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Abstract

Next-generation technical systems, such as household robots and intelligent factories,
autonomously plan and schedule actions to achieve high levels of robustness and flexibility.
However, because planning and scheduling is computationally hard, it must typically be
done off-line using simplified system models, and is unaware of on-line observations and
possible component faults and contingencies. Especially in uncertain environments, it
therefore becomes important to predict the remaining success probabilities to reach the
goals of a partially executed plan, based on behavior models and current observations
about the system’s (possibly faulty) behavior. This plan assessment problem combines
diagnosis and probabilistic reasoning aspects. For example, faulty behavior in a factory
plant may jeopardize certain products; as a reaction, the plant could locally re-plan
manufacturing steps for these products, avoiding faulty components. However, to make
such decisions, it needs a component that diagnoses potential faults and predicts which
of the planned products are, as a result, unlikely to be finished.
As its major contributions, this work defines and analyzes this problem and develops

two computational approaches to solve it. Both presented methods share the following
characteristics: 1) they are adapted to rich, hierarchical model representations used in
engineering domains, and 2) they exploit efficient, off-the-shelf implementations of generic
solution algorithms. Since the plan assessment problem straddles probabilistic reasoning
(predicting goal probabilities) and model-based diagnosis (finding failure causes), one
approach focuses on techniques from probabilistic reasoning, and the other on techniques
from model-based diagnosis.
We developed and implemented a plan assessment library capable of inferring the

required information using different solvers that may be flexibly chosen. We used it
to compare the two approaches using the state-of-the-art probabilistic inference tool
ACE for the probabilistic reasoning approach, and the modified constraint optimizer
TOULBAR2 for the model-based diagnosis approach. The experimental results on our
example scenarios are promising: both approaches perform equally well on this problem
in terms of memory and CPU usage, indicating that tools from both areas are viable
choices. Overall, we argue that this work provides an important component for decision
support that is needed for creating reliable autonomous systems.
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1. Introduction

Across many domains of technical systems, research and industry develop forms of
autonomy to achieve flexible and adaptive, yet robust and reliable system behavior.
Satellites, for example, must operate for long periods in harsh environments without
the possibility of human intervention [132, 80]. Driverless cars are being developed that
require autonomous navigation [84, 5]. Finally, automated manufacturing needs to keep
up with quickly changing market demands by autonomously producing large varieties of
products at comparably small quantities [31, 9]. In particular, the cluster of excellence
Cognition for Technical Systems (CoTeSys) [15] explores autonomy in form of human-like
“cognitive capabilities”, which are being applied within the cognitive factory [166].

A technical system acts with a certain degree of autonomy if it takes decisions without
human intervention. These decisions require information about the system’s state and
potential outcomes of its current operation. To understand what we mean by that,
imagine the following example of an autonomous manufacturing plant. The plant consists
of machining and assembly stations and is supposed to produce small lots of individual
products. This is known as mass-customization. In contrast to mass-production of few
specific products, the large variety of products doesn’t allow to guarantee successful
execution for each production plan beforehand, for example during the design of the
system. Therefore, instead of being pre-programmed, the plant dynamically plans the
production on demand. A plan details, for each product, when to process parts at which
station. The goals of such a plan are to finish each product.

Scenarios such as these often require planning that quickly becomes too computationally
complex to be done during runtime. For that reason planning is done offline, for example
during the night. Later, the plans are executed online, for example during the day.
Autonomous behavior is now limited to dynamically coping with contingencies during
execution of the plans. In such cases the system autonomously chooses an appropriate
reaction. However, this requires information about the uncertain outcome of the plant’s
behavior.

A contingency might be a broken machining cutter. An appropriate reaction could
be a plan modification for a jeopardized product, inexpensive enough to be computed
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Figure 1.1.: Architecture of a system, for example a factory plant, that executes offline
generated plans. Occasionally, the system may have to react autonomously
to unforeseen events. This work is concerned with the development of a
plan assessment component that provides essential information for these
autonomous decisions.

online. To make the right decision, the plant must answer the following question: Which
products now have low probability of being finished and what are potential causes for
these jeopardized products?

In this thesis, we address the computational problem of how to automatically answer
this question using three information sources: The plan, available sensor data and a model
of the system specifying its behavior. We call this plan assessment.

We develop approaches for plan assessment that regard the unique context of engineering
tool-chains and that build on generic algorithms that are the result of decades of artificial
intelligence research. The topic of this thesis is therefore to compute the required answers
using off-the-shelf implementations of the said generic algorithms and a system model
encoded with a modern, expressive formal language.

Plan assessment depends on existing techniques necessary for autonomous behav-
ior, most important planning [64, 125, 13, 17, 139, 163]. Figure 1.1 illustrates these
dependencies with a potential architecture for the described example system.

2



1.1. Model-Based Reasoning for Autonomous Behavior

1.1. Model-Based Reasoning for Autonomous Behavior

To achieve the kind of autonomous behavior illustrated above, researchers study problems
and develop methods which are often subsumed as model-based reasoning [68, 163, 159, 77,
11, 86]. In particular, model-based diagnosis [77, 146, 128, 163, 103] addresses problems
of identifying causes of faulty behavior in technical systems.

Autonomous behavior is often characterized as being able to handle unknown, unex-
pected or not-before-seen events. “Unknown” of course does not mean that a system has
to deal with situations it has no knowledge about whatsoever. Rather, it means to avoid
the naive approach of explicitly encoding sensor-action mappings for all relevant events,
because typically there is a huge number of such events. Instead, we wish to exploit what
we know in general about any relevant situation the system may encounter and what
we can observe about the system’s current situation. In model-based reasoning, this is
achieved by compactly representing the general knowledge in a model and by combining
it with available observations, typically gathered from sensors. The model may capture
knowledge about the system and/or the environment. However, in this work, we focus on
cases where only a system model is needed.

Model-based diagnosis tries to identify faulty components using a model of system
components and “unexpected” behavior. In its classical form, the model is a set of
logical formulas describing the static connections and interactions of components working
normally. Observations are encoded logically as well. They are “unexpected” if they are
inconsistent with the model formulas, that is the normal behavior of the system. Faulty
components can now be identified by regaining consistency: we try to find the smallest
subset of components that, when assumed to be malfunctioning, restore consistency. One
can think of it as the faulty components “explaining” the inconsistency.

Current diagnosis approaches improve on this method by taking into account failure
probabilities of components [146] and by modeling the evolution of the system over time
[108, 128]. The former reduces the number of component subsets to consider, the latter
allows to identify faults even if their symptoms appear only later on [108]. The latter
works with potential system behaviors instead of subsets of components.

Model-based diagnosis takes a more global view in asking for faulty components that
explain unexpected observations. For plan assessment, we are also interested in the
probability of a plan successfully achieving some goal. For this we have to take a more
local view, asking for the influence of external events and internal behavior on one specific
part of the system. This corresponds to a general problem studied in probabilistic reasoning

3



1. Introduction

[21, 135], namely to compute the marginal probability of a single event [135, Chapter 4.5,
p. 223].

Following this line of reasoning, we see plan assessment as an extension of model-based
diagnosis that combines it with elements from probabilistic reasoning. The problem is
thus relevant for both areas. Since the areas overlap, often taking different views on
similar problems, both offer promising building blocks for solution approaches.

1.2. Problem Statement: Plan Assessment

This work considers scenarios of autonomous behavior in a certain class of technical
systems that give rise to a unique computational problem: the plan assessment problem.
What is the nature of these scenarios?

On the one hand, researchers identify some form of autonomous behavior to be essential
for future technical systems. Even for rigid systems such as factory plants autonomy can
become necessary: In simple cost-benefit terms, it will likely cost less to augment a factory
plant with autonomous behavior (and deal with the ensuing complexity) than trying to
remove all uncertainties, all possibilities for failures and contingencies beforehand. On
the other hand, in our view it is valid to assume that technical systems of this kind, such
as cars, printers, satellites or factory plants, although required to be flexible, will still
mostly face rigid environments.

We thus investigate a class of technical systems that will, on the one hand, be rigidly
designed with mostly deterministic behavior, while on the other hand a certain degree of
autonomy allows these systems to efficiently deal with unexpected contingencies. A typical
scenario then confronts us with enough uncertainty such that we have to use dynamic
planning, yet the mostly deterministic behavior of our rigid system allows to generate long
term plans during an offline phase. This leads to settings were a system will be operated
according to pre-planned steps most of the time, while occasional contingencies will be
handled by a decision procedure with appropriate reactions. Sensor signals will provide
information about the current state of the system. We cannot expect this information
to be exhaustive, since in many cases this would require a prohibitively large number of
sensors.

From these considerations we derive three properties that characterize the scenarios
that we consider:

1. A technical system shall be operated that is rigidly designed yet complex enough
that some uncertainties remain.

4



1.2. Problem Statement: Plan Assessment

2. The system executes pre-planned operation steps and receives observations during
execution, for example through sensor measurements. Occasionally the system must
flexibly react to contingencies, such as failing components. It has to automatically
choose among appropriate reactions while execution is still underway.

3. Execution of the operation steps should achieve a set of explicitly defined and
represented goals.

These three properties correspond to three formal elements:

1. A system model M with a large deterministic and relatively small probabilistic part,
which captures potential behaviors of the system to be controlled. We will call the
potential behaviors the trajectories of a system.

2. A plan P that has been executed up to current time t and observations o0:t given
for the past time points 0, . . . , t.

3. A set of goals {G1, . . . , Gi, . . . , Gn}. We will denote this set with the abbreviated
notation {Gi}.

Now we can give a first definition of the plan assessment problem:

Compute, based on a system model M , a plan P and observations o0:t the
most probable diagnosis of this system as well as the probability, for each i,
that the goal Gi will be achieved.

In this work we develop solution approaches to this problem that revolve around
generating potential trajectories of system behavior along with their probabilities. The
probability of a single trajectory represents how probable it is that this trajectory models
the real behavior. The most probable trajectory is considered the most probable diagnosis,
since it contains information about which faults have most probably occurred (if any).
The probability of reaching a goal is computed by summing over probabilities of goal-
achieving trajectories and normalizing by the sum over goal-achieving and goal-violating
trajectories.

The latter requires, for exact computation, all behaviors with non-zero probability. This
is not an easy task: Consider a comparably simple model of a manufacturing plant with 2
stations and 3 products, where the 2 stations are modeled with (non-deterministic) finite
state machines with 5 states and 12 transitions each, and the products with 2 states and 3
transitions each. The product of these 5 state machines has 2× 2× 2× 5× 5 = 200 states
and 3× 3× 3× 12× 12 = 3888 transitions, which yields 3888

200 ≈ 19 possible transitions

5



1. Introduction

per state. This in turn yields 19N possible behaviors for N time steps, which means that
after only 5 time steps we have to deal with millions of potential behaviors, many of
them with zero probability. But even the number of non-zero probabilities might be too
large to handle. Therefore we also propose an approach that approximates the success
probabilities for goals {Gi} based on a reduced set of trajectories.
We make some further important assumptions throughout this work:

• We assume discrete time steps in our models. This is a very common assumption in
model-based reasoning to allow the use of symbolic reasoning methods.

• We use time synchronous modeling and thus restrict ourselves to synchronized
system components.

• We assume pre-processing steps to be in place that convert continuous sensor signals
into abstract, discrete observations.

1.3. Two Application Examples for Plan Assessment

We have already briefly mentioned the example of an autonomous manufacturing plant.
These sorts of plants are being developed to realize automated production with high
product variability and at the same time only small lot sizes, maybe even one-of-a-kind
production [31, 9, 107, 63]. A particular instance is the cognitive factory [166] within
the cluster of excellence CoTeSys. In this work we consider an example where this
factory produces two different products, toy mazes and toy robot arms. The mazes may
additionally vary. The products are processed at machining stations to cut, for example,
a labyrinth groove into an alloy block for the maze, and at an assembly station. During
cutting, the cutter may break and then subsequently lead to flawed products. This is
only detected later on indirectly when sensors at the assembly station give abnormal
signals. Given the sensor information, we would like to know how each product is affected
and what the most probable faults are. Formulated as a task, we want to compute the
products remaining success probabilities and ideally identify the broken cutter as fault.
While we think that plan assessment is more interesting for scenarios such as the one

described above, it is a general problem not confined to autonomous manufacturing.
Within CoTeSys, another area of research focuses on autonomous household robots.
Robotic assistants are being developed that shall support humans in their everyday
household activities [14], for example setting the table. The task in such a scenario is to
bring plates, cups, cutlery etc. to the table and place them there, such that the table
is set for each person sharing the meal. Problems might occur with robot components,

6
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for instance its arms, or with complex visual recognition capabilities. This can lead to a
failed grasping of a plate, for example, which then drops to the floor. Given available
sensor information we want to deduce how probable it is that the other items, like the
cups, can still be placed on the table. And again, we also would like to know the cause
for the problems.

1.4. Expressive Models and Off-the-Shelf Tools as
Ingredients for Solution Approaches

Computational solution approaches to plan assessment will require two essential ingredi-
ents: a way to represent models of the considered system and algorithms to compute most
probable diagnoses and success probabilities. We develop approaches that try to regard
the toolset that engineers use for the design and development of those systems. The reason
is simple: First of, these tools already address many problems when it comes to modeling
systems. And second, approaches that are adapted to the engineering environment are
more likely to be accepted.

State-of-the-art tools for the development of complex technical systems rely on expressive
description languages. In particular, these languages allow to represent system behavior
in a hierarchical fashion. Matlab® Stateflow®1 is an example for an industry standard
language. It is based on Statecharts [78]. It is used to program embedded controllers
for complex systems using hierarchical finite state machines, which can be compiled to
embedded control code. With next-generation languages such as Modelica [56] researchers
try to expand the possibilities of how to use the resulting models. For example, models
may be reused for reasoning tasks during the operation of the system [163, 69, 106], such
as estimating its hidden state from partial observations. The vision is to have, on the
one hand, system independent embedded algorithms for tasks such as control, and on
the other hand, system specific models as input to these algorithms. A model, in our
case, is an explicit formal description of a system’s structure, its capabilities, its behavior
and/or its potential faults. Specifically, the authors of [163] developed a formalism called
probabilistic hierarchical constraint automata (PHCA) that allows to describe uncertain
system behavior with hidden states and probabilistic transitions between them, while also
allowing hierarchical structures. This work uses PHCA to describe system models that
encode a system’s behavior as well as goal-achieving and goal-violating states. Figure 1.2
shows an example of such a PHCA.

1http://www.mathworks.com/products/stateflow/
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Figure 1.2.: A machining station (left) and a model for its behavior in form of a proba-
bilistic hierarchical constraint automaton (right).

There are many fast reasoning algorithms for specific tasks such as estimating the
hidden model state of a system from observations. However, algorithms are constantly
being improved, novel methods being developed. Incorporating an improvement manually
in one’s own algorithm can become tedious. A different approach is to use off-the-shelf
implementations of generic algorithms, translating the problem description at hand (based
on system models) to the interface language of this implementation. We believe this to
be a better approach, since the additional separation of concerns between the specific
problem domain and generic algorithms allows us to exploit novel developments in the
general domain quickly. This resembles the situation in software engineering, where code
optimization is mostly done in a general fashion by the compiler rather than by the
programmer for a specific application. Typically, the communities behind these generic
algorithms are quite large and therefore make quicker advances. Finally, domain specific
knowledge could still be introduced, if necessary, by developing specific heuristics for
these algorithms.

In our choice of generic algorithms we focus on the field of artificial intelligence. Since
we pose plan assessment as a problem that arises in supporting autonomous decisions, it is
an artificial intelligence problem. More specifically, as we argued, we see plan assessment
at the intersection of model-based diagnosis [77] (computing most probable diagnoses)
and probabilistic reasoning [21, 135] (computing success probabilities).

Generic problem solving for model-based diagnosis is often done using constraint
processing [51], in particular constraint optimization [149]. The latter uses networks of
local objective functions, the constraints, to describe a problem, such as finding most
probable diagnoses for a system. We develop an approach that uses constraint optimization
as algorithmic backend.

In probabilistic reasoning, methods often involve Bayesian network models, which
represent a system as a set of variables and their conditional probability distributions.

8



1.5. Contributions

model
compiler

plan 
assessment

description
compiler

model
description

generic
problem
format

plan

observations

off-the-shelf
solver

planner

PHCA
Diagnosis &

Success Prob.

Figure 1.3.: Simplified schema of our prototypical tool chain implemented for this work.
Highlighted boxes indicate own implementations, dashed lines modified ex-
ternal tools.

During the last decade, powerful extensions have been developed that combine Bayesian
networks with first-order logic. Our second approach exploits such a framework, called
Bayesian logic networks [95]. This leverages a wide range of generic probabilistic algorithms.
To test this approach, we have chosen an algorithm that preprocesses the probabilistic
model such that the complexity of subsequent probabilistic inference is greatly reduced
[46]. It accepts Bayesian networks as input, which are naturally included in the more
general Bayesian logic networks.
For this work we developed a prototypical tool chain to test our approaches. Figure

1.3 shows its structure, linking key components (boxes) and data (rounded boxes). An
initial model description is compiled into a PHCA model, which in turn is then translated
to a generic problem description that the solving backend of our choice understands.
The plan assessment component then uses this description together with the plan and
available observations to generate the desired diagnoses and success probabilities. The
implementations done for this work are highlighted, the dashed line indicates an existing
tool modified for our purposes. This diagram is simplified, later sections will explain our
implementations in greater detail.

1.5. Contributions

This work develops a model-based reasoning capability that provides information for an
AI decision procedure in order to support autonomous decisions. It combines the more
global view of model-based diagnosis, which asks questions such as “which components
have to be assumed faulty to explain the observations?”, with a more local view often
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found in probabilistic reasoning, which asks “Given the current observations, how probable
is it that a goal state is still reached by executing the planned actions?”.
The two key contributions of this thesis are the following:

• It introduces and formalizes plan assessment as a model-based reasoning problem
for probabilistic hierarchical constraint automata (PHCA) as an extension to model-
based diagnosis. It demarcates it against the state of the art and shows relationships
to related problems such as state estimation.

• It develops two different solution approaches: One based on model-based diagnosis
methods and one based on probabilistic reasoning. Both leverage existing off-the-
shelf tools by translating PHCA into generic problem descriptions that these tools
accept as input. Part of the latter is a novel translation from PHCA models to
Bayesian logic network models, a generalization of Bayesian networks. We test this
translation in practice and provide theoretical correctness results.

The thesis makes a number of additional contributions:

• It evaluates and compares the two solution approaches. To obtain the necessary
results, we developed a tool chain for automatic model translation to low-level lan-
guages used by off-the-shelf solvers for combinatorial optimization and probabilistic
reasoning. The chain integrates existing tools with our own implementations to
realize prototypes of the presented solution approaches.

• It develops three extensions of the presented approaches.

1. The model-based diagnosis approach is extended with a receding horizon
approach based on filtering techniques. It is motivated by the fact that
analyzing the complete time horizon at once quickly becomes intractable when
increasing the number of time steps.

2. The probabilistic reasoning approach is extended with an approach to compute
stochastic error bounds when using approximate sampling techniques. Sampling
is a class of very general and widely used approximation techniques. However,
implementations typically use hard iteration bounds based on user experience
to stop the calculation. The stochastic error bound can provide an additional
criterion based on the quality of the solution.

3. The model-based diagnosis approach to plan assessment is advanced towards
hybrid discrete/continuous models. Often, system behavior is easier to model
using a mixture of discrete elements (for example states) and continuous
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elements (such as differential equations). The thesis introduces a hybrid
extension of PHCA called Hybrid PHCA (HyPHCA) and shows how these
can be conservatively abstracted to purely discrete models. It extends the
mentioned tool chain with an implementation of this translation and formulates
a theoretical correctness property for it. The translation is used for experiments
that demonstrate the feasibility of this approach.

1.6. Structure of the Thesis

The remaining text of this thesis is structured as follows. Chapter 2 details the described
examples for plan assessment. Chapter 3 provides the technical background: It explains
how to model systems, how to formulate generic problems for these models and the generic
algorithms that we use. Also, it introduces PHCA and Bayesian logic networks.
Chapters 4 and 5 constitute the two major contributions of this work. Chapter 4

formally introduces the plan assessment problem based on the PHCA formalism, analyzes
its role in autonomous manufacturing and puts it in context of related problems from
related fields such as artificial intelligence, probabilistic reasoning and control theory.
Chapter 5 develops the two mentioned model-based algorithmic approaches to the plan
assessment problem. Results of evaluations and a comparison of these approaches are
presented in chapter 6. Chapter 7 introduces extensions of our plan assessment approaches:
the receding horizon method for the model-based diagnosis approach, the approach to
compute stochastic error bounds for the probabilistic reasoning approach and the extension
of plan assessment towards hybrid discrete/continuous models.

Chapter 8 presents related work. Most of the literature related to this thesis is treated
in context of the most relevant parts of the text. The literature presented in chapter
8, however, is better treated in a separate chapter. Finally, chapter 9 concludes this
work by summarizing its contributions and results as well as discussing open ends and
opportunities for future work.
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2. Application Examples

2.1. Assuring Plan Success in Manufacturing and Assembly

In this work we consider as our main example a somewhat idealized manufacturing
plant that can automatically schedule operations for products based on abstract product
descriptions. The latter is known as design-to-fabrication [57], a major intelligent capability
of the so-called cognitive factory [9]. The cognitive factory is a demonstrator within the
cluster of excellence Cognition for Technical Systems (CoTeSys) [15], but also a lead
concept for research projects in this cluster that develop such capabilities. The overall idea
is to augment technical systems like factories with capabilities akin to human cognition,
such as reasoning over potential outcomes of planned operation steps. CoTeSys has an
actual test-bed meant for research evaluation and demonstration of concepts developed
for the cognitive factory. We derive our realistic examples and models from this test-bed.

2.1.1. Autonomous Behavior and the State of the Art in Factory
Automation

Before we describe our main example in detail, we cast a look at the role of autonomous
behavior in the state of the art in factory automation. For a long time research efforts
have been made to develop more flexible and adaptable manufacturing systems, as an
answer to the steadily increasing market dynamics and in order to stay competitive. A
reoccurring theme is that autonomous or semi-autonomous behavior is proposed as a
means to achieve the required adaptivity and flexibility.

In the mid and late nineties of the 20th century many concepts emerged. A prominent
example is reconfigurable manufacturing systems [104]. It focuses on dynamically adapting
capacity and functionality of a plant to market needs, with the goal to produce exactly
as much as needed and exactly what is needed. Another set of approaches are known
as agent-based manufacturing [130, 165]. These approaches represent the characteristic
elements of production, such as products, parts or machines, as agents that act and
interact autonomously to achieve (global and local) goals. According to [130] agent-
based design principles are especially suited because of their distributed nature, which
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2. Application Examples

Figure 2.1.: The test-bed for the cognitive factory, an iCIM3000-based Festo flexible
manufacturing system, which is part of the TUM excellence cluster Cognition
for Technical Systems (CoTeSys). © Prof. Shea, TUM.
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2.1. Assuring Plan Success in Manufacturing and Assembly

nicely corresponds with the distributed design of factory plants, and the agents’ intrinsic
autonomy, which allows to adapt to different situations. In contrast to reconfigurable
manufacturing systems, these approaches also consider adaptation to unpredictable fault
conditions.

Two prominent agent-based approaches are biological manufacturing [155] and holonic
manufacturing [32]. Biological manufacturing tries to implement adaptive behavior by
mimicking the biological process to grow “goods” with interacting agents representing
product parts and different factory stations. Holonic manufacturing specifically addresses
the problem that distributed agents are hard to control on a global level. It tries to reconcile
distributed control with the hierarchical, centralized control in classical automation.

A more recent approach to distributed manufacturing was developed within the EU
project PABADIS’PROMISE [107, 63]. In particular, the problems of robust planning
for new product variations and robust plan execution in the face of plant faults are
being addressed. Other works within this project deal with flexible production [154] and
scheduling for production [30].

Today, currently running national and international research programs keep working
towards adaptive, fault tolerant automation with the help of autonomous behavior,
aiming for automated mass-customization and one-of-a-kind manufacturing [58, 59, 40].
In Germany, the “excellence initiative” is of special interest. Part of this initiative are so-
called “clusters of excellence”, topic-driven collaborations across institutional and domain
boundaries. One of them is “Integrative Production Technology for High-Wage Countries”,
located in Aachen [31]. It essentially focusses on the question how to make it cheaper to
build systems that produce customized products with required quantities. Thereby, it is
in line with the goals of previous research efforts. However, it focusses less on autonomous
behavior as a means to achieve this goal. We already mentioned the second cluster that
is concerned with this goal, namely CoTeSys. In contrast to the former cluster, the study
of capabilities that allow autonomous behavior are at the core of CoTeSys. Addressing
technical systems in general, the goal is to create “cognitive systems” that will “know what
they are doing” [34]. The idea is to learn from humans and animals how to implement
“cognitive capabilities” and the ability for “cognitive control”. Key technologies are again
planning, but also learning techniques. “Cognitive capabilities” shall achieve the level
of flexibility, reliability and efficiency necessary for automated production of even small
numbers of sophisticated, individual products. Demonstrators are being developed to
investigate and test such capabilities. One of them is the already mentioned cognitive
factory [9].

15



2. Application Examples

Figure 2.2.: Illustration of the maze production process with possible faults of a broken
cutter and a misaligned gripper of the assembly station.

Automated planning, the classical ingredient for autonomous behavior, is studied
intensely in the mentioned works. However, autonomy also means to adapt and change
plans when necessary. To be able to decide whether and how to do that requires
information. This leads to the problem of automatically retrieving this information from
already generated plans and current information about the plant. We have seen that this
problem and approaches to solve it computationally are the topic of this thesis. In this, the
thesis follows and builds on research that leverages artificial intelligence for autonomous
behavior in technical systems, specifically planning [163, 106, 57, 10, 156], model-based
diagnosis [77, 163, 145, 106, 10, 60] and probabilistic reasoning [135, 72, 96, 91].
We do not address the question of distributed computing in this work. However, the

computational approaches in this work could possibly be embedded in a component that
serves as support for autonomous decisions of agents in an agent-based architecture, for
example.

2.1.2. Manufacturing and Assembly Scenarios in a Cognitive Factory

The cognitive factory test-bed is an iCIM3000-based Festo flexible manufacturing system
and consists of conveyor transports, storage, machining and assembly. It serves as the
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2.1. Assuring Plan Success in Manufacturing and Assembly

basis for our hypothetical example scenarios in which manufacturing schedules for two
different products, toy mazes (figure 2.3) and toy robot arms (figure 2.4), are automatically
synthesized. The “CIM” in iCIM stands for computer-integrated manufacturing. The
iCIM3000 package from Festo1 is primarily meant for education.
A maze consists of an alloy base plate, a small metal ball and an acrylic glass cover

fixed by metal pins. It is manufactured by first cutting the labyrinth groove into the maze
base-plate and drilling the fixation holes, putting the ball into the labyrinth, putting the
glass cover onto the base plate and finally pushing the pins in place to fixate it. Figure
2.2 illustrates this process.

The robot product is still in a conceptual stage. It consists of alloy brackets and servos
and is manufactured by first machining the brackets and then assembling brackets and
servos. The maze is a real-world demonstration product, which the actual test-bed can
produce.
In our scenarios the factory plant is controlled by a component that exhibits AI

capabilities such as automatic planning and scheduling. We name that component “AI
controller”, although it isn’t necessarily a controller which is embedded in the machine
and has to fulfill hard real-time requirements like a programmable logic controller (PLC).
Although the long-term goal is to bring AI methods even to “low-level” PLCs, currently
the more likely scenario is, due to the computationally complex tasks, that an AI controller
would be a piece of software running on standard industrial PC hardware.

A quick note about planning and scheduling at this point. Planning means to find a
sequence of actions to reach given goals, whereas scheduling means to assign resources to
actions. The two problems are connected, and thus often considered at the same time.
In this work, we denote the whole process by “planning” and simply take scheduling as
a part of that. Consequently, we consider a schedule as a special plan. A plan, in turn,
is simply a sequence of abstract elements, which take a concrete form depending on the
application.

Depending on incoming sensor data, the AI controller has to choose appropriate actions,
for example:

1. Proceed with normal operation (maybe despite potential contingencies).

2. Ask the scheduling sub-component for a local re-scheduling, e.g.

a) dispatching a product from a faulty machining station to a different station
with similar capabilities.

1http://www.festo-didactic.com/de-de/lernsysteme/feldbustechnik/
icim-3000-die-komplette-mit-potenzial.htm (09.2011)
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2. Application Examples

Figure 2.3.: Alloy base plate of the maze product. A regular cut maze groove (left) and a
maze groove being cut with a broken cutter (right). © Prof. Shea, TUM.

Figure 2.4.: The (virtual) robot arm product. © Prof. Shea, TUM.

b) decide to have the automated assembly step done manually later on.

3. Initiate information gathering actions.

4. Call a human technician to resolve complex contingencies it cannot deal with.

5. Emergency stop the entire plant.

2.1.3. An Example Plan Assessment Scenario

Consider the following scenario where two mazes and one robot arm are being manufac-
tured. Their schedule is shown in figure 2.5. The mazes are termed Maze0 and Maze1,
the robot arm Robot0. Three stations are available to work the products, two machining
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stations termed Machining0 and Machining1 and an assembly station termed Assembly.
We assume that mazes can be individualized with respect to the groove being cut into
the base plate, ranging from simple to more complex. In our scenario, Maze1 has a more
complex groove and thus requires more machining (both machining stations are equally
fast).

In our example plant, assembly stations have a force sensor that allows to measure
the force being applied while pushing pins into the holes of maze base plates. At time
talarm = 3 the force sensor triggers an alarm, indicating that too much force was applied.
What is most likely to have happened and what should be done?

On its route through the factory a product might become flawed as a result of being
worked by faulty stations. Machining stations are suspicious candidates because their
cutter might break during operation. A blunt or broken cutter severely damages maze
products (see figure 2.3). We assume that machining stations not only cut grooves but
also drill the holes for the pins. Therefore, broken cutters might also damage these holes.
The damage, however, can only be detected later on: If an assembly station tries to push
pins into damaged holes, too much force is applied and an alarm is triggered.

Sometimes sensor signals can be ambiguous, for example if they have unintended
additional physical causes. In our example scenario, a misalignment of the gripper holding
the pin and the base plate’s hole might also lead to the force alarm being triggered. For the
pin to be pushed in place a very accurate fit of pin and hole is necessary. That fit is easily
lost if, e.g., the assembly station’s calibration degrades over time or due to external events.
In this scenario we assume that this calibration/misalignment fault leads to flawed mazes
as well as flawed robot arms when being worked by the assembly. However, the alarm
is only triggered during the assembly of mazes, since only they need pins being pushed
in place. The general information given above (faulty station flaw products, machining
cutters might break, assembly station calibration might be degraded) is captured in a
model of the factory plant. Our models focus on the machining and assembly stations
with their potential faults, leaving out storage and transport systems, which we assume
to have deterministic behavior. Together with the automatically synthesized schedule
and the observations the model provides the knowledge from which the AI controller can
derive conclusions. It computes the following information:

• Robot0 and Maze0 are predicted to fail (according to the available knowledge), i.e.
their probability of success is 0.

• Maze1 has a probability of .83 to succeed.
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Figure 2.5.: Example schedule of three products being manufactured on two machining
and one assembly station.

• The most probable behavior of the plant shows the station Machining0 becoming
faulty within the first three time steps.

This information leads the AI controller to the following conclusions and according actions:

1. There’s not much it can do about Maze0 and Maze1. From the expected finishing
times in the schedule the controller can conclude that Maze0 is already broken.
It has to ignore it in this and future decisions. Maze1 has a good chance to be
produced successfully, it doesn’t warrant any changes, let alone stopping the entire
plant. Decision: Proceed with normal operation.

2. Robot0 is at risk of total loss. However, the controller knows from the schedule
it’s not yet finished, so it might be worth to try and ask for re-scheduling Robot0,
avoiding the machining station assumed to be faulty. Decision: Ask scheduler for
a changed schedule that avoids the faulty machining station for Robot0.

The AI controller combines the individual decisions, which in this case means that it first
asks the scheduler for the re-scheduling and then proceeds with normal operation.

In general two pieces of information are computed, success probabilities and the most
probable behavior. Success probabilities with regard to goals (finished products) can
be compared against pre-defined thresholds to aid decision making. The most probable

20



2.2. Assuring Plan Success in Household Robots

behavior, which allows to identify faulty components, can guide specific actions such as
re-scheduling.

The example illustrates how the plan assessment problem of computing goal-related
success probabilities and diagnoses in form of most-probably faulty components arises,
and how solving it aids in automated decision making. Of special interest is the decision
to actively gather more information (for example as described in [106]). It requires a
trade-off typical in AI, namely between exploration and exploitation. If, for example,
many success probabilities are around .5 this indicates that available sensor data only
allows decisions close to chance level. In that case, more information is needed for good
decisions.

2.2. Assuring Plan Success in Household Robots

Research within CoTeSys in autonomous systems develops robotic household assistants
that support humans in their everyday household activities, especially in the kitchen. A
demonstrator for household scenarios is being developed, called the assistive kitchen [14].
In the following, we look at an example from this domain involving plan assessment as a
means to support a household robot’s decisions. We think that plan assessment is more
useful for domains such as manufacturing, where systems only have to face uncertainty in
their own behavior and act within rather deterministic environments (for example shop
floors). However, this didactic example shows that plan assessment is not confined to
these domains.

Household chores involve many tasks that benefit from a constant monitoring of how
events could affect the task’s goals. For example, when setting the table, a malfunctioning
arm might lead to a plate being dropped. This might influence subsequent items that are
planned to be handled with that same arm. Our example illustrates such a scenario.

The goal in a table setting task is to place a number of items, namely plates, cutlery,
cups etc. on the table (see figure 2.6). Each item should be placed in a distinct area on
the table, for example a plate in front of a seat. This overall goal can be decomposed in
separate goals for each item: that it must be placed in its distinct area.

In this example, the table is equipped with RFID (radio frequency identification)
antennae, that allows it to detect RFID tagged items within distinct areas. The household
robot is a mobile robot with two arms, each having a gripper as end effector. As part of
the CoTeSys demonstration scenario “cognitive household”, two such robots are currently
in use, called TUM-James and TUM-Rosie [16] (figure 2.6 shows photographs of them).
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freshly
ROSted

freshly
ROSted

Figure 2.6.: Above: A table setting scenario. A mobile robot equipped with two arms
and grippers has the task to set a table with two plates and two cups. Below:
The two robots TUM-Rosie and TUM-James. Photographs © Intelligent
Autonomous Systems group, Prof. Michael Beetz.
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TUM-James is a personal robot 2 (PR2) built by Willow Garage2. It has two arms
with seven degrees of freedom each, four in the arm, three in the wrist and one in the
gripper. It moves via an omni-directional base. TUM-Rosie is custom built from own
and commercial parts. It has two arms with seven degrees of freedom from KUKA34,
each with a four fingered DLR-HIT hand5. It moves using an omni-directional base from
KUKA.
The robot’s advanced vision perception capabilities allow it to dynamically plan its

actions within the kitchen environment. However, occasionally recognition might fail, for
example the position of the plate might not be perceived completely accurate. In our
example we thus assume that grasping an item might fail with a certain low probability.
We further assume that one of the arms has been observed to behave less reliable lately,
for example because the pressure sensor in the fingertips gives wrong results unusually
often. To work around this, the engineers have updated the robot’s internal model with a
higher failure probability for that arm. We created a simplified PHCA model, wherein
each arm has a certain probability to transition to a failure mode and stay in that mode.

The scenario is now the following: The robot has the task to fetch and place four items
on the table, two plates and two cups. Accordingly, it has to achieve four goals, which we
denote simply as Plate0, Plate1, Cup0, Cup1. Initially, it stands by the place the items
are stored at, for example a cupboard. Then, it starts executing plan P, a sequence of
the following steps:

1. pick up Plate0, 2. move to table, 3. place Plate0 on table and scan for
placed item, 4. move back, 5. pickup Cup0 and Cup1, 6. move to table, 7.
place Cup0 on table and scan, 8. place Cup1 on table and scan, 9. move back,
10. pickup Plate1, 11. move to table, 12. place Plate1 on table and scan for
placed item.

Figure 2.7 illustrates the scenario for the first four time points. At t = 3 we expect to
detect the RFID tag from Plate0, but no signal is received. What is most likely to have
happened and what should be done? Using plan assessment, the AI controller computes
the following information:

• The most probable trajectory explains the signal with a problem with the less
reliable arm.

2http://www.willowgarage.com/pages/pr2/overview (12.2011)
3http://www.kuka-robotics.com/germany/de/ (12.2011)
4KUKA LWR-4 arm, which resulted from a cooperation between KUKA and DLR (Deutsches Zentrum
Luft- und Raumfahrt) http://www.robotic.dlr.de/fileadmin/robotic/haddadin/KUKA-DLR_LWR_
ISR_2010_v6.pdf (12.2011)

5http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3802/6102_read-8918/ (12.2011)

23

http://www.willowgarage.com/pages/pr2/overview
http://www.kuka-robotics.com/germany/de/
http://www.robotic.dlr.de/fileadmin/robotic/haddadin/KUKA-DLR_LWR_ISR_2010_v6.pdf
http://www.robotic.dlr.de/fileadmin/robotic/haddadin/KUKA-DLR_LWR_ISR_2010_v6.pdf
http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3802/6102_read-8918/


2. Application Examples

freshly
ROSted

freshly
ROSted freshly

ROSted

freshly
ROSted

No RFID signal?

freshly
ROSted

freshly
ROSted

0 1

2 3

freshly
ROSted

freshly
ROSted

Figure 2.7.: Illustration of the execution of the first 4 plan steps. Due to a malfunctioning
arm, the plate slips and falls to the ground. This is unnoticed at first. Only
at time t = 3, after the robot placed the plate it believes to hold onto the
table, but the table doesn’t detect the plate’s RFID tag, the problem becomes
apparent.

• Plate0 has success probability 0. Intuitively this is clear, since the missing RFID
signal clearly indicates that Plate0 was not placed right.

• Plate1 also has success probability 0. This makes sense since in our example, which
follows the practice in the CoTeSys laboratories, the robot needs both arms to
transport the plate. This is reflected in the model, and thus the AI controller can
infer that this plate cannot be transported anymore.

• Cup0 has success probability .91. This cup happens to be planned for transport with
the good arm. There’s only a small chance that this arm started malfunctioning
and thus caused the missing RFID signal.

• Cup1 has success probability .09. It is planned for transport at the same time as
Cup0 with the other arm, which has been identified as most probable cause for the
contingency.

Given, for example, a success threshold of .85 the AI controller could now conclude that
Plate0 is lost, but Cup1 may still be placed on the table by re-planning to transport it
with the good arm. The robot cannot transport Plate1 anymore, but could signal the
problem to a human in the household, asking to place the plate instead. Further reactions
could involve further investigation of the most probable cause using, for example, a visual
inspection of the arm or an internal diagnostic check.
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One might ask at this point why one would only use RFID scanners as sensors when
the robots are equipped with many more sensors and powerful recognition capabilities.
Despite the fact that this scenario is strongly simplified, it is reasonable to assume that
computationally intensive perception capabilities are only used when needed, as illustrated
above, and that during normal operation the robot relies on simpler techniques such as
RFID.
We made a number of further simplifications in this example. We created a simple

PHCA model of the table with its scan capability, the robot with its two arms and each
item with one state for being ok and one for a missed goal. Specifically, we left out the
actual robot movement or pick-and-place, the distinct areas on the table (only modeling
wether placing was successful) and all locations that might be involved apart from the
table. Considering faults, we modeled failed grasping as a failure mode of the arm that
leads to lost items. A consequence is that Plate1 receives probability 0 in the above
scenario. A more realistic PHCA model might reflect that a problem with the arm won’t
always lead to lost items. Our model as well as the plan and the observations for the
above scenario are given in the appendix (see B.2).
As is the case for our main example, plan assessment has to rely on existing AI

components. These are being developed within CoTeSys in the form of the cognitive robot
abstract machine (CRAM) architecture [17]. It takes care of planning, plan modifications
and many complex perception and action tasks such as recognizing objects or planning
paths.
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3. Background: Modeling and
Model-Based Reasoning

This chapter provides the technical background for this work. In particular, it introduces
background knowledge for two ingredients for our solution approaches to plan assessment.
The first ingredient is generic problem solving with constraint optimization and proba-
bilistic inference, the second modeling of technical systems using high-level description
languages.

The chapter first discusses how problems in technical domains can be formalized
from the viewpoint of the very general constraint optimization. Then, it introduces
formal prerequisites, problem statements and general solution approaches for constraint
optimization and constraint satisfaction. Of special interest are methods that enumerate
more than just the best solution, i.e. the second best, third best, and so on. Next,
probabilistic modeling and inference used in this work is formally introduced. Then, the
chapter introduces the probabilistic hierarchical constraint automata (PHCA) that we
use in this work to model the complex and uncertain behavior of systems. Finally, it
explains Bayesian logic networks, which we have chosen as translation target for PHCAs
to leverage all sorts of probabilistic reasoning methods for plan assessment.

3.1. Formal Models as Collections of Variables, Domains
and Partial Objective Functions

To formalize the plan assessment problem we can use, as a basis, an elegant description as
a search for feasible system behaviors. As a starting point, the set of possible behaviors
must be defined. In general, this set is called the problem space, and the behaviors we are
interested in are solutions. A very simple problem space for the example in section 2.1.3
could be a set of tuples of the following form, given that we are only interested in the
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machining station fault and one maze:

{ (machingBroken, alarm,mazeOk),

(machingBroken, alarm,mazeFlawed),

(machingBroken, noAlarm,mazeOk),

(machingBroken, noAlarm,mazeFlawed),

(machingOk, alarm,mazeOk),

(machingOk, alarm,mazeFlawed),

(machingOk, noAlarm,mazeOk),

(machingOk, noAlarm,mazeFlawed) }

The task is then to identify the sub-set of this space whose elements can be considered
feasible behaviors. Typically, one also is interested in sorting this set according to some
measure of preference. In our case, the measure is probability. For the diagnosis part of
plan assessment, we are interested in the most probable behavior. For the probabilistic
part, we will see that ideally we consider all feasible behaviors. Realistically, we will have
to restrict ourselves to a smaller set of solutions, for example the k most probable.

So in general, we have the description of the problem space and some objective as input
to some algorithm. The objective allows to discriminate solutions from non-solutions or
to choose preferred solutions over other solutions. The problem space description is what
we denote as model. From it, the algorithm instantiates (often implicitly) the problem
space. The output of this algorithm is the set of (preferred) solutions.

The algorithms we speak of here are known as search algorithms, because they implement
clever strategies to search for the problem space elements that we want, the solutions.
A thorough text book treatment of searching in AI can be found in [140, chapter 4, p.
94–136].

The problem space is constructed by mapping what we know about the problem onto
three basic elements: variables, sets of possible values associated with these variables
and partial objective functions. Typically, the space is defined as the cartesian product
of the mentioned value sets, which are called domains. A domain can be seen as
representing knowledge about possible choices along a particular dimension. For example,
the knowledge that we may choose among whether the maze product is flawed or not
(when searching for a solution) is represented as one dimension and therefore as one
domain: {mazeOk,mazeFlawed}.
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3.2. Mathematical Notation in this Work

The actual possibility of choice is formally represented as variables attached to the
domain. To represent possible solutions during search, variables are assigned values
from their associated domain. These variables are not like variables known from popular
programming languages such as Java or C++. They are more like variables in an equation
system that we want to solve.
Given the problem space, how do we recognize some of its elements as (preferred)

solutions? We need an objective that tells us what is allowed (solution), what is preferred
and what is forbidden. Preference can be expressed in many ways like lower cost, higher
value, higher probability and so on. As mentioned, our preference measure is probability.
Formally, the objective is represented through local, partial objective functions.

In the technical systems domain, where behaviors are described or programmed using
finite state machines, the problem space is typically discrete: One can only chose from
countable many values to be assigned to variables, in our case only from a finite set of
values. Preference is then typically expressed locally, for example as probabilities for
certain transitions between automata states. These locally expressed preferences are most
naturally represented with local, partial objective functions, where each contributes to
the overall objective (probabilities of system behaviors in our case).

The description of the problem space in this basic form needn’t be created manually. In
fact, an important scheme in this work is that this representation is generated automatically
from a higher formal language that allows easy modeling with expressive constructs such
as hierarchical state machines.
To sum up: To solve a problem, we need a problem space. This space is instantiated

during search for solutions from a simple description: a collection of variables, their
associated domains and a set of objective functions. Variables and their domains represent
what is generally thinkable or possible, while the partial objective functions reduce this
further to what is allowed or preferred. We call this description, or any other description
that we can convert into such a basic description, a model. The model describes, for
example, the behavior of a technical system. We assume the model to be manually
designed in an expressive formal language that we need to translate into our basic
description. Finally, note that a model is usually suited for solving a number of different
problems, it’s not the problem statement itself.

3.2. Mathematical Notation in this Work

Before we continue, we establish some mathematical notation that will be used throughout
this work. Variables are represented with indexed or subscripted capital letters: X1, ..., Xn
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3. Background: Modeling and Model-Based Reasoning

or O1, ..., Ol or XStatus. Sometimes we directly use short words in mathematical sans
serif font to denote variables, e.g. Status. Sets of variables and sets in general will be
represented with capital letters, e.g. X or O, or short words in mathematical italic font,
e.g. Cmd . We also use the notation {Gi} to denote a set of indexed items (usually
variables) {G1, . . . , Gi, . . . , Gn}, to avoid cluttering formulas with extra symbols.

Variable values or values in general will be denoted with lower case indexed letters such
as x1, ..., xn or o1, ..., ol, or with words in mathematical sans serif font starting with lower
case, e.g. marked. Vectors will be represented with bold print, e.g. vectors of variables
X = (X1, ..., Xm), O = (O1, ..., Ol) or vectors of values x = (x1, ..., xn), o = (o1, ..., ol).
For a vector x, x(i) denotes its i-th element. Sometimes we use special index sets, whose
vector notation will be Oi:i+n = (Oi, Oi+1, ..., Oi+n) or xI = (xi)i∈I . The former denotes
an index running from i to i+ n, the latter an arbitrarily indexed vector according to set
I. These can also be vectors of vectors, such as o0:t = (o0, ...,ot).

In general, we use round brackets for tuples and sequences, e.g. (X,D,C). Two
exceptions apply, where we use angular brackets: 1) If we want to set apart an important
mathematical structure, e.g. for a deterministic finite state machine 〈Σ, S, s0, δ, F 〉. 2) If
we want to enhance readability. In a few places readability is greatly enhanced by using
angled brackets for sequences instead of round: 〈xi〉i∈I , or shorter 〈xi〉.

The notation for variable assignments is usually Xi = xi, with Xi being the vari-
able and xi the assigned value. A more formal treatment of assignments follows in
section 3.3.1. In higher-order logical formulas, we use camel case words in mathematical
italic font to denote predicates, starting with lowercase letters, e.g. locMarked(t, l) ⇒
behaviorIsConsistent(t, l).

3.3. Constraint Satisfaction and Optimization

Many real-world problems, such as scheduling the observation slots on a scientific satellite
[18], choosing the right land patches to buy to preserve a species [150], diagnosing
integrated circuits [60] or assigning frequencies to radio towers [35], are combinatorial
in nature. That is, a countable or finite number of elements suggest themselves as basis
for formalization, such as discrete time units, available land patches, circuit elements
(adders, multipliers, etc.) or bands of frequencies. Another example is the plan assessment
problem posed for technical systems such as manufacturing plants. The behaviors of
technical systems are, to a large extend, described using discrete transitions between
discrete states.
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3.3. Constraint Satisfaction and Optimization

These problems can be captured in the general framework of constraint optimization.
Section 3.1 already described informally how problems can be captured with a set of
variables, their domains and a set of partial, local objective functions. Constraint
optimization formalizes this and provides general algorithms to search for solutions. It
uses such descriptions to describe the problem space and then, in case of an optimization
problem, tries to find the optimal assignment to the variables, representing the solution to
the problem. The problem of finding a merely satisfactory solution (without differentiating
according to some preference) is called constraint satisfaction, and is a special case of
constraint optimization.

In this section we introduce basic elements of constraint satisfaction and optimization
needed for solving the plan assessment problem. A more thorough introductory treatment
of constraint satisfaction and optimization (among others) can be found in the very good
text books [51] and [66], and in [148]. In particular, constraint optimization is treated in
[51] in chapter 13 and in [66] in chapter 9. Many of the concepts defined in this section
are similar to those used in these references.

3.3.1. Formal Definitions and Problems

We now give the formal definitions that are necessary for formalizing and solving problems
using constraint optimization. We start with a definition of the basic elements, e.g.
variables, domains, assignments, etc., and then define the formal problem statements that
are relevant for this work.

Definition 1. Variables, domains, assignments, valuation structures, constraint functions,
consistent/inconsistent assignments, constraint net.

1. X = {X1, . . . , Xn} is a set of n variables.

2. D = {D1, . . . , Dn} is a collection of finite sets such that Di is the domain of Xi, i.e.
the set of values that can be assigned to Xi. We may also denote the domain of Xi

by DXi . The size of the domains are written as |Di| = di. We write DY to denote
the Cartesian product

∏
Xi∈Y

Di for some subset of the variables Y ⊆ X. Accordingly,

DX denotes the Cartesian product
∏

Xi∈X
Di of all domains.

3. An assignment to a (arbitrarily indexed) set (Xj)j∈J ⊆ X of variables is a set of
tuples {(Xj1 , x1), ..., (Xjl , xl)}, where x1 ∈ Dj1 , ..., xl ∈ Djl . Typically, we use the
alternate notation (Xj1 , ..., Xjl) = (x1, ..., xl) or XJ = x1:l, which is common in
probabilistic reasoning, to refer to an assignment. If indexing is clear from the
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3. Background: Modeling and Model-Based Reasoning

context, we further abbreviate to X = x. We also call the value tuple (x1, ..., xl)

an assignment, since usually it is clear from the context which variables are being
assigned. Sometimes we refer explicitly to unassigned variables with the empty
value ε: (Xj1 , ..., Xjl) = (ε, . . . , ε). The value ε is naturally never element of any
variable domain.

4. A full assignment is an assignment to all variables in X, i.e. X1:n = x1:n, x1:n ∈ DX .
Any other assignment is called a partial assignment. Any partial assignment can
be written like a full assignment by explicitly referring to the unassigned variables
with an “assignment” of the empty value ε.

