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Abstract

Flavour observables impose strong constraints on models of new physics. In this thesis
we study whether right-handed currents can provide a realistic extension to the Stan-
dard Model. We analyse two complementary models, addressing right-handed currents
by a bottom-up and a top-down approach with a global and local SU(2)L × SU(2)R ×
U(1)B−L electroweak symmetry respectively. This setup leads to new flavour violating
interactions in the right-handed sector, which are governed by a right-handed mixing
matrix. We first consider an effective theory approach assuming a left-right symmetric
flavour group broken only by the Yukawa couplings, termed Right-Handed Minimal
Flavour Violation. We classify relevant interactions and study ∆F = 2 processes as
well as various rare decays, such as Bs,d → µ+µ−, B → {Xs, K,K

∗}νν̄ and K → πνν̄.
Emphasis is put on investigating correlations among observables, the structure of the
right-handed mixing matrix and resolving flavour anomalies of the Standard Model. In
particular, the |Vub| problem can be solved in this framework, but a tension between εK
and SψKS remains under the assumption of a large Sψφ. Secondly we study the Left-
Right Model. In this model heavy new particles, such as the gauge bosons WR and
heavy Higgs particles can provide new contributions to observables related to flavour
changing neutral currents. While the effects of the neutral and charged heavy Higgs
field are often neglected in the literature, we find that they have a significant impact
on ∆F = 2 processes and the decay B → Xsγ respectively. Subsequently, we per-
form a comprehensive numerical analysis, including all known experimental constraints
from tree-level decays, electroweak precision observables, ∆F = 2 observables related
to particle-antiparticle mixings and the decay B → Xsγ simultaneously. We observe
that there exist regions in parameter space in accordance with the all data and with a
mass of WR in reach of the Large Hadron Collider. An enhancement of Br(B → Xsγ)
relative to the Standard Model brings the value in better agreement with experiment.
In this model all flavour anomalies can be resolved except the |Vub| problem, precluded
mainly by an increased direct lower bound on the mass ofWR boson in conjunction with
constraints from flavour and electroweak precision observables. Furthermore, we have
analysed the general structure of the right-handed mixing matrix in detail. We also
present a new simplified parametrisation of the right-handed mixing matrix motivated
by resolving tensions present in flavour observables within the Standard Model. Finally,
a comparison to other new physics models is presented which helps to distinguish them
from our setups.

Zusammenfassung

Flavourobservablen liefern starke Einschränkungen für Modelle der neuen Physik. In
dieser Dissertation untersuchen wir, ob rechtshändige Ströme eine realistische Erweiter-
ung des Standardmodells darstellen können. Wir analysieren zwei komplementäre Mo-
delle, die rechtshändige Ströme einerseits durch einen „bottom-up“ Zugang, andererseits
durch einen „top-down“ Zugang mit einer globalen beziehungsweise lokalen SU(2)L ×
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SU(2)R × U(1)B−L elektroschwachen Symmetrie behandeln. Dieser Ansatz führt zu
neuen flavourverletzenden Wechselwirkungen im rechtshändigen Sektor, welcher durch
eine rechtshändige Mischungsmatrix bestimmt wird. Wir betrachten zunächst eine ef-
fektive Theorie, genannt rechtshändige minimale Flavourverletzung, unter der Annah-
me, dass eine links-rechts symmetrische Flavourgruppe nur durch die Yukawakopplun-
gen gebrochen wird. Wir klassifizieren relevante Wechselwirkungen und untersuchen
∆F = 2 Prozesse sowie verschiedene seltene Zerfälle, wie zum Beispiel Bs,d → µ+µ−,
B → {Xs, K,K

∗}νν̄ und K → πνν̄. Wir legen besonderen Wert auf Korrelationen zwi-
schen Observablen, die Struktur der rechtshändigen Mischungsmatrix und die Aufhe-
bung von Flavouranomalien des Standardmodells. Insbesondere kann in diesem Rahmen
das |Vub| gelöst werden, jedoch bleibt unter der Annahme eines großen Sψφ ein Kon-
flikt zwischen εK und SψKS bestehen. Als zweites untersuchen wir das Links-Rechts
Modell. In diesem Modell gibt es durch neue schwere Teilchen, wie das Eichboson WR

und schwere Higgsteilchen, neue Beiträge zu Observablen, die im Zusammenhang mit
flavourverletzenden neutralen Strömen stehen. Während in der bisherigen Literatur die
Effekte von neutralen beziehungsweise geladenen schweren Higgsfeldern oft vernach-
lässigt wurden, finden wir, dass diese erhebliche Auswirkungen auf ∆F = 2 Prozesse
beziehungsweise den Zerfall B → Xsγ haben. Anschließend machen wir eine umfas-
sende numerische Analyse, die alle bekannten experimentellen Einschränkungen von
„tree-level“ Zerfällen, elektroschwachen Präzisionsobservablen, ∆F = 2 Observablen,
die im Zusammenhang mit Teilchen-Antiteilchenmischungen und dem Zerfall B → Xsγ
stehen, gleichzeitig berücksichtigt. Wir beobachten, dass im Parameterraum Regionen
existieren, die mit allen Daten und einer Masse vonWR in Reichweite des LHC überein-
stimmen. Eine Erhöhung von Br(B → Xsγ) führt zu einer besseren Übereinstimmung
von theoretischem und experimentellem Wert im Vergleich zum Standardmodell. In die-
sem Modell können alle Flavouranomalien gelöst werden, außer dem |Vub| Problem. Jene
Lösung wird hauptsächlich durch eine erhöhte direkte untere Schranke für die Masse
von WR in Verbindung mit den Einschränkungen durch Flavour- und elektroschwa-
chen Präzisionobservablen verhindert. Außerdem haben wir die allgemeine Struktur
der rechtshändigen Mischungsmatrix im Detail analysiert. Wir präsentieren eine neue
vereinfachte Parametrisierung der rechtshändigen Mischungsmatrix, die sich dadurch
auszeichnet, dass Konflikte zwischen den Flavourobservablen des Standardmodells ge-
löst werden. Ein abschließender Vergleich zu anderen Modellen der neuen Physik grenzt
unsere Ansätze von diesen ab.
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1. Introduction

Over the last decades fundamental physics has focused on pushing our understanding
at the largest and smallest scales ever approached. At the smallest distances probed so
far, the Standard Model (SM) of elementary particles provides an astoundingly accu-
rate description of observed data. However, there are reasons to believe that the SM
is just an effective theory at low energy scales of a more fundamental framework. The
nature of physics beyond the Standard Model is an intriguing mystery, driving much
of current research in particle physics.

Already within the SM, various open questions centre around the Higgs boson, which
has not been observed yet. The Higgs mechanism is linked to the origin of masses and
the mechanism of electroweak symmetry breaking (EWSB), which are consequently not
yet fully understood. The Large Hadron Collider (LHC) is expected to shed light on
the existence of the SM Higgs by the end of this year. And indeed initial hints of the
Higgs might already be appearing.

On the other hand, motivations for an extension of the SM are manifold. On the theo-
retical side, the Higgs boson again plays a central role. Within the SM its mass obtains
quantum corrections of the order of the Planck scale, unnaturally large compared to
the scale of EWSB. This is usually referred to as the hierarchy problem and provides
strong hints that new physics (NP) must appear at the TeV scale. In addition the SM
lacks an explanation for the hierarchical pattern of masses and mixings. However, this
issue is not as fundamental as the gauge hierarchy problem since these patterns are
stable under quantum corrections. On the experimental side, we have evidence for the
existence of dark matter and neutrino masses, also not explained within the SM.

While these are well known problems, we want to concentrate in the following on the
hints for NP indicated by the flavour sector. The origin of flavour and flavour mixing is
still not understood. Additionally, the meticulous study of flavour data has revealed the
existence of a few anomalies and tensions within the SM picture of flavour. These give
strong hints that new sources of CP violation apart from those in the SM are needed.
Note that the consideration of the current baryon asymmetry of the universe leads to
the same conclusion. Moreover, the examination of models with generic flavour struc-
ture has shown that large new sources of flavour symmetry breaking beyond the SM
are already excluded at the TeV scale [1]. Hence, the flavour structure of NP models
cannot be arbitrary, but must follow a specific pattern. Attempts to classify such pat-
terns have been made in terms of considering flavour symmetries. For example, in the
Minimal Flavour Violation (MFV) principle [2–6] all flavour violation in the NP model
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1 Introduction

is governed by the SM Yukawa couplings. In a much older idea, the Froggatt-Nielsen
mechanism [7], flavour mixing is characterised by a spontaneously broken flavour sym-
metry. This not only constrains the flavour structure, but also explains the hierarchies
in the SM Yukawa couplings. Generally, for any NP model, constraints from flavour ob-
servables have to be considered seriously in order to ensure consistency with experiment.

Let us take a closer look at the SM picture of flavour. Parity is maximally broken at
low energy scales and flavour violation at the tree-level takes place entirely through
left-handed (LH) charged currents. This picture is compactly described by the CKM
matrix [8, 9]. Its unitarity is an important ingredient for the GIM mechanism [10],
which turns out to be a powerful protection mechanism with immediate consequences
on the pattern of flavour changing neutral current (FCNC) processes. We can extract
two lessons from the flavour structure of the SM. Firstly, the loop suppression of FC-
NCs within the SM makes them an excellent tool to examine whether NP enters in such
processes. This can be analysed by the study of low-energy observables, providing an
alternative to high energy searches for new particles. Secondly, one could ask whether
parity is restored as a symmetry at high energy scales. This would imply the inclusion
of the SU(2)R symmetry.

In the past years, it has turned out that an additional SU(2)R symmetry is an attractive
ingredient for a model beyond the SM. This is mainly because the SU(2)L × SU(2)R
symmetry provides a custodial symmetry for the NP framework, constraining param-
eters like the mass ratio of the W - and the Z-boson masses and helping to keep elec-
troweak precision (EWP) observables consistent with the experiment [11, 12]. One
example of such a model is the Randall Sundrum model with custodial protection
(RSc) [13–19]. In this model, a warped extra dimension solves the hierarchy problem
and can also naturally generate the hierarchies of fermion masses and mixings [20,21].
A similar class of models are the so called Higgsless models [22–27], where the EWSB
is also induced by boundary conditions.

There also exist left-right (LR) symmetric models, which implement RH currents only
by extending the SM by the SU(2)R gauge symmetry. First studied more than 35
years ago [28–32], their two simplest forms of appearance are the so called “manifest”
scenario [32] and the “pseudo-manifest” scenario [33–35]. Each of them is characterised
by special assumptions about new CP violating phases and is either ruled out or con-
strained to have large mass scales for the new heavy particles. Recent studies allow
for a more general structure with respect to CP violation [36, 37] while requiring a
full restoration of parity at high scale. Most of these previous studies concentrate on
finding lower bounds on the masses of new heavy gauge bosons, appearing within this
framework due to the additional SU(2)R symmetry. Constraints from flavour observ-
ables are usually considered separately. Furthermore, there is a lack of studies taking
into account the most recent collider bounds. A few papers make attempts to analyse
details of the underlying flavour structure in the RH sector [38, 39], which is charac-
terised in this class of models by an additional RH mixing matrix in contrast to the

2



1 Introduction

LH counterpart, the CKM matrix. However, these proposals are ad hoc or already
experimentally disfavoured. In order to investigate if this class of LR models still pro-
vides an attractive NP framework in the decade of the LHC, we need an improved
and comprehensive analysis. Such a study is particularly attractive since high energy
experiments at the LHC, ATLAS and CMS, have the potential to discover the heavy
gauge bosons. First studies for the early LHC data can be found in [40,41]. Finally, it
is worth mentioning that in the LR symmetric setup one can naturally implement the
see-saw mechanism to generate neutrino masses [42, 43].

A very different approach was taken by the authors of [44–46], who analyse RH cur-
rents from a flavour point of view. It was shown that in the presence of RH currents
it is possible to resolve the |Vub| problem describing the tension between inclusive and
exclusive determinations of the |Vub| element of the CKM matrix. This conclusion is al-
ready apparent when considering a basic effective field theory (EFT) approach [45,46].
However, in order to describe a realistic model, constraints from all flavour observables
have to be taken into account. An effective protection mechanism for FCNCs induced
by higher dimensional operators is mandatory in this case. Solely a consideration of
the elements |Vub| and |Vcb| as done by the authors of [45,46] is insufficient.

Previous attempts to analyse the possibility of RH currents clearly require an improved
and updated analysis to check whether RH currents provide a sensible extension of the
SM in accordance with all data. In this thesis, we will take a two-sided approach
to this issue with emphasis on the well-measured FCNC observables, such as from
particle-antiparticle mixing and rare decays. New experimental input from flavour pre-
cision experiments are expected soon from the LHCb experiment, and also from future
B-factories such as SuperB. In particular, we consider the following two models:

The first approach we follow is a bottom-up approach, which we call Right-Handed
Minimal Flavour Violation. Right-handed currents are incorporated through an effec-
tive theory approach under consideration of an extended MFV principle, which helps to
protect the model against FCNCs automatically. Additionally, our studies go beyond
the discussion of the |Vub| problem by considering various known tensions in SM flavour
observables. To this end we analyse flavour observables, their constraints and corre-
lations, and are able to make predictions for some of them. In particular we deduce
the full RH mixing matrix, discuss its impact on ∆F = 2 observables and various rare
decays. This part of the thesis is based on [47,48].

Subsequently, we discuss a top-down approach, the Left-Right Model. This model
emerges from the concept of left-right symmetric models including all input parame-
ters without simplifying assumptions. We allow for a breaking of parity in order to
adopt a more general framework. Instead of focusing our analysis on lower bounds
on the masses of heavy gauge bosons, we perform a full and simultaneous analysis of
flavour observables, in particular ∆F = 2 observables and the decay B → Xsγ, under
incorporation of all existing experimental constraints. We ask if these constraints can
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1 Introduction

be satisfied while keeping new heavy particles within the reach of the LHC. We also fo-
cus on a very general study of the RH mixing matrix and corresponding flavour effects.
The question of flavour anomalies is also addressed in this context. These studies were
published by us in [49].

The goals of this thesis can be summarised in the following questions:

• Do RH currents provide a realistic extension of the SM?

• Do they solve the existing tensions between flavour observables in the SM while
satisfying all the existing bounds? In particular, can the new CP-violating phases
cure the existing SM anomalies in CP-violating observables? And, can the |Vub|
problem be solved?

• Can the new RH effects reach present experimental bounds?

• How far do the two approaches we follow overlap? Does the same RH mixing
structure appear in both models?

• What is the structure of the RH mixing matrix?

We address these questions throughout the thesis, and summarise the answers at the
end.

4



1 Introduction

Outline

The present thesis is organised as follows. Chapter 2 is dedicated to the effective theory
approach, called Right-Handed Minimal Flavour Violation. After a short introduction
to recent anomalies, providing a main motivation of this setup and necessary basics, we
give an extensive description of the model. To this end we consider in detail the particle
content and the flavour symmetry. Subsequently we classify all relevant dimension-six
operators and study the RH mixing matrix in detail. In this context we also show
how the |Vub| problem can be solved. In chapter 3, we introduce the second model
for RH currents considered in this thesis, termed the Left-Right Model. We briefly
discuss the basic setup and explain in detail all relevant constraints from tree-level
decays and electroweak precision observables necessary for a flavour analysis of the
model. In chapter 4, we give a brief general overview of flavour observables for both
∆F = 2 processes and rare decays. In particular, we introduce the general operator
basis for the effective Hamiltonians and show a collection of general formulae, which
allow for an efficient derivation of ∆F = 2 observables. Furthermore, we review the
present experimental status and compare the experimental values to those predicted in
the SM. In chapter 5, we study the flavour phenomenology of Right-Handed Minimal
Flavour Violation. First we focus on ∆F = 2 observables. We derive Wilson coefficients
and renormalisation group effects and study the impact on meson anti-meson mixing.
In particular we investigate the question whether anomalies occurring within the SM
can be resolved. In the case of ∆F = 1 observables, we restrict our considerations to
the decays Bs,d → µ+µ−, B → {Xs, K,K

∗}νν̄, and K → πνν̄. In chapter 6, we take a
closer look at the flavour phenomenology of the Left-Right Model. Following the general
procedure we determine Wilson coefficients and renormalisation group effects in order
to obtain the NP contributions to ∆F = 2 observables. Moreover, we consider the decay
B → Xsγ for the model in question. We also study in detail the impact of the heavy
Higgs fields for both ∆F = 2 processes and B → Xsγ. We continue by describing the
numerical strategy, specifying the parameter scan and the constraints imposed. Then
we present an extensive discussion of our numerical results considering the RH mixing
matrix, correlations among various observables and the |Vub| problem. We end the
chapter with a new proposal for a simplified parametrisation of the RH mixing matrix,
which would be able to resolve the anomalies of flavour observables existing in the
SM. Chapter 7 is devoted to a comparison between the two models considered in this
thesis. We also include additional comparisons to a two Higgs doublet model and the
Randall Sundrum model with custodial protection. Such studies will help to distinguish
between different NP models, once improved flavour data become available. Finally,
in chapter 8 we conclude by summarising our results. Some additional information
about the Left-Right Model, such as details about the Higgs sector, the gauge sector,
a parameter counting and a comprehensive set of Feynman rules, are relegated to the
appendices.
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2. Right-handed currents:
An effective field theory
approach

This chapter is dedicated to the bottom-up approach to RH currents. This study is
motivated by various recent flavour anomalies, in particular the |Vub| problem, which
might be addressed by RH currents. In an effective field theory framework we first
examine the structure of relevant dimension-six operators respecting a left-right flavour
symmetry broken only by the Yukawa couplings. A new mixing matrix appears in the
RH sector. One of the main goals of this chapter is a detailed determination of this
matrix. We begin this chapter with a very brief overview of recent anomalies in the
flavour data. Furthermore, we introduce necessary basic principles such as the concepts
of effective field theory and Minimal Flavour Violation.

2.1. Preliminaries

2.1.1. Recent SM anomalies in the flavour sector

The study of flavour observables reveals anomalies and tensions in the SM. Many of
these anomalies lie in the (2–3) σ region, so that for a clear confirmation of physics
beyond the SM higher statistics will be necessary. Yet, they can provide information
about where possible discrepancies with respect to the SM can appear. In this sec-
tion we give a short summary of the recent phenomenological anomalies following the
discussions of [50–55], where further information can be found. We restrict our consid-
erations to issues relevant for our analysis.

The enhanced value of Sψφ - First we mention the possibility of a large enhance-
ment over the SM value in CP violating observables in B0

s − B̄0
s mixing, in particular in

the time-dependent mixing-induced CP asymmetry Sψφ of the decay Bs → ψφ. While
the corresponding SM value is expected to be very small, roughly SSM

ψφ ' 0.038 de-
pendent on the choice of input parameters, this topic has attracted a lot of attention
in the last years mainly induced by the direct measurement by CDF [56] and D0 [57]
providing Sψφ = 0.81+0.12

−0.32 [58]. This hope was softened when higher statistics became
available [53, 59, 60]. Still a value of Sψφ above 0.5 was not yet excluded [52]. Again
new data from the Tevatron published in spring 2011, combined with the results from
the measurement of the same sign dimuon asymmetry of the D0 experiment, allowed a
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2 Right-handed currents: An effective field theory approach

larger value of Sψφ ≈ 0.8 [61–63]. Consequently, at present the situation is quite con-
fusing. Recent measurements by CDF and D0 [64,65] and the first even more accurate
results of LHCb [66] imply significantly lower values, in particular [67]

−0.1 ≤ Sψφ ≤ 0.4 , (2.1)

being in accordance with the SM expectation. There is still room for NP, which can
enter in Sψφ through new CP violating phases. We hope that in the future further
precision data will help to clarify the situation.

Since during the considerations of the first model proposed in this thesis, a large Sψφ
was still favoured we explored mainly this possibility, while in the second model con-
sidered here the analysis is much more general. In particular in the second approach
we do not make use of Sψφ as an input, rather we obtain a prediction which can be
compared to the data.

The εK − SψKS
anomaly - Next, we discuss the so called εK anomaly [68, 69]. It

describes the fact that the value of |εK | given by the data deviates from the SM pre-
diction, determined from the measured values of its components, e.g. from sin(2β), the
ratio ∆Md/∆Ms and the value of |Vcb|. After an update of input parameters from non-
perturbative factors of unquenched lattice calculations [70], a suppression factor includ-
ing the latest long-distance effects and departure of the phase φε from π/4 [71] and fi-
nally NNLO-QCD effects [72], the updated SM value reads |εK |SM = (1.81±0.28)×10−3

[73]. On the contrary, the experimental result is given by |εK |exp = (2.229±0.010)×10−3

[74].

The above stated εK problem is closely linked with the εK − SψKS tension of the
SM [68,75,76]. As in the SM the CP asymmetry in the decay Bd → ψKS SψKS is equal
to sin(2β), one finds that in the SM |εK | and SψKS cannot simultaneously agree with
the experimental data. The sin(2β) tension of the CKM fit is also confirmed by both
the UTfit group [77] and the CKMfitter group [78]. They find a 2σ tension, where the
unitarity triangle fit of sin(2β) is generally larger than the one extracted from experi-
ment Sexp

ψKS
= 0.672± 0.023 [79].

Possible impact of new CP violating phases - New physics can enter through
new CP violating phases and modify both the relations for SψKS and Sψφ, in particular

SψKS(Bd) = sin(2β + 2ϕBd) , Sψφ(Bs) = sin(2|βs| − 2ϕBs) , (2.2)

where ϕBd and ϕBs represent the NP phases and β and βs can be extracted from el-
ements of the CKM matrix (see section 4.2.2 for a detailed definition), and hence are
governed by the CKM phase γ responsible for CP violation within the SM. Undoubt-
edly, new sources of CP violation play a crucial role when we want to explain deviations
from the SM expectation in these observables. Furthermore, requiring that SM tensions
become softened implies that we can obtain information about the possible structure
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2 Right-handed currents: An effective field theory approach

of NP. Considering as an example the εK − SψKS anomaly, a negative phase ϕBd turns
out to be favourable, so that the true sin(2β) is larger implying a higher value for
|εK | [68,75]. It should be stressed that in this example in principle NP could also enter
in |εK |. This situation will become more clear once more precise data on the CKM
matrix, in particular the values of γ, |Vub| and |Vcb| [68, 69], will be available. These
will be improved by LHCb and also Belle II and SuperB. As we will see later, for RH
currents this |Vub| dependence is of particular interest.

The |Vub| problem - For completeness we want to mention briefly that within the
SM framework different measurements of |Vub|, in particular from inclusive decays and
exclusive decays cannot be explained. Right-handed currents can potentially cure this
problem [44–46], representing one of the main motivations of our analyses in this thesis.
The |Vub| problem will be discussed in detail below.

2.1.2. Effective field theory

Our first model makes use of an effective theory approach, where the NP can be de-
scribed by an effective Lagrangian with the SM as the low-energy EFT. The goal of
this section is rather to clarify the notation for our further considerations than giving
an introduction to EFT methods.

In general an effective field theory is characterised by an effective cut-off scale Λ below
which the theory provides a good description. For low energy physics it turns out to be
sufficient to consider only light degrees of freedom below the cut-off scale. The effects
of the heavier degrees of freedom can be efficiently described by means of an effective
Lagrangian

Leff = LSM +
∑ ci

Λn−4
O

(n)
i , (2.3)

whereO(n)
i are dimension-n effective operators and ci are dimensionless coefficients. The

details of the underlying interactions at higher scales are then hidden in the coupling
coefficients ci. It turns out that only dimension-six operators are relevant for the
discussion of FCNCs, and we will restrict to these in the following.

2.1.3. Minimal Flavour Violation

As stated above, a generic flavour structure is excluded at the TeV scale [1]. One pos-
sibility to keep the pattern of FCNCs under control is to make use of Minimal Flavour
Violation (MFV) principle. As we will consider a modified mechanism of MFV in the
first part of this thesis, let us briefly summarise the main points of the original MFV
idea, following [2]. Since we are interested in quark flavour-changing dynamics, we will
concentrate only on the quark flavour symmetry.

The SM gauge group commutes with the following global quark flavour symmetry

SU(3)3
q = SU(3)QL ⊗ SU(3)UR ⊗ SU(3)DR , (2.4)
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2 Right-handed currents: An effective field theory approach

This global symmetry is already explicitly broken in the full SM Lagrangian by the
Yukawa interactions. The full flavour invariance can in principle be formally recovered
by the introduction of the two spurions

Yu ∼ (3, 3̄, 1)SU(3)3q
, Yd ∼ (3, 1, 3̄)SU(3)3q

, (2.5)

where the transformation properties are given with respect to equation (2.4). These
spurions encode then the full information about the SM flavour symmetry breaking.
Using an EFT approach in order to describe a NP model, the higher dimensional op-
erators can be written in terms of flavour invariant combinations of these spurions and
SM fields. The implementation of no further sources of flavour symmetry breaking
allows to naturally suppress the dangerous appearance of FCNCs effectively and is
independent of the specific structure of the NP model. In MFV the CKM matrix is
the only source of flavour violation. In the original setup no additional flavour blind
phases were included, hence CP violation was also entirely described by the CKM phase.

Recent studies often include such new flavour-blind CP-violating phases [80–82], which
are not contradictory to the original MFV principle. This is especially due to the fact
that without new sources of CP violation one can immediately conclude that Sψφ is
expected to be SM like and consequently if large Sψφ was confirmed by higher statistics
then MFV models would be automatically excluded.

Note that the MFV approach is not to be confused with the constrained MFV version
[5,6], where in contrast to the MFV approach the contributing operators are restricted
to the ones already present in the SM.

2.2. Right-Handed Minimal Flavour Violation setup

2.2.1. Symmetry and particle content

In this section we describe the details of the model which is the focus of this chapter.
In Right-Handed Minimal Flavour Violation (RHMFV) introduced by us in [47], we
consider an effective theory approach in the spirit of [2]. However we generalise MFV
by including right-handed currents. The SM with its different treatment of left- and
right-handed currents appears after symmetry breaking as a low-energy limit of a more
fundamental theory which is assumed to be left-right symmetric. The main assumption
is then made by choosing a left-right symmetric flavour symmetry SU(3)L × SU(3)R
which is broken just by the Yukawas, similar to the MFV case. In this approach the
fundamental theory is not specified, and we only make assumptions about the global
symmetry and the pattern of its breaking. In order to obtain the minimal model, the
SM gauge group is embedded into a global SU(2)L × SU(2)R × U(1)B−L group, which
we call the electroweak symmetry. Only the SU(2)L and U(1)Y subgroups are effec-
tively gauged below the TeV scale. Let us stress that the global electroweak symmetry
might stem from a local gauge group, but for our EFT approach there is no need to
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2 Right-handed currents: An effective field theory approach

make additional specifications.

In figure 2.1 we compare our model with respect to MFV. RHMFV is clearly beyond
MFV if considered in comparison to the SU(3)3

q quark flavour symmetry of MFV as
given in (2.4). This is because the extended flavour group of RHMFV allows for a
bigger set of operators. These contribute to flavour violating processes as discussed
in detail below. However since the LR symmetric flavour group is only broken by the
Yukawas RHMFV is in analogy with the MFV framework.

Figure 2.1.: A schematic depiction of RHMFV.

Let us now take a closer look at the field content of the RHMFV model.

Quark fields The quark fields,

Qi
L =

(
uiL
diL

)
∼ (2, 1)1/3 , Qi

R =

(
uiR
diR

)
∼ (1, 2)1/3 , i = 1 . . . 3 , (2.6)

given here with their transformation properties under the electroweak symmetry, form
three LH and RH doublets with generation index i. The SM hypercharge is then given
by Y = T3R + (B − L)/2. In principle, leptons, including RH neutrinos, can be in-
troduced in an analogous way (with assigning the B − L charge to be B − L = −1).
However, we restrict our analysis to the quark case, since the mass of the RH neutrinos
is large enough to not contribute to the processes analysed below.

The Higgs field The electroweak symmetry breaking is achieved by the vacuum ex-
pectation value of a SM-like Higgs field, in particular,

H ∼ (2, 2̄)0 , 〈H〉 =

(
v 0
0 v

)
, (2.7)
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2 Right-handed currents: An effective field theory approach

which breaks SU(2)L×SU(2)R spontaneously down to the custodial symmetry SU(2)L+R

at the electroweak scale. Such a simple scalar structure is chosen as we want to stay
within a minimal model. Note that main parts of the following analysis can also be
applied to models with a more complicated Higgs sector or even Higgless models, when
the electroweak symmetry has the SU(2)L × SU(2)R → SU(2)L+R breaking pattern.
For example, such an extended Higgs sector is required in explicit left-right models. In
the Higgless case, following the arguments in [83], the Higgs field H can be re-written
as a product of the real part including the VEV v and a unitary matrix U encoding
the Goldstone bosons.

Gauge bosons Our effective model contains only the SM electroweak gauge bosons
W and Z. We introduce the kinetic term

Lkin
Higgs =

1

4
Tr[(DµH)†DµH] , (2.8)

where the covariant derivative reads DµH = ∂µH − igW a
µTaH + ig′HT3Bµ. The stan-

dard tree-level expressions for the W and Z masses are recovered for v ≈ 246 GeV.

Note that we have adopted the convention for the normalisation of the Higgs field
which is usually used in composite Higgs models. The Higgs field appears then in the
following form

H =
√

2

(
φ0? φ+

−φ− φ0

)
. (2.9)

Although we will not use this explicit form when considering RHMFV, it should help
to clarify the notation when considering an explicit left-right model.1

In summary, we only have SM fields with a single effective light Higgs. Heavy fields do
not appear explicitly but affect higher dimensional operators.

2.2.2. Yukawa couplings and flavour invariance

In addition to the above started particles, two spurions

Pu(d) ∼ (1, 3)0 (2.10)

are required in order to generate different masses for up- and down-type quarks and
break the custodial SU(2)L+R symmetry. Their background values are given by

Pu =

(
1 0
0 0

)
, Pd =

(
0 0
0 1

)
. (2.11)

1This convention differs from the one chosen in the explicit left-right model in the second part of this
thesis.
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Under the electroweak symmetry we obtain the following invariant quark Yukawa cou-
pling

LY =
1√
2

(
Q̄LYuHPuQR + Q̄LYdHPdQR

)
+ h.c. . (2.12)

LY is equivalent to the SM Yukawa coupling taking into account the structure of Pu
and Pd. Finally, we assume an additional U(1) symmetry, under which Yu and Yd have
different charges, and Pu and Pd have the corresponding opposite charges.

So far we have not discussed the quark flavour symmetry. Under the left-right sym-
metric flavour symmetry SU(3)L × SU(3)R the quarks form triplets according to the
following transformation properties

QL → fLQL with fL ∈ SU(3)L ,

QR → fRQR with fR ∈ SU(3)R . (2.13)

SU(3)L×SU(3)R becomes an exact global symmetry of the full Lagrangian in the limit
of Yu(d) → 0. The flavour invariance can be formally recovered by introducing spurions
for Yu(d), both transforming as (3, 3̄) under SU(3)L × SU(3)R:

Yu(d) → fL Yu(d) f
†
R . (2.14)

As QL and QR can be rotated in flavour space, it is always possible to choose a basis
where one of the Yukawa couplings is diagonal. Furthermore this diagonal matrix can
be made real by rotation of the relative phases of the quark fields. We obtain for a
diagonal Yd

Yd
∣∣
d−base

= λd , λd =

√
2

v
diag(md,ms,mb) ≡ diag(yd, ys, yb) ,

Yu
∣∣
d−base

= V †λuṼ , λu =

√
2

v
diag(mu,mc,mt) ≡ diag(yu, yc, yt) , (2.15)

where V and Ṽ are both unitary and complex 3× 3 mixing matrices. While V denotes
the CKMmatrix as usual, an additional matrix Ṽ appears controlling the flavour mixing
in the RH sector. A detailed analysis of Ṽ will be deferred to section 2.4. After setting
the Higgs to its VEV the mass terms are generated

Lmass
Y =

v√
2
ūLV

†λuṼ uR +
v√
2
d̄LλddR + h.c. (2.16)

In this basis in the down sector the mass term is already diagonal, and hence

dL → d′L = dL , dR → d′R = dR , (2.17)

in the up sector the following diagonalisation is necessary:

uL → u′L = V uL , uR → u′R = Ṽ uR . (2.18)

The quark mass eigenstates are denoted by the primed fields. The quark mass matrices
are given by Mu = vλu and Md = vλd.
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2 Right-handed currents: An effective field theory approach

2.3. The impact of dimension-six operators

2.3.1. Yukawa insertions

We proceed by building the effective Lagrangian as described in section 2.1.2. For this
purpose all dimension-six operators formally invariant under the LR symmetric flavour
group have to be constructed. In this manner, the so called Yukawa insertions emerge.
The Yukawa insertions encode the flavour dynamics of the high scale. Due to this
specific parametrisation, the flavour symmetry breaking can only take place through
sources already inherent in the Yukawas. For example under the SU(3)L × SU(3)R
flavour group the up-insertions transform according to YuY †u ∼ (8, 1) and Y †uYu ∼ (1, 8).
These insertions can be evaluated in our basis where the down Yukawa is already
diagonal. We obtain

(YuY
†
u )i 6=j

∣∣
d−base

= (V †λ2
uV )ij ≈ y2

t V
∗

3iV3j , (2.19)

(Y †uYu)i 6=j
∣∣
d−base

= (Ṽ †λ2
uṼ )ij ≈ y2

t Ṽ
∗

3iṼ3j . (2.20)

In the last step it has been used that only the top quark has a large Yukawa coupling,
hence λu ≈ diag(0, 0, yt). For the same reason down-insertions give rise to a very small
effect and will be neglected in the following.

