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Abstract

A random vector X generates a natural exponential family of vectors X*, A € A, where A
is the set where the moment generating function (mgf) K (\) = Ee*¥ is finite. Assume that A
is open and X non-degenerate. Suppose there exist affine transformations ay(z) = Axz + ay

depending continuously on the parameter A and a non-degenerate vector Y so that
a (XM =Y

when A diverges. In this paper it will be shown that the limit vector satisfies a stability

relation. Some examples of this limit relation are presented.
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1 Introduction

Exponential group families are of special interest to statisticians. Recently there has also been
interest in this subject from the quarter of mathematical physics. The book Faraut and Kordnyi
[1994] gives a complete classification of all exponential families which are generated by Lebesgue
measure on proper open symmetric cones invariant under a group of linear transformations.
Exponential families are useful tools in the theory of Laplace transformations.

In this paper we consider multivariate exponential families which can be normalised to con-
verge to a non-degenerate limit. The limit vector generates an exponential family which is stable
in the sense that all members of the family are of the same type. In the univariate case the limit
distributions are normal or gamma. The significance of such a limit theorem for the theory of
Laplace transforms was perceived by Feigin and Yashchin [1976]. Nagaev treated the univariate
case in a series of papers dating back to the early sixties. A general univariate theory can be
found in two papers by Balkema, Kliippelberg and Resnick. These will be referred to as BKR
[1999a] and BKR [1999b] in the sequel. The statistical theory for densities in the strong domain
of attraction of the multivariate normal distribution has been treated in Barndorff-Nielsen and
Kliippelberg [1999]. The present paper presents a number of general results for the multivariate
case. We shall give concrete results for two multivariate generalisations of the gamma distribu-
tion: The uniform distribution on the unit ball, and the multivariate Laplace distribution e " /c.
The latter distribution and its generalisations have also been considered by Nagaev and Zaigraev
[1999].

Let us now be more specific. With a non-degenerate random vector Z is associated an open
convex set D, the convex domain of Z. The closure of D is the smallest closed convex set which
contains almost every realisation of Z. In this paper we assume that P{Z € D} = 1. Let the
mgf K of Z converge on a neighbourhood of the origin. The domain of K is the convex set
A={)| K(\) =eM < ool In this paper we assume that A is open.

Let Z*, A € A, be the exponential family generated by Z. We are interested in the asymptotic
behaviour of the distribution of X* as A tends to the boundary of A or to co. The Ansatz of

this paper is that there exists a non-degenerate limit vector W. So
Wy=a ' (ZN=W A= 0. (1.1)

This paper then addresses two questions: What can one say about the limit distribution? Given

the limit law, what can one say about its domain of attraction?



Similar questions have been asked about limit laws for sums, giving rise to the concept of
stable distributions, and about limit laws for maxima and residual life times. In all these cases
we start with a family of variables which diverges. By a proper choice of norming constants
such a family may be stabilised to converge to a non-degenerate limit law. The limit variable W
exhibits a certain stability property. The main result of this paper is a similar stability property
for the limit vector in (1.1).

The paper is organised as follows. The first part, sections 2 to 4, treats basics and proves
stability of the limit family in (1.1). The middle part, sections 5 to 9, develops some ideas about

the limit relation. In the last part we treat some special cases.

Notation This paper is concerned with probability distributions rather than random variables.
The vectors Z* are only introduced as a notational convenience. We use the notation X = Y
or X =Y to express equality of distribution and Y, = Y to denote weak convergence of the
associated probability distributions.

The basic set-up is a natural exponential family of probability distributions 7*, A € A, on a
euclidean space E. Here dr*(z) = eMdn(z)/K()) is the distribution of Z*. The convex domain
D of Z is a subset of E, the domain A of the mgf K is a subset of the dual space ET.

The group of all affine transformations on the d-dimensional space £
alz) = Az +a detA#0, a € E (1.2)

is denoted by A = A(d), and AT denotes the group of affine transformations ¢ — €4 + o’ on
the dual space ET. Affine transformations on E may be represented by square matrices of size
d + 1 with top row (1,0,...,0). The transpose matrix represents an element of A’

The set A is an open subset of a euclidean space. Let K be a compact subgroup of A. Then
there exists a continuous function N : A — [0,00) with the properties:

1) {N =0} = K;

2) {N < ¢} is compact for each c;

3) N(a) = N(a™ ).

The number N () is not a norm but N(a, 3) = N(a~!'3) measures the “distance” between

« and 8 modulo K. If the distance is large then one of the terms is large:

Lemma 1.1 For each cy > 0 there exists ¢ so that

N(a,8) >c1 = N(a)>coor N(B) > c.



Proof The set {N < ¢y} is compact and the product is continuous so N(a,3) < ¢ if
N(a), N(B) < co. |

For a sequence (wy,) of points in an open convex set {2 we write w, — 0 or w, — Jq if any
compact subset of {2 contains only finitely many terms of the sequence. Similarly for f : Q@ — M

and a a point in the metric space M we write
flw) = a w—0 (1.3)

if for each € > 0 there exists a compact set F' in Q so that d(f(w),a) < € for w € Q\ F. (The

space QU {0} is the Alexandrov one point compactification of the locally compact space €2.)

2 Exponential families

Given a non-zero Radon measure p on the finite dimensional vector space E define measures p)
by
dpx(z) = eMdu(x) xe EL.

Set K(\) = pr(E) = [ e du(r) < co. The domain of K is the set A where K is finite. For any
A € A introduce a random vector Z* with probability distribution 7* = /K (A). The family of
vectors Z*, A € A, is called the natural exponential family generated by p. If 11 is the distribution
of a vector Z we speak of the exponential family generated by Z.

The measures cjuy, ¢ > 0 and A € ET | all generate the same exponential family apart from
a trivial translation. So we may always assume that the exponential family is generated by a
random vector Z = Z°. Then A contains the origin. The vectors Z and Z — p generate the same
exponential family apart from a trivial translation of the convex set D. So we may assume that
EX =0 € D if we wish.

It is well known that A is convex. The mgf K is lower semi-continuous (by Fatou’s Lemma).
If A is open then K(A) — oo when A tends to a point in 9A. If the origin lies in the convex
domain D of Z then K(\) — oo for A — oo. This gives:

Proposition 2.1 Suppose the domain A of the mgf K is open and the origin lies in the convez

domain D of the exponential family. Then K()\) — oo for A — 0.

