TECHNISCHE UNIVERSITÄT MÜNCHEN DEPARTMENT CHEMIE LEHRSTUHL FÜR ORGANISCHE CHEMIE I

Entwicklung neuer stereo- und chemoselektiver Methoden zur Synthese von polyketiden Verbindungen, Heterozyklen und Aziden

Tobias Harschneck

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation.

Vorsitzender:	UnivProf. Dr. Lukas Hintermann
Prüfer der Dissertation:	1. UnivProf. Dr. Stefan F. Kirsch (Bergische Universität Wuppertal)
	2. UnivProf. Moniek Tromp, Ph.D.
	3. Univ. Prof. Dr. Thorsten Bach

Die Dissertation wurde am 15.02.2012 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 03.04.2012 angenommen.

Die vorliegende Arbeit wurde in der Zeit von Mai 2008 bis Januar 2012 unter der Leitung von Prof. Dr. Stefan F. Kirsch am Lehrstuhl für Organische Chemie I der Technischen Universität München angefertigt.

Teile dieser Arbeit wurden veröffentlicht:

- T. Harschneck, S. Hummel, S. F. Kirsch, P. Klahn, Chem. Eur. J. 2012, 18, 1187.
- T. Harschneck, S. F. Kirsch, M. Wegener, Synlett, 2011, 1151.
- T. Harschneck, S. F. Kirsch, J. Org. Chem. 2011, 76, 2145.

T. T. Haug, T. Harschneck, A. Duschek, C.-U. Lee, J. T. Binder, H. Menz, S. F. Kirsch, J. Organomet. Chem., 2008, 694, 510-514.

Chemische Strukturen werden unter Einbindung der Kapitelnummer, die als nicht fette Ziffer vor der eigentlichen Verbindungsnummer erscheint, gekennzeichnet.

In dieser Arbeit wird von der Konvention Gebrauch gemacht, die Relativkonfiguration von Racematen durch gerade Balken (fett oder gestrichelt), die Absolut- und Relativkonfiguration enantiomerenreiner oder enantiomerenangereicherter Verbindungen in Keilform (fett oder gestrichelt) darzustellen.

Meiner Familie

DANKSAGUNG

Mein ganz besonderer Dank gilt meinem Doktorvater Stefan Kirsch für die Aufnahme in seine Arbeitsgruppe und die interessante Themenstellung. Vielen Dank auch für die stete Unterstützung, das rege Interesse an meiner Arbeit und die vielen fruchtbaren Diskussionen. Sein uneingeschränktes Vertrauen, das die Freiheit mit sich brachte, meine eigenen Ideen umzusetzen, trug maßgeblich zum Gelingen dieser Arbeit bei. Nicht zuletzt möchte ich mich für den persönlichen Einsatz und die hilfreiche Beratung bezüglich meiner weiteren Karriere bedanken.

Für die Anfertigung des Zweit- bzw. Drittgutachtens danke ich Frau Prof. Moniek Tromp und Herrn Prof. Thorsten Bach. Für die Übernahme des Prüfungsvorsitzes sei Herrn Prof. Lukas Hintermann gedankt.

Herrn Prof. Thorsten Bach danke ich zunächst, dass er mir ermöglicht hat, meine Doktorarbeit trotz Umzugs des AK Kirschs in München abzuschließen. Außerdem möchte ich mich für die langjährige gelungene Integration unserer Gruppe in seinen Arbeitskreis, die Bereitstellung wichtiger Geräte und Materialien sowie den anregenden wissenschaftlichen Dialog in zahlreichen Seminaren bedanken.

Ein außerordentlicher Dank gebührt Frau Kerstin Voigt, die es immer verstanden hat, das Dickicht der akademischen Bürokratie zu lichten und zum Rechten Zeitpunkt einen neuen Vertrag hervorzuzaubern.

Ohne akkurat durchgeführte Analytik wäre chemische Forschung nicht möglich: Daher ein großes Dankeschön an Herrn Burghard Cordes und Herrn Helmut Krause für die Aufnahme unzähliger Massenspektren, an Christine Schwarz für das Bereitstellen von NMR-Messzeit wann immer es nötig war und an Olaf Ackermann für die Unterstützung in Sachen HPLC.

Vielen Dank an Sebastian, Ingrid, Helge, Philipp, Felix und Thomas, die mit Adleraugen diese Arbeit nach Fehlern durchforstet haben.

Im AK Kirsch bin ich zwischen den Generationen aufgewachsen: Den Kirschen der 1. Generation – Helginho, Benedetto, Jay Tee Binder, Clemchen, Timmööö und Alex – danke ich für die herzliche Aufnahme in ihren erlauchten Kreis und die wunderbarste aller Zeiten innerhalb und außerhalb trister Garchinger Betonwände. Außerdem hatte ich die große Freude, einen Teil meiner Reife mit der exzellenten 2. Generation der Kirschen – KD, Adeline, Philipp, Flo und Michi – zu erleben. Die Zeit mit euch war ebenso großartig. Ich werde euch alle vermissen! Auch den kurzzeitigen Weggefährten Chang-Uk, Manuel, Sebastian, Wolfgang und Anna sei für eine gute Zusammenarbeit gedankt.

Für die angenehme Arbeitsatmosphäre und eine Menge Spass danke ich auch all den Bächen, Heinrichs und Hubers. Für freundliches Asyl zur Mittagszeit können sich Grolls meiner ewigen Dankbarkeit sicher sein.

Die Betreuung von Forschungsstudenten war nicht nur Arbeit, sondern hat auch eine Menge Spass gemacht. Deshalb möchte ich mich ganz herzlich bei Katrin Deller, Veronica Willassen, Gabriel Fischer, Johannes Lehmann, Robert Steinhoff, Joka Pipercevic, Sara Hummel, Simon Nadal und Felix Hiller für ihr Interesse und Engagement bedanken.

Von ganzem Herzen danke ich meiner Familie: meinen Eltern, die immer an mich geglaubt und mich unterstützt haben; meinem großen Bruder Sebastian und natürlich meiner lieben Ingrid. Ihr ward mir ein steter Rückhalt in wirklich allen Belangen. Vielen Dank !!!!

Inhaltsverzeichnis

Ι	Asymmetrische, iterative Synthese polyketider Verbindungen	1
1	Einleitung	3
1.1	Polyketide Naturstoffe – biologische Vielfalt durch synthetische Flexibilität	3
1.2	Iterative Synthesestrategien zum Aufbau von 1,3-Polyolen	5
2	Aufgabenstellung	10
2.1	Stand der Forschung	10
2.2	Zielsetzung	13
3	Studien zur Totalsynthese von Tetrafibricin	15
3.1	Einleitung	15
3.2	Retrosynthetische Analyse	19
3.3	Synthese von Fragment C1-C8	22
3.4	Synthese von Fragment C9-C20	25
3.5	Synthese von Fragment C21-C30	37
3.6	Synthese von Fragment C31-C34	43
3.7	Synthese von Fragment C35-C40	45
3.8	Verknüpfung der Fragmente durch Carbonylolefinierungen	48
4	Entwicklung neuer iterativer Strategien zur Synthese von 1,3-Polyolen	56
4.1	Hintergrund	56
4.2	Kreuzmethatese als Schlüsselschritt der iterativen Sequenz	57
4.3	Olefinierungsreaktionen zur Verknüpfung der Fragmente	61
5	Zusammenfassung und Ausblick	67
5.1	Studien zur Totalsynthese von Tetrafibricin	67
5.2	Entwicklung neuer Methoden	73
II	Eintopfsynthese hochsubstituierter 1,2-Dihydropyridine	. 77
1	Einleitung	79
1.1	Heterozyklische Verbindungen – kleine Moleküle, große Wirkung	79
1.2	Übergangsmetallkatalysierte [3,3]-sigmatrope Umlagerungen in der Synthese	
	heterozyklischer Verbindungen	80

2	Aufgabenstellung	
2.1	Stand der Forschung	83
2.2	Zielsetzung	
3	Ergebnisse	
3.1	Darstellung der Ausgangsmaterialen	85
3.2	Untersuchungen zur Propargyl-Claisen-Umlagerung	
3.3	Synthese der 1,2-Dihydropyridine	
3.4	Erweiterte Eintopfsynthese heterozyklischer Verbindungen	
3.5	Studien zur Synthese von Nikotinsäurederivaten	
4	Zusammenfassung	
III	Chemoselektive Azidierung von 1,3-Dicarbonylverbine	dungen 101
1	Einleitung	
1.1	Synthese und Anwendung organischer Azide	103
1.2	Funktionalisierung von 1,3-Dicarbonylverbindungen	
2	Aufgabenstellung	
2.1	Stand der Forschung	
2.2	Zielsetzung	107
3	Ergebnisse	
3.1	Optimierung der Reaktionsbedingungen	108
3.2	Anwendungsbreite der Reaktion	110
3.3	Vorläufige Untersuchungen zum Mechanismus der Reaktion	113
3.4	Modifikation in 1,3-dipolaren Zykloadditionen	
3.5	Studien zur Modifizierung komplexer Moleküle	
4	Zusammenfassung und Ausblick	
4.1	Zusammenfassung	120
4.2	Ausblick	122
IV	Experimenteller Teil	123
1	Allgemeine Arbeitstechniken	

1.1	Lösungsmittel und Reagenzien	
1.2	Chromatographische Methoden	
1.3	Weitere analytische Methoden	
2	Synthesevorschriften	
2.1	Synthese allgemeiner Reagenzien	
2.2	Studien zur Totalsynthese von Tetrafibricin	
2.3	Reagenzien zum iterativen Aufbau von 1,3-Polyolen	
2.4	Eintopfsynthese hochsubstituierter 1,2-Dihydropyridine	
2.5	Chemoselektive Azidierung von 1,3-Dicarbonylverbindungen	

V	Verzeichnisse	. 309
1	Abkürzungsverzeichnis	311
2	Literaturverzeichnis	316

I Asymmetrische, iterative Synthese polyketider Verbindungen

1 Einleitung

1.1 Polyketide Naturstoffe – biologische Vielfalt durch synthetische Flexibilität

Polyketide Naturstoffe stellen eine Verbindungklasse dar, die nicht nur durch ihre strukturelle Vielfalt beeindruckt, sondern auch ein breites Spektrum an biologischer Aktivität aufweist. In vielen Fällen ist zwar ihre genaue natürliche Funktion noch nicht bekannt, trotzdem sind Polyketide eine reiche Quelle an pharmazeutisch relevanten Verbindungen und neuen Therapeutika (Abbildung I-1).^[1]

Abbildung I-1 Biologische und strukturelle Vielfalt polyketider Naturstoffe.

Neben antibiotischen Wirkstoffen wie Erythromycin A $(1-2)^{[2]}$ oder Nanchangmycin $(1-3)^{[3]}$ findet man ebenso cholesterinsenkende Statine, wie das Lovastatin $(1-4)^{[4]}$ oder das fungizid wirkende Candicidin (1-5).^[5] Andere polyketide Moleküle spielen eine Rolle in der Behandlung von Krebs: Benastatin $(1-6)^{[6]}$ ist ein Glutathion-S-Transferase-Inhibitor und als solcher in der Krebsdiagnostik von Bedeutung.^[7] Epothilon A hingegen wirkt zytostatisch.^[8]

Des Weiteren treten Immunsuppressiva wie Ascomycin (1-7),^[9] sowie Pestizide (Avermectin^[10]) oder Insektizide (Spinosyn A^[11]) auf.

Diese große Bandbreite an biologischer Aktivität geht einher mit einer schier überwältigenden Diversität der molekularen Strukturen. So gehört die eher unscheinbare 6-Methylsalicylsäure (1-1) ebenso zur Verbindungsklasse der Polyketide wie der größte bisher bekannte nichtpeptidische Naturstoff Maitotoxin.^[12] Die Verbindungsklasse lässt sich weiter unterteilen in aromatische Polyketide – zu denen sowohl 1-1 also auch Polyphenole wie 1-6 zählen – und aliphatische Vertreter. Unter letzteren finden sich z. B. Polyether (1-3), Polyenmakrolide (1-5) oder Ansamakrolide.

Diese strukturelle Vielfalt der Polyketide lässt sich auf den Biosyntheseweg der Moleküle zurückführen. Wie von *Collie* bereits 1907,^[13] später auch von *Robinson*^[14] postuliert und von *Birch*^[15] durch ¹⁴C-Markierungsexperimente bei der Biosynthese von 1-1 bewiesen, sind alle polyketiden Naturstoffe einzig aus Acetat- oder Propionateinheiten aufgebaut. Die Polyketid-Biosynthese verläuft dabei analog der Fettsäure-Biosynthese und beinhaltet die iterative C₂-Kettenverlängerung einer Acetyl-CoA-Starter- durch eine Malonyl-CoA-Verlängerungseinheit mittels decarboxylierender *Claisen*-Thioesterkondensation (Schema I-1).^[16]

Schema I-1 Schematische Darstellung der Polyketid-Biosynthese.^[16a]

Zunächst überträgt eine Malonyl-Acyl-Transferase (MAT) die Acetyleinheit auf eine Cysteinseitenkette der Ketosynthase (KS) und den Malonyl-Baustein auf das Acyl-Carrier-Protein (ACP). Dieses fungiert als Träger der wachsenden Kette. Die Ketosynthase katalysiert den nukleophilen Angriff des Malonats und unter Freisetzung von CO₂ wird ein β-Ketoester gebildet. Anschließende enzymatische Reduktionsschritte durch Ketoreduktase (KR), Dehydratase (DH) und Enoylreduktase (ER) liefern das vollständig reduzierte Kohlenstoffgerüst. Im Gegensatz zu den Fettsäure-Synthasen (FAS) ist es den Polyketid-Synthasen (PKS, Gesamtheit aller Proteine in der Polyketidbiosynthese) allerdings möglich, einzelne dieser Schritte zu überspringen. Die Synthese nicht-reduzierter Polyketide, die durch einen nachgeschalteten Kondensationsschritt zu Polyphenolen umgesetzt werden, erfolgt unter Auslassung aller reduktiven Reaktionen (Schema I-1, Synthesepfad A). Die Iteration kann jedoch auch an jeder anderen Stelle unterbrochen werden und führt dann zu partiell oder hoch reduzierten Polyketiden (Schema I-1, Synthesepfad B).

Die Diversifizierung der Naturstoffe erfolgt also durch Variation von Anzahl und Art der Iterationen innerhalb der Biosynthese des Polyketids, die einzig durch die Struktur der entsprechenden PKS bestimmt wird. Darüber hinaus verfügt die Natur über zusätzliche Möglichkeiten zur Modifikation: Neben den üblichen Malonyl- oder 2-Methylmalonyl-CoA-Verlängerungseinheiten kommen auch andere alkyl- oder alkoxy- (vgl. 1-7, 1-8, grau eingefärbt) sowie amino^[17]- oder hydroxysubstituierte^[18] Bausteine im Repertoire der Natur vor. Doch auch die Startereinheiten können mitunter erheblich variieren: So erfolgt z.B. die Biosynthese von Candicidin (1-5) ausgehend von *p*-Aminobenzoyl-CoA.^[5a,b] Zu guter Letzt existiert eine große Bandbreite postpolyketider Modifikationen, darunter verschiedenste Verzweigungsreaktionen, z.B. durch *Michael*-Addition, Makrozyklisierungen mittels Veresterung, Heterocyclisierungen sowie pericyclische Reaktionen der Polyeneinheiten.^[16a]

Diese unnachahmliche Flexibilität in der Synthese polyketider Naturstoffe erlaubt es der Natur, aus so einfachen "Rohstoffen" wie Acetat oder Malonat eine unfassbare Fülle an strukturell höchst anspruchsvollen sowie biologisch wertvollen Molekülen zu fertigen. Die Nachahmung dieser beeindruckenden Effizienz durch den Synthesechemiker im Labor ist demnach nicht nur eine äußerst faszinierende sondern ebenso anspruchsvolle Aufgabe.

1.2 Iterative Synthesestrategien zum Aufbau von 1,3-Polyolen

Ihre strukturelle Komplexität sowie die biologische und funktionelle Vielfalt machen polyketide Naturstoffe zu einem höchst attraktiven Syntheseziel. Es verwundert also nicht, dass insbesondere die Entwicklung von Methoden zur stereoselektiven Synthese der ausgedehnten 1,3-Polyoleinheiten, als zentralem Strukturmotiv, immer wieder Gegenstand aktueller Forschung ist. In den letzten Jahrzenten diente hierbei häufig die effiziente Biosynthese als Vorbild, indem die iterative Vorgehensweise der Natur nachgeahmt wurde. Viele dieser Methoden basieren auf der stereoselektiven Allylierung von Aldehyden mittels chiraler Metallallylreagenzien. In der dreistufigen Synthesesequenz, die den Aufbau der Stereozentren und die C₂-Verlängerung des Kohlenstoffgerüsts in einem Schritt vereinigt, wird der sekundäre Alkohol nach der Allylierungsreaktion geschützt und abschließend die Doppelbindung oxidativ gespalten (Schema I-2).

Schema I-2 Iterative Synthese von 1,3-Polyolen mittels stereoselektiver Allylierung von Aldehyden (PG = Schutzgruppe).

Die Effizienz dieser Strategie wurde durch eine große Anzahl erfolgreich abgeschlossener Naturstoffsynthesen unter Beweis gestellt, wobei insbesondere die von *Brown et al.*^[19] enwickelten Bor-Allyl-Reagenzien zum Einsatz kamen.^[20] Diese Methode wurde durch die Arbeitsgruppe um *Waldmann* weiterentwickelt, indem die Kettenverlängerung an der festen Phasen gebundenen Substraten durchgeführt wurden, um so die Aufreinigung der Produkte von den stöchiometrischen Nebenprodukten der Reagenzien zu erleichtern.^[21]

Cossy et al. nutzten das chirale Titan-basierte *Duthaler-Hafner*-Reagenz^[22] in einer ähnlichen Reaktionssequenz zum stereoselektiven Aufbau von 1,3-Polyolen.^[23] Die Anwendung in der Synthese zahlreicher Naturstoffe oder Naturstofffragemente unterstreicht die breite Anwendbarkeit der Methodik.^[24] Neben diesen intensiv genutzten metallorganischen Reagenzien fokussierten sich andere Arbeiten auf die Verwendung von Silicium-^[25] oder Zinn-Allyl-Verbindungen^[26] für den Schlüsselschritt jeder Iteration. All diesen Verfahren ist gemein, dass die teuren, chiralen Reagenzien in stöchiometrischen Mengen eingesetzt werden müssen. So fallen auch Nebenprodukte in großen Mengen an. Als logische Konsequenz zielen neue Entwicklungen auf dem Gebiet der Polyketidsynthese darauf ab, die stereogenen Zentren mittels katalysatorkontrollierter, stereoselektiver Reaktionen aufzubauen. So zeigten *Kishi et al.* in 2008, dass die Synthese von 1,3,5-Triolen auch mittels Chrom-katalysierter Allylübertragung auf Aldehyde möglich ist.^[27] Die Stereodifferenzierung gelingt hierbei durch einen chiralen Sulfonamidliganden. Der synthetische Nutzen der Methode blieb allerdings limitiert: Die Iteration liefert zufriedenstellende Ergebnisse nur dann, wenn der sekundäre Alkohol mit der eher instabilen TMS-Schutzgruppe geschützt wird, was den Einsatz der Methode in der Synthese komplexerer Moleküle einschränkt. Des Weiteren erfordert die Reaktion den Einsatz stöchiometrischer Mengen an Zr(Cp)₂Cl₂.

Einen Durchbruch auf dem Gebiet der katalytischen, stereoselektiven Allylierung von Aldehyden stellt die Ir-katalysierte Transferhydrierungs-Allylierungs-Tandemreaktion nach *Krische et al.* dar, die den äußerst schnellen, zweidimensionalen Aufbau C₂-symmetrischer 1,3-Polyole (1-10) ausgehend von terminalen Diolen (1-9, 1-11) ermöglicht (Schema I-3).^[28] Die Methode wurde erfolgreich in der Totalsynthese von (+)-Roxaticin (1-12) angewendet, wobei das vollständige Polyolfragment des Naturstoffs in einer beindruckend kurzen Sequenz von nur neun Stufen hergestellt wurde (Schema I-3).^[29] Angelehnt daran sind mittels asymmetrischer Crotylierungsreaktionen auch Polypropionatstrukturen zugänglich.^[30]

Schema I-3 Zweidimensionale Synthese von 1,3-Polyolen nach Krische et al.

Andere iterative Synthesemethoden bewältigen den Aufbau der sekundären Alkohole mittels stereoselektiver Epoxidierung von Olefinen und anschließender regioselektiver Öffnung der

Epoxide. Ein frühes Beispiel einer solchen Sequenz veröffentlichten *Sharpless et al.* 1982.^[31] Bei der Synthese von 1,3,5-Triolen werden die stereogenen Zentren mittels *Sharpless*-Epoxidierung aufgebaut, die Kettenverlängerung hingegen erfolgt in einer separaten Carbonylolefinierungsreaktion. *Nicolaou et al.* gelang unter Anwendung dieser Methode die Totalsynthese von Amphotericin B.^[32] Eine andere iterative Synthesestrategie von 1,3-Polyolen, die eine asymmetrische Epoxidierung als Schlüsselschritt nutzt, wurde 2004 von *Shibasaki et al.* vorgestellt.^[33] Die Bildung der stereogenen Zentren erfolgt hierbei in einer Sm-induzierten, enantioselektiven Reaktion von α,β -ungesättigten Morpholinylamiden zu den korrespondierenden Epoxiden.

Ein weiterer Ansatz auf dem Gebiet der Polyketidsynthese konzentriert sich, dem Vorbild der Natur folgend, auf Aldolreaktionen. So erlaubt eine Synthesesequenz nach *Shibasaki et al.*, die eine Cu-katalysierte Aldolreaktion von Thioamiden mit Aldehyden als Schlüsselschritt verwendet, die Synthese von 1,3-Polyolen in guten Ausbeuten und Stereoselektivitäten.^[34] *Yamamoto et al.* entwickelten mit ihrer Aldolreaktionskaskade den bisher wahrscheinlich schnellsten Zugang zu 1,3,5-Triolen (Schema I-4).^[35] Tris(trimethylsilyl)silyl-Vinylether (1-13) reagieren dabei mit Aldehyden unter *Lewis*-sauren Bedingungen diastereoselektiv zu bereits geschützten *syn*-Triolen (1-14) mit einer freien Aldehydfunktion, die weitere Funktionalisierung ermöglicht. Obwohl eine asymmetrische Variante der Reaktion nicht bekannt ist, wurde ihre Relevanz eindrucksvoll in der Synthese des zytostatisch wirkenden Naturstoffs EBC-23 (1-15) unter Beweis gestellt.^[36]

Schema I-4 Aldolreaktionskaskade nach Yamamoto et al. (Si = Tris(trimethylsilyl)silyl).

Aufgrund der großen Bedeutung polyketider Naturstoffe bringt die Forschung immer wieder neue, effektive Methoden zur stereoselektiven Synthese von 1,3-Polyolstrukturen hervor. Insbesondere katalytische Prozesse spielen dabei eine große Rolle. Neben den schon beschriebenen übergangsmetall- oder *Lewis*-säurekatalysierten Reaktionen, finden auch organokatalytische Modifikationen^[37] ihre Anwendung auf diesem Gebiet.

Trotz der Fülle an bereits bekannten Methoden bleibt die Entwicklung einer allgemeinen Strategie zur Synthese von 1,3-Polyolen ein wichtiger Inhalt aktueller Forschung. Ein Ziel dieser Arbeit soll daher die Entwicklung neuer iterativer Synthesestrategien zum Aufbau polyketider Strukturen sein. Außerdem soll die Effektivität des bereits 2007 im Arbeitskreis entwickelten Zugangs zu 1,3-Polyoleinheiten^[38] in der Synthese des polyketiden Naturstoffs Tetrafibricin unter Beweis gestellt werden.

2 Aufgabenstellung

2.1 Stand der Forschung

Einen Forschungsschwerpunkt der Arbeitsgruppe um *S. F. Kirsch* stellt die katalysatorkontrollierte Synthese komplexer Moleküle dar. In diesem Zusammenhang wurde von *Binder* und *Kirsch* in 2007 eine Strategie zur iterativen Synthese polyketidartiger Strukturen veröffentlicht.^[38] Schlüsselelement dieses Konzeptes ist die katalytische asymmetrische *Overman*-Veresterung. Von *Kirsch* und *Overman* 2005 entwickelt, erlaubt die Reaktion ausgehend von (*Z*)-Allyltrichloracetimidaten (2-**A**) unter Pd-Katalyse den enantioselektiven Aufbau sekundärer allylischer Ester (2-**B**).^[39] Die Stereoinduktion erfolgt dabei durch den Katalysator COP-OAc (2-1), einem planarchiralen Palladazyklus (Schema I-5).^[40] Durch die Wahl des Katalysatorenantiomers sind alle Stereoisomere des Produktes in exzellenten Ausbeuten und Enantioselektivitäten zugänglich.

Schema I-5 Stereoselektive Overman-Veresterung von (Z)-Allyltrichloracetimidaten (2-A).

Die Reaktion folgt formal dem Mechanismus einer nukleophilen, allylischen Substitution, wobei das Trichloracetimidat als Fluchtgruppe fungiert (Schema I-6). Im Reaktionsverlauf koordiniert der Katalysator zunächst den Stickstoff der Acetimidatgruppe im Substrat (2-C). Der Verlust des Acetatliganden ermöglicht die Aktivierung der prochiralen Doppelbindung (2-D) durch das Palladiumzentrum für den nukleophilen Angriff der Carbonsäure (2-E). Der chirale Ligand am Palladium sorgt dabei durch Abschirmung eines Halbraums für die Seitendifferenzierung. Trichloracetamid wird anschließend unter Bildung einer Doppelbindung im Substrat eliminiert, wobei ein Ligandenaustausch mit Essigsäure stattfindet (2-F). Die Bindung eines neuen Substratmoleküls (2-A) an die zurückgebildete aktive Katalysatorspezies setzt letztendlich das Produkt (2-B) frei.

Die *Overman*-Veresterung erlaubt unter hoher Stereokontrolle den Aufbau sekundärer allylischer Alkohole. Dies wurde im Rahmen der Doktorarbeit von *J. T. Binder* ausgenutzt, um eine iterative Strategie zur Synthese von 1,3-Polyolen zu entwickeln.^[41] In der neunstufigen Synthesesequenz erfolgt nach dem Aufbau der Stereozentren mittels *Overman*-

Veresterung die C₂-Verlängerung der Kohlenstoffkette in einer Ringschlussmetathese-Reaktion, in der ebenfalls die (Z)-konfigurierte Doppelbindung eingeführt wird. Es war möglich eine umfassende Bibliothek von 1,3,5-Triolen zu erstellen, wobei in jeder neuen Iteration der Pd-Katalysator eine denkbare substratinduzierte Stereoselektivität durch die bereits existierenden Stereozentren übersteuerte. Eine Iteration erfolgte in einer durchschnittlichen Ausbeute von 36%.

Schema I-6 Mechanismus der Overman-Veresterung.

Da die Anzahl der Reaktionsschritte einer Iteration maßgeblich für die Effizienz der Methode und so für ihre Anwendbarkeit in der Synthese von komplexen Molekülen ist, wurde die weiterentwickelt.^[42] erfolgreich Synthesestrategie H. Menz Im von Vergleich unterschiedlicher Sequenzen, die sich im Schritt der Kettenverlängerung sowie der Installation der (Z)-konfigurierten Doppelbindung unterschieden, konnte eine Optimierung der Strategie erreicht werden. Erfolgte die C2-Verlängerung des Kohlenstoffgrundgerüsts in der (Z)-selektiven Ando-Variante^[43] der Horner-Wadsworth-Emmons-Reaktion (HWE-Reaktion).^[44] ließ eine Iteration auf acht Reaktionen sich verkürzen. Die Durchschnittausbeute konnte dabei auf 50-60% gesteigert werden.^[45]

Die Relevanz sowohl der ersten als auch der zweiten Generation dieser iterativen Synthesestrategie konnte durch die erfolgreiche Synthese der polyketiden Naturstoffe Solistatin (2-3),^[38] Chloriolid (2-4),^[46] Rugolacton (2-5)^[45] sowie Polyrhacitid A (2-6) und B (2-7)^[47,45] eindrucksvoll unter Beweis gestellt werden. Darüber hinaus wurden detaillierte Studien zur Totalsynthese des marinen Naturstoffs Marinomycin A durchgeführt (Schema I-7).^[42,48]

Schema I-7 Iterative Synthesestrategie der 2. Generation und vollständige Naturstoffsynthesen.

2.2 Zielsetzung

Einer der Schwerpunkte dieser Dissertation war die Totalsynthese des polyketiden Naturstoffs Tetrafibricin (3-1) (Abbildung I-2). Aufbauend auf den vorherigen Arbeiten in der Arbeitsgruppe soll für die Darstellung der Stereozentren die bereits etablierte Synthesesequenz basierend auf der *Overman*-Veresterung zum Einsatz kommen. Nicht nur würde die Synthese eines solch komplexen Moleküls den synthetischen Wert der Methode ein weiteres Mal unter Beweis stellen, auch die einzigartige biologische Funktion des Polyketids, das regulatorisch in die menschliche Blutgerinnung eingreift, macht Tetrabfibricin zu einem attraktiven Syntheseziel.

Tetrafibricin (3-1)

Abbildung I-2 Tetrafibricin – Syntheseziel dieser Arbeit.

Trotz der erwiesenen breiten Anwendbarkeit und hohen Effektivität der vorgestellten iterativen Synthesestrategie nach *Kirsch et al.* bleibt die hohe Anzahl von acht Reaktionen, die für den Aufbau eines Stereozentrums und die C₂-Verlängerung der Polyolkette benötigt werden, ein Nachteil gegenüber anderen Strategien. Zwar ist die durchschnittliche Ausbeute, die über eine Iteration erreicht wird, durchaus mit Sequenzen, die auf der Allylierung von Aldehyden basieren, vergleichbar und die Ergebnisse der Einzelschritte sind verlässlich mit unterschiedlichen Substraten reproduzierbar. Der reine Arbeits- und Zeitaufwand, den die Durchführung einer Iteration mit acht Syntheseschritten mit sich bringt, liegt allerdings über dem der dreistufigen Allylierungs-Methoden.

Ziel dieser Arbeit war daher ebenfalls die Entwicklung einer neuen iterativen Methode für den stereoselektiven Aufbau von 1,3-Polyolen. Im Gegensatz zu vorherigen Untersuchungen im Arbeitskreis wird dabei allerdings nicht die *Overman*-Versterung als Schlüsselschritt dienen. Vielmehr soll der Aufbau der 1,3-Polyole durch eine modulare Herangehensweise realisiert werden (Schema I-8). Durch die Verknüpfung von Ketonen oder Aldehyden mit Reagenzien, die bereits ein sekundäres Alkoholstereozentrum tragen (2-8), soll die Synthese von β -Hydroxyketonen (2-9) gelingen. Der Aufbau des zweiten Stereozentrums ist durch stereoselektive, substratkontrollierte Reduktion der Ketofunktion geplant.

Schema I-8 Modulare Synthesemethoden von 1,3-Polyolen.

Um eine iterative Reaktionsführung möglich zu machen, muss das Produkt nach Schützung des Diols durch Manipulation funktioneller Gruppen wieder in eine Carbonylverbindung überführbar sein. Dieses völlig neuartige Konzept würde aufgrund der Verknüpfung der wachsenden Kette mit einem bereits elaborierten Fragment einen konvergenteren Zugang zu 1,3-Polyolen eröffnen. Im Vergleich zur bisherigen Sequenz würden innerhalb einer Iteration gleich zwei Stereozentren aufgebaut, was die Anzahl der Reaktionsschritte reduzieren und so die Effizienz der Methode deutlich steigern könnte.

3 Studien zur Totalsynthese von Tetrafibricin

3.1 Einleitung

Tetrafibricin (3-1, Abbildung I-3) wurde 1993 von *Kamiyama et al.* im *Nippon Roche Research Center* aus dem Fermentationsansatz des NR0577-Stamms von *Streptomycis neyagawaensis* isoliert und charakterisiert.^[49] Die komplexe Struktur wurde anhand umfangreicher NMR-Untersuchungen von 4-1 und einfacher Derivate aufgeklärt.^[49b] Die Absolut- und Relativkonfiguration der Stereozentren blieb allerdings unbekannt. Erst 2003 gelang *Kishi et al.* die vollständige Aufklärung der Stereochemie von Tetrafibricin (3-1) mit Hilfe von NMR-Datenbanken und Experimenten in chiralen und achiralen NMR-Lösungsmitteln.^[50]

Tetrafibricin ist ein lineares Polyketid mit 41 Kohlenstoffatomen. Die Struktur umfasst elf stereogene Zentren, von denen zehn hydroxysubstituiert sind. 3-1 ist eine Aminosäure, deren Carbonsäurefunktionalität an C1 und das freie Amin an C40 lokalisiert sind. Neben zwei 1,3-Polyoleinheiten von C15-C19 und C23-C29, weist Tetrafibricin drei isolierte Doppelbindungen sowie ein konjugiertes Tetraensystem auf.

Abbildung I-3 Struktur und vollständige Stereochemie von Tetrafibricin (3-1).

Neben der komplexen Struktur weist Tetrafibricin auch eine Vielzahl biologischer Funktionen auf. Festphasen-Bindungsassays zeigten, dass Tetrafibricin regulatorisch in die Fibrinogen induzierte Gerinnung menschlicher Thrombozyten eingreift. Hierbei vermag 3-1 nicht nur die Thrombozytengerinnung mit einem IC₅₀-Wert von 46 nM zu inhibieren, sondern aktiviert auch die Deaggregation bereits bestehender Thromben. Dies erfolgt über hochselektive Bindung an den Integrinrezeptor GPIIb/IIIa, was eine Konformationsänderung des Rezeptorproteins zurfolge hat; Kreuzreaktivitäten mit anderen Integrinrezeptoren treten nicht auf.^[51] Zudem wurde eine Inhibition der ADP- (IC₅₀ = 5.6 μ M), Collagen- (IC₅₀ = 11.0 μ M) und Thrombin- (IC₅₀ = 7.6 μ M) induzierten Blutplättchenaggregation durch Tetrafibricin festgestellt. 3-1 ist als Polyketid unter den Fibrinogen-Antagonisten einzigartig.^[52] Bisher bekannte GPIIb/IIIa-Inhibitoren sind häufig natürliche^[53] oder synthetische^[54] Peptide, welche

die Arg-Gly-Asp (RGD) Erkennungssequenz des Rezeptors tragen. Darüber hinaus sind monoklonale Antikörper^[55] und nicht-peptidische^[56] oder peptidomimetische^[57] Moleküle als Antagonisten beschrieben. Weitere Moleküle polyketiden Ursprungs, die blutgerinnungshemmende Eigenschaften aufweisen, sind jedoch unbekannt.

Seine strukturelle Komplexität und die einzigartige biologische Aktivität machen Tetrafibricin zu einem höchst interessanten Syntheseziel. Es ist also nicht verwunderlich, dass bis heute mehrere Forschungsgruppen an einer Totalsynthese von 3-1 gearbeitet haben.

So gelang *Cossy et al.* 2004 die Synthese der Fragmente C1-C13, C15-C25 und C27-C40 (Schema I-9). Der Aufbau der Stereozentren erfolgte hierbei durch stereoselektive Allyltitanierungsreaktionen. Die Doppelbindungen wurden durch chemoselektive Kreuzmetathese oder Eliminierung erhalten. Die Stereozentren an C15, C25 und C27 konnten nicht installiert werden, ebenso wenig gelang die Verknüpfung der Fragmente.^[58]

Schema I-9 Synthese der Tetrafbricin-Fragmente C1-13 (3-2), C15-C25 (3-3) und C27-C40 (3-4) nach Cossy et al; R = TBS.

Die Arbeitsgruppe von *W. R. Roush* veröffentlichte 2007 die Synthese des C1-C19-Fragments von Tetrafibricin (Schema I-10).^[59] Als Schlüsselschritt zum Aufbau der Stereozentren an C13 und C17 diente eine diastereoselektive Allylborierungs-Reaktion,^[60] die Hydroxygruppe an C15 wurde mittels Iodonium-vermittelter Urethanzyklisierung installiert. Die Tetraeneinheit konnte in einer *Horner-Wadsworth-Emmons*-Olefinierung zwischen Aldehyd 3-6 und Phosphonat 3-7 aufgebaut werden.

Schema I-10 Synthese des C1-C19-Fragments von Tetrafibricin nach Roush et al.; R = TBS.

Die bislang am weitesten fortgeschrittene Synthese von Tetrafibricin stammt aus der Gruppe um *D. P. Curran* (Schema I-11).^[61] 2008 wurde die Fertigstellung der Fragmente C1-C20 (3-8) und C21-C40 (3-9) veröffentlicht. Fragment 3-8 ging aus der *Corey-Seebach*-Alkylierung^[62] von Dithian 3-11 mit Iodid 3-12 hervor, das Tetraen wurde durch *HWE*-Olefinierung mit Phosphonat 3-10 aufgebaut. Die Verknüpfung der Fragmente 3-13, 3-14 und 3-15 erfolgte durch Aufbau der Doppelbindung in *Julia-Kocienski*-Olefinierungen.^[63] Die Stereozentren stammen zumeist aus *Chiral Pool*-Bausteinen, die über Epoxidöffnung mittels Dithianen miteinander verknüpft wurden. Des Weiteren wurde auf gerichtete Reduktionen^[104] oder auxiliarkontrollierte *Evans*-Aldolreaktionen^[64] zurückgegriffen.

Schema I-11 Fortgeschrittene Synthese von 3-1 nach *Curran et al.*: Synthese von Fragment C1-C20 (3-8) und C21-C40 (3-9); R = TBS.

Über die Synthese des C27-C40-Bausteins 3-16 berichteten 2010 *Friestad et al.* (Schema I-12).^[65] Ausgehend von Aldehyd 3-19 konnte mittels einer iterativen Synthesestrategie basierend auf J*ulia-Kocienski*-Olefinierungen mit Sulfon 3-18 das 1,5,9-Triol 3-17 aufgebaut werden. Durch einfache Modifikationen ging daraus 3-16 hervor.

Schema I-12 Iterative Synthesestrategie von Fragment C27-C40 (3-8) nach Friestad et al.

Ebenfalls eine iterative Strategie wendeten *Krische et al.* 2011 in der Synthese des C21-C40-Fragments von 3-1 an (Schema I-13).^[66] 3-20 wurde durch Kreuzmetathese aus dem 1,5-Diol 3-21 und dem Tetraol 3-22 erhalten. Für den Aufbau der Stereozentren wurde die katalytische Transferhydrierungs-Allylierungs-Tandemreaktion von *Krische et al.* genutzt.^[29] 3-21 wurde ausgehend von Aminoalkohol 3-23 in einer eindimensionalen Strategie synthetisiert. Die Synthese von 3-22 hingegen gelang mittels zweidimensionaler Allylierung, mit deren Hilfe ein C₂-symmetrisches Tetraol aufgebaut wurde, das anschließend desymmetrisiert wurde.

Schema I-13 Synthese von Fragment C21-40 (3-20) nach Krische et al.

Trotz der zahlreichen Versuche Tetrafibricin zu synthetisieren, konnte bislang keine vollständige Totalsynthese veröffentlicht werden. Der Bedarf nach einer verlässlichen und effektiven Syntheseroute zu 4-1 bleibt also bestehen.

3.2 Retrosynthetische Analyse

3.2.1 Zentrales Konzept der Synthesestrategie

Bei der Syntheseplanung zu Tetrafibricin (3-1) lag das Hauptaugenmerk auf der möglichst flexiblen Gestaltung der Strategie. Ziel war es eine konvergente Synthesestrategie zu erarbeiten, die es nach der Etablierung der Totalsynthese von Tetrafibricin erlaubt, durch Variation der einzelnen Fragmente eine große Bandbreite an unnatürlichen Derivaten des Naturstoffs herzustellen. Dies könnte eine Grundlage schaffen, um in Zukunft die Struktur-Wirkungs-Beziehung des Polyketids aufzuklären. Grundlage für maximale Flexibilität sollte die Synthese des Naturstoffs aus mehreren Synthesebausteinen ähnlicher Komplexität sein. Der iterative Aufbau der 1,3-Polyolfragmente mit Hilfe der *Overman*-Veresterung würde zudem jedes denkbare Stereoisomer des Naturstoffs zugänglich machen.

Diesem Grundgedanken folgend, wurde Tetrafibricin in fünf Fragmente zerlegt (Schema I-14): Phosphonat 3-24 (C1-C8), die Aldehyde 3-25 (C9-C20), 3-26 (C21-C30) und 3-27 (C31-C34) sowie das Sulfon 3-28 (C35-C40). Die Verknüpfung dieser Fragmente, sollte durch Bildung der Doppelbindungen zwischen C8 und C9, C20 und C21, C30 und C31 sowie C34 und C35 mittels *Horner-Wadsworth-Emmons-*^[44] oder *Julia-Kocienski*-Reaktionen^[63] gelingen.

Schema I-14 Retrosynthetische Analyse von Tetrafibricin (3-1): Schlüsselfragmente und ihre Verknüpfung durch Olefinierungsreaktionen; R =TBS, R' = TES.

3.2.2 Detaillierte retrosynthetische Analyse der Fragmentverknüpfung

In der geplanten Synthese von Tetrafibricin sind als finale Schritte die Freisetzung der Hydroxyfunktionen und der Carbonsäure durch Abspaltung aller Silylschutzgruppen in 3-29

sowie die Reduktion des Azids an C40 zum freien Amin vorgesehen. Die Vervollständigung des Kohlenstoffgrundgerüsts des Naturstoffs soll durch die selektive *HWE*-Reaktion zwischen Phosphonat 3-24 und Aldehyd 3-30 in Gegenwart der Ketofunktion an C13 gelingen (Schema I-15).

Schema I-15 Retrosynthese der finalen Schritte; R = TBS.

Der Aufbau der 1,5-Dicarbonylfunktionalität ist in einer doppelten Oxidation ausgehend vom entsprechenden Diol geplant. Der primäre Alkohol hierfür wäre durch Verseifung des Benzoats, der sekundäre durch selektive Entfernung der Triethylsilylschutzgruppe zugänglich. Das Azid soll nach Entschützung des PMB-Ethers durch *Mitsunobu*-Reaktion^[127a,b,67] eingeführt werden.

Für die Vervollständigung des Polyolfragments 3-**31** ist eine *Julia-Kocienski*-Reaktion von Aldhyd 3-**25** mit Sulfon 3-**32** vorgesehen. Zum Aufbau der Sulfoneinheit muss ausgehend von 3-**33** nach Benzoylentschützung der freie Alkohol in einer *Mitsunobu*-Reaktion zum Sulfid umgesetzt werden. Anschließende Oxidation würde das Sulfon liefern. Auch die (*E*)-konfigurierte Doppelbindung zwischen C30 und C31 soll durch *Julia-Kocienski*-Olefinierung installiert werden. Diese retrosynthetische Zerlegung resultiert in Aldehyd 3-**26** und Sulfon 3-**34** (Schema I-17).

Schema I-17 Retrosynthese von 3-32; R = TBS.

In der gleichen Reaktionssequenz aus Entschützung, *Mitsunobu*-Reaktion und Oxidation ist die Synthese des Sulfons 3-34 ausgehend von Benzoat 3-35 geplant. Benzoat 3-35 selbst kann erneut in einer Olefinierungsreaktion aus den letzten beiden Schlüsselfragmenten 3-27 und 3-28 hervorgehen (Schema I-18).

Schema I-18 Retrosynthetische Zerlegung von 3-34 in die Schlüsselfragmente 3-27 und 3-28, R = TBS.

Die uniformierte Syntheseplanung der Fragmentverknüpfung in der Synthese von Tetrafibricin (3-1) ermöglicht, auf Erkenntnisse, die in der Untersuchung einzelner Reaktionsschritte gewonnen werden, zurückzugreifen und so die Optimierungsarbeit zu minimieren. Retrosynthetische Betrachtungen der einzelnen Schlüsselfragmente werden jeweils ihrer Synthese vorangestellt.

3.3 Synthese von Fragment C1-C8

3.3.1 Retrosynthese

Das polyensubstituierte Phosponat 3-24 soll durch *Stille*-Kupplung^[68] von 2-Iodacrylat 3-36 und Stannan 3-37, das bereits mit dem Phosphonat funktionalisiert ist, hergestellt werden (Schema I-19). Die Synthese von 3-36 ist ausgehend von Propiolsäure durch (*E*)-selektive Iodierung der Dreifachbindung und anschließende Veresterung mit 2-Trimethylsilylethanol geplant. Das Eninol 3-38 soll als Ausgangsmaterial für die Synthese des literaturbekannten Stannans^[69] 3-37 dienen. 3-38 wiederum kann ausgehend von Epichlorhydrin gewonnen werden.

Schema I-19 Retrosynthese von Fragment C1-C8 (3-24).

Diese Syntheseroute stellt einen äußerst effizienten Zugang zu Trien 3-24 dar, dessen längste lineare Sequenz nur fünf Reaktionsschritte umfasst. Außerdem lässt die Strategie die Schützung der Säure als Trimethylsilylethylester zu, der zusammen mit anderen Silylschutzgruppen abgespalten werden kann,. Der klassische Zugang mittels Olefinierungsreaktionen liefert hingegen zumeist einfache Alkylester, deren Spaltung sich deutlich schwieriger gestaltet.^[59,61a]

3.3.2 Synthese

Für die Synthese von 3-24 wurde zunächst Propiolsäure in siedender, wässriger HI und in Gegenwart eines Cu(I)-Katalysators zu (*E*)-2-Iodacrylsäure (3-39) umgesetzt.^[70] Die genaue Einhaltung der Reagenzverhältnisse ist für den Erfolg der Reaktion ebenso von enormer Bedeutung, wie das schnelle Erhitzen der Reaktionsmischung zur Siedetemperatur. Nach Zugabe aller Reaktionspartner muss die Reaktionsmischung in ein vorgeheiztes (!) Ölbad
(130 °C) gestellt werden. Langsames Aufheizen führt zur Bildung signifikanter Mengen eines Nebenproduktes, das nicht vom Produkt abgetrennt werden kann. Unter genauer Einhaltung der Bedingungen gelang die Reaktion in 67% Ausbeute. Die anschließende Veresterung der Säure unter *Steglich*-Bedingungen lieferte 3-**36** in 53% (Schema I-20).^[71] Es stellte sich heraus, dass die Zugabe von DCC bei tiefen Temperaturen gelöst in CH₂Cl₂ sehr langsam erfolgen muss, um reproduzierbare Ergebnisse zu erhalten.

Schema I-20 Synthese von Iodacrylat 3-36.

Zur Herstellung des metallorganischen Kupplungspartners wurde Epichlorhydrin mit Natriumacetylid in flüssigem Ammoniak umgesetzt. Da die Reaktion laut Literatur unter Bildung vieler Nebenprodukte abläuft,^[72] wurde der Temperaturverlauf mittels Kryostat so exakt wie möglich kontrolliert. So konnte die Literaturausbeute von 40% sogar übertroffen werden. 3-**38** wurde in 42% Ausbeute isoliert. Anschließende Stannylcuprat-Addition an die Dreifachbindung, mittels CuCN, *n*-BuLi und Bu₃SnH lieferte das Stannan in 65%.^[73] Auch hier spielte die Reaktionstemperatur eine entscheidende Rolle:^[74] Da durch kinetische Kontrolle das terminale Stannan 3-**40** bei höheren Temperaturen bevorzugt wird, wurde die Reaktion bei -30 °C durchgeführt. Bei niedrigeren Temperaturen (< -30 °C) nahm die Bildung des Regioisomers 3-**41** merklich zu.

Schema I-21 Synthese des bifunktionellen Reagenzes 3-37.

Eine weitere Erhöhung der Reaktionstemperatur könnte eine Verbesserung der Selektivität bedeuten, es wurde allerdings nicht überprüft, ob dabei die Ausbeute der Reaktion durch eventuelle Nebenreaktionen negativ beeinflusst wird. Um die zweite Funktionalität des Reagenzes einzuführen, wurde 3-40 in einer *Appel*-Reaktion^[124] zum entsprechenden Bromid umgesetzt. Nukleophile Substitution mit NaH und Dimethylphosphit machte 3-37 in 68% Ausbeute über zwei Schritte zugänglich (Schema I-21).

Mit beiden Reaktionspartnern in Händen wurde die Synthese von Fragment C1-C8 (3-24) abgeschlossen. Die *Stille*-Kupplung zwischen Stannan 3-37 und 2-Iodacrylat 3-36 verlief ohne Probleme. Schon bei Raumtemperatur lieferte die Reaktion mit Pd₂dba₃ als Katalysator, Trifurylphosphin als Ligand in Gegenwart eines Überschusses LiCl in DMF das gewünschte Produkt in 95% Ausbeute (Schema I-22). Obwohl 3-24 nach säulenchromatographischer Aufreinigung analytisch sauber war, bedurfte es einer zweiten Reinigung über Kieselgel. Erst diese stellte reproduzierbare Ergebnisse beim Einsatz von 3-24 in *HWE*-Reaktionen sicher. Die Ausbeute wurde durch den zusätzlichen Reinigungsschritt nicht vermindert.

Schema I-22 Abschluss der Synthese von 3-24 durch Stille-Kupplung von 3-36 und 3-37.

Die Synthese von 3-24 konnte in nur fünf Schritten in der längsten linearen Sequenz abgeschlossen werden. Zwar ist die Gesamtausbeute von 18% moderat, aufgrund der Kürze der Synthesestrategie, ist sie anderen Routen dennoch vorzuziehen.

3.4 Synthese von Fragment C9-C20

3.4.1 Retrosynthese

Fragment C9-C20 (3-25) ist eines der beiden ausgedehnten 1,3-Polyolfragmente in der geplanten Synthese von Tetrafibricin (Abbildung I-4). Der Aufbau der hydroxysubstituierten Stereozentren soll mittels der iterativen Sequenz zur Synthese von 1,3-Polyolen nach *Kirsch et al.* gelingen.^[38,45,47]

Abbildung I-4 Vereinfachung der Darstellung von Fragment C9-C20 (3-25); R = TBS, R' = TES.

Nach dem Wechsel der Schutzgruppe am primären Alkohol vom PMB-Ether zum Benzoat soll der Aldehyd durch oxidative Spaltung der Doppelbindung installiert werden und so die Synthese von 3-25 ausgehend von 3-42 abgeschlossen werden (Schema I-23). Ein Schutzgruppenwechsel durch Reduktion von Benzoat 3-43 und Schützung des freien Alkohols als TBS-Ether ist zur Herstellung von 3-42 geplant. Die Synthese von 3-43 wäre innerhalb von zwei iterativen C₂-Verlängerungen (Schema I-7) ausgehend von 3-45 möglich, wobei die Stereonzentren durch die asymmetrische *Overman*-Veresterung aufgebaut werden.

Schema I-23 Retrosynthetische Analyse von 3-25: Aufbau des 1,3-Polyolfragments mittels iterativer C_2 -Verlängerung, R = TBS, R' = TES.

Auch der Aufbau von Benzoesäureester 3-45 ist mittels *Overman*-Veresterung ausgehend von Trichloracetimidat 3-46 vorgesehen (Schema I-24). Die Doppelbindung soll durch (*Z*)-selektive *HWE*-Reaktion mit Aldehyd 3-47 installiert werden. Nach Reduktion liefert die basenkatalysierte Umsetzung mit Trichloracetonitril 3-46. Aldehyd 3-47 kann durch eine Sequenz von diastereoselektiver Allylierung, Schützung des sekundären Alkohols und oxidativer Spaltung der terminalen Doppelbindung aus 3-48 hervorgehen. Hierbei wird die Triethylsilylschutzgruppe eingesetzt, um später eine selektive Entschützung in Gegenwart andere Silylyschutzgruppen zu ermöglichen. Reduktion von Oxazolidinon 3-49 zum Alkohol und anschließende Oxidation soll Aldehyd 3-48 zugänglich machen. Der letzte retrosynthetische Schnitt führt 3-49 auf die Fragmente 3-12 und 3-50 zurück, deren Verknüpfung in einer *Evans*-Aldolreaktion^[64] gelingen kann.

Schema I-24 Retrosynthetische Analyse von 3-45: Aufbau der ersten Stereozentren; R = TBS, R' = TES.

3.4.2 Synthese

Aufbau der ersten Stereozentren durch Evans-Aldolreaktion

Der Aufbau der ersten beiden Stereozentren von Fragment C9-C20 (3-25) wurde in einer *Evans*-Aldolreaktion realisiert. Hierzu wurde zunächst das (*R*)-konfugurierte *Evans*-Auxiliar (3-53) in einer literaturbekannten Reaktionssequenz hergestellt: Das unnatürliche (*D*)-Phenylalanin wurde mittels *in situ* aus NaBH₄ und molekularem Iod erzeugtem BH₃ in THF in 98% Ausbeute zum Aminoalkohol 3-51 reduziert.^[75] Dieser wurde mittels Chlorameisensäuremethylester in Gegenwart von wässriger KOH in Toluol zum offenkettigen

Carbamat umgesetzt, das unter Basenkatalyse in siedendem Toluol zum Oxazolidinon 3-**52** zyklisiert.^[76] Das *Evans*-Auxiliar wurde in 88% Ausbeute über die zwei Reaktionsschritte erhalten. Die *N*-Acylierung des Auxiliars zu 3-**50** gelang nach Deprotonierung durch *n*-BuLi und anschließende Umsetzung mit Propionylchlorid in 84% Ausbeute (Schema I-25).^[64b]

Schema I-25 Synthese von 3-50 ausgehend von (D)-Phenylalanin.

Für die ebenfalls literaturbekannte Aldehydkomponente der geplanten Aldolreaktion diente Propandiol als Ausgangsmaterial (Schema I-26).^[77] Die selektive Schützung einer der beiden Alkoholfunktionen zum PMB-Ether gelang mit PMBCl, katalytische Mengen NaH und unter Phasentransferkatalyse mit *n*-Bu₄NI in 45% Ausbeute. Die anschließende *Swern*-Oxidation^[114] lieferte den schon weiter oben beschriebenen Aldehyd 3-**53** in 86%. Zwar ist die Gesamtausbeute mit 39% deutlich niedriger als in der dreistufigen Synthesesequenz, die in Kapitel 4.2.2 (Schema I-65) vorgestellt wurde und das gleiche Produkt in 62% liefert; allerdings können Reduktionen mit DIBAI-H im Maßstab, der für die ersten Stufen einer Totalsynthese notwendig ist, durch die aufwendige Aufarbeitung impraktikabel sein. Daher wurde auf die beschriebene Syntheseroute zurückgegriffen, die problemlos skalierbar ist.

Schema I-26 Zweistufige Syntheseroute zu Aldehyd 3-53.

Zur Verknüpfung der beiden Reaktionspartner wurde 3-**50** mit *Hünig*-Base in Gegenwart von Di-*n*-Butylbortriflat in sein O-(*Z*)-Borenolat überführt. Dessen Umsetzung mit Aldehyd 3-**53** liefert nach oxidativer Aufarbeitung das Aldolprodukt 3-**54** in perfekter Diastereoselektivität als *syn*-Produkt in 89% Ausbeute (Schema I-27).^[78] Asymmetrische Induktion durch den

Benzylsubstituenten am Auxiliar sorgt dafür, dass ausschließlich das (-)-Enantiomer^a von 3-**54** gebildet wird.^[79]

Schema I-27 Evans-Aldolreaktion von 3-12 mit 3-50.

Diastereoselektive Allylierung zur Kettenverlängerung

Um weitere Funktionalisierung des Moleküls möglich zu machen, wurde 3-**54** zunächst in den Silylether 3-**49** überführt. Die Schützung verlief vermutlich aufgrund sterischer Hinderung sehr langsam und konnte nur durch Verwendung eines großen Überschusses an TBSCl und Imidazol sowie Reaktionsführung bei hoher Substratkonzentration zu vollständigem Umsatz gebracht werden. Nach 18 h Reaktionszeit konnte 3-**49** in 97% Ausbeute isoliert werden. Auch die reduktive Entfernung des Auxiliars stellte sich als problematisch heraus (Schema I-28). Neben dem gewünschten primären Alkohol 3-**55** wurde stets das Amid 3-**56** durch Reduktion der Carbamatfunktion gebildet.^[80]

Schema I-28 Abspaltung des *Evans*-Auxiliars; R =TBS.

Dieses Intermediat ist nicht mehr reaktiv und konnte unter keiner untersuchten Reaktionsbedingung in das gewünschte Produkt überführt werden.^[81] Wurde 3-56 bei

^a Identifikation über den Vergleich der Drehwerte: (+)-Enantiomer: $[\alpha]^{23}_{D} = -46.2$ (c = 1.28 CH₂Cl₂), siehe Experimenteller Teil; (-)-Enantiomer: $[\alpha]^{23}_{D} = +42.4$ (c = 1.81 CH₂Cl₂), laut Ref. 79a).

Reduktion des Oxazolidinons mit LiBH₄ in nassem Et₂O^[82] noch als Hauptprodukt gebildet, konnte 3-**55** bei Reaktion mit einem Überschuss NaBH₄ in einem THF/H₂O-Gemisch^[79a] in 70% Ausbeute isoliert werden. Dennoch bleibt auch aufgrund der langen Reaktionszeit von 48 h ein Bedarf nach Optimierung dieses Reaktionsschrittes bestehen. So könnte die Abspaltung des Auxiliars durch Substitution mit Lithiumethylthiolat und anschließender Hydrierung des Thioesters zum Aldehyd eine sinnvolle Alternative darstellen.^[83]

Alkohol 3-55 wurde anschließend zu Aldehyd 3-48 oxidiert. Während Swern-Oxidation das Produkt in maximal 73% Ausbeute lieferte, konnte diese durch Oxidation mit IBX in DMSO auf 90% erhöht werden. Die Kettenverlängerung erfolgte in einer diastereoselektiven Allylierung. In einer Reaktion von 3-48 mit Allylmagnesiumbromid bei 0 °C in Diethylether war Homoallylalkohol 3-**57** in einer Gesamtausbeute von 93% und einem Diastereomerenverhältnis von 2.7:1 zugänglich (Schema I-29). Die beiden Diastereomere konnten säulenchromatographisch getrennt werden, so dass die Synthese mit diastereomerenreinen Ausgangsmaterialien fortgesetzt werden konnte. Das überwiegend gebildete Diastereomer des sekundären freien Alkohols 3-57a wurde unter Standardbedingungen als Triethylsilylether geschützt, um eine selektive Entschützung gegenüber anderen Silylschutzgruppen in der Endphase der Synthese möglich zu machen. Die Reaktion brachte 3-58 in 95% Ausbeute hervor.

Schema I-29 Diastereoselektive Allylierung von Aldehyd 3-48; R = TBS.

Analyse des Stereozentrums an C13

Für den stereochemischen Verlauf der *Grignard*-Reaktion^[84] ist anzunehmen, dass Chelatisierung durch Magnesium aufgrund des sterischen Anspruchs der TBS-Schutzgruppe keine Rolle spielt und ausschließlich Stereokontrolle nach dem *Felkin-Anh*-Modell zum Tragen kommt (Schema I-30).^[85] Demnach durchliefe die Reaktion bevorzugt den Übergangszustand 3-**59**, was eine *syn*-Konfiguration der Hydroxysubstituenten im Produkt zur Folge hätte.

Schema I-30 Vorhersage der Diastereoselektivität der Allylierungsreaktion nach dem *Felkin-Anh*-Modell; R = TBS.

Um diese Annahme zu bestätigen, wurden beide Diastereomere von 3-57 zunächst in die entsprechenden TBS-Ether 3-60 überführt. Eine anschließende Sequenz aus oxidativer Spaltung der Doppelbindung unter *Lemieux-Johnson*-Bedingungen,^[86] Reduktion des entstandenen Aldehyds und Abspaltung der PMB-Schutzgruppe mittels DDQ lieferte die Diole 3-61 (Schema I-31).

Schema I-31 Synthese der Diole 3-61 zur Bestimmung der Konfiguration des Stereozentrums an C13; R= TBS.

Die Umsetzung von 3-57a resultierte in der symmetrischen, achiralen Verbindung 3-61a. Diastereomer 3-57b hingegen wurde zum asymmetrischen Diol 3-61b umgesetzt. Es ist also anzunehmen, dass die Allylierung tatsächlich unter Stereokontrolle nach dem *Felkin-Anh*-Modell erfolgt. Alternativ zu der hier vorgestellten Vorgehensweise wäre es möglich, die Relativkonfiguration der Hydroxyfunktionen durch Analyse des korrespondierenden Acetonids zu bestimmen (Abbildung I-5): Arbeiten von *Rychnovsky et al.*^[87] und *Evans et al.*^[88] zeigen, dass die abweichende Konformation des Acetonid-Sechsrings des *syn*- (Sessel) oder *anti*-Diastereomeres (Twist) in signifikanten Unterschieden der chemischen Verschiebung sowohl des Ketal- als auch der Methylkohlenstoffe resultiert.

Abbildung I-5 Chemische Verschiebung der ¹³C-NMR-Signale von Acetoniden von 1,3-Diolen mit Propionatursprung nach *Evans et al.*

Da die *Grignard*-Reaktion nur eine durchschnittliche Diastereoselektivität von $\sim 3:1$ zu Gunsten von 3-57a aufweist, wurde der Versuch unternommen, das C13-Stereozentrum von 3-57b in einer *Mitsunobu*-Veresterung zu invertieren, um den Verlust an Material zu minimieren (Schema I-32). Jedoch lieferte die Reaktion von 3-57b mit PPh₃, DIAD und *p*-Nitrobenzoesäure als Nukleophil den gewünschten Ester 3-62 nur als Nebenprodukt. Hauptprodukt der Reaktion war Dien 3-63, das durch Eliminierung aus 3-57b oder 3-62 gebildet wird.

Schema I-32 Mitsunobu-Reaktion von 3-57b mit p-Nitrobenzoesäure; R = TBS.

Aufgrund dieses Ergebnisses wurde die Synthese ausschließlich mit 3-57a fortgesetzt.

Iterativer Aufbau der 1,3-Polyolkette

Ausgehend von 3-**58** war der Aufbau der letzten drei Stereozentren des Fragements durch die *Overman*-Veresterung als zentrale Reaktion einer iterativen Synthesestrategie geplant. Hierzu wurde die terminale Doppelbindung zunächst oxidativ gespalten. Unter *Lemieux-Johnson*-Bedingungen in Gegenwart einer stöchiometrischen Menge an 2,6-Lutidin konnte der Aldehyd 3-**47** in 86% Ausbeute isoliert werden.

Schema I-33 Aufbau des vierten Stereozentrums mittels Overman-Veresterung; R = TBS, R' = TES.

Die Zugabe der Base, wie sie *Jin et al.* 2004 vorschlugen, verhindert dabei die Überoxidation des intermediär gebildeten 1,2-Diols und beschleunigt die Reaktion.^[89] In der *Ando*-Variante der *HWE*-Reaktion mit Phosphonat 2-2 konnte Olefin 3-64 (*Z*)-selektiv hergestellt werden. Die Isomere waren säulenchromatographisch trennbar und 3-64 konnte als sauberes Diastereomer in 86% Ausbeute erhalten werden. Anschließende Reduktion des Methylesters mit DIBAI-H und basenkatalysierte Umsetzung des (*Z*)-Allylalkohols mit Trichloracetonitril machte Trichloracetimidat 3-46 in 92% über zwei Schritte zugänglich. Die Pd-katalysierte Overman Veresterung mit Benzoesäure und (*R*)-2-1 lieferte 3-45 in 95% Ausbeute und perfekter Diastereoselektivität (Schema I-33).

Zu Beginn der ersten vollständigen Iteration des C₂-Verlängerungszyklus' wurde Benzoat 3-45 zunächst mit DIBAI-H zum freien Allylalkohol reduziert, der im Anschluss als TBS-Ether geschützt wurde. Beide Reaktionen verliefen ohne Probleme und brachten 3-65 in 86% Ausbeute hervor. Zur weiteren Funktionalisierung wurde die terminale Doppelbindung mit 9-BBN hydroboriert. Nach oxidativer Aufarbeitung wurde der primäre Alkohol 3-66 in 94% Ausbeute erhalten. Um den kettenverlängernden Schritt durch Carbonyl-Olefinierung durchführen zu könne, wurde 3-66 mit IBX zum Aldehyd oxidiert. Die Oxidation musste in einem Gemisch aus DMSO und THF durchgeführt werden, was die schlechte Löslichkeit des Ausgangsmaterials in DMSO deutlich verbesserte und sowohl Reaktionsrate als auch Ausbeute signifikant erhöhte. Die anschließende Homologisierung mit 2-2 lieferte (Z)-Olefin 3-67 als sauberes Isomer in 80% Ausbeute über zwei Schritte (Schema I-34).

Schema I-34 Fünfstufige C₂-Verlängerung von Benzoat 3-45; R = TBS, R' = TES.

Nach der Kettenverlängerung wurde der Synthesezyklus durch den Aufbau des nächsten Stereozentrums abgeschlossen. Methylester 3-67 wurde durch Reduktion mit DIBAI-H und darauffolgende Reaktion mit Cl₃CCN in Gegenwart katalytischer Mengen DBU in 91% Ausbeute in das (*Z*)-Allyltrichloracetimidat 3-68 überführt, das als Ausgangsmaterial für die abschließende *Overman*-Veresterung diente. Nach Umsetzung mit Benzoesäure als Nukleophil und (*R*)-2-1 als Katalysator konnte Benzoat 3-44 in perfekter Diastereoselektivität und exzellenter Ausbeute von 97% isoliert werden (Schema I-35).

Schema I-35 Abschluss des Reaktionssyklus zu Benzoat 3-44; R = TBS, R' = TES.

Die Installation des letzten stereogenen Zentrums in Fragment C9-C20 gelang in einer weiteren Iteration des Reaktionszyklus'. Durch Reduktion und anschließende Schützung des

freien Alkohols wurde Silylether 3-69 ausgehend von Benzoat 3-44 in hervorragenden 95% Ausbeute synthetisiert. Auch die Hydroborierung des Alkens mit 9-BBN und die Oxidation der primären Hydroxyfunktion mittels IBX zum korrespondierenden Aldehyd 3-70 verliefen ohne Komplikationen in insgesamt 84% Ausbeute (Schema I-36).

Schema I-36 Synthese von Aldehyd 3-70, R = TBS, R' = TES.

Durch Reaktion von Aldehyd 3-70 mit *Ando*-Phosphonat 2-2 nach Deprotonierung mit NaH wurde der α,β -ungesättigte Ester 3-71 in 87% Ausbeute erhalten. Dieser wurde mittels DIBAI-H reduziert, um anschließend zum Imidat 3-72 umgesetzt werden zu können. Die beiden Reaktionen gelangen in einer Gesamtausbeute von 89%. So konnte die *Overman*-Veresterung zu Benzoat 3-43 durchgeführt werden, die das benötigte Pentaol in 91% Ausbeute und perfekter Diastereoselektivität vervollständigte (Schema I-37).

Schema I-37 Vollständige Synthese der 1,3-Polyolkette von Fragment C9-C20; R = TBS, R' = TES.

Finale Modifikationen

Um Fragment C9-C20 fertigzustellen, wurde der Benzoesäureester 3-43 zum Alkohol reduziert und auch dieser mit einer TBS-Schutzgruppe versehen. Das Produkt (3-73) konnte in 92% Ausbeute über zwei Schritte isoliert werden. Die Schutzgruppe am primären Alkohol wurde ebenfalls ausgetauscht, um in den finalen Stufen der Synthese orthogonale Manipulationen an C9 zuzulassen. Nach oxidativer Abspaltung der PMB-Gruppe mit DDQ in einem 1:1 Gemisch aus THF und wässrigem pH 7-Puffer erfolgte eine *Steglich*-Veresterung zu Benzoat 3-74. Der Austausch gelang in einer Gesamtausbeute von 80%.

Schema I-38 Finale Modifikationen der erfolgreichen Synthese von Fragment C9-C20 (3-25); R = TBS, R' = TES.

Zum Abschluss der Synthese musste nun die oxidative Spaltung der terminalen Doppelbindung vorgenommen werden (Schema I-38). Die im Rahmen der Synthese dieses Fragments schon mehrfach angewendete einstufige Modifikation nach *Jin et al.* lieferte 3-**25** nur in 43% Ausbeute. Wurde allerdings zunächst die Doppelbindung mit katalytischen Mengen OsO₄ und NMO als stöchiometrischem Oxidationsmittel dihydroxyliert, das Diol durch Filtration über Kieselgel isoliert und im Anschluss mit Pb(OAc)₄ in CH₂Cl₂ gespalten, gelang die Synthese von Aldehyd 3-**25** in 87% Ausbeute. Um Nebenreaktionen durch die frei werdende Essigsäure zu vermeiden, wurde die Spaltung des Diols mit Na₂CO₃ gepuffert. Außerdem war die Temperaturkontrolle während der Reaktion von immenser Bedeutung. Optimierung der Reaktionstemperatur durch langsames Auftauen von -40 °C offenbarte, dass die Reaktion bei +5 °C vollständigen Umsatz erreicht, was an der intensiven Orangefärbung der Reaktionslösung zu erkennen ist. Bei dieser Temperatur muss die Reaktion durch Zugabe von gesättigter NaHCO₃-Lösung abgebrochen werden, da das Produkt durch weiteres Erwärmen oder längere Reaktionszeit zerstört und so die Ausbeute gemindert wird.

Die Synthese von Fragment C9-C20 konnte in 35 linearen Schritten und einer Gesamtausbeute von 1.6% fertiggestellt werden. Das entspricht einer durchschnittlichen Ausbeute von 89% pro Reaktion und unterstreicht die Effektivivät und gute Reproduzierbarkeit der iterativen Synthesesequenz für 1,3-Polyole.

3.5 Synthese von Fragment C21-C30

Die Synthese von C21-C30 (3-26) wurde bereits im Rahmen der Masterarbeit von *C. U. Lee*^[90] und der Doktorarbeit von *J. T. Binder*^[41] entwickelt und durchgeführt. Da sie jedoch auch Gegenstand der Forschungsarbeit dieser Dissertation war, soll sie an dieser Stelle nicht unerwähnt bleiben.

3.5.1 Retrosynthese

Da es sich bei Fragment C21-C30 um ein 1,3,5,7-Tetraol ohne weitere Funktionalisierung handelt, kann die Synthese des Bausteins vollständig durch die bereits vorgestellte Strategie zur Synthese von 1,3-Polyolen gelingen (Schema I-39). 3-26 soll durch PMB-Entschützung und Oxidation des freien Alkohols aus 3-75 hervorgehen. Die Synthese von 3-75 wiederum ist ausgehend von Benzoat 3-76, dem Produkt des letzten Reaktionszyklus', geplant. Durch Austausch des Esters gegen eine TBS-Schutzgruppe, Hydroborierung der Doppelbindung und Veresterung des primären Alkohols mit Benzoesäure wäre die Synthese von 3-75 möglich. Die vier Stereozentren könnten durch wiederholte Anwendung der achtstufigen Reaktionssequenz zur C₂-Verlängerung ausgehend von kommerziell erhältlichem (Z)-But-2-en-1,4-diol aufgebaut werden. Die Benzoate 3-77, 3-78 und 3-79 stellen daher weitere Schlüsselintermediate der Synthese dar.

Schema I-39 Retrosynthetische Analyse von Fragment C21-C30 (3-26); R =TBS.

Für den iterativen Aufbau von 3-79 und 3-78 sei auf die Arbeit von *T. T. Haug* zur Totalsynthese von (+)-Chloriolid^[46,91] sowie die Dissertationen von *B. Crone*^[48] und *H. Menz*^[42] verwiesen, in deren Rahmen die Synthese hinlänglich untersucht wurde. Im

Rahmen dieser Arbeit war der Aufbau der ersten beiden Stereozentren über eine alternative, kürzere Syntheseroute geplant (Schema I-40). Diese sieht vor, dass das Benzoat 3-78 in einer *Overman*-Veresterung aus Trichloracetimidat 3-80 hervorgeht, welches über eine sechsstufige Synthesesequenz hergestellt werden kann: Hierbei soll Acetylen 3-81 (*Z*)-selektiv zum Alken hydriert werden. Nach Entschützung des primären Alkohols wäre es möglich, diesen zu 3-80 umzusetzen. Das erste Stereozentrum kann dem *Chiral Pool* entnommen werden. Ausgehend von (*R*)-(+)-Glycidol wäre 3-81 nach PMB-Schützung mittels nukleophiler Epoxidöffnung mit TBS-Propargylether und anschließender Schützung des sekundären Alkohols zugänglich.

Schema I-40 Alternative Syntheseroute zu Benzoat 3-78.

3.5.2 Synthese

Aufbau der ersten beiden Stereozentren – Vorarbeiten anderer Arbeitskreismitglieder

Die Synthese von Benzoat 3-78 wurde im Rahmen der vorliegenden Arbeit nicht durchgeführt, da die Bemühungen von *J. T. Binder* ausreichende Mengen der Verbindung hervorbrachten, um die Synthese von 3-26 abzuschließen. Um der Vollständigkeit Genüge zu tun und einen Überblick über die gesamte Synthese zu geben, werden hier die Ergebnisse von *J. T. Binder* erneut zusammengefasst (Schema I-41).

Zu Beginn der Synthese wurde kommerziell erhältliches (*R*)-(+)-Glycidol mit PMB-Cl zum entsprechenden PMB-Ether 3-**82** umgesetzt, der in 82% Ausbeute zugänglich war.^[92] Im Anschluss gelang die nukleophile Öffnung des Epoxids mit dem Lithiumacetylid von TBS-Propargylether in 73% Ausbeute.^[93] Die Schützung des sekundären Alkohols 3-**83** unter Standardbedingungen lieferte Silylether 3-**81** in einer sehr guten Ausbeute von 97%. Die (*Z*)-konfigurierte Doppelbindung wurde durch Hydrierung der Dreifachbindung mit dem *Lindlar*-Katalysator installiert. Der Katalysator wurde dabei mit Chinolin weiter vergiftet, um eine Überhydrierung zum gesättigten System zu verhindern. Anschließende selektive Entschützung lieferte den primären allylischen Alkohol 3-**84** in 70% Ausbeute über zwei Schritte. Um das zweite Stereozentrum aufzubauen, wurde 3-**84** durch Reaktion mit Cl₃CCN in Gegenwart katalytischer Mengen DBU in das korrespondierende Trichloracetimidat überführt, das in einer *Overman*-Veresterung mit Benzoesäure und (R)-2-1 als Katalysator erfolgreich zu Benzoat 3-78 umgesetzt werden konnte. Das Produkt wurde in einer Ausbeute von 75% über zwei Schritte isoliert.

Schema I-41 Synthese von Benzoat 3-78; R = TBS.

Die Syntheseroute konnte während der Forschungsarbeit zur Synthese von Marinomycin A von *H. Menz* noch weiter optimiert werden.^[42] So stellte sich heraus, dass die selektive Entschützung des Propargylalkohols 3-**81** deutlich besser gelingt, als die der entsprechenden allylischen Verbindung nach Hydrierung der Dreifachbindung. 3-**81** konnte so in einer Gesamtausbeute von 82% in 3-**84** überführt werden.

Fortsetzung der Synthese durch iterative C₂-Elongation

Ausgehend von Benzoat 3-78 wurde die Synthese von Fragment C21-C30 im Rahmen der vorliegenden Arbeit fortgesetzt und durch zwei vollständige C₂-Elongationszyklen erfolgreich abgeschlossen.

Der Benzoesäureester 3-78 wurde mit K₂CO₃ in MeOH verseift und der freie Alkohol als TBS-Ether geschützt. Die Schutzgruppenmanipulation gelang in einer Gesamtausbeute von 84%. Anschließende Hydroborierung des terminalen Olefins 3-85 und Oxidation des Alkohols mit IBX lieferte Aldehyd 3-86 in 81% über zwei Schritte. Die Verlängerung der Kette wurde in der (*Z*)-selektiven *HWE*-Reaktion mit Phosphonat 2-2 realisiert. Der α,β ungesättigte Ester 3-87 wurde in 83% Ausbeute als sauberes Isomer isoliert. Reduktion mit DIBAI-H und basenkatalysierte Umsetzung mit Trichloracetonitril brachten den direkten Vorläufer der *Overman*-Versterung (3-88) in 86% Gesamtausbeute hervor. Die Reaktion von Imidat 3-88 mit Benzoesäure und (*S*)-2-1 als Katalysator schloss den Reaktionszyklus ab (Schema I-42). Benzoat 3-77 wurde in perfekter Diastereoselektivität und 86% Ausbeute gewonnen.

Schema I-42 Vollständiger C₂-Elongationszyklus von 3-78 zu 3-77; R = TBS.

Auch das vierte Stereozentrum des Fragments wurde mittels derselben achtstufigen Reaktionssequenz installiert (Schema I-43). Der Wechsel der Schutzgruppe vom Benzoesäurester zum TBS-Ether 3-89 verlief in diesem Fall in 80% Ausbeute. Nachfolgende Hydroborierung der Doppelbindung und IBX-Oxidation der Hydroxyfunktion zu Aldehyd 3-90 liefen nicht ohne Komplikationen ab und lieferten das Produkt in 76% Ausbeute. Die Oxidationsreaktion zeigte eine stark verminderte Reaktionsrate und ihre Ausbeute entsprach nicht der zu erwartenden. Spätere Forschungsergebnisse konnten zeigen, dass die schlechte Löslichkeit sehr unpolarer Substanzen in DMSO die Ergebnisse der IBX-Oxidation negativ beeinflussen. Die Zugabe von THF zur Reaktionsmischung kann dem entgegenwirken. Die übrigen Reaktionen der Sequenz konnten mit zufriedenstellenden Ergebnissen durchgeführt werden: Olefinierung von 3-90 mit Phosphonat 2-2 brachte den Methylester 3-91 in 85% hervor. Dieser konnte ohne Probleme nach Reduktion mit DIBAl-H in 89% Gesamtausbeute in das Trichloracetimidat 3-92 überführt werden. In der finalen *Overman*-Veresterung mit (R)-2-1 als Katalysator war Benzoat 3-76 in sehr guten 95% Ausbeute und einem Diastereomerenverhältnis > 99:1 zugänglich.

Schema I-43 Aufbau des letzten Stereozentrums von Fragment C21-C30; R =TBS.

Finale Modifikationen

Nachdem das gesamte Tetraolgrundgerüst von Fragment C21-C30 (3-26) aufgebaut war, fehlten nur noch wenige Schritte zur Vervollständigung des Fragments. Das Benzoat 3-76 wurde verseift und die freie Hydroxyfunktion mit TBSCl und Imidazol geschützt. Silvlether 3-93 wurde in 82% Ausbeute über zwei Schritte isoliert. Hydroborierung der Doppelbindung mit 9-BBN und oxidative Aufarbeitung der Reaktion machten den primären Alkohol zugänglich, der unter Steglich-Bedingungen in 72% Gesamtausbeute zum Benzoesäureester 3-75 umgesetzt wurde. Zum Abschluss der Synthese wurde die PMB-Gruppe oxidativ mit DDQ unter phosphatgepufferten Reaktionsbedingungen entfernt. Oxidation des freien mit IBX in DMSO/THF-Gemisch Alkohols einem lieferte das vollständige C21-C30-Fragment (3-26) in 82% Ausbeute über zwei Reaktionsschritte (Schema I-44). Die Synthese des Tetraolfragments 3-26 gelang in 29 linearen Reaktionsschritten mit einer Gesamtausbeute von 2.7% (Durschnittsausbeute pro Reaktion: 88%). Der Aufbau aller vier

Stereozentren ist mittels der C₂-Elongationstrategie nach *Kirsch et al.* möglich. Ausgehend von (R)-(+)-Glycidol konnte allerdings ein schnellerer Zugang entwickelt werden.

Schema I-44 Abschluss der Synthese von Fragment C21-C30 (3-26); R = TBS.

3.6 Synthese von Fragment C31-C34

Nach der Synthese der Polyen- und der beiden komplexen 1,3-Polyoleinheiten von Tetrafibricin wird im Folgenden der Aufbau des kleineren Fragmentes C31-C34 (3-27), das nur ein Stereozentrum trägt, beschrieben. Die Syntheseroute wurde ebenfalls in der Dissertation von *J. T. Binder*^[41] erarbeitet, im Rahmen dieser Arbeit jedoch wiederholt und wird deshalb erneut aufgeführt.

3.6.1 Retrosynthese

Die Synthese von Fragment C31-C34 (3-27) ähnelt in ihrer Planung den letzten Stufen der Synthese von 3-26 (Schema I-45): Der Aldehyd soll nach Entschützung durch Oxidation aus dem PMB-Ether 3-94 hervorgehen. Dieser könnte durch Austausch des Benzoats gegen eine TBS-Schutzgruppe, Hydroborierung und Versterung mit Benzoesäure aus 3-95 gewonnen werden. Der Aufbau des Stereozentrums wäre in einer *Overman*-Veresterung von Imidat 3-96 möglich, dessen Synthese nach selektiver Schützung ausgehend von (*Z*)-But-2-en-1,4-diol geplant ist.

Schema I-45 Retrosynthetische Analyse von Fragment C31-C34 (3-27).

3.6.2 Synthese

Zu Beginn der Synthese von Fragment C31-C34 (3-27) wurde (Z)-But-2-en-1,4-diol mit NaH und PMBCl unter Phasentransferkatalyse selektiv in 63% Ausbeute zu Allylalkohol 3-97 umgesetzt. Die freie Hydroxyfunktion wurde in Gegenwart katalytischer Mengen DBU in das Trichloracetimidat 3-96 überführt, das in 93% Ausbeute isoliert werden konnte. Anschließend gelang der Aufbau des Stereozentrum des Fragments durch *Overman*-Veresterung mit Benzoesäure und (S)-2-1 als Katalysator in einem Enantiomerenüberschuss von 98% und einer Ausbeute von 86% (Schema I-46).

Schema I-46 Aufbau des stereogenen Zentrums in Fragment C31-C34.

Der Benzoesäurester 3-95 wurde unter basischen Bedingungen in MeOH verseift und der freie Allylalkohol als TBS-Ether geschützt. Die Transformation gelang in 82% über zwei Schritte. In einer Hydroborierung mit 9-BBN wurde das Olefin 3-98 in den primären Alkohol überführt. Dieser wurde mit DCC und katalytischen Mengen DMAP zu Benzoat 3-94 verestert. Die Reaktionssequenz lieferte das Produkt in 84% Ausbeute. Abschließend wurde die PMB-Gruppe unter oxidativen Bedingungen mit DDQ abgespalten und der freie Alkohol mit IBX zum Aldehyd oxidiert. Fragment C31-C34 (3-27) konnte in 66% Ausbeute über zwei Stufen isoliert werden (Schema I-47).

Schema I-47 Abschluss der Synthese von Fragment C31-C34 (3-27).

Fragment C31-C34 (3-27) konnte in einer Sequenz aus neun Reaktionen in einer Gesamtausbeute von 23% (85% pro Reaktion) erfolgreich synthetisiert werden, wobei auch hier die *Overman*-Veresterung zur Installation des stereogenen Zentrums genutzt wurde.

3.7 Synthese von Fragment C35-C40

Auch der Aufbau von Fragment C35-C40 (3-28) war bereits Gegenstand der Dissertation von *J. T. Binder*^[41] Basierend auf diesen Vorarbeiten wurde die Synthese in dieser Arbeit fertiggestellt und wird daher im Folgenden vollständig dargestellt.

3.7.1 Retrosynthese

Der Abschluss der Synthese von Fragment C35-C40 (3-28) soll durch Einführung des Schwefelsubstituenten in einer *Mitsunobu*-Reaktion und anschließender Oxidation zum Sulfon ausgehend von Alkohol 3-98 gelingen (Schema I-48). Um 3-98 zu erhalten, sind die Umsetzung von Bezoesäureester 3-99 zum korrespondierenden TBS-Ether und nachfolgend die Hydroborierung der Doppelbindung vorgesehen. Die Installation des Stereozentrums ist abermals in einer *Overman*-Veresterung von Trichloracetimidat 3-100 mit Benzoesäure geplant. Nach (*Z*)-selektiver *HWE*-Olefinierung von Aldehyd 3-101 würde die Reduktion des resultierenden α,β -ungesättigten Esters und Reaktion des Allylalkohols mit Trichloracetonitril Verbindung 3-100 liefern. Zur Synthese von 3-101 soll 1,4-Butandiol als Ausgangsmaterial dienen, das selektiv zum PMB-Ether geschützt und zum Aldehyd oxidiert wird

Schema I-48 Retrosynthetische Analyse von Fragment C35-C40 (3-28).

3.7.2 Synthese

Aufbau des Stereozentrums – Vorarbeiten anderer Arbeitskreismitglieder

Benzoat 3-99 wurde im Rahmen der Doktorarbeit von *J. T. Binder* in ausreichenden Mengen hergestellt. Die Synthese musste daher nicht wiederholt werden, sei hier vollständigkeitshalber dennoch zusammengefasst (Schema I-49).

Die selektive Schützung von 1,4-Butandiol zum mono-PMB-Ether lieferte 3-102 in 61% Ausbeute. Der Alkohol konnte mittels Swern-Oxidation in 84% Ausbeute in den korrespondierenden Aldehyd 3-101 überführt werden. Auch die Verlängerung der Kohlenstoffkette in der Ando-Variante der HWE-Reaktion verlief erfolgreich. Das (Z)-konfigurierte Olefin 3-103 konnte nach säulenchromatographischer Abtrennung des Doppelbindungsisomers in 80% Ausbeute isoliert werden. Der Methylester wurde mit DIBA1-H reduziert und mit Cl₃CCN unter basischen Bedingungen zum (Z)-Allyltrichloracetimidat 3-100 umgesetzt. Die Reaktionssequenz gelang in einer Gesamtausbeute von 86%. Die enantioselektive Reaktion von 3-100 mit Benzoesäure und (S)-2-1 als Katalysator resultierte in Benzoat 3-99, das in hervorragenden 97% Ausbeute und einem Enantiomerenüberschuss von 96% gewonnen werden konnte.

Schema I-49 Synthese von Benzoat 3-99 zum Aufbau des Stereozentrums in Fragment C35-C40 (3-28).

Abschluss der Synthese

Ausgehend von Benzoat 3-99 wurde die Synthese von Fragment C35-C40 (3-28) im Rahmen dieser Arbeit abgeschlossen. Der Benzoesäureester wurde mit K_2CO_3 als Base in methanolischer Lösung verseift und der freie Allylalkohol mit TBSCl und Imidazol geschützt. Silylether 3-104 wurde in einer Gesamtausbeute von 84% erhalten. Die weitere Funktionalisierung zum Sulfon gelang in einer dreistufigen Synthesesequenz: Zunächst wurde die terminale Doppelbindung in einer Hydroborierung mit oxidativer Aufarbeitung in 86% Ausbeute in den primären Alkohol 3-98 umgesetzt. *Mitsunobu*-Reaktion mit DIAD, PPh₃ und 1-Phenyl-1*H*-tetrazol-5-thiol (3-105) als Nukleophil lieferte das Sulfid 3-106 in einer Ausbeute von 94%. Die abschließende Oxidation zum Sulfon 3-28 erfolgte mit katalytischen Mengen von $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ und Wasserstoffperoxid als stöchiometrischem Oxidationsmittel in Ethanol (Schema I-50).^[94]

Schema I-50 Abschluss der Synthese von Fragment C35-C40 (3-28).

Ausgangsmaterial und Produkt der Reaktion weisen in der dünnschichtchromatographischen Analyse den gleichen Retentionsfaktor auf. Der Reaktionsfortschritt kann dennoch sehr gut beobachtet werden. Als Zwischenprodukt wird das korrespondierende Sulfoxid gebildet. Tritt dies nicht mehr auf, ist vollständiger Umsatz erreicht.

Die Reaktion gelang in einer Ausbeute von 63%. Die verminderte Ausbeute kann auf eine oxidative Zersetzung des Produktes nach der Aufarbeitung zurückgeführt werden. Wird ein anderes organisches Lösungsmittel als Dichlormethan zu Extraktion des Produktes eingesetzt, bleibt Oxidationsmittel in der organischen Phase gelöst. Dies führt bei Aufkonzentration zur Zersetzung des Produktes.

Die Synthese des Fragments C35-C40 (3-**28**) konnte in elf linearen Schritten ausgehend von 1,4-Butandiol in einer Gesamtausbeute von 15% (84% pro Reaktion) abgeschlossen werden.

3.8 Verknüpfung der Fragmente durch Carbonylolefinierungen

Nachdem die Synthese aller fünf Fragmente von Tetrafibricin erfolgreich etabliert werden konnte, musste als nächster Schritt deren Verknüpfung realisiert werden. Der Aufbau des gesamten Kohlenstoffgrundgerüsts des Naturstoffs in einer Abfolge von Carbonylolefinierungsreaktionen wird im Folgenden erläutert.

3.8.1 Synthese von Fragment C31-C40

Die Installation der ersten isolierten Doppelbindung zwischen C34 und C35 sollte in einer *Julia-Kocienski*-Olefinierung^[63] realisiert werden. Diese Olefinierungsreaktion findet aufgrund ihrer exzellenten (*E*)-Selektivität häufig Einsatz in der Synthese komplexer Naturstoffe.^[95]

Nach Deprotonierung des Sulfons 3-28 mit KHMDS als Base in DME als Lösungsmittel und anschließender Umsetzung des Carbanions mit dem Aldehyd 3-27 konnte das (*E*)-konfigurierte Olefin 3-35 in 90% Ausbeute als einziges Isomer isoliert werden (Schema I-51). Reproduzierbare Ausbeuten und Selektivitäten wurden durch langsame Zugabe sowohl der Base als auch des Aldehyds und konstanter Reaktionstemperatur von -78 °C erreicht.

Schema I-51 Verknüpfung von 3-28 und 3-27 mittels Julia-Kocienski-Olefinierung.

Die Syntheseplanung sah eine dreistufige Umsetzung von Benzoat 3-35 in das Sulfon 3-34 vor: Der Benzoesäureester wurde problemlos mit DIBAI-H in 90% Ausbeute zum primären Alkohol 3-107 reduziert. *Mitsunobu*-Reaktion mit Thiol 3-105 als Nukleophil lieferte den Thioether 3-108 in ebenfalls 90% Ausbeute. Anschließende Oxidation von 3-108 zum Sulfon gelang mit Ammoniumheptamolybdat als Oxidationsmittel in Gegenwart eines großen Überschusses Wasserstoffperoxid. Zugabe von THF zur ethanolischen Reaktionslösung erhöhte die Löslichkeit des Ausgangsmaterials und führte zu einer signifikanten Beschleunigung der Reaktion, die Sulfon 3-34 in 89% Ausbeute hervorbrachte (Schema I-52).

Schema I-52 Dreistufige Synthese von Sulfon 3-34 ausgehend von 3-35.

3.8.2 Synthese von Fragment C21-C40

Die uniform gestaltete Strategie zur Verknüpfung der Fragmente von Tetrafibricin sah für die Synthese des fortgeschrittenen C21-C40-Fragments ausgehend von Sulfon 3-**34** dieselbe Reaktionssequenz wie oben beschrieben vor. Zunächst erfolgte der C-C-bindungsbildende Schritt in einer *Julia-Kocienski*-Reaktion zwischen Sulfon 3-**34** und Aldehyd 3-**26**. Erneut diente KHMDS zur Deprotonierung des Sulfons. Die (*E*)-konfigurierte Doppelbindung wurde durch Reaktionsführung bei -78 °C hochselektiv aufgebaut. Olefin 3-**33** konnte in einer reproduzierbaren Ausbeute von 82% als sauberes Isomer erhalten werden (Schema I-53).

Schema I-53 Julia-Kocienski-Reaktion zum Aufbau von Olefin 3-33; R = TBS.

DIBAI-H diente zur Reduktion des Benzoats. Die Reaktion in Dichlormethan verlief sauber und lieferte den primären Alkohol 3-109 in 90% Ausbeute. Dessen Umsetzung unter *Mitsunobu*-Bedingungen mit DIAD, PPh₃ und 1-Phenyl-1*H*-tetrazol-5-thiol (3-105) brachte das korrespondierende Sulfid 3-110 in einer Ausbeute von 94% hervor. Die Synthese des Sulfons 3-32 wurde durch Oxidation des Sulfids abgeschlossen, die in 94% Ausbeute gelang (Schema I-54).

Schema I-54 Abschluss der Synthese von Sulfon 3-32; R = TBS.

3.8.3 Synthese von Fragment C9-C40 – Aufbau der vollständigen Polyoleinheit

Auch die dritte isolierte Doppelbindung zwischen C20 und C21 wurde mittels *Julia-Kocienski*-Olefinierung aufgebaut und so die vollständige Polyoleinheit von Tetrafibricin fertiggestellt. Nach Reaktion des Sulfons 3-**32** mit Aldehyd 3-**25** und KHMDS als Base wurde das Olefin 3-**31** in 76% Ausbeute ausschließlich als (*E*)-Isomer erhalten (Schema I-55).

Schema I-55 Vervollständigung der Polyoleinheit von Tetrafibricin; R = TBS, R' = TES.

Nachfolgend sollte der Stickstoffsubstituent an C40 eingeführt werden (Schema I-56). Hierzu wurde zunächst die PMB-Schutzgruppe unter oxidativen Bedingungen mit DDQ in einem Gemisch aus CH₂Cl₂ und wässrigem Phosphatpuffer abgespalten. Bei Einsatz der Lösungsmittel in gleichen Teilen erreichte die Reaktion nie vollständigen Umsatz. Erst bei einer Lösungsmittelzusammensetzung von 10:1 lief die Entschützung vollständig ab. Nach Abtrennung säulenchromatographischer des *p*-Anisaldehyds, die nur mit einem Laufmittelgemisch aus Cyclohexan und tert-Butylmethylether gelang, konnte der freie Alkohol 3-111 in 92% Ausbeute isoliert werden. Dieser wurde in einer Mitsunobu-Reaktion mit Diphenylphosphorylazid (DPPA) als Nukleophil zum korrespondierenden Azid 3-112 umgesetzt.^[67] Die Einführung des Stickstoffsubstituenten gelang in 85% Ausbeute.

Schema I-56 Einführung des Stickstoffsubstituenten an C40; R = TBS, R' = TES.

Um die Hydroxyfunktion an C13 zum Keton oxidieren zu können, wurde anschließend die selektive Entschützung des Triethylsilylethers gegenüber der zehn TBS-Schutzgruppen untersucht.^[96] Die Reaktion mit Fluoridreagenzien wie der HF-Pyridin-Komplex oder TBAF resultierten in keiner Reaktion. Umsetzung mit *Brønsted*-Säuren, wie *para*-Toluolsulfonsäure oder Essigsäure, zeigte bei Raumtemperatur ebenso keinen Umsatz. Die Erhöhung der

führte unselektiver Entschützung Reaktionstemperatur zu und Zersetzung des Ausgangsmaterials. Wurde 3-112 allerdings mit zwei Äquivalente Trifluoressigsäure in einem Lösungsmittelgemisch aus THF und Wasser bei Raumtemperatur gerührt, gelang die Abspaltung der TES-Schutzgruppe zunächst ohne Nebenreaktionen.^[97] Die Reaktion musste allerdings vor Erreichen des vollständigen Umsatzes abgebrochen werden, um den Verlust anderer Schutzgruppen gänzlich auszuschließen. So konnte nach einer Reaktionszeit von 24 h neben dem freien sekundären Alkohol 3-113 in einer Ausbeute von 51% auch 35% nicht abreagiertes Ausgangsmaterial isoliert werden. Auch der primäre Alkohol an C9 sollte, um in der nachfolgend geplanten Oxidation Aldehyd und Keton gleichzeitig aufbauen zu können, durch Entfernung des Benzoats freigesetzt werden. Um Nebenreaktion des Azids, die bei Reduktion des Esters möglich sind, zu vermeiden, wurde der Benzoesäureester 3-113 mit K₂CO₃ in Methanol verseift. Hierbei war wichtig, die Reaktion mit wässriger NH₄Cl-Lösung aufzuarbeiten und das Produkt über neutrales Aluminiumoxid aufzureinigen. Sowohl nicht abgetrennte Reste der Base, als auch das saure Kieselgel provozierten eine 1,3-SilvImigration der TBS-Schutzgruppe an C11.^[98] Diol 3-114 wurde in 82% Ausbeute erhalten (Schema I-57).

Schema I-57 Entschützung des sekundären Alkohols an C13 und des primären Alkohol zu 1,5-Diol 3-114; R = TBS, R' = TES.

