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v 

In order to motivate the incorporation of the reliability concept in the structural design and analysis 
procedures, the engineering community is in need of finite element (FE) software with capabilities 
of including the stochastic nature of input parameters. This thesis presents a series of FE reliability 
methods that have been implemented in a reliability tool and integrated into the SOFiSTiK FE 
software package. The tool is programmed in a stand-alone fashion and utilizes the FE solver as 
“black box”. Hence, the applied reliability methods are termed non-intrusive, since they do not have 
access to the core routines of the FE software. 

The presentation starts with a review of probability theory. The modeling of spatial variability 
using random fields is then addressed and a series of existing random field discretization methods 
are evaluated. Moreover, the possibility of an embedded-domain discretization of random fields is 
examined. Furthermore, the basic concepts of reliability theory are introduced, followed by a 
detailed presentation of the implemented reliability methods. These include the FORM/SORM, 
combined with robust optimization algorithms, as well as a variety of simulation techniques, 
including directional simulation, importance sampling and subset simulation. Next, the problem of 
updating the reliability estimate conditional on measurement or other information is discussed. 
Finally, the methods are applied for the reliability assessment of a number of nonlinear geotechnical 
FE models. 
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1.1 Motivation and scope 

In structural engineering analysis and design, the goal is to predict the behavior of the structural 
system subject to certain prescribed loading conditions. This task requires the mathematical 
modeling of a physical phenomenon, which consists of a set of partial differential equations whose 
solution aims at reproducing experimental observations. In complex structural systems, a numerical 
solution of the mathematical model is usually sought by application of finite element (FE) methods. 
The increase of the computational power has motivated the development of FE methods that are 
able to capture the behavior of models of ever increasing complexity. These methods have been 
implemented in commercial software that are widely used in the structural engineering community. 

However, despite the increase in the accuracy of the models and the respective FE 
representations, they will never be able to capture the complexity of the real world. This is due to 
the fact that neither the loading nor some structural parameters can be known with certainty, i.e. 
they are not deterministic quantities. Therefore, the structural response inherits this property and 
hence should be considered an uncertain quantity. This implies that FE solutions at best provide an 
approximation of the actual reality. 

In civil engineering structures, the relevant quantities that cannot be known with certainty are 
usually of either one of the following three kinds: 

 Material properties; a certain deviation between the material properties of a structure and the 
standardized properties of the material are expected.  

 Loads; idealization of the applied loads will never capture the complexity of the actual 
loading conditions. 

1 Introduction 
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 Geometric dimensions; imperfections in the construction phase will lead to deviations 
between the geometry of the design and the actual structure. 

The uncertainties that effect these parameters can be categorized into two distinct types; namely, 
aleatory and epistemic uncertainties. Aleatory uncertainties refer to the intrinsic randomness of a 
phenomenon. As an example, submitting concrete specimens of the same batch to the same material 
test under the same experimental conditions will lead to different estimates of its strength. Aleatory 
uncertainties cannot be reduced by collecting additional information. On the other hand, epistemic 
uncertainties refer to a lack of knowledge. In the aforementioned example, the uncertainty in the 
prediction of the concrete strength can be reduced by increasing the accuracy of the measurement 
device or by performing a larger number of tests. That is, epistemic uncertainty can be reduced by 
collecting additional data or by refining the models. In many cases, it is difficult to distinguish 
between these two different types of uncertainties that may be present in the same structural system. 
A discussion on the modeling of these different types of uncertainty is given in [23]. Within this 
study, such a distinction is not made, although in principle the methods presented here can be 
applied to the case where both types are present. 

Structural engineers usually account for the uncertainties in the loading and structural properties 
by applying safety factors, which are chosen following the directives of published design codes. 
This approach is motivated by its computational efficiency, since it involves a single FE 
calculation. However, safety factors do not allow a quantification of the uncertainty of response 
quantities and they can lead to over-conservative designs. A more rigorous approach involves the 
explicit consideration of the relevant uncertainties and attempts a complete characterization of 
uncertain response quantities. This approach can be realized with the help of notions of probability 
theory. 

In most cases, the relevant information sought is the probability that a response quantity exceeds 
a prescribed threshold. The threshold is chosen by the engineer to ensure that its non-exceedance 
will correspond to a successful performance of the structure. The aforementioned probability is 
termed probability of failure and its complementary probability, i.e. the probability of successful 
performance, is referred to as reliability. The process of computing the reliability of a structural 
system is termed reliability analysis ([35], [71], [83]). 

Reliability analysis provides a sound basis for quantifying the risk of civil engineering structures 
and usually leads to reduced design costs, as compared to designs based on conventional safety 
factors. However, the evaluation of the reliability or the probability of failure is usually not a 
straightforward task, especially when it involves complex engineering structures that are modeled 
by FE methods. Solution methods can be classified into two categories; intrusive and non-intrusive. 
Intrusive methods involve reprogramming of the FE software while non-intrusive methods utilize 
the FE software as “black boxes”. The latter methods have the advantage that they can be combined 
with existing and widely-accepted FE software. However, they may involve high computational 
costs, since for complex engineering structures the single deterministic FE calculation is usually 
time-consuming. 

This thesis focuses on non-intrusive methods for FE reliability analysis. Non-intrusive FE 
reliability methods can be divided into two categories. The first involves first- or second-order 
approximations of the failure condition of the structure. Methods belonging to this category require 
the solution of an optimization problem and provide an approximation of the actual reliability [20]. 
The main computational cost of these methods is related to the evaluation of the derivatives at each 
step of the optimization algorithm. The second category is based on the repeated generation of 
possible outcomes of the uncertain variables [112]. For each outcome, the FE solver is called and 
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the failure condition is evaluated. These methods are generally applicable but in most cases involve 
considerable computational cost. 

The methods presented in this thesis have been implemented in a FORTRAN program [96] that 
is fully integrated to the commercial FE software package SOFiSTiK [126]. The program involves a 
general purpose implementation of non-intrusive reliability methods through a “black box” 
coupling to the FE solver. 

1.2 Outline 

This thesis is organized into seven chapters, which are outlined as follows: 
Chapter 2 first provides an introduction to the basics of the theory of probability and random 

variables and reviews basic distribution models. Then, the representation of quantities that vary 
randomly in space or time is addressed by introducing the mathematical notion of random fields. 
Furthermore, methods for the numerical treatment of random fields are reviewed and assessed 
through numerical studies. Finally, a novel idea for the treatment of random fields in non-standard 
domains is investigated. 

Chapter 3 presents the fundamental concepts of reliability analysis. First, a review of the 
existing design concepts is provided, followed by a detailed presentation of the component and 
system reliability problems. 

Chapter 4 describes the implemented FE reliability analysis methods. Approximation methods 
are presented first, with a focus on the algorithms for the solution of the underlying optimization 
problem. Subsequently, a detailed review of simulation methods is presented. The special case of 
simulation in problems with a large number of random variables is treated next. Finally a review of 
response surface methods with application to reliability analysis is provided.  

Chapter 5 introduces methods for updating the reliability of a structural system, in light of new 
information. First, the reliability updating problem is formulated. Next a reliability updating method 
based on approximation concepts is presented, followed by a general approach that can be treated 
with any of the methods described in Chapter 4. 

Chapter 6 presents three industrial applications, which demonstrate the potential of the methods 
described in the previous chapters. The first consists of the reliability analysis of a deep tunnel in 
rocky soil. The second introduces a framework for reliability updating of geotechnical construction 
sites with application to a deep excavation with a cantilever retaining wall. The third example 
proposes a method for the reliability-based design of slope angle, including the spatial variability of 
the soil material. 

Finally, Chapter 7 presents a summary of the contributions of this work.  
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The first step in the reliability assessment of structural systems is the probabilistic description of the 
input parameters that are expected to present an uncertain behavior. This chapter contains the 
mathematical notions and the different procedures that are utilized for the modeling of the uncertain 
parameters. Although some basics of probability theory are provided, these are limited to the 
minimal requirements of the present document. For a more detailed view in probability theory, the 
reader is referred to standard texts (e.g. [100]). 

2.1 Basic notions of probability 

Consider a sample space S, containing all possible outcomes of an experiment. An event E is 
defined as any subset of S (i.e. E  S). The basic operations on two events E1, E2 are the union  
E1  E2 and the intersection E1  E2. These operations have the following distributive properties: 

 
     
     3121321

3121321

EEEEEEE

EEEEEEE




 (2.1)

The events E1, …, En are called mutually exclusive if: 

 0 , :1i jE E i j i j n        (2.2)

where 0  is the empty set. The events E1, …, En are called collectively exhaustive if: 

2 Modeling of uncertainties 
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The set of events containing all individual outcomes of the experiment is a complete set of mutually 
exclusive and collectively exhaustive events. The same holds for any event E and its 
complementary event E , i.e.: 
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The following rules hold for the complement of union and intersection of events: 

 
i i
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E E
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 (2.5)

The set of all events in the sample space S defines a σ-algebra F. The probability space associated 
with S is a measure space, consisting of the triple (S, F, P), where P : F → [0,1]  is the probability 
measure, defined as a measure of the likelihood of occurrence of any event E F. The measure P 
follows the Kolmogorov axioms: 

   0P E E F    (2.6)

  S 1P   (2.7)

    1 2 1 2, , : , , mutually exclusivei i
ii

P E P E E E F E E
 

   
 

    (2.8)

From the Kolmogorov axioms, the following important results follow: 

    1P E P E   (2.9)

  0 0P    (2.10)

        1 2 1 2 1 2 1 2,P E E P E P E P E E E E F        (2.11)

The conditional probability of an event E1 given that the event E2 has occurred is defined by: 

    
 
1 2

1 2
2

|
P E E

P E E
P E


  (2.12)

Reformulation of Eq. (2.12) leads to the following multiplication rule: 
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We can generalize Eq. (2.13) for the events E1, …, En as follows: 
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 (2.14)

Two events E1E2 are said to be statistically independent if: 

    1 2 1|P E E P E  (2.15)

A direct consequence of Eq. (2.15) is the following: 

      1 2 1 2P E E P E P E   (2.16)

2.2 Random variables 

2.2.1 Basic definitions 

A random variable X is defined as a function that maps elements of a sample space S (i.e. individual 
outcomes of the experiment) to the set of real numbers, i.e. X : S →  . The space S, and 
correspondingly the random variable X, can either be discrete or continuous. Denoting an individual 
outcome of S by x, we can define the following event: 

  xXE   (2.17)

The function that expresses the probability P(E) of occurrence of this event in terms of the outcome 
x is the cumulative distribution function (CDF) FX(x) of the random variable X, i.e. 

    xXPxFX   (2.18)

A random variable can be completely defined by its CDF. The CDF is a non-decreasing function 
with the following properties: 

     1lim     and     0lim 


xFxF X
x

X
x

 (2.19)

For discrete random variables, we can define the probability mass function (PMF) as follows: 

    xXPxpX   (2.20)
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wherein the probability P(X = x) has a finite value due to the discrete nature of the corresponding 
sample space. For the PMF, the following normalization rule holds: 

   1
 i

iX xp  (2.21)

For a discrete random variable, the CDF is defined as follows: 

    



xx

iXX

i

xpxF  (2.22)

In continuous sample spaces, probabilities of the type P(X = x) are zero. Therefore, for a continuous 
random variable, the probability density function (PDF) is defined as follows: 

    
d 0

d
limX x

P x X x x
f x

dx

  
  (2.23)

Hence, the PDF can be obtained by differentiation of the CDF: 

    
dx

xdF
xf X

X   (2.24)

The CDF can therefore be defined in this case as: 

    



x

XX dzzfxF  (2.25)

Note that, as shown in Eq. (2.23)-(2.25), the integral of the PDF and not the function itself 
expresses a meaningful probability measure. For the PDF, the normalization rule reads: 

   1




dxxf X  (2.26)

Physical quantities are usually associated with continuous sample spaces, therefore in this text we 
will mostly deal with continuous random variables. 

Let g(X) be any function of the random variable X. The mathematical expectation E[g(X)] is 
defined for a discrete random variable as: 

       



i

iXi xpxgXgE  (2.27)

and for a continuous random variable as: 

       




 dxxfxgXg XE  (2.28)

The mean (expected) value of a random variable can then be defined as: 
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  XμX E  (2.29)

The n-th moment nμ  and n-th central moment nμ  of X are defined as follows: 

  n
n Xμ E  (2.30)

   n
Xn μXμ  E  (2.31)

We can then define the variance Var(X) and standard deviation σX of X as follows: 

     2EVar XμXX   (2.32)

  Xσ X Var  (2.33)

The variance is a measure of the dispersion of a PDF. For random variables with non-zero mean 
value (μX ≠ 0), we can define the dimensionless coefficient of variation CVX as:  

 X
X

X

σ
CV

μ
  (2.34)

The normalized third central moment of X is the skewness coefficients γX, defined as follows: 

 
  

3

3E

X

X
X

σ

μX
γ


  (2.35)

If a random variable has γX = 0, then its PDF is symmetric about the mean. If γX < 0, then the left 
tail is longer, while if γX > 0 the right tail is longer. 

The normalized fourth central moment is the kurtosis coefficient κX, defined as follows: 

 
  

4

4E

X

X
X

σ

μX
κ


  (2.36)

The kurtosis coefficient is a measure of the flatness of a PDF. 

2.2.2 Commonly used distributions 

This section discusses a few commonly used distributions of continuous random variables. 

Normal or Gaussian distribution 

The Gaussian distribution is of great importance in the fields of probability and statistics. Moreover, 
it is one of the most frequently used distributions in engineering problems. A Gaussian random 
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variable X ~ N(μ, σ) is defined by two parameters, the mean μ and the standard deviation σ. Its PDF 
is as follows: 

      






 







 

 ,
2

exp
2

11
2

2

x
σ

μx

πσσ

μx
φ

σ
xf X  (2.37)

where φ(.) denotes the standard normal PDF associated with the standard normal random variable  
U ~ N(0, 1): 

    







 ,

2
exp

2

1 2

u
u

π
uφ  (2.38)

The CDF of X ~ N(μ, σ) is as follows: 

   ΦX

x μ
F x

σ

   
 

 (2.39)

where Φ(.) denotes the standard normal CDF: 

  
21

Φ exp
22

u z
u dz

π

 
  

 
  (2.40)

The skewness coefficient of a Gaussian random variable is γ = 0, which implies a symmetric PDF, 
while its kurtosis coefficient is κ = 3. These two values usually serve as measures on whether 
experimental data sets can be modeled by the Gaussian distribution. Quantitative representations of 
the normal PDF and CDF are shown in Figure 2.1. 
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(a)  (b) 

Figure 2.1: The PDF (a) and CDF (b) of a normal random variable with μ = 10 and σ = 5. 
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Lognormal distribution 

A lognormal random variable X ~ LN(λ, ζ) is a two-parameter random variable, with the following 
PDF and CDF, respectively: 

    





 

 ,0
ln1

x
ζ

λx
φ

xζ
xf X  (2.41)

   ln
ΦX

x λ
F x

ζ

   
 

 (2.42)

Hence, the natural logarithm of X is a Gaussian random variable, i.e. lnX ~ N(λ, ζ). The mean and 
standard deviation of X are expressed in terms of the parameters λ, ζ as: 

 

  1exp

2
exp

2

2













ζμσ

ζ
λμ

 (2.43)

Conversely, the parameters λ, ζ are expressed in terms of μ, σ as follows: 

 

2
ln

1ln
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 (2.44)

The lognormal distribution is an asymmetric distribution with positive skewness (i.e. γ > 0). It is 
usually applied for the description of variables that can only take positive values or in the case when 
experimental data sets exhibit a significant skewness. In Figure 2.2 the PDF of a lognormal random 
variable is compared to the one of a normal random variable with the same mean and standard 
deviation. 

With the addition of a third parameter x0, defining a lower bound in the support of x, the shifted 
lognormal random variable X ~ LN(λ, ζ, x0) can be defined with the following PDF and CDF, 
respectively: 
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Figure 2.2: The lognormal PDF compared to the normal PDF for μ = 10 and σ = 5. 

Uniform distribution 

A uniform random variable X ~ U(a, b) is defined by the following PDF: 

  
 







 


otherwise0
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bax
abxf X  (2.47)

whereby b > a. Its CDF is: 
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xFX  (2.48)

Its mean and standard deviation are expressed in terms of a, b as follows: 

 

32

2
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 (2.49)

Its skewness coefficient is γ = 0 and its kurtosis coefficient is κ = 1.8. 
The uniform distribution assumes the same probability density for any value in the interval  

[a, b]. It can be used for the conservative probabilistic description of quantities for which bounds 
are given, but no specific trend can be assumed. 

Beta distribution 

A Beta-distributed random variable X ~ Bet(q, r, a, b) is a four-parameter random variable with the 
following PDF and CDF, respectively: 
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whereby b > a and B(q, r), B(x; q, r) are the Beta function and incomplete Beta function 
respectively, defined as follows: 
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11 1, dzzzrqB rq  (2.52)
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11 1,;  (2.53)

The mean and standard deviation are expressed as follows: 
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rq

qr

rq

ab
σ

rq

bqar
μ

 (2.54)

The Beta distribution is a very flexible distribution that can be used for the probabilistic description 
of bounded quantities. Figure 2.3 shows the Beta PDF for two different random variables with the 
same mean and standard deviation, but different bounds. 

Gumbel distribution 

A random variable X follows a Gumbel or type I largest value distribution, i.e. X ~ Gmb(u, α), if its 
CDF has the following form: 

      uxαxFX  expexp  (2.55)

Its PDF is as follows: 

        uxαuxααxf X  expexp  (2.56)
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(a)  (b) 

Figure 2.3: The Beta PDF compared to the normal PDF for μ = 10 and σ = 5 and bounds (a) a = -5, b = 25 
and (b) a = 0, b = 30. 

Its mean and standard deviation are expressed in terms of u, α as follows: 

 

α

π
σ

α

γ
uμ

6



 (2.57)

where γ ≈ 0.577 is Euler’s constant. 
The Gumbel distribution, derived from extreme value theory, models the distribution of the 

maximum value among a number of samples of any distribution with an exponential tail (e.g. the 
Gaussian distribution). It is commonly used for the modeling of environmental loads, such as winds 
and earthquakes.  

Weibull distribution 

A random variable X follows a Weibull distribution, i.e. X ~ Wbl(u, k), if its CDF has the following 
form: 
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X  (2.58)

Its PDF is as follows: 
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Its mean and standard deviation are expressed in terms of u, α as follows: 
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 (2.60)

where Γ(.) is the Gamma function, defined as: 

    


 
0

1 exp dzzzkΓ k  (2.61)

The Weibull distribution is identical to the type III smallest value distribution with a zero lower 
bound. Like the Gumbel distribution, it is derived from extreme value theory. It can be used to 
model the distribution of the minimum value of samples from most of the commonly used 
distributions with a zero lower bound. The PDFs of a Gumbel and a Weibull random variable with 
the same mean and standard deviation are shown in Figure 2.4. 

The special case of a Weibull distribution with k = 2 results in a one-parameter distribution, 
called Rayleigh distribution Ray(u). The Rayleigh distribution is commonly used for the 
probabilistic description of peaks in a narrow-banded stationary Gaussian process. For example, 
maximum wave heights can be modeled by a Rayleigh distribution. 
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Figure 2.4: PDFs of commonly used extreme value distributions for μ = 10 and σ = 5. 
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2.3 Random vectors 

2.3.1 The joint probability density function 

A random vector X is a mapping of the form X : S → n , where n is the size of the vector. The 
components of the random vector are random variables, i.e. X = [X1,…, Xn]

T, where [.]T denotes the 
transpose operator. The vector X can be completely defined by its joint CDF: 

      
1 , , 1 1 1, ,

nX X n n nF F x x P X x X x     X x     (2.62)

The corresponding joint PDF can be obtained by differentiation of the joint CDF as follows: 
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nXX
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,,
,, 1

1
xX  (2.63)

The joint PDF and CDF have the following normalization properties: 
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X X i n
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 (2.65)

    
1 , , 1 1, , 1

nX X n n

D

f d f x x dx dx
 

 

   
X

X x x     (2.66)

whereby DX = n  and dx = dx1…dxn. The marginal distribution of any component random variable 
Xi (1 ≤ i ≤ n) is obtained by integrating the joint PDF over all remaining components: 

    
1

iX i i

D

f x f d


 
X

X x x  (2.67)

where DX
-1 = n-1 and dx-i = dx1… dxi-1 dxi+1…dxn. The joint PDF of two components Xi, Xj can be 

obtained in a similar way: 

    
2

, ,
i jX X i j ij

D

f x x f d


 
X

X x x  (2.68)

The conditional PDF of any vector containing a subset of the components of the random vector X, 
e.g. Xk = [X1,…, Xk]

T, given the joint PDF of the remaining components, Xn-k = [Xk+1,…, Xn]
T, is 

defined in analogy with Eq. (2.12), as follows: 
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We can then express the joint PDF fX(x) by applying a generalized multiplication rule analogous to 
the one given in Eq. (2.14): 
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 (2.70)

Eq. (2.70) implies that the joint PDF can be constructed if all the conditional PDFs are known. Note 
that the analyst is free to choose which conditional PDFs to estimate in order to obtain the joint 
PDF of a random vector, as long as the definition of conditional PDF is correctly applied in the 
construction of the multiplication rule. 

Two random variables X1, X2 are said to be statistically independent if: 

    
1 2 1| 1 2 1|X X Xf x x f x  (2.71)

Eq. (2.71) implies that if X1, X2 are statistically independent then: 

      
1 2 1 2, 1 1 1 2,X X X Xf x x f x f x  (2.72)

We can then obtain the joint PDF of a vector X of jointly statistically independent random variables 
as follows: 

          
1 1, , 1 1

1

, ,
n n i

n

X X n X X n X i
i

f f x x f x f x f x


  X x     (2.73)

Consider a function g(X) of the random vector X. The mathematical expectation E[g(X)] is defined 
in analogy with the definition given in Eq. (2.28) as follows: 

          
11 , , 1 1, , , ,

nn X X n n

D

E g g f d g x x f x x dx dx
 

 

       
X

XX x x x      (2.74)

The covariance Cov[Xi, Xj] of the random variables Xi, Xj is defined as follows: 

   Cov , E
i ji j i X j XX X X μ X μ          (2.75)

The dimensionless correlation coefficient of Xi, Xj is defined by normalizing the covariance by the 
standard deviations of the two random variables: 

  , ,

Cov ,
1,1

i j i j

i j

i j

X X X X
X X

X X
ρ ρ

σ σ

      (2.76)

The covariance and correlation coefficient are measures of the linear dependence of two random 
variables. Two random variables Xi, Xj are said to be uncorrelated if: 
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 Cov , 0i jX X     (2.77)

It can be easily shown that if two random variables are statistically independent then they are also 
uncorrelated. Note that the reverse does not necessarily hold. Two random variables Xi, Xj are said 
to be orthogonal if: 

 E 0i jX X     (2.78)

The mean value vector μX of a random vector X is defined as the vector containing the mean value 
of each component random variable: 

 
1

T
, ,

nX Xμ μ   Xμ   (2.79)

The covariance matrix ΣXX and the correlation coefficient matrix RXX are square symmetric and 
positive definite matrices, defined as: 

 Cov ,i j
n n

X X


     XXΣ  (2.80)

 ,i jX X
n n

ρ


   XXR  (2.81)

We also define the diagonal matrix DX containing the standard deviation of each component 
random variable: 

 diag
iX n n

σ


   XD  (2.82)

The covariance and correlation coefficient matrices satisfy the following relation: 

 XX X XX XΣ D R D  (2.83)

2.3.2 Transformation of random vectors 

Consider a random vector X with known joint PDF fX(x) and a random vector Y whose components 
Yi are related to the components of X by known functions, i.e. 

  1, , :1i i ny g x x i i n     (2.84)

If we assume that the above defined mapping is one-to-one, then the joint PDF of Y is derived by 
requiring preservation of the probability content, as follows: 

     ,detf fY X x yy x J  (2.85)
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where Jx,y is the Jacobian matrix of the transformation, defined as follows: 

 ,
i

j n n

x

y


 
  

  
x yJ  (2.86)

2.3.3 The Gaussian joint probability density function 

Gaussian or normal random vectors have the unique property that they are completely defined by 
their mean value vector μX and covariance matrix ΣXX. In addition, it can be shown that if a 
distribution is jointly Gaussian, then all lower order distributions as well as all conditional 
distributions are also Gaussian. Moreover, any linear mapping of a Gaussian random vector will 
result in another Gaussian vector, which will be jointly Gaussian with the original vector. The joint 
PDF of a Gaussian random vector X is as follows: 

    
   

   T 1
2 1 2

1 1
, exp

22 det
n nf φ

π
        

X X XX X XX X

XX

x x μ Σ x μ Σ x μ
Σ

 (2.87)

where φn(z, R) denotes the n-dimensional standard normal PDF, associated with the vector Z of 
standard normal random variables with correlation coefficient matrix R: 

  
   

T 1
2 1 2

1 1
, exp

22 det
n nφ

π
    

z R z R z
R

 (2.88)

It should be noted that if a random vector is jointly normally distributed and its components are 
pair-wise uncorrelated, then they are also pair-wise independent. In the case where a random vector 
U consists of independent standard normal random variables, the joint PDF, denoted by φn(u), 
reads: 
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2

1

1 1
exp

22

n

n i n
i

φ φ u
π

     
u u u  (2.89)

The Gaussian distribution is widely used for modeling real problems because it often provides a 
good approximation of measured data. This can be explained by the central limit theorem, which 
states that if a random variable X is defined as the sum of a large number of random variables 
{Z1,…, Zn}, then X is approximately Gaussian under some restrictions on the joint distribution of 
{Z1,…, Zn}. A sufficient restriction is that {Z1,…, Zn} are independent and identically distributed. 
Assuming that {Z1,…, Zn} have expected values μ and variances σ2, then the random variable X, 
defined as: 

 
1

1 n

i
i

X Z
n 

   (2.90)

converges in distribution to the Gaussian distribution with mean value μ and variance σ2/n. A 
similar statement of the theorem exists for the sum of a large number of random vectors. Also, it is 
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well known that the central limit theorem does not require complete independence between the 
random variables {Z1,…, Zn}. The key restriction is that the variables are poorly correlated and that 
none of the variables has a dominant contribution to the total variance. In practical situations, the 
validity of the central limit theorem cannot be proven, since usually there is not enough information 
on the joint distribution of the random variables, contributing to the quantity of interest. It should be 
noted that the Gaussian distribution has significant limitations, such as its symmetry and the fact 
that the outcome space includes negative values. The following section deals with the case where 
the marginal distributions of a random vector are modeled by non-Gaussian distributions. 

