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Abstract
Skin cancer is one of the most frequently encountered types of cancer in the Western
world. According to the Skin Cancer Foundation Statistics, one in every five Americans
develops skin cancer during his/her lifetime. Today, the incurability of advanced cuta-
neous melanoma raises the importance of its early detection. Since the differentiation of
early melanoma from other pigmented skin lesions is not a trivial task, even for expe-
rienced dermatologists, computer aided diagnosis could become an important tool for
reducing the mortality rate of this highly malignant cancer type.

In this thesis, a computer aided diagnosis system based on machine learning is pro-
posed in order to support the clinical use of optical spectroscopy and dermatoscopy imag-
ing techniques for skin lesions quantification and classification. The thesis is divided into
two parts; the first part focuses on a feasibility study of optical spectroscopy. To this
end, data acquisition protocols for optical spectroscopy are defined and detailed analysis
of feature vectors is performed. Different techniques for supervised and unsupervised
learning are explored on clinical data, collected from patients with malignant and benign
skin lesions. A mole mapping technique is proposed for hand-held optical spectroscopy
devices with tracking where spectral information is acquired synchronously with position
and orientation. Furthermore, an augmented reality guidance system is presented which
allows to find a previously examined point on the skin with an accuracy of 0.8 [mm] and
5.0 [deg] (vs. 1.6 [mm] and 6.6 [deg] without guidance).

The second part is based on modeling the visual assessment of the dermatologist. To
this end, detailed feature sets are derived based on the well-known diagnostic rules in
dermatology, such as the ABCD rule. Several supervised and unsupervised classification
methods; i.e k-Nearest Neighbors, Logistic Regression, Artificial Neural Networks, Deci-
sion Trees, and SVM, have been tested in combination with the developed feature extrac-
tion technique. Therefore, a dermatoscopy database consisting of 42.911 patient datasets
is utilized which are acquired in routine check-ups and show skin lesions of different
grades.

The contributions of this work are twofold. The feasibility study of the optical spec-
troscopy demonstrates the requirements for its clinical use and suggests that it can im-
prove the diagnostic accuracy when utilized in combination with other imaging tech-
niques such as multi-spectral imaging. The second contribution is the development of
new feature vectors based on the modeling of expert’s visual perception. This results in
high classification accuracy of several skin lesions. Thus, this thesis presents a step to-
wards computer aided solutions in order to improve dermatological diagnosis in the near
future.

Keywords: Skin Cancer, Optical Spectroscopy, Dermatoscopy, Machine Learning, Su-

pervised Learning, Unsupervised Learning.
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Zusammenfassung

Hautkrebs ist eine der am weitesten verbreiteten Krebsarten in der westlichen
Welt. Nach Statistiken der Skin Cancer Foundation entwickelt jeder fünfte Ameri-
kaner Hautkrebs im Laufe seines Lebens. Die Unheilbarkeit des fortgeschrittenen
kutanen Melanoms verstärkt heutzutage die Bedeutung der frühzeitigen Erken-
nung. Da es selbst für erfahrene Dermatologen schwierig ist, das Melanom in
einer frühen Phase von anderen pigmentierten Hautveränderungen zu unterschei-
den, könnte die computergestützte Diagnose zu einem wichtigen Werkzeug wer-
den, um die Sterblichkeitsrate dieser höchst bösartigen Krebsart zu verringern.

In dieser Arbeit wird ein computergestütztes Diagnosesystem vorgestellt, das
auf maschinellem Lernen beruht und die klinische Anwendung von optischer
Spektroskopie und Dermatoskopie für die Quantifikation und Klassifikation von
Hautveränderungen unterstützt. Die Arbeit besteht aus zwei Teilen; im ersten
Teil findet sich eine Anwendbarkeitsstudie zur optischen Spektroskopie. Hierzu
werden Aufnahmeprotokolle definiert und Vektoren zur Merkmalsextraktion im
Detail untersucht. Verschiedene Methoden des überwachten und unüberwachten
maschinellen Lernens werden auf klinischen Daten angewendet, die von Patien-
ten mit gutartigen und bösartigen Hautveränderungen stammen. Eine Mole-Ma-
pping-Methode für Spektroskopie-Handgeräte wird vorgestellt, bei der mithilfe
von optischem Tracking die Spektralinformation synchron mit der Position und
Orientierung des Geräts erfasst wird. Außerdem wird ein Unterstützungssystem
basierend auf Augmented Reality präsentiert, das es ermöglicht, einen vorher un-
tersuchten Punkt auf der Haut mit einer Genauigkeit von 0,8 [mm] und 5,0 [Grad]
wiederzufinden (gegenüber 1,6 [mm] und 6,6 [Grad] ohne Unterstützung).

Im zweiten Teil wird die visuelle Beurteilung durch den Hautarzt modelliert.
Hierzu werden detaillierte Sätze von charakteristischen Merkmalen auf Basis bek-
annter dermatologischer Diagnoseregeln hergeleitet, wie der ABCD Regel. Mehr-
ere überwachte und unüberwachte Klassifizierungsmethoden werden in Verbind-
ung mit der entwickelten Merkmalsextraktion erprobt (k-Nearest Neighbors, Lo-
gistische Regression, Neuronale Netze, Entscheidungsbäume und SVM). Zu die-
sem Zweck wird eine Dermatoskopie-Datenbank verwendet mit 42,911 Patienten-
datensätzen, die bei Routineuntersuchungen entstanden sind und Hautveränder-
ungen verschiedenen Grades beinhalten.

v



Diese Arbeit bietet zweierlei Beiträge. Die Anwendbarkeitsstudie behandelt
die Anforderungen für den klinischen Einsatz von Spektroskopie und zeigt auf,
dass das Verfahren die diagnostische Genauigkeit verbessern kann, wenn es in
Verbindung mit anderen bildgebenden Verfahren zum Einsatz kommt, z.B. Mul-
tispektralkameras. Der zweite Beitrag besteht aus der Entwicklung neuartiger
Merkmalsvektoren durch die Modellierung der visuellen Wahrnehmung eines
Arztes. Es ergibt sich eine hohe Klassifizierungsgenauigkeit für mehrere Arten
von Hautveränderungen. Die Arbeit stellt also einen Schritt in Richtung comput-
ergestützter medizinischer Lösungen dar zur Verbesserung der dermatologischen
Diagnose in naher Zukunft.

Keywords: Skin Cancer, Optical Spectroscopy, Dermatoscopy, Machine Learn-
ing, Supervised Learning, Unsupervised Learning.
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CHAPTER 1

Introduction

SKIN cancer is among the most frequent types of cancer and one of the most
malignant tumors. The incidence of melanoma in the general population is

increasing worldwide [107], especially in countries where the ozone layer is thin-
ning. Its incidence has increased faster than that of almost all other cancers, and
the annual rates have increased on the order of 3% to 7% in the fair–skinned popu-
lation in recent decades [107]. Currently, between 2 and 3 million non–melanoma
skin cancers and 132.000 melanoma skin cancers occur globally each year. One
in every three cancers diagnosed is a skin cancer, and according to the Skin Can-
cer Foundation statistics, one in every five Americans will develop skin cancer
during their lifetime [124]. Because advanced cutaneous melanoma is still incur-
able, early detection, by means of accurate screening, is an important step toward
mortality reduction. The differentiation of early melanoma from other pigmented
skin lesions (e.g. benign neoplasms that simulate melanoma) is not trivial, even
for experienced dermatologists. In several cases, primary care physicians seem
to underestimate melanoma in its early stage [126] which attracted the interest of
many researchers, and lead to the development of systems for automated detec-
tion of malignancy in skin lesions.

At present most dermatologists rely on their experience of visual assessment to
distinguish benign and malign skin lesions [91] like pigmented nevi, seborrhoeic
keratosis or basal cell carcinoma and malignant melanoma, as well as requiring
pathology of the affected skin. To complicate matters, Cutaneous T-Cell Lym-
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1. Introduction

phoma (CTCL) is a blood cancer type with symptoms that are exhibited as skin le-
sions as well. Again a timely diagnosis and staging is very crucial for a successful
treatment [83]. The experienced dermatologist relies initially on pattern recogni-
tion, second on history, and later on laboratory parameters. Generally, Physicians
follow the ”ABCD” criteria; Asymmetry, Border irregularity, Color variation, and
Diameter, in their assessment [4][82][95][20][145].

However, many particular aspects of the skin cannot be evaluated effectively
with the naked eye e.g. morphology, as skin is composed of many superim-
posed layers, with different characteristics, properties and functions that cannot
be differentiated by the naked eye but are clearly delineated by imaging meth-
ods. Advances in digital dermoscopy, microscopy, imaging, and photography
have formed an impressive arsenal with which dermatologists can better diag-
nose [51][59][114][1][60][12][132][142].

New technologies to assist the dermatologists in identifying and diagnosing
skin lesion, such as hand-held magnification devices and computer-aided image
analysis. Colored image processing methods have been introduced for detecting
the melanoma [34] which focused on non-constant visual information of skin le-
sions. Neural network diagnosis of skin lesion has been applied by classifying
extracted features from digitized dermoscopy images of lesions [98] [131]. The ex-
tracted features are based on geometry, colors, and texture of the lesions, involving
complex image processing techniques. Many other attempts have been made to
automate the detection and classification of melanoma from the digital color and
surface reflectance images [132][14][45][12][144]. Those attempts involve the ini-
tial segmentation of the skin lesion from the surrounding skin followed by the cal-
culation of classification features [52][13][131][77][146][161]. Accurate description
and measurement of image features cannot be achieved without accurate image
segmentation [80]. Therefore, a wide range of algorithms have been proposed in
the past for color image segmentation [86], broadly categorized as pixel-based seg-
mentation [152], region-based segmentation and edge detection [153]. However,
in the case of optical spectral reflectance images, the research is still limited due
to the recent introduction of the imaging technology in dermatology. The contri-
butions of this thesis is two fold: first, a feasibility study of spectroscopy as a tool
to aid the diagnosis of skin lesions is performed. Second, modeling of the visual
perception of dermatologist experts a new feature extraction method and perfor-
mance comparison among different classification models have been developed. In
next sections we give more details.
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1.1. Problem definition

1.1.1. Optical spectroscopy

One of the substantial features for the diagnosis of malignant melanoma is the skin
lesion color [49]. In most of the related research, skin lesion color was investigated
to disintegrate malignant melanoma lesions from benign lesions in clinical images
[122]. Human skin is a variegated surface, with fine scale geometry, which makes
its appearance difficult to model. Furthermore, the conditions under which the
skin surface is viewed and illuminated greatly affect its appearance.

As we know that light of different wavelengths access the skin in different
depths (as shown in Figure 1.1). This fact led the researchers to evaluate pig-
mented lesions under specific wavelengths of light from visible spectrum to near
infrared range. Through multi-spectral imaging we can capture light from fre-
quencies beyond the visible light range which allows us to extract additional in-
formation that the human eye fails to capture with its receptors for red, green and
blue. Furthermore, the spectral information can be employed for the analysis and
the information retrieval about the consistence and the concentration of absorbers
and reflectors in the skin. Different pigments of the skin absorb different wave-
length of optical spectrum, which helps in determining the reflectance coefficient
of the area of the skin.

One of the most significant features of spectral reflectance is the property that
the spectral reflectance curve is based on the material composition of the object
surface, color, biochemical composition and cellular structure. This property can
be utilized for recognizing objects and segment regions. Currently there exist only
a small number of systems, e.g. spectrophotometric intracutaneous analysis (SIA)
scope [112], MelaFind [117] and SpectroShade [118], which use multispectral der-
moscopic images as the inputs for subsequent computer analysis.

The best of our knowledge, the system which has already developed for the
analysis of skin lesion from multispectral images, is based on the images of se-
lected wavelength without keeping record of reflectance spectra. However, as
different skin lesions can be investigated more in detail by observing their re-
flectance, we analyze the feasibility of spectroscopy as a tool to distinguish benign
and malign skin lesions.
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1. Introduction

Figure 1.1.: Different wavelengths penetrates the skin to different depths. Visible
light and near infrared penetraion in skin is more then other wave-
lengths (Image source: [43])
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1.1.2. Dermoscopy

Dermoscopy consists of visual examination of skin lesion that are optically en-
larged and illuminated by halogen light. This is a non–invasive in vivo technique
to assists the clinician in detecting the melanoma in its early stage [22]. This tech-
nique permits the visualization of new morphologic features and thus cases facil-
itates early diagnosis. However, evaluation of the many morphologic characteris-
tics is often extremely complex and subjective [131][132][142].

The Second Consensus Meeting on Dermoscopy, held in 2000, resulted in the
conclusion of four algorithms as suitable means for evaluating skin lesions us-
ing dermoscopy: pattern analysis, ABCD rule, Menzies scoring method and the
7–point check list [82][130]. All four methods share some common concepts and
allow for selection of specific features, which can be done with the aid of com-
puters. The ABCD rule specifies a list of visual features associated to malignant
lesions, from which a score is computed [116]. This methodology provided clini-
cians with a useful quantitative basis, but it did not prove to be efficient enough
for clinically doubtful lesions (CDL). The main reason for this is the difficulty in vi-
sually characterizing the lesion’s features. Setting an adequate decision threshold
for the score is also a difficult problem. Many authors claim that these thresholds
may lead to high rates of false diagnoses [95].

Collaboration of dermatologists, computer scientists and image processing spe-
cialists has led to significant automation of analysis of dermoscopic images and
improvement in their classification [135][68][62]. The computerized analysis of
dermoscopic images can be an extremely useful tool to measure and detect sets
of features from which dermatologists derive their diagnosis. It can also be help-
ful for primary screening campaigns, increasing the possibility of early diagnosis
of melanoma and training new practicing dermatologist. Our conclusive aim is
to model visual perception of experienced dermatologist for the identification of
early–stage melanoma, based on images obtained by digital dermoscopy. This
would enable supervised classification of melanocytic lesions. The result of such
classification procedure will separate the screened lesions into two groups. The
first group corresponds to lesions that were classified with low confidence level
which requires subsequent inspection by an experienced dermatologist for the fi-
nal decision, while the second one corresponds to those lesions for which the con-
fidence level is high and thus there is no need for examination by a dermatologist.

7



1. Introduction

1.2. Research Objectives

The principal objective of this work is to investigate the integration of advanced
imaging methods (Optical spectroscopy and digital dermoscopy) into computer
aided diagnosis (CAD) of skin lesions.

• The first goal consists of the acquisition of spectral information from patient
skin synchronously with position and orientation.

• Classification of spectroscopy with high accuracy based on the labelling pro-
vided by a dermatology expert.

• Improving the feasibility of spectroscopy based on the clustering and the
dimensionality reduction for visualization of acquired datasets.

• Substantially important objective is to model the of visual perception of der-
matologist considering dermoscopic image dataset.

• The final Objective is the performance comparison among different stat of
the art models for computer-aided diagnosis system in skin lesions classifi-
cation.

1.3. Contributions

The first contribution of this thesis is in the feasibility study of optical spectroscopy.
To this end, spectroscopy data are acquired from the patients visiting department
of dermatology for their routine checkup and its protocols are setup. Labeling of
data based on the prescription of physician. Furthermore, experiments are per-
form for the verification of spectroscopy data. Different methods are applied for
dimension reduction, classification and clustering.

Another contribution is the development of a model based on the analysis of
dermatologist’s visual perception. Dermoscopic images are labeled with the co-
ordination of expert physicians which are used as a input and ground truth for
classification. In literature variety of statistical and machine learning approaches
for classification are available, but few comparisons among different models have
been done on the same datasets.

The work presented in this thesis spawned a series of publications presented at
major conferences in the field of medical imaging and medical augmented reality:
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• A. Safi, T. Lasser, D. Mateus, A. Horsch, M. Ziai and N. Navab. A Com-
prehensives study of Advanced Computer-aided Diagnosis System for Skin
Lesions Characterization . In review process at Journal of IEEE Transactions
on Biomedical Engineering 2011

• A. Safi, M. Baust, O. Pauly, V. Castaneda, T. Lasser, D. Mateus, N. Navab, R.
Hein and M. Ziai. Computer-Aided Diagnosis of Pigmented Skin Dermo-
scopic Images. In MICCAI Workshop on Medical Content-based Retrieval for
Clinical Decision Support Volume: 7075, Toronto, Canada, 2011.

• A. Safi, V. Castaneda, T. Lasser, D. Mateus and N. Navab. Manifold Learn-
ing for Dimensionality Reduction and Clustering of Skin Spectroscopy Data.
In Proceedings of SPIE Medical Imaging Volume: 7963, Pages 1192, Florida,
USA, 2011.

• A. Safi, T. Lasser and N. Navab. Skin Lesions Classification with Optical
Spectroscopy. In MICCAI workshop on Medical Imaging and Augmented Re-
alityIn (MIAR2010). Beijing, China, pages 411-418, 2010.

• A. Duliu, T. Lasser, A. Safi and N. Navab. Navigated Tracking of Skin Le-
sion Progression with Optical Spectroscopy. In Proceedings of SPIE Medical
Imaging Volume: 7624, Pages 76243, San Diego, USA, 2010.

