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Abstract

An increasing number of computer vision applications, including medical systems, are using range imaging

which require real-time and accurate 3D data acquisition. Time-of-Flight cameras allow us to acquire 3D data

in real-time and at high frame-rate, however, the provided depth accuracy is in order of centimeters.

This thesis describes a novel method for acquiring depth images using multi-view Time of Flight (ToF)

cameras, which uses a constructive interference between the emitted signals to enhance the depth accuracy.

This work proposes to combine the measurements of the multi-view cameras at the acquisition level, in op-

posite to approaches that filter, calibrate or do 3D reconstructions posterior to the image acquisition. This

thesis presents an example using a pair of ToF cameras in stereo-set-up defining a three-stages procedure, in

which the infrared lighting of the scene is actively modified: first, the two cameras emit an infrared signal one

after the other (stages 1 and 2), and then, simultaneously (stage 3). The third stage is where the constructive

interference between the two cameras is produced. These redundant measurements are optimized to obtain

the enhanced depth information. Based on a simulation of the ToF cameras, a quantitative evaluation of the

proposed method is provided. The performance of this novel 3D acquisition method is evaluated for different

objects and configurations. Results on real images using different optimization framework are also presented.

The acquisition is optimized first for each camera and then within the complete 3D reconstruction process.

Both simulation and real images prove that the proposed Stereo ToF camera acquisition produces more accu-

rate depth measurements. We then extend this concept and formulation from two ToF cameras to a multi-view

ToF cameras set up.

This thesis also presents two applications of Monocular Simultaneous Localization and Mapping (MonoSLAM).

The first application is using MonoSLAM in endoscopic images obtaining a rough idea of the 3D scene ob-

served by the endoscope. The proposed method applies a pre-processing step in order to enhance the texture

information in the endoscopic images which normally have poor texture. The second application involves a

RGB-D sensor as ToF cameras combined with a High-resolution cameras or Kinect. An extension of the tra-

ditional Monocular Simultaneous Localization and Mapping (MonoSLAM) for 3D reconstruction of the scene

is also presented. The traditional Monocular SLAM (MonoSLAM) is extended in order to take advantage of

the new depth data provided by the RGB-D sensors. The algorithm produces a sparse-map. The quantitative

analysis shows that our proposed method improves the recovered trajectory of the camera in comparison to

using only the traditional MonoSLAM (RGB). To simulate the RGB-D sensor, we use a ToF camera and an

RGB camera in stereo set-up; and to define the ground-truth, a commercial optic tracking system is used.

Note that this proposed method would function with any high-frame rate 3D acquisition modality including

the Multi-view ToF system introduced in this thesis.

Finally, a discussion about the feasibility of each proposed method and how they can be used in real-world

applications is provided. Details of the implementation and results of the multi-view ToF acquisition process

are then presented, demonstrating that acquisition and processing of the proposed constructive interferences

result in considerable improvement of 3D acquisition and reconstruction accuracy.

Keywords: 3D-Reconstruction, ToF Camera, Stereo-ToF, Multi-View ToF-Camera, SLAM, Endoscopic im-

ages
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Zusammenfassung

Die Zahl an Computer-Vision-Anwendungen, die sowohl in der Medizin als auch in anderen Gebieten eine

genaue 3D-Datengewinnung in Echtzeit benötigen, nimmt stetig zu. Time-of-Flight (ToF) Kameras ermöglichen

eine solche 3D-Datengewinnung in Echtzeit und mit hohen Bildraten, aber die Messungsgenauigkeit in der

Tiefe liegt nur in der Größenordnung von Zentimetern.

Diese Arbeit behandelt eine neuartige Methode zur Erfassung von Tiefenbildern mittels Multi-View ToF-

Kameras, die auf konstruktiver Interferenz zwischen den ausgesendeten Signalen zur Verbesserung der Tiefen-

genauigkeit beruht. Es wird ein Verfahren vorgeschlagen, bei dem die Messungen der Multi-View-Kameras

bereits bei der Aufnahme zusammengeführt werden, im Gegensatz zu anderen Ansätzen, bei denen erst nach

der Aufnahme der Tiefendaten gefiltert, kalibriert oder in 3D rekonstruiert wird. Beispielhaft wird in dieser

Arbeit eine Stereo-Anordnung von zwei ToF-Kameras vorgestellt mit einer drei-stufigen Prozedur zur aktiven

Änderung der Infrarotausleuchtung der Szene: Zuerst senden beide Kameras nacheinander ein Infrarotsignal

aus (Stufen 1 und 2) und dann zeitgleich (Stufe 3). In der dritten Stufe wird die konstruktive Interferenz zwis-

chen den beiden Kameras erzeugt. Die redundante Information wird optimiert, um korrigierte Tiefendaten zu

erhalten. Die Qualität der vorgestellten neuartigen 3D-Messmethode wird in einer quantitativen Analyse auf

Basis einer ToF-Kamera-Simulation evaluiert. Beim Test werden verschiedene Objekte und Konfigurationen

zugrunde gelegt. Ergebnisse, die auf realen Aufnahmen beruhen und verschiedenartige Optimierungsver-

fahren verwenden, werden ebenfalls besprochen. Die Optimierung erfolgt zunächst getrennt für jede Kamera

und dann integriert im gesamten 3D-Rekonstruktionsprozess. Sowohl die Simulation als auch die realen

Aufnahmen belegen, dass das vorgeschlagene Stereo-ToF-Aufnahmeverfahren eine höhere Tiefengenauigkeit

bietet. Schließlich wird in dieser Arbeit der Ansatz und dessen Formulierung von zwei ToF-Kameras auf eine

Multi-View-Anordnung erweitert. In dieser Doktorarbeit werden weiterhin zwei Anwendungen von Monoc-

ular Simultaneous Localization and Mapping (monoSLAM, deutsch: simultane Lokalisierung und Kartener-

stellung mit einer Kamera) vorgestellt. Die erste Anwendung benutzt monoSLAM in endoskopischen Bild-

daten, um eine grobe Vorstellung von der dreidimensionalen Szene zu erhalten, die vom Endoskop gesehen

wird. Die Methode wendet einen Vorberechnungsschritt auf die Endoskopiebilder an, um die typischerweise

schwache Texturinformation zu verstärken. Die zweite vorgestellte Anwendung benutzt einen RGB-D-Sensor,

der aus einer ToF-Kamera kombiniert mit einer hochauflösenden RGB-Kamera besteht, oder aus einer Kinect.

Es wird auch eine Erweiterung des traditionellen monoSLAM-Ansatzes zur 3D-Rekonstruktion der Szene

vorgestellt. Hierbei wird die durch den RGB-D-Sensor neu hinzugekommene 3D-Information gewinnbrin-

gend genutzt. Ausgabe des Algorithmus ist eine Sparse-Map. Eine quantitative Analyse zeigt, dass die

vorgestellte Methode die berechnete Trajektorie der Kamera im Vergleich zum traditionellen monoSLAM auf

RGB-Daten verbessert. Zur Simulation der RGB-D-Daten kommt eine ToF-Kamera in Stereo-Anordnung mit

einer RGB-Kamera zum Einsatz. Die Grundwahrheit wird mittels eines kommerziellen optischen Tracking-

Systems erzeugt. Der Ansatz funktioniert mit jeder Art von schneller 3D-Bildmodalität, einschließlich dem

zuvor in dieser Arbeit beschriebenen Multi-View-ToF-System.

Die Arbeit wird mit einer Diskussion der Eignung jeder der vorgestellten Methoden abgerundet, wobei da-

rauf eingegangen wird, wie die Methoden in realen Anwendungen zum Einsatz kommen können. Es werden

Implementierungsdetails vorgestellt und Ergebnisse der Aufnahmen mit dem Multi-View-ToF-System, die

belegen, dass die Verarbeitung der konstruktiven Interferenz zu einer deutlichen Verbesserung der Genauigkeit

bei der 3D-Datenerfassung und Rekonstruktion beiträgt.

Stichworte: 3D-Rekonstruktion, ToF Kamera, Stereo-ToF, Multi-View ToF-Kameras, SLAM, Endoskopiebilder
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1. Introduction

NOwadays, the technology of three-dimensional (3D) sensing is present in different areas of

our life. It can be found in the cinema, video gaming and technological applications, i.e.,

robots and industrial machines. Nevertheless, this technology is still in a developing state and it

is necessary to continue working in this direction, because it can be of great help to medical treat-

ments, improvement of productive process and other diverse applications. At the beginning, the

researchers tried to obtain the 3D scene from a monocular camera or a stereo camera (pair of cam-

eras). Both provide plane images without the 3D information of the scene. They normally use

motion of the camera and matching between points in the images, to estimate the 3D information.

For this reason, at the beginning, this work was focused to obtain a 3D reconstruction from two-

dimensional endoscopic images. This challenge involves the matching of image points while the

endoscope is moving. The matching task in endoscopic images is more difficult compared to a

normal scene (e.g.office, room), due to the reduced texture observed in the endoscopic sequence.

Normally, the stomach and esophagus tissues have a pseudo-continuous color with some vessels

producing texture. To make a 3D reconstruction from a monocular camera, usually is employed

an algorithm named Monocular Simultaneous Localization and Mapping (MonoSLAM). This al-

gorithm makes a scene reconstruction from a moving camera and a localization of the camera in

this reconstructed scene, simultaneously. This thesis applied Monocular Simultaneous Localization

and Mapping (MonoSLAM) to endoscopic sequence and shows a rough three-dimensional (3D) re-

construction of stomach and esophagus from a two-dimensional (2D) endoscopic sequence, which

is explained in Chapter 4.

But now, the availability of a real-time 3D sensor, i.e., a sensor which can provide the 3D in-

formation directly at a fast frame-rate, was of a great impact in the computer vision and robotics

community. Actually, real-time 3D imaging has been included in several applications, allowing an

observation of the 3D shape, of objects and scenes. This 3D information has helped to solve many

computer vision problems simpler than using only a color image. A 3D sensor at a fast frame-rate

helps the incorporation of the depth information in a lot of real-time applications. Specifically, the

integration of real-time 3D data helps us, not only to create a 3D reconstruction of the scene in

real-time, but also to recognize objects from their shape at fast frame-rate. With the availability

of a fast-frame 3D sensor, we realize that instead of trying to obtain 3D information from a 2-D

sensor, we can use a 3-D sensor, directly in the endoscope. Subsequently, we reviewed literature

and we found a group, who were developing a 3-D endoscope using Time-of-Flight camera [92].

Then, the focus of the thesis changed to the creation of an algorithm to make a 3D reconstruction

from a Time-of-Flight camera joint with a high-resolution camera (simulation of Time-of-Flight en-

doscope). For that, it was necessary to study the state of the art of the Time-of-Flight camera, in

order to learn its working principles and its applications in computer graphics. This state of the

art is presented in Chapter 3. Afterwards, an extension of the traditional MonoSLAM to be used
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1. Introduction

with the new generation of RGB-D (Color 2D image plus depth) sensor (i.e., ToF endoscope), was

developed. The SLAM using RGB-D sensor was made in general and has many applications in

robotics and computer vision. Furthermore, this work gives a 3D reconstruction of the observed

scene and the camera trajectory. The extension of MonoSLAM including its results are explained

in detail in Chapter 5.

However, the 3D information quality of real-time devices are worse than the non-real-time scan-

ners (e.g., laser scanner), i.e., the depth accuracy is lower compared to the precision of a laser scan-

ner. This quality is important, because it reduces the use of the sensor in some applications, which

requires a high precision. After using the ToF cameras and knowing its working principles, a very

low depth accuracy was observed, and for endoscopy, is desired a high depth accuracy. Then,

the focus of the thesis changed to improve this depth accuracy of the ToF 3D sensor. Therefore, a

novel acquisition process for a Multi-view Time-of-Flight (multi-ToF) system was developed. This

proposed method defines a stage-process to capture redundant depth measurements, which are

optimized allowing an improvement of the depth accuracy. Depending on the number of cam-

eras used in the Multi-view system, it defines the necessary number of stages. An example of two

ToF cameras (Stereo-ToF) in stereo set-up has been utilized to prove the feasibility of the proposed

method. Three stages are defined, where the illumination unit is manipulated in order to produce

a constructive interference between the ToF cameras and finally, to improve the accuracy of each

camera depth measurement. This interference is achieved using the same modulation frequency in

all the ToF cameras. The explanation of the proposed method, results and limitations are shown in

Chapter 6.

But before going into details of the methods developed throughout this thesis, we will first focus

on a motivational introduction, contributions and theory introduction. Following, in section 1.1

and 1.2 are shown the motivation and the contributions of this thesis respectively. An introduc-

tion to basic optics, an introduction to multi-view geometry and an introduction to 3D imaging

technologies are shown in section 2.1, 2.2 and 2.3 of Chapter 2.

1.1. Motivation

Range imaging has been used for a long time in robotics, computer vision and industrial applica-

tion; specially the well-known laser scanner, due to its accurate 3D data. Laser scanner generates a

3D surface with a very high depth accuracy, however, this device is slow and could not be included

in some applications, which requires a real-time 3D acquisition. Nowadays, real-time range imag-

ing has been developed and included in many computer vision and robotic applications, due to

its depth information available in a fast frame-rate. This acquisition speed allows its incorporation

into some applications, for example, in real-time 3D reconstructions, simultaneous localization and

mapping, dynamic scene analysis, touch-free interfaces, gaming control, 3D modeling, etc.

Besides, the computer vision community has reported an improvement of robustness and accu-

racy in complex tasks, thanks to the available depth data. For example, using only 2D-color images,

the segmentation task is hard and it needs a very costly computation. Instead the foreground can be

simply recognized from the background using depth data, due to the fact that objects are normally

in front of the background. Another example is the tracking of objects. Normally, tracking where

only is used color images, it will depend on the texture of the object, instead, the depth informa-
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tion allows the tracking of the non-textured objects using its object shape. Sadly, using only depth

information, it is impossible to recognize two objects with a similar shape but different texture.

Therefore, if the color image and depth image are combined, it is possible to track using, not only

the color texture, but also the shape of the object. This combination helps to obtain better results

in more complex scenes. Moreover, gesture recognition and touch-free interfaces can be attempted

using depth data, helping to easily observe and recognize the motion of the hands, arms, face and

whole/part of the body. Again, if the color and depth data are mixed, a more robust and accurate

gesture recognition can be achieved. Additionally, Simultaneous Localization and Mapping has

been applied to 3D data from laser scanner. Normally, this laser scanner is used to capture the 3D

data of big scenes, e.g.tunnels, mines, buildings, etc. This scanning has to be made with a slow

motion even sometimes static, to reduce the motion artifacts due to its slow scanning. The use of

real-time range imaging allows a fast scanning in mobile vehicles (i.e.robots), without motion arti-

facts and can be used joint with real-time 3D reconstruction algorithms to achieve 3D modeling of

the observed scene.

Nevertheless, the real-time 3D sensing devices are less accurate comparing to laser scanners.

Time-of-Flight cameras provide the observed surfaces in a high frame-rate and has been used in

different applications. Unfortunately, the ToF camera has a poor depth accuracy and sometimes

cannot be used in some applications. For this reason, a precise real-time range imaging device is

very interesting for the computer vision and robotic community.

1.2. Contributions

In the course of this thesis, several contributions have been made to the computer vision commu-

nity.

• Time-of-Flight camera Theory. A new point of view for the explanation of the ToF camera

working principles is shown, including a mathematical formulation and its solution. The

formulation is presented from a new perspective, obtaining a more general and a better un-

derstanding of the working principles equations. This explanation is based on Lange’s PhD

thesis [64]. This work is shown in Chapter 3 including a summary of ToF applications in

computer vision which is an updated state-of-the-art based on the article of Kolb et al. [62].

• Monocular Simultaneous Localization and Mapping (MonoSLAM) in endoscopic images.

The MonoSLAM algorithm aims to reconstruct the 3D scene observed by a monocular cam-

era, while this camera is localized in the reconstructed scene simultaneously. This algo-

rithm has been applied to endoscopic sequences, to reconstruct part of the patient stomach

and esophagus. However, for the reconstruction of the esophagus surface from endoscopic

videos, several challenges need to be addressed such as less-textured images. The proposed

algorithm, pre-process the endoscopic images in order to enhance its texture, de-interlacing

the images and highlighting the edges in the images. Chapter 4 presents the proposed algo-

rithm and the addressed challenges in endoscopic video.

• Simultaneous Localization and Mapping (SLAM) using RGB-D sensor. This work de-

scribes an extension for the Monocular Simultaneous Localization and Mapping (MonoSLAM)
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[20] method. This extension relies on the images provided by RGB-D sensor as a combination

of a high resolution and a Time of Flight (HR-ToF) sensor or Kinect. The proposed method

incorporates the depth data into the MonoSLAM modeling, showing an improvement in the

accuracy of the recovered camera trajectory and a reduced map of uncertainty. Chapter 5

introduces the developed extension of the traditional MonoSLAM. It is also proposed and

discussed the possible solutions to improve the robustness of the presented method.

• Multi-view Time-of-Flight acquisition. This research proposes a novel acquisition process

for Multi-view ToF camera system, which makes redundant measurements and uses a con-

structive interference in order to, not only reduce the noise in the ToF camera depth map, but

also to enhance the surface details. Chapter 6 presents a detailed explanation of this acqui-

sition process using as an example, a pair of ToF cameras, and its extension to a multi-view

ToF. Furthermore, this chapter presents a quantitative evaluation of the results based on a ToF

camera simulation. Besides, this Chapter includes the limitations and the theoretical proof of

the proposed method. Additionally, it is included the hardware modification necessary to

make the cameras to work together; and the electronic circuit which was built, to make the

real experiments.

• Measurement of attenuation in the ToF camera. Additionally, this work has experimentally

measured the infrared light attenuation in a ToF camera in order to prove the existing models

of attenuation which are exhibited in Chapter C). This attenuation has been used in the ToF

simulator utilized to quantify the improvement of the proposed Multi-view ToF acquisition

process.
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THis chapter introduces basic ideas of optic physics, multi-view geometry and 3D imaging tech-

nologies. This theory introduction is used in the explanation of the algorithms and methods

presented in this thesis. This explanation is an important introduction to a better understanding of

these proposed ideas.

2.1. Basic Optics

The behavior and properties of light can only be explained using the wave-particle duality theory

of contemporary physics, which says that light behaves as a particle and a wave at the same time.

Light has wave-like properties such as diffraction and interference; besides, it has particle-like

properties as reflection and refraction. Light is an electromagnetic radiation that can be visible or

invisible to the human eye, and it is responsible for the sense of sight. Light is composed of the

elementary particle named photon. Primary properties of light are intensity, propagation direction,

frequency or wavelength spectrum, and polarization [29]. While its speed is constant in a material,

for example, in vacuum is 3 · 108 meters per second which is similar to air speed of light. These

concepts and properties are used in the explanation of the ToF camera theory, due to the use of

infrared light.

2.1.1. Reflection

Reflection explains the effect of light when it touches a surface of an object or scene, and it can be

divided into two types: specular reflection and diffuse reflection. Specular reflection describes a

group of surfaces which reflects light in a simple direction (for example a mirror); and it follows

the Fresnel equations [29]. The diffuse reflection describes a group of surfaces which are opaque

and non-limpid materials such as a rock; and it can be modeled in different mathematical formu-

las; nevertheless, this thesis is focused in the Lambertian model. Most of the materials exhibit a

combination of specular and diffuse reflection. Furthermore, not all light is necessarily reflected,

some of the light can be absorbed by the material or propagated through the material or surface.

The relation between the incident power and reflected power is named reflectivity which depends

on the material characteristics. That means, reflective and refractive index of the material respect

to the light wavelength.

Specular Reflection

Specular reflection describes the reflection on flat and continuous surfaces, e.g.a mirror. This re-

flection follows the law of reflection which says that the reflected ray is determined by the angle
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Figure 2.1.: Specular reflection example. An incident light ray with angle θi and direction d̂i is

reflected with a reflection angle θr and direction d̂r in a surface with a normal direction

d̂n.

between the incident ray and the surface normal at the incident point. The surface normal is a

perpendicular vector to the tangent plane to the surface. In the Figure 2.1 can be observed, that

the reflected light has the same angle and in the same plane as the incident ray with respect to

the surface normal θ. In vectorial formulas we have that the direction of the reflected ray can be

calculated as:

d̂r = 2
Ä

d̂n · d̂i
ä

d̂n − d̂i (2.1)

where d̂r is a unit vector of the reflected ray, d̂i is a unit vector of the incident ray, d̂n is a unit

vector of the surface normal and d̂n · d̂i is the dot product between incident ray and surface nor-

mal. The quantity of reflected light compared to incident light depends on the material reflectivity

and, in some cases, also relies upon the angle of incidence, hinging on the refraction index of the

propagation medium and material.