5. ε = ε1:i is called the empty assignment (1 ≤ i ≤ n). We don’t make a difference
between empty assignments of different length and call them all “empty assignment”.

6. A valuation structure [149] is a tuple (E,≤,⊗,⊥,>) with a finite set E of preference
values, a total order ≤ on that set, minimum ⊥ ∈ E (the best value) and maximum
> ∈ E (the worst value). ⊗ : E × E → E is a commutative, associative and
monotonic operation with identity ⊥ (⊥⊗v = v, v ∈ E) and absorber > (>⊗v = >,
v ∈ E).

7. C = {c1, . . . , cr} is a finite set of r constraint functions. A constraint function
c maps assignments to preference values c : DV → E. The set V ⊆ X is called
the scope of c, |V | the arity of c. These constraint functions are also called soft
constraints, because often they represent soft restrictions on variable assignments, as
opposed to hard constraints that either allow or forbid partial assignments. However,
note that these functions can be both hard or soft constraints. In this work, we
refer to them simply as constraints.

8. If an assignment is mapped to >, it is called an inconsistent assignment.

9. A constraint net is a tuple R = (X,D,C). The term “net” reflects that R implicitly
defines a graph with variables X as nodes and constraints C as edges. Since
constraints may very often be defined over more than two variables, the edges
usually are hyper edges (connecting more than two nodes) and the graph accordingly
a hyper graph.

Constraint nets are a low-level encoding of models. We chose them as one possible
translation target for our higher level descriptions using probabilistic automata, that is
PHCA (which will be explained in section 3.6 later in this chapter). This allows us to
solve problems such as plan assessment as constraint optimization problem. We define
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3.3. Constraint Satisfaction and Optimization

Figure 3.1.: Example constraint net with three variables, representing a machining station
working or being broken, a maze product being well manufactured or flawed,
and an alarm being quiet or triggered.

two variants of constraint optimization problems based on constraint nets: probabilistic
constraint optimization problems (PCOP or COP) and weighted constraint satisfaction
problems (WCSP). Both are specializations of a valued constraint satisfaction problem
(VSCP) [149]. Before we do that, however, let us illustrate the definitions with a small
example.
Recall the very abstract problem space for our cognitive factory example from the

beginning of this chapter. It models a single machining station, one maze product
and the alarm. Accordingly, we use three variables X1, X2, X3 for the machining sta-
tion, the maze and the alarm. Their domains are D1 = {machingBroken,machingOk},
D2 = {mazeOk,mazeFlawed} and D3 = {alarm, noAlarm}. Strongly abstracted, a broken
machining station leads to a flawed maze and a flawed maze in turn triggers an alarm.
For this example we formally express these relations as two constraint functions c1, c2.
They capture these links, but also describe a system that is not perfect: false alarms may
happen and sometimes the maze may become flawed on a properly working machining
station. The functions map to probability values, that is we require a valuation structure
with E = [0, 1] and ⊗ being the standard product. Figure 3.1 shows the constraint net
for this example, along with the tables defining the two constraints.
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3. Background: Modeling and Model-Based Reasoning

Problem 1. Probabilistic constraint optimization (PCOP/COP): A probabilistic
constraint optimization problem is a constraint net R = (X,D,C) with an associated
valuation structure ([0, 1],≤, ·, 1, 0), where · is the standard product on the real numbers,
and the associated task to find the most probable full assignment

∗
x:

∗
x = arg max

x∈DX

∏
c∈C

c(x)

∗
x is the optimal solution toR. Any other consistent assignment x, i.e. with

∏
c∈C c(x) > 0,

is called a solution.

Next we define weighted constraint satisfaction problems (WCSP).

Problem 2. Weighted constraint satisfaction (WCSP): A weighted constraint
satisfaction problem is a tuple (R,>ub), where R is a constraint net and >ub ∈ N. It has
an associated valuation structure ({0, . . . ,>ub},≤,⊕, 0,>ub) representing costs, where ⊕
is defined in terms of the standard addition a⊕ b := a+ b if a+ b < >ub else >ub, and
the associated task to find the least cost full assignment

∗
x:

∗
x = arg min

x∈DX

∑
c∈C

c(x)

∗
x is the optimal solution toR. Any other consistent assignment x, i.e. with

∑
c∈C c(x) <

>ub, is called a solution.

For plan assessment, we are going to need a natural extension to both problems, namely
computing the k best solutions instead of just the single optimal one. There are a number
of other motivations for computing k best solutions, as is detailed in 3.4. For now, we
will focus on constraint reasoning.

Problem 3. k-best probabilistic constraint optimization (k-best PCOP): A k-
best PCOP is a tuple R(k) = (X,D,C, k) where k ∈ N and X, D, C as defined for a
PCOP. Its associated task is to compute the set of k most probable full assignments
∗

(xi)≤k, indexed such that more probable assignments have lower indices:

∗
(xi)≤k =

(
arg max[j]

x∈DX

∏
c∈C

c(x)

)
j∈{1,...,k}

∗
(xi)≤k is the sequence of the k-best solutions to R. Any other consistent assignment x,
i.e. with

∏
c∈C c(x) > 0, is called a solution.
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3.3. Constraint Satisfaction and Optimization

(xi)≤k is, in general, a sequence ordered by preference of an assignment: (xi)≤k :=

(xi)i∈{1,...,k} with
⊗

c∈C c(xl) ≤
⊗

c∈C c(xm) iff 1 ≤ l ≤ m ≤ k. In case of a PCOP, the
ordering is specialized as

∏
c∈C c(xl) ≥

∏
c∈C c(xm) iff 1 ≤ l ≤ m ≤ k. The operator

arg max[k] computes the k-th best solution as defined through the algorithm 3.1.

Algorithm 3.1 Function defining arg max[k].
1: function argmaxk(k, DX , term to maximize T )
2: S := DX , r ← k-length array
3: for i← 1, ..., k do
4:

∗
x← arg max

x∈S
T . Compute best solution

5: r[i]← ∗
x

6: S ← S \ {∗x} . Exclude solution just found from possible assignments
7: end for

return r
8: end function

A k-best PCOP has two special cases, namely computing the single best solution (k = 1)
and computing all solutions (termed as k = ∞). The former, of course, is equivalent
to the original PCOP definition. A k-best WCSP can be defined analogous to a k-best
PCOP, only replacing arg max with arg min (with arg min[k] analogous to arg max[k])

and
∏

with
∑

:
∗

(xi)≤k =

(
arg min[j]

x∈DX

∑
c∈C c(x)

)
j∈{1,...,k}

. The sequence
∗

(xi)≤k is then

ordered such that
∑

c∈C c(xl) ≤
∑

c∈C c(xm) iff 1 ≤ l ≤ m ≤ k. In fact, any (k-best)
PCOP can be converted into an equivalent (k-best) WCSP by negating and logarithmizing
the probability values in the PCOP constraints. Specifically, one has to apply the function

f(x) =

−α log x if x > 0

0 else

where α is a large integer to minimize precision loss. In our examples, this loss has been
negligible.

3.3.2. Basic Algorithms and State-of-the-Art Techniques

Algorithms that solve the above defined problems are often a composition of two general
mechanisms:

1. Classical AI search for solutions

2. Problem reformulation
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Searching for solutions is done by repeatedly assigning values to variables, taken from their
associated domains, and testing these assignments against the objective. Two variants are
possible: local search, which modifies full assignments to generate new assignments, and
systematic search, which finds values for each variable in turn until a full assignment is
created. It thereby traverses a tree-structure (either implicitly or based on an explicit tree,
depending on the algorithm), where nodes correspond to partial assignments and leaves
to full assignments, and thus, potential solutions. In this work, we focus on the latter.
Search heuristics help with, e.g., clever choices of the next value to assign. One of the most
famous heuristic search procedures is the A* algorithm [79, 53]. The core procedure in
many constraint solvers is called branch-and-bound. In this work we used implementations
of both of these algorithms in two different off-the-shelf constraint optimization tools.

The second mechanism, which is called inference or propagation in constraint reasoning
(not to be confused with inference in probabilistic reasoning), is based on turning implicit
constraints in a constraint net R = (X,D,C) into explicit ones and adding them to the
set C of the formulation. Implicit constraints are those that are entailed by C, i.e. they
are satisfied whenever all constraints in C are satisfied. This process can be repeated
until a single constraint over all variables explicitly states solutions. Most often, however,
this process is combined with search, where for example the new constraints are exploited
by heuristics.

Branch-and-Bound and A* as Basis for Algorithms Used in this Work

In this work, we use the off-the-shelf constraint solvers Toolbar1 and Toulbar2 2. Both
accept WCSPs as input. We extended both solvers with implementations of k-best
algorithms. For Toolbar we implemented an approach that first generates a heuristic using
an algorithm called mini-bucket elimination, then utilizes the heuristic in an A*-search for
the k-best solutions. The approach was first introduced in [99], albeit only for the case
k = 1. A text book description of this approach as well as mini-bucket elimination can be
found in [51, chapter 13, pp. 379]. In Toulbar2 we use its branch-and-bound procedure,
that we extended to generate k-best solutions. The extensions are detailed in section
5.2.1.
Branch-and-Bound seems to be the preferred search procedure to be combined with

inference methods in constraint optimization, yet is not as well known A* when it comes
to heuristic search. Therefore, we now describe the branch-and-bound procedure used
in tools such as Toulbar2 in some detail, while we restrict our account of A* to a short

1https://mulcyber.toulouse.inra.fr/projects/toolbar/ (03.2011)
2https://mulcyber.toulouse.inra.fr/projects/toulbar2 (03.2011)
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3.3. Constraint Satisfaction and Optimization

recap. The A* algorithm is described in more detail in many text books, for example in
[140, chapter 4].

Branch-and-bound methods originated in the field of operations research [112] and were
applied for constraint optimization several years ago [111] in the wake of the upcoming
soft constraint propagation [42, 47]. The branch-and-bound procedure that is used in tools
like Toulbar2 can be seen as sort of a depth-first walk of the search tree with short-cuts
given by heuristics. With costs as preference values, it roughly works as follows: Search
nodes are expanded in a depth-first manner. At each expansion step, lower bounds for
potential solutions in sub-trees of the current node are computed using the mentioned soft
constraint propagation (among others) and compared against an upper bound. The upper
bound is given externally, and later updated with the value of the best solution found so
far. If for a sub-tree the lower bound is larger then the upper bound, all possible solutions
in that sub-tree can only be worse than the optimal solution (which is guaranteed to be
cheaper than the upper bound), and therefore this sub-tree can be pruned. Among the
remaining sub-trees, the next is chosen for traversal. The algorithm backtracks whenever
it reaches a full assignment, i.e. a potential solution. In case its cost is lower than the
upper bound, the upper bound is updated with this cost. The algorithm stops when all
search nodes have been either expanded or pruned.

Algorithm 3.2 shows a basic branch-and-bound algorithm that exploits soft constraint
propagation implemented in the heuristic h, i.e. it computes the lower bound for costs of
unexplored sub-trees. Cost function g evaluates an assignment against the constraints
C in the given problem, giving the cost of the current partial solution x′. The sum
h+ g yields an optimistic cost estimate for all possible solutions in a particular sub-tree.
Optimistic means that the cost will never be overestimated, which implies that no sub-tree
that could contain the optimal solution will be pruned. This estimate is compared against
the cost of the best solution found so far,

∗
x. If a new full assignment

∗
x
′
is found, it is

stored as new current best solution if it is better than the previous current best solution.

Like branch-and-bound, A* search for combinatorial optimization works by traversing
a search tree. However, it remembers all partial assignments created so far and always
chooses the most promising (according to an optimistic heuristic) partial assignment for
expansion. This can be imagined as gradually expanding a search fringe that stretches
towards the optimal solution. It is important to mention that A* is probably more known
as an optimization procedure for shortest path problems in graphs. The version of A* for
combinatorial optimization is a specialization: There is no explicit set of goal nodes as
for the graph-based version, the algorithm stops as soon as the first full assignment is
generated. This corresponds to reaching a leaf node in the search tree. The property of
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Algorithm 3.2 Basic branch-and-bound algorithm to solve weighted constraint satisfac-
tion problems (WCSP).
1: function branchAndBound(({X1, . . . , Xn}, {D1, . . . , Dn}, C), >ub, heuristic h, g)

return bnbRecurse(({X1, . . . , Xn}, {D1, . . . , Dn}, C), 0, ε, ε, h, g)
2: end function
3: function bnbRecurse((X,D,C), i, x,

∗
x, h, g)

4: if i > |X| then
5: return x
6: end if
7: for v ∈ Di do
8: x′ ← assign(x, Xi, v)

9: if h(x′) + g(x′) ≤ g(
∗
x) then

10:
∗
x
′
←bnbRecurse((X,D,C), i+ 1,x′,

∗
x, h)

11: if g(
∗
x
′
) < g(

∗
x) then

12:
∗
x← ∗

x
′

13: end if
14: end if
15: end for
16: return

∗
x

17: end function

admissibility of the heuristic (i.e. that it is optimistic) guarantees that this assignment
will be the optimal one [53].

Techniques used in State-of-the-Art Constraint Optimizers

Toolbar and Toulbar2 use extended versions of the basic algorithm 3.2 that implement
many additional techniques and heuristics. We already mentioned soft constraint propa-
gation [42, 47]. A more basic, widely used set of extensions are heuristics for the choice
of variable and value orderings [48]. Another are preprocessing steps, in particular tree-
decomposition [24]. This technique tries to discover a tree-structure in the given problem
and make it available for the algorithm to exploit. Solving a problem while exploiting
its underlying tree-structure reduces the complexity from an exponential dependency
on the number of all variables to an exponential dependency only on the number of
variables in the largest clique of the constraint net graph. It is important because it can
be used to exploit the typically well structured design of technical systems, for example in
integrated circuits [60]. One way is to first generate a tree-decomposition [24], then apply
a tree-structure algorithm such as cluster tree elimination [100]. Another is to exploit
tree-decomposition during branch-and-bound using structural valued goods[153].
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3.4. K-Best Solution Generation

For many optimization problems it makes sense to consider, besides the best solution,
the 2nd, 3rd, 4th, ... k-th best solution. For example, in GPS navigation, the shortest
route may include a highway that the user wants to avoid because she knows (unlike her
navigation device) about a recent construction site. It might help in this case to look for
an alternative route among the 2nd, 3rd, ... best solution. Another example is medical
diagnosis, where a diagnosis might not be the most probable, however it might identify
a very serious illness, which is best being further investigated despite being unlikely.
Finally, in plan assessment, the k most probable trajectories are used to approximate
the distribution over all trajectories. This works well if the distribution is peaked. We
elaborate this point further in Section 5.2.5.
In general, we can see two reasons to perform k-best optimization:

1. The real optimum is not the one computed, but is among the k best solutions.
Reasons could be that the underlying model is wrong, but still approximately
correct, that not all relevant aspects of the domain were formalized, e.g., because it
was too expensive, or that the environment changed, causing the model to become
a coarser approximation. Enumerating the k best solutions gives human experts
the opportunity to easily choose the real optimum.

2. The k best solutions can be combined to generate new information, as in plan
assessment.

We will see in chapter 5 that plan assessment can be conveniently developed as an extension
of model-based diagnosis that generates a set of k most probable system behaviors. This
set then allows to approximate a goal success probability Pr(Gi |o0:t) by summing over
goal-achieving trajectories among the k most probable. In that chapter we also introduce
the two k-best algorithms that we use to compute most probable trajectories in decreasing
order. They are implemented in Toolbar and Toulbar2, respectively.

First versions of k-best algorithms for combinatorial optimization were developed in the
1970ies in the area of Operations Research [113, 131]. An algorithm for a k-best version of
most probable explanation was presented in [151]. Besides this, k-best approaches seem
rare in the probabilistic reasoning community. An extensive body of research exists for
k-best graph algorithms, e.g. k-shortest path. [29] is an early comparative study of such
algorithms. A more recent work that solves a problem approximately by enumerating
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k most probable solutions is [45]. It addresses the problem of visually identifying and
tracking a number of closely spaced objects. A general solution is to track multiple
hypotheses of the objects’ whereabouts, and [45] describes an approach that enumerates
the k most probable hypotheses.

3.5. Probabilistic Inference

Figure 3.2.: Example for probabilistic choice between transitioning (upon receiving com-
mand cut) to the nominal location cut or to the failure location cutter
broken.

In this section we introduce basic elements necessary to understand probabilistic reasoning.
The key mathematical structure is the widely used Bayesian network [135], or Bayesian
net for short. This structure is analogous to the constraint nets defined earlier in section
3.3.1. In fact, constraint nets generalize Bayesian nets. We exploit this fact and use the
definitions from that section as basis for the formalities in this section.

Probabilistic reasoning addresses problems that arise out of the need to make decisions
based on uncertain knowledge. In our case, this is uncertain knowledge about the internal
states of technical systems. For example, we might see an alarming sensor signal in our
factory, but cannot conclude directly its internal state: did the cutter of the machining
station break and lead to that signal, via a damaged product? Or is maybe the assembly
station at fault? The sometimes uncertain interactions that allow us, in the end, to derive
a conclusion are defined in a probabilistic model, e.g. a Bayesian net.
The mathematical foundations are laid out in probability theory, which captures

uncertain knowledge with the basic elements of random variables and distributions over
the values these variables may take. Specifically, a set of random variables X and
their domains D span a problem space, which captures possible solutions of a given
problem. X and D correspond directly to the sets X and D defined in section 3.3.1. D
is again restricted to finite sets. Distributions can be seen as special partial objective
functions, mapping variable assignments to probability values [0, 1]. A distribution
encodes uncertain knowledge about a part of the problem domain. For example, we
may know the probability with which a machining station, upon receiving a command,
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transitions to a fault location instead of the nominal location, see figure 3.2. This “choice”
is encoded with a conditional probability function Pr(li | lj), which gives the probability
that the transition to location li happens, given that we are in location lj . In the example,
the probability that the station transitions from location idle to location cutter broken is
encoded as P (cutter broken | idle) = 0.05.

Conditional probability functions specialize partial objective functions not only with
respect to the codomain [0, 1]. They also add the semantics of uncertain knowledge
about a specific variable, called child variable, being influenced because we know for
sure the values of a set of parent variables. That is, a specific distribution over values
of the child is valid under the condition that we know a particular assignment for the
parents. In the probabilistic transition example in figure 3.2 we see the distribution
Pr(· | idle) = {0.05, 0.95}. For a different parent location this distribution would change,
in particular for any location that is not idle, the probability of transitioning to, say,
broken cutter would be 0. In Bayesian nets, this semantic of conditioning is made explicit
in a directed acyclic graph with the random variables as nodes.

3.5.1. Formal Definitions and Problems

In addition to definition 1 we define the following mathematical structures specifically for
probabilistic reasoning:

Definition 2. Conditional probability functions, evidence variables, consistency among
assignments, Bayesian net. Let X = {X1, . . . , Xn} be the set of random variables and
D = {D1, . . . , Dn} their associated domains.

1. P = {Pr1, . . . ,Prn} is a finite set of n conditional probability functions. A conditional
probability function Prmaps assignments to probability values Pr : DV → [0, 1]. The
set V ⊆ X is called the scope of Pr. The partition {VC , VP } of V with VC = {Xi}
and VP = V \VC determines the conditioning relationship among the scope variables.
A single variable Xi, the child, is conditioned through the knowledge about the
remaining variables, the parents. This partition is denoted as Pr(Xi |Xj1 , . . . , Xjm),
with {Xj1 , . . . , Xjm} = VP . VP is also denoted as parents(Xi). Note that n = |X|,
i.e. there is exactly one function for each variable.

2. XE ⊆ X is a set of designated evidence variables. This means the values of these
variables are (at least partially) expected to be known. An assignment to variables
in XE (either partial or to all of them) is denoted as evidence e.
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3. Background: Modeling and Model-Based Reasoning

3. A full assignment x is said to be consistent with a partial assignment y(i,...,j)

(i < j ≤ n), iff the full assignment has the same values as y(i,...,j) in the according
positions, i.e. x(i,...,j) = y(i,...,j). This is written as x `y(i,...,j). In particular, we
write x ` e to indicate that x is consistent with the evidence.

4. The concatenation of two partial assignments y and z, meaning their co-occurrence,
is written as (y, z). We leave out the parentheses if the meaning is clear without
them, e.g. in Pr(y, z).

5. A Bayesian net is a tuple RB = (X,D,G, P ), where G is a directed, acyclic graph
with X as its nodes and a directed edge for each parent→child relationship. Thereby
it makes the conditioning relations among the variables explicit. Each net RB
defines a full joint distribution over all assignments X, given as PrB(X1, . . . , Xn) =∏
i=1..n Pr(Xi | parents(Xi)).

RB corresponds to a special constraint net with valuation structure ([0, 1],≤, ·, 1, 0)

and with the added information of the conditioning relations given in graph G. G can be
seen as sort of an explicit specialization of the implicitly defined (hyper) graph, where
an undirected (hyper) edge connecting parents with a child is specialized to a set of
directed edges for each parent→child relationship. Another specialization is the explicitly
defined set of evidence variables, which represent certain knowledge about the problem (as
opposed to uncertain knowledge represented in the other variables). For more information
on the relations between constraint and probabilistic reasoning we refer to [148] and [100].

Like constraint nets, Bayesian nets are used as low-level encodings of models of technical
systems, with possible observations and commands being mapped to evidence variables.
In this work we use them, like constraint nets, as translation target for our high level
descriptions with PHCA. This allows to solve plan assessment by solving probabilistic
reasoning problems that can be defined over Bayesian nets. Next, we will define three
well known general probabilistic reasoning problems over Bayesian nets.

Problem 4. Most probable a posteriori hypothesis (MAP): Let Y,Z ⊆ X with
Y ∩ Z = ∅, Y ∪ Z = X and XE ⊆ Z. Then, the most probable a posteriori hypothesis
problem is a Bayesian net RB = (X,D,G, P ) with the associated task of finding the most
probable partial assignment

∗
y to Y , given evidence e:

∗
y = arg max

y∈DY

∑
z∈DZ ,(y,z)`e

PrB(y, z)
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3.5. Probabilistic Inference

Problem 5. Most probable explanation (MPE): The most probable explanation
problem [135, Chapter 5, p. 250] is a Bayesian net RB = (X,D,G, P ) with the associated
task of finding the most probable full assignment

∗
x, i.e. with highest probability value,

given evidence e:
∗
x = arg max

x∈DX ,x`e
PrB(x)

Our definition of the MAP problem follows [90]. The MAP problem is relevant for plan
assessment in that the most probable a posteriori hypothesis, for our models, encodes
the most probable system behavior (in the relevant variables Y ) and thus corresponds
to the most probable diagnosis. The MPE problem is a specialization of MAP: in case
all evidence variables are known and no irrelevant variables exist (i.e. XE = Z), MAP
becomes equal to MPE, because there is then only one partial assignment to Z consistent
with the evidence (the evidence itself), which means the sum effectively vanishes.

The MPE problem is connected to the COP (PCOP) problem of finding most probable
full assignments. Given a random variable Xi, let Iparents(Xi) be the index set that
appropriately picks values from full assignment x to be assigned to the parents of Xi.
Then with

arg max
x∈DX ,x`e

PrB(x) = arg max
x∈DX ,x`e

∏
i=1..n

Pr(Xi = x(i) | parents(Xi) = xIparents(Xi))

we have generally the same problem formulation, only missing two further adaptations:
Each Pr is represented as a constraint function in C, and evidence must be encoded as
additional constraints mapping inconsistent variable values for XE to 0. Then, solving
the resulting COP gives the most probable explanation.

Problem 6. Marginals: The marginal computation problem [135, Chapter 4.5, p. 223]
is a Bayesian net RB = (X,D,G, P ) with the associated task of computing, for a given
query Xi = x and evidence e, the marginal probability Pr(Xi = x | e):

Pr(Xi = x | e) =
∑

x∈DX ,x`e
PrB(X1 = x(1), . . . , Xi = x,Xi+1 = x(i+ 1), . . . , Xn = x(n))

The marginal problem connects to plan assessment in that computing success proba-
bilities Pr(Gi |o0:t) can be mapped to computing marginal probabilities for assignments
to designated goal variables, Gtend

i = marked. These variables, with associated domain
{marked, unmarked}, encode a goal as automata locations that must be reached, i.e.
marked, at time tend. The superscript t is used to denote that a variable represents a
partial state at some time point t.
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3. Background: Modeling and Model-Based Reasoning

The introduced probabilistic reasoning problems are, in full generality, NP-hard prob-
lems [138, 41] because they require computing (in the worst case) the full joint probability
PrB. This corresponds to enumerating all full assignments and is therefore exponential
in the number of variables. MAP is generally harder than MPE and the marginal prob-
lem [134]. The next section will introduce two classes of efficient algorithms that are
particularly interesting for this work.

3.5.2. Basic Algorithms and State-of-the-Art Techniques

Many algorithms for graphical models such as Bayesian nets have been developed. A
good text book reference for graphical models, exact and approximate inference methods
is [21, chapters 8, 10 and 11]. We focus on two classes of algorithms that are relevant for
this thesis: junction tree algorithms and sampling.
Junction tree algorithms are exact inference methods that exploit the global tree-like

structure that many problems or models exhibit. This is especially true for models that
are derived from engineered technical systems, where well-structured design is a central
paragon. That makes these types of algorithms relevant for this work.
Sampling denotes a widely used class of approximative methods. They are attractive

because they are anytime algorithms, meaning that they give approximate results anytime
when halted before termination. Furthermore, stochastic guarantees on the approximation
error can be given.

Junction Tree Algorithms and Arithmetic Circuits

Junction tree algorithms are dynamic programming methods based on exploiting a tree-
structure hidden in the Bayesian net graph G. As a first step, this structure, called a
join tree, must be discovered and made explicit. This step is often considered an offline
compilation step, as probabilistic queries can then be answered for different evidences
without the need to recreate the join tree.

This concept of offline/online computation is often used to speed up computations
during the time when solutions to problems are actually requested. This time is called
online phase. Before that, in the offline phase, computationally intensive preparations are
done. This works because often computationally hard problems can be split into a hard
step, ideally performed only once, and an easy step that has to be done for each user
input. A naive approach would be to simply precompute all solutions and store them
such that they can be retrieved quickly. Since this requires a huge amount of space, the
approaches are usually more sophisticated, providing intelligent trade-offs between space
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3.5. Probabilistic Inference

and time complexity as well as offline and online phase. In case of junction tree algorithms,
the online phase (after generating the join tree) still has exponential complexity. The
arithmetic circuit approach that we introduce in a moment pushes much more of the
effort into the offline phase, rendering the online phase extremely fast.

The join tree consists of connected “super-nodes” that cluster random variables. Clusters
are connected only if they share variables. They can be seen as sub-problems of the
original problem. The second step consists of a 2-stage process message passing between
clusters, first towards the root node (which has to be chosen), then outwards towards
the leaves. A message is a function that encodes the effect of the sending cluster on the
receiving cluster. For a more detailed description we refer to [89], or to [100] for the
description of a more general version of such an algorithm called cluster-tree elimination.
Generalized junction tree algorithms as described in [100] can be used to compute MPE
and marginals. Which problem they solve depends on choosing different sets of operators
over conditional probability functions, one that combines functions (e.g. via product),
and one that projects a distribution onto chosen variables (e.g. by summing over random
variables for marginalization, or maximizing for MPE). A concrete implementation of
a junction tree algorithm for MPE is patented in [88]. The generalized join trees these
algorithms use correspond to the tree-decompositions, mentioned in section 3.3.2, which
tools like the constraint solver Toulbar2 can exploit.

In this work we focus on a framework that subsumes the junction tree approach
[38, 91, 37, 46]. It is based on compiling Bayesian nets into structures called arithmetic
circuits, which are efficient representations of the distribution PrB as polynomials. The
main advantage is that once an arithmetic circuit is computed, things such as success
probabilities can be computed extremely fast, for different observations. That is, the
arithmetic circuit need not be recreated if the observations change. Next, we recap the
approach following the explanations and notations given in [46].

For each Bayesian net, we can represent its distribution with a unique polynomial of
the form

f =
∑

x∈DX

∏
xu:x`xu

λxθx |u

The sum ranges over all possible full assignments. The product ranges over all partial
assignments, denoted xu, that correspond to scopes of conditional probability functions
and with which the current full assignment x is consistent. The single product thus gives
the probability value of x.
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3. Background: Modeling and Model-Based Reasoning

A B

Figure 3.3.: Simple example Bayesian net.

Figure 3.4.: Arithmetic circuit for the Bayesian net in figure 3.3.

The polynomial consists of two types of variables. The λx variables indicate whether
some value x is consistent with the evidence or not. If it is not consistent we set λx = 0,
which “erases” the complete product, and thus the full assignment being inconsistent
with evidence, from the sum. The θ variables represent conditional probabilities: θx |u =

Pr(Xi = x | parents(Xi) = u) (assuming that u is appropriately indexed). Note that
there is an overlap of notation considering the symbol θ: To be consistent with the
notation in [46] we chose this symbol. However, outside this section it has a different
meaning, which we introduce later.

f is a function that computes the probability of a given evidence: f(e) = Pr(e). Other
probabilistic results, in particular marginals, can be computed with derivatives of f :
Pr(Xi = x | e) = 1

f(e)
∂f
∂λx

(e). To illustrate, consider the example net in figure 3.3 with
random variables A,B. Both take two values, a, a and b, b respectively. The corresponding
polynomial is

f = λaλbθaθb | a + λaλbθaθb | a + λaλbθaθb | a + λaλbθaθb | a

With evidence e = ab, for example, we get f(e) = θaθb | a. If we want to know Pr(A = a | b),
now with evidence e = b, we can compute this with the derivative for λa: Pr(A = a | b) =

1
λaθaθb | a+λaθaθb | a

∂f
∂λa

(b) =
θaθb | a

λaθaθb | a+λaθaθb | a
, since ∂f

∂λa
= λbθaθb | a + λbθaθb | a. We can

draw the connection to plan assessment here if we imagine that the products λaλbθaθb | a,
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3.5. Probabilistic Inference

λaλbθaθb | a, etc. are the probabilities of possible system trajectories. In the example
above, θaθb | a would be goal achieving (for the goal A = a), while λaθaθb | a and λaθaθb | a
are all the trajectories consistent with observation e = b.

The polynomial can be efficiently represented, and more importantly, evaluated and
differentiated with an arithmetic circuit. An arithmetic circuit is a rooted, directed acyclic
graph with product nodes, addition nodes and terms such as λa, θa | b or λaθa as leaves.
Figure 3.4 shows an arithmetic circuit for the simple example net in figure 3.3. Arithmetic
circuits are not unique; consequently, one of the interesting problems related to arithmetic
circuits is finding a compact one for a given Bayesian net.

The work in [46] details how the global structure of a net given as its join tree can
be exploited to create compact arithmetic circuits. This is possible because join trees
actually embed arithmetic circuits. Furthermore, it has been shown that the message
passing stage 1 of junction tree algorithms (towards the root of the join tree) corresponds
to computing f(e) and stage 2 (outwards to the leaves of the join tree) to computing the
derivatives of f . However, arithmetic circuits go beyond the possibilities of join trees. For
example, the authors of [46] show how to exploit local structure in the form of repeated
probability values to create more compact arithmetic circuits.

We use the publicly available implementation provided by the authors of [38, 91, 37, 46],
Ace 2.0 3. The tool can compute marginals out-of-the-box. However, it apparently cannot
compute MAP right away. This means we can solve plan assessment only partially with
this tool. Still it is worthwhile investigating this off-the-shelf tool: First of, as recent
results show [37], it performs very good on particularly difficult problems. And second,
an algorithm to compute MAP exactly with arithmetic circuits, ACEmap, has already
been introduced in [90]. It seems a matter of time until this algorithm will be included in
the official public distribution.

Although it seems that arithmetic circuits have not yet been used to compute MPE,
we think it should be possible to implement this with reasonable effort, considering
that generalized junction tree algorithms can solve this problem by essentially replacing
summation with maximization. Specifically, we speculate that arithmetic circuits could be
used in a similar way to compute MPE by replacing the addition nodes with maximization
nodes and adapting the evaluation procedures given in [46].

3http://reasoning.cs.ucla.edu/ace/ (03.2011)
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Sampling and SampleSearch

Sampling is an attractive class of anytime algorithms to compute approximate solutions
to the probabilistic problems defined in section 3.5. In particular, in section 7.2 we
investigate how to compute success probabilities with them with a stochastic accuracy
guarantee. These algorithms approximate the full joint distribution Pr(X1, . . . , Xn) =

ΠiPr(Xi | parents(Xi)) by randomly generating a number of full assignments that ac-
cord to the given conditional probabilities in P and are consistent with the evidence.
Among these sampled assignments appear those more often, which are more likely due to
Pr(X1, . . . , Xn). This allows to compute the probability of arbitrary partial assignments
given the evidence, in particular, marginals.

In the context of plan assessment, sampling full assignments, in essence, corresponds
to sampling potential system trajectories. For example, if we have a goal encoded
by Gtend = marked, for example the maze product being flawless and finished by tend,
then we would like to compute Pr(Gtend = marked |o0:t) (where the observations o0:t

are the evidence e). Let Gtend = marked be denoted by g. Then we can approximate
the probability in question as Pr(g | o0:t) ≈ mg

m , where m is the number of all sampled
trajectories and mg the number of sampled trajectories where the maze product is
considered ok at time tend.

Sampling algorithms differ mainly in how exactly they use the conditional probability
functions in P to correctly sample the full assignments. Popular methods are Gibbs
sampling [36], likelihood weighting [71], backward simulation [70] and, more recently,
SampleSearch [75]. Here we are mainly interested in SampleSearch because it seems
especially well suited for models that we consider in the context of plan assessment. These
models are to a large extent deterministic, because they model systems with mostly
deterministic behavior and only a small amount of uncertainty. For these kind of models,
sampling can quickly run into the so-called rejection problem: A large number of samples
is drawn that, in the end, have probability 0 because of some deterministic conditional
probability function evaluating to 0, and have to be rejected. SampleSearch remedies
this by systematically searching for samples consistent with the deterministic parts of
the model. It achieves this by combining sampling with standard constraint reasoning
techniques.
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3.6. Modeling Complex, Uncertain System Behavior with PHCA

3.6. Modeling Complex, Uncertain System Behavior with
PHCA

In this section, we will explain how systems such as manufacturing plants can be modeled
with probabilistic hierarchical constraint automata (PHCA), the model-framework chosen
for this work. PHCAs are part of a toolset developed under the paradigm of model-based
programming. Before we dive into the details of PHCA models, we will briefly state some
important points about this paradigm. Formal definitions of PHCAs and closely related
concepts will not be given here, instead we focus on explaining things informally with
examples and postpone the formalities to chapter 4. There, they will be used as basis for
a formal definition of the plan assessment problem.

3.6.1. Model-Based Programming

Model-based programming was developed by Williams et al. [164, 163, 162, 132] as
extension of existing engineering concepts towards the realm of artificial intelligence
problems. Most notably, the paradigm introduces a novel concept of programming
technical systems based on a model of its internal, not directly observable states. The
model describes these hidden states, transitions between them and how states connect
to sensor signals. The transitions can be conditioned on command variables and may
be probabilistic. This allows to model possible failures of system components. Control
programs for systems are then written based on the hidden states, rather than directly
on sensor signals and command variables. An underlying execution component then
constantly deduces, from observations and the model, the most likely hidden state and
uses it as starting point to find actions to achieve goal states derived from the model-
based control program. The idea is realized in the reactive model-based programming
language (RMPL), which compiles to a compact encoding of hidden Markov models, the
probabilistic hierarchical constraint automata. Listing 3.1 shows a short RMPL control
code sample reproduced from [163].

The language is adapted to what engineers are used to from engineering languages
such as Statecharts[78] or Esterel[20], e.g., parallel execution, hierarchical composition,
complex conditioned execution, etc. This moves engineering a big step towards controlling
systems with AI techniques such as belief state update [163]. This thesis ties in with this
paradigm by developing plan assessment based on PHCAs. We will focus on the modeling
part of this paradigm, i.e. we do not address issues related to control programs.
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0.1
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Figure 3.5.: Illustration of how model-based programming, product modeling, planning,
plan assessment and autonomous decision making could interact and work
together.
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1 Orb i t In s e r t ( ) : : {
2 do {
3 EngineA = Standby ,
4 EngineB = Standby ,
5 Camera = Off ,
6 do {
7 when EngineA = Standby ∧ Camera = Off
8 donext EngineA = Fi r ing
9 } watching EngineA = Fai led ,
10 when EngineA = Fai l ed ∧ EngineB = Standby ∧ Camera = Off
11 donext EngineB = Fi r ing
12 } watching EngineA = Fi r ing ∨ EngineB = Fi r ing
13 }

Listing 3.1: A piece of control code in the reactive model-based programming language
(RMPL).

Figure 3.5 illustrates the interplay of model-based programming, product modeling,
planning, plan assessment (highlighted) and autonomous decision making in the types
of autonomous manufacturing scenarios we consider. Section 4.2 has more on product
models and their import for plan assessment.

3.6.2. PHCA Modeling

Now we describe, informally with examples, how system models using PHCAs can be
built. We use the plant of our example scenario in section 2.1.3 for illustration. Figure
3.6 shows a PHCA model of this plant. We will look into the concepts of locations and
behavior constraints, hierarchical composite locations, probabilistic guarded transitions
and how start states are chosen. In particular, we will (informally) introduce the important
concept of the PHCA state. When it comes to solving the plan assessment problem we
are interested in system trajectories, which are sequences of PHCA states. We base our
explanations of general PHCA concepts on information found in [129, 164, 163, 162].

Locations and Behavior Constraints The basic element of PHCA system models is the
location. For instance, the assembly station model of the example plant, shown in figure
3.7, consists of five locations. One of them is itself composed of two other locations, which
means it is a composite location. PHCA locations are used to encode system modes. A
mode characterizes the internal, and thus usually hidden state of a technical system. For
example, the state of the machining station 0 (see figure 3.9), after transitioning from Idle,
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Figure 3.7.: Assembly station sub-automaton.

may be nominal (Cut) or a failure state (Failure : cutter broken), but we cannot observe
that directly. The state, or sequence of states, must be estimated from partial information,
in our example a sensor alarm elicited by the assembly station if too much force was
applied. In the context of PHCA models we refer to PHCA states rather than modes. A
PHCA state is a set of locations that is considered active or marked. A sequence of such
sets of marked locations forms a system trajectory, the key computational element we are
interested in.

Since PHCA states, and therefore location markings, are hidden, it is crucial to model
the relationship with observations that can be expected in certain locations. This is
achieved by encoding possible observations with constraints over variables with finite
domains. Each PHCA model has a set of designated variables, which can be used to
encode observations, commands or model internal dependencies. Each location has one
constraint, called behavior constraint, which encodes the observations possible in the
hidden state encoded by this location. It can be as simple as an assignment, or more
complex, as the behavior constraint of the location Bolts of the assembly station:

Bolts

if Holes=damaged or Assembly-status=failure:
Force=high
else:
Force=normal

The location encodes the assembly pushing bolts or pins into the maze to fixate the
glass cover on top of the alloy base plate of a maze. Its behavior constraint encodes that
an alarm will be seen if the maze being worked has damaged holes or if the assembly
station itself is faulty, i.e. the assembly robot arm is misaligned. In general, constraints
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Figure 3.8.: Machining station sub-automaton that has a more complex fault model: it
models the cutter becoming blunt before breaking.

in PHCAs are encoded as propositional formulas, where propositions are assignments of
values to variables. The propositions can be negated with ¬ and combined with ∨,∧. In
the graphical depictions we took the liberty to use a somewhat more expressive language
to make constraints such as the one above easier to read. Its propositional formula is (in
conjunctive normal form)

(Holes = damaged ∨ Assembly-status = failure ∨ Force = normal) ∧

(Holes = ok ∨ Force = high) ∧

(Assembly-status = ok ∨ Force = high)

Behavior constraints do not hold all the time, but become active, or enforced, if their
location becomes marked, i.e. is part of the PHCA state. This allows a very flexible
modeling of complex observation interactions.

Composite Locations Every location is itself a PHCA, which in particular means they
can be hierarchically composed of other locations. Locations therefore fall into the two
classes of composite locations, which are composed of other locations, and primitive
locations, which do not contain any other locations. The composition hierarchy is rooted
in the complete model itself, i.e. the model is the root location. The root location is
composed of the locations, or sub-automata, for top level system components. In our
example, this corresponds to plant stations and product models (maze, robot). The
products are being modeled with a location composed of two primitive locations, one
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Figure 3.9.: Machining station sub-automaton.

modeling the (yet unfinished) product being fine during the production process, and
one modeling that something went wrong and flawed the product. Machining station
1 and the assembly station are examples of composite locations containing yet other
composite locations. Machining station 1 contains a composite location which is the target
of transitions, meaning it becomes marked only when being transitioned to. All other
composite locations seen so far are also start locations, which means they become marked
right from the beginning. One important consequence of this is that these composite
locations are marked concurrently, i.e. they “run” in parallel. We detail this some more
later in this section.

Probabilistic Transitions and Guard Constraints In PHCAs, the potentially uncertain
evolution of the system state, represented as the PHCA state, is encoded with guarded,
probabilistic transitions. Guarded means that transitions may only be taken if certain
conditions are met, e.g. a certain command is given. Probabilistic means that even if
said condition is fulfilled, the transition may be chosen randomly according to a given
probability distribution.

A transition has a single source, which must be a primitive location, and has at least
one target. The target may be an arbitrary location, primitive or composite, anywhere in
the model. The original PHCA formalism allows for multiple transition targets at once.
The PHCA models considered in this work, however, only have transitions with single
targets.

Guards are defined as constraints over, for example, command variables. However,
one can also formulate more complex constraints over any of the variables of the PHCA
model. A guarded transition may be taken (potentially subject to random choice) if its
guard constraint is entailed by the behavior constraints of marked locations. This means
the guard constraint must be satisfied for all assignments to PHCA variables that are
consistent with the behavior constraints of currently marked locations.
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Each transition has a guard constraint and a probability value. Transitions are proba-
bilistic in the sense that all outgoing transitions of a location, whose guards are entailed
at a given time point, must form a probability distribution. A practical way to achieve
this is to use mutually exclusive guards to partition the set of outgoing transitions such
that all partitions but one have inconsistent guards at any time point. Then, probability
distributions can be defined over these partitions. As an example, consider again ma-
chining station 0 and its location Idle, which has three outgoing transitions (see figure
3.9). They are partitioned by mutually exclusive guards Cmd = noop (1 transition) and
Cmd = cut (2 transitions). “noop” means “no operation”. As for the distributions, the
single transition of the partition according to Cmd = noop has of course probability 1.0.
The two transitions of Cmd = cut have probability 0.99 (Idle to Cut) and 0.01 (Idle to
Failure : cutter broken).

Initial PHCA State and Start Locations Every location may be a start location. Being
a start location means two things:

1. The location is chosen for the initial marking of the PHCA at the beginning, i.e.
the first time point.

2. The location is becoming marked if its parent composite location is becoming
marked, e.g. because it is being transitioned to.

In other words, start locations determine how possible evolutions of system behaviors
start, either globally at the very beginning, or locally within composite locations. PHCA
allow to define probability distributions over sets of start locations, which means that
start locations can be chosen probabilistically as well as that multiple start locations
may be initially marked at once. In practice, distributions will be used that are easy to
factorize, since they are computationally much easier. In the models in this work we only
use deterministic starts.

3.6.3. PHCA State Evolution as Possible, Synchronously Parallel
Evolutions

The concurrent marking of PHCA locations corresponds to synchronous parallel execution.
For example, the concurrent marking of the composite locations encoding the assembly
station and the machining station (0 or 1) is analogous to them being synchronously
executed, by e.g. sending commands to them at each tick of a clock. However, the PHCA
model itself is not executed. When talking about the model, it is better to talk about
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possible, synchronously parallel evolutions of sub-components induced by execution. That
is, when executing pre-planned operation steps, the PHCA model represents the possible,
synchronously parallel behaviors of the components of a system. Why is this distinction
important?
This distinction affects how to interpret communication among parts of a PHCA

model and, in particular, conflicts such as two components writing to the same variable.
The simple explanation is: a communication conflict such as two components writing
different values to the same variable cannot happen, unless the model is incorrect. Let’s
examine this in more detail. Components of a system, modeled as composite locations,
can communicate through global PHCA variables. However, this is more of an abstract
dependency among these locations rather than communication in terms of reading and
writing variables. The behavior constraints of these locations determine, for a given
PHCA state that marks these locations, which values variables can take. For example, if
in a given PHCA state the assembly station transitions to location Idle, it enforces its
behavior constraint Force = none (This enforcing could be seen as an abstract “writing”
of, in this case, the value none to variable Force). It is important to note that the order
of constraint enforcing doesn’t matter, it can be seen as one big, atomic step. It could
now be that two constraints are enforced that disagree on the value of a certain variable.
For example, another location’s behavior constraint could be Force = high (given that
Force is a global variable). If this location also becomes marked in the mentioned PHCA
state, these two constraints become inconsistent, rendering the PHCA state inconsistent.
In probability terms, any system trajectory containing this PHCA state has probability
0 of occurring. In constraint based approaches to plan assessment, similar conflicts are
actually used to rule out impossible system trajectories. However, if trajectories should
in fact be possible that mark the two locations concurrently, then something is wrong
with the PHCA model or, worse, the system design.

3.7. Bayesian Logic Networks: Bayesian Networks
Generalized To First-Order Logic

The PHCA modeling framework, like any automata framework, doesn’t explicitly represent
time steps. From the point of view of logic PHCA models implicitly quantify over time,
which makes the underlying logic a first-order logic. This indirectly affects how we try
to solve plan assessment, given that we want to automatically translate PHCA models
to, for example, probabilistic models that off-the-shelf tools understand. The problem is
to choose a probabilistic modeling framework as a translation target. One could simply
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use Bayesian nets as target, which however are propositional in nature (i.e. like boolean
formulas without quantifiers). Since PHCAs are first-order in nature, they would be
conceptually closer to first-order probabilistic frameworks. It turns out that just such
a framework exists, which defines a first-order generalization of Bayesian nets, called
Bayesian logic networks (BLNs) [95]. These are thus a natural choice over Bayesian nets.
Bayesian logic networks can be seen as templates for the construction of Bayesian

networks. A BLN may be instantiated to either a ground Bayesian net or a ground
mixed network that explicitly represents logical constraints on the distribution [124].
Probabilistic inference is often performed in such ground models. This section reproduces
and explains the elements of BLNs essential to this work. For a detailed account we refer
to [95] and [96]. Note that parts of this section have been published earlier in [118].

Frameworks such as the BLN framework have been developed and used in probabilistic
reasoning for the last 10 years, and they are becoming increasingly important. They are
known under the term of statistical relational reasoning, which means that instead of
modeling concrete objects, abstract relations between classes of objects are modeled. For
example, with Bayesian nets one would model transitions for each concrete time point.
With statistical relational models, one instead can abstractly describe the transition
relation between states, independent of time. This is much more in line with the
automata-style modeling in PHCA. Going from concrete objects to abstract relations can
be understood as “lifting” the modeling from propositional logic to first-order logic. In
particular, quantifiers over objects are introduced.
An added benefit of BLNs as translation target is a greater flexibility with respect

to the choice of inference methods. Specifically, recent research in statistical relational
reasoning tries to (partially) lift the inference problem to the first-order level in order to
exploit repeated sub-structures in ground models [137]. By translating to BLNs, the gate
is already open for future work exploiting these novel algorithms.

3.7.1. Bayesian Logic Networks Explained with an Example

We illustrate the BLN framework with a manually created model for a class of scenarios
of the type described in section 2.1.3. This model was created as part of joint work in
[118]. It simplistically represents every station and every product with two states, Ok

or ¬Ok, i.e. broken. Relations such as a station working a product are represented as
first-order predicates, encoding templates for random variables. The model is shown in
figure 3.10.
Key elements of a BLN B are abstract random variables, typed entities, fragments

and first-order logical formulas. Abstract random variables are parametrized random
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variables that correspond to either predicates or non-boolean functions. They encode,
for example, templates for partial states such as a station being faulty, abstract relations
such as stations working on specific products or a template for a probabilistically chosen
transition. The parameters or arguments of an abstract random variable refer to abstract,
typed entities, which allows, in particular, quantification over time. If we see arguments as
meta-variables in first-order predicates, such as o and t1 in the predicate mazeOK (o, t1),
then entities are their valuations, e.g. M0,M1 for two maze entities and T0, T1 for two
time point entities.

A fragment associates an abstract random variable with a conditional probability
table. They encode templates for concrete conditional probability functions. On the
graphical level, fragments (ellipses in figure 3.10) correspond to abstract Bayesian nodes,
and the arcs between them likewise to abstract conditioning relations. The set of all
fragments collectively defines a template for probability distributions. The applicability of
a fragment during instantiation may be restricted by (mutually exclusive) first-order logic
preconditions (boxes in figure 3.10), which allows to construct more flexible templates.
E.g., the conditional probability table chosen for concrete instances of mazeOK (o, t1)

depends on whether there exists a time point instance that precedes t1, expressed in
the precondition ∃t0 : next(t0, t1) ∧ assemblyActionOn(a, o, t0) (a, o are implicitly ∀-
quantified). The second predicate specifies the additional condition that at the previous
time point the maze was worked by an assembly station.

First-order logical formulas may be specified in the model to express hard relations
among predicates using the standard set of expressive logical operators ∨,∧,¬,⇒,⇔
and quantifiers ∀, ∃. The relations are hard as opposed to probabilistic, soft, relations
expressed through fragments. Every such formula can be converted into an equivalent set
of fragments. However, often global hard relations are more conveniently expressed this
way.

Formally, a Bayesian logic net is a triple B = (D,F ,L), usually accompanied by a
knowledge base DB. D contains, among other things, the entity types and predicate
signatures for abstract random variables. Most of D can be reused across a wide range of
possible BLNs. The code excerpt in listing 3.2 shows definitions occurring in D for the
example in figure 3.10.

F is the set of fragments, and L the set of first-order logic formulas. The knowledge
base defines existing objects or entities for the first-order logic formulas and fragments as
well as known facts about relations among these entities.

