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Abstract

I present in this dissertation, a technique to measure the integrity of an operating system,
so that the user can verify that all critical software components, including the operating
system kernel, is running in a known valid state. The technique solves a key problem
of providing continuous runtime verification of kernel memory-space. The measurement is
integrated with a trustworthy verification chain from the firmware, host machine, hypervisor,
guest machine to applications, based on existing techniques from Trust Computing and
guest security mechanisms.

This is accomplished by checking the guest kernel against a known reference, to provide
instant feedback on changes in its integrity. A Trusted Platform Module (TPM) is used to
provide a complete integrity measurement chain from the hardware to the host and guest
system. A working implementation of the entire framework has been achieved for a 64-
bit Linux host and guest system, using QEMU and KVM as two different virtualization
techniques. The implementation has been verified to correctly detect integrity changes in
the guest, while maintaining a minimal performance overhead.

The technique is generally portable to other operating systems. It is implemented as
an integrity measurement framework for the Linux kernel, which can be extended to uti-
lize additional measurement capabilities of the guest operating system, forming a more
in-depth measurement. Prototypes for such extensions are implemented using two exist-
ing Linux security modules. An example of trusted authentication and host-based intrusion
detection has been used as proof-of-concept application scenarios for the integrity mea-
surement framework. Benchmarking on the system shows that the integrity measurement
has minimal impact on the guest machine performance, with only slight overhead during
the guest machine boot time. Correctness and security strength of the framework were
verified using functional and penetration testing.
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1 Introduction

1.1 Motivation

In a time of increasing security concerns, the focus of this dissertation is to propose and
implement a framework to enhance software integrity. As is good computer security prac-
tice, security needs to be handled in depth, meaning that a variety of security mechanism
targeting different depths of IT infrastructure. This depth can be classified broadly into
network-based and host-based techniques. Further dividing this, the network security can
be handled at the edge, known as perimeter defense, and also on the internal network.
Similarly, security can be applied at different depths of the software stack on the host,
namely application, kernel-space, hypervisor (if virtualization is used) and on the firmware.
Table 1.1 shows a high-level classification of commonly used security techniques at dif-
ferent depths. While there is a mixture of perimeter and in-depth defense on the network
side, most security solutions on the host are on the application level.

Current security mechanisms protecting the kernel space are limited, because a com-
promised kernel can completely hide signs of infection by directly modifying the kernel’s
file and process listing function. This puts limitations on anti-rootkit protection as it is non-
trivial to detect rootkits based on rootkit signatures. Driver signature verification is a means
of protecting the kernel by checking the signature of an executable or driver before loading
it into the kernel. However, this can often be overridden by the user to support unsigned
drivers.

Furthermore, secure booting is needed to provide verification of the firmware, hypervi-
sor and kernel during the boot process. However, current secure boot only verifies each
loaded component once during boot time, providing no continuous monitoring, especially
of the kernel. Unlike network devices which operate independently on the network, the
software stack on the host is inherently dependent on underlying components. Rather
than independent security techniques that are applied at each level, it is necessary to in-
tegrate these protection schemes to maintain the overall effectiveness of the mechanism.

Since rootkits work at the kernel memory space, they are able to intercept core system
functions to hide their presence and directly access the file and network. Potential dangers
are the loss of high-value data such as confidential files or credentials by means of key-
logger or file access. The use of encrypted outbound connection initiated by a rootkit can
evade both host (because of rootkit’s stealth properties) and network level (because of en-
cryption) firewall. Security against rootkit is necessary in high security scenario where the
platform is used to store or access high value data, such as financial transaction, health
care data, privacy information, cryptographic keys, confidential material, and so on. Cur-
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1 Introduction

Network-based Host-based
Perimeter Internal network application kernel-space hypervisor firmware

VPN Anti-virus
Firewall Malware detection

Intrusion detection Personal firewall
VLAN Software white-list

Deep packet
inspection

Anti-rootkit
protection

Driver signature
check

Trusted booting

Table 1.1: Classification of security techniques

rent security mechanisms simply do not provide sufficient protection for unknown rootkits,
where signature-based detection fails at the kernel level.

Thus, the motivation of this dissertation would be to develop an extensible integrity
framework, which forms a continuous trust chain from the firmware to applications, while
providing continuous runtime monitoring of all active components within the software stack,
including the kernel. Such a solution would be necessary to provide effective non-signature
based detection of rootkits, including zero-day attack.

1.2 State-of-the-art

On the cutting-edge of improving operating system kernel security, two general approaches
are taken. One track works on proposing completely new OS architectures, which provide
new security properties, while another uses new techniques to improve security in tradi-
tional monolithic kernel designs. New OS kernel architecture such as the use of micro-
kernel design [15, 22, 25] defines clearly separated components and OS functions, im-
proves the OS security and reliability as proposed in [63]. Both the MINIX3 OS proposed
in [63] and the L4 kernel from [25] has a similar structure where the core kernel handles
memory management, scheduling and inter-process communication, while the basic OS
functions are implemented as additional layers. Hardware drivers handles the IO com-
munication to a specific hardware device, while servers depend on the drivers to provide
abstract basic OS services such as file system, network communication, security policies
and so on. Finally, system and user applications are executed as processes which depend
on the respective servers. A fundamental difference to monolithic kernel, is that none of
the drivers, servers and processes runs in the kernel memory space, allowing the kernel
to enforce protection policies against all the components.

By dividing the kernel into modules at different layers, the Trusted Computing Base
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1 Introduction

(TCB), which is the set of software required to implement the necessary security policies, is
reduced from the entire monolithic kernel to the micro-kernel and security related modules.
As suggested by [50], this greatly reduces the security perimeter of the TCB, and makes
the TCB easier to verify.

In terms of finding actual vulnerabilities in the kernel, a fundamental security risk of us-
ing procedural programming language, such as C, is its flexible use of pointers and unsafe
types. The lack of type and memory boundary checking opens the possibility to a large
class of vulnerabilities. Prototype kernels using newer programming language paradigms
such as Microsoft’s Common Language Runtime (CLR) or Haskell, have been demon-
strated in [36, 66], respectively. Singularity [36] is a kernel implemented entirely in CLR. It
uses the implicit type checking in the CLR environment to prevent buffer overflow attacks.
The HouseOS [66] goes a step further to provide formal verification [42]. It implements the
kernel in Haskell with a defined hardware model for physical memory, virtual memory, IO
ports and interrupts; such that it can be formally proven that there is no memory corruption.
These techniques protect the kernel from entire classes of vulnerabilities which plagued
code developed in machine-bound languages such as C and assembly languages.

However, both approaches of changing the kernel design or the programming model
cannot be applied to existing operating systems. The industry has only shown limited
adoption of micro-kernel design in specialized fields, due to problems of performance and
code migration. Also, the new programming models have exceptions to their formal proofs,
due to direct memory access from the hardware.

Techniques that are applicable to existing operating system are based on memory moni-
toring techniques being applied to the kernel-space. These techniques utilize virtualization
to check for vulnerable conditions in the kernel. Various work in [46, 21, 54] attempt to
detect data and code corruption. However, one fundamental challenge in verifying run-
time memory is the dynamic nature of loading executable code. On the x86 instruction set,
relative jump commands are limited to a single byte jump addresses. To support code seg-
ments that are large than single byte address space, most binaries cannot be compiled in
a location independent manner. Location independence refer to the property that code can
be loaded and executed anywhere in memory regardless of the base address of the code
segment. Location independence is thus achieved through a process known as dynamic
relocation, which must take place before the code is executed. Due to relocation, the code
is modified every time it is loaded, which poses a problem for verification in the memory
space. Furthermore, dynamic linking imports functions from external libraries such that
library functions can be shared between multiple applications to save memory. This also
brings runtime variation to the executable memory. The challenge can be observed in [54],
where the code corruption detection ignores jump addresses in the code memory due to
the dynamic relocation and linking. Further work was done in Patagonix [44], which veri-
fies jump addresses within the same module. The technique proposed in this dissertation
serves to extend the solution by verifying external import addresses as well.

In terms of cross layer security integration, Trusted Computing (TC)[9] provides a means
of linking trust measurements of various software components starting from the firmware.
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However, existing trusted boot process, such as the Linux integrity measurement architec-
ture [56, 23] and Microsoft bitlocker [48], only perform a one-time verification of each of the
loaded software component during boot-time. This dissertation integrates kernel space
monitoring techniques with Trusted Computing to provide trust measurements which are
’live’ (runtime verified).

1.3 Problem description

In order to achieve the goal of building a comprehensive integrity framework as motivated
in 1.1, the key challenges that have to be solved are as follows:

1. Overcome the problem of code modification due to dynamic relocation and linking

2. Develop an efficient technique to monitor kernel memory space continuously in run-
time

3. Provide a continuous trust chain linking the verification of firmware, hypervisor, ker-
nel and user-space applications, such that the entire OS is eventually verifiable

In order to achieve reliable runtime verification, a systematic approach to handle code re-
location and linking is needed, such that the ’live’ kernel executing in the kernel memory
space can be efficiently verified against a known version of the kernel. The memory moni-
toring technique also needs to be efficient, such that the end solution is practical for normal
usage. Based on this, a complete trust chain needs to be established from the firmware,
hypervisor, kernel to the user-space application, such that the security mechanism at the
application level can produce a trustworthy report of the entire system to the end-user.

1.4 Overview and main contributions

In order to overcome the problem of code modification due to relocation and linking, this
dissertation provides a background on the 2 most common binary executable file formats
in section 3.4.1, and describes how this is related to problem of dynamic relocation and
linking in section 3.4.2. As the relocation process is specific to each executable binary, a
pre-processing stage is necessary to extract information from a known Linux kernel such
that it can be verified efficiently in runtime. The design of this pre-processing stage is
described in section 3.4. Using this database, an efficient verification process is proposed
in section 3.6. Implementation details are covered in section 4.2.

On the foundation of existing techniques in the space of kernel-space monitoring
[46, 21, 54], the verification scheme is combined with existing software and novel
hardware-based virtualization technique to achieve near-native performance, while main-
taining continuous kernel memory monitoring in runtime. The background on virtualization
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1 Introduction

is covered in sections 2.3 and 2.4, while sections 3.5 and 4.3 cover the design and imple-
mentation of the runtime monitoring scheme.

This continuous verification scheme for the kernel is integrated with upstream measure-
ment of a trusted boot process using techniques developed in Trusted Computing. Section
2.2 provides background information to Trusted Computing and section 3.6.4 describes
how the security state of the kernel is monitored in runtime. The combined integrity infor-
mation is also reported up the software stack into the guest kernel and application layers
by means of a virtual Trust Platform Module (vTPM). Various design options of such a
vTPM is discussed in sections 4.5 and 4.6. The verification measurement is then inte-
grated with existing application level security mechanism, so as to give a continuous chain
of trust in the entire operating system. Integration of two existing application level security
mechanism in Linux is described in section 5.1, while sections 5.2 and 5.3 shows how a
complete trusted file encryption and a host intrusion detection system can be built on this
trusted framework, respectively.

Section 6.1 verify the correctness of the framework based on functional and penetration
testing methods, while section 6.2 evaluate the security of the system based on the existing
uses cases. Performance of the framework is discussed in section 6.3 and is shown to
achieve near native performance.
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2 Background on Trusted computing and
virtualization

This chapter will briefly describe background information about the supporting components
around the main topic of this dissertation. The topics discussed serve to provide a foun-
dation to aid in the understanding of the proposed core ideas. Section 2.1 on trust and
integrity sets the basic definition of integrity, which is main focus of this dissertation. After
that, a brief introduction on the main concepts and the components of Trusted Computing
and the Trusted Platform Module (TPM) is covered in section 2.2. The TPM is an important
component that integrates with the integrity measurement framework. Basic TPM opera-
tions relevant to the dissertation as well as the larger framework of the TCG specifications
relevant to this work will be explained. Then, section 2.3 will describe various forms of
virtualization to give a general introduction to the field of virtualization, with emphasis on
software and hardware-based virtualization that is used in this dissertation. Finally, an in-
troduction to memory management on the PC(x86 architecture) platform is given in section
2.4, as a necessary prerequisite to understand virtualized page management.

2.1 Trust and integrity

In this context, trust is defined as the confidence that an entity or system operates as pre-
dicted. In an ideal case, this would mean that the behavior of a system matches it’s given
specifications exactly. However, the verification of the binary code against its specifications
is a non-trivial task, involving static and possibly dynamic software analysis. Thus, in this
dissertation, the definition of trust measurement will be restricted to that of the integrity
or immutability of the binary code of software, such that the behavior of the software is
consistent with any previous verbatim instances of itself.

An integrity measurement is a measure of some parameters of a component or system,
in order to characterize its behavior. Anti-virus software, for example, protects the integrity
of a system by detecting any malicious change to files, executables, system registry and
components, from within the OS. This approach tends to fail if a rootkit manages to install
itself into the kernel of the OS through a kernel vulnerability and hides its presence from the
anti-virus software. Other similar security “hardening” approaches such as SELinux [64]
or AppArmor [10], control the interaction between users, processes and critical system
objects (resources) rather than detecting particular code signature of malicious software.
However, they also suffer from the same weakness if the kernel itself is compromised,
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2 Background on Trusted computing and virtualization

due to the lack of runtime monitoring or a continuous chain (or tree) of trust starting from
a secure root of trust. A chain (or tree) of trust, is an integrity measurement method,
where each component measures the integrity of its dependent components, such that
any change along this measurement chain is detectable.

The work in trusted computing as described in section 2.2, solves the problem of chain
of trust, but fails to address the runtime nature of integrity measurement. Drawing from
the trusted computing concept proposed by the Trusted Computing Group (TCG) [9], and
previous work in property-based attestation [30], kernel-space monitoring [46, 21, 54, 52],
an extension of existing kernel-space monitoring techniques with binding to the Trusted
Platform Module (TPM), is discussed here. This dissertation proposes the design of an
integrity measurement framework. The framework measures the runtime integrity of the
kernel of a guest OS, using kernel-space monitoring techniques. Many of the basic con-
cepts proposed in this dissertation are based on previous works, and described in more
detail in sections 2.2 and 3.2.

2.2 Trusted computing (TC)

Trusted Computing (TC) is a general term used, in this context, to describe the collection of
technology developed and specified by the Trusted Computing Group (TCG)[9]. The initial
focus of trusted computing was on the development of a hardware root of trust for a soft-
ware stack, known as the Trusted Platform Module (TPM) [8], and its associated software
(such as the Trusted Software Stack(TSS)). The TCG has since expanded to include spec-
ifications related to architectural considerations of Trusted OS, trusted networking, usage
of TPM in mobile or embedded environment and so on.

Trusted computing enables a trusted measurement, enforced through cryptography, of
a software stack with a root-of-trust embedded in the hardware. A software stack refers
to the entire set (or stack) of software necessary to boot, and also, those which makes
up the entire operating system, starting from the BIOS ROM to boot-loader, operating
system loader, operating system kernel, drivers, system software and user applications.
The specifications of the TPM and TSS itself do not explicitly state how the entire software
can or should be measured. They only specify the means to make trustworthy reporting
of measurements, storage of the measurements on the TPM and the usage of the stored
measurements. Policy enforcement based on the TPM and its trusted software stack is
achieved by binding the sensitive operation to cryptographically-protected keys, which are,
in-turn, bound to a particular set of measurements.

2.2.1 Trusted Platform Module (TPM)

The Trusted Platform Module (TPM) is a chip, usually physically bound to the mainboard
of a computer, which performs the necessary core cryptographic functions and holds the
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2 Background on Trusted computing and virtualization

Figure 2.1: Components of a TPM

core root-of-trust for reporting and storage, to enable the various functions as specified by
TCG. Figure 2.1 shows the basic building blocks of a TPM.

The cryptographic co-processor, HMAC engine, SHA-1 engine, key generation and ran-
dom number generator are the key cryptographic components of the TPM. The opt-in
component allows the TPM to be enabled or disabled completely, so that the owner of the
machine always has the choice to disable TPM usage all together. Non-volatile storage is
used to store internal keys such as the Storage Root Key, Endorsement Key (see section
2.2.3) and additional data in the non-volatile storage area. The rest of the component is
used for the normal execution logic of the TPM.

Locality

With the TPM 1.2 specifications, the concept of locality is introduced. Locality is an attribute
associated with TPM commands received by the TPM. It is not determined by the TPM
itself, but is signaled to the TPM during the instruction cycle. On the PC platform, the TPM
locality is determined via the Memory-Mapped Input Output (MMIO) memory location used
to access the TPM. The MMIOs are page-aligned, and each page is used for one locality.
The use of page-aligned MMIOs enables a trusted OS kernel to allow or to block the usage
of a specific locality using memory page permissions.

Each locality has a loosely defined role as described in table 2.1, as extracted from sec-
tion 2.1 of [6]. Each locality has pre-defined restrictions on some Platform Configuration
Register (PCR) access as described in table 2.2. The TPM can only be active in a spe-
cific locality at any one time. Thus, in the situation of simultaneous access from multiple
localities, a higher locality always takes precedence over lower localities. The use of local-
ity allows the TPM to be controlled by different roles, and to perform normal or privileged
operations.

12



2 Background on Trusted computing and virtualization

Locality Description

4 Trusted Hardware. This is the Dynamic RTM
3 Auxiliary components. (optional)
2 “runtime” environment for the Trusted Operating System
1 Environment for use by the Trusted Operating System (T/OS)
0 Legacy environment for the Static RTM and its chain of trust

legacy Locality 0 using TPM 1.1 type I/O port access

Table 2.1: TPM Localities

Platform Configuration Registers (PCR)

The trusted measurements of a TPM are stored in a set of registers, known as the Plat-
form Configuration Registers (PCR). From the concept of transitive chain-of-trust, the PCR
values form a representation of the current state of the system since boot-up. Keys used
by the TPM can be bound to a chosen set of PCR values, to ensuring that a key can be
used only in a per-determined system state corresponding to the set of PCR values.

The basic operation on the PCR is the extend operation, described by:

PCRn,i = PCR_Extendi(ExtendValuen)

= hash(ExtendValuen |PCRn−1,i)

Thus, the PCR hash of register i after its nth extend operation, PCRn,i, is always depen-
dent on the current extend value, ExtendValuen,i, and the set of all previously extended
values, {PCRa,i|a ⊂ 0 . . .n− 1}. In the TPM 1.2 specification, SHA-1 is the defined hash
operation and both the PCR hash and the extend value are 20-byte strings, corresponding
to the size of an SHA-1 hash. A reset operation on the PCR resets the PCR hash to either
all zeros or all one bits. The ability to perform the extend or reset operation on the PCR
is determined by the current locality of the TPM, as described in table 2.2 (compiled from
sections 7.2 and 7.3 of [6]). PCRs 0 to 15 cannot be reset, but can be extended in all
localities. PCRs above 16 can be reset, depending on the current locality of the TPM, but
have restrictions on the extend operation.

Transitive chain-of-trust

The transitive chain-of-trust defines a concept of measuring and passing control to the
next module as illustrated in figure 2.2. The measurement process begins from the Core
Root-of-Trust for Measurement (CRTM), which is the BIOS on the PC platform. The CRTM
measures the next component to be loaded, which is the boot sector (assuming a boot
from hard disk). The measurement is stored into the Core Root-of-Trust for Reporting
(CRTR), which is the TPM, via the TPM_EXTEND operation of the TPM. A cryptographic
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PCR Index PCR Usage Reset Extend
locality locality

0 CRTM, BIOS and Host platform extensions n.a. 0-4
1 Host Platform configuration n.a. 0-4
2 Option ROM code n.a. 0-4
3 Option ROM configuration and data n.a. 0-4
4 IPL code (usually the MBR) n.a. 0-4
5 IPL Code configuration and data n.a. 0-4
6 State transition and wake events n.a. 0-4
7 Host platform manufacturer control n.a. 0-4

8-15 Static Operating System n.a. 0-4
16 Debugging 0-4 0-4
17* Associated with the DRTM 4 2-4 †
18* Host platform defined 4 2-4
19* Trusted Operating System 4 2,3
20* Used by Trusted Operating System 2,4 1-3
21* Used by Trusted Operating System 2 2
22* Used by Trusted Operating System 2 2
23 Application 0-4 0-4

* Reset to -1 upon platform reset (all one bits). Reset to 0 upon DRTM entry.
† First extend operation after reset only in locality 4.