2.3.4 The Nataf model 

In many cases, the probabilistic information of a random vector X is given in terms of the marginal 
distributions  

iX iF x  and the covariance matrix ΣXX. An approximation of the joint PDF can then 
be obtained using the Nataf distribution [85]. This can be achieved by assuming that the random 
variables Zi derived from the following isoprobabilistic marginal transformation: 

  1Φ :1
ii X iZ F X i i n        (2.91)

form a jointly Gaussian random vector of standard normal random variables Z = [Zi, …, Zn]
T with 

correlation coefficient matrix R [73]. Applying Eq. (2.85), the joint PDF of X is written as: 
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 (2.92)

where  1Φ
ii X iz F x      and  

iX if x  are the given marginal PDFs. The elements ρij of R are 
computed such that they match the given correlation coefficients ,i jX Xρ  of X. This is achieved 
through the following integral relation: 
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 (2.93)

The above relation is implicit in ρij and can thus be solved iteratively. Alternatively, the empirical 
formulae given in [25], [73] relating ρij to ,i jX Xρ  for several combinations of distribution types can 
be applied. The Nataf model is valid provided that the marginal CDFs  

iX iF x  are continuous and 
strictly increasing and that the correlation coefficient matrix R derived from Eq. (2.93) is positive 
definite [73]. It should be noted that the latter condition does not necessarily hold, even though the 
correlation coefficient matrix XXR  is always positive definite. In such cases, the Nataf model is not 
applicable. 
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2.4 Random processes and random fields 

In several engineering applications, the description of uncertain parameters using random variables 
can be insufficient. This is due to the fact that certain physical quantities are often expected to vary 
randomly in space or time. The probabilistic description of such quantities requires the 
consideration of random processes or fields (for a detailed view on the theory of random processes 
and fields, the reader is referred to [46] and [137]). 

2.4.1 Basic definitions 

A random (stochastic) process or field X(t) is defined as a collection of random variables indexed by 
a continuous parameter t  T, where T is some continuous set. This means that for any ti  T, X(ti) 
is a random variable. Then x(ti) will be an individual outcome of the corresponding sample space. 
Collecting the individual outcomes of all random variables X(ti), we get a realization of the random 
process, denoted here by x(t). Figure 2.5 shows realizations of an example random process. Usually, 
a random process refers to the case where the set T denotes a continuous time interval. On the other 
hand, the notion of random field is used for describing spatially varying random quantities, i.e.  
T = Ω  d  (d = 1, 2 or 3). Hence, in the general case of some spatial domain Ω, the random field 
is denoted by X(t), where t is now a location vector. In the following, we will use this more general 
notation, unless otherwise noted. 

To completely define a random field, the joint PDF      
1 1 1, , , ; ; ,

n n nX Xf x xt t t t   of the random 
variables {X(t1), X(t2),…, X(tn)} for any {n, t1, t2, …, tn} must be specified. However, in most 
engineering applications, the joint PDF is approximated using second moment information and the 
marginal distribution, as will be discussed in Section 2.4.6. 

Denoting by    ,Xf xt t  the marginal PDF of the random variable X(t), for some t  T, the mean 
and variance functions of the field are defined as follows: 

        E ,X Xμ X x f x dx




     tt t t  (2.94)

              2 22 E ,X X X Xσ X μ x μ f x dx




        tt t t t t  (2.95)

wherein  Xσ t  is the standard deviation function. The second moment function or autocorrelation 
function is defined by: 

            
1 21 2 1 2 1 2 1 1 2 2 1 2, E , ; ,XX X XR X X x x f x x dx dx

 

 

      t tt t t t t t  (2.96)

where      
1 2 1 1 2 2, ; ,X Xf x xt t t t  is the joint PDF of the random variables     1 2,X Xt t . The 

autocovariance function is defined as follows: 
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Figure 2.5: Random realizations of a random process. 
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t t t t
 (2.97)

A direct consequence of Eq. (2.97) is that the autocovariance and autocorrelation function are equal 
for the case of a zero mean random field. Setting t1 = t2 = t in Eq. (2.97), we obtain the variance 
function: 

        2 2, ,X XX XX Xσ Γ R μ  t t t t t t  (2.98)

where    2
, EXXR X   t t t  is the mean square function. The autocovariance and autocorrelation 

functions are symmetric with respect to the diagonal plane t1 = t2. Also, they are positive semi-
definite functions and have the following bounds: 

      1 2 1 1 2 2, , ,XX XX XXR R Rt t t t t t  (2.99)

      1 2 1 2,XX X XΓ σ σt t t t  (2.100)

Finally, we define the autocorrelation coefficient function as follows: 

    
       1 2

1 2 1 2
1 2

,
, , 1,1XX

XX XX
X X

Γ
ρ ρ

σ σ
  

t t
t t t t

t t
 (2.101)

2.4.2 Homogeneous random fields 

A random field X(t) (resp. random process X(t)) is said to be strictly homogeneous (resp. strictly 
stationary) if its probabilistic structure is invariant to a shift in the parameter origin. Therefore, the 
following holds for any {n, t1, t2, …, tn} and h  T: 
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1 11 1 1 1, , , ,, ; ; , , ; ; ,

n nn n n nX X X Xf x x f x x   t t t h t ht t t h t h    (2.102)

A direct consequence of Eq. (2.102) is that the marginal PDF of X(t) is invariant in t and that the 
joint PDF of      1 2,X Xt t  is a function of the difference τ = t1 – t2, i.e.: 

        ,X Xf x f xt tt  (2.103)

            
1 2 1 21 1 2 2 1 2, ; , ; ,X X X Xf x x f x xt t t tt t τ  (2.104)

Hence, the mean and standard deviation functions are constant and the autocorrelation, 
autocovariance and autocorrelation coefficient functions are also functions of τ, i.e. 

  X Xμ μt  (2.105)

  X Xσ σt  (2.106)

    1 2,XX XXR Rt t τ  (2.107)

    1 2,XX XXΓ Γt t τ  (2.108)

    1 2,XX XXρ ρt t τ  (2.109)

If the probabilistic structure of a random field X(t) (resp. random process X(t)) is invariant to a shift 
in the parameter origin only up to a second order [Eqs. (2.103)-(2.109)] then the field (resp. 
process) is said to be weakly or second-order homogeneous (resp. weakly stationary). 

For a homogeneous random field, the bounds of  XXR τ  and  XXΓ τ  read: 

        2
, E const.XX XX XXR R R X    τ 0 0 t  (2.110)

   2
XX XΓ στ  (2.111)

The second-order moment functions of a real valued homogeneous field [Eqs. (2.107)-(2.109)] are 
even functions (i.e. symmetric with respect to the origin τ = 0), e.g.: 

    XX XXR R τ τ  (2.112)

and 

    1 1, , , , , , , , :1         XX i d XX i dR τ τ τ R τ τ τ i i d  (2.113)

where τ = [τ1,…, τd]
T. A homogeneous random field is said to be quadrant symmetric if its second-

order functions are even with respect to each component of the vector τ [137], e.g. 
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    1 1, , , , , , , , :1       XX i d XX i dR τ τ τ R τ τ τ i i d  (2.114)

If the second-order functions of a random field depend on the distance between two points t1 and t2, 
i.e. the Euclidean norm |τ| = |t1 – t2|, then the corresponding correlation structure is said to be 
isotropic. We shall call a random field anisotropic, if each component of the vector τ influences the 
second-order functions of the field in a different way.  

An autocorrelation coefficient function is said to be fully separable if it can be expressed as a 
product of the autocorrelation coefficient functions of one-dimensional processes, i.e.: 

        1 2 XX XX XX XX dρ ρ τ ρ τ ρ ττ  (2.115)

Several models of autocorrelation coefficient functions for one-dimensional homogeneous fields 
have been proposed (e.g. see [137]). Common models are the exponential, squared exponential or 
Gaussian, and the triangular autocorrelation coefficient functions, defined respectively by: 

   exp
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τ
τ l

l
ρ τ  (2.118)

The parameters lA, lB, lC are the correlation lengths of the respective correlation models. A small 
correlation length signifies fast reduction of the correlation coefficient as the distance τ increases 
and thus a high variability in the random field realizations [see Figure 2.7(a) and (c)]. Conversely, 
large correlation lengths correspond to slowly varying realizations. Moreover, the limit case of an 
infinite correlation length can be modeled by one random variable. It is convenient to define a 
measure of the variability, independent of the adopted model. Such a measure is the scale of 
fluctuation θ [137], defined for a one-dimensional random field by: 

    
0

2
 



  XX XXθ ρ τ dτ ρ τ dτ  (2.119)

Figure 2.6 shows plots of the one-dimensional autocorrelation coefficient functions of Eqs (2.116)-
(2.118) for a scale of fluctuation of θ = 10. For the general case of a multi-dimensional 
homogeneous random field, the more general correlation parameter is defined by: 
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Figure 2.6: Autocorrelation coefficient functions for a scale of fluctuation of θ = 10. 
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η ρ dτ τ  (2.120)

where DT = 
d  and  dτ = dτ1…dτd. For the special case where the autocorrelation coefficient 

function is fully separable, the correlation parameter is written as: 

   1 2
1



 

 
  

 
  

d

XX i i d
i

η ρ τ dτ θ θ θ  (2.121)

where θi is the scale of fluctuation of the autocorrelation coefficient function  XX iρ τ . 
A second-order homogeneous random field is called ergodic if its second-order information can 

be obtained from a single realization of the field. For the one-dimensional case, we have: 

      1
E lim

2
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μ X t x t x t dt
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 (2.122)

              1
E lim

2


        
T

XX
T

T

R τ X t τ X t x t τ x t x t τ x t dt
T

 (2.123)

where .  denotes the average operator over an interval T. The concept of ergodicity is of practical 
importance, since it allows the estimation of the statistics of a random field from a single time or 
space record. Ergodicity is usually assumed in the absence of evidence of the contrary. Note that an 
ergodic field is always homogeneous, but the reverse does not necessarily hold. 

For a one-dimensional homogeneous field, the power spectral density function ΦXX(ω) gives the 
distribution of the mean energy of the field in the frequency domain. The autocorrelation function 
and the power spectral density function form a Fourier transform pair, i.e. 
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1 1
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XX XX XXΦ ω R τ e dτ R τ ωτ dτ
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 (2.124)
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0

2 cos
 



  iωτ
XX XX XXR τ Φ ω e dω Φ ω ωτ dω  (2.125)

where the second equality in both equations holds due to the symmetry of RXX(τ), which implies that 
the power spectral density function ΦXX(ω) is symmetric about ω = 0. Figure 2.7(a) and (b) show 
the exponential autocorrelation function and corresponding power spectral density function for 
different values of the scale of fluctuation. Eqs (2.124) and (2.125) are the Wiener-Khinchine 
relations and can be generalized for a random field of arbitrary dimension d, as follows: 

    
T
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where DT = 
d ,  dτ = dτ1…dτd, ω = [ω1,…, ωd]

T and dω = dω1…dωd. For the special case of a 
quadrant symmetric random field, the Wiener-Khinchine relations read: 
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2.4.3 Derivatives of random fields 

The mean square derivative of a one-dimensional random process or field  X t , denoted by  X t , 
is defined as follows: 

        
0

l.i .m.
Δt

X t Δt X td
X t X t

dt Δt

 
   (2.130)

where l.i.m. denotes the limit in mean square. The limit in Eq. (2.130) exists, i.e.  X t  exists in the 
mean square sense, if the autocorrelation function RXX(t1, t2) is twice differentiable at t1 = t2 = t. In 
this case, the mean function of  X t  is given by: 

      E    


XX

d
μ t X t μ t

dt
 (2.131)

The cross correlation between  X t  and  X t  is computed as follows: 



2.4. Random processes and random fields 27 
 

 

0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10 15 20

θ = 10

θ = 20

τ

RXX(τ)

0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10 15 20

θ = 10

θ = 20

τ

RXX(τ)

 
(a) 

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.5 0 0.5 1

θ = 10

θ = 20

ω

ΦXX(τ)

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.5 0 0.5 1

θ = 10

θ = 20

ω

ΦXX(τ)

 
(b) 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14 16 18 20

θ = 10

θ = 20

t

x(t)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14 16 18 20

θ = 10

θ = 20

t

x(t)
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Figure 2.7: Autocorrelation function (a), power spectral density function (b) and corresponding realizations 
(c) of a one-dimensional standard normal (μΧ = 0, σΧ = 1) stationary random process with 
exponential correlation model. Influence of the scale of fluctuation θ. 
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Similarly, we have: 
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Furthermore, if the process  X t  is stationary with τ = t1 – t2 then the mean, cross correlation and 
autocorrelation functions of its derivative process read: 

   0Xμ t  (2.135)
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Eqs (2.135) and (2.138) show that the process  X t  is weakly stationary if  X t  is weakly 
stationary. Since the autocorrelation function is an even function (see Section 2.4.2) and if its 
derivative process exists (note that as shown in Figure 2.6, the exponential and triangular models 
imply non differentiable random processes), it follows that at τ = 0 

 
 0

0XXdR

dτ
 (2.139)

Furthermore, we have 
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Therefore, a stationary process and its derivative process are orthogonal and due to Eq. (2.135) 
uncorrelated for any t  T. 

It is useful to define the second-order information of the derivative of a stationary process in the 
frequency domain. Combining Eqs (2.136) and (2.125), we can express the cross correlation 
function of  X t  and  X t  as follows: 

      




    
XX iωτ

XXXX

dR τ
R τ iωΦ ω e dω

dτ
 (2.142)

Eq. (2.142) implies that the cross power spectral density function of the processes  X t  and  X t  
is given by: 

      XXXX
Φ ω iωΦ ω  (2.143)

Similarly, we have: 

     XXXX
Φ ω iωΦ ω  (2.144)

    2  XXXX
Φ ω ω Φ ω  (2.145)

The statistics of the derivative process given in Eqs (2.131)-(2.145) can be easily generalized for the 
partial derivative of the random field  X t  with respect to ti :1  i i d , defined as 

    




i

i

X X
t

t t  (2.146)

For detailed derivations the reader is referred to [137]. 

2.4.4 Integrals of random fields 

The mean square Riemann integral of a one-dimensional random process or field  X t  over an 
interval [a, b] is defined as follows: 
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l.i.m.
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n
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I X t dt Δt X a iΔt
 

    (2.147)

where Δt = (b – a)/n. The quantity I is a random variable if the limits a, b are constant. It can be 
shown that the integral in Eq. (2.147) exists, i.e.  X t  is mean square Riemann integrable, if the 
double integral of the autocorrelation function RXX(t1, t2) over the square domain [a, b]2 is finite. If I 
exists then its first two moments are computed as follows: 
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If the process  X t  is stationary with τ = t1 – t2, then the first two moments of I read: 

  I Xμ b a μ   (2.150)

  2
1 2 1 2E

b b

XX

a a

I R t t dt dt        (2.151)

The integral in Eq. (2.151) can be further simplified by changing the variables applying the 
mapping 1 2( , ) ,T t t s s τ  . If we then integrate with respect to s and use the fact that RXX is an 
even function the integral reads [137]: 
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          (2.152)

For detailed derivations the reader is referred to [137], wherein additional results are provided for 
integrals of homogeneous random fields in rectangular domains. 

Consider now the case where we are interested in the integral of the random process, multiplied 
by a kernel function g(t, s), i.e. 

      ,
b

a

I s X t g t s dt   (2.153)

For any value of s the integral in Eq. (2.153) is a random variable, i.e. I(s) is a random process. 
Applying Eqs. (2.148) and (2.149), we have: 
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The integral process I(s) is important for establishing the input-output relationships in random 
vibrations analysis. 

2.4.5 Gaussian random fields 

A random field X(t) is Gaussian if for any {n, t1, t2, …, tn} the random variables  
{X(t1), X(t2),…, X(tn)} are jointly Gaussian. Therefore, any linear mapping of a Gaussian field is 
also Gaussian, as well as jointly Gaussian with the original field. In particular, any derivative field 

( )iX t  of a Gaussian field X(t) is Gaussian, due to the definition of the derivative process in Eq. 
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(2.130). Moreover, ( )iX t  is jointly Gaussian with X(t). Similarly, any integral of a Gaussian 
process is a Gaussian random variable [or a Gaussian random field for integrals of the form of Eq. 
(2.153)] and is jointly Gaussian with the original field, due to the definition in Eq. (2.147).  

In agreement with the definition of the Gaussian vector in Section 2.3.3, a Gaussian random 
field can be completely defined by its mean function  Xμ t  and either its autocovariance function 

 1 2,XXΓ t t  or its autocorrelation function  1 2,XXR t t . Alternatively, the correlation structure can 
be defined by the standard deviation function  Xσ t  and the autocorrelation coefficient function 

 1 2,XXρ t t . The marginal PDF of the Gaussian random field is given by: 
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where φ(.) as defined in Eq. (2.38) is the marginal PDF of the standardized Gaussian random field 
U(t), defined as: 
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Clearly, the field U(t) has zero mean and unit standard deviation. Moreover, the joint PDF of the 
random variables {X(t1), X(t2),…, X(tn)} for any {n, t1, t2, …, tn} is given by Eq. (2.87), whereby 
the mean value vector μX and covariance matrix ΣXX are calculated by: 

     T

1 , ,X X nμ μ   Xμ t t  (2.158)

  ,XX i j
n n

Γ


   XXΣ t t  (2.159)

If a Gaussian random field is homogeneous, it can be completely defined by its mean value Xμ , 
standard deviation Xσ  and autocorrelation coefficient function  XXρ τ . Therefore, a weakly 
homogeneous Gaussian random field is also strictly homogeneous. Figure 2.7(c) shows realizations 
of a one-dimensional standard Gaussian homogeneous random field with corresponding exponential 
autocorrelation coefficient functions as shown in Figure 2.7(a). 

2.4.6 Non-Gaussian random fields 

In the general case, where the considered random field X(t) is not Gaussian (or of some other 
special types), the corresponding joint PDF of the random variables {X(t1), X(t2),…, X(tn)} for any 
{n, t1, t2, …, tn} is in practice impossible to obtain. However, a class of non-Gaussian random fields 
with given marginal distribution  XF t  and second moment information can be defined by a 
nonlinear marginal transformation (translation) of an underlying Gaussian field U(t) [44], of the 
form 

    X g U   t t  (2.160)
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This class of non-Gaussian fields is called translation fields. A special case of translation fields is 
defined based on the Nataf distribution (see Section 2.3.4). For this case, the marginal 
transformation is given by: 

       1 Φ ,XX F U    tt t t  (2.161)

where Φ(.) is the standard normal CDF. Based on Eq. (2.161), the Gaussian field U(t) has zero 
mean and unit variance. Moreover, its autocorrelation coefficient function  1 2,UUρ t t  is obtained 
by the following integral equation [72]: 
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where  Xμ t ,  Xσ t  and  1 2,XXρ t t  are the mean, standard deviation and autocorrelation 
coefficient functions of X(t). Eq. (2.162) can be solved iteratively for  1 2,UUρ t t . Alternatively, the 
empirical formulae given in [25], [73] relating  1 2,UUρ t t  to  1 2,XXρ t t  for common marginal 
distribution types can be applied.  

A different type of translation field can be defined by expansion of the original field using one-
dimensional Hermite polynomials with the underlying Gaussian field as argument ([104], [114]). In 
addition, it is shown in [101] that a non-Gaussian field can be defined by its marginal distribution 
and second-moment functions in conjunction with the spectral expansion methods described in 
Section 2.5.3, without the need for a translation from an equivalent Gaussian field. However, this 
approach requires additional considerations at the discretization level. 

2.5 Discretization of random fields 

A random field is an infinite set of random variables by definition, which makes its computational 
handling impossible. The discretization of the continuous field X(t) consists in its approximation by 
a discrete ˆ ( )X t  defined by means of a finite set of random variables {X1, X2,…, Xn}. Several 
methods have been proposed for the discretization of random fields – a comprehensive review is 
given in [132]. These methods can be divided into the following three categories: 

 Point discretization methods 

 Average discretization methods 

 Series expansion or spectral methods 

For the case of a random field defined over an arbitrary shaped domain Ω  d  (d ≥ 2), most 
methods require the splitting of this domain into a discrete assembly of individual elements Ωd, 
which is usually referred to as the stochastic finite element (SFE) mesh (Figure 2.8). Note that in 
the case of point or average discretization methods, the SFE mesh is directly related to the random 
variables derived from the discretization, while for the series expansion methods, this relation is 
indirect. Moreover, it is shown in Section 2.5.5 that, in principle, series expansion methods may be 
applied without a discrete description of the actual domain of interest Ω, provided that Ω does not 
differ much from a corresponding rectangular embedded domain Ωr (Figure 2.14).  
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Figure 2.8: Representation of the domain Ω by a discrete domain Ωd – stochastic finite element mesh. 

The discretization method should be able to approximate the random field with as few random 
variables as possible. To this end, it is useful to define an error measure for validation purposes. 
The error measure used in this study is the point-wise variance of the difference of the 
approximated field from the original field, divided by the variance of the original field, i.e. 
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The choice of an error measure based on a second-order function is well justified, in the case where 
the random field is defined using second-order information. In the next sections, a short overview of 
the different discretization techniques is provided. 

2.5.1 Point discretization methods 

In point discretization methods, the derived random variables {X1, X2,…, Xn} correspond to the 
values {X(t1), X(t2),…, X(tn)} of X(t) at discrete points of the domain Ω. These points are based on 
the selection of a SFE mesh Ωd, consisting of a finite number of elements Ωe (Figure 2.8). The 
variables {X1, X2,…, Xn} are correlated random variables, with the following covariance matrix: 

  ,XX i j
n n

Γ


   XXΣ t t  (2.164)

where  1 2,XXΓ t t  is the autocovariance function of X(t). Moreover, the marginal distribution of Xi 
coincides with the one of X(t) for t = ti. In the general case, where the marginal distribution of X(t) 
is not Gaussian, the joint PDF of {X1, X2,…, Xn} can be approximated by the Nataf model (see 
Section 2.3.4), which is equivalent to applying the translation of Eq. (2.161) to the field X(t). The 
approximated random field ˆ ( )X t  is then expressed as follows: 
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where {φ1(t), φ2(t),…, φn(t)} are deterministic functions. We can then compute the variance of the 
discretization error, as follows: 
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In the following, the most commonly used point discretization methods are briefly discussed. 

The midpoint method 

In the midpoint method [24], the random variables {X1, X2,…, Xn} are chosen as the values of the 
field at the midpoint (center of gravity) tc of each element Ωe. Moreover, each function φi(t) is 
chosen such that the value of the field is constant over each element of the SFE mesh, i.e. 
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e
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t
t  (2.167)

Therefore, each realization of the approximated field ˆ ( )X t  is piecewise constant, with 
discontinuities arising at the boundaries of each element. It is shown [24] that the midpoint method 
tends to over-represent the variability of the random field within each element. 

The shape function method 

The shape function method [75] resembles the deterministic linear finite element (FE) method, in 
the sense that it approximates the random field using the random variables {X1, X2,…, Xn} 
corresponding to the nodal points ti of the SFE mesh. The deterministic functions φi(t) are then 
chosen as the piecewise linear polynomials used as shape functions in FE analysis, defined such 
that: 
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A realization of the random field is obviously a piecewise linear continuous function, which is an 
advantage compared to the midpoint method. 

The optimal linear estimation method 

The optimal linear estimation method [72] may in principle be applied using the random variables 
corresponding to any set of points in the domain Ω. Without loss of generality, we will assume here 
that the nodal points ti of the SFE mesh are used. The method starts with assuming that the random 
field is approximated as a linear function of its values at the points ti, i.e. 
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The functions a(t) and bi(t) are then found by minimizing the variance error    ˆVar X X  t t  at 
each point t subject to  X̂ t  being an unbiased estimator of  X t  in the mean, i.e. 
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The solution of the optimization problem of Eq. (2.170) is [72]: 
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where         T

1 2, ,..., nb b b   b t t t t ,  Xμ t  is the mean function of  X t , Xμ  is the mean value 
vector of the random vector X = [X1, X2,…, Xn]

T, XXΣ  is the covariance matrix of X and  X t XΣ  is 
the vector containing the covariances of  X t  with the elements of X, i.e.: 
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The approximated field is then expressed as follows: 
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Eq. (2.173) implies that the field is approximated by a deterministic part and an expression identical 
to the one of Eq. (2.165), whereby: 

     1
i X

i
φ  XX t Xt Σ Σ  (2.174)

The variance of the error can be computed by substituting Eq. (2.174) to Eq. (2.166), which gives: 

          
2 T 1ˆVar X X XX X σ      XXt X t Xt t t Σ Σ Σ  (2.175)

The second term in Eq. (2.175) is identical to the variance of ˆ ( )X t . Therefore, the variance of the 
error is equal to the difference between the variances of X(t) and ˆ ( )X t . Since the variance of the 
error is always positive, it follows that ˆ ( )X t  always under-estimates the variance of the original 
field. 

It should be noted that the shape function and optimal linear estimation methods, as well as any 
other linear estimation method, are mainly applicable for the discretization of Gaussian fields, due 
to the linearity of the Gaussian distribution. 
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2.5.2 Average discretization methods 

In average discretization methods, the random variables representing the random field are derived 
from a weighted averaging of the field over discrete parts of the domain Ω. These are chosen as the 
elements of the SFE mesh Ωd, just as in point discretization methods. This category includes the 
spatial average method [137], [138] and the weighted integral method [28]-[30] (developed for 
applications of the perturbation-based stochastic finite element method). A brief description of the 
spatial average method is given next. 

The Spatial average method 

In the spatial average method [137], the original field is approximated in each SFE by the average 
of the field Xi over the element, i.e. 
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The mean value vector and covariance matrix of the derived random variables X = [X1, X2,…, Xn]
T 

are evaluated as integrals of the mean and covariance function of the original field. Consider the 
case of a one-dimensional homogeneous random field X(t). Its spatial average over an SFE of 
length T reads: 
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where ti is the midpoint of the SFE i. According to Eqs. (2.150) and (2.152), the mean and variance 
of Xi are as follows: 
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where γ(T)  (0,1] is the variance function [137] and expresses the reduction of the variance of the 
original field under spatial averaging. The covariance of the random variables Xi, Xj, derived from 
spatial averaging over elements with length T and T', respectively, is given as follows [137]: 
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where Tk are distances that characterize the relative positions of the elements i, j [see  Figure 
2.9(a)]. The covariance of each random variable Xi with the actual field X(t) for every point inside 
the SFE i can be computed by taking the limit T' → 0 in Eq. (2.180) for the case where element i 
contains element j. We can therefore compute the point-wise variance of the discretization error 
inside each SFE as follows [137]: 
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Figure 2.9: Distances that characterize the relative positions of the stochastic finite elements for the spatial 
average method in the one-dimensional (a), and two-dimensional (b) cases. 

