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Abstract

This thesis presents a novel and robust vision-based 3D multiple human tracking

system. It is capable of automatically identifying, labelling and tracking multiple

humans in real-time even when they occlude each other. The primary contribution

is a methodology to improve the robustness of the human tracking system and

demonstrate its integration into real-world scenarios. The proposal is a system

consisting of 2 stages, 1. a vision based human tracking system using multiple

visual cues with a robust occlusion handling module, and 2. a machine learning

based module for intelligent multi-modal fusion and self adapting the system towards

drastic changes in lighting conditions. The function of the intelligent fusion module

is to perform an on line analysis of image parameters that influence the performance

of the tracker. According to this analysis, optimal weights are generated for each

visual modality, determining its contribution in the current scene.

The thesis also proposes a novel approach to validate the 3D multiple human track-

ing system through zero-error ground truth data. Further, it proposes and demon-

strates that the author’s work can be easily integrated into a variety of distributed

robotic systems being used in real world applications. The main focus of this the-

sis is in the area of Human-Robot Interaction, which requires real-time and precise

information of the human positions to guarantee the safe interaction.





Zusammenfassung

Die vorliegende Dissertation beschreibt ein neuartiges und robustes bildbasiertes

System zur dreidimensionalen Positionsverfolgung mehrerer Menschen. Es ist fähig,

mehrere Personen automatisch in Echtzeit zu identifizieren, zu markieren und zu ver-

folgen - selbst im Fall von gegenseitigen Verdeckungen. Den primären Beitrag der

Arbeit bildet eine Methodik zur Verbesserung der Robustheit bildbasierter Verfol-

gung von Menschen und eine Demonstration der Umsetzung in realistischen Szenar-

ien.

Das vorgeschlagene System besteht aus zwei Stufen. Die erste ist ein bildbasiertes

System zur Verfolgung von Personen unter Verwendung multipler visueller Wahrneh-

mungselemente mit einem robusten Modul zur Verdeckungsbehandlung, die zweite

eine Einheit zur intelligenten multi-modalen Fusionierung und Selbstanpassung des

Systems an drastische Beleuchtungsänderungen unter Zuhilfenahme maschinellen

Lernens. Die Aufgabe des intelligenten Fusionierungsmoduls ist die Durchführung

einer Online-Analyse von Bildparametern, die Einfluss auf die Performanz des Ver-

folgungsalgorithmus haben. Entsprechend dieser Analyse werden optimale Gewichte

für jede visuelle Modalität berechnet, durch die ihr Beitrag an der Positionsermit-

tlung für die momentane Szene bestimmt wird. Die Arbeit stellt auÃerdem einen

neuen Ansatz zur Validierung des dreidimensionalen Personenverfolgungsalgorith-

mus mit Hilfe von fehlerfreien Messdaten vor. Weiterhin wird die Möglichkeit der ein-

fachen Integration des vorgeschlagenen Systems in eine Vielzahl verteilter, praktisch

eingesetzter Robotiksysteme dargelegt. Der Schwerpunkt der Arbeit liegt im Bereich

der Mensch-Roboter-Interaktion, welche präzise Informationen der menschlichen Po-

sitionsdaten in Echtzeit benötigt, um eine sichere Zusammenarbeit zwischen Mensch

und Roboter zu gewährleisten.
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Chapter 1

Introduction

Over the past few decades robotic technology has developed rapidly [9, 10, 11]. Researchers

have been investigating, with immense success, to systematically accommodate robots within

the human space and possess cognitive abilities. Robots came into existence with the primary

purpose of serving the auto mobile and automation industry [12, 13, 14, 15, 16, 17, 18, 19].

Fig. 1.1 shows a typical industrial robot arm in an car manufacturing assembly line. As

technology progressed, they evolved further with abilities to perform complex tasks. This

facilitated their use in other service domains such as monitoring, servoing, transportation etc.

Robots were deployed in power plants, bio-tech labs, surgical environments, etc. in order to

improve efficiency and enable tasks in environments where humans safety was of concern. Fig.

1.2 is an example of a service robot [20] in a bio-tech lab. As robots evolved further, they

reached a superior state of intelligence. In the recent years, researchers have achieved immense

success in accommodating robots within the human space [21, 22, 23, 24, 25]. Contrary to the

past, where robots and humans did not share a common workspace, today the focus is more

towards human robot interaction, both in the industrial and social domain. Social robotics is

a new area, in which research is aimed towards developing robots to be a part of the daily

lives of humans. This requires integration of modern sensors and sophisticated algorithms in

order to sample information and understand the composition of the surrounding environment

in real-time. Collaborative tasks between humans and robots demands a high degree of safety,

both for humans and robots [9]. The robot requires to be aware of the actions of the humans

and their activities in real-time in order to execute its task safely.

Computer vision [26] has served as an important tool in imparting intelligence to robot

systems [27]. This thesis focuses on an area of computer vision, involving localisation and
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Figure 1.1: Industrial robots in a car assembly plant.

tracking of humans in a shared robotic workspace. This chapter will discuss the role of computer

vision and human motion tracking in robotics and their shortcomings when applied to real-world

scenarios. On the basis of these arguments, the objectives and contribution of this thesis will

be formulated.

1.1 Computer Vision for Sensor Driven Robotics

One of the major factors that resulted in robotics technology reaching newer heights is computer

vision. Visual sensors integrated into robot systems and computer vision algorithms have paved

the way for intelligent sensor driven robotics [28, 29, 30, 31, 32, 33]. Computer vision in itself is

a wide area, and involves a large collection of algorithms to analyse the environment by using

visual sensors. These algorithms interpret important events in the environment, which are

further used by the robot to make correct decisions and execute the required tasks. A number

of computer vision libraries exist providing application programming interfaces [34, 2, 35].

These libraries are engineered to provide a collection of computer vision algorithms, image

processing techniques and sensor interfaces. Using the resources available, different computer

vision applications can be developed.
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Figure 1.2: A mobile robot with an industrial arm in a bio-tech laboratory [1].

1.1.1 Visual Tracking

Visual tracking is one of the key areas within computer vision and involves localisation and

tracking of a subject or subjects of interest. The subjects can be objects, humans, features

within objects, etc. The pose of the targets are computed in 2D or 3D and depends on how

many degrees of freedom the target is modelled with. Several algorithms have been developed

to perform model based tracking where pre-defined models of the targets are generated offline

and used for tracking using visual information obtained from a one or more cameras. The target

model can be as simple as a rigid cube or a complete articulated human with many degrees

of freedom [36]. Tracking of deformable surfaces is also possible which has found use case in

augmented reality [37].

1.1.2 Tracking Humans in Shared Workspaces

This area of computer vision deals with the problems of tracking a single or multiple humans

in one or more camera views. It can be applied to a variety of applications such as surveillance,

animation, virtual-augmented reality, human robot interaction etc. Different types of human

tracking systems exist depending on the methodology, target modelling, visual sensors used,

etc. [38]. Some model the target as a simple box, while some use a complete 3D CAD model

describing the shape and articulation together with the appearance. This depends on the main
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goal of the tracker. For some cases a simple target representation is enough to achieve the task.

Variety of algorithms exist for tracking and retrieving the target’s pose. The pose returned by

the object could be either 2D or 3D depending on the state representation.

1.1.3 Requirements in Real-world Scenarios

Vision based tracking systems find use cases in a wide range of real-world applications. However,

they are required to be extremely robust in order to perform within the specifications and safety

regulations [39, 40, 41, 42]. This is also true for human tracking systems. Robustness is a key

factor for their safe deployment in real-word applications. The system should consistently

perform, within specifications, for all possible scenarios that the application might encounter.

Therefore, robustness of any human tracking system is of primary importance in real-world

scenarios.

1.1.4 Shortcomings of Existing Systems

A large number of vision based human tracking systems exist and will be highlighted in Chapter.

2. In this section the common problem faced by most of these systems when used in real-world

scenarios will be discussed.

Developing a robust human tracking system, which will perform with consistent robustness

in all possible scenarios is a challenging task. The robustness depends on multiple factors

such as visual modalities, data fusion, sensor parameters, workspace conditions, etc. The key

factor affecting robustness is degradation in the quality of information from the sensors. The

primary reason for this is abrupt changes in the tracking environment due to external factors.

Such a situation is highly probable since tracking environments do not necessarily have static

conditions and they could change without prior information. A typical example is when the

lighting condition in the tracking environment changes. Such a change affects the image quality

acquired from the cameras. Under such circumstances, if the tracking algorithm uses a visual

cue such a colour, it could fail when the lighting condition changes or fluctuates.

There are other factors which could affect visual cues such as intensity edges, optical flow

etc. Hence, relying on a single visual cue is not optimal. Multi-modal fusion is an option,

but also has dis-advantages. The performance of each visual modality depends on certain

parameters. Abrupt changes in different parameters in the tracking environment can influence

different modalities in different ways. Therefore, when a certain modality or a set of modalities

are performing with the desired robustness and if a specific modality fails, it can cause the whole
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system to fail. Hence, static multi-modal fusion can under-perform in dynamic environments.

Furthermore, certain modalities are suitable only under specific conditions but they reduce the

robustness of the system in less favourable conditions.

Another important issue is system integration. Most human tracking systems perform im-

pressively when used alone but when integrated into larger distributed systems for e.g. robotic

systems, their robustness level reduces. This is due to the physical constraints introduced by

the robotic system causing the environment to become more dynamic. For e.g when tracking

humans in a workspace occlusion handling becomes tougher when the humans are occluded by

a robot in a camera view and the position of the robot is not tracked. Even if the position

of the robot is tracked the loss of visual information of the human target in the camera view

cannot be avoided.

Many impressive human tracking system exists with robustness claims. However, most of

them do not provide experimental evaluation under situation of claimed robustness. The system

described in [43] demonstrates impressive 3D tracking results for multiple humans and claims

to be invariant to lighting conditions but there are no concrete experiments conducted with

respect to changing light to validate this claim. [44] demonstrates another interesting stereo

based human tracking system using a 3D model. Their system shows impressive performance

but does not show any evaluation under dynamically changing scenarios. In addition these

systems do not shows how robust their performance is when integrated with larger systems in

order to find suitable use cases. This test is important as most vision system find use cases

within larger distributed systems. Chapter. 2 will discuss these issues in greater detail.

The main contributions of this thesis is a general purpose human tracking system with the

primary objective of robustness enhancement in order to facilitate its use in a real-world robotic

systems. Integration into real-world robotic systems and validating the robust performance of

the system in dynamical environments is also an important contribution. The next section will

formulate the core contributions of this thesis.

1.2 Thesis Proposal

The primary contribution of this thesis are as listed below:

• 3D Multiple Human Detection and Tracking System

• Robustness Enhancement by Machine Learning
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• Validation of Different Robustness Aspects

• General Purpose Interface for Stand Alone Operation

• Integration into Real-World Robotic Systems

The following subsection introduces the contributions in brief.

1.2.1 3D Multiple Human Detection and Tracking System

It is a vision based system, capable of automatically detecting human targets within a defined

tracking area. After detecting the targets, the motion of each target is tracked with a 3D

pose in real-time. It uses a combination of visual sensors and computer vision algorithms to

perform this task. The system has an ability to resolve multiple target occlusions in real-time

and maintain individual trajectories, provided the targets do not leave the designated tracking

area. The occlusion handling system guarantees robust tracking under circumstances of mutual

occlusion in multiple camera views.

1.2.2 Robustness Enhancement by Machine Learning

A machine learning based approach is introduced to train and classify lighting conditions in the

tracking environment. Since lighting conditions are highly influential in robust visual track-

ing, its classification helps the tracker to take important decisions to maintain the robustness.

Depending on the classification, intelligent multi-modal fusion of two visual cues is performed.

The optimal proportion in which the visual cues should be fused in order to achieve the desired

robustness is computed. This approach improves the robustness of the tracking system in terms

of self adaptability to changing tracking conditions.

Although classifying lighting conditions is useful in multi-modal fusion, it also finds an

important use-case in robust pre-processing of camera images, such as background segmenta-

tion. Sudden changes in lighting conditions can be detected and the background model can

be updated using this approach. The background model update is not trivial in presence of

foreground targets. This thesis introduces an approach to identify such situations and update

the background model in presence of foreground targets under changing lighting conditions.

This exercise improves the robustness of the system to a great extent. Thereby, a general pur-

pose human tracking system suitable for a wide range of applications and environments can be

realized.
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1.2.3 Validation of Different Robustness Aspects

The system is validated through a set of experiments. Each experiments is unique and validates

the robustness of the system under a specific scenario. In this manner the performance of the

system in different scenarios are evaluated. A novel approach to generate zero error ground

truth has been developed which could be used as a benchmarking tool. Thereby, the system is

validated for each robustness claim made.

1.2.4 General Purpose Interface for Stand Alone Operation

It serves as an interface between the human tracking system and other systems within a dis-

tributed framework. It is implemented using TCP/IP sockets. The interface is designed in

a way to facilitate stand alone operation and thereby providing plug and play functionality.

Within a distributed system, different systems can connect to the multiple human tracking

system and retrieve information of the targets. The protocol is designed to provide a variety of

functionalities depending on the information required. For e.g. a particular system might re-

quire only the information regarding a certain target while another would want data concerning

all targets. Furthermore, its also possible to retrieve specific information such as ids, velocity,

position, trajectory etc. for each target. The interface also allows other systems to remotely

control the operation of the multiple human tracking system.

1.2.5 Integration with Real-World Robotic Systems

The thesis demonstrates how the system is designed in order to facilitate easy integration into

a variety of real-world robotic systems. As mentioned before, the 3D multiple human tracking

system is a stand alone system and can be interfaced with larger systems through generally

purpose communication interface rather than complete integration within. The performance of

the system is validated through demonstration scenarios in application such as visual servoing

of humans for automatic cameraman in indoor applications, stero-scopic rendering in virtual

reality scenarios, human interaction with virtual objects in augmented reality, 3D position based

visual servoing of multiple humans and close range safe human-robot-object interaction.

In addition to the primary contributions the thesis also proposes two independent visual

tracking systems used as complimentary systems within specific robotic demonstrators. The

following subsections will introduce in Chapter. 6.
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1.3 Discussion

In this chapter a overview into the evolution in the area of robotics was discussed. It highlighted

the importance of computer vision in the area of robotics with a special focus on tracking humans

in a shared robotic workspace. It emphasised the deficiencies and limitations of such systems

when used in real-world applications. This thesis proposes a human tracking system with a

focus on robustness enhancement and integration into real-word robotic systems, to improve

its performance and reliability. In the course of the thesis, each aspect of the proposed system

will be discussed in detail.

1.4 Thesis Contents

The contents of this thesis are distributed over several chapters, each addressing a specific phase

in the thesis work. Following the introduction, already discussed in Chapter 1, the state of the

art in vision based human tracking systems is described in Chapter 2. This highlights different

methodologies and their advantages and limitations. Thereby, the motivation to develop a

general purpose and robust human tracking system is justified. Chapter 3 introduces the novel

general purpose human tracking system and its modular construction, following the design

principles of the OpenTL Library [2, 36]. The OpenTL Library is introduced, to which the

author has been an active contributor. The human tracking system is discussed in detail

with extensive discussion on each building block. Further, in Chapter 4, a novel approach

to improve the robustness of the system in dynamic environments using machine learning is

introduced and discussed in detail. Chapter 5 describes the experiments performed to validate

and benchmark the system in different scenarios. These experiments were performed in real

and simulated environments. Following the experiments, Chapter 6 describes the integration

of the human tracking system into several real-word robotic applications which were tested,

verified and demonstrated. These include laboratory, public exhibitions and industrial set-ups.

It also introduces a vision based system, a 2D face tracking system and a 3D object tracking

system, that is used in two of the demonstration scenarios. Finally, Chapter 7 summarises the

conclusions drawn from this thesis, followed by the possible improvements in different aspects

of the system through future work.
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Chapter 2

Prior Art

This chapter addresses the state of the art in vision based human detection and tracking. It

provides an insight into existing systems in this area and classifies them on the basis of the

methodology. With respect to the state of the art, the main contribution of this thesis is

formulated thereafter.

2.1 Human Detection and Tracking

There is a considerable amount of literature in the area of human detection and tracking, also

referred as person or people tracking [45] [46] [47], [48]. These approaches differ on different

aspects such as number of targets, modelling, pose estimation, tracking methodology, sensor

etc. In this chapter different types of human tracking systems will be highlighted. Within each

type, a set of relevant systems will be discussed. The main focus will be on multi camera based

human tracking systems since the contribution of this thesis is in the similar area. Due to the

large number of approaches and systems in each area of human tracking, a comprehensive study

of each system is out of the scope of this chapter. In addition, the main focus of this thesis

is to address the robustness issues of vision based human tracking systems in a general set-up.

It highlights the factors that affect the robustness of a wide range of vision based systems.

Therefore, in this chapter the relevant approaches will mentioned and credited, but they wont

be analysed critically. Instead, a general common problem formulation will be introduced which

could benefit a variety of systems.
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2.1.1 Single Target Trackers

These systems are capable of detecting and keeping track of a single target. Many popular

systems for single target tracking are based on colour histogram statistics [49, 50, 51, 52] and

employ a pre-defined shape and appearance model throughout the whole task.

In particular, [51] uses a standard particle filter with colour histogram likelihood with respect

to a reference image of the target, while [50] improves this method by adapting the model on-

line to light variations, which, however may introduce drift problems in presence of partial

occlusions. The same colour likelihood is used by the well-known mean-shift kernel tracker [52].

The person tracking system [49] employs a complex model of shape and appearance, where

colour and shape blobs are modelled by multiple Gaussian distributions, with articulated degrees

of freedom, thus requiring a complex modelling phase, as well as several parameter specifica-

tions.

2.1.2 Sliding Window Techniques

In the sliding window approach the image is scanned at relevant positions and scales in order

to detect people. There are two components involved, which are the features and the classifier

[53]. The feature provides appearance information and the classifiers determine the possibility

of a successful detection of the person within the window. These methods are computationally

exhaustive but advances in GPU computing have led to the possibility of real-time performances.

The system demonstrated by [54] is a good example. A variety of features and classifiers have

been used within this approach. The most commonly used features are Haar wavelets, shape

contexts and histogram of oriented gradients [53]. The classifiers that are used are mainly SVM

and AdaBoost.

[55] uses a combinations of Haar features and a polynomial SVM classifier. They use a dense

representation using wavelets with scales of 16 and 32 pixels with a 75% overlap. Three different

types namely vertical, horizontal and diagonal allow the encoding of low frequency changes in

contrast. The feature vector for a 64× 128 pixel detection window is 1326 dimensions.

[56] uses histogram of oriented gradients as a feature. They compute the image derivatives

in x and y direction. Using these gradients a cell histogram is generated. The histogram blocks

are groups of cells with dimensions 2 × 2 with an overlap of one cell both in the x and y

directions. The final feature vector consists of normalized block histograms with a dimension

of 3780 for a 64× 128 detection window [53].
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[57] and [58] use shape contexts as a feature descriptor. This feature descriptor is based on

intensity edges. These edges are extracted using the Canny edge detector. The edges are stored

in a log-polar histogram [53]. In the sliding window, search dense sampling is performed. The

overall length of all feature descriptors for one test window is 3024 [53].

2.1.3 Part Based Models

[53] gives a good insight into a variety of approaches which rely on part based methods for

human tracking. The models used in these approaches consist of two parts. The first part

comprises of features which model different parts of the humans. The second part models the

human body topology [53]. A variety of part based models have been proposed such as upright

models [57] and articulated models [53].

[59] models the human in the form of a template consisting of different parts. The head,

torso, upper and lower arms forming the unique parts. They use probability estimation tech-

niques to detect and track people in 2D. Certain assumptions regarding the constraints on the

states of the pose are introduced and justified with respect to motion primitives [59]. The

likelihood computation is performed based on colour histograms. Their system is capable of

handling occlusions in the 2D scene. The system is claimed to perform between 10 and 13 fps

on a 2.66 GHz Core Duo PC.

2.1.4 Stereo Trackers

In the recent past, several systems have been developed to track humans using multiple cameras

in both un-calibrated and stereo-calibrated fashion [48].

[48] provides a systematic mention of approaches [60, 61, 62, 63, 64], which use un-calibrated

cameras and homography to perform people tracking. The homography constraint in each

camera view is used to compute the multiple projection of the principle axis of the target to the

ground [48]. The approaches stated above use the homography constraints in different ways.

[63] uses the homography constraint within a particle filter framework with an appearance

model for segmentation and matching of each hypothesis [48].

[48] use a slightly different approach. They make use of a combination of the perspective

geometry and the homography constraints from each camera view. This information is fused

to check for the presence of people in each camera view. Background subtraction is used for

segmenting the camera images for foreground information. The information from the multiple

cameras are used to solve occlusions.
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An approach based on fusing information from multiple cameras and using a sequential

Bayesian filter for each camera to estimate the state of the tracker is presented in [65]. In their

approach a hypothesis is assigned to one of the cameras and each camera has a different number

of hypothesis attached to it. The contribution obtained from each camera keeps changing,

depending on the prior information computed and the measurement data [65] obtained from

the cameras.

[66] present another multi-target tracking system using multiple cameras. Their approach

is focussed on a self-configuring camera network consisting of cameras with a pan-tilt. The

cameras keep a track of the targets and adjust their parameters with respect to each other in

order to obtain high resolution information of each target by collaboration. It also helps the

cameras keeping focus on the tracking area [66]. They use the Kalman-Consensus filter [67]

to perform the tracking of the targets [66]. Due to the continuous collaboration between the

cameras, their configuration keeps changing during the tracking process due to changing pan

and tilt settings [66].

Another multi camera approach is presented by [68]. However, in their approach, the cam-

eras are sparsely distributed and have non overlapping views. They model the appearance of

the targets and use a probabilistic framework to do the tracking. In order to minimize the

chances of occlusions, the cameras are mounted on the ceiling looking downwards. The human

object model is divided into three regions along the principle axis. The camera image is pre-

processed for background subtraction and foreground blob extraction. The foreground blob is

further used for feature extraction and used in the probabilistic framework.

