, (2) P, (z)dr (x) = Z g (m,n —m;k) J Py (z) P, (z)dm (x)

k=|n—2m)| R
= g(m,n —m;n) fin,
which is a contradiction to u, > 0, hence g (m,n —m;n) # 0. O

Proposition 1.2.24. The linearization coefficents g (m,n;k)) in (1.69) satisfy the fol-
lowing properties for k = |n—m|,....,n+m:

(i) g mon:k) = g (nm: k) for all n,m e N,
(i) g(0,m;n) = g(n,0;n) =1 for all n € Ny,
(1)) g (1,m;n+1) =a,, g(1,n;n) =b, and g (1,n;n —1) = ¢, for all n € Ny,
(iv) ZZ:m_m‘ g(m,n; k) =1 for all n,m € Ny,

(v) g(n,n;0) = p, for all n € N,

(vi) g (m,n; k) . = g (m, k;n) py for all n,m € No,

An4+m—1
Am—1

(vii) g (m,n;n+m) =g(m—1,n;n+m—1)

)
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g(m,nin—m) =g(m—1n;n—m+1)==mt 2 <

. __ 0n0n+10n+42°-.-"Gn4+m—1
(U“Z) g (mv n;n + m) - 142" Am—1 )

g (m, n, n — m) — tnCn—-1Cn—2"---"Cn—m+1

a1a2°...-Gm—1 ’

(iz) For all2 <m <n

gmnn+m—1) =

am—-1 "’

gm—1nmn+m—2)a,m 2

Amp—1

+g (m - 17 n;n+m— 1) (bTLer*]. - bmfl)

and for k =2,...,2m — 2

g(m,n;n+m—Fk) =

Amp—1

)

gm—1nn+m—k—1)a,m k1

Am—1

gm—1nn+m—k+1)ciim ki1

Qm—1

+g (m - 17 n;n+m— k) (bn+M7’€ - bmfl)

Am—1

g(m—2,nmn+m—k)cp_

Q-1

)

g (m — 17 n;n —m+ 1) (bnferl - bmfl)

gmnn+m+1) =

Amp—1

g(m—1,mn—m+2)crmiz

Proof. Assertions (i)-(iv) obviously hold.

(v) We have

(vi) We get

fR Py () Py (2) Py () de (z) =

and linearizing P, (z) Py (x) gives

JR Py () Py () Py () dre () =

42

Am—1

S |
j=Im=n| R
g (m7 n; k) ,uk

m+k

> gm,k;j) f
j=|m—k| R
g (m, k;n) .
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(vii) We write

n+m—1

Py (2) (P (@) Pu(x)) = >, g(m—1,nk) P (2) P (2)
= g}m —Ln;n+m—1)apim1Porm () + ...,

where the remaining summands have degree smaller that n +m. We also have that

(P () Ppq () Py () = (am 1P () +bm 1Pn1(2)+ 1P o (x)) P, (2)
= Qm_1g (m,n;n+m) Poym () + .. ..
Thus @19 (m,n;n+m) = g(m—1,n;n+m —1)a,ym_1. Similarly, the second
equation in (vii) can be shown.
(viii) follows from (vii).
(ix) See [33]. O

Theorem 1.2.25. Let {P, (x)}>_, be an OPS with P, (1) =1 and assume that the coef-
ficients g (m,n; k) (see (1.69)) satisfy

g(m,n;k)=0  fork=|m—n|,...,m+n.

Then the triplet (No,w, ™) is a hypergroup with unit element 0, where the convolution w
on Ny (with discrete topology) is defined by

n+m
w(m,n) = Z g (n,m; k) e, n,m € Ny,

k=|n—m)|
and the involution is given by the identity-mapping n 1= n.

Proof. Since

n+m

Z g(m,n; k) =1, m,n € N,
k=|n—m|
w (m,n) are probability measures on Ny with compact support. By Proposition 1.2.24
(v), we have that g (m,n;0) = 0 if m # n, hence 0 ¢ supp w (m, n) if and only if m = n.
Finally, we check the associativity (H1) and set ey (j) := ;. Then w(m,n)(ex) =
g (m,n; k) and hence

arwmn)(e) = Dw(lj)(e)do(mn) ()= Y g(m.nij)g(jlk)

j=0 j=In—m|
1 n+m

- — g(m,n;j) | Pi(z)Pj(z) Py (x)dn (x)
Hi j;m fR

- Nik (@) (B (2) P () e () d ()

_ uik (R (&) Pu (@) P (&) Pi () d (2)

= > glmii)gGinsk) =w(l,m) e (ex).
j=li=ml
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Then by considering linear combinations of e, we get

e +w(m,n) =w(l,m)=e,.

Such hypergroups are called polynomial hypergroups on Ny induced by {P, (z)}>_,.

Remark 1.2.26. (1) Favard’s theorem (see Theorem 1.1.21) implies that every com-
mutative hypergroup on Ny with identity involution and 0 as a unit element which
satisfies

{n—1,n+1} Ssupp (w(l,n)) < {n—1,n,n+1}

for all n € N is a polynomial hypergroup induced by the orthogonal sequence
{Pn (2)}70-

(2) The corresponding orthogonal polynomials depend on the choice of P; (z), that is,
on the choice of ag, by € R.

(3) For a polynomial hypergroup we have the following translation operator

n+m

Lof(m)= >, g(n,m;k)f (k).

k=|n—m)|

(4) By Theorem 1.2.16 we have for the Haar function
h(n) = (w(n,n) (0) " =g(n,n;0)" =p".

We will now give a few examples for polynomial hypergroups on Ny that are induced by
polynomials introduced in Example 1.1.2.

Examples 1.2.27. (1) The Chebyshev polynomials of the first kind {7}, (x)}*_, induce
the Chebyshev hypergroup on Ny. The addition theorem for the cosine-function gives

1
Tm (33) Tn (:U) = 5 [n—m)| (ZL’) + Tn+m (.’L') ) n,me N07
particularly g (m,n;|n —m|) = & = g(m,n;n+m) and g(m,n;k) = 0 otherwise.
The convolution is given by
1 1
w (m, n) = §€|n7m| + §€n+m7

and the Haar weights are i (0) = 1 and h (n) = 2 for n = 2. The orthogonalization

measure is given by

1 _
dr (z) = ;X[fl,l] (1 — x2) V2 .
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1.2. Hypergroups and homogeneous Banach spaces

(2) For the Jacobi polynomials and a, f € R such that « = > —1 and a+ + 1 = 0,
we have for n € N,

 2(a+1)  p-a
“© = atpr2 P atpte
mn+a+f+)(n+a+1l)(a+p+2)
Cn+a++2)2n+a+B+1)(a+1)
- @8 [1_ (a+B8+2)(a+p) ]
" 2(a+1) 2n+a+B8+2)2n+a+08)]’

n(n+p)(a+p+2)

Cn+a++D)2n+a+p8)(a+1)

a, =

Cp, =

The Haar weights are

h(0)=1,  h(n)=

2n+a+B+1)(a+p+1), (a+1),
(a+B8+1Dnl(B+1), ’

n=l1,

and the orthogonalization measure is given by

1 I'(a+B8+2)

@) = e T ar DT (511

)X[—l,l] (1—x)*(1+ x)ﬁ dx.

1 . . .
If we set a = 3, a = —3, for the Jacobi polynomials, we get the ultraspherical case

with

n—+2u0+1 n

n == - 4~ 4 n:07 n:—7
¢ o T 2a+ 1

N
M+ 2041 ne

and for m < n,

nlm! (Oé + %)k (CY + %)n—k (a + %)m—k (20& + 1)n+m—k

k) =
g (n.m; k) Hn—klm—kl(a+1) —(2a+1),(2a+1),
(n+m+a+3—2k)
(n+m+a+i—k)’
forke{n—mn—m-+2n—m+4,...,n+m}, and

g(n,m;k) =0,

forke{n—m+1ln—m+3n—m+5,...,n+m—1}.
The Haar weights are given by

2n+2a+1)(2a+1),

h(0)=1 h = =1,
(©) ’ () (2a+ 1) n! ’ "
and the orthogonalization measure by
1 T'Ca+2 a
dr (x) = ( )zX[—Ll] (1—2%)"da.

- 2N (e + 1)
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1. ORTHOGONAL POLYNOMIALS AND HYPERGROUPS

(4) The generalized Chebyshev polynomials induce a polynomial hypergroup with
apg = 1, bo = 0,

k+a+8+1 o k _
o — )oErasprn n=2kEEN _ ) rarg n=2kkeN
n ) n k
Tratsm n=2k+LkeN mrargr =2k +1keN

and b, = 0, n € N. The Haar weights are

(2k+a+B+1)(a+B+1), (a+1) _
b0 =1 h) = f e, T s
e, n=2k+ 1 ke N,

and the orthogonalization measure is given by

I'(a+/5+2)

() = T DT+

i

X1 (1—-2a?)

1.2.4 Homogeneous Banach spaces

Referring to [22], we will give a short introduction on homogeneous Banach spaces to-
gether with some examples. In Section 3 we will define a transfer operator on the spaces
introduced in this paragraph.

Let {PT(LO"[S ) ()}, be the Jacobi polynomials defined in Example 1.1.2 (4) (see also Ex-
ample 1.2.27 (2) for the orthogonalization measure and the Haar weights) with («, ) €
Ji={(e,8):a=p>-1and (8= —5ora+3=0)}. Thenforanyz,yeS:=[-1,1]
there exists a probability Borel measure ,ugff Ve M (S) such that

n

1
P9 @) PO () = | PP ()l (). ne N
-1

Let LP (S,m), 1 < p < oo, be the Banach space with the norm

= ([ wrae)

and C' () the Banach space with norm || |l = sup,cq |f () |. The measures jiz.y) ) induce
a generalized translation operator which can be defined for f € C (S) or f € L (S, 7) and
y e S by

(auB
X

T @) = | P ). (1.71)

For the Jacobi polynomials this hypergroup structure is dual to the one on Ny. For this
translation we have that T, f € LP (S, ) if f € L?(S,m), and T,f € C (S) if f € C(9).
Furthermore, |7, f|, < | f|, and lim,_,1_ |7, f — f], = O (see [7], p. 42 Lemma 1.4.6 (ii)).
Using the generalized translation in (1.71), we can define a convolution by

1
frgy)=1 fx)T,9(zx)dn(x), f,ge L' (S,7),ye S, (1.72)
1
which is an element of L' (S, ), such that | f = gl; < |f]1]glli- So we have that L' (S, )

with the convolution as multiplication is a Banach algebra. Similarly, using (1.72) with
feLl'(S,m)and ge LP (S,7), 1 < p < oo, L' (S,7) acts on LP (S, 7).
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1.2. Hypergroups and homogeneous Banach spaces

Definition 1.2.28. A linear subspace B of L' (S, ) is called a homogeneous Banach
space on S with respect to some fixed pair (a, 8) € J if it is endowed with a norm | - ||z
such that

(B1) P*? e B for all n e Ny.

(B2) B is complete with respect to |- |z and || - || < |- |5

(B3) For fe B,ze S, T,f € Band |T.f|s < ||fllz-

(B4) For f € B, the map z — T, f, S — B is continuous.

Furthermore, a homogeneous Banach space B is called character-invariant if
(B5) For every f € B, ne Ny, P\ - fe B and [P - flls < |fll5.

Proposition 1.2.29. Let B be a homogeneous Banach space on S with respect to («, ) €
J. Then for g€ B and f € L' (S,7), f+ge B and | f + g[s <|fli|9l5.

Proof. For the B-valued integral with g € B, we have
1
frg=1 [f(z)Tegdr(z) € B,
-1

and | f = gllz < ||flllg|lz, where f is a continuous function on S. If f € L' (S, x), then
choose a sequence (f,,), o, fn € C (S) with | f — fu]li = 0 as n — oo. Thus it follows that

frgeBand|fxgls<|fllgls -

Corollary 1.2.30. Every homogeneous Banach space B on S with respect to (a, 3) € J
15 a Banach algebra with convolution as multiplication.

Proof. The corollary follows immediately as B < L' (S, 7) and |- |, < | - || O
Examples 1.2.31. (1) Let denote

if feL'(S,7), and
d(z) =Y d(n) P (x) h(n)

if d € I'(Ng,h). For f e L'(S,m) the Wiener algebra A(S) := {f € C(S)
Yol f (n)|h (n) < oo} with the norm || fllacsy = Yng |/ (1) |h () is a homogeneous
Banach space on S with respect to («, 5) € J. It is also character-invariant.

Proof. A(S) is a linear space and by the uniqueness theorem (see [7]) | - [ 4(s) is a
norm. (B1) is satisfied since Pl (n) = h(n) " Gpmn. (A(S). |- lacs)) is complete
because f — f, A(S) — I* (Np, k) is an isometric isomorphism from A (S) onto the
Banach space I' (Ng, 7). (B2) holds as |f[aws) = |fli = |fla = |fl2 = | f]i. For
f,g€ L' (S, ) we have

| r@me@ar@ - | Tr@oe ). (1.73)
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1. ORTHOGONAL POLYNOMIALS AND HYPERGROUPS

Then it is easy to show that

(Tyf) (n) = P (y) f (n)

for every fe L' (S,m), y € S. Hence T, f € A(S) and | T, fl|lacs) < [ f]acs)- Now, let
zo € S and € > 0. There exists N € N and g € A (S) such that Hg fllaes) < § with
g(n) = f(n) for all n e {0,...,N} and g (n ) =0forn>= N +1. Moreover there
is some § > 0 satisfying |19 — Tyo9)acs) < 5 for all x € S such that |z — :L’0| < 4.
Thus |1, f — Ty fllas) < eforallze S W1th |z — x| < 6 which shows (B4). (B5)
holds since we have for feA(S)and ne N

(P ) (m) = Lof (m),  meN,,

where L, denotes the translation operator on I* (Ng, k). Thus P\ - f € A(S) and
1257 flags) < [ Flacs) N

We use the same notation as in (1), then for f € L! (S, 7) the p-versions, 1 < p < oo,
of the Wiener algebra A? (S) := {f € L' (S,7) : f € ¢?(h)} with the norm |f[? =
Il + | f], is a homogeneous Banach space on S with respect to (a, 8) € J. It is
also character-invariant.

Proof. Again AP (S) is a linear space, by the uniqueness theorem || - ||? is a norm
and as in (1), (B1) is satisfied since i) (n) =h (n) ™' 6pn. The completeness of
(A7 (S), || -|7) is obvious and [ f[” = [f|x + [ /], = |f]. For fe L'(S,7), yes
we have with (1.73)

(Tyf) (n) = PP (y) f ().

Hence | T f7 = |Tof i+ (Tof) | < [ £+ flp < | £|P and T, f € A7 (S). Now, let
zo € S and € > 0. Since C (S) is dense in L' (S), and for f € L' (S) f is continuous,
(B4) follows similarly as in (1) by |1 f =T fIP = | Tuf = Tuo flli + |10 f —Too [l < €
for all z € S with |z — 2| < 0. (B5) holds since we have for f € A?(S) and n € Ny

(PP ) (m) = Lof (m),  meN,,

where L,, denotes the translation operatorvon P (Ng, h). Thus pls). fe AP (S) and
[Pl = B2 fly+ 1 (P £) L < I+ 1 Fl = 1 0

Remark 1.2.32. (1) For p = 1, A'(S) = A(S). This holds because f € A'(S) <

(2)
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C(S) since f(x) = Y7o f () PP (n). Moreover, |1 < |flw < |f]1 and
thus [ f[' = [fl. + Ifli < 2|fl:. Together we have that the norms are equivalent
£l < [fI* < 2||f]li- Hence A (S) and A (S) are isometrically isomorphic.

For a =3 = —% we have the Wiener algebra with respect to the Chebychev poly-
nomials of the first kind and for a« = 3, a > % we have the ultraspherical case.



2 Transfer operators

2.1 Transfer operators and spectral properties

Transfer operators with positive weight associated with certain dynamical systems are
called Ruelle-Perron-Frobenius (RPF) operators and often occur in thermodynamical for-
malism.

The main result presented in this chapter will be Ruelle’s theorem, the existence and the
simplicity of a unique maximal eigenvalue for the Ruelle-Perron-Frobenius operator on a
Holder continuous function space and the existence and uniqueness of the Gibbs measure.
Its proof will follow work done by Y.P. Jiang (see [27]). The original proof done by
D. Ruelle (see [47], [49]) uses the Hilbert projective metric on cones in Banach spaces.
He showed that the Ruelle-Perron-Frobenius operator acting on the Holder continuous
function space contracts the Hilbert projective metric of positive functions on the convex
cones in the Holder continuous function space. Thus the contracting fixed point theorem
implies the existence and the uniqueness of a maximal eigenvalue. Y.P. Jiang found a
shorter proof, which we will present. We won’t consider further work done on transfer
operator concerning dynamical zeta functions or Fredholm determinants (see for example

[52], [51], [4].[3], [25])-

2.1.1 Geometry of expanding and mixing dynamical systems

We will now give the preliminaries that are needed to state Ruelle’s theorem.

Definition 2.1.1. Let (X, d) be a compact metric space, and let B (x,r) denote the open
ball centered at x with radius r» > 0.

(1) For each n >0
d, (x,y) := max {d (fi (z), f* (y))}

0<itn

is called the n-Bowen metric.

(2) By (x,r)={ye X :d, (x,y) <r} is called the n-Bowen ball centered at x with
radius 7 > 0.

Remark 2.1.2. The 0-Bowen metric and a 0-Bowen ball are just the original metric d
and a ball for d.

Definition 2.1.3. Let (X, d) be a compact metric space and f : X — X a continuous
map. Let {f"} ", denote a dynamical system on X; for simplicity we call f itself a
dynamical system.
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2. TRANSFER OPERATORS

(1) The dynamical system f is called locally expanding if there are constants A > 1 and
b > 0 such that

d(f(x), f(2) =M (z,2), z,x' € X with d (z,2) < 0.
Then (), b) denotes the primary expanding parameter.

(2) The dynamical system f is called mizing if for any open set U < X, there exists an
integer n > 0 with f*(U) = X.

Remark 2.1.4. In general, locally expanding can be defined as follows: There are three
constants C;b > 0 and A > 1 such that

d(f"(x), [ (2") = C\"d (z,2"), x,2' € X with d, (z,2") <b.

Proposition 2.1.5. Let (X, d) be a compact metric space and f : X — X locally expand-
ing. Then f|B (x,b) is homeomorphic for any x € X.

Proof. 1t is clear that f|B (x,b) is injective. Since f is continuous on B (x,b) and B (z, b)
is compact, the inverse of f|B (z,b) is also continuous. But f : B (z,b) — f (B (x,b)) is
bijective, so f|B (x,b) is homeomorphic. O

Proposition 2.1.6. Let (X,d) be a compact metric space and f : X — X locally ex-
panding. Then there is a constant 0 < a < b such that for any y € X with f~' (y) =
{x1,...,2,}, there are local inverses g1, ..., g, of [ defined on B (y,a) satisfying g; (y;) =

x; and {g; | B (y,a))} are pairwise disjoint. Moreover, there is a constant integer
i=1
ng = 0 such that # (f ' (y)) <ng for ally e X.

Proof. # (f!(y)) is finite for each y € X because otherwise f would not be bijective
about a limit point of f~! (y). Define

d(y) == inf d(zg, )

1<k#j<n
to be the shortest distance between the preimages of y, so clearly d (y) < b. There exists

0 <r < % such that f : B(z;,r) — f(B(z;,7)) is homeomorphic for each 1 < i < n.

