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Abstract

In this work, we study and quantitatively predict the quantum spin Hall e�ect,
the spin-orbit interaction induced intrinsic spin-Hall e�ect, spin-orbit induced mag-
netizations, and spin-polarized electric currents in nanostructured two-dimensional
electron or hole gases with and without the presence of magnetic �elds. We propose
concrete device geometries for the generation, detection, and manipulation of spin
polarization and spin-polarized currents. To this end a novel multi-band quantum
transport theory, that we termed the multi-scattering Büttiker probe model, is de-
veloped. The method treats quantum interference and coherence in open quantum
devices on the same footing as incoherent scattering and incorporates inhomogeneous
magnetic �elds in a gauge-invariant and nonperturbative manner. The spin-orbit
interaction parameters that control e�ects such as band energy spin splittings, g-
factors, and spin relaxations are calculated microscopically in terms of an atomistic
relativistic tight-binding model. We calculate the transverse electron focusing in
external magnetic and electric. We have performed detailed studies of the intrinsic
spin-Hall e�ect and its inverse e�ect in various material systems and geometries.
We �nd a geometry dependent threshold value for the spin-orbit interaction for the
inverse intrinsic spin-Hall e�ect that cannot be met by n-type GaAs structures. We
propose geometries that spin polarize electric current in zero magnetic �eld and
analyze the out-of-plane spin polarization by all electrical means. We predict un-
expectedly large spin-orbit induced spin-polarization e�ects in zero magnetic �elds
that are caused by resonant enhancements of the spin-orbit interaction in specially
band engineered and geometrically designed p-type nanostructures. We propose a
concrete realization of a spin transistor in HgTe quantum wells, that employs the
helical edge channel in the quantum spin Hall e�ect.
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Zusammenfassung

In dieser Arbeit untersuchen wir den Quanten-Spin-Hall-E�ekt, den intrinschen
Spin-Hall-E�ekt, durch die Spin-Bahn-Wechselwirkung induzierten Magnetisierun-
gen und spinpolarisierte elektrische Ströme in nanostrukturierten zweidimensionalen
Elektron- und Lochgasen mit und ohne externes Magnetfeld. Wir streben dabei
quantitative Vorhersagen zu diesen E�ekten an. Wir schlagen konkrete Bauteile
vor, die Spinpolarisationen und spinpolarisierte Ströme erzeugen, manipulieren und
detektieren können. Wir haben dafür eine neuartige Mehrband � Quantentransport
� Theorie entwickelt, die wir multi-scattering Büttiker probe Modell genannt haben.
Die Methode behandelt Quanteninterferenz und Kohärenz in o�enen Quantensyste-
men auf derselben Basis wie inkohärente Streuung und erlaubt die nicht strörungs-
theortische und eichinvariante Behandlung von inhomogenen Magnetfeldern. Die
Spin-Bahn-Kopplungsparameter, die E�ekte wie die spinabhängige Bandenergieauf-
spaltung, g-Faktoren und Spinrelaxation kontrollieren, werden mit Hilfe der atom-
istischen und relativistischen Tight-Binding-Theorie berechnet. Wir berechnen die
Elektronenfokussierung in externen magnetischen und elektrischen Feldern. Wir
haben den intrinschen Spin-Hall-E�ekt und seinen inversen E�ekt in verschiedenen
Materialsystemen und Geometrien ausführlich untersucht. Wir stellen einen geome-
trieabhängingen Schwellwert für die Spin-Bahn-Wechselwirkung fest, der nicht von
elektronenartigen GaAs-Strukturen erreicht wird. Wir schlagen Geometrien vor, die
den Ladungsstrom ohne externes Magnetfeld spinpolarisieren und die Spinpolarisa-
tion durch eine rein elektrische Messung analysieren können. Wir sagen unerwartet
starke spin-bahn-wechselwirkungsinduzierte Spinpolarizationse�ekte ohne externes
Magnetfeld in speziell band- und geometrieoptimierten lochartigen Nanostrukturen
voraus, die durch eine resonante Verstärkung der Spin-Bahn-Wechselwirkung her-
vorgerufen werden. Wir schlagen eine konkrete Realisierung eines Spintransistors
vor, die auf dem Quanten-Spin-Hall-E�ekt in HgTe-Nanostrukturen beruht.
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Introduction

The seminal proposal of a spin-based transistor by Datta and Das in 1990 [1] has
basically created the modern �eld of semiconductor spintronics. Since then a lot of
work has been devoted to the goal to use the spin degree of freedom of the carrier for
information processing or quantum computation [2]. An important prerequisite to-
wards spin-based electronic devices is to have control over the spin degree of freedom.
Since magnetic �elds are hard to localize and to implement in nowadays electron-
ics, spin-orbit coupling in semiconductor nanostrucures comes into focus as it may
provide the possibility for spin manipulation on an all semiconductor basis [3] in
zero external magnetic �eld. Among many spin-orbit coupling e�ects, the spin-Hall
e�ect [4, 5] is one of the most promising ones to provide a possibility to generate and
detect spin-polarized electric currents as well as pure spin currents. These spin ef-
fects, however, are in generally small and not easily detectable in experiment. Thus,
quantitative theoretical predictions that realistically take into account geometrical
e�ects and material properties are needed to guide and interpret experimental e�orts
and results, respectively.
Another only recently discovered e�ect with a large device application potential is

the so-called quantum spin Hall e�ect in topological insulators [6�8]. These material
have an insulating gap in the bulk but feature gapless helical edge states at bound-
aries. While �rst discovered in two-dimensional quantum well structures [9], it is
clear now, that also three-dimensional systems can have similar properties [10]. Due
to the helical properties, electrical current through these edge channels is almost
perfectly spin polarized, which opens new possibilities for spin injection, detection,
and manipulation by all electrical means. Since these states are topologically pro-
tected, the quantum spin Hall e�ect is more robust than the intrinsic spin-Hall e�ect
in normal semiconductors.
The main purpose of tis work, is to propose all semiconductor based devices that

are capable of polarizing, detecting and manipulating the spin degree of freedom
of electrons and holes. We aim at quantitatively predicting the spin-orbit interac-
tion induced intrinsic spin-Hall e�ect, spin-orbit induced magnetizations, and spin-
polarized electron currents as well as the quantum spin Hall e�ect in nanostructured
two-dimensional electron or hole gases with and without the presence of magnetic
�elds. To this end, we have developed a novel multi-band quantum transport theory,
the multi-scattering Büttiker probe (MSB) model that treats quantum interference
and coherence on the same footing as incoherent scattering and incorporates inho-
mogeneous magnetic �elds in a gauge-invariant and nonperturbative manner. The
spin-orbit interaction parameters that control e�ects such as band energy spin split-
tings, g-factors, and spin relaxations are calculated microscopically in terms of an
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atomistic relativistic tight-binding model. To quantitatively predict quantum trans-
port properties of topological insulators, we have developed new few-band models
that describe all relevant spin-orbit coupling mechanisms in HgTe/CdTe quantum
wells. We have performed detailed studies of the intrinsic spin-Hall e�ect, its inverse
e�ect, and the quantum spin Hall e�ect in various material systems and geometries.
We propose several concrete nanostructured materials and geometries for spintronic
devices.
This thesis is organized as follows. In part one we present our results for the

electronic structure of semiconductor heterostructures. In particular, we focus on
the spin-orbit interaction parameters that control the band energy spin splittings. A
precise knowledge of these parameters is curtail for quantitative predictions of spin-
transport properties. In Chapter 1, we brie�y review the atomistic semi-empirical
tight-binding method, that we base our electronic structure calculations on and
present our novel parametrization for the II-VI semiconductor materials HgTe and
CdTe which we have developed, since HgTe/CdTe quantum wells came into focus
recently in the context of topological insulators while a state-of the art tight-binding
theory for these materials was not published yet. In Chapter 3, we present our
results for the k-dependent spin-orbit induced splittings of nondegenerate bands in
various III-V semiconductor heterostructures. We investigate the interplay between
the so-called Rashba and Dresselhaus spin-orbit interaction in external electric �eld
and �nd qualitatively di�erent behavior than predicted by simple envelope function
theory. The physical origin of these di�erences are discussed. Furthermore, we
predict huge k-linear spin splitting in tensile strained p-GaAs quantum wells, that
is enhanced up to two orders of magnitude and tunable by the applied strain. In
Chapter 4, we present our results for the subband structure and dispersion in HgTe
quantum wells. We predict strong anticrossing of electron and hole bands as a
function of the well thickness and a resonantly enhanced k-dependent spin splitting
of the subband dispersion. We further develop two new envelope function models
for quantum transport calculations in HgTe quantum wells, that are based on our
novel tight-binding results and take into account all relevant spin-orbit coupling
mechanisms, in contrast to models presented so far in literature.
In part two of this thesis, we turn to our results on the quantum spin-transport

properties of nanostructered two-dimensional electron and hole gases. In Chapter 5,
we present our method the non-equilibrium Green's function theory. After a short
overview of the non-equilibrium Green's function method for quantum transport cal-
culations, we address the problem of boundary conditions for open quantum systems
in the general multi-band situation. We further present our newly developed multi-
scattering Büttiker probe model for dissipative quantum transport, that accounts
for individual scattering mechanisms and reproduces experimental results quantita-
tively. It is numerically extremely e�cient, in order to allow for predictive transport
calculations in realistic, arbitrarily shaped three-dimensional nanostructures. We
further show, how external magnetic �elds can be incorporated into the theory. Fi-
nally, we show how experimentally observable quantities are calculated from the
non-equilibrium Green's functions. In Chapter 6, we employ our quantum transport
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method in combination with the results of the electronic structure calculations to
predict spin-dependent transverse electron focusing in external magnetic and electric
�elds for various semiconductor nanostructures. In Chapter 7, we review the prop-
erties of the intrinsic spin-Hall e�ect in two-dimensional nanowires and employ a
simple analytical model to elucidate the origin of the e�ect in nanostructures as op-
posed to the in�nite 2DEG. In Chapter 8 and Chapter 9, we show, how the intrinsic
spin-Hall e�ect and its inverse can be employed in realistic nanodevices for spin po-
larization, manipulation, and detection. We predict several concrete nanostructured
materials and device geometries that exhibit large spin-polarization e�ects. We pro-
pose concrete experiments to unambiguously measure the spin polarizations caused
by the intrinsic spin-Hall e�ect. In Chapter 10, we focus on topological insulators.
We �rst develop a simple tight-binding model, that explains the microscopic origin
of the quantum spin Hall e�ect in materials with a so-called inverted band structure.
We show, that in contrast to the wide spread assumption, the spin-orbit interaction
is not essential for a topological insulator. We further employ our newly developed
envelope function model for HgTe quantum wells and propose a concrete realiza-
tion of a spin transistor, on the basis of the quantum spin Hall e�ect. Finally, we
summarize the thesis in Chapter 11.
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1. Overview over semi-empirical

tight-binding theory

1.1. Introduction

The semi-empirical tight-binding theory as developed by Slater and Koster [11] and
later by Harrison [12] gives a physically transparent, semi-quantitative picture of
the structural and electronic properties of molecules and solids. The tight-binding
theory has been successfully applied to many systems since then such as bulk band
structures of ionic solids and semiconductors, superlattices, quantum dots, amor-
phous solids, surfaces, transition metals, lattice dynamics, and molecular dynamics
just to name a few. In this work, we use the atomistic tight-binding theory to cal-
culate the band structure of quantum wells and superlattices with special emphasis
on the spin-dependent properties close to the Brillouin zone center, the so-called Γ-
point (k = 0). These spin properties also depend crucially on backfolded zone edge
states, which are well described in tight-binding theory, in contrast to simple enve-
lope function k ·p theories, which rely on an expansion of the Hamilton operator for
small wave vectors around the Γ-point. We will therefore give a short introduction
into the basics of tight-binding theory in Sec. 1.2. More detailed descriptions may
be found e.g. in Refs. [11�14]. We will then in Chapter 2 present our novel sp3d5

tight-binding model for the II-VI semiconductors HgTe and CdTe. These materials
have come into focus recently in the context of topological insulators and the quan-
tum spin Hall e�ect. However, a quantitative state of the art tight-binding model
is still ascent in literature.

1.2. Basic introduction into semi-empirical

tight-binding theory

The basic idea behind the tight-binding scheme is that electrons in a crystal are
tightly bound to their atoms and that the interaction between the atoms is weak
enough, such that an atomistic picture is still meaningful and one can use atomic-
orbitals like basis states to expand the crystal wave function. An important result
of the seminal work by Harrison [12] is that although it is di�cult to determine
the crystal Hamiltonian operator H and a basis of orthogonal atomiclike functions
|I 〉 separately, the elements 〈I |H |I ′ 〉 of the Hamiltonian matrix follow very simple
chemical trends. While the diagonal matrix elements are proportional to atomic

17



1. Overview over semi-empirical tight-binding theory

ionization energies the o�-diagonal elements are approximately universal functions
of the interatomic distance. As a consequence most applications of tight-binding
theory rely entirely on the formulation of Hamiltonian matrix elements.
In tight-binding theory, the single-particle eigenstates of the crystal are expanded

into atomiclike orbitals |α, I 〉, where I is a site index and α is a symmetry related
index that speci�es the angular momentum and spin quantum numbers. Since we
focus on periodic crystals in this work, the vector pointing to the lattice site I can be
written as RI = RL+Rτ , where L labels the unit cell and τ the various basis atoms
within one unit cell. Note that for di�erent lattice sites, the |α, I 〉 are in general not
orthogonal. However, Löwdin showed [15], that it is possible to orthogonalize the
basis functions while preserving their symmetry properties. These so-called Löwdin
orbitals follow the orthogonality relation

〈α′, I ′ | α, I〉 = δL′,Lδτ ′,τδα′,α. (1.1)

In order to avoid too many, confusing indices, we lump together the orbital index α
and the intracell site index τ into a single index α. Therefore a sum over α implies
a sum over all orbital states within one unit cell. We thus write the lattice vector
as RI = RαL.
In a periodic crystal, Bloch sums can be formed from the Löwdin functions that

are characterized by the crystal momentum k,

|α,k〉 =
1√
N

∑
L

eikRαL |α,L〉 , (1.2)

where N is the number of unit cells in the crystal. In the Bloch basis, the crystal
Hamiltonian matrix can be represented as,

H =
∑
k

∑
α′,α

|α′,k〉Hα′,α 〈α,k | . (1.3)

Note that in this representation the Hamiltonian becomes diagonal in the crystal
momentum k. That makes it convenient to work with because the Hamiltonian
breaks up into submatrices for each k. That means each wave vector can be treated
independently. The dimension of the Hamiltonian thus reduces to the number of
atoms in the unit cell times the included orbital states per atom. Note that if
scattering is included that mixes di�erent k-states this advantage is at least partly
lost. The Hamiltonian matrix elements Hα′,α(k) read in the basis given in Eq. (1.2),

Hα′,α(k) = 〈α′,k |H |α,k〉

=
1

N

∑
L′,L

eik(RαL−Rα′ L′ ) 〈α′, L′ |H |α,L〉

=
∑
L

eik(RαL−Rα′ ) 〈α′, 0 |H |α,L〉

= εαδα′,α +
∑
L6=0

eik(RαL−Rα′ )tα′,α (RαL −Rα′) , (1.4)

18



1.2. Basic introduction into semi-empirical tight-binding theory

where Rα = RαL=0 and the summation over L′ cancels the normalization factor
1/N due to the translational invariance. In Eq. (1.4), we have introduced the on-site
matrix elements

εα = 〈α,L |H |α,L〉 , (1.5)

and the so-called hopping matrix elements

tα′,α (RαL −Rα′ L′) = 〈α′, L′ |H |α,L〉 . (1.6)

The on-site matrix elements are connected to the potential energy, while the hopping
matrix elements are connected to the kinetic energy of the system, since they allow
for an electron to be transfered from one atom to another.
The Bloch eigenfunctions of the Hamiltonian (Eq. (1.4)) are denoted by |n,k〉,

where n labels the energy bands and includes the Kramers index for the spin degree
of freedom. These eigenfunctions are expanded in terms of the Bloch basis (Eq. (1.2))
as,

|n,k〉 =
∑
α

Cα,n(k) |α,k〉 , (1.7)

where the Cα,n(k) are the expansion coe�cients which together with the correspond-
ing energy eigenvalues En(k) follow from the Schrödinger equation

H |n,k〉 = En(k) |n,k〉 . (1.8)

In the Bloch basis, we get the following secular equation∑
α

[Hα′,α(k)− En(k) 〈α′,k | α,k〉]Cα,n(k) = 0, (1.9)

which has to be solved. The complete band structure then follows from the set
{En(k)} for all wave vectors k. Please note, that if one uses the orthogonalized
Löwdin orbitals, the overlap matrix 〈α′,k | α,k〉 in Eq. (1.9) becomes the identity
matrix which simpli�es the problem signi�cantly. However, the solution of Eq. (1.9)
as it stands is still a quite challenging task. Therefore, we will introduce some
approximations that are commonly used in tight-binding models.

1.2.1. Common approximations in tight-binding theory

Some very useful simpli�cations have been proposed by Slater and Koster [11]. By
an e�ective reduction of the basis to a few orbitals, typically 4-20 per atom, the
numerical e�ort can be drastically reduced. The minimal set of orbitals to get phys-
ically meaningful results for bulk semiconductors is an sp3 basis as was pointed out
by Chadi and Cohen [16]. Later Vogl et al. [17] have introduced an excited auxil-
iary s-state, called s∗. Although somehow arti�cial this additional state models the
coupling with higher energy states and improves the results for the conduction band
signi�cantly. Because this parametrization still fails to reproduce some important
features of the band structure satisfactorily, Jancu et al. [18] have used an sp3d5s∗
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1. Overview over semi-empirical tight-binding theory

parametrization and could show, that most of the issues of smaller parameter sets
can be resolved.
In Eq. (1.6), the distance between coupled atoms is in principle not limited. How-

ever, due to the localized basis functions, the matrix elements are getting smaller
with distance rapidly. Therefore, it is often enough to consider the nearest neighbor
coupling only. Besides reducing the numerical e�ort another advantage of taking
only nearest neighbor coupling into account is the reduction of the parameter space,
which in turn reduces the freedom of choice for the parameters and makes the set
much clearer. Moreover, it simpli�es the way to model interfaces between di�erent
materials in heterostructures. We will therefore limit our calculations to nearest
neighbor tight-binding models.
Due to the Coulomb potential in the Hamilton operator H, the hopping matrix

elements (Eq. (1.6)) include in principle up to four center integrals. The theory can
be drastically simpli�ed by only taking up to two-center terms into account which
gives the e�ective potential the character of a two-atomic molecule. The orbitals
can be chosen in such a way, that they have a de�nite projection of the angular
momentum on the axis joining the two atoms. We can expand the hopping elements
in terms of these molecular couplings,

tα′,α (RαL −Rα′ L′) =
∑
µ

dα′αµ(RαL −Rα′ L′)tα′αµ, (1.10)

where µ is the projection of the angular momentum on the molecular axis, which
can be {σ, π, δ, ...}. The sum runs over the possible projections depending on
the considered orbitals. The expansion coe�cients dα′αµ(RαL −Rα′ L′) depend on
the angels between the molecular axis and the three crystallographic axes via the
corresponding direction cosine and on the coupled orbitals α and α′. They have
been calculated and tabulated by Slater and Koster [11]. Later Podolskiy and Vogl
[19] derived closed expressions to calculate them for arbitrary orbitals and directions
of the molecular axis.

1.2.2. Parametrization of the tight-binding Hamiltonian

Instead of making the attempt to calculate the on-site elements (Eq. (1.5)) and the
hopping matrix elements (Eq. (1.6)) from �rst principles, they are treated as pa-
rameters for a given bulk material. The parameters are �tted to reproduce certain
properties of the band structure such as the energy eigenvalues at high symmetry
points which are obtained by ab-initio methods such as the nonlocal, relativistic
pseudopotential method, the GW method or experimentally. For all III-V mate-
rials, we base our calculations on the relativistic sp3d5s∗ parametrization of Jancu
et al. [18]. This method reproduces the band structures of bulk semiconductors
most accurately today. Band gaps, split-o� energies, e�ective masses of conduc-
tion and valence band, side valley o�sets, as well as strain deformation potentials
agree quantitatively with experiments. The parametrization was chosen carefully
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1.3. Implementation of spin-orbit coupling

to follow the known chemical trends in the electronic structure. Since the param-
eters are given for bulk binary compounds, some additional adjustments have to
be taken into account, when dealing with alloys and heterostructures. For alloys,
we employ the simple virtual crystal approximation (VCA), i.e. for an alloy of the
kind GaxAl1−xAs all parameters are averaged with respect to the composition x
between the values of binary GaAs and AlAs. For example for the on-site ener-
gies, we get εα(GaxAl1−xAs) = xεα(GaAs) + (1− x)εα(AlAs). It is known that the
VCA is actually a very poor approximation due to the in�uence of alloy disorder.
The e�ect of alloy disorder can be taken into account e.g. by the coherent potential
approximation (CPA). However, since we only use alloy materials in the barriers
of our superlattices and quantum wells while the well materials are always taken
as binary compounds the alloy disorder has only minor in�uence on the electronic
properties of the quantum wells. The VCA therefore is a satisfactorily approxima-
tion in our cases. To employ the parametrization of Ref. [18] for heterostructures,
we additionally have to include the valence band o�sets and their pressure depen-
dence (the so-called absolute deformation potentials). We use the band o�sets and
absolute deformation potentials calculated by Wei and Zunger in Refs. [20, 21] and
rigidly shifted all on-site energies of the binary compounds relative to each other
to account for these e�ects and their volume dependence. Special care has to be
taken at the interfaces. Within a heterostructure such as ...�Ga�As�Al�As�..., the
on-site energies of the arsenic atoms are taken as symmetric average of those for
GaAs and AlAs, yielding e�ectively a smooth transition of the o�set energies across
the interface. The next-neighbor interaction is always taken form the corresponding
binary compound.

1.3. Implementation of spin-orbit coupling

For our purpose, it is of vital importance to include spin-orbit interaction into our
model since we are mainly interested in the spin-dependent dispersion of the lowest
conduction and the highest valence band near the Γ-point. We follow the approach
of Chadi [22] and include the spin-orbit interaction as intratomic coupling of the
p-orbitals.
The spin-orbit part of the relativistic Hamiltonian is given by

HSO =
1

2m2c2
(∇V × p) · S, (1.11)

where ∇V is the gradient of the crystal potential, p is the momentum operator,
and S the spin operator, which may be written in terms of the Pauli matrices as
S = ~/2 · σ, m is the mass of the particle, and c the speed of light. Assuming a
spherically symmetric potential V (r) with r = |r|, and using

∇V =
1

r

dV
dr

r, (1.12)
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1. Overview over semi-empirical tight-binding theory

we get a simpli�ed spin-orbit Hamiltonian

HSO =
1

2m2c2

1

r

dV
dr

L · S, (1.13)

where L is the angular momentum operator. We still need to �nd the matrix ele-
ments of HSO within the Bloch basis (Eq. (1.2))

(HSO)α′,α,L,L′ = 〈α′, L′ |HSO |α,L〉 . (1.14)

As already mentioned, we will assume that only states at the same atom get coupled
by the spin-orbit interaction. We have therefore (HSO)α′,α,L,L′ ∝ δL′,Lδτ ′,τ . Since
only states with nonzero angular momentum can produce nonzero matrix elements
of HSO, we are left with p and d orbitals. As a further simpli�cation, we will consider
only the coupling of the p-states and neglect the much smaller splitting of the d-
states. Thus the spin-orbit interaction adds only 6 additional matrix elements per
basis atom to the Hamiltonian (Eq. (1.4))

〈px,Rτ , ↑|HSO |py,Rτ , ↑〉 = −i∆τ ,

〈px,Rτ , ↓|HSO |py,Rτ , ↓〉 = i∆τ ,

〈pz,Rτ , ↑|HSO |px,Rτ , ↓〉 = −∆τ ,

〈pz,Rτ , ↓|HSO |px,Rτ , ↑〉 = ∆τ ,

〈py,Rτ , ↑|HSO |pz,Rτ , ↓〉 = −i∆τ ,

〈py,Rτ , ↓|HSO |pz,Rτ , ↑〉 = −i∆τ . (1.15)

Here the ∆τ are the atomic spin-orbit coupling parameter that may depend on the
atom τ in the unit cell.

1.4. Implementation of strain

In this work, we consider primarily superlattices and quantum wells. Since the well
material will in general have another lattice constant than the barrier material or the
substrate, strain becomes an important issue. Since we will only consider structures
grown in the crystallographic [001] direction, we put special emphasis on the uniax-
ial strain in that direction. Strain can change the symmetry of a solid, which has
signi�cant impact on the band structure, especially regarding degeneracies and spin
properties. In particular, for strained bulk structures the symmetry is lowered by
uniaxial strain, which makes some spin-dependent interactions possible which would
be forbidden by symmetry in the unstrained case. As mentioned above, a material
can be strained e.g. by growing a layer onto a lattice-mismatched substrate. For
layers thinner than a certain critical thickness, the growth can be assumed to be
pseudomorphic. Above that thickness, the material relaxes the strain e.g. by cracks
and mis�ts which destroys the translational invariance and thereby signi�cantly
lowers the quality of the quantum well for transport experiments. We will always
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1.4. Implementation of strain

assume a pseudomorphic growth with an intact translational invariance for our cal-
culations. For the strain, induced by a lattice mismatched substrate, there are two
distinct cases. First there is tensile strain. That means, that the lattice constant
of the substrate is larger than that of the layer. The lattice constant of the layer
material is enlarged perpendicular to the growth direction while in turn the lattice
constant in the growth direction gets smaller. The other possibility is compressive
strain, where the lattice constant of the substrate is smaller than that of the layer
which results in an opposite behavior of the lattice constants as compared to the
case of tensile strain.
The new atomic positions R′I in the strained case are related to the equilibrium

positions RI in the untrained case by the strain tensor ε in the following way,

R′L = (1 + ε)RI . (1.16)

The diagonal elements of the strain tensor give the relative displacements of the
atoms in the corresponding direction while the o�-diagonal elements are related to
the change of the angle between the two corresponding axes. In the case of uniaxial
strain in the [001] direction as considered in this work, the strain tensor becomes
diagonal,

ε =

 ε‖ 0 0
0 ε‖ 0
0 0 ε⊥

 . (1.17)

The biaxial strain component ε‖ is determined by the equilibrium lattice constant
of the layer material a0 and the lattice constant of the substrate a‖:

ε‖ =
a‖ − a0

a0

. (1.18)

The uniaxial strain component ε⊥ follows from ε‖ as,

ε⊥ = −
ε‖
σ
, (1.19)

where σ is the Poisson ratio, given by the elastic sti�ness constants C11 and C12 of
the material

σ =
C11

2C12

. (1.20)

The lattice constant in the growth direction a⊥ can thus be directly calculated from
the lattice constant of the substrate and the Poisson ratio of the layer material

a⊥ = a0

(
1− σ

a‖ − a0

a0

)
. (1.21)

The two possible cases of uniaxial strain can be classi�ed by:

tensile strain: ε‖ > 0, ε⊥ < 0 ⇒ a‖ > a⊥,

compressive strain: ε‖ < 0, ε⊥ > 0 ⇒ a‖ < a⊥.
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1. Overview over semi-empirical tight-binding theory

To incorporate strain into the tight-binding Hamiltonian, we need to know how
the matrix elements of the Hamiltonian (Eq. (1.4)) are changed. There are actually
two e�ects of the strain on the band structure. The �rst is a shift of the band
edges due to the change of the crystal volume, which is described by the absolute
deformation potential. The absolute deformation potential of the valence band aV
shifts the complete band structure proportional to the relative change in the volume
∆V/V . This means that all on-site elements (Eq. (1.5)) get shifted according to,

ε′α = εα + aV
∆V

V
, (1.22)

where ε′α denotes the strained on-site element of the orbital α. The relative change
of the volume can be calculated directly from the strain tensor ε as,

∆V

V
= Tr[ε], (1.23)

where �Tr� denotes the trace operator.
The second e�ect is related to the shear. Shear reduces the symmetry and there-

fore lifts degeneracies of the bands but does not shift their average value. One
example would be the four times degenerate Γ8 representation of the valence band
in zincblende bulk semiconductors which is given by the heavy hole and the light
hole band, each twice spin degenerate. Uniaxial strain in the [001] direction lifts
this degeneracy partly. The spin degeneracy of the bands is unchanged at Γ, but
the heavy hole and the light hole band are shifted apart. While compressive strain
shifts the heavy hole band up and the light hole band down, tensile strain does the
opposite. To incorporate the shear e�ect into the tight-binding theory, we have to
change the hopping elements (Eq. (1.6)) to account for the bond-angle distortion
and the changes in the bond lengths. The change in the bond angles e�ects the
phase factors in Eq. (1.4) and the direction cosines in the Slater�Koster couplings
(Eq. (1.10)) which can be taken into account using the analytic expressions derived
by Podolskiy and Vogl [19]. The change in the bond length is accounted for by
a change in the two-center integrals. Harrison [12] has shown that the two-center
integrals tijk can be expressed as a simple function of the nearest-neighbor distance
d in the strained material and the equilibrium distance d0

tαα′µ(d) = tαα′µ(d0)

(
d0

d

)ηαα′µ
. (1.24)

Originally Harrison proposed that ηijk = 2 independently of the considered states
α, α′. This assumption results in a fairly good description of the changes of the
band structure due to strain. Jancu et al. [18] have shown that by taking orbital
dependent exponents, the results can be improved signi�cantly. Additionally to the
change in the hopping elements, we need to take into account that uniaxial strain
in the [001] direction induces a tetragonal crystal �eld which lifts the degeneracy of
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the Γ4 d-orbitals dxy, dxz, and dyz,

ε′dxy = εdxy + 2bd,e�(ε⊥ − ε‖),
ε′dxz = ε′dyz = εdyz − bd,e�(ε⊥ − ε‖), (1.25)

where bd,e� is a material dependent e�ective shear parameter, which is adjusted to
reproduce the observed heavy hole�light hole splitting.

1.5. Summary

In this chapter, we have given a brief introduction into the tight-binding theory
for electronic structure calculations. We have discussed the common simpli�cation
within the model. We have shown how spin-orbit interaction and strain are incor-
porated into the theory. The tight-binding method is of importance for this work,
since we base our predictions for quantum devices on models, that are obtained from
tight-binding calculations, in order to render the band structure e�ects as exact as
possible. In heterostructures, the states close to the Γ-point result from coupling
of zone-center bulk states with zone-edge states due to the con�nement. This cou-
pling in�uences the spin-orbit interaction related properties signi�cantly, as we will
show in Chapter 3. Since the zone-edge states are not well described in simple k · p
theories, we rely on the tight-binding theory, that describes states within the entire
Brillouin zone more accurately.
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2. Novel relativistic tight-binding

method for HgTe and CdTe

2.1. Introduction

HgTe quantum well structures with CdTe barriers have attracted considerable inter-
est due to the recent prediction [23] and experimental observation [9] of the quantum
spin Hall e�ect in these structures. Many predictive calculations are based on the
8-band k ·p method [23�28]. This method reproduces the band structure of the bulk
material accurately only for wave vectors close to the Γ-point. In heterostructures,
however, the states close to the center of the two-dimensional Brillouin zone consist
of a mixtures of bulk zone center states and zone edge states. The latter are not
well described by k · p theory. Moreover, for the topological classi�cation in the
context of the quantum spin Hall e�ect [29] the two-dimensional band structure has
be known in the entire Brillouin zone (for more details see Chapter 10). Therefore,
a realistic tight-binding description of these materials is needed. The relativistic
tight-binding parameterizations given in the literature so far are based on the sp3s∗

model [30�32] which does not reproduce the electronic bulk band structure with
satisfactorily accuracy.
In this chapter, we develop a relativistic sp3d5-model that faithfully reproduces

the available experimental electronic structure data such as energy gaps at high sym-
metric points in the Brillouin zone, e�ective masses, spin-orbit splittings, of HgTe
and CdTe bulk materials and alloys [33�36], as well as band o�sets and subband
structure in quantum wells [37�41].

2.2. New sp3d5 parameters for HgTe and CdTe

We base our new parametrization on the nonrelativistic sp3d5 tight-binding theory
developed in Refs. [46�48]. The parametrization presented in Ref. [46] di�ers from
the one of Jancu et al. [18] in several important points. First, it does not include the
auxiliary s∗ orbital. The s∗ orbital was originally included by Vogl et al. [17] into
the minimal sp3 model to mimic coupling to more distant bands, which brought sig-
ni�cant progress to the accuracy of the conduction band. When the physically real
atomic d orbitals are included the s∗ is actually not necessary any more since the d
orbitals constitute coupling to more distant bands on a direct physical basis. Second,
the authors included the cation semicore d orbitals into their model which have been
neglected in Ref. [18]. Since in the narrow gap II-VI materials these cation d orbitals
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2. Novel relativistic tight-binding method for HgTe and CdTe

CdTe HgTe
literature present work literature present work

Γv8 0.00 0.00 0.00 0.00
Γv6 −10.91 [42] −10.91 −10.80 [33] −10.81
Γv7 (∆0) −0.89 [43] −0.88 −0.94 [44] −0.95
Γc6 (EG) 1.59 [34] 1.6 −0.30 [36] −0.30
Γc7 5.20 [34] 5.22 4.10 [34] 4.12
Γc8 5.45 [43] 5.44 4.61 [44] 4.78
Xv

6 −1.14 [44] −0.80 −1.83 [45] −1.72
Xc

6 4.35 [34] 4.54 3.17 [34] 3.14
Xv

7 −1.35 [35] −1.37 −2.03 [35] −2.15
Xc

7 5.82 [26] 6.06 3.57 [34] 3.54
Lv6 −0.97 [44] −0.98 −1.42 [34] −1.49
Lv4,5 −0.40 [44] −0.40 −0.67 [45] −0.85
Lc6 3.53 [26] 3.73 1.33 [34] 1.28
Lc6 6.39 [44] 6.38 5.83 [35] 5.57
Lc4,5 6.45 [44] 6.54 6.09 [44] 5.99

Table 2.1.: Band structure energies in eV at high symmetry points for bulk CdTe
and HgTe. Values calculated within the present tight-binding scheme
and target values taken from the literature obtained experimentally [33�
36] and theoretically by GW [42] or pseudopotential method [26, 43�45].
All energies given relative to the Γv8 top valence band.

have a signi�cant in�uence on the electronic structure as has been pointed out by
Wei and Zunger [49], it is reasonable to include them into a model for HgTe and
CdTe. However, in Refs. [46�48] the parameters were obtained by �tting the band
structure to results exclusively obtained by the local density approximation (LDA).
It is known, that that method cannot reproduce the fundamental band gap satisfac-
torily. Bulk HgTe is a zero gap semiconductor (semimetal) with a symmetry induced
degeneracy of conduction and valence bands at the Brillouin zone center [50]. The
lowest conduction band and the highest valence band at the Γ-point are formed by
the fourfold degenerate Γ8 representation. At �nite wave vector the light hole band
bends up, constituting the lowest conduction band while the highest valence band is
actually the negatively bent heavy hole band. The second valence band is known to
be the Γ6 derived band, which constitutes the lowest conduction band in a normal
semiconductor. At the Γ-point the Γ8 and the Γ6 representation are separated only
by approximately 300mV. This separation is often referred to as negative band
gap energy EG, since in standard semiconductors, the Γ6�Γ8 splitting constitutes
the fundamental gap EG > 0. In HgTe, at �nite k-values close to the Γ-point the
Γ6-derived band has a negative e�ective mass due to the interaction with the light
hole band. Approximately 600mV lower in energy than the Γ6 band lies the split-o�
hole (Γ7-representation) with a negative e�ective mass as usual. In LDA calcula-
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CdTe HgTe CdTe HgTe
εcs 1.88 0.33 εcd(t2) -6.97 -5.77
εas -8.86 -8.36 εcd(e) -7.42 -6.07
tssσ -0.80 -0.74 εad(t2) 15.83 13.97
εcp 10.05 7.96 εad(e) 14.63 12.80
εap 0.56 1.76 tsdσ -2.11 -1.79
tspσ 2.42 1.81 tdsσ -0.26 -0.52
tpsσ 1.39 0.68 tpdσ -2.42 -1.73
tppσ 1.96 2.90 tdpσ -1.52 -1.29
tppπ -0.33 -0.55 tpdπ 1.9 1.82
∆c

SO
0.08 0.27 tdpπ 0.27 0.31

∆a
SO

0.34 0.38

Table 2.2.: Resulting sp3d5 tight-binding parameters in eV for CdTe and HgTe.

tions this band ordering is predicted incorrectly. The electrons (Γ6-representation)
and the split-o� hole (Γ7-representation) are exchanged. Additionally, the split-o�
hole acquires a falsely positive e�ective mass close to the Γ-point due to the inter-
action with the lower lying Γ6 band, see e.g. Refs. [51�54]. Moreover, Ref. [46] is
a nonrelativistic model that does not take into account the spin-orbit interaction,
which is of great importance since the involved ions are very heavy and thus have
a large atomic spin-orbit interaction. In turn, these materials have a very large
split-o� energy of approximately 1 eV for both HgTe as well as CdTe. Both features
of the band structure, the correct band gaps as well as the inclusion of spin-orbit
interaction is of great relevance for this work, since we are mainly interested in the
spin-dependent properties of the subbands in heterostructures. These can only be
successfully calculated with an appropriate parametrization for the bulk material.
We have therefore adjusted the parametrization in such a way, that the important
features of the relativistic bulk band structures of HgTe and CdTe are reproduced.