It is shown [24] that the spatial average method tends to under-represent the variability of the 
random field within each element.  

As shown in Eq. (2.179), the variance function γ(T) depends on the respective correlation model. 
However, in some cases information about the correlation structure of X(t) is limited to the scale of 
fluctuation θ [see Eq. (2.119)]. In such cases, the variance function can be approximated as follows 
[137]: 
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Eq. (2.182) provides a good approximation of the correlation structure of wide-band models. This 
expression is frequently used to approximately account for the spatial variability of a random 
quantity, bypassing the discretization of the relevant random field (e.g. see [121]). The random field 
is thus modeled by one random variable with reduced variance, as obtained by Eq. (2.182) where T 
represents the size of the domain of interest. 

Similar results can be obtained for multi-dimensional homogeneous fields X(t), in the case 
where the spatial averaging is performed in rectangular domains [137]. In the two-dimensional case, 
the variance function is defined as follows: 
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whereby T1  T2 is the size of the rectangular element and quadrant symmetry is assumed. If the 
correlation structure is separable, the variance function is given as the product of the variance 
functions of one-dimensional fields. The covariance of the random variables corresponding to the 
spatial averages over two rectangular elements is obtained by a double sum over the characteristic 
distances in each dimension [see Figure 2.9(b)]. If the SFE mesh consists of elements of arbitrary 
shape, the elemental domains can be approximated by a collection of rectangular domains and the 
expression of the variance function in Eq. (2.183) can be used [137]. Also, non-homogeneous 
random fields can be modeled by assuming that the normalization of Eq. (2.157) results in a 
homogeneous field. 

If the random field is Gaussian, then the random variables derived from spatial averaging will be 
jointly Gaussian (see Section 2.4.5). However, in the case of non-Gaussian random fields, the 
distribution of the local integral of the field is almost impossible to obtain. In such cases, a 
transformation of the form of Eq. (2.161) to an equivalent Gaussian field must be performed prior 
to the discretization. 

2.5.3 Series expansion methods 

Series expansion methods approximate the random field as a truncated series involving random 
variables and deterministic spatial functions, defined globally in the domain Ω. Each term in the 
series expansion as well as each random variable derived from the discretization have a global 
influence in the random realizations of the approximated field, unlike in point or average 
discretization methods, where the random variables correspond to local values of the field. An 
overview of the most important series expansion methods is given next. 
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The spectral representation method 

This method is based on the spectral representation theorem, which states that a weakly stationary 
process can be represented by a superposition of harmonics with random properties. Consider the 
zero-mean stationary random process X(t) with power spectral density function ΦXX(ω) that is 
assumed to be negligible for frequencies ω > ωc, 0 < ωc < ∞, where ωc is some cut-off frequency. 
The spectral representation of X(t) reads: 
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where ωi = iΔω, Δω = ωc/m. In the first expression of Eq. (2.184), the variables {Xi, Yi} are 
uncorrelated random variables with zero mean and unit variance. In the second expression,  
Ai = (Xi + Yi)

1/2 and Ψi = – tan-1(Yi /Xi). If the process X(t) is Gaussian, then the variables {Xi, Yi} are 
independent Gaussian variables, {Ai} are independent Rayleigh variables and {Ψi} are independent 
random variables, uniformly distributed in [0, 2π]. 

An alternative spectral representation model, which is equivalent to the one of Eq. (2.184) in the 
sense that they both converge to the same second order moments as m → ∞, is the following: 
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wherein the random variables {Ψi} are again independent and uniformly distributed in [0, 2π]. The 
model in Eq. (2.185) approaches a Gaussian random process if m is sufficiently large due to the 
central limit theorem [122]. Moreover, the realizations generated by Eq. (2.185) are ergodic in the 
mean and second moment functions, provided that the contribution of the zero frequency is 
neglected [122].  

Both spectral representations of Eq. (2.184) and Eq. (2.185) yield periodic realizations with 
period T0 = 2π/Δω [45]. Therefore, if the domain of interest is [0, T] the incremental frequency Δω 
should be chosen such that T0 ≥ T. The variance of the truncation error of either spectral 
representation turns out to be, after basic algebra: 
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       (2.186)

Note that Eq. (2.186) is constant with respect to t.  Moreover, the second term in Eq. (2.186) is 
identical to the variance of ˆ ( )X t . Therefore, the variance of the error is equal to the difference 
between the variances of X(t) and ˆ ( )X t . Since the variance of the error is always positive, it 
follows that ˆ ( )X t  always under-represents the variance of X(t). 

The spectral representation method can also be applied to multi-dimensional weakly 
homogeneous fields X(t) [123]. As an example, the form in Eq. (2.185) can be extended for two-
dimensional fields X(t) as follows [123]: 
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wherein ωij = [iΔω1, jΔω2]
T, Δω = [ωc1/m1, ωc2/m2]

T, {Ψij} are independent random variables 
uniformly distributed in [0, 2π] and ωc1, ωc2 are cut-off frequencies. 

The given expressions of the spectral representation method are applicable for stationary (resp. 
homogeneous) Gaussian processes (resp. fields). The method has been applied for some cases of 
non-stationary Gaussian processes (e.g. see [31]). Non-Gaussian translation processes have also 
been approached using the spectral representation of the underlying Gaussian process (e.g. [32], 
[70], [140]).  

The Karhunen-Loève expansion 

The Karhunen-Loève (KL) expansion of a random field X(t) is based on the spectral decomposition 
of its autocovariance function  1 2,XXΓ t t  [76]. Let {hi(t)} be a complete set of orthogonal 
functions, forming a basis in L2(Ω), where Ω is the domain of definition of X(t). Since any 
realization of the field belongs in L2(Ω), the following expansion of X(t) can be defined, truncated 
after m terms [144]: 
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where {Xi} are zero mean random variables with covariance matrix: 
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It can be shown that if the set {hi(t)} is chosen such that hi(t) = (λi)
1/2 φi(t), where {λi, φi(t)},  

(i = 1,…,m) are the m largest eigenvalues and corresponding eigenfunctions of the following 
Fredholm integral equation: 

  1 2 2 2 1
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then the mean square truncation error in Eq. (2.188) is minimized [41]. The derived expansion is the 
KL expansion of X(t), written as: 
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From Eq. (2.190) it follows that the spectral decomposition of  1 2,XXΓ t t  is as follows: 
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The random variables {Xi} in Eq. (2.191) are zero mean and orthonormal, i.e. they are uncorrelated 
and have unit variance, and are defined as: 
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Eq. (2.193) implies that if X(t) is Gaussian then the random variables {Xi} are also Gaussian and 
therefore independent. From Eq. (2.191), we can compute the variance of the truncation error, 
which is shown to be: 
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As in Eq. (2.186), the second term in Eq. (2.194) is identical to the variance of ˆ ( )X t . Therefore, the 
KL expansion also under-estimates the point variance of X(t). 

The integral eigenvalue problem of Eq. (2.190) can be solved analytically only for rectangular 
domains and a few autocovariance functions – solutions are given in [41], [127] for one-
dimensional homogeneous fields for the triangular and exponential correlation models, extendable 
to multi-dimensional homogeneous fields in rectangular domains with separable autocorrelation 
coefficient functions. In any other case, Eq. (2.190) can be solved numerically – see [4] for an 
overview on the numerical solution of Fredholm integral equations.  

A standard procedure for solving Eq. (2.190) in the case where the domain Ω has arbitrary shape 
is the Galerkin method, using as basis functions the linear shape functions {Ni(t)}, (i = 1,…,n) of a 
finite element (FE) mesh, such as the one shown in Figure 2.8 ([40], [41]). Note that the set {Ni(t)} 
is defined as in Eq. (2.168), but we will use this notation here due to the conflict with the definition 
of the eigenfunctions. Also the set {Ni(t)} form a complete basis of L2(Ω) (if n → ∞), therefore each 
eigenfunction φi(t) may be represented as: 
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where n is the number of nodes of the FE mesh and  jid  are unknown coefficients. Substituting 
Eq. (2.195) to Eq. (2.190) and imposing its satisfaction in the weighted integral sense with arbitrary 
weighting functions expanded using the basis functions {Ni(t)}, we obtain the following generalized 
eigenvalue equation: 

 ΣD ΛMD  (2.196)

where: 
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If instead of the FE shape functions, we use as basis functions in Eq. (2.195) a set {hi(t)} of 
orthogonal functions in L2(Ω), then the derived solution approach is the spectral Galerkin method 
and Eqs. (2.196)-(2.200) hold for Ni(t) = hi(t). A more convenient form of Eq. (2.196) for the FE 
method can be obtained if the covariance function is projected onto the space spanned by {Ni(t)} 
[66]. Since the functions {Ni(t)} are linear interpolating functions, the projection reads: 
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where XXΣ  is the matrix containing the values of the autocovariance function at the nodal points ti, 
i.e. 

  ,XX i j
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   XXΣ t t  (2.202)

Substituting Eq. (2.201) to Eq. (2.198), we obtain the following generalized eigenvalue equation 
[66]: 

 XXMΣ MD ΛMD  (2.203)

Eqs. (2.196) and (2.203) are discrete and can be solved for D and Λ, using any direct or iterative 
method. The approximate solution of the Fredholm equation of Eq. (2.203) is equivalent to applying 
the KL expansion to the field, approximated by the shape function method [66]. Therefore, the 
minimum variance error of the approximated KL expansion is obtained for m = n and is identical to 
the variance error obtained by the shape function method with the same FE mesh. 

The KL expansion can be applied for the discretization of Gaussian fields. It was also shown 
that approximate KL expansions can be constructed for domains with arbitrary shape. In addition, it 
should be noted that in the case where Ω is rectangular and Eq. (2.190) is solved by the spectral 
Galerkin method, using the set {hi(t)}, (i = 1,…,n) to approximate the eigenfunctions, then the 
derived KL expansion coincides with the one of Eq. (2.188) if n = m [144]. Moreover, if the field is 
weakly homogenous, the covariance function is periodic with period equal to the rectangular 
domain of interest and each eigenfunction is represented by its Fourier series, the KL expansion 
coincides with the spectral representation of Eq. (2.184) [47]. 

The expansion optimal linear estimation method 

This method [72] is an extension of the optimal linear estimation method described in Section 2.5.1. 
It is based on the spectral decomposition of the covariance matrix XXΣ  of the nodal random 
variables X. The random vector X can be expressed in terms of a vector U of uncorrelated random 
variables with zero mean and unit variance, as follows: 
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where {λi, φi}, (i = 1,…,n) are the eigenvalues and corresponding eigenvectors of the matrix XXΣ , 
verifying 

 i i iλXXΣ φ φ  (2.205)

If the vector X is Gaussian then {Ui} are independent standard normal random variables. A 
truncation of the sum in Eq. (2.204) after m terms leads to an approximation of the random vector 
X. Moreover, this approximation corresponds to the optimal low rank approximation of the 
covariance matrix XXΣ  with respect to the Frobenius norm, due to the Eckart-Young theorem. 
Substituting Eq. (2.204), truncated after m terms, to Eq. (2.169) and solving the optimization 
problem of Eq. (2.170) we get [72]: 
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The variance of the truncation error in Eq. (2.206) is: 
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The second term in Eq. (2.207) is identical to the variance of ˆ ( )X t . Therefore, the expansion 
optimal linear estimation under-estimates the point variance of X(t). For a fixed number of nodal 
random variables X, the minimum variance error is obtained for m = n and is identical to the one 
given in Eq. (2.175). In principle, the basic idea of this method, i.e. the spectral decomposition of 
the covariance matrix, can be applied to any point or average discretization method in order to 
reduce the number of random variables derived from the discretization, while retaining the random 
components with the largest contribution to the covariance matrix. 

2.5.4 Comparison of the discretization methods 

This section attempts an assessment of the random field discretization methods presented in 
Sections 2.5.1-2.5.3. To this end, a one-dimensional homogeneous Gaussian field with zero mean 
and unit variance, defined over a domain [0,10], is used as test example. Two different 
autocorrelation coefficient functions are considered, exponential [Eq. (2.116)] and Gaussian [Eq. 
(2.117)]. The error measure used is the relative point-wise variance error defined in Eq. (2.163).  

The point and average discretization methods are assessed first, due to the fact that the random 
variables derived from the discretization are based on the selection of a SFE mesh for both 
categories. Figure 2.10 shows the distribution of the error over the domain for the two considered 
correlation models with a scale of fluctuation θ = 5 and a SFE mesh of four elements with equal 
size. As expected, all point discretization methods lead to a zero variance error at the points 
corresponding to the random variables used in the discretization, i.e. the midpoints of the elements 
for the midpoint (MP) method and the nodal points for the shape function (SF) and the optimal 
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linear estimation (OLE) methods. The largest error for the MP method and the spatial average (SA) 
method is obtained at the nodal points, while for the SF and OLE methods at the midpoints of the 
elements. As also shown in [72], the exponential correlation model, which implies a non-
differentiable random field, leads to larger errors compared to the Gaussian model. For the 
exponential model, the MP method presents the largest overall maximum error, while for the other 
methods the maximum error is similar. On the other hand, the OLE method clearly outperforms the 
other methods in the case where the correlation structure is described by the Gaussian model. 
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Figure 2.10: Point-wise variance error – comparison of the midpoint method (MP), spatial average method 
(SA), shape function method (SF) and optimal linear estimation method (OLE). Discretization 
with 4 elements. (a) exponential (b) Gaussian autocorrelation coefficient function with θ = 5. 

In Figure 2.11, the spatial average of the error over the domain is plotted against an increasing 
number of elements of equal size for all methods, for the two considered correlation models with 
scales of fluctuation θ = 5 and θ = 1. It is shown that the SA method presents the smaller average 
error for the case of the exponential correlation model at any number of elements, although for a 
large number of elements the error obtained by the SF and OLE methods is similar. On the other 
hand, the OLE method presents the fastest convergence in the case of the Gaussian correlation 
model. In this case, the SA method performs better than the other methods for an element size 
greater than the scale of fluctuation, although for smaller element sizes the average error approaches 
the one obtained by the MP method.  

Next, the series expansion methods presented in Section 2.5.3 are compared for the same test 
example. Figure 2.12 shows the distribution of the relative point-wise variance error, obtained by 
the KL expansion and the expansion optimal linear estimation (EOLE) method for the two 
considered correlation models with a scale of fluctuation θ = 5 and 4 number of terms in the 
expansions. For the KL expansion, we consider the case where the approximate Fredholm 
eigenvalue problem [Eq. (2.203)] is solved by the FE method (KL-FE) using 20 elements of equal 
size as well as the case where the eigenvalue problem is solved using the spectral Galerkin method 
with Legendre polynomials of order 10 (KL-LE). Also 20 elements are used in the EOLE method. 
As also shown in [72], the point-wise variance error at the boundaries is larger for the KL than for 
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the EOLE method. The KL-LE performs better than the KL-FE, since the FL-FE solves the integral 
eigenvalue problem for the approximated field by the SF method. Moreover, the eigenfunctions of 
the considered covariance kernels (as well as for most covariance models that are relevant in the 
modeling of spatial variability) are in general smooth functions (i.e. they have infinite continuous 
derivatives) and spectral methods are known to perform better than FE methods in the 
approximation of smooth functions (e.g. see [4]).  
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Figure 2.11: Mean variance error against number of elements – comparison of the midpoint method (MP), 
spatial average method (SA), shape function method (SF) and optimal linear estimation method 
(OLE). (a), (c) exponential (b), (d) Gaussian autocorrelation coefficient function. (a), (b) θ = 5. 
(c), (d) θ = 1. 
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Figure 2.13 shows plots of the spatial average of the error over the domain against the number of 
terms for all series expansion methods, for the two considered correlation models with scales of 
fluctuation θ = 5 and θ = 1. It is shown that the KL and EOLE methods perform better than the 
spectral representation (SR) method for a larger scale of fluctuation (i.e. for strongly correlated 
random fields). Conversely, for a smaller scale of fluctuation the SR method is more efficient, 
although the other methods still obtain smaller average errors for a large number of terms in the 
expansions. This result was also obtained in [128], wherein the KL eigenvalue problem was solved 
by the wavelet-Galerkin method. In the case where the correlation structure is described by the 
exponential model, the KL-FE method performs better than the EOLE method, while the reverse 
holds in the case of the Gaussian model. This can be explained by the fact that the KL-FE method 
performs the KL expansion of the field approximated by SF method, which is outperformed by the 
OLE method for the case of the Gaussian correlation model – note that the EOLE method is based 
on the spectral decomposition of the covariance matrix of the random variables obtained by the 
OLE method. On the other hand, the KL-LE method performs better than both the KL-FE and 
EOLE method in all cases. Moreover, it is shown that the Gaussian correlation model presents a 
faster decay of the average error compared to the exponential model for the EOLE and KL methods. 
This is due to the fact that for Fredholm eigenvalue problems the smoother the covariance kernel 
the faster the eigenvalue decay (e.g. see [67], [134]) and therefore the higher the contribution of the 
larger eigenvalues.  
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Figure 2.12: Point-wise variance error – comparison of the KL expansion approximated by 10 Legendre 
polynomials (KL-LE), KL expansion solved by the FE method (KL-FE) and expansion optimal 
linear estimation method (EOLE). Discretization with 20 elements. Order of expansion: 4.  
(a) exponential (b) Gaussian autocorrelation coefficient function with θ = 5. 
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Figure 2.13: Mean variance error against number of terms – comparison of the KL expansion approximated 
by 20 Legendre polynomials (KL-LE), KL expansion solved by the FE method (KL-FE) and 
expansion optimal linear estimation method (EOLE). Discretization with 40 elements. (a), (c) 
exponential (b), (d) Gaussian autocorrelation coefficient function. (a), (b) θ = 5. (c), (d) θ = 1. 
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2.5.5 Embedded-domain discretization of random fields 

In Section 2.5.4, it was shown that the spectral Galerkin method is more efficient in solving the 
integral eigenvalue problem associated with the KL expansion in one-dimensional domains, as 
compared to the FE method. This method can be easily extended for application to rectangular 
domains of any number of dimensions, without the need for a generation of a FE mesh. This section 
investigates the possibility of embedding the actual domain Ω over which the random field is 
defined in a rectangular volume Ωr (see Figure 2.14) and using the latter to solve the integral 
eigenvalue problem of Eq. (2.190), applying the spectral Galerkin method. In this case, the derived 
eigenvalues λr

i and corresponding eigenfunctions φr
i(t) form a spectral decomposition of the 

autocovariance function  1 2,XXΓ t t  within the domain Ωr, which includes the actual domain Ω. 
Note that the eigenpairs {λr

i, φ
r
i(t)} are in general different from those for the actual domain  

{λi, φi(t)}. Furthermore, the functions φr
i(t) lose their optimality in Ω, since they are no longer 

orthogonal in L2(Ω). The derived expansion reads: 
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where if the field is Gaussian, the random variables {Xi} are independent standard normal random 
variables. The pair {λr

i, φ
r
i(t)}, (i = 1,…,m) are the m largest eigenvalues and corresponding 

eigenfunctions of the following integral equation: 
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XX i i ii Γ φ d λ φ   t t t t t  (2.209)

In cases for which an analytical solution of Eq. (2.209) exists (homogeneous separable fields with 
exponential or triangular correlation structure), then its numerical solution is avoided. In the general 
case, any numerical method can be applied for the solution of Eq. (2.209), although the spectral 
Galerkin method is suggested due to the smoothness of the functions φr

i(t). The point-wise variance 
of the truncation error is identical to the variance error in the rectangular domain Ωr, i.e. 
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The embedded domain KL expansion (KL-ED) can be advantageous for application to complex 
domains for which the generation of an FE mesh is an involved procedure or to domains which 
change throughout the computation. An example of the latter case is presented in Section 6.3. 

The applicability of the KL-ED approach is demonstrated through a test example of a two-
dimensional homogeneous random field with separable correlation structure, defined over four 
domains of equal volume spanned over a [-2,2]  [-2,2] rectangular domain, as shown in Figure 
2.15. Two different autocorrelation coefficient functions are considered, exponential and Gaussian, 
with identical correlation lengths is both dimensions. The eigenvalue problem for the KL-ED 
method is solved using the spectral Galerkin method with Legendre polynomials of order 6. For 
comparison, the KL-FE approach is applied for the discretization of the field in the actual domain 
using the FE meshes shown in Figure 2.15. The error measure used is the spatial average of the 
relative variance error defined in Eq. (2.163). 
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Figure 2.14: Embedded domain discretization of random fields. 

Figure 2.16 shows plots of the spatial average of the error over the four domains against the number 
of terms for the two approaches, for the exponential correlation model with one-dimensional scale 
of fluctuation θ = 4 [since the correlation structure is separable, the correlation parameter η = θ2 = 
16, see Eq. (2.121)]. As expected, the smaller error at any order of expansion is obtained by the KL-
FE method, since the approximated eigenfunctions are optimal for the actual domain. However, the 
validity of the KL-ED discretization is verified by its convergent behavior, with an additional 
eigenfunction required to achieve the same or better level of accuracy when compared to the KL-FE 
approach. 

The performance of the KL-ED method differs for different shapes of the discretization domain. 
A similar convergence behavior is observed for the two rectangular domains with large holes 
[Figure 2.16(a) and (b)]; the deviation of the error of the KL-ED from the KL-FE remains constant 
for the first three terms in the expansion, increases for the next two only to decrease again as the 
number of terms increases further. This is due to the fact that the fourth and fifth eigenfunctions in 
the rectangular domain differ considerably from the ones in the actual domain, but this difference is 
counterbalanced by the information included in the higher eigenfunctions. 

In the case of the domain with uniform distribution of holes [Figure 2.16(c)], the errors obtained 
from the two approaches almost coincide at any order of expansion. This can be explained since the 
first eigenfunctions, which for the chosen scale of fluctuation have the largest contribution to the 
covariance function, are similar for the actual and rectangular domains. This is due to the shape of 
the actual domain presenting a global structure analogous to the fully populated rectangular domain. 
The fourth case of the disc-shaped domain [Figure 2.16(d)] presents a similar convergence behavior 
compared to the first two cases [Figure 2.16(a) and (b)], although a very good agreement between 
the errors obtained by the KL-ED and KL-FE is observed at the first three terms in the expansions.  

Figure 2.17 shows comparisons of the errors obtained by the two approaches for the case of a 
Gaussian autocorrelation coefficient function with one-dimensional scale of fluctuation θ = 4. 
Comparing Figure 2.17 with Figure 2.16, we observe a similar convergence behavior of the KL-ED 
for the two correlation models, although its deviation from the KL-FE is smaller for the Gaussian 
model. Also the Gaussian model implies a differentiable random field which guarantees smaller 
errors and faster convergence as compared to the non-differentiable exponential model. Therefore, 
both the KL-ED and KL-FE approaches obtain small average errors with just a few terms in the 
expansions for the chosen scale of fluctuation. 
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Figure 2.15: Test cases: Four domains with equal volume. FE meshes for the solution of the KL eigenvalue 
problem. 

Figure 2.18 shows plots of the errors obtained for the exponential correlation structure with a 
smaller scale of fluctuation (θ = 2) as compared to the one used in the results shown in Figure 2.16. 
The results are shown for the exemplary cases of the domain with circular hole [Figure 2.18(a)] and 
the domain with uniform distribution of holes [Figure 2.18(b)]. In both cases, the deviation of the 
errors obtained by the two methods increases with a smaller scale of fluctuation. This is due to the 
fact that the contribution of the higher eigenfunctions, which are more sensitive to the geometry of 
the actual domain, becomes larger. 

In conclusion, the test examples show that the KL-ED method can be applied for the 
discretization of random fields in non-rectangular domains. The performance of the method is 
sensitive to the shape of the actual domain and the chosen correlation model; a more efficient 
performance should be expected at geometries with a uniform distribution of holes, such as porous 
domains; also the method converges faster when the smoothness of the correlation model increases. 
Finally, the performance of the method becomes poorer for small scales of fluctuation. In any case, 
the error measure given in Eq. (2.210) can be used for a decision on whether the method is 
applicable to specific problems. 
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Figure 2.16: Mean variance error against number of terms – comparison of the embedded domain KL 
expansion approximated by 6th order 2D Legendre polynomials (KL-ED), KL expansion solved 
by the FE method (KL-FE) at the actual domain. Exponential autocorrelation coefficient 
function with θ = 4. (a) - (d) as in Figure 2.15. 
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(c)  (d) 

Figure 2.17: Mean variance error against number of terms – comparison of the embedded domain KL 
expansion approximated by 6th order 2D Legendre polynomials (KL-ED), KL expansion solved 
by the FE method (KL-FE) at the actual domain. Gaussian autocorrelation coefficient function 
with θ = 4. (a) - (d) as in Figure 2.15. 
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Figure 2.18: Mean variance error against number of terms – comparison of the embedded domain KL 
expansion approximated by 6th order 2D Legendre polynomials (KL-ED), KL expansion solved 
by the FE method (KL-FE) at the actual domain. Exponential autocorrelation coefficient 
function with θ = 2. (a) as in Figure 2.15(a). (b) as in Figure 2.15(c). 

 
 
 
 
 
 
 
 
 



54 2. Modeling of uncertainties 
 
 

 



 55 

 

This chapter discusses the existing design concepts and provides the fundamental ideas and basic 
definitions used in the reliability analysis of structural systems. Furthermore, the important concepts 
of the probability of failure and reliability index are introduced. 

3.1 Evolution of design concepts 

For a long time, the structural design process was almost entirely based on empirical knowledge, 
which had primarily been gained by trial and error. Along with the evolution of the theory of 
structures, material science and computational possibilities, the first design concepts were 
established. In the beginning of this process, simple instructions and guidelines documented the 
state of knowledge. Successively, a comprehensive system of technical directives and codes was 
developed. The underlying safety concept was and is continuously adapted to the attained practical 
and experimental experience, the increased theoretical knowledge and the computational 
possibilities. 

Currently adopted design concepts can be classified into deterministic, semi-probabilistic and 
full-probabilistic approaches. Differences can readily be contrasted, when considering the design 
goal ‘structural safety’ (ultimate limit-state). The common background of all approaches is the 
control of the vast amount of inherent uncertainties. These uncertainties, as discussed in Chapter 1, 
are induced by variation of material properties, by the limited predictability of loading or by the 
construction process itself. Hence, the objective can be identified as limiting the probability of 
failure to an acceptable level. 