It is important to distinguish arguments of abstract random variables and their valua-
tions, entities, from variables Xi and values x as they appear in constraint or Bayesian nets.
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1 Type objType_c;
2 Type objType_a;
3 Type objType_o;
4 Type objType_t;
5 guaranteed domAction AssemblePins , AssembleCover;
6 logical Boolean next(objType_t ,objType_t );
7 random Boolean cutterOK(objType_c ,objType_t );
8 random Boolean assemblyOK(objType_a ,objType_t );
9 random Boolean mazeOK(objType_o ,objType_t );
10 logical Boolean cutterActionOn(objType_c ,objType_o ,objType_t );
11 logical Boolean assemblyActionOn(objType_a ,objType_o ,objType_t );
12 random domAction assemblyActionT(objType_a ,objType_o ,objType_t );
13 random Boolean pforceHigh(objType_a ,objType_o ,objType_t );

Listing 3.2: Code excerpt of Bayesian logic network entity types and predicate signatures.

The former exist on the first-order level and can be considered as sort of meta-variables
and meta-values. The latter exist on the propositional level of, in particular, Bayesian
nets. To illustrate let us look at the predicate mazeOK (o, t1). It is first-order because
it is a function over arguments, or meta-variables, o and t1. When its arguments are
instantiated with, for example, M0 and T1, we receive what is called a ground predicate
mazeOK (M0, T1). This ground predicate is propositional, and directly corresponds to
a random boolean variable in a Bayesian net. Ground predicates and the process of
grounding will be explained in more detail later.

The difference is reflected in the notation, as arguments are always represented with
lower case letters, entities with upper case letters. To avoid confusion with constraint
or Bayesian net variables and values, arguments and entities will always appear in the
context of first-order predicates and we avoid subscript indices for entities. For the
example, the letters a, c, o, t are used to respectively represent arguments for assembly
stations, machining stations (cutters for short), mazes (objects/products being worked)
and time points.

The manually created example model in figure 3.10 realizes the evolution of a system
over time with two abstract arguments t0 and t1, representing successive time points,
and abstract random variables relating to them for successive actions, states, etc. A
time line is enforced through abstract random variable next(t0, t1), which encodes that t0
precedes t1. When instantiating, successiveness of time points T0, T1, . . . is ensured by
clamping next(T0, T1), next(T1, T2), and so on to true in the knowledge base. Uncertain
station evolution is modeled in a simplified way, using two abstract random variables:
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assemblyOK (a, t) and cutterOk(c, t) for assembly and machining stations. The failure
probabilities 0.03 and 0.01 for machining and assembly stations are encoded in the
fragments for these abstract random variables. Product state evolution is modeled in
a similar way, i.e. we have the abstract random variable mazeOK (o, t) for the state
of the class of maze products. Their fragments are different in that they don’t encode
any uncertainty. The force alarm observations are encoded as evidence abstract random
variable: pforceHigh(a, t) encodes that the force measured at the assembly station a

at time t was too high (if true). To encode actions, relations encode assembly and
machining stations working mazes at a certain time, i.e. abstract random variables
assemblyActionOn(a, o, t) and cutterActionOn(c, o, t). The complex relation that a force
alarm can be triggered by cutter-damaged holes as well as a misaligned assembly can be
expressed as a first-order logic formula:

assemblyActionOn(a, o, t)⇒ (pforceHigh(a, t)⇔ (¬assemblyOK (a, t)∨¬mazeOK (o, t)))

3.7.2. Inference in Grounded Bayesian Logic Networks

As mentioned, inference directly in BLNs is possible with lifted inference [137]. However,
for this work we focus on solving problems by instantiating BLNs to Bayesian nets.

A BLN is an abstract model that represents a class of concrete models. Grounding refers
to converting the BLN to an instance of this class using information about existing objects
and entities from the knowledge base DB. More specifically, entries in DB are of the form
P (E1, . . . , En) = V , where P is an arbitrary predicate, E1, . . . , En entities instantiating
its arguments and V is some value (often true or false). The entities E1, . . . , En are used
to instantiate the according predicates P in the fragments. The assignment of values to
grounded evidence predicates, representing evidence e, can be changed after the grounding
to account for new evidence. The result of this process is a mixed network, i.e. a Bayesian
net with added (propositional) logical constraints. The logical constraints are further
converted to random variables and deterministic conditional probability tables, i.e. which
evaluate only to 0 and 1. Specifically, for each instance of a logical formula a conditional
probability table and an associated boolean random variable is added. These variables are
called auxiliary variables, and they are clamped to true, thereby enforcing their respective,
concrete logical rules. As an example, consider the formula ∀a : P (a)⇒ Q(a), with P,Q
being predicates. An instance would be P (A0)⇒ Q(A0) and would yield the following
conditional probability table:
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P (A0) true false

Q(A0) true false true false

true 1 0 1 1

false 0 1 0 0

The resulting Bayesian net is called an auxiliary Bayesian net, due to the auxiliary vari-
ables added to encode the logical formulas. The joint distribution Pr(X1, . . . , Xn |Xaux)

over all variables Xi in that Bayesian net (without the auxiliary variables), conditioned
on the auxiliary variables is the full joint distribution for this instance (Xaux being the
vector of all auxiliary variables). For further details on grounding BLNs to Bayesian nets
we refer to [96].
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4. Probabilistic Assessment of Plans for
Autonomous Systems

In this section we give a formal definition of the plan assessment problem based on
the formalism of probabilistic hierarchical constraint automata (PHCA) [162, 163]. We
analyze the implications of the specific context of autonomous manufacturing and how
plan assessment can support autonomous decisions. Then we look at how plan assessment
relates to similar problems in AI and other fields. Parts of this chapter have been
submitted or published earlier: section 4.1 is part of [117] and parts of section 4.2 have
been published in [121].

4.1. Problem Definition: Diagnosing System Faults and
Estimating Operation Success

Plan assessment extends the maximum probability diagnosis problem [146] towards
additionally computing success probabilities for given goals. As we have seen in the
introduction the problem arises in scenarios that are characterized by three properties: 1)
A rigidly designed system with remaining uncertainties executes 2) pre-planned operations
to 3) achieve explicitly defined goals. These aspects are reflected in these three formal
elements: 1) A system model, in our case a PHCA MPHCA, 2) an operation sequence or
plan P of operation steps, and 3) a set of goals {Gi}.

4.1.1. System Model

PHCA models define automata states, called locations, and transitions between them. The
transitions may be guarded and probabilistic, locations may be composed of sub-locations.
We now give the formal definition of PHCA. We modified the definition provided in [129]
to fit this thesis’ notation and context, and to be somewhat more detailed and clearer.
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Definition 3. A PHCA is a tuple 〈Σ, PΞ,Π, O,Cmd, C, PT 〉:

• Σ = Σp ] Σc is a set of locations, partitioned into primitive locations Σp and
composite locations Σc, where a composite location represents a PHCA whose
elements are subsets of the elements of the containing PHCA. A location may be
marked or unmarked. A marked location represents an active execution branch. A
marking mt (at time t) is given as a subset of Σ.

• PΞ(Ξi) denotes the probability that Ξi ⊆ Σ is the set of start locations (initial
state).

• Π = O ] Cmd ] Dep is a set of variables with finite domains. O is the set of
observation variables, Cmd is the set of action or command variables, and Dep
is a set of dependent hidden variables which are connected to other variables via
constraints.

• C is the set of finite domain constraints defined over Π, which comprises behavior
constraints of locations and guard constraints of transitions. A location’s behavior
constraint serves to define the observations that are consistent with the location; a
transition’s guard defines the conditions under which the transition can be taken
(usually depending on commands). The constraints are expressed as propositional
formulas (using the usual operators ∨,∧,¬) over variable assignments.

• PT [l] (defined for each l ∈ Σp) is a probability distribution over the subset of the
set of transitions T , which contains transitions leading away from li whose guards
(elements of C) are entailed given the current state. A transition τ ∈ T is defined as
function τ : C → 2Σ that maps the transition’s guard constraint to the transition’s
target if the guard is entailed. If it’s not entailed, it maps to the empty set, which
means that this thread of execution stops. We can construct a global transition
function T : Σp×C → 2Σ from single transitions randomly chosen from PT [l] for each
location l. All possible transition functions T have an associated global distribution
PT =

∏
l∈Σp

PT [l]. For brevity we denote the set of all global transition functions
with PT .

Example PHCAs have been shown in previous sections, for example figure 3.6. Given a
PHCA model MPHCA of a technical system, the behaviors of the system over time are
estimated by generating sequences of location markings θ = (mt0 ,mt1 , . . . ,mtN ). We call
these sequences trajectories and denote by St(MPHCA) the set of all trajectories. Note
that in the context of PHCA in the following sections we will abbreviate the notation
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ti, ti−1, ti+1 to t−1, t, t+ 1, since time points will be given as natural numbers. For clarity
in complex formulas we will denote the set of all trajectories with Θ.

The set St(MPHCA) of all trajectories of a model MPHCA is defined through the PHCA
semantic. The PHCA semantic is defined in terms of a probabilistic function Step [162].
For a given marking m, it probabilistically chooses a transition for each of the locations
in m and executes these transitions to yield a marking for the next time step. It executes
these transitions, if their guard constraints are entailed, such that the next marking is
consistent with the hierarchy of the given PHCA.

Iteratively calling the function Step generates a single trajectory. To obtain all possible
trajectories of a PHCA, we define a function unroll, shown as algorithm 4.1, which
calls the deterministic version of Step for all possible transition functions T of the given
PHCA. The deterministic Step function doesn’t probabilistically choose transitions but
uses a fixed transition function [162]. We provide this transition function as additional
parameter. Moreover, we assume a trivial modification such that in case no commands
are given, Step creates follow-up markings for all possible commands.

Together with a sequence of observations o0:t (t ≤ N) a model MPHCA defines a joint
distribution Pr(θ,O0:t = o0:t) over the trajectories in St(MPHCA):

Pr(θ,O0:t = o0:t) = PΞ(m0)
∏

u∈{0..t}

Pr(Ou = ou |mu)
∏

τ∈T [θ]

Pr(τ) (4.1)

where T [θ] is the multiset of all transitions as implied by θ, in which a transition τ
from location li to lj may occur multiple times; the transition probability is computed as
Pr(τ) = PT [li](τ). Equation 4.1 reflects that PHCA compactly encode hidden Markov
models [162]. It is an adapted version of equation 1 in [129]. The observation model
Pr(Ou |mu) is given as uniform distributions over those assignments to Π that are allowed
by behavior constraints.

For a given trajectory θ we refer to its markings with the implicitly defined indexing
function, i.e. θ(t0), . . . , θ(tN ). In correspondence to [129], we also call a location marking
a PHCA state. The set of markings for a specific time t is denoted St t(MPHCA) =

{θ(t) | θ ∈ St(MPHCA)}.

Figure 4.1 illustrates PHCA markings and their evolution. We look at a single example
transition within the PHCA composite location modeling the machining station in our
example scenario from section 2.1. Note that not only the primitive locations need to be
marked, but also the composite locations which contain them.
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Algorithm 4.1 PHCA semantic that unrolls all possible trajectories for a given PHCA
and given commands. For each time step, it generates all follow-up markings for a given
trajectory that are consistent with the hierarchy of the PHCA and the given commands
(line 6).
1: function unroll(MPHCA, ct0:tN )
2: S ← {(mt0) |mt0 is an initial marking of MPHCA}
3: for i = 1 .. n do
4: S′ ← ∅
5: for (mt0 , . . . ,mti−1) ∈ S do
6: Q← {Step(mti−1 , MPHCA,cti , T ) |T ∈ PT }
7: S′ ← {(mt0 , . . . ,mti−1 ,mti) |mti ∈ Q}
8: end for
9: S ← S′

10: end for
11: return S
12: end function
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Figure 4.1.: Illustration of a PHCA location marking and its evolution via transitions.
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1 NoProduct , NoComponent , 0: MAZE0 -WORKER=OK
2 NoProduct , NoComponent , 0: MAZE1 -WORKER=OK
3 NoProduct , NoComponent , 0: ROBOT0 -WORKER=OK
4 NoProduct , NoComponent , 0: ASSEMBLY -LINK -HOLES=OK
5 NoProduct , NoComponent , 0: ASSEMBLY -CMD=NOCOMMAND
6 Maze0 , Machining0 , 0: MACHINING0 -CMD=MILL
7 Maze1 , Machining1 , 0: MACHINING1 -CMD=MILL
8
9 NoProduct , NoComponent , 1: ROBOT0 -WORKER=OK
10 NoProduct , NoComponent , 1: ASSEMBLY -LINK -HOLES=OK
11 NoProduct , NoComponent , 1: MACHINING0 -CMD=NOCOMMAND
12 Maze1 , Machining1 , 1: MACHINING1 -CMD=MILL
13 Maze0 , Assembly , 1: ASSEMBLY -CMD=ASSEMBLE -COVER
14
15 NoProduct , NoComponent , 2: ROBOT0 -WORKER=OK
16 NoProduct , NoComponent , 2: MACHINING0 -CMD=NOCOMMAND
17 Maze1 , Machining1 , 2: MACHINING1 -CMD=MILL
18 Maze0 , Assembly , 2: ASSEMBLY -CMD=ASSEMBLE -PINS
19
20 NoProduct , NoComponent , 3: ROBOT0 -WORKER=OK
21 Robot0 , Machining0 , 3: MACHINING0 -CMD=MILL
22 Maze1 , Machining1 , 3: MACHINING1 -CMD=MILL

Listing 4.1: Encoded operation sequence used for the example scenario in section 2.1.

4.1.2. Operation Sequences

Pre-planned operations are typically given as a sequence P of operation steps. Steps can
be anything from simple (sets of) commands to more complicated operations, such as
scheduled allocations of machines, products and actions to perform. For example, listing
4.1 shows the encoded operation steps for the first three time points used in the example
scenario in section 2.1.

In plan assessment scenarios it is likely that some sort of flow is important, for example,
the flow of products through a factory plant. In abstract terms this means components,
for example products and stations, are linked at one time and independent at another.
To reflect this we adopted sequences of the form 〈(p, c, t, a)〉j for plans P, where a tuple
(p, c, t, a) not only encodes an action a to be performed at time t but also two entities, or
components, of the model to be linked at t. We call a single tuple component link for
short.

We consider scenarios where P is synthesized automatically (using a planning com-
ponent), and later executed by the AI controller of the system. This is captured by an
execution adaptation function EP , which integrates information given in P with the PHCA
model. This allows to reason about things like the flow of products through a plant.
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In detail, EP takes as input a PHCA model MN
PHCA unfolded for N time steps (repro-

ducing the PHCA’s components for each time step t, yielding Σt, Πt, T t and Ct). It sets
all command variables as given by P , removing the transitions whose guards become un-
satisfiable as a result, and modifies the constraints Ct (for example to encode a connection
between a product and a station). The output is a model MPPHCA = EP(MN

PHCA) that no
longer contains the command variables Cmd. The semantic of unfolded models MPPHCA

is given by a slightly modified version of unroll, which in each time step considers the
linking constraints, which might exclude certain trajectories.
Note that since EP only introduces dependencies within time steps it does not affect

a PHCA’s Markov property, that is that its current state depends only on its previous
state.

4.1.3. Goals

A goal Gi is a tuple (l, t) encoding that a location l should be marked at time t. It induces
the set Gi = {θ ∈ St(MPHCA) | θ(t) = mt

l} of all goal-achieving trajectories that lead to a
marking mt

l that contains location l at time t. Examples are (Maze0.Ok, 4), (Maze1.Ok, 9)

and (Robot0.Ok, 7), the goals for the three products in our example scenario from section
2.1. With the notation loc.subloc we refer to sub locations of a PHCA locations or models.
Note that the expected finishing time for the products is one step after the last scheduled
operation, as the actual execution of a command given in the operation sequence happens
in the subsequent time step.

4.1.4. Problem Definition

Problem 7. Let MPHCA be a PHCA model, P a sequence of N operation steps with
execution adaptation function EP and {Gi} a set of goals. Let MPPHCA = EP(MN

PHCA).
The plan assessment problem is, given observations o0:t, to compute the most probable
diagnosis as trajectory in St(MPPHCA) as well as Pr(Gi |o0:t) for each i.
Note that, strictly speaking, the success probability also depends on the transition

probabilities in model MPHCA. However, these are so-called hyper-parameters, which
in general define the shape of a probability distribution. It is common practice to leave
these out as conditioning variables.

4.1.5. Discussion of Plan Assessment Complexity

The major input parameters for the plan assessment problem are the PHCA size and the
number of time steps to be considered. The PHCA size could be expressed as the number
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of locations and transitions between them. A somewhat coarser, but more practical
measure is the number of components to be modeled and included as sub-automata in a
PHCA model. The number of locations and transitions scales linearly with them.

Despite the fact that providing a plan reduces the number of possible trajectories, and
therefore the problem size, solving the plan assessment problem in full generality may
still be NP-hard.

First of, with model-based diagnosis and probabilistic reasoning the plan assessment
problem is derived from two NP-hard problems. Model-based diagnosis has been recast
as a constraint optimization problem in [129], which is NP-hard in general [51]. The
probabilistic reasoning part concerns computing the success probability Pr(Gi |o0:t), which
corresponds to computing marginals in Bayesian networks (see section 3.5.1). This problem
has been shown to be #P-complete [138], which in our case means it is at least NP-hard,
but probably much harder.

Second, we don’t believe that adding information in form of a plan eliminates the
exponential dependency that drives the complexity of these two problems. Resource usage
grows exponentially with the number of variables defined for these problems. The number
of variables in turn scales linearly with the number of time steps and PHCA locations.
Adding information means to eliminate variables by assigning values to them, which
reduces the problem size. Polynomial complexity could indeed be achieved if variables are
eliminated such that all cyclic dependencies among the remaining variables are broken,
resulting in a tree of dependencies (as opposed to a graph, in general) [100]. However,
We don’t believe that all possible plans result in this specific elimination scheme for all
possible PHCA models.

To illustrate, let us reexamine the example from the introduction in section 1.2. Consider
a plant with 2 stations that has to manufacture 3 products. The 2 stations are modeled
with composite locations with 5 locations and 12 transitions each, the products with 2
locations and 3 transitions each. The naive automaton product of these 5 composite
locations has 2× 2× 2× 5× 5 = 200 states and 3× 3× 3× 12× 12 = 3888 transitions,
giving 3888

200 ≈ 19 possible transitions per state. In general, we would have snpp × sncc states
and tnpp × tncc transitions, where np, nc are the variable number of products and stations,
and sp, sc, tp, tc fixed upper limits on the number of locations and transitions used to

model different products and stations, respectively. Putting it all together, we get t
np
p ×tncc
s
np
p ×sncc

transitions per state, finally yielding
(
t
np
p ×tncc
s
np
p ×sncc

)N
possible behaviors for N time steps. We

can clearly see an exponential dependence on the number of products and stations as well
as the number of time steps.
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An option to remedy this is to exploit the fact that PHCAs are compact encodings
of hidden Markov models, employing off-the-shelf implementations of the Viterbi (to
compute the most probable trajectory) and the filtering algorithm (to compute the success
probability) for these models (both very well explained in [141, Chapter 15]). However,
this only eliminates the exponential dependency in time, and has other disadvantages,
which we explain later in chapter 5.

4.2. Plan Assessment in Autonomous Manufacturing

The previous section defined the plan assessment problem in general. Now we look at the
particularly interesting domain of manufacturing. In manufacturing, systems historically
have been very deterministic, operating in strictly controlled environments. Modern
requirements such as mass-customized products, however, make them more and more
complex, leading to situations where the added complexity of some autonomous control
in such systems can be cheaper than trying to remove all uncertainties by design. The
result are systems with largely deterministic behavior with some remaining uncertainties:
the “breeding ground” for the plan assessment problem.

The PHCA model of a manufacturing system consists of composite locations for stations
and for products. The plan P is a schedule, that is the sequence of tuples 〈(p, c, t, a)〉j
defines an action a to perform on a product p at time t on a station or component c. As
we said we call these tuples component links. However, in context of manufacturing we
denote them more specifically as product-component links, since mostly they will specify a
link between a product and a factory component, for example a machining station. The
elements p and c are names that identify the composite locations modeling product p and
station(component) c, respectively. a is an assignment of values to command variables
and t an integer representing a discrete time point. In this work we consider planning
to be a generalization of scheduling, section 4.4.3 goes into some detail about this. As
a consequence, we will generally use the terms “plan” and “planning” when we refer to
plans/schedules or planning/scheduling. In the following, we will examine models for
products relevant to this work.

4.2.1. Models for Products in Automation and Planning

Before we describe the kind of product models used in this work, we need to look at
relevant formal descriptions of products in other fields like enterprise resource planning
or automation, and which kind of product models could be used in a planner of an
autonomous manufacturing system.
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Figure 4.2.: Illustration of how products could be modeled for PDDL planning, following
existing approaches to formal descriptions such as the bill of materials. A
tree structure describes a product by encoding product parts with nodes and
part-of relations with edges. © Thomas Rühr.

A formal or semi-formal description of products used in enterprise resource planning
and related fields is the bill of materials (BOM) [28]. It is a structured representation
of product parts and how they are to be put together. Typically, the structure is some
sort of tree or a directed acyclic graph, often annotated with further information such as
part identifiers. The bill of material can come in different flavors, depending on who is
using it (engineers, sales persons, etc.). In [156] automated planning of steps for assembly
is addressed. This work also uses directed acyclic graphs to represent products. More
work on product models can be found in [167, 82] for design and development, in [123] for
computer aided process planning (CAPP) and in [61] for issues of mass-customization.

Trees or directed acyclic graphs seem convenient ways of structuring a product model.
A plausible way of modeling using the well-known planning domain description language
(PDDL) [125] in the domain of manufacturing [57], could be a tree-structure (V,E,C),
with vertices V , edges E and a set of first-order logic formulas C. See figure 4.2 for
examples (images taken from [121], curtesy of Thomas Rühr). The vertices V represent
basic product parts, features and compositions thereof. The edges E are “part-of” relations,
while the formulas C encode constraints on ordering of subsets of edges. A product model
(V,E,C) could be seen as a bill of materials encoded in PDDL, along with descriptions of
stations and products. Given an abstract product description like this, a PDDL planner’s
task would then be to find a good sequence of actions that realize the “part-of” relations.

4.2.2. PHCA Product Models

In this work we represent a product’s production process with a PHCA composite
location. The representation follows the basic assumption that a product is going to be ok
as long as no station involved in its production fails. In other words, the process, and
its resulting product, is ok as long as no station or component of the factory plant is
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faulty while working the product. We use a generic product model, comprised of two
locations representing the product being ok or faulty, respectively. The model stays in
the ok-location as long as every station working the product is fine, and transitions to
the faulty-location if the working station itself was or became faulty. For example, with a
small probability the assembly station may become misaligned at any time point. If it
does, any product worked by it will become faulty.

An essential part in product modeling is the flow of the products through the plant,
represented as product-component links in the schedule 〈(p, c, t, a)〉j . The flow influences
the model by entangling transitions on stations with transitions of the product model,
for the time the product is worked. If the product moves to a different station, the
entanglement is adapted accordingly. This entanglement is realized by the execution
adaptation function EP , which applies the necessary changes to the unfolded PHCA model
MN

PHCA. A detailed treatment of this process will be given in the context of the solution
approaches for plan assessment in chapter 5.

An important question is how these product models are to be incorporated into the
PHCA plant model. A mostly automated chain from the design of a product to its
autonomous production is hard to implement without some sort of automatic model
composition. This composition needs to automatically combine PHCA models given from
engineering with product PHCA models derived from given formal product descriptions,
such as bills of materials or CAD models. Related work already addresses problems such
as deriving manufacturing steps from CAD models [57]; ideas from this work could surely
be transferred to a derivation of PHCA product models. Developing such an automatic
model composition is, however, a topic in its own right and therefore beyond the scope of
this work. Here, we use generic product models as shown in figure 4.3. With these, a
manual composition is comparably easy.

Another important point are goals and sub-goals. We consider as goal for producing a
product that it should be finished successfully after all scheduled operations. Considering
our product model, that means that it should be in the ok-location at that time point.
This is easily mapped to a formal goal (Ok, t). t is the time point after the last scheduled
operation, which can be read from P. An assumption we make here is that scheduled
operations finish on time.

A sub-goal could be finishing sub assemblies for parts of a product. In this work, we
do not explicitly regard sub-productions, and goals are assumed to be associated with
full products (in the context of manufacturing). However, sub-goals could be regarded
by adding corresponding locations to a product composite location, as shown in figure
4.4. Some additional information in plan P would be required that explicitly hints at
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Figure 4.3.: Product model as composite location.
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Figure 4.4.: Illustration of how sub-goals for a product, e.g. for sub-assemblies, could be
integrated in PHCA product models. An additional requirement for the plan
P is then to provide explicit information when sub-goals should nominally
be reached.

when sub-goals should be achieved. This should be an easy task for a planner capable of
producing plans P, since it would be precisely its task to figure out how to reach these
sub-goals.

4.3. Plan Assessment as a Provider of Decision Criterions

The purpose of a plan assessment component as part of, for example, the AI controller
of an autonomous manufacturing plant, is to provide information as basis for automatic
decisions. Here is the sketch of a simple automatic decision procedure utilizing the
information gained from plan assessment:

1. For each goal Gi:

a) Compare success probability Pr(Gi |o0:t) against thresholds ωfail and ωsuccess.

b) Proceed for goal Gi if above ωsuccess.

c) If below ωfail:
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Figure 4.5.: Possible architecture of an AI controller using plan assessment (detailed
version of illustration in figure 1.1).

76



4.3. Plan Assessment as a Provider of Decision Criterions

i. Product already finished: Vote for stopping.

ii. Product not yet finished: Request re-planning.

d) If in between ωfail and ωsuccess: Vote for information gathering actions with
focus on goal Gi.

2. Combine individual decisions:

a) Count and weigh (e.g. using expected revenue or loss) votes for stopping and
information gathering, then respond appropriately, for example by calling a
technician or by re-planning including diagnosis goals [106].

b) Weigh (e.g. via revenue or loss) re-planning against discarding the goals and if
necessary, initiate re-planning focussing on the requesting goals and avoiding
faulty components.

3. Repeat.

Together with figure 4.5 the procedure illustrates how plan assessment connects to the
existing AI techniques of information gathering and planning.

Step 1 illustrates how the information provided by plan assessment realizes a decision
criterion, in the form of success probabilities compared against ωfail and ωsuccess, which
can guide decisions in an exploration vs. exploitation manner. Step 2(a) implements in
particular the exploration in form of pervasive diagnosis [106] to gain more information on
faulty stations. Step 2(b) illustrates how re-planning [25] or re-scheduling [109, 157] can
be employed to guide production of jeopardized products away from faulty components.

Furthermore, the simple procedure above hints at a useful extension of plan assessment
towards decision theory. In addition to probabilities it also regards the utility of the goals
and actions, in this case derived from expected revenue or loss. A natural extension of
plan assessment as introduced in this work, embeds it in a decision theory framework
adopted for AI decision making [140, chapter 16, p. 584–612]. It could use an expected
success utility, computed as sum over products of the success and failure probabilities
with respective utility values for success and failure. Then, the expected success utility
could be compared against utility thresholds. A different alternative might be to integrate
plan assessment into the framework of partially observable Markov decision processes
(POMDP) [142], which deals with making complex decisions under uncertainty. In this
work, we focus on computing success probabilities and most probable behaviors, and leave
the development of decision-theoretic extensions for future work.
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4.4. Plan Assessment in Context of Related Problems

The plan assessment problem lies between model-based diagnosis and probabilistic rea-
soning. Connections between these two areas have been pointed out and exploited for
a long time, for example in [100, 103, 1, 106, 50]. This work follows this tradition as
it derives plan assessment from a variant of model-based diagnosis, which we explain
hereafter. Then, we detail the relations of plan assessment to state estimation and to
planning and scheduling.

4.4.1. Plan Assessment as Extension of Model-Based Diagnosis

First, we recap the classical model-based diagnosis problem [77]. Based on a logical
description of a system and “unexpected” observations, the task is to identify faulty
components that explain these observations. Formally, the system model is given as a
tuple (SD,COMPS,OBS), where SD and OBS are sets of logical (usually propositional)
formulas describing the system behavior and available observations, respectively, and
COMPS the set of components. The “unexpected” observations are formally expressed
as SD and OBS being inconsistent, i.e. SD ∪ OBS ` ⊥. The task is thus to restore
consistency with a minimal diagnosis D(4, COMPS −4):

SD ∪OBS ∪ D(4, COMPS −4) 0 ⊥

D(4, COMPS − 4) is a logical formula over literals AB(c) if c ∈ 4 and ¬AB(c) if
c /∈ 4. 4 is the subset of components assumed to be faulty or abnormal, and AB() the
predicate encoding abnormality for a component. A diagnosis is required to be of minimal
cardinality, i.e. 4 must be as small as possible (all components being faulty is always a
valid diagnosis, but unfortunately not informative at all). In practice, this requirement
often turns out to be too weak. Probability-maximal diagnosis, which sorts diagnoses
according to how probable they are, improves on that. We will explain it in a moment.

The system description SD is constructed using standardized model components,
where each component describes the behavior of a standard system component, e.g.,
an electrical motor, an adder for digital circuits etc. The idea is to construct models
from first principles, usually meaning physical laws such as Ohm’s law. Theoretically, all
information necessary to diagnose any system, apart from observations, is contained in the
library of these standard components. Drawing a connection to plan assessment, we see
that SD corresponds to MPHCA, although we do not presume that MPHCA is constructed
from first principles. We assume that we receive MPHCA from engineers, who might
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have used such a library when developing the model. OBS obviously corresponds to o0:t,
however might be represented differently. The set COMPS is not explicitly represented
for plan assessment.

As mentioned, searching for minimal cardinality diagnoses can still produce too many
diagnoses to handle. Probability-maximal diagnosis [49, 146] addresses this problem by
sorting diagnoses according to how probable they are. Also, it can use probabilities as
a heuristic to efficiently search for diagnoses [49]. The probability of a diagnosis is the
product of individual fault mode probabilities, which are assumed to be independent:

∏
c∈COMPS

f(c) , with f(c) =

p(c) if c ∈ 4

1− p(c) if c /∈ 4

The goal is to find the diagnosis with maximal probability.

It is often desirable to consider a system’s evolution over time. For example, the effects
or symptoms of a fault might not be observable right away. To diagnose faults facing such
delayed symptoms requires reasoning over a fixed time horizon [108]. Another advantage
is that intermittent faults may be regarded, i.e. faults that are not persistent.

To achieve this, model-based diagnosis can be further extended to reason over discrete
time steps. Instead of a static mode assignment, a diagnosis is a sequence of mode
assignments for all time steps in a given time window of length N . The model SD then
contains descriptions of component states and transitions between them. Faults are
then modeled as the actual failing of a component between two (or more) time steps.
This time-step based diagnosis is typically solved by searching for probability-maximal
sequences of mode assignments [108, 129, 3], the trajectories.

From a probabilistic reasoning point of view, time-step based diagnosis for k = 1

corresponds to the standard problem of finding most probable a posteriori hypotheses
(MAP). In case SD is a hidden Markov model (HMM), the most probable diagnosis may
be computed using existing implementations of the Viterbi algorithm [21, Chapter 13, p.
629 ff.].

Model-based diagnosis has a global view on the behavior of a system. Given (suspicious)
observations it asks, what is broken in my system? One answer could be that most
likely the assembly station of a plant is miscalibrated. We can also take a local view
point by asking: how likely is it that the assembly station is miscalibrated, given the
current observations? Rather than finding an explanation for observations, we are now
interested in the influence of observed effects on a specific, local part of the system (the
miscalibration fault of the assembly station). Another example are plan goals: How likely

79



4. Probabilistic Assessment of Plans for Autonomous Systems

diagnoses

p

diagnoses

p

Figure 4.6.: A distribution with a clear maximum probability diagnosis (left) and one
that is ambiguous (right), i.e. where many other diagnoses with probabilities
close to the maximum exist.

is it that my goal to produce a product is achieved? Here we ask for the influence of
observed effects on the (potentially future) manufacturing and assembly process, locally
for that specific product.

Local queries for probabilities like that can be framed as instances of a core probabilistic
reasoning problem: the computation of marginals [135, chapter 4.5, p. 223], which was
explained in section 3.5.1. Assume as given a probabilistic model that defines, among
other things, a set of random variables, and a set of assignments to designated query
variables. These query variables might encode the system parts of interest, for example.
The problem is then to compute the effect of the observations, propagated through all
other variables, on the probability of these assignments. This is called marginalizing, and
the query variables are called marginals.

The plan assessment problem extends the described model-based diagnosis variant
based on trajectories with this local view. In section 2.1 we have seen how both, the
global and the local view, can support AI decisions. But putting the two views together
can have additional benefits. For example, knowing the most likely system behavior
can explain why a certain product has currently low success chances. Vice versa, if a
component c was identified to be faulty as part of the most probable diagnosis, asking
for the probability of c being faulty (given current observations) can clarify whether this
diagnosis is solid or not. It could be not solid if many other diagnoses with lower but
close probability values existed (see figure 4.6). This would be an indicator for weak
observations and as a reaction one could trigger active information gathering actions.

Plan assessment can be seen as a combination of the probabilistic reasoning problems
of computing the most probable a posteriori hypothesis and computing the marginals, but
it takes a different point of view. Usually observations and actions/commands are both
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treated indifferently as evidence in probabilistic reasoning. Plan assessment separates the
planned, and thus well known, operations for online execution (such as commands) from
the observations that become available only gradually during execution. The planned
operations are used to modify the model, focussing it on the known execution of the
system. This modification can be done online, but also be taken offline.

4.4.2. Plan Assessment and State Estimation

In practical applications it can quickly become intractable to use a static time window
that covers the complete horizon of interest. Typically, a receding horizon approach
is used that moves a fixed-size time window along the time line [108, 129]. These and
other approaches like [87] are often seen as a tracking of diagnostic hypotheses. A
related, classical form of tracking is belief state update as it is known from reasoning
with partially observable Markov decision processes (POMDP)[142, chapter 17, p. 625
ff]. The idea is to maintain a probability distribution over possible states of a system
and/or its environment. In POMDP reasoning, this distribution is the foundation for
decision making under uncertainty: based on the current belief state, find the action
that optimizes a given reward function. More generally, the POMDP problem is to find
a policy, i.e. a function mapping belief states to actions, which is optimal with regard
to the reward function (i.e. always gives the optimal action for the given belief state).
Typically, belief state update is implemented as an iterative process that computes the
current distribution from the previous one and from known observations and actions.
A standard algorithm available in off-the-shelf implementations is forward filtering for
hidden Markov models [140, chapter 15].
In this work, we use probabilistic hierarchical constraint automata (PHCA) to model

systems. Therefore, a particularly relevant POMDP implementation is the PHCA ex-
ecutive for embedded systems named Titan [163]. It estimates hidden system states as
distribution over PHCA states and then, based on the most probable state, computes
least cost action sequences to reach short-term goals. These goals are constantly being
derived from the control program that Titan is meant to execute. Plan assessment is
different in that it deals with more long-term, static goals and a plan being executed to
achieve them, constantly assessing it with respect to these goals.
More generally, POMDP addresses problems that due to high uncertainty require

constant online re-planning. In contrast, plan assessment focuses on situations with less
uncertainty that warrant long term advance planning by specialized planning components,
yet occasionally require dynamic reaction to unplanned events. Furthermore, while it is
interesting to investigate adaptations of POMDP algorithms (as described in, e.g., [26])
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for the plan assessment problem, this is not in line with the theme of this work to rely on
externally implemented, generic algorithms.

The iterative belief-state update approach can be used to realize a receding horizon
approach for plan assessment. Chapter 5 describes how plan assessment can be solved
by generating trajectories and summing over them. Just like for diagnosis, this becomes
quickly intractable for realistically sized time horizons. In this work, we describe an
approach that combines searching k most probable fixed-length trajectories with a variant
of belief state update. The details are given in section 7.1, here we only sketch the idea.
The key question is: how do we incorporate the information about past states that lie
outside the time window we are using? The answer is: By computing a start state for the
time window, or rather, a start state distribution, from the trajectories computed in the
previous time step. This is a variant of belief state update, with the subtle but important
difference that the new distribution is not, as in belief state update, computed from a
prior distribution over states, but over trajectories.

Similar to belief state update is state observation, a well-known standard problem
in control theory. Given inputs and outputs of some physical system, the task is to
continuously refine the internal model state of a state observer such that it corresponds
with the internal state of the physical system. In other words, the model state is an
estimate of the typically unobservable internal state of the physical system, which is
continuously updated. The state observer is to state observation what SD is to model-
based diagnosis. Standard solutions to this problem iteratively generate new estimates for
the current time point from current inputs and outputs and the previous model state. A
standard solution for continuous models, e.g. with real-valued state variables and discrete
time, is the well known Kalman filter [98]. Implementations of this solution can be easily
found on the internet1. For purely discrete models again HMM forward filtering can
be applied for state observation. When dealing with mixed discrete/continuous models
an established class of algorithms is particle filtering [55, 105]. Section 7.3.2 covers the
reasoning problems such as state observation for hybrid models in greater detail. A
good text book reference for state observation with a special focus on diagnosis and
fault-tolerant control, and in particular for hybrid models, is [23]. Chapter 3 explains
the fundamental modeling of systems or observers, chapters 8 [23, p. 392 ff.] and 9
[23, p. 451] cover state observation for discrete and hybrid continuous/discrete models,
respectively.

1See, e.g., http://www.cs.ubc.ca/~murphyk/Software/Kalman/kalman.html (04.03.2011). The pack-
age has however not been tested by the author.
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Problems such as belief state update and state observation are typically subsumed under
the more general term state estimation. However, to the author’s knowledge, problems
classified as state estimation (and in particular state observation) are often “closer to the
hardware” than belief state update or model-based diagnosis. For example, to discover a
blunt cutter, state estimation might be used to estimate the current hidden state of the
material the cutter is made of (is it weak, about to break?) from the observable cutter
temperature and its rotation speed. Model-based diagnosis would typically take a more
abstract view of the complete machining station, modeling a blunt or broken cutter as
states in a finite state machine framework (such as PHCA).

4.4.3. Plan Assessment, Planning and Scheduling

Plan assessment is most useful when it works in concert with strong planning and/or
scheduling components. We now briefly describe the problems of planning and scheduling,
how they interact and how they are related to plan assessment. We also support our
assumption that re-planning and re-scheduling are, in fact, possible by highlighting some
related work in this area.

Planning and Scheduling

Planning is one of the classical AI problems. Following the text book explanation in
[143, chapter 11], the planning problem is to find a sequence of valid actions that drive a
system from a given initial state to a goal state, which is typically part of a given set of
goal states. The sequence of actions is called a plan. In principle, general problem solving
algorithms such as the search procedures described earlier in section 3.3 could be applied to
planning. However, this typically doesn’t scale to real-world planning problems. Research
in artificial intelligence has been addressing this problem by developing frameworks and
modeling languages that are specific with respect to planning, yet try to be general
enough such that many planning problems can be addressed. The first such framework
was the Stanford Research Institute Planning System, or STRIPS [64]. A more recent,
widely used framework is the planning domain description language, PDDL [125]. It uses
first-order logic formulas to describe a planning problem and its domain using predefined
predicates and actions. Specifically, a PDDL planning problem is a tuple (E,P,A), where
E is a set of entities (such as plant stations, components or products), P is a set of
first-order logic predicates and A a set of actions. First-order logic is used in particular to
describe pre- and postconditions for actions. An example of a planning system designed
for planning and executing tasks of household robots is the reactive plan language [13],

83



4. Probabilistic Assessment of Plans for Autonomous Systems

and its successor, the CRAM plan language [17] (where CRAM stands for cognitive robot
abstract machine).

The classical scheduling problem is job shop scheduling [2]: A number of n given
tasks/jobs/operations is to be assigned to m resources, while optimizing a function of the
accumulated time of achieving all scheduled tasks. Typically, the length of the schedule
in time, the makespan, is optimized. For example, to produce products, their single
production steps must be assigned to stations in a factory plant. Obviously, the task
durations mustn’t overlap in the resulting schedule. Additionally, ordering constraints on
the tasks might apply, e.g. parts of the maze must be cut before assembly of the complete
product.

The relation between planning and scheduling becomes most obvious with this latter
point of ordering constraints on tasks. It is precisely the job of a planner to figure out
these constraints, i.e. put actions into an order that achieves given goals. This hints on
an architecture where planning feeds into scheduling. However, typically many orders of
actions are feasible from the point of view of planning, but only a few from a scheduling
viewpoint. Hence, we cannot say in general whether it’s better to first plan, then schedule,
or the other way round. Recent approaches that apply AI planning and scheduling to
industrial tasks such as large scale printing [139] combine techniques from both worlds in
an interleaved fashion.

Interaction of Planning/Scheduling with Plan Assessment

In the context of plan assessment, we adopt the view that scheduling is a special case
of planning. In particular, a plan is the more general structure, simply a sequence of
operation steps, while a schedule is a special plan, for example a sequence of tuples
〈(p, c, t, a)〉j , specifying that action a is to be performed on (not yet finished) product p
at station c at time t. So when speaking generally, we will simply refer to plans, planners
and planning components, which however we deem capable of generating schedules.

Plan assessment connects to planning as sort of an online supervisor. We consider
the planning task the more expensive task, which is likely to be done offline. A planner
would take a more high-level view than a plan assessment component to be able to create
plans for large time horizons. It would, for example, ignore the behavior of components
such as potential faults and focus on their capabilities. In the online phase, production
is supervised by plan assessment. It works with a more detailed model of the system (a
PHCA), which, however, is automatically restricted by the given plan and by observations
that become available during the online phase.
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4.4. Plan Assessment in Context of Related Problems

Plan assessment evaluates plan steps against given goals and generates information
for a decision procedure that in turn can trigger local re-planning or re-scheduling if
interrupting events such as faults occur. Much research focuses on these problems. For
example, in [25] the authors describe a re-planning algorithm for hierarchical planning,
whereas in [109, 157] local re-scheduling problems are being addressed.
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5. Approaches to Plan Assessment
Based on Generic Algorithms

In this chapter we investigate two approaches to solve the plan assessment problem based
on a PHCA (probabilistic hierarchical constraint automaton) model. Both use off-the-shelf
implementations of generic algorithms. Consequently, both translate a given PHCA into
a problem format for the respective tools they employ.

The first is rooted in the area of model-based diagnosis and enumerates most probable
trajectories as k best solutions of a constraint optimization problem the given PHCA is
being translated to. The second, based on probabilistic reasoning, translates PHCAs to a
generalized version of Bayesian nets and applies off-the-shelf solvers that either accept
Bayesian nets or their generalization as input. Both approaches can be understood in
terms of reasoning about possible system behaviors and their associated probabilities.

Both approaches have their merits and downsides. For the first approach, strong open-
source constraint solvers are available that lend themselves to an implementation of k-best
versions of their optimization algorithms. This allows to try a combined computation of
most probable diagnoses and success probabilities, such that we essentially receive both
bits of information simultaneously. Moreover, it has approximation built-in for success
probabilities. The caveat: this intertwined computation might force a design decision, as
only one of the two, diagnosis or the success probabilities, will be correct for all problem
instances, the other might be incorrect in some cases. Our results show that this problem
is not purely theoretical.

The second approach relies on strong probabilistic reasoning algorithms for both
diagnosis and computing success probabilities. We tested the approach with a state-of-the-
art probabilistic inference tool for Bayesian nets. Our translation to generalized Bayesian
nets not only allows to use this tool but an even wider range of methods and tools to be
applied than for classical Bayesian nets. Also, with sampling an approximation method
exists for which we could find well defined stochastic error bounds for success probabilities
(see section 7.2). However, so far, sampling was too slow on our translated models to be
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evaluated. Furthermore, it appears that with existing tools always two runs are necessary
to compute both diagnoses and probabilities.
Note that for the probabilistic reasoning approach we focus on computing success

probabilities. That is, we didn’t implement the computation of diagnoses. However, an
algorithm based on the solver we investigate does exist that can compute diagnoses, and
we think it is only a matter of time until it becomes available in the same distribution.

5.1. Using Generic Algorithms to Solve Plan Assessment

One theme of this work is to exploit general methods implemented in publicly available
tools. This has a number of advantages over hand-crafted algorithms. First of, one
avoids reinventing the wheel in form of a special purpose solution. Also, novel general
improvements are readily available. Finally, one is less prone to errors when using tried and
tested implementations. When considering the plan assessment problem, which lies at the
intersection of model-based diagnosis and probabilistic reasoning, we see that in both areas
off-the-shelf implementations of generic algorithms are available. Therefore, we choose
to translate PHCAs into a representation that these implementations can understand,
rather than developing our own, PHCA-specific algorithms for plan assessment.
When choosing the right tools, we face another issue. Model representation always

strongly influences problem solving efficiency. Often, Markov modeling is used such that
the Markov property may be exploited later. However, compared to more expressive
non-Markov modeling this can lead to bigger representations. This size vs. expressiveness
trade-off is even more important when automatically generating such representations
from high-level models. Originally, PHCA semantics were defined in terms of hidden
Markov models (HMM) [162], which allows complex Markov modeling at the cost of
potentially larger models. This is problematic for existing off-the-shelf HMM solvers:
On the one hand, a naive automated flattening of hierarchical models would generate
prohibitively large HMMs. Automatically decomposing PHCAs into explicit, tractable
HMM representations, on the other hand, is only possible in a small number of special
cases where components are not connected. Our example is not such a case: The assembly
and manufacturing stations seem independent of each other; however, they are connected
via product models and their planned actions. In addition, automatic compilation typically
incurs an overhead compared to custom tailored translation, which further increases the
size of explicit HMMs.

These issues do not rule out off-the-shelf HMM tools as potential solving backends for
the plan assessment problem. However, strong tools exist that are more general than
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these solvers, i.e. they do not depend on the Markov property, yet can exploit it (to an
extent) if present. Therefore, we choose an approach where we translate, in an offline
step, MPHCA problem descriptions that are expressive enough to represent structure and
are sufficiently general to allow the use of off-the-shelf solvers that exploit model structure
in a general fashion. We denote that translation with Υ.
Remember that we have to apply an execution adaptation function EP on a system

model to account for operations given in P. Instead of applying EP directly to MPHCA,
we define execution adaptation functions on the representations resulting from translation.
This allows to reuse the translation for different plans P . For easier readability we denote
these functions also with EP .
In the following, we will describe our two approaches, which are both based on such

translations. Both roughly follow these steps:

1. Offline, a given PHCA model is translated into a problem description (X,D,C)

accepted by external off-the-shelf solvers: Υ(MN
PHCA). In the process, the model

gets unfolded over time, explicitly representing all N considered time steps.

2. Online1, the translation (not the unfolded PHCA) is adapted using special execution
adaptation functions EP , i.e. EP(Υ(MN

PHCA)).

3. Online, observations are added.

4. Online, success probabilities and a diagnosis are computed.

This is a good place to pinpoint this thesis’ contribution to each of these steps. For
step 1), it provides a novel translation of PHCA models to BLNs for the probabilistic
reasoning approach. For the model-based diagnosis approach we rely on the existing soft-
constraint translation introduced in [129]. For step 2), it contributes for both approaches
the adaptation of the translated PHCA model for a given plan. For step 3) we provide
implementations for both approaches. The implementation for the model-based diagnosis
is adapted from a similar step in [129]. Finally, for step 4) the thesis contributes a novel
method to compute success probabilities and a diagnosis based on the k best solutions to
a constraint optimization problem. For this, we implemented k-best versions of generic
search algorithms in two constraint optimizers. This facilitates the model-based diagnosis
approach. For the probabilistic reasoning approach we use the BLN framework developed

1This is not a problem for the model-based diagnosis approach, where the effort of execution adaptation
is negligible. For the probabilistic reasoning approach this can be a problem, as will be detailed in
sections 5.3.3 and 6.5.
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Figure 5.1.: Key translation elements: Translating markings (left) and probabilistic
guarded transitions (right).

by the authors of [95] to compute success probabilities, transparently calling an external
inference tool.
As the PHCA translation is a major part for both approaches, we roughly describe

how it works in general, before we go into the details of either approach. The two key
elements of PHCAs that need to be addressed for translation are location markings and
probabilistic, guarded transitions (see figure 5.1). Both translations explicitly represent
locations (primitive and composite alike) being marked or not marked at certain time
points. Linked to these explicit representations are other things, such as a behavior
constraint of a location being satisfied if that location is marked. Considering transitions
between locations, both translations have to make sure that, for a given location and
time, a) the outgoing transitions with inconsistent guards (e.g. if at that time a command
is not given) are ruled out and b) among the remaining transitions exactly one is chosen
probabilistically. The translations do not ensure that the probability values for transitions
add up to one. This has to be addressed by the model designer, who has to define
transition probabilities and guards in such a way that for all time points only those
transitions are possible, as determined by guard consistency, whose probability values
add up to one.

5.2. Model-Based Diagnosis Approach

In this section we introduce an approach to plan assessment that first translates a given
PHCA into a constraint net and then solves a k-best constraint optimization problem
(COP) for this net, i.e. problem 3 defined in section 3.3.1. The presented work is a revised
and extended version of work published in [121].

As described in the beginning of section 4.1, the plan assessment problem extends the
maximum probability diagnosis problem. Therefore, an approach suggests itself that
builds on methods that compute the maximum probability diagnosis. Such a method is
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presented in [129], which recasts the maximum probability diagnosis problem as a COP.
The optimal solution of this COP is straightforwardly mapped back to the maximum
probability diagnosis. Our approach presented hereafter extends this method. Instead of
computing only the single best solution, it generates the k best solutions and uses them
to compute success probabilities and the most probable diagnoses.

Our approach maps the best solutions of the COP to the most probable trajectories
and approximates Pr(Gi |o0:t) by summing over goal-achieving trajectories among these,
normalizing over all generated trajectories. We show how this approach invites a combined
computation of success probabilities and most probable diagnoses based on the previously
generated COP, and how that leads to a problem which forces the already mentioned
design decision between potentially incorrect diagnoses or success probabilities. We
also present a practical plan evaluation procedure that employs these computations and
elaborate a possibility to bound the error of the k-best approximation. Before we begin
describing the approach, we first explain the two k-best algorithms that we developed for
it.

5.2.1. k-best Constraint Optimization with A* and Branch-and-Bound

To enable approximate approaches for plan assessment, we developed and implemented
k-best versions of the well known A* and branch-and-bound algorithms for constraint
optimization. The A* implementation was added to Toolbar and the branch-and-bound
implementation to Toulbar2.

Algorithm 5.1 shows the k-best version of an A* algorithm. The extension to create k
best solutions instead of only one is simple: Instead of terminating once a full assignment
is found, search continues until k full assignments have been generated. Like A* this
algorithm traverses the search tree of all partial assignments. A more general k-best A*
for the search in graphs has recently been proposed in [52].