Um das 1,5-Diol in die für den Abschluss der Synthese benötigte 1,5-Dicarbonylfunktion zu überführen, war eine gleichzeitige Oxidation des sekundären und primären Alkohols geplant. Die meisten Oxidationsmethoden bergen bei einer solchen Reaktion die Gefahr, dass zunächst der primäre Alkohol zum Aldehyd oxidiert wird. Ein nukleophiler Angriff des sekundären Alkohols auf den Carbonylkohlenstoff und anschließende Oxidation des Sechsringlactols würde zum korrespondierenden Lacton als Nebenprodukt führen. Untersuchungen mit *Dess-Martin*-Periodinan^[99] als Oxidationsmittel zeigten, dass diese Reaktion tatsächlich stattfindet und Lacton 3-**115** in unterschiedlichem Ausmaß gebildet wird (Schema I-58).

Schema I-58 Bildung von Lacton 3-115 als Nebenprodukt der Oxidation von 1,5-Diol 3-114; R = TBS.

Die *Swern*-Oxidation^[114] verspricht hingegen eine bessere Selektivität hinsichtlich der Bildung der 1,5-Dicarbonylverbindung: Unter den Reaktionsbedingungen wird zunächst quantitativ an beiden Alkoholen das Dimethylsulfoniumion gebildet. Erst nach Zugabe von NEt₃ findet der eigentliche Oxidationsschritt an 1- und 5-Position gleichzeitig statt (Schema I-59).

Schema I-59 Swern-Oxidation von Diol 3-114 zu 1,5-Dicarbonylverbindung 3-30; R = TBS.

Tatsächlich konnte Diol 3-114 unter Einsatz eines großen Überschusses aller benötigten Reagenzien ohne Nebenprodukte zur 1,5-Dicarbonylverbindung 3-30 oxidiert werden. Die niedrige Ausbeute von 23% lässt sich durch Zersetzung des Produktes beim Erwärmen der Reaktionslösung auf Raumtemperatur erklären. Zur Optimierung der Reaktion muss demnach die exakte Reaktionstemperatur, bei der vollständiger Umsatz erreicht wird, bestimmt werden.

3.8.4 Aufbau des vollständigen Kohlenstoffgrundgerüsts und finale Modifikationen

Zum Aufbau des vollständigen Kohlenstoffgrundgerüsts von Tetrafibricin sollte nun noch die Polyeneinheit, die vier konjugierte Doppelbindungen umfasst, aufgebaut werden. Hierzu sollte eine *Horner-Wadsworth-Emmons*-Reaktion von Aldehyd 3-**30** mit dem Phosphonat 3-**24**, das bereits drei der vier Doppelbindungen trägt, dienen (Schema I-60). 3-**24** wurde mittels LiHMDS bei -78 °C deprotoniert, die anschließende Reaktion mit Aldehyd 3-**30** fand bei 0 °C statt. Sowohl die Wahl der Base als auch die Temperaturführung sind essentiell für den Erfolg der Reaktion, da sie substantiellen Einfluss auf die Stereoselektivität der C-C-Doppelbindungsbildung nehmen.^[100] Olefin 3-**29** konnte in sehr guter (*E*)-Selektivität und einer Ausbeute von 78% isoliert werden. Eine Nebenreaktion des Ketons mit dem großen Überschusses an Phosphonat konnte ebenso wenig beobachtet werden wie die Epimerisierung des Stereozentrums an C12 durch Enolatbildung unter den basischen Reaktionsbedingungen.

Schema I-60 Aufbau des vollständigen Kohlenstoffgerüsts von Tetrafiricin; R = TBS.

Vor der finalen Abspaltung aller Silylschutzgruppen zur Freisetzung des Naturstoffs war die Reduktion des Azids zum primären Amin geplant. Da Reduktion mit Hydriddonoren oder die Hydrierung mit Pd-Katalysatoren Nebenreaktionen mit Carbonylfunktionen bzw. Doppelbindung hätten mit sich bringen können, wurde die Synthese des freien Amins in einer *Staudinger*-Reduktion mit PPh₃ untersucht.^[101] Um eine einfache Abtrennung des Produktes zu ermöglichen, wurde auf Polystyrol immobilisiertes Triphenylphosphin verwendet. Tatsächlich lieferte Umsetzung von 3-**29** mit einem großen Überschuss des Phosphins in einer Mischung aus THF und H₂O nach 45 h Reaktionszeit und einfacherer Filtration das gewünschte Amin in quantitativer Ausbeute (Schema I-61).

Schema I-61 *Staudinger*-Reduktion von Azid 3-29 und Versuch der globalen Entschützung von Amin 3-116 zu Tetrafibricin (3-1); R =TBS.

Die anschließende globale Entschützung aller Hydroxyfunktionen und der Carbonsäure war durch Abspaltung der Silylschutzgruppen mit TBAF vorgesehen. Zwar konnte bei der Reaktion von 3-116 mit 50 Äq. TBAF in THF die Bildung eines Produktes beobachtet werden, das in dünnschichtchromatographischer Analyse den gleichen Retentionsfaktor aufweist wie der publizierte Naturstoff ($R_f = 0.6$ (RP C18 Merck; MeOH/Na₂HPO₄ (50 mM in H₂O) 2:1) [Ninhydrin]).^[49a] Allerdings gelang weder der massenspektroskopische Beweis der Bildung von Tetrafibricin (3-1) noch dessen Isolierung und Charakterisierung.

4 Entwicklung neuer iterativer Strategien zur Synthese von 1,3-Polyolen

4.1 Hintergrund

Die stereoselektive Reduktion von β -Hydroxyketonen zur Synthese von 1,3-Diolen ist bereits seit den 1980er Jahren ein etabliertes Konzept in der Synthese von polyketiden Molekülen.^[102] Insbesondere zwei Methoden haben sich dabei als verlässlich herausgestellt: die chelatkontrollierte *syn*-Reduktion mittels NaBH₄ in Gegenwart von Boranen nach *Prasad et al.*^[103], sowie die von *Evans et al.* entwickelte *anti*-Reduktion durch Me₄NBH(OAc)₃ (Schema I-62).^[104]

Schema I-62 Stereoselektive Reduktionen von β-Hydroxyketonen nach Prasad et al. und Evans et al.

Der Einsatz von Alkoxydialkylboranen als chelatisierende Reagenzien führt zu einer Reduktion der Carbonylgruppe aus einem wannenartigen Übergangszustand (4-1). Hierbei überträgt die externe Hydridquelle das Nucleophil ausschließlich von der Oberseite des Rings, da die Unterseite durch das *pseudo*-axiale Proton an der α -Position unzugänglich ist. Dies resultiert in der *syn*-Konfiguration der beiden Hydroxyfunktionen im Produkt.^[103] Auch Bor-,^[105] sowie Eisen-,^[106] Zink-^[106] oder Aluminium-basierte^[107] Chelatbildner konnten erfolgreich für die Synthese von 1,3-*syn*-Diolen eingesetzt werden.

Die Reduktion mittels Me₄NBH(OAc)₃ durchläuft – nach Ligandenaustausch eines Acetoxyliganden gegen die freie Hydroxyfunktion des Substrats – einen sesselförmigen Übergangszustand (4-**2**). Die säureaktivierte Carbonylfunktion richtet sich dabei axial aus, um die 1,3-diaxiale Wechselwirkung mit der Acetoxygruppe am Bor zu minimieren. Die interne Hydridübertragung führt zum *anti*-Diol als Produkt.^[104]

Die stereoselektive Reduktion von β -Hydroxyketonen eröffnet also den Zugang zu jedem möglichen Stereoisomer des resultierenden 1,3-Diols. Dies nutzten *Paterson et al.* in einer

iterativen Strategie, in der mittels stereoselektiver Aldolreaktion gefolgt von *syn*- bzw. *anti*-Reduktion des Produktes Polypropionate aufgebaut werden.^[108]

Schema I-63 Iterative Synthese von Polypropionaten nach Paterson et al.

Interessanterweise ist die iterative Synthese von 1,3-Polyolen mit Hilfe stereoselektiver Reduktionen ist bisher nicht bekannt.

4.2 Kreuzmethatese als Schlüsselschritt der iterativen Sequenz

4.2.1 Konzept

Für einen besonders effizienten Aufbau von 1,3-Polyolen wurde eine Synthesesequenz postuliert, die den Aufbau des für die stereoselektive Reduktion benötigten β -Hydroxyketon durch Verknüpfung zweier bereits funktionalisierter Fragmente vorsieht. Hierbei soll ein Fragment den sekundären Alkohol beinhalten, das andere hingegen als Synthesevorläufer der Ketoeinheit fungieren.

Ein möglicher Ansatz einer fragmentbasierten iterativen Synthesesequenz geht von 3-Hydroxy-1,5-eninen (4-3) aus (Schema I-64). Durch Reaktion mit einem Silyldichlorid sollen das Fragment mit einem Keton verbrückt und der Silylenolether 4-5 aufgebaut werden.^[109] Im ersten Schlüsselschritt der Sequenz ist die Verknüpfung der Fragmente mittels Ringschlussmetathese geplant.^[110] Vollständige Entfernung aller Silylschutzgruppen in 4-6 liefert den Vorläufer des zweiten Schlüsselschrittes. Durch stereoselektive Reduktion ausgehend von β -Hydroxyketon 4-7 könnte der Aufbau der 1,3-Diole 4-8 gelingen. Nach Schützung des Diols als Acetonid würde eine metallkatalysierte Hydratisierung der terminalen Dreifachbindung^[111] zu Keton 4-10 eine Iteration der Sequenz abschließen. Eine C₄-Kettenverlängerung und der Aufbau von zwei Stereozentren wären in einer Sequenz von nur sechs Reaktionsschritten möglich.

Zusätzlich eröffnet diese Syntheseroute die Möglichkeit, die 1,3-Dioleinheit in 2-Position weiter zu funktionalisieren. In einer *Lewis*-Säure vermittelten Reaktion ist der nukleophile Angriff von Silylenolether 4-6 an verschiedene Elektrophile denkbar.^[112] Dies würde den Zugang zu einer Vielzahl neuer 1,3-Polyolderivate und Polypropionaten ermöglichen. Die Diastereoselektivität der Reaktion wird hierbei wohl durch zyklische Stereokontrolle bestimmt werden, so dass in Substratabhängigkeit nur ein Diastereomer zugänglich wäre.

Schema I-64 Iterative Synthese von 1,3-Polyolen mittels Ringschlussmetathese und stereoselektiver Reduktion.

4.2.2 Synthese des 1,5-Eninbausteins

Die enantioselektive Synthese des zentralen Synthesebausteins 4-**3** erfolgte ausgehend von 1,3-Propandiol. Zum Aufbau des Stereozentrums sollte die schon beschriebene *Overman*-Veresterung herangezogen werden (Schema I-65). Um das hierfür benötigte (*Z*)-Allyltrichloracetimidat zu erhalten, wurde 1,3-Propandiol zunächst selektiv als mono-4-Methoxybenzylether geschützt. Die Schützung erfolgte in einer literaturbekannten zweistufigen Sequenz,^[113] wobei *p*-Anisaldehyd mit dem Diol unter *Brønsted*-sauren
Bedingungen erst in das zyklische Acetal überführt wurde, das ohne weitere Aufreinigung mittels DIBAI-H zum gewünschten primären Alkohol reduziert wurde. Anschließende *Swern*-Oxidation^[114] lieferte Aldehyd 3-**53** in 62% über drei Reaktionsschritte.^[115] Die *Ando*-Variante der *HWE*-Reaktion ermöglichte den (*Z*)-selektiven Aufbau der Doppelbindung in exzellenter Stereoselektivität und einer Ausbeute von 95%. Methylester 4-**11** wurde zum Allylalkohol reduziert. Reaktion mit Trichloracetonitril unter basischen Bedingungen lieferte das Trichloracetimidat 4-**12** in 73% Ausbeute über zwei Schritte.

Schema I-65 Enatioselektiver Aufbau von Silylether 4-14.

Der Aufbau des Stereozentrums erfolgte, wie bereits erwähnt, in einer *Overman*-Veresterung mit Benzoesäure und (R)-2-1 als Katalysator. Benzoat 4-13 konnte in guter Ausbeute und einem Enantiomerenüberschuss von 96% isoliert werden. Durch Einsatz von (S)-2-1 als Katalysator war auch *ent*-4-13 in einer Ausbeute von 80% und ebenfalls 96%*ee* zugänglich. Im weiteren Verlauf der Synthese wurde jedoch zunächst nur 4-13 umgesetzt, wobei die Reduktion des Esters mittels DIBAl-H und anschließende Schützung des sekundären Alkohols den Silylether 4-14 in 90% Ausbeute über zwei Schritte hervorbrachte.

Um die Dreifachbindung im Molekül aufzubauen, wurde die PMB-Schutzgruppe unter oxidativen Bedingungen mittels DDQ entfernt. Hierbei war das Lösungsmittelverhältnis von großer Bedeutung. Wurde CH₂Cl₂ im Verhältnis 1:1 mit dem wässrigen Phosphatpuffer eingesetzt, verlief die Reaktion sehr langsam und lieferte das gewünschte Produkt nur in Spuren. Bei einem Verhältnis von 9:1 konnte der primäre Alkohol schon nach 1.5 h in guten

Ausbeuten isoliert werden. Der freie Alkohol wurde mit 2-Iodoxybenzoesäure (IBX) oxidiert wobei Aldehyd 4-15 in 67% Ausbeute über zwei Schritte erhalten werden konnte (Schema I-66).

Zur Homologisierung zum Enin 4-17 wurde 4-15 mit TMS-Diazomethan nach Deprotonierung mit LDA umgesetzt.^[116] Hierbei war das gewünschte Produkt jedoch nur in Ausbeuten von ~40% zugänglich. Die Reaktion mit dem *Bestman-Ohira*-Reagenz^[117] lieferte in keinem der durchgeführten Experimente das gewünschte Produkt. Erst die *Seyferth-Gilbert*-Homologisierung verlief reproduzierbar und Enin 4-17 konnte in einer Ausbeute von 73% isoliert werden.^[118]

Um die terminale Dreifachbindung zu schützen, wurde das korrespondierende Lithiumacetylid mit TMSCl abgefangen. Durch selektive Entschützung des TBS-Ethers in Gegenwart von TFA in einem Gemisch aus THF und H_2O wurde 4-3 in 84% Ausbeute über zwei Schritte erhalten.

Schema I-66 Homologisierung und Schutzgruppenoperationen zu 4-3.

4.2.3 Tethering mit 3-Hydroxy-1,5-enin 4-3

Um die Verknüpfung des zentralen Synthesebausteins 4-3 mit einem Keton zu realisieren sollte dieser zunächst mit Diisopropyldichlorsilan zum entsprechenden Silylether 4-4 umgesetzt werden (Schema I-67). Ausgehend davon wäre die Synthese von Silylenolether 4-5 möglich. Unglücklicherweise konnte unter keiner der gewählten Bedingungen eine saubere Reaktion zu 4-4 beobachtet werden. Der Einsatz unterschiedlicher Stickstoffbasen sowie *n*-BuLi zur Deprotonierung brachte hierbei keinerlei Verbesserung. Auch nach *in situ* Transformation mit einfachen Alkoholen konnte nie ein entsprechendes Verknüpfungsprodukt gefunden werden.

Schema I-67 Versuch der Synthese von Silylether 4-4.

4.3 Olefinierungsreaktionen zur Verknüpfung der Fragmente

4.3.1 Konzept

Da die oben beschriebene Synthesesequenz zunächst nicht erfolgreich umgesetzt werden konnte, wurde eine weitere Strategie entwickelt, die ebenso wie die erste auf Synthese von β -Hydroxyketonen und deren stereoselektiver Reduktion beruht. Wurden jedoch zuvor zwei Fragmente verknüpft, die einerseits die Hydroxy- andererseits auch die Ketofunktion bereits enthielten, ist es ebenfalls denkbar, die C-C-Bindungsbildung mit dem Aufbau der Ketoeinheit in einem Schritt zu vereinen. Hierfür bieten sich insbesondere Olefinierungsreaktionen mit Phosphorreagenzien an, die in α -Position einen Thioalkyl- oder Thioarylsubstituenten tragen.^[119]

Schema I-68 Iterative Synthese von 1,3-Polyolen mittels Carbonylolefinierung und stereoselektiver Reduktion. Die resultierenden Thioenolether lassen sich Hg(II)-katalysiert oder unter sauren Bedingungen zu Ketonen hydrolysieren.^[120] Um eine iterative Durchführbarkeit zu

ermöglichen, sollte die Reaktionssequenz ausgehend von Phosphorreagenzien 4-18 eingeleitet werden. Durch Hydrolyse von Vinylsulfid 4-19 wäre β -Hydroxyketon 4-20 zugänglich, wenn unter den gewählten Bedingungen auch die Schutzgruppe der Hydroxyfunktion abgespalten wird. Nach stereoselektiver Reduktion und Schützung des resultierenden Diols 4-21 würde eine oxidative Spaltung der Doppelbindung zu Aldehyd 4-23 eine Iteration abschließen. So wären die Verlängerung des Kohlenstoffgrundgerüsts mit einem C₄-Fragment und die gleichzeitige Installation von zwei stereogenen Zentren in nur fünf einzelnen Reaktionsschritten möglich (Schema I-68).

4.3.2 Synthese der Phosphorreagenzien

Um den Schlüsselschritt der Olefinierungsreaktion detailliert untersuchen zu können, war die Synthese verschiedener Phosporreagenzien 4-18 geplant. Neben den linearen Varianten – *Wittig*-Salz 4-18a und Phosphonat 4-18b – sollten auch die zyklischen Reagenzien 4-18c und 4-18d hergestellt werden (Abbildung I-6). Die Synthese sollte zunächst racemisch erfolgen, um die Realisierbarkeit des Synthesekonzeptes zu überprüfen.

Abbildung I-6 Geplante Phosphorreagenzien 4-18a-d.

Synthese der linearen Reagenzien

Die Synthese der beiden Phosphorverbindungen 4-18a und 4-18b erfolgte ausgehend von Acrolein. In einer Aldolreaktion mit Methylacetat wurde Alkohol 4-24 in einer Ausbeute von 90% gewonnen.^[121] Um die gewünschten Verbindungen enantiomerenrein herzustellen, wäre es ebenso möglich, die Reaktion unter Auxiliarkontrolle stereoselektiv durchzuführen.^[122] Der sekundäre Alkohol wurde als TBS-Ether geschützt, da vorherige Untersuchungen gezeigt hatten, dass die Triethylsilylschutzgruppe im weiteren Verlauf der Synthese nicht stabil genug ist. Die anschließende Reduktion des Methylesters zum primären Alkohol 4-25 mittels LiAlH₄ verlief stets unter gleichzeitiger Spaltung des Silylethers. Wurde DIBAI-H als Hydridübertrager eingesetzt, konnte auch bei Verwendung eines großen Überschusses einzig der korrespondierende Aldehyd erhalten werden. Der gewünschte Alkohol war erst in einem zweiten Reduktionsschritt mittels NaBH₄ zugänglich. 4-25 wurde in 70% Ausbeute über drei

Schritte isoliert.^[123] Anschließend wurde Alkohol 4-**25** in einer *Appel*-Reaktion mit CBr₄ zum zu Bromid 4-**26** umgesetzt.^[124] Die Reaktion gelang in 81% Ausbeute (Schema I-69).

Schema I-69 Synthese von Bromid 4-26 ausgehend von Acrolein.

Bromid 4-26 war Ausgangsmaterial für weiterführende Reaktionen sowohl zu Wittig-Salz 4-18a als auch Phosphonat 4-18b (Schema I-70). Die nukleophile Substitution des Halogenids mit PPh₃ zu Triphenylphosphoniumbromid 4-27 verlief in Toluol bei 90 °C in 62% Ausbeute. Wurde die Reaktion bei gleicher Temperatur in einem geschlossenen Reaktionsgefäß mit MeCN als Lösungsmittel und in Gegenwart von *Hünig*-Base durchgeführt, konnte das Phosphoniumsalz in quantitativer Ausbeute isoliert werden.^[125] Versuche, durch Deprotonierung mit LDA und anschließender Reaktion mit Dimethyldisulfid als Elektrophil den Thiomethylsubstituenten einzuführen, blieben allerdings ohne Erfolg.^[126] Reaktionen bei tiefen Temperaturen zeigten keinen Umsatz. Nach verlängerter Reaktionszeit bei Raumtemperatur konnte zwar Produktbildung beobachtet werden, dieses entsprach allerdings nicht 4-18a.

Schema I-70 Synthese von 4-27 und 4-28; missglückte Synthese von 4-18a.

Auch die Reaktion von 4-26 zu Phosphonat 4-28 zeigte große Abhängigkeit vom verwendeten Lösungsmittel. Bei Reaktion in THF variierten die Ausbeuten nicht reproduzierbar zwischen 30% und 60%, vollständiger Umsatz wurde auch bei erhöhter Temperatur und 36 h Reaktionszeit nicht erreicht. Bei Verwendung eines Lösungsmittelgemischs aus DMF und DME lieferte die Reaktion bereits nach 3 h bei 45 °C vollständigen Umsatz und 80% Ausbeute.^[119f]

 Tabelle I-1 Versuche zur Synthese von 4-18b.

	OTBS	Base Elektrophi Bedingunge	TBSO MeS	
	P(O)(OMe) ₂ (THF)	P(O)(OMe	e) ₂
	4 -28		4 -18b	
Eintrag	Base	Elektrophil	Bedingungen	Ausbeute ^a [%]
1	LDA (1.1 Äq.)	MeSSMe (1.1 Äq.)	-78 °C, 3 h	0^{b}
2	LDA (1.1 Äq.)	MeSSMe (1.1 Äq.)	30 °C, 3 h	0^{b}
3	<i>n</i> -BuLi (1.1 Äq)	MeSSMe (1 Äq.)	-78 °C \rightarrow 23 °C, 18 h	n.d. ^c
4	<i>n</i> -BuLi (1.1 Äq)	MeSSMe (1 Äq.)	-78 °C \rightarrow 23 °C, 18 h	82 ^{d,e}
5	<i>n</i> -BuLi (1.1 Äq)	MeSSMe (5 Äq.)	-78 °C, 5 h	6 ^c
6	n-BuLi (2 Äq)	MeSSMe (4 Äq.)	$-78 \circ C \rightarrow -40 \circ C, 5 h$	25 ^d
7	<i>n</i> -BuLi (1.1 Äq)	MeSSMe (20 Äq.)	$-78 \circ C \rightarrow -40 \circ C, 0.25 h$	28 ^d
8	LiHMDS (1.1 Äq.)	MeSSMe (5 Äq.)	-78 °C \rightarrow 23 °C, 6 h	0^{b}
9	NaH (2.5 Äq.)	MeSSMe (2 Äq.)	$0 \circ C \rightarrow 40 \circ C, 2.5 h$	0^{f}

^aIsolierte Ausbeute nach säulenchromatographischer Aufreinigung. ^bkein Umsatz. ^ckein vollständiger Umsatz. ^dvollständiger Umsatz. ^eProdukt enthält große Mengen einer unbekannten Verunreinigung. ^fZersetzung.

Die Transformation von Phosphonat 4-28 zum gewünschten Reagenz 4-18b stellte sich als schwierig heraus. Ausschließlich Deprotonierung mit *n*-BuLi und anschließende Reaktion mit Dimethyldisulfid lieferte das gewünschte Produkt (Tabelle I-1, Einträge 3-7). Die Ergebnisse waren allerdings weder reproduzierbar noch zufriedenstellend. Der Einsatz anderer Basen führte entweder zur Zersetzung des Ausgangsmaterials oder die Reaktion zeigte keinen Umsatz (Tabelle I-1, Eintrag 1, 2, 8, 9).

Da der elektrophile Aufbau des Thioethers in den schon bestehenden Phosphorreagenzien nicht erfolgreich realisiert werden konnten, sollte nun zunächst das Sulfid im Molekül installiert werden, um die jeweiligen phosphorhaltigen Substituenten im abschließenden Reaktionsschritt einzuführen (Schema I-71). Zu diesem Zwecke erfolgte ausgehend von Alkohol 4-25 eine *Mitsunobu*-Reaktion mit Thioessigsäure als Nukleophil.^[127] Das Thioacetat 4-29 konnte in einer guten Ausbeute von 86% aufgebaut werden. Die Verseifung des Esthers zum freien Sulfid gelang zunächst allerdings nicht. Nach der Reaktion mit wässriger Natronlauge in MeOH konnte ausschließlich ein Oxidationsprodukt des Sulfides isoliert

werden, das in einer Methylierungsreaktion nicht reaktiv war. Wurde die Reaktion allerdings unter Schutzgasatmosphäre mit entgasten Lösungsmitteln^[128] durchgeführt und das freie Sulfid *in situ* mit MeI abgefangen, wurde 4-**30** in hervorragenden 80% Ausbeute gebildet. Eine α -Chlorierung von *tert*-Butyldimethyl(5-(methylthio)pent-1-en-3-yloxy)silan (4-**30**), um nachfolgend durch nukleophile Substitution das entsprechende Phosphoniumsalz oder Phosphonat aufzubauen, konnte unglücklicherweise weder mit N-Chlorsuccinimid^[129] noch mit SO₂Cl₂^[130] erreicht werden.

Schema I-71 Missglückte Synthese von 4-18a und 4-18b ausgehend von Sulfid 4-30.

Die Synthese von 4-18a und 4-18b konnte also bislang nicht erfolgreich abgeschlossen werden. Syntheserouten, die direkte Vorläufer der Verbindungen in guten Ausbeuten liefern, konnten allerdings ausgearbeitet werden, so dass nach Optimierung der finalen Schritte ein erfolgreicher Abschluss der Synthesen möglich scheint.

Synthese der zyklischen Reagenzien

Neben den oben beschriebenen offenkettigen Molekülen war im Laufe des Projektes auch die Synthese der zyklischen Verbindungen 4-18c und 4-18d vorgesehen. Der große Vorteil dieser Reagenzien wäre, dass in der iterativen Synthesesequenz während der Hydrolyse des Vinylsulfids gleichzeitig auch der sekundäre Alkohol freigesetzt würde, da beide gemeinsam als Acetonid geschützt vorlägen.

Um das 1,3-Thioxan-Grundgerüst von 4-18c und 4-18d aufzubauen, wurde zunächst Thioacetat 4-29 wie schon beschrieben unter Ausschluss von Luftsauerstoff im Basischen verseift. Anstatt das Sulfid als Methylether abzufangen, wurde die Reaktionslösung mit wässriger HCl sauer gestellt, um auch die Silylschutzgruppe zu entfernen. 5-Mercaptopent-1en-3-ol (4-32) konnte in 41% Ausbeute isoliert werden. Daneben wurden 20% des freien Thiols 4-33 gefunden, da kein vollständiger Umsatz bei der Entschützungsreaktion erreicht wurde. Beide Produkte sind leicht flüchtig, was die Ausbeuteeinbußen trotz sauberen Reaktionsverlaufs erklären kann. Die Schützung als Acetonid in reinem 2,2-Dimethoxypropan unter *Lewis*-Säure-Aktivierung verlief ebenso sauber.^[131] Auch hier beeinträchtigte die Flüchtigkeit des Produktes die Ausbeute, so dass 4-**34** nur in 57% erhalten wurde. Die notwendige α -Halogenierung gelang auch hier nicht, so dass die Synthese der Reagenzien nicht abgeschlossen werden konnte (Schema I-72).

Schema I-72 Versuch der Synthese von Chlorid 4-35.

Zusätzlich konnte während den Untersuchungen zur Synthese der azyklischen Verbindung 4-18b das zyklische Phophonat 4-36 als Nebenprodukt einer Entschützungsreaktion isoliert werden (Schema I-73). Solche Verbindungen sind im Bereich der Medizinalchemie bekannt,^[132] ihre Reaktivität wurde bisher allerdings nicht untersucht. Wäre es möglich einen Thioether in das Molekül einzuführen, stellt auch dieses Reagenz eine interessante Alternative im Rahmen dieses Projektes dar. Eine Olefinierungsreaktion mit 4-37 liefert theoretisch das Phosphat 4-38, das möglicherweise durch Hydrolyse in den freien Alkohol 4-39 überführbar und damit maßgeschneidert für das hier angestrebte Syntheseziel ist.

Schema I-73 Phosphazyklus 4-36 als Nebenprodukt einer Entschützungreaktion.

5 Zusammenfassung und Ausblick

Ziel der vorliegenden Arbeit war es, die Synthese polyketider Verbindungen unter zwei verschiedenen Gesichtspunkten zu untersuchen. Zunächst sollte anhand der Totalsynthese von Tetrafibricin die Anwendbarkeit einer bereits etablierten Synthesestrategie auf die Synthese eines komplexen Naturstoffs zu beweisen werden. Des Weiteren war die Entwicklung neuer iterativer Methoden zu Synthese von 1,3-Polyolen als zentralem Strukturelement polyketider Naturstoffe geplant.

5.1 Studien zur Totalsynthese von Tetrafibricin

5.1.1 Zusammenfassung

Bereits 2007 stellten *Kirsch et al.* eine iterative C₂-Elongationsstrategie zur Synthese von 1,3-Polyolen vor,^[38] die in darauffolgenden Untersuchungen weiterentwickelt werden konnte.^[47,45] Die acht Reaktionen umfassende Synthesesequenz basiert auf dem Aufbau von (*Z*)-Allyltrichloracetimidaten und deren stereoselektiver Umsetzung zu Allylbenzoaten. Die (*Z*)-konfigurierte Doppelbindung wird dabei in der *Ando*-Variante der *HWE*-Reaktion aufgebaut. Zur Installation der stereogenen Zentren dient die vollständig katalysator-kontrollierte. asymmetrische *Overman*-Veresterung (Schema I-74).

Schema I-74 Iterative C₂-Elongation nach Kirsch et al.^[47]

Aufgabenstellung der vorliegenden Arbeit war es, die Anwendbarkeit dieser iterativen Strategie in der Totalsynthese des komplexen, polyketiden Naturstoffs Tetrafibricin unter Beweis zu stellen. Tetrafibricin (3-1) wurde 1993 von *Kamiyama et al.* dem Fermentationsansatz von *Streptomycis neyagawaensis* isoliert und charakterisiert. Der Naturstoff inhibiert effektiv die Thrombin-, ADP- und Collagen-induzierte Gerinnung menschlicher Blutplättchen.^[49]

Die retrosynthetische Analyse von Tetrafibricin sieht den Aufbau des Moleküls aus den fünf Schlüsselfragmenten 3-25, 3-26, 3-27, 3-28 und 3-29 vor, die mittels Carbonylolefinierungsreaktionen miteinander verknüpft werden sollten (Schema I-75). Im Rahmen dieser Arbeit konnten verlässliche Syntheserouten zu allen Fragmenten etabliert werden. Auch deren Verknüpfung zum vollständigen Kohlenstoffgrundgerüst des Naturstoffs war möglich. Einzig die globale Entschützung aller funktionellen Gruppen am Ende der Synthese konnte nicht erfolgreich durchgeführt werden.

Schema I-75 Tetrafibricin (3-1) und seine retrosynthetische Zerlegung in die Schlüsselfragmente.

Das Polyenfragment 3-24 konnte in fünf linearen Stufen aus Epichlorhydrin hergestellt werden. Schlüsselschritt dieser effektiven Syntheseroute war die *Stille*-Kupplung von Stannan 3-37 und 2-Iodacrylat 3-36 (Schema I-76).

Fragment C1-C8 (3-24)

Schema I-76 Synthese von Fragment 3-24 ausgehend von Epichlorhydrin.

Der Aufbau der stereogenen Zentren der beiden Polyoleinheiten 3-25 und 3-26 gelang größtenteils mittels *Overman*-Veresterung. Für Fragment 3-25 wurden die ersten beiden Stereozentren in drei Schritten ausgehend von 1,3-Propandiol in einer auxiliarkontrollierten Aldolreaktion nach *Evans et al.* installiert, das dritte durch diastereoselektive Allylierung. Alle weiteren sekundären Hydroxyfunktionen konnten durch iterative Kettenverlängerung erhalten werden (Schema I-77).

Schema I-77 Synthese von Fragment 3-25 unter Verwendung der *Evans*-Aldolreaktion und der iterativen C_2 -Elongationsstrategie zur Synthese von 1,3-Polyolen; R = TBS, R' = TES.

Die Synthese des Tetraols 3-26 ging von (R)-(+)-Glycidol aus, welches das erste stereogene Zentrum bereits trägt. Der Aufbau der übrigen Stereozentren gelang mittels *Overman*-Veresterung (Schema I-78).

Schema I-78 Synthese der Tetraoleinheit 3-26 ausgehend von (R)-(+)-Glycidol; R = TBS.

Neben den ausgedehnten Polyoleinheiten wurde ebenfalls Syntheserouten für die beiden kleineren Fragmente 3-27 und 3-28 entwickelt, die jeweils nur einen isolierten sekundären Alkohol tragen.

Der Aldehyd 3-27 wurde in insgesamt neun linearen Stufen erhalten. Als Ausgangsmaterial diente kommerziell erhältliches 1,4-But-2-endiol. Schlüsselschritt der Synthese war einmal mehr der enantioselektive Aufbau von Benzoat 3-95 in einer *Overman*-Veresterung (Schema I-79).

Schema I-79 Enantioselektive Synthese von Fragment C31-C34 (3-27).

Schließlich gelang auch die Synthese von Sulfon 3-28 in einer elfstufigen Reaktionssequenz. Auch dessen stereogenes Zentrum stammt aus der Pd-vermittelten allylischen Subsitutionsreaktion nach *Overman et al.*, die Sulfonfunktionalität wurde in einer Sequenz aus *Mitsunobu*-Reaktion und Oxidation ausgehend vom primären Alkohol 3-98 aufgebaut (Schema I-80).

Schema I-80 Elfstufige Syntheseroute zu Sulfon 3-28.

Mit allen Fragmenten in Händen wurde die Verknüpfung der Bausteine untersucht. Eine wiederkehrende Abfolge aus *Julia-Kocienski*-Reaktion von Sulfon und Aldehyd, Abspaltung der Benzoat-Schutzgruppe und Aufbau des nächsten Sulfons via *Mitsunobu*-Reaktion und

Oxidation ermöglichte die Synthese des C21-C40-Fragments 3-32. Die Reaktionen lieferten dabei reproduzierbar gute Ausbeuten und die Carbonylolefinierungen verliefen mit hoher (*E*)-Selektivität. Auch die dritte isolierte Doppelbindung zwischen C20 und C21 wurde in einer *Julia-Kocienski*-Olefierung aufgebaut, welche die Polyoleinheit des Naturstoffs mit allen stereogenen Zentren vervollständigte. Modifikationen einzelner funktioneller Gruppen machten die Einführung des Stickstoffsubsituenten an C40 als Azid und den Aufbau der 1,5-Dicarbonylverbindung, die für den letzten C-C-verknüpfenden Schritt benötigt wurde, möglich. Dies gelang durch eine gleichzeitige Oxidation des sekundären Alkohols an C13 sowie des primären an C9 unter *Swern*-Bedingungen.

Schema I-81 Synthese des vollständigen Polyolfragments von Tetrafibricin; R = TBS, PG = Schutzgruppe, FG = funktionelle Gruppe.

Abschließend ermöglichte eine *Horner-Wadsworth-Emmons*-Reaktion von Aldehyd 3-**30** mit dem Phosphonat 3-**24** auch den Aufbau der Polyenuntereinheit von Tetrafibricin. Das primäre Amin an C40 konnte durch *Staudinger*-Reaktion des Azids freigesetzt werden (Schema I-82). Mit der Synthese von 3-**116** gelang es zum ersten Mal, eine effektive Syntheseroute zum vollständigen Kohlenstoffgrundgerüst von Tetrafibricin zu etablieren. Dieses äußerst fortgeschrittene Intermediat trägt bereits alle benötigten funktionellen Gruppen und könnte durch Abspaltung aller Silylschutzgruppen in den polyketiden Naturstoff überführt werden. Die globale Entschützung konnte im Rahmen dieser Arbeit nicht erfolgreich durchgeführt werden. Dennoch stellen die Ergebnisse dieser Arbeit einmal mehr unter Beweis, dass die iterative Strategie zum Aufbau von 1,3-Polyolen nach *Kirsch et al.* ein nützliches Werkzeug zur Synthese komplexer polyketider Naturstoffe darstellt.

Schema I-82 Aufbau der Polyeneinheit des Naturstoffes und *Staudinger*-Reduktion des Azids; R = TBS.

5.1.2 Ausblick

Im Rahmen dieser Arbeit konnte ein direkter Vorläufer von Tetrafibricin (3-1) synthetisiert werden, der durch globale Entschützung aller Hydroxyfunktionen und der Carbonsäure in den Naturstoff überführt werden könnte. Neben der Untersuchung dieser Entschützungsreaktion sollte zukünftige Forschungsarbeit zusätzlich die Optimierung der Oxidation von Diol 3-114 zur 1,5-Dicarbonylverbindung 3-30 umfassen, da diese bisher nur in 23% Ausbeute durchgeführt werden konnte. Gelingt dies, steht dem erfolgreichen Abschluss der Totalsynthese von Tetrafibricin nichts mehr im Wege.

5.2 Entwicklung neuer Methoden

5.2.1 Zusammenfassung

Im Rahmen dieses Projektes wurden neuartige iterative Synthesesequenzen zum stereoselektiven Aufbau von 1,3-Polyolen untersucht. Anders als bisherige Strategien im Arbeitskreis *Kirsch*, basieren die neuen Ansätze auf der Verknüpfung der wachsenden Kette mit einem bereits funktionalisierten $C_{4/5}$ -Fragment. Durch die Verknüpfung der Fragmente soll ein β -Hydroxyketon gebildet werden, so dass der Aufbau eines zweiten Stereozentrums in derselben Iteration durch stereoselektive Reduktion der Ketofunktion erfolgen kann.

Ein erstes Konzept sieht als C-C-bindungsbildenden Schritt die verbrückte Ringschlussmetathese eines Silylenolethers mit dem C₅-Fragment 4-**3** vor. Durch Hydrolyse wäre der Vorläufer für die stereoselektive Reduktion zugänglich. Um den sechsstufigen Reaktionszyklus abzuschließen, soll das Diol geschützt und die terminale Dreifachbindung zum Keton hydratisiert werden (Schema I-83).

Schema I-83 Schematische Darstellung des Reaktionszyklus' basierend auf Ringschlusmetathese und stereoselektiver Reduktion.

In dieser Arbeit ist es gelungen, eine stereoselektive Synthese des Enins 4-3 zu entwickeln. Das Stereozentrum wird dabei in einer *Overman*-Veresterung aufgebaut. Die Realisierung der Reaktionssequenz zur Synthese von 1,3-Polyolen gelang jedoch nicht, da bisher keine geeigneten Reaktionsbedingungen zur Verbrückung von 4-3 mit einem Keton gefunden werden konnten (Schema I-84).

Schema I-84 Erfolgreiche Synthese von 4-3 und missglückter Versuch der Umsetzung zu Silylenolether 4-5.

Eine andere Synthesestrategie beruhte auf Olefinierungsreaktionen mit Phopshorreagenzien 4-18, deren Produkte – Vinylsulfide 4-19 – zu β -Hydroxyketonen hydrolysiert werden können (Schema I-85). Nach stereoselektiver Reduktion und der Überführung des Diols in ein Acetonid würde die oxidative Spaltung der Doppelbindung eine Iteration vervollständigen.

Schema I-85 Fünfstufiger iterativer Aufbau von 1,3-Polyolen mittels Aldehydolefinierung und stereoselektiver Reduktion.

Auch dieses Konzept konnte im Rahmen dieser Dissertation nicht vollständig in die Tat umgesetzt werden. Zwar konnten effiziente Syntheserouten zu direkten Vorläufern der Olefinierungsreagenzien 4-18 etabliert werden, der Abschluss der Synthesen war allerdings nicht möglich, da in keinem Fall beide erforderlichen Heteroatomsubstituenten eingeführt werden konnten.

Schema I-86 Übersicht über die Syntheserouten zu 4-21a-d.

5.2.2 Ausblick

Zukünftige Forschungsarbeit im Rahmen dieses Projektes sollte zunächst darauf abzielen, die prinzipielle Machbarkeit des Vorhabens unter Beweis zu stellen. Hierfür ist es unablässig, geeignete Bedingungen zu finden, um die Synthese der Reagenzien 4-18a-d fertigzustellen. Nachfolgend muss es gelingen, ausgehend von 4-3 und 4-18 die jeweiligen iterativen Synthesestrategien zu realisieren. Ein Erfolg hierbei würde einen großen Entwicklungsschritt auf dem Gebiet der Polyketidsynthese bedeuten. Einerseits versprechen die geplanten Synthesesequenzen eine Einsparung vieler Reaktionsschritte und damit die Reduzierung von Zeit-Geldaufwand. Andererseits könnte der Einsatz vorfunktionalisierter und Synthesebausteine ein erster Schritt in Richtung einer automatisierten Polyketidsynthese sein.

II Eintopfsynthese hochsubstituierter 1,2-Dihydropyridine

1 Einleitung

1.1 Heterozyklische Verbindungen – kleine Moleküle, große Wirkung

Heterozyklische Strukturen sind wahre Tausendsasse der synthetischen und biologischen Chemie: Sowohl in Naturstoffen, als auch in pharmakologisch wirksamen Verbindungen sind sie allgegenwärtig.^[133] Als Leitstruktur bestimmen sie eine Vielzahl an Therapeutika gegen ein breites Spektrum an Erkrankungen. So basiert der Cholesterinsenker Atovarstatin^[134] (1-1), von Pfizer unter dem Handelsnamen Lipitor[®] vermarktet und mit 10.7 Milliarden US-Dollar in 2010 eines der umsatzstärksten Medikamente weltweit,^[135] auf einer Pyroll-Grundstruktur. Auch Ranitidin^[136] (1-2) (Zantac[®]) zur Behandlung von Magengeschwüren, Gastritis und der Refluxerkrankung, sowie Amlodipin^[137] (1-3) (Norvasc[®]), das als Calciumantagonist gegen Bluthochdruck eingesetzt wird, tragen heterozyklische Grundgerüste (Abbildung II-1).

Abbildung II-1 Therapeutika mit heterozyklischer Grundstruktur.

Über ihre Bedeutung in der Naturstoff- und Medizinalchemie hinaus sind heterozyklische Verbindungen wichtige Intermediate in der organischen Synthese.^[138] Außerdem gewinnen sie einen immer größeren Stellenwert als Synthesebausteine funktioneller Materialien auf dem Gebiet der organischen Halbleitertechnologie (z.B. Photovoltaik).^[139]

Diese zentrale Stellung in vielen Disziplinen der chemischen Forschung sorgt für anhaltendes Interesse an der Entwicklung neuer Methoden zur Synthese heterozyklischer Verbindungen. Neben klassischer Synthesestrategien wie der *Paal-Knorr-*^[140] oder *Hantzsch*-Synthese,^[141] die auf Kondensationsreaktionen basieren, spielen dabei übergangsmetallkatalysierte Reaktionen eine immer größere Rolle.^[142]

1.2 Übergangsmetallkatalysierte [3,3]-sigmatrope Umlagerungen in der Synthese heterozyklischer Verbindungen

1.2.1 Historischer Überblick

Seit ihrer ersten Erwähnung durch *L. Claisen* im Jahre 1912^[143] erlebten [3,3]-sigmatrope Umlagerungen einen beispiellosen Aufstieg und sind heute ein vielgenutztes Werkzeug in der organischen Synthese.^[144] Seit den 1970er Jahren fanden insbesondere übergangsmetallkatalysierte Versionen der Reaktionen immer größere Beachtung (Schema II-1).^[145] 1974 beschrieben *Overman et al.* zum ersten Mal die Umlagerung von Allyltrichloracetimidaten in das korrespondierende Acetamid in Gegenwart katalytischer Mengen eines Quecksilber(II)-Salzes.^[146] Weitere Untersuchungen zeigten, dass auch Pd(II)-Katalysatoren das umgelagerte Produkt liefern.^[145a,147] In der Folge konnten Pd-katalysierte Protokolle für die Äquilibrierung von Allylacetaten,^[148] die *Cope*-^[149] sowie die *Claisen*-Umlagerung^[150] gefunden werden.

Schema II-1 Übergangsmetallkatalysierte [3,3]-sigmatrope Umlagerungen.

Neuere Forschung zeigten, dass die metallinduzierte Umlagerungen nicht auf 1,4-Diene oder deren Heteroatomvarianten beschränkt ist. So wurde 1997 von *Grissom et al.* erstmalig die Ag-katalysierte Reaktion eines Propargyl-Vinyl-Ethers zur entsprechenden Allenyl-Carbonyl-Verbindung beschrieben.^[151] Wurde in dieser Arbeit nur ein einziges Beispiel für die Reaktion gegeben, konnten *Toste et al.* die Anwendungsbreite der Propargyl-*Claisen*-Umlagerung unter Beweis stellen.^[152] Enantiomerenreine Propargyl-Vinyl-Ether wurden unter Erhalt der

Stereoinformation in Gegenwart eines Au(I)-Salzes und nach *in situ* Reduktion der Carbonylgruppe in den korrespondierenden Homoallenylalkohol umgesetzt (Schema II-2).

Schema II-2 Propargyl-Claisen-Umlagerung nach Grissom et al und Toste et al.

Im Gegensatz zu thermisch geführten [3,3]-sigmatropen Umlagerungen verlaufen die metallkatalysierten Varianten nicht unter konzertierter Elektronenverschiebung, sondern folgen vielmehr einem durch Zyklisierung induzierten Umlagerungsmechanismus (cyclization induced rearrangement; CIR; Schema II-3).^[145a,153] Nach Aktivierung des Ausgangsmaterials (1-A) als π -Komplex des katalytischen Metalls [M⁺] (1-B), findet eine Zyklisierung zum kationischen Sechsringintermediat 1-C statt. Dieses kollabiert unter Freisetzung des Metallkations zum umgelagerten Produkt 1-D.

Schema II-3 CIR-Mechanismus am Beispiel der Propargyl-Claisen-Umlagerung.

1.2.2 Synthetische Diversifikation von Propargyl-Vinyl-Ethern

Die sigmatrope Umlagerung von Propargyl-Vinyl-Ethern zu den entsprechenden Allenyl-Carbonyl-Verbindungen eröffnete vielfältige Möglichkeiten, die Produkte in einer Dominoreaktion synthetisch zu diversifizieren (Schema II-4).^[154] So begannen *Kirsch et al.* 2005, die Reaktion systematisch für die Synthese hetreozyklischer Verbindungen auszunutzen.^[155] In Gegenwart von AgSbF₆ und PPh₃AuCl als Katalysatoren konnten nach der Umlagerung durch 5-*exo*-Zyklisierung des Carbonylsauerstoffs auf das Gold-aktivierte Allen hochsubstituierte Furane gewonnen werden.^[156] Wurde die Reaktionskaskade um eine Kondensationsreaktion mit einem primären Amin erweitert, wurden die entsprechenden Pyrrole erhalten.^[157] Die Synthese der Furane wie auch der Pyrrole blieb auf 5methylsubstituierte Heterozyklen beschränkt. Selektive Oxidation der benzylischen Position mit IBX konnte das Problem teilweise lösen. Auf diesen Ergebnissen aufbauend entwickelten auch andere Gruppen Syntheserouten zu Fünfringheterozyklen: *Jiang et al.* berichteten über Methoden zur Synthese von Furancarbaldehyden durch *in situ* Oxidation in Gegenwart von Kupfer- oder Eisenkatalysatoren.^[158] *Hirsemann et al.* unterstrichen in ihrer Arbeit noch einmal die Bedeutung von Au(I)-Katalysatoren für den Aufbau heterozyklischer Verbindungen. Auch sie nutzten eine Kombination aus Gold- und Silbersalzen zur Bildung von Furanen.^[159] Pyrrole hingegen sind, wie *Hanzawa et al.*^[160] und *Wan et al.*^[161] zeigen konnten, in einer ähnlichen Reaktionssequenz auch ausgehend von Propargyl-Vinyl-Aminen zugänglich.

Schema II-4 Synthese diverser Heterozyklen ausgehend von Propargyl-Vinyl-Ethern nach Kirsch et al.

Auch die Synthese von Sechsringheterozyklen war nach Weiterentwicklung der Methode möglich. *Kirsch et al.* gelang es 2006, 2*H*-Pyrane in einer Umlagerungs-Heterozyklisierungs-Tandemreaktion herzustellen.^[162] Die direkte 6-*endo*-Zyklisierung der Allenyl-Carbonyl-Verbindung konnte zwar nicht realisiert werden, allerdings erlaubte basenkatalysierte Isomerisierung mit DBU zum 1-Oxatrien und anschließende 6π-Oxaelektrozyklisierung die Bildung des Produktes einer formalen 6-*endo*-Zyklisierung.^[163] Auch *Toste et al.* nutzten ihr Protokoll zur Umlagerung von Propargyl-Vinyl-Ethern zur Synthese sauerstoffhaltiger Heterozyklen, indem sie das zyklische Carbenium-Intermediat mit Methanol als Nukleophil abfingen und Dihydropyrane erhielten.^[164]

Umlagerung unter thermischen Bedingungen eröffnet weitere Möglichkeiten zur Diversifizierung von Propargyl-Vinyl-Ethern. *Tejedor et al.* beschrieben 2011 die Synthese von Phenolen durch Reaktion der Ether in Xylol bei 200 °C unter Mikrowellenbestrahlung.^[165]

2 Aufgabenstellung

2.1 Stand der Forschung

Während der Untersuchungen zur Synthese von Pyrrolen von *Kirsch et al.* wurden 2006 zum ersten Mal auch 1,2-Dihydropyridine in einer Reaktionssequenz aus Propargyl-*Claisen*-Umlagerung, Kondensation und Hetereozyklisierung ausgehend von Propargyl-Vinyl-Ethern erhalten.^[157] Die Anwendungsbreite dieser Reaktion blieb allerdings auf wenige Beispiele beschränkt, die in durchschnittlichen Ausbeuten isoliert wurden (Schema II-5).

Schema II-5 Erste Ergebnisse zur Synthese von 1,2-Dihydropyridinen ausgehend von Propargyl-Vinyl-Ethern nach *Kirsch et al.*

In unabhängigen Studien gelang 2010 auch *Tejedor et al.* die Synthese von 1,2-Dihydropyridinen ausgehend von Propargyl-Vinyl-Ethern, wobei die Zyklisierungsvorläufer unter Mikrowellenbestrahlung in einer thermischen Umlagerung und anschließenden Kondensation mit primären Aminen in Abwesenheit jeglicher Übergangsmetallkatalysatoren umgesetzt wurden.^[166] Ein Protokoll zur ebenfalls metallkatalysierten Synthese von 1,2-Dihydropyridinen veröffentlichten *Xu et al.* im Jahr 2010.^[167] Hierbei reagieren Propargyl-Vinyl-Ether mit meist terminalen Dreifachbindungen in Gegenwart katalytischer Mengen an Silber- und Goldsalzen mit Tosylamid zu den entsprechenden Heterozyklen (Schema II-6).

Schema II-6 Arbeiten anderer Gruppen zur Synthese von 1,2-Dihydropyridinen.

2.2 Zielsetzung

Dihydropyridine haben eine große Bedeutung als Grundstrukturen komplexer Moleküle^[168] und spielen eine wichtige Rolle als Vorläufer in der Synthese von Piperidinen durch Reduktion und Pyridinen durch oxidative Prozesse. Ziel dieser Arbeit war deshalb die Entwicklung einer breit anwendbaren Methode zum Aufbau von 1,2-Dihydropyridinen.^[169] Nach dem allgemeinen Konzept zur übergangsmetallkatalysierten Synthese von heterozyklischen Verbindungen, sollte ausgehend von Propargyl-Vinyl-Ethern eine Reaktionskaskade aus Umlagerung, Kondensation und Zyklisierung die stickstoffhaltigen Sechsringheterozyklen liefern (Schema II-7).

Schema II-7 Konzept der Untersuchungen zur Synthese von 1,2-Dihydropyridinen.

Darüber hinaus war eine detaillierte Untersuchung der metallkatalysierten Propargyl-*Claisen*-Umlagerung als Schlüsselschritt der Reaktionskaskade geplant, um einen tieferen Einblick in den Verlauf der Reaktion zu erhalten. Ein besonderes Augenmerk sollte darauf gelegt werden wie das Substitutionsmuster der Propargyl-Vinyl-Ether Einfluss auf deren Verhalten während der Reaktion nimmt.

3 Ergebnisse

3.1 Darstellung der Ausgangsmaterialen

Die für die Reaktionskaskade benötigten Propargyl-Vinyl-Ether 3-2 sind ausgehend von Propargylalkoholen 3-1 in einer phosphinkatalysierten *Michael*-artigen Addition an akzeptorsubstituierte Acetylene zugänglich (Tabelle II-1).^[170] Die Reaktion verläuft in Gegenwart katalytischer Mengen an Tri-*n*-butylphosphin sowohl mit Propiolaten als auch Butinoaten hochgradig stereoselektiv und liefert die (*E*)-konfigurierten Produkte in sehr guten Ausbeuten ohne signifikante Einschränkungen in der Wahl der Ausgangsmaterialen.

	R	$H_{R^2} + R^3$	$\frac{\text{CO}_2\text{R}^4}{(\text{CO}_2\text{R}^4)} = \frac{\text{P}(n-\text{Bu})}{(\text{CO}_2\text{R}^4)}$) ₃ (0.1 Äq. 3 °C H₂Cl₂)	$\xrightarrow{)} \xrightarrow{R^3} \xrightarrow{R^3}$	$_{2}CO_{2}R^{4}$
		3-1	(1 Äq.)		3- 2	R ²
Eintrag	3 -2	R^1	R^2	R^3	R^4	Ausbeute ^{a,b} [%]
1	a	Et	Ph	Н	Et	96
2	b	Et	Ph	Н	Me	85
3	c	Me	Ph	Н	Et	93
4	d	<i>i</i> -Pr	Ph	Н	Et	71
5	e	Ph	Ph	Н	Et	70
6	f	Н	Ph	Н	Et	90
7	g	CH_2CH_2Ph	<i>n</i> -Pent	Н	Et	90
8	h	Et	$4-MeO_2C-C_6H_4$	Н	Et	58
9	i	Et	$4-MeO-C_6H_4$	Н	Et	91
10	j	Et	Ph	Me	Et	77
11	k	Н	Ph	Me	Et	71

Tabelle II-1 Synthese der Propargyl-Vinyl-Ether 3-2.

^aIsolierte Ausbeute nach säulenchromatographischer Aufreinigung. ^bAlle Produkte wurden ausschließlich in der *(E)*-Konfiguration erhalten.

Durch Reduktion der Esterfunktion von 3-2j mit DIBAl-H und anschließende Methylierung des freien Alkohols konnte Propargyl-Vinyl-Ether 3-2l in einer Ausbeute von 73% über zwei Schritte gewonnen werden (Schema II-8).

Schema II-8 Synthese von 3-2l ausgehend von 3-2j.

3.2 Untersuchungen zur Propargyl-Claisen-Umlagerung

In bisherigen Arbeiten anderer Gruppenmitglieder konnte gezeigt werden, dass Propargyl-Vinyl-Ether 3-2 mit verschiedenen Silbersalzen in einer sauberen und schnellen Reaktion zu den entsprechenden Allenyl-Carbonyl-Verbindungen reagieren.^[157] Unter den getesteten Katalysatoren lieferte Silber(I)-hexafluoroantimonat die besten Ergebnisse. Ein weiteres Beispiel einer Ag(I)-katalyiserten Propargyl-*Claisen*-Umlagerung wurde von *Grissom et al.* 1990 beschrieben.^[151] *Toste et al.* berichteten hingegen über die Umlagerung von Propargyl-Vinyl-Ethern mit terminalen Alkenen, die in Gegenwart von [(PPh₃)₃AuO]BF₄ als Katalysator abläuft.^[152,153] Auch Rh-katalysierte Varianten der Reaktion sind in der Literatur beschrieben.^[171]

Um einen umfassenderen Einblick in die Effektivität der einzelnen katalytischen Metalle zu erlangen, wurde die Umlagerungsreaktion im Rahmen dieser Arbeit noch einmal genauer untersucht, wobei der Schwerpunkt auf den Einfluss der Substituenten an der Vinyleinheit der Ausgangsmaterialien gelegt wurde. Zunächst wurde Propargyl-Vinyl-Ether 3-2j betrachtet, der einen Akzeptorsubstituenten sowie eine Methylgruppe als Elektronendonor trägt. AgSbF₆ in einer Katalysatorbeladung von 0.7 mol% lieferte das umgelagerte Produkt wie erwartet in einer sauberen und schnellen Reaktion in quantitativer Ausbeute (Tabelle II-2, Eintrag 1). Doch auch [(PPh₃)₃AuO]BF₄ sowie AuCl stellten sich als effektive Katalysatoren heraus (Tabelle II-2, Einträge 2, 3). Das Silbersalz stellt allerdings die günstigste Alternative dar. Des Weiteren war eine Katalysatorbeladung von 0.1 mol% ausreichend, um 3-2j innerhalb von 24 h vollständig zu 3-3 j umzulagern (Tabelle II-2, Eintrag 4). Das Produkt wurde als Mischung von Tautomeren erhalten. Die Änderung der elektronischen Eigenschaften der Doppelbindung durch Austausch des Akzeptor- gegen einen Donorsubstituenten ging mit einer signifikanten Steigerung der Reaktivität des Substrates einher. Sowohl die beiden Goldkatalysatoren, als auch das Silbersalz waren effektive Katalysatoren für die Umlagerungsreaktion von (E)-(3-(4-Methoxybut-2-en-2-yloxy)pent-1-ynyl)benzol (3-21) (Tabelle II-2, Einträge 5, 6, 7). Dank der erhöhten Reaktivität des Propargyl-Vinyl-Ethers reichten 0.01 mol% AgSbF₆ aus, um vollständigen Umsatz zu erreichen (Tabelle II-2, Eintrag 8). Bei der Untersuchung des Acrylats 3-2a stellte sich überraschenderweise heraus, dass Ag(I) kein effektiver Katalysator für die Umlagerung ist und innerhalb von 24 h nur 8% Ausbeute liefert; auch [(PPh₃)₃AuO]BF₄ büßte einen großen Teil seiner Effizienz ein (Tabelle II-2, Einträge 9, 10). Einzig AuCl setzte 3-2a vollständig zum gewünschten Produkt um. Auch wenn ein Minimum von 0.5 mol% des Katalysators eingesetzt wurde, konnte nach 22 h vollständiger Umsatz erreicht werden (Tabelle II-2, Eintrag 12).

$R^{1} \xrightarrow{3-2} R^{2} R^{2} \xrightarrow{R^{2}} R^{2} \xrightarrow{R^{2}} R^{3} \xrightarrow{R^{3}} R^{4}$								
Eintrag	3 -2	\mathbf{R}^1	\mathbb{R}^2	R ³	R^4	Katalysator (mol%)	Zeit [h]	Umsatz zu 3 -3 ^{a,b} [%]
1	j	Et	Ph	Me	CO ₂ Et	$AgSbF_{6}(0.7)$	1.25	100
2						$[(PPh_{3}Au)_{3}O]BF_{4}(0.7)$	1.25	100
3						AuCl (0.7)	1.25	75
4						$AgSbF_{6}(0.1)$	1.25	100
5	l	Et	Ph	Me	CH ₂ OMe	$AgSbF_{6}(0.1)$	24	100
6						$[(PPh_3Au)_3O]BF_4(0.1)$ 3.5 88		88
7						AuCl (0.1)	3.5	100
8						$AgSbF_{6}(0.01)$	24	100
9	a	Et	Ph	Η	CO ₂ Et	$AgSbF_{6}(3)$	4	8
10						$[(PPh_3Au)_3O]BF_4(3)$	4	48
11						AuCl (3)	4	100
12						AuCl (0.5)	22	100

Tabelle II-2 Untersuchungen zur Katalysatoreffizienz in der Propragyl-Claisen-Umlagerung.

^aUmsatz wurde durch ¹H-NMR bestimmt. ^b3-**3** wurde als einziges Produkt beobachtet.

Nachdem die Effizienz der Katalysatoren für die Propargyl-*Claisen*-Umlagerung bestimmt werden konnte, wurde ebenfalls die Substratbreite der Reaktion untersucht. Alle eingesetzten Propargyl-Vinyl-Ether konnten nach ¹H-NMR-Analyse sauber zu den entsprechenden Aldehyden 3-**3** umgesetzt werden (Tabelle II-3).

Tabelle II-3 Substratbreite der Au(I)-katalysierten Umlagerung von 3-2.^a

	O´ ↓	CO ₂ Et AuCl	(3 mol%) 3 °C	O ₂ Et
	R^{1}	(C	H_2Cl_2 C R	2
	3	-2	R ¹ 3 -3	
Eintrag	3 -3	R^1	R^2	Umsatz ^{b,c} [%]
1	c	Me	Ph	100
2	d	<i>i</i> -Pr	Ph	100
3	e	Ph	Ph	100 ^d
4	g	CH ₂ CH ₂ Ph	<i>n</i> -Pent	100
5	i	Et	$4-MeO-C_6H_4$	100

^aBedingungen: 3-2 (60 μ mol), AuCl (3 mol%), 23 °C, CDCl₃ (0.1 M). ^bUmsatz wurde durch ¹H-NMR bestimmt. ^c3-3 wurde als einziges Produkt beobachtet. ^d3-3e wurde als Mischung von Diastereomeren gebildet (*d*.*r*. = 1:1).

Erst nach längerer Reaktionszeit traten auch Tautomere der Produkte auf. Zwar war es möglich, die Allenyl-Carbonyl-Verbindungen zu isolieren, allerdings reagierten sie unter den untersuchten Aufreinigungsbedingungen (Säulenchromatographie mit SiO₂ oder Al₂O₃, Filtration über Celite[®], wässrige Aufarbeitung) teilweise zu den korrespondierenden 2*H*-Pyranen ab.

3.3 Synthese der 1,2-Dihydropyridine

3.3.1 Untersuchungen zu 6-Methyl-1,2-Dihydropyridinen

Nachdem die Umlagerungsreaktion für unterschiedliche Substanzklassen optimiert werden konnte, sollte nun die geplante Reaktionssequenz durch die Kondensation mit einem primären Amin und anschließende Hetereozyklisierung abgeschlossen werden. Wie schon während der Propargyl-*Claisen*-Umlagerung hier Untersuchungen zur bestimmte auch das Substitutionsmuster der Ausgangsmaterialen maßgeblich den Verlauf der Reaktion. Zwar konnte der Propargyl-Vinyl-Ether 3-2j in Gegenwart von 5 mol% AgSbF₆ sauber in die entsprechende Allenyl-Carbonyl-Verbindung umgelagert werden, die nachfolgende Reaktion mit Anilin jedoch lieferte nach 16 h bei 23 °C das Dihydropyridin 3-4ja in nur 27% Ausbeute. Ausschlaggebend für die reduzierte Ausbeute war die schnelle basenkatalysierte Reaktion des 3-3j zum korrespondierenden 2*H*-Pyran 3-5j vor dem Intermediats geplanten Kondensationsschritt.^[162] Eine Optimierung der Heterozyklisierung gelang nicht: Weder die Zugabe von Lewis- (ZnCl₂) oder Brønsted-Säuren (p-TsOH) noch die Verwendung wasserbindender Additive (MgSO₄, Molsieb 3Å) begünstigten die Kondensationsreaktion mit dem Amin. Auch der Versuch, das Gleichgewicht der 6π -Oxaelektrozyklisierung zu 3-5j durch Erhöhung der Reaktionstemperatur (PhMe, 150 °C) auf die Seite des offenkettigen Oxatriens zu verschieben, war nicht von Erfolg gekrönt. Dessen ungeachtet wurde die Anwendungsbreite der Reaktion bestimmt (Schema II-9). In allen Reaktionen konnten die entsprechenden 6-Methyl-1,2-dihydropyridine isoliert werden. Allerdings führte nur der Einsatz von Anilin-Derivaten zum Erfolg, die Reaktion mit aliphatischen Aminen ($R^5 = Bn. i$ -Pr) lieferte ausschließlich 2H-Pyran 3-5j. Wurde Propargyl-Vinyl-Ether 3-2k unter den Reaktionsbedingungen mit 3-Chloranilin umgesetzt, erhielt man nach 24 h Reaktionszeit das Pyrrol 3-6kc in 72% Ausbeute.

Schema II-9 Untersuchungen zur Synthese von 6-Methyl-1,2-Dihydropyrdinen 3-4j.

3.3.2 Synthese vierfach substituierter 1,2-Dihydropyridine

Optimierung der Zyklisierungsbedingungen

Im Gegensatz zu But-2-enoat 3-2j gelang die Umlagerung des Acrylats 3-2a zum Aldehyd 3-3a wie erwartet mit 5 mol% AuCl. Anschließende Reaktion mit 1.5 Äq. Anilin lieferte das Enamin 3-7aa, dessen Konfiguration durch NOESY-NMR-Experimente bestimmt werden konnte, zusammen mit dem schon zyklisierten 1,2-Dihydropyridin 3-8aa, ohne dass die Nebenreaktion zum 2*H*-Pyran auftrat (Schema II-10).

Schema II-10 Optimierung der Heterozyklisierungsreaktion zu 3-8aa.

Um vollständigen Umsatz der Heterozyklisierung zu erreichen, wurden zunächst unterschiedliche Übergangsmetallkatalysatoren getestet. Weder Au(I)-, oder Au(III)-, noch Pt(II)- oder Pd(II)-Salze vermochten die Zyklisierungsreaktion zu katalysieren. Auch der Einsatz katalytischer Mengen DBU war nicht erfolgreich. Die Verwendung von *Brønsted*-Säuren hingegen ermöglichte die Vervollständigung der Zyklisierung von Enamin 3-7aa, wobei *p*-TsOH die besten Ergebnisse lieferte. Die Reaktion von 3-7aa mit 20 mol% *p*-TsOH

in CH₂Cl₂ bei 40 °C lieferte nach 15 h 3-**8aa** in quantitativer Ausbeute. Ohne die *Brønsted*-Säure war die Geschwindigkeit der Reaktion signifikant herabgesetzt, vollständiger Umsatz wurde nie erreicht.

Anwendungsbreite der Eintopfreaktion

Die Kombination der einzelnen Reaktionsschritte in einem Topf unter optimierten Reaktionsbedingungen und sukzessivem Einsatz der Reagenzien und Katalysatoren [1) AuCl (5 mol%), 23 °C; 2) R⁵-NH₂ (1.5 Äq.); 3) *p*-TsOH (20 mol%), 40 °C; CH₂Cl₂] brachte 1,2-Dihydropyridin 3-**8aa** in einer Ausbeute von 88% hervor (Tabelle II-4, Eintrag 1). Unter Anwendung dieser Dominoreaktion gelang die Synthese einer großen Vielzahl von 1,2-Dihydropyridinen.

		O ^{CO} ₂F	1) AuCl (5 mol ⁶ 2) R ⁵ -NH ₂ (1.5 3) <i>p</i> -TsOH (20 <u>15 h, 40 °C</u>	%) 23 °C Äq.) 23 °C mol%)		R
		R ¹ 3-2 R ²	(CH ₂ C	(CH ₂ Cl ₂)		
			3-8			
Eintrag	Nr.	\mathbb{R}^1	R^2	R	R^5	Ausbeute ^b [%]
1	aa	Et	Ph	Et	Ph	88
2	ag	Et	Ph	Et	PMB	62
3	ah	Et	Ph	Et	<i>i</i> -Pr	75
4	ai	Et	Ph	Et	(S)-PhCH ₂ Me	67 ^c
5	bd	Et	Ph	Me	$4-Br-C_6H_4$	69
6	be	Et	Ph	Me	$3-NO_2-C_6H_4$	78
7	bf	Et	Ph	Me	$4-MeO-C_6H_4$	85
8	bj	Et	Ph	Me	Bn	81
9	ca	Me	Ph	Et	Ph	84
10	da	<i>i</i> -Pr	Ph	Et	Ph	77
11	ea	Ph	Ph	Et	Ph	72
12	fa	Н	Ph	Et	Ph	55
13	ga	CH ₂ CH ₂ Ph	<i>n</i> -Pent	Et	Ph	55
14	ha	Et	$4-MeO_2C-C_6H_4$	Et	Ph	74
15	ia	Et	4-MeO-C ₆ H ₄	Et	Ph	89

Tabelle II-4 Anwendungsbreite der Eintopfsynthese der tetrasubstituierten 1,2-Dihydropridine 3-8.^a

^aReaktionsbedingungen: 1) 3-2 (50 mg), AuCl (5 mol%), 23 °C, CH₂Cl₂ (0.1M), 1 h; 2) R⁵-NH₂ (1.5 Äq.), 23 °C, 30 min; 3) *p*-TsOH (20 mol%), 40 °C, 15 h. ^bAusbeute des Produkts nach säulenchromatographischer Aufreinigung. ^cDas Produkt wurde als Mischung von Diastereomeren erhalten (d.r. = 1:1.3).

Die Reaktion von Propargyl-Vinyl-Ethern mit interner Dreifachbindung resultierte in der Bildung der Heterozyklen in sehr guten Ausbeuten, wobei sowohl aromatische als auch aliphatische Substituenten in \mathbb{R}^2 -Position toleriert wurden (Tabelle II-4, Einträge 12-15). Terminale Alkine lieferten, im Gegensatz zu den Arbeiten von *Tejedor et al.* und *Xu. et al.*, in denen diese sauber zu den korrespondierenden Heterozyklen abreagierten, ein Gemisch nicht identifizierter Produkte. Auch Substitution der \mathbb{R}^1 -Position mit Alkyl- und Arylresten beeinträchtigte die Reaktion nicht (Tabelle II-4, Einträge 8-13). Verbindung 3-**8fa** ohne Substituent in 2-Position ($\mathbb{R}^1 = H$) wurde in einer Ausbeute von 55% erhalten (Tabelle II-4, Eintrag 12). Im Gegensatz zur Synthese von 5-Methyl-1,2-Dihydropyridinen führte die Reaktion der Acrylate sowohl mit Anilinen als auch mit aliphatischen Aminen zur Bildung der stickstoffhaltigen Heterozyklen (Tabelle II-4, Einträge 1-8).

Mechanistische und stereochemische Betrachtungen

Unter mechanistischen Gesichtspunkten ist die Bildung der 1,2-Dihydropyridine über zwei unterschiedliche Reaktionswege denkbar: Nach Umlagerung der Propargyl-Vinyl-Ether und anschließender Kondensation mit dem Amin könnte das intermediäre Imin unter Protonenverschiebung in einer direkten 6-*endo*-Zyklisierung des Stickstoffatoms auf das Allen zum Heterozyklus abreagieren (Schema II-11, Reaktionspfad A).^[172] Andererseits wäre eine Isomerisierung zum Azatrien möglich. Die Reaktionskaskade würde in diesem Fall durch 6π -Azaelektrozyklisierung abgeschlossen (Schema II-11, Reaktionspfad B).^[173]

Schema II-11 Zwei mögliche Reaktionspfade zur Bildung der Dihydropyridine.

Um diese mechanistischen Details abschließend klären zu können, wurde der stereochemische der Verlauf Reaktion untersucht (Schema genauer II-12). Die Reaktion des enantiomerenreinen **Propargyl-Vinyl-Ethers** (S)-3-2c (98% ee) unter Standardreaktionsbedingungen lieferte das korrespondierende Dihydropyridin 3-8ca als Racemat unter vollständigem Verlust der Stereoinformation. Diese Beobachtung könnte auf die Existenz eines achiralen Intermediats während der Reaktion hindeuten (Reaktionspfad B). Umsetzung von 3-2a mit einem enantiomerenreinen, sekundären Amin hingegen verlief in mäßiger Stereoselektivität und resultierte in Dihydropyridin 3-8ai in einem Diasteromerenverhältnis von 1:1.3 (Tabelle II-4, Eintrag 4).

Schema II-12 Stereochemischer Verlauf der Synthese der 1,2-Dihydropyridine 3-8.

Die Tatsache, dass während der Optimierungsarbeit zur Kaskadenreaktion Enamin 3-7aa isoliert und zweifelsfrei charakterisiert werden konnte, sowie die Beobachtungen zum stereochemischen Verlauf der Reaktion ließen Rückschlüsse auf einen möglichen Mechanismus der Reaktionssequenz zu (Schema II-13).

Schema II-13 Möglicher Mechanismus der Reaktion von Propargyl-Vinyl-Ethern zu 1,2-Dihydropyridinen.

Nach der Au(I)-katalysierten Propargyl-*Claisen*-Umlagerung, die höchstwahrscheinlich nach dem von *Overman et al.* vorgeschlagenen CIR-Mechanismus abläuft, wird das Enamin 3-**B** durch Kondensation des primären Amins mit dem Aldehyd gebildet. Unter Protonierung könnte dieses zum achiralen Imminiumion 3-C umgesetzt werden, das zum Azatrien 3-**D** weiterreagiert. Die 6π -Azaelektrozyklisierung zum Dihydropyridin 3-**E** schließt die Dominoreaktion ab.

3.4 Erweiterte Eintopfsynthese heterozyklischer Verbindungen

Um die Synthese heterozyklischer Verbindung weiter zu vereinfachen, sollte die vorliegende Reaktionssequenz um einen zusätzlichen Schritt – die Bildung der Propargyl-Vinyl-Ether ausgehend von Propargylalkoholen – erweitert werden.^[174] Bei Durchführung der posphinkatalysierten Addition der Propargylalkohole 3-1 an Alkylpropiolate mit der metallkatalysierten Umlagerungsreaktion in einem Topf blieb die Bildung der Allenyl-Carbonyl-Verbindung ein effizienter Prozess, wenn sowohl AuCl als auch AgSbF₆ nacheinander der Reaktionsmischung zugesetzt wurden. Kondensation des umgelagerten Produktes mit einem primären Amin und *Brønsted*-säurekatalysierte Heterozyklisierung schloss die erweiterte Dominoreaktion ab und lieferte die 1,2-Dihydropyridine in guten Ausbeuten (Schema II-14). Interessanterweise können durch diese Eintopfreaktion auch Dihydropyridine erhalten werden, selbst wenn der benötigte Propargyl-Vinyl-Ether nicht zugänglich ist. So wurde 3-**8ma** in 41% gebildet, obwohl der direkte Vorläufer instabil gegenüber säulenchromatographischer Aufreinigung ist.

Schema II-14 Eintopfsynthese von 1,2-Dihydropyridinen ausgehend von Propargylalkoholen 3-1.

Nachdem die Synthese von 1,2-Dihydropyridinen ausgehend von Propargylalkoholen erfolgreich realisiert werden konnte, sollte das Konzept ferner auf die Bildung von 2*H*-Pyrane angewendet werden. In diesem Fall war PMe₃ der bessere Katalysator für die *Michael*-artige Additionsreaktion. Diese blieb allerdings der limitierende Schritt der Reaktionssequenz, da

nie vollständiger Umsatz erreicht werden konnte. Die Reaktion von Propargylalkoholen 3-1 mit Ethylbut-2-inoat in Gegenwart von 20 mol% PMe₃, nachfolgende Umlagerung katalysiert durch AuCl (10 mol%) und AgSbF₆ (5 mol%) und abschließende basenvermittelte 6π -Oxaelektrozyklisierung mit DBU (10 mol%) lieferte die 2*H*-Pyrane in Ausbeuten von 39-47% (Schema II-15).

Schema II-15 Eintopfsynthese von 2H-Pyranen ausgehend von Propargylalkoholen 3-1.

Die Addition beider Edelmetallkatalysatoren (AuCl, AgSbF₆) war in der erweiterten Eintopfsynthese sowohl der stickstoffhaltigen als auch der sauerstoffhaltigen Sechsringheterozyklen notwendig, um die Umlagerungsreaktion erfolgreich durchführen zu können. Keines der Salze katalysierte die Reaktion alleine. Eine Erklärung hierfür wäre die Deaktivierung von AuCl durch Koordination des Phosphinliganden. Zugabe des Silbersalzes führt durch Chloridabstraktion dann zur erneuten Freisetzung der benötigten Koordinationsstelle. Die eigentlich aktive Katalysatorspezies wäre in diesem Fall $[(PR_3)Au^+]$.^[175]

3.5 Studien zur Synthese von Nikotinsäurederivaten

Eine naheliegende Weiterentwicklung der Dominoreaktion zu 1,2-Dihydropyridinen ist die Synthese von Pyridinen ausgehend von Propargyl-Vinyl-Ethern 3-2.^[176] Um eine Aromatisierung *N*-substituierter 1,2-Dihydropyridinen zu erreichen, müsste der Substituent am Stickstoff so gewählt werden, dass nach Bildung des Dihydropyridinderivats eine Abspaltung möglich ist.

Schema II-16 Konzepte zur Synthese von Pyridinen ausgehend von Propargyl-Vinyl-Ethern.
Hierbei wäre eine direkte Eliminierung zum Nikotinsäureester denkbar. Eine weitere Möglichkeit wäre die Reaktion zum freien Dihydropyridin, das dann in einem oxidativen Prozess in den Aromaten überführt wird (Schema II-16).

Zunächst wurde die Reaktion von 3-2a mit Hydroxyl- und Methoxyamin untersucht, deren Produkte durch Eliminierung in das entsprechende Pyridinderivat überführt werden sollten. Nach der erfolgreichen Umlagerungsreaktion, wurde während der Kondensation mit den Aminen und der Zyklisierung unter *Brønsted*-sauren Bedingungen jedoch kein sauberer Umsatz zum Pyridin 3-9a beobachtet. Stattdessen lieferte die Reaktion eine Vielzahl an Produkten, die weder getrennt noch charakterisiert werden konnten (Schema II-17).

Direkte Pyridinsynthese

Schema II-17 Unterschiedliche Strategien zur Synthese von Pyridinen.

3-10b

3-8bj

Darüber hinaus lag ein Augenmerk auf der Entschützung verschiedener 1,2-Dihydropyrdinderivate. Die Reaktion von 3-8ag und 3-8bf unter oxidativen Bedingungen mit Cerammoniumnitrat (CAN) oder DDQ führte nicht zur geplanten Abspaltung der Methoxyarylsubstituenten zu den freien Aminen 3-10a und 3-10b, sondern hatte lediglich die

Zersetzung der Ausgangsmaterialen zur Folge. Auch die reduktive Entfernung der Benzylgruppe in 3-**8bj** gelang aufgrund der Labilität der Verbindung unter den gewählten Reaktionsbedingungen nicht.

Die durchgeführten Untersuchungen zeigten, dass geplanten Syntheserouten nicht geeignet sind, um ausgehend von Propargyl-Vinyl-Ethern 3-2 Pyridinderivate zu erhalten. Weitere Optimierungsarbeit ist nötig, um diese Klasse von Hetereozyklen in einer ähnlichen Dominosequenz zugänglich zu machen.

4 Zusammenfassung

Ein grundlegendes Forschungsziel der Arbeitsgruppe *Kirsch* ist die Synthese diverser heterozyklischer Verbindung ausgehend von einfach zugänglichen Propargyl-Vinyl-Ethern.^[156,157,162] In einer Dominoreaktion aus übergangsmetallkatalysierter Propargyl-*Claisen*-Umlagerung und anschließender Heterozyklisierung sind Furane und 2*H*-Pyrane zugänglich. Wird die Reaktionssequenz durch eine einfache Kondensation mit primären Aminen erweitert, können auch Pyrrole erhalten werden (Schema II-18).

Schema II-18 Diversifikation von Propragyl-Vinyl-Ethern nach Kirsch et al.

Im Rahmen dieser Arbeit wurden zunächst Untersuchungen zur metallkatalysierten Propargyl-*Claisen*-Umlagerung – dem Schlüsselschritt der Dominostrategie – angestellt. Die Reaktion konnte für unterschiedliche Substratklassen optimiert werden, wobei die Effizienz der einzelnen Edelmetallkatalysatoren stark vom Substitutionsmuster des Propargyl-Vinyl-Ethers 3-2 abhängig ist. Je nach Ausgangsmaterial stellen Ag(I)- oder Au(I)-Salze hoch aktive Katalysatoren dar (Abbildung II-2).

Abbildung II-2 Hoch effiziente Katalysatoren für Propargyl-Claisen-Umlagerung unterschiedlicher Substrate

Aufbauend auf diesen Erkenntnissen konnte die Synthese von 1,2-Dihydropyridinen ausgehend von Propargyl-Vinyl-Ethern 3-2 realisiert werden. Während 6-Methyl-1,2-Dihydropyrdine (3-4) aufgrund der baseninduzierten Nebenreaktion zu 2*H*-Pyranen nur in mäßigen Ausbeuten zugänglich sind, gelingt die Synthese von tetrasubstituierten Dihydropyridinen (3-8) in einer Sequenz aus Au(I)-katalysierter Umlagerung, Kondensation mit einem primären Amin und abschließender Heterozyklisierung in guten Ausbeuten. Der Ringschluss erfolgt dabei nach *Brønsted*-säurekatalysierter Isomerisierung von Enamin 3-7 zum korrespondierenden Azatrien in einer 6π -Azaelektrozyklisierung (Schema II-19).

Schema II-19 Eintopfsynthese von 1,2-Dihydropyridinen 3-4 und 3-8

Darüber hinaus war es möglich die Dominosequenz um einen Schritt zu erweitern. Die phosphinkatalysierte Addition der Propargylalkohole 3-1 an akzeptorsubstituierte Acetylene konnte mit Umlagerung und Heterozyklisierung zusammen in einem Topf durchgeführt werden. So waren sowohl 1,2-Dihydropyridine 3-8 als auch 2*H*-Pyrane 3-5 ausgehend von 3-1 zugänglich.

Schema II-20 Erweiterte Dominostrategie zur Synthese heterozyklischer Verbindungen ausgehend von Propargylalkoholen 3-1

III Chemoselektive Azidierung von 1,3-Dicarbonylverbindungen

1 Einleitung

1.1 Synthese und Anwendung organischer Azide

Organische Azide fanden zum ersten Mal Erwähnung in der Literatur, als *P. Grieß* 1864 die Synthese von Phenylazid beschrieb.^[177] Seitdem ist ein anhaltendes Interesse an der Herstellung dieser vielseitig einsetzbaren Reagenzien zu verzeichnen (Schema III-1).^[178] Eine weitverbreitete Methode zur Einführung der Azidfunktionalität ist die nukleophile Subsitution von Alkylhalogeniden mit nukleophilen Azidquellen.^[179] Auch die Verwendung der *Mitsunobu*-Reaktion mit Alkoholen hat sich auf dem Gebiet der Azidsynthese etabliert.^[67]

Schema III-1 Ausgewählte Methoden zur Synthese organischer Azide.

Die genannten Methoden sind jedoch von entscheidendem Nachteil: Aufgrund fehlender Chemoselektivität erfordern sie den Einsatz von Schutzgruppen, wenn hochfunktionalisierte Moleküle umgesetzt werden sollen. Aktuelle Bemühungen konzentrieren sich daher auf die Entwicklung neuer Protokolle, die den Aufbau des Azids in Gegenwart anderer funktioneller Gruppen erlauben. Ein Beispiel hierfür ist die Überführung von primären Aminen in Azide mittels Diazotransfer, eine Methode die häufige Anwendung in der Modifikation von Naturstoffen findet.^[180] Oxidative Methoden hingegen bewerkstelligen die direkte Substitution aktivierter C-H-Bindungen durch die Azidfunktion. *Magnus et al.* verwendeten hypervalente Iod(III)-Verbindungen zur Azidierung von Enolen und Aminen mit Trimethylsilylazid.^[181] Nach allgemeiner Auffassung erfolgt hierbei die Einführung der funktionellen Gruppe über Azidradikale.^[182] Ebenfalls über einen radikalischen Mechanismus verläuft die Addition von IN_3 an Doppelbindungen, wie sie von *Hassner et al.* ursprünglich beschrieben wurde.^[183] Die enorme Reaktivität von IN_3 machten sich auch *Bols et al.* zunutze, um Benzylether oder Aldehyde zu funktionalisieren.^[184]

Ein wichtiger Grund für das ungebrochene Interesse an organischen Aziden ist ihre Bedeutung für die von *Huisgen et al.* entwickelte 1,3-dipolare Zykloaddition mit Acetylenen.^[185] Die thermisch induzierte Reaktion nutzt den dipolaren Charakter der Azide für den Aufbau von Triazolen in einer [3+2]-Zykloaddition mit terminalen oder internen Dreifachbindungen. Seit *Sharpless et al.*^[186] und *Meldal et al.*^[187] in unabhängigen Studien die Reaktion unter Cu(I)-Katalyse bei Raumtemperatur realisierten, begann ihr atemberaubender Siegeszug im Bereich der Click-Chemie (Schema III-2).^[188] Heute findet der hochselektive Prozess Anwendung in einer Vielzahl wichtiger chemischer Transformationen. Hierzu zählen die bioorthogonale Modifikation von Biomolekülen,^[189] die Synthese von Dendrimeren^[190] oder die Identifizierung neuer, pharmakologisch bedeutsamer Wirkstoffe.^[191]

Schema III-2 Postulierter Mechanismus der Cu(I)-katalysierten Zykloaddition von Acetylenen und Aziden nach Sharpless et al.^[192]

1.2 Funktionalisierung von 1,3-Dicarbonylverbindungen

1,3-Dicarbonylverbindungen stellen aufgrund ihrer mannigfaltigen Reaktivität eine vielseitig einsetzbare Substanzklasse dar. Neben ihrer Bedeutung als Nukleophile in klassischen S_N2-Reaktionen,^[193] *Michael*-Additionen^[194] oder *Mannich*-Reaktionen,^[195] oder der Synthese organischer Halogenide,^[196] sind es insbesondere oxidative Methoden, die zur Diversifizierung dieser flexiblen Substanzklasse eingesetzt werden (Schema III-3). In diesem Zusammenhang beschrieben *Kirsch et al.* 2009 die α -Hydroxylierung von β -Oxocarbonylen mit IBX in wässrigem DMSO.^[197] Einen ähnlichen Ansatz wählten *Zhang et al.*, die benzanellierte zyklische 3-Oxoester mittels eines wasserlöslichen IBX-Derivats (AIBX) in die entsprechenden Naphthole überführten.^[198] Ein weiteres sehr aktuelles Beispiel für die oxidative Funktionalisierung von 1,3-Dicarbonylverbindungen stammt aus derselben Arbeitsgruppe. Unter Verwendung von Iodosophenol als Oxidationsmittel gelang mit Tosylamid die Aminierung der 2-Position der Substrate in Gegenwart einer *Lewis*-Säure.^[199]

Schema III-3 Funktionalisierung von 1,3-Dicarbonylverbindungen in oxidativen Reaktionen.

2 Aufgabenstellung

2.1 Stand der Forschung

Die Azidierung von 1,3-Dicarbonylverbindungen ist aufgrund der Bedeutung der Produkte als Ausgangsmaterial für weitere Funktionalisierung von großem Interesse.^[200] Bisherige Untersuchungen basierten maßgeblich auf drei Herangehensweisen (Schema III-4). So berichteten *Forster et al.* 1910 zum ersten Mal über die Synthese von 2-Azidomalonsäurederivaten in einer zweistufigen Synthesesequenz aus elektrophiler Halogenierung und anschließender Substitution des Halogenids mit NaN₃.^[201] Andere Gruppen nutzten diese Methode für Azidierung von β -Ketoestern.^[202] Des Weiteren ist die Azideinführung an 1,3-Dicarbonylen aufgrund der Azidität des α -Protons nach Deprotonierung mit elektrophilen Azidreagenzien möglich.^[203] Hierzu finden zumeist aromatische Sulfonsäureazide Anwendung, wobei sterisch anspruchsvolle Reagenzien den meisten Erfolg versprechen.^[204] Die oxidative Azidierung von β -Ketoestern beschrieben 1988 *Moriarty et al.*, die zur Funktionalisierung der Substrate Iodosophenol als Oxidationsmittel und Trimethylsilylazid verwendeten.^[205] Auch andere Kombinationen aus Oxidationsmittel und Azidquelle wurden erfolgreich zu diesem Zweck genutzt.^[206]

Schema III-4 Ausgewählte Methoden zur Azidierung von 1,3-Dicarbonylverbindungen.

2.2 Zielsetzung

Trotz intensiver Bemühungen auf dem Gebiet der Azidsynthese sind bisher nur wenige Methoden bekannt, welche die Azidierung hochfunktionalisierter Substrate bewerkstelligen, ohne umständliche Synthesestrategien oder Schutzgruppenoperationen zu erfordern.^[178] Ziel dieser Arbeit deshalb, aufbauend war auf der Hydroxylierung von 1,3-Dicarbonylverbindungen mit IBX nach Kirsch et al.,^[197] die Entwicklung einer Methode zur chemoselektiven Azidierung von 1,3-Dicarbonylverbindungen in der 2-Position. Die geplante Reaktion sollte unter milden Bedingungen die Oxidation der enolisierbaren Position und anschließende Einführung der Azidfunktion mit einer einfachen Azidquelle wie NaN3 gewährleisten. Die weitere Funktionlisierung der Azidverbindungen war in Cu(I)katalysierten 1,3-dipolaren Zykloadditionen mit Acetylenen vorgesehen (Schema III-5).

Schema III-5 Konzept der oxidativen Azidierung.

3 Ergebnisse

Die Untersuchungen zur Azidierung von 1,3-Dicarbonylverbindungen wurden in Zusammenarbeit mit anderen Mitgliedern des Arbeitskreises durchgeführt. Um einen vollständigen Überblick über das Projekt geben zu können, werden hier alle gewonnenen Erkenntnisse dargestellt. Ergebnisse anderer Arbeitskreismitglieder werden entsprechend gekennzeichnet.

3.1 Optimierung der Reaktionsbedingungen

Zu Beginn der Forschungsarbeit zur Azidierung von 1,3-Dicarbonylverbindungen wurde zunächst der Einfluss unterschiedlicher Oxidationsmittel auf den Verlauf der Reaktion untersucht. Mit elementarem Iod (1.5 Äq.) erreichte die Reaktion des zyklischen β -Ketoester 3-1a in einem Gemisch aus DMSO und wässriger NaN₃-Lösung (1M) nach 3 h bei Raumtemperatur vollständigen Umsatz. Die 2-Azido-1,3-Dicarbonylverbindung 3-2a wurde nach reduktiver Aufarbeitung mit Na₂S₂O₃ und säulenchromatographischer Aufreinigung in 86% Ausbeute erhalten (Schema III-6).

Schema III-6 Synthese von 3-2a mit I₂ als Oxidationsmittel.

Bei der Umsetzung hoch funktionalisierter Moleküle mit stöchiometrischen Mengen Iod können jedoch unerwünschte Nebenreaktionen nicht ausgeschlossen werden.^[207] Daher wurde die Reaktion nachfolgend mit katalytischen Mengen NaI (0.2 Äq.) und einem Überschuss an NaN₃ in Gegenwart milder Oxidationsmittel durchgeführt, um die benötigte elektrophile Iodspezies *in situ* zu erzeugen.^[208] Während die Verwendung einfacher Oxidationsmittel wie *tert*-Butylhydroperoxid oder Oxone[®] zu keinem oder schlechtem Umsatz führte, zog die Reaktion mit H₂O₂ vollständige Zersetzung des Ausgangmaterials nach sich (Tabelle III-1, Einträge 2-4). Die Oxidation mit IBX hingegen verlief erfolgreich und lieferte das gewünschte Azid schon nach 30 min in 91% Ausbeute (Tabelle III-1, Eintrag 5). Allerdings erschien auch IBX nicht als ideales Reagenz für die geplante chemoselektive Reaktion, da die hypervalente Iodverbindung ein sehr effizientes Oxidationsmittel für eine Vielzahl funktioneller Gruppen ist, was den Einsatz in Reaktionen mit komplexen Molekülen erschwert.^[209] Stattdessen rückte das in der Doktorarbeit von *A. Duschek* neu entwickelte

IBX-Derivat 3-3 (IBX-SO₃K) in den Blickpunkt.^[210] IBX-SO₃K kann in einer dreistufigen Synthese aus Antranilsäure gewonnen werden und ist dank der Sulfonatgruppe bei Raumtemperatur wasserlöslich.^[211] Außerdem sorgt der Akzeptorsubstituent für eine Herabsetzung der Reaktivität, so dass primäre und sekundäre Alkohole in Gegenwart von 3-3 auch bei erhöhter Temperatur nicht oxidiert werden. Nur benzylische und propargylische Alkohole werden in die korrespondierenden Carbonylverbindungen überführt (Schema III-7).

Schema III-7 Synthese und Untersuchungen zur Oxidationskraft von 3-3b; ^aExperimente wurden von anderen Gruppenmitgliedern durchgeführt.

Tatsächlich konnte 3-Oxoester 3-1a mit IBX-SO₃K (3-3) in Gegenwart katalytischer Mengen NaI in 91% Ausbeute zum Azid 3-2a umgesetzt werden (Tabelle III-1, Eintrag 6). Die Reaktion blieb selbst dann ein effizienter und schneller Prozess, wenn stöchiometrische Mengen an NaN₃ (1.1 Äq.) eingesetzt wurden (Tabelle III-1, Eintrag 7). Die Verwendung anderer organischer Lösungsmittelkomponenten führte allerdings zu geringeren Ausbeuten und deutlich verlängerter Reaktionszeit (Tabelle III-1, Einträge 8, 9). Interessanterweise konnte die Reaktion in einem zweiphasigen Lösungsmittelsystem (EtOAc/H₂O) bei erhöhter Temperatur unter Phasentransferkatalyse mit PPh₃PBnI erfolgreich durchgeführt werden und lieferte das Produkt nach 4 h in 74% Ausbeute (Tabelle III-1, Eintrag 10). Dies erleichtert die Aufreinigung der Produkte, da alle Reagenzien durch einfache wässrige Aufarbeitung abgetrennt werden können. Der Einsatz von NaBr anstelle von NaI reduzierte die Ausbeute der Reaktion deutlich. Wurde kein Halogenid oder Oxidationsmittel verwendet blieb die Produktbildung gänzlich aus (Tabelle III-1, Einträge 11-13).

Eintrag	Reaktionsbedingungen	Zeit	Ausbeute ^a
Elliting	Reaktonsoounigungen	[h]	[%]
1	I ₂ (1.5 Äq.), NaN ₃ , 23 °C, DMSO/H ₂ O	3	86 ^e
2	TBHP (1.5 Äq.), NaI (0.2 Äq.) NaN ₃ , 23 °C, DMSO/H ₂ O	3	_b
3	Oxone (1.5 Äq.), NaI (0.2 Äq.) NaN ₃ , 23 °C, DMSO/H ₂ O	3	61 ^d
4	H ₂ O ₂ (1.5 Äq.), NaI (0.2 Äq.) NaN ₃ , 23 °C, DMSO/H ₂ O	0.5	_c,d
5	IBX (1.5 Äq.), NaI (0.2 Äq.) NaN ₃ , 23 °C, DMSO/H ₂ O	0.5	91
6	IBX-SO ₃ K (1.5 Äq.), NaI (0.2 Äq.) NaN ₃ , 23 °C, DMSO/H ₂ O	0.5	91
7	IBX-SO ₃ K (1.5 Äq.), NaI (0.2 Äq.) NaN ₃ (1.1 Äq.), 23 °C,	2	90
	DMSO/H ₂ O		
8	I ₂ (1.5 Äq.), NaN ₃ , 40 °C, THF/H ₂ O	24	67
9	I ₂ (1.5 Äq.), NaN ₃ , 40 °C, MeCN/H ₂ O	24	56
10	IBX-SO ₃ K (1.5 Äq.), PPh ₃ PBnI (0.2 Äq.) NaN ₃ , 23 °C,	4	74
	EtOAc/H ₂ O		
11	IBX-SO ₃ K (1.5 Äq.), NaBr (0.2 Äq.) NaN ₃ , 23 °C,	4	31
	DMSO/H ₂ O		
12	IBX-SO ₃ K (1.5 Äq.), NaN ₃ , 23 °C, DMSO/H ₂ O	24	< 2
13	NaI (0.2 Äq.) NaN ₃ , 23 °C, DMSO/H ₂ O	24	_ ^b

Tabelle III-1 Optimierung der Bedingungen für die Reaktion von 3-1a zu 3-2a.

^aAusbeute des Produktes nach säulenchromatographischer Aufreinigung. ^bkein Umsatz. ^cZersetzung des Ausgangsmaterials. ^dExperimente wurden von anderen Arbeitskreismitgliedern durchgeführt.