Table 2.2: TPM 1.2 PCR usage
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Figure 2.2: Measure and extend

hash (SHA-1 in the case of TPM specifications 1.1 and 1.2) calculated over the code to be
executed is used as the measurement value. After the measurement is reported, control
is passed onto the next module, boot sector, and the same cycle is repeated until the
operating system is loaded. It is thus a requirement that every loaded component is TPM-
aware (including the BIOS, boot sector and boot loader), and has to perform the ’measure
and extend before execution’ procedure.

In this manner, a transitive chain-of-trust is formed, in which the trustworthiness of each
loaded component is inherently dependent on each previous component, except the CRTM
which has to be implicitly trusted. Thus, in order for the chain-of-trust to be trustworthy,
two conditions must be satisfied:

1. The CRTM must reset the PCRs to known entries upon system reset, be trustworthy
and cannot be modified.

2. Every software component must be measured and extended into the TPM, before
execution.

Based on these two conditions, the system’s state can be fully represented through the
PCRs. This also means that if the chain of measurements starting from the CRTM to the
current component is integral, it implies that the components loaded are also integral.

2.2.2 Trusted Software Stack (TSS)

The Trusted Software Stack (TSS) is the software stack within an operating system used
to provide a software interface to the TPM, much like how a network stack provides an
usable software interface to a network device. As defined in section 1.2 and 1.3 of [18],
the TSS consists of 3 layers (as shown in figure 2.3):

• Trusted Device Driver Library (TDDL)
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Figure 2.3: Trusted Software Stack

• Trusted Core Services (TCS)

• Trusted Service Provider (TSP)

The TDDL provides the low level TPM vendor-specific interface to the TPM hardware.
This allows the TCS and TSP to have a common interface to different TDDLs when access-
ing TPM from different vendors and on different operating systems. On Microsoft Windows
Vista and above, the TDDL has been replaced by the Trusted Base Service (TBS) as a
solution to multiplex TPM access between the TSS and the operating system itself. Fur-
thermore, it also allows for security policies to be defined for specific TPM commands.

The TCS provides a common set of core services in the TSS, and manages multiplexed
access of the TPM from multiple service providers, either local or remote. This allows the
TPM to be used simultaneously by multiple local and remote applications.

Finally, the TSP and a supporting cryptographic library, provide the top-level service
interface used by a local TC application. Remote applications can connect, through the
TSP on the remote-end, to a TPM via a Simple Object Access Protocol (SOAP) connection
to a local TCS. The TSP interface (TSPI) is the main interface used by applications to
perform all the necessary functions to create and manipulate keys, perform sealing and
unsealing, attestation, extending the PCR and other operations.

2.2.3 TPM Keys

In addition to the PCRs, the TPM also manages an entire hierarchy of keys. Only two keys
are actually stored within the TPM, the Endorsement Key (EK) and the Storage Root Key
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Figure 2.4: TPM key hierarchy

(SRK). The EK is created during manufacturing time and is unique to each TPM. The SRK
is created by the TPM internally when ownership of the TPM is taken. Both EK and SRK
are asymmetric keys and their private part never leaves the TPM. The SRK is used as the
root key of the key hierarchy as a Key Encryption Key (KEK). Besides the EK and SRK, all
other keys are stored externally to the TPM as an encrypted key blob, and are managed by
the TSS (See Figure 2.4). Child keys are encrypted with its parent key with the following
wrap operation:

EncryptedChild KeyBlob = RSAENCRY PTParent Key(Child Key)
The top level key blobs are encrypted by the SRK, while subsequent keys are encrypted

by their respective parent keys. To retrieve a particular key, the respective top level storage
key blob is loaded into the TPM, and the TPM unwraps the key blob using the SRK and
retrieves the public and private part. With this key residing in the TPM memory, the respec-
tive child key blob is loaded and unwrapped. This process is repeated until the required
key is retrieved.

There are 4 types of keys supported by the TPM: Storage key, Signing key, Attestation
Identity Key (AIK) and legacy keys. Storage and signing keys can be set as migratable
or non-migratable, while AIKs are always non-migratable. Storage keys can be used to
encrypt or decrypt arbitrary data of restricted length (known as the SEAL operation) and
can be used to wrap child keys. However, non-migratable keys can only be wrapped by
another non-migratable key. Signing keys are used for signing operations only and cannot
be used for encryption of data or keys. AIKs can be used for signing a non-migratable key
or in a QUOTE operation (see remote attestation). Legacy keys from the older TPM 1.1
specification can, however, perform both encryption and signing. In addition, each key can
optionally be bound to a password and a set of PCR values before the key can be used.
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2.2.4 Remote attestation

Remote attestation is the process of attesting one or more properties of a target machine
(attester) to a verifier over the network. In the context of Trusted Computing, the properties
to be proven are a chosen set of PCRs. The AIK is used for remote attestation by creating
digital signatures using a QUOTE or CERTIFY_KEY operation. The QUOTE operation
generates a signature of the current PCR measurements, over a pre-defined structure
TCPA_QUOTE_INFO [2]. This structure contains a version number, a hash of the chosen
set of PCRs and an arbitrary 20-byte string which is usually used as a nonce for the verifier.

Alternatively, the AIK can be used for the CERTIFY_KEY operation which generates a
signature of a non-migratable TPM key, over the TCPA_CERTIFY_INFO [2] structure. This
structure contains a version number, the properties of the key, hash of the key’s public part
and nonce. The key properties include, among other things, its type and the PCRs that the
key is bound to if any.

In order to prove that the AIK used comes from a genuine TPM, an AIK credential has
to be obtained from a Privacy CA (PCA). Figure 2.5 shows the process of obtaining an AIK
credential, usually in the form of an X.509 certificate, from a Privacy CA. An alternative
method known as Direct Anonymous Attestation (DAA) is also available starting from TPM
1.2 specifications, but it will not be discussed in this dissertation.

The AIK proof contains the TPM’s endorsement certificate (which includes the TPM’s
public part of the EK), the public part of the AIK generated by the TPM and additional
information related to the TPM. This is sent securely to the PCA by encrypting it with the
PCA’s public key. The PCA has the role of verifying the TPM’s endorsement certificate
to ensure that the TPM is genuine, before issuing an AIK certificate signed by the PCA
to certify that the generated AIK is genuine. Since the EK is always linked to a unique
platform, the PCA protects the privacy of users by disassociating the AIK from the EK of
the attester.

2.2.5 Trusted Infrastructure

The TPM and TSS specifications from TCG define the hardware and software interfaces,
necessary for accessing and using the TPM on a local or remote platform. However, they
do not define or imply the usage of the TPM or its trusted services in the actual context of
protecting information and identity within the operating system and a network of systems.

Thus, the Infrastructure Working Group (IWG) within TCG defines a broad set of specifi-
cations, covering interoperability and connectivity (via Trusted Network Connect) between
systems using a TPM or other TCG technologies. The IWG covers topics related to cer-
tificate management, migration, attestation, practical use cases and the management of
integrity.
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Figure 2.5: AIK credential generation via a Privacy CA

Figure 2.6: TNC protocol stack

2.2.5.1 Trusted Network Connect

Trusted Network Connect (TNC) is a derivative from the IWG, describing a multi-layered
network protocol designed to perform remote attestation between two machines. In addi-
tion to the most fundamental QUOTE and CERTIFY_KEY operations provided by the TPM,
the TNC specifies the necessary framework to perform remote attestation within an organi-
zation. It is designed to integrate into the existing network access protocol such as 802.1x
and Transport Layer Security (TLS), to perform authentication and encryption. Figure 2.6
(source: [13]) shows the TNC protocol stack, defining 3 communication layers from the
Access Requester (AR) to the Policy Enforcement Point (PEP) and Policy Decision Point
(PDP).

AR refers to the client computer which is requesting to connect to the restricted network,
through the network edge at PEP, which is the main enforcement point. Usually, the PEP
can be a switch, firewall or VPN gateway, depending on the location of the AR with respect
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to the restricted network. The PDP is the entity which decides, based on defined poli-
cies, if the client is allowed to join the network. IF-T provides a secure transport session
between the AR and the PEP, with defined bindings to 802.1X and TLS. IF-TNCCS and
IF-M are high level protocols layered over IF-T, to transmit control messages and integrity
measurements, respectively. The use of integrity measurement such as the PCRs from a
TPM augments the information available about the AR to the PDP, which can then be used
in the policy decision on whether to accept the AR into the network. Due to the complexity
of the proposed implementation, the applications of integrity measurement presented in
chapter 5, will draw ideas but not utilize the specifications from IWG and TNC directly.

2.2.6 Previous work on property attestation

An early implementation of transitive chain-of-trust achieved by directly measuring loaded
binary code was demonstrated by an implementation from IBM called Linux Integrity Mea-
surement Architecture(IMA) [56], and also in Windows Vista’s and Windows 7’s bitlocker
[48]. This was thus termed “binary attestation” from previous literature [30]. IMA has been
integrated into the mainstream Linux kernel since version 2.6.30, and it involves a Linux
system which measures and logs every loaded component from boot time, including the
kernel, kernel modules, initial ramdisk and all subsequent binaries. Binary attestation is a
measure-before-load approach. This means, any component that is needed by the system
(such as binary code, system libraries, files, etc.) is first measured before being loaded.
The composition of all measurements will attest to the integrity of the chain of components
that make up the running system. This approach, however, suffers from extensibility (abil-
ity to add or update system components) and privacy problems (knowledge of installed
hardware and software) as highlighted in [30], leading to the development of property-
based attestation [30], and how it can be used to resolve extensibility issues and protect
the privacy of the attested platform from the party requesting attestation.

Property-based attestation, however, still has shortcomings in that it cannot verify the
runtime behavior of a component or system, as they are only measured once during load
time. To overcome this problem, ideas from runtime kernel-space monitoring techniques
were considered: such as Linux Kernel Integrity Measurement (LKIM) in [46] and nickle
[54]. These works directly monitor the memory of a guest virtual machine, in order to de-
termine its integrity state, and enable the integrity of the guest machine to be continuously
monitored, throughout its entire uptime.

2.2.7 Dynamic Root-of-Trust

Dynamic Root-of-Trust for Measurement (DRTM), also known as late launch, is a feature
which allows a separate root-of-trust for measurement to be re-established after boot time.
The advantage of this approach is that the BIOS (other than setting up the hardware prop-
erly) and other low level boot process do not have to be trusted, and the CRTM is started
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after the Trusted Computing Base (TCB) is loaded into memory. This allows for more
flexibility in terms of the boot process.

DRTM is initiated via a special privileged instruction that resets the processor state and
executes the given secure loader from memory. OSLO [40] is one such specialized loader
which was written to support the DRTM feature on AMD processors. OSLO is initially
loaded into memory via a conventional boot loader such as GRUB[34] or SYSLINUX[35].
It then reloads itself using the SENTER (AMD-specific) instruction, which performs the
following steps:

• stopping multi-processor mode if active,

• resetting the processor to a defined state,

• resetting the TPM PCRs 17 to 22 to all zeros,

• making a hash of the defined secure loader (OSLO) and extending this hash into
PCR 17 (as defined in table 2.2),

• setting the TPM locality to 4,

• jumping to the entry point of the secure loader (OSLO).

After the OSLO stub regains control after the SENTER instruction, it hashes and extends
the following modules in the boot chain into PCR 19, before handing over control to the next
module. Two additional modules are loaded to configure the necessary environment before
the Linux kernel and ramdisk are started. Using this approach, the dynamic root-of-trust
begins from the SENTER instruction and all executable modules that follow are measured
in a chain-of-trust based on this new root late in the boot process, thus being named ’late
launch’. On the PC platform, unfortunately, the kernel is not completely independent of
BIOS, as the proper initialization of hardware in the Linux kernel would still depend on
the Advanced Configuration and Power Interface (ACPI) table loaded by BIOS for proper
Plug-and-Play (PNP) hardware detection. The advantages and problems of DRTM are
also discussed in [40].

2.3 Understanding virtualization

Virtualization technology has become an increasingly popular trend, starting from server
consolidation to cloud computing and software-as-a-service (SaaS). The following sections
aim to give a general overview of the general classes of virtualization technology in use.

Virtualization of software can be generally abstracted into 2 kinds: virtualization of a
complete system and virtualization of the software environment around a single or group
of processes. The former, system virtualization, deals with emulating a complete system
including the processor, memory and hardware peripherals, such that an operating system
can run on top of the virtual hardware.
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The latter, application virtualization, deals with virtualization of a software environment
that emulates a thin layer between either a single process or a group of processes and the
underlying OS. This is used in application virtualization such as ThinApp [70], where the
standard OS calls made by an application are redirected to a ’sandbox’ environment, thus
providing isolation between the application and other components and resources on the
system. In the same way, the WINE runtime environment [32] and ming libraries virtualize
the system API of Windows for a Linux process, and Linux API for a Windows process,
respectively. A similar concept is also used in container-based virtualization [69], where
independent trees of process and resources are isolated from each other, and form simul-
taneous OS instances which are independent, albeit a minimal common kernel and kernel
services. These approaches provide isolation and security, while keeping a minimal per-
formance and resource overhead. The different kinds of virtualization techniques, target
various application scenarios, and have different levels of isolation and performance.

The rest of this dissertation will, however, focus only on system virtualization. With sys-
tem virtualization, the host operating system is the one which is running the virtualization
mechanism, either as a user process or kernel component. One exception to this definition
applies to type 1 hypervisors (see section 2.3.5) where the hypervisor is independent of
any OS. The guest operating system, consisting of the guest kernel and applications, is
running on top of a virtualized processor, memory and hardware. The following sections
describe the different techniques used in system virtualization.

2.3.1 Binary translation

In a general case, the virtualized guest has a different instruction set as the host. Thus,
the most straight-forward approach is to interpret each instruction of the virtualized guest
cycle-by-cycle, and modify the state of the virtual Central Processing Unit (CPU), respec-
tively, just like the microcode in a CPU core. For the special case where the guest and
host have the same instruction set, an optimized approach can be done by running parts
of the guest code directly on the host processor, and intelligently interpreting or modifying
parts of the guest code to prevent the guest system from exiting its isolated environment.
This is demonstrated in the VirtualBox virtualization software [31].

2.3.2 Dynamic code translation

A more optimized approach to straight-forward binary translation, known as dynamic code
translation, is conceptually similar to a Just-In-Time (JIT) compiler. In dynamic code trans-
lation, a block of code in the guest memory is interpreted into host instructions (possibly in
parallel with code execution), and the translated block is cached to speed up interpretation
during repetition loops. Like in optimized JIT compilers, these translated blocks can be
parameterized with known runtime constants, such that they are more optimized than a
generic translation. The Tiny Code Generator used in QEMU [17] is one such example.
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2.3.3 Full virtualization

A distinction between the various virtualization techniques is the difference between full
virtualization and para-virtualization. Full virtualization simply means that the entire virtual
hardware is emulated, including the processor, its memory management functions and
also all hardware devices. This usually means that any OS which runs on an x86 instruction
set can run in the virtualized environment under the same set of virtualized hardware
without modification. Thus, the greatest advantage of full virtualization is its ability to run
unmodified OS. Before the introduction of hardware-supported virtualization for x86, this
isn’t possible without performing binary translation on privileged x86 instructions. This is
mainly due to the fact that the x86 instruction set was not designed initially to be virtualized.
Thus, the practical use of full virtualization on x86 platforms remains limited due to its high
CPU overhead. However, with the recent hardware (processor) support for virtualization,
the performance overhead for full virtualization has been greatly reduced.

2.3.4 Hardware-supported virtualization

Hardware-supported virtualization pushes the performance of virtualization even further,
by providing direct support for virtualization on the processor. The guest system runs
natively on the host processor, and control is returned to the host system only to handle
special events such as interrupts, IO access, memory management instructions and other
privileged instructions. This increases the performance of virtualization and also reduces
the complexity of the virtualization mechanism.

Hardware-supported virtualization on the PC(x86)

On the PC architecture, hardware-supported virtualization was introduced by both AMD
and Intel, albeit with incompatible differences in their specifications. The core idea revolves
around defining a memory structure, known as the Virtual Machine Control Block (VMCB),
which stores the hardware registers, internal states and also defines the exit condition to
return control to the hypervisor. Figure 2.7 shows the 3-step cycle of hardware virtualiza-
tion. Before virtualization mode is entered, the VMCB memory structure is configured with
the necessary state of the guest machine and defined exit conditions. Then, a privileged
instruction (VMRUN for AMD or VMLAUNCH for Intel) is called to enter virtualization mode.
During this transition, the content of the VMCB are swapped with the host’s (hypervisor)
CPU registers and states. The guest virtual machine runs natively on the processor with
the loaded state, in this virtualized mode. Virtualization exits either by calling the VMEXIT
explicitly, or when an exit condition previously defined in the VMCB is met. In this case, the
processor registers and state is swapped back into the VMCB, and control is returned to
the host (hypervisor). Upon exit, the hypervisor usually performs management operations
on memory or emulates virtual hardware, before the cycle is re-entered via step 1. Special
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Figure 2.7: Hardware virtualization cycle

care is taken to manage the caching of the translation look aside buffer (TLB), by assigning
unique identities for each guest virtual machine on the TLB cache lines.

However, the frequent updates of the paging table in the guest, which have to be handled
each time by the hypervisor, impose high overhead. In the second generation virtualiza-
tion, the concept of nested page table (also known as extended page table) is introduced to
resolve this problem. A nested page table defines a map from the guest physical memory
address to the real physical memory address, thus reducing the need to switch between
the guest and host to update the page table. Memory isolation of the hypervisor is also im-
proved via the specification of an Input-Output Memory Management Unit (IOMMU), which
explicitly controls the memory access from hardware peripherals to the main system mem-
ory.

2.3.5 Hypervisor architecture

In addition to the different techniques of performing the actual virtualization, virtualization
systems also differ in their architecture, especially with respect to the presence of a host
operating system. Figure 2.8 shows the 3 main virtualization classes, each of which is
described briefly.

Type 1 hypervisor (bare-metal)

Type 1 hypervisors are virtualization kernels which run directly on the host hardware, and
are also known as bare-metal hypervisors. Since there are no additional layer between the
hypervisor and the hardware, type 1 hypervisors have direct hardware access and memory
management functions (something which is usually done by an OS kernel), in order to work
properly. To make the hypervisor small and robust, actual hardware management is usually
carried out on behalf of the hypervisor, by one or more privileged guest OS.
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Figure 2.8: 3 main classes of virtualization

Type 2 hypervisor

Type 2 hypervisors are hosted or embedded into an existing OS kernel, so as to leverage
the existing hardware and memory management functions within the host kernel. This
reduces the complexity of the hypervisor, by re-using existing kernel functions. Having a
host OS also allow tools to be easily deployed on the host OS to call management functions
on the hypervisor.

In-kernel virtualization

In-kernel virtualization is a form of virtualization where the key kernel functions are log-
ically separated into independent partitions, such that one such partition appears as an
independent OS. Compared to the 2 previous schemes, this is not strictly speaking true
virtualization as there is no underlying components which are virtualized. However, due
to its increasing popularity, in-kernel virtualization has been seen as an alternative light-
weight virtualization technique. Under this scheme, one or more partitions remain as a
privileged partition in order to create, manage and destroy other partitions. In-kernel virtu-
alization usually have much lower overhead as the bulk of the kernel remains unchanged,
except that process trees and other related data structures are maintained independently
for each partition.

Para-virtualization

Para-virtualization was first used in the XEN hypervisor, at a time where hardware sup-
ported virtualization was not available. It uses a modified Linux guest kernel, which is
aware of the hypervisor API, to get around the limitations of slow virtualization on the x86
processor. This allows guest virtual machines to run natively (without translation) on the
processor, while actively passing control over to the XEN hypervisor to manage memory
on its behalf. Thus, the XEN hypervisor is able to control memory allocation of all its guest
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virtual machines, and apply the necessary isolation policies. Para-virtualization remains
to date, the only method to run code natively on the processor (without any translation
or emulation) on the x86 instruction set without using the hardware virtualization support.
However, the disadvantage of this approach is that the guest kernel needs to be modified
for the hypervisor.