Let us look at the algorithm in more detail. The function expand() generates, with
partial assignment a as basis, a new set of partial assignments by instantiating the
next variable in the given ordering with all possible values, and then adds the partial
assignments to Q. Functions h and g are, respectively, the heuristic giving optimistic
estimates for the cost of expansions yet to be made and the cost function giving the cost of
the current partial assignment. Function best(h+ g, Q) returns the best assignment in Q
according to the given evaluation function, which in this case is h+ g (point-wise added).
Q is typically implemented as priority queue, for example as a heap. S is implemented as
an ordered list, i.e. it contains all generated full assignments in the order added.
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Note that this algorithm is different from K-best-first search [62], which computes
approximately optimal solutions by expanding, at each search node, only the k best
candidate solutions in Q. In contrast, both A* and k-best A* expand all candidate
solutions and produce optimal solutions.

Algorithm 5.1 k-best A* algorithm for solving k-best weighted constraint satisfaction
problems (WCSP).
1: function kBestAstar(({X1, . . . , Xn}, {D1, . . . , Dn}, C, k), >ub, heuristic h, cost

function g)
2: Q← {ε}
3: S ← ∅
4: while Q 6= ∅ do
5: a←best(h+ g, Q)
6: if a is a full assignment then
7: S ← S ∪ {a}
8: if |S| = k then return S
9: end if

10: else
11: expand(a,Q, h, g)
12: end if
13: end while
14: return
15: end function

We developed and implemented a k-best branch-and-bound method shown as algorithm
5.2. The algorithm was inspired by an informal description in [147]. Very recent work also
investigated such an algorithm [52], therein called m-BB (short for m-Branch-and-Bound).

Our algorithm doesn’t deviate much from the branch-and-bound algorithm 3.2 described
in section 3.3.2. The key difference is that during search, instead of the current best full
assignment, we keep a list B of full assignments organized as a reverse priority queue (i.e.
with the worst assignment on top).

In detail, algorithm 5.1 works as follows: Like branch-and-bound, k-best branch-and-
bound keeps generating full assignments in a recursive manner as long as unexpanded
nodes are left. Unlike branch-and-bound, it puts full assignments in the list B if they
are better than the worst assignment already in B. Every time an assignment is added
to B and it then contains more than k elements (lines 5-10), the worst is removed from
B. Functions worst(B) and popWorst(B) return and remove the worst assignment,
respectively. We use a heap data structure for B, giving us efficient implementations of
these two functions. In the beginning, set B has to be filled up with consistent assignments.
Therefore, as long as B contains less than k assignments, the lower bound h(x′) + g(x′)
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is compared against >ub (by setting a variable ub = >ub, line 15), which marks the
boundary between consistent and inconsistent assignments. As soon as B is filled, it
is compared against the worst element in B (line 17). Finally, the function reverse()
returns the elements of B in reversed order, i.e. best-first.

We may see that this algorithm is correct by ruling out potential incorrect results.
First, we may assume correctness for the basic steps of cost computation (lines 15–19
of algorithm 5.2), list sorting (worst and popWorst) and variable assignment (line
14). An incorrect result would be a list B∗ where at least one true i-th best solution x∗i

(i = 1 .. k) is not the i-th best assignment within B∗, x∗i 6= B∗i . Could x∗i be somewhere
else in B∗? Because B∗ is sorted, B∗i and all worse assignments in B∗ are worse than
the true i-th best solution x∗i : ∀j = i .. k. g(x∗i) < g(B∗j ). It therefore cannot be at
any lower (higher cost) positions j = i+ 1 .. k. It may falsely occur at a higher (cheaper
cost) position j = 1 .. i − 1. But then all true solutions x∗l, l = j .. i cannot be in their
respective positions because they are better than x∗i and because B∗ is sorted. And just
like x∗i these i− j true best solutions cannot occur lower in B∗. They therefore must be
either absent from the list or appear at yet higher positions. There they would replace
yet another i− j true best solutions, and by induction we see that a set of i− j true best
solutions must be absent from the list. In the best case this is one true best solution,
which is, with necessary reindexing, x∗i.

That is, if we assume an incorrect result B∗ as stated above, without loss of generality
the true i-th best solution x∗i is missing from the list. This can happen for two reasons
only: (1) x∗i was found and put into B (line 7) but later removed as worst assignment
within B (lines 8–10), or (2) x∗i was never found because a branch of the search tree was
cut off (lines 20–22).

In case (1), since x∗i is only removed from B as the worst assignment, i better
assignments must have been found and put into B at this point. But this cannot be the
case since by definition only i − 1 assignments exist (assignments with equal cost are
assumed to be equivalent) that are better than the true i-th best solution x∗i, namely
the i− 1 true best solutions.

In case (2) there must exist a partial assignment x′ that can be expanded to x∗i and an
assignment xub that at this point was worst in B for both of which holds: h(x′) + g(x′) >

g(xub). With an admissible heuristic h, that is one that always underestimates the cost of
expanding a given partial assignment x′, we see that all full expansions x of x′ must have
larger cost than xub: ∀x expansion of x′. g(x) ≥ h(x′) + g(x′) > g(xub). In particular,
the cut-off solution x∗i is more expensive than xub. This means xub must be one of the
i − 1 true best solutions. However, this cannot be the case since xub is the worst of
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k assignments in B. It could therefore only be the k-th true best solution, which is a
contradiction (i− 1 < k by our assumptions).
We conclude that algorithm 5.2 cannot produce an incorrect result and is therefore

correct.

Algorithm 5.2 k-best branch-and-bound algorithm to solve k-best weighted constraint
satisfaction problems (WCSP).
1: function kBestBranchAndBound(({X1, . . . , Xn}, {D1, . . . , Dn}, C, k), >ub,

heuristic h, cost function g)
2: B ← kbnbRecurse(({X1, . . . , Xn}, {D1, . . . , Dn}, C, k), 0, ε, ∅, h, g)
3: return reverse(B)
4: end function
5: function kbnbRecurse((X,D,C, k), i, x, B, h, g)
6: if i > |X| then
7: B ← B ∪ {x}
8: if |B| > k then
9: popWorst(B)

10: end if
11: return B
12: end if
13: for v ∈ Di do
14: x′ ← assign(x, Xi, v)
15: if |B| < k then
16: ub← >ub

17: else
18: ub← g(worst(B))
19: end if
20: if h(x′) + g(x′) ≤ ub then
21: B ←kbnbRecurse((X,D,C), i+ 1,x′, B, h, g)
22: end if
23: end for
24: return B
25: end function

5.2.2. Encoding System Behavior over Time with Soft Constraints

This work exploits an automatic translation of a PHCA to a constraint net R = (X,D,C)

defined in [129]. We term this translation ΥCOP, which maps a model MPHCA to variables
X, their finite domains D and local objective functions c ∈ C, called soft constraints.
Remember from section 3.3.1 that constraints map partial variable assignments to [0, 1]
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and thus offer a good way of handling the probabilistic parts of PHCA. Next, we explain
the translation of PHCA to constraint nets, recapping the work in [129]. After that, we
introduce the necessary extensions for plan assessment.

Recap: Translating PHCA to Constraint Optimization Problems

We will focus our recap on the most important parts of the translation. Note that we
modified some of the formal elements used in [129] to fit the notation of this thesis, but
also to make things more understandable in context of this thesis.
The translation function ΥCOP receives as input a PHCA and creates as output the

constraint net R = (X,D,C), consisting of the following variables and constraints
(Variables belonging to time step t are marked by superscript t) [129, p. 330]:

• A set of variables Xt
Σ ∪ Πt ∪ Xt

Exec for t = 0..N , where Xt
Σ = {Xt

l1
, ..., Xt

l|Σ|
} is a

set of variables that correspond to PHCA locations li ∈ Σ, Πt is the set of PHCA
variables at time t, and Xt

Exec = {Xt
E1
, ..., Xt

E|Exec|
} is a set of auxiliary variables

used to encode the PHCA structure and its transition semantic over N time steps.
We call the set

⋃
tX

t
Σ the set of location or marking variables.

• A set of finite, discrete-valued domains DXΣ
∪ DΠ ∪ DXExec

, where DXΣ
=

{{marked, unmarked}} contains the single domain for variables in XΣ, DΠ is the
set of domains for PHCA variables Π, and DExec is a set of domains for variables
XExec.

• A set of logical (hard) constraints R ⊆ C that include the behavioral constraints
associated with locations within the PHCA and the guard constraints associated
with transitions, as well as constraints that encode the structure and the transition
semantic of PHCAs.

• A set of soft constraints which encode all probabilistic features, such as the proba-
bility distribution PΞ of PHCA start states and probabilities associated with PHCA
transitions PT .

Hard constraints such as behavioral PHCA constraints are represented by a soft constraint
function mapping (partial) variable assignments disallowed by the constraint to 0 and
allowed assignments to 1. To avoid confusion, we refer to the behavioral and guard
constraints of a PHCA as PHCA constraints, and constraint net (soft and hard) constraints
simply as constraints.

To transition a PHCA between time steps, starting with a marking mt, possible target
locations to be marked at t+1 have to be identified, transitions have to be probabilistically
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chosen and consistency of commands with transition guards and observations with the
behavior of the targets needs to be checked. In fact, it involves checking whether all
behavior PHCA constraints are consistent with given commands and observations, as
they might encode dependencies between locations and composite locations. Later we
will see a special kind of dependency between composite locations that can be used to
model, for example, the connection between products and stations in manufacturing
scenarios. Finally, targets have to be marked correctly regarding, among other things,
the hierarchical structure of a PHCA and initial marking.

These semantics are encoded as constraints for single time points, consisting of consis-
tency and marking constraints, and for transitions between time points. The constraint
net consists of N copies of these constraints, corresponding to the N time steps of the
time window. Marking constraints encode the correct marking of locations to be initially
marked, locations that are transition targets, and they take care of propagating markings
through the PHCA hierarchy. The size of the constraint net resulting from the translation
has O(N(|T |+ |Σ|+ |Π|)) variables and O(N(|Σ|+ |T |)) constraints.

Marking constraints are less interesting here, therefore we focus on consistency and
transition constraints and refer to [129] for further details on marking constraints. PHCA
constraints are local to locations (behavior) or transitions (guards), i.e., if inconsistent,
they render a specific location or transition impossible. In contrast, constraints of the
constraint net always globally refer to the complete model. If inconsistent, no solution
to the associated COP and therefore no PHCA trajectory exists. This means PHCA
constraints cannot be mapped directly to constraints. This is resolved with so-called
consistency constraints: they explicitly encode consistency of behavior and guards by
connecting the PHCA constraints with auxiliary variables Behaviortl ,Guardtτ ∈ XExec

for locations l and transitions τ at time t. The constraints are constructed, by (the
implementation of) ΥCOP, as instances of the following higher order rules [129, p. 330]:

Behavioral consistency:

∀t ∈ {0..N}, ∀l ∈ Σ : Behaviortl = consistent⇔ behavior(l)t

Transition guard consistency:

∀t ∈ {0..N − 1}, ∀τ ∈ T : Guardtτ = consistent⇔ guard(τ)t

The functions behavior() and guard() evaluate to true iff their associated behavior/guard
constraints hold for time t, respectively.
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Transition choice constraints encode, for a given location, that a single outgoing
transition may be probabilistically enabled at time t. All transitions τ are assigned
auxiliary variables {T tτ |t ∈ {0..N}} with domain {enabled, disabled}, encoding whether
a transition τ is possible in between t and t + 1, regardless of guard satisfaction. The
translation has to do two things: first, ensuring that only exactly one outgoing transition
of some location is enabled while all others are disabled (because no two transitions may
be taken at the same time), and second, this transition must be chosen probabilistically.

To do the first, the translation follows the following higher-order rule, which formally
describes the “enablings” with only a single transition enabled at once (modified version
of the same rule in [129, p. 331]).

Probabilistic transition choice:2

∀t ∈ {0..N − 1}, ∀lp ∈ Σp : (∃τ ∈ {T |source(T ) = lp} ⇒ f1
∧
f2)

where f1, f2 are defined as follows:

f1 ≡ Xt
lp = marked⇔ (∃τ1 ∈ {T |source(T ) = lp} :

T tτ1 = enabled ∧ (∀τ2 ∈ ({T |source(T ) = lp} \ {τ1}) : T tτ2 = disabled ))

f2 ≡ Xt
lp = unmarked⇔ (∀τ1 ∈ {T |source(T ) = lp} : T tτ1 = disabled)

The first formula encodes the various possibilities of enabled transitions for a given
location lp that is marked. The second encodes situations where this location is unmarked,
which forces that all its outgoing transitions have to be disabled.

For the second aspect, the probabilistic choice, the translation encodes the probability
distribution over all possible transitions with the following soft constraint function FT with
scope {Xt

lp
} ∪ {T tτ |source(τ) = lp}, which maps each logical model M of the transition

choice rule to probability values:

FT (M ) =

{
PT [l](τ) if (∃T tτ : T tτ = enabled)

1.0 otherwise

The logical modelM determines, among other things, the location l, transition τ and time
t in the above formula. It can be understood as sort of a propositional instantiation of
the transition choice rule that removes the quantification and any higher order elements.

As an example, consider the Idle location of machining station in figure 5.2. It has
three outgoing transitions. If one of them should be probabilistically chosen, say τIdle→Cut,

2Where {T |source(T ) = P} is short for {T ∈ T |source(T ) = P}.
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Idle

Cut

Failure: cutter
broken

Cmd = cut; 0.99

Cmd = noop; 1.0

Cmd = cut; 0.99

Cmd = noop; 1.0

Cmd = cut; 0.01

Cmd = cut; 0.01

Machining0

Start;1.0

Figure 5.2.: Machining station sub-automaton.

the location must be marked (due to f1). The probability of τIdle→Cut is obtained as
FT (MIdle,τIdle→Cut,t) = 0.99 for each time point t (MIdle,τIdle→Cut,t being the model that
determines the location, transition and time chosen).
If a transition is enabled with some probability > 0, its guard must be satisfied.

This is encoded through transition consistency constraints, which essentially encode
∀t ∈ {0..N} : Guardtτ 6= consistent ⇒ T tτ = disabled, i.e. that a transition τ cannot be
enabled if its guard constraint does not hold.
Other aspects not detailed here are the marking of primitive and composite locations

and the initial probabilistic marking of the PHCA. For this, and in general for an in
depth discussion of the translation of PHCAs to constraint nets we refer to [129].

Mapping COP Solutions to PHCA Trajectories

Full assignments to variables of the created constraint net R = (X,D,C) can be projected
to assignments to solution variables Xt

Σ for t ∈ {0, . . . , N}. These variables with domain
{marked, unmarked} encode the location markings for all time points t, and thus represent
PHCA state sequences, i.e. system trajectories. In other words, each COP solution
corresponds to a PHCA trajectory. During the translation, a mapping of variables to
time points must be stored, such that for each constraint variable Xi its associated time
point is known.

Execution Adaptation for Plan Assessment

A plan P is a sequence 〈(p, c, t, a)〉j , each defining for time t two entities p and c to be
connected and an action a to perform. In manufacturing, the physical connection of
products being worked by particular stations can be mapped to the logical connection of
p and c. In that case, p and c are identifiers for products and factory components (usually
stations). Particular commands being executed are mapped to action a, which then takes
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the form of a variable assignment. P may contain arbitrary many tuples for a single time
point to define multiple connections to form and actions to take.
The tuples (p, c, t, a) are realized by execution adaptation functions EP that modify

the constraint net R = (X,D,C) resulting from translating a PHCA (instead of first
modifying the time-unfolded PHCA and then translating to a constraint net). More
precisely, EP does the following:

1. It adds constraints to C that encode the link between p and c with equality of
variables {Xt

p} and {Xt
c}, specifically introduced as dependent variables into the

PHCA for this purpose. These variables are added manually, following a naming
scheme that allows EP to automatically identify them.

2. It adds unary constraints to encode variable assignments specified in action a. These
are mostly assignments to command variables.

The common domain of two variables Xt
p and Xt

c encodes influences, e.g. faulty for station
c inflicting damage on product p, or a faulty product p causing unusual observations in
c. The value ok encodes that no (harmful) influence is present. To illustrate, consider
the machining station and maze product PHCA models shown in figure 5.3. If a plan
P = 〈. . . , (Maze0,Machining1, t,Cmd = cut), . . .〉 determines that the maze is to be cut
by the machining station at time t, then a constraint is added to C that encodes

ProducttMachining1 = WorkertMaze0.

The identifiers Product and Worker represent products and stations each from the respec-
tive opposite point of view: For stations, Product represents the product the station is
working on, and for products, Worker represents the working station. This is one way to
identify the link variables (apart from the product and station identifiers p and c) in a
PHCA. We implemented a second, more general way where a link variable is identified by
adding the code word “LINK” to its name, followed by an arbitrary string identifying the
specific link (see the plans and model codes in the appendix, for example listing B.3).

5.2.3. Computing Success Probabilities and Most Probable Diagnoses
from K-best Solutions of Constraint Optimization

The approach to plan assessment for a translated and adapted model EP(ΥCOP(MPHCA)) =

(X,D,C) extends the COP-based diagnosis approach presented in [129]. To compute a
diagnosis, the most probable trajectory θ for the given PHCA and observations o0:t must
be computed. In [129] this is done by projecting the best COP solution, i.e. the best
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Idle

Product = ok

Cmd = cut; 0.99

Cmd = noop; 1.0

Cut

Product = ok

Cmd = cut; 0.99

Cmd = noop; 1.0

Cmd = cut; 0.01

Cmd = cut; 0.01

Machining1

Idle

Product = ok

Failure: cutter
broken

Product = flawed

Cut

Product = ok

Cmd = noop; 1.0

Cmd = cut; 0.5

; 1.0

Cmd = cut; 0.5

Cmd = cut; 0.5

Cmd = cut; 0.5
Cmd = noop; 1.0

Cutter blunt

Start

Start

Ok

Holes = ok

Failure: flawed

Holes = damaged

Worker = faulty; 1.0

Maze0
Worker = ok; 1.0

Start

;1.0

Figure 5.3.: PHCA composite locations modeling a machining station and a maze.
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full assignment
∗
x to variables X, to the marking variables Xt

Σ for all time points, which
yields the most probable trajectory θ.

Success probabilities Pr(Gi |o0:t) can be computed based on probabilities Pr(θ,o0:t,ot+1:N ),
which correspond to objective values of the COP solutions:

Pr(Gi |o0:t) =
∑
θ∈Gi

Pr(θ |o0:t) =

∑
θ∈Gi

Pr(θ,o0:t)

Pr(o0:t)
=

∑
θ∈Gi Pr(θ,o

0:t)∑
θ∈Θ Pr(θ,o0:t)

=∑
θ∈Gi

∑
ot+1:N Pr(θ,o0:t,ot+1:N )∑

θ∈Θ

∑
ot+1:N Pr(θ,o0:t,ot+1:N )

(5.1)

The observations ot+1:N are the potential future observations. Each COP solution of
the translation corresponds to a trajectory θ of MPHCA conjoined with some possible
future observations ot+1:N . The idea is now to enumerate more than just the best COP
solution by solving a k-best COP instead of a COP, i.e. problem 3, then sum over
the probabilities of these solutions. The best solution can be picked for diagnosis, all
generated solutions to compute Pr(Gi |o0:t). At this point, note that with k we refer to
the number of trajectories, not solutions for a COP (unless stated otherwise). Their
number is typically larger than k by a small factor, depending on the number of free
variables. Often trajectories entail certain observations, which means there are no free
variables and the factor is thus 1. However, if there are free variables this can lead to a
problem, which we describe now.

The solvers we use, Toolbar and Toulbar2, are award-winning open source implementa-
tions and lend themselves to implement the k-best versions of A* and branch-and-bound
described in section 3.4. However, in order to compute an exact diagnosis, variables for
potential future observations have to be summed out. That is, strictly speaking we are
interested in computing

arg max
θ

Pr(θ,o0:t) = arg max
θ

∑
ot+1:N

Pr(θ,o0:t,ot+1:N ). (5.2)

Unfortunately, to our knowledge, no constraint solvers exist that can deal with the
three operations maximization, sum (needed to sum out ot+1:N ) and product (needed to
compute Pr(θ,o0:t,ot+1:N )) at the same time. While algorithms exist to solve the above
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S1

O = o1

S2

O=o1 or O=o2

0.6

0.4
Start

1.0

S2

S1

observation
unknown

Figure 5.4.: Example PHCA (shown above, its unfolding over one time step shown below)
for which computing diagnosis using a constraint solver would fail.

problem (which corresponds to the probabilistic reasoning problem MAP, problem 4), it
seems a framework that allows general constraint solvers has yet to be developed.

Constraint solvers instead compute

arg max
θ,ot+1:N

Pr(θ,o0:t,ot+1:N ), (5.3)

which is fine in many situations. However, in some situations, solving 5.3 and simply
projecting to θ instead of solving 5.2 can lead to wrong most probable diagnoses. Consider
the example PHCA in figure 5.4. For simplicity we assume that we have a single COP
variable representing the marking of S1 and S2, and a single observation variable O for
the second time step. We have the two potential trajectories (s1, s1) and (s1, s2) and the
three COP solutions (s1, s1, o1), (s1, s2, o1), (s1, s2, o2). The three full assignments are
marked as red and blue lines, their probabilities are 0.4, 0.3, 0.3, respectively. The colors
represent the trajectories. The most probable trajectory is the one corresponding to the
red lines, since first the unknown observation would be summed out, yielding probability
value pstart × 0.6 for this trajectory. However, a constraint solver, since it maximizes over
full assignments instead of trajectories, would wrongly choose the trajectory associated
with the blue assignment, which has the largest probability value pstart × 0.4.

A way to remedy this situation is to “simulate” summing over potential future observa-
tions by replacing their observation probabilities with 1 during translation. Using the
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PHCA definition, we know that

arg max
θ,ot+1:N

Pr(θ,o0:t,ot+1:N ) =

arg max
θ,ot+1:N

PΞ(m0)
∏

u∈{0..t}

Pr(ou |mu)
∏

τ∈T [θ]

Pr(τ)
∏

u∈{t+1..N}

Pr(ou |mu)

We can see that if we simply remove
∏
u∈{t+1..N} Pr(o

u |mu), we basically receive what
we wanted. This is achieved by assuming 1 for the factors Pr(ou |mu) in this product,
which could be done by replacing them during translation. In fact, the soft constraint
translation in [129] already does something more subtle, for all Pr(ou |mu) it uses the
over-approximation

f(ou |mu) =

1 ou is consistent with mu

0 otherwise

to avoid the effort of computing the correct probabilities by counting possible observa-
tions for each location. Remember that the PHCA observation model assumes uniform
distributions over multiple possible observations. The observation distributions are still
uniform, only missing normalization.

As it turns out, this has the same effect as the above described assumption, because we
can ignore the cases where f(ou |mu) = 0 for potential future observations. Since we can
assume that there are potential future observations with which a trajectory θ is consistent
(unless the model itself is inconsistent), θ will never disappear (receive probability 0).
Only the special pairings (θ,ot+1:N ) of θ with those potential future observations it is
inconsistent with will be removed.

Since probability values are not needed for diagnosis, the over-approximations are
no problem here. However, in some situations they can lead to an error in the exact
computation of success probabilities, which can be seen from the results in table 6.2. This
leaves us with a design choice for this approach:

1. Correct diagnoses, potentially erroneous success probabilities (even if not approxi-
mated).

2. Correct success probabilities, potentially erroneous diagnoses.

3. Compute success probabilities and diagnosis separately, using two specially adapted
constraint net translations.
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In cases 2 and 3 we have to compute the correct probabilities Pr(ou |mu) by counting
the number of observations #o possible for marking m

Pr(ou |mu) :=

 1
#o ou is consistent with mu

0 otherwise

This is an additional effort, which however is done offline during the translation.

Approximation

Computing Pr(Gi |o0:t) exactly requires to generate all trajectories with non-zero prob-
ability Θ ⊆ St(MPHCA). Since this can become intractable quickly, we approximate
Pr(Gi |o0:t) using only a subset Θ(k) ⊆ Θ of the k most probable trajectories:

Pr(Gi |o0:t) ≈ Prk(Gi(k) |o0:t) =

∑
θ∈Gi(k)

∑
ot+1:N Pr(θ,o0:t,ot+1:N )∑

θ∈Θ(k)

∑
ot+1:N Pr(θ,o0:t,ot+1:N )

.

Gi(k) ⊆ Θ(k) denotes the set of goal-achieving trajectories among the k most probable.
The set Θ(k) is readily constructed from the solutions enumerated by the modified
constraint solvers.

This approach is based on using the k most probable trajectories as an approximation
of the distribution over trajectories. This is a sensible approach for our problem domains
because it is reasonable to assume that the distribution over trajectories under given
observations is peaked, such that a few k trajectories carry most of the probability mass.
Since the probabilities involved are failure probabilities, they usually fall into classes of
failures which are orders of magnitudes apart in their probability of occurrence, leading to
peaked distributions for most observations. Our empirical results in section 6.4 concerning
the approximation error support this view.

Generating Sets Gi(k) and Gi from Trajectories

Let Gi = (l, t) be a goal, represented as location l being marked at time t. The set of
goal achieving trajectories Gi(k) (Gi if all trajectories are enumerated, i.e. k = |Θ|) has
to be filtered from the sorted list of k most probable trajectories retrieved from a solver.
Remember that this set is defined to contain all trajectories that lead to the marking
mt
l , which contains location l at time t: Gi = {θ ∈ St(MPHCA) | θ(t) = mt

l}. When
translated to a constraint net, marked locations are represented by assignments of the
form Xt

l = marked. The set can therefore be created by iteratively putting trajectories
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θ into a container if their corresponding constraint solution contains the assignment
Xt
l = marked.

Using Constraint Solvers to Compute Most Probable Trajectories

Before trajectories of a translated PHCA model EP(ΥCOP(MPHCA)) = (X,D,C) can be
computed, known observations have to be added. This is done the same way commands
are set, by adding unary constraints (i.e. constraints over a single variable) to C that
force assignments of known observation values to respective variables. Note that EP
merely adds a small number of constraints to the constraint net. This is a small effort
compared to solving the COP and thus allows online adaptation. As a final, technical
step, the constraint net must be converted into a WCSP (see section 3.3.1), the format,
or formalism, accepted as input by the solvers we have chosen.
Those solvers are the algorithm suites known as Toolbar3 (described further in [27])

and Toulbar24. They have been chosen for their off-the-shelf implementations of strong
constraint optimization algorithms and the fact that they are open-source, which allows
to easily modify the algorithms. The latter is indeed a more recent version of the former5.

With Toolbar we followed an approach that was first described in [99]. Given a constraint
optimization problem, this approach first generates a heuristic using an approximate
version of the cluster tree elimination algorithm [100], called mini-bucket elimination. As
mentioned in section 3.3.2, cluster tree elimination can exploit the hidden tree structure
of models if they are made available beforehand (in an offline step). Toolbar implements
this mini-bucket elimination, and we added an implementation of the k-best A* search
(algorithm 5.1) described in section 5.2.1.

In Toulbar2 we implemented the k-best Branch-and-Bound algorithm (algorithm 5.2)
shown in section 5.2.1.

5.2.4. Procedure to Evaluate a Plan Against its Goals

Algorithm 5.3 implements a simple evaluation procedure that employs an external con-
straint solver, such as Toolbar or Toulbar2, to solve the plan assessment problem and
evaluate a plan goal based on the result. The function solve() calls the external solver,
automatically adapts k to produce enough solutions such that k trajectories are generated

3https://mulcyber.toulouse.inra.fr/projects/toolbar/ (03.2011)
4https://mulcyber.toulouse.inra.fr/projects/toulbar2 (03.2011)
5Note that the spelling stems from the fact that these tools were developed by groups in Toulouse and

Barcelona. It seems the developers were more consistent in the second version than in the first with
respect to spelling.
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and projects COP solutions to trajectories. The function va(θ) returns the COP variable
assignments associated with the trajectory θ, which are needed to separate goal-achieving
and violating trajectories. The two functions VoteReplan() and VoteInformation-

Gathering() implement a voting for either re-planning if a goal is likely to be not
achieved, or information gathering if the success probability is inconclusive. Information
gathering could be pervasive diagnosis [106], for example.

Algorithm 5.3 Procedure that uses the success probability of plan Pi to decide whether
to a) continue with it, b) stop it because it probably won’t succeed or c) gather more
information.
1: procedure EvaluatePlan(R = (X,D,C), o0:t, P, Gi = (li, ti))
2: R′ ← add constraints encoding o0:t to R
3: Θ(k) ← solve(R′, k)
4: Gi(k)← {θ ∈ Θ(k) | (Xti

li
,marked) ∈ va(θ)}

5: θdiagnosis ← Θ(1)
6: p ← Prk(Gi(k)|o0:t)
7: if p > ωsuccess then return
8: else if p < ωfail then
9: VoteReplan(P, Gi, θdiagnosis)

10: else
11: VoteInformationGathering(P,Θ(k))
12: end if
13: end procedure

5.2.5. K-best Approximation Error

Approximation means error. How does the approximation error depend on k? Can we
estimate bounds on the error, or the success probability, depending on k? How can we
choose k to minimize the error? We define two error functions that we use to measure
the error, the absolute error

εi(k) = |Pr(Gi |o0:t)− Prk(Gi(k) |o0:t)|

and the error relative to the maximum error over all possible values for k,

ε̃i(k) =
εi(k)

max
k

εi(k)
.

Empirical results of those measurements are shown in the evaluation in chapter 6.
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Figure 5.5.: Plot of the function f (step-like plot) and all functions f∗ for all enumerated
trajectories. The X-axis is the index of a trajectory (sorted by probability
value), the Y-axis its probability value. A fitted function f∗ was generated
for each k.

The most practical question is probably whether we can compute, enumerating only k
trajectories, bounds pl ≤ Pr(Gi |o0:t) ≤ pu that guarantee that the success probability
lies within the implicitly defined interval. We now sketch an idea on how bounds could
be developed based on fitting a function to the distributions over trajectories using the
first few enumerated trajectories.

Sketch of How to Estimate the Error Using Function Fitting

We don’t know when to stop k-best enumeration, i.e. we need a stop criterion. A valid
criterion is “stop when pu − pl ≤ η for some given threshold η”, which requires computing
the said bounds. First, consider these basic bounds:
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Proposition 1. Basic bounds for Pr(Gi |o0:t) Let MPHCA be a PHCA and Gi a goal
of a plan P. Let Gi(k) = Θ(k) \ Gi(k) be those trajectories that violate goal G. Then

pl =

∑
θ∈Gi(k) Pr(θ,o

0:t)

1
≤
∑

θ∈Gi Pr(θ,o
0:t)∑

θ∈Θ Pr(θ,o0:t)
= Pr(Gi |o0:t)

is a lower bound on Pr(Gi |o0:t) and

pu = 1−
∑

θ∈Gi(k) Pr(θ,o
0:t)

1
≥ 1−

∑
θ∈Gi Pr(θ,o

0:t)∑
θ∈Θ Pr(θ,o0:t)

= 1− Pr(Gi |o0:t) = Pr(Gi |o0:t)

an upper bound on Pr(Gi |o0:t).

These bounds get monotonically closer to Pr(Gi |o0:t) the more solutions/trajectories
are enumerated, however are still arbitrarily bad as 1 usually vastly over-approximates
Pr(o0:t). Our idea is to overestimate Pr(o0:t) as closely as possible to improve the bounds.
A possibility to compute an estimation for Pr(o0:t) is to predict the development of
f(i) = Pr(θi,o0:t) with increasing index i. Note that indexed trajectories θi are sorted
by decreasing probability, just as they are enumerated. The prediction can be made by
assuming that the probability values lie on the curve of some function f∗ : R+

0 → R+
0 .

Interesting candidates are exponential functions f∗α,γ(x) = γ ∗ e−(x−1)∗α, the Weibull
distribution or functions that model heavy tailed distributions. The functions are then
fitted to the probability values of the generated trajectories.

We illustrate the idea using the exponential function class f∗α,γ(x) = γ ∗ e−(x−1)∗α. The
estimate for Pr(o0:t) can be computed as

p∗o =
k∑
i=0

f(i) +

ˆ ∞
k+1

f∗α,γ(τ)dτ .

As said, the estimate must be conservative, i.e.

ˆ ∞
k+1

f∗α,γ(τ)dτ ≥
kmax∑
i=k+1

f(i).

We assume that the probability values lie on the curve of f∗, which means we can
compute its parameters α, γ such that the error ς(i) in f(i) = f∗α,γ(i) + ς(i) is minimized.
The error is assumed to be gaussian with mean 0. The parameters could be estimated
using standard approaches such as linear regression. Depending on how quick the fitting
is it could be done online, using the first few enumerated trajectories to estimate the
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parameters such as α, γ, or one could use typical problem instances to generate a general
fitted function for all instances of interest.
However, since we cannot compute

∑kmax
i=k+1 f(i), it remains unclear how the curve

fitting could be guaranteed not to violate the required conservativeness. We assume that
choosing the right model for fitting would minimize potential violations. In our first tests,
however, it seemed that exponential functions are the wrong candidate class. Figure 5.5
shows the result of fitting an exponential function to f using the Levenberg-Marquart
non-linear least-squares algorithm [114][122].
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1 bConsistent(t,Cutter_broken) <=> var_PRODUCT(t,Faulty ).
2 bConsistent(t,Cutterblunt_cut) <=> var_PRODUCT(t,Ok).
3 ...
4 gConsistent(t,Cutter_broken_to_cutter_broken ).
5 gConsistent(t,Cutterblunt_idle_to_cutterblunt_idle) <=>

var_CMD(t,Nocommand ).
6 ...
7 gConsistent(t,Idle_to_cut) <=> var_CMD(t,Cut).
8 ...
9 locMarked(t,l) => bConsistent(t,l).

10 ...
11 var_MAZE0_WORKER(T1 ,x) <=> var_MACHINING1_PRODUCT(T1,x).
12 var_MAZE0_WORKER(T2 ,x) <=> var_MACHINING1_PRODUCT(T2,x).

Listing 5.1: Excerpt of logical formulas L from the translation of the machining station
shown in figure 5.6b. Abbrev.: bConsistent stands for behaviorIsConsistent,
gConsistent stands for guardIsConsistent.

5.3. Probabilistic Reasoning Approach

From a probabilistic reasoning point of view, the diagnosis part of plan assessment
corresponds to computing most probable a posteriori hypotheses (MAP) and the success
probability part to computing marginals. MAP and the computation of marginals are
long time standard problems in probabilistic reasoning with existing off-the-shelf solutions.
Those solutions often accept probabilistic models represented as Bayesian networks (BN)
as input. We now describe an approach to plan assessment that is based on a new
translation of PHCA models to abstract, generalized Bayesian networks, which can in
turn be automatically instantiated to BNs. This opens up the possibility of comparing
the COP-based approach from the previous section with methods and tools from the
probabilistic reasoning community. We translate PHCAs to Bayesian logic networks [95],
see section 3.7. In particular, we use the BLN toolbox6 developed by Dominik Jain.

5.3.1. Translating PHCAs to Bayesian Logic Networks

Our novel translation is conceptually similar to the COP encoding ΥCOP of PHCAs.
This encoding is defined in terms of formal higher-order rules for structure, probabilistic
behavior and consistency with observations and commands in [129], some of which have
been shown in section 5.2.2.

We adapt these rules for the translation to BLN. To a large extent, we keep the structure
of the translation described in [129], which means we have roughly the same number of

6http://www9-old.cs.tum.edu/people/jain/dl.php?get=probcog (06.2011)
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rules for the same purposes. The structure of the text below describing the rules reflects
this. The contribution of this thesis here is, besides an implementation of the translator,
to modify or reformulate the rules from [129] such that they are closer to the first-order
logical language of the BLN framework. For example, we introduce logical predicates
that can be easily translated into the BLN language. Often, these predicates can be
transferred with practically no changes. As a side effect, in our view some of the rules are
now easier to understand, e.g. the rule for probabilistic transition choice.

The translation function ΥBLN takes as input a model MPHCA and creates a BLN
B = (D,F ,L) and a knowledge base DB. As explained in section 3.7, B consists of the
declarations D, the set of fragments F and the set of first-order logic formulas L. The
knowledge base defines existing objects or entities for the first-order logic formulas and
fragments as well as known facts about relations among these entities. When the BLN is
grounded, DB is extended with further evidence. Execution adaptation functions EP for
BLNs add formulas to L and facts to DB.

We know from definition 3 in section 4.1 that PHCAs define composite and primitive
locations and guarded, probabilistic transitions between them. Together, they determine
the evolution of location markings. Consequently, the BLN encoding revolves around
a predicate locMarked(t, l), which evaluates to true if location l is marked at time t.
When grounded, this predicate is instantiated to boolean variables Lti, which in turn
encode location markings at specific time points. Additional predicates encode, e.g.,
probabilistic transition choice, hierarchical structure and step-wise transitioning. Those
will be introduced together with the rules in which they appear. The predicates are
declared in D, while the rules are encoded as logical formulas in L or, to a larger extent,
as fragments in F .

PHCA Constraint Consistency

Like for the translation to soft constraints we have to handle the consistency of PHCA
behavior and guard constraints explicitly. For the BLN translation we define, as formulas
in L, behavior and transition guard consistency predicates in terms of formulas over
assignments of PHCA variables O and Cmd. The formal rules that define these predicates
are similar to the behavioral and transition guard consistency rules in the soft constraint
encoding.

Behavior consistency predicate:

∀t ∈ {0..N}, ∀l ∈ Σ. behaviorIsConsistent(t, l)⇔ behavior(l, t)
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Transition guard consistency predicate:

∀t ∈ {0..N − 1}, ∀τ ∈ T . guardIsConsistent(t, τ)⇔ guard(τ, t)

The functions behavior() and guard() map to time dependent versions of the behavior
and guard constraints of location l and transition τ , respectively. When specifying the
above formulas in L, functions behavior() and guard() need to be evaluated, while the
rest can be represented directly. As an example, consider line 1 in listing 5.1: behavior()

evaluates to a concrete behavior constraint that specifies that the behavior of location
“broken” (which is part of composite location “cutter”) is consistent if and only if the
product being processed will be broken in the next time step. An example for a concrete
rule that determines the consistency of a particular transition guard (i.e. the evaluation
of guard() for a particular transition) is line 8 in listing 5.1, which requires that the
transition from location Idle to location Cut can only be taken if and only if the command
for the machining station is cut.

In addition, L contains the general rule (line 10 in listing 5.1) that, for all points in
time, a location’s behavior must be consistent if it is marked.

Marked location behavior:

∀t ∈ {0..N}. ∀l ∈ Σ. locMarked(t, l)⇒ behaviorIsConsistent(t, l)

A similar rule holds for guard constraints. However, it is more convenient to combine
this rule with the rule for probabilistic transition choice.

Location Marking

Now we look at how locations are marked: Because they are initially marked, because
they are the target of transitions or indirectly, because of the PHCA hierarchy. In general,
the predicate locMarked(t, l) encodes a location l being marked at time t. Certainly a
location becomes marked if it is the destination of some transition, i.e. transitioned to the
time step before. This is reflected in the transTo() predicate. However, some locations
are designated start locations. They can also become marked as a result of being chosen
as a starting point for a new (sub-)trajectory. In that case the start location in question is
being enabled, which is reflected in the startEnabled() predicate, and can become marked
as a result of that. In both cases, the location in question is considered the target of a
potential marking, hence it is called target marking. The initial marking of locations is a
special case, since no incoming transitions are possible. This is reflected in some special
rules. Finally, rules are needed to cope with the hierarchical structure of a PHCA model.
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We start with the initial marking of so-called top-level locations of a PHCA. If MPHCA

is a PHCA, then top-level composite locations are those that have MPHCA itself as parent.
In our examples, composite locations modeling stations and products are always top-level
locations. These locations are always initially marked.

Initial top level marking:

∀l ∈ Σtop. locMarked(T0, l)

T0 is the entity representing the first time step, the set Σtop ⊆ Σ contains all top-level
locations. The above rule is encoded in DB, e.g. for the machining station 1 the following
code is added: locMarked(T0, Machining1) = True.

The initial marking of other locations results from propagating the marking down the
PHCA hierarchy, starting from the explicitly marked top-level locations. The interplay
of two rules is responsible for this propagation. One rule is concerned with enabling
start locations of composite locations that are marked, the other with in turn marking
enabled start locations. We explain the first rule momentarily when we address hierarchy
in general. The second rule, named “initial marking/unmarking” is shown below. Our
version of this rule is deterministic and therefore a special case of the PHCA probabilistic
initial marking defined as distribution PΞ.

Initial marking/unmarking:

∀l ∈ Σ \ Σtop. startEnabled(T0, l)⇔ locMarked(T0, l)

This translates to the following deterministic conditional probability function:

Pr(L0
l = marked |Start0

l ) =

1 startEnabled(T0, l)

0 ¬startEnabled(T0, l)

This brings up the question whether predicate startEnabled() is actually needed. After
all, if every start location first becomes enabled and then immediately marked, this
predicate seems unnecessary. The translation to constraint nets developed in [129] had an
analogous construct in form of a higher-order variable, which we think was introduced to
allow probabilistic initial marking. We didn’t adopt the probabilistic marking developed
in [129] for reasons we explain shortly. Yet we stuck with the startEnabled() construct
since it is used in a number of rules and it is not clear at all whether removing it would
in the end yield a more complicated logical description of PHCA semantics. This is a
spot where our translation could possibly be improved.
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The probabilistic marking from [129] was implemented with the following function
(adapted to our notation and our startEnabled() predicate):

Pr(L0
l = marked | Start0

l ) =

pl startEnabled(T0, l)

0 ¬startEnabled(T0, l)

This means start location l is not marked deterministically if it is enabled, but with
probability pl. This marking is of course more general than ours, but still a special
case of the PHCA probabilistic choice PΞ. It allows to model uncertainty about the
initial conditions of a technical system by defining, for each start location, a distribution
over its domain {marked, unmarked}. However, this leads to two problems. First, these
distributions allow the unlikely yet not negligible case of every start location being chosen
as unmarked. In other words, in this case no location would be marked initially, a
situation that doesn’t make sense. Second, this probabilistic initial marking doesn’t
clearly differentiate the cases where, on the one hand, we want to probabilistically choose
between two start locations, and on the other hand, where we want two start locations to
be marked simultaneously. For these reasons we decided to not use this initial marking
and restrict our translation to deterministic initial conditions.

Next, we look at target marking, that is the marking of locations that are enabled
start locations or that are being transitioned to (at some time point other than the initial
one). Primitive locations as targets are handled by the primitive target marking rule. It
marks primitive locations if they are either transitioned to or if they are enabled starting
locations.

Primitive target marking:

∀t0∈{0..N−1}. ∀t1∈{1..N}. ∀lp∈Σp. ∃l∈parents(lp). next(t0, t1) ⇒

(target(chooseTrans(t0, l)) = lp ∨ startEnabled(t1, lp)⇔ locMarked(t1, lp))

The function target maps transitions to their target locations and parents maps a location
to the set of locations connected to it via transitions (in a similar fashion as parents()

defined for BNs maps a BN node to those connected to it via incoming arcs). The function
chooseTrans() is responsible for probabilistically choosing transitions. It will be explained
shortly in the context of the probabilistic transition choice rule.

The composite target marking rule, just like the rule for primitive targets, marks
a composite location if it is transitioned to or if it is an enabled start location. The
difference is that we now introduce the explicit transTo() predicate. While we follow the
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assumption that fewer predicates will lead to a more compact and readable translation
(as is the case for the primitive target marking), composite locations, because they are
more complex to handle, turned out to be an exception: We found that introducing this
extra predicate made the translation less complicated.

Composite target marking:

∀t∈{1..N}. ∀lc∈Σc. transTo(t, lc) ∨ startEnabled(t, lc)⇒ locMarked(t, lc)

The transTo predicate is defined as follows:

∀t0 ∈ {0..N−1}. ∀t1 ∈ {1..N}. ∀lc ∈ Σc. next(t0, t1) ⇒

(transTo(t1, lc)⇔ ∃l ∈ parents(lc). target(chooseTrans(t0, l)) = lc)

To properly reflect the PHCA hierarchy we have to handle the marking of start locations
that are sub-locations and we have to ensure that sub-locations may only be marked if
and only if their parent location is marked. This leads to the following two rules.

The full target marking rule ensures that all start sub-locations (given by function
subStart()) of a composite location are enabled (and thereby ready to be marked) if and
only if this composite location is the target of a chosen transition or is itself enabled.

Full target marking:

∀t ∈ {1..N}. ∀lc ∈ Σc. (transTo(t, lc) ∨ startEnabled(t, lc) ⇔

∀l ∈ subStart(lc). startEnabled(t, l))

We treat the initial time point t = 0 separately with the following rule, which ensures
that the start locations of initially marked locations are enabled.

Initial full marking:

∀lc ∈ Σ. ∀l ∈ subStart(lc). locMarked(T0, lc)⇒ startEnabled(T0, l)

The hierarchical marking/unmarking rule ensures that a composite location is marked
if and only if at least one of its sub-locations (which are given by function sub) is marked.

Hierarchical marking/unmarking:

∀t∈{0..N}. ∀lc∈Σc. locMarked(t, lc)⇔ ∃l ∈ sub(lc). locMarked(t, l)
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To implement this rule, our choice was to have the translation create fragments and add
them to F . However, a more elegant way is probably to create partially instantiations of
this rule in form of BLN logical formulas that are added to L. For example, the following
formula could be added for the composite location Cutter blunt:
locMarked(t,Cutterblunt) <=> locMarked(t, Cutterblunt_idle) v locMarked(t,

Cutterblunt_cut) v locMarked(t, Cutterblunt_broken).

The difference between these two encodings mostly lies in the readability of the
translation result. When grounded, the above formula will be converted to a Bayesian
net very similar to the one that will result from the fragments that are the result of our
current translation.

Probabilistic Transition Choice and Guard Consistency

The central rule for probabilistic behavior is probabilistic transition choice. Given a
primitive location, exactly one of its outgoing transitions may be chosen (according to
transition probabilities defined in the model), and that if and only if the location is
marked and the chosen transition’s guard is consistent.
Probabilistic transition choice:

∀t ∈ {0..N}. ∀lp ∈ Σp. ∃τ ∈ outgoing(lp) ∪ {τε}.

locMarked(t, lp) ∧ guardIsConsistent(t, τ)⇔ chooseTrans(t, lp) = τ ∧ τ 6= τε

In the formula, function chooseTrans(t, lp) maps time and location to an admissible
outgoing transition. The function outgoing() maps primitive locations to their set of out-
going transitions. τε denotes the empty transition, which indicates that no transition has
been chosen. The translation eliminates quantification over lp and creates chooseTrans()

functions for each location separately (see figures 5.6a and 5.6b for examples). Their
CPTs define the following probability function:

Pr(T tlp = τ |Ltp,Gt) =


PT [lp](τ) if (a)

1 if (b)

0 otherwise

(5.4)

where T tlp is a random variable for choosing among lp’s outgoing transitions, Ltp encodes
locMarked(t, lp) and Gt is a vector of random variables encoding guardIsConsistent(t, τ)

for each outgoing transition. Condition (a) is locMarked(t, lp) ∧ guardIsConsistent(t, τ)

and (b) is (¬locMarked(t, lp) ∨ (¬∃τ ′ ∈ outgoing(lp). guardIsConsistent(t, τ
′))) ∧ τ = τε.
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The latter condition means “don’t care" if the location isn’t marked or all outgoing
transitions are inconsistent, and expect chooseTrans() to return τε. The remaining cases,
e.g. chooseTrans() returning an inconsistent transition, are ill-conditioned and hence
yield probability 0. Here we see that this fragment also encodes the consistency with
guards, which is more compact than having a separate logical rule as for marked location
behavior.

Execution Adaptation for Plan Assessment

We now address BLN translation related to adaptation functions EP . Remember that a
plan P is a sequence 〈(p, c, t, a)〉j , each defining an action a to perform and two entities p
and c to connect at time t. The actions, commands typically, are encoded as facts in DB.
The logical connection between p and c is realized with logical formulas in L that enforce
equality of variables {Xt

p} and {Xt
c}, according to the following rule:

∀(p, c, t, a) ∈ P. ∀(Xp, Xc) ∈ Π×Π. Xt
p = Xt

c

Just like in the case of the soft constraint translation, multiple pairs (Xp, Xc) of
variables may encode multiple different types of influences for the same component link.
For each such pair a logical formula is added to L. The common domain of such a pair
encodes the specific influence, e.g. faulty for damage and ok for no (harmful) influence.
The variables are defined in the PHCA model, as part of the PHCA variables Π. As
an example, formulas 12 and 13 in listing 5.1 encode a maze (p) being worked by a
machining station (c) for the first two time steps. The predicates var_MAZE0_WORKER

and var_MACHINING1_PRODUCT encode assignments of {ok, faulty} to two variables Xt
Maze0

and Xt
Machining1, respectively. More precisely, the variables are, again, WorkertMaze0 and

ProducttMachining1, according to the identification scheme mentioned for the soft constraint
encoding of component links in section 5.2.2.

This might not be the most efficient encoding, as it does not fully exploit the expressivity
of BLNs. One can imagine a translation that creates for each link (p, c, t, a) only one
formula in L, which then quantifies over all pairs (Xp, Xc).

Creating Fragments for Rules

Using the location Cutter blunt and the composite marking rule as an example, we show
how the rules not encoded in L are translated into fragments in F . Generally, one
fragment is created for each predicate occurring in a rule, except if the translator can
determine, e.g. from the model structure, that a predicate is always true or false. The
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implementation of ΥBLN partially instantiates the predicates, i.e. it removes all quan-
tification except over time. In case of Cutter blunt, fragments for partially instantiated
predicates transTo(t,Cutter blunt) and locMarked(t,Cutter blunt) are created. No frag-
ment is created for startEnabled(t,Cutter blunt) because Cutter blunt is no start location
and the predicate thus always false. The following table shows the CPT template for
locMarked(t,Cutter blunt):

transTo(t, Cutter blunt) T F

locMarked(t, Cutter blunt) = T 1 0.5
locMarked(t, Cutter blunt) = F 0 0.5

The CPT encodes that Cutter blunt is marked if it is being transitioned to. If not, the
CPT doesn’t influence the marking. See figure 5.6b for the partial fragment network
corresponding to the composite target marking rule for this location. In the graphical BLN
notation, not all elliptical nodes define their own fragments. The node +next(t,t1) works
as a precondition: its children are only valid if it evaluates to true. In this example, it
means there must be a previous time point for the fragments to be valid. This corresponds
to the composite target marking rule not being valid for the initial time point t = 0 (which
is treated separately). A small remark at this point about notation: Occasionally, we will
refer directly to BLN code using typewriter font, e.g. to formulas such as +next(t,t1).