We have selected target values for the �tting procedure from a large set of band
features from ab initio data as well as experimental results. A good overview of calcu-
lated and measured results for both HgTe and CdTe can be found in Refs. [26, 30].
The selected target values are given in Table 2.1. The tight-binding parameters
have been obtained by a least square �t for these points. Since we only �t the
tight-binding band structure at high symmetry points, we have to take great care
that we obtain reasonable results for the band structure between these points. In
particular, we have to make sure that the known compatibilities relations between
representations at the high symmetry points are ful�lled [55]. Furthermore, we have
to make sure, that reasonable eigenvectors correspond to the calculated eigenener-
gies. For example, the electron band (Γ6 representations close to the fundamental
gap) is dominated by the s-orbitals of the metallic cation, while the corresponding
hole bands (Γ8-representation) is dominated by the anion's p-orbital. Additionally,
the known chemical trends have to be reproduced. From the universal tight-binding
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Figure 2.1.: Bulk band structure of HgTe (left) and CdTe (right) calculated with
the present tight-binding model. The blue lines show the Γ6-derived
bands and the red and the green lines the Γ8-derived ones. The red
lines depicts the heavy hole, while the green lines shows the light hole.
The included k-points are: Γ = (0, 0, 0), X = (1, 0, 0), L = (.5, .5, .5),
K = (.75, .75, 0), and W = (1, .25, 0).

parameters calculated by Harrison [18], it is known that e.g. the coupling between
s-states, tssσ, is negative while for the hopping element between p-states tppσ > 0 and
tppπ < 0 with |tppπ| < |tppσ|. In zincblende semiconductors, we generally have di�er-
ent parameters for the hopping between the same states on di�erent atoms. That is
the hopping matrix element between the s-orbital on the cation and the p-orbital on
the anion, tspσ is di�erent from the one that connects the p-orbital on the cation and
the s-orbital on the anion, tpsσ. Due to the included orbitals, certain relations hold
between the coupling parameters. On the cation, we include the semicore d-orbitals
which are tightly bound to the core and the valence s and p states which are more
extended. That means the ordering of the included orbitals is d − s − p. For the
anion on the other hand, we include the fully occupied s-orbital, the partially occu-
pied p-orbitals and the empty d-orbitals, i.e. the ordering is s− p− d. It is therefore
reasonable that |tdsσ| < |tsdσ|, |tpsσ| < |tspσ|, and |tdpσ,π| < |tpdσ,π|.
The resulting parameters of our �tting procedure are given in Table 2.2, the energy

eigenvalues at the high symmetry points, calculated with the obtained parametriza-
tion are also given in Table 2.1, to compare with the target values. The resulting
band structure is plotted in Fig. 2.1. The left panel shows results for HgTe and
right panel for CdTe. The important bands around the fundamental gap are shown
in thick colored lines. The blue line shows the electron band (Γ6-representation)
which constitutes the lowest conduction band in CdTe but the second valence band
in HgTe. The calculated e�ective masses are m∗ = .15 for CdTe and m∗ = −.04 for
HgTe respectively. The Γ8-representation is shown as red and green lines. The heavy
hole bands with an e�ective mass of m∗[100] = −.67 for CdTe and m∗[100] = −.55 for
HgTe are given in red while the light hole band with an e�ective mass of m∗ = −.14
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Figure 2.2.: Band structure properties of CdxHg1−xTe as a function of the alloy
composition x. The dotted line shows the distance between the lowest
conduction band and the highest valence band at the L-point (Lc6−Lv4,5).
The solid line shows the value of the fundamental gap Γc6−Γv8 while the
dashed line depicts the value of the spin-orbit splitting Γv8 − Γv7. The
gray line depicts the zero of energy.

for CdTe and m∗ = .035 for HgTe are given in green. The calculated e�ective masses
are well within the reported values in the literature, see Ref. [26] and references
therein. Please note that it is known [46] that some features of the band structure
cannot be reproduced within a nearest neighbor tight-binding model. Some of these
can be corrected if one includes coupling to more distant atoms. However, these
features occur in higher conduction bands and lower valence bands away from the
Γ-point. Since these bands do not have a signi�cant relevance for the properties we
are interested in, we stick with the nearest neighbor model due to the advantages
discussed in Sec. 1.2.

To check the consistency of our obtained parameters, we have also calculated the
properties of the bulk alloy CdxHg1−xTe at the Γ and at the L-point. We use the
simple virtual crystal approximation (VCA) without correction for the alloy disorder.
The results are shown in Fig. 2.2. The solid line shows the band gap energy EG which
starts at the negative value of EG = −.3 eV at the left for the binary compound HgTe
and ends at 1.6 eV at the right side for pure CdTe. A special point is, where the
band gap vanishes and the Γ8 and Γ6 representation are degenerate. This point is
expected between x = .17 [26] and x = .2 [31], which is well reproduced by our
model as we get x = .18. At this point the light hole and the electron band are
expected to be completely symmetric, i.e. the bands are expected to have the same
e�ective mass with opposite sign, which is exactly reproduced in our calculations.
The dependence of the spin-orbit splitting on the alloy composition x is shown by
the dashed line in Fig. 2.2. Another special point in the alloy composition is reached
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when the band gap EG equals the spin-orbit splitting ∆SO. We get this point for
x = .66 which agrees well with literature [26]. We also show the behavior of the gap
at the L-point by the dotted line in Fig. 2.2 which also compares well with literature
[26, 31]. In Chapter. 4, we will apply the model to heterostructures and quantum
wells.

2.3. Summary

In this chapter, we have presented our novel sp3d5-parametrization for the semi-
empirical tight-binding model for CdTe and HgTe that reproduces very well the
bulk band structures and alloy properties taken from ab initio calculations and
experiment. Since we include the very important spin-orbit coupling, there is no
comparable parametrization published in literature so far to our knowledge. In
Chapter 4, we will apply this model to HgTe/CdTe heterostructures that are of
great interest in the context of the spin-Hall and the quantum spin Hall e�ect.
We will further develop a novel envelop function theory in Sec. 4.3 for HgTe/CdTe
heterostructures on the bases of the tight-binding calculations that we employ to
predict quantum transport properties in HgTe nanostructures. In particular, we
propose a realization of a spintransistor on the basis of the quantum spin Hall e�ect
in Sec. 10.6.
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3. Results for the k-linear
spin-orbit coupling in

semiconductor quantum wells

3.1. Introduction

By their proposal of a spin transistor, Datta and Das [1] created the modern �eld of
semiconductor spintronics. They proposed the so-called Rashba e�ect as the mech-
anism to control the spin current in the device channel. This e�ect, which was orig-
inally predicted by Bychkov and Rashba [56] is caused by a zero-magnetic �eld spin
splitting of nondegenerate band edge states. The splitting is linear in the electron
wave vector and my be steered by an applied top gate voltage [57]. The prediction
was based on a symmetry analysis of the k ·p Hamiltonian for semiconductors with
a wurzite crystal structure. The e�ect has been extensively studied theoretically, see
e.g. Refs. [3, 58�60]. Most of the work has also employed a k ·p analysis. As we will
show later, the k · p theory fails to predict qualitatively the important properties
of the dominant spin-orbit related band splitting phenomena. Particularly, we will
show that, in contrast to the widespread assumption, the Rashba e�ect is not dom-
inant in general. We show that another spin-orbit induced k-linear spin splitting of
band edge states that is nonzero already at higher symmetry, is controllable by an
electric gate �eld, and can be enhanced by band structure engineering by up to two
orders of magnitude. The chapter is organized as follows. In Sec. 3.2, we review the
spin-orbit coupling mechanisms for nondegenerate bands, namely the Dresselhaus
and the Rashba type spin-orbit coupling. In Sec. 3.3, we present our results for var-
ious semiconductor heterostructures in an external electric �eld, while in Sec. 3.4,
we predict unexpectedly strong spin-orbit coupling for specially strain engineered
GaAs two-dimensional hole gases. Finally, in Sec. 3.5, we investigate the in�uence
of higher order in k spin-orbit coupling.

3.2. Theory of spin-orbit induced k-linear band

splitting

We focus on zincblende heterostructures and superlattices that are grown along the
[001] crystallographic axis. This includes uniaxially [001]-strained bulk materials.
We chose an orthogonal coordinate system with the z-axis along the growth direction
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3. Results for the k-linear spin-orbit coupling in semiconductor quantum wells

and the x and y axis along the [100] and [010] direction, respectively. We choose
the conventional representation of the Pauli matrices σ = (σx, σy, σz) where σz is
diagonal, i.e. the spin quantization axis is chosen along the growth direction.
The point group symmetry of the considered zincblende structures is at most

D2d. The D2d symmetry occurs, for example, in strained bulk materials, in sym-
metric heterostructures of type A : B : A, where A and B denote di�erent semi-
conductor materials of a given width that either share a common anion or cation
(e.g. AlAs:GaAs:AlAs), or in AnBm superlattices such as (GaAs)n(AlAs)m where
2n + 2m is a multiple of four. Nonsymmetric heterostructures of type A : B : C
or symmetric heterostructures with a �nite electric �eld along the growth direction
possess a C2v symmetry, only. All structures possess a translational symmetry in the
lateral plane and have spin-degenerate band states at the Brillouin zone center k = 0
(Γ-point) in zero magnetic �eld due to the Kramers theorem. This spin degeneracy
is lifted for �nite k-states away from the Γ-point. In the case of [001]-strained bulk,
the spin degeneracy remains intact along the [001] or ∆-axis in reciprocal space. The
relativistic electronic Hamiltonian matrix of a nondegenerate band n up to quadratic
order in the inplane wave vector (valid su�ciently close to Γ only) has the general
form,

H(nk) =
~2

2m∗
k2 · σ0 + αBIA(−kxσx + kyσy) + αSIA(kyσx − kxσy) +O(k3), (3.1)

where k = (kx, ky) is the inplane wave vector, m∗ is the e�ective mass of the band,
and σ0 denotes the 2× 2 unity matrix. The constants αBIA and αSIA, which clearly
depend on the band index n arise from the spin-orbit interaction. The constant αSIA
is nonzero only in C2v symmetric systems and vanishes for D2d symmetry. It has
therefore been termed structural inversion asymmetry (SIA) constant. The term
∝ αSIA is the so-called Rashba spin-orbit interaction term. The constant αBIA, on
the other hand, is nonzero also for D2d symmetry and only vanishes in zincblende
structures for the full cubic (Td) point symmetry. The term ∝ αBIA is often referred
to as Dresselhaus spin-orbit coupling. The name of this constant stems from k · p
theory. In the extended 14-band Kane model, a term of that form can be derived
which is absent in simple 8-band calculations [3]. In contrast to the 8-band model,
the 14-band model takes into account the inversion asymmetry of the bulk zincblende
crystal at least perturbatively. The spin-orbit coupling constant has therefore been
termed bulk inversion asymmetry (BIA) constant. As will become clear below,
this spin-orbit coupling e�ect does not arise from zone-center electronic states and
generally has properties that di�er radically from that predicted by simple k · p
models. Note that the form of the Hamiltonian (Eq. (3.1)) is completely general and
does not result from a �nite-band k · p model. The Hamiltonian (Eq. (3.1)) has the
eigenvalues,

E±(k) =
~2

2m∗
k2
‖ ±

√
α2
BIA

+ α2
SIA

+ 2αBIAαSIA sin (2φ) k‖, (3.2)
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Figure 3.1.: Schematics of the spin orientation in zincblende semiconductor quan-
tum wells. (left) D2d symmetric quantum wells with vanishing Rashba
spin-coupling constant. (right) C2v symmetric quantum wells with both
Dresselhaus spin-orbit coupling and Rashba spin-orbit coupling.

with the corresponding eigenvectors,

〈r,± | k±〉 =
1√
2
eik±r

(
ie−iΦ

±1

)
, (3.3)

where we have introduced the absolute value of the lateral wave vector k‖ = |k| and
kx = k‖ cosφ and ky = k‖ sinφ. The spin angle Φ is de�ned as,

Φ = arg[αBIA sinφ+ αSIA cosφ+ i(αBIA cosφ+ αSIA sinφ)]. (3.4)

The k-linear spin-orbit coupling can actually be described by a Zeeman-like e�ective
magnetic �eld [3], the so-called spin-orbit �eld. The Hamiltonian (Eq. (3.1)) can be
written in the form,

H(nk) =
~2

2m∗
k2 · σ0 + µBσ ·Be�, (3.5)

with the e�ective magnetic �eld µBBe� given by,

µBBe�(k) = αBIA

(
kx
−ky

)
+ αSIA

(
−ky
kx

)
. (3.6)

This �eld determines the spin orientation of the eigenstates in C2v symmetric struc-
tures (Eq. (3.4)). The spin orientation at the Fermi surface is depicted schematically
in Fig. 3.1 for the case of D2d symmetry (left), i.e. αSIA = 0 and the case of C2v sym-
metry (right), where both spin-orbit coupling mechanisms are present. The spin
splitting of the energy bands away but close to Γ is given by,

∆ESO = 2k‖

√
α2
BIA

+ α2
SIA

+ 2αBIAαSIA sin(2φ), (3.7)

To derive the spin-orbit coupling constants, we can use the unit vectors in polar
coordinates eφ = (− sinφ, cosφ) and e′φ = (cosφ,− sinφ) to extract the spin-orbit
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3. Results for the k-linear spin-orbit coupling in semiconductor quantum wells

coupling constants from the e�ective magnetic �eld via the following relations,

αBIA = lim
k‖→0

µB
2πk‖

∫
Be� · e′φdφ, (3.8)

αSIA = lim
k‖→0

µB
2πk‖

∫
Be� · eφdφ.

We have employed our semi-empirical tight-binding theory as described in Chap-
ter 1. We wish to compute the spin splitting for heterostructures or pseudomorphic
superlattices. For computational convenience, we always use periodic supercells.
However, relatively short barriers between the quantum wells are su�cient to obtain
converged results corresponding to a quantum well sandwiched between in�nitely
thick barriers. There are two ways to calculate the k-linear spin-splitting constants
for nondegenerate band states from the full-band tight-binding Hamiltonian. One
way is to directly diagonalize the entire electronic Hamiltonian H = HNR + HSO,
where HNR is the nonrelativistic part and HSO is the spin-orbit interaction. Accord-
ing to Eq. (3.7), the moduli of the constants αBIA and αSIA can be determined by
calculating the band energy splitting along the [110] and [11̄0] direction in the limit
of k‖ → 0. This procedure implicitly maps the full-band tight-binding Hamiltonian
onto the 2× 2 matrix (Eq. (3.1)) and includes the e�ects of all other bands nonper-
turbatively. The second procedure is to use perturbation theory and construct the
2 × 2 Hamiltonian for a nondegenerate band explicitly. To this end, we determine
all nonrelativistic eigenfunctions |nk〉

NR
of HNR and compute the matrix elements

of HSO in the basis of the product states |nk〉
NR
|σ 〉 where σ ∈ {↑, ↓} are the spin

basis states, i.e. we compute the matrix,

Hσ,σ′(nk) =
NR
〈nkσ |HSO |nkσ′ 〉NR , (3.9)

that corresponds to the Hamiltonian matrix (Eq. (3.1)). This procedure gives in
polar coordinates,

αSIA
αBIA

}
= lim

k‖→0

1

2k‖

[
−iH↑↓(n, φ =

π

4
)±H↑↓(n, φ = −π

4
)
]
, (3.10)

which is valid for nondegenerate band edges and for su�ciently small values of ∆k‖.
Note that the �+� sign has to be used for αSIA, while the �−� sign refers to αBIA.
We will mostly employ the �rst method, since it gives nonperturbative results for
the spin-splitting constants. However, we use the second method as a consistency
check for the �rst one.

3.3. New results for symmetric quantum well

structures in electric �elds

In this section, we present results for symmetric quantum well structures in constant
external electric �eld. The studied structures are D2d symmetric superlattices of
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Figure 3.2.: k-linear spin-orbit coupling parameters in (GaAs)n(AlAs)4 superlattices
for various electric �elds F as a function of the well width given by
the number of GaAs layers n. The black lines show the case of zero
electric �eld, the red lines F = 125 kV/cm, and the blues line F =
250 kV/cm. (left) Dresselhaus coupling constant αBIA. (right) Rashba
coupling constant αSIA. Note that for F = 0, αSIA ≡ 0.

the kind AnBm such as (GaAs)n(AlAs)m. We always take 2m + 2n as a multiple
of four in order to have a tetragonal unit cell. In addition, we set the barrier
material su�ciently thick so that the wave functions of neighboring quantum wells
do not overlap signi�cantly. In the case of AlAs already four layers turn out to
be su�cient due to the large conduction band o�set to GaAs. For other material
combinations thicker barrier layers may be needed. Therefore, we always checked
the results for convergence concerning the barrier thickness. While all structures
possess D2d symmetry and consequently do not have a nonzero Rashba coupling
αSIA, we can lower the symmetry to C2v by applying a constant electric �eld within
the quantum well. Note that an electric �eld in the barriers does not in�uence the
lowest conduction band states within the quantum wells signi�cantly.
For heterostructures, simple versions of envelope function theory such as 8-band

k ·p models predict the following properties of the spin-splitting coupling constants
associated with nondegenerate band edges, in particular the lowest conduction band
edge:

1. The Dresselhaus spin-orbit coupling is determined by the relation αBIA =
γ 〈k2

z〉, where γ is the bulk Dresselhaus constant and the average is taken
over the wave function at the Γ-point along the growth axis. Consequently,
αBIA ∝ L−2 decreases rapidly with the quantum well width L.

2. The Rashba spin-orbit coupling vanishes for any symmetric quantum well of
type A : B : A and therefore also for AnBm superlattices.

3. In an externally applied electric �eld F along the growth axis, the Dresselhaus
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3. Results for the k-linear spin-orbit coupling in semiconductor quantum wells

coupling constant remains una�ected by the �eld, whereas the Rashba coupling
constant increases proportional to it, leading to a dominance of the latter for
wide enough quantum wells.

In the following, we present full-band calculations of the spin splitting associated
with the lowest conduction band edge in (GaAs)n(AlAs)m, (InAs)n(InxAl1−xAs)m,
and (InSb)n(InxAl1−xSb)m superlattices. They show markedly di�erent results due
to the strong mixing of the zone center conduction band states with backfolded zone
edge conduction band Bloch states and with zone center valence band states that is
caused by the �eld-induced localization. In Fig. 3.2, we show the predicted values
for αBIA (left panel) and αSIA (right panel) for the lowest conduction band in the
(GaAs)n(AlAs)4 superlattices, as a function of the number of GaAs-layers n and
for various electric �elds F in kV/cm, as calculated with the present tight-binding
method. For narrow heterostructures, the Dresselhaus spin-orbit coupling constant
αBIA is seen to be independent of the applied �eld in accord with envelope function
theory. For wider wells and high electric �elds, however, the potential drop reaches
some hundreds of meV. This leads to a localization of the conduction band wave
function in real space that is shown in the left panel of Fig. 3.3 for various values of
the electric �eld and the case of n = 46 GaAs well layers. This localization enhances
the Dresselhaus spin-orbit coupling constant approximately linear with the electric
�eld and saturates for long well width. This saturation can be easily understood. For
a given electric �eld F, the wave function is localized in one part of the quantum well
region (depicted schematically by the inset in the right panel of Fig. 3.3) and does
not feel a prolongation of the well that does not alter the potential drop. The Rashba
spin-orbit coupling constant αSIA, shown in the right panel of Fig. 3.3, shows exactly
the same trend as αBIA but saturates at a smaller value. Thus in contrast to the wide
spread assumption also the Dresselhaus coupling constant can be excellently steered
by an external top-gate voltage, in the case of GaAs quantum wells even better
than the Rashba spin-orbit coupling constant. The left panel of Fig. 3.3 shows the
absolute square of the total conduction band wave function, which is dominated by
s-orbitals of the gallium atoms. Therefore, only a small portion of the wave function
is responsible for the k-linear spin splitting. Since the spin-orbit interaction only
couples p-states in the tight-binding Hamiltonian with one another (we are ignoring
the small d-state spin-orbit coupling here), the relevant part of the wave function
that determines the spin splitting is its projection onto the p-basis states. In the right
panel of Fig. 3.3, we show the absolute square of the pz-component of the conduction
band wave function at the Γ-point. The localization of the wave function is seen to
markedly enhance the pz contributions to the conduction band wave function near
the interface. In the bulk these states predominantly form the light hole bands.
Finally, we want to point out, that the spin splitting depends dominantly on the

spin-orbit interaction within the quantum well. In order to show that, we have
repeated the calculation for (GaAs)96(AlAs)4 superlattice with a constant �eld of
F = 125 kV/cm. An arti�cial increase of the spin-orbit interaction in the AlAs
barrier material by 20% changes αBIA by only 3% and αSIA by 8%, respectively.
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Figure 3.3.: Absolute square of the lowest GaAs-like conduction band wave function
at k = 0 for a (GaAs)46(AlAs)4 superlattice as a function of the number
of the atomic layer for various electric �elds F. Note that the total
number of atomic layers is 100 in this case. The black lines shows the
case of zero electric �eld, the red line F = 120 kV/cm, and the blue lines
F = 250 kV/cm. The vertical gray line depicts the material interface.
(left) Absolute square of the total wave function, including contributions
from all orbitals. (right) Absolute square of the pz contribution only.

We now turn to InAs heterostructures. In particular, we present results for
(InAs)n(In.75Al.25As)m superlattices which can be grown pseudomorphically [61].
Since the lattice constants of InAs and AlAs are quite di�erent, a signi�cantly higher
Aluminum concentration in the barrier would induce high strain to the structure,
such that it would not be pseudomorphic any more. In Fig. 3.4, we show again the
predicted values for αBIA (left panel) and αSIA (right panel) for the lowest conduc-
tion band in the InAs quantum well, as a function of the number of InAs-layers n
and for various electric �elds F. The trends are the same as in the GaAs case. We
�nd an αBIA of about the same magnitude as before. From simple envelope func-
tion approximation (EFA), however, we would expect a Dresselhaus coupling, that
is approximately twice as large due the enlarged material parameter γ. Since InAs
has a much smaller band gap, the p-content should be enhanced and therefore also
the spin-orbit coupling constants. The reason for the unexpected small αBIA is the
penetration of the conduction band wave function into the barrier. The barrier for
the InAs case is much lower than for the GaAs case due to the smaller conduction
band o�set of InAs to the alloy In.75Al.25As in the barrier. Therefore, the wave
function is less localized, which leads to a decrease in the Dresselhaus spin-orbit
coupling. This relative e�ective prolongation of the well is largest for short wells,
where the lowest conduction band state is closer to the band edge in the barrier
such that the wave function penetrates deeply into the barrier layers. Note that
we need approximately m = 98 barrier layers to get converged results for smaller
well width. The Rashba spin-orbit coupling constant, on the other hand, reaches
much higher values with the electric �eld applied, as compared to the GaAs quan-
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Figure 3.4.: k-linear spin-orbit coupling parameters in (InAs)n(In.75Al.25As)98 super-
lattices for various electric �elds F as a function of the well width given
by the number of InAs well layers n. The black lines show the case
of zero electric �eld, the red lines F = 80 kV/cm, and the blue lines
F = 160 kV/cm. (left) Dresselhaus coupling constant αBIA. (right)
Rashba coupling constant αSIA. Note that for F = 0, αSIA ≡ 0.

tum wells. As a last material system, we study (InSb)n(In.8Al.2Sb)m superlattices.
InSb quantum wells with In.8Al.2Sb barriers can be grown pseudomorphically [62�
64]. InSb has an even smaller band gap than InAs. In fact, already intermediate
external electric �eld break the gap of a wide InSb quantum well. We restrict the
applied electric �elds such that the band gap stays intact and the lowest conduction
band is formed predominantly by the indium s-orbitals. In Fig. 3.5, we show the
results of our calculations. Just as before, we plot the calculated αBIA in the left
panel and αSIA in the right panel as a function of the well width for various electric
�elds. As expected both spin-orbit coupling constants are drastically enhanced as
compared to GaAs and also compared to the InAs superlattices. Again, as in the
InAs case, the Dresselhaus spin-orbit interaction is limited for shorter wells due to
the small barrier heights. Again, we need approximately m = 98 barrier layers,
due to the wave function penetration into the barrier layers. The calculated trends
in the spin-orbit coupling constants make InSb quantum wells a very interesting
material system for spintronic applications. For zero or small external electric �eld,
the spin-orbit coupling mechanism is dominated by the Dresselhaus type coupling
with a very large value of αBIA compared to the other studied material systems. On
the other hand the steering of the Rashba coupling constant with the electric �eld
is excellent. Therefore, already for moderate �elds, one reaches the interesting case
of αBIA = αSIA. For larger electric �elds the Rashba coupling becomes dominant.
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Figure 3.5.: k-linear spin-orbit coupling parameters in (InSb)n(In.8Al.2Sb)98 super-
lattices for various electric �elds F as a function of the well width given
by the number of InSb well layers n. The black lines show the case
of zero electric �eld, the red lines F = 60 kV/cm, and the blue lines
F = 120 kV/cm. (left) Dresselhaus coupling constant αBIA. (right)
Rashba coupling constant αSIA. Note that for F = 0, αSIA ≡ 0.

3.4. Prediction of strain-enhanced spin splitting

In this section, we show that the k-linear spin-orbit band splitting can be enhanced
by up to two orders of magnitude, both in bulk material as well as in heterostructures
by strain engineering. We focus on valence bands in this section where we �nd this
e�ect to be particularly pronounced. Consider (001)-strained bulk GaAs, grown
pseudomorphically onto a substrate such as InxAl1−xAs. Since InAs possesses a
larger lattice constant than GaAs, depending on the indium content x the GaAs
will be tensile strained. We note that tensile strained GaAs structures can also be
achieved by incorporation of phosphorus during the growth [65, 66]. The tensile
strain leads to a splitting of the light hole and the heavy hole bands in such a
way that the light hole forms the nondegenerate top valence band edge at the Γ-
point. The degeneracy of the Γ8-representation is lifted because the strain actually
reduces the symmetry of the bulk to D2d, which in turn leads to a �nite k-linear spin
splitting in the lateral plane o� the Γ-point and hence to a �nite value for αBIA. In
GaAs/InxAl1−xAs heterostructures, where InxAl1−xAs acts as the barrier and sets
the lateral lattice constant [67], the con�nement already lifts the degeneracy of the
heavy and the light hole bands leading to a nonzero αBIA already in the unstrained
case. However, the con�nement e�ect lifts the degeneracy in such a way, that the
heavy hole band becomes the highest valence band. It thus counteracts to the tensile
strain. Indeed, a change of the highest valence band from heavy hole like to light hole
like as a function of the strain has already been observed experimentally for GaAs
superlattices [68]. We have calculated αBIA of the topmost light hole like valence
band both for strained bulk GaAs as well as for strained GaAs heterostructures for
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Figure 3.6.: (left) Dresselhaus spin-orbit coupling parameter αBIA and (right) ef-
fective mass m∗ for the top valence band in tensile strained GaAs on
InxAl1−xAs as a function of the indium content x and tensile strain,
respectively. The solid lines show the result for (GaAs)50(InxAl1−xAs)16

superlattices, the dashed lines for bulk, both calculated with the present
tight-binding method. The dotted line shows results for bulk calculated
with 14-band k · p theory.

lateral tensile strain characterized by the parameter ε = (a‖− aGaAs)/aGaAs ranging
from approximately 0.5% to approximately 2%, which corresponds to an indium
composition x in the barrier material or substrate that ranges from x = .05 to
x = .3, respectively. In Fig. 3.6, we show the resulting spin-splitting constant αBIA
as predicted by the present tight-binding method for the topmost valence band state
in strained bulk GaAs and in (GaAs)50(InxAl1−xAs)16 superlattices corresponding
to approximately 14 nm wide GaAs quantum wells, respectively. Additionally, we
show results from a 14-band k · p calculation [69]. The calculations show that
αBIA increases drastically as a function of the tensile strain. This result is quite
unexpected as the spin-orbit interaction itself is a mostly intra-atomic interaction
and therefore insensitive to strain. Also the strain induced splitting of the d-orbitals
does not directly in�uence the spin-orbit interaction, since we neglect the generally
small spin splitting of the d-states. Indeed, there is no such drastic increase of αBIA
for the lowest conduction band. For the same GaAs heterostructure, for example,
we �nd αBIA = .9meVnm for zero strain and αBIA = 1.0meVnm for 2% tensile
strain. In the right panel of Fig. 3.6, we show the calculated e�ective mass m∗ of the
topmost valence band for the same superlattice and the strained bulk as a function
of tensile strain or indium composition x, respectively. Also shown are again the
results for the strained bulk from the k ·p theory. The calculated e�ective masses do
not depend on the strain much. The strong variation of m∗ in the superlattice case
for smaller values of the strain can be explained by the band crossing of the heavy
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Figure 3.7.: Dresselhaus spin-orbit coupling parameter αBIA for the top valence band
in tensile strained (GaAs)n(In.12Al.88As)16 superlattices as a function of
the well width given by the number of GaAs well layers n (red line).
The black line shows the corresponding bulk value.

and the light hole [68]. For the e�ective mass of the strained bulk, we �nd excellent
agreement between the present tight-binding method and the k · p calculations,
whereas k ·p theory predicts an about a factor of two smaller e�ect for the spin-orbit
splitting. However, the increase of αBIA as a function of the strain is still signi�cant.
From the tight-binding calculations, we �nd that the strain induced enhancement
of the Dresselhaus spin-orbit coupling constant is actually largest for the topmost
valence band in tensile strained bulk. In Fig. 3.7, we show the calculated Dresselhaus
spin-orbit coupling constant for (GaAs)n(In.12Al.88As)16 superlattices corresponding
to approximately 1% strain as a function of GaAs well layers n. Also shown is
the corresponding value for an equally strained bulk system. As the well width
increases, αBIA increases as well and approaches the bulk value for large well widths.
This behavior can be understood as follows. With the tensile stain the heavy and the
light hole separate. However, as already mentioned, the quantization e�ect in the
quantum well, which decreases with well width, countercats the e�ect of the tensile
strain. That means that for a given strain the separation between the heavy and
the light hole bands is largest in the case of tensile strained bulk and decreases with
decreasing width of the quantum well. To prove the relevance of the heavy and light
hole splitting for the predicted strain enhancement of the spin splitting, we show in
Fig. 3.8 (right) the calculated αBIA for the (GaAs)50(InxAl1−xAs)16 superlattices and
for the bulk system as function of the heavy and light hole splitting, induced by the
tensile strain. In this case, both systems show a good agreement which proves that
it is actually the splitting of the hole bands that induces the drastic increase of the
spin-orbit coupling constant with strain. The physical origine can be understood by
the relative composition of the wave functions. In Fig. 3.8 (left), we show the relative
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Figure 3.8.: (left) Absolute square of the p-content of the wave function for the top
valence band in tensile strained GaAs on InxAl1−xAs as a function of the
indium content x and tensile strain, respectively. The solid lines show
results for (GaAs)50(InxAl1−xAs)16 superlattices and the dashed lines for
bulk. Red shows the pz content while blue shows the sum of px and py
contributions. (right) Dresselhaus spin-orbit coupling parameter αBIA
for the top valence band in tensile strained GaAs on InxAl1−xAs as a
function of the energy splitting between the heavy hole and the light hole
state at k = 0. The solid line shows results for (GaAs)50(InxAl1−xAs)16

superlattices and the dashed line for bulk.

pz contribution as well as the relative contribution of the sum of px and py states to
the absolute square of the total wave function at the Γ-point of the topmost valence
band as a function of strain for the same heterostructure and for strained bulk. In
the unstrained bulk case the px and py-orbitals form the heavy hole states while the
pz-oribitals predominantly form the light hole states. We �nd an increase of the pz
content with strain whereas the px,y contribution decreases. For the tensile strained
bulk, the pz contribution is always larger and the px,y content lower as compared to
the heterostructure. Thus, we �nd that it is the pz contribution that is responsible
for the k-linear spin splitting of a nondegenerate band close to the Γ-point, which
agrees with the �ndings in the previous Sec. 3.2.