A hybrid approach between full virtualization and para-virtualization is the use of para-
virtualized drivers in the guest virtual machines. These drivers are specifically designed for
virtualized guests and use a hypervisor interface which is usually more efficient and less
complex than its real hardware counterpart. In general, they are able to achieve better per-
formance and are thus used for high-throughput hardware devices such as storage, net-
work and display. Virtio drivers [55] are a set of standardized virtual guest drivers and inter-
faces which can be used on multiple hypervisors and guest OSs. Para-virtualized drivers,
however, do not imply that the guest virtual machine is running under para-virtualization.
(For example, KVM uses full-virtualization while supporting para-virtualized Virtio drivers.)

2.3.6 QEMU and KVM virtual machine

As mentioned in 2.3.2, the QEMU emulator [17] uses dynamic code translation to achieve
reasonable virtualization performance. The QEMU code has a framework that targets
multiple guest instruction sets, including x86, PowerPC, ARM and other processors. It
also has support for a variety of virtualized hardware configurations. In addition to full-
virtualization, QEMU can also be used to perform process-only virtualization. The QEMU
code is portable and can be executed on a variety of host platforms, since the guest in-
structions are translated into compiled host instructions. Thus, the QEMU is a flexible open
source emulator, supporting a variety of guest and host targets. This dissertation focuses
only on full-virtualization of 64-bit x86 guests on a x86 host.

The Kernel-based Virtual Machine (KVM) [16], started as a kernel module for enabling
hardware-supported virtualization. This is necessary, due to the privileged instructions
needed to perform context switches between host and virtualized modes, which can only
be performed from within the kernel. The userland side of the KVM code has been inte-
grated into QEMU, so as to perform hardware emulation only. The kernel module of KVM
performs memory management and virtualization using the processor, while the userland
component handles hardware emulation using the same QEMU base. This dissertation
uses KVM as an example of hardware-supported virtualization of a 64-bit x86 guest.

2.4 Memory management on the PC

Memory management on the PC platform (32 and 64-bit) is based on the concept of pag-
ing, which is the mapping of units of continuous memory, known as a page, from a virtual
address space to the physical address space. The physical address space is the actual
physical address of the memory as seen by the external (front-side bus) interface of the
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processor. The virtual address space is the memory address as seen from the code ex-
ecution perspective from within the processor. This mapping is handled in hardware by
the processor, and is defined by the segment registers and the page table. The purpose
of paging is to allow blocks of physical address space to be allocated in a non-continuous
block, while being continuous in the virtual space.

Due to backward compatibility with the 8088 and 80286 processor, paged memory mode
is only available after the processor enters the protected mode (32-bit). In addition to the
page table, the segment descriptors perform an additional offset between the virtual and
physical address space. Segmented memory is also available only under protected mode.
However, in most modern OS, only the page table is used for memory mapping, but only a
very straight-forward memory segmentation scheme is used, with one segment for kernel
and another for user-space. The following sections will describe the 32-bit and 64-bit page
table in greater detail.

2.4.1 Control registers

As in most other instruction sets, the x86 has general purpose registers, memory registers,
status flag registers and so on. However, a special group of registers, known as the control
registers, determine the specific mode of the processor. Due to backward compatibility
reasons, the x86 processor has a variety of memory modes such as the 16-bit real mode
(compatible with 80286), 32-bit protected mode and also the 64-bit long mode. The control
registers control the transitions between these modes, enabling memory paging and other
privileged operations. The x86 architecture has the control registers CR0, CR2, CR3,
CR4, and additionally, the Extended Feature Enable Register (EFER), of which CR2 is
used for storing page fault address and CR3, for storing the base physical address of the
page table. The other registers are used for controlling processor mode and options. For
compatibility, both 32-bit and 64-bit capable x86 processors always start in the 16-bit real
mode and a series of transitions must be undertaken by the boot loader and kernel to
reach the required memory mode.

2.4.2 32-bit paging table

When the processor enters the 32-bit mode, memory access can be either linear or paged.
Linear memory access allows direct access to a maximum of 4GB of physical memory ad-
dresses. However, the paging mode is used more often, to provide a mapping between
linear memory addresses (as seen by the processor) and physical addresses. This map-
ping is controlled by the OS kernel so as to map fragmented physical memory pages into
continuous linear memory blocks, and to enforce memory protection.

The paging mechanism is organized into 3 levels, known as the Page Directory (PD),
Page Table (PT) and a last 12-bit page offset, as shown in figure 2.9a (source [39]). The
CPU Control Register 3 (CR3), stores the physical address of the base of the page direc-
tory. To translate a linear address into a physical address, the page table is traversed. The
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most significant 10 bits of the linear address are used as the index into the page directory,
which has exactly 210 Page Directory Entries (PDE). Each PDE is a 32-bit value containing
usage flags and the physical address to the base of the associated Page Table (PT). The
next 10 bits in the linear address are used as an index into this page table, which also has
exactly 210 Page Table Entries (PTE). The PTE is similar to the PDE and is a 32-bit value
containing usage flags and the physical address to the base of a 4 kbyte memory page.
The least significant 12 bits are used as the offset into this 4 kbyte physical page. The
linear address is mapped to this physical address. Furthermore, read and write access to
this page is also controlled by the page attributes within the PDE and PTE linked to this
page. There are variations to this scheme with page size of 2 Mbytes and 4Mbytes, which
are not shown in figure 2.9a. (see [39])

2.4.3 64-bit paging modifications

The 32-bit page table has a maximum addressable physical memory space of 4 Gigabyte
(corresponding to 2^32), which is much higher than the usual amount of actual memory
available at the time the i386 was introduced to the personal computer. However, with
improved memory technology and decreasing cost of production, memory size was in-
creasing and the 4 Gigabyte limit was starting to become a limiting factor to the amount
of usable memory. In terms of security, the original 32-bit paging scheme allows pages
to be marked read-only or read-write, but does not differentiate between code and data,
meaning that there is no executable or non-executable page differentiation.

The first incremental modification to address the two problems is the Physical Address
Extension (PAE) mode, which allows 32-bit linear memory to be mapped into the 52-bit
physical memory. The PAE achieves this by introducing a fourth level table, the Page
Directory Pointer Table (PDPT). This reduces the PD and PT addressing bits from 10 to
9 bits, while allowing each PD and PT entry to expand from the normal 32-bit into 64-bit
entries. Thus, the full addressing space of the expanded PD and PT entries can address up
to 52 bits of physical memory locations. Furthermore, an additional bit is added to the page
attribute, which marks a page as non-executable, known as the No-execute (NX) bit. The
PAE mode affects only the format of the page table, allowing existing 32-bit applications
to work without modification. Thus, only changes to the memory management unit of the
kernel need to be modified to support PAE.

Full 64-bit support was introduced in the ia64 and AMD64 instruction sets. The ia64
instruction set used by the Intel Itanium processor, is not backwards-compatible with the
i386 instruction set. It removes all legacy functions included in the 80286 and i386 proces-
sors. The AMD64 instruction set, however, is a continuation of the i386, and introduces an
additional 64-bit ’long’ paging mode.

Figure 2.9b (source [39]) shows the 5-level paging used in the AMD64 64-bit paging
mode. This paging mode has a 48-bit virtual address space, with a 52-bit architectural
limit for physical memory addressing. The page table is traversed in a similar manner as
before, albeit with more levels. The 64-bit CR3 now points to the Page-map level-4 Table
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(a) 32-bit page table with 4k physical pages

(b) 64-bit page table with 4k physical pages

Figure 2.9: 32 and 64-bit page table formats
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(PML4T), which provides the base address for the PDPT, which, in turn, points to the PDT
and so on. The No-execute (NX) bit is also supported in the 64-bit paging mode.

The following chapters in this dissertation will focus on the host and guest operating
systems using either the PAE or 64-bit paging mode. This is due to the support of the
NX bit, which is crucial for the implementation of memory protection and detection of code
execution in the guest operating system.

30



3 Integrity measurement

This chapter describes the proposed technique for integrity measurement as a core com-
ponent of the integrity measurement framework. Integrity measurement will be used in this
context to refer to the measurement and evaluation of the integrity of runtime code, against
a given static reference binary. Since the motivation for this dissertation is to target existing
operating systems, it is designed to be passive, requiring no modification to the operating
system to trigger or support the measurement. Virtualization is used as a means to directly
inspect the memory of the target operating system, in order to measure its integrity. This
technique is generally applicable to different operating systems.

Section 3.1 discusses the threats which integrity measurement is meant to address,
providing the basic assumptions and motivation of the work. In section 3.2, previous works
in the field of integrity measurement and ideas that lead to the proposed concept are
discussed. The sections that follow will describe the steps for integrity measurement in
detail.

The first step in integrity measurement begins with building a pattern database (see
3.4) from the given reference binary of a target kernel. This is an offline process, which
parses the compiled guest kernel and drivers, and prepares a compact database suitable
for runtime verification. The second step involves detecting execution of new code (see
3.5) within the guest OS, by hooking appropriately into the virtualization layer. This de-
tection triggers the third step of verifying the runtime code (see 3.6) against the reference
database. Based on the verification, the integrity state of the guest OS is determined and
reported via a virtual TPM.

3.1 Assumptions and Threat model

In order to achieve the goal of making trustworthy integrity measurements of the entire
software stack (OS and applications), it would require a chain-of-trust from the hardware
(as provided by the core roots-of-trust of the TPM) to the user application. Thus, pos-
sible threats would be attacks which can compromise any of the components along this
chain. Since many applications already exist to protect (with the help of the kernel) user
applications, integrity measurement in this dissertation will focus mainly on the threat of:

T1: malicious code change in the guest kernel

T2: malicious code change in the hypervisor or virtualization layer
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Preventing or detecting threat T1 is the main goal of the integrity measurement framework,
while T2 relates to the security strength of the virtualization layer itself. In this situation,
four possible attack vectors are considered:

V1: exploiting the kernel system call or writing into the guest kernel memory

V2: exploiting hypercalls or interfaces to the hypervisor

V3: memory write into the hypervisor code or data

V4: pre-boot change to kernel or hypervisor (permanent change on hard disk)

Attack vector V1 corresponds directly to threat T1 and should be detectable by the frame-
work. This is achieved by actively monitoring code pages in the guest kernel. Thus, any
new page marked as an executable page, is being examined and reported to the integrity
measurement module. Since the enforcement of page attributes is performed by the pro-
cessor itself, the basic assumption here is that the CPU works as specified.

Attack vectors V2, V3 and V4 are three possible vectors of threat T2. Exploitation of
the hypercall (V2) in virtual machine hypervisor can be reduced to a minimal by exposing
as few interfaces as possible, to reduce the attack surface. As proposed in this disserta-
tion, the only point of interaction between the guest kernel and the integrity measurement
framework is through the emulated devices (virtual hardware and TPM).

V3 relates to the general problem of direct memory write into the hypervisor mem-
ory space either from software (processor controlled) or through hardware via the Direct
Memory Access (DMA) channel, Peripheral Component Interconnect (PCI) bus or Bios
functions. A software-based attack is prevented via paging control of the guest kernel,
while hardware-based attack can only be prevented with an IO Memory Management Unit
(IOMMU). In the absence of an IOMMU, this can only be prevented by virtualizing all bus-
mastering hardware (e.g. DMA controller or PCI devices) in the system.

Attack vector V4 can be detected by having a continuous chain of hash measurement
of each loaded component during the boot process, as described in detail in section 4.7.1.
Thus, any modification to the host and its data will be detected as it results in a difference
in hash measurement during the trusted boot process. An evaluation of various kinds of
attacks is discussed in chapter 6.

3.2 Previous work in integrity measurement

3.2.1 Literature study

Early work on integrity measurement was developed along with the ideas of Host-based
Intrusion Detection System (HIDS), which detects malicious software activity from within
the host. This is in contrast to Network-based Intrusion Detection System (NIDS), where
detection of an attack is carried out on the network level via the network infrastructure or
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a dedicated device on the network monitoring network traffic and patterns. Tripwire [43]
is a well-known example of an HIDS, where files on a host are regularly checked against
a known configuration of all critical files. Deviations from this configuration will invoke an
alert to a centralized server. This allows network administrators to configure a system
securely, and ensure that the configuration is not altered by malicious software or users.
The advantage of HIDS over NIDS is its increased visibility into the individual processes
and resources on the host system, identifying problems at its source.

HIDS itself is, however, more vulnerable to attacks from malicious software or users.
This has led to the use of virtualization as an isolation mechanism between the HIDS and
the target system which runs as a guest operating system [38]. Similar ideas were applied
to high-interactivity honeypots [57] and high security systems [47], where virtualization
is used to isolate the susceptible honeypot or a vulnerable user environment, from the
monitoring system which resides in a secure virtualization host system.

Even though virtualization is hardly a new concept, being used on mainframe proces-
sors from the 70s to support legacy software and multiple OS instances, its usage on non-
mainframe systems was limited, due to the high performance overhead of virtualization.
But with increasing processor speed and eventually, hardware-supported virtualization,
more virtualization systems and hypervisors (see section 2.8) were developed for differ-
ent processors. Following this trend, integrity and security-focused virtual machines and
hypervisors were also developed.

One example is the nickle [54] virtual machine, based on QEMU virtual machine [17],
which attaches itself to the dynamic code translation mechanism of QEMU to check for
code changes in kernel memory space. This approach is very flexible and has been shown
to apply well to different virtualization tools as well. However, the implementation is limited
to software-only solution, and does not utilize hardware-supported virtualization which has
become widespread in the past years. Patagonix [44] is a XEN [19] based hypervisor
using hardware virtualization. It performs integrity measurement of kernel and application
space binary code. Argos [53] is another modification to QEMU, targeted at honeypot
implementation, to correlate buffer-overflows to their respective incoming attack vectors.

Bitvisor [62] and Secvisor [21] are two hypervisors, with a small code footprint, focused
on security applications. Both are using hardware-based virtualization provided by Intel
and AMD, thus making the hypervisor much simpler than software or para-virtualization so-
lutions. Bitvisor implements mandatory encryption by virtualizing specific hardware drivers
to provide transparent disk and network encryption. While Secvisor is focused on pro-
tection of kernel space memory by enforcing mandatory W⊗X mode and kernel code
measurement. W⊗X is a security feature first implemented in the OpenBSD[4] operating
system. It is a memory management policy that enforces a restriction that memory pages
are either executable or writable, but not both. This prevents attacks based on buffer and
heap overflow, and is easily implemented on processors supporting non-execution page
properties.

In addition, Linux Kernel Integrity Measurement (LKIM) in [46] is proposed to directly
monitor the memory of a guest virtual machine, in order to determine its integrity state.
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This allows for the integrity of the guest machine to be continuously monitored, throughout
its entire uptime.

3.2.2 Debug stub-based integrity measurement prototype

An initial prototype for integrity measurement was developed along with similar concepts
proposed in [46, 38]. The prototype uses the remote Gnu Debugger (GDB) interface pro-
vided by QEMU, to insert breakpoints into the guest virtual machine. The breakpoint lo-
cations are chosen using the symbol table generated during the compilation of a Linux
kernel. Thus, by placing breakpoints at the kernel system call address, which is the main
entry point from user to kernel space, all interactions between user and kernel, can be
inspected. This allows for an in-depth analysis of the calling process, function arguments
and respective kernel data structures.

A disadvantage of this approach is that it is inherently slow, due to the insertion of break-
points which have to be checked at every translation cycle. Furthermore, the computation
of breakpoint addresses is derived from the debug symbol table of the Linux kernel. The
debug symbol table is a compiler generated table specifying address locations of global
variables and functions. Thus, the use of the debug symbol table makes the approach
version specific. Another major drawback is that this method only considers specific entry
points into the kernel. This does not cover the entire attack surface of the kernel, and
furthermore, kernel entry points may change with each kernel interface update.

3.2.3 Nickle as a base concept

Due to these inherent drawbacks, a revised integrity measurement concept was based on
nickle [54], which also uses the QEMU virtual machine (version 0.9.0). Nickle inserts an
additional hook into QEMU’s instruction translation cycle to perform comparisons between
the code byte which is currently being executed, and a verified code store. The verified
code store mirrors the guest virtual machine’s physical memory, with the restriction that
write access to the verified code store has to be verified. The verified code store starts out
completely empty, and each discrepancy between the code store and the physical memory
at the currently translated instruction, implies that newly loaded code was executed. Only
execution at the ring 0 privilege is considered. In the case of the Linux OS, this usually
means that a new kernel module was loaded into memory. The specific kernel module that
is loaded is identified and verified. If the verification is successful, the newly loaded code
is copied into the verified code store.

3.3 Outline of integrity measurement

Based on previous work, the overall goal of integrity measurement is to verify if all code
execution within a guest virtual machine is confined to a set of defined binary executables.
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Figure 3.1: Overview of integrity measurement

The output of the framework is an integrity state of the guest OS, indicating if altered
kernel components have been loaded.. Figure 3.1 shows a conceptual flow of the integrity
measurement process.

The entire process has an offline and online step. The first step, pattern building (see
section 3.4), is an offline process which constructs a reference database from a given set
of binary executables. The database is used later for an efficient verification process. At
the second step, the target guest virtual machine is monitored (see section 3.5), to detect
new binary code being executed in the guest OS. For each block of code that is loaded
and awaiting execution, the code is verified using the database (see section 3.6) in step 3.
Finally, based on the verification, the current integrity state is decided and reported (see
section 4.6) to the TPM. The initial concept of this mechanism was published in [59].

3.4 Pattern building

The proposed integrity measurement differs from typical code signing verification methods
[37], in that detection is not performed on a file level, but rather, in memory. This provides
the advantage of being independent of the security mechanism in the guest kernel, and is
applicable even while the kernel itself is being started. In-memory verification is, however,
more complicated as the loaded image of a binary object differs from its file representation.

Thus, the pattern building step is an offline method that reconstructs the in-memory
image of the binary, using the same algorithm used by the kernel. The process is OS
specific, but is simplified by the fact that the way binary object files are loaded into memory
is usually clearly specified (based on the executable binary format) with minor exceptions,
depending on the actual operating system. A key problem in constructing an offline ref-
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erence is the dynamic loading of the image at an allocated base address. Except for the
trivial case of the very first loaded binary, the base address where every other module is
loaded cannot usually be predicted, as it would depend on the runtime memory allocation.
Thus, the offline pattern has to be flexible enough to adapt to a changing base address.

On the PC platform (i386 and amd64), operating systems use the Memory Management
Unit (MMU) of the processor to map virtual into physical memory pages. The PC platform
has a minimum page size of 4k bytes, and this is the smallest allocatable page (See sec-
tion 2.4). Thus, most kernel binaries are designed to be loaded on a page-aligned base
address, with the sections being continuous in virtual memory. This has been verified to
be the case for Linux, freeBSD and 64-bit windows kernels. This assumption simplifies the
image construction process and allows for some optimization in the verification process.

Thus, the invariant and variant parts of the image to be verified are handled separately.
The invariant part remains unchanged, while the variant part is modified by the OS during
loading, depending on the base address and external memory references. The following
section 3.4.1 will explain the two common executable binary formats, so as to gain an
understanding of binary relocation, import symbols and how the variant pattern is built.

3.4.1 Executable binary formats

Executable and Linkable Format (ELF) and Portable Executable (PE) are 2 commonly
used binary code container file formats. ELF is widely used on modern UNIX-like systems
including Linux and BSD, and is designed to be completely position-independent (binary
code can be loaded easily at any base memory location). The need for additional infor-
mation to support position independence arises from the fact that absolute jumps to 32
or 64-bit locations are necessary in compiled code, as a relative (to the current instruc-
tion pointer) jump is limited to single byte offsets on the x86 architecture. ELF handles
all position-dependent jumps by marking the positions of such jumps within the compiled
code in a relocation table.

In addition to relocation of the jump location within the same binary code, both formats
support modification of the appropriate memory address of function entry points, external
to the binary code, such as external libraries. This is defined in the export table of the file,
which indicates the required external functions and the locations to be modified within the
binary code.