1.4. Overview of the Dissertation Organization

The remaining of this thesis is organized as follows: In Chapter 2, we provide
the medical background about skin lesions, its types and clinical diagnosis meth-
ods. Chapter 3 deals with mole mapping technique and acquisition of spectral
information. Chapter 4-5 describe supervised and unsupervised learning of spec-
troscopy together with a discussion on our experiments. In Chapter 6, we present
our feature extraction method, segmentation and classification for dermatoscopic
images. Comparison of different methods is presented in Chapter 7. Finally, in
Chapter 8, we discuss the future work and potential improvements of the pre-
sented methods and conclusion.
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CHAPTER 2

Human Skin Medical Background, Imaging
Techniques and Systems

DERMATOLOGY is often termed as a visual specialty wherein a majority of di-
agnoses can be made by visual inspection of the skin. Diagnosis of skin

disease in dermatology is largely noninvasive. The physician diagnosis is based
on the anatomic distribution, color, configuration, and visible surface changes of
a lesion. In some cases, a skin pathology is performed which again offers the
opportunity for a microscopic visual examination of the lesion in question, but
there exist limitations in the assessment of depth and size of skin lesions as well
as internal features of superficial lesions. Such limitations results in need for an
objective noninvasive means of assessing the skin. Digital dermatoscopic images
firstly have to be parameterized for automatic classification. The deep study of
skin nature has to be done before to parameterize it.

2.1. Introduction to Skin Lesions

The skin consists of an epidermis, dermis and subcutaneous fat. Many skin dis-
eases characteristically affect a particular layer of the skin. For extraction skin or
lesion optical features it is very useful to use multi layer skin model. The most
common is four-layer skin model: Stratum Corneum, Epidermis, Papillary der-
mis and Reticular dermis. Stratum Corneum is top thin layer, which is a pro-
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Figure 2.1.: Skin layers and cancer generation (image source: [31])

tective layer consisting of keratin-impregnated cells and it varies considerably in
thickness. Apart from scattering the light, it is optically neutral.

2.1.1. Epidermis

The epidermis (Figure 2.1) is largely composed of connective tissue. It also con-
tains the melanin producing cells, the melanocytes, and their product, melanin. In
this layer there is strong absorption of blue and ultraviolet light as shown in Fig-
ure 1.1. Melanocytes absorb most of this light. It behaves like blue and ultraviolet
filter, which characteristics depend on concentration of melanocytes. Within the
epidermal layer there is very little scattering, with the small amount that occurs
being forward directed. The result is that all light not absorbed by melanin can be
considered to pass into the dermis [3].

2.1.2. Dermis

Dermis consists of two sub layers: papillary dermis and reticular dermis. Der-
mis itself consists of collagen fibers and, in contrast to the epidermis; it contains
sensors, receptors, blood vessels and nerve ends. In papillary dermis the collagen
fibers are thinner and they behave as highly backscattering layer. Any incident
light is backscattered towards surface. Scattering is greater in red spectrum and

12



2.2. Types of Skin Lesions

going greater to infrared. Because infrared is not absorbed by melanin and blood,
this part of spectrum is best for assessing thickness of papillary dermis [3].

2.1.3. Subcutaneous fat

The subcutaneous fat is composed of adipose tissue separated by connective tissue
trabeculae containing blood vessels, nerves and lymphatics. It serves both as insu-
lation and a caloric reservoir. Its thickness also varies depending upon anatomic
location, sex and body habits [3].

2.2. Types of Skin Lesions

Skin cancer is the abnormal growth of skin cells. Skin cancer begins in the cells
that make up the outer layer (epidermis) of skin as shown in Figure 2.1. Manly
skin cancer are three types (i) basal cell carcinoma, (ii) squamous cell carcinoma
and (iii) melanoma [32].

Basal cell carcinoma begins in the basal cells, which make skin cells that con-
tinuously push older cells toward the surface. As new cells move upward, they
become flattened squamous cells, where a skin cancer called squamous cell carci-
noma can occur. Squamous cell carcinoma rarely causes further problems when
identified and treated early. Untreated, squamous cell carcinoma can grow large
or spread to other parts of your body, causing serious complications. A patient
with squamous cell tumor has an increased chance of developing another, espe-
cially in the same skin area or nearby.

Melanoma is the most serious form of skin cancer. If it is recognized and treated
early, it is almost always curable, but if it is not, the cancer can advance and spread
to other parts of the body, where it becomes hard to treat and can be fatal. While it
is not the most common of the skin cancers, it causes the most deaths. Melanoma
originates in melanocytes as (see Figure 2.1), which is a pigment-producing cell in
the skin, hair and eye that determines their color. The pigment that melanocytes
make is called melanin. The major determinant of color is not the number but
rather the activity of the melanocytes. Melanin production takes place in unique
organelles (tiny structures within the cell) known as melanosomes. Darkly pig-
mented skin, hair and eyes have melanosomes that contain more melananin [110]
[81] [160].
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2.3. Skin Imaging Techniques

Skin imaging includes various modifications of electromagnetic wave imaging
such as optical, infrared, nuclear magnetic resonance, multispectral imaging, acous-
tical wave imaging and mechanical wave imaging. Tomographic images i.e. 2D
cross sectional images are acquired with medical imaging system. Depending on
the spatial orientation of the cross section, these images depict information about
the tissue over depth or any other direction. Three dimensional tissue volumes
are usually imaged by acquiring a stack of consecutive 2D images [157].

Different illumination method called epiluminence microscopy (ELM, or der-
moscopy) can be used in order to get the image from deeper skin layers . The
light is directed straight in to these layers and reflected goes back through lesion
giving more information about consistence of light absorbers in these layers [79].
Another appealing solution of getting more information from skin is using multi
spectral photography, which uses narrow frequency bands of light illumination.
Those images give information about consistence and concentration of absorbers
and reflectors in the skin. The idea is that different pigments of skin absorb differ-
ent light waves, determining the color of our skin. When those photos are made
with range of light waves, we can calculate the reflectance frequency character-
istics of skin. And comparing to normal skin characteristic there can be made
diagnostic decisions about skin pigment consistency [81]. Some of the methods
based upon the above classification of skin imaging are described in next coming
sections.

2.3.1. Dermatoscopy

Dermatoscopy also known as Dermoscopy is a diagnostic technique that is used
mostly in dermatology for the identification and diagnosis of skin lesions [96].
This diagnostic tool permits the recognition of structures not visible by the naked
eye in other words its skin surfacing microscopy, which is noninvasive diagnostic
technique for the observation of pigmented skin lesions, allowing a better visual-
ization of surface.

Dermatologist contemplates visual signs of the lesion. The Second Consensus
Meeting on Dermoscopy was held in 2000 and its main conclusions were that
four algorithms: pattern analysis, ABCD rule, Menzies scoring method and the
7–point[82] check list are good ways of evaluating skin lesions using dermoscopy.
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(Asymmetry) (Border unevenness)

(Color deviation) (Diameter)

Figure 2.2.: Dermoscopic images according to ABCD rule

All four methods share some common concepts and allow for selection of spe-
cific features, which can be done with the aid of computers. These methodology
provided clinicians with a useful quantitative basis, but it did not prove efficient
enough for clinically doubtful lesions (CDL). The main reason for this is the diffi-
culty in visually characterizing the lesion’s features. Setting an adequate decision
threshold for the score is also a difficult problem; by now it has been fixed based
on several years of clinical experience. Many authors claim that these thresholds
may lead to high rates of false diagnoses [81] [160] [95].

2.3.1.1. The ABCD Rule

The ABCD rule was proposed in 1985 by Friedman et al. [57] as a guideline both
for clinicians and laypeople to visually recognition potential melanomas in the
early stages of development. The ABCD rule specifies a list of visual features (see
Figure 2.2) associated to malignant lesions (Asymmetry, Border unevenness, Color
deviation, Diameter and Elevation), from which a score is computed [116].
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Figure 2.3.: Dermatoscopy Principle

• A (Asymmetry): Usually malignant skin lesions are asymmetric instead of
the normal moles, which are symmetric.

• B (Border): Usually the melanocytic lesions have blurry and/or jagged edges.

• C (Color): The melanocytic lesion has different colors inside the mole.

• D (Diameter): The lesions does not exceed a diameter of a pencil eraser (6
mm), otherwise it is suspicious.

2.3.1.2. Dermatoscopy Principle

The functionally of dermatoscopy is similar to a magnifying lens but with the
added features of an inbuilt illuminating system, a higher magnification which
can be adjusted, the ability to assess structures as deep as in the reticular dermis,
and the ability to record images. These phenomena are influenced by physical
properties of the skin (Figure 2.3). Most of the light incident on dry, scaly skin is
reflected, but smooth, oily skin allows most of the light to pass through it, reaching
the deeper dermis.

Dermoscope can mainly be classified as:

• Dermoscope without image capturing facility
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Table 2.1.: Commercial Dermoscopic Devices.

S.No Device
Name

Function Manufacturing Company

1 MoleMax ABCD score & comparison
with reference bank

Derma Instruments LP (Aus-
tria)

2 Fotofinder
Dermo-
scope

Comparison with reference
bank

Edge system corpand teach-
screen GmbH

3 DB Mips ANN and similarity classi-
fier

Scientific Information (Italy)

4 DermGenius
Ultra

ABCD score & comparison
with reference bank

LINOS Photonics Inc

5 MicroDerm ANN classifier VisoMed (Germany)

• Dermoscope with image capturing facility

• Dermoscope with image capture facility and analytical capability.

2.3.1.3. Contact and Non-contact Technique

Two different ways of dermoscopy can be perform by contact or non-contact tech-
nique. In the contact technique, the glass plate of the instrument comes in contact
with the surface of the linkage fluid applied lesion. In contrast, in the non-contact
technique, there is no contact of the lens with the skin; the cross-polarized lens
absorbs all the scattered light and hence allows only light in a single plane to pass
through it (Figure 2.1). While the non-contact technique ensures that there are no
nosocomial infections, this advantage is overshadowed by the disadvantages of
decreased illumination and poor resolution [81] [160]. Table 2.1 shows some of
the available commercial dermoscopic devices [121] .

A recently introduced method of ELM imaging is side-transillumination (tran-
sillumination). In this approach, light is directed from a ring around the periphery
of a lesion toward its center at an angle of 45◦, forming a virtual light source at a
focal point about 1cm below the surface of the skin, thus making the surface and
subsurface of the skin translucent. The main advantage of transillumination is its
sensitivity to imaging increased blood flow and vascularization and also to view-
ing the subsurface pigmentation in a nevus. This technique is used by a prototype
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Figure 2.4.: Epiluminescence imaging of a pigmented lesion with the Dermato-
scope (left) and transillumination imaging with the Nevoscope (right)
(image source: [150])

device, called Nevoscope, which can produce images that have variable amount
of transillumination and cross-polarized surface light [163] [127] [81] [160]. Com-
parison of pigmented skin lesion is shown in Figure 2.4.

2.3.2. Multispectral imaging

Surface-spectral reflectance of an object is an inherent physical property of its sur-
face. One important role that the surface-spectral reflectance plays is to supply the
physical basis for the perception of an object’s color.

Another important aspect of surface-spectral reflectance is the property that the
spectral reflectance curve is based on the material composition of the object sur-
face. These can be helpful to recognize objects and segment regions in the illumi-
nation invariant way. The usual camera system with three channels of RGB has
difficulty in estimating surface-spectral reflectances of objects because surface re-
flectances in natural scenes are spectrally high dimensional. The knowledge that
light of different wavelengths penetrates the skin to different depths led investi-
gators to evaluate pigmented lesions under specific wavelengths of light from the
infrared to near UV range (Figure 1.1). Multispectral images is subdivided into
absorption, transmission, and reflectivity spectroscopy. Currently there are only
few systems, spectrophotometric intracutaneous analysis scope (SIAscope) and
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Table 2.2.: Commercial Multispectral imaging Devices.

S.No Device Name Function Manufacturing
Company

1 SIAScope Spectral Imaging Astron Clinica (UK)
2 MelaFind Contact spectral imaging

with diagnosis Algo
Electro Optical sci-
ences, Inc (USA)

MelaFind, which use multispectral dermoscopic images as the inputs for subse-
quent computer analysis [106] [81] [160]. For further details see Table 2.2

2.3.2.1. Optical Spectroscopy

Optical spectroscopy (also known as Reflectance spectroscopy) is the study of light
that has been reflected or scattered from a solid, liquid, or gas. As photons enter
a mineral, some are reflected from grain surfaces, some pass through the grain,
and some are absorbed. Those photons that are reflected from grain surfaces or
refracted through a particle are said to be scattered. Scattered photons may be de-
tected and measured by device called spectrometer. The reflection and scattering
properties of tissue in general depend on biochemical composition, cellular struc-
ture and the wavelength of light. It has been shown that malignant tissues have
different optical properties from those of normal tissue [56].

2.3.2.2. Other Image Acquisition Techniques

The use of commercially available photographic cameras is also quite common in
skin lesion inspection systems, particularly for telemedicine purposes [93], [139].
However, the poor resolution in very small skin lesions, i.e., lesions with diameter
of less than 0.5 cm, and the variable illumination conditions are not easily han-
dled, and therefore, high-resolution devices with low-distortion lenses have to be
used. In addition, the requirement for constant image colors (necessary for im-
age reproducibility) remains unsatisfied, as it requires real time, automated color
calibration of the camera, i.e., adjustments and corrections to operate within the
dynamic range of the camera and always measure the same color regardless of
the lighting conditions. The problem can be addressed by using video cameras
[1] that are parameterizable online and can be controlled through software [100]
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Table 2.3.: Image acquisition methods along with the respective detection from lit-
erature [99]

S.No Image Acquisition Technique Detection
1 Tissue Microscopy Melanoma Recognition

[132][142]
2 Still CCD Camers Wound Healing [76]
3 Video RGB Camrera Melanoma Recognition

[149][52], Tumor, crust, scale,
shiny ulcer of skin lesion
[153] [152], Skin erythema
[122], Burn scars [151]

4 Ultraviolet illumination Melanoma Recognition
[14][28]

5 Video microscopy Melanoma Recognition
[1][60][12]

6 Multi-frequency electical impedance Melanoma Recognition [8]
7 Side or Epi-transillumination using

Nevoscope
Melanoma Recognition
[163][128][159]

8 Raman Spectra Melanoma Recognition [137]
9 Epiluminescence microscopy Melanoma Recognition

[51][59][114][13][77][20]
[145]
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[63]. In addition, improper amount of immersion oil or misalignment of the video
fields in the captured video frame, due to camera movement, can cause either loss
or quality degradation of the skin image. Acquisition time error detection tech-
niques have been developed [63] in an effort to overcome such issues. Computed
tomography (CT) images have also been used [141] in order to detect melanomas
and track both progress of the disease and response to treatment. Positron emis-
sion tomography (PET) employing fluorodeoxyglucose (FDG) [129] has also been
proven to be a highly sensitive and suitable diagnostic method in the staging of
various neoplasms, including melanoma, complementing morphologic imaging.
FDG uptake has been correlated with proliferation rate, and thus the degree of
malignancy of a given tumor. MRI can also be used for tumor delineation [39].
Such methods are utilized mostly for examining the metastatic potential of a skin
melanoma and for further assessment. Finally, alternative techniques such multi-
frequency electrical impedance [8] nor Raman spectra [137] have been proposed
as potential screening methods. The electrical impedance of a biological material
reflects momentary physical properties of the tissue. Raman spectra are obtained
by pointing a laser beam at a skin lesion sample. The laser beam excites molecules
in the sample, and a scattering effect is observed. These frequency shifts are func-
tions of the type of molecules in the sample; thus, the Raman spectra hold useful
information on the molecular structure of the sample. Table 2.3 summarizes the
most common image acquisition techniques found in literature along with the re-
spective detection goals.
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Feasibility Study of Spectroscopy
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CHAPTER 3

Optical Spectroscopy based Navigation and
Tracking of Skin Lesion

RECENTLY, optical spectroscopy has been proposed as a potential non-invasive
screening method for skin lesions. This chapter is focused on use of spec-

troscopy as a diagnosis process of malignant melanoma form benign skin lesions.
In the following sections we introduce a computer-assisted scheme together with
the required hardware for valid spectral quantification of skin disease progres-
sion based on the tracking of optical spectroscopy probe and an augmented reality
guidance system.

3.1. Introduction

Optical spectroscopy has been proposed for quantification of minimal changes
in skin offering an interesting tool for monitoring skin lesions [83]. In order to
keep track of the skin lesion in the follow-up of the patient, the measurements
on the lesions have to be taken from the same position with the same orientation
in each examination. Combining hand-held optical spectroscopy devices with ad-
vanced realtime tracking (ART) and acquiring synchronously spectral information
with position and orientation, we introduce a novel computer-assisted scheme
for spectral quantification of disease pro-gression. We further present an an aug-
mented reality guidance system that allows for finding a point previously ana-
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Figure 3.1.: Phantom drawing of the body to map the mole. The physician marks
the location for where the image is taken

lyzed with an accuracy of 0.8[mm] and 5.0[deg] (vs. 1.6[mm] and 6.6[deg] without
guidance). The intuitive guidance, as well as the preliminary results shows that
the presented approach has great potential towards innovative computer-aided
methods for quantification of disease progression.