5.3.2. Translation Correctness

Remember the PHCA joint distribution over trajectories and observations given in 4.1.
We show that, assuming that our translation rules correctly describe PHCA marking
evolutions, this distribution is actually encoded by Bayesian nets (BN) resulting from our
translation. Formally, we would like to show:

Theorem 1. Let (X,D,G, P ) be the Bayesian net grounding of a Bayesian logic net
retrieved from translating a PHCA model MPHCA. Let θ = (mt0 ,mt1 , . . . ,mtN ) be an
arbitrary marking sequence of MPHCA, valid according to possible evolutions of MPHCA.
Then

Pr(θ,O0:t = o0:t) =
∑

Ot+1:N
BN

Pr(lt0 , . . . , ltN ,O0:t
BN = o0:t,Ot+1:N

BN |Xaux = true)

The proof idea is to map each of the relevant factors of the distribution of the BN to
corresponding factors of the PHCA distribution, defined in equation 4.1. In the following,
Ltj are vectors of BN location marking variables Ltji ∈ X for each time point tj , and ltj
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are according vectors of binary values. An assignment Ltj = ltj is thus a BN encoding
of a PHCA marking. We abbreviate the assignments Ltj = ltj with ltj . OBN is a vector
of BN observation variables Otjl ∈ X for each time point tj (l ranges over indices of
observation variables for a given time point). Similarly to the soft constraint encoding
of PHCA, Xexec = X \ {Ltji } ∪ {O

tj
l } ∪Xaux is the set of helper variables that ease the

translation. They result from the grounding of predicates such as guardIsConsistent() or
startEnabled(). Xaux is the set of auxiliary variables added to the BN for each concrete
logical rule instantiated from abstract rules in L. In the formula, vectors of the variables
in Xexec and Xaux are used.
The BN distribution for a given assignment to the Ltj -variables is

Pr(lt0 , . . . , ltN ,O0:t
BN = o0:t,Ot+1:N

BN ,Xexec |Xaux = true).

The variables Xexec encode the deterministic PHCA structure that underlies marking
sequences. Therefore, they are completely determined by lt0 , . . . , ltN , and can be left out.
This leaves us with the simpler term

Pr(lt0 , . . . , ltN ,O0:t
BN = o0:t,Ot+1:N

BN |Xaux = true).

Furthermore, we regard only full assignments to the variables of the BN that are
structurally consistent. If this is not the case for some full assignment, for example if this
assignment violates the PHCA hierarchy, at least one conditional probability table of a
helper variable Xexec evaluates to 0. This means that structurally inconsistent assignments
don’t contribute to the distribution and thus can be ignored.
Before we continue with the formal proof of theorem 1, we show that translations

actually exist and that distributions by BNs resulting from our translation take a specific
factorial form.

Lemma 1. For any given PHCA MPHCA, at least one BLN exists which defines, via
ground BN (X,D,G, P ), the same distributions over trajectories as MPHCA.

Proof. This lemma follows from the facts that PHCA represent HMM [162] and that
BLN are a generalization of HMM [95].

The factorization of the BN distribution is determined by conditional dependency
relations among the variables, which in turn are determined by the PHCA semantics
captured in the translation rules. We conjecture that the rules themselves correctly
capture the PHCA semantics, since we assume the original rules described in [129] to be
correct:
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Conjecture 1. The rules defined in section 5.3.1 correctly describe the evolution of
PHCA markings over time as defined in [162].

The BN factorizes then as follows:

Lemma 2. Let (X,D,G, P ) be the BN resulting from translating and grounding a PHCA
MPHCA. Then the following factorization holds:

Pr(Lt0 , . . . ,LtN ,O0:t
BN,O

t+1:N
BN |Xaux) =

Pr(Lt0 |Xaux) ·
∏
u∈{1..N} Pr(L

u |Lu−1,Xaux) ·∏
u∈{0..t} Pr(O

u
BN |Lu,Xaux) ·

∏
u∈{t+1..N} Pr(O

u
BN |Lu,Xaux)

Proof. The lemma holds if each of the factors is actually present and if conditional
independencies that hold for PHCA models are not changed by the translation rules.

Each of the above factors results from a subset of the translation rules. The factors are
composed of multiple conditional probability tables, which stem from the fragments of
the predicates that occur in the rules.

1. The factor Pr(Lt0 |Xaux) corresponds to the initial distribution at the first time point.
The respective rules are “initial top level marking”, “initial marking/unmarking”,
“initial full marking” and “hierarchical marking/unmarking”.

2. The factors
∏
u∈{1..N} Pr(L

u |Lu−1,Xaux) correspond to transitions that may occur
in the model. The respective rules are “probabilistic transition choice”, “primitive
target marking”, “composite target marking”, “full target marking”, “hierarchical
marking/unmarking” and “transition guard consistency”.

3. The factors
∏
u∈{0..t} Pr(O

u
BN |Lu,Xaux) and

∏
u∈{t+1..N} Pr(O

u
BN |Lu,Xaux) corre-

spond to observations. The respective rule is “marked location behavior”.

Conditional independencies could be violated if connections between BLN fragments were
added, resulting in wrong connections between random variables in a ground BN. Since we
conjecture (with 1) the translation rules to correctly describe the PHCA structure, which
in turn determines the mentioned independencies, we can conclude that no connections
are added that violate these independencies.

Now we develop the proof of theorem 1 following our proof idea.
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Proof. With lemma 2 we have∑
Ot+1:N

BN

Pr(lt0 , . . . , ltN ,O0:t
BN = o0:t,Ot+1:N

BN ) =

Pr(lt0) ·
∏

u∈{1..N}

Pr(lu | lu−1) ·
∏

u∈{0..t}

Pr(Ou
BN | lu)

We map these factors to the factors of equation 4.1. For brevity, we leave out the
conditioning on the auxiliary variablesXaux, which doesn’t affect the calculations. Observe
that

∏
u∈{0..t} Pr(O

u
BN | lu) corresponds to

∏
u∈{0..t} Pr(O

u = ou |mu) and Pr(lt0) to
PΞ(m0), because markings mt correspond to assignments Lt = lt, and thus to BN value
vectors lt. This allows to replace these factors, yielding

PΞ(m0) ·
∏

u∈{1..N}

Pr(lu | lu−1) ·
∏

u∈{0..t}

Pr(Ou = ou |mu).

The remaining factors Pr(lu | lu−1) are a product of probabilities given in the CPTs of
chooseTrans(), locMarked() and guardIsConsistent(), see figure 5.7 for an example. We
can ignore the factors that stem from the conditional probability tables of locMarked()

and guardIsConsistent(), since they are deterministic. If they evaluate to 1, they don’t
influence the result. If they evaluate to 0, then it means the associated full assignment
is structurally inconsistent and thus doesn’t contribute to the distribution. Considering
this, we have

Pr(lu | lu−1) =
∏

l1→τ→l2,lu−1`l1∧lu`l2

Pr(T u−1
l1

= τ |Lu−1
l1

= true,Gt).

The notation lu ` l means that in assignment lu location l is marked, i.e. Lul = true.
l1 → τ → l2 is a triple of a location l1 that has outgoing transition τ , which leads to
location l2. For Pr(T u−1

l1
= τ |Lu−1

l1
= true,Gt) we know that it is PT [l1](τ) if condition

a) holds (see equation 5.4 of the probabilistic transition choice rule), i.e. if the source
location of τ is marked the guard of τ is consistent. We can ignore the full assignments
where the probability function evaluates to 1 (has no influence) or to 0 (structurally
inconsistent). Therefore, we have Pr(lu | lu−1) =

∏
l1→τ→l2,lu−1`l1∧lu`l2 PT [l1](τ). If we

additionally form the product ranging over all time points, we get∏
u∈{1..N}

∏
l1→τ→l2,lu−1`l1∧lu`l2

PT [l1](τ),
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Figure 5.7.: Excerpt of the Bayesian net retrieved from translating and grounding the
machining station PHCA (adapted for one time step) shown in figure 5.6b.
The excerpt illustrates, using the transition from location Cut to itself, how
the nodes that correspond to the predicates chooseTrans(), locMarked() and
guardIsConsistent() are connected. The image has been edited to highlight
the relevant arcs.

which corresponds to factor
∏
τ∈T [θ] Pr(τ) in the PHCA trajectory probability. The multi-

set T [θ] is then given by T [θ] =
⊎
u∈{1..N}{τ | ∀l1, l2 ∈ Σ. l1 → τ → l2∧lu−1 ` l1∧lu ` l2}7.

We can now replace the remaining factor
∏
u∈{1..N} Pr(l

u | lu−1), which gives us

PΞ(m0)
∏

τ∈T [θ]

Pr(τ)
∏

u∈{0..t}

Pr(Ou = ou |mu).

We can reorder the factors to

PΞ(m0)
∏

u∈{0..t}

Pr(Ou = ou |mu)
∏

τ∈T [θ]

Pr(τ),

which is the distribution of the original PHCA as given in equation 4.1.

Conjecture 1 indicates a missing link for a rigorous theoretical correctness guarantee.
The original rules for the COP translation given in [129] have not been shown in a rigorous
way to correctly encode PHCA marking evolutions. In this work, we assume these rules
to be correct and thus that our own translation rules correctly describe the evolution of
PHCA markings.

7The operator
⊎

is a multi-set join. If two (multi-) sets being joined with this operator contain the
same element, the joint set is then a multi-set that contains the said element twice.
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5.3.3. Computing Success Probabilities and Model-Based Diagnoses as
Marginals and Most Probable A Posteriori Hypotheses

Translating and adapting a given PHCA model, EP(ΥBLN(MPHCA)), produces a BLN
that can be used as input for probabilistic reasoning approaches for plan assessment.
In this work, we ground BLNs to BNs using the BLN tools that come with the BLN
framework described in [95]. We then feed the resulting BN into the state-of-the-art
inference tool Ace 2.08, which computes marginal probabilities for all random variables in
the BN. As described in section 3.5.2, Ace draws its strength from representing the BN
as arithmetic circuit, generated in an offline step.

An arithmetic circuit is an efficient tree representation of the probability distribution
over all full assignments in form of a sum, or polynomial, of the single joint probabilities.
The arithmetic circuit may reflect local model structure in the form of deterministic
conditional probability tables and global tree structure if BNs can be transformed in a
join tree with low tree width, i.e. only few variables per tree node. Ace 2.0 is implemented
in Java and C++.

Ace cannot solve MAP (i.e. problem 4) out of the box, needed to compute most
probable diagnoses. Therefore we focus on computing success probabilities with Ace in
this work. However, it is fair to assume that the recently developed AceMAP algorithm
for this problem [37] will find its way into this toolbox sooner or later.

Now let’s look in more detail at how Ace computes success probabilities, for example
the success probability for maze Maze0 in our main example described in section 2.1.
Marginals, and thus in particular success probabilities Pr(Gi |o0:t) are computed as
differentials of the above mentioned polynomial. Remember the small example from
section 3.5.2:

Pr(A = a | b) =
1

λaθaθb | a + λaθaθb | a

∂f

∂λa
(b) =

θaθb | a

λaθaθb | a + λaθaθb | a
.

As explained in this section, the products λaλbθaθb | a, λaλbθaθb | a, etc. are the probabilities
of full assignments, which in case of plan assessment represent possible system trajectories.
Multiple full assignments might of course represent the same trajectory, but the necessary
summing is done automatically by Ace.

Remember that goals in plan assessment are represented as a tuple (l, t) of a PHCA
location l that should be marked at time t. In our example, the location is l = Maze0.Ok of
the maze PHCA, and the time is t = 3. In BLN terms, the goal (Maze0.Ok, 3) translates

8http://reasoning.cs.ucla.edu/ace/ (03.2011)
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5.3. Probabilistic Reasoning Approach

to locMarked(3,Maze0.Ok) = true, and this in turn to the assignment L3
Maze0.Ok =

true for the boolean random variable encoding the marking in the BN resulting from
grounding. This means, to compute the success probability for the maze, we must compute
Pr(L3

Maze0.Ok = true |o0:t) for the BN. In terms of the polynomials encoded in the Ace
arithmetic circuits, this roughly looks like this:

Pr(L3
Maze0.Ok = true |o0:t) =

1
...+λ

O0
ForceAlarm

=nominal
·...·PT [Maze0.Ok](τMaze0.Ok→Maze0.Ok)·...· 1

#ol
·...·

∏
pdet

pdet+...

∂f
∂λ

L3
Maze0.Ok

(o0:t) .

That is, for full assignments to BN variables we have products of the form

λO0
ForceAlarm=nominal · . . . · PT [Maze0.Ok](τMaze0.Ok→Maze0.Ok) · . . . ·

∏
pdet

pdet.

The transition probabilities PT [li](τj), such as PT [Maze0.Ok](τMaze0.Ok→Maze0.Ok), and
factors 1

#ol
from the uniform observation model take the place of the θb | a factors. Given

observations yield evidence factors such as λO0
ForceAlarm=nominal. The factors for the

observation model result from the uniform distribution over observations allowed by
the behavior of some location l. Their number is denoted as #ol. Finally, the factors∏
pdet

pdet result from conditional probability tables of deterministic conditions and rules.

The Ace compilation of a BN to an arithmetic circuit is considered a (potentially
expensive) offline step, the computation of success probabilities the (quick) online step.
Evidence can be added during this online phase, i.e. the computation can be done for
different sets of observations without the need for recompilation.

Ace compilation can only be done offline if the execution adaptation is done offline.
The reason is that execution adaptation adds component links, and this operation is not
defined for arithmetic circuits. As long as we perform computations over the complete
plan length NP , this is not a problem. However, in real-world applications the size of P
can quickly become too large to allow reasoning over the complete time horizon, requiring
receding horizon schemes that translate the model for a fixed number of N time steps and
then iteratively move it along the time line to cover the complete P. In section 7.1 we
introduce such a scheme for the model-based diagnosis approach. Within such a scheme,
the current versions of EP must be applied online for every iteration step. If we were
to combine the receding horizon scheme with probabilistic reasoning using Ace, we thus
would have to perform the Ace compilation online, too. In future work, the problem could
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be remedied by, for example, defining an execution adaptation function for arithmetic
circuits, developing a way to add component links to it.
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6. Evaluation and Comparison of the
Presented Approaches

In this chapter we present experimental results for both the model-based diagnosis
approach and the probabilistic reasoning approach. We first describe the implementations
we built for this work. Then we explain the problem instances, describe in detail our
experiments and finally conclude with a discussion of the results.

6.1. Implementation of Model-Based Diagnosis Approach

For this thesis, a prototypical library was implemented that offers the necessary methods
and components to compute success probabilities Pr(Gi |o0:t), following equation 5.1, and
output sorted lists of trajectories for diagnosis. As a key feature the library allows to
transparently call different WCSP solvers, i.e. optimization tools for weighted constraint
satisfaction problems. It also provides methods to parse plans P and observations o0:t

and integrate them with the separately stored COPs generated from PHCA models. The
WCSP for the solvers is automatically generated on the fly. As programming language we
used Python. For experiments, Python scripts use this library to implement experimental
runs. The k-best A* algorithm has been implemented in C within the solver Toolbar,
while the k-best branch-and-bound algorithm has been implemented in C++ within the
solver Toulbar2, version 0.8.
Figure 6.1 shows a schematic of the plan assessment component (shown in figure

4.5 depicting a potential architecture for an AI controller) being implemented with the
elements provided by our library. Most prominent is the estimator (sub-)component,
which is worth looking at in detail. This component reads streams of observations and
plan steps and outputs the mentioned sorted list of trajectories. The streams in turn are
generated by the depicted stream component, which reads the data from files. Internally,
the estimator component on the fly modifies the COP to integrate observations and plan
steps. This implements the execution adaption with EP . It then converts the COP to a
WCSP and sends it to an external solver, for example Toulbar2. This is done via a generic
interface in form of a Python class representing generic WCSP solvers. The solver returns
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Plan Assessment

Estimator

Stream

0.3

0.05

0.02

Plan

Observations

COP Translator

Solver, e.g. Toulbar2

WCSP

COP

Compute
success prob.

Diagnosis

PHCA

k best
solutions

Figure 6.1.: Schematic of a plan assessment component constructed from the elements
of our prototypical library. Inputs to the component are the plan P and
observations o0:t, outputs are the diagnosis and the success probabilities.

a list of k best solutions, which the estimator then maps to the list of trajectories. Other
methods and functions use this list to compute the success probabilities Pr(Gi |o0:t) and,
in case a receding horizon scheme is used, to compute the start distribution for the next
time window. This approach is explained in detail in section 7.1. The plan assessment
component can simply pick the top element of said list as diagnosis, and output it together
with the computed success probabilities. Figure 6.2 shows the Python classes realizing
the estimator component, the interface for WCSP solvers and the streaming component
that reads observations and plan steps and provides them to the estimator component.
Instructions about how to use our implementation can be found in the appendix in A.2.

6.2. Implementation of Probabilistic Reasoning Approach

For the probabilistic reasoning approach, we implemented a component to parse and
translate a PHCA to a BLN. That component is part of our library mentioned in the
previous section. Success probabilities are computed by first translating a PHCA model
to a BLN using this component, and then feeding the BLN to the BLN toolbox developed
by Dominik Jain1 (the relevant publications are [95, 96]). This toolbox reads the BLN and

1http://www9-old.cs.tum.edu/people/jain/dl.php?get=probcog (06.2011)
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PAEstimator

addTimeWindowConstraints()

WCSPEstimator

solve : property

addTimeWindowConstraints()
shiftTimeWindow()
getWcsp()
estimate()

Estimator

shiftTimeWindow()
estimate()

MemoryMeasuringToulbar2Solver

WCSPSolver

result : PAResult

handleResults()

SimpleToulbar2Solver ToolbarSolver

CombinedScheduleObsStream

LineBasedTimeWindowStream

readObsLine()
filepath()
stopStreaming()

ScheduleStream

readObsLine()

TimeWindowStream

timeWindowLength()

ObservationStream

readObsLine()

uses

uses

Figure 6.2.: UML diagram depicting the key classes of our plan assessment library.

transparently uses tools such as Ace to compute success probabilities. While we didn’t
prototype the necessary elements for a plan assessment component for this approach,
future implementations could exploit the generality of our library. One could derive a
specialized estimator class that encapsulates the BLN related computations, especially
calling tools such as Ace, and integrate it into the schema shown in the previous section
in figure 6.1.

For the translation component, we did not use the PHCA parser that comes with
the COP translation developed by the authors of [129]. That would have required to
implement the BLN translation within their (C++) framework, which would have made
the integration with our library much harder. By writing our own parser directly as
additional Python module, it is easier to connect to the Java-based BLN framework via
Jython2 and to formulate experiment scripts in Python. Existing Python packages ease
this task.

2http://www.jython.org/ (10.2011)
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We built the parser by “implementing” the grammar of the PHCA description language.
We used the Python package “pyparsing” by Paul McGuire3, which allows to construct
the parser by writing down the grammar rules in a simple Python-based syntax. A
separate Python class, tailored to the translation to BLNs, uses this parser to retrieve
an object that encapsulates the parsed PHCA description as abstract syntax tree. It
provides methods to generate the different pieces of BLN code that, put together, result
in declarations D, fragments F and logical formulas L as well as the entries for the
knowledge base DB. A separate Python script uses this component to read a PHCA
model along with a plan and observations from model/plan/observation files and to create
and output the resulting BLN B and DB.

The BLN B and knowledge base DB are read by the BLN toolbox. Since we want
to compute results with the external solver Ace, the toolbox grounds B and DB to a
Bayesian net and separate evidence and creates two files in the format that Ace accepts.
The evidence file contains the observations o0:t. Then, the Ace compilation is applied to
the Bayesian net (without the evidence) to create an arithmetic circuit. Finally, Ace is
called with the arithmetic circuit and the evidence to obtain Pr(Gi |o0:t). The toolbox
then reads the results from Ace’s output and presents them in (more) readable format.

This implementation was meant to demonstrate the feasibility of the probabilistic
reasoning approach and is therefore rather crude. For example, it doesn’t provide a
separate translation path from observations in our own format to evidence (in DB) and
then to the Ace format. However, this only requires to implement said path, such that
we don’t have to rerun the translation if only the observations change.

6.3. Problem Instances

We used eight different instances for our experiments. Seven of them use models of factory
plants, comprising assembly and machining stations as well as toy mazes and toy robot
arms as products. One instance uses a satellite model for a diagnosis task taken from
[129], which we extended towards a plan assessment scenario. Of the factory models, one
part comprises variations of the model used in the example scenario described in section
2.1. The other part follows a second scenario, taken from our work in [121]. We denote
the instances with the abbreviations fmx, sm and em, where “fm” stands for “factory
model”, “sm” for “satellite model” and “em” for “example model”. x is the number of the
factory model. In some cases we add something to further differentiate problem instances.

3http://pyparsing.wikispaces.com/ (10.2011)
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Table 6.1.: The size of PHCAs, COP and BN translations.

problem instance N phca size COP BN
# var # con # nodes

fm1 [121] 6 11 / 6 / 27 643 670 1106
fm2 9 15 / 8 / 33 1202 1251 2122
fm3 9 17 / 8 / 33 1305 1311 2292

fm2(long P) 19 15 / 8 / 33 2482 2601 4444
fm3(long P), no o 33 18 / 8 / 35 4748 4892 8878

fm3(long P) 33 18 / 8 / 35 4748 4892 8878
sm [129] 8 8 / 4 / 22 640 661 1080

em 9 18 / 8 / 38 1394 1418 2422

In the mentioned second scenario, the cutter can go blunt during operation and is
then more likely to break. Instead of a force sensor, we have a vibration sensor that
picks up increased vibrations of blunt cutters. However, the sensor signals are ambiguous:
some components generate random vibrations, and thus not every vibration means that a
component is faulty. We assume that, with some probability, vibrations in the assembly
can trigger signals in sensors of machining stations. Here, a vibration is detected at
tvibration, while the machining station is cutting a part for the robot arm and the maze is
being assembled (see figure 7.2). Is the vibration an indicator for a blunt cutter, and how
does this possibility affect the plans? This scenario comprises one machining and one
assembly station, with one maze and one robot being scheduled for manufacturing.

All factory models contain one assembly station, one or two machining stations and
one, two or three product models. According to the two scenarios, sub-PHCA models for
machining and assembly stations come in two different flavors:

1. In the first scenario with the force alarm, like in the example in section 2.1, machining
stations may break products if their cutter breaks, and assembly stations have a
force sensor that causes an alarm if either a worked maze product has improper
holes (due to the broken cutter), or if the station is misaligned. The latter fault is
modeled as a composite location within the assembly station model, see figure 3.6.

2. In the second scenario with the vibration sensors, the cutter going blunt is modeled
with an extra composite location that recreates the nominal behavior of the station,
only with a now blunt cutter (see figure 3.6). A composite location in the assembly
station models occasional vibrations. An additional helper location introduces
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a behavior constraint that links the vibrations caused by the stations with the
observation variable (shown in figure 7.3).

The instances with factory models comprise three basic instances, fm1, fm2 and fm3,
two extended instances fm2(long P) and fm3(long P), and an instance em based on
the example factory model used in section 2.1. The instances em and fm3 both belong
to the first scenario. They both use models with one assembly station, two machin-
ing stations and three product models. Instances fm1 and fm2 belong to the second
scenario. Their models contain one assembly station and one machining station. In-
stance fm1 has one, fm2 two products. fm1 is a simplified prototype scenario for
which plan assessment was first tested in [121]. It is simplified in that the product
is represented as a single binary variable. Specifically, no explicit product flow is mod-
eled, that is there are no product-component links. Also, it uses a very simple plan
P = ((cut, 0), (assemble, 1), (cut, 2), (cut, 3), (cut, 4), (cut, 5)) with six operation steps.
Instances fm2(long P) and fm3(long P) extend fm2 and fm3, respectively. The most

important difference is in their plans, which have a higher resolution in time, i.e. more
time points. These were introduced to test the approaches on bigger plans. Also, the
model of fm3(long P) is fit to deal with robot products, while fm3 only handles maze
products. To deal with a robot product we added another location to the assembly
sub-model.
We added another instance with the same model and plan as fm3(long P), however

leaving out all observations. This instance illustrates that, as a consequence of the design
choice for the constraint optimization approach, errors in diagnosis can occur. Finally,
the diagnosis instance captures a scenario that simulates diagnosing hardware or software
faults in a satellite camera module [129]. We added this instance to our set of instances
for comparison. We defined a plan assessment scenario based on the diagnosis scenario
described in [129]. The plan assessment scenario defines a goal (ProcessingImage, 5) within
a simplified plan P with 8 time steps, which operates the components of the camera
module.

Table 6.1 lists all the problem instances along with the PHCA size (number of primitive
locations, composite locations and transitions), the number of variables and constraints
in the generated constraint net and the number of nodes (random variables) in the BN
obtained from translating the PHCA to a BLN and then grounding this BLN.

To illustrate what is used as input and what results as output for a single instance, we
take another look at our main example and its factory model instance em. Figure 6.3
shows again the plan P for this instance. Since it is an example from the manufacturing
domain, P is a schedule. Figure 6.4 shows the PHCA MPHCA for this instance, and in
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0 2 4 6 8 10

time

Assembly

Machining0

Machining1

Maze0
Maze1
Robot0

Figure 6.3.: Plan P for problem instance em, which represents our factory example
described in section 2.1.3. It is shown which product is being worked when
by which station. For example, Maze0 (light red) is worked by Machining0
from t = 0 to t = 1, then by Assembly from t = 1 to t = 3. Not shown are
the commands that drive the execution of the factory stations.

listing 6.1 the available observations are shown. Together, these elements are the input
to both our solution approaches. We refer to the appendix for the actual encoded input
data (see appendix B).

The output in general consists of a number of pairs of probability values and goals as
well as a sorted list of marking sequences. The former are the success probabilities for
the specified goals and the latter the most probable system trajectories for diagnosis. At
this point remember that our implementation of the model-based diagnosis approach can
compute both of these outputs, whereas our implementation of the probabilistic reasoning
approach currently only computes success probabilities. Probabilities for the em instance
can be found in tables 6.2 and 6.3, the most probable trajectory is shown in figure 6.5.
Note that, since observations are only available up to time point 3, the behavior of the
system is being predicted beyond that time point.
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1 PFORCE__0=NONE
2 PFORCE__1=NONE
3 PFORCE__2=NONE
4 PFORCE__3=HIGH

Listing 6.1: Observations for instance em, encoded as assignments to an observation
variable for the first four time points.

Ok

Holes = ok

Failure: flawed

Holes = damaged

Worker = faulty; 1.0

Maze0
Worker = ok; 1.0

Start

;1.0

Idle

Force = none

Cover

Force = none

Cmd = noop; 1.0

Cmd = a-cover; 1.0

Cmd = noop; 1.0
Assembly

Bolts

if Holes=damaged or Assembly-status=failure:
Force=high
else:
Force=normal

Cmd = a-bolts; 1.0

Cmd = a-robot; 1.0

Cmd = a-bolts; 1.0

Cmd = a-cover; 1.0

Cmd = noop; 1.0

Cmd = noop; 1.0

Robot

Force = none

Cmd = a-robot; 1.0

Cmd = a-bolts; 1.0

Assembly-status

Ok

Failure: 
misaligned

;0.9995

;0.0005

;1.0

Start

Start

Start

Idle

Cut

Failure: cutter
broken

Cmd = cut; 0.99

Cmd = noop; 1.0

Cmd = cut; 0.99

Cmd = noop; 1.0

Cmd = cut; 0.01

Cmd = cut; 0.01

Machining0

Start;1.0

Ok

Holes = ok

Failure: flawed

Holes = damaged

Worker = faulty; 1.0

Maze1
Worker = ok; 1.0

Start

;1.0

Ok

Failure: flawed

Worker = faulty; 1.0

Robot0
Worker = ok; 1.0

Start

;1.0

Idle

Cut

Failure: cutter
broken

Cmd = cut; 0.99

Cmd = noop; 1.0

Cmd = cut; 0.99

Cmd = noop; 1.0

Cmd = cut; 0.01

Cmd = cut; 0.01

Machining1

Start;1.0

Figure 6.4.: The complete PHCA model of problem instance em, the example instance
from section 2.1.3. This model, encoded in the PHCA description language,
was used to produce the results for em seen in tables 6.2 and 6.3. To keep
the graphic in a comprehensible format we changed variable names to a more
readable form and also left out some details, such as the helper variables
needed to create component links. The code for this model is shown in the
appendix, see B.
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0 2 4 6 8 10

time

Assembly cover
Assembly idle

Assembly bolts
Assembly robot

Assembly status failure: misaligned
Assembly status ok

Maze0 failure: flawed
Maze0 ok

Maze1 failure: flawed
Maze1 ok

Machining0 failure: cutter broken
Machining0 idle
Machining0 cut

Machining1 failure: cutter broken
Machining1 idle
Machining1 cut

Robot0 failure: flawed
Robot0 ok

Figure 6.5.: Most probable trajectory of instance em, given plan P (figure 6.3), observa-
tions (figure 6.1) and the model MPHCA (figure 6.4). The graph shows the
marking of locations (y-axis) for each time point (x-axis). A marked location
is represented with a black ellipse if it’s a normal location and with a red
ellipse if it’s a fault location.
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Figure 6.6.: The design choice to adapt the model-based diagnosis approach for correct
success probabilities leads to an incorrect diagnosis (right side) for problem
instance fm3(long P), where we left out all observations. The diagnosis is then
a highly improbable trajectory wherein the assembly station is never being
executed: it doesn’t contain any markings for the primitive locations ending
with . . .ROBOT, . . .PINS,. . . IDLE,. . .COVER (lower part of the plots). The
correct diagnosis, where assembly execution follows the given commands, is
shown on the left side. It was generated by this approach adapted for correct
diagnosis.

6.4. Experiments and Results

In this sub-section we describe our experiments and what is shown in the result plots and
tables. The next section then discusses the results.

In general, measurements of resource consumption (runtime and memory) where
obtained within a virtual machine with 2GB of memory, which used a single core of an
Intel core2duo (2.53 Ghz) and ran Ubuntu Linux as operating system (the host system
was Mac OS X). An exception are the (older) results in table 6.4, which were obtained on
an earlier Linux computer with an Intel core2duo 2.2 Ghz CPU with 2 GB RAM (not
virtualized). Unless stated otherwise, we used default options for the involved solvers.
Memory measurements were done for Toolbar and Toulbar2 using Valgrind4, and for Ace
using the measurements it offered, namely the “allocated megabytes” (which is being
output on the console). For runtime, we measured the sum of the time to create a heuristic
and the search time for Toolbar, the search time for Toulbar2 and the inference time
for Ace. All these times are measured and output by the tools themselves. For the sake
of completeness note that, in the following, the parameter k will refer to the number

4http://valgrind.org/ (07.2011)
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of enumerated COP solutions, not trajectories (unless stated otherwise). However, the
difference is not relevant for the results related to k, as it involves only a small factor.

In table 6.2 results are shown from applying the constraint optimization approach to
the plan assessment instances, using the solver Toulbar2. The left side shows results
for the case that the approach is adapted for diagnosis. For each instance, success
probabilities for all goals are shown, along with the maximum error among them. As
reference for the error results from the probabilistic reasoning approach were used, except
for fm2(long P), which could not be solved by this approach. Here, the results from the
right side served as reference. The right side shows results in case the approach is adapted
to computing success probabilities. Also shown on this side is the error of diagnosis,
which has been determined as follows: We computed the position of the most probable
diagnosis, obtained with the diagnosis-adapted approach, among solutions generated with
the approach adapted for success probabilities. The further down the diagnosis appears
in the list (the bigger the number), the worse the error. If the diagnosis appears first
(1), no error occurred. In parentheses the number of all COP solutions is shown. The
additional instance fm3(long P) where we left out all observations (termed “no o”) shows
that the error can occur and can be quite significant. Figure 6.6 shows the diagnoses for
this instance for both adaptations of the model-based approach.

Table 6.3 shows success probability results obtained with the probabilistic reasoning
approach, using the solver Ace. By default, we used the publicly available version 2.0.
The three bigger instances with long P failed due to precision loss. With the not yet
publicly available Ace 3.05, results for fm3(long P) with and without observations could
be obtained, but not for fm2(long P) within the 2GB memory limit. Therefore, this
instance is omitted from the table. We didn’t apply Ace 3.0 to all instances since one
requirement for this comparison was the public availability of the off-the-shelf solvers.

In table 6.4 we can see results from measuring runtime and memory consumption for the
constraint optimization approach using our A* implementation in Toolbar. The results
where obtained on variations of the fm1 instance. We varied the number of cut actions
after t = 2 for this scenario, yielding different P. The time window size N accordingly
ranges from 2 to 6. We also varied the number of trajectories k (not COP solutions in
this case) and the parameter i that controls the accuracy of the heuristic generated for
the A* search. Higher values for this parameter result in higher cpu/memory investment
to generate better search heuristics (both steps, heuristic generation and search, are
performed online). The results in table 6.4 where previously published in [121].

5This version of Ace was provided by Mark Chavira and Adnan Darwiche.
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Figure 6.8.: (Page 1) These graphs show the effect of resource consumption on approxima-
tion error of Toulbar2. Each graph plots the following: X-axis: Expanded
nodes. Y-axis: Relative error (blue, solid line) and relative number of
enumerated COP solutions k

kmax
(green, dashed line). Plotted with the help

of Dominik Jain’s plotting class.
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Table 6.3.: Results for computing success probabilities with Ace 2.0 , except for those
marked with ∗, which where computed with Ace 3.0.

instances Pr(Gi|o0:t)

fm1 PRODUCT: 0.42

fm2 MAZE0: 1.00
ROBOT: 0.42

fm3
MAZE2: 0.00
MAZE0: 0.00
MAZE1: 0.36

fm3 (long P), no o
MAZE0: 0.59∗

MAZE1: 0.99∗

ROBOT0: 0.17∗

fm3 (long P)
MAZE0: 0.00∗

MAZE1: 0.99∗

ROBOT0: 0.00∗

sm PROCESSING: 0.06

em
MAZE1: 0.83
MAZE0: 0.00
ROBOT0: 0.00

The remaining two experiments are meant to 1) explore the approximation of the
constraint optimization approach and 2) to compare this approach with the probabilistic
reasoning approach. In these two experiments we used default options for both tools
except for Ace compilation of fm2(long P). When compiling a BN to an arithmetic
circuit, Ace by default tries to automatically determine the more suited of two basic
compilation algorithms, depending on the complexity of the BN. One is a variant of
variable elimination [38], which in turn is similar to the junction tree algorithms described
in section 3.5.2. It uses tabular representations of the involved probability factors. The
other is based on converting BNs to propositional logic representations and counting full
assignments in these representations, called logical model counting [46]. For fm2(long P),
manually forcing the logical model counting yielded much better results. The accordant
command line parameter (Ace is a command line tool) is -noTabular ( for Ace 2.0).

Figures 6.7 and 6.8 show results on measuring the impact of approximation on the
accuracy of success probabilities computed with the constraint optimization approach.
Results in figure 6.7 allow comparison of the absolute error εi(k) = |Pr(Gi |o0:t) −
Prk(Gi(k) |o0:t)| among all instances. Specifically, one can see at which value for k the
absolute error for an instance drops and stays below a certain threshold. We see the
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6. Evaluation and Comparison of the Presented Approaches

absolute error being plotted against k , where k ∈ {2, . . . , kmax} is plotted on a log scale.
kmax is the number of feasible COP solutions, i.e. which have probability > 0. To show
how resource consumption is related to the choice of k and the error, figure 6.8 shows
graphs, for all instances, where the relative error ε̃i(k) = εi(k)

max
k

εi(k) and the relative number

of enumerated solutions k
kmax

(both on the Y-axis) are plotted against the number of
search nodes that Toulbar2 needed to expand to generate the solutions. The latter is a
machine independent measure of resource consumption: runtime scales linearly with the
number of nodes expanded in the search tree that the branch-and-bound algorithm in
Toulbar2 traverses. This figure gives an impression on how much resources are needed
to force the error below a certain percentage, and which percentage of the number of
feasible COP solutions has been generated until then.

In the last experiment described in this section we measured runtime and memory
needed to compute exact success probabilities for all our instances with the model-based
diagnosis approach and with the probabilistic reasoning approach. For the former we
used Toulbar2 with no approximation as solving backend (i.e. k = kmax), for the latter
Ace. Note that Toulbar2 and Ace differed slightly (4 < 0.0001) in their exact results,
most likely due to precision loss or Toulbar2 using a lower bound to cut off solutions.

Table 6.5 shows the results for both approaches. The purpose of this comparison is to
find out if there is a large difference between the two tools or not. On the left side for
Toulbar2, search time in seconds, memory usage in megabytes and the expanded search
tree nodes are shown. The time it took to compute the success probability from the
generated solutions was below 10 milliseconds and is thus negligible. For Ace on the right
side, the table shows compilation + evaluation time, both in seconds, and memory usage
during compilation in megabytes (the usage during evaluation is approximately the same
or less, since it is the compiled arithmetic circuit that dominates memory usage in this
stage). We show compilation and evaluation time summed, because currently, as argued
in section 5.3.3, it might be necessary to perform the compilation step online.

Each value shown is the mean over three runs, the standard deviation is shown in
parentheses next to it. As mentioned earlier, Ace had precision loss problems with the
three bigger instances with long P , (fm2(long P), fm3(long P) and fm3(long P ) without
observations). Results for the fm3(long P) could be obtained, but not for fm2(long P),
which is why the according table cell is marked with “ERR” (for “error”).
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6. Evaluation and Comparison of the Presented Approaches

6.5. Discussion of Results

The results in tables 6.2 and 6.3 clearly show that both approaches are capable of
computing correct success probabilities for plan assessment, assuming that the PHCA
models are correct. Only one of our instances caused problems for the probabilistic
approach with Ace, which failed to compute results due to precision loss. For all other
instances the probabilities obtained with both approaches agree down to four places
after the decimal point, which we see as a strong indicator of the correctness of the two
approaches.
The constraint based approach can also compute diagnoses in form of most probable

trajectories. Even if we choose to adapt the approach for success probabilities it seems
to work out fine in most cases. As can be seen from table 6.2 and from figure 6.6, this
choice produced an incorrect diagnosis (right in figure 6.6) only for the instance where
we left out all available observations, which is a rather contrived situation. The other
choice, adapting for correct diagnosis, seems more problematic, causing erroneous success
probabilities in half of the instances.

The results for our main example of a cognitive factory illustrate how plan assessment
can support autonomous decisions. As described in the beginning in section 2.1 we
computed success probabilities (table 6.2) and a diagnosis (figure 6.5):

• Robot0 and Maze0 are predicted to fail (success probability 0, table 6.2).

• Maze1 is fairly probable to succeed (success probability of .83, table 6.2).

• The diagnosis shows the station Machining0 becoming faulty at time step 1 (figure
6.5).

An AI controller that implements a decision procedure as outlined in section 4.3 can now
use this information. As suggested in section 2.1, it may decide to

1. Discard Maze0 as it is already broken.

2. Continue with Maze1 as it is only at low risk.

3. Try to re-schedule Robot0 such that Machining0 is avoided.

At this point results do not warrant a definite statement about scalability. We can
nevertheless make some interesting observations and try to give an estimate based on
them. First, let us look at how instances scale with respect to the length of the plan P.
When we compare the runtime (from the results in table 6.5) of fm3 with fm3(long P),
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6.5. Discussion of Results

we see that roughly thrice the schedule length requires roughly four times the memory
and roughly five times the runtime (of fm3). This is good: apparently the solvers are
indeed able to exploit the Markov property for this instance. The picture is somewhat
different with instances fm2 and fm2(long P). Here, the difference is much greater, which
is maybe due to the fact that fm2 uses a more sophisticated sub-PHCA for the machining
station, which models the cutter going blunt before breaking. In general, depending on
problem instance, both approaches could run into trouble between 50 and 100 time steps.

Next, we consider scalability with respect to model (PHCA) size, independent of time.
To this end, we compare the three instances fm2, fm3 and em, which all range over 9
steps. Again, the situation is ambiguous. Instance fm3 has one more station and one more
product than fm2. When solving it with Toulbar2 (model-based diagnosis approach), this
results in approximately double the runtime. Instance em also has one more station and
one more product, but here this results in roughly six times the runtime and a slight
increase in memory usage. With Ace (probabilistic reasoning approach) the situation is
different still, as runtime in the first case actually decreases to roughly half the runtime.
What if we try to scale up to 10 stations and 10 products?

On the one hand, if things go as nice as the step from fm2 to fm3 we end up with
27 × 0.23s ≈ 30s. If the result with Ace for these instances is any indicator it could be
even better. On the other hand, if things develop as hinted by the step from fm2 to em,
runtime could be as bad as 67 × 0.59s ≈ 45h. Since both solving backends, Toulbar2 and
Ace, are capable of exploiting structure in a general fashion, it’s reasonable to assume
that it won’t be that bad. All in all, we see that increasing model size has a larger impact
than increasing the number of time steps.

It is not surprising that scalability remains an issue if we consider that computing
success probabilities exactly may be an NP-hard problem. A practical alternative is to
approximate. And indeed, for Toulbar2 we can see that, for our instances, significant
savings in resource usage can be made if we accept a modest error. The graphs in figure
6.8 show that, often, less than half the nodes needed for the exact computation must
be expanded to force the (relative) error below 10%. On most of our instances, this
amounts to enumerating 40% of the feasible COP solutions. In absolute terms, figure
6.7 shows us that for most of our instances, less than 40 COP solutions are needed to
achieve an absolute error of less than 0.02. In case of Toolbar, the situation is different,
as increasing k hardly seems to affect resource consumption (runtime in this case, see
table 6.4), especially if the mini-bucket search heuristic is strong (bigger i-values). For
weaker heuristics, the influence is slightly stronger. To highlight the behavior of the error
with respect to increasing k we go back once more to the results for Toulbar2 in figures
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6. Evaluation and Comparison of the Presented Approaches

6.8 and 6.7. We can see that the error goes to a low value fairly quickly, however often it
shows some erratic behavior in form of few sharp increases after it went down. Only for
one instance, fm3(long P), it takes long until the (relative) error drops. However, this is
due to the fact that for this instance the absolute error is low from the start, as is obvious
from figure 6.7.

We now turn to comparisons of the different solving backends. First, we consider
Toolbar and Toulbar2, applied within the model-based diagnosis approach. Both seem to
scale approximately equally, Toolbar however seems to scale better with time. This is
probably due to the typical effect of the involved A* algorithm of trading off memory
for less runtime. As can be seen in table 6.4, memory usage increases much more than
runtime with increased problem size (left to right). We can more directly compare their
respective performances on the instance fm1. Toulbar2 was ran on the biggest of the
variations of this instance used for the experiments with Toolbar, i.e. the rightmost in
table 6.4. Clearly, Toulbar2 is magnitudes faster and more memory efficient than Toolbar
on this instance. Apparently the more recent combination of branch-and-bound with
soft-constraint consistency is much stronger than the older A* with automatic heuristic
generation based on approximate inference.

Finally, we compare the performances of Toulbar2 and Ace. We see essentially similar
performance of both tools on our instances, with Toulbar2 tending to be somewhat
better. It makes sense to differentiate two cases, namely where we have to perform Ace
compilation online and where we can take it offline. As discussed in 5.3.3, the former
might be necessary if a moving horizon scheme is to be applied, where we don’t handle
the complete length of P all at once (see section 7.1 for such a scheme).

In case we have to do the Ace compilation online, Ace still performs very well, giving us
results in under two seconds for five instances out of eight. That trend is continued by Ace
3.0, which also solves the biggest instances fm3(long P) with and without observations in
under two seconds. However, except for the fm3(long P) instance without observations,
Toulbar2 is better than Ace in either runtime (e.g., fm2(long P)) or memory usage (e.g.,
sm). In some cases, this might be due to the fact that Toulbar2 is implemented completely
in C++, while parts of Ace are implemented in Java. In others, however, the advance
of Toulbar2 is harder to explain away with implementation, see, e.g., the runtime for
instances fm1, fm2 and sm or the memory usage for fm2 and sm (note that we used
measurements offered by Ace itself, and we take it that these don’t include irrelevant
overhead induced by, e.g., the choice of implementation).
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6.5. Discussion of Results

In case we can take Ace compilation offline, the two tools are definitely in the same
league. For some instances Ace now has an edge over Toulbar2, see, e.g., instances fm3,
sm or em, while for others, Toulbar2 is still slightly better (e.g. fm1, fm2).

An interesting side observation is that the two instances fm2 and fm2(long P) seem to
be harder for the Ace arithmetic circuit compilation than the larger instances fm3 and
fm3(long P).

Let us sum up the discussion. From our results we conclude that both approaches work,
at least for our examples. In comparison, both approaches seem viable alternatives to
consider for plan assessment: While Toulbar2 (model-based diagnosis approach) tends to
be better on our instances, Ace (probabilistic reasoning approach) still performs well, and
performs as well as or even better than Toulbar2 under the optimistic assumption that we
don’t have to perform Ace compilation online. Furthermore, Ace might scale better for
bigger instances. While we consider the approaches in general equal alternatives, more
experiments with different models could very well uncover a clear preference for one or
the other approach+solver combination.
For the model-based diagnosis approach with Toulbar2 the limited scalability can be

remedied, to an extent, by approximation. When approximating, a good choice for k to
start with would be k = 40, when using Toulbar2. The results indicate that this is the
better choice than the older Toolbar.
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7. Extensions

This chapter presents three extensions of our plan assessment approaches. The first
extension addresses problem instances with plans that would be too long to be solved
all at once. It introduces a step-wise approach that computes most probable trajectories
within a fixed time window and then moves this window along the time line.

The second extension addresses the problem of error bounds for the success probabilities,
which was already briefly covered for the model-based diagnosis approach. The extension
exploits statistical properties of sampling algorithms that can be exploited when using our
probabilistic reasoning approach. These properties allow to compute confidence intervals
around approximated success probabilities.

The third extension is motivated by the fact that, often, systems behave in ways
that are easy to capture with a combination of discrete state transitions and continuous
evolutions described with differential equations. To make this sort of modeling available
for plan assessment we introduce a hybrid extension of PHCA and develop an automated
translation to purely discrete models. Then, we can simply apply the framework we
developed in section 5.2.

7.1. A Receding Horizon Extension for the Model-Based
Diagnosis Approach

Up to now, we have always considered the complete length of the plan NP , i.e. N = NP .
However, since enumerating trajectories for plan assessment is exponential in the number
of time steps, this can quickly grow intractable with growing number of time steps. In
our experiments we found that the model-based diagnosis approach did not scale beyond
NP ≈ 14 time steps when using the solver Toolbar. Toulbar2 can solve bigger problems
with NP ≈ 30. However, the general complexity of enumeration remains the same for
Toulbar2, hence we suspect that with larger plans, e.g. NP ≈ 100, Toulbar2 will also
run into trouble. From the comparison results in chapter 6 we see that the probabilistic
reasoning approach with Ace apparently has problems, too, with larger plans.
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In [120] we address this scalability issue by combining the model-based diagnosis
approach (as presented in [121]) with a receding time horizon scheme [108, 129]. In this
section, we present a revised version of this work.

The receding horizon scheme slides a time window of fixed, small lengthN along the time
line in order to cover larger schedules, for example NP ≈ 100. Most probable trajectories
are only generated within this window, which renders the problem exponential only in
N � NP . Preliminary results show that the approach works in principle. However,
a problem remains: the moving of the time window makes the involved constraint
optimization problem potentially much harder.

Note that for this approach the same design choice between accurate diagnosis or
accurate success probabilities is necessary as described in section 5.2.

7.1.1. Plan Assessment Based on Time Window Filtering

Given a manufacturing plan P and a goal Gi for some product i, let its end time be
tGi . To compute Pr(Gi |o0:t) for this product, we move the time window until it covers
tGi . Each moving step involves enumerating k-best trajectories. When we reach tGi , we
perform our approximative summation over goal-achieving trajectories among the k-best.

The idea of our moving-time-window-scheme is to combine trajectory enumeration with
hidden Markov model filtering. Remember that PHCAs have a hidden Markov model
semantic. In filtering, the distribution over all states at time t0 is computed, given the
distribution for the previous time point and current observations. Trajectory enumeration
computes the k most likely sequences of length N , allowing to approximate a distribution
over trajectories. Time window filtering (k-N -TWF) combines both methods: within
a time window t0..tN , k trajectories of length N are generated. Then the time window
of length N is moved one step forward and the distribution Pr(Xt1 = mt1 ,O0:t = o0:t)

over the new initial states is computed recursively from distributions over previous initial
states at t0 and over trajectories within t0..tN .

Trajectories are sequences of markings, i.e. θ = m1,m2, . . . ,mn. In both the described
translations, to constraint nets and to Bayesian logic nets (and Bayesian nets), a marking
in the end is an assignment to binary location variables, e.g. Xt1 = mt1 . Let location
variables be mapped, for each time point t, to a single combined variable Xt with all
possible markings for that time point as their values. PHCA variables Π are either known
(commands, observations) or are determined through location variables, and can therefore
be ignored here. The same applies for unknown observations within the time window,
which don’t influence the conditional dependency relations.
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7.1. A Receding Horizon Extension for the Model-Based Diagnosis Approach

We abbreviate assignments to random variables in Pr(Xt1 = mt1 ,O0:t = o0:t) to
Pr(mt1 ,o0:t). We denote the starting and ending time points of the time window with
t = t0 and t = tN , respectively. t = 0 is the first time point of the plan and t = tc is the
current time point, i.e. no observations are available after tc. Unless stated otherwise,
we mean the current time point when writing t. As an example consider the following
markings, which represent the first and second marking relative to the plan start time
t = 0, the first and last marking within a time window of length N , the marking at the
current time point and the marking when product i is expected to finish: m0, m1, mt0 ,
mtN , mt, mtGi . The notations t+x and t−x indicate x time points ahead or behind time
t. Observations, as well as observation and location variables, are indexed analogously.