3.5. In�uence of higher order in k spin splitting

In this section, we want to investigate the in�uence of higher order in k terms on
the spin splitting of nondegenerate band edges. In Eq. (3.1), the expansion in the
lateral wave vector only includes terms up to quadratic order in the wave vector.
We will show, that this is su�cient only for very small values of the wave vector k‖,
smaller than approximately 1% of the reciprocal lattice vector G. We �rst focus on
D2d symmetric structures. In Fig. 3.9, we plot the calculated spin-splitting energy
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Figure 3.9.: Spin-splitting energy in a tensile strained (GaAs)50(In.1Al.9As)16 super-
lattice for various values of the absolute value of the wave vector |k| = k‖
in units of the reciprocal lattice vector |G| as a function of the polar an-
gle relative to [100]. (left) Top valence band. (right) Lowest conduction
band.

of the top valenece band (left) and the lowest conduction band (right) for a tensile
strained (GaAs)50(In.1Al.9As)16 superlattice, corresponding to a strain of .75%, as a
function of the polar angle φ for various values of k‖ given in units of G. We �nd
pronounced oscillations of the spin-splitting energy as a function of φ already for
k‖/ |G| ≈ 0.01. These oscillations stem from higher order contribution in k and can
be understood as follows. The general Hamiltonian for a nondegenerate band in a
D2d symmetric structure up to k3

‖ can be written as [70],

H(nk) =
~2

2m∗
k2
‖ · σ0 + Ωx(k)σx − Ωy(k)σy, (3.11)

where Ωx and Ωy are given by,

Ωx(k) = αBIAkx + c1kxk
2
y + c2k

3
x,

Ωy(k) = αBIAky + c1k
2
xky + c2k

3
y, (3.12)

where c1 and c2 are parameters associated with the k-cubic spin-orbit coupling. Note
that this is the most general form for D2d symmetry. In 14-band k · p theory, one
gets c2 ≡ 0 [3]. The Hamiltonian (Eq. (3.12)) has the eigenvalues,

E±(k‖, φ) =
~2

2m∗
k2
‖ ±

(
αBIAk‖ + 2(c1 + c2)

k2
xk

2
y

k‖
+ c2k

3
‖

)
. (3.13)

For the spin-splitting energy, we thus get,

∆ESO = 2αBIAk‖ + c2k
3
‖ + (c1 + c2) sin2(2φ)k3

‖. (3.14)
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Figure 3.10.: Dresselhaus (αBIA) and Rashba (αSIA) spin-orbit coupling parameter
for a (InSb)30(In.8Al.2Sb)98 superlattice in an external electric �eld of
F = 100 kV/cm as a function of the absolute value of the wave vector
|k| in units of the reciprocal lattice vector |G|, calculated as ∆ESO/k‖.
The gray line depicts the zero of the vertical axis.

We can �t the calculated angle dependence in Fig. 3.9 to the angle dependence
for a k-cubic spin-orbit coupling (Eq. (3.14)). For the top valence band, we get
c1 = −91.2meVnm3 and c2 = 15.9meVnm3. For the lowest conduction band we
calculate c1 = −23.5meVnm3 and c2 = −1.1meVnm3. We note that these k-cubic
coupling constants are almost independent of the strain.
When the absolute value of the wave vector increases further, also the k-cubic

approximation becomes invalid and even higher order terms dominate the behavior
of the spin splitting. To illustrate this e�ect, we have calculated the spin-orbit
coupling constants for a C2v-symmetric structure, to also include the Rashba e�ect,
as a function of k‖ assuming the validity of the k-linear model also for larger k‖.
This assumption in turn leads to a dependence of the coupling constants on the
lateral wave vector. In particular, we have studied the spin-orbit coupling constants
for an (InSb)30(In.8Al.2Sb)98 superlattice in constant external electric �eld of F =
100 kV/cm. The results for the k-dependent αBIA and αSIA are shown in Fig. 3.10
as a function of k‖ up to 10% of |G|. We �nd, that the Rashba e�ect is completly
quenched for larger wave vectors, while the Dresselhaus spin-orbit coupling constant
changes sign, and aquires a large magnitude again. Thus, one has to be careful about
the interpretation of experimental results in terms of the k-linear or k-cubic model
if the densities are high and the Fermi wave vector becomes considerably larger than
approximately 1% of the reciprocal wave vector.

3.6. Summary

In this chapter, we have studied the k-dependent spin splitting of nondegenerate
subbands in semiconductor heterostructures using our atomistic tight-binding the-
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ory. We �nd remarkably di�erent results than that predicted by simple envelope
function theory, that does not take into account the symmetry of the problem ade-
quately. In particular, we have studied the interplay between the Dresselhaus and
the Rashba-type spin-orbit interaction in perpendicular electric �elds. In contrast
to the widespread assumption, we �nd, that the Dresselhaus spin-orbit coupling is
not negligible for wider quantum wells, due to the �eld induced localization of the
wave function. We predict particularly large Dresselhaus and Rashba e�ects for InSb
quantum with a large steering e�ect by the electric �eld of the latter while in GaAs
quantum wells both e�ects are small and of similar magnitude also for large electric
�eld. We have studied the spin-orbit coupling for hole subbands in tensile strained
GaAs heterostructures. We �nd an enhancement of the Dresselhaus spin-orbit cou-
pling constant by almost two orders of magnitude for the top (light hole) valence
band as a function of the applied strain. We will later predict concrete quantum
spin-device geometries based on both, tensile strained p-GaAs in Chapter 8 as well
as InSb in Chapter 9, that are based on the results presented here. Further, we have
shown, that the model of k-linear spin-orbit coupling becomes invalid already for
quite small values of the lateral wave vector k‖. Thus, in experiments one has to
keep the density accordingly small, in order to interpret the results in terms of these
theories.
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4. Results for HgTe quantum well

structures

4.1. Introduction

HgTe quantum wells are interesting systems for the investigation of spin-dependent
transport phenomena due the very large spin-orbit coupling. Very recently, the in-
verse intrinsic spin-Hall e�ect could be detected in nanostructures based on HgTe/-
HgxCd1−xTe quantum wells [24]. Moreover, the quantum spin Hall e�ect was ob-
served in these structures [9] just as previously predicted [23]. These properties
make HgTe very interesting for spintronic device applications as well as for funda-
mental research. HgTe quantum wells have a so called type-III alignment of the
band structure [37, 71]. While in the bulk material the heavy and light hole bands
are degenerate due to the tetrahedral symmetry, in the quantum well, they separate.
As usual the light hole state is pushed down while the heavy hole state is pushed up
due to the quantization along the growth direction. This quantization also causes
the electron band to shift upwards. Since the gap between the electron band and the
heavy hole band is negative in the bulk, the resulting band structure in the quantum
well depends crucially on the well width. For wide wells the band order of the bulk
stays intact. That means the lowest electron level lies below the highest heavy hole
level. This is the regime of the so called inverted band structure where the quantum
spin Hall e�ect was observed. For the higher or lower subbands the ordering is as
usual in semiconductor heterostructures. When the width of the well gets smaller,
the electron band is pushed up further, while the heavy hole is e�ectively unchanged
due to the large e�ective mass along the growth direction. At some critical quantum
well thickness, the band structure becomes normal, i.e. the lowest conduction band
is derived from the �rst electron subband, while the highest valence band is derived
from the �rst heavy hole subband. For the normal band structure the quantum spin
Hall e�ect vanishes.
Furthermore, since the band gap in HgTe quantum wells is very small, typically

of the order of 20meV, it is possible to tune the Fermi energy by an applied top gate
voltage all the way from the valence bands, crossing the gap, into the conduction
bands. It is thus possible to study the whole quantum transport regime from metallic
behavior (hole and electron like transport) to the quantum spin Hall e�ect, which
occurs when the Fermi energy lies within the band gap, within a single structure
[9, 24, 72, 73]. This possibility is of great interest for the spintronic device application
that we will show in Sec. 10.6 by the proposal of a spin transistor based on a HgTe
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quantum well structure.
This chapter is organized as follows. In Sec. 4.2, we present new results for the

subband structure in HgTe quantum wells, based on the novel tight-binding model,
presented in Sec. 2. In Sec. 4.3, we develop two models in the envelope function
approximation (EFA) that describe the relevant subbands and spin-orbit coupling
mechanisms and are thus suitable for quantum transport calculations that we present
later in Sec. 10.6 of this thesis.

4.2. New results on the subband structure of HgTe

quantum wells

In this section, we study HgTe heterostructures using our newly developed tight-
binding model. In particular, we study (HgTe)m(HgxCd1−xTe)n superlattices. We
assume a valence band o�set between the HgTe and CdTe of 400mV as calculated
in Ref. [74]. Experimentally, the measured band o�sets lie between 350meV and
500meV [38]. We take n = 26, large enough, in order to decouple adjacent quantum
wells from each other. Former studies of HgTe quantum wells have relied to a
great extent on the 8-band k · p method [23�28]. In 8-band k · p theory a crossing
of the lowest conduction band and the highest valence band at the Γ-point for a
critical well thickness of about dcrit = 6.4 nm is predicted [23] since in this model
an interaction between the Γ6 derived band (electron) and the Γ8 derived band
(heavy hole) is forbidden at k = 0. However, due to the missing bulk inversion
symmetry such an interaction is actually allowed by symmetry [75]. In the atomistic
tight-binding theory, on the other hand, all interactions that are allowed in a D2d-
symmetric quantum well are included, since the underlying symmetry of the crystal
is included on an atomistic level. We have calculated the subband structure of
(HgTe)n(Hg.3Cd.7Te)26 superlattices at k = 0 as a function of the well thickness. In
Fig. 4.1 (left), the results are shown for the �rst electron subband E1 (blue line),
the �rst heavy hole subband HH1 (red line) and the second heavy hole subband
HH2 (black line). We �nd a clear anticrossing of the electron and the heavy hole
band. The bands come closest at about dcrit = 7.0 nm which is slightly larger
than the critical width predicted by k · p theory, however, still within the reported
experimental �ndings [76]. At a well width of d = 8.3 nm, we �nd a crossing between
the �rst electron subband and the second heavy hole subband. In this case, we �nd a
crossing rather than an anticrossing. Although the interaction between electron and
heavy hole is allowed in principle, the overlap of both wave functions is suppressed
due the di�erent parity of the envelope functions in the growth direction. We will
therefore focus on structures with a well width 7.0 − 8.3 nm for an inverted band
alignment. Our calculated energy levels di�er slightly form the predictions by k · p
theory [77]. It is known, that the details of the subband structure depend strongly
on the value of the valence band o�set [71]. Therefore, the quantitative di�erences
to our results are mainly due to the assumed valence band o�set of 570meV [40]

50



4.2. New results on the subband structure of HgTe quantum wells

2 4 6 8 10

-0.1

0.0

0.1

0.2
E

n
e

rg
y

 [
e

V
]

well width [nm]

E1

HH1

HH2

avoided
crossing

E1

HH1

HH2

E
n

e
rg

y
 [

e
V

]

0.0 0.2 0.4 0.6

0.00

0.05

0.10

0.15

k [1/nm]

Figure 4.1.: (left) Subband energies at k = 0 in (HgTe)n(Hg.3Cd.7Te)26 superlattices
as a function of the well width. The blue line shows the �rst electron
level (E1), the red line the �rst heavy hole level (HH1) and the black
line the second heavy hole level (HH2). (right) Subband dispersion in
a (HgTe)24(Hg.3Cd.7Te)26 superlattice, corresponding to a 7.8 nm wide
HgTe/Cd.7Hg.3Te quantum well as a function of the wave vector in [110]
direction. The colors are in correspondence with the left �gure.

which somewhat larger than the one we assume. However, our results agree well
with the available experimental results on the subband structure and band o�set
[37, 39, 41].
In the right panel of Fig. 4.1, we plot the subband dispersion for a (HgTe)24-

(Hg.3Cd.7Te)26 superlattice, corresponding to a 7.8 nm wide HgTe/Cd.7Hg.3Te quan-
tum well. The colors are in correspondence with the �gure on the left. We �nd a
very large k-dependent spin splitting for all bands. Spin splitting energies of this or-
der have been found experimentally [76, 78]. The reason for this large spin splitting
is a resonant enhancement of the spin-orbit interaction [79]. The physical origin of
this resonance can be understood as follows. We have seen that the spin-orbit in-
teraction lifts the spin degeneracy of any nondegenerate energy band away from the
Γ-point but has no e�ect directly at k = 0. The situation changes, however, when
there is a band degeneracy of the nonrelativistic bands. If two nonrelativistic bands
cross at the Γ-point, the spin-orbit coupling induces an interesting nonperturbative
e�ect. It lifts the degeneracy and produces a �nite energy gap at the Γ-point and
leads to a resonantly enhanced spin splitting, that cannot be interpreted in terms
of a simple one-band model. Thus the e�ect is largest for the critical well thickness,
but still appreciable for a small gap between the nonrelativistic bands. Also note the
camel-back like structure in the dispersion of the highest valence band. This e�ect
stems from the interaction with lower lying hole bands. Du to this camel-back, the
valence band maximum is shifted away from the Γ-point to larger wave vectors.
In Fig. 4.2, we plot the probability density of the lowest conduction subband (right

panel) and the highest valence subband (left panel). The black lines show the overall
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Figure 4.2.: Absolute square of the wave function of the �rst electron level E1 (left)
and the �rst heavy hole level HH1 (right) in a (HgTe)24(Hg.3Cd.7Te)26

superlattice as a function of the number of the molecular layer. Note
that there are in total 50 molecular layers. The wave functions have been
averaged over each molecular layer for clarity. The black line shows the
total wave function, including the contributions from all orbitals. The
red lines show the contribution of the s-orbitals only, the blue lines the
contribution of the pz-orbitals, and the green lines the sum of the px and
the py-orbitals. The vertical gray lines denote the material interfaces.

probability density. Note that the form of the total wave function agrees well with
the k · p results [77] for both sublevels. The highest valence band state has two
maximums right at the interfaces between the well and the barrier. It has therefore
also been termed interfacial state I1 rather than E1 before [80]. The content of
the s-orbitals, shown as red line, is almost constant over the well width while the
admixture of the pz-orbitals shown in blue has maximums at the interfaces and
is suppressed within the well. Note that we have seen the same behavior of the
pz-states for the lowest conduction band state of III-V semiconductors in Chapter 3
where we found that the admixture of pz-states in the s-dominated conduction band
accounts for the spin-orbit splitting. In the HgTe quantum well the relative content
of the pz-states is enhanced drastically as compared to e.g. GaAs due to the smaller
energy separation between the sates which accounts for a large spin-orbit splitting.
Moreover, we �nd that a substantial part of the wave function is heavy hole like,
shown by the sum over the px and py contributions as yellow line in the �gure. It is
the admixture of the heavy hole state, that accounts for the anticrossing as well as
for the resonantly enhanced spin splitting. The corresponding heavy hole state in
the right panel of the �gure shows admixtures of the s-states and pz-states, however,
the admixtures are relatively small compared to the contribution of px and py-states
that clearly dominate the wave function, as expected for a heavy hole state.

Our results clearly show that the bulk inversion asymmetry in HgTe quantum
wells leads to a relevant spin splitting as well as to an anticrossing of the relevant
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Parameter 4-band 6-band Parameter 6-band
B [meVnm2] 1140 720 D2 [meVnm2] -14
D [meVnm2] -200 -14 M2 [meV] 11
M [meV] -13 -13 A2 [meVnm] -33
A [meVnm] -244 -146 S2 [meVnm2] 540
γ [meVnm] 111 90 S3 [meVnm2] 150
S [meVnm2] 190 144 T2 [meVnm] 11
T [meVnm] 115 87 T3 [meVnm] 7

Table 4.1.: Parameters of the 4- and 6-band EFA model for a 7.8 nm wide
HgTe/Hg.3Cd.7Te quantum well.

subbands. Hence, it is not justi�ed to neglect this e�ect, as is done in simple 8-band
k · p theory.

4.3. Novel envelope function approximation for

HgTe quantum wells

In this section, we will develop an e�ective model for the band structure in HgTe
quantum wells that only includes the relevant bands in order to be able to calculate
quantum transport properties of nanostructures that are based on HgTe quantum
wells. In particular, we will base that model on the envelope function approximation
(EFA) as in Sec. 3.2 for the k-linear spin-orbit coupling models. However, due to
strong mixing of the electron and hole states such a simple model with a Rashba and
Dresselhaus like spin-orbit interaction cannot satisfactorily describe the properties
of neither the electron nor the hole band. Moreover, in order to capture the quantum
spin Hall e�ect (QSHE) in the calculations, minimally a model with two electronic
bands plus spin, i.e. a 4-band model is required. The original model proposed by
Bernevig, Hughes, and Zhang [23], the so called BHZ-model, includes the QSHE but
neglects mixing of the spin states due to spin-orbit coupling. Since HgTe quantum
wells are interesting also for spintronic applications that employ also the ordinary
spin-Hall e�ect [24], it is highly desirable to include the spin-orbit interactions into
the model. A model based on 8-band k · p calculations [25] that takes into account
spin-orbit interaction due to the structural inversion asymmetry in structures with
C2v symmetry but neglects the spin-orbit coupling in the D2d symmetric case has
been proposed recently in Ref. [28]. This model still neglects the e�ects of the bulk
inversion asymmetry, which are quite important in these structures as we have shown
in the previous (Sec. 4.2). We have developed an e�ective 4-band model based on our
tight-binding calculations that takes into account all symmetry related aspects of the
spin-orbit coupling. As it turns out this minimal model does not reproduce the band
structure of the highest valence bands satisfactorily since coupling to lower valence
bands is not included explicitly. We have therefore extended the e�ective model to
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six bands (three electronic bands times spin) in order to improve the dispersion of the
highest valence band as compared to the full-band tight-binding results. However,
since the 4-band model can describe the conduction band dispersion close to the
Γ-point quite well, it is useful when the transport is dominanted by the conduction
band, since it is numerically much easier to handle in quantum transport calculations
than the more complex 6-band model. To derive the EFA models, we follow Graf
and Vogl [81]. We expand the tight-binding Hamiltonian (Eq. (1.4)) up to second
order in the wave vector k around a given k∗. In matrix notation, we get,

H(k) = H(k∗) +∇kH(k)|k∗(k− k∗)

+
1

2
(k− k∗) · ∇k∇kH(k)|k∗ · (k− k∗) +O[(k− k∗)3]. (4.1)

In the Bloch eingenbasis (Eq. (1.2)), we can de�ne an e�ective momentum operator
pn,n′ and an operator Tn,n′ related to the kinetic energy,

pn,n′(k
∗) =

m0

~
C†(nk∗)∇kH(k)|k∗C(n′k∗) (4.2)

=
m0

~
∑
α,α′

C∗α′(nk
∗)
∑
L

i(Rα′L −Rα)eik
∗(Rα′L−Rα)tα′,α(Rα′L −Rα)Cα(n′k∗),

Tn,n′(k
∗) =

m0

~
C†(nk∗)∇k∇kH(k)|k∗C(n′k∗).

Here m0 is the bare electron mass, C(nk∗) is the vector of the Bloch coe�cients
Cα(nk∗) (Eq. (1.2)) for band index n and wave vector k∗. With these de�nitions,
we can write the matrix elements of the Hamiltonian in the Bloch basis |nk∗ 〉 as,

Hn,n′(k) = En(k∗)δn,n′ +
~
m0

pn,n′(k
∗)(k− k∗) +

~2

2m0

(k− k∗)Tn,n′(k
∗)(k− k∗)

+ (k− k∗) · ~2

2m2
0

∑
m6=n,n′

pn,m(k∗)pm,n′(k
∗)

(
1

En(k∗)− Em(k∗)

+
1

En′(k∗)− Em(k∗)

)
· (k− k∗). (4.3)

From that expression, we calculate the e�ective models by taking k∗ = 0. To
this end, we calculate the eigenvalues and eigenfunctions for a given quantum
well structure at k = 0 numerically within our tight-binding model. For the ef-
fective model with four bands, we include the �rst electron bands |E1, ↑〉 and
|E1, ↓〉 and the �rst hole bands |HH1, ↑〉 and |HH1, ↓〉 explicitly. That means,
n, n′ ∈ {|E1, ↑〉 , |E1, ↓〉 , |HH1, ↑〉 , |HH1, ↓〉} while the index m runs over all other
bands. In what follows, we focus on the (HgTe)24(Hg.3Cd.7Te)26 superlattice that
corresponds to a 7.8 nm wide HgTe/Hg.3Cd.7Te quantum well. Hence, we focus on
a structure in the inverted regime. The heavy hole like eigenfunctions |HH1, ↑↓〉
belong to the lowest conduction band while the electron like eigenfunctions |E1, ↑↓〉
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Figure 4.3.: Subband dispersion in a 7.8 nm wide HgTe/Hg.3Cd.7Te quantum well
as a function of the wave vector in [110] direction, calculated with the
relativistic 6-band model (left) and the relativistic 4-band model (right).
The red lines depict the �rst heavy hole state HH1, the blue lines the
�rst electron state E1, and the black lines the second heavy hole state
HH2. Note that the HH2 is only included in the 6-band model.

belong to the highest valence band. The calculated matrix elements (Eq. (4.3)) lead
to the following 4-band model in the basis |E1, ↑〉, |HH1, ↑〉, |E1, ↓〉, and |HH1, ↓〉,

H4b(kx, ky) =


Bk2
‖ Ak+ γk+ −Sk2

‖
Ak− Dk2

‖ −M Sk2
‖ Tk−

γk− Sk2
‖ Bk2

‖ −Ak−
−Sk2

‖ Tk+ −Ak+ Dk2
‖ −M

 , (4.4)

where we have introduced the abbreviations k‖ =
√
k2
x + k2

y and k± = kx ± iky.
The band structure parameters B and D describe the quadratic intraband coupling
of electron and hole, respectively. A is the k-linear electron-hole coupling, γ is
the Dresselhaus like spin-orbit coupling of the electron, T is the k-linear spin-orbit
coupling of the hole, and S denotes the k-quadratic coupling between electron and
hole with opposite spin. M is the energy separation of the electron and the hole
state at k = 0. Please note that a k-independent coupling between the electron and
the hole with opposite spin as proposed in Ref. [75] for the BHZ-model is already
included in the basis states of our model and hence incorporated into the level
splitting M . The phase relations between the basis states have been chosen in
order to reproduce the BHZ-Hamiltonian without spin-orbit coupling and to have a
Dresselhaus-like coupling between the spin states of the electron. The numerically
calculated values for the parameters using Eq. (4.3) leads to a model, that reproduces
the subband dispersion (Fig. 4.1 (right)) only for very small values of the wave vector.
Since for the nanostructures that we study later in Sec. 10.6 higher wave vectors
are mixed in due to the additional con�nement in the lateral directions, we have
improved the parameters by a least square �t to the exact dispersion. The resulting
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parameters are given in Table 4.1. The calculated subband dispersion using the 4-
band model is shown in Fig. 4.3 (right). We �nd a good agreement of the conduction
band dispersion up to |k| ≈ 0.15 nm−1, which is su�cient for our purposes. The
valence band, however, is reproduced very poorly. The camel-back like structure
visible in Fig. 4.1 (right) cannot be reproduced by any such 4-band model since
the camel back stems from an interaction with lower hole subband, which have to
be included explicitly into the model. The camel back leads to a band maximum
of the valence band away from the Γ-point, such that the band structure becomes
indirect in k-space which will clearly e�ect the transport properties of p-like quantum
wells. To capture this e�ect, we have developed an e�ective 6-band EFA model. We
additionally include the second heavy hole subband explicitly. The Hamiltonian
calculated from Eq. (4.3) in the basis |E1, ↑〉, |HH1, ↑〉, |HH2, ↑〉, |E1, ↓〉, |HH1, ↓〉,
and |HH2, ↓〉 reads,

H6b(kx, ky) =

Bk2
‖ Ak+ A2k+ γk+ −Sk2

‖ −S2k
2
+

Ak− Dk2
‖ −M S3k

2
− Sk2

‖ Tk− T3k−
A2k− S3k

2
+ D2k

2
‖ −M2 S2k

2
+ T3k− T2k−

γk− Sk2
‖ S2k

2
− Bk2

‖ −Ak− −A2k−
−Sk2

‖ Tk+ T3k+ −Ak+ Dk2
‖ −M S3k

2
+

−S2k
2
− T3k+ T2k+ −A2k+ S3k

2
− D2k

2
‖ −M2


. (4.5)

Additionally to the parameters of Eq. (4.4), we have D2 for the quadratic intraband
coupling of the extra hole band, M2 for its level spacing to the electron state. A2 is
the k-linear coupling to the electron states, T2, T3 are the additional k-linear spin-
orbit coupling parameters between the hole states, and S2 and S3 are the additional
k-quadratic couplings. The calculated parameters are also shown in Table 4.1. They
are again obtained by taking the parameters derived form Eq. (4.3) as input for a
least square �t to the exact dispersion. The resulting subband dispersion for the
6-band model is shown in Fig. 4.3 (left). The overall agreement with the exact
dispersion is good up to relatively large wave vectors. Especially the camel-back
structure of the valence band is nicely reproduced. Note that the agreement for the
conduction band is actually better in the 4-band model. Therefore, we will use the
4-band model for the transport calculations if the transport is dominated by the
conduction band.

4.4. Summary

In this chapter, we have presented results for the electronic structure of HgTe/CdTe
heterostructures using the novel semi-empirical tight-binding parametrization, pre-
sented in Sec. 2. We have calculated the subband structure in HgTe quantum wells
as a function of the well width. We �nd an inverted band structure for wells wider
than the critical thickness dcrit ≈ 7 nm, in accordance with experiment and previous
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theoretical investigations. However, in contrast to simple 8-band k · p theory, we
�nd a substantial interaction between the �rst electron subband and the �rst hole
subband at the Γ-point, that leads to an anti-crossing of both bands as a function
of well width rather than a simple crossing between both states. This previously
neglected interaction is also the reason for the large k-dependent spin splitting of
the subbands that we predict.
We have further developed two envelope function models for HgTe quantum wells,

based on our tight-binding results. We �nd that minimally four bands are necessary
to describe the lowest conduction band in these structures satisfactorily, while six
bands are needed to also describe the highest valence band. We have given concrete
parameters for the model for a 7.8 nm wide HgTe/Hg.3Cd.7Te. We will later in
Sec. 10.6 employ these models, to predict quantum transport properties of complex
device geometries based on this material.
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5. Non-equilibrium Green's

functions theory for

spin-dependent quantum

transport

5.1. Introduction

A detailed understanding of carrier dynamics is crucial for the design and improve-
ment of modern semiconductor nanodevices. However, neither a classical or semi-
classical nor a strictly coherent, ballistic quantum mechanical theory can capture
the tight interplay between incoherent relaxation processes and quantum interfer-
ence e�ects [82].
A general and rigorous framework to capture all of these e�ects was developed

in the 1960s by Keldysh [83] and, independently by Kadano� and Baym [84] and
Schwinger [85]. Today, it is well established that this so-called non-equilibrium
Green's function (NEGF) theory is among the most general schemes for the predic-
tion of quantum transport properties [86�89].
The basic NEGF equations, including scattering, are complex, mathematically

tough, and a quantitative implementation is still a highly challenging task, even
with the recent advances of modern computer hardware [90, 91]. Furthermore,
it is very di�cult to develop approximations within the NEGF formalism which
maintain charge and current conservation and obey Pauli's principle [92]. In the
limit of ballistic transport the contact block reduction (CBR) method can be used to
e�ciently calculate quantum transport in three dimensional nanostructures [93, 94].
This chapter is organized as follows. We shortly review the basic NEGF formalism

in Sec. 5.2, de�ne the basic Green's functions and discuss their equation of motion
with special emphasis on stationary systems. A more extensive introduction into
the theory of non-equilibrium processes can be found e.g. in Ref. [95]. We discuss
the boundary conditions in general multi-band theories for transport in open quan-
tum devices in Sec. 5.3. We will present our novel method to calculate stationary
transport properties that we termed multi-scattering Büttiker probe (MSB) model
in Sec. 5.4. This theory generalizes the so-called Büttiker porbe (BP) model [96] and
accounts for individual scattering mechanisms. Current conservation is ensured and
the MSB method is orders of magnitude faster than a full NEGF approach, which
makes it possible to address problems which are not accessible with the full NEGF
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5. Non-equilibrium Green's functions theory for spin-dependent quantum transport

approach due to the numerical expenses as e.g. transport through multi channel two
and three dimensional nano-structures. Finally, in Sec. 5.6, we derive the observable
quantities from the non-equilibrium Green's functions.

5.2. Overview over the non-equilibrium Green's

function theory

We start with the de�nition of the one-particle Green's function G(r, t, σ; r′, t′, σ′)
in the Heisenberg picture H,

G(r, t, σ; r′, t′, σ′) =
−i
~

〈
TC

{
ψH(r, t, σ)ψ†H(r′, t′, σ′)

}〉
,

=
−i
~

{
θ(t, t′)

〈
ψH(r, t, σ)ψ†H(r′, t′, σ′)

〉
−θ(t′, t)

〈
ψ†H(r′, t′, σ′)ψH(r, t, σ)

〉}
. (5.1)

The quantum �eld operators ψ†H(r, t, σ) and ψH(r, t, σ) create and annihilate a par-
ticle at position r at time t and with spin σ. TC is the time ordering operator de�ned
on a general, complex time contour C. The function θ(t, t′) generalizes the Heaviside
step function to the contour C, i.e. θ(t, t′) = 1 if t is later on the contour C than t′

and θ(t, t′) = 0 otherwise. For fermions the quantum �eld operator obey the usual
anti-commutation relations,[

ψH(r, t, σ), ψ†H(r′, t, σ′)
]

+
= δ(r− r′)δσ,σ′ ,[

ψ†H(r, t, σ), ψ†H(r′, t, σ′)
]

+
= 0,

[ψH(r, t, σ), ψH(r′, t, σ′)]+ = 0. (5.2)

The so de�ned non-equilibrium Green's function expresses the correlation between
two positions r and r′ and spin states σ and σ′ at times t and t′. If t is later
on the time contour than t′, G(r, t, σ; r′, t′σ′) describes the response of the system
to a perturbation that is created at position r′ at time t′ and propagates to the
position r at time t, where it is annihilated. A similar interpretation holds for
the exchanged time order. The non-equilibrium Green's function is therefore often
termed propagator.
The time evolution of the Green's function is determined by its equation of motion

for a system with the Hamilton operator H. To derive the equation of motion, it is
convenient to split the Hamiltonian into two parts H = H0 + V , where H0 denotes
the one particle part, i.e. the kinetic energy and the potential, while V denotes
the many particle interactions, in particular the two particle scattering processes.
Interaction with other kinds of particles, like phonons, can be treated along the same
lines but is left out here for brevity. The representation of the Hamiltonian in the
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quantum �eld operators reads,

H =
∑
σσ′

∫
drψ†(r, σ)H0(r, σ, σ′)ψ(r, σ′)+

1

2

∑
σσ′

∫
dr
∫

dr′ψ†(r′, σ′)ψ†(r, σ)V (r− r′)ψ(r, σ)ψ(r′, σ′), (5.3)

where we allow spin-orbit interaction in the one particle part H0 of the Hamiltonian.
The equations of motion for G(r, t, σ; r′, t′σ′) are given by the time derivatives with
respect to t and t′. To simplify the notation, we use the following abbreviations,

(r, t, σ) = 1,

V (r− r′)δ(t− t′) = V (1− 1′),

δ(r− r′)δ(t, t′)δσσ′ = δ(1, 1′),∫
C

d1 =̂

∫
C

dt
∫

dr, (5.4)

where the time integral is a contour integral along the complex time contour C. For
the derivative with respect to t, we get,

d
dt
TC

{
ψH(1)ψ†H(1′)

}
=TC

{
d
dt
ψH(1)ψ†H(1′)

}
+ δ(t, t′)

[
ψH(1), ψ†H(1′)

]
+
,

=TC

{
d
dt
ψH(1)ψ†H(1′)

}
+ δ(1, 1′). (5.5)

The second term ∝ δ(t, t′) stems from the time derivative of the Heaviside step
functions, included through the time ordering operator TC . In the second step, we
made use of the anti-commutator relations Eq. (5.2). In a next step, we derive the
time evolution of the quantum �eld operator ψ†H(1′). In the Heisenberg picture, we
obtain,

i~
d
dt
ψH(1) = [ψH(1), H(r)]−

=H0(r)ψH(1) +

∫
d1′V (1− 1′)ψ†H(1′)ψH(1′)ψH(1). (5.6)

To obtain the equation of motion for the Green's function G(1, 1′), we have to
multiply Eq. (5.6) from the right by ψ†H(1′), take the quantum statistical expectation
value, and add the delta-function term Eq. (5.5). We obtain for the equation of
motion with respect to t,(

i~
d
dt
−H0(r)

)
G(1, 1′) = δ(1, 1′)− i~

∫
C

d2V (1− 2)GII(12; 1′2+). (5.7)
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t

C-

C+

Figure 5.1.: Schematics of the Keldysh contour, C− → (−∞,∞) and C+ →
(∞,−∞). The contour lies entirely on the real time axis. The shift
of C− and C+ is meant for clarity only.

where we have introduced the two-particle Green's function GII(12; 1′2+). The ar-
gument 2+ = r2t

+
2 has been introduced to ensure the correct time ordering. A time

t+ is meant to be in�nitesimally later on the contour C than a time t. Generally,
the two-particle Green's function GII(12; 1′2′) is de�ned as,

GII(12; 1′2′) = − 1

~2

〈
TC

{
ψH(1)ψH(2)ψ†H(2′)ψ†H(1′)

}〉
. (5.8)

Similar considerations lead to the equation of motion with respect to t′,(
−i~ d

dt′
−H0(r)

)
G(1, 1′) = δ(1, 1′)− i~

∫
C

d2V (1′ − 2)GII(12; 1′2+), (5.9)

The derived equations of motion Eq. (5.7) and Eq. (5.9) constitute an in�nite hi-
erarchy of equations, since the time evolution of the one-particle Green's function
depends on the two-particle one. In turn, the calculation of the two-particle Green's
function requires the knowledge of the three-particle one and so on. As a starting
point of any approximation, both equations are recast in a form, that eliminates the
two-particle function,(

i~
d
dt
−H0(r)

)
G(1, 1′) = δ(1, 1′) +

∫
C

d2Σ(1, 2)G(2, 1′),(
i~

d
dt
−H0(r)

)
G(1, 1′) = δ(1, 1′) +

∫
C

d2G(1, 2)Σ(2, 1′). (5.10)

Here, we have introduced the self-energy Σ(1, 1′). This self-energy can be derived in
any desired approximation by Feynman diagram technique, using Wick's theorem
or functional derivatives. Common approximations are e.g. the Hartree-Fock or the
second order Born approximation. Any kind of one electron scattering, e.g. with
phonons or charged impurities can be treated in a similar framework. We will come
back to that later, when we discuss the approximate treatment of scattering in more
detail in Sec. 5.4.
We have not speci�ed the time contour C up to now. Since we are interested

in non-equilibrium but stationary processes the so-called Keldysh contour is best
suited. The Keldysh contour is schematically shown in Fig. 5.1. The contour lies on
the real axis and extents from −∞ to∞ and back. Instead of working with the con-
tour ordered Green's function, it has become standard in the literature to work with
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piecewise de�ned Green's functions, which are more convenient to handle. These
new Green's functions agree with the contour ordered one for speci�c constellations
of the time arguments. The four piecewise Green's functions are de�ned as,

G(1, 1′) =


Gc(1, 1′) if t, t′ on C−
Ga(1, 1′) if t, t′ on C+

G<(1, 1′) if t on C− and t′ on C+

G>(1, 1′) if t on C+ and t′ on C−

(5.11)

According to this de�nition, we get for the chronological Green's function Gc(1, 1′),

Gc(1, 1′) = − i
~

〈
T−

{
ψH(1)ψ†H(1′)

}〉
, (5.12)

where the time ordering operator T− is de�ned on the part C− of the contour,
see Fig. 5.1, i.e. if t > t′ it follows that t is later on the contour than t′. For the
anti-chronological Green's function, we get,

Ga(1, 1′) = − i
~

〈
T+

{
ψH(1)ψ†H(1′)

}〉
, (5.13)

where now the time ordering operator T+ is de�ned on the part C+ of the contour,
see Fig. 5.1, i.e. if t > t′ it follows that t′ is later on the contour than t. The lesser
Green's function reads,

G<(1, 1′) =
i

~

〈
ψ†H(1′)ψH(1)

〉
. (5.14)

Note that time ordering is already taken care of, since the time arguments lie on
di�erent parts of the contour, such that it is clear which one is later on C. In the
case of the lesser function, we have that t′ always follows later on the time contour
than t, which is reversed for the greater Green's function which is given by,

G>(1, 1′) = − i
~

〈
ψH(1)ψ†H(1′)

〉
. (5.15)

These four function are actually not linearly independent, but obey the relation,

Gc(1, 1′) +Ga(1, 1′) = G<(1, 1′) +G>(1, 1′). (5.16)

Thus the knowledge of three of the Green's functions is su�cient to completely char-
acterize a non-equilibrium system. In quantum transport problems, G<(1, 1′) and
G>(1, 1′) are directly related to observables. These functions are also referred to
as correlation functions. Instead of Gc(1, 1′) and Ga(1, 1′), two other Green's func-
tions, called the retarded Green's function GR(1, 1′) and advanced Green's function
GA(1, 1′), are widely used in the literature since their physical interpretation is
clearer. They are de�ned as,

GR(1, 1′) =Gc(1, 1′)−G<(1, 1′),

GA(1, 1′) =Gc(1, 1′)−G>(1, 1′). (5.17)
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In what follows, we will exclusively use the Green's functions GR, GA, G<, and G>.
The linear dependence between those functions is expressed as,

GR −GA = G> −G<, (5.18)

which is related to the spectral function and thus to the density of states, as will
be discussed later in Sec. 5.6. The equations of motion for the piecewise de�ned
Green's functions follow from Eq. (5.10) with the help of Langreth's theorem [95].
With respect to t, they read,(

i~
d
dt
−H0(r)

)
GR,A(1, 1′) =δ(1, 1′) +

∫
C−

d2ΣR,A(1, 2)GR,A(2, 1′), (5.19)(
i~

d
dt
−H0(r)

)
G≶(1, 1′) =

∫
C−

d2ΣR(1, 2)G≶(2, 1′) + Σ≶(1, 2)GA(2, 1′),

and with respect to t′,(
−i~ d

dt
−H0(r)

)
GR,A(1, 1′) =δ(1, 1′) +

∫
C−

d2ΣR,A(1, 2)GR,A(2, 1′), (5.20)(
−i~ d

dt
−H0(r)

)
G≶(1, 1′) =

∫
C−

d2ΣR(1, 2)G≶(2, 1′) + Σ≶(1, 2)GA(2, 1′),

In stationary transport problems, all Green's function depend on the di�erence of
the time arguments only. Since the stationary self-energies depend solely on the
time deference as well, it is convenient to Fourier transform with respect to t− t′ to
the energy domain E. The Green's functions Gi(r, r′;E), where i ∈ {R,A,<,>},
in energy space are de�ned as,

Gi(r, r′;E) =

∫
d(t− t′)eiE(t−t′)/~Gi(r, r′; t− t′), (5.21)

and the inverse transformation reads,

Gi(r, r′; t− t′) =

∫
dE
2π~

e−iE(t−t′)/~Gi(r, r′E). (5.22)

As it turns out, only two Green's functions are independent in this case, since we get
GR = (GA)†. Thus, in stationary systems, the knowledge of two Green's function is
su�cient to characterize the system completely. As we will discuss further in Sec. 5.6,
the retarded Green's function can be associated with the eigenstates of the system
and their broadening, while the lesser Green's function includes the information on
how these states are occupied and thus determines the charge and current density.
The two relevant equations, that have to be solved are the Dyson equation for GR,

(E −H0(r))GR(r, r′;E) = δ(r− r′) +

∫
dr1ΣR(r, r1;E)GR(r1, r

′;E), (5.23)
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and the Keldysh equation for G<,

G<(r, r′;E) =

∫
dr1

∫
dr2G

R(r, r1;E)Σ<(r1, r2;E)GA(r2, r
′;E). (5.24)

Note that the two equation are coupled and have to be solved simultaneously. The
self-energies ΣR,< depend on the scattering mechanisms at hand. For inelastic scat-
tering processes, e.g. with polar optical phonons, Σ< and ΣR get coupled, which
markedly complicates the situation. We will therefore discuss in Sec. 5.4 how the
treatment of scattering can be simpli�ed, without sacri�cing to much accuracy.