Since y is contained in the open set (), f (B (z;,7)), B(y,ry) < (ioy f (B (@i, 7)) must
hold for r, > 0 sufficiently small, such that the inverse g;, which maps y to x; satisfies

9, By, my) = gi, (B (yﬂ“y)) < B (wi,7).
Thus g;, (B (v, ry)) are disjoint, because B (z;,r) are disjoint. Let now be {B (y;,ry,)}
a finite number of balls such that {B (yj, %)} form a cover of X and set

1
4= —minry,
j J

so that it satisfies the proposition.
For any ye X, ye B (yj, %) for some j, then B (y,a) € B (yj,ryj). Let

gi:giyj|B(ija)7 1<Z<7’L,
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2.1. Transfer operators and spectral properties

n

then g1, ..., g, are local inverses of f|B (y,a) with g; (y) = z; and {gi (B (v, a))} are
=1

1=

pairwise disjoint.
# (f~ (y)) is a locally constant function of y, thus it is bounded, since X is compact,
that is, there exists an integer ng = 1 with # (f™ (y)) < ng for all y € X O

Remark 2.1.7. We call (A, a) an expanding parameter for f, where a is the number
in Proposition 2.1.6; for any 0 < ¢’ < a and 1 < X < A, (XN,d’) is also an expanding
parameter for f.

Let g be an inverse branch of f on B (y,r) for any 0 < r < a. Furthermore, let y € X
and z = g (y). For any z,2' € B (y,r)

hence g is contracting on B (y,r). This implies

g(B(y,r)) < B (x, %) .

Moreover, By (z,r) = g (B (y,r)) and f : By (x,r) — B (y,r) is homeomorphic.

Proposition 2.1.8. Let (X, d) be a compact metric space and f : X — X locally ez-
panding and mixzing. For any 0 < r < a and x € X, f* : B, (z,7) —> B(f"(z),r) is
homeomorphic.

Proof. Let z, f (z),..., f"(x) be a finite orbit of f, then there are n local inverses,
hi,...,hy, of f which satisfy

By Remark 2.1.7,

is homeomorphic.
Thus

ha (B (f" () 7)) = By (f"" () ,7).

Now, assume that
P10 oh, (B(f"(x),r) =B, (" *(z),r), 1<k<n-1
is already proven, then
Tty © - 0 hyy (B (f" (2) ;7)) = i (Br (/" (2) 7))

Thus

2€hnok (Be (f""(2),r)) < f(z)eBy(f"" (),
d(f'(f (), [P (@) <r,  0<i<k

Hence

A(f (@) @) < r d (P E) @) <
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which together with

d(f(2), [ (2) <

> =
> =

d(z, " (@) <

implies that
hn—k ©--+0 hn (B (fn (‘/E) 7T)) = Bk-‘rl (fn_k_l (l’) 7T) .
Then, by induction
hio---oh, (B(f"(z),r)) = B, (z,7),

hence f™ (B, (z,r)) = B(f"(x),r). Since f" is injective on B, (z,r), f" : B, (x,r) —
B (f™(x),r) is homeomorphic. O

Proposition 2.1.9. Let (X,d) be a compact metric space and f : X — X locally ex-
panding and mizing. For any 0 < r < a, there exists an integer p = p(r) = 1 with
fP(B(z,r)) =X for any x € X.

Proof. Let {B (yi, g) }ie ;» where J is an index set, be a finite ball cover of X, then for
all i € J there is an integer p; = p (y;) > 0 such that f? (B (yi, g)) =X.
Set p = max; {p;}. For any y € X, there exists an i with y € B (yi, g) Thus

B(y,r)> B (yg) and  f7 (B (y,r)) 2 fr7 | f7 (B (y g)) > 7P (X) = X.

Proposition 2.1.10. Let (X,d) be a compact metric space and f : X — X locally
expanding and mixing. For any 0 < r < a, let p = p (r) be the integer in Proposition 2.1.9
and ng the integer in Proposition 2.1.6, then

L<# (f7"%) (y) ~ B, (w,7)) < nb, zye X,n > 1.

Proof. We have that f™: B, (x,r) - B (f" (z),r) is a homeomorphism, this implies
P (B, (x,7)) = fP(B(f*(x),r)) = X. Thus f~"*?) (y) " B, (z,7) # &. On the other
hand, # (f ? (y)) < nb and every z € f P (y) n B(f™(x),r) has exactly one preimage in
B, (z,r) under f™. Hence

1< #(f "™ (y) n By (z,7)) < n.

2.1.2 Maximal eigenvalues for Ruelle-Perron-Frobenius operators

Definition 2.1.11. Let (X, d) be a compact metric space and f : X — X locally ex-
panding and mixing. Let R denote the real line and C' (X) := C (X, R) the space of all
continuous functions ¢ : X — R with the supremum norm

|6l = max{[o ()]}
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(1) Let 0 < a < 1. A function ¢ € C' (X) is said to be a-Hdélder continuous if
|0 (x) — ¢ (y)]

?], = sup — Y —a <%,
[ ] z,y:0<d(z,y)<a d (ZL’, y)

where [¢], denotes the local Hélder constant for ¢. C*(X) := C*(X,R) denotes
the space of all a-Hélder continuous functions.

(2) Two functions ¢; and ¢ are said to be ¢1 = ¢ if ¢ (x) = ¢o (z) for all z e X. A
function is said to be positive if ¢ > 0.

(3) A positive function in C* (X)) is called a potential.

(4) We define C%, (X) := O (X,R) = {¢p€C*(X):¢=s,[log¢], < K} for con-
stants K, s > 0.

The following lemma is a consequence of Arzela-Ascoli’s theorem (see [44] p. 245):

Lemma 2.1.12. Any bounded sequence in Cf ,(X) has a convergent subsequence in
C (X) whose limit is in C , (X).

Definition 2.1.13. Let (X, d) be a compact metric space and ¢ a potential. The Ruelle-
Perron-Frobenius (RPF) operator with weight v is defined as

where {z1,...,2:} = [ (y).

Proposition 2.1.14. Since R(C (X)) c C(X), R: C(X) — C (X) is a linear operator.
Moreover, for any o, R: C*(X) — C*(X) is a linear operator.

Proof. Consider y,y' € X with d(y,y) < a for any ¢ € C*(X). Let {z1,...,2,} =
fY(y) and {a),...,2"} = f~1(y') be the corresponding inverse images of y and y' with
d(z;,2}) < 5d(y,y') for all 1 < i < k. Then

Ro (y) — Ro ()

= % (v (00 =6 (@) +6 () (v et) ~ @) )|

i=1
Hence -

[Bé]o < o (Wl ], + gl [¥]a) < oo,
and thus R (C* (X)) < C*(X),so R: C*(X) - C*(X) is a linear operator. O

Remark 2.1.15. The weight ¢) can be normalized such that min,ex ¢ (z) = 1 for the
purpose of the study of the eigenvalues of R. In the rest of this section, it is always
assumed that 1 is a normalized element in Cf, | (X) for some constant Ky > 0.
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Lemma 2.1.16. Let (X,d)
constants. Then there exists an integer N > 0 such that

R'¢eCy (X)  YO<¢eC(X) with |[¢] =1,n> N.

Proof. We have |¢| = 1 which implies that there exists y € X with ¢ (y) = 1. Thus
there exists a neighborhood U of y with ¢ (') > s for all ¢/ € U. Since f is mixing,
there is an integer n; > 0 with f"(U) = X for all n > ny. This implies for any z € X,
" () nU # &, n=nyq, and hence R"¢ (z) = s

Let for any y,v' € X with d (y,v') <a, {z1,...,2,} = f ' (y) and {2},..., 2/} = [~ (¢/)
be the corresponding inverse images of y and ¢’ with d (z;, 2}) < %d (y,v) forall 1 <i < k.
Now, set K’ = [log R"¢],,, then

R(R"¢)(y) = i) R ()

Lot

;) €Xp (Kod (x“ Z) ) R™¢ (z;) exp (K d (xl, Z)a)
< exp <(Ko + K) Fd (yvy')a> R(R"¢)(y), .y eX,d(yy)<a

Thus inductively for K,, = Ko (31, A7) + K'A™",

R*(R™¢) () < exp (Knd (y,4")") R* (R ) (y),  y,y' € X,d(y,y) <a

Then K,, "= /\QKO and there exists an integer ny > 0 such that

R"(R"¢) (y) < exp (Kd(y,y)*) R" (R ) (y), v,y € X,d(y,y) <a,n=n,.
Hence N = n; + ny satisfies the lemma. O

Remark 2.1.17. By Lemma 2.1.16, R also has an eigenfunction in C% | (X) with respect
to p if 4 > 0 is an eigenvalue of R : C*(X) — C*(X) with a nonzero eigenfunction
¢ = 0. Thus C% , (X) can be used to find positive eigenvalues of R : C%(X) — C*(X)
with nonnegative eigenfunctions, where the calculation in the proof of Lemma 2.1.16
provides that

R(Ck, . (X)) = Ck . (X)),
because (Ko + K) A\™ < K for K > £o

1

Lemma 2.1.18. Define S = {peR:pu>0,3¢pe O, (X) st. Rp = pg}. Then S is a
nonempty bounded subset in the real line R.

Proof. Consider ¢ € C% , (X), then
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2.1. Transfer operators and spectral properties

This implies p = m es.
Set
m=sp ¥ o),

YVEX pef—1(y)
and let for any ¢ € C% , (X), ¢ (y) = |¢]. Then
Z w Z w mé (y),
zef—1 mef
and therefore any g > m is not in S. Hence S < R is bounded. m

Theorem 2.1.19 (Ruelle). The linear operator R : C*(X) — C*(X) has an unique
mazimal positive eigenvalue whose corresponding eigenspace is one-dimensional.

Proof. Set § = sup S > 0, then there exists a sequence {u,}_, in S which converges to
o. Let ¢, € Cf (X) be the corresponding functions with R¢,, > p,¢, and normalize ¢,
with mingex {¢, ()} = s. Hence {¢,},_; is bounded in C% , (X) and by Lemma 2.1.12,
it has a convergent subsequence in C'(X) whose limit is in Cf% , (X).

Assume that {¢,}~_ itself converges to ¢g, thus Ry = d¢p. Now, suppose that there
exists y € X such that

R (y) > 0¢0 (y) -
This implies that there is a neighborhood U of y such that

Reo (y') — o (y') > 0, y eU.

Since f is mixing, there is an integer n > 0 with

and thus
Rn (quo — 5¢0) > O,

which implies R (R"¢g) > dR"¢g. Thus for ¢ = R™¢,, there exists a u > § with R¢ = uo,
which is a contradiction to the maximality of §. This proves

R = 6.

Now, it will be shown that ¢ is simple, that is, the eigenspace

Es = {¢e C* (X) : R = 60}

has dimension one. Suppose ¢ € Fs and set a = mingex { ‘Wx)} and ¢1 = ¢ — agg. Then

¢1 € Es and ¢; > 0, moreover, there exists y € X such that ¢; (y) = 0, this implies
¢1 (x) =0 for all z € f~! (y). Hence inductively ¢; = 0 on X, = [J , 7" (y), and since
f is mixing, X, is dense in X. This implies ¢; = 0 on X, and so ¢ = a¢y.

It remains to prove that  is the biggest eigenvalue of R. Assume that g # d is an
eigenvalue of R : C*(X) — C° (X), then there is 0 # ¢ € C* (X)) with |¢| = 1 such that
R¢ = p¢. Thus as above

R{o[ = |ullo]-
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2. TRANSFER OPERATORS

Now, there exists an integer N > 0 such that R" |¢| € ', (X) and
R(RY[6]) = lul RY [¢].

It follows |u| € S, hence |u| < 0. If |u| < § there is nothing to prove, and if |u| = 0,
the mixing property implies (as above) |¢| = a¢y for some a > 0. Hence ¢ = +agq and
w=20. m

2.1.3 The Gibbs property

We will now introduce chains of Markovian projections which we will need for the proof
of the second part of Ruelle’s theorem, the existence and the uniqueness of the Gibbs
measure. We will also use Gibbs distributions to prove a theorem on the spectrum of the
Ruelle-Perron-Frobenius operator.

Let X be a compact Hausdorff space and Fx the standard o-algebra generated by all
open sets in X. Let M (X) = (C(X))* be the dual space of C (X). By the Riesz repre-
sentation theorem (see [44] p. 40) this is the space of all measures on X with respect to
Fx. Let M* (X) = M (X) denote the space of all probability measures and

(1, ) = L b

the integral of a function with respect to a measure € M (X).

Definition 2.1.20. A linear map P : C'(X) — C (X)) is called a projection if P? = P, P
is called Markovian if P1 =1 and P¢ > 0 whenever ¢ > 0.

We denote the kernel and the image of P by Ker (P) = {¢ € C(X) : P$ = 0} and
Im (P) = P(C (X)), respectively.

Proposition 2.1.21. Let P and Q) be projections. Then
(i) C(X) = Ker(P)@®Im(P).
(1) ¢ € Im (P) if an only if P¢ = P.
(1i1) PQ = Q if and only if Im (Q) < Im (P).
(iv) QP = Q if and only if Ker (P) < Ker (Q).
Proof. The proof of the assertions is evident. n
For an operator P : C(X) — C (X), P*: M (X) — M (X) denotes its adjoint operator.
Proposition 2.1.22. Let P and Q be Markovian projections on C' (X), then we have
(1) [Pl =[P~ =1.
(ii) P** = P*.
(iii) P*(M' (X)) € M (X).

26



2.1. Transfer operators and spectral properties

(iv) PQ = Q if and only if Q*P* = Q*.
Proof. The proof of the assertions is evident. O

Definition 2.1.23. (1) A sequence of Markovian projections P = {P,}*_; defined on
C (X) is called a chain of Markovian projections (CMP) if

(2) For P a chain of Markovian projections, define
Gni={pe M"(X): P*u=pul, 1<n<oo.

Since M' (X) € M (X) is weakly compact and convex, the Schauder-Tychonoff
theorem (see [16]) implies that G, # . Set Gy, = NX_,G,. A measure p € Gy, is
called a G-measure with respect to P. The given CMP is called uniquely ergodic if
G is a singleton.

Theorem 2.1.24. Let P be a CMP, then Go # &, i.e. if {un}r | is a sequence in
M (X), then any weak limit of {P*p,}*_; is in G-

Proof. |P}u,| = 1 implies that there is a weak limit of { P*u,}>_ ;. Suppose v is such a
weak limit, then there is a subsequence P} u,, which weakly converges to v as i goes to
infinity. Thus for any ¢ € C'(X),

llHl<P7;,kP;:anm ¢> = hm<P:Z:unu Pn¢> = <V7 Pn¢> = <P7;,kyv ¢>7
1—00 1—00
and by Proposition 2.1.21

—>C0 v 1—00
T Gy, Py ) = I B i, @) = (v, 6.

Hence Pfv = v for all n > 1, that is, v € Gy [

Theorem 2.1.24 states that G, is weakly compact, clearly it is also convex, i.e., tu; +
(1 —1t) g € Goo if 1, 12 € Goo and 0 < ¢ < 1.

Theorem 2.1.25. If P is a CMP defined on C(X), then the following statements are
equivalent:

(i) The CMP is uniquely ergodic.
(ii) For ¢ € C (X), P,¢ converges uniformly on X to a constant.
(iii) For ¢ € C (X), P,¢ converges pointwise on X to a constant.

Proof. Clearly (iii) follows from (ii). We suppose that (iii) holds true, then for any
1 € G the constant is {u, ¢y, since by the Lebesgue theorem (see [1])
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2. TRANSFER OPERATORS

Hence for any p,v € G and ¢ € C (X)),
(1.6) = (v.6) = lim Poo.

This implies that u = v, and therefore, (i) holds.

We assume that (i) holds and that u is the unique element in G,,. Suppose that (ii) is

false, then there is a ¢ € C' (X) such that P,¢ does not converge uniformly to (i, ¢). That

is, there is a constant € > 0, a subsequence of integers {n;}2; and a sequence of points
|Pnz¢(xl) - <:u7 ¢>| 2 €, =1

For ¢,, the Dirac measure concentrated at x;,

and by Theorem 2.1.24 any weak limit v of {P} 0,,}{2, is in G. But [{v, ¢) — (i, )| = ¢,
which is a contradiction to (i). O

Definition 2.1.26. (1) A CMP P = {P,}*_, is called compatible if
e P,(¢px) = xPno if x € ImP,,
e P.P,=PFP,=PF,P,ifm=n.

(2) If P = {P,}, is a compatible CMP, F; the standard o-algebra on R generated
by all open sets and ¢ : X — R a function, then we define F, = ¢~ (Fy) to be
the pull-back o-algebra on X. For a family of functions I', /1 denotes the minimal
o-algebra containing all o-algebras Fy for ¢ € I' and we set F,, = Fpyp,) for
all n = 1. Then {F,}_; is a decreasing sequence of sub-c-algebras in Fy, i.e.,

S Foy1 € F, C© - © F © Fy, since by Proposition 2.1.21 --- € ImP,; ©
ImP, € --- < ImP, < C(X).
Finally, we define F, to be the o-algebra generated by the limit of {F,}®_, that
is,
Foo = Uply Omzn Fmn

(3) A G-measure is called P-ergodic if p|Fy is trivial, that is, g (A) = 0 or 1 for any
Ae Fyp.

(4) For p e M'(X), ¢ € C(X) and n > 1, we have a measure defined on the sub-o-
algebra F,, by

()= [ odu. AcF,

Clearly, p, is absolutely continuous with respect to p|F,, and by the Radon-Nikodym
theorem (see [12] p.193) there exists a unique (modulo zero sets) L' (X, F,, u)-
function E (¢|F,) called the conditional expectation of ¢ given F,, satisfying

)= | B@IF),  AeF,
The function E (¢|F,) is defined uniquely a.e. by

o JAEOIFn)du =1, ¢du, Ae Ty,
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2.1. Transfer operators and spectral properties

o E(8IF) € L' (X, Fosst).
and the operator F (-|F,) satisfies
o E(p¢|Fn) = E(¢|F,) forall g e L' (X, F,, 1), ¢ € L% (X, Fy, ).
Theorem 2.1.27 (Decreasing martingale theorem). Let --- F,.1 < F, < --- < F; € Fx

be a decreasing sequence of sub-o-algebras satisfying e F, = Fo. Then E(¢|F,) —
E(¢|Fy) a.e. and in L' (X, Fx,u) if p € L' (X, Fx, p).

Proof. See [39] pp. 30. O

If 1 € Gy is a G-measure for P, then for any ¢' € ImP,
(i, @' Py = s P (60')) = (B, 09') =, 6.

Hence P,¢ = E (¢|F,), p-a.e., and then with the decreasing martingale theorem the limit
of P,¢ exists p-a.e., furthermore, a P-invariant measure p is P-ergodic if and only if
limy, 0 Pn¢p = (i, ¢y p-a.e. for ¢ € C'(X). So, we have the classical ergodicity theorem:

Theorem 2.1.28. Let P = {P,}>_, be a compatible CMP. Then

(i) If p1, o € G are P-ergodic, then either iy = ps or py Lo,

(ii) 1€ Gy is P-ergodic if and only if p is an extremal point in G .
Proof. (i) Suppose 1 # i, then there is a ¢ € C' (X) with

(1, @) # (pia, 6)-

We set A) = {z € X : lim, o0 Py¢ = (1,0} and Ay = {x € X : lim, o P =
(g, ¢y}, Hence py (A1) = 1 and po (A1) = 0, and gy (A2) = 0 and pg (As) = 1.
Thus pq L ps follows.

(ii) Suppose that p € Gy, is P-ergodic and p = tpy + (1 —t) pg with py, us € Gy, and
0 <t < 1. Then by the ergodicity of p, u(A) = 0 or 1 for any A € Fy and
p1 (A) = pe (A) = 0 or 1 because 0 < t < 1. Thus p; and ps are also P-ergodic.
Now, (i) implies that if py # po, then there is a A € F, with py (A) = 1 and
p2 (A) = 0. Hence p(A) = t which is a contradiction to the ergodicity of u. So
1 = po and p is extremal.

Conversely, suppose that p € Gy, is not P-ergodic. Let A € Fo, with 0 <t = p(A) <

1 and set
1 1

M1 = ;MXA, H2 = :MXX\A-

We will show that py, ps € Gy. For any n > 1

(P d) = ixaPad), 6 C(X).