[69], presents a multi camera approach to track people in cluttered scenes by performing

occlusion handling. They use colour models with background subtraction and a Bayesian es-

timation for tracking. They also propose a region based stereo algorithm, which is claimed to

be capable of detecting a 3D point in an object if its region in the image is known [69]. Their

algorithm runs at a rate of 5 seconds per frame on Pentium 2 Xeon 4 Mhz PC.

Further, [70] proposes a multi-view, multi-hypothesis system to track people on a ground

plane. They assume that the people could be occluded. They use colour based models and

ground plane homography to estimate the target positions [70]. They use iterative segmentation

with a particle filtering framework to tackle the large state space and reduce computational costs

[70].

[71] presents a slightly different approach of multi view tracking of people. They use multiple

cameras but do not detect or track targets from any single camera or a pair of cameras [71].
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Instead, they use information in combination from all view which is projected back to each

camera view. They do not require a calibrated set up. They use planar homographic occupancy

constraints for likelihood computation [71]. This is used to resolve occlusions. This fusion

method also models scene clutter using the Schmieder and Weathersby clutter measure [72, 73,

74, 75, 71].

[76] presents an approach to detect and track humans using stereo cameras. They combine

background segmentation with Kalman filtering supported by colour information of the targets.

The background segmentation is used to detect targets where the background is modelled using

a height map. A face detector assists the background segmentation process to detect human

targets. The cameras are positioned to see the faces of the targets. The tracker uses a Kalman

filter and colour information to track the targets when they are too close to each other. The

system can track targets up to a distance of 5 meters with a cycle time of 40 ms.

Multiple people trackers [77, 78, 79], have the common requirement of using a very little

and generic off-line information concerning the person’s shape and appearance, while building

and refining more precise models (colour, edges, background) during the on-line tracking task.

This unavoidable limitation is due to the more general context with respect to single-target

tracking, for which instead specific models can be built off-line.

The work presented in [80], uses a template based approach. This method uses about 4,500

templates to match pedestrians in images. The Chamfer distance measure is used for similarity

measure.

[43] combines target occupancy in the ground plane with colour and motion models to track

people in continuous video sequences. This approach requires heuristics to rank the individual

targets to avoid confusing them with another.

[81] also presents a vision based system to track human in multiple cameras. They use an

approach to find the limit on the field of view for one camera which is visible in the other

cameras. The FOV constraint is further used to disambiguate between correspondences.

[82] introduces a vision based 3D system for tracking people in a smart room. They use a

calibrated camera system within a distributed framework. Each camera runs on a dedicated

PC. Each PC computes the foreground region in its camera scene. They use a model adaptive

background model to obtain the foreground information from each camera. The detected fore-

ground regions are sent to a tracking agent which computes the locations of people from the

detected regions. [82] uses a probabilistic framework to do the tracking. They use two differ-

ent approaches, namely best-hypothesis heuristics and multi-hypothesis tracker [82]. They test
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their approach using a sequence containing two people walking in a conference room, recorded

by three cameras. Their results suggest that both approaches show comparable performances.

Another multi-camera approach in human motion tracking is presented by [83]. They use

grey scale images from multiple fixed cameras to perform the tracking. They use multivariate

Gaussian models to estimate the closest matches of humans between consecutive image frames

obtained from the cameras [83]. The algorithm runs in real-time.

The system proposed by [84] is aimed at tracking human motion with key focus on occlusions.

They use a multi-view approach to combat occlusions and articulated motion. Each camera

view is independently processed on an individual computer [84]. This processing step uses a

predictor-corrector filter [84] to weigh the re-projections of the 3D pose estimates with the

observed image motions [84]. The data from the correction step is provided as an input to a

Bayesian network. Within the Bayesian network, the observations from the different cameras

are fused together in order to resolve the independent relations and confidence levels [84]. An

additional Kalman filter is used to update the 3D state estimates. The system was tested on a

sequence with multiple people in motion. They claim from their experiments that their method

yields better results as compared to data fusion techniques based on averaging.

[85] present a multi camera people tracking system using Bayesian filtering based modality

fusion. They also resolve occlusion using multiple views. The cameras are un-calibrated and

widely arranged. They employ a modality fusion technique based on the approach by [86]. Their

approach works in two modes, namely single camera tracking in which subjects are matched

between consecutive frames and multi camera co-operative tracking where the subjects are

matched using information gained across cameras. [85] claims that the system can also be used

to track and follow multiple subjects through the field of views of different cameras.

[87] presents a stereo camera based people tracking system. They address the problem of

tracking in rooms where the camera cannot be mounted high enough. Due to this there is a

high probability of occlusions. They propose a method to project the 3D voxels on the tracking

floor and thereby track their peaks for the purpose of ignoring view changes due to low camera

mounting. They also provide forces among trackers to handle occlusions [87].

[88] presents another stereo cameras based people tracking system. It is a real-time system

to track humans over a wide area. Each individual camera detects and tracks the targets in its

view. A multi-camera fusion module combines tracks of a single target in all view to a global

track [88]. They use stereo segmentation to track multiple humans in cluttered scenes. Camera
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hand-off is performed through ground based fusion. The system was tested on a 12 camera

system.

2.1.5 Human Pose Trackers

Extensive research has been conducted in the area of human body pose tracking. In these

systems, the goal is to compute the articulated pose of the human body. The complexity of the

pose in terms of degrees of freedom varies according to the methodology used and the manner in

which the human is modelled. Survey by [45] provides the initial developments into this area.

Since the recent past, depth cameras with a wide range of accuracy and cost are available,

leading to their use in human pose tracking [89, 30, 90]. [91, 90] are few of the many systems

using such hardware.

One of the most impressive systems in this area has been [92]. Their approach computes

the 3D pose of the human body using a single depth image. The depth image camera of the

Kinect gaming platform is used. The method involves training of a large data set of human pose

represented in the form of depth maps which is further used to classify the human pose. The

training set models the human pose, body shapes and also clothing information. The training

images are generated synthetically with close resemblance to the real world. The training is

performed on a deep randomized decision forest. The algorithm runs at 200 fps. The robust

performance of the system depends on the range of the depth image sensor which in this case is

approximately 3 to 5 meters. Therefore, the use of such sensors in large workspace is limited.

2.1.6 Human Tracking in Robotic Scenarios

The ultimate goal of vision based people tracking systems is application scenarios. Robotics

finds many use for such systems. A variety of single and multiple people tracking systems have

been used in robotic systems to achieve various tasks.

[93] presents a vision based person tracker deployed on a mobile robot. They use colour

based blob detection combined with contour detection. The colour based part provides a rough

estimation and edge matching and a contour based model refines the result [93]. The system

was tested on a real robot in a natural indoor environment. The task of the robot was to track

and follow the person.

[94] presents a people detection and tracking system within a service robotic scenario. They

combine multiple sensor modalities in a general tracking framework [94]. They use learned

motion patterns to track the motion trajectories. A particle filtering approach is used combining
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laser scanner and camera image data. The observed trajectories are generalized using self

organizing maps [94]. These generalized patterns are used to predict the target’s position.

Their experiments show how multi-modality improves robustness of the system.

[95] presents another people tracking system applied to mobile robots. The system tracks fast

moving people in outdoor environments. The tracking is performed through a laser scanner and

an omnidirectional camera. They demonstrate two approaches. The first method uses visual

tracking and performs well under slow speed of targets. However, its performance degrades

under higher speeds. The second approach uses a combination of laser scanner and the camera

and performs well under dynamic conditions.

2.2 Motivation of the Thesis

The investigation into the state of the art confirms the extensive research being conducted

in the area of human tracking with several impressive systems. However, there exists a lot

of scope in terms of robustness enhancement. Many systems claim to be robust to dynamic

environments but they do not validate this claim with experiments in such conditions. For

e.g. [61] demonstrate a impressive multi-camera people tracking system with a probabilistic

occupancy map. They claim that their system is robust to light changes but there is not

experimental results to prove this. Similar claims are made by [63], where the target is modelled

to incorporate the illumination changes. However, there are no experiments in such conditions

to validate the tracker performance. In addition, the most of the above mentioned systems are

tested under stand alone conditions. In these tests the tracker is not integrated into complete

vision solutions. It is important that a system is also tested when it is integrated into a larger

system for e.g a robotic system since they introduce physical constraints.

The main goal of this thesis is to improve these systems in two ways. The first part is to

develop and complete human tracking system capable of automatically detecting and tracking

humans. The second part is to focus on the issues which effect the robustness of the system

when integrated into real-world dynamic environments. The thesis uses a novel approach in

the form of a bank of Bayesian Particle Filters combined with Intelligent Multi-modal fusion

of two visual modalities through machine learning. The novelty of the approach is the positive

impact on robustness in dynamic environments through occlusion handling, machine learning

based adaptation to drastically changing lighting conditions, intelligent multi-modal fusion and

the possibility of adapting individual Bayesian filters to the behaviour of their targets. Another
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important contribution of the thesis is a methodology to validate the systems performance

through experiments targeting different aspects of the system. The literature review confirmed

that in multi-camera systems for 3D human tracking there is not standardised benchmarking

technique as compared to pedestrian detection systems [96]. Different systems evaluate their

results in different ways. For e.g. [97] introduce an impressive system which can track multiple

people but the experiment is conducted using a single target and moreover the tracking results

are recorded by making the person stand at predefined locations. The tracker is not evaluated

when the target is in motion which is a very important test to evaluate the tracking accuracy.

The reason being, for stationary targets the tracker converges better as compared to moving

targets. Experiments with multiple targets interacting with each other is also essential but

missing. [70] test their system with multiple targets in indoor and outdoor conditions. The

ground truth is generated using manual marking schemes which induces its own errors. The

tracker evaluation using this ground truth does not provide an error free analysis of the tracking

accuracy. Therefore, in this thesis a novel method to generate zero error ground truth through

3D modelling and simulated animations has been implemented. Using zero error ground truth

data, the system has been evaluated in different aspects. The same experiments have also been

conducted in real-world scenarios.

In addition, the thesis also focusses on a general purpose interface in order to facilitate easy

integration into different robotic systems. In order to validate this claim 5 real-world robotic

demonstrations scenarios have been constructed and tested.

To summarize, the main limitations of vision based human tracking system operating in

real-world scenarios are:

• Dynamic behaviour of the environment such as changing lighting conditions

• Tracking speed

• Occlusion in case of multiple targets

• Easy systems integration into real-world scenarios

The motivation for this doctoral thesis is based on the limitations presented so far. The

main goal of this thesis is:

• To improve the robustness of the system in dynamic environments

• Provide real-time capabilities irrespective of the number of targets tracked
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• Handle occlusion in case of multiple targets

• Evaluate the system in different scenarios

• Provide a stand alone system architecture for easy integration with larger robotic systems
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Chapter 3

Multiple Human Tracking

System

3.1 Overview

In this chapter a detailed description of the real-time multiple human tracking system is pro-

vided. The system architecture and tracking methodology are presented.

The multiple human tracking system uses visual information from multiple cameras in order

to detect humans within a pre-defined workspace and thereafter, tracks their motion in real time.

The workspace is also referred as the tracking area. The system automatically detect humans

when they enter the tracking area. Following the detection, it keeps track of the 3D position of

each target, thereby providing an estimate of their motion trajectories. The detection process

operates independent of the tracking allowing detection of new targets when they enter the

tracking area. The visual tracking process is not interrupted by the detection of new targets.

Furthermore, one of the main features of this novel system is that its speed is not reduced when

the number of targets increases.

The system architecture is inspired by the OpenTL library [2, 36, 98] for rigid and articulated

object tracking. The author is an active contributor to its research and development. The

following sections provide detailed discussions about various aspects of the system. It will start

with a discussion about OpenTL followed by engineering methodology and functional pipeline

of the 3D multiple human tracking system.
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3.2 OpenTL Library for Rigid and Articulated Object

Tracking

OpenTL is a general-purpose software library for real-time, model-based and marker-less track-

ing of targets. It allows tracking of single or multiple targets with different degrees of freedom

using single or multiple cameras and different visual modalities. It supports a wide variety

of computer vision algorithms and systems. The software architecture is layered in the form

of an object-oriented software library. Each visual modality is described under a common

abstraction. A variety of data association and fusion schemes can be instantiated, providing

modularity, scalability and parametrisation. This library is a powerful tool for developers in

the computer vision and robotic communities.

3.2.1 Library Architecture

Measurement
Processing

Multi-target
Tracking

Object
Detection

s0 st

It

zt st-1

s-
t

shape appearance degrees of
freedom

dynamics

Models

Ground truthTrack loss detection

Δt

Evaluation

Output

sensors/
context

Figure 3.1: High-level flow diagram for a general visual tracking system [2].

Fig. 3.1 illustrates the processing modules within the OpenTLlibrary. They can be cate-
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gorized as:

• Models: It consists of the off-line information available about the targets. It can also

include sensors models, background models etc.

• Tracking pipeline: Consists of input devices, pre-processing layers, measurement process-

ing (image processing, data association and fusion), Bayesian estimation, post-processing

and visualization of different parameters of the system.

• Complimentary modules: These includes object detection which provide useful data for

initialization, target loss detection and benchmarking estimates with ground truth.

3.2.2 Functional Architecture of the Library

The architecture of the library is organized in functional layers. Fig. 3.2 shows the abstraction,

from base utility and data structures to the application:

Figure 3.2: The layered class architecture of the OpenTL library [2].

In particular, the library has the following layers as described in [2]:
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1. Tracking Data: It consists of the signal obtained from the sensor, pre-processed data

depending on the visual modality, tracker measurement data and residuals obtained from

the observation model. It can also contain the multi-target posterior state distribution.

2. Tracking Agents: They consist of the input devices, pre-processing modules, visual fea-

ture processing (sampling, matching and data fusion), likelihood computation, Bayesian

tracker, output visualization and post-processing.

3. Visual Feature Processing: It is a common abstraction for the visual modalities involving

pre-processing, sampling from the model, warp in image space, data association, residual

and covariance computation. Each class contains storage for off-line and on-line model

features and intermediate processing results.

4. Object Models: It consists of the off-line available information from the target object.

This includes the shape, appearance, degrees of freedom for pose parameters and related

warp functions with Jacobian computations. It can also have the object dynamics, sensor

and context models.

5. Utility Classes: These include model independent low level functions for image processing,

data storage, basic algebra and image manipulation functions. It also includes GPU-

assisted scene rendering tools and visibility testing of geometric primitives under a given

camera view.

The next sections will provide a detailed description of the multiple human tracking system.

It starts with the methodology of engineering, followed by the system architecture. Further,

the tracking methodology is discussed followed by the user and communication interfaces.

3.3 System Methodology

The methodology adopted to engineer the 3D multiple human tracking system can be high-

lighted as:

• Modular Construction

• Each Module has Specific Processing Task

• General Purpose Interface among Modules

• Offline Configuration of Individual Module Parameters
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• Online Configuration of Specific Parameters through User Interface

• General Purpose Interface to other External Applications

Figure 3.3: Methodology of Engineering.

Fig. 3.3 shows how the system is engineered. It is designed using a modular approach.

Different functional aspects of the system are designed in the form of individual modules. Each

specific module is independent from the other in terms of functionality and performs a specific

processing task. The outputs from individual modules serve as inputs to other modules. The

dependency between modules is realized by a well defined general purpose interface. If one

module undergoes an update, upgrade or restructuring, the dependent modules do not require

modification. This also allows analysis and optimization at a modular level. Each module

has its own parameter container. The parameters of each module can be configured offline

through a unified system configuration file which is parsed on start-up wherein, each individual

parameter container is initialized. In addition, certain specific system parameters can be tuned
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online through an user interface.

An important design principle of this system is a general purpose communication interface

to external applications in a standalone manner. Multiple applications can communicate with

this system and exchange information allowing development of larger real-world application

such as vision driven robotic systems in a convenient manner.

3.4 System Architecture

This section will provide a detailed insight into the construction and function of the system.

The section is organised into subsections, each dedicated to a certain aspect. To begin with,

the general hardware set-up is introduced. This is followed by target modelling and visual

modalities used by the tracker. Finally, the justification for a Bayesian framework is provided.

3.4.1 Visual Input Sensors

The visual sensors used are cameras capable of streaming raw RGB images at rate of 25 -

50 fps. The cameras can be USB or Firewire. They are mounted on the ceiling in a stereo

configuration, sharing a common view. The stereo set-up requires a minimum of two camera

in order to estimate the 3D position of the targets. The more the number of cameras, better

is the accuracy of tracking depending on their placement. However, there is a limit on the PC

hardware in terms of how many cameras can be supported while maintaining the required data

transfer rate. In the current set-up 4 cameras of the same type are used which stream raw

RGB 444 images of resolution (752× 480). The system is scalable with respect to the number

of cameras. Adding a new camera requires no modifications to the software architecture. The

cameras operate in streaming mode where images are written into the memory continuously.

When a request arrives for an image update, the latest image from the buffer is returned to the

image stack from where it can be accessed by different modules of the system.

3.4.2 Target Modelling

The target, representing a human, is modelled to represent its shape and appearance. The

target’s shape is modelled as a simple 3D rectangular box approximating to the dimensions of

an average sized human. The appearance model is required for visual modality processing. For

e.g. colour modalities extract information from the colour distribution data. Therefore, when
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Figure 3.4: The figure illustrates how the target is modelled in the form of its shape and

appearance. It shows the target viewed in each individual camera view. To the left the shape

model is shown in the form of a rectangular cube with dimensions of an average sized human.

The right hand side of the image shows the appearance model in the form of 2D joint probability

histograms of the target’s colour distribution in the HSV colour space [3]. The appearance model

is generated for each individual camera view.

a target is detected its appearance model is generated in the form of a 2D joint probability his-

togram [99, 2] of its colour distribution. The HSV colour space is used to build the histograms,

since this colour space distinguishes colour information from the intensity in an image. All

camera views are used to generate the appearance model.

The tracker holds a 3D state-space representation of the target’s pose, given by a translation

(x, y, z) within the tracking area. This pose form provides 3 degrees of freedom to the target

which forms the basis for modelling its dynamics.

Fig. 3.4 illustrates the target modelled in the form of its shape and appearance. The target

dynamics is modelled using the Constant White Noise Acceleration (CWNA) motion model

[100, 2, 36].

3.4.3 Visual Modalities

The system employs multi-modal fusion of two different visual modalities complimenting each

other for robust tracking of the the human targets. These modalities are colour histograms and

optical flow. The contribution of the modalities to the tracker is obtained through an intelligent

multi-modal fusion module using machine learning. This module will be described in detail in

Chapter 4.
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The colour modality represents the tracker measurement in the form of colour distribution

through 2D joint probability histograms. The histograms are computed in the regions where

a hypothesis is generated in order to weight the observation. On the other hand optical flow

[2, 34, 101, 102] represents the tracker measurement in the form of pixel displacements in the

visual scene. It computes the apparent motion of objects, edges and surfaces projected on

the camera image. The system uses a technique know as total variation described in [102] to

compute the optical flow. Similar to the colour modality, analysis of the optical flow vectors

in the projected hypothesis region provide a good measure for comparison with the apparent

velocity of the target hypothesis.

3.4.4 Bayesian Tracking

The tracker uses a bank of sampling-importance-resampling particle filters [103, 104, 79, 105]

working on a 3D motion model, appearance model and optical flow. Each target is associated

with a unique particle filter. A particle filter is chosen over the more conventional Kalman

Filtering techniques [106], because the tracker needs to be highly robust in dealing with multi-

modal likelihoods due to cluttered background. The particle filter provides the sequential

prediction and update of the respective 3D states = (x, y, z).

Particle filters are usually computationally intensive. A bank of particle filters increase

computation cost with every new target. In order to achieve real-time performance in this

system, a global particle set is maintained and distributed evenly among the bank of particle

filters. Hence, if a new target enters the tracking area, the system instantiates a new particle

filter and redistributes the global particle set evenly among the updated filter bank, keeping

the computation cost constant. In other words, the computational speed is not affected when

the number of targets increases. This is feasible because, when the number of targets increase

in the tracking area, their mobility reduces and the number of particles needed to track a

target can be reduced. The system relies on the particle filter bank approach over the the more

conventional MCMC filter [107] for handling multiple targets since the later maintains a global

motion model, where as a bank of particle filters allows the system to learn and control the

motion model of each target individually. This is important when the targets exhibit different

dynamical behaviours, which is the case in real scenarios.

Tracking multiple targets requires occlusion handling between targets in each camera view.

This is important since, when a target occludes another target in a camera view, that particular

camera should be excluded during the likelihood computation for the targets which are occluded.
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The reason being that, the region sampled will contain measurement data only for the target

which occludes the other targets. However, for successfully obtaining the 3D pose of each

target, it is necessary that the features be visible in at least 2 or more camera views. This

system handles occlusions between targets in real-time using an occlusion query module. This

module is also used during the target detection phase because, when the system models the

target, the appearance information should be sampled only from the camera views in which the

target is visible. This module will be discussed in greater detail in the sections to come.

3.5 Tracking Pipeline

Fig. 3.5 describes the complete pipeline of the tracking system [108]. Each module is discussed

in detail in the subsections below.

3.5.1 Image Acquisition

The sensor images are obtained from the cameras. Each camera provides a raw RGB 444 image.

The cameras can operate in a free streaming and on-request mode. In the former, the acquired

images are updated in regular time intervals while in the later the camera updates an image

stack when requested for an update.

3.5.2 Pre-processing of Sensor Images

Each sensor image Iid, obtained from the image acquisition system, where the index id corre-

sponds to the USB camera index, undergoes a two stage pre-processing. In the first step back-

ground segmentation is performed on each camera image using a static background model. The

background subtracter uses the Gaussian mixture model approach described in [109, 110, 111].

The background segmented image from each camera is then converted from RGB to HSV for

the colour-based likelihood.

Ibgid = bgSub(Iid) (3.1)

zcolourid = rgb2hsv(Ibgid) (3.2)

zflowid = rgb2flow(Iid) (3.3)

The pre-processed images are available at both stages since the on line target detection module

only requires the background segmented image, whereas the tracker requires the pre-processed
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Figure 3.5: The figure illustrates the block diagram of the multiple tracking system. It consists

of the image acquisition module, target detection module, occlusion handling module, the tracker

based on a particle filter bank and machine learning based multi-modal fusion and background

update module.
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image obtained after both stages are performed. The optical flow processing is performed on

the raw sensor image Iid.