Let us assume that the ultimate limit-state criterion can be expressed in terms of the resistance 
(capacity) R and the effect of the loading (demand) S. The values of R and S are assumed to be 
uncertain and described by probability density functions fR(r), fS(s) respectively. The safety limit-
state will be violated if: 

3 Fundamental concepts of reliability 
analysis 
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 0R S   (3.1)

Of course, both the resistance and the loading can be functions of time. In this case, the limit-state 
reads: 

      0 0,R t S t t T     (3.2)

where T represents the life expectancy of the structure.  
The deterministic design approach adopts the simplest safety definition: 

 R γ S  (3.3)

where γ  is an empirically determined global safety factor (γ > 1) that is meant to incorporate all 
uncertainties. This approach does not account for the distributions of R, S and ignores their relative 
influences on the structural performance [see Figure 2.11(a)]. 

A more refined version is represented by partial safety factors: 

 k R k SR γ S γ   (3.4)

In this case, uncertainties on action and resistance side are accounted for, separately. They are 
reflected by the load factor ( 1)Sγ   and the resistance factor ( 1)Rγ   [Figure 2.11(b)]. The values Rk 
and Sk are characteristic values usually chosen as the 5% and 95% exceedance values of the 
probability distribution of the respective parameter. Computation remains purely deterministic but 
since the partial safety factors are calibrated to match a predefined probability of failure level dP  
(=acceptable probability of failure), the approach is classified as semi-probabilistic. 

The full probabilistic approach finally abandons the definition of (partial) safety factors; it 
simply imposes the constraint on the probability of failure fP  directly [Figure 2.11(c)]: 

  0f dP P R S P     (3.5)

This most general approach ultimately leaves the domain of deterministic calculation. Also, as will 
be illustrated further, the concept can be employed for serviceability assessment in a straight-
forward manner; in fact, any criterion that is considered relevant for successful performance of the 
structure can be adopted. Moreover, this concept allows for the definition of limit-states in terms of 
several random variables, possibly correlated, which may account for all different sources of 
uncertainty. Next the evaluation of the probability in Eq. (3.5) is discussed. Section 3.3 generalizes 
the definition of the probability of failure for arbitrary limit-state criteria and number of random 
variables. 
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(a)  (b) 

 
(c)  (d) 

Figure 3.1: Illustration of safety concepts. (a) Deterministic safety concept. (b) Partial safety factors. (c), (d) 
Probabilistic safety concept. 

3.2 The elementary reliability problem 

Consider the reliability problem of Eq. (3.5), wherein the limit-state criterion is defined in terms of 
the load effect S and the resistance R, each of which is described by a known probability density 
function fS(s), fR(r) respectively. The value of S may be expressed in terms of the applied load, say 
Q, through a structural analysis. For convenience, we consider here the failure of some specific 
structural component. In this case, the problem is termed component reliability problem. 

The probability of failure Pf of the structural component is as follows: 

 
 

 
0

, 0

fP P R S

P g R S

  

   
 (3.6)

where g(.) is termed ‘limit-state function’ with negative values defining the failure scenario. The 
random variables R, S have a joint probability density function denoted by fR,S(r, s). In Figure 
2.11(d), the joint PDF is plotted as well as the hatched failure domain, so that the probability of 
failure becomes: 
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       (3.7)

If the two variables are statistically independent, then the joint PDF is expressed as: 

      , ,R S R Sf r s f r f s  (3.8)

It should be noted that Figure 2.11(a)-(c) have already assumed independence of R and S. In this 
case, Eq. (3.7) becomes: 

    
r s

f R SP f r f s dr ds
 

 

    (3.9)

Considering that 

    
x

R RF x f z dz


   (3.10)

where FR(x) is the cumulative distribution function of R, we can write Eq. (3.9) as: 

    f R SP F x f x dx




   (3.11)

Eq. (3.11) expresses the failure probability as an infinite sum of the infinitesimal areas fS(x)dx 
multiplied by the integrals of fR(z) in the limits [–∞, x]. This can be explained as the infinite sum of 
all probabilities that the resistance is smaller than a value of the load effect, over all possible values 
of the load effect. An alternative expression for Eq. (3.11) is: 

    1f S RP F x f x dx




     (3.12)

which is the infinite sum of all probabilities that the load effect exceeds a value of the resistance, 
over all possible values of resistance. 

In some special cases, the integral of Eq. (3.7) can be computed analytically. One example is 
when the variables R, S are normal random variables with means μR, μS and standard deviations σR, 
σS respectively. The random variable Z = R – S will then be a normal random variable with mean 
and standard deviation as follows: 

 Z R Sμ μ μ   (3.13)

  2 2 2Cov ,Z R Sσ σ σ R S    (3.14)

for the general case where R, S are correlated. Eq. (3.7) then takes the following form: 
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where Φ(.) denotes the standard normal CDF. The quantity β = μZ / σZ indicates the number of 
standard deviations between the mean value μZ and the limit state Z = 0 (Figure 3.2). This quantity, 
introduced by Cornell [16], is defined as the reliability index. However, this definition of the 
reliability index is not generally valid, even for the elementary R,S-case, due to its lack of 
invariance for different equivalent definitions of the limit-state criterion (see Section 4.3 for an 
example). Alternative definitions of the reliability index are discussed in Chapter 4, while Section 
3.3.2 gives a rigorous generally valid definition of this reliability measure. 

μZ

fZ(z)

0 z

βσZ

μZ

fZ(z)

0 z

βσZ

 
Figure 3.2: Distribution of Z = R – S and reliability index β. 

3.3 The generalized reliability problem 

In many cases, the definition of the probability of failure given in Eq. (3.6) is not sufficient, since it 
may not be possible to reduce the design condition to a simple R versus S relation. In a more 
general context, there may be many different parameters that are expected to present an uncertain 
behavior. Typical examples are dimensions, loads, material properties as well as any other variable 
that is employed in structural analysis and design procedures. The variables which define the 
behavior and safety of a structure are termed ‘basic’ variables.  

The basic variables can generally be dependent and are characterized by a joint probability 
density function. The joint PDF can be estimated by first estimating all conditional PDF’s and then 
applying the multiplication rule (see Section 2.3.1). Alternatively, the joint PDF can be 
approximated by the Nataf distribution which reduces to the estimation of the marginal PDF’s of all 
basic variables and the correlation matrix (see Section 2.3.4). In this case, the dependence of the 
random variables is completely described by the correlation matrix. 

In the case where basic variables are expected to present some spatial or time variability, then a 
complete definition would require the joint PDF for any number of random variables corresponding 
to specific points in space or time. However, this is not feasible in practice and the definition is 
given using second-moment information and the marginal distribution (see Section 2.4.6). 
Therefore, the estimation of the second-moment functions, including the autocorrelation structure of 
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the random field or process, is additionally required. Furthermore, the random field or process can 
be reduced to a finite number of random variables, applying any of the discretization methods 
described in Section 2.5. 

The choice of the probability distributions assigned to the basic variables should depend on 
available data and engineering judgment. In some cases, the central limit theorem may be applied, 
when a basic variable consists of a superposition of many different variables. Also, in several cases 
physical reasoning can be used, such as in the case of extreme value distributions. For example, the 
maximum wind velocity over a given time span can be modeled by the Gumbel distribution, 
assuming that the daily wind velocity is normally distributed. Moreover, many physical variables 
require lower or upper bounds. For example, the Young’s modulus of a material can only take 
positive values. In this case, the lognormal distribution can be used. 

The parameters of the distributions can be estimated from available data applying any statistical 
estimation method, such as the method of moments, the maximum likelihood method and the 
Bayesian parameter estimation (e.g. see [1]). Similar method can also be used for the estimation of 
the autocorrelation structure of a random field or process, when an analytical correlation model is 
used, such as the ones given in Section 2.4.2. 

Let the vector  T1 2, , , nX X XX   represent all the basic random variables involved in the 
problem. Also, let fX(x) be the already established joint PDF of X. Any criterion that is considered 
as relevant for a successful performance of the structure can be expressed by means of a 
corresponding limit-state function g(X), defined in terms of the vector X. The limit-state function 
g(X) is defined by convention, such that failure of successful performance occurs when g(X) ≤ 0. 
Conversely, satisfactory (safe) performance is guaranteed when g(X) > 0. Therefore, the limit-state 
equation g(X) = 0 defines the boundary between the safe and unsafe domain in the n-dimensional 
basic random variable space. 

3.3.1 Generalization of the probability of failure 

Using the generalized definition of the limit-state function g(X), we can obtain a generalization of 
Eq. (3.7) as follows: 

    
 

 
 

1

0 0

0f n

g g

P P g f dx dx f d
 

        X X

X X

X x x x   (3.16)

where dx = dx1…dxn. The function fX(x) is the joint PDF of the basic variables X and the region of 
integration g(X) ≤ 0 denotes the failure domain.  

In the general case, the integration in Eq. (3.16) cannot be performed analytically, except from 
some special cases with limited practical interest. Numerical integration can be applied using any 
simple numerical procedure or quadrature formula. These methods would typically require a 
truncation of the integration domain using for example an n-dimensional hypercube or hypersphere. 
However, numerical integration methods have limited applicability due to the geometric increase of 
the computational cost as the number of random variables increases (the so-called ‘curse of 
dimensionality’) – note that each evaluation of the limit-state function may require a time-
consuming finite element calculation. 

In the case where the limit-state function g(X) is expressed as a linear combination of the basic 
variables Xi (i = 1,…,n), and the vector X is jointly Gaussian, then the variable Z = g(X) will be 
normally distributed, while its mean μZ and standard deviation σZ can be computed in a 
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straightforward manner. In this case, the integration in Eq. (3.16) is avoided and the probability of 
failure can be computed according to Eq. (3.15). Based on this observation, a number of methods 
that transform the original problem to an equivalent problem in a Gaussian space and perform a 
first- or second-order approximation of the limit-state function in this space have emerged during 
the past decades. These approximation methods consist of the first- and second-order reliability 
methods and will be discussed in detail in Chapter 4. 

An alternative integration technique for the evaluation of the integral in Eq. (3.16) is the so-
called Monte Carlo integration method. This method belongs to the category of simulation methods, 
which are based on random sampling of the basic random variable space. These methods are 
asymptotically exact in the sense that an infinite number of samples would theoretically lead to the 
exact evaluation of the probability of failure. The crude Monte Carlo method overcomes the ‘curse 
of dimensionality’ since its computational cost does not depend on the number of basic random 
variables. However, the required number of samples is inversely proportional to the value of the 
probability of failure. Therefore the required number of samples increases dramatically for small 
values of the expected failure probability, which are typically desired in structural engineering 
applications. Several simulation methods that overcome this problem have been proposed, such as 
importance sampling, directional simulation and subset simulation. These methods will be 
thoroughly discussed in Chapter 4. 

3.3.2 Reliability measures 

A reliability measure (safety measure) can be chosen as any decreasing function of the probability 
of failure Pf. A straightforward reliability measure is the probability of successful performance, 
defined as the probability of the complement of the failure event: 

 1s fP P   (3.17)

An equivalent reliability measure is the generalized reliability index [33], defined as: 

  1Φ fβ P   (3.18)

where Φ-1(.) is the inverse of the standard normal cumulative distribution function. The definition in 
Eq. (3.18) is motivated by the relation obtained when inverting Eq. (3.15). However, the reliability 
index in Eq. (3.18) is not depending on the procedure followed for the evaluation of the probability 
of failure. It also assumes that an exact (invariant) value of the reliability index exists and depends 
on the exact value of the probability of failure. Therefore, this definition should not be confused 
with the definition of the reliability index used in the first- or second-order approximation methods 
(refer to Chapter 4). 

3.4 The system reliability problem 

The definition of the probability of failure in Eq. (3.16) is based on a limit-state function g(X), 
representing the failure condition of one component of the structure, i.e. one failure mode. Consider 
now the case where a structure has m significant modes of failure, which can be expressed by m 
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corresponding limit-state functions {gi(X), i = 1,…,m}, defined in terms of the vector of basic 
random variables X. Substituting each gi(X) for g(X) in Eq. (3.16) will result in m component 
reliability problems. In reliability analysis of systems, we are interested in the probability of failure 
of a certain combination of failure events. 

A first very important step in the system reliability analysis is the identification of all possible 
modes of failure of a system and the definition of the combination of modes that describe the failure 
criterion of the system. To this end, several approaches have been proposed, e.g. the failure mode 
approach, and usually result in the construction of fault or event trees (e.g. see [129]). 

Denoting the failure event associated with each component limit-state function gi(X) by Fi, we 
can define two distinct system reliability problems; the series and the parallel system reliability 
problem. The series reliability problem is defined by the union of the events {Fi, i = 1,…,m}. The 
probability of failure of the system Pf,ser is expressed as: 

 ,
1

m

f ser i
i

P P F


 
  

 
  (3.19)

The parallel reliability problem is defined by the intersection of the events {Fi, i = 1,…,m} with 
corresponding system probability of failure: 

 ,
1

m

f par i
i

P P F


 
  

 
  (3.20)

Consider now K index sets ck  {1,…,m}, defining sub-systems, corresponding to parallel system 
reliability problems. Then we can define the general system reliability problem as follows: 
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   (3.21)

From Eq. (3.21) we can retrieve the component reliability problem by setting m = 1, the parallel 
system reliability problem by setting K = 1 and the series system reliability problem by defining 
each set ck by a single index. 

In some cases, it may be convenient to define the general reliability problem of Eq. (3.21) using 
one equivalent limit-state function, which reads: 

    
1
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k
i

k K i c
g g

  

    
x x  (3.22)

The equivalent limit-state functions for the component, parallel and series system reliability 
problems can be obtained from Eq. (3.22) in the same manner as the corresponding reliability 
problems were obtained from Eq. (3.21). The probability of failure of any system or component 
reliability problem can be obtained by substituting Eq. (3.22) to Eq. (3.16), giving: 
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The resulting expression of Eq. (3.23) is suitable for application of simulation methods. However, 
Eq. (3.23) cannot be solved by the first- or second-order approximation methods. The application of 
these methods for the solution of system reliability problems will be discussed in Section 4.6. 
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This chapter discusses a series of reliability methods that have been combined with a deterministic 
finite element program in a tool intended for finite element reliability analysis of structural systems. 
First, an overview of the program framework is given. Then the implemented methods are 
discussed in detail. 

4.1 Introductory comments 

An important byproduct of this thesis is a FORTRAN code designed for reliability analysis of 
structural systems and coupled to the commercial finite element (FE) program SOFiSTiK [126]. A 
trial version of the code has been fully integrated in the SOFiSTiK program as an auxiliary tool for 
reliability analysis, named RELY [96]. RELY can be viewed as a stand-alone program that 
exchanges information with SOFiSTiK via CDB, which is the SOFiSTiK database. 

The input commands and parameters are read from an input file. These include the identification 
of the random parameters, their probabilistic information (i.e. distributions and correlations), 
information on the applied reliability methods and the definition of the relevant limit-state 
functions. The limit-state functions can be either of analytical form or products of an FE 
calculation. In the latter case, the RELY input file is linked to a standard SOFiSTiK input file that 
defines the details for the finite element analysis. The program stores the basic variables and their 
probabilistic information in CDB and subsequently performs the required reliability analysis, during 
which the limit-state functions are evaluated when needed by updating the realizations of the basic 
variables in CDB and running the corresponding SOFiSTiK modules. Then, the results (e.g. 
probability of failure, reliability index, sensitivity indices) are printed out in standard SOFiSTiK 
report files. A schematic diagram of the framework of RELY is shown in Figure 4.1. 

4 Finite element reliability assessment 



66 4. Finite element reliability assessment 
 
 

 

Numerical Analytical

Parametric model
Limit-state function(s)

Results

Probability of failure
Sensitivities …

Variables

Probability distributions
Correlations

RELY Numerical Analytical

Parametric model
Limit-state function(s)

Results

Probability of failure
Sensitivities …

Results

Probability of failure
Sensitivities …

Results

Probability of failure
Sensitivities …

Variables

Probability distributions
Correlations

Variables

Probability distributions
Correlations

RELYRELY

 
Figure 4.1: Framework of the program RELY 

It should be noted that the majority of the computational time for the reliability analysis of real-
world industrial problems with RELY is related to the evaluations of the limit-state functions. This 
is due to the fact that for such problems, a considerable computational time is expected for the 
single finite element calculation. Therefore, we should point out the need for a compromise between 
accuracy and efficiency in the reliability analysis algorithm, where by efficiency the limiting of the 
number of evaluations of the limit-state functions is understood. The methods described in the 
following sections aim at such a compromise. 

4.2 Isoprobabilistic transformation 

The implementation of the methods described in the following sections has been done in the so-
called equivalent standard normal space, denoted here by U. This is the space of independent 
standard normal random variables that is derived from an isoprobabilistic transformation T(.) of the 
n-dimensional space of basic random variables X, i.e. U = T(X). The generalized reliability 
problem defined in Eq. (3.16) can be formulated in the U-space as: 

    
  0

0f n

G

P P G φ d


     
U

U u u  (4.1)

wherein G(U) = g[T–1(U)] and φn(.) is the n-dimensional standard normal PDF.  
This section presents the utilized transformation method based on the assumption of the Nataf 

distribution and briefly discusses an additional approach. 
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Marginal transformation 

In the case where the random components of X are statistically independent with strictly increasing 
continuous marginal distribution functions   , 1, ,

iX iF x i n  , then the following isoprobabilistic 
transformation can be defined: 

  1Φ :1
ii X iZ F x i i n        (4.2)

where Φ–1(.) is the inverse of the standard normal cumulative distribution function. If the 
components of X are not statistically independent then the random variables derived from the 
marginal transformation of Eq. (4.2) will be dependent. If the probabilistic information of the vector 
X comes in terms of the marginal distributions and the correlation matrix ΣXX, then we can model 
the joint distribution of X using the Nataf model (see Section 2.3.4). In this case, the random vector 
Z derived from Eq. (4.2) will be a jointly Gaussian vector of standard normal random variables with 
correlation coefficient matrix R. The elements ρij of R can be computed from the following integral 
equation [see also Eq. (2.93)]: 

  , 2 , ,ji

i j

i j

j Xi X
X X i j ij i j

X X

x μx μ
ρ φ z z ρ dz dz

σ σ

 

 

  
       

   (4.3)

where ,i jX Xρ  are the elements of the correlation coefficient matrix of X, ,
i iX Xμ σ  are the mean and 

standard deviation of the each component of X and φ2(.) is the bivariate Gaussian probability 
density function. For the solution of Eq. (4.3), the empirical formulae given in [25], [73] for several 
combinations of distribution types are applied. If the correlation coefficient matrix R derived from 
Eq. (4.3) is positive definite, we can perform its Cholesky decomposition giving: 

 TR AA  (4.4)

Then we can transform the vector Z to an independent standard Gaussian vector U as follows: 

 1U A Z  (4.5)

Eq. (4.5) can be easily verified if we apply Eqs. (2.88) and (2.89) to Eq. (2.85), taking into account 
that the Jacobian of the transformation reads: 

 1
,

u zJ A  (4.6)

We can then compute the Jacobian of the transformation from the basic random variable space X to 
the equivalent independent standard normal space U, by applying the chain rule, which gives: 

 
 
 

1
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i n n

f x

φ u




 
  

 
u xJ A  (4.7)

where   , 1, ,
iX if x i n   are the marginal probability distribution functions of the components of 

X and φ(.) is the standard normal PDF. 
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Rosenblatt transformation 

In the case where a complete description of the random vector X is given in terms of the joint 
distribution function FX(x), then the following isoprobabilistic transformation to an equivalent 
independent standard normal space U can be defined ([57], [111]): 
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 (4.8)

The conditional distribution functions in Eq. (4.8) can be computed by integrating the conditional 
PDF’s derived from Eq. (2.69). The validity of the transformation in Eq. (4.8) can be verified by 
applying Eq. (2.85), expressing the joint PDF of X in terms of the conditional PDF’s applying the 
multiplication rule of Eq. (2.70) and taking into account that the Jacobian of the transformation 
reads: 
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u xJ  

  (4.9)

It should be noted that the Rosenblatt transformation is not invariant when changing the order of the 
random variables in the construction of the conditional distributions [35]. 

4.3 The first order reliability method 

As also discussed in Section 3.3.1, in the case where the limit-state function g(X) is a linear 
function of jointly normal random variables {Xi (i = 1,…,n)}, the probability of failure can be 
computed by: 

  ΦfP β   (4.10)

where β is the reliability index defined in terms of the statistics of the random variable Z = g(X), as 
follows: 

 Z

Z

μ
β

σ
  (4.11)

However, as already pointed out in Section 3.2, the definition of Eq. (4.11) is not invariant for 
equivalent definitions of the limit-state function. This can be explained by the following example. 
Consider two equivalent limit-state criteria defined by the following limit-state functions: 

  1 1 2g X X X  (4.12)
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Both limit-state criteria, i.e. g1(X) ≤ 0 and g2(X) ≤ 0, define the same failure domain in the basic 
random variable space. Assuming that X1, X2 are statistically independent, the reliability index for 
g1(X) can be computed applying Eq. (4.11) for Z1 = g1(X): 
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 (4.14)

However, g2(X) is not a linear function of X. Moreover, if X consists of independent Gaussian 
components then Z2 = g2(X) will be a Cauchy variable, which does not have moments of any order. 
This problem can be solved if we use the linearization of g2(X) at some point, e.g. at 

1 2
,X Xμ μ   . In 

this case, the approximate reliability index of g2(X) is derived after straightforward calculations as: 
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(4.15)

which differs significantly from β1. Note that this approach of computing an approximate reliability 
index in terms of the moments of the linearized limit-state function is called first order second 
moment method (e.g. see [1], [83]). 

An invariant definition of the reliability index can be formulated in the equivalent standard 
normal space U. In the U-space, every projection of U on an arbitrary line passing through the 
origin is a Gaussian random variable with zero mean value and unit standard deviation. Then a 
consistent definition of the reliability index can be formulated as the distance from the origin to the 
limit-state surface G(U) = 0 [53], i.e. 

   Tmin 0β G u u u  (4.16)

If the limit-state function is linear in the U-space, then the probability of failure can be computed by 
substituting the expression of Eq. (4.16) for the reliability index in Eq. (4.10). This presumes that 
the limit-state function is linear in the X-space and that X is a Gaussian vector. In any other case, 
Eq. (4.10) becomes an approximation of the probability of failure. 

In the general case, where g(X) is not linear in X and X is an arbitrary non-Gaussian vector, the 
reliability index of Eq. (4.16) can be computed by the Euclidean norm of the so-called design point 

*u , defined as the solution of the following equality-constrained quadratic optimization problem 
[20] [note the equivalence with Eq. (4.16)]: 

  * T1
arg min 0

2
G

   
 

u u u u  (4.17)

The design point *u  is located on the limit-state surface G(U) = 0 and has minimum distance from 
the origin of the standard normal space, i.e. the mean value of U. Due to the rotational symmetry of 
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the n-dimensional standard normal PDF φn(.), the point *u has the highest probability density of any 
realizations in the failure domain at the U-space. Therefore, *u  is also referred to as the most 
probable failure point. It is then obvious that the area in the vicinity of *u  will have the largest 
contribution to the integral in Eq. (4.1), which makes *u  the optimal point for the linearization of 
the limit-state function in the U-space and Eq. (4.10) the optimal first order approximation of the 
probability of failure, in the absence of specific knowledge on the shape of the surface G(U) = 0.  

The linearization of G(U) at *u  is written as: 

        T* *
1G G G   u u u u u  (4.18)

where ( )G u  is the gradient of of G(u) with respect to u. Let us denote by α, the unit normal 
vector to the hyperplane described by G1(u) = 0, pointing to the origin of the U-space, i.e.: 

 
 
 

*

*

G

G






u
α

u
 (4.19)

The significance of the vector α will be discussed in Section 4.3.3. The design point can then be 
expressed as: 

 * β u α  (4.20)

Using Eqs. (4.19) and (4.20), we can rewrite Eq. (4.18) as: 

      * T
1G G β  u u α u  (4.21)

From Eq. (4.21), we obtain the following expression for the reliability index: 

 1

1

G

G

μ
β

σ
  (4.22)

whereby 
1 1
,G Gμ σ  are the mean and standard deviation of the linearization G1(u) of the limit-state 

function at the design point. Eq. (4.22) implies that the reliability index computed through Eq. 
(4.17) coincides with the reliability index of Eq. (4.11) for the linearized problem in the U-space. 

The first order approximation of the probability of failure by the first order reliability method 
(FORM) is depicted in Figure 4.2. The following section discusses a number of optimization 
algorithms that have been implemented for the solution of the program of Eq. (4.17). 
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Figure 4.2: Reliability index and FORM approximation at the standard normal space. 

4.3.1 Optimization algorithms 

The quadratic program of Eq. (4.17) is solved in this study by application of gradient-based 
optimization techniques, i.e. the methods described in this section are iterative procedures which 
require the evaluation of the limit-state function and its gradient at each step. The gradient 
evaluation can be performed within the finite element (FE) program, by application of the direct 
differentiation method ([26], [142]). However, this method requires alterations at the FE-code level, 
which is outside the scope of this study. Alternatively, the gradient can be evaluated numerically, 
e.g. by the finite difference method. In this study, the forward finite difference scheme has been 
used, which requires n + 1 numerical evaluations of the limit-state function per iteration step. As the 
limit-state function is defined in the original basic random variable space X with respect to the FE 
solution, the transformation operator T(.) and its Jacobian are used to compute the limit-state 
function and transform its gradient to the U-space. 

The sequential quadratic programming method 

Let us denote the objective function of the quadratic program defined in Eq. (4.17) by F(u), i.e.  
F(u) = 1/2uTu. The solution *u  satisfies the necessary Kuhn-Tucker conditions [78], associated 
with the Lagrangian L(u, λ) = F(u) + λG(u): 
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u u u u

u
 (4.23)

where λ is the Lagrange multiplier and  ,L λu u  denotes the gradient of  ,L λu  with respect to u. 
Linearization of Eq. (4.23) at (uk, λk) yields: 
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where uk+1 = uk + ξkdk, λk+1 = λk + ξk(κk – λk), dk and κk are the search directions for u and λ 
respectively and ξk is the step-length. The solution of Eq. (4.24) is equivalent to solving the 
quadratic sub-program with objective function  2 T1 2 ,T

k k k k k kL λ ud u d u d  and equality constraint 
   T

0k k kG G u u d  [9]. This approach corresponds to the sequential quadratic programming 
(SQP) method [9]. 