2.3.2. Collection of bilinears

In order to study the relevance of possible dimension-six operators, we first collect all
quark bilinear currents compatible with the LR symmetric flavour symmetry. It is
sufficient to consider terms with at most two spurions. Denoting the Dirac structure
by Γ, the bilinears are given by

O(Y 0) : Q̄LΓQL , Q̄RΓQR , (2.21)
O(Y 1) : Q̄LΓYuPuQR , Q̄LΓYdPdQR , (2.22)
O(Y 2) : Q̄LΓYuY

†
uQL , Q̄RΓY †uYuQR . (2.23)

Note that we already neglected the down-insertions YdY †d and Y †d Yd as stated before.
Most of these bilinear structures are already known from the MFV framework [2]. For
example the Q̄RΓYuY

†
uQR bilinear will appear in LH mediated FCNCs. The new effects

arise mainly from two bilinears:

1. Q̄RΓQR with its charged-current component

2. Q̄RΓY †uYuQR with its neutral-current component

In the second case the Yukawa insertion Y †uYu characterises the strength of RH mediated
FCNCs and contains elements of a new RH mixing matrix Ṽ . We will focus within this
thesis on the effects of these bilinears.
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2.3.3. Charged current operators

We first investigate the list of operators which affect charged currents and will help us
to probe the rotation in the RH sector. We restrict our discussion to operators involving
two quark fields as only these will be relevant for our phenomenology of right-handed
charged currents. They are given by

O
(6)
R`1

= Q̄Rγ
µτiQR L̄Lγµτ

iLL ,

O
(6)
Rh1

= iQ̄Rγ
µH†DµHQR , O

(6)
Rh2

= iQ̄Rγ
µτiQR Tr

(
H†DµHτ

i
)
, (2.24)

where τi are the Pauli matrices. Specifically it turns out that for our analysis lepton-
quark charged currents play the leading role. In this case all three operators of equation
(2.24) are equally important. We do not consider RH neutrinos under the assumption
that they are heavy.

In principle, one also has to take into account analogous operators formed from the
bilinears of equations (2.22)–(2.23). These however can safely be neglected due to
the smallness of the Yukawa couplings as long as only up-type quarks of the first two
generations contribute to the decay processes analysed below.

2.3.4. ∆F = 2 operators

We now turn to dimension-six operators which contribute to ∆F = 2 processes such
as particle-antiparticle mixing. Here we just list the relevant operators, a detailed
discussion of the phenomenology can be found in chapter 5. Using the bilinears of
equations (2.22)–(2.23) various combinations can be found which contribute. However
as we only want to extract the pattern of the flavour phenomenology of the model, a
detailed analysis of all possible operators is beyond the scope of this work. Instead,
in order to keep both the notation and structure minimal, we restrict ourselves to the
operators giving the main contributions. The list of operators then reads

O
(6)
LL = [Q̄i

L(YuY
†
u )ijγµQ

j
L]2 , (2.25)

O
(6)
RR = [Q̄i

R(Y †uYu)ijγµQ
j
R]2 , (2.26)

O
(6)
LR = [Q̄i

L(YuY
†
u )ijγ

µQj
L][Q̄i

R(Y †uYu)ijγµQ
j
R] . (2.27)

The first operator and its effects are well known from both MFV [2] and its constrained
version [5]. From equation (2.19) one can immediately see that the CKM pre-factor is
analogous to the ∆F = 2 contribution in the SM. Moreover, the helicity structure is
also in accordance with the SM. Consequently, O(6)

LL will not lead to modifications in
CP violating observables with respect to the SM. On the contrary, interesting effects
are expected from O

(6)
RR and O(6)

LR, not only though the input of the RH mixing matrix
but also due to the LR structure which is known to renormalise strongly under renor-
malisation group effects.

Guided by these expectations, we will concentrate on the latter two operators in our
further analysis of ∆F = 2 processes.
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2.3.5. ∆F = 1 operators

As before, among ∆F = 1 operators, we focus on the leading contributions to ∆F = 1
operators. These are given by the following operators

O
(6)
RZ1

= iQ̄i
R(Y †uYu)ijγ

µH†DµHQ
j
R ,

O
(6)
RZ2

= iQ̄i
R(Y †uYu)ijγ

µτiQ
j
R Tr

(
H†DµHτ

i
)
. (2.28)

In addition the corresponding LH operators can also be present, obtained through the
replacements QR → QL and Yu ↔ Y †u from equation (2.28). These have been studied
widely within the MFV framework. The new operators give rise to effective right-
handed flavour non-universal couplings of the Z boson to down-type quarks. These
affect Z → bb̄ and rare K and B decays. We postpone a detailed analysis to chapter 5.

So far we have concentrated on operators with two quarks and two Higgs fields. In
principle, operators with two quarks and two lepton fields also have to be included.
However, they will not lead to new effects compared to equation (2.28) after the Z bo-
son has been integrated out. We will demonstrate this with an example of the effective
quark-lepton charged current below. There is also a third class of dipole-type operators
with two quarks and one SM gauge field which we do not consider further in this thesis.

In summary, we will restrict ourselves to the analysis of the operators collected in
equation (2.28).

2.4. The right-handed mixing matrix

2.4.1. The parametrisation

As stated in section 2.2.2 the matrix Ṽ appears due to misalignment between the
Yukawas in the up- and down-type sector and controls the RH flavour mixing. Let us
now review in detail how this matrix can be determined. We start with its parametri-
sation, which can be chosen as

Ṽ = DU Ṽ0D
†
D , (2.29)

where Ṽ0 is a CKM like matrix and DU,D are two diagonal matrices, in particular

DU = diag(1, eiφ
u
2 , eiφ

u
3 ) , DD = diag(eiφ

d
1 , eiφ

d
2 , eiφ

d
3) . (2.30)

These phases are physical since we have used the freedom to rotate phases of quark
fields in order to get rid of unphysical phases in the CKM matrix. In Ṽ0 we shift
the phase from 1–3 mixing to 2–3 mixing as we will assume small phases except the
phase for Ṽub. This will become more clear when we analyse the bounds from b → u
transitions in the next section. Then Ṽ0 reads

Ṽ0 =

 c̃12c̃13 s̃12c̃13 s̃13

−s̃12c̃23 − c̃12s̃23s̃13e
−iφ c̃12c̃23 − s̃12s̃23s̃13e

−iφ s̃23c̃13e
−iφ

−c̃12c̃23s̃13 + s̃12s̃23e
iφ −s̃12c̃23s̃13 − s̃23c̃12e

iφ c̃23c̃13

 . (2.31)
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In total, the RH mixing matrix Ṽ altogether contains three new real mixing angles and
six new complex phases. It is restricted by various bounds, in particular from charged
current data, unitarity and FCNC phenomenology, which we discuss in detail.

2.4.2. Bounds from charged currents

Using data on tree-level charged current transitions, we can set bounds on elements
of the RH mixing matrix Ṽ0. In this section we investigate various tree-level decays
based on quark-lepton charged currents, which allow us to extract these bounds in the
cleanest way. The related impact on the CKM matrix V will also be discussed.

The effective quark-lepton charged current

With the operators defined in equation (2.24) we can derive the effective coupling of
the RH current. After the breaking of the electroweak symmetry the operators O(6)

Rhi

contribute via tree-level diagrams with internal W boson exchange. Evaluating O(6)
R`1

is straightforward. Integrating out the W boson and summing over all contributions
leads to an effective RH coupling: cR = −2(cRh1 + 2cRh2 − cR`1). The resulting effective
quark-lepton charged current interaction can be written as

Lc.c.eff =

(
− g2

2M2
W

+
cL
Λ2

)
ūLγ

µdL ¯̀
LγµνL +

cR
Λ2

ūRγ
µdR ¯̀

LγµνL + h.c. . (2.32)

The coefficient cL parametrises the modification of the LH interaction obtained from
equation (2.24) with the replacement QR → QL. The SM result is then recovered in
the limit cL = cR = 0.

We proceed by performing the rotation to mass eigenstates of the quark fields by using
equations (2.17) and (2.18) and additionally omit the prime indices in order to keep a
simple notation. The result reads

Lc.c.eff = −4GF√
2
ūγµ

[
(1 + εL)V PL + εRṼ PR

]
d (¯̀

LγµνL) + h.c. (2.33)

where
PL =

1− γ5

2
, PR =

1 + γ5

2
, (2.34)

are the left and right projection operators and

εR = −cRv
2

2Λ2
=
v2

Λ2
(cRh1 + 2cRh2 − cR`1) , εL = −cLv

2

2Λ2
(2.35)

are the effective couplings, which will be important for the analysis of this section. At
this stage we should stress that elements of Ṽ and εR appear always in combination.
As a result it is impossible to disentangle the sign and phase of εR and Ṽub, hence we
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2 Right-handed currents: An effective field theory approach

define εR to be real and positive.

Strategy for determination of the effective CKM elements

From the effective charged current Lagrangian (2.33) the branching ratios for the decays
in question can be derived. The left and right operators in Lc.c.eff do not mix through
renormalisation group effects as QED and QCD both respect chiral symmetry. Hence
they can be multiplicatively renormalised in the same way and radiative corrections
can be implemented straightforwardly using SM results.

We do not compare directly the branching ratios with the experimental value to extract
the bounds on the elements of Ṽ0 and V . Instead we make use of the CKM element
extracted from the comparison of the SM result and the experimental value defined as
|Vij|exp

SM . We compare this CKM element to our effective combination including the RH
current contribution. This allows us to find the “true” values of the elements of Ṽ0 and
V in an elegant way.

Bounds from u→ d and u→ s transitions

We start by describing the bounds on |Vud| making use of the constraints from super-
allowed (0+ → 0+) nuclear beta decays and by the pion decay π → eν [74]:

|Vud(0+ → 0+)|exp
SM = 0.97425(022) , (2.36)

|Vud(π → eν)|exp
SM = 0.97410(260) . (2.37)

While super-allowed nuclear beta decays are only sensitive to the u→ d vector current,
the pion decay is solely dependent on the u → d axial current. This implies that we
can immediately impose the following conditions∣∣∣(1 + εL)Vud + εRṼud

∣∣∣ = |Vud(0+ → 0+)|exp
SM , (2.38)∣∣∣(1 + εL)Vud − εRṼud

∣∣∣ = |Vud(π → eν)|exp
SM . (2.39)

These two equations can be solved for combinations of (1 + εL)Vud and εRṼud. As εL,R
are expected to be small, we can use them as expansion parameters with εL,R � 1,
assuming they are real. Without making additional assumptions on the phases of Ṽud,
at first order in εL,R we get

|(1 + εL)Vud| = 0.9742± 0.0013 , εR Re

(
Ṽud
Vud

)
= (0.1± 1.3)× 10−3 . (2.40)

A completely analogous argument holds for the extraction of the bounds from s → u
transitions. Here, K → π`ν and K → µν decays are only sensitive to the vector and
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the axial current, respectively. The SM results are given by [84],

|Vus(K → π`ν)|exp
SM = 0.2243(12) , (2.41)

|Vus(K → µν)|exp
SM = 0.2252(13) , (2.42)

Pursuing the strategy presented above the two conditions can be written as∣∣∣(1 + εL)Vus + εRṼus

∣∣∣ = |Vus(K → π`ν)|exp
SM , (2.43)∣∣∣(1 + εL)Vus − εRṼus

∣∣∣ = |Vus(K → µν)|exp
SM , (2.44)

with the following solutions

|(1 + εL)Vus| = 0.2248± 0.0009 , εR Re

(
Ṽus
Vus

)
= −(2.0± 3.9)× 10−3 . (2.45)

Determination of εL

In the next step we make use of the CKM unitarity relation

|Vud|2 + |Vus|2 + |Vub|2 = 1 (2.46)

in order to determine the parameter εL. It can be easily deduced that

εL =
[
(1 + εL)2(|Vud|2 + |Vus|2 + |Vub|2)

]1/2 − 1 . (2.47)

Since |Vub| = O(10−3) appears quadratically, its contribution to CKM unitarity is neg-
ligible and we can simplify |Vud|2 + |Vus|2 = 1 +O(10−4). Hence adding the constraints
for |(1 + εL)Vud(s)| given in equations (2.40) and (2.45) yields

εL = (0.2± 1.2)× 10−3 . (2.48)

This allows us to eliminate εL from equations (2.40) and (2.45) and we obtain the
following results

|Vud| = 0.9742± 0.0013 , εR Re(Ṽud) = (0.1± 1.3)× 10−3 , (2.49)
|Vus| = 0.2248± 0.0009 , εR Re(Ṽus) = −(0.5± 0.9)× 10−3 . (2.50)

As stated by [85] in their analysis of RH currents in semileptonic K decays, for
εR = O(10−3) these results do not imply small mixing angles among the first two
generations in the RH sector.

Due to the smallness of εL, we neglect it in our further analysis. This is perfectly
justified as the best experimental measurements of b → c and b → u transitions have
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errors of at least O(1%).

Bounds from b→ c transitions

We now briefly review the formulas necessary for b → c transitions. First we take a
look at inclusive decay B → Xc`ν`. Recall that in case of inclusive decays the matrix
element consists of a sum of a LH and a RH contribution. This has to be squared
in order to obtain the decay rate, so that a non-trivial mixing between left and right-
handed contribution is generated. It is possible to apply the procedure of comparing
this combination to the SM result as stated above. The result reads

(
|Vcb|inclSM-exp

)2
= |Vcb|2

1 + |εR|2
∣∣∣∣∣ ṼcbVcb

∣∣∣∣∣
2

− rint Re

(
εR
Ṽcb
Vcb

) , (2.51)

where [86]
|Vcb|inclSM-exp = (41.54± 0.73)× 10−3 . (2.52)

The strength of interference is given by

rint = 16
mc

mb

h(mc
mb

)

f(mb
mc

)
, (2.53)

with f(x) = 1−8x2+8x6−x8−24x4 log x and h(x) = 1−3x2+3x4+x6+6(x2+x4) log x.
The numerical value rint = 0.97 × 10−3, shows that RH currents have little impact on
inclusive decays. This is in agreement with [46].

The exclusive decays B → D∗`ν` and B → D`ν` can be used to elaborate two further
conditions for the determination of Vcb and εRṼcb, respectively. It turns out that the
differential decay rate is a more useful quantity as it has been studied by various
experiments [87]. Furthermore, a simple description is provided by considering the
heavy-quark limit. Instead of two and four form factors respectively, one form factor,
the Isgur-Wise function, is sufficient to describe the long distance contributions from
the hadronic matrix elements. For completeness we show the SM differential decay
rates [88]:

dΓ(B̄ → D∗`ν̄`)

dw
=

G2
F

48π3
|V SM
cb |2m3

D∗(w
2 − 1)1/2P (w)|F(w)|2 , (2.54)

dΓ(B̄ → D`ν̄`)

dw
=

G2
F

48π3
|V SM
cb |2(mB +mD)2m3

D(w2 − 1)3/2|G(w)|2 , (2.55)

where the variable w = ED(∗)/mD(∗) in the rest frame of the B meson. F(w) and G(w)
are the hadronic form factors and P (w) denotes the phase space factor. At the zero-
recoil point (w = 1), where the momentum transfer to the leptons is at its maximum, we
have P (1) = 12(mB −mD∗)

2. The products F(1)|Vcb| and G(1)|Vcb| can be determined
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with high accuracy from a fit to the measured recoil spectrum after expanding the
hadronic form factors around w = 1, in particular [86],

F(1)|Vcb|B→D
∗

SM-exp = (35.41± 0.52)× 10−3 , (2.56)

G(1)|Vcb|B→DSM-exp = (42.4± 1.6)× 10−3 . (2.57)

In the heavy-quark limit only axial and vectorial contributions are involved in the rates
of B → D∗`ν` and B → D`ν`, respectively. Hence our conditions read

|Vcb|B→D
∗

SM-exp = |Vcb − εRṼcb| , (2.58)

|Vcb|B→DSM-exp = |Vcb + εRṼcb| . (2.59)

In order to proceed we have to specify the values of the form factors at w = 1. In
general F(1) and G(1) can be determined in two ways [87]:

• Heavy quark symmetry yields the normalisation F(1) = 1, but short distance
radiative corrections and symmetry breaking effects must be taken into account.
This can be analysed in a controlled way within heavy quark expansion and heavy
quark effective theory.

• However, a second method using lattice calculations allows us to also consider
effects from finite quark masses.

Using the lattice method leads to G(1) = 1.074 ± 0.018 ± 0.0016 [89], F(1) = 0.921 ±
0.013± 0.0020 [90], and hence one can deduce

|Vcb|B→DSM-exp = (39.4± 1.7)× 10−3 , |Vcb|B→D
∗

SM-exp = (38.3± 1.2)× 10−3 . (2.60)

A global fit to Vcb and εRṼcb using the three constraints in equations (2.52), (2.58), and
(2.59) is subsequently performed, we then obtain the following results

|Vcb| = (40.7± 0.6)× 10−3, εR Re

(
Ṽcb
Vcb

)
= (2.5± 2.5)× 10−2 (2.61)

and the final result
εR Re(Ṽcb) = (1.0± 1.0)× 10−3 . (2.62)

The best fit solution with χ2/Ndof = 4.3 shows that RH currents cannot provide an
explanation for the different values of Vcb within the different determinations. This was
expected as both exclusive values in equation (2.60) are below the inclusive one. It
was already pointed out by [91] that the inconsistency of data between the different
determinations of Vcb could emerge from an overestimate of G(1) on the lattice. [91]
suggests a lowered value of G(1) = 0.86. Repeating the fit with the same error gives
a much better fit, χ2/Ndof = 0.9, with the result for εR Re(Ṽcb) lying perfectly in the
range of equation (2.62). For this reason we keep the value obtained in equation (2.62)
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for the following analysis.

Bounds from b→ u transitions

In analogy to the decays analysed above, the conditions for b → u transitions can
be obtained straightforwardly. For the inclusive term the interference is completely
negligible and we have (

|Vub|inclSM-exp

)2
= |Vub|2 + |εR|2|Ṽub|2 , (2.63)

with [86]
|Vub|inclSM-exp = (4.11± 0.28)× 10−3 . (2.64)

Let us now collect the conditions for the exclusive decays. Only the axial part enters
in B → π`ν, hence

|Vub|B→πSM-exp = |Vub + εRṼub| = (3.38± 0.36)× 10−3 , (2.65)

where the experimental value is taken from [86]. Finally, we have the pure leptonic
decay B → τν decay, within the SM described by [92]

Br(B → τν)SM =
G2
FmBm

2
τ

8π

(
1− m2

τ

m2
B

)2

f 2
B|V SM

ub |2τB . (2.66)

Using the experimental value for the branching ratio Br(B → τν)exp = (1.73± 0.34)×
10−4 [93], and fB = (192.8 ± 9.9) MeV [94], encoding the non-perturbative effects of
the transition matrix element leads to the condition

|Vub|B→τSM-exp = |Vub − εRṼub| = (5.14± 0.57)× 10−3 . (2.67)

Eventually we perform a global fit using the three conditions which leads to the following
solution:

|Vub| = (4.1± 0.2)× 10−3, εR Re

(
Ṽub
Vub

)
= −0.19± 0.07 . (2.68)

In contrast with the b→ c transition, in this case the fit is excellent with χ2/Ndof = 0.3.
While in the SM the different determinations of Vub do not match, commonly formu-
lated as the |Vub| problem, here the situation is significantly improved. The fact that
RH currents can provide a solution for the |Vub| problem was first stated by [44–46]. We
show our global fit solution in figure 2.2. Obviously, the discrepancy between inclusive
and exclusive determinations is resolved in the presence of RH currents. Here the true
value of |Vub| turns out to be (4.1 ± 0.2) × 10−3, shown as a black dot, selecting the
inclusive determination as the true value. The SM case then corresponds to the top of
the vertical axis, where the three determinations of |Vub| are clearly different.
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B → π`ν B → Xu`ν B → τν

Figure 2.2.: The constraints on the CKM element |Vub| and the RH mixing matrix
element εR Re

(
Ṽub
Vub

)
from the three analysed decays B → π`ν (green), B → Xu`ν

(blue), and B → τν (orange). The bands for the various decays represent the ±1σ
deviation and the best fit solution is shown as a black dot with the ellipse giving the

1σ region around it.

The combination εR Re
(
Ṽub
Vub

)
was chosen to avoid assumptions on the phases of the RH

matrix. It is also possible to keep Im(Ṽub/Vub) as an additional free parameter, however
without imposing further assumptions the solution is not unique. For example, when
assuming |Ṽub| < |Vub|, equation (2.68) is the best-fit solution for a large interval of
Im(Ṽub/Vub) around zero. Indeed, allowing for a phase of Ṽub/Vub within a conservative
range finally yields

|εRṼub| = (1.0± 0.4)× 10−3 , for − π

4
< arg

(
Ṽub
Vub

)
<
π

4
. (2.69)

Summary

Constraints from the data on tree-level charged current transitions, in particular u→ d,
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u→ s, b→ u and b→ c, can be summarised as

|Ṽ | ∼

 < 1.4 < 1.4 1.0± 0.4
− − < 2.0
− − −

× (10−3

εR

)
. (2.70)

We have assumed small phases except for Ṽub, hence for the other elements we have
not performed a phase variation. The bounds presented here lie in the ±1σ range of
the previously determined bounds.

2.4.3. Bounds from unitarity and from phenomenology

Having derived the bounds on the full first row of the RH mixing matrix, we can make
use of unitarity and get a bound on εR

|εR| =
(
|εRṼud|2 + |εRṼus|2 + |εRṼub|2

)1/2

= (1.0± 0.5)× 10−3 . (2.71)

It turns out that εL, given in (2.48), and εR lie in the same range. Furthermore the
result of (2.71) is in agreement with the naive estimate using cR = O(1) and an effective
NP scale of Λ = 4πv ≈ 3 TeV. Recalling (2.35) we obtain

εR ∼
cRv

2

2Λ2
∼ O(10−3) . (2.72)

From the unitarity of the third column one can deduce that the large |Ṽub| constrains
the maximal value of |Ṽtb|. A large value of |Ṽtb| is preferable since it minimises, again
due to unitarity, the contribution to the elements |Ṽts| and |Ṽtd|. These are known to
contribute to B0

d,s− B̄0
d,s mixing which are highly constrained. Furthermore a large |Ṽtb|

could help to improve the agreement of the Z → bb̄ coupling in the RH sector with
experiment.

2.4.4. The global fit

As indicated above we perform our global fit by maximizing |Ṽtb|. We adopt the bounds
on εR|Ṽud|, εR|Ṽus|, εR|Ṽub|, and εR|Ṽcb| from the previous section and use the parametri-
sation from equation (2.31). The best-fit solution, with χ2 ≈ 1.1, yields the following
RH mixing matrix

Ṽ ∼

 0 −0.76 −0.65
0.88 −0.31 0.36
0.48 0.57 −0.67

 (2.73)

and εR ≈ 1.27 × 10−3. From this fit we conclude that the RH mixing matrix is well
described by the following ansatz, which keeps |Ṽtb| maximal.

Ṽ
(I)

0 =

 c̃12c̃13 s̃12c̃13 s̃13

−s̃12 c̃12 0
−c̃12s̃13 −s̃12s̃13 c̃13

 . (2.74)
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This ansatz can be simply obtained from equation (2.31) with taking c̃23 → 1. Again
we can perform a global fit, the result reads

Ṽ
(I)

0 ∼

 0.39 −0.61 −0.69
0.84 0.54 0
0.37 −0.58 0.73

 . (2.75)

At 90% C.L. we find |Ṽtb| < 0.73, which is smaller than the corresponding value in the
CKM matrix with |Vtb| ∼ 1. By unitarity, |Ṽts| and |Ṽtd| are enhanced relative to their
CKM counterparts and hence contribute to FCNCs.

The ansatz in equation (2.74) can be simplified further. We can deduce from equation
(2.75) that the maximal |Ṽtb| scenario is described to a good approximation by

|c̃13| ≈ −s̃13 ≈ 0.7 , εR ≈ 1× 10−3 , (2.76)

where we select the sign convention sgn(c̃13s̃12) = −1. This implies that

Ṽ
(II)

0 =

 ±c̃12

√
2

2
±s̃12

√
2

2
−
√

2
2

−s̃12 c̃12 0

c̃12

√
2

2
s̃12

√
2

2
±
√

2
2

 , (2.77)

where the angle of s̃12 and c̃12, is the only free parameter and yields a simple descrip-
tion. We will use Ṽ (II)

0 for our phenomenological analysis, which will be performed in
chapter 5. As we will show below, this structure of the matrix is crucial for various
observables of meson-antimeson mixing. Note that for the full RH mixing matrix we
still have to take into account the extra phases (2.30), which contribute to CP-violating
effects.

It should mention that the only reasonable alternative to our ansatz in (2.77), consistent
with FCNCs, is to expand Ṽ (I)

0 in equation (2.74) with the assumption c̃13 � 1. Thus
we can write

Ṽ
(III)

0 =

 c̃13c̃12 c̃13s̃12 −1
−s̃12 c̃12 0
c̃12 s̃12 c̃13

 . (2.78)

This ansatz evades all constraints from charged currents except b → u transitions.
Furthermore, it has small effects in B physics but large effects K physics, which are
tightly constrained by the data. This and the smallness of |Ṽtb| make it less attractive
than Ṽ (II)

0 . This will become fully clear when we examine the flavour structure of the
RH mixing matrix appearing in meson anti-meson mixing in section 5.1.3.
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3. Right-handed currents:
An explicit model

This chapter is devoted to the description of the second model that we discuss in this
thesis: the Left-Right Model (LRM). In contrast to the previous model we follow a
top-down approach in this case. This model has been widely studied within certain ap-
proximations, in particular with exact left-right symmetry. However, to keep the model
as general as possible, we allow for a small asymmetry of the left- and right-handed
sector. We begin this chapter with a very brief summary of early developments in this
class of models. Subsequently, we discuss the setup of the LRM and provide informa-
tion, including constraints from tree-level decays and electroweak precision observables,
necessary to study ∆F = 2 processes, which will follow in a separate chapter.

3.1. Preliminaries

The original idea of left-right symmetric models aiming to establish parity at high scale
traces back more than 35 years [29–32, 95]. The enlargement of gauge symmetry by
an additional SU(2)R symmetry with respect to the SM yields, apart from new heavy
gauge bosons, mainly two characteristic quantities: a new RH mixing matrix and an
additional right-handed gauge coupling. Early studies mainly concentrate on the anal-
ysis of two simplified scenarios, which are commonly called “manifest” scenario [32] and
“pseudo-manifest” scenario [33–35] characterised by explicit and spontaneous CP vio-
lation, respectively. These assumptions determine the form of the RH mixing matrix
which appears then either identical to or the complex-conjugate of the CKM matrix
up to certain phases. A detailed description of the classification can be found in [39].
Furthermore these early works prefer an exact left-right symmetry implying the left
and right gauge couplings to be equal.

The phenomenological implications of these simple setups have been extensively stud-
ied [96–99]. The “pseudo-manifest” scenario has already been ruled out by the cor-
relation of εK and sin(2β) [100] as well as the prediction of light Higgs triplets [101].
Further in both scenarios the heavy charged gauge boson massMWR

>∼ 4 TeV is strongly
constrained [36, 96, 102]. This is mainly driven by the KL − KS mass difference and
CP violation in K0 − K̄0 mixing. Therefore we conclude that the right-handed mixing
matrix must have a different structure than proposed by these simple setups in order
for the new gauge bosons to be accesible at the LHC. Subsequently, there have been
more general studies on CP violation beyond these two approximations [38, 39, 103].
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Recent studies of many flavour observables within this class of models can be found
in [36,37,104,105].

Our analysis makes even more general considerations. Apart from allowing for a split-
ting in left- and right-handed gauge couplings, the right-handed mixing matrix will be
incorporated in its most general form. This will subsequently allow us to deduce its
structure only based on phenomenology.

3.2. The Left-Right Model

Now we briefly summarise the theoretical setup for the LRM. Since this model has
been studied extensively in the literature, here we only present the key features for our
analysis. In particular, we orient our notation close to the one given in [36–38].

3.2.1. Symmetry and scales

The basic ingredient of the general left-right model is its left-right symmetric gauge
group

SU(3)C × SU(2)L × SU(2)R × U(1)B−L . (3.1)

In this model parity is conserved at high scales but broken at lower scales. This break-
down is not necessarily linked to the mechanism of the SM symmetry breaking or the
TeV scale but can originate from a much higher scale [106]. The gauge couplings gL and
gR, belonging to the left and right SU(2) gauge group respectively, are then expected
to exhibit a small splitting [107]. Hence, we adopt a more general scenario than what
has been considered in most studies [36–38].

In order to recover the SM as the low energy theory and to give masses to gauge
bosons and fermions, we break the symmetry spontaneously in two step. There are two
characteristic scales, one for each step of symmetry breaking, which will be incorporated
as VEVs of the corresponding Higgs fields. We fix the first breaking at a high scale
κR ∼ O(TeV),

SU(2)R × U(1)B−L → U(1)Y , (3.2)

where U(1)Y is the SM hypercharge gauge group. The standard electroweak symmetry
breaking

SU(2)L × U(1)Y → U(1)Q (3.3)

takes place at scale v. The value of v will be described in the next section, but generally
the scale is such that v � κR.1 The size of κR controls the magnitude of the masses of
heavy new fields unlike the masses of the SM fields, which are set by v. The hierarchy

1In order to avoid confusion we want to stress the different conventions used for the parameter v in
the LRM and RHMFV. In the LRM, we use v = 174 GeV.
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of scales can be expressed by the small parameter

ε =
v

κR
, (3.4)

in which all NP effects can be expanded. We restrict our phenomenological analysis
to the leading corrections which means in practice up to O(ε2) effects. Furthermore it
should be stressed that ε and hence κR is restricted by electroweak precision constraints.

3.2.2. Particle content

Next we want to describe the fermion fields, Higgs fields and gauge boson fields in the
model.

Fermion fields Chiral fermion fields are grouped in doublets with respect to the cor-
responding symmetry group, hence the left-handed fermions are embedded as SU(2)L
doublets while right-handed fermions form SU(2)R doublets. For the opposite sym-
metry group they act as singlets. In contrast to the SM the setup is now left-right
symmetric. We treat the leptons similarly. The transformation properties with respect
to the symmetry given in equation (3.1) can be summarised as

QL =

(
uL
dL

)
∼
(

3, 2, 1,
1

3

)
, QR =

(
uR
dR

)
∼
(

3, 1, 2,
1

3

)
, (3.5)

LL =

(
νL
lL

)
∼ (1, 2, 1,−1) , LR =

(
νR
lR

)
∼ (1, 1, 2,−1) . (3.6)

For these particles the electric charges can be obtained from

Q = T3L + T3R +
B − L

2
. (3.7)

Note that in this framework the hypercharge numbers do not appear arbitrary as is it
the case in the SM [107].

Higgs fields As stated above the pattern of symmetry breaking requires at least two
independent Higgs fields, due the LR symmetry at high scales three Higgs fields need
to be introduced. For the step one breaking in equation (3.2) a triplet representation
is chosen for convenience

∆R =

(
δ+
R/
√

2 δ++
R

δ0
R −δ+

R/
√

2

)
∼ (1, 1, 3, 2) (3.8)

which gets the VEV

〈∆R〉 =

(
0 0
κR 0

)
. (3.9)

Starting from scratch one has to take all VEVs as complex entries, hence a phase should
appear in every VEV entry. Here we have used the form from [36], where redundant
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phases have already been removed by making appropriate phase transformations. It
should be stressed that the triplet representation has the advantage that in the neutrino
sector a TeV scale seesaw mechanism is automatically incorporated. Thus Majorana
masses are generated for RH neutrinos at TeV scale while light neutrino masses ap-
pear suppressed [42, 43, 108]. Doublet or even more complicated representations are
possible in principle, however we will not consider them here. This is motivated by
the attractive features of the triplet structure in the neutrino sector. Quark flavour
phenomenology, on which we concentrate in this thesis, does not depend sensitively on
the detailed structure of the Higgs sector. We will elaborate on this statement below.

In order to be able to establish parity at a high scale, the introduction of the Higgs
triplet field ∆R implies the existence of an SU(2)L triplet. This triplet can then be
written as

∆L =

(
δ+
L /
√

2 δ++
L

δ0
L −δ+

L /
√

2

)
∼ (1, 3, 1, 2) . (3.10)

Its VEV reads
〈∆L〉 =

(
0 0

κLe
iθ 0

)
. (3.11)

As we do not want to generate large Majorana masses for the left-handed neutrinos,
consequently we have κL <∼ O(eV). This assumption will allow us to simplify our cal-
culations as we can approximately assume 〈∆L〉 = 0.

Finally we have a bidoublet,

φ =

(
φ0

1 φ+
2

φ−1 φ0
2

)
∼ (1, 2, 2, 0) , (3.12)

which is responsible for the second step symmetry breaking in equation (3.3). This
bidoublet will also provide the light SM Higgs. When taking the VEV, we can write

〈φ〉 =

(
κ 0
0 κ′eiα

)
, (3.13)

where we set
v =
√
κ2 + κ′2 = 174 GeV. (3.14)

Since we know that the masses of up and down type quarks are not equal, we require
κ′ 6= κ.2 For our analysis it is convenient to introduce the following parametrisation

s =
κ′

v
and c =

κ

v
. (3.15)

As v is fixed due to the relation (3.14) the parameters s and c can be associated with
sine and cosine. Due to the hierarchy mb � mt, the sine is generally expected to be

2The limit κ = κ′ is not allowed in our further analysis; this can also be seen from the divergent
behaviour of several observables in this limit.
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much smaller than the cosine so that κ′ � κ. We analyse this hierarchy more carefully
in our numerical analysis below, using 1 < κ/κ′ < 10 typically.