3.2. Mole Mapping

The word ’mole mapping’ has been used in numerous different ways. However,
it usually refers to a surveillance program for those at high risk of malignant
melanoma. It may include a clinical skin examination and dermoscopy to iden-
tify and evaluate lesions of concern. Mole mapping might simply involve marking
spots on a phantom drawing of the body (see in Figure 3.1) to indicate the position
of skin lesions of concern, particularly moles and freckles or refer to the conven-
tional print photographs or digital images of the whole body’s skin surface (see
in (Figure 3.2)). These can be reviewed at a later date to see if there are any new
skin lesions, or whether pre-existing skin lesions have grown or changed color or
shape.
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3.3. Mole Mapping (State of the Art)

(a) (b)

Figure 3.2.: (a) Patient’s whole body image (b) microscopic image of the single
mole

3.3. Mole Mapping (State of the Art)

Duke research grope has focused on mole mapping[119]. heir approach is based
on the use of 33 cameras to photograph from different angles to cover as much
of the skin’s surface as possible. There are also other commercial system; e.g. of
DB-Mips, Mole-Max II and Molemax 3, which also rely on multiple video and
still digital cameras for capturing whole body images. In the case of multispectral
image, to the best of our knowledge, there exists currently no system for mole
mapping. In next section we describe our optical spectroscopy for navigation and
tracking of skin lesion in detail.

3.4. System Setup

A hand-held reflectance spectroscopy probe (StellarNet Inc., Oldsmar, FL, USA)
(see Figure 3.4), consisting of 6 × 200µm illumination fibers arrayed around one
600µm acquisition fiber as shown in Figure 3.3, was attached to an infrared optical
tracking target in order to be able to determine its position and orientation in real-
time. The selected tracking system consists of four ARTtrack2 infrared cameras
(A.R.T. GmbH, Weilheim, Germany) positioned to be able to track a volume of
2 × 2 × 2

�
m3

�
. According to the manufacturer the positional accuracy for such a

configuration is 0.4[mm] with a maximum error of 1.4[mm] (for angle 0.002[rad]
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3. Optical Spectroscopy based Navigation and Tracking of Skin Lesion

Figure 3.3.: Schematic of the fiber arrangement in the spectroscopy probe: 6 ×
200µm illumination fibers arrayed around one 600µm acquisition fiber.

and 0.007[rad] respectively).

A 178 − 1132[nm], 2048[px], 12bit CCD spectrometer (StellarNet Inc., Oldsmar,
FL, USA) was connected to the acquisition fiber, and a 12[W ] tungsten lamp was
connected to the illumination fibers as a light source. The spectrometer was con-
trolled by a data processing unit to acquire spectra synchronously with the track-
ing information of the probe. The data-processing unit was also used to run the
augmented reality application that combined spectra, positions and orientations.
An overview of the entire setup is displayed in Figure 3.4

3.4.1. Target Calibration

In order to calculate the position and orientation of the probe the fixed transforma-
tion from its tracking target to its tip was determined. For that a calibration con-
struct was custom-built, in which the shaft of the probe is mechanically aligned
with two infrared markers see Figure 3.5. By acquiring the position of these mark-
ers using the optical tracking system, both the axis and the tip of the probe can be
deduced and thus the desired transformation can be calculated.

3.4.2. Proposed scheme for quantification of disease progression

Based on the literature [83],[115] there is much potential in using reflectance spec-
troscopy for quantitatively analyzing skin. In a disease progression setup, a valid
comparison of spectra is only possible if acquisitions are taken at the same posi-
tion and with the same orientation. For this we propose the use of tracking in the
periodic tests. The propose system works to an accuracy of with an accuracy of
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3.4. System Setup

Figure 3.4.: System setup: (a) tracking cameras, (b) augmented camera, (c) tracked
probe, (d) spectrometer, (e) light source, and (f) data-processing unit.

Figure 3.5.: Calibration of tip of spectroscopic probe.
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3. Optical Spectroscopy based Navigation and Tracking of Skin Lesion

0.8[mm] and 5.0[deg] (vs 1.6[mm] and 6.6[deg] with-out guidance). The workflow
of the procedure would include affixing a tracking target to the patient and then
recording not only the spectra of the analyzed points, but also the position and
orientation of the probe in a coordinate system fixed at the patient tracking target.

On return in the next examination, the patient tracking target can be affixed
again and the positions and orientations as well as the spectra of the previous
session can be loaded. The positions and orientations are used for guiding the
physician to place the probe at the correct position and the spectra are used to
quantify the changes of that skin location over time.

3.5. Guidance System

In order to create an intuitive guidance system for correct positioning of the probe
we used augmented reality visualization. The image of a calibrated and tracked
camera is augmented by different indications of the position and orientation of
the previous scan as compared to the current pose of the probe.

To facilitate the three-dimensional visualization of the current error in the po-
sition, cylindrical coordinates were employed where the cylinder main axis is the
vector that represents the orientation of the previous scan see Figure 3.6 (a). The
error in the radius r is displayed as a circle with the previous scan position as
center, whereas the error in the direction of the main axis h is shown as a line con-
necting the circle to the probe see Figure 3.6 (b). Additionally, h is also visualized
as a cylinder using the error circle of the radius r as a base for growing up and
downwards. For the angular error, the angle φ is used for the aperture of a cone
located at the tip of the probe (Figure 3.6 (b)).

Furthermore, a 2D visualization of the radius r, height h and angle φ is shown as
a growing/shrinking bar representation in one corner of the screen. For both the
2D and 3D visualizations color encoding is used to provide intuitive quantification
of the error size, ranging from green for small errors to red for big errors.

In order to initiate the required spectral data scan both an ’on-click’ acquisition
and an automatic acquisition mode were implemented. In automatic acquisition
mode spectral scans are acquired continuously until there is a set number of scans
within a predefined tolerance interval with regard to position and orientation.
After the acquisition has been completed, the best scan is selected and added to the
database. The automatic acquisition mode was implemented in order to ensure
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3.6. Experiment Design

Figure 3.6.: Guidance system: (a) Visualized parameters. (b) AR guidance. (a)
Mock-up of visualized parameters assuming the red arrow is the tar-
get, i.e. the position and orientation of the previous scan. (b) Aug-
mented reality guidance, error is color-encoded in order to achieve a
more intuitive impression: red means big error, green small error.

that a follow-up scan was taken close enough to the scan of interest as well as to
make the process less user-dependent.

3.5.1. Analysis of Progression

Once the spectra are acquired at the right position and with the proper orientation,
the application implements a spectrum comparison. For this a database of spectra
is loaded and after each new acquisition, the closest spectra according to user-
definable distance measures (e.g. non-Euclidean norms) are shown. This allows
the physician not only to compare the spectra with the patient, but also to find
similarities with previously examined patients.

3.6. Experiment Design

To validate the accuracy of the guidance procedure a phantom was custom-built
with 45 target sites designed to yield easily differentiable spectral signatures via
colored inks, see Figure 3.7. Four reflective markers were attached to facilitate
tracking of the phantom.

Three series of experiments were conducted by three different persons. In each
series, all 45 targets were acquired once to serve as reference scans. After that each
of the 45 targets was acquired again three times, first using no guidance software
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3. Optical Spectroscopy based Navigation and Tracking of Skin Lesion

Figure 3.7.: Phantom used for guidance experiments.

at all going only from memorized positions (as is current practice in examinations)
to serve as ground truth. In the second and third run, each of the targets was
scanned again using the guidance system in manual acquisition mode respectively
in auto acquisition mode.

3.7. Experimental results

For each of the three runs (no guidance, using guidance without and with auto
acquisition) in the three series the positional accuracy was evaluated as provided
by the optical tracking system. For a reference position with coordinates Pref and
the corresponding reacquired position with coordinates Pq the Euclidean norm
εpos = ‖Pref − Pq‖2 was calculated. For the angular error the formula

εφ = cos−1
�
0.5

�
tr
�
RrefR

t
q

�
− 1

��
(3.1)

was used[136], where Rref , Rqare the rotation matrices for the reference and
reacquired positions as reported by the tracking system.

Furthermore the time until a target was reacquired was measured (in seconds).
For validation purposes, the difference in spectra of the reference σref and reac-
quired positions σq was calculated using

εσ =
X
i

���σiref − σiq��� (3.2)
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3.7. Experimental results

Table 3.1.: Results of the guidance accuracy measurements on the phantom (from
left to right: position, angle, acquisition time and spectral difference.

εpos(mm) εφ(deg) acq.time(sec) εσ

1st series
No Guidance 2.4± 1.2 14− 6± 11.4 2.3± 0.5 5.5± 9.2

Guidance 0.6± 0.3 9.1± 8.8 9.6± 3.7 2.7± 1.2

Auto Guidance 0.7± 0.2 6.9± 8.5 15.5± 10.4 4.8± 2.3

2nd series
No Guidance 1.5± 0.9 3.2± 1.4 2.1± 0.3 2.2± 1.7

Guidance 0.6± 0.4 3.5± 1.8 7.8± 2.5 2.5± 2.4

Auto Guidance 0.8± 0.2 3.9± 1.3 16.7± 15.9 2.9± 1.4

3nd series
No Guidance 0.8± 0.4 2.0± 0.8 2.8± 0.4 2.1± 1.4

Guidance 1.2± 0.7 2.7± 1.1 8.6± 7.1 2.3± 1.5

Auto Guidance 0.8± 0.2 3.7± 1.9 16.9± 27.5 2.1± 0.9

The results of the experiments are listed in Table 3.1. The values are the mean
and the standard deviation of the respective quantity, computed over the 45 tar-
gets of each run.

The results show that positional accuracy of reacquiring a reference target im-
proves markedly using guidance. The auto acquisition mode (auto guidance) fur-
ther improves on that result, especially in tightening up any outliers and thus
achieving the goal of enforcing a user-independent accuracy standard. Orienta-
tional accuracy seems mostly user-dependent, and even the auto guidance fails to
improve on that in this particular case the reason for that was probably a very le-
nient parameter setting of 7.5[deg] as allowable angular error. Acquisition time
increases markedly when using guidance (especially with the auto acquisition
mode), which is as expected. For validation the spectral readings were compared
as well and confirm that the same sites were scanned again. Here the results of all
methods are comparable and satisfactory.
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3. Optical Spectroscopy based Navigation and Tracking of Skin Lesion

Figure 3.8.: View of navigation guidance of the prob with spectral reading from
patients hand

3.8. Conclusion

This work introduced novel ideas towards valid quantification of disease progres-
sion. Among its contributions first, the combination of optical spectroscopy with
tracking and the use of it for guided acquisition of spectral measurements at previ-
ously analyzed positions and with the previously acquired orientation; second, a
proposed preliminary clinical methodology based on the said method; and third,
initial results on the performance of a prototypic implementation.

There are, however, issues that have to be considered for its further develop-
ment of this technology and its clinical use. Firstly, the proposed method includes
the use of a tracking target fixed at the patient relative to which the guidance
should be performed as shown in Figure 3.8. It is observed that it’s very difficult
to place the tracking target on the same location where once it is placed in first
acquisition. As a solution in a realistic setup this can be replaced by high accuracy
non-invasive patient registration methods like the ones being developed for radi-
ation therapy and navigated surgery [92] of particular interest are methods that
do not require ionizing radiation or high logistic costs. The current approach at
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3.8. Conclusion

our lab is the evaluation of surface registration based strategies for these means.
Using such a strategy the positioning of the tracking target would be arbitrary as
long as it can be transformed rigidly to its position in the previous session(s) via
the surface registration.

A further constraint might apply with regard to the last point: The skin surface
is not allowed to deform with respect to the tracking target. A solution for this
is the development of adequate deformable surface registration methods. In our
research group (CAMP) one of our colleague is working on it as Ph.D. project.

In summary, despite the preliminary nature, the introduced computer-assistance
method is very promising in its results and its potential applications. This work
opens new ways for the ’computer-assisted intervention’ community, where even
with simple approaches; a big impact can be done in the quality of diagnostics,
prognosis, therapy and follow-ups.

In conclusions with the introduction of computer-aided navigation for screen-
ing of skin lesions with an optical spectral imaging modality (spectroscopy) allows
tracking of lesion progression over time. Extending this system with a macro-
scopic imaging device would enable a solution for computer-aided diagnosis, doc-
umentation and quantitative analysis of skin lesion progression.

35





CHAPTER 4

Skin Lesions Classification with Optical
Spectroscopy

IN this chapter we present a framework for acquiring spectroscopic data of skin
lesions from the patients. We propose a protocol for data acquisition and de-

fine the rules for labelling the data with the assistance of dermatology experts.
The experiments are performed for classification of the data using support vec-
tor machines (SVM). We report the classification results obtained from the skin le-
sions (benign and malignant) of 148 patients. In the following section, we describe
the materials and methods used in this experiments with their results. Before ex-
plaining our approach in detail, as next, we discuss the state-of-the art of related
methods.

4.1. Introduction of Spectroscopy

Spectroscopy is a new imaging technology which is increasingly used to derive
significant information about tissue. Due to its multi-spectral nature, this imaging
method allows to detect and classify multiple physiological changes like those
associated with increased vasculature, cellular structure, oxygen consumption or
edema in tumors [108], [85]. The hardware setup for data acquisition is explained
in more detail in section 3.4.

Optical spectra in different wavelengths and amplitude is shown in Figure 4.1
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4. Skin Lesions Classification with Optical Spectroscopy

(a) (b)

(c) (d)

Figure 4.1.: Optical spectra from chalk with color inks in wavelength and ampli-
tude. (a) Red color, (b) Green color, (c) Blue color, (d) Yellow color

makes the differences between four colors (red, green, blue and yellow). The ex-
periment is perform on the phantom (as illustrated in Figure 3.7). Chalk colored
with four different inks are used in the experiment. Figure 4.1 clearly demonstrate
that variation in color produces difference in optical spectroscopy.

We design an experiment, to observe the difference between objects based on
internal structure. In this experiment we gather six different fruits (Apple, Blue-
berry, Kiwi, Strawberry, Plum and Orange). Data was collected from each fruit
after 12 hours for 7 days consecutively. Due to the change in the internal structure
of the fruits the cure was changed, but the main shape of the cure was always
constant. Stander deviation of each fruit in wavelength and amplitude is shown
in Figure 4.2.
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4.1. Introduction of Spectroscopy

Figure 4.2.: Spectral stander deviation of each fruit in wavelength and amplitude.
Lower cure (Black colored) is the minimum, the upper cure (Blue col-
ored) represents the maximum and the middle cure (Red colored) rep-
resents the mean. (a) Apple, (b) Blueberry,(c) Kiwi, (d) Strawberry, (e)
Plum, (f) Orange
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4. Skin Lesions Classification with Optical Spectroscopy

4.2. State of the Art

Skin color measurement through reflectance spectroscopy has received significant
attention in the literature [49][87][3][55]. It has been used to provide a numerical
index for color, which in turn allows for the study of constriction of a blood vessel
and abnormal redness of the skin due to local congestion, such as in inflammation
[44]. Dawson et al. [40] worked on the reflectance spectroscopy for the measure-
ment of skin tissue to exemplify the spectral properties. Farrell et al. [53] and
Kienle et al. [84] addressed the problem of reflectance measurements to determin-
ing in vivo tissue optical properties. Another approach for measuring the optical
reflectance over a broad range of wavelengths spectroscopy has been utilized for
assessing the skin type and gestation age of newborn infants by Lynn et al. [97].

The first work to evaluate the possibilities of using reflectance spectrophotom-
etry for discriminating between benign and malignant skin lesions was done by
Marchesini et al. [104]. The authors experiments show that the wavelengths be-
tween 400 and 800 nm; were highly significant to show the differences between
the reflectance spectra of benign and malignant melanomas. Consequently, the
authors report a discrimination between 31 primary melanoma and 31 benign le-
sions with a sensitivity of 90.3% and a specificity of 77.4%, a stepwise discriminate
analysis of reflectance spectral features [105].

Moreover the concluding remarks of Bono et al. [15] are that color is the most
important parameter in discriminating melanomas from benign in spectrophoto-
metric imaging of skin lesions using 420-1020 nm. Recently with Raman spec-
troscopy the molecular structure of skin lesions are explored [137], but due to the
side effect of the laser beam on the sensitive skin surface, this technique is not
preferred in the dermatology practice.

4.3. Data acquisition protocol

In our protocol, the the mole selection for the data acquisition is purely based on
the doctor’s (or physician’s) choice based on a visual examination. The labeling of
mole is performed using two classes: suspicious skin lesion (possibility of malig-
nant melanoma) and normal skin moles based on physician’s diagnosis.

The data is stored as a plot of wavelength and amplitude (as shown in Fig-
ure 4.1) by spectrometer without taking into account the mole structure. The time
of data acquisition and the number of measurements depend on the number of
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4.3. Data acquisition protocol

Figure 4.3.: Covering all the surface of prob tip by contacting skin surface.

moles defined on patients, where the time for whole body skin checkup was ap-
proximately 20 minutes.

The spatial resolution of sampling region is 1 mm diameter which permits the
study of smaller lesions and sampling of several regions within bigger lesions. For
mole size bigger than 3 mm and smaller then 6 mm we take 5 measurements (4
from the edges 1 from the center). If the mole sizes exceeds 6 mm then we take 7
measurements (6 from the edges 1 from the center). To make sure that the database
is the consistent and not biased, we only use the measurements which were taken
once per each mole.