3.5.3 On Line Target Detection

This module automatically detects targets when they enter the tracking area by performing a

scan along the tracking floor area using the target model. At each location in the scan, the

probability of a possible target occupancy is computed using the background segmented image.

The number of foreground pixels are computed within the 2D region obtained by warping the

3D pose of the target model on to the respective camera images. Regions occupied by existing

targets are excluded from the scan. If foreground occupancy observed in each camera view is

beyond the desired threshold, a target is registered with an initial 3D pose corresponding to

the scan location. The threshold has to be defined by the user. In most cases a threshold of

0.7 (i.e 70%) is well suited. However, this threshold should be tuned depending on the quality

of the background subtraction module since sometimes the foreground segmentation contains

holes due to shadows resulting in lowered occupancy. Fig. 3.6 illustrates the process. The

green boundary is the detection area and the blue boundary is the tracking area. The green

dots show the floor area scanned and the rectangular boxes show the successful detection of

targets as a result of the occupancy analysis. The left image show an empty scene and the

scanned locations. The image on the right shows two targets successfully detected in the scene.

Figure 3.6: On-line Target detection by scanning the tracking volume and computing the occu-

pancy map of the targets.

An occlusion test is performed at the target location in order to identify the cameras in

which the target is completely visible. Using this information the shape and appearance model
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of the target is generated. The shape consist of a 3D rectangular cube with dimension of a

normal sized human (0.2m× 0.3m× 1.8m) which can be modified if required. The appearance

model consists of 2D histograms of the targets in the HSV colour space. Only cameras in which

the target is visible are selected. If the target is occluded in a camera view, the appearance

model generation in that view is postponed until the target is visible again in that camera view.

In order to register a target, it is required to be visible in at least 2 camera views. The target

data consists of namely: 1. unique target ID, 2. initial 3D pose, 3. shape data 4. appearance

data 5. occlusion test data, 6. current 3D pose and 7. velocity.

3.5.4 Occlusion Testing

This module is very important to ensure robust tracking of multiple humans. It determines if

a target is occluded by other targets in a particular camera view. This information is essential

during target detection and tracking since 2D regions in each camera view are used by the

detection module to compute the probability of target occupancy and by the tracker for the

likelihood estimations. These regions are obtained by warping the 3D pose of each target under

consideration on to each camera image (id= 0,....,M). Each target is defined by a 3-dimensional

container box comprised by 8 vertices

Vn (t) =
{
vj ∈ R3 | j = 0, 1, ..., 7

}
(3.4)

where, vj is the jth vertex of target shape model defined in Cartesian space for the state

s (t). These vertices are projected on each camera as follows:

Sn (t) =
{
rj ∈ R2 | rj = K [R | T ] vj , vj ∈ Vn (t)

}
(3.5)

where, Sn (t) is a set of the projected vertices of the target n. K,R, and T describe the

camera model.

Then, we define dn (t) as the Oriented Bounding Box (OBB) of Sn (t).

ln (t) =
{

(x, y) ∈ R2 | (x, y) ∈ dn (t)
}

(3.6)

The geometric meaning of ln (t) is all the pixels from the area of the OBB dn (t). When a

target occludes other targets in a certain camera view, the bounding boxes overlap making the

appearance data visible only for the un-occluded targets. Under such situations, the information

from these 2D regions should not be sampled for the occluded targets. The occlusion test detects
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such situations by checking the occupant percentage of the bounding box of each target. Lack

of this information can result in false tracking of targets, since when a target is occluded in

a camera view its bounding box will contain appearance information of the target which it is

occluded by. If this information is used, it will return a low likelihood, although the hypothesis

was optimal.

Figure 3.7: The figure illustrates the occlusion test system. The left part of the figure shows a

scene in a camera view with 3 Targets, where Target 1 occludes Target 2. The right part of the

figure shows how the occlusion is detected by rendering the targets with respect to their distance

from the camera. The target closest to the camera is rendered first.

Fig. 3.7 illustrates the Occlusion Test System. This system considers all the targets and

computes their occupancies in each camera image. For each camera view the euclidean distance

from the camera to each target is computed. The target farthest from the camera is rendered

first on the camera image. This is followed by the remaining targets, with the closest target

rendered last. Once all targets are rendered an overlap test is conducted between the rendered

regions. If a target occludes another target it will overlap the rendered region of that particular

target. For any target, if the rendered region visible is above a the visibility threshold, it

is considered to have a good occupancy in the current view of this particular camera. The

visibility threshold is set by the user. This threshold can be initially set by manual observation

of human motions in the camera views. If the number of targets are large compared to the

tracking area, the threshold can be lowered due to possibilities of multiple occlusions. The

default value chosen is 70% of the warped 3D region and can be tuned by the user until the

optimal value is obtained. Thereby, the tracker considers only the camera views in which the
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target is not occluded to be used for the likelihood test. For a target to be tracked successfully,

it is required to be visible in at least in 2 or more camera views in order to estimate its 3D

pose. Chapter 5 validates the importance of the occlusion test module through experiments.

3.5.5 Tracker

The tracker performs the primary task of keeping track of all the targets in real-time, once they

have been registered by the target detection system. In order to achieve this, the tracker uses a

bank of Sampling-Importance-Resampling based Particle filters [103]. Each target is equipped

with its own particle filter. Each filter uses a motion model [2, 10] and a 3D translation

state. The visual modalities used are 2D colour histograms and optical flow. The likelihood

estimation is performed by distance computation of each modality with respect to the reference

and thereafter performing multi-modal fusion. For each hypothesis, the likelihood is computed

for each camera view, in turn computing an average likelihood. Camera views in which targets

are not visible are dropped during the likelihood computation for the respective targets through

the occlusion test.

Particle filters are computationally expensive and hence in order to obtain real-time per-

formance from a bank of particle filters, a common global particle count is maintained which

is distributed evenly among the filters. This distribution depends on the number of targets.

When a target is added or removed from the target list, the number of particles allocated to

each filter is updated. Hence, if Np is the global particle count and np is the number of particles

allocated to each filter, then

np =
Np

N
, (3.7)

where, N is the number of targets. This approach is well suited since, when the number

of targets increase within the tracking area, their mobility reduces and hence the number of

particles needed to track them can be reduced. The following sub-sections provide detailed

descriptions of the functioning of the particle filter.

• Tracker Prediction: The particle filter generates several prior state hypotheses sit from the

previous distribution (si, wi)t−1 through a prediction model, which is more precisely called

as the motion model. Different motion models exist which define how the target state

evolves in time. These models vary depending on the dynamics of the target. For example,

the motion model for a car will be different from the motion model for a human, which in

turn will vary from the motion model describing a pendulum. The Brownian, CWNA and
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oscillatory motion model are the most common motion models used in computer vision

[36]. In this system the constant velocity model was tested. The Brownian model is given

by,

sit = sit−1 + vit, (3.8)

with v a zero-mean Gaussian white noise of pre-defined covariance in the (x, y, z) state

variables. The motion model can be controlled during the course of tracking by learning

the motion of the target. Deterministic re-sampling strategy over the previous weights

wi
t−1 is also employed.

On the other hand, the constant velocity model is represented as follows,

sit = sit−1 + ṡit−1τi +
1

2
vitτ

2
t (3.9)

where, ṡit−1 is the velocity and its constant over time, plus a random acceleration vit. τ is

the sampling interval [36].

For each generated hypothesis, the tracker asks for computation of the likelihood values

P (zcol, zflow|si)n after projecting every hypothesis on to each camera image. Since, the

system also uses optical flow as a visual modality, information regarding the target velocity

is essential. Therefore, when the optical flow modality is used within the particle filter

framework, the motion model used is CWNA.

• Likelihood Computation:

The global likelihood is computed by fusing the distance measure obtained from the colour

histogram and optical flow modalities in each camera view.

The object model defining the target’s shape is projected on the pre-processed image

of each camera at the predicted hypothesis sit using the intrinsic and extrinsic parame-

ters of the respective cameras. The underlying H and S colour pixels are collected in

the respective 2D histogram q
(
sit
)
, that is compared with the reference q∗ through the

Bhattacharyya coefficient [112, 51],

Bm (qi (s) , q∗i ) =

[
1−

∑
N

√
q∗i (n) qi (s, n)

] 1
2

, (3.10)
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where the sum is performed over the (bin× bin) histogram bins (in the current implemen-

tation, bin = 10). The computation is done for each camera. Bm is the colour likelihood

(not under a Gaussian model).

For the optical flow modality the estimated velocity of the target component is used as

a reference. The directional component of this vector is compared with the optical flow

vectors obtained from the pre-processing stage. The flow vectors are obtained in the

image space. Therefore, the velocity vector of the targets is required to be projected on

the image plane of the respective cameras. Thereafter, this projected vector is compared

with each pixel flow vector within the warped 2D region of the hypothesis of the particle

filter similar to the process in the case of the colour histogram modality. A distance

measure is computed by comparing each flow vector f
(
sit
)

within the 2D region with the

projected reference velocity vector f∗ as follows,

Fm (fi (s) , f∗i ) =

[
1−

∑
N

√
f∗i (n) fi (s, n)

] 1
2

(3.11)

Fm is the resulting optical flow likelihood (not under a Gaussian model) for an individual

hypothesis.

Once the colour histogram and optical flow likelihoods are estimated for an individual

hypothesis, they are fused to obtain a global likelihood. The fusion depends on different

factors which define the proportion in which the two modalities should contribute to the

global likelihood. The intelligent multi-modal module, which will be described in Chapter

4, generates the weights Wcol and Wflow. The global likelihood for the hypothesis sit is

then given by

P (zfused|sit) = Bm(zcol|sit)Wcol + Fm(zflow|sit)Wflow (3.12)

Thereafter, the global likelihood for the hypothesis sit is evaluated under a Gaussian model

in the overall residual

P (zglobal|sit) ∝ exp(−
∑
M

log (P (zfused|sit)2m/λ)) (3.13)

with given covariance λ and can be tuned by the user depending on the quality of matching

required for convergence.

34



3.5 Tracking Pipeline

• Hypothesis Penalty to Improve Occlusion Handling: Tracking multiple people in a small

workspace is not trivial due to high probabilities of multiple occlusion of targets in multiple

cameras. The situation becomes more complicated if two or more targets have similar

appearance and the targets are moving at a short distance with respect to each other.

For example, tracking 4 people in a room of size 5× 5 meters becomes difficult when the

targets are moving close to each other.

In order to handle such situations, the particle filter is equipped with a hypothesis likeli-

hood penalty function. The primary objective of this function is to penalize any hypothesis

of a particular target, if another target is present at that location or at a short distance

Dh specified as a parameter by the user. The penalty function operates in two modes,

hard penalty mode and linear penalty mode. In the hard penalty mode, if the distance

between the generated hypothesis and any other target is less that Dh, the particle filter

immediately sets the likelihood for that hypothesis to zero. This ensures that the in the

next prediction step, the probability of an hypothesis generated in this region will be low-

ered due to the re-sampling. On the other hand, in the linear penalty mode the particle

filter computes the likelihood for the hypothesis and thereafter penalizes it by a factor

inversely proportional to the minimum distance from each other target. The following

equation describes the penalty function.

Hpf =
dmin

F
(3.14)

where, F 6= 0 is the constant factor chosen by the user, describing the strength of the

penalty, dmin is the minimum distance of the hypothesis with respect to all other targets

and Hpf is the resulting penalty factor. These two parameters are chosen by the user

through manual observations of the target motions. For eg. in situations where there are

many targets in a relatively small area, dmin can be lowered and vice versa. Selection of

F depends on the degree of impact required. The resulting likelihood after applying the

penalty is as follow.

P (zglobalpf |sit) = P (zglobal|sit)×Hpf |sit (3.15)

• Computing the Estimated State:
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The average state st

st =
1

N

∑
i

wi
ts

i
t (3.16)

is computed and the three components (x, y, z) are returned. In order to reduce the jitter

in the output, the average pose can be smoothed using an exponential filter.

• Refining the Motion Model: The covariance matrix defines the distribution of the hy-

pothesis during the prediction phase. It is set as a parameter during the initialization

phase with respect to some prior knowledge regarding the motion expected within the

tracking area. However, the velocity of the targets can vary between a certain higher and

lower limit. In order to improve the performance of the tracker the motion model is tuned

online to the current motion behaviour of the target. The knowledge obtained from the

estimated velocity of a target can be used as a cue in order to tune the parameters in the

covariance matrix such that the prediction model adapts to the target’s motion pattern.

For example, if initially the target is moving with a low velocity, the covariance can be

set in order to obtain a compact distribution around the average pose of the target. If the

target velocity increases, the covariance parameters can be increased for a wider spatial

spread of the hypothesis. This allows the tracker to successfully track the target under

changing velocities.

3.6 Graphical User Interface

It is a high level graphical user interface (GUI) allowing the user to monitor and control the

complete system. It allows the user to perform basic tasks such as start, stop and standby. It

provides essential debug information in the form of visual feedback of the sensor images during

the different levels of processing. It also allows the user to log the different parameters of the

system for further debugging. The GUI provides information about the current state of the

system along with the debug data associated with that particular state. The user can configure

the different modules of the system with possibilities of modifying some parameters online. The

configuration files for the cameras, detector and tracker can be generated using the GUI.

The GUI is designed using the QT library [113]. It mainly performs the task of sending

information from the user to the system and providing the necessary debug information to the

user. It can be easily detached from the system if not required. Fig. 3.8 illustrates the graphical

user interface used as a front end tool to control the system.
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Figure 3.8: Graphical user interface for controlling the system and visualizing the tracking

results. It represents the various control options and the views from all cameras.

3.7 Communication Interface

The communication interface is an important tool using which the multiple human tracker

communicates with external applications. This interface helps in the development of complete

applications using the tracker.

Fig. 3.9 illustrates the building block of the communication interface module. It is a general

purpose system based on TCP/IP sockets [114]. The multiple human tracking system contains

a socket server operating on a specific port. Multiple external clients can connect to this server

and retrieve the required information from the tracker. This information is mainly related to

the targets being tracked but can also consist of the state of the system. The clients can also

send control information to the tracker. For e.g. if the tracker functions are required to be

controlled remotely by an external GUI.

The protocol is implemented in a manner such that information regarding different aspect

of the target motion can be transferred to the clients in a seamless way. The protocol starts

with the client sending a command ID. On receiving this information, the server transfers it to

the function mapper. This module performs the task of calling the right function depending
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Figure 3.9: Communication Interface using TCP/IP.

on the command ID received. The corresponding function packs the necessary data from the

data bank which stores all the necessary information regarding all targets and the system state.

The packed data is sent to the client through the socket server. The data generated depends

on the function. This can be the complete information of a single target, specific targets or all

targets. It can also be a certain specific data concerning a single target for e.g. id, position,

velocity etc.

In this manner, multiple external system can exchange data easily with the multiple human

tracking system operating in a stand alone manner. The communication medium used is Eth-

ernet [115]. Wireless data transfer is also possible through WiFi. In systems where Ethernet

latency has to be kept low, gigabit Ethernet can be used.

3.8 Discussion

This chapter provided a detailed insight into the 3D multiple human tracking system in terms

of its system architecture and tracking pipeline. The next chapter will introduce the novel

approach of robustness enhancement through machine learning. It will provide a detailed

discussion of the intelligent multi-modal fusion module, detection of drastic changes in lighting

conditions and update of the background model in presence of fore ground targets under such

scenarios.
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Chapter 4

Machine Learning to Enhance

Tracking Robustness

4.1 Overview

Chapter 3 provided a detailed analysis of the multiple human tracking system. The system

uses a multi-modal fusion of two visual modalities namely, colour statistics and optical flow.

This chapter introduces an approach to improve the robustness of the system using machine

learning techniques [116].

As discussed before, multi-modal fusion of visual modalities has its advantages and disad-

vantages. The modalities used can assist each other to enable robust tracking. However, each

modality has its own limitations and can fail in certain tracking scenarios. In such circumstances

the modality contributes in a negative way to the overall tracking estimation, thereby increasing

the probability of error and a possible target loss. In the next sections of this thesis, the effect

of varying lighting conditions on the colour modality and background subtraction are discussed.

Thereafter, the variations in the optical flow information with target motion behaviour is dis-

cussed. This is followed by a novel approach based on machine learning to overcome the effect

of varying lighting conditions on the performance of the system. Further, scenarios which affect

the use of optical flow as a modality are introduced. Finally, the intelligent mutli-modal fusion

module is discussed.
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4.2 Colour Statistics Quality under Changing Lighting

Conditions

Colour statistics, in the form of joint probability 2D colour histograms [36, 10], are well suited

as a visual modality under static lighting conditions [36, 10]. However, if the lighting conditions

change, the performance of the colour modality is affected. In theory, the HSV colour space

separates colour and intensity information, but in the real-world there is a shift in the colour

distribution when the intensity changes beyond a certain extent. This mainly occurs due to the

non-linear behaviour of the camera sensor noise. Therefore, distribution of colour histograms

of the same regions of an image vary with lighting conditions.

The performance degradation of the colour modality depends on the amount of change in

lighting conditions. Up to a certain limit, the colour modality, although affected by lighting

changes, continues to provide good estimates for the likelihood function, although with a lower

degree of accuracy. However, when there are drastic changes in the lighting conditions the

colour modality could fail, thereby affecting the performance of the system. This situation

usually occurs when the light distribution in the tracking scene changes to very dark, due to

insufficient light sources, or gets saturated due to excessive lighting.
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Figure 4.1: Effect of changing lighting conditions on colour statistics of the appearance of the

human model.
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Fig. 4.1 demonstrates the effect of light change on the appearance model of the human.

Three different lighting conditions are presented, where the first one is the reference under

which the target is modelled for his or her appearance. The reference case is generated under

good lighting conditions, while in the following two cases the intensity of light is lowered in two

steps. The 2D histograms under each case are plotted as shown. The histograms of the low

intensity lighting are compared with that of the reference and the error is plotted. It can be

observed that as the intensity of light is lowered, the error between the histograms of the same

region increases. Similar behaviour can be proved when the intensity of light is increased until

saturation.

4.3 Background Subtraction Quality under Changing Light-

ing Conditions

Background subtraction is an important pre-processing method in many visual tracking and

motion capture systems [117, 118]. Various background subtraction techniques exist based on

intensity, colour, edges etc. The most widely used techniques rely on image intensity informa-

tion. Most background subtraction techniques rely on a background model which is generated

or trained during the initialisation phase of the system [110].

Background models are sensitive to changing light. Drastic changes in lighting conditions

affect the background model, thereby hampering the processing of the camera images for back-

ground segmentation. There are systems which deal with this problem by periodically updating

the background model. This approach is trivial for empty scenes but fails in the presence of

foreground targets. An update under such circumstances will include the targets into the back-

ground model resulting in tracking loss. There are other approaches such as [119], which make

the background subtraction algorithm robust to light changes but perform well only up to a

certain level of light change. [120] presents a background subtraction technique that is robust

towards drastic changes in lighting, but its computationally intensive and does not guarantee

real-time performance. There are fast background subtraction systems utilizing the GPU but

lack the required robustness under drastic change in lighting [121, 122].
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4.4 Optical Flow Quality depending on Target Motion Be-

haviour

Optical flow provides information of regions with motion activity within the scene. The motion

vectors provide scale and direction information which is used to perform matching with the

motion vector of the projected hypotheses. Although this is useful information, under certain

circumstances it could lead to ambiguity.

The quality of information from the optical flow processing, used to track multiple humans

in a limited workspace, depends on the motion behaviour of the targets. A static target provides

no information for the optical flow processing and can cause the likelihood matching function

to fail since the hypotheses return the same residuals from the target region and background

regions due to the lack of motion vectors. Under such circumstances the use of optical flow can

be hazardous and can impact the performance of any complimenting visual modality. Fig. 4.2

illustrates this scenario. It can be observed that the optical flow information is available only

for the target in motion, whereas the stationary target does not return any optical flow data.

Optical flow processing provides valuable information for likelihood computation when two

or more targets are moving in different directions, especially at a short distance from each other.

Under such situations, optical flow processing becomes a valuable tool in order to compliment

the colour modality. It is useful when two targets having similar appearance are crossing close to

each other. In this situation, if a hypothesis of one target falls on the image region occupied by

another target, it will return a high colour likelihood since the targets are similar in appearance.

The optical flow modality although, will produce a low likelihood due to the difference in the

motion vectors of the two targets. The reason being that, the constant velocity motion model

produces a major proportion of the hypothesis along the velocity component of the current

state of the target. Fig. 4.3 illustrates this behaviour. It can be observed that even though the

two targets have similar appearance , the information produced by the optical flow processing

is distinct due to the different directions of motion.

In contrary to the above situation, when two targets with similar appearances are moving

close to each other and in the same direction, the optical flow modality could be ambiguous since

the targets have the same flow vectors. Fig. 4.4 illustrates this scenario. It can be observed that

the targets have similar appearance and are moving in the same direction, thereby producing

similar flow vectors.
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Figure 4.2: Optical flow processing results when one target is stationary and the other is moving

Figure 4.3: Optical flow processing results when the two targets are moving close to each other

but in opposite directions

4.5 Machine Learning to enhance Visual Modality Per-

formance

The performance of the system is optimal when the two visual modalities are fused in the right

proportion depending on their information quality. The information quality depends on the

tracking scenario. In this section, a supervised machine learning method is introduced in order

to optimize the performance of the colour histogram modality under situations of sudden light

changes causing performance degradation of this modality. Using machine learning a model is

trained which allows to detect sudden changes in lighting conditions. With this information

the contribution of the colour modality towards the global likelihood can be adjusted to obtain

a optimal multi-modal fusion in the Bayesian tracking.

4.5.1 Supervised Machine Learning

It is a technique where a function defining a model is generated through a large set of supervised

training data set. This model can be further used for classification of new inputs. The quality
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Figure 4.4: Optical flow processing results when the two targets are moving close to each other

and in the same direction

of classification depends on the quality of the input data set. A popular supervised machine

learning tool is a Support Vector Machine [4, 123, 124, 125, 126, 127, 128, 129]. It is used to

analyse and identify patterns in data which can be further used for classification. In its standard

form, the support vector machine takes a set of input data and predicts to which binary class

it belongs. It is therefore a non-probabilistic binary linear classification engine.