Diffuse Reflection

Figure 2.2.: Lambertian diffuse reflection. The incident light suffer scattering in the different molec-

ular layers, producing reflection in any directions.

Diffuse reflection describes the effect of one incident ray, which strikes on a material and it is

reflected in several angles; and not only in one direction, as the case of specular reflection. All these

reflection angles generate a feeling of opaque material. The ideal diffuse reflection, reflects the

same quantity of light in all directions in the same hemisphere of the reflecting surface. This model
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is named Lambertian reflectance. This diffuse effect is produced by the irregularity of the reflecting

surface and scattering of light which passes through the first and second molecular layers, being

reflected again and over again; producing a reflection in random directions; and therefore a diffuse

reflection. Figure 2.2 shows an example of diffuse reflection. One of the most used model for

diffuse reflection is the Lambertian model, due to its simplicity and follows the equation 2.2.

Ir =
Ä

d̂n · d̂i
ä

Ii (2.2)

where Ir is the reflected intensity, Ii is the incident intensity, dn is the direction of the normal and

di is the incident direction of incident light.

2.1.2. Refraction

Figure 2.3.: Refraction of light between two mediums (1 and 2) with velocities v1 and v2 and refrac-

tive indexes n1 and n2, respectively.

The change of light direction due to a switch of its speed, is named refraction, and normally is

produced by a variation of medium, while the wave is traveling. For example, when the light goes

through a window, it is refracted when it interchanges from air to window, because of its different

speeds. It also happens when the light moves from air to water. The refraction is described by

Snell’s law, which says that, if light changes from medium 1 to medium 2, the incident angle θ1 is

related to refraction angle θ2 as follows:

sin θ1
sin θ2

=
v1
v2

=
n1

n2
(2.3)

where v1 and v2 are speeds of light in medium 1 and 2 respectively, and n1 and n2 are refractive

indexes. In the case of light, normally in a camera, the refraction does not play an important role.

However, if we want to use a camera under water, then the refraction will influence a lot in the

acquired images. An example of the refraction effect in a wave that change from medium 1 to 2 is

shown in Figure 2.3.

2.1.3. Scattering

Inter-reflection between molecules and irregular surfaces is named scattering and it is one of the

causes of diffuse reflection (Figure 2.4 as example). Scattering is produced when the light goes into

9



2. Theory

Figure 2.4.: General scattering of light in an opaque surface.

an object, and relying on the spaces between the molecules, the light is inter-reflected. A part of

the light can be reflected and the other part can cross through the object. A typical example of

scattering is when we illuminate a finger, very near to the light source, where we can observe that

the emitted light can cross to the other side of the finger producing the effect of illumination of

all the finger and not only as a point of light. This effect is produced only in objects where light

can cross and cannot be completely absorbed. For example, if a foot is illuminated, the scattered

light cannot cross due to big wide of the foot. Another example of scattering is when the light is

crossing smoke, we can see that in the other side, the light is observed in the smoke in a bigger area

compared to the source light point.

2.1.4. Absorption

Part of the light which hits an object is absorbed by the surface. The absorbed flux of light is

normally transformed to other form of energy, such as heat. Normally, the absorption of light

when is traveling on the air is known as light attenuation. The absorption coefficient on the object

is also known as reflectivity, which tell us how much of the incident light is absorbed by the object

and how much it is reflected. Besides, the absorption is partially due to the scattering in the object,

“losing” part of the incident light.

2.1.5. Polarization

Polarization is a property of certain waves, e.g.light, which describes the orientation of the wave

oscillation. By convention, the polarization of light is defined by the orientation of electric field

of the electromagnetic wave in the space in one oscillation period. The light polarization in free-

space is usually perpendicular to the direction of motion, which is also named linear polarization.

It is possible to generate light with circular or elliptical polarization, which means a rotation of the

electric field when it is generated. Besides, the change of amplitude in each electrical and magnetic

field independently creates a circle or ellipse, producing the circular or elliptical polarization.

2.1.6. Diffraction

Diffraction of light corresponds to the apparent curving of light around small obstacles and the

dispersion of light, which passes through small openings. This effect produces that light invades

the dark portion of the matter when crosses small holes, and that light propagation blends when

travel near to small obstacles. The diffraction can be observed when we make a photograph directly
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Figure 2.5.: Diffraction produced by sunlight passing through the diaphragm of the camera

Figure 2.6.: Possible interferences in general waves. Left: Constructive interference (0◦ phase-shift).

Middle: Out of phase, it can occur additive interference or the signal can be par-

tially destructed. Right: Destructive interference, 180◦ phase-shift, signal completely

destructed.

to a light source as the sun or a laser pointer. The Figure 2.5 shows an example of a sun picture

produced by the diffraction of the sunlight passing through the camera diaphragm.

2.1.7. Interference

Interference is the effect of waves superposing in the same space. In the case of light, the super-

posing occurs in absence of non-linear effects. Interference can be explained with the superposing

of waves with different frequencies and/or phases. As example, Figure 2.6 shows the effect of two

sinusoidal waves with the same frequency, but with a different phase-shift. The case of a phase-

shift of 0◦ degrees, the crests of the original waves are aligned, then the outcome sinusoidal is the

sum of the original signals, raising the amplitude. This can also happen with two signals with

small phase-shift. This case is named constructive interference. On the other hand, if the waves are

out-of-phase and a crest of an original wave and a dip of the other original wave are aligned, then

the outcome sinusoidal wave has an attenuated amplitude. The case of 180◦ degrees produces a

total destruction of the original waves. This case is named destructive interference. The construc-

tive interference is the basis of the proposed method “Multi-view ToF acquisition”, although this

interference is produced in the modulated wave and not in the light wave itself.
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2. Theory

2.2. Multi-view Geometry

In this section a basic multi-view geometry introduction, utilized in this thesis, is exhibited. The

multi-view geometry is a known field by the computer vision community and it gives us tools for

manipulation and modeling of multi-view systems, such as camera calibration and 3D transforma-

tions. This section is focused in the understanding of camera calibration, 3D transformations and

triangulation which were used in the developing of this doctoral work.

2.2.1. Camera Calibration

A camera is normally modeled as a pin-hole camera joint to a distortion model for the lens. This

pin-hole camera model assumes that the camera is a simple camera, without lens and with a single

small aperture. The camera model has its own coordinate system in its center point. The camera

can be described using the intrinsic parameters, which defines two focal lengths and a principal

point. Where Focal length describes how strongly the light converges (focuses) to the sensor and

its defined for each image coordinate, i.e., X and Y . The principal point represents the alignment

of the sensor center and the camera model. These parameters define a transformation from the

image plane coordinate system (U ,V ) to camera coordinate system (X ,Y ,Z). An image position

(u,v) can define a ray which crosses the image position (u,v) to the infinity. This ray represents the

captured light by the sensor pixel, thus the 3D point lies in this ray. The variable related to the axis

Z is defined by the depth of the object captured in the image. Therefore, in a normal camera, it is

not possible to determine the depth of the object, unless we use a multi-view system to intersect

the observed object on different views and in order to estimate the depth via triangulation. This

camera model is illustrated in Figure 2.7, showing the focal length, the principal point and a ray of

an image point (u,v). The intrinsic parameters are mathematically represented as follows:







u

v

1






= K







x

y

z






(2.4)

where K =







fx 0 cx

0 fy cy

0 0 1






is the matrix of intrinsic parameters, with fx the focal length in the axis

X , fy in the axis Y , (cx,cy) is the principal point in the image plane (intersection between the axis Z

and the image plane). These intrinsic parameters represent the mathematical model of the camera.

These parameters depend on the sensor size, and distance between lens and sensor (named focus).

The lens distortion is produced by the deviation of light, from a rectilinear trajectory due to the

curvature of the lens glass. In this thesis, the lens distortion is modeled as a radial and tangential

distortion. Such model says that the image is deformed depending on the distance from the center

of the image, which is typically the behavior in photographic lenses. This distortion is mathemat-

ically modeled as shown in equations 2.5 and 2.6. Figure 2.8 shows graphically an example of a

radial and tangential distortion used in computer vision.
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2.2. Multi-view Geometry

Figure 2.7.: The common camera model. Camera coordinate system (X ,Y ,Z) defined by the focal

length fx in the axis X , fy in the axis Y and the principal point (cx,cy) in the image

plane.

x′′ = x′ · (1 + k1r
2 + k2r

4) + 2p1x
′y′ + p2(r

2 + 2x′2) (2.5)

y′′ = y′ · (1 + k1r
2 + k2r

4) + p1(r
2 + 2y′

2
) + 2p2x

′y′ (2.6)

where x′ = x
z

, y′ = y
z

, r =
√

x′2 + y′2, k1, k2 are radial distortion coefficients, and p1, p2 are tangen-

tial distortion coefficients.

Figure 2.8.: Radial distortion example. The lines are originally straight and after the distortion, the

lines are bent.

These parameters are estimated through standard camera calibration, known by the computer

vision community. For further details about camera model, please read the book of Multi-view

Geometry [5].

2.2.2. 3D Transformation

In this subsection, a typical euclidean 3D transformation is reviewed. A transformation describes

how to move the representation of a 3D point from a coordinate system to another. For that, the 3D

transformation is separated in two complementary transformations: translation and rotation; which

together can move any 3D point described by a coordinate system to another. A three-dimensional

coordinate system has six degrees of freedom (6 DOF), in other words, any coordinate system in

the 3D space can be represented by a translation (3 DOF) and a rotation (3 DOF) of an original fixed

coordinate system. In this thesis, such transformation is used to modify a 3D point representation

from a camera coordinate system to another camera.
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Figure 2.9.: Translation from A to B and rotation in 3 degree of freedom of a coordinate system

Figure 2.10.: Transformation of point P from coordinate system 1 to coordinate system 2.

• Translation: It describes the fact of moving a coordinate system from a point A to a point B

in a 3D space. It is represented by three values in a vector t = (x, y, z)⊺. See the graphical

representation in Figure 2.9.

• Rotation: It describes the rotation of the axis in the three possible directions. The graphical

representation can be observed in Figure 2.9. This rotation can be described by the Euler

angles (α, β, γ) or other representations, e.g.quaternions (used in Simultaneous Localization

and Mapping - Chapters 4 and 5). This rotation can be mathematically represented by a

matrix as shown in Equation 2.7.

R =







r11 r12 r13

r21 r22 r23

r31 r32 r33






(2.7)

where the matrix values rii, i ∈ 1, · · · , 3 depends on the rotation angles (i.e.Euler angles). The rota-

tion matrices are orthogonal matrices with derminant 1 (R⊺R = I and det(R) = 1). In general, the

euclidean transformation of a 3D point P1 = [x1, y1, z1]
⊺ from a coordinate system 1 to a coordinate

system 2 can be expressed in a matrix representation as follows (Equation 2.8):

14



2.2. Multi-view Geometry
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(2.8)

where P2 = [x2, y2, z2]
⊺ is the 3D point P described by the coordinate system 2, T transforma-

tion matrix, R rotation matrix and t translation vector. The last equation was formulated using

homogeneus coordinates. The transformation produced by equation 2.8 can be observed in the

Figure 2.10.

Transformations are used in this thesis in order to change the representation of the 3D point

from one camera coordinate system to another camera. For further details, please read the book of

Multi-view Geometry [5].

2.2.3. Triangulation

Triangulation is a technique which calculates the depth of an object observed from images of two

cameras with a known transformation between them. In other words, the cameras have a distance

between them which allows us to estimate the depth thanks to the observed displacement of the ob-

ject in the images. Practically, this displacement is estimated throughout the matching of the same

object points in the two image planes, and the distance between the cameras is calculated using the

transformation between camera coordinate systems. The matrix F is named Fundamental matrix,

which relates corresponding points in stereo images. Let a 3D point P which has its correspondent

projected image points p and p′ in two images and satisfy p′Fp = 0, where F is the fundamental

matrix between cameras. This constraint tells that the two rays are coplanar and therefore they will

intersect in one 3D point P . This procedure is named triangulation and is illustrated in Figure 2.11.

Figure 2.11.: Triangulation principle. The transformation R,t is known. The point P is observed

by two cameras and they are projected to the image planes in p and p′ image position

respectively.

In order to estimate the distance between the object and cameras, we have to find the 3D point P
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2. Theory

that satisfies next Equation:

p̂ = P1P̂ p̂′ = P2P̂ (2.9)

where P1 and P2 are projection matrices of camera 1 and 2, composed of its intrinsic parameters and

transformation between cameras. We can estimate the value of P through the optimized 3D point

P̂ and the optimized image points p̂ and p̂′, where p and p′ cannot be coplanar, but it is assumed

that they have to intersect in a single point (the same 3D point projected to the image planes).

In this case p̂ and p̂′ have to be similar to measurements p and p′. Minimizing these constrained

equations, the value of the 3D point P can be estimated, and therefore the distance from the 3D

point to cameras.

For further details on triangulation, please read the book of Multi-view Geometry [5].

2.3. 3D Imaging

Three-dimensional imaging represents a group of devices which can generate 3D information from

the observed scene. Until now, there are different types of 3D imaging, including stereo vision,

shape-from-shading, shape-from-focus, algorithms based on sillhouttes, photometric stereoptics,

laser scanner, Time-of-Flight camera, structured light camera and others. This thesis is focused in

four types of 3D imaging: laser scanner, stereo vision, Time-of-Flight camera and structured light

camera (i.e.Kinect). 3D scanning can be active or passive depending on the necessity of its light

emission. Active sensors use the help of the active light emission to measure depth distances. On

the other hand, passive sensors only use normal light of the observed scene to estimate depth data.

In general, there are two methods to measure the depth between a sensor and a scene. These

methods can be used with different technologies, i.e., laser, ultrasound. The methods are shown

and detailed in the following paragraphs:

• Time-of-Flight: The first method is an active sensing which measures the Time-of-Flight taken

by an emitted signal to travel from the sensor to the scene and return. It is possible to use

different wavelengths of light, such as, visible light, ultra-violet, infra-red, etc, or different

type of wave, i.e.ultrasound. Furthermore, this method can be used for a single point or a

matrix of point (1-D or 2-D). Then, the distance between the object and the sensor is related

to the measured time and medium speed (air, water, etc.).

• Triangulation: Given two sensors or two emitters with a known distance (baseline) between

them, it is possible to calculate the depth using triangulation. This means that the rays of the

same sampled point in the two sensors or emitted signals intersects in one single point. The

known 3D transformation between the sensors and the correspondences among the images

are used to determine the depth via triangulation. These devices can be active or passive.

In general, Time-of-Flight scanners are noisier than triangulation scanners due to the electronic

difficulty to measure very low times, as the case of Time-of-Flight scanner which has to measure

time in order of nano-seconds. Therefore, the accuracy in triangulation systems is better than time-

of-flight systems. On the other hand, triangulation systems need to calculate the triangulation in

every point and it depends on the texture or pattern projected. This triangulation requires a com-

plicated calculation for every point, making a slower system compared to Time-of-Flight systems.
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2.3. 3D Imaging

Furthermore, triangulation systems have limited range of work which depends on the visibility

and quality of the matching, necessary for the triangulation.

In the following subsections, an overview of different 3D imaging technologies are described.

2.3.1. Stereo Vision

Stereo vision is a passive scanning system which is based on the triangulation of two calibrated

optical cameras. These two cameras observe the same target object. Detecting correspondences

between the camera images is possible to estimate the depth information via the triangulation.

Having a good quality of correspondences between the images, it is possible to get a good depth

estimation. One computer vision challenge is to find these correspondences between the images

in a robust and exact manner. However, the correspondences depend on the object texture, being

very difficult to be robust to rotation and changing of scale. Also, the resolution of the depth map

is dependent on the number of found correspondences which is also related to the observed object

texture. Normally is not possible to estimate the depth in the whole image pixels and therefore the

depth map is usually not complete (i.e.image areas without depth information).

2.3.2. Laser Scanner (LIDAR)

Light Detection And Ranging (LIDAR) is an active scanner which can work with ultraviolet, vis-

ible or near-infrared light. The emitted light allows to create a 3D image of the objects using a

laser beamer and an optical device. In general, the laser scanner takes the advantage of some ba-

sic attributes of laser light: light travels in straight line; the speed of light is known; and the laser

typically produces only one wavelength, making easier its detection. There are two types of laser

scanner: time-of-flight based and triangulation based. The first type of laser scanner has a laser

beamer which emits a laser pulse to measure the time of flight used by light, to go from the sensor

to the target object and then coming back. The second type of laser scanner has two laser beamers

and an intersection between the emitted light on the target object is detected. This detection is

triangulated using the known position of the emitters and the necessary angle of the beamers to

produce the intersection. Sometimes, this second beamer is replaced by an optical camera in order

to observe the position of the laser point in the object. The laser scanner usually measures only one

object point per measurement and it can be moved in a plane, to create a 2D scan. This 2D scan

is a line of depth in a certain plane. If we acquire a lot of 2D scan of different parallel lines conse-

quentially, then we can generate a 3D scan. Due to the motion of the laser beamer in the 3D scan,

the scanning takes a time which is usually bigger than the necessary for a real-time acquisition.

Furthermore, if the scanned subject moves, its 3D scan can exhibit motion artifacts.

2.3.3. Time-of-Flight Camera

The Time-of-flight camera is an active sensor which emits an infrared light signal into the scene to

measure the time that the light takes in going and coming back to the sensor. These devices use a

special camera sensor which allows to acquire the required samples to calculate the depth in every

pixel point. The ToF camera has a low resolution, but can work in a high frame-rate. Also, the ToF

camera can measure the depth of the scene thanks to the optical physics of the reflected light, and
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thus there is no geometric calculation. Its accuracy depends on the distance and it is in order of

centimeters. For further details, read the detailed explanation of ToF camera working principles in

Chapter 3.

2.3.4. Structured Light Camera (Kinect)

The structured light is an active 3D scanner which has a camera and a projector, with a known

transformation between them (calibrated). The projector projects into the scene a known pattern,

allowing the camera to recognize each pattern point and therefore to estimate the depth of each rec-

ognized point via triangulation. This pattern is typically composed of lines or ellipses which has to

be known and calibrated in advance, to be used for the recognition of pattern points and calcula-

tion of depth. The size of the ellipses and the separation between the lines is totally dependent on

the distance which is wanted to measure, and thus it limits the distance range of work. However,

it is possible to project different patterns with distinct sizes, allowing to measure different distance

ranges. An example of the projection of different patterns is Kinect that projects three different

patterns of ellipses to measure three different distance ranges. Notice that the different patterns

estimate the distances with distinct accuracies. Sometimes, the change of pattern used to calculate

the depth, can produce a jumping of depth accuracy depending on the transition of the utilized

pattern. Furthermore, Kinect has a high frame-rate and it can be used in real-time applications.

2.3.5. Comparison between 3D imaging technologies

Every 3D imaging technology has both advantages and disadvantages. In general, the devices

which use triangulation and time-of-flight basis have some differences independently of the tech-

nology used. These differences are summarized in the next Table 2.1:

Device Speed Accuracy Distance Range Example

Triangulation based Slow High Short Kinect, Stereo vision, Laser

scanner

Time-of-Flight based Fast Low Large ToF camera, Laser scanner

Table 2.1.: Differences between technologies which uses triangulation or time-of-flight measure-

ment basis

In general, triangulation systems are slower compared to time-of-flight systems, nevertheless,

triangulation systems are more accurate in the distance measurement. Moreover, triangulation

systems cannot measure the occluded and non-projected points observed by the optical sensor

instead of Time-of-Flight systems which generate a complete depth map. Furthermore, ToF systems

cannot measure edges of the object correctly due to the multi-path of the reflected light or absence

of light (non-reflection) captured by the sensor.

In the following, four typical devices mostly used in computer vision community as 3D imaging

device are compared, showing their advantages and disadvantages in comparison to the other

technologies. The main differences between these four devices are summarized in the Table 2.2.
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Device Frame rate Resolution Depth

accuracy

Type Price

Laser Scanner (LI-

DAR)

0.5 - 2 fps Very High mm Active > 20.000e

Stereo Vision 1 - 10 fps High mm to m (it

depends)

Passive ≈ 500e - 5.000e

Time-of-Flight

camera

20 - 50 fps Low

(≈ 200× 200)

cm Active ≈ 6.000 e

Structured light

camera (Kinect)

10 - 30 fps Medium

(≈ 640× 480)

between

mm and

cm

Active ≈ 150e

Table 2.2.: Summary of differences between four typical 3D imaging devices. Some example de-

vices have been used as reference.

Laser scanners are very accurate devices, however, their frame-rate and price are the most im-

portant impediment for their massive utilization. They normally have a low frame-rate and high

price. Usually, laser scanners are used to capture 3D data as ground truth or training data-set.

Stereo vision is a very developed device which has a lower accuracy compared to laser scanners,

having a texture-dependence, i.e., the depth calculation depends on the matching between the cor-

respondences in the images. This produces a depth map, which depends on the texture of the

observed scene and sometimes it is not possible to create a complete 3D surface exhibiting area

without depth information.