The data acquisition time for one mole is 100 ms. It is important to contact the
surface of the mole by the probe tip and keep the probe in a way that no light
goes in from outside to ensure that the spectra are only obtained from the lesion
itself, as shown in Figure 4.3). Hair, nails and tattoos are avoided during data
acquisition.

41



4. Skin Lesions Classification with Optical Spectroscopy

4.4. Data acquisition

The data collection for this study was performed in collaboration with the derma-
tology department at Klinikum Rechts der Isar München; Germany. All lesions
in this analysis were selected by dermatology experts. In total, 3072 spectroscopic
data vectors were collected from 148 patients, where 2926 measurements were
of normal skin moles and 146 measurements from malignant skin lesions. The
schematic of data acquisition system is shown in Figure 4.4. Out of 146 malignant
skin lesions 9 cases were histological proven melanoma. The remaining 137 are
kept under observation. The details of the 9 cases of melanoma were: average
Breslow thickness was 1.1 mm, the minimum being 0.1 mm and the maximum 2.8
mm, the average diameter of the lesions was 3mm, the minimum being 2mm and
the maximum 5 mm. The average age of patients was 40, where the youngest and
oldest patients were 2 and 82 years old, respectively. 70% of the examined patients
were female. The collected data consists of the following clinical cases:

• Normal skin: spectra were obtained from the inside of the upper arm, groin
and inside thigh, a region defined as skin that is not normally exposed to
sunlight (i.e. not tanned).

• Normal skin moles: in average 19 spectra per patient were obtained from
benign skin moles. Normal skin moles can be visually very similar to malig-
nant moles, as illustrated in Figure 4.5.

• Malignant skin mole: one spectra were obtained from middle positions on
the lesion. Multiple spectra were taken depending on size of the mole as
discussed in data acquisition protocol section 4.3.

Immediately prior to each patient data collection session the spectrophotometer
probe end was placed in the disinfectant substance to prevent migration of any
diseases.

To make sure of reproducibility and accuracy of data acquisition one concern
was that the pressure of the probe on the skin might cause blanching by forcing
blood out of local vessels. To test a novel approach to reducing this effect and
to assess the magnitude of this problem a study was performed by Osawa et al.
[125]. In their study the probe was held in contact with a flat area of skin and
the pressure slowly increased beyond that which would be applied normally for
taking skin reflectance measurements. Increasing the pressure caused a decrease
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4.5. Data Processing

Figure 4.4.: Schematic of data acquisition system.

in overall reflectance. Osawa et al. suggested three methods for eliminating the
effect: (a) a sensor to determine the pressure being applied, (b) an adhesive pad
to just hold the probe against the skin, and (c) an electrical contact sensor to feed
back information on when the probe makes contact with the skin. In our study the
pressure on the skin was reduced by increasing the surface area of contact with a
probe holder that was designed to slide in the probe which was also used to keep
the tracking points (see in figure 3.4).

4.5. Data Processing

The spectral data is acquired as a 2048D vector of the floating points values xi ∈
R2028, i = 1, ..., n where n denotes the number of measurements. Each xi repre-
sents the discretized reflective spectrum from 178[nm] to 1132[nm] (due to limita-
tion of hardware ) of the ith measurement and is stored normalized as

bxi =
xi
‖xi‖2

wherei = 1, ..., n (4.1)

To reduce the dimensions of the input data, principal components analysis (PCA)
is applied. The resulting spectrum of eigenvalues

�
eij
�
j=1,...,2048

is sorted descend-
ing by magnitude. Since the highest eigenvalues represent the most relevant com-
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Figure 4.5.: Skin lesions: (a) Malignant skin lesions, (b) Normal skin lesions.

ponents, a cut-off value CPCA is chosen, such that the final input data yi for the
classification algorithm from measurement xi(i = 1, ..., n) is

yi =
�
eij
�
j=1,...,CPCA

(4.2)

The cut-off value CPCA is chosen empirically from the data. Figure 4.6 is show-
ing a representative example of

�
eij
�
j=1,...,2048

from which CPCA was selected as
one of {2, 3, 4, 5}.

4.6. Classification

Classification is performed by a support vector machine (SVM) [37]. SVM was
selected as the method of choice as it allows to linearly classify data in a high-
dimensional feature space that is non-linearly related to the input space via the use
of specific kernel functions, such as polynomial functions or radial basis functions
(RBF). This way we can build complex enough models for skin lesion classification
while still being able to compute directly in the input space.

The SVM classifier needs to be trained first before using it, thus we partition our
already reduced input data (yi), i = 1, ..., n into two partitions, T ⊂ {1, ..., n} the
training set and V ⊂ {1, ..., n} the testing (or validation) set with T ∪V = {1, ..., n}
and T ∩ V = {}. The training data set T is labeled manually into two classes with
the ground truth, l(yi) = ±1. Once the classifier is trained, a simple evaluation of
the decision function d(yi) = ±1 will yield the classification of any data yi.
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4.6. Classification

Figure 4.6.: Representative example of the first part of the sorted PCA eigenvalue
spectrum

�
eij
�
, the y − axis shows the values of the component as a

percentage of the total in log scale.

In detail, SVM is trying to separate the data φ(yi) mapped by the selected kernel
function φ by a hyperplane wTφ(yi) + b = 0 with w the normal vector and b the
translation. The decision function then is d(yi) = sgm

�
wTφ(yi) + b

�
. Maximizing

the margin and introducing slack variables ξ = (ξi) for non-separable data, we
receive the primal optimization problem:

min
w,b,ξ

=
1

2
wTw + C

X
i∈T

ξi (4.3)

with constraints l(yi)(wtφ(yi) + b) ≥ 1 − ξi, ξ ≥ 0 for i ∈ T . C is a user–
determined penalty parameter. Switching to the dual optimization problem al-
lows for easier computation,

min
α

=
1

2
αTQα− eTα (4.4)

with constraints 0 ≤ αi ≤ C for i ∈ T ,
P
i∈T yiαi = 0. The α = (αi) are the

so–called support vectors, e = [1, ...1]T and Q is the positive semidefinite matrix
formed by Qjk = l(yj)l(yk)K(yj , yk), and K(yj , yk) = φ(yj)

T φ(yk) is the kernel
function built from φ. Once this optimization problem is solved, we determine
the hyperplane parameters w and b, w directly as w =

P
i∈T αil(yi)φ(yi) and b
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Figure 4.7.: Plot of all normalized spectra x̂i from the training data set T , color-
coded as blue for normal skin moles, red malignant mole and green
for normal skin. One cure represent one skin lesion data.

via one of the Karush-Kuhn-Tucker conditions as b = −l(yi)yTi w, for those i with
0 < αi < C. Thus the decision function of the trained SVM classifier ends up as

d(yi) = sgn
�
wTφ(yi) + b

�
= sgn

�X
j∈T

αil(yi)K(yj , yi) + b

�
. (4.5)

4.7. Experiments

Data collection of 3072 spectroscopic is define as (xi), i = 1, ..., 3072 labeled into
the two classes normal skin l(xi) = 1 and lesion l(xi) = −1. The 3072 data points
were randomly separated into a training data set T and a testing (validation) data
set V with |T | = 2072 and |V | = 1000, however retaining the balance of both
sets containing 50% each of the two classes. A color-coded representation of the
normalized skin spectra x̂i, i ∈ T of the training data set T is shown in Figure 4.7.

Before classification, PCA was applied to the bxi for dimension reduction to yield
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4.8. Results

Table 4.1.: Results of the cross-validation using the training dataset T .

SVM Traning
Parameters Linear Kernel Poly Kernel RBF Kernel Sigmoid Kernel
CPCA = 2 95± 9.2 96± 8.3 95± 7.5 95± 10.1

CPCA = 3 95± 8.3 96± 6.7 97± 9.5 96± 10.5

CPCA = 4 95± 11.5 97± 7.2 97± 8.7 96± 8.6

CPCA = 5 96± 9.2 97± 10.5 97± 8.3 97± 7.7

our classification inputyi. The eigenvalue cut-off CPCA was empirically chosen as
one of CPCA ∈ 2, 3, 4, 5.

The SVM classifier (we used LibSVM, [26]) was then trained using the training
data set T . As there are multiple parameters to be selected, like for example the
penalty parameter C, we performed a cross-validation of 10 folds via parallel grid
search. The average accuracy on the prediction of the validation fold is the cross
validation accuracy.

4.8. Results

The cross-validation of the training data set T determined, among others, the pa-
rameters C = −5 and γ = −7. For the further parameters CPCA and the choice
of the kernel (linear, polynomial, radial basis function (RBF) or sigmoid) we per-
formed cross validation of the training data set T , the results are shown in Ta-
ble 4.1. The best results were received consistently by using the RBF kernel, while
forCPCA the value of 5 turned out to be the best choice with an accuracy of 97±8.3.

With the training of the classifier completed, we studied the accuracy of the
testing (validation) data set V . We compared the manual ground truth labeling
l(yi) for data point yi with the computed decision function d(yi) to compute the
accuracy as follows

Accuracy =
# of correctly predicted data

# of total data
×100% =

i |l(yi)d(yi)| > 0

|V |
×100% (4.6)

The results are shown in Table 4.2. We achieve the same accuracy of 94.9% for
the kernels RBF the CPCA values of 4 and 5. This corresponds to Figure 4.6, where
it is clear that between CPCA 4 and 5 there is only very little difference. In total we
received the best results using the RBF kernel and CPCA = 5.

47



4. Skin Lesions Classification with Optical Spectroscopy

Table 4.2.: Classification accuracy results using the testing dataset V .

Testing
Parameters Linear Kernel Poly Kernel RBF Kernel Sigmoid Kernel
CPCA = 2 86.8% 90.3% 89.9% 88.8%

CPCA = 3 89.3% 92.5% 91.8% 90.3%

CPCA = 4 91.9% 92.9% 94.9% 94.1%

CPCA = 5 92.1% 93.6% 94.9% 94.6%

4.9. Discussion

In this chapter, we have presented a simple, portable and affordable setup for re-
flectance spectroscopy and SVM-based classification of skin lesions. Our study
presents an enhancement in system hardware and software design, techniques for
data processing and measured performance in comparison to previously reported
studies. Our experiments on patient dataset served as a base to choose and tune
various parameters for classification. The results of 94.9% accuracy in distinguish-
ing normal skin mole from malignant skin lesion are comparable to those of a der-
matologist using visual inspection [113]. We use spectroscopic data collected form
normal skin mole as well as malignant skin mole. IThe ground truth for this study
was created by the visual assessment of a dermatology expert without taking the
pathological information into account. The experiment is performed with partic-
ipation of 4 dermatologists with different levels of expertise. We observed that
our algorithm performed comparable to an experienced dermatologist and led to
higher classification accuracy compared to less experienced physicians. This re-
sults also suggests that our algorithm can be utilized for training purposes.

Marchesini et al. [104] suggest a normalization of the malignant skin lesions
with respect to the normal skin individually for each patient. However, our dis-
cussion with dermatologist experts revealed that this is in fact contradictory with
their clinical experience, where no relation has been observed between the color
of the skin and of the lesion. Furthermore, in our detailed literature study we did
not find any supporting evidence suggesting the necessity of this normalization.
Our own studies showed that the most variability in the spectrum is present be-
tween the normal and malignant skin lesions this normalization might reduce the
ability of our method to distinguish between lesion types. A study designed for a
comprehensive analysis of the spectral variance would be required to establish a
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final conclusion on this issue.
There were no reflectance spectra features that distinguish between malignant

melanoma Breslow’s depth, which is difficult to differentiate visually. Also no
features discriminated between malignant melanoma and seborrhoeic keratosis,
whereas the visual discrepancies between them are normally very apparent to
the dermatology expert. The fact that the reflectance spectra are very similar re-
mains at present inexplicable. However, this may provide an explanation for the
frequent confusion of this lesion with melanoma by non-experts such as general
practitioners.

Our study of skin lesion reflectance spectral classification with no additional in-
formation about the lesion creates a basis for the upcoming research in the field
spectroscopy. To some extent, this computer aided system provides a second opin-
ion for the dermatologist. High classification accuracy achieved by the use of our
method suggest its further clinical evaluation on larger number of case studies.
More work is required to fully understand the mechanism behind the interaction
between light and skin that results in the observed reflectance spectra.
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CHAPTER 5

Manifold Learning for Dimensionality Reduction
of Skin Lesions Using Optical Spectroscopy Data

SPECTROSCOPY data is typically very high dimensional (in the order of thou-
sands), which causes difficulties in interpretation and classification [19]. In

this chapter, we present different manifold learning techniques to reduce the di-
mensionality of the input data and get clustering results. Spectroscopic data of
48 patients with suspicious and malignant melanoma lesions is analyzed using
ISOMAP, Laplacian Eigenmaps and Diffusion Maps with varying parameters. The
results are compared to PCA.

5.1. Introduction

Most recent applications of machine learning in data mining, computer vision,
and in other fields require deriving a classifier or function estimate from an large
data set. Modern data sets often consist of a large number of examples, each of
which is made up of many features. Though access to an abundance of exam-
ples is purely beneficial to an algorithm attempting to generalize from the data,
managing a large number of features (some of which may be irrelevant or even
misleading) is typically a burden to the algorithm. Overwhelmingly complex fea-
ture sets will slow the algorithm down and make finding global optima difficult.
To lessen this burden on standard machine learning algorithms (e.g. classifiers,
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function estimators), a number of techniques have been developed to vastly re-
duce the quantity of features in a dataset, i.e. to reduce the dimensionality of the
data.

Dimensionality reduction has other, related uses in addition to simplifying data
so that it can be efficiently processed. The most obvious is visualization; if data
lies, for instance, in a 100-dimensional space, one cannot get an intuitive feel for
what the data looks like. However, if a meaningful two or three dimensional rep-
resentations of the data can be found, then it is possible to analyze it more easily.
Though this may seem like a trivial point, many statistical and machine learning
algorithms have very poor optimality guarantees, so the ability to actually see
the data and the output of an algorithm is of great practical interest. In our case,
spectroscopic data is typically acquired as a high dimensional vector (in our case
a 2048 element vector); this high-dimensionality, however, creates difficulties for
visualization and classification of the data. Manifold learning has a significant
role in dimensionality reduction and clustering due to its nature of unsupervised
learning [24].

There are many approaches to dimensionality reduction based on a variety of
assumptions and used in a variety of contexts. We will focus on an approach
initiated recently based on the observation that high-dimensional data is often
much simpler than the dimensionality would indicate. In this work, we present
results of applying different manifold learning techniques such as Isomap [148],
Laplacian Eigenmaps [6] and Diffusion Map [33] to spectroscopy data from 48
patients with normal and actually malignant lesions to reduce the dimensionality,
and compare them to traditional linear techniques Principal Component Analysis.
Clustering results after dimensionality reduction are shown for each technique,
where some of the method/parameter combinations yield excellent results on the
patient data compared to the diagnosis of the treating physicians.

5.2. Notation

Throughout the chapter, we will be solving the problem of dimensionality reduc-
tion of the high-dimensional points to a low-dimensions in Euclidean space.

• Ψ is the mapping function from high-dimension to low-dimension.

• The high-dimensional input points is referred to as x1, x2, ..., xn and its ma-
trix representation is X = [x1, · · · , xN ].
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• The low-dimensional representations that the dimensionality reduction al-
gorithms find is referred to as y1, y2, ..., yn. Y is the matrix representation of
these points.

• N is the number of input points (high-dimensional space).

• D is the dimensionality of the input (i.e. xi ∈ RD).

• d is the dimensionality of the manifold (low-dimensional space) and it cor-
responds to the dimensionality of the output (i.e. yi ∈ Rd).

• k is the number of nearest neighbors used by the manifold algorithm.

• K(i) denotes the set of the k-nearest neighbors of xi.

• E are the edges used by non-linear manifold learning algorithms are intro-
duced whenever some criteria are met between the points.

• Λ is the eigenvalue matrix, which is a diagonal matrix with the ordered
eigenvalues. And V is the eigenvector matrix, which has the eigenvectors
with the same order as eigenvalues. The ith eigenvalue corresponds to the
ith eigenvector.

5.3. Manifold Learning

In the field of machine learning, a very popular research area is manifold learning,
which is related to the algorithmic techniques of dimensionality reduction. Man-
ifold learning can be divided into linear and nonlinear methods. Linear methods,
which have long been part of the statistician’s toolbox for analyzing multivariate
data, include Principal Component Analysis (PCA) and multidimensional scaling
(MDS). Recently, researchers focus on techniques for nonlinear manifold learn-
ing, which includes Isomap, Locally Linear Embedding, Laplacian Eigenmaps,
Hessian Eigenmaps, and Diffusion Maps [140]. The algorithmic process of most
of these techniques consists of three steps, a nearest-neighbor search, a compu-
tation of distances between points, and an eigen-problem for embedding the D-
dimensional points in a lower-dimensional space. In this section, we provide basic
details of manifold learning: Isomap, Laplacian Eigenmaps and Diffusion Maps.
These algorithms will be compared and contrasted with the linear method PCA
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for a spectroscopic dataset. The goal is to find a mapping function Ψ from the orig-
inal D-dimensional data set X to a d-dimensional dataset Y in which distances
and information are preserved as much as possible and d < D:

Ψ : RD → Rd (5.1)

In our case, we have D = 2048 and thus

Ψ : x̂i ∈ R2048 → yi ∈ Rd (5.2)

where X is a matrix, xi is vector and Rd is a space. The following section cov-
ers some of the basic definitions of linear method (PCA) and non-linear manifold
learning methods.