In the current implementation of the method, the Hessian of the Lagrangian  2 ,k kL λu u  is 
successively approximated using first order information, applying the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) scheme [9]. The step-length is computed by performing a line search at each step 
for the minimization of the following augmented Lagrangian function ([74], [117]): 

        21
,

2a k k k k k k kL λ F λ G c G  u u u u  (4.25)

The choice of ck in Eq. (4.25) should be sufficiently large, such that the function  ,a k kL λu  is 
convex near the value of uk at each step k [117]. The line search is performed in a relaxed fashion, 
by applying the Armijo test [78] and thus demanding a sufficient reduction of  ,a k kL λu . The 
Armijo method computes the step-length ξk = bi, where b  (0, 1),by searching for the minimum i 
 ,so that the following equation is satisfied: 

       T
, , , ki i i
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d
u d u u  (4.26)

wherein α is an algorithmic parameter which must satisfy α  (0, 1). Eq. (4.26) is a sufficient 
decrease condition for  ,a k kL λu , provided that [dk, κk – λk]

T is a descent direction [78]. 

The HL-RF method 

The HL-RF method was originally proposed by Hasofer and Lind [53] and later combined with the 
Rosenblatt transformation by Rackwitz and Fiessler [107] to account for distribution information. 
According to the HL-RF method, the design point is recursively approximated by the following 
expression: 
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 (4.27)

The expression in Eq. (4.27) can be derived by requiring that the linearization of G(u) at uk be 
perpendicular to  kG u  at uk+1. Also, it is trivial to show that the HL-RF method coincides with 
the SQP method in the case where the Hessian of the Lagrangian is approximated by the identity 
matrix and the step-length is chosen as ξk = 1. 

The HL-RF method is widely used due to its simplicity and rapid convergence. Nevertheless, 
under certain conditions, this method may fail to converge [22]. Therefore, certain modifications of 
the method have been suggested aiming at the improvement of its robustness. An improved version 
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of the method, named improved HL-RF (iHL-RF) method, has been proposed by Zhang and Der 
Kiureghian [143]. According to this approach, an optimal step-length is chosen, i.e. ξk ≠ 1, and the 
design point is updated using the direction: 
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At each step, the direction computed by Eq. (4.28) is used to perform a line search, in order to 
determine the value of ξk which minimizes a merit function m(u). The line search is performed in 
this study applying the Armijo rule, which in this case reads for ξk = bi, b  (0, 1) : 

      Ti i
k k k k km b m αb m   u d u u d  (4.29)

The merit function reads [143]: 

    T1

2k k k k km c G u u u u  (4.30)

The method is proved to be unconditionally convergent for a choice of  k k kc G u u  [143]. 

The gradient projection method 

The gradient projection (GP) method [110] is based on a modification of the steepest descent 
method to account for constraints. According to this method, the search direction is taken at each 
step k as the projection of the negative gradient of the objective function on the tangent plane of the 
feasible set, i.e. in the current case the limit-state surface G(U) = 0. Let sk be the parallel and 

 kγ G u  the perpendicular vector component to the constraint surface of the gradient of the 
objective function F(u) = ½uTu, where γ  . The gradient vector  k kF u u  may then be 
decomposed as: 

  k k kγ G  u u s  (4.31)

Multiplying both sides of Eq. (4.31) by  T

kG u  and rearranging, we get: 
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where we have used that  T
0k kG u s . Substituting Eq. (4.32) into Eq. (4.31), we get: 
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where I is the identity matrix and P is called the projection matrix. Furthermore, the search 
direction, i.e. the projection of the negative gradient, is given by: 
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 k k  d P u  (4.34)

Starting from a vector uk, which satisfies the constraint, we compute 0
1ku , moving on the direction 

dk by a step-length ξk. To include the case where the limit-state surface is nonlinear in the U-space, 
the new point, which lies on the tangent plane of the constraint surface, is pulled back onto the 
limit-state surface using a Newton-like method. A graphical illustration of the GP method is shown 
in Figure 4.3. 

The GP method presents similar convergence behavior to the HL-RF method in the case where a 
constant step-length ξk is chosen [22]. To circumvent this problem, an improved version of the GP 
method (iGP) has been proposed by the author [95]. This approach is based on the idea that the 
search direction should be perpendicular to the gradient of the objective function at the design point. 
To avoid oscillations around the design point, an adaptive step-length is chosen according to a 
function in terms of the angle θ between the search direction and the gradient vector  k kF u u  
(see Figure 4.3): 

    
2

min1 1 e
θ π

ρ
sf θ ξ

 
 
     (4.35)

where ξmin is the minimum value of the step-length. This function has the advantage that it is non-
constant only in a small area in the vicinity of θ = π/2. The size of this area depends on the choice of 
ρ. In this study the values of ξmin = 0.1 and ρ = 0.1 are used. These values have been tested against a 
number of examples and are shown to contribute to a robust and efficient convergence behavior of 
the GP algorithm. In Figure 4.4, a graphical representation of the step-length reduction function is 
shown. 
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Figure 4.3: Graphical illustration of the gradient projection method. 



4.3. The first order reliability method 75 
 

 

0

0.2

0.4

0.6

0.8

1

30 50 70 90 110 130

f (θ)s

θ o

0

0.2

0.4

0.6

0.8

1

30 50 70 90 110 130

0

0.2

0.4

0.6

0.8

1

30 50 70 90 110 130

f (θ)s

θ o
 

Figure 4.4: Graphical representation of the step-length reduction function. 

4.3.2 Comparison of the optimization algorithms 

This section compares the performance of the optimization algorithms presented in Section 4.3.1 for 
the solution of the FORM optimization problem for two examples.  

Example 1 

In the first example, the effect of numerical noise on the reliability assessment of a linear limit-state 
function, expressed in terms of two lognormal random variables, is examined. The noise is 
introduced by a trigonometric function, in which the amplitude and frequency are adjusted so that 
the failure probability is not influenced. The corresponding limit-state function is as follows 

    1 2 1 21.0 2000 5000 0.001 sin 0.1 sin 0.1g X X X X    X  (4.36)

The random variables in Eq. (4.36) have lognormal distributions with mean values μ1 = 500, μ2 = 
2000 and standard deviations σ1 = 100, σ2 = 400 and they are statistically independent. 

Starting from the mean point, all FORM algorithms were able to converge to a design point, 
apart from the HL-RF method. Table 4.1 shows the reliability index β computed and the required 
number of evaluations of the limit-state function, for the methods discussed in Section 4.3.1. The 
index i stands for the improved versions of the methods, i.e. the use of the merit function check for 
the HL-RF and the adaptive adjustment of the step-length utilizing the reduction function of Eq. 
(4.35) for the GP method. The latter proved to be the most efficient method for the present example, 
as it was able to converge with only 24 limit-state function evaluations.  

Example 2 

The second example, taken from [115], is chosen to test the performance of the FORM optimization 
algorithms for a nonlinear limit-state function, defined as: 

   3 3
1 2 18.0g X X  X  (4.37)
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where X1, X2 are statistically independent normal random variables. Two cases are considered for 
the moments of the random variables; (a) μ1 = μ2 = 10 and σ1 = σ2 = 5; (b) μ1 = 10, μ2 = 9.9 and σ1 = 
σ2 = 5. 

In case (a) all algorithms were able to converge with similar performance in terms of efficiency 
(see Table 4.1). In case (b) the standard HL-RF and GP methods both exhibited unstable behaviors 
and failed to converge to a solution. On the other hand, their improved versions as well as the SQP 
method converged to the same reliability index, with the iGP proving to be more efficient than the 
iHL-RF and the SQP methods, as shown in Table 4.1.  

Table 4.1: Comparison of the FORM algorithms. 

Example Method β Number of function evaluations 

 
 
1 

SQP 
HL-RF 
iHL-RF 
GP 
iGP 

3.10108 
not converged 
3.08807 
3.08785 
3.08809 

36 
- 
64 
39 
24 

 
 
2(a) 

SQP 
HL-RF 
iHL-RF 
GP 
iGP 

2.24009 
2.24009 
2.24009 
2.24009 
2.24009 

24 
24 
24 
30 
30 

 
 
2(b) 

SQP 
HL-RF 
iHL-RF 
GP 
iGP 

2.22603 
not converged 
2.22597 
not converged 
2.22598 

87 
- 
78 
- 
30 

 
Based on the examples presented, we can conclude that the SQP, iHL-RF and iGP methods 

presented a robust convergence behavior. We should point out that the efficiency of the iGP method 
depends on the choice of ρ in Eq. (4.35), although the choice of ρ = 0.1 used in this study has been 
verified for a large number of examples cases. On the other hand, the iHL-RF and SQP methods, 
even though shown to be less efficient than the iGP for the examples considered here, are equipped 
with mathematical proofs of their convergence. A further discussion on the performance of FORM 
optimization algorithms can be found in [71] and [74]. Therein similar conclusions on the 
robustness of the iHL-RF and SQP methods are drawn.  

It should be noted that the performance of the optimization methods considered in this study, as 
well as any gradient-based optimization method, depends on the quality of the approximation of the 
derivatives. As mentioned earlier, the derivatives of the limit-state function are evaluated here by 
application of the forward finite difference method. The performance of this method depends on the 
choice of the size of the finite difference step. For smooth functions, the error introduced by the 
finite difference approximation decreases as the step size becomes smaller. However, for 
nonsmooth functions a very small step size may introduce large errors in the derivatives. Implicit 
limit-state functions that depend on the outcome of a nonlinear FE calculation are usually 
nonsmooth (they include numerical noise). This is due to fact that the nonlinear FE solution is 
obtained by an iterative algorithm controlled by an error tolerance. In such cases, a relaxation of the 
tolerance of the FE algorithm may have a significant effect on the derivative approximation. 
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4.3.3 Sensitivity measures 

Consider the linearization G1(u) of the limit-state function at the design point *u , given by Eq. 
(4.21). The variance of G1(u) can be expressed as follows [20]: 

      
1

2 2
2 * 2 2 2 *

1 2G nσ G α α α G      u u  (4.38)

where [α1, α2, …, αn] are the elements of the vector α, defined in Eq. (4.19) – note that α is of unit 
length. Eq. (4.21) implies that the squares of the elements of α indicate the relative contribution of 
the corresponding elements of U to the total variance of the linearized limit-state function. 
Therefore, the elements of α provide measures of the relative influence of the equivalent standard 
normal variables {Ui, i = 1, …, n} ([8], [59]). The vector α is often referred to as the vector of 
influence coefficients [35]. If the basic random variables X are statistically independent, then there 
is a one-to-one correspondence between U and X and the influence coefficients αi also apply to X. 
In this case and based on the definition in Eq. (4.19), a positive (resp. negative) value of αi indicates 
that Xi is of capacity (resp. demand) type. 

In the case where the components of X are statistically dependent, a one-to-one correspondence 
between U and X cannot be defined. Therefore, in this case the vector α does not provide 
information about the relative importance of the basic variables X. This problem can be resolved by 
expressing U as a linear function of an equivalent jointly Gaussian vector X̂  ([20], [55]): 

  * *

* *

,
ˆ  

u x
u u J x x  (4.39)

where *x  is the design point at the basic random variable space. Eq. (4.39) is derived by 
linearization of the transformation U = T(X) at the design point and * *,u x

J  is the Jacobian of the 
transformation at the design point [55]. The covariance matrix of X̂  reads: 

 * * * *

1 T
ˆ ˆ , ,

 
XX u x u x

Σ J J  (4.40)

Substitution of Eq. (4.39) to Eq. (4.21) leads to: 

      * *

* T *
1 ,

ˆG G  
u x

u u α J x x  (4.41)

The variance of G1(u) is now written as: 

   * * * *
1

2
2 * T T

ˆ ˆ, ,Gσ G 
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Based on Eq. (4.42), a measure of the influence of the variances of X̂  (i.e. the diagonal terms of 

ˆ ˆXX
Σ ) on the variance of G1(u) is defined as follows [55]: 
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wherein ˆ ˆdiag
iX

σ   X
D . The sensitivity measure of Eq. (4.43) can be considered an approximate 

relative measure of the importance of the components of X. A positive (resp. negative) value of γi 
indicates that Xi is of capacity (resp. demand) type. It is straightforward to show that if the 
components of X are statistically independent, Eq. (4.43) reduces to the vector of influence 
coefficients α. 

A number of additional sensitivity measures have been proposed focused on different aspects of 
the reliability problem. The omission sensitivity factors express the effect on the reliability index β 
if a basic random variable is replaced by a deterministic number [80]. Also, sensitivity measures of 
β can be defined in terms of its gradient with respect to parameters of the distribution of the basic 
variables, e.g. the moments of the marginal distributions, as well as with respect to deterministic 
parameters entering the definition of the limit-state function ([8], [35], [59]). 

4.4 The inverse first order reliability method 

In the structural design procedure, an optimal solution is sought, which minimizes a cost function 
and satisfies the reliability requirements. In practice, the reliability constraints are usually included 
in the design by application of global or partial safety factors (see Section 3.1). A more rigorous 
approach explicitly requires the design constraints to satisfy a certain reliability level. This approach 
is termed reliability-based design (RBD) (e.g. see [69]). In the case of only one design parameter, 
an efficient approach to solve the RBD problem based on an extension of the FORM has been 
proposed by Der Kiureghian et al. [27]. This approach is termed inverse FORM. 

Let θ denote the design parameter. The inverse FORM optimization problem can be defined by 
extending the classical FORM problem of Eq. (4.17) to include the design parameter θ and the 
additional constraint that β = βt, where βt is a target reliability index. For this single parameter case 
of the RBD problem, there is no cost function, since a unique value for θ can be determined to 
achieve the target reliability. Note that with the parameter θ undetermined, the limit-state function 
and, therefore, the design point and the reliability index are functions of θ. The objective is to select 
θ such that the minimum distance to the limit-state surface equals βt. Next, an algorithm for the 
solution of the inverse FORM problem, based on an extension of the iHL-RF method is discussed. 

The inverse HL-RF method 

The inverse FORM problem can be described by the following formulation: 

 0t  βu  (4.44)

     0,
,




 θG
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u
u

u
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 (4.45)

   0, θG u  (4.46)

where ∇u denotes the gradient operator with respect to u and ||u|| ⁄ ||∇u G(u, θ)|| is the Lagrange 
multiplier of the original FORM problem obtained by the HL-RF method. Eq. (4.44) expresses the 
reliability requirement of the RBD problem, while Eqs. (4.45) and (4.46) are the optimality 
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conditions of the program of Eq. (4.17) for a fixed θ. The solution approach follows an iterative 
procedure, whereby at each iteration step k the unknowns uk, θk are updated according to the 
following rule: 

    T T

1 1, ,k k k k k kθ θ ξ   u u d  (4.47)

where dk is the search direction and ξk the step size. The search direction is obtained by solving the 
set of Eqs. (4.44)-(4.46) with G(u, θ) in Eq. (4.46) substituted by linearization G1(u, θ) at [uk, θk]: 
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The solution leads to the following expression for dk: 
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 (4.49)

The step size ξk is chosen in this study by performing a line search at each iteration step for the 
minimization of the following merit function [93]: 

      θmθmθm ,,, 21 uuu   (4.50)

where m1(u, θ) is the merit function used in the iHL-RF algorithm [see Eq. (4.30)] and m2(u, θ) is 
the merit function for satisfying Eq. (4.44) [27]: 

    2t2 2

1
, βθm  uu  (4.51)

The line search is performed applying the Armijo rule, following Eq. (4.29). 

4.5 The second order reliability method 

In the case where the limit-state surface G(u) = 0 is strongly nonlinear, the FORM approximation of 
the probability of failure using the linearization G1(u) at the design point can be highly erroneous. A 
solution to this problem may be given by the second order reliability method (SORM), which 
involves a second-order approximation of the limit-state function at the design point [39]. Consider 
the second-order Taylor series expansion of G(u) at the design point *u : 
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where β is the FORM reliability index, α the vector of influence coefficients and  2 *G u  the 
Hessian matrix of G(u) at the design point. Then a rotation of the coordinate system v = Ru is 
carried out such that the vn-th direction passes through the origin and the design point. Therefore, 
the design point in the V-space is v* = [0 … 0 β]T. Setting Gv(v) = G(RTv)/||∇G(u*) ||, we can 
express the second-order expansion of Gv(v) as follows [20]: 

      * *
2

1

2

T

nG β v    v v v v A v v  (4.53)

where    2 * T *G G  A R u R u . Using the matrix A11 of dimensions (n – 1)  (n – 1), formed 
by the first n – 1 rows and columns of A, we can further approximate Eq. (4.53) as follows [20]: 

   T
2 1 11 1

1

2nG β v  v v v A v  (4.54)

where v1 is the vector containing the first n – 1 elements of v. A further rotation of v1 to the 
principal coordinates of A11 reduces Eq. (4.54) to: 
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where κi are the eigenvalues of A11. Eq. (4.55) defines a parabola, tangent to the limit-state surface 
at the design point, with {κi, i = 1, …, n – 1} being the principal curvatures of the limit-state surface 
at the design point. 

The SORM approximation of the probability of failure is based on the approximation of the 
failure domain in the integral of Eq. (4.1) by the one defined by the parabolic expression of Eq. 
(4.55). The latter requires the evaluation of the Hessian  2 *G u  of the limit-state function at the 
design point. A numerical evaluation of the Hessian by application of the finite difference method 
requires n(n + 1)/2 additional calls to the FE solver. Alternatively, the BFGS method [9] can be 
used for the approximation of the Hessian using first-order information within the optimization 
procedure for the evaluation of the design point [106]. This approach gives a fairly good 
approximation of the Hessian for small dimensions. Another method for the approximation of the 
Hessian within the context of the FORM optimization procedure is given in [22]. 

An expression of the SORM probability of failure, asymptotically exact for large values of β, is 
given by [11]: 
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with the second formula being slightly better than the first [106]. Eq. (4.56) gives a good 
approximation for values of β ≥ 1. Otherwise, Tvedt’s formula [136]: 

  
 

2
1

1
1 41

10 2 2

1

1
exp

1 1 1 2
sin tan

2 2
1

n

f i
n

i

i
i

z
P βz κ z dz

π
z κ z

 







         
   

 
 




 (4.57)

should be used, which gives an exact expression for the probability integral in the domain defined 
by Eq. (4.55) in terms of a single-fold integral. 

4.6 System reliability using FORM 

This section presents the adopted approach for the solution of system reliability problems, i.e. 
problems which involve multiple limit-state functions (see Section 3.4), using FORM. Consider a 
set of limit-state functions {gk(X), k = 1,…,m} and the corresponding limit-state functions in the 
equivalent standard normal space {Gk(U), k = 1,…,m}. For each function Gk(U), a component 
reliability problem can be defined for which the FORM optimization problem can be solved for the 
corresponding design point *

ku . The linearization of each component limit-state function Gk(U) at 
the corresponding design point *

ku  reads: 

       * T
1k k k k kG G β  u u α u  (4.58)

where    * *
k k kG G  α u u  and T *

k k kβ  α u  is the FORM component reliability index. Using 
the linearizations of Eq. (4.58), we can approximate the failure domain of the system reliability 
problem by a hyper-polygon. Although this approximation is a good choice for series systems, for 
parallel systems a better choice involves linearization at the so-called joint design point [20]. 
However, the component design points βk are often used in both cases, since they are much easier to 
obtain.  

Consider the random vector Y = [Y1, …, Ym]T, defined by T
k kY  α U , k = 1, …, m. The vector Y 

is jointly Gaussian with zero means, unit standard deviations and correlation coefficients 
T

k ly y k lρ  α α , k, l = 1, …, m. For a series system, the first-order approximation of the failure 
probability reads [58]: 
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(4.59)

where  Φ .m  is the m-variate standard normal cumulative distribution function, RYY is the 
correlation matrix of Y and Β = [β1, …, βm]T. For a parallel system, the probability approximation 
reads [58]: 
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(4.60)

Eqs. (4.59) and (4.60) both require the evaluation of the multi-normal distribution function, which 
can be done by use of approximations ([43], [91], [133]) or simulation methods [1]. 

The general system reliability problem given in Eq. (3.21) can be approached as follows. We 
first denote the failure events corresponding to the K parallel system problems by {Ck, k = 1,…,K}. 
Then, Eq. (3.21) takes the form: 
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  (4.61)

Applying Eq. (2.11) recursively to Eq. (4.61) we obtain the following expression, also know as the 
Poincaré formula: 
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             (4.62)

Each term in Eq. (4.62) represents a parallel system reliability problem, which can be approximated 
by Eq. (4.60). However, the parallel system reliability problems in Eq. (4.62) increase rapidly as K 
increases. Alternatively to Eq. (4.62), the narrow system reliability bounds given in [34] can be 
used. These bounds are based on low-order probabilities, thus avoiding the solution of parallel 
systems with a large number of components. 

It should be noted that the FORM approximation for series systems can also be applied to the 
case where a component reliability problem has multiple local or global minima ([21], [35]). In 
such cases, an approximation of the failure domain by multiple linearizations will result in an 
improved FORM approximation of the probability of failure. 

4.7 Simulation methods 

As noted in Section 3.3.1, simulation methods estimate the probability of failure based on random 
sampling of the basic random variables. These methods are asymptotically exact, since they do not 
imply any approximation. The quality of the resulting estimate of the probability of failure is 
usually controlled by a variance estimate. It should be noted that unlike the FORM, simulation 
methods rarely provide information concerning the sensitivity of the failure probability with respect 
to the basic random variables.  

The simulation methods described in this section have been implemented in the equivalent 
standard normal space U, derived from the marginal isoprobabilistic transformation discussed in 
Section 4.2. Also, as discussed in Section 3.4, the general system reliability problem can be 
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expressed in terms of one equivalent limit-state function [see Eq. (3.22)], which can be formulated 
in the U-space. Therefore, the simulation methods will be discussed for the solution of the 
reliability problem of Eq. (4.1), taking into account that any system or component reliability 
problem can be reduced to an identical form – note that such a formulation is not suited for 
application of the FORM (resp. SORM) for the solution of system reliability problems, due to the 
nature of the FORM (resp. SORM) approximation. 

4.7.1 Generation of random samples 

This section briefly comments on the generation of samples of random variables, which is an 
essential part for most of the methods described in the following. The classical algorithms for the 
generation of random numbers produce samples that are relatively independent and asymptotically 
uniformly distributed in [0, 1]. These algorithms are based on recursive functions and usually need 
to be initialized by a seed. In principle, the samples produced are deterministic periodic sequences 
which can be reproduced if we apply the same seed. Therefore, the generated samples are called 
pseudo-random numbers. For an overview on algorithms for generation of pseudo-random numbers, 
the reader is referred to [71]. 

Simulation methods require the generation of samples from a prescribed PDF. This can be done 
by application of the transformation method [112]. Let U be a random variable uniformly 
distributed in [0, 1]. Taking into account that the distribution function of U is the identity function, 
i.e. FU(u) = u, it is straightforward to show that the random variable X, defined by: 

  1
XX F U  (4.63)

has the distribution function FX(x), provided that FX(x) is continuous and strictly increasing. 
Therefore, to simulate X it is sufficient to generate a sample ui of U and then apply  1

i X ix F u  
(see Figure 4.5). In the case where there is no explicit expression for the inverse of the distribution 
function, the inversion can be performed by application of an iterative procedure; alternatively 
approximate expressions can be used if such exist. Another way to circumvent this problem is to 
use an auxiliary distribution to generate the samples and then test the sample to determine whether 
it is accepted or rejected. This approach is called rejection-acceptance method [139]. 

Since the simulation methods are implemented in the standard normal space, the generated 
random samples should follow the independent standard normal distribution. Generation of samples 
of the standard Gaussian distribution can be done by application of the Box-Müller method [10]. 
Let U1, U2 be independent random variables uniformly distributed in [0, 1]. Let us then defined the 
following transformation: 

  1 1 22 ln sin 2X U πU   (4.64)

  2 1 22 ln cos 2X U πU   (4.65)

If we apply Eq. (2.85) and taking into account that the joint PDF of U = [U1, U2]
T is fU(u) = 1, it 

is easy to show that the vector X = [X1, X2]
T is an independent standard normal vector. Therefore, 

independent standard Gaussian variables can be simulated by drawing samples from independent 
uniform variables and applying the transformation of Eqs. (4.64)-(4.65). 
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Figure 4.5: Generation of a sample from a Gaussian distribution by application of the transformation 

method. 

4.7.2 The Monte Carlo method 

The probability of failure in Eq. (4.1) can be rewritten in the following form: 
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u u u u u u  (4.66)

where DU = n , E[.] is the mathematical expectation operator and I(u) is the indicator function, 
defined as: 
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 (4.67)

The probability of failure can then be estimated by generating N independent samples {uk (k = 
1,…,N)} of φn(u) and taking the sample mean of I(u) [112], i.e. 

    
1

1ˆ Ê
N

f k
k

P I I
N 

    u u  (4.68)

Eq. (4.68) gives an unbiased estimator for Pf, since ˆE f fP P    . The variance of the estimator 
reads: 

           22

1

1 1 1ˆVar Var Var E E
N

f k
k

P I I I I
N N N

                
 u u u u  (4.69)

where we have used that the random variables I(uk) come from independent samples of identically 
distributed random variables. By noting that Pf = E[I(u)] and since I(u)2 = I(u) we can write Eq. 
(4.69) as: 
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The coefficient of variation of the estimate is then expressed as: 
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where the approximation holds for small values of Pf. Therefore, if the magnitude of Pf is 10–k and 
the target coefficient of variation is 0.1, then the required number of samples is N = 10k+2. This 
means that for small failure probabilities, which is typically the case in civil engineering 
applications, the required number of samples is very high. Considering that each sample 
corresponds to a numerical evaluation of the limit-state function through a FE calculation, the 
Monte Carlo method is very inefficient for FE reliability analysis. 

In practice, the coefficient of variation of ˆ
fP  is estimated using the generated samples and 

serves as an error measure for the termination of the simulation. Usually a target coefficient of 
variation in the order of 0.05-0.1 is used. Consider the reliability analysis of a quadratic limit-state 
function in terms of a two-dimensional independent standard normal vector U (see also Figure 4.6): 

      2 2
1 2 1 2 1 2

1
0.1 2 2.5

2
G U U U U U U     U  (4.72)

As it can be seen in Figure 4.6, the probability of failure is relatively small – for 100 samples there 
is no hit in the failure domain. For a sample size of N = 105, the estimate of the probability of failure 
is 3ˆ 4.34 10fP    with a coefficient of variation of 5%. 
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Figure 4.6: Graphical representation of the Monte Carlo method in a 2D standard normal space (100 

samples). 
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Next, two methods for the generation of samples, that serve as alternatives to pseudo-random 
sampling, are discussed. 