3.4.1.1 ELF Format

The ELF format is the file format used for all binary code files on Linux and BSD-based
systems, such as executables, kernel modules (.ko), shared libraries (.so) and linkable
object files (.o). ELF format itself is cross-platform, and can contain code for different
instruction sets and OS as indicated in the ELF header. The ELF format can be used both
as an object file in the linking process or as an executable and shared object file format.
Therefore, it supports both a linking and an execution view.
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Section type Section
name in file

Typical section
attribute

Purpose

Code .text A, X Stores compiled code
Read-only data .rodata A Stores read-only data. This is

usually a storage place for
constants defined in a program

Read-write data .data W, A Stores read-write data, with
initialized values. This is usually

used for global variables with
pre-defined initial values.

Empty data .bss W, A An uninitialized memory space
is defined. This is usually used

for uninitialized variables.
Relocation data rel.<section

name>
A This is a table defining the

relocation information to
another section

A = Allocate memory for this section
X = Executable data
W = Writable data

Table 3.1: Common sections in an ELF file

Figure 3.2a shows a typical ELF format. It always starts with an ELF header, followed by
a program header (required for execution view). Together, they provide general information
on the file, platform and pointers to the important sections in the file. Commonly defined
sections are those used for storing code, read-only data, read-write data and empty data
allocation block. Table 3.1 shows a few commonly found sections. In addition, special
sections are used to store section names, symbol names, relocation addresses, debug
information and so on. Each section has defined attributes to show how the section should
be handled in memory.

3.4.1.2 PE Format

The PE format has a similar structure, but is used mainly on Microsoft Windows, Microsoft
Windows Mobile and Microsoft’s Common Language Runtime (CLR) based systems. One
major difference to the ELF format is that the PE format assumes a fixed based position
for each piece of binary code. Relocating a PE binary is achieved by a ’rebasing’ pro-
cess, where the code is parsed and absolute jumps are modified based on the difference
between the desired base location and the original base location.
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3.4.2 Code loading in Linux

Figure 3.2a illustrates how an ELF binary is loaded into memory. When the binary code is
loaded in a system (either executable or shared library), the binary code required for binary
execution is copied into memory, discarding unnecessary information (such as headers,
tables, embedded debug information, meta-data, etc.). After that, the jump addresses
are fixed for the relocated memory location and also, to externally linked libraries. The
binary loader, usually in the OS kernel, reads the ELF file and its respective headers, and
extracts the position of each execution-related section. Each section is tagged with flags,
but the main section types are executable (read-only), read-only data, read-write data and
uninitialized data. The binary loader places the sections in a newly allocated memory
block, and performs relocation and linking of libraries.

A specific feature of Linux kernel modules is the differentiation between an initialization
and a main section. The former allows initialization functions which are run only once
during module start-up to be declared in a separate code section. To save memory, this
section can then be unloaded after the module has started. Thus, the Linux kernel makes
two separate memory allocations for initialization and main sections.

Within each allocated block, sections such as those defined in 3.1, are packed sequen-
tially in the following order:

1. Read-only and executable (such as .text)

2. Read-only data (such as .rodata)

3. Read-write data (such as .data and .bss)

When multiple sections with the same attributes exist, they are ordered based on their
order of appearance in the original binary file.

3.4.3 Signature database

The relocation and linking process of an ELF-formatted binary leads to differences be-
tween its binary content on file, and its corresponding content after being loaded com-
pletely in memory. This is illustrated by the rightmost representation of figure 3.2a. The 4
main differences are:

1. only execution-related sections that are eventually loaded into the in-memory binary
image (file and section headers, tables, debug information, meta-data and the like,
are discarded)

2. memory locations within the binary that are corrected based on relocation (reloca-
tion)

3. memory addresses of external library functions that are written into the image (link-
ing)
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(a) File to in-memory of ELF binary

Page signature Module name Module page index

<Sig 1> driver1 0
<Sig 2> driver2 0
<Sig 3> driver2 1

(b) Signature database

Figure 3.2: Binary measurement
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4. each individual section in the ELF that is loaded, starting on a new page (alignment)

Based on these observations, an efficient method to detect the loaded module is devel-
oped, without further introspection into the kernel. This method utilizes a simple page sig-
nature for each loaded page. Since the sections are loaded on page boundaries, this page
signature would be invariant to the dynamic base address where the module is loaded.
For simplicity, a short fixed length signature from the start of each page is used as the
page signature. This is shown in figure 3.2a, where the in-memory block is divided into its
respective pages.

In order to compute these signatures, the given ELF binary is extracted in memory in the
same order performed by the kernel. Then, signatures of code pages associated with code
sections are collected into a signature database. For each database entry, a reference to
the original ELF binary and the index of the page are also recorded.

Table 3.2b shows a simplified view of the information saved in a signature database. For
each module, multiple page signatures are extracted for each page that code sections of
the module span. By using the signature database, it is now possible to efficiently find the
closest match of a page from some newly loaded kernel module, to the most likely entries
in the database.

3.4.4 Module database

The page signature is only an optimized approach to finding a list of possible matching
modules, without verifying the integrity of the entire module. Therefore, in order to verify
its integrity, the rest of the module content must also be checked. This is achieved by
constructing a projected in-memory image of the loaded binary from the file representa-
tion, as shown in figure 3.3a. Since the relocation address and external library addresses
cannot be known beforehand, a simple solution adopted from [54], is to ignore those bytes
by inserting a string of zeros at each of these memory locations. By ignoring all dynamic
parts, both the constructed and live in-memory image should be identical. Thus, a crypto-
graphic hash can be used to efficiently represent the invariant portion of the image. This
code hash can be used to verify the integrity of the live in-memory image. Table 3.3b
shows a simplified view of the information collected in the module database, which con-
sists of the module name, size, relocation information extracted from the binary and the
code hash. By considering the symbol table of all modules, all relocation addresses can
be resolved to either a local offset, or an offset to another module. This is covered in detail
in address resolution in section 4.2.1. The module and page database together form the
pattern database, generated as a result of the offline step of integrity measurement.

3.5 Detection of code modification

Detection of changes to code pages is a key step in protecting the kernel level code. This
step detects the new code executed in the guest kernel, or detects changes to previously
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(a) Pattern decomposition

Module name Module size Relocation positions and meta-data Hash

driver1 0x1700 0x10: driver1 + 0x0005 <hash 1>
0x20: driver1 + 0x1010
0x30: driver2 + 0x0127

...
driver2 0x3000 ... <hash 2>

(b) Module database

Figure 3.3: Pattern building process
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verified code, forcing it to be re-verified. Thus, this detection is a key step in detecting
malicious changes to the guest kernel.

An important point to note is that, integrity of data (not code) is not checked. This is due
to the transient nature of data, and the complexity involved in understanding the intrinsic
structure of data; it is deemed to be outside the scope of this dissertation and deserves
to be handled as a topic in itself. Unlike data, code is almost always unchanged once it
has been loaded into memory, except for the case of self-modifying code or code patching.
Code patching refers to modifying parts of the existing loaded code to modify its behavior.
It is a technique used to insert additional features to the system, or by malicious code
to attack a running system. Code patching is done by some anti-virus software on the
windows kernel to add special functions necessary for the anti-virus software to work. The
Linux kernel also uses code patching to add the optimized assembly code into the kernel
based on the detected CPU model. (See section 4.2.1 regarding code patching)

The most common approach to verifying code is to verify its integrity at the point of
loading [37]. This is usually performed by the kernel, when loading a binary code into
kernel or userspace memory. However, the verification is usually done at the file level,
meaning the binary file is signed and its signature is verified (such as using public key
encryption based certificates), before loading the binary.

The file-based code verification feature is already available on many existing operating
systems, but the main difference to the proposed detection method is that code memory
detection is done completely independent of guest kernel. This detection scheme is per-
formed by the host introspecting into the virtualized guest memory area. This provides
the additional assurance on the strength of the measurement, since effectiveness of the
detection is independent of the integrity state of the guest OS and its security mechanism.

Furthermore, file-based verification is performed only at the time when the binary is
loaded, while memory detection is an on-going process which detects code injection into
memory over the entire uptime of the OS. Memory detection will identify code modification
or patching which can occur due to malicious code trying to modify the kernel behavior.
This can occur when flaws in the kernel or any of its loaded drivers contain vulnerabilities
which can be exploited to bypass the code signature check altogether.

The actual technique used for detection of memory modification is closely tied to the
virtual machine’s implementation. Two methods are discussed in this dissertation.

3.5.1 Detection during code translation

The first approach is integrated directly on the translation cycle of the QEMU virtual ma-
chine. Figure 3.4(a) illustrates the steps which QEMU takes to translate and execute a
set of instructions in the guest virtual machine. QEMU translates each instruction from a
block of code in the guest memory (usually terminated by a jump instruction), into a block
of code executables in the host environment, known as a translation block (TB). To avoid
re-translating frequently used blocks, this translation block is stored into QEMU’s transla-
tion cache. Within the translation cache, the end of each translation block is linked to the
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start of other translation blocks (depending on the result of the block), so that re-translation
is minimized. Infrequently used TBs are removed from the cache when it gets filled up, so
that frequently called code remains in the cache. Changes to the source block in the guest
memory also cause the corresponding TB to be flushed from the cache, such as in the
case of self-modifying code. The QEMU execution environment on the host also contains
a processor state, which is a representation of registers and state of the emulator proces-
sor. Each execution cycle of a TB uses and modifies this emulator state. Figure 3.4(b)
shows the translation process of QEMU in a flow chart form.

Code change detection is achieved by checking if a TB is part of a previously verified
code module. In order to avoid performing verification for every new TB, a verified code
store is used to cache code that has already been verified. This code store acts as a mirror
of the guest’s physical memory, but contains only verified code. Whenever a new block of
code is verified, it is copied into the code store. The code store is then used as a reference
to check if subsequent TBs are verified.

Figure 3.4(c) illustrates the flowchart of the proposed code detection scheme. After
a new block of code is translated, the source block is compared with the code store to
check if it has been previously verified. If they are identical, the TB is accepted as verified
code and execution proceeds. However, if they differ, or if no previous verification was
performed at that memory location, the verification process is invoked. Upon positive veri-
fication, the block is copied into the code store before proceeding with execution. A failed
verification would mark the guest’s integrity state as unverified, before proceeding with
execution. Translation blocks executed directly from the translation cache do not require
re-verification, as they cannot be modified by the guest.

Comparing the integrity measurement framework to Nickle

As mentioned in 3.2.3, the proposed code detection scheme was developed, starting from
the concept proposed in nickle [54]. Improvements were developed to address the short-
comings of the nickle implementation. Figure 3.4(d) shows the flowchart of the nickle code
detection scheme, which differs in its operation flow, compared to the proposed scheme in
3.4(c).

The new scheme was proposed to address some of the problems identified in nickle’s
code detection. Firstly, nickle uses values stored in the registers (which are usually asso-
ciated with function parameters) as a means to identify the code which is currently being
loaded. This approach works because under Linux, new kernel modules are loaded by
the module loading function which also calls the module initialization code. By means of
reverse engineering, the memory location of the structure containing the module name
can be found from one of call arguments (usually stored in a register). However, this ap-
proach is highly dependent on the operating system’s code, including its specific version
and the compiler used (the actual choice of register for function argument is determined
by the compiler). Thus, this identification method is not easily applicable to other operating
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(a) QEMU translation

(b) Flow chart of QEMU instruction
translation

(c) Flow chart of proposed code detection

(d) Flow chart of nickle code detection

Figure 3.4: Comparison of code detection process
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systems, and generally impossible for closed source operating system such as Windows,
without knowledge of its internal memory structures.

The proposed integrity measurement scheme identifies new code not by specific reg-
isters or memory location, but rather, the newly loaded code block itself is identified via
page-aligned signatures. This approach is thus independent of the specific kernel module
loading scheme. It allows the detection scheme to be applied to different operating system
easily.

Furthermore, nickle allocates a verified code store which is as large as the guest’s phys-
ical memory. This code store is inefficient, as most of the allocated memory is mostly
redundant, as only a mirror of the kernel code memory is required. In a modern system,
the kernel code memory usage is extremely small (order of 10MB for Linux), compared to
cache, data and user code memory (of the order of gigabytes). This problem is resolved in
the new scheme via a memory data structure which only stores pages which have verified
code. Each page is tagged with a physical address, so that it can represent a sparsely
populated physical memory space.

Conceptually, the proposed scheme aims at providing a trusted integrity measurement
without any form of intervention from the guest system. Thus, a combination of the hard-
ware TPM and a virtual TPM provides a complete measurement chain of the system hard-
ware, the host system, and also the guest kernel and applications. The passive behavior
(no intervention) of integrity measurement allows for maximum flexibility of software exe-
cution inside the guest environment, while trusted applications (on a clean system boot)
can co-exist with secrets being bound to the trusted integrity measurement.

3.5.2 Detection via memory management unit

As introduced in 2.3.4, hardware-supported virtualization gives a much better virtualiza-
tion performance compared to binary translation. Thus, an alternative code modification
detection scheme is developed for the case of hardware-supported virtualization. This
implementation is based on Kernel Virtual Machine (KVM), which shares some common
code with QEMU for hardware emulation. Both implementations share the same userland
code base.

No binary translation is done for KVM, but rather, the guest code is executed natively on
the processor. As described in section 2.3.4, the hardware virtualization cycle involves the
management of memory, hardware virtualization and a VMCB state for each virtual ma-
chine. The main task of the kernel component of KVM is to perform memory re-mapping
between the guest memory address space and the actual physical address space. Mem-
ory re-mapping is necessary to confine the guest’s memory access to its allocated block,
so as to cleanly isolate the guest memory from the host and other guest machines.
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3.5.2.1 Shadow paging

One method of performing memory re-mapping is to use the well-established shadow pag-
ing technique. Shadow paging maintains a host-controlled page table, which maps guest
linear address into machine physical address. This page is synchronized with the guest’s
page table, albeit with an offset into the memory allocated for the guest virtual machine.

The software memory management unit of KVM handles the synchronization of the
guest memory allocation and the real memory allocation specified in the shadow page
table. Figure 3.5 shows the general idea of a shadow page table. The guest operating
system controls the guest page table, which is used to map the guest linear memory
space into the guest physical memory space. The guest physical memory space does
not correspond directly to physical memory of the host, but rather, to the block of memory
allocated to the guest by the host. Thus, the guest physical memory has to be mapped
onto real (host) physical memory space through memory management functions. Figure
3.5 depicts a continuous block of memory allocated to the guest, but this is a simplification
and is not necessarily true in general, since defragmentation of the allocation occurs after
virtual machines are started and stopped.

Standard shadow paging

As seen in figure 3.5, the shadow page table actually by-passes the guest page table com-
pletely, and maps the guest linear memory into real physical memory space. The guest
page table is, however, still important as it indicates the ’intention’ of the guest operating
system. Thus, the basic mechanism of shadow paging works by capturing memory allo-
cation events as they occur in the guest virtual machine, and updating the shadow page
table, respectively.

The shadow page table replaces the guest page table by controlling the guest’s read and
write access to the CR3 system register, which stores the base address of the page table.
The guest virtual machine is prevented from updating the CR3 with its own page table, but
rather, the shadow page table is loaded instead. Thus, when a new CR3 is loaded by the
guest operating system, the guest page table is parsed completely, and the shadow page
table is populated with the same structure, except that the physical address of each entry
is resolved to a location on the real physical address allocated to the guest.

When a page fault occurs in the guest, control is returned to the host and the source
of the page fault is determined. Four possible situations may arise with page faults in the
guest:

1. If the faulting address is not present, writable (on write attempt) or executable (on
execution attempt) in the guest page table, this fault is forwarded back to the guest
operating system by re-injecting it into the guest machine.

2. If the faulting address is present in the guest page table but not in the shadow page
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table, it implies that the guest has allocated a new page table, and a corresponding
entry is inserted into the shadow page table.

3. In order to update the ’dirty’ bit information on the guest page table and internal KVM
’dirty’ bitmap, such pages are marked initially as read-only, so as to capture attempts
to write to the memory address in the shadow page table.

4. The faulting address is a Memory-Mapped Input-Output (MMIO) location, and thus,
the read or write access has to be passed to the hardware emulation layer.

In addition, shadow paging also has to handle the ’invalidate page’ (INVLPG) instruction
from the guest. This would normally invalidate an entry on the cached page table, which
would cause the corresponding entry in the shadow page table to be deleted. The above-
mentioned algorithm is a general overview of the shadow paging mechanism implemented
in KVM. There are slight variations in shadow paging implementations in other hypervisors
such as XEN or Virtualbox.

Modified shadow paging for code detection

Based on the standard shadow paging algorithm, the page synchronization can be modi-
fied to perform code detection using the following rules. Memory page with the executable
attribute will be associated with the following shadow pages:

• Executable page: Read-only and Executable

• Writable page: Read-write and non-executable

Whenever a transition to an executable shadow page is made, the code verification pro-
cess is automatically invoked. This method protects verified code from being modified.
Performing a write to such code pages would invoke a re-verification, and next time, code
would be executed from that page. Using this simple concept, the shadow paging algo-
rithm can be modified to detect new code pages in the guest virtual machine (VM). Details
of the implementation are discussed in section 4.3.

3.5.2.2 Nested paging

Nested paging (also known as extended page table from Intel) is the hardware sup-
ported memory management supporting virtualization directly. With a processor support-
ing nested paging, an additional nested page table defined a memory map between the
guest physical memory and the real physical memory. This eliminates the need for a
shadow page table. Nested paging brings about significant performance improvement,
since the handling shadow page table updates, being one of the major overhead, are now
performed in hardware.

However, since the entire guest physical to real physical memory translation process is
now handled by the processor, there is no easy hooking point to detect new code pages
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Figure 3.5: KVM Shadow paging

used by the guest machine. Furthermore, incompatible differences between the Nested
Page Table (NPT) from AMD, and Extended Page Table (EPT) from Intel, force any possible
solution to be processor specific. Thus, there is, currently, no proposed solution for code
change detection for the case of nested paging.

3.6 Code verification

This section describes the code verification process which can be depicted as a 3-step
procedure. The first step is to identify a list of possible modules that can match the target
memory area. For each of the possible matches, the memory block is verified against its
invariant portion and also the variant portion (such as dynamic memory addresses and
code patches). The ’search and match’ processes are based on the database derived
in section 3.4.4. Finally, the resulting verification state is determined by the matching
pattern. A special unverified state is entered if the code cannot be matched to any known
patterns. Whenever a state transition occurs, the new state is reported to the TPM via
trusted reporting described in section 4.6.

3.6.1 Pattern matching

In section 3.4.4, the pattern database consists of a signature database and a module
database. Each signature entry contains a fixed length pattern, which is the page signature
at the beginning of each page boundary of the module’s image. Specific portions of the
pattern are also masked out based on the variant portions of the module.

Thus, whenever a new code block (via translation in 3.5.1) or new code page (from
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Figure 3.6: Matching memory to signature database

memory management in 3.5.2) is detected, the fixed length signature at the page boundary
of the new code page is extracted and matched against the signature database.

Figure 3.6 illustrates the matching process to find a possible module. Generally, the ver-
ification position can occur anywhere in memory. The page boundary corresponding to the
verification position is known as the verification page base, which is computed by ignoring
the lower 12 bits of the address. A fixed length of 20 bytes is extracted from this position,
and checked against the pattern database. Asterisk (*) values in the pattern database are
used as placeholders for ignored byte positions in the pattern. These correspond to dy-
namic data within the signature. The matching process returns a list of matching modules
and their respective page offset from the module’s starting address. For each potential
match, they are further verified by checking its invariant and dynamic content as described
in sections 3.6.2 and 3.6.3.

3.6.2 Verification of invariant memory area

The binary code, when loaded into memory, consists of pockets of dynamic areas due to
relocation and linking of modules. However, the bulk of the binary code is static and can
be easily verified in a compact form using a cryptographic hash. Thus, to first ignore the
dynamic portions, a copy of the entire module is made in memory, and each dynamic byte
location is overwritten with a zero value. A hash is then calculated over the entire image.
This makes the hash independent of dynamic variations in the image. The computed hash
is then compared with a pre-computed hash (calculated in the same way) that is stored in
the unit database. An identical hash would mean that every invariant byte in the image is
identical to the off-line reference used to build the pattern database.
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Algorithm 3.1 Recursive verification
function VerifyModule( module )

1. For each memory location l in module

a) verify location l

b) Return fail if verification fails

c) if l depends on external module B

i. call VerifyModule( B )

3.6.3 Verification of dynamic memory area

The next step in verification involves checking the dynamic portions of the target binary
code. Each entry in the relocation meta-data of the unit database contains a relative relo-
cation address, relocation type and associated parameters. Relocation and linking entries
are generally classified into local (within the same unit) and foreign entries (referenced
to another unit). Local relocations are verified against the base address of the unit while
foreign entries are verified against the base address of another unit. If the dependent unit
is not verified yet, it is recursively checked.