4.5.1.1 General Formulation

Support vector machines work in two phases namely training and classification. In the training

phase it uses a large set of training data which is labelled either automatically or manually. It

builds up a model using this training data such that when a new training example comes in,

it is able to place it into the right category. The model represents these examples as points

in space such that different categories are divided by wide and clear gap. To be more precise,

support vector machines build up hyperplanes of high dimensional space [4]. This space is used

as a tool for classification of incoming data. Each data point is viewed as a p dimensional

vector. A hyperplane which has the largest distance to the nearest training data is considered

and is called as a functional margin. Larger the margin, lower is the error during classification.

It uses a high dimensional space since it is observed that when problems are represented in a

finite dimensional space, the sets which need to be discriminated are not linearly identifiable. A

higher dimensional space makes this identification much simpler. Another reason is that, in a

higher space cross products can be computed easily with respect to the variables in the original

space, thereby reducing computational costs.

The cross products in the higher dimensional space is represented by a kernel function

K(x, y). The hyperplanes in the large space are represented as a set of points whose inner
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product with a vector in that space is constant. These vectors are chosen to be linear combi-

nations of the parameters αi of images of feature vectors. The points x in the feature space,

mapped into the hyperplane are defined as:∑
i αiK(xi, x) = c, where c is a constant [4]

As K(x, y) reduces with increase in y further from x, elements in the sum measure the

degree of closeness of the point x to its corresponding data base point xi. Thereby, the sum of

kernels can be used to measure the relative closeness of each test point to the data points.

A general formulation [4] of the training process can be given as follows:

Figure 4.5: SVM Classifier: Left: Hyperplanes separating the two sets of data, Hyperplane 1

and 3 do not divide the data sets with a high margin as Hyperplane 2 does, Right: Hyperplane

with the highest margin selected with thresholds defined for each class. The data points on the

margin are called support vectors [4].

Considering a training data set D with n points,

D = (x, y) | xi ∈ Rp, yi ∈ {−1, 1}ni=1

yi represents the class to which the data point xi belongs, i.e -1, 1.

The hyperplane with the maximum margin dividing the data points with yi = −1 from the

ones with yi = 1 satisfies the following expression.

w ·x− b = 0 [4]

where, the vector w is a normal vector to the hyperplane and the parameter b/ |w| determines

the offset of the hyperplane from the origin of the normal vector w. Here, w and b are chosen

such that the distance between the parallel hyperplanes is maximum, defined as

w ·x − b = −1 and w ·x − b = 1 [4]. In order to avoid data points falling into the margins

constrained are imposed to satisfy w.x − b >= −1 for xi of the first class, or w ·x − b <= 1
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for xi [4] of the second class. Fig. 4.5 illustrates the possible hyperplanes and how the most

optimum hyperplane is selected.

There are other variants of the forms of support vector machines such as primal form, dual

form which are described in the literature [4].

4.5.1.2 Multi Class Support Vector Machines

In their general form, support vector machines provide a binary classification of data. Hence

there are only two classes. However, the classification can be extended to data sets representing

multiple classes. For this purpose, the multi class support vector machine is used. It works

on the principal of reducing a multi-class problem into multiple binary classification problems.

For each sub problem, a binary classifier is modelled, which provides higher values to the data

points falling into the positive class and lower values to that belonging to the negative class.

4.5.2 Supervised Machine Learning to Model Lighting Conditions

Figure 4.6: Building blocks of the SVM trainer for lighting conditions

Fig. 4.6 illustrates the building blocks of the support vector machine based training module

for lighting conditions. It consists of a large set of training samples in the form of images

obtained from the cameras. The training samples are collected from real-scenes and simulated

environments. The large set of images are generated for each individual class. There is no upper

limit to the number of training samples. The quality of the model improves with the number of

training samples available, provided they are grouped in the right classes. Each training sample

is processed to obtain the training data. Once the training data is available, it is used by the
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SVM training module to generate a model based on the classes in which the training data were

grouped. The process of generating the training data from the training samples and the model

generation process is discussed below followed by the real-time classification engine.

In this system the lighting conditions are modelled into three distinct classes representing

its quality. The classes are:

1. Insufficient lighting: This class represents a wide range of scenarios in which the intensity

of light available is below the requirements. The training data for this class consists of a

wide variety of images in which the intensity of light is below a certain threshold.

2. Good lighting: The training data in this class consists of a large set of images in which

the intensity of light is sufficient and homogeneously distributed over the entire image.

3. Saturated lighting: This class consists of different images in which the intensity of light

is too high resulting in saturation of the entire or certain regions of the image.

Each of the distinct classes accommodate a large set of possible image samples satisfying

its constraints. The grouping of these samples into their respective classes is carried out by

analysing the histogram of the intensity channel. This process is carried out in three stages as

show in fig. 4.9.

1. RGB to HSV Colour Space Conversion: In this step the input image is converted from the

RGB colour space to the HSV colour space. HSV colour space [3] is preferred over RGB

for intensity analysis because, in the HSV colour space the colour and intensity informa-

tion are represented independent of each other. The H and the S channels provide the

hue and saturation of the colour while the V channels represents the intensity. Thereby,

analysis of the intensity distribution in the image become simpler. This transformation

can be expressed as follows: Ihsv = rgb2hsv(Irgb)

where, Irgb and Ihsv represents the input image sample in the RGB and HSV colour

space.

2. Histogram Computation: Once the input image sample is transformed to the required

colour space, a N bin histogram of the V channel is computed representing the intensity

distribution. The number of bins are usually 256, but can be reduced to a lower value

in order to have a more compact representation. This operation can be represented as

follows:
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n =
∑N

i Hi

where, n is the total number of image pixels and H is the histogram. The histogram is

further normalized using n.

HN
inorm

=
∑N

i
Hi

n .

3. Labelling: Once the normalized N bin histogram is ready, with automatic analysis or

manual observation a class label is generated for the sample. The class label together

with the histogram data forms one training data sample for the multi-class support vector

machine.

Figure 4.7: The figure illustrates good lighting conditions by observing the histograms of the

intensity channel.

Figure 4.8: The figure illustrates bad lighting conditions by observing the histograms of the

intensity channel.

Fig. 4.7 and 4.8 show examples of histograms belonging to the three classes. In fig. 4.7,

the histogram is evenly distributed around the intensity value of 128 which is half of the white
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point saturation and is considered to be a good region for illumination. Similarly, histograms

having similar distributions within a region around this value is considered to belong to class of

good lighting. The span of this region is defined by a threshold generally obtained from manual

observations.

Fig. 4.8 illustrates the histogram distributions for bad lighting conditions. The left part

shows an example of the histogram for insufficient light where most of the histogram is dis-

tributed in the near regions of the intensity values. Under certain circumstances, the scene

is under lit with dark regions. The right part shows an example histogram under saturated

lighting conditions. In this situation, due to excessive intensity of light, the histogram is con-

centrated in the far region of the intensity values. Similar to the selection of histograms for

good lighting conditions, the regions which accommodate insufficient lighting and saturated

lighting conditions are determined by manual observations.

The training data set should include all possible scenarios of lighting conditions belonging

to each class. This makes the training data set very large, with no upper limit. The larger

the training data, greater is the accuracy of the trained model. In this system, initially around

4000 images of each class were used to generate the training data. This makes the total training

data set to consist of 12000 data samples. These samples were generated using camera images

obtained from the real scene and also from 3D simulations of the entire scene where the lighting

conditions can be controlled. The 3D virtual environment used for this purpose will be discussed

in greater detail in the chapters to proceed.

4.5.3 Classification of Lighting Conditions in Tracking Environments

Figure 4.9: Building blocks of the SVM classifier for a lighting conditions

Fig. 4.6 illustrates the building blocks of the support vector machine based lighting condi-

tions classifier which uses the model generated by the SVM trainer described in Section. 4.5.2.

The multi class support vector machine generates the learnt model using the training data set.
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This model is further used to classify incoming images for their lighting conditions. Similar to

the training process, input data is generated for the support vector machine classifier. This

data consists of the intensity histograms of the input image. It is the input to the classifier

which computes the class to which the lighting conditions of the image belongs.

BAD LIGHTING OK LIGHTING GOOD LIGHTING

Figure 4.10: On-line classification of the lighting condition is obtained for each camera view using

a trained model. The first column in each image represents images from each camera, the second

column shows the intensity distribution, the third column illustrates the intensity histogram and

the fourth column provides the classification results from the SVM classifier.

Fig. 4.10 illustrates the test conducted for the on-line classification of lighting conditions.

The model is able to classify and associate the current lighting conditions in the camera views

to their respective classes. The experiments and demonstrations described in Chapters. 5

and 6 have a SVM based lighting conditions trained for lighting conditions of classes Bad and

Good. However, in this experiment the SVM model was trained for three classes of the lighting

conditions in order to validate the multi-class classification. The classes are Bad, OK and Good,

which can be further extended depending on the requirements. The first image shows a very

dark view in each camera, which is successfully recognized by the classifier as bad lighting. The

second image shows an improved set of lighting conditions. However, there exists some specular

reflections, creating bright stops. The classifier identifies this as OK lighting conditions. The
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third image shows better lighting with respect to the other images and is classified as Good

lighting conditions. The results show the ability of the classifier to successfully classify lighting

conditions into their respective classes. With larger training sets, it is possible to achieve better

classification covering more classes.

4.5.4 Background Model Update in the Presence of Foreground Tar-

gets

In section 4.1, issues associated with background segmentation, when the lighting conditions

undergo drastic changes, were introduced. Background subtraction, being an important part

of the system, should be robust to changes in lighting conditions. Section 4.5.2 covered the

process of successfully detecting drastic changes in lighting conditions, using a trained classifier

based on support vector machines. However, only detecting the light change is not sufficient.

Updating the background model is required, since when the lighting conditions change, the

background in a given scene changes. The background model update is trivial in case of an

empty scene, but it becomes a complex task when there are foreground targets in the scene

being tracked. Under such circumstances, only regions which do not accommodate any fore

ground targets can be updated instantly. However, the foreground target regions need to be

updated in an intelligent manner, such that the information from the target reagions are not

sampled to be included into the updated background model.

Figure 4.11: Background model update in presence of foreground targets.

This section proposes an approach to update the background model under changing lighting

conditions while foreground targets are present in the scene. It exploits the fact that during the

course of tracking the targets will move and expose the regions previously occluded by them.

The occluded regions can be included into the background model once they are visible due to

target motion. The assumption that the target will move is valid because, if the they do not
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move, then the tracker only needs to perform an extremely small local search to keep track of the

target which does not require information from the background subtracter. Fig. 4.11 illustrates

the Background Model Update Procedure (BMUP) under changing lighting conditions and in

the presence of foreground targets. The BMUP comprises of three main parts:

Fig. 4.11 illustrates the background model update procedure under changing lighting con-

ditions and in the presence of foreground targets.

• Light Classifier: determines which class the lighting conditions in the current camera

image belongs to.

• Light Change Detector: continuously reads the classification result from the Light

Classifier and compares it with the classification results of the previous instance and

thereby detects drastic changes in lighting conditions.

• Background Model Updater: updates the background model when it is notified about

a light change event by the Light Change Detector. It uses the target positions, region

sampler and the status checker modules. If number of targets N = 0, the background

model is updated with the image Iid. If N > 0, from each target position the occupancy

region Lid of each camera (id=0,...,M) is obtained. This is given by:

L (t) =

N⋃
j=1

lj (t) (4.1)

where lj is given by Eq. 3.6.

This is the area that can not be included in the reference image for the new background

model, and needs to be included when exposed. The current area for the reference image

is initialised as:

D (t0) = (A ∩ L (t0))
c

(4.2)

Then the background image is initialized,

Iref = {I (x, y) | x, y ∈ D (t0)} (4.3)

where A = {(x, y) | x = 1, 2, ..., width, y = 1, 2, ..., height}. The non updated regions are

updated in time when the targets are in motion, thereby exposing the previously hidden

regions. This is computed in the form:
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hL (t) = (L (t− 1) \ (L (t) ∩ L (t− 1))) (4.4)

where hL is the new exposed pixels in the current frame. Then the background image is

updated using these pixels as follows:

Iref = {I (x, y) | x, y ∈ hL (t)} (4.5)

Finally, the current area at time t is updated as below:

D (t) = D (t− 1) ∪ hL (t) (4.6)

D (t) is updated until |D (t)| = |A|.

When the background update process is initiated the tracker changes the behaviour of its

processing modules. This step is necessary since during the background model update process,

the background segmentation process is suspended. Since the background segmentation image

is not available, the tracker suspends the new target detection process temporarily and also

modifies the sensor data pre-processing steps. Instead of generating the HSV image from

the background segmented image, the tracker uses a mask to highlight only the local regions

surrounding each target and suppresses the rest to (0, 0, 0). Once the background model update

is complete, the tracker activates the background subtraction module, target detection and

initial pre-processing phases.

Figure 4.12: Background model update in presence of foreground targets.

Figs. 4.12, 4.13, 4.14 and 4.15 provide a step by step illustration of the background update

process in a simulated environment. Validation in real-world scenarios will be discussed in

Chapter. 5. Fig. 4.12 shows the current scene in each camera view with two targets which are
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Figure 4.13: Background model update in presence of foreground targets.

being tracked by their respective trackers. In fig. 4.13 the lighting condition changes from good

to very dark. This event is detected and the background model update process is initiated.

It can be observed in fig. 4.13 that the new background image generation is instantiated

and the regions which are not occupied by the foreground targets are updated, while the regions

which are occluded by the targets are left un-updated. Further in fig. 4.14 it can be observed

that the targets move, resulting in further update of the background image with regions exposed,

due to the target motion.

Figure 4.14: Background model update in presence of foreground targets.

Finally, in fig 4.15 every pixel in the background image is updated which is further used

to update the background model of each camera view with its respective updated background

image. The tracker then re-instantiates the background subtraction process.

4.6 Modality Weight Generation for Multi-modal Fusion

Intelligent multi-modal fusion of the colour and optical flow modality is achieved by generating

individual weights for the respective modalities by analysis of the tracking scene. During track-

ing, the two modalities contribute towards a global likelihood value for the particle filter. The

goal is to produce the weights which decide the individual contributions of the two modalities.
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Figure 4.15: Background model update in presence of foreground targets.

While tracking, the scene is analysed to estimate the right contribution in which the colour

and optical flow modality be fused. The analysis is performed individually for the respective

modalities. The colour modality is analysed by checking the quality of light through the machine

learning based lighting conditions analysis module. The optical flow modality is analysed

through the optical flow suitability analyser, which uses the tracked trajectories of all the

targets to decide the degree of usability of optical flow information for each individual target.

Figure 4.16: Intelligent fusion module to generate weights for the individual modalities through

scene analysis.

Fig. 4.16 describes the module performing the task of generating the weights for the individ-

ual visual modalities through scene analysis. This module consists of two scene analysis units,

each analysing the usability of the individual modality in the current scene. The usability of the

modalities can be represented in the form of classes. The class categories can be divided into

two or more types. In this example, a simple binary classification is used, labelled as Bad and

Good. The class with label Bad indicates that the suitability of the corresponding modality in

55



4. MACHINE LEARNING TO ENHANCE TRACKING ROBUSTNESS

the current scene is low and the influence of its contribution towards the global likelihood be

lowered. On the other hand, the class labelled Good indicates that the corresponding modality

is well suited in the current scene and should contribute to the global likelihood generously.

The usability classes can be extended to more categories such as (Bad,OK,Good) or further

into (V eryBad,Bad,OK,Good, V eryGood). The class identification units for each modality

depend on their respective scene analysers.

4.6.1 Quality Classification for Colour Histograms

The colour modality usability analyser uses the machine learning based lighting conditions

classifier described in Section 4.5.2, in order to determine the usability class. The lighting

condition classifier identifies if the current scene lighting is Good or Bad. This information is

mapped directly by the usability analyser. If the lighting condition is Bad then the usability of

the colour modality is set to Bad. On the other hand, if the lighting is Good then the colour

modality usability is also set to Good.

4.6.2 Quality Classification for Optical Flow

The optical flow usability check unit analyses the tracked trajectories of the targets and their

motion parameters in the current scenes as described in Section 4.4, in order to identify the

correct usability class with respect to the current scene. To summarize the discussion of Section

4.4, the optical flow usability class falls in the category Bad for a particular target when:

• The target is stationary or moving with a velocity below a certain threshold Vst.

• The target is moving closer than a defined threshold dmin to another target, and the

absolute difference of its optical flow direction component with respect to the the other

target is below a certain threshold θmin. This indicates that the two targets are moving

roughly in the same direction, resulting in similar flow vectors.

On the other hand, the optical flow usability class is considered to be Good when,

• The target is moving with a velocity higher than the defined threshold Vst, and at a

distance greater than dmin, with respect to all other targets in the scene.

• The target is at a distance less that dmin to another target or targets. It has a veloc-

ity component higher than Vst and the absolute difference of its optical flow direction

component with that of each other target is greater than θmin.
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The threshold chosen depends on the dimensions of the workspace and the intended be-

haviour of the humans within the workspace. For example, the human motion patterns in a

large workspace will be less confined as compared to a smaller workspace. Similarly, the motion

patterns in a lab environment will be different from that in a industrial environment. In this

demonstration scenario the workspace span was 5×5 meters containing between 2 to 5 humans.

The thresholds selected were,

• Vst = 25mm/sec

• dmin = 500mm

• θmin = 25degrees

4.6.3 Multi-modal Fusion depending on Classification

Once the usability classes of the respective visual modalities are known for the current scene,

this information is supplied to the modality weight generator. This module uses the results of

the usability check units together with a rule based fusion approach to generate the optimum

weights for the individual visual modalities. The rule based fusion technique is constructed

through a fixed set of rules defined by the user. These rules specify the combination of weights

to be assigned to the two modalities for each possible combination of classes. Fig. 4.16 illustrates

a simple fusion rule data-bank for the binary classes consisting of Bad and Good labels. As

mentioned above, these classes can be extended to a wider range, along with a more dense rule

data-bank. An example of such and extended data-bank for class labels (Bad,OK,Good) is

shown below,

Colour OpticalF low Wcolor WopF low

Bad Bad 0.0 0.0
Bad OK 0.4 0.6
Bad Good 0.5 0.5
OK Bad 1.0 0.0
OK OK 0.7 0.3
OK Good 0.5 0.5
Good Bad 1.0 0.0
Good OK 0.9 1.0
Good Good 0.8 0.2

Once the individual weights for the individual modalities summing up to 1.0 are obtained,

they are fused in order to obtain a global likelihood. The fusion operation is performed for every

hypothesis generated by the particle filter and for each camera view. When both modalities are
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un-suitable for tracking, the tracker declares a target loss and instantiates the target recovery

mechanisms in the form of re-detection.

The mathematical representation of the complete fusion procedure is formulated below:

U colour
i = Lsvm(Icami) (4.7)

UopF low
itid

= AopflowTtid (4.8)

Ufused = (U colour
i , UopF low

itid
) (4.9)

(Wcolour,WopF low) = R(Ufused) (4.10)

Lfilterh = WcolourLcolour +WopF lowLopF low (4.11)

where, U colouri is the usability class for the colour modality in the ith hypothesis, Lsvm is

the machine learning based lighting condition classifier and Icami
is the current image from the

camera. UopF low
itid

is the usability class for the optical flow modality in the ith hypothesis for the

target with id tid. Aopflow is the function which performs the optical flow usability check on

the motion parameters of the current target given by Ttid. Ufused forms the combined set of

usability classes for the colour and optical flow modality together obtained from the usability

class checks. (Wcolour,WopF low) are the unique weights for the two modalities using the fusion

rule data-bank R. Finally, Lfilterh is the global likelihood computed through the weighted

fusion of the colour and optical flow likelihoods given by Lcolour and LopF low respectively, with

their generated weights.

As mentioned in Chapter. 3, the modular construction of the system allows easy configura-

tion of individual processing modules. The optical flow processing modality introduces consid-

erable processing load on the system while contributing to the enhanced robustness. Therefore,

in situation when environment is known to be fairly static and the number of targets expected is

low, the optical flow modality can be switched off in order to boost the trackers speed. However,

this should be avoided in presence of targets with similar appearances and increased mutual

occlusions. Similarly, under situations of very bad lighting conditions, the colour histogram

module can be turned off while relying solely only on optical flow. This measure should be
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adopted only in situations of complete degradation of colour information from the cameras due

to very dark lighting conditions, since even under reduced lighting conditions cameras provide

colour information with reduced quality which could still assist the tracker up to a certain level

of benefit.

4.7 Discussion

This chapter introduced and discussed the robustness enhancement modules of the multiple

human tracking system. The machine learning techniques for dynamic background model up-

date under changing lighting conditions and intelligent multi-modal fusion were formulated. In

the next chapter, experiments validating the functioning of the system with respect to different

aspects will be discussed in detail.
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Chapter 5

Experiments

In this chapter the experiments conducted to evaluate the multiple human tracking system

are discussed. As discussed in Chapter. 2, a unified benchmarking framework is lacking in

the area of stereo multiple human tracking. Existing approaches perform tests in different

ways. In order to evaluate any vision based system comparisons of the results with ground

truth is essential. In the context of human tracking, the ground truth data represents the

actual positions of the human targets in each frame. This data, when available, can be used

to evaluate the accuracy of the tracker. Most of the existing systems such as [61], use manual

techniques to generate ground truth questioning the accuracy of the method. Methods such as

[97], conduct experiments to compute tracking accuracy using stationary targets at predefined

locations, but not by comparing their trajectories which is an important measure. Therefore,

in thesis a general purpose technique to generate zero error ground truth which can be used

to evaluate different aspects of the system has been presented. In the following sections, the

process of generating ground truth data and its use in experiments to evaluate the accuracy of

the tracker are discussed.

5.1 Zero Error Ground Truth Generation

In the context of human tracking a variety of approaches can be adopted for generating ground

truth data. These methods are either manual, semi-automatic or automatic [130, 96, 131, 132].