5.3. Boundary conditions for open quantum

devices

In this work, we are mainly interested in the transport properties of arbitrarily
shaped two dimensional conductors. To this end, we need to solve Eq. (5.23) and
Eq. (5.24) for arbitrary H(r). To do so, we will follow the common approach and
solve the continuous real space equations on a discrete lattice. In particular, we will
apply a �nite di�erences scheme to Hamiltonian operators of the form as discussed
in Sec. 3.2 and Sec. 4.3. For the concrete �nite di�erences Hamiltonian matrices, we
refer to Appendix B. In this section, we will only assume that the Hamiltonian is
given in a discrete real space basis (H(r) → H(m), where m denotes a lattice site
vector). That means that e.g. the retarded Green's function GR(r, r′;E) becomes
a matrix with spatial indices GR

i,j(E). We will adopt the full matrix notation, that
can be applied for any discrete basis, e.g. also the atomistic tight-binding bases. In
this notation, the Dyson equation Eq. (5.23) reads,

GR(E) = (E −H − ΣR(E))−1, (5.25)

and the Keldysh equation Eq. (5.24) beomes a simple matrix product,

G<(E) = GR(E)Σ<(E)GR†(E). (5.26)

In quantum transport calculations, we model so-called open devices. That means,
we assume the device to be connected to several semi-in�nite leads that provide
large reservoirs in thermal equilibrium, that inject and/or extract carriers form the
device. That means that the matrices that describe the whole system (device +
leads) which appear in Eq. (5.25) and Eq. (5.26), have in�nite dimension. A simple
truncation of the matrix with Dirichlet or Neumann boundary conditions would
correspond to a closed device with re�ecting boundaries. We will use a truncation
scheme instead, that ensures absorbing boundary conditions and thus model an
open quantum device. We will focus on the two-dimensional situation, however, the
generalization to three dimensions is straight forward, whereas the one-dimensional
case is trivial [87]. We will assume, that the scattering self-energies are local, i.e. they
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only depend on one spatial coordinate and are hence diagonal matrices in the discrete
real space basis. This assumption is ful�lled for the treatment of scattering that we
adopt in this work, see Sec. 5.4.
We can decompose the retarded Green's functions into a device part GR

D, a lead
part GR

C , and two parts that connect the leads and the device GR
DC and GR

CD, re-
spectively. For a moment, we will omit the superscript R for convenience, since we
deal solely with retarded quantities here. Concretely, we have,[

GC GCD

GDC GD

]
=

[
E −HC − ΣC τC

τ †C E −HD − ΣD

]−1

, (5.27)

where HD and HC represent the Hamiltonin matrix of the isolated device and leads
respectively, that are both assumed to have Dirichlet boundary conditions at the
lead�device interfaces. τC represents the coupling between the leads and the device.
The coupling matrix τC in turn is nonzero only at the device�lead interfaces. ΣC and
ΣD denote the scattering self-energies of the leads and device, respectively. Note
that a nonlocal scattering self-energy would imply that ΣCD 6= 0, which complicates
the situation markedly. Eq. (5.27) yields the expressions for the blocks of the Green's
function,

[E − ΣC −HC ]GCD + τCGD = 0,

[E − ΣD −HD]GD + τ †CGCD = I. (5.28)

From the �rst equation, we obtain,

GCD = −gCτCGD (5.29)

where we have de�ned the retarded Green's function of the isolated semi-in�nite
lead,

gC = [E − ΣC −HC ]−1 . (5.30)

Finally, we obtain for the retarded Green's function of the device,

GD =
[
E −HC − τ †CgCτC

]−1

. (5.31)

Note that the matrices in Eq. (5.31) have a �nite dimension, that equals the number
of points in the device region times the number of bands considered in the Hamil-
tonian. The coupling of the device to the leads is taken into account exactly by
the term τ †CgCτC . Although, gC is still an in�nite dimensional matrix, we only need
its part for each lead at the corresponding device�lead interface. As it turns out,
with some additional assumptions, we can calculate this part of the lead Green's
function analytically [97�99] or with very e�cient numerical methods [100, 101]. As
usually done, we will refer to the coupling term between the leads and the device
in the Dyson equation for the device as coupling self-energy to the leads or contact
self-energy ΣR

C . We de�ne,

ΣR
C =

∑
l∈C

ΣR
l , with ΣR

l = τ †l glτl, (5.32)
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Figure 5.2.: Schematic drawing of the lead model. The dots indicate the two or three
dimensional slabs in the semi-in�nite lead, with the lattice spacing a.

where C denotes the set of all leads or contacts and we have assumed all leads to
be independent, such that their e�ect is directly additive. In this work, we adopt
the common approach to treat each of the lead as semi-in�nite quantum wire with
�nite circumference, such that we can regard the lead as coupled slaps or slices
with �nite dimension as depicted schematically in Fig. 5.2. We assume the leads
to be completely homogeneous in one direction, that means no quantity depends
on the longitudinal coordinate along the wire. The present method to calculate
the coupling self-energy takes into account general multi-band Hamiltonians in one,
two, and three dimensions [97]. To calculate the contact self-energy, we need to
solve the Dyson equation for the semi-in�nite wire. To obtain the required part
of the wire Green's functions at the lead�device interface, we have to solve the
following two equations that follow from the Dyson equation for the isolated wire
[102] simultaneously,

D00g00 + T0−1g−10 = I,

D−1−1g−10 + T−1−2g−20 + T−10g00 = 0. (5.33)

where we have omitted the energy argument as well as the superscript R to straiten
the notation and we have introduced the abbreviation E − hii − Σii = Dii and
hij = −Tij, where h and g are the Hamiltonian and retarded Green's function of
the isolated, semi-in�nite wire, respectively. The subscripts denote the slab under
consideration, i.e. hii is the Hamiltonian within the ith slab and hij, with i 6= j, is
the coupling between the ith and jth slab. We assume the slabs to be de�ned in
such a way, that only nearest neighbor slabs couple. Further, i = 0 denotes the
last slab of the wire, i.e. i < 0 is a slab in the lead, whereas i > 0 is in the device,
which is not considered in the case of the isolated wire, since the isolated wire does
not couple to the device. Since the leads are assumed to be homogeneous, we have
e.g. T−1−2 = T0−1 and D00 = D−1−1.
Since Eq. (5.33) can actually be solved by considering the Schrödinger equation

for the in�nite wire, we consider an in�nite quantum wire for a moment. The
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corresponding Schrödinger equation reads,

Diiξl + Tii+1ξi+1 + Tii−1ξi−1 = 0, (5.34)

where ξi denotes the solution of the Schrödinger equation within the slab i and
i = 0,±1,±2, .... Since the wire is homogeneous, the Bloch condition ξi = eikµaξi+1

holds, where a is the distance between adjacent slabs. With the help of the Bloch
condition, we can rewrite Eq. (5.34) as a non-Hermitian linear eigenvalue problem
for the complex wire band structure kµ(E) and the transverse eigenfunctions of the
wire ξµi ,(

Dii Tii+1

1 0

)
·
(

ξi
ξi+1

)
µ

= eikµa
(
−Tii−1 0

0 1

)
·
(

ξi
ξi+1

)
µ

(5.35)

The solution of Eq. (5.35) yields the wire modes kµ(E). Half of them decay for i→∞
and the other half decays for i → −∞. Note that in the ballistic case, we also get
modes that propagate in the direction of increasing or decreasing i, respectively. We
are going to express the retarded Green's function of the semi-in�nite wire by those
states that decay or propagate into the wire, i.e. in the direction of i → −∞. The
decaying modes are easy to determine, however, to decide for the correct propagating
modes, we have to calculate the group velocity vµG(E), which is given by,

vµG(E) = − 2a

~ |ξµi |
2 Im

[
(ξµi )†Tii−1ξ

µ
i e
−ikµa

]
, (5.36)

and is independent of the slab index i. We select the states µ with vµG < 0. To
straighten the notation, we de�ne the matrix Ξ which has the selected eigenfunctions
ξµi as column vectors and the diagonal matrix Λ with the corresponding eigenvalues
eikµa on the diagonal.
We now return to the retarded Green's function of the semi-in�nite wire. Both

equations in Eq. (5.33) have to be ful�lled. We �rst make an ansatz that solves the
second equation of Eq. (5.33),

gij = Ξ Λi g̃Λj Ξ−1. (5.37)

We insert this ansatz into the �rst equation in Eq. (5.33) to calculate g̃. We �nd,

g̃ =
(
Ξ−1D00 Ξ + Ξ−1 T0−1 Ξ Λ−1

)−1
. (5.38)

Finally, we arrive at the self-energy that couples the lead with the device [97],

ΣC = τCg00τ
†
C = τC Ξ g̃ Ξ−1 τ †C , (5.39)

where τC denotes the coupling between the lead and the device. Using the Schrödinger
equation of the in�nite wire Eq. (5.34) once again and assuming that the coupling be-
tween the lead and the device is the same as the coupling within the lead τC = −T−10,
we arrive at the compact expression for the contact self-energy [94],

ΣC = τC Ξ Λ Ξ−1. (5.40)
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In the single-band case the equation for the contact self-energy Eq. (5.40) reduces
to [103],

ΣC(i, j) = −t
∑
µ

〈i | ψµ〉 eikµa 〈ψµ | j〉 , (5.41)

where i, j are spatial indices in the lead�device interlace, t is the coupling between
adjacent sites that is assumed to be constant here, a is the distance between sites,
and ψµ is the solution of the single band Schrödinger equation in a slab of the wire,

hii |ψµ 〉 = εµ |ψµ 〉 , (5.42)

and the wire dispersion follows from the relation [87],

E = εµ + 2t[1− cos(kµa)]. (5.43)

Thus, in the single-band case, the wire dispersion has to be calculated only once,
while in the general multi-band case or with spin-orbit coupling the wire dispersion
has to be calculated numerically for each energy E separately.
We note, that in some multi-band calculations the method described above turns

out to be numerically instable. Since the original eigenvalue problem Eq. (5.35) is
non-Hermitian, a standard eigenvalue solver does not yield orthogonal eigenstates
ξµ. Therefore, the matrix Ξ is not unitary and we need to invert it numerically or
apply an orthogonalization scheme which, however, turns out to fail numerically in
certain situations that are not predictable a priori. A possibility to calculate the
retarded Green's function in such a case, is to use an iterative scheme to solve the
Dyson equation,

gi00 =
(
E − h00 − τCgi−1

00 τ †C

)
, (5.44)

where the superscript i denotes the iteration index. Using an initial guess, e.g. gi=0
00 =

iη, with η > 0, the solution of Eq. (5.44) describes the surface Green's function
g00 of a wire with i + 1 slabs. Thus, after enough iterative steps one arrives
at a good approximation for the semi-in�nite wire eventually. Such an iterative
scheme has successfully been applied to quasi one-dimensional transport [104], in
two-dimensional or three-dimensional nanostructures on the other hand, a direct
iteration of Eq. (5.44) might lead to some tens of thousands steps until convergence
is reached. Especially in the vicinity of resonances and for nearly ballistic problems
the situation is worst. In Refs. [100, 101] an iterative scheme has been proposed,
that takes 2i slices after i iterative steps into account. This scheme works relatively
robust also for nanostructures and requires the worst some �fty iterations until con-
vergence is reached.If the direct calculation of the lead self energy fails due to the
above mentioned purely numerical reasons, we rely on the iterative scheme proposed
in Ref. [100, 101] to calculate the contact self-energy.
Once the retarded coupling self-energy is known, we still have to obtain the lesser

coupling Green's function, needed to calculate the lesser Green's function of the
device via the Keldysh equation (Eq. (5.24)). Since we assume the lead to be in
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equilibrium with a reservoir described by a Fermi distribution f(E − µC) with the
chemical potential µC of contact C, we can use the �uctuation dissipation theorem,

Σ<
C = if(E − µC)

(
ΣR
C − ΣR†

C

)
, (5.45)

which holds in equilibrium only.
Note that using Eq. (5.40) or the iterative scheme described above includes the

same interband and spin-orbit interactions in the leads as in the device. This is
important to inhibit arti�cial re�ections at the device�lead interface. The spin-orbit
coupling in the leads has usually been neglected in the literature on the intrinsic
spin-Hall e�ect, e.g. [105�108]. An abrupt change of the band structure or spin-orbit
coupling parameters, however, causes uncontrollable oscillation within the device
and overestimates the spin-polarization e�ects. We will therefore use the same
band-structure and spin-orbit coupling parameters in the leads as in the device, to
model a smooth, refection-free lead�device interface.

5.4. Novel treatment of scattering: The

multi-scattering Büttiker probe model

A full implementation of the non-equilibrium Green's functions method requires,
additionally to the solution of Eq. (5.23) and Eq. (5.24), the calculation of the self-
energies ΣR and Σ<. Thus, for stationary transport problems in open quantum
systems the self-consistent solution of four coupled integro-di�erential equations is
required. In operator form, they read [87],

GR =(E −HD − ΣR)−1,

G< =GRΣ<GR†,

ΣR =ΣR
c +GRDR +GRD< +G<DR,

Σ< =Σ<
c +G<D<, (5.46)

where HD is the device Hamilton operator and ΣR,< are the retarded and the lesser
total scattering self-energy, respectively. These self-energies are built up from the
sum of all environmental Green's functions DR,< that account for the speci�c scat-
tering mechanism. The self-energies ΣR,<

c represent the coupling self-energy between
the leads and the device. As shown in Sec. 5.2 all Green's functions and self-energies
are direct functions of two spatial coordinates r and r′ and the energy E. Especially,
we want to stress the coupling between the retarded self-energy ΣR and the lesser
Green's function G<. This coupling induces an indirect dependence of the retarded
Green's function on the lesser Green's function GR = GR[G<]. That means, that the
broadening of the states depends on their occupation. Note, that for inelastic scat-
tering, e.g. with polar optical phonons, it is this coupling that accounts for Pauli's
principle and cannot be neglected [92]. On the other hand, it makes the solution of
Eq. (5.46) markedly di�cult and unstable.
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An obvious and wide spread simpli�cation is to neglect scattering at all and treat
the transport strictly ballistic. In this case the scattering self-energies are assumed
to vanish and only the coupling self-energies appear in Eq. (5.46). Therefore, no
self-consistent calculation is necessary. Actually, the knowledge of GR is su�cient
to completely characterize the system. In fact, not even the whole retarded Green's
function GR(r, r′;E) is needed, but only of a small part, where r and/or r′ are in the
contact�device interface [93, 94]. From this part, all observables can be calculated.
For example the energy resolved charge current that passes through contact s is
given by the Landauer formula [109],

js(E) =
e

h

∑
s′∈C

T s
′,s(E)(f(E − µs)− f(E − µs′)), (5.47)

where C is the set of all contacts, T s
′,s(E) is the ballistic transmission and f(E−µs) is

the Fermi distribution function in contact s with the �xed chemical potential µs. The
transmission function can be derived from the contact block of the retarded Green's
function [94] and is related to the S matrix via the Fisher-Lee relation [87], that
describes the carrier transport through the device by a unitary scattering problem.
However, purely ballistic transport is plagued with artifacts that are caused by the
strict energy conservation and the in�nitely long-range correlations, that hamper
realistic predictions especially in complicated device geometries on the nanometer
scale [104].
A simple and very e�cient model to include inelastic and phase breaking scat-

tering is the so-called Büttiker probe method [96, 110]. It uses phenomenological
parameters to model the scattering self-energies via a �xed scattering potential and
thus bypasses any self-consistent solution of the Green's functions and their corre-
sponding self-energies. In fact, within this model, scattering processes can be viewed
as additional �oating contacts [111] (so-called probes) within the device that remove,
thermalize, and/or re-inject carriers. The equations for the retarded scattering self-
energy ΣR within the Büttiker probe model read,

ΣR(r, r′;E) =ΣR
c (r, r′;E) +BR(r;E)δ(r− r′),

ΣR
c (r, r′;E) =

∑
l∈C

ΣR
l (r, r′;E),

BR(r;E) =
∑
p∈P

BR
p (E)δ(r− rp), (5.48)

where C is the set of all contacts, P is the set of all probes, BR
p is the phenomeno-

logical scattering potential, and rp is the position of probe p. In general the probes
are distributed homogeneously within the device region. The simplest model for the
scattering potential is BR

p = iη with the constant η > 0, independent of energy and
position. A more realistic model for the scattering potential that can be related
to the mean free path of the carriers depends on the momentum of the carriers
[112, 113], as described in Appendix D. The contact self-energies are the same as
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in the full NEGF formalism and nonzero only at the contact�device interface. The
lesser self-energy of the device Σ< is calculated within a quasi-equilibrium approxi-
mation,

Σ<(r, r′;E) =
∑
l∈C

f(E − µl)Γl(r, r′;E) +
∑
p∈P

f(E − µp)Γp(r, r′;E), (5.49)

where Γl = ΣR
l − ΣR†

l and Γp = BR
p − BR†

p are the so-called broadening functions.
f(E − µl,p) denotes the Fermi distribution with the local chemical potentials µl,p
which are associated with each contact or probe, respectively. The chemical poten-
tials for the contacts µl are �xed by the applied bias, the chemical potentials in the
probes µp on the other hand are calculated in such a manner to obey current conser-
vation. Given the lesser self-energy Σ<, the energy resolved current at each probe
or contact s within the non-equilibrium Green's function formalism reads [114, 115],

js(E) =
q

2π~
∑

s′∈{C,P}

(T s,s
′
f(E − µs)− T s

′,sf(E − µs′), (5.50)

where T s,s
′
= Tr[ΓsGRΓs′G

R†] is the transmission function between probe or contact
s and probe or contact s′, Tr is the trace operator, q is the carrier's charge. Since
the probes are �oating they do not carrier any net current and the condition,∫

dEjp(E) = 0 ∀p ∈ P, (5.51)

must hold. Eq. (5.51) constitutes a system of nonlinear equations for the chemical
potentials µp in each probe, which has to be solved, e.g. iteratively by a Newton-
Raphson method.
Our novel MSB method combines the treatment of individual scattering mech-

anisms from the NEGF scheme with the basic idea of the BP model to handle
scattering via �oating contacts. Within the MSB model, the scattering potential B
becomes a functional of the local density of states ρ(r, E). The general form of B
now reads,

BR
p (E) = −i

+∞∫
−∞

dE ′ Mp(E,E
′) ρ(rp, E

′), (5.52)

where M is the sum over all scattering kernels for the individual scattering mecha-
nisms. In general, the derivation of the scattering kernels for the MSB model follows
the derivation of the scattering self-energies within the full NEGF scheme [88]. Thus,
we get for the scattering kernel for acoustic phonons (AP) within the MSB model,

MAP

p (E,E ′) =
VD(rp)

2kBT θ(EAP(rp)− |E − E ′|)
ρM(rp)v2

s(rp) 2EAP

, (5.53)

where θ is Heaviside's unit step function, VD is the scalar deformation potential, ρM
is the density of the material, vs is the velocity of sound in the material, and EAP is
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the maximum energy of acoustic phonons. The scattering kernel for dispersionless
polar optical (PO) phonons reads

MPO

p (E,E ′) =
q2kBTξ

2(rp)

2ε0

(
1

ε∞(rp)
− 1

εs(rp)

)
× δ(EPO(rp)− |E − E ′|),

where q is the charge of the carriers, ξ is the screening length, ε0 is the electric
vacuum permittivity, ε∞ is the electric permittivity at the high frequency limit, εs
is the static low frequency permittivity, and EPO is the energy of the polar optical
phonons.
Within the MSB model, the scattering potential depends on the local density of

states ρ(r, E) via Eq. (5.52). The local density of states can be calculated within
the NEGF framework from the retarded Green's function GR as follows [87],

ρ(r, E) = − i

2π
(GR(r, r, E)−GR†(r, r, E)). (5.54)

Therefore, Eq. (5.52) constitutes a self-consistent relation between ΣR and GR that,
in principle, has to be solved in an iterative scheme. However, the density of states
ρ(r, E) and thus the self-energy ΣR depend on the diagonal part of GR only. There-
fore, only the diagonal part of GR is required during the iteration, which can be
calculated very e�ciently, e.g. with the fast-inverse-using-nested-dissection (FIND)
algorithm [116, 117].
A further simpli�cation that side-steps the complex and error prone solution of

the nonlinear system of equations for the µp can be achieved within the MSB model
for devices with only two current-carrying contacts (source and drain). Such devices
are e.g. quantum cascade lasers or MOSFETs, if the small gate-leakage currents are
neglected. In such two-contact devices, we assume that the distribution functions
of each probe p is a linear combination of the source and drain Fermi distributions,
f(E − µS) and f(E − µD), respectively,

f(E − µp) = cpf(E − µS) + (1− cp)f(E − µD) ∀ p ∈ P, (5.55)

Now, Eq. (5.50) leads to a linear system of equations for the constants cp.
One of the di�culties of the NEGF formalism is that current conservation and

Pauli's principle are not automatically guaranteed. Particularly, the calculation of
the self-energies in any non-self-consistent approximation violates current conser-
vation [87]. To remedy such a result, the iteration over the four coupled Green's
functions and self-energies has to be carried out to in�nite order [92]. In contrast,
the main advantage of the BP model is that it sidesteps any self-consistent calcula-
tions for the Green's functions and self-energies. Moreover, it inherently guarantees
current conservation and Pauli's principle is always obeyed since a quasi-equilibrium
expression for Σ< is assumed and thus, the �uctuation dissipation theorem [87, 118]
holds. However, the BP model introduces a phenomenological scattering poten-
tial that does not distinguish between individual scattering mechanisms, and the
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strength of the scattering potential is to be tuned manually, e.g. by �tting to exper-
imental data.
Within the MSB model, we reduced the mathematical complexity to only two cou-

pled equations, ΣR and GR, but the treatment for individual scattering mechanisms
is retained. The iterative solution of only two coupled equations is far more robust
and faster than iteration over four coupled equations within the full NEGF formal-
ism. Moreover, current conservation and Pauli's principle are inherently guaranteed
during every step of the iterative solution of the MSB model, since we explicitly
calculate the chemical potentials µp of the probes. Therefore even in a non-self-
consistent Born approximation, current conservation is not violated. Note, that the
initial value of the local density of states ρ(r, E) and thus the initial value of ΣR can
be calculated within another formalism, e.g. by a Schrödinger solver.
We have applied the MSB model to state-of-the-art quantum cascade laser (QCL)

structures. A QCL device is a laterally homogeneous, layered heterostructure. In
these structures the interplay between quantum coherence and dissipation on the
one hand and between the various scattering mechanisms on the other hand is
particularly important [82]. In the studied cases, we found excellent agreement with
results from a full scale NEGF implementation as well as with experimental results.
Further details will be discussed in Ref. [119].

5.5. Implementation of external magnetic �elds

It is well known, that external magnetic �elds couple to the spin degree of freedom
via the Zeeman term and independently to the momentum of a charged particle.
In a spin-orbit coupled system, the magnetic �eld additionally couples to the spin
degree of freedom indirectly due to the coupling of spin and momentum. Indeed,
we have seen in Sec. 3.2 that the spin-orbit coupling for nondegenerate bands can
be expressed as a k-dependent e�ective Zeeman-like term. Interesting e�ects occur
in the case, when this internal spin-orbit �eld and the external magnetic �eld are
of the same magnitude. The interaction of the two �elds leads to spin-dependent
cyclotron radii [120], e�ects the Shubnikov-de Hass oscillation [56], and causes the
anomalous Hall e�ect [121] to name a few of these e�ects. Magnetic �elds are thus
widely used in experiment to probe the spin dynamics of the carriers.
From the theoretical point of view, the implementation of magnetic �elds for arbi-

trarily shaped nanostructures, in a manifestly gauge invariant and nonperturbative
manner is surprisingly nontrivial. The normally applied minimal coupling, that leads
to the covariant momentum p → p + eA takes the magnetic �eld B into account
via the vector potential A, where B = ∇ ×A. In quantum mechanics the covari-
ant momentum leads to the gauge covariant derivative, when the correspondence
principle pi → ~/i ∂i is applied,

Di = ∂i + i
e

~
Ai(r), (5.56)

where the subscript i ∈ {x, y, z}. In the envelop function approximation for arbitrary
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shaped nanostructures, the wave vector k is usually interpreted as the momentum
operator and thus as spatial derivative. Commonly, the derivative operators are dis-
cretized on a �nite lattice. A straight forward discretization of the gauge covariant
derivatives, however, leads to results for the spectrum that depend on the partic-
ular choice of gauge for the vector potential. In a recent publication, Andlauer et
al. [122] have presented a manifestly gauge invariant discretization scheme for the
Schrödinger equation in general multi-band envelop function theories that is non-
perturbative in the magnetic �eld. This scheme is based on the concept of gauge
covariant derivatives that has been developed in the context of latice gauge theories
originally. The magnetic �eld is included via Peierls-like phase factors that multiply
the zero �eld Hamilton matrix.
In a �nite di�erences scheme all functions F (r) are de�ned on a discrete lattice

only, F (r) → F (m), where m denotes a point on the lattice. Thus, derivative
operators are approximated as di�erence operators, according to,

∂iF (r)→ δi =
1

ε
[F (m + εi)− F (m)] , (5.57)

For the second derivative operator the �nite di�erences scheme yields,

∂i∂iF (r)→ δii =
1

ε2
[F (m + εi)− 2F (m) + F (m− εi)] , (5.58)

where ε is the grid spacing and εi the vector, connecting adjacent grid points in
direction i ∈ {x, y, z}. We now follow the notation of Andlauer et al. [122] to
explain the gauge covariant discretization scheme that we apply also in this work
to study the interplay between the externally applied magnetic �eld and the spin-
orbit coupling induced magnetic �eld. The derivative operators are written in the
compact form,

δiF (m) =
1

ε

∑
si

Ci(si)F (m + siεi)

δiiF (m) =
1

ε2

∑
si

Cii(si)F (m + siεi) (5.59)

where si ∈ {0,±1}, such that the sums run over the lattice point m and its nearest
neighbors. The coe�cients Ci and Cii are de�ned according to the discretization
scheme, where for �nite di�erence, we have,

Ci(1) = 1, Ci(0) = −1, Ci(−1) = 0, (5.60)
Cii(0) = −2, Cii(±1) = 1. (5.61)

We can now de�ne the covariant derivatives ∆i as discretized version of Di = ∂i +
ie/~Ai(m),

∆iF (m) =
1

ε

∑
si

Ci(si)U(m,m + siεi)F (m + siεi),

∆iiF (m) =
1

ε2

∑
si

Cii(si)U(m,m + siεi)F (m + siεi), (5.62)
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where the discrete connection U is de�ned by,

U(m,n) = exp

(
i
e

~

∫
S(m,n)

A(r)dr
)
. (5.63)

The trajectory S(m,n) connects the grid points m and n. We note that some
care concerning the ordering of the operators has to be taken, if there are mixed
derivatives e.g. ∂i∂j. In Ref. [122], it was shown how to handle these mixed second
derivatives.
In this work, we consider only two-dimensional electron and hole gases. We always

assume that the con�nement induced quantization in the z- (growth) direction is
stronger than the Landau quantization induced by the magnetic �eld components
perpendicular to the growth direction. Since these inplane components of the mag-
netic �eld are described by the z-component of the vector potential, we neglect
the coupling of the vector potential to the momentum in the growth direction and
take into account only the coupling to the spin degree of freedom via the Zeeman
term [123]. For magnetic �elds applied along the growth direction on the other
hand the vector potential has components in the plane of the quantum well and we
have to take into account the coupling to the in-plane momentum making use of
the discretization scheme, described above. Originally, this scheme has been pro-
posed for and applied to multi-band Schrödinger equations in the envelope function
approximation.
To transfer the scheme to the Green's function method in open quantum devices,

we have the additional problem of how to handle the semi-in�nite leads with applied
magnetic �eld. One possible and simple approach is to assume the leads to be
�eld free e.g. by decreasing the magnetic �eld in the device towards the contacts
adiabatically [124�126]. In the experimental relevant situation, magnetic �elds are
mainly created by large coils. Since we consider structures on the nanometer scale, it
seems quite unrealistic, that the magnetic �eld is present only in the device and zero
in the leads. It would be much more sensible to assume a homogeneous magnetic
�eld to be present also in the leads.
To include a �nite magnetic �eld in the semi-in�nite leads poses the problem of

how to de�ne the scattering states in the isolated semi-in�nite leads [127�130]. In
Sec. 5.3, we have assumed, that the eigenstates are plane-waves in the longitudinal
direction of the lead. In �nite magnetic �elds, this only holds if the gauge is also
purely longitudinal, i.e. that the vector potential does not depend on the longitudinal
coordinate of the lead under consideration.
We are dealing with devices that have contacts in x- as well as y-direction, i.e. there

is no simple standard gauge like the Landau or Coulomb gauge that is longitudinal
for both kinds of leads. While for example the Landau gauge Ax(x, y) = −By
yields a longitudinal gauge for leads in x-direction. For leads in y-direction, on the
other hand, this gauge �eld is purely transverse. The commonly used symmetric or
Coulomb gauge on the other hand yields a mixed form for leads in both directions.
A possible solution would be to use di�erent gauges for the various leads [131].
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However, the resulting total vector potential for the device and the leads in this
case is noncontinuous, which causes spurious magnetic �elds, that in�uence the
properties of the system considerably. We now develop a gauge that is longitudinal
for any lead but is continuous everywhere. To do so, we start with Landau gauge,

A(r) =

 −B · y0
0

 . (5.64)

We can apply a gauge to the vector �eld A → A + ∇f(x, y) with the function of
the kind f(x, y) = B · η(x) · x · y. Adjusting the auxiliary function η(x), we wish
to achieve a longitudinal gauge for the contacts in y-direction while the gauge for
leads in the x-direction remains unchanged. We de�ne the function η(x) piecewise
in six sections as,

η(x) =



0 for x < x0

1
2

(
1− cos

(
π

x1−x0
(x− x0)

))
for x0 ≤ x ≤ x1

1 for x1 ≤ x ≤ x2

1
2

(
1 + cos

(
π

x3−x2
(x− x2)

))
for x2 ≤ x ≤ x3

0 for x > x3

(5.65)

with x0 < x1 < x2 < x3 where x0 is chosen to be to the right of the left most contact
in x-direction, x1 to the left of the leftmost contact in y-direction, x2 to the right of
the rightmost contact in y-direction, and x3 to the left of the rightmost contact in
x-direction. For the gradient of f(x, y) that adds to the vector potential, we get,

∇xf(x, y) = Bη(x)x (5.66)
∇yf(x, y) = Bxy∂xη(x) +Bη(x)y (5.67)

with the piecewise de�ned partial derivative of the auxiliary function η(x),

∂xη(x) =



0 for x < x0

π
2(x1−x0)

sin
(

π
x1−x0

(x− x0)
)

for x0 ≤ x ≤ x1

0 for x1 ≤ x ≤ x2

− π
2(x3−x2)

sin
(

π
x3−x2

(x− x2)
)

for x2 ≤ x ≤ x3

0 for x > x3

(5.68)

Thus, we get for the x-component of the vector potential,

Ax(x, y) = −By +Bxy∂η(x) +Bη(x)y, (5.69)

and for the y-component,
Ay(x, y) = Bxη(x). (5.70)
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For the phase factors, that appear in the gauge invariant discretization of the Hamil-
tonian matrix, we need to evaluate the path integral of the vector potential along
the connection of two adjacent grid points. We get for connection in x-direction,∫ xi+ε

xi

Axdx = −Byε+By

∫ xi+ε

xi

dx {η(x) + x∂xη(x)}

= −Byε+ Byxη(x)|xi+εxi
+By

∫ xi+ε

xi

dx(η(x)− η(x))

= −Byε+By ((xi + ε)η(xi + ε)− xiη(xi)) , (5.71)

and for the connection in y-direction,∫ yi+ε

yi

Aydy = Bxη(x)ε. (5.72)

These phases have to be applied, to achieve a longitudinal gauge in all attached
leads and thus the same homogeneous magnetic �eld as in the device. Note that
usually, the path integral is approximated by a rectangular formula with the vector
potential being evaluated at half the way between the grid points. This, however is
only valid, if the vector potential depends linearly on the coordinates. If the vector
potential is nonlinear as in our case, we need to evaluate the integrals exactly, see
Eq. (5.71) and Eq. (5.72), in order to achieve a gauge invariant formulation of the
problem.