In addition to relocation addresses, kernel patching done in the Linux kernel is also
considered. Since Linux kernel patching is done in place, there is no change in the code
length before and after patching. Thus, both the original and patched version of the code
is stored as 2 possible alternatives to a particular code string at a defined location. Details
of the verification process are described in section 4.2.1.

Recursive verification problem

When performing the dynamic verification on units with dependencies, recursive verifica-
tion is necessary when the verification order is reversed, compared to the dependency
order. During loading of Linux kernel modules, the modules are often divided into an ini-
tialization and a main section. So as to save memory, this allows initialization functions
which are only run once during module initialization, to be unloaded after the module has
started. Thus, two separate memory allocation are performed for the initialization and main
sections. The verification has to be done separately for both sections because when ini-
tialization section gets unloaded and overwritten with other data in time, only that section
should be de-authorized.

Thus, the initialization section of a module may be dependent on the main section of the
module. This can be detected if that section imports functions from the main section. In
this case, the verification process has to recursively verify the main module and any other
dependent modules, as shown in algorithm 3.1.
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3.6.4 Integrity state

Welter proposed in [72], the concept of an integrity tag which indicates the current integrity
state independent of the actual hash result of binaries. Appropriate certificates are used
to describe the relation between the binaries and its associated integrity state. The advan-
tage of such a tag is the separation between the integrity state and the actual binary hash
of the measured component. This allows the binary component to be updated to newer
versions, while maintaining a consistent PCR value set (consisting of only known tag val-
ues) to applications using the PCR and remote attestation. Such an approach greatly
simplifies the verification process of PCR values at the remote end.

A similar concept is applied to the resulting state of the verification process. The integrity
state of the guest kernel is represented by an integer state index, which corresponds to a
general loading state of a guest OS. Two predefined states are the starting state (state 0)
and the undefined state (state 255). The starting state is the state where the guest VM is
first started, while the undefined state is a state which is entered when no matching refer-
ence binary can be found for the detected code. States can be used to separate different
phases of the boot process. This enforces a particular boot sequence, and also allows the
remote verifier to check that the guest OS is in a particular state during attestation.

Figure 3.7a shows the state transition used for a guest Linux used in this dissertation.
States 1 and 2 represent special initialization sections of the Linux kernel which is used
to set up the correct processor environment and load the full kernel. By state 3, the full
monolithic kernel is loaded. After all initialization is completed, the kernel unpacks and
executes the ramdisk, which loads additional kernel modules. These modules are grouped
into state 4. Finally, all other modules are grouped into state 5, which also represents
the normal operation of the guest OS. At any state, if unidentified code is executed, the
system will enter state 255, which is the unknown state. Once the integrity state is set to
the unknown state, it will always remain in this state until the guest OS is terminated or
rebooted. Every state change is then reported to the TPM as described in section 4.6.

3.6.5 Optimized states

The integrity state transition is controlled by 3 parameters, which are assigned to each
module: start state, lead state and end state. The ’start state’ and ’end state’ parameters
define the range of states in which a module is allowed. A module that is executed before
the start state, or after the end state, would also be considered to be unverified code, and
cause a jump to the unknown state. When a particular module is verified, it will cause the
current state index to increment to a minimum value defined in the ’lead state’.

Using these simple rules, the state transition is incremented from 0 to 5 in a normal OS
booting process. In addition to the benefits of having a clear state separation, the grouping
of modules also brings some performance benefits while performing pattern matching.
This is because the grouping of modules reduces the number of valid candidates at a
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(a) State diagram

(b) State transition example

Figure 3.7: Integrity state transition
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particular state, thus reducing the number of comparisons needed during the matching
process.
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Chapter 3 covered the basic concept of integrity measurement, while this chapter will dis-
cuss the in-depth implementation details of integrity measurement and reporting on the
host machine. It describes how a complete integrity measurement chain is built, starting
from the BIOS (which is the root of measurement), and extending into the host virtual
machine and finally into the guest virtual machine.

The chapter starts with a brief explanation of the build system and open source de-
pendencies in section 4.1, followed by an explanation of the implementation details of
integrity measurement pre-processing in section 4.2. This includes the types of relocation
representation used, so as to fit different operating systems’ operation. The actual imple-
mentation of the runtime monitoring technique, described in the chapter 3, is discussed in
section 4.3. Finally, the implementation of the virtual TPM is explained in sections 4.5 and
4.6, with references to existing work done in the field of TPM virtualization.

4.1 Code base and build system

All implementations used and tested in this dissertation are developed with a common
makefile, to automatically download all necessary components, apply patches and com-
pile the necessary components. As the main contribution of this work lies in the proposed
verification technique, the code is designed as a common library, known as libvimm. The
two important functions of libvimm are to parse and load the pattern database, and to per-
form verification on the guest memory when invoked. Abstract functions for memory and
TPM access serve to keep the libvimm code free of virtual machine specific implemen-
tations. Thus, this library can be easily integrated into QEMU and KVM virtual machine
implementations, and possibly other virtual machines as well. Version 11.1 of the QEMU
code is used as the base version of the development process of both prototypes.

4.1.1 Building blocks

During the course of development, the following open source code and tools were incor-
porated into the development system:

Linux kernel [1] - The Linux kernel, with the included KVM module, is used as the
host and guest operating system, but was separately compiled. Both kernels were pinned
to the Ubuntu-modified 2.6.31 version of the Linux kernel. The Ubuntu modified kernel
was chosen as it was pre-packaged with the AppArmor module, which is used in integrity
measurement within the guest OS.
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qemu/kvm emulator [17] - for binary translation and hardware-supported virtualization
using the official version 11.1

tpmd - tpm emulator version 0.6.1 [12]
libelf - C library for parsing ELF file [67]
pefile - a python PE file parsing library for analyzing windows PE files, version 1.2.10-63

[28]
Apparmor - a Linux security module (packaged in the Ubuntu Linux kernel) for security

policy [10]
digsig - a Linux security module performing code signature verification (patch onto Linux

kernel) [20]
bochs emulator bios - for developing the modified bios, version 2.3.7 [11]
TPM 1.1 virtual hardware - virtualization from the VMKNOPPIX project [14]
TPM 1.2 virtual hardware - Code from XEN hypervisor for TPM 1.2 virtualization [19]
TrustedGRUB - modified GRUB boot loader for trusted boot, version 1.1.4 [23]
OSLO - Open secure loader for performing Dynamic CTM for AMD-V processor, version

0.4.5 [40]
nickle - Guest-Transparent Prevention of Kernel Rootkits with VMM-based Memory

Shadowing [54]
Based on these libraries, the following components were developed:

• libvimm - a C library integrated into QEMU/KVM, for performing runtime verification
(as described in section 3.6)

• modifications to QEMU and KVM for performing code modification detection (section
3.5)

• Offline processing tools based on pefile and libelf to generate the pattern database
(section 3.3)

• Modifications to AppArmor and digsig to integrate the guest virtual machine mea-
surements

• Additional modifications and integration code to make other components work to-
gether

Finally, the system was tested for both a Linux guest (2.6.31) and 64-bit windows vista
SP2.

4.1.2 Common virtual hardware

Since both binary-translation and hardware virtualization prototypes use the same QEMU
code base, they share the same hardware emulation layer. The following additions were
made to the qemu hardware emulation:

• Bios modification - ACPI table to indicate presence of a TPM
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• Virtual TPM hardware interface based on the TPM-TIS [5] version 1.1(Atmel TPM)
and 1.2 (infineon TPM)

4.2 Offline parsing tools

This section describes the implementation details of generating the pattern database, as
discussed previously in sections 3.2b and 3.4.4. The offline tools created for parsing and
generating the pattern database take place in 3 stages. Since the verification process
assumes that binary code is loaded on page boundaries, the lower page boundary of the
first section is used as the reference base address. The first stage in generating the pattern
database is to parse the ELF or PE binary file (with the help of libelf and pefile libraries,
respectively). For each section within the file, the following information is calculated or
extracted:

• base offset of section, relative to the reference base address

• section length

• offset of symbols in a section, relative to the reference base address

Additionally, for every executable section, the following information is extracted:

• raw binary code

• position and information on relocation (including imported symbols) addresses, rel-
ative to reference base address

• Imported symbols used in the section

Using the base offset of each section, the position of all local relocations is re-calculated
relative to reference base address. In order to verify foreign symbols of a module efficiently,
a global symbol table is generated from all export symbols in the kernel and its drivers.
When the relocation entry points to a foreign symbol, the corresponding relative offset
of the symbol is calculated with respect to its base address. Using this offset, it is then
possible to re-calculate the actual symbol address by adding the offset to the current base
address of the external module. This information is then stored in the relocation entry of
the module as a relocation target.

A hash is also necessary for the invariant part of the binary code. Thus, every relocation
address is masked out using zero byte values in the section data. Finally, the combined text
sections are concatenated together, and a hash over all text sections is computed. Thus,
after the first parsing stage, the signature database is updated with signatures to each
leading 20 bytes at the start of every page boundary of the concatenated text section.
SHA-1 is the cryptographic hash algorithm used for the code hash calculation. In order to
generate the module database, the following information is saved as a text file for every
module:
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• type of binary file (32 or 64 bit)

• unit length (text sections only)

• hash of concatenated text sections (relocation positions masked out with zeros)

• relocation offsets relative to base address

• parameter of relocation offsets (see section 4.2.1)

Database packing

In order to facilitate parsing and hashing of the database, the final stage combines both the
unit and module database into a compact binary form. This binary form uses a combination
of fixed and variable size structures to store information on each pattern and module. The
final result is a single binary file containing the entire pattern database. This binary file
is hashed and extended into PCR 20 (see section 4.7.2) as an indicator of the database
used for verification.

4.2.1 Deterministic verification of relocation address

Another significant improvement to the nickle scheme is the handling of relocation ad-
dresses during the verification process. Table 4.1 shows all the relocation types supported
in the proposed scheme. The first 3 types support masking out either a 4-byte, 8-byte
or variable length block within the code memory. The original approach in nickle uses
this approach to simply ignore relocation memory locations in the module. The 4 and 8
bytes correspond exactly to a 32 or 64-bit relocation memory address. By simply ignoring
these locations in the code verification process, the invariant part of the code can be easily
verified.

Alt-instructions and para-instructions in Linux kernel

Alt-instructions and para-instructions are short pieces of code which is patched over the
Linux kernel in runtime. Alt-instructions are selectively activated to replace generic code
with its processor-optimized version, based on the detected processor model. Para-
instructions are used to replace normal kernel code with a version suited as a virtualized
guest kernel, so that the same compiled Linux kernel can be used for host or guest without
recompilation. Collectively, these techniques are known as runtime code patching. The
use of variable length masking supports ignoring such blocks of patched code.

Improved verification

However, simply ignoring relocation memory addresses opens a security vulnerability. The
memory address of a function can be redirected to a malicious function, without being
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Type Parameters Description

Ignore 32 Relocation address ignore a 4-byte address
Ignore 64 Relocation address ignore a 8-byte address

Ignore Block Relocation address,
block length

ignore a variable length block

Reloc 32S Relocation address, base
module, module offset

Relocation address with signed 32-bit offset
from a module

Reloc 32_PC Relocation address, base
module, module offset

Relocation address with signed 32-bit offset
from a module (written relative to program

counter)
Reloc 64S Relocation address, base

module, module offset
Relocation address with signed 64-bit offset

from a module
Reloc 64_PC Relocation address, base

module, module offset
Relocation address with signed 64-bit offset
from a module (written relative to program

counter)

Table 4.1: Relocation types

detected. Thus, an improved scheme is proposed to calculate the expected memory ad-
dress and compares the expected value with the value in memory, during the verification
process. In order to achieve this, information from the relocation table is necessary. It is
stored using the 4 additional relocation types defined in table 4.1. The relocation types
are differentiated into 32-bit and 64-bit memory locations, whether the relocation is an ab-
solute or relative jump. These records store the offset of the relocation address from the
base of the module, and the target of the relocation. The target can point to either an-
other relative address within the same module or an external symbol. External symbols
are parameterized with a base module and offset tuple, calculated from the global symbol
table. Compared with the approach of ignoring relocation addresses, checking the validity
of each address makes the integrity verification process more robust since every single
code byte is now verified.

4.3 Hardware-based virtualization monitor

As introduced in section 3.5.2, an alternative detection scheme using hardware-based
virtualization is used as an efficient alternative to binary translation. The hardware virtu-
alization monitor is based upon the existing virtualization mechanism in the Kernel Virtual
Machine (KVM). KVM uses the same userland and hardware emulation layer as QEMU,
but relies on a KVM kernel module to perform hardware-based virtualization. This is nec-
essary to utilize the privileged virtualization instructions from within the kernel. The kernel
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Figure 4.1: Flowchart of KVM

module has a base component which provides common KVM functions, kernel interface,
and a processor specific component to implement the virtualization.

Figure 4.1 shows the execution sequence of a KVM virtual machine. It starts from the
QEMU-based userland component performing an initialization of the virtual machine. The
virtual hardware is initialized and physical memory for the guest VM is allocated. After this,
control is transferred to the KVM kernel component via a KVM device driver (/dev/kvm).
The kernel component starts the virtual machine using the hardware-supported virtual-
ization. Subsequently, KVM handles exits from the guest OS, performing time-slicing and
memory management. Upon request of a controlled memory location or IO request, con-
trol is returned to the userland component to emulate the hardware. After completing the
memory or IO request, control is returned to the kernel component to resume VM execu-
tion.

Page permissions

KVM manages the memory of the guest VM using a page table. Each page table entry
defines the base address of the associated page, and also the page permissions and
properties. Page permissions relevant to integrity management used in this dissertation
are:

• RW (Read/Write) bit: When the RW bit is cleared, write access to the page is denied
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and raises a page fault. This behavior is enforced in supervisor mode only when the
WP (Write Protect) bit in the CR0 register is also set.

• NX (No Execute) bit: When the NX bit is set, execution of code within the page is
denied and raises a page fault. In the Intel documentation, this is known as the
eXecute Disable (XD) bit.

• US (User/Supervisor) bit: When the US bit is cleared, the page is only accessible
(read, write or execute) when the processor is in supervisor mode. Accessing the
page while in the wrong mode causes a page fault.

Interrupts, faults and exceptions are events triggered by external hardware, the processor
or software. The operating system installs handlers to handle such events when they are
raised. KVM also manages the guest memory by capturing faults and interrupts in the
guest OS. A page fault is raised when the processor is unable to resolve a virtual memory
address to the physical address through the page table, or when the required operation
(read, write or execute) violates the defined permission for that page.

The privilege level of a processor defines a general execution mode and is used for
protection of resources and privileged instructions. On the i386 and x64 architecture, the
privilege level is defined from 0 to 3. On most common operating system, the kernel of the
OS is operating at privilege level 0, while user code is running at privilege level 3. Privilege
levels 0 to 2 are defined as supervisor mode while level 3 is defined as user mode.

Shadow page table

In the absence of nested paging, KVM uses shadow paging to manage guest pages in
the guest virtual machine. This dissertation focuses only on the shadow paging approach.
Shadow paging is used to map the guest’s memory usage into a restricted region de-
fined by the host. Thus, the physical addresses as ’seen’ by the guest virtual machine
are mapped to a memory region defined by the host, as shown previously in figure 3.5.
Thus, shadow paging achieves the goal of remapping the guest physical address to a
host-defined region, by installing a host-controlled shadow page table. When the guest
virtual machine tries to install a new page table by setting the CR3 register, this raises a
virtualization exit event. KVM handles the event and replaces the guest page table with
the shadow page table, which is controlled by KVM.

Handling of the shadow page table is managed by the kernel component of KVM. To
perform integrity measurement, the kernel component is modified to capture all code exe-
cution at supervisor privilege levels by enforcing a W⊗X policy (first introduced in [4]). This
means that the writable and executable property of a code page must be mutually exclu-
sive (see the next section 4.3.1). Thus, the first execution of a previously unverified page
will cause an exit from the virtualization loop in the kernel component and return control
to the user-space component. The user space component will then verify the code using
libvimm. A list of physical page addresses of verified code is shared between the kernel
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and user-space. After the verification by libvimm, this list is updated on the kernel side,
before control is returned to the kernel component to continue virtualization.

4.3.1 Page management in a hardware virtualization monitor

The basic underlying concept of the W⊗X policy is to force the page attributes into one of
two modes. The first mode is read-only and executable, and the second mode is writable
but non-executable. Read-only access is enforced using the read/write (RW) bit in the page
table entries, while the ability to execute is controlled using the No Execute (NX) bit used in
64-bit memory handling. Even if a page is defined as writable and executable by the guest
operating system, the integrity measurement framework detects the operation requested
(read, write or execute) and chooses the appropriate mode. This mode enforcement al-
lows a switch in operation between write access and execution to be detected via a page
fault. Taking the Linux kernel as an example, such switching is not uncommon as mem-
ory pages for kernel modules are allocated as writable and executable in the unmodified
Linux kernel. A kernel patch [45] exists to switch the page permission of the code pages
to non-executable, but this is not integrated into the mainline Linux kernel. The pages are
first filled with the associated code and data, before they are executed. Thus, mode en-
forcement appropriately switches the page permissions between writable and executable
modes.

In addition, multiple pages can point to the same physical page, but with different access
permissions. The peek() function in the Linux kernel creates such a situation where a
generic page window is created into any physical memory location. Thus, concurrent write
and execute access to the same physical page is prevented by maintaining a list of physical
pages which are already tagged as executable. Multiple links to such pages will force all
links to be one of the enforced modes.

Figure 4.2 shows the modified page fault handler of the KVM’s kernel component. The
Available-to-software (AVL) bits of the shadow page table are used to mark pages which
are managed by the modified page fault handler. The AVL is a 3-bit field which can be
freely used by software (ignored by the processor for page mapping). Since these bits
are not used by the original KVM module, they are used to mark the assigned mode of
the shadow page. Bit 0 of the AVL indicates that the page is monitored by the integrity
management, and bit 1 indicates that the page has been marked as executable. This
marking is necessary to handle memory pages which have been marked writable and
executable by the guest kernel. Such pages need to switch between enforced writable and
executable modes, while re-invoking integrity measurement before being made executable.

The lower section of figure 4.2 shows the additional page handling mechanism. Based
on the processor state and page attributes, the shadow page is either read-only and exe-
cutable, or writable and non-executable. This fulfills the W⊗X condition. Non-executable
guest pages are not considered, since they are inconsequential to integrity measurement.
For the special case of guest pages which were set as read-write and executable, these
pages require switching between writable and executable modes. Thus, a by-pass is in-
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serted before the KVM’s page handler, to perform this mode switching without affecting the
normal page handling. Physical pages which have been verified are added to a verified list
of pages, while any write access will remove pages from this list. Thus, the memory pages
are protected even in the case of concurrent access from multiple guest pages. Just like
the QEMU case, the user-space component of this modified KVM uses libvimm to verify
the integrity of new code pages, and perform subsequent reporting of the integrity state.

4.4 Effectiveness on Windows kernel

Implementing integrity measurement for the Windows kernel involves modifying the offline
parsing tool to support the PE file format (section 3.4.1.2). The modified parsing tool gen-
erates a binary pattern database in the same format which can be loaded by the integrity
measurement framework. No changes were necessary in the runtime code detection or
code verification. A major difference between the Linux and Windows kernel while per-
forming verification, lies in their respective paging policies.

Memory paging on Windows uses a technique known as demand paging, which saves
memory by loading pages from the executable file as needed. Thus, the virtual memory
range allocated to the given binary starts out being unlinked to any physical page. As each
page gets accessed, it raises a page fault and the kernel allocates the necessary physical
page and loads the respective page from file into memory. This technique saves memory
as unused portions of a binary never get loaded and do not use up physical memory.
Furthermore, when there is insufficient physical memory, infrequently used pages can
be de-allocated to provide memory for other binaries. A few exceptions are the base
kernel file (ntoskrnl.exe) and its statically linked files, which are loaded into memory by the
windows boot loader (NTLDR) rather than the kernel itself. These files are loaded wholly
into memory before the kernel is started without any demand paging mechanism.