Latin hypercube sampling 

Latin hypercube sampling ([82], [90]) is a method for generating samples that are better distributed 
in the sample space compared to those obtained by pseudo-random number generators. According 
to this approach, the range of each random variable is divided into N sets with equal probability 
mass, where N is the total number of samples. Then, one sample is generated from each of the N 
sets. To simulate a random vector uk, one of the N sample values is randomly picked for each 
random variable. The advantage of this method is that it ensures a good spread of the generated 
samples and, therefore, usually converges faster than the crude Monte Carlo method. However, 
since the construction of the samples requires the knowledge of the total number of samples, the 
coefficient of variation cannot be used as a convergence criterion in this context.  

Quasi-random sampling 

Quasi-random numbers, also called low-discrepancy sequences, are deterministic sequences that 
aim at uniformly filling the unit hypercube [0,1]n [89]. The discrepancy of a sequence is a measure 
of its uniformity and it can be computed by comparing the actual samples in a given volume of a 
multidimensional space, say [0,1]n, with the samples that should be there assuming a uniform 
distribution. The principle of the construction of quasi-random sequences is to find sequences with 
small discrepancy. The generated samples resemble samples of the n-dimensional uniform 
distribution, however, unlike pseudo-random samples, they are not statistically independent. 
Several types of sequences have been proposed, e.g. the Halton [51], Sobol [125] and Niederreiter 
[88] sequences. Figure 4.7 compares the samples of the uniform distribution in [0,1]2 produced by 
pseudo-random sampling, latin hypercube sampling and the Niederreiter quasi-random sequence 
with N = 1000 samples. This figure shows that the Niederreiter sequence presents a better 
uniformity compared to the random sampling techniques. Quasi-random samples of an arbitrary 
distribution can be constructed in terms of samples of the uniform distributions by application of the 
methods discussed in Section 4.7.1. 
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Figure 4.7: Sampling of a uniform distribution in [0,1]  [0,1]. (a) Pseudo-random sampling. (b) Latin 
hypercube sampling. (c) Quasi-random sampling with Niderreiter sequence points. 
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4.7.3 Directional simulation 

Directional simulation was first proposed by Deák [18] for the evaluation of multi-normal integrals 
and then extended for application to reliability analysis by Bjerager [7] and Ditlevsen et al. [36]. 
The n-dimensional independent standard normal random vector U can be expressed as U = RA, 
where R2 is a χ2-distributed random variable with n degrees of freedom and A is a random vector, 
independent of R and uniformly distributed on the n-dimensional unit hypersphere. The probability 
integral of Eq. (4.1) can then be expressed as follows: 
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where fA(a) is the PDF of A, fR(s) is the PDF of R at a given direction a, DA is the unit hypersphere 
and r(a) is the radius in the direction a to the boundary of the failure domain, i.e. G[r(a)a] = 0,  
r(a)    (see Figure 4.8). The nested integral in Eq. (4.73) can be evaluated analytically due to 
the knowledge of the distribution of R, i.e. 
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where  2 .nχ  is the CDF of the χ2 distribution with n degrees of freedom. Therefore, Eq. (4.73) 
reduces to: 

         2 22 21 E 1f n n
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An unbiased estimator of the probability of failure can then be obtained by generating N 
independent samples {ak (k = 1,…,N)} of the unit vector A and taking the sample mean of Eq. 
(4.75), i.e. 
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A sample ak of A can be simulated by generating an outcome uk of U and setting ak = uk/||uk||. 
Alternatively, the samples can be generated by the rejection-acceptance method, whereby samples 
of the uniform distribution in [–1, 1]n are drawn and then rejected if outside of the unit hypersphere. 
Finally, the samples of A are computed by normalizing the accepted samples. The root of  
G[r(ak)ak] = 0 can be found by application of any line-search method. In this study, the secant 
method is applied. The variance of the estimator reads: 
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Figure 4.8: Graphical representation of the directional simulation in a 2D standard normal space. 

The directional simulation method avoids the problem of the Monte Carlo method, namely that only 
a few samples fall in the failure domain. Moreover, due to the analytical evaluation of the 
probability associated with every sample, a single sample is sufficient for the evaluation of the exact 
probability corresponding to a hyperspherical failure surface in the U-space. This means that each 
sample value corresponds to a probability integral associated with a hyperspherical segment, the 
size of which depends on the total number of samples. Therefore, the directional simulation method 
is particularly efficient in the case of almost spherical failure surfaces. However, for nonspherical 
surfaces and a fixed sample size, the sample variance increases rapidly for increasing dimension n. 

Directional simulation with deterministic directions 

The directional simulation method assumes a uniform distribution of the random vector A on the 
unit hypersphere of the U-space. This means that each directional integral has an equivalent 
contribution to the probability of failure. Therefore, in the case where A is simulated randomly, a 
large number of samples are needed to provide a sufficiently good estimate of the probability. On 
the other hand, if a deterministic set of ‘evenly’ distributed points (directions) is used, the required 
sample size decreases considerably ([65], [86], [87], [95]). 

The problem of distributing points equally on a hypersphere has attracted the attention of many 
scientists due to its application to a variety of scientific fields. Although it is not possible to find an 
exactly uniform distribution of points on a hypersphere, a number of methods have emerged which 
are able to provide sufficiently uniform distributions [113]. In this study, two methods have been 
implemented for this purpose. 

The first method is based on equally dividing the spherical coordinates: 

  1 2 11, , , , np ω ω ω    (4.78)

of the unit hypersphere, where 0  ≤ ωi ≤ π for i  {1, …, d – 2} and 0  ≤ ωn–1 ≤ 2π, and then 
transforming the derived vectors to Cartesian coordinates as follows ([65], [77]): 
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The basic idea of this method is that the derived points define a tiling of the hypersphere by 
identical hypercubes of dimension d – 1 [77]. This geometric method, also referred to as hyperspace 
division method [86], has the advantage that the points are computed fast and their quality is 
parameter independent. For the generation of the points the algorithm described in [77] is used. 

An alternative method, based on a physical approach, generates the points numerically by 
applying a potential minimizing principle in a set of particles with unit charges and forces of mutual 
repulsion [113]. The derived points are known as Fekete points ([86], [113]). These points are 
defined as the set {a1, a2, …, aN}* that minimizes the Coulomb potential: 
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  a a  (4.80)

In order to compute the points, an optimization algorithm [86] is applied starting from a random 
distribution of points on the hypersphere. According to this algorithm, every point is moved in each 
step on the direction defined by the tangent component of the total force acting on the point. The 
force vector is computed by taking the gradient of the Coulomb energy. For example, the total force 
acting on the point a1 is: 
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 (4.81)

wherein the component derivatives are grouped in vector form. For details on the algorithm the 
reader is referred to [86]. The basic drawback of the method is that for high dimensions the 
generation of the Fekete points is time-consuming. In Figure 4.9, the distribution of 100 points on a 
unit sphere based on random sampling and the two described methods is shown. This figure shows 
that the geometric and physical method generate points much more uniformly distributed than the 
points based on random sampling. 
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(a)  (b) (c) 

Figure 4.9: Distribution of 100 points on a sphere. (a) Random sampling. (b) Geometric points. (c) Fekete 
points. 

4.7.4 Importance sampling methods 

Importance sampling methods aim at producing samples (resp. directions) that are closer to the 
failure domain compared to the ones that occur according to the distribution of U (resp. A) [83]. 
The samples are produced based on an importance sampling function h(u) [resp. h(a)]. The function 
h(u) [resp. h(a)] is a PDF and is typically constructed based on previous information. A number of 
importance sampling methods are based on a given design point *u , i.e. the simulation is preceded 
by a FORM optimization. Note that the majority of these methods can also incorporate several 
design points and therefore can also be applied to series system reliability problems. Alternatively, 
an adaptive approach can be employed, according to which the sampling function is constructed 
based on results from a previous simulation. It is important to note that the support of the sampling 
function h(u) [resp. h(a)] should include the support of the PDF of U (resp. A), or else the resulting 
estimate of the probability of failure might be biased. 

Using the function h(u) we can perform the integration in Eq. (4.1) by scaling the integrand, as 
follows [119]: 
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where DU is the support of h(u) and I(u) is the indicator function defined in Eq. (4.67). An unbiased 
estimator of Pf is given by: 
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wherein the samples {uk (k = 1,…,N)} are generated according to h(u). The variance of the estimate 
is as follows: 
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The optimal sampling density can be obtained by minimizing the variance of Eq. (4.84), which 
yields [119]: 
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This function is in general not practical, since it requires the knowledge of Pf. The function of Eq. 
(4.85) would require only one sample for the estimation of the exact value of the probability of 
failure. 

Similar results can be obtained for the directional simulation method, using a directional 
importance sampling function h(a) [7]. The integration in Eq. (4.75) can be performed as follows: 

     
         

 
2 22 21 E 1f n n

D

f f
P χ r h d χ r

h h

         


A

A Aa a
a a a a

a a
 (4.86)

where DA is the support of h(a). An estimate of the probability of failure is then given as follows: 
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 (4.87)

wherein the samples {ak (k = 1,…,N)} are generated according to h(a). The variance of the estimate 
reads: 
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Minimizing the variance of Eq. (4.88), we get the optimal directional sampling density [7]: 
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The sampling density of Eq. (4.89) suffers the same problem as the one of Eq. (4.85), i.e. it requires 
the knowledge of Pf and therefore it is not of practical interest. 

The following sections discuss a number of importance sampling methods which use different 
concepts for estimating an importance sampling density that yields a reduction of the variance of 
ˆ

fP . 
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Standard importance sampling 

In the standard importance sampling, the sampling function h(u) is chosen as a standard normal 
PDF centered at the design point u* [119], i.e. 

    *
nh φ u u u  (4.90)

Substituting Eq. (4.90) to Eq. (4.83), we get an unbiased estimator of Pf: 
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wherein the samples {uk (k = 1,…,N)} are generated according to φn(u – u*). Standard importance 
sampling gives satisfactory results if the design point is well identified and there exist no additional 
minima. In the case of multiple design points or series system reliability analysis, the importance 
sampling function can be chosen as the following stratified sampling density [119]: 
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where hi(u) is the sampling density for each design point and βi is the corresponding FORM 
reliability index.  

In Figure 4.10, the standard importance sampling method is applied to the reliability analysis of 
the limit-state function of Eq. (4.72). In this figure, it is shown that for this sampling density almost 
half of the samples fall in the failure domain. For a sample size of N = 103, the estimate of the 
probability of failure is 3ˆ 4.38 10fP    with a coefficient of variation of 5.8%. 
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Figure 4.10: Graphical representation of the standard importance sampling method in a 2D standard normal 

space (100 samples). 
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Conditional sampling 

The conditional sampling approach [52] is based on eliminating a large number of samples with 
zero probability of falling in the failure domain. Since the design point is the nearest point of the 
failure domain to the origin of the U-space, the hypersphere with center at the origin and radius 
equal to the reliability index β can be excluded from the sampling space. This can be done by 
choosing as sampling function the conditional standard normal PDF, given that ||u|| > β, i.e. 

        2 2
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1
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h φ β
χ β

  


u u u u  (4.93)

where  2 .nχ  is the CDF of the χ2 distribution with n degrees of freedom. Substituting Eq. (4.93) to 
Eq. (4.83) we get an unbiased estimator of the failure probability: 
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To simulate the vector u according to h(u), we transform U to its polar coordinates U = RA, where 
A is a random vector uniformly distributed on the n-dimensional unit hypersphere and R2 is 
distributed according to the truncated χ2-distribution with n degrees of freedom, given that R2 > β2. 
The vector A can be simulated as discussed in Section 4.7.3. The variable R can be simulated by 
application of the rejection-acceptance procedure – an efficient approach is discussed in [52]. 

The conditional sampling method is particularly efficient in the case of hypersherical failure 
surfaces. However, if the area in the vicinity of the design point has the largest contribution to the 
probability integral, then the conditional sampling method may produce a large number of 
unnecessary samples [see Figure 4.11(a)]. In such cases, it is suggested here that the conditional 
sampling be combined with the standard importance sampling method. According to this approach, 
we obtain the following sampling function: 

      *1

1
n

n
I

h φ β
C

   


u u u u u  (4.95)

The constant CI is given by the following expression: 
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Unfortunately, the integral in Eq. (4.96) cannot be computed analytically. However, since the 
integration domain is bounded, we can compute the integral efficiently by application of any 
numerical approach. An efficient approach for problems of any dimension is to apply quasi-random 
sampling to the n-dimensional hypercube bounding the β-hypersphere. An unbiased estimate of the 
probability of failure is given by: 
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The samples uk are generated by simulating φ(u – u*) and rejecting the samples for which ||uk|| ≤ β. 
Figure 4.11 shows a graphical representation of the two conditional sampling approaches for the 

limit-state function of Eq. (4.72). It is shown that for this example the conditional importance 
sampling method performs better, since the majority of the samples fall in the failure domain. Also, 
comparing Figure 4.11(b) with Figure 4.10 we see that this approach outperforms the standard 
importance sampling method. 
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(a)  (b) 

Figure 4.11: Graphical representation of conditional sampling methods in a 2D standard normal space (100 
samples). (a) Conditional sampling. (b) Conditional importance sampling. 

Axis orthogonal importance sampling 

Another method based on the design point is the axis orthogonal importance sampling method [60]. 
In this method, the simulation takes place at the tangent hyperplane to the failure surface, centered 
at the design point. The sampling space is thus rotated and reduced by one dimension, i.e. V = RU, 
V = [V1

T, Vn]
T, where V1 contains the (n – 1)-dimensional subspace, Vn defines the axis through the 

origin and the design point and R is a suitable rotation matrix. The probability integral can then be 
expressed as follows: 
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where  
1 1fV v  is the n – 1 standard normal PDF on the hyperplane vn = 0,  

1| 1|
nV nf vV v  is the 

conditional PDF of Vn given the vector v1, 
1

1nD V   and b(v1) is the distance to the failure surface 
in a direction orthogonal to the hyperplane at v1, i.e. the solution of G[RT[v1

T, b(v1)]
T ] = 0 (see 

Figure 4.12). Due to the symmetry of φn(u), the conditional PDF  
1| 1|

nV nf vV v  is equal to the 
standard normal PDF centered at v1 and rotated to the Vn-axis. We thus have: 
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where Φ(.) is the standard normal CDF. Therefore, Eq. (4.98) reduces to: 
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We can then compute an unbiased estimate of the failure probability by generating N samples {v1k 
(k = 1,…,N)} of V1, solving G[RT[v1

T, bi]
T ] = 0 for bi with any line-search method (e.g. the secant 

method) and applying: 
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The axis orthogonal importance sampling method is shown to be very efficient in low-dimensional 
problems with failure surfaces in the vicinity of the design point. However, just as all sampling 
methods that require the design point, in high-dimensional problems the method becomes 
inefficient, except from some cases (e.g. see [68], [102] and [118]) where an important direction Vn 
can be determined without the need for the solution of the FORM optimization problem. 
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Figure 4.12: Graphical representation of the axis orthogonal importance sampling in a 2D standard normal 

space. 

Directional importance sampling 

In the directional simulation method, the largest contribution to the failure probability comes from 
directions in the vicinity of the minimum r(a), defined by the design point u*. The directional 
importance sampling method ([7], [36]) is based on concentrating the simulated directions around 
u* by using as importance sampling function h(a) the normalized standard normal distribution, 
truncated at the hyperplane tangent to the failure surface at u*. Assume that v is the direction 
pointing to the design point. The sampling function h(a) can then be defined as follows [7]: 
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where fA(a) is the uniform PDF on the n-dimensional hypersphere DA. We can then write Eq. (4.86) 
as follows: 
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An estimate of the probability of failure is then given as follows: 
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A sample ak of the function h(a) can be generated using the following expression [36]: 
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where uk is a sample of the standard normal vector U and vk is a sample of the following truncated 
normal distribution: 
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The sampling function of Eq. (4.102) is the optimal sampling function for any linear limit-state 
surface at the U-space [compare with Eq. (4.89)]. However, this function is zero for aTv ≤ 0 (see 
Figure 4.13). This means that the contribution of the directions pointing to this half-space is ignored 
and therefore the probability estimate of Eq. (4.104) may be biased. To circumvent this problem we 
can use a mixing sampling density [7], defined as follows: 
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where p  [0,1] is the mixing probability. The sampling function hm(a) produces samples according 
to the uniform density fA(a) with probability p and according to the sampling function h(a) with 
probability 1 – p. 
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Figure 4.13: Graphical representation of the directional importance sampling in a 2D standard normal space. 

Adaptive importance sampling 

Several adaptive techniques have been proposed for the estimation of an optimal sampling density, 
based on a previous simulation (e.g. [3], [12]). These methods construct an importance sampling 
density ha(u) using the samples of the first simulation that fall in the failure domain. One approach 
is to perform the first simulation using an importance sampling function h(u) based on the design 
point, e.g. the function of Eq. (4.90). Let {uk (k = 1,…,m)} be the samples of the first simulation 
according to h(u). The method described in [12] suggests using as sampling function the joint 
normal distribution, i.e. 

  ˆˆ( ) ,a nh φ u u μ Σ  (4.108)

with mean value vector μ̂  and covariance matrix Σ̂  determined as the mean and covariance of the 
samples from the first simulation, conditional on the failure domain:  
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where I(u) is the indicator function defined in Eq. (4.67) and 1
ˆ

fP  is the estimate of the probability 
of failure from the first simulation. The sampling density ha(u) can be further adapted using results 
from subsequent simulations. Figure 4.14(a) shows samples generated using the sampling density of 
Eq. (4.108) for the limit-state function of Eq. (4.72) with the moments estimated from a simulation 
according to the standard importance sampling function of Eq. (4.90). 

An alternative approach constructs the adaptive sampling density ha(u) by applying kernel 
density estimation using the samples of the first simulation that fall in the failure domain, say {uk (k 
= 1,…,mf)} [3], i.e. 
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where Kn(u) is the Gaussian kernel of dimension n, i.e. ˆ( ) ( , )n nK φu u Σ , Σ̂  is the covariance of the 
samples {uk (k = 1,…,mf)} and w controls the spread of each kernel. An optimal value of w can then 
be selected by minimizing the variance of the new estimator based on the samples of the first 
simulation [3]. Moreover, local spread parameters λkw can be defined by computing λk = [ha(uk)]

–α, 
α  [0,1], for k = 1,…,mf, and then constructing a new sampling density substituting w with λkw. 
Therefore, the kernels in areas with smaller density will have a wider spread, which will yield a 
smoother tail of ha(u). In Figure 4.14(b) samples generated by this method are shown. Comparing 
with Figure 4.14(a), we see that this method results in a wider spread of the generated samples. 

In [5] it is proposed to combine the kernel density method with a generation of the initial failure 
points using Markov chain Monte Carlo simulation, starting from some given failure points – 
Markov chains are further discussed in Section 4.8.1. This approach is more suitable for application 
to domains with multiple design points or system reliability, provided that the Markov chain 
simulation yields samples that populate a sufficient part of the failure domain. In the case where 
FORM analysis is performed for multiple design points, the initial samples can also be generated 
using the stratified density of Eq. (4.92). 
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Figure 4.14: Graphical representation of adaptive importance sampling methods in a 2D standard normal 
space (100 samples). (a) Parametric adaptive sampling. (b) Importance sampling using kernels. 

Adaptive directional importance sampling 

An adaptive directional importance sampling procedure has been proposed by the author [96]. The 
procedure is performed in two steps. First, an initial coarse number of deterministic, optimally 
distributed directions are generated, utilizing one of the algorithms discussed in Section 4.7.3, and 
the corresponding radii {ri = r(ai), (i = 1,…,m)} are computed. Then an adaptive sampling density 
can be computed as the following stratified sampling density: 
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Where m is the number of uniformly distributed directions and hi(a) is the importance sampling 
density corresponding to the radius ri, given by:  
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where fA(a) is the uniform PDF on the n-dimensional hypersphere DA. This method has the 
advantage that the design point is not computed, while the equally distributed initial directions 
provide a good estimation of the optimal importance sampling density. However, the method 
becomes inefficient with increasing dimension n, since the required number of initial directions for 
the estimation of the optimal sampling density increases considerably. The initial estimate of the 
probability computed using the deterministic directions can be combined with the results obtained 
by the importance sampling density, applying the following mixing sampling density: 

           1m ah p f p h    Aa a a  (4.114)

where p = m/(m + N) . The estimate of the probability of failure reads: 
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where the samples {ak, (k = 1,…,N)} are simulated according to ha(a). 

4.7.5 Comparison of the simulation methods 

In this section, the simulation method presented in Sections 4.7.2-4.7.4 are illustrated for the 
reliability analysis of the limit-state function of Eq. (4.72), wherein the random variables are 
independent and standard normal. For comparison, the results obtained by the FORM are β = 2.5, Pf 
= 6.209  10–3, and the asymptotic results by the SORM β = 2.62, Pf = 4.39   10–3.  For the 
methods using the design point, the point u* obtained by the iHL-RF method is u* = [1.7678 
1.7678]T. Also, a standard importance sampling simulation based on the design point with a sample 
size of N = 105 gave an estimate of the probability of failure 3ˆ 4.21 10fP    with a coefficient of 
variation smaller than 0.1%. 

Figure 4.15 shows the estimated probability of failure obtained by the Monte Carlo (MC) 
method and the coefficient of variation of the estimate versus the number of samples, with every 
point corresponding to an independent simulation run. The three cases considered are based on the 
method applied for the generation of the samples, i.e. pseudo-random sampling (MC), Latin 
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hypercube sampling (LHS) and quasi-random sampling (QRS) with the Niederreiter sequence 
points. The results show an improvement of the Monte Carlo method when more elaborate 
sampling techniques such as LHS and QRS are used, with the QRS shown to be the most efficient 
of the two. This is better illustrated in Figure 4.15(a), wherein it is shown that the QRS reaches a 
stable solution with already 4000 samples, whereas the MC and LHS still present significant 
oscillations in the neighborhood of the exact solution. Similar results were obtained in [17] for 
several example cases, wherein it is concluded that QRS methods have faster rate of convergence 
than MC and LHS. In practical terms, QRS techniques can be applied with larger tolerances in the 
coefficient of variation of the estimate of the failure probability, as compared to the ones used in 
standard Monte Carlo methods. 

In Figure 4.16, the results obtained by the directional simulation method are compared for the 
cases where the points (directions) are generated randomly (RP) and deterministically (DP) by 
application of the geometric method, discussed in Section 4.7.3. Again each point in the figure 
corresponds to an independent simulation. It is shown that a remarkable improvement of the 
performance of the directional simulation is obtained when an optimally distributed set of directions 
is used. For this case, the exact value of the failure probability is obtained with only 20 directions, 
whereas the standard directional simulation with random directions presents a strong oscillatory 
behavior and requires a much larger number of samples to reach the same level of accuracy. The 
benefit of the use of deterministic directions in the directional simulation method is illustrated for 
several analytical and numerical limit-states in [65], [86] and [95]. 
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Figure 4.15: Estimate of Pf (a) of the example and coefficient of variation of the estimate (b) in terms of the 
number of samples for the Monte Carlo with pseudo-random sampling (MC), the Latin 
hypercube sampling (LHS) and the quasi-random sampling (QRS) with the Niederreiter 
sequence points. 
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Figure 4.16: Estimate of Pf (a) of the example and coefficient of variation of the estimate (b) in terms of the 
number of samples for the directional simulation with random points (directions) (RP), and with 
deterministic points (DP) generated by the geometric method. 

In Figure 4.17, the standard importance sampling (SIS), conditional sampling (CS) and conditional 
importance sampling (CIS) methods are compared. In is shown that for this example, where the 
limit-state function is quadratic at the design point, the SIS performs better than the CS, i.e. for the 
same number of samples SIS gives better estimates and smaller coefficients of variation as 
compared to CS. Moreover, the CIS, which combines the advantages of the other two methods, 
presents the best behavior in terms of stability [Figure 4.17(a)] and gives the smallest coefficients of 
variation [Figure 4.17(b)]. It should be noted that in the case of multiple design points or 
hyperspherical limit-states, the CS is expected to perform better than the SIS [71]. In the case where 
all design points are found, then a stratified importance sampling function based on the CIS method 
could be applied. 

The axis orthogonal importance sampling (AOIS) and directional importance sampling (DIS) 
methods are compared in Figure 4.18. It is shown that the two methods have similar performances. 
Both methods require the solution of a line-search problem for each sample point. Therefore, the 
computational cost depends on the number of limit-state function evaluation needed to solve the 
corresponding line-search. In this study, the secant method is used and for this example an average 
of 5 limit-state function evaluations per line-search were needed for both methods. 

In Figure 4.19, the results obtained by the adaptive importance sampling (AIS) method with the 
joint normal sampling function of Eq. (4.108) are shown. The mean vector and covariance matrix 
entering the definition of the sampling function were computed using 100 samples generated by the 
SIS method. Comparing Figure 4.19 with Figure 4.17, one can see that AIS shows a significant 
improvement of the probability estimates and the coefficient of variation obtained by SIS. For 
instance, a coefficient of variation of 20% is obtained by SIS with 200 samples, while AIS with a 
total of 200 samples (including the samples of the initial simulation for the determination of the 
adaptive sampling function) leads to a coefficient of variation smaller than 10%. 
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Figure 4.17: Estimate of Pf (a) of the example and coefficient of variation of the estimate (b) in terms of the 
number of samples for the standard importance sampling (SIS), the conditional sampling (CS) 
and conditional importance sampling (CIS). 
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Figure 4.18: Estimate of Pf (a) of the example and coefficient of variation of the estimate (b) in terms of the 
number of samples for the axis orthogonal importance sampling (AOIS) and the directional 
importance sampling (DIS). 

Finally, Figure 4.20 presents the results obtained by the adaptive directional importance sampling 
(ADIS) method. The radii entering the definition of the adaptive sampling function of Eq. (4.113) 
are determined by an initial simulation with 50 deterministic directions. Comparing Figure 4.20 
with Figure 4.18, we see that ADIS has a comparable performance to the one of the DIS. However, 
the advantage of the ADIS is that the design point is not needed. Therefore this method can be 
applied to cases where the limit-state function has multiple design points, or for highly nonlinear 
implicit limit-states for which the convergence of the FORM algorithms is not guaranteed. 
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Figure 4.19: Estimate of Pf (a) of the example and coefficient of variation of the estimate (b) in terms of the 
number of samples for adaptive importance sampling, based on 100 samples simulated by 
standard importance sampling. 
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Figure 4.20: Estimate of Pf (a) of the example and coefficient of variation of the estimate (b) in terms of the 
number of samples for the adaptive directional importance sampling, based on 50 deterministic 
directions generated by the geometric method. 