In the manual approach, positions of the humans are marked manually using reference points

of features in the images. In the semi-automatic approach the human targets are forced to

follow predefined paths and the images generated are synchronised with these paths either

automatically or by manual observation. In the automatic methods, typically external trackers
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using sensors other than cameras are installed. Most commonly, the targets are required to

carry an active marker or sensor in close contact. The data obtained from these trackers are

used as ground truth.

Although the above mentioned methods provide ground truth data, they cannot guarantee

accuracy since they themselves have a certain tolerance. The manual techniques are dependent

on the accuracy of the annotations. Similarly, the automatic approaches also depend on the

accuracy of the external tracker which has its inherent tolerance. Under such circumstances,

the results from the visual tracking system is compared with ground truth data which itself is

not accurate. This can lead to errors in benchmarking and therefore is not completely reliable.

Therefore, the multiple human tracking system discussed in this thesis was evaluated for its

correctness by generating ground truth using a novel approach which guarantees accuracy.

In order to generate ground truth without inherent errors, the test environment was modelled

in 3D in its completeness using Blender [133]. A 3D model of the complete lab environment

was reproduced with a high degree of detail in terms of dimensions and appearance. Every

object was modelled to its actual dimensions. The robot system was modelled in terms of its

kinematics and dynamics. The 4 cameras used in the tracking system were reproduced with

exact intrinsic and extrinsic parameters as compared to the real scene. The virtual environment

was also equipped with light sources similar to the ones used in the lab environment. With

the complete environment, designed in 3D, the only missing entities were the human targets.

They were modelled using simple Playmobil [134] models. These models are simple in terms

of human kinematics and dynamics. Since the object model used in the tracker is a rigid

rectangular cube, the Playmobil models make a good choice. The appearance of these models

can be designed as required.

Once the 3D model of the entire lab environment including the human targets are available,

it is possible to simulate the motion of the human targets within the virtual scene. For each

target, the trajectories can be planned and simulated. Hence it is possible to simulate the

motion of multiple targets within the virtual scene as close to the real-world excluding real

human dynamics. This implies that the human targets move with 2 DOF and an additional

degree of freedom for rotation along the Z axis, which is sufficient considering the dynamics of

the target model used. With these resources an animation can be created, where human targets

move freely within the scene, obeying the predefined trajectories and velocities. During the

animation the intensity of the light array can be changed either synchronously or individually.

Once the animation is ready it can be rendered using the perspective of the 4 cameras. Since
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the cameras are modelled exactly as in the real scene, they produce an animation with the

exact perspective. Another feature of this system is that it can emulate targets in different

conditions, such as same colour and appearance to test the modality fusion.

Figure 5.1: The lab environment modelled in 3D.

Fig.5.1 shows a snapshot of the 3D model of the complete lab from one perspective. It

consists of the robot system mounted on the table, the shared workspace, the cameras on the

ceiling and the human targets. The light array is present but not rendered. In addition, the

operator’s workspace, which includes the control computers is also modelled. Although the

motion trajectories of the humans can be simulated in blender, it cannot be directly used. The

rendered animation from the four cameras within the blender model is further recorded in the

form of videos. The videos obtained for each camera are used as in input to the multiple human

tracker and the tracked trajectories are recorded. By using a python script within blender the

real trajectories of the human targets are extracted. Once the blender generated trajectories

and the trajectories tracked by the multiple human tracker are available, they can be compared

in order to compute the accuracy of the tracker.

Fig. 5.2 presents the simulation of human motion within the virtual lab environment. The

top left image shows two human targets being simulated and the rendered images obtained from
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Figure 5.2: Human target simulation in the blender model of the lab environment.

the 4 cameras. The images obtained from the entire animation sequence are used for the tracker

evaluation. The lower left image shows the trajectories of one the targets generated through

blender. The motion of the target is modelled with 6 degrees of freedom each represented

individually along the entire time-line of the animation. The top right image illustrates the

trajectory data extracted from the trajectories generated through blender to suite the format

used for the tracker evaluations. This data includes the (x, y, z) position of the human targets

at each step in the time-line.

The experiments were conducted in the virtual and real environment and were focussed on

evaluation of the following aspects:

• Tracking accuracy of trajectories in the presence of multiple targets: In these

experiments the system was evaluated for its tracking accuracy. This includes target

detection, target exit and trajectories of multiple targets. The experiments were carried

out with 3, 4 and 5 targets. In the experiment with 5 targets, two targets have exact

similar appearance and move very close to each other.

• Robustness of tracking and background model update under drastically chang-

ing lighting conditions: Here, the system is evaluated for its tracking robustness under
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drastically changing lighting conditions. It validates the performance of the background

update module in presence of foreground targets.

• Robustness of occlusion handling in presence of targets with similar appear-

ance: This experiment shows the accuracy and robustness of the tracker under multiple

occlusions. The tests are performed under situation where targets have exact similar ap-

pearance and move very close to each other in opposite and also in the same directions.

An experiment is also conducted in a situation where all targets are dressed in black which

is an unfavourable for colour based tracking.

• Positive impact of multi-modal fusion under drastically changing lighting con-

ditions: Here, the positive impact of multi-modal fusion of colour histograms and optical

flow towards robust tracking under drastically changing lighting conditions is evaluated.

It shows how the intelligent tuning of modality weights depending on the tracking scenario

improve the performance of the particle filter.

The experiments conducted in the simulated environment use the videos generated by sim-

ulating humans within the blender modelled environment of the entire workspace. The videos

are accompanied by the ground truth trajectories of the humans rendered in the four cameras.

After verification of the tracker in the virtual environment with respect to different aspects,

the same experiments were conducted in the real-environment to prove the usability of the

system. The following sections will describe the tests conducted and the results obtained. The

experiments start with testing the tracker with 4 targets and analysing the accuracy of the

tracked trajectories. This is followed by a similar experiment but with 5 targets with close

motion and some targets having similar appearance. Thereafter, the system is tested in the

real environment with 3 targets in a constrained area. The next set of experiments are fo-

cused on the performance of the system under sudden and drastic illumination changes. This

is evaluated both in the simulate and real environment, Thereafter, the importance of the oc-

clusion handling module is verified using two targets of similar appearance and moving very

close to each other. This experiment is extended to the real environment where three similarly

dressed targets interact very closely with physical contact. These targets are dressed in black

colour which makes colour based tracking very complex. Finally, the impact of the intelligent

multi-modal fusion of the quality of feature matching under changing lighting conditions are

presented. Each experiment is accompanied by a video demonstration link.
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5.2 Tracking Accuracy of Trajectories in the Presence of

Multiple Targets

The experiments start with testing the tracker with 4 targets and analysing the accuracy of

the tracked trajectories. This is followed by a similar experiment but with 5 targets with

close motion and some targets having exact similar appearance. Finally, a test in the real

environment is presented.

5.2.1 Tracking with 4 Targets in the Scene

In this experimental set-up the system was tested in the simulate environment with 4 humans.

The tracked positions of each target was compared with the available ground truth data. The

error between the two sets of data was computed with statistical measures. The experimen-

tal set-up consists of 4 input videos, one from each camera. The videos were created using

the virtual environment described in section 5.1. In the scene, 4 targets were simulated to

produce human-like motion. The targets enter the scene two at a time and move within the

workspace with different trajectories. These trajectories were pre-planned and consist of key-

frames. Interpolating between key-frames, the actual positions of the targets in each frame

were extracted. This data forms the ground truth. The human models were rendered with the

4 camera perspectives using the trajectory information.

Figure 5.3: Illustration of the tracking system with 4 targets in the scene.

Fig. 5.3 illustrates the tracking of 4 targets in two unique frames in the input sequence.

The tracker keeps track of each target throughout the complete motion sequence. The boxes

around the targets represent the estimated 3D position of the targets by the tracker. These
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boxes are rendered in each camera perspective. The position of the individual targets tracked

by the tracker were recorded for each frame. Once the tracked positions for each target over

the complete video sequence were obtained, it was compared with the ground truth data.
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Figure 5.4: Experiment results of the comparisons between the tracked positions of the 4 targets

in each frame and the ground truth data. Each row represent the experimental results for an

individual target. The first column in each row shows the X co-ordinates of the tracked trajectories

(in red colour) and the actual trajectory obtained from the ground truth (in blue colour). The

second column in each row shows the Y co-ordinates of the tracked trajectories (in red colour)

and the actual trajectory obtained from the ground truth (in blue colour). The third column in

each row shows the plots of the error between the tracked and the actual trajectories in X (blue

colour) and Y (red colour) axes. The standard deviation of the error in X and Y axes are also

shown in the plots.

Fig. 5.4 shows the results from the experiment. The results are illustrated for each target

separately. For each individual target, the computed trajectories are plotted along with the

actual trajectories obtained from the ground truth. The trajectories are plotted for the X and

Y axis separately as shown. Thereafter, the estimated and the actual trajectories are analysed
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in order to compute the error between them. The rightmost columns in Fig. 5.4 show the error

plots and the standard deviation of error in each axis for each target. It can be observed that

the tracking error is in the range of 5 cm to 10 cm in a area as large as 6 × 6 meters, which

outperforms popular systems like [43]. A complete video demonstration is available under [135]

or http://www.youtube.com/watch?v=cJ8sDGKAcac.

5.2.2 Tracking with 5 Targets in the Scene with Close Motion

This experiment is similar to the one described in Section 5.2.1 but contains 5 targets instead of

4. Two out of the five targets have exactly the same appearance and during the motion sequence

move close to each other. This experiments evaluates the tracking results in such a scenario

where the target count is high resulting in larger probabilities of occlusions and at the same

time presence of targets with similar appearance resulting in increased tracking complexity.

Figure 5.5: Illustration of the tracking system with 5 targets in the scene moving close to each

other and two targets having similar appearance.

Fig. 5.5 illustrates the successful tracking of 5 targets within the tracking scene. The

snapshots are obtained from two different frames within the tracking sequence. The left image

shows the targets detected and tracked in the four camera views. The right image shows the

tracker keeping track of the targets successfully even when there are moving very close to each

other resulting in multiple occlusions.

Fig. 5.6 illustrates the plots of the tracked trajectories along with the actual trajectories ob-

tained from the ground truth generator. The right most column represents the error computed

in the X and Y directions. It can be seen that the standard deviation of the error computed
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Figure 5.6: Experiment results of the comparisons between the tracked positions of the 5 targets

in each frame and the ground truth data. Each row represent the experimental results for an

individual target. The first column in each row shows the X co-ordinates of the tracked trajectories

(in red colour) and the actual trajectory obtained from the ground truth (in blue colour). The

second column in each row shows the Y co-ordinates of the tracked trajectories (in red colour)

and the actual trajectory obtained from the ground truth (in blue colour). The third column in

each row shows the plots of the error between the tracked and the actual trajectories in X (blue

colour) and Y (red colour) axes. The standard deviation of the error in X and Y axes are also

shown in the plots.

over the entire sequence is below 10 cm even under increased numbers of simultaneously mu-

tual occlusions in multiple cameras. The tracker keeps good track of the targets with similar

appearance even when they are moving close to each other. A complete video demonstration

is available under [136] or http://www.youtube.com/watch?v=g0HbIYap-hw.
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5.2.3 Tracking with 3 Targets in a Real Scene and Constrained Area

The previous sections validated the performance of the system in a simulated environment

under various validation scenarios. The availability of ground truth data makes this possible.

However, in the real world scenario actual ground truth data is not available. Therefore, the

system was tested in a crude manner. The tracking area in the actual laboratory was highly

constrained. The possibility of mounting the cameras on the ceiling was limited to 3 meters

and the tracking areas covered was 3×3 meters. The experiment was performed with 3 targets

in the scene. In order to get an estimate of the trajectories, a fixed path was marked in the

tracking area and the humans were asked to move along this path.

World Zero

Observed Trajectories

Desired Trajectories for each target

World Zero

Target 0 Target 1

Target 2

Figure 5.7: Experiment results in real world environment with 3 targets. The first row shows

the three targets at their starting positions and the path to be followed marked in red towards

the right. The second row shows the tracker tracking the targets and the motion trajectories

generated.

Fig. 5.7 illustrates the results obtained. In the first row it can be observed that the targets

are at their initial position and being tracked. Towards the right, a red box can be observed,
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which represents the path the targets are supposed to move on when observed from the top

view. The second row shows the targets being tracked after they have moved. To its right the

generated trajectories have been plotted which approximate the desired shape. The trajectory

of each target is plotted and is similar to the colour id set by the tracker. The results cannot

be mathematically evaluated since the ground truth data is not available, and the humans

themselves induce an error while moving along the desired path. The goal of this experiment

is to show that the tracker can track multiple targets and the results obtained are as desired in

the real-world scenario.

A complete video demonstration is available under the link [137] or http://www.youtube.

com/watch?v=wePVQ7cXB9c. The demonstration shows how the system tracks the targets. In

the video, after completing the desired trajectories, the targets interact with each other by

moving close to each other resulting in multiple occlusions. The tracker keeps a good track of

all the targets even under these situations.

The experiments conducted in this section validate the claim that the multiple human

tracking system cab automatically detect and track human targets within a predefined tracking

area. It also proves that the tracker keeps a good track of the motion trajectories of each

individual targets even under multiple occlusions. The next section will validate the robustness

of the system under drastically changing lighting conditions.

5.3 Robustness of Tracking and Background Model Up-

date under Drastically Changing Lighting Conditions

These experiments were conducted initially in the simulated environment and further in the

real environment. The goal was to validate the robust performance and adaptability of the

system towards drastically changing lighting conditions. Thereby, validating the claim that the

system can be used in dynamic environments.

5.3.1 Experiment in Simulate Environment

This experiment was carried out to validate the performance of the tracker under drastic changes

in lighting conditions. The machine learning based background update module used for this

purpose was discussed in Section 4.5.4. To summarise, this module is responsible for detecting

drastic changes in lighting conditions and updating the background model in the presence of

foreground targets. During this process the pre-processing of the camera images for background
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segmentation is suspended. Therefore, the background update module has to ensure that the

tracker is able to keep track of the targets until the new background model is generated. As

illustrated earlier, figs, 4.12, 4.13, 4.14 and 4.15 provide a step by step illustration of the entire

process.

The experiment was carried out using two targets simulated in the scene. The sequence

was 1600 frames long and each image was added with Poisson noise to model the camera

noise. The two targets move freely in the scene under good lighting conditions. At frame

1000 the lighting conditions in the scene change drastically. The new lighting condition falls

into the class Bad as classified by the machine learning based module for lighting condition

analysis. The background update process is activated until the new background model is

generated. The tracked trajectories during the entire sequence are recorded and plotted along

with the ground truth. Fig 5.8 shows the plotted results. A small glitch can be observed

at frame 1000 when the lighting conditions change. The right most column represents the

error plot in the X and Y directions respectively. An overshoot in the error in the part

of the sequence where the light change occurred can be observed in the error plots but the

tracker recovers immediately. From the standard deviation of the errors in each direction it

can be observed that the average error is still below 10 cms, validating the performance of

the background update module. A complete video demonstration is available under [138] or

http://www.youtube.com/watch?v=Jm2D1jUsuFM.

5.3.2 Experiment in Real Environment

In this experiment the same lab scene described in Section 5.2.3 is used. The system is tested for

its performance under drastic changes in lighting conditions in a real environment. The system

requires to detect such events and update the background model in presence of foreground

targets.

Fig. 5.9 illustrates the experiment conducted. It can be observed in the first row, the

tracker successfully tracks the two targets in the scene. The background model used is shown

on the right. The second row represents the frame in which the light changes drastically. The

light change is detected by the lighting conditions classification module. The pre-processing

for background segmentation is suspended and the tracker uses local statistics to keep track of

the targets. The background model update is instantiated following which, regions exclusive of

target occupancy are updated. During the course of tracking, while the targets exhibit motion,

the not-updated regions of the background are updated as they become visible. Finally, the
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Figure 5.8: Illustration of the tracking system with 2 targets (where Target 1 enters at frame 150

and Target 2 enters at frame 600) and drastic changes in lighting conditions during the tracking

sequence. The first column in each row show the X co-ordinates of the tracked trajectories (in

red colour) and the actual trajectory obtained from the ground truth (in blue colour). The second

column in each row show the Y co-ordinates of the tracked trajectories (in red colour) and the

actual trajectory obtained from the ground truth (in blue colour). The third column in each row

shows the plots of the error between the tracked and the actual trajectories in X (blue colour)

and Y (red colour) axes. The standard deviation of the error in X and Y axes are also shown in

the plots.

complete background model is updated in each camera view and the tracker successfully tracks

all the targets. The experiment validates the approach. The primary assumption for this

method is that the targets should exhibit motion in order to expose occluded background

regions. This is a reasonable assumption since the probability of motion is high due to the

application requiring human interaction with robots. Secondly, if the targets do not move, the

prediction step is trivial and local statistics are sufficient. A complete video demonstration is

available under [139] or http://www.youtube.com/watch?v=yZHCXgdDf14.
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Figure 5.9: Experiment results in real world environment under drastically changing lighting

conditions. The first row shows the tracking results to the left and the background model to

the right. The left image in the second row illustrates the change in lighting conditions and the

right image shows the detection of this situation. The third and fourth row show how the new

background model is built while the targets move in the scene and the successful tracking of the

targets under unfavourable tracking conditions.

The two experiments conducted validate the robust performance of the system under drasti-

cally changing lighting conditions. It shows how the system adapts to the dynamically changing

environment while keeping a good track of all the targets being tracked. The next section vali-
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dates the performance and importance of the occlusion handling module.

5.4 Robustness of Occlusion Handling in Presence of Tar-

gets with Similar Appearance

The occlusion handling module and its importance in robust tracking during mutual occlusion

of targets was discussed in Section 3.5.4. This section demonstrates an experiment to validate

the importance of the occlusion handling module in a special situation where most trackers will

tend to lose the target. As before, the experiments were carried in both simulated and real

environment.

5.4.1 Occlusion Handling with Similar Targets and Very Close Motion

The scenario consists of two targets with exactly the same appearance. The two targets enter

the tracking area and move very close to each other. The distance between the targets when

they cross each other is less than 10 cm. The motion of the targets are simulated in a straight

line where they cross each other. In order to produce an environment as close to the real

world, Poisson noise [140, 141, 142] representing the camera model was added in each image.

To increase the tracking complexity, the motion trajectory of the two targets is initially in

opposite directions along a straight line and thereafter, along the same line and in the same

direction. Under such circumstances the tracking process becomes very complicated since the

two targets have the same appearance, move close to each other and in the same direction. As

discussed in Section 4.4, when the targets are moving in the opposite directions, the optical

flow modality can save the feature matching process. However, when the two targets move in

the same direction and very close to each other, both the colour and optical flow modality can

fail. Under such circumstances, using the spatial information of the targets within the occlusion

handling module, robust tracking is achieved.

Fig. 5.10 shows the tracker’s output for the motion sequence. The left half shows the

tracker tracking the targets while they move move in opposite directions. The targets move

in a straight line and when they cross each other, the distance between them is less than 10

cms. The right half illustrates the successful tracking of the targets even when they move in

the same direction and very close to each other.

Fig. 5.11 presents a detailed analysis of the trajectory comparisons between the tracker

and the ground truth data. The first two columns show the plots of the tracked trajectories
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Figure 5.10: Illustration of the tracking system with 2 targets in the scene. The targets have

exactly the same appearance. They move very close to each other. They move initially in opposite

directions along a straight line as shown in the left image. Thereafter, they move in the same

direction and very close to each other as show in the right image.

and the ground truth in the X and Y directions for each target. The characteristics of the

motion between the two targets discussed earlier is validated from the plotted trajectories. The

rightmost column represents the error plots in the X and Y directions. It can be observed that

there is a sharp overshoot in the error in the dominant direction of motion when the targets start

moving in the same direction. The tracker recovers in a few frames. This occurs due to the fact

that both targets have exactly the same appearance which can cause failure in other system. In

this system due to the presence of the occlusion handling module, the tracker recovers and tracks

the two targets successfully even under a high degree of ambiguity in the feature matching. The

average error is appeared to be twice as much as normal due to the overshoot, but in other

parts of the sequence the error is still lower than 10 cms. A complete video demonstration is

available under [143] or http://www.youtube.com/watch?v=0vi7vtXIBxU.

5.4.2 Occlusion Handling with 3 Targets and Very Close Motion and

Dressed in Black Clothing

This experiment demonstrates the robustness of the tracker in a very difficult real-world sce-

nario. It consists of 3 targets interacting very close to each other with physical contact. To

make it more difficult for the tracker, all the targets are dressed in black clothing, which is

unfavourable for colour based tracking since black and white colours do not provide any infor-

mation in the colour space.
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Figure 5.11: Experiment results between the tracked positions with respect to the ground truth

of 2 Targets (where Target enters at frame 180 and Target 2 enters ate frame 220) with exactly

similar appearance and very close motion. Each row represent the experimental results for an

individual target. The first column in each row show the X co-ordinates of the tracked trajectories

(in red colour) and the actual trajectory obtained from the ground truth (in blue colour). The

second column in each row show the Y co-ordinates of the tracked trajectories (in red colour) and

the actual trajectory obtained from the ground truth (in blue colour). The third column in each

row shows the plots of the error between the tracked and the actual trajectories in X (blue colour)

and Y (red colour) axes. The standard deviation of the error in X and Y axes are also shown in

the plots.

Fig. 5.12 and the video sequence [144] or http://www.youtube.com/watch?v=3ChU0W1QHoc

provides a good illustration of the trackers performance. It can be observed that the tracker

successfully tracks all the three targets. The targets are tracked even when they are in physical

contact resulting in multiple occlusions. The tracker keeps good track of all the 3 targets

through the entire sequence. There are some frames in which the tracker tends to deflect from

the target. This occurs due to multiple occlusions and some targets are out of the field of view
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Figure 5.12: Tracking 3 targets with very close motion and similar black clothing

of certain cameras. Under such circumstance a target can be occluded in two view and be out

of the field of view of one camera. This means that it is only visible in one camera which makes

it difficult for the tracker to maintain the track. It can be observed that the tracker deflects

from one target but recovers immediately as soon as it visible in at least two cameras.

The two experiments discussed in this section validate the importance and robust perfor-

mance of the occlusion handling module. Due to this module the system performs robustly even

in tracking scenarios where ambiguity is very high. In the next section the experiments to vali-

date the contribution of the intelligent multi-modal fusion technique for improved performance

of the tracker are discussed.