5.3.1. Principal Component Analysis

A linear method such as PCA ignores protrusion or concavity of the data [74]. In
order to demonstrate the shortcomings of purely linear methods, we will show
results using PCA and compare with nonlinear manifold learning. PCA finds a
subspace i.e. which finds an optimal subspace that best preserves the variance of
the data [140].

The goal of PCA is to find an optimal subspace i.e. the variance of the data is
maximized. In general, manifold learning methods do not care about the variance
of the data. Non-linear methods in particular, typically famous on preserving
neighborhood properties within the data [140]. The input and output of PCA are
defined as in equation 5.1 , given N input points. The algorithm performs the
following steps:

1. Calculate the empirical mean vector for each dimension j ∈ 1 · · ·D

µ[j] = 1
N

PN
i=1X[i, j]

2. Subtract µ (D × 1) from each column of the D × N input matrix X . The
subtracted matrix B = X − µh, where h is a 1×N vector of 1’s.

3. Compute the D ×D covariance matrix C = 1
N−1B ·B

>

4. Solve the eigenvector problem to find the matrix V of eigenvectors, so that
V −1 ·C ·V = P with P being the matrix in which the decreasing eigenvalues
(corresponding to their eigenvectors) are on the diagonal and V > = V −1.
All eigenvectors are orthogonal and they form an orthonormal basis.
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Figure 5.1.: Working example of PCA. The left image shows a Gaussian distribu-
tion together with the two principal components. The coloring is de-
pendent on values of a and b. The right side shows the projection on
the eigenvector corresponding to the largest eigenvalue [140].

5. Project the data onto the new d-dimensional subspace, using the first d columns
of V , where d is chosen according to some measure (data energy or highest
variance): Y = [v1, . . . , vd]

> ·X

Figure 5.1 shows a Gaussian distribution together with the first (and only) two
principal components, calculated by the method described above. The vectors are
therefore the eigenvectors of the matrix C.

The coloring is linearly dependent on the values of a and b. The right side shows
the projection on the eigenvector corresponding to the largest eigenvalue. As one
can see, the variance of the data is preserved.

Figure 5.2 shows that PCA cannot handle non-linear datasets.The left image
shows a spiral distribution (2-d Swiss roll) together with the two principal com-
ponents. The coloring is dependent on the values of t, where the function is given
as f(t) = (tcos(t), tsin(t)). The right side of Figure 5.2 shows the overlapping
projection on the eigenvector corresponding to the largest eigenvalue. One can
observe that blue, red and yellow points are all overlapping in the center of the
projected line [140].

This means that most geometric information of the data is lost through this pro-
jection. In most cases distances are only meaningful in local neighborhoods, fol-
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Figure 5.2.: PCA cannot handle non-linear datasets. The left image shows a spiral
distribution (2-d Swiss roll) together with the two principal compo-
nents. The coloring is dependent on the values of t, where the function
is given as f(t) = (tcos(t), tsin(t)). The right side shows the overlap-
ping projection on the eigenvector corresponding to the largest eigen-
value [140].

lowing Non-linear manifold learning methods address this problem.

5.3.2. Non-linear Manifold Learning Methods

Typical non-linear manifold learning methods are graph-based and perform the
following three basic steps.

1. Build undirected similarity graph G = (V,E). where the vertices V are give
by the data points xi

2. Estimate local properties, i.e. the weight matrix W to define the weighted
similarity graph G = (V,E,W ), where wij ≥ 0 represents the weight for the
edge between vertex i and j. Weights are obtained by means of a kernel. A
weight of 0 means that the vertices are not connected.

3. Derive an optimal global embedding Ψ which preserves these local proper-
ties.
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There are three often used techniques for building the similarity graph G. First,
there is the ε-neighborhood graph which connects all vertices with distance ‖xi − xj‖2

smaller than ε. The ε graph is naturally symmetric [155] [140].
Contrary to this local connection is the fully connected graph which uses a sim-

ilarity function that incorporates local neighborhood relations such as the Gaus-
sian function: wij = exp(−‖|xi − xj‖2 /(2σ2)). This leads directly to the third step,
since it implicitly defines the weights [140].

k-nearest neighbor (kNN) graphs combine both worlds by connecting each ver-
tex only to its k-nearest neighbors.

5.3.2.1. Isomap

Isometric feature mapping was one of the first algorithms introduced for manifold
learning [148]. Isomap is a non-linear generalization of multidimensional scaling
(MDS) where similarities are defined through geodesic distances, i.e. the path
along the manifold. MDS tries to find a low-dimensional projection that preserves
pairwise distances by finding the eigenvectors of the distance matrix [36] [140].The
Isomap algorithm consists of two main steps:

1. Estimate the geodesic distances (distances along a manifold) between points
in the input using shortest-path distances on the data sets k-nearest neighbor
graph.

2. Use MDS to find points in low-dimensional Euclidean space whose inter-
point distances match the distances found in step 1.

As shown in Figure 5.3 the swiss roll is unfold nicely by keeping the geodesic
distance. One general disadvantage of Isomap is that it is governed by the geodesic
distances between distant points. In other words, the embedding Ψ preserves the
distances of even faraway points. This often leads to distortions in local neighbor-
hoods. Other disadvantage of Isomap is its speed which is quite low due to the
complexity of MD, in particular the shortest-path computation.

5.3.2.2. Laplacian Eigenmaps

Laplacian Eigenmaps [7] try to preserve distance relations and that they can be
solved by one sparse eigenvalue problem [6] [140].

We compute an embedding Ψ in three steps:
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Figure 5.3.: The Swiss roll data set. (A) shows that the Euclidean distance between
two points do not reflect their similarity along the manifold. (B) shows
the geodesic path calculated in step 1. of the Isomap algorithm (C)
displays the 2-dimensional embedding defined by Isomap [140].

1. Build undirected similarity graph G = (V,E).

2. Choose a weight matrixW either by simply settingWij = 1 for all connected
vertices or using a heat kernel with parameter t : wij = exp(−‖xi − xj‖2 /t)
If the graph is not fully connected, proceed with step 3 for each connected
component.

3. Find the eigenvalues 0 = λ1 ≤ ... ≤ λn and eigenvectors v1, ..., vn of the
generalized eigenvalue problem: Lv = λDv Where L is laplacian matrix and
D is degree matrix (for every entry ij the number of edges connecting to that
node). Define the embedding: Ψ : xi → (v2(i), ..., vd(i))

Laplacian Eigenmaps are a special case of diffusion maps. This special case
handles only manifolds from which the data is sampled uniformly, something
that rarely happens in real machine learning tasks. The eigenvalues and eigenvec-
tors of the Laplacian reveal the information about the graph such as whether it is
complete or connected [140].

5.3.2.3. Diffusion Maps

Diffusion Maps is another technique for finding meaningful geometric descrip-
tions for data sets even when the observed samples are non-uniformly distributed
[33]. It is similar to Laplacian Eigenmaps, but the mapping are defined via diffu-
sion distances. Diffusion Maps achieves dimensionality reduction by re-organizing
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data according to parameters of its underlying geometry. The connectivity of
the data set, measured using a local similarity measure, is used to create a time-
dependent diffusion process. As the diffusion progresses, it integrates local ge-
ometry to reveal geometric structures of the data set at different scales. Defining
a time-dependent diffusion metric, we can then measure the similarity between
two points at a specific scale (or time), based on the revealed geometry. A dif-
fusion map embeds data in (transforms data to) a lower-dimensional space, such
that the Euclidean distance between points approximates the diffusion distance in
the original feature space. The dimension of the diffusion space is determined by
the geometric structure underlying the data, and the accuracy by which the diffu-
sion distance is approximated [41] [140]. To conclude this section, a sketch of the
diffusion maps algorithm is shown stepwise:

1. Define a kernel, c(x; y) and create a kernel matrix,C, such thatCi,j = c(Xi, Xj).

2. Create the diffusion matrix by normalizing the rows of the kernel matrix.

3. Calculate the eigenvectors of the diffusion matrix.

4. Map to the d-dimensional diffusion space at time t, using the d dominant
eigenvectors and values

In the next section, we will apply all above described manifold learning meth-
ods for dimensionality reduction and clustering into two classes (in our experi-
ments, malignant and nonmalignant skin lesions).

5.4. System Experiments

For the hardware setup, please refer to section 3.4. The data collection in this study
was made possible by the support of the dermatology department of the hospi-
tal Klinikum Rechts der Isar München; Germany. We collected 372 spectroscopic
data vectors from 48 patients, 326 measurements were of normal skin moles, 46
measurements were malignant skin lesion (as diagnosed by the treating physi-
cian). 13 cases out of 46 malignant skin lesions were pathologically verified by the
laboratory. All lesions for this experiment were selected by only well-experienced
physicians (not by newly joined dermatologists). This was the only additional pro-
tocol to the data acquisition protocols as discussed in section 4.3. A color-coded
representation of the normalized skin spectra data set is shown in Figure 5.4 and

59



5. Manifold Learning for Dimensionality Reduction

Figure 5.4.: Normalized spectral graph data sets, malignant skin lesions. Each cure
is the vector, representing one skin lesion. without labeling of the data
the overlaps cures are difficult to separate

Figure 5.5. Figure 5.4 shows malignant skin lesions and Figure 5.5 shows malig-
nant skin lesions combine with normal skin mole. In Figure 5.5 one can observe
the overlap between two classes of data set.

The proposed methods were implemented in Matlab 10.1 using libraries for the
dimensionality reduction. Clustering was performed by selecting a separating
hyperplane in the processed three-dimensional data.

Before applying manifold learning we need to elucidate some parameters that
play a significant role in producing meaningful data representation. The parame-
ters for the non-linear dimensionality reduction techniques are:

• k: The k-nearest neighbors specify the number of nearest neighbors used to
build the graph for the Isomap, Laplacian eigenmaps and Diffusion maps
methods. If k is chosen too large or too small, the local geometry may not be
interpreted correctly. Here we used the values of k = 15, 20, 30, 35.

• Alpha: This parameter controls the normalization.

• Sigma: This specifies the width of the Gaussian kernel. The larger Sigma is,
the more weight far-away points will exert on the weighted graph. We used
Sigma = 20, 30.
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Figure 5.5.: Normalized spectral graph data sets combined form, blue for malig-
nant skin lesions and red for normal skin mole.

5.5. Results

All four studied methods (PCA, Isomap, Laplacian Eigenmaps and Diffusion maps)
were applied independently. PCA is applied on 2048 dimensional data vectors,
and the first three most significant components are taken. Each point represents
one skin lesion (malignant or benign). The data set is labeled which is represented
by two color red and blue. Red points are malignant and blue are benign. It is
clear from the 3D representation of the data shown in Figure 5.6 that the data
is not clearly distinguishable into two clusters. The main reason PCA could not
perform well is because PCA maximizes the variance of the data and in our case
direction of the variance helps to distinguish between the two classes. The best
clustering accuracy PCA achieved is 63%.

The 3D representation of the 2048D data victor after applying Isomap is shown
in Figure 5.7. It is clear from the figure that some area of the data is very nicely
clustered. We know as discussed in section 5.3.2.1 that Isomap is governed by the
geodesic distances between distant points, which causes distortions in local neigh-
borhoods so maybe that is one reason that the data set is not clustered perfectly.
Overall Isomap produce better results than PCA.

Figure 5.8, shows that the Diffusion maps is able to preserve the order of clus-
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Figure 5.6.: PCA 3D representation of 2048D dataset. The best possible angle to
visualize the data points. PCA:1.9386s is the runtime of method

Table 5.1.: Clustering accuracy with different methods and parameters. Where
k is k-nearest neighbors , A is for Alpha and S is representing Sigma
parameter

Parameters Isomap Laplacian
eigenmaps

Diffusion
maps

k = 15, A = 2, S = 20 88% 0% 10%

k = 20, A = 2, S = 30 90% 87% 81%

k = 30, A = 1, S = 20 86% 92% 90%

k = 35, A = 1, S = 20 94% 96% 92%
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Figure 5.7.: Applying manifold learning by using Isomap and the output 3D rep-
resentation as a result. The points that corresponds to malignant data
example, are well separated from those points corresponds to benign.
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Figure 5.8.: Diffusion maps 3D data representation. The clusters are clearly visible.

ters in three dimensions similar as Isomap. Choosing the right parameter(s) is
a difficult stage in manifold learning. Experiments are performed with different
parameters shown in Table 5.1. The results were computed as the number of cor-
rectly classified points over the total number of points and as a ground truth we
have labeling provided by dermatologist. According to the literature [41],[5] Dif-
fusion maps perform better as compared to other manifold learning techniques
but in our case Laplacian eigenmaps produces best results by choosing the right
parameters shown in Figure 5.9. Laplacian eigenmaps preserves local neighbor-
hood of the points which reflect the geometric structure of the manifold.

In Figure 5.10, all four methods are shown with worst parameters selection.
The figure shows that the dataset is not easily distinguishable into two clusters.
Variation in parameters for non-linear manifold learning methods are shown in
Table 5.1.

Isomap capture local geometry correctly and the dataset is clustered into two
parts with an accuracy of 94% out of 100% as shown in Table 5.1. By increasing
the neighborhood size to 20 and Sigma to 30, Laplacian eigenmaps and Diffusion
maps perform better. Adding even more neighborhood information, Laplacian
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Figure 5.9.: Laplacian Eigenmaps 3D representation of 2048D dataset. Apart from
few points which are in wrong cluster, the two clusters are well
separated.
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Figure 5.10.: A reduced 3D representation of spectroscopy 2048D dataset. The
worst selection of parameters for all four methods. Non of the
method produced clear clustering of the dataset
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eigenmaps clustering accuracy improves to 96%. The parameters shown in the
table are the only best combenation for our dataset.

5.6. Concluding Remarks

In this chapter, we applied four manifold learning techniques to the problem of
dimensionality reduction and clustering of optical spectroscopic data in derma-
tology. In contrast to the linear method PCA, all studied manifold learning tech-
niques were able to perform satisfactorily in clustering normal skin mole from
malignant skin lesions, provided the parameters were chosen correctly. While
especially Laplacian Eigenmaps look very promising for the intended dermato-
logical application.

5.7. Discussion on Feasibility of Optical Spectroscopy for
skin lesions classification

In this part of the thesis we analyzed optical spectroscopy for skin lesions clas-
sification. Optical spectroscopy by itself produces data, which, due to its high-
dimensionality, cannot be directly utilized for classifying skin lesions. In other
words, distinguishing between malignant and benign skin lesions is difficult. First
the dimension of the data needs to be reduced in a meaningful way. In this re-
spect, we introduced the application of manifold learning techniques to the prob-
lem of dimensionality reduction and clustering of spectroscopic data in derma-
tology. One other problem in dermatology is about quantifying the progress of
skin lesions. For this purpose, one needs to be able to numerically compare two
or more images of e.g. the same lesion taken during different sessions. This in-
volves accurate registration of all those images. We presented a combination of
optical spectroscopy with tracking as a solution to this problem. In our approach,
this combination is used as a guidance for acquiring spectral measurements at
the same positions and orientations as the first acquisition. We defined several
spectroscopic data acquisition protocols for using our system optimally. We also
evaluated a patient dataset with an SVM-based classification of skin lesions.

Our system opens a new way for utilizing the real potential of optical spec-
troscopy for noninvasive diagnosis of skin lesions. In taking optical spectroscopy
even one step further using our system, we were able to show that it is a promis-
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ing technique for the discrimination of malignant skin lesions from benign ones.
Spectroscopy could form the basis of a clinical method to diagnose skin lesions
due to the accuracy and reproducibility of its measurements. Acquisition of spec-
troscopic data causes little or no patient discomfort, does not alter the basic phys-
iology of the skin, poses no hazard to the patient and does not interfere with any
other standard clinical diagnostic practices. The scan could be performed by a
non-specialist and therefore might be a useful tool for the prescreening of skin le-
sions. However, before full integration of spectroscopy into the clinical workflow,
some further challenges need to be addressed:

• Mole mapping is an essential part in computer aided diagnostic system. It is
observed that in our tracking system it is very difficult to place the tracking
target on the same location as in the first acquisition. As a solution in a re-
alistic setup, this can be replaced by the high accuracy non-invasive patient
registration methods like the ones being developed for radiation therapy
and navigated surgery [92]. The future work would be the evaluation of
surface registration based strategies. Using a surface registration method,
the positioning of the tracking target could be chosen arbitrarily as long as it
can be mapped rigidly to a position in the previous examination.

• From our experience, there is need for several spectroscopic probes with dif-
ferent diameter sizes in order i) to cover only the area relevant to the lesion
during the acquisition, i.e. to avoid getting measurements from the healthy
skin region around the lesion and ii) to avoid multiple scans of the same
lesion.

• In our experiments, we have observed that different samples taken from the
same mole led to different spectral readings. A method is required to create
a representative measurement from multiple spectroscopic readings for each
mole.

• Optical spectroscopy based skin lesion diagnosis systems should be patient
specific, since every patient has their own individual pattern of lesions which
can be monitored throughout his/her body moles. In our study, we have
observed that it is important to perform the classification within patient spe-
cific data in order to build a reliable system.