4.8 Simulation in high dimensions 

This section discusses the case where a large number of basic random variables (> 50) are included 
in the definition of the limit-state function. This is often the case when the time or spatial variability 
of an uncertain quantity requires the discretization of the corresponding random process or field. 
For such problems, the evaluation of the design point becomes inefficient, since the computational 
cost for the numerical evaluation of the derivatives in the FORM optimization algorithm is a 
function of the number of random variables. This problem can be solved if the derivatives are 
evaluated applying the direct differentiation method ([26], [142]). However, this method needs 
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alterations at the FE code level and hence cannot be used in conjunction with a “black-box” FE 
code. Therefore, the importance sampling methods presented in Section 4.7.4 become inefficient for 
such problems. To circumvent this problem, a number of simulation methods have been specially 
developed for the treatment of such high-dimensional problems. These include the subset 
simulation [6], the spherical subset simulation [64] and the asymptotic sampling method [13]. In the 
following, the subset simulation is discussed in detail. 

4.8.1 The subset simulation 

The subset simulation is an adaptive simulation method developed by Au and Beck [6]. The method 
is based on the standard Monte Carlo simulation but overcomes its inefficiency in estimating small 
probabilities, while maintaining its independency on the problem dimensionality. This is achieved 
by expressing the failure event F = {G(U) ≤ 0} as the intersection of M intermediate failure events: 
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where FFFF M  21 . The probability of failure is estimated by computing the joint 
probability 
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The failure event is defined in the equivalent standard normal space by G(u) ≤ 0; each of the 
intermediate events is defined as Fi = {G(u) ≤ Gi}, where Gi > … > GM = 0. The values of Gi are 
chosen adaptively so that the estimates of the conditional probabilities correspond to a chosen value 
p0. The probability of F1 is computed by applying the crude Monte Carlo method. Through a Monte 
Carlo simulation, N samples of U are simulated and G1 is set equal to the [(1 – p0)N]-th largest 
value among the samples {G(uk): k = 1,…,N}. The p0N samples ui for which G(ui) ≤ G1 are used as 
starting points for the simulation of (1 – p0)N samples conditional on F1, by applying a modified 
version [6] of the Metropolis-Hastings algorithm ([54], [84]), which is a Markov Chain Monte 
Carlo (MCMC) technique. This procedure is repeated for sampling conditional on F2,F3,… until the 
maximum level M is reached, for which the threshold GM = 0 is given. An estimate of the failure 
probability is then given by: 

  1
0 1

ˆ ˆ |M
f M MP p P F F

  (4.118)

where the estimate  1
ˆ |M MP F F   of the conditional probability is as follows: 

    1
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P F F I
N



  u  (4.119)

where I(u) is the indicator function defined in Eq. (4.67) and {uk (k = 1,…,m)} are simulated 
conditional on FM–1. It is shown in [6] that the estimator ˆ

fP  is biased for a finite N, due to the 
correlation between the estimates of the conditional probability, but it is asymptotically unbiased. 
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Figure 4.21: Graphical representation of the subset simulation in a 2D standard normal space (a) Monte 
Carlo simulation. (b) Determination of the first threshold G1. (c) Markov chain simulation of the 
intermediate failure domain. (d) Determination of the second threshold G2. 

The analyst is free in the choice of p0 and the number of samples at each step N. However, N 
should be selected large enough to give an accurate estimate of p0. If the magnitude of Pf is in the 
order of 10-k then the total required number of samples is Ntot = k(1 – p0)N + N. Note that for the 
crude Monte Carlo, the required number of samples for the same probability and a target coefficient 
of variation of 0.1 is 10k+2, which indicates that the gain in efficiency of the subset simulation can 
be of several orders of magnitude. A graphical representation of this method, applied for the 
reliability analysis of the limit-state function of Eq. (4.72), is shown in Figure 4.21, for p0 = 0.1 and 
N = 400. 
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Modified Metropolis-Hastings algorithm 

Markov chains are random processes, defined such that every state (time instant) depends only on 
the previous state and not on the states that preceded it. In other words, the random variable at state 
i is distributed according to a conditional PDF, given the variable at state i – 1. The MCMC 
methods generate Markov chain samples which are asymptotically distributed according to a given 
distribution [42]. In the subset simulation, the conditional samples on the intermediate failure 
domains {Fi (i = 2,…,M)} are computed through MCMC, by application of a modified version [6] 
of the Metropolis-Hastings algorithm. Assume that at the level i, the samples {uk (k = 1,…,m)} fall 
in the failure domain Fi+1. To simulate samples of U conditional on Fi+1 we apply the following 
procedure. Let f *(v|ukj) be a one-dimensional conditional PDF centered at ukj with the symmetry 
property f *(v|ukj) = f *(ukj|v), where ukj is the j-th component of uk. For every uk, k = 1,…,m, we 
generate the sequence of samples {vl (l = 1,…,N/m)}, which corresponds to one chain, starting from 
a given v1 =  uk (the seed of the chain) by computing vl+1 from vl, l = 1,…, N/m – 1, as follows: 

1. Generate a candidate state v : For each component , 1,...,jv j n  of v  simulate ξj from  
f *(ξj|vlj). Compute the ratio rj = φ(ξj)/φ(vlj). Then set j jv ξ  with probability min{1, rj} and 

j ljv v  with probability 1 – min{1, rj}. 

2. Choose the next state vl+1: Compute ( )G v . If 1iF v  set 1l v v , otherwise set vl+1 = vl. 
 
It is shown in [6] that each new sample vl+1 will be distributed according to φn(.|Fi+1) if vl also is, 
where: 

    
 1 1

1

n
n i i

i

φ
φ F F

P F 


 
u

u u  (4.120)

is the stationary PDF of the Markov chain. The efficiency of the algorithm is shown to be 
insensitive to the type of the PDF f *(v|ukj). In this study, the uniform PDF centered at each sample 
ukj is used, as suggested in [6]. The width of the PDF f *(v|ukj) influences the size of Fi+1 covered by 
the Markov chain samples. A large width may decrease the rate of acceptance of the samples, but 
guarantees ergodicity of the Markov chain, i.e. it assures that the stationary distribution φn(.|Fi+1) is 
unique and independent of the initial state – although it should be noted that since the Markov chain 
samples are simulated starting from each point uk, k = 1,…,m, the assumption of ergodicity is 
usually valid. On the other hand, a very small width increases the dependence between the samples, 
which may influence the quality of the estimator and can also counteract the assumption of 
ergodicity. A compromise width of 2, i.e. twice the standard deviation at the U-space, is used in this 
study. 

Based on the MCMC procedure we can derive expressions for the variance of the estimators of 
the conditional probabilities. For example, the variance of the estimator  1

ˆ ˆ |M M MP P F F   in Eq. 
(4.119) is given as follows [6]: 

      1ˆVar 1M M
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P P
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   (4.121)

where 



4.9. Response surface methods 107 
 

 

 
 
 

1

1

2 1
0

N m

k

R kkm
γ

N R





   
 

  (4.122)

and 

       2
, ,E j l j l k MR k I I P

   u u  (4.123)

where m is the number of seeds for the MCMC, N/m is the length of each chain, uj,l is the l-th 
sample of the j-th chain and R(k) is the covariance between I(uj,l) and I(uj,l+k), which is independent 
of j and l, since all chains are stationary and equivalent. Also, it has been assumed that the seeds for 
each chain are uncorrelated through the indicator function I(u), i.e. that     2E 0j k MI I P    u u  if 
uj and uk belong to different chains. Comparing Eq. (4.121) and Eq. (4.70)  we see that the variance 
of the MCMC estimator is larger than the one of the crude Monte Carlo method. This is due to the 
dependence of the samples of the Markov chain (i.e. γ > 0). 

4.9 Response surface methods 

In the previous sections it is shown that a large number of numerical evaluations of the limit-state 
function (i.e. calls to the FE solver) may be required for an accurate estimation of the probability of 
failure. Response surface methods are based on approximating the limit-state function using a 
simple mathematical model [38]. Then the reliability analysis can be performed using an analytical 
expression instead of the true limit-state function. This approach may reduce the computational 
effort considerably, provided that a sufficiently accurate approximation of the limit-state function is 
built with a limited number of calls to the FE solver. 

Let  ĝ X  be the approximation of the limit-state function  g X  in the basic random variable 
space X. Typically  ĝ X  is of quadratic polynomial form. In this study, two different models are 
used. The first is a quadratic polynomial without mixed terms: 

   2
0

1 1

ˆ
n n

i i ii i
i i

g c c x c x
 

   x  (4.124)

where the (1 + 2n) coefficients c = [c0, {ci, i = 1,…,n}, {cii, i = 1,…,n}]T are to be determined. Eq. 
(4.124) can be enriched by adding the mixed terms and therefore accounting for possible interaction 
between the random variables: 
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     x  (4.125)

where in this case the total number of unknown coefficients is [1 + n + n(n – 1)/2] and c = [c0, {ci, i 
= 1,…,n}, {cii, i = 1,…,n}, {cji, i = 1,…,n, j = i + 1,…,n}]T. 

The unknown coefficients c are determined by the least squares method. First, a set of 
experimental design points {xj, j = 1,…,K} are chosen, for which the exact value of the limit-state 
function yj = g(xj) is computed. The coefficients c are found by requiring the sum of squares of the 
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differences between the value of the function ˆ( )jg x  and the computed actual value yj at the K 
experimental points to be minimum, i.e. 
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c x c  (4.126)

Let q(x) be a vector of dimension nc whose entries are the monomials included in ˆ ( )g x  of either 
Eq. (4.124) or Eq. (4.125), where nc is the number of unknown coefficients. Then the function ˆ( )g x  
can be expressed as follows: 

   Tˆ ( )g x q x c  (4.127)

Using Eq. (4.127), the solution of the problem of Eq. (4.126) is as follows (e.g. see [38]): 

   1T T
c Q Q Q y  (4.128)

where Q is a K  nc matrix whose rows are the vectors q(xj)T and y is a vector with components yj = 
g(xj). The solution of Eq. (4.128) requires K ≥ nc. 

Several different experimental designs have been proposed for the selection of the set {xj, j = 
1,…,K}. The considered designs consist of a grid of points centered around the mean value vector 
μX. For the model of Eq. (4.124), an axial design has been proposed [14], where the central point is 
taken as the mean value and two additional points are taken at each Cartesian axis (see Figure 4.22), 
i.e. 
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where ei is the i-th unit Cartesian vector and k   . The axial design leads to K = 1 + 2n points, 
which coincides with the number of unknowns nc for the model of Eq. (4.124). The quality of the 
approximation is shown to be strongly dependent on the choice of k [50]. For most structural 
reliability problems, k = 3 seems to be an appropriate choice. 
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Figure 4.22: Axial design for n = 3. 
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For the model of Eq. (4.125) a choice of two different designs is provided. The first is the full 
factorial design, which generates l points for each coordinate and includes all possible combinations 
thus producing a total of K = ln points. For l = 3 the points at each Cartesian axis can be constructed 
as follows: 
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A full factorial design for l = 3 and n = 3 is shown in Figure 4.23(a). Alternatively, the less 
expensive central composite design can be applied. This design combines a full factorial design for 
l = 2 and the axial design of Eq. (4.129), leading to K = 1 + 2n + 2n points [38] [see Figure 4.23(b)]. 
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Figure 4.23: (a) Full factorial design for n = 3. (b) Central composite design for n = 3. 

To enhance the quality of the approximation, an adaptive procedure can be employed in 
combination with any of the response surface models and experimental designs. This procedure 
opts for a better approximation at the area close to the design point. In the context of the FORM 
optimization, the response surface is adapted iteratively by centering the experimental design at a 
point x0, obtained by a linear interpolation between the design point x* and μX, so that g(x0) ≈ 0, i.e.: 
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X X
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 (4.131)

Then a new FORM optimization is performed and the procedure is repeated until the difference 
between two subsequent reliability indices is smaller than a prescribed tolerance (see [14] and 
[108]). 

Several other models have been proposed in the literature for approximating the limit-state 
function. In [103], the moving least squares method is applied to construct a local approximation of 
the limit-state function close to the design point. Also several researchers have used artificial neural 
networks to model the response surface (e.g. see [15], [19], [62], [92], [120]). It is shown that the 
efficiency of this approach depends on a properly chosen training set. Finally, another method 
benefits from the fact that the Monte Carlo method only requires the knowledge on whether failure 
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has occurred for each sample and thus approaches the problems from the perspective of data 
classification ([61], [109]). This approach uses support vector machines to built a pattern 
recognition scheme that only indicates whether failure has occurred. 
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It is common in engineering applications that additional information about the structure appears at 
states after the conclusion of the design procedure. This information can be related to inspection, 
instrumented monitoring, knowledge on the exceedance of a failure condition or historically 
survived loads. This chapter describes how this information can be used to update the estimate of 
the reliability of the structure. First, the basic concepts are introduced. Then, methods that have 
been developed for dealing with a special category of reliability updating problems are discussed in 
detail. 

5.1 Introduction 

In the basic variable space X, we can express any available information about the structure by using 
a limit-state function h(x). The information can be of two different types; the inequality-type 
information is defined by an inequality of the form {h(x) ≤ 0} and usually refers to information 
about an exceedance of some limit state; on the other hand, the equality-type information is defined 
by an equality, i.e. {h(x) = 0}, and usually refers to some measurement outcome. Each information 
can then be expressed by an event H, defined as H = {h(x) ≤ 0} or H = {h(x) = 0}. Assuming that m 
such events are available, each of which is denoted by Hi, the event H = H1…  Hm will contain 
all available information. Denoting by F the failure event of the structure defined as F = {g(x) ≤ 0}, 
where g(x) is the generalized limit-state function [see Eq. (3.22)], we can express the probability of 
failure conditional on the information event H, as follows: 

5 Bayesian updating of reliability 
estimates 
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where fX(x) is the joint PDF of X. If all information events Hi are of inequality-type, then the 
computation of the integrals in Eq. (5.1) is straightforward and can be done by application of any of 
the reliability methods described in Chapter 4. However, if one or more events Hi are of equality-
type then the domain of integration for both integrals in Eq. (5.1) reduces to a surface consisting of 
a subset of all points for which hi(x) = 0 at the n-dimensional basic variable space and direct 
application of reliability methods is not possible. In practical terms, the probability of an equality-
type event Hi is zero, since the random variable hi(X) is continuous, and therefore both integrals in 
Eq. (5.1) will result in zero. To circumvent this problem, several approaches have been suggested, 
which will be discussed in the following sections.  

5.2 Updating with equality information 

In the following, it is assumed for convenience that all information events Hi are of equality-type. 
The solution of problems that include both types of information is a straightforward extension. 

5.2.1 First- and second-order methods 

This section discusses the first- and second-order approximation concepts developed for the 
solution of reliability updating problems with equality information. The method presented in [79] 
suggests to include a set of dummy parameters d = [d1, …, dm]T and express the conditional 
probability of Eq. (5.1) as follows: 
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In the expression of Eq. (5.2), the equality-type events {hi(x) = 0} are replaced by the inequality-
type events {hi(x) – di ≤ 0}. This approach requires the computation of the partial derivatives of the 
probabilities with respect to the dummy parameters d, evaluated at d = 0. This can be done by using 
the FORM (or SORM) results for parallel system reliability problems. The FORM approximation of 
the probability in the nominator of Eq. (5.2) is as follows: 

         1 1 1 1 10 0 0 Φ ,m m m m mP g h d h d            x x x B R  (5.3)
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where Φm+1(.) is the (m + 1)-variate standard normal CDF, Bm+1 contains the FORM reliability 
indices of the m + 1 component reliability problems and Rm+1 is the correlation matrix of the 
random variables Yi = αi

TU with entries ρij = αi
Tαj, U being the equivalent standard normal space 

(see Section 4.6). The mixed partial derivative of Eq. (5.3) with respect to the parameters d can be 
computed by the following expression [79]: 
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where Bm contains the reliability indices βi, Rm is the correlation matrix of the variables Yi = αi
TU, 

with βi and αi being the component reliability index and vector of influence coefficients for the 
event {hi(x) – di ≤ 0} evaluated at di = 0, ρm is an m-dimensional vector with entries ρi = αTαi, with 
β and α being the reliability index and vector of influence coefficients of the original reliability 
problem, i.e. for the event {g(x) ≤ 0}, and φm(.) is the m-variate standard normal PDF. Also it has 
been used that βi / di = –1,  i: 1 ≤ i ≤ m. A similar expression can also be derived for the 
denominator in Eq. (5.2). In the case where the original reliability problem is a parallel or series 
system problem, the expression in Eq. (5.4) should be modified accordingly. The same results can 
also be obtained by a different approach that involves first- or second-order approximations of 
surface integration of multi-normal densities [116].  

5.2.2 A general approach 

This section discusses a general approach [130] for dealing with reliability updating problems with 
equality information, which allows the application of any reliability method, including simulation 
methods. Since the information events Hi usually refer to measurement outcomes, we can express 
the corresponding limit-state functions, as follows: 

    ˆ
i i i ih h x x x  (5.5)

where Xi is a random variable representing the measurement error and X-i denotes the set of all 
random variables X excluding Xi. If a structural system characteristic s(x-i) is measured, e.g. the 
deformation of a structural member, then the function  ˆ

i ih x  can be expressed as 
   ˆ

i i i mh s s  x x , where sm is the measurement outcome. The information of the event Hi with 
respect to the random variables X-i can also be expressed by the likelihood function [2]: 

      ˆ|
ii i i i i X i iL P H f h   
     x X x x  (5.6)

where (.)
iXf  is the PDF of Xi. Eq. (5.6) assumes that Xi is statistically independent of X-i. If this is 

not the case, independence can be achieved using the transformation methods discussed in Section 
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4.2. Also, if the equality limit-state functions cannot be expressed in the form of Eq. (5.5), then the 
likelihood function will take the following form: 
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   x x  (5.7)

where  ˆij ix x  are the ni roots of the equation  , 0i i ih x x .  
An equivalent formulation of the likelihood function is given by: 

     11
Pr Φ 0i i i i i i

i

L U c L
c


     x x  (5.8)

where Ui is a standard normal random variable, Φ-1(.) is the inverse of the standard normal CDF and 
ci is a positive constant, chosen to ensure that ciLi(x-i) ≤ 1 for all x-i. Eq. (5.8) enables the expression 
of the likelihood function by an equivalent inequality information event He,i = {  , ,e i i ih ux  ≤ 0}, 
with: 

    1
, , Φe i i i i i i ih u u c L

     x x  (5.9)

Hence we can write: 
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where ai is a proportionality constant and φ(.) is the standard normal PDF. It follows that: 
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where X+ = [X-i , Ui]
T and  .f

X  is the joint PDF of the random variable space X+. Similarly, we 
can derive that 
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The conditional probability of F given Hi is thus 
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where it is noted that the proportionality constant ai vanishes. 
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Denoting now by X+ the random vector consisting of all auxiliary standard normal random 
variables Ui, corresponding to all information events Hi, and the variables X-m that are not 
eliminated when formulating the likelihood functions according to Eq. (5.7), we can express the 
probability of failure conditional on all information events Hi, as follows: 
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As shown in Eqs. (5.13) and (5.14), this approach reduces the reliability updating problem to the 
evaluation of two probability integrals that can be performed by application of any reliability 
method, including simulation methods. This is the main advantage of this method, compared to the 
one discussed in Section 5.2.1, which results in an approximation of the conditional probability. 
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This chapter presents a number of numerical examples computed by coupling the reliability 
methods described in Chapters 4 and 5 with finite element models. For the analysis, the reliability 
software RELY [96] developed as part of this thesis and integrated into the SOFiSTiK finite 
element (FE) software package is used. The examples focus on geotechnical applications with 
uncertain material parameters. Moreover, the spatial variability of the soil is taken into account, 
using the random field discretization methods described in Section 2.5, and its influence on the 
reliability results is studied. 

6.1 Reliability analysis of a deep circular tunnel 

The first example is a deep circular tunnel surrounded by weak rock with uncertain material 
properties. The reliability is computed for a serviceability limit-state based on a nonlinear FE 
model. In addition, the influence of the spatial variability of the material properties on the tunnel’s 
reliability is examined. The results shown in this section have been originally presented in [94] and 
[97]. 

6.1.1 Finite element solution of tunnel deformation analysis  

The tunnel is assumed to be subjected to a hydrostatic pressure and a uniform support pressure 
(see Figure 6.1). The tunnel’s radius is taken as r = 3.3m and the supporting pressure as pi = 
5000kN/m2. The hydrostatic pressure is calculated from the stresses resulting due to an assumed 
1100m overburden load. The scope of the numerical model is the evaluation of the vertical 
displacement at the uppermost point of the tunnel’s circumference.  

6 Numerical examples 
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Figure 6.1: Circular tunnel subjected to hydrostatic stress field and uniform support pressure. 

The displacement of the tunnel is determined by a numerical evaluation of the ground-support 
equilibrium point (e.g. see [56]). To this end, an 80 × 80m bounded block of the surrounding soil is 
modeled using plain strain finite elements. Figure 6.3(b) shows the FE mesh. The material 
parameters of the soil are taken as independent random variables, described by probability 
distributions, as shown in Table 6.1. For the specific weight the normal distribution was chosen, 
while for the remaining parameters the lognormal and beta distributions were utilized due to their 
advantage in defining lower and upper bounds. For example, the Young’s modulus must take 
positive values and the Poisson’s ratio may not be larger than 0.5.  

The limit-state function is chosen such that the inward displacement of the tunnel’s 
circumference does not exceed a threshold of ux,t = 0.04m: 

    ,x t ing u u x x  (6.1)

The FE analysis is performed in two steps. First, the modeling of the in-situ hydrostatic stress state 
is carried out. Then the elements corresponding to the circular tunnel are removed and the 
supporting pressure is applied by performing a nonlinear computation. The material model used is 
an elastic-perfectly plastic model with non-associative plastic flow and zero dilatancy, while the 
yield surface is defined by the Mohr-Coulomb criterion. The choice of the material model is 
motivated by matching the prerequisites for which an analytical ground reaction curve can be 
derived [56]. 

Table 6.1: Material properties. 

Parameter Distribution Mean CV 

Specific weight γ [kN/m3] 
Young’s modulus E [MPa] 
Poisson’s ratio ν 
Friction angle φ [º] 
Cohesion c [MPa] 
Dilatancy angle ψ [º] 

Normal 
Lognormal 
Beta(0.0, 0.5) 
Beta(0.0, 45.0) 
Lognormal 
- 

27.0 
5000.0 
0.2 
35.0  
3.7 
0  

5% 
25% 
10% 
10% 
20% 
- 
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6.1.2 Results without spatial variability considerations 

The reliability analysis was performed applying the FORM with four different optimization 
algorithms; the HL-RF and its improved version (iHL-RF), as well as the gradient projection (GP) 
method and the improved GP (iGP), which includes an adaptive adjustment of the step-length 
utilizing the reduction function of Eq. (4.35). Starting from the mean point, all algorithms were able 
to converge to a design point, although the reliability index computed by the HL-RF differed 
slightly from the one computed by the GP algorithms. Table 6.2 shows the reliability index and 
probability of failure computed and the required number of limit-state function evaluations, for the 
four methods. It is shown that the standard versions of the algorithms were able to converge faster, 
while the improved versions required additional function evaluations. 

The results were verified by the directional simulation method with 150 deterministic directions 
(DS-DP) as well as with a number of importance sampling methods, based on the computed design 
point, namely the standard importance sampling (SIS), the axis orthogonal importance sampling 
(AOIS) and the directional importance sampling (DIS). For all importance sampling methods, the 
simulation was carried out with a target coefficient of variation of 5%. In Table 6.3, the results are 
compared. The simulation methods produced comparable results with similar performance in terms 
of efficiency, the AOIS being the most efficient of the bunch. In addition, it is shown that the 
FORM gives a good approximation, although slightly overestimating the reliability. 

In Figure 6.2, the influence coefficients, computed as a byproduct of the FORM analysis, are 
plotted. As discussed in Section 4.3.3, the influence coefficients provide information about the 
relative importance of the basic random variables, since the random variables are assumed to be 
independent. As expected, the Young’s modulus is the dominant variable, in the sense that it has the 
biggest influence to the variance of the linearized limit-state function and hence to the reliability of 
the tunnel. Furthermore, it appears that the specific weight and the friction angle have considerable 
influence, while the influence of the rest of the variables is negligible. The sign of the coefficients 
shows whether the corresponding variable is of capacity or demand type. For instance, the influence 
coefficient corresponding to the Young’s modulus E is positive, which means that a positive change 
of E signifies a positive change of the reliability. 

Table 6.2: Reliability index and probability of failure computed by FORM. 

Optimization method β Pf Number of function evaluations 

HL-RF 
iHL-RF 
GP 
iGP 

2.414 
2.414  
2.410 
2.410 

7.886 × 10–3 
7.886 × 10–3 
7.980 × 10–3 
7.980 × 10–3 

96  
210 
76 
124 

Table 6.3: Reliability index and probability of failure computed with various simulation methods. 

Method β Pf Number of function evaluations 

FORM-GP 
DS-DP 
SIS 
AOIS 
DIS 

2.410 
2.268  
2.297 
2.281 
2.291 

7.980 × 10–3 
1.167 × 10–2 
1.081 × 10–2 
1.128 × 10–2 
1.098 × 10–2 

76  
711 
616 
522 
726 
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Figure 6.2: Influence coefficients. 