5.6. Spin-resolved observables

In this section, we want to show how the physical observables can be derived within
the non-equilibrium Green's function formalism. While most observables like charge
and electrical current density which depend on the occupation of electronic states
are derived from the lesser Green's function, the local density of states ρ(r, E)
follows from the spin-summed diagonal elements of the retarded Green's function
GR(r, r′;E)

ρ(r, E) = − 1

π

∑
σ

Im[GR(r, σ, r, σ;E)], (5.73)

where σ ∈ {↑, ↓} denotes the spin index. With the spectral function, which is de�ned
by,

A(r, r′, E) =i
∑
σ

(GR(r, σ, r′, σ;E)−GA(r, σ, r′, σ;E))

=i
∑
σ

(GR(r, σ, r′, σ;E)−GR†(r, σ, r′, σ;E)), (5.74)

the local density of states can be calculated from,

ρ(r, E) =
1

2π
A(r, r, E). (5.75)
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It is useful to note, that the spectral function can also be calculated from,

A = GRΓGA, (5.76)

which is given in full matrix notation. Γ denotes the broadening function, due to
scattering and the coupling to the leads. Although the relation Eq. (5.76) appears
more complicated than Eq. (5.74), it has some useful advantages. Since the broad-
ening function is de�ned by,

Γ =
∑
C

(ΣR
C − ΣR†

C ) + (ΣR
S − ΣR†

S ), (5.77)

where the superscripts C and S denote the contacts and the scattering respectively,
in the evaluation of Eq. (5.76) one only needs to know those columns of GR that
correspond to grid points with a nonzero broadening function Γ. If e.g. ballistic
transport is considered, ΣR

S = 0, the broadening function is only nonzero at the
lead�device interfaces, and thus only at very few points compared to total number
of device points.
From Eq. (5.76), we de�ne the lead connected spectral function AC and thus the

lead connected density of states by,

AC = GRΓCG
A, (5.78)

where ΓC denotes the brocading function due to the single contact C. The lead
connected density of states is then given by the diagonal elements of AC ,

ρC(r, E) =
1

2π
AC(r, r, E). (5.79)

This quantity denotes the probability for a carrier to propagate coherently from
contact C to the point r within the device. Coherently in this context means without
a scattering event. The lead connected density of states is proportional to the
transmission between the considered contact and e.g. a tip of a scanning tunnel
microscope placed at point r. It is thus a measurable quantity [132].
We will now turn to the occupation dependent quantities in non-equilibrium sit-

uations. We start with the charge density. Note that, in thermal equilibrium, the
charge density can be calculated from the local density of states and the Fermi dis-
tribution function. In non-equilibrium, the energy resolved local charge density is
given by [87],

n(r, E) =
−i
2π

∑
σ

G<(r, σ, rσ;E). (5.80)

For the total local density, we integrate over the energy

n(r) =

∫
dEn(r, E). (5.81)

The averaged total density within the device can be calculated by averaging over
the device volume n = 1/V

∫
drn(r). In the case of quantum spin transport, we
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5. Non-equilibrium Green's functions theory for spin-dependent quantum transport

are also interested in spin-resolved densities, so-called polarizations. We de�ne the
spin-resolved local density n(r, σ, σ′) by,

n(r, σ, σ′) =
−i
2π

∫
E

dEG<(r, σ, r, σ′;E). (5.82)

Note that the charge density follows from the trace of spin-resolved density over the
spin variables,

n(r) =
∑
σ

n(r, σ, σ) (5.83)

As the local spin polarization, we de�ne the di�erence of the spin-up (σ =↑) and
the spin-down (σ =↓) density,

Sz(r) = n(r, ↑, ↑)− n(r, ↓, ↓). (5.84)

Since we use the representation of the Pauli matrices with a diagonal σz throughout
this work, Sz in Eq. (5.84) indeed denotes the spin polarization in z-direction. Since
the spin-orbit �eld lies in the plane of the quantum well, perpendicular to the z-
direction, the analogous quantities Sx(r) and Sy(r) are also of interest. They can be
obtained by an appropriate rotation in spin space. A rotation around the axis e by
the angle α in spin space is given by the SU(2) matrix,

RSU(2)
e (α) = e−iαe·σ/~ = cos

α

2
σ0 − ie · σ sin

α

2
, (5.85)

where σ = (σz, σy, σz) is the vector of the Pauli matrices and σ0 is the 2 × 2 unity
matrix. For the polarization in x-direction Sx, we apply a rotation by α = −π/2
around ey and �nd,

Sx(r) = n(r, ↑, ↓) + n(r, ↓, ↑). (5.86)

For the polarization in y-direction Sy, we apply a rotation by α = π/2 around ex,

Sy(r) = i(n(r, ↑, ↓)− n(r, ↓, ↑)). (5.87)

Note that we can also de�ne the spin-resolved lead connected density of states
ρC(r, E, σ) in an analogous way. This quantity equals the probability, that a carrier
that propagates coherently from contact C to the point r has the spin σ at r no
matter what the spin state is at the contact C.
While the charge and spin densities can be calculated from the spatially diagonal

elements of G<(r, σ, r′, σ′;E), o�-diagonal correlations are needed for the current.
Since in spin-orbit coupled system, the conventional de�nition of the charge current
is not applicable in general [133], we follow a general approach from the continuity
equation to derive the current operator. We focus directly on the discrete case of
a �nite di�erences Hamiltonian. We follow the book of Mahan [134] and de�ne the
charge polarization vector,

P =
∑
σ,m

= mc†m,σcm,σ, (5.88)

82



5.6. Spin-resolved observables

where m denotes a point on the discrete lattice, c†m,σ denotes the creation operator,
that creates a particle at pointm with spin σ, and cm,σ annihilates the same particle.
The current operator can be calculated from the commutator,∑

m

j(m) =
i

~
∑
m,i

[H(m, εi),P]− , (5.89)

where the Hamiltonian matrix in the �nite di�erence representation has the general
form,

H =
∑
m,i

H(m, εi),

=
∑
m,i

σ,σ′,

(
tσ,σ

′

m,m+εic
†
m,σcm+εi,σ′ + tσ

′,σ
m+εi,mc

†
m+εi,σ′

cm,σ

)
, (5.90)

and includes couplings between sites m and m + εi, which can be on-site elements
(εi = 0), nearest, or more distant neighbors coupling and tm+εi,m = (tm,m+εi)

†. Since
Eq. (5.89) is a direct result of the continuity equation, it has to hold for arbitrary
volumes. Therefore, we can drop the sum over the site m and get a de�nition for
the local current operator,

j(m) =
i

~
∑
i

[H(m, εi),P]− , (5.91)

To calculate the current, we have to evaluate the commutators,[
c†m,σ1

cm+εi,σ2 , c
†
n,σcn,σ

]
− = c†m,σ1

cn,σδσ2,σδn,m+εi − c†n,σcm+εi,σ2δσ1,σδn,m, (5.92)[
c†m+εi,σ1

cm,σ2 , c
†
n,σcn,σ

]
−

= c†m+εi,σ1
cn,σδσ2,σδn,m − c†n,σcm,σ2δσ1,σδn,m+εi . (5.93)

Putting everything together, we arrive at the general expression for the charge cur-
rent operator,

j(m) =
i

~
∑
i,σ1,σ2

εi

(
tσ1,σ2
m,m+εic

†
m,σ1

cm+εi,σ2 − t
σ1,σ2
m+εi,mc

†
m+εi,σ1

cm,σ2

)
. (5.94)

Finally, we take the quantum statistical average, and note that [87],〈
c†m,σcn,σ′

〉
=

~
i

∫
E

G<(n, σ′,m, σ;E), (5.95)

which results in the �nal expression for the local charge current at site m,

j(m) =
∑
i,σ1,σ2

εi

∫
E

dE
(
tσ1,σ2
m,m+εiG

<(m + εi, σ2,m, σ1;E)−

tσ1,σ2
m+εi,mG

<(m, σ2,m + εi, σ1;E)
)
, (5.96)
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which agrees with the operator proposed in Ref. [105]. The �nite di�erences Hamil-
tonian matrices for the k-linear and the k-cubic operator are presented in Appendix
B.
For the local current in the k-linear model Eq. (3.1), we get (note that in order to

shorten the notation we write G<
m,n(σσ′) for

∫
E
dEG<(m, σ,n, σ′;E)),

jx(m) = εx
{
tx
(
G<

m,m+εx(↑↑) +G<
m,m+εx(↓↓)−G

<
m+εx,m(↑↑)−G<

m+εx,m(↓↓)
)}

+

1

2εx
(iαBIA − αSIA)

(
G<

m,m+εx(↑↓) +G<
m+εx,m(↑↓)

)
+

1

2εx
(iαBIA + αSIA)

(
G<

m,m+εx(↓↑) +G<
m+εx,m(↓↑)

)
, (5.97)

jy(m) = εy

{
ty

(
G<

m,m+εy(↑↑) +G<
m,m+εy(↓↓)−G

<
m+εy ,m(↑↑)−G<

m+εy ,m(↓↓)
)}

+

1

2εy
(αBIA − iαSIA)

(
G<

m,m+εy(↑↓) +G<
m+εy ,m(↑↓)

)
−

1

2εy
(αBIA + iαSIA)

(
G<

m,m+εy(↓↑) +G<
m+εy ,m(↓↑)

)
, (5.98)

where εx and εy are the lattice spacing in x- and y-direction and εx and εy are
the vectors connecting nearest neighbors in x- and y-direction, respectively, and
tx,y = ~2/(2m∗ε2x,y)
For the k-cubic Dresselhaus model, the expression for the local current gets rather

complicated due to the various couplings to 2nd and 3rd nearest neighbors. We
therefore refer to the appendix C for the expression.
Note that the so-called terminal current, i.e. the current that �ows through

the attached leads, can be calculated independently of the model Hamiltonian by
Eq. (5.50). However, the spatial resolution is lost, which includes additional infor-
mation like the current pro�le within the device [135].
We want to note, that a lot of work has been devoted to the calculation of spin

currents in systems with spin-orbit coupling. Especially pure spin currents, which
means spin transport without an accompanying charge current have been investi-
gated due to the possible applications in next generations transistors. Unfortunately
a fundamental problem arises already from the de�nition of the spin current. In spin-
orbit coupled systems the conventional de�nition of the spin current does not lead
to a conserved current, due the so-called spin-transfer torque that is caused by the
k-dependent spin-orbit magnetic �eld. In Ref. [136], it was shown, that the non-
conservation of the translational motion of the spin can rephrased as an angular
spin current, that describes rotational motion (precession). Later, in Ref. [137] the
de�nition of a conserved spin current was proposed. The de�nition was used to cal-
culate the spin-Hall conductivity in in�nite two-dimensional electron and hole gases
[138]. However, in nanostructures, the de�nition of the conserved spin current leads
to an unphysical dependence on the origin of the coordinate system [139]. Moreover,
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5.7. Summary

the spin current is not directly measurable in experiment. Thus, in order to avoid
any ambiguity in the de�nition of the spin current, we refrain from any attempt to
calculate spin currents directly. Instead, we either calculate its e�ect on the carriers
via the spin-current induced electric �eld [136, 140] or we rely on the spin polariza-
tions, which are well de�ned and directly measurable in experiment in principle. We
�nd that the spin polarization in static transport gives direct information on how
the spin evolves in the system and is thus su�cient to interpret the results.

5.7. Summary

In this chapter, we have given a short introduction to non-equilibrium Green's func-
tions theory, as it is the method we use, to calculate spin-dependent quantum trans-
port in open semiconductor nanostructures. In particular, we have presented a
method to calculate the coupling self-energy between the device and the leads in
open quantum geometries, that takes into account all band-interactions in multi-
band theories and includes scattering within the leads, which is both very impor-
tant to inhibit arti�cial re�ections at the lead�device interface that might cloak the
properties of the actual device. For realistic predictions, it is also very important to
take inelastic and phase-breaking scattering into account. That lead us to develop
the novel multi scattering Büttiker probe model, which renders it possible to include
realistic scattering mechanisms in three-dimensional nanostructures with reasonable
computational e�ort. We have also presented, how external magnetic �elds can be
incorporated into the non-equilibrium Green's function method for open devices in a
manifestly gauge invariant way via Peierl's-like phase factors. We thereby allow for
the same �nite magnetic �eld within the leads as within the device. Finally, we have
shown how the physical observables in spin-dependent transport calculation can be
obtained from the Green's functions. In particular, we have given expressions for
the spin-polarization and the local electrical current density for the studied models
of spin-orbit coupling.
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6. Results for the spin-dependent

electron focusing in external

magnetic �elds

6.1. Introduction

As a �rst application of the quantum transport method, we present results for
the spin-dependent electron focusing in external magnetic �elds in near ballistic
two-dimensional electron gases (2DEGs). Transverse electron focusing between two
quantum point contacts (QPCs) in 2DEGs was reported for the �rst time in 1989
[141] and repeatedly in various semiconductor heterostructures and geometries since
then. The experiments require nearly ballistic charge transport, i.e. the distance be-
tween the QPCs has to be smaller than the mean free path of the carriers. Since the
typical distance between the QPCs is of the order of 1µm, high quality 2DEGs are
required. Electron focusing has also been used successfully to elucidate fundamental
properties e.g. the shape of the Fermi surface [142]. Since in systems with spin-orbit
interaction the shape of the Fermi surface of the conduction band is determined by
the relative strength of the Rashba and Dresselhaus spin-orbit coupling constants,
see Sec. 3.2, transverse electron focusing opens a way to measure the strength of
both coupling constants independently [143]. The combination of external magnetic
�eld and strong spin-orbit interaction might also be used to generate and analyze
spin-polarized carriers in high mobility 2DEGs [120, 132, 144�147]. This chapter
is organized as follows. In Sec. 6.2, we review the general properties of spin-orbit
coupled systems in magnetic �elds, with special emphasis on the transverse focus-
ing. In Sec. 6.3, we predict spin-dependent transverse focusing of electrons in various
semiconductor quantum well structures in external magnetic and electric �elds.

6.2. Theory of magnetic focusing and spin-orbit

interaction

We show the schematics of transverse electron focusing in Fig. 6.1 without (top) and
with (bottom) spin-orbit coupling in an external magnetic �eld perpendicular to
the quantum well. In the case without spin-orbit coupling, the carriers which are
injected through the left QPC (injector) follow a single cyclotron orbit. Whenever
the distance between two QPCs is a multiple integer of the cyclotron diameter, the
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Figure 6.1.: Schematics of the electron focusing in semiconductor quantum wells
with an external transverse magnetic �eld. (top) Without spin-orbit
interaction, the injected carriers follow one cyclotron orbit which shows
up as a single peak in the transmission between the QPCs if their dis-
tance equals an integer multiple of the cyclotron diameter. (bottom)
With spin-orbit interaction, the injected carriers follow one of two pos-
sible cyclotron orbits depending on their spin orientation which shows
up as a double peak in the transmission between the QPCs.

carriers are focused onto the right QPC (collector) and hence, we get a peak in
the transmission between the two contacts. In the case with a �nite k-linear spin
splitting of the conduction band the injected carriers follow two di�erent cyclotron
orbits, depending on their spin orientation [148]. The case without spin-orbit cou-
pling is trivial and can be found in many textbooks on quantum mechanics. For the
case with spin-orbit coupling however, an analytical quantum mechanical solution
is only known for a single type of spin-orbit coupling, where mainly the e�ect of the
Rashba type spin-orbit interaction has been studied [149�151]. For an interplay of
Rashba and Dresselhaus spin-orbit couping, no analytical solution is known in �nite
magnetic �eld. We want to present the solution for the Dresselhaus spin-orbit cou-
pling since the Dresselhaus spin-orbit interaction is more fundamental and nonzero
(αBIA 6= 0) already for D2d symmetric structures whereas the Rashba spin-orbit cou-
pling vanishes for D2d (αSIA = 0). In this case the solution of the two-dimensional
Schrödinger equation in magnetic �eld yields the secular equation for the eigenen-
ergy E in the basis of the Landau wave function without spin-orbit interaction [152],

det
[

(n− 1/2)~ωc + E+ αBIA/lc
√

2n

αBIA/lc
√

2n (n− 1/2)~ωc + E−

]
= 0, (6.1)

where ωc = eB/m∗ is the cyclotron frequency, lc =
√

~/m∗ωc is the magnetic length,
and E± = −E±gµBB, where gµBB is the usual Zeeman term. Note that due to the
spin-orbit interaction the Landau levels n and n + 1 get coupled with one another.
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The solutions of Eq. (6.1) correspond to spin-dependent Landau levels. We get one
spin-degenerate level for n = 0 with,

E±n=0 = E0 =
1

2
~ωc − gµBB, (6.2)

and spin-split branches, corresponding to n > 0,

E±n = n~ωc ±

√
E2

0 +
2nα2

BIA

l2c
. (6.3)

The ground state (Eq. (6.2)) is spin aligned with the magnetic �eld which we assume
in z-direction perpendicular to the quantum well. For the excited states the spin
is tilted into the plane due to the spin-orbit interaction. In the weak �eld limit
that corresponds to E2

0 � 2(α/lc)
2, we get 〈σz〉 ≈ 0 and the spin lies completely

in the plane [150]. This limit corresponds to a dominance of the spin-orbit �eld
over the external magnetic �eld. This is the limit for the spin-dependent focusing
experiments that we will focus on.
Due to Eq. (6.3), the two spin branches correspond to di�erent Landau levels n

for a given Fermi energy and consequently possess di�erent Cyclotron radii, which
in the considered large n limit reads,

r2
c = 2l2cn, (6.4)

which leads to a di�erence in the cyclotron radius that is approximately given by,

∆rc = 2
αBIA
~ωc

. (6.5)

In the described experimental setup for electron focusing, however, this di�erence
cannot be measured directly. Instead, one measures the di�erence in the magnetic
�eld, that is required to focus the two branches onto the collector. This di�erence
for the �rst focusing peak is given by

∆Bz =
4m∗

~eL
αBIA, (6.6)

where L is the distance between the injector and the collector QPC. In the case
when the structure possesses only C2v symmetry and the Rashba spin-orbit cou-
pling constant αSIA is also nonzero, the splitting of the focusing peak depends on
the crystallographic orientation due to the anisotropic Fermi surface. In this case,
semiclassical arguments lead to [143],

∆Bz(φ) =
4m∗

~eL
αBIA

√
1 +

(
αSIA
αBIA

)2

− 2
αSIA
αBIA

sin (2φ), (6.7)

where φ is the angle of the crystallographic orientation of the structure relative to
the [100]-direction.
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Figure 6.2.: (left) Contour plot of the peak normalized transmission probability be-
tween injector and collector quantum point contact for a 15 nm wide
InAs/In.75Al.25As quantum well as a function of the external electric
and magnetic �eld. (right) k-linear spin-orbit coupling parameters in
the same quantum well as a function of electric �eld. The solid line
shows the Dresselhaus parameter αBIA and the dashed one shows the
Rashba parameter αSIA.

6.3. New results for magnetic focusing in

semiconductor heterostructures with external

electric and magnetic �eld

In this section, we present results for the calculated spin-dependent electron focusing
in InAs and InSb quantum wells subject to both an external magnetic and electric
�eld. In Sec. 3.3, we have seen that the spin-orbit coupling constants in these ma-
terials are particularly large and can be steered excellently by a top gate voltage.
We have calculated the transmission for a 2DEG in a 15 nm wide InAs/In.75Al.25As
with a sheet density of n2D = 1.7 · 1011 cm−2 from a 70 nm wide injector QPC to a
detector QPC of equal width, that were placed 1.8µm separated from each other as
a function of the magnetic and electric �eld. In Fig. 6.2 (left), we plot the results
for the peak normalized transmission as a density plot. On the vertical axis, the
magnetic �eld is depicted, while the electric �eld is depicted on the horizontal axis.
In the right panel of that �gure, we plot the calculated spin-orbit coupling constants
αBIA and αSIA as a function of the electric �eld, see Sec. 3.3. We �nd a well resolved
splitting only for fairly large electric �elds (F ≥ 70 kV/cm), which is due to the �nite
width of the focusing peaks that hampers a resolution for smaller electric �elds and
thus smaller spin-orbit coupling strength. Note, that we have used rounded barriers
for the QPCs with a radius of 15 nm to improve the resolution, since it is known
that such QPC have a collimation e�ect on the injected electron beam [153�155].
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Figure 6.3.: (left) Contour plot of the peak normalized transmission probability be-
tween injector and collector quantum point contact for a 10 nm wide
InSb/In.8Al.2Sb quantum well as a function of the external electric and
magnetic �eld. (right) k-linear spin-orbit coupling parameters in the
same quantum well as function of electric �eld. The solid line shows the
Dresselhaus parameter αBIA and the dashed one the Rashba parameter
αSIA.

Nonetheless, we �nd a minimal spin-orbit coupling strength of αSIA ≈ 7meVnm.
Therefore, it is not possible to observe a spin-splitting e�ect in n-GaAs quantum
wells, due to the small spin-orbit coupling, see Sec. 3.3.

For InSb quantum wells on the other hand, we �nd both spin-orbit coupling
constants to be above this limit. We therefore turn to InSb quantum wells. We
have repeated the previous calculation for a 2DEG in a 10 nm wide InSb/In.8Al.2Sb
quantum well with a sheet density of n2D = 1.1 · 1011 cm−2 and the same QPC
geometry as before. The results are shown in Fig. 6.3. On the left, we plot again
the peak normalized transmission between the two QPCs as a function of magnetic
�eld on the vertical axis and electric �eld on the horizontal axis, respectively. In the
right panel, the corresponding αBIA and αSIA are depicted as a function of the electric
�eld. For zero electric �eld the splitting of the �rst focusing peak is solely due to
the Dresselhaus spin-orbit interaction. The numerically calculated splitting agrees
well with the expectation from the analytic solution Eq. (6.6). In Fig. 6.4 (left), we
plot the peak normalized density of states at the Fermi energy for electrons injected
from the left QPC at a �xed magnetic �eld of Bz = 60mT and zero electric �eld.
This quantity is proportional to the transmission probability from the injector to
a probe attached to a point in the device, see Sec. 5.6. Such a probe could be
realized by the tip of a scanning tunnel microscope. Recently, such a measurement
was carried out successfully for a transverse electron focusing experiment [132]. We
can clearly see that two separated cyclotron orbits form. That the corresponding
electron beams are actually spin polarized can be seen in the right panel of the �gure.
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Figure 6.4.: (left) Contour plot of the peak normalized lead connected local den-
sity of states of the injector quantum point contact at the Fermi energy
for the InSb quantum well at zero electric �eld and an external mag-
netic �eld B = 60mT. (right) Peak normalized spin polarization in
y-direction relative to the lead connected local density of states.

Here, we plot the peak-normalized spin polarization in y-direction (crystallographic
[010]-direction) relative to the density of states for carriers emerging coherently from
the injector. We �nd that the carriers are highly spin polarized in this direction as
they approach the collector, since in the [010]-direction the spin-orbit �eld of the
Dresselhaus Hamiltonian points in the y-direction. The other spin directions (not
shown) have no signi�cant values, which shows that we are indeed in the low external
magnetic �eld �eld limit and the spin-orbit coupling dominates.
For nonzero electric �eld, also the Rashba spin-orbit coupling constant becomes

nonzero. For large electric �eld the Rashba e�ect is expected to dominate over
the Dresselhaus e�ect. The calculated splitting of the cyclotron orbits in this limit
agrees well with the expectation from the semiclassical prediction of Eq. (6.7). In
Fig. 6.5 (left), we plot the peak normalized density of states at the Fermi energy for
electrons injected through the left QPC for a �xed magnetic �eld of Bz = 60mT
and a �xed electric �eld of F = 200 kV/cm. The two cyclotron orbits are clearly
visible and well separated. In the right panel, we plot again the peak-normalized
spin polarization relative to the density of states, but this time for the x-direction
(crystallographic [100]-direction), since for systems with dominating Rashba spin-
orbit interaction the eigenspinor is approximately perpendicular to the direction of
motion. The other spin directions are again insigni�cant. We note that the two
cyclotron orbits are almost perfectly spin polarized in this case. We attribute this
fact to the larger spin-orbit �eld and the larger separation of the orbits, whereas
in the case of zero electric �eld the two orbits where still partly overlapping, which
reduces the e�ective polarization of each peak.
A special situation is the case of competing Dresselhaus and Rashba spin-orbit

coupling, when the associated spin-orbit coupling constants αBIA and αSIA have
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Figure 6.5.: (left) Contour plot of the peak normalized lead connected local density
of states of the injector quantum point contact at the Fermi energy for
the InSb quantum well at an electric �eld of F = 200 kV/cm and a
magnetic �eld of B = 60mT. (right) Peak normalized spin polarization
in x-direction relative to the lead connected local density of states.

about the same magnitude. In Fig. 6.3 this point is reached for electric �elds around
F ≈ 40 kV/cm. For this case the semiclassical prediction is obviously qualitatively
wrong since no spin split cyclotron orbits are found from the numerically exact
calculation. For the case of exactly equal coupling constants αBIA = αSIA, the
absence of spin-split cyclotron orbits can be explained with the e�ective decoupling
of spin and Landau-level. For αBIA = αSIA the eigenspinor is independent of the
wave vector and the Fermi surface turns into two independent spheres, shifted from
the origin in reciprocal space. For slightly larger electric �elds, when the Rashba
spin-orbit coupling constant is only a little larger than the Dresselhaus one, we get
three independent peaks in the transmission as a function of the magnetic �eld. As it
turns out, the middle peak is not spin polarized and appears exactly at the magnetic
�eld expected for a system without spin-orbit coupling. This phenomena is related
to the so-called magnetic break down and can be attributed to tunneling between
the two cyclotron states at points in reciprocal space, where the Fermi surfaces of
both spin states come closest [143].

Finally, we want to point out that we �nd no splitting of the second focusing peak
(not shown) which can be attributed to spin-dependent re�exion of the barrier for
the skipping orbits [156]. Due to the mixing of the spin states at the barrier [150]
the up state with the smaller cyclotron radius scatters into the down state with the
larger cyclotron radius and vice versa. Therefore, both spin states are focused onto
the same region in space, leading to a single non-split peak in the transmission of
the second focusing peak.
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6.4. Summary

In this chapter, we have presented results for the spin-dependent transverse electron
focusing in magnetic �eld. In particular, we have studied semiconductor nano-
structures in external electric and magnetic �eld and predict a large spin splitting of
the �rst focusing peak in InSb and InAs quantum wells. The e�ect can be employed
to realize highly e�ective spin polarizer as well has highly sensitive spin �lter that
work for various spin-polarization directions which is selectable by the applied gate
voltage. In particular, we predict for InSb quantum wells, that for low external
electric �elds, the spin-split electron beams are highly polarized in the x-direction,
perpendicular to the direction, that connects the injector and collector QPC. In
higher external electric �eld, on the other hand, the polarization of the electron
beams point in the y-direction, along the connection of the QPCs.
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7. Review of the intrinsic spin-Hall

e�ect in nanostructures

7.1. Introduction

The modern �eld of spintronics has caused a tremendous interest in spin-orbit cou-
pling e�ects in semiconductors. The name spintronics summarizes the research both
theoretically and experimentally to use the carrier's spin degree of freedom instead
of or in combination with its charge for information processing or quantum comput-
ing [2]. A key challenge in the development of applications, e.g. the spin transistor
proposed by Datta and Das [1], is to gain control over the spin degree of freedom in
semiconductor nanostructures. To achieve this goal, the so-called spin-Hall e�ect is
expected to play a major role [4, 5].
The spin-Hall e�ect was �rst predicted by Dyakonov and Perel [157] in the 1970s

and in a more recent paper by Hirsch [158]. If an electrical current passes through
a two-dimensional electron gas (2DEG) with spin-orbit coupling it induces a spin
polarization with opposite orientation at opposite edges. The e�ect requires neither
external magnetic �elds nor ferromagnetic elements. Instead, it is caused by spin-
dependent impurity scattering, as side jump and skew scattering e�ects [159, 160].
Therefore this e�ect is termed extrinsic spin-Hall e�ect today, as opposed to the
intrinsic spin-Hall e�ect [161, 162], that is caused entirely by the spin splitting of
the band-structure and nonzero without any impurity scattering. For the intrinsic
spin-Hall e�ect a universal spin conductivity was predicted [163] and thus pure spin
currents perpendicular to the electrical charge current. However, it turned out that
the intrinsic spin-Hall conductivity in an in�nite 2DEG vanishes for arbitrary small
spin-independent impurity scattering [164, 165].
In contrast to the in�nite 2DEG, in �nite structures on the nanometer scale the

intrinsic spin-Hall e�ect is robust against spin-independent coherent [166, 167] as
well as incoherent scattering [168] and shows up as �nite spin accumulation at the
opposite edges of a quantum wire with �nite width [107, 169�172]. It has therefore
also been termed mesoscopic spin-Hall e�ect to delimit it from the in�nite case.
Thus, in nanostructures both the intrinsic and the extrinsic spin-Hall e�ect are al-
ways present. While in clean samples where the mean free path exceeds the device
dimensions, the intrinsic e�ect is dominant, the extrinsic e�ect becomes important
in the di�usive regime [173]. In this work, we focus on near ballistic nanostructures
where the intrinsic spin-Hall e�ect is most important. In this chapter, we present a
detailed study of the intrinsic mesoscopic spin-Hall e�ect in two-dimensional quan-
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tum wires with a �nite width together with a simple, analytically solvable model,
to elucidates the origin of the spin polarization.

7.2. Origin of the mesoscopic intrinsic spin-Hall

e�ect

To elucidated the origin of the mesoscopic spin-Hall e�ect, we consider an in�nite
two-dimensional quantum wire. We take the wire to be in�nitely extended along
x-axis and con�ned by impenetrable barriers along the y-direction. For the k-linear
model, see Eq. (3.1), we can obtain an analytic solution. The solution for a quantum
wire with pure Rashba coupling has been presented in Ref. [174]. However, since the
Dresselhaus e�ect is nonzero already in D2d symmetric structures and the Rashba
e�ect is nonzero only for C2v symmetry, we allow for both spin-orbit coupling mech-
anisms in the derivation. We make a plane-wave ansatz for the x-direction. Thus,
the Hamiltonian operator Eq. (3.1) reads,

H =
~2k2

x

2m∗
− ~2

2m∗
∂2
y + (αSIAσx − αBIAσy)kx + i(αSIAσy − αBIAσx)∂y. (7.1)

We now expand the wave functions in the basis of the solution fj(y) for the in�nite
wire without spin-orbit coupling,

fj(y) =

√
2

d
sin

(
πjy

d

)
, (7.2)

where j is the quantum number of the state and d denotes the width of the quantum
wire. The ansatz for the wave function thus reads,

φσnkx =
∑
j

Cσ
nkxjfj(y), (7.3)

where the sum runs over all states j. To �nd an equation for the coe�cients Cσ
nkxj

,
we consider the Schrödinger equation for the wave function φσnkx . The Hamiltonian
acts on this wave function according to,(

H − ~2k2
x

2m∗

)
φ↑,↓nkx =

√
2

d

∑
j

{
~2π2j2

2m∗d2
C↑,↓nkxj sin

(
πjy

d

)
±αBIAkxC↓,↑nkxj sin

(
πjy

d

)
± αBIA

jπ

d
C↓,↑nkxj cos

(
πjy

d

)
±iαSIAkxC↓,↑nkxj sin

(
πjy

d

)
− iαSIA

jπ

d
C↓,↑nkxj cos

(
πjy

d

)}
. (7.4)

We now multiply the Schrödinger equation from the right with fi(y) and integrate
over y to extract an relation for the expansion coe�cients. We thereby use the
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Figure 7.1.: Dispersion relation in a quantum wire with Dresselhaus spin-orbit cou-
pling. The energy is given in units of ~2/2m∗d2 and the wave vector
in units of 1/d. (left) Weak spin-orbit coupling regime with lSO = 6d
(right) Close to the strong coupling regime with lSO = 1.2d. The black
solid lines show the calculated numerically exact dispersion. The red
dashed lines show a parabolic model dispersion.

orthonormality of the basis functions,∫ d

0

dyfi(y)fj(y) = δij. (7.5)

For the mixed cosine and sine terms, we get,

Iij =

∫ d

0

dy sin

(
iπy

d

)
cos

(
iπy

d

)
= −2i(−1 + (−1)i+j)

π(i2 − j2)
. (7.6)

To shorten the notation, we introduce the following units,

~2

2m∗d2
= 1 and d = 1 (7.7)

Finally, we get the secular equation for the expansion coe�cients Cσ
nkxj

and the
energy eigenvalues εkxn,

0 = (εjkx − εkxn)C↑,↓nkxj + (αBIA ± αSIA) kxC
↓,↑
nkxj

+
∑
l

Ijllπ(±αBIA − iαSIA)C↓,↑nkxl, (7.8)

where εkxn are the energy eigenvalues of the spin-orbit coupled quantum wire and the
εjkx are the energy eigenvalues of the quantum wire without spin-orbit interaction
at kx,

εjkx =
~2π2j2

2m∗d2
+

~2k2
x

2m∗
= π2j2 + k2

x, (7.9)
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Figure 7.2.: Local density of states ρ(y) (left) and out-of-plane spin polarization
Sz(y) (right) at the Fermi energy EF in a quantum wire as a function
of the cross sectional coordinate y within the weak spin-orbit coupling
regime with lSO = 6d for various values of EF . For the solid line, EF
lies within the �rst conducting state at EF = 26, for the dashed line
within the second conducting state at EF = 65.5, and for the dotted
line within the sixth conducting state at EF = 420. Note, that only
positive Fermi wave vectors kF are taken into account.

where the second equality holds for the introduced units of energy and length in
Eq. (7.7). From the Schrödinger equation Eq. (7.8), we see, that the spin-orbit in-
teraction induces a coupling between the energy eigenstates of the quantum wire
without spin-orbit interaction, very similar to the case of the coupling between Lan-
dau levels in external magnetic �eld, see Sec. 6.2. As we will show now, this coupling
causes the �nite spin accumulation in the quantum wire and is thus the origin of
the mesoscopic spin-Hall e�ect. The interaction between the unperturbed levels
decreases with their energy separation, as becomes clear from Eq. (7.6). Thus, we
can truncate the summation over l in Eq. (7.8) after some tens of states to achieve
convergence.
In Fig. 7.1, we show the results for the wire dispersion for two di�erent values of

the Dresselhaus spin-orbit coupling. The energy E is given in units of ~2/2m∗d2

and the wave vector kx in units of 1/d. We assume, that the quantum well struc-
ture has D2d symmetry and thus the Rashba spin-orbit coupling constant vanishes.
We compare the numerically calculated dispersion (solid lines) Eq. (7.8) with the
parabolic dispersion of the in�nite 2DEG for each sublevel shifted according to the
sublevel energy at kx = 0, εj (dashed line). Note that this assumptions is correct in
the absence of spin-orbit coupling. We discriminate the regime of weak and strong
spin-orbit coupling, depending on the spin-precession length in relation to the wire
cross-section [175]. In the left panel, we plot the dispersion in the weak spin-orbit
coupling regime, when the spin-precession length lSO is much larger than the wire
width d, lSO � d. Concretely, we assume lSO = 6d. We �nd that the calculated
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Figure 7.3.: Local density of states ρ(y) (left) and out-of-plane spin polarization
Sz(y) (right) at the Fermi energy EF in a quantum wire as a function
of the cross sectional coordinate y within the strong spin-orbit coupling
regime with lSO = .6d for various values of EF . For the solid line, EF
lies within the �rst conducting state at EF = 26, for the dashed line
within the second conducting state at EF = 65.5, and for the dotted line
within the sixth conducting state EF = 420. Note, that only positive
Fermi wave vectors kF are taken into account.

wire dispersion and the simple model dispersion agree well. Actually there is no
di�erence visible on the given scale. In the right panel of Fig. 7.1, we show results
for the case of spin-orbit coupling close to the strong-coupling regime, that is when
the spin-precession length is on the order or shorter than the well width lSO . d.
Concretely, we plot the dispersion for lSO = 1.2d. For the simple model dispersion
(dashed lines), we �nd several level crossings, due to the spin-orbit coupling induced
Mexican hat like dispersion. For example, we �nd a crossing between the spin-
up parabola of the �rst subband and the spin-down parabola of the second state.
From Eq. (7.8), we can see, that these states are actually interacting. Therefore, the
crossings are absent in the numerically calculated dispersion (solid lines). Instead,
we �nd strong anti-crossings between these levels. Due to the interaction induced
avoided crossings the spin splitting of the wave vector ∆kSO and thus the e�ective
magnetic spin-orbit �eld becomes energy and sublevel dependent. Thus, also the
observed spin-precession length becomes energy and sublevel dependent, which, in
turn, means, that the various sublevels do not contribute coherently additive to the
spin precession necessarily.