Theorem 2. Let α = 1
Pr(ot1:t)

. Given observations o0:t we can compute the distribution
over system states at t1 recursively as

Pr(mt1 ,o0:t) = α
∑

Xt0 ,Xt2 ,...,XtN

Pr(mt1 , . . . , XtN ,ot1:t|Xt0)Pr(Xt0 ,o0:t)

Proof. Observe that

Pr(mt1 ,o0:t) =∑
X0,X1,...,Xt0 ,Xt2 ,...,XtN

Pr(X0, X1, . . . , Xt0 ,mt1 , Xt2 , . . . , XtN ,o0:t) =

∑
X0,X1,...,Xt0 ,Xt2 ,...,XtN

Pr(mt1 , Xt2 , . . . , XtN |X0, . . . , Xt0 ,o0:t)Pr(X0, . . . , Xt0 ,o0:t)

Then with Markov property (Xt1 , . . . , XtN independent of X0, . . . , Xt0−1 and O0:t0)
we have

=
∑

X0,X1,...,Xt0 ,Xt2 ,...,XtN

Pr(mt1 , Xt2 , . . . , XtN |Xt0 ,ot1:t)Pr(X0, . . . , Xt0 ,o0:t)

= α
∑

X0,X1,...,Xt0 ,Xt2 ,...,XtN

Pr(mt1 , Xt2 , . . . , XtN ,ot1:t|Xt0)Pr(X0, . . . , Xt0 ,o0:t)

= α
∑

Xt0 ,Xt2 ,...,XtN

Pr(mt1 , Xt2 , . . . , XtN ,ot1:t|Xt0)
∑

X0,...,Xt0−1

Pr(X0, . . . , Xt0 ,o0:t)

= α
∑

Xt0 ,Xt2 ,...,XtN

Pr(mt1 , Xt2 , . . . , XtN ,ot1:t|Xt0)Pr(Xt0 ,o0:t)
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We now have the needed recursive form:

Pr(mt1 ,o0:t) = α
∑

Xt0 ,Xt2 ,...,XtN

Pr(mt1 , Xt2 , . . . , XtN ,ot1:t|Xt0)Pr(Xt0 ,o0:t)

This recursive term represents the exact computation, enumerating all trajectories.
As this becomes intractable quickly, we need an approximative time window scheme,
based on the k most probable trajectories instead. Given these trajectories, we compute
approximations for α and the distribution Pr(Xt,o0:t). Every time the time window is
moved we add Pr(Xt,o0:t) as constraint CSD to the original constraint problem. External
solvers such as Toolbar or Toulbar2 then compute the k most probable trajectories along
with their joint probabilities Pr(mt0:tN ,o0:t) = Pr(mt1 , . . . ,mtN ,ot1:t|mt0)Pr(mt0 ,o0:t)

as basis for the next step1. Algorithm 7.1 implements k-N -TWF.

1The solvers compute full assignments along with their probabilities. However, for the summation
necessary for computing Pr(Gi |o0:t), it doesn’t matter whether we sum over the full assignments and
their probabilities, or over partial sums Pr(mt0:tN ,o0:t) =

∑
ot+1:N Pr(mt0:tN ,o0:t,ot+1:N ).
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7.1. A Receding Horizon Extension for the Model-Based Diagnosis Approach

Algorithm 7.1 The Time Window Filtering algorithm. Function AsUnaryCon-
straints maps observations to unary constraints over observation variables, function
TimeStepStates maps a set of trajectories to the set of states for the given time point.
function kNTWF(WN

t0 , o
t0:t, P, k)

Θ(k) ← estimate(WN
t0 , o

t0:t, P, k)
WN
t0+1 ← shiftTimeWindow(WN

t0 , Θ(k))
return (Θ(k),WN

t0+1)
end function
function estimate(WN

t0 , o
t0:t, P, k)

(R, N, t0) ← WN
t0

C ′ ← R.C ∪ AsUnaryConstraints(ot0:t)
C ′ ← C ′∪ ProductComponentLinks(P, R)
R′ ← 〈R.X,R.D,C ′〉
Θ(k) ← solve(R′, k)
return Θ(k)

end function
function shiftTimeWindow(WN

t0 ,Θ(k))
(R, N, t0) ← WN

t0
if t0 = 0 then

Remove constraints for initial location marking from R
end if
CSD ← {mt1 7→ SumTrajectoriesForMarking(mt1 , N) |mt1 ∈ TimeStep-

States(Θ(k), 1) }
R.C ← R.C ∪ CSD . overrides previously added CSD

return (R, N, t0 + 1)
end function
function SumTrajectoriesForMarking(mt1 , N)

return α
∑

Xt0 ,Xt2 ,...,XtN Pr(mt1 , Xt2 , . . . , XtN ,ot1:t|Xt0)Pr(Xt0 |o0:t)
end function

As an example, we again consider the scenario where vibrations of potentially blunt
cutters are picked up by sensors as observations, as described in section 6.3. Figure 7.1
illustrates the plan assessment using a moving time window. In this example we focus on
three markings from MPHCA: 1) a marking were both maze and robot arm are “ok”, 2) a
marking were the cutter broke and thus led to a flawed robot, but the maze is “ok” and
3) like 2, with the difference that here additionally vibrations in the assembly occurred
(not only caused by the blunt/broken cutter). Note that for clarity the location domain
{marked, unmarked} is abbreviated to {M,U} and the time point t is omitted in figure 7.1,
e.g. Xmaze.ok = M.

A time window of N = 2 (two time steps, i.e. three time points) is used and k = 6

trajectories are enumerated by the external solver. We use the notation WN
t = (R, N, t)
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Figure 7.1.: (a) Moving time window W 2
t one step, generating time window W 2

t+1. (b)
Computing success probabilities after k = 6 trajectories have been enumerated
in the new time window W 2

t+1.
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7.1. A Receding Horizon Extension for the Model-Based Diagnosis Approach

Figure 7.2.: A visualization of a schedule of a maze (dark) and a robot arm (bright) used
as plan P for the receding horizon example.

for a time window of length N starting at time point t, encoded as a COP R = (X,D,C).
Trajectories are numbered 1 through 6, with 1 most and 6 least probable. At first, the
time window does not cover the time point when the products are finished (W 2

t ) and thus
success probabilities can’t be computed. The time window is moved (W 2

t+1), and in doing
so probabilities of trajectories leading to the same initial marking in the next window
are summed up. They are normalized using the approximation α∗ = 1∑

θ∈Θ(k) Pr(θ,o0:t)
.

This is done for all initial markings, and thereby the approximate initial distribution
for the next time window is created. Now the window covers the finishing time point.
Again, k = 6 trajectories are enumerated within this time window. In this example, only
one of these trajectories is goal-achieving for the robot arm, while all of them lead to a
properly finished maze. Summing over the respective goal-achieving and normalizing over
all enumerated trajectories yields approximate success probabilities for the maze and the
robot arm. Note that the time window is moved into the future until it covers the end
time tGi for some goal Gi.

7.1.2. Preliminary Experimental Results and Discussion

Here we present results that were first presented in [120]. We implemented the k-N time
window filtering (k-N -TWF) and ran experiments on an Intel core2duo machine with
2.53 Ghz and 4GB of RAM, using a simple factory PHCA model (see figure 7.3) for our
scenario. The original scenario, introduced in the previous section, has NP = 9 time
steps, which can be solved without TWF with an N = 9 time window. We used the
older Toolbar solver in these experiments, with which we could solve variations of our
scenario with plan length up to 14 time steps. These variations where generated by simply
multiplying planned actions. In a preliminary experiment using our novel TWF method
together with Toolbar we could compute success probabilities for a plan with NP = 29,
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Figure 7.3.: PHCA model used for k-N -TWF experiments. Not shown here are the
product models for the robot and the maze, which are the same as in the
model shown in figure 3.6.
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using a time window of length N = 5 in 240 seconds. We moved the time window along
the whole plan length, doing 24 shift operations, where each interleaved estimation step
took 4-10 seconds.
While it seems that Toulbar2 can solve problem instances of this size much quicker,

it is well possible that it will hit its border soon, too, due to the generally exponential
dependency on plan length. Just as TWF can be used to overcome the limitation of
Toolbar, it should be possible to overcome similar limitations of Toulbar2 as well.

TWF allows to address bigger plans. However, if we compare the TWF performance
with computing success probabilities without TWF for short enough plans, e.g. our
problem with NP = 9, we see that TWF needs much more runtime. The latter is done in
about 4 s, while the former, TWF, takes much longer to solve the same problem (see table
7.1). Partly this is due to our prototype implementation. However, the bigger problem is
that the shift operation makes the subsequent COP, solved to generate trajectories, much
harder: Computing the distribution over initial states for the next time window, even if it
is only approximated, yields a big constraint over many location variables in the COP.
The older Toolbar solver fails to even load the problem if we have more than 30 PHCA
locations, because the mentioned constraint becomes too large. Toulbar2 might not have
this problem, it has routines that automatically decompose large constraints.
Table 7.1 shows how much the success probability computed for the robot for this

instance deviates from the exact computation (done by enumerating all feasible trajectories)
when varying k and N . Clearly, if k is big enough to enumerate all non-zero trajectories
(> 80 for our problem instance), TWF yields the exact solution independently of N . When
choosing only few trajectories (k ≤ 5), increasing N seems to reduce the error eventually,
while for more trajectories an increased N can actually increase the error. Increasing
k eventually increases the accuracy of the approximation. However, this happens in a
non-monotonic way, just like for the instances investigated in our evaluation experiments,
described in chapter 6.

7.1.3. Future Work

For future work, the first thing would be to try the TWF algorithm with Toulbar2
as backend and see whether we will have similar problems as with Toolbar. Then, a
significant improvement would be to extend the shift operation such that the time window
can be moved multiple time steps at once, ideally, for its complete length N . This would
reduce the number of shift-estimate iterations needed to cover the length of a given plan.
Finally, in order to become practical, it should be possible to obtain success probabilities
with shift operations being done alongside the step-wise execution of the plan. Currently,
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Table 7.1.: Comparing the success probability error (above) and runtime (in seconds,
below) for the robot product for different number of trajectories k and time
window sizes N . The error is εi(k) = |Pr(Gi |o0:t)− Prk(Gi(k) |o0:t)|, that is
the absolute difference between exact and approximate success probability.

k N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9

2
0.46
39.77

0.46
36.14

0.46
34.44

0.46
35.84

0.26
50.82

0.21
57.56

0.21
57.14

0.21
47.50

0.21
27.65

3
0.42
39.68

0.46
36.08

0.46
34.39

0.46
36.54

0.46
50.85

0.25
58.05

0.25
57.58

0.25
47.28

0.25
27.97

4
0.26
39.56

0.30
35.96

0.36
34.35

0.36
36.02

0.36
50.81

0.28
58.62

0.28
57.34

0.28
48.88

0.28
27.94

5
0.25
39.54

0.31
36.47

0.34
34.55

0.32
36.68

0.26
51.25

0.21
59.26

0.21
58.61

0.21
48.15

0.21
29.30

10
0.06
40.92

0.13
36.09

0.09
34.89

0.09
36.49

0.11
53.37

0.12
59.68

0.12
59.11

0.12
48.45

0.12
28.34

25
0.00
41.03

0.02
36.66

0.03
35.49

0.06
37.73

0.06
54.97

0.05
61.95

0.05
61.73

0.05
48.50

0.05
28.62

50
0.00
40.32

0.00
37.19

0.00
37.69

0.01
39.19

0.01
54.46

0.01
60.72

0.01
60.04

0.01
50.79

0.01
29.34

100
0.00
40.89

0.00
39.26

0.00
37.53

0.00
39.23

0.00
54.87

0.00
61.56

0.00
60.76

0.00
50.56

0.00
29.98
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this is not possible because, in order to compute a success probability for some goal Gi,
this goal’s time point needs to be within the limited horizon of the time window. With
the current approach, this requires to move the time window until it covers this time
point, potentially requiring many shift operations. What is needed is an extension of plan
assessment which allows to compute some approximation of the success probability based
on the available time horizon, even if the goal lies further in the future.

7.2. Stochastically Bounded Approximation of Success
Probabilities with Sampling

For our model-based diagnosis approach to plan assessment, the question of how to
compute the error of approximation depending on the number of generated trajectories is
still an open question. However, with the translation of PHCA to BLN, introduced in
the previous section, another class of approximative algorithms becomes available for the
computation of success probabilities: sampling. As explained in section 3.5.2, sampling
poses itself as an attractive anytime approximation alternative, which generates probable
system trajectories randomly, according to the probabilities provided by a model such as
a PHCA.

In this section, we present a revised version of work that has been published before
in [118]. Therein we propose to combine sampling with a stochastic accuracy guarantee
for the computation of marginals, in particular success probabilities, in terms of the
confidence interval. The more samples are generated, the narrower this interval becomes.
We demonstrate this approach on a simplified, manually created BLN model for our
example plan assessment scenario. While this model is hand-crafted, it is a BLN exactly
like those generated by our translation from PHCAs. Therefore, this approach is readily
applicable to PHCA models, too.

Typical plan assessment models are in large parts deterministic. Sampling in these
types of models is prone to the rejection problem (explained in section 3.5.2), i.e. many
samples are drawn that produce inconsistent assignments. A recently proposed scheme
called SampleSearch [75] addresses this problem by exploiting constraint-solving methods
to quickly exclude inconsistent samples. We compare this approach against two other
sampling algorithms, namely likelihood weighting [71] and backward simulation [70], in
terms of how fast they can reduce the confidence interval size.
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7.2.1. Computing Confidence Intervals for Plan Success Probabilities

We are now interested in computing bounds on the success probability Pr(Gi |o0:t), rather
than the probability itself. That is, in this section we address the following modified plan
assessment problem:

Problem 8. Given a BLN model and observations o0:t obtained up to time point t,
compute “soft” lower and upper bounds p∗l and p∗u on each success probability Pr(Gi |o0:t)

for all goals {Gi} of a given manufacturing plan P , such that p∗l ≤ Pr(Gi |o0:t) ≤ p∗u holds
with a predefined probability γ.

The bounds p∗u and p∗l are “soft” because it is not guaranteed that the success probability
Pr(Gi |o0:t) is within these bounds. Only a stochastic guarantee is given that the success
probability is within the bounds with coverage probability γ. The coverage probability is
a parameter, to be specified beforehand by the user. The higher this probability is chosen,
i.e. the more sure we want to be, the more samples must be generated. The bounds form
what is called a confidence interval. Next, we will see that the bounds we seek are given
by the so-called Clopper-Pearson interval [39], defined for Bernoulli-distributed Boolean
random variables.
The key to computing the bounds is the fact that sampling induces a distribution

over potential probability values for the success probability we are interested in. With
this distribution the bounds can be computed analytically using the inverse cumulative
distribution function of this distribution.

Before we start, we have to analyze the relationship between a goal Gi and its success
probability Pr(Gi |o0:t). Goals are defined as tuples (l, t) of PHCA locations l that should
be marked at some time t. In both our approaches this boils down to being encoded as a
binary variable Xt

l , which takes values from domain {marked, unmarked}. It is a binary
random variable that is Bernoulli-distributed with parameter p = Pr(Gi |o0:t) = Pr(Xt

l =

marked |o0:t). The distribution over a binary variable with probabilities p and 1− p is
called Bernoulli-distribution.
When we sample full assignments of the BN generated from the PHCA that contains

location l, this implies sampling the variable Xt
l according to its (unknown) success

probability. This process of sampling a binary random variable corresponds to the
stochastic Bernoulli-process (which is, formally, a finite or infinite sequence of independent
Bernoulli-distributed binary random variables, each having the same parameter p). It
is usually imagined as repeatedly flipping a coin that is potentially unfair (as p could
take other values than 1

2). The sampling generates a number of Xt
l = marked assignments

and a number of Xt
l = unmarked assignments, a and b, respectively. These numbers are
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the parameters of the distribution over potential success probability values we talked
about. The distribution is the beta distribution, if we assume that the potential success
probability values, i.e. parameters p, are uniformly distributed when we have no samples
[22, pp. 67–74]. The cumulative distribution function of the beta function is given as the
regularized incomplete beta function.

Clopper and Pearson introduced a specific type of confidence interval for p, with bounds
derived from the inverse regularized incomplete beta function: the Clopper-Pearson
interval [39]. It allows us to analytically compute stochastic bounds for p.

Theorem 3. The bounds p∗u and p∗l on success probability Pr(Gi |o0:t) are given by the
Clopper-Pearson interval [39].

Proof. Let G be a Bernoulli-distributed Boolean random variable with parameter p, which
is being sampled in a Bernoulli-process, counting appearances of G = true and G = false

as a and b, respectively. Let γ be the coverage probability. Then the Clopper-Pearson
interval defines bounds p∗l = F−1

a,b,γ(1 − α
2 ) and p∗u = F−1

a,b,γ(α2 ), where α = 1 − γ and
F−1
a,b,γ = I−1

a+1,b+1, I being the regularized incomplete beta function; I−1 is thus the
inverse of the cumulative distribution function (CDF) of the beta distribution. Any
plan assessment goal Gi = (l, t) has an associated Bernoulli-distributed Boolean random
variable Xt

l with parameter p = Pr(Gi |o0:t). We sample trajectories that correspond to
the observations and entail assignments to Xt

l . Therefore, the trajectory sampling can be
seen as a sampling of Xt

l . The sampling yields n samples, nXt
l
goal-achieving and n−nXt

l

goal-violating. If we now set G = Xt
l (assuming an appropriate mapping of domains),

a = nXt
l
, b = n− nXt

l
, the theorem follows.

We quickly recap the formalities of how this works. To abbreviate, we denote the random
variable Xt

l as G (for goal). As mentioned, the quantities nG, n− nG determine a beta
distribution over p [22]. The cumulative distribution function FnG,n−nG(x) = Pr(p ≤ x)

allows to compute the probability that p is at most x. Observe now that the complement
of the given γ = Pr(p∗l ≤ p ≤ p∗u), i.e. the probability that p is outside the bounds of
the interval, can be written as Pr(p < p∗l ) + Pr(p > p∗u) = 1 − γ = α. We can rewrite
this equation as Pr(p ≤ p∗l ) + 1− Pr(p ≤ p∗u) = α, where all probabilities are represented
through the cumulative distribution function FnG,n−nG(x). Now we can use the inverse
cumulative distribution function F−1

nG,n−nG(y) to compute the bounds p∗l and p∗u. Except
in extreme cases, we can assume that α is to equal parts composed of Pr(p ≤ p∗l ) and
1 − Pr(p ≤ p∗u), i.e. Pr(p ≤ p∗l ) = α

2 = 1 − Pr(p ≤ p∗u). Resolving for p∗l yields
p∗l = F−1

nG,n−nG(α2 ) and for p∗u gives p∗u = F−1
nG,n−nG(1− α

2 ).
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Table 7.2.: Confidence intervals on success probabilities for the mazes in scenario 1 ob-
tained with likelihood weighting and exact results obtained through variable
elimination. The first two rows show results for two different coverage rates γ.
The last row shows the runtimes in seconds for both coverage rates.

coverage Number of samples Exact
rate γ 100 2500 10000
0.95 mazeOK(M2,T7) [0.002, 0.054] [0.035, 0.051] [0.035, 0.042] 0.039

mazeOK(M1,T9) [0.593, 0.772] [0.591, 0.629] [0.587, 0.606] 0.604
mazeOK(M0,T5) [0.000, 0.029] [0.000, 0.001] [0.000, 0.000] 0.000

0.999 mazeOK(M2,T7) [0.010, 0.162] [0.030, 0.057] [0.035, 0.048] 0.039
mazeOK(M1,T9) [0.359, 0.677] [0.573, 0.637] [0.594, 0.626] 0.604
mazeOK(M0,T5) [0.000, 0.066] [0.000, 0.003] [0.000, 0.001] 0.000
runtime 0.06 1.61 6.24 58.76

0.06 1.52 6.00 58.76

Of course we would like to have as narrow intervals as possible. Increasing the number
of samples gives us narrower intervals. Thus, a practical stop criterion for sampling
algorithms is to predefine the size of the interval to be sufficiently small, and then sample
until the interval is narrower than this predefined size. Note that an estimate for the
success probability itself can be computed in the usual way by dividing the number of
goal-achieving samples by the number of all samples, Pr(Gi |o0:t) ≈ nG

n .

The above applies to rejection sampling, where nG
n is indeed the estimate. However,

applying more advanced importance sampling techniques such as sample search require
only a simple adaptation. The count nG must be replaced with np̃, where p̃ is the estimate
of the importance sampler.

7.2.2. Experimental Results

We inferred the success probability of mazes for three different scenarios, with corre-
sponding ground BNs instantiated from the manually created BLN model shown in
section 3.7. Remember that this hand-crafted model abstractly models multiple possible
scenarios. The three mentioned sampling algorithms [71, 70, 75] were tested, most notably
SampleSearch. The results presented in tables 7.2 and 7.3 are those obtained within
our joint work [118], where we ran Java implementations of the algorithms on an Intel
core2duo with 2.53 Ghz and 4GB of RAM. The algorithms were implemented by Dominik
Jain and are publicly available in his BLN toolbox2.

2http://www9-old.cs.tum.edu/people/jain/dl.php?get=probcog (06.2011)
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In all three scenarios there were two machining stations (Mach0/1) and one assembly
station (Assembly0). Remember that here we denote time points as entities T1, T2, T3
and so on. Also, since we consider manufacturing, plans P are again schedules.

1. In the smaller scenario 1 (size 310 BN nodes) Mach0 has become faulty. Its schedule
ranges over nine time points for three mazes (Maze0/1/2). Observations have been
made up to T4, and a force alarm was triggered at T4 while the assembly station
was pushing pins into Maze0.

2. In scenario 2 (520 nodes) Assembly0 is faulty. Here, four mazes (Maze0/1/2/3) are
scheduled, covering 12 time points. Observations are available up to T8. The pin
assembly is done at T4, T6 and T8 for Maze0, Maze2 and Maze1 respectively. A
force alarm is observed at all three time points.

3. Scenario 3 (520 nodes) is similar to the former, with the difference that again Mach0
is faulty. Consequently, at T8 no force alarm is triggered. In all scenarios Maze0
and Maze2 are cut on Mach0, while Maze1 and (in scenarios 2 and 3) Maze3 are cut
on Mach1. Further, Maze0/1/2/3 should be finished by T5/9/7/12, respectively.

For these scenarios, good intervals (γ = 0.95, width less than 0.01) can already be retrieved
in under a minute, sometimes even in under a second (scenario 2, SampleSearch), with
less than 1000 samples as can be see from table 7.3. This table presents results from
comparing the three sampling algorithms we used. We also see that it seems, depending
on the scenarios, SampleSearch is not always the best algorithm: for scenarios 1 and 2
SampleSearch is best, while for 3, likelihood weighting is the better choice. A reason
might be that the SampleSearch implementation used here uses simple backtracking to
search for consistent assignments. We expect much better performance for SampleSearch
implementations that employ more sophisticated constraint reasoning methods. Trying
this is definitely a worthwhile future research direction.

Table 7.2 illustrates how choosing stricter coverage probabilities γ widens the interval.
It also confirms that increasing the number of samples results in better intervals.

7.3. Towards Plan Assessment with Hybrid Models

Real-world technical systems such as factory plants often have components like tanks
for liquids or gases. These types of components are often more conveniently modeled

3Backward simulation did not produce any results for scenario 3, because the problem was too ill-
conditioned, such that no countable samples could be generated. SampleSearch does not have this
problem and will always generate usable samples much quicker.
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Table 7.3.: Comparing algorithms on scenarios 1 / 2 / 3 (columns) by average number
of samples (above) needed to reach a target confidence interval width, and
runtime in seconds (below). The interval is termed I. Different rows show
different interval width’.

Algorithm
maxI |I| likelihood weighting backward simulation SampleSearch

≤ 0.025
5900
3.61

320
0.90

2020
3.82

5820
1.23

200
5.44

-3

-
6180
0.84

200
0.06

1380
13.27

≤ 0.01
36800
22.42

1000
2.67

11800
21.47

37280
7.00

300
7.56

-
-

38440
4.76

660
0.16

5080
42.08

≤ 0.0025
588020
384.38

17420
50.06

185820
362.08

588860
111.95

1200
31.75

-
-

614700
79.70

6460
1.40

181320
1551.25

with continuous rather than discrete variables, for example reals. A common example
are filling stations such as the one depicted in figure 7.4. Shown is a photograph of a
small, industrial plant that fills a granulate material (simulating liquids) into glass bottles.
The plant was built for student training purposes at the engineering department of the
Technische Universität München, and is described in detail in [54]. If, for example, we
want to model the fill level of the tanks in this plant, it is more convenient to describe the
fill level and its behavior over time with a real-valued variable and a differential equation
over that variable, rather than hand-crafting a finite state machine.

The PHCA formalism allows to define complex, parallel running components such as
stations working different products. However, it does not allow modeling with real-valued
variables and differential equations. In this section, we further extend our model-based
diagnosis approach to plan assessment towards hybrid models. These are models that
encompass finite/discrete as well as continuous variables. We present a revised version of
work published in [119], which introduces a hybrid extension to PHCA, namely Hybrid
PHCA or HyPHCA. It allows continuous modeling with linear ordinary differential
equations (linear ODE).

Hybrid models define an infinite number of possible trajectories. The problem is
therefore to make computing of most probable trajectories tractable, in order to compute
solutions to, for instance, the plan assessment problem. We address this problem with
an abstraction-based approach that combines concepts, techniques and formalisms from
AI (constraint optimization, hidden Markov model reasoning), fault diagnosis in hybrid
systems (stochastic abstraction of continuous behavior), and hybrid systems verification
(hybrid automata, reachability analysis). The approach automatically converts a Hybrid
PHCA into a discrete model, which is then further converted into a constraint net. From
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Figure 7.4.: Filling station with a) a conveyor belt that brings empty bottles, b) a swivel
that moves the bottles below the nozzle of the silo and c) a photo sensor that
gives a signal if the silo is empty. The bottles are placed upon the swivel by
a pneumatic arm, which is not in the picture (it is behind the silos).

here, we can proceed as described in section 5.2, i.e. the constraint net is fed into a
constraint solver to compute solutions for the plan assessment problem. Results with a
model of the filling station shown in figure 7.4 demonstrate that the approach can be
used to compute most probable diagnoses.

The key difference to similar existing approaches (which we describe in the next section)
is that we do not develop special algorithms for one particular model framework (e.g.
HyPHCA), but instead try, in line with the general theme of this thesis, to exploit off-the-
shelf tools and general frameworks to compute solutions. Chiefly, we exploit constraint
optimization [127] by using the constraint solver Toulbar2, but we also use existing
solutions for other steps in our abstraction-based approach where possible. This avoids
reinventing the wheel and it becomes easier to stay up-to-date with recent developments.
In software engineering terms, we achieve a deeper separation of concerns with our
approach. Furthermore, by extending PHCAs, a modeling framework which is explicitly
designed for model-based development of embedded systems, we are moving closer to the
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over-arching ideal of one-model-fits-it-all, i.e. from system design to online model-based
monitoring and control.

Before detailing the extension of PHCA and our abstraction-based approach, we
introduce an example for a hybrid system and give a quick introduction to hybrid
diagnosis, covering relevant state-of-the-art in the field.

7.3.1. A Filling Station as Hybrid System Example

As an example we use the previously mentioned plant, which is primarily composed of a
filling station. The station fills a granulate material in small bottles, which are transported
to and away from the station on a conveyor belt. A pneumatic arm moves bottles from
the conveyor onto a swivel and back when they are finished. The swivel positions the
bottles below a silo, where they are filled by a screw mechanism powered by an electrical
motor. A photo sensor (binary signaled) indicates when the silo is empty.

We created a simplified model of the filling station (shown in figure 7.5), which models
a silo, the filling mechanism with the electric motor and the silo sensor. Just as previously
done for plan assessment, all these components are modeled as composite locations of
a PHCA model, their respective behaviors (including potential faults) as locations and
probabilistic transitions between them. For example, initially the filling station waits
(location Wait is marked) until the command is given to switch the motor on with the
aim to fill a bottle. Upon this command the station transitions to location Fill, which
means the bottle is being filled. Should the silo become empty during filling, the station
transitions to location Empty.

We also need to model the silo’s fill level. It is convenient to model it continuously:
the filling is modeled with a differential equation U̇lvl = −fR, where fR is the constant fill
rate. To test and demonstrate the capability of our approach, we use the more complex
(although still linear) equation U̇lvl = −fR · Ulvl. Combining these equations with the
PHCA model of the components gives us a hybrid model: a hybrid PHCA, or HyPHCA
for short.

We also modeled potential faults of the station components, the silo and the sensor.
Within the silo component the electrical control of the motor might fail, causing it to
ignore any issued commands and keep running. As a result of that fault the silo is
continuously being emptied. We refer to this fault as the motor-switch-fault. The sensor
component might fail in three different ways. It might be stuck on, stuck off, or show
some unknown fault behavior. If stuck on, the sensor always signals an empty silo, and
accordingly a non-empty silo if stuck to off. An unknown fault is modeled by allowing
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Silo

Wait

Start

Failure: Motor-switch-fault

NotEmpty Empty

Start

WaitRefill

Fill Empty

Sensor

Nominal

Start

Failure: Stuck-on

Failure: Stuck-off

Failure: Unknown

Figure 7.5.: HyPHCA modeling the silo and the silo empty sensor of a filling station.

Figure 7.6.: Rough architecture of hybrid diagnosis based on hybrid estimation.

just any possible assignment to the sensor’s In,Out variables. We refer to these three
faults as s-on, s-off and s-unknown.

The complete model is shown in figure 7.5. The formal definition of hybrid PHCA
will be given shortly; first, we give a quick overview of reasoning with hybrid models,
especially hybrid diagnosis.

7.3.2. Hybrid Discrete/Continuous Model-Based State Estimation and
Diagnosis

We know from section 4.4 that plan assessment is strongly related to diagnosis and state
estimation. When it comes to hybrid models, a well studied problem in the literature
is known as hybrid diagnosis. It is composed of two steps: First, estimating the current
most likely hybrid state or estimating a most likely sequence of hybrid states or modes.
This step is called hybrid estimation. Second, based on this estimate, compute a set of
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Figure 7.7.: A hybrid state consists of a discrete mode and a continuous state. The
discrete mode represents a set of discrete states.

l faults F = {fi1 , . . . , fil}. A system operating nominally is simply represented by an
empty fault set F . Figure 7.6 illustrates the hybrid diagnosis process.

7.3.2.1. Hybrid Estimation and Diagnosis

Estimating the hybrid state of a system based on a hybrid model is an instance of belief
state estimation. That is, we want to compute a distribution over model states. We
assume that we have modeled our system with a hybrid discrete/continuous model M ,
and that we have observations o0:t for t time points. Then the task of hybrid estimation
is to compute P (X |o0:t).

X is a random variable which either represents the hybrid state or a sequence thereof
(of predefined length, a time window). The hybrid state of a system is a tuple (m,u),
where m is the current discrete mode (such as ascending for a plane, or filling for a filling
station currently filling a bottle) and u a vector of (usually) real values representing the
continuous state of a system (e.g., velocity, acceleration, fill level, etc.). The mode itself
typically represents a set of discrete states. For example, the locations in PHCA models
represent modes of a system or system component. Figure 7.7 shows an overview diagram
of hybrid state, mode, discrete and continuous states.
The set of possible hybrid states is defined through the hybrid model M . A well

known formalism for hybrid models are hybrid automata, as introduced in [83]. Hybrid
automata are a combination of finite state machines with differential equations, where the
former model potential modes and transitions between them, while the latter describe the
evolution of continuous variables in the model. In this work a variant of hybrid automata
is used to define models. Note that the term “model” is very broadly used. In [126], for
example, a sequence of modes is called “model”. In our case, “model” refers to a hybrid
automaton type of state machine (A PHCA for example), if not stated otherwise.
Systems that lend themselves to hybrid modeling are called hybrid systems. In such

systems the two major issues of uncertainty and complexity are just as pressing as in
discrete models, often even more so. Uncertainty occurs in the observations made and
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during the discrete/continuous evolution of the system. This is especially a problem if
faults manifest themselves through small deviations of continuous signals. The problem
here is to filter out noise as well as (possibly nondeterministic) mode switches. Complexity
reveals itself through the number of possible modes, which grow quite large quickly [87].
This poses the problem of making hybrid state estimation tractable by approximating
the distribution P (X |o0:t). One well known approach to approximation is to compute
and track the k most probable hybrid states or sequences of hybrid states [87]:(

argmax[j]
x

P (X = x |o0:t)

)
j∈{1,...,k}

The hybrid diagnosis task is, given a hybrid estimate, to identify a minimal set of l
faults F = {fi1 , . . . , fil} which explain off-nominal behavior, e.g., signal-deviations. In the
simpler case the model specifies fault modes, which then can be read from the estimated
hybrid state or state sequence. In case a given model does not explicitly specify fault
modes the task becomes more complicated. However, since in this work we assume fault
modes to be specified in form of special PHCA locations, we focus on the former case.

7.3.2.2. State-of-the-Art in Hybrid Estimation and Diagnosis

Hybrid systems have long been at the center of interest in model-based verification and
increasingly gain attention in areas such as model-based diagnosis, or in general where
system models guide problem solving. Henzinger introduced the formalism of hybrid
automata as a modeling framework for hybrid systems [83], which is nowadays a widely
accepted standard not only in hybrid systems verification. Recent advances in modeling
concurrent stochastic hybrid systems have been published by Alur et al. [6, 19].

The hybrid diagnosis problem was formulated [126], which is to identify the most
probable sequence of modes over time and a set of associated candidate qualitative
diagnoses that are consistent with that sequence and available observations. A candidate
qualitative diagnosis defines a fault mode, the time of the fault’s occurrence and parameters
associated with that mode. Parameters specify the continuous behavior in any given
mode. As solution approach, the authors propose a two-step approach: in a first step
techniques from qualitative reasoning are exploited to identify an initial set of candidate
qualitative diagnoses with their associated mode sequences. This greatly reduces the
search space of possible mode sequences and parameters. Then, these sequences are
refined using parameter estimation and model fitting techniques (“Model” here referring
to a mode sequence).
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More recent works that combine qualitative with quantitative reasoning for hybrid
diagnosis are [43] and [44]. In [43] the authors present a qualitative approach to isolate
multiple faults in continuous systems based on analyzing the deviations of measurements.
They specifically address the problem of faults masking or compensating each others’
effects. In [44] the same authors use a qualitative abstraction of measurement deviations
for hybrid diagnosis.

An often employed class of approximate algorithms for state estimation problems with
hybrid models is particle filtering [55]. The general approach works iteratively from time
point to time point, computing a distribution over system states for the given time point
from observations for the current time point and the distribution from the previous time
point. Unlike other such recursive methods, e.g. hidden Markov model filtering, the
distribution is approximated based on sampling from the previous distribution. Each
sample forms a particle that represents a specific potential system state. A second
sampling step focuses the particles on those areas of the state space that assign the
highest likelihood to the observations of the current time step. Such a particle filtering
algorithm has been applied to hybrid diagnosis in [105]. Specifically, the authors address
a hybrid estimation problem for systems with distributed resources. They introduce an
approach that uses two different models for the same system: a more abstract, qualitative
model, and a finer, hybrid model.

A work that addresses the scalability issues for systems with a large number of possible
modes is [87]. The authors propose a method that tracks only the k most likely trajectories
of a system, based on system models that are related to PHCA. They combine them with
linear continuous models and use Kalman filters to track continuous behavior with the
latter. Additionally, the authors address the problem of unknown failures or events by
introducing modes that do not impose any restrictions on model variables, i.e. “everything
is possible” in these modes.

The hitherto referenced works have addressed problems involving hybrid models with
methods and algorithms that more or less work directly on the hybrid models. An entirely
different approach is to convert a hybrid model into a purely discrete one and then apply
methods that work with discrete models. We base our own work on such a discretization
step, which was introduced together with the concept of stochastic automata in [115].
The authors formulate a method that automatically generates probabilistic state machines
(which are discrete in nature) from hybrid system dynamics. A more detailed and recent
description of this method can be found in [23, chapter 9]. In our approach for hybrid
PHCA, we modify this method by combining it with reachability analysis from verification,
implemented in a freely available tool called PHAVer [67]. The advantage over methods
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like the ones described above is that we can readily combine this with the constraint
optimization used in our model-based diagnosis approach for plan assessment, described
in section 5.2.
The works referenced so far (and also this work) make the assumption that certain

technical systems are better suited for hybrid modeling than for discrete modeling. In
[76] the very question of suitability for one or the other is addressed. That is, the work
asks which systems are “not suitable” for discrete modeling, and thus should be modeled
“hybridly”, i.e. with parts being described with continuous variables and differential
equations.

7.3.3. Compiling Hybrid PHCA to Discrete Constraint Nets

As an approach to compute solutions to the plan assessment problem for hybrid models,
we propose to convert the continuous parts of a hybrid system model, described with
linear ODEs, to discrete Markov chains. These are then recombined with the discrete rest
of the system model, rendering it a completely discrete model. Our approach integrates
the discretization method from [115] with the earlier described translation to constraint
nets, allowing for an approach to hybrid plan assessment that builds on the constraint
optimization approach described in 5.2. The hybrid models that form the input for our
approach are described as hybrid PHCA, which we describe next.

7.3.3.1. Hybrid PHCA

We define Hybrid Probabilistic Hierarchical Constraint Automata (HyPHCA) in style of
the well known hybrid automata [83], i.e. a combination of state machines with differential
equations. They combine the modeling power of PHCA [162] with linear ODEs. Linear
ODEs are a widely used standard for modeling continuous system evolution. A linear ODE
is of the form U̇ = aU + b, where U is some real-valued variable and a, b are constants.
When modeling a system, typically a vector of real-valued variables U = [U1, . . . , Un]T

describes the system’s continuous state. Its time-continuous evolution is consequently
expressed with a set of linear ODEs, which written in vector form yields the equation
U̇ = AU+b, with vectors U̇ = [U̇1, . . . , U̇n]T and b = [b1, . . . , bn]T and the n×n-matrix
A for all coefficients a. Following our notations in this work, we will use indexed capital
letters to denote real-valued variables, e.g. U1, U2, . . . , Ui, . . ..

Definition 4. Hybrid Probabilistic Hierarchical Constraint Automata (Hy-
PHCA) A HyPHCA is a tuple HA = 〈Σ, PΞ,Π,U , C, CU ,F , PT , st0U ,4t〉 where

• PT ,Σ, PΞ, Π and C are analog to the PHCA definition.
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• U = U ∪ U̇ ∪U ′ is a set of real-valued variables U = {U1, . . . , Un}, their first deriva-
tives U̇ = {U̇1, . . . , U̇n} and a set of reset variables U ′ = {U ′1, . . . , U ′n} representing
values of U right after discrete transitions.

• CU is a set of constraints either over real-valued state variables U or real-valued
reset variables U ′. Constraints over U take one of the forms Ui = a, Ui < a, Ui ≤ a,
Ui > a, Ui ≥ a. Constraints over U ′ take the form U ′i = a. The latter assignment
means to reset the state variable Ui with constant a at the next time step. The
function fCU : Σ ∪ T → CU associates locations or transitions with constraints
from CU . Usually, we write CU (l) instead of fC(l) to denote the constraint for some
location l ∈ Σ, and likewise CU (τ) instead of fC(τ) to denote the guard for some
transition τ ∈ T .

• F is the set of constraints over real-valued state variables and their derivatives
U ∪ U̇ in the form of linear ordinary differential equations. The function fF : Σ→ F
associates a location with a set of such differential equations, fF (l) ≡ U̇l = AlUl+bl.
As with C, we usually write F(l) instead of fF(l) to denote the set of differential
equations for some location l ∈ Σ. The continuous flow fUl

: R→ Rn of a location l
is given as a solution of the differential equations (n is the number of state variables
in vector Ul).

• st0U is an initial assignment to the continuous state variables.

• 4t is the constant time interval between two consecutive transitions.

Guards for transitions of a HyPHCA may now include continuous variables from U and
U ′. Like PHCA, HyPHCA are defined for discrete time steps. PHCA do not explicitly
specify a clock interval. Since with HyPHCA we consider continuous evolution over
time, we have to make that interval explicit in the form of 4t. Finally, when creating a
HyPHCA model on must pay attention to a number of things:

• F(l) must be defined such that locations that may be marked in parallel do not
share continuous variables.

• Guard constraints must be defined such that events/transitions occur only aligned
with the discrete time points t0 + k4t.

• If transition guards can become entailed because of continuous states (e.g. U = 0),
then the respective continuous variables must be reset as needed.
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Algorithm 7.2 HyPHCA unroll function that creates all possible sequences of states of
a given HyPHCA model. The operator ^ concatenates tuples.
1: function unrollHyPHCA(HA, ct0:tN , 4t)
2: S ← {(st0U ,mt0) |mt0 is an initial marking of HA}
3: for i = 1 .. N do
4: for st0:ti−1 ∈ S do
5: 〈(st0U ,mt0), . . . , (s

ti−1

U ,mti−1)〉 ← st0:ti−1

6: Q← {Step(mti−1 , MPHCA,cti , T ) |T ∈ PT }
7: S′ ← {st0:ti−1 ^ 〈(executeFlow(sti−1

U ,mti−1 ,mti ,4t),mti)〉 |mti ∈ Q}
8: end for
9: S ← S′

10: end for
11: return S
12: end function
13: function executeFlow(sti−1

U ,mti−1 ,mti ,4t)
14: L← {(source(τ), τ) | τ is a transition between locations l1 ∈ mti−1 and l2 ∈ mti}
15: for (l, τ) ∈ L, F(l) 6= ∅ do
16: u

ti−1

l ← sub-assignment from s
ti−1

U for location l
17: util ← (uti1 , . . . , u

ti
nl

)← fUl
(u

ti−1

l ,4t)
18: if scope of guard C(τ) contains reset variables {U ′j ∈ U ′} then
19: for all j do . Reset values override values from flow.
20: util ← (uti1 , . . . , u

′
j , . . . , u

ti
nl

)
21: end for
22: end if
23: stiU ← stiU ^ util
24: end for
25: return stiU
26: end function
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Figure 7.8.: Reachable set Rstart for U̇lvl = −fR ∗ Ulvl starting from the marked grid cell
Gstart,ti . Right: the derived PHCA AMarkov

4t .

Next we define HyPHCA states and trajectories with an unrolling function that extends
the PHCA semantic specified in algorithm 4.1 in section 4.

This unroll function for HyPHCA shown as algorithm 7.2 extends PHCA unroll in
that it additionally executes the continuous flows of locations that have one. It thus
creates for a given HyPHCA HA and given commands the set of all possible trajectories
of length N . This set is non-empty as long as the differential equations have a solution
(which is the case for linear ODEs). Each trajectory θHA = 〈(st0U ,mt0), . . . , (stNU ,mtN )〉
is a sequence of HyPHCA states st = (stU ,m

t), where stU ∈ R|U | is an assignment to all
variables u ∈ U at time t, called continuous state, and mt ∈M a marking analogous to
PHCA markings (withM⊆ 2Σ the set of all markings).

The function executeFlow uses the continuous flow fUl
of locations l (in case they

have associated differential equations F(l)) to map the current continuous state to the
continuous state for the next time point (line 16). This happens synchronously with
the discrete transitions of the system. In case transition guards reset continuous state
variables via constraints of the form U ′ = a, the reset values a override respective values
that result from the continuous flow (lines 18 – 20). The operator ^ in lines 7 and 22
concatenates tuples.

7.3.3.2. From Hybrid to Abstract Discrete Models

The core idea behind our translation approach is to abstract continuous dynamics with
Markov chains. For example, consider the case when the silo of our filling station is
being emptied (see figure 7.8). Its dynamics over a period of time 4t define a continuous
trajectory in the continuous space of the model. In a first step this space is mapped onto
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a discrete space, a grid in our case. The initial fill level now falls into one of the grid
cells, the final into another. These grid cells represent the abstracted initial and final fill
levels respectively. We can see these grid cells as connected locations of an automaton,
connected because the dynamics dictate that from the given initial fill level we will arrive
at the final fill level.
What if the initial fill level was only slightly different, such that we would start in

the same abstract location? The continuous trajectory for that fill level might end in
a different cell, just next to the target cell for the previous initial fill level. So at the
abstract, grid cell level, the initial cell must also be connected to a different target cell. If
we only know about the abstract initial cell, we are uncertain about the target cell that
we will end up in. At this point, probability is used as a means of abstractly representing
this uncertainty. To determine these probabilities, we look at where the continuous
trajectories for all initial fill levels within a single grid cell lead to. All the cells being “hit”
by these trajectories become target locations for the corresponding location representing
the abstract initial fill level. From the “area” which the trajectories cover within a specific
target cell we derive the probability for the transition leading to the corresponding target
location. Of course, we cannot really handle all these trajectories one by one, as there are
uncountably many. The approach is to use over-approximations that enclose the set of all
trajectories.

The mentioned automaton that is being created encodes a Markov chain, which in turn
is a probabilistic abstraction of the continuous behavior. This automaton is a special
PHCA, so the idea suggests itself to replace the locations with continuous dynamics in
the original HyPHCA with locations that contain the abstracted dynamics as composite
sub-location, thus forming a completely discrete PHCA. However, two non-trivial issues
in conjunction with the hierarchical nature of PHCA complicate the matter:

1. One problem is that the PHCA formalism doesn’t allow transitions originating from
a composite location l ∈ Σc, they must originate from primitive locations within l. If
discretized continuous dynamics, encoded as a composite location, are to be inserted
into a location that is primitive in the original HyPHCA, its outgoing transitions
must be adapted. That is, they must receive as sources primitive locations of the
composite location encoding the dynamics.

2. A second, more demanding problem is this: Let’s assume we simply embed continu-
ous dynamics of some variable Ui, discretized as a sub-PHCA AUi , into a location l,
rendering this a composite location. The PHCA marking semantics demand that
sub-locations of l can only be marked when l itself is marked. Let’s further assume
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that l is marked at tj and that a transition occurs such that l is not marked at tj+1.
Specifically, all locations of Au are unmarked at tj+1. The problem is to determine
the value of variable XUi (the discretization of Ui) for tj+1. It should be a result
of the dynamics encoded in AUi , which however requires one of its locations to be
marked.

Both of these issues would result in very complicated translation steps, possibly creating
many additional transitions. Therefore, we chose a simpler approach, which involves an
intermediate construct called discrete flow PHCA (dfPHCA). This construct represents
discretized continuous dynamics explicitly as so-called discrete flow constraints. If we see
the discretized dynamics as special PHCA, these constraints encode only the distribution
PT over transition functions of this PHCA. Their main advantage is that they can be
encoded as soft constraint functions with only minor adaptation, which yields a very
compact encoding.

Our approach is thus to convert each continuous flow occurring in some location l in a
HyPHCA into a discrete flow of a corresponding location in a dfPHCA. The process is
illustrated in figure 7.9. The dfPHCA is then directly translated to a soft constraint net,
using a modified version of the translation described in [129]. From here, the approach to
plan assessment as described in 5.2.3 takes over. Next, we define discrete flow PHCA.

Discrete Flow PHCAs The evolution of a continuous variable u ∈ U in between two
time points ti and ti+1 is mapped to a discrete transition between the quantized states of
u at time ti and time ti+1 (given a predefined quantization). These discrete evolutions
are encoded as discrete flow constraints of a discrete flow PHCA (dfPHCA).

Definition 5. Discrete flow PHCA A tuple Adf = 〈Σ, PΘ,Π,ΠU , C,Fd, PT , st0ΠU ,4t〉
is called a dfPHCA (parameterized with fixed-length time interval 4t), where:

• Σ, PΘ,Π, PT ,4t are analog to the HyPHCA definition.

• ΠU = ΠU ∪ΠU ′ is a set of finite domain variables. It is analogous to U of a HyPHCA,
with the exception that no analog for the derivatives exists.

• Fd is the set of discrete flow constraints. A discrete flow constraint encodes the
discrete abstraction of some continuous flow constraint as probability distribution
PT over transition functions T : ΣA → 2ΣA of a Markov chain AMarkov

4t . ΣA is the
set of possible states of AMarkov

4t . The function fFd : Σ → Fd associates locations
with constraints in Fd over the discrete flow variables of these locations. We usually
will write Fd(l) instead of fFd(l).
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Fill

U̇lvl = −fR ∗ Ulvl

HyPHCA

Feed into PHAVer

Reachable sets

Markov chain abstraction

Discrete flow
constraint

Fd(Fill) (encoding
Markov chain)

Fill
Fd(Fill)

dfPHCA

Figure 7.9.: Illustration of the discretization process: the continuous dynamics of loca-
tion Fill, described by a differential equation, is fed into the verification
tool PHAVer, which conservatively abstracts the dynamics by computing
reachability sets, i.e. polyhedrons that enclose all reachable continuous states.
Then, the Markov chain is generated from these reachability sets and the
discrete flow constraint is derived.

• C is a set of constraints over finite domain variables Π and ΠU .

• st0ΠU is a combined discrete initial state for the discrete flow constraints.

The unroll semantic for dfPHCA is analogous to the one of HyPHCA, only that instead of
a continuous flow its discretization is being executed. This step is encapsulated in function
executeDiscreteFlow shown as algorithm 7.3. This function maps the discretized
states sti−1

ΠU
to states in the next time step. A crucial difference to executeFlow is that

due to over-approximation the discrete flow may result in multiple discretized follow-up
states stiΠU . For all locations l the function iteratively applies all possible transition
functions Tl of the discrete flow Fd(l) (line 8), resulting in partial follow-up states xtil .
While doing that it forms the possible combinations of the states xtil across all locations l
(lines 14–18). The result is the set S of all possible follow-up states stiΠU .

With executeDiscreteFlow in place of executeFlow, algorithm 7.2 creates for
a given dfPHCA all dfPHCA trajectories θ = {sti , sti+1 , . . . , sti+N } of length N , with
dfPHCA states sti = (stiΠU ,m

ti). Here stiΠU is an assignment of values to discretized
continuous variables Xu ∈ ΠU at time ti, and mti a marking analogous to PHCA states.
To avoid confusion when denoting trajectories of a particular formalism, we write θx

with x = Adf ,HA for dfPHCA and HyPHCA trajectories, respectively.
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Algorithm 7.3 Function to execute the discrete flows of a dfPHCA.