• Combining optical spectroscopy with other imaging technologies, e.g. der-
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moscopy imaging, multispectral imaging and hyperspectral imaging, can
improve the diagnosis further, since the optical spectroscopy provides com-
plementary information to these techniques.

• Patient age is an important factor which needs to be taken into account dur-
ing the acquisition of optical spectroscopy data. As the cellular structures
can change according to the age of the patient, differences in spectroscopic
readings have been observed between young and elderly people, which can
be addressed by creating groups of patients accordingly.

• Accurate data acquisition requires constant contact of the probe with the
surface of the lesion which is hindered in some cases by ragged skin lesions.
Further studies are required to investigate new techniques for data acquisi-
tion without touching the skin surface.

• A more in-depth study on data sets with larger variation is required to demon-
strate general utility of optical spectroscopy in the clinical setting. Especially,
data accompanied by pathological verification of malignant melanoma would
be highly desirable to demonstrate the reliability of the presented methods.
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Part III.

Modeling Visual Assessment of
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CHAPTER 6

Dermoscopic Images classification

DIAGNOSIS of benign and malign skin lesions is currently mostly relying on vi-
sual assessment and pathology performed by dermatologists. As the timely

and correct diagnosis of these skin lesions is one of the most important factors in
the therapeutic outcome, leveraging new technologies to assist the dermatologist
seems natural. In this part of the thesis we propose a machine learning approach
based on modeling the visual assessment of dermatologist to classify melanocytic
skin lesions into malignant and benign from dermoscopic images. The dermo-
scopic database is composed of 42.911 patients skin lesion image from the depart-
ment of dermatology, Klinikum Rechts der Isar München.

6.1. Computerized diagnosis of dermoscopic images: State
of the art

Computer aided image diagnosis for skin lesions is a comparatively new research
field. While the first related work in the medical literature backdates to 1987, the
contribution was limited since by that time computer vision and machine learning
were both developing fields [23]. One of the first compelling contributions from
the image processing community was reported from H. Ganster et. al. [58]. In
there work Ganster et al. proposed a classical machine learning approach for der-
moscopic image classification. The first stage is automatic, color–based lesion seg-
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mentation. Then, more than hundred features are extracted from the image (gra-
dient distribution in the neighborhood of the lesion boundary, shape and color).
Feature selection was obtained using sequential forward and sequential backward
floating selection. Classification is performed using a 24–NN classifier and deliv-
ered a sensitivity of 77% with a specificity of 84%.

Up to our knowledge the best results in semi–automated melanocytic lesion
classification where obtained by G. Capdehourat et al. [21]. The image database
is composed of 433 benign lesions and 80 malignant melanoma. The learning
and classification stage is performed using AdaBoost.M1 with C4.5 decision trees.
For the automatically segmented database, classification delivered a false positive
rate of 8.75% for a sensitivity of 95%. The same classification procedure applied
to manually segmented images by an experienced dermatologist yielded a false
positive rate of 4.62% for a sensitivity of 95%.

A summary of the results obtained by the key studies from the decade is pre-
sented by Alexander Horsch [78]. This study emphasise on methods of dermo-
scopic image analysis, commercial dermoscopy systems, evaluation of systems,
and there methods. Comparison of some diagnostic system along with their data-
base sizes are discussed by Celebi et al. [25], in there article they also proposed
an approach which is based on a simple machine learning methodology. After
an Otsu–based image segmentation, a set of global features are computed (area,
aspect ratio, asymmetry and compactness). Local color and texture features are
computed after dividing the lesion in three regions: inner region, inner border (an
inner band delimited by the lesion boundary) and outer border (an outer band de-
limited by the lesion boundary). Feature selection is performed using Relief [138]
and the Correlation-based Feature Selection (CFS) algorithms [67]. Finally, the
feature vectors are classified into malignant and benign using SVM with model
selection [134]. Performance evaluation gave a specificity of 92.34% and a sensi-
tivity of 93.33%.

Our contribution in this regards is a complete characterization of a skin lesions
into a feature vector that contains shape, color and texture information, as well as
local and global parameters that try to reflect structures used in medical diagnosis
by dermatologists. The learning and classification stage is performed using SVM
with polynomial kernels. The classification delivered accuracy of 98.57% with a
true positive rate of 0.981 and a false positive rate of 0.019.

74



6.2. Database

6.2. Database

The images of the lesions were obtained by using a digital epiluminescence mi-
croscopy system (MoleMax) department of dermatology, Klinikum Rechts der
Isar, Technischen Universität München, Germany. Images of lesions were taken
with resolution of 640x480 pixels and stored in 24-bit resolution .jpg formate.
the dataset is from patients going for routine checkup since 2000 and there is no
record of patients follow-up visits. Our database is composed of 42,911 images
of melanocytic lesions out of which we randomly select 7,472 images for labeling.
The images are shown (using computer monitor) to four dermatologist, in indi-
vidual sessions for labeling and we selected the one on which all 4 doctors have
consensus. Labeling of the images was into two classes: malignant melanoma and
non malignant. out of 7,472 images 532 are diagnosed as malignant and 9 out of
532 were with histopathology record. We know that our database is not accord-
ing to goal standers mention by Barbara Rosado [130], but it is important to note
that we are modeling the visual assessment of dermatologist and our database is
synchronize accordingly.

6.3. Segmentation

In order to segment the given image data we adapt the method described by Li et
al. in [90]. Let Ω ⊂ R2 denote the image domain. Then we define two soft–labeling
functions u1,2 : Ω → [0, 1] which can be used to define three soft membership
functions

M1 = u1u2, M2 = u1(1− u2), M3 = 1− u1. (6.1)

These membership functions provide a soft partitioning of the image domain, be-
cause M1(x) + M2(x) + M3(x) = 1 holds for all x ∈ Ω, and allow us to seg-
ment the image domain into three areas indicating healthy skin, bright parts of
the melanoma, and dark parts of the melanoma. An example is shown in Fig-
ure 6.1.

The described partitioning of the image domain is obtained by minimizing the
following convex energy

E =
1

2

Z
Ω
|∇u1|2 + |∇u2|2 dx+ λ

3X
k=1

Z
Ω
dkMk dx, (6.2)
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(a) (b)

(c) (d)

Figure 6.1.: Image (a),(b) Malignant melanoma and image (c),(d) segmented im-
age in three areas

where
dk = |a(x)− āk|2 +

��b(x)− b̄k
��2 . (6.3)

Here a, b : Ω → R3 are the two color channels of the CIE Lab color space, while
āk, b̄k are the corresponding mean values:

āk =

R
ΩMk(x)a(x) dxR

ΩMk(x) dx
, b̄k =

R
ΩMk(x)b(x) dxR

ΩMk(x) dx
. (6.4)

The advantage of using the channels a and b of the CIE Lab color space is that
these color channels only contain color and no luminance information making
the segmentation more robust with respect to inhomogeneous lighting conditions.
For all experiments we chose λ = 2. Please note that using an approach which
minimizes a convex energy allows for a fully automatic segmentation of the data.

6.4. Feature Extraction

The feature extraction is the key point of the classification and has to be adequate
in order to obtain a good system detection rate. We selected a group of features
which attempts to represent the characteristics observed by the Physician. Each
feature is following the idea of the ABCDE rules of skin cancer, which are:
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• A (Asymmetry): Usually skin cancer moles are asymmetric instead of the
normal moles, which are symmetric.

• B (Border): Usually the melanocytic lesions have blurry and/or jagged edges.

• C (Color): The melanocytic lesion has different colors inside the mole.

• D (Diameter): The lesions does not exceed a diameter of a pencil eraser (6
mm), otherwise it is suspicious.

• E (Elevation): When the mole is elevated from the normal skin it is suspi-
cious.

Based on this technique, we created a set of features trying to characterize them
via computer vision techniques. The list of features selected is as follows: geo-
metric, color, texture and shape properties. The properties obtained by the feature
extractor are totally based on the segmentation step and the features have to be
independent of the image (size, orientation, etc.) in order to be robust with re-
gard to the image acquisition. This feature property is very important because
the physician can take the picture of the lesions in different ways, and lesions can
have different sizes, too.

6.4.1. Geometric properties

In this section we try to achieve A and B part of the ABCD rule. From segmen-
tation of the lesions, we obtain a binary image which represents the segmented
blobs. Using this binary image, we get the bounding box and we fit an ellipse
which has the same second inertia moment of area. Smaller blobs are erased from
the binary image. Usually the biggest blob of the image is the segmented lesion
and the sparse small moles are only segmentation noise. The bounding box is
our metric for the standardization of the lesions. Using the bounding box and the
fitted ellipse we reorient the lesions to the biggest ellipse axis and we resize the
image to a standard size. The features used to represent the geometric properties
are as follows:

• Relative Area: Area of segmented mole with respect to the bounding box
area. This area represents the size of the mole.
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• Relative Filled area: Area of the segmented mole with the internal holes
filled w.r.t. the bounding box area. It represents how many internal areas of
the mole were wrongly segmented.

• Relative Centroid: The centroid of the fitted ellipse w.r.t. the bounding box,
indicating the distribution of the mole in the bounding box.

• Eccentricity: The fitted ellipse eccentricity which represents how circular the
mole is.

• Solidity: The relation between the convex area and the blob area, represent-
ing how irregular the border of the mole is.

We use the fitted ellipse and bounding box to pre–process the mole in order to
create standard size and orientation to make the classification more robust. The
orientation of one mole always will be the same because we apply a reorientation
based not only on the orientation of the ellipse, but also on the largest distance
of the blob border with regard to the centroid. These properties allow us to re-
orientate the same mole with different angles to the same orientation as shown in
Figure 6.2. The bounding box is resized to a square using the largest side as the
value of the square which is cropped and resized to a standard value of 100× 100.
This standard size allows to compare different moles with different sizes and ori-
entation.

6.4.2. Color properties

The mole color is very important in the classification because it encodes the variety
of colors in the mole. When the mole has more colors, the mole has more chance
to be malignant [29]. The colors are coded in a color histogram representing all
the colors observed in the mole. The histogram is compacted in groups of values
named bins. The bins allow us to reduce the number of 2563 ≈ 16M entries of
a sparse histogram to a reasonably small dense histogram. This reduction has
the advantage of encapsulating different ranges of colors in only one histogram
value and being more robust on lighting changes, but with the disadvantage of
losing color precision. The selected number is 8 generating 83 = 512 possible
values in the histogram. The color histogram is created using only the pixels of the
segmented mole, excluding the skin pixels. The histogram is normalized with the
total number of pixels used to create the histogram. In this way, we can compare
histograms created from different sized moles.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2.: Reorientation management: (a) First screening (b) Second screening (c)
Segmentation of image a (d) Segmentation of image b (e) Reorientation
of cropped image a (f) Reorientation of cropped image b

79



6. Dermoscopic Images classification

6.4.3. Texture properties

This feature describes the differences between the colors of the mole allowing to
characterize the discontinuity in the mole colors, which is a tool used by physi-
cians to recognize if a mole is malignant or not. To represent the texture, we use
LBP (local binary pattern) of the image which creates a code of the color variability
in the neighborhood of each pixel.

6.4.4. Shape properties

This feature represents the shape properties of the mole giving us how elliptic is
the mole, circular or irregular, which is a very important feature in the classifica-
tion of a mole. This section covers B and D of ABCD rule and feature is represented
using histogram of oriented gradients (HOG), which counts the occurrences of
gradients in portions of the image, coding the variability of the gradient in the
image. This feature represents not only the shape of the moles, but also the mole
uniformity given the internal shape when the color changes, which is detected by
the gradient.

6.5. Classification

The goal of this stage is to classify the feature vectors in two classes: malignant
and benign. Our feature vector size is 1682 for each image input. A classifica-
tion technique that proved very successful in our experiments is support vector
machines (SVM, [37]). SVM was selected as the method of choice as it allows to
linearly classify data in a high–dimensional feature space that is non–linearly re-
lated to the input space via the use of specific polynomial kernels. To reduce the
dimensions of the input feature set xi ∈ R1682, i = 1, ..., n, where n denotes the
number of measurements (in our case 7472), principal components analysis (PCA)
is applied. The resulting feature vector of eigenvalues (eij)j=1,...,1682 is sorted de-
scendingly by magnitude. Since the highest eigenvalues represent the most rele-
vant components, a cut–off value CPCA is chosen, such that the final input data yi
for the classification algorithm from measurement xi (i = 1, ...n) is

yi = (eij)j=1,...,CPCA
(6.5)

80



6.6. Results

The cut–off value CPCA is chosen empirically, to represent 95% of feature vector
of 1682 dimensions, which reduced it to 434 dimensions.

The SVM classifier needs to be trained first before using it, thus we partition
our input feature sets (yi) i = 1, .., n, into two partitions, T ⊂ {1, ..., n} the training
set and V ⊂ {1, ..., n} the testing (or validation) set with T ∪ V = {1, ..., n} and
T ∩ V = ∅. The training data set T is labeled manually into two classes using the
ground truth, l(yi) = ±1. Once the classifier is trained, a simple evaluation of the
decision function d(yi) = ±1 will yield the classification of any data yi.

In detail, SVM is trying to separate the data φ(yi) mapped by the selected kernel
function φ by a hyperplane wTφ(yi) + b = 0 with w the normal vector and b the
translation. The decision function then is d(yi) = sgn(wTφ(yi) + b). Maximizing
the margin and introducing slack variables ξ = (ξi) for non-separable data, we
receive the primal optimization problem:

min
w,b,ξ

=
1

2
wTw + C

X
i∈T

ξi (6.6)

with constraints l(yi)(wtφ(yi)+b) ≥ 1−ξi, ξ ≥ 0 for i ∈ T . C is a user–determined
penalty parameter. Switching to the dual optimization problem allows for easier
computation,

min
α

=
1

2
αTQα− eTα (6.7)

with constraints 0 ≤ αi ≤ C for i ∈ T ,
P
i∈T yiαi = 0. The α = (αi) are the

so–called support vectors, e = [1, ...1]T and Q is the positive semidefinite matrix
formed by Qjk = l(yj)l(yk)K(yj , yk), and K(yj , yk) = φ(yj)

T φ(yk) is the kernel
function built from φ. Once this optimization problem is solved, we determine
the hyperplane parameters w and b, w directly as w =

P
i∈T αil(yi)φ(yi) and b

via one of the Karush-Kuhn-Tucker conditions as b = −l(yi)yTi w, for those i with
0 < αi < C. Thus the decision function of the trained SVM classifier ends up as

d(yi) = sgn
�
wTφ(yi) + b

�
= sgn

�X
j∈T

αil(yi)K(yj , yi) + b

�
. (6.8)

6.6. Results

Performance evaluation was conducted using a 10–fold cross–validation. The
10–fold cross–validation gives an approximation of the general classifier perfor-
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Table 6.1.: Results of the 10 random balanced data sets, and for each dataset 10–
fold cross–validation using a SVM classifier (Avg-Std 98.545± 0.046 ).

Variables Test-1 Test-2 Test-3 Test-4 Test-5
Correctly Classified
Instances

98.5772% 98.5743% 98.5765% 98.5614% 98.5167%

Incorrectly Classi-
fied Instances

1.4228% 1.4257% 1.4235% 1.4386% 1.4833%

True Positives Rate 0.991% 0.996% 0.993% 0.997% 0.995%

False Positives Rate 0.019% 0.023% 0.034% 0.025% 0.021%

———————– Test-6 Test-7 Test-8 Test-9 Test-10
Correctly Classified
Instances

98.4982% 98.5765% 98.5965% 98.4624% 98.5017%

Incorrectly Classi-
fied Instances

1.5018% 1.4235% 1.4235% 1.5376% 1.4983%

True Positives Rate 0.981% 0.991% 0.983% 0.991% 0.996%

False Positives Rate 0.059% 0.033% 0.064% 0.020% 0.13%

mance. We created 10 balanced data sets which were generated from the origi-
nal unbalanced data set of 6840 benign and 532 malignant lesion. The balanced
data sets were generated by selecting randomly a similar number of benign and
malign images (532) to obtain a more general and balanced training dataset. We
assess the feature training and perform 10–fold cross–validation utilizing the 10
balanced datasets. The results of these data sets are shown in Table 6.1

The results show a very good performance in all the random data sets, allow-
ing us to conclude that the selected feature vector of the moles gives meaningful
information about the mole in the classification. The correctly classified instances
value indicates a performance over 98% in all 10 tested cases and an error of less
than 2%. If we observe only the malignant classification, which is the most impor-
tant, the performance shows a true positives rate greater than 99%, meaning that
the classifier recognizes as malignant 99% of the skin cancer moles. Therefore, the
number of malignant moles which are not correctly classified is 1%. In addition,
the false positives rate is smaller than 3%, showing that the misclassification of the
benign images are only 3 in a total of 100 benign images. In the case of recognizing
the malignant moles it is important to detect most of the malignant moles even if
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Figure 6.3.: Receiver Operating Characteristic response

the false positive rate is not small, as it is less harmful for the physician to label
the mole as suspicious even though it is not.

Receiver operating characteristic (ROC)[71][72] curves were used to determine
the performance of the discriminant rules. The area under the ROC curve is a
good indication of diagnostic accuracy and should be used when comparing dif-
ferent classification techniques [147].The Figure 6.3 shows the ROC response of
our classifier and its consequential performance, having a curve near to the ideal
case. The classifier has a high area under the curve being near to 0.99, where the
maximum is 1. We believe that our feature vector is a good representation of the
dermoscopy characteristics following the ABCDE rule used by the dermatologist
in skin cancer diagnosis.