The mgf K is C* (even analytic) on the interior of A. For interior points A of A the moments

of Z* are finite and may be computed by differentiation EZi)I e Xi); = 0, -+ 0;, K(\). The



cumulant generating function (cgf) k = log K yields the reduced moments:
K (\) == EZ " (\) = var(Z}). (2.1)

So if Z is non-degenerate and A is open then k is a strictly convex C*° function on A. The
relations (2.1) are well known for A = 0 and they follow for arbitrary A by observing that
Ky(§) = Bet?” = [ e e du(r) = K(A+ €)/K (M) and hence

Ex(&) = k(A + &) — k(N MA+EEA. (2.2)
Introduce the Esscher transforms E*, writing Z* = E*Z. Then
F EF = AP X\ A4 p €A
For future use note:
Lemma 2.2 Let Z have cgf . Then the vector 3(Z*) = BZ* + b has cgf
k(A +EB) — k() + &b

Lemma 2.3 Let X in E have cgf k with domain A C ET. Let 8(z) = Bx+b where B: E — F

is a linear surjection and b € F. Then BT : FT' — E™ is a linear injection. For B = BT (0) € A
BE"PX) = E°(B(X)).

If 7 is a non-degenerate probability measure on E and the domain A of the exponential family
[7] := {m | [ eMdn(z) < oo} is open then [r] is a closed subset of the space of all non-degenerate
distributions on E and is homeomorphic to A. See Theorem 8.3 in Barndorff-Nielsen [1978]. A

corresponding result holds for general A.

Proposition 2.4 Let w be a non-degenerate probability measure on E with cgf k. Let A be the
domain of  and let [r] = {7* | A\ € A} be the ezponential family. Then
1) [r] is homeomorphic to the graph of k in A x R;

2) [r] is a closed set in the space of non-degenerate probability measures on E.
Corollary 2.5 If \, — 0 and 3;'(Z ) = W with W non-degenerate then (3, diverges in A.

We end this section with a few remarks on the limit relation (1.1).



There is a certain duality between the convex sets D and A if A is open. For any point
A € A let 2(\) = EZ* denote the centre of gravity of the probability measure 7* on D. If Z has
density f then Z* has density f* = e*f/K()). The factor e**/K(\) introduces an exponential
bias in the distribution of Z which shifts the center of gravity roughly in the direction of A. The
vectors A and z(\) are coupled by a Legendre transform. Since the function  is smooth and
strictly convex the map A — z(\) = «'()) is a diffeomorphism of the open set A onto D. The
correspondence need not extend to the boundaries.

This paper is concerned with the limit relation (1.1). We assume that Z and W are non-
degenerate and that the domain A of the mgf is open. These conditions are imposed for the sake
of simplicity. The condition of weak convergence for A — 0 is a harsh condition but it leads to
an interesting and useful basic theory.

Exponential families are most simply expressed in terms of densities. In statistical applications

one is often interested in strong convergence:
gr(y) = |det(Ax)|f(ar(y))) = g(y) uniformly on compact sets in @ and in L.

The normalised densities converge uniformly on compact subsets of the convex domain ) of W.
Here g is the density of the limit vector W, f the density of Z and f* = e f/K()).

We shall also consider vague convergence.

3 Stable exponential families

This section investigates stable exponential families.

Definition 3.1 The random vector W or the exponential family W°, 6 € ©, generated by W is
called stable if © is open and if all vectors W are of the same type.

Remark 3.2 It suffices that the domain © contains an interior point 6.

A basic question for stable exponential families is: How are the index A and the affine trans-
formations linked? First let us make some remarks.

If X* is distributed like a(X?) for some \ # p then o maps the exponential family bijectively
into itself. Indeed let a(z) = Az + a. Then Lemma 2.3 gives for any p in A

afl(Xp) — afl(Epquu) — glo—mA~1xn — glo—mA+A x

1

So o' maps the exponential family into itself. By the same argument so does a.



Definition 3.3 An element o € A is a symmetry of the non-degenerate random wvector X if
oX = X. The set of all symmetries is a closed compact group K, the symmetry group of the
random vector X. Let [X] = {X* | A € A} denote the exponential family generated by X. The

symmetry group of the exponential family [X] is the set
g ={aeA|aX]=[X]} (3.1)

The map a(x) = Az +b+— A from A(d) to GL(d) is a homomorphism. For any subgroup G of
the affine group A we define the linear group Go as the corresponding subgroup of GL.

Proposition 3.4 The set G in (3.1) is a closed subgroup of A which contains the compact
symmetry group K of Y.

There is a simple condition for stability of an exponential family in terms of the groups
introduced above.

Define ¢ : G — ET by the relation X¥(® = oX. Casalis [1990] has shown that

paf) = p(@)B+ () «o,B€G, B(x) =Bz +b.

<1 0) i <1 go(a))
[0 = o~
a A 0 A

is a homomorphism from G onto some group G* in AT which extends the canonical isomorphism

This implies that the map

A — AT from the linear group Gg introduced in definition 3.3 above. We shall call G* the Casalis
group associated with the exponential family [X] and the homonorphism « — «* the Casalis
map. Note that the Casalis map is continuous. So the Casalis group G* is a Lie group and the
Casalis map is C'*°. Since the symmetry group K is a subgroup of the linear group Gy the Casalis

map is injective. By definition it is onto. So it is an isomorphism. We obtain the following result.

Theorem 3.5 If W is stable the domain © of the cgf n of W is an orbit of the Casalis group
G* of the exponential family W9, 6 € ©.

This implies

Theorem 3.6 Let W be a non-degenerate random vector in RY with symmetry group K. Let G
be the symmetry group of the exponential family [W] = {W? |0 € ©}. Here © is the domain of
the mgf of W. If dim G = dim IC + d then W is stable.



Corollary 3.7 If there exist independent vectors 61, ...,0q in © so that the vectors Wi t
[0,1], i =1,...,d, are all of the same type then W is stable.

4 Stability of the limit

This section contains our main result.

Theorem 4.1 Suppose v, — Yo, Un = Uy and V,, = Vy where Uy and Vy are non-degenerate.
Let K,, be the mgf of Uy, for n > 0. Assume that K, (v,) is finite and V,, = U™ for n > 1. Then
Vo = U[;YO and Ky (vn) — Ko(y) < 00.