Since A € F, € Fp,

1 1 1
<u,;><APn¢> = ;Sup<u,¢’ n¢>=;sup<P§u,¢¢’>

_ %sup<,u, Py = <%XB/~L7 ¢,
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where the supremum is taken over {¢' € ImP, : ¢ < xa}. Thus Pfu; = p; for all
n = 1, that is pu € G. Similarly, us € Go,. But

p=tu+1—=t)p, 0<t<l,

implies that p is not an extremal point.
O

M (X) is a locally convex topological space which is metrizable and G, is a compact
metrizable convex subset in M (X). So, Theorem 2.1.28 states that the set of P-ergodic
measures 1 € Gy, is comprised of all extremal points of G,,. The following theorem relates
G and the set of its extremal points.

Theorem 2.1.29 (Choquet representation theorem). Let pu € Gy, then there exists a
Borel probability measure m on Gy, supported on the set of extremal points of Gy, such
that

LLZJ vdm (v), V€ Goo.

Proof. See [38] pp. 1-32. O

Originally, Gibbs distributions are motivated by physics, more precisely statistical me-
chanics. It is a physical fact that for a system of n states with the corresponding energies
Ey, ..., E, which is put into contact with a much larger heat source being at temperature
T, where T' is constant, the probability p; that the state j occurs is given by the Gibbs

distribution
e PE;

SRR

with 8 = % and k is a physical constant. This is the starting point for the thermody-

namical formalism which, however, studies Gibbs measures for more general systems.

We suppose that f is a locally expanding and mixing dynamical system with an expanding
parameter (A, a) and 0 < € C*(X), 0 < a <1 is a potential. We set

n—1

Gn(x)znw(fz(m)), reX,n>1.

Let 7
Ro(y) = D, ¢(2)é(x)

zef~1(y)

be the RPF operator with weight ¢. We assume that 6 > 0 is the maximal eigenvalue,
0 < he C*(X) a corresponding eigenvector of R and R* : M (X) — M (X) the adjoint
operator of R.

Theorem 2.1.30. There exists a unique probability measure v = vy, € M (X) such that

R*v = év and for any 0 <r < §, there is a constant C' = C (r) > 0 with

v (B’Vl (:L‘a T))
d"Gp, (x)

Moreover, for h satisfying § hdv = 1 and for any ¢ € C (X), lim, o 0 "R"¢ = (v, ¢y h
uniformly.

C < <C, reX,n>1. (2.1)
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2.1. Transfer operators and spectral properties

The inequality in (2.1) is called Gibbs Property and the probability measure p = hv
is called Gibbs measure for (f,1)). Theorem 2.1.30 is proven by normalizing the RPF
operator R and using Theorem 2.1.31 below. The transfer operator can be normalized as
follows: Define

Jw) = o

which is still a positive function in C* (X). Now, let

Ré(x) =Rzp(x) = >, ¥ o)

yef~H(z)

be the normalized transfer operator having the property that R1 = 1. Let R* be the
adjoint operator of R acting on M (X) and

|
—

n

G, (x) = J(fz(x)), zeX,n>=1.

<.
Il
=}

Then, we have

~ h
Gn = 5o f"G"

and thus the following relations between R and R and R* and R*
R =6"hR" (ph™")  and  R™w =0"h"'R*" (hv). (2.2)

Theorem 2.1.31. Let R be the normalized RPF operator. Then there exists a unique
probability measure p € M (X) such that R*p = p and for any 0 < r < 5, there is a
constant C' = C (r) > 0 with

Cltg B 2 <, reX,n=1. (2.3)

Moreover, for any ¢ € C (X), lim, oo R"¢ = {u, ¢).
For the remainder of this section we assume that the RPF R is normalized. We set

Pup(x) =R'¢(f* ()= > G.(o)
yef~(fn(x))

which defines a linear operator from C' (X) into itself with P,1 = 1 and P,¢ > 0 for
¢ > 0. Moreover, P, satisfies the assertions in the following three lemmas.

Lemma 2.1.32. Form>n>1, P,P, = P,P,, = P,,.
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Proof. We will show that P,,P, = P,,. Note that Zyef—"(w) G,(y) =1

PmPnﬁb(x) =

Y, Gu@) P ()

yef~m(fm ()

Z Z G (w) G, (y) P.o (y)
)

wef=m=m)(fm(x)) yef~"(w

) D Cuen (W) G () D) Gal2)6(2)
)

wef~(m=m) (1 (2)) yef " (w zefn (7))

3 D1 Gay) D) G (w)Ga(2)6(2)

wef~(m=n)(fm(z)) yef " (w) zef~m(w)
> Y Galy) D Gu(2)6(2)
wef—(m=n)(fm(z))y \yef~"(w) zef~(w)

> Y, Gul(2)o(2)

wef—(m=n)(fm(z)) zef " (w)
D Gu(2)6(2)

zef~m(fm(x))

Pt (z).

This also implies that P, is a projection, i.e. P? = P,. Analogously, we get P,P,, =

P,.

Lemma 2.1.33. For ¢ € C'(X) and x € ImP,, P, (¢x) = xPno.

Proof. We assume that x (2) = > cp-n(fn(zy) Gn (¥) B (y). Then with Lemma 2.1.32

Pox)(x) = ) Gu(2)e() 3 G.(y)BY)

zef 7 (f™(z)) yef~(f(2))

= Z Z Gn (y) G (2) 98

yef=m(fm(z)) zef~"(f"(x))
= Y GwBl) D, Gu(2)e(2)
yef=m(f"(z)) zef=n(f™(z))

The Lemmas 2.1.32 and 2.1.33 provide that P = {P,}"_, is a compatible CMP.

]

Lemma 2.1.34. For ¢ € C (X), P,¢ converges to a constant if and only if R"¢ converges
to the same constant. Furthermore, the constant equals (i, ¢y for any G-measure fi.

Proof.

Pug(z) = Y (o) =(R") (" (x))

yef (" (x))

and f: X — X is surjective, thus
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2.1. Transfer operators and spectral properties

Hence P,¢ converges to c if and only if R™¢ converges to c.
If P,¢ converges to ¢, then

c= lim P,¢p = lim{u, P,¢) = im (P’ u, ¢y = {u, $).
n—aoo n—aoo n—oo
]

Lemma 2.1.35 (Naive distortion lemma). There is a constant C' > 0 such that for any
n =0 and any x,y € X with d, (z,y) < a,

G (x
n (Y)

Proof. Let z; = f'(z) and y; = f* (y) for 0 < i < n, then d (x;,y;) < \"'d (T, yn). We
get

~—

c '« <C.

Q

[log G, (x) —log Gy, (y) | < > |logh () — ¢ (ui) |
=0

n—1

< e ¥ e
=0
n—1

< [zﬂa Z Aia(nii)d(xna Yn)”
=0

< Gy

with A = mingex ¢ (z), [¢], the Holder constant for ¢, and Cy = %. Hence for

C = e, we have

cl« <C.

Q

n (V)
O

Proof of Theorem 2.1.31. First, we prove the Gibbs property. Let u be a G-measure
and r a real number with 0 < 2r < a. Let further ¢ be a function such that xp, () <

(b < XBn(w,Qr)' Then

1 (B w.) < [ o = [ 6api = [ Paody

with
Ppy)= D, Gu(®o()< D Gul2)Xpuwan (2).

zef=(f"(y)) zef=(f™(y))

Using Lemma 2.1.35 and Proposition 2.1.10, we have that there is a constant C' > 0 such
that

# (" (f" () 0 B (2,2r)) < C

and
Gn(2) < CG, (x), z€ B, (x,2r).
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2. TRANSFER OPERATORS

This implies u (B, (z,2r)) < C*G,, (z).
On the other hand, we have

(B (00) > [[odn = [ 622> | Pyt

where p is the integer in Proposition 2.1.9 and

Pn+p¢ (y) = Z Gn+p (z) ¢ (Z)
zefTrP(frrP(y)
Z Z Grip (2) XBa(ar) (2) -

zef TP (f7HP(y))

By Proposition 2.1.10 at least one term in the sum is non-zero. This implies together
with Lemma 2.1.35 that there is a positive constant C' so that

p (B (2,2r) = CGpyy (v) = CAPG,, () (2.4)

for A = mingex 1 (x). Let s be the least integer sucht that A* > 2 then B, (z,7) >
Bpys (2, A1) D Byys (2,2r). Using (2.4), we get

w(By (z,1)) = CAP**G,, (x) .

Thus we have a positive constant which depends on r only, denoted by C', satisfying

p (B (2,7))

SNy

<C.

Following our previous investigation on CMPs together with th Gibbs Property, it remains
to prove that a G-measure is unique. Using the Choquet representation theorem (Theorem
2.1.29) it suffices to show that a P-ergodic G-measure is unique. Theorem 2.1.28 provides
that any two P-ergodic G-measures are either equal or totally singular. We will use
the Gibbs Property to show that any two P-ergodic G-measures p and v are mutually
absolutely continuous, that is, that there is a constant C' > 0 such that

C v (U)<pu(U)<Cv(U)

for all open subsets U < X. For this purpose we fix a real number r, 0 < 2r < a and let
{x1,..., 2y} be a 2r-net in (X, d), that is, the balls {B (z;,7)}1<i<m are disjoint and the
balls {B (z;,2r)}1<i<m form a cover of X. Then we define

Ay = B(z,2r)\(B(xe,r)u--- 0 B(zp,1)),
Ai = B(l‘i,2r)\(A1U"'UAZ‘_1)7 2< 1< m.

So we get a partition Qo = {A;}1", of X which satisfies
B (xi,r) € A; € B (4,2r), 1<1<m.

We denote f=" (z;) = {2, }?’:“'1 forn > 1,1 <i < m and let g, be the inverse branches of

" By (25,2r) = B(x;,2r). Ayij := gjn (4;) is called a n-component of f~"|(Q)y and @,
is the set of all n components of f~"|Q)y which is again a partition of X satisfying

By, (ca,7) € ACS B, (ca,2r) VA e Qy,
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2.1. Transfer operators and spectral properties

where c4 € A (called the center of A) such that f™ (ca) = z;.

Let U be an arbitrary open set in X. Let further, for n > 1, @, (U) be the family of all
elements A of the partition @, such that the n-Bowen ball B,, (c4,r) is entirely contained
in U. Set V,, = Uaeq,u)A which is a Borel subset of U being a countable union of disjoint
sets. Now, with the Gibbs Property we get

pW) = Y ud < Y u(Bilea2r)

AeQn(U) AeQn(U)
<Y Gue)<C Y v(Bulear)
AeQn(U) AeQn(U)
< C° Z v (A) = C*v (Vaeq.nA) = C*v (V).
AGQn(U)

Then by Fatou’s lemma (see [46] p. 376) together with U = liminf, ., V,, u(U) <
C?*v (U) and similarly v (U) < C?u (U), thus a G-measure is unique.

If p is a unique G-measure, then by Theorem 2.1.25, P,¢ — (i, ¢) as n — oo for any
¢ € C(X). Hence by Lemma 2.1.34, R"¢ — {(u,$) as n — oo, which completes the
proof. n

2.1.4 Spectra of Ruelle-Perron-Frobenius operators

Now, let Cc (X) = C(X,C) be the space of all continuous complex-valued functions
¢ : X — C with the supremum norm

6] = max {16 (2)]}.

For 0 < a < 1, let C¢(X) = C“(X,C) be the space of all a-Holder complex-valued
continuous functions ¢ in C¢ (X). A function ¢ € C¢ (X) is said to be a-Holder continuous

if
_ [9(z) = ¢ y)]
[QS]Q a z,y:0<sz111(13:6),y)<a d (:Ea y)a =

¢ € Cc (X) can be written as

O = @1 + 102, P1,02€ C(X),

then ¢ € C¢ (X) if and only if ¢; € C* (X)) and ¢ € C* (X).
We have Rp = R¢y + 1R¢y because 1) is a real-valued function, and thus R : C¢ (X) —
Cc (X) is a bounded linear operator. C¢& (X) equipped with the norm

[6]a = llol + [],

is a Banach space, and R, = R : C& (X) — C&(X) is a bounded linear operator (see
Proposition 2.1.14).

Corollary 2.1.36. The mazimal eigenvalue 6 is the spectral radius of Ry = R : C2 (X) —
C2(X).
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Proof. By [42], p. 407, the spectral radius can be calculated as

1
p(Ro) = lim || Rg = lim ( sup ||R€“¢> :
9eC2(X), Jol<1

By Theorem 2.1.30
6" Ry < [v. )] B + 1< b +1 Vo e C2(X) with [¢] <1, n large.

Thus 07" | Ry|| < ||| + 1 and HRSH% < (|h] + 1)% § for large n. Hence p(Rp) < 0. Asd
is a spectral point, p (Rg) = 4. ]

Furthermore, we have for the normalized transfer operator the following corollary which
is a direct consequence of the relation between R and its normalization (see (2.2)).

Corollary 2.1.37. The mazimal eigenvalue § is the spectral radius of R, = R : C& (X) —
Ce (X). The rest of the spectrum is in a disk of center 0 with radius strictly less than .

Corollary 2.1.38. For the normalized RPF operator, the mazximal eigenvalue 1 is the
spectral radius of Ry, = R: C& (X) - C& (X).
The rest of the spectrum is in a disk of center O with radius strictly less than 1.

Proof. The spectral radius can be calculated as

3=

p(Ra) = lim | Rz = lim < sup RZ@M)
e $eCg (

e XD, 1¢lla<

Consider for any ¢ € C¢ (X) with ||¢|, <1 and z,y € X with d (z, y) a the correspond-
ing inverse images of x and y, f~! (x) = {zy,...,z,} and f~' (y) = {v1,...,Yn}, such that
d(x;,y;) < 3d(x,y) for all i. Then

|Ra¢ (z) — — ¢ (yi) ¢ (3)|
¥ (yi)| | yz|+2¢ i) |& (zi) — & (yi)]-

< e
it

As d(z;,y;) < 3d(z,y) and Y1, ¥ (z;) = 1, we have

W]a L
/\a

1
o (4], ,

[Ragb]a <

and with Cy :=1 — )\la + [¢], 2o

[Radlle < Crligl + 33 ||¢||

Then by induction,

1 n—1
e R
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2.2. Harmonic analysis for the transfer operator on R and T

Thus
1 n—1
IR0l < n1WWM+<M) |Rul,
< anM+(—) c&m+( )m

1
::cnw+( )ww

where C,, = C,,_; + (/\%)n_1 C,<C= 01%. Hence we get that

1R, c>w+( )¢a7 nsl.

Set C&L (X) = {pe C&(X):{u,¢) =0}, then C& (X) = C& (X) @ C because ¢ =
(6 — {u, d))+<{u, ¢y. Tt suffices to prove that the spectral radius of R,|C&+ (X) : C&+ (X) —
C&t (X) is strictly less than 1, in order to prove that the rest of the spectrum of R, is in
a disk of center 0 with radius less than 1. To show this, suppose n, k > 0. Then

ol < clrsol+ (55) Isel,

n+k
< clral+o () 160+ (5) tol

We have that {¢ € C&+ (X) : |¢],, < 1} is a uniformly bounded and equicontinuous family,
thus it is a compact set in C¢ (X). Hence by Theorem 2.1.31, for any 0 < 7 < 1 there are
m, k > 0 such that

|Ry | <7 VoeCgt(X) with ¢, <1

So,

Rm”“H < 7, and it follows that

lim | R*|Cat (X)[7 < 7 < 1.

n—e0

]

2.2 Harmonic analysis for the transfer operator on R and
T

2.2.1 Wavelets

In this section, we will state all the basic facts on wavelets and their multiresolution
analysis, following [13], which we will need for the harmonic analysis of the transfer
operator.

Definition 2.2.1. A multiresolution analysis consists of a sequence of closed subspaces
V; which satisfy
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2. TRANSFER OPERATORS

(a)

Vo ViceVyec Vi cVyc - (2.5)
with
Vi = 12(®), (2.
JEZ
Vi = {o}. (2.7)
JEL

(b) All the spaces V; are scaled versions of the space Vj,

feV o f(2) e (2.8)

(c) Invariance of Vj under integer translations,

feVo= f(-—n)el, n € 7. (2.9)

(d) There exists ¢ € Vj such that

{¢0n : n € Z} is an orthonormal basis in Vj, (2.10)

with ¢;,(z) = 2_%@5(2*% —n). The function ¢ is called the scaling function of the
multiresolution analysis.

Remark 2.2.2. (1) For P;, the orthogonal projection operator onto V;, condition (2.6)
provides that lim; , o, P;f = f for all f € L*(R).

(2) Condition (2.9) together with condition (2.8) implies that if f € Vj, then f(-—2/n) €
V; for all n € Z.

(3) The fact that {¢;, : n € Z} is an orthonormal basis for V; for all j € Z is provided
by the combination of condition (2.8) and (2.10).

(4) Condition (2.10) can be relaxed considerably, e.g. to Riesz bases. (A basis {ex}
is called a Riesz basis if it is equivalent to an orthonormal basis {vy}5,, that is,
>, cker, converges if and only if > | cxuy converges ).

Theorem 2.2.3. If a sequence of closed subspaces (V;);ez in L*(R) meets the conditions
(2.5) - (2.10), then there is an associated orthonormal wavelet basis {1y : j, k € Z} for
L*(R) such that

Py =P+ ) Gt - (2.11)

k€eZ

The wavelet 1 in Theorem 2.2.3 can be constructed explicitly (see also [13], pp. 130-135).
One possibility for the construction involves a function mg, whose properties are crucial
for the next section.

Since ¢ € V, < V_1, and the ¢_,, are an orthonormal basis in V_;, we have

¢ = hnd_1, (2.12)

neZ
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2.2. Harmonic analysis for the transfer operator on R and T

with
hy ={¢,¢-1,y and > |hy|* = 1. (2.13)

neZ

(2.12) can either be rewritten as

= V2 ha¢(2z —n) (2.14)

neZ

or

\F%h L0 (8/2), (2.15)

where convergence in both sums hold in L?-sense. Let us denote

Z e~ (2.16)

neZ

then (2.12) can be written as

$(€) = mo(€/2)9(&/2), (2.17)

where equality holds pointwise almost everywhere. Furthermore, (2.13) indicates that my
is a 27-periodic function in L?([0, 27]).
The orthonormality of ¢(- — k) provides some special properties for mg:

o = [ o@al—Bids = [ jolo)Peras
- | 7o (e + 2m) e

0 leZ
Thus we have 1
Y€ + 2xl)]P = — ace. (2.18)
27
leZ

By substitution in (2.17), (¢ = £/2), we get

Z imo(¢ + ) |2o(¢ + TP = —

: (2.19)
leZ 2m

splitting the sum into even and odd [, using the periodicity of m and applying (2.18)
finally gives

Imo(Q)]? + |mo(¢ +m)> =1 ae. (2.20)

The scaling function ¢ can also be used as a starting point for the construction of a
multiresolution analysis. First, V; is constructed from the ¢(- — k), and then all other V;
can be obtained. For this construction we choose ¢ such that

¢($) = Z an¢(2$ - n)7 (221>
neZ
with >, |a,|* < o0, and
0<a<) 6 +2r)’ < B <. (2.22)
leZ
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2. TRANSFER OPERATORS

Then V; can be defined to be the closed subspace spanned by the ¢;;, k € Z, where
¢(xr) = 2792¢(277x — k). The conditions (2.21) and (2.22) give that {¢; : k € Z} is a
Riesz basis in each Vj, and that (2.5) is satisfied. It can be shown that the V; also satisfy
the conditions (2.6)-(2.10). (2.21) can be rewritten as

(€)= mo(£/2)0(&/2), (2.23)

with mo(§) = 3 3.z ane™. If ¢ € L*(R), $(0) # 0 and ¢ is continuous in 0, we have
$(0) = mo(0)¢(0), and thus me(0) = 1 or

da, =2 (2.24)

Furthermore, my is continuous by (2.23), except possibly near the zeros of qg

Before proceeding with the next section, we finally introduce compactly supported wavelets,
including some properties of my and the scaling function which result from the compact
support. The easiest way to obtain compact support for the wavelet 1) is to choose the
scaling function ¢ with compact support.