We have summarised further details of the Higgs sector of the LRM in appendix A.

Gauge bosons Next we study the gauge boson sector of the model. Associated with
the gauge symmetry SU(2)L and SU(2)R we obtain the corresponding gauge fields
denoted W a

L,µ and W b
R,µ, respectively. The U(1)X gauge field is denoted by Bµ. We

present relevant formulae for mass eigenstates and masses in appendix C. As expected,
after electroweak symmetry breaking gluons and the photon remain massless. In ad-
dition to the SM W± and the Z bosons the fields W ′± and Z ′ are also present with
heavy masses of O( TeV). Their parametric dependence can be found in appendix
C. Furthermore, the gauge bosons of the same charge mix after transforming to mass
eigenstates, for example W± (W ′±) is dominated by WL (WR) with small RH (LH)
admixture of O(ε2) [109]. A similar argument holds for the neutral gauge bosons.

We note that in the course of our flavour analysis we make use of a simplifying notation.
In order to keep the expressions more transparent, instead of W and W ′ we will use
WL and WR, respectively, even though they differ by O(ε2) corrections. It should be
stressed that this is only a matter of notation and all formulae will correctly include
these corrections.

3.2.3. Yukawa interaction and quark mixing matrices

In the course of our analysis we need more detailed information about quark flavour
mixing. To this end we have to specify the Yukawa sector, most generally given by

LYuk = −yijQLiφQRj − ỹijQLiφ̃QRj + h.c. , (3.16)

where φ̃ = σ2φ
∗σ2 and i, j = 1, 2, 3 are flavour indices. It is worth noting that in the

quark sector only a coupling to the bidoublet is involved. Fermion mass matrices can
be straightforwardly obtained

(Mu)ij = v(Yu)ij , (Md)ij = v(Yd)ij , (3.17)

where
(Yu)ij = yijc+ ỹijse

−iα , (Yd)ij = yijse
iα + ỹijc . (3.18)

These matrices can be diagonalised as usual by the bi-unitary transformations

Mdiag
u = U †LMuUR , (3.19)

Mdiag
d = D†LMdDR , (3.20)

where the matrices UL,R and DL,R transform the quarks from flavour into mass eigen-
states.
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It appears that the charged current interaction of quarks involves now LH and RH
mixing matrices for LH and RH currents, respectively. All Feynman rules necessary
for our analysis up to O(ε2) can be found in appendix F. Here we just define the two
mixing matrices in the LH and RH sectors, in particular

V L = U †LDL , V R = U †RDR . (3.21)

where V L is the CKM matrix and V R the new RH mixing matrix.

We adopt the general parametrisation used in RHMFV as given in equation (2.29) for
the RH mixing matrix. Note that we distinguish the matrices from RHMFV and the
LRM via their notation, Ṽ and V R respectively. It should be stressed that we fol-
low different procedures in order to develop their structure from phenomenology, even
though the general parametrisation is the same.

Finally we want to mention that a full counting of relevant parameters in the quark
sector is given in appendix D.

3.2.4. A brief note on the lepton sector

In this thesis, we mainly concentrate on quark flavour physics. Still various leptonic and
semi-leptonic decays enter the tree-level constraints on the RH matrix. These allow to
extract the constraints on the mixing matrices in a clean way. Hence some knowledge
about the structure of the lepton sector is required. In analogy to the quark case one
can write down the gauge-invariant Yukawa coupling. A detailed study was performed
by the authors of [42,43]. We just summarise their findings.

In the lepton case we have additional couplings of the Higgs triplets ∆L,R to the lep-
tons, leading to Majorana mass terms. The bidoublet provides mixing terms. After
transformation to mass eigenstates the light neutrinos are dominated by the LH contri-
bution with a small RH admixture. The heavy Majorana neutrinos consist in turn of
the RH neutrinos also modified by a small left-handed contribution. The corresponding
mixing angle can be estimated from the masses of the heavy and light neutrinos. A
conservative estimate for heavy neutrino masses of around 100 GeV yields a mixing of
O(10−6) [110]. We conclude that Yukawa couplings have to be very small. In agreement
with [111] we find these mixing effects to be safely negligible, remembering that they
have to compete with O(ε2) effects, which we estimate to be of O(10−3).

3.3. Tree-level constraints

3.3.1. Elaborating relevant effects

From our analysis of RHMFV we know that the RH mixing matrix is constrained by
various tree-level decays. In this section we briefly want to repeat this analysis for the

32



3 Right-handed currents: An explicit model

LRM.

In the LRM new contributions can potentially arise from the new RH couplings of the
W gauge boson, from the exchange of the heavy WR gauge boson, and from the heavy
charged Higgs boson. We now describe which effects are indeed relevant. The following
criteria can be identified:

• As stated above mixing effects in the lepton sector are negligible.

• Only light neutrinos can appear in the final states of the decays.

• Diagrams including the heavy WR boson are of O(ε4), doubly suppressed by the
coupling to light neutrinos and theWR propagator, each of O(ε2). At O(ε2) then,
only the SM couplings are relevant.

• Charged Higgs boson effects are considered only for leading order couplings. Fur-
thermore all processes not involving the top quark are Yukawa suppressed and
hence negligible.

The last point raises the question whether charged Higgs effects might be negligible.
In order to examine this statement we consider the example of the decay B+ → τ+ντ ,
where a potential contribution is still likely due to the chiral suppression of the dia-
gram involving the gauge boson propagator. Subsequent calculation shows that such
diagrams are suppressed by the factor m2

B/M
2
H+ . Thus they do not contribute for a

heavy charged Higgs. Indeed, we will use a heavy Higgs in our numerical analysis later.

Potentially, the model can also have corrections a modified Fermi coupling GF . But the
analysis of the µ-decay width shows that these arise at O(ε4) and consequently have
no impact on the tree-level decays.

We conclude this section by completing our list of criteria:

• Charged Higgs effects are negligible.

• GF obtains no corrections.

3.3.2. Comparison to RHMFV

The constraints on the mixing matrices from RHMFV (see section 2.4.2) can be adapted
to the LRM with the following identifications

εL = O(ε4) , εR = csε2 , Ṽ = eiαV R . (3.22)

This is mainly due to the fact that charged Higgs effects are negligible in the tree-level
decays. Note that we can set α = 0 since both mixing matrices are simply unitary
matrices (see for a more detailed discussion in appendix D).
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3.3.3. Summary of inputs and constraints

In the following we use the constraints from section 2.4.2 with updated experimental
values (see table 3.1) and also include constraints from elements with higher uncertainty.

Br(π → µν) = 0.9998770(4) [112] fπ = 129.5(17) MeV
f+(0)|Vus|K→π`ν = 0.2163(5) f+(0) = 0.9584(44)
fK/fπ|Vus/Vud|K→µν = 0.2758(5) [84] fK/fπ = 1.1931(53)
Br(Ds → τν) = 0.0529(28) fDs = 248.9(39) MeV
Br(B → τν) = 1.64(34)× 10−4 fB = 205(12) MeV [94]
F (1)|Vcb|B→D

∗`ν = 0.03604(52) F (1) = 0.908(17) [113]
G(1)|Vcb|B→D`ν = 0.0423(15) [114] G(1) = 1.074(24) [115]

Table 3.1.: Updated values of the most important experimental and theoretical
quantities used as input parameters for the constraints from tree-level decays.

We can efficiently summarise the constraints by introducing a short notation for the
constraints from vectorial and axial currents. One can write

|Vij|V =
∣∣V L
ij + cseiαε2V R

ij

∣∣ , |Vij|A =
∣∣V L
ij − cseiαε2V R

ij

∣∣ . (3.23)

In some cases we can constrain |V L
ij | directly from the inclusive semileptonic decays,

as in the determination of |V L
ub| from B → Xu`ν. We have collected all our results

compactly in table 3.2.

Here a few comments are in order:

• In the determination of |V L
cd| and |V L

tb | interference terms between left- and right-
handed quarks are suppressed by md and mq/mt (q = d, s, b), respectively. Hence
we can drop them.

• The constraints from c → d, c → s and t → b transitions suffer from large
uncertainties, so they will have little impact.

• The t → d and t → s transitions cannot be measured from tree-level decays.
Therefore in this case we obtain no constraints.

3.4. Electroweak precision constraints

3.4.1. Introduction

Electroweak precision tests are known to set important constraints on the masses of
heavy gauge bosons and electroweak parameters. Due to the high accuracy of the
measurements of Z pole observables and W boson properties, these constraints have
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transition considered decay references constraint values
u→ d superallowed 0+ → 0+ [112] V 0.97425(22)

π+ → µ+ν [116] A 0.981(13)
u→ s K → π`ν [84] V 0.2257(12)

K → µν [112] A 0.2268(32)
c→ d D → K`ν, D → π`ν [112] V 0.229(25)

νN charm production [112] A 0.230(11)
c→ s semileptonic D decays [112] V 0.98(10)

Ds → τ+ν [94] A 0.978(31)
b→ u B → Xu`ν [112] L 4.27(38)× 10−3

B → π`ν [112] V 3.38(36)× 10−3

B → τν [94] A 4.70(56)× 10−3

b→ c B → Xc`ν` [86] L 41.54(73)× 10−3

B → D`ν [114,115] V 39.4(17)× 10−3

B → D∗`ν [113,114] A 39.70(92)× 10−3

t→ b Br(t→bW )
Br(t→qW )

[117] L 0.95(2)

Table 3.2.: Summary of all tree-level constraints on the elements of the left -and
right-handed mixing matrices. The letters A, V and L stand for constraints on |Vij|A,

|Vij|V and |V L
ij |, respectively.

to be seriously considered in order to perform a realistic analysis. Interestingly, EWP
constraints are somewhat complementary to the constraints from flavour physics which
mainly concern the flavour structure such as quark mixing matrices of a special NP
model. That does not imply that effects can be considered completely decoupled from
the analysis of the flavour sector, however it is possible to consider them in a two step
procedure. We find first allowed ranges for parameters by EWP tests and then further
proceed by restricting these ranges though flavour constraints. In this section we will
perform the first step in the analysis of the electroweak sector.

It should be stressed that a consideration of the gauge self-energy parameters S, T
and U [118] in this context is far from being satisfactory as oblique corrections are not
able to capture all NP effects. Rather, non-standard electroweak corrections have to
be treated in a systematic approach such as the one followed in a model-independent
analysis by Burgess et al. [119]. They calculate EWP observables from an effective
Lagrangian point of view. The most general effective Lagrangian, being in accordance
with the symmetries of the model, is used to work out the relations between measured
observables and parameters of SM part of the Lagrangian by rescaling in order to get
canonically normalised gauge kinetic terms. These parameters are clearly not identical
to the parameters of a pure SM theory as they are modified by the NP contributions,
which enter through the coefficients being calculated from the underlying theory. In
the last step a fit of theoretical predictions to experimental data is performed in order
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to find the allowed regions in the parameter space.

In such a fit about 40 low-and high energy observables are usually considered [112,120,
121], including the measurements around the Z resonance from LEP I and the high
energy data from LEP II. Since this kind of analysis is clearly beyond the scope of
this work, we will take the results of [105], which are based on above described ideas
from [119]. The authors of [105] present a global fit analysis of EWP observables for
various models with SU(2)1×SU(2)2×U(1)X gauge symmetry, among them the LRM,
there denoted by LR-T.

We will now briefly outline the strategy of [105] including a dictionary which translates
their notation to ours.

3.4.2. Structure of the analysis

The electroweak sector of the LRM is characterised by six parameters, given in equa-
tions (D.25) and (D.26) of appendix D. For the global fit, [105] distinguishes between
the so called reference parameters and fit parameters. The reference parameters are
commonly chosen to be the three most precisely measured quantities, in particular

GF , MZ , αe ≡ α(M2
Z) , (3.24)

where the electromagnetic fine structure constant at the Z-pole is given in the MS
scheme by

1/α(M2
Z) = 127.916± 0.015 . (3.25)

The next step is to express the reference parameters in terms of model parameters.
Fixing the reference parameters by input data allows to reduce the number of free
parameters. The remaining parameters, describing the NP effects, usually referred to
as fit parameters, are used to perform the global fit. When adapting the notation
of [105], these fit parameters read

x̃ =
1

ε2
, cφ̃ = cR, sin 2β̃ = 2sc, (3.26)

and we have argued in appendix D that we can set α = 0. Essentially we perform
a change of variables from model parameters to reference and fit parameters The fit
observables have to be expressed in terms of the parameters in (3.24) and (3.26). As up
to now all our formulae are written in terms of model parameters, we want to illustrate
the change with a few important examples.

• We verify that GF and MZ are free of O(ε2) corrections. Cancellation of such
corrections is achieved when using the definitions v and sW according to 3

v2 =
1

2
√

2GF

, s2
W c

2
W =

πα(M2
Z)√

2M2
ZGF

. (3.27)

3In [105] a different convention for the Higgs bi-doublet is used. In our convention v is chosen by a
factor of

√
2 smaller.
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• The mass MW is modified by

MW = MZcW

[
1 +

ε2

2

c2
W

c2
W − s2

W

(
c4
R

4
− 2s2c2)

]
, (3.28)

where now sW and cW are defined through (3.27) and we have suppressed the SM
one-loop corrections.

• For the heavy masses MWR
and MZ′ we choose to drop the O(ε2) corrections,

hence
(MWR

)2 =
e2κ2

R

c2
W s

2
R

, (MZ′)
2 =

2e2κ2
R

c2
Rc

2
W s

2
R

, (3.29)

sW and cW are given as before by (3.27). For our estimates the leading term
is sufficient, but in case of discovery precisely measured values could help to
constrain the parameter space and add them to the list of reference parameters.

While in EWP observables both tree-level and loop corrections are included for the SM,
the NP corrections are only incorporated at the tree-level. A global fit is then performed
over the fit parameters in (3.26) considering 37 EWP observables with respect to the
corresponding data. The fit yields regions in the parameter space which are consistent
with EWP data. These findings are summarised in Tables IX and X of [105]. There
they show the formulae for corrections to the most constraining observables, which in
the LRM are given by σhad and AFB(b).

3.4.3. Collection of constraints

In this section we collect all relevant constraints from EWP observables. Summarizing
the findings from [105] in our notation, using equations (3.26), we find the following
constraints:

• Related to the Z pole observables, in particular the total decay width, one can
deduce σhad, the partial branching fraction of Z → qq̄,

δσhad/σhad,SM =

[
−1.13

c2
R

4
− 0.142

c4
R

4
+ 0.0432(2s2c2)

]
ε2 . (3.30)

• One can find the forward-backward asymmetry AFB(b) given by

δAFB(b)/AFB,SM(b) =

[
−30.0

c2
R

4
+ 67.6

c4
R

4
− 20.6(2s2c2)

]
ε2 . (3.31)

• From parity violation experiments the weak charges of atoms can be determined,
in particular for the caesium-133 nucleus one obtains

δQW (Cs)/QW,SM(Cs) =

[
−0.855

c4
R

4
− 0.145(2s2c2)

]
ε2 . (3.32)
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• Deep inelastic ν-N scattering measurements allow us to measure the left-handed
coupling and the corresponding constraint reads

δ(gNνL )2/(gNνL,SM)2 =
[
0.0219 + 0.478c2

R + 0.210c4
R − 1.42(4s2c2)

]
ε2 . (3.33)

A more detailed description of the several observables can be found in [105, 122]. We
find that the best treatment of conditions (3.30) to (3.33) including their analysis of
errors is given by

|EXP− SM(1 + CON)| ≤
√

(∆EXP)2 + (∆SM(1 + CON))2 , (3.34)

where EXP and SM denote, experimental and the SM value, respectively. CON has to
be replaced by the corresponding condition of equation (3.30) to (3.33). We summarise
all necessary inputs in table 3.3.

Observable experimental value SM value
σhad [nb] 41.541(37) 41.484(8)
AFB(b) 0.0992(16) 0.1034(7)
QW (Cs) −73.20(35) −73.15(2)
(gNνL )2 0.3027(18) 0.30399(17)

Table 3.3.: Inputs for the electroweak analyses from [112].

Furthermore we have to take into account the constraint from the W mass. This
constraint can be directly derived from (3.28) after inclusion of the SM loop corrections.
Actually the analysis can be simplified by considering only the shift from NP, defined
by the difference between experimental and SM value, we obtain

(∆MW )NP = ε2
MZ

2

c3
W

c2
W − s2

W

(
c4
R

4
− 2s2c2) = (0.040+0.025

−0.029) GeV, (3.35)

where the SM and measured value are taken from [120,123].

We also have to incorporate the direct experimental constraints.

• Collider experiments provide a direct bound for a heavyWR. The bound depends
on the ratio of the gauge couplings gL and gR. Usually for unequal couplings this
bound is weakened. The most recent experimental bound is roughlyMWR

≥ 2 TeV
[124–127].

• The TWIST Collaboration [128] provides a direct experimental bound on both
the ratio of gR/gL combined with the mixing angle and the ratio gL/gR linked to
the WR mass. Using the relation sW/(cW sR) = gR/gL the first constraint can be
simplified and at 90% C.L. we obtain

scε2 < 0.020 and
cW sR
sW

MWR
> 578 GeV . (3.36)
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Finally, for completeness we would like to mention that in order to keep the gauge
couplings in the perturbative range we impose additionally g2

R < 4π and g′2 < 4π,
while gL is fixed by the input data and the reference parameters.

3.4.4. Numerical pre-analysis of the electroweak parameter
space

In this section we provide a numerical analysis of experimentally allowed ranges for
electroweak parameters implied by EWP observables. We remark that these parame-
ters cannot be independently constrained from the flavour sector. However, since the
analysis of EWP observables does not involve the flavour parameters of the matrix V R

it is possible to pre-constrain them.

We have argued above that the effective number of parameters to be considered can be
reduced to three as given in equation (3.26). In order to find the corresponding allowed
ranges, we generate random values in their full range and check whether all constraints
as collected in section 3.4.3 are fulfilled. In practice we scan over 0 < s < 1/

√
2,

0 < sR < 1 and 0 < ε < 0.1. Note that in principle 0 < s < 1 is possible, but following
our arguments of section 3.2.2 the relation of equation (3.14) can be used for this fur-
ther restriction. The choice for the scan of the parameter ε is driven by the fact that
we want to examine heavy particles with masses around the TeV scale. Furthermore
for every set of valid parameter points the χ2 function is evaluated. The results are
illustrated in figures 3.1 to 3.3 showing the correlations between the three electroweak
parameters ε, sR and s.

In figure 3.1 we show the parameter s as a function of ε. The colour spectrum identifies
preferred regions in parameter space by encoding ln(χ2/nd.o.f.). As indicated by corre-
sponding colours, generally smaller values for ε are favoured. The best fit region lies
around ε ∼ 0.03 and s > 0.1 as indicated by the color black, where the constraint from
AFB(b) is in accordance within 2σ with the data from LEP. Note that we are not able
to fulfill all constraints simultaneously better than 2σ. Consequently, in principle EWP
observables hence imply a 2σ tension within the LRM. However the LEP measurement
has to be considered with a healthy criticism since the competing SLD experiments
did not measure a departure from the value expected in the SM. Furthermore, we can
deduce from figure 3.1 the bound s > 0.1. It implies that top-inspired LR models [39],
which assume c/s = κ/κ′ = mt/mb, are disfavoured by EWP observables, in particular
AFB(b).

Figure 3.2 illustrates the correlation of sR with respect to ε. As in the previous plot, the
colour black confines the preferred region in parameter space pointing towards small
values for ε implying sR > 0.7. In order to be more general the bound sR > 0.1 is
imposed from the perturbativity constraint.
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Figure 3.1.: Correlation of parameter s and ε. The colour spectrum indicates
ln(χ2/nd.o.f.).

Figure 3.2.: Correlation of parameter sR and ε. The colour spectrum indicates
ln(χ2/nd.o.f.).
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Figure 3.3.: Correlation of mass MWR
and parameter ε. The colour spectrum indicates

ln(χ2/nd.o.f.).

Finally, we show in figure 3.3 the dependence of the heavy gauge boson mass MWR

with respect to ε. A specific choice of electroweak parameters will also fix the masses of
heavy gauge bosons and as we will see later also have profound impact on the masses
of heavy Higgs fields. As can be seen from parametric dependence of the heavy gauge
boson masses, the mass of the WR boson increases when ε is lowered. The reason that
we do not obtain a strict correlation is due to additional parameters. It should be
stated that the black region, linked with a better agreement with the AFB(b) constraint
as stated above, provides an upper bound of roughly MWR

< 7 TeV.

In summary, one of the main results of this section is our best fit region, in particular

ε ∼ 0.03 , 0.1 < s < 1/
√

2 , and 0.7 < sR < 1 . (3.37)

We will incorporate these results as outlined below in section 6.3 into our comprehensive
analysis of flavour observables in an appropriate manner.
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4. Intermezzo: General remarks
about flavour observables

Flavour observables play an important role in searching for NP and are complementary
to direct collider searches. In this chapter we give a compendium of formulae necessary
for the flavour analysis of both models considered. Most of these formulae are valid
independent of the particular model and apply to both models considered in this thesis.
We do not want to replicate various reviews (see for example [52, 129]) and we just
summarise the main points therein useful for our analysis. In particular, we consider
particle anti-particle mixing and rare decays. We list their operator basis and provide
suitable formulae for the study of NP contributions to flavour observables. Finally, we
review the status of current experimental data and compare it to the SM predictions.

4.1. Preliminaries

The starting point of every flavour analysis beyond the SM is the effective Hamiltonian.
This effective Hamiltonian encodes both SM and NP effects at the quark level. It can be
constructed by incorporating all Feynman diagrams contributing to the process under
consideration. It allows us to derive the decay amplitude of meson decays from a meson
M to a final state F according to

A(M → F ) = 〈F |Heff|M〉 ∼
∑
i

Ci(µ)〈F |Qi(µ)|M〉, (4.1)

where 〈F |Qi(µ)|M〉 are the hadronic matrix elements of local operators and Ci(µ) are
the Wilson coefficients. The proportionality represents the fact that as depending upon
the model it is useful to extract specific pre-factors, which in principle can also be ab-
sorbed in the Wilson coefficients.

Both matrix elements and Wilson coefficients are dependent on an arbitrary scale µ
such that the full amplitude is independent of it. Note that when considering quan-
tum corrections there exists also a renormalisation scheme dependence with similar
behaviour. The hadronic matrix elements contain physics below µ and have to be eval-
uated by non-perturbative methods such as lattice calculations, hadronic sum rules,
chiral perturbation theory, heavy quark effective theory, just to mention a few. The
Wilson coefficients describing the physics above the scale µ can be calculated perturba-
tively and they also include the new heavy particles through tree-level, box and penguin
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diagrams depending on the model and additionally QCD corrections. This perturba-
tivity is guaranteed as long as the scale µ is not chosen too small, usually taken of
order of the mass of the decaying hadron. In the case of K decays, however, this scale
is taken to be slightly higher, around 2 GeV.

This so called separation of long-distance and short-distance contributions by a scale
µ is then compactly described by the operator product expansion (OPE) [130, 131].
Furthermore the OPE allow a systematic classification of contributing operators. We
will elaborate on this in the following section.

Apart from the OPE there is another useful tool for handling effects of very different
scales like from the scale of the bound states (mesons) up to the scale of heavy NP par-
ticles: Large logarithms can be avoided by making use of the so called renormalisation
group improved perturbation theory when calculating the Wilson coefficients C(µ). A
detailed description of the these methods can be found in e.g. [129,132].

For NP effects it turns out that it is sometimes useful to evaluate both Wilson coeffi-
cients and hadronic matrix elements at a high scale. We will show this in detail when
considering particular models.

4.2. Meson anti-meson mixing

4.2.1. General ∆F = 2 operator basis

In this section we give a complete list of relevant operators for ∆F = 2 transi-
tions [52, 133, 134]. It is common to classify the operators by their chirality: we have
five classes of operators, in particular VLL, VRR, LR, SLL and SRR operators, where
we use the designations left-handed (L), right-handed (R), vector (V) and scalar (S).

Let us first consider K0 − K̄0 mixing. Depending on the model only a subset of these
operators describes the full basis, so we find it useful to divide these dimension-six
operators into two groups. The first group is given by

QV LL1 (K) =
(
s̄αγµPLd

α
)(
s̄βγµPLd

β
)
,

QV RR1 (K) =
(
s̄αγµPRd

α
)(
s̄βγµPRd

β
)
,

QLR1 (K) =
(
s̄αγµPLd

α
)(
s̄βγµPRd

β
)
,

QLR2 (K) =
(
s̄αPLd

α
)(
s̄βPRd

β
)
, (4.2)

and the second group is given by

QSLL1 (K) =
(
s̄αPLd

α
)(
s̄βPLd

β
)
,

QSRR1 (K) =
(
s̄αPRd

α
)(
s̄βPRd

β
)
,
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QSLL2 (K) =
(
s̄ασµνPLd

α
)(
s̄βσµνPLd

β
)
,

QSRR2 (K) =
(
s̄ασµνPRd

α
)(
s̄βσµνPRd

β
)

(4.3)

where PL,R = 1
2
(1∓γ5) is as usual the chirality projection operator and σµν = 1

2
[γµ, γν ].

Summation over the colour indices α and β is understood. In the SM just one operator,
namely QV LL1 , appears. Extending the SM by RH currents according to the operator
approach of RHMFV, the basis of dimension-six operators can be described by the first
group in equation (4.2). Since in the LRM we extend the SM both by RH currents and
additional scalars in the Higgs sector, we also have to take into account operators of the
second group as given in equation (4.3). Note that we postpone the explicit comparison
of the operator structure of both models to section 7.1, after having discussed ∆F = 2
processes explicitly. Similarly, when considering B0

q − B̄0
q mixing, where q = d, s, the

operators for ∆B = 2 can be straightforwardly obtained from equations (4.2) and (4.3)
by switching the appropriate flavour indices, in particular by replacing s→ b and d→ q.

In this notation the decay amplitude (4.1) for particle-antiparticle mixing for M −M
mixing (M = K,Bd, Bs) is modified to

A(M →M) = 〈M |H∆F=2
eff |M〉 ∼

∑
i,a

Ci(µH)〈M |Qa
i (µH)|M〉 , (4.4)

where in RHMFV the sum runs over all the operators in the first group with i = 1, 2 and
a = V LL, V RR,LR and in the LRM over the first and the second group i = 1, 2 and
a = V LL, V RR,LR, SLL, SRR. We will come back to the these effective Hamiltonians
for each model in a separate section, where we will also define the pre-factors. The
Wilson coefficients depend on the particular model and will be derived subsequently.

4.2.2. Collection of formulae for ∆F = 2 observables

We now summarise all ∆F = 2 observables relevant for the flavour phenomenology of
RHMFV and the LRM. It should be stressed that a consistent result with the formulae
given below will only be obtained when using the standard phase convention for the
CKM matrix [135]. These formulae do not depend on the detailed structure of the
NP model and have already been successfully applied to various models, in particular
the Littlest Higgs model with T-parity [136], a Randall Sundrum model with custodial
protection [137] and the SM extended by a fourth generation [138].

Starting with K0−K̄0 mixing amplitude, the NP contributions modify the off-diagonal
elements of the neutral K-meson mass matrix according to

2mK

(
MK

12

)∗
= 〈K̄0|H∆S=2

eff |K0〉 , (4.5)

where the full mixingMK
12 consists of a SM and NP contribution as given in the following

MK
12 =

(
MK

12

)
SM

+
(
MK

12

)
NP

. (4.6)
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Hence, the NP part of the off-diagonal element is straightforwardly given by

2mK

(
MK

12

)∗
NP

= 〈K̄0|
[
H∆S=2

eff

]
NP
|K0〉 . (4.7)

We will briefly describe the well known SM contribution
(
MK

12

)
SM

in the following sec-
tion.

Now we have everything at hand in order to describe two well-measured observables of
the K0 − K̄0 system, in particular the splitting between the two mass eigenstates, the
KL and KS mass difference

∆MK = 2 ReMK
12 + (∆MK)LD , (4.8)

where (∆MK)LD is the unknown part from long-distance contributions. Further we
have the CP-violating parameter

εK =
κεe

iϕε

√
2(∆MK)exp

ImMK
12 , (4.9)

where ϕε = (43.51± 0.05)◦ and κε = 0.94± 0.02 [47,68] includes effects from ϕε 6= π/4
and also takes into account the additional effects from long-distance contributions.

Considering now the B0
d,s − B̄0

d,s systems, the off-diagonal element of the mass matrix
is similarly given by

M q
12 = (M q

12)SM + (M q
12)NP (4.10)

where q = d, s. Further details about the SM contribution
(
Md

12

)
SM

are deferred to the
next section. It is convenient to rewrite the off-diagonal element M q

12 as [139]

M q
12 = (M q

12)SMCBqe
2iϕBq , (4.11)

where (
Md

12

)
SM =

∣∣(Md
12

)
SM

∣∣ e2iβ , (4.12)

(M s
12)SM = |(M s

12)SM| e
2iβs , (4.13)

and the phases β and βs are defined through the CKM elements in the following way

Vtd = |Vtd|e−iβ and Vts = −|Vts|e−iβs . (4.14)

The mass differences in the B0
q − B̄0

q system is given by

∆Mq = 2 |M q
12| = (∆Mq)SMCBq . (4.15)

Next we consider the time-dependent CP asymmetries of the decays B0
d → ψKS and

B0
s → ψφ. They are special due to two reasons [140, 141]: first the final state is a CP
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eigenstate and second, a single decay mechanism dominates so that hadronic matrix
elements with their uncertainties drop out and direct CP violation vanishes. Thus

Γ(B0
q (t)→ f)− Γ(B0

q (t)→ f)

Γ(B0
q (t)→ f) + Γ(B0

q (t)→ f)
= − sinφ sin(∆Mqt) , (4.16)

where f on the left-hand side gives the final state depending on the decay, and φ =
2φD − 2φ qM on the right-hand side describes the weak phase difference. Taking the
coefficients of sin(∆Mdt) and sin(∆Mst) in the time dependent asymmetries in B0

d →
ψKS and B0

s → ψφ respectively, yields

SψKS = sin(2β + 2ϕBd) , (4.17)

Sψφ = sin(2|βs| − 2ϕBs) . (4.18)

These mixing induced CP asymmetries measure (β +ϕBd) and (|βs| −ϕBs) in presence
of the new CP-violating phases ϕBd and ϕBs respectively, as opposed to the SM where
they measure β and βs. Thus they allow us to draw conclusions about the new the CP
violating phases entering in M q

12. Note that the SM automatically yields φD ≈ 0 for
these decays. This cannot be assumed in the LRM due to the presence of tree-level
corrections. However it turns out that these effects are negligible.

Finally, following the discussions of [136], we consider the width difference ∆Γq and the
semileptonic CP asymmetry AqSL, which are defined respectively as

∆Γq = ΓqL − ΓqH , (4.19)

AqSL =
Γ(B̄0

q → `+X)− Γ(B0
q → `−X)

Γ(B̄0
q → `+X) + Γ(B0

q → `−X)
. (4.20)

The calculation of the theoretical predictions of both ∆Γq and AqSL requires a diag-
onalisation of 2 × 2 Hamiltonian H = M − iΓ/2 of the B0

q − B̄0
q system in order to

determine the off-diagonal matrix elements M q
12 and Γq12 [141]. Further simplifications

can be made when neglecting O(m4
b/m

4
t ) terms, so that we can write

∆Γq = −∆Mq Re

(
Γq12

M q
12

)
, (4.21)

AqSL = Im

(
Γq12

M q
12

)
. (4.22)

It should be mentioned that both observables are connected by a model-independent
correlation [142, 143]. This correlation can be derived analytically within certain ap-
proximations which are accurate for large Sψφ. However, since we investigate this
correlation numerically without further assumptions, we do not show the explicit for-
mula here. Furthermore, it is useful to extract the dependence of these observables on
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NP. Using equation (4.11), we obtain the following expressions for the width differences
∆Γq and the semileptonic CP-asymmetries AqSL

∆Γq
Γq

= −
(

∆Mq

Γq

)exp
[
Re
(

Γq12

M q
12

)SM cos 2ϕBq
CBq

+ Im
(

Γq12

M q
12

)SM sin 2ϕBq
CBq

]
,(4.23)

AqSL = Im
(

Γq12

M q
12

)SM cos 2ϕBq
CBq

− Re
(

Γq12

M q
12

)SM sin 2ϕBq
CBq

. (4.24)

It should be mentioned that the calculation of both ∆Γq and AqSL requires the knowledge
of non-perturbative effects of the off-diagonal matrix element Γq12. For this reason we
use the results of [61, 144], which give the following values:

Re
(

Γd12

Md
12

)SM

= −(5.3± 1.0)× 10−3 , Re
(

Γs12

M s
12

)SM

= −(5.0± 1.0)× 10−3 ,

(4.25)

Im
(

Γd12

Md
12

)SM

= −(4.1± 0.6)× 10−4 , Im
(

Γs12

M s
12

)SM

= (1.9± 0.3)× 10−5 . (4.26)

Also interesting from an experimental point of view is the like-sign dimuon charge
asymmetry of semi-leptonic decays of b-hadrons, which appears as a linear combination
of AdSL and AsSL. The explicit coefficients and a more detailed description can be found
in [145].

4.2.3. SM contribution to ∆F = 2 processes

As the SM is the low-energy limit of any NP model, the main contribution for ∆F = 2
processes comes from the SM, while the NP contributions are small. Therefore, we
will briefly summarise the results for ∆F = 2 processes in the SM from [133]. These
explicit formulas will mainly become interesting when studying a full theory as it is the
case in the LRM, while in the effective approach of RHMFV we are mainly interested
in estimating the magnitudes of deviations from the SM contribution.