Proof Let 7, denote the probability distribution of U, and p, the distribution of V,, for n > 0.
Then e"*dn,(z) = apdpy(x) for n > 1 where a,, = K, (). Observe that

andpp(z) = e"¥dmy,(z) — e"%dry(z) =: du(z) vaguely.

Since p, — po vaguely and py and p do not vanish we conclude that a, converges to a constant
ap € (0,00) and du = apdpp. Then [e"%dmy(x) = ap < oo and dpy(z) = €7°%dmy(x)/ag since
pok = 1. g

Now return to the basic relation (1.1). The Esscher transform E?Y) exists if o is small. It
satisfies

YY =Y, 6= a;lau, w=A+ O'AXI (4.1)

provided o is chosen so that p lies in A.

Theorem 4.2 Let Z and W be non-degenerate vectors. Let Z*, A € A, be the exponential
family generated by Z. Assume that A is open. Let a: A — A be a continuous normalisation so

that (1.1) holds. Then the exponential family generated by W is stable.

Proof We shall prove that for each 0 € E”T there exists a ty > 0 so that the vectors W,
0 < t < tg, all are of the same type. This implies that the exponential family W 6 € ©,
generated by W is stable by Corollary 3.7.

Let 0 € ET and let A, — 0. Fix n > 1. For t > 0 relation (4.1) gives

Wi = BaWyiy  Halt) = A + to A}



provided pup(t) € A. Since A is convex and open this will be the case for t € [0,¢,) for some
maximal ¢, < 0o. Note that 3,(0) = id and N(f,(t)) — oo for t — ¢, by Corollary 2.5. Choose
tn € (0,¢,) so that N (B, (t,)) = 1. If t,, > 1 then take ¢, = 1.

Now assume p, = py(t,) — 0. Take a subsequence so that (3,(t,) — [ for some 3 € A
and ¢, — t € [0,1. Then Wy, = W, tho — to and W7 = By(tn) W, (1) = BW imply
W' = BW by Proposition 2.4. If p,, — p € A for some subsequence then N(ay,) — N(ay)
and N(0,(t,)) — oo by Lemma 1.1. This contradicts our choice of t,. q

Remark 4.3 We may replace the continuity condition by a weaker condition. Suppose the limit
vector in (1.1) has symmetry group K. Let A/K be the symmetric space of cosets [5] = GBI,
b € A. Tt suffices that there exists a compact convex set C' C A so that « is continuous modulo

KonA\C,ie. [a] : A - A/K is continuous on A\ C.
We have now established our main result.

Lemma 4.4 Suppose (1.1) holds. Let © be the domain of the mgf of the limit vector. Write
a)(z) = Axx + ay. Let N\, — 0 and let 0,, — 0 € O. Define

pn(t) = An +t0, A" Bu(t) =03y t>0.
Then the sequence (B, (ty)) in A is bounded for any sequence (ty) in [0,1] and py,(t,) — 0.

Proof Let ¢y be the maximum of IV over the compact set of all « € A for which there exists
t € [0,1] such that W* = oW . Let ¢; = ¢y + 1. Suppose 3,(t,) is unbounded for some sequence
(t,) in [0, 1]. Choose a subsequence so that N (3, (t,)) — oco. By continuity there exist r, € (0, %)
so that N (6, (r,)) — c¢1. Take a subsequence so that f,(r,) — @ and r, — r. Then N(f8) = 1
and W = BW as in the proof of Theorem 4.2. By definition N(8) < ¢y. Contradiction. q

Weak convergence in (1.1) implies convergence of the cgf’s.

Theorem 4.5 Suppose (1.1) holds. Let ny denote the cgf of the normalised variable W) =
a;l(ZA) and let © be the domain of the cgf n of the limit variable W. Then nyx — n uniformly

on compact subsets of © for A — 0.

Proof Let 6, — 0 € ©, A\, — 0. The sequence (£,(1)) in Lemma 4.4 is relatively compact and
all limit points 3 satisfy W? = W and W)‘?: = W Theorem 4.1 gives 1y, (0,) — n(8). q



5 The support of a stable family

The support of a stable exponential family with symmetry group G is an atom in the o-field of
G invariant sets. This explains why the multivariate theory for exponential families is similar to
the univariate theory for limits of sums and maxima rather than the multivariate theory. See
Balkema and Qi [1997] for related results on multivariate limit laws of residual life times.
Given a closed subgroup G of A introduce the o-algebra & = £(G) of invariant Borel sets of

the space E. It is generated by the sets
0K ={a(z) |a € G,z € K} K C E, Kcompact.

Theorem 5.1 Let the exponential family W, 0 € ©, be invariant under the closed subgroup G.
Then the support S of W is an atom of £.

Proof First note that S is the support of W? for every § € ©. So W = W? implies that
vS = §. The support is invariant. Since it is o-compact it is a set in &£.

Suppose there exists a set Sy € € so that P{W € Sy} = py € (0,1). Then P{W € S;} =
p1 =1—pg for S; = S\ Sy. Note that

Ee® Liyesyy + Ee® 1iyes,y = BV = K(0).
Let W? = BW. Then for i = 0,1
pi = P{AW € S;} = P{W’ € S;} = BV 1y cq,y /K(6).

So K(0) is the mgf of the conditional distribution of W given W € S; for i = 0 and ¢ = 1. Hence

these conditional distributions agree. Contradiction. q

6 Domains of attraction

As in the limit theory for sums and maxima one is not only interested in the limit laws, but

even more in a description of their domains of attraction.

Definition 6.1 Let W be a non-degenerate random vector which generates a stable exponential
family W°, 6 € ©. The exponential family Z*, X € A, belongs to the domain of attraction of the
exponential family W0 and we write Z € D(W) if A is open and if (1.1) holds for some family



of normalisations ay € A. (We do not assume continuous dependence on A here.) Similarly we
say that a random vector, a measure, o density, a mgf or cgf belongs to the domain of attraction

if this holds for the exponential families generated by these objects.
Two measures which are asymptotically equal belong to the same domains of attraction.

Theorem 6.2 Suppose (1.1) holds for the random vector Z with mgf K with domain A. Let Z
have mgf K with domain A and suppose K(X\) ~ K(\) for X — 0. Then a;l(Z)\) = W.