For compactly supported ¢ the 2w-periodic function my,

1 )
mo (€) = 7 D e, (2.25)

nez

becomes a trigonometric polynomial, and as in (2.20), it follows from the orthonormality
of the ¢y, that,
[mo () 17 + mo (€ +7) [ = 1. (2.26)

We do not need to suppose "almost everywhere” anymore as my is continuous, and thus
(2.26) is satisfied for all £ if it is satisfied almost everywhere. Since ¢ (0) # 0 and mg (0) =
1, with (2.26) we have that mg (7) = 0. Consequently, for all k € Z, k # 0,

~

b (2km) = ¢ (2-2'2m+ 1)) (for some [ = 0,m € Z)
— Hmo (2419 2m + 1)) [ mo (2m + 1) 7) ¢ (2m + 1) 7)

= mo (1) ¢ ((2m +1)7) = 0.

Equation (2.18) provides a normalization of ¢ by |¢ (0)| = = or [§o(x)de] = 1.
Together with (2.23) this implies

60 = =m0, (2.27)

This product makes sense because Y, _, |hy,||n| < 00, mg (0) = 1, and my (§) = \/Li D nez

h,e~ "¢ satisfies for a constant C

mo (€| < 1+ mo (€) — 1] < 14 V2 Y [hul]sin | < 1+ Cle] < ¥

neZ
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2.2. Harmonic analysis for the transfer operator on R and T

thus
H Imo (277€) | < exp (Z Cl2” J«il) < el
Jj=1

Hence the right hand side of (2.27) converges absolutely and uniformly on compact sets.

Lemma 2.2.4 (Mallat). If mg is a 2m-periodic function which satisfies (2.26), and if
5= L1721 m0 (277€) converges pointwise a.e., then its limit ¢ (€) is in L* (R), and |¢], < 1

Proof. If we set f;, (€) = - [1‘[;‘;1 Mo (Q*Jg)] N nm (25€) with
1 il s AL
X[-nn (€) = 0 . otherwise ’ then f, — ¢ pointwise a.e.

With the 2m-periodicity of mg, we get

1 r‘2kﬂ' k
Jis@rpae = 5[ Tl rac
J—9k
1 2k+1ﬂ. k ' )
= — mo (277€) |°d€
21 J ]1:[1| 0( ) |
1 r2kr | k-1 9
= 5 [nmo (277¢) ] [Imo (275€) | + |mo (277¢ + 7) |*] d¢
Jo iy
(226) 1 p2hm i N
=7 — mo (277€) |°d€
21 J ]1_[1| 0 ( ) |
= [l
Consequently, for all k,
el = 1o = - = 1 fol* =

and by Fatou’s lemma (see [46] p.376),

[ 160 P = timsup [ 17 9 Pae <

2.2.2 The trigonometric case

In the previous section, we encountered wavelets and their construction in the general case.
Now, we will turn to the trigonometric case, that is, we will consider T = {z € C : |z| = 1}
with the identification R\27Z 3 w — e = z € T and see how the fusion of wavelet
theory and the theory of dynamical systems, especially transfer operators, gives rise to
interesting results for both theories.

In this trigonometric context, P.E.T. Jorgensen dealt with a transfer operator of the form,

(Rf) (2) = = Z Imo (w) |°f (w),  feL'(T),z€eT, (2.28)

wN—z
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2. TRANSFER OPERATORS

where my is given by mg (2) = X, ax2", z € T. In [29], Jorgensen established a one-
to-one correspondence between representations of a C*-algebra and functions which are
harmonic for the transfer operator R. We will see his main result below in Theorem 2.2.5.

For mgy € L* (T), we study the eigenvalue problem
he L' (T), h =0, R(h)=h (2.29)

for the transfer operator R, and call functions h, which satisfy (2.29), harmonic for the
transfer operator R. For the cascade refinement operator M in L? (R) given by

(M) (x) = VN > agtp (N — k), (2.30)

keZ

with N > 2 integral, ), € C satisfying Y, lax|* =1, k € Z, ¢ € L* (R) and = € R, the
eigenvalue problem (2.29) is closely connected to the problem

pe L*(R), M¢ = ¢, (2.31)

where the nonzero solutions (if existent) are the scaling functions in wavelet theory.

For the purpose of studying the more general eigenvalue problem (2.29) it is useful to take
a representation-theoretic viewpoint, instead of insisting on L? (R) as the Hilbert space
for (2.31). We will consider abstract Hilbert spaces H which admit nonzero solutions
¢ € H for (2.31). As H will only be given abstractly, a unitary operator U : H — H
which corresponds to the scaling operator needs to be specified by

\/Lﬁqﬁ (%) , (2.32)

for the special case when H = L?(R). Analogously, we specify a representation 7 of

L*(R) on H by

U:Y—

Ur(f)==(f(z")U,  feL*(T) (2.33)

as a commutation relation for operators on H. In this scope, the problem (2.31) takes the
form:

Up =7 (my) ¢, peH. (2.34)
Let Uy denote the C*-algebra on two unitary generators U and V satisfying

uvuTt=v¥N (2.35)

(see [10] for details). Then U denotes both an element in Uy and a unitary operator in
H. By a representation of (2.35), a realization of U and V' as unitary operators on some
Hilbert space H is meant, such that (2.35) holds for those operators. Let f € L*(T),
then f (V) is defined by the spectral theorem (see [45] pp. 305), applied to V, and
v (f) := f (V) is arepresentation of L* (T) in the sense that my (f1, fo) = mv (f1) v (f2),
and my (f)* = mv (f), with f(2) :== f(2), 2 € T, fi, fo, f € L*(T). Considering this
setting, (2.35) rewrites as

Ury (YU =mv (f(zY)), (2.36)

and conversely, if 7 is a representation of L* (T) on H, and U a unitary operator on H
satisfying Un (f)U ' =« (f (ZN)), then every pair (U, 7), is of this form for some V.
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2.2. Harmonic analysis for the transfer operator on R and T

For e, (2) = 2", ne Z, we set V := 7 (ey).

As V is unitary, it has a spectral resolution V = ST AFE (d)\) with a projection-valued
spectral measure £ (-) on T. A vector ¢ € H is called cyclic if {w (A) ¢ : A € Un} is dense
in H, the corresponding representation 7 is called a cyclic representation. If, for a cyclic
vector ¢ € H, the measure |E (-) ¢|* on T is absolutely continuous with respect to the
Haar measure on T, then the corresponding representation is called normal. The normal
representations are denoted by Rep (Un, H).

Now, we can state the main result of P.E.T. Jorgensen in [29]:

Theorem 2.2.5. (1) Suppose mg € L (T) and it does not vanish on a subset of T of
positive measure. Then there is a one-to-one correspondence between

(a) he L' (T), h =0, and
R(h) = h. (2.37)

and

(b) ™€ Rep(Un,H), ¢ € H, and the unitary U from 7 satisfying

U =7 (mo) ¢; (2.38)
as equivalence classes under unitary equivalence.

(2) From (a) — (b), the correspondence is given by

G (o= | fhn (2.39)

with p the normalized Haar measure on T.
From (b) — (a), the correspondence is given by

h(z) = he(2) = ) 2"m(en) &, O (2.40)

neZ

(8) If there is some h which satisfies (a), and 7™ € Rep (Ux,H) is the corresponding
cyclic representation in (b), then the representation is unique from h and (2.39) up
to unitary equivalence, that is:

If there is a @ € Rep Un,H'), ¢' € H' also cyclic and satisfying (2.38) and (2.39),
then there is a unitary isomorphism W of H onto H' such that W (A) = n' (A) W,
AelUy, and Wo = ¢'.

Remark 2.2.6. The proof of Theorem 2.2.5 is basically the construction of a generalized
multiresolution analysis using the transfer operator (see [29]).

The remainder of this section refers to work done by O. Bratteli and P.E.T. Jorgensen
[9]. It deals with the special case, N = 2, for the transfer operator introduced in (2.28).
Following (2.14), compactly supported scaling functions ¢ of a multiresolution analysis
satisfy the functional equation

$(x) = V2D arp(2x — k). (2.41)
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2. TRANSFER OPERATORS

Then (2.10) implies the conditions

Z AxQpio] = 51, le Z, (242)

keZ

and the second standard requirement qB(O) = 1 gives the condition
Dla =2 (2.43)
keZ

We set

mo(z) = Z apz® (2.44)

k€EZ

for z = e € T, then condition (2.42) is equivalent to
mo(2)]? + [mo(—2)* = 2, (2.45)

and (2.43) is equivalent to

mo(1) = V2. (2.46)

The Fourier transform of (2.41) is

o(t) = \/%mo (%) ¢ (%) . (2.47)

~

Since ¢ has compact support, and with (2.41) its support is in [0, K], ¢ is continuous at
0 and an iteration of (2.47) gives

o(t) = ﬁ (%) , (2.48)

k=1

(see (2.27) for comparison). This converges uniformly on compacts since myg is a polyno-
mial. o

Let () be any bounded function of compact support satisfying 1(®(0) = 1. Now, the
cascade approximation operator introduced in (2.30), can be given by iteration

VO (z) = (M) () (2.49)
= \/ii agp™ (22 — k).

Then, we have for the iterates
1 t\ — (1
(n+1) () = — — (n) [ = 2.50

P (t) = ﬁ (M\é—k)> PO (127) . (2.51)

and thus
k=1

The above equations imply that () "= quS, uniformly on compacts, and thus ™ "= ¢.
That is, if the coefficients {a) : kK = 0,--- , K} satisfy (2.43), then the refinement equation
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2.2. Harmonic analysis for the transfer operator on R and T

(2.41) possesses a distribution solution ¢ with ¢E(O) = 1 and compact support in [0, K.
This solution is defined by (2.48) and can be written as the distribution limit

¢ = lim M@, (2.52)

n—o0

with ¥(® any integrable function with compact support satisfying @(0) =1.

Set
~ _ i ﬂ@g(tQ_k)

then following Mallat’s lemma, Lemma 2.2.4, and its proof, for f; := ngSn, we have

2w o+l R
[ ionwpa= [ i@ pa
—2n7 0
ALY
= J |G (2) |2% (Imo (277t) Plmo (27"t + ) |P) dt (2.54)
02"7r . L
=J |1 (2) |Pdt = - -- :J \po (1) |Pdt = 27,
0 -7

. 7 n—oo . .
The uniform convergence of ¢, — ¢ implies

< or, (2.55)

thus ¢ € L? (R), and ||¢|, < 1. Since an(-)x[_mw] (-27") converges for n — oo uniformly on
compacts, and has constant L?-norm equal to v/27 by (2.54), we get that this sequence
converges weakly to ¢ in L? (R). Thus it converges in the L?-norm to ¢ if and only if

= or, (2.56)
2

and, especially, if and only if
lol, = 1. (2.57)

This is equivalent to:
The only trigonometric polynomials £ which satisfy

£ =5 ) Imo () PE ) (2.58)

w?=z2

are the constants, which is in turn equivalent to:

The cascade algorithm, with

™

1 < 1
9O () = Xir (1) = 5 J e dt — L gin () (2.59)

- T

converges in L?*-norm to ¢;

and {¢ (- — k)} is an orthonormal set.
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2. TRANSFER OPERATORS

In order to examine the convergence properties of (2.59) under general circumstances the
Ruelle operator R is introduced by

Z Imo (w) %€ (@) . (2.60)

The Ruelle operator R can be viewed as an operator on any of the spaces
Clz 2" = C(T)c L*(T) c L*(T), (2.61)

and its definition (2.60) and the definition of mg (2.44), provide that R maps any of these
spaces into themselves.

Let P[n,m], n < m, be the subspace of C [z, 27!] which consists of trigonometric poly-
nomials of the form > "  b;2". Then

R(P|n,m])c P |-

K—n m—i—K]’ (2.62)

2 72
where [z] is the largest integer < x. By repeated application of R, any P [n,m] will
finally be mapped into P [—K , and we have that all spaces

K]
P KKC(C[ = cC(T)c L®(T) c L*(T), (2.63)

are invariant under R.
The authors of [9], O. Bratteli and P.E.T. Jorgensen, established the following theorem
on the convergence of the cascade algorithm:

Theorem 2.2.7. Let ag,--- ,ax be complex numbers such that (2.42) and (2.43) hold,
and let ¢ be the associated scaling function defined in (2.48). The Ruelle operator R is
identified with its restriction on P[—K, K] (or P[n,m], for any n < —K and m > K).
Then the following conditions are equivalent:

(i) 1 is a simple eigenvalue of R and all other eigenvalues A of R have || < 1.

(11) ]fz/J € L? (R) has compact support, {w(o) (- — k)}:lioo is an orthonormal set and
w(o) (0) =1, then
(2.64)

HQ =

lim ||¢ — M™©
n—o0

Proof. See [9]. O
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3 Harmonic analysis for the Ruelle
operator on hypergroups: the
polynomial case

In Chapter 2, we both encountered Ruelle’s theorem in the classical dynamical systems
sense and a Ruelle operator in harmonic analysis on T which was defined through a
preimage given by a polynomial function. In this chapter, we will define a transfer operator
which will be based on an orthogonal polynomial sequence {P, (x)}>_, on the interval
[_17 1] by

R f @) = 5 D) m (@) £ (@),

Py (z)=y

with the weight function my () = >, bx Py (z) h (k). In our case, the underlying or-
thogonal polynomials will be the Chebyshev polynomials of the first kind. We will use the
orthogonal polynomial theory provided in Chapter 1 as well as the theory of homogeneous
Banach spaces. The orthogonal polynomials which we will consider generate polynomial
hypergroups.

3.1 Chebyshev polynomials of the first kind: the
unweighted Ruelle operator

The Ruelle operator will be defined by the preimages of the Chebyshev polynomials of the
first kind, {7, (x)}:°_,, (see Section 1.1 in Example 1.1.2 (1)) and act on function spaces
which are determined by the hypergroup structure induced by the Chebyshev polynomials
of the first kind.

We define the Ruelle operator R = R, 1) and the corresponding weight function my
depending on N as follows:

(Ronwro)f) W) = 35 mw (@) f(2), (3.1)
Tn(z)=y
and .
my (x) = Y 0Tk (z) b (k). (3.2)

The subscript (my,Ty) indicates that the weight function my, which depends on the
coefficients by, and the Nth Chebyshev polynomial Ty (z) are used.
First, we fix my = 1 and calculate the Ruelle operator acting on T}, for arbitrary N. For

some y € S := [—1, 1] the preimage of Ty is Ty (y) = {ng), ng), . ,xS\J,V)}, where the

7



3. HARMONIC ANALYSIS FOR THE RUELLE OPERATOR ON HYPERGROUPS:

THE POLYNOMIAL CASE

superscript indicates the corresponding Chebyshev polynomial T (y). We will omit the
superscript if the notation is clear. We start with the case that N is even. Then we get
for z; € Tyt (y),i=1,...,Nand 0 <7 < 5 which is uniquely determined by y,

xq = cos (r),

Tjy1 = COS
Nm
Ty =08 | =T = cos(m—7).

Then, by Theorem 1.1.20 (ii), we have for n € Ny that

Furthermore, we have
T, (z1) = cos (nr),

T, (x;) =cos|n

=Ccos|n

=Ccos|Nn

(
(

T (wi41) =cos [ n <%T " r))
(.

Hence we get

Ty (x;) + Ty, (i41) = 2cos (n%) cos (nr) , i=24,...,N—=2

T (x1) + T, (zn) = (1+ cos(nm))cos(nr) = {

Now, the Ruelle operator applied to T,, is calculated as follows,

N (3.4) % Zfi/f 2T, (x;), n even
D T () =
0, n odd

78

%)) cos (nr) —|—sin< (%)) sin(nr),  i=2.4,...

2cos(nr), n even
0, nodd

(3.3)

(3.4)

(3.5)

(3.6)



3.1. Chebyshev polynomials of the first kind: the unweighted Ruelle operator

r .
% (Zie{2,4 ..... N9y 4 cos (n%) cos (nr)

(36) ) +2 cos (n?—ﬁ) cos (nr) + 2 cos (m’)) : £, n even

1 (Zie{m ’’’’’ y_qy4dcos (ni) cos (nr) + 2 cos (m“)) , & odd,n even

0, n odd

\

% ([Zie{2,4 ..... y_g 4cos (ni) + 2 cos (n%) + 2] cos (m’)) , S.neven

-

= < .
% ([Zie{2,4 77777 y_yy4cos (n%) + 2] Ccos (m“)) , £ odd,n even
0, n odd
_Jeos(nr) =T, (r1), n=NIleNg
0, else '
For the case that N is odd, we have
xy = cos(r),
x;, = COS<ZN7T—T), i=2,4,...N —1, (3.7)
s
Tiy1 = COS <N + r) ,

and thus (3.6) can be rewritten as

T, (x1) = cos (nr),

T, (x;) =cos[n

(

_ cos n(%))cos(nr)+sin< <%>>Sm(nr), i—24 . N-1,
(.
(

T, (xi41) = cos | n

=cos|n
(3.8)
Thus we get
1 & 3.8) 1 s
Raryy (Th) (y) = N Z T, () = N Z 2cos ey ) cos (nr) + cos (nr)
i=1 i€{2,4,..,N—1}
= — cos [ n— cos (nr
N i€{2,4,...,N—1} N
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THE POLYNOMIAL CASE

{cos (nr), n=NIl1leN

0, else

By Lemma 1.1.40, which we will use throughout this section, we have for the Chebyshev
polynomials of the first kind Ty (z) = Ty (177 (x)), k,l € Ny, thus we have proven the
following lemma:

Lemma 3.1.1. The unweighted Ruelle operator R 1y satisfies

Ramy (Th) = (3.9)

0, else

{Tn, n=NI,leN,
N .

Let f : S — C be a function. Now, we study the action of R(; 7) on various function
spaces defined on S. Then the preimages z; € Ty (y), i = 1,..., N, are real numbers in
[—1,1] (see also Chapter 4). For N = 2™ they can easily be expressed in terms of y by

(1)
2) y+1 (2n) Ty gen +1

.....

(3.10)

Since Raryy (f) (y) = % LSV f (a: ) for all y € S, |Rary| < 1 for the supremum
norm which we have from above and R 1)1 = 1, we get the following lemma:

Lemma 3.1.2. The Ruelle operator Ry ry) is a bounded linear operator on C (S), where
C (S) is equipped with the supremum norm, and the operator norm satisfies |Rq ryy| = 1.

We will investigate the action of R(; 1) on the Wiener algebra A () (defined in Example
1.2.31) with respect to {T), (x)}>_,. We recall that A (S) is a subspace of C' (),

A(S)={feC(S Z n) < oo}

and that it is a Banach space with the norm | f|lacs) = S, |f (n) |2 (n). For f e A(S)
we have f (z) = 3 f(n) T, (z) h (n).
Lemma 3.1.3.

Rary o Rar) = Rary), i,j €N (3.11)

Proof. By Lemma 1.1.40, we have for the preimage T, ' o T; ' (y) = T,;* (y). Thus

v

1y ()
Ramyo R(LTj) (fly) = Ram) ;Z f (:Ek )
k=1
_ 1 L) LS ()
= jRom (;f(fk )| =527 ()
- R(I,Tij) (f) (y)-
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3.1. Chebyshev polynomials of the first kind: the unweighted Ruelle operator

Lemma 3.1.4. Let f,ge C(S). Then for dn (y) = ——~=dy

[ RurarGowar = [ 7@os @),

Proof. We have that T" (x) = nU,_; (z) (see (1.12)) and the identity (T}, (z))* — (2 — 1)

(Up_1 (2))* = 1 (see (1.13)) which directly yields that /1 —32 = (1 —22) (U,_1 ())°.
Thus

fl Rurnf (W) gy dn(y) = J g (y)dr (y)

= — x x NUy-1 () x
—NLfUMM(DW1m¢Fﬂd

0 NUn_1 (7)
+Nf )9 (T (@) = e

= | f@ eIy (@)dr(x).

dz

Proposition 3.1.5. For f e C(S) and n € Ny we have, R(T,T?)f (n) = f (Nn).