In the SM, particle anti-particle mixing is described by box diagram contributions with
internal W -boson and up-type quark exchanges. The effective Hamiltonian of ∆S = 2
is to a good approximation described by[
H∆S=2

eff

]
SM =

G2
F

4π2
M2

W

[
λc

2η1S0(xc) + λt
2η2S0(xt) + 2λcλtη3S0(xc, xt)

]
×QV LL1 (K) ,

(4.27)
where λi = V ∗isVid is given by the relevant CKM elements and the explicit form of the
one-loop box functions S0(xi) and S0(xi, xj) with xi = m2

i /M
2
W can be found in [129].

We have also collected them in appendix E. Short-distance QCD effects are governed
by the factors ηi up to NLO level and can be found in [146–150]. Note that here we
have made the strong coupling dependent terms implicit as this dependence is absorbed
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in the renormalisation group invariant parameter B̂K . It should be stressed again that
in the SM effective Hamiltonian only a single operator appears.

Evaluating the matrix elements using equation (4.5), we finally obtain the off-diagonal
element of the mass matrix(

MK
12

)
SM =

G2
F

12π2
F 2
KB̂KmKM

2
W

[
λ∗2c η1S0(xc) + λ∗2t η2S0(xt) + 2λ∗cλ

∗
tη3S0(xc, xt)

]
.

(4.28)
with the K meson decay constant FK and the K meson mass mK . We have collected
all relevant numerical input parameters in table 6.2.

In an analogous procedure one can derive the off-diagonal element of the mass matrix
in Bq − B̄q mixing, we find

(M q
12)SM =

G2
F

12π2
F 2
BqB̂BqmBqM

2
W

[(
λ

(q)∗
t

)2

ηBS0(xt)

]
, (4.29)

where λ(q)
t = V ∗tbVtq. In contrast to the K system now both charm and mixed top-charm

contributions are found to be negligible. Again, the relevant input parameters can be
found in table 6.2.

4.2.4. Comparison of SM and experimental values

In this section we want to compare the experimental situation to the SM prediction for
∆F = 2 observables. We have already discussed the observables Sψφ, |εK | and SψKS in
section 2.1.1 and refer to that section for more details. Here we additionally give the
most recent experimental values for φs related to Sψφ.

We have already shown that the SM picture exhibits various tensions within certain
∆F = 2 observables. However, these tensions can be moved to other observables
depending upon which inputs are chosen. In particular, performing a global fit of all
observables leads to a distinct picture distributing the tensions over various observables.

Now we briefly summarise the situation for the remaining observables discussed in this
thesis. Generally, experimental and SM values of the mass differences in ∆F = 2 tran-
sitions are in quite good agreement with each other. While there is still room for NP
in B0

d,s − B̄0
d,s mixing, in K0 − K̄0 mixing we only have information about the short-

distance contribution. Hence less accurate predictions can be made due to the large
uncertainties from the unknown long-distance part.

Finally, we take a look at the width difference ∆Γq and the semileptonic CP asym-
metry AqSL, where detailed numbers are shown in table 4.1. Both observables suffer
from large uncertainties. The observable AbSL is particularly interesting, as it can be
measured with more precision than its components AqSL, as can be seen from table 4.1.
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Nevertheless, once experimental precision will improve, this class of observables might
help to constrain NP scenarios in the future.

observable experimental value SM prediction

φs = −2(βs + ϕBs) ∈ [−1.04,−0.04] (CDF [64]) -0.0363(17) [78]

−0.55+0.38
−0.36 (D0 [65])

+0.13(18)(7) (LHCb [66])
∆Γd
Γd

0.011(37) [114] 0.0042(8) [61]

∆Γs 0.075(35)(1) ps−1 (CDF [64]) 0.087(21) ps−1 [61]

0.163+0.065
−0.064 ps−1 (D0 [65])

0.123(29)(8) ps−1 (LHCb [66])

AdSL −0.12(52)% [145] −0.041(6)% [144]

AsSL −1.8(11)% [145] 0.0019(3)% [144]

AbSL −0.79(20)% [145] −0.020(3)% [144]

Table 4.1.: Comparison of experimental bounds and SM expectation of several
∆F = 2 observables related to Bs,d − B̄s,d mixing. The numbers in parentheses

indicate the uncertainty in the last digits.

4.3. Rare Kand B decays

4.3.1. ∆F = 1 operator basis for selected decays with RH
currents

We now briefly summarise necessary ingredients for the rare decay studies within this
thesis. Let us start again with collecting all contributing operators. The operator
structure of ∆F = 1 processes is much richer for rare decays. A full list can be found
in [134]. Here we restrict ourselves to operators relevant for decays analysed in this
thesis. In RHMFV we consider only decays containing a lepton pair in the final state.
This is mainly due to the fact that the effective approach is only powerful in mak-
ing predictions for decays, which are relatively simple and restricted in their operator
structure. In the LRM we concentrate on the analysis of B → Xsγ.

First, we give the operator basis of the decay Bq → µ+µ− (q = s, d) in the presence of
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RH currents, which reads

QLLµµ̄ = (b̄Lγ
µqL)(µ̄LγµµL) ,

QLRµµ̄ = (b̄Lγ
µqL)(µ̄RγµµR) ,

QRLµµ̄ = (b̄Rγ
µqR)(µ̄LγµµL) ,

QRRµµ̄ = (b̄Rγ
µqR)(µ̄RγµµR) . (4.30)

We want to stress that this basis does not include scalar currents. This is justified
since this decay is only considered in RHMFV, where no scalar currents arise. When
building the effective Hamiltonian and subsequently evaluating the matrix elements for
the decay amplitude for Bq → µ+µ−, the following simplifications can be made. The
quark and lepton parts can be separated and only the axial part contributes according
to

〈0|b̄γµPR,Lq|B0〉 = ±1

2
〈0|b̄γµγ5q|B0〉 , 〈µ̄µ|µ̄γµPR,Lµ|0〉 = ±1

2
〈µ̄µ|µ̄γµγ5µ|0〉 .

(4.31)
We will come back to a detailed consideration in section 5.2.3.

For semileptonic decays with a neutrino pair in the final state, this basis simplifies
further

QLLνν̄ = (b̄Lγ
µsL)(ν̄LγννL) ,

QRLνν̄ = (b̄Rγ
µsR)(ν̄LγννL) , (4.32)

where we have chosen the flavour basis for B → {Xs, K,K
∗}νν̄ decays. Recall that

in SM only the first operator exists. For K → πνν̄ decays one only has to switch
to appropriate flavours, in particular making the replacements b → s and s → d in
equation (4.32).

A more complicated operator structure is obtained for the inclusive decay B → Xsγ.
The dipole operators characteristic for the decay B → Xsγ are given by

Q7γ =
e

16π2
mbs̄ασ

µνPRbαFµν ,

Q′7γ =
e

16π2
mbs̄ασ

µνPLbαFµν ,

Q8G =
gs

16π2
mbs̄ασ

µνPRT
a
αβbβG

a
µν ,

Q′8G =
gs

16π2
mbs̄ασ

µνPLT
a
αβbβG

a
µν , (4.33)

where the unprimed operators are already present in the SM. The operators Q7γ and
Q′7γ originate from magnetic photon penguins. These are generated when keeping both
external b-quark masses and external momenta up to second order in the expansion
in the connected photon penguin vertex. Similarly, Q8G and Q′8G stem from magnetic
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gluon penguins.

We would like to emphasise that the renormalisation group analysis also involves
current-current and QCD-penguin operators which we have not shown here. Their
explicit form for the SM operators can be found in [129] where they are denoted as
Q1...Q6. In the SM the two sets of operators (Q7γ, Q8G) and (Q1...Q6) do not mix at
one-loop level under renormalisation group evolution. Hence in order to calculate the
leading mixing contribution one has to perform two-loop calculations. Consequently
for next-to-leading order precision a three-loop calculation is necessary. This mixing is
very important as it has significant impact on the resulting decay rate. In the LRM the
procedure of calculating the strong interaction corrections is even more involved [151]:
apart from the above mentioned operators two additional four-quark operators with
different chirality structure contribute. Furthermore all chirality flipped four-quark op-
erators have to be included, which increases the total number of operators to 20. The
full operator basis is presented in [151]. However in the final analysis only a subset
plays an important role. We will study further details below.

4.3.2. Comparison of SM and experimental values

In contrast to the mainly well measured ∆F = 2 observables, the experimental situ-
ation for rare decays is quite different. In most cases only upper bounds exist. The
predictions for various branching ratios in a NP model are important because these
may be confirmed or excluded by experiment. We have collected both experimental
and SM value in table 4.2.

observable experimental value SM prediction

Br(Bs → µ+µ−) ≤ 3.3 (5.3)× 10−8 [152,153] (3.2± 0.2)× 10−9 [138]

Br(Bd → µ+µ−) ≤ 1× 10−8 [152] (1.0± 0.1)× 10−10 [154]

Br(B → Kνν̄) < 1.4× 10−5 [155] (3.64± 0.47)× 10−6 [156–158]

Br(B → K∗νν̄) < 8.0× 10−5 [159] (7.2± 1.1)× 10−6 [156–158]

Br(B → Xsνν̄) < 6.4× 10−4 [160] (2.7± 0.2)× 10−5 [156–158]

Br(KL → π0νν̄) ≤ 6.7× 10−8 [161] (2.8± 0.6)× 10−11 [162]

Br(K+ → π+νν̄) 17.3+11.5
−10.5 × 10−11 [163] (8.5± 0.7)× 10−11 [162]

Br(B → Xsγ) (3.55± 0.26)× 10−4 [164] (3.15± 0.23)× 10−4 [165]

Table 4.2.: Comparison of experimental bounds and SM expectation of branching
ratios of rare K and B decays

For the decays Br(Bq → µ+µ−), the bound of Br(Bs → µ+µ−) is already relatively close
to the SM predictions. In table 4.2 we have collected the 95% C.L. upper limits from
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CDF [152] and D0 [153] (the measurements from the D0 experiment is given in paren-
theses). Improved measurements are expected in the future by LHCb. The Bs → µ+µ−

decay is the most promising as the sensitivity has to be increased only by one order
of magnitude. In table 4.2 we also show the SM predictions, extracted by using the
relation of Br(Bq → µ+µ−) to ∆Mq as described in [154] and with updated values [138].

Also promising are the rare K and B decays of the class with a neutrino pair in the fi-
nal state, as they are theoretically very clean. This is mainly because non-perturbative
contributions of both low energy QCD dynamics and photon exchanges are either elimi-
nated in inclusive decays or encoded in an efficient way in the hadronic matrix elements
in case of exclusive decays [158]. Even though the measurement of the branching ratios
is a big challenge, there is hope for future data from Super-B factories [166, 167]. We
have collected experimental values and SM predictions for the decays considered in this
thesis in table 4.2. Here a comment is in order: the SM predictions for the decays
B → {Xs, K,K

∗}νν̄ contain only the short-distance contributions to these decays. As
described in [157] these can be derived by a special method where the reducible long-
distance effects are subtracted from the corresponding total rates.

We now mention the rare kaon decays K+ → π+νν̄ and KL → π0νν̄. In the SM they
are governed by Z penguins and box diagrams. These decays are theoretically very
clean due to the fact that the corresponding hadronic matrix elements can be extracted
from K+ → π0e+ν including isospin corrections [168]. The SM result is known up
to next-to-next-to-leading order (NNLO) level in QCD corrections [169]. Furthermore
it should be mentioned that in contrast to the CP conserving decay K+ → π+νν̄,
KL → π0νν̄ is affected by mixing-induced CP violation. Hence its measurement can
help to draw conclusions about NP contributions to CP violation [168, 170]. While an
experimental value already exists for the branching ratio of K+ → π+νν̄, only an upper
bound for KL → π0νν̄ is available. This upper bound is still two orders of magnitude
above the SM value.

Among the rare decays the radiative decay B → Xsγ plays a very special role. As stated
already above, the SM calculation of the branching ratio for B → Xsγ is challenging
due to vanishing operator mixing under renormalisation at one-loop level. Since 2006
the authors of [165] provided a calculation including three-loop on-shell and four-loop
tadpole Feynman diagrams, the SM result is now known up to NNLO QCD correction.
Hence together with the measurements from Belle and BaBar at Eγ > 1.6 GeV, this
radiative decay provides now strong constraints on NP scenarios. Note that errors in
both the SM branching ratio and experimental value are already below 10%. Having the
SM value below the experimental one, models with NP providing a positive contribution
to the SM branching ratio are consequently favoured [170].
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5. Flavour phenomenology of
RHMFV

We now want to examine whether the new flavour mixing in RHMFV is consistent
with low energy observables from particle anti-particle mixing and rare decays of B
and K mesons. The specific model features of RHMFV were discussed in chapter 2,
where we fixed the RH mixing matrix for this framework. We will use the basic tools
for analysing flavour observables described in chapter 4. We will further constrain the
structure of the RH mixing matrix, study correlations of observables and examine the
impact on the anomalies collected in section 2.1.1.

5.1. ∆F = 2 observables in RHMFV

5.1.1. The effective ∆F = 2 Lagrangian of RHMFV

In this chapter we investigate the impact of RH currents on meson anti-meson mixing.
As indicated in section 2.3.4 in RHMFV, the NP effects enter through dimension-six
operators, contributing by means of an effective Lagrangian

L∆F=2 =
cRR
Λ2

O
(6)
RR +

cLR
Λ2

O
(6)
LR , (5.1)

where the operators were already described in equations (2.26) and (2.27) and cRR and
cLR are flavour-blind dimensionless coefficients. The determination of the size of these
coefficients is one of the questions which we address below.

As indicated in section 4.2.1, we switch to the operator basis given in equation (4.2).
In RHMFV four operators can be relevant, in particular QV LL1 , QV RR1 , QLR1 and QLR2 .
Assuming a scale µR, at which the NP is integrated out, the effective Hamiltonian for
the NP part is given by[

H∆F=2
eff (µR)

]
NP

=
1

Λ2

[
C1

V LL(µR,M)QV LL1 + CV RR
1 (µR,M)QV RR1

+CLR
1 (µR,M)QLR1 + CLR

2 (µR,M)QLR2

]
, (5.2)

where µR = O(Λ) = O(1 TeV). We have neglected QCD corrections at that scale.
Furthermore, M stands for the meson system, in particular K and Bs,d, on which the
Wilson coefficients Ca

i with i = 1, 2 and a = V LL, V RR,LR depend. At the scale
µR the Wilson coefficient CV LL

1 receives only NP contributions. Integrating out the W
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boson and the top quark leads to some additional effects from SM. As in RHMFV we
restrict ourselves to the dominant effects from the RH sector, represented by O(6)

RR and
O

(6)
LR in (5.1). This coefficient will be set to be zero at this high scale. Similarly, we

impose a vanishing CLR
2 .

5.1.2. Renormalisation group effects

In the next step we want to evolve (5.2) down to the low scale µL. To this end we
study renormalisation group (RG) effects following [133]. The scale µL depends on the
meson system in question and is usually chosen to be of the order of the meson mass.
To be specific, we have µL = 2 GeV for K system and µL = µb = 4.6 GeV for the Bd

and Bs. Each of the operators QV LL1 , QV RR1 , QLR1 and QLR2 behaves differently under
this evolution: The first two operators are easy to handle. QV LL1 renormalises under
QCD independently of other operators, as does QV RR1 . In fact the RG running gives
the same contribution to both their Wilson coefficients as QCD is not sensitive to the
sign of γ5. Furthermore, the RG evolution of the SM and the NP part contributing
to QV LL1 can be considered separately. The other two operators QLR1 and QLR2 form a
two by two system and mix under renormalisation. Note that the coefficient of QLR2

vanishes at high scale at the leading order (LO) renormalisation analysis but exists at
next-to-leading order (NLO) level and is generally O(αs(µR)).

The prescribed procedure is a well known technique. However, here we benefit from an
additional simplification: We evaluate the hadronic matrix elements of equation (4.7)
using the Wilson coefficients Ca

i (µR,M) of the meson system M = K,Bd, Bs at the
high scale µR according to

〈K̄0|Qa
i (µR, K)|K0〉 =

2

3
m2
KF

2
KP

a
i (K), (5.3)

〈B̄0
q |Qa

i (µR, Bq)|B0
q 〉 =

2

3
m2
BqF

2
BqP

a
i (Bq) (5.4)

The coefficients P a
i (M) compactly encode all RG flow effects from scales below µR and

capture the long distance effects of hadronic matrix elements. It transparently displays
short distance NP effects as opposed to the complicated QCD effects. Analytic formu-
lae for P a

i (M) factors have been presented in [133]. These expressions explicitly display
the dependence on RG QCD factors and non-perturbative parameters Ba

i (µL), where
µL is the above described low energy scale. More details about the explicit calculation
of the Ba

i (µL) parameters are presented in [49].

Here two comments are in order: The LR operators are known to have a sizable impact
on NP effects due to their enhancement under RG evolution. In the case of K0–K̄0

mixing one also has to take the chiral enhancement of the hadronic matrix elements
into account.
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5.1.3. Wilson coefficients and first statements about
right-handed contributions to flavour mixing

From the statements made above we now know that it is necessary to find the Wilson
coefficients Ca

i at high scale. They can be easily deduced from matching our effective
RHMFV Lagrangian (5.1) to the effective Hamiltonian in the general basis given in
(5.2). We collect here our results for K, Bd and Bs system.

First the Wilson coefficients for the K system read

CV LL1 (µR, K) = 0 ,

CV RR1 (µR, K) = −cRRy4
t e

2i(φd2−φd1)
[
(Ṽ0)∗ts(Ṽ0)td

]2

≈ −cRR
4
y4
t e

2i(φd2−φd1)(c̃12s̃12)2 ,

CLR1 (µR, K) = −cLRy4
t e
i(φd2−φd1)V ∗tsVtd(Ṽ0)∗ts(Ṽ0)td ≈ −

cLR
2
y4
t e
i(φd2−φd1)(V ∗tsVtd)(c̃12s̃12) ,

CLR2 (µR, K) = 0 . (5.5)

It should be mentioned that when evaluating the Yukawas according to equation (2.20)
the phase dependence appears through

Ṽ ∗3iṼ3j = ei(φ
d
i−φdj )(Ṽ0)∗3i(Ṽ0)3j . (5.6)

while for Ṽ0 we have made use of equation (2.77) as described in chapter 2.4.

Similarly we obtain the non-vanishing Wilson coefficients of the Bs,d systems

CV RR1 (µR, Bq) = −cRRy4
t e

2i(φd3−φdq)
[
(Ṽ0)∗tb(Ṽ0)tq

]2

,

CLR1 (µR, Bq) = −cLRy4
t e
i(φd3−φdq)V ∗tbVtq(Ṽ0)∗tb(Ṽ0)tq . (5.7)

Inserting the particular structure of the RH mixing matrix yields

CV RR1 (µR, Bd) ≈ −cRR
4
y4
t e

2i(φd3−φd1) c̃2
12 ,

CLR1 (µR, Bd) ≈ ∓cLR
2
y4
t e
i(φd3−φd1)V ∗tbVtd c̃12 , (5.8)

and

CV RR1 (µR, Bs) ≈ −cRR
4
y4
t e

2i(φd3−φd2) s̃2
12 ,

CLR1 (µR, Bs) ≈ ∓cLR
2
y4
t e
i(φd3−φd2)V ∗tbVts s̃12 , (5.9)

where the sign ∓ appears due to (2.77).

We are now able to draw first conclusions about the flavour structure of our model. It
should be noted that cRR and cLR are flavour-blind and hence enter universally in theK,
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Mixing term K-mixing Bd-mixing Bs-mixing

s→ d b→ d b→ s

Ṽ ∗ti Ṽtj
1
2
c̃12s̃12e

i(φd2−φd1) ±1
2
c̃12e

i(φd3−φd1) ±1
2
s̃12e

i(φd3−φd2)

Table 5.1.: Structures of flavour mixing in the RH sector contributing to particle
anti-particle mixing for the parametrisation Ṽ (II)

0 as given in equation (2.77).

Bd and Bs system. Therefore, the full flavour dependence is encoded in the RH mixing
matrix. To this end it is sufficient to consider how this matrix manifests itself in the
various processes as summarised in table 5.1. We recognise a non-universal structure
with the observables in K-mixing, Bd mixing and Bs-mixing which are dominated by
c̃12s̃12, c̃12 and s̃12, respectively. The strong constraints on the K system, mainly by εK ,
point towards either a small c̃12 or s̃12 unless cRR and cLR are very small. Due to the
enhanced value of Sψφ measured by CDF [56] and D0 [57] collaborations1, we assume
large CP-violating effects in Bs-mixing. Hence we choose s̃12 to be large, which then
in combination with εK automatically implies negligible effects in Bd mixing. Roughly,
the RH mixing matrix appears with the following structure

∣∣∣Ṽ0

∣∣∣ ∼
 0

√
2

2

√
2

2

1 0 0

0
√

2
2

√
2

2

 , (5.10)

where the zero entries should not be understood as exact zeros. Note that there are
additional phases from the diagonal matrices shown in equation (2.29).

We do not want to make such a rough approximation, but the above arguments make
clear that assuming c̃12 � 1 and hence s̃12 ≈ 1 is natural. In this limit the non-vanishing
Wilson coefficients relevant for K0–K̄0 mixing simplify to

CV RR1 (µR, K) ≈ −cRR
4
y4
t e

2iφd21 c̃2
12 ,

CLR1 (µR, K) ≈ −cLR
2
y4
t e
iφd21V ∗tsVtdc̃12 , (5.11)

where we have introduced the notation φd21 = (φd2 − φd1). No further simplifications
occur in the Bd sector. For the Bs system we can trivially write

CV RR1 (µR, Bs) ≈ −cRR
4
y4
t e

2iφd32 ,

CLR1 (µR, Bs) ≈ ∓cLR
2
y4
t e
iφd32V ∗tbVts , (5.12)

where we have also defined the compact notation φd3i = (φd3 − φdi ) for the B system.

1These earlier measurements served as a motivation for this analysis, recent measurements from LHCb
seem to favour lower values of Sψφ. Higher statistics are needed to provide a firm conclusion.
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We briefly mention how the structure of the Wilson coefficients changes with the second
ansatz Ṽ (III)

0 . Bearing in mind that c̃13 � 1 in this ansatz, we list the structure of flavour
mixing in RH sector in table 5.2. A comparison with table 5.1 shows that in the K
system we only expect a change of a factor of two. In B0

d,s− B̄0
d,s mixing the effects are

automatically small. Therefore this ansatz is phenomenologically less appealing and
we only pursue the ansatz Ṽ (II)

0 in the following.

Mixing term K-mixing Bd-mixing Bs-mixing

s→ d b→ d b→ s

Ṽ ∗ti Ṽtj c̃12s̃12e
i(φd2−φd1) c̃12c̃13e

i(φd3−φd1) s̃12c̃13e
i(φd3−φd2)

Table 5.2.: Structures of flavour mixing in the RH sector contributing to particle
anti-particle mixing for the parametrisation Ṽ (III)

0 as given in equation (2.78).

5.1.4. K0–K̄0 mixing

We now take a closer look at KL − KS mass difference, ∆MK , and the CP-violating
parameter εK . To this end we evaluate the off-diagonal element MK

12 of the neutral
K-meson mass matrix according to equation (4.7) and make use of our effective Hamil-
tonian given in equations (5.2) and (5.3). We find

(
MK

12

)
NP =

1

3Λ2
mKF

2
K ·
[ (
CV LL

1 (µR, K) + CV RR
1 (µR, K)

)
P V LL

1 (K)

+CLR
1 (µR, K)PLR

1 (K)
]∗
, (5.13)

where
P V LL

1 (K) ≈ 0.50, PLR
1 (K) ≈ −52 . (5.14)

These values are derived from the analytic formulae of [133], setting the matching scale
to µR = 1.5 TeV, and taking the hadronic matrix elements from [171]. All necessary
numerical values are collected in table 5.3.

Inserting the Wilson coefficients from equation (5.11) and using the formulae for ∆MK

and εK given in equations (4.8) and (4.9) respectively, we get

(∆MK)RH = (∆MK)exp ×
[
−2.5× 104 × cRRc̃2

12 cos(2φd21)

−1.7× 103 × cLRc̃12 cos(φd21 − β + βs)
] (3 TeV)2

Λ2
, (5.15)

(εK)RH = |εK |exp e
iφε ×

[
3.7× 106 × cRRc̃2

12 sin(2φd21)

+2.5× 105 × cLRc̃12 sin(φd21 − β + βs)
] (3 TeV)2

Λ2
, (5.16)
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parameter value parameter value
FK (155.8± 1.7) MeV [94] ∆MK (5.292± 0.009)× 10−3ps−1 [74]
FBd (192.8± 9.9) MeV [94] ∆Md (0.507± 0.005) ps−1 [79]
FBs (238.8± 9.5) MeV [94] ∆Ms (17.77± 0.12) ps−1 [79]
B̂K 0.725± 0.026 [94] |Vtb| 1± 0.06 [172]
B̂Bd 1.26± 0.11 [94] |Vtd| (8.3± 0.5)× 10−3 [172]
B̂Bs 1.33± 0.06 [94] |Vts| 0.040± 0.003 [172]
MK 0.497614GeV [74] sin(2βs) 0.038± 0.003 [172]
MBd 5.2795 GeV [74] γ 1.09± 0.12 [172]
MBs 5.3664 GeV [74] εexpK (2.229± 0.01)× 10−3 [74]
mt(mt) (163.5± 1.7) GeV [173] Sexp

ψKS
0.672± 0.023 [79]

Table 5.3.: Numerical input parameters for ∆F = 2 observables.

while for numerical values we have again used table 5.3. We have used the usual
convention for the phases β and βs, in particular

Vtd = |Vtd|e−iβ and Vts = −|Vts|e−iβs . (5.17)

It turns out that the RH contribution can be significant, independent of the size of the
new CP-violating phase φd21, and strongly constrains other parameters as shown below.
Setting φd21 to zero we obtain

cRR c̃
2
12 < 2.0× 10−5 , from (∆MK)RH < 0.5(∆MK)exp , (5.18)

cLR c̃12 < 1.0× 10−6 , from |εK |RH < 0.1|εK |SM . (5.19)

When we turn on the phase φd21 the bound on cRRc̃2
12 becomes stronger while the bound

on cLRc̃12 can be weakened down to 3×10−4. However, this is fine-tuned scenario where
new phase φd21 and the CKM phase of V ∗tsVtd exactly cancel each other.

5.1.5. B0
d,s − B̄0

d,s mixing

We now turn to B0
d− B̄0

d and B0
s − B̄0

s mixing. Since the derivation is completely analo-
gous to the K0–K̄0 mixing, we just summarise the results here. The NP contribution of
the off-diagonal element M q

12 with q = d, s for the corresponding mass matrix is given
by

(M q
12)NP =

1

3Λ2
mBqF

2
Bq

[ (
CV LL

1 (µR, B) + CV RR
1 (µR, B)

)
P V LL

1 (B)

+CLR
1 (µR, B)PLR

1 (B)
]∗
, (5.20)

with
P V LL

1 (B) ≈ 0.70, PLR
1 (B) ≈ −3.2 , (5.21)
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where we have used the above stated procedure with a matching scale of µR = 1.5 TeV.
Adding the SM and NP part as shown in (4.10), we thus obtain

(Md
12)SM+RH = (Md

12)SM ×
[
1 +(

−6.1× 103 × cRRc̃2
12e
−2i(φd31+β) ± 4.7× 102 × cLRc̃12e

−i(φd31+β)
) (3 TeV)2

Λ2

]
,(5.22)

(M s
12)SM+RH = (M s

12)SM ×
[
1 +(

−2.5× 102 × cRRe−2i(φd32+βs) ∓ 0.9× 102 × cLRe−i(φ
d
32+βs)

) (3 TeV)2

Λ2

]
. (5.23)

Taking into account the bounds on cRRc̃
2
12 and cLRc̃12 from in (5.18) and (5.19), we

realise that the kaon bounds imply, as already anticipated in our early analysis above,
negligible effects in Bd mixing. In the Bs system larger effects are possible, especially
when cRR,LR are in the 10−3–10−2 range and c̃12 is small enough to satisfy the kaon
bounds. We obtained these results under the assumption of a large non-standard Sψφ.
This will be elaborated on in more detail in the following section. However, it should be
briefly stated that new experimental input lowering the effects in the Bs system would
imply bigger effects in Bd mixing within RHMFV.

5.1.6. Combined fit of εK and Bs mixing

For a more detailed analysis we now consider the constraints from εK and Bs mixing
simultaneously. As before we want to assume a large Sψφ, then

(∆Ms)exp

(∆Ms)SM

≈ 0.96± 0.15 and Sψφ ≈ 0.6± 0.3 . (5.24)

These two conditions for Bs mixing allow us to set up a system of two equations which
can be solved. One obtains conditions for coupling coefficients and phases, which we
will apply later in the analysis of rare decays.

For example, assuming the RR operator in (5.23) to be dominant (cRR � cLR), we
obtain

(∆Ms)exp

(∆Ms)SM

=
(∆Ms)SM+RH

(∆Ms)SM

=
∣∣∣1− 2.6× 102 × cRRe−2iφd32

∣∣∣ , (5.25)

Sψφ = − 2.6× 102 × cRR sin(2φd32)∣∣1− 2.6× 102 × cRRe−2iφd32
∣∣ . (5.26)

The solutions for this case are given by

cRR ≈ ±7.3× 10−3 and sin(2φd32) ≈ ∓0.30 ,

cRR ≈ ±2.3× 10−3 and sin(2φd32) ≈ ∓0.95 . (5.27)
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operator size of coefficient suppression
RH charged current O(1) tree-level
∆F = 2 1/(16π2) ≈ 6× 10−3 loop

Table 5.4.: Size of coefficients and level of suppression for different observables.

We obtain coupling coefficients of O(10−3) which are substantially lower than the O(1)
Wilson coefficients determined from charged-currents. Naïvely the small value of cRR
does not seem natural, however this can be understood from the fact that ∆F = 2
operators are loop-suppressed with respect to charged current operators. This is sum-
marised in table 5.4.

Now we want to investigate whether these solutions for the Bs mixing parameters also
satisfy the kaon bounds. As we will show in detail in the following section, εK does not
require contributions from new CP-violating phases within RHMFV in order to attain
a better agreement with the experimental value than the SM. However, there is still
room for an extra contribution for NP in equation (5.16) since theoretical errors allow
for ≈ ±10% variation of the SM amplitude. For this condition we find using equation
(5.27),

|c̃12|| sin(2φd21)|1/2 < 1.9× 10−3 , for |cRR| ≈ 7.3× 10−3 ,

|c̃12|| sin(2φd21)|1/2 < 3.4× 10−3 , for |cRR| ≈ 2.3× 10−3 . (5.28)

Even though these values are small this does not imply that they are fine-tuned. One
can see that a CP-violating phase of O(10−1) corresponds to a maximal mixing angle
c̃12 of O(10−2), which is still larger than |Vub| in the CKM matrix.

When the LR operator provides the dominant contribution (cRR � cLR) to Bs mixing,
more fine-tuning is required due to the large chiral enhancement of the left-right op-
erator in εK . This can be seen easily if we repeat the derivations from above for this
case. The two conditions on Bs mixing then read

cLR ≈ ±2.0× 10−2 and sin(2φd32) ≈ ∓0.30 ,

cLR ≈ ±0.6× 10−2 and sin(2φd32) ≈ ∓0.95 , (5.29)

thus leading to

|c̃12 sin(φd21 − β + βs)| < 0.2× 10−4 , for |cLR| ≈ 2.0× 10−2 ,

|c̃12 sin(φd21 − β + βs)| < 0.6× 10−4 , for |cLR| ≈ 0.6× 10−2 . (5.30)

This clearly shows that a more stringent bound is obtained compared to equation (5.28).

5.1.7. Effects due to sin(2β) enhancement

Let us take a closer look at εK . As RH currents favour the inclusive determination giving
the “true” |Vub|, one can immediately see that the value for sin(2β)RH

tree obtained is sub-
stantially higher than the corresponding result obtained in the SM, where the inclusive
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and exclusive determinations of |Vub| are averaged. In particular, following [172] we ob-
tain sin(2β)RH

tree = 0.77±0.05 while the SM value reads sin(2β)SM
tree = 0.734±0.034 [172].

It follows that due to the sin(2β) enhancement, the tension between the experimen-
tal value of εK and its prediction within the SM is automatically resolved within our
framework.

However, as the NP contribution to Bd mixing is constrained to be negligible, we expect
SRH
ψKS

to be significantly larger than the experimental value Sexp
ψKS

= 0.672± 0.023 [79].
As a result the existing tension between these two values increases. Our result is about
2σ larger than the measured value. This means that SψKS cannot be solved by RH
currents alone in this framework. However, a significantly lower measured value of Sψφ
might allow effects in Bd mixing. This could then lead to a large enough new phase ϕBd
in Bd mixing, contributing to SψKS according to equation (4.17), to ease the tension.

5.2. ∆F = 1 observables in RHMFV

5.2.1. The effective ∆F = 1 Lagrangian of RHMFV

After having studied the details of RHMFV contributions to ∆F = 2 processes, we
now consider the extent to which RHMFV manifests itself within ∆F = 1 processes.
Once more we start with the effective Lagrangian containing the operators of equation
(2.28), which we classified in section 2.3.5. The ∆F = 1 effective Lagrangian then
simply reads

L∆F=1 =
cRZ1

Λ2
O

(6)
RZ1

+
cRZ2

Λ2
O

(6)
RZ2

. (5.31)

The flavour blind coefficients cRZ1
and cRZ2

encode the high energy dynamics which
can arise e.g. within a left-right symmetric framework via a heavy ZR boson. Note
that due to the insertion of Yukawa matrices (Y †uYu)ij in the operators O(6)

RZ1
and O(6)

RZ2
,

a special flavour structure is selected.