1: function executeDiscreteFlow(sti−1

ΠU
,mti−1 ,mti)

2: L← {(source(τ), τ) | τ is a transition between locations l1 ∈ mti−1 and l2 ∈ mti}
3: S ← ∅
4: for (l, τ) ∈ L do
5: Sl ← ∅
6: for all transition functions Tl of discrete flow Fd(l) do
7: x

ti−1

l ← sub-assignment from s
ti−1

ΠU
for location l

8: xtil ← (xti1 , . . . , x
ti
nl

)← Tl(x
ti−1

l , true)
9: if scope of guard C(τ) contains reset variables {X ′j ∈ ΠU ′} then

10: for all j do . Reset values override.
11: xtil ← (xti1 , . . . , x

′

j
, . . . , xtinl)

12: end for
13: end if
14: if S = ∅ then . Concatenate possible discrete flow states at ti.
15: Sl ← Sl ∪ {xtil }
16: else
17: Sl ← Sl ∪ {stiΠU ^ xtil | s

ti
ΠU
∈ S}

18: end if
19: end for
20: S ← S ∪ Sl
21: end for
22: return S
23: end function
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Converting HyPHCAs to Discrete Flow PHCAs The conversion is illustrated in figure
7.10. Before we go into the details of this process, we define further required entities. For
a transition τ we denote with source(τ) and dest(τ) its source and destination location,
and with guard(τ) its guard constraint. Let HA = 〈Σ, PΞ,Π,U , C, CU ,F , PT , st0U ,4t〉
be an arbitrary HyPHCA. GR|U| = {Gλ} denotes a set of disjunct grid cells, also
called quantization cells, partitioning the continuous state space of HA:

⋃
λGλ = R|U|.

We call this set the quantization of the continuous space of HA. Let A = Adf =

〈Σ, PΞ,Π,ΠU , C,Fd, PT , st0ΠU ,4t〉 be the dfPHCA resulting from converting HA. We will
refer to elements that both of the respective automata have, like Σ and PΞ, with the
notation HA.Σ and A.Σ, HA.PΞ and A.PΞ, etc.

The conversion of PHCA elements, that is locations, initial probability distributions,
discrete variables and transition probability distributions is straight forward: A.Σ = HA.Σ,
A.PΞ = HA.PΞ, A.Π = HA.Π and A.PT = HA.PT .

Based on the quantization GR|U| the real-valued variables U and U ′ of HA are converted
to variables with finite domains. The grid cells Gλ ∈ GR|U| are mapped onto intervals
of the variables in U and U ′. Index sets of these intervals then form the domains of the
discretized, finite domain variables ΠU and ΠU ′ . That is, the values of, for example,
a variable XUi ∈ ΠU represent intervals of corresponding variable Ui ∈ U . Discrete
versions of the derivatives U̇ are not needed, therefore ΠU = ΠU ∪ ΠU ′ forms the discrete
counterpart for U . The initial state st0U is converted to the vector of index values st0ΠU ,
which identifies the grid cell that encloses st0U . The finite domain constraints of A are
created as A.C = HA.C ∪ conv(HA.CU). The function conv, provided by the modeler,
maps the arithmetic constraints to corresponding finite domain constraints.

If a primitive location l ∈ HA.Σ has differential equations F(l), it is converted to a
discrete flow constraint Fd(l), which is added to the corresponding location l ∈ A.Σ.
The discrete flow constraint encodes the abstracted continuous flow by directly relating
variables XUj ∈ A.ΠU for two time points ti and ti+1. We will describe the process of
creating Fd(l) from F(l) in detail shortly.

A discrete flow constraint Fd(l) of some location l may conflict a guard constraint
resetting the respective variables. The semantic demands in this case that the guard
takes precedence over Fd(l) (see lines 9–13 in algorithm 7.3). An example is the guard g
in figure 7.10.

Discrete Abstraction of Continuous Flow Let l be a location of some HyPHCA HA with
associated differential equations F(l). The evolution of l’s continuous variables Ui ∈ U
in between two time points ti and ti+1 is mapped to discrete, unguarded probabilistic
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Figure 7.10.: HyPHCA (above) is converted to a dfPHCA (below).

transitions between locations of a special PHCA AMarkov
4t , encoded in Fd(l). It has only

primitive locations, corresponding to grid cells of GR|U| , and represents a Markov chain
that conservatively approximates the continuous evolution. Figure 7.8 (right side) shows
such a special PHCA.

Let ΠU be the discrete variables of the dfPHCA that results from converting HA. The
grid cells Gλ ∈ GR|U| that correspond to values of the discrete variables in ΠU form
locations of AMarkov

4t . We determine the transitions between these locations, or more
precisely their probabilities, with a conservative estimate based on the geometric shape of
the grid cells and the reachable set of grid cells. The reachable set of a grid cell is the set
that contains all points reachable from points in that grid cell via continuous HyPHCA
trajectories, for some predefined time interval. We adapt the geometric abstraction
method introduced in [115] and further described in [23, chapter 9].

We recap this method shortly. The quantized state space is combined (via cartesian
product) with a partition of the time interval [ti, ti+1], with 4t = ti+1 − ti. The finer
this partition, the more accurate the computed probabilities will be. Source locations
of transitions of AMarkov

4t are associated with quantization cells within the first partition
element in [ti, ti+1] and destination locations with the last. Currently, we ignore the
elements in between. Let now Gstart,ti be the quantization cell of start location lstart

and Gλ,ti+1
the cells of all possible destination locations lλ (with λ indexing cells and

locations). The reachable set Rstart is computed as a geometric shape, which is as small
as possible yet guaranteed to include all continuous states reachable from Gstart,ti within
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[ti, ti+1]. Now the probabilities for the transitions from lstart to destination locations lλ
are computed as

P (lλ | lstart) =
V (Gλ,ti+1

∩Rstart)

V (
⋃
x
Gx,ti+1 ∩Rstart)

.

Function V () returns the volume of the given set. The complete process is illustrated in
figure 7.8.
Our adaptation mainly lies in mapping the various computation steps to appropriate,

publicly available tools and combining them into a single conversion process. We have
chosen tools that allow for fast yet general computation: The set Rstart is computed
via reachability analysis implemented in the tool PHAVer [67]. PHAVer accepts hybrid
automatons with linear ODEs as models, and returns Rstart as general polyhedra. For the
subsequent geometric operations ∪ and ∩ we use general polyhedron algorithms provided
by the Parma polyhedra library [7]. The volumes of polyhedra, i.e. V (), are computed
with the open source tool Vinci by the authors of [33].

An advantage of this component-based approach is its flexibility. For example, for
reachability analysis different approaches can be employed. Regarding abstraction of
hybrid models, we can build on a lot of related work in the area of automated verification
of model properties. In particular, Stursberg et al. combine Markov chains abstracting
continuous behavior with a more advanced reachability analysis in [5]. They address the
problem of online verification of properties such as that the planned path of a cognitive
vehicle doesn’t cross the path of another vehicle.

Another example is the choice of the state space quantization. Since we employ very
general geometric methods, many different quantizations could be used, for example
to address the problem of spurious solutions/trajectories. A too coarse state space
quantization can lead to feasible abstract trajectories that, when projected to the hybrid
space, contain unreachable states (the experimental results demonstrate such a situation
in section 7.3.4). Currently, the right number of partitions must be determined empirically.
Hofbaur and Rienmüller introduced a method to intelligently quantize the continuous
state space based on qualitative properties of piecewise affine systems [85]. The method
might be a useful extension to our approach as it automatically chooses a good number of
partition elements, balancing precision of the abstraction against tractability, and reduces
the number of spurious solutions.

dfPHCAs as Conservative Abstraction We tested the correctness of our approach
empirically by generating a discretized model for our example HyPHCA. The reachable set
and Markov chain probabilities in figure 7.8 have been computed with our implementation.
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An open issue is the theoretical correctness of the conservative abstraction, i.e. that a
dfPHCA indeed conservatively captures all behaviors of the HyPHCA it was created from.
We do not provide a proof here as this would go beyond this work’s scope. However,

we prepare the ground for future work by presenting the proposition that formalizes the
correctness property.

For abstraction correctness, it must be shown that a dfPHCA Adf , generated as described
above from a HyPHCA HA, is a conservative abstraction in terms of the probabilities
of system trajectories. The idea is to show that all the continuous trajectories of HA
that are subsumed by a trajectory of Adf have a probability less than or equal to the
probability of the a trajectory of Adf (given observations and commands):

Definition 6. (Set of abstracted HyPHCA trajectories) Let G : DΠU → GR|U| be
a function that maps assignments to discretized continuous variables ΠU to grid cells
Gλ ∈ GR|U| . Let θAdf

be a trajectory of Adf . Then χ(θAdf
) := {θHA|∀ ti : (stiU ,m

ti) ∈
θHA ∧ (ŝtiΠU , m̂

ti) ∈ θAdf
⇒ mti = m̂ti ∧ stiU ∈ G(ŝtiΠU )} 4 is the set of all HyPHCA

trajectories abstracted by θAdf
.

Proposition 2. Let o0:t, c0:t be arbitrary finite sequences of observations oti ∈ DΠObs

and commands cti ∈ DΠCmd
and 〈ti〉 the corresponding sequence of time points. Then, for

a trajectory θAdf
consistent with o0:t, c0:t (i.e. P (θAdf

|o0:t, c0:t) > 0), the following holds:(ˆ
θHA∈χ(θAdf

)
fHA(θHA |o0:t, c0:t)

)
≤ P (θAdf

|o0:t, c0:t)

fHA(θHA |o0:t, c0:t) is the density function of a distribution over discrete-time HyPHCA
trajectories, conditioned on the sequences o0:t, c0:t.

7.3.3.3. Encoding Discrete Flow with Soft Constraints

To encode dfPHCA as constraint nets, we extended the framework described in 5.2.2 with
a soft constraint encoding of discrete flow constraints. The discrete flow constraint itself
is a function mapping discrete flow variables in Πti

U and Π
ti+1

U to transition probabilities,
and thus could be directly encoded as soft constraint. However, we have to regard that a
discrete flow is not always active. A discrete flow is active if and only if its associated
location is marked and if it is not in conflict with a guard that influences the same
discretized variables. Remember that in this latter case the guard would take precedence
over the discrete flow in determining the value of said variables. To determine when

4The hatˆis used to differentiate the HyPHCA state (stiU ,m
ti) from the dfPHCA state (ŝtiΠU

, m̂ti)
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exactly such conflicts arise, additional constraints need to be added to the constraint net.
This requires a fairly complicate encoding. A much simpler solution is possible if we can
ignore the conflicts.
The conflicts between flows and guards occur if the variables U ′ (and their discrete

counter parts ΠU ′) are used, for example to reset a variable Ui after a transition. To
avoid these variables, these kind of situations could be worked around by introducing
explicit resetting locations that have behavior constraints of the form Ui = x. Therefore,
we think avoiding variables U ′ altogether is a rather minor restriction, which allows us to
use the simpler solution. We will, however, sketch how to extend this simple solution in
order to encompass the full expressiveness of HyPHCAs.
In the simple solution, the discrete flow being active or not is formally described by

∀ti, l has Fd(l). Xti
l = marked⇔ Xti

Fd(l) = active

Since activeness depends only on location l being marked or not, we can spare the extra
variable Xti

Fd(l) for encoding activeness explicitly. Therefore we create, for each discrete

flow and for each time point, a soft constraint function over variables Πti
U , Π

ti+1

U and Xti
l .

If Xti
l = marked, this function maps partial assignments to the respective probabilities of

transitioning from Πti
U to Π

ti+1

U , as given by the discrete flow. If unmarked, all partial
assignments are mapped to 1.0, meaning that all possible transitions are allowed.
Of course this encoding of dfPHCAs leads to a certain overhead, which however is

linear in the model size. For each location with discrete flow and for each time point the
encoding adds an additional soft constraint. We assume that in many cases only few
components have continuous behavior, which would further reduce this overhead. Also
note that, just like the PHCA translation, the translation of dfPHCA to soft constraints
can be done offline, as well as the discretization and Markov chain abstraction. From this
point on we can proceed as described in section 5.2.3 to compute solutions to the plan
assessment problem.
Finally, we describe how an advanced encoding could be developed that respects

potential conflicts between flows and guards. The discrete flow now depends on its
location being marked and on not being overridden by some guard, i.e. formally:

∀ti, l has Fd(l). X ti
override(Fd(l)) = false ∧Xti

l = marked⇔ Xti
Fd(l) = active

Now we have to explicitly add the variables X ti
override(Fd(l)) with domain {true, false} and

Xti
Fd(l) with domain {active, inactive}, which indicate an override of a discrete flow and its

activation, respectively. Hard constraints have to be added to implement the above formula.
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Figure 7.11.: Illustration of implemented components for the discretization process.

The soft constraints encoding the discrete flow functions would not be much different: their
scope would contain Xti

Fd(l) instead of Xti
l , and condition Xti

Fd(l) = active would replace
Xti
l = marked. Additional constraints would be needed to encode when exactly guards

conflict with discrete flows, determining the value of X ti
override(Fd(l)). For each guard that

contains a variable XU ′i
, a constraint could be added that enforces X ti

override(Fd(l)) = true

for the corresponding discrete flow over variable XUi if the transition of this guard is
enabled.

7.3.3.4. Implementation of Conversion Process

Ideally, the conversion process would start with a HyPHCA model that is split into its
continuous and discrete parts. However, since no description language for HyPHCA
exist yet, we implemented a process that starts with a manually created model for the
continuous behavior (a PHAVer model in this case) and a dfPHCA “hull”. This “hull” is
described using the existing PHCA syntax (created by the authors of [162]). The syntax
does not allow to use ΠU ′ variables, which however falls in line with the restriction that
we already made in the previous section. Another restriction is that discrete versions of
simple arithmetic constraints such as U1 ≤ a have to be defined manually.

The continuous model part is the input for the conversion component implemented
for this work. The component is implemented as set of Python modules that are used,
e.g., by the scripts running our experiments. It creates discrete flow constraints for the
flows described in the continuous model part, calling the employed external tools, e.g.
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PHAVer, in the process. The discrete flow constraints and the dfPHCA “hull” are then
fed into a dfPHCA compiler, which is a modified version of the PHCA compiler created
by the authors of [129]. Figure 7.11 illustrates the components involved in the conversion
process. Implementations and modifications done for this work are highlighted. A dashed
line indicates that an existing component was modified for our purposes.

Our conversion component implements, in particular, three interfaces for the tools that
we use to perform the various geometric computations on polyhedra (PHAVer: reachable
sets; Parma polyhedra library: ∪ and ∩ on polyhedra; Vinci: volume of polyhedra). The
data being passed between the tools and the converter are consequently coded polyhedra.
All involved tools describe a general polyhedron with sets of convex polyhedra, which
in turn are described with the linear equations that make up their boundaries. These
equations take the form 0 v a0 + a1U1 + . . .+ anUn,v∈ {≤,=,≥}. They are, however,
coded differently for each tool.
The first interface defines a parser to read the output of PHAVer, the reachable sets.

The second defines a native Python module, written in C, that directly calls functions of
the Parma polyhedra library, which is written in C++. This spares the overhead of reading
and writing to the hard disk, at the cost of a somewhat more complex implementation.
The cost was limited in this case as our access to the library is very specific. Finally, the
third interface specifies a writer that creates input files for Vinci, and a parser that reads
its output. PHAVer, Parma polyhedra library and Vinci are available with source code
on the internet5.

The discrete flow constraints, the output of our conversion component, are stored in a
custom format that is human-readable yet easy to parse. This simplified the next step,
the modification of the PHCA compiler (written in C++). Here we implemented a parser
for said format, and added a function that creates the soft constraints as described in
section 7.3.3.3 (using the simple encoding).

7.3.4. Results of Diagnosis Experiments

We ran experiments for a scenario in which the filling station receives commands to fill
two bottles. The results have been previously published in [119]. The scenario has a
duration of 8 seconds with 5 time points t0, . . . , t4 with a duration of 4t = 2s for each
step in between. The silo of the station has an initial fill level of 50 units, its fill rate is
fR = 0.38s−1. After 8 seconds at t4 the sensor indicates an empty silo.

5
PHAVer: http://www-verimag.imag.fr/~frehse/phaver_web/ (08.2011)
Parma polyhedra library: http://www.cs.unipr.it/ppl/Download/ (08.2011)
Vinci: http://www.math.u-bordeaux1.fr/~enge/software/vinci/vinci-1.0.5.tar.gz (08.2011)
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Figure 7.12.: Graph of U̇lvl = −fR · Ulvl, plotted with a standard plotting tool. Fill level
Ulvl (y-Axis) is plotted against time. The arrow indicates the fill level after
the silo motor ran continuously for 6 seconds. The horizontal lines indicate
the discretization d10 of Ulvl, i.e. 10 partition elements.
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Figure 7.13.: The inferred system trajectories (black filled circles and arrows) for the
sensor-fault scenario as trellis diagram for d10 for Ulvl (left) and for d5
(right). Grey shaded arrows show possible transitions. To simplify the
graphics we omitted the other two sensor faults, stuck-off and unknown.

The underlying assumption for this scenario is that the sensor fault s-on occurs, and
not, e.g., the motor-switch-fault. Additionally, we assume that the silo is not faulty from
the start, i.e. components are functioning nominally at least until t1. The diagnosis
problem is solved correctly based on a discrete model if the most probable trajectory
reveals the s-on fault. We can verify the scenario using the continuous filling behavior of
the silo: The motor-switch-fault at its earliest can happen at t1. If it does, the silo is being
emptied for 6 seconds, until the sensor signal occurs. Within this period, however, the
silo cannot become empty via filling, as can be seen from the plot of its continuous filling
behavior U̇lvl = −fR · Ulvl in figure 7.12. This means, given that the discretized model is
sufficiently accurate, the motor-switch-fault should be ruled out as possible explanation.

To show that our approach works for diagnosis and how varying degrees of abstraction
influence the diagnosis quality, we generated discrete models for four different discretiza-
tions of Ulvl with 2, 5, 10 and 25 finite values. We denote these models with d2, d5, d10
and d25. All were generated using equally sized grid cells. We created COP instances
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from these models and solved them with Toulbar2 on a machine with an Intel core2duo
dual core 2.2 Ghz CPU with 2GB RAM, running the Linux operating system. We tried
Toulbar2’s default configuration and a second one that exploits a tree decomposition
(compare section 3.3.2) created prior to solving the instance. The idea was that the model
structure extracted with tree decomposition would boost the online solving step (the tree
decomposition can possibly be pushed offline). The COP size was for all instances 840

variables and 920 constraints (the discretization doesn’t influence the number of variables
or constraints, but the size of the constraints encoding the discrete flow).

Figure 7.13 shows the most probable system trajectories for our scenario for models d10
and d5. The trajectories are depicted as decomposed trellis diagrams. Big black arrows
and black filled circles mark the trajectory found as most probable solution, grey arrows
show possible transitions. The trellis diagrams are decomposed in the sense that partial
trajectories for each component (silo and sensor) as well as for the discretized continuous
behavior are shown with separate trellis diagrams.

From this figure it can be seen that if we choose a sufficiently fine-grained discretization,
d10 in this case, the most probable diagnosis computed with the discrete model indeed
identifies the correct fault s-on, while a too coarse abstraction (d5) does not result in a
diagnosis which contains the s-on fault. We assume spurious solutions to be the culprit:
The coarser the abstraction, the more probable become evolutions of Ulvl which in reality
are practically impossible. With too coarse an abstraction (d5), the combination of the
more likely motor-switch-fault and a spurious evolution of Ulvl with heightened probability
becomes most probable. With a sufficiently fine grained abstraction (d10), the spurious
evolution’s probability is reduced to zero, which rules out the incorrect motor-switch-fault
and leaves the sensor.stuck-on fault as most probable.

Although we only computed diagnoses with our approach we think these results indicate
that plan assessment could indeed be extended towards hybrid models with our abstraction-
based approach. As we have seen, going from diagnosis to plan assessment just means, in
practical terms, to generate k COP solutions instead of one. The average online runtimes
shown in table 7.4 seem to be on a par with what we have seen for plan assessment on
discrete models, at least for this scenario. Therefore we are optimistic that continuous
parts in models for plan assessment won’t be a bottleneck. Not surprisingly, a modest
increase in runtime can be seen for the more fine grained discretization d25. However, as
we have seen, for a correct diagnosis in our scenario the much less expensive discretization
d10 is sufficient. What did surprise us was that the offline decomposition did not, as we
expected, lower the computational effort, but instead increased it significantly. At this
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Table 7.4.: Runtime results in seconds for computing the most probable diagnosis based
on different discrete models. Results were obtained by translating the models
to COP instances and solving them with Toulbar2, using its standard configu-
ration and a second one that uses an offline extracted tree decomposition of the
COP. All instances had 840 variables and 920 constraints. Finer discretizations
lead to bigger discrete flow constraints.

Toulbar2 config. Discretization Online runtime
default d2 0.02s

parameters d5 0.04s
d10 0.04s
d25 0.10s

with d2 0.25s
tree d5 0.25s

decomposition d10 0.24s
d25 0.33s

point we can only speculate about the reasons; maybe the model is too small for the
expected increase to occur.

The runtimes of the three offline steps discretization, Markov chain generation and
soft constraint encoding for d2, d5, d10 and d25 are 16.5, 39.0, 138.5 and 215.4 seconds.
They show that the effort for hybrid model abstraction and encoding is considerable, even
for such a small model. However, runtime is still within manageable bounds. Memory
consumption might be a bigger issue, the offline steps for d25 consumed ≈ 300 MB. It
remains for future experiments to show the limits of our method. The biggest portion
of the resources are consumed by the Markov chain generation, which is not surprising:
Converting the discrete part of a HyPHCA to a discrete PHCA and encoding the final
discrete model as soft constraints is linear in the size of the model, whereas the step
of Markov chain generation is exponential in the dimension of the continuous subspace
associated with the abstracted continuous flow.

Our results do not provide sufficient ground yet for conclusions with respect to the
scalability of our approach. However, our intuition is that it scales well as long as the
number of components showing different continuous behavior is comparably small. The
most expensive step is the generation of Markov chains to retrieve the discrete flows.
Scalability can be improved, if unnecessary generation is avoided, i.e. by sharing the same
abstraction among components with the same continuous behavior. Also, the expensive
reachability analysis could be improved,e.g., by optimizing PHAVer parameters (or use a
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better tool). Finally, intelligent state space quantization, e.g. as introduced in [85], would
reduce the number of quantization cells, resulting in fewer Markov chain states and thus
a much less expensive abstraction step and smaller abstract models.
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Much of the literature related to this work has already been treated in a more suited
context in different chapters and sections. In this chapter we turn our attention to some
related fields that also deal with the assessment, evaluation or checking of plans. First,
we look into the field of verification, where we explain general similarities and differences
to plan assessment and highlight some of the more closely related publications. Then we
attend to some works whose relation to this work is weaker, yet can also be seen as some
sort of plan assessment or evaluation.

8.1. Verification

Verification is a diverse field with many applications and approaches. In the following, we
don’t try to give an exhaustive overview, which would be out of the scope of this work.
Rather, we primarily focus on the closely related sub-areas of probabilistic model-checking
and runtime verification. We also cast a quick glance at classical verification methods
that build on industry standards in factory automation.

8.1.1. Probabilistic Model-Checking and Runtime Verification

The reader might already have guessed relations to verification from the fact that we
exploit methods developed for verification (see section 7.3). Plan assessment is about
defined goals and the probability of achieving them, given the observations we make during
runtime of a system. Computing a probability of goal success based on observations can
be seen as a variant of checking, or verifying, the runtime behavior of the system against
certain properties, which is at the core of runtime verification [12]. Another related area
is probabilistic model-checking [144, 8], which addresses the verification of properties for
systems that are modeled probabilistically.

Both of these areas are rooted in model-checking [97], which asks the question: Given
a model of a system and a property, do all potential system trajectories satisfy this
property? For example, let G be a set of goal states and M a system model, then a typical
model-checking property is “Eventually, a state in G is reached”. Model-checking would
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then determine whether every potential trajectory permitted by M eventually reaches
some state in G.
Runtime verification considers properties like that, but doesn’t try to verify them

against all potential trajectories. Instead, it focuses on trajectories that are recorded
during runtime of the system. A typical approach is to compile properties into monitors
that can run alongside the system, collecting observations. They trigger an alarm as soon
as it becomes clear that the property is violated. A variant called runtime reflection [11]
combines this with diagnosis to find the faults causing the violation.

Probabilistic model-checking, as the name suggests, extends model-checking with
Markovian probabilistic models and many probabilistic and statistical properties, such as
probabilities to reach certain states or expected number of times a state is reached. The
task of computing plan success probabilities could be cast as checking a property against
a probabilistic system model within this framework. The success probability for a specific
product could be formulated as a property “At t+n, with p > ωsuccess the product state is
in G”, which can be expressed in the temporal probabilistic logic employed in probabilistic
model-checking.

While many links between plan assessment and these two areas exist, a key difference
is that, with few exceptions, the above approaches don’t seem to regard autonomous
behavior in the form of a system dynamically generating plans it later executes. Verification
approaches are typically interested in formulating static properties to be checked, e.g.
safety properties. Plan assessment, in contrast, “checks” dynamically generated plans,
which is reflected in the execution adaptation function EP . Another important difference
is that plan assessment can handle flows of items through a system, for example product
flows (via product models and the execution adaptation function). To our knowledge, no
works in these areas seem to address this. Finally, we are not aware of works that exploit
generic algorithms in constraint optimization or probabilistic reasoning via an automatic
compilation of expressive, probabilistic hierarchical models to generic problem formats
that these algorithms understand. However, this is not to say that plan assessment
couldn’t profit from methods and approaches developed in either runtime verification or
probabilistic model-checking. It would be interesting to try and recast the plan assessment
problem within these frameworks.

We highlight now some particularly relevant works from these two areas of verification.
One such work is [5] about online verification of autonomous decisions of a cognitive car,
which was already mentioned in section 7.3. It is assumed the car can automatically
generate short-range drive plans, e.g. to overtake another car. The task is to minimize
the risk of collision with oncoming traffic. This is achieved by verifying that on this
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planned track the probability to collide with an oncoming car is below a certain low
threshold. Both the cognitive and the oncoming car are modeled with hybrid automata,
which encode their velocity and acceleration, with different modes and mode-transitions
encoding the gear shifting. Should the probability of collision be to high, the decision
can be revised. This can be seen as sort of plan assessment, although focused on very
specific goals. The work, however, doesn’t cover in detail the adaptation of the method
to explicitly represented plans, as this work does with execution adaptation for plan
assessment. Moreover, no hierarchical modeling or flow of items is considered.

A very recent work addresses runtime verification of properties over hidden states
of probabilistic models [160]. Especially interesting is the fact that systems are being
modeled with PHCA. Verification is then formulated as a form of hidden Markov like
filtering over a composition of the PHCA with the property to check. What this work
doesn’t address are things like product flow and dynamically generated plans.

In [110] an overview of probabilistic model-checking is given as well as current research
directions and challenges. While it seems that expressive hierarchical modeling is not
being addressed yet, one interesting direction is so-called compositional probabilistic
model-checking. To scale up to larger systems the idea is to try and check the constituent
components of a system individually, rather than all at once. Also addressed since very
recently is online probabilistic model-checking using observations of the system. In [65] the
authors propose an offline compilation step to make online probabilistic model-checking
tractable. A key to efficiency lies in limiting the number of variable transition probabilities,
following the assumption that typically only few transitions in the model are variable. The
approach is based on discrete time Markov chains as models, no hierarchy is supported.
None of these works, however, address diagnosis or product flows.

Finally, the authors of [116] introduce another interesting probabilistic verification
approach based on the RMPL framework. The problem is to determine the most likely
circumstances under which a high-level control program drives the system towards a goal
violating state. A plan can be understood as such a high level control program; so in
general, this problem is similar to the plan assessment problem. However, our problem
differs in that we are interested in sets of goal achieving system trajectories, from which
we derive the plan’s success probability, while the verification problem is only interested
in the single most probable goal violating trajectory. Another difference is that product
flow is not being addressed.
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8.1.2. Verification Based on Industry Standards for Automation

Classical verification approaches often build on models that follow industry standards for
the design of automation controllers, for example [81, 158]. Both works perform design
stage verification of the controllers based on automata models of the plant. If no safety
properties are violated, implementation code for the controllers is generated automatically.
As models variants of Petri nets [136] are used. In [81], for example, hierarchical Petri
nets are employed. Another important aspect is distributed computing, addressed, for
example, in [158]. Compared to plan assessment, however, these classical verification
approaches usually don’t address at least one of the following: 1) probabilistic models,
2) diagnosis, 3) automatically generated and explicitly represented production plans, 4)
product flow. While [158] also models products, they don’t seem to handle multiple
products and their flow through the plant.

8.2. Other Variants of Plan Evaluation

Given the rather general meaning of the terms “plan” and “assessment”, many works could
be cited that however are only very loosely connected to this work. In this section we
focus on some works whose relation to this thesis, in our view, is weaker than that of the
works in the previous section, but which none the less constitute some interesting type of
plan evaluation or assessment.

One application of automated planning is large scale operations management, e.g. reacting
to oil spill disasters. [161] gives an overview of such planning scenarios and discusses,
among other things, an oil spill response configuration system. It creates plans based
on a spill trajectory forecast and then evaluates how much oil a specific plan is able to
remove. It uses a special evaluation model along with the projected oil flow and the plan.
The system monitors plan execution and is able to react to new events or goals provided
by human operators. The main difference to these approaches is the scope (large scale
operations planning vs, for example, scenarios of product manufacturing) and the fact
that plans are not evaluated against a fixed goal (i.e. how likely they are to succeed), but
against optimality criteria such as how much oil is being removed.

Early work addressed the problem of automated manufacturability analysis, which is to
evaluate a process plan for machining a product from stock with respect to, e.g., design
tolerances (does plan execution violate tolerances?) or the plan’s cost. [133] discusses
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the IMACS (Interactive Manufacturing Analysis and Critique System), which generates
process plans and then checks them against, e.g., design tolerance constraints, to evaluate
whether the plans can reach their machining goals. Another work in this domain is [101],
which introduces a petri net based approach to process plan evaluation. The authors
estimate costs of process plans by representing the plans along with plant machines and
their tools and configurations as special petri nets. They propose two kinds of petri
net models, each with a special algorithm to compute the costs. Clearly there is some
similarity to our plan assessment problem, especially the idea of generating models of
machines and plans for plan evaluation. The main difference is that we’re interested in
dynamic machine behavior (nominal and off-nominal) induced by plan execution, whereas
automated manufacturability analysis is concerned with evaluating plans against static
constraints, such as design tolerances.

A typical problem in manufacturing is path planning and collision avoidance of industrial
robot arms. A potential path is checked for collisions with other parts of the factory or
even with itself (which can happen easily given the dexterity of today’s robots) [73]. In
the past, online collision avoidance has also been considered [74]. Especially the latter
could be seen as sort of plan assessment, where a path plan is evaluated with respect
to possible collisions, given the current situation (orientation/position of other robots,
objects or humans in the work place). It differs from our work mainly in that we consider
general, more abstract system trajectories and probabilistically modeled behavior.
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We investigated solution approaches for a novel problem, called plan assessment, that lies
at the intersection between model-based diagnosis and probabilistic reasoning. This thesis
formally defines and analyzes this problem and develops two different solution approaches
for it. One is rooted in model-based diagnosis, the other in probabilistic reasoning.

We consider plan assessment highly relevant as a means to support autonomous deci-
sions in technical systems. For example, the problem arises when enriching automated
production facilities with the autonomy necessary to handle high product variability.
Automated production of individualized goods require individual production plans. How-
ever, the huge number of variants of completely individualized products will make it too
expensive to hard-wire and verify those plans all in advance, as is current practice.

In general, research addresses this problem by augmenting systems with a certain
amount of autonomous behavior. In the example, it means the facility dynamically creates
plans, executes them, and autonomously reacts to potential plan failures. A plan might
fail, for example, because of a faulty component such as a broken cutter of a machining
station. This sort of autonomous behavior requires informations such as whether goals are
still likely to be achieved, and if not, what might be the cause. This leads to the mentioned
problem of assessing plans with respect to the goals they should achieve. While potentially
more relevant to domains such as manufacturing, we developed plan assessment to be
generic. It is readily applicable to every system that can be modeled with a probabilistic
hierarchical constraint automaton (PHCA)[162], for example a household robot.

The solution approaches developed in this work are unique in that they use models
described in engineering-style modeling languages and exploit generic algorithms provided
in off-the-shelf toolboxes. This is motivated by the idea that approaches are more likely
to be accepted if they are adapted to the tools used in the development of such technical
systems, i.e. expressive modeling languages and existing toolboxes. Expressive languages
allow efficient, hierarchical modeling of complex systems, while off-the-shelf toolboxes offer
the opportunity to replace hand crafted code and algorithms by standardized, general
algorithms, which are constantly being improved by their respective communities.
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9.1. Summary of Contributions and Results

This thesis made the following two key contributions:

Definition and analysis of plan assessment (chapter 4): It formally defined the
plan assessment problem based on probabilistic hierarchical constraint au-
tomata (PHCA). It analyzed how the problem manifests in autonomous
manufacturing and how plan assessment can contribute to autonomous de-
cisions in technical systems. Furthermore, it investigated relations of plan
assessment to similar problems.

Computational approaches for plan assessment (chapter 5): It developed two ap-
proaches that both translate PHCA models to generic problem descriptions
for external solvers, which implement generic algorithms. The first approach
extends a previously developed model-based diagnosis method that computes
most probable system trajectories as best solutions of a constraint optimization
problem. The second approach, residing in the area of probabilistic reasoning,
builds on generalized Bayesian networks. Notably, the thesis contributed a
translation of PHCA models to these networks. It was tested in practice and
a proof of its theoretical correctness was provided.

Additionally, the thesis made the following contributions:

Evaluation (chapter 6): Both approaches were tested and compared using off-the-shelf
solving tools: For the first approach, the constraint optimizing tools Toolbar
[27] and Toulbar2 [4] were used, and for the second the probabilistic inference
tool Ace [46]. Results were obtained with a prototypical tool chain developed
for this work. A separate result summary is given below.

Time window filtering extension (chapter 7): To break the exponential dependency
on the number of time steps, the thesis developed the time-window-filtering
algorithm. It allows to compute trajectories within a fixed-size horizon, which
is then moved to cover the complete time horizon.

Stochastically Bounded Approximation extension (chapter 7): The thesis inves-
tigated how probabilistic sampling for plan assessment allows for stochastic
error bounds based on confidence intervals.

Hybrid discrete/continuous models extension (chapter 7): Since systems are of-
ten being modeled using discrete automaton states mixed with continuous
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elements such as differential equations, the thesis developed a prototypical
extension of plan assessment towards hybrid models that allow linear ordinary
differential equations. It introduced a hybrid variant of PHCA, HyPHCA,
and developed a method to convert a HyPHCA model into a (discrete) con-
straint net, including automated conversion of the continuous parts to discrete
representations. This method incorporates off-the-shelf tools for the different
computationally intensive steps, most notably the verification tool PHAVer
[67]. Furthermore, a theoretical property for correctness of this translation
was formulated.

As major result this thesis provides implementations of both approaches with which
we obtained the results for our evaluation. Notably, we developed and implemented a
novel translation to Bayesian logic nets and realized the elements necessary for a plan
assessment component.

The evaluation results show that both approaches are capable of efficiently computing
solutions for the plan assessment problem. In comparison, both approaches seem viable
alternatives for the plan assessment problem: while differences can be seen, we see those as
differences within the same class. Therefore, we interpret these as differences of the solving
backends Toulbar2 and Ace, rather than as significant differences of our two general
approaches. Concerning the scalability, while both approaches show good results for our
models, we speculate that further work is necessary for larger problem sizes. For example,
with more than 10 stations and products or more than 100 time steps the approaches
could run into trouble. The constraint optimization approach allows approximation, which
can remedy the limited scalability to an extent: on our instances, significant savings
could be achieved if a modest error in the result is accepted. Furthermore, preliminary
results with the time-window-filtering extension showed an improved scalability with time.
Turning to the extension towards hybrid models, it seems that plan assessment can be
extended with this method with a minor impact on online runtime. The effort for offline
compilation was within manageable bounds for our example.

9.2. Current Limitations of Plan Assessment

Some important limitations exist that might restrict the use of plan assessment as a
support for autonomous control.
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• Equal cost products: This work didn’t focus on utility values such as product
costs. However, we suspect that plan assessment without utilities will stay limited:
effectively, it forces the assumption that all goals have equal cost.

• Fixed probabilities in models: The probabilities in PHCA models are deter-
mined during design. Currently, they are fixed. However, what usually leads to
unpredictable faults is component wear, which is better captured with dynamically
adapted probabilities. This could be achieved by combining our approaches with
model learning, such as introduced in [50], which estimates probabilities from long
term measurements.

• Error bounds available for sampling only: We showed how to compute stochas-
tic bounds on success probabilities when using probabilistic sampling to approximate
solutions for plan assessment. For our constraint optimization based approach, the
presented sketch to determine the approximation error has to be further developed.

• No modeling language for HyPHCA: There is no model description language
for HyPHCA yet, which means that models must be specified manually with two
separate parts, a discrete PHCA part and a continuous part with differential
equations. What is needed is said language and a compiler that either generates
these two parts automatically, or directly encodes to constraint nets.

9.3. Future Work

Apart from addressing the limitations mentioned above, this work opens up interesting
directions for future work. First of, since plan assessment is meant as a support for
autonomous decision routines, fully developing such a routine suggests itself. In this work,
we already sketched such a procedure. In line with that falls the integration of utility
values, for example product costs. The k-best constraint optimization for plan assessment
could be extended with a procedure that evaluates the k most probable trajectories for
utility as a second optimization criterium. The off-the-shelf tools we investigated in this
work don’t support general multi-criteria combinatorial optimization yet. Evaluating the
k-best solutions in a second run would be a simple alternative.

Next, we think that in manufacturing examples automatic composition of PHCA models
is necessary to acquire the flexibility needed for design-to-fabrication. Currently, in our
example we use a static model of involved plant stations and products. However, to allow
many different plans, a static model would have to contain all stations and products
that are potentially involved. This is far too many, therefore models should be composed
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automatically from station and product sub-models. The model would then include only
those components that are used in a plan. The hierarchical and concurrent nature of
PHCA might simplify this task.
A component that can compose PHCA models automatically would also allow to

investigate the scalability of our approaches on a larger scale. Manufacturing scenarios
for example could be created quickly with a tool that creates PHCAs from automatically
generated schedules and simple graph layouts of factory floors with predefined stations.
The tool would use the composition component to construct the PHCA from predefined
sub-models for the stations and products, including only those sub-models whose stations
or products occur in the schedule. That would allow to quickly create artificial yet realistic
models with different numbers of stations and products.
More in line with industrial requirements, an interesting direction is a distributed

approach to plan assessment. Industry standards are already in place for the development
of distributed controllers [92, 93, 94]. Currently, they do not incorporate all capabilities
necessary to implement plan assessment, for example probabilistic modeling. It is certainly
worthwhile to investigate how to marry plan assessment with distributed computation.

We also would like to investigate more solving backends, for example implementations
of dynamic Bayesian network algorithms [102]. Of course, this would require developing
compilers for dynamic Bayesian networks.

Last but not least, we would like to further investigate probabilistic sampling for plan
assessment. The concept of the SampleSearch algorithm [75] to search for consistent
(probability > 0) samples seems especially promising in conjunction with state-of-the-
art constraint reasoning techniques. Such techniques are implemented in solvers such
as Toulbar2, for example. However, it could prove more practical to try and couple
SampleSearch with constraint reasoning and programming libraries such as Choco [152],
which offer a concise programming interface.
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A. Implementation Usage

Here we briefly describe how to use our implementation of the described approaches for
plan assessment. We implemented a library in Python and scripts that exploit that library.
For instance, scripts compute plan assessment results for single problem instances, or
encode experiments over many instances. We first describe a script that represents a
prototypical implementation of the plan assessment component using the model-based
diagnosis approach. Then we describe our translator of PHCA models to BLNs, and how
to use the BLN framework to compute success probabilities.

A.1. Requirements

These are the requirements for our tool suite:

• A Windows or Linux environment (due to Ace being only available for these
platforms).

• Python 2.5 or higher.

• Jython 2.5 or higher.

• The BLN framework, which can be found at http://www9-old.cs.tum.edu/people/
jain/dl.php?get=probcog(06.2011).

• The probabilistic inference engine Ace, which can be obtained at http://reasoning.
cs.ucla.edu/ace/ (03.2011).

• The PHCA-to-COP translator, which may be obtained by contacting the author
maierpa@in.tum.de, or directly from its developers, the authors of [129].

• One of these constraint optimizers:

– toolbar: https://mulcyber.toulouse.inra.fr/projects/toolbar (03.2011).

– toulbar2: https://mulcyber.toulouse.inra.fr/projects/toulbar2 (03.2011).
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A. Implementation Usage

A.2. Model-Based Diagnosis Approach

We developed the Python script that combines the elements of our library roughly as
shown in figure 6.1 to compute plan assessment results. It takes as input a PHCA model
translated to a COP, a plan P and observations o0:t and generates as output a) diagnoses
in form of a list of trajectories sorted by their probability and b) success probabilities for
given goals. Goals are either specified in a separate configuration file or on the command
line. The script may be called as follows:

runPAExp.py --schedule=<file containing P>
--observations=<file containing o0:t>

[--query=<variable assignment>] <COP file>

An example call is

runPAExp.py --schedule=operations.schedule

--observations=observations.obs copModel.xml

The file copModel.xml is the output of the COP translator developed by Tsoline Mikaelian
for the work presented in [129]. We encapsulated this translator in another Python script
that is called with

runHCA.py --timeSteps=N <PHCA model file>

An example call is

runHCA.py --timeSteps=9 model.hca

More information on using these scripts can be obtained by calling them with the --help
option. This option works on all scripts that are part of our implementation.
Listing A.1 shows an example configuration file. Its elements constitute the input for

plan assessment and some global parameters like the solver to be employed. Some elements
can also be specified on the command line, for instance the path to the observations file.
In detail, the elements are the following:

K Number of solutions to compute. Not available on command line.

ESTIMATION_ONLY When set to True, estimation without time window filtering
(described in section 7.1) is forced. Has no effect when the length of the time
window is equal to the length of P.
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SCHEDULE_LENGTH The length of P in time steps. Has to be given only if ESTI-
MATION_ONLY is set to true. Otherwise the schedule is assumed to be as
long as the number of time steps encoded in the COP (which is unfolded over
the required number of time steps).

SCHEDULE_FP The path to the file containing P.

OBSERVATIONS_FP The path to the observations file.

SOLVER Solver to use. Possible values are

estimator.ToolbarSolver()

estimator.SimpleToulbar2Solver()

estimator.MemoryMeasuringToulbar2Solver().

Not available on command line.

estimator.MBE_I Parameter that controls the accuracy of the heuristic for the A* search
used in Toolbar. Not available on command line.

PRODUCTS List of goals, for instance products that must be finished. This element’s
name is out-dated, apart from special product goal objects, generic PAQuery
objects may be given. They allow to ask for the probability of arbitrary variable
assignments, for example PAQuery("PROCESSING_IMAGE__5=MARKED"). In
general, a goal (l, t) with PHCA location l expected to be marked at t must
be given as “<name of l>__<t>=MARKED”. The more specific product goal
objects take as parameters the name of the sub-PHCA modeling the product,
the start time and latest allowed finishing time. Start time, however, is not
being used at the moment. Not available on command line.

Listings A.1 and A.3 show examples for observation and plan files.
A final thing to note is that runHCA.py may also accept mixed schedule and observation

files. These are files in schedule format that also contain assignments to observation
variables. We used such files for the scripts that run our experiments. In this case it
suffices to provide this file as --schedule parameter.

A.3. Probabilistic Reasoning Approach

For our probabilistic reasoning approach we implemented a translator from PHCA models
to BLNs. The command line call is
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1 from planAssessment . planAssessment import Product
2 from e s t imat ion import e s t imator
3
4
5 K = 1800
6 ESTIMATION_ONLY = False
7 SCHEDULE_LENGTH = None
8 SCHEDULE_FP = None
9 OBSERVATIONS_FP = None

10 SOLVER = est imator . S impleToulbar2Solver ( )
11 es t imator .MBE_I = 21
12
13
14 PRODUCTS = [ Product ( "Maze0" , 0 , 4 ) ,
15 Product ( "Maze1" , 0 , 9 ) ,
16 Product ( "Robot0" , 0 , 7 ) ]

Listing A.1: Example configuration file for the runPAExp.py Python script for computing
plan assessment results. It’s also written in Python code.

1 PFORCE__0=NONE
2 PFORCE__1=NONE
3 PFORCE__2=NONE
4 PFORCE__3=NONE
5 PFORCE__4=NONE
6 PFORCE__5=NONE
7 PFORCE__6=NONE
8 PFORCE__7=NONE
9 PFORCE__8=NONE

10 PFORCE__9=NONE
11 PFORCE__10=NONE
12 PFORCE__11=HIGH
13 PFORCE__12=HIGH
14 PFORCE__13=HIGH
15 PFORCE__14=HIGH
16 PFORCE__15=HIGH

Listing A.2: Example observations file for a manufacturing scenario as described in 2.1.3.
The observation variable PFORCE encodes whether a force alarm was ob-
served (HIGH) or not (NONE).
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1 NoProduct , NoComponent , 0: MAZE0 -WORKER=OK
2 NoProduct , NoComponent , 0: MAZE1 -WORKER=OK
3 NoProduct , NoComponent , 0: ROBOT0 -WORKER=OK
4 NoProduct , NoComponent , 0: ASSEMBLY -LINK -HOLES=OK
5 NoProduct , NoComponent , 0: ASSEMBLY -CMD=NOCOMMAND
6 Maze0 , Machining0 , 0: MACHINING0 -CMD=MILL
7 Maze1 , Machining1 , 0: MACHINING1 -CMD=MILL
8
9 NoProduct , NoComponent , 1: ROBOT0 -WORKER=OK
10 NoProduct , NoComponent , 1: ASSEMBLY -LINK -HOLES=OK
11 NoProduct , NoComponent , 1: MACHINING0 -CMD=NOCOMMAND
12 Maze1 , Machining1 , 1: MACHINING1 -CMD=MILL
13 Maze0 , Assembly , 1: ASSEMBLY -CMD=ASSEMBLE -COVER
14
15 NoProduct , NoComponent , 2: ROBOT0 -WORKER=OK
16 NoProduct , NoComponent , 2: MACHINING0 -CMD=NOCOMMAND
17 Maze1 , Machining1 , 2: MACHINING1 -CMD=MILL
18 Maze0 , Assembly , 2: ASSEMBLY -CMD=ASSEMBLE -PINS
19
20 NoProduct , NoComponent , 3: ROBOT0 -WORKER=OK
21 Robot0 , Machining0 , 3: MACHINING0 -CMD=MILL
22 Maze1 , Machining1 , 3: MACHINING1 -CMD=MILL
23
24 ...

Listing A.3: Part of an example plan/schedule file. It’s the same operation sequence as
shown in listing 4.1, reprinted for convenience here.

225



A. Implementation Usage

phca2bln.py --schedule=<file containing P>
--observations=<file containing o0:t>

--buildPath=<path to store output at>

<path to phca file>

For a concrete PHCA model, the call would for example be

phca2bln.py --schedule=operations.schedule

--observations=observations.obs

--buildPath=./output

model.hca

The translator creates as output four files, storing respectively the definitions D, the
fragments F , the logical formulas L and the knowledge base DB. The above example call
would result in the four files model.abl, model.pmml, model.blnl and model.blogdb in
the local directory output. These four files can now be fed into the BLN framework to
compute success probabilities, for example with Ace as backend inference engine.
One tool in particular of this framework is blnquery, which allows to load arbitrary

models and compute probabilities for arbitrary goals. It offers a GUI, of which a screenshot
is shown in figure A.1. The four model files are chosen from the drop-down selectors
“Declarations”, “Fragments”, “Logic” and “Evidence”. The tool automatically recognizes
all models in the working directory, typically the one from which the tool was started.
The selector “Method” allows to an algorithm or external engine, such as Ace. Finally, in
the text field “Queries”, the goals can be specified as comma-separated queries for the
probability of bln predicates being true. For plan assessment, the locMarked() predicate
is important: To specify, for instance, the goal (l, t), the query locMarked(T<t>, <name
of l>) must be specified. The goal queries for our main example described in section 2.1.3
are shown in the screenshot.
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Figure A.1.: Screenshot of the BLN tool by Dominik Jain that allows, among other things,
to compute the probability of arbitrary BLN predicates being true (see
sections 3.7 and 5.3).
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B.1. Model for Cognitive Factory Example

Here we present the input plan P , the observations and the graphical and code description
of the PHCA model we used to compute results for our main example described in
section 2.1.3. The following variable names in the code have been changed for graphical
representation (star indicates an arbitrary sequence of strings):

MILL*: Machining*.

MAZE0-LINK-HOLES/ASSEMBLY-LINK-HOLES: Holes.

PFORCE: Force.

*CMD: Cmd.

*WORKER: Worker.