Then it is obvious that R r,) is also bounded on A(S). In fact, if f € A(S), then

Rary f(n) = f(Nn), and hence |Ro ) flas) = Xolo |f (Nn) [h(n) = 37,1 f (Nn) |
h(Nn) < 37 1f () |h(n) = [flas). Since Raryl = 1 and 1] 45 = 1 we get
[ Rrwyllacs) =

Theorem 3.1.6. We have R1.1y) € B (A(S)) and |Ra 1| = 1. Moreover, Ra ryy f (y) =
3 F(Nn) T, (y) h(n) for each f e A(S).

If f:S5 — Cis a Borel measurable function, then R r)f is Borel measurable, too.

Lemma 3.1.7. Let f e LP(S,w). For 1< p < o0, we have

L |Raay)f (y) [Pdm (y) = L |f () [Pdr (z).

Proof. Splitting S = [—1,1] into [—1,0] and [0, 1] the substitution of Lemma 3.1.4
directly yields equality. O

We proceed with studying the p-versions of A (S5) (see Example 1.2.31 (2)). For 1 < p < o,
we define

AP (S) = {fe L*(S,7): felr(h)},
and | f|? = ||f|ly + | fl,- With this norm AP (S) is a Banach space. Note that the norm of
A(S) and A' (S) differ by the summand ||f];. With Lemma 3.1.7 and Proposition 3.1.5

we get

IRarn fIP = | Ramo fln + 1R flo < WF+ Ll = LFIP, e AP (S).
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Theorem 3.1.8. We have for 1 < p < o0, Ry € B (AP (S)) and | Ryl = 1.
Lemma 3.1.7 also implies:
Theorem 3.1.9. We have Ru 1y € B(LP (S,7)) and |Ruryll =1, 1 <p < 0.

It is interesting to consider the action of R 1,y on the Hilbert space L? (S, 7). Define
the operator E € B (L? (S, 7)) by setting

E(g9)=Eg=goTn, gelL®(Sm).
By Lemma 3.1.4 (with f = 1) we get S y) |dm (y) = Sl_l |Eg (z) |dm (x) for all g €
C (S). Since C'(S) is dense in L' (S,7), we see that £ € B(L'(S,7)) and |E| =
Applying Lemma 3.1.4, we conclude:

Proposition 3.1.10. Let f,g € C(S). Then

[ Rarof s ) = [ 1) Byt ).

In particular, E is the adjoint operator of R 1y on L* (S, ).
For each n € Ny we have
Ry © Ry gy (Th) = Raryy © E(Tw) = Rary)y (Tve) = T
Since the linear span of {7, : n € Ny} is dense in L? (S, 7), it follows that
Raryy © Ry = Ray) o B = id.

If n € Ny is a multiple of N, then R?LTN) oRaryy (1n) = E (T%) =T,. But, if n € Ny is
not a multiple of N, then Ry 1y © By (T,,) = 0.

Denoting L2 (S,7) = {f € L*(S,7) : f(n) = 0 VYn € NNy} and L?(S,7) = {f €
L?(S,7) : f(n) =0 Vne NO\NN}, we have L? (S, 7) = L2 (S, ) @L2 (S, 7). Further-

more, Ker (R(LTN) o R(LTN)> = L2 (S, ) and Im (R(l,TN) o R(LTN)> L3 (S, 7).
Proposition 3.1.11. R 1) € B(L?(S,7)). Then
(Z) Rz:].,TN) = E’
(ZZ) Eo R(LTN) = ld,
(iii) EoRryy is a partial isometry with initial space Ker (E o R(LTN))L = L3(S,7) and
Ker (E o Raryy) = LE (S, 7). Moreover, EoR(1 1y is the orthogonal projection onto
L3 (S, ),

w) id— EoRy 1y = RaryyoFE —EoRq 1y is the orthogonal projection onto L2 (S, ).
( ’ N) ( ) N) ( ’ N) 0
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3.2. Chebyshev polynomials of the first kind: the weighted Ruelle operator

Remark 3.1.12. (1) By Proposition 3.1.11 (iv), we see that R}, 5, ) = E is hyponor-
mal. (An operator 7' on a Hilbert space is called hyponormal if T*T — TT* is
positive. Each hyponormal operator is normaloid, i.e. |T"| = |T||" for all n € N.)

Hence R 1y is normaloid. In fact, |Rf, r )| = [ (Bliryy) | = [ (Biry) | =

| B 2y " = 1Rz
(2) Eo Ry is a Markovian projection, see Definition 2.1.20.
The following theorem follows directly from the previous remark and ||R¢ 7| = 1.

Theorem 3.1.13. For the spectral radius of Rq 1y € B (L* (S, 7)), we have p (R ry)) =
1. And we have that 0 is an eigenvalue to the Chebyshev polynomials {T,, (x)}<_, if n is
not a multiple of N and 1 is an eigenvalue to the Chebyshev polynomials if n is a multiple

of N.

3.2 Chebyshev polynomials of the first kind: the
weighted Ruelle operator

Now, we use a weight function my () as defined in (3.2) and state for the Ruelle operator
Ry 1y) With general weight my () the following two lemmas corresponding to Lemma
3.1.1:

Lemma 3.2.1. If we assume for the Ruelle operator R(m, ry) with weight my (y) =
Yoo b Tk (y) h (k) that Ry myy (1) =1, then

by = 1, by = 0, leN.

Ronr) (1) = 1= 1 Dlmc(w) = = 30 D1 Ti () 1 )

I
=] =
un
[
=
D=
=3
&
>
=
N — — O

I
=z =
P]s
=
i
=
5
_I_
T
—_
SN’
=
=
5
>
=

=]~
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3. HARMONIC ANALYSIS FOR THE RUELLE OPERATOR ON HYPERGROUPS:
THE POLYNOMIAL CASE

% <ZZO=0 bar ([215{2,4 ..... N/2—2} 4 cos (Qk%)

+2 cos (22%”) + 2] cos (2kr)> h(2k) |, 2 even
S
¥ (ZZOO bar, ([Zie{2,4 ..... Ny2-1} 4cos (2k%) + 2]
cos (2kr)) h (2k)> : £ odd

\

Now, let N be odd, then

36) 1
R(mN,TN) (1) = N

s

b > 2cos (k%)ﬂ cos (kr) | b (k)

ie{2,4,...,N—1}

Since

T 2kNT N, k= NIleNy
Z 4cos<2krﬁ>+2005< N >+2—{ ,

i€{2,4,....N/2—2} 0, else
and
) N, k=NIlIleN
2 4COS(2/€%)+2:{ ’ b€ 07
i€{2,4,...,N/2—2} 0, else
respectively, we get by = 1, by; = 0 for [ € N. ]

Lemma 3.2.2. The weighted Ruelle operator R, ry) satisfies

R(mN TIN) (Tn)

T%, n = NI, €Ny
L (Z,Jf (2 X0 26T () b (2R) | T, (xi)> , n, N even

= % (Zfi/f [22021 20911 Ton_1 (2;) h (2k — 1)] T, (xl)) , n odd, N even -
¥ <ZZN1 (1 + 3 S b T (3%')) h(k + j)] T (ﬂfz’)> , N odd,neN

Proof. The lemma follows directly from Lemma 3.2.1 and the previous section as we
have

R(mN,TN) (Tn) (y) = N Z my (:Uz) T, (Il) = %Z (Z kak (Qiz) h (k?)) T, (l’l)

and if N is even, then

N2 [ oo
Ry 1) (Tn) (y) = % <Z [Z by (Tk (z;) + (=)™ T3, (:pi)) h (k)
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3.2. Chebyshev polynomials of the first kind: the weighted Ruelle operator

T, (1), n = NI leN,
5 (X [+ S 2T () Q)| T (2)) . even
LSV gy Topey (i) b (2 — 1)] T, (g;i)) . nodd

and if N is odd, we get

Rnyrwy (Tn) ()
T, (1), n = NIl,1eN,
- {% (S [ (1 + 205 S 26T (@) (k4 5) | T (1)), else |
O
Remark 3.2.3. With Lemma 3.2.1 and Lemma 3.2.2, we get that

Tg , meven

Bz 1) (Tn) = {0 nodd

Thus for N = 2 the weighted case coincides with the unweighted case when the Ruelle
operator acts on {T,}%_.

Let f: S — C again be a function in S. We will proceed as in the previous section and
use the same notation.

Since N
Rnyry) (f) (y) = % (Z my (xEN)) / (xl('N))>

for all y € S, we have the following lemma.

Lemma 3.2.4. The Ruelle operator R, 1) is a bounded linear operator on C (S), where
C (S) is equipped with the supremum norm and the operator norm satisfies | Ry 1y)| =
[l

The Lemmas 3.1.3 and 3.1.4 can be stated and proven analogously:

Lemma 3.2.5.
Rm; 1) © Bim; 1) = Bimy; 1) i,J € No.
Lemma 3.2.6. Let f,ge C(S). Then for dr (y) = \/%dy
-y
1

|| Roand @) dm @) = | ma @) £ (@) g (T (2)) dr (@),

-1

——

Proposition 3.2.7. For f € C(S) and n € Ny we have, Ry ry)f (n) = myf (Nn) =
Then, it is obvious that R, ) is also bounded on A(S). In fact, if f € A(S), then
Ry, i) f (n) = myf(Nn), and @e ”R(mN,TN)fHA(S) = ZZO:O imn f (Nn)[h(n) =

——

Yoo Imaf (Nn) |h(Nn) < 30 o lmaf (n) | = |mullaslflaes) Since Runyrnl = 1
and |1 acs) = 1, we get | Ry my)llacs) = 1.
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Theorem 3.2.8. We have Ry, 1y) € B(A(S)) and | Ry )l = 1.
If f:S — Cis a Borel measurable function, then R(,,, ry)f is Borel measureable, too.

Lemma 3.2.9. Let fe LP(S,m). For1 < p < o0, we have

| IR ) Pin ) < | @)1 @) P (2).

Proof. Splitting [—1,1] into [—1,0] and [0, 1] the substitution of Lemma 3.2.6 directly
yields equality. O

We proceed with studying the p-versions of A(S). With Lemma 3.2.9 and Proposition
3.2.7 we get

[Rn i) £ 17 = [ R ) £ 11+ | R ) flp < Il f 1y + [l f € AP(S).
Theorem 3.2.10. We have for 1 < p < o0, Ry 1y) € B (AP (5)).
Lemma 3.2.9 also implies:
Theorem 3.2.11. We have R, 1) € B (L? (S, 7)) and | Ry )|l = [mn]], 1 <p < co.

As in the unweighted case, we again consider the action of R, r,) on the Hilbert space
L* (S, 7) and define the adjoint operator E € B (L? (S, 7)) by setting

E(9)=Fg=goTn for ge L? (S, ).
With Lemma 3.2.6 we get:

Proposition 3.2.12. Let f,g€ C(S). Then

1

Jl Ry i) f () g (y)dr (y) = my (z) f (z) Eg (x)drm (z) .

-1

Using the same argumentation as above, we have the following identities:
(i> R(mN7TN) oFE (Tn) = R(mMTN) (TNn) = Tm ne N07
(ii) R(mN’TN) oF = id, ne No,

(iii) E [¢] R(mmTN) (Tn)

T, n = NI, e Ny
(S 12+ X7 2boToe () B (20)] To () n, N even

T L (SN2 [ o o () (2 = 1)] T, v (@), n odd, N even
5 (S [ (1 205 S bees Ty (20 B G+ )| Tan (), N odd,n e Ny
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3.3. Generalized Chebyshev polynomials: the unweighted Ruelle operator

3.3 Generalized Chebyshev polynomials: the unweighted
Ruelle operator

So far, the function spaces on S are determined by the hypergroup structure induced
by the Chebyshev polynomials of the first kind {7}, (z)}>,. Now, we consider function

spaces based on other orthogonal polynomial sequences {P, (x)}*_,, which also induce
hypergroup structures on Ny (or even on S).

Let « > —1, f > —1 and {PT(La’ﬁ ) ()}, be the Jacobi polynomials, which are orthogonal
with respect to dm, s (z) = (1 —2)® (1 + )" dz on S normalized by pie?) (1) = 1. The
generalized Chebyshev polynomials {T o) (x)}r_, are determined by

76 (2) PP (202 1), n=2kkeN
’ xTr) = .
" eP (222 —1), n=2k+1,keN,

The orthogonalization measure of T, on S is dr} 5 (x) = (1 —2?)" [x]***'dz. The
{TP (x)}®_, generate a polynomial hypergroup structure if « > 8> -1, a +3+1>0
(see [33]). Since the polynomials T (x) are symmetric, we have:

Lemma 3.3.1. Let N be even, then the unweighted Ruelle operator Ry 1y satisfies

& SN 2P (oMY = ok
Ry (T37) (y) = {N e '

0, n=2k+1
Moreover, if N is a multiple of 4, then

L Z].\i/zi 4 ples) (:c(-N/2)) n =2k
R(I,TN) (TT(La,B)) (y) _ N i=1 k 7 )
0, n=2k+1

Proof. If N is even, then

Ry (Trgaﬁ)) (v)

-

% sz\i1 P,ga’ﬁ) (TQ (JJZ(N))> , n =2k
)
LSV V) plesry (T2 (:cEN))) Cm—2k+1

e (1) ()

N ZN/Q <x§\]/V)(z 1) + IS\]f\Qz) P]EO‘ oy < >) n=2k+1
N NZN/Q P(aﬁ) (T ($£N))) _ 1 N/2 2Paﬁ) (x N/2 ) _ o
0, n=2%k+1

\
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If furthermore, N /2 is even, then:

S Sl ) B

Rar TY(LOA’B) (y) = .
ai ) 0, n=2k+1

]

Since the generalized Chebyshev polynomials are defined via T (z) = 22% — 1, we get for
the special case N = 2 that

Rz (T577) () = T () = P (T () = PP (). (3.12)

The remainder of this section is restricted to N = 2. By (3.12) we have the following

relation:
P heven
R TRy = {2 :
ar (L) 0, n odd

The Haar weights of T,*"” (x) can be calculated as (see also Example 1.2.27 (4))

@ktatbrl(atfrl)latl), o _ o
h(a’ﬁ)( ) k!(a+B+1)(B+1), !
T n @htatfi2)(atf+2)latl)y o 4 1"
KN (B+1) 41 ’

The Haar weights of the Jacobi polynomials, hgf”g ) (n), are defined in Example 1.2.27 (2).
In particular, we have that A" (2k) = R\ (k).
The corresponding Wiener spaces are denoted by A oF) (S) and Aﬁﬁ’ﬁ ) (9).

Lemma 3.3.2. Let f,ge C(S). Then

1

[ Rumar 0o wants = [ 5@ (e -1)ant, ).

-1
Proof. Applying Lemma 3.1.4 to f and §(y) = cg (y) /T — 42 (1 —4)* (1 + ) yields
the stated equality, where ¢ is an appropriate constant. O
Proposition 3.3.3. For fe C (S ) and n € Ny, we denote FL,f (n) = Sl_l f(y) pled (v)
drll 5 (y) and FL5f (n S f(x) T (z)dr 5 (x). Then

Fas (Ramf) (n) = Fag (1) (2n).

Proof. Let g (y) = pL?) (y) and apply Lemma 3.3.2. O

Theorem 3.3.4. We have Ry 1,y € B (Aﬁﬁ’ﬁ) (9) ,Agf"ﬁ) (S)) and |Ramy| = 1. More-

over,
0

Ramyf (y Z ) PO () B (k) vfe ALY (S).
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3.3. Generalized Chebyshev polynomials: the unweighted Ruelle operator

Proof. Let f € A(Ta’ﬂ) (S), that means f () = >, Fo 5 (f) (n) TP (z) hg?"ﬁ) (n), where
||fHA(a,ﬂ)(S) = > ol Fa s (f) (n) |hg,?"’3) (n) < co. Proposition 3.3.3 implies that

a0

a0
Z Py (R f) (k) RS (k) Z ) (2k) [AG7 (2k) <[] o

Hence R m)f € AW (S) and Rumy f (y) = S o FLs (f) (2k) PP (y) B (k).
Since Rm,)1 = 1, we also have that |Rq 7| = 1. H

Using Lemma 3.3.2, we obtain

Lemma 3.3.5. Let f € LP (S,7L ;). For 1 <p <0, we get

1

|| IRams ) Pasts ) = [ 1 @) pant o).

We denote the corresponding p-versions of the Wiener spaces by A5 () and A% (),
respectively. Then we have with Lemma 3.3.5 and Proposition 3.3.3 that

|Ra FI7 = | Rz i+ FE s (Ramyf) o < IF+IFL5 () 1o = IF17, f e AZ*P(S).

Theorem 3.3.6. We have for 1 < p < o, Ran) € B (Al}(a’ﬁ) (S),AZ;D(Q’B) (S)) and
Bzl = 1.

Theorem 3.3.7. We have Rumr,y € B (L? (S, 7l 5), LP (S,7L,)) and |Ramy| =1, 1 <
p < 0.

Proof. Follows directly by Lemma 3.3.5. O

Now, we define the right inverse operator of R 1. Let g € L? (S, WOIZB). We put F (g) =
Eg = goT;. By Lemma 3.3.2 we get for all g € C ()

J_1| () ldmes (v) = J |Eg (z) |drg g (x).

Lemma 3.3.2 can be written as:

Proposition 3.3.8. For f,ge C(S). Then
1 1
| Raaf )3 Garts ) = | 1) FaGlinls o).

Remark 3.3.9. Whereas R 7,y maps functions spaces determined by {Téa"g ) ()},

into function spaces determined by {P,S“’B )(x)}fzo, the operator £/ maps into the inverse
direction.

It is straightforward to show that
Ry (59) < Ry (167) <

where

BoRum (T57) = B(F?) =14 and

BoRun (T57) = B =0.
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3.4 Generalized Chebyshev polynomials: the weighted
Ruelle operator

Now, we consider the Ruelle operator with the weight functions my (z) = >, bk
Ty (x) b (k) and my (z) = Y7, BkTéa’ﬁ) () h (k) on function spaces determined by the
generalized Chebyshev polynomials {Téa’ﬁ ) (2)}_,. For symmetry reasons we will only
consider even V.

Lemma 3.4.1. Let N be even. We assume for the Ruelle operator Ry, 1y) and Resy 1),
respectively, that Ry 1y (1) =1 and Ry 1y) (1) = 1. Then

bo =1, bye =0 and bp=1 by =0, ke N.

Proof. In Lemma 3.2.1 we have already proven the assertion for by and by, k € N.

R ()= 1= 5 S (47) = 1 30t () .8

1 [ S5 [ @s) (o
PPN (:g ) h (k)

:% kioz}% ZTW( >) (2k) +Zb%+1 Zngﬁ(i ) h(2k+1)
S (D (7: (7)) | ez
= \&
+§:l~?2k+1 i (V) o) <T2 (xEN))> h(2k + 1)
o] =
-5 > b NZ/]Q?P% <iN/2)> b (2k)
]
N NNV -
[ (S (o () o )

thus we get that l~)0 =1 and i)gk =0, ke N. O

Lemma 3.4.2. Let N be even. Then we have for the weighted Ruelle operator Ry 1y)
and Ry 1y), respectively,

R(mN»TN) (Tr(Laﬁ)) (y)
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3.4. Generalized Chebyshev polynomials: the weighted Ruelle operator

0, n=2m-+1

_ {% SV (S 2o (T () ) (20| B (2 0 = 2m

and

+> N/2 9 pleoP) (xN/2> n=2m
Riy.ry (1 éaﬁ)) (y) =V ==1 ‘
0, n=32m+1

which coincides with the unweighted case.