3.2 Anwendungsbreite der Reaktion

Während der Optimierung der Reaktionsbedingungen konnten zwei einfach durchführbare Vorschriften zur Azidierung von 1,3-Dicarbonylverbindungen ausgearbeitet werden. Unter Verwendung von IBX-SO₃K (3-3) [3-3 (1.5 Äq.), NaI (0.2 Äq.) NaN₃ (~4 Äq.), 23 °C, DMSO/H₂O; Methode A] oder molekularem Iod [I₂ (1.5 Äq.), NaN₃ (~4 Äq.), 23 °C, DMSO/H₂O, Methode B] wurde anschließend die Substratbreite der Reaktion untersucht (Tabelle III-2). Methode A ermöglicht dabei Reaktionsführung unter besonderes milden Bedingungen, Methode B ist aufgrund der günstigen Reagenzien (I₂: ~0.4 €/g; NaN₃: ~0.2 €/g) ideal für die Anwendung in Multigramm-Reaktionen.^b Mittels beider Methoden konnte eine Vielzahl verschiedener 1,3-Dicarbonylsubstrate umgesetzt werden. Die Reaktion mit 3-Oxoestern (z.B. 3-2b, 3-2c), 3-Oxoamiden (z.B. 3-2d, 3-2e), Malonatderivaten (3-2f) und 3-Oxoketonen (3-2g, 3-2h) lieferte die azidierten Produkte in nahezu identisch hohen Ausbeuten. Wie geplant, tolerierte die Bildung der tertiären Azide auch eine Vielzahl

^b 3-1a kann in einem Maßstab von 2.0 g in einer Ausbeute von 76% in 3-2a überführt werden.

funktioneller Gruppen. Substrate mit Silylethern (3-2i), terminalen sowie internen Doppelbindungen (3-2j, 3-2k), Epoxiden (3-2l), Acetalen (3-2m), Dithianen (3-2n) und Lactonen (3-2o) wurden sauber in die entsprechenden Produkte überführt.

^aAusbeute des Produktes nach säulenchromatographischer Aufreinigung. ^bReaktion bei 40 °C. ^cReaktion bei 50 °C. ^dExperiment wurde von einem anderen Arbeitskreismitglied durchgeführt.

Bemerkenswerterweise wurden Azide mit primären (3-2p), sekundären (3-2q) und tertiären Alkoholen (3-2r) in hohen Ausbeuten ohne nachweisbare Mengen an oxidierten Nebenprodukten erhalten. Selbst Hydroxyfunktionen in benzylischer Position (3-2s) blieben unangetastet.

Auch heteroaromatische Verbindungen reagierten unter den Bedingungen sauber zum azidierten Produkt (3-2t). Reaktionen mit chiralen Ausgangsmaterialen verliefen ohne Diastereoselektivität und lieferten die Produkte als 1:1 Gemisch der Diastereomere (3-2l, 3-2q, 3-2s). Während die Bildung der meisten Produkte bereits bei Raumtemperatur vollständig ablief, mussten sterisch anspruchsvolle Substrate bei höheren Temperaturen zur Reaktion gebracht werden (3-2u, 3-2v).

Nach der erfolgreichen Synthese einer Vielzahl an tertiären Aziden 3-2 wurde die Reaktivität von 1,3-Dicarbonylverbindungen ohne Substituent in 2-Position (3-4) untersucht (Tabelle III-3). Optimierungsarbeit anderer Gruppenmitglieder zeigte, dass ausgehend von 3-4 unter leicht veränderten Reaktionsbedingungen [3-3 (3 Äq.), NaI (0.2 Äq.) NaN₃ (~4 Äq.), 23 °C, DMSO/H₂O; Methode C] 2,2-Bisazido-1,3-Dicarbonylverbindungen 3-5 zugänglich sind. Monoazidierte Produkte, wie unter anderem von *Moriarty et al.* beschrieben, wurden dabei nicht beobachtet.^[205,206]

Tabelle III-3 Synthese von 2,2-Bisazido-1,3-Dicarbonylverbindungen 3-5.

^aAusbeute des Produktes nach säulenchromatographischer Aufreinigung. ^bExperimente wurden von einem anderen Arbeitskreismitglied durchgeführt.

Die Reaktivität der Ausgangsmaterialen ist gegenüber den Substraten 3-1 deutlich erhöht, so dass die Reaktion bereits nach 10 min vollständigen Umsatz erreicht. Längere Reaktionszeiten führen zur Zersetzung der Produkte und erheblichen Ausbeuteeinbußen. Versuche, die Bisazidierung mit I_2 als Oxidationsmittel durchzuführen, waren nicht erfolgreich.

3.3 Vorläufige Untersuchungen zum Mechanismus der Reaktion

Um den mechanistischen Ablauf der Reaktion der 1,3-Dicarbonylverbindungen zu den entsprechenden Aziden besser zu verstehen, wurde 3-1a sowohl in Gegenwart stöchiometrischer Mengen I₂ als auch mit IBX-SO₃K und NaI (1.2 Äq.) in wässrigem DMSO umgesetzt, ohne der Reaktionsmischung eine Azidquelle zuzusetzen. Beide Reaktionen lieferten nach 2 h bei Raumtemperatur das halogenierte Produkt 3-6 in 36% bzw. 67% Ausbeute. Anschließend konnte das organische Halogenid 3-6 in einer Mischung aus DMSO und wässriger NaN₃-Lösung in 74% Ausbeute zum Azid 3-2a umgesetzt werden. Für die zweistufige Synthese konnte also eine maximale Gesamtausbeute von 50% erreicht werden, was den Nutzen der oben beschriebenen Eintopfreaktion, die 3-2a in 91% liefert, noch einmal unterstreicht (Schema III-8).

Schema III-8 Zweistufige Synthese von 3-2a und mechanistische Betrachtungen der Reaktion.

Die Experimente lassen zudem auch Rückschlüsse auf den Mechanismus der Reaktion nach Methode B zu, die höchstwahrscheinlich über diesen zweistufigen Prozess verläuft. Zunächst erfolgt die Bildung eines halogenierten Intermediats (3-6) durch Iodtransfer auf das Enol. Die benötigte elektrophile Iodquelle könnte entweder I₂ selbst oder IN₃ sein.^[183]Anschließend wird in einer Substitutionsreaktion am tertiären Kohlenstoff das Azid eingeführt. Für den Substitutionsschritt kann ein radikalischer Mechanismus^[184,212] angenommen werden, auch wenn bisher eine klassische S_N2-Reaktion, wie *Grieco et al.* für tertiäre Kohlenstoffe in α -Position zu Carbonylgruppen postuliert haben,^[213] nicht gänzlich ausgeschlossen werden kann.

Für die Synthese der Azidverbindungen nach Methode A gilt dies nicht im vollen Umfang. Natürlich wäre es möglich, dass das hypervalente Iodreagenz einzig für die *in situ* Oxidation des Iodids verantwortlich ist und der restliche Reaktionsverlauf analog zur Umsetzung mit I₂ betrachtet werden kann. Allerdings geht die Umsetzung mit IBX-SO₃K (3-**3**) mit einer deutlichen Steigerung der Reaktionsgeschwindigkeit einher, was die Existenz eines alternativen Reaktionspfades nahelegt. Das Weiteren lieferten NMR-Experimente keinen Hinweis auf Intermediat 3-**6**. Stattdessen konnten verschiedene neue hypervalente Iodspezies beobachtet werden. Um weitere Aussagen zu einem möglichen Mechanismus machen zu können ist deren Isolierung Charakterisierung notwendig.

3.4 Modifikation in 1,3-dipolaren Zykloadditionen

Die hier vorgestellte Synthesestrategie eröffnet den Zugang zu einer Vielzahl an azidierten Strukturen. Deren weitere Funktionalisierung in 1,3-dipolaren Zykloadditonen war logische Konsequenz und sollte den synthetischen Wert der Methode herausstellen, insbesondere da Beispiele für solche Reaktionen an Aziden in α -Position zu zwei Carbonylgruppen rar sind.^c

Die [3+2]-Zykloaddition ausgewählter Azide und Bisazide konnte beispielhaft mit Phenylacetylen realisiert werden (Tabelle III-4). Mit CuSO₄ (20 mol%) als Katalysatorvorstufe, die durch Natriumascorbat (0.4 Äq.) zur aktiven Cu(I)-Spezies reduziert wurde, und Tris[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl]amin (TBTA) (1 mol%) als Ligand gelang die Synthese der Triazole^[214] 3-7 und Bistriazole^[215]3-8 in exzellenten Ausbeuten. Darüber hinaus war es möglich die Bildung, der Triazole mit dem Aufbau der Zykloadditionsverläufer in einem Topf zu kombinieren. So konnte 3-**2a** in 82% Ausbeute

^c *Shibatomi et al.* veröffentlichten gleichzeitig zu den hier vorgestellten Untersuchungen die bisher einzigen beiden Beispiele für Cu(I)-katalysierte Click-Reaktionen mit 2-Azido-1,3-Dicarbonylverbindungen und Acetylenen (Ref. [214]). Reaktionen mit 2,2-Bisazido-1,3-dicarbonylen waren bis dato unbekannt.

direkt in das Triazol 3-7a überführt werden. Nachdem die Azidierungsreaktion unter Standardbedingungen vollständigen Umsatz erreicht hat, ist es notwendig, nicht abreagiertes Oxidationsmittel mit einem Überschuss an Natriumascorbat (1.5 Äq.) zu reduzieren. Durch anschließende Zugabe von Katalysator (20 mol% CuSO₄, 2 mol% TBTA) und Phenylacetylen (1.1 Äq.) kann die Eintopfsequenz nach 24 h bei Raumtemperatur abgeschlossen werden.

Tabelle III-4 Cu(I)-katalysierte Zykloadditionen mit 3-2 und 3-5.^b

^aAusbeute des Produktes nach säulenchromatographischer Aufreinigung. ^bTri = 4-Phenyl-1H-1,2,3-triazol-1-yl.

3.5 Studien zur Modifizierung komplexer Moleküle

Um die beeindruckende Chemoselektivität der Azidierungsreaktion, die sich in der Toleranz einer Vielzahl funktioneller Gruppen niederschlägt, in vollem Umfang ausnutzen zu können, wurde ihre Anwendbarkeit auf strukturell komplexe Moleküle untersucht. Zum einen sollte die Reaktion zur Modifikation von Naturstoffderivaten genutzt werden, zum anderen war die Azidierung peptidischer Strukturen geplant.

3.5.1 Reaktionen mit Naturstoffderivaten

Zur Anwendung der oxidativen Azidierung auf Derivate von komplexen Naturstoffen wurde zunächst die für die Reaktion benötigte 1,3-Dicarbonylfunktion aufgebaut (Schema III-9). Das natürliche Östrogen β -Estradiol konnte durch selektive Veresterung des Phenols mit Methylmalonylchlorid in den Reaktionsvorläufer 3-9 überführt werden. Strychnin hingegen musste erst zu seinem 2-Aminoderivat umgesetzt werden.^[216] Unter *Steglich*-Bedingungen gelang die Synthese von Amid 3-10.

Schema III-9 Synthese der Azidierungsvorläufer 3-9 und 3-10.

Sowohl 3-9 als auch 3-10 konnten unter den Standardbedingungen erfolgreich zu den entsprechenden Aziden funktionalisiert werden. Zudem konnte die Zykloaddition mit Phenylacetylen erfolgreich realisiert werden. Beide Reaktionen zeichnete ein hohes Maß an Chemoselektivität aus. So wurden unter den Reaktionsbedingungen alle vorhandenen funktionellen Gruppen wie Hydroxygruppen, elektronenreiche Doppelbindungen oder Amine toleriert, was den Einsatz jedweder Schutzgruppen überflüssig macht.

Schema III-10 Modifikation der Naturstoffanaloga 3-9 und 3-10; Tri = 4-Phenyl-1H-1,2,3-triazol-1-yl.

3.5.2 Azidierung threoninhaltiger Peptide

1,3-dipolare Zykloadditionen von Aziden und Acetylenen sind eine häufig verwendete Methode in der Biokonjugation von DNA, Proteinen oder Peptiden.^[189] Während die Click-Reaktion zur Verknüpfung der Biomoleküle experimentell einfach und äußerst zuverlässig ist und bereits bioorthogonale kupferfreie Varianten existieren,^[217] erfordert die vorhergehende Integration der unnatürlichen Funktionalität in das Protein anspruchsvolle biochemische Techniken.^[218] Daher basieren neue Entwicklungen im Bereich der Modifikation von Proteinen auf der selektiven Transformation proteinogener Aminosäuren.^[219] Die chemoselektive Azidierung einer Aminosäureseitenkette wäre in diesem Zusammenhang ein wertvolles Werkzeug, könnte sie doch den aufwändigen Einbau unnatürlicher Aminosäuren in das Protein teilweise ersetzen. Angelehnt an die Arbeit von *Harding et al.* zur oxidativen Modifizierung der Threoninseitenkette von Peptiden mit polymergebundenem IBX (pIBX)^[220] sollte daher eine Dominosequenz aus Oxidation der Aminosäure zum 3-Oxoamid und anschließender Azidierung untersucht werden, um den Grundstein zur Entwicklung einer neuen bioorthogonalen Methode zu legen.

Schema III-11 Oxidative Modifikation von Threonin nach Harding et al. und Konzept der Azidierungssequenz.

Um die grundsätzliche Machbarkeit der geplanten Reaktionssequenz überprüfen zu können, wurde zunächst das einfache Dipeptid 3-16 synthetisiert (Schema III-12). Nach Veresterung von (L)-Threonin zum Methylester 3-15 wurde dieser in einer Peptidkupplung mit N-Boc-(L)-Alanin zu 3-16 umgesetzt. Abschließend konnte die Threoninseitenkette mit IBX in siedendem Acetonitril oxidiert werden. Das β -Ketoamid 3-17 wurde in 70% Ausbeute als Mischung seiner Diastereomere erhalten.

Schema III-12 Synthese der Dipetide 3-16 und 3-17.

Die Azidierung von 3-17 gelang sowohl mit IBX-SO₃K als auch mit I₂ als Oxidationsmittel, erreichte allerdings in beiden Fällen keinen vollständigen Umsatz. Nach einer Reaktionszeit von 20 min konnte nach Methode A eine maximale Ausbeute von 35% erreicht werden, wobei 23% des Ausgangsmaterials wiedergewonnen wurden (Schema III-13). Längere Reaktionszeiten führten zur Zersetzung des Produktes und deutlich reduzierten Ausbeuten. Die bisherigen Erkentnisse lassen keinen Rückschluss auf den Grund der mäßigen Ergebnisse zu, die grundlegende Machbarkeit der geplanten Reaktion konnte allerdings beweisen werden. Dennoch Bedarf die Reaktion weiterer Optimierung.

Schema III-13 Modifizierung von Dipetid 3-17 unter Standardbedingungen.

Dessen ungeachtet wurde auch das Verhalten von Azid 3-18 in der Cu(I)-katalysierten [3+2]-Zykloaddition mit Phenylacetylen untersucht. Überraschenderweise trat bei der Reaktion unter Standardbedingungen (Methode D) eine Deacetylierung des Ausgangsmaterials oder Produktes ein,^[221] so dass 1,2,3-Triazol 3-19 in 54% Ausbeute isoliert werden konnte.

Erste Versuche zur Kombination der beiden oxidativen Prozesse, die Dipetid 3-16 direkt in das Azid 3-18 überführen, in einem Topf blieben ohne Erfolg. Zwar konnte von 1.5 Äq. IBX in DMSO bei Raumtemperatur die Oxidation der Hydroxyfunktion beobachtet werden. Bei Zugabe einer wässrigen NaN₃-Lösung und NaI (0.2 Äq.) wurde 3-18 allerdings nur in Spuren gebildet (Schema III-14).

Schema III-14 Eintopfsynthese von 3-18 ausgehend von 3-16.

4 Zusammenfassung und Ausblick

4.1 Zusammenfassung

Die selektive Einführung von Azidsubstituenten in komplexe Moleküle ist aufgrund der vielfältigen Einsatzmöglichkeiten der Produkte in Cu(I)-katalysierten 1,3-dipolaren Zykloadditionen ein wichtiges Forschungsgebiet. Nur wenige bisher bekannte Methoden bewerkstelligen die Azidierung hochfunktionalisierter Substrate ohne den Einsatz von Schutzgruppen. Im Rahmen dieser Arbeit ist die Entwicklung einer einfach durchführbaren, chemoselektiven Methode zur oxidativen Azidierung von 1,3-Dicarbonylverbindungen gelungen (Schema III-15).

Schema III-15 Chemoselektive Funtkionalisierung von 1,3-Dicarbonylverbindungen; Tri = 4-Phenyl-1H-1,2,3triazol-1-yl.

Die Reaktion kann im Milligramm- bis Multigrammmaßstab entweder mit molekularem Iod oder dem deaktivierten hypervalenten Iodreagenz IBX-SO₃K (3-3) in Gegenwart einer günstigen Azidquelle (NaN₃) durchgeführt werden und toleriert eine große Vielzahl funktioneller Gruppen. Neben tertiären 2-Azido-1,3-dicarbonylen (3-2) werden auch 2,2-Bisazidoverbindungen (3-5) in sehr guten Ausbeuten erhalten. Weitere Funktionalisierung in [3+2]-Zykloadditionen mit Acetylenen ist ausgehend von beiden Substanzklassen möglich. Das vollständige Ausmaß der Chemoselektivität der Methode konnte durch Modifikation komplexer Moleküle unter Beweis gestellt werden. So gelang es, die Naturstoffe β -Estradiol und Strychnin, die zuvor mit 1,3-Dicarbonyleinheiten verknüpft wurden, in zwei Schritten in die korrespondierenden Triazolylverbindungen 3-13 und 3-14 zu überführen (Abbildung III-1).

Abbildung III-1 Erfolgreich synthetisierte Naturstoffanaloga.

Desweiteren konnte ein Grundstein für die selektive Azidierung von Peptiden gelegt werden. Das threoninhaltige Dipeptid 3-16 wurde nach Oxidation der Seitenkette mit einem Azidsubstituenten versehen. Die Cu(I)-katalysierte Click-Reaktion mit Phenylacetylen verlief unter Verlust des Acetylsubstituenten und lieferte 1,2,3-Triazol 3-19 (Schema III-16).

Schema III-16 Oxidative Modifikation eines threoninhaltigen Dipeptids.

Auch wenn die Kombination der beiden oxidativen Prozesse von 3-16 zu 3-19 in einem Topf nicht gelang, so lieferte die Untersuchung doch Erkenntnisse zur prinzipiellen Anwendbarkeit der Methode auf peptidische Strukturen (Schema III-17).

Schema III-17 Untersuchung zur Eintopfsynthese von 3-18.

4.2 Ausblick

Ein wichtiger Gesichtspunkt zukünftiger Forschungsbemühungen auf dem Gebiet der chemoselektiven Azidierung sollte die Optimierung der oxidativen Modifikation threoninhaltiger Peptide sein. Ein Erfolg könnte den Weg zu einer neuen bioorthogonalen Methode zur Modifikation von Polypeptiden oder gar nativer Proteine ebnen, was den aufwendigen biochemischen Einbau unnatürlicher, azidfunktionalisierter Aminosäuren teilweise ersetzen würde (Abbildung III-2). Eine mögliche Anwendung dieser Methode ist in der detaillierten Untersuchung biologischer Systeme zu sehen. Ebenso wäre die Verwendung azidierter Naturstoffderivate in Bioaktivitätsstudien denkbar.

Abbildung III-2 Azidierung nativer Proteine als mögliche Anwendung der entwickelten Methode.

Da bisher in keinem Experiment eine substratinduzierte Stereoselektivität beobachtet werden konnte, ist des Weiteren die Entwicklung einer enantioselektiven Variante der Reaktion von Interesse. Möglich wäre hierbei z.B. eine organokatalytische Reaktionsführung oder die Verwendung chiraler *Lewis*-Säuren.^[222]

IV Experimenteller Teil

1 Allgemeine Arbeitstechniken

Alle Reaktionen mit *sauerstoff- oder feuchtigkeitsempfindlichen Reagenzien* wurden in mehrfach im Vakuum ausgeheizten Glasgeräten unter Argonatmosphäre (Argon 4.8, *Westfalen AG*) durchgeführt.

Reaktionen bei tiefen Temperaturen wurden in *Dewar*-Gefäßen durchgeführt, die mit Eiswasser (0 °C) oder Aceton/Trockeneis (-78 °C) gefüllt waren. Andere Reaktionstemperaturen unter 0 °C wurden mit einem Kryostat der Firma *Thermo Haake* (Modell EK90) eingestellt. Als *Heizbäder* dienten Paraffinölbäder, deren Temperatur mittels Kontaktthermometer eingestellt wurde.

1.1 Lösungsmittel und Reagenzien

Lösungsmittel für den Einsatz in *feuchtigkeitsempfindlichen Reaktionen* wurden über eine Anlage zur Trocknung von Lösungmitteln nach *Grubbs et al.* aufgreinigt^[223] (*Firma M. Braun* GmbH; Modell MB-SPS-800):

- Dichlormethan: *Merck* Emsure[®], p.a., 99.8%, <0.03% H₂O; Säule $2 \times$ MB-KOL-A.
- Diethylether: *Merck* Emsure[®], p.a., 99.7%, <0.03% H₂O; Säule 1 × MB-KOL-A, 1 × MB-KOL-M Typ 2.
- Tetrahydrofuran: *Merck* Emsure[®], p.a., 99.8%, <0.03% H₂O; Säule 2 × MB-KOL-M Typ 2.

Andere wasserfreie Lösungsmittel und Reagenzien wurden kommerziell erworben oder nach Standardverfahren getrockent:

- Acetonitril: Acros Organics, Extra Dry, 99.9% über Molekularsieb, < 0.005% H₂O.
- Dimethylsulfoxid: *Sigma-Aldrich*, puriss., 99.5% über Molekularsieb, < 0.01% H₂O.
- Methanol: *Acros Organics*, Extra Dry, 99.8% über Molekularsieb, < 0.005% H₂O.
- *N*,*N*-Dimethylformamid: *Sigma-Aldrich*, puriss., 99.5% über Molekularsieb, < 0.01% H₂O.
- Toluol: *Acros Organics*, Extra Dry, 99.8% über Molekularsieb, < 0.005% H₂O.
- *N*,*N*-Diisopropylethylamin: *Sigma-Aldrich*, purum, 99.5%, Destillation über Kaliumhydroxid.
- Triethylamin: VWR Prolabo[®], Technical Grade, 99%, Destillation über Kaliumhydroxid.

Lösungsmittel für die Flash- und Dünnschichtchromatographie, sowie den Einsatz in feuchtigkeitsunempfindlichen Reaktionen (Aceton, *tert*-Butanol, Dichlormethan, Diethylether, Ethylacetat, Ethanol, Methanol, *n*-Pentan und Toluol) wurden nach einfacher Destillation verwendet.

(*S*)-(+)-COP-OAc und (*R*)-(-)-COP-OAc wurde von *Sigma Aldrich* bezogen oder nach der literaturbekannten Vorschrift synthetisiert.^[40b] Die kommerziell erhaltenen Katalysatoren wurden mit CH_2Cl_2 als Lösungsmittel über Kieselgel filtriert. Das Filtrat wurde unter vermindertem Druck eingeengt und der Rückstand unter Lichtausschluss gelagert.

Alle *kommerziell erhältlichen Reagenzien* wurden, soweit nicht anders vermerkt, ohne weitere Reinigung eingesetzt.

Prozentwerte (%) beziehen sich, falls nicht näher beschrieben, immer auf Massenprozente. Bei gesättigten Lösungen und Maßlösungen handelt es sich, falls nicht anders vermerkt, um wässrige Lösungen.

Der *Gehalt metallorganischer Reagenzien* wurde durch Titration gegen (–)-Menthol mit 1,10-Phenantrolin als Indikator bestimmt.^[224] *n*-BuLi wurde gegen 1,3-Diphenylaceton-*p*-tosylhydrazon titriert.^[225]

ol

Die Messung von *pH-Werten* erfolgte mit pH-Papier (pH = 1-14) der Firma *Merck*.

1.2 Chromatographische Methoden

Qualitative Dünnschichtchromatogramme (DC) wurden auf Fertigplatten (Glas) der *Firma Merck* (0.25 mm Kieselgel 60, F₂₅₄) aufgenommen. Der Nachweis der Substanzen erfolgte durch Fluoreszenzdetektion in UV-Licht der Wellenlänge $\lambda = 254$ nm oder durch Eintauchen in eine Färbelösung und anschließender Wärmebehandlung.

- Cerammoniummolybdat-Lösung [CAM]: 2.00 g Cer-(IV)-sulfat, 50 g Ammoniummolybdat, 50 mL konzentrierte Schwefelsäure, 300 mL Wasser.
- Kaliumpermanganat-Lösung [KMnO₄]: 3.00 g Kaliumpermanganat, 20.0 g Kaliumcarbonat, 5.00 mL 5%ige Natronlauge, 300 mL Wasser.
- Ninhydrin-Lösung: 300 mg Ninhydrin, 3 mL AcOH, 100 mL *n*-Butanol

Säulenchromatographische Reinigungen wurden unter mittlerem Druck mit Kieselgel der Firma Merck (KG60, Korngröße 40-63 µm, 230-400 mesh ASTM) durchgeführt. Sowohl die Füllhöhe als auch der Durchmesser der verwendeten Säulen wurden in Anlehnung an die von Still et al.^[226] beschriebenen Empfehlungen gewählt. Das benutzte Eluensverhältnis ist bei den einzelnen Versuchsbeschreibungen angegeben.

Hochleistungsflüssigkeitschromatographie (HPLC) wurde an einer Anlage der Firma *Dionex* durchgeführt. Als technische Komponenten dienten eine P580 A Pumpe, ein STH 585 Säulenofen, ein ASI-100 Automated Sample Injector sowie ein UVD 340 U Diodenfelddetektor. Die Datenverarbeitung erfolgte mittels Chromeleon-Software. Es wurden Chromatographiesäulen der Firma *Daicel* (250×4.6 mm, mit Vorsäule) mit Chiralpak[®] AD-(Durchmesser 5 µm) oder YMC ODS-A-Material (Durchmesser 5 µm) eingesetzt. Des Weiteren wurde ein HPLC System der Firma *Agilent* (Modell 1200) mit Chiralcel[®] OH-J-Säule (250×4.6 mm) verwendet. Als mobile Phase dienten Gemische aus *n*-Pentan oder Hexan und *iso*-Propanol (VWR, LiChrosolv). Lösungsmittelverhältnisse, Gradienten und Flussgeschwindigkeit sind in den jeweiligen Versuchsbeschreibungen angegeben.

1.3 Weitere analytische Methoden

Schmelzpunkte von Feststoffen wurden mit einer Apparatur nach Thiele, Modell 510 der Firma Büchi gemessen und sind nicht korrigiert.

Die Aufnahme von *Infrarotspektren-Spektren* (IR) erfolgte mit einem IR-4100 Spektrometer von JASCO direkt in Substanz im Totalreflexionsverfahren (ATR).

Die *Kernresonanzspektren* (NMR) wurden an den Geräten AV-250, AV-360 und AV-500 und AV-500cr von *Bruker* bei 300 K aufgenommen. Die chemischen Verschiebungen sind in δ -Werten (ppm) angegeben und beziehen sich auf die entsprechenden Restprotonensignale des verwendeten Lösungsmittels (z.B. Deuterochloroform $\delta = 7.26$ ppm). In ¹³C-NMR-Spektren dienen die deuteriumgekoppelten Multipletts der Lösungsmittel als Referenz (z.B. Deuterochloroform $\delta = 77.16$ ppm). Für ¹³C-NMR-Spektren in D₂O wurde 2,2,3,3-Tetradeutero-3-trimethylsilylpropionsäure (TSP) als externer Standard verwendet. Bei der Zuordnung der Signale und für die Signalmultiplizitäten wurden die folgenden Abkürzungen verwendet: s – Singulett, d – Dublett, t – Triplett, q – Quartett, m – Multiplett, br – breit. Die angegebenen Kopplungskonstanten J sind in Hz als Mittelwerte der

experimentell gefundenen angegeben. Die Angabe des Verhältnisses von Produktgemischen (Diastereomerenverhältnis d.r.) bezieht sich jeweils auf die Integrale eindeutig identifizierbarer Signale im ¹H-NMR des Rohproduktes.

Massenspektren (MS) und *hochaufgelöste Massenspektren* (HRMS) wurden mit Elektronenstoß-Ionisation (EI, 70 eV) oder mit Elektrospray-Ionisation (ESI) durchgeführt. Für EI-Messungen wurde entweder ein MAT 8200 Gerät der Firma *Finnigan* oder ein massenselektiver Detektor MSD 5973 der Firma *Agilent Technologies* verwendet. Für ESI-Messungen wurde entweder ein LCQ classic Gerät der Firma *Finnigan* oder ein LTQ Orbitrap XL Gerät von *Thermo Scientific* verwendet. Des Weiteren kam eine GC-MS-Kopplung der Firma Agilent [GC-System: Agilent 6890 mit einer HP-5MS Säule (Dimethylpolysiloxan, 30 m), Trägergas Helium; Massendetektion: Agilent 5973 Network Mass Selective Detector (EI, 70 eV)] zum Einsatz.

Spezifische optische Rotationen wurden mit einem Polarimeter 241 MC der Firma Perkin-Elmer in einer 1 dm Küvette bei $\lambda = 589$ nm (Na-D-Linie) bei 20 °C gemessen. Die Angabe der Drehwerte erfolgt in 10⁻¹ grad cm² g⁻¹, wobei die Konzentration c definitionsgemäß in g/100 mL-Lösung angegeben ist.

2 Synthesevorschriften

2.1 Synthese allgemeiner Reagenzien

Methyl-2-(diphenoxyphosphoryl)acetat (Ando-Posphonat) (2-2)

$$\begin{array}{c} O\\ HO)_2P & CO_2Me\\ C_{15}H_{15}O_5P\\ 306.25 \end{array}$$

Zu einer Lösung von Diphenylphosphit (11.5 mL, 14.1 g, 60.0 mmol) in CH₂Cl₂ (60 mL) werden nacheinander 2-Bromessigsäuremethylester (5.70 mL, 9.18 g, 60.0 mmol, 1 Äq.) und Triethylamin (11.7 mL, 8.50 g, 84.0 mmol, 1.4 Äq.) bei 0 °C zugegeben. Die Lösung wird 15 min bei 0 °C und 2 h bei RT gerührt. Das Reaktionsgemisch wird mit Wasser (50 mL) versetzt und mit einem 3:1-Gemisch EtOAc/Pentan (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter wässriger NaCl-Lösung gewaschen, über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck enfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 80:10 \rightarrow 60:40). Phosphonat 3-2 wird als farblose Flüssigkeit isoliert (8.41 g, 27.5 mmol, 46%).

DC: $R_{\rm f} = 0.08$ (P/EtOAc 80:20) [UV] [KMnO₄]; ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 3.28 (d, J = 21.6 Hz, 2H), 3.77 (s, 3H), 7.15–7.26 (m, 6H), 7.31–7.38 (m, 4H); ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 34.0 (d, $J_{\rm (P-C)} = 137.9$ Hz), 53.0, 120.8 (d, $J_{\rm (P-C)} = 4.6$ Hz), 125.7 (d, $J_{\rm (P-C)} = 1.4$ Hz), 130.0 (d, $J_{\rm (P-C)} = 1.0$ Hz), 150.1 (d, $J_{\rm (P-C)} = 8.3$ Hz), 165.4 (d, $J_{\rm (P-C)} = 6.4$ Hz).

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[43b]

Dimethyldiazomethylphosphonat (Seyferth-Gilbert-Reagenz) (4-16)

 $\begin{array}{c} & O \\ H \underbrace{ & } \\ & P(OMe)_2 \\ \\ & N_2 \\ C_3 H_7 N_2 O_3 P \\ 150.07 \end{array}$

Zu einer Suspension von KI (24.9 g, 150 mmol, 1.05 Äq.) in einem Gemisch aus Acetontitril und Aceton (3:2, 75 mL) wird bei RT langsam Chloraceton (11.9 mL, 13.9 g, 150 mmol, 1.05 Äq.) zugetropft. Die Reaktionsmischung wird 1 h bei RT gerührt. Trimethylphosphit (16.8 mL, 17.6 g, 142 mmol) wird langsam zugegeben und die Reaktion wird 16 h bei RT gerührt. Die Reaktionsmischung wird über Celite[®] filtriert und mit Aceton nachgewaschen.

Das Filtrat wird unter vermindertem Druck eingeengt (Vorsicht, Tränenreizung durch nicht abreagiertes Chloraceton!). Der Rückstand wird im Vakuum destilliert (0.5 mbar, 78 °C). Das Produkt wird als farblose Flüssigkeit erhalten (13.7 g, 82.4 mmol, 58%).

¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 2.31 (s, 3H), 3.09 (d, J = 22.8 Hz, 2H), 3.78 (d, J = 11.2 Hz, 6H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 31.6 (d, $J_{(P-C)}$ = 0.9, 1H), 42.4 (d, $J_{(P-C)}$ = 127.8, 1H), 53.2 (d, $J_{(P-C)}$ = 6.5, 1H), 199.8 (d, $J_{(P-C)}$ = 9.8, 1H).

In einem ausgeheizten Rundkolben wird Tosylazid (3 g, 15.2 mmol, 1.1 Äq.) in trockenem MeCN (12 mL) vorgelegt. Bei 0 °C wird Dimethyl-2-oxopropylphosphonat (1.9 mL, 2.27 g, 13.7 mmol) zugetropft. Cs₂CO₃ (4.91 g, 15.1 mmol, 1.1 Äq) wird portionsweise zugegeben. Die trüb-gelbe Reaktionslösung wird 1 h bei 0 °C und eine weitere bei RT gerührt. Das Gemisch wird erneut auf 0 °C abgekühlt und MeOH (5.6 mL) wird zugetropft. Das Reaktionsgemisch wird 2.5 h bei 0 °C gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (20 mL) abgebrochen und das Gemisch wird mit Et₂O (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO4 getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 20:80 \rightarrow 10:90; nur so kann TsNH₂, das als UV-aktives Nebenprodukt gebildet wird, abgetrennt werden). Das Produkt wird als farblose Flüssigkeit erhalten (890 mg, 5.93 mmol, 43%).

DC: $R_f = 0.30$ (CH₂Cl₂/MeOH 97:3) [KMnO₄]. ¹**H** NMR (360 MHz, CDCl₃): δ [ppm] = δ 3.79 (d, J = 11.1 Hz, 1H), 3.80 (d, J = 11.8 Hz, 6H).

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[227]
2.2 Studien zur Totalsynthese von Tetrafibricin

2.2.1 Synthese von Fragment C1-C8 (4-24)

(E)-3-Iodacrylsäure (3-39)

HO₂C $C_3H_3IO_2$ 197 96

In einem 100 mL Dreihalskolben mit Rückflusskühler wird CuI (100 mg, 0.55 mmol, 0.7 mol%) in wässriger HI (57%, 20 mL) vorgelegt. Innerhalb von 1 min wird Propiolsäure (5 mL, 81.0 mmol) zugegeben. Das Reaktionsgemisch wird sofort (!) in ein auf 130 °C vorgeheiztes Ölbad gestellt. Nach 4 min wird Rückfluss erreicht. Die Reaktionsmischung bei 30 min unter Rückfluss gerührt und anschließend im Wasserbad abgekühlt. Das Produkt kristallisiert nadelförmig aus. Es wird abfiltriert und das Produkt wird mit H₂O (3×40 mL) gewaschen. Nach Trocknen im Vakuum wird (*E*)-3-Iodacrylsäure (3-39) als beiger, kristalliner Feststoff erhalten (10.8 g, 54.4 mmol, 67%).

DC: $R_{\rm f} = 0.68$ (CH₂Cl₂/MeOH/AcOH 90:10:1) [UV] [CAM]. ¹**H** NMR (250 MHz, CDCl₃): δ [ppm] = 6.90 (d, J = 14.9, 1H), 8.08 (d, J = 14.9, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 103.3, 135.9, 169.5.

Die analytischen Daten stimmen mit denen der Literatur überein.^[70]

(E)-2-(Trimethylsilyl)ethyl-3-iodacrylat (3-36)

In einem ausgeheizten Rundkolben wird (*E*)-3-Iodacrylsäure (3-**39**) (1.00 g, 5.05 mmol) in trockenem CH₂Cl₂ (6.5 mL) unter Argonatmosphäre vorgelegt. DMAP (42.0 mg, 344 µmol, 0.07 Äq.) und 2-Trimethylsilylethanol (0.90 mL, 746 mg, 6.31 mmol, 1.25 Äq.) werden zugegeben. Die Reaktionsmischung wird auf 0 °C gekühlt und DCC (1.15 g, 5.55 mmol, 1.1 Äq.) gelöst in trockenem CH₂Cl₂ (0.6 mL) wird langsam zugetropft. Die Reaktionslösung wird auf RT erwärmt und für 16 h gerührt. Der ausgefallene Harnstoff wird abfiltriert und mit CH₂Cl₂ nachgewaschen. Das Filtrat wird mit gesättigter, wässriger NaHCO₃-Lösung versetzt (10 mL). Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden über MgSO₄ getrocknet und das Lösungsmittel unter vermindertem Druck entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Das Produkt wird als gelbes Öl isoliert (790 mg, 2.65 mmol, 53%).

DC: $R_{\rm f} = 0.86$ (P/EtOAc 80:20) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.05 (s, 9H), 0.99 – 1.04 (m, 2H), 4.21 – 4.26 (m, 2H), 6.86 (d, J = 14.8, 1H), 7.85 (d, J = 14.8, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -1.3, 17.5, 63.5, 99.2, 136.9, 164.5. **IR** (film): $v_{\rm max}$ [cm⁻¹] = 2951, 2897, 1716, 1590, 1455, 1406, 1372, 1294, 1250, 1218, 1180, 1143, 1063, 1041, 985, 947, 903, 857, 833, 761, 732. **LRMS** (EI): *m/z* 298 (1%) [M⁺], 282 (6%), 254 (100%), 210 (32%), 181 (22%), 171 (21%), 73 (89%), 52 (32%). **HRMS** (EI): *m/z* 171.0842 [171.0841 berechnet für C₈H₁₅O₂Si (M⁺-I)].

(*E*)-Pent-2-en-4-in-1-ol (3-38)

In einem ausgeheizten 250 mL Dreihalskolben wird Natriumacetylid (8.97 g, 187 mmol, 2.3 Äq.) unter Argonatmosphäre vorgelegt und mit Pentan (10 mL) überschichtet. Bei -55 °C wird NH₃ (100 mL) einkondensiert. Epichlorhydrin (6.37 mL, 7.51 g, 81.2 mmol) wird innerhalb von 2 h mittels Perfusor bei -55 °C zugetropft. Die Reaktionsmischung wird 1.5 h bei -55 °C gerührt. Das Gemisch wird auf -35 °C erwärmt und weitere 2 h gerührt. Das Kühlbad wird entfernt und der Ammoniak über Nacht abgedampft. Bei 0 °C wird gesättigte, wässrige NH₄Cl-Lösung (100 mL) zugetropft. Die wässrige Phase wird mit Et₂O (5×100 mL) und CH₂Cl₂ (5×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das wird unter vermindertem Lösungsmittel Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/Et₂O 80:20 \rightarrow 50:50). Alkohol 3-38 wird als gelbe Flüssigkeit isoliert (2.80 g, 34.1 mmol, 42%).

DC: $R_{\rm f} = 0.36$ (P/Et₂O 70:30) [KMnO₄] [UV]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.46 (t, J = 5.7, 1H), 2.89 (dd, J = 2.1, 0.5 Hz, 1H), 4.19 – 4.27 (m, 2H), 5.75 (ddd, J = 16.0, 4.1, 2.1 Hz, 1H), 6.36 (dtd, J = 16.0, 5.0, 0.5 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 62.9, 78.0, 81.7, 109.4, 143.8.

Die analytischen Daten stimmen mit denen der Literatur überein.^[228]

(2*E*,4*E*)-5-(Tributylstannyl)-penta-2,4-dien-1-ol (3-40)

In einem ausgeheizten Kolben werden unter Schutzgasatmosphäre 1.02 g CuCN (11.4 mmol, 1.2 Äq.) in entgastem und trockenem THF (46 mL) unter Argonatmosphäre vorgelegt. Bei -78 °C wird n-BuLi (2.5M in Hexan, 9.12 mL, 22.8 mmol, 2.4 Äq.) zugetropft. Die Reaktionsmischung wird auf -30 °C erwärmt. Nach Bildung einer homogenen Lösung wird Bu₃SnH (6.05 mL, 6.64 g, 22.8 mmol, 2.4 Äq.) zugetropft. Die orange-gelbe Lösung wird 30 min bei -30 °C gerührt. Alkohol 3-38 (781 mg, 9.51 mmol) gelöst in entgastem, trockenem THF (6 mL) wird zugetropft. Die Reaktionlösung verfärbt sich braun. Nach weiteren 60 min bei -30 °C wird die Reaktion durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung und Methanol (je 15 mL) abgebrochen. Das Reaktionsgemisch wird über Zelithe filtriert und der Filterrückstand mit Et2O und Wasser nachgewaschen. Das Filtrat wird in einen Scheidetrichter überführt und die Phasen werden getrennt. Die wässrige Phase wird mit Et₂O (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 95:5 \rightarrow 90:10). Stannan 3-40 wird als farbloses Öl isoliert (2.29 g, 6.13 mmol, 65%).

DC: $R_f = 0.29$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.86 – 0.93 (m, 15H), 1.23 – 1.38 (m, 8H), 1.44 – 1.63 (m, 6H), 4.20 (td, J = 5.9, 1.2 Hz, 3H), 5.79 (dt, J = 15.4, 5.9 Hz, 1H), 6.16 – 6.30 (m, 2H), 6.48 – 6.60 (m, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 9.7, 13.8, 27.4, 29.2, 63.5, 130.9, 134.8, 135.3, 146.0. IR (film): v_{max} [cm⁻¹] = 3326, 2955, 2920, 2870, 2850, 1565, 1460, 1377, 1082, 998, 868. LRMS (EI): m/z 317 (100%) [M⁺-C₄H₉], 261 (53%), 205 (44%), 177 (15%), 137 (27%). HRMS (EI): m/z 317.0927 [317.0929 berechnet für C₁₃H₂₅OSn (M⁺-C₄H₉)].

((1E,3E)-5-Bromopenta-1,3-dienyl)-tributylstannan

In einem ausgeheizten Kolben werden Alkohol 3-**40** (432 mg, 1.16 mmol) und PPh₃ (395 mg, 1.51 mmol, 1.3 Äq.) in trockenem CH₂Cl₂ (6 mL) unter Argonatmosphäre gelöst. Bei -40 °C wird CBr₄ (923 mg, 2.78 mmol, 2.4 Äq.) portionsweise zugegeben. Die Lösung wird 45 min bei -40 °C gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (10 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden unter vermindertem Druck eingeengt. Der Rückstand wird in Pentan aufgenommen und das ausgefallen Triphenylphosphinoxid abfiltriert. Der Filterrückstand wird mit Pentan gewaschen. Das Filtrat wird unter vermindertem Druck eingeengt. Das Bromid wird als gelbes Öl isoliert und ohne weitere Aufreinigung in der nächsten Reaktion eingesetzt.

DC: $R_f = 0.99$ (P/EtOAc 99:1) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.84 – 0.96 (m, 15H), 1.24 – 1.37 (m, 7H), 1.44 – 1.55 (m, 5H), 4.05 (dd, J = 0.8, 7.9 Hz, 2H). 5.82 (td, J = 7.9, 15.7 Hz, 1H), 6.25 (dd, J = 9.8, 15.0 Hz, 1H), 6.35 (d, J = 18.7 Hz, 1H), 6.52 (dd, J = 9.8, 18.7 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 9.5, 13.7, 27.3, 29.1, 33.5, 127.3, 137.7, 138.1, 146.0.

Dimethyl-(2E,4E)-5-(tributylstannyl)penta-2,4-dienylphosphonat (3-37)

In einem ausgeheiztem Rundkolben wird NaH (116 mg, 2.89 mmol, 2.5 Äq.) in trockenem THF (9 mL) unter Argonatmosphäre vorgelegt. Bei 0 °C wird Dimethylphosphit (0.28 mL, 331 mg, 3.01 mmol, 2.6 Äq.) zugetropft. Die Reaktionsmischung wird 30 min bei 0 °C gerührt. ((1E,3E)-5-Bromopenta-1,3-dienyl)-tributylstannan (505 mg, 1.16 mmol) gelöst in trockenem THF (3 mL) wird zugetropft. Es wird eine weitere Stunde bei 0 °C gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (15 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit EtOAc (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen

und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (CH₂Cl₂/MeOH 98:2). Phosphonat 3-**37** wird als farbloses Öl isoliert (368 mg, 791 μmol, 68% über 2 Schritte).

DC: $R_f = 0.29$ (CH₂Cl₂/MeOH 98:2) [UV] [CAM]. ¹**H** NMR (500 MHz, CDCl₃): δ [ppm] = 0.82 – 0.95 (m, 15H), 1.25 – 1.33 (m, 6H), 1.41 – 1.55 (m, 6H), 2.64 (dd, J = 22.4, 7.7, 2H), 3.75 (d, J = 10.8, 6H), 5.33 – 5.61 (m, 1H), 6.13 – 6.20 (m, 2H), 6.42 – 6.58 (m, 1H). ¹³**C** NMR (91 MHz, CDCl₃): δ [ppm] = 9.6, 13.8, 27.4, 29.2, 29.7 (d, $J_{(P-C)} = 139.9$ Hz), 52.9 (d, $J_{(P-C)} = 6.8$ Hz), 120.5 (d, $J_{(P-C)} = 12.4$ Hz), 134.5 (d, $J_{(P-C)} = 4.4$ Hz), 138.6 (d, $J_{(P-C)} = 14.8$ Hz), 145.9 (d, $J_{(P-C)} = 4.5$ Hz). **IR** (film): v_{max} [cm⁻¹] = 2955, 2920, 2871, 2852, 1692, 1460, 1436, 1377, 1173, 1120, 1072, 999, 877. **LRMS** (ESI): *m/z* 953 (7%) [2M+Na⁺], 755 (100%), 489 (5%) [M+Na⁺], 467 (47%) [M+H⁺], 205 (44%), 177 (15%), 137 (27%). **HRMS** (ESI): *m/z* 459.1765 [459.1758 berechnet für C₁₉H₄₀O₃PSn⁺ (M+H⁺)].

Die analytischen Daten stimmen mit denen der Literatur überein.^[69]

(4E,6E)-2-(Trimethylsilyl)ethyl-8-(dimethoxyphosphoryl)octa-2,4,6-trienoat (3-24)

In einem ausgeheizten Rundkolben werden Stanan 3-37 (354 mg, 761 µmol) und Vinyliodid 3-36 (250 mg, 837 µmol, 1.1 Äq.) in entgastem, trockenem DMF (6.5 mL) unter Argonatmosphäre vorgelegt. Bei RT wird eine Lösung von LiCl (99.1 mg, 2.28 mmol, 3 Äq.), Pd₂dba₃ (34.9 mg, 38.1 µmol, 0.05 Äq.) und P(2-furyl)₃ (26.5 mg, 114 µmol, 0.15 Äq.) in entgastem, trockenem DMF (1 mL) zugetropft. Die Reaktionsmischung wird 30 min gerührt, wobei sie sich von grün nach braun verfärbt. Das Gemisch wird mit gesättigter, wässriger NH₄Cl-Lösung und EtOAc versetzt (je 15 mL). Die Phasen werden getrennt und die wässrige Phase mit EtOAc extrahiert (3×10 mL). Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc $80:20 \rightarrow 50:50$, dann CH₂Cl₂/MeOH 100:0 \rightarrow 98:2). Alle Produktfraktionen werden gesammelt und eingeengt. Der Rückstand wird über Kieselgel filtriert (CH₂Cl₂/MeOH 100:0 \rightarrow 98:2). Phosphonat 3-24 wird als farbloses Öl isoliert, das unter Kühlung auskristallisiert (250 mg, 722 µmol, 95%).

DC: $R_{\rm f} = 0.34$ (CH₂Cl₂/MeOH 98:2) [UV] [CAM]. ¹**H** NMR (250 MHz, CDCl₃): δ [ppm] = 0.04 (s, 9H), 0.98 – 1.05 (m, 2H), 2.70 (dd, J = 23.4, 7.9, 2H), 3.75 (d, J = 10.9, 6H), 4.20 – 4.27 (m, 2H), 5.75 – 5.91 (m, 2H), 6.21 – 6.22 (m, 2H), 6.51 (dd, J = 15.2, 10.4, 1H), 7.25 (dd, J = 15.0, 11.6, 1H). ¹³**C** NMR (63 MHz, CDCl₃): δ [ppm] = -1.3, 17.5, 30.3 (d, $J_{(P-C)} = 140.1$ Hz), 53.0 (d, $J_{(P-C)} = 6.8$ Hz), 62.7, 121.9 (d, $J_{(P-C)} = 2.2$ Hz), 126.6 (d, $J_{(P-C)} = 13.0$ Hz), 130.1 (d, $J_{(P-C)} = 4.6$ Hz), 134.6 (d, $J_{(P-C)} = 15.1$ Hz), 139.4 (d, $J_{(P-C)} = 5.2$ Hz), 144.0 (d, $J_{(P-C)} = 2.7$ Hz), 167.2 (d, $J_{(P-C)} = 0.8$ Hz). **IR** (film): v_{max} [cm⁻¹] = 2953, 1705, 1618, 1590, 1460, 1401, 1377, 1348, 1300, 1250, 1232, 1182, 1153, 1132, 1026, 938, 835, 809, 729, 694. **LRMS** (ESI): m/z 693 (100%) [2M+H⁺], 628 (22%), 369 (4%) [M+Na⁺], 347 (37%) [M+Na⁺], 319 (31%). **HRMS** (ESI): m/z 347.1439 [347.1438 berechnet für C₁₅H₂₈O₅PSi⁺ (M+H⁺)].

2.2.2 Synthese von Fragment C9-C20 (3-25)

(R)-2-Amino-3-phenylpropan-1-ol (3-51)

In einem ausgeheizten Dreihalskolben mit Rückflusskühler und Tropftrichter wird NaBH₄ (5.50 g, 145.2 mmol, 2.4 Äq.) unter Argonatmosphäre in trockenem THF (160 mL) vorgelegt. (*D*)-Phenylalanin (10.0 g, 60.5 mmol) wird auf einmal zugegeben. Die Suspension wird auf 0 °C abgekühlt und eine Lösung von I₂ (15.4 g, 60.5 mmol, 1 Äq.) in trockenem THF (40 mL) wird innerhalb von 30 min zugetropft. Nach Beendigung der Gasentwicklung wird das Reaktionsgemisch 18 h unter Rückfluss gerührt. Die Supension wird auf 0 °C abgekühlt und es wird MeOH zugegeben. Es bildet sich eine klare Lösung, die 30 min bei RT gerührt wird. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand in KOH (20% in H₂O, 120 mL) aufgenommen. Die Lösung wird 4 h bei RT gerührt und anschließend mit CH₂Cl₂ (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt. Das Lösungsmittel wird unter vermindertem Druck kristallisiert der Rückstand aus. Der Feststoff wird abfiltriert, mit Pentan gewaschen und am Vakuum getrocknet. (*R*)-2-Amino-3-phenylpropan-1-ol (3-**51**) wird als weißer kristalliner Feststoff gewonnen (8.95 g, 59.2 mmol, 98%).

¹**H NMR** (360 MHz, DMSO): δ [ppm] = 1.27 (s, br, 2H), 2.41 (dd, *J* = 13.2, 7.8 Hz, 1H), 2.67 (dd, *J* = 13.2, 5.6, 1H), 2.82 – 2.89 (m, 1H), 3.14 – 3.20 (m, 1H), 3.25 – 3.29 (m, 1H), 4.52 – 4.55 (m, 1H), 7.15 – 7.20 (m, 3H), 7.25 – 7.29 (m, 2H). ¹³**C NMR** (91 MHz, DMSO): δ [ppm] = 40.3, 54.5, 65.9, 125.7, 128.1, 129.1, 139.9.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[75]

(R)-4-Benzyloxazolidin-2-on (3-52)

(*R*)-2Aamino-3-phenylpropan-1-ol (3-**51**) (11.06 g, 73.1 mmol) wird in Toluol (150 mL) gelöst und es wird wässrige KOH-Lösung (2.6M, 56.3 mL 146.3 mmol, 2 Äq.) zugegeben. Bei 0 °C wird Methylchloroformiat (11.3 mL, 13.8 g, 146.3 mmol, 2 Äq.) gelöst in Toluol (50 mL) zugetropft. Die Lösung wird 2 h bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase wird mit Toluol (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Die Lösung wird auf 150 mL eingeengt und es wird K₂CO₃ (1.01 g, 7.31 mmol, 0.1 Äq.) hinzugefügt. Das Reaktiongemisch wird 36 h unter Rückfluss gerührt. Das Lösungsmittel unter vermindertem Druck entfernt und der Rückstand in EtOAc (100 mL) aufgenommen. Die Lösung wird mit H₂O und gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt. Bei Zugabe von P/EtOAc 80:20 kristallisiert der Rückstand aus. Der Feststoff wird abfiltriert und mit wenig P/EtOAc 80:20 nachgewaschen. Der Rückstand wird am Vakuum getrocknet. (*R*)-4-Benzyloxazolidin-2-on (3-**52**) wird als weißer Feststoff gewonnen (11.4 g, 64.4 mmol, 88%).

DC: $R_f = 0.31$ (P/EtOAc 60:40) [UV] [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 2.88 (d, J = 6.8 Hz, 2H), 4.05 – 4.17 (m, 2H), 4.43 – 4.48 (m, 1H), 5.46 (s, br, 1H), 7.16 – 7.19 (m, 2H), 7.25 – 7.36 (m, 3H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 41.6, 53.9, 69.8, 127.4, 129.1, 129.2, 136.1, 159.3.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[76]

(R)-4-Benzyl-3-propionyloxazolidin-2-on (3-50)

In einem ausgeheizten Rundkolben wird (R)-4-Benzyloxazolidin-2-on (3-52) (12.1 g, 68.3 mmol) in trockenem THF (250 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird n-BuLi (2.3M in Hexan, 32.6. mL, 75.1 mmol, 1.1 Äq.) zugetropft und die Lösung wird 20 min gerührt. Propionylchlorid (6.77 mL, 7.17 g, 75.1 mmol, 1.1 Äq.) gelöst in trockenem THF (50 mL) wird bei -78 °C zugetropft und die Lösung wird 1.5 h gerührt. Die Reaktion wird durch Zugabe von gesättigter wässriger NH₄Cl-Lösung (150 mL) abgebrochen und das Reaktionsgemisch wird auf RT erwärmt. Die Phasen werden getrennt und die wässrige Phase wird mit Et₂O (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird vermindertem entfernt unter Druck und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5 \rightarrow 70:30). Das Produkt wird als weißer, kristalliner Feststoff isoliert (13.4 g, 57.4 mmol, 84%).

DC: $R_f = 0.57$ (P/EtOAc 80:20) [UV] [CAM]; ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.21 (t, J = 7.4 Hz, 3 H), 2.77 (dd, J = 13.4 Hz, J = 9.8 Hz, 1 H), 2.86–3.06 (m, 2 H), 3.30 (dd, J = 13.4 Hz, J = 3.2 Hz, 1 H), 4.14–4.23 (m, 2 H), 4.64–4.71 (m, 1 H), 7.18–7.23 (m, 2 H), 7.25–7.36 (m, 3 H); ¹³**C NMR** (90.6 MHz, CDCl₃): δ [ppm] = 8.4, 29.3, 38.1, 55.3, 66.4, 127.5, 129.1, 129.5, 135.5, 153.6, 174.2.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[64b]

3-(4-Methoxybenzyloxy)-propan-1-ol (3-53)

In einem ausgeheizten Rundkolben wird Propandiol (13.7 mL, 14.4 g, 189 mmol) in 190 mL trockenem DMF unter Argonatmosphäre gelöst. Bei 0 °C wird NaH (60% in Mineralöl, 7.41 g, 185 mmol, 0.98 Äq.) portionsweise zugegeben. Es wird 20 min bei 0 °C gerührt. PMBCl (29.6 g, 189 mmol, 1 Äq.) und TBAI (2.09 g, 5.67 mmol, 0.03 Äq.) werden

hinzugefügt und es wird weitere 15 min bei 0 °C gerührt. Die Reaktionslösung wird auf RT erwärmt und 18 h gerührt. Das Reaktionsgemisch wird mit H₂O (1.9 L) versetzt und mit Et₂O (3×300 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 70:30 \rightarrow 50:50). Alkohol 3-53 wird als gelbe Flüssigkeit isoliert (16.9 g, 86.0 mmol, 45%).

DC: $R_f = 0.23$ (P/EtOAc 70:30) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.77 – 1.92 (m, 2H), 2.33 (s, br, 1H), 3.64 (t, J = 5.8 Hz, 2H), 3.72 – 3.80 (m, 2H), 3.80 (s, 3H), 4.45 (s, 2H), 6.88 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 32.2, 55.4, 62.1, 69.3, 73.1, 114.0, 129.4, 130.3, 159.4.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[77]

3-(4-Methoxybenzyloxy)-propanal (3-12)

In einem ausgeheizten Rundkolben wird Oxalylchlorid (4.26 mL, 6.30 g, 49.7 mmol, 1.5 Äq.) in trockenem CH₂Cl₂ (100 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DMSO (5.88 mL, 6.47 g, 82.8 mmol, 2.5 Äq.) gelöst in trockenem CH₂Cl₂ (20 mL) zugetropft. Die Lösung wird 30 min bei -78 °C gerührt. Eine Lösung von Alkohol **X** (6.50 g, 33.1 mmol) in trockenem CH₂Cl₂ (25 mL) wird zugetropft und das Reaktionsgemisch weitere 30 min bei -78 °C gerührt. Nach Zugabe von NEt₃ (18.4 mL, 13.4 g, 4 Äq.) wird 10 min bei -78 °C und anschließend 30 min RT gerührt. Die Reaktionsmischung wird mit CH₂Cl₂ (100 mL) verdünnt und nacheinander mit H₂O, HCl (2N in H₂O), gesättigter, wässriger NaHCO₃-Lösung und gesättigter, wässriger NaCl-Lösung gewaschen (je 100 mL). Die organische Phase wird über MgSO₄ getrocknet und das Lösungsmittel unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt. Aldehyd 3-**12** wird als gelbe Flüssigkeit erhalten (5.56 g, 28.6 mmol, 86%).

DC: $R_{\rm f} = 0.42$ (P/EtOAc 70:30) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 2.68 (td, J = 6.1, 1.8 Hz, 2H), 3.76 - 3.81 (m, 2H), 3.80 (s, 3H), 4.46 (s, 2H), 7.25 (d, J = 8.7 Hz, 2H), 9.78 (t, J = 8.1 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 44.0, 55.4, 63.7, 73.1, 114.0, 129.5, 130.1, 159.5, 201.3.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[115]

(*R*)-4-Benzyl-3-((2*R*,3*S*)-3-hydroxy-5-(4-methoxybenzyloxy)-2-methylpentanoyl)oxazolidin-2-on (3-54)

In einem ausgeheizten Dreihalskolben mit Tropftrichter und Innenthermometer wird Oxazolidinon 3-50 (6.78 g, 29.1 mmol, 1.1 Äq.) in trockenem CH₂Cl₂ (60 mL) unter Argonatmosphäre gelöst. Unter Eiskühlung wird n-Bu2BOTf (1M in CH2Cl2, 31.7 mL, 31.7 mmol, 1.2 Äq.) so zugetropft, dass die Innentemperatur 2 °C nicht übersteigt. Anschließend wird *i*-Pr₂NEt (5.84 mL, 4.44 g, 34.3 mmol, 1.3 Äq.) zugetropft wobei die Innentemperatur 2 °C nicht übersteigt. Die Lösung wird 30 min bei 0 °C gerührt und anschließend auf -78 °C abgekühlt. Eine Lösung von Aldehyd 3-12 (5.13 g, 26.4 mmol) in trockenem CH₂Cl₂ (11 mL) wird so zugegeben, dass die Innentemperatur -75 °C nicht übersteigt. Das Reaktionsgemisch wird 1.5 h bei -78 °C gerührt und anschließend innerhalb von 30 min auf 0 °C erwärmt und weitere 30 min bei 0 °C gerührt. Die Reaktion wird durch Zugabe von wässrigem pH 7-Puffer (28 mL) gefolgt von MeOH (86 mL) abgebrochen. Es wird eine Mischung von H₂O₂ (35% in H₂O, 29 mL) und MeOH (55 mL) hinzugefügt und 1 h bei 0 °C gerührt. Die Mischung wird unter vermindertem Druck eingeengt. Der Rückstand wird mit EtOAc (3×150 mL) extrahiert. Die vereinigten organischen Phasen werden mit HCl (1M in H₂O), gesättigter, wässriger NaHCO₃- und gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt. (P/EtOAc $80:20 \rightarrow 50:50$). Alkohol 3-54 als farbloses Harz gewonnen (10.0 g, 23.5 mmol, 89%, *d.r.* > 95:5).

DC: $R_{\rm f} = 0.13$ (P/EtOAc 80:20) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -46.2$ (c = 1.28 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 1.28 (d, J = 6.1 Hz, 3H), 1.66 – 1.78 (m, 1H), 1.80 – 1.94 (m, 1H), 2.78 (dd, J = 13.4, 9.5 Hz, 1H), 3.26 (dd, J = 13.4, 3.3 Hz, 1H), 3.33 (d, J = 3.3 Hz, 1H), 3.58 – 3.72 (m, 2H), 3.75 – 3.89 (m, 1H), 3.79 (s, 3H), 4.10 – 4.23 (m, 3H), 4.44 (s, 2H), 4.63 – 4.72 (m, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.18 – 7.37 (m, 7H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 11.3, 33.9, 38.0, 42.7, 55.4, 66.3, 68.3, 70.7, 73.1, 114.0, 127.5, 129.1, 129.5, 129.6,

135.3, 153.2, 159.4, 176.8. **IR** (film): v_{max} [cm⁻¹] = 3515, 2925, 2858,1775, 1692, 1612, 1586, 1513, 1455, 1384, 1301, 1244, 1208, 1101, 1031, 969, 820, 761, 749, 702. **LRMS** (ESI): m/z 877 (100%) [2M⁺+Na], 855 (40%) [2M⁺+H], 450 (32%) [M⁺+Na], 428 (23%) [M⁺+H], 410 (29%) [M⁺-OH]. **HRMS** (ESI): m/z 428.2068 [428.2068 berechnet für C₂₄H₃₀O₆N (M⁺+H)].

(*R*)-4-Benzyl-3-((2*R*,3*S*)-3-(*tert*-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-2methylpentanoyl)oxazolidin-2-on (3-49)

Alkohol 3-54 (10.0 g, 23.4 mmol) wird in DMF (12 mL) gelöst und es werden Imidazol (9.56 g, 140 mmol, 6 Äq.) und TBSCl (10.6 g, 70.2 mmol, 3 Äq.) zugegeben. Die Reaktionsmischung wird 18 h bei RT gerührt. Die Reaktion wird durch Zugabe von H₂O (120 mL) abgebrochen. Die Reaktionsmischung wird mit Et₂O (100 mL) verdünnt. Die Phasen werden getrennt. Die wässrige Phase wird mit Et₂O (3×80 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5 → 80:20). Silylether 3-49 wird als farbloses Harz erhalten, das unter Kühlung auskristallisiert (12.2 g, 22.6 mmol, 97%).

DC: $R_f = 0.59$ (P/EtOAc 80:20) [UV] [CAM]. Schmp.: 67.4 °C. $[\alpha]^{23}_D = +52.7$ (c = 1.39 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.04 (s, 6H), 0.88 (s, 9H), 1.24 (d, J = 6.9 Hz, 3H), 1.79 – 2.00 (m, 2H), 2.73 (dd, J = 13.3, 9.6 Hz, 1H), 3.23 (dd, J = 13.3, 2.9 Hz, 1H), 3.43 – 3.52 (m, 1H), 3.54 – 3.63 (m, 1H), 3.78 (s, 3H), 3.80 – 3.93 (m, 2H), 4.03 – 4.14 (m, 2H), 4.35 (d, J = 11.7 Hz, 1H), 4.41 (d, J = 11.7 Hz, 1H)., 4.47 – 4.56 (m, 1H), 6.85 (d, J = 8.6 Hz, 2H), 7.18 – 7.36 (m, 7H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.6, -4.3, 13.8, 18.2, 26.0, 35.2, 37.9, 43.2, 55.4, 55.6, 66.0, 66.1, 71.2, 72.7, 113.8, 127.4, 129.0, 129.4, 129.6, 130.8, 135.6, 153.0, 159.2, 175.6. IR (film): v_{max} [cm⁻¹] = 2956, 2856, 1762, 1692, 1613, 1513, 1460, 1390, 1350, 1248, 1207, 1182, 1101, 1051, 1003, 839, 779, 762, 699. LRMS (ESI): m/z 1105 (18%) [2M⁺+Na], 855 (11%), 574 (37%) [M⁺+Na], 542 (100%) [M⁺+H]. HRMS (ESI): m/z 542.2933 [542.2932 berechnet für C₃₀H₄₄O₆NSi (M⁺+H)].

(2*S*,3*S*)-3-(*tert*-Butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-2-methylpentan-1-ol (3-55)

Oxazolidinon 3-49 (12.2 g, 22.6 mmol) wird in einem THF/H₂O-Gemisch (5:1, 140 mL) gelöst. Bei 0 °C wird NaBH₄ (8.52 g, 226 mmol, 10 Äq.) portionsweise zugegeben. Das Reaktionsgemisch wird auf RT erwärmt und 48 h gerührt. Die Reaktion wird durch Zugabe von wässriger Na-K-Tartrat-Lösung (20% in H₂O, 100 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Alkohol 3-55 wird als farblose Flüssigkeit isoliert (5.85 g, 15.9 mmol, 70%).

DC: $R_{\rm f} = 0.20$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -11.7$ (c = 0.81 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.06 (s, 3H), 0.09 (s, 3H), 0.80 (d, J = 7.1 Hz, 3H), 0.88 (s, 9H), 1.72 – 1.87 (m, 2H), 1.92 – 2.04 (m, 1H), 2.69 (s, br, 1H), 3.45 – 3.57 (m, 3H), 3.69 (dd, J = 10.7, 8.8 Hz, 1H), 3.80 (s, 3H), 3.91 – 3.98 (m, 1H), 4.39 (d, J = 11.5 Hz, 1H), 4.45 (d, J = 11.5 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.6 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.6, -4.3, 12.6, 18.1, 26.0, 32.4, 40.1, 55.4, 65.9, 67.0, 72.8, 73.0, 113.9, 129.4, 130.6, 159.3. IR (film): v_{max} [cm⁻¹] = 3429, 2953, 2927, 2855, 1613, 1513, 1463, 1361, 1302, 1247, 1089, 1037, 1006, 834, 773. LRMS (ESI): m/z 1105 (8%) [3M+H⁺], 737 (7%) [2M+H⁺], 391 (10%) [M+Na⁺], 369 (100%) [M+H⁺]. HRMS (ESI): m/z 369.2455 [369.2456 berechnet für C₂₀H₃₇O₄Si⁺ (M+H⁺)].

(2R,3S)-3-(tert-Butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-2-methylpentanal (3-48)

Alkohol 3-55 (5.62 g, 15.3 mmol) wird in DMSO (31 mL) gelöst. IBX (6.41 g, 22.9 mmol, 1.5 Äq.) wird hinzugefügt und die Reaktionsmischung wird 3 h bei RT gerührt. Die Lösung

wird mit CH_2Cl_2 (310 mL) verdünnt und 15 min gerührt, bis ein weißer Feststoff ausfällt. Dieser wird abfiltriert und mit CH_2Cl_2 (2×20 mL) nachgewaschen. Das Filtrat wird mit gesättigter, wässriger NaHCO₃-Lösung (100 mL) gewaschen. Die Phasen werden getrennt und die wässrige Phase wird mit CH_2Cl_2 extrahiert (2×70 mL). Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Aldehyd 3-**48** wird als farblose Flüssigkeit isoliert (5.04 g, 13.8 mmol, 90%).

DC: $R_f = 0.50$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{D} = -26.5$ (c = 0.71 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.06 (s, 3H), 0.86 (s, 9H), 1.05 (d, J = 7.0 Hz, 3H), 1.68 – 1.89 (m, 2H), 2.47 (qdd, J = 6.9, 3.7, 0.8 Hz, 1H), 3.45 – 3.51 (m, 2H), 3.81 (s, 3H), 4.30 (ddd, J = 7.2, 5.8, 3.7 Hz, 1H), 4.37 (d, J = 11.5 Hz, 1H), 4.44 (d, J = 11.5 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 9.77 (d, J = 0.9 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.4, -4.3, 8.0, 18.2, 25.9, 34.7, 51.8, 55.4, 66.4, 69.5, 72.8, 113.9, 129.4, 130.5, 159.4, 205.3. IR (film): v_{max} [cm⁻¹] = 2952, 2929, 2856, 1709, 1613, 1514, 1464, 1362, 1302, 1249, 1173, 1094, 1037, 836, 776. HRMS (ESI): m/z 389.2117 [389.2119 berechnet für C₂₀H₃₄O₄NaSi⁺ (M+Na⁺)].

(4*R*,5*S*,6*S*)-6-(*tert*-Butyldimethylsilyloxy)-8-(4-methoxybenzyloxy)-5-methyloct-1-en-4-ol (3-57)

In einem ausgeheizten Rundkolben wird eine Allylgrignard-Lösung (1M in Et₂O, 17.9 mL, 17.9 mmol, 1.3 Äq.) mit trockenem Et₂O (41 mL) unter Argonatmosphäre verdünnt. Bei 0 °C wird Aldehyd 3-48 (5.03 g, 13.7 mmol) gelöst in trockenem Et₂O (31 mL) zugetropft. Das Reaktionsgemisch wird 2 h bei 0 °C gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (100 mL) beendet. Die Phasen werden getrennt und die wässriger Phase mit Et₂O (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Homoallylalkohol 3-57a wird als farblose Flüssigkeit isoliert (3.79 g, 9.28 mmol, 68%). Das Diastereomer des Produktes (3-57b) wird ebenfalls isoliert (1.41 g, 3.45 mmol, 25%).

Hauptdiastereomer 3-57a: **D**C: $R_f = 0.38$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{D} = -11.6$ (c = 0.96 CH₂Cl₂). ¹H **NMR** (360 MHz, CDCl₃): δ [ppm] = 0.09 (s, 6H), 0.88 (s, 9H), 0.90 (d, J = 7.0 Hz, 3H), 1.54 – 1.62 (m, 1H), 1.81 – 1.87 (m, 2H), 2.16 – 2.30 (m, 2H), 2.49 (s, 1H), 3.81 (s, 3H), 3.81 – 3.86 (m, 1H), 3.95 – 4.00 (m, 1H), 4.37 (d, J = 11.6 Hz, 1H), 4.43 (d, J = 11.6 Hz, 1H), 5.04 – 5.13 (m, 2H), 5.74 – 5.86 (m, 1H), 6.88 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H). ¹³C **NMR** (91 MHz, CDCl₃): δ [ppm] = -4.3, -3.8, 7.0, 18.2, 26.0, 34.6, 40.2, 40.5, 55.4, 66.8, 72.8, 73.4, 74.4, 113.9, 117.4, 129.3, 130.6, 135.7, 159.3. **IR** (film): v_{max} [cm⁻¹] = 3467, 2953, 2929, 2886, 2856, 1640, 1613, 1586, 1513, 1462, 1360, 1302, 1247, 1173, 1088, 1037, 1003, 912, 833, 773. **LRMS** (ESI): *m/z* 817 (1%) [2M+H⁺], 431 (14%) [M+Na⁺], 409 (100%) [M+H⁺]. **HRMS** (ESI): *m/z* 409.2769 [409.2769 berechnet für C₂₃H₄₁O₄Si⁺ (M+H⁺)].

Nebendiastereomer 3-57b: DC: $R_f = 0.24$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_D = +8.58$ (c = 0.93 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.06 (s, 3H), 0.11 (s, 3H), 0.78 (d, J = 7.0 Hz, 3H), 0.89 (s, 9H), 1.70 – 1.86 (m, 3H), 2.04 – 2.14 (m, 1H), 2.34 – 2.40 (m, 1H), 3.44 – 3.53 (m, 2H), 3.67 – 3.72 (m, 1H), 3.81 (s, 3H), 3.98 – 4.02 (m, 2H), 4.39 (d, J = 11.5 Hz, 1H), 4.44 (d, J = 11.5 Hz, 1H), 5.07 – 5.08 (m, 1H), 5.10 – 5.13 (m, 1H), 5.88 – 6.00 (m, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H).¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.8, -4.2, 13.2, 18.1, 26.0, 32.1, 39.8, 42.1, 55.4, 66.9, 72.7, 73.1, 74.2, 113.9, 117.0, 129.4, 130.7, 135.2, 159.3.

(5*S*,6*S*,7*R*)-7-Allyl-9,9-diethyl-5-(2-(4-methoxybenzyloxy)ethyl)-2,2,3,3,6-pentamethyl-4,8-dioxa-3,9-disilaundecan (3-58)

Alkohol 3-57a (3.79 g, 9.27 mmol) wird in DMF (9 mL) gelöst und Imidazol (2.53 g, 37.1 mmol, 4 Äq.) und Triethylsilylchlorid (3.11 mL, 2.80 g, 18.5 mmol, 2 Äq.) werden zugegeben. Das Reaktionsgemisch wird 1 h bei RT gerührt. Es wird mit H₂O (90 mL) und Et₂O (100 mL) verdünnt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (2×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger

NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Das Produkt 3-**58** wird als farblose Flüssigkeit isoliert (4.61 g, 8.81 mmol, 95%).

DC: $R_f = 0.20$ (P/EtOAc 98:2) [UV] [CAM]. $[\alpha]^{23}{}_{D} = -10.6$ (c = 0.88 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.04 (s, 3H), 0.60 (q, J = 8.1 Hz, 6H), 0.87 (d, J = 6.8 Hz, 3H), 0.87 (s, 9H), 0.96 (t, J = 7.9 Hz, 9H), 1.54 – 1.63 (m, 1H), 1.77 – 1.87 (m, 2H), 2.23 – 2.35 (m, 2H), 3.44 (td, J = 7.0, 1.9 Hz, 2H), 3.80 (s, 3H), 3.82 – 3.89 (m, 2H), 4.40 (s, 2H), 4.99 – 5.04 (m, 2H), 5.75 (ddt, J = 17.3, 10.2, 7.2 Hz, 1H), 6.87 (d, J = 8.7 Hz, 1H), 7.25 (d, J = 8.7 Hz, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.2, -4.1, 5.5, 7.2, 9.6, 18.3, 26.1, 34.7, 40.2, 41.5, 55.4, 66.9, 70.8, 72.0, 72.7, 113.9, 117.0, 129.3, 130.9, 135.2, 159.2. IR (film): v_{max} [cm⁻¹] = 2953, 2875, 1613, 1513, 1462, 1248, 1094, 1035, 1004, 912, 835, 773, 740. LRMS (ESI): m/z 523 (100%) [M+H⁺]. HRMS (ESI): m/z 523.3637 [523.3633 berechnet für C₂₉H₅₅O₄Si₂⁺ (M+H⁺)].

(*3R*,4*R*,5*S*)-5-(tert-butyldimethylsilyloxy)-7-(4-methoxybenzyloxy)-4-methyl-3-(triethylsilyloxy)heptanal (3-47)

Olefin 3-58 (4.59 g, 8.78 mmol) wird in einem Dioxan/H₂O-Gemisch (3:1, 88 mL) gelöst. 2,6-Lutidin (2.05 mL, 1.89 g, 17.6 mmol, 2 Äq.), NaIO₄ (7.54 g, 35.3 mmol, 4 Äq.) und OsO₄ (4% in H₂O, 1.12 mL, 0.18 mmol, 0.02 Äq.) werden hinzugefügt. Das Reaktionsgemisch wird 4 h bei RT gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NaS₂SO₃-Lösung (50 mL) abgebrochen. Das Gemisch wird mit CH₂Cl₂ (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 97:3). Das Produkt 3-47 wird als farblose Flüssigkeit isoliert (4.61 g, 8.81 mmol, 86%).

DC: $R_{\rm f} = 0.60$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -34.7$ (c = 1.01 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.04 (s, 3H), 0.60 (q, J = 7.8 Hz, 6H), 0.87 (s, 9H), 0.90 - 0.97 (m, 12H), 1.64 - 1.72 (m, 1H), 1.74 - 1.88 (m, 2H), 2.57 - 2.68 (m, 2H), 3.44 (td, 1.56) (m, 2H), 2.57 - 2.68 (m, 2H), 3.44 (td, 1.56) (m, 2H), 2.57 - 2.68 (m, 2H), 3.44 (td, 1.56) (m, 2H), 2.57 - 2.68 (m, 2H), 3.44 (td, 1.56) (m, 2H), 3.57 - 2.58 (m, 2H), 3.44 (td, 1.56) (m, 2H), 3.57 - 2.58 (m, 2H), 3.58 (m, 2H), 3.58

J = 6.6, 1.5 Hz, 2H), 3.80 (s, 3H), 3.88 (td, J = 6.1, 3.9 Hz, 1H), 4.22 – 4.27 (m, 1H), 4.40 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H), 9.78 (t, J = 2.5 Hz, 1H). ¹³C NMR (90.6 MHz, CDCl₃): δ [ppm] = -4.2, -4.0, 5.3, 7.1, 10.8, 18.2, 26.0, 34.6, 43.6, 49.7, 55.4, 66.8, 69.2, 70.5, 72.8, 113.9, 129.4, 130.7, 159.3, 202.4. IR (film): v_{max} [cm⁻¹] = 2957, 2928, 2855, 1725, 1613, 1591, 1513, 1463, 1362, 1300, 1242, 1173, 1096, 1034, 835, 775, 669. HRMS (ESI): m/z 525.3427 [525.3426 berechnet für C₂₈H₅₃O₅Si₂⁺ (M+H⁺)].

(5*R*,6*S*,7*S*,*Z*)-Methyl-7-(*tert*-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-6-methyl-5-(triethylsilyloxy)-non-2-enoat (3-64)

In einem ausgeheizten Rundkolben wird NaH (60% in Parrafinöl, 460 mg, 11.5 mmol, 1.4 Äq.) in trockenem THF (30 mL) unter Schutzgas vorgelegt. Bei 0 °C wird eine Lösung von Phosphonat 2-2 (3.02 g, 9.87 mmol, 1.2 Äq.) in trockenem THF (10 mL) zugetropft. Die Reaktionslösung wird 30 min bei 0 °C gerührt. Das Gemisch wird auf -78 °C abgekühlt und eine Lösung von Aldehyd 3-47 (4.32 g, 8.23 mmol) in trockenem THF (17 mL) wird tropfenweise zugegeben. Es wird 3 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (40 mL) abgebrochen und die Mischung wird mit Et₂O (20 mL) verdünnt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×20 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Methylester 3-64 wird als farblose Flüssigkeit isoliert (4.09 g, 7.04 mmol, 86%).

DC: $R_{\rm f} = 0.29$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -20.2$ (c = 0.58 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.04 (s, 3H), 0.60 (q, J = 7.9, 6H), 0.87 (s, 9H), 0.90 (d, J = 6.8 Hz, 3H), 0.96 (t, J = 7.9 Hz, 9H), 1.47 – 1.55 (m, 1H), 1.74 – 1.87 (m, 2H), 2.79 (dtd, J = 15.9, 6.4, 2.0 Hz, 1H), 3.10 (dddd, J = 16.0, 7.8, 4.1, 1.7 Hz, 1H), 3.39 (t, J = 6.9 Hz, 2H), 3.68 (s, 3H), 3.80 (s, 3H), 3.79 – 3.83 (m, 1H), 3.95 (td, J = 6.2, 4.3 Hz, 1H), 4.38 (s, 2H), 5.80 (dt, J = 11.6, 1.7 Hz, 1H), 6.30 (ddd, J = 11.7, 7.8, 6.6 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.23 (d, J = 8.6 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.2, -4.1, 5.4, 7.1, 9.8, 18.2, 26.0, 34.8, 42.4, 51.2, 55.4, 66.9, 70.5, 71.9, 72.7, 113.9, 120.6, 129.3, 130.8, 146.7,

159.3, 166.8. **IR** (film): v_{max} [cm⁻¹] = 2952, 2877, 2855, 1723, 1644, 1613, 1587, 1513, 1462, 1438, 1410, 1378, 1361, 1301, 1247, 1211, 1173, 1091, 1067, 1029, 1004, 834, 820, 773, 737, 724. **LRMS** (ESI): *m/z* 603 (25%) [M+Na⁺], 581 (100%) [M+H⁺], 467 (12%), 282 (7%). **HRMS** (ESI): *m/z* 581.3693 [581.3688 berechnet für C₃₁H₅₇O₆Si₂⁺ (M+H⁺)].

(5*R*,6*S*,7*S*,*Z*)-7-(*tert*-Butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-6-methyl-5-(triethylsilyloxy)non-2-en-1-ol

In einem ausgeheizten Rundkolben wird Methylester 3-64 (4.09 g, 7.03 mmol) in trockenem CH₂Cl₂ (70 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAl-H (1M in Hexan, 17.6 mL, 17.6 mmol, 2.5 Äg.) zugetropft. Die Lösung wird 30 min bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 100 mL) abgebrochen. Es wird Glycerin (3.5 mL, 0.2 mL/mmol DIBAI-H) zugegeben. Die Mischung wird mit CH₂Cl₂ (50 mL) verdünnt und weitere 30 min bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit CH_2Cl_2 (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Der korrespondierende Allylalkohol wird als farblose Flüssigkeit isoliert (3.78 g, 6.84 mmol, 97%).

DC: $R_{\rm f} = 0.27$ (P/EtOAc 90:10) [UV] [CAM]. [α]²³_D = -13.6 (c = 0.91 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.05 (s, 6H), 0.61 (q, J = 7.8 Hz, 6H), 0.87 (d, J = 6.8 Hz, 3H), 0.88 (s, 9H), 0.96 (t, J = 7.9, 9H), 1.53 – 1.62 (m, 1H), 1.69 – 1.86 (m, 2H), 2.05 (s, br, 1H), 2.19 – 2.27 (m, 1H), 2.45 (ddd, J = 13.8, 8.4, 4.3 Hz, 1H), 3.36 – 3.45 (m, 2H), 3.80 (s, 3H), 3.82 – 3.87 (m, 2H), 4.00 – 4.08 (m, 1H), 4.16 – 4.21 (m, 1H), 4.40 (s, 2H), 5.55 – 5.71 (m, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H).¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.2, -3.9, 5.4, 7.1, 9.6, 18.3, 26.0, 33.1, 35.1, 41.5, 55.4, 58.6, 66.5, 70.0, 72.4, 72.7, 113.9, 128.5, 129.6, 130.4, 130.4, 159.4. **IR** (film): v_{max} [cm⁻¹] = 3413, 2952, 2933, 2885, 1613, 1513, 1462, 1411, 1377, 1358, 1300, 1248, 1178, 1095, 1034, 1007, 936, 835, 772, 737.

Der ESI-Massenanalyse konnte kein Fragment der Verbindunge zugeordnet werden.

(5*R*,6*S*,7*S*,*Z*)-7-(*tert*-Butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-6-methyl-5-(triethylsilyloxy)non-2-enyl 2,2,2-trichloroacetimidat (3-46)

In einem ausgeheizten Rundkolben wird der oben beschriebene Allylalkohol (3.61 g, 6.53 mmol) in trockenem CH₂Cl₂ (26 mL) unter Argonatmosphäre gelöst und Trichloracetonitril (0.72 mL, 1.04 g, 7.18 mmol, 1.1 Äq.) und DBU (97.5 µL, 99.3 mg, 653 µmol, 0.1 Äq.) werden zugegeben. Die Lösung wird 2 h bei RT gerührt. Die Reaktion wird durch Zugabe von H₂O (30 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (2×20 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 97:3). Das Produkt wird als farbloses Öl isoliert (4.35 g, 6.24 mmol, 95%).

DC: $R_f = 0.35$ (P/EtOAc 97:3) [UV] [CAM]. $[\alpha]^{23}{}_{D} = -11.3$ (c = 0.96 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.03 (s, 3H), 0.60 (q, J = 7.8 Hz, 6H), 0.87 – 0.89 (m, 12H), 0.96 (t, J = 7.9 Hz, 9H), 1.53 – 1.61 (m, 1H), 1.78 – 1.84 (m, 2H), 2.32 – 2.44 (m, 2H), 3.43 (t, J = 6.9 Hz, 2H), 3.77 – 3.80 (m, 1H), 3.80 (s, 3H), 3.89 – 3.94 (m, 1H), 4.40 (s, 2H), 4.78 – 4.88 (m, 2H), 5.64 – 5.74 (m, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H), 8.30 (s, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.2, -4.1, 5.5, 7.2, 9.8, 18.2, 26.1, 33.9, 34.6, 41.9, 55.4, 65.4, 66.8, 70.9, 71.9, 72.7, 91.6, 113.9, 124.4, 129.4, 130.8, 132.1, 159.3, 162.8. IR (film): v_{max} [cm⁻¹] = 2954, 2880, 1664, 1610, 1513, 1462, 1248, 1074, 1035, 1004, 831, 797, 773, 726. LRMS (ESI): m/z 718 (3%) [M+Na⁺], 696 (2%) [M+H⁺], 670 (9%), 564 (40%), 535 (80%), 430 (14%), 403 (38%), 282 (100%). HRMS (ESI): m/z 696.2835 calculated for C₃₂H₅₇O₅NCl₃Si₂⁺ (M+H⁺)].

(3*S*,5*R*,6*R*,7*S*)-7-(*tert*-Butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-6-methyl-5-(triethylsilyloxy)non-1-en-3-yl-benzoat (3-45)

Trichloracetimidat 3-46 (1.34 g, 1.92 mmol) und Benzoesäure (702 mg, 5.75 mmol, 3 Äq.) werden in CH₂Cl₂ (1.5 mL) gelöst und (R)-(-)-COP-OAc (57.9 mg, 38.4 µmol, 2 mol%) wird zugegeben. Das Reaktionsgemisch wird geschützt vor Licht für 20 h bei RT gerührt. Die Suspension wird mit CH₂Cl₂ (20 mL) verdünnt und mit NaHCO₃ solange gewaschen, bis keine Gasentwicklung mehr zu beobachten ist (3×15 mL). Die vereinigten wässrigen Phasen werden mit CH₂Cl₂ (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Benzoat 3-45 wird als gelbes Öl isoliert (1.15 g, 1.75 mmol, 91%, *d.r.* > 99:1).

DC: $R_f = 0.18$ (P/EtOAc 98:2) [UV] [CAM]. [α]²³_D = -13.6 (c = 0.90 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.02 (s, 6H), 0.63 (q, J = 7.9, 6H), 0.83 (s, 9H), 0.89 (d, J = 6.8, 3H), 0.97 (t, J = 7.9, 9H), 1.63 – 1.70 (m, 1H), 1.77 – 1.85 (m, 2H), 1.95 – 2.08 (m, 1H), 3.29 – 3.35 (m, 1H), 3.39 – 3.49 (m, 1H), 3.78 (s, 1H), 3.83 – 3.88 (m, 1H), 4.97 – 4.02 (m, 1H), 4.18 (s, 2H), 5.20 (dt, J = 10.5, 1.0 Hz, 1H), 5.33 (dt, J = 17.2, 1.1 Hz, 1H), 5.50 – 5.44 (m, 1H), 5.89 (ddd, J = 16.9, 10.5, 6.2 Hz, 1H), 6.82 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.41 – 7.45 (m, 2H), 7.52 – 7.57 (m, 1H), 8.03 – 8.07 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.2, -4.1, 5.6, 7.2, 10.0, 18.2, 26.1, 34.7, 40.1, 41.9, 55.4, 66.5, 69.5, 70.9, 72.6, 72.8, 113.8, 116.9, 128.5, 129.3, 129.7, 130.6, 130.9, 133.1, 136.8, 159.2, 165.7. IR (film): v_{max} [cm⁻¹] = 2952, 2877, 1721, 1612, 1513, 1463, 1416, 1362, 1300, 1269, 1248, 1173, 1095, 1068, 1026, 1006, 936, 834, 773, 734, 712. LRMS (ESI): m/z 1336 (5%) [2M+Na⁺], 657 (100%) [M+H⁺], 553 (3%), 282 (6%). HRMS (ESI): m/z 657.4007 [657.4001 berechnet für C₃₇H₆₁O₆Si₂⁺ (M+Na⁺)].

(3*S*,5*R*,6*R*,7*S*)-7-(*tert*-Butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-6-methyl-5-(triethylsilyloxy)non-1-en-3-ol

In einem ausgeheizten Rundkolben wird Benzoat 3-45 (3.61 g, 5.49 mmol) in trockenem CH₂Cl₂ (55 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAl-H (1M in Hexan, 13.7 mL, 13.7 mmol, 2.5 Äq.) zugetropft. Die Lösung wird 1 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 80 mL) abgebrochen. Es wird Glycerin (2.7 mL, 0.2 mL/mmol DIBAl-H) zugegeben. Die Mischung wird mit CH₂Cl₂ (50 mL) verdünnt und weitere 30 min bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Der Allylalkohol wird als farblose Flüssigkeit isoliert (2.73 g, 4.93 mmol, 90%).

DC: $R_f = 0.55$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{D} = +6.54$ (c = 0.91 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.04 (s, 3H), 0.61 (q, J = 7.9 Hz, 6H), 0.87 (d, J =6.7 Hz, 3H), 0.87 (s, 9H), 0.96 (t, J = 7.9 Hz, 9H), 1.67 – 1.71 (m, 2H), 1.75 – 1.84 (m, 2H), 1.88 – 1.97 (m, 1H), 2.53 (d, J = 3.1 Hz, 1H), 3.41 – 3.47 (m, 1H), 3.55 – 3.62 (m, 1H), 3.80 (s, 3H), 3.85 – 3.90 (m, 1H), 4.02 (td, J = 6.5, 4.0 Hz, 1H), 4.08 – 4.17 (m, 1H), 4.41 (s, 2H), 5.04 (dt, J = 10.4, 1.4 Hz, 1H), 5.19 (dt, J = 17.2, 1.5 Hz, 1H), 5.83 (ddd, J = 17.1, 10.4, 5.6 Hz, 1H), 6.87 (d, J = 8.6 Hz, 2H), 7.25 (d, J = 6.7 Hz, 3H).¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.2, -3.9, 5.5, 7.1, 10.1, 18.3, 26.1, 34.6, 41.5, 41.9, 55.4, 66.2, 70.3, 70.8, 71.4, 72.8, 113.8, 113.9, 129.6, 130.5, 141.4, 159.3. IR (film): v_{max} [cm⁻¹] = 3486, 2953, 2934, 2877, 2855, 1613, 1513, 1462, 1416, 1382, 1362, 1300, 1248, 1173, 1094, 1037, 1004, 834, 773, 740. LRMS (ESI): m/z 575 (26%) [M+Na⁺], 553 (100%) [M+H⁺], 421 (14%). HRMS (ESI): m/z 553.3745 [553.3739 berechnet für C₃₀H₅₇O₅Si₂⁺ (M+H⁺)].

(5*S*,6*R*,7*R*,9*S*)-5-(2-(4-Methoxybenzyloxy)ethyl)-2,2,3,3,6,11,11,12,12-nonamethyl-7-(triethylsilyloxy)-9-vinyl-4,10-dioxa-3,11-disilatridecan (3-65)

Der oben beschriebene Allylalkohol (2.33 g, 4.21 mmol) wird in DMF gelöst (4 mL) und TBSCl (1.27 g, 8.41 mmol, 2 Äq.) und Imidazol (1.15 g, 16.8 mmol, 4 Äq.) werden zugegeben. Die Lösung wird 1 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (40 mL) versetzt und mit Et₂O (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und Rückstand der säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Silvlether 3-65 wird als farblose Flüssigkeit isoliert (2.67 g, 4.01 mmol, 95%).

DC: $R_f = 0.66$ (P/EtOAc 95:5) [UV] [CAM]. [α]²³_D = +5.94 (c = 0.84 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (d, J = 0.9, 9H), 0.05 (s, 3H), 0.58 (q, J = 7.7 Hz, 6H), 0.84 (d, J = 6.9 Hz, 3H), 0.87 (s, 9H), 0.89 (s, 9H), 0.95 (t, J = 7.7 Hz, 9H), 1.61 – 1.95 (m, 2H), 3.48 (t, J = 7.3 Hz, 2H), 3.80 (s, 3H), 3.77 – 3.86 (m, 2H), 4.14 – 4.21 (q, J = 6.5 Hz, 1H), 4.40 (s, 2H), 5.04 (ddd, J = 10.3, 1.7, 1.0 Hz, 1H), 5.14 (ddd, J = 17.2, 1.6, 1.2 Hz, 1H), 5.79 (ddd, J = 17.0, 10.3, 6.6 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.6 Hz, 3H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.0, -4.0, -3.9, 5.7, 7.2, 10.5, 18.3, 26.1, 26.2, 35.3, 43.2, 43.9, 55.4, 66.8, 70.4, 70.7, 71.7, 72.8, 113.9, 114.4, 129.4, 131.0, 141.8, 159.2. IR (film): v_{max} [cm⁻¹] = 2953, 2928, 2879, 2855, 1615, 1514, 1463, 1416, 1361, 1300, 1249, 1173, 1092, 1038, 1005, 938, 923, 833, 773, 732. LRMS (ESI): m/z 667 (100%) [M+H⁺], 553 (25%), 403 (10%), 282 (4%). HRMS (ESI): m/z 667.4614 [667.4604 berechnet für C₃₆H₇₁O₅Si₃⁺ (M+H⁺)].

(*3R*,5R,6*R*,7*S*)-3,7-Bis(*tert*-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-6-methyl-5-(triethylsilyloxy)nonan-1-ol (3-66)

In einem ausgeheizten Rundkolben wird Silylether 3-**65** (2.67 g, 4.00 mmol) in trockenem THF (40 mL) unter Argonatmosphäre gelöst. Bei 0 °C wird 9-BBN (0.5M in THF, 24.0 mL, 12.0 mmol, 3 Äq.) zugetropft. Die Lösung wird 15 min bei 0 °C gerührt und weiter 15 h bei RT. Das Reaktionsgemisch wird erneut auf 0 °C abgekühlt und es werden NaOH (3M in H₂O, 4.00 mL 12.0 mmol, 3 Äq.) und H₂O₂ (35% in H₂O, 4.00 mL) zugegeben. Es wird 15 min bei 0 °C und 4 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (50 mL) versetzt und mit Et₂O (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Alkohol 3-**66** wird als farblose Flüssigkeit isoliert (2.58 g, 3.77 mmol, 94%).

DC: $R_f = 0.33$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{D} = +11.9$ (c = 0.82 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.09 (s, 3H), 0.58 (q, J = 7.8 Hz, 6H), 0.84 – 0.87 (m, 12H), 0.88 (s, 9H), 0.95 (t, J = 7.8 Hz, 9H), 1.54 – 1.73 (m, 4H), 1.77 – 1.96 (m, 4H), 2.50 (t, J = 3.7 Hz, 1H), 3.46 (t, J = 6.9 Hz, 2H), 3.67 – 3.74 (m, 2H), 3.80 (s, 3H), 3.80 – 3.88 (m, 2H), 3.98 – 4.08 (m, 1H), 4.40 (s, 1H), 6.87 (d, J = 8.7, 2H), 7.24 (d, J = 8.2, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.6, -4.1, -4.0, -3.8, 5.6, 7.2, 11.2, 18.0, 18.3, 26.0, 26.1, 35.4, 37.6, 42.3, 43.8, 55.4, 60.4, 66.8, 69.7, 70.4, 71.3, 72.8, 113.9, 129.4, 130.8, 159.3. IR (film): v_{max} [cm⁻¹] = 3457, 2952, 2929, 2879, 2856, 1615, 1591, 1514, 1463, 1411, 1382, 1362, 1300, 1249, 1173, 1097, 1038, 1005, 936, 834, 773, 740. LRMS (ESI): m/z 1371 [2M+H⁺] (1%), 1278 (1%) [2M-TBS+Na⁺], 1256 (1%) [2M-TBS+H⁺], 707 (26%) [M+Na⁺], 685 (100%) [M+H⁺], 593 (21%), 571 (28%), 553 (6%). HRMS (ESI): m/z 685.4707 [685.4710 berechnet für C₃₆H₇₃O₆Si₃⁺ (M+H⁺)]. (3*S*,5*R*,6*R*,7*S*)-3,7-Bis(*tert*-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-6-methyl-5-(triethylsilyloxy)nonanal

Alkohol 3-66 (2.47 g, 3.61 mmol) wird in einem DMSO/THF-Gemisch (1:1, 7 mL) gelöst und IBX (1.52 g, 5.41 mmol, 1.5 Äq.) wird hinzugefügt. Die Reaktionsmischung wird für 4 h bei RT gerührt. Die Lösung wird mit CH₂Cl₂ (70 mL) verdünnt und 30 min gerührt bis sich ein weißer Niederschlag bildet. Der Feststoff wird abfiltriert und das Filtrat mit gesättigter, wässriger NaHCO₃-Lösung (50 mL) gewaschen. Die Phasen werden getrennt und die wässrige Phase wird mit CH₂Cl₂ (2×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das vermindertem Druck Lösungsmittel wird unter entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Das Produkt wird als farblose Flüssigkeit isoliert (2.22 g, 3.25 mmol, 90%).