Demand paging has serious implications for integrity measurement, since only loaded
pages are available in memory. Thus, the entire binary module cannot be verified but
rather, only loaded pages. To address this problem, binaries that use demand paging
are separated into its smallest loadable units, which are individual pages. Thus, when
such a binary is loaded and executed, each page is verified independently, and relocation
references that cross the page boundary are changed into foreign symbols.

In addition to the issue of demand paging, the Windows kernel also generates dynamic
code during runtime. Such code is generated during the execution of the windows kernel,
and thus, is not represented in the respective binary file. One such example of dynamic
code is trampoline tables. A trampoline table is a memory array used by the hardware ab-
straction layer to store jump instructions. Performing such jumps is sometimes necessary
to change processor states. Under Windows, the locations of these trampoline tables are
dynamic, but can be derived relative to other loaded modules. Since there is currently no
clear method to verify the content of the trampoline tables, they are simply ignored in the
integrity measurement process. Due to other dynamic changes to the binary code which
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Figure 4.2: Modified page fault handler
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cannot be pre-determined, the integrity measurement algorithm is only partially successful
in verifying the Windows kernel, and is applicable up to early stages of the Windows boot
process.

4.5 Virtual TPM

4.5.1 Previous work in virtual TPM

The application of a virtual TPM (vTPM) starts from the need to multiplex the TPM access
between multiple parties, such as different guest virtual machines. Even though the TSS
stack performs the function of managing TPM-related resources and also performs proper
multiplexing of the TPM access for concurrent applications, the concurrent use of TPM
for multiple virtual machines poses new challenges. The chain-of-trust as represented by
the set of PCR registers, while applicable for a single OS cannot effectively represent the
individual chains associated with independent virtual machines. Furthermore, guest virtual
machines can be restarted but most of the PCR values on the hardware TPM cannot be
re-initialized. Thus, the general solution to this problem is to virtualize the TPM.

A TPM emulator implementation [68] exists for the Linux platform, which emulates the
TPM as a serial character device, responding to byte-level instructions from the TSS. The
TPM emulator runs as a background service, which creates a UNIX named pipe to accept
connections. To support legacy software which expects a TPM device driver, a simple
tunnel is created via a kernel module to forward all data stream between a virtual TPM
device driver stub and the named pipe.

A virtual TPM manager was written for the XEN hypervisor, which can manage simul-
taneous instances of the TPM emulator, and connect each virtual machine instance to its
dedicated TPM emulator instance. This allows each virtual machine instance to effectively
take control of its own unique TPM instance. No such manager implementation exists for
other hypervisors or virtualization platforms. An open issue with virtual TPM instances is
the establishment of trust between the hardware and virtual TPM, and the treatment of the
endorsement key in a virtual TPM.

4.5.2 Endorsement key problem in Virtual TPM

The virtual TPM implementation in [68] shows how multiple virtual machines can each be
supported by its respective virtual TPM instance. However, a critical issue lies in the trust
linkage between the hardware TPM and the virtual TPM. A hardware TPM can be trusted
based upon the assumption that it is physically mounted onto the system board and can-
not be easily replaced or tempered. An Endorsement Key (EK) with its corresponding
endorsement certificate is generated and saved into the hardware TPM during the manu-
facturing process. Since the TPM is the root-of-trust, it is implicitly trusted. The hardware
TPM can be trusted based on its endorsement certificate. The endorsement certificate
associated with the EK is normally signed by the TPM manufacturer and inserted securely
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during manufacture-time. This forms the trust basis in which a Privacy Certification Au-
thority can trust that the system contains a valid and genuine hardware TPM based on a
known TPM manufacturer’s certificate.

This endorsement certificate is, however, not transferable to the virtual TPM since the
endorsement key cannot be exported outside the hardware TPM. Since no authority exists
to endorse virtual endorsement keys on the virtual TPM, the trust chain linking the hard-
ware TPM to the virtual TPM gets broken. A few suggestions have been proposed in [68]
and [58] to resolve this problem. No new solution will be presented as this issue is outside
the scope of this dissertation. In this dissertation, it will be assumed that a corporate body
will sign virtual endorsement keys generated by the virtual TPM. The virtual TPM itself can
be protected by sealing its internal state to the physical TPM.

4.6 Trusted reporting

The final stage in integrity measurement is to report the current state in a trustworthy man-
ner. The TPM is used for this purpose as it has been designed for trusted reporting. In
contrast to reporting hashed measurement of the binary code, the reporting of an integrity
state is proposed, as discussed in section 3.6.4. In the context of property-based attesta-
tion [30], the integrity state can be seen as a property. The advantages of property-based
attestation have been discussed in [30], and this dissertation serves to demonstrate a
practical realization of an actual property in runtime.

4.6.1 TPM sharing models

Measurement reporting is done via the “extend” operation of the TPM (see section 2.2.1).
Unlike para-virtualization, the integrity measurement framework emulates a TPM hardware
interface, with no additional virtual machine specific interface (hypercall) for the guest ker-
nel. Thus, the only way to transmit information is via the virtualized IO interface. To provide
compatibility for the existing software infrastructure, the low level TPM interface based on
the TPM Interface Specification (TIS) [5] was chosen as a suitable hardware interface for
the purpose of measurement reporting into the guest OS. This interface allows the guest
OS to make integrity reports to the underlying integrity measurement framework. Two
models of multiplexing TPM between the host and the guest OS are proposed in this dis-
sertation.

Single client model

The first model is targeted at a client system scenario where users generally run only a
single VM. In this case, only a single instance of the VM exists, and can be associated
directly with the hardware TPM through the host as shown in figure 4.3(a). In this ap-
proach, a simple filter module checks the low-level TPM command byte stream (TIS) sent
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(a) Single client model (b) Server model

Figure 4.3: TPM measurement reporting

by the guest OS, and forwards allowed commands directly to the hardware TPM. The filter
module allows specific commands to be blocked by the host, and also enables the host to
concurrently perform stateless TPM operations.

Since no virtual TPM is involved in this model, there is no trust chain problem as de-
scribed in section 4.5.2. Furthermore, all secrets sealed by the client platform are secured
by the hardware TPM and is not vulnerable to a compromised host.

Server model

However, the client sharing model is not suitable for a server or data center use case,
where typically multiple virtual machines are running simultaneously. Each VM may start,
stop or restart independently, and require its own independent TPM state. This can be
achieved through a virtual TPM as discussed in section 4.5. Figure 4.3(b) shows a virtual
TPM-based sharing model, where each virtual machine is assigned its own virtual TPM
instance. The low-level TPM command byte stream (TIS) is sent through a filter module
and allowed commands are forwarded to the virtual TPM. The PCR values associated with
the measurement of the hardware, hardware boot loader and host integrity are extended
into each new virtual TPM instance. In this way, the PCR measurement starts with a
common state based on the hardware and host, but branches off independently for each
VM instance. The integrity measurement process which is tied to each virtual machine is
also allowed to perform stateless TPM operations on the virtual TPM.

Advantages of the server model include a faster TPM access, as the software-based
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Figure 4.4: TPM filtering implementation

virtual TPM is generally faster than the hardware TPM. Also, VMs can be restarted inde-
pendently, since new virtual TPM instances can be restarted for each VM.

4.6.2 TPM filter implementation

In order to test and implement both TPM sharing models in 4.6.1, the TPM interface in
the virtualization is implemented as a flexible filter as shown in figure 4.4. This filtering
implementation consists of 2 stages. The first stage is a filtering logic which receives the
complete TPM byte stream from the virtual machine. The filtering logic is able to reject
blocked TPM commands, or forward the TPM commands. The second stage is a variable
output stage which can send TPM commands to either a virtual or hardware TPM. In the
client sharing model, the output stage connects to the hardware TPM directly. For the
server model, the output stage connects to the virtual TPM associated with the respective
guest VM.

In both sharing models, the filter logic checks for the TPM extend command, and blocks
any extend operation on PCR lower than 22. The filter protects the lower PCRs which are
used by the host and integrity measurement, while allowing the guest VM access to the
guest controlled PCRs. This is further discussed in section 4.7.2, where a differentiation
between host and guest controlled PCRs is described.
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4.6.3 Dynamic Root-of-trust measurement

As explained in section 2.2.7, Dynamic Root-of-Trust Measurement (DRTM) allows the
processor to start a separate root-of-trust for measurement via a trusted loader. The DRTM
mode of operation can be used by inserting the OSLO loader [40] into the chain of modules
to be loaded by the boot loader. The OSLO loader is divided into separate modules, each
performing separate functions. Every piece of binary is compliant to the GNU multiboot
specification [27], and can be executed as a chain using a multiboot capable bootloader
such as GRUB or SYSLINUX. The OSLO loader uses 4 separate multiboot compatible
binaries, in the provided order, to perform the entire DRTM chain:

• oslo - performs the SKINIT operation [24] to put the TPM into locality 4 while resetting
the PCRs 17-22. This operation also automatically hashes and extends the oslo
binary into PCR 17.

• beirut - performs hashing of command line arguments of the remaining multiboot
modules into PCR 19

• pamplona - reverts the Device Exclusion Vector (DEV) protection and clears the
global interrupt flag, so that the Linux kernel can be loaded without modifications

• munich - loads and executes the Linux kernel and ramdisk since the Linux kernel
(bzImage format) is not multiboot compatible.

The entire boot sequence is shown in table 4.2.

4.7 System integration

In order to build a complete working system of the entire integrity measurement framework,
the various components described so far have to be integrated. The framework, including
code detection and verification, is integrated as part of the virtualization process. The
pattern building is done as a separate offline process of building the database, and thus,
does not require integration into the measurement framework. Other external components
that need to work together with the framework are the TPM emulator, host OS infrastructure
(such as the boot loader), host kernel and host file system.

A session controller spawns both the virtual TPM emulator and the VM. The controller
connects the VM to the virtual TPM emulator via uniquely named pipes, and also, sets the
appropriate execution parameters. Furthermore, the persistent state of the TPM emulator
has to be managed via a file-based storage. This is achieved by a simple configuration file
for each virtual TPM and VM pair.

As for the rest of the host OS, it is created as a minimal ramdisk file system, so that its bi-
nary measurement of the host, which is performed once at boot-time, is always consistent.
Section 4.7.1 describes the boot sequence of the integrated measurement framework.
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Stage Binary name Function

0 BIOS Hardware setup, loads boot sector
1 Boot sector Loads boot loader
1 Boot loader (TrustedGRUB) Loads OS
2 oslo * Perform SKINIT operation, measures and

extends next module
2 beirut * Perform additional hashing of command line

of modules
2 pamplona * Setup environment compatible for Linux

kernel loading
2 munich * Loads and executes Linux kernel bzImage

and ramdisk
2 Linux kernel bzImage Linux kernel
2 Linux ramdisk Linux ramdisk
3 Session manager Start TPM emulator and virtual machine

4 Guest BIOS Hardware setup, loads boot sector (QEMU
based)

5 Guest Boot sector Loads boot loader
5 Guest Boot loader (GRUB) Loads OS
6 Guest kernel and modules Guest kernel
6 Guest applications Guest applications

* present only if DRTM is used

Table 4.2: Boot sequence

4.7.1 Boot sequence

The boot sequence of the framework varies slightly, depending on whether if DRTM is
used. Table 4.2 summarizes the important steps in the boot sequence of the integrated
system in order of execution. After the session manager is started, the execution sequence
branches off, depending if the single client or the server model is applied. In the case of the
single client model, there is only a single chain of execution, and all TPM operations are
sent to the hardware TPM. In the server model, stages 4 to 6 are carried out independently
for each guest VM, and the TPM operation of each VM is sent to its virtual TPM instead.

4.7.2 Completing the trust chain

In order to complete the trust chain from the boot-up to the guest OS, the trust chain
and the associated measurements need to be collectively stored in the TPM. Table 4.5
summarizes the PCR configuration on the hardware TPM. The table is differentiated into
the case where Dynamic Root-of-Trust (DRTM) is applied or not.
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PCRs 0-4 are used by BIOS to perform self-measurement and also the measuring of
the Initial Program Loader (IPL) found within the Master Boot Record (MBR) of the boot
device. The IPL measures and executes stage 1 of the GRUB boot loader, which, in turn,
measures and starts stage 2 of GRUB. Both measurements are extended into PCR 8 and
9, respectively. GRUB is fully loaded after stage 2 is started, and it, in turn, starts the
chain of binaries to load the host OS. In the case without DRTM, it loads the Linux kernel,
ramdisk directly, extending hash measurements into PCRs 12-14. In the case of DRTM, it
loads the OSLO loader, extending hash measurements into PCR 12 and 14. The OSLO
loader initiates the DRTM sequence before loading the host Linux kernel and ramdisk.
Table 4.5 shows the different PCRs used in each case, as the DRTM process resets PCR
17-22.

PCRs 20-23 are used for guest VM specific purposes. PCR 20 contains a hash of the
binary database file used for integrity measurement, while PCR 21 contains the actual
runtime integrity state from the measurement process. PCRs 22 and 23 are used by the
guest OS itself. In the single client model, this group of PCRs are extended directly into
the hardware TPM. In the server model, the PCR values on the hardware TPM are hashed
together and written to PCR 0 of the virtual TPM when the VM is started. Subsequent
guest-related measurements are extended into the virtual TPM only.
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PCR Index Controlled by Data measured

0-3 BIOS BIOS specific
4 BIOS measurement of IPL

8-9 IPL Measurement of TrustedGRUB stage 1 and 2
12 TrustedGRUB GRUB command line
13 TrustedGRUB Host Linux ramdisk
14 TrustedGRUB Host Linux kernel
15 Host system (ramdisk) Host file system
20 QEMU / KVM pattern DB signature
21 QEMU / KVM Integrity state tag

22 Guest kernel LSM AppArmor policies / digsig public key / state
23 Guest apps Guest application data

(a) PCR configuration for non-DRTM prototype

PCR Index Controlled by Data measured

0-3 BIOS BIOS specific
4 BIOS measurement of IPL

8-9 IPL Measurement of TrustedGRUB stage 1 and 2
12 TrustedGRUB GRUB command line
14 TrustedGRUB OSLO Stub

17 * CPU (skinit) OSLO loader
19 * OSLO OSLO modules, host Linux kernel and ramdisk
20 * QEMU / KVM pattern DB signature
21 * QEMU / KVM Integrity state tag

22 * Guest kernel LSM AppArmor policies / digsig public key / state
23 Guest apps Guest application data

* DRTM protected PCR values

(b) PCR configuration for DRTM based prototype

Figure 4.5: PCR configuration using only the hardware TPM
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While the previous chapters explained the concept and implementation of the integrity
measurement framework, this chapter discusses how integrity measurement can be ex-
tended and integrated with additional tools within the guest OS and remote hosts.

The first section deals with modifying existing Linux security mechanisms on the guest,
so as to extend the integrity measurement to form a more complete measurement chain
covering application-level security. The first scheme is a simple code-signature verification
enforcement, which will be augmented with trusted measurement to form a complete trust
chain. The second is AppArmor, a process-level resource policy enforcement scheme,
which will also be augmented with trusted measurements to form a complete trust chain.
Both schemes are implemented in the guest kernel and extend a hash into a PCR register
based on the loaded enforcement policy.

To demonstrate the application of the integrity framework, sections 5.2 and 5.3 discuss
two real world scenarios of applying integrity measurement to personal and corporate
platforms. The former uses integrity measurement for trusted authentication and protection
of personal data. This security system uses the TPM to verify the entire software stack
on the user’s behalf. The user’s data can only be decrypted only under the condition
that the user’s credential is valid and the system is integral. The latter use case applies
integrity measurement to a trusted intrusion detection system (IDS). This allows a remote
server to maintain a VPN connection which is bound to the runtime integrity of the client
machine. The connection is automatically broken whenever the client’s integrity state is
compromised at any level of the software stack. This allows a corporate network to protect
itself against compromised hosts connected to the network.

5.1 Userland protection

This section describes the extension of the runtime memory measurement of the guest
kernel space, covered in chapters 3 and 4, to the user space. Rather than applying the
same code verification technique, which might incur high overhead, existing security mech-
anisms in the guest kernel are modified to perform measurement of user space programs.
Security mechanisms in the kernel are able to take advantage of the process information
available to the kernel for perform measurement. This also allows the security mechanism
to be more fine-grained by using the additional information.

Two measurement approaches based on Linux Security Modules are discussed here.
The effectiveness of userland protection is a research area in itself and will not be dis-
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cussed in this dissertation. Rather, the description will be on how these techniques can be
integrated into the integrity framework using Trusted Computing.

5.1.1 Linux Security Module (LSM)

The Linux Security Module (LSM) API enables security modules implemented in the Linux
kernel to insert hooks into core kernel functions, to control the access of resources in the
kernel. The hook functions allow specific operations in the kernel to be explicitly inter-
cepted by the security module. This makes it possible to implement well-defined security
models, such as mandatory access control (MAC). The SELinux [64] LSM is one example
of MAC for the Linux kernel. The scope of LSM covers a wide variety of kernel functions
including program execution, I/O operations, socket and pipe operations, resource labeling
and audit operations.

Currently, existing LSM modules are mostly designed for security enforcement rather
than integrity measurement. Thus, integrity measurement can be achieved by reporting
security breaches through the TPM interface. Since the kernel and the LSM module are
already measured by the underlying integrity framework, the measurements provided by
the LSM module extends the trust chain into the domain of application integrity.

The LSM uses a guest-controlled PCR (see section 4.7.2), which is different from the set
of PCRs used for measurement of the guest kernel by the host. In this way, the manage-
ment of the LSM-based measurement is independent of the integrity measurement frame-
work. The validity of the measurement is ensured based on the fact that the guest kernel
itself is integral. Two LSM-based modifications are presented in the following sections.
They perform code-signature verification (software white-listing) and process monitoring,
respectively.

5.1.2 Digsig security module

Digsig [20] is an LSM module which reads and verifies a digital signature embedded into
ELF binaries, so as to verify the integrity of the binary before execution. It requires the
support of two userland applications. The bsign [3] application is used to sign the ELF
binaries and embed the code signature back into the binary. Another application inserts
the corresponding public key into the digsig module via a sysfs file. This public key is used
to verify the code signatures. No verification is performed before the public key is inserted.
After the key is loaded, the digsig module verifies the signature of every ELF binary before
they are executed. To support the integrity measurement framework, the digsig module
was modified in the following manner:

1. Digsig extends a hash of the signature public key sent from the userland application,
into the LSM-controlled PCR.

2. For simplicity, digsig does not allow the inserted public key to change once it has
been inserted. (write-once until reboot)
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3. After the public key is inserted, digsig extends a known value into the LSM-controlled
PCR if any loaded binary fails the signature verification.

As binaries are not verified before the public key is inserted, the insertion process should
be done as early as possible in the boot-up process. Inserting the key during the ramdisk
stage of Linux booting can maintain the integrity of the boot chain, as the ramdisk is already
measured by either the framework or the trusted bootloader (see section 4.7.1).

Since the public key is used in verifying binary signatures, this key should not change
frequently. A simple solution is to enforce a write-once policy, where the key can only be
inserted once with no further change possible. This would be sufficient for a use case
where binaries are signed with a common root key. An alternative approach is to allow
multiple public keys. This is similar to the case of having multiple root certificates within
a trusted root store. Execution of binaries with signatures that matches any of the keys
would be accepted.

Finally, the module has to report cases of failed signature verification by extending a
known value into the PCR reserved for LSM usage. This completes the trust chain by
reporting the execution of any unsigned binaries. With this approach, the integrity frame-
work can be extended to monitor the integrity of all loaded binaries within the guest OS.
Therefore, an attestation of the PCRs would prove that a known key has been used to
verify all binaries in the guest and that no invalid binary has been executed at the time of
attestation.