Proof. We have

Ry 1) (T(aﬁ ) ZmN ( N)) T(a B) ( (v ))

T(ep) (Im)

=0
M
— @

> 6T, ( (N >) h (k;)] pLes) (T (x§N>)> , n = 2m
Ly af [Zk oo Ty (2 ( v )) h(k)] PPty (T (x§N>)) C n=2m+1

rN il [2:’0 by (Tk (47) + (D', (—x§N>)) h <k>]
| pie? <fo/ 2)> , n—=2m
NZN/z( L NH) [Zk . ( ( §N>)

(—1)F T (_ngw)) h(k) | PLP+D (x(N/Q)) , "= %m+1

LS/ [2;"0 s (Tgk (x§N>)) h (2k)] pie? (fo/ 2)> . n=2m

0, n=2m-+1

\
.

i=1 | k=0
1 N [ «© ~
A TW)( (N ))h (2k) +Zb%+1Tzk+3( o >)h(2k+1) T (Igm)
=1 | k=0 k=0

91



3. HARMONIC ANALYSIS FOR THE RUELLE OPERATOR ON HYPERGROUPS:
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-

Y S bl (1 (o) Y net) | P02 (7 (o)) = 2

(

= LN |I2E by P <T2 (fo))) h (2k)
)
o) =%

ng)Pr(naﬂH) (T ($§N) ) 7 n=2m+1

Remark 3.4.3. With Lemma 3.4.2 and Lemma 3.4.1, we get that

Pg)“ﬁ), n even
By (177 = {0 C O nodd

Thus for N = 2 the weighted case coincides with the unwelghted case for the Ruelle
operator acting on the generalized Chebyshev polynomials {T o) ()}

3.5 Quadratic polynomials: the unweighted Ruelle
operator

We investigate two OPS, {Q, (z)}*_, and {P, (x)}*_,, related by the quadratic trans-
formation given by T (z) = 22? — 1. That is, in this section, we will deal with a more
general case compared to the previous sections as we will consider arbitrary symmetric
orthogonal polynomial sequences.

Let P, be given by (see (1.22))

() ()_an n+1(y)+cnPn_1(y), neN,
hy)=1 P~ =y,

with a, + ¢, =1, ne N and a,, ¢, > 0. We call such an OPS a random walk polynomial
sequence (RWS). Then by Remark 1.1.36 (1) supprp € S := [—1,1].

We set
Q2 (z) = P, (T2 () -

Fixing Qo (x) = 1, Q1 (z) = = we have to investigate whether there exist polynomials
(Qan+1 () such that {Q, (z)}x, is a RWS.
In order to satisfy the recurrence relations, we have

(3.13)

Qo () = 2,Q2p41 (7) + Y2nQ2n—1 () and then
532Q2n () = aona2n11Q2nt2 (T) + (Q2nY2n+1 + Y2n2n—1) Q2n (T) + Y2nV2n—1Q2n—2 (T) .

Hence

Q2 () Qon (2) = To (x) Qan (x) = (22 — 1) Qa0 ()
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3.5. Quadratic polynomials: the unweighted Ruelle operator

= 209,099 41Q2n12 () + [2 (Q2n V2041 + Y2n2n—1) — 1] Qa2n (T) + 27207201202 (T)

and with y = 222 — 1
QZ (y) QQn (Z/) = Pl (3/) Pn (3/) = a/nPnJrl (x) + CnPnfl (3/) = a/nQ2n+2 (Q?) + CnQ2n72 (.Z') .

Comparing the coefficients we obtain

an = 2a2na2n+1 (314)
0 = 2 (a2n72n+1 + 72na2n71) —1 (315)
Cn = 272n’72n—1- (316)

By Q1 (2) Q1 (z) = a1Qq () + 1Qo (z), we have oy = %7 7=
72 = ¢; and then g =1 — 75 =1 —¢; = a;. Now, (3.15) yields 73

6) implies
1 (1 _ ¢ 1
o (3—%) =75 and

| v

oz = % Continuing in this way, we get

1
Qop = Ap, Yon = Cp and Qop—1 = 5 = Von—1- (317)

Proposition 3.5.1. Choosing the recurrence coefficients in (3.17), the corresponding

RWS {Q,, (x)}2_, satisfies Qap, (x) = P, (Ty (x)).

Remark 3.5.2. The orthogonalization measure 7TQ is concentrated on suppmg S S. The
Haar weights hq (n) satisfy hq (n + 1) = hq (n) -2 to the following result:

Lemma 3.5.3. The Haar weights hg (n) of the polynomml sequence {Qy, (z)}_, are given
by
hp (k) , n =2k
hq (n) = B :
2aihp (k), n=2%k+1, k € Ny
where hp (n) are the Haar weights of {P, (x)}x_,. (We set ag = 1.)
Proof. The proof follows by induction. O]

Now, we search for an explicit representation of the polynomials Qo1 () of odd degree
via the polynomials P, (x).

The Christoffel-Darboux formula (Theorem 1.1.24) provides (note that P, (—1) = (—1)")

C k Py (z) ()" = B, (x) (=1)"""
X (D P e ) = oo (0 !
n Poi1 () + P, (x)

= azhp(n)(—1)

z+1

In particular, for z = 1: 37, (=1)* hp (k) = anhp (n) (=1)" = Wp (n).

Consider

oy 2 U Ry = PR s )

r+1

The polynomials {Sn ([E)} __o have the following properties, which are obvious:
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(a) Sn(1) =1,
S Sp () Py () (14 ) drp () = 0, m < n,
S Sp (z) P, (x) (1 + z) drp (z) # 0.

(b) and (c) imply that the {S,, (z)}>_, are orthogonal polynomials with respect to d7 (z) =
(1 4+ z)dmp (z). (Concerning this result, compare to Theorem 2.5 in [57] which is far more
general.)

Proposition 3.5.4. We have Qaop+1 (z) = xSk (T2 (x)) for k € Ny.

Proof. We show that Qa1 () and xSk (T (x)) are determined by the same recurrence
relation. In fact, multiplying the left-hand side by x yields

1 1
TQok11 (T) = §Q2k+2 (z) + §Q2k ()
and the right-hand side multiplied by x is

2D (12 (2) + P (Th (%) »Qoksz (2) + Qi (2)
Ty (z) + 1 212

= %szw (z) + %sz (z).

(25 (T2 (1)) =

Corollary 3.5.5.
Qu (x) = P (Tx(x)),
Qa1 (z) = Wp (k) Z (_1)j P (T (z)) hp (5

In order to guarantee that |Q, ()| < @, (1) =1 for all z € S, we study the connection
coefficients d,, , defined by

n

= Z dn,ka (.Z‘)
k=0

If the d,, , are nonnegative, then |Q,, (z) | < >;_,dnx = 1 for all € S. Using a result of
Szwarc [58], we have the following result.

Proposition 3.5.6. If ¢, < i for alln e N, then Q,, (x) = Y\_y dn s Tk () with d, ), = 0.
In particular, |Q, ()| <1 for allz e S.

Proof. The recurrence coefficients of @, (x) satisfy 7, < %, o, + v, = 1. Thus Corollary
1 in [58] yields d,,, = 0. O

Another result of Szwarc yields that the OPS {Q, (z)}°_, generates a polynomial hyper-
group on Njy:
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Proposition 3.5.7. If ¢, < a,, and the sequence (c,), oy S increasing, then {Q, (x)}r
generates a polynomaial hypergroup on Ny.

Proof. The recurrence coefficients of @, () satisfy 7,, < a,,, and the sequences (V2,),,cn»
(Y2n+1) nens (Yon + @2n) ey @A (Yon41 + Q2n41),,cy are increasing. Now, Theorem 1 in [59]
yields that the linearizion coefficients of the products Q,, (x) @, (x) are nonnegative. [

Now, we have collected the facts that are needed to study the unweighted Ruelle operator
Rmy).
Proposition 3.5.8. R 1) (Qa) = Pr and Ry 1) (Qaks1) = 0 for k e Ny.
Proof. 1t suffices to note that Qo () = Qaox (—2) and Qaopy1 (—x) = —Qaopy1 (). O
Remark 3.5.9. Let N be even, then, more generally, we get
R (Y2 (o)), n= 2k

R,y (@n) () {: 0 ok

for k e Ny.

For f € C (S) we define a right inverse of the Ruelle operator R p,y by Ef (z) = f (13 (x)).
Denote by mp the orthogonalization measure of { P, (x)}_, and 7 the one of {Q,, (z)}_,.
The existence and uniqueness of 7p and 7 are guaranteed by the Perron-Favard theorem
(see Theorem 1.1.23).

Lemma 3.5.10. For all m,n € Ny we have

| Rao @) P iz ) = | @u@) Pu(Ta @) drg @)

_ f Qu () E (P,) (2) drq (7).

Proof. Let n e Ny. If m = 2k, then

J-s Ramy) (Qar) (y) P (y) drp (y) = L Pi.(y) Pu (y) drp (y) = {ﬁ7 lejls:e '
If m = 2k + 1, then we have Ry 1) (Qa2r+1) = 0, and hence
. R Qo) ) P ) e () = 0.
On the other hand,
n

L Qak () P (T () dmg () = L Qo (2) Qo (x) drg (x) = {W’

0, else

and we know by Lemma 3.5.3 that hg (2n) = hp (n).
Moreover,

L Quirs () Po (T (x)) dig (1) = j Qi () Qun () digy () = 0.

This proves the lemma. ]
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Theorem 3.5.11. Let f,ge C(S). Then

| Rt o dne ) = [ 1)o@ @) dro @) = [ 1) E ) @) dro o).

Proof. R, is a continuous operator on C'(S) and the linear span of {Q,, : m € Ny} is
| - |oo-dense in C' (S). Hence Lemma 3.5.10 implies

LR<1,T2)f(y)P )drp (y Jf (2)dro (x), neNo, feC(S).

And since {P, : n € Ny} is also | - ||e-dense in C'(S), we obtain

L R f (4) 9 (y) dro () = f f(2)Eg(x)dng(x)  Vf.geC(S).

]

Remark 3.5.12. (1) mg is the image measure of mp under the mappings ¥y (y) =

T y“ combined in appropriate way.

(2) In [37], Theorem 5 provides a uniquely determined distribution function which in
our case rewrites as dng (z) = 2 drp (1) (2)).

Th(x)
Proposition 3.5.13. Let f € C(S) and denote F'f (n) = S I (y) P, (y)drp (y) and
Fef (n S f(z)Qn (z)dng (x). Then the Ruelle opemtor Rmy) and its right inverse

E, respectwely, applzed to f e C(S) give
FP(Ramyf) (n) = F9f(2n) and F(Eg)(2n) = F"g(n), respectively.

Proof. Let g(y) = P, (y) and f (x) = Qa (), respectively, and apply Theorem 3.5.11.
[

Lemma 3.5.14. Let f € LP (S, mg). For 1 < p < oo, we have

|| 1Rt @ Pame ) = |11 @) Pamg (o).

Proof. Splitting S = [—1,1] into [—1,0] and [0, 1] the substitution of Theorem 3.5.11
directly yields equality. O

Now, we consider the Wiener spaces Ag (S) and Ap (S), where

Aq(5) = (£ £ CL8): 3 1P (0)]|Qulcho (n) < o2} and

0

Ap(S)={feC(S Z|f”f ) |hp (n) < o0}
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The norms on Ag (S) and Ap (5), respectively, are given by

[flages) = Z|fo ) 1@nllchg (n)  and

| fllapes) Z|fPf ) |hp (n) .

Since we assume that {P, (z)}*_, generates a polynomial hypergroup, we know that
for all n € Ny, |Polo = supeg|Pa(z)] = 1. Thus (Ap(S), |- |apcs) is a Banach
space. In order to prove this, one can use the uniqueness theorem for commutative
hypergroups (see [7], p. 87, Theorem 2.2.24), which yields that | - |4,(s) is a norm, and
that (Ap (S),]-|apcs)) is isometric isomorphic to ¢! (hp). In general, {Q, ()}, will
not generate a polynomial hypergroup. Therefore, we cannot use that @, = 1. By
definition , we have |Qax|0 = 1. Nevertheless, we can show:

Proposition 3.5.15. (Ag (S). |- [ag(s)) is @ Banach space. Each f € Aq(S) has a

representation f (z) = 3.7 F9f (n) Qn (z) h(n) for allz € S.
Moreover, (Aq (S), | - [ag(s)) is isometric isomorphic to the Banach space (* (Ag), where

the weights Aq are given by Ao (n) = |Qullwhg (n) via the mapping f— (F9f (n))neNO.

Proof. Let f € Ag(S) and assume that F9f (n) = 0 for all n € Ny. Since Ag (S) <
L* (S, mg) and the {Q, (z)}*_, are an orthogonal basis in L? (S, 7g), f is the zero element
in L?(S,mg). The continuity of f yields that f is the zero function. Hence || - |44 s)
is a norm on Ag (S). Given f € Ag (S) the series >, FOf (n) Qn (x) hg (n) converges
uniformly to a continuous function g € C (S). Since F%g (n) = F9f (n), we have that
g = f. Finally, it is obvious that f +— (F@f (n))neNO, Ag (S) — €1 ()\g) is an isometric
isomorphism. O

Theorem 3.5.16. For the Ruelle operator R 1, we have R 1,y € B(Ag (S),Ap(S))
and for its right inverse E, E € B(Ap(S),Aq(S)). For the operator norms, we have
|Ramy| =1 and |E| = 1. Moreover,

Razyf(y Z f k)P (y)hp (k) VfeAg(S)  and

Eg(x) =Y, F?(Eg) (2k) Qu () ho (2k) Vg e Ap (S)

fa) =2 FOF (k) Qi (x) hq (k)

where |fllags) = 2o [F9S (k) ]|Qk|whg (k) < oo. Applying Proposition 3.5.13 and
Lemma 3.5.3 gives for R n,)f € C(95),

Z Ramyf) (k) [hp (k Zlfo (2k) [hp (K Zlfo (2k) [hq (2k) < [ fllags)-

k=0
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Thus R m,) f € Ag (S) and Rumy) f (y) = Yoo FO S (2k) Py, (y) hp (k). Since Rzl =1,
we have |Rq p,)| = 1. Similarly, for g € Ap (S), we have

Z F'g (k) P (x) hp (k)
where |g] aps) = Do |F g (k) |hp (k) < co. Then for Eg e C (S)

Eg(z) = Z]'_P ) Pr. (T (z Z}-Q ) Qa2 () hp (k)

= Z]:P ) Qar, () ho (2k) Z]:Q Eg) (2k) Qo () hq (2k) .
k=0

Thus Eg € Ag (S) and since E1 =1, |E| = 1. O

Remark 3.5.17. By Theorem 3.5.16 we see that KerRq 1,y = {f € Ag (S) : FOf (2k) =
0 Vk € Ny}, KerE = {g € Ap (S) : FPg (k) = 0 Vk € No}.

Examples 3.5.18. (1) Consider the orthogonal polynomials defined by homogeneous
trees. These polynomials {R, (z;a)}r_,, a > 2, are determined by the recurrence
coefficients

a—1
an = ) bn207 Cn = —, neN
a a
and ap = 1,bp = 0. They generate a polynomial hypergroup on Ny, see [22].
Putting Qa,, (x) = R,, (T5 (x) ; a) the construction of this section yields an orthogonal

polynomial sequence {Q,, (z)}>_, with recurrence coefficients ay = 1, 5y = 0,

a—1
=2 n even
ap, =< .7 , w=1-—a,, , =0, neN.
{ n odd 7 p

This class of polynomials has already been studied for example in [21]. These
polynomials are called Karlin-McGregor polynomials and they are an important
tool for the analysis of random walks. They generate a polynomial hypergroup on
Ny whose dual spaces are investigated in a recent paper, see [41].

(2) The associated Legendre polynomials {L” (x)}*_, defined by the recurrence coeffi-

cients
ST g () CeN
n T]nJ n ) n nn[4(n+y)2_1]7 Y
where ny = 1, n, = %(1—%2@1 F”V), n € N, and ay = 1, by = 0, also

generate a polynomial hypergroup on Ny (see [22]). We set Qa, () = LY (T5 (2)),
then we get an orthogonal polynomial sequence {Q, (z)}>_, with the recurrence
coefficients

Intl = pn even
Qp = i ) T =1—ay, Bn =10, n €N,
and oy = 1, fyp = 0. Using Theorem 1 in [59], we get that {Q, (z)}°, generates

a polynomial hypergroup on Ny since the sequences {aw,}7 g, {Qon+1}ory, {on +
Yonto s {Qans1 + Yont1 i are increasing and a, < v, as a, < ¢;,.
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(3) For fixed 3, ¢ with —1 < f < 1 and 0 < ¢ < 1 the g-ultraspherical polynomials
(P9 (2)}*_, are determined by the recurrence coefficients

CLA,_
01201140, alzl—cl, Cp = 1, anzl—cn, n=2,3,...,
Ap—1
where » -
1—qg" 1-— n-
o= eN, o = PN
2(1—Bqm) 2(1 - Bq)

and b, = 0, n € N. They generate a polynomial hypergroup on Ny (see [22]).

Then by setting Qo (z) = piP (T3 (), we get an orthogonal polynomial sequence
{Qn (x)}2_, with recurrence coefficients

L n odd ’

1—c¢,, neven
Oén:{ v ’ynzl_am 571:07 neN
29

and ap = 1, By = 0. For the same reason as in (2) {Q, (z)}X_, generates a polyno-
mial hypergroup on N.

3.6 Quadratic polynomials: the weighted Ruelle operator

In this section, we will investigate the behavior of the weighted Ruelle operator in the case
of the OPS {Q,, (z)}°_, which we constructed in the previous section. We will restrict our
studies to NV = 2 since this case provides the most interesting results, and consider three

kinds of weight functions my (x) = Y° o b Tk () b (K), 12 (2) = 37 biTi™ () b (k)
and mo () =Yty b Qs (x) hg (k).

Lemma 3.6.1. Let N = 2, then

%0Th (x§2>) h (0)] Py =By, n =2l

1
2
Rm, Qn) (y) = !
nai) (C) ) 3 | 2k 202k41 Tk (x?)) h (2k + 1)} Plﬂ(y();)_Pl(y)’ n=20+1
Ty
Ry ) (Qn) (y) = %Z?Zl Qn (x;) which coincides with the unweighted case, and

P (y), n =2l
Ry ) (@) = - |
(mQ,Tg) (Q ) (y) % [ZIZO:O 262k+1 Pk+1(y();)'Pk(y) hQ (Qk + 1)} Pl+1(y()2-*)'Pl(y)’ n=2+1

Proof. Using Lemma 3.2.1, we get
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%<Pﬁwmﬂcﬁdh%ﬂQm@9)

s [Sann (<) o] @ (—x@)) neu
%(1Z?wﬂk@9)h@ﬂ@m1@fq

[ () (). weae

3 ([ v o T (xg%) h (k:)] P <T2 (I@))

+ [ZZOO by (—2?) h (k)] P <T2 (—x§2>))> , n =2l
— ([Zfo T (x?)) h(k:)] PZH(TQ(xg?)))m <T2(x§2>)>

-

\
-

N

Re)

" [Zi'o:o b Tk (_$§2)> h (k?)] PlH(TQ (152)));1% (T2 (IEQ)))> ., o n=2+1

-z

N

[Ziﬂ@ﬂacﬁdh@@]ﬂwﬂ7 n =2

D=

1

[Zfﬂ@mﬂﬁﬂ@@)M%w&ﬂﬁﬂ%ﬁ@>,n=%+1

N[ =

20T (x§2>) h (0)] Py) =P (y), n =2l

bl

|—=

S T (57) (26 1) B30, =204

1

[\

\

and with Lemma 3.4.1 we obtain

i b, T (;é?)) h (k)] 0, (x£2))>

k=0

- % <i [ > Doy TA0) <$§2>> h(2k) + i o T) (x§2)> b2k + 1)] o (m §2)>>
k=0

R(ﬁlmTz) (Qn) (y) = % (Z

i=1 [ k=0

= D).
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- %Z Z b 2k Q2k ( 3 )) hq (2k) + Z ka+1Q2k+1 ( 2 )) hg (2k + 1)]

1 | k=0 k=0

= %Zz: i ngPk (Tz ($£2))) hq (2k)

2 2)
+ i z2k+1 T <T2 <$i2 )Z(:)_ i (T2 ( 2 )> hg (2k + 1)

=1
B 1 2 [ o ~ o o
) ; _Z;) O Qx <xz ) hq (k)] @n <xz )
1 2 [ o ~ 0
= 5 ; _,;)b ok Q2% ( ) hQ 2/6 z:: bogs1Qor41 ( E )> hQ (2/{3 + )] Q. (xl(Q))
{
1
2 <[Zk onkQQk( )hQ (2k)
+ Zk obzk+1Q2k+1 (93 ) hg (2k + 1)] P, <T2 ( (2)))> ; n=2[
= A
1
2 P ([Zk 0 b2kQ2k ( ) hg (2k)
= 1\ 12 (2) b :1:52)
+ ZZO:O 52k+1Q2k+1 (961(-2)) hg (2k + 1)]) e (T ( )x)(12) (T ( )> , n=2l+1
\
( ~
¢ [2hoie @] ) = R, y ool
= A - )
% ZZO:O 262k+1%h@ (2k + 1)] W, n=2+1

]

The following statements for the weighted Ruelle operator hold for both weight functions
ms (z) and my (z). For simplicity ms (z) will denote either one of these weight functions
throughout the remainder of this section. We use the same notation as in the previous
section.