5.5 Positive Impact of Multi-modal Fusion under Drasti-

cally Changing Lighting Conditions

This experiment validates the use of intelligent multi-modal fusion in order to improve the

performance of the tracker. It shows how the tracker likelihood is improved due to the fusion

in difficult tracking scenarios. The experiment plots the feature matching distance from the

colour and optical flow modalities. This data was recorded in a sequence from good lighting

conditions and another sequence from bad lighting conditions. Further, the likelihood values

computed with and without multi-modal fusion are plotted for analysis.

Fig. 5.13 demonstrates the results of the experiment. It can be observed that quality of

lighting in the second scene is very bad as compared to the first one. Comparing the distance

plots in the two scenes it can be observed that, the feature matching distance of colour his-
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Figure 5.13: Experiment results for multi-modal fusion. The two images on the top show the

tracking environments with good and bad lighting conditions. The second row shows the plot of

the feature matching distance for colour (red) and optical flow (blue) modalities in each tracking

environment. The third row shows the plots of the likelihood values computed with (light blue)

and without (magenta) multi-modal fusion.

togram degrades in the bad lighting condition while the optical flow distance remains fairly

constant. This shows the robustness of optical flow and the sensitivity of the colour distribu-

tions to changing lighting conditions. This also proves that optical flow information is a good

supporting feature to be used under such circumstances. This claim is validated further in

the likelihood plots obtained for the two lighting conditions. In each of the two scenarios, two

likelihood plots are generated. The first represents the likelihoods computed using only colour

information followed by likelihood computed through multi-modal fusion of colour and optical

flow information. It can be observed that the likelihood without fusion degrades in bad light-

ing conditions while the likelihood with multi-modal fusion is much stronger. This is possible

due to the machine learning module which detects the light change and adjusts the weights of

the two modality accordingly to boost the fused likelihood. Initially the colour modality and
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optical flow were weighted 0.8 and and 0.2 respectively. After light change, in this particular

experiment the weights of colour and optical flow were changed to 0.3 and 0.7 respectively.

Therefore, the optical flow modality was more dominant in the bad lighting conditions due to

its robustness toward changing lighting conditions. This proves that under bad lighting con-

ditions the multi-modal fusion of colour and optical flow ensures robust and stable tracking

results.

In order to validate the intelligent multi-modal fusion approach, an experiment was con-

ducted, considering various aspects of the fusion process. The system was tested on scenarios

described earlier such as abrupt changes in lighting conditions, stationary targets, targets mov-

ing very close to each other in the opposite as well as similar directions. In such scenarios,

the intelligent multi-modal fusion is demonstrated by tuning the contribution of the individual

visual modalities.

Fig. 5.14 illustrates the experimental results using the sequence introduced in Fig. 5.10.

The tracked velocities and positions of each individual target is plotted. Together with this

information, the contribution of the colour histogram and optical flow modalities are plotted for

a single hypothesis (in this case the first). The plots show how the contribution of the modalities

change depending on the motion behaviour of the targets with respect to each other. It can be

observed that the optical flow contribution lowers when the target velocities are close to zero,

indicating no motion. Similarly, the optical flow contribution is lowered when the distance

between the targets gets lower than the threshold of 1 meter and the direction component of

the velocities is less than a threshold of 50 degrees.

Fig. 5.15 demonstrates the intelligent multi-modal fusion using the sequence illustrated

in figs. 4.12, 4.13, 4.14 and 4.15. This sequence contains two targets interacting with each

other under drastic changes in lighting conditions. The experiment shows how the modality

contributions change when the lighting conditions and motion behaviour of the targets change.

It can be observed that when the lighting conditions degrade the contribution of the colour

histogram modality is reduced and that of the optical flow is increased. Under these conditions

the optical flow modality is further checked and suppressed under unfavourable condition such

as stationary targets, targets moving close to each other in the same direction and during the

background model update process.

The three experiments discussed in this section successfully validate the importance of the

intelligent multi-modal fusion module in assisting towards robustness enhancement of the mul-

tiple human tracking system.
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5.6 Discussion

This chapter formulated the experiments conducted in order to validate the multiple human

tracking system. It introduced a methodology to generate ground truth through 3D modelling

and simulations. Further, the system was validated through a set of experiments, both in virtual

and real-world scenarios. Each experiment was aimed towards a certain aspect of the system

to be validated. In the following section, the integration of the system into multiple real-world

robotic scenarios will be discussed. Five demonstration scenarios will be introduced validating

the generality of the system and its easy integration into diverse robotic applications.
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Figure 5.14: Experiment results for dynamic multi modal fusion with targets representing dif-

ferent motion behaviours. The scene consists of two targets, though their entry frame is different.

Target two enters much later in frame 85. The first row represents the modality contributions of a

single hypothesis in the sequence. The second row represents the velocity amplitude of the target.

The third row represents the velocity directions. The fourth row represents the tracked positions.
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Figure 5.15: Experiments results in dynamic multi modal fusion under changing lighting condi-

tions.
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Chapter 6

Integration with Real-World

Robotic Systems

6.1 Overview

In the preceding chapters, research and development of a multiple human tracking system was

discussed. The primary focus was robustness enhancement using machine learning techniques.

Various aspects of the system were evaluated through experiments in simulated and real envi-

ronments. This chapter will focus on demonstrating and validating the usability of the system

in real-world applications applied to robotic systems. A variety of applications will be discussed,

demonstrating the easy and systematic integration of the multiple human tracking system with

larger distributed systems involving robots. In addition, complementary vision systems which

were developed as supporting modules in certain demonstrations will be introduced.

6.2 Multiple Human Tracking and Face Tracking for Vi-

sual Servoing using Robots

6.2.1 Overview

The multiple human tracking system combined with a face tracking system developed by the

author, helps achieve visual servoing of human in indoor environments using robots. The system

itself is very general and can be applied to a variety of applications. One such application is

tracking moderators in a studio room to realize an automatic cameraman. The studio could be

standard, virtual or virtual-augmented [10].
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6. INTEGRATION WITH REAL-WORLD ROBOTIC SYSTEMS

Figure 6.1: A virtual set for daily news broadcasting events. The upper and lower left pictures

show the virtual studio. The right shows our robot camera system for broadcast automation. (im-

age courtesy: RTL Television Studio Köln, Germany, and Robotics Technology Leaders GmbH ).

Virtual TV studios have gained immense importance in the broadcasting area over the past

years, and are becoming the mainstream way of broadcasting in the future. The present day

technology also allows broadcasters to have virtual objects inside the virtual scene. A typical

camera configuration for motion control consists of a pedestal housing a pan tilt unit. These

systems have limitations in terms of degrees of freedom, motion smoothness and high costs of

the external sensor-based tracker, used to recover the 3D pose of the camera.

Industrial robot arms can perform precise manipulation of TV cameras with high repeata-

bility in large workspaces, using many degrees of freedom. Moreover, the main advantage of

using a robotic system is that the 3D camera pose can be obtained free of cost through the

robot kinematics, thereby eliminating the need for external trackers.

Robotic automation in TV studios can be pushed to a new high by imparting intelligence

to the robot system. With this aim, a 2D face tracking system and the 3D multiple human

tracking system have been integrated into a larger robotic system. It consists of robot driven

cameras along with a wide range of hardware and software modules used in TV studios. The

system is able to localize the moderator and keep her/him within the screen while sitting or

freely walking inside the studio.

Another important feature is the automatic positioning of the moderator during different
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run-down scenes according to a pre-determined region of interest. For example, when switching

from a scene with the moderator in the centre to one where visual graphics need to be rendered,

it is necessary to hold the moderator on the left (or right) part of the scene. This can be achieved

using the tracking results with almost no need for human intervention. The evolution of this

system has been precisely documented in [10], [145] and [11], showing its integration into a

distributed robot system called RoboKam [146].

The system consists of two parts: 1. a 2D face tracker, operating on each robot, localizes the

moderator in position (x, y), scale h and rotation θ within the field of view of the TV camera,

allowing the robot to hold the moderator in a desired region in the scene, with the desired zoom

and focus.

2. The multiple human tracker which localizes the target over the entire studio floor w.r.t.

3D translation (x, y, z). The 3D tracker performs important tasks namely:

• Initialize each robot camera, so that they can bring the target in the respective fields of

view independently of their initial positions

• Re-initialize the face trackers in case of a target loss, to recover their 2D locations

• Initialize zoom and focus control of each robot camera

In the face trcker, the target is modelled as a fixed omega-shape along with a frontal picture

of the person’s appearance.

Figure 6.2 gives an overview of the complete system. Each tracker is integrated into the

robotic camera system through a modular middle ware[5], which was developed for communi-

cation and configuration of studio devices.

It is possible to have more than one robot camera in the same studio. However, there exists

only a single common overhead tracking system. The overhead tracker uses ceiling mounted

fire wire cameras in a stereo set-up, in order to compute the 3D pose of the moderator. These

cameras are calibrated with respect to a common zero point for the individual intrinsic and

extrinsic parameters.

For the 2D face tracker a Kalman filter [106] is used with a likelihood working on the

contracting curve density CCD modality. The CCD algorithm [147, 148] provides a contour

tracking modality, based on separation of local colour statistics. In an object tracking context,

separation takes place between the object and the background regions, across the screen contour

projected from the shape model onto a given camera view, under a given pose hypothesis

(prediction).
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Figure 6.2: Block diagram of the system architecture. The middle ware [5] integrates multi-

ple robotic camera devices and tracking systems. A multiple human tracking system (overhead

tracker) is used to initialize the system at start-up and in cases of target loss. Since each camera

device is calibrated to a given world point, the tracking information can be fused. The middle

ware also connects to the virtual reality engine, system configuration modules, the operator GUI,

the motion planning module etc.

Concerning computational resources, software for each camera system runs on a separate

PC and obtains the TV camera picture through a frame grabber. The multiple human tracking

system, also referred as the overhead tracker, uses stereo Fire-wire cameras with wide angle

lenses for covering the complete studio floor.

6.2.2 2D Face Tracking of Moderators

Figure 6.3: Steps of the 2D person tracking pipelines: the top pipeline uses a 2D pose with

4 degrees of freedom: x, y, scale and rotation; A Kalman filter incorporating a feature-based

contracting curve density matching as the underlying objective function/modality; This approach

is based on an omega shape model.

Similar to the 3D multiple human tracker, the tracking pipeline is designed and implemented

following an architecture inspired by the OpenTL Library [2]. Fig. 6.3 describes the complete
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pipeline.

The person tracker holds a state-space representation of the 2D model pose, given by a

planar translation (x, y), scale h and rotation θ of the respective model in the image plane. The

sample points on the contour model itself are not deformable but transform with respect to the

model pose. The Kalman filter provides the sequential prediction and update of the respective

2D states s = (x, y, h, θ, ẋ, ẏ, ḣ, θ̇).

6.2.2.1 Pre-processing

The sensor data for the person tracker is obtained from the TV camera in a raw PAL format

which is further converted to RGB 444 through a frame grabber. In CCD, the pre-processing

step is absent, since the colour data of the image is directly used by the feature matching

module, in order to collect local statistics and optimize the pose. Therefore, the pre-processing

function merely copies the input image to a local storage for the other modules.

6.2.2.2 Tracker prediction

The Kalman filter generates a prior state hypothesis s−t from the previous state (st−1) by

applying a Brownian [149] motion model. The Brownian motion model although very simple,

is suitable as it provides a Gaussian distribution vt around the current state which helps keeping

track of the target when it is not moving much as well when it exhibits motion at acceptable

speeds. If the target moves fast then, more sophisticated motion models are required, but this

situation normally does not arise in TV Studio environments.

s−t = st−1 + vt; (6.1)

6.2.2.3 CCD Likelihood for Feature Level Matching

In the original CCD algorithm [147], local areas for collecting colour statistics are given by

regions around each contour sample position, on each side of the contour. In order to simplify

the computation, as suggested in [147], first points are sampled along the respective normals,

statistics are collected, and afterwards each statistic is blurred with the neighbouring ones (Fig.

6.4). This is fully equivalent to the initial process, but much more computationally convenient.

From each contour position hi, foreground and background colour pixels are collected along

the normals ni up to a distance L, and local statistics up to the 2nd order are estimated as:
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Figure 6.4: Contracting curve density tries to maximize the separation of colour statistics of a

given inside and outside object region. Therefore the algorithm samples pixels along the normals

for collecting local colour statistics.

ν
0,B/F
i =

D∑
d=1

wid

ν
1,B/F
i =

D∑
d=1

widI(hi ± Ld̄ni) (6.2)

ν
2,B/F
i =

D∑
d=1

widI(hi ± Ld̄ni)I(hi ± Ld̄ni)T

with d̄ ≡ d/D the normalized contour distances, where the ± sign is referred to the respective

contour side (for the background region), and image values I are 3-channel RGB colours. The

local weights wid decay exponentially with the normalized distance d̄, thus giving a higher

confidence to observed colours near the contour. For detailed explanation of equations please

refer to [147].

Single-line statistics are thereafter blurred along the contour, providing statistics distributed

on local areas

ν̃
o,B/F
i =

∑
j

exp(−λ |i− j|)νo,B/F
j ; o = 0, 1, 2. (6.3)

and finally normalized

90



6.2 Multiple Human Tracking and Face Tracking for Visual Servoing using Robots

Ī
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ν̃
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in order to provide the two-sided, local RGB means Ī and (3× 3) covariance matrices R̄.

The second step involves computing the residuals and Jacobian matrices for the Gauss-

Newton pose update. For this purpose, observed pixel colours I(hi + Ld̄ni) with d̄ = −1, ..., 1,

are classified according to the collected statistics Eq. 6.4, under a fuzzy membership rule a(x)

to the foreground region

a(d̄) =
1

2

[
erf

(
d̄√
2σ

)
+ 1

]
(6.4)

which becomes a sharp {0, 1} assignment for σ → 0; pixel classification is then accomplished

by mixing the two statistics accordingly

Îid = a(d̄)ĪFi + (1− a(d̄))ĪBi (6.5)

R̂id = a(d̄)R̄F
i + (1− a(d̄))R̄B

i

and colour residuals are given by

Eid = I(hi + Ld̄ni)− Îid (6.6)

with measurement covariances R̂id.

Finally, the (3 × n) derivatives of Eid can be computed by differentiating Eq. 6.6 and Eq.

6.4 with respect to the pose parameters s1

Jid =
∂Îid
∂s

=
1

L
(ĪFi − ĪBi )

∂a

∂d̄

(
nTi

∂hi
∂s

)
(6.7)

which are stacked together in a global Jacobian matrix Jccd.

The final state is then computed using the Gauss Newton update to object level:

s = s+ ∆s (6.8)

1As in [148], the dependence of Rid on p is neglected while computing the Jacobian matrices.
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Figure 6.5: The robot system installed at the ZDF Studios in Mainz, Germany(image courtesy:

ZDF Television Studio [6] Mainz, Germany)

∆s = J+
ccdEccd (6.9)

Finally, when the termination criteria is satisfied (∆s ≈ 0)

s∗ = Zccd (6.10)

6.2.3 The Robot System

The robot system replaces traditional pedestal driven camera in normal and virtual studios with

industrial robots capable of manipulation with up to 8 degrees of freedom in addition to zoom

and focus control. The robot itself is a 6 axis Stäubli RX100L industrial arm [150] modified

along joint four with a unique tilt-pan-tilt to suit dynamic camera movements and precise

positioning. The optionally available pan-tilt or tilt-pan-tilt heads offer additional flexibility

[146]. An additionally mounted portable and self-propelled air cushion platform allowing quiet

and quick positioning in the newsroom [146].
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The robot ensures maximum flexibility, speed, precision and efficiency in the Studio Au-

tomation. It is optimized for use in VR environments and live scenarios. It offers highest

security through integrated anti-collision system. Fig 6.5 shows the robot system installed at

the ZDF Studios [6] in Mainz.

6.2.4 Self Steering Studio

Combining the 2D face tracker and the 3D multiple human tracker an automatic control of the

TV camera using industrial robots is achieved. With this functionality the presenter can control

the camera himself through an user interface taking the cameraman and producer out of the loop

of decision making. This self-steering capability results in less errors during live production. In

a TV Studio set-up, production is done on a scene-by-scene basis using a run-down. The robot

system can react intuitively to the switch from one scene to another. This can be achieved

automatically using the aid of the visual trackers with almost no need of human intervention.

Different scenes require the moderator to appear in different regions and with different zoom

and focus settings. This information can be combined with the run-down information in order

to enable a complete automatic switch of the camera position and zoom/focus in order to hold

the moderator within the region of interest of the current scene.

Tracking: estimated state 
and movement

Image: ROI adaptation Movement of joints

Strategy (linear and/or hold angle)
Tracking system (Overhead-/Persontracking)

Mapping to joint movement,
collision avoidance

Figure 6.6: Robot control methodology

In order to keep the target in a predefined ROI it is necessary to generate the relative

motion parameters for the corresponding robot system. This is achieved by using this pixel-

level information from the tracking system and converting them to 3D movement commands in

world space. For this conversion different additional parameters have to be considered namely:
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• Region of interest: It is the desired area in the image space of each camera system, where

the target should be held, e.g. in weather broadcasts the target appears usually on the

right hand side of the scene.

• Balance speed: The speed of the robot is specified for X, Y, pan and tilt as an absolute

percentage ranging from [−100%; 0%; 100%]. This speed is used by the camera system

in order to get the target back into the ROI (region of interest). The actual speed used

also depends on the distance between the target and the ROI. The effective speed is

proportional to the calculated distance providing smoother motion properties.

As shown in Fig. 6.6, the 3D Cartesian movement is computed out of the X, Y, pan, tilt

speeds. Two different operation modes for the joint control are proposed:

• Normal mode: The movement of the robot is limited to a linear motion in the X and Y

direction, and angular motion for Pan and Tilt in order to get the target back into the

desired ROI.

• Hold-angle mode: The movement of the robot is done in 2 phases: In the 1st phase, the

robot uses only Pan and Tilt to bring the target back into the ROI, and in the 2nd phase

it uses linear X and Y motion to compensate to hold a predefined viewing angle of the

camera system.

In the laboratory experimental set-up a Stäubli RX-90 [150] was used. The robot has been

illustrated earlier in Fig. 6.1. It is equipped with the CS-8 Stäubli controller. The kinematics

computation provided by the controller are bypassed and the kinematics and motion trajectories

are computed externally. This information is sent to the low level controller thorough a low

level interface [151]. The robot controller runs a Real Time Extension of Linux. For the PID

control we rely on the CS-8 controller shipped by the robot manufacturer.

6.2.5 Demonstration and Results

The system was evaluated in real existing TV studios used for virtual reality TV productions.

For this purpose standard Desktop PCs with 2.4GHz Intel Pentium IV and standard graphics

hardware have been used to realize the tracking for each camera system and the multiple human

tracking system, all running on Linux operating system.

Fig. 6.7 show some experimental results of the 2D person tracker. The tracker keeps good

track of the person during this sequence. It also illustrates the 3D multiple human tracker.

94



6.2 Multiple Human Tracking and Face Tracking for Visual Servoing using Robots

The use of CCD in the face tracker, assisted by the multiple human tracker has made possible

a robust localization of the target in terms of stable scale needed for zoom control which is

illustrated in the top-right of Fig. 6.7.

Figure 6.7: Experimental results Upper row: Real-world news studio using a green wall back-

ground and constant light conditions along with cluttered testing conditions. Bottom row: 3D

multiple human tracker tracking the moderator using stereo cameras.

Figs. 6.8, 6.9, 6.10 and 6.11 demonstrate the self steering capability of the system. In such

a system the moderator can control the camera motions according to the run down sequence.

In studios this is done together by the producer and the cameraman during different parts of

the show where the moderator needs to be in different regions of the scene. In manual control

the chances of human errors are higher due to co-ordination errors. With a vision based robotic

control system described in this section, the different positions of the moderator during the run

down can be programmed offline and the moderator can direct the camera system to react in

order to obtain the required scene with the moderator in the desired position by simple a push

of a button. This reduces the chances of error to a great extent since the moderator can himself

control the show. In order to demonstrate this, a news scenario was created where the news

reader controls the camera positions in different run down steps and the camera system react

automatically using the information from the visual trackers.

Fig. 6.8 illustrates a typical newsroom scenario. The TV camera is controlled by RoboKam

and the on screen talent has access to the system GUI. The moderator can control the run

down sequence himself using the GUI thereby eliminating the need for communication and

co-ordination with the camera man and producer.

Fig. 6.9 show a scenario during the run down where the position of the moderator is required

95



6. INTEGRATION WITH REAL-WORLD ROBOTIC SYSTEMS

Figure 6.8: Self steering camera system with tracking results shown by red rectangle.

to be in the centre of the screen as shown by the green rectangle. The red rectangle represents

the tracking results. It can be observed that as soon as the moderator chooses the predefined

configuration for the current scene in the run down the robotic camera system reacts using

the tracking results and moves the camera smoothly until the moderator occupies the desired

position in the scene. This scenario where the moderator is in the centre of the screen is common

during news shows when the content has to be read out without additional visual aid.

Figs. 6.10 and 6.11 demonstrate other run down scenarios where the moderator is required

to be present in the right or left parts of the screen. This is typically seen during news shows

when the moderator is reading out the news along with some visual information on his or her

side. This information is rendered into virtual screens. It can be observed how the robotic

camera system reacts to the run down change such that the moderator is filmed in the desired

region of interest.

The trackers perform in real-time with approximately 15 − 20 fps, which is sufficient for

the robot controller which requires an update every 200ms. The image resolution is 640× 480

pixels. Fig. 6.12 illustrates a lab robot with a pan-tilt unit and a TV camera. The robot tracks

the target while the target is moving and interacting with other people in the scene.

The tracker performs in real-time. It communicates with the robot controller through a

common middle ware using TCP Sockets. The robot controller send commands to the robot

with a cycle time of 4 msecs and requests data from the tracker every 100 msecs. The tracker

generates data at 15-25 fps thereby fulfilling the data request from the robot controller. There

is indeed some delay (approx 200 msecs) when the robot reacts to fast movements of the

moderator, but in TV Studio environments and especially in virtual sets for news production,

this situation is very rare and usually avoided by the producer. Most of the motion control

takes place during switching of scenes, where a small delay can be tolerated during production.
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Reality TV Studios

Figure 6.9: Self steering camera system with target position to be achieved is centre of the screen

shown by green rectangle.