Time-of-flight camera and Kinect give an answer for real-time 3D data acquisition. Both devices

have real-time 3D data acquisition, allowing to use them in real-time applications. Time-of-Flight

cameras have a similar frame rate as Kinect, being in general, slightly faster than Kinect. Kinect has

higher depth accuracy compared to ToF cameras, nonetheless, ToF cameras have bigger distance

range of work. Kinect projects three different pattern sizes into the scene in order to measure three

different ranges of distance. This produces a small “jumping” of depth accuracy, depending on

the pattern size which was used to estimate the depth. On the other hand, ToF cameras cannot

recover correctly edges and corners, instead that Kinect can produce a good estimation. Further-

more, Kinect sensor cannot measure the depth in the points not illuminated with the projector, but

observed by the sensor, producing a black band or shadow without depth estimation. Another

difference is the image resolution, ToF cameras, until now, have low resolution (order of 200× 200

pixels) instead of Kinect, which produces medium resolution depth images (640× 480 pixels). Ad-

ditionally, ToF cameras can work in multiple-view systems changing its modulation frequency and

Kinect is still not known. In terms of cost, Kinect is a cheaper device in comparison to a ToF camera.

Finally, both devices have advantages and disadvantages, and therefore the adequate device

selection for an application depends on not only the restrictions of the application (e.g.resolution,

depth accuracy), but also the budget of the project.
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3. State of the Art of Time-of-Flight Camera

THis Chapter presents the state of the art of the Time-of-Flight (ToF) camera. It incorporates a

ToF camera theory description, which explains, not only the working principles, but also its

electronic requirements and its behavior on real sensors. Furthermore, a description of the errors

and limitations of the ToF cameras are shown. Finally, a list of the different applications in com-

puter graphics is exhibited, which is classified by the distinct challenges in the computer vision

community.

3.1. Introduction

Time of flight is the technique to recover the distance between a sensor, and an object or scene with

the help of the time-of-flight required by the wave, going to and coming back from the scene. This

idea was used in several distance sensors (e.g.ultrasound, laser, radar, etc.). The general idea is

to measure the time-of-flight, which is directly related to the distance between the sensor and the

object due to the assumed constant speed. Generally for this purpose, electromagnetic wave, light

or ultrasound are used because they have a constant velocity in the same medium. The measured

time by the sensor, is used to calculate the real distance, due to its constant speed which shows

the traveled distance in a time unit. Of course, the type of source used determines the precision

of the measured distance and the electronic requirements. This chapter is focused, not only on the

ToF camera theory and description, but also on the ToF camera applications in the computer vision

community.

3.2. Time-of-Flight Camera Theory

The Time-of-Fight (ToF) camera is a CCD/CMOS based device that captures reflected infrared light

which allows to measure the time-of-flight; and therefore the distance in each image pixel. This

camera gives a distance for every image pixel, creating a depth image which represents the ob-

served surface. This distance is calculated thanks to the time-of-flight obtained from the measured

phase-shift of a sinusoidal signal, which is an intensity modulated infrared light. This phase-shift

is the time-of-flight taken from the infrared light while going to the object, and coming back to the

sensor.

3.2.1. Types of Time-of-Flight cameras

The time-of-flight can be measured using a pulse wave (PW), a continuous wave (CW) or a com-

bination of both. The difference is shown in the Figure 3.1, the pulse wave is based on sending

only one pulse and then measuring the delay time between the sent and received signal which is
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Figure 3.1.: Example of Time-of-flight working. Left: Continuous Wave based ToF. Right: Pulse

Wave based ToF.

necessary to flight from the camera to the scene and from the scene to the camera. This measured

delay time td is proportional to the distance d between the sensor and the object. In the case of a

continuous wave, a periodic signal is emitted (as sinusoidal, triangular and so on) and measured

the phase-shift between the emitted and received signals in the sensor, which is proportional to the

time td and therefore to the distance d.

Pulse Wave

Figure 3.2.: Pulse wave time-of-flight camera working diagram. [80]

The Time-of-Flight cameras based on pulse wave (PW) work sending a pulse in order to measure

the time used to travel from the camera to the scene and then coming back. The Figure 3.2 shows

the main idea of measuring the time-of-flight using a pulse wave. We use two measurements one

after the other synchronized with the emitted signal. Let us have a pulsed signal with time width

ts and two synchronized samples with the emitted pulse signal. The first shutter captures the light

coming to the sensor in the same interval of the emitted pulse and the second shutter captures the

light received in the consequent window time ts. Intuitively, the first shutter measures the quantity

of light received which is coming back to the sensor, and delayed by the time td. The second shutter

measures how much light is remaining after the pulse width ts. In other words, the second light

acquisition measures a value proportional to the delay time td. Additionally, the sum of acquired
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light one and two is proportional to the pulse width ts because is the complete emitted pulse. In

equations, we have:

A2 ∝ td

A1 +A2 ∝ ts

´

⇒
td
ts

=
A2

A1 +A2

⇒td = ts ·
A2

A1 +A2
⇒d =

1

2
· clight · ts ·

A2

A1 +A2

where clight is the speed of light. Normally, to measure distance in order of meters, the necessary

time ts is in order of nanoseconds (ns). Unfortunately, the quantity of light which can be acquired

in this window of time is low; and therefore it is necessary to make several captures in a repetition

time or integration time so it is possible to increase the Signal-to-Noise Ratio (SNR). Signal-to-Noise

ratio is a ratio to measure how good is the signal compared to noise. When a SNR is high, it means

that the signal is bigger than the noise; and in consequence the noise disturb in a smaller quantity

to the captured signal. Instead, when a SNR is low, the amount of captured signal is comparable

to noise This type of time-of-flight measurement is used not only with infrared light, but also with

laser and visible light, due to its simplicity.

Continuous Wave

The Time-of-Flight cameras based on a continuous wave (CW), as opposite to pulse wave, uses a

continuous wave signal instead of a pulse signal only. This continuous wave needs demodulation

properties in order to measure the time, taken for the signal which goes to the scene and comes back

to the sensor. In the majority of the implemented ToF cameras, the preferred signal is a sinusoidal

wave, due to the facility of its demodulation using a reasonable quantity of samples. However,

the work of Linder et al.[70] studies the feasibility of the use of triangular signal, instead of the

sinusoidal, which electronically can be generated easier than a sinusoidal wave. In Figure 3.3 are

shown two different periodic signals, which can be used in a ToF camera.

Figure 3.3.: Continuous wave time-of-flight camera example.

In the following subsections, the working principles of ToF cameras based on a sinusoidal con-

tinuous wave will be explained in detail, due to its use in the majority of time-of-flight cameras in

the actual market.

Combined Wave

The time-of-flight cameras based on a combined wave mix the advantage of each modality: contin-

uous and pulse wave. This type of camera is only theoretical, due to its difficult implementation.
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An example of the waves used in this case can be observed in the Figure 3.4.

Figure 3.4.: Combined wave time-of-flight camera example.

3.2.2. Demodulation of the Sinusoidal Signal

The ToF camera emits a sinusoidal intensity modulated signal and its sensor captures the reflected

signal. This reflected signal is used to calculate the phase shift between the emitted and received

signals as it can be observed in Figure 3.5. This phase shift is proportional to the time-of-flight and

in consequence is directly related to the distance between the sensor and scene. The formula which

relates the phase shift ϕ and the distance d is as follows:

2 · d =
clight
2πf

· ϕ⇒ d =
clight
4πf

· ϕ (3.1)

where f is the modulated frequency of the sinusoidal signal (normally between 20 and 30 MHz),

clight is the speed of light (3 × 108m
s

). One full cycle of the modulated signal defines a non-

ambiguous range, where the distance can be measured. Out of this range, the measured depth

is the difference between the real distance and a multiple of the maximum non-ambiguous dis-

tance. For example, in a PMD CamCube 2.01 working at a modulation frequency of 20 MHz, the

non-ambiguous range goes until 7.5 meters.

In order to estimate the received signal, the ToF camera takes four samples. These measure-

ments are made in four suitable time points of the original signal corresponding to t = i π
2ω where

i = {0, 1, 2, 3} and ω is the angular frequency. These four samples give four values named C(τi),

i = {0, 1, 2, 3}. With these four samples, the ToF camera can completely reconstruct the received

sinusoidal signal. The demonstration is shown as follows:

Figure 3.5.: Sinusoidal continuous wave.

1Camera from PMD Technologies http://www.pmdtec.com
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3.2. Time-of-Flight Camera Theory

Given the emitted signal g(t) and the received signal S(t):

Emitted signal: g(t) = A · cos(ω · t) +B (3.2)

Received signal: S(t) = A′ · cos(ω · t+ ϕ) +B′ (3.3)

where ϕ is the phase-shift between the emitted and received signals, A is the amplitude and B is

the offset or bias of the emitted signal; A′ is the amplitude and B′ is the offset or bias of the received

signal; and finally ω is the angular frequency of the sinusoidal wave.

The ToF camera measures four samples at ω · t = iπ2 where i = {0, 1, 2, 3} which gives the

following measurements:

Time i = 0 ∧ ω · t = 0 ⇒ C(τ0) = A′ · cos(0 + ϕ) +B′ = A′ · cos(ϕ) +B′ (3.4)

Time i = 1 ∧ ω · t = π
2 ⇒ C(τ1) = A′ · cos(

π

2
+ ϕ) +B′ (3.5)

Time i = 2 ∧ ω · t = π ⇒ C(τ2) = A′ · cos(π + ϕ) +B′ (3.6)

Time i = 3 ∧ ω · t = 3π
2 ⇒ C(τ3) = A′ · cos

Å

3π

2
+ ϕ

ã

+B′ (3.7)

Simplifying and replacing the cosine rule cos(α+β) = cos(α)·cos(β)−sin(α)·sin(β), it is obtained:

C(τ0) = A′ · cos(0 + ϕ) +B′ = A′ · cos(ϕ) +B′

C(τ1) = A′ · cos(
π

2
+ ϕ) +B′ = −A′ · sin(ϕ) +B′

C(τ2) = A′ · cos(π + ϕ) +B′ = −A′ · cos(ϕ) +B′

C(τ3) = A′ · cos(
3π

2
+ ϕ) +B′ = A′ · sin(ϕ) +B′

Then, four theoretical formulas are acquired, representing the measured data by the ToF camera.

Therefore, the phase shift (ϕ), amplitude (A′) and offset (B′) of the received signal can be calculated

using the samples C(τi) (i = 0, · · · , 3) as follows:

• Offset B′ (Gray-scale):

C(τ0) + C(τ1) + C(τ2) + C(τ3) =A′ · cos(ϕ) +B′ −A′ · sin(ϕ) +B′ −A′ · cos(ϕ) +B′ +A′ · sin(ϕ) +B′

⇒ B′ =
C(τ0) + C(τ1) + C(τ2) + C(τ3)

4

• Amplitude A′:

»

(C(τ3)− C(τ1))
2
+ (C(τ0)− C(τ2))

2
=
»

(2A′ · sin(ϕ))2 + (2A′ · cos(ϕ))2

⇒ A′ =

»

(C(τ3)− C(τ1))
2
+ (C(τ0)− C(τ2))

2

2
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3. State of the Art of Time-of-Flight Camera

• Phase Shift ϕ:

C(τ3)− C(τ1) = A′ · sin(ϕ) +B′ − (−A′ · sin(ϕ) +B′)

= 2A′ · sin(ϕ)

C(τ0)− C(τ2) = A′ · cos(ϕ) +B′ − (−A′ · cos(ϕ) +B′)

= 2A′ · cos(ϕ)

C(τ3)− C(τ1)

C(τ0)− C(τ2)
=

2A′ · sin(ϕ)

2A′ · cos(ϕ)

⇒ ϕ = arctan

Å

C(τ3)− C(τ1)

C(τ0)− C(τ2)

ã

Finally, the received signal can be reconstructed with the following three equations using only

four samples:

Offset: B′ =
C(τ0) + C(τ1) + C(τ2) + C(τ3)

4
(3.8)

Amplitude: A′ =

»

(C(τ3)− C(τ1))
2
+ (C(τ0)− C(τ2))

2

2
(3.9)

Phase Shift: ϕ = arctan

Å

C(τ3)− C(τ1)

C(τ0)− C(τ2)

ã

(3.10)

Another and more general point of view is the demodulation of the phase between the emitted

and received signals using its cross-correlation. The cross-correlation technique gives a comparison

between two signals, and recovers the relation of amplitude and phase between the emitted and

received signals. Usually, the emitted signal has to be known. The general cross-correlation function

C(τ) is as follows:

C(τ) = S(t)⊗ g(t) = lim
T→∞

1

T

∫ T
2

−T
2

S(t) · g(t+ τ) · dt (3.11)

where ⊗ is the convolution in the time between two waves, S(t) received signal and g(t) reference

signal, τ is the sampling time.

Resolving this convolution for our signal g(t) and S(t), we get the next equation:

C(τ) =
A′ ·A

2
cos(ωτ + ϕ) +B′ ·B (3.12)

When we replace in this equation different values of ωτi = iπ2 with i = {0, 1, 2, 3}, we obtain the

following equations:

C (τ0 = 0) =
A′ ·A

2
cos(ϕ) +B′ ·B

C
(

τ1 =
π

2

)

= −
A′ ·A

2
sin(ϕ) +B′ ·B

C (τ2 = π) = −
A′ ·A

2
cos(ϕ) +B′ ·B

C

Å

τ3 =
3π

2

ã

=
A′ ·A

2
sin(ϕ) +B′ ·B

28



3.2. Time-of-Flight Camera Theory

Simplifying and resolving, the values of the phase ϕ, amplitude A′ and offset B′ can be recovered

as follows:

Offset: B′ =
C(τ0) + C(τ1) + C(τ2) + C(τ3)

4B
(3.13)

Amplitude: A′ =

»

(C(τ3)− C(τ1))
2
+ (C(τ0)− C(τ2))

2

2A
(3.14)

Phase Shift: ϕ = arctan

Å

C(τ3)− C(τ1)

C(τ0)− C(τ2)

ã

(3.15)

3.2.3. Sensor Sampling

Figure 3.6.: Measured quantum efficiency curves realized in a 0.5µm CMOS process. [64]

The image sensor used in the ToF camera is a CMOS/CCD23 sensor, which combines the idea of

CCD internal storage and fast CMOS acquisition. This sensor has a response to the infrared light

and the typical sensor has a spectrum response as shown in the Figure 3.6. This spectrum allows to

select a wavelength for the light, in order to acquire enough light for the ToF calculation. Besides,

we can observe that the sensor can acquire light in the Infra-Red 750nm − 1400nm (IR) spectrum,

allowing to make an active camera which is invisible for the human eye. In practice, the real sensor

cannot take a single measurement in one point of time t, due to the quantum structure of the light,

in other words, the sensor has to accumulate photons to obtain a usable measurement. For this

reason, a window of time ∆t is needed for capturing a sample with the ToF camera. In this case,

the measurement function S(t) in the time-domain is:

S(t) =

∫ t+∆t
2

t−∆t
2

(A′ cos(ωt+ ϕ) +B′) · dt (3.16)

2CMOS: Complementary Metal Oxide Semiconductor
3CCD: Charge-coupled Device
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3. State of the Art of Time-of-Flight Camera

This integral function represents the light captured by the sensor between the time t − ∆t
2 and

t+ ∆t
2 ; and the solution of equation 3.16 gives the next measurement function:

S(t) =
2A′

ω
sin

Å

ω
∆t

2

ã

cos (ωt+ ϕ) +B′ ·∆t (3.17)

Recalculating the values of the offset B′, the phase shift ϕ and the amplitude A′, the obtained

values are:

Offset: B′ =
A0 +A1 +A2 +A3

4 ·∆t
(3.18)

Amplitude: A′ =
ω

2 sin
(

ω∆t
2

) ·

»

(A3 −A1)
2
+ (A0 −A2)

2

2
(3.19)

Phase Shift: ϕ = arctan

Å

A3 −A1

A0 −A2

ã

(3.20)

where Ai = S(ti) and ti =
iπ
2ω , with i = 0, 1, 2, 3.
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Figure 3.7.: Amplitude (a) and offset (b) attenuation due to the window sampling

These equations show that the measured phase-shift is independent of the size of the window

sampling ∆t, however, the measured amplitude and offset have an influence from ∆t. In the Fig-

ure 3.7 the influence of the sampling time ∆t in the recovered values of amplitude and offset is

presented, which shows different attenuation depending on the sampling time. Normally, the ToF

cameras manufacturers select half of the period for sampling, merely because the amplitude is only

reduced to 64% and the offset is reduced to 50%, but also by reason of the sampling time that is big

enough to make easier the electronic implementation.

In addition, the window sampling used in ToF cameras is in order of nano-seconds, meaning that

in this time the quantity of light captured (photons) do not allow us to generate a read-out with a

good Signal-to-Noise Ratio (SNR) since the sensor noise is similar to the acquired light. Therefore,

the ToF camera usually samples many times in an integration time. In Figure 3.8 an example of

acquisition in the integration time can be observed, in this case N samples are used.

For further details, you can check the PhD thesis of Robert Lange [64].
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3.3. Time-of-Flight Camera

Figure 3.8.: Normal sampling of a ToF camera in the integration time.

3.3. Time-of-Flight Camera

The Time-of-Flight cameras suffer from different kind of errors and distortions which are produced

by the ToF sensor noise and involved physics. This section introduces a summary of ToF camera

errors and distortions, including its causes and possible solutions.

3.3.1. ToF camera parts

In general, a ToF camera can be manufactured using three essential parts: a sensor unit, a pro-

cess unit and an illumination unit. The sensor unit is in charge of the acquisition process of the

sinusoidal signal, this is, capturing the infrared light, reading-out samples and lock-in system (syn-

chronization). Also, this unit includes the used optics in the ToF camera (e.g.lens). The process

unit not only calculates phase-shift, amplitude and offset of the received signal in every pixel, but

it also makes the communication with the external computer, sending data and receiving function

commands (e.g.setting parameters). Finally, the intensity modulated infrared light is generated by

the illumination unit, using Light Emitting Diode (LED) due to its low cost and power efficiency.

3.3.2. Sensor Behavior

There are possible sensors to build a ToF camera. Each sensor has both, advantages and disadvan-

tages. The sensors can be classified based on the sensor type and the lock-in system. The criterion

of sensor type refers to the electronic technology used to acquire the sample images and the lock-in

system criterion makes reference to the gating of the acquisition and to the storing of every sample

pixel in the chip.

Sensor Type

There are two sensor types, which can be used in a ToF camera: Charge-Coupled Device (CCD)

and Complementary Metal-Oxide-Semiconductor Active Pixel Sensor (CMOS-APS). These sensors

are often used in normal cameras; not only in gray-scale cameras, but also in color cameras. These

sensors have some design differences, which have complementary design ideas. The distinctions

between them are shown in the following list:
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3. State of the Art of Time-of-Flight Camera

• The CCD sensor has a high power consumption and power dissipation, instead of CMOS-

APS sensor which has a low power consumption and power dissipation, being more power

efficient than the CCD sensor.

• On the other hand, the CCD sensor has low noise in the capture of photons, being a very

noiseless sensor. Instead, CMOS-APS sensor is strongly influenced by the noise, nevertheless,

this noise can be electronically reduced using a pre-measured fixed noise pattern.

• The CMOS-APS can select which pixel wants to read, instead of CCD can not do that. The

CMOS-APS sensor can read each pixel independently, allowing to read a region of interest

without the necessity of reading all the pixels, in opposite to CCD which always has to read

and reset all the pixels together.

• As opposed to CMOS-APS, which can directly read the voltage of the pixel storage, CCD

needs to move the charges from the pixel storage to a special conditioned voltage reading

storage.

• The CMOS-APS has lower production cost compared to CCD sensor.

For the reasons exposed before, the developers of ToF camera usually use a combination between

these sensor types. This new sensor used in ToF cameras is named Photo Mixing Device (PMD).

Basically, the developers obtain in the same chip sensor (PMD), the benefits of every sensor type:

low noise plus directed transportation and storage into defined storages due to CCD architecture;

and random pixel access, allowing a selection of a region of interest (ROI) due to CMOS-APS. They

can achieve this sensor making it, using the architecture of CMOS-APS circuitry fabricated with

CCD technology. Furthermore, there is an improvement on the exposed sensor, as used by PMD

Technologies, named Range Imaging (RIM) sensor, which uses in every pixel a special distribution

of the semi-conductor in order to measure the phase-shift more accurately.