101



3. HARMONIC ANALYSIS FOR THE RUELLE OPERATOR ON HYPERGROUPS:
THE POLYNOMIAL CASE

Lemma 3.6.2. For all m,n € Ny we have
L ) (Qu) () P () dp () = j s (5) Qo () Po (T () drg (x)
- f ms (2) Qm () E (P,) (z) drq ().

Proof. The proof follows from Lemma 3.5.10. O]
Theorem 3.6.3. Let f,ge C(S). Then

| Ronof s @ dme ) = | ma @)1 @) 9 (Tl drg (@)
= L mo (x) f (z) E(g) (x) drg (x) .
Proof. The proof follows from Theorem 3.5.11. O

Proposition 3.6.4. Let f € C' (S). Then the Ruelle operator R, 1,y and its right inverse
E, respectively, applied to f € C(S) give

FP (Runym)f) (n) = FO (maf) (2n)  and FO(Eg) (2n) = Fg(n), respectively.
Proof. The proof follows from Proposition 3.5.13. O]
We also consider the Wiener spaces Ag (S) and Ap (5).

Theorem 3.6.5. For the Ruelle operator Ry, ), we have Rim, 1,) € B (Ag (S), Ap (5))
and for its right inverse E, E € B(Ap(S),Aq(S)). For the operator norms, we have
| R(mo 1) = 1 and |E|| = 1. Moreover,

0

Rsiznd (0) = 3] FO (maf) (2K) P () b (k) Vf € Ag(S)  and

Eg(z) = Y F(Eg) (2k) Qa (z) hq (2k) Vg € Ap(S)

Proof. The proof follows from Theorem 3.5.16. O]

3.7 Cubic polynomials: the unweighted Ruelle operator

Now, we investigate two OPS, {C,, (z)}>_, and {P, (z)}*_,, related by the cubic transfor-
mation given by T3 (z) = 42° — 3z.
Using the recurrence formula in (1.22), we let {P, ()}°_, be an OPS satisfying

(y) ( ) - an n+1 ( ) + bnpn (y) + CnPn—l (y) ) ne N7 (318)

F(y) =1, Pl(y)—a%—a—o

with a, + b, + ¢, =1, ag+ by =1, n € N, and a,,c,.1 > 0, b, = 0, n € Ny. Such an
OPS is called a random walk polynomial sequence (RWS). Furthermore, P, (1) = 1. The
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orthogonalization measure 7p is concentrated on S = [—1,1].

Now, we set Cs, () = P, (T3 (x)) = P, (423 — 3z) for n € N and investigate under which
assumptions there exists Cs,,+1 (2) and Cs,,40 (2) such that {C), (z)}2 is a random walk
polynomial sequence.

We have that Cy(z) = 1, Cy (x) = £ — % and we need to construct the polynomials

[e%

Csni1 (z) and Cs, 40 (x) such that Cy, (x) =0Pn (T3 (z)) and
C1 () Cp(x) = a,Cryr () + BnCh (z) + 1,Chy (), (3.19)

where o, + B + v =1, ag + By =1, ne N and a,,, V7,41 > 0, 8, = 0 for n € N.
If we choose ay, 1 and =, such that (3.19) is satisfied for n = 1, then

111 2 B
Co(a)=— | = (z—Bo)’ = 2 (2 — Bo) —m|. 3.20
2 (0) = o |2 0= 80 = 2 o= o) (3:20)
Furthermore, by (3.19) we get for n = 2,
4 3 b 1 1 1
LN —[ L e ) = (Bt ) (o — )’
Qo Qo Qo Qg | Oy apnQ (3 21)
) :
+ (8182 — 71 — a172) (x — Bo) + Bﬂl] -
e7i1e31 Qg
Comparing the coeflicients in (3.21), we obtain
1 :i B 350 _51—1‘52:0
adagay  ap’ adajay  adajag ’
332 2 + - — 3
. 5o X Bo (251 Ba) I PP = — e __2 (3.22)
(e h1e5Ye%) (e h1e51e%)] (67185185 Qo
B 3 . B (B + Ba) ~ Bo(BiBr = — 1) n Pori _ bo
adagag adagag QO Qo e D ap’

In order to gain more insight and to obtain simpler expressions than the above formulas,
we now set ap = o = 1 and by = fy = 0. Thus P, (y) = y and C () = . Then we have

1 1
1= = Ia. 3.23
(e3Ye%) = 4o’ (3.23)
1
0=- (B1 + B2) & Bo = =, (3.24)
1y
P m
=3 = (1B —n — a172) o 3ay— - L=,

Q1 a0

3 % gé!
- - = 3.25
< 40{1 o o V2, ( )
O=pfm=-pm=b=0=0vn=0 (3.26)

In (3.26) we choose B = 5 = 0, as 73 > 0. Then v, = ail (% — 71) and (for n = 2) we
1

have to restrict 0 < 11 < % or equivalently }—1 <ap <1, thusy =1— -

Now, we iterate equation (3.19):

Cl (l’) CSn (:E) = O~/3n03n+1 ($) + B?mc?m (QZ') + ’)/?mCSnfl (l’) ; (327>
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Cy () Csy ()

C} (x) Csn ()

Qi3 (043n+103n+2 () + B3n11C3n 41 (%) + ¥3n41C3n (x))

+Ban (043n03n+1 () + B3nCsn () + Y30 C3n—1 (96))

+Y3n (043n71C3n () + B3n—1C3n-1 () + Y30-1C5n—2 ($)) ; (3.28)

Q3n [a3n+1 (a3n+203n+3 () + Bant2Csn42 (7) + Y3n42C3041 (90)>
+B3n+1 (Oé3n+103n+2 () + B3n11C3n 41 (7) + ¥3n41C3n ($))
TV3n+1 (Oé3nC3n+1 () + B3nCsp (7) + 73,C3n1 (13))]

+B3n [CY?m (Oé3n+103n+2 () + B3n+1C3n41 (%) + Y3n41C3n (1’))
+Ban (a3n03n+1 () + B3nC3n () + 30 C3n1 (33))
1730 (0637%10371 () + B3n 10301 (%) + 730 1C3n 2 (33))]
(l’) + 53710371 (ZE) + '73n03n—1 (I))
+B3n—1 (@3n—1C3n () + B3n-1Csn-1 () + Y3n-1C3n—2 (2))
+V3n—1 (0531172037171 (7) + B3n—2C3n—2 (7) + Y3n—2C3n 3 (»’U))]
(063n043n+1(13n+2) Csnas (x)
+ (030301183012 + 300301103011 + @330 11030) Cania (2)
+ (043n043n+1’73n+2 + W30 B3t + W3 Vanr1 + @30 530 83041 + 3055,
+030-103,Y3n) Cant1 (7)
+ (043nﬁ3n+173n+1 + 20030 B30 Y341 + B3 + 200301530730
+030-183n-173n) Csn (2)
+ (Oé3n73n73n+1 + B3, Y30 + B3n—1B307V3n + Q30173 + Bin_17V3n
+03,2Y3n-173n) C3n-1 ()
+ (B3nY3n-173n + B3n—173n-173n + B3n—273n-173n) Can—2 (7)
+ (13n-273n-173n) Can3 () . (3.29)

1730 [a3n—1 (Oé3nC3n+1

For y = 42% — 3z we have

Cg (513') an (l’) =

104

(42° — 3z) Cy,, (x) = Pi (y) P, (y)

an Pt () + b P (y) + co Pzt (y)

nC3n13 (7) + by Csp () + €, C3—3 (2)

40r3ni3n 410304203013 (7)

+ (403n 3041830 +2 + 403003011 B3040 + 403003041 830) Cangz ()

+ (403n03041Y3042 + 403,85, 1 + 405, 3041 + 403083085011 + 40385,

+4aizn 1030 Y30 — 3035) Csnp1 ()

+ (403 B3ns173n+1 + 830 Banysnt1 + 453, + 8asn—153nY3n
+4azn 16301730 — 383n) Can (1)

+ (4asnVanVane1 + 485,730 + 48301830730 + 4030173, + 4B50_173n
+4030-2Y3n-173n — 373n) Can—1 ()

+ (48307301730 + 483017301730 + 4830 273n-173n) C3n—2 (2)

+493n 27301730 C3n 3 ()
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and hence comparison of the coefficients yields

a, = 403,053,103, 2, (3.30)
0 = 4asnasns1 (Bant2 + Bons1 + Ban), (3.31)
0 = as, (4Oé3n+173n+2 + 4ﬁ§n+1 + 4osnYans1 + 403003041 + 4/8§n

+4agn 1Y — 3) (3.32)

b = 40353041 Y3n+1 + 83030 Van4+1 + 405, + 8301330 7sn

+4aszn 18301730 — 3B3n, (3.33)

0 = 730 (4asnVans1 + 465, + 4B3n—103n + 40301730 + 405,
+4agn_oY3n-1 — 3) , (3.34)
0 = 4v30 1730 (B3n + Ban—1 + Ban2), (3.35)
Cn = 4Y3n-2730-173n- (3.36)

For simplification and in order to gain more insight, we assume that {C, (z)}>_, and
{P, (z)}*_, are symmetric random walk polynomial sequences (SRWS), that is, 3, = 0
and b, = 0 respectively for n € Ny, and continue with the determination of «,, and ~,.
By (3.36), ¢c1 = 4917273, which is equivalent to

ap=1l-c=1-41-a) (1 —a) (1 —a3) =1-4(1 —ay) (1 —az)+4(1 — ) (1 — aa) as.

Hence
. — a;+4(1—aq) (1 —ag) —1 1 1—oy
s 4(1—ay) (1 —aw) (1—ay)
and .
1
%_4’7172'

We have to guarantee that az (and 73) are positive. A straightforward calculation shows
that ag > 0 if and only if a; > 4oy + i — 4. Then with (3.34)

V4= r; (3 — dyzan — 472%) = ai?) (’Yl - :;?;) ) ag=1-—".
(3.30) yields a5 = 2~ and 75 = 1 — a5 and subtraction of (3.32) from (3.34) gives
Q3n—273n—-1 = A3n+173n+2; neN. (3.37)
Particularly, as, 17312 = ... = a1y = % -7 =0 — %.

Y

N[

Exploring {C), (z)}>_, more detailed, we fix a; = % Then ay = v = %, Qg = Yo =
73201;043=6L1774=%,0442%,a5=%;%=%7%2027a6=a2-
Using (3.34) and (3.32) we obtain 73,41 = Y3n42 = % = Q3p41 = Q3pe2. Finally (3.36)

yields v, = ¢, and ag, = a,.

This three-term recurrence coefficients determine the SRWS {C,, (z)}_, with unique or-
thogonalization measure ¢ on S.

Now, we can represent the C,, (z) by linear combinations of Ty (x), ..., T, (z).
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Co(z) =1,C1(x) =2 =T (x), Cy(z) =22% — 1 =Ty (x), C3 (x) = 423 — 3z = T3 ().
In order to determine C} (x) note that

%T4 (z) + %n () = 2T () = 2C5 () = 1C4 (2) + 1 (x)

1 (1 _ — a—c
and o (2 cl) = &4, hence

Ch(2) = Ty () + ~ (5 - cl) Ty (z).

2@1 aq

In the same way we get

Qial (%T5 (z) + %Tg (:c)) + all (% — (21) (%Tz (z) + %Tl (ZU)>

_ QLxT (@) + - (% - ) o (x) = 4 () = 5Cs () + 505 ()
= —05( )+ ;Tg(fﬂ),

s (z) = QLCLITL:)(Q:)—I—(%Ch—i-ail(%—cl)—1)%(1})4—@%(%—01)7}@)

To determine Cg (x) we use

%T6 (1) + 2Th () = Ts(2)Ts(x) = Cs () Cs () = arCo () + 1 Co ()

2
= alCG (l’) + Cng (CL’) s

then

Co(2) = Ty () + i(%—cl)To(x).

2&1 ay

Furthermore, we get C7 (x) = Ty (7) + 222T5 () + - (3 — 1) Th (), and

2a12as 2a12a2
1 1 —2¢y 1 /1
Cs (z) = + Ti(x)+—(=—c | Ta(z).
s (17) 2&120,2 8 x) 2a12a2 4 (CC) aq (2 Cl) 2 (ZE)

Applying Cs (z) Cs (z) = a2Cy (z) + c2T5 (x), we obtain

1 1—2co 1 /1
= T - o T :
Cy () 20190, o(z) + <2a12a2 + o (2 Cl)) 5 ()

Moreover, we get as above

Clo (1.) 1 (;C) n ]_ — 203

2@12@22@3 10 2&12@22(13
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1 —2cy — 2¢3 + 4eycy 1 1
+ + 2 L
( 2a;12a92a3 2a1a3 \ 2 “ «(@)
1 —2¢ 1 —2c3 (1
+ + 5 I:
(2a12a22a3 2a;a3 (2 Cl)) 2 ()

1 1—2¢3

C S ) ———
1 (flf) 2@12(1226L3 1 (QU) 2@12(1226L3 ’

1—2cy — 2¢3 + 4cacs 1 1
+ + 5 T:
( 2a12a92a3 2a1a3 \ 2 “ > (@)
1—2c 1 —2c3 (1
+ + 5 T
(2(112a22a3 2a;a3 (2 Cl)) (@)

With C5 (x) Cy (x) = a3Cia (x) + ¢3C6 (x), we obtain

and

1 a; — C3 1—262 1—263 1
012 (33) B 2@12a22a3T12 (I) + 2(11&3 T6 (ZE) * (2@12&22(13 + 2(11&3 (5 B Cl)) TO (1’) '
Using the recurrence formula one could calculate Cy3 (), Ch4 (), and so on. We stop at
this point and restrict our studies to Cs, (z).

We can determine the connection coefficients for Cs, () directly by using the connection
coefficients of P,.

Let P, (z) = >;_o fnxTk (z), then

Can (z) = Po (T () = D" kniTi (T3 (7)) = > ks T () - (3.38)
k=0 k=0
That is, if we write Cs,, (z) = Z?ZO dsn ;T (z), then ds, ; = 0 for j =31+ 1, j = 3l + 2,
where | = 0,...,3n — 1 and ds, 3z = kng for £ = 0,1,...,n. Since the P, (z) are
symmetric, we have

Komk = 0 fork=1,3,...,2m —1

and
Kom41k = 0 for k=0,2,...,2m.

Thus, more precisely, Cs,, () can be represented by

Csn () = FnnTsn () + Knp—oTsn—6+ ... + knoTo (x), n=2m,m € Ny
an (LU) = /in’nTgn (.73) + Hn,anT?)nfG (LE) 4+ ...+ lin71T3 (JZ‘) s n=2m -+ 1, m e No.
Moreover,
Ci(z)Cs, () = anCspys1 (x) + cnCspq (), (3.39)
02 (l’) Og,n (iL') = T2 (I’) an (Q?) = an03n+2 (I’) + CnC;gn,Q (.I') s (340)
C3(z)Cs, () = anCspas(x) + c,Cs3 (). (3.41)

(3.40) can be shown by using (3.39) which yields

z2Cy,, () = a,2Cspp1 (T) + crxCy, ()
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1 1 1 1
= an§C3n+2 (x) + Gn§c3n (x) + Cn§C3n (x) + Cn§Can2

an, 1 Cn,
= 703714-2 (z) + §C3n (z) + 30371—2 ().

Thus Ty (x) Cs,, (x) = (202 — 1) C3,, (2) = 0, Cpy2 () + cnC3p 2 (7).

We can determine how the cubic Ruelle operator

Raryf(y) = 5 (f (0) + f(22) + f(23)),  yeS

W

acts on C,,, where y = T3 (z;), ¢ = 1,2, 3, (some x; are counted twice).

The x; satisfy the following relations, which are proved by comparison of coefficients in
the following way.

We have

T3(z)—y=0 4(x — ) (x — x2) (¥ — 3)

= 42 — 4 (2) + 29 + 23) + 4 (2120 + D3 + 2123) T — 4117073

Hence for given y € S the x; satisfy

1+ 2o+ a3 =0, (342)
4 (z129 + 2223 + T123) = —3, (3.43)
A 2923 = —y. (3.44)

Furthermore, combining (3.42) and (3.43) we obtain

3
x} 4+ 25+ 23 = 5 (3.45)

In fact, we have

0= (x1 + 22 —I—x3)2 = x% —i—a:% —|—x§ + 2 (2129 + Tox3 + T123) ,

2, .2, ,2_3
and hence x1 + x5 + 13 = 3.

Proposition 3.7.1. The Ruelle operator R 1,y salisfies

R,y (Csn) = P, Ry (Cany1) = 0 = Ry (Cany2)
for all n € Ny.

Proof. We have R 1) (Csn) (y) = 5 (Cap (1) + Csp (22) 4+ Csp (23)) = 5 (P (T3 (1))
+ P, (Ts (x2)) + P, (T3 (x3))) = P, (y) for each n € Ny,
By formula (3.39), we obtain

an Ry (Cans1) (y) + cn Ry (Csn-1) (y)

= % (C1 (1) Csn (1) + C1 (22) Can (22) + C1 (23) Csn (33)) (3.46)
_ épn () (@1 + 22 + 73) = 0
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because of (3.42). By formula (3.40) and (3.45), it follows

an R 1y (Cang2) (y) + cnR1,1y) (Csn—2) (¥)
_ % (Co (1) Can (21) + C (23) Cin (22) + Cs (13) Cipn (3)

1 (3.47)
=3P () (T (z1) + T (w2) + T (23))
_ %pn (y) (2 (2F + 23 +23) —3) = 0.

Now, we apply induction to prove the statement. For n = 1, we have R ) (Ch) (y) =
3 (@1 + 22+ a3) = 0 and Ramy (Co) (y) = 3 (2(2 + 23 +23) —3) = 0. Suppose that
R ) ( (3n-1) 1) (y) = 0 and R ny) (C(gn,1)+2) (y) = 0 holds. Then by (3.47), we get

+
Rary) ( 3n+2) (y) = 0, and by (3.46), R1,1) (Csn41) (y) = 0. L

Theorem 3.7.2. For the cubic Ruelle operator Ry 1,y and the cubic transformation op-
erator E (g) = Eg = g o T3, we have:

L o f (4) 9 (y) drp (3) = j f (2) Eg () drc: ().