A complete video demonstration is available under [152, 153] or http://www.youtube.com/

watch?v=VDtIAByFJog and http://www.youtube.com/watch?v=xpJWHYinyrE.

6.3 Human Tracking for Interaction with 3D objects in

Virtual-augmented Reality TV Studios

6.3.1 Overview

Virtual reality TV studios have advanced to a level where, inclusion of augmented reality within

virtual studio environments has become a possibility. The modern day studio is not only capable

of rendering images of the virtual studio environment in real-time, but also able to accommodate

3D objects within the virtual world and render them with the camera perspective. Such virtual

objects are used as a visual aid for the viewer and the moderator.

Although virtual objects enhance the aesthetics of the show, there are limitation on the

possibilities of interaction between the on screen talent and virtual objects. A virtual object

has a 3D position in the virtual scene but the position of the on screen talent in the studio

environment is not know. During keying of the TV camera image with the rendered virtual
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Figure 6.10: Self steering camera system with target position to be achieved is to the right of

the screen shown by green rectangle.

environment, the foreground pixels from the TV camera image overwrite the rendered scene.

In such circumstances, even if the on screen talent is behind the virtual object, he or she will

always be rendered over the virtual object producing an ambiguous image. Therefore, in the

current day studios the interaction of the on screen talent with virtual objects is restricted

and overlaps are not permitted. The multiple human tracking system can be used to overcome

this limitation and allow a more intuitive way of interaction between the on screen talent and

the virtual object. This is possible by estimating the 3D position of the on screen talent and

using it to decide if the virtual object should be rendered as foreground or background by the

rendering engine. In this manner the on screen talent and the virtual object are rendered in

the correct order without limiting the interaction between them, resulting in a impressive 3D

experience.

6.3.2 System Architecture

Fig. 6.13 describes the system architecture. It consists of different modules communicating

with each other in order to produce the final broadcast content. The different modules are

described hereunder:
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Reality TV Studios

Figure 6.11: Self steering camera system with target position to be achieved is to the left of the

screen shown by green rectangle.

• VizEngine: This is the 3D engine [154], which provides the virtual environment of the

studio and serves as the core module of the virtual studio in terms of management, control

and monitoring of all the rendering modules.

• 3D Objects: This is the module where the 3D objects designed are stored in terms of

their shape and appearance [154]. It contains a detailed description of the geometry to

scale, texture information, calibration data and pose data.

• Foreground/Background Context Switch: It uses the pose data of a 3D object and

the position data of each human in the studio environment in order to determine if it

should be rendered as foreground or background. This process is performed for each 3D

object.

• 3D Multiple Human Tracker: This system as described in the previous chapters

tracks the on screen talent in real-time returning the position of the target in 3D. This

information is used to generate the stereo images from the image obtained from the TV

camera.
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Figure 6.12: In-house testbed: Example sequence with the robot controller in action. Here the

control of the robot arm as well as the pan tilt unit have to form a joint control to provide smooth

jitter-free trajectories.

• VizRenderer: This module uses the virtual world design of the studio and produces

real-time images of the virtual world with respect to the perspective of the TV camera.

In order to generate such images, the pose of the TV camera is required in 6 DOF , which

is obtained from the camera pose tracker. After rendering the virtual studio environment

it performs the rendering of the 3D objects according to their context information.

• Camera Pose Tracker: This module tracks the TV camera pose in real-time with a very

high degree of precision. This information is used by the renderers to produce the correct

virtual images of the studio in terms of the camera perspective. The most commonly used

trackers are infra red camera based or Odometry based. In case of robotic system this

module is highly simplified since the camera pose can be easily computed through the

robot kinematics.

• TV Camera: It is the camera used to film the on screen talent in the green box. The

camera can either be pedestal mounted, steady cam or a robotic camera system.

• Keyer: The function of the Keyer is to mix the images from the TV camera and the
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Figure 6.13: System Architecture

render. The mixing is performed in a way that each pixel representing the background

in the camera image is replaced by the corresponding pixel of the image generated by

the renderers. The background pixels are represented by the colour of the actual studio

environment which is green when a green box is used.

• 3D content: The output from the Keyer consists of the final broadcast content, in this

case the moderator freely interacting with virtual objects in a virtual environment.

6.3.3 Demonstration and Results

Fig. 6.14 shows a scenario in which the system was tested. The test was performed in a lab

environment using the rendering engine [154]. A simple green box environment was created

and the virtual environment representing a soccer field was created using Viz Artist [154]. The

camera system used was a RoboKam pan-tilt, housing the TV camera. The virtual object was

modelled as a soccer ball and was rendered in the middle of the soccer field calibrated to the lab

room. Two Fire-wire cameras were mounted on the ceiling to aid the human tracking system.

These cameras were calibrated to the global origin in the lab room.

The human tracking system tracks the human in the room in real time. This information

is used to decide if the human occludes the soccer ball or vice versa. It can be observed that

when the human is closer to the camera as compared to the virtual object, the human occludes

the soccer ball. On the other hand, if the soccer ball is closer then the human is occluded by

the soccer ball.
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Figure 6.14: Interaction of human with virtual object maintaining the correctness of the rendered

scene.

It is evident from the test performed that the multiple human tracking system makes the

interaction of the on screen talent with the virtual object as it would be in reality. This results

in an enhanced 3D experience. A complete video demonstration is available under [155] or

http://www.youtube.com/watch?v=-VfOPVnjHRs.

6.4 Human Tracking for Stereo-scopic Rendering in HDTV

Studios

6.4.1 Overview

In this section, a unique application is described in the area of computer graphics and virtual

reality which requires the use of the multiple human tracking system. HDTV technology

reaching new highs has seen vast improvement in the quality of content. In addition, there has

been new developments in the hardware area. 3D content is not any-more restricted to cinema

halls but has reached homes with the arrival of 3D televisions. This has motivated broadcasters

to explore the possibilities of filming and broadcasting the current day contents in 3D. One
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6.4 Human Tracking for Stereo-scopic Rendering in HDTV Studios

unique application which has emerged is Stereoscopic Rendering in V irtual HDTV Studios.

Virtual studios are used in production of daily news, talk shows etc. They use the green box

technology to key a synthetically generated 3D environment over a moving TV camera image

which films the show conducted in the studio. Although the studio design is in 3D, when

rendered it appears in 2D on the screen. Stereoscopic rendering on the other hand, provides a

true 3D experience. Instead of viewing the usual flat TV picture of the 3D environment, two

real-time renderers create stereoscopic images that are used to create an illusion of depth. This

technology already exists in cinema, where it is produced during post-processing. However, in

virtual TV studios the content needs to be produced in real-time and in many cases for live

broadcast. The real-time renderers are capable of handling this. Using special 3D glasses, the

viewers can see moving 3D content on a typical TV screen. The content can also be transmitted

in 3D and can be viewed on any 3D TV screen.

Stereoscopic rendering provides a 3D illusion on a flat screen, however the actual TV camera

which films the green box with the moderator does not generate stereo images and is moving

constantly. Therefore, to produce the same 3D illusion of the moderator together with the

rendered scene, generating stereo images from the TV camera is essential. In order to achieve

this in synchronisation with the rendered scene and maintaining zero parallax, the 3D position

of the moderator has to be known. This is where the multiple human tracking system is used.

Although the tracker can track multiple humans, in this demonstration only one moderator is

present in the scene.

This technology does not require 3D cameras normally needed for 3D demonstrations. The

stereoscopic rendering and the multiple human tracker ensures that the on-camera talent re-

mains properly situated within the 3D scene for an impressive 3D illusion.

Some broadcasters such as Plasamedia [7], ESPN [156], NFL [157] and BSkyB [158] have

already been on air with Stereo 3D content, showing a great amount of potential in this area.

The following sections shows the importance of the multiple human tracking system in realizing

this technology.

6.4.2 System Architecture

The multiple human tracking system plays a pivotal role in the larger system. The two renderers

produce 3D content of the virtual world to be keyed over the green box at a perspective

determined by the pose of the TV camera used to film the real-on screen talent. With two

renderers positioned in the right manner, 3D illusion is created on a simple flat screen and can

103



6. INTEGRATION WITH REAL-WORLD ROBOTIC SYSTEMS

be experienced using special 3D glasses. However, the real content filmed by the TV camera

which involves the on screen talent is still in 2D. Therefore, in order to provide a complete 3D

illusion, where also the on screen talent can be viewed in 3D, it is necessary to modify the 2D

content obtained from the TV camera. This can be achieved by generating stereo images out

of the single image obtained from the TV camera in order to satisfy the stereo configuration of

the renderers and compensate for zero parallax such that the on screen talent can be viewed

with the right depth. This task is not trivial. In order to realise this, the 3D position of the

moderator is required to be known in real-time. This task is performed by the multiple human

tracker.

Figure 6.15: System architecture of the Stereoscopic Rendering System for HDTV Studios

The multiple human tracker tracks the on screen talent in real-time returning his or her

3D pose with respect to a global origin in the studio environment. Using this information, the

distance of the moderator from the TV camera is computed in real-time. This information is

used in order to compute the horizontal shift required in each of the two stereo images to be

generated such that there is zero parallax.

Fig. 6.15 illustrates the main building blocks of the entire system. To summarise the system

architecture, the functions of each sub module is as follows:

• VizEngine: Same as described in Section. 6.3.2.
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• VizRenderer: Same as described in Section. 6.3.2.

• Camera pose tracker: Same as described in Section. 6.3.2.

• TV camera: Same as described in Section. 6.3.2.

• 3D multiple human tracker: This system as described in the previous chapters tracks

the on screen talent in real-time and returns the target’s position in 3D. This information

is used to generate the zero parallax stereo images.

• Stereo image generator and zero parallax compensator: These sub modules to-

gether produce the stereo images from the TV camera stream in a way to produce a

3D illusion of the on screen talent. They use the target’s pose from the multiple human

tracker, the pose of the TV camera from the camera tracker and the stereo configuration

of the renderers in order to generate the stereo images. The distance of the target is

computed from the TV camera using the pose obtained from the multiple human tracker.

Using this information the stereo images are modified through a horizontal shift in order

to compensate for zero parallax [159, 129, 160].

• Keyer: Same as described in Section. 6.3.2.

• 3D content: The output from the keyer is a 3D illusion of the virtual studio and the on

screen talent. The 3D content can be experienced on any flat screen using 3D glasses

[161]. The content can also be directly produced for 3D screens [162, 163, 164, 165].

6.4.3 Demonstration and Results

Fig. 6.16 illustrates the results from the tests conduced at a test studio [154] using a blue box

studio set-up. The target in the blue box is tracked by two stereo cameras in real-time providing

the 3D position of the targets with respect to a global origin. All devices are calibrated with

respect to this global origin.

Fig. 6.17 shows the system being demonstrated live at an exhibition organized by Plasa-

media [7], [8] in Munich, Germany. The first row illustrates the on screen talent being filmed

by the TV camera. The TV cameras used was the Technodolly [166] system and a steady cam.

Although there were two TV cameras, the stream from only one camera was used at a time.

The second row shows the tracking results from the human tracker. The third row illustrates

the 3D content produced for flat screens which clearly shows the stereo illusion of the virtual
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Figure 6.16: Demonstration of the multiple human tracking at the V izrt test studios

studio and the on screen talent. Finally, the fourth row shows 3D content which can be directly

viewed on any 3D screen for a 3D illusion of the entire scene without the need of 3D glasses. A

complete video demonstration is available under [167, 168] or http://www6.in.tum.de/~nair/

stereoscopy.mp4 and http://www.youtube.com/watch?v=GrEWGlWZCnE.

6.5 3D Position based Visual Servoing of Multiple Hu-

mans

6.5.1 Overview

In this section, a position based visual servoing application is introduced using the 3D multiple

human tracking system [108] which was implemented in a vision driven robot system for human

robot interaction. The distributed system comprises of 4 subsystems: a) Multiple Human

Tracking System, b) Robot Control System, c) 3D Visualization System and d) Remote Interface

System. The Visual Tracking System performs real-time detection and tracking of humans in 3D

within a large workspace. The Robot System uses the 3D position data of the targets obtained

from the vision system to interact with the humans. The visual information is also used to

monitor safe interaction within humans and robot. The Robot System is a 6DOF Stäubli

TX90 industrial arm [150], controlled in real-time through a low-level interface. A real-time

representation of the actual environment is rendered in 3D by the 3D Visualization System.

The individual subsystems communicate with each other over a common communication engine

based on TCP/IP. The complete system can be controlled and monitored through a wireless

device. The distributed system will be discussed further in detail in the following subsection.
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Figure 6.17: Demonstration of the stereoscopic rendering at the Plazamedia exhibition [7, 8].

107



6. INTEGRATION WITH REAL-WORLD ROBOTIC SYSTEMS

6.5.2 System Architecture

The recent years have seen a rapid progress in computer vision and motion control technology.

As a result many applications have evolved in this domain. Visual servoing is one such appli-

cation which finds many use cases. It combines computer vision to visually track an object or

target and robot motion control. The main idea behind visual servoing tasks is to control a

robot system using visual information feedback [169, 170]. The target can be an object or a

human, while the servoing device can be a simple pan-tilt unit or a complete industrial robot

arm [170]. The reliability of the complete systems depends on both, the accuracy of the vision

system and the robustness of the control approach. Special attention has been paid to Human

Robot Interaction, where the vision system must provide the pose of the target with high ac-

curacy. The robot uses this data to achieve a specific task [171]. Depending on the properties

of the target pose returned by the visual tracker, there are two main categories within visual

servoing namely, image based and position based visual servoing [170]. In image based visual

servoing the typical configuration is a camera mounted on a industrial robot arm. The target,

in this case a human, is tracked using visual tracking approaches through the single camera

image, providing the pose mostly in 2D. This information is used by the robot controller to

manipulate the camera position/orientation in order to hold the target within the field-of-view

of the camera at a defined perspective. This task is simple when there is only one target, but

in real scenarios the robot system might need to track more than one human at the same time.

A single robot mounted camera cannot achieve this within a large workspace due to its limited

field of view. The vision system must also handle object identification, labelling, and occlusions

between targets in real-time, which is difficult using a single robot mounted camera.

In such circumstances a vision system capable of performing tracking of multiple human

targets in real-time over a large workspace in 3D at all times is required. This information can

be used by the robot system to servo all the targets within a large workspace. This approach

is called position-based visual servoing since the targets position is computed in the Cartesian

space.

This application presents a novel position-based robotic visual servoing system for multiple

human targets over a large workspace. It uses a vision based 3D multiple human tracking system

using externally mounted cameras and a 6 DOF industrial robot arm in order to visually servo

the targets such that they are all visible in the field-of-view of the camera mounted on the

robot end-effector. The vision based system uses ceiling mounted cameras in a stereo set-up

to track each human target in 3D. The robot system uses information position of each target
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Figure 6.18: Complete Robotic Setup. The figure shows the different systems involved in

the robotic set-up. a) the Multiple Human Tracking System: 4 USB cameras connected to a

GNU/Linux OS PC, b) Robot Control System: An industrial robot StäubliTX90 and a CS8C

control unit are connected to a GNU/Linux RT OS PC, c) 3D Visualization System: OpenGL-

based virtual world visualization running on a GNU/Linux PC and d) Remote Interface System:

it allows the user to select the targets.

in order to control the robot mounted camera such as all targets are visible in its field-of-view

with the desired perspective. The robot mounted camera is not used by the vision system. The

visual tracking system which functions independently, reacts to new targets even if they are not

in the field-of-view of the robot mounted camera. The system can also servo specific selected

targets through the remote interface system, see Fig. 6.18. The 3D multiple human tracking

system has been discussed in detail in the earlier chapters. Therefore, only the other modules

are emphasised in this section.

In order to validate the multiple human tracker, a complete Human-Robot-Interaction sce-

nario has been implemented, where the position of each target is required in order to achieve

specific tasks. The control flow of the vision-based robotic system is illustrated in Fig. 6.19,
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where the Vision Tracking System obtains the position of each target and sends them to the

Robot Control System. This module computes the joint position reference vector and sends it

to the control unit, which in turn feeds back the current joint positions of the robot. The Robot

Control Unit updates the 3D Visualization environment using the real joint positions. Each

system is explained in the following sub-sections.

Figure 6.19: Human Tracking System Block Diagram.

6.5.3 Robot Control System

The robotic system comprises of a Stäubli TX90 [150] industrial robot arm, a CS8C [150] control

unit and a Workstation running on GNU/Linux OS with real-time extension, see Fig. 6.19.

The data communication between the PC and the control unit is through a local network based

on TCP/IP. In order to open the architecture of the industrial robot a C++ library based on

the Stäubli LLI was developed at our group [151]. This library allows the user to command the

robot joint positions or the torque values for each motor drive. In this application, the joint

positions were used to command the robot. This joint positions qr (t) ∈ <n were obtained using

the next trajectory planning.
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6.5.3.1 Trajectory Planning

The multiple human tracking system provides the position of each target thi
0 = [xi0, y

i
0, z

i
0]T with

i = 1, 2, ...,m where m is the total number of targets, see Fig. 6.19. The trajectory planner

uses this data to generate the desired joint positions qd ∈ <n. Given the kinematic decoupling

properties of the Stäubli robot, the task can be divided in two phases, the first being the Pan

and Tilt control of the eye in hand camera, and the second is to set the camera Field of View

(FOV).

6.5.3.2 Pan and Tilt

Using the Denavith-Hartenberg convention, the pose of the robot’s wrist is given by,

T 3
0 =

[
R3

0 t30
01×3 1

]
, (6.11)

where,

t30 =
[
x30, y

3
0 , z

3
0

]T ∈ <3×1 (6.12)

and

R3
0 =

[
X3

0 , Y
3
0 , Z

3
0

]
∈ SO (3) (6.13)

represent the position and orientation of the wrist with respect to the world coordinate frame.

Similarly, T 6
0 , T c

0 and Thi
0 are the pose of the end-effector of the robot, the eye in hand camera

and the target i, respectively.

In order to calculate the orientation of the camera T c
0 , the average target position is needed,

P̃ =
1

m

m∑
i=1

thi
0 . (6.14)

Then, the position error vector between t30 and P̃ is computed

∆P = t30 − P̃ . (6.15)

The vector in eq.(6.15) defines the orientation of the camera using its direction cosines in a

general rotation matrix.

Rc
0 = Rx (α)Ry (β)Rz (γ) ∈ SO (3) . (6.16)

Where, Rk (θ) is the basic rotation matrix around the k axis through an angle θ.
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Figure 6.20: Camera Field of View and the Eye in Hand camera.

The robot direct kinematics can be used to define the camera orientation in terms of the

Wrist Orientation R3
0 and the End Effector Orientation R6

3,

Rc
0 = R3

0 (q1, q2, q3)R6
3 (qd4

, qd5
, qd6

)

R6
3 = R3

0 (q1, q2, q3)
T
Rc

0 (6.17)

The solution of eq.(6.17) generates the desired qd4
, qd5

, qd6
, and depends on q1, q2, q3. Now,

to compute these first joints, the desired wrist position t30 must be provided, which depends on

the camera field of view.

6.5.3.3 Camera FOV

For this task, two facts affect the position of the wrist: a) the optical axis normal to the targets1

and b) the camera’s FOV. For the first part, the solution of qd1 , qd2 , qd3 is derived from eq.(6.16)

with R3
0 = Rc

0. This motion is implemented only when qd5
> q5max

, where q5max
is defined by

the user.

In the second part, the camera’s FOV must be fixed. Fig. 6.20 shows the relation of the cam-

era’s FOV and the angle of each target, where tic = tc0− t
hi
0 = [xi, yi, zi]

T represents the position

1The idea is to keep the eye in hand camera in front of the targets.
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vector of the target i with respect to the camera frame. αi is the angle between tic and the

optical axis given by Zc
0.

Thereafter, the optimal wrist position
{
t30 ∈ <3|αi <

FOV
2 ,∀i = 1, 2, ..m

}
must be com-

puted. This solution is similar to calculating αmax <
FOV

2 with αmax = max (αi).

Then, to find the solution the next steps must be followed:

1. Compute αi = a cos(|zc0| ·
∣∣tic∣∣) ∀i = 1, 2, ...,m,.

2. if αi >
FOV

2 , then:

(a) compute distance from camera to target i,

di =
∥∥tic∥∥22 ,

(b) compute minimum distance,

dmin = di cos

(
FOV

2

)
, (6.18)

(c) compute the projection of target i over the optical axis Zc
0,

dzi = di cos (αi) , (6.19)

(d) compute error distance,

∆d = dmin − dzi , (6.20)

(e) then,

t30 = t30 −∆dZc
0, (6.21)

3. If t30 > tmin, t30 = tmin, where tmin is a safety threshold to avoid collisions with the robot

body. This safety threshold is selected such as it guarantees that the human is not in

contact with the robot even with wide open arms.

4. Finally, use t30 to obtain qd1
, qd2

, qd3
.
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6.5.3.4 Path Planning

Once the desired qdi , i = 1, 2, ..., n have been set, the trajectory from the current position

q0 ∈ <n to the desired position qd must be established. In this case, a 5th order polynomial

function has been used,

qri (t) = (f5i (t) (qi − q0i)) + q0i (6.22)

f5i (t) = a1

(
t− t0
tfi − t0

)3

+ a2

(
t− t0
tfi − t0

)4

+ a3

(
t− t0
tfi − t0

)5

(6.23)

where t ∈ < is the current time, t0 ∈ < is the initial time and the final time is

{tfi ∈ <|q̈di (t) < amax,∀i = 1, 2, ..., n} with amax as the maximum joint acceleration defined by

the user. This qri is transmitted to the control unit in real time, see Fig. 6.19.

6.5.4 3D Visualization System

This module performs OpenGL based real-time rendering of the workspace in 3D. It uses Qt

and Coin3D as a backbone. The scene is constructed using 3D models of different objects

occupying the scene such as the robot, controller box, table and the human target locations.