DC: $R_f = 0.50$ (P/EtOAc 95:5) [CAM]. $[\alpha]^{23}{}_{D} = +5.65$ (c = 0.87 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.04 (s, 6H), 0.05 (s, 3H), 0.07 (s, 3H), 0.59 (q, J = 7.9 Hz, 6H), 0.85 – 0.87 (m, 21H), 0.96 (t, J = 7.9 Hz, 9H), 1.58 – 1.67 (m, 1H), 1.77 – 1.91 (m, 4H), 2.46 (ddd, J = 15.7, 7.0, 3.0 Hz, 1H), 2.62 (ddd, J = 15.7, 4.1, 1.9 Hz, 1H), 3.46 (t, J = 6.9, 2H), 3.74 – 3.78 (m, 1H), 3.80 (s, 3H), 3.84 – 3.89 (m, 1H), 4.25 – 4.32 (m, 1H), 4.41 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H), 9.78 (dd, J = 2.9, 2.0 Hz, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.1, -4.0, -3.8, 5.6, 7.2, 10.8, 18.0, 18.3, 25.9, 26.1, 35.4, 43.1, 43.2, 50.8, 55.4, 66.0, 66.7, 70.3, 71.0, 72.8, 113.9, 129.4, 130.8, 159.3, 202.4. IR (film): v_{max} [cm⁻¹] = 2953, 2930, 2879, 2856, 1727, 1615, 1514, 1463, 1361, 1300, 1249, 1169, 1091, 1037, 1005, 834, 773, 741. LRMS (ESI): m/z 737 (34%), 721 (57%) [M+K⁺], 699 (63%), 683 (100%) [M+H⁺]. HRMS (ESI): m/z 683.4542 [683.4553 berechnet für C₃₆H₇₁O₆Si₃⁺ (M+H⁺)].

(5*R*,7*R*,8*R*,9*S*,*Z*)-Methyl-5,9-bis(*tert*-butyldimethylsilyloxy)-11-(4-methoxybenzyloxy)-8methyl-7-(triethylsilyloxy)undec-2-enoat (3-67)

In einem ausgeheizten Rundkolben wird NaH (60% in Paraffinöl, 183 mg, 4.57 mmol, 1.4 Äq.) in trockenem THF (10 mL) unter Argonatmosphäre vorgelegt. Bei 0 °C wird eine Lösung von Phosphonat 2-2 (1.20 g, 3.91 mmol, 1.2 Äq.) in trockenem THF (6 mL) zugetropft. Die Reaktionslösung wird 30 min bei 0 °C gerührt. Das Gemisch wird auf -78 °C abgekühlt und eine Lösung von oben beschriebenem Aldehyd (2.23 g, 3.26 mmol) in trockenem THF (6.5 mL) wird tropfenweise zugegeben. Es wird 3 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (20 mL) abgebrochen und die Mischung wird mit Et₂O (20 mL) verdünnt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×20 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das wird vermindertem entfernt Lösungsmittel unter Druck und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Methylester 3-67 wird als farblose Flüssigkeit isoliert (2.15 g, 2.91 mmol, 89%).

DC: *R*f = 0.57 (P/EtOAc 95:5) [UV] [CAM]. [α]²³_D = -11.8 (*c* = 1.21 CH₂Cl₂). ¹H NMR (250 MHz, CDCl3): δ [ppm] = 0.03 (s, 6H), 0.05 (s, 3H), 0.06 (s, 3H), 0.58 (q, *J* = 7.9 Hz, 6H), 0.82 (d, *J* = 6.9 Hz, 3H), 0.87 (s, 9H), 0.88 (s, 9H), 0.95 (t, *J* = 7.9 Hz, 9H), 1.54 – 1.75 (m, 3H), 1.77 – 1.95 (m, 2H), 2.72 – 2.84 (m, 1H), 2.90 – 3.02 (m, 1H), 3.47 (t, *J* = 7.2 Hz, 2H), 3.69 (s, 3H), 3.80 (s, 3H), 3.74 – 3.95 (m, 3H), 4.40 (s, 2H), 5.86 (dt, *J* = 11.7, 1.7 Hz, 1H), 6.38 (ddd, *J* = 11.6, 7.8, 6.4 Hz, 1H), 6.86 (d, *J* = 8.7 Hz 2H), 7.25 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (63 MHz, CDCl3): δ [ppm] = -4.3, -4.2, -4.0, -3.9, 5.5, 7.2, 10.9, 18.1, 18.3, 26.0, 26.2, 35.5, 36.2, 42.3, 43.4, 51.1, 55.4, 66.8, 68.7, 70.4, 70.9, 72.7, 113.9, 120.8, 129.3, 130.9, 146.8, 159.2, 166.9. IR (film): v_{max} [cm⁻¹] = 2952, 2930, 2876, 2856, 1724, 1649, 1610, 1514, 1463, 1438, 1411, 1358, 1300, 1249, 1196, 1173, 1095, 1037, 1005, 832, 773, 739, 726. LRMS (ESI): *m*/z 761 (55%) [M+Na⁺], 757 (21%), 739 (100%) [M+H⁺], 647 (22%) [M-TBS+Na⁺], 625 (31%) [M-TBS+H⁺]. HRMS (ESI): *m*/z 761.4630 [761.4635 berechnet für C₃₉H₇₄O₇NaSi₃⁺ (M+Na⁺)].

(5*R*,7*R*,8*R*,9*S*,*Z*)-5,9-Bis(*tert*-butyldimethylsilyloxy)-11-(4-methoxybenzyloxy)-8-methyl-7-(triethylsilyloxy)undec-2-en-1-ol

In einem ausgeheizten Rundkolben wird Methylester 3-67 (2.15 g, 2.91 mmol) in trockenem CH₂Cl₂ (29 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAl-H (1M in Hexan, 7.27 mL, 7.27 mmol, 2.5 Äg.) zugetropft. Die Lösung wird 30 min bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 30 mL) abgebrochen. Es wird Glycerin (1.45 mL, 0.2 mL/mmol DIBAl-H) zugegeben. Die Mischung wird mit CH₂Cl₂ (30 mL) verdünnt und weitere 30 min bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×20 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem entfernt Druck und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Der Allylalkohol wird als farblose Flüssigkeit isoliert (1.96 g, 2.75 mmol, 95%).

DC: $R_{\rm f} = 0.30$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -2.24$ (c = 0.94 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.03 (s, 6H), 0.05 (s, 3H), 0.06 (s, 3H), 0.58 (q, J = 7.8 Hz, 6H), 0.83 – 0.87 (m, 12H), 0.88 (s, 9H), 0.96 (t, J = 7.8, 9H), 1.53 – 1.77 (m, 4H), 1.80 – 1.90 (m, 2H), 2.20 – 2.34 (m, 2H), 3.48 (t, J = 7.1 Hz, 2H), 3.74 – 3.85 (m, 3H), 3.80 (s, 3H), 4.08 – 4.23 (m, 2H), 4.41 (s, 2H), 5.52 – 5.63 (m, 1H), 5.68 – 5.78 (m, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 3H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.2, -4.1, -4.0, -3.9, 5.6, 7.2, 11.1, 18.2, 18.3, 26.1, 26.1, 35.0, 35.2, 42.8, 43.6, 55.4, 58.8, 66.7, 69.3, 70.7, 70.9, 72.8, 113.9, 129.1, 129.4, 130.7, 130.8, 159.3. IR (film): v_{max} [cm⁻¹] = 3418, 2953, 2933, 2880, 2856, 1610, 1514, 1463, 1411, 1361, 1300, 1249, 1173, 1097, 1037, 1004, 832, 773, 739. LRMS (ESI): m/z 733 (38%) [M+Na⁺], 729 (6%), 711 (100%) [M+H⁺], 619 (2%) [M-TBS+Na⁺], 597 (6%) [M-TBS+H⁺], 579 (7%) [M-TBSOH+H⁺]. HRMS (ESI): m/z 711.4861 [711.4866 berechnet für C₃₈H₇₅O₆Si₃⁺ (M+H⁺)].

(5*R*,7*R*,8*R*,9*S*,*Z*)-5,9-Bis(*tert*-butyldimethylsilyloxy)-11-(4-methoxybenzyloxy)-8-methyl-7-(triethylsilyloxy)undec-2-enyl 2,2,2-trichloroacetimidat (3-68)

In einem ausgeheizten Rundkolben wird der oben beschriebene Allylalkohol (1.96 g, trockenem CH₂Cl₂ (11 mL) unter Argonatmosphäre gelöst und 2.75 mmol) in Trichloracetonitril (331 µL, 477 mg, 3.31 mmol, 1.2 Äg.) und DBU (41.3 µL, 41.0 mg, 276 µmol, 0.1 Äq.) werden zugegeben. Die Lösung wird 2 h bei RT gerührt. Die Reaktion wird durch Zugabe von H₂O (20 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (2×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 96:4). Das Produkt wird als farbloses Öl isoliert (2.26 g, 2.64 mmol, 96%).

DC: $R_f = 0.29$ (P/EtOAc 97:3) [UV] [CAM]. $[\alpha]^{23}{}_{D} = -6.34$ (c = 1.10 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.04 (s, 6H), 0.05 (s, 3H), 0.06 (s, 3H), 0.58 (q, J = 7.9, 6H), 0.84 (d, J = 6.9 Hz, 3H), 0.87 (s, 9H), 0.88 (s, 9H), 0.95 (t, J = 7.9 Hz, 9H), 1.59 – 1.67 (m, 2H), 1.69 – 1.77 (m, 1H), 1.79 – 1.94 (m, 2H), 2.22 – 2.31 (m, 1H), 2.33 – 2.41 (m, 1H), 3.49 (t, J = 7.1, 1H), 3.79 – 3.85 (m, 3H), 3.80 (s, 3H), 4.39 (d, J = 11.6 Hz, 1H), 4.42 (d, J = 11.6 Hz, 1H), 4.80 – 4.89 (m, 2H), 5.71 – 5.80 (m, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 9.5 Hz, 2H), 8.30 (s, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.1, -4.1, -4.0, -3.9, 5.6, 7.2, 10.8, 18.1, 18.3, 26.0, 26.2, 35.4, 35.5, 42.6, 43.3, 55.4, 65.6, 66.8, 69.2, 70.6, 70.8, 72.8, 91.7, 113.9, 124.6, 129.4, 130.9, 132.1, 159.2, 162.8. IR (film): v_{max} [cm⁻¹] = 2953, 2931, 2879, 2856, 1664, 1615, 1513, 1462, 1361, 1291, 1249, 1074, 1039, 1004, 830, 797, 772, 738.

(3*S*,5*R*,7*R*,8*R*,9*S*)-5,9-Bis(*tert*-butyldimethylsilyloxy)-11-(4-methoxybenzyloxy)-8-methyl-7-(triethylsilyloxy)undec-1-en-3-yl-benzoat (3-44)

Trichloracetimidat 3-68 (2.26 g, 2.64 mmol) und Benzoesäure (968 mg, 7.92 mmol, 3 Äq.) werden in CH₂Cl₂ (2 mL) gelöst und (R)-(-)-COP-OAc (79.9 mg, 52.8 µmol, 2 mol%) wird zugegeben. Das Reaktionsgemisch wird geschützt vor Licht für 20 h bei RT gerührt. Die Suspension wird mit CH₂Cl₂ (20 mL) verdünnt und mit NaHCO₃ solange gewaschen, bis keine Gasentwicklung mehr zu beobachten ist (3×15 mL). Die vereinigten wässrigen Phasen werden mit CH₂Cl₂ (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO4 getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und Rückstand der säulenchromatographisch aufgereinigt (P/EtOAc 97:3). Benzoat 3-44 wird als gelbes Öl isoliert (2.08 g, 2.55 mmol, 97%, d.r. >99:1).

DC: $R_f = 0.32$ (P/EtOAc 97:3) [UV] [CAM]. [α]²³_D = +7.08 (c = 0.90 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.00 (s, 3H), 0.01 (s, 3H), 0.08 (s, 3H), 0.10 (s, 3H), 0.57 (q, J = 7.9 Hz, 6H), 0.83 (d, J = 7.0 Hz, 3H), 0.84 (s, 9H), 0.91 – 0.95 (m, 18H), 1.53 – 1.59 (m, 1H), 1.65 – 1.72 (m, 1H), 1.75 – 1.91 (m, 3H), 1.95 – 1.98 (m, 2H), 3.45 (t, J = 7.2 Hz, 2H), 3.76 – 3.80 (m, 2H), 3.79 (s, 3H), 3.83 – 3.89 (m, 2H), 4.35 (d, J = 11.4 Hz, 1H), 4.39 (d, J = 11.6 Hz, 1H), 5.22 (dt, J = 10.7, 1.1 Hz, 1H), 5.36 (dt, J = 17.2, 1.1 Hz, 1H), 5.62 – 4.68 (m, 1H), 5.90 (ddd, J = 17.0, 10.5, 6.4 Hz, 1H), 6.85 (d, J = 8.6 Hz, 2H), 7.23 (d, J = 8.5 Hz, 2H), 7.40 – 7.45 (m, 2H), 7.52 – 7.57 (m, 1H), 8.04 – 8.06 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.2, -4.1, 5.6, 7.2, 10.0, 18.2, 26.1, 34.7, 40.1, 41.9, 55.4, 66.5, 69.5, 70.9, 72.6, 72.8, 113.8, 116.9, 128.5, 129.3, 129.7, 130.6, 130.9, 133.1, 136.8, 159.2, 165.7. IR (film): v_{max} [cm⁻¹] = 2952, 2933, 2885, 2861, 1722, 1613, 1514, 1463, 1417, 1361, 1268, 1248, 1173, 1095, 1068, 1030, 1005, 937, 833, 772, 711. LRMS (ESI): *m/z* 837.4951 [837.4948 berechnet für C₄×H₇₈O₇NaSi₃⁺ (M+Na⁺)].

(3*S*,5*R*,7*R*,8*R*,9*S*)-5,9-Bis(*tert*-butyldimethylsilyloxy)-11-(4-methoxybenzyloxy)-8-methyl-7-(triethylsilyloxy)undec-1-en-3-ol

In einem ausgeheizten Rundkolben wird Benzoat 3-44 (1.89 g, 2.32 mmol) in trockenem CH₂Cl₂ (23 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAl-H (1M in Hexan, 5.80 mL, 5.80 mmol, 2.5 Äq.) zugetropft. Die Lösung wird 1 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 30 mL) abgebrochen. Es wird Glycerin (1.2 mL, 0.2 mL/mmol DIBAl-H) zugegeben. Die Mischung wird mit CH₂Cl₂ (30 mL) verdünnt und weitere 30 min bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Das Produkt wird als farblose Flüssigkeit isoliert (1.58 g, 2.22 mmol, 96%).

DC: $R_f = 0.28$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_{D} = +17.4$ (c = 0.97 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.04 (s, 3H), 0.12 (s, 3H), 0.12 (s, 3H), 0.59 (q, J = 7.7 Hz, 6H), 0.84 – 0.87 (m, 12H), 0.90 (s, 9H), 0.96 (t, J = 7.7 Hz, 9H), 1.43 – 1.64 (m, 3H), 1.66 – 1.75 (m, 2H), 1.77 – 1.92 (m, 3H), 3.31 (s, br, 1H), 3.47 (t, J = 6.9 Hz, 2H), 3.69 – 3.76 (m, 1H), 3.78 – 3.85 (m, 1H), 3.80 (s, 3H), 3.98 – 4.08 (m, 1H), 4.24 – 4.32 (m, 1H), 4.40 (s, 2H), 5.05 – 5.11 (m, 1H), 5.26 (dt, J = 17.2, 1.5 Hz, 1H), 5.85 (ddd, J = 17.2, 10.4, 5.7 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.6 Hz, 3H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.4, -4.0, -3.9, -3.6, 5.7, 7.3, 11.4, 18.0, 18.3, 26.0, 26.1, 35.3, 43.5, 44.1, 55.4, 66.7, 70.6, 70.9, 71.3, 72.3, 72.8, 113.9, 114.1, 129.4, 130.8, 141.0, 159.3. IR (film): v_{max} [cm⁻¹] = 3452, 2952, 2938, 2878, 2855, 1605, 1586, 1514, 1463, 1411, 1382, 1362, 1300, 1249, 1173, 1096, 1038, 1005, 941, 917, 887, 834, 773, 734. LRMS (ESI): m/z 733 (53%) [M+Na⁺], 729 (8%), 711 (100%) [M+H⁺], 619 (1%) [M-TBS+Na⁺], 597 (10%) [M-TBS+H⁺], 579 (28%) [M-TBSOH+H⁺]. HRMS (ESI): m/z 711.4861 [711.4866 berechnet für C₃₈H₇₅O₆Si₃⁺ (M+H⁺)].

(5*S*,6*R*,7*R*,9*R*,11*S*)-9-(tert-butyldimethylsilyloxy)-5-(2-(4-methoxybenzyloxy)ethyl)-2,2,3,3,6,13,13,14,14-nonamethyl-7-(triethylsilyloxy)-11-vinyl-4,12-dioxa-3,13disilapentadecan (3-69)

Der oben beschriebene Allylalkohol (181 mg, 254 µmol) wird in DMF gelöst (260 µL) und TBSCl (77.0 mg, 509 µmol, 2 Äq.) und Imidazol (69.5 mg, 1.02 mmol, 4 Äq.) werden zugegeben. Die Lösung wird 2.5 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (15 mL) versetzt und mit Et₂O (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Silvlether 3-69 wird als farblose Flüssigkeit isoliert (208 mg, 252 µmol, 99%).

DC: $R_f = 0.31$ (P/EtOAc 98:2) [UV] [CAM]. [α]²³_D = +9.64 (c = 0.86 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.03 (s, 6H), 0.04 (s, 3H), 0.05 (s, 6H), 0.07 (s, 3H), 0.58 (q, J = 7.7 Hz, 6H), 0.84 – 0.87 (m, 12H), 0.89 (s, 9H), 0.89 (s, 9H), 0.95 (t, J = 7.7 Hz, 9H), 1.54 – 1.97 (m, 7H), 3.48 (t, J = 7.3 Hz, 2H), 3.72 – 3.84 (m, 3H), 3.80 (s, 3H), 4.22 – 4.30 (m, 1H), 4.38 (d, J = 11.7 Hz, 1H), 4.43 (d, J = 11.7 Hz, 1H), 5.06 (ddd, J = 10.3, 1.8, 1.0 Hz, 1H), 5.18 (ddd, J = 17.0, 1.6, 1.2 Hz, 1H), 5.82 (ddd, J = 17.0, 10.3, 6.5 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.6 Hz, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.7, -4.1, -4.0, -4.0, -3.9, -3.6, 5.7, 7.2, 11.0, 18.1, 18.3, 18.4, 26.1, 26.1, 26.2, 35.3, 43.3, 43.7, 46.5, 55.4, 66.8, 67.2, 70.4, 71.0, 71.5, 72.8, 76.7, 77.2, 77.7, 113.9, 114.4, 129.3, 131.0, 141.5, 159.2. IR (film): v_{max} [cm⁻¹] = 2955, 2929, 2882, 2857, 1615, 1586, 1514, 1463, 1411, 1387, 1361, 1300, 1249, 1173, 1095, 1039, 1005, 834, 773, 735, 679, 669. LRMS (ESI): *m/z* 826 (100%) [M+H⁺], 711 (76%) [M-TBS+H⁺], 561 (12%), 429 (11%). HRMS (ESI): *m/z* 825.5725 [825.5731 berechnet für C₄₄H₈₉O₆Si₄⁺ (M+H⁺)].

(*3R*,5*R*,7*R*,8*R*,9*S*)-3,5,9-Tris(*tert*-butyldimethylsilyloxy)-11-(4-methoxybenzyloxy)-8-methyl-7-(triethylsilyloxy)undecan-1-ol

In einem ausgeheizten Rundkolben wird Silylether 3-69 (1.68 g, 2.04 mmol) in trockenem THF (20 mL) unter Argonatmosphäre gelöst. Bei 0 °C wird 9-BBN (0.5M in THF, 12.2 mL, 6.11 mmol, 3 Äq.) zugetropft. Die Lösung wird 15 min bei 0 °C gerührt und weiter 15 h bei RT. Das Reaktionsgemisch wird erneut auf 0 °C abgekühlt und es werden NaOH (3M in H₂O, 2.04 mL, 6.11 mmol, 3 Äq.) und H₂O₂ (35% in H₂O, 2.04 mL) zugegeben. Es wird 15 min bei 0 °C und 4 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (30 mL) versetzt und mit Et₂O (3×20 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5 \rightarrow 93:7). Der Alkohol wird als farblose Flüssigkeit isoliert (1.57 g, 1.86 mmol, 91%).

DC: $R_{\rm f} = 0.37$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = +18.2$ (c = 1.19 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.02 (s, 3H), 0.04 (s, 6H), 0.06 (s, 3H), 0.09 (s, 3H), 0.10 (s, 3H), 0.59 (q, J = 7.9 Hz, 6H), 0.85 – 0.87 (m, 12H), 0.88 (s, 9H), 0.89 (s, 9H), 0.96 (t, J = 7.9 Hz, 9H), 1.54 – 1.65 (m, 3H), 1.68 – 1.72 (m, 2H), 1.79 – 1.92 (m, 4H), 2.62 (s, br, 1H), 3.46 (t, J = 7.0 Hz, 2H), 3.69 – 3.77 (m, 3H), 3.80 (s, 3H), 3.80 – 3.86 (m, 2H), 4.10 – 4.16 (m, 1H), 4.40 (s, 2H), 6.86 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.6 Hz, 3H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.6, -4.2, -4.1, -3.9, -3.8, -3.7, 5.7, 7.2, 11.0, 18.1, 18.1, 18.3, 26.0, 26.1, 26.2, 35.6, 37.6, 43.5, 44.0, 45.1, 55.4, 60.5, 66.8, 67.5, 69.7, 70.6, 71.1, 72.8, 113.9, 129.3, 130.9, 159.3 IR (film): v_{max} [cm⁻¹] = 3471, 2954, 2929, 2880, 2856, 1610, 1514, 1463, 1411, 1367, 1305, 1249, 1178, 1095, 1037, 1005, 936, 833, 772, 735, 723, 674. LRMS (ESI): m/z 866 (24%) [M+Na⁺], 861 (9%), 844 (100%) [M+H⁺], 730 (21%) [M-TBS+H⁺], 712 (6%) [M-TBSOH+H⁺]. HRMS (ESI): m/z 843.5830 [843.5836 berechnet für C₄₄H₉₁O₇Si₄⁺ (M+H⁺)].

(3*S*,5*R*,7*R*,8*R*,9*S*)-3,5,9-Tris(*tert*-butyldimethylsilyloxy)-11-(4-methoxybenzyloxy)-8methyl-7-(triethylsilyloxy)undecanal (3-70)

Der oben beschriebene Alkohol (1.46 g, 1.73 mmol) wird in einem DMSO/THF-Gemisch (1:1, 7 mL) gelöst und IBX (1.07 g, 3.80 mmol, 2.2 Äq.) wird hinzugefügt. Die Reaktionsmischung wird für 3.5 h bei RT gerührt. Die Lösung wird mit CH_2Cl_2 (70 mL) verdünnt und 30 min gerührt bis sich ein weißer Niederschlag bildet. Der Feststoff wird abfiltriert und das Filtrat mit gesättigter, wässriger NaHCO₃-Lösung (50 mL) gewaschen. Die Phasen werden getrennt und die wässrige Phase wird mit CH_2Cl_2 (2×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Aldehyd 3-70 wird als farblose Flüssigkeit isoliert (1.34 g, 1.59 mmol, 92%).

DC: $R_{\rm f} = 0.58$ (P/EtOAc 95:5) [CAM]. $[\alpha]^{23}{}_{\rm D} = +14.6$ (c = 0.92 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.04 (s, 3H), 0.04 (s, 3H), 0.05 (s, 3H), 0.06 (s, 3H), 0.08 (s, 3H), 0.59 (q, J = 7.9 Hz, 6H), 0.86 – 0.89 (m, 30H), 0.96 (t, J = 7.9 Hz, 9H), 1.56 – 1.61 (m, 1H), 1.70 – 1.77 (m, 3H), 1.78 – 1.91 (m, 3H), 2.44 (ddd, J = 15.4, 7.6, 3.3 Hz, 1H), 2.57 (ddd, J = 15.3, 3.5, 1.8 Hz, 1H), 3.47 (t, J = 7.0 Hz, 2H), 3.72 – 3.77 (m, 2H), 3.80 (s, 3H), 3.82 – 3.85 (m, 1H), 4.37 – 4.43 (m, 3H), 6.86 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 9.80 (dd, J = 3.1, 1.8 Hz, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.6, -4.3, -4.1, -3.9, -3.8, -3.7, 5.6, 7.3, 11.0, 18.1, 18.3, 25.9, 26.0, 26.1, 35.6, 43.4, 43.7, 45.7, 50.3, 55.4, 66.0, 66.7, 67.2, 70.4, 71.0, 72.8, 113.9, 129.3, 130.8, 159.2, 202.3. IR (film): v_{max} [cm⁻¹] = 2952, 2928, 2883, 2856, 2328, 1728, 1610, 1586, 1513, 1463, 1406, 1361, 1305, 1250, 1169, 1092, 1037, 1006, 834, 773, 760, 736.

(5*R*,7*R*,9*R*,10*R*,11*S*,*Z*)-Methyl-5,7,11-tris(*tert*-butyldimethylsilyloxy)-13-(4-methoxy-benzyloxy)-10-methyl-9-(triethylsilyloxy)tridec-2-enoat (3-71)

In einem ausgeheizten Rundkolben wird NaH (60% in Paraffinöl, 96.3 mg, 2.41 mmol, 1.4 Äq.) in trockenem THF (5 mL) unter Schutzgas vorgelegt. Bei 0 °C wird eine Lösung von Phosphonat 2-2 (631 mg, 2.06 mmol, 1.2 Äq.) in trockenem THF (3.5 mL) zugetropft. Die Reaktionslösung wird 30 min bei 0 °C gerührt. Das Gemisch wird auf -78 °C abgekühlt und eine Lösung von Aldehyd 3-70 (1.40 g, 1.66 mmol) in trockenem THF (3.5 mL) wird tropfenweise zugegeben. Es wird 4 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (20 mL) abgebrochen und die Mischung wird mit Et₂O (20 mL) verdünnt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1). Methylester 3-71 wird als farblose Flüssigkeit isoliert (1.30 g, 1.45 mmol, 87%).

DC: *R*f = 0.64 (P/EtOAc 95:5) [UV] [CAM]. [α]²³_D = -2.97 (*c* = 0.84 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 6H), 0.04 (s, 3H), 0.05 (s, 32H), 0.06 (s, 3H), 0.06 (s, 3H), 0.58 (q, *J* = 7.9 Hz, 6H), 0.85 – 0.87 (m, 12H), 0.87 (s, 18H), 0.94 (t, *J* = 7.9 Hz, 9H), 1.55 – 1.65 (m, 3H), 1.68 – 1.94 (m, 4H), 2.78 – 2.95 (m, 2H), 3.45 – 3.51 (m, 2H), 3.69 (s, 3H), 3.74 – 3.84 (m, 3H), 3.80 (s, 3H), 3.94 – 4.01 (m, 1H), 4.38 (d, *J* = 11.5 Hz, 1H), 4.42 (d, *J* = 11.5 Hz, 1H), 5.87 (dt, *J* = 11.7, 1.6 Hz, 1H), 6.38 (dt, *J* = 11.7, 6.9 Hz, 1H), 6.86 (d, *J* = 8.7 Hz, 2H), 7.24 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.3, -4.3, -4.2, -3.9, -3.9, -3.8, 5.7, 7.2, 10.8, 18.1, 18.2, 18.3, 26.0, 26.1, 26.2, 35.5, 36.1, 43.3, 43.8, 45.5, 51.1, 55.4, 66.8, 67.3, 68.7, 70.4, 70.9, 72.8, 113.9, 120.8, 129.3, 131.1, 146.7, 159.3, 166.8. IR (film): v_{max} [cm⁻¹] = 2952, 2929, 2886, 2856, 1725, 1644, 1610, 1514, 1462, 1438, 1408, 1382, 1361, 1300, 1250, 1193, 1173, 1098, 1038, 1005, 833, 773, 740, 725, 669. LRMS (ESI): *m/z* 934 (7%), 920 (100%) [M+Na⁺], 915 (21%), 898 (73%) [M+H⁺], 841 (9%), 783 (19%), 633 (11%), 501 (13%). HRMS (ESI): *m/z* 919.5763 [919.5762 berechnet für C₄₇H₉₂O₈NaSi₄⁺ (M+Na⁺)].

(5*R*,7*R*,9*R*,10*R*,11*S*,*Z*)-5,7,11-Tris(*tert*-butyldimethylsilyloxy)-13-(4-methoxybenzyloxy)-10-methyl-9-(triethylsilyloxy)tridec-2-en-1-ol

In einem ausgeheizten Rundkolben wird Methylester 3-71 (1.30 g, 1.45 mmol) in trockenem CH₂Cl₂ (14.5 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAl-H (1M in Hexan, 3.62 mL, 3.62 mmol, 2.5 Äg.) zugetropft. Die Lösung wird 30 min bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 20 mL) abgebrochen. Es wird Glycerin (0.72 mL, 0.2 mL/mmol DIBAl-H) zugegeben. Die Mischung wird mit CH₂Cl₂ (20 mL) verdünnt und weitere 30 min bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das wird vermindertem Lösungsmittel unter Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 93:7). Der Allylalkohol wird als farblose Flüssigkeit isoliert (1.24 g, 1.42 mmol, 98%).

DC: $R_f = 0.16$ (P/EtOAc 95:5) [UV] [CAM]. [α]²³ $_D$ = +7.21 (c = 0.93 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 6H), 0.03 (s, 3H), 0.05 (s, 3H), 0.06 (s, 6H), 0.58 (q, J = 7.9 Hz, 6H), 0.85 – 0.86 (m, 12H), 0.88 (s, 18H), 0.95 (t, J = 7.9 Hz, 9H), 1.59 – 1.93 (m, 7H), 2.19 – 2.33 (m, 2H), 3.48 (t, J = 7.2 Hz, 2H), 3.74 – 3.82 (m, 3H), 3.80 (s, 3H), 3.83 – 3.91 (m, 1H), 4.10 – 4.21 (m, 2H), 4.38 (d, J = 11.5 Hz, 1H), 4.42 (d, J = 11.5 Hz, 1H), 5.53 – 5.60 (m, 1H), 5.73 – 5.79 (m, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.3, -4.2, -4.1, -3.9, -3.9, -3.8, 5.7, 7.2, 10.9, 18.1, 18.3, 18.3, 26.1, 26.1, 26.2, 35.1, 35.5, 43.3, 43.6, 45.6, 55.4, 58.9, 66.8, 67.5, 69.3, 70.6, 70.8, 72.8, 113.9, 129.3, 129.4, 130.9, 130.9, 159.3. IR (film): v_{max} [cm⁻¹] = 3441, 2953, 2928, 28822, 2855, 1615, 1514, 1463, 1411, 1360, 1300, 1250, 1173, 1092, 1036, 1005, 938, 833, 807, 772, 737. LRMS (ESI): m/z 892 (39%) [M+Na⁺], 887 (13%), 870 (100%) [M+H⁺], 755 (5%) [M-TBS+H⁺], 738 (6%) [M-TBSOH+H⁺]. HRMS (ESI): m/z 869.5986 [869.5993 berechnet für C₄₆H₉₃O₇Si₄⁺ (M+H⁺)].

(5*R*,7*R*,9*R*,10*R*,11*S*,*Z*)-5,7,11-Tris(*tert*-butyldimethylsilyloxy)-13-(4-methoxybenzyloxy)-10-methyl-9-(triethylsilyloxy)tridec-2-enyl 2,2,2-trichloroacetimidat (3-72)

In einem ausgeheizten Rundkolben wird der oben beschriebene Allylalkohol (1.23 g, 1.41 mmol) in trockenem CH_2Cl_2 (5.7 mL) unter Argonatmosphäre gelöst und Trichloracetonitril (170 µL, 245 mg, 170 mmol, 1.2 Äq.) und DBU (21.1 µL, 21.5 mg, 141 µmol, 0.1 Äq.) werden zugegeben. Die Lösung wird 2 h bei RT gerührt. Die Reaktion wird durch Zugabe von H₂O (15 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 97:3). Das Produkt wird als farbloses Öl isoliert (1.30 g, 1.28 mmol, 91%).

DC: $R_f = 0.56$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_{D} = -1.63$ (c = 0.80 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 6H), 0.04 (s, 6H), 0.05 (s, 3H), 0.06 (s, 3H), 0.58 (q, J = 7.9 Hz, 6H), 0.86 – 0.87 (m, 12H), 0.87 (s, 9H), 0.88 (s, 9H), 0.95 (t, J = 7.9, 9H), 1.55 – 1.70 (m, 5H), 1.72 – 1.93 (m, 3H), 2.22 – 2.29 (m, 1H), 2.33 – 2.40 (m, 1H), 3.45 – 3.51 (m, 2H), 3.73 – 3.85 (m, 3H), 3.80 (s, 3H), 3.86 – 3.92 (m, 1H), 4.38 (d, J = 11.5 Hz, 1H), 4.42 (d, J = 11.5 Hz, 1H), 5.71 – 5.80 (m, 2H), 6.86 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 8.29 (s, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.3, -4.1, -4.1, -3.9, -3.9, -3.8, 5.6, 7.3, 10.9, 18.1, 18.2, 18.3, 26.0, 26.1, 26.2, 35.4, 35.4, 43.2, 43.7, 45.7, 55.4, 65.6, 66.7, 67.3, 69.1, 70.4, 70.8, 72.8, 91.6, 113.8, 124.7, 129.4, 130.9, 132.2, 159.2, 162.8. IR (film): v_{max} [cm⁻¹] = 2954, 2929, 2881, 2856, 1664, 1615, 1513, 1463, 1416, 1361, 1300, 1250, 1178, 1072, 1038, 1005, 936, 907, 832, 798, 773, 734.

(3*S*,5*R*,7*R*,9*R*,10*R*,11*S*)-5,7,11-Tris(*tert*-butyldimethylsilyloxy)-13-(4-methoxybenzyloxy)-10-methyl-9-(triethylsilyloxy)tridec-1-en-3-yl-benzoat (3-43)

Trichloracetimidat 3-72 (1.26 g, 1.24 mmol) und Benzoesäure (455 mg, 3.73 mmol, 3 Äq.) werden in CH₂Cl₂ (0.96 mL) gelöst und (R)-(-)-COP-OAc (37.6 mg, 24.9 µmol, 2 mol%) wird zugegeben. Das Reaktionsgemisch wird geschützt vor Licht für 20 h bei RT gerührt. Die Suspension wird mit CH₂Cl₂ (15 mL) verdünnt und mit NaHCO₃ solange gewaschen, bis keine Gasentwicklung mehr zu beobachten ist (2×10 mL). Die vereinigten wässrigen Phasen werden mit CH₂Cl₂ (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das vermindertem Lösungsmittel wird unter Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1). Benzoat 3-43 wird als gelbes Öl isoliert (1.10 g, 1.13 mmol, 91%, *d.r.* >99:1).

DC: $R_f = 0.56$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_{D} = +11.9$ (c = 0.70 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.02 (s, 3H), 0.03 (s, 3H), 0.04 (s, 3H), 0.06 (s, 3H), 0.08 (s, 3H), 0.10 (s, 3H), 0.57 (q, J = 7.9 Hz, 6H), 0.80 (d, J = 6.9 Hz, 3H), 0.85 – 0.88 (m, 18H), 0.91 – 0.95 (m, 18H), 1.52 – 1.63 (m, 2H), 2.67 – 2.05 (m, 7H), 3.43 – 3.53 (m, 2H), 3.73 – 3.84 (m, 3H), 3.79 (s, 3H), 3.89 – 3.96 (m, 1H), 4.37 (d, J = 11.5 Hz, 1H), 4.42 (d, J = 11.5 Hz, 1H), 5.21 – 5.25 (m, 1H), 5.38 (dt, J = 17.2, 1.2 Hz, 1H), 5.65 – 5.71 (m, 1H), 5.90 (ddd, J = 17.1, 10.5, 6.5 Hz, 1H), 6.85 (d, J = 8.7 Hz, 2H), 7.23 (d, J = 8.7 Hz, 2H), 7.39 – 7.43 (m, 2H), 7.51 – 7.56 (m, 1H), 8.03 – 8.05 (m, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.1, -3.9, -3.9, -3.7, -3.7, 5.6, 7.2, 10.9, 18.0, 18.2, 18.3, 26.1, 26.1, 26.2, 35.4, 42.4, 43.2, 43.6, 46.2, 55.4, 66.7, 66.8, 67.2, 70.5, 70.7, 72.7, 72.9, 113.8, 117.5, 128.4, 129.3, 129.7, 130.7, 130.9, 132.9, 136.5, 159.2, 165.6 IR (film): v_{max} [cm⁻¹] = 2954, 2929, 2897, 2855, 2363, 2356, 1723, 1610, 1586, 1513, 1471, 1463, 1411, 1377, 1361, 1300, 1269, 1249, 1178, 1095, 1068, 1038, 1005, 938, 834, 806, 773, 735, 711. LRMS (EI): m/z 996 (96%) [M+Na⁺], 974 (91%) [M+H⁺], 870 (100%), 721 (24%), 577 (19%), 449 (8%), 282 (23%). HRMS (ESI): m/z 973.6263 [973.6255 berechnet für C₅₃H₉₇O₈Si₄⁺ (M+H⁺)].

(3*S*,5*R*,7*R*,9*R*,10*R*,11*S*)-5,7,11-Tris(*tert*-butyldimethylsilyloxy)-13-(4-methoxybenzyloxy)-10-methyl-9-(triethylsilyloxy)tridec-1-en-3-ol

In einem ausgeheizten Rundkolben wird Benzoat 3-43 (1.10 g, 1.13 mmol) in trockenem CH₂Cl₂ (11 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAl-H (1M in Hexan, 2.82 mL, 2.82 mmol, 2.5 Äq.) zugetropft. Die Lösung wird 3 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 20 mL) abgebrochen. Es wird Glycerin (0.56 mL, 0.2 mL/mmol DIBAl-H) zugegeben. Die Mischung wird mit CH₂Cl₂ (15 mL) verdünnt und weitere 30 min bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt der und Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 97:3). Das Produkt wird als farblose Flüssigkeit isoliert (864 mg, 994 µmol, 88%).

DC: $R_f = 0.48$ (P/EtOAc 95:5) [UV] [CAM]. [α]²³ $_{D}$ = +22.7 (c = 0.72 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.02 (s, 3H), 0.03 (s, 6H), 0.06 (s, 3H), 0.13 (s, 6H), 0.59 (q, J = 7.9 Hz, 6H), 0.84 – 0.86 (m, 12H), 0.88 (s, 9H), 0.91 (s, 9H), 0.95 (t, J = 7.9 Hz, 9H), 1.47 – 1.64 (m, 3H), 1.67 – 1.73 (m, 3H), 1.75 – 1.92 (m, 3H), 3.46 (t, J = 7.0, 2H), 3.57 (s, 1H), 3.68 – 3.76 (m, 2H), 3.80 (s, 3H), 3.80 – 3.85 (m, 1H), 4.11 – 4.21 (m, 1H), 4.25 – 4.31 (m, 1H), 4.37 (d, J = 11.6 Hz, 1H), 4.43 (d, J = 11.6 Hz, 1H), 5.04 – 5.09 (m, 1H), 5.25 (dt, J = 7.2, 1.5 Hz, 1H), 5.84 (ddd, J = 17.1, 10.5, 5.7 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.5, -4.3, -3.9, -3.8, -3.7, -3.7, 5.7, 7.3, 11.2, 18.0, 18.1, 18.3, 26.0, 26.0, 26.1, 35.5, 43.2, 43.6, 44.2, 46.3, 55.4, 66.7, 67.3, 70.5, 71.0, 71.1, 72.4, 72.8, 113.9, 114.0, 129.4, 130.8, 141.0, 159.3. IR (film): v_{max} [cm⁻¹] = 3473, 2953, 2929, 2883, 2856, 1610, 1514, 1463, 1361, 1300, 1250, 1178, 1078, 1037, 1005, 936, 012, 834, 806, 773, 741. LRMS (ESI): m/z 892 (37%) [M+Na⁺], 870 (100%) [M+H⁺], 738 (27%), 605 (14%), 473 (7%), 341 (4%). HRMS (ESI): m/z 891.5819 [891.5812 berechnet für C₄₆H₉₂O₇NaSi₄⁺ (M+Na⁺)].
(5*S*,6*R*,7*R*,9*R*,11*S*,13*S*)-9,11-Bis(*tert*-butyldimethylsilyloxy)-5-(2-(4-methoxybenzyloxy)ethyl)-2,2,3,3,6,15,15,16,16-nonamethyl-7-(triethylsilyloxy)-13-vinyl-4,14-dioxa-3,15disilaheptadecan (3-73)

Der oben beschriebene Allylalkohol (807 mg, 928 µmol) wird in DMF gelöst (930 µL) und TBSCl (280 mg, 1.86 µmol, 2 Äq.) und Imidazol (253 mg, 3.71 mmol, 4 Äq.) werden zugegeben. Die Lösung wird 14 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (10 mL) versetzt und mit Et₂O (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und Rückstand der säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Silvlether 3-73 wird als farblose Flüssigkeit isoliert (879 mg, 893 µmol, 96%).

DC: $R_f = 0.30$ (P/EtOAc 98:2) [UV] [CAM]. [α]²³_D = +12.0 (c = 1.43 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 9H), 0.04 (s, 3H), 0.05 (s, 3H), 0.06 (s, 6H), 0.06 (s, 3H), 0.59 (q, J = 7.9 Hz, 6H), 0.85 – 0.87 (m, 12H), 0.87 (s, 9H), 0.89 (s, 9H), 0.89 (s, 9H), 0.95 (t, J = 7.9 Hz, 9H), 1.51 – 1.95 (m, 9H), 3.45 – 3.53 (m, 2H), 3.68 – 3.74 (m, 1H), 3.77 – 3.85 (m, 3H), 3.80 (s, 3H), 4.27 – 4.32 (m, 1H), 4.38 (d, J = 11.6 Hz, 1H), 4.43 (d, J = 11.6 Hz, 1H), 5.05 (ddd, J = 10.4, 1.8, 1.1 Hz, 1H), 5.20 (ddd, J = 17.1, 1.8, 1.3 Hz, 1H), 5.82 (ddd, J = 17.1, 10.4, 6.2 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.6, -4.3, -4.1, -3.9, -3.9, -3.8, -3.6, -3.6, 5.7, 7.3, 11.1, 18.1, 18.2, 18.3, 18.3, 26.0, 26.1, 26.1, 26.2, 35.4, 43.4, 44.4, 46.6, 47.1, 55.4, 66.7, 67.0, 67.2, 70.6, 70.8, 71.0, 72.8, 113.8, 114.4, 129.4, 130.9, 141.3, 159.2. IR (film): v_{max} [cm⁻¹] = 2954, 2928, 2883, 2856, 1615, 1514, 1471, 1463, 1382, 1361, 1300, 1250, 1173, 1095, 1038, 1005, 941, 917, 882, 833, 807, 773, 741. LRMS (ESI): *m/z* 983.6875 [983.6858 berechnet für C₅₂H₁₀₇O₇Sis⁺ (M+H⁺)].

(3*S*,4*R*,5*R*,7*R*,9*S*,11*S*)-3,7,9,11-Tetrakis(*tert*-butyldimethylsilyloxy)-4-methyl-5-(triethyl-silyloxy)tridec-12-en-1-ol

PMB-Ether 3-73 (768 mg, 781 µmol) wird in einer Mischung aus CH₂Cl₂ (3.9 mL) und pH 7-Puffer (3.9 mL) gelöst. DDQ (266 mg, 1.17 mmol, 1.5 Äq.) wird hinzugefügt und das Reaktionsgemisch wird 3 h heftig gerührt. Die Mischung wird über Zelithe abfiltriert wobei mehrmals mit CH₂Cl₂ nachgewaschen wird. Das Filtrat wird mit H₂O (20 mL) versetzt. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1 \rightarrow 97:3). Der Alkohol wird als farblose Flüssigkeit isoliert (586 g, 678 µmol, 87%).

DC: $R_f = 0.22$ (P/EtOAc 98:2) [CAM]. $[\alpha]^{23}{}_{D} = +11.4$ (c = 1.26 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.05 (s, 12H), 0.06 (s, 3H), 0.07 (s, 3H), 0.11 (s, 3H), 0.59 (q, J = 7.9 Hz, 6H), 0.86 – 0.87 (m, 12H), 0.89 (s, 9H), 0.89 (s, 9H), 0.90 (s, 9H), 0.96 (t, J = 7.9 Hz, 9H), 1.52 – 1.72 (m, 5H), 1.74 – 1.84 (m, 3H), 1.88 – 1.98 (m, 1H), 2.38 (s, br, 1H), 3.65 – 3.91 (m, 6H), 4.23 – 4.29 (m, 1H), 5.05 (ddd, J = 10.3, 1.7, 1.0 Hz, 1H), 5.16 – 5.22 (m, 1H), 5.81 (ddd, J = 16.9, 10.3, 6.3 Hz, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.6, -4.3, -4.2, -4.0, -3.8, -3.8, -3.7, -3.6, 5.6, 7.2, 11.0, 18.1, 18.1, 18.2, 18.3, 26.0, 26.1, 26.1, 35.9, 41.7, 44.0, 46.6, 46.9, 60.1, 67.0, 67.2, 70.1, 71.2, 73.0, 114.5, 141.3. IR (film): v_{max} [cm⁻¹] = 3433, 2955, 2928, 2886, 2857, 1472, 1463, 1431, 1401, 1372, 1361, 1253, 1084, 1030. 1005, 940, 923, 887, 834, 834, 808, 773, 736. LRMS (ESI): m/z 863 (100%) [M+H⁺], 749 (37%), 732 (70%), 599 (20%), 467 (9%), 335 (5%). HRMS (ESI): m/z 863.6293 [863.6283 berechnet für C₄₄H₉₉O₆Si₅⁺ (M+H⁺)].

(3*S*,4*R*,5*R*,7*R*,9*S*,11*S*)-3,7,9,11-Tetrakis(*tert*-butyldimethylsilyloxy)-4-methyl-5-(triethyl-silyloxy)tridec-12-enyl-benzoat (3-49)

Der oben beschriebene Alkohol (640 mg, 741 µmol) wird in CH_2Cl_2 (7.5 mL) gelöst. DCC (214 mg, 10.4 mmol, 1.4 Äq.), Benzoesäure (118 mg, 966 µmol, 1.3 Äq.) und DMAP (15.4 mg, 126 µmol, 0.17 Äq.) werden hinzugefügt. Die Lösung wird 16 h bei RT gerührt. Das Reaktionsgemisch wird abfiltriert und das Filtrat mit gesättigter, wässriger NaHCO₃-Lösung (15 mL) gewaschen. Die Phasen werden getrennt und die wässrige Phase mit CH_2Cl_2 (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Benzoat 3-74 wird als farblose Flüssigkeit isoliert (657 mg, 679 µmol, 92%).

DC: $R_{\rm f} = 0.26$ (P/EtOAc 98:2) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = +11.4$ (c = 1.24 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.04 (s, 6H), 0.05 (s, 6H), 0.06 (s, 3H), 0.07 (s, 3H), 0.08 (s, 3H), 0.60 (q, J = 7.9 Hz, 6H), 0.86 (s, 9H), 0.87 – 0.89 (m, 21H), 0.91 (s, 9H), 0.95 (t, J = 7.9 Hz, 9H), 1.54 – 1.71 (m, 6H), 1.76 – 1.83 (m, 1H), 1.87 – 1.96 (m, 1H), 2.07 – 2.17 (m, 1H), 3.70 – 3.77 (m, 1H), 3.79 – 3.89 (m, 3H), 4.23 – 4.31 (m, 1H), 4.38 (t, J = 7.1 Hz, 2H), 5.05 (ddd, J = 10.3, 1.8, 1.0 Hz, 1H), 5.19 (ddd, J = 17.0, 1.7, 1.3 Hz, 1H), 5.81 (ddd, J = 17.0, 10.3, 6.3 Hz, 1H), 7.41 – 7.45 (m, 2H), 7.52 – 7.57 (m, 1H), 8.02 – 8.05 (m, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.6, -4.2, -4.1, -3.9, -3.8, -3.7, -3.7, -3.6, 5.7, 7.2, 11.3, 18.0, 18.2, 18.3, 18.3, 26.0, 26.1, 26.2, 34.4, 43.8, 44.2, 46.7, 47.0, 62.3, 67.0, 67.2, 70.4, 70.7, 71.1, 114.5, 128.4, 129.7, 130.7, 132.9, 141.3, 166.7. IR (film): v_{max} [cm⁻¹] = 2953, 2928, 2884, 2857, 1725, 1471, 1463, 1411, 1382, 1353, 1314, 1273, 1253, 1314, 1273, 1253, 1109, 1027, 1005, 941, 917, 882, 834, 804, 773, 735, 711. LRMS (ESI): *m/z* 990 (21%) [M+Na⁺], 968 (100%) [M+H⁺], 853 (42%), 713 (16%), 517 (26%), 282 (38%). HRMS (ESI): *m/z* 967.6545 [967.6545 berechnet für C₅₁H₁₀₃O₇Si₅⁺ (M+H⁺)].

(3*S*,4*R*,5*R*,7*R*,9*S*,11*S*)-3,7,9,11-Tetrakis(*tert*-butyldimethylsilyloxy)-4-methyl-12-oxo-5-(tri-ethylsilyloxy)dodecylbenzoat (3-25)

Olefin 3-74 (100 mg, 103 µmol) wird in einem Gemisch aus THF und H₂O (3:1, 2 mL) gelöst und OsO4 (4% in H₂O, 65.7 µL, 10.3 µmol, 0.1 Äq.) und NMO (60.5 mg, 517 µmol, 5 Äq.) werden zugegeben. Die Reaktionsmischung wird 18 h bei RT gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger Na₂S₂O₃-Lösung (2 mL) abgebrochen. Das Gemisch wird mit H₂O und EtOAc (je 15 mL) verdünnt. Die Phasen werden getrennt und die wässrige Phase wird mit EtOAc (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO4 getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand über Kieselgel filtriert. Das Diol wird ohne weitere Aufreinigung in CH₂Cl₂ gelöst (1 mL). Bei -40 °C werden Na₂CO₃ (34.9 mg, 330 µmol, 3.2 Äq.) und Pb(OAc)₄ (68.5 mg, 155 µmol, 1.5 Äq.) hinzugefügt. Das Reaktionsgemisch wird langsam auf 5 °C erwärmt. Bei 5 °C findet ein Farbumschlag nach Orange statt. Die Reaktion wird sofort durch Zugabe von gesättigter, wässriger NaHCO₃-Lösung (1 mL) abgebrochen. Das Reaktionsgemisch wird H₂O und EtOAc (je 15 mL) verdünnt. Die Phasen werden getrennt und die wässrige Phase wird mit EtOAc (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO4 getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Aldehyd 3-25 wird als farblose Flüssigkeit isoliert (86.8 mg, 89.5 µmol, 87%).

DC: $R_f = 0.60$ (P/EtOAc 97:3) [UV] [CAM]. [α]²³_D = +10.2 (c = 1.05 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.05 (s, 3H), 0.07 (s, 6H), 0.08 (s, 12H), 0.59 (q, J = 7.9 Hz, 7H), 0.86 (s, 9H), 0.87 (s, 9H), 0.90 – 0.91 (m, 12H), 0.92 – 0.98 (m, 18H), 1.56 – 1.83 (m, 6H), 1.86 – 2.16 (m, 3H), 3.69 – 3.88 (m, 3H), 3.96 – 4.07 (m, 1H), 4.11 – 4.16 (m, 1H), 4.38 (t, J = 7.1 Hz, 2H), 7.40 – 7.45 (m, 2H), 7.51 – 7.59 (m, 1H), 8.01 – 8.05 (m, 2H), 9.61 (d, J = 1.6 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.6, -4.5, -4.1, -3.9, -3.9, -3.8, -3.8, -3.8, 5.7, 7.2, 11.4, 18.0, 18.1, 18.3, 18.4, 26.0, 26.1, 26.2, 34.5, 41.7, 43.8, 43.9, 46.6, 62.2, 65.6, 67.2, 70.5, 70.7, 74.9, 128.4, 129.7, 130.6, 132.9, 166.6, 203.8. IR (film): v_{max} [cm⁻¹] = 2953, 2929, 2884, 2857, 1724, 1471, 1463, 1410, 1386, 1362, 1315, 1272, 1253,

1175, 1109, 1068, 1040, 10276, 1004, 938, 880, 834, 807, 773, 738, 710, 671. **LRMS** (ESI): m/z 992 (10%) [M+Na⁺], 970 (100%) [M+H⁺], 855 (30%), 837 (38%), 723 (27%), 705 (70%), 573 (23%), 441 (20%), 282 (15%). **HRMS** (ESI): m/z 991.6172 [991.6157 berechnet für $C_{50}H_{100}NaO_8Si_5^+$ (M+Na⁺)].

2.2.3 Analyse des Stereozentrums an C13

(6*S*,7*S*)-5-Allyl-7-(2-(4-methoxybenzyloxy)ethyl)-2,2,3,3,6,9,9,10,10-nonamethyl-4,8dioxa-3,9-disilaundecan (3-60)

Homoallylalkohol 3-**57a** (200 mg, 490 μ mol) wird in DMF gelöst (0.5 mL) und TBSCl (148 mg, 980 μ mol, 2 Äq.) und Imidazol (133 mg, 1.96 mmol, 4 Äq.) werden zugegeben. Die Lösung wird 1 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (10 mL) versetzt und mit Et₂O (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Silylether 3-**60a** wird als farblose Flüssigkeit isoliert (213 mg, 407 μ mol, 83%).

DC: $R_f = 0.19$ (P/EtOAc 98:2) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.03 (s, 3H), 0.04 (s, 3H), 0.05 (s, 3H), 0.84 – 0.87 (m, 12H), 0.89 (s, 9H), 1.56 – 1.63 (m, 1H), 1.78 – 1.86 (m, 2H), 2.25 – 2.31 (m, 2H), 3.44 (t, J = 7.0 Hz, 1H), 3.44 (t, J = 7.0 Hz, 1H), 3.78 – 3.86 (m, 1H), 3.80 (s, 3H), 4.40 (s, 2H), 4.96 – 4.97 (s, 1H), 5.00 – 5.05 (m, 1H), 5.65 – 5.82 (m, 1H), 6.87 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H).¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = -4.3, -4.2, -4.0, -3.6, 9.7, 18.3, 18.3, 26.1, 26.1, 34.8, 40.0, 41.3, 55.4, 66.7, 70.7, 72.0, 72.7, 113.9, 116.9, 129.3, 130.9, 135.1, 159.2.

Ausgehend von Diastereomer 3-57b (161 mg, 394 µmol) wird nach der oben beschriebenen Vorschrift der entstprechenden Silylether 3-60b als farblose Flüssigkeit erhalten (167 mg, 319 µmol, 81%).

DC: $R_f = 0.26$ (P/EtOAc 98:2) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.02 (s, 3H), 0.03 (s, 3H), 0.04 (s, 3H), 0.05 (s, 3H), 0.83 (d, J = 6.9 Hz, 3H), 0.87 (s, 18H), 1.60 – 1.67 (m, 1H), 1.77 – 1.85 (m, 2H), 2.14 – 2.20 (m, 2H), 3.46 (t, J = 7.1 Hz, 2H), 3.67 – 3.73

(m, 1H), 3.79 - 3.85 (m, 1H), 3.80 (s, 3H), 4.41 (s, 2H), 4.99 - 5.00 (m, 1H), 5.02 - 5.07 (m, 1H), 5.76 - 5.93 (m, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = -4.2, -4.0, -3.9, -3.7, 9.7, 18.3, 18.4, 26.1, 26.1, 35.6, 37.7, 44.0, 55.4, 66.8, 71.2, 72.9, 73.5, 113.9, 116.5, 129.4, 130.8, 136.2, 159.3.

(4R,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-7-(4-methoxybenzyloxy)-4-methylheptanal

Olefin 3-**60a** (210 g, 402 µmol) wird in einem Dioxan/H₂O-Gemisch (3:1, 4 mL) gelöst. 2,6-Lutidin (94 µL, 86.1 mg, 803 µmol, 2 Äq.), NaIO₄ (344 mg, 1.61 mmol, 4 Äq.) und OsO₄ (4% in H₂O, 51 µL, 8.04 µmol, 2 mol%) werden hinzugefügt. Das Reaktionsgemisch wird 2 h bei RT gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NaS₂SO₃-Lösung (10 mL) abgebrochen. Das Gemisch wird mit CH₂Cl₂ (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Das Produkt wird als farblose Flüssigkeit isoliert (179 g, 341 mmol, 86%).

DC: $R_f = 0.55$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.04 – 0.04 (m, 9H), 0.06 (s, 3H), 0.87 (s, 18H), 0.90 (d, J = 7.0 Hz, 3H), 1.64 – 1.77 (m, 1H), 1.78 – 1.86 (m, 2H), 2.60 – 2.63 (m, 2H), 3.44 (t, J = 6.8 Hz, 2H), 3.80 (s, 3H), 3.86 – 3.93 (m, 1H), 4.17 – 4.23 (m, 1H), 4.40 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H), 9.76 (t, J = 2.5 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = -4.3, -4.2, -4.0, -4.0, 10.7, 18.2, 18.2, 26.0, 26.1, 34.7, 43.4, 49.4, 55.4, 66.7, 69.3, 70.3, 72.8, 113.9, 129.4, 130.7, 159.3, 202.5.

Ausgehend von 3-**60b** (167 mg, 319 μmol) wird nach der oben beschriebenen Vorschrift der Aldehyd **b** als farblose Flüssigkeit erhalten (134 mg, 255 μmol, 80%).

DC: $R_f = 0.43$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H** NMR (250 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.03 (s, 3H), 0.04 (s, 3H), 0.05 (s, 3H), 0.85 – 0.89 (m, 21H), 1.76 – 1.85 (m, 3H), 2.50 – 2.54 (m, 2H), 3.45 (t, J = 6.7 Hz, 2H), 3.73 – 3.81 (m, 1H), 3.81 (s, 3H), 4.23 – 4.30 (m, 1H), 4.41 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 3H), 9.78 (t, J = 2.3 Hz,

1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = -4.4, -4.1, -4.0, -3.8, 9.3, 18.1, 18.3, 25.9, 26.1, 35.4, 44.0, 47.5, 55.4, 66.6, 70.1, 71.5, 72.9, 113.9, 129.4, 130.6, 146.4, 159.3, 202.8.

(4S,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-7-(4-methoxybenzyloxy)-4-methylheptan-1-ol

In einem ausgeheizten Rundkolben wird der oben beschrieben Aldehyd **a** (170 mg, 324 µmol) in trockenem THF (3 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAI-H (1.2M in Toluol, 490 µL, 486 µmol, 1.5 Äq.) zugetropft. Die Lösung wird 30 min bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 15 mL) abgebrochen. Es wird Glycerin (0.1 mL, 0.2 mL/mmol DIBAI-H) zugegeben. Die Mischung wird mit Et₂O (10 mL) verdünnt und weitere 30 min bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Alkohol **a** wird als farblose Flüssigkeit isoliert (151 mg, 287 µmol, 88%).

DC: $R_f = 0.27$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 6H), 0.05 (s, 3H), 0.09 (s, 3H), 0.87 - 0.88 (m, 12H), 0.90 (s, 9H), 1.73 - 1.92 (m, 5H), 2.30 (s, br, 1H), 3.41 - 3.53 (m, 2H), 3.59 - 3.66 (m, 1H), 3.70 - 3.78 (m, 1H), 3.80 (s, 3H), 3.84 - 3.88 (m, 1H), 3.90 - 3.95 (m, 1H), 4.41 (s, 2H), 6.88 (d, J = 8.6 Hz, 2H), 7.25 (d, J = 8.6 Hz, 3H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.4, -4.3, -3.9, -3.9, 10.2, 18.2, 18.3, 26.0, 26.1, 34.9, 36.2, 40.8, 55.4, 59.8, 66.5, 70.4, 72.1, 72.9, 113.9, 129.5, 130.6, 159.3.

Ausgehend von Aldehyd **b** (107 mg, 204 µmol) wird nach der oben beschriebenen Vorschrift Alkohol **b** als farblose Flüssigkeit erhalten (96.6 mg, 183 µmol, 90%).

DC: $R_{\rm f} = 0.11$ (P/EtOAc 85:15) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.04 (s, 6H), 0.07 (s, 3H), 0.87 (s, 9H), 0.88 – 0.89 (m, 12H), 1.59 – 1.89 (m, 5H), 1.97 (t, J = 5.0 Hz, 1H), 3.48 (t, J = 7.1 Hz, 2H), 3.65 – 3.75 (m, 3H), 3.80 (s, 3H), 3.87 – 3.94 (m, 1H), 4.42 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³**C NMR**

(63 MHz, CDCl₃): *δ* [ppm] = -4.5, -4.1, -3.7, 9.7, 18.1, 18.3, 26.0, 26.1, 34.2, 35.4, 44.0, 55.4, 61.0, 66.5, 71.7, 72.7, 72.9, 113.9, 129.4, 130.7, 159.3.

(3R,4r,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-4-methylheptan-1,7-diol (3-61a)

Der oben beschriebene PMB-Ether **a** (131 mg, 249 μ mol) wird in einer Mischung aus CH₂Cl₂ (1.25 mL) und pH 7-Puffer (1.25 mL) gelöst. DDQ (141 mg, 622 μ mol, 2.5 Äq.) wird hinzugefügt und das Reaktionsgemisch wird 3 h heftig gerührt. Die Mischung wird über Zelithe abfiltriert wobei mehrmals mit CH₂Cl₂ nachgewaschen wird. Das Filtrat wird mit H₂O (15 mL) versetzt. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 70:30). Diol 3-**61a** wird als farblose Flüssigkeit isoliert (58.2 mg, 143 µmol, 58%).

DC: $R_f = 0.29$ (P/EtOAc 70:30) [UV] [CAM]. $[\alpha]^{23}{}_{D} = 0.00$ (c = 1.00 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.06 (s, 6H), 0.08 (s, 6H), 0.89 (s, 18H), 0.92 (d, J = 6.2 Hz, 3H), 1.66 – 1.92 (m, 5H), 3.74 (t, J = 6.0 Hz, 4H), 3.90 – 3.97 (m, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.4, -3.9, 10.3, 18.2, 26.1, 36.5, 40.5, 59.6, 71.4. IR (film): v_{max} [cm⁻¹] = 3330, 2952, 2928, 2886, 2857, 1472, 1463, 1407, 1388, 1361, 1253, 1094, 1064, 1026, 1006, 964, 938, 908, 871, 834, 798, 773. LRMS (EI): m/z 349 (1%) [M⁺-C₄H₉], 257 (3%), 229 (8%), 217 (14%), 199 (21%), 189 (53%), 171 (13%), 143 (37%), 131 (100%), 125 (83%), 105 (25%), 89 (38%), 75 (93%). HRMS (EI): m/z 349.2216 [349.2225 berechnet für C₁₆H₃₇O₄Si₂ (M⁺-C₄H₉]].

(3S,5S)-3,5-Bis(tert-butyldimethylsilyloxy)-4-methylheptan-1,7-diol (3-61b)

Der oben beschriebene PMB-Ether **b** (82.1 mg, 156 μ mol) wird in einer Mischung aus CH₂Cl₂ (1.6 mL) und pH 7-Puffer (1.6 mL) gelöst. DDQ (88.4 mg, 389 μ mol, 2.5 Äq.) wird hinzugefügt und das Reaktionsgemisch wird 24 h heftig gerührt. Die Mischung wird über Zelithe abfiltriert wobei mehrmals mit CH₂Cl₂ nachgewaschen wird. Das Filtrat wird mit H₂O (15 mL) versetzt. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 70:30). Diol 3-61b wird als farblose Flüssigkeit isoliert (16.6 mg, 40.8 μ mol, 26%).

DC: $R_{\rm f} = 0.29$ (P/EtOAc 70:30) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -17.1$ (c = 0.91 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.07 (s, 3H), 0.10 (s, 6H), 0.11 (s, 3H), 0.90 (s, 18H), 0.94 (d, J = 6.9 Hz, 3H), 1.47 – 1.76 (m, 3H), 1.83 – 1.97 (m, 2H), 3.68 – 3.77 (m, 4H), 3.82 – 3.93 (m, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.5, -4.2, -4.0, -3.8, 10.3, 18.2, 18.2, 26.0, 26.1, 33.9, 36.4, 43.5, 59.8, 60.6, 71.5, 73.2.

2.2.4 Synthese von Fragment C21-C30 (3-26)

(S)-2-((4-Methoxybenzyloxy)methyl)oxiran (3-82)

In einem ausgeheizten Rundkolben wird (*R*)-Glycidol (1.19 g, 16.0 mmol) in trockenem DMF (16 ml) unter Argonatmosphäre gelöst. Bei 0 °C wird NaH (60% in Paraffinöl 960 mg, 24.0 mmol, 1.5 Äq.) portionsweise zugegeben. Es wird 30 min bei 0 °C gerührt. 4-Methoxybenzylchlorid (3.75 g, 24.0 mmol, 1.5 Äq.) und Tetrabutylammoniumiodid (590 mg, 1.57 mmol, 0.1 Äq.) werden hinzugefügt wurden. Nach 10 min wird die Eiskühlung entfernt und 3 h bei RT gerührt. Das Reaktionsgemisch wird mit Wasser (200 mL) versetzt und mit Et₂O (3 × 50 mL) extrahiert. Die vereinigten organischen Phasen werden mit

gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5 \rightarrow 90:10). Das Produkt wird als gelbe Flüssigkeit isoliert (2.55 g, 13.1 mmol, 82%).

DC: $R_f = 0.29$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 2.61 (dd, J = 5.1, 2.7 Hz, 1H), 2.79 (dd, J = 4.9, 4.3 Hz, 1H), 3.19 – 3.19 (m, 1H), 3.42 (dd, J = 11.4, 5.8 Hz, 1H), 3.72 (dd, J = 11.4, 3.1 Hz, 1H), 3.80 (s, 3H), 4.49 (d, J = 11.5 Hz, 1H), 4.55 (d, J = 11.5 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 44.5, 51.0, 55.4, 70.7, 73.1, 114.0, 129.5, 130.1, 159.5.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[92]

(S)-1-(4-Methoxybenzyloxy)-6-(tert-butyldimethylsilyloxy)hex-4-in-2-ol (3-83)

In einem ausgeheizten Rundkolben wird t-Butyldimethylsilylpropargylalkohol (4.26 g, 25.0 mmol, 2 Äq.) unter Argonatmsophäre in trockenem THF (60 mL) gelöst. Bei -78 °C wird n-BuLi (2.5M in Hexan, 10.5 mL, 26.3 mmol, 2.1 Äq.) getropft. Es wird 45 min bei -78 °C gerührt. BF₃•OEt₂ (3.69 mL, 15.0 mmol, 1.2 Äq.) wird hinzugetropft. Nach 5 min wurde eine Lösung von (S)-2-((4-Methoxybenzyloxy)methyl)oxiran (3-82) (2.43 g, 12.51 mmol) in trockenem THF (2 mL) hinzugegeben und 4 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (60 mL) abgebrochen. Das Gemisch wird mit Et₂O (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das unter vermindertem Lösungsmittel wird Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5 \rightarrow 80:20). Das Produkt wird als gelbe Flüssigkeit isoliert (3.32 g, 9.11 mmol, 73%).

DC: $R_f = 0.69$ (P/EtOAc 80:20) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.11 (s, 6H), 0.91 (s, 9H), 2.40 (s, br, 1H), 2.44 – 2.48 (m, 2H), 3.46 (dd, J = 9.5, 6.6 Hz, 1H), 3.58 (dd, J = 9.5, 3.9 Hz, 1H), 3.81 (s, 3H), 3.89 – 3.97 (m, 1H), 4.29 (t, J = 2.1 Hz, 2H), 4.49 (s, 2H), 6.88 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -5.0, 18.5, 24.1, 26.0, 52.0, 55.4, 69.1, 72.9, 73.3, 81.0, 81.2, 114.0, 129.5, 130.1, 159.5.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[92]

(S)-1-((2,6-Bis(tert-butyldimethylsilyloxy)hex-4-inyloxy)methyl)-4-methoxybenzol (3-81)

Alkohol 3-83 (4.90 g, 13.4 mmol) wird in DMF (13 mL) gelöst und Imidazol (1.10 g, 16.1 mmol, 1.2 Äq.) und TBSCI (2.43 g, 16.13 mmol, 1.2 Äq.) werden hinzugefügt. Die Reaktion wird 16 h bei RT gerührt. Das Reaktionsgemisch wird mit Wasser (150 mL) versetzt und mit Et₂O $(3 \times 50 \text{ mL})$ extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1 \rightarrow 95:5). Silvlether 3-81 wird als farblose Flüssigkeit isoliert (6.21 g, 13.0 mmol, 97%).

DC: $R_f = 0.59$ (P/EtOAc 95:5) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.06 (s, 3H), 0.08 (s, 3H), 0.11 (s, 6H), 0.88 (s, 9H), 0.90 (s, 9H), 2.36 (ddt, J = 16.6, 5.9, 2.2 Hz, 1H), 2.48 (ddt, J = 16.6, 6.1, 2.2 Hz, 1H), 3.42 (dd, J = 9.7, 5.6 Hz, 1H), 3.48 (dd, J = 9.7, 5.1 Hz, 1H), 3.81 (s, 3H), 3.91 – 3.97 (m, 1H), 4.28 (t, J = 2.2 Hz, 2H), 4.47 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -5.0, -4.6, -4.4, 18.3, 18.5, 25.2, 26.0, 26.0, 52.1, 55.4, 70.7, 73.2, 73.7, 80.3, 82.3, 113.9, 129.3, 130.7, 159.3.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[92]

(S,Z)-1-((2,6-Bis(*tert*-butyldimethylsilyloxy)hex-4-enyloxy)methyl)-4-methoxybenzol

Silylether 3-81 (6.21 g, 13.0 mmol) wird in Toluol (130 mL) gelöst. Es wird Lindlar-Katalysator (5% Pd, 2.87 g, 10 mol%) und Chinolin (1.46 mL, 12.32 mmol) gegeben. Es wird 10 min gerührt. Bei RT wird für 5 h Wasserstoff durch die Reaktionsmischung geleitet. Wenn ¹H-NMR-Analyse vollständigen Umsatz anzeigt wird die Reaktionsmischung über Zelithe filtriert. Das Filtrat wird unter vermindertem Druck eingeengt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1 \rightarrow 95:5). Das Produkt wird als farblose Flüssigkeit isoliert (6.20 g, 13.00 mmol, 99%).

DC: $R_f = 0.61$ (P/EtOAc 95:5) [UV] [CAM]; ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.041 (s, 3H), 0.044 (s, 3H), 0.06 (s, 6H), 0.87 (s, 9H), 0.90 (s, 9H), 2.17 – 2.36 (m, 2H), 3.31 – 3.38 (m, 2H), 3.81 (s, 3H), 3.81 – 3.87 (m, 2H), 4.17 – 4.27 (m, 2H), 4.44 (s, 2H), 5.44 – 5.53 (m, 1H), 5.55 – 5.66 (m, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H).¹³**C NMR** (90.6 MHz, CDCl₃): δ [ppm] = -5.0, -4.5, -4.3, 18.3, 18.5, 26.0, 26.1, 33.1, 55.4, 59.8, 71.4, 73.1, 74.1, 113.9, 126.5, 129.3, 130.7, 131.8, 159.3.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[92]

(S,Z)-6-(4-Methoxybenzyloxy)-5-(tert-butyldimethylsilyloxy)hex-2-en-1-ol (3-84)

Der oben beschrieben Silylether (7.31 g, 15.2 mmol) wird in einer Mischung aus THF, H₂O und AcOH (2:2:1, 150 mL) gelöst. Die Reaktionslösung wird 6 h bei RT gerührt. Das Gemisch wird mit Wasser (100 mL) versetzt und mit Et₂O (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaHCO₃-Lösung gewaschen, bis keine Gasentwicklung mehr zu beobachten ist (3×100 mL). Die organische Phase wird mit gesättigter, wässriger NaHCO₃-Lösung zu beobachten ist (3×100 mL). Die organische Phase wird mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2 \rightarrow 80:20). Allylalkohol 3-84 wird als farblose Flüssigkeit isoliert (3.93 g, 10.7 mmol, 71%, [95% brsm]).

DC: $R_{\rm f} = 0.33$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = +3.50$ (c = 1.05 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.05 (s, 3H), 0.87 (s, 9H), 2.29 – 2.43 (m, 2H), 3.34 (dd, J = 9.8, 6.2 Hz, 1H), 3.40 (dd, J = 9.8, 5.1 Hz, 1H), 3.81 (s, 3H), 3.84 – 3.90 (m, 1H), 4.14 (dd, J = 6.8, 0.8 Hz, 2H), 4.46 (s, 2H), 5.55 – 5.68 (m, 1H), 5.74 – 5.81 (m, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 3H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.49, -4.45, 18.3, 26.0, 32.7, 55.4, 58.5, 70.9, 73.3, 73.5, 113.9, 129.1, 129.5, 130.4, 130.9, 159.4. IR (film): v_{max} [cm⁻¹] = 3383, 2952, 2927, 2895, 2844, 1613, 1586, 1513, 1463, 1362,

1302, 1246, 1173, 1097, 1036, 1006, 827, 810, 775. **LRMS** (ESI): m/z 733 (29%) [2M+H⁺], 649 (25%), 389 (62%) [M+Na⁺], 367 (100%) [M+H⁺], 282 (11%). **HRMS** (ESI): m/z 367.2299 [367.2299 berechnet für C₂₀H₃₅O₄Si⁺ (M+H⁺)].

(*S*,*Z*)-6-(4-Methoxybenzyloxy)-5-(*tert*-butyldimethylsilyloxy)hex-2-enyl-2,2,2-trichlor-acetimidat

In einem ausgeheizten Rundkolben wird Allylalkohol 3-84 (8.42 g, 23.0 mmol) in trockenem CH_2Cl_2 (100 mL) unter Argonatmosphäre gelöst und Trichloracetonitril (2.30 mL, 3.32 g, 23.0 mmol, 1 Äq.) und DBU (343 µL, 349 mg, 2.30 mmol, 0.1 Äq.) werden zugegeben. Die Lösung wird 4 h bei RT gerührt. Die Reaktion wird durch Zugabe von H₂O (50 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit CH_2Cl_2 (2×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Das Produkt wird als farbloses Öl isoliert (10.1 g, 17.2 mmol, 75%).

DC: $R_f = 0.29$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_{D} = +5.19$ (c = 1.04 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.05 (s, 3H), 0.87 (s, 9H), 2.31 – 2.45 (m, 2H), 3.33 (dd, J = 9.5, 5.9 Hz, 1H), 3.38 (dd, J = 9.5, 5.5 Hz, 1H), 3.81 (s, 3H), 3.85 – 3.92 (m, 1H), 4.44 (s, 2H), 4.81 – 4.90 (m, 2H), 5.71 – 5.81 (m, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 8.28 (s, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.3, 18.3, 26.0, 33.2, 55.4, 65.6, 71.1, 73.2, 73.9, 113.9, 124.8, 129.4, 130.6, 131.9, 159.3, 162.8. IR (film): v_{max} [cm⁻¹] = 2952, 2897, 2855, 1662, 1613, 1513, 1463, 1442, 1362, 1300, 1246, 1173, 1075, 1038, 1004, 978, 825, 796, 775. LRMS (ESI): m/z 510.1392 [510.1395 berechnet für C₂₂H₃₅O₄NCl₃Si⁺ (M+H⁺)].

(3*S*,5*S*)-6-(4-Methoxybenzyloxy)-5-(*tert*-butyldimethylsilyloxy)hex-1-en-3-yl-benzoat (3-78)

$$\begin{array}{c} OR \quad OBz \\ \hline \\ PMBO \quad \overbrace{=}^{\underline{i}} \qquad R = t - BuMe_2Si \\ C_{27}H_{38}O_5Si \\ 470.67 \end{array}$$

Das oben beschriebene Trichloracetimidat (2.16 g, 4.23 mmol) und Benzoesäure (1.55 mg, 12.7 mmol, 3 Äq.) werden in CH₂Cl₂ (3.3 mL) gelöst und (*R*)-(-)-COP-OAc (64.0 mg, 42.3 µmol, 1 mol%) wird zugegeben. Das Reaktionsgemisch wird geschützt vor Licht für 20 h bei RT gerührt. Die Suspension wird mit CH₂Cl₂ (10 mL) verdünnt und mit NaHCO₃ solange gewaschen, bis keine Gasentwicklung mehr zu beobachten ist (5×10 mL). Die vereinigten wässrigen Phasen werden mit CH₂Cl₂ (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Benzoat 3-78 wird als gelbes Öl isoliert (1.99 g, 4.23 mmol, 100%, *d.r.* > 99:1).

DC: $R_f = 0.55$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{D} = +8.5$ (c = 2.00 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = -0.05 (s, 3H), -0.02 (s, 3H), 0.86 (s, 9H), 1.81 (ddd, J = 14.4, 9.0, 3.4 Hz, 1H), 2.11 (ddd, J = 14.4, 10.1, 3.3 Hz, 1H), 3.38 (dd, J = 9.6, 5.7 Hz, 1H), 3.44 (dd, J = 9.6, 5.1 Hz, 1H), 3.81 (s, 3H), 4.96 – 4.02 (m, 1H), 4.46 (s, 2H), 5.17 (dt, J = 10.5, 1.1 Hz, 1H), 5.30 (dt, J = 17.2, 1.1 Hz, 1H), 5.55 – 5.61 (m, 1H), 5.91 (ddd, J = 17.2, 10.5, 6.1 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 3H), 7.41 – 7.45 (m, 2H), 7.53 – 7.58 (m, 1H), 8.04 – 8.07 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.9, -4.1, 18.2, 26.0, 40.1, 55.4, 68.1, 72.5, 73.2, 74.7, 113.9, 116.4, 128.5, 129.4, 129.7, 130.5, 130.7, 133.0, 137.1, 159.3, 165.9. IR (film): v_{max} [cm⁻¹] = 2953, 2929, 2844, 1719, 1611, 1585, 1513, 1463, 1452, 1361, 1268, 1248, 1173, 1097, 1069, 1026, 984, 937, 808, 775, 712. HRMS (ESI): m/z 493.2362 [493.2381 berechnet für C₂₇H₃₈O₅NaSi⁺ (M+Na⁺)].

(3S,5S)-6-(4-Methoxybenzyloxy)-5-(tert-butyldimethylsilyloxy)hex-1-en-3-ol

Benzoat 3-78 (4.19 g, 8.90 mmol) wird in MeOH (89 mL) gelöst. K₂CO₃ (12.3 g, 89.0 mmol, 10 Äq.) werden hinzugefügt und es wird 18 h bei RT gerührt. Das Lösungsmittel wurde unter vermindertem Druck entfernt, der Rückstand mit Wasser (100 mL) versetzt und mit Et₂O (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5 \rightarrow 90:10). Der Allylalkohol wird als gelbes Öl isoliert (5.52 g, 15.1 mmol, 85%).

DC: $R_f = 0.23$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.07 (s, 3H), 0.10 (s, 3H), 0.89 (s, 9H), 1.65 – 1.81 (m, 2H), 3.12 (d, J = 3.0 Hz, 1H), 3.41 – 3.50 (m, 2H), 3.81 (s, 3H), 4.10 – 4.16 (m, 1H), 4.31 – 4.39 (m, 1H), 4.44 (d, J = 11.6 Hz, 1H), 4.49 (d, J = 11.6 Hz, 1H), 5.07 (dt, J = 10.4, 1.5 Hz, 1H), 5.24 (dt, J = 17.2, 1.5 Hz, 1H), 5.86 (ddd, J = 17.1, 10.4, 5.5 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.8, -4.3, 18.2, 26.0, 41.0, 55.4, 69.7, 70.0, 73.2, 73.5, 113.9, 114.0, 129.4, 130.2, 141.3, 159.4.

1-(((2*S*,4*S*)-2,4-Bis(*tert*-butyldimethylsilyloxy)hex-5-enyloxy)methyl)-4-methoxybenzol (3-85)

Der oben beschriebene Allylalkohol (5.04 g, 13.8 mmol) wird in DMF gelöst (14 mL) und TBSCl (2.69 g, 17.9 mmol, 1.3 Äq.) und Imidazol (1.22 g, 17.9 mmol, 1.3 Äq.) werden zugegeben. Die Lösung wird 18 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (150 mL) versetzt und mit Et₂O (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand

säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Silylether 3-85 wird als farblose Flüssigkeit isoliert (6.57 g, 13.7 mmol, 99%).

DC: $R_f = 0.68$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_D = -0.8$ (c = 0.93 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.06 (s, 3H), 0.06 (s, 3H), 0.07 (s, 3H), 0.89 (s, 18H), 1.59 (ddd, J = 13.8, 6.7, 5.2 Hz, 1H), 1.78 (ddd, J = 13.8, 7.6, 5.4 Hz, 1H), 3.34 – 3.42 (m, 2H), 3.81 (s, 3H), 3.94 – 4.01 (m, 1H), 4.22 – 4.28 (m, 1H), 4.45 (s, 2H), 5.01 (ddd, J = 10.3, 1.7, 0.9 Hz, 1H), 5.12 (ddd, J = 17.2, 1.7, 1.1 Hz, 1H), 5.81 (ddd, J = 17.2, 10.3, 7.0 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.4, -3.8, -3.7, 18.3, 18.4, 26.1, 26.1, 44.2, 55.4, 69.1, 71.7, 72.9, 75.1, 113.8, 114.2, 129.3, 130.8, 142.2, 159.2. LRMS (ESI): m/z 503 (52%) [M⁺+Na], 481 [M⁺+H] (100%). HRMS (ESI): m/z 503.2975 [503.2983 berechnet für C₂₆H₄₈O₄NaSi₂⁺ (M+Na⁺)].

(3R,5S)-6-(4-Methoxybenzyloxy)-3,5-bis(tert-butyldimethylsilyloxy)hexan-1-ol

In einem ausgeheizten Rundkolben wird Silylether 3-85 (1.06 g, 2.20 mmol) in trockenem THF (21 mL) unter Argonatmosphäre gelöst. Bei 0 °C wird 9-BBN (0.5M in THF, 13.2 mL, 6.61 mmol, 3 Äq.) zugetropft. Die Lösung wird 15 min bei 0 °C gerührt und weitere 16 h bei RT. Das Reaktionsgemisch wird erneut auf 0 °C abgekühlt und es werden NaOH (3M in H₂O, 2.20 mL 6.61 mmol, 3 Äq.) und H₂O₂ (35% in H₂O, 2.20 mL) zugegeben. Es wird 15 min bei 0 °C und 4 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (20 mL) versetzt und mit Et₂O (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Das Produkt wird als farblose Flüssigkeit isoliert (1.09 g, 2.19 mmol, 99%).

DC: $R_f = 0.18$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.05 (s, 3H), 0.06 (s, 3H), 0.08 (s, 3H), 0.08 (s, 3H), 0.87 (s, 9H), 0.88 (s, 9H), 1.62 – 1.74 (m, 3H), 1.78 – 1.92 (m, 2H), 2.40 (s, br, 1H), 3.36 (dd, J = 5.2, 0.6 Hz, 2H), 3.65 – 3.74 (m, 1H), 3.79 – 3.90 (m, 2H), 3.80 (s, 3H), 4.00 – 4.07 (m, 1H), 4.44 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.4, -4.4, -4.1, -4.0, 18.1, 18.3, 26.0, 26.0, 39.0, 43.0, 55.4, 60.2, 69.6, 69.6, 73.1, 74.9, 113.8, 129.3, 130.5, 159.3.

(3S,5S)-6-(4-Methoxybenzyloxy)-3,5-bis(*tert*-butyldimethylsilyloxy)hexanal (3-86)

Der oben beschriebene Alkohol (1.09 g, 2.19 mmol) wird in DMSO (22 mL) gelöst und IBX (1.35 g, 4.81 mmol, 2.2 Äq.) wird hinzugefügt. Die Reaktionsmischung wird für 3 h bei RT gerührt. Die Lösung wird mit CH₂Cl₂ (220 mL) verdünnt und 30 min gerührt bis sich ein weißer Niederschlag bildet. Der Feststoff wird abfiltriert und das Filtrat mit gesättigter, wässriger NaHCO₃-Lösung (100 mL) gewaschen. Die Phasen werden getrennt und die wässrige Phase wird mit CH₂Cl₂ (2×70 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Aldehyd 3-86 wird als farblose Flüssigkeit isoliert (897 g, 1.80 mmol, 82%).

DC: $R_f = 0.34$ (P/EtOAc 95:5) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.05 (s, 6H), 0.06 (s, 3H), 0.08 (s, 3H), 0.86 (s, 9H), 0.87 (s, 9H), 1.63 – 1.70 (m, 1H), 1.82 – 1.91 (m, 1H), 2.51 (ddd, J = 15.7, 6.3, 3.0 Hz, 1H), 2.60 (ddd, J = 15.7, 5.0, 2.1 Hz, 1H), 3.34 (dd, J = 9.7, 5.3 Hz, 1H), 3.38 (dd, J = 9.7, 5.4 Hz, 1H), 3.80 (s, 3H), 3.88 – 3.95 (m, 1H), 4.31 – 4.37 (m, 1H), 4.42 (d, J = 11.7 Hz, 1H), 4.45 (d, J = 11.7 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H), 9.77 (dd, J = 2.8, 2.2 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.4, -4.3, -4.1, -3.9, 18.1, 18.3, 25.9, 26.0, 43.9, 51.8, 55.4, 66.2, 69.4, 73.0, 74.9, 113.9, 129.3, 130.4, 159.3, 202.

(5*R*,7*S*,*Z*)-8-(4-Methoxybenzyloxy)-5,7-bis(*tert*-butyldimethylsilyloxy)oct-2-ensäuremethylester (3-87)

In einem ausgeheizten Rundkolben wird NaH (60% in Paraffinöl, 268 mg, 6.70 mmol, 1.5 Äq.) in trockenem THF (15 mL) unter Schutzgas vorgelegt. Bei 0 °C wird eine Lösung von Phosphonat 2-2 (1.64 g, 5.36 mmol, 1.2 Äq.) in trockenem THF (7 mL) zugetropft. Die

Reaktionslösung wird 30 min bei 0 °C gerührt. Das Gemisch wird auf -78 °C abgekühlt und eine Lösung von Aldehyd X (2.22 g, 4.47 mmol) in trockenem THF (8 mL) wird tropfenweise zugegeben. Es wird 3 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (20 mL) abgebrochen und die Mischung wird mit Et₂O (20 mL) verdünnt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Methylester 3-**87** wird als farblose Flüssigkeit isoliert (2.06 g, 3.73 mmol, 83%).

DC: $R_f = 0.43$ (P/EtOAc 95:5) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.05 (s, 6H), 0.07 (s, 3H), 0.87 (s, 9H), 0.88 (s, 9H), 1.55 (ddd, J = 13.9, 7.2, 5.0 Hz, 1H), 1.70 (ddd, J = 13.9, 7.4, 5.1 Hz, 1H), 2.74 – 2.82 (m, 1H), 2.92 – 3.01 (m, 1H), 3.36 (d, J = 5.2 Hz, 2H), 3.70 (s, 3H), 3.80 (s, 3H), 3.90 – 4.03 (m, 2H), 4.44 (s, 2H), 5.86 (dt, J = 11.6, 1.8 Hz, 1H), 6.35 (ddd, J = 11.6, 7.7, 6.5 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.2, -4.0, -3.8, 18.2, 18.3, 26.0, 26.1, 37.3, 43.0, 51.1, 55.4, 68.9, 69.4, 72.9, 75.0, 113.8, 120.8, 129.3, 130.7, 146.6, 159.2, 166.9.

(5R,7S,Z)-8-(4-Methoxybenzyloxy)-5,7-bis(tert-butyldimethylsilyloxy)oct-2-en-1-ol

In einem ausgeheizten Rundkolben wird Methylester 3-87 (2.81 g, 5.09 mmol) in trockenem THF (51 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAI-H (1.2M in Toluol, 12.7 mL, 15.3 mmol, 3 Äq.) zugetropft. Die Lösung wird 30 min bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 50 mL) abgebrochen. Es wird Glycerin (3.06 mL, 0.2 mL/mmol DIBAl-H) zugegeben. Die Mischung wird mit Et₂O (50 mL) verdünnt und weitere 30 min bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand

säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Das Produkt wird als farblose Flüssigkeit isoliert (2.54 g, 4.83 mmol, 95%).

DC: $R_f = 0.18$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.05 (s, 3H), 0.06 (s, 3H), 0.06 (s, 6H), 0.87 (s, 9H), 0.88 (s, 9H), 1.55 – 1.70 (m, 3H), 2.23 – 2.34 (m, 2H), 3.35 (d, J = 5.2 Hz, 2H), 3.80 (s, 3H), 3.84 – 3.96 (m, 2H), 4.15 (d, J = 6.6 Hz, 2H), 4.42 (d, J = 11.7 Hz, 1H), 4.46 (d, J = 11.7 Hz, 1H), 5.52 – 5.59 (m, 1H), 5.68 – 5.75 (m, 1H), 6.87 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.6 Hz, 3H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.4, -4.2, -3.9, -3.8, 18.2, 18.3, 26.1, 26.1, 36.2, 43.1, 55.4, 58.8, 69.6, 69.6, 72.9, 75.1, 113.8, 128.9, 129.3, 130.6, 130.6, 159.2.

(5*R*,7*S*,*Z*)-8-(4-Methoxybenzyloxy)-5,7-bis(*tert*-butyldimethylsilyloxy)oct-2-enyl-2,2,2trichloracetimidat (3-88)

In einem ausgeheizten Rundkolben wird der oben beschriebene Allylalkohol (2.34 g, 4.45 mmol) in trockenem CH₂Cl₂ (18 mL) unter Argonatmosphäre gelöst und Trichloracetonitril (490 µL, 707 mg, 4.89 mmol, 1.1 Äg.) und DBU (66.5 µL, 67.7 mg, 445 µmol, 0.1 Äq.) werden zugegeben. Die Lösung wird 2 h bei RT gerührt. Die Reaktion wird durch Zugabe von H₂O (20 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (2×20 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2 \rightarrow 96:4). Das Produkt wird als farbloses Öl isoliert (2.72 g, 4.06 mmol, 91%).

DC: $R_f = 0.46$ (P/EtOAc 95:5) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.05 (s, 3H), 0.06 (s, 3H), 0.06 (s, 3H), 0.07 (s, 3H), 0.87 (s, 9H), 0.88 (s, 9H), 1.53 – 1.69 (m, 2H), 2.30 – 2.38 (m, 2H), 3.34 (d, J = 5.2 Hz, 2H), 3.81 (s, 3H), 3.89 – 3.97 (m, 2H), 4.42 (d, J = 11.7 Hz, 1H), 4.46 (d, J = 11.7 Hz, 1H), 4.79 – 4.88 (m, 2H), 5.70 – 5.79 (m, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 8.29 (s, 1H). ¹³C **NMR** (91 MHz, CDCl₃): δ [ppm] =

-4.4, -4.1, -3.8, -3.7, 18.2, 18.4, 26.1, 26.1, 36.5, 43.1, 55.4, 65.5, 69.4, 69.6, 72.9, 75.2, 91.6, 113.8, 124.6, 129.3, 130.6, 132.0, 159.2, 162.8.

(*3R*,5*R*,7*S*)-8-(4-Methoxybenzyloxy)-5,7-bis(*tert*-butyldimethylsilyloxy)oct-1-en-3-ylbenzoat (3-77)

Trichloracetimidat 3-88 (2.61 g, 3.90 mmol) und Benzoesäure (1.43 mg, 11.7 mmol, 3 Äq.) werden in CH₂Cl₂ (3 mL) gelöst und (S)-(+)-COP-OAc (59.0 mg, 39.0 µmol, 1 mol%) wird zugegeben. Das Reaktionsgemisch wird geschützt vor Licht für 20 h bei RT gerührt. Die Suspension wird mit CH₂Cl₂ (10 mL) verdünnt und mit NaHCO₃ solange gewaschen, bis keine Gasentwicklung mehr zu beobachten ist (5×10 mL). Die vereinigten wässrigen Phasen werden mit CH₂Cl₂ (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 96:4). Benzoat 3-77 wird als gelbes Öl isoliert (2.12 g, 3.37 mmol, 86%, *d.r.* >99:1).

DC: $R_f = 0.71$ (P/EtOAc 90:10) [UV] [CAM]. [α]²³_D = +1.20 (c = 1.00 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = -0.02 (s, 3H), 0.02 (s, 3H), 0.06 (s, 3H), 0.06 (s, 3H), 0.85 (s, 9H), 0.88 (s, 9H), 1.63 – 1.71 (m, 1H), 1.77 – 1.85 (m, 2H), 2.05 (ddd, J = 13.6, 9.2, 4.3 Hz, 1H), 3.33 – 3.41 (m, 2H), 3.79 (s, 3H), 3.92 – 4.02 (m, 2H), 4.42 (d, J = 11.7 Hz, 1H), 4.46 (d, J = 11.7 Hz, 1H), 5.19 (dt, J = 10.5, 1.1 Hz, 1H), 5.31 (dt, J = 17.2, 1.1 Hz, 1H), 5.53 – 5.58 (m, 1H), 5.90 (ddd, J = 17.2, 10.5, 6.2 Hz, 1H), 6.85 (d, J = 8.7 Hz, 2H), 7.23 (d, J =8.6 Hz, 2H), 7.40 – 7.45 (m, 2H), 7.53 – 7.58 (m, 1H), 8.03 – 8.06 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.4, -4.2, -3.9, -3.7, 18.2, 18.3, 26.1, 43.3, 44.1, 55.4, 66.8, 69.5, 72.9, 73.0, 74.9, 113.8, 116.7, 128.4, 129.3, 129.7, 130.6, 130.7, 132.9, 136.9, 159.2, 165.8. **IR** (film): v_{max} [cm⁻¹] = 2952, 2928, 2885, 2855, 1721, 1613, 1586, 1514, 1471, 1463, 1452, 1361, 1269, 1247, 1173, 1095, 1068, 1039, 1027, 1005, 964, 937, 833, 806, 773, 711. **LRMS** (ESI): m/z 651 (70%) [M+Na⁺], 629 [M+H⁺] (68%), 497 (16%), 375 (22%), 253 (100%). **HRMS** (ESI): m/z 629.3670 [629.3688 berechnet für C₃₅H₅₇O₆Si₂⁺ (M+H⁺)].

(3R,5R,7S)-8-(4-Methoxybenzyloxy)-5,7-bis(tert-butyldimethylsilyloxy)oct-1-en-3-ol

Benzoat 3-77 (2.12 g, 3.37 mmol) wird in MeOH (34 mL) gelöst und K₂CO₃ (4.66 g, 33.7 mmol, 10 Äq.) wird hinzugefügt. Das Reaktionsgemisch wird 18 h bei RT gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt, der Rückstand in H₂O (50 mL) aufgenommen und mit Et₂O (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5 \rightarrow 90:10). Der freie Alkohol wird als gelbe Flüssigkeit isoliert (1.50 g, 2.85 mmol, 85%).

DC: $R_{\rm f} = 0.38$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.05 (s, 3H), 0.06 (s, 3H), 0.08 (s, 3H), 0.10 (s, 3H), 0.87 (s, 9H), 0.89 (s, 9H), 1.64 (ddd, J = 14.4, 5.0, 3.1 Hz, 1H), 1.71 – 1.82 (m, 2H), 1.85 – 1.92 (m, 1H), 3.25 (d, J = 2.6 Hz, 1H), 3.35 (dd, J = 7.7, 2.9 Hz, 1H), 3.38 (dd, J = 7.7, 3.0 Hz, 1H), 3.81 (s, 3H), 3.83 – 3.89 (m, 1H), 4.09 – 4.15 (m, 1H), 4.39 – 4.48 (m, 1H), 4.44 (s, 2H), 5.05 – 5.09 (m, 1H), 5.24 (dt, J = 17.2, 1.5 Hz, 1H), 5.84 (ddd, J = 17.1, 10.4, 5.7 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.4, -4.4, -4.2, -3.9, 18.1, 18.3, 26.0, 26.1, 42.6, 42.9, 55.4, 69.1, 69.6, 69.9, 73.1, 74.9, 113.9, 114.1, 129.4, 130.5, 141.2, 159.3.