5.1.3 AppArmor security module

The decision not to apply the same kernel memory detection technique to measure user-
land applications was consciously taken. It was done to reduce the complexity of the
signature database. It also allows greater security granularity within the LSM modules,
which can make use of additional process information available in the guest kernel for in-
tegrity verification. This is demonstrated, to a greater extent, in the use of AppArmor [10]
as an integrity checking extension to the integrity framework.

AppArmor is another LSM module which enforces Mandatory Access Control (MAC).
Like other MAC systems, AppArmor enforces explicit access of processes to file, network
and other resources on the system. The file access control is based on file paths rather
than file system based labels (such as in SELinux), so that no modification to the file sys-
tem is necessary. AppArmor enforcement targets individual processes rather than users.
All rules are written in a plain text format, defining access rights of a particular process to
file or network resources. This is known as a profile, and is inserted into the kernel via a
special file in the AppArmor ’s security file system (securityfs). Profile insertion is usually
carried out early in the system boot-up process, so as to have AppArmor enforcement in
place before starting other processes.

AppArmor has two modes of operation: complain and enforcement modes. Complain
mode only logs all access violation against the given profile. This mode is often used in
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the creation of an initial profile for a process. Enforcement mode enforces the profile and
restricts access to defined resources. Like in digsig, AppArmor requires a set of userland
applications to perform the loading, unloading and modification of policies in AppArmor.

Figure 5.1 shows a simple flowchart of how AppArmor works. AppArmor profiles are
inserted into the AppArmor LSM module via a device file mounted in the security file
system (securityfs) used to control kernel security configuration. These profiles are stored
in a profile database. To ensure maximum effectiveness over all processes, they have to
be inserted early in the boot process.

When a kernel system call is made by a userland application, hooks within the kernel
API handler are used by the installed LSM to check if the call has to be audited. If so,
control is passed first to AppArmor to process the API call. Within AppArmor, each of
these system calls is handled by checking if the profile associated with the process is
allowed to perform the requested operation. In enforcement mode, disallowed operations
are rejected, while in complain mode, a log entry is created for each disallowed operation.

To extend integrity measurement from the host into guest-level measurements, the
AppArmor module was modified to hash the profile and extend this hash into the LSM-
controlled PCR (see section 4.7), every time a profile is loaded, unloaded or modified. As
in the case of digsig, the AppArmor policies should be loaded in the initial ramdisk phase
to maintain the chain-of-trust, and policies should be in enforcement mode. As a result,
the final value in the PCR can be computed and should remain unchanged throughout the
lifetime of the system. An attestation to that known value in the PCR would signify that the
correct set of policies has been loaded and not been tempered at the time of attestation.
This implies that the correct profiles are being enforced. Due to the nature of AppArmor,
only policies which are in enforcement mode are actually consequent to the integrity of the
overall system.

5.2 Trusted authentication and disk encryption

In order to showcase the application of integrity measurement, the following sections will
discuss how the integrity management framework can be integrated with the existing secu-
rity infrastructure to solve real-world problems. Two use cases will be discussed, covering
both usage scenarios for personal and corporate applications.

The first scenario aims to demonstrate the usage of integrity measurement and trusted
computing for trusted authentication and storage. This scenario is targeted at protecting
systems for personal use. Trusted authentication gives the user confidence that the au-
thentication process inherently verifies the system integrity. Subsequently, trusted authen-
tication invokes the decryption of the user’s home directory only if the system is integral.
This two-step approach ensures that the user’s operating environment and data are inte-
gral upon a successful trusted login. Trusted authentication and decryption is achieved by
coupling the authentication process to a TPM key tied to a particular integrity state. The
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Figure 5.1: AppArmor framework with integrity measurement extension
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next section discusses weaknesses of existing authentication schemes and the need to
have a trusted authentication process.

5.2.1 Weaknesses of authentication schemes

Typical authentication schemes are based on either a secret known to the user (such as a
password), or a token that cannot be duplicated (such as a smart card or, to some extent,
biometric identity). The strength of the former method lies in its difficulty in guessing the
secret, while the strength of the latter method lies in the difficulty of replicating the token
or identity.

Considering the secret-based method of using an authentication password, a salted
password hash is usually used to protect the security of the user password. A salted
password entry consisting of the salt and password hash of user i is defined by:

salted_password_entryi = (salti, hash(salti | password_stringi))
The salt is a randomly generated number which makes the hash different even if the

password is the same, so as to prevent pre-calculated password hash attacks [51]. The
stored password entry consists of a tuple of the random salt and the hash. The password
hash is recalculated from the password given by the user during authentication. The user
is authenticated by verifying the fact that the recalculated hash matches the stored hash.
In this way, even the system administrator has no knowledge of the password used by the
user.

Even under the assumption of a strong cryptographic hash, such methods are naturally
vulnerable to guessing attacks such as a brute-force attack (guessing all possible password
combinations systematically) or dictionary attack (using combination of frequently used
words to efficiently guess the password). Thus, for passwords which are relatively short,
if the hashed password can be extracted from the system, it can be cracked by using a
powerful system to guess the password in reasonable time. This is known as an offline
attack on the password.

In the case of a personal system, authentication is usually performed locally and not
handled by a secure authentication server. In this case, all unencrypted data can be read
or even tempered by a malicious user who has physical access to the system, making an
offline attack viable.

5.2.2 Sealing and unsealing operations

In order to prevent an offline attack, the TPM can be used to nullify the effect of extracting
the hashed password. The TPM provides two main functions for dealing with data encryp-
tion, namely binding and sealing. Data stored in an encrypted form external to the TPM,
is bound to the TPM when a TPM storage key is used to encrypt the data using asym-
metric encryption. This piece of data can only be decrypted by the same TPM when the
encrypted data and the wrapping key are presented again to the TPM through the TSS. In
addition, the parent key or chain of parent keys used to wrap the storage key, needs to be

77



5 Integrity measurement applications

unwrapped in sequence, before the bound data can be processed by the TPM. Sealing is
a similar operation, with the usage of the storage key (see section 2.4) and the additional
condition that selected PCRs in the TPM must be in a specific state. In order to encrypt a
large piece of data, a symmetric encryption key is used for encryption. The symmetric key
used for decryption can be bound or sealed using a TPM storage key instead of the data
itself.

While using the sealing operation, the TPM can be used to restrict access to a piece
of secret based on a set of PCR values that represent a known state. The guarantee
provided by sealing, so that the integrity measure at the point of unsealing is identical to
the requested integrity measure during sealing. As a result, the secret is accessible only
when the system is in an accepted integrity state.

5.2.3 Trusted authentication

With the trust properties of the TPM seal operation, it can be used to build a trusted
authentication scheme that verifies the system integrity during login, and to also overcome
problems of guessing attacks, as discussed in [29].

The proposed trusted authentication uses the seal operation of the TPM, to seal the
password hash used in the UNIX login mechanism. This provides a variety of advantages.
Firstly, the seal operation enforces a verification of the system state as represented by the
TPM. When used together with integrity measurement, the integrity of the host hardware,
host virtualization, guest kernel and guest applications are fully represented as properties
in the PCRs (as shown in figure 4.7.2). In addition, the use of the TPM itself prevents
offline attack, since it can only be carried out on the same platform, and only when the
system is in the state defined by the respective PCRs. Thus, an attacker is unable to carry
out brute force or dictionary attacks by copying the password hashes and carrying out the
attacks on a more powerful remote machine. Also, attacks on the same machine booted
up into a different state will also fail, since the unsealing operation will not be successful.
The use of hardware TPM also restricts the repetition speed in an online (on the same
platform) brute force attack since all TPM operations are limited by the speed of the TPM
chip. The TPM uses a relatively slow LPC bus so that, while the delay is minimal for single
logins involving only a few TPM operations, it becomes significant when used repeatedly
in a brute force attack.

5.2.4 Implementation of trusted authentication and storage

The trusted authentication scheme was implemented using the Pluggable Authentication
Module (PAM) framework, which is widely used in many UNIX and Linux systems. The
authentication scheme was implemented as a PAM module modified from the UNIX au-
thentication module. Figure 5.2 shows the difference between the UNIX and the trusted
authentication scheme.
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(a) UNIX authentication scheme

(b) Trusted authentication scheme

Figure 5.2: Normal and trusted authentication scheme
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After generating a password hash, the module uses the TSS to encrypt the hash using
a TPM key. The TSS returns an encrypted blob, which is stored directly in the password
file as a base64 encoded string. This avoids the need for a separate database or file. The
string is prefixed with a special token to indicate that it is a TPM-encrypted string, so that
the password file can still support normal UNIX passwords concurrently. The trusted au-
thentication process is performed by extracting the encrypted data blob from the password
database, and decrypting it using a TPM key through the TSS. Simultaneously, the authen-
tication password is hashed and compared with the decrypted data blob. Authentication is
successful if both hashes are identical.

The trusted authentication implementation supports two ways of using the TPM key.
The first method generates and uses a separate TPM key for each user. This method
has the advantage of being able to associate different users to different system integrity
measurements, for different levels of trustworthiness. The second method uses a common
TPM key for every user, and it is associated with a common integrity measurement for all
users. This method has lower management overhead, since only 1 key has to be stored
and used for all users.

5.2.5 Drawbacks of the system

As with other trusted computing based systems, there are certain drawbacks to the system.
Building a robust backup solution for a trusted computing based system is non-trivial. This
trusted authentication suffers from the same problem in that, if a non-migratable key is
used for the TPM sealing operation, the key is only usable when the specific TPM in that
specified system state. In the case of a hardware failure of the TPM, there is no mechanism
to restore the key. If a migratable key is used, a TPM key migration can be performed
between the original and target TPMs, so as to keep a safe backup of the TPM sealing
key on another system. However, both schemes will fail if the TPM on the original system
fails before either the data or key is backed up. A more robust backup solution can be
built around the system by making secure copies of the actual authentication hash and
symmetric encryption keys used in the trusted authentication and encryption.

Another disadvantage of the system is the inability of the user to verify the integrity
of a local physical platform before the user enters his authentication information. This
can occur if the original trusted authentication process has been tempered or by-passed
completely. The user is generally not able to differentiate between the case of a trusted and
non-trusted authentication window, when presented on a screen or user-interface device.
One such example would be a malicious authentication screen which is identical to the
original screen, but serves to perform no real authentication while capturing the entered
authentication password. In this case, the encrypted data is still secure as changing the
authentication screen would give rise to a modified integrity measurement. However, the
password is already compromised in the process.

This problem is not only specific to trusted authentication but also in almost all authenti-
cation mechanisms, such as verifying the integrity of a credit-card machine. One possible
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solution is to perform a challenge step to the system before user authentication. This could
involve using a secure token to verify the system integrity in a manner similar to remote at-
testation. Alternatively, the system may decrypt and display a simple piece of user-specific
data sealed using a TPM key, to prove its integral state.

5.3 Trusted intrusion detection system

This second use case demonstrates how integrity measurement can be part of an Intru-
sion Detection System (IDS) within a corporate network or data center. The application
of trusted computing and the integrity measurement framework enhances the detection
capabilities of existing IDS, and the use of virtualization is well suited in a data center
scenario.

Intruder Detection System (IDS)

An intruder detection system (IDS) is an entity or system that monitors the network for
malicious activities or policy violation. IDS can be mainly classified into Network-based
IDS (NIDS) or Host-based IDS (HIDS). The former monitors the network traffic and traffic
pattern at the network-level, while the latter checks a host against a given policy, usually
with the help of a local agent on the host. Policy violations are usually appropriately logged
and reported to the network administrator. The remote attestation operation of the TPM
can be used as a form of HIDS, if the PCR values in the TPM are representative of the
policy-critical aspects of the host’s integrity. Thus, this use case will demonstrate the use
of integrity measurement to build a TPM-based HIDS.

Existing Trusted Computing Network Access Control

The Trusted Network Connect (TNC) group and Infrastructure Working Group (IWG) of
TCG have already proposed necessary specifications for the trusted network access and
infrastructure necessary for a fully trusted network access. A brief introduction was given
in section 2.2.5.1. The integrity measurement framework serves to augment this scheme
by providing measurement of a virtualized guest kernel, and runtime freshness of the mea-
surements.

5.3.1 Implementation of the Trusted Intrusion Detection System

The HIDS to be demonstrated in this use case will utilize a network access control mech-
anism to restrict the network access of each host, and simultaneously keep a continuous
check on the host integrity. Existing mechanisms for network access control include the
widely used IEEE 802.1x standard, and also Virtual Private Network (VPN) for remote
access to the network. As a proof-of-concept prototype, the implementation discussed
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in this section will focus only on the low level trusted channel, which is equivalent to the
IF-T channel within the TNC protocol framework. OpenVPN [65], which uses Transport
Layer Security (TLS) protocol, will be used as the basis of the trusted channel for ease of
integration.

5.3.2 TC-aware Virtual Private Network

OpenVPN [65] creates a VPN channel between a VPN client and a VPN server (also
known as a VPN concentrator) using TLS encryption [61]. In contrast to other VPN solu-
tions which use IPSec, OpenVPN uses TLS which is a TCP layer encryption. This sim-
plifies the routing of a TLS connection as it uses standard TCP packets. TLS encryption
relies on a key agreement algorithm (such as Diffie–Hellman key exchange) for secure
handshake and session key generation. After that, a symmetric cipher is used to encrypt
the channel using the session key.

In this implementation, both the VPN client and server are modified to be TPM aware,
using the TPM extension to the OpenSSL library. Under this setup, a TPM signing key is
used as the client identity key in the secure key exchange between the client and server.
In order to verify the integrity of the system, the TPM signing key is bound to a known good
state of the PCRs. The validity of this signing key has to be communicated to the VPN
server in a separate step beforehand, using an AIK-generated signature.

Figure 5.3 shows the TLS handshake and communication between the VPN client and
server. The CERTIFY operation is used to sign the TPM key using a TPM AIK key. For
simplicity reasons, the verification of the AIK is performed out-of-band of the TLS session
(using known methods such as a privacy CA). Alternatively, we can use a client certificate
with a TCG-defined Subject Key Attestation Evidence (SKAE) X.509 extension [7]. This is
a more formal framework for verifying TPM-based signatures. The result of the CERTIFY
operation provides a proof to the server that the user key is a TPM key which can only be
used when the TPM PCR matches a defined set of values. This set of pre-defined values
would match an integral client state.

During the actual TLS handshake, after the initial exchange of nonce values, the Open-
VPN client uses a TPM plugin that calls the TPM to perform the signing operation on the
server nonce. This signing operation verifies that the client possesses the user key, and
that implicitly implies that the client TPM PCR matches the defined values. Thus, when
used together with the integrity framework, the TLS handshake can be used to imply that
the client platform is in a valid state.

Refresh period

A refresh period is also defined in the VPN server. After each refresh period, the VPN
server requests a re-negotiation of the TLS handshake between the client and server.
This re-negotiation generates a new session key, and forces the TPM key on the client
end to be used again, indirectly invoking a check on the PCR as well. This means that
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Figure 5.3: Trusted VPN
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the integrity on the client end can be re-verified with every TLS re-negotiation cycle. Thus,
having a frequent refresh period maintains the freshness of the integrity measurement, as
with the disadvantage of higher computational and transmission overhead.

Based on the assumptions that the PCRs are a runtime representation of the integrity of
the entire platform, using both the integrity framework and security modules in the guest
(as discussed in section 5.1), the VPN server is able to constantly monitor the integrity of
all connected clients. In this way, the VPN server can be used as an enforcement point
of network-wide platform integrity, automatically controlling clients’ access to the network,
and disconnecting clients which are compromised with respect to its PCRs measurement.
Such setup works effectively like an HIDS, and is able to prevent the proliferation of mali-
cious software spreading throughout a corporate network, by isolating infected hosts from
the network. Infected hosts may be placed into a demilitarized zone (DMZ) of the network,
where the host can be rectified before re-connecting them back to the trusted network. A
similar scheme can be applied to LAN-based operations by replacing a VPN server with a
network access control authenticator, such as those based on 802.1X.

This simple setup demonstrates how integrity measurement and trusted computing can
be extended to a network-wide scenario to ensure platform integrity. This can be combined
with measurement techniques for Apparmor profiles as described in section 5.1.3 to form
a network-wide MAC policy enforcement.

Areas which are not covered in detail in this implementation are the management of the
necessary certificates to prove the correctness of the client’s TPM public key, as covered
in TCG’s specification on SKAE. The high-level policy management in a full TNC deploy-
ment is omitted for simplicity. The difference from the existing TNC-like remote attestation
scheme is the definition of a refresh period, which determines the freshness of the integrity
measurement. This is unique to the integrity measurement framework due to the runtime
nature of the measurement, which can be used to produce the most current integrity mea-
surement.
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This chapter evaluates of the effectiveness of the integrity measurement framework and
additional components in capturing the integrity measurement of the entire platform. The
two modified Linux Security Modules (LSM) and the two use cases described in the previ-
ous chapter are evaluated.

Section 6.1 describes the verification test performed on the system. Functional tests that
verify if modification to any of the critical software component would produce an expected
change to the PCR values are successfully conducted. A variety of penetration attacks are
conducted from within the guest operating system. The results conclude that the system
is not compromised under those attack vectors.

Section 6.3 evaluates the performance of the integrity measurement framework, testing
both the QEMU and KVM virtualization implementations, together with optimization for
state groups. The performance results show that the runtime integrity verification has
minimal performance overhead under both situations. During normal OS operation, the
guest OS runs at near native performance.

Finally, section 6.4 discusses known problems which are generally applicable to trusted
computing based systems, and specific limitations of the integrity measurement. Under-
standing the problems of the current system establishes the basis for proposing future
work on the integrity measurement framework in section 7.1.

6.1 Verification tests

This section summarizes the results of a series of tests performed on the integrity mea-
surement framework. The tests are used to verify that every component in the trust chain is
properly measured. This involves 3 verification tests covering static verification of the mea-
surement chain, dynamic attack of the guest kernel and verification of the LSM modules in
the guest kernel. These tests serve to check that the integrity measurement framework is
functioning as expected, and is able to detect a range of static and dynamic attacks on the
system. While formal verifications give a stronger proof, they are generally impractically
hard to apply to a large heterogeneous system consisting of hardware, hypervisor, kernel
and supporting software. Thus, the testing strategy uses a more ’black-box’ approach.
Revisiting the threat model discussed in section 3.1, the following verification tests which
aim to examine some of the identified attack vectors of the system are discussed.
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6.1.1 Test environment

The integrity measurement framework is evaluated on a Linux host running 64-bit Ubuntu
10.04, on a test machine with the following specifications:

• HP Compaq 6535b laptop

• AMD Turion(tm)X2 Dual Core Mobile RM-74 processor

• 4GB of system RAM

• Infineon TPM 1.2

Both the host and guest kernels were modified versions of the Ubuntu Linux kernel version
2.6.31.4. The QEMU and KVM virtual machine uses version 0.11.1 of the QEMU code
base, and version 0.6.1 of the TPM emulator.

6.1.2 Simple modification test

The first test verifies the relationship between each component along the trust chain, and
the integrity measurement captured via PCR values. For each test case, a single byte
change was introduced into each component in a way that does not disrupt its functional
behavior. The condition of not modifying the functional behavior was introduced so that
the chain can complete every test case normally, without any changes to the operation
of the software. The final PCR values were compared with a reference set of PCR val-
ues based on unmodified components. This test verifies the effectiveness of the integrity
framework against attack vector V4, where permanent changes were made to the boot-up
components of the host and guest systems.

Table 6.1 lists the PCRs which were changed when a component was modified. Four
separate test chains were performed, with two sets each performed on a system with and
without DRTM. For each of these sets, both the single client model (using hardware TPM)
and server model (using virtual TPM) were tested. For the client model columns, only one
set of values representing the changed PCRs is shown because the client model only uses
the hardware TPM (hwTPM). On the other hand, there are two sets of values, separated
by a slash, representing changed PCRs on the hardware TPM (hwTPM) and the virtual
TPM (vTPM), respectively.

By comparing the results in table 6.1, with the definition of PCR usage in table 2.2, it is
clear that the BIOS image influences only PCR 0. PCRs 1,2,3,6 and 7 are extended by
the BIOS, but their significance cannot be determined. Changing the Master Boot Record
(MBR) has correctly changed PCR 4, which is reserved for the Initial Program Loader
(IPL).