The new dimension six operators generate an effective d̄iRγµd
j
RZµ coupling, leading

to the main contributions to ∆F = 1 processes. This effective coupling arises after
electroweak symmetry breaking and has the following form:

L(ZR)
eff = − g

cW

v2(cRZ1
+ 2cRZ2

)

2Λ2
y2
t (Ṽ

∗
ti Ṽtj)d̄

i
Rγ

µdjRZµ , (5.32)

where we henceforth make use of the compact notation cW = cos ΘW and sW = sin ΘW .

In order to clarify the notation convention, we provide the full effective couplings of
the Z boson to down-type quarks

LZeff =
g

cW

(
gijL d̄iLγ

µdjL + gijR d̄iRγ
µdjR
)
Zµ . (5.33)
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The LH coupling gijL is only determined by the SM, and is given by

(gijL )SM =

(
−1

2
+

1

3
s2
W

)
δij +

g2

8π2
V ∗tiVtjC0(xt) , xt =

m2
t

m2
W

. (5.34)

where C0(xt) describes the Z vertex function arising from the one loop penguin diagram
in the ’t Hooft-Feynman gauge and can be found in [132]. The RH coupling consists of
both SM and new RH contribution

gijR = (gijR)SM + (∆gijR)RH , (5.35)

where

(gijR)SM =
1

3
s2
W δij , (5.36)

(∆gijR)RH = −v
2(cRZ1

+ 2cRZ2
)

2Λ2
y2
t Ṽ
∗
ti Ṽtj . (5.37)

As it turns out it will be useful to introduce an effective coupling written as

ceff
ZR

= (cRZ1
+ 2cRZ2

)
(3 TeV)2

Λ2
. (5.38)

Since cRZi = O(1), for Λ = 3 TeV this effective coupling is O(1), hence guaranteeing a
transparent description.

5.2.2. Effective Hamiltonians of rare K and B decays

Now we are prepared to collect the effective Hamiltonians relevant for the decays to be
considered. We concentrate on decays with a lepton pair in the final state, in particular
Bs,d → µ+µ−, B → {Xs, K,K

∗}νν̄ and K → πνν̄.

The effective Hamiltonian for Bs,d → µ+µ− reads

Heff = −4GF√
2

α

2πs2
W

V ∗tbVtq
[
YLL(b̄Lγ

µqL)(µ̄LγµµL) + YLR(b̄Lγ
µqL)(µ̄RγµµR)

+YRL(b̄Rγ
µqR)(µ̄LγµµL) + YRR(b̄Rγ

µqR)(µ̄RγµµR)
]
, (5.39)

where q = d, s. Note that the full basis of operators mentioned in equation (4.30)
appears, while in the SM only the first two operators contribute. Hence, the SM limit
is given by YLL − YLR = Y0(xt) and YRR = YRL = 0. In case of RHMFV, the new
RH contributions only affect YRL and YRR. These can be derived using the effective
coupling from equation (5.32). We obtain

YRL − YRR = −T Ṽ ∗tbṼtq
V ∗tbVtq

, YRL + YRR = −(1− 4s2
W ) T

Ṽ ∗tbṼtq
V ∗tbVtq

, (5.40)
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where we have introduced

T = (cRZ1
+ 2cRZ2

)
4π2v2y2

t

g2Λ2
= 0.55×

(
mt(mt)

163.5 GeV

)2

ceff
ZR

. (5.41)

As the νR fields are assumed to be heavy enough to not contribute to the decay B →
{Xs, K,K

∗}νν̄, the construction of the effective Hamiltonian turns out to be simpler.
We have

Heff =
4GF√

2

α

2πs2
W

V ∗tbVts×
[
XLL(Bs)(b̄Lγ

µsL) +XRL(Bs)(b̄Rγ
µsR)

]
× (ν̄LγννL) , (5.42)

where

XRL(Bs) = −T Ṽ ∗tbṼts
V ∗tbVts

. (5.43)

Again, let us compare to the SM, where XRL = 0 and XLL ≡ XSM = 1.464±0.041 [169].

In case of K → πνν̄ we similarly obtain

Heff =
4GF√

2

α

2πs2
W

V ∗tsVtd × [XLL(K)(s̄Lγ
µdL) +XRL(K)(s̄Rγ

µdR)]× (ν̄LγννL) , (5.44)

with

XRL(K) = −T Ṽ ∗tsṼtd
V ∗tsVtd

. (5.45)

Note that we only show the leading top-quark contribution for simplicity. While in
KL → π0νν̄ the charm contributions can be safely neglected, we include them in our
phenomenological analysis of K+ → π+νν̄.

5.2.3. Bs,d → µ+µ−

We now examine the decays Bs,d → µ+µ−. To this end we evaluate the matrix elements
as described in section 4.3.1. Separating the quark and leptonic parts according to
equation (4.31) we note that the branching ratio, obtained from the effective Lagrangian
(5.39), can be deduced from the SM one (see for example [154]) without repeating the
full derivation. Only the following replacement has to be made:

Y0(xt)→ YLL + YRR − YRL − YLR ≡ Ytot . (5.46)

The final result can then be written as

Br(Bs → `+`−) = τ(Bs)
G2

F

π

(
α

4πs2
W

)2

F 2
Bsm

2
lmBs

√
1− 4

m2
l

m2
Bs

|V ∗tbVts|2|Ytot|2 , (5.47)
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while for Br(Bd → `+`−) one has to substitute s→ d.

We now turn to the derivation of further constraints on the flavour structure of the
RH mixing matrix and the effective coupling ceff

ZR
from the Bs,d → µ+µ− decays. Using

the RH mixing matrix shown in equation (2.77) we can insert Ṽ ∗tbṼtd ≈ ±c̃12e
iφd31/2

and Ṽ ∗tbṼts ≈ ±s̃12e
iφd32/2 into equation (5.40) and then use the result to find the two

branching ratios normalised to the SM ones:

Br(Bs → `+`−) = Br(Bs → `+`−)SM

∣∣∣1∓ 7.8× s̃12e
iφd32 ceff

ZR

∣∣∣2 ,
Br(Bd → `+`−) = Br(Bd → `+`−)SM

∣∣∣1± 37× c̃12e
iφd31 ceff

ZR

∣∣∣2 . (5.48)

These two branching ratios only depend on four parameters.

Using both SM values and experimental limits for the branching ratios, as given in
table 4.2, it is easy to verify that under maximal interference with the SM the following
bounds hold: ∣∣s̃12c

eff
ZR

∣∣ < 0.54 ,
∣∣c̃12c

eff
ZR

∣∣ < 0.30 . (5.49)

From this a very interesting conclusion can be drawn: combining the two bounds in
equation (5.49), we obtain the following constraint∣∣ceff

ZR

∣∣ < 0.62 , (5.50)

independent of c̃12. We will make use of this result below in the course of our further
analysis.

Since a measurement of the branching ratio Br(Bs → µ+µ−) in the upcoming years is
likely, it is interesting to ask about its maximal enhancement. It is possible to further
constrain the flavour structure by considering the bounds from Br(Bs,d → Xs`

+`−) [158,
174]. Using the results from [158] we can deduce

|T | ×

∣∣∣∣∣ Ṽ ∗tbṼtsV ∗tbVts

∣∣∣∣∣ < 1.07 , (5.51)

at the 90% C.L. level and hence ∣∣s̃12c
eff
ZR

∣∣ < 0.15 . (5.52)

This bound is stronger than the one obtained from equation (5.49) and therefore has
impact on the maximal possible enhancement of Br(Bs → µ+µ−). Together with
equation (5.48) we find that the maximal enhancement in Br(Bs → µ+µ−) over its
SM value is not expected to exceed a factor of 5. It follows that the constraint from
Br(Bs → Xs`

+`−) precludes Br(Bs → µ+µ−) near the present experimental bound.
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For Br(Bs → µ+µ−), the deviations can still be O(1), but do not reach the exper-
imental bound. Additionally, they then push the effects in Br(Bd → µ+µ−) to be
very small. Hence in case of an O(1) enhancement in Br(Bs → µ+µ−) compared
to the SM, RHMFV clearly predicts no visible deviations compared to the SM in
Br(Bd → µ+µ−). Under the assumption of a large Sψφ, where s̃12 ≈ 1 and c̃12 < 10−2,
effects in Br(Bd → µ+µ−) are completely negligible.

5.2.4. B → {Xs,K,K
∗}νν̄

Right-handed currents in the decays B → {Xs, K,K
∗}νν̄ have been studied extensively

in the past. We can apply the results of the general studies of [158,174] in our present
approach. In particular, following [158], the branching ratios of the B → {Xs, K,K

∗}νν̄
decays can be expressed in terms of two additional parameters:

Br(B → Kνν̄) = Br(B → Kνν̄)SM × [1− 2η] ε2 , (5.53)
Br(B → K∗νν̄) = Br(B → K∗νν̄)SM × [1 + 1.31η] ε2 , (5.54)
Br(B → Xsνν̄) = Br(B → Xsνν̄)SM × [1 + 0.09η] ε2 , (5.55)

where the new variables encode the NP part [175, 176]. The SM branching ratios can
be found in table (4.2). In our model, using the effective Hamiltonian (5.42), we obtain

ε2 =
|XLL|2 + |XRL|2

|XSM
LL |2

, η =
−Re (X∗LLXRL)

|XLL|2 + |XRL|2
. (5.56)

Note that we have suppressed the reference to the Bs system in our notation of the
functions XLL,LR. As RHMFV only considers the corrections in the RH sector, we
restrict ourselves to the XRL function. Inserting XRL from equation (5.43), as a result
we obtain

ε2 = 1 +
T 2

X2
0 (xt)

∣∣∣∣∣ Ṽ ∗tbṼtsV ∗tbVts

∣∣∣∣∣
2

≈ 1 + 22.1× |s̃12c
eff
ZR
|2 , (5.57)

η =
T

ε2X0(xt)
Re

(
Ṽ ∗tbṼts
V ∗tbVts

)
≈ ∓

4.7× s̃12 cos(φd32)ceff
ZR

1 + 22.1× |s̃12ceff
ZR
|2

. (5.58)

At this stage we want to stress that the expressions of the branching ratios in equa-
tions (5.53)–(5.55) describe only the short-distance contributions as already mentioned
in section 4.3.2.

Now we are ready to draw various interesting conclusions. Firstly, we take a look at the
maximal possible enhancement. Assuming the bound on s̃12c

eff
Z in equation (5.52), the

branching ratios of the exclusive decays B → {K,K∗}νν̄ can be enhanced by more than
a factor of two over the corresponding SM value. In the inclusive mode, B → Xsνν̄, the
effects are smaller and maximally a 50% enhancement can be reached. Overall a similar
pattern compared to that from the determination of |Vub| in section 2.4.2 describes all
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5 Flavour phenomenology of RHMFV

Figure 5.1.: Correlation between Br(B → Kνν̄) and Br(B → K∗νν̄) in RHMFV. The
blue and the orange band correspond to | sin(2φd32)| = 0.95 and | sin(2φd32)| = 0.30,

respectively. The black dot represents the SM value.

three decays B → {Xs, K,K
∗}νν̄.

Further, we can study the effect of a large Sψφ. As we mentioned in section 5.1.6, Sψφ
can help to reduce the uncertainty on the CP-violating phase φd32. Now we will make
use of this fact and consider in figure 5.1 the correlation between Br(B → Kνν̄) and
Br(B → K∗νν̄). We show two bands corresponding to the values of equation (5.27), a
blue band for | sin(2φd32)| = 0.95 and an orange band for | sin(2φd32)| = 0.30. These two
bands are almost indistinguishable. We observe a clear anti-correlation which can be
seen as prediction of the RHMFV model. Both branching ratios can individually - but
not together - be enhanced by more than a factor of two over the SM value, which is
shown as a black dot with the corresponding error bars. It is worth mentioning that
the two possible values of | sin(2φd32)| are independent of the operator dominating Sψφ.

It would also be interesting to study the correlation between Br(B → K`+`−) and
Br(B → K∗`+`−). However, additional operators contribute in this case. Consequently,
the correlation is expected to be less clean and our approximation of considering only
the two ∆F = 1 operators of equation (2.28) might also not be sufficient. This analysis
is beyond the scope of this thesis.
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5.2.5. K → πνν̄

Next we want to examine the K → πνν̄ decays. The branching ratios under inclusion
of the RH effects can be written as [162,168,177–179]

Br(K+ → π+νν̄) = κ+

[(
ImXeff

λ5

)2

+

(
ReXeff

λ5
− Pc − δPc,u

)2
]
, (5.59)

Br(KL → π0νν̄) = κL

(
ImXeff

λ5

)2

, (5.60)

where λ = |Vus|, κ+ = (5.173± 0.025)× 10−11(λ/0.225)8 [179] and κL = (2.29± 0.03)×
10−10(λ/0.225)8 [168]. For the K+ → π+νν̄ mode one needs additional dimension-
six charm quark corrections and subleading long-distance effects are summarised in
Pc = 0.372 ± 0.015 [162, 169, 177] and δPc,u = 0.04 ± 0.02 [178], respectively. The
function Xeff , given by

Xeff = V ∗tsVtd(XLL +XRL) , (5.61)

is connected to the effective Hamiltonian in (5.44) and XRL explicitly is shown in
equation (5.45). It turns out that it is useful to rewrite Xeff so that the SM part can
be factorised. Then it has the following form

Xeff = V ∗tsVtdXSM(1 + ξeiθ) (5.62)

where XSM = 1.464± 0.041 [169] and ξ and θ are real parameters which yield the SM
amplitude in the zero limit. It is easy to verify that these parameters are given by

ξeiθ = − T

XSM

Ṽ ∗tsṼtd
V ∗tsVtd

≈ 5.6× 102 × c̃12s̃12e
i(φd21+β−βs)ceff

ZR
. (5.63)

Considering these results it is clear that the RH contributions can cause large effects,
and the bound from in equation (5.52) still leaves room for sizable new contributions.
However, as flavour parameters are also correlated with ∆F = 2 observables, we note
that the situation is more constrained. This is mainly due to the restriction on c̃12 and
φd21 after imposing a large non-standard Sψφ taking the εK constraint into account, as
demonstrated in section 5.1.6.

We now analyse in detail the pattern obtained for the correlations between Br(K+ →
π+νν̄) and Br(KL → π0νν̄), imposing the constraints from εK and Sψφ. This correla-
tion is shown in figure 5.2. The dashed line gives the model-independent Grossman-Nir
bound [180]. We also show the experimental range for Br(K+ → π+νν̄) [163] in the
vertical band, while for Br(KL → π0νν̄) only an upper bound exists. The black cross
represents the SM prediction with its 1σ error. We have listed all details about the
data and SM prediction in table 4.2.

Depending on which operator dominates Sψφ we obtain a different correlation due to
different conditions on the phases:
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5 Flavour phenomenology of RHMFV

Figure 5.2.: Correlations between Br(K+ → π+νν̄) and Br(KL → π0νν̄) taking into
account the εK constraint. The red and the green points correspond to a negligible or

dominant contribution from the operator QLR1 , respectively. The dashed line
represents the Grossman-Nir bound [180]. The vertical band gives the 1σ

experimental region and the SM prediction is given by a black cross.

1. First we consider the case with a dominant cRR, shown in red points in figure 5.2.
Here, the combined fit of εK and Sψφ yields condition (5.28), which we have taken
into account. It turns out that O(1) deviations from the SM are still possible in
both decays. With larger deviations in only one of the branching ratios shown
in figure 5.2, we end up in a more fine-tuned scenario. The phase of φd12 has to
be tuned in order to satisfy the εK constraint. As noted by [181], this structure
is characteristic of all NP frameworks where the phase in ∆S = 2 amplitudes is
the square of the CP-violating phase in ∆S = 1 FCNC amplitudes. For example,
this is the case in the Littlest Higgs model with T parity [182].

2. Assuming now cLR to be dominant, the bound on the combination of c̃12 and
φd21 in equation (5.30) is more stringent. Following from that it is not surprising
that the correlation shown in figure 5.2 in green points, also turns out to be more
constrained. Sizable deviations can only take place if the phase φd12 is tuned in
the way such that sin(φd12 − β + βs) ≈ 0, which makes the bounds in equation
(5.30) is less effective.

70



5 Flavour phenomenology of RHMFV

Finally, we want to stress that the driving force for the specific structure of the corre-
lation in figure 5.2 is mainly determined from the εK constraint. So, even lowering the
value for Sψφ, the pattern of correlation remains intact.

5.2.6. Analysis of Z → bb̄

Finally, we take a look at Z → bb̄. The current experimental results are extracted from
a global fit of electroweak data collected by the LEP and the SLD experiments [183],
where

(gbbL )exp = −0.4182± 0.0015 , (5.64)
(gbbR )exp = +0.0962± 0.0063 . (5.65)

It is well known that the LH coupling is in good agreement with the SM expectation.
However, in the RH sector there is a large discrepancy between experimental data and
SM prediction, which reads

(∆gbbR )exp = (gbbR )exp − (gbbR )SM = (1.9± 0.6)× 10−2 . (5.66)

In principle RHMFV has room to explain this discrepancy. In RHMFV the numerical
values derived from the coupling in equation (5.37) is

(∆gbbR )RH ≈ −0.15× 10−2 × ceff
ZR
, (5.67)

where we have taken |Ṽtb|2 ≈ 1/2 from the results of the global fit of the RH mixing
matrix of equation (2.77). Clearly for ceff

ZR
= O(1) the value of equation (5.67) is one

order of magnitude too small in order to explain the discrepancy from equation (5.66).

In principle, there is still room for RHMFV effects if we lower the scale of NP to
Λ = 1 TeV and keep cRZ1

, cRZ2
= O(1), so that ceff

ZR
will increase. Taking into account

the bound on ceff
ZR

from Bs,d → µ+µ− decays given in (5.50), we find that there is no
room for raising the value of ceff

ZR
. Hence, we conclude that the anomalous Z → bb̄

cannot be explained within our framework.
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6. Flavour phenomenology and
numerical analysis of the LRM

We have seen in the previous chapter that the effective theory approach of RHMFV al-
lows us to establish specific correlations. However under the assumption of a large Sψφ
some tension between the εK and SψKS flavour observables remains. We now turn to
a detailed analysis of the flavour phenomenology of the second model discussed within
this thesis, the LRM. The study of flavour anomalies laid out in section 2.1.1, will be
part of the discussion.

In chapter 3 we already got familiar with the most general setup of the LRM. Now,
in this chapter we collect all formulae necessary for our analysis of ∆F = 2 flavour
observables and the decay B → Xsγ, followed by a comprehensive numerical analysis.
The goal of this analysis is to obtain a complete picture of the interplay of these
observables, manifested in the structure of the RH mixing matrix V R whose form
we study in detail. Taking into account all relevant constraints simultaneously we
investigate if the LRM is a realistic scenario for masses of the heavy gauge boson WR

in reach of the LHC. Further emphasis will be put on the study of the impact of the
heavy Higgs fields on flavour observables.

6.1. ∆F = 2 observables in the LRM

6.1.1. The effective Hamiltonian of the LRM

Before we start with a detailed description of ∆F = 2 observables in the LRM, it
should be stressed that these were the subject of various previous studies in this class
of models [36, 38,39,96,102,104,184–190]. We provide new insights such as the role of
the heavy Higgs fields without making further restrictions on the electroweak param-
eter s, except those required by electroweak precision observables. Furthermore these
observables will be part of a global and very general analysis instead of focusing on
finding bounds on masses of the heavy particles as mainly done in the literature.

The starting point of our analysis is once again the effective Hamiltonian for ∆F = 2
transitions, generally given by

H∆F=2
eff =

G2
FM

2
WL

4π2

∑
i

Ci(µ)Qi , (6.1)
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with Wilson coefficients and operators introduced in chapter 4. It is convenient to de-
fine the pre-factor with respect to the SM pre-factor as shown in equation (4.28). The
list of relevant operators can be found in section 4.2.1, in particular in the K system
operators from equations (4.2) and (4.3) have to be taken into account. Relevant op-
erators for the Bq system can be obtained by changing appropriate flavour indices.

The Wilson coefficients obtain contributions from three classes of diagrams depending
on the particles involved. In particular we distinguish between

• box diagrams withWL andWR exchanges: In principle these diagrams can involve
WLWL,WLWR andWRWR in addition to internal quark lines, however theWRWR

contribution is highly suppressed by the heavy masses of gauge bosons.

• tree-level diagrams with neutral Higgses H0
1,2: Higgs masses have to be very large

(explicit values given below) if flavour bounds should be satisfied. Together with
the WLWR box, the neutral Higgs contributions constitute the main corrections
in the LRM.

• box diagrams with charged Higgs H±: As the charged Higgs H± have masses in
the multiple TeV range only diagrams with H± and WL are considered. Effects
are generally expected to be small. Numerics shows that they are about two
orders of magnitude smaller than the ones from neutral Higgses and the WLWR

box.

Hence we can summarise

Ci = ∆BoxCi + ∆H0Ci + ∆H±Ci . (6.2)

6.1.2. Collection of relevant Wilson coefficients

We now turn to a detailed description of relevant Wilson coefficients.

As the mixing matrices V L and V R enter these coefficients in various combinations, we
define, following [186],

λABi (K) = V A∗
is V

B
id , λABi (Bq) = V A∗

ib V
B
iq , (6.3)

where A,B = L,R, q = d, s and i = u, c, t.

Wilson coefficients from gauge boson box diagrams

Calculating the diagrams with internal gauge bosons WLWL, WLWR and WRWR, re-
spectively, as shown in figure 6.1, the following Wilson coefficients can be derived for
the meson system M = K,Bd, Bs

∆BoxC
V LL
1 (µW ,M) =

∑
i,j=c,t

λLLi (M)λLLj (M)SLL(xi, xj) (6.4)
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Figure 6.1.: Feynman diagrams for contributing gauge boson box diagrams

∆BoxC
LR
2 (µR,M) =

∑
i,j=u,c,t

λLRi (M)λRLj (M)SLR(xi, xj, β) (6.5)

∆BoxC
V RR
1 (µR,M) =

∑
i,j=c,t

λRRi (M)λRRj (M)SRR(x̃i, x̃j) , (6.6)

where we have already chosen appropriate scales µW = O(MW ,mt) and µR = O(MWR
)

and made use of the following notation

xi =

(
mi

MWL

)2

, x̃i =

(
mi

MWR

)2

, β =
M2

WL

M2
WR

, r =

(
sW
cW sR

)2

. (6.7)

We want to remark that in the limit of equal gauge couplings gL = gR the factor r
simplifies to r = 1. Using the definitions

I1(xi, xj, β) =
xi ln(xi)

(1− xi)(1− xiβ)(xi − xj)
+ (i↔ j)− β ln(β)

(1− β)(1− xiβ)(1− xjβ)
,

(6.8)

I2(xi, xj, β) =
x2
i ln(xi)

(1− xi)(1− xiβ)(xi − xj)
+ (i↔ j)− ln(β)

(1− β)(1− xiβ)(1− xjβ)
,

(6.9)

F (xi, xj) =
1

4
[(4 + xixj)I2(xi, xj, 1)− 8xixjI1(xi, xj, 1)] , (6.10)

the loop functions are given by

SLL(xi, xj) = F (xi, xj) + F (xu, xu)− F (xi, xu)− F (xj, xu) (6.11)
SLR(xi, xj, β) = 2βr

√
xixj [(4 + xixjβ)I1(xi, xj, β)− (1 + β)I2(xi, xj, β)] (6.12)

SRR(x̃i, x̃j) = βr2SLL(x̃i, x̃j) (6.13)

These results are in agreement with the literature [36, 186,187,191,192].

There are a few comments in order:

• The SLL form of the SM loop function agrees with equation (4.28) and no cor-
rections of O(ε2) are present.
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• For the LL and RR contributions in equations (6.4) and (6.6) respectively, we
have used the unitarity of the matrices V L and V R in order to eliminate internal
u quark contributions, in other words the GIM mechanism. However this does
not apply to the LR contribution.

• The loop function SLR, in contrast to the results for SLL and SRR, is not gauge
independent [191]. Gauge independence can be restored by including vertex and
self-energy corrections to the tree-level neutral Higgs exchange, in particular when
the H0

i G
+G

′− vertex is involved [187, 192]. Since these corrections leave SLR
without relevant modifications from our result in the ’t Hooft-Feynman gauge,
we neglect them.

Wilson coefficients from tree-level neutral Higgs exchange

Tree-level Higgs diagrams, as shown on the right-hand side in figure 6.2, are induced by
the two flavour changing neutral Higgses H0

1 and H0
2 (for more details about the Higgs

sector see appendix A). Generally they generate the operators CSLL
1,2 , CSRR

1,2 and CLR
2 ,

but as the Higgs masses are equal at leading order the CSLL
1,2 and CSRR

1,2 contributions
cancel each other. Thus even for non-degenerate Higgs masses, these contributions are
of O(ε4) and negligible. Hence, the only relevant contribution from neutral Higgses is
given by

∆H0CLR
2 (µH , K) = − 16π2

√
2M2

HGF

u(s)
∑

i,j=u,c,t

λLRi (K)λRLj (K)
√
xi(µH)xj(µH), (6.14)

where M = K,Bd, Bs and µH = O(MH) and we have defined the function

u(s) =

(
1

1− 2s2

)2

. (6.15)

The choice of the matching scale will be explained in detail below. Our result in equa-
tion (6.14) is in agreement with [36] provided one takes the limit s � 1 which was
chosen in that paper. In terms of a more general analysis the additional factor u(s) is
necessary since already for s = 0.5 we obtain an enhancement by a factor of 4.

Wilson Coefficients from charged Higgs box diagrams

Charged Higgs effects are automatically expected to be small compared to the previous
NP effects since these one loop processes involve particles much heavier than the WR

mass but equal to the masses of the neutral Higgses,H0
1 andH0

2 . We still want to include
the main contribution given by boxes of H± and W±

L , as shown on the left-hand side in
figure 6.2, or with the corresponding Goldstone boson. Box diagrams involving a Higgs
particle with solely other heavy particles can be safely neglected. Thus we also do not
consider box diagrams with heavy neutral Higgs particles. Calculating the diagram in
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Figure 6.2.: Feynman diagrams for Higgs contributions

figure 6.2 we find

∆H±C
LR
2 (µH ,M) =

∑
i,j=u,c,t

λLRi (M)λRLj (M)SHLR(xi, xj, βH) , (6.16)

where the loop function reads

SHLR(xi, xj, βH) = 2u(s)βH

√
xi(µH)xj(µH) [xixjI1(xi, xj, βH)− I2(xi, xj, βH)] , (6.17)

and

βH =
M2

WL

M2
H±

. (6.18)

Our result is consistent with the findings of [186] when taking the limit s� 1.

6.1.3. RG QCD corrections

In this section we address the issues of QCD renormalisation evolution of the effective
Hamiltonian from high scales down to low energy scales at which the hadronic matrix
elements are evaluated by lattice methods. In section 5.1.2 we have demonstrated the
method in presence of a single high scale. In contrast to the procedure given there,
now an intermediate high scale is involved. We briefly summarise the relevant scales:

• The SM box diagrams involve as usual dynamical WL and the SM quarks. The
appropriate scale is then µW = O(MW ,mt) [133].

• The intermediate high scale µR is fixed by the mass MWR
of the heavy gauge

boson WR. Considering that MWR
� MWL

, the correct way to proceed would
involve integrating out the heavy gauge boson and constructing an effective field
theory where WR does not act as a dynamical field. However our approximation
is justified within the uncertainties of unknown parameters. Numerically we take
µR = 2.5 TeV.

• As we will demonstrate below Higgs masses of both charged and neutral Higgses
must be even significantly larger than MWR

. The high scale µH is then defined
by their mass, hence µH = O(MH). Numerically we fix µH = 15 TeV.
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• Finally, as defined in section 5.1.2, there exists the low-energy scale of the decay
in question, referred to as µL (or µb for B mesons).

Under these assumptions it is possible to encode perturbative and non-perturbative
QCD effects in a known way into the effective parameters Pi. For our analysis only the
values of the following coefficients are necessary:

• For box diagram contributions (µR = 2.5 TeV), we find

PLR
2 (K) = 73(4)(3), PLR

2 (Bq) = 4.57(54)(25) (Box) , (6.19)

• For the Higgs contribution (µH = 15 TeV) the result reads

PLR
2 (K) = 88(5)(3), PLR

2 (Bq) = 5.54(65)(30) (Higgs) . (6.20)

More details about the explicit calculation of the Pi factors can be found in [49].

Last but not the least, a small comment about the scales of quark masses is in order.
Generally the scales of quark masses in our analysis are set to be mi(mi) for i = c, b, t
and 2 GeV for light quarks. Only in the Wilson coefficients involving heavy Higgs fields
the quark masses are evaluated at µH .

6.1.4. Summary of ∆F = 2 contributions

Now we are ready to give the final formulae for the off-diagonal elements of the mass
mixing matrices of the various meson systems. We demonstrate the procedure for M q

12.

It is convenient to make use of the following decomposition

M q
12 = (M q

12)SM + (M q
12)RR + (M q

12)LR ≡ (M q
12)SM + (M q

12)LR . (6.21)

This allows us to group contributions with the same RGE behaviour. We obtain

(M q
12)SM =

G2
F

12π2
F 2
BqB̂BqmBqM

2
W

[
λLL∗t (Bq)

]2
ηBS

∗
q (Bq) , (6.22)

where

Sq(Bq) = S0(xt) +
η̃B
ηB

∆BoxC
V RR
1 (µR, Bq)

[λLLt (Bq)]
2 . (6.23)

The first term gives the SM contribution as given in equation (4.29). As usual ηB
defines the known SM QCD correction while η̃B/ηB ∼ 0.95 results from evolving the
Wilson coefficients from µR down to µW and hence is independent of the particular
meson system considered. The connection between SM loop functions and the one in-
troduced in section 6.1.2 is explicitly given in this notation in appendix E.
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As the Higgs effects enter at a higher scale than the boxes involving the gauge boson
WR, we combine them according to

∆̃HiggsC
LR
2 (µR, Bq) = ∆H0CLR

2 (µH , Bq) + ∆H+CLR
2 (µH , Bq) , (6.24)

such that all effects with the same RGE behaviour can be grouped together. Finally
we obtain

(M q
12)LR =

G2
FM

2
W

12π2
F 2
BqmBq

[
(∆BoxC

LR
2 (µR, Bq))

∗PLR
2 (µR) + (6.25)

(∆̃HiggsC
LR
2 (µH , Bq))

∗PLR
2 (µH)

]
. (6.26)

For the K0 − K̄0 system one simply has to replace the index Bq by K, and also ηB by
η2. Furthermore the SM part is modified by inclusion of the box diagrams involving
an internal charm which could be neglected in case of the B0

q − B̄0
q system. The corre-

sponding loop functions are again collected in appendix E. The SM part of the mixing
amplitude simplifies then to the formula as given in equation (4.28).

All further formulae for ∆F = 2 observables necessary for our numerical studies have
been presented in section 4.2.2. Together with the formulae of this section the observ-
ables ∆MK , ∆Mq, εK , SψKS , Sψφ, ∆Γq and AqSL can be straightforwardly obtained.

We briefly want to mention that in the LRM some observables, such as SψKS and
Sψφ, can be modified by tree-level exchanges. This is due to the small right-handed
couplings induced byWL andWR exchange, both being typically of ε2 ∼ O(10−3). After
evaluating matrix elements and QCD RG running effects we find that the weak phases
of decay amplitudes can in principle be modified. However our numerical considerations
show that these effects cause modifications in SψKS and Sψφ in the 0.01% range. Thus
we will not consider them here further and for details we refer to our publication [49].

6.1.5. The role of the neutral Higgs contributions

In this section we take a closer look at the role played by the neutral Higgs contributions.
Since the main impact on the NP mixing amplitude comes from left-right operators,
we concentrate on this contribution. We can decompose the amplitude in the following
way

(M q
12)LR =

G2
FM

2
W

12π2
F 2
BqmBq

∑
i,j=u,c,t

[λLRi (Bq)λ
RL
j (Bq)]

∗Rij(Bq) , (6.27)

where we have defined

Rij(Bq) =SLR(xi, xj, β)PLR
2 (Bq, µR) + SHLR(xi, xj, βH)PLR

2 (Bq, µH)

− 16π2

√
2M2

HGF

u(s)
√
xi(µH)xj(µH)PLR

2 (Bq, µH) .
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We have separated the contributions of loop integrals and QCD running from contribu-
tions of left- and right-handed mixing matrices. These mixing matrices are contained in
factors λLRi and λLRi . Analogously we can obtain the formulae for the K0− K̄0 system
with Bq replaced by K.

We concentrate on the factor Rij, which depends only on the electroweak parameter s
apart from the heavy masses MWR

and MH . This setup is perfect to study the impact
of the heavy masses for given values of s. In particular we choose s = 0.1 and s = 0.5,
which are part of the best fit region shown in section 3.4.4 and summarised in equation
(3.37).

In general we find that the neutral Higgs part represents the leading contributions,
followed by gauge box contributions while charged Higgs contributions are negligible.
Charged Higgs contributions are roughly two orders of magnitude smaller than the con-
tributions from neutral Higgs and one order of magnitude smaller than the ones from
charged gauge boson boxes. Thus when we are interested in the impact of the heavy
Higgs contributions, it is sufficient to consider the neutral Higgs contribution denoted
by RH

tt (K) with respect to the full factor Rtt(K).