We now study the density of states and the spin polarization for the in�nite
quantum wire. From Eq. (7.8), we can also calculate the expansion coe�cients Cσ

nkxj

and thus reconstruct the wave functions of the sublevels using Eq. (7.3). The density
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Figure 7.4.: Spin polarization along the wire Sx(y) at the Fermi energy EF in a
quantum wire as function of the cross sectional coordinate x within the
strong spin-orbit coupling regime lSO = .6d (left) and weak spin-orbit
coupling regime lSO = 6d (right) for various values of EF . For the
solid line, EF lies within the �rst conducting state at EF = 26, for the
dashed line within the second conducting state at EF = 65.5, and for
the dotted line within the sixth conducting state at EF = 420. Note,
that only positive Fermi wave vectors kF are taken into account.

of states follows from the cross sectional wave functions φσnkx according to,

ρ(E) =
1

2π

∑
σ

∫
dkxδ

(
E − εkxn −

~2k2
x

2m∗

) ∣∣φσnkx∣∣2 , (7.10)

which can be formulated more conveniently for the numerical implementation, using
the group velocity vG(nkx) = ~2kx/m

∗ + dεkxn/dkx,

ρ(E) =
1

2π

∑
σ

∫
dkx

1

vG(kn)
δ(kx − kn)

∣∣φσnkx∣∣2 . (7.11)

Accordingly, we can derive the local spin polarization Si(E), where i ∈ {x, y, z}:

Si(E) =
1

2π

∑
σ,σ′

∫
dkx

1

vG(kn)
δ(kx − kn)φσnkx σ̂

i
σ,σ′ φ

σ′

nkx , (7.12)

where σ̂i are the standard Pauli matrices. Note, that in the equilibrium situation,
where all positive and negative kx-states are occupied equally, due to the Kramers
theorem, the spin polarization of the states with −kx cancels the spin polarization of
the states with +kx, which results in a vanishing spin polarization in all directions,
as expected.
We are, however, interested in the non-equilibrium situation, with �nite spin

polarization due to a mismatch in the occupation of plus and minus kx-states which
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is caused e.g. by an applied bias along the wire. In what follows, we will therefore
consider only the states with kx > 0.
In Fig. 7.2, we plot the calculated density of states ρ(EF ) (left panel) and the

out-of-plane spin polarization Sz(EF ) (right panel) for three values of the Fermi
energy as a function of the spatial coordinate across the wire y, given in units of the
wire width d. The spin-orbit coupling is assumed within the weak coupling regime,
with lSO = 6d. The solid lines show the situation for the Fermi energy between the
�rst and the second wire state, with EF = 26, such that only the lowest subband
is occupied. The density of states shows the expected behavior ∝ sin2(πy), known
from the quantum well with in�nite barriers without spin-orbit coupling. For the
spin polarization Sz, we �nd the behavior that is expected from the phenomenology
of the spin-Hall e�ect. Spin-up density accumulates at the left side of the wire,
while spin-down density accumulates at the right side of the wire, in such a way,
that the overall polarization, i.e. the integral over the cross-section, vanishes. The
polarization in the lowest subband resembles a function ∝ sin(2πy) very closely.
For the dashed and the dotted line the Fermi level lies within the second and sixth
conducting state with EF = 65.6 and EF = 420, respectively. The density becomes
more oscillatory the higher the states are and follow the behavior known for the
unperturbed states without spin-orbit coupling, which is ∝ sin2(πjy), where j is
the quantum number of the sublevel. Thus, the spin-summed density of states is
not considerably in�uenced by the spin-orbit coupling. The spin polarization gets
more oscillatory as well. The largest magnitude of the spin polarization is still found
at the edges of the wire, however the magnitude of the polarization gets markedly
smaller. We note, that similar oscillations in the out of plane spin polarization were
also predicted for a hard wall boundary in the semi-in�nite 2DEG [176].
We now turn to the case of the strong coupling regime and set the spin-precession

length to lSO = .6d. We have seen in Fig. 7.1 that the dispersion in the strong
spin-orbit coupling regime deviates markedly from the parabolic one. In Fig. 7.2,
we plot the resulting density of states (left panel) and the spin polarization (right
panel) for the same Fermi energies as in the case of weak spin-orbit coupling. The
density of states of the �rst sublevel (solid line) deviates strongly from the one
in the weak coupling case. Obviously, the coupling between the �rst and second
subband, is strong enough to alter the density of states qualitatively. Instead of
one maximum in the middle of the wire, we get two maximums shifted to the edges
of the wire, which is a clear sign for the strong in�uence of the second conducting
state, since the density of states of the second unperturbed sublevel is ∝ sin2(2πy).
Also the spin polarization of the �rst sublevel (solid line) di�ers qualitatively from
the weak coupling case. Apart from the expected magni�cation of the polarization
due to the stronger spin-orbit coupling, we �nd that at the left edge of the wire
the spin accumulation becomes negative, while the positive spin-polarization peak
shifts more into the bulk of the wire. On the right edge the behavior is opposite in
sign, in such a way, that the integrated overall polarization in z-direction is zero.
For the higher sublevels the changes compared to the weak coupling regime are
similar but not as pronounced as for the lowest sublevel. That means, that in the
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strong coupling regime the intrinsic spin-Hall e�ect is actually suppressed, since the
maximal magnitude of the polarization shifts into the bulk of the wire away from
the edges, while at the edges the polarization is small, in contrast to the expected
behavior of the spin-Hall e�ect.
For completeness, we have also calculated the other spin polarizations in the x-

and y-direction. In the y-direction, perpendicular to the homogeneous wire direction,
the spin polarization (not shown) vanishes identically. For the x-direction, along the
wire, on the other hand, we get a �nite polarization that is shown in Fig. 7.4. In the
left panel, we show results for the strong coupling regime (red lines) while the right
panel shows the weak coupling regime (blue lines). Again, we show results for the
three values of the Fermi energy as before. We �nd, that the strong and the weak
coupling regime do not di�er qualitatively but only quantitatively in magnitude. As
one would expect, the strong spin-orbit coupling leads to a larger e�ect than for a
weak coupling. Integrating Sx over the wire cross-section results in a �nite overall
magnetization, in contrast to out-of-plane polarization Sz. For Dresselhaus spin-
orbit interaction, the e�ective spin-orbit �eld is expected to point predominantly
along the wire-direction, as can be seen from Eq. (3.6). The �nite magnetization
is in agreement with the magnetoelectric e�ect predicted for the in�nite 2DEG
[162, 177, 178]. We note, that the magnitude of the e�ect is also largest for the
lowest wire sublevel.

7.3. Analytic solution for the two level system

We can gain some more inside into the formation of the spin polarizations already
from a simple two level system, i.e. we truncate the summation in Eq. (7.8) after
l = 2. We thus have four states all together, including spin. In this case, we can
solve Eq. (7.8) analytically. We focus on the two spin-resolved ground states of the
system. Although, we can not expect a converged result, we can still clarify the
origin of the spin polarization for the mesoscopic spin-Hall e�ect. According to
Eq. (7.3) the wave functions of the two ground states with n = 1 and n = 2 in that
case read,

φ1 =
∑
σ

φσ1 (y) =
∑
σ

(Cσ
11 sin πy + Cσ

12 sin 2πy) ,

φ1 =
∑
σ

φσ2 (y) =
∑
σ

(Cσ
21 sin πy + Cσ

22 sin 2πy) , (7.13)

where we have omitted the kx dependence for simplicity. Note, however, that the
two wave functions φ1 and φ2 correspond to states with di�erent kx at a given Fermi
energy. We consider a quantum wire with pure Dresselhaus spin-orbit coupling. In
that case, we analytically �nd the following relations between the Cσ

1j,

C↑11 = a C↓11 = −a,
C↑12 = b C↓12 = b, (7.14)
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and between the Cσ
2j:

C↑21 = α C↓21 = α,

C↑22 = β C↓22 = −β, (7.15)

where the parameters a, b, α, and β are real and positive. The parameters depend on
the spin-orbit coupling and we �nd α 6= a, β 6= b. We calculate the spin polarization
Si of the �rst level, according to:

Si =
2∑

n=1

〈φn | σ̂i |φn 〉 . (7.16)

To simplify the notation, we assume the group velocity vG (Eq. (7.12)) to be included
in the expansion parameters. For the out-of-plane spin polarization Sz, we get,

〈φ1 | σ̂z |φ1 〉 = 4ab sinπy sin 2πy,

〈φ2 | σ̂z |φ2 〉 = −4αβ sin πy sin 2πy, (7.17)

and thus for Sz,
Sz = 4(ab− αβ) sinπy sin 2πy, (7.18)

which is �nite due to the di�erence in the expansion coe�cients of φ1 and φ2

and the di�erence in the corresponding group velocity. Note that indeed we have
Sz ∝ sin 2πy. In the same way, we obtain for the y-polarization Sy=0, where each
summand in Eq. (7.16) vanishes individually. For the remaining x-polarization, we
obtain,

〈φ1 | σ̂x |φ1 〉 = −2a2 sin2 πy + 2b2 sin2 2πy,

〈φ2 | σ̂x |φ2 〉 = 2α2 sin2 πy − 2β2 sin2 2πy, (7.19)

which leads to,

Sx = 2(α2 − a2) sin2 πy + 2(b2 − β2) sin2 2πy, (7.20)

which is again �nite due to the di�erence in the two spin eigenstates and shows the
correct dependence on the transverse coordinate. In particular it leads to a �nite
overall polarization, when integrated over the width of the wire.
Thus, we �nd, that the �nite spin polarization in the quantum wire, i.e. the

mesoscopic spin-Hall e�ect for the out-of plane component Sz and the magnetoelec-
trical e�ect for Sx are solely due to the coupling between the spin states in di�erent
sublevels of the wire and due to the thereby caused nonparabolic dispersion of the
individual sublevels. Thereby, we �nd that the coupling between adjacent levels
dominates the e�ect. For the weak coupling regime, the nonparabolic e�ects are
small, and thus the spin polarization. When the spin-precession length is of the
order of the wire width, on the other hand, the nonparabolic e�ects become large
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and hence, cause large polarization e�ects. For even stronger spin-orbit coupling,
in the strong coupling regime, coupling to more distant levels in�uences the e�ect
drastically and leads to a suppression of the spin accumulation at the sample edges.
Note that very similar results can be obtained for the arti�cial case of pure Rashba

spin-orbit coupling. In this case, we �nd a vanishing x-polarization and a �nite y-
polarization. Indeed, we obtain Sz(αBIA) = −Sz(αSIA) and Sx(αBIA) = −Sy(αSIA).
For the special case αBIA = αSIA all polarizations vanish identically. In this case,
the spin eigenstate of the in�nite 2DEG ceases to depend on the momentum. Thus,
spin and momentum are e�ectively decoupled. In the quantum wire, the coupling
between the sublevels in the wire vanishes and the dispersion is indeed parabolic,
as depicted by the dashed lines in Fig. 7.1. Due to the absence of nonparabolicities
also the spin-polarization e�ects in the quantum wire vanish.

7.4. Summary

In this chapter, we have studied the mesoscopic spin-Hall e�ect in an in�nite two-
dimensional quantum wire. We have calculated the dispersion relation, the local
density of states, and the spin polarizations. Further, we have shown within an
analytically solvable two-level approximation, that the spin polarizations arise from
the nonparabolicity of the dispersion, that is caused by the spin-orbit induced in-
teraction between subbands. We have identi�ed two qualitatively di�erent regimes.
The weak coupling regime, where the spin-precession length is much larger than
the wire width and the strong coupling regime, where the spin-precession length
is shorter than the wire width. In particular, we �nd that only within the weak-
coupling regime, the out-of-plane spin-polarization e�ects are largest at the sample
edges, whereas for the strong coupling regime the polarization is more pronounced
in the bulk of the wire. Additionally, we have found that the spin-polarization ef-
fects are largest for the lowest sublevel. Thus, for an application of the mesoscopic
spin-Hall e�ect in spintronic devices, the best conditions are met, if only the lowest
conducting state is occupied and the wire width is of the order of the spin-precession
length, right in between the weak and the strong coupling regime.
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8. Prediction of giant intrinsic

spin-Hall e�ect in tensile

strained p-GaAs

8.1. Introduction

The intrinsic spin-Hall e�ect (SHE) in semiconductors predicted by Murakami et al.
[161] and Sinova et al. [179] is a very promising tool to manipulate the spin degree of
freedom without ferromagnetic elements or external magnetic �elds and to generate
spin-polarized currents, solely caused by the spin-orbit interaction (SOI). The in-
trinsic SHE has been detected experimentally in semiconductors for two-dimensional
hole gases (2DHGs) by optical means [180, 181]. For two-dimensional electron gases
(2DEGs) optical results have only been reported on the extrinsic spin-Hall e�ect
[182�184] that is caused by spin-dependent scattering o� impurities. Most theoreti-
cal work on the intrinsic spin-Hall e�ect has concentrated on the spin-Hall conduc-
tivity in in�nite 2DEGs or 2DHGs [159, 185�189] or the spin-Hall conductance in
simple nanostructures [105, 106, 108, 190�192]. The studied pure spin currents, how-
ever, are not measurable directly. An indirect method to measure pure spin currents
is provided by the inverse intrinsic spin-Hall e�ect that converts spin currents into
charge currents [193�197]. Such transport based measurements of spin currents have
successfully been performed for the extrinsic inverse spin-Hall e�ect in metals [158]
with strong SOI like Platinum [198�201]. Very recently electrical measurements of
intrinsic spin currents in semiconductor have been successfully performed in HgTe
quantum wells [24]. In this chapter, we predict concrete nanostructured materials
and device geometries that exhibit a large intrinsic inverse spin-Hall e�ect. We pro-
vide detailed studies of an H-shaped 2DHG originally proposed by Hankiewicz et
al. [202] and for several more complex three terminal devices.

8.2. Inverse intrinsic spin-Hall e�ect in H-shaped

structure

The present atomistic electronic structure calculations show an exceptionally large
k-linear SOI for the top valence band in tensile strained GaAs quantum wells. As
discussed in Sec. 3.4 this large k-linear spin splitting is caused by the strain, which
may be generated by growing GaAs on InxAl1−xAs bu�er material that sets the
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Figure 8.1.: (left) Contour plot of the two-dimensional local charge density in the H-
bar structure. The cross section of the wires is taken to be 30 nm. The
average sheet density amounts to n2D = 1.75×1011 cm−2. The gray scale
arrows depict the local charge current that �ows through the structure.
The darker the arrow the larger the local current at this point. For
the applied source-drain bias of VSD = .5mV, the total charge current
between source and drain amounts to ISD = 22.5 nA. (right) Induced
spin-Hall voltage V12 shown as the red line on the left vertical axis and
spin-precession length shown as black line on the right vertical axis,
both as a function of the Dresselhaus spin-orbit coupling parameter.

lateral lattice constant and acts as barrier material. We note that the SOI in the
conduction band remains una�ected by the strain. The tensile strain causes the
light hole band to lie above and to be well separated from the heavy hole band. We
therefore focus on light hole gases in tensile strained GaAs quantum wells in this
chapter.

The investigated two-dimensional geometry is shown in Fig. 8.1 (left). The �gure
shows a top view of the gate de�ned nanostructure in a 2DHG. We model the
geometry by impenetrable barriers. The local sheet density is shown as a surface
plot. The results have been obtained by the present spin-resolved non-equilibrium
Grenn's function method, including inelastic and phase-breaking scattering via spin-
independent Büttiker probes. The mean free path has been set to 200 nm. The
proposed experiment works as follows. An applied source�drain bias drives a charge
current in the lower leg, which is depicted by the gray-scale arrows. Due to the
spin-Hall e�ect, a pure spin current �ows through the vertical connection into the
upper leg that, in turn, induces a voltage drop between the two gates due to the
inverse spin-Hall e�ect [202]. The calculated local charge current shows indeed, that
there is e�ectively no carrier transport through the connection into the upper leg.
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Figure 8.2.: Contour plot of the local out-of-plane spin polarization Sz for the H-
bar structure with a wire cross section of 30 nm for an applied bias
.5mV and a charge density of n2D = 1.75 × 1011 cm−2. (left) For a
Dresselhaus spin-orbit coupling parameter of αBIA = 8meVnm. (right)
For αBIA = 16meVnm.

In the right panel, the calculated induced spin-Hall voltage V12 between the contacts
Gate 1 and Gate 2 is shown as a function of the k-linear coupling parameter that
can be set by the tensile strain, see Sec. 3.4. Since the other parameters of the
k-cubic Dresselhaus model Eq. (3.12) show only a weak dependence on the strain,
we assumed constant values for simplicity. In particular, we use m∗ = .375, c1 =
−91.2meVnm3, and c2 = 15.9meVnm3. We assume the widths of all channels to
be equal to 30 nm. The length of the vertical bar is also taken to be 30 nm. The
applied source�drain bias VSD = .5mV causes a charge current to �ow between
the source and the drain. We get ISD = 22.5 nA. The hole density amounts to
n2D = 1.75 × 1011 cm−2 at a temperature of T = 1K such that only the highest
hole subband is occupied. The calculations show an oscillatory behavior of the
spin-Hall voltage V12 as a function of the spin-orbit coupling constant which can
be explained as follows. The magnitude and sign of the spin-Hall voltage V12 is
roughly proportional to the average out-of-plane spin polarization Sz in the hole gas
at the junction in the upper leg that has been induced by the charge current in the
lower leg. With increasing SOI, the spin-precession length λSO changes as is also
depicted in Fig. 8.1 (right). The spin-precession length is the distance in real space
over which a spin precesses by an angle of π, i.e a spin-up changes into spin-down
and vice versa. The spin-precession length is determined by the spin splitting of
the wave vector in reciprocal space. For k-linear spin splitting in a D2d symmetric
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structure, it is given by,

λSO =
π~2

2m∗αBIA
. (8.1)

Whenever the device width is an even (odd) integer of this length, Sz becomes a
maximum or minimum (zero) which explains the �nding for V12. For α < 5meVnm,
the calculated spin-Hall voltage is negligible. Therefore, the intrinsic inverse SHE
is negligible in n-type GaAs, which holds independently of the mobility. For the
strained p-GaAs quantum wells, by contrast, the two extrema in Fig. 8.1 (right)
correspond to a fairly low Indium composition of x = .11 and x = .21. In Fig. 8.2,
we plot the out-of-plane spin polarization Sz as contour plot for the two values of
the spin-orbit coupling strength that correspond to the extrema of the induced spin-
Hall voltage. In the left panel, the Dresselhaus spin-orbit coupling parameter is
αBIA = 8meVnm which corresponds to a spin-precession length λSO ≈ 42 nm, that
is approximately half the device width. The averaged induced spin polarization at
the junction in the upper leg amounts to 〈Sz〉 = −1.4 × 109 cm−2, which in turn
induces a spin-Hall voltage of V12 = −20µV. In contrast, in the right panel of the
�gure, where we set αBIA = 16meVnm, which corresponds to λSO ≈ 22 nm and thus
approximately a quarter of the device width, the induced spin polarization at the
junction in the upper leg now is 〈Sz〉 = 2.6 × 109 cm−2, which leads to a spin-Hall
voltage of V12 = 60.5µV. We thus �nd approximately a quadratic relation between
the spin polarization and the induced spin-Hall voltage V12 ∝ sign (〈Sz〉) 〈Sz〉2 . The
resistance signal, i.e. the spin-Hall voltage V12 divided by the source-drain current
ISD, is approximately 1 kΩ for x = .11 and 3 kΩ for x = .21, which is markedly
larger than those predicted for HgTe quantum wells [24]. Fig. 8.3 shows the spin-Hall
voltage V12 and the source-drain current ISD as a function of applied source-drain
bias VSD for both structures with x = .11 and x = .21, respectively. Since the current
ISD is almost equal in both cases, in contrast to the spin-Hall voltage V12, we can be
sure that the latter is caused by the SOI rather than by a change in the longitudinal
conductance. We note that the situation changes drastically, when more than one
subband is occupied. In this case, the geometry of the nanostructure induces a
coupling between the occupied sublevels, due to the non-conservation of the wave-
vector. This e�ect occurs independently of the spin-orbit interaction. Apart from
altering the spin properties [203], more importantly, it also induces a �nite voltage
drop V12 in the H-bar structure, that is not caused by the inverse intrinsic spin-Hall
e�ect and is also nonzero in systems without spin-orbit interaction. Unfortunately,
we �nd that the spin-orbit induced and the geometry induced signal are on the same
order of magnitude and cannot be determined separately in experiment. Thus, the
occupation of a single sublevel is vital for the detection of the intrinsic spin currents.
Note, that similar conclusions, concerning the in�uence of higher sublevels have been
drawn in Ref. [204].
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Figure 8.3.: Induced spin-Hall voltage V12 (red lines) and source-drain current ISD
(blue lines) for the H-bar structure as a function of applied bias. The
dashed lines show results for an indium content of x = .11 while for the
solid lines x = .21 holds.

8.3. Prediction of large current induced spin

polarization in three terminal T-shaped

structure

Three terminal devices with a single source and two drain contacts have been pro-
posed as spin �lter in the literature [205�208]. We have studied a T-shaped geometry
using the present spin-resolved non-equilibrium Green's function method, assuming
a mean free path of 200 nm for the inelastic, phase-breaking scattering modeled by
spin-independent Büttiker probes. The used geometry is depicted in Fig. 8.4. The
�gure shows top views of the gate de�ned nanostructure in a tensile strained 14 nm
wide p-GaAs/In.9Al.91As quantum well. The channel width is 30 nm. The length
of the horizontal part between the two drain contacts is taken to be 70 nm. We
model the geometry by impenetrable barriers. The local sheet hole density is shown
as contour plot in part (a) of the �gure it amounts to n2D = 2.5 × 1011 cm−2 at a
temperature of T = 1K, such that only the highest hole subband is occupied. An
applied bias of VSD = 1.5mV between the top source contact and the two bottom
drain contacts to the right and to the left of the horizontal arm drives a charge
current through the structure. The calculated local charge current density is shown
by gray scale arrows in part (a) of the �gure. The darker the arrows, the larger
the current that �ows locally at this point. The overall current between the source
and one of the drains amounts to ISD = 36.4 nA. We have shown previously [209]
that large spin polarizations are generated close to the two drain contacts assuming
strictly ballistic transport. In part (b) - (d) of Fig. 8.4, we plot the local spin polar-
izations Si, with i ∈ {x, y, z}. We �nd a large out-of-plane spin polarizations at the
drain contacts, which amounts to 15% of the total hole density and has oposite signs
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Figure 8.4.: Contour plots of the local two-dimensional hole (a) and spin densities
Sx (b), Sy (c), and Sz (d) in the T-shaped structure de�ned in a tensile
strained 14 nm wide p-GaAs/In.9Al.91As quantum well for an applied
source drain bias of 1.5mV. The wire cross section is 30 nm. Si(D)
denotes the relative spin polarization in direction i at the drain contacts.
The gray scale arrows in (a) depict the calculated local charge current.
The darker the arrows the larger the current that �ows at this point.
The total source�drain current amount to ISD = 36.4 nA.

at the two drain contacts. Additionally, we �nd a spin polarization in x-direction
(direction of the horzontal arm) of 5%, with equal sign at both drains. The spin
polarization in y-direction is small and amounts to only about 1%. The calculated
spin polarization shows, that the charge current that �ows in the horizontal bar
of the structure is highly spin polarized. Thus, such a device geometry generates
highly spin-polarized charge currents. We gain further inside into the mechanism
that causes the spin polarization, when we consider the dependence of all spin po-
larizations on the length of the horizontal channel. In Fig. 8.5, we show results for
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Figure 8.5.: Contour plots of the local two-dimensional hole (a) and spin densities
Sx (b), Sy (c), and Sz (d) in a T-shaped structure de�ned in a tensile
strained 14 nm wide p-GaAs/In.9Al.91As for an applied source drain bias
of 1.5mV. The gray scale arrows in (a) depict the calculated local charge
current. The darker the arrows the larger the current that �ows at this
point. The total source�drain current amount to ISD = 33.1 nA.

the same T-shaped structure but with an elongated distance between the two drain
contacts of 340 nm. For simplicity, we only show the right part of the structure.
While the local carrier density and the local charge current, shown in part (a), do
not depend on the longitudinal x-coordinate in the side arm, the y- and z-component
of the spin polarization ((c) and (d)), are predicted to oscillate in correspondence
with the spin-precession length, which amounts to λSO = 30 nm in this structure.
The extrema of the z-polarization occur at points where the y-polarization vanishes
while the z-polarization is zero, when the y-polarization is extremal. These �ndings
are elucidated in Fig. 8.6 which shows the three components of the spin polarization
at the rightmost drain contact averaged over the width of the horizontal arm as a
function of the length of the side arm. We can clearly see, that Sy and Sz oscillate
with a period of 30 nm and a phase shift of π/2, i.e. |Sz| is maximal when |Sy| = 0
and vice versa. Sx is constant and does not oscillate. All polarization amplitudes
decrease in magnitude due to the phase breaking scattering. The calculated pattern
of the spin polarizations is in accordance with a precession around a magnetic �eld
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in x-direction. The spin-orbit �eld Eq. (3.6) lies predominantly in x-direction in this
part of the structure. Thus, the x-component of the spin lies parallel to the spin-
orbit �eld and does not show any precession. However, as can be seen in Fig. 8.5,
Sx as well as Sz show an serpentine pattern transverse to the wire. This pattern
can be understood with the help of the semiclassical spin force Fσ, introduced in
Refs. [172, 194] for the in�nite 2DEG. For the k-linear spin-orbit coupling model
Eq. (3.1), it reads:

Fσ = 2
(
α2
SIA
− α2

BIA

)
σz

(
ky
−kx

)
. (8.2)

The spin force is proportional to 〈σz〉 ∝ Sz and stems solely from the spin-orbit
interaction. Since this force only acts on the z-component of the spin it vanishes
when Sz = 0 and therefore does not e�ect the precession pattern of Sy in Fig. 8.5
(c). The force always acts perpendicular to the wave vector. Thus, for carriers,
that propagate through the horizontal bar of the T-shaped structure, the spin force
points predominantly into the y-direction perpendicular to the wire direction, which
explains the calculated serpentine pattern.

8.4. Proposal of an all electrical detection scheme

for current induced spin polarization

In the previous section, we have seen, that the T-shaped geometry acts as a very
e�cient spin polarizer. In Fig. 8.7 (left) the schematics of the polarizer is shown
again. An unpolarized current is injected through the source contact. Due to the
intrinsic (mesoscopic) spin-Hall e�ect spin-up and spin-down carriers accumulate at
the right and left edge of the vertical wire, respectively. However the average of
the out-of-plain component of the spin polarization Sz over the wire cross section
remains zero. At the junction with the horizontal bar, the net zero polarization
leads to �nite net polarization in the horizontal bar in such a way, that a spin-
up polarized current is injected into the right horizontal arm, while the current
injected into the left arm is spin-down polarized. Due to the spin-orbit �eld the
polarization precesses while the carriers propagate towards the drain contacts. To
convert this polarization into an electrical bias voltage, we add two analyzing vertical
bars into the right horizontal arm of the T-shaped structure as shown in Fig. 8.7
(right). These vertical probes exhibit a �nite voltage drop in proportion to the
spin-polarized current �owing towards the drain contact. The principle is closely
related to the anomalous Hall e�ect and has been used experimentally in metallic
systems, where the polarized current has been injected from a ferromagnet [198�
201]. In our case, the spin-polarized current is generated directly by the T-shaped
geometry due to the intrinsic SHE. The calculated spin-Hall voltage VAB turns out
to be a direct measure for the z-component of the spin polarization Sz. When
the probe is attached at a position where positively (negatively) polarized carriers
dominate, we obtain a positive (negative) voltage signal VAB. The calculated spin-
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Figure 8.7.: Schematics of the structure proposed to electrically measure the current
induced spin polarization. (left) Original T-shaped structure that gen-
erate spin-polarized current. (right) T-shaped structure with additional
vertical bars in the right horizontal arm that act as voltage probe.

Hall voltage is shown in Fig. 8.8. The top panel shows again the out-of-plane spin
polarization in the right horizontal part of the three-terminal T-shaped structure
averaged over the cross section of the wire as a function of the distance from the
junction with the vertical bar that acts as the source contact for an applied source
drain bias of VSD = 1.0mV. In the bottom panel, we plot the induced spin-Hall
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voltage as a function of the position of the attached voltage probes relative to the
source contact. The schematic drawings on the right side of the �gure, illustrate the
various positions of the spin-analyzing probes. We �nd a maximum induced voltage
of VAB ≈ 20µV when the probe is attached at a 45 nm distance from the junction.
That corresponds to a spin-Hall resistance, i.e. the absolute value of induced voltage
divided by the source drain current RsH = |VAB| /ISD of RsH = .96 kΩ. At a distance
of 75 nm, we get an induced voltage of VAB ≈ −15.6µV, that corresponds to a spin-
Hall resistance of RsH = .74 kΩ. The magnitude of the induced voltage decreases
compared to the maximum voltage as does the out-of-plane spin polarization due to
the phase breaking inelastic scattering. Note that the distance between the extrema
agrees exactly with the spin-precession length.
We note that the detection scheme does not work if more than one sublevel con-

tribute to the transport due to the same reasons as explained in Sec. 8.2 for the
H-shaped structure. This fact e�ectively limits the possible charge carrier density to
very low values. A similar scheme based on a conductance measurement rather than
the measurement of dc-voltage, has been proposed for a cascade of two Y-shaped
structures gate de�ned in an InAs quantum well [210]. Recently, this proposal has
been successfully realized experimentally [204].

8.5. Summary

In this chapter, we have studied and proposed nanostructered devices based on ten-
sile strained p-GaAs. We predict a giant intrinsic spin-Hall e�ect due to the strain
enhanced Dresselhaus spin-orbit coupling in this material. In particular, we have
studied an H-bar structure, that electrically measures pure spin currents employing
the intrinsic inverse spin-Hall e�ect. We predict a large spin-Hall resistance of up
to 3 kΩ. We have propose a very e�cient spin polarizer based on a three-terminal
T-shaped structure. We have demonstrated, that the spin polarization can be mea-
sured by a dc-voltage drop induced between additional probe contacts, that we have
added to the T-shaped structure. We predict a spin-Hall resistance in this struc-
tures of up to 1 kΩ. Both detection schemes, for the pure spin current in the H-bar
structure as well as for the spin-polarized currents in the T-shaped structure mea-
sure the spin signal unambiguously only if only the lowest conducting sublevel in
the structure is occupied. This requirement limits the carrier density at which the
experiments can be performed to very low values.
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9. Prediction of an all electrical

tunable spin polarizer in InSb

quantum wells

9.1. Introduction

The success of modern semiconductor spintronics depends on the realization of work-
ing devices. In particular the well controlled injection, manipulation, and detection
of spin currents are important prerequisites for applications in information pro-
cessing or quantum computing. For the injection of spin polarization one can use
ferromagnetic metals. However, the conduction mismatch between the metal and
the semiconductor hampers an e�cient injection [211]. Spin manipulation by exter-
nal magnetic �elds is spatially not well controlled and hard to integrate into modern
semiconductor electronics due to the large spatial extent of the �elds. For the detec-
tion of spin polarization optical means, as the Kerr or Farrady rotation have been
used successfully [182]. However, optical techniques only o�er a spatial resolution
on the µm scale and are thus not suitable for the intrinsic spin-Hall e�ect, where
a resolution on the nm scale is needed. Thus, functional spintronic devices, on an
all semiconductor basis, that inject, manipulate, and detect spin currents and spin
polarization and work without external magnetic �elds are highly desirable.