Proof. By density arguments (compare to the quadratic case), we have to show for all
m,n € Ny

|, Ram (€)@ P e () = | € @) P (s (@) drc (o).

For m = 3k + 1,3k + 2 the integral at the left-hand side is zero because of Proposition
3.7.1. The integral at the right-hand side is zero because of P, (T3 (x)) = Cs, (x). It
remains to consider the case m = 3k.

JRng (Cs) (v) Po (y) dp () = LPk(y)Pn(y)dm(yF{F’ I;:en
and
JC% T3 (z)) dre (z JC:Sk ) Csy, () dre () = {W7 ];S:en'

Thus it remains to check that hc (3n) = hp(n), which follows immediately from the

recurrence coefficients ay, 7, and he (m) = =2=+he (m —1). O
m

Now, we can study the action of the cubic Ruelle operator R 1,y on A (S), L? (S, 7¢) in
a similar way as in the quadratic case.

Proposition 3.7.3. Let f € C(S) and denote F'f(n S f(y) P, (y) dmp (y) and

FCf(n) = S f(y)Cy (y)dre (). Then the Ruelle opemtor Rmy) and its right inverse
E, respectwely, applzed to f e C(S) give

FP(Razpf) (n) =F°f(3n) and FC(Eg)(3n) = F"g(n), respectively.
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Proof. Let g (y) = P, (y) and f (x) = Cs (x), respectively, and apply Theorem 3.7.2. [
Lemma 3.7.4. Let f e LP(S,n¢). For 1 < p < o, we have

1

|| 1Ryt @) Pame ) = | 1f @) e (o),

-1
Proof. Splitting S = [—1,1] into [—1,0] and [0, 1] the substitution of Theorem 3.7.2
directly yields equality. O

Now, we consider the Wiener spaces A¢ (S) and Ap (S). Although the {C, (z)}>_, do
not generate a polynomial hypergroup, the same argumentation as in Proposition 3.5.15
yields:

Proposition 3.7.5. (Ac (S), | - |laccs)) @s a Banach space. Each f € Ac (S) has a rep-
resentation f(x) =>," (FCf(n)C, (x)h(n) foralzeS.

Theorem 3.7.6. For the Ruelle operator R r,y, we have Rqmy € B(Ac(S),Ap(S5))
and for its right inverse E, E € B (Ap(S),Ac(S)). For the operator norms, we have
|Ramy)| =1 and |E| = 1. Moreover,

Ramyf (y) = Z FOf(3k) P (y)hp (k) VfeAc(S) and

Eg(x) = Y, F(Eg) (3k) Csk (x) he (3k) Vg e Ap(S)

Proof. The theorem is proven analogously to Theorem 3.5.16. O]

Remark 3.7.7. By Theorem 3.20 we see that KerR(; 7, = {f € Ac (S) : FOf (3k) =
0 Vk e Ny}, KerE = {ge Ap (S) : F¥g (k) = 0 Vk € Ng}.

Now, we study the product formulas for the C,, (x)

Cy(x)Capr () = ¢(2,3n+1;3n+3) Capys () +9(2,3n + 1;3n + 1) Capyq (2)
+9(2,3n+1;3n— 1) Cs, 1 (2),

n € N, where g (m,n;n + m) are the linearizion coefficients introduced in Lemma 1.2.23.
Using the formulas for g (m,n;n + m) in Proposition 1.2.24 we get

n n 1
9(2,3n +1;3n +3) = SSnrifne2 -

aq ’
1,3n +1;3n) as, 1,30+ 1;3n + 2) y3,
g(2,3n+1;3n+1) = g(1,3n +1;3n) as +9( n+1;3n + 2) Yaneo
a (03]
1; 1 1 1
_9(073n+ 73n+ )f}/l:anﬁ-——l:an——’
Q1 2 2
92,30 +1;3n—1) = et _
g

We have Cy (z) C3n41 (2) = 3C312 (2) + 5C5, (x) and thus by the above calculation

1 1
CQ (l‘) C3n+1 (ZL’) = §C3n+3 (ZL’) + (an + 5 — 1) an+1 (l‘) + CnCSn—l (I) .
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In order to get

Cs3(2)Cspy1 () = g(3,3n+1;3n+4)Cspya () + g (3,3n+ 1;3n + 2) Cy, 40 ()
+9(3,3n + 1;3n — 2) C3,_2 (2),

we calculate

g(3,3n+1;3n+4) _ A3n4+103n4+203n 43 -
5
2,3n+ 1;3n+ 1) as, 2,3n 4 1;3n + 3) 73,
g(3,3n+1;3n+2) = 9(2,3n ntl)as +1+g( n n+3) Van+s
&%) (6%)
_g(1,3n+1;3n+2)72
(6] ’

1
= g(2,3n+1;3n+1)+g(2,3n+1;3n+3)20n+1—5

1 1
= Qp — = +cn+1__:an+cn+1_17

2 2
9(3.3n+13n) = g(23n+1i3n—1)am  g(23n+13n+1) 9504
(6] Qs
Q9

= ¢g(2,3n+1;3n—1)+¢(2,3n+ 1;3n+1) — g (1,3n + 1;3n)
=0

N 1 1
= Cp an — = | — % 5
2 2

0B334 1an—2) = T lmdmor
(6518

Hence
C3 () C3ny1 (2) = an 110314 (T) + (A + 1 — 1) Canpa (2) + ¢,.Cp 2 (7).
We proceed with

Cg (X) C3n+2 (x) = g (3, 3n + 2, 3n + 5) an+5 (33') +g (3, 3n + 2, 3n + 3) an+3 (33)
+9(3,3n+2;3n+ 1) C301 () + g (3,3n+ 2;3n — 1) Cs,1 () .

We calculate

A3 +2003n+3003p 14

g(3,3n+2;3n4+5) = = a1,
5%
2,3n +2;3n + 2) ag, 2,30 + 2:3n + 4) Y3,
9(3,3n+2;3n+3) = 9(2,3n+23n +2) asnia | (2,30 + 230+ 4) Y044
Cg(1,3n+2;3n+3)
Q9

= g(2,3n+2;3n+2)+¢9(2,3n+2;3n+4) — azpio

1 N 1 0
= Cp, - (07% — 5 =Y
+1 9 +1 9

g(2,3n + 2;3n) as, LY (2,3n + 2;3n + 2) Y3n42
(6%) Qg

g(3,3n+2;3n+1) =
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Cg(L3n+23n+ 1)y
(D)
= 2a,9(2,3n+2;3n) +¢(2,3n+ 2;3n +2) — Y3p42

1 1
= an+<cn+1_§)_§:an+cn+l_17

Q1

Thus we have
Cs () Cypi2 () = apn1Csn45 () + (an — cnp1 — 1) Csppr () + ¢,Cs—1 ()

At this point one could continue the calculation in the same manner as above, but we stop
this tedious calculations at this point since we have already seen that the linearization
coefficients for {C), (z)}>_, can be negative. Thus with Theorem 1.2.25, these polynomials
do not generate a polynomial hypergroup.
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4 The transfer operator on path space
and future work

We conclude this thesis with a short outlook on another application of transfer operators,
where our transfer operator defined via the preimages of the Chebyshev polynomials of the
first kind fits into the concept developed by P.E.T. Jorgensen in [28]. Then, we provide
a brief outline concerning future work.

4.1 The transfer operator on path-space

Motivated by the fact that various problems of scaling relations have traditionally been
addressed with only standard tools from analysis, in [28], P.E.T. Jorgensen employs a mix
of analysis and path-space methods from probability since many problems in dynamics
are governed by transition probabilities W, and P,, and by an associated transfer operator
Ryy. We briefly illustrate the work of P.E.T. Jorgensen and show that those concepts are
also applicable to the transfer operator we defined in Chapter 3.

Let (X, B) be a measure space and ¢ a finite-to-one measurable endomorphism on X.
That is, for all B € B the inverse image

o' (B):={reX:0(x)e B}
is again an element of B. We assume that
#o'{z)=N  VzeX. (4.1)

Let p be a probability measure on B, and assume that the singletons {x}, for x € X, are
in B, but the measure p does not need to be atomic.
Considering (4.1), we can label the sets o' ({z}) by

Zy =1{0,...,N —1} = Z/NZ.

An enumeration of the inverse images of o, o (1; (z)) = z, determines the branches
which are measurable maps on X. In the following, we will be interested in random walks
on these branches ;.

Let W : X — R{ be measurable and satisfy

Z W(y) <1, pae veX. (4.2)

yeX,o(y)=x
We define the probability of a transition from z to one of the points (7; (z)) in 0! (z) by

Pz, () =W (1 (x)). (4.3)
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Hence by (4.2),
NPEnE)= 3 W<t

o(y)=z

The ”<” indicates that our random-walk model can also include dissipation.

Definition 4.1.1. (1) The Ruelle operator R = Ry associated to these random walks
and some nonnegative weight function W on X is defined by

Rf ()= Y W@/, zeX fel”(X),

yeX,yeo~ ()

where >, 1,y W (y) = 1.

(2) Let Q be the compact Cartesian product
o0
Q=zy={0,... N-1}"=[[{o,.... N —1}.
1

Let C'(Q2) denote the algebra of all continuous functions on €.

(3) A path starting at « is a finite or infinite sequence of points (21, 22, ...) such that
0(z1) =xand o (z,41) = 2, for all n; it can be identified with (7, %, T, T, T, - - . , Tw,, -

<+ T, .. .). The set of infinite paths starting at z is denoted by €2, the set of paths

of length n starting at x by Q;n), and the set of all infinite paths starting at any

point in X by X.
(4) A bounded measurable function V' on X* is called a cocycle if for any path (z1, 2, .. .),

V(Zl,ZQ,...) =V(22,2’3,...).

(5) For ne N and 4y, ...,i, € Zy,
A(il,...,in) = {weQ:w1 :ila"'awn:in}
is a cylinder set.

One can construct probability measures P, on €2,, x € X, such that for a function f on
., only dependent on the first n + 1 coordinates,

Pfl= D>, WE)W(zm) W) f (.. 2).

As the cylinder sets generate the topology of €2 and its Borel o-algebra, we will first specify
them on cylinder sets in order to obtain the Radon measures on (2.

Lemma 4.1.2. Let (X, B) be a measure space, i a probability measure on B, W, o and
Toy---,TN—1 as above. Then for every x € X there is a unique positive Radon probability
measure P, on () such that

P, (A (i1, ... i) = W (1y,2) W (1,75,) - - W (13, -+ - T3, ) .
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Proof. See [28] pp. 44-46 and p. 53 Remark 2.8.3. O

Theorem 4.1.3. Let X, W, N be as above and

Z Wiy =1 a.e. e X

yeX,o(y)=x

be satisfied. Suppose that R = Ry is the Ruelle operator on L* (X) and {P, : v € X}
the process on Q (see Lemma 4.1.2). Then there is a 1 — 1 correspondence between the
bounded harmonic functions h and the cocycles V. That is, for a cocycle V : X x Q — C,
h(z) = hy (x) = P, [V (z,-)] is harmonic, i.e. Rh = h. Conversely, V can be recovered
from a martingale limit.

Proof. Sce [28] pp. 49-50. O

4.2 Inverse branches of Chebyshev polynomials of the
first kind

The concept introduced in Section 4.1 carries over to the case that
#o ' ({z}) < N Vo e S, (4.4)

for S =[-1,1] and

o(x) =Ty (x), N=23,....
In this case, we are dealing with the inverse branches of the Chebyshev polynomials of the
first kind. For each N we can divide S into N disjoint intervals such that the Nth order
Chebyshev polynomial of the first kind has N inverse branches {7y, 71,...,7y_1}, which
are one-to-one, and every element 7, () of an infinite path --- 7, --- 7, (x) is defined for

all 7 and all w € €. In order to show that this is true, we need to proof the following
lemma:

Lemma 4.2.1. If there is a © € Q such that 75, -- - 75, (x) = —1 (and 75, --- 75, (x) = 1
respectively) for some j € {1,..., N}, then 75, - -7z, (x) # 1 (and 15, -+ 75, (x) # —1,
respectively) for allie {1,... N}, i # j.

Proof. If we enumerate the inverse branches 7;, with 7o = 07!

[—l,cos((N;\,l)ﬂ )], ey TN—1 =

-1
o |[(%),1], then we have

#1, i=0,...,N—2, €8
Ti(x)S#£1, i=N-1, x#1 (4.5)
=1, i=N—-1,z=1

and
£—-1, i=1,...,.N—1,z€8
mi(x) £ -1, i=0, z#—1 . (4.6)
=1, i=0, z=-1
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4. THE TRANSFER OPERATOR ON PATH SPACE AND FUTURE WORK

For j there is some @ € €2 such that 7, - - 73, (x) = —1. Suppose i < j. We assume that
there is an i € {1,...,j} such that

T@i "'7'4;)1 (l’) =1.

Then 74, , -+ -7z, () has to equal 1 as well, and by iteration 7, --- 7z, () = 1 for all
k < j. By (4.6), this is a contradiction to the assumption 7, - - - 75, () = —1.
Suppose i > j. We assume that there is a i such that 75, --- 75, - - - 75, (z) = 1, that is,

Ta,i e T5Jj+1 (—]_) =1. (47)

Hence 75,_, -+~ 73,,, (—1) = 1 and by iteration 7,,, (—1) = 1 which is a contradiction to
(4.5).
The proof of the case that 75, - - - 73, (z) = 1 works analogously. O

With the previous lemma, Lemma 4.1.2 is also valid in the current setting.

4.3 Discussion and Outlook

We defined a transfer operator via the preimages of the Chebyshev polynomials of the first
kind and studied it acting on classical function spaces from harmonic analysis. Our inves-
tigation was guided by the symmetry properties and the permutability of the Chebyshev
polynomials of the first kind. We were able to construct a symmetric orthogonal polyno-
mial sequences via a quadratic and a cubic transformation, respectively. In the quadratic
case, this orthogonal polynomial sequence generates a polynomial hypergroup provided
certain conditions on the recurrence coefficients are satisfied. That is, we investigated
the transfer operator with preimage given by the Chebyshev polynomials of the first kind
acting on arbitrary symmetric orthogonal polynomials. The framework developed in this
thesis gives rise to various applications in the fields of dynamical systems, wavelet theory
and iterated function systems which we provided the basic concept for. Using the results
of this thesis, we intend to study iterations of the transfer operator, the transformation
operator and the corresponding iterated function spaces as well as the corresponding dis-
crete spaces and discrete operators in future. This way, we suppose to find a new class
of wavelets corresponding to the work done in [24]. Furthermore, various kinds of weight
functions could be investigated in future.

For the cubic case, future work will involve the more general case where 0 < oy < 1,
instead of using the restriction that a; = % In future, we not only aim to consider the
quadratic and the cubic case, but perform similar constructions for the quintic case and
other prime numbers.

In the previous two sections of this chapter, we gave a short glimpse of how future work on
transfer operators might look like that are defined via orthogonal polynomials on random
walks, especially those ones given by inverse branches of orthogonal polynomials. Iterated
function systems and fractals could also be employed, for example in two dimensions like
the Sierpinski gasket, referring to [15] and [17] .
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Table of symbols and abbreviations

Table of symbols and abbreviations
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cardinality of a set

constant 1 function

{weQ:w =1iy,...,w, =iy} cylinder set
(a),=ala+1)---(a+n—1), (a), = 1 Pochhammer symbol
weights in the Gauss quadrature formula

{(FeC(S): X2, |f(n)|h(n) <o} Wiener algebra

{fel'(Sm): fet(h)}

Borel o-algebra

open ball centered at x with radius r

n-Bowen ball centered at x with radius r

closure of a set/space U

characteristic function of S

space of all nonempty compact subsets of X

C (X, R) space of all continuous functions f : X — R;

C (X, C) space of all continuous functions f : X — C;

space of all continuous functions on X

C (X, C) space of all continuous complex-valued functions f : X — C
C* (X, R) space of all a-Hélder continuous functions on f: X — R
C* (X, C) space of all a-Hélder continuous functions on f: X — C
{oe C2(X) : (u,¢) = 0}

O (X,R) = {66 C2 (X) : ¢ > 5, [log 6], < K}

space of all continuous functions on K which vanish at infinity
space of all bounded continuous functions on K

space of all compactly supported continuous functions on K
degree of the polynomial P

Dirac measure at z

Sood(n) P (@) b (n)
maxo<i<n {d (f* (), f* (y))} n-Bowen metric
connection coefficients

transformation operator

conditional expectation of ¢ given F,

point measure of x

Fourier transform of f

Sl_l f (z) P, (z) dr (x) Fourier transform of f w.r.t. B,

Fourier transform of f w.r.t. P,

oFplar, ..o ap By, Byx) =0, % hypergeometric
function

standard o-algebra on R generated by all open sets

¢! (Fo) pull-back o-algebra

minimal o-algebra of all o-algebras Fy for ¢ in a family of functions I



P = {Pn}z;l

{0 (@)}

(PP (2) o

P [f]
Pz, 7 (x))
Rep (uNa H)
R,

RPF

fImPn

U?:l Nmzn F m

standard o-algebra generated by all open sets in X
{pe M'(X): Prp=p}

N 1G,, set of all G-measures

linearization coefficients

Haar function for an OPS

abstract Hilbert space

local Holder constant

involution (see Lemma 1.2.2, Definition 1.2.14)
locally compact Hausdorff space; set

(discrete) hypergroup

{f: K—>C: f=Y" ane,, a, €C, X7 |a,| <o, x, € K}
(fell f =% 0, 00203, 0 =1}

{f 1 K—>C: 3k |f (n)[Ph(n) < oo}

{f: K-> C:supl|f(n)|h(n) <}

{f:S— S: fmeasurable, {.|f () |dr (z) < o0}
{f:S — S: fmeasurable esssup,.q |f (z)] () < o0}
left-translation operator

Legendre polynomials

associated Legendre polynomials

(polynomial) wavelet filter

weight function for the Ruelle operator

VN Y,y axth (Nx — k) cascade refinement operator
space of all (complex) measures

space of all (complex) probability measures
moment functional

probability measure

moment of order n

moment sequence

w(r,y): K x K> M'"(K) (see Lemma 1.2.1);
w(f,g): K x K — (£}, (see Definition 1.2.14)

ZN ={0,...,N - 1}"

set of all infinite paths starting at x

set of all paths of length n starting at x

orthogonal polynomial sequence

probability measure; orthogonalization measure for an OPS
vector space of polynomials with complex coefficients in one variable
set of all polynomials of degree at most n

sequence of Markovian projections

ultraspherical polynomials

Jacobi polynomials

measure on ) such that P, [f] = pim

transition probability form z to 7;

normal representations

right-translation operator

Ruelle-Perron-Frobenius (operator)



Table of symbols and abbreviations

R Ruelle operator, Ruelle-Perron-Frobenius operator, transfer operator
Ry % ZTN(x):y f () unweighted Ruelle operator /transfer operator
R,y =~ 2ty (e)=y M (z) f () weighted Ruelle operator/transfer operator
{R, (z;a)}*_, Karlin-McGregor polynomials

RWS random walk polynomial sequence

sgn (f) signum of a function f

SRWS symmetric random walk polynomial sequence

supp (f) {re X : f(x)# 0} support of f

T inverse branches

{T, ()}, Chebyshev polynomials of the first kind

{Téa’ﬁ ) ()}, generalized Chebyshev polynomials
T, generalized translation operator

{U, (z)}>, Chebyshev polynomials of the second kind

Uy C*-algebra on two unitary generators U and V satisfying
vvu-t=v¥

xZ(N) 1th preimage of the Nth order Chebyshev polynomial of the 1st kind

Tk zeros of an OPS

(X,B) set X with a o-algebra B of measurable subsets
(X,d) metric space

X set of all infinite paths starting at any point in X
ZN {0,...,N — 1} = Z/NZ cyclic group of order N
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