In figure 6.3 we display RH
tt (K)/Rtt(K) as a function of the neutral Higgs mass MH for

different values of MWR
. First we consider the case s = 0.1. Even for a light WR mass,

MWR
= 400 GeV, which is already excluded by direct collider bounds, the neutral Higgs

contributions for MH < 20 TeV contribute at the 20% level to the total value. This
example displays that the role of the neutral Higgs has been severely underestimated
for many years, especially when the bounds on MWR

were less stringent. With a more
realistic mass MWR

> 2 TeV, the neutral Higgs contributions become only negligible if
the Higgs masses are chosen to be very heavy, roughly MH > 100 TeV. However, we
cannot simply decouple the Higgs contributions by choosing an arbitrarily high Higgs
mass as in this case the Higgs sector would leave the perturbative range. This can be
understood by considering the formula for the neutral Higgs mass as given in A.6 of
appendix A. Since both MWR

and MH involve the parameter κR and hence cannot be
fixed independently, the Higgs mass can only be increased while requiring a relatively
low MWR

by pushing the coupling α3 into a non-perturbative regime. When assuming
s = 0.5 the Higgs contributions become even more important.

In summary, in the LRM for a realistic choice of masses of MWR
= 2.6 TeV and

MH = 16 TeV (corresponding to s = 0.1), the neutral Higgs contribution represents
more than 80% of the total LR contribution. This result is surprising especially since
these contributions have been neglected in most of the existing literature for LR models.

Finally we briefly want to mention that the hierarchical structure of the matrix Rij has
a profound impact on the resulting structure of the RH mixing matrix V R. This is due
to the fact that constraints from ∆F = 2, in particular εK , set strong constraints on
the LR operators. We will elaborate on these topics in our numerical analysis below.
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Figure 6.3.: The role of the neutral Higgs contribution quantified by RH
tt (K)/Rtt(K)

as a function of MH for different WR masses for s = 0.1 and s = 0.5
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6.2. The decay B → Xsγ in the LRM

6.2.1. The effective Hamiltonian

Due to its unique features of identifying deviations from the SM and acting generally
as strong constraint for NP models, the decay B → Xsγ has attracted a lot of attention
in various left-right models based on the SU(2)L×SU(2)R×U(1) symmetry structure.
Such studies can be found in [107,151,193–200]. In this section we make use of several
results found by some of these authors, in order to study the relevant Wilson coeffi-
cients of dipole operators. Subsequently, corresponding RG QCD corrections will be
elaborated and a formula for the branching ratio for the B → Xsγ decay presented.

The starting point of our considerations is as usual the effective Hamiltonian. At the
low energy scale µb = O(mb) the effective Hamiltonian reads

Heff(b→ sγ) = −4GF√
2
V ∗tsVtb [C7γ(µb)Q7γ + C8G(µb)Q8G] . (6.28)

The pre-factor is chosen such that it matches with the normalisation from the SM
calculations. We have already defined the operators above in equation (4.33). In
principle the primed operators of equation (4.33) also have to be incorporated. However,
we will give arguments below showing that they can be neglected. Note that primed
operators already could be removed from the discussion in the SM as they appear
suppressed by the ratio ms/mb relative to the unprimed ones.

6.2.2. The Wilson coefficients

Before we start considering relevant Wilson coefficients, we briefly want to recall the
discussion of different scales in section 6.1.3. In the following we list the Wilson co-
efficients in terms of the corresponding high scale. The transformation to low energy
Wilson coefficients Ci(µb) from high energy scales by means of renormalisation group
methods is discussed in the following section.

SM Wilson coefficients from gauge bosons

The first group of Wilson coefficients consists of those already present in the SM, usually
given at the scale µW = O(MW ). The corresponding Feynman diagram for the b→ sγ
transition requires a chirality flip, which can only be achieved through a mass insertion
in the initial or final state quark since the WL couples in the SM only to LH quarks.
Consequently the amplitude has to be either proportional to mb in case of unprimed
operators or to ms for primed operators which then can be neglected due to the mass
suppression. We summarise the results here

CSM
7γ (µW ) =

3x3
t − 2x2

t

4(xt − 1)4
lnxt +

−8x3
t − 5x2

t + 7xt
24(xt − 1)3

≡ CSM
7γ (xt) , (6.29)
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CSM
8G (µW ) =

−3x2
t

4(xt − 1)4
lnxt +

−x3
t + 5x2

t + 2xt
8(xt − 1)3

. (6.30)

More information can be found in [129].

New Wilson coefficients from gauge bosons

In the LRM new contributions can appear since the gauge boson WL can couple to the
RH quarks. The leading NP contribution involving gauge bosons is then given by the
diagram with a RH coupling in the vertex with the b-quark together with a chirality
flip on the internal top quark line. This internal flip implies an enhancement factor
of mt/mb with respect to the SM contribution and the reason for the importance of
this contribution. The expressions for the corresponding Wilson coefficients have first
been calculated by Cho and Misiak [151] at the scale µW . The choice of the scale µW
was justified by their assumption of MWR

∼ O(GeV). Since the bounds are now more
stringent, we need coefficients at a scale of µR � µW . Using the results of Cho and
Misiak [151] would in this case require that large logarithms log(µR/µW ) have to be
taken into account for a correct treatment of scales. However in view of the unknown
mass MWR

we decide that an approximate consideration is sufficient, assuming the
result of [151] to be valid at µR. We then obtain

∆LRC7γ(µR) = Atb
[

3x2
t − 2xt

2(1− xt)3
lnxt +

−5x2
t + 31xt − 20

12(1− xt)2

]
, (6.31)

∆LRC8G(µR) = Atb
[
−3xt

2(1− xt)3
lnxt +

−x2
t − xt − 4

4(1− xt)2

]
, (6.32)

where

Atb =
mt

mb

scε2eiα
(
V R
tb

V L
tb

)
+O(ε4) . (6.33)

The mt/mb enhancement can be seen directly in Atb. Furthermore we note the O(ε2)
dependence. As we will see below, in order to build the branching ratio the sum of
Wilson coefficients has to be squared so that finally at O(ε2) only the interference term
with the SM contribution will enter.

Other contributions from gauge bosons

Now we briefly justify why the Wilson coefficients described above represent the only
relevant NP contribution from gauge bosons at O(ε2). We first restrict our consid-
erations to diagrams involving a WL boson. In the next step we classify all possible
contributions. In general each contribution is characterised by two properties: firstly
the chirality of the gauge boson–quark couplings in the loop and secondly the type of
operator, i.e. primed or unprimed. In the following we refer to different chiralities just
as LL, RR and LR, where e.g. LL stands for the SM contribution. So far we have con-
sidered the LL contribution, primed and unprimed, and the unprimed LR contribution.
Next to be considered is the primed LR contribution. This contribution originates from
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the diagram with RH coupling in the vertex with the s-quark and chirality flip on the
internal line. Similar to equation (6.33) the strength of the Wilson coefficient is given
by

(Ats)∗ =
mt

mb

scε2e−iα
(
V R
ts

V L
ts

)∗
+O(ε4) , (6.34)

being also mt/mb enhanced and of O(ε2). However, when considering the branching ra-
tio, primed operators do not interfere with the SM contribution, since we have omitted
the small SM contributions to the primed operators. Thus at the level of the branching
ratio this contribution appears at O(ε4) and can be neglected. Next, the unprimed and
primed RR contributions lack the enhancement factor mt/mb both having the chirality
flip on the external line and furthermore appear at O(ε4), so that we can neglect them.

Finally we take a look at diagrams involving the heavyWR boson. The authors of [151]
found all LR contributions negligible, similar arguments hold for the LL and RR case.
This is mainly due to LL and RR contributions being then described by the SM loop
functions, as given in equations in (6.29) and (6.30), but instead of xt = m2

t/M
2
W they

are mass suppressed with x̃t = m2
t/M

2
WR

.

New Wilson coefficients from charged Higgs bosons

The decay B → Xsγ receives important contributions through diagrams involving the
charged Higgs boson. While often ignored in early works [102], currently it is estab-
lished that these effects should not be neglected [193, 194, 196–198, 200]. Interestingly
they are still important even when assuming the charged Higgs mass in the range of
O(10 TeV). As found by these authors the corresponding amplitude also features the
mt/mb enhancement. This property is unique in the framework of LR models, e.g.
in the MSSM one finds a mb or ms dependence. Additionally the charged Higgs cou-
plings are of O(1) so that the only suppression is induced by the heavy Higgs mass itself.

In order to obtain the contributing Wilson coefficients we use the results of [196, 200]
while adapting their formulae to our notation. We obtain [196]

∆H±C7γ(µH) = −u(s)

[
sc
mt

mb

eiα
(
V R
tb

V L
tb

)
A1
H+(y) + 2s2c2A2

H+(y)

]
, (6.35)

A1
H+(y) =

[
3y2 − 2y

3(1− y)3
ln y +

5y2 − 3y

6(1− y)2

]
, (6.36)

A2
H+(y) =

1

3
ASM(y)− A1

H+(y) , (6.37)

ASM(y) = −2CSM
7γ (y) , y =

m2
t

M2
H+

. (6.38)

Note that the SM loop function was given in equation (6.29) and following the argu-
ments of appendix D we can again set α = 0. The function u(s) has been defined in
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µR 1 TeV 2.5 TeV 10 TeV 15 TeV
κ7 0.457 0.427 0.390 0.380
κ8 0.125 0.128 0.130 0.130
κLR 0.665 0.778 0.953 1.005

Table 6.1.: The relevant NP magic numbers at µb = 2.5 GeV and µt(mt).

equation (6.15). It is also remarkable that a large s, in particular close to the limit
s → 1/

√
2, is linked with a strong enhancement. However we should remember that

this limit is not realistic since it implies κ′ = κ, which leads to equal quark masses in
up and down sectors (for more details see section 3.2.2).

6.2.3. QCD corrections

In the next step we want to include the RG QCD running. We include the SM QCD
corrections up to the NNLO level following [165]. The NP contribution is only incorpo-
rated at the LO level, which was obtained on the basis of [151] and [201]. In principle
matching conditions to the Wilson coefficients of LR operators at appropriate scales
relevant for a NLO analysis are already available [199]. However such calculations
are technically involved and would be redundant in view of the many free parameters
present in this model.

We now turn to the explicit description of the QCD corrections. First, all Wilson
coefficients have to be evolved down to the scale µb = 2.5 GeV. We obtain

∆LRC7γ(µb) = κ7(µR) ∆LRC7γ(µR) + κ8(µR) ∆LRC8G(µR) + AcbκLR(µR) , (6.39)

∆H±C7γ(µb) = κ7(µH) ∆H±C7γ(µH) , (6.40)

where the NP Wilson coefficients at high scale were given in (6.31), (6.32) and (6.35),
respectively. The term proportional to

Acb =
mc

mb

scε2eiα
V R
cb

V L
cb

. (6.41)

appears due to the mixing with new charged current operators. Since this mixing only
occurs below the scale µR, it has to be included only once in equations (6.39) and (6.40).
The κ’s usually referred to as the NP magic numbers are collected in table 6.1 [201].1

The overall Wilson coefficient is finally given by

C7γ(µb) = C7γ(µb)
SM + ∆LRC7γ(µb) + ∆H±C7γ(µb) . (6.42)

1This table is provided by Emmanuel Stamou.
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6.2.4. The branching ratio

We are now ready to write down the branching ratio. Following the analysis of [201,202],
we obtain

Br(B → Xsγ) = Br(B → Xsγ)SM + ∆Br , (6.43)

where
∆Br = R

[
2 Re

{
C7γ(µb)

SM∆̃LRC7γ(µb)
}

+
∣∣∣∆̃LRC7γ(µb)

∣∣∣2] , (6.44)

with
∆̃LRC7γ(µb) = ∆LRC7γ(µb) + ∆H±C7γ(µb) . (6.45)

Furthermore we require

R = 0.00247 , C7γ(µb)
SM = −0.353 , (6.46)

and [202]
Br(B → Xsγ)SM = (3.15± 0.23)× 10−4 . (6.47)

In principle the last term in (6.44) can be dropped since it is of O(ε4). Finally we
want to remark that the comparison of SM and experimental value (see section 4.3.2
for more details) favours ∆Br > 0 leading to Re

(
∆̃LRC7γ(µb)

)
< 0 and Re

(
V R
tb

)
> 0.

6.2.5. The role of the charged Higgs contributions

Similar to our considerations in section 6.1.5, we now want to examine the B → Xsγ
decay. We study the size of contributions from charged Higgs with respect to the full
NP contribution, characterised by ∆H±C7γ(µb)/∆̃

LRC7γ(µb). Our results are presented
in figure 6.4 where we show this ratio as a function of MH for different values of MWR

and two choices of s. Since both ∆H±C7γ(µb) and ∆̃LRC7γ(µb) are dependent on the
RH mixing matrix, we assume for V R simply the identity matrix. This approximation
is justified as the main contributions from both charged Higgs and gauge bosons are
proportional to V R

tb , hence the ratio of these two quantities gets barely modified. In this
way we are able to extract the fact that the charged Higgs play an important role. In
numbers, for WR > 2 TeV and MH < 20 TeV the charged Higgs contribution provides
at least 20% and 50% of the NP contribution for s = 0.1 and s = 0.5, respectively. For
high values of s the effects are much larger. This enhancement is in accordance with
our previous expectations from the discussion of the behaviour of Higgs contributions
close to the limit s→ 1/

√
2.

6.3. Strategy of the numerical analysis

6.3.1. Outline of the strategy

In the previous sections we have collected all relevant formulae for ∆F = 2 processes
and the decay B → Xsγ and constraints. We are now ready to perform a comprehen-
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Figure 6.4.: The relative importance of the charged Higgs diagrams in the NP
contributions to Br(B → Xsγ) for s = 0.1 (top panel) and s = 0.5 (bottom panel) as

a function of the Higgs mass for different WR masses.
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sive numerical analysis.

To this end we first have to discuss how to incorporate our results from our pre-analysis
of EWP observables, as given in section 3.4.4 and summarised by our best fit region in
equation (3.37). We realise that two parameters in equation (3.37) are very constrained
and we are able to choose a benchmark point. In particular our choice reads

sR = 0.80 , ε = 0.03 . (6.48)

This choice affects the heavy masses MWR
and MH , where the latter additionally ex-

hibits a strong dependence on the parameter s. The masses are then

MWR
≈ 2.6 TeV , MH ≈

16√
1− 2s2

TeV , (6.49)

where have chosen α3 = 8 in the Higgs potential. This choice of α3 ensures a high
Higgs mass, together with suppressed effects in both ∆F = 2 processes and the decay
B → Xsγ as discussed in sections 6.1.5 and 6.2.5, respectively. It should be stressed
that α3 cannot be increased further without leaving the perturbative regime in the
Higgs sector [36]. Concerning the mass of the heavy gauge boson WR our benchmark
point guarantees a value to be accessible at the LHC. Additionally, it is also useful to
give a few characteristic parameters of flavour observables for our benchmark point

1.3 <
κ

κ′
< 9.9 , r =

g2
R

g2
L

≈ 0.48 , 8.9 · 10−5 < scε2 < 4.3 · 10−4 . (6.50)

The situation for s is less restricted. Since this parameter also has a profound impact
on flavour observables, a general analysis can only be guaranteed when we study it for
different values. Before we fix the considered region of s it is also useful to ask about
the feedback from flavour observables on the electroweak parameters. The correlation
between them enters mainly due to the function u(s) present in the B → Xsγ decay
but also in ∆F = 2 processes. We have already mentioned that in the unphysical limit
of s → 1/

√
2 divergences would appear, hence it is obvious that flavour observables

preclude s to be close to its maximal value. We find that the upper limit on s is
mainly constrained by the charged Higgs contributions to B → Xsγ requiring s < 0.64.
Consequently we find

0.1 < s < 0.6 (6.51)

to be phenomenologically viable. In summary, we want to emphasise that in view
of many free parameters of the model the treatment of pre-constraining electroweak
parameters is useful. Therefore in the following numerical analysis we use the EW
benchmark point only varying the parameter s as discussed here.

Apart from EWP constraints, the constraints from tree-level decays (as summarised in
section 3.3.3) and from the observables ∆MK , ∆Md, ∆Ms, εK , SψKS and Br(B → Xsγ)
(as discussed above) are incorporated in our numerical analysis at the 2σ level. The
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parameter scan is then performed by varying 13 parameters from the matrices V L and
V R within in their allowed ranges. For V R this implies that the mixing angles are varied
within 0 . . . π/2 while for phases we have 0 . . . 2π. On the other hand parameters of
V L are already quite constrained mainly due to the smallness of εK and the tree-level
constraints, therefore we can pre-constrain ranges and improve the efficiency of the
numerical analysis.

The goal of our analysis is to identify regions in parameter space consistent with all
existing experimental constraints. This allows us to study the form of the matrix V R,
examine correlations of observables and make predictions for some them. Finally we
can study the impact on the SM anomalies, which we have described in section 2.1.1.

6.3.2. Input data and error treatment

Before we describe our results we briefly want to discuss two basic ingredients of any
numerical analysis, the input data and the treatment of uncertainties.

In table 6.2 we have collected all numerical values necessary for our analysis of the
LRM. Running quark masses can be separately found in table 6.3. It should also be
mentioned that values for P a

i factors and magic numbers have already been given in
section 6.1.3 and 6.2.3, respectively.

Uncertainties enter our analysis in two ways and would require a systematic treatment
by error propagation. Input parameters and predictions for observables carry uncertain-
ties from theoretical uncertainties and experimental input data. For example the input

parameters
√
B̂BdFBd and

√
B̂BsFBs have uncertainties of about 5%. In the SM this

would lead to an uncertainty of roughly 10% in the observables ∆Md and ∆Ms [137]. In
contrast, the observable εK suffers from much smaller uncertainties, which were mainly
improved by more precise lattice calculations of [70,204–207], estimate of long distance
contributions [68, 71] and NNLO QCD perturbative corrections [72, 73]. Additionally,
the values of all final observables are measured with respect to a certain precision, their
errors lead to the fact that our constraints need to be fulfilled in specific ranges. Going
back to our examples ∆Md, ∆Ms and εK , this means that experimental values are so
precise that their errors can be neglected for practical purposes. Further observables
such as SψKS , Br(B → Xsγ) and ∆MK are known within 3%, 10% and 30% accuracy,
respectively. Note that the latter value is much higher due to unknown long-distance
contributions.

In view of the complexity of the formulae and many input parameters we decided not
to perform a detailed error propagation, instead we require the final prediction for the
observable to lie roughly within the two sigma range of experimental and theoretical
uncertainties. This way allows a compact but approximate treatment of errors, which
will be sufficient for our purposes.
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Gµ = 1.16637(1) · 10−5 GeV−2 η1 = 1.87(76) [73]
MW = 80.399(23) GeV η3 = 0.496(47) [72, 148]
α(MZ) = 1/127.9 η2 = 0.5765(65) [149]
αs(MZ) = 0.1184(7) ηB = 0.55(1) [149,150]
sin2 θ̂W = 0.23116(13) FK = 156.0(11) MeV

m0
K = 497.614(24) MeV B̂K = 0.737(20)

∆MK = 0.5292(9) · 10−2 ps−1 FBd = 205(12) MeV
|εK | = 2.228(11) · 10−3 FBs = 250(12) MeV

mBd = 5279.5(3) MeV B̂Bd = 1.26(11)

mBs = 5366.3(6) MeV [112] B̂Bs = 1.33(6)

∆Md = 0.507(4) ps−1 FBd

√
B̂Bd = 233(14) MeV

∆Ms = 17.77(12) ps−1 FBs

√
B̂Bs = 288(15) MeV

τBs = 1.471(25) ps B̂Bs/B̂Bd = 1.05(7)
τBd = 1.519(7) ps ξ = 1.237(32) [94]
sin(2β)b→cc̄s = 0.679(20) [114]
mc(mc) = 1.268(9) GeV [94, 203]
mt(mt) = 163(1) GeV
mb(2.5 GeV) = 4.60(3) GeV

Table 6.2.: Collection of input parameters relevant for the numerical analysis of the
LRM.

2GeV 4.6GeV 172GeV 2.5TeV 15TeV

mu(µ)(MeV) 2.09(0)(9) 1.74(6)(7) 1.15(8)(5) 0.97(8)(4) 0.88(8)(4)
md(µ)(MeV) 4.73(0)(11) 3.94(1)(9) 2.61(2)(6) 2.19(2)(5) 2.00(2)(5)
ms(µ)(MeV) 93.6(2)(11) 77.9(3)(9) 51.6(4)(6) 43.4(4)(5) 39.5(4)(5)
mc(µ)(MeV) 1089(7)(0) 907(6)(0) 601(5)(0) 505(4)(0) 460(4)(0)
mb(µ)(GeV) – 4.074(19)(0) 2.702(14)(0) 2.268(12)(0) 2.068(12)(0)
mt(µ)(GeV) – – 162.3(10)(0) 136.3(9)(0) 124.2(8)(0)

Table 6.3.: The NLO running quark masses at different scales and corresponding
statistical and systematic errors in the first and the second parenthesis, respectively.
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6.4. Numerical results for observables

6.4.1. A general study of the matrix V R

We now turn to the discussion of numerical results. We first want to focus on the
structure of the RH mixing matrix V R. Our scan allows us to find regions consistent
with experimental constraints. Since V R is a unitary matrix, the mixing angles of the
RH mixing matrix are fixed by the knowledge of only three elements V R

us, V R
ub and V R

cb .
We will concentrate on them in the following.

First we examine the correlation of these elements, in particular we look at their depen-
dence on the parameter s, which varies in its full range as defined in equation (6.51).
In figure 6.5 we present the corresponding results, different values for s are described
by its color. Since we have plotted points with large values for s in the foreground, one
can deduce that allowed regions of parameter space grow with decreasing s. Actually,
in spite of the fact that large regions show no points and hence are excluded by data, all
three elements are able to reach values between zero and one individually. Yet, strong
correlations only allow certain combinations.

The correlations of the absolute value of different elements V R can be extracted better
when we consider them in a three-dimensional plot as shown in figure 6.6 for s = 0.1.2
The additional dimension clearly helps to distinguish the two branches which were
already apparent in the two dimensional version. This time the colour encodes the
measure of fine-tuning, defined by

∆mod
BG =

1

NObs

NObs∑
i=1

∆BG(Oi) =
1

NObs

NObs∑
i=1

max
j

(∣∣∣∣ pjOi

∂Oi

∂pj

∣∣∣∣) . (6.52)

Here we have modified the so-called Barbieri-Giudice ∆BG measure [208], describing the
sensitivity of an observable to a small variation of model parameters, by an additional
summation over different observables. This sum guarantees that the fine-tuning of dif-
ferent observables is considered simultaneously. This measure is also useful since usually
fine-tuning in several observables appears correlated. The measure of fine-tuning de-
scribed by us is similar to the measure proposed by Athron and Miller [209], which
however is less efficient to apply for numerical purposes. It should also be stressed that
∆BG is only sensitive to fine-tuning in terms of cancellations between various contribu-
tions, but not to accidentally small parameters. In general it is useful to investigate the
question of fine-tuning in such models like the LRM, since LR operators usually give
sizable contributions to the NP contributions in ∆F = 2 observables, which then can
potentially induce large fine-tuning, especially for εK . An explicit example where this
happens is the Randall Sundrum model with custodial protection where εK generally

2Due to the dependencies on many parameters we find it more transparent to study observables for
specific values of s. For ∆F = 2 we mainly consider s = 0.1, corresponding to a Higgs mass of
16 TeV. In our study of Br(B → Xsγ) we are explicitly interested in its s dependence.
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Figure 6.5.: The elements of the RH mixing matrix |V R
us|, |V R

ub | and |V R
cb | as functions

of each other. The colour encodes the parameter s.
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Figure 6.6.: The elements |V R
us|, |V R

ub | and |V R
cb | in a three-dimensional plot, where the

colour indicates log ∆mod
BG .

suffers from a large fine-tuning [137,210].

Let us go back to the description of figure 6.6 and see the situation in the LRM. In
this plot the layers are chosen such that points with lower fine-tuning appear in front
of points with higher fine-tuning. Thus in regions with low fine-tuning also highly fine-
tuned points can exist. Figure 6.6 allows to distinguish between two regions with small
fine-tuning, where we define “small” as ∆mod

BG < 10.

• In the so-called “normal hierarchy” scenario values for |V R
us|, |V R

ub | and |V R
cb | are

small. We are able to introduce a Wolfenstein-like parametrisation, which is the
similar to the hierarchy in the CKM matrix, with largest entries on the diagonal.

• In the so-called “inverted hierarchy” scenario we have small values for |V R
us| and

|V R
ub |, but large |V R

cb |. In contrast to the CKM matrix the size of entries of the
2, 3 submatrix is inverted and leads to a very different pattern.

Numerically we find for both scenarios

|V R
td | < 1.2 · 10−2 and |V R

us| <
{

0.18 (s = 0.1)
0.13 (s = 0.5)

, (6.53)

where we have preferred to give the value for |V R
td |, since here the bounds are more

stringent than for |V R
ub |. The “normal” and “inverted hierarchy” scenarios are then
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characterised by the value of |V R
cb |, in particular

|V R
cb | < 0.3 , (normal hierarchy)
|V R
cb | > 0.9 . (inverted hierarchy) (6.54)

For both scenarios all constraints, including the constraint from εK , are satisfied while
at the same time the fine-tuning in all observables is small.

For points outside these regions constraints are fulfilled, but they can exhibit a large
fine-tuning. Therefore from phenomenological point of view these points are still viable
although unnatural from the point of view of fine-tuning. An example of such a region
is at small |V R

cb |, large |V R
us| and |V R

ub | < 0.30. The full branch for |V R
ub | is also allowed

in the “inverted hierarchy” scenario. This branch is remarkable in view of the |Vub|
problem, to which we will come back in a separate section below.

6.4.2. Estimating effects in different meson systems

We have already stated above that LR operators are known to renormalise strongly
under RG evolution, especially in the K system as can be seen from the PLR

i factors in
both equation (6.19) and (6.20), leading to large NP effects in the K system. We have
also discussed in section 6.1.5 that the dominant NP mixing amplitude is generated
from LR operators. To go into more detail we have separated in equation (6.27) contri-
butions from loop integrals and QCD running defined as Rij(M) with M = K,Bd, Bs,
on which we focused in this section. We also found that Rtt(M) yields the dominant
contribution.

Now we take a look at the second contribution to the amplitude in equation (6.27),
determined by the quark mixing matrices, in particular the factor λLRi (M)λRLj (M).
Having identified the valid regions of parameter space from our scan, our study of this
factor will help us to estimate the contributions for different meson system. In order
to investigate the particular impact of the matrix V R on flavour processes, it is useful
to consider this factor normalised to the SM contribution. Regrouping of left and right
mixing matrices helps to simplify the relevant quantity according to

λLRt (M)λRLt (M)

λLLt (M)λLLt (M)
=
λRRt (M)

λLLt (M)
. (6.55)

In figure 6.7 we present this factor in a three-dimensional plot for all three meson
systems for s = 0.1. While in the K system in principle large effects are possible, the
effects in the Bs system and the Bd system range from moderate to small. From these
observations we can deduce a rough pattern for the hierarchy of NP effects, in particular
Bd < Bs � K. Since the same factor enters rare K and Bd,s decays, a similar pattern
of effects is expected there. However we should stress that really large effects in the K
system appear together with a large fine-tuning. This was expected since in this case
the extraordinarily large tt contribution to K0− K̄0 mixing has to be canceled by some
other contributions.
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Figure 6.7.: The factor |λRRt (M)/λLLt (M)| for M = K,Bd, Bs in a three-dimensional
plot. The colour coding corresponds to the logarithm of the fine-tuning ∆mod

BG .

Figure 6.8.: Two model independent correlations: on the left panel AsSL and Sψφ and
on the right panel ∆Γs and 2φs.

95



6 Flavour phenomenology and numerical analysis of the LRM

6.4.3. Model independent correlations

In view of the many free parameters involved in our analysis, our search for correlations
offered limited results. The search for correlations can be improved by the study of rare
decays, however this is beyond the scope of this thesis and will be addressed in future
work. The only clear correlations which can be found so far are model independent
such as the correlation of AsSL and Sψφ (mentioned in section 4.2.2) and the correlation
of ∆Γs and φs. We show both correlations in figure 6.8, which are independent of the
value of s.

6.4.4. Results for B → Xsγ

In figure 6.9 we show the correlation between Br(B → Xsγ) and the CP-averaged
branching ratio 〈Br(B → Xdγ)〉. While we have discussed the decay B → Xsγ ex-
tensively within this thesis, more information about the calculation of 〈Br(B → Xdγ)〉
can be found in our publication [49]. Here we restrict to the numerical discussion of
Br(B → Xsγ). In the left panel of figure 6.9 we demonstrate the s dependence of
Br(B → Xsγ). The qualitative enhancement of the branching ratio for increasing s
could already be deduced from the structure of Wilson coefficients (for more details
see section 6.2.2). The branching ratio depends linearly on Re(V R

tb ), shown in the right
panel of figure 6.9 for s = 0.1, also leading to a potential enhancement. Since the ex-
perimental value is still a bit above the value expected in the SM, in spite of relatively
good agreement within corresponding errors, there is room for a moderate enhancement
requiring a large s and a mainly real and positive contribution from V R

tb .

Figure 6.9.: The correlation of Br(B → Xsγ) and 〈Br(B → Xdγ)〉. We display in
colour the dependence on s and Re(V R

tb ) in the left and right panel respectively. The
red point in the center corresponds to the SM value and the dashed lines to

experimental central value.
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Figure 6.10.: Maximal value for scε2|V R
ub | as a function of s with respect to different

amount of fine-tuning. The bold dashed and straight line represents the value
scε2|V R

ub | ∼ 0.6× 10−3, necessary for a solution of the |Vub| problem.

6.4.5. The |Vub| problem and other anomalies in the LRM

We now move on to the discussion of the flavour anomalies, which we have described
in the SM context in section 2.1.1. In the LRM the situation is much less constrained
due to the impact of many free parameters, hence tensions like the εK −SψKS anomaly
can be easily removed. Furthermore we have seen in figure 6.8 that the full range of
values for Sψφ is possible in the LRM. Therefore, both an enhanced value of Sψφ, but
also the more recent value which even allows for a small negative Sψφ, can be explained
in the LRM.

Let us take a closer look at how the |Vub| problem manifests itself in the LRM. The |Vub|
problem plays a very special role in this thesis since it was one of the main motivations
for RHMFV. We have shown in figure 2.2 that for this model the |Vub| problem is
solved by choosing the inclusive value as the true value for |Vub|. The basic setup of the
LRM is very similar and from our discussion of tree-level constraints in section 3.3.2
we would naively expect that in the LRM the |Vub| problem can be solved in a similar
manner. The formulae in equation (3.23) and the values from table 3.2 allow us to
estimate that we can obtain solution of the |Vub| problem if scε2|V R

ub | ∼ 0.6× 10−3. In
general EWP observables provide the bound scε2 ≤ 10−3, while we have seen from our
study of |V R| that for arbitrary fine-tuning |V R

ub | is not constrained. This is a crude
estimate and we have to study the s dependence of the full quantity (see figure 6.10) to
resolve the question. Surprisingly, we find that a solution of the |Vub| problem cannot
be provided within the LRM. In figure 6.10 this can be explicitly seen from the fact

97



6 Flavour phenomenology and numerical analysis of the LRM

that the maximal values of scε2|V R
ub | in the LRM do not cross the bold dashed line in

that plot. The tension significantly increases if only points with small fine-tuning are
considered. Finally we want to mention that a solution to the |Vub| problem is partially
precluded by the increased lower bound on the mass of WR suppressing the parameter
ε.

6.4.6. A brief note on Z → bb̄

Similar to the considerations of section 5.2.6 for RHMFV, in the LRM we can examine
whether RH currents in the framework of the LRM are able to resolve the Z → bb̄
anomaly. To this end one again has to analyse the effective diagonal couplings of the Z
to down-type quarks as given in equation (5.33). The effective couplings can be derived
explicitly in terms of the Feynman rules as given in appendix F. Since the new effects
are of O(ε2) ∼ 10−3 the discrepancy between experimental and SM value as given in
equation (5.66) can also not be explained within the LRM. Another reason is also that
the effective couplings in the LRM are not flavour dependent, hence even an enhanced
value for the Z → bb̄ coupling would lead to inconsistent couplings for other flavours.

6.4.7. A soft lower bound on the heavy Higgs mass

In our previous considerations, we have worked with a heavy Higgs mass MH at the
edge of the perturbative regime by our choice of α3 = 8, only taking into account the
dependence on the parameter s. This was favourable since in this case the new Higgs
FCNCs are automatically suppressed. Now we want to turn the question around and
ask how light the mass MH actually can be taken while being in accordance with all
experimental constraints. Obviously the constraints from the decay B → Xsγ provide
a lower bound. We want to stress that our analysis has a few new features compared
to the literature. Firstly we consider all constraints simultaneously and not separate as
done in [36], for instance. Moreover we keep s as free parameter varying in the region
allowed by EWP observables, which has a profound impact on the Higgs mass MH .
In many previous papers including [36], the authors usually use the limit s � 1. We
proceed as follows: The heavy Higgs mass is varied between

2√
1− 2s2

TeV < MH <
16√

1− 2s2
TeV , (6.56)

corresponding to 0.1 < α3 < 8.