Since InSb quantum wells exhibit a large Dresselhaus spin-orbit coupling constant
and an excellent tunability of the Rashba parameter by an external gate voltage as
we have shown in Sec. 3.3, it is a very promising material system for spintronic
applications [212�214]. In this chapter, we propose a concrete all semiconductor
based nanostructure, that spin-polarizes the charge current, allows for an easy ma-
nipulation of the magnitude and sign of the spin polarization, and detects the spin
current by a simple dc-voltage measurement. In particular, we present a systematic
study of gate de�ned nanostructures in n-InSb quantum wells. We show results
for a T-shaped three terminal device, similar to the one proposed in Sec. 8.3. We
predict that the out-of-plane spin polarization Sz in these structures can be com-
pletely controlled all electrically simply by the applied bias. The detection of the
spin polarization is based on the inverse intrinsic spin-Hall e�ect as in Sec. 8.4.
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Figure 9.1.: Contour plots of the two-dimensional local electron density n2D (left)
and out-of-plane spin polarization Sz (right) for the gate (not shown)
de�ned T-shaped structure in a 10 nm wide InSb/In.8Al.2As quantum
well. A bias .1mV is applied in such a way, that carriers propagate
from Contact 1 to the Drain and Contact 2, as is shown by the gray
scale arrows (arbitrary units), depicting the calculated charge current.
The total charge current at the drain amounts to ID = 2.7 nm. The
polarization at the Drain is positive or up, as illustrated by the spin
symbol.

9.2. Bias controlled spin polarization in InSb

quantum wells

We present results for a 10 nm wide InSb/In.8Al.2As quantum well. The electron
sheet density is n2D = 2 × 109 cm−2 at a temperature of T = .1K such that only
the lowest conduction subband in the gate-de�ned quantum wires is occupied. We
model scattering by spin-independent Büttiker probes which are phase breaking and
energy relaxing. We assume a mean free path of 1µm.
In Fig. 9.1 (left), we show a top view of the nanostructure. The cross section of

the gate de�ned wires is taken to be 300 nm which is on the order of the calculated
spin-precession length which amounts to 400 nm in this quantum well. The local
electron density is given as a contour plot. A bias is applied between the top
contact called �Contact 1� and the two bottom contacts of the horizontal arm at the
left called �Contact 2� and at the right called �Drain� in such a way, that current
�ows from Contact 1 to Contact 2 and to the Drain. In particular, we apply a bias
of V12 = .1mV between Contact 1 and Contact 2 as well as between Contact 1 and
the Drain V1D = .1mV that drives a current of I1D = 2.7 nA. The gray scale arrows
depict the local charge current density for that bias con�guration. The darker the
arrow, the larger the local current at this point. We want to focus on the out-of-
plane spin polarization Sz at the Drain. Fig. 9.1 (right) shows a contour plot of
the locally resolved spin polarization Sz. As already described in Sec. 8.4, the spin-
Hall e�ect separates the spins of the injected electrons in the vertical bar, in such
a way, that spin-up electrons accumulate at the right side of the wire while spin-
down electrons accumulate at the left. At the junction with the horizontal arm,
this separation leads to an injection of spin-polarized current into the horizontal
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Figure 9.2.: Contour plots of the two-dimensional local electron density n2D (left)
and out-of-plane spin polarization Sz (right) for the gate (not shown)
de�ned T-shaped structure in a 10 nm wide InSb/In.8Al.2As quantum
well. A bias .1mV is applied in such a way, that carriers propagate
from Contact 2 to the Drain and Contact 1, as is shown by the gray
scale arrows (arbitrary units), depicting the calculated charge current.
The total charge current at the drain amounts to ID = 2.7 nm. The
polarization at the Drain is negative or down, as illustrated by the spin
symbol.

part of the structure. In particular, a spin-up polarized current is injected into the
right arm. The spin of this current precesses along the wire due the spin-orbit �eld,
as is shown by the oscillating spin polarization Sz. The period of the oscillation
agrees with the spin-precession length. We have chosen the length of the right arm
commensurate with the spin-precession length in such away, that the polarization
has a positive maximum at the Drain. We �nd, that approximately 5% of the total
density is spin polarized.
In Fig. 9.2 (left) the bias con�guration for the structure is changed, in such a way,

that the carriers are injected through Contact 2 and propagate to Contact 1 and
the Drain, as depicted by the calculated current density shown again as gray scale
arrows. In particular, we apply a bias of V12 = −.1mV between the Contact 1 and
Contact 2 and keep the Drain on the same potential as Contact 1 V1D = 0mV. All
other properties of the structure are kept as in Fig. 9.1. The resulting out-of-plane
spin polarization Sz is shown in the right panel of Fig. 9.2. We �nd a negative value
with same magnitude as for the bias con�guration considered before. The reason is,
that carriers injected form the left Contact 2 are again subject to the spin-Hall e�ect,
that now leads to an accumulation of spin-up at the top barrier and spin-down at
the lower barrier of the left arm. At the junction with the vertical bar, a spin-up
polarized current is injected into the vertical bar, while the current injected into
the right part is spin-down polarized. At the Drain, the spin has precessed by 2π,
such that a negatively polarized current arrives at the Drain. The spin polarization
at the Drain has thus been changed from a large positive value to a large negative
value simply by changing the bias con�guration between the three contacts of the
structure. Note that, any desired value between the two extrema can also be reached
by appropriately biasing the structure as will be shown in detail in the next section.
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Figure 9.3.: Contour plots of the two-dimensional local electron density n2D (left)
and out-of-plane spin polarization Sz (right) for the gate (not shown)
de�ned T-shaped structure in a 10 nm wide InSb/In.8Al.2As quantum
well. A bias .1mV is applied in such a way, that carriers propagate
from Contact 1 and Contact 2 to the Drain, as is shown by the gray
scale arrows (arbitrary units), depicting the calculated charge current.
The total charge current at the drain amounts to ID = 5.4 nm. There
is no net polarization at the Drain, as illustrated by the spin symbols.

Here, we just want to show the case of zero net spin polarization at the Drain, as
depicted in Fig. 9.3. The bias is applied such that carriers propagate from Contact 1
and Contact 2 to the Drain. In particular, we apply a bias of V1D = .1mV between
Contact 1 and the Drain while Contact 1 and Contact 2 are kept on the same po-
tential V12 = 0mV. We �nd that the two e�ects described above exactly cancel
each other. The carriers in the right arm now show the accumulation of the spin,
expected for the spin-Hall e�ect. However, integrated over the wire cross section,
the total out-of-plane spin polarization amounts to zero. Note that the current in-
jected into the structure through Contact 1 and Conact 2 is not spin-polarized. The
�nite spin polarization, in the vertical arm, that can be seen in Fig. 9.3 (right) is
caused by carriers originating from the left Contact 2. While the polarization in the
left arm is caused by carriers originating from the top Contact 1. Although both
contacts possess the same chemical potential and thus no net charge current �ows
between them, there is a �nite, precessing spin current that �ows between Contact 1
to Contact 2. In this sense this spin current is pure, i.e. not accompanied by a net
charge current.

9.3. Electrical detection of spin polarization in

InSb quantum wells

In this section, we show, that the generated spin polarization in the T-shaped nano-
structure presented in the last section can be probed by a simple voltage measure-
ment. To this end, we study a device geometry as in Sec. 8.4 depicted schematically
in the right panel of Fig. 8.7, i.e. we add two analyzing vertical probes into the right
horizontal arm of the T-shaped structure at a distance of 2λSO ≈ 800 nm from the
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Figure 9.4.: (top) Relative out-of-plane spin polarization Sz at the Drain of the T-
shaped structure (see Figs. (9.1, 9.2, 9.3)) as a function of applied bias
for the three cases of bias con�guration as given to the right of the
�gure. (bottom) Resulting induced spin-Hall voltage VAB between the
two additional probe contacts.

junction of the T-shaped structure, that convert the polarization at this point into
an electrical voltage. The induced voltage is directly proportional to the out-of-
plane spin polarization. As shown in the previous section this spin polarization can
be tuned by appropriately biasing the structure.
In Fig. 9.4 (top), we plot the spin polarization in the T-shaped structure at the

position of the attached probes, averaged over the cross section of the wire. The
di�erent colors mark the various bias con�gurations. For the red line, called �Case I�
in the �gure, we start from zero bias and increase the bias between Contact 1 and
Contact 2 to V12 = .1mV. The bias between Contact 1 and the Drain is also increased
such that V12 = V1D. We �nd that the spin polarization increases proportional to
the bias. For the green line, called �Case II� in the �gure, we thus start with
V12 = V1D = .1mV. We then keep V1D �xed and reduce V12 to zero. The spin
polarization is found to linearly decrease with V12. For the blue line, called �Case III�,
we have the following initial situation: V1D = .1mV and V12 = 0mV. We then
decrease both biases simultaneously, such that in the end we reach V1D = 0mV
and V12 = −.1mV. The magnitude of the spin polarization rises again reaching
the same value as in Case I, but with a negative sign. Thus, we �nd that the spin
polarization can be continuously tuned to any desired value by the appropriate bias
con�guration.
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9. Prediction of an all electrical tunable spin polarizer in InSb quantum wells

Finally, in Fig. 9.4 (bottom), we plot the calculated induced voltage between the
probe contacts. We �nd that the voltage signal is proportional to the out-of-plane
spin polarization and thus depends accordingly on the bias con�guration. The max-
imum spin-Hall resistance, i.e. the induced voltage divided by the Drain charge
current amounts to RsH = 1.1 kΩ.
Please note, that the detection scheme fails, if more than one wire sublevel is

occupied. In this case ballistic e�ects as described in Sec. 8.2 generate a voltage
signal independent of the spin polarization that is superimposed on the voltage
generated by the inverse intrinsic spin-Hall e�ect. The signal in this case does not
follow the predicted bias dependence for the spin e�ect. However, it is unfortunately
not possible to distinguish between both e�ects. Thus, the experiment has to be
performed with very low charge and current densities. In Sec. 10.6, we propose a
structure, based on the quantum spin Hall e�ect, that is more robust and allows for
higher densities.

9.4. Summary

In this chapter, we have proposed an all semiconductor three terminal device, based
on InSb quantum wells, that generates spin-polarized currents without external mag-
netic �eld or ferromagnetic elements by utilizing the intrinsic spin-Hall e�ect. The
spin polarization can be tuned to any desired value by the appropriate bias con�gu-
ration between the three contacts. We have further shown, that the generated spin
polarization can be probed by measuring a dc-voltage between two additional volt-
age probes, that are added to the structure. The signal is generated by the inverse
intrinsic spin-Hall e�ect. We predict a spin-Hall resistance of 1.1 kΩ. Since the de-
tection scheme requires, that only the lowest sublevel contributes to the transport,
the experiment is limited to low densities and temperatures.
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10. A new sight on topological

insulators

10.1. Introduction

The prediction of the quantum spin Hall e�ect (QSHE) by Kane and Mele [215,
216] and independently by Bernevig and Zhang [29] has created the new and fast
growing �eld of topological insulators, see e.g. the review papers Refs. [6�8] and
references therein. This new �eld has triggered a lot of work both theoretically
and experimentally [9, 24, 72, 217] due to the possible applications in spintronic
devices and quantum computing [218, 219]. Topological insulators are insulating in
the bulk but metallic on the surface. By cutting out a strip from a two-dimensional
(2D) topological insulator, one obtains one-dimensional (1D) edge states that form
along the two boundaries [220]. These edge states are helical [75], i.e. only one spin
direction is allowed to propagate within a given edge channel. Therefore, elastic
back-scattering in these channels is suppressed and the conductance through these
channels becomes quantized [72]. Just two years after the original prediction of this
e�ect for graphene, the quantum spin Hall e�ect was predicted [23] and subsequently
realized experimentally [9] in HgTe quantum wells with a so-called inverted band
structure. In this context, the term inverted band structure has been introduced
to indicate that the conduction band is derived form p-states and the valence band
from s-states unlike to the normal situation in semiconductors. Although originally
predicted for 2D systems, it has been realized later that the e�ect can also occur in
some three-dimensional bulk insulators that support metallic states at the 2D surface
[10, 221]. Since the quantum spin Hall e�ect was �rst observed in HgTe quantum
wells with an inverted band structure [9], this system has become the reference
system for topological insulators. The search for other topological insulators has
therefore focused on materials with similar band structure properties.[52, 222�224]

The chapter is organized as follows. In Sec. 10.2, we present a simple model, which
can be solved analytical, that elucidates the microscopic origin of the edge channels
in topological insulators. In Sec. 10.6, we show a concrete device application of
topological insulators. In particular, we propose a realization of a spin transistor in
HgTe quantum wells, that utilizes the quantum spin Hall e�ect.
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10.2. Microscopic origin of topological insulators

and the quantum spin Hall e�ect

10.2.1. Introduction

Today, the understanding of topological insulators is predominantly based on sym-
metry arguments. Similar to the Chern number in the quantum Hall e�ect, topo-
logical insulators are characterized by a Z2 topological invariant [216]. While the
topological distinction between topological and ordinary insulators is well under-
stood [225�228] and it was shown [229] in terms of a continuum envelope function
model for HgTe quantum wells [23] that the band inversion leads to a nontrivial
Z2 topological index, an atomistic understanding of the underlying physics and the
microscopic criteria that leads to topological insulators and the formation of edge
channel formation is still incomplete.
In this section, we present criteria for a semiconductor to form a topological

insulator in terms of its microscopic electronic structure and explain the atomistic
origin of the edge channels in topological insulators and the quantum spin Hall
e�ect semi-quantitatively and qualitatively. Importantly, we show that no spin-
orbit coupling is needed for topological insulators to be characterized by the Z2

topological invariant, in contrast to what has been widely accepted and assumed
[229�232].
In Sec. 2, we have developed a realistic atomistic model based on the relativistic

sp3d5 semi-empirical tight-binding method that has been carefully adapted to re-
produce the available experimental electronic structure data such as energy gaps,
e�ective masses, spin-orbit splittings, of II-VI bulk alloys [33�36] as well as band
o�sets and subband structure in quantum well materials [37�41]. To elucidate the
essential physics and atomistic mechanism of the quantum spin Hall e�ect, we have
additionally developed two very simple atomistic models that capture the crucial
properties of topological insulators but can be solved analytically. These models
illustrate the formation of edge channels and illuminate the microscopic origin of
the topological distinction from trivial insulators by the Z2 topological invariant.
We study the in�uence of spin-orbit coupling on an atomistic level and �nd that
no spin-orbit coupling is needed for topological insulators that feature gapless edge
channels and are characterized by the Z2 topological invariant. However, in order
for these edge channels to be helical, spin-orbit coupling is indeed necessary. This
leads us to distinguish between topological insulators and the quantum spin Hall
e�ect with its helical channels.
Relatively few realistic electronic structure calculations have been published for

2D topological insulators so far [75, 233]. In Ref. [75], a semi-empirical sp3s∗ tight-
binding model [30] was employed to show that helical edge channels form in HgTe
quantum wells with an inverted band structure despite the missing inversion sym-
metry. Most �rst-principles types of studies have focused on three-dimensional topo-
logical insulators [222�224, 229, 234, 235] and predicted topological insulators such
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10.3. One-dimensional atomistic tight-binding model

as Bi2Se3, Bi2Te3, BixSb1−x and more complicated compounds. Recently, another
interesting class of three-dimensional topological insulators has been proposed and
termed crystalline topological insulators [236]. In these systems, the metallic states
occur at the surface if the latter preserves the C4 symmetry of the bulk. Thus, the
topological classi�cation is based on point group symmetry arguments rather than
on time reversal symmetry. In the present work, however, we focus on the standard
types of topological insulators.
The chapter is organized as follows. We �rst present a simpli�ed atomistic one-

dimensional tight-binding model that elucidates the physical origin of the edge chan-
nel in topological insulators in Sec. 10.3. In Sec. 10.4, this model is extended to two
dimensions in order to be able to explain the in�uence of spin-orbit interaction.

10.3. One-dimensional atomistic tight-binding

model

In this section, we show that a very simple 1D atomistic tight-binding model already
exhibits the Z2 topological invariant of topological insulators on a microscopic level
even without spin-orbit interaction. Our model system (see inset of Fig. 10.1) con-
sists of an in�nite atomic chain with two atoms per unit cell of length a, one with
a single s-state and the other one with a single p- state that is stretched along the
chain axis. We assume half-occupancy, i.e. in the absence of any coupling, each
atomic state is occupied by one electron per atom. The s-states and p-states, re-
spectively, are coupled among themselves by a second-nearest neighbor Hamiltonian
matrix element tssσ = −tppσ = −1 and we measure all energies in units of tppσ. This
second-nearest neighbor coupling produces an energy band width of W = 4 for each
band. This band width is a measure of the metallicity of a material, i.e. of the over-
lap of the atomic states forming the solid. The on-site s- and p- matrix elements are
taken as εs = ∆/2 , εp = −∆/2, respectively, where ∆ may be positive or negative.
In physical terms, ∆ represents an ionicity, i.e. the di�erence in the atomic character
of anions and cations. In addition, there is a nearest neighbor coupling tspσ = T
between adjacent s and p-states. The Hamiltonian matrix in k-space reads,

H(kx) =

[
∆/2− 2 cos 2πk 2iT sinπk
−2iT sin πk −∆/2 + 2 cos 2πk

]
. (10.1)

where the electron momentum k ∈ (−1/2, 1/2] is given in units of 2π/a. The
eigenvalues Ek of H(k) are given by

E±k = ±1

2

[
(∆− 4 cos 2πk)2 + 16T 2 sin2 πk

]1/2
. (10.2)

We �rst discuss the case for zero nearest-neighbor coupling, T = 0. In this case, the
s- and p-bands are independent of each other and have a width equal toW = 4 each.
Depending on the ratio ∆/W , i.e. the ratio of ionicity and metallicity, this model
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Figure 10.1.: Dispersion of the 1D atomistic tight-binding model for the case of nor-
mal band alignment for ∆ = 5 The dashed lines (left side) show the
case of zero nearest-neighbor interaction T , while T is nonzero (T = 2)
for the solid lines (right side). This di�erence is illustrated schemati-
cally by the inset showing the sites with uncoupled and coupled s and
p orbitals, respectively.

yields three di�erent types of band structures. The �rst type resembles the common
type of bandstructure in semiconductor heterostructures and superlattices with an
s- derived conduction band and a p- derived valence band. We term this situation
normal band alignment and de�ne it by the condition ∆ > W . In this case, a
�nite energy gap separates the �lled valence band from the empty conduction band
with the Fermi energy lying in the middle of the gap. The system is insulating
at zero temperature and the band structure is shown in the left part of Fig. 10.1
The second type, that we call inverted band alignment, is de�ned by the condition
−W < ∆ < W . In this case, the two bands intersect each other within the Brillouin
zone. Thus, no energy gap is formed, the atomic character of the conduction and
valence band gets switched somewhere within the Brillouin zone due to this band
crossing, and the system is metallic. This situation is depicted in the left portion of
Fig. 10.2. The third case, that we term non-crossing inverted band alignment, occurs
for ∆ < −W . Here, the band inversion exceeds the band width. This alignment
yields an insulating ground state. In contrast to the �rst case, however, the minimal
gap lies at the edge of the Brillouin zone as shown in Fig. 10.3.
Now we turn on the nearest neighbor interaction T . This coupling a�ects these

three band alignment cases in a radically di�erent way. In the case of a normal
band alignment, T has only a small e�ect as shown on the right half of Fig. 10.1.
Importantly, it does not a�ect the minimal energy gap. In the inverted case, on
the other hand, the band structure is drastically changed as shown in the right
portion of Fig. 10.2. The nearest neighbor coupling T opens an energy gap so that
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Figure 10.2.: Dispersion of the 1D atomistic tight-binding model for the case of an
inverted band alignment for ∆ = 3. The dashed lines (left side) show
the case of zero nearest-neighbor interaction T , while T is nonzero
(T = 2) for the solid lines (right side). This di�erence is illustrated
schematically by the inset showing the sites with uncoupled and cou-
pled s and p orbitals, respectively.

the material becomes insulating. For small values of T , the minimal gap lies near
the crossing point (k ≈ .15 in the left part of Fig. 10.2) and switches to the center at
k = 0 for T ≥ W/2. This situation is closely related to the band structure of wider
HgTe quantum wells which is commonly referred to as inverted band structure in the
literature [37, 71]. As we will show below, this particular insulating state actually
corresponds to a topological insulator. In the case of the non-crossing inverted band
structure, the e�ect of T is less drastic but the nearest-neighbor coupling increases
the minimal energy gap signi�cantly as well. Valence and conduction band exhibit
a weakly avoided crossing behavior so that the minimal gap lies in the interior of
the Brillouin zone.

We now consider an extended but �nite system with boundaries. To this end, we
terminate the atomic chain on one end at a site sboundary and on the opposite side at
a site pboundary. This produces a dangling s-bond and p-bond at the corresponding
chain ends, respectively. We assume the boundaries to lie su�ciently far apart from
each other that they do not in�uence each other. As we will now show, terminated
bonds will induce bound states within the energy gap if and only if the band align-
ments are inverted, irrespective of any detailed parameters, and irrespective of how
we terminate the chain. Mathematically, the simplest way to calculate the eigen-
states of a solid with boundaries is to start from the in�nite system that can be
described by the Green's function matrix Gij(E) with i, j labeling the atomic sites,
and to describe the boundaries by a localized defect matrix Vij. Cutting all bonds
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Figure 10.3.: Dispersion of the 1D tight-binding model for the case of non-crossing
inverted band alignment with ∆ = −6. The dashed lines (left side)
show the case of zero NN interaction T = 0, while for the solid lines
(right side) T = 2. Each inset shows a schematic picture of the corre-
sponding tight binding model.

between two adjacent sites is equivalent of letting the last chain-sided on-site energy
εb tend to plus or minus in�nity which implies 1/Vbb → 0 [237, 238]. Therefore, the
eigenstates of the chain with a single s-type dangling bond on one end follow from

Gss(E) =
∑
k,n

|〈sboundary|ψn(k)〉|2

E − En(k)
= 0, (10.3)

where Ek,n and ψk,n are the Bloch eigenstates of the in�nite chain. With two surfaces,
one s-type and the other one p-type dangling bond, the eigenstate energies follow
from the equation

Gss(E)Gpp(E) =
∑
k,n

|〈sboundary|ψn(k)〉|2

E − En(k)

∑
k,n

|〈pboundary|ψn(k)〉|2

E − En(k)
= 0. (10.4)

For the tight-binding model at hand, one can show analytically (see AppendixA)
that this equation yields exactly two eigenstates E that lie within the energy gap if
and only if the band alignment is inverted (crossing or non-crossing). In Fig. 10.4,
we show the two bound states for the inverted band alignment with ∆ = 0 as a
function of the nearest neighbor coupling T , together with the square of one bound
state wave function in the inset. Note that the energy gap increases with T itself
but we have normalized the vertical axis to the minimal energy gap. These results
can be explained in a physically transparent way. The characteristic property of the
inverted band alignments lies in the e�ect of the nearest neighbor coupling T . Only
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Figure 10.4.: Calculated energies of the bound states within the energy gap in the
case of an inverted band structure (∆ = 0) as a function of the nearest-
neighbor interaction T . The inset shows the absolute square of the
p-type edge state's wave function for T = 5. The energy scale is
normalized to the energy gap for given T .

for the two inverted band cases, T increases the minimal energy gap. This essential
physics can be captured by a simpli�ed k-independent version of the Hamiltonian
Eq. (10.1),

Hmol =
1

2

[
∆−W 2iT
−2iT −∆ +W

]
. (10.5)

This is the Hamiltonian of a molecule with basis states ±D, where D = ∆ −W .
Note that D < 0 for inverted band alignment and D > 0 otherwise. As indicated
by the schematic drawing in Fig. 10.5, the nearest neighbor coupling T increases the
energy gap for the inverted band alignments. Therefore, cutting the bonds leads to
dangling bond states at the surface that lie within the energy gap. By contrast, T
does not increase the energy gap for normal band alignment. Correspondingly, the
dangling bond states at the surface do not lie within the energy gap (cf. Fig. 10.6)
for normal band situations.

10.3.1. Topological quantum number

We now proceed by proo�ng that the present atomistic 1D model is indeed a topo-
logical insulator based on the symmetry arguments that discriminate topological
from normal ("trivial") insulators [216, 225, 226]. In particular, we focus on the Z2

topological index I introduced by Kane and Mele [216]. The topological invariant I
can be constructed form the time reversal properties of the Bloch wave functions of
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Figure 10.5.: Schematic band diagram for the inverted band alignment. The nearest-
neighbor interaction leads to a bonding-antibonding splitting that in-
creases the energy gap. The energies of the dangling bonds at the
surface fall within the energy gap.
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Figure 10.6.: Schematic band diagram for the normal band alignment. In this case,
the nearest-neighbor interaction does not a�ect the energy gap. There-
fore, no gap states occur.
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Figure 10.7.: Pfa�an P (k) for normal (dashed line, for ∆ = 5), inverted (solid line,
for ∆ = 3), and non-crossing inverted (dotted line, for ∆ = −6) band
alignment, respectively. In all cases, the nearest-neighbor coupling is
set to T = 2.

the bulk Hamiltonian. Applied to the present 1D model, this invariant is given by
the closed loop integral,

I =
1

2πi

∮
dz
{

d
dz

log [P (z)]

}
(10.6)

where z is the complex extension of the wave number k. The closed path encircles
the real axis between k = 0 and k = π/a (i.e. for half of the Brillouin zone)
in�nitesimally above and below the real axis. The generally complex function P (k)
is given by the Pfa�an of the time reversal operator Θ represented in the basis
of the occupied (valence) periodic part uv of the Bloch wave functions ψv(k; z) =
exp(ikz)uv(k; z) [216]. In the present case without spin-orbit interaction and with
a single valence band, the valence Bloch function is a product of spatial and spin
functions, |uv(k)〉|χσ〉, so that we obtain

P (k) = Pf[〈χσ|〈uv(k)|Θ |uv(k)〉|χσ′〉] = Pf[〈uv(k)|〈χσ| iσ
y |u∗v(k)〉|χσ′〉] = [u∗v(k)]2

(10.7)
where σy denotes the standard Pauli matrix. The number of zeros of P (k) is a Z2

topological invariant. Due to time reversal symmetry, these zeros occur in pairs
at ±k0. In fact, the path integral in Eq. (10.6) counts the number of zeros in one
half of the Brillouin zone. For ordinary insulators I = 0 holds, whereas topological
insulators have I = 1. In the present case, P (k) turns out to be real and is depicted
in Fig. 10.7 for the three types of band alignments.
We �nd no zeros for the normal and non-crossing inverted band alignment which

results in I = 0. By contrast, the inverted alignment yields I = 1 corresponding to
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Figure 10.8.: Primitive unit cell with atomic character of the 4 atoms and symme-
try of tight-binding matrix elements for the 2D tight-binding model.
Atoms that do not belong to the unit cell are grayed out.

a topological insulator. These zeros in P (k) occur exactly at the k-points where the
bands cross when we set T = 0, as shown in the left part of Fig. 10.2. Thus, we have
constructed a simple 1D tight-binding model without spin-orbit coupling, that has
the required symmetry properties for topological insulators and shows states in the
energy gap, provided the system is terminated by one or two surfaces.

10.4. Two-dimensional tight-binding model

In this section, we extend the model from the previous section to a situation where
we can add a spin-orbit interaction to make contact with the conventional under-
standing of topological insulators. This requires an extension of the model to two
dimensions. The atomistic 2D tight binding model that we have constructed is
schematically shown in Fig. 10.8. We consider a rectangular unit cell containing 4
atoms with a total of 8 electrons. The atoms of type A and B each carry two fully
occupied px and py states, whereas atoms C and D each contain an empty s-state.
We take into account nearest and second-nearest neighbor interaction and employ
the usual two-center approximation. The included matrix elements are indicated
in Fig. 10.8. Concretely, we set tppπ = 0, tssσ = −1, T = tspσ = 2, in units of the
matrix element tppσ. Additionally, we de�ne the on-site matrix elements in such
a way that one obtains an inverted band alignment with band crossing when the
nearest neighbor coupling T is set equal to zero. This can be achieved by the values
εsC = εpxA = 3.5, εpyA = −2.5, εsD = εpxB = 0.5, εpyA = −5.5. The s-states form
the conduction bands, the px- states the top valence bands, and the py-states low
lying valence bands. In the empirical tight binding framework, the spin-orbit inter-
action can be incorporated by adding an intra-atomic Hamiltonian matrix element
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between p-states [22]. This adds the following k-independent Hamiltonian matrix
elements,

〈px,A↑|H |py,A↑〉 = 〈px,B↑|H |py,B↑〉 =i∆SO, (10.8)
〈px,A↓|H |py,A↓〉 = 〈px,B↓|H |py,B↓〉 =− i∆SO. (10.9)

These equations complete the de�nition of the Hamiltonian matrix.

10.4.1. Model without spin-orbit interaction

As a �rst step, we investigate the eigenstates for zero spin-orbit coupling. Without
the NN interaction (i.e. for T = 0), we obtain two overlapping bands, one derived
from the px-derived upper valence bands and the other one from the s-type conduc-
tion bands. Due to the band crossing, the system is metallic with a half �lled band,
just as in the 1D case. Once we turn on the nearest-neighbor interaction T 6= 0, the
band degeneracy of the crossing bands is lifted throughout the Brillouin zone and
the system becomes insulating in the 2D bulk. In order to investigate the symmetry
of this system, we calculate the Z2 topological index I. In the present 2D case, I
follows from the two-dimensional closed path integral

I =
1

2πi

∮
dk ·∇k logP (k), (10.10)

where the path encircles the boundary of one half of the rectangular Brillouin zone.
The determination of the Pfa�an P (k) is analogous to Eq. (10.7) but requires the
calculation of the square root of an 8 × 8 determinant, since the 2D Hamiltonian
yields 4 doubly degenerate valence bands instead of only 1 valence band as in the
1D model. The Pfa�an remains nonzero on the entire path in k-space so that
the integration variable remains real, but the determinant and its square root is
complex in the present case. The absolute value of P (k) is shown as a function of
k = (kx, ky) for the entire Brillouin zone in Fig. 10.9 on a logarithmic scale. The
function possesses only a single pair of zeros, one lying in a narrow region close
to k ≈ (.1,−.4) and the other one near k ≈ (−.1, .4). We have evaluated the
winding of the phase of P (k) along the closed path and �nd a winding of 2π and
thus a topological index I = 1 in Eq. (10.10). Thus, the system forms a topological
insulator [216].
In order to illustrate the consequences of this symmetry, we cut out a wire from the

bulk 2D structure that has �nite width along the x-direction and extends in�nitely
along the y-direction. Thus, all bonds along the two rims of the wire are cut and we
obtain a 1D chain of dangling bonds on each side of the wire. This system retains its
Bloch symmetry in reciprocal space only along the ky-direction, whereas the states
along the former kx-direction become folded up. We set a su�ciently wide wire
width so that the left and right boundaries do not a�ect each other. Concretely, a
width of 50 unit cells obeys this condition. Note that all states are spin degenerate
due to the absence of spin-orbit coupling in this sub-section. In Fig. 10.10, we show
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Figure 10.9.: Absolute value of Pfa�an P (kx, ky) as a function of wave vector (in
units of 2π/a) for the 2D model without spin-orbit interaction. The
two sharp peaks indicate zeros of the function.

the band structure of this wire as a function of the wave number ky along the wire
direction. The folded conduction band (red) and valence band states (blue) have
wave functions that extend over the entire width of the wire. While the conduction
and valence bands are overall dominantly s-states and px-states, respectively, the
situation is reversed near ky = 0 due to the inverted band alignment. Therefore, the
conduction band edge states near the center ky˜0 are dominantly px-states, whereas
the top valence states are s-like. In analogy to the bound states that appeared within
the energy gap in the 1D case due to the con�nement, in 2D we obtain two energy
bands that span the energy gap. Indeed, these gap bands in Fig. 10.10 are highly
localized channel states along the edges of the wire. The localized gap band (shown
in red) that merges the conduction bands for large wave numbers is derived from
dangling s-states in accordance with the terminating atoms consisting of dangling
s-states. On the opposite side of the wire, the wire ends with dangling px-orbitals.
They yield the localized band (shown in blue) that merges into the valence bands
and consists mainly of px-states within the energy gap. For both edge channels, the
calculated dispersion resembles closely that of a 1D chain of atomic states, coupled
by second-nearest neighbor interaction. Since we have a half-�lled band situation,
the system will thus be conducting over the whole energy range in contrast to an
ordinary insulator.

10.4.2. Model with spin-orbit coupling

We now consider the same 2D system with inverted band alignment but turn on the
spin-orbit coupling according to Eq. (10.8). Even for a strong spin-orbit coupling,
the Pfa�an P (k) does not change qualitatively for the 2D bulk system relative to
the case of no spin-orbit coupling. Figure (10.11) depicts the modulus of the Pfa�an
as a function of the wave vector k for a spin-orbit coupling of ∆SO = 3. Importantly,
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Figure 10.10.: Calculated 2D band structure as a function of wave vector for a 50
unit cell wide wire. The spin-orbit interaction is set to zero. The thin
lines show the bulk conduction bands (red) and the valence bands
(blue). The thick lines indicate the edge states. The lower one (blue)
is a p-type state localized at the left boundary of the wire, whereas the
upper one (red) is an s-type state localized at the opposite boundary.

the topological Z2 index remains I = 1 the same. We now study the bound states
within the band gap that appear for the quantum wire system, but now with spin-
orbit interaction turned on. For weak spin-orbit interaction, ∆SO = .5, we �nd a
k-linear splitting of the gap states that correspond to the edge channels that form
along the surfaces, shown in Fig. 10.12. These bound states are already helical,
but the separation of the two spin states within one channel in k-space is small so
that, in practice, any k -mixing scattering would couple these spin channels. The
spin-splitting can be attributed to the small admixture of |py〉- orbitals to the upper
valence and conduction states. The red thick lines in Fig. 10.12 are derived from
the dangling s-state channel, while the blue thick lines are formed by dangling by
p-states. The spin orientations are marked by small arrows.
When the strength of the spin-orbit coupling gets increased by a factor of 6,

∆SO = 3, the resulting edge channels are now completely helical but the character
of the edge channel states in the gap changes qualitatively compared to small values
of ∆SO. As shown in Fig. 10.13, the dispersion of the edge channels now connects
the spin states with ky > 0 in the conduction band with the spin states with ky < 0
in the valence band and vice versa. The physical origin of this e�ect stems from the
interaction of the bound states with close lying continuum band states that induces a
strong repulsion between same-spin bound states. To better understand this e�ect,
let us follow the two bound states of one spin state, say spin-up, from positive
values of ky towards the center of the Brillouin zone in Fig. 10.13. They start from
the conduction and valence-band, respectively, cross each other, and approach the
opposite band edge in the region ky & 0 . In this region, these spin-up bound states
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Figure 10.11.: Absolute value of Pfa�an P (kx, ky) as a function of wave vector (in
units of 2π/a) for the 2D model with large spin-orbit interaction
(∆SO = 3). The two peaks indicate zeros of the function.
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Figure 10.12.: Calculated 2D subband structure as a function of wave vector for a 50
unit cell wide wire with small spin-orbit interaction ∆SO = .5. The
thin lines show the conduction (red) and the valence bands (blue),
respectively. The thick lines indicate the bound edge states in the
energy gap. The lower (blue) ones are p-type states localized at the
left boundary of the wire, the upper (red) one are s-type states lo-
calized at the opposite boundary. The small arrows denote the spin
state and spatial location of the edge states.
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Figure 10.13.: Calculated 2D subband structure as a function of wave vector for a
50 unit cell wide wire with large spin-orbit interaction ∆SO = 3. The
thin lines show the conduction (red) and the valence bands (blue),
respectively. The thick lines indicate the bound edge states in the
energy gap. The lower (blue) ones are p-type states localized at the
left boundary of the wire, the upper (red) one are s-type states lo-
calized at the opposite boundary. The small arrows denote the spin
state and spatial location of the edge states.

are no longer strongly localized but form hybrid states between localized surface
and bulk-like spatially extended states. When we continue along the spin-up bound
states towards negative values of ky, the orthogonality of the continuum band states
causes the two same-spin bound states to e�ectively repel each other and merge into
that band they dominantly consist of. In accordance with this e�ect, the atomic s-
and p- character of the channel states changes across the gap, and this is indicated
by the color coding of the bound states in Figure 10.13.