Lock-in System

The lock-in system is the process used to acquire ToF camera samples. The lock-in system allows

the demodulation of the received signal and therefore to estimate the phase-shift. There are basi-

cally three types of lock-in systems: 1-tap lock-in, 4-tap lock-in and multi-tap lock-in. The different

lock-in systems get different quantities of data in each capturing shot, which is explained in section

3.2. That section explains how to make samples, in order to recover the phase shift, amplitude and

offset of the received signal using only four sampling points. These different lock-in systems define

different ways to take these samples, and are explained in the next list:

• 1-tap Lock-in: The 1-tap system allows to capture only one sample by cycle of the sensor

clock. This is usually used in a grayscale camera, capturing only one data per clock cycle

using one pixel storage. In the case of ToF camera, the camera can capture only one sample

point in each clock cycle. That means that the camera can acquire only one information per

clock cycle, increasing the time of acquisition when it is necessary to capture these ToF camera

four samples. For example, if there is a sampling frequency of 80 MHz, C(τ0) can be obtained

in the first cycle and then it is necessary to wait three cycles more to sample again C(τ0) (to

accumulate and improve the Signal-to-Noise Ratio) or read-out C(τ0) with a low SNR and
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change to sample C(τ1). Having only one storage, it expands the acquisition time of every

sample, by four clock cycles to make measurements with a good SNR.

• 4-tap Lock-in: This system allows to capture four samples in independent storages in every

pixel sensor per clock cycle. In other words, this system allows to get four samples at the

same time which allows to have overlapping between the samples. Furthermore, the system

permits to accumulate each sample C(τi) with i ∈ 0, . . . , 3 in different charges storage. Each

pixel has its own readout-line4 and its own shutter line5, making easier the simultaneous

acquisition, but making more difficult the sampling synchronization.

• Multi-tap Lock-in: The multi-tap system is also composed of a four pixel sensor, which al-

lows capturing each sample separately. Every pixel sensor is connected to the same read-out

line and the same shutter, but each pixel storage captures with a defined shift. This type of

sensor is named 4-phase CCD sensor, which allows capturing the samples and store them

in an internal storage. With this type of sensor is possible to capture with a very high fre-

quency and with an easy synchronized way, allowing us to capture the samples, in order to

demodulate the received sinusoidal signal.

3.3.3. ToF camera error

The Time-of-Flight camera has different errors and noises influencing in its depth accuracy. These

errors are principally produced by sensor noise and light noise. The sensor noise is produced by the

thermal noise and electronic noise (extra electrons); and the light noise is produced by the photon

shot noise and background noise (extra photons).

Sensor Noise

The sensor noise is produced by the electronic involved in the device, and it can be reduced with a

proper management and design of the device. This noise is produced by the following:

• Electronic shot noise: The electronic shot noise is related to the collision between charges

going to the output voltage.

• Thermal noise: This is produced by the vibration of the electrons in different temperatures

of the material. For this noise is important to know the temperature range where the ToF

camera works and where the dissipater can work properly.

• Reset noise: the reset noise is generated by the movement of charges to reset the sensor pixels

and to get a new data.

• Flicker noise: The flicker noise is produced by the noise in the continuous voltage which is

used to supply the sensor. We can never get a perfect continuous voltage, but today this noise

is almost reduced using voltage regulator.

4readout-line is the electronic line to transport charges from the pixel or voltage storage to the reader device
5Shutter line is the line to activate the capturing in every pixel storage
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• Quantization noise: This noise is made by the conversion of photon to electric charges in the

semi-conductor sensor. This quantization depends on the depth penetration of the photon in

the semi-conductor to produce the charge.

It is important to mention, that these noises can be almost totally reduced not only using elec-

tronics, but also using filtering and/or fixed pattern noise.

Light Noise

Light noise is produced not only by the quantity of noise, which is shutting the sensor, but also by

the background noise. The first noise depends of the light quantity reflected to the sensor, which

changes, depending on the reflectivity coefficient of the material and the shape (normals) of the

object. As we read in the section 2.1, the angle between the normal of the surface and the direction

of the light is related to the reflected light. There are two reflection types, specular and diffuse re-

flections. The first type corresponds to the reflection in a surface with perfect reflectivity, reflecting

the light in the same angle with respect to the surface normal. The second type corresponds to

the reflection in an opaque surface with scattering which can be estimated as a reflected light in

all directions. This diffuse reflection is usually modeled, using the Lambertian Law. The majority

of the materials have specular and diffuse reflections, being both complementary, depending on

the observer position. The second noise is related to the light noise generated by the environment

and other equipment emitting infrared light near to the scene, e.g.sun light, remote control, infrared

equipment and so on. This noise produces an interference in the received signal, generating a noise,

which can be observed in the sinusoidal signal as a high-frequency noise creating an error in the

distance measurement. The background noise can be reduced using an adaptive close-loop in the

ToF camera in order to learn this noise in the time to compensate it. This feature is named Suppres-

sion of Background Intensity (SBI) and some commercial ToF cameras have this feature available in

the camera setting.

3.3.4. Motion Blur

Motion blur is produced because the samples C(τi) are taken in different times and are taken repet-

itively in the integration time. This produces, that the phase shift calculation has an introduced ar-

tifact by the motion of the object, since the samples have been acquired while the object is moving.

This artifact generally appears as a blurring in the object edges and in the noncontinuous places in

the scene. This blurring can be reduced decreasing the integration time and reducing the delay be-

tween the samples. Some ToF cameras have this option and can be activated in order to reduce the

motion blur. The work of Hussmann [49] proposed a suppression method of the motion artifacts

in the ToF camera in real-time. Another work compensates the lateral and axial motion artifacts

by tracking the object on the level of phase images. The tracking is used to align the object, and

in consequence, to correct the depth image computation, reducing the artifacts and enhancing the

depth reliability [69].
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3.3.5. Systematic Error or Wiggling

A perfect and theoretical sinusoidal signal cannot be generated electronically producing the sys-

tematic error. This error can be learned from calibration and be reduced. This error depends on the

generated signal and the position of the object, however, it can be reduced calibrating depending

on the distance and position in the image plane of the ToF camera. There are some approaches

which reduce this error and manipulate the data to improve the accuracy of the measurement, it is

shown in the subsection 3.3.6.

3.3.6. Calibration

Here, they are shown different ways to calibrate a ToF camera in order to calculate the 3D point

w.r.t.the camera origin and, to improve the depth accuracy of the camera. A normal ToF camera can

be calibrated using a standard camera calibration technique, i.e., intrinsic and distortion parame-

ters (pin-hole model). The simplest way is using a normal checkerboard which is moved in front

of the ToF camera changing distances from the camera. Thanks to the property of the reflectivity

coefficient, the white color has higher amplitude of the received signal than the black color, and

therefore it is possible to identify the corners of the checkerboard squares. These corners are the

basis of the standard calibration techniques. However, the ToF camera has a low resolution and, in

consequence this calibration totally depends on the corner detection. In the case of a ToF camera

resolution range of 160x120 pixels and 204x204 pixels, the corners can be detected in a reasonable

accuracy which allows to get a good calibration [67]. In the case of lower resolution, it is necessary

to use an optimization approach in order to get a good calibration [11, 72]. Other works use dif-

ferent types of checkerboard, for example, point reflector with different depth and shapes; and so

on [36, 26, 25].

In addition, the ToF cameras can be calibrated in order to improve its depth accuracy, which is

named depth calibration. There are some works in this direction and they usually create a function

relating an image position and an uncalibrated depth in order to get the new corrected depth.

This function can be a constant offset [68, 99, 52], linear function [68], polynomial function [70],

B-Spline [70] or just look-up table [52].

Furthermore, some works attempt to improve the depth accuracy of the ToF camera adding the

intensity and amplitude values to the calibration [68, 98]. The work of Linder et al. [68] uses the

intensity in the function of depth correction to incorporate the information of the reflected light

for the correction function. The work of Radmer et al. [98] uses the amplitude value for the calcu-

lation of the corrected depth, using Lambertian reflectance properties. The ToF cameras can also

be influenced by the thermal condition and the best integration time for different environmental

conditions which can be calibrated [108].

Another important topic in the calibration step is how to obtain the ground truth. There are ba-

sically two different directions, the first is getting the ground truth using a robot or pan-tilt, where

it is possible to obtain the 3D position and the orientation of the camera [33, 32]. The second is

getting the ground truth data using a visual-based estimation, using checkerboard or line track-

ing [67, 52]. This visual-based estimation can be made, using a checkerboard observed by one or

more high-resolution cameras and a ToF camera. With a multi-camera view, it is possible to esti-

mate the 3D position of each checkerboard corner and it can be optimized using different points
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of view [68, 102]. In addition, when the ground truth has to be obtained, it is necessary to define

how many data is necessary for the calibration. In this way, it is necessary to define, not only the

quantity of images obtained in one determined distance, but also the step and range of distance for

the calibration. The range and step have to be defined, depending on the range of work and the

accuracy of the ToF camera application. Furthermore, the size of the ground truth will define the

time for the calibration which also depends on the used algorithm. The work of Schiller et al. [102]

shows an optimization method using a checkerboard as ground truth and they calibrate the rigid

transformation between the ToF and a number of high-resolution cameras. This calibration gives a

polynomial or b-spline function and it can also be calibrated adding the intensity values. There is

an open-source toolbox and it can be downloaded from www.mip.informatik.uni-kiel.de.

Besides, there is a new technique to denoise the depth image from a ToF camera, using an adap-

tive total variation based approach of first and second order, which takes into account geometric

properties, i.e., edges and slopes [65]. Another way to improve the ToF camera accuracy is based

on the modeling of the multi-path interference of the ToF camera and the scene structure in order

to correct the depth measurements [31].

3.4. Time-of-Flight Camera and Computer Vision

Recently, the time-of-flight camera has been introduced in large number of applications in com-

puter vision and robotics. This camera provides three-dimensional information which can be used

in different applications: 3D reconstruction, segmentation, augmented reality, motion estimation,

object recognition and so on. This camera can be used alone or can be combined with one or more

ToF and/or normal color cameras.

3.4.1. ToF Camera Simulation

There are some works which simulate the ToF camera modeling the acquisition process, demod-

ulation, noise (error), motion artifacts and flying pixels. These simulations allow us not only to

understand and model the principles working of the ToF camera, but also to evaluate the ToF sen-

sor with different parameters. From this point of view, the simulations are very important due to

allow us to generate synthetics depth and amplitude images, so it is possible to test and evaluate

new algorithms using this synthetic data as ground truth. The work of Peters et al. [95] shows a

basic model of a ToF camera and its simulation is implemented in the mathematical software MAT-

LAB6 and therefore cannot achieve real-time frame rate, nevertheless, it was the first ToF camera

simulator. The works of Keller et al. [54, 53] incorporate motion artifacts, sensor error and scat-

tering in the object surface which are implemented using parallel programming (OpenGL/C++)

which works in real-time frame-rate. Work [53] modeled the scattering using a Lambertian model

for the reflectance of the light and they also integrate the captured light by the ToF camera as a

multi-ray reflection in a certain area of the object instead of using a single ray.

6MATLAB (matrix laboratory) is a numerical computing environment and fourth-generation programming language, de-

veloped by MathWorks.
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3.4.2. Range Image Processing

The ToF camera range image has some known error, it can be reduced using different algorithms

applied to the depth image. This range image can be manipulated to eliminate the outliers and to

reduce the depth error of the ToF camera depth data as described before (e.g.flying pixel, motion

artifacts). The processing of range images can be divided in the following categories:

• Outliers filtering: A basic filtering can be done using the confidence map provided by the

amplitude images, allowing us to detect depth information with a low probability of being a

correct depth. One way for outliers removal is to filter with an amplitude value between 20%

and 80% which corresponds to low confidence and saturated data respectively. However, the

amplitude image is related to the received light on the sensor which decreases when a distant

object increases and when the pixel is closer to the image boundaries.

• Flying pixels removal: Flying pixels are an artifact produced in object discontinuities due to

a calculated average of signals with different depths. This artifact can be eliminated using a

bilateral filter applied to the range data [47]. It is also possible to remove them using edge-

directed re-sampling combined with an upscaling of the depth image [71].

• Depth data improvement: The ToF camera also provides an intensity image (offset of the

received signal), and therefore, the intensity data can be used to improve the depth data or

vice-versa [90]. In addition, the depth data can be improved, using approaches from bound-

ary preservation of subdivision surfaces, and a bimodal infra-patch similarity with optional

color information [47].

3.4.3. Color image fusion

In this part, there are several works which use a combination of one or more ToF cameras with

one or more high-resolution color cameras. Many researchers combine one ToF camera and one

high-resolution RGB camera [66, 46, 50, 71, 111], or many high-resolution RGB cameras [38], in

order to enhance the low resolution of the ToF camera using the high-resolution color data. This

combination allows us to register each 3D point from the ToF camera to one pixel in the high-

resolution camera image plane, using a rigid transformation (extrinsic and intrinsic parameters)

and it can be used to color the surface provided by the ToF camera. There is also a commercial

and compact camera which combines a normal camera with a ToF camera from 3DV Systems7

as a webcam and could be used for gaming consoles [121]. In some approaches, it is utilized a

simple mapping of ToF camera 3D point onto the image plane, obtaining a single color value per

3D point [66, 46, 50]. More sophisticated mapping algorithms can be used, as the work of Linder et

al. [71], where they relate a portion of color image to the projected ToF camera pixel using texture

mapping techniques, and they also detect the occlusion artifacts produced by the binocular set-up.

The fusion between a high-resolution color camera and a ToF camera can be utilized, to increase

the low-resolution of the ToF camera, obtaining the named “super-resolution” range map. Super-

resolution methods generally are based on the fact that the discontinuities of the depth data are

shown as changes of color or brightness in a color image. For example, the discontinuities can be

73DV Systems is an Israeli developer of ToF camera.
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fitted in a Markov Random Field (MRF) which allows us to obtain a high-resolution range map

based on the MRF net [23]. Another work uses an upscaling of the range map resolution to the

high-resolution, using a bilateral filtering and sub-pixel smoothing [122]. A super-resolution can

be also created from a slightly shifted point of view and an optimization of these different points

of view of the scene [104, 105].

There are also some cameras, which integrate the 3D ToF sensor with the color sensor, using the

same single lens. One advantage of this kind of camera is that the fusion of the range map with the

color image is direct because the same 3D point is acquired by the depth and color sensor. However,

the hardware and optics have to be more sophisticated to achieve that. There are some examples of

this kind of camera. One is an early 3DV Vizcam which is a 2D/3D camera aimed to TV production.

This camera uses a pulsed wave modulation for calculating the depth data [121]. Another 2D/3D

camera is a 2-chip sensor which uses a beam-splitter for alignment and an auto-registered 2D/3D

acquisition [74].

Futhermore, there are some works of the combination of a stereo camera and a ToF camera.

In [63], a combination of a stereo system and ToF camera is introduced to complement the advan-

tages of both sensors. ToF-stereo combination can also be used in order to speed-up the stereo

algorithm and it can help to manipulate the texture-less portions of the color image [37]. An-

other work [10] uses the fusion of ToF-stereo, to estimate small 3D planar patch with its normal.

Also [128] uses the combination ToF stereo to get a higher-resolution range data combining stereo

and ToF depth data using a Markov Random Field (MRF) which was also extended to a Dynamic

MRF using the temporal information [127].

Another completely different new approach uses a shading constraint which models the reflected

active light of the ToF camera in order to optimize the 3D surface, based on the measured intensity,

amplitude and depth [14]. In practice, this approach assumes a reflectance model, i.e.Lambertian

model. The reflectance model can be imposed by using a probabilistic model of the image forma-

tion to find a maximum posteriori probability to estimate the real surface. This approach produces

a notable improvement in the depth accuracy of the ToF camera. Also, this algorithm allows us to

estimate the reflectivity of the surface, both globally in the surface and locally when the reflectivity

changes across the surface.

There are some works which use a multi-view system employing more than one ToF camera,

where the interference begins to be a new problem. The works of Kim et al. [55, 56] and Guan

et al. [35] use different modulation frequencies in the ToF cameras so they can separate the signal

avoiding some interference between them. Nevertheless, they do not make any discussion about

the management of the signal to guarantee a non-interfered measurement.

Meanwhile, some manufacturers have developed a new active illumination in order to separate

the sources using binary codes for example [79].

3.4.4. Geometric Extraction

In this subsection we show the geometric extraction algorithm using time-of-flight camera, includ-

ing not only mapping, but also camera motion estimation. Time-of-flight camera provides directly

the 3D surface observed in a static scene and dynamic scene. Moving the camera and registering

these surfaces in a common coordinate system can be used to reconstruct the 3D scene [46]. In the
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case of obtaining a high-quality 3D reconstruction, it is necessary to combine the low resolution

ToF camera with a high-resolution image-based 3D scene reconstruction, e.g., by utilizing Structure

from Motion (SFM) [60, 8]. In the SFM algorithm a no-metric scale reconstruction is obtained, and

it can be solved, using the metric information of the ToF camera [111]. This type of work allows

us to reconstruct a high-resolution 3D scene at interactive rates, e.g., 3D map building and naviga-

tion [96]. When the color and depth can be obtained simultaneously, a depth compensated warping

can be utilized for a free point of view rendering [58]. Besides, free view point TV or 3D-TV can

be done utilizing ToF cameras, because of its real-time 3D surface acquisition and enables a 3D ob-

ject recognition. This type of system can be done using a camera or multi-view system combined

with a ToF camera and can give an estimated depth of the scene. The depth can be up-scaled and

fused creating a super-resolution image with colored depth map like in [122, 128], or including

the temporal information like in [127]. These 3D reconstruction sequences can be shown to the

viewer, employing auto-stereoscopic display to give glass-less 3D impression or using a display

with polarization glasses. The ToF camera was also utilized in the medical domain, helping to

intra-operatively register the patient and the pre-operation 3D data which introduces a new reg-

istration method taking in account, the ToF camera noisy data matching between meshes [76]. In

addition, Schuon et al. [18] developed a 3D scanning technique using a moving ToF camera which

obtains the 3D model of the object.

3.4.5. Dynamic Scene Analysis

The dynamic scene analysis is a big challenge in computer vision. However, the ToF camera gives

a powerful tool to analyze the scene, thanks to its real-time observed 3D object. A ToF/multi-view

system can be used to create a 3D reconstruction, for analyzing the scene and also it can be achieved

using a combination of a computer-driven pan-tilt unit and a scanning of the scene, in a controlled

manner. This scanning is utilized to create a 3D panorama of the environment through the stitching,

both, depth and color images into a cylindrical or spherical panorama. Then, a dynamic scene can

be captured on-line (e.g.a person moving in front of the camera) using adaptive object tracking,

and/or using tracking with a fish-eye camera [9, 59]. The information obtained using this type

of algorithms can be used in depth-based keying, shadow computation, object segmentation and

general mixed reality systems. Furthermore, this information can be also used to detect and track

pipeline features, such as junction, bends and obstacles, which extract the features fitting cylinders

and cones to depth images acquired inside the pipe [115]. Another application of this type of

analysis was made to be used for parking assistance which uses a RANSAC8 algorithm in order to

fit planes in the 3D data for the recognition of ramps and curbs [34].

Another interesting application is related to head detection in order to create a system which

deploys the airbag of the car as a function of the head position [30]. Another application includes

the recognition of different types of seat-occupant, such as child, child seat, adult, etc. For example,

in order to deploy the airbag when the face is too close. For this purpose, an algorithm was devel-

oped, that tracks the human body based on Reeb graphs extracted from the range data [22] and 3D

skeleton [21].

8 RANSAC is an abbreviation for ”RANdom SAmple Consensus”. It is an iterative method to estimate parameters of a

mathematical model from a set of observed data which contains outliers.
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In the medical area, there are many applications, regarding compensation of the respiratory mo-

tion or gating the capture in different modalities of medical imaging. In this area, a ToF cam-

era was also used to measure the respiratory motion, allowing a compensation of the motion in

different medical applications with a precision of 0.1mm, which is competitive to other images

approaches [93, 101]. In addition, this respiratory motion detection can be used to monitor respi-

ration during sleep and to recognize any sleep disorder such as sleep apnea [27]. Another medical

application is the re-positioning of a patient to a previously examination using a ToF camera. The

ToF camera can be used to register rigidly 3D-3D surfaces, in order to align the patient body and

the previous position, with a resultant error of about 2.8 mm for translation and 0.28 degrees for

rotation of the human body [100]. Another technique for analyzing scene was presented in [114]

which uses a ToF camera to create an articulated scene model with the help of the foreground ex-

traction (static objects) and background (moving object) easily provided by a 3D camera, including

an analysis of the interaction between the moving objects. Furthermore, ToF cameras allow us to

make real-time depth keying in the dynamic 3D scene in order to segment the foreground object,

which can be inserted in an artificial rendered 2D background.