6.1.3 Finite element model including spatial variability 

It is well known that the material properties of the soil tend to vary in space, even within 
homogenous layers, which requires the consideration of the soil body as a random field for their 
proper modeling [105]. Hence, the representation of the material properties by random variables is 
an approximation, since it implies a perfectly correlated random field. We now examine the 
influence of the spatial variability of the most important random variables, i.e. the variables with the 
largest influence coefficients, on the tunnel’s reliability. To this end, we model the Young’s 
modulus and friction angle by homogeneous non-Gaussian random fields. To model the joint 
distribution of the random fields, the Nataf distribution is applied, with marginal distributions as 
shown in Table 6.1. Moreover, the following isotropic exponential auto-correlation coefficient 
function is used: 

   expXX

τ
ρ τ

l
   
 

 (6.2)

where τ is the Euclidean distance between two locations and l the correlation length.  
The random fields are discretized by the midpoint method using a stochastic finite element 

(SFE) mesh, consisting of 113 deterministic finite element patches. The selection of the SFE mesh 
is based on the expected rate of fluctuation which in the case of homogeneous fields is described by 
the auto-correlation coefficient function (see Section 2.5.4). However, the SFE mesh should be 
coarse enough to avoid near perfect correlation between the elements, which may cause instability 
in the probabilistic transformation [24]. Obviously, these requirements differ considerably from the 
ones for the selection of the deterministic FE mesh. Here, the SFE mesh is chosen first and each 
SFE is defined in the SOFiSTiK program as a structural area with random material properties. 
Then, the structural areas are meshed by the SOFiSTiK program, resulting in the deterministic FE 
mesh. In Figure 6.3, the stochastic and deterministic FE meshes are shown. Figure 6.4 depicts plots 
of realizations of the lognormal random field representing the Young’s modulus, corresponding to 
the same realization at the equivalent standard normal space, for two different correlation lengths. 
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Figure 6.3: (a) Stochastic FE mesh. (b) Deterministic FE mesh. 
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Figure 6.4: Realizations of the homogeneous lognormal random field representing the Young’s modulus E 

of the soil (the same realization at the equivalent standard normal space) for two different 
correlation lengths. Left: l = 10m. Right: l = 40m. 

6.1.4 Results accounting for spatial variability of soil 

The discretization of the considered random fields representing the spatial variability of the 
Young’s modulus E and friction angle φ leads to a total of 226 random variables. In order to deal 
with the computational cost in the reliability evaluation due to the large number of random 
dimensions, the subset simulation method, discussed in Section 4.8.1, is applied. The parameters of 
the algorithm, i.e. the target value of the conditional probabilities p0 and the number of samples at 
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each subset N, are chosen as p0 = 0.1 and N = 500, following the initial suggestions given in [6]. 
Table 6.4 shows the computed probability of failure and corresponding reliability index for a 
progressive consideration of the spatial variability of the two material properties for a correlation 
length of l = 5m. It can be observed that the consideration of E, the parameter with the highest 
influence, improves the reliability estimation significantly, while the improvement from an 
additional consideration of the less influential φ is much less important. For all cases that account 
for the spatial variability of at least one material parameter, the computed failure probability is in 
the order of 10–3. Therefore, three levels were adequate for the estimation of the failure probability 
with subset simulation, requiring a total of 1400 limit-state function evaluations (see Section 4.8.1). 

In Figure 6.5, the reliability index is plotted for different values of the correlation length l, 
namely 5, 10, 20, 40 and 80m, and the consideration of the Young’s modulus E as a random field. 
The plot shows that as l increases and thus the random field becomes more correlated, the reliability 
index approaches the value computed in the fully correlated case, where all parameters are regarded 
as random variables. Hence, it may be concluded that neglecting the spatial variation of the 
uncertain material parameters will lead to an underestimation of the tunnel’s reliability. This may be 
quantified in the extreme case of a poorly correlated random field (l = 5m) with a rough 0.65 
absolute error, corresponding to one order of magnitude in the probability of failure. Such an 
underestimation of the reliability in the design phase may have considerable economical impact on 
the structural design.  

Table 6.4: Progressive consideration of the spatial variability of φ and E for a correlation length of 5 m. 

Random field consideration β Pf 

All parameters as random variables 
Only φ as random field 
Only E as random field 
E and φ as random fields 

2.297 
2.390  
2.949 
3.046 

1.108 × 10–2 
8.420 × 10–3 
1.600 × 10–3 
1.160 × 10–3 
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Figure 6.5: Influence of the correlation length of the Young’s modulus on the reliability. 
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6.2 Reliability updating of a cantilever embedded wall 

This example is an excavation in sand with a sheet pile retaining wall, where deformation 
measurements made at an intermediate excavation depth are utilized to update the reliability of the 
construction site at the stage of full excavation. Therein, uncertainty in the soil material properties is 
modeled by non-Gaussian random fields. Moreover, the method discussed in Section 5.2.2 is 
applied to reformulate the measurement information (being of equality-type) into inequality-type 
information. The structural reliability evaluations required for the Bayesian updating are carried out 
by means of the subset simulation, in order to cope with the large number of random variables 
derived from the discretization of the random fields. This example can be found in [98] and [99]. 

6.2.1 Finite element model 

The site consists of a 5.0m deep trench with cantilever sheet piles, without anchors or bottom 
support (Figure 6.6), in a homogeneous soil layer of dense cohesionless sand with uncertain 
spatially varying mechanical properties. The soil is modeled in 2D with plane-strain finite elements. 
For simplicity, neither groundwater nor external loading is considered. Additionally, we take 
advantage of the symmetry of the trench and model just one half of the soil profile. However, it 
should be noted that this is an approximation when randomness in the soil material is taken into 
account. The material model used is an elasto-plastic model with a prismatic yield surface 
according to the Mohr-Coulomb criterion and a non-associated plastic flow. The probabilistic 
models of the material properties of the soil are shown in Table 6.5. The spatial variability of the 
soil is modeled by homogeneous random fields, with the following exponential auto-correlation 
coefficient function: 

   









z

z

x

x
XX l

τ

l

τ
ρ expτ  (6.3)

where τ = [τx, τz]
T is the vector of absolute distances in the x (horizontal) and z (vertical) directions. 

The correlation lengths are lx = 20m and lz = 5m for all uncertain soil material properties: specific 
weight γ, Young’s modulus E and friction angle φ. An infinite correlation length is intrinsically 
assumed in the y direction (out of plane). Cross-correlation between the different material properties 
is not included. The joint distribution of the random variables in the random fields is the Nataf 
distribution, with marginal distributions according to Table 6.5. The random fields are discretized 
by the midpoint method using a SFE mesh, consisting of 144 deterministic FE patches. The 
stochastic discretization resulted in a total of 3 x 144 = 432 basic random variables. In Figure 6.7, 
the stochastic and deterministic FE meshes are shown. In Figure 6.8, two realizations of the 
lognormal random field representing the uncertainty of the Young’s modulus are shown. 
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Figure 6.6: Sheet pile wall in sand. 

 

Table 6.5: Material properties. 

Parameter Distribution Mean CV 

Specific weight γ [kN/m3] 
Young’s modulus E [MPa] 
Poisson’s ratio ν 
Friction angle φ [º] 
Cohesion c [MPa] 
Dilatancy angle ψ [º] 

Normal 
Lognormal 
- 
Beta(0.0, 45.0) 
- 
- 

19.0 
125.0 
0.35 
35.0  
0.0 
5.0  

5% 
25% 
- 
10% 
- 
- 

 

  

(a)  (b) 

Figure 6.7: (a) Stochastic FE mesh. (b) Deterministic FE mesh. 
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Figure 6.8: Two realizations of a homogeneous anisotropic lognormal random field representing the 

Young’s modulus E of the soil. 

The sheet pile dimension and profile is determined analytically using the conventional method for 
cantilever sheet pile design in granular soils, which requires equilibrium of the active and passive 
lateral pressures [135]. Applying a global safety factor of 1.5, the design results in sheet piles of 
depth of 7.5m and profile PZC 13. The Young’s modulus of steel is taken as 210 GPa. The pile is 
modelled using beam elements with an equivalent rectangular cross section that behaves equally to 
the sheet pile in bending and axial resistance. The interaction between the retaining structure and 
the surrounding soil is modelled using nonlinear interface elements. An elastoplastic model with a 
yield surface defined by the Mohr-Coulomb criterion is used to describe the interface behavior. The 
elastic properties of the interface elements are taken from the mean values of the adjacent soil, 
while the strength properties are reduced by the factor 2/3 and a zero dilatancy is chosen. 

The finite element analysis is performed stepwise, following the construction process. First, the 
modelling of the in-situ stress state is carried out by means of the K0-procedure, where K0 is the 
lateral earth pressure coefficient at rest, computed here using the expression proposed by Jaky [63] 
for normally consolidated soils: 

 φK sin10   (6.4)

Next, the sheet pile is installed by activating the corresponding beam and interface elements. 
Finally, the excavation is modelled by removing the plane-strain elements corresponding to the 
trench and applying the necessary loading to establish equilibrium. 

6.2.2 Limit-state functions 

The maximum horizontal ux displacement occurs at the top of the trench. The failure event F is 
defined as the event of ux exceeding a threshold of ux,t = 0.1m. Mathematically, this is expressed 
through the following limit state function: 

    xx xtx uug  ,  (6.5)
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This is a serviceability limit state, reflecting the assumed serviceability design requirements. A 
stability analysis, performed by application of the shear strength reduction technique ([81], see also 
Section 6.3.1) with the mean values of the random fields, resulted in a factor of safety of 2.5. In Eq. 
(6.5), ux(x) is evaluated by the FE analysis for given values of the random variables X. We assume 
that a measurement of the displacement ux is made at an intermediate excavation step of 2.5m 
depth. This information is expressed by an event H, described by the following likelihood function: 

   , , ,( ) x m x m mL u u   x x      (6.6)

where ε,m is the standard deviation of the measurement error, which is a zero mean Gaussian 
random variable; φ(.) is the standard normal PDF. The corresponding equivalent inequality limit 
state function is obtained according to Eq. (6.7): 
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 (6.7)

where ua is the realization of the auxiliary standard normal random variable. The constant is chosen 
as c = σε,m, which satisfies the condition cL(x) ≤ 1 (refer to Section 5.2.2). 

6.2.3 Results 

Figure 6.9 depicts the deformed configuration at the final excavation stage computed with the mean 
values of the random fields. This analysis gives a first-order approximation of the mean (expected) 
displacements. At the top of the trench, the estimated mean value of the horizontal displacement ux 
is 50.2mm. 

 

 
Figure 6.9: Magnified deformed configuration at the final excavation step. 
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The reliability analysis is performed by means of subset simulation with parameters p0 = 0.1 and N 
= 500. Without measurements, the computed failure probability is P(F) = 1.36×10-2 with a 
corresponding reliability index β = 2.21. 

For the estimation of the updated failure probability conditional on the measurement event H, 
the integrals in Eq. (5.13) were evaluated with subset simulation. The reliability updating was 
performed for different measurement outcomes ux,m, and different values of the standard deviation 
σε,m of the measurement error. The results are summarized in Table 6.6 and the computed reliability 
indices are plotted in Figure 6.10. For comparison, the (a-priori) first-order approximation of the 
expected value of the measurement outcome ux,m is computed as 2.6mm. 

Not surprisingly, for measurements significantly higher than the expected value, the updated 
failure probability is higher than the prior probability. This difference is more pronounced when the 
measurement device is more accurate, i.e. when σε,m is smaller. For measurements lower than the 
expected value, the updated failure probability is lower than the prior probability. Again, the 
difference increases with decreasing value of σε,m, because this implies a higher information content 
of the measurement. It is noted that a measurement that corresponds exactly to the expected value 
of the deformation would lead to a posterior failure probability that is lower than the prior 
probability, due to a reduction of uncertainty. 

The analysis assumes in-plane symmetry. This is a valid assumption in the absence of spatial 
variability considerations. However, for the present example this assumption neglects asymmetric 
realizations of the random fields, which can possibly influence the computed reliability. Moreover, 
since the analysis is performed in 2D, the correlation length in the out-of-plane direction is assumed 
to be infinite.  

Table 6.6: Updated failure probability and reliability index. 

Measurement σε,m = 2mm  σε,m = 1mm  

 P(F|H) β P(F|H) β 

ux,m = 10 mm 
ux,m = 5 mm 
ux,m = 2 mm 

2.18×10-1 
2.09×10-2 
6.74×10-3 

0.78 
2.04 
2.47 

3.31×10-1 
3.59×10-2 
1.84×10-3 

0.44 
1.80 
2.90 
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Figure 6.10: Reliability index against measured displacement. 
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The number of deterministic FE analyses required by the subset simulation ranges between 1900 
and 3700, which includes the evaluation of both integrals in Eq. (5.13). The higher amount of 
computations is observed in the case where the assumed measurement differs considerably from the 
expected value (i.e. the case where ux,m = 10mm). This is due to the small value of the probability 
P(He) in Eq. (5.13), resulting in a larger number of levels M in the corresponding run of the subset 
simulation algorithm. 

For practical implementation, the reliability can be computed conditional on different 
hypothetical measurement outcomes, prior to the in-situ measurement. Then a threshold value for 
the actual measurement may be obtained as a function of the target reliability index βt as illustrated 
in Figure 6.11. Assuming that the target reliability is βt = 2.5 and the measurement accuracy is σε,m 
= 1mm, the threshold value is 3.1mm. Any measurement larger than this value corresponds to a 
reliability index less than the acceptable one. This would indicate that the retaining wall would not 
satisfy the reliability requirements at the final excavation stage and additional measures (e.g. 
anchors) would be necessary. 
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Figure 6.11: Evaluation of a threshold measurement value for an accepted reliability index βt = 2.5 and a 

measurement device with σε,m = 1mm. 

6.3 Reliability-based design of slope angle 

In the practical situation of a trench excavation, the geotechnical engineer may decide upon the 
desired target slope reliability, depending on the particular safety requirements. This example 
describes a procedure for the design of the slope angle given the target reliability index. To this end, 
the inverse FORM discussed in Section 4.4 is applied along with the shear strength reduction 
method for finite element slope stability analysis [81]. The spatial variability of the soil is included 
by embedding the slope profile in a standard domain and performing a series expansion of the 
relevant random fields in that domain, i.e. applying the embedded domain discretization approach 
presented in Section 2.5.5. This approach allows the definition of a consistent representation of the 
spatial variability, independent of the changes of the geometry of the slope profile as the slope angle 
is varied in the process of finding the optimal solution. A selection of the results presented in the 
section can be found in [93], while a similar application is presented in [131]. 
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6.3.1 Finite element slope stability analysis 

The example consists of a homogeneous slope with a foundation layer (H = 5m, D = 10m, see 
Figure 6.12). Τhe slope angle θ can be selected by the designer. Clearly, an increase in the slope 
angle will lead to a reduction of the cost for the excavation of the trench, but also to a decrease of 
slope stability. The slope is modeled in 2D with plain strain elasto-plastic elements, with a yield 
surface governed by the Mohr-Coulomb failure criterion. The FE mesh is shown in Figure 6.13. 
The elasto-plastic deformations are computed as the converged pseudo time-dependent elasto-
viscoplastic solution, applying the viscoplastic strain method ([124], [141]). 

The material properties of the soil are given in Table 6.7. The considered random variables are 
those relevant to shear failure, i.e. the friction angle φ and the cohesion c. Both variables are 
modeled by lognormal random fields, say Xi(t), i = φ, c, where t stands for the location vector. 
Utilizing the Nataf distribution, we can define a marginal transformation of the lognormal field Xi(t) 
to an equivalent Gaussian field Ui(t), as follows (see Section 2.4.6): 

     lni iU Xt t  (6.8)

In the case where data are available, the correlation structure of the underlying Gaussian fields Ui(t) 
can be estimated. Here, it is assumed that the fields Ui(t) have the exponential autocorrelation 
coefficient function of Eq. (6.3) and the correlation length is considered identical in both directions. 

The fields Ui(t) are discretized by the Karhunen-Loève (KL) expansion, applying the embedded-
domain approach, presented in Section 2.5.5. The approach utilizes the rectangular domain Ωr, 
shown in Figure 6.14, for the solution of the Fredholm eigenvalue problem. Moreover, the selected 
form of the auto-correlation coefficient function allows a closed form solution to the eigenvalue 
problem in the rectangular domain Ωr [41]. 

θ
H

D θ
H

D

 
Figure 6.12: Slope profile. 

 

Table 6.7: Material properties. 

Parameter Distribution Mean CV 

Specific weight γ [kN/m3] 
Young’s modulus E [MPa] 
Poisson’s ratio ν 
Friction angle φ [º] 
Cohesion c [kPa] 
Dilatancy angle ψ [º] 

- 
- 
- 
Lognormal  
Lognormal 
- 

20.0 
100.0 
0.3 
12  
15.0 
0  

- 
- 
- 
10% 
20% 
- 
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Figure 6.13: Finite element mesh of the example slope. 

Note that in the FE modeling process, we take advantage of the symmetry of the trench and 
therefore we model just one half of the soil profile, as shown in Figure 6.13. However, this 
consideration becomes an approximation when randomness in the soil material is taken into 
account. 

For the sake of simplicity, a deterministic value of ψ = 0 is taken, corresponding to a non-
associated flow rule.  It has been shown that this selection for the value of the dilatancy angle yields 
reliable safety factors [49]. For the remaining material parameters (E, ν and γ), the deterministic 
values listed in Table 6.7 are considered, since the influences of their uncertainties on the stability 
of the slope are insignificant. 

The factor of safety of the slope is computed applying the shear strength reduction technique 
[81]. According to this approach, the factor of safety (FS) is defined as the number by which the 
original strength parameters (the tangent for the friction angle) must be divided in order to bring the 
slope to the failure state. This definition is strictly equivalent to the classical definition of the factor 
of safety used in the limit-equilibrium methods (e.g. see [37]). Denoting the factored strength 
parameters by φf, cf, we have: 

 
 

f

tan
arctan

FS

φ
φ

 
  

 
 (6.9)

 f FS

c
c   (6.10)

For a given realization of the soil properties, the FS is computed by applying a stepwise procedure, 
whereby the strength parameters are gradually reduced by an increasing factor FSi and an elasto-
plastic FE computation is performed at each step i. The procedure continues until the factor FSi 
reaches a value at which failure occurs. Failure is defined in this study as the failure of convergence 
of the viscoplastic strain algorithm after a given maximum number of iterations. 

The limit-state function, with negative values defining the failure condition of the slope, is given 
by: 

    , FS , 1g  x x   (6.11)

Starting from an initial slope θ = arctan(0.5) ≈ 26.6° (corresponding to a factor of safety FS = 1.77 
for the mean properties of the soil), we aim at finding the optimal slope angle for a target reliability 
index of βt = 3.4. To this end, we apply the inverse FORM procedure described in Section 4.4. 



6.3. Reliability-based design of slope angle 131 
 

 

Actual domain Ω

Rectangular standard domain Ωr

Actual domain Ω

Rectangular standard domain Ωr
 

Figure 6.14: Embedded domain discretization of the random fields describing the strength parameters. 

It should be noted that the description of the random fields Ui(z) is not affected by the change of the 
geometry that takes place due to the change of the slope angle θ at each iteration step of the inverse 
FORM algorithm. This is due to the fact that the discretization of Ui(z) is based on the rectangular 
domain Ωr and therefore is independent of the actual domain Ω (see Figure 6.14). 

6.3.2 Results 

In a first step, an infinite correlation length is selected, so that the random fields reduce to random 
variables. The inverse FORM algorithm converged in 5 iteration steps with the solution θ = 34.8°, 
which corresponds to a FS = 1.58 for the mean soil material properties. Figure 6.15 shows the 
deformed mesh at failure (i.e. with the mean values of the strength parameters reduced until failure 
occurs) for the initial and design values of θ. 
 

 
(a)  

 
(b) 

Figure 6.15: Deformed mesh at failure for (a) the initial design θ = 26.6 and (b) the final design when the 
spatial variability is neglected θ = 34.8. 
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Spatial variabilities of the friction angle and cohesion are taken into account for three different 
correlation lengths:  l = 5m, 10m and 20m. To validate the applicability of the embedded-domain 
(KL-ED) approach, we compare its convergence to the one of the standard FE approach for solving 
the Fredholm eigenvalue problem in the actual domain (KL-FE) (see Section 2.5.3), using the FE 
mesh shown in Figure 6.13. The error measure err(t) used in the convergence study is the variance 
of the truncation error of the KL expansion divided by the variance of the original field [see Eq. 
(2.163)]. In Figure 6.16, the spatial average of err(t) over the domain Ω is plotted against the 
number of terms in the KL expansion, for both methods. As expected, the smaller error at any order 
of expansion is obtained by the standard KL-FE approach, since the approximated eigenfunctions 
are optimal for that domain. However, the errors obtained by the two approaches at each order of 
expansion do not differ significantly.  
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Figure 6.16: Spatial average of error variance against number of terms in the expansions. 
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The number of random variables used for the ED representation of each random field is 3, 6 and 18 
for the cases with l = 20m, 10m and 5m, respectively. This selection is based on the requirement 
that the spatial average of the relative variance of the truncation error of the field be less than 0.3. 
This requirement is verified in Table 6.8, where the computed reliability index β for the design 
slope of Figure 6.15 is compared to the number of terms in the KL-ED expansion for the case where 
l = 10m. Table 6.8 shows that 6 terms in the expansion yield a reasonable approximation of β. 

 

Table 6.8: Influence of the number of terms in the KL-ED expansion on the reliability index β for l = 10 m. 

Order of KL-ED expansion Spatial average of error variance β 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.650 
0.496  
0.419 
0.357 
0.316 
0.288 
0.263 
0.242 
0.225 
0.211 

5.285  
4.237 
4.095 
3.999 
3.919 
3.854 
3.843 
3.835 
3.832 
3.831 

 
 
For each correlation length, we consider three different cases: in the first two, only the spatial 
variability of one of the two soil strength parameters is taken into account, while the other is 
modeled as a random variable; in the third case the spatial variability of both parameters is 
considered with equal correlation lengths. The inverse FORM converged in all cases within 5-7 
iteration steps. In Figure 6.17, the optimal slope angle is plotted against the correlation length for a 
progressive consideration of the spatial variability of c and φ. Figure 6.18 shows the corresponding 
factors of safety computed for the mean values of the soil properties at each design. The results 
indicate that the cohesion c is the most influential parameter, in this particular slope. Moreover, the 
consideration of the spatial variability of cohesion leads to significantly larger values of the optimal 
slope angle (respectively smaller values of the required factor of safety) compared to the one 
obtained, when the soil properties are considered to be random variables. As an example, in the case 
l = 5m, neglecting the spatial variability of the cohesion leads to a 20% smaller reliability-based 
slope design angle. 
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Figure 6.17: Influence of the spatial variability of φ and c on the reliability-based slope angle design. 
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Figure 6.18: Influence of the spatial variability of φ and c on the factor of safety FS at the reliability-based 

design. 

 
In Figure 6.19, the realization of the cohesion at the most probable failure point is plotted for the 
final design and for the three different considered correlation lengths. The plots show that low 
values of the cohesion are concentrated at the location where the failure is initiated. In addition, 
failure initiation becomes more local as the correlation length becomes smaller. Conversely, for 
large correlation lengths, weak material is distributed throughout the domain at failure. This implies 
that a small correlation length allows local loss of strength to lead to failure, since the event of weak 
material in a specific location of an otherwise high strength soil is part of the sample space. 
However, a large number of such events that do not lead to failure will also be part of the sample 
space. On the other hand, the possibility of events that can lead to localized failure decreases as the 
correlation length becomes larger. This explains the finding that for small correlation lengths more 
reliable slopes and, therefore, less conservative slope angle designs arise. 
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Figure 6.19: Realization of the cohesion at the most probable failure point for the final design. 
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This thesis presented mathematical and numerical concepts for the modeling of uncertain quantities 
in structural systems and provided a detailed review of methods for non-intrusive finite element 
(FE) structural reliability assessment. These methods have been implemented in a tool that is 
coupled with a commercial FE software package. A summary of the main outcomes of this work 
throughout its chapters is given bellow. 

 Chapter 2 collected the basic concepts of the theory of probability and random variables that 
are needed for the modeling of uncertainties. The second part of the chapter focused on the 
representation of the spatial variability of uncertain quantities by application of random field 
theory. An overview of the existing random field discretization methods, i.e. methods for the 
representation of the random field using a finite number of random variables, was presented. 
The methods were compared in terms of their efficiency and advantages as well as drawbacks 
of each method were specified. Moreover, a novel discretization approach for the treatment of 
random fields defined on non-standard domains was proposed. The method is based on the 
Karhunen-Loève expansion, but solves the associated integral eigenvalue problem in an 
embedded rectangular volume. The validity of this approach was verified by its convergent 
behavior for several numerical examples. The method can be advantageous in FE models with 
complex domains, where the numerical solution of the eigenvalue problem involves 
considerable computational cost, or for domains that change throughout the computation. 

 Chapter 3 presented the basics on reliability analysis. Therein, the definitions of the limit-state 
function and the generalized reliability index were given. Moreover, the system reliability 
problem and the corresponding equivalent definition of the limit-state function were 
introduced. 

 Chapter 4 presented a review of the implemented FE reliability analysis methods. The first 
part of the chapter focused on approximation methods (FORM/SORM) and their application 
to both component and system reliability problems. The determination of the most probable 
failure point (also known as design point), required for the FORM/SORM, involves the 

7 Conclusion 
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solution of an equality-constrained quadratic optimization problem. Several existing 
optimization algorithms were presented and a novel approach, based on an adaptive selection 
of the step-length for the gradient projection method was introduced. The method presented a 
robust convergence behavior for the examples considered, overcoming the well known 
instability of the standard gradient projection algorithm. The second part of the chapter 
provided a detailed presentation of existing simulation methods with a focus on advanced 
sampling techniques for the reduction of the variance of the probability estimate. A 
conditional importance sampling method was introduced that improved the performance of 
the standard importance sampling. Moreover, an adaptive directional importance sampling 
method was proposed based on an initial simulation with a set of uniformly distributed 
deterministic directions. This approach has the advantage that the evaluation of the design 
point is not needed and thus it can be used in cases where the FORM optimization algorithm 
fails to converge. Next, simulation of problems involving a large number of random variables 
was treated and an existing approach, namely the subset simulation, was presented in detail. 
The final part of the chapter presented the implemented response surface methods that create 
a surrogate model of the FE solver, based on an experimental design.  

 Chapter 5 introduced the problem of updating the reliability estimate conditional on available 
information. Special care must be taken for problems where the information is of equality-
type, e.g. measurement of a system characteristic. Two existing methods that are able to 
approach such problems were reviewed. 

 Chapter 6 presented three industrial applications that demonstrated the applicability of the 
methods described in the previous chapters. The first example examined the performance of 
various reliability methods for the reliability analysis of a deep circular tunnel surrounded by 
weak rock. The second example proposed an approach for the reliability updating of 
geotechnical sites conditional on measurement information obtained in-situ. The proposed 
approach combined random field modeling of the spatial variability of the soil material, a 
recently proposed reliability updating method that is able to handle measurement information 
and the subset simulation method for coping with the large number of random variables 
arising from the discretization of the random fields. The third example presented a 
methodology for the reliability-based design of the slope angle accounting for the spatial 
variability of the soil. This approach combined an inverse FORM algorithm with the 
embedded-domain method for the discretization of the random fields. The latter method 
allowed a constant discretization throughout the inverse FORM optimization procedure, since 
the random field description is not affected by the change of the geometry of the slope profile 
that takes place at each iteration step. 
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