6.7. Summarizing

In this chapter we proposed a methodology for computer–aided classification of
dermoscopic images. The learning and classification stage is performed using
SVM. According to our medical partners the results are satisfactory and for fur-
ther research the system can be deployed in dermatology. Concerning our al-
gorithm, to further improve its performance, methods to detect a larger number
of geometric or texture–based structures, similar to those used in the 7–points
checklist, should be developed. The next important step is sub–classification of
malignant categories, which is ongoing research. A rigorous study of this topic,
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complemented with the comparison of the weights assigned to visual features in
the ABCD and other clinical diagnosis rules, may yield useful recommendations
to dermatologist for their medical practice.
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CHAPTER 7

Performance Comparison Among Different
Models for Computer-aided Skin Lesions
Classification

IN recent years, computer-aided diagnosis systems have been used in several
hospitals and dermatology clinics, targeting mostly the early detection of skin

cancer, and more specifically, the recognition of malignant melanoma lesions. In
this chapter, we review the state of the art of such systems by presenting the sta-
tistical results of the most important implementations that exist in the literature,
while comparing the performance of several classifiers on the specific skin lesion
diagnostic problem and discussing the corresponding results.

7.1. Comparisons Among Different Computer-aided
Diagnosis Systems in Dermatology

The scientific community take an interest in building classification models based
on supervised learning due to the increase in electronic medical databases. In
literature, numerous machine learning (supervised, unsupervised) and statistical
approaches for classification are available, but few comparisons among different
models have been done on the same datasets. The potential advantages and dis-
advantages have been defined theoretically for each of these methods, given cer-
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tain assumptions about characteristics of the classification task, data distribution,
signal-to-noise ratio, etc., it is often the case that in routine these belief cannot
be validate [45]. Under these paradigm, observational comparison of classifica-
tion performance using standard versification to describe difference and measure-
ment is essential. Function affiliate with misclassification in any direction (e.g.,
false positives or false negatives) can be built into the models, or treated sepa-
rately. A final selection of the best model for a given classification task can only be
achieve after acknowledge the tradeoffs between classification performance, costs
and model illustratesion [45].

Our focus of investigation is the selection of a class of models for a particular
dataset. We compare the prejudicial performance of five methods (support vec-
tor machines, decision trees, k-nearest neighbors, artificial neural networks, and
logistic regression) on the task of classifying pigmented skin lesions (PSLs) as be-
nign or melanoma. The input dataset is same for all models.

The task of classifying PSLs is complicated and involves automated feature cal-
culation extract from digital images, as well as clinical and demographical data
collected by dermatologists. The reason for using a PSL dataset as proving ground
for the classification algorithms is the fact that the occurrence of melanoma has
risen greatly in recent years. Therefore, to a greater extent important to flawlessly
diagnose PSLs. The classification task is rigid, as can be seen from the fact that the
diagnostic performance of even expert dermatologists is currently far from opti-
mal, the average number of lesions excised per histologically-proven melanoma is
30 [78], which is quite high number. A study by Curley et. al. [38] showed that for
three experienced dermatologists the diagnostic accuracy for clinically evaluating
pigmented lesions was only 50% when compared with the histological diagno-
sis. Epiluminescence microscopy was developed as a tool to aid in the diagnostic
process, and expert performance increases when using this method [10] [45].

7.2. Materials and Methods

In this section we will examine the definition of features, the most popular meth-
ods for skin lesion classification and their results.
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7.2.1. Feature Extraction

Computer-based systems are not much different from the conventional visual di-
agnosis process of dermatologist as regarding feature extraction. The features ex-
ploit have to be quantifiable and of high sensitivity, i.e., high correspondence of
the feature with skin cancer and high probability of true positive response. Fur-
thermore, the features should have high specificity, i.e., high probability of true
negative response. Although in the typical classification model both factors are
very important (a tradeoff expressed by maximizing the area under the receiver
operating characteristic (ROC) curve), in the case of malignant melanoma detec-
tion, the abolition of false negatives (i.e., increase of true positives) is apparently
more important. In the conventional procedure, the following diagnosis methods
are mainly used [64] (1) ABCD rule of dermoscopy [103][101]; (2) Pattern analy-
sis [89]; (3) Menzies method [46]; (4) Seven-point checklist [4][9]; and (5) Texture
analysis [2]. It is a fact that most of the patterns that are used by the pattern anal-
ysis, the Menzies method, and the seven-point checklist are very rarely used for
automated skin lesion classification, undoubtedly due to their complicatedness.
We selected a group of features which attempts to represent the characteristics by
following the idea of the ABCD rule [99]. For further details go to section 6.4.

7.2.2. Skin Lesion Classification Methods

In this section we will explain classification models which are used in our experi-
ments.

7.2.2.1. k-Nearest Neighbors

The k-nearest neighbors (kNN) algorithm is a method for classifying objects based
on closest training examples in the feature space [47][59]. In comparison to the
other methods, the kNN algorithm does not implement a decision boundary, but
uses the essential feature of the training set to approximate calculate the density
dispersion of the data. They essentially combine this information with class preva-
lence in the Bayes-rule to obtain the rear(class membership) probability estimates
of a data point. The density estimation uses a distance measure (usually Euclidean
distance). For a given distance calculated, the only parameter of the algorithm is k,
which is the number of neighbors. The parameter k decide the smoothness of the
density estimation: bigger values reflect more neighbors, and therefore smooth
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over local characteristics. Same values reflect only limited neighborhoods. Gen-
erally, the choice of k can only be identify empirically [45]. In our test, we used
values of k = 10, 20,...,100. In most of the medical diagnosis systems, k-nearest
neighbor algorithms are used as benchmarks for other machine learning tech-
niques [70][50][42].

7.2.2.2. Logistic Regression

The Logistic regression (sometimes called the logistic model or logit model) is
an algorithm that assemble a disconnect hyperplane between two data sets, us-
ing the logistic function to signify distance from the hyperplane as a presumption
of class membership. Logistic regression is extensively used in medical systems
for the ease with which the parameters in the model can be illustrate as changes
in log odds, for the variable choice methods that are often available in commer-
cial implementations, and for allowing the interpretation of results as probabili-
ties [45]. Although the model is linear-in-parameters and can thus only compute
linear decision boundaries, it is a consume predictive model in medical applica-
tions [48][143]. In our experiments, the weka open-source classification tool has
been used (available from the University of Weka [66]) to derive logistic regression
models.

7.2.2.3. Artificial Neural Networks

Artificial neural networks (ANNs) are networks of interconnected nodes com-
posed of various stages that emulate some of the observed properties of biolog-
ical nervous systems and draw on the analogies of adaptive biological learning.
ANNs represent a means to calculate posterior class membership probabilities by
minimizing a cross-entropy error function [11][153]. The ANN belongs of several
small processing units (the artificial neurons) that are highly link. Information
flow in an ANN is modeled the human brain, in that information is pass on be-
tween neurons, with the information stored as connection power (called weights)
between neurons. The minimization process is implemented as an update rule for
the weights in the network. For medical applications, a considerable disadvantage
of ANNs is the fact that the parameters in the model are not directly explainable,
so that no more understanding of a data set can be derived from a neural network
model [45].
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7.2.2.4. Decision Trees

Decision trees are an important technique in machine learning techniques. It or-
ganize classifiers by dividing the dataset into smaller and more equal groups, de-
pend on a measure of disparity (usually entropy) [128]. Decision Trees does it by
finding a variable and a threshold in the domain of this variable that can be used
to divide the dataset into two groups. The best pick of variable and threshold is
the one that minimizes the disparity measures in the resulting groups. The benefit
of decision trees over many of the other methods used here is that small decision
trees can be examine by humans as decision rules [45]. Decision trees therefore of-
fer a way to extract decision rules from a database. This makes it particularly well
suited for medical applications, and advantages and disadvantages of decision
trees in medicine have been extensively investigated [30][109][162].

7.2.2.5. Support Vector Machine

Support vector machines (SVM) is a systems which use hypothesis space of a lin-
ear functions in a high dimensional feature space, trained with a learning algo-
rithm from optimization theory that implements a learning bias derived from sta-
tistical learning theory [16][18][154]. The most appealing feature of this paradigm
is that it is possible to give bounds on the generalization error of the model, and
to select the best model from a class using the principle of structural risk mini-
mization [154]. Support vector machine compute dichotomize hyperplanes that
maximize the margin between two sets of data points. By using lagrange mul-
tipliers, the problem can be formulated in such a way that the only working on
the data points are the computation of scalar products [27]. While the fundamen-
tal training algorithm can only construct linear separators, kernel functions can
be used to compute scalar products in higher dimensional spaces. If the kernel
functions are nonlinear, the dichotomize boundary in the original space will be
nonlinear. Because there are various kernel functions, there is a wide variety of
possible SVM models. In our testing, we used SVM polynomial kernels of de-
grees 1 to 3 and radial basis function kernels with γ (inverse variance) parameters
between 10−2 and 10−6 [45].
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7.3. Results From Existing Systems

Building of automated systems for the diagnosis of skin lesions is acknowledge
as a substantial classification task, which consumes many biomedical laboratories
and research groups; e.g. [149], [132], [28], [111], [94] and [133]. Most of the sur-
veyed systems focus on the detection of malignant melanoma and its separation
from dysplastic or common nevus. However, there exist systems that are used for
the identification of different lesions. These lesions include among others tumor,
crust, scale and ulcer [153][152], erythema [122], burn scars [151] and wounds [76]
[73].

The most ordinary classification models are the statistical and rule-based ones;
e.g. [132], [14],[12] and [144]. More advanced techniques such as neural networks
are presented in works like [52], [13], [131], [77], [146] and [161], while the k-
nearest neighborhood classification scheme is applied in [59]. Classification and
regression trees (CART) [17] have been used in [158].

The favorable outcome rates for the methods presented in the literature signifies
that the work toward automated classification of lesions and melanoma, in spe-
cific, may provide good results. Accuracy rates can vary from 70% [159] to 95%
[163], whereas sensitivity can score between 82.5% [28] and 100% [1] and speci-
ficity between 63.65% [1] and 91.12% [159], respectively. SVM seems to achieve
higher performance in terms of sensitivity and specificity [99].

7.4. Experiments

We use the dataset as described in section 6.2 with addition of one extra class (Dys-
plastic nevus). A total of 8000 PSL images in three classes (common nevi, dysplas-
tic nevi, melanoma) were selected. The distribution of cases in the dataset is 6940
common nevi, 528 dysplastic nevi, and 532 melanoma. We create 10 balanced data
sets which are generated from the original unbalanced dataset of 8000 PLS. The
balanced datasets were generated by selecting randomly a similar number (500)
of common nevi, dysplastic nevi and melanoma images to obtain a more general
and balanced training dataset. Each of the five algorithms presented above was
run on each of the 10 different datasets as training and test data. A subset of them,
e.g., 80% of the images, is used as a learning set, and the other 20% of the samples
is used for testing using the trained classifier.

The most usual classification performance assessment in the context of melanoma
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detection is the true positive (TP) illustrate the fraction of malignant skin lesions
correctly classified as melanoma and the true negative (TN) illustrate the fraction
of dysplastic or non-melanoma lesions correctly classified as non-melanoma, re-
spectively [127][128]. A graphical representation of classification performance is
the ROC curve, which displays the adjustment between sensitivity (i.e., actual ma-
lignant lesions that are correctly identified as such, also known as TP) and speci-
ficity (i.e., the proportion of benign lesions that are correctly identified, also known
as TN) that results from the overlap between the assessment of lesion scores for
melanoma and common nevi [1][51][120]. A good classifier is one with close to
100% sensitivity at a threshold such that high specificity is also acquire. The ROC
for such a classifier will plot as a steeply rising curve. When different classifiers
are compared, the one whose curve rises fastest should be optimal. If sensitivity
and specificity were weighted equally, the greater the area under the ROC curve
(AUC), the better the classifier is [65]. The Area Under Curve (AUC) is equal to the
probability that a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one [54] [45].

Consider a binary classification task with m positive examples and n negative
examples. Let G be a fixed classifier that outputs a strictly ordered list for these
examples. Let x1, ..., xm be the output of G on the positive examples and y1, ..., yn

its output on the negative examples and denote by 1Z the indicator function of a
set Z. Then, the AUC, A, associated to G is given by [35] [45]:

A =

Pm
i=1

Pn
j=1 1xi>yj
mn

(7.1)

AUC is closely related to the ranking quality of the classification. It can be
viewed as a measure based on pairwise comparisons between classifications of
the two classes. It is an estimate of the probability Pxy that the classifier ranks a
randomly chosen positive example higher than a negative example [69]. With a
perfect ranking, all positive examples are ranked higher than the negative ones
and A = 1. Any deviation from this ranking decreases the AUC.

For our experiments we use Weka [66], an open source software issued under
the GNU General Public License. In some classification methods Weka does not
support multi-class problems directly. We therefore reduced the problem to two
dichotomous classification tasks: First, to discriminate common nevi from the
other two lesion types (dysplastic nevi and melanoma), and second, to discrim-
inate melanoma from common and dysplastic nevi. Standard ROC analysis was
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Table 7.1.: Performance comparison of k-nearest neighbors parameters for the task
of distinguishing melanoma from common and dysplastic nevi

k = 10 k = 40 k = 70 k = 100
Avg AUC 0.6758 0.9014 0.8431 0.7873

Std dev 0.0357 0.0244 0.0416 0.0432

Min AUC 0.5773 0.8672 0.7833 0.6779

Max AUC 0.7668 0.9356 0.9029 0.8968

Avg sens 0.7195 0.8535 0.8173 0.8173

Avg spec 0.7429 0.9283 0.9182 0.9182

used to summarize the results of classification tasks [71][72].
A compression of the results of all five methods are given in Table 7.2, Table 7.3

and Table 7.4. The entries in the tables are the following, for each method and
task: Average AUC over 10 data sets, standard deviation of AUC, maximum and
minimum AUC value, as well as average maximum sensitivity and specificity.
Furthermore, k-nearest neighbors results with different parameters are shown in
Table 7.1. The performance comparisons of the SVM kernels are shown in Table 7.6
and Table 7.5. ROC curves for the best and worst methods (support vector ma-
chines and decision trees, respectively) are shown in Figure 7.1 and Figure 7.2. We
show only these curves, since the results of the other methods lie between those
of decision trees and support vector machines. In particular, since the results of
logistic regression and neural networks are almost the same as those of support
vector machines, their ROC curves are visually indistinguishable [45]. We now
briefly discuss the results of the different methods on the data sets.

7.4.1. k-Nearest Neighbors

Standard euclidian distance was used on vectors as a distance metric for this
method and the data had been normalized to zero mean and unit variance, ev-
ery variable provide equally to the distance measure. It is important to consider
that the k-nearest neighbors algorithm is very fast on this problem; i.e., the clas-
sification results differ with the choice of parameter k. The results for k = 20, k =
30, k = 50, k = 60, k = 80, and k = 90 are not displayed in Table 7.1 because these
with small changes from those shown in the Table 7.1. The AUC results over all

92



7.4. Experiments

values of k ranged from 0.6758 (k = 10) to 0.9014 (k = 40). In Table 7.2, Table 7.3
and Table 7.4, it can be seen that the results of the k-nearest-neighbors algorithm
are only slightly inferior (3 to 4 percentage points) to those of the better methods.

7.4.2. Decision Trees

For the task of classifying PSL images decision trees are not suitable, it can be
seen from the results in Table 7.2, Table 7.3 and Table 7.4. The justification for this
is that approximately all the variables in the data set represent continuous data.
This makes it hard to find the ideal thresholds needed to construct the decision
tree. Given this basic drawback, it is not astonishing to see that decision trees per-
form unfertile of all the methods tested for this dataset. The main benefit that this
paradigm has over the other methods is the human understanding of the results,
the trees themselves are not applicable in this domain, since the input variables
are machine generated [45].

7.4.3. Logistic Regression

Even though logistic regression is a linear-in-parameters algorithm that can only
implement linear dichotomize hyper-planes between data points, it is nonethe-
less extensively used in medicine applications. The two main benefit this method
has over other algorithms is its lack of difficulty for use and its variable-selection
ability [45]. In all classification tasks (shown in Table 7.2, Table 7.3 and Table 7.4),
logistic regression accomplish on about the same level as artificial neural networks
and support vector machines, which are both adequate of implementing nonlinear
dichotomize surfaces.