1-(((2*S*,4*R*,6*R*)-2,4,6-Tris(*tert*-butyldimethylsilyloxy)oct-7-enyloxy)methyl)-4-methoxybenzol (3-89)

Der oben beschriebene Allylalkohol (1.50 g, 2.85 mmol) wird in DMF gelöst (3 mL) und TBSCl (861 mg, 5.72 mmol, 2 Äq.) und Imidazol (778 mg, 11.4 mmol, 4 Äq.) werden zugegeben. Die Lösung wird 1 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (30 mL) versetzt und mit Et₂O (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand

säulenchromatographisch aufgereinigt (P/EtOAc 100:0 \rightarrow 98:2). Silylether 3-89 wird als farblose Flüssigkeit isoliert (1.71 g, 2.68 mmol, 94%).

DC: $R_f = 0.55$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_D = -9.2$ (c = 0.91 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.05 (s, 3H), 0.06 (s, 6H), 0.07 (s, 3H), 0.87 (s, 9H), 0.89 (s, 9H), 0.89 (s, 9H), 1.57 – 1.74 (m, 4H), 3.32 – 3.40 (m, 2H), 3.81 (s, 3H), 3.86 – 3.98 (m, 2H), 4.13 – 4.19 (m, 1H), 4.41 – 4.48 (m, 2H), 5.01 – 5.05 (m, 1H), 5.13 (ddd, J = 17.2, 1.7, 1.1 Hz, 1H), 5.79 (ddd, J = 17.2, 10.3, 7.0 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.4, -4.4, -3.9, -3.8, -3.5, -3.4, 18.3, 18.4, 26.1, 26.1, 43.5, 47.5, 55.4, 67.3, 69.4, 71.8, 72.9, 74.9, 113.8, 114.4, 129.3, 130.8, 141.8, 159.2. LRMS (ESI): m/z 661 [M+Na⁺] (14%), 639 [M+H⁺] (100%). HRMS (ESI): m/z 639.4289 [639.4291 berechnet für C₃₄H₆₇O₅Si₃⁺ (M+H⁺)].

(3S,5R,7S)-8-(4-Methoxybenzyloxy)-3,5,7-tris(tert-butyldimethylsilyloxy)octan-1-ol

In einem ausgeheizten Rundkolben wird Silylether 3-89 (1.71 g, 2.68 mmol) in trockenem THF (27 mL) unter Argonatmosphäre gelöst. Bei 0 °C wird 9-BBN (0.5M in THF, 16.1 mL, 8.03 mmol, 3 Äq.) zugetropft. Die Lösung wird 15 min bei 0 °C gerührt und weitere 16 h bei RT. Das Reaktionsgemisch wird erneut auf 0 °C abgekühlt und es werden NaOH (3M in H₂O, 2.68 mL, 8.03 mmol, 3 Äq.) und H₂O₂ (35% in H₂O, 2.68 mL) zugegeben. Es wird 15 min bei 0 °C und 4 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (30 mL) versetzt und mit Et₂O (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1 \rightarrow 95:5). Das Produkt wird als farblose Flüssigkeit isoliert (1.60 g, 2.44 mmol, 91%).

DC: $R_{\rm f} = 0.46$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.06 (s, 3H), 0.07 (s, 2H), 0.08 (s, 3H), 0.09 (s, 3H), 0.10 (s, 3H), 0.86 (s, 9H), 0.88 (s, 9H), 0.89 (s, 9H), 1.48 - 1.92 (m, 7H), 2.53 (s, br, 1H), 3.34 (d, J = 5.2 Hz, 2H), 3.67 - 3.75 (m,, 1H), 3.81 (s, 3H), 3.81 - 3.88 (m, 2H), 3.91 - 4.00 (m, 2H), 4.44 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.5,

-4.1, -3.8, -3.7, -3.3, 18.1, 18.2, 18.3, 26.0, 26.1, 26.1, 37.9, 43.2, 45.9, 55.4, 60.4, 67.4, 69.1, 70.0, 72.9, 74.9, 113.8, 129.3, 130.6, 159.2.

(3R,5R,7S)-8-(4-Methoxybenzyloxy)-3,5,7-tris(tert-butyldimethylsilyloxy)octanal (3-90)

Der oben beschriebene Alkohol (1.60 g, 2.43 mmol) wird in DMSO (5 mL) gelöst und IBX (2.18 g, 7.79 mmol, 3.2 Äq.) wird hinzugefügt. Die Reaktionsmischung wird für 24 h bei RT gerührt. Die Lösung wird mit CH₂Cl₂ (50 mL) verdünnt und 30 min gerührt bis sich ein weißer Niederschlag bildet. Der Feststoff wird abfiltriert und das Filtrat mit gesättigter, wässriger NaHCO₃-Lösung (30 mL) gewaschen. Die Phasen werden getrennt und die wässrige Phase wird mit CH₂Cl₂ (2×20 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das vermindertem Lösungsmittel wird unter Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Aldehyd 3-90 wird als farblose Flüssigkeit isoliert (1.32 g, 2.02 mmol, 83%).

DC: $R_f = 0.52$ (P/EtOAc 95:5) [UV] [CAM]. ¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.06 (s, 5H), 0.06 (s, 3H), 0.07 (s, 3H), 0.08 (s, 3H), 0.86 (s, 18H), 0.88 (s, 9H), 1.52 – 1.58 (m, 1H), 1.67 – 1.73 (m, 2H), 1.75 – 1.80 (m, 1H), 2.47 (ddd, J = 15.5, 6.7, 3.2 Hz, 1H), 2.56 (ddd, J = 15.5, 4.3, 1.6 Hz, 1H), 3.35 (d, J = 5.2 Hz, 2H), 3.81 (s, 3H), 3.84 – 3.89 (m, 1H), 3.91 – 3.95 (m, 1H), 4.21 – 4.26 (m, 1H), 4.42 (d, J = 11.9 Hz, 1H), 4.45 (d, J = 11.9 Hz, 1H), 6.87 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 9.78 (dd, J = 3.2, 1.6 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.4, -4.0, -3.8, -3.6, -3.5, 18.1, 18.2, 18.3, 25.9, 26.1, 43.6, 46.8, 51.1, 55.4, 66.3, 67.4, 69.2, 72.9, 74.8, 113.8, 129.3, 130.6, 159.2, 202.0.

(5*S*,7*R*,9*S*,*Z*)-10-(4-Methoxybenzyloxy)-5,7,9-tris(*tert*-butyldimethylsilyloxy)dec-2ensäuremethylester (3-91)

In einem ausgeheizten Rundkolben wird NaH (60% in Paraffinöl, 121 mg, 3.03 mmol, 1.5 Äq.) in trockenem THF (10 mL) unter Schutzgas vorgelegt. Bei 0 °C wird eine Lösung von Phosphonat 2-2 (742 mg, 2.42 mmol, 1.2 Äq.) in trockenem THF (5 mL) zugetropft. Die Reaktionslösung wird 30 min bei 0 °C gerührt. Das Gemisch wird auf -78 °C abgekühlt und eine Lösung von Aldehyd 3-90 (1.32 g, 2.02 mmol) in trockenem THF (4 mL) wird tropfenweise zugegeben. Es wird 3 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (15 mL) abgebrochen und die Mischung wird mit Et₂O (10 mL) verdünnt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:2 \rightarrow 98:2). Methylester 3-91 wird als farblose Flüssigkeit isoliert (1.22 g, 1.71 mmol, 85%).

DC: $R_f = 0.44$ (P/EtOAc 95:5) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.05 (s, 9H), 0.06 (s, 3H), 0.07 (s, 3H), 0.86 (s, 9H), 0.87 (s, 9H), 0.87 (s, 9H), 1.54 – 1.65 (m, 3H), 1.71 (ddd, J = 13.7, 7.1, 5.2 Hz, 1H), 2.76 (dtd, J = 16.0, 6.1, 2.0 Hz, 1H), 2.90 – 2.99 (m, 1H), 3.31 – 3.39 (m, 2H), 3.70 (s, 3H), 3.81 (s, 3H), 3.83 – 3.95 (m, 3H), 4.44 (s, 2H), 5.86 (dt, J = 11.6, 1.7 Hz, 1H), 6.34 (ddd, J = 11.6, 7.7, 6.4 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.4, -4.1, -4.0, -3.9, -3.5, -3.4, 18.2, 18.2, 18.3, 26.0, 26.1, 37.1, 43.7, 46.4, 51.2, 55.4, 67.7, 68.8, 69.4, 72.9, 74.8, 113.8, 120.9, 129.3, 130.8, 146.5, 159.2, 166.8.

(5*S*,7*R*,9*S*,*Z*)-10-(4-Methoxybenzyloxy)-5,7,9-tris(*tert*-butyldimethylsilyloxy)dec-2-en-1-ol

In einem ausgeheizten Rundkolben wird Methylester 3-91 (1.22 g, 1.71 mmol) in trockenem THF (17 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAl-H (1.2M in Toluol, 4.28 mL, 5.13 mmol, 3 Äq.) zugetropft. Die Lösung wird 2 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 30 mL) abgebrochen. Es wird Glycerin (1.03 mL, 0.2 mL/mmol DIBA1-H) zugegeben. Die Mischung wird mit Et₂O (20 mL) verdünnt und weitere 30 min bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×20 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und Rückstand der säulenchromatographisch aufgereinigt (P/EtOAc 98:2 \rightarrow 90:10). Das Produkt wird als farblose Flüssigkeit isoliert (1.14 g, 1.67 mmol, 97%).

DC: $R_f = 0.31$ (P/EtOAc 90:10) [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.05 (s, 3H), 0.06 (s, 3H), 0.07 (s, 12H), 0.87 (s, 9H), 0.87 (s, 9H), 0.88 (s, 9H), 1.53 – 1.70 (m, 5H), 2.24 – 2.28 (m, 2H), 3.31 – 3.38 (m, 2H), 3.75 – 3.83 (m, 1H), 3.81 (s, 3H), 3.85 – 3.90 (m, 1H), 3.91 – 3.97 (m, 1H), 4.14 – 4.17 (m, 2H), 4.44 (s, 2H), 5.53 – 5.60 (m, 1H), 5.72 – 5.79 (m, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.4, -4.2, -4.0, -3.8, -3.5, -3.4, 18.2, 18.3, 18.3, 26.1, 35.4, 43.5, 46.3, 55.4, 58.8, 67.6, 69.2, 69.5, 72.9, 74.8, 113.8, 129.0, 129.3, 130.7, 130.8, 159.2.

(5*S*,7*R*,9*S*,*Z*)-10-(4-Methoxybenzyloxy)-5,7,9-tris(*tert*-butyldimethylsilyloxy)dec-2-enyl 2,2,2-trichloracetimidat (3-92)

In einem ausgeheizten Rundkolben wird der oben beschriebene Allylalkohol (1.07 g, 1.56 mmol) in trockenem CH₂Cl₂ (6 mL) unter Argonatmosphäre gelöst und Trichloracetonitril (172 μ L, 248 mg, 1.72 mmol, 1.1 Åq.) und DBU (23.4 μ L, 23.8 mg, 156 µmol, 0.1 Äq.) werden zugegeben. Die Lösung wird 2 h bei RT gerührt. Die Reaktion wird durch Zugabe von H₂O (15 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und Rückstand der säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Das Produkt wird als farbloses Öl isoliert (1.18 g, 1.43 mmol, 92%).

DC: $R_f = 0.48$ (P/EtOAc 95:5) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.05 (s, 3H), 0.06 (s, 12H), 0.87 (s, 9H), 0.87 (s, 18H), 1.53 – 1.63 (m, 3H), 1.70 (ddd, J = 13.6, 7.2, 4.9 Hz, 1H), 2.28 – 2.35 (m, 2H), 3.31 – 3.38 (m, 2H), 3.81 (s, 3H), 3.82 – 3.95 (m, 3H), 4.44 (s, 2H), 4.79 – 4.89 (m, 2H), 5.70 – 5.79 (m, 2H), 6.86 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H), 8.29 (s, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.3, -4.1, -4.0, -3.9, -3.4, -3.3, 18.2, 18.2, 18.3, 26.1, 26.1, 36.0, 43.7, 46.3, 55.4, 65.6, 67.7, 69.3, 72.9, 74.8, 113.8, 124.8, 129.3, 130.7, 131.8, 159.2, 162.8.

(3*S*,5*S*,7*R*,9*S*)-10-(4-Methoxybenzyloxy)-5,7,9-tris(*tert*-butyldimethylsilyloxy)dec-1-en-3yl-benzoat (3-76)

Trichloracetimidat 3-92 (1.18 g, 1.43 mmol) und Benzoesäure (523 mg, 4.29 mmol, 3 Åq.) werden in CH_2Cl_2 (1.1 mL) gelöst und (*R*)-(-)-COP-OAc (43.2 mg, 28.6 µmol, 2 mol%) wird zugegeben. Das Reaktionsgemisch wird geschützt vor Licht für 20 h bei RT gerührt. Die

Suspension wird mit CH_2Cl_2 (10 mL) verdünnt und mit NaHCO₃ solange gewaschen, bis keine Gasentwicklung mehr zu beobachten ist (5×5 mL). Die vereinigten wässrigen Phasen werden mit CH_2Cl_2 (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Benzoat 3-76 wird als gelbes Öl isoliert (1.08 g, 1.37 mmol, 95%, d.r. >99:1).

DC: $R_f = 0.68$ (P/EtOAc 90:10) [UV] [CAM]. [α]²³_D = -19.6 (c = 0.50 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = -0.04 (s, 3H), 0.00 (s, 3H), 0.08 (s, 6H), 0.09 (s, 3H), 0.09 (s, 3H), 0.87 (s, 9H), 0.88 (s, 9H), 0.88 (s, 9H), 1.56 – 1.60 (m, 2H), 1.62 – 1.77 (m, 3H), 2.00 – 2.08 (m, 1H), 3.32 – 3.40 (m, 2H), 3.79 (s, 3H), 3.82 – 3.89 (m, 1H), 3.90 – 3.98 (m, 1H), 4.00 – 4.06 (m, 1H), 4.43 (d, J = 11.7 Hz, 1H), 4.47 (d, J = 11.7 Hz, 1H), 5.17 (dt, J = 10.5, 1.1 Hz, 1H), 5.28 (dt, J = 17.2, 1.1 Hz, 1H), 5.53 – 5.58 (m, 1H), 5.87 (ddd, J = 17.2, 10.5, 6.1 Hz, 1H), 6.85 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.9 Hz, 2H), 7.36 – 7.41 (m, 2H), 7.51 – 7.56 (m, 1H), 8.04 – 8.08 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.5, -3.8, -3.7, -3.6, -3.3, 18.1, 18.2, 18.4, 26.1, 26.1, 26.2, 42.1, 42.8, 47.0, 55.4, 66.5, 67.2, 69.0, 72.6, 72.9, 75.1, 113.8, 116.4, 128.4, 129.3, 129.8, 130.6, 130.6, 132.9, 136.9, 159.2, 165.8. **IR** (film): v_{max} [cm⁻¹] = 2953, 2928, 2896, 2856, 1724, 1616, 1514, 1471, 1361, 1271, 1251, 1108, 1069, 1040, 1006, 931, 835, 808, 775, 713. **LRMS** (ESI): *m/z* 809 (95%) [M+Na⁺], 787 [M+H⁺] (100%), 673 (10%), 413 (19%), 282 (70%). **HRMS** (ESI): *m/z* 787.4803 [787.4815 berechnet für C₄₃H₇₅O₇Si₃⁺ (M+H⁺)].

(3*S*,5*S*,7*R*,9*S*)-10-(4-Methoxybenzyloxy)-5,7,9-tris(*tert*-butyldimethylsilyloxy)dec-1-en-3-ol

Benzoat 3-76 (1.08 g, 1.37 mmol) wird in MeOH (14 mL) gelöst und K₂CO₃ (1.89 g, 13.7 mmol, 10 Äq.) wird hinzugefügt. Das Reaktionsgemisch wird 16 h bei RT gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt, der Rückstand in H₂O (20 mL) aufgenommen und mit Et₂O (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand

säulenchromatographisch aufgereinigt (P/EtOAc 99:1 \rightarrow 96:4). Der freie Alkohol wird als gelbes Öl isoliert (824 mg, 1.21 mmol, 88%).

DC: $R_f = 0.49$ (P/EtOAc 90:10) [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.06 (s, 3H), 0.08 (s, 3H), 0.09 (s, 3H), 0.10 (s, 3H), 0.11 (s, 3H), 0.86 (s, 9H), 0.88 (s, 9H), 0.90 (s, 9H), 1.48 – 1.64 (m, 3H), 1.68 – 1.77 (m, 2H), 1.90 (ddd, J = 14.1, 8.9, 5.4 Hz, 1H), 3.34 (d, J = 5.2 Hz, 2H), 3.42 (d, J = 2.6 Hz, 1H), 3.81 (s, 3H), 3.79 – 3.86 (m, 1H), 3.95 – 4.07 (m, 2H), 4.42 (d, J = 11.9 Hz, 1H), 4.42 – 4.49 (m, 1H), 4.46 (d, J = 11.9 Hz, 1H), 5.08 (dt, J = 10.4, 1.5 Hz, 1H), 5.26 (dt, J = 17.2, 1.5 Hz, 1H), 5.84 (ddd, J = 17.2, 10.4, 5.6 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.4, -4.2, -3.7, -3.3, 18.1, 18.2, 18.3, 26.0, 26.1, 26.1, 41.6, 43.1, 45.3, 55.4, 67.3, 69.0, 69.2, 69.8, 72.8, 75.0, 113.8, 114.2, 129.3, 130.6, 141.0, 159.2.

1-(((2*S*,4*R*,6*R*,8*S*)-2,4,6,8-Tetrakis(*tert*-butyldimethylsilyloxy)dec-9-enyloxy)methyl)-4methoxybenzol (3-93)

Der oben beschriebene Allylalkohol (765 mg, 1.12 mmol) wird in DMF gelöst (1.1 mL) und TBSCl (337 mg, 2.24 mmol, 2 Äq.) und Imidazol (305 mg, 4.48 mmol, 4 Äq.) werden zugegeben. Die Lösung wird 3 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (15 mL) versetzt und mit Et₂O (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 100:0 \rightarrow 99:1). Silylether 3-93 wird als farblose Flüssigkeit isoliert (831 mg, 1.04 mmol, 93%).

DC: $R_{\rm f} = 0.78$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -11.8$ (c = 0.61 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.01 (s, 3H), 0.03 (s, 3H), 0.04 (s, 3H), 0.06 (s, 9H), 0.07 (s, 3H), 0.07 (s, 3H), 0.87 (s, 9H), 0.88 (s, 9H), 0.88 (s, 9H), 0.88 (s, 9H), 1.47 (ddd, J = 13.4, 7.3, 5.0 Hz, 1H), 1.53 – 1.73 (m, 5H), 3.29 – 3.36 (m, 2H), 3.81 (s, 3H), 3.83 – 3.93 (m, 2H), 3.94 – 4.00 (m, 1H), 4.17 – 4.23 (m, 1H), 4.41 (d, J = 11.7 Hz, 1H), 4.46 (d, J = 11.7 Hz, 1H), 5.01 (ddd, J = 10.3, 1.6, 0.7 Hz, 1H), 5.12 (ddd, J = 17.3, 1.6, 1.0 Hz, 1H), 5.78 (ddd, J = 17.3, 10.3, 7.3 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³C NMR (91 MHz,

CDCl₃): δ [ppm] = -4.52, -4.46, -3.8, -3.69, -3.68, -3.6, -3.42, -3.38, 18.24, 18.25, 18.3, 18.4, 26.1, 26.15, 26.17, 26.22, 42.8, 46.4, 46.9, 55.4, 67.1, 67.4, 69.0, 71.6, 72.8, 74.9, 113.8, 114.3, 129.3, 130.8, 142.2, 159.2. **IR** (film): v_{max} [cm⁻¹] = 2954, 2928, 2887, 2856, 1614, 1514, 1471, 1463, 1388, 1361, 1302, 1251, 1173, 1096, 1072, 1039, 1006, 922, 835, 808, 774. **LRMS** (ESI): *m/z* 798 (100%) [M+H⁺], 683 (10%), 533 (13%), 411 (30%), 282 (55%). **HRMS** (ESI): *m/z* 797.5397 [797.5418 berechnet für C₄₂H₈₅O₆Si₄⁺ (M+H⁺)].

(3*R*,5*S*,7*R*,9*S*)-10-(4-Methoxybenzyloxy)-3,5,7,9-tetrakis(*tert*-butyldimethylsilyloxy)-decan-1-ol

In einem ausgeheizten Rundkolben wird Silylether 3-93 (831 mg, 1.04 mmol) in trockenem THF (10 mL) unter Argonatmosphäre gelöst. Bei 0 °C wird 9-BBN (0.5M in THF, 6.25 mL, 3.13 mmol, 3 Äq.) zugetropft. Die Lösung wird 15 min bei 0 °C gerührt und weitere 19 h bei RT. Das Reaktionsgemisch wird erneut auf 0 °C abgekühlt und es werden NaOH (3M in H₂O, 1.04 mL, 3.13 mmol, 3 Äq.) und H₂O₂ (35% in H₂O, 1.04 mL) zugegeben. Es wird 15 min bei 0 °C und 4 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (20 mL) versetzt und mit Et₂O (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 96:4). Der primäre Alkohol wird als farblose Flüssigkeit isoliert (724 mg, 888 µmol, 85%).

DC: $R_{\rm f} = 0.71$ (P/EtOAc 90:10) [CAM]. $[\alpha]^{23}{}_{\rm D} = -8.65$ (c = 0.61 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.06 (s, 3H), 0.079 (s, 3H), 0.083 (s, 3H), 0.087 (s, 3H), 0.092 (s, 3H), 0.102 (s, 3H), 0.104 (s, 3H), 0.11 (s, 3H), 0.89 (s, 9H), 0.896 (s, 9H), 0.898 (s, 9H), 0.904 (s, 9H), 1.53 – 1.80 (m, 7H), 1.83 – 1.92 (m, 1H), 2.40 (s, br, 1H), 3.36 (d, J = 5.1 Hz, 2H), 3.70 – 3.77 (m, 1H), 3.78 – 3.86 (m, 2H), 3.82 (s, 3H), 3.88 – 3.95 (m, 2H), 3.96 – 4.02 (m, 1H), 4.43 (d, J = 11.7 Hz, 1H), 4.48 (d, J = 11.7 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.41, -4.38, -4.1, -3.9, -3.7, -3.6, -3.5, -3.4, 18.1, 18.2, 18.4, 26.0, 26.08, 26.12, 26.2, 38.4, 43.3, 45.5, 46.4, 55.4, 60.3, 67.40, 67.41, 69.2, 69.6, 72.9, 74.6, 113.8, 129.3, 130.7, 159.2. IR (film): v_{max} [cm⁻¹] = 3453,

2953, 2929, 2897, 2886, 2856, 1740, 1605, 1514, 1471, 1463, 1387, 11361, 1305, 1250, 1173, 1096, 1071, 1039, 1005, 938, 833, 806, 773. **LRMS** (ESI): m/z 838 (28%) [M+Na⁺], 816 (100%) [M+H⁺], 683 (21%), 427 (4%), 282 (18%). **HRMS** (ESI): m/z 815.5517 [815.5523 berechnet für C₄₂H₈₇O₇Si₄⁺ (M+H⁺)].

3*R*,5*S*,7*R*,9*S*)-10-(4-Methoxybenzyloxy)-3,5,7,9-tetrakis(*tert*-butyldimethylsilyloxy)decyl benzoate (3-75)

Der oben beschriebene Alkohol (724 mg, 887 µmol) wird in CH_2Cl_2 (9 mL) gelöst. DCC (238 mg, 1.15 mmol, 1.3 Äq.), Benzoesäure (141 mg, 1.15 mmol, 1.3 Äq.) und DMAP (16.3 mg, 133 µmol, 0.15 Äq.) werden hinzugefügt. Die Lösung wird 18 h bei RT gerührt. Das Reaktionsgemisch wird abfiltriert und das Filtrat mit gesättigter, wässriger NaHCO₃-Lösung (15 mL) gewaschen. Die Phasen werden getrennt und die wässrige Phase mit CH_2Cl_2 (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Benzoat 3-75 wird als farblose Flüssigkeit isoliert (693 mg, 754 µmol, 85%).

DC: $R_f = 0.83$ (P/EtOAc 90:10) [UV] [CAM]. [α]²³_D = -4.11 (c = 1.18 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.06 (s, 3H), 0.06 (s, 9H), 0.07 – 0.08 (m, 9H), 0.85 (s, 9H), 0.86 (s, 9H), 0.878 (s, 9H), 0.883 (s, 9H), 1.50 – 1.75 (m, 6H), 1.79 – 2.03 (m, 2H), 3.33 (d, J = 5.3 Hz, 2H), 3.81 (s, 3H), 3.86 – 4.06 (m, 3H), 4.35 – 4.43 (m, 3H), 4.47 (d, J = 11.7 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.39 – 7.46 (m, 2H), 7.51 – 7.58 (m, 1H), 8.02 – 8.07 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.2, -4.0, -3.8, -3.6, -3.5, -3.3, 18.19, 18.20, 18.21, 18.4, 26.09, 26.10, 26.2, 36.7, 43.0, 45.8, 46.8, 55.4, 62.0, 66.8, 67.3, 67.4, 69.0, 72.9, 74.8, 113.8, 128.4, 129.3, 129.7, 130.6, 130.7, 132.9, 159.2, 166.7. IR (film): v_{max} [cm⁻¹] = 2952, 2928, 2898, 2855, 1723, 1605, 1514, 1471, 1463, 1452, 1387, 1361, 1273, 1250, 1169, 1108, 1070, 1041, 1005, 936, 833, 806, 773, 711. LRMS (ESI): m/z 919.5769 [919.5786 berechnet für C₄₉H₉₁O₈Si₄⁺ (M+H⁺)].

(3R,5S,7R,9S)-3,5,7,9-Tetrakis(tert-butyldimethylsilyloxy)-10-hydroxydecyl-benzoat

PMB-Ether 3-75 (899 mg, 978 µmol) wird in einer Mischung aus CH₂Cl₂ (5 mL) und pH 7-Puffer (5 mL) gelöst. DDQ (333 mg, 1.47 mmol, 1.5 Äq.) wird hinzugefügt und das Reaktionsgemisch wird 1.5 h heftig gerührt. Die Mischung wird über Zelithe abfiltriert wobei mehrmals mit CH₂Cl₂ nachgewaschen wird. Das Filtrat wird mit H₂O (20 mL) versetzt. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1 \rightarrow 95:5). Das Produkt wird als farblose Flüssigkeit isoliert (717 mg, 896 µmol, 92%).

DC: $R_{\rm f} = 0.72$ (P/EtOAc 90:10) [CAM]. $[\alpha]^{23}{}_{\rm D} = +13.7$ (c = 0.93 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.06 (s, 3H), 0.07 (s, 6H), 0.077 (s, 6H), 0.082 (s, 3H), 0.09 (s, 3H), 0.10 (s, 3H), 0.84 (s, 9H), 0.86 (s, 9H), 0.89 (s, 9H), 0.90 (s, 9H), 1.56 – 1.73 (m, 6H), 1.80 – 2.04 (m, 3H), 3.40 – 3.49 (m, 1H), 3.57 – 3.65 (m, 1H), 3.79 – 3.91 (m, 3H), 3.93 – 4.04 (m, 1H), 4.31 – 4.46 (m, 2H), 7.39 – 7.46 (m, 2H), 7.52 – 7.59 (m, 1H), 8.02 – 8.06 (m, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.25, -4.24, -4.20, -4.0, -3.6, -3.53, -3.48, -3.4, 18.16, 18.19, 18.20, 18.25, 26.0, 36.5, 42.5, 46.1, 46.5, 61.9, 66.7, 66.9, 67.2, 67.3, 70.5, 128.4, 129.7, 130.5, 132.9, 166.6. IR (film): ν_{max} [cm⁻¹] = 3527, 2954, 2928, 2909, 2890, 2856, 1724, 1472, 1463, 1387, 1361, 1314, 1273, 1253, 1178, 1113, 1069, 1045, 1005, 937, 923, 834, 806, 772, 711. LRMS (ESI): *m/z* 822 (26%) [M+Na⁺], 800 (100%) [M+H⁺], 667 (11%), 531 (3%), 282 (12%). HRMS (ESI): *m/z* 799.5191 [799.5210 berechnet für C₄₁H₈₃O₇Si₄⁺ (M+H⁺)].

(3R,5S,7R,9S)-3,5,7,9-Tetrakis(tert-butyldimethylsilyloxy)-10-oxodecyl-benzoat (3-26)

$$O_{\text{A}_{1}} = I_{\text{A}_{2}} O_{\text{A}_{2}} = I_{\text{A}_{2}}$$

Der oben beschriebene Alkohol (103 mg, 129 µmol) wird in einem DMSO/THF-Gemisch (1:2, 750 µL) gelöst und IBX (101 mg, 361 µmol, 2.8 Äq.) wird hinzugefügt. Die Reaktionsmischung wird für 5 h bei RT gerührt. Die Lösung wird mit CH₂Cl₂ (7.5 mL) verdünnt und 30 min gerührt bis sich ein weißer Niederschlag bildet. Der Feststoff wird abfiltriert und das Filtrat mit gesättigter, wässriger NaHCO₃-Lösung (15 mL) gewaschen. Die Phasen werden getrennt und die wässrige Phase wird mit CH₂Cl₂ (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Aldehyd 3-**26** wird als farblose Flüssigkeit isoliert (91.6 mg, 115 µmol, 89%).

DC: $R_{\rm f}$ = 0.74 (P/EtOAc 95:5) [CAM]. $[\alpha]^{23}{}_{\rm D}$ = -12.9 (c = 0.55 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] 0.059 (s, 3H), 0.064 (s, 3H), 0.07 (s, 9H), 0.08 (s, 6H), 0.09 (s, 3H), 0.84 (s, 9H), 0.85 (s, 9H), 0.88 (s, 9H), 0.92 (s, 9H), 1.56 – 1.67 (m, 2H), 1.69 – 1.75 (m, 4H), 1.83 – 1.98 (m, 2H), 3.82 – 3.90 m, 1H), 3.94 – 4.05 (m, 2H), 4.16 (td, J = 6.0, 1.7 Hz, 1H), 4.32 – 4.43 (m, 2H), 7.40 – 7.46 (m, 2H), 7.53 – 7.58 (m, 1H), 8.02 – 8.05 (m, 2H), 9.59 (d, J = 1.7 Hz, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.6, -4.1, -4.02, -4.01, -3.7, -3.6, -3.3, 18.18, 18.19, 18.20, 18.3, 26.01, 26.05, 26.1, 36.8, 40.7, 45.7, 46.6, 61.9, 66.8, 66.9, 67.4, 75.5, 128.4, 129.7, 130.5, 133.0, 166.6, 203.5. IR (film): v_{max} [cm⁻¹] = 2952, 2928, 2896, 2856, 1724, 1471, 1463, 1388, 1362, 1314, 1273, 1254, 1110, 1069, 1042, 1028, 1005, 936, 912, 834, 806, 773, 733, 710. LRMS (ESI): *m/z* 798 (100%) [M+H⁺], 665 (11%), 533 (10%), 282 (8%). HRMS (ESI): *m/z* 797.5071 [797.5054 berechnet für C₄₁H₈₁O₇Si₄⁺ (M+H⁺)].

2.2.5 Synthese von Fragment C31-C34 (3-27)

(Z)-4-(4-Methoxybenzyloxy)but-2-en-1-ol (3-97)

In einem ausgeheizten Rundkolben werden NaH (60% in Paraffinöl, 2.04 g, 51.2 mmol, 1.00) in trockenem DMF (51 mL) unter Argonatmosphäre vorgelegt. Bei 0 °C werden But-2-en-1,4-diol (4.21 mL, 4.51 g, 51.2 mmol) zugetropft. Die Reaktionsmischung wird 20 min bei 0°C gerührt. 4-Methoxybenzylchlorid (8.00 g, 51.1 mmol, 1.00 Äq..) und TBAI (1.89 g, 5.11 mmol, 0.1 Äq.) werden zugegeben und es wird weiter 15 min bei 0 °C gerührt. Die Reaktionsmischung wird auf RT erwärmt und 15 h gerührt. Die Reaktion wird durch Zugabe von H₂O (500 mL) abgebrochen. Es wird mit Et₂O (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 80:20 \rightarrow 60:40). Alkohol 3-97 wird als farblose Flüssigkeit isoliert (6.69 g, 31.1 mmol, 63%).

DC: $R_{\rm f} = 0.43$ (P/EtOAc 60:40) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 2.01 (s, br, 1H), 3.80 (s, 3H), 4.06 (d, J = 6.1 Hz, 2H), 4.16 (d, J = 6.2 Hz, 2H), 4.45 (s, 2H), 5.69 – 5.87 (m, 2H), 6.88 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 55.4, 58.9, 65.5, 72.3, 114.0, 128.5, 129.6, 130.1, 132.4, 159.4.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[229]

(Z)-4-(4-Methoxybenzyloxy)but-2-enyl-2,2,2-trichloracetimidat (3-96)

In einem ausgeheizten Rundkolben wird Allylalkohol 3-**97** (6.69 g, 32.1 mmol) in trockenem CH_2Cl_2 (160 mL) unter Argonatmosphäre gelöst und Trichloracetonitril (3.21 mL, 4.63 g, 32.1 mmol, 1 Äq.) und DBU (480 μ L, 488 mg, 3.21 mmol, 0.1 Äq.) werden zugegeben. Die Lösung wird 3 h bei RT gerührt. Die Reaktion wird durch Zugabe von H₂O (100 mL)

abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit CH_2Cl_2 (2×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Das Produkt wird als farblose Flüssigkeit isoliert (10.5 g, 29.8 mmol, 93%).

DC: $R_f = 0.29$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 3.81 (s, 3H), 4.13 – 4.16 (m, 2H), 4.46 (s, 2H), 4.84 – 4.87 (m,2), 5.79 – 5.92 (m, 2H), 6.88 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.7 Hz, 2H), 8.32 (s, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 55.4, 65.3, 65.7, 72.2, 91.5, 114.0, 125.8, 129.6, 130.2, 131.9, 159.4, 162.6.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[39a]

(S)-1-(4-Methoxybenzyloxy)but-3-en-2-yl-benzoat

Trichloracetimidat 3-96 (4.52 g, 12.8 mmol) und Benzoesäure (4.70 g, 38.5 mmol, 3 Äq.) werden in CH₂Cl₂ (8.5 mL) gelöst und (S)-(+)-COP-OAc (291 mg, 0.19 mmol, 1.5 mol%) wird zugegeben. Das Reaktionsgemisch wird geschützt vor Licht für 20 h gerührt. Die Suspension wird mit CH₂Cl₂ (50 mL) verdünnt und mit NaHCO₃ solange gewaschen, bis keine Gasentwicklung mehr zu beobachten ist (3×50 mL). Die vereinigten wässrigen Phasen werden mit CH₂Cl₂ (2×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das wird unter vermindertem Druck entfernt und Lösungsmittel der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc $98:2 \rightarrow 90:10$). Benzoat 3-95 wird als gelbe Flüssigkeit isoliert (3.45 g, 11.1 mmol, 86%, 98% ee).

DC: $R_{\rm f} = 0.48$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -13.9$ (c = 1.10 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 3.66 (dd, J = 10.7, 4.4 Hz, 1H), 3.71 (dd, J = 10.7, 6.5 Hz, 1H), 3.79 (s, 3H), 4.51 (d, J = 11.8 Hz, 1H), 4.57 (d, J = 11.8 Hz, 1H), 5.29 (dt, J = 10.6, 1.3 Hz, 1H), 5.42 (dt, J = 17.3, 1.3 Hz, 1H), 5.70 – 5.76 (m, 1H), 5.96 (ddd, J = 17.3, 10.6, 5.9 Hz, 1H), 6.85 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.43 – 7.47 (m, 2H), 7.54 – 7.59 (m, 1H), 8.07 – 8.10 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 55.4, 71.1, 73.0, 73.9, 113.9, 118.1, 128.5, 129.4, 129.8, 130.2, 130.4, 133.1, 133.6, 159.4, 165.9. IR (film): v_{max}

 $[\text{cm}^{-1}] = 2941, 2901, 2861, 1717, 1612, 1585, 1513, 1452, 1268, 1246, 1174, 1097, 1069, 1027, 989, 930, 847, 822, 711.$ **HRMS**(ESI):*m/z* $335.1246 [335.1254 berechnet für <math>C_{19}H_{20}O_4\text{Na}^+(\text{M}+\text{Na}^+)].$

Der Enantiomerenüberschuss wurde mittels chiraler HPLC bestimmt (Säule: Daicel OJ-H; *n*-Hexan/*i*-PrOH 90:10; 1.0 mL/min; 210 nm; (*R*)-Enantiomere: $t_{\rm R} = 30.48$ min; (*S*)-Enantiomere: $t_{\rm R} = 27.75$ min].

(S)-1-(4-Methoxybenzyloxy)but-3-en-2-ol

Benzoat 3-95 (3.41 g, 10.9 mmol) wird in MeOH (110 mL) vorgelegt und K₂CO₃ (15.1 g, 109 mmol, 10 Äq.) werden hinzugefügt. Das Reaktionsgemisch wird 14 h bei RT gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt, der Rückstand in 100 mL H₂O aufgenommen und mit Et₂O (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5 \rightarrow 80:20). Das Produkt wird als gelbe Flüssigkeit isoliert (2.01 g, 9.63 mmol, 88%).

DC: $R_{\rm f} = 0.14$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -1.69$ (c = 0.91 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 2.41 – 2.43 (m, 1H), 3.34 (dd, J = 9.6, 8.0 Hz, 1H), 3.52 (dd, J = 9.6, 3.4 Hz, 1H), 3.81 (s, 3H), 4.30 – 4.36 (m, 1H), 4.51 (s, 2H), 5.19 (dt, J = 10.6, 1.5 Hz, 1H), 5.35 (dt, J = 17.3, 1.5 Hz, 1H), 5.83 (ddd, J = 17.3, 10.6, 5.6 Hz, 1H), 6.89 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 3H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 55.4, 71.7, 73.2, 73.8, 114.0, 116.6, 129.6, 130.1, 136.7, 159.5. IR (film): $v_{\rm max}$ [cm⁻¹] = 3461, 2904, 2857, 1612, 1586, 1512, 1460, 1421, 1362, 1302, 1245, 1174, 1099, 1033, 992, 925, 820. HRMS (ESI): m/z 231.0992 [231.0992 berechnet für C₁₂H₁₆O₃Na⁺ (M+Na⁺)].

(S)-4-(4-Methoxybenzyloxy)-3-(tert-butyldimethylsilyloxy)but-1-en (3-98)

Der oben beschriebene Allylalkohol (2.00 g, 9.82 mmol) wird in DMF gelöst (9.8 mL) und TBSC1 (2.96 g, 19.6 mmol, 2 Äq.) und Imidazol (2.68 g, 39.3 mmol, 4 Äq.) werden zugegeben. Die Lösung wird 1 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (100 mL) versetzt und mit Et₂O (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2 \rightarrow 95:5). Silylether 3-98 wird als farblose Flüssigkeit isoliert (2.95 g, 9.15 mmol, 93%).

DC: $R_{\rm f} = 0.83$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -16.6$ (c = 1.00 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.06 (s, 3H), 0.07 (s, 3H), 0.90 (s, 9H), 3.38 (d, J = 0.7 Hz, 1H), 3.40 (d, J = 1.1 Hz, 1H), 3.81 (s, 3H), 4.27 – 4.35 (m, 1H), 4.48 (s, 2H), 5.10 – 5.15 (m, 1H), 5.25 – 5.34 (m, 1H), 5.87 (ddd, J = 17.2, 10.5, 5.2 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.6, -4.5, 18.5, 26.0, 55.4, 72.9, 73.1, 74.9, 113.8, 115.1, 129.3, 130.7, 138.8, 159.2. IR (film): v_{max} [cm⁻¹] = 2956, 2930, 2894, 2856, 1613, 1586, 1513, 1463, 1361, 1302, 1247, 1084, 1036, 831, 776. HRMS (ESI): m/z 345.1856 [345.1856 berechnet für C₁₈H₃₀O₃NaSi⁺ (M+Na⁺)].

(S)-4-(4-Methoxybenzyloxy)-3-(tert-butyldimethylsilyloxy)butan-1-ol

In einem ausgeheizten Rundkolben wird Silylether 3-98 (4.00 g, 12.4 mmol) in trockenem THF (130 mL) unter Argonatmosphäre gelöst. Bei 0 °C werden 9-BBN (0.5M in THF, 74.2 mL, 37.2 mmol, 3 Äq.) zugetropft. Die Lösung wird 15 min bei 0 °C gerührt und weiter 15 h bei RT. Das Reaktionsgemisch wird erneut auf 0 °C abgekühlt und es werden NaOH (3M in H₂O, 12.4 mL, 37.2 mmol, 3 Äq.) und H₂O₂ (35% in H₂O, 12.4 mL) zugegeben. Es wird 15 min bei 0 °C und 4 h bei RT gerührt. Das Reaktionsgemisch wird erneut auf 0 °C abgekühlt und es werden NaOH (150 mL) versetzt und mit Et₂O (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit
gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10 \rightarrow 70:30). Der primäre Alkohol wird als farblose Flüssigkeit isoliert (4.20 g, 12.3 mmol, 99%).

DC: $R_f = 0.20$ (P/EtOAc 90:10) [CAM]. $[\alpha]^{23}{}_{D} = -13.9$ (c = 1.15 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.06 (s, 3H), 0.08 (s, 3H), 0.88 (s, 9H), 1.71 – 1.80 (m, 1H), 1.82 – 1.92 (m, 1H), 2.47 (s, br, 1H), 3.40 (dd, J = 9.5, 6.3 Hz, 1H), 3.46 (dd, J = 9.5, 5.2 Hz, 1H), 3.73 – 3.77 (m, 2H), 3.81 (s, 3H), 4.00 – 4.07 (m, 1H), 4.44 (d, J = 11.7 Hz, 1H), 4.48 (d, J = 11.7 Hz, 1H), 6.88 (d, J = 8.7 Hz, 1H), 7.24 (d, J = 8.7 Hz, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.8, -4.3, 18.2, 26.0, 37.1, 55.4, 60.0, 70.7, 73.3, 74.0, 114.0, 129.5, 130.2, 159.4. IR (film): v_{max} [cm⁻¹] = 3410, 2949, 2629, 2855, 1613, 1586, 1513, 1464, 1362, 1302, 1247, 1173, 1091, 1033, 833, 775. LRMS (ESI): m/z 681 (31%) [2M+H⁺], 363 (22%) [M+Na⁺], 341 (100%) [M+H⁺]. HRMS (ESI): m/z 341.2145 [341.2143 berechnet für C₁₈H₃₃O₄Si⁺ (M+H⁺)].

(S)-4-(4-Methoxybenzyloxy)-3-(tert-butyldimethylsilyloxy)butyl-benzoat (3-94)

Der oben beschriebene Alkohol (4.15 g, 12.2 mmol) wird in CH₂Cl₂ (120 mL) gelöst. DCC (4.03 g, 19.5 mmol, 1.6 Äq.), Benzoesäure (2.38 g, 19.5 mmol, 1.6 Äq.) und DMAP (298 mg, 2.44 mmol, 0.2 Äq.) werden hinzugefügt. Die Lösung wird 16 h bei RT gerührt. Das Reaktionsgemisch wird abfiltriert und das Filtrat mit gesättigter, wässriger NaHCO₃-Lösung (100 mL) gewaschen. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (2×70 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10 → 70:30). Benzoat 3-94 wird als farblose Flüssigkeit isoliert (4.62 g, 10.4 mmol, 85%).

DC: $R_{\rm f} = 0.33$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -12.3$ (c = 1.36 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.05 (s, 3H), 0.06 (s, 3H), 0.89 (s, 9H), 1.82 - 1.92 (m, 1H), 2.02 - 2.11 (m, 1H), 3.40 (dd, J = 9.6, 5.5 Hz, 1H), 3.45 (dd, J = 9.6, 5.5 Hz, 1H), 3.80 (s,

3H), 4.02 - 4.08 (m, 1H), 4.34 - 4.41 (m, 1H), 4.43 - 4.50 (m, 1H), 4.46 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.41 - 7.45 (m, 2H), 7.53 - 7.58 (m, 1H), 8.01 - 8.05 (m, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.8, -4.2, 18.3, 26.0, 33.9, 55.4, 61.8, 68.6, 73.2, 74.6, 113.9, 128.5, 129.4, 129.7, 130.5, 130.6, 133.0, 159.3, 166.7. **IR** (film): v_{max} [cm⁻¹] = 2956, 2928, 2899, 2856, 1719, 1612, 1513, 1463, 1273, 1248, 1174, 1098, 1037, 1007, 946, 834, 776, 709. **LRMS** (ESI): m/z 911 (4%) [2M+Na⁺], 803 (4%), 683 (28%), 467 (100%) [M+Na⁺], 445 (8%) [M+H⁺]. **HRMS** (ESI): m/z 445.2408 [445.2405 berechnet für C₂₅H₃₇O₅Si⁺ (M+H⁺)].

(S)-3-(tert-Butyldimethylsilyloxy)-4-hydroxybutyl-benzoat

PMB-Ether 3-98 (4.55 g, 10.2 mmol) wird in einer Mischung aus CH_2Cl_2 (50 mL) und pH 7-Puffer (50 mL) gelöst. DDQ (3.48 g, 15.3 mmol, 1.5 Äq.) werden hinzugefügt und das Reaktionsgemisch wird 3 h heftig gerührt. Die Mischung wird über Zelithe abfiltriert wobei mehrmals mit CH_2Cl_2 nachgewaschen wird. Das Filtrat wird mit H_2O (100 mL) versetzt. Die Phasen werden getrennt und die wässrige Phase mit CH_2Cl_2 (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2 \rightarrow 80:20). Das Produkt wird als farblose Flüssigkeit isoliert (2.73 g, 8.41 mmol, 82%).

DC: $R_f = 0.14$ (P/EtOAc 90:10) [CAM]. $[\alpha]^{23}{}_{D} = -14.6$ (c = 1.23 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.10 (s, 3H), 0.10 (s, 3H), 0.91 (s, 9H), 1.87 (dd, J = 7.0, 5.6 Hz, 1H), 1.94 – 2.04 (m, 2H), 3.52 – 3.59 (m, 1H), 3.64 – 3.69 (m, 1H), 3.97 – 4.03 (m, 1H), 4.32 – 4.39 (m, 1H), 4.42 – 4.49 (m, 1H), 7.42 – 7.47 (m, 2H), 7.54 – 7.59 (m, 1H), 8.02 – 8.05 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.6, -4.4, 18.2, 26.0, 33.1, 61.7, 66.6, 70.0, 128.5, 129.7, 130.4, 133.1, 166.6. IR (film): v_{max} [cm⁻¹] = 3530, 2954, 2928, 2885, 1719, 1471, 1452, 1391, 1362, 1315, 1273, 1255, 1173, 1110, 1070, 1048, 1027, 1005, 936, 834, 775, 710. LRMS (EI): m/z 267 (11%) [M⁺-C₄H₉], 171 (24%), 145 (30%), 105 (100%), 77 (17%), 73 (18%). HRMS (EI): m/z 267.1053 [267.1053 berechnet für C₁₃H₁₉O₄Si⁺ (M⁺-C₄H₉]].

(S)-3-(tert-Butyldimethylsilyloxy)-4-oxobutyl-benzoat (3-27)

Der oben beschriebene Alkohol (300 mg, 925 µmol) wird in DMSO (1.8 mL) gelöst und IBX (518 mg, 1.85 mmol, 2 Äq.) wird hinzugefügt. Die Reaktionsmischung wird für 2 h bei RT gerührt. Die Lösung wird mit CH₂Cl₂ (20 mL) verdünnt und 30 min gerührt bis sich ein weißer Niederschlag bildet. Der Feststoff wird abfiltriert und das Filtrat mit gesättigter, wässriger NaHCO₃-Lösung (20 mL) gewaschen. Die Phasen werden getrennt und die wässrige Phase wird mit CH₂Cl₂ (2×20 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Aldehyd 3-27 wird als farblose Flüssigkeit isoliert (241 mg, 747 µmol, 81%).

DC: $R_{\rm f} = 0.50$ (P/EtOAc 90:10) [CAM]. $[\alpha]^{23}{}_{\rm D} = -12.9$ (c = 0.92 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.08 (s, 3H), 0.10 (s, 3H), 0.93 (s, 9H), 2.04 – 2.21 (m, 2H), 4.21 – 4.25 (m, 1H), 4.38 – 4.44 (m, 1H), 4.47 – 4.54 (m, 1H), 7.42 – 7.47 (m, 2H), 7.54 – 7.59 (m, 1H), 7.99 – 8.02 (m, 2H), 9.68 (d, J = 1.3 Hz, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.9, -4.5, 18.3, 25.9, 32.2, 60.3, 74.8, 128.6, 129.7, 130.1, 133.2, 166.4, 203.9. IR (film): v_{max} [cm⁻¹] = 2954, 2929, 2858, 1721, 1471, 1452, 1389, 1315, 1271, 1111, 1070, 1027, 1007, 837, 778, 710. LRMS (EI): m/z 293 (3%) [M⁺-CHO], 179 (62%), 143 (100%), 105 (74%), 73 (38%). HRMS (EI): m/z 293.1570 [293.1573 berechnet für C₁₆H₂₅O₃Si⁺ (M⁺-CHO)].

2.2.6 Synthese von Fragment C35-C40 (3-28)

4-(4-Methoxybenzyloxy)butan-1-ol (3-102)

In einem ausgeheiztem Rundkolben wird unter Argonatmosphäre NaH (60% in Paraffinöl, 1.58 g, 39.6 mmol, 1 Äq.) in trockenem DMF (40 mL) vorgelegt. Bei 0 °C wird 1,4-Butandiol

(3.50 mL, 3.57 g, 39.6 mmol) zugetropft. Das Reaktionsgemisch wird 20 min bei 0 °C gerührt. 4-Methoxybenzylchlorid (6.20 g, 39.6 mmol, 1 Äq.) und TBAI (1.46 g, 3.96 mmol, 0.1 Äq.) werden zugegeben. Die Reaktion wird weiter 15 min bei 0 °C gerührt. Das Reaktionsgemisch wird auf RT erwärmt und weitere 16 h gerührt. Die Reaktion wird durch Zugabe von H₂O (400 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 80:20 → 60:40). Alkohol 3-102 wird als farblose Flüssigkeit isoliert (5.08 g, 24.2 mmol, 61%).

DC: $R_f = 0.11$ (P/EtOAc 80:20) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.62 – 1.75 (m, 4H), 2.25 (s, br, 1H), 3.49 (t, J = 5.8 Hz, 2H), 3.63 (t, J = 5.8 Hz, 2H), 3.80 (s, 3H), 4.45 (s, 2H), 6.88 (d, J = 8.5 Hz, 1H), 7.26 (d, J = 8.5 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 26.9, 30.4, 55.4, 62.9, 70.2, 72.9, 114.0, 129.5, 130.4, 159.4.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[230]

4-(4-Methoxybenzyloxy)butanal (3-101)

In einem ausgeheizten Rundkolben wird unter Argonatmosphäre Oxalylchlorid (2.70 mL, 4.00 g, 31.5 mmol, 1.3 Äq.) in trockenem CH₂Cl₂ (15 mL) vorgelegt. Bei 78 °C wird DMSO (3.38 mL, 3.72 g, 47.6 mmol, 2 Äq.) gelöst in CH₂Cl₂ (8 mL) zugetropft. Die Reaktionsmischung wird 30 min bei -78 °C gerührt. Alkohol 3-102 (5.08 g, 24.2 mmol) gelöst in CH₂Cl₂ (12 mL) wird zugetropft und es wird eine weiter Stunde bei -78 °C gerührt. NEt₃ (13.2 mL, 9.63 g, 95.2 mmol, 4 Äq.) und CH₂Cl₂ (40 mL) werden zugegeben und die Reaktionmischung wird langsam auf RT erwärmt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (100 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Aldehyd 3-101 wird als farblose Flüssigkeit isoliert (4.23 g, 20.3 mmol, 84%).

DC: $R_{\rm f} = 0.40$ (P/EtOAc 80:20) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.88 – 1.98 (m, 2H), 2.53 (td, J = 7.1, 1.6 Hz, 2H), 3.48 (t, J = 6.1 Hz, 2H), 3.80 (s, 4H), 4.42 (s, 2H), 6.88 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H), 9.77 (t, J = 1.6 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 22.7, 41.1, 55.4, 69.0, 72.8, 76.7, 77.2, 77.7, 113.9, 129.4, 130.5, 159.3, 202.5.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[231]

(Z)-6-(4-Methoxybenzyloxy)hex-2-ensäuremethylester (3-103)

In einem ausgeheizten Rundkolben wird unter Argonatmosphäre NaH (60% in Paraffinöl, 540 mg, 13.5 mmol, 1.3 Äq.) in trockenem THF (36 mL) vorgelegt. Bei 0 °C wird 2-(Diphenoxyphosphoryl)essigsäuremethylester (3.50 g, 11.4 mmol, 1.1 Äq.) in trockenem THF (10 mL) zugetropft und die Reaktionsmischung 30 min bei 0 °C gerührt. Die Lösung wird auf -78 °C abgekühlt und Aldehyd 3-101 (2.17 g, 10.4 mmol) gelöst in trockenem THF (19 mL) wird zugetropft. Es wird 3 h gerührt. Während dieser Zeit wurde die Temperatur schrittweise auf -10 °C erhöht. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (50 mL) beendet und mit Et₂O (40 mL) versetzt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (2×40 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Rückstand Lösungsmittel wird unter vermindertem Druck entfernt und der säulenchromatographisch aufgereinigt (P/EtOAc 99:1 \rightarrow 96:4). Das Produkt wird als farblose Flüssigkeit isoliert (2.20 g, 8.32 mmol, 80%).

DC: $R_f = 0.24$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.72 – 1.80 (m, 2H), 2.74 (ddd, J = 15.2, 7.5, 1.7 Hz, 2H), 3.48 (t, J = 6.5 Hz, 2H), 3.70 (s, 3H), 3.80 (s, 3H), 4.43 (s, 2H), 5.78 (dt, J = 11.5, 1.7 Hz, 1H), 6.24 (dt, J = 11.5, 7.5 Hz, 1H), 6.87 (d, J = 8.7 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 26.1, 29.3, 51.1, 55.4, 69.7, 72.8, 113.9, 119.7, 129.4, 130.8, 150.2, 159.3, 166.9. **IR** (film): v_{max} [cm⁻¹] = 2949, 2854, 1719, 1644, 1612, 1586, 1300, 1245, 1200, 1169, 1093, 1033, 876, 816, 746, 727, 671, 661. **LRMS** (ESI): *m/z* 287 (100%) [M+Na⁺], 265 (51%) [M+H⁺], 186 (20%), 145 (9%). **HRMS** (ESI): *m/z* 287.1253 [287.1254 berechnet für C₁₅H₂₀O₄Na⁺ (M+Na⁺)].

(Z)-6-(4-Methoxybenzyloxy)hex-2-en-1-ol

In einem ausgeheizten Runkolben wird Methylester 3-103 (4.26 g, 16.1 mmol) in trockenem THF (160 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAI-H (1M in Cyclohexan, 43.9 mL, 48.3 mmol, 3 Äq.) zugetropft. Die Reaktionsmischung wird 3 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von H₂O (20 mL) beendet. Das Gemisch wird auf Raumtemperatur aufgewärmt und mit Na-K-Tartrat-Lösung (20% in H₂O, 300 mL) versetzt. Es werden Glycerin (9.7 mL, 0.2 mL/mmol DIBAI-H) und Et₂O (200 mL) hinzugefügt und die Mischung wird gerührt, bis eine klare Phasentrennung zu erkennen ist. Die Phasen werden getrennt und die wässrige Phase wird mit Et₂O (2×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 80:20). Das Produkt wird als farblose Flüssigkeit isoliert (3.48 g, 14.7 mmol, 91%).

DC: $R_{\rm f} = 0.22$ (P/EtOAc 80:20) [UV] [CAM]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 1.60 (s, br, 1H), 1.64 – 1.71 (m, 2H), 2.16 – 2.23 (m, 2H), 3.46 (t, J = 6.3 Hz, 2H), 3.80 (s, 3H), 4.16 (d, J = 6.7 Hz, 2H), 4.42 (s, 2H), 5.48 – 5.56 (m, 1H), 5.62 – 5.69 (m, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 24.0, 29.3, 55.4, 58.5, 69.0, 72.6, 113.9, 129.3, 129.4, 130.6, 132.4, 159.3. IR (film): $v_{\rm max}$ [cm⁻¹] = 3378, 2980, 2861, 1612, 1586, 1512, 1463, 1442, 1363, 1301, 1244, 1173, 1093, 1031, 818, 754, 705. LRMS (ESI): m/z 473 (17%) [2M+H⁺], 237 (100%) [M+H⁺]. HRMS (ESI): m/z 237.1485 [237.1485 berechnet für C₁₄H₂₁O₃⁺ (M+H⁺)].

(Z)-6-(4-Methoxybenzyloxy)hex-2-enyl 2,2,2-trichloracetimidat (3-100)

In einem ausgeheizten Rundkolben wird der oben beschriebene Alkohol (3.48 g, 14.7 mmol) in trockenem CH₂Cl₂ (74 mL) unter Argonatmosphäre gelöst und Trichloracetonitril (1.48 mL, 2.13 g, 14.7 mmol, 1 Äq.) und DBU (220 μ L, 224 mg, 1.47 mmol, 0.1 Äq.) werden zugegeben. Die Lösung wird 4.5 h bei RT gerührt. Die Reaktion wird durch Zugabe von H₂O (50 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (2×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Das Produkt wird als farblose Flüssigkeit isoliert (5.35 g, 14.1 mmol, 95%).

DC: $R_{\rm f} = 0.85$ (P/EtOAc 80:20) [UV] [CAM]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 1.67 – 1.74 (m, 2H), 2.22 – 2.27 (m, 2H), 3.46 (t, J = 6.4 Hz, 2H), 3.81 (s, 3H), 4.43 (s, 2H), 4.85 – 4.86 (m, 2H), 5.65 – 5.75 (m, 2H), 6.88 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H), 8.29 (s, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 24.6, 29.5, 55.4, 65.4, 69.3, 72.8, 99.8, 113.9, 123.4, 129.4, 130.8, 135.5, 159.3, 162.9. **IR** (film): $v_{\rm max}$ [cm⁻¹] = 2925, 2854, 16622, 1613, 1586, 1513, 1463, 1442, 1362, 1299, 1246, 1173, 1077, 1037, 980, 825, 796. **HRMS** (ESI): *m/z* 380.0580 [380.0582 berechnet für C₁₆H₂₁O₃NCl₃⁺ (M+H⁺)].

(R)-6-(4-Methoxybenzyloxy)hex-1-en-3-yl-benzoat (3-99)

Trichloracetimidat 3-100 (5.35 g, 14.1 mmol) und Benzoesäure (5.15 g, 42.2 mmol, 3 Åq.)) werden in CH₂Cl₂ (10 mL) gelöst und (*S*)-(+)-COP-OAc (235 mg, 0.15 mmol, 1.1 mol%) wird zugegeben. Das Reaktionsgemisch wird geschützt vor Licht für 20 h gerührt. Die Suspension wird mit CH₂Cl₂ (50 mL) verdünnt und mit NaHCO₃ solange gewaschen, bis keine Gasentwicklung mehr zu beobachten ist (3×50 mL). Die vereinigten wässrigen Phasen werden mit CH₂Cl₂ (2×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit

gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Benzoat 3-**99** wird als gelbe Flüssigkeit isoliert (4.66 g, 13.7 mmol, 97%, 96% ee).

DC: $R_{\rm f} = 0.71$ (P/EtOAc 80:20) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -10.8$ (c = 0.62 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 1.66 – 1.79 (m, 2H), 1.81 – 1.90 (m, 2H), 3.49 (t, J = 6.3 Hz, 2H), 3.80 (s, 3H), 4.43 (s, 2H), 5.21 (dt, J = 10.5, 1.3 Hz, 1H), 5.32 (dt, J = 17.2, 1.3 Hz, 1H), 5.49 – 5.55 (m, 1H), 5.85 – 5.94 (m, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.42 – 7.45 (m, 2H), 7.53 – 7.58 (m, 1H), 8.04 – 8.08 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 25.6, 31.2, 55.4, 69.7, 72.7, 75.1, 113.9, 116.9, 128.5, 129.4, 129.7, 130.7, 130.7, 133.0, 136.5, 159.3, 165.9. IR (film): v_{max} [cm⁻¹] = 2952, 2927, 2853, 1715, 1601, 1511, 1451, 1360, 1314, 1266, 1246, 1173, 1160, 1096, 1069, 1026, 989, 933, 820, 757, 710. LRMS (ESI): m/z 703 (31%) [2M+Na⁺], 611 (42%), 363 (70%) [M+Na⁺], 341 (9%) [M+H⁺], 282 (100%). HRMS (ESI): m/z 363.1567 [363.1567 berechnet für C₂₁H₂₄O₄Na⁺ (M+Na⁺)].

Der Enantiomerenüberschuss wurde mittels chiraler HPLC bestimmt (Säule: Daicel OJ-H; *n*-Hexan/*i*-PrOH 90:10; 1.0 mL/min; 210 nm; (*S*)-Enantiomere: $t_{\rm R} = 31.57$ min; (*R*)-Enantiomere: $t_{\rm R} = 28.27$ min].

(R)-6-(4-Methoxybenzyloxy)hex-1-en-3-ol

Benzoat 3-99 (4.66 g, 13.7 mmol) wird in MeOH (140 mL) vorgelegt und K₂CO₃ (18.9 g, 137 mmol, 10 Äq.) werden hinzugefügt. Das Reaktionsgemisch wird 14 h bei RT gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt, der Rückstand in H₂O (100 mL) aufgenommen und mit Et₂O (3×70 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5 \rightarrow 80:20). Das Produkt wird als gelbe Flüssigkeit isoliert (2.99 g, 12.7 mmol, 92%).

DC: $R_{\rm f} = 0.06$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -1.38$ (c = 1.03 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 1.55 - 1.76 (m, 4H), 2.39 (s, br, 1H), 3.49 (t, J = 5.9 Hz, 2H),

3.80 (s, 3H), 4.07 – 4.17 (m, 1H), 4.45 (s, 2H), 5.09 (dt, J = 10.4, 1.5 Hz, 1H), 5.22 (dt, J = 17.2, 1.5 Hz, 1H), 5.86 (ddd, J = 17.2, 10.4, 5.9 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.6 Hz, 3H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 26.0, 34.6, 55.4, 70.2, 72.83, 72.84, 114.0, 114.5, 129.5, 130.4, 141.3, 159.4. IR (film): v_{max} [cm⁻¹] = 3425, 2935, 2859, 1612, 1586, 1512, 1450, 1358, 1302, 1246, 1173, 1092, 1034, 992, 922, 819. HRMS (ESI): m/z 237.1485 [237.1485 calculated for C₁₄H₂₁O₃Sn⁺ (M+H⁺)].

(R)-6-(4-Methoxybenzyloxy)-3-(tert-butyldimethylsilyloxy)hex-1-en (3-104)

Der oben beschriebene Allylalkohol (900 mg, 3.81 mmol) wird in DMF (3.8 mL) gelöst und TBSCl (1.15 g, 7.62 mmol, 2 Äq.) und Imidazol (1.04 g, 15.2 mmol, 4 Äq.) werden zugegeben. Die Lösung wird 3 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (40 mL) versetzt und mit Et₂O (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2 \rightarrow 95:5). Silylether 3-104 wird als farblose Flüssigkeit isoliert (1.21 g, 3.46 mmol, 91%).

DC: $R_f = 0.63$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{D} = -5.8$ (c = 1.01 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.04 (s, 3H), 0.89 (s, 9H), 1.51 – 1.74 (m, 4H), 3.44 (t, J = 6.4 Hz, 2H), 3.80 (s, 3H), 4.08 – 4.13 (m, 1H), 4.43 (s, 2H), 5.02 (ddd, J = 10.4, 1.8, 1.2 Hz, 1H), 5.10 – 5.16 (m, 1H), 5.79 (ddd, J = 17.1, 10.4, 6.0 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.7, -4.2, 18.4, 25.6, 26.0, 34.8, 55.4, 70.3, 72.6, 73.8, 113.8, 113.9, 129.3, 130.9, 141.8, 159.3. IR (film): v_{max} [cm⁻¹] = 2952, 2927, 2855, 1613, 1513, 1463, 1361, 1302, 1247, 1173, 1091, 1036, 922, 833, 774. HRMS (ESI): 351.2348 [351.2350 berechnet für C₂₀H₃₅O₃Si⁺ (M+H⁺)].

(R)-6-(4-Methoxybenzyloxy)-3-(tert-butyldimethylsilyloxy)hexan-1-ol (3-98)

In einem ausgeheizten Rundkolben wird Silylether 3-104 (2.30 g, 6.56 mmol) in trockenem THF (65 mL) unter Argonatmosphäre gelöst. Bei 0 °C wird 9-BBN (0.5M in THF, 39.2 mL, 19.6 mmol, 3 Äq.) zugetropft. Die Lösung wird 15 min bei 0 °C gerührt und weiter 15 h bei RT. Das Reaktionsgemisch wird erneut auf 0 °C abgekühlt und es werden NaOH (3M in H₂O, 6.5 mL, 19.6 mmol, 3 Äq.) und H₂O₂ (35% in H₂O, 6.5 mL) zugegeben. Es wird 15 min bei 0 °C und 4 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (100 mL) versetzt und mit Et₂O (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10 \rightarrow 70:30). Alkohol 3-98 wird als farblose Flüssigkeit isoliert (1.21 g, 3.46 mmol, 86%).

DC: $R_{\rm f} = 0.13$ (P/EtOAc 80:20) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -11.0$ (c = 0.89 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.07 (s, 3H), 0.08 (s, 3H), 0.89 (s, 9H), 1.55 – 1.70 (m, 5H), 1.76 – 1.85 (m, 1H), 2.39 (t, J = 5.1 Hz, 1H), 3.40 – 3.45 (m, 2H), 3.66 – 3.74 (m, 1H), 3.80 (s, 3H), 3.78 – 3.86 (m, 1H), 3.90 – 3.97 (m, 1H), 4.43 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.3, 18.1, 25.8, 26.0, 33.6, 38.0, 55.4, 60.4, 70.2, 71.7, 72.7, 113.9, 129.3, 130.8, 159.3. IR (film): v_{max} [cm⁻¹] = 3420, 2953, 2928, 2855, 1613, 1513, 1463, 1361, 1092, 1247, 1173, 1092, 1060, 1037, 834, 773. LRMS (ESI): m/z 391 (3%) [M+Na⁺], 369 (100%) [M+H⁺]. HRMS (ESI): m/z 369.2459 [369.2456 berechnet für C₂₀H₃₇O₄Si⁺ (M+H⁺)].

(*R*)-5-(6-(4-Methoxybenzyloxy)-3-(*tert*-butyldimethylsilyloxy)hexylthio)-1-phenyl-1*H*-tetrazol (3-106)

In einem ausgeheizten Rundkolben wird Alkohol 3-**98** (2.14 g, 5.82 mmol) in trockenem THF (58 mL) unter Argonatmosphäre gelöst. Bei 0 °C werden 1-Phenyl-1*H*-tetrazol-5-thiol (2.05 g, 11.6 mmol, 2 Äq.) und PPh₃ (2.30 g, 8.73 mmol, 1.5 Äq.) zugegeben. DIAD (2.03 mL, 2.12 g, 10.5 mmol, 1.8 Äq.) wird zugetropft und die Reaktionsmischung wird 3 h bei 0 °C gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Sulfid 3-**106** wird als farblose Flüssigkeit isoliert (2.88 g, 5.45 mmol, 94%).

DC: $R_{\rm f} = 0.49$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -7.64$ (c = 1.20 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.04 (s, 6H), 0.88 (s, 9H), 1.50 – 1.66 (m, 4H), 1.88 – 2.04 (m, 2H), 3.33 – 3.51 (m, 4H), 3.80 (s, 3H), 3.80 – 3.88 (m, 1H), 4.42 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.51 – 7.60 (m, 5H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.4, -4.2, 18.2, 25.5, 26.0, 29.6, 33.6, 36.2, 55.4, 70.2, 70.8, 72.6, 113.9, 124.0, 129.3, 129.9, 130.2, 130.8, 133.9, 154.5, 159.3. IR (film): v_{max} [cm⁻¹] = 2951, 2928, 2855, 1612, 1512, 1500, 1463, 1409, 1387, 1362, 1247, 1173, 1090, 1073, 1037, 833, 774, 760, 691. LRMS (ESI): m/z 551 (18%) [M+Na⁺], 529 (100%) [M+H⁺]. HRMS (ESI): m/z 529.2664 [539.2663 berechnet für C₂₇H₄₁O₃N₄SSi⁺ (M+H⁺)].

(*R*)-5-(6-(4-Methoxybenzyloxy)-3-(*tert*-butyldimethylsilyloxy)hexylsulfonyl)-1-phenyl-1*H*-tetrazol (3-28)

Thioether 3-106 (2.77 g, 5.24 mmol) wird in EtOH (26 mL) gelöst. Bei 0 °C wird $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (1.29 g, 1.05 mmol, 0.2 Äq.) gelöst in H_2O_2 (35% in H_2O , 5.40 mL, 52.4 mmol, 10 Äq.) zugetropft. Das Reaktionsgemisch wird 3 h bei RT gerührt. Die Lösung

wird mit H₂O (30 mL) versetzt und mit CH₂Cl₂ (3×20 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Sulfon 3-**28** wird als farblose Flüssigkeit isoliert (1.85 g, 3.29 mmol, 63%).

DC: $R_f = 0.50$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{20}{}_{D} = -2.8$ (c = 0.87 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.06 (s, 3H), 0.07 (s, 3H), 0.89 (s, 9H), 1.49 – 1.68 (m, 4H), 1.99 – 2.19 (m, 2H), 3.44 (t, J = 5.8 Hz, 2H), 3.72 – 3.86 (m, 2H), 3.80 (s, 3H), 3.87 – 3.95 (m, 1H), 4.43 (s, 2H), 6.88 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.57 – 7.63 (m, 3H), 7.68 – 7.71 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.3, 18.1, 25.6, 25.9, 28.9, 33.5, 52.5, 55.4, 69.82, 69.83, 72.7, 113.9, 125.2, 129.4, 129.8, 130.6, 131.6, 133.2, 153.6, 159.3. IR (film): v_{max} [cm⁻¹] = 2952, 2929, 2857, 1613, 1513, 1498, 1463, 1341, 1302, 1247, 1173, 1150, 1075, 1037, 834, 775, 762, 688. LRMS (ESI): m/z 1143 (7%) [2M+Na⁺], 842 (8%), 681 (71%), 583 (29%) [2M+Na⁺], 561 (100%) [M+H⁺]. HRMS (ESI): m/z 561.2562 [561.2561 berechnet für C₂₇H₄₁O₅N₄SSi⁺ (M+H⁺)].

2.2.7 Verknüpfung der Fragmente

(3*S*,7*R*,*E*)-3,7-Bis(*tert*-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)dec-4-enylbenzoat (3-35)

In einem ausgeheizten Rundkolben wird Sulfon 3-**28** (224 mg, 399 µmol, 1.2 Äq.) in trockenem DME (8 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird KHMDS (0.5M in Toluol, 820 µL, 409 µmol, 1.23 Äq.) innerhalb von 1 h zugetropft. Die Lösung wird 30 min bei -78 °C gerührt. Aldehyd 3-**27** (108 mg, 333 µmol) gelöst in trockenem DME (4.2 mL) wird innerhalb von 1 h zugetropft. Nach Beendigung der Zugabe wird die Reaktionsmischung weitere 3 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von wässrigem pH 7-Puffer (20 mL) abgebrochen, mit Et₂O (15 mL) verdünnt und auf RT erwärmt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Das Produkt wird als farbloses Harz

isoliert (196 mg, 298 µmol, 90%).

DC: $R_{\rm f} = 0.67$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = +8.10$ (c = 0.62 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.02 (s, 3H), 0.03 (s, 3H), 0.03 (s, 3H), 0.04 (s, 3H), 0.87 (s, 9H), 0.89 (s, 9H), 1.37 – 1.74 (m, 4H), 1.89 – 1.95 (m, 2H), 2.17 – 2.20 (m, 2H), 3.41 (t, J =6.6 Hz, 2H), 3.66 – 3.72 (m, 1H), 3.79 (s, 3H), 4.27 – 4.32 (m, 1H), 4.36 – 4.40 (m, 2H), 4.42 (s, 2H), 5.43 – 5.51 (m, 1H), 5.57 – 5.65 (m, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J =8.7 Hz, 2H), 7.42 – 7.46 (m, 2H), 7.53 – 7.58 (m, 1H), 8.02 – 8.05 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.7, -4.4, -4.3, -4.0, 18.2, 18.3, 25.9, 26.0, 26.0, 33.2, 37.5, 40.2, 55.4, 62.0, 70.4, 70.6, 71.9, 72.6, 113.9, 127.1, 128.5, 129.3, 129.6, 130.6, 130.9, 132.9, 135.4, 159.2, 166.6. IR (film): v_{max} [cm⁻¹] = 2952, 2928, 2897, 2855, 1721, 1612, 1513, 1463, 1361, 1273, 1248, 1174, 1093, 1069, 1038, 1005, 974, 936, 833, 774, 711. LRMS (ESI): *m/z* 679 (100%) [M+Na⁺], 586 (2%), 525 (5%), 393 (11%), 282 (11%). HRMS (ESI): *m/z* 679.3826 [679.3821 berechnet für C₃₇H₆₀O₆NaSi₂⁺ (M+Na⁺)].

(3*S*,7*R*,*E*)-3,7-Bis(*tert*-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)dec-4-en-1-ol (3-107)

In einem ausgeheizten Rundkolben wird Benzoat 3-35 (434 mg, 660 µmol) in trockenem CH₂Cl₂ (7 mL) unter Argonatmosphäre vorgelegt. Bei -78 °C wird DIBAl-H (1M in Toluol, 1.65 mL, 1.65 mmol, 2.5 Äq.) zugetropft. Die Lösung wird 30 min bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 20 mL) abgebrochen. Es wird Glycerin (0.33 mL, 0.2 mL/mmol DIBAl-H) zugegeben. Die Mischung wird mit CH₂Cl₂ (15 mL) verdünnt und weitere 30 min bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5 \rightarrow 80:20). Alkohol 3-107 wird als farbloses Harz isoliert (327 mg, 591 µmol, 90%).

DC: $R_{\rm f} = 0.35$ (P/EtOAc 80:20) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = +1.16$ (c = 0.95 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.03 (s, 3H), 0.04 (s, 3H), 0.07 (s, 3H), 0.88 (s, 3H

9H), 0.89 (s, 9H), 1.50 – 1.82 (m, 6H), 2.16 – 2.21 (m, 2H), 2.54 (s, br, 1H), 3.41 (t, J = 6.6 Hz, 2H), 3.67 – 3.73 (m, 2H), 3.74 – 3.87 (m, 2H), 3.80 (s, 3H), 4.33 – 4.37 (m, 1H), 4.42 (s, 2H), 5.48 (dd, J = 15.5, 6.4 Hz, 1H), 5.56 – 5.64 (m, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.8, -4.4, -4.2, -4.0, 18.2, 18.2, 25.9, 26.0, 26.0, 33.1, 39.8, 40.2, 55.4, 60.5, 70.4, 71.9, 72.6, 73.4, 113.9, 127.0, 129.3, 130.9, 135.1, 159.3. IR (film): v_{max} [cm⁻¹] = 3424, 2951, 2928, 2886, 2855, 1610, 1586, 1513, 1471, 1463, 1362, 1300, 1249, 1173, 1081, 1038, 972, 832, 774, 733. LRMS (ESI): *m/z* 1105 (1%) [2M+H⁺], 575 (100%) [M+Na⁺]. HRMS (ESI): *m/z* 575.3562 [575.3559 berechnet für C₃₀H₅₆O₅NaSi₂⁺ (M+Na⁺)].

5-((3*S*,7*R*,*E*)-3,7-Bis(*tert*-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)dec-4enylthio)-1-phenyl-1H-tetrazol (3-108)

In einem ausgeheizten Rundkolben wird Alkohol 3-107 (350 mg, 633 µmol) in trockenem THF (6.3 mL) unter Argonatmosphäre gelöst. Bei 0 °C werden 1-Phenyl-1H-tetrazol-5-thiol (226 mg, 1.27 mmol, 2 Äq.) und PPh₃ (249 mg, 950 µmol, 1.5 Äq.) zugegeben. DIAD (220 µL, 231 mg, 1.14 mmol, 1.8 Äq.) wird zugetropft und die Reaktionsmischung wird 3 h bei 0 °C gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Thioether 3-108 wird als farbloses Harz isoliert (408 mg, 572 µmol, 90%).

DC: $R_{\rm f} = 0.37$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = +3.85$ (c = 1.02 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.01 (s, 3H), 0.02 (s, 6H), 0.04 (s, 3H), 0.87 (s, 9H), 0.87 (s, 9H), 1.37 – 1.73 (m, 4H), 1.96 – 2.01 (m, 2H), 2.17 – 2.20 (m, 2H), 3.36 – 3.47 (m, 4H), 3.66 – 3.72 (m, 1H), 3.79 (s, 3H), 4.20 – 4.25 (m, 1H), 4.41 (s, 2H), 5.43 (dd, J = 15.5, 6.6 Hz, 1H), 5.53 – 5.65 (m, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H), 7.51 – 7.58 (m, 5H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.7, -4.5, -4.3, -4.0, 18.2, 18.3, 25.8, 26.00, 26.01, 29.5, 33.1, 37.5, 40.1, 55.4, 70.4, 71.8, 72.2, 72.6, 113.8, 124.0, 127.6, 129.3, 129.9, 130.1, 130.9, 133.9, 134.7, 154.6, 159.2. IR (film): v_{max} [cm⁻¹] = 2952, 2927, 2855, 1610, 1596, 1513, 1500, 1470, 1463, 1409, 1387, 1361, 1300, 1248, 1173, 1085, 1074, 1039, 1007, 833, 774, 760, 694. LRMS (ESI): m/z 1449 (1%) [2M+Na⁺], 735 (33%) [M+Na⁺], 713

(100%) [M+H⁺], 581 (12%). **HRMS** (ESI): m/z 735.3772 [735.3766 berechnet für $C_{37}H_{60}O_4NaSSi_2^+$ (M+Na⁺)].

5-((3*S*,7*R*,*E*)-3,7-Bis(*tert*-butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)dec-4enylsulfonyl)-1-phenyl-1H-tetrazol (3-34)

Thioether 3-108 (40.5 mg, 56.8 mmol) wird in einer Mischung aus EtOH und THF (1:1, 2.3 mL) gelöst. Bei 0 °C wird (NH₄)₆Mo₇O₂₄·4 H₂O (21.1 mg, 17.0 μ mol, 0.3 Äq.) gelöst in H₂O₂ (35% in H₂O, 58.5 μ L, 568 mmol, 10 Äq.) zugetropft. Das Reaktionsgemisch wird 3 h bei RT gerührt. Die Lösung wird mit H₂O (20 mL) versetzt und mit CH₂Cl₂ (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Sulfon 3-34 wird als farbloses Harz isoliert (37.7 mg, 50.6 mmol, 89%).

DC: $R_{\rm f} = 0.37$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = +2.50$ (c = 0.64 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 6H), 0.04 (s, 3H), 0.07 (s, 3H), 0.88 (s, 9H), 0.89 (s, 9H), 1.70 – 1.72 (m, 4H), 2.05 – 2.15 (m, 2H), 2.19 – 2.23 (m, 2H), 3.42 (t, J = 6.6 Hz, 2H), 3.68 – 3.78 (m, 2H), 3.79 (s, 3H), 4.31 – 4.36 (m, 1H), 4.41 (s, 2H), 5.41 (dd, J = 15.4, 6.1 Hz, 1H), 5.64 – 5.72 (m, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 3H), 7.56 – 7.63 (m, 3H), 7.66 – 7.71 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.7, -4.4, -4.2, -4.2, 18.2, 18.3, 25.9, 26.0, 26.0, 30.4, 33.2, 40.1, 52.5, 55.4, 70.3, 70.9, 71.7, 72.6, 113.9, 125.2, 128.6, 129.3, 129.8, 130.9, 131.6, 133.2, 133.6, 153.6, 159.2. IR (film): v_{max} [cm⁻¹] = 2952, 2929, 2855, 1613, 1513, 1498, 1470, 1463, 1360, 1340, 1302, 1249, 1153, 1092, 1078, 1038, 1007, 979, 834, 774, 763. LRMS (ESI): m/z 1513 (1%) [2M+Na⁺], 767 (67%) [M+Na⁺], 745 (100%) [M+H⁺]. HRMS (ESI): m/z 767.3669 [767.3664 berechnet für $C_{37}H_{60}O_6NaSSi_2^+$ (M+Na⁺)].

(*3R*,5*S*,7*R*,9*S*,10*E*,13*S*,14*E*,17*R*)-3,5,7,9,13,17-Hexakis(*tert*-butyldimethylsilyloxy)-20-(4-methoxybenzyloxy)icosa-10,14-dienylbenzoat (3-33)

In einem ausgeheizten Rundkolben wird Sulfon 3-**34** (297 mg, 398 µmol, 1.05 Äq.) in trockenem DME (8 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird KHMDS (0.5M in Toluol, 834 µL, 417 µmol, 1.1 Äq.) innerhalb von 1 h zugetropft. Die Lösung wird 30 min bei -78 °C gerührt. Aldehyd 3-**26** (302 mg, 379 µmol) gelöst in trockenem DME (4.7 mL) wird innerhalb von 1 h zugetropft. Nach Beendigung der Zugabe wird die Reaktionsmischung weitere 3 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von wässrigem pH 7-Puffer (20 mL) abgebrochen, mit Et₂O (15 mL) verdünnt und auf RT erwärmt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Das Produkt wird als farbloses Harz isoliert (409 mg, 311 µmol, 82%).

DC: $R_f = 0.68$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_{D} = -1.10$ (c = 2.86 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.00 – 0.08 (m, 36H), 0.84 – 0.92 (m, 54H), 1.45 – 1.51 (m, 2H), 1.55 – 1.76 (m, 8H), 1.86 – 1.98 (m, 2H), 2.13 – 2.26 (m, 4H), 3.41 (t, J = 6.6 Hz, 1H), 3.64 – 3.73 (m, 1H), 3.80 (s, 3H), 3.85 – 3.95 (m, 2H), 4.01 – 4.10 (m, 2H), 4.14 – 4.23 (m, 1H), 4.36 – 4.41 (m, 2H), 4.42 (s, 2H), 5.35 – 5.62 (m, 4H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.39 – 7.46 (m, 2H), 7.52 – 7.59 (m, 1H), 8.02 – 8.06 (m, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.4, -4.2, -4.2, -4.1, -4.0, -3.7, -3.4, -3.2, -3.2, 18.2, 18.2, 18.3, 18.4, 25.9, 26.1, 26.1, 26.1, 26.2, 31.1, 33.1, 36.8, 40.3, 41.7, 45.6, 46.7, 46.8, 55.4, 62.0, 66.8, 67.0, 67.4, 70.5, 71.2, 72.0, 72.6, 73.6, 113.9, 126.5, 126.9, 128.4, 129.3, 129.7, 130.5, 130.9, 132.9, 135.5, 136.3, 159.2, 166.7. **IR** (film): v_{max} [cm⁻¹] = 2951, 2928, 2891, 2856, 1724, 1605, 1513, 1471, 1462, 1388, 1377, 1361, 1273, 1250, 1178, 1096, 1069, 1005, 972, 938, 833, 807, 772, 711.

Der ESI-Massenanalyse konnte kein Fragment von 3-33 zugeordnet werden.

(3*R*,5*S*,7*R*,9*S*,10*E*,13*S*,14*E*,17*R*)-3,5,7,9,13,17-Hexakis(*tert*-butyldimethylsilyloxy)-20-(4-methoxybenzyloxy)icosa-10,14-dien-1-ol (3-109)

In einem ausgeheizten Rundkolben wird Benzoat 3-33 (623 mg, 473 µmol) in trockenem CH₂Cl₂ (4.7 mL) unter Argonatmosphäre vorgelegt. Bei -78 °C wird DIBAl-H (1M in Toluol, 1.18 mL, 1.18 mmol, 2.5 Äq.) zugetropft. Die Lösung wird 1 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 15 mL) abgebrochen. Es wird Glycerin (0.24 mL, 0.2 mL/mmol DIBAl-H) zugegeben. Die Mischung wird mit CH₂Cl₂ (10 mL) verdünnt und weitere 30 min bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Alkohol 3-109 wird als farbloses Harz isoliert (327 mg, 591 µmol, 90%).

DC: $R_f = 0.45$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{D} = +9.73$ (c = 0.85 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0. 01 – 0.10 (m, 36H), 0.87 – 0.90 (m, 54H), 1.40 – 1.71 (m, 11H), 1.79 – 1.92 (m, 1H), 2.15 – 2.22 (m, 4H), 2.30 – 2.37 (m, 1H), 3.41 (t, J = 6.5 Hz, 2H), 3.64 – 3.73 (m, 2H), 3.77 – 3.91 (m, 3H), 3.80 (s, 3H), 3.98 – 4.16 (m, 3H), 4.42 (s, 2H), 5.36 – 5.61 (m, 4H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.4, -4.4, -4.3, -4.2, -4.1, -4.1, -3.5, -3.4, 18.1, 18.2, 18.2, 18.2, 18.4, 18.4, 25.9, 26.1, 26.1, 26.1, 26.2, 33.1, 38.6, 40.3, 41.7, 45.4, 46.5, 47.3, 55.4, 60.3, 67.2, 67.5, 69.6, 70.5, 71.2, 72.0, 72.6, 73.6, 113.9, 126.6, 126.9, 129.3, 130.9, 135.5, 136.1, 159.2. IR (film): v_{max} [cm⁻¹] = 3495, 2954, 2928, 2892, 2855, 1513, 1471, 1463, 1361, 1250, 1096, 1089, 1072, 1005, 972, 931, 833, 808, 772. LRMS (ESI): m/z 1234 (20%) [M+Na⁺], 948 (8%), 816 (45%), 683 (73%), 551 (100%), 419 (31%), 375 (74%). HRMS (ESI): m/z1233.8254 [1233.8223 berechnet für C₆₄H₁₃₀O₉NaSi₆⁺ (M+Na⁺)].

5-((3*S*,5*R*,7*R*,9*S*,10*E*,13*S*,14*E*,17*R*)-3,5,7,9,13,17-Hexakis(*tert*-butyldimethylsilyloxy)-20-(4-methoxybenzyloxy)icosa-10,14-dienylthio)-1-phenyl-1H-tetrazol (3-110)

In einem ausgeheizten Rundkolben wird Alkohol 3-109 (504 mg, 416 µmol) in trockenem THF (4.2 mL) unter Argonatmosphäre gelöst. Bei 0 °C werden 1-Phenyl-1H-tetrazol-5-thiol (148 mg, 832 mmol, 2 Äq.) und PPh₃ (164 mg, 624 µmol, 1.5 Äq.) zugegeben. DIAD (145 µL, 151 mg, 749 mmol, 1.8 Äq.) wird zugetropft und die Reaktionsmischung wird 1.5 h bei 0 °C gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1 \rightarrow 97:3). Thioether 3-110 wird als farbloses Harz isoliert (534 mg, 389 µmol, 94%).

DC: $R_{\rm f} = 0.55$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -1.79$ (c = 1.13 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = -0.01 (s, 3H), 0.01 (s, 3H), 0.03 – 0.06 (m, 27H), 0.07 (s, 3H), 0.85 (s, 9H), 0.86 (s, 9H), 0.87 (s, 9H), 0.88 (s, 18H), 0.89 (s, 9H), 1.38 – 1.72 (m, 10H), 1.95 – 2.01 (m, 2H), 2.12 – 2.24 (m, 4H), 3.39 – 3.46 (m, 4H), 3.66 – 3.72 (m, 1H), 3.80 (s, 3H), 3.81 – 3.91 (m, 2H), 3.93 – 3.99 (m, 1H), 4.04 – 4.09 (m, 1H), 4.13 – 4.22 (m, 1H), 4.42 (s, 2H), 5.36 – 5.59 (m, 4H), 6.87 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.52 – 7.59 (m, 5H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.4, -4.4, -4.2, -4.1, -4.1, -4.0, -3.7, -3.7, -3.4, -3.2, -3.2, 18.2, 18.2, 18.3, 18.4, 25.9, 26.1, 26.1, 26.2, 29.3, 33.1, 37.1, 40.3, 41.7, 45.0, 46.7, 46.8, 55.4, 67.0, 67.4, 68.4, 70.5, 71.1, 72.0, 72.6, 73.6, 113.9, 124.0, 126.6, 126.9, 129.3, 129.9, 130.1, 130.9, 134.0, 135.6, 136.3, 154.5, 159.2. IR (film): v_{max} [cm⁻¹] = 2952, 2927, 2884, 2855, 1605, 1513, 1501, 1471, 1463, 1387, 1361, 1295, 1250, 1183, 1070, 1006, 972, 912, 833, 807, 773, 735. LRMS (ESI): *m*/*z* 1394 (2%) [M+Na⁺], 1241 (100%). HRMS (ESI): *m*/*z* 1393.8446 [1393.8430 berechnet für C₇₁H₁₃₄O₈N₄NaSSi₆⁺ (M+Na⁺)]. 5-((*3S*,5*R*,7*R*,9*S*,10*E*,13*S*,14*E*,17*R*)-3,5,7,9,13,17-Hexakis(*tert*-butyldimethylsilyloxy)-20-(4-methoxybenzyloxy)icosa-10,14-dienylsulfonyl)-1-phenyl-1H-tetrazol (3-32)

Thioether 3-110 (483 mg, 352 mmol) wird in einer Mischung aus EtOH und THF (1:1, 8.8 mL) gelöst. Bei 0 °C wird (NH₄)₆Mo₇O₂₄·4 H₂O (261 mg, 211 µmol, 0.6 Äq.) gelöst in H₂O₂ (35% in H₂O, 950 µL, 9.22 mmol, 26.2 Äq.) zugetropft. Das Reaktionsgemisch wird 18 h bei RT gerührt. Die Lösung wird mit H₂O (20 mL) versetzt und mit CH₂Cl₂ (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Sulfon 3-32 wird als farbloses Harz isoliert (465 mg, 331 mmol, 94%).

DC: $R_{\rm f} = 0.55$ (P/EtOAc 90:10) [UV] [CAM]. [α]²³_D = -5.66 (*c* = 1.00 CH₂Cl₂). ¹H NMR (360 MHz, CDCl₃): δ [ppm] = -0.01 (s, 3H), 0.01 (s, 3H), 0.03 – 0.04 (m, 12H), 0.06 – 0.08 (m, 12H), 0.09 (s, 3H), 0.10 (s, 3H), 0.87 – 0.88 (m, 45H), 0.90 (s, 9H), 1.36 – 1.53 (m, 4H), 1.58 – 1.75 (m, 6H), 2.00 – 2.09 (m, 1H), 2.12 – 2.26 (m, 5H), 3.41 (t, *J* = 6.7 Hz, 2H), 3.66 – 3.73 (m, 1H), 3.75 – 3.91 (m, 4H), 3.80 (s, 3H), 4.04 – 4.09 (m, 2H), 4.16 – 4.22 (m, 1H), 4.42 (s, 2H), 5.35 – 5.59 (m, 4H), 6.87 (d, *J* = 8.6 Hz, 2H), 7.25 (d, *J* = 8.6 Hz, 2H), 7.57 – 7.63 (m, 3H), 7.69 – 7.71 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.5, -4.4, -4.2, -4.2, -4.1, -4.1, -3.7, -3.7, -3.3, -3.1, -3.1, 18.2, 18.2, 18.2, 18.2, 18.3, 18.4, 25.9, 26.1, 26.1, 26.2, 30.1, 33.1, 40.3, 41.6, 44.7, 46.6, 47.0, 52.3, 55.4, 66.8, 67.3, 67.5, 70.5, 71.1, 72.0, 72.6, 73.6, 113.9, 125.2, 126.6, 127.0, 129.3, 129.8, 130.9, 131.5, 133.2, 135.5, 136.3, 153.6, 159.2. **IR** (film): v_{max} [cm⁻¹] = 2952, 2928, 2906, 2897, 2886, 2856, 2357, 1610, 1513, 1471, 1463, 1361, 1344, 1300, 1251, 1070, 1005, 975, 910, 834, 807, 773, 734. **LRMS** (ESI): *m/z* 1426 (5%) [M+Na⁺], 1273 (80%), 282 (100%). **HRMS** (ESI): *m/z* 1425.8346 [1425.8329 berechnet für C₇₁H₁₃₄O₁₀N₄NaSSi₆⁺ (M+Na⁺)].

(3*S*,4*R*,5*R*,7*R*,9*S*,11*S*,12*E*,15*R*,17*S*,19*R*,21*S*,22*E*,25*S*,26*E*,29*R*)-3,7,9,11,15,17,19,21,25,29-Decakis(*tert*-butyldimethylsilyloxy)-32-(4-methoxybenzyloxy)-4-methyl-5-(triethylsilyloxy)-dotriaconta-12,22,26-trienylbenzoat (3-31)

In einem ausgeheizten Rundkolben wird Sulfon 3-**32** (118 mg, 121 µmol, 1.05 Äq.) in trockenem DME (2.5 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird KHMDS (0.5M in Toluol, 267 µL, 133 µmol, 1.1 Äq.) innerhalb von 30 min zugetropft. Die Lösung wird 30 min bei -78 °C gerührt. Aldehyd 3-**25** (179 mg, 127 µmol) gelöst in trockenem DME (1.5 mL) wird innerhalb von 1 h zugetropft. Nach Beendigung der Zugabe wird die Reaktionsmischung weitere 3 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von wässrigem pH 7-Puffer (15 mL) abgebrochen, mit EtOAc (10 mL) verdünnt und auf RT erwärmt. Die Phasen werden getrennt und die wässrige Phase mit EtOAc (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Das Produkt wird als farbloses Harz isoliert (197 mg, 91.7 µmol, 76%).

DC: $R_{\rm f} = 0.30$ (P/EtOAc 95:5) [UV] [CAM]. [α]²³_D = -7.16 (c = 0.81 CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ [ppm] = -0.01 (s, 3H), 0.02 (s, 3H), 0.08 – 0.08 (m, 54H), 0.60 (q, J = 8.0 Hz, 6H), 0.86 – 0.97 (m, 102H), 1.43 – 1.71 (m, 16H), 1.78 – 1.84 (m, 1H), 1.88 – 1.95 (m, 1H), 2.05 – 2.27 (m, 7H), 3.42 (t, J = 6.7 Hz, 2H), 3.65 – 3.71 (m, 1H), 3.73 – 3.77 (m, 1H), 3.79 – 3.90 (m, 6H), 3.80 (s, 3H), 4.05 – 4.09 (m, 1H), 4.17 – 4.24 (m, 2H), 4.37 – 4.40 (m, 2H), 4.42 (s, 2H), 5.37 – 5.58 (m, 6H), 6.87 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H), 7.41 – 7.45 (m, 2H), 7.53 – 7.56 (m, 1H), 8.03 – 8.04 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ [ppm] = -4.8, -4.7, -4.7, -4.4, -4.4, -4.4, -4.2, -4.1, -4.0, -4.0, -3.9, -3.9, -3.9, -3.8, -3.5, -3.5, -3.3, 5.5, 7.0, 11.0, 17.8, 17.9, 18.0, 18.0, 18.0, 18.1, 18.1, 18.2, 25.7, 25.8, 25.9, 25.9, 25.9, 25.9, 26.0, 26.0, 26.0, 32.9, 34.2, 40.0, 41.2, 41.4, 43.6, 44.2, 44.3, 46.1, 46.6, 46.8, 46.9, 55.2, 62.1, 66.8, 66.8, 67.0, 67.1, 69.2, 70.1, 70.2, 70.5, 70.9, 71.8, 72.4, 73.4, 113.7, 126.3, 126.5, 126.9, 128.2, 129.1, 129.5, 130.4, 130.7, 132.7, 135.4, 135.6, 136.3, 159.0, 166.4. **IR** (film): v_{max} [cm⁻¹] = 2954, 2928, 2887, 2856, 1725, 1518, 1472, 1463, 1382,

1358, 1273, 1251, 1178, 1113, 1069, 1044, 1005, 975, 936, 907, 833, 807, 772, 735, 708. **LRMS** (ESI): *m/z* 2489 (1%), 2011 (1%), 1979 (1%), 1234 (22%), 945 (16%), 647 (40%), 564 (18%), 282 (100%).

Der ESI-Massenanalyse konnte kein Fragment von 3-31 zugeordnet werden.