The robot kinematics and configurations are specified using XML files. The system updates

the configuration of the robot arm and the positions of the humans in real-time. This system

is connected to the Robot Control System and the Human Tracking System in order to obtain

the joint positions of the robot and the 3D positions of the human targets. This is achieved by

means of TCP/IP communication using sockets. Fig. 6.21 illustrates this module.

6.5.5 Remote Interface system

Each individual system can be controlled through a remote device supporting WiFi interface.

Therefore, devices such as iPhones, Tablet PCs, Net-books, etc. can be used to remotely control

and monitor the entire system. The remote interface exchanges data with each subsystem

through TCP/IP sockets.

We use a protocol, such as V NC, that allows a desktop to be viewed and controlled remotely.

This is a common protocol that can be implemented in any OS.

6.5.6 Demonstration and Results

Fig. 6.22 demonstrates the results obtained in the real-world scenario. A complete video

demonstration is available under [172] or http://www.youtube.com/watch?feature=player_
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Figure 6.21: OpenGL based virtual visualization

embedded&v=15JMRGa_qE4. The tracker tracks 2 targets simultaneously in real-time and the

robot arm servos both targets. Later, the operator disables target 2 such that the robot arms

servoyes only target 1 followed by target 1 being disabled and target 2 being enabled. Later,

both targets are enabled and it can be observed that target 1 gets closer than the safety limit of

the robot which is detected by the tracking system and a signal is sent to the robot controller

such that it moves to a safe parking position and thereafter all systems are shut down.

Fig. 6.23 shows how the system handles occlusion between targets. It can be observed

that in camera 1 (top right), target 1 is occluded by target 2. Hence, during the likelihood

computation for the filter associated with target 1, camera 1 is not considered. Similarly

in camera 3 (bottom right), target 2 is occluded by target 1 and therefore camera 3 is not

considered in the likelihood computation for the filter associated with target 2. The visual

tracking system runs at approximately 15 fps on a Intel Core i7 desktop PC.
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Figure 6.22: The figure illustrates the test results. The 4 clustered images represent the tracking

system results along with an additional robot mounted camera output. Top Left: Two targets

are tracked and servoyed by the robot. Top Right: Only target 1 is enabled to be servoyed by

the robot. Bottom Left: Only target 2 is enabled to be servoyed by the robot. Bottom Right:

Target 1 gets closer than the safety limit of the robot and robot goes to park position and all

systems are shut down.

Figure 6.23: The figure illustrates how the system detects occlusion between targets.
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6.6 Close Range Human Robot Interaction

6.6.1 Overview

This demonstration scenario validates the close range human robot interaction achieved using

visual feedback. Fig. 6.24 shows the building blocks of the complete setup. The scenario

consists of two visual tracking systems consisting of the multiple human tracking system and a

object detection system. In this scenario there exist certain objects of different colours on the

working table and each human in the workspace works with an object of a specific colour. The

task of the robot system is to serve as a interaction medium between the humans and the objects

by identifying the right object to be handed over to a human. The robot should also decide

when and where to handover this particular object taking into account its own constraints. In

order to make these decisions, the robot system relies on the two visual tracking systems. The

following sections provide a detailed description of the system.

6.6.2 System Architecture

The two visual tracking system form the core of decision making capabilities of the robot system.

The multiple human tracking system has been discussed in detail in the earlier chapters. In

this section a detailed insight into the demonstration scenario is provided and the vision system

used to detect the objects on the working table is discussed.

As mentioned earlier, there are many similar object lying on the working table. The indus-

trial robot arm is mounted to this table. The object are large Lego Duplo [173] blocks with

dimensions of 100 × 100 × 100 mm. Each block has the same dimensions but can have one

of the three colours which are blue, green or red. The operational workspace is divided into

three zones namely, the working table containing the objects reachable by the robot arm, the

human worker zone where the human targets can freely move and the handover zone where the

robot arm is capable of handing over the objects from the working table to the humans. Each

working zone is selected considering all safety aspects such that safe human robot interaction

is possible.

Fig. 6.25 describes the system work flow. The system consists of multiple modules working

independently. These modules share a common communication interface through which they

send or receive appropriate data. The 3D object tracker and the 3D multiple human tracker

form the two visual tracking modules responsible of providing real-time position information of

the objects and humans respectively. The object-human association module receives position
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Figure 6.24: Complete Robotic Setup. The figure shows the different systems involved in

the robotic set-up. a) the Multiple Human Tracking System: 4 USB cameras connected to a

GNU/Linux OS PC, b) Robot Control System: An industrial robot StäubliTX90 and a CS8C

control unit are connected to a GNU/Linux RT OS PC, c) 3D Visualization System: OpenGL-

based virtual world visualization running on a GNU/Linux PC, d) Object Tracking System and

e) Remote Interface System: it allows the user to select the targets.

information from the two visual tracking systems. It uses this information along with the

handover zone information and associates an object of a particular type to a unique human

target when he or she is within the handover zone. The human can also reject or request for

a different coloured object using physical gestures which are detected through a force sensor

mounted on the robot arm. Once the association is done, the particular object remains assigned

to the particular human target until he or she is within the workspace. If the human target to

which the object was assigned leaves the workspace, that particular object-human association

is freed and the object can be associated to another human target whenever possible. The

following subsections provide functional descriptions of each module.
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6.6 Close Range Human Robot Interaction

Figure 6.25: System Architecture of the Human Robot Object Interaction System.

6.6.2.1 3D Object Detection

The function of the object detection system is to detect all Lego blocks present on the working

table in real-time and compute their 3D positions with respect to the global origin and also their

rotation along the Z axis. This system uses one camera mounted on the ceiling and looking

down towards the working table. Each Lego Duplo block on the working table is detected and

classified into one of the three colours, following which the 3D pose is computed. The block

diagram of the object detection system is illustrated in fig. 6.26 and each module is described

below.

Figure 6.26: Block diagram of the 3D Object Detector.

• Camera: The input sensor used is a Fire-wire camera with a wide angle objective such

that the complete working table can be observed in the camera field of view. The camera
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is capable of streaming images at a rate of 35 fps which are de-bayered in order to be

available in the desired RGB 444 format. The camera is calibrated for its intrinsic and

extrinsic parameters. After the calibration the position of the camera is know with respect

to the global origin.

• Colour Segmentation: The de-bayered image from the camera is processed for colour

segmentation. Three reference colours are used to perform the colour segmentation. Each

reference colour represents one of objects being used. In order to obtain the colour

segmented image, the RGB image is converted to HSV space in order to isolate the

illumination information from the colour. The hue and saturation channels are analysed

for each pixel to decide if it belongs to one of the reference colours.

• Contour Extraction: During this stage a binary image is produced from the colour

segmented image where every pixel belonging to a reference colour is set to a high value.

A contour extraction step [174] if performed on the binary image and a set of contours

are obtained which represent the contours of the objects to be detected.

• Bounding Box Computation: For every object whose contour is known, a compact and

rotated bounding box is computed around that counter. This bounding box is represented

by its position in pixels and orientation which is (xp, yp, θ).

• Target Labelling: Every bounding box which now represents an object position in the

image space is labelled into a class in order to identify it among the three possible colours.

In order to achieve this the colour of the pixels within the bounding box are analysed to

identify which reference colour they belong to. After this step the position of the object

in image space and its colour are known.

• 2D Pose of the Target: In this step all the labelled targets are accumulated into a

single container representing the complete data concerning each object. The pose at this

level is 2D and in the image space.

• 3D Pose Data: In this stage the pixel positions (xp, yp), for each target is back projected

to the 3D space using the intrinsic and extrinsic parameters of the Firewire camera. This

is possible due to the fact that the translation of the objects in the Z direction is constant

and can be computed. The required transformations is described below.

P3D = KEPscreen
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The matrix K represents the intrinsics matrix, while E represents the extrinsic matrix.

Pscreen are the positions of the object in image space while P3D is the position is 3D.

In this set-up Z belonging to P3D is known. The resulting transformation allows the

computation of the 3D position of the object from their image space positions provided

Z is known.

6.6.2.2 3D Human Tracking System

This module has been discussed in detail in the earlier chapters. It automatically detects

and tracks each human target within the robotic workspace. It maintains the position data

concerning each target and uses the common communication interface to transmit this data to

other modules on request. The target data sent is in the form (id, x, y, z), where id represents

the target id which is unique for each human target. When a target leaves the workspace, he

or she is deleted from the target data container and the target id which was associated to it is

freed so that it can be assigned to new targets. The data requests come from the object-human

association module and the safety modules.

6.6.2.3 Object-Human Associator

This module has the objective of associating an object of a specific colour on the work table

to a human target and inform the association made to the task generation module. It uses

the information of the workspace configuration to achieve this task. As discussed earlier, the

workspace is divided into three zones namely, the work table, the handover zone and the tracking

area. These zones are configured by the user before starting the system. The zones are selected

such that safe close range human robot interaction can be achieved which depends on the safety

considerations and the robot’s working range. The object-human associator requests position

data from the object detector and the 3D multiple human tracker every 100 ms. It checks if

any human is within the handover zone and if found it performs a check if that particular target

has already been associated with an object. If the target has not yet been associated then then

the next free object is assigned to it until he or she is in the tracking area. When a target

leaves the tracking area and if it had an association active, then this particular association is

removed.
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6.6.2.4 Robot System

The robot system is a Stäubli TX90 industrial arm controlled through a low level interface. A

Schunk [175] gripper is mounted on the end effector to facilitate the grasping and handover.

Between the gripper and the robot arm, a JR3 6DOF [176] force sensor is installed. The force

sensor provides the necessary indications to the robot controller during the handover in order to

determine the intention of the human towards accepting or rejecting the handover. The robot

controller receives start and end positions of task from the task generator. Using the robot

kinematics and the task information, the robot controller generates position based trajectory

from the start to the end position such that the robot can grasp the object and hand it over to

the human. The low level details of the controller have been discussed in the earlier sections.

During the handover the robot controller analyses the forces recorded by the force sensor in

order to either open the gripper when the human pulls the object or to return it to the work

table otherwise, It also receives information from the safety system when there is any safety

breach. Under such circumstances the robot retreats to a safe parking position and the entire

system is shut down.

6.6.2.5 Task Generator

This modules is responsible to generate tasks for the robot in order to serve the human targets.

It receives information regarding the object-human association and positions of all the objects

and human targets from the associator. Using this information the tasks are generated for the

robot system. The task assigned to the robot consists of a start position and a end position.

The start position defines the position of the object to be grasped and the end position defines

the position where the handover should be performed.

When a human target is in the handover zone and has an object associated to it, the task

generator assigns an object which should be grasped by the robot and handed over to the

human. Before making this decision, the task generator performs certain checks. It checks if

the human target is within the handover zone since the robot has a limited working range. It

checks if the object assigned to the target is on the table and within the reach of the robot.

Finally, it checks if the human target is stationary within the handover zone for the handover

position to be assigned.

The decisions taken during handover depend on the forces recorder by the force sensors. The

intention of the human are mapped to unique force patterns on the gripper which are measured
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by the force sensor. These intentions are divided into three types namely, 1. Accept the object,

2. Reject the object and 3. Replace with another object of the same colour.

The task information is sent to the robot system. When the robot executes the task there

is an additional check performed. When the robot reaches the handover position, the task

generator checks if the human target is still located at the handover position since there is

a possibility that the human either moves to another position within the handover zone or

leaves. The task generator check this and if the human is still at the same position it directs

the robot system to perform an handover. If the human has moved to another position within

the handover zone, the robot system is directed to move to the new position of the human and

the same check is performed until a successful handover or the maximum number of attempts

have exhausted. If the human has left the handover zone the robot system is directed to place

the object back to its original position.

6.6.2.6 Safety System:

This module is very important to ensure safety off the humans and robot during the task

executions. The safety system maintains a configuration defining the safe close range working

distance permitted between the human and the robot. If any human breaches this distance,

the safety system overrides all tasks allocated to the robot systems and directs it to park itself

safely and thereby shuts down the whole system. In order to achieve this, it requests position

information of the humans targets from the 3D multiple human tracking system.

6.6.3 Demonstration and Results

Figure 6.27: Tracking results of the 3D object tracker
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Fig. 6.27 illustrates the results obtained from the 3D object tracker. The objects on the work

table are tracked successfully with a 3D pose. Although the image shows a simple rectangle

around each tracked object, the pose returned is 3D translation and rotation around the Z axis

due to the calibrated camera. The two green circular boundaries represent the inner and outer

working limits with the region between them being the working area. The objects within the

working area are considered by the robot system and are shown as marked in white by the

tracker. On the other hand, any object outside the tracking area is tracked but not considered

by the robot system. These object can be seen to be marked in black by the tracker. A

complete video demonstration is available under [177] or http://www.youtube.com/watch?v=

4XBn5UzgHp4.

Figure 6.28: Demonstration scenario of close range human robot interaction

Fig. 6.28 shows the different components on this application working together. The top

left images represents the 3D object tracker. The top right image shows the scenario where

two humans are in close contact with the robot. The bottom image shows the results from

the multiple human tracker along with the plots of the target velocities which is an important
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input in the task allocation stage. A complete video demonstration is available under [178, 179]

or http://www.youtube.com/watch?v=6OGJiRKB2zM and http://www.youtube.com/watch?

v=eHHg-l3MOB0.

Figure 6.29: Demonstration scenario of close range human robot interaction under drastic

changes in lighting conditions

Fig. 6.28 shows a similar demonstration but under drastically changing lighting conditions.

The multiple human tracker and the object tracker perform robust tracking even when the

lighting conditions change while the humans are interacting with the robot. In such a dynamic
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environment the humans continue to interact safely with the robot. The two column images

show the state of the environment, multiple human tracker and object tracker in good lighting

and bad lighting. It can be observed that all system continue to function in a robust manner

even under such dynamic conditions. A complete demonstration is available under [180] or

http://www.youtube.com/watch?v=Pn7kyhlEkEc.
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Chapter 7

Conclusion

The individual chapters in this thesis provided a detailed insight into the research and develop-

ment of a vision based multiple human tracker with primary focus on robustness enhancement.

Novel techniques in the direction of modular construction and robustness enhancement were

introduced and validated. Furthermore, the possibilities of easy integration with a variety of

real-world robotic systems was demonstrated.

This chapter summarizes the primary contributions of the thesis and thereby the conclusion

drawn from the thesis work. These conclusions also include the observed shortcomings in the

system. With respect to these observations, the future work in order to overcome the current

shortcomings are discussed.

7.1 Primary Contributions of the Thesis

The primary contribution of this thesis as discussed in the earlier chapters can be formulated

as follows:

• 3D Multiple Human Tracking System: A vision based real-time 3D multiple human track-

ing system based on a modular building blocks approach. It is capable of automatically

detecting and tracking multiple humans in real-time and with a 3D pose within a desired

area of interest.

• Occlusion Handling System: It is a module which detects and handles multiple occlusions

between human targets while they are being tracked. It resolves the occlusions in real-

time by providing the individual trackers with information regarding which camera views

are good to track for their individual targets. It plays an important role under ambiguous
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tracking scenarios such as multiple targets with similar appearance moving close to each

other.

• Machine Learning for Quality Analysis of Lighting Conditions: It is a model trained

to classify the lighting conditions into one of its pre defined classes. Depending on the

classification results the quality of the lighting conditions is determined. The model is

trained using a large dataset of lighting conditions representing the desired classes.

• Background Model update under Drastically Changing Lighting Conditions: This module

uses the machine learning based lighting conditions classifier in order to detect drastic

changes in lighting conditions. It further performs the non trivial task of updating the

background model in the presence of foreground targets being tracked.

• Intelligent Multi-Modal Fusion of Colour and Optical Flow Modalities: This modules

uses the machine learning based lighting classifier along with the target motion analyser

to generate the optimal weights for the visual modalities. The two visual modalities are

fused in order to guarantee robustness under dynamically changing tracking environments.

• Modelling and Simulation of the Workspace for Ground Truth Generation: It is a novel

approach through which zero error ground truth data for evaluation and validation of the

tracker is obtained. This required modelling of the complete workspace to great detail

and simulation of human motion in order to extract the trajectories.

• Experiments to Validate the Different Aspects of the Tracker: Unlike existing systems, the

multiple human tracking system was validated through multiple experiments. Each ex-

periment was focussed on a certain aspect of the system. The experiments were conducted

both in simulated and real environments.

• Integration into Real-world Robotic Applications: In this phase, the system was com-

pletely integrated into a variety of diverse real-world robotic application scenarios. Its

easy integration into these larger system confirms its flexibility in terms of usability.

7.2 Shortcomings of the System

Although the multiple human tracker performs robustly in dynamic environments, there are

few aspects which need further optimization. This section introduces these shortcomings on

the basis of which the research plan for the future will be formulated.
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• Camera Configuration: In the current set-up the cameras are mounted on the ceiling

opposite to each other. Each camera has a specific tilt to obtain the required field of view

of the tracking area. This configuration, although well suited in most cases, can cause

ambiguity for the detection module when a target is located at the central intersection

zone of all the four cameras. This could sometimes lead to ghost targets due to ambiguity

in the occupancy map. Furthermore, due to camera mounting constraints it is not trivial

to obtain a configuration where all the cameras share exactly the same viewing area.

Under such situation there could be zones where targets are out of the field of view of

certain cameras while still being inside the designated tracking area. This can cause

tracking ambiguity under multiple occlusion where targets are not visible in some view

and out of the field of view of some cameras due to coverage issues. Therefore, optimising

the camera configuration to improve the common area viewed by cameras is an important

area for future investigation.

• Light Change Detection Stability: The light change detection modules performs with a

good degree of robustness. However, it has been observed that in some rare cases multiple

light changes are detected in a short interval if the time required by the light source to

achieve a stable illumination is large. This situation can occur when multiple light sources

are present in the tracking environment and their behaviour varies from each other.

• Optical Flow Processing Speed: Another shortcoming of the system is the performance

speed of the optical flow module. Although the implementation uses the GPU, it still

needs to be optimized in terms of speed.

• Target Model: Although the tests conducted do not show any false positives, it is possible

that any cylindrical object representing human dimensions could be detected as a human

target. This is because the detector solely depends on the occupancy map within the

detection area. In order to handle this situation the target model can be classified as

a human or not using a trained dataset such as the pedestrian detection datasets [96].

This test was already performed in the thesis and it was found that since the training

set consists of only frontal images of pedestrians the classification does not works well for

tilted camera configurations.
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7.3 Proposed Future Work

From the conclusions drawn and the observed shortcomings, the future work in order to improve

the performance of the system in certain aspects where it is currently lagging will be discussed

in this section. The following are the planned areas for future research:

• Camera Configuration: The most optimal camera placement will be researched in order

to obtain the best area coverage and viewing angles. The minimum number of cameras

required to obtain optimal tracking results in all possible scenarios will also be investi-

gated.

• Training Data: In order to improve the performance of the lighting classifier the training

set will be extended with samples from more diverse environments in terms of lighting

conditions. The classification module will be extended to perform a more extensive anal-

ysis of the behaviour of the light in order to determine more robustly the instance when

the light changes and when the light becomes stable.

• Optical Flow: The optical flow processing module will be further optimized in order to

utilize the full power of the latest GPUs in order to obtain performance boost.

• Target Detection: This module will be researched further in order to detect targets even

in very constrained environments.

• Target Model: The target model will be extended from the current rigid model to a more

detailed and articulated in order to include the hands. The appearance model will be

made more detailed by modelling different parts such as head, torso and legs individually.

• Target Pose: The pose which is currently 3D translation will be extended to estimate also

the orientation along the z axis. Techniques to track this extra degree of freedom will be

researched.

• Training Set for Humans in Different Camera Configurations: A large training data set

will be produced consisting of manually tagged images of humans in different camera

configurations. Its difficult to handle all possible camera configuration schemes due to

the large scale of data. Therefore, common configurations for multiple human tracking

will be considered. This training set along with a false positive dataset will be used to

train a classifier such as SVM. The classifier will be used to validate the detection process
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and improve the robustness of the occlusion handling module in order to handle occlusion

with objects other than humans.
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Appendix A

Appendix

A.1 Software Architecture

Fig. A.1 illustrates the software architecture of the 3D multiple human tracking system. It

consists of the tracker management module which serves as the central co-ordination unit among

all the other components. It handles the individual trackers associated with every target, the

camera inputs, communication engine and the graphical user interface. Each sub-module has

its own dependencies as illustrated in the fig. A.1.

The tracker management manages each tracker present in the system. Every individual

tracker is associated with its tracker data. The implementation requires the functionality of the

OpenTL [36], OpenCV [34], OpenGL [181] and Qt [113] libraries. The camera module uses the

API provided by the vendor. In the current set-up the uEyeUSB cameras [182] are used and

along with the libueyeusb library.

The communication module which is mainly used as an interface to robotic systems, uses the

low level libraries librobutilstaubli and libsystemfunctions [151]. The graphical user interface

uses the Qt library [113]. The QtGui, QDesigner and QGlWidget are the main sub modules

used.

There are many other low level dependencies for each software module. The implementation

was done in C++ under the LINUX operating system with real time extension. Currently the

software is supported only under LINUX but can be ported to other operating systems. The

modules also make use of low level libraries such as SSE for parallel computing under the

new generation Intel processors architectures. Threading at the tracker level is achieved using

QThreads from the Qt library.
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Figure A.1: Software Architecture
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[51] Patrick Pérez, Carine Hue, Jaco Vermaak, and Michel Gangnet. Color-

Based Probabilistic Tracking. In ECCV ’02: Proceedings of the 7th European Con-

ference on Computer Vision-Part I, pages 661–675, London, UK, 2002. Springer-Verlag.

10, 33

139

http://dx.doi.org/10.1016/j.cviu.2006.08.002
http://dx.doi.org/10.1016/j.cviu.2006.08.002


REFERENCES

[52] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-Based Ob-

ject Tracking. IEEE Trans. Pattern Anal. Mach. Intell., 25(5):564–575, 2003. 10

[53] Bernt Schiele, Mykhaylo Andriluka, Nikodem Majer, Stefan Roth, and

Christian Wojek. Visual People Detection: Different Models, Comparison

and Discussion. In Proceedings of the IEEE ICRA 2009 Workshop on People Detection

and Tracking, pages 1–8, 2009. 10, 11
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