3.4.6. Segmentation

Segmentation is a hard procedure, where a computer has to distinguish between the foreground

and background. Nevertheless, the segmentation task using a ToF camera reduce the difficulty due

to the use of the depth in order to segment. For example, when a person is moving in a scene,

the person changes his/her depth w.r.t.the background, allowing us to find easier and faster the

object which we want to segment. One way to segment is to make a bilateral filtering of the object

boundary based on 2D/3D images [17].

3.4.7. Multi-camera view

The ToF camera can also be utilized to improve multi-camera view systems. As a ToF camera pro-

vides a depth map observed by the camera, a multi-view system can be calibrated with the ToF

camera in order to use its 3D data for the improvement of the 3D reconstruction, distinguishing oc-

clusion and concave surfaces. One example was developed by Guan et al. [35], where a combination

of multiple ToF cameras and a multi-view system was made to reconstruct the scene integrating

a Shape-from-Silhouettes reconstruction with ToF range data. They use the color cameras and a

group of ToF cameras working with slightly different modulation frequency together to extract the

silhouette and thus, the 3D object volume using a probability model for the occupancy in the time.

Besides, another multi-ToF system focuses on fusing depth images to build 3D reconstructions re-

lying on occupancy probability grids which was presented by Kim et al. [56].

3.4.8. User Interaction

One of the first applications of a ToF camera was an interactive screen which tracks the hand to have

a touch-free interaction [89]. Also, a similar work was made by Soutchek et al. [107] but applied for

touch-free navigation of 3D medical visualization. Another interaction system was made by Haker

et al. [40], which consists of a touch-free mouse. This mouse uses the nose as the pointer which
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can be used as keyboard, Dasher control, etc. The tracker uses a special set of features related

to the geometry and multidimensional signals, which are utilized to classify bounding boxes and

therefore, to determine robustly the position of the nose in the image. The classifier has to be

trained with a set of labeled sample images and it is used with a very simple classifier, allowing the

extension to another objects. Furthermore, its robustness can be increased using also the intensity

image. A similar approach was developed by Witzner [119] which detects faces using the intensity

and depth images and segments heads utilizing active contours. One extension of the touch-free

mouse was made in [41] which detects the direction of the pointing of the hand. This type of

interaction can be used to discriminate if the user is pointing to the system or if he is interacting

with other people. One application is to use this pointing to control a slide-show presentation,

which depends on the pointing direction on the screen and on the motion of the hand, which

gives different instructions to the presentation system, e.g., next/previous slide, laser point, etc.

An important application of the user interaction was used in the operating system [94, 107], which

allows the physician to use hand gesture and hand movements to control robustly a mark-less 3D

medical visualization system and/or a medical imaging system in real-time.

3.4.9. Gesture Recognition and Tracking

Holte et al. [44] use the range data to recognize gesture using the motion, which is detected em-

ploying band-pass filtered difference of consecutive range images. This group made an extension

of the system to recognize full-body gesture including spherical harmonics [45]. In addition, the

ToF cameras were used to fit articulated human models, not only full-body articulated [129], but

also partially articulated [61, 51]. In [129], some features in the body from range data are tracked

and an articulated human model is fitted to estimate the pose of the body. Furthermore, a gait

analysis was implemented in [51] which fits a foot-leg-torso articulated model, and estimates the

pose using pose-cut algorithm. The pose-cut algorithm minimizes the cost function, based on a

Conditional Random Field (CRF) which combines all information of the image (edges, background

and foreground), previous pose and shape of the person in a probabilistic Bayesian framework.

In [38], a system using a ToF camera and RGB cameras allows tracking people in order to analyze

the visible actions. This work is based on a refined shape-from-silhouette algorithm which uses

a binary segmentation from RGB and range data. Additionally, another tracking algorithm was

made in [42] which uses only a ToF camera, observing the scene at an oblique angle and segments

3D data into non-background clusters. The system, also merges and removes individual clusters in

the tracking, due to the occlusion between the objects in the scene. Besides, a range flow estimation

was applied to ToF depth data, which can help in the interpretation of complex gesture, camera

motion, or object motion[103].
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4. Simultaneous Localization and Mapping

(SLAM) in Endoscopic images

THis chapter explains a proposed Simultaneous Localization and Mapping (SLAM) applied to

endoscopic videos. This SLAM is based on the work of Davison [20], but we modified the

feature tracking, in order to have better results in endoscopic sequences. This chapter is composed

of an introduction, related work, proposed method and results. The introduction explains the

motivation of applying SLAM to endoscopic sequences, and its general challenges and difficulties

in this type of sequences. The related work shows not only the monocular SLAM but also the

works of SLAM applied to medical images, giving a general overview of the state of art of SLAM

in medical imaging.

4.1. Introduction

The esophageal cancer is a highly lateral disease affecting a significant percentage of the population

in the United States and in the Western World [28, 106]. Recent technological developments pro-

vide powerful tools, such as a white light endoscopy, narrow-band endoscopic imaging (NBI) and

auto-fluorescence imaging (AFI), which allow an advanced visualization of the malignant tissue.

Current gold standard protocol for screening and surveillance of the esophageal cancer, known

as Gastrointestinal (GI) endoscopy, consists of visual examination of the esophagus surface under

endoscopic guidance and acquisition of biopsies from endoscopically visible lesions. The first time

screening is followed by surveillance endoscopies at regular intervals in order to track the evolu-

tion of the malignant tissue. This protocol requires identification and re-targeting of the examined

regions in the surveillance endoscopy for potential biopsy acquisition. However, currently there

is no method available for accurate localization of these regions or re-targeting of previous biopsy

sites, under endoscopic guidance.

In this work, we explore the possibility of creating a patient-specific visualization of the esoph-

agus from endoscopic images by performing a 3D reconstruction of its surface. Such a 3D visual-

ization of the esophageal surface can help the endoscopist as a road-map and provide a significant

support for re-targeting the biopsy sites during the surveillance procedure.

Reconstruction of the esophagus surface from endoscopic videos involves several challenges:

the esophagus tissue presents big deformations, which may greatly modify the appearance of the

tissue; moreover, several factors affect the quality of the images, e.g. liquid inside the esophagus

generates bubbles (Figure 4.1-a) or specular highlights (see Figure 4.1-b), and a fast motion of the

camera leads to blurred images (Figure 4.1-c).

In this work, we investigate the feasibility of using Monocular Simultaneous Localization and

Mapping (MonoSLAM) [20] for 3D reconstruction of the esophagus surface, in presence of the
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(a) (b) (c)

Figure 4.1.: Challenges of endoscopic video images. Liquid inside the esophagus creates bubbles

(a) and specular highlights (b). Also, the camera motion leads to blurred images (c).

above-mentioned challenges. We discuss the extensions required for its application in monocular

endoscopic videos and demonstrate that MonoSLAM is a promising framework for 3D visualiza-

tion of esophageal tissue.

Our approach consists of the following steps: First, in-vivo images are pre-processed in order

to remove blurred frames and to enhance edges. Second, Scale Invariant Features (SIFT) [75] are

detected and tracked in consecutive frames, using template matching [20, 91] and the Efficient

Second-order Minimization (ESM) tracking algorithm [13]. As the video advances, new features

are detected and tracked. Then, the MonoSLAM [20] framework, is employed for both, to create a

3D map of the tracked features, and to localize the endoscope (6 DoFs) within this map, simultane-

ously. Finally, we approximate the observed esophagus surface by linking the features in 3D with

a Delaunay triangulation. We also map the endoscopic image tissue texture (from the endoscopic

image) to the approximated 3D surface, to facilitate the visualization.

We illustrate our approach on a video sequence acquired with an NBI endoscope. We are able to

reconstruct segments of the surface up to for to 35 frames. This upper bound depends on the results

of feature tracking and thus, indirectly, on the quality of the video. The fast camera motions or the

large number of blurred images prevent us from reconstructing larger segments, due to the lack of

successfully tracked features after a period of time. We also analyze the improvement, achieved by

integrating the ESM tracker into the MonoSLAM framework.

4.2. Related Work

The reconstruction of 3D surfaces from videos is a well-established research area in the computer

vision community [20, 5]. In the medical field, there has been an increasing interest in 3D sur-

face reconstruction from endoscopic image sequences [85, 86, 91, 97, 109, 120, 125]. Stoyanov et

al. [109] present a method for depth recovery from stereo laparoscopic images of deformable soft-

tissue reconstruction. Mourgues et al. [86] propose a correlation-based stereo method for surface

reconstruction and organ modeling from stereo endoscopic images. Quartucci et al. [97] apply

a shape-from-shading technique to estimate the surface shape by recovering the depth informa-

tion from the surface illumination. Methods in [86, 97, 109] provide a dense reconstruction of the
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observed surface under well-behaved imaging conditions. However, they are computationally ex-

pensive and provide only a reconstruction from two contiguous or stereo images. In practice, in

order to localize the endoscope with respect to the observed surface, a longer-term reconstruction

is desirable. Such a reconstruction would require the 3D registration of the individually estimated

surfaces; however, this procedure is difficult and can easily fail under the challenging imaging

conditions of the endoscopic scene.

Introducing a-priori knowledge of the scene can alleviate the computational cost of dense recon-

structions. For instance, Zhou et al. [125] reconstruct the 3D structure using a Circular Generalized

Cylinder (CGC) model by representing and parameterizing the esophagus as a tube formed by a

series of 3D circles. A second cost reducing strategy, is the use of features as opposed to dense

models. The same group has developed a 3D imaging by synthesizing stereoscopic views from a

monocular endoscope [126].

Recently, a number of feature-based techniques have been applied for 3D reconstruction from

endoscopic videos [85, 117, 120]. Feature-based matching approaches are able to handle wide-

angle viewpoint changes and small overlapping regions. In consequence, they are suitable for

long-term reconstructions from conventional endoscopic examinations. An example of feature-

based methods is the work of Wang et al. [117], who track Scale Invariant Features (SIFT) [75] in

the endoscopic sequence, and use Adaptive Scale Kernel Consensus (ASKC) for robust motion

estimation. Likewise, Wu et al. [120] track SIFT features but use an iterative factorization method

for structure estimation. Similar to [117, 120], we use SIFT to detect features. This choice is driven

by the properties of SIFT, which allows us to identify distinctive candidate features for tracking

at different scales (in scale space). As opposed to [117, 120], we do not use SIFT matching to find

correspondences from one video frame to the next. This is to avoid the potentially large number

of false correspondences (outliers), that SIFT matching may find due to the homogeneity of the

esophagus surface. Instead, we use two methods for tracking the detected features: the ESM tracker

and a NCC-based template tracking. We show that the use of ESM improves the results of the

reconstruction, when compared to those of the template matching alone. Furthermore, we rely on

the incertitude of the current map estimate to constraint the search space.

The estimation of the surface is also different from the approaches presented in [117, 120]. We

model the problem as an instance of SLAM (Simultaneous Localization and Mapping). The SLAM

framework allows us to consistently gather the information collected up to the current frame, and

incrementally reconstruct a map (3D surface model), online, i.e.as the endoscope moves. Simul-

taneously, the position of the camera inside the reconstructed model is recovered. Mountney et

al. [85, 84] presents a very similar work to ours, who have used SLAM for building a 3D map of

the scene for minimally invasive endoscopic surgery with a stereoscopic endoscope. As opposed

to [85, 84], we explore the possibility of reconstructing segments of the surface from a monocular

endoscope, which is the standard tool used in current GI-endoscopy protocol.

In summary, the method proposed in this work is a feature-based approach using the SLAM

framework, which provides estimations of the surface and the camera position online. Specifically,

we use the MonoSLAM [20] algorithm designed for reconstruction of conventional indoor spaces.

Extensions adapting MonoSLAM to the challenges of in-vivo images are proposed and discussed.

47



4. Simultaneous Localization and Mapping (SLAM) in Endoscopic images

4.3. Proposed Method

The goal of this work is to build a 3D visualization of the esophagus surface in order to assist

endoscopist in the localization and re-targeting tasks. The proposed method aims at reconstructing

segments of the esophagus surface from a monocular endoscopic image sequence. By formulating

the problem within the SLAM framework, we are able to build a 3D map of the observed scene,

while simultaneously localizing the camera in the reconstructed 3D map.

Our solution is based on the MonoSLAM [20] algorithm, which was originally designed to recon-

struct the map of rigid scenes, mainly of indoor environments. The algorithm starts by detecting

features (interest points) in the images, and tracking them along the video. A first rough reconstruc-

tion of the map/surface is obtained using the internal parameters of the camera and some initial

estimate of the depth of the features. Then, the map is built incrementally and refined as new

images are acquired. The incremental procedure alternates between the estimation of the camera

position and the 3D construction/update of the features that constitute the map. The alternation

is a solution to the ill-posed nature of simultaneous estimation of both camera position and the

features. In this way, given an estimated camera location, the position of the features in 3D can be

updated and new features added. Conversely, knowing the position of the 3D features and their

projection on the current image, an update of the camera position can be estimated.

The result at each frame is a map consisting of a collection of 3D points, as well as the current

camera position. In order to reduce the effect of noisy measurements, the update is done through a

Kalman Filter, as explained in the Reconstruction section.

Naturally, the quality of the reconstructed map depends on the results of tracking the feature

points in the images. In order to improve the results of the template-matching method in [20], we

combine the MonoSLAM algorithm with the ESM tracker [13]. The procedure is described in the

Feature Tracking section.

Additionally, endoscopic image sequences present several practical issues that make the tracking

task more difficult. First, the scene (here, the esophagus surface) may be subject to deformations;

this breaks the rigidity assumption of MonoSLAM. Second, the images can be blurred due to the

presence of water, or as a consequence of fast camera motion. Finally, the detection and tracking

of features in in-vivo endoscopic images is more difficult than in an indoor environment, since the

latter does not contain the corner-like features (high frequency variation of the image), which can

be reliably tracked in video sequences; instead, endoscopic images of soft-tissue mainly consists of

homogeneous regions and lack of the discriminative features. To overcome the difficulties of endo-

scopic videos, we preprocess the images. In particular, we remove blurred images and enhance the

edges in order to improve the tracking results.

Summarily, the proposed method begins with the image-preprocessing step. Following this, SIFT

features are detected in every frame, and tracked using either ESM or NCC template matching. Si-

multaneously, the results of detection and tracking are used within the MonoSLAM [20] framework

in order to recover the 3D position of the features as the camera moves. A Kalman filter is used to

update the 3D position of the features and the camera. Finally, a surface approximation is obtained

with a 3D approximate Delaunay triangulation of the 3D features. In the following sections we

describe the different stages of the method in details.
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4.3.1. Image preprocessing

Endoscopic images present several challenges. In the preprocessing step we discard blurred im-

ages, and we enhance the ridge structures to improve the tracking results.

To remove the blurred images, the standard deviation of the colors in the image is calculated.

Blurred images tend to have a very small variation of colors; thus, the standard deviation σC serves

as a measure of blurriness. If the value of σC is below a threshold (τB), then the image is classified

as blurred and skipped.

The enhancement of the edge structures consists of accentuating the high frequency information

of the image. High frequency information is easily obtained by comparing the images, before and

after applying a Gaussian filter. The procedure allows us to highlight the vessels observed in the

stomach and esophagus.

The image operations are described in Equation 4.1. The enhanced image I is obtained from

the sum of the original image IO with the edge image IE . The edge image is in turn obtained by

subtracting the low frequency components of IO, i.e. subtracting a low-pass filtered image IL. To

compute the blurred image IL, the original image is subsequently convolved with Gaussian kernels

at different scales (in our experiments S = 9).

I = IO + IE = IO + (IO − IL)

I = IO + (IO − (GS ⊗ (G · · · ⊗ (G5 ⊗ (G3 ⊗ IO))))) (4.1)

The result of enhancement is illustrated in Figure 4.2. Vessels in Figure 4.2-a are highlighted after

the procedure (Figure 4.2-b). Similarly the structure indicated by the arrow in Figure 4.2-c is easier

to detect after the enhancement.

(a) (b) (c) (d)

Figure 4.2.: Enhancing the edge structures in the images to improve the tracking results. Edge struc-

tures are more distinct in the enhanced images (b and d) with respect to the original (a

and c).

4.3.2. Feature Detection

After preprocessing the images, the MonoSLAM algorithm [20] is used to reconstruct the model of

the observed surface and estimate the camera position. In order to achieve this goal, MonoSLAM

incrementally gathers and filters the information coming from image observations or measurements.
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Since a single camera is used, the measurements consist of the position of meaningful features in

each of the images.

Features correspond to distinctive local patches in the images. The distinctiveness should permit

to easily localize them in a new incoming image. Their position will later provide the information

to infer the relative motion of the scene, from one frame to the next. There are different ways to

extract such distinctive patches from the images; we employ the SIFT detector described in [75].

In every frame, we select the best 20 features adjusting the peak threshold (τSIFT ). To add a new

feature, we also verify that the new detected and tracked patches do not overlap. Finally features

detected in specular highlights are removed by identifying if the patch, which is describing the

feature, contains a large amount of saturated pixels.

4.3.3. Feature Tracking

After detection, we track the features in the video as the camera is moving. We use two methods

for tracking. The first is a template-matching algorithm based on the normalized cross-correlation

(NCC) [20, 91] similarity measure. The second is the Efficient Second-order approximation Method

(ESM) [13], which is based on a non-linear optimization. Both of these methods allow us to find the

position of the features in the new image.

Each feature is described with a template J consisting of the patch around the detected feature.

The NCC template tracking consists in searching a similar patch by sliding a window over a new

incoming image I . As the window is slid within a search region, the intensity values between the

template and the window are compared using the NCC similarity measure. A vector d = (di, dj)
⊺

defines the displacement of the window. The displacement d with the highest NCC score deter-

mines the new position of the patch. Given the template J , the new image I , and a displacement

in the second image d, the NCC is computed as:

NCC(di, dj) =
1

n2

n2

∑

i,j

(

J(i, j)− J̄
) (

I(i+ di, j + dj)− Ī
)

σJσI

(4.2)

where J(i, j) denotes the intensity values at location (i, j) of the initial template J , and I(i +

di, j + dj) stands for intensity values at (i + di, j + dj) of the displaced window. J̄ and Ī are the

mean intensity values of the template J , and of the current window in I , respectively. Similarly,

σJ and σI represent the standard deviation of their intensities. Finally, n denotes both the width

and height of the (squared) patch. The optimal displacement d provides the position estimate of

the tracked feature (patch) in the current frame.

The second method used for tracking is ESM [13]. ESM is a real-time algorithm based on the non-

linear optimization of the sum-of-squared-difference between a given template J and the current

image I :

SSD(di, dj) =
1

n2

n2

∑

i,j

((

J(i, j)− J̄
)

−
(

I(i+ di, j + dj)− Ī
))2

(4.3)

The optimization in ESM is based on an efficient approximation of the SSD (Refer to [13] for an

in depth explanation). We have chosen ESM over other tracking methods because of its efficiency
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and high convergence rate. One of its major advantages is handling changes of the template due to

the 3D motion of planar patches describing the features.

In every new image, we track the features from previous frames using ESM. Unfortunately, given

the mentioned difficulties of endoscopic images, it is not always possible to maintain the track of

features for long sequences of frames. In order to guarantee that the result ESM tracking is valid,

we retain the estimated position of the feature only if it is coherent with the SLAM prediction

(see section Reconstruction), i.e. if it falls within the uncertainty region of the feature’s predicted

location. In case this test fails, the NCC template tracking is used. Finally, if NCC also fails the

test, no measurement for that feature is provided and the new position is only updated with the

Kalman Filter prediction. This strategy allows us to maintain a reasonable amount of features

tracked at each frame.

4.3.4. Reconstruction

The reconstruction is build by triangulating 3D points that lie on the surface of interest. To estimate

and update the 3D points from the image observations (in this case tracked features) we use the

MonoSLAM [20] algorithm. This solution is based on an Extended Kalman Filter (EKF) to update

the feature and the camera positions with every new image in the video. In this section, we recall

the main steps of the MonoSLAM algorithm.

The goal of SLAM is to estimate a map of an observed scene, as well as the trajectory of the cam-

era within the map. In the feature-based case, the map is composed of a series of 3D features (also

known as landmarks). For the endoscopic application, the problem can be restated simultaneously,

estimating the 3D position of some key points on the surface of the esophagus while localizing the

endoscope. At the end of the acquisition, the map and the camera trajectory can be visualized in a

common global coordinate system.

In EKF-SLAM, the position and orientation of both, the features and the camera, are represented

using state vectors and updated with dynamical systems. The camera state vector x is composed

of a vector containing the 3D position r, the orientation q, and the linear and angular velocities v

and ω of the camera, as shown in Equation 4.4.

x =
Ä

r q v ω
ä⊺

, (4.4)

Likewise, each 3D feature i ∈ {1, · · · , Nk} (with Nk the current number of features) is assigned a

state vector that consists of the 3D position.