Proof Let the limit vector W have cgf n with domain ©. The vector W)y = «, }(Z*) has cgf

(&) = kA +EBy) — k(A +€by ) (y) = Byy + by

by Lemma 2.2. The vector Wy has cgf 77, with s replaced by < in the formula above. By
assumption (kK — k)(A\) — 0 for A — 0. This implies (7, — 7a,)(0n) — 0 for # € © and
An — 0 by Lemma 4.4. So ), — 1 on © implies 17, — 7 on ©. Convergence of the mgfs implies

convergence in law. q

The asymptotic behaviour of the mgf K(\) for A\ — 0 is determined by the asymptotic

behaviour of the distribution of Z for z — 0p.

Lemma 6.3 Let pu be a finite measure with convex support C. Let H = {&y < ¢y} be a half space
so that C'\ H is bounded and non-empty. Then there exists an open cone I' C A containing &
so that

pyH/ iy C — 0 vyel, v —= oo

Lemma 6.4 Let i be a finite measure with convex support C and p a finite measure with convez

support A contained in the interior of C. Let the domain A of the mgf K, be open. Then
K,(A\)/K,(A) =0 A — Oj.

Theorem 6.5 Let i be a finite measures with convex domain D. Assume that i lives on D and
that the domain A of the mgf K of u is open. Let h : D — [0,00) be a Borel function such that
[ hdp is finite and h(z) — 1 for x — Op. Then the mgf Ky of duo = hdp has domain A and K,

and K are asymptotically equal for X — 0.

Proof Let € > 0. There is a compact convex set A C D so that |logh(x)| < € for z € D\ A.
Let . agree with 4 on A and with pp on D \ A. Then the cgfs satisty |k.()\) — k(A)| < € for all
A€ A and |ke(A) — Ko(A)| < € eventually. So |ko(A) — K(A)]| < 2€e eventually. q

10



7 The construction of stable exponential families

Given a group G in A how does one construct a measure such that the natural exponential
family associated with this measure is invariant under G7

We give an example to describe a procedure.

Example 7.1 The two-dimensional commutative group of diagonal matrices with positive el-
ements gives rise to the exponential families generated by the bivariate gamma densities on

(0,00)2. There is one other two-dimensional commuatative group G of linear transformations,

a 0
A= a>0,beR.
b a

The right half plane is invariant and G is transitive on this half plane since A(1,0) = (a,b).

with matrices

Assume there exists a density f = e~ % such that f o A = f) for some vector A depending on a
and b. This means that p(z,y) + L(z,y) = ¢(az, bx + ay) for some linear function L depending
on a and b. Taking derivatives with respect to = and y and writing ¢;; for 0;0;¢(az, bx + ay)

we find

Pz = 029011 + 2abp1o + b2<,022
Poy = GZ‘PIZ + abpao
Pz = a2‘;022-

Now given z and y choose a and b so that (az,bxr + ay) = (1,0). This gives a = 1/z and

b = —y/z?. The three quantities ¢;1; = ;;(1,0) are constant. So we obtain

2y | cy’

Prz =
22 a3 xt
0 _ G3 C4Y
oy = — — —2
y 2 3
Cq
P 22

These functions have to satisfy the integrability conditions @,zy = @rye and @gyy = @yyz. This

yields the solution
o(z,y) = ap + a1z + a2y + aslogz + asy/x flx,y) = o3 et Ty pa1y/T,

The corresponding measures on (0,00) x R are invariant. However none of them is finite.

11



8 Vague convergence and continuation

Suppose (1.1) holds. There is a finite measure p with convex domain D and a finite measure p

with convex domain () so that
oy (1n) /K (\) — p weakly A— 0.

Here K ()\) = px(E) and duy(z) = eMdu. So p is a probability measure.
Let dip = hdp for a Borel function A on D and dp = hodp for a continuous strictly positive

function hgy on @, and assume that there exist positive constants C'(\) so that
ay M (1)) /C(N) — p vaguely A — 0. (8.1)
This will be the case if
h(ax(y))/c(A) — ho uniformly on compact sets in Q. (8.2)

Note that
c(A) ~ |det Ay[/C(A) ~ h(px)/ho(q) A —0

for py = ax(¢) and any ¢ € Q. So we find

Proposition 8.1 Suppose (8.2) holds. Let the corresponding measures dji = hdyp and dp = hodp
be finite. Weak convergence holds in (8.1) if and only if the mgf K(X) = jix(D) of [i satisfies the
asymptotic equality

KO ~ p(Qh(p2)/ (ho(g) det Ar)) A — 0.

Vague convergence in (8.1) implies vague convergence on any open subset of (). Conversely
if (8.1) holds on any non-empty open subset of () then it holds on (). This is the main result of
the present section.

Suppose p, — p vaguely on the open set W and pW > 0. If ¢, p, — o vaguely on W then

¢n, = ¢ > 0 and o = ¢p. This implies

Lemma 8.2 Suppose B, — B € A, p, — p vaguely on the open set U and c,0Bppn — o vaguely
onU. If pf(UNPU) >0 then ¢;, - ¢ >0 and o = cfp on UNGU.

Now suppose (8.1) holds on the non-empty open set U C Q. Let
A—0 op—oc€el 7,=\, —i—anA/(nl Bn = a;iam.

12



Since we assume that (1.1) holds we find 7, — 0 and [3,] — [§]. Then
-1
Brpr, = O‘)Tnl (s, /C(T0) = a;\i (EUnAA"NAn)/C(Tn) = E7"p), C(An)/C(Tn).

So E"py, — Ep vaguely on U and B,p;, — Bp vaguely on SU. If p(U N BU) is positive then
C(1n)/C(An) = ¢ >0and Bp=cE’ponUnNpU.

Theorem 8.3 Suppose (1.1) holds. Let j be a Radon measure on D and p a finite measure on
a relatively compact open U in Q. Suppose py = a;l(uA)/C()\) — p vaguely on U for A — 0.

Then p extends to a unique Radon measure p on Q) such that py — p vaguely on Q.

Corollary 8.4 Let h : D — [0,00) be a Borel function and hy : U — (0,00) continuous.
If h o ail — hg uniformly on U then hy extends to a continuous function hg on @Q so that
ho a;l — ho uniformly on compact subsets of Q. The function hgy is a quasi-multiplicer for the

symmetry group G of W%, 6 € ©.