The result is very surprising and summarised compactly in figure 6.11. We can deduce
from figure 6.11 the “soft lower” limit MH & 2.4 TeV for the value s = 0.1. We
carefully choose the word “soft”, since we have made a crude parameter scan using
points generated by our previous analyses. We cannot exclude that a more careful
scan would reveal additional points being allowed for an even lower mass of MH . We
also want to remark that for such low Higgs masses the fine-tuning generally increases,
although we also find points with ∆mod

BG < 10. Eventually a comment on the matrix

98



6 Flavour phenomenology and numerical analysis of the LRM

Figure 6.11.: The allowed range for the Higgs mass MH as a function of s for EW
benchmark point ε = 0.03 and sR = 0.8.

V R is in order which is influenced by the change of the Higgs contributions. In order
to compensate large Higgs effects for a low value of MH this mixing matrix has to be
very hierarchical. Approximately we find for the mixing angles

s̃12 ∼ O(10−2) , s̃13 ∼ O(10−4) , s̃23 ∼ O(10−3) . (6.57)

Finally we want to comment on how these effects would affect the decay B → Xsγ.
Since Br(B → Xs,dγ) depends on the diagonal element V R

tb , the larger hierarchical
structure of V R has very little impact on it. Consequently a lower Higgs mass implies
enhanced effects in this branching ratio.

6.5. Proposal for a simplified parametrisation of V R

6.5.1. New ways of reduction of parameters

In the previous sections we have analysed the impact of the RH mixing matrix V R in the
most general way. To this end we have incorporated the most general parametrisation
of V R and imposed all existing constraints. Now we follow a very different strategy with
the goal of finding a simplified parametrisation for V R. This parametrisation should
contain only a few free parameters while being in accordance with the experimental
constraints. In the literature a few versions of V R with reduced numbers of parameters
already exist. However, some of them are already experimentally excluded like the
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“pseudo-manifest” scenario [33–35]. Others are experimentally disfavoured such as the
“manifest” scenario [32], the top-inspired approach [39] and some of the parametrisa-
tions of [38], mainly due to a very high bound on the WR mass.

The motivation for a simplified RH mixing matrix from our side is very different from
previous ideas. From our discussions above we know that the LRM has the potential to
resolve SM anomalies, which were topic of section 2.1.1, except the |Vub| problem. The
idea is now to find a simple matrix which still allows for a solution of these anomalies.
Obviously |Vub| needs a different treatment here, which will be explained in the following
section.

6.5.2. The treatment of |Vub|
The LRM does not favour any particular measurement of |Vub|, and hence allows for a
wider range for its values within the experimental uncertainties. On the other hand SM
tensions are closely correlated to the value chosen for |Vub| and can be shifted between
several observables as we will demonstrate below. To this end it is useful to define
different scenarios for |Vub|:

1. Small |Vub| - with the value |Vub| = 3.4 × 10−3. In this scenario one obtains
SψKS ≈ 0.675 in the SM, in agreement with the data. The SM tension manifests
in |εK | ≈ 1.8× 10−3 which is appreciably below the data.

2. Large |Vub| - with the value |Vub| = 4.4 × 10−3. In this scenario one obtains
the SM value for εK in agreement with the data. The SM tension manifests in
SψKS ≈ 0.82 which is significantly above the data.

In the following we want to concentrate only on scenario 1. The reason for this is that
the tensions within scenario 2 do not fully get resolved for the matrix which we propose
below. In fact, a simultaneous suppression of both observables SψKS and ∆Ms, which is
required for this scenario, is not possible. Hence the tension of SψKS can only be shifted
to ∆Ms. It should be stressed that in view of parametric uncertainties the scenario 2
is not excluded.

6.5.3. The reduced parametrisation

Now we want to introduce the simplified mixing matrix, which only depends on two
mixing angles s̃13, s̃23 and two phases φ1 and φ2 chosen from the first quadrant. The
matrix can be deduced from our general parametrisation by setting s̃12 = 0 in V R

0 , which
was given in equation (2.31). This choice automatically helps to soften the constraint
from ∆MK . In particular we obtain

V R =

 −c̃13e
−iφ1 0 s̃13

−s̃23s̃13e
i(φ2−2φ1) −c̃23e

−iφ1 −s̃23c̃13e
i(φ2−φ1)

c̃23s̃13e
−iφ1 −s̃23e

−iφ2 c̃23c̃13

 . (6.58)
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This matrix is specially designed to give rise to simple expressions for the ∆F = 2
observables and to resolve the SM tensions. We will demonstrate this in detail in the
following sections.

6.5.4. Modifications to ∆F = 2 observables

We now specify the formulae for ∆F = 2 observables. The formulae can be kept very
simple when we pre-constrain the ranges of the involved mixing angles by estimating
the contributions to the different meson systems. We obtain

s̃13
<∼ 0.02 , s̃23

<∼ 0.2 and s̃13s̃23
<∼ 10−5 , (6.59)

coming from Bd system, Bs system and the most stringent from εK , respectively. For
these ranges ∆Md,s, εK , SψKS and Sψφ are fully dominated by top-top exchanges and
are hence proportional to λLRt λRLt , whereas for ∆MK λLRt λRLc is also relevant. However,
since the elements V R

td and V R
cs carry the same phase such top-charm contributions have

no impact on εK . Only considering the dominant LR contributions and using the
notation as introduced in equation (6.27), one can easily derive

(Im MK
12)LR = |Rtt(K)|×G

2
FM

2
W

12π2
F 2
KmK |V L

td ||V L
ts |c̃23s̃13s̃23 sin(φ2−φ1−β+βs) , (6.60)

for the K0 − K̄0 system and

CBqe
2iϕBq = 1− |Rtt(Bq)|

S0(xt)B̂BqηB

[
λRRt (Bq)

λLLt (Bq)

]∗
. (6.61)

for the B0
q − B̄0

q . The simplified matrix in equation (6.58) yields[
λRRt (Bd)

λLLt (Bd)

]∗
=
c̃23s̃13V

R
tb

|V L
td |

ei(φ1−β) ,

[
λRRt (Bs)

λLLt (Bs)

]∗
=
s̃23V

R
tb

|V L
ts |

ei(φ2−βs) , (6.62)

and consequently

sin 2ϕBd = − |zd|
CBd

c̃23s̃13V
R
tb

|V L
td |

sin(φ1−β) , sin 2ϕBs = − |zs|
CBs

s̃23V
R
tb

|V L
ts |

sin(φ2−βs) , (6.63)

where we have defined
zq =

Rtt(Bq)

S0(xt)B̂BqηB
. (6.64)

For a reasonable choice of the parameters MWR
= 2.5 TeV, MH = 16 TeV and s = 0.1,

while additionally using only central values for remaining parameters, one finds

|Rtt(K)| = 9.1 , |Rtt(Bq)| = 0.57 , |zd| = 0.36 , |zs| = 0.34 . (6.65)

Furthermore under the assumption of scenario 1, recalling that the SM value for SψKS
agrees already well with the experiment, we can approximately set φ1 ≈ β leading then
to negligible NP effects in SψKS . Consequently, εK and Sψφ are governed by the phases
φ2 − 2β and φ2, respectively. Reproducing the experimental value of εK requires then
φ2 > 2β− βs, which implies automatically an enhancement of Sψφ. In the following we
want to concentrate on correlations between εK , SψKS , Sψφ, ∆Md and ∆Ms.

101



6 Flavour phenomenology and numerical analysis of the LRM

6.5.5. Numerical results

We briefly want to illustrate our findings with the help of a simplified numerical anal-
ysis, neglecting the errors in the LH mixing matrix and other parameters. Instead,
we fix all values to their central values according to section 3.3.3, except |Vub| which
we have already defined in scenario 1 and γ = 68◦. Mixing angles and phase of the
simplified matrix for V R were scattered under the following assumptions: we choose
φ1 = β, s̃13 = 3 · 10−3 and the remaining parameters are varied according to s̃23 < 0.2
and 2β − βs < φ2 < π + 2β − βs. This treatment allows a transparent demonstration
of the behaviour of correlations. At the same time it displays how a more precise mea-
surement of the CKM elements can help not only to find tensions between observables
but also to deduce details of the underlying model.

In figure 6.12 we present the correlation between εK and Sψφ. Here we have imposed the
experimental constraints from ∆Ms and ∆Md. We find that εK is in good agreement
with the data for s̃23

>∼ 0.05 and 45◦ < φ2 < 50◦, in turn enhancing Sψφ with respect to
its SM value. As one can easily deduce a larger value for φ2 is linked to a smaller s̃23

in order to satisfy the experimental data on εK . Thus the εK anomaly is solved and in
case of a precise measurement of Sψφ the values for s̃23 and φ2 can be extracted.

Now we have to examine whether the tension in εK is resolved and not just shifted to
a different set of observables. To this end we consider the correlation between ∆Md

and ∆Ms normalised to their SM values as illustrated in figure 6.13. Here we also
have taken into account the constraint from εK . We realise that values for both mass
differences lie somewhat below their SM predictions, which is favoured by experimental
data. To go into more detail, ∆Md is very close to its experimental central value. It
is not surprising that the value of ∆Md varies only in a very small range, since this
observable is mainly influenced by φ1 and s̃13 which are fixed in our consideration. The
observable ∆Ms can also be suppressed. Requiring that the values lie in the allowed
experimental region (indicated by the grey band), we find that due to the correlation
with Sψφ the following values are preferred: moderate enhancement with Sψφ <∼ 0.4
(light-blue points) or large enhancement with Sψφ ∼ 1 (red points). The latter value
however is disfavoured by the latest data from LHCb.

Finally we want to mention that a nice “side effect” of our simplified matrix is that
the V R

tb value is close to one. The branching ratio Br(B → Xsγ) is then automatically
enhanced with respect to its SM value, which is favoured by experimental data.

6.5.6. Outlook

In the previous sections we have introduced a new simplified parametrisation for V R

and demonstrated that SM flavour tensions can be resolved. Here we want to quote a
reference point, in particular

s̃13 = 3 · 10−3 , s̃23 = 0.03 , φ1 = β = 21◦ , φ2 = 50◦ , (6.66)
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Figure 6.12.: Correlation between Sψφ and εK in scenario 1 for fixed values of φ1 = β
and s̃13 = 3 · 10−3. The red dot denotes the central SM value. The black curves

illustrate the lines of a constant φ2 while values for s̃23 are encoded in colour. The
grey band corresponds to the region of εK preferred by experimental data.

Figure 6.13.: Correlation between ∆Md and ∆Ms in scenario 1 for fixed values of
φ1 = β and s̃13 = 3 · 10−3. Different values for Sψφ are encoded in colour. The grey

band represents the preferred experimental region.
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which represents a possible solution. The observables of our consideration are then
given by

SψKS ≈ 0.67 , |εK | ≈ 2.2 · 10−3 , Sψφ ≈ 0.27 , (6.67)

and
∆Md ≈ 0.51 ps−1 , ∆Ms ≈ 17.4, ps−1 . (6.68)

It should be mentioned that our matrix V R is chosen in the most simple way and
a further reduction of parameters would not allow a resolution of the SM anomalies.
However, there might exist other simplified parametrisations which are equally effec-
tive. We also want to remark again that in our discussion so far we have neglected
both theoretical and parametric uncertainties in order to establish various correlations
cleanly.

In summary, we are able to draw conclusion about a possible structure of V R only
using hints from existing flavour data. With improved measurements, especially of the
observables Sψφ, SψKS and |Vub|, such methods will gain in importance. It should also
be stressed that direct collider searches for NP are not sensitive to the structure of V R.
Thus, even in case of a discovery of a heavy WR directly, the study of flavour physics is
indispensable in order to reveal details about a specific model. In this sense low energy
flavour data can give us remarkable and complementary information about physics at
high energy scales.
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7. Comparison with other models

After having studied two different approaches towards RH currents in detail, it is now
interesting to summarise both the common grounds and differences. Furthermore we
want to compare the two models with other bottom-up and top-down approaches. The
models in comparison are consciously chosen with properties similar to their coun-
terpart, although we will demonstrate that in spite of these similar patterns different
results in flavour observables can be obtained. We compare two effective approaches
which incorporate the idea of MFV in two different ways. RHMFV makes use of an
extended MFV principle, matched to the idea of RH currents. In the second effective
approach in the 2HDMMFV [54, 211], a two Higgs doublet model, the MFV hypothesis
is implemented with additional flavour blind phases. We also compare the LRM with
the Randall Sundrum model with custodial protection (RSc). The comparison of these
models is attractive since both top-down approaches have the same gauge group and
exhibit a similar symmetry breaking pattern.

7.1. Comparison of RHMFV and the LRM

7.1.1. Comparison of the theoretical setups

Let us start by comparing the two models which are the main topic of this thesis. First
of all both approaches address right-handed currents in a quite different way. While in
RHMFV we consider an effective theory, the LRM can be understood as a full renor-
malisable theory.

Comparing the symmetry structure of the two frameworks we realise that both are
based on the SU(2)L × SU(2)R × U(1)B−L setup. Whereas in RHMFV the symmetry
acts globally, in the LRM it is gauged and hence local. Consequently the particle con-
tent is different in each case. The LRM features the heavy gauge bosons WR and Z ′
together with a bunch of heavy Higgs particles, where only the two flavour changing
Higgses H0

1 and H0
2 and the H+ as discussed above play a role in our analysis. On

the other hand in RHMFV only SM particles contribute directly. The number of pa-
rameters is similar in both models, with the RH mixing matrix providing in each case
9 additional parameters. While the same general parametrisation can be chosen for
this matrix, phenomenologically both scenarios turn out to be very different. We will
discuss this in more detail in the following section.

We have a similar right-handed scale in both models. In particular the typical scales
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are set by the parameters εR = O(10−3) and csε2 < O(10−3) for RHMFV and the LRM
respectively. It should be stated that while in RHMFV the scale is fixed by data from
tree-level decays, in the LRM we obtain it by the study of EWP observables and direct
bounds on the MWR

mass.

The FCNC protection mechanisms of both models are very different. While in RHMFV
we imposed a generalised MFV principle, in the LRM the GIM mechanism linked to
the unitarity of the mixing matrices provides a partial protection. In contrast to the
SM, flavour violation is mainly introduced by the non-standard tree-level Higgs contri-
butions. These dangerous contributions can be softened by a large Higgs mass. A mass
as low as 3 TeV is allowed without violating experimental constraints. However, in this
case the RH mixing matrix has to exhibit a very special structure in order to keep the
NP effects under control. It should be noted that the GIM mechanism is violated in
the left-right contributions to Wilson coefficients.

The LRM cannot be matched to RHMFV just by integrating out the heavy fields.
We provide two arguments to justify this statement. The first is obvious, only a very
specific and non-trivial pattern of symmetry breaking can be linked with the spurions
responsible for breaking the custodial symmetry in RHMFV. The generalised MFV
assumptions provide a specific flavour structure for the effective couplings, which are
absent in the more general case of the LRM. Secondly, the operator structure of both
models is qualitatively different. By construction, RHMFV involves only the operators
QV LL1 , QV RR1 and QLR1 . The operator QLR

2 is assumed to be generated only by QCD
corrections. As we have previously shown, in the LRM we can classify the impact of
operators into three main categories:

• The tree-level exchange of a colourless Higgs scalar generates the operators QSLL
1 ,

QSRR
1 and QLR

2 , but in our case keeping contributions up to O(ε2) only the LR
contribution matters.

• Charged Higgs box diagrams generate the same operator QLR
2 as in the neutral

tree-level case, at O(ε2) .

• Box diagrams with internal charged gauge bosons carrying both LH and RH
couplings generate the operators QV LL

1 , QV RR
1 and QLR

2 at O(ε2). The operator
QLR

1 is also generated but emerges with its leading term at O(ε4) and is thus
neglected in our analyses.

In the LRM the leading effect for QLR
1 comes from QCD operator mixing. In spite of

the fact that the inclusion of scalar currents provides a larger basis of operators, the
main difference of both models effectively occurs only in the appearance of the opera-
tors QLR

1 and QLR
2 . In an explicit model the operator QLR

1 (together with the operators
QV LL

1 and QV RR
1 ) usually appears in the presence of a tree-level exchange of a colourless

gauge boson with LH and RH couplings, such as typical for Z ′ models or gauge flavour
models [212]. Hence the effective ∆F = 2 Hamiltonian of RHMFV should correspond
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to a full theory where such exchanges are involved. This is clearly not the case in the
LRM, where NP enters mainly through the impact of the operator QLR

2 .

In summary, the two approaches considered in this thesis provide a complementary
view of RH currents. We stress again that RHMFV cannot just be seen as an effective
theory of the LRM with the heavy particles integrated out.

7.1.2. Comparison of the flavour phenomenology

The differences elaborated above can be seen in the phenomenology. First we want
to compare the structure of the RH mixing matrices. In RHMFV the RH matrix was
constructed with the motivation of a large Sψφ. On the other hand, in the LRM possi-
ble structures are obtained as results of our numerical analysis, starting from the most
general parametrisation. It turns out that their particular structure is very different.
This can be explicitly deduced from the size of elements by comparing figure 6.6 and the
entries of the matrix given in equation (5.10) corresponding to the LRM and RHMFV
respectively. With more precise data a measurement of their corresponding entries
could help to distinguish both scenarios. Furthermore we have already demonstrated
in detail that unlike in RHMFV the |Vub| problem cannot be solved in the LRM. This
is partly since the experimental bound on the mass of WR has been increased.

Now we turn to ∆F = 2 observables. RHMFV was originally designed to explain a
large Sψφ. In order to obtain a small or even negative Sψφ one would have to redo
the analysis under this special requirement. Our LRM analysis is in this context much
more flexible since we obtain Sψφ as a prediction, where values in the full range are
possible. In the LRM, all SM tensions of flavour observables can be resolved, even with
a reduced parametrisation. This is not the case in RHMFV where the SψKS– sin(2β)
tension remains. Further, in RHMFV the εK constraint implies potentially large effects
in Bs mixing together with negligible effects in Bd mixing. A similar pattern exists in
rare Bd,s decays. The Bq sector of the LRM follows a structure similar to RHMFV. In
more detail we have identified a rough hierarchy pattern of NP effects Bd < Bs � K.
A future study of rare decays within the LRM will help to distinguish both models by
their correlations. Finally, neither model explains the anomalous Zbb̄ coupling.

7.2. RHMFV versus 2HDMMFV

7.2.1. A very brief review of the 2HDMMFV model

In this section we want to give a brief summary of the 2HDMMFV framework. For a
detailed model description we refer to the original papers [54, 211]. Subsequently, we
compare their main findings to RHMFV and elaborate differences as well as prospects
of both models.
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As already mentioned above the 2HDMMFV belongs to the class of two Higgs doublet
models. The Yukawa interaction includes in this case separate terms for both Higgs
doublets, which couple to up and down quarks. Consequently, the mass matrices for
up and down quarks appear as linear combinations of up and down Yukawas couplings,
respectively, and hence cannot be simultaneously diagonalised for generic Yukawa cou-
plings. This is the origin of potentially dangerous Higgs mediated FCNCs at tree-level.
A realistic model hence seeks for an appropriate suppression mechanism of such con-
tributions, which is guaranteed in [54] by inclusion of the MFV principle.

The flavour symmetry, identical to the original MFV setup and given in equation (2.4),
is only broken by two independent terms Yd and Yu similar to the original setup. Hence
spurions will follow the known transformation properties as given in (2.5). Due to this
property the Yukawa coupling matrices in the two Higgs doublet case can be expanded
at lowest order in Yd and Yu, respectively. More generally speaking one obtains a poly-
nomial containing the two left-handed flavour invariant combinations YuY †u and YdY †d .
The corresponding coupling coefficients are in general taken to be real, but it is consis-
tent with the MFV principle if they additionally carry new flavour-blind CP-violating
phases [80–82]. At this stage the role of electric dipole moments (EDMs) is often dis-
cussed, which are known to set strict bounds on such flavour blind phases (FBPs).
However a detailed analysis of the authors in [211] shows that the upper bounds from
EDMs still allows for sizable effects from FBPs.

For completeness it should be mentioned that additional phases in the Higgs sector,
in particular the Higgs potential, can be present. These then enter into the mixing
induced CP asymmetries SψKS and Sψφ, and can hence change their correlation. We
will not follow this aspect here further. However, it should be noted that this possibility
is interesting since the most recent data on Sψφ indicates that some FBPs in the Higgs
potential might be necessary.

7.2.2. Comparison of theoretical aspects

At first sight the two setups of RHMFV and 2HDMMFV seem to be very similar. Both
are effective approaches implementing the idea of MFV. However, the flavour groups in
each case are different. Our LR symmetric flavour group is less constraining than the
full MFV group in (2.4). Here we should also mention the additional FBPs exist in the
two Higgs doublet case which do not appear in RHMFV. Finally there is an extended
Higgs sector in (2.4), opening the possibility for new scalar contributions, while in our
approach we have a SM Higgs sector. Obviously, this leads to an extended particle
content in the Higgs sector for the 2HDMMFV model, including three neutral Higgs
fields with flavour violating couplings and additionally charged Higgs fields. We want
to remark that two spurions Pu,d in RHMFV can also be interpreted as the remnant
of two different VEVs stemming from a two Higgs doublet model. The Higgs can then
be understood as an effective light Higgs appearing from a linear combination of two
Higgs fields with similar VEVs and heavy masses.
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Let us now take a closer look at the operator structure. As we have seen in equa-
tions (5.5) and (5.8), at the high scale RHMFV selects QV RR1 and QLR1 , while Higgs
exchanges in 2HDMMFV mainly take place through QLR2 . It should be stressed that
these high scales differ in the particular models. The masses of the new neutral scalars
is expected to be smaller by one order of magnitude than the relevant scales for RH
currents. Under consideration of QCD renormalisation group effects in RHMFV the
operator basis is given by equation (4.2), while for 2HDMMFV the full set of operators
as given by both equation (4.2) and (4.3) has to be considered. Interestingly the RG
effects for PLR

1 and PLR
2 are roughly of the same size.

In spite of the fact that both models control FCNCs by the MFV mechanism or some
extended version, practically the suppression turns out to be very different. Considering
∆F = 2 observables in case of 2HDMMFV one realises that the Wilson coefficients of
the NP contributions in K0 − K̄0, B0

d − B̄0
d and B0

s − B̄0
s mixing come with a mass

suppression proportional to the product of their external quark masses according to
msmd, mbmd and mbms, respectively. In RHMFV the breaking of flavour universality
of non-standard contributions is entirely determined through the RH mixing matrix.

7.2.3. Comparison of the flavour phenomenology

Now we are ready to compare the phenomenology of ∆F = 2 observables. Obviously in
2HDMMFV, the NP contributions are mainly determined by the mass pattern described
above, leading to negligible effects in K0−K̄0, followed by suppressed effects in B0

d−B̄0
d

while in B0
s − B̄0

s mixing larger effects are possible. The particular size of contributions
in Bd and Bs system appears in a correlated manner, approximately the following
relation is valid [52]

ϕBd ≈
md

ms

ϕBs ≈
1

17
ϕBs . (7.1)

Hence the FBPs only have impact on ∆B = 2 transitions. This implies that the highly
constrained εK is not directly affected. The modification of the relation between the
CKM phase β and the NP phase ϕBd according to equation (4.17) allows to extract
a ”true” value for β which is enhanced with respect to the SM result. Therefore it
is in favour of relaxing the SM tension existing in εK and sin(2β). Furthermore the
correlation of phases (7.1) allows for a large CP-violating phase in B0

s − B̄0
s mixing,

hence a large Sψφ, while at the same time the tension between the SM prediction and
experimental value within SψKS becomes weakened. Finding a negative value for Sψφ
experimentally would rule out the model.

We note that the 2HDMMFV solves the εK problem in a way similar to the mechanism
in RHMFV. Instead of increasing the SM tension in SψKS like in RHMFV, the situation
in the two Higgs doublet is favourable. Here we want to stress that in 2HDMMFV only
the impact of the FBPs can give rise to CP violating effects big enough to explain siz-
able effects in Bs mixing in particular Sψφ. Consequently the question arises whether
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FBPs can also help to cure the problem in the RHMFV model.

Let us allow for a moment such phases in RHMFV. Then the expansion of contributing
bilinears contains terms each with a complex coefficient. However the operator O(6)

RR of
equation (2.26) consists of a squared bilinear, consequently the complex phase would
cancel. Therefore such phases could just contribute to O(6)

LR, given in equation (2.27),
and then appear in the subsequently derived formulas only in terms containing the
coefficient cLR. We find that in this case the same effect as in the 2HDMMFV cannot
be reproduced and such phases cannot cure the tension in SψKS .

On the other hand it should be noted that the 2HDMMFV model favours large values
of |Vub|. Here no natural explanations for the different determinations of |Vub| can be
found as it was the case in RHMFV.

Finally, we compare ∆F = 1 observables. Here the role of the decays Bs,d → µ+µ−

is important. Due to the scalar FCNC operators in 2HDMMFV, both branching ratios
can be enhanced by one order of magnitude relative to the SM value so that both
decays can come close to their present experimental limit. This takes place without
coming into conflict with constraints from εK and large Sψφ. Moreover the known MFV
relation is approximately preserved and a strict linear correlation is obtained. Recall
that in RHMFV effects in Bs → µ+µ− were smaller, while in Bd → µ+µ− negligible
after imposing a large Sψφ. Hence the relation for Bs,d → µ+µ− typically obtained in
MFV models is strongly violated here.

7.3. Comparison of the LRM and the RSc

7.3.1. The Randall-Sundrum model with custodial protection

In this section we want to compare the LRM to the Randall Sundrum model with custo-
dial protection (RSc), which we have extensively studied in [19] and wherein a detailed
model description can be found. Here we just briefly review the basic ideas of this class
of models. Models with a warped extra dimension and bulk fields have received a lot
of attention in the last years [13–16]. They not only provide a geometrical solution to
the hierarchy problem, but also naturally generate the hierarchies of fermion masses
and mixings [20,21] while keeping FCNCs efficiently under control [213,214].

The central feature of such models is a warped metric [13], given by

ds2 = e−2kyηµνdx
µdxν − dy2 , (7.2)

where the extra dimension, characterised by the variable y, appears with an exponen-
tial warp factor depending on a curvature scale k. The five dimensional space-time is
then described by a brane scenario: two four-dimensional branes, the so called Planck
and TeV brane, and the five-dimensional (5D) bulk along the extra dimension. The
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effective energy scale turns out to be suppressed by the warp factor along the extra
dimension. Since gravity propagates in the bulk while the Higgs field remains confined
on the TeV brane, the warping then can generate the huge hierarchy between the scale
of gravity and the electroweak scale.

In order to guarantee a sufficient suppression of higher dimensional operators, being
linked to FCNCs and electroweak precision tests, SM fields have to propagate in the
bulk. Hence fields appear five-dimensional and have to be treated in terms of Kaluza-
Klein (KK) decomposition. Consequently each fields consists of a light zero mode,
being assigned to the corresponding SM field, and a tower of heavy KK modes. In
general the KK modes have masses of O(1 TeV) and hence are light enough to be ac-
cessible at LHC. Higher modes have increasing masses, thus it is phenomenologically
justified to truncate the KK tower and restrict to the first mode as done in this anal-
ysis. In addition each mode is characterised by a profile in the bulk. In this way
different flavours can be described by different localisations in the bulk. The overlap
with the Higgs field on the TeV brane then determines the fermion mass. Thus, when
assuming anarchical O(1) Yukawas in the 5D theory, the effective 4D Yukawas exhibit
a hierarchical structure so that typical quark mass patterns are generated automatically.

The appearance of sources of flavour non-universalities in this class of models is two-
fold. Due to the different fermion localisation in the bulk non-universalities remain
in the gauge couplings after rotation to mass eigenstates. Furthermore electroweak
gauge bosons of the same charge mix due to EWSB and leading for example to non-
universalities in the Z coupling. To this end FCNCs can appear at tree-level [210,213–
215]. However, these potentially dangerous effects are controlled by a powerful protec-
tion mechanism, compactly described as the RS-GIM mechanism [213, 214]. It keeps
the effects in flavour-changing transitions for light quark generations to be small.

In order to construct a realistic model of EWSB in this framework, constraints from
electroweak precision tests, as given by the T parameter and the ZbLb̄L coupling, have
to be taken into account [216,217]. Consistency can be achieved by an enlargement of
the bulk symmetry according to [17,18,23,27,218,219]

Gbulk = SU(3)c × SU(2)L × SU(2)R × U(1)X × PLR , (7.3)

where PLR is a discrete symmetry interchanging the two SU(2) groups. The symmetry
breaking is achieved by a combination of choosing appropriate boundary conditions and
spontaneous symmetry breaking due to the Higgs field. The EWSB induces a mixing
between SM zero modes and heavy KK fields, leading to a non-trivial structure for
flavour-changing transitions.

7.3.2. Comparison of the theoretical framework

The LRM and the RSc feature a few common properties. Starting from the fact that
both are top-down approaches, the gauge group and its breaking pattern are similar in

111



7 Comparison with other models

both cases. However, we want to point out that in the 4D dual description of the RSc
the SU(2)R appears as global symmetry according to the AdS/CFT correspondence.
Furthermore the additional PLR symmetry in RSc gives rise to equal left and right
gauge couplings. This has been deliberately avoided in the LRM in order to create a
more general framework and allow for a small left-right asymmetry. Furthermore the
realisation of a brane scenario makes use of a new form of symmetry breaking imple-
mented by boundary conditions. In both models we obtain new particles due to the
enlarged symmetry, set to be at a NP scale around (2 − 3) TeV. The KK expansion
leads to additional modes for each gauge boson with respect to the LRM, such as the
KK gluon, the KK photon. In the electroweak sector in total the new gauge bosons
W±
H , W ′±, ZH and Z ′ appear. In the fermion sector of the RSc exotic charged fermions

can arise, expected to be much lighter than the gauge boson states.

A striking difference is the fact that the RSc explains hierarchies. This refers to both
the hierarchy problem as well as hierarchies in masses and mixings. In the LRM, the
RH mixing matrix appears without explanation.

The flavour pattern of both models is very different. We have outlined the mechanisms
of protection from large FCNCs in each model previously. Here we just summarise the
fact that both models violate GIM in different ways. FCNCs at tree-level appear in both
models. While in the LRM these tree-level contributions arise solely from the neutral
Higgs diagrams, in the RSc tree-level transitions are mediated by the electroweak gauge
bosons and the KK gluon. The dominant tree-level exchanges of the KK gluon then
generate the operators QV LL

1 , QV RR
1 , QLR

1 and QLR
2 . Recall that in the LRM the

exchange of colourless gauge bosons with LH and RH couplings lead to QV LL
1 , QV RR

1

and QLR
2 . The operator QLR

2 provides the dominant effects in K0 − K̄0 mixing in the
RSc, due to RG effects and chiral enhancement. For B0

q − B̄0
q mixing QV LL

1 turns out
to be dominant. In principle tree-level flavour changing Higgs couplings also exist in
the RSc but they play a subleading role [220,221].

7.3.3. Comparison of the flavour phenomenology

Finally, we want to summarise very briefly the main effects observed in phenomenol-
ogy [137,222].

The strongest constraints in ∆F = 2 observables in both models arise from the εK
constraint. In the context of this observable in the RSc often a “fine-tuning problem”
is mentioned implying a large fine-tuning in order to keep an anarchic structure of
the 5D Yukawa couplings while keeping the KK scale low [210]. On the other hand
in [222] it was shown that regions of parameter space with low fine-tuning exist being
in accordance with all constraints from ∆F = 2 observables. It should be stressed that
the density of points in the corresponding plot of the same paper has only numerical
but no physical significance. Therefore, we have avoided such a presentation in our
analysis of the LRM. Still in the RSc the fine-tuning problem is more severe since it
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gets reintroduced at one loop level due to the large 5D Yukawa couplings close to their
perturbativity bound. In addition one of the main motivations for the RSc was a solu-
tion to the flavour hierarchy problem with anarchic fundamental couplings, while the
LRM does not claim to provide a theory for flavour hierarchies.

In the RSc the effects on mass differences in the B0
q − B̄0

q system are suppressed by
the RS-GIM mechanism. However NP effects still enter such that the SψKS– sin(2β)
tension can be resolved. Similar results are obtained in both models for the CP asym-
metry Sψφ, in particular −1 < Sψφ < 1 can be found in both cases.

Let us now consider the results for rare decays. Since in the LRM we did not explicitly
consider rare decays (except B → Xsγ), we can only use our estimates from section 6.4.2
indicating a rough pattern of NP effects for rare decays according to Bd < Bs � K.
Interestingly this pattern matches with the pattern obtained in the RSc: effects in in
rare K decays are generally bigger than effects in B physics. We hope to study the
detailed phenomenology of rare decays for the LRM in a separate publication.

Finally let us take a look at the decay B → Xsγ. Generally the contributions in both
models are of very different nature. While in the LRM the mb suppression can be
overcome by a chirality flip inside the loop, in the RSc the primed operators, domi-
nantly C ′7γ, play an important role [1,214,223]. In both cases however the value for the
branching ratio can be enhanced with respect to the SM value and brought into better
agreement with the experiment.

Since the well-measured ∆F = 2 observables mainly act as model constraints, from the
point of view of flavour physics, only a study of rare decays their correlations will help
to distinguish these two models. In this respect, direct collider searches can provide
valuable information.
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The true nature of physics beyond the SM is one of the fundamental questions of con-
temporary particle physics. In order to test the viability of a specific model, one has
to carefully take into account all experimental data, among which flavour observables
play an important role. On one hand anomalies and tensions in flavour observables of
the SM give us hints where NP can enter. On the other hand the constrained pattern
of flavour observables as well as the identification of specific correlations make them an
important tool to probe NP at the intensity frontier, complementary to direct collider
searches at the energy frontier. Further, exploring TeV scale physics through direct
collider searches is experimentally a highly complex undertaking. Due to the large
amount of data, one needs a clue from theory where to look for NP. In contrast, the
measurement of flavour observables does not depend on certain model assumptions but
its results can be interpreted in the context of a specific model.