10.5. Band inversion in real semiconductors

The crucial parameters in the two simple tight binding models of the previous sec-
tions that lead to band inversion are nearest-neighbor versus second-nearest neighbor
interaction matrix elements. In a real semiconductor, the energy gap in a semicon-
ductor arises from a competition between the bonding-antibonding splitting between
anion and cation in each unit cell and the longer-range electron-ion interaction that
broadens the molecular bonding and antibonding states into bands. An energy gap
can occur in two situations. In an ionic material, the highest occupied atomic cation
and anion valence electron energies are very di�erent so that the gap re�ects this
di�erence in energies, reduced by the broadening of the atomic orbital energies. This
situation never leads to band inversion and so we can ignore this limit. In covalent
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Figure 10.14.: Schematic picture of the interaction of the bonding-antibonding split-
ting versus the band broadening in semiconductors. (a) Normal band
alignment. (b) Inverted band alignment.

semiconductors, two situations with �nite energy gaps can arise that are depicted
schematically in Fig. 10.14. In normal semiconductors (Fig. 10.14 (a)), the bonding-
antibonding splitting between the highest occupied atomic anion states and lowest
unoccupied cation states exceeds the broadening of these states by the longer-range
interaction in the solid. In this case, the conduction and valence band edge is domi-
nantly formed by the cation and anion basis states, respectively. In semiconductors
with large atoms such as Sn or HgCdTe, by contrast, the large cation-anion distances
lead to a smaller bonding-antibonding splitting and simultaneously to larger band
widths. Such materials can either be metallic or show an inverted band structure in
some portion of the Brillouin zone as indicated schematically in Fig. 10.14 (b). In
this case, the atomic nature of the band edge states is inverted. This situation leads
to a topological insulator. The third case that we discussed in Sec. 10.3, namely the
case of a non-crossing inverted band structure, is unlikely to occur in nature. It
corresponds to case Fig. 10.14 (a), but with �ipped cation and anion energies.
We show now that realistic electronic structure calculations of HgTe:Cd.7Hg.3Te

heterostructures fully support the qualitative conclusions and physical insights that
we have provided so far. To this end we rely on results of the electronic struc-
ture calculations presented in Chapter 4. We have seen there that for wider HgTe
quantum wells with a width larger than 7 nm an inverted band structure is realized.
Analogously to our 2D model, we now consider a quantum wire structure as shown
schematically in Fig. 10.15 (left). The wire width has been chosen as 240 nm and the
HgTe well thickness is 7.8 nm so that its band alignment is inverted. This structure
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Figure 10.15.: (left) Schematic picture of a HgTe quantum wire formed by edging.
(right) Subband dispersion in a 240 nm wide quantum wire de�ned in
a 7.8 nm wide HgTe/Hg.3Cd.7Te quantum well calculated with the rel-
ativistic 4-band model. The helical edge states within the energy gap
are almost spin degenerate as indicated by the small arrows, however,
on di�erent sides of the wire. Black arrows denote right channels and
gray ones left channels. The conduction and valence band states are
spin split due to the Dresselhaus like spin-orbit interaction.

yields a topological insulator with edge states within the energy gap, as shown in
Fig. 10.15 (right). The spin-up and spin-down states are energetically almost de-
generate across the energy gap, but they lie at di�erent edges of the wire and are
therefore independent spatially as indicated in the �gure. The k-linear spin split-
ting (so-called Dresselhaus e�ect) becomes signi�cant only very close to the band
edges which can be seen by the splitting of states close to the band edges. If we
apply a small bias along the wire, the current that is driven through the wire is
almost perfectly spin-polarized, provided the Fermi energy lies with in the gap of
the in�nite system and the transport is thus given through the helical edge channels
only. We show the calculated relative out of plane spin polarization in the case of
EF = 0 in Fig. 10.16. We �nd indeed that the spin polarization at the edges is
almost 100%. The small deviation from full spin polarization is due to Dresselhaus
alike spin-orbit interaction that mixes spin-up and spin-down states. For a source
drain bias VSD > 0 and consequently a Fermi wave vector kF > 0, we �nd that in
the left edge channel only spin-up electrons can propagate while in the right channel
only spin-down electrons are allowed. If the bias is reversed and therefore kF < 0,
the polarization change sign in both channels due to the time reversal symmetry.
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Figure 10.16.: Relative out-of-plane spin polarization Sz at the Fermi energy in a
quantum wire with a cross section of 240 nm de�ned in a 7.8 nm wide
HgTe/Hg.3Cg.7Te quantum well within the quantum spin Hall state
as a function of the cross sectional coordinate of the wire, for negative
source drain voltage (left) and for positive source drain voltage (right).

10.6. Prediction of spin transistor in HgTe

quantum wells

In this section, we propose a highly sensitive spin transistor based on the quantum
spin Hall e�ect in topological insulators as a possible spintronic application and
realization of a Datta�Das-like transistor [1]. Concretely, we study quantum spin
transport in HgTe/Hg.3Cd.7Te quantum wells (QWs) that have been found [9, 23] to
be topological insulators and support the quantum spin Hall (QSH) e�ect [215, 216].
HgTe quantum wells of a thickness d larger than a critical thickness dcrit have a so
called inverted band structure as has been shown in Sec. 4.2. As we have seen in
the previous section, an inverted band structure is important for the realization of
a topological insulator. We �nd that for quantum wells wider than approximately
7 nm the �rst heavy hole subband lies above the �rst electron subband. Due to
the symmetry of the involved states, we expect fully helical edge states to form if
the system is con�ned appropriately. Lateral con�nement for HgTe quantum well is
realized in experiment by deep edging, such that a semiconductor�vacuum interface
is realized for the quantum well. In that way a con�nement potential for both
electrons and holes is realized. Note that a con�nement for both kinds of carriers
could not be achieved by a simple top gate structure, which would only con�ne one
kind of carriers depending on the applied gate voltage. We model the geometry
by impenetrable barriers for both kind of carriers. In this section, we employ the
e�ective 4-band model developed in Sec. 4.3.
The transistor structure that we predict is schematically shown in Fig. 10.17 (left).

It consists of �injector� and �collector� regions that are in the QSH-state so that
transport occurs within fully spin-polarized edge channels. This state can be reached

140



10.6. Prediction of spin transistor in HgTe quantum wells

Fermi energy

potential defined by top gates

Source

Drain

Drain Spin-Up
Probe

Spin-
Down
ProbeDrain

injector
region

gate
region

collector
region

Top gates

QSHnormalQSH

Fermi energy

potential defined by top gates

Source

Drain

Drain

Drain

Drain

Drain

injector
region

gate
region

collector
region

aux
region

Top gates

normalQSH normalQSH

Spin-Up
Probe

Spin-
Down
Probe

Figure 10.17.: Scheme of the proposed spin transistor. (left) Top view of the HgTe
quantum well with the nanostructure de�ned by edging and the three
split top gates, that de�ne the transistor. Below the structure an
illustration of the local gate potential: injector and collector region
are brought to the quantum spin Hall regime while the gate region is
normal n-conducting. (right) Improved transistor design with an ad-
ditional n-conducting auxiliary region to enhance the induced voltage.

by appropriately biased top gates. The �gate� region, on the other hand, is in a nor-
mal conducting (NC) state. In the NC area, the Rashba and Dresselhaus type spin-
orbit interaction lead to a spin precession and therefore mixes spin-up and spin-down
components of the carriers. The amount of mixing can be tailored and controlled by
the geometry of the 2DEG or 2DHG device structure. This concept requires neither
external magnetic �elds nor ferromagnetic contacts. The regions of the transistor are
de�ned by three split gates that cover the edging de�ned nanostructure geometry.
These gates are shown in semitransparent yellow in the schematic drawing. The top
gate potential induced by the three split gates is shown schematically in Fig. 10.17
below the structure on the left. Split gate de�ned devices in HgTe quantum wells
have recently been successfully realized experimentally [73]. The working principle
of the proposed transistor is as follows. The left injector and right collector region
are brought into the QSH state by top gates, whereas the central gate region in be-
tween is kept in the NC state. We apply a small bias between the spin-unpolarized
source and drain contacts. This drives a fully spin-polarized charge current in the
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Figure 10.18.: Induced voltage between the two spin probe contacts at the injector
side of the spin transistor de�ned in a 7.8 nm wide HgTe/Hg.3Cg.7Te
quantum well as a function of the top gate voltage applied to the gate
region. The blue line shows results for the three split gate design while
the red line is for four split gates.

injector region's edge states which in turn injects a fully spin-polarized current into
the normal conducting gate region, the spin of the carriers starts to precess with
a spatial period that can be tuned by the applied top gate voltage. The collec-
tor region again possesses helical edge channels. Carriers reaching this region with
spin-up are transported to one of the probe contacts, while carriers with spin-down
are transported to the opposite one. This induces a voltage V between the probes
that quantitatively re�ects the spin polarization that reaches the collector region. In
this way, one can tune the initial complete spin polarization to any speci�ed degree
via a gate voltage. In passing, we note that the inverse intrinsic spin-Hall e�ect
can induce a small voltage in the collector region as well, provided only the lowest
conducting sublevel is occupied. This e�ect, however, requires extremely low densi-
ties, see Sec. 9.3 or gate widths below 50 nm, see Sec. 8.4. In the present case of the
QSH state, the charge densities and structure sizes can be signi�cantly larger which
guarantees a large and robust e�ect. In Fig. 10.17 (right), we show an improved
design of the transistor. At the right side of the collector region we add an auxiliary
region, which is brought to the NC state by a fourth split gate. The potential pro�le,
which is induced by the four top gates is again shown schematically in the �gure
below the structure. This auxiliary region enhances the induced voltage between the
spin probes. Without the additional region the conductance between the two spin
probes is approximately e2/(2π~) due to the edge channel that connects them di-
rectly whereas the conductance between the source and spin probes through the NC
region is only about 10% of that value. This missmatch reduces the induced volt-
age. By adding the NC auxialary region the conductance between the spin probes
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Figure 10.19.: Peak normalized out-of-plane spin polarization Sz at the Fermi energy
in the proposed spin transistor geometry de�ned in a 7.8 nm wide
HgTe/Hg.3Cg.7Te quantum well for a top gate voltage at the gate
region of 20mV (left) and 22.5mV (right).

is e�ectively reduced, which in turn enhances the spin voltage signal. In Fig. 10.18,
we plot the calculated induced voltage between the probe contacts as a function of
applied top gate voltage VG. The cross section of the wires amounts to .2µm. The
applied source drain voltage is taken to be VSD = .1mV. The charge density in the
NC region amounts to about 2×1011 cm−2 at a temperature of T = .1K. We model
scattering by band-independent Büttiker probes, that are phase breaking and en-
ergy relaxing. The mean free path is assumed to exceed the structure's dimensions
and is set to 2.5µm, which is a realistic value for HgTe quantum wells [24]. The
applied bias drives a charge current between the top source and the bottom drain,
that amounts to approximately ISD = 3.8 nA due to the quantized conductance. In
Fig. 10.18, we show the calculated spin-voltage signal as a function of the top gate
voltage for the three split gate design by the blue line while the red line shows the
results for the four split gate design. In both cases, we �nd a pronounced maxi-
mum of the signal at a gate voltage of about VG = 20mV and a minimum of the
same magnitude at about VG = 22.5mV. For the four split gate design, the signal
is enhanced by about 50% compared to the three split gate design. The quantum
spin Hall resistance, i.e. the induced voltage devided by the source drain current,
amounts to 1.4 kΩ for the three split-gate design and 2.1 kΩ for the four split-gate
design respectively. To demonstrate that the induced voltage signal is indeed related
to spin-orbit controlled spin precession within the gate region, we have calculated
the locally resolved out-of-plane spin polarization for the two extremal values of the
induced spin-voltage signal in the three split-gate structure. The results are shown
in Fig. 10.19. The left side of the �gure shows the situation for VG = 20mV while
for the right side, we have set VG = 22.5mV. The calulations show, that indeed
a fully spin-up polarized current is injected into the gate region of the transistor
due to the helical edge channel in both cases. Within the gate region, we �nd clear
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10. A new sight on topological insulators

spin precession, as can be infered from sucessive pattern positive and negative spin
polarization. For VG = 20mV the carriers arrive with spin-down at the collector
region. As the calculation shows, carriers can only enter the helical edge channel
leading to the spin-down probe. The current, that arrives at the spin-down probe
cantact is thus fully spin polarized, while almost no current arrives at spin-up probe.
Indeed, we �nd that the conductance from the source to the spin-up probe is sur-
pressed by a factor of 20 compared to the conductance to the spin-down probe. For
VG = 22.5mV, on the other hand, the spin precession within the NC region leads
to a spin-up polarization in the collector region. Thus, the carriers can only enter
the edge channel to the spin-up probe where the current is fully spin-up polarized.
The spin precession in the NC region is due to Dresselhaus and Rashba type spin-
orbit coupling. Additionally, there is a spin-orbit coupling term due to the in plane
electric �elds which has been called Darwin term in the literature [28]. We �nd
for our structure, that it is actually this Darwin term which dominatly causes the
spin precesion. The applied gate voltage thus in�uences the spin-precession length
mostly via the induced inplane elctric �elds.
Please note that the gate regions of both transistor designs as shown in Fig. 10.17

are assumed to be open quantum wires as indicated by the two drain contacts that
we assume to be grounded. It is necessary to have an open gate region in order
to get a plane wave like transport form the injector to the collector region. If we
assume a simple con�ned wire acting as gate region, we get strong oscillations in
the calculated induced voltage which can not be attributed to spin precession but
are dominantly due to ballistic charge re�ections in combination with a geometry
induced interaction between the sublevels of the wire.

10.7. Summary

In this chapter, we have investigated the origin of topological insulators and par-
ticularly the origin of the appearance of edge channels in terms of the atomistic
electronic structure of the materials. We have found that the topologically induced
formation of gap states in inverted 2D band systems is completely independent of
and does not require spin-orbit interaction. These states show a dispersion along
the translational invariant direction that is governed by the symmetry of the orig-
inally overlapping bands. By contrast, the spin-orbit coupling is required for the
edge states to become helical and we therefore propose to discriminate the term
topological insulator from the (experimentally observed) quantum spin Hall e�ect
in HgTe nanostructures where spin-orbit e�ects play a crucial role.
We have also presented our proposal of a spin transistor in two-dimensional topo-

logical insulators, namely HgTe quantum wells with an inverted band structure, that
employs a combination of the quantum spin Hall e�ect and the strong spin-orbit in-
teraction in the metallic state. We have calculated the current and spin polarization
in the proposed device geometry and �nd, that a top gate voltage gives complete
electrical control over the spin polarization in the structure and allows for almost
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10.7. Summary

perfectly spin-polarized currents. We have further demonstrated that the spin po-
larization can be measured quantitatively by a simple dc-voltage measurement. We
have further shown, how the basic design can be improved, to increase the spin-
induced voltage signal by 50%. The prediced resistance signals are 1.4 kΩ for the
basic design and 2.1 kΩ for the improved one.
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11. Summary

The main goal of this work was quantitatively predict devices for spintronic appli-
cations, which polarize, manipulate, and detect the spin degree of freedom of the
charge carriers in semiconductor nanstructures. To predict quantum spin trans-
port properties of nanstructures, we have employed the non-equilibrium Green's
function (NEGF) method in this work. For realistic predictions it is vital to in-
clude inelastic and phase-breaking scattering in the calculations. However, a full
NEGF-implementation for realistic arbitrarily shaped nanostructures is numerically
extremely costly and time consuming. That lead us to develop the novel multi scat-
tering Büttiker probe (MSB) model, which takes into account individual scattering
mechanisms, is orders of magnitude faster and more stable than the full NEGF
scheme, and reproduces experimental results. We have applied this method to pre-
dict several nanostructures based on two-dimensional electron and hole gases with
and without external magnetic �elds.
Our predictions are based on multi-band envelop function approximations that

include several electric band-structure and spin-orbit coupling parameters. We have
employed the atomistic semi-empirical tight-binding theory to calculate these pa-
rameters. We have found, that n-InSb quantum wells have a strong spin-orbit inter-
action that can be excellently tuned by an applied top gate voltage. InSb quantum
wells are thus very interesting for spintronic applications. We have also predicted
exceptionally large spin-orbit interaction e�ects for the top valence band in tensile
strained GaAa quantum wells, which is tunable by the applied strain.
We have studied transverse electron focusing for Insb quantum wells in external

magnetic �eld. We predict a large spin-dependent splitting of the electron beam,
which polarization direction depends on the applied gate voltage. We have stud-
ied and predicted several all semiconductor based device geometries that generate,
manipulate, and detect spin polarization or spin-polarized charge current in zero
external magnetic �eld on the basis of spin-orbit coupling e�ects in complex device
geometry. In particular, we have predicted giant inverse intrinsic spin-Hall e�ect in
a H-shaped geometry in tensile strained p-GaAs, which allows to measure pure spin
currents all electrically. We have predicted a T-shaped geometry as very e�cient
spin polarizer and have proposed an all electrical detection scheme for the current
induced spin polarization, that is based on the anomalous Hall e�ect in zero external
magnetic �eld. We have shown how the spin polarization of the charge current in
the T-shaped structure can be tuned to any desired value by the applied bias volt-
age. We have predicted large tunable spin polarization in such structures in n-InSb
quantum wells as well as in tensile strained p-GaAs quantum wells.
We have also studied topological insulators, as they came into focus recently due
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11. Summary

to the large application potential of the quantum spin Hall e�ect in these materi-
als. In the quantum spin Hall e�ect, quantized dissipationless transport is realized
in helical edge channels. We have studied the origin of the quantum spin Hall ef-
fect and could demonstrate the microscopic origin of the edge channels. We have
shown that in contrast to the wide spread assumption spin-orbit coupling is not
fundamental for topological insulators but nonrelativistic band structure e�ects ac-
count for the formation of the edge channels. As an application of the quantum
spin Hall e�ect, we have predicted a highly sensitive realization of spin transistor in
nanostructured HgTe quantum wells. To this end, we have developed a multi-band
envelop function approximation, that captures the relevant features of the band-
structure in these structures and includes all relevant spin-orbit coupling mecha-
nisms. We have based the model on our newly developed atomistic semi-empirical
tight-binding parametrization for HgTe and CdTe.
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A. Analytic calculation of the

Green's function for the

1D-model of a topological

insulator

The eigenstates of the semiin�nite system which ends with a dangling s-state are
obtained from the zeros of the bulk Green's function in Eq. (10.3),

Gss(E) =
∑
k,n

|〈sboundary|ψk,n〉|2

E − Ek,n
= 0, (A.1)

For the 1-D tight-binding model in Sec. (10.3), there are two bands, namely one
valence band and one conduction band, n ∈ {c, v}. Furthermore, band energies
and Bloch functions obey the symmetry relations Ek,c = −Ek,v := Ek > 0 and
|〈sboundary|ψk,c〉|2 = 1 − |〈sboundary|ψk,v〉|2 := s2

k. With these relations, Eq. (A.1) can
be written in the form ∑

k

E − Ek (1− 2s2
k)

E2 − E2
k

= 0. (A.2)

Inserting the analytic band energies of Eq. (10.2), one obtains∑
k

E −∆/2 + 2 cos(2πk)

E2 − 2(1 + T 2)− (∆/2)2 + 2(T 2 + ∆) cos(2πk)− 2 cos(4πk)
= 0. (A.3)

One can easily convince oneself that in the Brillouin zone with k ∈ [−1/2, 1/2) this
Green's function remains nonzero for energies within the energy gap, provided the
relation ∆/2 > 2 holds. This relation corresponds precisely to the normal band
alignment. For the inverted band alignment with ∆/2 < 2, Eq. () yields exactly
one bound state within the energy gap. It is possible to evaluate this energy E0

analytically and one �nds

E0 =
1

4

(
4 + ∆ + T 2 −

√
16 + 8∆ + ∆2 + (24− 2∆)T 2 + T 4

)
. (A.4)

This corresponds to a p-type bound state. If we terminate the chain at a p-site, we
get one zero exactly at −E0 that corresponds to the s-type bound state. The result
for ∆ = 0 is depicted in Fig. 10.4. When the nearest neighbor coupling T increases,
the bound state approaches the corresponding band edge.
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B. Discrete Hamilton operators

Within the �nite di�erences scheme the Hamilton operator is discretized on a �nite
rectangular lattice. The general form of the discrete operator reads:

H =
∑
mνµ

εν,µm C†m,νCm,µ +
∑

m,i,µν

(
tµνm,m+εiC

†
m,νCm+εi,µ + tµνm+εi,mC

†
m+εi,νCm,µ

)
, (B.1)

where C†m,ν creates a particle at site m in band ν and Cm,ν annihilates the same par-
ticle. εν,µm are the on-site elements, while tµνm,m+εi are the hopping elements between
site m and site m + εi. εi connects points on the on the lattice, e.g. nearest neigh-
bors or 2nd nearest neighbors, as speci�ed by the model at hand. Note that both
on-site elements and hopping elements include coupling between di�erent bands,
with tm,m+εi = (tm+εi,m)†. We always use Dirichlet boundary conditions in the
Hamilton operator by putting the hopping elements to zero at the boundary of the
rectangular lattice.

k-linear Dresselhaus and Rashba model

For the k-linear model of spin-orbit coupling Eq. (3.1), we have only nearest neighbor
coupling in x- and y-direction. That means we have εx = εxex and εy = εyey, where
εi is the lattice spacing in the direction i and ei the corresponding unit vector. The
band indices µ and ν become the spin indices σ and σ′, that run over the two values
{↑, ↓}. Note that we use the standard representation of the Pauli-matrices, where σ̂z
is diagonal. For the on-site elements in the mixed Dresselhaus and Rashba model,
we get:

εσm = V (m) + 2tx + 2ty, (B.2)

where Vm denotes an on-site potential and ti = ~2/(2m∗ε2i ). Note that the on-site
elements are independent of the spin index. For the hopping element in x-direction,
we get:

tm,m+εx =

(
−tx iαBIA + αSIA

iαBIA − αSIA −tx

)
, (B.3)

while the hopping element in y-direction reads:

tm,m+εy =

(
−ty −αBIA − iαSIA

αBIA − iαSIA −ty

)
. (B.4)
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B. Discrete Hamilton operators

k-cubic Dresselhaus model

For the cubic Dresselhaus model Eq. (3.12), we have the same k-quadratic and k-
linear terms as in the linear Dresselhaus and Rashba Hamiltonian. In particular,
we have the same on-site elements. Therefor, we will give here only the additional
couplings, that add to the ones given above. We use the following notation:

γx =
c1

2εxε2y
, γy =

c1

2ε2xεy
,

ξx =
c2

2ε3x
, ξy =

c2

2ε3y

The additional hopping element in x-direction reads:

tm,m+εx =

(
0x −2i(γx + ξx)

−2i(γx + ξx) 0

)
. (B.5)

The additional hopping element in y-direction reads:

tm,m+εy =

(
0 2(γy + ξy)

−2(γy + ξy) 0

)
. (B.6)

In addition to the nearest neighbor coupling we get also 2nd and 3rd nearest neigh-
bor coupling in the cubic Dresselhaus model. The second nearest neighbors are
connected by the vector εxy = εxex + εyey and εxȳ = εxex − εyey. For the corre-
sponding hopping elements, we get:

tm,m+εxy =

(
0 iγx − γy

iγx + γy 0

)
, (B.7)

and

tm,m+εxȳ =

(
0 −iγx − γy

−iγx + γy 0

)
. (B.8)

The 3rd nearest neighbors are connected by εxx = 2εxex and εyy = 2εyey and yield
the hopping matrices:

tm,m+εxx =

(
0 iξx
iξx 0

)
, (B.9)

and

tm,m+εyy =

(
0 −ξy
ξy 0

)
, (B.10)
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Four and six-band model for HgTe quantum wells

For the four-band model, we have again only nearest neighbor coupling. For the
matrix elements we use the following notation:

Sx =
S

ε2x
, Sy =

S

ε2y
,

thx =
D

ε2x
, thy =

D

ε2y
, tex =

B

ε2x
, tey =

B

ε2y
,

Ax =
A

2εx
, Ay =

A

2εy
,

γx =
γ

2εx
, γy =

γ

2εy
, Tx =

T

2εx
, Ty =

T

2εy

(B.11)

For the on-site elements, we get:

εm =


2tex + 2tey 0 0 −2Sx − 2Sy

0 2thx + 2thy 2Sx + 2Sy 0
0 2Sx + 2Sy 2tex + 2tey 0

−2Sx − 2Sy 0 0 2thx + 2thy

+

Diag {V (m),−M − V (m), V (m),−M − V (m)} , (B.12)

where Diag{. . . } denotes a diagonal matrix and we have assumed the potential to
be staggered, such that it has the same (con�ning) e�ect on electrons and holes.
The hopping matrices are:

tm,m+εx =


−tex −iAx −iγx Sx
−iAx −thx −Sx −iTx
−iγx −Sx −tex iAx
Sx −iTx iAx −thx

 , (B.13)

and

tm,m+εy =


−tey Ay γy Sy
−Ay −thy −Sy −Ty
−γy −Sy −tey Ay
Sy Ty −Ay −thy

 , (B.14)

For the six band model, we have additionally coupling to the 2nd nearest neighbors.
For the six band models we use the following notation for the additional matrix
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B. Discrete Hamilton operators

elements:

A2
x =

A2

2εx
, A2

y =
A2

2εy
,

th2
x =

D2

ε2x
, th2

y =
D2

ε2y
,

S2
x =

S2

ε2x
, S2

y =
S2

ε2y
, S3

x =
S2

ε2x
, S3

y =
S2

ε2y

T 2
x =

T2

2εx
, T 2

y =
T2

2εy
, T 3

x =
T2

2εx
, T 3

y =
S2

2εy

S2
xy =

S2

2εxεy
, S3

xy =
S3

2εxεy

The on-site matrix for this model is given by:

εm =
2(tex + tey) 0 0 0 −2(Sx + Sy) 2(S2

y − S2
x)

0 2(thx + thy) 2(S3
x − S3

y) 2(Sx + Sy) 0 0
0 2(S3

x − S3
y) 2(th2

x + th2
y ) 2(S2

x − S2
y) 0 0

0 2(Sx + Sy) 2(S2
x − S2

y) 2(tex + tey) 0 0
−2(Sx + Sy) 0 0 0 2(thx + thy) 2(S3

x − S3
y)

2(S2
y − S2

x) 0 0 0 2(S3
x − S3

y) 2(th2
x + th2

y )


+Diag {V (m),−M − V (m),−M2− V (m), V (m),−M − V (m),−M2− V (m)} .

(B.15)

For the hopping element in x-direction, we have:

tm,m+εx =


−tex −iAx −iA2

x −iγx Sx S2
x

−iAx −thx −S3
x −Sx −iTx −iT 3

x

−iA2
x −S3

x −th2
x −S2

x −iT 3
x −iT 2

x

−iγx −Sx −S2
x −tex iAx iA2

x

Sx −iTx −iT 3
x iAx −thx −S3

x

S2
x −iT 3

x −iT 2
x iA2

x −S3
x −th2

x

 , (B.16)

while the hopping element in y-direction reads:

tm,m+εx =


−tey Ay A2

y γy Sy −S2
y

−Ay −thy S3
y −Sy −Ty −T 3

y

−A2
y S3

y −th2
y S2

y −T 3
y −T 2

y

−γy −Sy S2
y −tey Ay A2

y

Sy Ty T 3
y −Ay −thy S3

y

−S2
y T 3

y T 2
y −A2

y S3
y −th2

y

 . (B.17)
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Finally for the coupling to the next nearest neighbors, we have tm,m+εxy = −tm,m+εxȳ

with:

tm,m+εxy =


0 0 0 0 0 iS2

xy

0 0 iS3
xy 0 0 0

0 −iS3
xy 0 −iS2

xy 0 0
0 0 iS2

xy 0 0 0
0 0 0 0 0 −iS3

xy

−iS2
xy 0 0 0 iS3

xy 0

 . (B.18)
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C. The local current operator for

the cubic Dresselhaus model

In the cubic Dresselhaus model, due to the additional couplings in the Hamilton
operator, we have also additional terms for the calculation of the local current. We
write here only the additional terms, that have to be added to the expression for
the k-linear model Eq. (5.97) and Eq. (5.98). For the x-component, we get:

jx(m) = −i
(
c1

ε2y
+
c2

ε2x

)(
G<

m,m+εx(↑↓) +G<
m,m+εx(↓↑) +

G<
m+εx,m(↑↓) +G<

m+εx,m(↓↑)
)

+

(
i
c1

2ε2y
− c1

2εxεy

)(
G<

m+εy ,m+εx(↑↓) +G<
m+εxy ,m(↓↑) +

G<
m+εxȳ ,m(↑↓) +G<

m−εy ,m+εx(↓↑)
)

+(
i
c1

2ε2y
+

c1

2εxεy

)(
G<

m−εy ,m+εx(↑↓) +G<
m+εxȳ ,m(↓↑) +

G<
m+εxy ,m(↑↓) +G<

m+εy ,m+εx(↓↑)
)

+

+ i
c2

2ε2x

(
G<

m,m+εxx(↑↓) +G<
m,m+εxx(↓↑) +G<

m+εxx,m(↑↓) +G<
m+εxx,m(↓↑) +

G<
m−εx,m+εx(↑↓) +G<

m−εx,m+εx(↓↑) +G<
m+εx,m−εx(↑↓) +G<

m+εx,m−εx(↓↑)
)
. (C.1)

The last two lines denote the contributions of the 3rd nearest neighbor contribution.
Since Eq. (5.97) is a master equation, that e�ectively describes the imbalance be-
tween carriers jumping fromm→m+εx and backm←m+εx, it actually describes
the current through a surface in the middle between m, m + εx. Therefor, we have
to average the contributions from m→m+ εxx and m− εx →m+ εx in the case of
3rd nearest neighbor interaction, to be consistent with the other contributions. The

157



C. The local current operator for the cubic Dresselhaus model

same arguments hold for the y-direction, which reads:

jy(m) =

(
c1

ε2y
+
c2

ε2x

)(
G<

m,m+εy(↓↑)−G
<
m,m+εy(↑↓) −

G<
m+εx,m(↑↓) +G<

m+εx,m(↓↑)
)

+

(
i
c1

2εxεy
+

c1

2ε2x

)(
G<

m+εxy ,m(↑↓) +G<
m+εx̄y ,m(↓↑) −

G<
m−εx,m+εy(↑↓)−G

<
m+εx,m+εy(↓↑)

)
+(

i
c1

2εxεy
− c1

2ε2x

)(
G<

m+εx̄y ,m(↑↓) +G<
m+εxy ,m(↓↑) −

G<
m+εx,m+εy(↑↓)−G

<
m−εx,m+εy(↓↑)

)
+

+
c2

ε2y

(
G<

m,m+εyy(↑↓)−G
<
m,m+εyy(↓↑) +G<

m+εyy ,m(↑↓)−G<
m+εyy ,m(↓↑) +

G<
m−εy ,m+εy(↑↓)−G

<
m−εy ,m+εy(↓↑) +G<

m+εy ,m−εy(↑↓)−G
<
m+εy ,m−εy(↓↑)

)
. (C.2)
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D. The mean free path in the

Büttiker probe model

We now want to describe how the Büttiker probes can be connected to the mean
free path of the carriers. We consider a one dimensional system discrete lattice, with
lattice constant ε and parabolic dispersion. To each lattice site, a Büttiker probe is
attached. We assume the scattering potential of the probes to be:

B(m)R = ηpte
ikε, (D.1)

with the phenomenological coupling ηp > 0, independent of the lattice point m. The
wave vector k follows from the usual dispersion relation on a discrete lattice:

E(k) = 2t(1− cos(kε)), (D.2)

with the hopping element t = ~2/2m∗ε2. We consider a lattice with N grid points
which is attached to leads at the left and at the right end, see Fig.D.1. The coupling
self-energy to the semi-in�nite one dimensional leads reads:

ΣR
C = teikε. (D.3)

First consider, a system with only one device point. Hence, an electron originating
from the left contact can either jump directly into the right contact or enter the
probe. In the �rst case, we call the transport coherent, while in the latter one, we
call the transport incoherent due to the scattering with the probe. The probabilities
for coherent P (c) and incoherent P (p) transport clearly depend on the coupling
constant ηp and are given by:

P (c) =
1

1 + ηp
, P (p) =

c

1 + ηp
. (D.4)

Figure D.1.: Schematic drawing of the one dimensional lattice, attached to semi-
in�nite leads at the left and at the right end of the lattice. To each
grid point, a Büttiker probe with coupling parameter ηp is attached.
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D. The mean free path in the Büttiker probe model

Note that, ηp → 0 is the ballistic limit, such that the probability for coherent
transmission is P (c) = 1. In the case ηp = 1, the probabilities are equal P (p) =
P (c) = .5, while ηp → ∞ constitutes the di�usive limit, with P (c) → 0. Now
consider a chain with N sites, each with an attached Büttiker probe. The probability
for an electron to propagate from the left to the right contact coherently, i.e. without
entering any probe, P (c)N is then given by:

P (c)N = (1− P (p))N =

(
1

1 + ηp

)N
. (D.5)

We de�ne the mean free path lMF = εNMF , in such a way, that P (c)NMF
= e−1.

Thus, we get for the mean free path as a function of the scattering strength ηp:

lMF =
ε

ln(1 + ηp)
≈ ε

ηp
, (D.6)

which is independent of the energy of the electron. The last approximation holds
for near ballistic transport, with ηp � 1. Numerically, we �nd exact agreement with
Eq. (D.6) for a one dimensional lattice. For the quasi one dimensional quantum
wire, the agreement is not exact, but reasonable, with a weak dependence on the
energy and the wire sublevel. Since all our transport calculations in this work are
performed at low densities, mostly within the lowest sublevel, Eq. (D.6) is a good
approximation, to calculate the mean free path from the numerical parameter ηp.
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