Given convergence in (1.1) for a density f it is fairly easy to adapt f or the underlying
Lebesgue measure so that vague convergence holds on some relativley compact open subset of

Q. All that then remains to be done is to prove weak convergence!

9 The geometry

A geometry on D is a collection £ of ellipsoids E,,, p € D. A geometry on D determines a metric
on D, the collection of flat functions, and the collection of measures which are asymptotically

Lebesgue. Suppose (1.1) holds. There are three ways to generate the geometry £.

1) Any non-degenerate random vector X in E determines a family of ellipsoids centered in
EX. These are the level curves of the density of a gaussian variable with the same first two
moments and can be represented as E, = {EX +u | ¥ (u,u) < r?} where ¥ is the covariance.
Fix r > 0 and let £ be the collection of the ellipsoids E, associated with the vectors Z*.

2) The cgf k of Z is convex and analytic. It determines a quadratic form £”(\) in each point
k'(X) of D and hence as in 1) a collection & of ellipsoids on D.

3) Let @ be the convex domain of the limit vector W in (1.1). Assume that W is centered
and has unit variance. Let B = B,(0) be the closed ball of radius r. Define £ to be the set of all

ellipsoids ) (B).

13



Proposition 9.1 Suppose (1.1) holds. For any compact convex sets B C Q and C C D there
is a compact convex set A C A so that ayx(B) C D\ C for A€ A\ A.

The third method may be generalised. The set B may be any compact convex set in () which
is invariant under the symmetry group K of W. Thus if D = (0,00)%, Q = (—o00,1)? and W is
the vector with independent gamma components it is convenient to take B the cube [1/2,3/2]%.

In (1.1) we may replace a) by &y = ayey provided any sequence \,, — 0 contains a subse-
quence \j, so that ey — € € K, where C is the symmetry group of W. If B is invariant under
K the ellipsoids E) and E) are asymptotic in the sense that for any r > 1 the ellipsoid E is
eventually enclosed between two concentric scalings Ey(1/r) and E\(r) of E).

We shall assume that the collection £ has the property of Proposition 9.1. Collections which

are asymptotically equal for p = x'(\) — O define the same geometry.

Theorem 9.2 The geometry depends only on the normalisations ay, X\ € A, and not on the

distribution of Z or W.

Definition 9.3 A function h : D — [0, 00) is flat if it is positive outside some compact convex
subset C' of D and if it is asymptotically constant on the ellipsoids in the geometry E: If p, —
Op then sup{h(z)/h(y) | z,y € Ep,} — 1. A measure p on D is asymptotically Lebesgue if
Lpay t(p)/|det Ay| converges weakly to the uniform distribution on B. In particular ju(E)) ~
|Ex| = |Bl| det Ay|.

Suppose (1.1) holds. Let f : D — [0, 00) be a Borel function and g : () — [0, c0) be continuous
with g(g) > 0 for some ¢ € Q. Set gy = | det Ay|(e*f) o cy. Suppose

ar/c(A) =g uniformly on compact sets in (). (9.1)

Then ¢()\) ~ gx(¢q)/9(q). Let f = hf with & flat. Then (9.1) holds for § with the normalisation
é(\) = gr(q)/g(q). If (9.1) holds in L' then gy/K()\) — g/ [ gdz where K(\) = [e*fdz is the
mgf of the density f. Hence

KO ~ (@) [ gdz/g(@) = (1det As] [ gdz/gla) (e P)lerla) A o.

If (9.1) also holds in L! for f then

K(A) ~ K(Mh(ax(g)- (9.2)
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In some cases the geometry is determined by the form of the set D or A. We give four examples

1) If D = @ is a symmetric cone with symmetry group G and if the limit vector W has the
characteristic function of @) as density or a gamma function then & = {y(B) | v € G} where B
is a symmetric compact body in Q. See Faraut and Kordnyi [1994].

2) If D is an open body which contains the origin then each point p € D has the representation
p = (1 —t)b with t € (0,1] and b € dD. Call D rotund if the boundary is C? and has positive
curvature. See Section 10 for details. Then for p # 0 there exists a unique ellipsoid E;. which
osculates 0D in b. Take Ej, to be the ellipsoid concentric to Ej scaled down by a factor 1/2.
This yields the geometry associated with the uniform distribution on D.

3) If A is a rotund body which contains the origin then so is the interior of the polar set
A°. For p =tb, b € A% t >0, let E; be the ellipsoid centered in p which osculates the convex
set b — A in the origin, and define E, to be concentric to E; and scaled by a factor 1/2. This
geometry is associated with the vector Z with the Laplace density e "/c where r is the norm
function of A°.

4) The geometry on D is asymptotically euclidean if the map p — @, is flat. Here @, is the

quadratic function associated with the ellipsoid E, € £. So
Qplz,2]/Qp[z,2] = 1 uniformly inz #0  p, — dp, p}, € Ep,.

See Barndorff-Nielsen and Kliippelberg [1999]. This characterises the domain of attraction of

the normal distribution.

On the unit disk there is the geometry associated with the uniform distribution, but there
also is a host of distinct geometries on D associated with a normal limit, even if we restrict
ourselves to densities with circular symmetry.

A geometry £ determines a rough integer valued distance: Count the number of ellipsoids
needed to form a chain from p; to p2. This metric can be refined by using smaller ellipsoids. In
the limit we obtain the Riemannian metric induced by the quadratic functions associated with
the ellipsoids.

Define the cumulant metric on D as the Riemannian metric with the quadratic functions

» = K" (X) for p = £'(A). In the cumulant metric bounded sets are relatively compact.

Theorem 9.4 Let d be the Riemannian metric on A induced by the quadratic forms x"(\)7!,

and let d. be the cumulant metric on D. Then the Legendre transform is an isometry.
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The geometry does not distinguish metrics which are asymptotic to the cumulant metric. In
terms of the random vector Z this means that we do not distinguish between the vectors Z and
Z if &#"(\) ~ K"()\) for A — 9. Often it suffices for the metric d to be equivalent to the cumulant
metric d. in the sense that the quotient d(p,p')/d:(p,p’) is bounded and bounded away from
ZEero.