In the present thesis, we have addressed the question whether RH currents can provide
a realistic NP framework in terms of a comprehensive analysis of flavour observables. In
this analysis emphasis was put on the well-measured FCNC observables of the ∆F = 2
sector related to the particle-antiparticle mixings K0− K̄0 and B0

d,s− B̄0
d,s, but various

rare decays were also considered.

We have analysed two complementary models for RH currents taking a bottom-up
and a top-down approach. These two approaches also differ in their inherent operator
structure and their specific flavour protection mechanism. This implies that these two
models cannot be matched by integrating out heavy particles in the explicit approach.
Yet, both models have an underlying SU(2)L×SU(2)R×U(1)B−L electroweak symme-
try structure in common, global in the bottom-up approach and local in the top-down
approach, leading to RH currents. In both cases the flavour mixing of the RH sector is
controlled by a new RH mixing matrix. A further key feature of such models with RH
currents is that new left-right operators appear having significant impact on ∆F = 2
observables. In more detail, in the RHMFV and in the LRM the operators QLR

1 and
QLR

2 dominate respectively. Both operators are known to be strongly enhanced due to
renormalisation group evolution to low energy scales and in the K0 − K̄0 system the
additional chiral enhancement of the hadronic matrix element has to be taken into ac-
count. Thus models with RH currents are automatically highly constrained by FCNC
observables, especially by the precisely measured CP-violating parameter εK .

We first introduced the effective field theory approach of Right-Handed Minimal Flavour
Violation. A central ingredient in this model is a left-right symmetric flavour group bro-
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ken only by the Yukawa couplings, leading to an extended MFV principle. This specific
flavour protection mechanism distinguishes our analysis from previous considerations
of RH currents within the effective field theory framework. We have shown that in this
model the RH mixing matrix can be determined by charged current data, theoretical
bounds such as the unitarity constraint and phenomenological bounds such as the pat-
tern of ∆F = 2 observables. The determination of the full RH mixing matrix is a novel
feature in contrast to previous considerations [45,46] which mainly concentrated on the
elements |Vub| and |Vcb|. The explicit form of this matrix and responsible factors for
∆F = 2 observables are summarised in the schematic formula of equation (5.10) and
in table 5.1 respectively. The new RH interactions are encoded in the effective theory
by means of dimension six operators in accordance with the symmetry principles. This
allows us to determine NP effects without specifying the fundamental theory but only
with information about global symmetry and the pattern of its breakdown.

Our findings for the most important phenomenological implications of this model are
as follows:

1. In this model the |Vub| problem can be solved, providing an explanation of the
different values of |Vub| from measurements of inclusive and exclusive semi-leptonic
decays. The inclusive value is favoured in this case, giving the “true” value for
|Vub|.

2. The εK anomaly can be understood since the increased “true” value for |Vub|
goes in hand with an enhancement of sin 2β. Thus experimental and theoretical
values for εK can be automatically brought into better agreement, as opposed
to the SM where inclusive and exclusive determinations are averaged, leading
to a lower value of sin 2β. New CP violating phases can still be present, since
theoretical errors allow an extra contribution of ∼ ±10% to εK , however they are
not necessary.

3. A non-standard CP-violating phase in Bs mixing allows for a large Sψφ, driving
in conjunction with the εK constraint the effects in the Bd sector to be negligible.

4. Thus, the indicated small NP phase in the Bd sector and the large sin 2β imply
that the Sexp

ψKS
– sin 2β tension becomes strengthened, unless Sψφ is SM-like, as

we discuss below.

5. The desire for a large Sψφ implies small effects in rare Bd decays while contri-
butions to rare Bs decays still can be sizable. As an explicit example, we have
considered the decays Bd,s → µ+µ−. The decay Bd → µ+µ− only obtains negli-
gible corrections compared to the SM, while the branching ratio of Bs → µ+µ−

maximally is enhanced by an additional factor of 5. Consequently, the strict cor-
relation from MFV is violated in this framework. In particular, the study of the
decay Bs → µ+µ− is interesting since it can be potentially measured within this
year at the LHC.
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6. We have also shown that there exists a well-defined pattern of correlations in
various other decays. We have explicitly shown the correlations for Br(B → Kνν̄)
and Br(B → K∗νν̄) and for Br(K+ → π+νν̄) and Br(KL → π0νν̄). Significant
deviations from the SM branching ratios are possible.

7. Finally, the anomalous RH Zbb̄ coupling cannot be explained in RHMFV, pre-
cluded by the constraints from Bd,s → µ+µ−.

In summary, not all tensions could be resolved within RHMFV. However, these tensions
are within the uncertainties in measured and theoretical quantities. In our analysis we
have assumed a large Sψφ, motivated by the Tevatron results. Recent experimental
developments now point towards a smaller or even negative value, but the statistics
have to be improved in order to obtain a reliable and final answer. Still a large value
Sψφ ∼ 0.4 is not excluded. A SM-like Sψφ would allow for larger effects in Bd mixing
and potentially cure the sin 2β and Sexp

ψKS
tension. In our effective theory approach, the

assumption of a large Sψφ was implemented by hand. This helps to make certain simpli-
fying approximations, which have significant impact on the phenomenology. Therefore,
relaxing the assumption of a large Sψφ would require a completely renewed analysis,
which is beyond the scope of this thesis. In this sense, our effective theory is limited.
However, the effective theory approach makes it possible to explore regions of NP and
estimate the magnitude of the NP effects without specifying the fundamental theory.
Furthermore the systematic expansion can help to identify easily the leading operators
and lend a transparent view on how they are bounded by various processes. This is in
particular useful in ∆F = 2 processes due to a small number of operators. In ∆F = 1
processes the set of contributing operators is much larger.

The second model considered in this thesis is the Left-Right Asymmetric Model. We
have adopted a very general framework allowing for a splitting in the left and right
gauge couplings. Furthermore, the RH mixing matrix is incorporated in its most general
parametrisation without further simplifying assumptions. Due to the enlarged gauge
symmetry new particles appear in the gauge and in the Higgs sector, contributing to
FCNC processes. In the ∆F = 2 sector we concentrate on the following observables:
the mass differences ∆MK , ∆Ms and ∆Md, the CP-violating parameter εK , the mix-
ing induced CP asymmetries SψKS and Sψφ, the semileptonic asymmetry AqSL and the
width difference ∆Γq. These observables obtain new contributions, which arise through
box diagrams due to WR gauge boson and charged Higgs exchanges but dominantly
through tree-level exchanges from heavy neutral Higgs bosons. We have also considered
the decay B → Xsγ, where NP contributions appear due to the WL −WR mixing and
dominantly through charged Higgs exchanges.

In view of many existing studies of LR models it is important to summarise once more
the novelties of the present analysis.

• We kept the theoretical framework as general as possible.
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• We have explicitly elaborated the importance of the contributions of heavy Higgs
fields to flavour observables. On the contrary, many studies neglect the Higgs
effects, citing the large mass of the heavy Higgs fields. Figures 6.3 and 6.4 sum-
marise the importance of the neutral and charged Higgs fields for ∆F = 2 ob-
servables and the decay B → Xsγ respectively.

• Our analysis includes an improved treatment of QCD corrections.

• We present an extensive set of Feynman rules, collected in appendix F.

• The central aspect of our consideration is a simultaneous analysis of the most
interesting ∆F = 2 observables and B → Xsγ, while taking into account all rel-
evant constraints such as from tree-level decays, electroweak precision tests and
direct experimental bounds. We also require the massWR boson to be of the order
2 – 3 TeV and hence accessible at the LHC. Since many previous studies concen-
trate on lower bounds for the masses of heavy new fields, such a comprehensive
analysis is new.

In the following we summarise the main results of our phenomenological study

1. We determined phenomenologically viable structures of the RH mixing matrix.
Our result is explicitly given in figure 6.5, showing allowed regions in parameter
space in terms of |V R

us|, |V R
ub| and |V R

cb |. We could identify two scenarios which
satisfy all constraints including the dangerous εK-constraint without imposing a
large fine-tuning of parameters.

2. We have shown that NP effects are expected to be the largest in the K system
followed by effects in the Bs system. Smaller effects can be found in the Bd

system. This pattern of hierarchy is compactly summarised in figure 6.7. This
plot also allows us to predict a similar hierarchical pattern for rare decays within
the corresponding meson systems.

3. We have explicitly considered the decay B → Xsγ, which has a special role
due to its precise measurement providing a strong constraint for any NP model.
The LRM allows an enhancement of its branching ratio bringing theoretical and
experimental values in better agreement compared to the SM value.

4. We studied the possibility of correlations between observables. In view of many
free parameters only model-independent correlations exist such as the correlation
of AsSL and Sψφ, shown in figure 6.8. As can be seen the observable Sψφ can vary
in the full range.

5. The anomalous RH Zbb̄ coupling cannot be explained in the LRM.

6. Surprisingly, the |Vub| problem, being one of the main motivations for our consid-
erations of RH currents, cannot be solved. This is mainly due to the increased
bound on the mass of the WR boson as indicated by LHC in conjunction with
constraints from FCNC and EWP observables.
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8 Summary and conclusion

7. We also have investigated the question of a soft lower limit for the heavy Higgs
mass. Interestingly, as shown in figure 6.11, a value as low as MH ∼ 2.4 TeV is
in accordance with all constraints imposed by us.

8. We have presented a simplified parametrisation of the RH mixing matrix depend-
ing on only four free parameters, given in equation (6.58). While in the general
parametrisation flavour anomalies could be solved due to many parameters, the
proposed parametrisation still allows to remove all SM tensions between flavour
observables demonstrated in the scenario of a small |Vub|. This specific choice of
|Vub| is justified since without a solution of the |Vub| problem any measured value,
both inclusive or exclusive, is equally likely.

We have then compared both models considered in this thesis directly. Experimentally
both models can be distinguished by the structure of the RH mixing matrix once more
precise flavour data is available. A detailed study of rare decays and related correlations
within the LRM is expected to improve such a distinction. However such an analysis is
beyond the scope of this thesis and is left for future work. We have further compared
RHMFV to another effective field theory approach: the two Higgs doublet model with
MFV and flavour blind phases. The two models can be explicitly distinguished via the
correlation of the decays Bd,s → µ+µ−. The situation is less obvious when comparing
the flavour phenomenology of the LRM to the Randall Sundrum model with custodial
protection. The consideration of ∆F = 2 observables and the decay B → Xsγ is not
sufficient for a unique distinction between the models and a study of rare decays would
be needed.

We are now able to answer the questions formulated in the introduction of this thesis:

• Do RH currents provide a realistic extension of the SM?
Yes, with respect to the current available data RH currents provide a realistic NP
framework.

• Do they solve the existing tensions between flavour observables in the SM while
satisfying all the existing bounds? In particular, can the new CP-violating phases
cure the existing SM anomalies in CP-violating observables? And, can the |Vub|
problem be solved?
In RHMFV the Sexp

ψKS
– sin 2β tension remains due to a negligible non-standard

CP-violating phase in the Bd sector. However, in view of experimental and theo-
retical errors one cannot exclude the model by this argument. Other tensions in
the flavour sector can be resolved in this model. In particular, the εK problem
and the |Vub| problem are solved automatically. Furthermore a large Sψφ can also
be incorporated. On the other hand, a small Sψφ is expected to improve the Sexp

ψKS
– sin 2β tension. In the LRM all flavour anomalies can be solved even with a
reduced parametrisation of the RH mixing matrix. The only exception is the Vub
problem, which cannot be solved within this framework.
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• Can the new RH effects reach present experimental bounds?
In order to confirm the models considered within this thesis, and distinguish
them from other NP models, more precise flavour data or explicit collider signals
for the corresponding new heavy particles are required. New insights for both
possibilities are expected in the current generation of LHC experiments. In the
flavour sector a more precise measurement of the observable Sψφ would be helpful
to probe both models considered here. In RHMFV a precise measurement of the
decay Bd,s → µ+µ− would be particularly helpful. In the LRM a study of rare
decays is needed in order to obtain sufficient information to distinguish the model
clearly from other NP frameworks. From the estimates of the flavour effects in
different meson sectors we expect the decays K → πνν̄ to be promising.

• How far do the two approaches we follow overlap? Does the same RH mixing
structure appear in both models?
The two models considered in this thesis are complementary in their operator
structure and differ in the flavour protection mechanism. This difference is dis-
played explicitly in the structure of the RH mixing matrices.

• What is the structure of the RH mixing matrix?
The specific flavour structures of the RH mixing matrix is given in RHMFV by
the schematic formula of equation (5.10) and in the LRM summarised in figure
6.5.

Our analysis of RH currents was motivated by current flavour data. Already existing
data puts strong constraints on the two NP scenarios of RH currents considered here.
Yet, more precise data and the study of rare decays is required in order to decide
whether RH currents exist in nature. The LHC can shed light on this question by
not only providing data for important CP violating observables such as Sψφ but also
probing the existence of the heavy gauge bosons W ′ and Z ′.
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A. The Higgs sector of the LRM

In the LRM the full Higgs Lagrangian is given by

LHiggs = Tr[(Dµ∆L)†(Dµ∆L)] + Tr[(Dµ∆R)†(Dµ∆R)] + Tr[(Dµφ)†(Dµφ)]

+ V (φ,∆L,∆R) ,
(A.1)

where the covariant derivatives are given by

Dµφ = ∂µφ+ igL(
−→
WLµ · ~τ)φ− igRφ(

−→
WRµ · ~τ) , (A.2)

Dµ∆(L,R) = ∂µ∆(L,R) + ig(L,R)

[−→
W (L,R)µ · ~τ , ∆(L,R)

]
+ ig′Bµ∆(L,R) .

The Higgs potential in its left-right symmetric form can be written as [36,101,224,225]

V (φ,∆L,∆R) = −µ2
1Tr(φ†φ)− µ2

2

[
Tr(φ̃φ†) + Tr(φ̃†φ)

]
− µ2

3

[
Tr(∆L∆†L) + Tr(∆R∆†R)

]
+ λ1

[
Tr(φ†φ)

]2
+ λ2

{[
Tr(φ̃φ†)

]2

+
[
Tr(φ̃†φ)

]2
}

+ λ3Tr(φ̃φ†)Tr(φ̃†φ)

+ λ4Tr(φ†φ)
[
Tr(φ̃φ†) + Tr(φ̃†φ)

]
+ ρ1

{[
Tr(∆L∆†L)

]2

+
[
Tr(∆R∆†R)

]2
}

+ ρ2

[
Tr(∆L∆L)Tr(∆†L∆†L) + Tr(∆R∆R)Tr(∆†R∆†R)

]
+ ρ3Tr(∆L∆†L)Tr(∆R∆†R)

+ ρ4

[
Tr(∆L∆L)Tr(∆†R∆†R) + Tr(∆†L∆†L)Tr(∆R∆R)

]
+ α1Tr(φ†φ)

[
Tr(∆L∆†L) + Tr(∆R∆†R)

]
+
{
α2e

iδ2
[
Tr(φ̃φ†)Tr(∆L∆†L) + Tr(φ̃†φ)Tr(∆R∆†R)

]
+ h.c.

}
+ α3

[
Tr(φφ†∆L∆†L) + Tr(φ†φ∆R∆†R)

]
+ β1

[
Tr(φ∆Rφ

†∆†L) + Tr(φ†∆Lφ∆†R)
]

+ β2

[
Tr(φ̃∆Rφ

†∆†L) + Tr(φ̃†∆Lφ∆†R)
]

+ β3

[
Tr(φ∆Rφ̃

†∆†L) + Tr(φ†∆Lφ̃∆†R)
]
.

(A.3)
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A total of 18 parameters are involved, where we have only one phase δ2 and real cou-
pling parameters otherwise. It is sufficient to consider the left-right symmetric version
of the potential without generalisation since flavour physics is independent of details of
the Higgs sector, as we will demonstrate below.

We now show that only the parameter α3 is important for our flavour analysis, entering
in the mass of neutral and charged Higgses. To this end we have to diagonalise the
Higgs potential (A.3). We start with the neutral Higgs states, which form an 8×8 mass
matrix. This matrix can be systematically diagonalised by making use of perturbation
theory. Instead of following the assumption κ′ � κ by the authors of [36], we keep our
analysis more general and allow for an arbitrary parameter s. This is preferred from
the phenomenological point of view, in particular by the analysis of EWP observables
as indicated in section 3.4.4.

Out of six neutral Higgs fields we are only interested in the flavour-changing neutral
Higgs fields H0

1 and H0
2 . We obtain the following mass eigenstates

H0
1 =

√
2
(
−sReφ0

1 + cRe(e−iαφ0
2)
)
, (A.4)

H0
2 =

√
2
(
s Imφ0

1 + c Im(e−iαφ0
2)
)
, (A.5)

with identical masses at leading order

MH0
1

= MH0
2

=

√
α3

1− 2s2
κR =

(
α3

√
u(s)

) 1
2
κR ≡MH . (A.6)

The lightest Higgs field h0, given by

h0 =
√

2
(
cReφ0

1 + sRe(e−iαφ0
2)
)
, (A.7)

can be identified as the SM Higgs with a mass of O(v).

The knowledge of Higgs mass eigenstates allows us to deduce leading order couplings
of the heavy flavour violating Higgses H0

1 and H0
2 . We realise that flavour dynamics

is not sensitive to the detailed structure of the potential, therefore leading order cou-
plings do not depend on further parameters of the Higgs potential. Consequently, it is
justified to assume the parity symmetric case for the potential with fewer parameters
than the general potential. We want to also mention that the SM Higgs couplings are
now flavour violating. However this occurs at higher order so the effects are expected
to be negligible.

Similarly one can proceed with the charged Higgs fields, whose effects are subleading
in ∆F = 2 processes as they take place at the one loop order [102], but can still be
important for B → Xqγ decays [193,194,196–198,200]. Again only leading order terms
in couplings and masses are important. Finding the eigenvalues of the 4 × 4 matrix
mass matrix of single charged fields yields the relevant masses and mass eigenstates of
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the two charged Higgs fields. Couplings to fermions can be deduced from the Yukawa
interaction. Only one of these fields couples to quarks in leading order, which we denote
by H+, in particular given by

H± = se±iαφ±1 + cφ±2 . (A.8)

The leading order mass of this field is identical to the one of the flavour changing neutral
Higgses, hence

MH+ = MH . (A.9)

Thus this mass cannot be chosen be light as assumed in some literature.

All our findings agree with results of [36] in the limit of s � 1 as implied by their
assumption of the hierarchy κ′ � κ. Earlier studies can be found in [224,225].

B. Goldstone bosons of the LRM

In this appendix we collect all Goldstone boson fields in the LRM, obtained by the
method used by [226]. This procedure allows us to determine the physical Higgs states
up to linear combinations. In order to obtain the full mass eigenstates one has to diag-
onalise the Higgs potential. In contrast, Goldstone bosons can be fully determined by
this method.

The Goldstone bosons of W± and W ′± are then given by

G± = ±i
[
c
(
1− s4ε2

)
φ±1 − se∓iα

(
1− c4ε2

)
φ±2 −

√
2cse∓iαεδ±R

]
, (B.10)

G′± = ∓i
[(

1− ε2

4

)
δ±R +

se±iα√
2
εφ±1 −

c√
2
εφ±2

]
. (B.11)

For the neutral Goldstone boson of Z and Z ′ we obtain

G0 =
√

2

(
1− c4

R

8
ε2
)
π0 − c2

R√
2
ε Im δ0

R , (B.12)

G′0 = −
√

2

(
1− c4

R

8
ε2
)

Im δ0
R −

c2
R√
2
επ0 , (B.13)

where we have defined π0 = c Imφ0
1 − s Im(e−iαφ0

2).

C. Gauge bosons in the LRM

In this appendix we consider gauge boson mass matrices, which can be deduced from the
relevant terms of the kinetic Higgs Lagrangian in equation (A.1) using the covariant
derivatives in equation (A.2). The two step breaking goes in hand with a two step
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rotation of neutral gauge boson fields analogous to our approach in [19], where it is
useful to define the following mixing angles

sR =
g′√

g′2 + g2
R

, cR =
√

1− s2
R , sW =

sR√
(gL/gR)2 + s2

R

, cW =
√

1− s2
W .

(C.14)
Diagonalising in the next step both neutral and charged mass matrices yields the cor-
responding mass eigenstates and masses. For charged gauge bosons we obtain as mass
eigenstates

W± = W±
L + sce∓iα

sRcW
sW

ε2W±
R , (C.15)

W ′± = W±
R − sce

±iα sRcW
sW

ε2W±
L , (C.16)

and masses

(MW )2 =
e2v2

2s2
W

(
1− 2s2c2ε2

)
, (C.17)

(MWR
)2 =

e2κ2
R

c2
W s

2
R

(
1 +

1

2
ε2
)
. (C.18)

In the neutral sector, both mass eigenstates

A = sWW
3
L + sRcWW

3
R + cRcWB , (C.19)

Z = cWW
3
L − sRsW

(
1− c4

R

4s2
W

ε2
)
W 3
R

−cRsW
(

1 +
s2
Rc

2
R

4s2
W

ε2
)
B (C.20)

Z ′ = −sRc
3
RcW

4sW
ε2W 3

L + cR

(
1 +

s2
Rc

2
R

4
ε2
)
W 3
R

−sR
(

1− c4
R

4
ε2
)
B , (C.21)

and masses

(MA)2 = 0 , (C.22)

(MZ)2 =
e2v2

2s2
W c

2
W

(
1− c4

R

4
ε2
)
, (C.23)

(MZ′)
2 =

2e2κ2
R

s2
Rc

2
Rc

2
W

(
1 +

c4
R

4
ε2
)
. (C.24)

are easy to verify.
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D. Parameter counting in the LRM

We want to proceed with a brief counting of the relevant parameters for our analysis
in the LRM.

In the gauge sector, we have the parameters from the strong coupling gs and the
electroweak gauge couplings

gL, gR, g′, (D.25)

providing one additional parameter with respect to the SM.

At the first sight, many new parameters seem to emerge from the Higgs sector. How-
ever as we show in appendix A, of the 18 parameters of the potential, only one (to be
more precise α3) is relevant here, parametrising the masses of neutral flavour changing
Higgses H0

1 and H0
2 and the charged Higgs H+.

Furthermore we have to count the parameters from VEVs with corresponding phases.
Also here it turns out that in practice none of the phases defined in section 3.2.2 have
an impact on flavour physics. This is easy to verify: the phase factor eiα always appears
in combination with the RH mixing matrix V R. Since V R is unitary and every element
of V R carries phases, the phase α can be eliminated by a redefinition of phases in
V R. Additionally another argument holds for flavour observables: the phase α cancels
out in all expressions for FCNC processes. We also set κL = 0 and hence neglect the
corresponding phase. Finally the remaining parameters from VEVs read

v =
√
κ2 + κ′2, s = κ′/v, κR , (D.26)

where apart from the SM VEV v two additional parameters can be counted.

Finally, most new parameters stem from the Yukawa couplings. In general the Yukawas
yij and ỹij are arbitrary complex matrices with 9 real parameters and 9 phases each.
In complete analogy to the RH matrix in RHMFV we can adopt the SU(3)L×SU(3)R
flavour symmetry and remove unphysical phases. The outcome in terms of remaining
parameters are six quark masses, four parameters from the CKM matrix V L (three
angles and one phase) and the RH mixing matrix V R adding 3 real mixing angles and
6 complex phases.

In total the LRM contains 13 more parameters relative to the SM, out of which 9
describe V R. Finally in section 6.5 we introduce a simplified parametrisation with only
four parameters.
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E. SM loop functions

The ∆F = 2 loop function for VLL operators, as given in section 6.1.2, simplifies to
the known SM form as follows

S0(xt) ≡ SLL(xt, xt) =
4xt − 11x2

t + x3
t

4(1− xt)2
− 3x3

t lnxt
2(1− xt)3

, (E.27)

S0(xc) ≡ SLL(xc, xc) ≈ xc , (E.28)

S0(xc, xt) ≡ SLL(xt, xc) ≈ xc

[
ln
xt
xc
− 3xt

4(1− xt)
− 3x2

t lnxt
4(1− xt)2

]
. (E.29)

The last two formulae only contain linear terms in xc � 1, since higher orders can be
safely neglected.

F. Feynman rules of the LRM

Finally we want to present a collection of Feynman rules for the LRM. We give cou-
plings up to O(ε2) corrections except in the Higgs sector where for our purposes O(1)
couplings are sufficient. All couplings are given in mass eigenstates. Note that we stick
to the “correct” notation of W and W ′, as introduced in appendix C.

Triple gauge couplings, as given in table F.6, exhibit a specific Dirac structure. In order
keep the table concise, we have only collected coefficients C of the respective couplings,
being defined by

Note that V +
µ = W+

µ ,W
′+
µ , V −ν = W−

ν ,W
′−
ν , V 0

ρ = Aρ, Zρ, , Z
′
ρ, and k, p, q are their

incoming momenta.
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Aµ Ga
µ

ūiLu
i
LXµ −i2

3
eγµ −igsγµ ta

ūiRu
i
RXµ −i2

3
eγµ −igsγµ ta

d̄iLd
i
LXµ −i(−1

3
)eγµ −igsγµ ta

d̄iRd
i
RXµ −i(−1

3
)eγµ −igsγµ ta

Table F.1.: Fermion couplings to the massless gauge bosons Xµ, i.e. the photon Aµ
and the gluons GA

µ .

W+ W ′+

ūiLd
j
LX

+
µ − ie√

2sW
V L
ij γ

µ + iecse−iαsRcW√
2s2W

ε2V L
ij γ

µ

ūiRd
j
RX

+
µ − iecseiα√

2sW
ε2V R

ij γ
µ − ie√

2sRcW
V R
ij γ

µ

Table F.2.: Fermion couplings to charged gauge bosons W+ and W ′+.

Z Z ′

ūiLu
i
LXµ − ie

sW cW
(1

2
− 2

3
s2
W − 1

24
s2
Rc

2
Rε

2)γµ ie (1
6

sR
cRcW

+ 1
8
(
cW c3RsR
s2W

− c3RsR
3cW

)ε2)γµ

d̄iLd
i
LXµ − ie

sW cW
(−1

2
+ 1

3
s2
W − 1

24
s2
Rc

2
Rε

2)γµ ie (1
6

sR
cRcW

− 1
8
(
cW c3RsR
s2W

+
c3RsR
3cW

)ε2)γµ

ūiRu
i
RXµ − ie

sW cW
(−2

3
s2
W +

c2R
8

(c2
R − 1

3
s2
R)ε2)γµ − ie

cW sRcR
(1

2
− 2

3
s2
R +

c4Rs
2
R

6
ε2)γµ

d̄iRd
i
RXµ − ie

sW cW
(1

3
s2
W −

c2R
8

(c2
R + 1

3
s2
R)ε2)γµ − ie

cW sRcR
(−1

2
+ 1

3
s2
R −

c4Rs
2
R

12
ε2)γµ

Table F.3.: Fermion couplings to neutral gauge bosons Z and Z ′ .

G+ G′+

ūiLd
j
RX

+ e√
2MW sW

(
mj
dV

L
ij − cseiαmi

uε
2V R

ij

)
− emiu√

2cW sRMWR

V R
ij

ūiRd
j
LX

+ − e√
2MW sW

(
mi
uV

L
ij − cseiαm

j
dε

2V R
ij

) emjd√
2cW sRMWR

V R
ij

Table F.4.: Fermion couplings to charged Goldstone bosons.
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G0 G′0

ūiLu
i
RX

0 emiu
2cW sWMZ

(
1− c4R

4
ε2
)
− ecRm

i
u

2sRcWMZ′

d̄iLd
i
RX

0 − emid
2cW sWMZ

(
1− c4R

4
ε2
)

ecRm
i
d

2sRcWMZ′

Table F.5.: Fermion couplings to neutral Goldstone bosons G0 and G′0.

Z Z ′ A

W+W−X ie cW
sW

−ie c
3
RsRcW
4s2W

ε2 ie

W+W ′−X −ie cseiαsR
s2W

ε2 ie cse
iαcR
sW

ε2 0

W ′+W−X −ie cse−iαsR
s2W

ε2 ie cse
−iαcR
sW

ε2 0

W ′+W ′−X −ie
(
sW
cW
− c4R

4cW sW
ε2
)

ie cR
cW

(
1
sR

+
c2RsR

4
ε2
)

ie

Table F.6.: Triple gauge couplings, involving either Z, Z ′ or the photon, respectively.

Z A

G+(p)G−(q)Xµ − ie
2cW sW

(p− q)µ
[
1− 2s2

W +
(
c4R
4
− 2s2c2

)
ε2
]
−ie(p− q)µ

G′+(p)G−(q)Xµ
iecse−iα√

2cW sW
ε(p− q)µ 0

G′+(p)G′−(q)Xµ ie sW
cW

(p− q)µ
[
1− 1−s2Rc

2
R

4s2W
ε2
]

−ie(p− q)µ

Table F.7.: Charged Goldstone boson couplings to the photon and the Z boson.

G+(p)G−(q)Z ′µ − iecR
2sRcW

(p− q)µ
[
1− s2Rc

4
R(1−2s2W )+8s2c2s2W (1+s2R)

4c2Rs
2
W

ε2
]

G′+(p)G−(q)Z ′µ
iecse−iα(1+s2R)√

2cRsRcW
ε(p− q)µ

G′+(p)G′−(q)Z ′µ
iesR
cRcW

(p− q)µ
[
1− 1+s2R(1+c4R)

4s2R
ε2
]

Table F.8.: Charged Goldstone boson couplings to the Z ′ boson.
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W

G0(p)G−(q)X+
µ

ie
2sW

(p− q)µ
[
1− 1

8
(c4
R − 8s2c2)ε2

]
G′0(p)G−(q)X+

µ − iec2R
4sW

ε(p− q)µ
G0(p)G′−(q)X+

µ − iecseiα√
2sW

ε(p− q)µ
G′0(p)G′−(q)X+

µ
iecseiα(2+c2R)

2
√

2sW
ε2(p− q)µ

Table F.9.: Couplings of charged and neutral Goldstone bosons to the W boson.

W ′

G0(p)G−(q)X+
µ

iecse−iα

cW sR
(p− q)µ

[
1− 1

2

(
c4R
4

+
s2R
s2W
− 2s2c2

)
ε2
]

G′0(p)G−(q)X+
µ

iecse−iα(2−c2R)

2cW sR
ε(p− q)µ

G0(p)G′−(q)X+
µ − iesR

2
√

2cW
ε(p− q)µ

G′0(p)G′−(q)X+
µ

ie√
2cW sR

(p− q)µ
[
1− 1

8
(1 + s4

R)ε2
]

Table F.10.: Couplings of charged and neutral Goldstone bosons to the W ′ boson.

G0 G′0

W+W−X0 0 0

W+W ′−X0 −2ecseiαMZ

sR
gµν

ec3Rcse
iαMZ′

2sW
ε2gµν

W ′+W ′−X0 0 0

Table F.11.: Couplings of charged gauge bosons to the Goldstone bosons G0 and G′0,
respectively.
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G+ G′+

W−
µ AνX

+ −eMWgµν 0

W ′−
µ AνX

+ 0 −eMWR
gµν

W−
µ ZνX

+ esWMW

cW
gµν

(
1− c4R−8s2c2

4s2W
ε2
)

0

W ′−
µ ZνX

+ 2ecseiαMW

c2W sR
gµν

esWMWR

cW

(
1− 1+s4R

4s2W
ε2
)
gµν

W−
µ Z

′
νX

+ − ecRMW

cW sR
gµν

2ecse−iαMWR

cRsW
ε2gµν

W ′−
µ Z ′νX

+ 2ecseiαsW (1+s2R)MW

c2W s2RcR
gµν

e(1+s2R)MWR

cRsRcW

(
1−

(
1
2

+
s2Rc

4
R

4(1+s2R)

)
ε2
)
gµν

Table F.12.: Couplings of charged and neutral gauge bosons to the Goldstone bosons
G+ and G′+, respectively.

H0
1 H0

2

d̄iLd
j
RX

0 −i η(s)
(
eiαma

uV
L∗
ai V

R
aj − 2csmi

dδij
)

η(s)
(
eiαma

uV
L∗
ai V

R
aj − 2csmi

dδij
)

d̄iRd
j
LX

0 −i η(s)
(
e−iαma

uV
R∗
ai V

L
aj − 2csmi

dδij
)
−η(s)

(
e−iαma

uV
R∗
ai V

L
aj − 2csmi

dδij
)

ūiLu
j
RX

0 −i η(s)
(
e−iαma

dV
L
aiV

R∗
aj − 2csmi

uδij
)
−η(s)

(
e−iαma

dV
L
aiV

R∗
aj − 2csmi

uδij
)

ūiRu
j
LX

0 −i η(s)
(
eiαma

dV
R
ai V

L∗
aj − 2csmi

uδij
)

η(s)
(
eiαma

dV
R
ai V

L∗
aj − 2csmi

uδij
)

Table F.13.: Leading order flavour-violating couplings of fermions to the neutral
Higgses. The masses ma

u and ma
d denote the ath up and down quark mass,

respectively. Summation over a is understood. The pre-factor η(s) is defined by
η(s) = 1√

2(1−2s2)v
.

ūiLd
j
RH

+ − i
(1−2s2)v

(
mi
uV

R
ij − 2cse−iαV L

ijm
j
d

)
ūiRd

j
LH

+ i
(1−2s2)v

(
V R
ij m

j
d − 2cse−iαmi

uV
L
ij

)
Table F.14.: Couplings of the heavy charged Higgs to fermions. Here ma

u and ma
d

denote the ath up and down quark mass, respectively.
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