7.4.4. Artificial Neural Networks

Artificial neural networks is one of the most advantageous technology in the last
two decades which has been widely used in a large variety of applications in dif-
fering areas. The early implementations depend upon a compelling amount of pa-
rameter tuning to achieve satisfactory results, a process that needed too much time
and expertise for a unprofessional. Over the past few years, artificial neural net-
works and implementations of faster learning algorithms have allowed unprofes-
sional, the use of cosmopolitan methods that needs little to no parameter-tuning
[11]. For the experiments in this work, we used a multilayer perceptron algorithm
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Table 7.2.: Performance comparison of k-nearest neighbors, logistic regression, ar-
tificial neural networks, decision trees, and support vector machines
for the task of distinguishing common nevi from dysplastic nevi and
melanoma

SVM
Decision trees k-NN Log regression ANN Polynomial RBF

Avg AUC 0.6657 0.7647 0.8408 0.8427 0.8340 0.8531

Std dev 0.0304 0.0301 0.0245 0.0157 0.0195 0.0198

Min AUC 0.6147 0.7285 0.7973 0.7994 0.7827 0.8139

Max AUC 0.7167 0.8010 0.8843 0.8861 0.8854 0.8923

Avg sens 0.7137 0.7389 0.7868 0.7714 0.7459 0.7967

Avg spec 0.6981 0.7397 0.7897 0.7417 0.7081 0.7539

Note. For nearest neighbors, k = 40. For SVM, the optimal polynomial kernel was
linear, with C = 100, and the optimal RBF kernel had inverse variance γ = 10−4

and C = 100.

Table 7.3.: Performance comparison of k-nearest neighbors, logistic regression, ar-
tificial neural networks, decision trees, and support vector machines for
the task of distinguishing melanoma from common nevi and dysplastic
nevi

SVM
Decision trees k-NN Log regression ANN Polynomial RBF

Avg AUC 0.7907 0.9014 0.9405 0.9542 0.9117 0.9601

Std dev 0.0565 0.0244 0.0273 0.0122 0.0376 0.0132

Min AUC 0.6951 0.8672 0.9011 0.9193 0.8537 0.9312

Max AUC 0.8863 0.9356 0.9790 0.9892 0.9698 0.9891

Avg sens 0.8051 0.8535 0.9432 0.9234 0.8684 0.9134

Avg spec 0.8362 0.9283 0.9452 0.9425 0.8953 0.9581

Note. For nearest neighbors, k = 40. For SVM, the optimal polynomial kernel was
linear, with C = 100, and the optimal RBF kernel had inverse variance γ = 10−4

and C = 100.
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Table 7.4.: Performance comparison of k-nearest neighbors, logistic regression, ar-
tificial neural networks, decision trees, and support vector machines for
the task of distinguishing dysplastic nevi from melanoma and common
nevi

SVM
Decision trees k-NN Log regression ANN Polynomial RBF

Avg AUC 0.7055 0.8564 0.8984 0.9278 0.9229 0.9379

Std dev 0.0492 0.0368 0.0164 0.0184 0.0273 0.0132

Min AUC 0.6165 0.8146 0.8783 0.9031 0.8976 0.9147

Max AUC 0.7946 0.8983 0.9185 0.9525 0.9483 0.9612

Avg sens 0.7526 0.7953 0.8929 0.9073 0.9834 0.9398

Avg spec 0.8827 0.8723 0.9582 0.9261 0.8523 0.9141

Note. For nearest neighbors, k = 40. For SVM, the optimal polynomial kernel was
linear, with C = 100, and the optimal RBF kernel had inverse variance γ = 10−4

and C = 100.

[123] that required no additional parameters to be set. We used 20 nodes in the
hidden layer; sample runs with 30 nodes showed similar results [45]. The results
obtained by neural networks were in the same range as those of logistic regression
and support vector machines. The training times were comparable to most of the
other methods as well, with only a few seconds for each of the 10 dataset.

7.4.5. Support Vector Machine

As SVM only implement dichotomize hyperplanes, they can effectively construct
nonlinear decision boundaries by mapping the data into a higher-dimensional
space in a nonlinear manner by using kernel functions. Since it is impractical to
identify in advance which kernel function works best for which dataset, enormous
time is spent on trying different kernel functions. The popular kernel functions are
polynomials and radial basis functions (RBF) [45].

The adjustable parameter for polynomial kernels, is the degree of the polyno-
mial; for RBF kernels, it is the inverse variance. For any kernel function, it is also
important to specify a cost factor C that determines the importance of misclassifi-
cation on the training set.
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Table 7.5.: Performance comparison of different SVM models for the task of distin-
guishing common nevi from dysplastic nevi and melanoma

Polynomial kernel
RBF kernel

d=1 d=2 d=3 γ = 10−6 γ = 10−4 γ = 10−2

Avg AUC 0.8340 0.7536 0.8086 0.8182 0.8531 0.8308

Std dev 0.0195 0.0352 0.0334 0.0253 0.0198 0.0153

Min AUC 0.7827 0.7163 0.7597 0.7785 0.8139 0.7954

Max AUC 0.8854 0.7909 0.8575 0.8579 0.8923 0.8663

Avg sens 0.7459 0.7482 0.7642 0.7692 0.7967 0.7735

Avg spec 0.7081 0.7195 0.7392 0.7354 0.7539 0.7627

Table 7.6.: Performance comparison of different SVM models for the task of distin-
guishing melanoma from common nevi and dysplastic nevi

Polynomial kernel
RBF kernel

d=1 d=2 d=3 γ = 10−6 γ = 10−4 γ = 10−2

Avg AUC 0.9117 0.8804 0.9051 0.9453 0.9601 0.9541

Std dev 0.0376 0.0362 0.0346 0.0274 0.0132 0.0262

Min AUC 0.8537 0.7854 0.7863 0.9453 0.9312 0.9328

Max AUC 0.9698 0.9754 0.9849 0.9742 0.9891 0.9752

Avg sens 0.8684 0.7462 0.8370 0.9284 0.9134 0.9003

Avg spec 0.8953 0.8723 0.8950 0.9627 0.9581 0.9283
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We used polynomial kernels of degrees 1 to 4, RBF kernels with parameter
γ = 10−7, 10−6, ..., 10−1, and cost factor parameter values of C = 200 and C = 2000.
The results for both these cost parameter settings were similar, with the C = 200
models performing inconsiderably better than the others. Therefore, we report
only results for C = 200. Training times were about an order of magnitude un-
hurried than for the ANN models, but still in the range of only a few minutes.
For the polynomial kernels, convergence times rely upon the degree of the kernel
polynomial, with times for degree four kernels too slow to be included here [45].
RBF kernels are generally fast to converge and it also did not depend as heavily
on the choice of precision parameter γ.

To examine SVM kernels we present results of the SVM classification tasks in
more detail in Table 7.6 and Table 7.5 . For the polynomial kernels, it is substantial
to note that the linear kernel function performs good than the polynomial kernels
of degrees 3 and 4. In light of the good performance of the logistic regression
model, it is not astonishing that a linear model should do well. It is astonishing,
however, that the higher-degree polynomial kernels did not perform at the same
level. For the RBF kernels, the excellent results were obtained for = 10−5. The
classification performance decreases for smaller and larger values of γ . The results
for γ = 10−4 and γ = 10−2 are not listed in the tables because they are less than
the best results, but better than those for γ = 10−7 and γ = 10−8 respectively [45].

7.5. Discussion

Selecting a best model for a given classification task rely upon not only on dis-
criminatory power, but also on other factors such as feature extraction, segmen-
tation, cost of model construction and model interpretability. In this chapter, we
aim completely on identifying the classification performance. In addition, five
methods were check into thoroughly in this chapter, the top three (logistic regres-
sion, artificial neural networks, and support vector machine) give almost same
results, whereas the other two (k-nearest neighbors and decision trees) drop off
significantly on some of the classification tasks. Even the unsatisfactory of the five
(decision trees) achieves sensitivity and specificity values that are comparable to
human experts visual assessment [61] [45].

In this testing setup for the classification of PSLs, we use 10 different datasets
for training and testing, it is not possible to check for statistically significant dif-
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Figure 7.1.: Averaged ROC curves for support vector machines with RBF kernels
and decision trees on the task of distinguishing common nevi from
dysplastic nevi and melanoma. The AUC value is 0.8531 for the SVM
and 0.6657 for the decision trees.

ferences in classification performance. This is due to the fact that the 10 different
sets are highly correlated, and thus the results obtained from these runs are not
independent. What can be said about the results of the runs is that the data set
was large enough (or well-behaved enough) so that for almost all methods on all
the tasks, there were no outliers in the results.

Support vector machines produce good results which shows that this method
is going to be tested and used more frequently in medical domains. It seems to
be a worth alternative to logistic regression and neural networks, especially since
there are theoretical bounds on the generalization error in SVM models [154] [45].

7.6. Conclusion

We test different methods for modeling the visual assessment of the dermatolo-
gist using machine-learning paradigms on the problem of classifying pigmented
skin lesions such as common mole, dysplastic mole, or melanoma. While the de-
cision tree is not good for this problem domain (most of the input variables are
continuous), the other methods performed good (k-nearest neighbors) to the best
(logistic regression, artificial neural networks, and support vector machines) on
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Figure 7.2.: Averaged ROC curves for support vector machines with RBF kernels
and decision trees on the task of distinguishing melanoma from com-
mon and dysplastic nevi. The AUC value is 0.9601 for the SVM and
0.7907 for the decision trees.

the datasets.
Even though it is not the aim to replace dermatologists in the diagnostic pro-

cedure, the results of this work shows that decision support tools could be used
to increase the performance of human experts. One possible area is in intelligent
training tools. Such tools could be designed as tutoring systems for dermatolo-
gists, with large dataset of lesion images and gold standard diagnoses for these
images. Trained models could then provide reference probability assessments
and, for a given lesion from the repository, present lesions with similar degrees
of malignancy. Similarity matching on the lesion features could also be used to
present features that are not only similar in diagnosis, but also similar in appear-
ance. Generation of a gold standard database is one of the important aspects for
future work [45]. There is a need of further work to investigate these ideas in
detail.
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CHAPTER 8

Conclusions

THE present chapter summarizes the major contributions and findings of the
research conducted in this thesis. Finally, it is concluded by discussing the

remaining challenges, future directions and ideas worth investigating.

8.1. Summary

According to the literature [102], [75], it is often difficult to differentiate early
melan-oma from other benign skin lesions. This task is not trivial even for ex-
perienced dermatologists, but it is even more difficult for primary care physicians
and general practitioners [126]. On the other hand, the early diagnosis of skin can-
cer is of severe importance for the outcome of the therapeutic procedure and the
basis for reducing mortality rates. The aim of this dissertation has been to gain a
better understanding of optical spectroscopy and dermoscopic images for clinical
use. In order to do so, the presented thesis has been divided in two successive
parts.

In the first part of our thesis we presented a feasibility study of optical spec-
troscopy for the classification of skin lesions. We first explained the hardware
setup of the optical spectroscopy system. Then we presented the method for com-
bining optical spectroscopy with tracking for using it as a guidance to acquisition
of spectral measurements. Following the data acquisition protocols we defined in
the first part and using the SVM-based classification approach, we showed that
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optical spectroscopy is a promising method for noninvasive diagnosis of skin le-
sions. Furthermore we saw that it has the potential to differentiate between be-
nign and malignant skin lesions. Spectroscopy could form the basis of a clinical
method to diagnose skin lesions due to the accuracy and reproducibility of its
measurements. Acquisition of spectroscopic data causes little or no patient dis-
comfort, does not alter the basic physiology of the skin, poses no hazard to the
patient and does not interfere with any other standard clinical diagnostic prac-
tices. The scan could be performed by a non-specialist and therefore might be a
useful tool for prescreening of skin lesions. Combining optical spectroscopy with
other imaging technologies, e.g. dermoscopy imaging, multispectral imaging and
hyperspectral imaging, can improve the diagnosis, since the optical spectroscopy
provides complementary information to these techniques.

In the second part we present a machine learning approach to classify melanocy-
tic lesions into malignant and benign from dermoscopic images by modeling vi-
sual assessments of dermatologist. The dermoscopic image database is composed
of 6940 common nevi, 528 dysplastic nevi and 532 malignant melanoma. For seg-
mentation we have used multiphase soft segmentation with total variation and
H1 regularization. Then, each lesion is characterized by a feature vector that con-
tains shape, color and texture information, as well as local and global parameters
which reflect structures used by the dermatologist for diagnosis. The learning and
classification stage is performed using SVM with polynomial kernels. The classi-
fication delivered accuracy of 98.57% with a true positive rate of 0.981 and a false
positive rate of 0.019.

We did performance comparison among different models for computer-aided
diagnosis system in skin lesions classification. Concerning the classification, the
SVM algorithm performed better than the compared techniques. However, we
have observed that the number of used feature vectors is also crucial for the clas-
sification accuracy. This highlights the importance of the feature selection. In the
literature, there has not yet been a clear agreement on which feature sets are the
most suitable for this task. Thus, feature selection methods not only improves the
classification complexity through minimizing the utilized number of features but
also the classification accuracy.
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(a) (b)

Figure 8.1.: Image:(a) Skin lesion image covered by dark thick hairs (b) A skin
image covered by light colored hairs

8.2. Future Work

The feasibility study of optical spectroscopy to be integrated into the clinical work-
flow for diagnosis lesions, the challenges addressed in section 5.7 needs to be in-
vestigated further.

In some cases, the lesion in the dermatoscopic images is covered by hairs, as
shown in Figure 8.1(a). These hairs, especially the dark thick ones with a simi-
lar color hue to the lesion, occlude the lesion and may mislead the segmentation
process. Shaving the hairs before imaging sessions is one of the solutions. How-
ever, shaving not only adds extra costs and time to the imaging session, but also is
uncomfortable and impractical especially for multiple lesions or total-body nevus
imaging. Hence, a software approach for dark thick hair removal from skin im-
ages is needed. Dull-Razor-algorithm by Lee et al [88] and inpainting technique
by Wighton et al [156] provide suitable approaches to address this issue. How-
ever, light-colored hairs such as the one shown in Figure 8.1(b) interfere with the
segmentation and the image analyses. In further extension of the system, these
methods need to be explored and extended to account for light-colored hairs.

In conclusion, the system presented in this thesis has achieved a classification
accuracy similar to the one of the dermatology specialists. Also including the
above discussed extensions for future work, our system has great potential to as-
sist the dermatologists in the diagnosis of skin lesions in the clinical routine.
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CHAPTER 9

Glossary and Acronyms

Glossary

Breslow’s depth. In medicine, Breslow’s depth is used as a prognostic factor in
melanoma of the skin. It is a description of how deeply tumor cells have invaded.

Crust. Crusting is the result of the drying of plasma or exudate on the skin.

Cutaneous T-Cell Lymphoma. A cancer in immune system. The malignant T
cells in the body initially migrate to the skin, causing various lesions to appear.

Erythema. Erythema is redness of the skin, caused by hyperemia of the capil-
laries in the lower layers of the skin. It occurs with any skin injury, infection, or
inflammation.

In vivo. In vivo is experimentation using a whole, living organism as opposed
to a partial or dead organism, or an in vitro (ẅithin the glass,̈ i.e., in a test tube or
petri dish) controlled environment.

Nevus. Nevus (plural nevi) is the medical term for chronic lesions of the skin.
These lesions are commonly named birthmarks and moles. Nevi are benign by
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definition. Using the term nevus and nevi loosely, most physicians and derma-
tologists are actually referring to a variant of nevus called the M̈elanocytic nevus,̈
which are composed of melanocytes.

Noninvasive. Noninvasive procedures do not involve tools that break the skin
or physically enter the body.

Nosocomial Infections. A nosocomial infection, also known as a hospital ac-
quired infection or HAI, is an infection whose development is favoured by a hos-
pital environment, such as one acquired by a patient during a hospital visit or one
developing among hospital staff.

Relief features. Relief features are those features which are related to landscape
of those areas, e.g. mountains, altitude, valleys, types of land and heights of
mountains they are the opposite of drainage pattern as it includes water channels
while relief does not.

Scale. The outermost layer of skin resembling a fish scale. They represent a
heaping up of the outermost layer of the skin and can be due to a variety of skin
conditions, most frequently excessive dryness.

Seborrheic keratosis. It is a noncancerous benign skin growth that originates in
keratinocytes. Like liver spots, seborrheic keratoses are seen more often as people
age.

Telemedicine. Telemedicine is the ability to provide interactive health-care uti-
lizing modern technology and telecommunications.

Ulcer. An ulcer is a sore on the skin or a mucous membrane, accompanied by
the disintegration of tissue.
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Acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

um Micrometer

ABCD Asymmetry, Border irregularity, Color variation and Diameter

ANN Artificial Neural Networks

AR Augmented Reality

ART Advanced Realtime Tracking

AUC Area Under Curve

AVG Average

CAD Computer Aided Diagnosis

CCD Charge Coupled Device

CDL Clinically Doubtful Lesions

CFS Correlation-based Feature Selection

CGI Computer-Generated Image

cm centimeter

CT Computed tomography

CTCL Cutaneous T-Cell Lymphoma

deg Degree

FDG Fluorodeoxyglucose

ELM Epiluminence Microscopy

GB Gigabyte
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GHz Gigahertz

HOG Histogram of Oriented Gradients

Hz Hertz

IR Infrared

Isomap Isometric Feature Mapping

kNN k-nearest neighbors

MDS Multidimensional Scaling

mm millimeter

MRI Magnetic Resonance Imaging

ms millisecond

NIR Near-infrared

nm nanometer

OpenGL Open Graphics Library

PC Personal Computer

PCA Principal Components Analysis

PET Positron emission tomography

PSLs Pigmented Skin Lesions

px pixel

RBF Radial Basis Functions

RGB Red Green Blue

ROC Receiver operating characteristic

SCF Skin Cancer Foundation

SD Standard Deviation
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SIA Spectrophotometric Intracutaneous Analysis

SVM Support Vector Machine

UV Ultraviolet

WHO World Health Organization
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