On the unit sphere the distance between two points is equal to the angle between two rays.
On the surface of a rotund body there is an intrinsic Riemannian metric dy defined in terms of
the curvature. It is invariant under affine transformations. Assume that D is rotund and contains
the origin. Each point has the form p = (1 — ¢)b with ¢t € (0,1) and b € 0D. The geometry in
the second example above determines a metric on D. If p; = (1 — ;)b lie on the same ray then
d(p1,p2) = |log(t1/t2)|, if p; = (1 — t)b; lie on the same surface then d(py,p2) = do(by,b2)/V/t.
Similarly in the third example d(¢1b,t2b) = |log(t1/t2)| and the distance between two points
p; = tb; € tOA° is dy(b1, bo)\/t where dy is the intrinsic metric on the surface of A°. This metric
is equivalent to the metric with A° replaced by the unit ball.

If D or A is a rotund body we may extend the natural conjugation between the boundary of
the body and the boundary of the polar body. Thus if A is rotund and w € OA then w® = b € OA°
satisfies wb =1 and \b < 1 for A € A. For A = (1 — 1/t)w with 0 < ¢ < 1 set X\’ = ¢b. A similar
conjugation exists for the uniform distribution on D. This conjugation mimicks the Legendre

transform.

Proposition 9.5 Let D be a rotund body and d a metric equivalent to the metric described

above. Then there exists a constant M > 1 so that

d(po,p) < M(|log(t/to)| +1/1+Xo(po —p))  p.po € D,
Here Mg = p§, t,to € (0,1) satisfy p= (1 —t)b and py = (1 — ty)by with b,by € OD.

Corollary 9.6 Ifh: D — (0,00) is flat then for any € > 0 there is a compact convex set A C D

and a constant M > 1 so that
h(p)/h(po) < M€l los(t/to)] el do(po—p)] p,po € D\ A.

Proposition 9.7 Let A be a rotund body and d equivalent to the associated metric. There exists

a constant M > 1 so that
d(z,2z0) < M(|log(r/ro)| + 1+ /7 — Xo(2)) z,20 € E.

16



Here r,r¢ is the value of the norm function of A° in z,zy and Ao = 2§ is the conjugate of zy.

Corollary 9.8 If h: E — (0,00) is flat then for any € > 0 there is a compact set A C E and a

constant M > 1 so that
h(z)/h(z0) < Met!1o8/mo)lgelr=20(2)] z, 29 € A°.

These bounds make it possilbe to insert a flat function into the density of Z without affecting

the weak convergence of a, *(Z?).

10 Uniform distribution on the unit ball
Let Z = (X,Y) be uniformly distributed on the open disk
D={(zy) | (z—1)*+y* <1},

The density is f = 1p/m. Let A = (0,—7) with 7 > 0. Then Z* has density f(z,y) =
c¢(N)e™1p(z,y). For 7 large the mass concentrates in a thin region close to the origin. So
we blow up the disk into a long vertical ellipse E, centered in (0,7) and passing through the
origin. Then the random vector has density c¢(A)e Y1g_. In order to obtain a limit for 7 — co we
have to ensure that the curvature in the origin does not blow up. This can be achieved by also
expanding the ellipse in the horizontal direction, by a factor /7. The limit of these ellipses for
7 — 00 is the open parabola Q = {y > x2?/2}. The limit vector has density g(x,y) = e¥/V2.

The disk and its boundary are invariant under rotations. There is a corresponding one pa-
rameter group of skew translations (z,y) — (z+t,y+xt+t?/2) which leave @ and its boundary
invariant. In addition there is the group of expansions (z,y) + (rz,r%y) which were used to
transform the circle into a parabola. These also leave the limit set () invariant. They add a mul-
tiplicative constant to Lebesgue measure which drops out when we normalise. Lebesgue measure
on (Q is quasi-invariant under a two-dimensional group G in A. It generates a stable exponential
family.

Now start with a unit ball in R? x R. centered in (0, 1). The procedure above yields the open
convex set

Q={v>0 wv=y—z"z/2, (z,y) cR‘xR (10.1)
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which is invariant under the d 4+ 1 dimensional group G of affine transformations generated by

1 0" o0 1 0" o
p ~ P I 0 Br~10 rI 0 peRY r>0.
pp/2 pl 1 0 o 1

The skew translations «, leave Lebesgue measure invariant, the diagonal linear transformations
By only add an innocuous factor.

So let 1 be Lebesgue measure restricted to ). The measure p has density e* (by definition)
and is finite if and only if A lies in A = R? x (0, 00). The Casalis isomorphism maps «, into a,

and (3, into 3 where

1 pf 0 1 of o
ay~ 10 I 0 B~ |0 I 0 peRY r>0.
0 pl' 1 0 0" 1

This is the basic construction.

Now start with the uniform distribution on the surface of the unit ball. This distribution gen-
erates the Von Mises-Fisher exponential family. The arguments above yield a stable exponential
family on the paraboloid 0Q = {y = z7z/2}. It is generated by the measure p which is the im-
age of Lebesgue measure on the horizontal hyperplane R¢ x {0} under the map =  (z, 27 2/2).
The measure ) is finite for A € R?% x (—00,0). For A = (0, —1) it projects onto a multiple of

the standard normal distribution on the horizontal plane {y = 0}.
Theorem 10.1 Let Q and v be defined by (10.1). For s > 0 let W have density
hala,y) = 0t Vig(r,y)/(2n) V2T (s)

and for s = 0 let Wy be the vector (X, X{ Xo/2) where Xo has a standard normal distribution on
R®. Each vector Wy, s > 0, generates a stable exponential family Ws‘g, 60O =R?Ix(—o0,—1).

What can one say about the domains of attraction? Note that the examples above give a
global result which depends only on the local behaviour of the original distribution of Z.

Let D be a convex bounded open set in R*t! whose boundary can locally be described by
a C? function with a positive definite second derivative. Let U be uniformly distributed on D.
Then U lies in the domain of attraction of Wi. If U is uniformly distributed on the surface 0D
it lies in the domain of attraction of Wj. These two results remain true if we replace the uniform

distribution by a density which is continuous on the closure of D and positive on the boundary.
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Now suppose D is the open unit ball. Let r denote the distance from the centre and set
t =1—r on D. The random vector Z with density f; oc t*~! lies in the domain of attraction of
W for s > 0. Again we may multiply this density by any continuous function on the closed ball
which is positive on the boundary sphere. Let A be a compact convex subset of D. Let Z’ have
a probability distribution which agrees with the distribution of Z on D\ A. Then Z' lies in the
domain of attraction of Z;. See Lemma 6.4.