(3*S*,4*R*,5*R*,7*R*,9*S*,11*S*,12*E*,15*R*,17*S*,19*R*,21*S*,22*E*,25*S*,26*E*,29*R*)-3,7,9,11,15,17,19,21,25,29-Decakis(*tert*-butyldimethylsilyloxy)-32-hydroxy-4-methyl-5-(triethylsilyloxy)dotriaconta-12,22,26-trienylbenzoat (3-111)

PMB-Ether 3-**31** (45.5 mg, 21.2 µmol) wird in einer Mischung aus CH_2Cl_2 (200 µL) und pH 7-Puffer (20 µL) gelöst. DDQ (7.2 mg, 31.8 µmol, 1.5 Äq.) wird hinzugefügt und das Reaktionsgemisch wird 3 h heftig gerührt. Die Mischung wird über Zelithe abfiltriert wobei mehrmals mit CH_2Cl_2 nachgewaschen wird. Das Filtrat wird mit H_2O (15 mL) versetzt. Die Phasen werden getrennt und die wässrige Phase mit CH_2Cl_2 (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (*c*-Hex/TBME 95:5; nur die Aufreinigung mit diesem Laufmittelgemisch ermöglicht die Abtrennung des p-Methoxybenzaldehyds). Alkohol 3-**111** wird als farbloses Harz isoliert (39.7 mg, 19.6 µmol, 92%).

DC: $R_{\rm f} = 0.10$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -6.96$ (c = 1.23 CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ [ppm] = -0.01 (s, 3H), 0.02 – 0.08 (m, 57H), 0.60 (q, J = 7.9 Hz, 6H), 0.86 – 0.97 (m, 102H), 1.47 – 1.70 (m, 16H), 1.78 – 1.83 (m, 1H), 1.88 – 1.95 (m, 1H), 2.06 – 2.35 (m, 8H), 3.57 – 3.66 (m, 2H), 3.73 – 3.94 (m, 8H), 4.05 – 4.09 (m, 1H), 4.16 – 4.23 (m, 2H), 4.34 – 4.43 (m, 2H), 5.37 – 5.57 (m, 6H), 7.41 – 7.44 (m, 2H), 7.53 – 7.56 (m, 1H), 8.03 – 8.04 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ [ppm] = -4.5, -4.5, -4.5, -4.5, -4.3, -4.2, -4.2, -4.0, -3.9, -3.8, -3.8, -3.7, -3.7, -3.6, -3.3, -3.3, -3.1, 5.7, 7.3, 11.2, 18.0, 18.1, 18.2, 18.2, 18.2, 18.2, 18.3, 18.3, 18.4, 26.0, 26.1, 26.1, 26.1, 26.1, 26.1, 26.2, 26.2, 26.3, 28.5, 32.9, 34.5, 18.2, 18.3, 18.4, 26.0, 26.1, 26.1, 26.1, 26.1, 26.1, 26.2, 26.2, 26.3, 28.5, 32.9, 34.5, 18.2, 18.2, 18.3, 18.4, 26.0, 26.1, 26.1, 26.1, 26.1, 26.1, 26.2, 26.2, 26.3, 28.5, 32.9, 34.5, 18.2, 18.2, 18.3, 18.4, 26.0, 26.1, 26.1, 26.1, 26.1, 26.1, 26.2, 26.2, 26.3, 28.5, 32.9, 34.5, 18.2, 18.2, 18.3, 18.4, 26.0, 26.1, 26.1, 26.1, 26.1, 26.1, 26.2, 26.2, 26.3, 28.5, 32.9, 34.5, 18.2, 18.2, 18.3, 18.4, 26.0, 26.1, 26.1, 26.1, 26.1, 26.1, 26.2, 26.2, 26.3, 28.5, 32.9, 34.5, 18.2, 18.2, 18.2, 18.3, 18.4, 26.0, 26.1, 26.1, 26.1, 26.1, 26.1, 26.2, 26.2, 26.3, 28.5, 32.9, 34.5, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.3, 18.4, 26.0, 26.1, 26.1, 26.1, 26.1, 26.1, 26.2, 26.2, 26.3, 28.5, 32.9, 34.5, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.2, 18.3, 18.4, 26.0, 26.1, 26.1, 26.1, 26.1, 26.1, 26.2, 26.2, 26.3, 28.5, 32.9, 34.5, 18.2, 18.2, 18.2, 18.3, 18.4, 26.0, 26.1, 26.1, 26.1, 26.1, 26.1, 26.2, 26.2, 26.3, 28.5, 32.9, 34.5, 18.2,

39.9, 41.4, 41.7, 43.8, 44.4, 44.6, 46.4, 46.8, 47.0, 47.1, 62.3, 63.2, 67.0, 67.1, 67.2, 67.3, 69.4, 70.3, 70.7, 71.1, 72.0, 73.6, 126.3, 126.7, 127.1, 128.4, 129.7, 130.7, 132.9, 135.8, 135.8, 136.5, 166.7. **IR** (film): v_{max} [cm⁻¹] = 3394, 2952, 2928, 2896, 2856, 1731, 1471, 1463, 1406, 1391, 1357, 1273, 1254, 1107, 1069, 1027, 1006, 972, 941, 833, 806, 772, 711. **LRMS** (ESI): *m/z* 2048 (1%) [M+Na⁺], 1979 (1%), 1348 (8%), 945 (13%), 685 (39%), 647 (32%), 564 (19%) 282 (100%). **HRMS** (ESI): *m/z* 2048.3886 [2048.3857 berechnet für $C_{106}H_{220}O_{14}NaSi_{11}^{+}$ (M+Na⁺].

(3*S*,4*R*,5*R*,7*R*,9*S*,11*S*,12*E*,15*R*,17*S*,19*R*,21*S*,22*E*,25*S*,26*E*,29*R*)-32-Azido-3,7,9,11,15,17,19, 21,25,29-decakis(*tert*-butyldimethylsilyloxy)-4-methyl-5-(triethylsilyloxy)dotriaconta-12,22,26-trienylbenzoat (3-112)

In einem ausgeheizten Rundkolben wird PPh₃ (14.8 mg, 56.6 μ mol, 2 Äq.) in trockenem THF (60 μ L) unter Argonatmosphäre gelöst. Bei 0 °C wird DIAD (11 μ L, 11.5 mg, 56.6 μ mol, 2 Äq.) zugetropft. Die Reaktionsmischung wird 30 min bei 0 °C gerührt, wobei sich ein weißer Niederschlag bildet. Alkohol 3-**111** (57.4 mg, 28.3 μ mol) gelöst in trockenem THF (200 μ L) und DPPA (11 μ L, 14.0 mg, 51.0 μ mol, 1.8 Äq.) werden nacheinander zugegeben. Die Reaktion wird langsam auf RT erwärmt und 2 h gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1). Azid 3-**112** wird als farbloses Harz isoliert (49.5 mg, 24.1 μ mol, 85%).

DC: $R_{\rm f} = 0.67$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -4.62$ (c = 0.92 CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ [ppm] = -0.01 (s, 3H), 0.03 – 0.08 (m, 57H), 0.60 (q, J = 7.9 Hz, 6H), 0.86 – 0.91 (m, 93H), 0.95 (t, J = 7.9 Hz, 9H), 1.32 – 1.39 (m, 1H), 1.42 – 1.72 (m, 15H), 1.78 – 1.83 (m, 1H), 1.87 – 1.95 (m, 1H), 2.04 – 2.27 (m, 7H), 3.25 (t, J = 6.9 Hz, 2H), 3.68 – 3.75 (m, 2H), 3.77 – 3.90 (m, 6H), 4.06 – 4.10 (m, 1H), 4.17 – 4.23 (m, 2H), 4.37 – 4.40 (m, 2H), 5.38 – 5.57 (m, 6H), 7.41 - 7.44 (m, 2H), 7.53 – 7.56 (m, 1H), 8.03 – 8.04 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ [ppm] = -4.5, -4.5, -4.5, -4.5, -4.3, -4.2, -4.2, -4.0, -3.9, -3.8, -3.8, -3.7, -3.7, -3.6, -3.3, -3.1, 5.7, 7.3, 11.2, 18.0, 18.1, 18.2, 18.2, 18.2, 18.3, 18.3, 18.4,

26.0, 26.1, 26.1, 26.1, 26.1, 26.1, 26.2, 26.2, 26.3, 28.5, 32.9, 34.5, 39.9, 41.4, 41.7, 43.8, 44.4, 44.6, 46.4, 46.8, 47.0, 47.1, 62.3, 63.2, 67.0, 67.1, 67.2, 67.3, 69.4, 70.3, 70.7, 71.1, 72.0, 73.6, 126.3, 126.7, 127.1, 128.4, 129.7, 130.7, 132.9, 135.8, 135.8, 136.5, 166.7. **IR** (film): v_{max} [cm⁻¹] = 2953, 2938, 2890, 2857, 2094, 1721, 1472, 1387, 1273, 1253, 1069, 1005, 972, 909, 833, 807, 772, 735, 711. **LRMS** (ESI): *m/z* 2074 (1%) [M+Na⁺], 1892 (1%), 1348 (6%), 945 (10%), 685 (30%), 564 (23%) 282 (100%). **HRMS** (ESI): *m/z* 2073.3878 [2073.3922 berechnet für C₁₀₆H₂₁₉O₁₃N₃NaSi₁₁⁺ (M+Na⁺)].

(3*S*,4*S*,5*R*,7*S*,9*S*,11*S*,12*E*,15*R*,17*S*,19*R*,21*S*,22*E*,25*S*,26*E*,29*R*)-32-Azido-3,7,9,11,15,17,19, 21,25,29-decakis(*tert*-butyldimethylsilyloxy)-5-hydroxy-4-methyldotriaconta-12,22,26-trienylbenzoat (3-113)

Triethylsilylether 3-112 (17.9 mg, 8.72 μ mol) wird in einer Mischung aus THF und H₂O gelöst (6:1, 175 μ L). Eine Lösung von TFA (199 mg/mL, 10 μ L, 1.99 mg, 17.4 μ mol, 2 Äq.) wird zugegeben und die Lösung wird 24 h bei RT gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NaHCO₃-Lösung (10 mL) abgebrochen. Die Mischung wird mit EtOAc (10 mL) verdünnt. Die Phasen werden getrennt und die wässrige Phase mit EtOAc (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Der sekundäre Alkohol 3-113 wird als farbloses Harz isoliert (8.6 mg, 4.44 μ mol, 51%). Als zweite Fraktion kann nicht abreagiertes Ausgangsmaterial reisoliert werden (6.2 mg, 3.02 μ mol, 35%).

DC: $R_f = 0.21$ (P/EtOAc 98:2) [UV] [CAM]. $[\alpha]^{23}{}_{D} = -15.3$ (c = 1.00 CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ [ppm] = 0.02- 0.08 (m, 54H), 0.11 (s, 6H), 0.87- 0.89 (m, 81H), 0.91 (s, 9H), 0.94 (d, J = 6.8 Hz, 3H), 1.33 – 1.57 (m, 9H), 1.60 – 1.77 (m, 8H), 2.046 – 2.26 (m, 8H), 3.21 (s, 1H), 3.25 (t, J = 6.9 Hz, 2H), 3.67 – 3.72 (m, 1H), 3.76 – 3.92 (m, 5H), 4.06 – 4.10 (m, 3H), 4.15 – 4.19 (m, 1H), 4.28 – 4.41 (m, 3H), 5.34 – 5.57 (m, 6H), 7.42 – 7.45 (m, 2H), 7.54

- 7.56 (m, 1H), 8.03 – 8.04 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ [ppm] = -4.5, -4.5, -4.5, -4.5, -4.4, -4.3, -4.2, -4.2, -4.1, -4.0, -3.9, -3.9, -3.8, -3.8, -3.7, -3.4, -3.3, -3.2, 9.3, 18.0, 18.0, 18.2, 18.3, 18.4, 25.0, 26.0, 26.0, 26.0, 26.1, 26.1, 26.1, 26.2, 26.2, 32.9, 33.5, 40.3, 41.0, 41.6, 42.6, 43.9, 44.6, 46.4, 46.5, 46.7, 47.7, 51.8, 62.3, 66.8, 67.0, 67.3, 69.3, 70.3, 70.9, 71.1, 71.4, 71.6, 72.9, 73.5, 126.0, 126.6, 126.9, 128.4, 129.7, 130.6, 132.9, 135.8, 136.1, 136.5, 166.6. **IR** (film): v_{max} [cm⁻¹] = 3514, 2954, 2928, 2895, 2857, 2096, 1724, 1472, 1463, 1387, 1361, 1274, 1255, 1114, 1071, 1005, 971, 835, 807, 774, 711. **LRMS** (ESI): *m/z* 1959 (1%) [M+Na⁺], 915 (5%), 447 (24%), 282 (100%). **HRMS** (ESI): *m/z* 1959.2996 [1959.3057 berechnet für C₁₀₀H₂₀₅O₁₃N₃NaSi₁₀⁺ (M+Na⁺)].

(3*S*,4*S*,5*R*,7*S*,9*S*,11*S*,12*E*,15*R*,17*S*,19*R*,21*S*,22*E*,25*S*,26*E*,29*R*)-32-Azido-3,7,9,11,15,17,19, 21,25,29-decakis(*tert*-butyldimethylsilyloxy)-4-methyldotriaconta-12,22,26-trien-1,5-diol (3-114)

Benzoat 3-113 (10.3 mg, 5.31 μ mol) wird in einer Mischung von MeOH und THF (1:1, 270 μ L) gelöst und K₂CO₃ (7.34 mg, 53.1 μ mol, 10 Äq.) werden zugegeben. Die Reaktionsmischung wird 4 h bei RT gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (15 mL) abgebrochen und das Gemisch wird mit EtOAc (10 mL) verdünnt. Die Phasen werden getrennt und die wässrige Phase mit EtOAc (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch über neutrales Aluminiumoxid aufgereinigt (P/EtOAc 97:3). Diol 3-114 wird als farbloses Harz isoliert (8.00 mg, 4.36 μ mol, 82%).

DC: $R_{\rm f} = 0.39$ (P/EtOAc 90:10) [CAM]. $[\alpha]^{23}{}_{\rm D} = -15.3$ (c = 0.89 CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ [ppm] = 0.02 - 0.02 (m, 9H), 0.03 (s, 3H), 0.04 - 0.07 (m, 36H), 0.08 (s, 3H), 0.11 (s, 3H), 0.12 (s, 3H), 0.87 (s, 9H), 0.89 - 0.89 (m, 63H), 0.90 (s, 9H), 0.90 (s, 9H), 0.94 (d, J = 6.9 Hz, 3H), 1.36 - 1.77 (m, 17H), 1.89 - 1.97 (m, 2H), 2.08 - 2.25

(m, 6H), 2.63 (s, br, 1H), 3.25 (t, J = 6.9 Hz, 2H), 3.37 (s, br, 1H), 3.67 – 3.75 (m, 2H), 3.77 – 3.93 (m, 7H), 4.02 – 4.12 (m, 3H), 4.14 – 4.18 (m, 1H), 5.37 – 5.56 (m, 6H). ¹³C NMR (126 MHz, CDCl₃): δ [ppm] = -4.5, -4.5, -4.5, -4.5, -4.4, -4.4, -4.2, -4.2, -4.0, -3.8, -3.8, -3.8, -3.7, -3.4, -3.3, -3.3, -3.2, 10.1, 18.0, 18.1, 18.1, 18.2, 18.2, 18.2, 18.3, 18.4, 25.0, 26.0, 26.0, 26.0, 26.1, 26.1, 26.1, 26.1, 26.2, 31.5, 33.5, 35.3, 40.3, 40.9, 41.6, 41.7, 43.1, 44.6, 46.3, 46.4, 46.6, 47.9, 51.8, 60.2, 61.1, 66.8, 67.0, 67.3, 69.3, 71.0, 71.1, 71.3, 71.6, 73.5, 74.5, 126.1, 126.7, 127.0, 135.8, 136.1, 136.4. **IR** (film): v_{max} [cm⁻¹] = 3380, 2952, 2928, 2856, 2094, 1472, 1463, 1388, 1362, 1254, 1072, 1023, 1005, 972, 938, 919, 835, 807, 773. **LRMS** (ESI): *m/z* 1855 (1%) [M+Na⁺], 1833 (1%) [M+H⁺], 1570 (1%), 1305 (1%), 937 (1%), 282 (100%). **HRMS** (ESI): *m/z* 1833.2964 [1833.2976 berechnet für C₉₃H₂₀₂O₁₂N₃Si₁₀⁺ (M+H⁺)].

(3*S*,4*R*,7*R*,9*S*,11*S*,12*E*,15*R*,17*S*,19*R*,21*S*,22*E*,25*S*,26*E*,29*R*)-32-Azido-3,7,9,11,15,17,19,21, 25,29-decakis(*tert*-butyldimethylsilyloxy)-4-methyl-5-oxodotriaconta-12,22,26-trienal (3-30)

In einem ausgeheizten GC-Vial wird eine Lösung von Oxalylchlorid in trockenem CH₂Cl₂ (43μ L/mL, 46 μ L, 2.9 mg, 22.9 μ mol, 5 Äq.) vorgelegt. Bei -78 °C wird eine Lösung von trockenem DMSO in trockenem CH₂Cl₂ (295 μ L/mL, 11 μ L, 3.6 mg, 45.8 μ mol, 10 Äq.) zugetropft. Das Reaktionsgemisch wird 30 min bei -78 °C gerührt. Diol 3-**114** (7.9 mg, 4.31 μ mol) gelöst ist trockenem CH₂Cl₂ (80 μ L) wird bei -78 °C zugegeben. Das Reaktionsgemisch wird 2 h bei -78 °C gerührt. NEt₃ (7.7 μ L, 5.6 mg, 54.9 μ mol, 12 Äq.) wird langsam zugegeben und die Reaktionsmischung wird innerhalb von 2 h auf RT erwärmt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (15 mL) abgebrochen und EtOAc (10 mL) wird hinzugefügt. Die Phasen werden getrennt und die wässrige Phase mit EtOAc (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt

(P/EtOAc 99:1 \rightarrow 97:3). Die 1,5-Dicarbonylverbingung 3-30 wird als farbloses Harz isoliert (1.8 mg, 0.98 µmol, 23%).^d

DC: $R_f = 0.36$ (P/EtOAc 98:2) [CAM]. ¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 0.02 – 0.07 (m, 57H), 0.08 (s, 3H), 0.84 (s, 9H), 0.87 – 0.89 (m, 81H), 1.06 (d, J = 7.0 Hz, 3H), 1.35 – 1.52 (m, 7H), 1.57 – 1.74 (m, 9H), 2.05 – 2.24 (m, 6H), 2.46 (ddd, J = 16.1, 5.9, 2.7 Hz, 1H), 2.58 (ddd, J = 20.2, 9.5, 2.7 Hz, 1H), 2.69 – 2.753 (m, 1H), 3.25 (t, J = 6.9 Hz, 2H), 3.66 – 3.72 (m, 1H), 3.72 – 3.78 (m, 1H), 3.80 – 3.90 (m, 3H), 4.04 – 4.14 (m, 2H), 4.15 – 4.25 (m, 2H), 4.30 – 4.35 (m, 1H), 4.37 – 4.40 (m, 1H), 5.35 – 5.57 (m, 6H), 9.78 (dd, J = 2.7, 1.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ [ppm] = -4.5, -4.5, -4.5, -4.4, -4.4, -4.4, -4.3, -4.2, -4.2, -4.2, -4.1, -4.0, -3.8, -3.8, -3.7, -3.4, -3.3, -3.3, -3.1, 11.1, 18.0, 18.1, 18.1, 18.2, 18.3, 18.3, 18.4, 25.0, 25.9, 26.0, 26.0, 26.1, 26.1, 26.1, 26.2, 26.2, 31.6, 33.5, 38.9, 40.3, 41.2, 41.6, 44.5, 45.6, 46.4, 46.7, 47.1, 51.8, 66.2, 66.8, 67.0, 68.3, 69.1, 69.3, 71.1, 71.6, 73.5, 126.0, 126.6, 126.9, 135.9, 136.0, 136.5, 201.4, 211.0. (einige ¹³C-Signale konnten nicht zugeordnet werden).

(2*E*,4*E*,6*E*,8*E*,11*S*,12*R*,15*R*,17*S*,19*S*,20*E*,23*R*,25*S*,27*R*,29*S*,30*E*,33*S*,34*E*,37*R*)-2-(Tri-methylsilyl)ethyl-40-azido-11,15,17,19,23,25,27,29,33,37-decakis(*tert*-butyldimethylsilyl-oxy)-12-methyl-13-oxotetraconta-2,4,6,8,20,30,34-heptaenoat (3-29)

In einem ausgeheizten GC-Vial wird Phosphonat 3-24 (2.4 mg, 6.93 μ mol, 7Äq.) in trockenem THF (100 μ L) unter Argonatmosphäre gelöst. Bei -78 °C wird LiHMDS (0.1m in THF, 15 μ L, 1.50 μ mol, 1.5 Äq.) zugetropft wobei sich die Lösung intensiv orange färbt. Die Reaktionsmischung wird 30 min bei -78 °C gerührt. Aldehyd 3-30 (1.7 mg, 0.93 μ mol) gelöst in trockenem THF (100 μ L) wird zugetropft. Die Reaktionsmischung wird 10 min bei -78 °C

^d Die Bedingungen dieser Reaktion sind nicht optimiert. Daher sind weder Reaktionsvorschrift noch Ausbeute als repräsentativ anzusehen

und 30 min bei 0 °C gerührt. Die Reaktion wird durch Zugabe von wässrigem pH 7-Puffer (15 mL) abgebrochen und EtOAc (10 mL) wird hinzugefügt. Die Phasen werden getrennt und die wässrige Phase mit EtOAc (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch über neutrales Aluminiumoxid aufgereinigt (P/EtOAc 98:2). Tetraen X wird als gelbes Harz isoliert (1.5 mg, 0.73 µmol, 78%).

DC: $R_f = 0.36$ (P/EtOAc 98:2) [CAM]. ¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 0.02 – 0.07 (m, 69H), 0.87 – 0.89 (m, 90H), 1.01 – 1.06 (m, 5H), 1.56 – 1.74 (m, 11H), 2.96 – 2.24 (m, 9H), 2.28 – 2.38 (m, 2H), 2.42 – 2.50 (m, 1H), 2.59 – 2.70 (m, 1H), 3.25 (t, J = 6.9 Hz, 2H), 3.67 – 3.74 (m, 2H), 3.80 – 3.90 (m, 3H), 3.98 – 4.13 (m, 2H), 4.15 – 4.26 (m, 4H), 4.29 – 4.35 (m, 1H), 5.33 – 5.60 (m, 8H), 5.76 – 5.87 (m, 1H), 6.07 – 6.38 (m, 3H), 6.52 – 6.61 (m, 1H), 7.30 (dd, J = 15.5, 11.5 Hz, 1H).

(2*E*,4*E*,6*E*,8*E*,11*S*,12*R*,15*R*,17*S*,19*S*,20*E*,23*R*,25*S*,27*R*,29*S*,30*E*,33*S*,34*E*,37*R*)-2-(Trimethylsilyl)ethyl-40-amino-11,15,17,19,23,25,27,29,33,37-decakis(*tert*-butyldimethylsilyloxy)-12-methyl-13-oxotetraconta-2,4,6,8,20,30,34-heptaenoat (3-116)

Azid 3-29 (1.3 mg, 0.63 μ mol) wird in einer Mischung aus THF und H₂O (6:1, 70 μ L) gelöst und PPh₃ (immobilisiert auf Polystyrol, 1.2-1.5 mmol/g Beladung, 10.0 mg, ~20 Äq.) wurde zugegeben. Die Lösung wurde 45 h bei RT gerührt. Das Reaktionsgemisch wurde abfiltriert und das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt wurde ohne weitere Aufreinigung im nächsten Schritt eingesetzt.

DC: $R_f = 0.30$ (P/EtOAc 90:10) [CAM]. ¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 0.02 – 0.07 (m, 69H), 0.87 – 0.89 (m, 90H), 1.01 – 1.06 (m, 5H), 1.56 – 1.74 (m, 11H), 2.96 – 2.24 (m, 9H), 2.28 – 2.38 (m, 2H), 2.42 – 2.50 (m, 1H), 2.59 – 2.70 (m, 1H), 3.67 – 3.74 (m, 4H), 3.80 – 3.90 (m, 3H), 3.98 – 4.13 (m, 2H), 4.15 – 4.26 (m, 4H), 4.29 – 4.35 (m, 1H), 5.33 – 5.60 (m,

8H), 5.76 - 5.87 (m, 1H), 6.07 - 6.38 (m, 3H), 6.52 - 6.61 (m, 1H), 7.30 (dd, J = 15.5, 11.5 Hz, 1H).

Tetrafibricin (3-1)

Amin 4-116 (1.3 mg, 0.63 μ mol) wird in THF (130 μ L) gelöst und TBAF (1M in THF, 32.0 μ L, 32.0 μ mol, 50 Äq.) wird zugegeben. Die Reaktionsmischung wird 48 h unter Auschluss von Licht bei RT gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt.

DC (RP C18 Merck): $R_f = 0.6$ (MeOH/Na₂HPO₄ (50 mM in H₂O) 2:1) [Ninhydrin].

2.3 Reagenzien zum iterativen Aufbau von 1,3-Polyolen

2.3.1 Synthese von Eninbaustein 4-3

3-(4-Methoxybenzyloxy)propan-1-ol

РМВО ЮH C₁₁H₁₆O₃ 196.24

In einem mit Wasserabscheider und Rückflusskühler versehenen Rundkolben wird Propandiol (10.0 mL, 10.6 g, 138 mmol) in trockenem Toluol (17 mL) gelöst und p-Anisaldehyd (16.8 mL, 18.9 g, 1 Äq.) und pTsOH (310 mg, 1.62 mol, 1 mol%) werden hinzugefügt. Die Reaktionsmischung wird 48 h unter Rückfluss gerührt. Die Reaktionsmischung wird mit EtOAc (40 mL) verdünnt und nacheinander mit gesättigter, wässriger NaHCO₃-Lösung und gesättigter, wässriger NaCl-Lösung (je 20 mL) gewaschen. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand über einen kurze Kieselgelsäule filtriert (P/EtOAc 80:20). Das Produkt wird als farbloses Öl isoliert und ohne weitere Aufreinigung im nächsten Reaktionsschritt eingesetzt.

In einem ausgeheizten Rundkolben wird das Acetal in trockenem Toluol (39 mL) unter Argonatmosphäre gelöst. Bei 0 °C wird DIBAI-H (1M in Hexan, 161 mL, 161 mmol, 1.2 Äq.) so zugetropft, dass die Innentemperatur 0 °C nicht übersteigt. Die Reaktionsmischung wird innerhalb von 16 h auf RT erwärmt. Die Reaktion wird durch Zugabe von Na-K-Tartrat-Lösung (20% in H₂O, 100 mL) abgebrochen. Das Gemisch wird mit EtOAc (100 mL) verdünnt und Glycerin (32 mL, 0.2 mL/mmol DIBAl-H) wird zugegeben. Die Mischung wird gerührt, bis eine klare Phasentrennung zu erkennen ist. Die Phasen werden getrennt und die wässrige Phase wird mit EtOAc (2×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 70:30 \rightarrow 50:50). Das Produkt wird als farblose Flüssigkeit isoliert (18.4 g, 93.8 mmol, 68% für zwei Schritte).

DC: $R_{\rm f} = 0.17$ (P/EtOAc 70:30) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.82 – 1.88 (m, 2H), 2.33 (s, br, 1H), 3.63 (t, J = 5.8 Hz, 2H), 3.77 (t, J = 5.7 Hz, 2H), 3.80 (s, 3H), 4.45 (s, 2H), 6.88 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 32.2, 55.4, 62.2, 69.3, 73.1, 114.0, 129.4, 130.3, 159.4.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[113]

3-(4-Methoxybenzyloxy)propanal (3-53)

In einem ausgeheizten Rundkolben wird unter Argonatmosphäre Oxalylchlorid (7.20 mL, 10.8 g, 84.9 mmol, 1.5 Äq.) in trockenem CH₂Cl₂ (170 mL) vorgelegt. Bei 78 °C wird DMSO (10.0 mL, 11.0 g, 141 mmol, 2.5 Äq.) gelöst in CH₂Cl₂ (34 mL) zugetropft. Die Reaktionsmischung wird 30 min bei -78 °C gerührt. 3-(4-Methoxybenzyloxy)propan-1-ol (11.1 g, 56.6 mmol) gelöst in CH₂Cl₂ (45 mL) wird zugetropft und es wird eine weiter Stunde bei -78 °C gerührt. NEt₃ (31.5 mL, 22.9 g, 226 mmol, 4 Äq.) wird zugegeben, die Reaktionsmischung wird auf RT erwärmt und 30 min gerührt. Die Reaktion wird durch Zugabe von H₂O (100 mL) abgebrochen. Die Mischung wird mit CH₂Cl₂ (100 mL) verdünnt, die Phasen werden getrennt und die organische Phase nacheinander mit wässriger HCl (2M), gesättigter Wässriger NaHCO₃-Lösung und gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 80:20 \rightarrow 70:30). Aldehyd 3-**53** wird als farblose Flüssigkeit isoliert (9.92 g, 51.1 mmol, 91%).

DC: $R_{\rm f} = 0.49$ (P/EtOAc 70:30) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 2.68 (td, J = 6.1, 1.8 Hz, 2H), 3.77 – 3.80 (m, 5H), 4.46 (s, 2H), 6.88 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 9.78 (t, J = 1.8 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 44.0, 55.4, 63.6, 73.0, 114.0, 114.1, 129.5, 130.1, 159.4, 201.3.

Die spektroskopischen Daten stimmen mit denen der Literatur überein.^[115]

(Z)-Methyl-5-(4-methoxybenzyloxy)pent-2-enoat (4-11)

In einem ausgeheizten Rundkolben wird unter Argonatmosphäre NaH (60% in Paraffinöl, 3.83 g, 99.6 mmol, 1.4 Äq.) in trockenem THF (300 mL) vorgelegt. Bei 0 °C wird 2-(Diphenoxyphosphoryl)essigsäuremethylester (2-2) (26.2 g, 85.4 mmol, 1.2 Äq.) in trockenem THF (40 mL) zugetropft und die Reaktionsmischung 30 min bei 0 °C gerührt. Die Lösung wird auf -78 °C abgekühlt und Aldehyd 3-**53** (13.8 g, 71.2 mmol) gelöst in trockenem THF (140 mL) wird zugetropft. Es wird 30 min gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (100 mL) beendet und mit Et₂O (200 mL) versetzt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (2×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 93:7 \rightarrow 90:10). Das Produkt wird als farblose Flüssigkeit isoliert (16.9 g, 67.6 mmol, 95%).

DC: $R_f = 0.75$ (P/EtOAc 70:30) [UV] [CAM]. ¹**H** NMR (250 MHz, CDCl₃): δ [ppm] = 3.00 (dtd, J = 7.1, 6.3, 1.8 Hz, 2H), 3.59 (t, J = 6.3 Hz, 2H), 3.74 (s, 3H), 3.83 (s, 3H), 4.49 (s, 3H), 5.88 (dt, J = 11.5, 1.8 Hz, 1H), 6.38 (dt, J = 11.5, 7.1 Hz, 1H), 6.91 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 8.8 Hz, 2H). ¹³**C** NMR (63 MHz, CDCl₃): δ [ppm] = 29.7, 51.2, 55.4, 68.9, 72.6, 113.9, 120.7, 129.4, 130.6, 147.4, 159.3, 166.9. **IR** (film): v_{max} [cm⁻¹] = 2950, 2859, 1718, 1646, 1612, 1512, 1457, 1438, 1408, 1361, 1301, 1245, 1213, 1173, 1097, 1034, 1003, 820. **LRMS** (ESI): m/z 273 (100%) [M+Na⁺], 251 (35%) [M+H⁺], 241 (50%) [M-CH₃+H⁺]. **HRMS** (ESI): m/z 251.1275 [251.1278 berechnet für C₁₄H₁₉O₄⁺ (M+H⁺)].

(Z)-5-(4-methoxybenzyloxy)pent-2-en-1-ol

In einem ausgeheizten Runkolben wird Methylester 4-11 (16.9 g, 67.6 mmol) in trockenem CH_2Cl_2 (500 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAI-H (1M in Hexan, 170 mL, 170 mmol, 2.5 Äq.) zugetropft. Die Reaktionsmischung wird 3 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tartrat-Lösung (20% in H₂O, 300 mL) abgebrochen. Glycerin (34 mL, 0.2 mL/mmol DIBAI-H) wird zugegeben. Die Mischung wird auf RT erwärmt und gerührt, bis eine klare Phasentrennung zu erkennen ist. Die Phasen werden getrennt und die wässrige Phase wird mit CH_2Cl_2 (2×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 70:30). Das Produkt wird als farblose Flüssigkeit isoliert (11.3 g, 50.8 mmol, 75%).

DC: $R_{\rm f} = 0.40$ (P/EtOAc 70:30) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.92 (s, br, 1H), 2.40 (qd, J = 6.2, 1.1 Hz, 2H), 3.47 (t, J = 6.1 Hz, 2H), 3.80 (s, 4H), 4.11 (d, J = 7.0 Hz, 2H), 4.45 (s, 2H), 5.56 – 5.66 (m, 1H), 5.77 – 5.88 (m, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.7 Hz, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 28.2, 55.4, 57.9, 68.8, 73.0, 114.0, 129.5, 130.0, 130.1, 131.0, 159.5. IR (film): $v_{\rm max}$ [cm⁻¹] = 3371, 3020, 2933, 2860, 1612, 1586, 1512, 1463, 1442, 1421, 1360, 1302, 1244, 1173, 1088, 1030, 1003, 819. LRMS (ESI): m/z 245 (25%) [M+Na⁺], 223 (100%) [M+H⁺]. HRMS (ESI): m/z 245.1146 [245.1148 berechnet für C₁₃H₁₈O₃Na⁺ (M+Na⁺)].

(Z)-5-(4-methoxybenzyloxy)pent-2-enyl-2,2,2-trichloroacetimidat (4-12)

In einem ausgeheizten Rundkolben wird (Z)-5-(4-methoxybenzyloxy)pent-2-en-1-ol (4.19 g, 18.9 mmol) in trockenem CH₂Cl₂ (75 mL) unter Argonatmosphäre gelöst und Trichloracetonitril (2.08 mL, 2.99 g, 20.7 mmol, 1.1 Äq.) und DBU (282 µL, 287 mg, 1.89 mmol, 0.1 Äq.) werden zugegeben. Die Lösung wird 1 h bei RT gerührt. Die Reaktion wird durch Zugabe von H₂O (50 mL) abgebrochen. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (2×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 97:3). Das Produkt wird als farblose Flüssigkeit isoliert (6.68 g, 18.2 mmol, 97%).

DC: $R_{\rm f} = 0.40$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 2.41 – 2.51 (m, 2H), 3.49 (t, J = 6.7 Hz, 2H), 3.81 (s, 3H), 4.45 (s, 2H), 4.86 (d, J = 5.1 Hz, 2H), 5.74 – 5.79 (m, 2H), 6.88 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H), 8.29 (s, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 28.6, 55.4, 65.3, 69.3, 72.8, 91.6, 114.0, 124.7, 129.4, 130.6, 132.4, 159.3, 162.8. **IR** (film): $v_{\rm max}$ [cm⁻¹] = 2952, 2902, 2856, 1662, 1612, 1512, 1463, 1442, 1361, 1297, 1246, 1173, 1078, 1035, 979, 825, 796.

(S)-5-(4-Methoxybenzyloxy)pent-1-en-3-yl-benzoat (4-13)

Trichloracetimidat 4-12 (5.00 g, 13.6 mmol) und Benzoesäure (4.99 g, 40.9 mmol, 3 Äg.) werden in CH_2Cl_2 (10 mL) gelöst und (R)-(-)-COP-OAc (206 mg, 136 µmol, 1 mol%) wird zugegeben. Das Reaktionsgemisch wird geschützt vor Licht für 16 h gerührt. Die Suspension wird mit CH₂Cl₂ (50 mL) verdünnt und mit NaHCO₃ solange gewaschen, bis keine Gasentwicklung mehr zu beobachten ist (3×50 mL). Die vereinigten wässrigen Phasen werden mit CH₂Cl₂ (2×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Benzoat 4-13 wird als gelbe Flüssigkeit isoliert (3.93 g, 12.0 mmol, 89%, 96% ee).

DC: $R_{\rm f} = 0.28$ (P/EtOAc 95:5) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = -6.8$ (c = 0.93 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 2.02 – 2.19 (m, 2H), 3.59 (t, J = 6.4 Hz, 2H), 3.79 (s, 3H), 4.45 (s, 2H), 5.23 (dt, J = 10.5, 1.2 Hz, 1H), 5.36 (dt, J = 17.2, 1.3 Hz, 1H), 5.66 – 5.75 (m, 1H), 5.95 (ddd, J = 17.2, 10.5, 6.2 Hz, 1H), 6.85 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H), 7.43 – 7.50 (m, 2H), 7.56 – 7.63 (m, 1H), 8.04 – 8.09 (m, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 34.7, 55.4, 66.0, 72.8, 72.9, 113.9, 116.9, 128.5, 129.4, 129.7, 130.5, 130.7, 133.0, 136.5, 159.3, 165.9. IR (film): v_{max} [cm⁻¹] = 2967, 2919, 28606, 1715, 1612, 1585, 1512, 1451, 1359, 1314, 1302, 1268, 1245, 1173, 1093, 1068, 1026, 989, 929, 820, 756, 712. LRMS (ESI): m/z 675 (100%) [2M+Na⁺], 349 (74%) [M+Na⁺]. HRMS (ESI): m/z 349.1407 [349.1410 berechnet für C₂₀H₂₂O₄Na⁺ (M+Na⁺)].

Der Enantiomerenüberschuss wurde mittels chiraler HPLC bestimmt (Säule: Daicel OJ-H; *n*-Hexan/*i*-PrOH 60:40; 0.25 mL/min; 250 nm; (*S*)-Enantiomere: $t_{\rm R}$ = 48.8 min; (*R*)-Enantiomere: $t_{\rm R}$ = 34.9 min).

(S)-5-(4-Methoxybenzyloxy)pent-1-en-3-ol

In einem ausgeheizten Runkolben wird Benzoat 4-13 (3.92 g, 12.0 mmol) in trockenem CH₂Cl₂ (120 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAI-H (1M in Hexan, 30.0 mL, 30.0 mmol, 2.5 Åq.) zugetropft. Die Reaktionsmischung wird 3 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tartrat-Lösung (20% in H₂O, 100 mL) abgebrochen. Glycerin (6 mL, 0.2 mL/mmol DIBAI-H) wird zugegeben. Die Mischung wird auf RT erwärmt und gerührt, bis eine klare Phasentrennung zu erkennen ist. Die Phasen werden getrennt und die wässrige Phase wird mit CH₂Cl₂ ($2\times70 \text{ mL}$) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Der Alkohol wird als farblose Flüssigkeit isoliert (2.57 g, 11.6 mmol, 96%).

DC: $R_{\rm f} = 0.28$ (P/EtOAc 90:10) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = +9.7$ (c = 0.91 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.77 – 1.87 (m, 2H), 2.84 (d, J = 3.8 Hz, 1H), 3.57 – 3.73 (m, 2H), 3.81 (s, 3H), 4.29 – 4.37 (m, 1H), 4.45 (s, 2H), 5.10 (dt, J = 10.4, 1.5 Hz, 1H), 5.26 (dt, J = 17.2, 1.6 Hz, 1H), 5.87 (ddd, J = 17.2, 10.4, 5.5 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 36.5, 55.4, 68.2, 72.1, 73.1, 114.0, 114.5, 129.5, 130.2, 140.7, 159.5. IR (film): v_{max} [cm⁻¹] = 3439, 2908, 2862, 1612, 1512, 1464, 1442, 1421, 1363, 1302, 1246, 1173, 1089, 1033, 992, 923, 820.

(S)-tert-Butyl(5-(4-methoxybenzyloxy)pent-1-en-3-yloxy)dimethylsilan (4-14)

(S)-5-(4-Methoxybenzyloxy)pent-1-en-3-ol (2.57 g, 11.6 mmol) wird in DMF (12 mL) gelöst und TBSCl (2.61 g, 17.3 mmol, 1.5 Äq.) und Imidazol (2.36 g, 34.7 mmol, 3 Äq.) werden zugegeben. Die Lösung wird 2 h bei RT gerührt. Das Reaktionsgemisch wird mit H₂O (120 mL) versetzt und mit Et₂O (3×80 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1 \rightarrow 98:2). Silylether 4-14 wird als farblose Flüssigkeit isoliert (3.67 g, 10.9 mmol, 94%).

DC: $R_{\rm f} = 0.15$ (P/EtOAc 99:1) [UV] [CAM]. $[\alpha]^{23}{}_{\rm D} = +1.8$ (c = 0.89 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.05 (s, 3H), 0.89 (s, 9H), 1.73 – 1.81 (m, 2H), 3.43 – 3.59 (m, 2H), 3.80 (s, 3H), 4.25 – 4.35 (m, 1H), 4.38 (d, J = 11.4 Hz, 1H), 4.45 (d, J = 11.4 Hz, 1H), 5.01 (ddd, J = 10.4, 1.8, 1.2 Hz, 1H), 5.14 (ddd, J = 17.2, 1.8, 1.3 Hz, 1H), 5.80 (ddd, J = 17.1, 10.4, 6.1 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 3H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.8, -4.2, 18.4, 26.0, 38.3, 55.4, 66.6, 71.0, 72.8, 113.8, 113.9, 129.4, 130.9, 141.8, 159.3. **IR** (film): v_{max} [cm⁻¹] = 2954, 2928, 2887, 2856, 1615, 1513, 1463, 1362, 1300, 1247, 1173, 1140, 1087, 1037, 1006, 922, 835, 775.

(S)-3-(tert-Butyldimethylsilyloxy)pent-4-en-1-ol

PMB-Ether 4-14 (3.61 g, 10.7 mmol) wird in einer Mischung aus CH_2Cl_2 (54 mL) und pH 7-Puffer (5.5 mL) gelöst. DDQ (33.65 g, 16.1 mmol, 1.5 Äq.) werden hinzugefügt und das Reaktionsgemisch wird 3 h heftig gerührt. Die Mischung wird über Zelithe abfiltriert wobei mehrmals mit CH_2Cl_2 nachgewaschen wird. Das Filtrat wird mit H_2O (50 mL) versetzt. Die Phasen werden getrennt und die wässrige Phase mit CH_2Cl_2 (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Der freie Alkohol wird als farblose Flüssigkeit isoliert (1.81 g, 8.35 mmol, 78%).

DC: $R_{\rm f} = 0.25$ (P/EtOAc 90:10) [CAM]. $[\alpha]^{23}{}_{\rm D} = -3.5$ (c = 0.93 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.06 (s, 3H), 0.09 (s, 3H), 0.91 (s, 9H), 1.65 – 1.92 (m, 2H), 2.39 (s, br, 1H), 3.67 – 3.89 (m, 2H), 4.38 – 4.45 (m, 1H), 5.10 (dt, J = 10.4, 1.4 Hz, 1H), 5.22 (dt, J = 17.2, 1.5 Hz, 1H), 5.85 (ddd, J = 17.0, 10.4, 5.8 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = -4.9, -4.2, 18.3, 25.8, 26.0, 39.4, 60.3, 73.3, 114.5, 140.8. IR (film): v_{max} [cm⁻¹] = 3530, 2962, 2948, 2928, 2856, 2851, 1474, 1464, 1421, 1401, 1362, 1252, 1135, 1082, 1028,

1018, 922, 834, 776. **LRMS** (ESI): m/z 217 (100%) [M+H⁺]. **HRMS** (ESI): m/z 217.1618 [217.1618 berechnet für C₁₁H₂₅O₂Si⁺ (M+H⁺)].

(S)-3-(tert-Butyldimethylsilyloxy)pent-4-enal (4-15)

(*S*)-3-(*tert*-Butyldimethylsilyloxy)pent-4-en-1-ol (1.80 g, 8.30 mmol) wird in DMSO (17 mL) gelöst und IBX (5.12 g, 18.3 mmol, 2.2 Äq.) wird hinzugefügt. Die Reaktionsmischung wird für 2 h bei RT gerührt. Die Lösung wird mit CH_2Cl_2 (170 mL) verdünnt und 30 min gerührt bis sich ein weißer Niederschlag bildet. Der Feststoff wird abfiltriert und das Filtrat mit gesättigter, wässriger NaHCO₃-Lösung (100 mL) gewaschen. Die Phasen werden getrennt und die wässrige Phase wird mit CH_2Cl_2 (2×50 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 97:3). Aldehyd 4-15 wird als farblose Flüssigkeit isoliert (1.53 g, 7.14 mmol, 86%).

DC: $R_f = 0.19$ (P/EtOAc 98:2) [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.06 (s, 3H), 0.07 (s, 3H), 0.88 (s, 9H), 2.51 (ddd, J = 7.4, 5.4, 2.5 Hz, 1H), 2.61 (ddd, J = 15.8, 6.7, 2.7 Hz, 1H), 4.62 – 4.69 (m, 1H), 5.12 (dt, J = 10.4, 1.0 Hz, 1H), 5.26 (dt, J = 17.1, 1.1 Hz, 1H), 5.81 – 5.94 (m, 1H), 9.77 (t, J = 2.3 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.9, -4.2, 18.3, 25.9, 51.4, 69.6, 115.0, 140.1, 201.7. **IR** (film): v_{max} [cm⁻¹] = 2957, 2928, 2895, 2856, 1726, 1474, 1469, 1362, 1256, 1252, 1087, 1028, 989, 927, 834, 776.

(S)-tert-Butyl(hex-1-en-5-in-3-yloxy)dimethylsilan (4-17)

In einem ausgeheizten Rundkolben wird *tert*-BuOK (1.23 g, 11.0 mmol, 1.95 Äq.) in trockenem THF (22 mL) unter Argonatmosphäre vorgelegt. Bei -78 °C wird Dimethyl(diazomethyl)-phosphonat (4-16) (1.54 g, 10.3 mmol, 1.8 Äq.) gelöst in trockenem THF (28 mL) tropfenweise zugegeben. Die Reaktionsmischung wird 10 min gerührt. Aldehyd
4-15 (1.21 g, 5.65 mmol) gelöst in trockenem THF (14 mL) wird tropfenweise zugegeben. Die Lösung wird 2 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (50 mL) abgebrochen. Das Gemisch wird mit Et₂O (30 mL) verdünnt und die Phasen werden getrennt. Die wässrige Phase wird mit Et₂O (2×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99.9:0.1). Das Produkt wird als gelbe Flüsssigkeit isoliert (862 mg, 4.10 mmol, 73%).

DC: $R_f = 0.43$ (P/EtOAc 100:0) [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.06 (s, 3H), 0.09 (s, 3H), 0.90 (s, 9H), 1.98 (t, J = 2.7, 1H), 2.27 – 2.47 (m, 2H), 4.22 – 4.31 (m, 1H), 5.12 (dt, J = 10.4, 1.5 Hz, 1H), 5.26 (dt, J = 17.1, 1.6 Hz, 1H), 5.92 (ddd, J = 17.1, 10.4, 5.6 Hz, 1H).

(S)-tert-Butyldimethyl(6-(trimethylsilyl)hex-1-en-5-in-3-yloxy)silan

In einem ausgeheizten Rundkolben wird Acetylen 4-17 (862 mg, 4.09 mmol) in trockenem THF (14 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird *n*-BuLi (2.5M in Hexan, 2.05 mL, 5.11 mmol, 1.25 Äq.) zugetropft und die Reaktionsmischung wird 30 min gerührt. TMSCl (681 μ L, 579 mg, 5.33 mmol, 1.3 Äq.) wird zugegeben und die Mischung wird weitere 1.5 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von H₂O (20 mL) abgebrochen. Die Mischung wird auf RT erwärmt und mit Et₂O (20 mL) verdünnt. Die Phasen werden getrennt und die wässrige Phase mit Et₂O (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99.9:0.1). Das Produkt wird als gelbe Flüsssigkeit isoliert (1.07 g, 3.79 mmol, 93%).

DC: $R_{\rm f} = 0.43$ (P/EtOAc 100:0) [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] 0.07 (s, 3H), 0.10 (s, 3H), 0.14 (s, 9H), 0.91 (s, 9H), 2.34 (dd, J = 16.7, 6.4 Hz, 1H), 2.43 (dd, J = 16.7, 6.8 Hz, 1H), 4.21 – 4.30 (m, 1H), 5.09 (dt, J = 10.4, 1.5 Hz, 1H), 5.23 (dt, J = 17.1, 1.5 Hz, 1H), 5.89 (ddd, J = 17.1, 10.4, 5.6 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] =

-4.6, -4.4, 0.2, 18.4, 26.0, 30.0, 72.6, 86.3, 104.3, 114.5, 140.3. **IR** (film): v_{max} [cm⁻¹] = 2957, 2928, 2857, 1472, 1406, 1362, 1250, 1134, 1088, 1032, 924, 835, 776, 760. **LRMS** (EI): *m/z* 225 (17%) [M⁺-C₄H₉], 205 (35%), 171 (44%), 73 (100%). **HRMS** (EI): *m/z* 225.1119 [225.1125 berechnet für C₁₁H₂₁O₁Si₂⁺ (M⁺)].

(S)-6-(Trimethylsilyl)hex-1-en-5-in-3-ol (4-3)

(S)-tert-Butyldimethyl(6-(trimethylsilyl)hex-1-en-5-in-3-yloxy)silan (1.00 g, 3.55 mmol) wird einer Mischung aus THF (26 mL) und H₂O (13 mL) gelöst. Bei 0 °C wird TFA (13 mL) zugegeben. Das Reaktionsgemisch wird auf RT erwärmt und 2 h gerührt. Die Mischung wird mit H₂O (50 mL) und durch Zugabe von NaHCO₃ neutralisiert. Das Gemisch wird mit Et₂O (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1 → 95:5). Das Produkt wird als gelbe Flüsssigkeit isoliert (535 g, 3.18 mmol, 90%).

DC: $R_{\rm f} = 0.30$ (P/EtOAc 95:5) [KMnO₄]. $[\alpha]^{23}{}_{\rm D} = +5.12$ (c = 0.98 CH₂Cl₂). ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.16 (s, 9H), 2.03 (d, J = 4.6 Hz, 1H), 2.45 (dd, J = 16.0, 5.8 Hz, 1H), 2.54 (dd, J = 16.0, 4.8 Hz, 1H), 4.23 – 4.31 (m, 1H), 5.18 (dt, J = 10.5, 1.3 Hz, 1H), 5.31 (dt, J = 17.2, 1.4 Hz, 1H), 5.92 (ddd, J = 17.2, 10.5, 5.7 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 0.2, 29.1, 70.9, 88.1, 102.5, 115.8, 139.1. IR (film): v_{max} [cm⁻¹] = 3362. 1422. 1250, 1119, 1041, 1003, 926, 842, 760. LRMS (EI): m/z 135 (8%) [M⁺-H₂O-CH₃], 129 (24%), 73 (100%). HRMS (EI): m/z 135.0623 [135.0625 berechnet für C₈H₁₁Si⁺ (M⁺-H₂O-CH₃)].

2.3.2 Synthese der Phosphorreagenzien 4-18

Methyl-3-hydroxypent-4-enoat (4-24)

In einem ausgeheizten Rundkolben wird Diisopropylamin (10.4 mL, 7.51 g, 74.3 mmol, 1.1 Äq.) in trockenen THF (250 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird n-BuLi (2.5m in Hexan, 29.7 mL, 74.3 mmol, 1.1 Äq.) zugetropft. Die Reaktionsmischung wird auf 0 °C erwärmt und 10 min gerührt. Die Reaktion wird erneut auf -78 °C abgekühlt und Methylacetat (5.35 mL, 5.00 g, 67.5 mmol) wird zugegeben. Die Reaktionmischung wird 30 min bei -78 °C gerührt. Acrolein (4.95 mL, 4.16 g, 74.3 mmol, 1.1 Äq.) gelöst in trockenem THF (15 mL) wird bei -78 °C zugegeben und es wird weitere 30 min gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (150 mL) abgebrochen und auf RT erwärmt. Das Gemisch wird mit Et₂O (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 80:20 \rightarrow 70:30). Das Produkt wird farblose Flüssigkeit isoliert (7.88 g, 60.5 mmol, 90%).

DC: $R_f = 0.19$ (P/EtOAc 80:20), [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 2.52 (dd, J = 16.2, 8.1 Hz, 1H), 2.60 (dd, J = 16.2, 4.3 Hz, 1H), 2.89 (d, J = 4.6 Hz, 1H), 3.71 (s, 3H), 4.51 – 4.58 (m, 1H), 5.15 (dt, J = 10.5, 1.3 Hz, 1H), 5.31 (dt, J = 17.2, 1.4 Hz, 1H), 5.88 (ddd, J = 17.2, 10.5, 5.5 Hz, 1H).

Die analytischen Daten stimmen mit denen der Literatur überein.^[121]

Methyl-3-(tert-butyldimethylsilyloxy)pent-4-enoat^[232]

Alkohol 4-24 (8.78 g, 67.5 mmol) wird in DMF (70 mL) gelöst und Imidazol (13.8 g, 203 mmol, 3 Äq.) und TBSCl (15.3 g, 101 mmol, 1.5 Äq.) werden hinzugefügt. Das Reaktionsgemisch wird 1 h bei RT gerührt. Die Reaktion wird durch Zugabe von H_2O

(700 mL) abgebrochen und die Mischung wird mit Et₂O (3×150 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 98:2 \rightarrow 95:5). Das Produkt wird farblose Flüssigkeit isoliert (15.8 g, 64.8 mmol, 96%).

DC: $R_f = 0.84$ (P/EtOAc 97:3), [KMnO₄].

3-(tert-Butyldimethylsilyloxy)pent-4-en-1-ol (4-25)

In einem ausgeheizten Rundkolben wird Methyl-3-(tert-butyldimethylsilyloxy)pent-4-enoat (9.74 g, 39.8 mmol) in trockenem CH₂Cl₂ (400 mL) unter Argonatmosphäre gelöst. Bei -78 °C wird DIBAI-H (1M in Hexan, 47.8 mL, 47.8 mmol, 1.2 Äg.) zugetropft. Die Lösung wird 1 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 300 mL) abgebrochen. Es wird Glycerin (9.6 mL, 0.2 mL/mmol DIBAl-H) zugegeben. Die Mischung wird weitere 2 h bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit CH2Cl2 (3×100 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2 \rightarrow 95:5). Der Aldehyd wird als farblose Flüssigkeit isoliert (7.78 g, 36.3 mmol, 91%).

DC: $R_f = 0.63$ (P/EtOAc 90:10), [CAM] [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.05 (s, 3H), 0.07 (s, 3H), 0.88 (s, 9H), 2.51 (ddd, J = 15.7, 5.2, 2.2 Hz, 1H), 2.61 (ddd, J = 15.7, 6.7, 2.7 Hz, 1H), 4.65 (td, J = 6.5, 3.9 Hz, 1H), 5.12 (dt, J = 10.4, 1.2 Hz, 1H), 5.26 (dt, J = 17.1, 1.2 Hz, 1H), 5.88 (ddd, J = 16.5, 10.4, 5.8 Hz, 1H), 9.77 (t, J = 2.4 Hz, 1H).

Die analytischen Daten stimmen mit denen der Literatur überein.^[233]

Der Aldehyd (7.78 g, 36.3 mmol) wird in MeOH (135 mL) gelöst und NaBH₄ (1.51 g, 39.9 mmol, 1.1 Äq.) wird bei 0 °C portionsweise hinzugefügt. Die Reaktionsmischung wird 1 h bei RT gerührt. Die Reaktion wird durch Zugabe von gesättigter wässriger NH₄Cl-Lösung (100 mL) abgebrochen. Das Gemisch wird mit Et₂O (3×80 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über

MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc $80:20 \rightarrow 50:50$). Alkohol 4-25 wird als farblose Flüssigkeit isoliert (6.30 g, 29.1 mmol, 80%).

DC: $R_f = 0.32$ (P/EtOAc 80:20), [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.06 (s, 3H), 0.09 (s, 3H), 0.91 (s, 9H), 1.65 – 1.92 (m, 2H), 2.40 (s, br, 1H), 3.67 – 3.87 (m, 2H), 4.38 – 4.45 (m, 1H), 5.10 (dt, J = 10.4, 1.5 Hz, 1H), 5.22 (dt, J = 17.2, 1.5 Hz, 1H), 5.85 (ddd, J = 17.2, 10.4, 5.8 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = -4.9, -4.3, 18.3, 26.0, 39.4, 60.2, 73.3, 114.5, 140.8.

Die analytischen Daten stimmen mit denen der Literatur überein.^[234]

(5-Bromopent-1-en-3-yloxy)(tert-butyl)dimethylsilan (4-26)

In einem ausgeheizten Rundkolben wird Alkohol 4-25 (1.00 g, 4.62 mmol) und PPh₃ (1.57 g, 5.98 mmol, 1.3 Äq.) in trockenem CH₂Cl₂ (25 mL) unter Argonatmosphäre gelöst. Bei -40 °C wird CBr₄ (3.67 g, 11.1 mmol, 2.4 Äq.) zugegeben. Die Reaktionsmischung wird 50 min bei -40 °C gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NaHCO₃-Lösung (20 mL) abgebrochen und auf RT erwärmt. Die Phasen werden getrennt und die wässrige Phase wird mit CH₂Cl₂ (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 100:0 → 95:5). Bromid 4-26 wird als farblose Flüssigkeit isoliert (1.05 g, 3.76 mmol, 81%).

DC: $R_f = 0.38$ (P/EtOAc 100:0), [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.05 (s, 3H), 0.09 (s, 3H), 0.90 (s, 9H), 1.93 – 2.09 (m, 2H), 3.39 – 3.51 (m, 2H), 4.27 – 4.32 (m, 1H), 5.09 (ddd, J = 10.4, 1.6, 1.1 Hz, 1H), 5.18 – 5.24 (m, 1H), 5.79 (ddd, J = 17.1, 10.4, 6.3 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.7, -4.1, 18.3, 26.0, 30.2, 41.1, 72.0, 114.9, 140.7.

(3-(tert-Butyldimethylsilyloxy)pent-4-enyl)triphenylphosphoniumbromid (4-27)

Bromid 4-26 (684 mg, 2.44 mmol) wird in MeCN (20 mL) gelöst. PPh₃ (5.76 g, 22.0 mmol, 9 Äq.) und DIPEA (1.28 mL, 946 mg, 7.32 mmol, 3 Äq.) werden hinzugefügt. Die Reaktionsmischung wird 36 h in einem geschlossenen Reaktionsgefäß bei 90 °C gerührt. Die Reaktion wird auf RT abgekühlt, das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 90:10; CH₂Cl₂/MeOH 98:2 \rightarrow 95:5). *Wittig*-Salz 4-27 wird als farbloser Schaum isoliert (1.32 g, 2.44 mmol, quant.). DC: R_f = 0.16 (CH2Cl2/MeOH 90:10), [UV] [KMnO₄]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.02 (s, 3H), 0.05 (s, 3H), 0.84 (s, 9H), 1.70 – 1.92 (m, 2H), 3.37 – 3.49 (m, 1H), 3.69 – 3.82 (m, 1H), 4.49 – 4.54 (m, 1H), 5.10 – 5.14 (m, 1H), 5.27 – 5.33 (m, 1H), 5.80 (ddd, J = 17.0, 10.4, 5.8 Hz, 1H), 7.66 – 7.83 (m, 15H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = -4.6, -4.3, 18.1, 18.4 (d, $J_{(P-C)} = 53.3$ Hz), 25.9, 30.5 (d, $J_{(P-C)} = 3.8$ Hz), 72.1 (d, $J_{(P-C)} = 53.3$ Hz), 130.7 (d, $J_{(P-C)} = 12.5$ Hz), 133.5 (d, $J_{(P-C)} = 53.3$ Hz), 139.3 IR (film): v_{max} [cm⁻¹] = 2953, 2927, 2890, 2854,

1587, 1484, 1471, 1437, 1361, 1338, 1252, 1189, 1163, 1111, 1073, 1027, 995, 937, 835, 778, 743, 722, 689. **LRMS** (ESI): *m/z* 1001 (1%) [2M-Br⁻], 461 (100%) [M-Br⁻]. **HRMS** (ESI): *m/z* 461.2425 [461.2424 berechnet für C₂₉H₃₈OPSi⁺ (M-Br⁻)].

Dimethyl-3-(tert-Butyldimethylsilyloxy)pent-4-enylphosphonat (4-28)

In einem ausgeheizten Rundkolben wird NaH (60% in Paraffinöl, 100 mg, 2.51 mmol, 3.5 Äq.) in trockenem DMF (1.6 mL) unter Argonatmosphäre vorgelegt. Dimethylphosphit (230 μ L, 276 mg, 2.51 mmol, 3.5 Äq.) gelöst in trockenem DME (2.6 mL) wird bei RT zugetropft. Die Reaktionsmischung wird 30 min bei 45 °C gerührt. Das Gemisch wird auf RT abgekühlt und Bromid 4-**26** (200 mg, 716 μ mol) gelöst in trockenem DME (1.4 mL) wird zugegeben. Die Reaktion wird 2 h bei 45 °C gerührt und anschließend durch Zugabe von

gesättigter, wässriger NH₄Cl-Lösung (20 mL) abgebrochen. Das Gemisch wird mit EtOAc (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (CH₂Cl₂/MeOH 98:2 \rightarrow 95:5). Phosphonat 4-**28** wird als farblose Flüssigkeit isoliert (176 mg, 571 µmol, 80%).

DC: $R_f = 0.25$ (CH₂Cl₂/MeOH 90:10), [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.02 (s, 3H), 0.04 (s, 3H), 0.88 (s, 9H), 1.68 – 1.87 (m, 4H), 3.72 (d, J = 10.7 Hz, 6H), 4.13 – 4.21 (m, 1H), 5.06 – 5.09 (m, 1H), 5.15 – 5.20 (m, 1H), 5.73 (ddd, J = 17.1, 10.4, 5.7 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.8, -4.3, 18.3, 19.9 (d, $J_{(P-C)} = 142.7$ Hz), 25.9, 30.4 (d, $J_{(P-C)} = 4.4$ Hz), 52.3 (d, $J_{(P-C)} = 6.6$ Hz), 52.4 (d, $J_{(P-C)} = 6.5$ Hz), 73.0 (d, $J_{(P-C)} = 18.5$ Hz), 73.1, 115.0, 140.4. **IR** (film): v_{max} [cm⁻¹] = 2953, 2856, 1472, 1405, 1362, 1247, 1211, 1184, 1058, 1025, 946, 832, 808, 774. **LRMS** (EI): *m/z* 308 (1%) [M⁺], 293 (5%) [M⁺-CH₃], 251 (100%) [M⁺-C₄H₉], 171 (12%), 75 (10%). **HRMS** (EI): *m/z* 293.1333 [291.1333 berechnet für C₁₂H₂₆O₄PSi⁺ (M⁺-CH₃)].

Dimethyl-3-(*tert*-butyldimethylsilyloxy)-1-(methylthio)pent-4-enylphosphonat (4-18b)

In einem ausgeheizten Rundkolben wird Phosphonat 4-**28** (460 mg, 1.49 mmol) in trockenm THF (15 mL) unter Argonatmosphäre gelöst. Bei -78 C wird n-BuLi (2.5M in Hexan, 0.66 mL, 1.64 mmol, 1.1 Äq.) zugegeben. Die Reaktionsmischung wird 30 min bei -78 °C gerührt. Dimethyldisulfid (0.67 mL, 702 mg, 7.46 mmol, 5 Äq.) wird zugetropft und die Lösung wird 5 h bei -78 °C gerührt. Die durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (20 mL) abgebrochen. Das Gemisch wird mit EtOAc (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 60:40, dann CH₂Cl₂/MeOH 95:5). Phosphonat 4-**18b** wird als farblose Flüssigkeit isoliert (30.3 mg, 85.5 µmol, 6%, d.r. \sim 9:1).

DC: $R_f = 0.32$ (CH₂Cl₂/MeOH 95:5), [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.08 – 0.12 (m, 6H), 0.92 (s, 9H), 1.56 – 1.70 (m, 1H), 1.94 – 2.08 (m, 1H), 2.27 – 2.13 (m, 3H), 2.89 – 3.06 (m, 1H), 3.84 (d, *J* = 10.5 Hz, 3H), 3.85 (d, *J* = 10.5 Hz, 3H), 4.43 – 4.52 (m, 1H), 5.03 – 5.13 (m, 1H), 5.18 – 5.28 (m, 1H), 5.72 – 5.91 (m, 1H). ¹³C **NMR** (63 MHz, CDCl₃): δ [ppm] = -4.8, -3.9, 14.4, 18.1, 25.8, 25.9, 36.1 (d, *J*_(P-C) = 151.8 Hz) 36.4, 53.4 (d, *J*_(P-C) = 7.0 Hz), 53.5 (d, *J*_(P-C) = 7.4 Hz) 70.1 (d, *J*_(P-C) = 13.0 Hz), 114.8, 140.3, 141.3.

S-3-(tert-Butyldimethylsilyloxy)pent-4-enylethanthioat (4-29)

In einem ausgeizten Rundkolben wird PPh₃ (12.5 g, 47.7 mmol, 1.3 Äq.) in trockenem THF (100 mL) unter Argonatmosphäre gelöst. Bei 0 °C wird DIAD (9.37 mL, 9.65 g, 47.7 mmol, 1.3 Äq.) zugetropft. Die Reaktionsmischung wird 30 min bei 0 °C gerührt. Ein weißer Niederschlag wird gebildet. Alkohol 4-**25** (7.95 g, 36.7 mmol) gelöst in trockenem THF (25 mL) und AcSH (3.39 mL, 3.63 g, 47.7 mmol, 1.3 Äq.) werden zugegeben. Die Reaktionsmischung wird auf RT erwärmt und 1.5 h gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt. Der Rückstand wird in Pentan (100 mL) und Et₂O (1 mL) aufgenommen, wobei Triphenylphosphinoxid ausfällt. Der Niederschlag wird abfiltriert und mit Pentan gewaschen. Das Filtrat wird unter vermindertem Druck eingeengt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1 \rightarrow 95:5). Das Produkt wird als farblose Flüssigkeit isoliert (8.65 g, 31.5 mmol, 86%).

DC: $R_f = 0.24$ (P/EtOAc 99:1), [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.03 (s, 3H), 0.06 (s, 3H), 0.90 (s, 9H), 1.67 – 1.82 (m, 2H), 2.32 (s, 3H), 2.82 – 2.97 (m, 2H), 4.15 – 4.20 (m, 1H), 5.05 – 5.08 (m, 1H), 5.15 – 5.20 (m, 1H), 5.78 (ddd, J = 17.1, 10.4, 6.0 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.7, -4.2, 18.3, 25.2, 26.0, 30.8, 37.7, 72.7, 114.7, 140.9, 195.9. **IR** (film): v_{max} [cm⁻¹] = 2952, 2929, 2887, 2856, 1694, 1472, 1463, 1422, 1305, 1389, 1360, 1252, 1176, 1131, 1084, 1026, 1006, 989, 961, 924, 833, 775, 745. **LRMS** (EI): m/z 259 (1%) [M⁺-CH₃], 217 (73%) [M⁺-C₄H₉], 173 (100%), 139 (16%), 121 (28%), 75 (81%). **HRMS** (EI): m/z 217.0713 [217.0713 berechnet für C₉H₁₇O₂SSi⁺ (M⁺-C₄H₉]].

tert-Butyldimethyl(5-(methylthio)pent-1-en-3-yloxy)silan (4-30)

Thioacetat 4-29 (1.50 g, 5.46 mmol) wird in MeOH (42 mL) gelöst. Die Lösung wird durch Einleiten von Argon für 20 min entgast. Eine entgaste, wässrige NaOH-Lösung (2M, 13.7 mL, 27.4 mmol, 5 Äq.) wird zugetropft. Die Reaktionsmischung wird bei RT gerührt bis DC-Analyse die vollständige Verseifung anzeigt. MeI (680 μ L, 1.55 g, 2 Äq.) wird zugegeben und die Reaktionsmischung wird weitere 30 min gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (50 mL) abgebrochen. Das Gemisch wird mit Et₂O (3×30 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 99:1). Das Produkt wird als farblose Flüssigkeit isoliert (1.07 g, 9.35 mmol, 80%).

DC: $R_f = 0.74$ (P/EtOAc 99:1), [KMnO₄]. ¹**H NMR** (360MHz, CDCl₃): δ [ppm] = 0.04 (s, 3H), 0.06 (s, 3H), 0.90 (s, 9H), 1.72 – 1.84 (m, 2H), 2.09 (s, 3H), 2.52 (t, J = 7.6 Hz, 2H), 4.20 – 4.26 (m, 1H), 5.03 – 5.07 (m, 1H), 5.14 – 5.20 (m, 1H), 5.79 (ddd, J = 17.1, 10.4, 6.1 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = -4.7, -4.2, 15.6, 18.4, 26.0, 30.1, 37.5, 72.6, 114.3, 141.2. **IR** (film): v_{max} [cm⁻¹] = 2954, 2928, 2856, 14472, 1463, 1424, 1362, 1253, 1175, 1082, 1025, 1006, 990, 971, 924, 835,776. **LRMS** (EI): m/z 189 (100%) [M⁺-C₄H₉], 141 (49%), 75 (50%). **HRMS** (EI): m/z 189.0767 [189.0764 berechnet für C₈H₁₇O₁SSi⁺ (M⁺-C₄H₉)].

5-Mercaptopent-1-en-3-ol (4-32)

Thioacetat 4-29 (375 mg, 1.37 mmol) wird in MeOH (14 mL) gelöst. Die Lösung wird durch Einleiten von Argon für 20 min entgast. Eine entgaste, wässrige NaOH-Lösung (2M, 3.43 mL, 6.86 mmol, 5 Äq.) wird zugetropft. Die Reaktionsmischung wird 30 min bei RT gerührt. Entgaste HCl (1M in H₂O, 8.00 mL, 8.00 mmol, 5.8 Äq.) wird zugegeben und die Reaktion wird weitere 2 h gerührt. Die Reaktionsmischung wird durch Zugabe von gesättigter,

wässriger NaHCO₃-Lösung neutralisiert. Das Gemisch wird mit EtOAc (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/Et₂O 99:1 \rightarrow 50:50). Das Produkt wird als farblose Flüssigkeit isoliert (67.1 mg, 568 µmol, 41%). Als zweite Fraktion kann 3-(*tert*-Butyldimethylsilyloxy)pent-4-en-1-thiol isoliert werden (63.9 mg, 275 µmol, 20%).

DC: $R_f = 0.64$ (P/EtOAc 60:40), [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.41 (t, *J* = 8.0 Hz, 1H), 1.61 (s, br, 1H), 1.78 – 1.90 (m, 2H), 2.61 – 2.72 (m, 2H), 4.27 – 4.37 (m, 1H), 5.15 (dt, *J* = 10.4, 1.3 Hz, 1H), 5.27 (dt, *J* = 17.2, 1.4 Hz, 1H), 5.88 (ddd, *J* = 17.2, 10.4, 6.1 Hz, 1H).

2,2-Dimethyl-6-vinyl-1,3-oxathian (4-34)

In einem ausgeheizten Rundkolben wird 4-**32** (66.9 mg, 566 μ mol) in 2,2-Dimethoxypropan (3 mL) unter Argonatmosphäre gelöst. Bei 0 °C wird BF₃·Et₂O (11 μ L, 12.0 mg, 84.9 μ mol, 15 mol%) zugegeben. Die Reaktionsmischung wird innerhalb von 16 h auf RT erwärmt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NaHCO₃-Lösung (10 mL) abgebrochen. Das Gemisch wird mit Et₂O (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/Et₂O 98:2). Das Produkt wird als farblose Flüssigkeit isoliert (50.9 mg, 322 μ mol, 57%).

DC: $R_f = 0.40$ (P/EtOAc 98:2), [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.57 (s, 3H), 1.57 – 1.68 (m, 1H), 1.71 (s, 3H), 1.78 – 1.86 (m, 1H), 2.68 (dt, J = 13.8, 3.8 Hz, 1H), 3.16 (td, J = 13.2, 3.0 Hz, 1H), 4.27 (ddd, J = 11.8, 5.9, 1.2 Hz, 1H), 5.09 – 5.14 (m, 1H), 5.20 – 5.27 (m, 1H), 5.82 (ddd, J = 17.1, 10.5, 5.7 Hz, 1H).

2.4 Eintopfsynthese hochsubstituierter 1,2-Dihydropyridine

2.4.1 Synthese der Ausgangsmaterialien (3-2)

Allgemeine Arbeitsvorschrift A für die Synthese von Propargyl-Vinyl-Ethern: (*E*)-Methyl-3-(1-phenylpent-1-in-3-yloxy)acrylat (3-2a)

In einem ausgeheizten Rundkolben werden 1-Phenylpent-1-in-3-ol (800 mg, 4.99 mmol) und Ethylpropiolat (0.51 mL, 498 mg, 4.99 mmol, 1 Äq.) in trockenem CH_2Cl_2 (40 mL) unter Argonatmosphäre gelöst. P(*n*-Bu)₃ (101 mg, 0.50 mmol, 10 mol%) wird zugetropft und die Lösung bei RT gerührt bis laut DC vollständiger Umsatz erreicht ist. Das Lösungsmittel wird unter vermindertem Druck entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Das Produkt wird als farbloses Öl isoliert (1.24 g, 4.78 mmol, 96%).

DC: $R_{\rm f} = 0.84$ (P/EtOAc 95:5) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.10 (t, J = 7.41 Hz, 3H), 1.28 (t, J = 7.13 Hz, 3H), 1.89 – 2.03 (m, 2H), 4.18 (q, J = 7.3 Hz, 2H), 4.68 – 4.77 (m, 1H), 5.43 (d, J = 12.5 Hz, 1H), 7.28 – 7.37 (m, 3H), 7.41 – 7.49 (m, 2H), 7.70 (d, J = 12.5 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 9.6, 14.5, 28.9, 60.0, 73.4, 85.4, 88.0, 98.9, 122.1, 128.5, 129.0, 132.0, 160.6, 167.9. **LRMS** (EI): 258 (6%) [M⁺], 228 (5%), 185 (9%), 143 (100%), 128 (74%), 115 (16%), 103 (5%), 43 (8%). **HRMS** (EI): 258.1238 [258.1256 berechnet für C₁₆H₁₈O₃⁺ (M⁺)].

(E)-Methyl-3-(1-phenylpent-1-in-3-yloxy)acrylat (3-2b)

Nach der allgemeinen Arbeitsvorschrift A wird 3-2b nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als farbloses Öl isoliert (85%).

DC: $R_{\rm f} = 0.29$ (P/EtOAc 95:5) [UV] [CAM] [KMnO4]. ¹**H** NMR (360 MHz, CDCl₃): δ [ppm] = 1.10 (t, J = 7.4 Hz, 1H), 1.92 – 2.00 (m, 1H), 3.71 (s, 3H), 4.72 (t, J = 6.4 Hz, 1H), 5.44 (d, J = 12.5 Hz, 1H), 7.29 – 7.37 (m, 3H), 7.42 – 7.47 (m, 2H), 7.70 (d, J = 12.5 Hz, 1H). ¹³**C** NMR (91 MHz, CDCl₃): δ [ppm] = 9.6, 28.9, 51.3, 73.4, 85.3, 88.0, 98.6, 122.0, 128.5, 129.0, 132.0, 160.8, 168.3. LRMS (EI): 244 (1%) [M⁺], 212 (3%), 185 (16%), 143 (100%), 128 (93%), 115 (18%), 103 (17%), 77 (5%). HRMS (EI): 185.0963 [185.0966 berechnet für C₁₃H₁₃O⁺ (M⁺ - CO₂Me)].

Nach der allgemeinen Arbeitsvorschrift A wird 3-2c nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als schwach gelbes Öl isoliert (93%). Enantiomerenreines (S)-(E)-Ethyl-3-(4-phenylbut-3-yn-2-yloxy)acrylat wird ausgehend von (S)-4-Phenylbut-3-in-2-ol hergestellt.^[235]

DC: $R_f = 0.46$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H** NMR (250 MHz, CDCl₃): δ [ppm] = 1.28 (t, J = 7.1 Hz, 3H), 1.65 (d, J = 6.6 Hz, 2H), 4.17 (q, J = 7.1 Hz, 2H), 4.90 (q, J = 6.6 Hz, 1H), 5.42 (d, J = 12.5 Hz, 1H), 7.29 – 7.35 (m, 3H), 7.42 – 7.45 (m, 2H), 7.68 (d, J = 12.5 Hz, 1H). ¹³**C** NMR (63 MHz, CDCl₃): δ [ppm] = 14.5, 22.0, 60.0, 68.1, 86.3, 87.2, 99.1, 122.0, 128.5, 129.0, 132.0, 160.3, 167.8. LRMS (EI): 244 (3%) [M⁺], 229 (6%), 215 (18%), 171 (63%), 129 (100%). HRMS (EI): 244.1096 [244.1099 berechnet für C₁₅H₁₆O₃⁺ (M⁺)].

(E)-Ethyl-3-(4-methyl-1-phenylpent-1-in-3-yloxy)acrylat (3-2d)

Nach der allgemeinen Arbeitsvorschrift A wird 3-2d nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als farbloses Öl isoliert (71%).

DC: $R_{\rm f} = 0.29$ (P/EtOAc 95:5) [UV] [CAM] [KMnO₄]. ¹**H** NMR (250 MHz, CDCl₃): δ [ppm] = 1.09 (t, J = 6.8 Hz, 6H), 1.27 (t, J = 7.1 Hz, 3H), 2.15 (qd, J = 13.4, 6.7 Hz, 1H), 4.17 (q, J= 7.1 Hz, 2H), 4.56 (d, J = 5.8 Hz, 1H), 5.42 (d, J = 12.5 Hz, 1H), 7.29 – 2.37 (m, 3H), 7.41 – 7.49 (m, 2H), 7.69 (d, J = 12.5 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 14.5, 7.8, 18.4, 33.4, 59.9, 77.6, 84.4, 88.5, 98.8, 122.1, 128.5, 128.9, 132.0, 160.9, 167.9. LRMS (EI): 272 (1%), 199 (15%) [M⁺-C₃H₅O₂], 157 (100%), 142 (78%), 129 (46%), 115 (28%). HRMS (EI): 229.0863 [229.0847 berechnet für C₁₄H₁₃O₃⁺ (M+–C₃H₇)].

(E)-Ethyl-3-(1,3-diphenylprop-2-inyloxy)acrylat (3-2e)

Nach der allgemeinen Arbeitsvorschrift A wird 3-2e nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als farbloses Öl isoliert (70%).

DC: $R_{\rm f} = 0.52$ (P/EtOAc 90:10) [UV] [CAM]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 1.28 (t, J = 7.1 Hz, 3H), 4.17 (q, J = 7.1 Hz, 2H), 5.51 (d, J = 12.5 Hz, 1H), 5.87 (s, 1H), 7.31 – 7.37 (m, 3H), 7.40 – 7.45 (m, 3H), 7.48 – 7.51 (m, 2H), 7.57 – 7.60 (m, 2H), 7.76 (d, J = 12.5 Hz, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 14.5, 60.0, 73.9, 84.5, 89.9, 99.9, 121.8, 127.7, 128.5, 129.0, 129.2., 129.4, 132.1, 136.6, 160.0, 167.7. LRMS (ESI): 329 (19%) [M+Na⁺], 307 (30%) [M+H⁺], 282 (100%), 261 (14%), 191 (73%). HRMS (ESI): 307.1329 [307.1334 berechnet für C₂₀H₁₉O₃⁺ (M + H⁺)].

(E)-Ethyl-3-(3-phenylprop-2-inyloxy)acrylat (3-2f)

Nach der allgemeinen Arbeitsvorschrift A wird 3-2f nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als gelbes Öl isoliert (90%).

DC: $R_{\rm f} = 0.50$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H** NMR (250 MHz, CDCl₃): δ [ppm] = 1.28 (t, J = 7.1 Hz, 1H), 4.18 (q, J = 7.1 Hz, 1H), 4.75 (s, 1H), 5.38 (d, J = 12.6 Hz, 1H), 7.30 – 7.36 (m, 3H), 7.40 – 7.48 (m, 2H), 7.64 (d, J = 12.6 Hz, 1H). ¹³**C** NMR (63 MHz, CDCl₃): δ [ppm] = 14.5, 59.2, 59.5, 60.1, 82.1, 88.6, 98.5, 121.9, 128.4, 128.5, 129.2, 132.0, 160.9, 167.5. LRMS (EI): 230 (1%) [M⁺], 201 (4%), 157 (9%), 115 (100%), 105 (3%), 89 (5%). HRMS (EI): 230.0944 [230.0943 berechnet für C₁₄H₁₄O₃⁺ (M⁺)].

(E)-Ethyl-3-(1-phenyldec-4-in-3-yloxy)acrylat (3-2g)

Nach der allgemeinen Arbeitsvorschrift A wird 3-2g nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als farbloses Öl isoliert (90%).

DC: $R_f = 0.35$ (P/EtOAc 95:5) [UV] [CAM] [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.89 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.32-1.42 (m, 4H), 1.46 – 1.58 (m, 2H), 2.02-2.17 (m, 2H), 2.23 (td, J = 7.0, 2.0 Hz, 2H), 2.78 (t, J = 7.6 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 4.49 (tt J = 6.5, 1.7 Hz, 1H), 5.35 (d, J = 12.5 Hz, 1H), 7.16-7.32 (m, 5H), 7.62 (d, J = 12.5 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 14.1, 14.5, 18.8, 22.3, 28.2, 31.1, 31.3, 37.4, 59.9, 71.2, 89.6, 98.8, 126.3, 128.6, 128.7, 140.8, 160.6, 167.9. **LRMS** (EI): 328 (1%) [M⁺], 143 (23%), 117 (27%), 91 (100%). **HRMS** (EI): 328.2041 [328.2038 berechnet für C₂₁H₂₈O₃⁺ (M⁺)].

(E)-Methyl-4-(3-(3-ethoxy-3-oxoprop-1-enyloxy)pent-1-inyl)benzoat (3-2h)

Nach der allgemeinen Arbeitsvorschrift A wird 3-2h nach säulenchromatographischer Reinigung (P/EtOAc 95:5 \rightarrow 90:10) als farbloses Öl isoliert (58%).

DC: $R_{\rm f} = 0.36$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.10 (t, J = 7.4 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.90-2.02 (m, 2H), 3.92 (s, 3H), 4.17 (q, J = 7.1 Hz, 2H),4.72 (t, J = 6.4 Hz, 1H), 5.42 (d, J = 12.5 Hz, 1H), 7.50 (d, J = 8.6 Hz, 2H), 7.67 (d, J = 12.5 Hz, 1H), 7.99 (d, J = 8.6 Hz, 2H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 9.5, 14.5, 28.8, 52.4, 60.0, 73.1, 87.1, 88.3, 99.1, 126.7, 129.6, 130.3, 131.9, 160.5, 166.5, 167.8. **LRMS** (EI): 316 (4%) [M⁺], 287 (8%), 243 (14%), 201 (100%), 169 (17%), 142 (62%), 59 (14%). **HRMS** (EI): 316.1309 [316.1311 berechnet für C₁₈H₂₀O₅⁺ (M⁺)].

(E)-Ethyl-3-(1-(4-methoxyphenyl)pent-1-in-3-yloxy)acrylat (3-2i)

Nach der allgemeinen Arbeitsvorschrift A wird 3-2i nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als farbloses Öl isoliert (92%).

DC: $R_{\rm f} = 0.48$ (P/EtOAc 90:10) [UV] [CAM]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 1.09 (t, J = 7.4 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.90 – 1.98 (m, 2H), 3.81 (s, 3H), 4.17 (qd, J = 7.1, 0.7 Hz, 2H), 4.71 (t, J = 6.4 Hz, 1H), 5.41 (d, J = 12.5 Hz, 1H), 6.84 (d, J = 8.9 Hz, 2H), 7.38 (d, J = 8.9 Hz, 2H), 7.69 (d, J = 12.5 Hz, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 9.6, 14.5, 29.0, 55.4, 59.9, 73.6, 84.0, 88.0, 98.8, 114.1, 114.1, 133.5, 160.1, 160.7, 167.9. LRMS (EI): 288 (3%) [M⁺], 215 (31%), 173 (100%), 158 (34%). HRMS (EI): 288.1361 [288.1362 berechnet für C₁₇H₂₀O₄⁺ (M⁺)].

(E)-Ethyl-3-(1-phenylpent-1-in-3-yloxy)but-2-enoat (3-2j)

Nach der allgemeinen Arbeitsvorschrift A wird 3-2j nach säulenchromatographischer Reinigung (P/EtOAc 98:2) als farbloses Öl isoliert (78%).

DC: $R_{\rm f} = 0.73$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.04 (t, J = 7.4 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.83 – 1.97 (m, 2H), 2.27 (s, 3H), 3.98 – 4.19 (m, 2H), 4.71 (t, J = 6.3 Hz, 1H), 5.26 (s, 1H), 7.17 – 7.30 (m, 3H), 7.33 – 7.42 (m, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 9.7, 15.0, 19.2, 28.9, 59.5, 69.4, 85.9, 87.1, 93.4, 122.4, 128.4, 128.8, 132.0, 168.1, 170.7. LRMS (EI): 272 (3%) [M⁺], 243 (16%), 229 (18%), 199 (36%), 143 (79%), 128 (100%), 115 (24%), 43 (14%). HRMS (EI): 272.1399 [272.1412 berechnet für C₁₇H₂₀O₃⁺ (M⁺)].

(E)-Ethyl-3-(3-phenylprop-2-inyloxy)but-2-enoat (3-2k)

Nach der allgemeinen Arbeitsvorschrift A wird 3-2k nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als gelbes Öl isoliert (71%).

DC: $R_{\rm f} = 0.43$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.28 (t, J = 7.1 Hz, 3H), 2.35 (s, 3H), 4.15 (q, J = 7.1 Hz, 2H), 4.71 (s, 2H), 5.18 (s, 1H), 7.29 – 7.35 (m, 3H), 7.44 – 7.48 (m, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 14.6, 19.1, 56.8, 59.7, 82.5, 87.8, 92.7, 122.2, 128.5, 129.0, 132.0, 167.8, 171.1. LRMS (GC-MS): 244 (32%) [M⁺], 215 (55%), 198 (75%), 171 (45%), 155 (72%), 128 (100%), 115 (42%). HRMS (ESI): 245.1173 [245.1172 berechnet für C₁₅H₁₇O₃⁺ (M+H⁺)].

(E)-(3-(4-Methoxybut-2-en-2-yloxy)pent-1-inyl)benzol (3-2l)

In einem ausgeheizten Rundkolben wird 3-2j (480 mg, 1.76 mmol) in trockenem CH₂Cl₂ (18 mL) unter Argonatmosphäre gelöst. DIBAL-H (1M in Hexan; 4.4 mL, 4.41 mmol, 2.5 Äq.) wird bei -78 °C zugetropft. Die Reaktionsmischung wird 2 h bei -78 °C gerührt. Die Reaktion wird durch Zugabe von Na-K-Tatrat-Lösung (20% in H₂O, 20 mL) abgebrochen. Es wird Glycerin (0.88 mL, 0.2 mL/mmol DIBAl-H) zugegeben. Die Mischung wird mit CH₂Cl₂ (20 mL) verdünnt und 1 h bei RT gerührt. Die Phasen werden getrennt und die wässrige Phase mit CH₂Cl₂ (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 80:20). Der primäre Alkohol wird als farbloses Öl isoliert. (368 mg, 1.68 mmol, 95%).

DC: $R_{\rm f} = 0.46$ (P/EtOAc 70:30) [UV] [CAM]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 1.09 (t, J = 7.4 Hz, 3H), 1.56 (s, 1H), 1.90 (s, 3H), 1.87-1.97 (m, 2H), 4.17 – 4.19 (m, 2H), 4.64 (t, J = 6.4 Hz, 1H), 5.06 (t, J = 7.7 Hz, 1H), 7.27 – 7.33 (m, 3H), 7.39 – 7.46 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 9.6, 31.2, 45.5, 58.0, 64.4, 85.1, 90.2, 122.9, 128.42, 128.5, 128.9, 131.9, 133.6, 137.6. LRMS (EI): 230 (1%) [M⁺], 211 (4%), 199 (12%), 183 (14%), 143 (33%), 131 (100%), 128 (78%), 115 (31%), 103 (30%). HRMS (EI): 199.1114 [199.1123 berechnet für C₁₄H₁₅O⁺ (M⁺-CH₂OH)].

In einem ausgeheizten Rundkolben wird NaH (235 mg, 5.88 mmol, 2 Äq.) in trockenem DMF (1.5 mL) unter Argonatmosphäre vorgelegt. Der oben beschriebene Alkohol (676 mg, 2.94 mmol) gelöst in trockenem DMF (1.5 mL) wird bei 0 °C zugetropft. Die Reaktionsmischung wird 15 min bei 0 °C gerührt. MeI (0.46 mL, 1.04 g, 7.35 mmol, 2.5 Äq.) wird hinzugefügt, die Reaktionsmischung wird auf RT erwärmt und weitere 2 h gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger NH₄Cl-Lösung (15 mL) abgebrochen. Die Mischung wird mit Et₂O (10 mL) versetzt und die Phasen werden getrennt. Die wässrige wird Phase mit Et₂O (2×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das

Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Methylether 3-**21** wird als farbloses Öl isoliert. (555 mg, 2.27 mmol, 77%).

DC: $R_{\rm f} = 0.69$ (P/EtOAc 85:15) [UV] [CAM]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 1.09 (t, J = 7.4 Hz, 3H), 1.89 (s, 3H), 1.85 – 1.97 (m, 2H), 3.32 (s, 3H), 3.98 (dd, J = 2.5, 7.6 Hz, 2H), 4.65 (t, J = 6.4 Hz, 1H), 4.94 (t, J = 7.5 Hz, 1H), 7.27 – 7.34 (m, 3H), 7.39 – 7.45 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 9.8, 16.7, 29.1, 57.2, 68.2, 68.9, 86.0, 87.7, 96.3, 123.0, 128.3, 128.4, 131.9, 156.2. LRMS (EI): 230.13 (2%) [M-CH₃], 199 (36%), 183 (30%), 141 (65%), 128 (100%), 115 (47%), 105 (26%). HRMS (ESI): 245.1554 [245.1536 berechnet für C₁₆H₂₁O₂⁺ (M+H⁺)].

2.4.2 Synthese der Allenyl-Carbonyl-Verbindungen 3-3

Ethyl-2-acetyl-3-phenylhepta-3,4-dienoat (3-3j)

3-2j (15 mg, 55.1 μ mol) wird in 0.4 mL CD₂Cl₂ (0.4 mL) gelöst und AgSbF₆ gelöst in CD₂Cl₂ (10 mg/mL, 14 μ L, 0.14 mg, 0.39 μ mol, 0.7 mol%) wird zugegeben. The Reaktionsmischung wird bei RT gerührt bis laut DC vollständiger Umsatz erreicht ist. Allene 3-3j wird laut ¹H-NMR in quantitativer Ausbeute gebildet.

DC: $R_{\rm f} = 0.80$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.09 (t, J = 7.4 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 2.12 – 2.23 (m, 2H), 2.26 (s, 3H), 4.11 – 4.27 (m, 2H), 4.57 (d, J = 1.8 Hz, 1H), 5.78 (td, J = 6.1, 1.8 Hz, 1H), 7.18 – 7.36 (m, 5H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 13.2, 14.2, 22.1, 28.5, 61.7, 61.9, 99.2, 101.7, 125.7, 127.3, 128.8, 135.6, 168.6, 202.4, 204.7.

3-(Methoxymethyl)-4-phenylocta-4,5-dien-2-on (3-3l)

3-21 (15 mg, 61.4 μ mol) wird in 0.5 mL CD₂Cl₂ (0.4 mL) gelöst und AgSbF₆ gelöst in CD₂Cl₂ (2 mg/mL, 11 μ L, 0.022 mg, 0.06 μ mol, 0.1 mol%) wird zugegeben. The Reaktionsmischung wird bei RT gerührt bis laut DC vollständiger Umsatz erreicht ist. Allene 3-31 wird laut ¹H-NMR in quantitativer Ausbeute gebildet.

DC: $R_{\rm f} = 0.52$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.07 (t, J = 7.4 Hz, 3H), 2.09 – 2.20 (m, 2H), 2.16 (s, 3H), 3.36 (s, 3H), 3.52 – 3.64 (m, 1H), 3.81 – 3.92 (m, 2H), 5.72 (t, J = 6.1 Hz, 1H), 7.19 – 7.26 (m, 1H), 7.30 – 7.36 (m, 2H), 7.42 – 7.45 (m, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 13.3, 22.1, 28.1, 53.9, 59.1, 72.6, 98.5, 103.0, 126.2, 127.2, 128.7, 136.1, 203.9, 206.6.

Allgemeine Arbeitsvorschrift B für die Synthese von Allenyl-Carbonyl-Verbindungen: Ethyl-2-formyl-3-phenylhepta-3,4-dienoat (3-3a)

3-2a (15 mg, 58.1 μ mol) wird in 0.4 mL CDCl₃ (0.4 mL) gelöst und AuCl gelöst in CDCl₃ (20 mg/mL, 20 μ L, 0.41mg, 1.74 μ mol, 3 mol%) wird zugegeben. The Reaktionsmischung wird bei RT gerührt bis laut DC vollständiger Umsatz erreicht ist. Allene 3-3a wird laut ¹H-NMR in quantitativer Ausbeute gebildet.

DC: $R_{\rm f} = 0.42$ (P/EtOAc 97:3) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.10 (t, J = 7.4 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 2.14 – 2.25 (m, 1H), 4.22 (qd, J = 7.1, 1.2 Hz, 1H), 4.35 (dd, J = 3.0, 1.7 Hz, 1H), 5.85 (td, J = 6.2, 1.7 Hz, 1H), 7.20 – 7.40 (m, 5H), 9.67 (d, J = 3.0 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 13.1, 14.2, 22.1, 58.7, 61.9, 99.9, 100.1, 125.9, 127.5, 128.8, 135.2, 168.3, 195.0, 205.3.

Ethyl-2-formyl-3-phenylhexa-3,4-dienoat (3-3c)

Nach der allgemeinen Arbeitsvorschrift B wird 3-3c laut ¹H-NMR in quantitativer Ausbeute gebildet.

DC: $R_{\rm f} = 0.39$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.28 (t, J = 7.1 Hz, 3H), 1.83 (d, J = 7.2 Hz, 3H), 4.24 (q, J = 7.1 Hz, 2H), 4.33 (dd, J = 3.1, 1.6 Hz, 1H), 5.75 (qd, J = 7.3, 1.6 Hz, 1H), 7.20 – 7.38 (m, 5H), 9.70 – 9.70 (m, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 13.9, 14.2, 58.8, 61.9, 92.8, 98.9, 126.1, 127.5, 128.8, 135.1, 168.3, 194.9, 206.6.

Ethyl-2-formyl-6-methyl-3-phenylhepta-3,4-dienoat (3-3d)

Nach der allgemeinen Arbeitsvorschrift B wird 3-3d laut ¹H-NMR in quantitativer Ausbeute gebildet.

DC: $R_{\rm f} = 0.58$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.11 (d, J = 6.8 Hz, 3H), 1.11 (d, J = 6.8 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H), 2.43 – 2.56 (m, 1H), 4.22 (qd, J = 7.2, 0.7 Hz, 2H), 4.36 (dd, J = 3.0, 1.8 Hz, 1H), 5.80 (dd, J = 5.8, 1.8 Hz, 1H), 7.20 – 7.40 (m, 5H), 9.67 (d, J = 3.0 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 14.2, 22.4, 22.4, 28.9, 58.7, 61.9, 100.5, 105.5, 125.8, 127.5, 128.8, 135.1, 168.2, 195.0, 204.0.

Ethyl-2-formyl-3,5-diphenylpenta-3,4-dienoat (3-3e)

Nach der allgemeinen Arbeitsvorschrift B wird 3-3e laut ¹H-NMR in quantitativer Ausbeute gebildet.

DC: $R_{\rm f} = 0.30$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.16 – 1.27 (m, 6H), 4.09 – 4.29 (m, 4H), 4.50 – 4.53 (m, 2H), 6.77 (d, J = 1.3, 1H), 6.79 (d, J = 1.4, 1H), 7.25 – 7.47 (m, 20H), 9.75 (d, J = 2.5, 1H), 9.76 (d, J = 2.4, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 14.1, 14.2, 59.0, 59.6, 62.2, 62.2, 100.8, 101.1, 103.5, 103.5, 126.2, 126.2, 127.4, 127.6, 128.1, 128.2, 128.2, 129.0, 129.0, 129.1, 132.5, 132.7, 133.9, 133.9, 167.9, 168.0, 194.5, 194.6, 207.8, 208.1.

Ethyl-2-formyl-3-(4-phenylbut-1-enylidene)octanoat (3-3g)

Nach der allgemeinen Arbeitsvorschrift B wird 3-3g laut ¹H-NMR in quantitativer Ausbeute gebildet.