The camera motion and the feature locations are updated using two dynamic models. These

models allow us to predict the camera and feature positions at each time step k.

xk = f(xk−1) + wk (4.5)

The camera dynamics model (Equation 4.5) is composed of a non-linear function f depending on

the previous camera location xk−1, plus a zero-mean Gaussian noise wk with covariance Qk. It is

assumed that the camera has constant linear and angular acceleration between times k − 1 and k,

and that accelerations are random processes, following a zero-mean Gaussian distribution.
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A second dynamic system is used to model the measurement or observation process. Our mea-

surements consist of the tracked 2D features in the images. Therefore, the observation model cor-

responds to the pinhole projection plus the distortion. In this case, a function h is used to model

the projection of the 3D feature yi on to the image; h is a function of the location of the feature yi,k

and the camera state xk, and contains the pre-computed internal and distortion parameters of the

endoscope. The resultant model of the observation process is given as:

zi,k = h(xk, yi,k) + vk, (4.6)

where zi,k denotes the 2D position of the feature in the image at time k. As before, a zero-mean

additive Gaussian noise vk is considered, this time with covariance Rk.

In terms of the dynamic systems, the goal of SLAM is to provide an estimate for the full state vec-

tor X̂ , composed of the camera position x̂k and the collection of features Y =
î

ŷk1 ŷk2 · · · ŷkN
ó⊺

.

We use the notation ,̂ to refer to the estimated values. Since a Kalman-based solution is used in [20],

a covariance matrix P is associated to the state vector X̂ (see Equation 5.22). P provides an uncer-

tainty measure of the current estimates of the camera Pxx and map PY Y , as well as the correlation

between them (PxY and PY x).

X̂ =

Ç

x̂k

Ŷk

å

,P =

ñ

Pxx PxY

PY x PY Y

ô

. (4.7)

The algorithm to compute the estimates for x̂k and yki proposed in [20] consists of two recursive

steps. The first step is a prediction or time-update and the second, a correction or measurement-update.

The time-update estimates the new camera position and its covariance when going from time

k − 1 to k. The update is computed using Equations 4.8 and 4.9. The position and velocities are

computed with an impulse of acceleration. The covariance Pxx at time k − 1 is updated according

the rate of change of the current camera estimate; this is computed from ∇f , the Jacobian of f

evaluated at x̂k−1. Additionally, the covariance update accumulates the covariance Qk from the

disturbance error in Equation 4.5.

x̂k|k−1 =f(x̂k−1) (4.8)

Pxx,k|k−1 =∇f · Pxx,k−1 · ∇f
⊺ +Qk, (4.9)

The observation-update deals with the estimation of both, the camera and 3D feature states, given

the observed image features Z =
î

zk1 zk2 · · · zkN
ó⊺

at time k. Z is actually the result of

the tracking procedure described in the previous section. The computations of the estimates are

done, following the Extended Kalman Filtering. The map and the camera state are updated from

their previous state (Equation 4.10) using the optimal Kalman gain Wk and the error e between

the measures and the predicted positions of the 2D features (e =
[

Zk − h(x̂k|k−1, ŷk−1)
]

). The

prediction uses the results of the time-update, noted as k|k − 1 in the subscript of the camera state

x̂k|k−1. The full covariance P is updated with Equations 4.11 to 4.13, where ∇h is the Jacobian of h

evaluated at x̂k|k−1 and Ŷk−1.
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ñ

x̂k|k
Ŷk

ô

=

ñ

x̂k|k−1

Ŷk−1

ô

+Wk

[

Zk − h(x̂k|k−1, ŷk−1)
]

(4.10)

Pk|k = Pk|k−1 −WkSkW
⊺

k (4.11)

Sk = ∇hPk|k−1∇h
⊺ +Rk (4.12)

Wk = Pk|k−1∇h
⊺S−1

k (4.13)

The two updates (time and measurement) are each one repeated when a new image arrives. In

this way, the 3D map and the camera trajectory are built increasingly.

As mentioned above, zi,k are the results of the tracking stage. Thus, we consider that a feature is

lost, if it falls beyond the uncertainty ellipse around their predicted location ẑi,k. Furthermore, the

current map and camera position and orientation estimates provide a mean to predict the change of

appearance of each template, due to perspective distortion. Thus, to improve the tracking results,

the template patch is transformed (warped) according to the estimated 3D location of the current

feature yi,k, and the camera current state xk using the observation model h, i.e. ẑi,k = h(xk, yi,k). At

the end, the warp permits to correct the projective transformation induced by different viewpoint

angles after the camera motion [20].

To initialize the SLAM algorithm an initial estimate of the depth is required. First, we manually

select a feature to fix the scale of the scene (the reconstruction will be up to scale). Then, all the

features are initialized with uniform uncertainty shaped as a 3D Gaussian.

The summary of the MonoSLAM method presented in this section is provided for completeness.

Readers should refer to the original publication [20] for further details. The result of applying

the overall method is a series of 3D points modeling the surface of the esophagus, as well as the

trajectory traveled by the camera. These estimates are updated online, as the endoscopic video

acquisition advances. When the number of tracked features becomes insufficient, the current re-

construction is stopped. A new segment of the reconstructed surface starts when a reliable number

of features ( 10) is detected and tracked again.

4.4. Experimental Results

The patient data for the experiments was acquired during an endoscopic examination, using Olym-

pus Exera II endoscope with NBI image enhancement. NBI provides an enhancement of the con-

trast in the mucosal pattern and submucosal vasculature [124, 19]. As a consequence, the visual-

ization of the structure in the tissue is improved, allowing for more robust feature detection and

tracking.

Our proposed approach was applied to NBI patient data. Three 3 sequences of 10, 20, and 30

consecutive frames respectively were successfully reconstructed. Some of the tracking results are

shown in Figure 4.4. The red boxes show the tracked features, blue boxes illustrate the predicted

position of the features in the image when tracking fails. The position of the features and the

trajectory of the camera are shown in Figure 4.4. The surface then has been approximated with a

mesh and the texture of the tissue has been mapped onto the approximated surface. Results of the

evolution of the algorithm for two of the reconstructed segments are shown in Figure 4.4.
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(a) (b)

Figure 4.3.: Results of Tracking of Surface 1 (a) and Surface 2 (b).

Finally, we demonstrate in Figure 4.3 the improved performance of the algorithm, when using

the combined tracking strategy (the ESM tracker and the NCC template matching). We also show

the results when using the original images as compared to the preprocessed images. Briefly, these

two modifications allow us to track a larger number of features, for larger periods of time.

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 4.4.: (a), (b), (c) and (d) are the sequence of images in the estimation of the Surface 1. (e), (f),

(g) and (h) are the sequence of images in the estimation of the Surface 2. The color of

the circle represents the depth of the feature, being white the furthest feature and black

the nearest feature.
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5. Simultaneous Localization and Mapping

(SLAM) combining Time-of-Flight (ToF)

and High-Resolution cameras

THis Chapter introduces the proposed extension of Monocular Simultaneous Localization and

Mapping (SLAM) [20] in order to be used with the new camera generation RGB-D, i.e., a

SLAM algorithm which utilize a sensor that provides a color information (RGB) and a depth (D).

This extension incorporates the depth information into the internal models of the SLAM algorithm.

This proposed extension is evaluated using a combination of a ToF and a High-Resolution cameras.

The results show an improvement in the recovered camera trajectory compared to using the normal

MonoSLAM. Following, an Introduction, a related work, a problem statement, a proposed method

and an experimental validation are presented.

5.1. Introduction

The simultaneous localization and mapping (SLAM) problem consists of finding the position of

an object (e.g. robot, camera, etc.) in a map, while simultaneously building the map as the object

is moving [24, 7]. Although SLAM has been widely studied in robotics and computer vision, it

remains challenging due to the ill-posed nature of the problem, especially when an online perfor-

mance is desired. A large variety of SLAM approaches have been proposed, that differ both in the

type of sensors used (e.g onboard laser scanners [116, 88] or cameras [20, 83, 57, 87]) and in the

actual algorithms used to estimate the map and sensor positions [110]. Given their availability and

flexibility, the use of cameras has become very popular. One reference algorithm that solves SLAM

from image data is the Monocular SLAM (MonoSLAM) proposed by Davison et al. [20]. In the

MonoSLAM approach, the map is composed of 3D features that are estimated (up to scale) from

a calibrated camera and image correspondences in two consecutive views. The estimation of the

map and the camera position are alternated. The problem is formulated in terms of two dynamic

systems that model the motion of the camera, the measurement (imaging) process and the noise.

To find the current state of the systems an Extended Kalman filter is used. Several extensions to the

original method have been proposed, for example, that employs stereo cameras [81, 85] to recover a

more precise estimation of the 3D position of the features. In this work, we investigate an extension

to the MonoSLAM algorithm for a combined High-Resolution Time of Flight (HR-ToF) camera. As

opposed to the above stereo approaches, the use of direct depth measures provided by the ToF

camera enable our method to work under non-textured surfaces and poor lighting conditions.

In the last few years, there have been increasing advancements in the development of Time of

Flight (ToF) cameras. ToF devices have faster frame rates (∼40 fps) than laser scanners (∼2 fps) [116,
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The ToF camera provides at least two images: the depth (Fig.5.1-c) and the amplitude (Fig.5.1-d).

The depth image gives the measured distance between the reflecting surface and each pixel in the

sensor. The amplitude image captures at every pixel the amount of IR light that was reflected back

to the camera. The amplitude serves as a quality measure of the depth, as poor quality measures

arise from low-amplitudes. In addition, the ToF camera may also provide an offset image (Fig.5.1-e),

which is usually used as gray-scale image. The amplitude and the offset images can be used to cali-

brate the intrinsic and external parameters of the camera, as well as, the distortion parameters. The

calibration procedure is equivalent to the used for high-resolution cameras, e.g.moving a known

calibration pattern (chessboard) in front of the camera and optimizing the intrinsic and distortion

parameters over a video sequence.

In order to simulate the behavior of a combined sensor capable of measuring reflected light and

depth, a high resolution and a ToF cameras are mounted in a rigid stereo set-up, as illustrated in

Figure 5.1-a. The relation between the two views is then found by performing a standard stereo

calibration with the amplitude or offset image, moving a checkerboard in front of the cameras.

To give a depth estimate to each pixel in the high resolution image, we use an inverse weighted

distance interpolation. This method gives a depth value λ(p) to pixel with coordinates p based on

a weighted average of M available depth values λi at neighboring positions pi (1 ≤ i ≤M ) :

λ(p) =
M
∑

i=0

wi(p)
∑M

j=0 wj(p)
λi. (5.1)

where weights wi are computed as wi(p) = 1
dist(p,pi)d

(we use d = 1). The number of neighbors

M is determined by the number of depth values being projected to a fix window size around p,

30 × 30 in our experiments. This interpolation allows us to handle the uneven distribution of the

depth values when projected to the high resolution image.

5.3. Problem Statement: Feature-based SLAM

Our goal is to solve the SLAM problem using the combined HR-ToF sensor described above. We

follow the standard formulation of feature-based SLAM based on dynamic systems modeling the

motion of the sensor and the measurement process. In [20], image measurements are obtained by

establishing feature correspondences in the images over time. Depth measurements are computed

using the camera geometry (calibration) and its estimated motion. We introduce an extension,

where the depth estimates are directly obtained from the combined HR-ToF sensor. The extension

includes the depth in the state vector, and modifies the measurement model and the observation

update (see details in section 5.4). In the following, we state the SLAM problem formally and we

explain the extension to depth measures.

SLAM is the problem of localizing an object (here a camera) in a map that is being simultaneously

built. In the dynamic system formulation of SLAM [24, 7, 20], the position of both the sensor

(camera) x and the map Y are modeled to be state vectors that evolve over time. The map is

considered to be a collection of N features, whose 3D positions at time k are denoted yi,k and

grouped in a vector:

Yk =
Ä

y1,k y2,k ... yN,k

ä⊤
. (5.2)
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The state vector of the camera xk in the k-th frame is composed of the camera 3D position rw,

orientation (in quaternions) qwc, velocity vw and angular velocity ωc, that is:

xk =
Ä

rw qwc vw ωc
ä⊤

, (5.3)

where superscripts indicate the world (w) and camera (c) coordinate systems.

The evolution of the two state vectors, the camera position xk and the map Yk, is modeled in

terms of two dynamic systems. First, the camera motion model, that determines the state vector of

the camera xk at instant k by means of a function f . Second, the measurement model, that models the

measurement process by means of a function h that relates the actual feature positions Yk to their

measurements Zk =
Ä

z1,k z2,k ... zN,k

ä⊤
. The two dynamic systems take the form:

xk = f(xk−1, uk) + wk, (5.4)

Zk = h(xk, Y ) + vk. (5.5)

Eq. 5.4 predicts the camera position at time k as a function of its previous state xk−1, an optional

input uk and a motion disturbance wk modeled with a zero-mean Gaussian distribution with co-

variance Qk. In Eq. 5.5, h(xk, Y ) models the measurement process, and vk is the measurement

disturbance modeled again with a zero-mean Gaussian distribution with covariance Rk. Notice

that in the case of the combined HR-ToF sensor, h needs to take in account the depth measures, as

explained in section 5.4.

Given the above formulation, the SLAM problem becomes by finding the estimates of the full

state vector, composed of the camera and the map state vectors [x̂k Ŷk]
⊤ where â is used to denote

variable estimates.

5.4. Proposed Method: HR-ToF SLAM

One common solution to the problem is to estimate the state vector by means of an Extended

Kalman Filter (EKF) [118]. Kalman based algorithms compute the estimate of the state vector de-

scribing the camera x̂k and the feature positions Ŷk in two recursive steps: a prediction (time-

update) and a correction (measurement-update). As an auxiliary outcome of the Kalman filtering,

a covariance matrix P is obtained representing the uncertainty of each estimation:

P =

Ç

Pxx PxY

PY x PY Y

å

. (5.6)

In sections 5.4.1 and 5.4.2 we describe the updates, the instantiation of the motion-model and

the extension introduced to the measurement model, in order to consider the combined HR-ToF

images.

5.4.1. Time Update

As described in [20], the time-update upgrades the camera position at time k given conditions at

time k − 1. More precisely, the updated state of the camera x̂k|k−1 is first predicted based on its
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motion during previous frames. The covariance matrix corresponding to the camera position Pxx

is updated accordingly. The time update is resumed in the following equations:

x̂k|k−1 = f(x̂k−1|k−1, uk), (5.7)

Pxx,k|k−1 = ∇f · Pxx,k−1|k−1 · ∇f
⊤ +Qk, (5.8)

where ∇f is the Jacobian of function f evaluated at time k − 1. The explicit dynamic model of the

camera motion is x̂k|k−1 = f(x̂k−1, uk) =
à

rwk|k−1

qwc
k|k−1

vwk|k−1

ωc
k|k−1

í

=

á

rwk−1 + (vwk−1 +∆vw) ·∆t

qwc
k−1 × q((ωc

k−1 +∆ωc) ·∆t)

vwk−1 +∆vw

ωc
k−1 +∆ωc

ë

, (5.9)

where q((ωc
k−1 +∆ωc) ·∆t) is the angle change due to angular velocity in the quaternion represen-

tation. The velocities change per time step ∆t is modeled as:

∆vw = aw ·∆t, (5.10)

∆ωc = αc ·∆t, (5.11)

where the acceleration aw and the angular acceleration αc are modeled as processes of Gaussian

distribution and zero mean (refer to [20] for details).

5.4.2. Observation Update

The observation-update describes the new position of both the camera x̂k|k and the map Ŷk given

newly observed feature positions Zk in the combined HR-ToF images at time k, and the updated

x̂k|k−1. The positions are upgraded according to the error in the prediction Zk − h(x̂k|k−1, Ŷk−1)

and the optimal Kalman gain matrix Wk:
ñ

x̂k|k
Ŷk

ô

=

ñ

x̂k|k−1

Ŷk−1

ô

+

Wk

î

Zk − h(x̂k|k−1, Ŷk−1)
ó

, (5.12)

Pk|k = Pk|k−1 −Wk · Sk ·W
⊤
k , (5.13)

where Sk is the innovation or residual covariance matrix representing the uncertainty of the pre-

diction at time k (see section 5.4.2 for computation details). Notice that here, Zk is the collection of

measurements obtained with the combined HR-ToF sensor, i.e.zi,k = (ui vi λi)
⊤, where λi is the

depth value at image coordinates ui, vi, and 1 ≤ i ≤ N .

In order to relate the 3D features Yk to the image (2D) and the depth measurements contained

in Zk, the pinhole camera model with an invertible distortion model is used. The position of the

features in the image plane is computed by projecting the expected positions h(x̂k|k−1, Ŷk−1) of the

3D features Yk−1 given the updated camera position x̂k|k−1 and using the intrinsic and distortion

parameters. Let hc
i be the result of the prediction h(x̂k|k−1, ŷi,k−1) in the camera coordinate system

for a feature i, with 1 ≤ i ≤ N , then the coordinates of the projection of ŷi,k−1 are:

uu = u0 −Ku ·
hc
ix

hc
iz

, vu = v0 −Kv ·
hc
iy

hc
iz

, (5.14)

61



5. Simultaneous Localization and Mapping (SLAM) combining Time-of-Flight (ToF) and

High-Resolution cameras

where (uu, vu) is the image coordinates of the features without distortion, (u0, v0) are the coordi-

nates of the principal point, and (Ku,Kv) are the focal lengths in each direction. An invertible

distortion model [20] is used, so that the distorted (real) image positions (ud, vd) are found with the

expressions:

ud = uu − u0
√

1 + 2 · k1r2
+ u0, vd = vu − v0

√

1 + 2 · k1r2
+ v0, (5.15)

where r =
√

(uu − u0)2 + (vu − v0)2 is the radial distance from the center of the image, using

undistorted coordinates.

Once the coordinates of the projections of each feature are computed, the error between the

expected and the measured positions Zk − h(x̂k|k−1, Ŷk−1) are used to correct the Kalman filter

prediction applying Eq. 5.12 to update the camera position x̂k and map Ŷk.

The difference to the state vectors and measurements of [20] is summarized in the following

table:
MonoSLAM HR-ToF SLAM

zi,k = (ui vi)
⊤

zi,k = (ui vi λi)
⊤

hi = (udi
vdi

)
⊤

hi = (udi
vdi

λi)
⊤

where λi =
»

hc
ix

2 + hc
iy

2 + hc
iz

2 is the depth of the image position (ui, vi) associated to feature i.

Innovation Formula

The innovation formula is used to update (correct) the Kalman filter model, that is to calculate the

Kalman Gain Wk and the innovation Sk in Eq. 5.12 and Eq. 5.13. The correction is computed from

the difference between the measured and predicted positions, the Jacobians of the projections ∇h

and the measurement noise Rk. Recall from Sect. 5.4.2 that the innovation covariance matrix Sk

represents the uncertainty of the predictions (xk|k−1 and the set of hi) at time k and depends on the

uncertainty of both the camera xk and map Yk (contained in P ) as well as the measurement noise

Rk. The updates to the EKF are computed as follows:

Wk = Pk|k−1 · ∇h
⊤ · S−1

k , (5.16)

Sk = ∇h · Pk|k−1 · ∇h
⊤ +Rk. (5.17)

Given the block form of P in Eq. 5.6, the 3× 3 sub-matrices of Sk associated to feature i, i.e.Sk,i can

be obtained using:

Sk,i =
δhi

δx
Pxx

δhi

δx

⊤
+

δhi

δx
Pxyi

δhi

δyi

⊤
+

δhi

δyi
Pyix

δhi

δx

⊤
+

δhi

δyi
Pyiyi

δhi

δyi

⊤
+Rk,i. (5.18)

To calculate Rk,i we model the noise associated to the measurement of each feature. The model

takes into account that several sources of noise affect the HR and ToF cameras. First, we model

the noise of the HR image position Ruv with a linear radial function to take in account the radial

distortion, such that the noise increases when the measurement is further away from the center of

the image. The image position noise model is then:

Ruv = σ2
uv ·

(

1 +
r

max r

)

, (5.19)

where σuv determines the minimum level of noise (here assigned to the image center) and the factor
r

max r
controls the increase in the noise factor as the coordinates u and v go away from the center.
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Second, the noise of the depth measurements is modeled as a linear function with respect to the

depth itself, as far away the depth measures are usually noisier. Similar to 5.19 the model also takes

into account the radial error. However, this time the linear model reflects the concentration of the

infrared light in the middle of the image that causes noisier measurements in the borders of the

image. Additionally, we use the amplitude image provided by the ToF camera as final indicator of

the measurement noise, as it is known that measurements computed from low amplitudes (when

the amount of reflected light is low) are noisier. In practice, we employ a function σλ = σmin+(1−

Auv), where σmin ensures a minimum level of noise and Auv is the corresponding amplitude value.