What happens if s = 07 The function g = (log(1 — r))?/(1 — r) is integrable over the unit
ball D. Let the vector Z have density o« glc. Then Z lies in the domain of attraction of Wy.

Let us concentrate now on the simple case s = 1. For which densities A on the ball D will the
corresponding vector Z lie in the domain of attraction of W37 This turns out to be determined
by the geometry on D. The associated metric is akin to the hyperbolic metric. Take d = 1 and
use polar coordinates (r,6) on the open disk D = {22 + 2 < 1}. Assume f is strictly positive
on D and write f = e™%. If p is C! and

dp dp
(1—r)5—>0 \/1—r%—>0 r—1-0 (10.2)

then f is flat. See Section 9 for details.
Flat functions are less flat than they seem. It is possible to construct a C! function f on the
open disk Cy which is flat in the sense of (10.2) but which also has the following property: For

each constant ¢ € R there exists a dense subset S, C [0, 27] so that

lim f(r,0) =c 6esS..

r—1-0

10.1 Rotund bodies

Definition 10.2 A body is a bounded convex set which contains an interior point. Assume the
body B contains the origin as interior point. There is a unique function r = rp on E, the norm
function of B with the properties: v(0) = 0, {r = 1} = 0B, and r(cx) = cr(z) for ¢ > 0 and
x € E. It is sometimes more convenient to work with the tent function on B. This is the function
t=1—r. A tent function may have its top in an interior point p # 0.

The convex sets C and D (or their boundaries) osculate in a common boundary point b if
the tangent planes in b coincide, and if the functions Vo and Yp which describe the boundaries

around b have the same second derivative in that point.

Given affine coordinates (z,y) € R xR on E let Uy C {y = 0} denote the vertical projection
of D. There exists a continuous function ¢y : Uy — R so that (u,g(u)) € 9D for all u € U.
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In fact there exist two such functions. We choose the convex function. It describes the lower
boundary of D.

The following are equivalent for any k& > 1:

1) D is a C* manifold;
2) The norm function r is C* on E \ {0};
3) The functions v : Uy — R above are C.

Let b € 0D be a boundary point of D. Assume there is a unique supporting plane T}, to D
in b, the tangent plane. We regard 7}, as a hyperplane in E. It becomes a vector space Tbo by
declaring b to be the origin. So a point a € Ty, C E corresponds to the vector w = a — b € Tp.
Choose new coordinates (r,y) € RY x R on E so that b = (0,0) and D C {y > 0}. Then T}, is
the horizontal plane {y = 0}.

Let Uy C Tp be the vertical projection of D. Set W, = U, — b C Tbo, and let ¥ : W, & R
describe the lower boundary of D. Then 1,(0) = 0 and ,(0) = 0. Suppose v} (0) exists and
is positive definite. Then there are two euclidean structures on Tbo, the euclidean structure on
T, C E inherited from F, and the intrinsic euclidean structure determined by the symmetric
positive definite bilinear form 1/; (0). We endow T' with the intrinsic structure. One may choose
affine coordinates on E so that the unit sphere in E centered in (0, 1) osculates 0D in b. Then

the two structures coincide in b.

Definition 10.3 The body D is rotund if D is open, 0D is a C? manifold and if the curvature
Py (0) is positive definite for each b € OD.

Let D be a rotund body, p € D. For each boundary point b there exists a unique ellipsoid
Ey(p) centered in p which osculates D in b. These ellipsoids vary continuously with b.

Let T' denote the tangent bundle to 0D. We may identify T' with the set of pairs {(b, w) |
b€ dD,b+w €T, C E}. The set W = {(byw) | b € 0D, w € W, C T} is open in T Define
¢ : W — R by 9(b,w) = »(w), and similarly define the partial derivatives 1, (b, w) = ¢} (w)
and (b, w) = ¥y (w).

Proposition 10.4 The functions 1 and 1), are C' on W.

The set As = {(b,w) | 1 (0)[w,w] < 62} is a compact subset of T" which is contained in W

for some § > 0. Uniform continuity of ¢ on Ay implies
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Lemma 10.5 Let b, € 0D and w, € Tbon. Suppose b, — b and w, — w. Let 7, — 0o. Then
TnWb,, (W /\/Tn) — wTw/2.

10.2 Weak convergence for strictly smooth convex bodies

Proposition 10.6 Let ¢t be the tent function on the rotund body D in d + 1-dimensional space
E for some d > 1. For s > 0 the density t*~'1p lies in the domain of attraction of the stable

exponential family generated by the density
g=v"te Vg Q={v>0}, v=y=21?/2
The normalised densities converge uniformly on compact subsets of Q).

Proof The proof consists of two steps: We first prove vague convergence, then weak convergence.
The domain A of the mgf of 4 is the whole space E”, hence is open. Take X # 0 and let b € 9D
be the point where 7 = A\b is maximal. Then {\A = 7} is the tangent plane to 9D in b. We assume
that the center of gravity of D is the origin.

Define ) = 03, B; where o} is an initial transformation to bring the convex body into the
right position. Choose o3 so that Dy = ab_l(D) C R? x R lies in the upper half space {y > 0},
with center of gravity (0,1), and so that o ' (b) = (0,0). Then the horizontal coordinate plane
{y = 0} is the tangent plane and the function e* on D transforms into the function e”e~"¥ on
Dy,. We also choose o}, so that the unit sphere centered in (0, 1) osculated Dy in (0,0).

Now treat Dy as we did the unit ball. Blow it up by a factor 7 in the vertical direction and

by the factor /7 in the horizontal directions. Set
Q=B '(Dy) = ;' (D) Bl (z,9) = (Vro,1y).
Then ) (0,1) =p = (1 —1/7)b and the lower boundary of @) is given by the function
() = T2/ /T) — x%/2 uniformly in b € 9D. (10.3)

The function e~"Y on D, transforms into the function e™¥ on @), and the tent function ¢t on D
into the tent function £y on @y. Since the center of gravity of @)y is (0, 7) the limit relation (10.3)
gives

TiA(z,y) »y —2?/2 T o0, (z,y) €Q.
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So the densities, properly normalised, converge to g(z,y) = (y —272/2)* le Y1q. It remains

to prove weak convergence
/ grdxdy —)/ gdxdy A— 0. (10.4)
Qx Q
For § > 0 let Dy(d) be the polar cap DyN{y < d} of the set D} around the point (0,0). Then
P{X e Dy(0)} =1 A—0
uniformly in b € 9D by Lemma 6.3. So it suffices to take the integral (10.4) over the set
Qx(0) = {¢p(x) <y < o7}
Instead of the functions g, we shall consider the functions
ha(z,y) = (y — 9p(2)° e ¥ 1g, 5 (2, 9)-
Note that by Lemma 10.5 we may choose § > 0 so small that
aa(z,y) <277 Tha(z,y)  (2,y) € Qa(8),A € BT\ {0},
Tightness of the measures hydxdy implies tightness of the measures gydzdy. We claim that
hyx — glg a.e. and in L'.