1 NoProduct , NoComponent , 0: MAZE0 -WORKER=OK
2 NoProduct , NoComponent , 0: MAZE1 -WORKER=OK
3 NoProduct , NoComponent , 0: ROBOT0 -WORKER=OK
4 NoProduct , NoComponent , 0: ASSEMBLY -LINK -HOLES=OK
5 NoProduct , NoComponent , 0: ASSEMBLY -CMD=NOCOMMAND
6 Maze0 , Mill0 , 0: MILL0 -CMD=MILL
7 Maze1 , Mill1 , 0: MILL1 -CMD=MILL
8
9 NoProduct , NoComponent , 1: ROBOT0 -WORKER=OK

10 NoProduct , NoComponent , 1: ASSEMBLY -LINK -HOLES=OK
11 NoProduct , NoComponent , 1: MILL0 -CMD=NOCOMMAND
12 Maze1 , Mill1 , 1: MILL1 -CMD=MILL
13 Maze0 , Assembly , 1: ASSEMBLY -CMD=ASSEMBLE -COVER
14
15 NoProduct , NoComponent , 2: ROBOT0 -WORKER=OK
16 NoProduct , NoComponent , 2: MILL0 -CMD=NOCOMMAND
17 Maze1 , Mill1 , 2: MILL1 -CMD=MILL
18 Maze0 , Assembly , 2: ASSEMBLY -CMD=ASSEMBLE -PINS
19
20 NoProduct , NoComponent , 3: ROBOT0 -WORKER=OK
21 Robot0 , Mill0 , 3: MILL0 -CMD=MILL
22 Maze1 , Mill1 , 3: MILL1 -CMD=MILL
23
24 NoProduct , NoComponent , 4: MAZE0 -WORKER=OK
25 Robot0 , Mill0 , 4: MILL0 -CMD=MILL
26 NoProduct , NoComponent , 4: MILL1 -CMD=NOCOMMAND
27 NoProduct , NoComponent , 4: ASSEMBLY -CMD=NOCOMMAND
28
29 NoProduct , NoComponent , 5: MAZE0 -WORKER=OK
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30 NoProduct , NoComponent , 5: MAZE1 -WORKER=OK
31 NoProduct , NoComponent , 5: MILL0 -CMD=NOCOMMAND
32 NoProduct , NoComponent , 5: MILL1 -CMD=NOCOMMAND
33 NoProduct , NoComponent , 5: ASSEMBLY -LINK -HOLES=OK
34 Robot0 , Assembly , 5: ASSEMBLY -CMD=ASSEMBLE -ROBOT
35
36 NoProduct , NoComponent , 6: MAZE0 -WORKER=OK
37 NoProduct , NoComponent , 6: MAZE1 -WORKER=OK
38 NoProduct , NoComponent , 6: MILL0 -CMD=NOCOMMAND
39 NoProduct , NoComponent , 6: MILL1 -CMD=NOCOMMAND
40 Maze1 , Assembly , 6: ASSEMBLY -CMD=ASSEMBLE -COVER
41
42 NoProduct , NoComponent , 7: MAZE0 -WORKER=OK
43 NoProduct , NoComponent , 7: ROBOT0 -WORKER=OK
44 NoProduct , NoComponent , 7: MILL0 -CMD=NOCOMMAND
45 NoProduct , NoComponent , 7: MILL1 -CMD=NOCOMMAND
46 Maze1 , Assembly , 7: ASSEMBLY -CMD=ASSEMBLE -PINS
47
48 NoProduct , NoComponent , 8: MAZE0 -WORKER=OK
49 NoProduct , NoComponent , 8: ROBOT0 -WORKER=OK
50 NoProduct , NoComponent , 8: MILL0 -CMD=NOCOMMAND
51 NoProduct , NoComponent , 8: MILL1 -CMD=NOCOMMAND
52 NoProduct , NoComponent , 8: ASSEMBLY -CMD=NOCOMMAND
53
54 NoProduct , NoComponent , 9: MAZE0 -WORKER=OK
55 NoProduct , NoComponent , 9: MAZE1 -WORKER=OK
56 NoProduct , NoComponent , 9: ROBOT0 -WORKER=OK
57 NoProduct , NoComponent , 9: MILL0 -CMD=NOCOMMAND
58 NoProduct , NoComponent , 9: MILL1 -CMD=NOCOMMAND
59 NoProduct , NoComponent , 9: ASSEMBLY -CMD=NOCOMMAND
60 NoProduct , NoComponent , 9: ASSEMBLY -LINK -HOLES=OK

Listing B.1: Input plan P for the cognitive factory example from section 2.1.3.

1 PFORCE__0=NONE
2 PFORCE__1=NONE
3 PFORCE__2=NONE
4 PFORCE__3=HIGH

Listing B.2: Input observations for the cognitive factory example from section 2.1.3.

1 VARIABLE -DOMAIN -TYPE -DEFINITIONS
2
3 VARIABLE -DOMAIN -TYPE COMPONENT -STATUS (OK FAULTY)
4 VARIABLE -DOMAIN -TYPE FORCE -STATUS (NONE NORMAL HIGH)
5 VARIABLE -DOMAIN -TYPE MILL -COMMAND (MILL NOCOMMAND)
6 VARIABLE -DOMAIN -TYPE ASSEMBLE -COMMAND (ASSEMBLE -COVER ASSEMBLE -PINS
7 ASSEMBLE -ROBOT NOCOMMAND)
8
9

10 VARIABLE -DEFINITIONS
11
12 VARIABLE MILL0 -CMD OF-TYPE CONTROL WITH -RANGE MILL -COMMAND
13 VARIABLE MILL1 -CMD OF-TYPE CONTROL WITH -RANGE MILL -COMMAND
14 VARIABLE MILL0 -C OF -TYPE DEPENDENT WITH -RANGE COMPONENT -STATUS
15 VARIABLE MILL1 -C OF -TYPE DEPENDENT WITH -RANGE COMPONENT -STATUS
16 VARIABLE ASSEMBLY -CMD OF -TYPE CONTROL WITH -RANGE ASSEMBLE -COMMAND
17 VARIABLE MAZE0 -WORKER OF -TYPE CONTROL WITH -RANGE COMPONENT -STATUS
18 VARIABLE MAZE0 -LINK -HOLES OF -TYPE DEPENDENT WITH -RANGE COMPONENT -STATUS
19
20 VARIABLE MAZE1 -WORKER OF -TYPE CONTROL WITH -RANGE COMPONENT -STATUS
21 VARIABLE MAZE1 -LINK -HOLES OF -TYPE DEPENDENT WITH -RANGE COMPONENT -STATUS
22 VARIABLE ROBOT0 -WORKER OF-TYPE CONTROL WITH -RANGE COMPONENT -STATUS
23 VARIABLE ASSEMBLY -C OF-TYPE DEPENDENT WITH -RANGE COMPONENT -STATUS
24 VARIABLE ASSEMBLY -LINK -HOLES OF-TYPE DEPENDENT WITH -RANGE COMPONENT -STATUS
25 VARIABLE PFORCE OF-TYPE OBSERVABLE WITH -RANGE FORCE -STATUS
26
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27 MODEL -DEFINITIONS
28
29 (root COMPOSITE
30 (CHILDREN
31 ((maze0 -model COMPOSITE
32 (CHILDREN
33 (STARTING (maze0 -model -ok PRIMITIVE
34 (BEHAVIOR -CONSTRAINT (AND (OR (MAZE0 -LINK -HOLES = OK)))) ))
35 ((maze0 -model -faulty PRIMITIVE
36 (BEHAVIOR -CONSTRAINT (AND (OR (MAZE0 -LINK -HOLES = FAULTY )))) ))
37 )
38 (TRANSITIONS
39 (TRANS -FROM -TO-GUARD -PROB maze0 -model -ok maze0 -model -ok
40 (AND (MAZE0 -WORKER = OK)) 1.0)
41 (TRANS -FROM -TO-PROB maze0 -model -faulty maze0 -model -faulty 1.0)
42
43 (TRANS -FROM -TO-GUARD -PROB maze0 -model -ok maze0 -model -faulty
44 (AND (MAZE0 -WORKER = FAULTY )) 1.0))
45 ))
46
47 ((maze1 -model COMPOSITE
48 (CHILDREN
49 (STARTING (maze1 -model -ok PRIMITIVE
50 (BEHAVIOR -CONSTRAINT (AND (OR (MAZE1 -LINK -HOLES = OK)))) ))
51 ((maze1 -model -faulty PRIMITIVE
52 (BEHAVIOR -CONSTRAINT (AND (OR (MAZE1 -LINK -HOLES = FAULTY )))) ))
53 )
54 (TRANSITIONS
55 (TRANS -FROM -TO-GUARD -PROB maze1 -model -ok maze1 -model -ok
56 (AND (MAZE1 -WORKER = OK)) 1.0)
57 (TRANS -FROM -TO-PROB maze1 -model -faulty maze1 -model -faulty 1.0)
58
59 (TRANS -FROM -TO-GUARD -PROB maze1 -model -ok maze1 -model -faulty
60 (AND (MAZE1 -WORKER = FAULTY )) 1.0))
61 ))
62
63 ((robot0 -model COMPOSITE
64 (CHILDREN
65 (STARTING (robot0 -model -ok PRIMITIVE ))
66 ((robot0 -model -faulty PRIMITIVE ))
67 )
68 (TRANSITIONS
69 (TRANS -FROM -TO-GUARD -PROB robot0 -model -ok robot0 -model -ok
70 (AND (ROBOT0 -WORKER = OK)) 1.0)
71 (TRANS -FROM -TO-PROB robot0 -model -faulty robot0 -model -faulty 1.0)
72
73 (TRANS -FROM -TO-GUARD -PROB robot0 -model -ok robot0 -model -faulty
74 (AND (ROBOT0 -WORKER = FAULTY )) 1.0))
75 ))
76
77 ((mill0 -model COMPOSITE
78 (CHILDREN
79 (STARTING (mill0 -idle PRIMITIVE
80 (BEHAVIOR -CONSTRAINT (AND (OR (MILL0 -C = OK)))) ))
81 ((mill0 -mill PRIMITIVE
82 (BEHAVIOR -CONSTRAINT (AND (OR (MILL0 -C = OK)))) ))
83
84 ((mill0 -fail -drillbroken PRIMITIVE
85 (BEHAVIOR -CONSTRAINT (AND (OR (MILL0 -C = FAULTY )))) ))
86 )
87
88 (TRANSITIONS
89 (TRANS -FROM -TO-GUARD -PROB mill0 -idle mill0 -mill
90 (AND (MILL0 -CMD = MILL)) 0.99)
91 (TRANS -FROM -TO-GUARD -PROB mill0 -idle mill0 -idle
92 (AND (MILL0 -CMD = NOCOMMAND )) 1.0)
93 (TRANS -FROM -TO-GUARD -PROB mill0 -idle mill0 -fail -drillbroken
94 (AND (MILL0 -CMD = MILL)) 0.01)
95
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96 (TRANS -FROM -TO-GUARD -PROB mill0 -mill mill0 -mill
97 (AND (MILL0 -CMD = MILL)) 0.99)
98 (TRANS -FROM -TO-GUARD -PROB mill0 -mill mill0 -idle
99 (AND (MILL0 -CMD = NOCOMMAND )) 1.0)

100 (TRANS -FROM -TO-GUARD -PROB mill0 -mill mill0 -fail -drillbroken
101 (AND (MILL0 -CMD = MILL)) 0.01)
102
103 (TRANS -FROM -TO-PROB mill0 -fail -drillbroken mill0 -fail -drillbroken
104 1.0)
105 )
106 ))
107
108 ((mill1 -model COMPOSITE
109 (CHILDREN
110 (STARTING (mill1 -idle PRIMITIVE
111 (BEHAVIOR -CONSTRAINT (AND (OR (MILL1 -C = OK)))) ))
112 ((mill1 -mill PRIMITIVE
113 (BEHAVIOR -CONSTRAINT (AND (OR (MILL1 -C = OK)))) ))
114
115 ((mill1 -fail -drillbroken PRIMITIVE
116 (BEHAVIOR -CONSTRAINT (AND (OR (MILL1 -C = FAULTY )))) ))
117 )
118
119 (TRANSITIONS
120 (TRANS -FROM -TO -GUARD -PROB mill1 -idle mill1 -mill
121 (AND (MILL1 -CMD = MILL)) 0.99)
122 (TRANS -FROM -TO -GUARD -PROB mill1 -idle mill1 -idle
123 (AND (MILL1 -CMD = NOCOMMAND )) 1.0)
124 (TRANS -FROM -TO -GUARD -PROB mill1 -idle mill1 -fail -drillbroken
125 (AND (MILL1 -CMD = MILL)) 0.01)
126
127 (TRANS -FROM -TO -GUARD -PROB mill1 -mill mill1 -mill
128 (AND (MILL1 -CMD = MILL)) 0.99)
129 (TRANS -FROM -TO -GUARD -PROB mill1 -mill mill1 -idle
130 (AND (MILL1 -CMD = NOCOMMAND )) 1.0)
131 (TRANS -FROM -TO -GUARD -PROB mill1 -mill mill1 -fail -drillbroken
132 (AND (MILL1 -CMD = MILL)) 0.01)
133
134 (TRANS -FROM -TO -PROB mill1 -fail -drillbroken mill1 -fail -drillbroken
135 1.0)
136 )
137 ))
138
139 ((assembly -model COMPOSITE
140 (CHILDREN
141 (STARTING (assembly -idle PRIMITIVE
142 (BEHAVIOR -CONSTRAINT (AND (OR (PFORCE = NONE )))) ))
143 ((assembly -cover PRIMITIVE
144 (BEHAVIOR -CONSTRAINT (AND (OR (PFORCE = NONE )))) ))
145 ((assembly -robot PRIMITIVE
146 (BEHAVIOR -CONSTRAINT (AND (OR (PFORCE = NONE )))) ))
147 ((assembly -pins PRIMITIVE
148 (BEHAVIOR -CONSTRAINT
149 (AND (OR (ASSEMBLY -LINK -HOLES = FAULTY)
150 (ASSEMBLY -C = FAULTY) (PFORCE = NORMAL ))
151 (OR (ASSEMBLY -LINK -HOLES = OK) (PFORCE = HIGH))
152 (OR (ASSEMBLY -C = OK) (PFORCE = HIGH )))) ))
153 (STARTING (assembly -status -model COMPOSITE
154
155 (CHILDREN
156 (STARTING (assembly -status -ok PRIMITIVE
157 (BEHAVIOR -CONSTRAINT (AND (OR (ASSEMBLY -C = OK)))) ))
158 ((assembly -status -faulty PRIMITIVE
159 (BEHAVIOR -CONSTRAINT (AND (OR (ASSEMBLY -C = FAULTY )))) ))
160 )
161 (TRANSITIONS
162 (TRANS -FROM -TO-PROB assembly -status -ok assembly -status -ok
163 0.9995)
164 (TRANS -FROM -TO-PROB assembly -status -ok assembly -status -faulty
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165 0.0005)
166 (TRANS -FROM -TO-PROB assembly -status -faulty assembly -status -faulty
167 1.0)
168 )
169 ))
170 )
171
172 (TRANSITIONS
173 (TRANS -FROM -TO-GUARD -PROB assembly -idle assembly -idle
174 (AND (ASSEMBLY -CMD = NOCOMMAND )) 1.0)
175 (TRANS -FROM -TO-GUARD -PROB assembly -idle assembly -cover
176 (AND (ASSEMBLY -CMD = ASSEMBLE -COVER )) 1.0)
177 (TRANS -FROM -TO-GUARD -PROB assembly -idle assembly -pins
178 (AND (ASSEMBLY -CMD = ASSEMBLE -PINS)) 1.0)
179 (TRANS -FROM -TO-GUARD -PROB assembly -idle assembly -robot
180 (AND (ASSEMBLY -CMD = ASSEMBLE -ROBOT )) 1.0)
181
182 (TRANS -FROM -TO-GUARD -PROB assembly -cover assembly -cover
183 (AND (ASSEMBLY -CMD = ASSEMBLE -COVER )) 1.0)
184 (TRANS -FROM -TO-GUARD -PROB assembly -cover assembly -pins
185 (AND (ASSEMBLY -CMD = ASSEMBLE -PINS)) 1.0)
186 (TRANS -FROM -TO-GUARD -PROB assembly -cover assembly -idle
187 (AND (ASSEMBLY -CMD = NOCOMMAND )) 1.0)
188
189 (TRANS -FROM -TO-GUARD -PROB assembly -pins assembly -pins
190 (AND (ASSEMBLY -CMD = ASSEMBLE -PINS)) 1.0)
191 (TRANS -FROM -TO-GUARD -PROB assembly -pins assembly -idle
192 (AND (ASSEMBLY -CMD = NOCOMMAND )) 1.0)
193
194 (TRANS -FROM -TO-GUARD -PROB assembly -robot assembly -robot
195 (AND (ASSEMBLY -CMD = ASSEMBLE -ROBOT )) 1.0)
196 (TRANS -FROM -TO-GUARD -PROB assembly -robot assembly -cover
197 (AND (ASSEMBLY -CMD = ASSEMBLE -COVER )) 1.0)
198 (TRANS -FROM -TO-GUARD -PROB assembly -robot assembly -idle
199 (AND (ASSEMBLY -CMD = NOCOMMAND )) 1.0)
200 )
201 ))
202
203
204 )
205
206 (TRANSITIONS
207 )
208 )

Listing B.3: PHCA description code for the cognitive factory example from section 2.1.3.
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Figure B.2.: PHCA model used in the kitchen example in section 2.2.

Ok

Holes = ok

Failure: flawed

Holes = damaged

Worker = faulty; 1.0

Maze0
Worker = ok; 1.0

Start

;1.0

Idle

Force = none

Cover

Force = none

Cmd = noop; 1.0

Cmd = a-cover; 1.0

Cmd = noop; 1.0
Assembly

Bolts

if Holes=damaged or Assembly-status=failure:
Force=high
else:
Force=normal

Cmd = a-bolts; 1.0

Cmd = a-robot; 1.0

Cmd = a-bolts; 1.0

Cmd = a-cover; 1.0

Cmd = noop; 1.0

Cmd = noop; 1.0

Robot

Force = none

Cmd = a-robot; 1.0

Cmd = a-bolts; 1.0

Assembly-status

Ok

Failure: 
misaligned

;0.9995

;0.0005

;1.0

Start

Start

Start

Idle

Cut

Failure: cutter
broken

Cmd = cut; 0.99

Cmd = noop; 1.0

Cmd = cut; 0.99

Cmd = noop; 1.0

Cmd = cut; 0.01

Cmd = cut; 0.01

Machining0

Start;1.0

Ok

Holes = ok

Failure: flawed

Holes = damaged

Worker = faulty; 1.0

Maze1
Worker = ok; 1.0

Start

;1.0

Ok

Failure: flawed

Worker = faulty; 1.0

Robot0
Worker = ok; 1.0

Start

;1.0

Idle

Cut

Failure: cutter
broken

Cmd = cut; 0.99

Cmd = noop; 1.0

Cmd = cut; 0.99

Cmd = noop; 1.0

Cmd = cut; 0.01

Cmd = cut; 0.01

Machining1

Start;1.0

Figure B.1.: The PHCA model for the example instance from section 2.1.3.

B.2. Model for Household Robot Example

Here we show the model for the kitchen example described in section 2.2. Its graphical
representation is shown in figure B.3, its code in listing B.6. Note that, due to the
simplifications we made, the commands that tell the robot to move, place or pick are
merely place holders. The implementation requires to give some sort of command.

1 NoProduct , NoComponent , 0: PLATE0 -LINK -CMD=OK
2 NoProduct , NoComponent , 0: PLATE1 -LINK -CMD=OK
3 NoProduct , NoComponent , 0: CUP0 -LINK -CMD=OK
4 NoProduct , NoComponent , 0: CUP1 -LINK -CMD=OK
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5 NoProduct , NoComponent , 0: PLATE0 -LINK -CMD -2=OK
6 NoProduct , NoComponent , 0: PLATE1 -LINK -CMD -2=OK
7 NoProduct , NoComponent , 0: CUP0 -LINK -CMD -2=OK
8 NoProduct , NoComponent , 0: CUP1 -LINK -CMD -2=OK
9 NoProduct , NoComponent , 0: ROBOT -CMD=NOCOMMAND

10 Plate0 , Left -arm , 0: LEFT -ARM -CMD=PICKUP
11 Plate0 , Right -arm , 0: RIGHT -ARM -CMD=PICKUP
12 NoProduct , NoComponent , 0: TABLE -CMD=NOCOMMAND
13
14 NoProduct , NoComponent , 1: PLATE1 -LINK -CMD=OK
15 NoProduct , NoComponent , 1: CUP0 -LINK -CMD=OK
16 NoProduct , NoComponent , 1: CUP1 -LINK -CMD=OK
17 NoProduct , NoComponent , 1: PLATE1 -LINK -CMD -2=OK
18 NoProduct , NoComponent , 1: CUP0 -LINK -CMD -2=OK
19 NoProduct , NoComponent , 1: CUP1 -LINK -CMD -2=OK
20 Plate0 , Left -arm , 1: LEFT -ARM -CMD=NOCOMMAND
21 Plate0 , Right -arm , 1: RIGHT -ARM -CMD=NOCOMMAND
22 NoProduct , NoComponent , 1: ROBOT -CMD=MOVE
23 NoProduct , NoComponent , 1: TABLE -CMD=NOCOMMAND
24
25 NoProduct , NoComponent , 2: PLATE1 -LINK -CMD=OK
26 NoProduct , NoComponent , 2: CUP0 -LINK -CMD=OK
27 NoProduct , NoComponent , 2: CUP1 -LINK -CMD=OK
28 NoProduct , NoComponent , 2: PLATE1 -LINK -CMD -2=OK
29 NoProduct , NoComponent , 2: CUP0 -LINK -CMD -2=OK
30 NoProduct , NoComponent , 2: CUP1 -LINK -CMD -2=OK
31 NoProduct , NoComponent , 2: ROBOT -CMD=NOCOMMAND
32 NoProduct , NoComponent , 2: LEFT -ARM -CMD=PLACE
33 NoProduct , NoComponent , 2: RIGHT -ARM -CMD=PLACE
34 Plate0 , Table , 2: TABLE -CMD=SCAN
35
36 NoProduct , NoComponent , 3: PLATE1 -LINK -CMD=OK
37 NoProduct , NoComponent , 3: CUP0 -LINK -CMD=OK
38 NoProduct , NoComponent , 3: CUP1 -LINK -CMD=OK
39 NoProduct , NoComponent , 3: PLATE0 -LINK -CMD -2=OK
40 NoProduct , NoComponent , 3: PLATE1 -LINK -CMD -2=OK
41 NoProduct , NoComponent , 3: CUP0 -LINK -CMD -2=OK
42 NoProduct , NoComponent , 3: CUP1 -LINK -CMD -2=OK
43 NoProduct , NoComponent , 3: LEFT -ARM -CMD=NOCOMMAND
44 NoProduct , NoComponent , 3: RIGHT -ARM -CMD=NOCOMMAND
45 NoProduct , NoComponent , 3: ROBOT -CMD=MOVE
46 NoProduct , NoComponent , 3: TABLE -CMD=NOCOMMAND
47
48 NoProduct , NoComponent , 4: PLATE0 -LINK -CMD=OK
49 NoProduct , NoComponent , 4: PLATE1 -LINK -CMD=OK
50 NoProduct , NoComponent , 4: CUP0 -LINK -CMD=OK
51 NoProduct , NoComponent , 4: CUP1 -LINK -CMD=OK
52 NoProduct , NoComponent , 4: PLATE0 -LINK -CMD -2=OK
53 NoProduct , NoComponent , 4: PLATE1 -LINK -CMD -2=OK
54 NoProduct , NoComponent , 4: CUP0 -LINK -CMD -2=OK
55 NoProduct , NoComponent , 4: CUP1 -LINK -CMD -2=OK
56 NoProduct , NoComponent , 4: ROBOT -CMD=NOCOMMAND
57 Cup0 , Left -arm , 4: LEFT -ARM -CMD=PICKUP
58 Cup1 , Right -arm , 4: RIGHT -ARM -CMD=PICKUP
59 NoProduct , NoComponent , 4: TABLE -CMD=NOCOMMAND
60
61 NoProduct , NoComponent , 5: PLATE0 -LINK -CMD -2=OK
62 NoProduct , NoComponent , 5: PLATE1 -LINK -CMD -2=OK
63 NoProduct , NoComponent , 5: PLATE0 -LINK -CMD=OK
64 NoProduct , NoComponent , 5: PLATE1 -LINK -CMD=OK
65 NoProduct , NoComponent , 5: CUP0 -LINK -CMD -2=OK
66 NoProduct , NoComponent , 5: CUP1 -LINK -CMD=OK
67 Cup0 , Left -arm , 5: LEFT -ARM -CMD=NOCOMMAND
68 Cup1 , Right -arm , 5: RIGHT -ARM -CMD=NOCOMMAND
69 NoProduct , NoComponent , 5: ROBOT -CMD=MOVE
70 NoProduct , NoComponent , 5: TABLE -CMD=NOCOMMAND
71
72 NoProduct , NoComponent , 6: PLATE0 -LINK -CMD=OK
73 NoProduct , NoComponent , 6: PLATE1 -LINK -CMD=OK
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74 NoProduct , NoComponent , 6: PLATE0 -LINK -CMD -2=OK
75 NoProduct , NoComponent , 6: PLATE1 -LINK -CMD -2=OK
76 NoProduct , NoComponent , 6: CUP0 -LINK -CMD -2=OK
77 NoProduct , NoComponent , 6: CUP1 -LINK -CMD=OK
78 NoProduct , NoComponent , 6: LEFT -ARM -CMD=PLACE
79 Cup1 , Right -arm , 6: RIGHT -ARM -CMD=NOCOMMAND
80 NoProduct , NoComponent , 6: ROBOT -CMD=NOCOMMAND
81 Cup0 , Table , 6: TABLE -CMD=SCAN
82
83 NoProduct , NoComponent , 7: PLATE0 -LINK -CMD=OK
84 NoProduct , NoComponent , 7: PLATE1 -LINK -CMD=OK
85 NoProduct , NoComponent , 7: PLATE0 -LINK -CMD -2=OK
86 NoProduct , NoComponent , 7: PLATE1 -LINK -CMD -2=OK
87 NoProduct , NoComponent , 7: CUP0 -LINK -CMD -2=OK
88 NoProduct , NoComponent , 7: CUP1 -LINK -CMD=OK
89 NoProduct , NoComponent , 7: LEFT -ARM -CMD=NOCOMMAND
90 NoProduct , NoComponent , 7: RIGHT -ARM -CMD=NOCOMMAND
91 NoProduct , NoComponent , 7: ROBOT -CMD=NOCOMMAND
92 Cup1 , Table , 7: TABLE -CMD=SCAN
93
94 NoProduct , NoComponent , 8: CUP0 -LINK -CMD=OK
95 NoProduct , NoComponent , 8: CUP0 -LINK -CMD -2=OK
96 NoProduct , NoComponent , 8: CUP1 -LINK -CMD -2=OK
97 NoProduct , NoComponent , 8: PLATE0 -LINK -CMD=OK
98 NoProduct , NoComponent , 8: PLATE1 -LINK -CMD=OK
99 NoProduct , NoComponent , 8: PLATE0 -LINK -CMD -2=OK

100 NoProduct , NoComponent , 8: PLATE1 -LINK -CMD -2=OK
101 NoProduct , NoComponent , 8: LEFT -ARM -CMD=NOCOMMAND
102 NoProduct , NoComponent , 8: RIGHT -ARM -CMD=NOCOMMAND
103 NoProduct , NoComponent , 8: ROBOT -CMD=MOVE
104 NoProduct , NoComponent , 8: TABLE -CMD=NOCOMMAND
105
106 NoProduct , NoComponent , 9: CUP0 -LINK -CMD=OK
107 NoProduct , NoComponent , 9: CUP1 -LINK -CMD=OK
108 NoProduct , NoComponent , 9: CUP0 -LINK -CMD -2=OK
109 NoProduct , NoComponent , 9: CUP1 -LINK -CMD -2=OK
110 NoProduct , NoComponent , 9: PLATE0 -LINK -CMD=OK
111 NoProduct , NoComponent , 9: PLATE1 -LINK -CMD=OK
112 NoProduct , NoComponent , 9: PLATE0 -LINK -CMD -2=OK
113 NoProduct , NoComponent , 9: PLATE1 -LINK -CMD -2=OK
114 Plate1 , Left -arm , 9: LEFT -ARM -CMD=PICKUP
115 Plate1 , Right -arm , 9: RIGHT -ARM -CMD=PICKUP
116 NoProduct , NoComponent , 9: ROBOT -CMD=NOCOMMAND
117 NoProduct , NoComponent , 9: TABLE -CMD=NOCOMMAND
118
119 NoProduct , NoComponent , 10: CUP0 -LINK -CMD=OK
120 NoProduct , NoComponent , 10: CUP1 -LINK -CMD=OK
121 NoProduct , NoComponent , 10: CUP0 -LINK -CMD -2=OK
122 NoProduct , NoComponent , 10: CUP1 -LINK -CMD -2=OK
123 NoProduct , NoComponent , 10: PLATE0 -LINK -CMD=OK
124 NoProduct , NoComponent , 10: PLATE0 -LINK -CMD -2=OK
125 Plate1 , Left -arm , 10: LEFT -ARM -CMD=NOCOMMAND
126 Plate1 , Right -arm , 10: RIGHT -ARM -CMD=NOCOMMAND
127 NoProduct , NoComponent , 10: ROBOT -CMD=MOVE
128 NoProduct , NoComponent , 10: TABLE -CMD=NOCOMMAND
129
130 NoProduct , NoComponent , 11: CUP0 -LINK -CMD=OK
131 NoProduct , NoComponent , 11: CUP1 -LINK -CMD=OK
132 NoProduct , NoComponent , 11: CUP0 -LINK -CMD -2=OK
133 NoProduct , NoComponent , 11: CUP1 -LINK -CMD -2=OK
134 NoProduct , NoComponent , 11: PLATE0 -LINK -CMD=OK
135 NoProduct , NoComponent , 11: PLATE0 -LINK -CMD -2=OK
136 NoProduct , NoComponent , 11: LEFT -ARM -CMD=PLACE
137 NoProduct , NoComponent , 11: RIGHT -ARM -CMD=PLACE
138 NoProduct , NoComponent , 11: ROBOT -CMD=NOCOMMAND
139 Plate1 , Table , 11: TABLE -CMD=SCAN
140
141 NoProduct , NoComponent , 12: CUP0 -LINK -CMD=OK
142 NoProduct , NoComponent , 12: CUP1 -LINK -CMD=OK
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143 NoProduct , NoComponent , 12: CUP0 -LINK -CMD -2=OK
144 NoProduct , NoComponent , 12: CUP1 -LINK -CMD -2=OK
145 NoProduct , NoComponent , 12: PLATE0 -LINK -CMD=OK
146 NoProduct , NoComponent , 12: PLATE0 -LINK -CMD -2=OK
147 NoProduct , NoComponent , 12: PLATE1 -LINK -CMD -2=OK
148 NoProduct , NoComponent , 12: LEFT -ARM -CMD=NOCOMMAND
149 NoProduct , NoComponent , 12: RIGHT -ARM -CMD=NOCOMMAND
150 NoProduct , NoComponent , 12: ROBOT -CMD=NOCOMMAND
151 NoProduct , NoComponent , 12: TABLE -CMD=NOCOMMAND
152
153 NoProduct , NoComponent , 13: CUP0 -LINK -CMD=OK
154 NoProduct , NoComponent , 13: CUP1 -LINK -CMD=OK
155 NoProduct , NoComponent , 13: PLATE0 -LINK -CMD=OK
156 NoProduct , NoComponent , 13: PLATE1 -LINK -CMD=OK
157 NoProduct , NoComponent , 13: CUP0 -LINK -CMD -2=OK
158 NoProduct , NoComponent , 13: CUP1 -LINK -CMD -2=OK
159 NoProduct , NoComponent , 13: PLATE0 -LINK -CMD -2=OK
160 NoProduct , NoComponent , 13: PLATE1 -LINK -CMD -2=OK
161 NoProduct , NoComponent , 13: LEFT -ARM -CMD=NOCOMMAND
162 NoProduct , NoComponent , 13: RIGHT -ARM -CMD=NOCOMMAND
163 NoProduct , NoComponent , 13: ROBOT -CMD=NOCOMMAND
164 NoProduct , NoComponent , 13: TABLE -CMD=NOCOMMAND

Listing B.4: Input plan P for the kitchen example in section 2.2.

1 RFID__0=NOSIGNAL
2 RFID__1=NOSIGNAL
3 RFID__2=NOSIGNAL
4 RFID__3=NOSIGNAL

Listing B.5: Observations for the kitchen example in section 2.2.

1 VARIABLE -DOMAIN -TYPE -DEFINITIONS
2 VARIABLE -DOMAIN -TYPE COMPONENT -STATUS (OK FAULTY)
3 VARIABLE -DOMAIN -TYPE ITEM -STATUS (OK LOST)
4 VARIABLE -DOMAIN -TYPE TABLE -COMMAND (SCAN NOCOMMAND)
5 VARIABLE -DOMAIN -TYPE ROBOT -COMMAND (MOVE NOCOMMAND)
6 VARIABLE -DOMAIN -TYPE ROBOT -ARM -COMMAND (PICKUP PLACE NOCOMMAND)
7
8
9 VARIABLE -DOMAIN -TYPE RFID -STATUS (NOSIGNAL RECEIVED)

10 VARIABLE -DOMAIN -TYPE ARM -STATUS (OK FAULTY)
11
12 VARIABLE -DEFINITIONS
13 VARIABLE PLATE0 -LINK -CMD OF -TYPE CONTROL WITH -RANGE COMPONENT -STATUS
14 VARIABLE PLATE0 -LINK -CMD -2 OF-TYPE CONTROL WITH -RANGE COMPONENT -STATUS
15 VARIABLE PLATE1 -LINK -CMD OF -TYPE CONTROL WITH -RANGE COMPONENT -STATUS
16 VARIABLE PLATE1 -LINK -CMD -2 OF-TYPE CONTROL WITH -RANGE COMPONENT -STATUS
17 VARIABLE CUP0 -LINK -CMD OF-TYPE CONTROL WITH -RANGE COMPONENT -STATUS
18 VARIABLE CUP0 -LINK -CMD -2 OF -TYPE CONTROL WITH -RANGE COMPONENT -STATUS
19 VARIABLE CUP1 -LINK -CMD OF-TYPE CONTROL WITH -RANGE COMPONENT -STATUS
20 VARIABLE CUP1 -LINK -CMD -2 OF -TYPE CONTROL WITH -RANGE COMPONENT -STATUS
21
22 VARIABLE PLATE0 -LINK -ITEM OF -TYPE DEPENDENT WITH -RANGE ITEM -STATUS
23 VARIABLE PLATE1 -LINK -ITEM OF -TYPE DEPENDENT WITH -RANGE ITEM -STATUS
24 VARIABLE CUP0 -LINK -ITEM OF-TYPE DEPENDENT WITH -RANGE ITEM -STATUS
25 VARIABLE CUP1 -LINK -ITEM OF-TYPE DEPENDENT WITH -RANGE ITEM -STATUS
26
27 VARIABLE TABLE -LINK -ITEM OF -TYPE DEPENDENT WITH -RANGE ITEM -STATUS
28 VARIABLE TABLE -LINK -CMD OF-TYPE DEPENDENT WITH -RANGE COMPONENT -STATUS
29 VARIABLE LEFT -ARM -LINK -CMD OF-TYPE DEPENDENT WITH -RANGE COMPONENT -STATUS
30 VARIABLE RIGHT -ARM -LINK -CMD -2 OF -TYPE DEPENDENT WITH -RANGE COMPONENT -STATUS
31 VARIABLE TABLE -CMD OF-TYPE CONTROL WITH -RANGE TABLE -COMMAND
32 VARIABLE ROBOT -CMD OF-TYPE CONTROL WITH -RANGE ROBOT -COMMAND
33 VARIABLE LEFT -ARM -CMD OF-TYPE CONTROL WITH -RANGE ROBOT -ARM -COMMAND
34 VARIABLE RIGHT -ARM -CMD OF-TYPE CONTROL WITH -RANGE ROBOT -ARM -COMMAND
35 VARIABLE RFID OF-TYPE OBSERVABLE WITH -RANGE RFID -STATUS
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36
37
38 MODEL -DEFINITIONS
39 (root COMPOSITE
40 (CHILDREN
41
42 ((plate0 -model COMPOSITE
43 (CHILDREN
44 (STARTING (plate0 -model -ok PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (PLATE0 -LINK -ITEM = OK)))) ))
45 ((plate0 -model -faulty PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (PLATE0 -LINK -ITEM = LOST )))) ))
46 )
47 (TRANSITIONS
48 (TRANS -FROM -TO-GUARD -PROB plate0 -model -ok plate0 -model -ok
49 (AND (PLATE0 -LINK -CMD = OK) (PLATE0 -LINK -CMD -2 = OK)) 1.0)
50 (TRANS -FROM -TO-PROB plate0 -model -faulty plate0 -model -faulty 1.0)
51 (TRANS -FROM -TO-GUARD -PROB plate0 -model -ok plate0 -model -faulty
52 (OR (PLATE0 -LINK -CMD = FAULTY) (PLATE0 -LINK -CMD -2 = FAULTY )) 1.0)
53 )
54 ))
55
56 ((plate1 -model COMPOSITE
57 (CHILDREN
58 (STARTING (plate1 -model -ok PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (PLATE1 -LINK -ITEM = OK)))) ))
59 ((plate1 -model -faulty PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (PLATE1 -LINK -ITEM = LOST )))) ))
60 )
61 (TRANSITIONS
62 (TRANS -FROM -TO -GUARD -PROB plate1 -model -ok plate1 -model -ok
63 (AND (PLATE1 -LINK -CMD = OK) (PLATE1 -LINK -CMD -2 = OK)) 1.0)
64 (TRANS -FROM -TO -PROB plate1 -model -faulty plate1 -model -faulty 1.0)
65 (TRANS -FROM -TO -GUARD -PROB plate1 -model -ok plate1 -model -faulty
66 (OR (PLATE1 -LINK -CMD = FAULTY) (PLATE1 -LINK -CMD -2 = FAULTY )) 1.0)
67 )
68 ))
69
70 ((cup0 -model COMPOSITE
71 (CHILDREN
72 (STARTING (cup0 -model -ok PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (CUP0 -LINK -ITEM = OK)))) ))
73 ((cup0 -model -faulty PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (CUP0 -LINK -ITEM = LOST )))) ))
74 )
75 (TRANSITIONS
76 (TRANS -FROM -TO-GUARD -PROB cup0 -model -ok cup0 -model -ok
77 (AND (CUP0 -LINK -CMD = OK) (CUP0 -LINK -CMD -2 = OK)) 1.0)
78 (TRANS -FROM -TO-PROB cup0 -model -faulty cup0 -model -faulty 1.0)
79 (TRANS -FROM -TO-GUARD -PROB cup0 -model -ok cup0 -model -faulty
80 (OR (CUP0 -LINK -CMD = FAULTY) (CUP0 -LINK -CMD -2 = FAULTY )) 1.0)
81 )
82 ))
83 ((cup1 -model COMPOSITE
84 (CHILDREN
85 (STARTING (cup1 -model -ok PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (CUP1 -LINK -ITEM = OK)))) ))
86 ((cup1 -model -faulty PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (CUP1 -LINK -ITEM = LOST )))) ))
87 )
88 (TRANSITIONS
89 (TRANS -FROM -TO-GUARD -PROB cup1 -model -ok cup1 -model -ok
90 (AND (CUP1 -LINK -CMD = OK) (CUP1 -LINK -CMD -2 = OK)) 1.0)
91 (TRANS -FROM -TO-PROB cup1 -model -faulty cup1 -model -faulty 1.0)
92 (TRANS -FROM -TO-GUARD -PROB cup1 -model -ok cup1 -model -faulty
93 (OR (CUP1 -LINK -CMD = FAULTY) (CUP1 -LINK -CMD -2 = FAULTY )) 1.0)
94 )
95 ))
96
97
98
99 ((robot COMPOSITE

100
101 (CHILDREN
102
103 (STARTING (left -arm COMPOSITE
104 (CHILDREN
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105 (STARTING (left -arm -ok PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (LEFT -ARM -LINK -CMD = OK)))) ))
106 ((left -arm -faulty PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (LEFT -ARM -LINK -CMD = FAULTY )))) ))
107 )
108
109 (TRANSITIONS
110 (TRANS -FROM -TO-PROB left -arm -ok left -arm -ok 0.999)
111 (TRANS -FROM -TO-PROB left -arm -faulty left -arm -faulty 1.0)
112
113 (TRANS -FROM -TO-PROB left -arm -ok left -arm -faulty 0.001)
114 )
115 ))
116 (STARTING (right -arm COMPOSITE
117 (CHILDREN
118 (STARTING (right -arm -ok PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (RIGHT -ARM -LINK -CMD -2 = OK)))) ))
119 ((right -arm -faulty PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (RIGHT -ARM -LINK -CMD -2 = FAULTY )))) ))
120 )
121
122 (TRANSITIONS
123 (TRANS -FROM -TO-PROB right -arm -ok right -arm -ok 0.99)
124 (TRANS -FROM -TO-PROB right -arm -faulty right -arm -faulty 1.0)
125
126 (TRANS -FROM -TO-PROB right -arm -ok right -arm -faulty 0.01)
127 )
128 ))
129
130 )
131
132 (TRANSITIONS
133 )
134 ))
135
136
137 ((table COMPOSITE
138
139 (CHILDREN
140 (STARTING (table -idle PRIMITIVE (BEHAVIOR -CONSTRAINT (AND (OR (RFID = NOSIGNAL ))
141 (OR (TABLE -LINK -CMD = OK))))
142 ))
143 ((table -detect PRIMITIVE (BEHAVIOR -CONSTRAINT
144 (AND (OR (RFID = RECEIVED) (TABLE -LINK -ITEM = LOST))
145 (OR (RFID = NOSIGNAL) (TABLE -LINK -ITEM = OK))
146 (OR (TABLE -LINK -CMD = OK))
147 )
148 )
149 ))
150 )
151
152 (TRANSITIONS
153
154 (TRANS -FROM -TO -GUARD -PROB table -idle table -idle (AND (TABLE -CMD = NOCOMMAND )) 1.0)
155 (TRANS -FROM -TO -GUARD -PROB table -idle table -detect (AND (TABLE -CMD = SCAN)) 1.0)
156 (TRANS -FROM -TO -GUARD -PROB table -detect table -detect (AND (TABLE -CMD = SCAN)) 1.0)
157 (TRANS -FROM -TO -GUARD -PROB table -detect table -idle (AND (TABLE -CMD = NOCOMMAND )) 1.0)
158
159 )
160
161 ))
162
163 )
164
165 (TRANSITIONS
166 )
167 )

Listing B.6: PHCA description code for the kitchen example in section 2.2.
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Ok

Plate0-link-item = ok

Failure: flawed

Plate0-link-item = lost

Plate0-link-cmd = faulty or
Plate0-link-cmd2 = faulty; 1.0

Plate0
Plate0-link-cmd = ok and 
Plate0-link-cmd2 = ok; 1.0
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;1.0

Idle
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Table-link-cmd = ok
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Table-link-cmd = ok and
if RFID = signal:
Table-link-item = ok
else:
Table-link-item = lost

Table-cmd = noop; 1.0

Table-cmd = scan; 1.0

Table-cmd = noop; 1.0

Table

Start

Table-cmd = scan; 1.0
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Plate1-link-item = ok

Failure: flawed

Plate1-link-item = lost

Plate1-link-cmd = faulty or
Plate1-link-cmd2 = faulty; 1.0

Plate1
Plate1-link-cmd = ok and 
Plate1-link-cmd2 = ok; 1.0
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;1.0
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Cup0-link-item = ok

Failure: flawed

Cup0-link-item = lost

Cup0-link-cmd = faulty or
Cup0-link-cmd2 = faulty; 1.0

Cup0
Cup0-link-cmd = ok and 
Cup0-link-cmd2 = ok; 1.0

Start

;1.0
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Cup1-link-item = ok

Failure: flawed

Cup1-link-item = lost

Cup1-link-cmd = faulty or
Cup1-link-cmd2 = faulty; 1.0
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Cup1-link-cmd = ok and 
Cup1-link-cmd2 = ok; 1.0
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malfunction

Left-arm-link-cmd = faulty

;0.999

;0.001

;1.0
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Right-arm-link-cmd2 = ok

Failure: 
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;1.0

Start

Start

Figure B.3.: PHCA model for the kitchen example in section 2.2.
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Nomenclature

(stiΠU ,m
ti) Set of so-called discrete flow constraints. A discrete flow constraint in Fd is the
discrete abstraction of a corresponding flow constraint (i.e. differential equation)
in F .

(stU ,m
t) HyPHCA hybrid state.

Adf Discrete flow PHCA model.

U̇lvl Derivative of the fill level of the filling station’s silo. I.e. this encodes the change
rate per time unit.

EP Execution adaptation function. Simulates the execution of a PHCA model.

Gi A goal a technical system should achieve. In manufacturing plants, the goal to
finish a certain product, indexed by i.

〈(p, c, t, a)〉j Sequence of tuples forming a plan, in manufacturing a schedule. p identifies
a product to be worked by a station or factory component c, which should perform
action a at time t.

C PHCA set of finite domain constraints. Consists of behavior constraints of locations
and guard constraints of tranistions.

D Set of definitions for a Bayesian logic network.

F In the context of Bayesian logic networks and probabilistic reasoning: Set of
fragments for a Bayesian logic network. In the context of hybrid models and
HyPHCA: Set of continuous flow constraints, i.e. constraints over real-valued
variables in the form of linear ordinary differential equations.

Fd Set of discrete flow constraints. A discrete flow constraint in Fd is the discrete
abstraction of a corresponding flow constraint (i.e. differential equation) in F .

L Set of first-order logical formulas for a Bayesian logic network.
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Nomenclature

R = (X,D,C) A constraint net, consisting of a set of variables, a set of domains and a
set of constraint functions.

RB = (X,D,G, P ) A Bayesian net, consisting of a set of variables, a set of domains
for these variables, a graph representing conditional dependencies and a set of
conditional probability functions.

T PHCA set of transitions.

HA Hybrid PHCA model.

St(M) Set of system behaviors/trajectories, i.e. sequences of system states (time frame
not specified).

St t(M) Set of states for system model M at time t.

fR The constant fill rate of the filling station’s silo.

Cmd PHCA command variables.

Dep PHCA dependent variables.

ωfail Lower threshold for success probability, if it is below ωfail, something must be
done, e.g. re-planning.

ωsuccess Upper threshold for success probability, if it is above ωfail, success is assumed to
not be jeopardized.

B = (D,F ,L) A Bayesian logic network consisting of a set of definitions, a set of fragments
and a set of first-order logical formulas.

P Sequence of operation steps, a plan, a technical system shall execute to achieve
some goals.

MPHCA PHCA model.

MPPHCA PHCA model adapted to the execution of a plan P. The model is the result of
execution function EP .

MN
PHCA PHCA model that explicitly represents N time steps, i.e. where locations,

transitions, etc. are represented explicitly for all the N time steps.

Π PHCA set of finite variables, if not math. product.
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Nomenclature

Πt Set of PHCA variables at time t.

ΠU ′ Discrete versions of the real-valued HyPHCA variables U ′, which are created when
translating a HyPHCA to a discrete flow PHCA.

ΠU Discrete versions of the real-valued HyPHCA variables U , which are created when
translating a HyPHCA to a discrete flow PHCA.

Σ PHCA locations.

Σc PHCA composite locations.

Σp PHCA primitive locations.

Pr(Gi |o0:t) Success probability for product indexed by i and given observations o0:t.

θ(t), mt Marking at time point t, part of trajectory θ.

Θ Alternate notation for the set of all trajectories of a PHCA.

Υ Function that translates a PHCA model into some generic problem representation,
e.g. a constraint net or a Bayesian logic net.

ΥBLN Function that translates a PHCA to a Bayesian logic network.

ΥCOP Function that translates a PHCA model into a constraint net.

C Set of constraint functions.

D Set of domains for model variables.

DXΣ
, DΠ, DXExec

Sets of domains for the constraint net variables encoding PHCA loca-
tions XΣ and PHCA variables Π, respectively, and the set of domains for constraint
net variables XExec used to encode the structure and transition semantics of PHCA.

Gλ A grid cell, i.e. a rectangular part of the state space of a HyPHCA.

k Number of system behaviors/trajectories to compute. More general, number of
solutions to enumerate in decreasing order with respect to their objective value.

N Number of time steps considered simultaneously for plan assessment, i.e. the size
of the time horizon spanning past and future.

O PHCA observation variables.
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Nomenclature

P Set of conditional probability functions.

pl Lower bound on success probability.

pu Upper bound on success probability.

PΞ(Ξi) PHCA probability distribution over intial markings Ξi.

p∗l Stochastic lower bound of success probability.

PT [li] PHCA prob. dist. over transition functions T .

p∗u Stochastic upper bound of success probability.

U Set of all HyPHCA real-valued variables.

U ′ Set of all HyPHCA real-valued variables right after a transition was taken. That
is, if some variable Ui has value a, and taking a transition changes that value to b,
then variable U ′i takes value b.

Ui Continuous, e.g. real-valued, variable.

Ulvl The real-valued fill level of the filling station’s silo.

X Set of model variables. In context of COP: set of COP variables. In context of
BLN: set grounded BN random variables.

Xt Set of system variables (COP variables, grounded BN random variables) that
encode the model state at time t.

Xt
Exec Set of auxiliary variables used to encode PHCA structure and its transition

semantic over discrete time steps.

Xt
Σ Set of constraint net variables that correspond to PHCA locations.

XUi Discrete-valued variable, in a discrete flow PHCA the discrete abstraction of
variable Ui of the corresponding HyPHCA.

Gi Set of all goals for some plan P.

em Example model, the model used for the running example introduced in chapter 2.
Also used for evaluation.

fmx Factory model 1, 2 or 3, used for the evaluation.

sm Satellite model.
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List of Abbreviations

General Abbreviations

AI Artificial intelligence.

BLN Bayesian logic network.

BN Bayesian network.

BOM Bill of materials.

CAD Computer aided design.

CAPP Computer aided process planning.

CDF Cumulative distribution function.

CIM Computer-integrated manufacturing.

COP Constraint optimization problem.

CPT Conditional probability table.

CoTeSys Cognition for technical systems.

CRAM Cognitive robot abstract machine.

DLR Deutsches Zentrum für Luft- und Raumfahrt.

dfPHCA Discrete flow PHCA.

HMM Hidden Markov model.

HyPHCA Hybrid PHCA.

k-N -TWF Time window filtering with k most probable trajectories and N time steps.

MAP Most probable a posteriori hypothesis.
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List of Abbreviations

MN Mixed network.

MPE Most probable explanation. Also known as MLE, most likely explanation.

PCOP Probabilistic constraint optimization problem. In this work, most of the time
a COP is a PCOP, therefore we use COP and PCOP interchangeably.

PDDL Planning domain description language.

PHCA Probabilistic hierarchical constraint automaton/automata.

PLC Programmable logic controller.

POMDP Partially observable Markov decision processes.

RFID Radio-frequency identification.

RMPL Reactive model-based programming language.

STRIPS Stanford Research Institute Planning System.

TUM Technische Universität München.

VSCP Valued constraint satisfaction problem.

WCSP Weighted constraint satisfaction problem.
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List of Abbreviations

Abbreviations in Bibliography

AAAI The association for the advancement of artificial intelligence. Also used for
the associated conference.

AAMAS International conference on autonomous agents and multiagent[sic] systems.

ACM Association for computing machinery.

ASWEC Australian software engineering conference.

ECAI European conference on artificial intelligence.

ETFA IEEE international conference on emerging technologies and factory automa-
tion.

FMSB Formal methods in systems biology.

HSCC International conference on hybrid systems: computation and control.

ICAPS International conference on automated planning and scheduling.

ICCA IEEE international conference on control and automation.

ICRA IEEE international conference on robotics and automation.

ICSE International conference on software engineering.

IJCAI International joint conference on artificial intelligence.

ISRR The international symposium of robotics research.

IV IEEE intelligent vehicles symposium.

KI Annual conference on artificial intelligence in Germany. KI stands for German
“Künstliche Intelligenz”.

LNCS Lecture notes in computer science. Published by Springer.

SAC ACM symposium on applied computing.

SFM International school on formal methods for the design of computer, communi-
cation and software systems.

UAI Conference on uncertainty in artificial intelligence.
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