Thus, the depth noise model is resumed in the expression:

Rλ = σ2
λ

Å

1 + ·
λ

maxλ
·

r

max r

ã

. (5.20)

Finally, we assume independence between the noise of the depth information and the image

position. The resultant noise matrix R has the following form:

Rk,i =

Ö

Ruv 0 0

0 Ruv 0

0 0 Rλ

è

(5.21)

Using the proposed noise model, the innovation matrix Sk can be computed. In particular, the

3× 3 block elements of the Jacobian in Eq. 5.18 takes the form:

δhi

δyi
=

Ü

δuu

δyix

δuu

δyiy

δuu

δyiz

δvu

δyix

δvu

δyiy

δvu

δyiz

δλ
δyix

δλ
δyiy

δλ
δyiz

ê

. (5.22)

The first two rows in the expression above are the same used in [20], however the third row contains

the derivatives of the new measurement value λ, namely:

δλ

δyix
=

yix
||yi||

,
δλ

δyiy
=

yiy
||yi||

,
δλ

δyiz
=

yiz
||yi||

where, ||yi|| =
»

y2ix + y2iy + y2iz . Using this noise model and computing Wk and Sk according to

Eqs. 5.16 and 5.17, the EKF is updated and the system is ready for iteration k + 1.

5.4.3. Feature extraction and depth initialization

In standard monocular approaches to SLAM, the initialization of the features depth is difficult, as it

is not possible to measure the real distance from a feature to the camera. The usual way to initialize

the features is to fix the depth of a reduced set of features, and to find a depth estimate for any other

feature taking into account the motion of the camera. In the particular case of MonoSLAM [20], the

depth of a new feature is initialized as a probabilistic uniform distribution on a finite ray passing

through both the projection of the feature in the image plane and the origin of the camera coordi-

nate system. This probability distribution is updated with each new frame using a particle filter

that weights each discrete value of depth according to the intersection of the current and previous

backprojected rays, under the estimated motion of the camera. In the case of PTAM [57], an initial

translational motion is used to recover the depth of the initial features using stereo disparities.
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5. Simultaneous Localization and Mapping (SLAM) combining Time-of-Flight (ToF) and

High-Resolution cameras

In our case the initialization becomes easier, as the probabilistic estimation is simply replaced

with the depth measurement provided by the ToF device in the location where image features are

detected. We use SIFT [75] to detect the features in the high-resolution image and use the first

position of the camera as the origin of the world coordinate system.

5.5. Experimental Validation
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Figure 5.2.: 3D error (Xaxis,Yaxis and Zaxis) in cms for each camera pose of the trajectory of the

HR SLAM (red line), HR-ToF SLAM (blue line) and ToF SLAM (green line) versus the

ground truth.

We recorded a video sequence of the camera moving in an office environment, where the distance

of the camera to the objects ranges from 1 to 3 meters. We used a Point-Grey Flea2 HR camera

(640× 480) and a PMD CamCube2 (204× 204) ToF camera in a stereo setup as shown in Figure 5.1-

a. The cameras are calibrated and synchronized.

In order to validate the performance of our approach we measure the error of the camera posi-

tion. To capture the ground truth trajectory for the evaluation we place infrared markers on the

camera and track them (using a commercial Tracking system). The markers are registered to the

camera coordinate system with an additional calibration step that uses a checkerboard equipped

with infrared markers. The resultant ground truth trajectory provides the position and orientation

of the camera at each frame.
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5.5. Experimental Validation

HR-ToF (cms) ToF (cms) HR (cms)

Xaxis 2.966± 3.312 2.426± 2.723 4.212± 5.187

Yaxis 1.632± 2.509 3.824± 6.628 6.657± 4.090

Zaxis 2.015± 2.190 1.018± 0.913 3.138± 1.895

Total 2.204± 2.670 2.450± 3.422 4.669± 3.724

Table 5.1.: Mean and standard deviation of the camera localization error using the proposed ap-

proaches HR-ToF SLAM and ToF SLAM, and the monoSLAM algorithm applied indi-

vidually to the high resolution (HR) camera.

We measure the error of the estimated camera trajectories with respect to their ground truth.

Three trajectories are compared. The first is obtained with the proposed HR-ToF SLAM method.

The second is the result of our method when using only the ToF images (the HR image is replaced

by the low-resolution offset image), here named ToF SLAM. Finally, the third trajectory is the esti-

mated pose of the camera obtained with the MonoSLAM algorithm on the high resolution images

(HR-SLAM). As shown in Fig. 5.2, the proposed HR-ToF SLAM method (blue line) follows very

closely the ground truth (error near to zero). ToF SLAM (green line) rapidly looses track due to the

difficulty of reliably tracking features in the low-resolution images and to infrared specular reflec-

tions. Finally, HR-SLAM (red line) is able to keep the track but leads to a less accurate trajectory.

Error peaks observed in the HR-ToF SLAM and HR-SLAM are explained by fast camera move-

ments. The overall mean and standard deviation errors (using the magnitude of the error in the

three axis) over the sequence with 380 frames are reported in Table 5.1. The camera trajectory using

the proposed extension with the combined HR-ToF camera has the lowest average error (∼2.2 cms).

Despite the low resolution of the offset images, our method applied to the ToF images along (∼2.4

cms) still has a lower average error compared to the MonoSLAM with the high-resolution camera

(∼4.6 cms). The 3D error in the graph is calculated at each frame in the camera coordinate system,

in order to observe the error in the depth (Zaxis), and in the horizontal (Xaxis) and vertical (Yaxis)

axes.

To start building the maps we initialize the depth of the detected features in the first frame using

the values provided by the ToF data (c.f.section 5.4.3). This is done for the initialization of the

map in the three compared methods in order to avoid the need of knowing an object dimensions

for the HR-SLAM. We manually select four features in the first image to create a common world

coordinate system. The chosen features are required by the HR SLAM, as it needs a reasonable

number of features for initialization. Although not required in our approach, we also provide the

same four features to HR-ToF and to ToF SLAM for the sake of evaluation. Finally, we choose the

world coordinate system to be the first frame position of the camera, this allows us to relate the

camera coordinate system to the ground truth.

Snapshots in Fig. 5.3 shows the difference between the uncertainty of the feature position esti-

mates. The proposed HR-ToF method has less uncertainty than MonoSLAM applied to the high-

resolution video. The difference is explained by the use of the ToF depth measurements.
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5. Simultaneous Localization and Mapping (SLAM) combining Time-of-Flight (ToF) and

High-Resolution cameras

Figure 5.3.: Snapshot of SLAM results for frame 380 of the sequence, based only on the HR camera

(top) and on the combined HR-ToF sensor (bottom). The uncertainty in the depth data

is displayed as ellipsoids. Lower uncertainties are achieved with the HR-ToF SLAM

method.
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Part IV.

Multi-view Time-of-Flight
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6. Stereo Time-of-Flight - An Example of

Multi-view ToF

THis chapter presents the Multi-view ToF system, using the case of stereo ToF as an example.

An introduction of the multi-view ToF system, is given, including the most important related

works. Also are presented, an explanation of the proposed method and its depth optimization for

a stereo set-up. Additionally, a quantitative evaluation from simulated ToF images and the results

of a pair of real ToF cameras are exhibited. Furthermore, a radiometric analysis and the limitations

of the system are shown. Besides, this Chapter incorporates the explanation of how to extend the

proposed method from the two cameras to a multi-view ToF system. Finally, the electronic circuit

for the stereo ToF system and its specifications, including its schematic and the list of commands,

for the communication between the computer and the electronic circuit, are presented.

6.1. Introduction

Time of Flight (ToF) cameras are active range sensors that provide depth images at a high frame-

rates, as it was explained before. They are equipped with an infrared (IR) light source that illu-

minates the scene, and a CMOS/CCD sensor that captures the reflected infrared light. The depth

is measured based on the time of flight principle, i.e.it is proportional to the time spent by the IR

signal to reach the scene and come back. Depth measurements are obtained for each pixel of the

sensor, and together produce a depth image. Fast acquisition of depth images is of great use in

a wide range of applications, e.g.in robotics, human machine interaction and scene modeling [62].

Unfortunately, the available ToF cameras have a low resolution and are affected by different mea-

suring errors [72].

These include noise caused by the sensor; the systematic wiggling error due to the difficulty of

generating sinusoidal signals; a non-linear depth offsets dependent on reflectivity and integration-

time; and the flying pixels generated by the superposition of signals at depth inhomogeneities

(edges). As a result, the uncertainty of the ToF depth measurement is important (in order of cen-

timeters).

Several approaches have been proposed that target the improvement of the depth measurements,

including different ways to calibrate the ToF camera [72, 11, 108, 32, 102], combining ToF cameras

with a single or a stereo RGB cameras [48, 37, 127, 10, 59], or using a sequence of depth images

to improve the resolution [18, 123]. Also exists some methods that combine the depth images of

several ToF cameras to create 3D reconstructions [56]. Another work recover better accuracy by

using a reflection model and optimizing the surface to the model and measurement [15].

In this work, we focus on a different approach to improve the acquisition of depth images using

a multi-view system of ToF cameras, instead of the state of the art (Chapter 3) which focus in
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6. Stereo Time-of-Flight - An Example of Multi-view ToF

Figure 6.1.: Stereo ToF: two calibrated ToF cameras acquire measurements under different IR light-

ing conditions. The measurements are optimized to recover more accurate depth

images.

calibration and/or 3D reconstruction. Our method relies on a calibrated multi-ToF configuration

and on an active control of the infrared lights. To explain the main idea, we use the case of two

cameras as illustrated in Figure 6.1. We devise an acquisition, where we alternatively turn on and

off the lighting of the cameras, and acquire measurements in each lighting state. Then, we propose

to optimize the depth images in each camera based both on the measurements gathered during

three stages and the geometry of the stereo setup.

We provide, a quantitative evaluation based on a simulation of the ToF cameras [53] under differ-

ent levels of noise and for varying geometric configurations of the cameras, as well as experiments

with real images, both showing the improvement on the accuracy of the depth measurements.

Furthermore, the limitations and a radiometric analysis are presented, as well as the real imple-

mentation of the system.

6.2. Theory

Consider a calibrated stereo setup (as example) such as the one in Figure 6.1 which use exactly the

same modulation frequency and the same IR light wavelength. We propose a stereo ToF acquisition,

where a series of measurements are taken with the two cameras while the infrared lighting of the

scene is actively changed. Our goal is to find the optimal depth image in each camera, based on

these measurements and on the known geometry of the stereo setup. The three lighting stages

(shown in Figure 6.2) are:

Stage 1: Only the emitter of the left camera is active and both cameras capture the reflected light.

Each camera provides three images: depth, amplitude and offset.

Stage 2: Only the emitter of the right camera is active and both cameras capture the reflected light

(similar to stage 1 but changing the emitter).
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6.2. Theory

Figure 6.2.: The three stages Stereo ToF acquisition.

Stage 3: The two lights emit simultaneously an IR signal with the exact same modulating fre-

quency1 and both cameras capture the reflected light. The amount of light received in each sensor

is equivalent to the superposition (interference) of the received signals when each IR light is inde-

pendently active.

We assume that the scene is static during the three stages, that the cameras work with the same IR

wavelength and that their modulating frequency is the same. Additionally, the stereo configuration

should be setup so that enough light is reflected into the left and right cameras in order to make

valid measurements.

We now formally describe how to recover the parameters of the received signals in the three

described stages. Consider the sinusoidal signals gl and gr used to modulate the emitted IR light of

the left and right ToF cameras respectively. We denote with ω the common modulation frequency

of the two emitted signals, and with φlr the phase shift between them. Then,

gl(t) =Al · cos(ω · t) +Bl, (6.1)

gr(t) =Ar · cos(ω · t+ φlr) +Br. (6.2)

After reflection on the scene, signals Sl and Sr are received in the left and right cameras. As we

detail next, these signals have a different form in the three stages. In each case, we aim at recovering

the amplitudes A′
l,r and A′′

l,r, the offsets B′
l,r and B′′

l,r, and the phase-shifts; where a single ′ indicates

the reflected signal is captured with the same camera emitting the light, and a double ′′ indicates

the receiving camera is different from the emitting one. As before, the parameters are obtained by

sampling the convolution of the received (Sl,r) and the reference (gl,r) signals.

6.2.1. Stage 1

Let only the light of the left camera be active and emit signal gl (Equation 6.1), while both cameras

capture the reflected light on the scene. The received signals in the left and right ToF sensors,

1 This is necessary since small differences in frequency lead to destructive interference. One way to ensure that both

cameras have exactly the same modulation frequency is to interconnect their clock and start signals.
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6. Stereo Time-of-Flight - An Example of Multi-view ToF

denoted Sl1 and Sr1, have the following form:

Sl1(t) =A′
l · cos(ω · t+ ϕl) +B′

l (6.3)

Sr1(t) =A′′
r · cos(ω · t+

ϕl + ϕr

2
+ φlr) +B′′

r . (6.4)

We seek to recover the parameters of the two signals, i.e.the amplitudes (A′, A′′), offsets (B′, B′′),

and phases (ϕl,
ϕl+ϕr

2 ). Notice that in Equation 6.4, the phase shift ϕl+ϕr

2 is related to the distance

traveled by the signal from the left camera to the reflecting surface, and then from the surface back

to the right camera. The total phase of Sr1, ϕl+ϕr

2 + φlr, additionally considers the phase shift φlr

between the emitted signals gl(t) and gr(t).

Similar to the monocular case, we use samples of the correlation between the received and refer-

ence signals in each ToF camera, which results in the following expressions:

Cl1(τ) = gl(t)⊗ Sl1(t) (6.5)

=
A′

lAl

2
· cos(ω · τ + ϕl) +BlB

′

l

Cr1(τ),= gr(t)⊗ Sr1(t) (6.6)

=
A′′

rAl

2
· cos(ω · τ +

ϕl + ϕr

2
+ φlr) +BlB

′′

r .

Using samples of Cl1(τ) and Cr1(τ) at times τ0 = 0, τ1 = π
2ω , τ2 = 3π

2ω , τ3 = π
ω

, and Equations. 3.9 to

3.10, we recover the parameters of Sl1 and Sr1 per pixel and in each camera:

Left camera: we calculate the amplitude A′
l, offset B′

l and phase ϕl from the samples of Cl1(τ).

Using λl =
c
2ω · ϕl (Equation 3.1) we obtain a first depth estimate per pixel.

Right camera: from Cr1(τ)’s samples we compute the phase ξ1 = ϕl+ϕr

2 + φlr and the values of A′′
r

and B′′
r .

6.2.2. Stage 2

We invert the role of the cameras w.r.t.to Stage 1. Now, only the right camera emits a signal gr(t).

To recover the parameters of the received signals Sl2(t) and Sr2(t):

Sl2(t) = A
′′

l · cos(ω · t+
ϕl + ϕr

2
− φlr) +B

′′

l ,

Sr2(t) = A
′

r · cos(ω · t+ ϕr) +B
′

r,

we sample the correlations Cl2(τ) and Cr2(τ):

Cl2(τ) = gl(t)⊗ Sl2(t), (6.7)

=
A′′

l Ar

2
· cos(ω · τ +

ϕl + ϕr

2
− φlr) +BrB

′′

l .

Cr2(τ) = gr(t)⊗ Sr2(t), (6.8)

=
A′

rAr

2
· cos(ω · τ + ϕr) +BrB

′

r.

With these relations we compute:

Left camera: the values of ξ2 = ϕl+ϕr

2 − φlr, A′′
l , and B′′

l based on Cr2(τ).
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6.3. Depth optimization

Right camera: the values of A′
r, ϕr and B′

r using Cl2(τ). From ϕr a first depth estimate λr = c
2ω ·ϕr

is computed.

Until here, we can optimize the surface captured by the cameras, using 4 measurement and 2

stages. This is named optimization using only two stages.

6.2.3. Stage 3

In the third stage, the lights of the left and right cameras emit simultaneously signals gl(t) and gr(t),

and both cameras capture the total amount of reflected light. The received signals in the left (Sl3(t))

and right (Sr3(t)) cameras are of the form:

Sl3(t) =A
′

l · cos(ω · t+ ϕl) +B
′

l+

A
′′

l · cos(ω · t+
ϕl + ϕr

2
− φlr) +B

′′

l ,

Sr3(t) =A
′

r · cos(ω · t+ ϕr) +B
′

r+

A
′′

r · cos(ω · t+
ϕl + ϕr

2
+ φlr) +B

′′

r .

Convolving the received signals with the reference signals in each camera leads to:

Cl3(τ) =gl(t)⊗ Sl3(t) =
A′

lAl

2
· cos(ω · τ + ϕl) +BlB

′

l+

A′′

l Ar

2
· cos(ω · τ +

ϕl + ϕr

2
− φlr) +BrB

′′

l ,

Cr3(τ) =gl(t)⊗ Sr3(t) =
A′

rAr

2
· cos(ω · τ + ϕr) +BrB

′

r+

A′′

rAl

2
· cos(ω · τ +

ϕl + ϕr

2
+ φlr) +BlB

′′

r .

In stage 3, there is no closed form solution to find the values of ϕl, ϕr and φlr. Instead we use

directly the samples of Cl3(τ) and Cr3(τ) as explained next.

6.3. Depth optimization

To optimize the depth images, we define a per-pixel cost function that simultaneously considers

the measurements acquired during the three stages as well as the geometry of the stereo setup. In

the following we describe the cost for optimizing the depth estimate of a pixel λ̂l in the left camera

(the process is analogous for the right image).

First we consider the cost in each camera. In the left image, the depth estimate λ̂l at pixel xl, is

expected to lie close to the measurement λl obtained in stage 1. The cost penalizing this error is

defined as:

El = [λ̂l − λl]
2.

A similar error is calculated in the right image, where the measured depth λ̃r should agree with the

current depth estimate after a geometric transformation T r
l that converts it to a valid depth in the

right image T r
l (λ̂l) (See Figure 6.3). The measurement λ̃r is taken at location x̂r in the right image,

where x̂r is the projection of the 3D point Λ̂l obtained by backprojecting λ̂l. Thus, the cost in the

right image is:

Er = [T r
l (λ̂l)− λ̃r]

2
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Figure 6.4.: Comparison of the depth images recovered with a single ToF camera and with the proposed stereo ToF approach (Only images

from the left camera are shown). (top) Ground truth images. (2nd row) Depth images obtained with a single ToF camera and a

level of noise of 0.05%. (3rd row) Depth images obtained with the proposed stereo ToF using only 2 stages. (bottom) Depth images

with the 3 stages of the stereo ToF. Red points on the surface show errors greater than 0.3cm.
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Optimized depth (0.5% noise)
Optimized depth (1.5% noise)
Optimized depth (2.5% noise)

 

 

Original depth (0.05% noise)
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Original depth (0.25% noise)

 

 

Percentage of optimized points (0.05% noise)
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Percentage of optimized points (0.25% noise)

Figure 6.5.: Evaluation of the depth error (in mm) and percentage of optimized points for ToF camera and monocular ToF camera w.r.t.the

ground truth against changes in the noise level, distance to the object, baseline and vergence for different objects.
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6. Stereo Time-of-Flight - An Example of Multi-view ToF

the accuracy of the recovered depths for increasing the levels of noise. We further analyze the

performance of the approach under dissimilar configurations of the stereo setup (changing the

baseline and vergence2) and for different depths of the object. For each configuration, we consider

three different levels of noise and perform 10 experiments per level. We report a reduction of the

depth error for all the configuration using the ToF stereo. To obtain the error, we calculate the mean

over all the optimized pixels and for the 10 experiments. Finally, we also compute the percentage

of optimized pixels w.r.t.the total number of foreground pixels. This percentage is important for

the analysis of the results as the number of foreground pixels depends on the size of the object

and its distance to the camera. Example depth images in Figure 6.4, show the improvement of the

optimized depth surfaces (using 2 and 3 stages) w.r.t.the original ToF depth images, where pixels

with large errors are depicted in red. The noise is reduced (as evidenced by a fewer red pixels)

using 3 stages rather than 2. Also all configuration exhibit a reduction of noise compared to the 3-

images average. For 3 stages one can also observe an improved behavior on flat or smooth surfaces

due to both cameras receiving higher amounts of light, allowing to recover better scene details. We

summarize the quantitative results for the different configurations and noise levels in Figure 6.5.

Graphs are explained in details bellow.

Noise level: In this experiment we fix the stereo configuration to a baseline of 10cms and a vergence

of 0◦. The object is located at 1m from the camera. The depth error is analyzed for different noise

levels, from 0.01% to 0.14% of the maximum grayscale variation that the sensor can measure, here

216 (16 bits per pixel)3. As shown in the graphs, the mean error and standard deviations using

the ToF stereo are significantly reduced w.r.t.the originally noisy monocular depth images and 3-

images average. The percentage of optimized pixels decreases for higher levels of noise, mainly

due to the noisier initial values handed to the optimization (outliers). The third stage not only

increases the accuracy and number of optimized pixels, but also improves the results in curvature

discontinuities, see for instance Fig 6.4-Budha.