The a.e. convergence was proved above. The L' convergence is a simple computation:

0T
[ odedy = [ [ = () vy
Qx(9) R4 »(T) (Grip(2))
= / 6_1/’1’(“7)/ ' +e_vda:dv
R4 0

- (2m)¥?D(s) = / (y — ' z/2)* e Vdrdy A — partial.
Q

The limit relation follows from (10.3) and convexity of . q

Corollary 10.7 The mgf K(X) = pu(E) satisfies the asymptotic equality
K(\) ~ (T()T((d +3)/2)|By| /v/m) /74> lambda — 0.

Here |Ey| is the volume of the ellipsoid osculating D in the boundary point b and {\ = 7} is the

tangent plane in b.
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We may insert a flat function h into the density without harming the weak convergence, see
Section 9. It is also possible to replace Lebesgue measure by any measure p which is asymptot-
ically Lebesgue. This can be done by defining suitable partitions and showing that the change
in the integral is managable if one redefines the measure of the atoms of the partition without

changing the total mass of the atom.

Theorem 10.8 Let D be a rotund body in d + 1-dimensional euclidean space with d > 1. Let Z

be a random vector with distribution
dr = t*"Lhdp (10.5)

where t is a tent function on D, s a positive parameter, h a flat function and p a finite measure
which is asymptotically Lebesgue. Then Z lies in the domain of attraction of the stable exponential
family generated by the random wvector Wgin Theorem 10.1. Conversely any random vector Z

with conver domain D which is attracted to Wy has a distribution of the form (10.5).

10.3 Spherically symmetric distributions

Let 7 be a probability measure on the unit disk which is concentrated on a sequence of concentric
circles with radii r, — 1. Assume that « is uniformly distributed over each of these circles. Can
one choose the sequence r, so that 7 is in the domain of attraction of W;7

Let D be the unit ball in R¢ x R centered in ¢ = (0,1). Let ¢ denote the tent function
on D with top in ¢ and w = w(p) the angle in ¢ between the point p € D and (0,0). Then

y—1=(s—1)cos|w| and for |w| < 7/4 and 7 > 0
e_Tte_7'|W|2/2 < e TV < e—’rt/Qe—\wP/éI.
Let 4 = o x pp be a product measure on S?¢ x (0, 1] where o is the uniform distribution.

The map (w,s) — (y/Tw, 7s) maps p into a product measure u, on 1/75% x (0, 7]. Now suppose

pr = pr/c(T) = p vaguely. Then
e e Vdp, (€, y) — e PeVdp(z,y)  vaguely.

Suppose that
/6‘52/46‘?’/26107(5731) - /6_’”2/46_ydp(w,y)-
Then

eV esE/me=(=cost/ngp (¢ y) — eV dp(z,y)
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weakly for 7 — oo. The latter is equivalent to convergence o '(Z*) = W for A = (0,—7) and
W = f(V) where the vector V has distribution ce Ye *'/2dp for some ¢ > 0 and f(z,y) =
(z,y + x2/2) maps the half space y > 0 onto the paraboloid Q.

Convergence a;l(Z) = W for a vector Z on the unit ball with the symmetric probability
distribution corresponding to p is equivalent to convergence of the univariate exponential family
generated by the probability measure o on (0,1]. This is equivalent to regular variation of the

distribution function My(t) = p(0,¢] for ¢ — 0. See BKR [1999b].

Theorem 10.9 Let the random vector Z have the open unit ball D as convex domain. Suppose

that Z is spherically symmetric. Define

M(t)=P{|X||>1-t}  te€(0,1].
Let s > 0. The vector Z lies in the domain of attraction of Wy in Theorem 10.1 if and only if
M wvaries regularly in t = 0 with exponent s.

11 The Laplace distribution

The function

f=e"/c ¢ =220 (d) /T (d/2), T = ||z (11.1)

is a probability density on R%t!,
Proposition 11.1 For s > —(1 4+ d/2) the function
gs(w,y) = y'e” W+ /2) Jor @D (s + d/2 4 1)
is the density of a vector Wy on D = R% x (0,00) which generates a stable exponential family.
Proposition 11.2 The density f in (11.1) lies in the domain of attraction of the density go.
More generally one can show

Theorem 11.3 Let A be a rotund body in R which contains the origin and let r be the norm
function of the polar set A°. Let h be a flat function for the geometry associated with this norm
function. Let s +d/2 + 1 > 0. Then the vector Z with density f = he™"r® is attracted to the

vector Wy in Proposition 11.1.
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Proof It is not hard to see that vague convergence holds.

The norm function r is C? outside the origin and can be lifted to the tangent bundle 7' of
the set A°. Set ¢(b,w) =7(b+w)—1 for b+ w € Tj, b € OA°. Then continuity of ¢y, together
with @y (b,0) = I imply

b 1 1) —1
90( ,U)) = Tb(xaT)

1
— = —
x 2 t2 2y

wlw 2 x
for w = 0, x — 0, t — oo, all uniformly in b € JA°. We can now choose dg > 0 independent of
the boundary point b so that in coordinates (z,y) € R% x R such that b = (0, 1) and A° osculates
the unit sphere in b one has the inclusion A° C Ey on {y > 1 —6} where Ey = {27z/2+y? < 1}.
Then there exist 0 and d; in (0,1) so that

el 20y >0 = r(z) —y 2 aillzll 2= (z,9).
These bounds ensure that convergence of the densities holds in L!. q

For spherically symmetric distributions of the form e~ ?ldju(z) one has convergence in (1.1) if
and only if the function M (r) = u{||z|| < r} varies regularly. The proof is as for Theorem 10.9.
Nagaev and Zagraiev [1999] have treated the theory of the multivariate Laplace distribution
and its generalisations from a different angle. What happens if A approaches a fixed point on

the boundary of A?
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