DC: $R_{\rm f} = 0.62$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.88 (t, J = 6.6 Hz, 3H), 1.24 – 1.40 (m, 6H), 1.29 (t, J = 7.1 Hz, 3H), 1.93 – 2.00 (m, 2H), 2.31 – 2.40 (m, 2H), 2.70 – 2.76 (m, 2H), 3.59 (dd, J = 3.6, 1.7 Hz, 1H), 4.22 (qd, J = 7.1, 1.6 Hz, 2H), 5.36 – 5.45 (m, 1H), 7.15 – 7.32 (m, 2H), 9.54 (d, J = 3.6 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 14.2, 14.3, 22.6, 27.0, 30.6, 31.4, 32.2, 35.3, 60.8, 61.6, 95.1, 98.2, 126.1, 128.5, 128.6, 141.6, 168.3, 195.4, 203.2.

Ethyl-2-formyl-3-(4-methoxyphenyl)hepta-3,4-dienoat (3-3i)

Nach der allgemeinen Arbeitsvorschrift B wird 3-**3i** laut ¹H-NMR in quantitativer Ausbeute gebildet.

DC: $R_{\rm f} = 0.43$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.08 (t, J = 7.4 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 2.12 – 2.23 (m, 1H), 3.80 (s, 3H), 4.17 – 4.26 (m, 2H), 4.29 – 4.32 (m, 1H), 5.81 (td, J = 6.1, 1.4 Hz, 1H), 6.87 (d, J = 8.9 Hz, 2H), 7.29 (d, J = 8.9 Hz, 2H), 9.65 (d, J = 3.2 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 13.1, 13.3, 14.2, 22.2, 55.5, 58.9, 61.8, 99.8, 99.8, 114.3, 127.1, 127.3, 159.2, 168.3, 195.2, 204.6.

2.4.3 Synthese der 6-Methyl-1,2-Dihydropyridine 3-4

Allgemeine Arbeitsvorschrift C für die Synthese von 6-Methyl-1,2-Dihydropyridinen 3-4: Ethyl-6-ethyl-2-methyl-1,4-diphenyl-1,6-dihydropyridin-3-carboxylat (3-4ja)

Propargy-Vinyl-Ether 3-2j (50.0 mg, 184 μ mol) wird in CH₂Cl₂ (1.8 mL) und AgSbF₆ (3 mg, 9.2 μ mol, 5 mol%) wird zugegeben. Die Reaktionsmischung wird bei RT gerührt bis die Umlagerungsreaktion laut DC vollständigen Umsatz erreicht hat. Anilin (25.2 μ L, 25.7 mg, 276 μ mol, 1.5 eq.) wird hinzugefügt und die Reaktion wird weitere 16 h bei RT gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 98:2). Dihydropyridin 3-4ja wird als gelber Feststoff isoliert (17.0 mg, 48.7 μ mol, 27%).

DC: $R_{\rm f} = 0.43$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.68 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.4 Hz, 3H), 1.59 - 175 (m, 1H), 1.83 - 1.97 (m, 1H), 2.29 (s, 3H), 3.69 - 3.93 (m, 2H), 4.13 - 4.22 (m, 1H), 5.33 (d, J = 6.6 Hz, 1H), 7.14 - 7.38 (m, 10H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 9.7, 13.6, 20.2, 26.4, 59.4, 62.7, 108.3, 114.0, 125.5,

125.6, 126.6, 127.0, 127.9, 129.2, 137.3, 142.7, 145.4, 150.2, 168.3. **LRMS** (EI): 347 (4%) $[M^+]$, 318 (11%), 243 (100%), 215 (26%), 43 (45%). **HRMS** (EI): 318.1491 [318.1494 berechnet für $C_{21}H_{20}NO_2^+$ ($M^+-C_2H_5$)].

Ethyl-6-ethyl-2-methyl-1-(naphth-1-yl)-4-phenyl-1,6-dihydropyridin-3-carboxylat (3-4jb)

Nach der allgemeinen Arbeitsvorschrift C wird 3-4jb nach säulenchromatographischer Reinigung (P/EtOAc 99:1) als weißer Feststoff isoliert (40%).

DC: $R_{\rm f} = 0.28$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.68 (t, J = 7.1 Hz, 3H), 1.01 (t, J = 7.4 Hz, 3H), 1.64 – 1.74 (m, 1H), 2.01 – 2.10 (m, 1H), 2.14 (s, 3H), 3.70 – 3.88 (m, 2H), 4.99 – 4.11 (m, 1H), 5.32 (d, J = 6.6 Hz, 1H), 7.25 – 7.44 (m, 5H), 7.45 – 7.56 (m, 4H), 7.76 – 7.91 (m, 3H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 9.2, 13.6, 18.8, 26.7, 59.1, 63.1, 76.7, 77.2, 77.7, 102.9, 112.1, 123.1, 125.4, 126.5, 126.8, 127.1, 127.5, 127.7, 127.9, 128.2, 128.4, 131.1, 134.9, 138.6, 141.5, 143.6, 154.1, 168.5. LRMS (EI): 397 (3%) [M⁺], 368 (53%), 84 (34%), 43 (100%). HRMS (EI): 368.1657 [368.1650 berechnet für C₂₅H₂₂NO₂⁺ (M⁺ – C₂H₅)].

Ethyl-1-(3-chlorophenyl)-6-ethyl-2-methyl-4-phenyl-1,6-dihydropyridin-3-carboxylat (3-4jc)

Nach der allgemeinen Arbeitsvorschrift C wird 3-4jc nach säulenchromatographischer Reinigung (P/EtOAc 99:1) als gelber Feststoff isoliert (27%).

DC: $R_{\rm f} = 0.45$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.68 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.5 Hz, 3H), 1.60 – 1.72 (m, 1H), 1.82 – 1.94 (m, 1H), 2.28 (s, 3H), 3.72 – 3.81 (m, 1H), 3.83 – 3.92 (m, 1H), 4.12 – 4.18 (m, 1H), 5.39 (d, J = 6.6 Hz, 1H), 7.00 (ddd, J = 8.0, 2.1, 1.0 Hz, 1H), 7.10 – 7.15 (m, 2H), 7.20 – 7.28 (m, 7H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 9.8, 13.5, 20.1, 26.3, 59.6, 62.4, 110.9, 115.1, 123.0, 124.9, 125.0, 126.8, 126.9, 128.0, 130.0, 134.7, 137.0, 142.0, 146.7, 148.2, 168.1. LRMS (EI): 382 (1%) [M⁺], 352 (48%), 243 (100%), 43 (34%). HRMS (EI): 352.1100 [352.1104 berechnet für C₂₁H₁₉CINO₂⁺ (M⁺-C₂H₅)].

Ethyl-1-(4-bromophenyl)-6-ethyl-2-methyl-4-phenyl-1,6-dihydropyridin-3-carboxylat (3-4jd)

Nach der allgemeinen Arbeitsvorschrift C wird 3-4jd nach säulenchromatographischer Reinigung (P/EtOAc 99:1) als weißer Feststoff isoliert (10%).

DC: $R_f = 0.38$ (P/EtOAc 95:5) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.68 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.4 Hz, 3H), 1.60 – 1.69 (m, 1H), 1.82 – 1.93 (m, 1H), 2.27 (s, 3H), 2.72 – 3.80 (m, 1H), 3.82 – 3.91 (m, 1H), 4.09 – 4.15 (m, 1H), 5.36 (d, J = 6.6 Hz, 1H), 7.00 (d, J = 8.7 Hz, 1H), 7.20 – 7.30 (m, 2H), 7.44 (d, J = 8.7 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 9.2, 13.6, 18.8, 26.7, 59.1, 63.1, 76.7, 77.2, 77.7, 102.9, 112.1, 123.1, 125.4, 126.5, 126.8, 127.1, 127.5, 127.7, 127.9, 128.2, 128.4, 131.1, 134.9, 138.6, 141.5, 143.6, 154.1, 168.5. **LRMS** (EI): 426 (4%) [M⁺], 398 (100%), 368 (30%), 121 (38%), 43 (27%). **HRMS** (EI): 396.0594 [396.0599 berechnet für C₂₁H₁₉BrNO₂⁺ (M⁺)].

Ethyl-6-ethyl-2-methyl-1-(3-nitrophenyl)-4-phenyl-1,6-dihydropyridin-3-carboxylat (3-4je)

Nach der allgemeinen Arbeitsvorschrift C wird 3-4je nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als oranger Feststoff isoliert (31%).

DC: $R_f = 0.26$ (P/EtOAc 95:5) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.69 (t, J = 7.1 Hz, 3H), 1.08 (t, J = 7.5 Hz, 3H), 1.67 – 1.79 (m, 1H), 1.81 – 1.95 (m, 1H), 2.29 (s, 1H), 3.74 – 3.82 (m, 1H), 3.85 – 3.94 (m, 1H), 4.29 – 4.25 (m, 1H), 5.49 (d, J = 6.6 Hz, 1H), 7.19 – 7.30 (m, 5H), 7.38 (ddd, J = 8.1, 2.2, 1.0 Hz, 1H), 7.44 – 7.49 (m, 1H), 7.92 – 7.97 (m, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 9.6, 9.9, 13.6, 20.0, 26.3, 59.9, 62.3, 113.9, 116.2, 118.2, 118.8, 127.0, 127.0, 128.1, 129.7, 129.7, 136.9, 141.5, 146.2, 146.7, 149.0, 167.9. **LRMS** (EI): 392 (4%) [M⁺], 363 (100%) [M⁺], 131 (27%). **HRMS** (EI): 363.1345 berechnet für C₂₁H₁₉N₂O₄⁺ (M⁺-C₂H₅)].

Ethyl-6-ethyl-1-(4-methoxyphenyl)-2-methyl-4-phenyl-1,6-dihydropyridin-3-carboxylat (3-4jf)

Nach der allgemeinen Arbeitsvorschrift C wird 3-4jf nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als gelber Feststoff isoliert (13%).

DC: $R_{\rm f} = 0.20$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.65 (t, J = 7.1 Hz, 3H), 1.00 (t, J = 7.4 Hz, 3H), 1.56 – 1.67 (m, 1H), 1.82 – 1.94 (m, 1H), 2.23 (s, 1H), 3.69 – 3.77 (m, 1H), 3.80 (s, 3H), 3.80 – 3.87 (m, 1H), 4.03 – 4.12 (m, 1H), 5.23 (d, J = 6.5 Hz, 1H), 6.86 (d, J = 9.0 Hz, 2H), 7.09 (d, J = 9.0 Hz, 2H), 7.22 – 7.28 (m, 5H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 9.5, 13.6, 19.8, 26.6, 30.5, 55.7, 59.2, 63.3, 76.8, 77.2, 77.5,

105.9, 113.0, 114.5, 126.5, 127.1, 127.9, 137.8, 138.6, 143.1, 151.6, 158.0, 168.5. **LRMS** (EI): 377 (8%) [M⁺], 348 (100%), 320 (26%). **HRMS** (EI): 377.1991 [377.1991 berechnet für $C_{24}H_{27}NO_3^+$ (M⁺)].

Ethyl-1-(3-chlorophenyl)-2,5-dimethyl-4-phenyl-1*H*-pyrrol-3-carboxylat (3-6kc)

Nach der allgemeinen Arbeitsvorschrift C wird 3-6kc nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als weißer Feststoff isoliert (72%).

DC: $R_{\rm f} = 0.22$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.02 (t, J = 7.1 Hz, 3H), 1.90 (s, 3H), 2.33 (s, 3H), 4.08 (q, J = 7.1 Hz, 2H), 7.15 – 7.19 (m, 1H), 7.23 – 7.38 (m, 6H), 7.45 – 7.47 (m, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 1.3, 12.7, 14.1, 59.4, 111.7, 122.9, 126.2, 126.7, 126.8, 127.6, 128.8, 129.1, 130.5, 135.2, 135.7, 136.4, 139.2, 165.9. LRMS (EI): 353 (5%) [M⁺], 244 (61%), 215 (26%), 198 (68%), 171 (41%), 139 (46%), 128 (43%), 115 (41%), 105 (33%), 84 (100%). HRMS (EI): 353.1173 [353.1183 berechnet für C₂₁H₂₀ClNO₂⁺ (M⁺)].

2.4.4 Synthese der 1,2-Dihydropyridine 3-8

Allgemeine Arbeitsvorschrift D für die Synthese der 1,2-Dihydropyridine 3-8: Ethyl-6ethyl-1,4-diphenyl-1,6-dihydropyridin-3-carboxylat (3-8aa)

Propargyl-Vinyl-Ether 3-2a (50.0 mg, 194 μ mol) wird in CH₂Cl₂ (1.9 mL) gelöst und AuCl (2.2 mg, 9.7 μ mol, 5 mol%) wird hinzugefügt. Die Reaktionsmischung wird bei RT gerührt bis laut DC die Umlagerungsreaktion vollständigen Umsatz erreicht hat. Anilin (26.5 μ L,

27.0 mg, 290 μmol, 1.5 eq.) wird hinzugefügt und die Reaktion wird weitere 30 min bei RT gerührt. Nach Zugabe von *p*-TsOH (7.4 mg, 38.7 μmol, 20 mol%) wird die Reaktionsmischung auf 40 °C erwärmt und für 16 h gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Dihydropyridin 3-**8aa** wird als gelber Feststoff isoliert (56.7 mg, 170 μmol, 88%).

DC: $R_f = 0.19$ (P/EtOAc 95:5) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.99 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.5 Hz, 3H), 1.59 – 1.75 (m, 1H), 1.88 – 2.05 (m, 1H), 3.89 – 4.13 (m, 2H), 4.55 – 4.64 (m, 1H), 5.30 (d, J = 6.4 Hz, 1H), 7.13 – 7.31 (m, 8H), 7.34 – 7.43 (m, 2H), 7.90 (d, J = 1.6 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 8.9, 14.1, 26.1, 58.8, 59.5, 106.3, 114.9, 118.7, 124.2, 126.9, 127.6, 127.7, 129.7, 136.6, 141.3, 141.5, 144.2, 166.5. **LRMS** (EI): m/z 333 (5%), 304 (100%), 276 (100%). **HRMS** (EI): m/z 333.1723 [333.1729 berechnet für C₂₂H₂₃NO₂⁺ (M⁺)].

Ethyl-6-ethyl-1-(4-methoxybenzyl)-4-phenyl-1,6-dihydropyridin-3-carboxylat (3-8ag)

Nach der allgemeinen Arbeitsvorschrift D wird 3-8ag nach säulenchromatographischer Reinigung (P/EtOAc 90:10) als braunes Öl isoliert (62%).

DC: $R_{\rm f} = 0.13$ (P/EtOAc 90:10) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.94 – 1.03 (m, 6H), 1.42 – 1.57 (m, 1H), 1.74 – 1.92 (m, 1H), 3.83 (s, 3H), 3.89 – 4.08 (m, 3H), 4.44 (s, 2H), 4.86 (d, J = 5.7 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 7.20– 7.30 (m, 7H), 7.68 (d, J = 1.0 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 8.4, 14.2, 26.1, 55.5, 57.3, 57.8, 58.9, 98.7, 113.0, 114.5, 126.6, 127.4, 127.8, 128.2, 128.6, 129.1, 137.3, 142.1, 148.9, 159.6, 166.8, 195.4. LRMS (ESI): m/z 378 (26%) [M+H⁺], 348 (1%), 256 (3%), 121 (100%). HRMS (ESI): m/z 378.2054 [378.2069 berechnet für C₂₄H₂₈NO₃⁺ (M+H⁺)].

Ethyl-6-ethyl-1-isopropyl-4-phenyl-1,6-dihydropyridin-3-carboxylat (3-8ah)

Nach der allgemeinen Arbeitsvorschrift D wird 3-8ah nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als braunes Öl isoliert (75%).

DC: $R_{\rm f} = 0.18$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H** NMR (250 MHz, CDCl₃): δ [ppm] = 0.92 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H), 1.29 (d, J = 6.6 Hz, 3H), 1.38 (d, J = 6.7 Hz, 3H), 1.69 – 187 (m, 1H), 3.42 – 3.54 (m, 1H), 3.82 – 4.01 (m, 2H), 4.03 – 4.11 (m, 1H), 4.87 (d, J = 6.0 Hz, 1H), 7.17 – 7.31 (m, 5H), 7.68 (d, J = 1.5 Hz, 1H). ¹³**C** NMR (63 MHz, CDCl₃): δ [ppm] = 8.4, 14.2, 22.1, 23.6, 27.7, 46.2, 54.3, 58.8, 59.3, 98.6, 112.0, 126.5, 127.4, 127.8, 137.6, 142.3, 144.6, 166.9. LRMS (EI): m/z 299 (9%) [M⁺], 270 (100%), 228 (23%), 205 (40%), 57 (39%), 43 (31%). HRMS (EI): m/z 270.1499 [270.1494 berechnet für C₁₇H₂₀NO₂⁺ (M⁺-C₂H₅)].

Ethyl-6-ethyl-4-phenyl-1-((S)-1-phenylethyl)-1,6-dihydropyridin-3-carboxylat (3-8ai)

Nach der allgemeinen Arbeitsvorschrift D wird 3-8ai nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als oranges Öl isoliert (67%, d.r. 1:1.3).

DC: $R_f = 0.33$ (P/EtOAc 90:10) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.87 – 0.98 (m, 13.8H), 1.25 – 1.47 (m, 2.3H), 1.69 (d, J = 2.7 Hz, 1.3H), 1.72 (d, J = 2.8 Hz, 1H), 1.77 – 1.87 (m, 2.6H), 3.83 – 4.12 (m, 6.9H), 4.49 – 4.64 (m, 2.3H), 4.82 (d, J = 6.1 Hz, 1.3H), 4.92 (d, J = 6.1 Hz, 1H), 7.20 – 7.38 (m, 23H), 7.65 (d, J = 1.5 Hz, 1H), 7.94 (d, J = 1.4 Hz, 1.3H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 8.4, 8.6, 14.1, 14.1, 21.1, 21.6, 26.3, 27.8, 58.7, 58.9, 58.9, 59.3, 60.9, 62.5, 99.3, 99.8, 112.2, 112.4, 126.1, 126.5, 126.5, 127.1, 127.4, 127.8, 127.8, 127.9, 128.1, 128.9, 129.0, 131.8, 137.4, 137.4, 141.1, 142.1, 142.2, 142.9, 144.0, 146.2, 166.8, 167.1. LRMS (GC-MS): m/z 361 (5%) [M⁺], 332 (46%), 255

(13%), 228 (65%), 105 (100%). **HRMS** (ESI): m/z 362.2110 [362.2120 berechnet für $C_{24}H_{28}NO_2^+(M+H^+)$].

Methyl-1-(4-bromophenyl)-6-ethyl-4-phenyl-1,6-dihydropyridin-3-carboxylat (3-8bd)

Nach der allgemeinen Arbeitsvorschrift D wird 3-8bd nach säulenchromatographischer Reinigung (P/EtOAc 92:8) als gelbes Öl isoliert (69%).

DC: $R_{\rm f} = 0.17$ (P/EtOAc 90:10) [UV] [CAM]. ¹H NMR (500 MHz, CDCl₃): δ [ppm] = 1.03 (t, J = 7.5 Hz, 3H), 1.60 – 1.68 (m, 1H), 1.89 – 1.98 (m, 1H), 3.56 (s, 3H), 4.52 – 4.56 (m, 1H), 5.34 (d, J = 6.4 Hz, 1H), 7.06 (d, J = 9.0 Hz, 2H), 7.22 – 7.22 (m, 5H), 7.49 (d, J = 9.0 Hz, 2H), 7.81 (d, J = 1.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ [ppm] = 8.9, 25.9, 51.0, 58.6, 106.8, 115.4, 117.0, 120.0, 127.1, 127.6, 127.7, 132.6, 136.4, 140.7, 140.8, 143.2, 166.6. LRMS (EI): m/z 397 (7%) [M⁺], 370 (100%), 105 (28%), 83 (98%). HRMS (EI): m/z 397.0690 [397.0678 berechnet für C₂₁H₂₀NO₂Br⁺ (M⁺)].

Methyl-6-ethyl-1-(3-nitrophenyl)-4-phenyl-1,6-dihydropyridin-3-carboxylat (3-8be)

Nach der allgemeinen Arbeitsvorschrift D wird 3-8be nach säulenchromatographischer Reinigung (P/EtOAc 92:8) als gelbes Öl isoliert (69%).

DC: $R_{\rm f} = 0.17$ (P/EtOAc 90:10) [UV] [CAM]. ¹H NMR (500 MHz, CDCl₃): δ [ppm] = 1.08 (t, J = 7.4 Hz, 3H), 1.67 – 1.75 (m, 1H), 1.94 – 2.03 (m, 1H), 3.59 (s, 3H), 4.60 – 4.64 (m, 1H), 5.46 (d, J = 6.3 Hz, 1H), 7.23 – 7.26 (m, 2H), 7.29 – 7.34 (m, 3H), 7.48 – 7.49 (m, 1H), 7.29 – 7.34 (m, 1H), 7.85 (s, 1H), 7.98 (d, J = 8.1 Hz, 1H), 8.01 (s, 1H). ¹³C NMR (126 MHz,

CDCl₃): δ [ppm] = 9.0, 25.7, 51.2, 58.3, 76.9, 77.2, 77.4, 109.2, 112.3, 116.5, 118.0, 123.3, 127.3, 127.5, 127.8, 127.8, 130.5, 136.3, 139.2, 140.3, 145.0, 149.4, 166.3. **LRMS** (GC-MS): *m/z* 364 (7%) [M⁺], 335 (100%), 289 (36%), 216 (29%), 184 (63%), 57 (29%). **HRMS** (EI): *m/z* 364.1424 [364.1423 berechnet für C₂₁H₂₀N₂O₄⁺ (M⁺)].

Methyl-6-ethyl-1-(4-methoxyphenyl)-4-phenyl-1,6-dihydropyridin-3-carboxylat (3-8bf)

Nach der allgemeinen Arbeitsvorschrift D wird 3-8bf nach säulenchromatographischer Reinigung (P/EtOAc 90:10) als oranger Feststoff isoliert (85%).

DC: $R_{\rm f} = 0.51$ (P/EtOAc 85:15) [UV] [CAM]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 1.02 (t, J = 7.5 Hz, 3H), 1.56 – 1.67 (m, 1H), 1.85 – 1.99 (m, 1H), 3.54 (s, 3H), 3.82 (s, 3H), 4.52 – 4.58 (m, 1H), 5.20 (d, J = 6.1 Hz, 1H), 6.92 (d, J = 9.0 Hz, 2H), 7.16 (d, J = 9.0 Hz, 2H), 7.23 – 7.33 (m, 2H), 7.81 (d, J = 1.6 Hz, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 8.8, 26.4, 50.7, 55.7, 59.7, 103.8, 114.2, 114.8, 121.2, 126.9, 127.6, 127.7, 136.6, 138.0, 141.2, 143.1, 157.0, 166.8. LRMS (EI): m/z 349 (8%) [M⁺], 320 (100%), 207 (15%), 175 (22%), 84 (46%). HRMS (EI): m/z 349.1684 [349.1678 berechnet für C₂₂H₂₃NO₃⁺ (M⁺)].

Methyl-1-benzyl-6-ethyl-4-phenyl-1,6-dihydropyridin-3-carboxylat (3-8bj)

Nach der allgemeinen Arbeitsvorschrift D wird 3-8bj nach säulenchromatographischer Reinigung (P/EtOAc 85:15) als gelbes Öl isoliert (81%).

DC: $R_{\rm f} = 0.36$ (P/EtOAc 85:15) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.98 (t, J = 7.4 Hz, 3H), 1.44 – 1.58 (m, 1H), 1.73 – 1.90 (m, 1H), 3.49 (s, 3H), 4.00 – 4.07 (m, 1H), 4.48 (s, 2H), 4.88 (d, J = 5.7 Hz, 1H), 7.42 – 7.42 (m, 10H), 7.66 (d, J = 1.1 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 8.4, 26.1, 50.4, 57.8, 58.0, 98.5, 113.3, 126.7, 127.4,

127.6, 127.7, 128.2, 129.1, 136.3, 137.1, 141.7, 149.2, 166.7. **LRMS** (EI): m/z 333 5%) [M⁺], 304 (68%), 91 (100%). **HRMS** (EI): m/z 333.1729 [333.1729 berechnet für C₂₂H₂₃NO₂⁺ (M⁺)].

Ethyl-6-methyl-1,4-diphenyl-1,6-dihydropyridin-3-carboxylat (3-8ca)

Nach der allgemeinen Arbeitsvorschrift D wird 3-8ca nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als gelbes Öl isoliert (84%).

DC: $R_{\rm f} = 0.18$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.00 (t, J = 7.1 Hz, 3H), 1.39 (d, J = 6.4 Hz, 3H), 3.91 – 4.14 (m, 2H), 4.73 – 4.84 (m, 1H), 5.28 (d, J = 6.4 Hz, 1H), 7.13 – 7.31 (m, 8H), 7.35 – 7.43 (m, 2H), 7.86 (d, J = 1.6 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 14.1, 18.8, 53.3, 59.5, 106.2, 116.7, 118.4, 124.1, 126.8, 127.6, 127.7, 129.7, 135.8, 140.7, 141.1, 144.1, 166.6. LRMS (GC-MS): m/z 319 (8%) [M⁺], 304 (100%), 276 (57%), 242 (14%), 230 (12%), 77 (20%). HRMS (ESI): m/z 320.1652 [320.1645 berechnet für C₂₁H₂₂NO₂⁺ (M+H⁺)].

Ethyl-6-isopropyl-1,4-diphenyl-1,6-dihydropyridin-3-carboxylat (3-8da)

Nach der allgemeinen Arbeitsvorschrift D wird Xda nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als gelbes Öl isoliert (77%).

DC: $R_{\rm f} = 0.77$ (P/EtOAc 90:10) [UV] [CAM]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.95 – 0.99 (m, 6H), 1.08 (d, J = 6.7 Hz, 3H), 2.08 – 2.17 (m, 1H), 3.91 – 4.07 (m, 2H), 4.68 (td, J = 5.9, 1.5 Hz, 1H), 5.18 (d, J = 6.0 Hz, 1H), 7.13 – 7.18 (m, 1H), 7.23 – 7.26 (m, 3H), 7.27 – 7.32 (m, 4H), 7.36 – 7.41 (m, 2H), 7.94 (d, J = 1.4 Hz, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 14.1, 17.0, 18.6, 32.9, 59.4, 63.4, 105.7, 113.3, 119.7, 124.4, 126.8, 127.6, 127.7,

129.7, 137.5, 141.6, 142.6, 145.0, 166.5. **LRMS** (EI): m/z 347 (13%) [M⁺], 333 (33%), 318 (38%), 304 (28%), 205 (61%), 131 (80%), 93 (91%), 83 (100%). **HRMS** (EI): m/z 347.1886 [347.1885 berechnet für C₂₃H₂₅NO₂⁺ (M⁺)].

Ethyl-1,4,6-triphenyl-1,6-dihydropyridin-3-carboxylat (3-8ea)

Nach der allgemeinen Arbeitsvorschrift D wird 3-8ea nach säulenchromatographischer Reinigung (P/EtOAc 93:7) als gelbes Öl isoliert (72%).

DC: $R_{\rm f} = 0.38$ (P/EtOAc 90:10) [UV] [CAM]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.98 (t, J = 7.1 Hz, 3H), 5.48 (dd, J = 6.5, 0.4 Hz, 1H), 3.92 – 4.10, 5.70 (dd, J = 6.5, 1.5 Hz, 1H), 7.12 – 7.16 (m, 3H), 7.19 – 7.22 (m, 2H), 7.24 – 7.41 (m, 10H), 8.15 (dd, J = 1.5, 0.4 Hz, 1H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 14.1, 59.6, 62.1, 105.8, 116.5, 119.4, 124.6, 125.4, 126.9, 127.6, 127.7, 127.9, 129.1, 129.5, 134.9, 141.0, 142.2, 142.3, 122.7, 166.4. LRMS (EI): m/z 381 (17%) [M⁺], 304 (95%), 292 (100%), 219 (87%), 191 (48%), 149 (47%), 105 (74%), 57 (63%), 44 (53%). HRMS (EI): m/z 381.1721 [381.1729 berechnet für $C_{26}H_{23}NO_2^+$ (M⁺)].

Ethyl-1,4-diphenyl-1,6-dihydropyridin-3-carboxylat (3-8fa)

Nach der allgemeinen Arbeitsvorschrift D wird 3-8fa nach säulenchromatographischer Reinigung (P/EtOAc 95:5 \rightarrow 90:10) als rotes Öl isoliert (55%).

DC: $R_{\rm f} = 0.19$ (P/EtOAc 95:5) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 0.97 (t, J = 7.1 Hz, 3H), 4.00 (q, J = 7.1 Hz, 2H), 4.51 (d, J = 4.4 Hz, 2H), 5.26 (t, J = 4.4 Hz, 1H), 7.13 – 7.17 (m, 2H), 7.21 – 7.31 (m, 5H), 7.37 – 7.45 (m, 3H), 7.89 (d, J = 0.5 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 14.1, 47.7, 59.5, 105.9, 111.9, 117.8, 124.1, 126.9, 127.4, 127.7, 129.5, 137.4, 141.1, 143.8, 144.4, 166.5. LRMS (ESI): *m/z* 306 (100%) [M+H⁺], 290

(63%), 276 (7%), 226 (10%), 182 (3%). **HRMS** (ESI): m/z 306.1497 [306.1494 berechnet für $C_{20}H_{20}NO_2^+(M+H^+)$].

Ethyl-4-pentyl-6-phenethyl-1-phenyl-1,6-dihydropyridin-3-carboxylat (3-8ga).

Nach der allgemeinen Arbeitsvorschrift D wird 3-8ga nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als gelbes Öl isoliert (55%).

DC: $R_f = 0.75$ (P/EtOAc 90:10) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.93 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.40 – 1.53 (m, 4H), 1.76 – 2.05 (m, 2H), 2.21 – 2.31 (m, 3H), 2.49 – 2.61 (m, 1H), 2.66 – 2.78 (m, 1H), 3.00 (dd, J = 14.5, 2.3 Hz, 1H), 3.99 – 4.07 (m, 1H), 4.16 – 4.29 (m, 2H), 6.50 – 6.50 (m, 1H), 6.99 – 7.03 (m, 2H), 7.06 – 7.09 (m, 1H), 7.13 – 7.17 (m, 2H), 7.19 – 7.23 (m, 1H), 7.26 – 7.34 (m, 4H), 7.81 (s, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 14.2, 14.7, 22.8, 27.0, 27.9, 32.3, 32.4, 32.6, 55.3, 59.6, 103.2, 118.4, 123.4, 123.5, 126.3, 126.9, 128.5, 128.6, 129.6, 138.9, 141.2, 144.8, 167.3. LRMS (ESI): m/z 807 (3%) [2M+H⁺], 426 (4%) [M+Na⁺], 404 (100%) [M+H⁺], 358 (4%), 242 (6%), 167 (3%). HRMS (ESI): m/z 404.2585 [404.2584 berechnet für C₂₇H₃₄NO₂⁺ (M+H⁺)].

Ethyl-6-ethyl-4-(4-(methoxycarbonyl)phenyl)-1-phenyl-1,6-dihydropyridin-3-carboxylat (3-8ha)

Nach der allgemeinen Arbeitsvorschrift D wird 3-8ha nach säulenchromatographischer Reinigung (P/EtOAc 90:10) als gelber Feststoff isoliert (74%).

DC: $R_f = 0.31$ (P/EtOAc 85:15) [UV] [CAM]. ¹H NMR (500 MHz, CDCl₃): δ [ppm] = 0.99 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.5 Hz, 3H), 1.64 – 1.73 (m, 1H), 1.92 – 2.01 (m, 1H), 3.91 (s, 3H), 3.95 – 4.07 (m, 2H), 4.60 – 4.63 (m, 1H), 5.33 (d, J = 6.3 Hz, 1H), 7.16 – 7.21 (m, 2H),

7.31 (d, J = 8.1 Hz, 1H), 7.39 – 7.42 (m, 2H), 7.91 (d, J = 1.5 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ [ppm] = 8.9, 14.2, 26.1, 52.1, 58.8, 59.6, 105.7, 115.9, 118.9, 124.5, 127.8, 128.6, 129.1, 129.7, 136.0, 141.9, 144.1, 146.3, 166.3, 167.3. LRMS (EI): m/z 391 (7%) [M⁺], 362 (83%), 334 (26%), 84 (100%). HRMS (EI): m/z 391.1782 [391.1783 berechnet für C₂₄H₂₅NO₄⁺ (M⁺)].

Ethyl-6-ethyl-4-(4-methoxyphenyl)-1-phenyl-1,6-dihydropyridin-3-carboxylat (3-8ia)

Nach der allgemeinen Arbeitsvorschrift D wird 3-**8ia** nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als gelber Feststoff isoliert (89%).

DC: $R_{\rm f} = 0.22$ (P/EtOAc 90:10) [UV] [CAM]. ¹H NMR (250 MHz, CDCl₃): δ [ppm] = 1.00 – 1.09 (m, 6H), 1.62 1.72 (m, 1H), 1.86 – 2.04 (m, 1H), 3.81 (s, 3H), 3.93 – 4.16 (m, 2H), 4.53 – 4.61 (m, 1H), 5.27 (d, J = 6.4 Hz, 1H), 6.84 (d, J = 8.8 Hz, 2H), 7.12 – 7.21 (m, 5H), 7.35 – 7.42 (m, 2H), 7.88 (d, J = 1.5 Hz, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 8.9, 14.3, 26.0, 55.4, 58.7, 59.5, 106.3, 113.1, 114.2, 118.7, 124.1, 128.8, 129.6, 133.7, 136.1, 141.4, 144.2, 158.8, 166.5. LRMS (GC-MS): m/z 363 (9%) [M⁺], 334 (100%), 306 (38%) 256 (13%), 207 (10%), 77 (11%). HRMS (ESI): m/z 364.1913 [364.1907 berechnet für C₂₃H₂₆NO₃⁺ (M+H⁺].

2.4.6 Erweiterte Eintopfsynthese heterozyklischer Verbindungen

Allgemeine Arbeitsvorschrift E für die Reaktion von Propargylalkoholen 3-1 zu 1,2-Dihydropyridinen 3-8: Ethyl-6-ethyl-1,4-diphenyl-1,6-dihydropyridin-3-carboxylat (3-8aa)

In einem ausgeheizten Rundkolben wird 1-Phenylpent-1-in-3-ol (100 mg, 624 µmol) in trockenem CH₂Cl₂ (6.2 mL) unter Argonatmosphäre gelöst. Ethylpropiolat (63.3 µL 61.2 mg, 624 µmol, 1 Äq.) und P(*n*-Bu)₃ (7.8 µL, 6.3 mg, 31.2 µmol, 5 mol%) werden nacheinander zugegeben. Die Reaktionsmischung wird bei RT gerührt bis die Additionsreaktion laut DC vollständigen Umsatz erreicht hat. AgSbF₆ (9.08 mg, 25.0 µmol, 4 mol%) und AuCl (5.80 mg, 25.0 µmol, 4 mol%) werden zugegeben und die Reaktion wird eine weitere Stunde bei RT gerührt. Anilin (85.5 µL, 87.2 mg, 963 µmol, 1.5 Äq.) wird hinzugefügt. Die Reaktion wird auschließend wird *p*-TsOH (23.1 mg, 125 µmol, 20 mol%) hinzugefügt. Die Mischung wird auf 40 °C erwärmt und 16 h gerührt. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Das Produkt wird als gelber Feststoff isoliert (137 mg, 412 µmol, 66%). Die analytischen Daten stimmen mit den oben genannten überein.

Ethyl-6-isopropyl-1,4-diphenyl-1,6-dihydropyridin-3-carboxylat (3-8da).

Nach der allgemeinen Arbeitsvorschrift E wird 3-8da nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als oranger Feststoff isoliert (63%). Die analytischen Daten stimmen mit den oben genannten überein.

Methyl-6-ethyl-1-(4-methoxyphenyl)-4-phenyl-1,6-dihydropyridin-3-carboxylat (3-8bf)

Nach der allgemeinen Arbeitsvorschrift E wird 3-**8bf** nach säulenchromatographischer Reinigung (P/EtOAc 90:10) als oranger Feststoff isoliert (75%). Die analytischen Daten stimmen mit den oben genannten überein.

Ethyl-4-pentyl-1,6-diphenyl-1,6-dihydropyridin-3-carboxylat (3-8ma).

Nach der allgemeinen Arbeitsvorschrift E wird 3-8ma nach säulenchromatographischer Reinigung (P/EtOAc 98:2 \rightarrow 95:5) als gelbes Öl isoliert (41%).

DC: $R_{\rm f} = 0.19$ (P/EtOAc 93:7) [UV] [CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.71 (t, J = 6.9 Hz, 3H), 0.78 – 0.90 (m, 1H), 0.94 – 1.10 (m, 3H), 1.34 (t, J = 7.1 Hz, 1H), 1.74 – 1.98 (m, 2H), 2.61 (dd, J = 13.9, 4.7 Hz, 1H), 3.00 (dd, J = 13.9, 2.2 Hz, 1H), 4.17 – 4.30 (m, 2H), 5.08 – 5.11 (m, 1H), 6.23 (t, J = 7.6 Hz, 1H), 7.00 – 7.07 (m, 3H), 7.17 – 7.33 (m, 7H), 8.11 (s, 1H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 14.1, 14.7, 22.3, 27.4, 32.0, 59.7, 61.0, 104.5, 118.3, 122.5, 123.5, 125.9, 127.4, 127.7, 128.7, 129.5, 139.3, 141.0, 145.4, 167.2. LRMS (GC-MS): m/z 375 (64%) [M⁺], 346 (20%), 332 (100%), 298 (96%), 207 (22%), 141 (21%), 77 (33%). HRMS (ESI): m/z 376.2269 [376.2271 berechnet für C₂₅H₃₀NO₂⁺ (M+H⁺)].
Allgemeine Arbeitsvorschrift F für die Reaktion von Propargylalkoholen 3-1 zu 2*H*-Pyranen 3-5: Ethyl-2-ethyl-6-methyl-4-phenyl-2*H*-pyran-5-carboxylat (3-5j)

In einem ausgeheizten Rundkolben wird 1-Phenylpent-1-in-3-ol (50 mg, 312 μ mol) in trockenem CH₂Cl₂ (3.1 mL) unter Argonatmosphäre gelöst. Ethylbut-2-inoat (36.2 μ L, 35.0 mg, 312 μ mol, 1 Äq.) und P(Me)₃ (1M in Toluol, 62.4 μ L, 62.4 μ mol, 20 mol%) werden nacheinander zugegeben. Die Reaktionsmischung wird bei RT gerührt bis die Additionsreaktion laut DC vollständigen Umsatz erreicht hat. AuCl (3.6 mg, 15.6 μ mol, 5 mol%) und AgSbF₆ (11.3 mg, 31.2 μ mol, 10 mol%) werden zugegeben und die Reaktion wird eine weitere Stunde bei RT gerührt. DBU (4.7 μ L, 4.8 mg, 31.2 μ mol, 10 mol%) wird hinzugefügt. Nach einer Stunde bei RT wird das Lösungsmittel unter vermindertem Druck entfernt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Das Produkt wird als farbloses Öl isoliert (40.1 mg, 147 μ mol, 47%).

DC: $R_{\rm f} = 0.65$ (P/EtOAc 80:20) [UV] [CAM]. ¹H NMR (360 MHz, CDCl₃): δ [ppm] = 0.72 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.4 Hz, 3H), 1.74 – 1.96 (m, 2H), 2.35 (s, 3H), 3.81 – 3.87 (m, 2H), 4.63 (dt, J = 3.8, 6.4 Hz, 1H), 5.29 (d, J = 3.8 Hz, 1H), 7.31 – 7.34 (m, 3H), 7.44 – 7.48 (m, 2H). ¹³C NMR (91 MHz, CDCl₃): δ [ppm] = 9.4, 13.6, 18.8, 27.1, 59.8, 77.7, 108.3, 116.1, 126.6, 127.1, 128.1, 137.2, 140.9, 165.8, 167.4.

Die analytischen Daten stimmen mit denen der Literatur überein.^[162]

Ethyl-4-(4-tert-butylphenyl)-2-ethyl-6-methyl-2H-pyran-5-carboxylat (3-5n)

Nach der allgemeinen Arbeitsvorschrift F wird 3-**5n** nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als farbloses Öl isoliert (42%).

DC: $R_{\rm f} = 0.78$ (P/EtOAc 80:20) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.02 (t, J = 7.4 Hz, 3H), 1.30 (s, 9H), 1.73 – 1.94 (m, 2H), 2.33 (s, 3H), 3.76 – 3.90 (m, 2H), 4.61 (dt, J = 3.8, 6.4 Hz, 1H), 5.28 (d, J = 3.8 Hz, 1H), 7.11 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 9.4, 13.4, 18.8, 27.1, 31.5, 34.6, 59.8, 77.7, 108.4, 115.5, 124.7, 125.0, 126.3, 129.8, 136.9, 137.9, 150.2, 165.6, 167.5.

Die analytischen Daten stimmen mit denen der Literatur überein.^[162]

Ethyl-2-ethyl-6-methyl-4-(thiophen-3-yl)-2H-pyran-5-carboxylat (3-50)

Nach der allgemeinen Arbeitsvorschrift F wird 3-50 nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als farbloses Öl isoliert (42%).

DC: $R_{\rm f} = 0.54$ (P/EtOAc 80:20) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.88 (t, J = 7.1 Hz, 3H), 1.02 (t, J = 7.4 Hz, 3H), 1.73 – 1.91 (m, 2H), 2.30 (s, 3H), 3.93 (dq, J = 1.9, 7.1 Hz, 2H), 4.58 (dt, J = 3.7, 6.8 Hz, 1H), 5.35 (d, J = 3.6 Hz, 1H), 6.93 (dd, J = 1.4, 5.0 Hz, 1H), 7.07 (dd, J = 1.4, 3.0 Hz, 1H), 7.21 (dd, J = 3.0, 5.0 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 9.4, 13.8, 18.8, 27.0, 60.0, 77.5, 108.4, 115.5, 120.5, 125.0, 127.0, 131.9, 141.2, 165.2, 167.5.

Die analytischen Daten stimmen mit denen der Literatur überein.^[162]

Ethyl-2-ethyl-6-methyl-4-(4-phenoxyphenyl)-2H-pyran-5-carboxylat (3-5p).

Nach der allgemeinen Arbeitsvorschrift F wird 3-**5**p nach säulenchromatographischer Reinigung (P/EtOAc 95:5) als farbloses Öl isoliert (39%).

DC: $R_f = 0.59$ (P/EtOAc 95:5) [UV] [CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.85 (t, J = 7.2 Hz, 3H), 1.04 (t, J = 7.4 Hz, 3H), 1.74 – 1.96 (m, 2H), 2.34 (s, 3H), 3.87 – 3.94 (m, 2H), 4.61 (dt, J = 3.6, 6.6 Hz, 1H), 5.28 (d, J = 3.6 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 6.99 (d, J = 7.5 Hz, 2H), 7.09 (t. J = 7.5 Hz, 1H), 7.17 (d, J = 8.6 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 9.4, 13.8, 18.9, 27.0, 59.9, 77.7, 108.3, 115.8, 118.7, 118.8, 123.3, 128.0, 129.8, 136.1, 136.5, 156.5, 157.5, 165.8, 167.3.

Die analytischen Daten stimmen mit denen der Literatur überein.^[162]

2.5 Chemoselektive Azidierung von 1,3-Dicarbonylverbindungen

2.5.1 Synthese von IBX-SO₃K (3-3)

Kalium-1-hydroxy-1,3-dioxo-1,3-dihydro-1λ⁵-benziodoxol-5-sulfonat (IBX-SO₃K) (3-3)

Zu rauchender Schwefelsäure wird bei 0 °C (30% SO₃, 23.0 mL). Anthranilsäure (15.0 g, 109 mmol) portionsweise hinzugefügt. Das Kältebad wird entfernt und die Reaktion für 2 h auf 180 °C erhitzt. Die warme Lösung wird mittels Glaspipette unter Rühren in eisgekühltes Eiswasser (150 mL) gegeben. Der Niederschlag wird abfiltriert und mit Eiswasser gewaschen. Der Rückstand wird im Vakuum getrocknet. Das sulfonierte Produkt wird als gelber Feststoff isoliert (18.1 g, 83.3 mmol, 76%).^[236]

Die Sulfonsäure (4.53 g, 20.9 mmol) wird in einer Mischung von H₂O (45.3 mL) und wässriger NaOH-Lösung (10M, 2.10 mL, 21.0 mmol, 1 Äq.) gelöst. Konzentrierte Schwefelsäure (22.7 mL, 425 mmol, 20.3 Äq.) wird langsam bei RT zugetropft. Die Suspension wird auf eine Innentemperatur von 0 °C abgekühlt und eine Lösung von NaNO2 (2.88 g, 41.7 mmol, 2 Äq.) in H₂O (16.7 mL) wird so zugegeben, dass die Innentemperatur 5 °C nicht übersteigt. Die Reaktionsmischung wird für 30 min bei 0 °C gerührt. Harnstoff (2.86 g, 47.6 mmol, 2.3 Äq.) wird portionsweise Zugegeben (Gasentwicklung). Es wurde eine weitere Stunde bei 0 °C gerührt. Die Mischung wird zu einer eisgekühlten Lösung von NaI (4.60 g, 30.7 mmol, 1.5 Äq.) in H₂O (13.8 mL) gegeben. Das Kältebad wird entfernt und die braune Reaktionsmischung wird für 30 min unter Rückfluss gerührt. Die Reaktion wird auf abgekühlt und gesättigte, wässrige Na₂SO₃-Lösung wird zugegeben bis die RT Reaktionsmischung vollständig entfärbt ist. Das Produkt wird duch Zugabe von NaCl (16 g) ausgefällt. Der Überschuss an NaCl wird in einer minimalen Menge H₂O gelöst (Das Produkt ist sehr wasserlöslich). Der Niederschlag wird abfiltiert und mit wenig Eiswasser und Aceton gewaschen. Die Mutterlauge wird ein weiteres Mal auf dieselbe Weise behandelt um erneut Produkt zu erhalten. Die vereinten Fraktionen werden im Vakuum getrocknet. Das Arylhalogenid wird als weißer Feststoff erhalten (5.74 g, 16.4 mmol, 78%).Das Iodid (1.94 g,

5.54 mmol) wird zu einer Lösung von Oxon (10.9 g, 17.7 mmol, 3.2 Äq.) in H₂O (40 mL) hinzugefügt. Die Reaktionsmischung wird 3 h bei 70 °C gerührt. Die Reaktion wird auf 5 °C abgekühlt und 30 min gerührt. Der Niederschlag wird abfiltriert und mit Eiswasser und Aceton gewaschen. Der Rückstand wird im Vakuum getrocknent und IBX-SO₃K wird als weißes Pulver isoliert (1.97 g, 4.95 mmol, 89%).

¹**H NMR** (500 MHz, D₂O): δ [ppm] = 8.31 (d, J = 8.3 Hz, 1H), 8.36 (dd, J = 8.3, 1.7 Hz, 1H), 8.46 (d, J = 1.7 Hz, 1H). ¹³**C NMR** (126 MHz, D₂O): δ [ppm] = 126.6, 130.5, 133.6, 134.5, 150.4, 151.8, 172.6. **IR** (film): v_{max} [cm⁻¹] = 3649, 2956, 2931, 2868, 2492, 2441, 2159, 2029, 1975, 1268, 1219, 1195, 1099, 1061, 1039, 1012, 852, 804, 782, 677, 661. **LRMS** (ESI): m/z397 (5%) [M –H⁺], 359 (100%) [M –K⁺], 381 (3%) [M+Na⁺ –H⁺, –K⁺], 343 (24%), 327 (15%), 315 (4%), 298 (4%), 283 (3%), 231 (9%), 217 (5%), 193 (9%), 187 (10%), 175 (4%), 156 (10%). **HRMS** (EI): m/z 396.8284 [396.8276 berechnet für C₇H₃O₇IKS⁺ (M+H⁺)]. Zersetzung beginnt bei 285 °C.

2.5.2 Synthese der 2-Azido-1,3-Dicarbonylverbindungen 3-2 nach Methode A

Allgemeine Arbeitsvorschrift für die Synthese der Azidverbindung 3-2 mit IBX-SO₃K/NaI: Ethyl-1-azido-2-oxocyclohexancarboxylat (3-2a)^[202b]

3-1a (25.0 mg, 147 µmol) wird in DMSO (1 mL) gelöst und eine wässrige NaN₃-Lösung (1M, 0.5 mL) wird hinzugefügt. NaI (4.4 mg, 29.4 µmol, 0.2 Äq.) und IBX-SO₃K (87.8 mg, 220 µmol, 1.5 Äq.) werden hinzugefügt und die Reaktionsmischung wird 30 min bei RT gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger Na₂S₂O₃-Lösung (10 mL) abgebrochen. Die Mischung wird mit CH₂Cl₂ (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Azid 3-2a wird als schwach gelbes Öl isoliert (28.1 mg, 133 µmol, 91%).

DC: $R_f = 0.32$ (P/Et₂O 90:10), [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.32 (t, J = 7.1 Hz, 3H), 1.69 – 1.88 (m, 4H), 1.89 – 2.03 (m, 1H), 2.37 – 2.53 (m, 2H), 2.58 – 2.68 (m, 1H), 4.31 (q, J = 7.1, 1H), 4.31 (q, J = 7.1, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 14.3,

21.5, 26.6, 35.6, 39.8, 62.9, 74.1, 167.8, 202.6. **IR** (film): v_{max} [cm⁻¹] = 2943, 2870, 2108, 1728, 1448, 1234, 1142, 1094, 1012, 855. **LRMS** (EI): *m/z* 183 (1%) [M⁺-N₂], 110 (68%), 82 (100%), 55 (70%). **HRMS** (EI): *m/z* 183.0887 [183.0890 berechnet für C₉H₁₃O₃N⁺ (M⁺-N₂)].

Methyl-2-azido-4-methyl-3-oxo-2-phenylpentanoat (3-2b)

Nach Methode A wird 3-2b nach säulenchromatographischer Aufreinigung (P/EtOAc 95:5) als farbloses Öl isoliert (92%).

DC: $R_f = 0.31$ (P/EtOAc 95:5), [UV, KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.98 (d, J = 6.8 Hz, 3H), 1.04 (d, J = 6.7 Hz, 3H), 2.90 – 3.02 (m, 1H), 3.90 (s, 3H), 7.39 – 7.43 (m, 5H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 20.1, 20.3, 37.1, 53.6, 80.3, 127.6, 128.9, 129.4, 133.1, 168.3, 206.1. **IR** (film): v_{max} [cm⁻¹] = 2978, 2113, 1731, 1448, 1435, 1236, 1097, 1018, 747, 698. **LRMS** (EI): m/z 233(1%) [M⁺-N₂], 190 (15%), 118 (12%), 104 (73%), 71 (76%), 43 (100%). **HRMS** (EI): m/z 233.1042 [233.1046 berechnet für C₁₃H₁₅O₃N⁺ (M⁺-N₂)].

Methyl-2-azido-2-methyl-3-oxo-3-phenylpropanoat (3-2c)

Nach Methode A wird 3-2c nach säulenchromatographischer Aufreinigung (P/EtOAc 95:5) als farbloses Öl isoliert (96%).

DC: $R_f = 0.35$ (P/EtOAc 95:5), [UV, KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.82 (s, 3H), 3.75 (s, 3H), 7.42 – 7.50 (m, 2H), 7.55 – 7.62 (m, 1H), 7.95 – 8.00 (m, 2H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 20.4, 53.6, 71.3, 128.8, 129.5, 133.6, 133.9, 170.5, 191.1. **IR** (film): v_{max} [cm⁻¹] = 3009, 2956, 2848, 2112, 1748, 1694, 1598, 1579, 1448, 1436, 1377, 1231, 1119, 964, 798, 688. **LRMS** (EI): *m/z* 233 (1%) [M⁺], 205 (1%), 173 (3%), 106

(100%), 77 (49%), 51 (13%). **HRMS** (ESI): m/z 234.0873 [234.0873 berechnet für $C_{11}H_{12}O_3N_3^+$ (M+H⁺)].

2-Azido-2-methyl-3-oxo-N-phenylbutanamid (3-2d)

Nach Methode A wird 3-2d nach säulenchromatographischer Aufreinigung (P/EtOAc 85:15) als weißer Feststoff isoliert (96%).

DC: $R_f = 0.55$ (P/EtOAc 80:20), [UV, KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.83 (s, 3H), 2.36 (s, 3H), 7.13 – 7.22 (m, 1H), 7.43 – 7.38 (m, 2H), 7.53 – 7.55 (m, 2H), 8.34 (s, br, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 19.7, 25.8, 73.9, 120.1, 125.4, 129.3, 136.8, 165.5, 201.3. **IR** (film): v_{max} [cm⁻¹] = 3338, 2113, 1727, 1682, 1599, 1526, 1442, 1374, 1357, 1316, 1240, 1190, 1137, 1102, 755, 691. **LRMS** (EI): *m/z* 232 (24%) [M⁺], 162 (20%), 120 (65%), 93 (43%), 77 (53%), 43 (100%). **HRMS** (EI): *m/z* 232.0949 [232.0955 berechnet für C₁₁H₁₂O₂N₄⁺ (M⁺)].

1-Azido-N-ethyl-2-oxocyclohexanecarboxamid (3-2e)

Nach Methode A wird 3-2e nach säulenchromatographischer Aufreinigung (P/EtOAc 70:30) als farbloses Öl isoliert (91%).

DC: $R_f = 0.50$ (P/Et₂O 70:30), [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.15 (t, J = 7.3 Hz, 3H), 1.66 – 1.77 (m, 1H), 1.78 – 1.86 (m, 1H), 1.87 – 1. 95 (m, 1H), 2.04 – 2.13 (m, 1H), 2.18 – 2.31 (m, 1H), 2.42 – 2.49 (m, 1H), 2.60 (dtd, J = 14.1, 4.2, 1.5 Hz, 1H), 2.92 (ddd, J = 14.0, 12.4, 6.0 Hz, 1H), 3.24 – 3.32 (m, 2H), 6.40 (s, br, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 14.7, 22.1, 26.7, 34.9, 37.1, 40.5, 75.1, 166.6, 204.2. **IR** (film): v_{max} [cm⁻¹] = 3356, 2938, 2870, 2101, 1720, 1652, 1520, 1448, 1377, 1353, 1243, 1151, 1121, 1110,

1029, 951, 830 cm⁻¹. **LRMS** (EI): m/z 182.14 (10%) [M⁺-N₂], 154 (13%), 111 (25%), 110 (42%), 83 (82%), 82 (97%), 72. (30%), 56 (35%), 55 (77%), 67 (14%), 54 (100%), 43 (64%). **HRMS** (EI): m/z 182.1050 [182.1050 berechnet für C₉H₁₄O₂N₂⁺ (M⁺-N₂)].

Diethyl-2-azido-2-methylmalonat (3-2f)^[201]

Nach Methode A wird 3-2f nach säulenchromatographischer Aufreinigung (P/EtOAc 95:5) als farbloses Öl isoliert (84%).

DC: $R_f = 0.55$ (P/EtOAc 90:10), [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.30 (t, J = 7.1 Hz, 6H), 1.55 (s, 3H), 4.288 (q, J = 7.1 Hz, 2H), 4.292 (q, J = 7.1 Hz, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 14.1, 20.6, 62.9, 68.4, 168.0. **IR** (film): v_{max} [cm⁻¹] = 2986, 2360, 2116, 1743, 1466, 1448, 1380, 1367, 1271, 1229, 1173, 1146, 1108, 1014, 858. **LRMS** (EI): m/z 187 (1%) [M⁺-N₂], 141 (3%), 70 (6%), 42 (100%). **HRMS** (EI): m/z 187.0835 [187.0839 berechnet für C₈H₁₃O₄N⁺ (M⁺-N₂)].

2-Azido-2-benzoylcyclohexanon (3-2g)

Nach Methode A wird 3-2g nach säulenchromatographischer Aufreinigung (P/EtOAc 98:2) als farbloses Öl isoliert (66%).

DC: $R_f = 0.43$ (P/EtOAc 90:10), [UV, KMnO₄]. ¹**H NMR** (500 MHz, CDCl₃): δ [ppm] =1.74 – 1.94 (m, 4H), 2.01 – 2.07 (m, 1H), 2.35 – 2.42 (m, 1H), 2.59 – 2.64 (m, 1H), 2.80 – 2.85 (m, 1H), 7.43 – 7.47 (m, 2H), 7.56 – 7.60 (m, 1H), 8.00 – 8.02 (m, 2H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 22.1, 27.6, 36.4, 41.2, 78.2, 128.8, 129.9, 134.0, 134.5, 193.5, 204.9. **IR** (film): v_{max} [cm⁻¹] = 2648, 2866, 2100, 1725, 1686, 1448, 1229, 690. **LRMS** (EI): *m/z*

215(2%) [M⁺-N₂], 105 (100%), 77 (25%). **HRMS** (EI): m/z 215.0940 [215.0941 berechnet für C₁₃H₁₃O₂N⁺ (M⁺-N₂)].

2-Acetyl-2-azidocyclohexanon (3-2h)

Nach Methode A wird 3-2h nach säulenchromatographischer Aufreinigung (P/EtOAc 95:5) als farbloses Öl isoliert (77%).

DC: $R_f = 0.17$ (P/EtOAc 95:5), [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.73 – 1.91 (m, 4H), 1.95 – 2.05 (m, 1H), 2.28 (s, 3H), 2.34 – 2.42 (m, 1H), 2.49 – 2.58 (m, 1H), 2.63 – 2.70 (m, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 21.5, 26.3, 26.6, 34.9, 40.5, 79.0, 202.6, 204.2. **IR** (film): v_{max} [cm⁻¹] = 2957, 2948, 2868, 2100, 1711, 1451, 1423, 1359, 1313, 1228, 1200, 1128, 1085, 706. **LRMS** (EI): *m/z* 153 (3%) [M⁺-N₂], 110 (70%), 82 (78%), 55 (93%), 43 (100%). **HRMS** (EI): *m/z* 150.0788 [153.0784 berechnet für C₈H₁₁O₂N⁺ (M⁺-N₂)].

Ethyl-2-azido-6-(tert-butyldimethylsilyloxy)-2-methyl-3-oxohexanoat (3-2i)

Nach Methode A wird 3-2i nach säulenchromatographischer Aufreinigung (P/EtOAc 98:2) als farbloses Öl isoliert (86%).

DC: $R_f = 0.38$ (P/EtOAc 95:5), [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 0.04 (s, 6H), 0.88 (s, 9H), 1.31 (t, J = 7.1 Hz, 3H), 1.58 (s, 3H), 1.75 – 1.85 (m, 2H), 2.54 – 2.76 (m, 1H), 3.61 (t, J = 6.0 Hz, 2H), 4.28 (q, J = 7.1 Hz, 2H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = -5.2, -5.1, 14.2, 18.4, 19.5, 26.0, 26.8, 34.2, 61.8, 62.9, 73.1, 168.7, 202.8. **IR** (film): v_{max} [cm⁻¹] = 2954, 2930, 2857, 2112, 1747, 1728, 1471, 1464, 1447, 1378, 1250, 1101, 1010, 962, 834, 775. **LRMS** (EI): m/z 286 (3%) [M⁺-C₄H₉], 258 (23%), 201 (98%). 143 (29%), 101

(38%), 73 (100). **HRMS** (EI): m/z 286.1229 [286.1218 berechnet für C₁₁H₂₀O₄N₃Si⁺ (M⁺-C₄H₉)].

Ehyl-2-azido-2-methyl-3-oxohept-6-enoat (3-2j)

Nach Methode A wird 3-2j nach säulenchromatographischer Aufreinigung (P/EtOAc 98:2) als farbloses Öl isoliert (83%).

DC: $R_f = 0.74$ (P/EtOAc 95:5), [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.31 (t, J = 7.1 Hz, 3H), 1.59 (s, 3H), 2.35 (q, J = 7.1 Hz, 2H), 2.54 – 2.78 (m, 2H), 4.28 (q, J = 7.2 Hz, 1H), 4.28 (q, J = 7.2 Hz, 1H), 4.97 – 5.09 (m, 2H), 5.70 – 5.86 (m, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 14.2, 19.4, 27.6, 37.1, 63.0, 73.0, 115.9, 136.6, 168.6, 201.9. **IR** (film): v_{max} [cm⁻¹] = 2983, 2926, 2110, 1730, 1727, 1642, 1447, 1378, 1239, 1174, 1120, 1045, 1011, 999, 915, 855. **LRMS** (EI): m/z 197 (2%) [M⁺-N₂], 167 (58%), 83 (100%). 54 (98%), 42 (85%). **HRMS** (EI): m/z 197.1046 [197.1046 berechnet für C₁₀H₁₅O₃N⁺ (M⁺-N₂)].

Ethyl-2-azido-5-(4-methoxyphenyl)-2-methyl-3-oxopent-4-enoat (3-2k)

Nach Methode A wird 3-2k nach säulenchromatographischer Aufreinigung (P/EtOAc 95:5) als gelbes Öl isoliert (85%).

DC: $R_f = 0.40$ (P/EtOAc 90:10), [UV, KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.29 (t, J = 7.1 Hz, 3H), 1.66 (s, 3H), 3.85 (s, 3H), 4.29 (q, J = 7.1 Hz, 1H), 4.29 (q, J = 7.1 Hz, 1H), 6.85 (d, J = 15.6 Hz, 1H), 6.92 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 8.8 Hz, 2H), 7.79 (d, J = 15.6 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 14.2, 19.8, 55.6, 62.9, 72.9, 114.7, 116.7, 127.0, 130.9, 146.5, 162.4, 169.1, 191.0. **IR** (film): v_{max} [cm⁻¹] = 2935, 2111, 1741, 1693, 1600, 1591, 1571, 1511, 1444, 1423, 1377, 1253, 1172, 1115, 1045, 826. **LRMS** (EI):

m/z 303 (1%) [M⁺], 275 (1%) [M⁺-N₂], 161 (100%), 133 (19%), 118 (6%). **HRMS** (EI): m/z 275.1153 [275.1152 berechnet für C₁₅H₁₇O₄N⁺ (M⁺-N₂)].

Ethyl-2-azido-2-methyl-10-(oxiran-2-yl)-3-oxodecanoat (3-2l)

Nach Methode A wird 3-21 nach säulenchromatographischer Aufreinigung (P/EtOAc 90:10) als farbloses Öl isoliert (87%, *d.r.* = 1:1).

DC: $R_f = 0.54$ (P/EtOAc 80:20), [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.30 (t, J = 7.1 Hz, 6H), 1.25 – 1.37 (m, 12H), 1.45 – 1.67 (m, 12H), 1.57 (s, 6H), 2.45 (dd, J = 5.0, 2.8 Hz, 2H), 2.50 (d, J = 7.1 Hz, 2H), 2.56 (d, J = 7.3 Hz, 2H), 2.74 (dd, J = 5.0, 4.0 Hz, 2H), 2.85 – 2.93 (m, 2H), 4.28 (q, J = 7.1, 0.9 Hz, 2H), 4.28 (q, J = 7.1, 0.9 Hz, 2H). ¹³C NMR (63 MHz, CDCl₃): δ [ppm] = 14.2, 19.4, 23.6, 26.0, 29.0, 29.3, 29.4, 32.6, 37.8, 47.2, 52.5, 62.9, 73.1, 168.7, 202.7. **IR** (film): v_{max} [cm⁻¹] = 2988, 2929, 2857, 2110, 1746, 1728, 1455, 1377, 1243, 1124, 1014, 914, 851. **LRMS** (GC-MS): m/z 283 (7%) [M⁺-N₂], 210 (46%), 182 (66%), 169 (27%), 115 (100%), 81 (54%), 71 (54%), 55 (93%). **HRMS** (EI): m/z 312.1918 [313.1918 berechnet für C₁₅H₂₆O₄N₃⁺ (M⁺+H)].

Methyl-7-azido-8-oxo-1,4-dioxaspiro[4.5]decan-7-carboxylat (3-2m)

Nach Methode A wird 3-2m nach säulenchromatographischer Aufreinigung (P/EtOAc 85:15) als farbloses Öl isoliert (93%).

DC: $R_f = 0.22$ (P/EtOAc 85:15), [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.98 (d, J = 13.9 Hz, 1H), 2.00 - 2.12 (m, 2H), 2.67 (dt, J = 15.1, 4.7 Hz, 1H), 2.76 (dd, J = 13.9, 2.7 Hz, 1H), 2.90 - 2.99 (m, 1H), 3.85 (s, 3H), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz, 2.76 MHz, 2.7 Hz, 2.7 Hz, 2.90 - 2.99 (m, 2.7 Hz, 2.7 Hz), 2.90 - 2.99 (m, 2.7 Hz), 3.85 (s, 3H), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 2.7 Hz, 2.7 Hz, 2.7 Hz, 2.7 Hz, 2.7 Hz), 2.90 - 2.99 (m, 2.7 Hz), 2.90 - 2.99 (m, 2.7 Hz), 3.85 (s, 3H), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 2.7 Hz), 2.7 Hz, 2.7 Hz, 2.7 Hz), 2.90 - 2.99 (m, 2.7 Hz), 3.85 (s, 3H), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 3.85 (s, 2.7 Hz), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 3.85 (s, 2.7 Hz), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 3.85 (s, 2.7 Hz), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 3.85 (s, 2.7 Hz), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 3.85 (s, 3.7 Hz), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 3.85 (s, 3.7 Hz), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 3.85 (s, 3.7 Hz), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 3.85 (s, 3.7 Hz), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 3.85 (s, 3.7 Hz), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 3.85 (s, 3.7 Hz), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (91 MHz), 3.85 (s, 3.7 Hz), 3.94 - 4.11 (m, 4H). ¹³**C NMR** (s, 3.7 Hz), 3.94 - 4.11 (m, 4H).

CDCl₃): δ [ppm] = 34.7, 36.6, 41.5, 53.5, 64.6, 65.2, 71.8, 106.1, 168.2, 201.1. **IR** (film): v_{max} [cm⁻¹] = 2951, 2929, 2358, 2111, 1730, 1439, 1295, 1232. **LRMS** (EI): *m/z* 256 (1%) [M⁺+H], 227 (2%), 168 (43%), 124 (30%), 99 (100%). **HRMS** (EI): *m/z* 227.0791 [227.0788 berechnet für C₁₀H₁₃O₅N⁺ (M⁺-N₂)].

Ethyl-2-azido-5-(1,3-dithian-2-yl)-2-methyl-3-oxopentanoat (3-2n)

Nach Methode A wird 3-2n nach säulenchromatographischer Aufreinigung (P/EtOAc 85:15) als farbloses Öl isoliert (89%).

DC: $R_f = 0.44$ (P/EtOAc 85:15), [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.31 (t, J = 7.1 Hz, 3H), 1.60 (s, 3H), 1.78 – 1.92 (m, 1H), 2.05 – 2.13 (m, 3H), 2.72 – 2.90 (m, 6H), 4.01 (t, J = 7.0 Hz, 1H), 4.28 (q, J = 7.1 Hz, 1H), 4.28 (q, J = 7.1 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 14.2, 19.5, 25.9, 29.2, 29.9, 34.8, 46.1, 63.1, 73.0, 168.5, 201.8. **IR** (film): v_{max} [cm⁻¹] = 2982, 2935, 2900, 2111, 1725, 1445, 1377, 1241, 1118, 1011, 908, 731. **LRMS** (EI): m/z 317 (4%) [M⁺], 275 (23%), 220 (25%), 205 (100%), 175 (30%), 132 (35%). **HRMS** (EI): m/z 317.0861 [317.0862 berechnet für C₁₂H₁₉O₃N₃S₂⁺ (M⁺)].

3-Azido-3-benzoyldihydrofuran-2(3H)-on (3-2o)

Nach Methode A wird 3-20 nach säulenchromatographischer Aufreinigung (P/EtOAc 80:20) als farbloses Öl isoliert (91%).

DC: $R_f = 0.27$ (P/EtOAc 80:20), [UV, KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 2.54 (dt, J = 13.5, 8.4 Hz, 1H), 2.91 (ddd, J = 13.5, 6.8, 3.6 Hz, 1H), 4.37 (dt, J = 6.0, 8.0 Hz, 1H), 4.51 (ddd, J = 9.1, 8.4, 3.6 Hz, 1H), 7.51 – 7.55 (m, 2H), 7.64 – 7.69 (m, 1H), 8.11 – 8.13 (m, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 34.2, 65.7, 72.1, 129.1, 130.0, 132.6, 134.7,

171.6, 193.0. **IR** (film): v_{max} [cm⁻¹] = 2919, 2108, 1780, 1674, 1596, 1448, 1273, 1245, 1213, 1177, 1022, 954, 686. **LRMS** (EI): *m/z* 203 (1%) [M⁺-N₂], 105 (100%), 77 (80%), 51 (23%). **HRMS** (EI): *m/z* 203.0580 [203.0577 berechnet für C₁₁H₉O₃N⁺ (M⁺-N₂)].

Ethyl-2-azido-8-hydroxy-2-methyl-3-oxooctanoat (3-2p)

Nach Methode A wird 3-2p nach säulenchromatographischer Aufreinigung (P/EtOAc 70:30) als farbloses Öl isoliert (72%).

DC: $R_f = 0.38$ (P/EtOAc 60:40), [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.22 – 1.44 (m, 5H), 1.32 (t, J = 7.1 Hz, 3H), 1.54 – 1.69 (m, 5H), 1.59 (s, 3H), 2.49 – 2.67 (m, 2H), 3.65 (t, J = 6.5 Hz, 2H), 4.29 (q, J = 7.1 Hz, 1H), 4.29 (q, J = 7.1 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 14.2, 19.4, 23.3, 25.3, 32.5, 37.7, 62.7, 62.9, 73.1, 168.7, 202.7. **IR** (film): v_{max} [cm⁻¹] = 3375, 2933, 2858, 2111, 1725, 1453, 1378, 1243, 1120, 1013, 858. **LRMS** (ESI): m/z 258 (1%) [M+H⁺], 240 (50%), 212 (100%), 166 (5%). **HRMS** (ESI): m/z 258.1448 [275.1448 berechnet für C₁₁H₂₀O₄N₃⁺ (M+H⁺)].

(5*R*,7*S*,9*S*)-Ethyl-2-azido-5,7,9-trihydroxy-10-(4-methoxybenzyloxy)-2-methyl-3-oxodecanoat (3-2q)

Nach Methode A wird 3-**2q** nach säulenchromatographischer Aufreinigung (CH₂Cl₂/MeOH 99:1) als farbloses Öl isoliert (51%, d.r. = 1:1).

DC: $R_f = 0.20$ (P/EtOAc 50:50), [UV, CAM]. ¹**H** NMR (250 MHz, CDCl₃): δ [ppm] = 1.32 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.53 – 1.68 (m, 4H), 1.59 (s, 3H), 1.61 (s, 3H), 1.86 – 2.01 (m, 3H), 2.27 – 2.38 (m, 1H), 2.77 – 2.88 (m, 2H), 2.92 – 2.97 (m, 1H), 3.04 – 3-09 (m, 1H), 3.42 – 3.58 (m, 4H), 3.83 (s, 6H), 4.06 – 4.12 (m, 2H), 4.13 – 4.21 (m, 3H), 4.25 – 4.32 (m, 5H), 4.47 – 4.55 (m, 4H), 6.90 (d, J = 8.5 Hz, 4H), 7.28 (d, J = 8.5 Hz, 4H). ¹³C

NMR (63 MHz, CDCl₃): δ [ppm] = 14.0, 18.9, 19.1, 29.7, 35.1, 38.3, 38.5, 43.4, 43.5, 55.3, 62.9, 63.0, 64.30, 64.31, 66.7, 66.8, 70.0, 70.1, 70.7, 70.8, 73.00, 73.02, 113.78, 113.79, 129.31, 129.32, 130.1, 130.2, 159.19, 159.20, 168.3, 168.5, 200.5, 200.8. **IR** (film): v_{max} [cm⁻¹] = 3443 (br), 2925, 2853, 2114, 1730, 1612, 1514, 1456, 1369, 1247, 1174, 1099, 1036. **LRMS** (ESI): *m/z* 893 (98%) [2M-2H₂O+Na⁺], 458 (100%) [M-H₂O+Na⁺], 417 (26%), 282 (7%). **HRMS** (ESI): *m/z* 458.1891 [458.1898 berechnet für C₂₁H₂₉O₇N₃Na⁺ (M-H₂O+Na⁺)].

Ethyl-2-azido-5-hydroxy-5-methyl-3-oxo-2-phenylhexanoat (3-2r)

Nach Methode A wird 3-2r nach säulenchromatographischer Aufreinigung (P/EtOAc 85:15) als gelbes Öl isoliert (88%).

DC: $R_f = 0.21$ (P/EtOAc 85:15), [UV, KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.18 (s, 6H), 1.35 (t, J = 7.1 Hz, 3H), 2.61 (d, J = 18.1 Hz, 1H), 2.77 (d, J = 18.1 Hz, 1H), 3.41 (s, 1H), 4.38 (q, J = 7.1 Hz, 2H), 7.37 – 7.46 (m, 5H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 14.2, 29.1, 29.2, 49.7, 63.5, 70.0, 80.1, 127.5, 129.2, 129.5, 132.9, 167.3, 203.2. **IR** (film): v_{max} [cm⁻¹] = 2977, 2114, 1731, 1449, 1377, 1322, 1233, 1155, 1115, 1095, 1027, 729, 698. **LRMS** (GC-MS): m/z 277 (9%) [M⁺-N₂], 204 (100%), 193 (19%), 120 (57%), 104 (59%), 92 (16%), 83 (71%). **HRMS** (ESI): m/z 306.1448 [306.1448 berechnet für C₁₅H₂₀O₄N₃⁺ (M+H⁺)].

Ethyl-2-azido-5-hydroxy-5-(4-methoxyphenyl)-2-methyl-3-oxopentanoat (3-2s)

Nach Methode A wird 3-2s nach säulenchromatographischer Aufreinigung (P/EtOAc 80:20) als farbloses Öl isoliert (80%, *d.r.* = 1:1).

DC: $R_f = 0.43$ (P/EtOAc 70:30), [UV, KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.29 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 1.58 (s, 3H), 1.59 (s, 3H), 2.78 – 3.15 (m, 6H), 3.80 (s, 6H), 4.21 – 4.33 (m, 4H), 5.10 – 5.20 (m, 2H), 6.88 (d, J = 8.7 Hz, 4H), 7.28 (d, J = 8.8 Hz, 4H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 14.1, 19.1, 19.2, 46.96, 47.02, 55.5, 63.1, 63.2, 69.5, 69.7, 73.1, 73.2, 114.1, 127.09, 127.11, 134.7, 134.8, 159.47, 159.48, 168.27, 168.31, 202.5, 202.6. **IR** (film): v_{max} [cm⁻¹] = 3448, 2994, 2960, 2937, 2838, 2112, 1723, 1512, 1445, 1379, 1243, 1174, 1115, 1031, 832. **LRMS** (EI): *m/z* 275 (1%) [M⁺-N₂-H₂O], 219 (7%), 160 (13%), 137 (100%). **HRMS** (EI): *m/z* 275.1148 [275.1152 berechnet für C₁₅H₁₇O₄N⁺ (M⁺-N₂-H₂O)].

Ethyl-2-azido-3-(furan-2-yl)-2-methyl-3-oxopropanoat (3-2t)

Nach Methode A wird 3-2t nach säulenchromatographischer Aufreinigung (P/EtOAc 90:10) als farbloses Öl isoliert (95%).

DC: $R_f = 0.29$ (P/EtOAc 90:10), [UV, KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.19 (t, J = 7.1 Hz, 3H), 1.72 (s, 3H), 4.25 (q, J = 7.1 Hz, 1H), 4.25 (q, J = 7.1 Hz, 1H), 6.57 (dd, J = 3.7, 1.7 Hz, 1H), 7.39 (dd, J = 3.7, 0.6 Hz, 1H), 7.61 (dd, J = 1.6, 0.6 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 14.1, 19.9, 62.8, 70.9, 112.8, 120.4, 147.3, 149.7, 168.7, 180.5. **IR** (film): v_{max} [cm⁻¹] = 2996, 2820, 2118, 1749, 1684, 1568, 1464, 1390, 1379, 1284 1240, 1120, 1016, 768. **LRMS** (ESI): m/z 260 (1%) [M+Na⁺], 238 (1%) [M+H⁺], 210 (10%), 208 (25%), 186 (100%). **HRMS** (ESI): m/z 238.0823 [238.0822 berechnet für C₁₀H₁₂O₄N₃⁺ (M+H⁺)].

tert-Butyl-2-acetyl-2-azidopentanoat (3-2u)

Nach Methode A bei 40 °C wird 3-2u nach säulenchromatographischer Aufreinigung (P/EtOAc 95:5) als farbloses Öl isoliert (74%).

DC: $R_f = 0.40$ (P/EtOAc 95:5), [KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.93 (t, J = 7.3 Hz, 3H), 1.21 – 1.39 (m, 2H), 1.50 (s, 9H), 1.85 – 1.91 (m, 2H), 2.23 (s, 3H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 14.2, 17.3, 25.9, 28.0, 35.6, 77.7, 84.5, 166.9, 200.5. **IR** (film): v_{max} [cm⁻¹] = 2972, 2935, 2904, 2876, 2116, 1725, 1458, 1395, 1370, 1357, 1248, 1151, 1139, 1116, 1038, 951, 839, 757. **LRMS** (EI): m/z 185 (3%) [M⁺-C₄H₉], 126 (12%), 113 (12%), 97 (10%), 70 (100%), 57 (24%), 43 (15%). **HRMS** (EI): m/z 185.0794 [185.0795 berechnet für C₇H₁₁O₃N₃⁺ (M⁺-C₄H₉]].

2-Azido-*N*,*N*-diethyl-2-methyl-3-oxo-5-phenylpent-4-enamid (3-2v)

Nach Methode A bei 50 °C wird 3-2v nach säulenchromatographischer Aufreinigung (P/EtOAc 90:10 \rightarrow 80:20) als gelber Feststoff isoliert (56%).

DC: $R_f = 0.68$ (P/EtOAc 80:20), [UV, KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.10 (t, J = 5.8 Hz, 3H), 1.13 (t, J = 5.8 Hz, 3H), 1.79 (s, 3H), 3.12 – 3.22 (m, 1H), 3.23 – 3.36 (m, 2H), 3.41 – 3.51 (m, 1H), 6.92 (d, J = 15.7 Hz, 1H), 7.37–7.47 (m, 3H), 7.56 – 7.59 (m, 2H), 7.84 (d, J = 15.7 Hz, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 12.5, 13.5, 21.1, 41.0, 42.1, 73.6, 118.8, 129.0, 129.2, 131.5, 134.0, 146.6, 165.7, 193.8. **IR** (film): v_{max} [cm⁻¹] = 2935, 2106, 1691, 1647, 1607, 1576, 1449, 1256, 1044. **LRMS** (EI): *m/z* 300 (1%), 272 (1%), 131 (100%), 100 (25%), 77 (10%), 72 (18%). **HRMS** (EI): *m/z* 272.1523 [272.1519 berechnet für C₁₆H₂₀O₂N₂⁺ (M⁺-N₂)].

2-(Ethyl-3-amino-2-azido-2-methyl-3-oxopropanoyl)-strychnin

Nach Methode A wird das Produkt nach säulenchromatographischer Aufreinigung $(CH_2Cl_2/MeOH 98:2 \rightarrow 90:10)$ als schwach gelber Feststoff isoliert (76%, *d.r.* = 1:1).

DC: R_f = 0.32 (CH₂Cl₂/MeOH 85:15), [UV, CAM]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.32 (t, J = 7.1 Hz, 6H), 1.45 (d, J = 14.2 Hz, 2H), 1.85 (s, 6H), 1.88 – 1.99 (m, 4H), 2.35 (dt, J = 14.3, 4.2 Hz, 2H), 2.65 (dd, J = 17.5, 3.2 Hz, 2H), 2.74 (d, J = 14.8 Hz, 2H), 2.81 – 2.92 (m, 2H), 3.06 – 3.17 (m, 4H), 3.21 – 3.28 (m, 2H), 3.71 (d, J = 14.7 Hz, 2H), 3.87 (d, J = 10.5 Hz, 2H), 3.96 – 4.01 (m, 2H), 4.03 – 4.08 (m, 2H), 4.15 (dd, J = 13.8, 6.9 Hz, 2H), 4.25 – 4.31 (m, 2H), 4.30 (q, J = 7.2 Hz, 4H), 5.92 (t, J = 5.4 Hz, 2H), 7.23 – 7.28 (m, 2H), 7.54 (dd, J = 3.4, 2.3 Hz, 2H), 8.03 (d, J = 8.6 Hz, 2H), 8.26 (s, 2H). ¹³C **NMR** (63 MHz, CDCl₃): δ [ppm] = 14.2, 20.5, 26.9, 31.6, 42.5, 42.8, 48.3, 50.4, 52.2, 52.8, 60.30, 60.32, 60.5, 63.3, 64.7, 69.4, 114.9, 116.6, 120.8, 128.0, 133.5, 133.7, 139.4, 140.0, 164.6, 168.3, 169.2. **IR** (film): v_{max} [cm⁻¹] = 3290, 2924, 2860, 2116, 1743, 1667, 1604, 1537, 1486, 1446, 1388, 1325, 1265, 1105, 1049, 916, 731. **LRMS** (ESI): *m*/*z* 1037 (5%) [2M+H⁺], 519 (100%) [M+H⁺], 282 (8%). **HRMS** (ESI): *m*/*z* 519.2344 [519.2350 berechnet für C₂₇H₃₁O₅N₆⁺ (M+H⁺)].

2.5.3 Synthese der 2-Azido-1,3-Dicarbonylverbindungen 3-2 nach Methode B

Allgemeine Arbeitsvorschrift für die Synthese der Azidverbindung 3-2 mit I₂: Ethyl-1azido-2-oxocyclohexanecarboxylat (3-2a)

3-1a (25.5 mg, 150 μ mol) wird in DMSO (1 mL) gelöst und eine wässrige NaN₃-Lösung (1M, 0.5 mL) wird hinzugefügt. I₂ (57.1 mg, 225 μ mol, 1.5 Äq.) wird hinzugefügt und die Reaktionsmischung wird 4 h bei RT gerührt. Die Reaktion wird durch Zugabe von gesättigter,

wässriger Na₂S₂O₃-Lösung (10 mL) abgebrochen. Die Mischung wird mit CH₂Cl₂ (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 95:5). Azid 3-**2a** wird als schwach gelbes Öl isoliert (27.4 mg, 130 µmol, 86%). Die analytischen Daten stimmen mit den oben genannten überein.

Methyl-2-azido-2-methyl-3-oxo-3-phenylpropanoat (3-2c)

$$\begin{array}{c} O & O \\ N_{3} \\ Ph & OMe \\ C_{11}H_{11}N_{3}O_{3} \\ 233.22 \end{array}$$

Nach der Methode B wird 3-2c nach säulenchromatographischer Aufreinigung (P/EtOAc 95:5) als farbloses Öl isoliert (92%). Die analytischen Daten stimmen mit den oben genannten überein.

Ethyl-2-azido-5-(4-methoxyphenyl)-2-methyl-3-oxopent-4-enoat (3-2k)

Nach Methode B wird 3-2k nach säulenchromatographischer Aufreinigung (P/EtOAc 95:5) als gelbes Öl isoliert (79%). Die analytischen Daten stimmen mit den oben genannten überein.

Ethyl-2-azido-2-methyl-10-(oxiran-2-yl)-3-oxodecanoat (3-2l)

Nach Methode B wird 3-21 nach säulenchromatographischer Aufreinigung (P/EtOAc 90:10) als farbloses Öl isoliert (92%, d.r. = 1:1). Die analytischen Daten stimmen mit den oben genannten überein.

Ethyl-2-azido-5-(1,3-dithian-2-yl)-2-methyl-3-oxopentanoat (3-2n)

Nach Methode B wird 3-2n nach säulenchromatographischer Aufreinigung (P/EtOAc 85:15) als farbloses Öl isoliert (85%). Die analytischen Daten stimmen mit den oben genannten überein.

3-Azido-3-benzoyldihydrofuran-2(3H)-on (3-2o)

Nach Methode B wird 3-20 nach säulenchromatographischer Aufreinigung (P/EtOAc 80:20) als farbloses Öl isoliert (87%). Die analytischen Daten stimmen mit den oben genannten überein.

Ethyl-2-azido-5-hydroxy-5-methyl-3-oxo-2-phenylhexanoat (3-2r)

Nach Methode B wird 3-2r nach säulenchromatographischer Aufreinigung (P/EtOAc 85:15) als gelbes Öl isoliert (70%). Die analytischen Daten stimmen mit den oben genannten überein.

Ethyl 2-azido-5-hydroxy-5-(4-methoxyphenyl)-2-methyl-3-oxopentanoat (3-2s)

Nach Methode B wird 3-2s nach säulenchromatographischer Aufreinigung (P/EtOAc 80:20) als farbloses Öl isoliert (77%, d.r. = 1:1). Die analytischen Daten stimmen mit den oben genannten überein.

tert-Butyl-2-acetyl-2-azidopentanoat (3-2u)

Nach Methode B bei 40 °C wird 3-2u nach säulenchromatographischer Aufreinigung (P/EtOAc 95:5) als farbloses Öl isoliert (74%). Die analytischen Daten stimmen mit den oben genannten überein.

2.5.4 Synthese der 2,2-Bisazido-1,3-Dicarbonylverbindungen 3-5 nach Methode C

Allgemeine Arbeitsvorschrift für die Synthese der Bisazidverbindung 3-5 mit IBX-SO₃K/NaI: Ethyl-2,2-diazido-3-oxo-3-phenylpropanoat (3-5a)^[237]

3-4a (28.8 mg, 150 μ mol) wird in DMSO (1 mL) gelöst und eine wässrige NaN₃-Lösung (1M, 0.5 mL) wird hinzugefügt. NaI (4.5 mg, 30 μ mol, 0.2 Äq.) und IBX-SO₃K (179 mg, 300 μ mol, 3 Äq.) werden hinzugefügt und die Reaktionsmischung wird 10 min bei RT gerührt. Die Reaktion wird durch Zugabe von gesättigter, wässriger Na₂S₂O₃-Lösung (10 mL) abgebrochen. Die Mischung wird mit CH₂Cl₂ (3×10 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 90:10). Bisazid 3-**5a** wird als schwach gelbes Öl isoliert (31.7 mg, 116 μ mol, 77%).

DC: $R_f = 0.66$ (P/EtOAc 80:20), [UV, KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.17 (t, J = 7.1 Hz, 3H), 4.30 (q, J = 7.1 Hz, 2H), 7.43 – 7.52 (m, 2H), 7.59 – 7.66 (m, 1H), 7.99 – 8.06 (m, 2H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 14.0, 64.2, 77.9, 128.9, 130.0, 132.1, 134.7, 165.2, 186.7. **IR** (film): v_{max} [cm⁻¹] = 2984, 2116, 1754, 1704, 1598, 1580, 1448, 1394, 1366, 1217, 1044, 898, 851, 764, 740, 686.

Massenanalytik der Bisazidverbindung war nicht möglich. Die LRMS- und HRMS-Daten von Bistriazol 3-**8a** hergestellt ausgehend von 3-**5a** sind nachfolgend angegeben.

Ethyl-2,2-diazido-3-oxo-3-(thiophen-2-yl)-propanoat (3-5b)

Nach Methode C bei wird 3-**5b** nach säulenchromatographischer Aufreinigung (P/EtOAc 98:2) als farbloses Öl isoliert (83%).

DC: $R_f = 0.58$ (P/EtOAc 80:20), [UV, KMnO₄]. ¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 1.24 (t, J = 7.1 Hz, 3H), 4.32 (q, J = 7.1 Hz, 2H), 7.16 (dd, J = 5.0, 4.0 Hz, 1H), 7.78 (dd, J = 5.0, 1.1 Hz, 1H), 7.96 (dd, J = 4.0, 1.1 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 14.0, 64.4, 83.2, 128.7, 136.0, 136.8, 137.6, 164.8, 180.0. **IR** (film): v_{max} [cm⁻¹] = 3107, 2987, 2963, 2930, 2855, 2118, 1754, 1681, 1514, 1409, 1355, 1229, 1036, 851, 821, 731.

Massenanalytik der Bisazidverbindung war nicht möglich. Die LRMS- und HRMS-Daten von Bistriazol 3-**8b** hergestellt ausgehend von 3-**5b** sind nachfolgend angegeben.

Methyl-2,2-diazido-5,5-dimethyl-3-oxohexanoat (3-5c)

Nach Methode C bei wird 3-5c nach säulenchromatographischer Aufreinigung (P/EtOAc 90:10) als farbloses Öl isoliert (79%).

DC: $R_f = 0.75$ (pentanes/EtOAc 80:20), [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 1.04 (s, 9H), 1.35 (t, J = 7.1 Hz, 3H), 2.47 (s, 2H), 4.37 (q, J = 7.1 Hz, 2H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 14.2, 29.5, 31.2, 49.2, 64.2, 83.5, 164.6, 197.0. **IR** (film): v_{max} [cm⁻¹] = 2998 (br), 2115, 1744, 1367, 1349, 1265, 1224, 1054, 1021, 984, 902, 721.

Massenanalytik der Bisazidverbindung war nicht möglich. Die LRMS- und HRMS-Daten von Bistriazol 3-8c hergestellt ausgehend von 3-5c sind nachfolgend angegeben.

Dimethyl-2,2-diazidomalonat (3-5d)^[238]

Nach Methode C bei wird 3-5c nach säulenchromatographischer Aufreinigung (P/EtOAc 90:10) als gelbes Öl isoliert (50%).

DC: $R_f = 0.40$ (P/EtOAc 80:20), [KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 3.92 (s, 6H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 54.6, 80.1, 164.1. **IR** (film): v_{max} [cm⁻¹] = 2963, 2920, 2850, 2360, 2123, 1759, 1437, 1297, 1237, 1070, 1049, 790, 732.

Massenanalytik der Bisazidverbindung war nicht möglich. Die LRMS- und HRMS-Daten von Bistriazol 3-**8d** hergestellt ausgehend von 3-**5d** sind nachfolgend angegeben.

Methyl-2,2-diazido-3-oxo-3-(phenylamino)propanoat (3-5e)

Nach Methode C bei wird 3-5e nach säulenchromatographischer Aufreinigung (P/EtOAc 90:10) als farbloses Öl isoliert (38%).

DC: $R_f = 0.32$ (P/EtOAc 90:10), [UV, KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 3.95 (s, 3H), 7.17 – 7.22 (m, 1H), 7.34 – 7.40 (m, 2H), 7.54 – 7.57 (m, 2H), 8.18 (s, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 54.7, 79.5, 120.2, 125.9, 129.4, 136.2, 161.1, 165.1. **IR** (film): v_{max} [cm⁻¹] = 3369, 2128, 1757, 1696, 1601, 1533, 1501, 1446, 1319, 1238, 1061, 1046, 754, 692.

Massenanalytik der Bisazidverbindung war nicht möglich.

1-Estradiyl-3-methyl-2,2-diazidomalonat

Nach Methode C bei wird das Produkt nach säulenchromatographischer Aufreinigung (P/EtOAc 90:10 \rightarrow 70:30) als weißer Feststoff isoliert (77%).

DC: $R_f = 0.60$ (P/EtOAc 70:30), [UV, CAM]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 0.84 (s, 3H), 1.24 – 1.53 (m, 7H), 1.60 – 1.70 (m, 1H), 1.75 – 1.94 (m, 2H), 2.17 – 2.36 (m, 3H), 2.77 – 2.90 (m, 2H), 3.92 (s, 3H), 4.62 (s, br, 1H), 4.85 (dd, J = 9.2, 7.7 Hz, 1H), 6.56 (d, J = 2.7 Hz, 1H), 6.63 (dd, J = 8.4, 2.7 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 12.2, 23.4, 26.2, 27.2, 27.4, 29.6, 36.8, 38.6, 43.5, 43.8, 49.7, 54.4, 87.0, 112.9, 115.4, 126.7, 132.4, 138.2, 153.6, 163.6, 164.3. **IR** (film): v_{max} [cm⁻¹] = 3216, 2925, 2871, 2124, 1755, 1609, 1500, 1436, 1290, 1234, 1042, 1023, 953, 788.

Massenanalytik der Bisazidverbindung war nicht möglich. Die LRMS- und HRMS-Daten von Bistriazol 3-13 sind nachfolgend angegeben.

2.5.5 Modifikation der Azide in 1,3-dipolaren Zykloadditionen nach Methode D

Allgemeine Arbeitsvorschrift für die Synthese der Triazole 3-7 und 3-8:^[239] Ethyl-2-oxo-1-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-cyclohexancarboxylat (3-7a)

Azid 3-2a (20.0 mg, 94.7 μ mol) wird in einer Mischung aus *tert*-BuOH und H₂O (2:1, 300 μ L). Phenylacetylen (12.0 μ L, 11.2 mg, 110 μ mol, 1.15 Äq.), CuSO₄·5H₂O (5.00 mg, 20.0 μ mol, 0.2 Äq.), Natriumascorbat (7.9 mg, 40 μ mol, 0.4 Äq.) und TBTA (0.5 mg, 1.00 μ mol, 1 mol%) werden hinzugefügt und die Reaktionsmischung wird 3 h bei RT gerührt. Die Mischung wird mit H₂O verdünnt (15 mL) und mit CH₂Cl₂ (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und

der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 85:15). Triazol 3-7a wird als weißer Feststoff isoliert (26.9 mg, 85.6 µmol, 91%).

DC: $R_f = 0.06$ (P/EtOAc 90:10) [UV, KMnO₄]. ¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 1.28 (t, J = 7.1 Hz, 3H), 1.85 – 2.00 (m, 3H), 2.02 – 2.10 (m, 1H), 2.63 – 2.74 (m, 2H), 2.85 – 2.91 (m, 1H), 3.04 – 3.09 (m, 1H), 4.31 (q Hz, J = 7.1, 2H), 7.32 – 7.35 (m, 1H), 7.41 – 7.44 (m, 2H), 7.84 (s, 1H), 7.85 – 7.87 (m, 2H). ¹³C **NMR** (91 MHz, CDCl₃): δ [ppm] = 14.1, 21.5, 26.7, 35.2, 40.1, 63.4, 76.6, 120.3, 126.0, 128.4, 129.0, 130.5, 147.8, 166.7, 200.3. **LRMS** (ESI): m/z 713 (30%) [2M+2MeOH+Na⁺], 659 (15%) [2M+MeOH+H⁺], 627 (7%) [2M+H⁺], 368 (20%), 346 (100%) [M+MeOH+H⁺], 314 (65%) [M+H⁺]. **HRMS** (ESI): m/z 314.1495 [314.1499 berechnet für C₁₇H₂₀O₃N₃⁺ (M+H⁺)].

Nach Methode D bei wird 3-7c nach säulenchromatographischer Aufreinigung (P/EtOAc 85:15) in quantitativer Ausbeute als weißer Feststoff isoliert.

DC: $R_f = 0.20$ (P/EtOAc 95:5), [UV, KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 2.31 (s, 3H), 3.82 (s, 3H), 7.31 – 7.37 (m, 3H), 7.39 – 7.44 (m, 2H), 7.48 – 7.53 (m, 1H), 7.59 – 7.62 (m, 2H), 7.83 – 7.87 (m, 2H), 8.31 (s, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 23.6, 53.9, 74.1, 120.8, 125.9, 128.5, 128.94, 128.95, 129.0, 130.3, 133.6, 133.8, 147.9, 168.6, 190.0. **LRMS** (ESI): *m/z* 671 (15%) [2M+H⁺], 358 (4%) [M+Na⁺], 336 (100%) [M+H⁺], 282 (5%), 232 (55%). **HRMS** (ESI): *m/z* 336.1337 [336.1343 berechnet für C₁₉H₁₈O₃N₃⁺ (M+H⁺)].

2-Methyl-3-oxo-N-phenyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-butanamid (3-7d)

Nach Methode D bei wird 3-7d nach säulenchromatographischer Aufreinigung (P/EtOAc 80:20) als gelber Feststoff isoliert (84%).

DC: $R_f = 0.20$ (P/EtOAc 80:20), [UV, KMnO₄]. ¹**H NMR** (250 MHz, CDCl₃): δ [ppm] = 2.24 (s, 3H), 2.26 (s, 3H), 7.12 – 7.19 (m, 1H), 7.30 – 7.49 (m, 5H), 7.51 – 7.56 (m, 2H), 7.84 – 7.91 (m, 2H), 8.06 (s, 1H), 9.24 (s, br, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 22.0, 25.8, 75.6, 120.0, 120.6, 125.5, 126.0, 128.9, 129.1, 129.2, 129.8, 136.9, 164.1, 201.8. **LRMS** (GC-MS): m/z 215 (37%) [M⁺ - CONHC₆H₅], 172 (22%), 144 (100%), 116 (59%), 102 (34%), 92 (20%). **HRMS** (ESI): m/z 335.1498 [335.1503 berechnet für C₁₉H₁₉O₂N₄⁺ (M+H⁺)].