Comparing with the PCR usage allocation given in table 4.5, it is clear that Trusted
GRUB is appropriately measured in PCR 8 and 9 in two stages. The modules loaded
by Trusted GRUB are represented by PCR 14, while PCR 12 is used for the command
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line instructions used in loading each case. OSLO and its associated helper programs
affect PCRs 17 and 19 appropriately and also affect PCR 14 since OSLO itself is loaded
by Trusted GRUB. The remaining components are started by the host platform. For the
server model, only the virtual TPM is affected since the session manager extends these
components into individual virtual TPMs. PCR 0 of the virtual TPM is extended by the
session manager, using a combination of PCRs 0-19 on the host. A hash of the pattern
database is extended into PCR 20. PCR 21, which is the main PCR used by the integrity
measurement framework itself to report measurement state, shows the integrity of the
loaded guest kernel and kernel modules. PCR 22 is used by the LSM in the guest kernel
to report measured configuration. The guest ramdisk is not explicitly measured, as the
integrity of the guest OS is dependent on the kernel integrity and the use of LSM, and not
on the integrity of the ramdisk itself.

The conclusion of this modification test suggests that the integrity measurement frame-
work is able to detect static changes in the entire trust chain from hardware to guest VM.

6.1.3 Kernel memory attack

Exploiting the kernel loading interface

Runtime tests were also carried out on the integrity framework to determine the system’s
ability to detect runtime changes in the guest VM. The first test simulates a rootkit attack
from a super-user, or a malicious user who is able to elevate his privilege level to that of
a super-user. A single byte change was applied to an existing kernel module and loaded
into the kernel using the standard modprobe utility. This test is a simulation of the attack
vector V1, which uses a guest kernel system call to make changes to the guest memory
area.

The test result shows that, when a modified kernel module is loaded, the integrity frame-
work detects the altered module. This changes the integrity state into the unknown state,
which is being extended into PCR 21. The integrity framework successfully detects the
simulated rouge module.

Exploiting the /dev/mem interface

A second test simulates an attack on an existing vulnerability in the kernel. The /dev/mem
block device was used to make direct read and write access to a part of the kernel code
memory. The /dev/mem block device is a special device file which maps all read and write
access to the entire physical memory of the host. Thus, it is a very generic and privileged
memory operation that can normally be performed only by the kernel. This attack is a
simulation of a variant of attack vector V1, where the guest memory is altered directly.

The use of /dev/mem is thus security-critical and is often exploited by rootkits and
other malicious software to make modifications to the kernel. The only legitimate use of
/dev/mem is to access BIOS and ACPI information necessary for calling video interrupts,
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Tested component PCRs changed
Non-DRTM DRTM

client model server model client model server model
hwTPM hwTPM / vTPM hwTPM hwTPM / vTPM

BIOS image 0,5 0,5 / 0 0,5 0,5 / 0
MBR (GRUB stage

1)
4 4 / 0 4 4 / 0

GRUB stage 2
(first sector)

8 8 / 0 8 8 / 0

GRUB stage 2
(remaining

sectors)

9 9 / 0 9 9 / 0

GRUB command
line

12 12 / 0 12 12 / 0

Oslo loader n.a. n.a. 14,17 14,17 / 0
Pamplona, beirut,
munich loaders

n.a. n.a. 14,19 14,19 / 0

Host kernel 14 14 / 0 14,19 14,19 / 0
Host ramdisk 14 14 / 0 14,19 14,19 / 0

Database 20 - / 20 20 - / 20
Guest kernel 21 - / 21 21 - / 21

Guest ramdisk - - / - - - / -
Guest kernel

module
21 - / 21 21 - / 21

LSM configuration 22 - / 22 22 - / 22

Table 6.1: Modification test results
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Figure 6.1: Generic TPM command

DOS emulation and so on. Since such information is located below the 1MB memory re-
gion, the STRICT_DEVMEM kernel option is used to restrict /dev/mem access to this
region. However, for the purpose of this test, the STRICT_DEVMEM option is disabled
to intentionally attack the Linux kernel.

This attack also raised an expected response in the integrity framework, changing the
integrity state and modifying PCR 21. This test demonstrates the ability of the integrity
framework to detect general forms of modification to code pages in the guest VM, in ways
that can be expected from a rootkit.

6.1.4 TPM device attack

Since hardware devices are the only interfaces between the guest VM and the hypervisor,
such interfaces can be exploited as in the case of attack vector V2. The TPM interface
will be evaluated here, as it is a new interface added to the set of emulated devices in
QEMU. A vulnerability in the interface can lead to a potential breach from the guest to the
host system. Fuzzing [49] is performed on the TPM interface to check for vulnerabilities.
Fuzzing is a penetration testing method, with which random data or random mutations of
data are used to discover software vulnerabilities. This can be applied to both commu-
nication protocols or file formats. Clear signs of vulnerability in the software can include
memory faults and program crashes. A first generic fuzzing attack sends a long random
byte stream to the TPM device from the guest. No peculiar behavior was discovered, as
most of the messages were rejected by the TPM emulator on the host, based on the invalid
header format.

A second attempt uses a more structured approach. By using the common format of
all TPM request commands, as shown in figure 6.1, a simple java-based fuzzer was im-
plemented. The fuzzer generates random commands using known tags and command
codes, while producing random data in the variable portion. A large stream of such ran-
dom commands was sent through the TPM stream, without signs of software vulnerability
in the virtual machine or TPM emulator. This shows that the parsing of TPM commands
is sufficiently robust, with respect to the simple fuzzing attack, and no vulnerability was
detected.

6.1.5 Evaluation of integrity measurement using Linux Security Modules

In addition to the runtime integrity framework, the Linux Security Modules (LSM) modified
to work with trusted computing was also tested. The digsig and AppArmor LSMs described
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in section 5.1 were verified. Both LSMs correctly extend to PCR 21 (see table 4.7.2) as
part of the trust chain. In the case of digsig, a hash of the signature verification public key
is extended into PCR 21. After that, execution of binaries which do not have an embedded
signature will fail. There are, however, exceptions such as scripts and bytecode files,
which cannot be verified, as they are not in the ELF format. Since digsig is restricted to
verification against a single key at a time, this restricts the signing authority to be a single
source. This places a restriction on large-scale deployment, since all binaries must be
signed by the same authority.

For the case of AppArmor, the hash of all loaded and unloaded profiles are extended into
PCR 21. They are extended in the order in which the profiles are loaded or unloaded. The
loading operation is differentiated from the unloading operation via an additional extend
operation with a known value. This has been verified in the working implementation. After
all the AppArmor profiles are loaded, processes matching profiles in enforcement mode,
are restricted only to resources defined in the profile. Since the AppArmor log is not
extended into the PCR, the PCR 21 value only effectively assures the enforcement of a
correct set of profiles.

The implemented measurement mechanism in both LSMs, only allows the configuration
of each of the LSM to be measured. The enforcement of the respective restrictions still
depends entirely on the correct operation of each LSM. This is especially true since logging
information is not extended into the PCR.

6.1.6 Integrity of PCR extensions

The trustworthiness of the entire integrity framework is only as good as the integrity of the
PCR measurement results. Thus, it is critical that the PCR measurement itself cannot be
covertly manipulated. The PCR measurements are affected by the extend and reset TPM
operations, which are controlled by the TPM filter discussed in section 4.6.2. The TPM
filter blocks all extend and reset operations to PCRs below 22 from the guest. With a small
kernel modification, PCR 22 is blocked from the user space, and is verified that only PCR
23 can be manipulated from within the guest OS userland. PCR 22 is accessible only from
within the guest kernel and is used by the kernel to report configuration of the LSM.

This restriction clearly defines the role of guest applications and the guest kernel to use
PCR 23 and 22, respectively, while all other PCRs are managed exclusively by the host.
Within the host, in addition to the boot time measurements, extending to the PCR is con-
trolled by the session manager, which isolates integrity measurements between concurrent
VMs.

6.2 Evaluation of integrated use cases

The sections 6.2.1 and 6.2.2 discuss the evaluation of the use cases presented earlier in
sections 5.2 and 5.3. These use cases showcase the overall end-to-end usefulness of the
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integrity measurement framework. The system is checked if it operates as expected, and
problems of the system are discussed.

6.2.1 Evaluation of trusted authentication and storage

The trusted authentication and storage use case demonstrate the use of integrity mea-
surement applied to an offline platform. By using the PAM framework, the authentication
mechanism and local storage encryption is protected via integrity measurement. As cov-
ered in section 5.2, the trusted authentication has two main modes of operation. The
first mode uses individual storage keys for each user to encrypt authentication hash. The
second mode uses a global storage key for encryption of all authentication hashes. In ad-
dition, an option is provided to use binding or sealing keys for both modes. All four mode
combinations were verified to work as expected.

The mode of using individual storage keys has the advantage of having no single key that
can become the single breaching point into the authentication scheme. However, under
the assumption that TPM keys are secure, neither mode has any cryptographic advantage
over the other. The use of binding keys instead of sealing keys ignores the PCR values
when using the key, thus does not making use of the integrity measurement framework at
all. The use of binding keys only hinders password attack on the authentication scheme
without taking integrity into consideration. The sealing keys are bound to the PCRs 0-
22, and thus depend on the integrity of the entire platform. Changes in the PCR values
will cause authentication to fail. In order to build a robust system, a fail-safe scheme of
reverting to the standard UNIX login is included to allow system administrators to repair
the system in case of an integrity failure. This can be achieved by creating a specially
privileged account based on UNIX login with a sufficiently strong password.

The storage encryption uses encfs which uses a user password to decrypt the user’s
encryption key. This is modified to combine the encrypted authentication hash with the user
password to decrypt the storage key. This modified scheme is thus dependent on both
a successful authentication and an integral platform. A changed integrity measurement
would cause the decryption of the authentication hash to fail, and consequently, the user’s
storage key cannot be extracted.

6.2.2 Evaluation of Intrusion Detection System

The Intrusion Detection System (IDS) discussed in section 5.3 is a host-based IDS built
on OpenVPN. OpenVPN uses TLS for building its encrypted channels, which use a stan-
dard TCP data stream. This has the advantage of being easier to route but also has the
inherent disadvantage of not hiding session information in the TCP layer, such as port and
sequence numbers. One disadvantage is that it allows traffic patterns of connected clients
to be easily observed by an eavesdropper.

The IDS implementation uses a modified OpenVPN which utilizes a TPM key for the
TLS handshake. The key used is a TPM signing key, which has a usage condition bound
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to PCRs 0-22. It has been verified that any change in the underlying integrity measurement
would prevent the key from being used. Under the server model, a virtual TPM is used to
enforce the key usage condition. The verification process has uncovered a bug in the TPM
emulator which has been fixed thereafter.

In order to maintain high freshness of integrity measurement, the server is configured
with a low re-negotiation timeout (defined using the reneg-sec parameter) and a low tran-
sition window (defined using the tran-window parameter). This would force the client to
perform a TLS re-negotiation at every reneg-sec second, where the re-negotiation must
complete within tran-window seconds. This has been verified to successfully re-check the
integrity measurement of the client at every reneg-sec second. A re-negotiation incurs ad-
ditional 23 kbytes of transmission overhead per re-negotiation. The system has fulfilled its
purpose of being able to constantly maintain the platform integrity of its connected clients,
effectively working as a network enforcement point of a host-based IDS.

6.3 Performance

6.3.1 Performance overhead

In addition to the measurement strength of the integrity measurement framework, its per-
formance is also evaluated. Both the binary translation and hardware virtualization imple-
mentation were tested. Table 6.3 summarizes the performance of both implementations,
as overhead over the same virtual machine without integrity measurement. Since most of
the verification is performed only during VM start-up, the boot-up time was measured and
additional CPU and memory benchmarking is taken during normal operation of the guest
VM.

The boot-up performance is calculated based on the average boot-up time from the start
of the VM to the first login prompt. CPU and disk operations within the VM are measured
using the sysbench [33] benchmarking software being executed within the VM. The table
shows a comparison of KVM and QEMU with and without integrity measurement.

Due to the difference in virtualization techniques, QEMU is generally slower than the
KVM implementation, except for memory transfer which has more initial overhead in KVM
due to the additional page faults when the memory is just initialized. The integrity mea-
surement of the guest kernel itself incurs very minimal overhead in both implementations.

Figure 6.3 compares the boot time for the KVM and QEMU VMs, when connected to a
virtual TPM (vTPM) and a hardware TPM (hwTPM). The results show a very slight delay
when communicating with a hardware TPM. This confirms the fact that the hardware TPM,
being connected on the slow LPC bus, is slower than an emulated TPM running on the
CPU. 88 TPM operations were carried out during the entire boot process, which gives an
average of 3ms difference between a single TPM operation in hardware and virtual TPM.
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Native(host) KVM(no IM) KVM (IM) QEMU(no IM) QEMU(IM)

Boot time - 8.80s 9.10s 59.22s 60.05s
CPU-intensive

benchmark
38.12s 38.51s 40.53s 56.72s 55.72s

Memory-intensive
benchmark

1.30s 8.79s 24.90s 3.03s 3.06s

IM = Integrity measurement

Table 6.2: Comparing performance overhead of virtualization and integrity measurement

KVM+vTPM KVM+hwTPM QEMU+vTPM QEMU+hwTPM

Boot time 8.28s 8.63s 59.21s 59.42s

Table 6.3: Comparing performance between virtual TPM and hardware TPM model

6.3.2 State optimization

As discussed in section 3.6.5, a set of modules is grouped into each integrity state and
this provides some performance benefits. Table 6.4 shows the performance of the integrity
measurement during the verification of modules in the guest OS, with and without integrity
state grouping. The first measured parameter is the number of comparisons performed
against the pattern database during the boot-up sequence, and it shows a slight reduc-
tion with state grouping. The second parameter measures the loading time required for
the kernel and all kernel modules, resulting in a slight reduction in the module loading
time as well. Due to the nature of the binary-translation type virtualization (QEMU), more
comparisons against the pattern database are needed.

Number of comparisons module loading time
QEMU KVM QEMU KVM

Without
grouping

51061 30522 63.91s 10.46s

With state
grouping

47683 (6.6%) 26351 (13.7%) 63.21s (1.10%) 9.69s (7.36%)

% reduction of comparison in brackets

Table 6.4: State grouping optimization results
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6.4 Known problems

6.4.1 Existing problems of Trusted Computing

This section discusses some known problems of trusted computing, which have been in-
vestigated to various degrees. Version 1.2 of the TPM and TSS specifications uses SHA-1
as the only hashing algorithm defined in the standard. This is seen as a restriction due
to the SHA-1 algorithm being deemed insecure in the long-term by some cryptographic
experts [41, 71].

In terms of remote attestation, there is a lack of a well implemented public infrastructure
to verify endorsement keys of a TPM, which is necessary to protect the privacy of users. To
date, no genuine platform certificates are issued by any platform manufacturers, and only
one TPM manufacturer actually creates signed endorsement certificates. To the best of
the author’s knowledge, only one experimental public privacy certification authority exists
to support a purely anonymous creation of AIK in the public domain. This greatly restricts
the practical application of attestation in the public domain. However, remote attestation
can still be used in the context within an organization, by generating AIK signed by the
organization. This loses the privacy benefit as the identity of the attester is usually known
to the organization during the signing process.

Implementation of the Trusted Software Stack (TSS) also faces a number of security
risks. The Linux TSS service uses standard TCP sockets to listen for incoming connections
on the local loopback interface. Thus, restricting access to the TSS service is possible only
by crafting well-defined firewall rules to prevent unauthorized access to the TSS service.
This is important to prevent unauthorized changes to the PCR values through the TSS
service, or unauthorized access to TPM keys by malicious software.

As mentioned in section 4.5.2, a trusted link between the hardware and virtual TPM
remains an open question in terms of using TPM in a virtualized environment. For the
single virtual machine case, this can be trivially resolved by using the actual hardware TPM
for the virtual machine, as demonstrated in the “client” TPM model (see section 4.6.1) used
in this dissertation.

6.4.2 Current limitations of integrity measurement

One major limitation of the integrity measurement framework is that only executable code
is measured and used as a basis for integrity. Interpreted code, such as bash scripts,
java and python programs, is not considered in the measurement process. Furthermore,
dynamic data in memory used in the kernel or user applications are also not measured.
All of these pose a significant threat, as the data or critical configuration information can
greatly influence the output of executables. Using a MAC policy enforcement provides a
solution to some of these potential problems.
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As discussed in chapter 1, the goal of this dissertation is to find a solution to efficiently
and effectively measure a monolithic kernel to generate a live integrity measurement that
detects changes in runtime. This integrity measurement has been integrated with Trusted
Computing techniques to generate a continuous chain-of-trust from the firmware to the
hypervisor and host, guest kernel and applications, such that the entire operating system
is verifiable in runtime. This goal has been met through the integrity framework which is
proposed, described and evaluated in the previous chapters.

The major novel contribution is a technique to measure and monitor runtime changes
of a Linux operating system kernel and determine if all executable code within the kernel
is consistent with the compiled binary reference of the same kernel. This technique is
integrated with the Trusted Platform Module (TPM), to form a complete verification chain
from firmware to applications. With this ’live’ integrity measurement that was not available
before, security sensitive applications are able to use this integrity measurement to protect
critical resources or attest itself to a 3rd party. The practical application of the measurement
framework is demonstrated through integration with existing security mechanisms in Linux,
and applied to two uses cases: trusted authentication and encryption, and trusted intruder
detection system.

The effectiveness of the measurement framework has been tested to detect both static
and dynamic modifications to the system. The performance overhead of applying integrity
measurement is low for both proposed virtualization techniques. Based on the evaluation
of the integrity measurement framework and the supporting mechanisms and tools, the
entire trust chain has met the initial goal of a complete solution to effectively measure a
complex monolithic operating system, using a modern Linux kernel as an example. The low
performance overhead shows that this can be carried efficiently using existing virtualization
technology for practical use.

7.1 Future work

The work pioneered in this dissertation is, however, far from completion. There is much
potential to extend the work in various areas. One major area which is not handled in
this dissertation is the management infrastructure that is necessary for the verification of
measurement values such as the Platform Configuration Registers (PCR) between remote
parties during an attestation. This problem is complicated by the fact that an organization
normally has a heterogeneous collection of systems, with different hardware, operating
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systems, applications and a variety of versions for each of these components. This would
imply that a proper versioning mechanism is necessary for the pattern database discussed
in this dissertation. Furthermore, cryptographic signing of the database and an appropri-
ate Public Key Infrastructure (PKI) may be needed to verify the integrity of the database
versions. In addition, the use of TPM counters may be needed to implement database re-
vocation and prevent roll-back attacks. Future work in this area will complement the work
in this dissertation, which focuses mainly on the core technique for integrity measurement
of the kernel.

In terms of extension to the integrity measurement framework, possible future work in-
volves applying the same technique to other operating systems such as Windows, BSD
and Mac OS X. The initial success has been achieved in the case of Windows, although
more in-depth work is necessary to adapt the technique to the special behavior of the
Windows kernel. The various flavors of the BSD operating system stand to benefit from
the integrity measurement framework, as they share the same ELF binary format used by
Linux.

The application of integrity measurement using newer processors which support nested
page tables can also be investigated. This new feature allows for even faster virtualization,
by performing virtualized memory management using hardware. Adapting the memory
management technique proposed in this dissertation to nested page tables will allow for
near native virtualization speed.

In order to produce more fine-grained measurement of an operating system, application-
specific modifications can be made to security sensitive software, so that they can make
use of the integrity measurement natively. This has advantages over generic approaches
like using Linux Security Modules (LSM), because the application can perform verification
of application-specific data. Such applications can also make use of the integrity measure-
ment directly for security-sensitive operations.

On the system level, the use of integrity measurement in forward-looking scenarios,
such as building a trusted data center, can be investigated. One proposal of a trusted
data center based on Trusted Virtual Domains (TVD) has been proposed in [26]. Such a
concept can be extended with runtime integrity measurement, by revising the framework
to maintain runtime integrity of the TVD as a whole.

7.1.1 Open source

In order to assist further development of the work discussed in this dissertation, the imple-
mentation of the integrity measurement framework and related tools for building the pattern
database is released on a public repository [60] under an open source license. This is done
in order to encourage future development, as well as adaptation of the framework to other
virtualization techniques and operating systems.
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