Ethyl-5-hydroxy-5-methyl-3-oxo-2-phenyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-hexanoat (3-7r)

Nach Methode D bei wird 3-7r nach säulenchromatographischer Aufreinigung (P/EtOAc 60:40) in quantitativer Ausbeute als gelbes Öl isoliert.

DC: $R_f = 0.10$ (P/EtOAc 80:20), [UV, KMnO₄]. ¹**H NMR** (250MHz, CDCl₃): δ [ppm] = 1.25 (s, 3H), 1.31 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H), 2.80 (d, J = 18.0 Hz, 1H), 3.02 (d, J = 18.0 Hz, 1H), 3.43 (s, br, 1H), 4.46 (d, J = 7.1 Hz, 1H), 4.46 (d, J = 7.1 Hz, 1H), 7.13 – 7.17 (m, 2H), 7.31 – 7.47 (m, 6H), 7.83 – 7.89 (m, 2H), 8.25 (s, 1H). ¹³**C NMR** (63 MHz, CDCl₃): δ [ppm] = 14.0, 29.3, 29.5, 51.3, 64.0, 70.3, 81.4, 122.0, 126.0, 127.9, 128.6, 129.0, 129.1, 129.9, 130.2, 133.5, 147.3, 165.9, 199.0. **LRMS** (ESI): m/z 837 (24%) [2M+Na⁺], 446 (3%) [M+K⁺], 430 (22%), [M+Na⁺], 408 (100%) [M+H⁺], 318 (65%), 308 (69%). **HRMS** (ESI): m/z 408.1911 [408.1918 berechnet für C₂₃H₂₆O₄N₃⁺ (M+H⁺)].

2-[Ethyl-3-amino-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-2-methyl-3-oxopropanoyl]-strychnin (3-14)

Nach Methode D bei wird 3-14 nach säulenchromatographischer Aufreinigung $(CH_2Cl_2/MeOH 95:5 \rightarrow 85:15)$ als farbloses Harz isoliert (72%).

DC: $R_f = 0.38$ (CH₂Cl₂/MeOH 90:10), [UV, CAM]. ¹**H NMR** (500 MHz, CDCl₃): δ [ppm] = 1.30 (t, J = 7.1 Hz, 6H), 1.42 (d, J = 14.0 Hz, 1H), 1.43 (d, J = 14.0 Hz, 1H), 1.84 – 1.94 (m, 4H), 2.28 – 2.39 (m, 2H), 2.33 (s, 6H), 2.64 (dd, J = 17.4 Hz, 2.4, 2H), 2.71 (d, J = 14.8 Hz, 2H), 2.80 – 2.89 (m, 2H), 3.08 – 3.14 (m, 4H), 3.17 – 3.24 (m, 2H), 3.69 (d, J = 14.8 Hz, 2H), 3.86 (d, J = 10.5, 2H), 3.94 (s, br, 2H), 4.04 (dd, J = 13.8, 6.0 Hz, 2H), 4.13 (dd, J = 13.8, 6.9 Hz, 2H), 4.24 – 4.30 (m, 2H), 4.35 (q, J = 7.1 Hz, 4H), 5.90 (t, J = 6.3 Hz, 2H), 7.23 – 7.30 (m, 2H), 7.34 – 7.37 (m, 2H), 7.42 – 7.45 (m, 4H), 7.50 – 7.54 (m, 2H), 7.84 – 7.85 (m, 4H), 8.01 – 8.03 (m, 2H), 8.06 (s, 2H), 9.16 (s, 1H), 1.97 (s, 1H). ¹³C NMR (126 MHz, CDCl₃): δ [ppm] = 14.0, 22.57, 22.60, 27.0, 31.6, 42.5, 42.8, 48.3, 50.4, 52.2, 52.8, 60.2, 60.5, 63.9, 64.7, 71.01, 71.04, 77.7, 115.2, 115.3, 116.6, 120.1, 121.1, 126.0, 127.7, 128.7, 129.0, 130.0, 133.4, 133.8, 139.6, 140.3, 147.7, 163.58, 163.61, 168.5, 168.6, 169.3. LRMS (ESI): m/z 1241 (4%) [2M+H⁺], 1228 (6%), 924 (5%), 655 (5%), 621 (100%) [M+H⁺], 614 (25%), 607 (52%). HRMS (ESI): m/z 621.2825 [621.2820 berechnet für C₃₅H₃₇O₅N₆⁺ (M+H⁺)].

Ethyl-3-oxo-3-phenyl-2,2-bis(4-phenyl-1*H*-1,2,3-triazol-1-yl)-propanoat (3-8a)

Nach Methode D bei unter Verwendung von 2.2 Äq. Phenylacetylen wird 3-8a nach säulenchromatographischer Aufreinigung (P/EtOAc 90:10 \rightarrow 85:15) weißer Feststoff isoliert (90%).

DC: $R_f = 0.04$ (P/EtOAc 95:5), [UV, KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.12 (t, J = 7.1 Hz, 3H), 4.43 (q, J = 7.1 Hz, 2H), 7.32 – 7.36 (m, 2H), 7.40 – 7.44 (m, 6H), 7.56 – 7.61 (m, 1H), 7.72 – 7.75 (m, 2H), 7.82 – 7.89 (m, 4H), 8.50 (s, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 13.5, 65.3, 82.3, 120.8, 126.0, 128.9, 129.0, 129.2, 129.5, 133.1, 134.5, 148.6, 161.8, 181.6. **LRMS** (ESI): m/z 479 (1%) [M+H⁺], 439 (35%), 407 (20%), 361 (100%), 282 (5%). **HRMS** (ESI): m/z 479.1824 [479.1826 berechnet für C₂₇H₂₃O₃N₆⁺ (M+H⁺)].

Ethyl-3-oxo-2,2-bis(4-phenyl-1H-1,2,3-triazol-1-yl)-3-(thiophen-2-yl)-propanoat (3-8b)

Nach Methode D bei unter Verwendung von 2.2 Äq. Phenylacetylen wird 3-8b nach säulenchromatographischer Aufreinigung (P/EtOAc 85:15) als weißer Feststoff isoliert (89%).

DC: $R_f = 0.32$ (P/EtOAc 85:15), [UV, KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.20 (t, J = 7.1 Hz, 3H), 4.48 (q, J = 7.1 Hz, 2H), 7.05 (dd, J = 4.9, 4.1 Hz, 1H), 7.25 – 7.26 (m, 1H), 7.32 – 7.36 (m, 2H), 7.39 – 7.45 (m, 4H), 7.75 (dd, J = 4.9, 1.0 Hz, 1H), 7.82 – 7.85 (m, 4H), 8.57 (s, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 13.6, 65.5, 82.3, 121.0, 126.0, 128.9, 129.0, 129.1, 129.5, 133.9, 136.3, 138.8, 148.4, 161.7, 175.1. **LRMS** (ESI): *m/z* 969 [2M+H⁺] (74%), 523 (10%) [M+K⁺], 507 [M+Na⁺] (34%), 485 [M+H⁺] (100%), 457 (24%), 375 (33%), 312 (55%), 282 (63%). **HRMS** (ESI): *m/z* 485.1392 [485.1390 berechnet für C₂₅H₂₁O₃N₆S⁺ (M+H⁺)].

Ethyl-5,5-dimethyl-3-oxo-2,2-bis(4-phenyl-1*H*-1,2,3-triazol-1-yl)-hexanoat (3-8c)

Nach Methode D bei unter Verwendung von 2.2 Äq. Phenylacetylen wird 3-8c nach säulenchromatographischer Aufreinigung (P/EtOAc 90:10) in quantitativer Ausbeute als weißer Feststoff isoliert.

DC: $R_f = 0.29$ (P/EtOAc 90:10), [UV, KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.13 (s, 9H), 1.43 (t, J = 7.2 Hz, 3H), 2.70 (s, 2H), 4.59 (q, J = 7.2 Hz, 2H), 7.31 – 7.35 (m, 2H), 7.38 – 7.41 (m, 4H), 7.80 – 7.86 (m, 4H), 8.40 (s, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 13.8, 29.6, 31.4, 50.8, 65.5, 83.6, 121.1, 126.0, 128.9, 129.0, 129.6, 148.2, 161.4, 190.0. **LRMS** (ESI) *m*/*z* 1021, 801 (13%), 401 (100%) [M-CO₂Et+2H⁺], 361 (35%), 282 (25%). **HRMS** (ESI) *m*/*z* 401.2078 [401.2079 berechnet für C₂₃H₂₅ON₆²⁺ (M-CO₂Et+2H⁺)].

Dimethyl-2,2-bis(4-phenyl-1H-1,2,3-triazol-1-yl)-malonat (3-8d)

Nach Methode D bei unter Verwendung von 2.2 Äq. Phenylacetylen wird 3-8d nach säulenchromatographischer Aufreinigung (P/EtOAc 80:20) als weißer Feststoff isoliert (99%).

DC: $R_f = 0.27$ (P/EtOAc 80:20), [UV, KMnO₄]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 4.09 (s, 6H), 7.31 – 7.36 (m, 2H), 7.38 – 7.43 (m, 4H), 7.80 – 7.85 (m, 4H), 8.46 (s, 2H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 55.4, 79.7, 120.6, 126.0, 128.9, 129.0, 129.5, 148.4, 161.2. **LRMS** (ESI): *m/z* 1081 (7%), 721 (19%), 361 (100%), 282 (70%). **HRMS** (ESI): *m/z* 361.14022 [361.14020 berechnet für C₁₉H₁₇O₂N₆²⁺ (M-CO₂Me + 2H⁺)].

1-(8*R*,9*S*,13*S*,14*S*,17*S*)-17-Hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl-3-methyl-2,2-bis(4-phenyl-1*H*-1,2,3-triazol-1-yl)malonat (3-13)

Nach Methode D bei unter Verwendung von 2.2 Äq. Phenylacetylen wird 3-13 nach säulenchromatographischer Aufreinigung (P/EtOAc $80:20 \rightarrow 60:40$) als farbloser Feststoff isoliert (89%).

DC: $R_f = 0.24$ (P/EtOAc 70:30), [UV, CAM]. ¹**H** NMR (250 MHz, CDCl₃): δ [ppm] = 0.72 (s, 3H), 1.30 – 1.54 (m, 7H), 1.67 – 2.02 (m, 3H), 2.13 – 2.44 (m, 3H), 2.75 – 2.85 (m, 2H), 4.09 (s, 3H), 5.07 (dd, J = 9.0, 7.7 Hz, 1H), 5.20 (s, br, 1H), 6.56 (d, J = 2.7 Hz, 1H), 6.64 (dd, J = 8.5, 2.7 Hz, 1H), 7.12 (d, J = 8.5 Hz, 1H), 7.30 – 7.45 (m, 6H), 7.79 – 7.85 (m, 4H), 8.47 (s, 1H), 8.48 (s, 1H). ¹³**C** NMR (63 MHz, CDCl₃): δ [ppm] = 12.1, 23.4, 26.3, 27.0, 27.3, 29.6, 36.8, 38.6, 43.6, 43.8, 49.6, 55.1, 79.8, 88.0, 113.0, 115.5, 120.6, 120.7, 126.07, 126.10, 126.6, 128.93, 128.94, 129.0, 129.1, 129.47, 129.50, 132.2, 138.1, 148.38, 148.43, 153.8, 160.4, 161.5. LRMS (ESI): *m/z* 1201 (7%), 659 [M+H⁺] (1%), 601 [M-CO₂Me+2H⁺] (100%), 561 (15%), 361 (71%), 282 (44%). HRMS (ESI): *m/z* 659.2987 [659.2976 berechnet für C₃₈H₃₉O₅N₆⁺ (M+H⁺)].

2.5.6 Eintopfsynthese von 3-7a ausgehend von 3-Oxoester 3-1a

3-1a (25.5 mg, 150 μ mol) wird in DMSO (1 mL) gelöst und eine wässrige NaN₃-Lösung (1M, 0.5 mL) wird hinzugefügt. NaI (4.5 mg, 30.0 μ mol, 0.2 Äq.) und IBX-SO₃K (83.6 mg, 210 μ mol, 1.4 Äq.) werden hinzugefügt und die Reaktionsmischung wird 30 min bei RT gerührt. Nachdem die Azidierungsreaktion laut DC vollständigen Umsatz erreicht hat werden Phenylacetylen (24.7 μ L, 23.0 mg, 225 μ mol, 1.5 Äq.) CuSO₄·5H₂O (7.50 mg, 30.0 μ mol,

0.2 Äq.), Natriumascorbat (23.8 mg, 240 μ mol, 1.6 Äq.) und TBTA (1.60 mg, 3.00 μ mol, 2 mol%) hinzugefügt. Die Reaktion wird 24 h bei RT gerührt. Die Mischung wird mit H2O (15 mL) verdünnt und mit CH₂Cl₂ (3×15 mL) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter, wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wird unter vermindertem Druck entfernt und der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 85:15). Triazol 3-7a wird als weißer Feststoff isoliert (38.6 mg, 123 μ mol, 82%). Die analytischen Daten stimmen mit den oben genannten überein.

2.5.7 Modifikation threoninhaltiger Peptide

(2S,3R)-3-Hydroxy-1-methoxy-1-oxobutan-2-ammoniumchlorid (3-15)

In einem ausgeheizten Rundkolben wird (*L*)-Threonin (5.00 g, 42.0 mmol) in trockenem MeOH (21 mL) unter Argonatmosphäre gelöst. Bei 0 °C wird $SOCl_2$ (9.1 mL, 15.0 g, 3 Äq.) langsam zugetropft. Die Reaktionmischung wird innerhalb von 16 h auf RT erwärmt. Das Lösungsmittel wird unter vermindertem Druck entfernt und das Produkt wird als farbloses Harz isoliert (7.12 g, 42.0 mmol, quant.).

DC: $R_f = 0.50$ (EtOAc/MeOH/AcOH 7:2.5:5), [Ninhydrin]. ¹**H NMR** (360 MHz, MeOD): δ [ppm] = 1.32 (d, J = 6.4 Hz, 3H), 3.85 (s, 3H), 3.92 (d, J = 3.7 Hz, 1H), 4.25 – 4.31 (m, 1H). ¹³**C NMR** (91 MHz, MeOD): δ [ppm] = 20.5, 53.7, 59.8, 66.3, 169.6.

Die analytische Daten stimmen mit denen der Literatur überein.^[240]

(2*S*,3*R*)-Methyl-2-((*S*)-2-(*tert*-butoxycarbonylamino)propanamido)-3-hydroxybutanoat (3-16)

In einem ausgeheizten Rundkolben wird *N*-Boc-L-Alanin (1.50 g, 7.93 mmol) in trockenem DMF (35 mL) unter Argonatmosphäre gelöst. Bei -25 °C wird Methylester 3-15 (1.61 g, 9.51 mmol, 1.2 Äq.) gelöst in trockenem DMF (4 mL) zugetropft. HBTU (3.61 g, 9.51 mmol, 1.2 Äq.) und HOBt (1.29 g, 9.51 mmol, 1.2 Äq.) werden hinzugefügt. NEt₃ (3.97 mL, 2.89 g, 28.5 mmol, 3.6 Äq.) wird innerhalb von 2 h zugetropft. Die Reaktionsmischung verfärbt sich dabei von gelb nach rot. Die Reaktion wird innerhalb von 16 h auf RT erwärmt. Das Lösungsmittel wird unter vermindertem Druck entfernt. Der Rückstand wird in EtOAc (80 mL) aufgenommen und nacheinander mit H₂O und gesättigten, wässrigen NH₄Cl-, NaHCO₃- und NaCl-Lösungen (je 30 mL) gewaschen. Die organische Phase wird über MgSO₄ getrocknet und das Lösungsmittel unter vermindertem Druck entfernt. Der Rückstand wird säulenchromatographisch aufgereinigt (P/EtOAc 50:50 \rightarrow 20:80). Dipeptid 3-16 wird als weißer Schaum isoliert (2.25 g, 7.41 mmol, 93%).

DC: $R_f = 0.36$ (P/EtOAc 20:80), [Ninhydrin]. ¹**H NMR** (360 MHz, DMSO): δ [ppm] = 1.05 (d, J = 6.3 Hz, 3H), 1.19 (d, J = 7.2 Hz, 3H), 1.38 (s, 9H), 3.62 (s, 3H), 4.00 – 4.16 (m, 2H), 4.28 (dd, J = 8.6, 3.1 Hz, 1H), 5.01 (d, J = 5.2 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 8.6 Hz, 1H). ¹³**C NMR** (91 MHz, DMSO): δ [ppm] = 17.9, 20.0, 28.2, 49.6, 51.8, 57.5, 66.3, 78.1, 155.0, 171.0, 173.3. **LRMS** (ESI): m/z 631 (100%) [2M+Na⁺], 609 (44%) [2M+H⁺], 327 (39%) [M+Na⁺], 305 (23%) [M+H⁺]. **HRMS** (ESI): m/z 305.1704 [305.1707 berechnet für C₁₃H₂₅O₆N₂⁺ (M+H⁺)].

Methyl-2-((S)-2-(tert-butoxycarbonylamino)propanamido)-3-oxobutanoat (3-17)

Dipeptid 3-16 (650 mg, 2.14 mmol) wird in MeCN (13 mL) gelöst. IBX (1.29 g, 4.59 mmol, 2.15 Äq.) wird bei RT zugegeben. Die Reaktionsmischung wird 3 h unter Rückfluss gerührt. Das Gemisch wird auf RT abgekühlt und filtriert. Das Filtrat wird unter vermindertem Druck eingeengt und der Rückstand säulenchromatographisch aufgereinigt (P/EtOAc 70:30 \rightarrow 60:40). Das Produkt wird als farbloses Öl isoliert, das unter Kühlung kristallisiert (449 mg, 1.49 mmol, 70%).

DC: $R_f = 0.65$ (P/EtOAc 20:80), [Ninhydrin]. ¹**H NMR** (360 MHz, CDCl3): δ [ppm] = 1.34 – 1.41 (m, 3H), 1.45 (s, 9H), 2.37 (s, 3H), 3.81 (s, 3H), 4.25 (s, br, 1H), 5.00 (s, br, 1H), 5.23 (d, J = 6.6 Hz, 1H), 7.27 (s, br, 1H). ¹³**C NMR** (91 MHz, CDCl₃): δ [ppm] = 18.2, 28.1, 28.4, 50.1, 53.5, 63.0, 80.6, 155.5, 166.4, 166.5, 172.7, 198.2, 198.4. **LRMS** (ESI): m/z 643 (57%) [2M+K⁺], 627 (100%) [2M+Na⁺], 605 [2M+H⁺] (23%), 325 (51%) [M+Na⁺], 303 (31%) [M+H⁺]. **HRMS** (ESI): m/z 303.1547 [303.1551 berechnet für C₁₃H₂₃O₆N₂⁺ (M+H⁺)].

Die analytischen Daten stimmen mit denen der Literatur überein.^[241]

Methyl-2-azido-2-((S)-2-(tert-butoxycarbonylamino)propanamido)-3-oxobutanoat (3-18)

Nach Methode A wird 3-18 nach säulenchromatographischer Aufreinigung (P/EtOAc 80:20) als farbloses Öl isoliert (35%, 58% brsm, d.r. = 1:1).

Nach Methode B wird 3-18 nach säulenchromatographischer Aufreinigung (P/EtOAc 80:20) als farbloses Öl isoliert (21%, d.r. = 1:1).

DC: $R_f = 0.64$ (P/EtOAc 50:50), [Ninhydrin]. ¹**H NMR** (360 MHz, CDCl₃): δ [ppm] = 1.37 – 1.41 (m, 6H), 1.46 (s, 18H), 2.31 (s, 6H), 3.85 (s, 6H), 4.27 (s, br, 2H), 4.91 (s, br, 2H), 8.01 – 8.06 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃): δ [ppm] = 17.4, 24.6, 24.6, 28.4, 49.8, 53.7,

78.4, 80.8, 165.2, 155.8, 173.3, 195.4. **IR** (film): v_{max} [cm⁻¹] = 3325, 2977, 2928, 2856, 2117, 1746, 1683, 1505, 1461, 1367, 1250, 1166, 1056, 1022. **LRMS** (ESI): *m/z* 366 (100%) [M+Na⁺], 344 (11%) [M+H⁺]. **HRMS** (ESI): *m/z* 344.1563 [344.1565 berechnet für $C_{13}H_{22}O_6N_5^+$ (M+H⁺)].

Methyl-2-((*S*)-2-(*tert*-butoxycarbonylamino)propanamido)-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)acetat (3-19)

Nach Methode D bei wird 3-19 nach säulenchromatographischer Aufreinigung (P/EtOAc $70:30 \rightarrow 50:50$) als farbloser Feststoff (54%) isoliert.

DC: $R_f = 0.22$ (P/EtOAc 50:50), [Ninhydrin] [UV]. ¹**H** NMR (360 MHz, CDCl₃): δ [ppm] = 1.33 – 1.36 (m, 6H), 1.43 (s, 18H), 3.86 (s, 6H), 4.27 (s, br, 2H), 4.92 – 4.99 (m, 2H), 6.78 – 6.81 (m, 2H), 7.32 – 7.35 (m, 2H), 7.40 – 7.43 (m, 4H), 7.83 – 7.84 (m, 4 H), 8.11 (s, 2H), 8.15 – 8.21 (m, 2H). ¹³**C** NMR (126 MHz, CDCl₃): δ [ppm] = 17.4, 28.4, 50.0, 50.3, 54.18, 54.20, 63.7, 81.1, 120.7, 120.9, 126.0, 128.52, 128.54, 129.0, 130.1, 130.2, 147.81, 147.84, 155.8, 165.2, 165.3, 173.3. LRMS (ESI): *m/z* 1233 [3M+Na⁺] (5%), 829 [2M+Na⁺] (100%), 807 (73%) [2M+H⁺], 426 (34%) [M+Na⁺], 404 (49%) [M+H⁺], 348 (10%). HRMS (ESI): *m/z* 426.1746 [426.1748 berechnet für C₁₉H₂₅O₅N₅Na⁺ (M+H⁺)].

V Verzeichnisse
1 Abkürzungsverzeichnis

Å	Ångström
ACP	Acyl-Carrier-Protein
Ac	Acetyl
ADP	Adenosindiphosphat
Äq.	Äquivalente
AIBX	5-Trimethylammonio-1,3-dioxo-1,3-dihydro- $1\lambda^5$ -
	benzo[d][1,2]iodoxol-1-olanion
Arg	Arginin
Asp	Asparagin
ATR	Attenuated Total Reflection
AT	Acetyltransferase
9-BBN	9-Borabicyclononan
biphep	2,2'-Bis(diphenylphosphino)-1,1'-biphenyl
Bn	Benzyl
Boc	tert-Butyloxycarbonyl
brsm	bezogen auf reisoliertes Ausgangsmaterial
Bu	Butyl
Bz	Benzoyl
с	Konzentration
С	cyclo
CAM	Cerammoniummolybdat
CIR	Cyclization Induced Rearrangement
cm	Zentimeter
CoA	Coenzym A
cod	1,5-Cyclooctadien
СОР	Cobalt Oxazolin Palladazyklus
δ	chemische Verschiebun
d	Duplett oder Tag(e)
D	Konfigurationsbezeichnung nach Fischer
dba	Dibenzylidenaceton
DBU	Diaza-1,3-bicyclo[5.4.0]undecan
DC	Dünnschichtchromatogramm
DCC	Dicyclohexylcarbodiimid

DDQ	2,3-Dichlor-5,6-dicyanobenzochinon
DH	Dehydratase
DIAD	Di-iso-propylazodicarboxylat
DIBAl-H	Di-iso-butylaluminiumhydrid
DMAP	4-N,N-Dimethylaminopyridin
DMF	<i>N</i> , <i>N</i> -Dimetylformamid
DME	1,2-Dimethoxyethan
DMSO	Dimethylsulfoxid
DPPA	Diphenylphosphorylazid
d.r.	Diastereomerenverhältnis
<i>d.s.</i>	Diastereoselektivität
ee	Enantiomerenüberschuss
EI	Elektronenstoßionisation
Enz	Enzym
ER	Enoylreduktase
Et	Ethyl
et al.	und andere
EtOAc	Essigester, Ethylacetat
Et ₂ O	Diethylether
EtOH	Ethanol
FAS	Fettsäure-Synthase
FG	funktionelle Gruppe
g	Gramm
GC	Gaschromatographie
Gly	Glycin
GP	Glykoprotein
h	Stunde(n)
HBTU	2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-
	hexafluorophosphat
HOBt	1-Hydroxybenzotriazol
Hex	Hexyl
HOAc	Essigsäure
HPLC	High Perfomance Liquid Chromatography
HRMS	High Resolution Mass Spectrometry

HWE	Horner-Wadsworth-Emmons-Olefinierung
Hz	Hertz
IBX	2-Iodoxybenzoesäure
IBX-SO ₃ K	Kalium-1-hydroxy-1,3-dioxo-1,3-dihydro- $1\lambda^5$ -benziodoxol-5-
	sulfonat
IC ₅₀	mittlere inhibitorische Konzentration
i	iso
Im	Imidazol
J	Kopplungskonstante
Kat.	Katalysator
KHMDS	Kaliumhexamethyldisilazid
KR	Ketoreduktase
KS	Ketosynthase
L	Konfigurationsbezeichnung nach Fischer
λ	Wellenlänge
LDA	Lithiumdi-iso-propylamid
LiHMDS	Lithiumhexamethyldisilazid
LRMS	Low Resolution Mass Spectrometry
m	Multiplett
М	Molarität, molar
MAT	Malonyl-Acetyl-Transferase
Me	Methyl
MeCN	Acetonitril
MeOH	Methanol
mg	Milligramm
MHz	Megahertz
min.	Minuten
mL	Milliliter
mmol	Millimol
mol	Mol
mol%	Molprozent
MS	Massenspektrometrie
MW	Mikrowelle(n)
п	normal

<i>n</i> -BuLi	<i>n</i> -Butyllithium
NCS	N-Chlorsuccinimid
nm	Nanometer
NMR	Kernmagnetische Resonanz
NOE	Kern Overhauser Kontakt
NOESY	Nuclear Overhauser Enhancement and Exchange Spectroscopy
Nu	Nukleophil
OAc	Acetat
OTf	Trifluormethansulfonat
p	para
Р	Pentan
Pent	Pentyl
PG	Schutzgruppe
pН	negative dekadische Logarithmus der H ⁺ -Ionenkonzentration
Ph	Phenyl
pIBX	polymer gebundene 2-Iodoxybenzoesäure
PMB	4-Methoxybenzyl
PNB	4-Nitrobenzoyl
ppm	parts per million
PPTS	Pyridinium-para-toluolsulfonat
Pr	Propyl
<i>p</i> -TsOH	para-Toluolsulfonsäure
q	Quartett
quant.	Quantitative Ausbeute
R	Konfigurationbezeichnung nach Cahn-Ingold-Prelog
RCM	Ringschlussmetathese (Ring Closing Metathesis)
$R_{ m f}$	Rententionsfaktor
RT	Raumtemperatur
S	Singulett
S	Konfigurationbezeichnung nach Cahn-Ingold-Prelog
Schmp	Schmelzpunkt
Sdp	Siedepunkt
Si	Tris(trimethylsilyl)silyl
t	tert

t	Triplett
TBAF	Tetrabutylammoniumfluorid
TBAI	Tetrabutylammoniumiodid
TBHP	tert-Butylhydroperoxid
TBS	tert-Butyldimethylsilyl
TBTA	Tris[(1-benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)methyl]amin
TES	Triethylsilyl
Tf	Trifluormethansulfonyl
TFA	Trifluoressigsäure
THF	Tetrahydrofuran
TMS	Trimethylsilyl
t _R	Retentionszeit
Tri	4-Phenyl-1H-1,2,3-triazol-1-yl
Ts	<i>p</i> -Toluolsulfonyl
UV	ultraviolett

2 Literaturverzeichnis

- [1] D. O'Hagen, *The Polyketide Metabolites*, Ellis Horwood, Chichester, **1991**.
- Isolierung: a) J. M. McGuire, R. L. Bunch, R. C. Anderson, H. E. Boaz, E. H. Flynn, H. M. Powell, J. W. Smith, *Antibiot. Chemother.* 1952, *2*, 281. Struktur: b) D. R. Harris, S. G: McGeachin, H. H. Mills, *Tetrahedron Lett.* 1965, *6*, 679. Totalsynthese:
 c) R. B. Woodward, E. Logusch, K. P. Nambiar, K. Sakan, D. E. Ward, B.-W. Au-Yeung, P. Balaram, L. J. Browne, P. J. Card, C. H. Chen, R. B. Chtnevert, A. Fliri, K. Frobel, H.-J. Gais, D. G. Garratt, K. Hayakawa, W. Heggie, D. P. Hesson, D. Hoppe, I. Hoppe, J. A. Hyatt, D. Ikeda, P. A. Jacobi, K. S. Kim, Y. Kobuke, K. Kojima, K. Krowicki, V. J. Lee, T. Leutert, S. Malchenko, J. Martens, R. S. Matthews, B. S. Ong, J. B. Press, T. V. Rajan Babu, G. Rousseau, H. M. Sauter, M. Suzuki, K. Tatsuta, L. M. Tolbert, E. A. Truesdale, I. Uchida, Y. Ueda, T. Uyehara, A. T. Vasella, W. C. Vladuchick, P. A. Wade, R. M. Williams, H. N.-C. Wong, *J. Am. Chem. Soc.* 1981, *103*, 3215.
- [3] a) Y. Sun, X. Zhou, J. Liu, K. Bao, G. Zhang, G. Tu, T. Kieser, Z. Deng, *Microbiology* 2002, *148*, 361. b) Y. Sun, X. Zhou, H. Dong, G. Tu, M. Wang, B. Wang, Z. Deng, *Chem. Biol.* 2003, *10*, 431.
- [4] a) J. A. Tobert, Nat. Rev. Drug. Discovery 2003, 2, 517. b) A. W. Alberts, Am. J. Cardiol. 1988, 62, 10J
- [5] a) S. Chen, X. Huang, X. Zhou, L. Bai, J. He, K. J. Jeong, S. Y. Lee, Z. Deng, *Chem. Biol.* 2003, *10*, 1065. b) A. Belén Campelo, J. A. Gil, *Microbiology*, 2002, *148*, 51. c)
 S. Haedera, R. Wirth, H. Herz, D. Spiteller, *Proc. Natl. Acad. Sci. USA* 2009, *106*, 4742.
- [6] a) T. Aoyagi, T. Aoyama, F. Kojima, N. Matsuda, M. Maruyama, M. Hamada, T. Takeuchi, J. Antibiot. 1992, 45, 1385. b) Z. Xu, A. Schenk, C. Hertweck, J. Am. Chem. Soc. 2007, 129, 6022
- [7] a) P. Talalay, M. J. De Long, H. J. Prochaska, *Proc. Natl. Acad. Sci. USA.* 1985, 85, 8261. b) S. Aliya, P. Reddanna, K. Thyagaraju, *Mol. Cell. Biochem.* 2003, 253, 319.
- [8] Isolierung: a) G. Höfle, N. Bedorf, H. Steinmetz, D. Schomburg, K. Gerth, H. Reichenbach Angew. Chem. 1996, 108, 1671; Angew. Chem. Int. Ed. 1996, 35, 1567.
 Biologie: b) M. R. Grever, S. A. Schepartz, B. A. Chabner, Semin. Oncol. 1992, 19, 622. Erste Totalsynthese: A. Balog, D. Meng, T. Kamenecka, P. Bertinato, D.-S. Su,

E. J. Sorensen, S. J. Danishefsky, *Angew. Chem.* **1996**, *108*, 2976; *Angew. Chem. Int. Ed.* **1996**, *35*, 2801.

- [9] a) T. Arai, Y. Koyama, T. Suenaga, H. Honda, *J. Antibiot. Ser. A* 1962, *15*, 231. b) R.
 L. Monasghan, N. H. Sigal, L. Kaplan, K. M. Byrne, R. P. Borris, F. T. Dumont, G.
 M. Garrity, D. L. Zink (Merck), Eur. Pat. 0 323 865A1, 1989.
- [10] a) W. C. Campbell, M. H. Fisher, E. O. Stapley, G. Albers-Schonberg, T. A. Jacob, *Science*, **1983**, *221*, 823. Totalsynthese von Avermectin B_{1a}: b) S. Hanessian, A. Ugolini, D. Dube, P. J. Hodges, C. Andre, J. Am. Chem. Soc. **1986**, *108*, 2776.
- [11] D. A. Evans, W. C. Black, J. Am. Chem. Soc. 1993, 115, 4497.
- [12] a) T. Yasumoto, R. Bagnis, J. P. Venoux, *Bull. Jpn. Soc. Sci. Fish.* 1976, 42, 359. b)
 Y. Kishi, *Pure Appl. Chem.* 1998, 70, 339.
- [13] J. N. Collie, J. Chem. Soc., 1907, 91, 1806.
- [14] R. Robinson, J. Chem. Soc., 1917, 111, 762
- [15] A. J. Birch, P. A. Massy-Westropp, C. J. Moye, Aus. J. Chem., 1955, 8, 539.
- [16] Für ausgewählte Übersichtsartikel, seihe: a) C. Hertweck, Angew. Chem. 2009, 121, 4782; Angew. Chem. Int. Ed. 2009, 48, 4688. b) D. O'Hagan, Nat. Prod. Rep. 1995, 2, 1. c) J. Staunton, K. J. Weissman, Nat. Prod. Rep. 2001, 18, 380. d) C. T. Walsh, Science 2004, 303, 1805. e) M. A. Fischbach, C. T. Walsh, Chem. Rev. 2006, 106, 3468.
- [17] E. A. B. Emmert, A. K. Klomowicz, M. G. Thomas, J. Handelsman, Appl. Eviron. Microbiol. 2004, 70, 104.
- S. C. Wenzel, R. M. Williamson, C. Grünager, J. Xu. K. Gerth, R. A. Martinez, S. J. Moss, B. J. Carrol, S. Grond, C. J. Unkefer, R. Müller H. G. Floss, *J. Am. Chem. Soc.* 2006, *128*, 14325.
- [19] H. C. Brown, P. K. Jadhav, J. Am. Chem. Soc. 1983, 105, 2092.
- [20] Für ausgewählte Beispiele für iterative Allylborierungen, siehe: a) K. C. Nicolaou, A. L. Nold, R. R. Milburn, C. S. Schindler, *Angew. Chem.* 2006, *118*, 6677; *Angew. Chem. Int. Ed.* 2006, *45*, 6527. b) J. García-Fortanet, J. Murga, M. Carda, J. A. Marco, *Org. Lett.* 2003, *5*, 1447. c) H. Fuwa, S. Naito, T. Goto, M. Sasaki, *Angew. Chem.* 2008, *120*, 4815; *Angew. Chem Int. Ed.* 2008, *47*, 4737. d) M. J. Mitton-Fry, A. J. Cullen, T. Sammakia, *Angew. Chem*, 2007, *119*, 1084; *Angew. Chem. Int. Ed.* 2007, *46*, 1066.
- [21] a) A. B. Garcia, T. Leßmann, J. D. Umarye, V. Mamane, S. Sommer, H. Waldmann, *Chem. Commun.* 2006, 3868. b) J. D. Umarye, T. Leßmann, A. B. Garcia, V.

Mamane, S. Sommer, H. Waldmann, *Chem. Eur. J.* 2007, *13*, 3305. c) V. Mamane, A.
B. Garcia, J. D. Umarye, T. Leßmann, S. Sommer, H. Waldmann, *Tetrahedron* 2007, *63*, 5754.

- [22] A. Hafner, R. O. Duthaler, R. Marti, G. Rib, P. Rothe-Streit, F. Schwarzenbach, J. Am. Chem. Soc. 1992, 114, 2321.
- [23] S. BouzBouz, J. Cossy, Org. Lett. 2000, 2, 501.
- [24] Totalsynthesen Für oder Synthesen von Naturstofffragmenten mittels Allyltitanierungen, siehe: a) J. Cossy, C. Willis, V. Bellosta, S. BouzBouz, Synlett 2000, 1461. b) S. BouzBouz, J. Cossy, Tetrahedron Lett. 2000, 41, 3363. c) J. Cossy, C. Willis, V. Bellosta, S. BouzBouz, J. Org. Chem. 2002, 67, 1982. c) S. BouzBouz, J. Cossy, Org. Lett. 2003, 5, 1995. d) S. BouzBouz, J. Cossy, Org. Lett. 2003, 5, 3029. e) S. BouzBouz, J. Cossy, Tetrahedron Lett. 2003, 44, 4471. f) C. Bressy, F. Allais, J. Cossy, Synlett 2006, 3455 g) S. BouzBouz, J. Cossy, Tetrahedron Lett. 2006, 47, 901. h) F. Allais, J. Cossy, Org. Lett. 2006, 8, 3655. i) F. Allais, M.-C. Louvel, J. Cossy, Synlett 2007, 451. j) D. Amans, V. Bellosta, J. Cossy, Org. Lett. 2007, 9, 1453. k) L. Ferrié, L. Boulard, F. Pradaux, S. Bouzbouz, S. Reymond, P. Capdevielle, J. Cossy, J. Org. Chem. 2008, 73, 1864.
- [25] a) X. Jiang, J. García-Fortanet, J. K. De Brabander, J. Am. Chem. Soc. 2005, 127, 11254. b) S. Bolshakov, J. L. Leighton, Org. Lett. 2005, 7, 3809. c) H. Guo, M. S. Mortensen, G. A. O'Doherty, Org. Lett. 2008, 10, 3149.
- [26] a) J. De Brabender, M. Vandewalle, *Synthesis* 1994, 855. b) G. E. Keck, K. A. Savin, M. A. Weglarz, E. N. K. Cressman, *Tetrahedron Lett.* 1996, 37, 3291. c) M. Kurosu, M. Lorca, *Tetrahedron Lett.* 2002, 43, 1765. d) S. Chandrasekhar, C. Narsihmulu, S. S. Sultana, M. S. Reddy, *Tetrahedron Lett.* 2004, 45, 9299. e) G. E. Keck, A. P. Truong, *Org. Lett.* 2005, 7, 2153.
- [27] Z. Zhang, S. Aubry, Y. Kishi, Org. Lett. 2008, 10, 3077.
- [28] a) I. S. Kim, M.-Y. Ngai, M. J. Krische, J. Am. Chem. Soc. 2008 130, 6340. b) I. S. Kim, M.-Y. Ngai, M. J. Krische, J. Am. Chem. Soc. 2008 130, 14891. c) A. Hassan, Y. Lu, M. J. Krische, Org. Lett. 2009, 11, 3122. d) Y. Lu, I. S. Kim, A. Hassan, D. J. Del Valle, M. J. Krische, Angew. Chem. 2009, 121, 5118; Angew. Chem. Int. Ed. 2009, 48, 5018
- [29] S. B. Han, A. Hassan, I. S. Kim, M. J. Krische, J. Am. Chem. Soc. 2010, 132, 15559.
- [30] a) I. S. Kim, S.-B. Han, M. J. Krische, J. Am. Chem. Soc. 2009, 131, 2514. B) X. Gao, H. Han, M. J. Krische, J. Am. Chem. Soc. 2011, 133, 12795. b) X. Gao, I. A.

Townsend, M. J. Krische, J. Org. Chem. 2011, 76, 2350. c) M. Rössle, D. J. Del Valle,
M. J. Krische, Org. Lett. 2011, 13, 1482.

- [31] a) T. Katsuki, A. W. M. Lee, P. Ma, V. S. Martin, S. Masamune, K. B. Sharpless, D. Tuddenham, F. J. Walker, *J. Org. Chem.* **1982**, *47*, 1373. b) P. Ma, V. S. Martin, S. Masamune, K. B. Sharpless, S. M. Viti, *J. Org. Chem.* **1982**, *47*, 1378.
- [32] K. C. Nicolaou, R. A. Daines, J. Uenishi, W. S. Li, D. P. Papahatjis, T. K. Chakraborty, J. Am. Chem. Soc. 1988, 110, 4672.
- [33] S. Tosaki, Y. Horiuchi, T. Nemoto, T. Ohshima, M. Shibasaki, *Chem. Eur. J.* 2004 10, 1527.
- [34] M. Iwata, R. Yazaki, Y. Suzuki, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2009, 131, 18244.
- [35] B. J. Albert, H. Yamamoto, Angew. Chem. 2010, 122, 2807; Angew. Chem. Int. Ed. 2010, 49, 2747.
- [36] B. J. Albert, Y. Yamaoka, H. Yamamoto, Angew. Chem. 2011, 123, 2658; Angew. Chem. Int. Ed. 2011, 50, 2610.
- [37] N. B. Kondekar, P. Kumar, Org. Lett. 2009, 11, 2611.
- [38] J. T. Binder, S. F. Kirsch, Chem. Commun. 2007, 4164.
- [39] a) S. F. Kirsch, L. E. Overman, J. Am. Chem. Soc. 2005, 127, 2866. b) J. S. Cannon, S. F. Kirsch, L. E. Overman, H. F. Sneddon, J. Am. Chem. Soc. 2010, 132, 15192. c) J. S. Cannon, S. F. Kirsch, L. E. Overman, J. Am. Chem. Soc. 2010, 132, 15185.
- [40] a) S. F. Kirsch, L. E. Overman, Org. Lett. 2007, 9, 911. b) C. E. Anderson, S. F. Kirsch, L. E. Overman, C. J. Richards, M. P. Watson, Org. Synth. 2007, 84, 148. c) C. E. Anderson, L. E. Overman, C. J. Richards, M. P. Watson, N. White, Org. Synth. 2007, 84, 139. d) A. M. Stevens, C. J. Richards, Organometallics 1999, 18, 1346.
- [41] J. T. Binder, *Dissertation*, Technische Universität München, 2008.
- [42] H. Menz, *Dissertation*, Technische Universität München, 2010.
- [43] a) K. Ando, J. Org. Chem. 1997, 62, 1934. b) K. Ando, J. Org. Chem. 1999, 64, 8406.
- [44] W. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc. 1961, 83, 1733.
- [45] S. F. Kirsch, P. Klahn, H. Menz, Synthesis 2011, 3592.
- [46] T. T. Haug, S. F. Kirsch, Org. Biomol. Chem. 2010, 8, 991.
- [47] H. Menz, S. F. Kirsch, Org. Lett. 2009, 11, 5634.
- [48] B. Crone, *Dissertation*, Technische Universität München, **2010**.
- [49] Zur Isolierung und Untersuchung der biologischen Aktivität, siehe: a) Kamiyama, T. Umino, N. Fujisaki, K. Fujimori, T. Satoh, Y. Yamashita, S. Ohshima, J. Watanabe, K.

Yokose, J. Antibiot. 1993, 46, 1039. Zur Aufklärung der molekularen Struktur, siehe:
b) T. Kamiyama, Y.Itezono, T. Umino, T. Satoh, N. Nakyama, K. Yokose, J. Antibiot., 1993, 46, 1047.

- [50] Y. Kobayashi, W. Czechtizky, Y. Kishi, Org. Lett., 2003, 5, 93.
- [51] a) T. Satoh, Y. Yamashita, T. Kamiyama, J. Watanabe, B. Steiner, P. Hadváry, M. Arisawa, *Thromb. Res.* 1993, 72, 389. b) T. Satoh, Y. Yamashita, T. Kamiyama, J. Watanabe, *Thromb. Res.* 1993, 72, 401. c) T. Satoh, W. C. Kouns, Y. Yamashita, T. Kamiyama, B. Steiner, *Biochem. Biophys. Res. Commun.* 1994, 204, 325. d) T. Satoh, W. C. Kouns, Y. Yamashita, T. Kamiyama, B. Steiner, *Siochem. J.* 1994, 301, 785.
- [52] Für einen Review zu GPIIb/IIIa-Inhibitoren, siehe: a) S. A. Mousa, *Drug Disc. Tod.*1999, 4, 552.
- [53] a) R. J. Gould, M. A. Polokoff, P. A. Friedman, T.-F. Huang, J. C. Holt, J. J. Cook, S. Niewiarowski, *Proc. Soc. Exp. Biol. Med.* **1990**, *195*, 168-171. b) J. L. Seymourt, W. J. Henzel, B. Nevins, J. T. Stults, R. A. Lazarus, *J. Biol. Chem.* **1990**, *265*, 10143. c) M. S. Dennis, W. J. Henzel, R. M. Pitti, M. T. Lipari, M. A. Napier, T. A. Deisher, S. Bunting, R. A. Lazarus, *Proc. Natl. Acad. Sci.* **1989**, *87*, 2471.
- [54] a) J. Samanen, F. Ali, T. Romoff, R. Calvo, E. Sorenson, J. Vasko, B. Storer, D. Berry, D. Bennet, M. Strohsacker, D. Powers, J. Stadel, A. Nichols, *J. Med. Chem.* 1991, *34*, 3114. b) P. L. Barker, S. Bullens, S. Bunting, D. J. Burdick, K. S. Chan, T. Deisher, C. Eigenbrot, T. R. Gadek, R. Gantzos, M. T. Lipari, C. D. Muir, M. A. Napier, R. M. Pitti, A. Padua, C. Quan, M. Stanley, J. Y. K. Tom, J. P. Burnier, *J. Med. Chem.* 1992, *35*, 2040.
- [55] a) D. Pidard, R.R. Montgomery, J. S. Bennett, T. J. Kunicki, *J. Biol. Chem.* 1983, 258, 12582. b) B. S. Coller, E. I. Peerschke, L. E. Scudder, C. A. Sullivan, *J. Clin. Invest.* 1983, 72, 325.
- [56] a) L. Alig, A. Edenhofer, P. Hadváry, M. Hürzeler, D. Knopp, M. Müller, B. Steiner, A. Trzeciak, T. Weller, *J. Med. Chem.* 1992, 35, 4393. b) H. Sugihara, H. Fukushi, T. Miyawaki, Y. Imai, Z. Terashita, M. Kawamura, Y. Fujisawa, S. Kita, *J. Med. Chem.* 1998, 41, 489. c) H. U. Stilz, W. Guba, B. Jablonka, M. Just, O. Klingler, W. König, V. Wehner, G. Zoller, *J. Med. Chem.* 2001, 44, 1158.
- [57] a) J. A. Zablocki, M. Miyano, R. B. Garland, D. Pireh, L. Schretzmann, S. N. Rao, R. J. Lindmark, S. Panzer-Knodle, N. Nicholson, B. B. Taite, A. K. Salyers, L. W. King, J. G. Campion, L. P. Feigen, *J. Med. Chem.* 1993, *36*, 1811. b) S. M.Egbertson, C. T.-C. Chang, M. E. Duggan, R. J. Gould, W. Halczenko, G. D. Hartmann, W. L. Laswell,

J. J. Lynch, Jr., R. J. Lynch, P. D. Manno, A. M. Naylor, J. D. Prugh, D. R. Ramjit, G. R. Sitko, R. S. Smith, L. M. Turchi, G. Zhang, *J. Med. Chem.* **1994**, *37*, 2537.

- [58] S. BouzBouz, J. Cossy, Org. Lett. 2004, 6, 3469.
- [59] R. Lira, W. R. Roush, Org. Lett. 2007, 9, 533.
- [60] E. M. Flamme, W. R. Roush, J. Am. Chem. Soc. 2002, 124, 13644.
- [61] a) V. Gudipati, *PhD Thesis*, University of Pittsburgh, USA, 2008. b) V. Gudipati, R. Bajpai, D. P. Curran, *Collect. Czech. Chem. Commun.* 2009, 74, 774. c) K. Zhang, D. P. Curran, *Synlett* 2010, 667.V. Gudipati, R. Bajpai, D. P. Curran, *Collect. Czech. Chem. Commun.* 2009, 74, 774.
- [62] Für ausgewählte Übersichtsartikel, siehe: a) D. Seebach, *Angew. Chem.* 1969, 81, 690; *Angew. Chem. Int. Ed.* 1969, *8*, 639. b) M. Yus, C. Nájera, F. Foubelo, *Tetrahedron*,
 2003, 59, 6147. c) A. B. Smith, III, C. M. Adams, *Acc. Chem. Res.* 2004, *37*, 365.
- [63] a) M. Julia, J.-M. Paris, *Tetrahedron Lett.* 1973, *14*, 4833. b) J. B. Baudin, G. Hareau, S. A. Julia, O. Ruel, *Tetrahedron Lett.* 1991, *32*, 1175. c) P. R. Blakemore, W. J. Cole, P. J. Kocieński, A. Morley, *Synlett* 1998, 26.
- [64] a) D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2127, b) J. R. Gage, D. A. Evans, Org. Synth., 1990, 68, 83. Für einen Übersichtsarktikel, siehe: c) D. A. Evans. Aldrichim. Acta 1982, 15, 23.
- [65] G. K. Friestad, G. Sreenilayam, Org. Lett. 2010, 12, 5016.
- [66] E. T. T. Kumpulainen, B. Kang, M. J. Krische, Org. Lett. 2011, 13, 2484.
- [67] Für die Synthese von Aziden mittels *Mitsunobu*-Reaktion, siehe: a) P. J. Jervis, L. R. Cox, G. S. Besra, *J. Org. Chem.* 2011, *76*, 320; b) O. Iwamoto, K. Nagasawa, *Org. Lett.* 2010, *12*, 2150; c) M. T. Crimmins A. C. DeBaillie, *J. Am. Chem. Soc.* 2006, *128*, 4936; d) E. Airiau, T. Spangenberg, N. Girard, B. Breit, A. Mann, *Org. Lett.* 2010, *12*, 528.
- [68] a) D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636. b) J. K. Stille, Angew. Chem. 1986, 98, 504; Angew. Chem. Int. Ed. 1986, 25, 508.
- [69] H. Tsuchikawa, N. Matsushita, N. Matsumori, M. Murata T. Oishi, *Tetrahedron Lett.*2006, 47, 6187. b) L. A. Paquette, D. Pissarnitski, L. Barriault, J. Org. Chem. 1998, 63, 7389.
- [70] D. J. Dixon, S. V. Ley, D. A. Longbottom, Org. Synth. 2003, 80, 129.
- [71] Für Originalliteratur zur Steglich-Veresterung, siehe: a) B. Neises, W. Steglich, Angew. Chem. 1978, 90, 556; Angew. Chem. Int. Ed. 1978, 17, 522. Für die

Veresterung einer 2-Haloacrylsäuren mit TMS-Ethanol, siehe: b) W. Oppolzer, C. Robbiani, K. Bättig, *Tetrahedron Lett.* **1984**, *40*, 1391.

- [72] L. Brandsma, *Preparative Acetylenic Chemistry 2nd Edition*, Elsevier Science Ltd.: Amsterdam, New York **1988**, S. 63.
- [73] A. B. Smith, III, S. M. Condon, J. A. McCauley, J. L. Leazer, Jr., J. W. Leahy, R. E. Maleczka, Jr., J. Am. Chem. Soc. 1997, 119, 962.
- [74] a) E. Piers, J. M. Chong, H. E. Morton, *Tetrahedron Lett.* 1981, 22, 4905. b) R. D. Singer, M. W. Hutzinger, A. C. Oehlschlager, *J. Org. Chem.* 1991, 56, 4933.
- [75] M. J. McKennon and A. I. Meyers, J. Org. Chem. 1993, 58, 3568.
- [76] V. I. Tararov, N. Yu. Kuznetzov, V. I. Bakhmutov, N. S. Ikonnikov, Y. N. Bubnov, V. N. Khrustalev, T. F. Saveleva, Y.N. Belokon, J. Chem. Soc., Perkin Trans. I 1997, 3101.
- [77] T. Ora, A. Murai, *Tetrahedron* **1998**, *54*, 1.
- [78] Zur Diastereoselektivität von Aldolreaktionen mit Borenolaten, siehe: D. A. Evans, J. V. Nelson, E. Vogel, T. R. Taber, J. Am. Chem. Soc. 1981, 103, 3099.
- [79] Für die Synthese des (+)-Enantiomers von 4-49 mit (S)-4-50, siehe: a) P. Phukan, S. Sasmal, M. E. Maier, *Eur. J. Org. Chem.* 2003, 1733. b) D. R. Williams, M. P. Clark, M. A: Berliner, *Tetrahedron Lett.* 1999, 40, 2287.
- [80] a) G. E. Keck, G. D. Lundquist, J. Org. Chem. 1999, 64, 4482. b) R. Barth, J. Mulzer, Angew. Chem. 2007, 119, 5893. Angew. Chem. Int. Ed. 2007, 46, 5791.
- [81] N. Kanomata, S. Maruyama, K. Tomono, S. Anada, *Tetrahedron Lett.* 2003, 44, 3599.
- [82] W. D. Paquette, R. E. Taylor, Org. Lett. 2004, 6, 103.
- [83] D. A. Evans, H. P. Ng, D. L. Rieger, J. Am. Chem. Soc. 1993, 115, 11446. b) C. D.
 Vanderwal, D. A. Vosburg, S. Weiler, E. J. Sorensen, J. Am. Chem. Soc. 2003, 125, 5393.
- [84] V. Grignard, Comp. Rend. 1900, 130, 1322.
- [85] M. Chérest, H. Felkin, N. Prudent, *Tetrahedron Lett.* 1968, 9, 2199. b) N. T. Anh, O. Eisenstein, J.-M. Lefour, M.-E. Dau. *J. Am. Chem. Soc.* 1973, 95, 6146.
- [86] R. Pappo, D. S. Allen, Jr., U. Lemieux, W. S. Johnson, J. Org. Chem. 1956, 21, 478.
- [87] S. D. Rychnovsky, D. J. Skalitzky, Tetrahedron Lett. 1990, 31, 945.
- [88] D. A. Evans, D. L. Rieger, J. R. Gage, *Tetrahedron Lett.* 1990, 31, 7099.
- [89] W. Yu, Y. Mei, Y. Kang, Z. Hua, Z. Jin, Org. Lett. 2004, 6, 3127.
- [90] C.U. Lee, *Master's Thesis*, Technische Universität, München, 2007.
- [91] T. T. Haug, *Dissertation*, Technische Universität München, 2010.

- [92] J. A. Marshall, M. P. Bourbeau, J. Org. Chem. 2002, 67, 2751.
- [93] M. W. Logue, K. Teng, J. Org. Chem. 1982, 47, 2549.
- [94] Zum Aufbau des Sulfons mittels *Mitsunobu*-Reaktion und anschließender Oxidation, siehe: J. Garcia-Fortanet, J. Murga, M. Carda, J. A. Marco, *Org. Lett.* 2006, 8, 2695.
- [95] Ausgewählte Beispiele: a) A. B. Smith, III., B. M. Brandt, Org. Lett. 2001, 3, 1685. b)
 E. Lee, H. Y. Song, J. W. Kang, D.-S. Kim, C.-K. Jung, J. M. Joo, J. Am. Chem. Soc. 2002, 124, 384. c) P. Liu, E, N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 10772. d) A. Fürstner, M. Albert, J. Mlynarski, M. Matheu, E. DeClercq, J. Am. Chem. Soc. 2003, 125, 13132.
- [96] Für einen Übersichtsartikel zur selektiven Entschützung von Silylschutzgruppen, siehe: T. D. Nelson, R. D. Crouch, *Synthesis* **1996**, 1031.
- [97] T. K. Jones, R. A. Reamer, R. Desmond, S. C. Mills, J. Am. Chem. Soc. 1990, 112, 2998.
- [98] Für ausgewählte Übersichtsartikel zur Migration von Silylgruppen, siehe: a) P. G. M. Wuts, T. W. Greene, *Greene's Protection Groups in Organic Synthesis*, 4th Edition, John Wiley & Sons, Hoboken, New Jersey, 2007, 166. b) M. Kira, T. Iwamoto, Silyl Migrations in Patai's Chemistry of Functional Groups, John Wiley & Sons, Hoboken, New Jersey, 2009. Für ausgewählte Beispiele, siehe: c) S. Fugreati, A. J. P. White, A. D. Miller, Synlett 2005, 2385. d) M. C. Hillier, A. I. Meyers, Tetrahedron Lett. 2001, 42, 5145. e) T. Yamazaki, T. Oniki, T. Kitazume, Tetrahedron 1996, 52, 11753. f) J. M. Lassaletta, M. Meichle, S. Weile, R. R. Schmidt, J. Carbohydr. Chem. 1996, 15, 241. f) R. S. Perali, S. Mandava, V. R. Chunduri, Tetrahedron Lett. 2011, 52, 3045.
- [99] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155.
- [100] S. K: Thompson, C. H. Heathcock, J. Org. Chem. 1990, 55, 3386.
- [101] H. Staudinger, J. Meyer, Helv. Chim. Acta 1919, 2, 635.
- [102] Für ausgewählte Beispiele stereoselektiver Reduktionen von β-Hydroxyketonen in der Totalsynthese von Naturstoffen, siehe: a) G. K. Packard, Y. Hu, A. Vescovi, S. D. Rychnovsky, *Angew. Chem.* 2004, *116*, 2882; *Angew. Chem. Int. Ed.* 2004, *43*, 2822.
 b) D. A. Evans, D. M. Fitch, T. E. Smith, V. J. Cee, *J. Am. Chem. Soc.* 2000, *122*, 10033. c) B. M. Trost, J. D. Sieber, W. Qian, R. Dhawan, Z. T. Ball, *Angew. Chem.* 2009, *121*, 5586; *Angew. Chem. Int. Ed.* 2009, *48*, 5478. c) I. Paterson, G. J. Florence, K. Gerlach, J. P. Scott, N. Sereinig, *J. Am. Chem. Soc.* 2001, *123*, 9535.
- [103] K.-M. Chen, G. E. Hardtmann, K. Prasad, O. Repič, M. J. Shapiro, *Tetrahedron Lett.* 1987, 28, 155.

- [104] a) D. A. Evans, K. T. Chapman, *Tetrahedron Lett.* 1986, 27, 5939. b) D. A. Evans, K. T. Chapman, E. M. Carreira, *J. Am. Chem. Soc.* 1988, *110*, 3560.
- [105] K. Narasaka, F. G. Pai, *Tetrahedron* **1984**, *40*, 2233.
- [106] F. C. Kathawala, B. Prager, K. Prasad, O. Repič, M. J. Shapiro, R. S. Stabler, L. Widler, *Helv. Chim. Acta* 1986, 69, 803.
- [107] S.-I. Kiyooka, H. Kuroda, Y. Shimasaki, Tetrahedron Lett. 1986, 27, 3009.
- [108] a) I. Paterson, J. P. Scott, J. Chem. Soc.-Perkin Trans. 1 1999, 1003. b) I. Paterson, M. Donghi, K. Gerlach, Angew. Chem. Int. Ed. 2000, 39, 3315.
- [109] a) P. T. Kaye; R. A. Learmonth, *Synth. Commun.* 1989, 19, 2337. b) Z. A. Fataftah,
 A.-M M. Rawashdeh, C. Sotiriou-Leventis *Synth. Commun.* 2001, 31, 2379. c) Z. A.
 Fataftaha, M. Sawalhaha, A. M. Rawashdeha *Synth. Commun.* 2006, 36, 3655.
- [110] Für ausgewählte Übersichtsartikel zur Ringschlussmetathese, siehe: a) A. Fürstner, *Angew. Chem. Int. Ed.* 2000, *39*, 3012. b) T. M. Trnka and R. H. Grubbs, *Acc. Chem. Res.*, 2001, *34*, 18. Für Ringschlussmetathese mit Silylenolethern, siehe: c) A. Okada, T. Ohshima, M. Shibasaki *Tetrahedron Lett.* 2001, *42*, 8023.
- [111] a) L. Hintermann, A. Labonne, Synthesis 2007, 1121. b) L. Hintermann, Top. Organomet. Chem. 2010, 31, 123.
- [112] Für ausgewählte Übersichtsartikel zur Reaktivität von Silylenolethern, siehe: a) I. Kuwajima, E. Nakamura, Acc. Chem. Res. 1985, 18, 181. b) K. Miura, A. Hosomi in Main Group Metals in Organic Synthesis Vol. 2 (Hrsg. H. Yamamoto, K. Oshima), WILEY-VCH, Weinheim, 2004, S. 409.
- [113] M. J. Martinelli, J. Org. Chem. 1995, 55, 5065.
- [114] a) K. Omura D. Swern, *Tetrahedron* 1978, 34, 1651. b) A. J. Mancuso, S.-L. Huang,
 D. Swern, J. Org. Chem. 1978, 43, 2480. c) A. J. Mancuso, D. S. Brownfain, D.
 Swern, J. Org. Chem. 1979, 44, 4148. d) A. J. Mancuso, D. Swern, Synthesis 1981, 165.
- [115] F. M. Cordero, M. Gensini, A. Goti, A. Brandi, Org. Lett. 2000, 2, 2475.
- [116] a) E. W. Colvin, B. J. Hamill, J. Chem. Soc., Chem. Commun. 1973, 151. b) E. W. Colvin, B. J. Hamill, J. Chem. Soc. Perkin Trans. I 1977, 869. c) K. Miwa, T. Aoyama, T. Shioiri, Synlett 1994, 107.
- [117] a) S. Ohira, *Synth. Commun.* 1989, 19, 561. b) S. Müller, B. Liepold, G. Roth, H. J. Bestmann, *Synlett* 1996, 521. c) G. J. Roth, B. Liepold, S. G.Müller, H. J. Bestmann, *Synthesis* 2004, 59.

- [118] a) D. Seyferth, R. S. Marmor, P. Hilbert, J. Org. Chem. 1971, 36, 1379. b) J. C. Gilbert, U. Weerasooriya, J. Org. Chem. 1982, 47, 1837. c) J. C. Gilbert, U. Weerasooriya, J. Org. Chem. 1983, 48, 448.
- [119] Für einen Übersichtsartikel, siehe: a) O. I. Kolodiazhnyi, *Tetrahedron* 1996, 52, 1855.
 Für methodische Beispiele, siehe: b) T. Mukaiyama, S. Fukuyama, T. Kumamoto, *Tetrahedron Lett.* 1968, 34, 3787. c) C. C. Silveira, M. L. Begnini, P. Boeck, A. L. Braga, *Synthesis* 1997, 221. d) J. I. Grayson, S. Warren, *J. Chem. Soc. Perkin Trans. I*, 1997, 2263. e) F. Bohlmann, D. Bohm, C. Rybak, *Chem. Ber.* 1965, 98, 3087. Für eine Anwendung in der Naturstoffsynthese, siehe: f) K. C. Nicolaou, R. A. Daines, T. K. Chakraborty, Y. Ogawa, *J. Am. Chem. Soc.* 1988, *110*, 4685.
- [120] Für die Hg-katalysierte Hydrolyse von Vinylsulfiden, siehe: a) A. J. Mura, Jr., G. Majetich, P. A. Grieco, T. Cohen, *Tetrahedron Lett.* 1975, 50, 4437. b) Ref. 66d. Für die saure Hydrolyse von Vinylsulfiden, siehe: c) R. A. MacClelland, *Can. J. Chem.* 1977, 55, 548.
- [121] R. Zibuck, J. R. Streiber, J. Org. Chem. 1989, 54, 4717.
- [122] A. Osorio-Lozada, H. F. Olivo, Org. Lett. 2008, 10, 617.
- [123] A. T. Hoye, P. Wipf, Org. Lett. 2011, 13, 2634.
- [124] R. Appel, Angew. Chem. 1975, 87, 863; Angew. Chem. Int. Ed. 1975, 14, 801.
- [125] S. H. Kang, S. Y. Kang, H.-W. Choi, C. M. Kim, H.-S. Jun, J.-H. Younb, Synthesis, 2004, 1102.
- [126] J. P. Marino, M. P. Ferro, J. Org. Chem. 1981, 46, 1828.
- [127] Für Originalliteratur zur Mitsunobu-Reaktion, siehe: a) O. Mitsunobu, Y. Yamada, Bull. Chem. Soc. Japan 1967, 40, 2380. Für einen Übersichtsartikel, siehe b) O. Mitsunobu, Synthesis 1981, 1. Für Beispiele einer Mitsunobu-Reaktion mit Thioessigsäure, siehe: c) Y. F. Zheng, A. C. Oehlschlager, J Nafsika. H. Georgopapadakou, P. G. Hartman P. Scheligao, J. Am. Chem. Soc. 1995, 117, 670.
- [128] A. Jacobson, S. Moe, Patent WO 2009/045761 A1, 2009.
- [129] a) M. Inoue, K. Miyazaki, Y. Ishihara, A. Tatami, Y. Ohnuma, Y. Kawada, K. Komano, S. Yamashita, N. Lee, M. Hirama, J. Am. Chem. Soc. 2006, 128, 9352. b) I. Paterson, Tetrahedron 1988, 44, 4207.
- [130] J. Hancock, W. Hardstaff, P. Johns, R. Langler, W. Mantle, Can. J. Chem. 1983, 61, 1472.
- [131] K. Fuji, Y. Usami, Y. Kiryu, M. Node, Synthesis 1992, 852.

- [132] Y. Xu, G. Jiang, R. Tsukahara, Y. Fujiwara, G. Tigyi, G. D. Prestwich, J. Med. Chem.
 2006, 49, 5309.
- [133] a) J. A. Joule, K. Mills, *Heterocyclic Chemistry*, 4th edition.; Blackwell, Oxford, UK, 2000. b) A. R. Katritzky, C. W. Rees, E. F. V. Scriven, (Hrsg.), *Comprehensive Heterocyclic Chemistry II*, Elsevier, Oxford, UK, 1996.
- [134] B. D. Roth, Prog. Med. Chem. 2002, 40, 1.
- [135] Pfizer, *Financial Report* 2010, S. 25 (http://www.pfizer.com/investors/financial_reports/financial_reports.jsp; aufgerufen am 18.01.2012)
- [136] B. Simon, H. G. Dammann, P. Müller, H. Kather, Dtsch. Med. Wochenschr. 1980, 105, 1753.
- [137] J. Lukša, D. Josič, M. Kremser, Z. Kopitar, S. J. Milutinovič, Chromatogr., B: Anal. Technol. Biomed. Life Sci. 1997, 703, 185.
- [138] a) B. H. Lipshutz, Chem. Rev. 1986, 86, 795. (b) T. Eicher, S. Hauptmann, The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications, 2nd edition, Wiley-VCH, Weinheim, 2003. (c) T. Lechel, H.-U. Reissig, Pure Appl. Chem. 2010, 82, 1835. (d) B. Willy, T. J. J. Müller, Curr. Org. Chem. 2009, 13, 1777.
- [139] Für ausgewählte Übersichtsartikel, siehe: a) D. Curran, J. Grimshaw, S. D. Perera, *Chem. Soc. Rev.* 1991, 20, 391. b) S. Yamaguchi, K. J. Tamao, *J. Organomet. Chem.* 2002, 653, 223. c) S. J. Higgins, *Chem. Soc. Rev.* 1997, 26, 247. Für ausgewählte Beispiele, siehe: d) H. Hofmeier, U. S. Schubert, *Chem. Commun.* 2005, 2423. e) U. S. Schubert, C. Eschbaumer, *Angew. Chem.* 2002, 114, 3016; *Angew. Chem. Int. Ed.* 2002, 41, 2892. (f) V. M. Domingo, C. Aléman, E. Brillas, L. Juliá, *J. Org. Chem.* 2001, 66, 4058.
- [140] a) L. Knorr, Chem. Ber. 1884, 17, 1635. b) C. Paal, Chem. Ber. 1885, 18, 367.
- [141] A. Hantzsch, Chem. Ber. 1890, 23, 1474
- [142] Für ausgewählte Übersichtsartikel, siehe: a) A. Kotschy, G. Timári, *Heterocycles from Transition Metal Catalysis*, Springer, Dordrecht, Niederlande, 2005. (b) S. F. Kirsch, *Synthesis* 2008, 3183. (c) N. Krause, Ö. Aksin-Artok, V. Breker, C. Deutsch, B. Gockel, M. Poonoth, Y. Sawama, T. Sun, C. Winter, *Pure Appl. Chem.* 2010, *82*, 1529.
- [143] L. Claisen, Ber. Dtsch. Chem. Ges. 1912, 45, 3175.
- [144] Für ausgewählte Übersichtsartikel, siehe: a) H. Ito, T. Taguchi, *Chem. Soc. Rev.* 1999, 28, 43. b) U. Nubbemeyer, *Synthesis* 2003, 961. c) S. M. Allin, R. D. Baird, *Curr.*

Org. Chem. **2001**, *5*, 395. d) E. A. Ilardi, C. E. Stivala, A. Zakarian, *Chem. Soc. Rev.*, **2009**, *38*, 3133.

- [145] Für ausgewählte Übersichtsartikel, siehe: a) L. E. Overman, *Angew. Chem.* 1984, 96, 565; *Angew. Chem. Int. Ed.* 1984, 23, 579. b) K. N. Fanning, A. G. Jamieson, A. Sutherland, *Curr. Org. Chem.* 2006, 10, 1007.
- [146] a) L. E. Overman, C. B. Campbell, J. Org. Chem. 1976, 41, 3338. b) L. E. Overman,
 C. B. Campbell, F. M. Knoll, J. Am. Chem. Soc. 1978, 100, 4822.
- [147] T. Ikariya, Y. Ishikawa, K. Hirai, S. Yoshikawa, Chem. Lett. 1982, 1815.
- [148] L. E. Overman. F. M. Knoll, Tetrahedron Lett. 1979, 20, 321.
- [149] a) L. E. Overman, F. M. Knoll, J. Am. Chem. Soc. 1980, 102, 865. b) L. E. Overman,
 E. J. Jacobsen, J. Am. Chem. Soc. 1982, 104, 7225.
- [150] J. L. van der Baan, F. Bickelhaupt, Tetrahedron Lett. 1986, 27, 6267.
- [151] J. W. Grissom, D. Klingberg, D. Huang, B. J. Slattery, J. Org. Chem. 1997, 62, 603.
- [152] B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 15978.
- [153] P. Mauleón, J. L. Krinsky. F. D. Toste, J. Am. Chem. Soc. 2009, 131, 4513.
- [154] Für ausgewählte Übersichtsartikel zu Dominoreaktionen, siehe: a) L. F. Tietze, *Chem. Rev.* 1996, 96, 115. b) L. F. Tietze, A. Modi, *Med. Res. Rev.* 2000, 20, 304. c) L. F. Tietze, G. Brasche, G. Gericke, in *Domino Reactions in Organic Synthesis*; Wiley-VCH, Weinheim, 2006. d) K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, *Angew. Chem.* 2006, *118*, 7292; *Angew. Chem. Int. Ed.* 2006, *45*, 7134. e) H. Pellisier, *Tetrahedron* 2006, *62*, 2143. f) R. J. K. Taylor, M. Reid, J. Foot, S. A. Raw, *Acc. Chem. Res.* 2005, *38*, 851. g) L. F. Tietze, T. Kinzel, C. C. Brazel, *Acc. Chem. Res.* 2009, *42*, 367.
- [155] Für die Synthese heterozyklischer Verbindungen mit Allenen, siehe: Übersicht: a) M. Brasholz, H.-U. Reissig, R. Zimmer, Acc. Chem. Res. 2009, 42, 45. Ausgewählte Beispiele: b) M. Gwiazda, H.-U. Reissig, Synthesis 2008, 990. c) T. Lechel, S. Möhl, H.-U. Reissig, Synlett 2009, 1059. d) J. Dash, H.-U. Reissig, Chem. Eur. J. 2009, 15, 6811. e) T. Lechel, D. Lentz, H.-U. Reissig, Chem. Eur. J. 2009, 15, 5432.
- [156] M. H. Suhre, M. Reif, S. F. Kirsch, Org. Lett. 2005, 7, 3925
- [157] J. T. Binder, S. F. Kirsch, Org. Lett. 2006, 8, 2151.
- [158] a) H. Cao, H. Jiang, W. Yao, X. Liu, Org. Lett. 2009, 11, 1931. b) H. Jiang, W. Yao, H. Cao, H. Huang, D. Cao, J. Org. Chem. 2010, 75, 5347.
- [159] A. Gille, J. Rehbein, M. Hiersemann, Org. Lett. 2011, 13, 2122.
- [160] A. Saito, T. Konishi, Y. Hanzawa, Org. Lett. 2010, 12, 372.

- [161] X. Xin, D. Wang, X. Li, B. Wan, Angew. Chem. 2012, 124, 1725; Angew. Chem. Int. Ed. 2012, 51, 1693.
- [162] H. Menz, S. F. Kirsch, Org. Lett. 2006, 8, 4795.
- [163] a) A. F. Kluge, C. P. Lillya, J. Am. Chem. Soc. 1971, 93, 4458. b) A. F. Kluge, C. P. Lillya, J. Org. Chem. 1971, 36, 1977. c) Y. Zhu, S. Ganapathy, R. S. Liu, J. Org. Chem. 1992, 57, 1110.
- [164] B. D. Sherry, L. Maus, B. N. Laforteza, F. D. Toste, J. Am. Chem. Soc. 2006, 128, 8132.
- [165] D. Tejedor, G. Méndez-Abt, L. Cotos, M. A. Ramirez, F. Garcia-Tellado, Eur. J. Org. Chem. 2011, 17, 3318.
- [166] D. Tejedor, G. Méndez-Abt, F. García-Tellado, Chem. Eur. J. 2010, 16, 428.
- [167] H.Wei, Y. Wang, B. Yue, P.-F. Xua, Adv. Synth. Catal. 2010, 352, 2450.
- [168] a) U. Eisner, J. Kuthan, Chem. Rev. 1972, 72, 1. b) J. Moreau, J.-P. Hurvois, M. D. Mbaye, J.-L. Renaud, Targets Heterocycl. Syst. 2009, 13, 201. c) J.-C. Quirion, E. Leclerc, P. Jubault, Sci. Synth. 2007, 33, 601. d) A. Shah, J. Barival, J. Molnár, M. Kawase, N. Motohashi, Top. Heterocycl. Chem. 2008, 15, 201. e) R. J. Lavilla, J. Chem. Soc., Perkin Trans. 1 2002, 1141.
- [169] Für ausgewählte Beispiel zur übergangsmetallkatalysierten Synthese von 1,2-Dihydropyridinen, siehe: D. A. Colbe, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2008, 130, 3645. b) M. Motamed, E. M. Bunnelle, S. W. Singaram, R. Sarpong, Org. Lett. 2007, 9, 2167. c) S. Ogoshi, H. Ikeda, H. Kurosawa, Angew. Chem. 2007, 119, 5018; Angew. Chem. Int. Ed. 2007, 46, 4930. d) D. A. Black, R. E. Beveridge, B. A. Arndsten, J. Org. Chem. 2008, 73, 1906. e) T. Luo, S. L. Schreiber, J. Am. Chem. Soc. 2009, 131, 5667. f) N. Sydorenko, R. P. Hsung, E. L. Vera, Org. Lett. 2006, 8, 2611. g) Z. Vincze, Z. Mucsi, P. Schreiber, P. Nemes, Eur. J. Org. Chem. 2008, 1092.
- [170] J. Inanaga, Y. Baba, T. Hanamoto, *Chem. Lett.* 1993, 22, 241. (b) D. Tejedor, A. Santos-Expósito, G. Méndez-Abt, C. Ruiz-Pérez, F. García-Tellado, *Synlett* 2009, 1223
- [171] Für ausgewählte Beispiele Rh-katalysierte Propargyl-Claisen-Umlagerungen, siehe: a)
 K. Tanaka, E. Okazaki, Y. Shibata, J. Am. Chem. Soc. 2009, 131, 10822. b) A. Saito,
 A. Kanno, Y. Hanzawa, Angew. Chem. 2007, 119, 4005; Angew. Chem. Int. Ed. 2007,
 46, 3931. c) A. Saito, S. Oda, H. Fukaya, Y. Hanzawa, J. Org. Chem. 2009, 74, 1517.
- [172] Für 6-endo-Zyklisierungen auf Allene, siehe: B. Glockel, N. Krause, Org. Lett. 2006, 8, 4485.

- [173] Zur Elektrozyklisierungen von 1-Azatrienen, siehe: a) D. F. Maynard, W. H. Okamura, J. Org. Chem. 1995, 60, 1763. b) K. Tanaka, H. Mori, S. Katsumura, J. Org. Chem. 2001, 66, 3099. c) T. Sakaguchi, T. Kobayashi, S. Hatano, H. Tsuchikawa, K. Fukase, K. Tanaka, S. Katsumura, Chem. Asian J. 2009, 4, 1573. d) K. Tanaka, S. Katsumura, J. Am. Chem. Soc. 2002, 124, 9660. e) B. M. Trost, A. C. Gutierrez, Org. Lett. 2007, 9, 1473.
- [174] Für die Eintopfsynthese von Heterozyklen ausgehend von propargylischen Verbindungen, siehe: Furane: a) H. Cao, H. Jiang, R. Mai, S. Zhu, C. Qi, *Adv. Synth. Catal.* 2010, 352, 143. b) H. Cao, H.-F. Jiang, H.-W. Huang, J.-W. Zhao, *Org. Biomol. Chem.*, 2011, 9, 7313. 1,4-Dihydropyridine: c) F. J. Fañanás, T. Arto, A. Mendoza, F. Rodríguez, *Org. Lett.* 2011, *13*, 4184.
- [175] Für ausgewählte Übersichtsartikel zu Gold-Katalyse, siehe: a) A. Fürstner, P. W. Davies, *Angew. Chem.* 2007, *119*, 3478; *Angew. Chem. Int. Ed.* 2007, *46*, 3410. b) A. S. K. Hashmi, *Chem. Rev.* 2007, *107*, 3180. c) E. Jiménez-Núñez, A. M. Echavarren, *Chem. Commun.* 2007, 333. d) A. S. K. Hashmi, G. J. Hutchings, *Angew. Chem.* 2006, *118*, 8064; *Angew. Chem. Int. Ed.* 2006, *45*, 7896.
- [176] D. Tejedor, G. Méndez-Abt, F. García-Tellado, Eur. J. Org. Chem. 2010, 6582.
- [177] a) P. Grieß, Philos. Trans. R. Soc. London 1864, 13, 377. b) P. Grieß, Justus Liebigs Ann. Chem. 1865, 135, 131.
- [178] Für Übersichtsartikel zur Synthese organischer Azide, siehe: a) S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. 2005, 117, 5320; Angew. Chem. Int. Ed. 2005, 44, 5188. b) T. M. V. D. Pinho e Melo in Organic Azides: Syntheses and Applications (Hrsg: S. Bräse, K. Banert), John Wiley & Sons, Chichester, USA, 2009, S. 53.
- [179] Für ausgewählte Beispiele, siehe: a) N. Halland, A. Braunton, S. Bachmann, M. Marigo, K. A. Jørgensen, J. Am. Chem. Soc. 2004, 126, 4790. b) G. P. Miller, E. T. Kool, J. Org. Chem. 2004, 69, 2404. c) Y. Chevolot, C. Bouillon, S. Vidal, F. Morvan, A. Meyer, J.-P. Cloarec, A. Jochum, J.-P. Praly, J.-J. Vasseur, E. Souteyrand, Angew. Chem. 2007, 119, 2450; Angew. Chem. Int. Ed. 2007, 46, 2398. d) E. A. Appel, F. Biedermann, U. Rauwald, S. T. Jones, J. M. Zayed, O. A. Scherman, J. Am. Chem. Soc. 2010, 132, 14251.
- [180] Für ausgewählte Beispiele, siehe: a) S. Schoffelen, M. B. van Eldijk, B Rooijakkers,
 R. Raijmakers, A. J. R. Heck, J. C. M. van Hest, *Chem. Sci.* 2011, *2*, 701. b) S. F. M.
 Van Dongen, R. L. M. Teeuwen, M. Nallani, S. S. van Berkel, J. J. L. M. Cornelissen,

R. J. M. Nolte, J. C. M. van Hest, *Bioconjugate Chem.* 2009, 20, 20. c) E. D. Goddard-Borger, R. V. Stick, *Org. Lett.* 2007, 9, 3797. d) C. J. Cavender, V. J. Shiner, *J. Org. Chem.* 1972, 37, 3567. e) J. Zaloom, D. C. Roberts, *J. Org. Chem.* 1981, 46, 5173. f)
P. B. Alper, S.-C. Hung, C.-H. Wong, *Tetrahedron Lett.* 1996, 37, 6029. g) H. S. G. Beckmann, V. Wittmann, *Org. Lett.* 2007, 9, 1. h) P. T. Nyffeler, C.-H. Liang, K. M. Koeller, C.-H. Wong, *J. Am. Chem. Soc.* 2002, 124, 10773.

- [181] a) P. Magnus, C. Hulme, W. Weber, J. Am. Chem. Soc. 1994, 116, 4501. b) P. Magnus, J. Lacour, J. Am. Chem. Soc. 1992, 114, 767. c) P. Magnus, J. Lacour, P. A. Evans, M. B. Roe, C. Hulme, J. Am. Chem. Soc. 1996, 118, 3406. d) P. Magnus, M. B. Roe, Tetrahedron Lett. 1996, 37, 303. e) P. Magnus, J. Lacour, P. A. Evans, P. Rigollier, H. Tobler, J. Am. Chem. Soc. 1998, 120, 12486. f) H. Tohma, M. Egi, M. Ohtsubo, H. Watanabe, S. Takizawa, Y. Kita, Chem. Commun. 1998, 173. g) D.-J. Chen, Z.-C. Chen, Tetrahedron Lett. 2000, 41, 7361. h) P. Magnus, J. Lacour, W. Weber, Synthesis 1998, 547.
- [182] a) B. B. Snider, J. R. Duvall, Org. Lett. 2004, 6, 1265. b) F. Fontana, F. Minisci, Y. M. Yan, L. Zhao, Tetrahedron Lett. 1993, 34, 2517. c) V. V. Zhdankin, A. P. Krasutsky, C. J. Kuehl, A. J. Simonsen, J. K. Woodward, B. Mismash, J. T. Bolz, J. Am. Chem. Soc. 1996, 118, 5192.
- [183] a) A. Hassner, Acc. Chem. Res. 1971, 4, 9. b) F. W. Fowler, A. Hassner, L. A. Levy, J. Am. Chem. Soc. 1967, 89, 2077. c) G. L_Abbe, A. Hassner, J. Org. Chem. 1971, 36, 258.
- [184] a) C. Viuf, M. Bols, Angew. Chem. 2001, 113, 643; Angew. Chem. Int. Ed. 2001, 40, 623. b) L. Marinescu, J. Thingaard, I. B. Thomsen and M. Bols, J. Org. Chem. 2003, 68, 9453. c) M. Baruah, M. Bols, Synlett 2002, 1111. d) H. Pedersen, S. Sinning, A. B_low, O. Wiborg, L. Falborg, M. Bols, Org. Biomol. Chem. 2004, 2, 2861. e) C. M. Pedersen, L. G. Marinescu, M. Bols, Org. Biomol. Chem. 2005, 3, 816.
- [185] a) R. Huisgen, Proc. Chem. Soc. 1961, 357; b) K. Alder, G. Stein, H. Finzenhagen, Justus Liebigs Ann. Chem. 1931, 485, 211.
- [186] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. 2002, 114, 2708; Angew. Chem. Int. Ed. 2002, 41, 2596.
- [187] C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
- [188] Für einen grundlegenden Übersichtsartikel zur Click-Chemie, siehe: a) H. C. Kolb, M. G. Finn, K. B. Sharpless, *Angew. Chem.* 2001, *113*, 2056; *Angew. Chem. Int. Ed.* 2001, *40*, 2004. Für Cu(I)-katalysierte Zykloadditionen, siehe: b) J. E. Moses, A. D.

Moorhouse, *Chem. Soc. Rev.* **2007**, *36*, 1249. c) C. Spiteri, J. E. Moses, *Angew. Chem.* **2010**, *122*, 33; *Angew. Chem. Int. Ed.* **2010**, *49*, 31. d) J.-F. Lutz, *Angew. Chem.* **2007**, *119*, 1036; *Angew. Chem. Int. Ed.* **2007**, *46*, 1018.

- [189] a) E. M. Sletten, C. R. Bertozzi, Angew. Chem. 2009, 121, 7108; Angew. Chem. Int. Ed. 2009, 48, 6974. b) C. P. R. Hackenberger, D. Schwarzer, Angew. Chem. 2008, 120, 10182; Angew. Chem. Int. Ed. 2008, 47, 10030
- [190] Für Übersichtsartikel zur Dendrimersynthese mit Click-Chemie, siehe: a) D. Q. McNerny, D. G. Mullen, I. J. Majoros, M. M. B. Holl, J. R. Baker Jr. in *Click Chemistry for Biotechnology and Materials Science* (Ed: J. Lahann), John Wiley & Sons, Chichester, USA, 2009, S. 177. b) J. A. Johnson, M. G. Finn, J. T. Koberstein, N. J. Turro, *Macromol. Rapid Commun.* 2008, *29*, 1052. c) G. Franc, A. K. Kakkar, *Chem. Soc. Rev.* 2010, *39*, 1536. d) R. K. Iha, K. L. Wooley, A. M. Nystrçm, D. J. Burke, M. J. Kade, C. J. Hawker, *Chem. Rev.* 2009, *109*, 5620.
- [191] Für Übersichtsartikel zur Click-Chemistry in der Wirkstoffentwicklung, siehe: a) H. C. Kolb, K. B. Sharpless, *Drug Discovery Today* 2003, *8*, 1128. b) J.-F. Lutz, Z. Zarafshani, Adv. *Drug Delivery Rev.* 2008, *60*, 958. c) G. C. Tron, T. Pirali, R. A. Billington, P. L. Canonico, G. Sorba, A. A. Genazzani, *Med. Res. Rev.* 2008, *28*, 278.
- [192] F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, V. V. Fokin, J. Am. Chem. Soc., 2005, 127, 210.
- [193] a) H.-P. Bi, L.-N. Guo, X.-H. Duan, F.-R. Gou, S.-H. Huang, X.-Y. Liu, Y.-M. Liang, Org. Lett. 2007, 9, 397. b) R. N. Loy, E. N. Jacobsen, J. Am. Chem. Soc. 2009, 131, 2786
- [194] a) W.-J. Yoo, H. Miyamura, S. Kobayashi, J. Am. Chem. Soc. 2011, 133, 3095. b) A.
 Mekonnen, R. Carlson, Eur. J. Org. Chem. 2006, 2005.
- [195] M. Terada, K. Sorimachi, D. Araguchi, Synlett 2006, 133
- [196] a) B. Sreedhar, P. Surendra Reddy, M. Madhavi, Synth. Commun. 2007, 37, 4149. b)
 D. Yang, Y.-L. Yan, B. Lui, J. Org. Chem. 2002, 67, 7429.
- [197] A. Duschek, S. F. Kirsch, Chem. Eur. J. 2009, 15, 10713.
- [198] L.-Q. Cui, Z.-L. Dong, K. Liu, C. Zhang, Org. Lett. 2011, 13, 6488.
- [199] J.Yu, S.-S. Liu, J. Cui, X.-S. Hou, C. Zhang, Org. Lett. 2012, 14, 832.
- [200] Für einen Übersichtsartikel, siehe: T. Patonay, K. Kónya, E. Juhász-Tóth, Chem. Soc. Rev. 2011, 40, 2797.
- [201] M. O. Forster, R. Müller, J. Chem. Soc. Trans. 1910, 97, 126. e) M. O. Forster, R. Müller, J. Chem. Soc. Trans. 1910, 97, 1360.

- [202] a) O. Edwards, W. Rank, Can. J. Chem. 1990, 68, 1425. b) L. Benati, D. Nanni, C. Sangiorgi, P. Spagnolo, J. Org. Chem. 1999, 64, 7836. c) G. Guerrini, F. Poticelli, Eur. J. Org. Chem. 2010, 391.
- [203] a) K. A. Lyssenko, D. A. Lenev, R. G. Kostyanovsky, *Tetrahedron* 2002, *58*, 8525. b)
 L. Benati, G. Calestani, D. Nanni, P. Spagnolo, *J. Org. Chem.* 1998, *63*, 4679. c) *S. J.*Weininger, S. Kohen, S. Mataka, *G. Koga*, J.-P. Anselme, *J. Org. Chem.* 1974, *39*, 1591.
- [204] L. Benati, D. Nanni, P. Spagnolo, J. Org. Chem. 1999, 64, 5132.
- [205] R. M. Moriarty, R. K. Vaid, Y. T. Ravikumar, B. K. Vaid, T. E. Hopkins, *Tetrahedron* 1988, 44, 1603.
- [206] a) J. C. Lee, S. Kim, W. C. Shin, Synth. Commun. 2000, 30, 4271. b) D. Kumar, S. Sundaree, V. S. Rao, Synth. Commun. 2006, 36, 1893. c) V. N. Telvekar, H. V. Patile, Synth. Commun. 2010, 41, 131.
- [207] Für Übersichtsartikel zur Manipulation von funktionellen Gruppen mit Iod, siehe: a)
 A. K. Banerjee, W. Vera, H. Mora, M. S. Laya, L. Bedoya, E. V. Cabrera, *J. Sci. Ind. Res.* 2006, 65, 299. b) H. Togo, S. Iida, *Synlett* 2006, 2159; c) A. N. French, S.
 Bissmire, T. Wirth, *Chem. Soc. Rev.* 2004, 33, 354.
- [208] Für die *in situ* Oxidation von Iodiden, siehe: Bu₄NI: a) M. Uyanik, D. Suzuki, T. Yasui, K. Ishihara, Angew. Chem. 2011, 123, 5443; Angew. Chem. Int. Ed. 2011, 50, 5331. Organische Iodide: b) T. Dohi, A. Maruyama, M. Yoshimura, K. Morimoto, H. Tohma, Y. Kita, Angew. Chem. 2005, 117, 6349; Angew. Chem. Int. Ed. 2005, 44, 6193. c) M. Ochiai, Y. Takeuchi, T. Katayama, T. Sueda, K. Miyamoto, J. Am. Chem. Soc. 2005, 127, 12244. d) J. Sheng, X. Li, M. Tang, B. Gao, G. Huang, Synthesis 2007, 1165. e) C. Chen, X. Feng, G. Zhang, Q. Zhao, G. Huang, Synthesis 2008, 3205. f) Y. Yamamoto, H. Togo, Synlett 2006, 798. Hypervalente Iodreagenzien: g) A. Schulze, A. Giannis, Synthesis 2006, 257. h) A. P. Thottumkara, M. S. Bowsher, T. K. Vinod, Org. Lett. 2005, 7, 2933. i) S. Quideau, G. Lyvinec, M. Marguerit, K. Bathany, A. Ozanne-Beaudenon, T. Buffeteau, D. Cavagnat, A. Chned, Angew. Chem. 2009, 121, 4675; Angew. Chem. Int. Ed. 2009, 48, 4605. j) M. Uyanik, K. Ishihara, Chem. Commun. 2009, 2086.
- [209] Für Übersichtsartikel zu IBX und seinen Derivaten, siehe: a) A. Duschek, S. F. Kirsch, *Angew. Chem.* 2011, 123, 1562; *Angew. Chem. Int. Ed.* 2011, 50, 1524. b) V. Satam, A. Harad, R. Rajule, H. Pati, *Tetrahedron* 2010, 66, 7659. c) V. V. Zhdankin, *J. Org.*

Chem. **2011**, *76*, 1185. d) T. Wirth, *Angew. Chem.* **2001**, *113*, 2893; *Angew. Chem. Int. Ed.* **2001**, *40*, 2812.

- [210] A. Duschek, *Dissertation*, Technische Universität München, 2011.
- [211] Zur Oxidation mit 2-Iodoxyphenylsulfonsäure, siehe: a) M. Uyanik, M. Akakura, K. Ishihara, J. Am. Chem. Soc. 2009, 131, 251. b) M. Uyanik, R. Fukatsu, K. Ishihara, Org. Lett. 2009, 11, 3470.
- [212] M. S. Workentin, B. D. Wagner, J. Lusztyk, D. D. M. Wayner, J. Am. Chem. Soc. 1995, 117, 119.
- [213] O. E. Edwards, C. Grieco, Can. J. Chem. 1974, 52, 3561.
- [214] K. Shibatomi, A. Narayama, Y. Soga, T. Muto, S. Iwasa, Org. Lett. 2011, 13, 2944.
- [215] Für alternative Synthesestrategien von Bis-1,2,3-triazoles, ohne Azidintermediate, siehe: a) M. Keating, M. J. Sasse, R. C. Storr, *J. Chem. Soc. Perkin Trans. 1* 1978, 905. b) A. R. Katritzky, W. Kuzmierkiewicz, B. Rachwal, S. Rachwal, J. Thomson, *J. Chem. Soc. Perkin Trans. 1* 1987, 811. c) A. R. Katritzky, S. Rachwal, B. Rachwal, *J. Chem. Soc. Perkin Trans. 1* 1987, 811. c) A. R. Katritzky, R. M. Witek, V. Rodriguez-Garcia, P. P. Mohapatra, J. W. Rogers, J. Cusido, A. A. A. Abdel-Fattah, P. J. Steel, *J. Org. Chem.* 2005, *70*, 7866.
- [216] P. Tang, T. Furuya, T. Ritter, J. Am. Chem. Soc. 2010, 132, 12150.
- [217] J. C. Jewett, C. R. Bertozzi, Chem. Rev. 2010, 39, 1272–1279.
- [218] Für ausgewählte Übersichtsartikel, siehe: a) L. Wang, P. G. Schultz, *Angew. Chem.*2005, 117, 34; *Angew. Chem. Int. Ed.* 2005, 44, 34. b) T. S. Young, P. G. Schultz, *J. Biol. Chem.* 2010, 285, 11039.
- [219] T. Harschneck, S. F. Kirsch, Nachr. Chem. 2011, 58, 764.
- [220] P. M. Abeysinghe, Y. Han, M. M. Harding, Tetrahedron Lett. 2009, 50, 2601.
- [221] Zur Dacetylierung von Oxa-Threoninderivaten unter basischen Bedingungen, siehe: N.
 F. Albertson, B. F. Tullar, J. A. King, B. B. Fishburn, S. Archer, J. Am. Chem. Soc.
 1948, 70, 1150.
- [222] Zur asymmetrischen Funktionalisierung von 1,3-Dicarbonylen mit chiralen *Lewis*-Säuren, siehe: a) M. Marigo, N. Kumaragurubaran, K. A. Jørgensen, *Chem. Eur. J.* **2004**, *10*, 2133. Für einen organokatalytischen Ansatz, siehe: G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, P. Melchiorre, L. Sambri, *Angew. Chem.* **2005**, *117*, 6375. *Angew. Chem. Int. Ed.* **2005**, *44*, 6219.
- [223] A. B. Pangborn, M. A. Giradello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.

- [224] S. C. Watson, J. F. Eastham, J. Organomet. Chem. 1978, 9, 165-168.
- [225] M. F. Lipton, C. M. Sorensen, A. C. Sadler, R. H. Shapiro, J. Organomet. Chem. 1980, 186, 155.
- [226] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923-2925.
- [227] H. Maehra, M. R. Uskokovica, C. P. Schaffner, Synth. Commun. 2009, 39, 299.
- [228] S. Garrais, J. Turkington, W. P.D. Goldring, Tetrahedron 2009, 65, 8418.
- [229] J. M. Schomaker, V. R. Pulgam, B. Borhan, J. Am. Chem. Soc. 2004, 126, 13600.
- [230] D. A. Evans, M. DiMare, J. Am. Chem. Soc. 1986, 108, 2476.
- [231] L. Nielsen, K. B. Lindsay, J. Faber, N. C. Nielsen, T. Skrydstrup, J. Org. Chem. 2007, 72, 10035.
- [232] A. Kumar, D. C. Dittmer, J. Org. Chem. 1994, 59, 4760.
- [233] D. Wang, W. A. Nugent, J. Org. Chem. 2007, 72, 7307.
- [234] U. C. Gruenanger, B. Breit, Angew. Chem. 2010, 122, 979; Angew. Chem. Int. Ed.
 2010, 49, 967.
- [235] N. Harrington Frost, H. Leuser, M. I. Calaza, F. F. Kneisel, P. Knochel, Org. Lett. 2003, 5, 2111.
- [236] M. J. Betts, M. L. Swain (Zeneca Ltd.), Patent US5541178, 1996.
- [237] W. Ogilvie, W. Rank, Can. J. Chem. 1987, 65, 166.
- [238] R. M. Moriarty, B. R. Bailey III, I. Prakash, R. S. Miller J. Org. Chem. 1985, 50, 3710.
- [239] J. M. Aizpurua, I. Azcune, R. M. Fratila, E. Balentova, M. Sagartzazu-Aizpurua, J. I. Miranda Org. Lett. 2010, 12, 1584.
- [240] G. T. Kelly, V. Sharma, C. M.H. Watanabe, Bioorg. Chem. 2008, 36, 4
- [241] M. C. Bagley, K. E. Bashford, C. L. Hesketh, C. J. Moody, J. Am. Chem. Soc. 2000, 122, 3301.7