Distance to target: In this experiment the distance between the observed object and the camera

is changed from 0.8m to 3m. Standard values for the baseline (10cms) and the vergence (0◦) are

used. The experiment shows that as the distance to the observed object increases, the percentage

of optimized points decreases. This is natural as the noise also tends to increase with the distance,

generating worse initial values for the optimization. The depth error increases with the distance but

the percentage of correction w.r.t.the original noisy image is similar for the different values of noise

and distance. Bellow 80 cms, there is a drop in the percentage of optimized points, because there

is a smaller number of common pixels in the two cameras (the object lies very close to the camera

and the vergence is 0◦). For the last object representing a plant the percentage of optimized pixels

is lower due to the significant amount of depth discontinuities that generate large noise values in

the measured images.

Baseline: At a distance of 1m from the object, the baseline of the stereo setup is varied (from 10

to 90cms) and the vergence is automatically adjusted such that the principal rays of the cameras

2The vergence is the deviation angle of the principal ray of each camera from a line perpendicular to the baseline passing

through the camera center. Negative values indicate cameras look towards the interior of the setup.
3Remember the noise is applied to the source images Ci, thus the corresponding error in depth depends on the amount

of received light. In particular, due to the attenuation, for the same level of noise in Ci, the noise in the depth increases

exponentially w.r.t.distance of the camera to the object.
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6.4. Experimental Validation

Figure 6.7.: Real set-up of Stereo Time-of-Flight (including the electronic circuit).

point to the center of the observed object. For the tested objects, the improvement of the stereo

ToF is only slightly affected by changes in the baseline. However, the quantity of optimized pixels

decreases due to the cameras having less common pixels for larger baselines.

Vergence: Using a baseline of 10cms and locating the object at 1m from the setup, we vary the ver-

gence of the two cameras. The improvement in the optimized pixels remains constant for vergences

around 0◦. However, the percentage of optimized pixels depends on the number of pixels visible

simultaneously in the two views. In the case of very low or high vergences, the cameras have very

few or no common pixels, resulting in small percentage of the optimized pixels. The behavior of

the stereo-ToF according to the vergence also depends on the observed object, because high curva-

ture surfaces may generate occlusions which also have an effect on the number of common pixels

visible in the two views.

6.4.2. Experiments with real images

We performed experiments with a real ToF stereo setup (using 2 and 3 stages) for different scenes.

The real set-up is shown in Figure 6.7. We show a selection of the results in Figures 6.8 and 6.9.

For the planar surface, details of the board are better observed in the two optimized images. The

transversal view shows a reduction of the noise with the stereo ToF w.r.t.a single depth image (the

plane looks flatter). Notice, that using 3 stages improves the details of the plug on the wall. For the

experiments with the shelves and books one can observe enhancements in the borders and frontal

faces. In the kitchen scenes, the noise of the cups and the tablet are reduced leading to smoother

surfaces. The optimized part of the teapot is smoother using 3 stages rather than 2. In the case of the

chair, the noise in the chair surface is reduced, but the multi-path error provoked by the floor was

not improved. For the body phantom, the surface is also smoother. Additionally, in all the cases,

the stereo setup allows detecting and eliminating the pixels which are occluded or inconsistent

between the two views (shown in gray). In general, the optimization using 3 stages recovers more

details, further reduces the noise and results in more pixels being optimized pixels than when

using only 2 stages. One advantage of the third stage is the increased amount of emitted light

which reduces the uncertainty of the measurements and thus has a higher signal-to-noise ratio. To

avoid sensor saturation it is important to adjust the integration time of the camera according to the

distance to the scene.

79



6.
S

tereo
T

im
e-o

f-F
lig

h
t

-
A

n
E

x
am

p
le

o
f

M
u

lti-v
iew

T
o

F

Intensity Original 2 Stages 3 Stages Original (zoom) 2 Stages (zoom) 3 Stages (zoom)

P
la

n
ar

su
rf

ac
e

K
it

ch
en

1
K

it
ch

en
2

B
o

o
k

s

Figure 6.8.: Comparison of real depth images acquired with a monocular and the proposed ToF stereo approach. Only left images shown.
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Figure 6.9.: Comparison of real depth images acquired with a monocular and the proposed ToF stereo approach. Only left images shown.
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6. Stereo Time-of-Flight - An Example of Multi-view ToF

6.5. Limitations

The proposed algorithm have some limitations regarding to the reachable improvement using the

stereo ToF. The presented method cannot enhance the inherent error of the Time-of-Flight camera

physics, i.e., multi-path artifact or high uncertainty by a low signal-to-noise ratio. Furthermore,

when the initial depth is far from the optimal depth, the method tends to diverge. These diverged

pixels are marked as outlier measurements. In addition, the 3D points which are not observed

by both cameras cannot be optimized due to the occlusion. These occluded points are labeled as

occluded points. The labeled pixels as occluded point or outlier measurement can be eliminated

from the final results or filled with the original ToF camera depth (as we show our results in gray

scale).

Another limitation is related to the acquisition time which is extended to three shots, i.e., three

times longer than only one ToF shot. Therefore, the scanned object has to be static in the acquisition

process, so it does not produce motion artifacts.

Finally, the last limitation is regarding to the interference4. To ensure a constructive interference

in the third stage is necessary to calculate the maximum phase-shift between two general sinusoidal

signals, i.e., the superposition of the signals does not produce a smaller amplitude besides the

original ones.

Let’s assume that we have two sinusoidal signals at the same frequency:

g1(t) = A1 cos(ωt) (6.13)

g2(t) = A2 cos(ωt+ φ) (6.14)

The superposition of the signals (interference) is g1(t) + g2(t). Now, our goal is to calculate the

maximum φ allowed to generate a constructive interference. For that, we have to calculate the

amplitude of g12 = g1(t)+ g2(t), which cannot be smaller than the biggest amplitude between g1(t)

and g2(t), max(A1, A2).

In order to find the maximum φ, it is necessary to determine the amplitude of the function g12(t).

To do so, we differentiate the function g12(t) and find (ωt)max which satisfies δg12(t)
δωt

= 0. The

differentiation of g12(t) is:

δg12(t)

δωt
= −A1 sin(ωt)−A2 sin(ωt+ φ) (6.15)

Solving for δg12(t)
δωt

= 0, we obtain (ωt)max = arctan
Ä −A2 sin(φ)
A2 cos(φ)+A1

ä

.

Then, to calculate the amplitude of the function g12(t), we have to replace ωt by (ωt)max:

g12((ωt)max) = A1 cos

Å

arctan

Å

−A2 sin(φ)

A2 cos(φ) +A1

ãã

+ (6.16)

A2 cos

Å

arctan

Å

−A2 sin(φ)

A2 cos(φ) +A1

ã

+ φ

ã

(6.17)

The value g12((ωt)max) represents the maximum or minimum value of the function g12(t) and thus,

the amplitude of g12(t).

4It refers to the interference produced between the sinusoidal signals and not between the light beams
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6.5. Limitations

The amplitude of g12(t) has to be at least max(A1, A2). Depending on the case, the max(A1, A2)

can be A1 or A2. Then, solving φ for g12((ωt)max) = A1 and g12((ωt)max) = A2, we have:

φmax = π − arccos

Å

A2

2A1

ã

if A1 > A2 (6.18)

φmax = π − arccos

Å

A1

2A2

ã

if A2 > A1 (6.19)

For example, if A1 = 1 and A2 = 1, we obtain φmax = 2π
3 . Another example, if A1 = 1 and

A2 =
√
3
2 , then φmax = 5π

6 .

The limit case of A1 >> A2 or A2 >> A1, then the φmax tends to π
2 . Therefore, we can say that, in

general, the phase-shift between the signals cannot exceed π
2 to assure a constructive interference

in any case. This constraint ensures that the interfered signal has a larger amplitude than the

maximum amplitude of the original sinusoidals max(A1, A2). Figure 6.10 shows the behavior of

the maximum delay to guarantee a constructive interference for an object to a certain distance. As

an example, it was plotted an object distance of two, four and six meters from the stereo system.

This plot assumes that A1 ∝
1
λ2

l

and A2 ∝
1
λ2
r

(because the amplitude is attenuated as Equation 6.21

and more details in Appendix B). The minimum phase-shift is plotted for every object distance

(black line). In conclusion, a value of φmax = π
2 ensures a constructive interference for any object

distance.
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Figure 6.10.: Maximum phase-shift allowed to obtain a constructive interference between the emit-

ted signals. Plot lines have been made with different object distance.

Using the value of φmax = π
2 , we know that any delay between the cameras should not ex-

ceed π
2 and it guarantees a constructive interference. Now, it is necessary to see which constraints
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6. Stereo Time-of-Flight - An Example of Multi-view ToF

generates in the case of stereo ToF. In this case, the received data, for example in the left camera, is
A′

lAl

2 ·cos(ω ·τ+ϕl)+BlB
′
l+

A′′

l Ar

2 ·cos(ω ·τ+ ϕl+ϕr

2 −φlr)+BrB
′′
l . The maximum phase-shift between

A′

lAl

2 ·cos(ω ·τ+ϕl)+BlB
′
l and

A′′

l Ar

2 ·cos(ω ·τ+ ϕl+ϕr

2 −φlr)+BrB
′′
l has to be π

2 . Therefore, the differ-

ence of phase-shift ϕl+ϕr

2 −φlr−ϕl cannot surpass π
2 , i.e., ϕl+ϕr

2 −φlr−ϕl <
π
2 →

ϕr−ϕl

2 −φlr < π
2 .

Assuming a known delay φlr between the cameras, the maximum difference of measured dis-

tances λr − λl between the cameras has to be
clight

2πf

(

π
2 − φlr

)

to assure a constructive interference.

For example, if φlr = 0 (cameras are synchronized), the maximum difference λr − λl cannot exceed

3.75m. Practically, this difference is difficult to achieve it and then, the improvement of the stereo

ToF can be attempted in the most of the cases when φlr = 0. Furthermore, if the object distance

changes, the improvement can be obtained in the most of the pixels, due to the maximal difference

of 3.75m. However, if we include the baseline as the delay φlr between the cameras, the stereo ToF

improvement can be achieved using a maximum baseline of 3.35m (for a full range of measure-

ment of 0 − 7 meters and vergence 0◦). Larger baselines create a destructive interference for far

objects. Figure 6.11 exhibits the maximum field of view, that allows a constructive interference for

different object distances and baselines. This plot shows the field of view for different object dis-

tances and the baseline was included as the delay φlr between the cameras (it is assumed that the

cable between the cameras produces a delay between the emitted signals). This plot assumes that

A1 ∝
1
λ2

l

and A2 ∝
1
λ2
r

(due to the attenuation of the amplitude of the signal traveling in the air).

The maximum baseline of 3.35m was found to assure a constructive interference, for the maximum

object distance of 7m and for the maximum ToF camera’s field of view of 40◦ (for the specifications

of a PMD CamCube 2.0).

6.6. Radiometric Analysis

A radiometric analysis of the working principles of the proposed multi-ToF system, is presented,

specifically, the case of stereo ToF. In this proof, we use a point light source, a ray light and a

Lambertian reflection model on the surface.

Given two cameras, Cl and Cr, in stereo set-up with a baseline b meters and a vergence α degrees,

we want to analyze the received signal in both cameras when only the camera left emits IR light (it

represents the stage 1 in the proposed method in Section 6.2). We assumed a point on the surface

S has an unitary normal N̂S . The analogous procedure can be applied to the cases of stage 2 and 3.

An illustration of the set-up and the observed surface is shown in Figure 6.12. We illustrated three

different surface points S1, S2, S3 to analyze the behavior of the received signal for these distinct

cases.

First of all, we assume a Lambertian reflection model of the surface, which follows the next

equation:

Ir = CR(ŵi · N̂)Ii (6.20)

where CR is the reflectivity, ŵi is the unitary direction vector of the incident light ray, N̂ is the

unitary direction vector of the surface normal and Ii is the incident light intensity. The reflected

light by the Lambertian model is the same in all directions.

We assume a quadratic light attenuation in the air as follows:

Ia =
I

λ2
, (6.21)
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Figure 6.11.: Maximum field of view to have a constructive interference between the emitted sig-

nals. It is assumed the baseline as the delay φlr between the cameras.

where Ia is the attenuated intensity light, I is the original intensity light and λ is the traveled

distance.

Using this two basic equations, we analyze the quantity of light which each camera receives

while camera left Cl is emitting a signal. Assuming a point ray light and Lambertian reflection

model on the surface, the incident light in the point S from camera in Cl is as follows:

ISi =
CR(ŵi · N̂)Ie

λ2
lS

(6.22)

where λlS is the distance between the camera Cl and the surface point S, Ie is the emitted light,

CR is the reflectivity of the surface, N̂ is the normal direction and ŵi is the incident light direction.

The equation 7.4 gives the quantity of reflected light in the surface point S. Lambertian reflection

model says that the same quantity of light is reflected in all directions. If we compute how much

light is acquiring each sensor, we obtain the next equations (including the attenuation):

Camera left: ICl
=

CR(ŵi · N̂)Ie
λ4
lS

(6.23)

Camera right: ICr
=

CR(ŵi · N̂)Ie
λ2
lS
λ2
rS

(6.24)

where λrS is the distance between the camera Cr and the surface point S.
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6.7. Extension to Multi-view ToF

Figure 6.13.: Set-up of two cameras (Cl, Cr) with baseline b, vergence α observing three points in a

surface S (S1, S2, S3) with a normal N .

6.7. Extension to Multi-view ToF

This section explains how it is possible to extend the stereo ToF idea to a multi-view ToF system.

First of all, having a Multi-view ToF system allows us to create a collection of pairs, which can

be used as different stereo systems. Unfortunately, to use a collection of stereo ToF, is necessary

to employ them at different modulation frequencies. On the other hand, if we use the cameras

at the same modulation frequency, a new set of stages can be determined in order to manipulate

the multi-ToF. We will make the example of three ToF cameras working at the same modulation

frequency. In this case, we have to define a new stage procedure, for example for three cameras, it

is possible to use 4 stages:

We assumed that the infrared light of every camera is turned on and off. All cameras are cap-

Camera 1 Camera 2 Camera 3

Stage 1 ON OFF OFF

Stage 2 OFF ON OFF

Stage 3 OFF OFF ON

Stage 4 ON ON ON

Table 6.1.: Infrared manipulation for three cameras. In stage 1 to 3, one camera is activated in every

stage, and in stage 4, all the cameras are emitting signal. All the cameras are always

capturing data.
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6. Stereo Time-of-Flight - An Example of Multi-view ToF

turing data in every stage. Besides, it is feasible to create a different combination of infrared light

source activation. For example, we can activate every one separately and then combination of

two cameras. These measurements allow to have more data to optimize, however, it is a longer

procedure.

In general, the easiest way is to activate each camera separately in each stage, and then, in the

final stage, all the infrared light sources are activated, obtaining a constructive interference between

the signals. Then, for any case, the stages required are the number of cameras plus one stage where

all the sources light are activated and thus the interference is produced. Unfortunately, when all

the infrared light sources are activated, the ToF camera sensor can be saturated, and therefore, it

is not possible to make any optimization. So, the number of cameras that it is possible to use are

limited by the range of distance and it depends on the saturation of the sensor.

In conclusion, if we have N cameras in the multi-view ToF, the number of suggested stages is

N + 1, generating N(N + 1) measurements.

6.8. Real Implementation

In the experiments, it was used two PMD CamCube 2.0 cameras, which are setup equally, i.e.,

at the same modulation frequency and integration time. The real set-up using these cameras is

shown in Figure 6.7. In the beginning, it was tested by capturing images while the left camera

emits and the right camera captures. The right camera did not capture any usable data, it was only

noise. Thus, we realize that the cameras have to use exactly the same modulation frequency, or

the camera may not recover the correct data (destructive interference). That means, the reference

signal of the receiving camera has to be generated with exactly the same modulation frequency

as the emitted infrared light. Unfortunately, the synchronization between the cameras requires a

hardware manipulation, where the clock and start signal have to be shared. This modification is

very difficult, but it ensures that both cameras work at exactly the same modulation frequency and

have the same start signal (acquisition synchronized).

However, the stereo Time-of-Flight theory gets 6 measurements in these 3 stages. Then, we de-

signed a 6-stages procedure where these 6 measurements may be obtained. The camera used in

the experiments is composed of a camera unit (Figure 6.14(a)) and two illumination units (Fig-

ure 6.14(b)), which are shown in Figure 6.14. The camera and the illumination unit are connected

through a special cable, which is specified by the manufacturer (pin-out shown in Figure 6.14(c)).

Thanks to this cable and the camera modularity, it is feasible to connect the illumination units from

the left camera to the right camera and vice-versa. This flexibility allows us to capture the 6 mea-

surements of stereo ToF in 6 stages, connecting the camera unit to the illumination unit accordingly.

These six measurements are used to optimize/calculate the depth maps in every camera, as shown

in Section 6.3. One disadvantage of using these interconnections is the introduction of a new offset

in the measured depth (due to the extra cable) which has to be estimated and compensated in the

measurements.
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(a) Camera Unit (b) Illumination Unit
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(c) Connector pin-out

Figure 6.14.: Camera and illumination units. Pin-out of the cable between

Stage
Left camera Right camera

IU 1 IU 2 MOD SIG CAPTURE IU 1 IU 2 MOD SIG CAPTURE

Stage 1 ON ON ON ON OFF OFF OFF ON

Stage 2 OFF OFF OFF ON ON ON ON ON

Stage 3 ON ON ON ON ON ON ON ON

Table 6.2.: Table of the 3 stages used in stereo ToF. It assumes that the left and right cameras have

exactly the same modulation frequency. (IU: Illumination Unit, MOD SIG: Modulation

signal connected to the illumination unit in state ON and CAPTURE: Camera capturing

the scene when is in state ON )

6.8.1. From 3-stages to 6-stages

The experiments were made using the 6-stages procedure, which acquire the same 6 measurement

made in a 3-stage procedure by the stereo ToF. The 6-stage procedure ensures that the modulation

frequency of the illumination unit is exactly the same of the receiving camera unit. The constraint

of the same modulation frequency is the most important issue in the stereo Time-of-Flight theory.

The stereo ToF theory is designed to work with measurement obtained in 3 stages as follows:

• Stage 1: The illumination units of camera left are ON and both cameras capture the scene.

• Stage 2: The illumination units of camera right are ON and both cameras captures the scene.

• Stage 3: The illumination units of both cameras are ON and both cameras captures the scene.

The next table 6.2 summarize the state of every camera and illumination unit per stage:

In other words, the stage 1 works with the idea that the left camera captures the scene as a normal

ToF camera and the camera right captures the reflection of the scene in his direction. The stage 2

is the same idea as stage 1 but using the right camera. Stage 3 is working with all the illumination
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6. Stereo Time-of-Flight - An Example of Multi-view ToF

units turned on and both cameras capturing. This 3 stages produces 6 measurement which can

be measured separately defining 6 stages. These 6 stages are divided in order to obtain the six

measurements of this 3-stage system allowing us to reproduce the stages 1,2 and 3. These 6 stages

are defined as follows:

• Stage 1: We connect the illumination units of the left camera to the left camera as a normal

ToF camera and captures the data. It simulates the stage 1 in the left camera.

• Stage 2: We connect the illumination units of the right camera to the left camera, with a

crossed illumination unit and the right camera is measuring. It simulates the stage 2 in the

right camera.

• Stage 3: We connect the illumination units of the right camera to the right camera as a normal

ToF camera and captures the data. It simulates the stage 2.

• Stage 4: We connect the illumination units of the left camera to the right camera with a crossed

illumination unit and the left camera left is measuring. It simulates the stage 1 in the left

camera.

• Stage 5: We connect the illumination units of the left and right cameras to the left camera,

and both cameras are capturing. It simulates the stage 3 in the left camera.

• Stage 6: We connect the illumination units of the left and right cameras to the right camera,

and both cameras are capturing. It simulates the stage 3 in the right camera.

The stages 1-4 can be done using the extension cable (Cable 1-2, Figure 6.15(a)), because only 2

illumination units are connected to the camera unit and it can support it (the camera unit support

up to 2 illumination units). The length of these cables has to be long enough to connect the illu-

mination units of one camera to another (our case 50-60 cms). The case of stage 5-6 is different,

because each camera has to connect 4 illumination units and is not possible to use only two exten-

sion cables. For this reason, the cables 3-4 (Figure 6.15(b)) are built to allow us to provide the same

modulation signal to four illumination units. That means, each output connector of the camera unit

could send the modulation signal to two illumination units, i.e., using a splitter. However, each out-

put connector of the camera unit can provide the enough supply power to only one illumination

unit. Therefore, the cable 3-4 was designed to get the power supply from each own camera, but the

modulation signal only from one camera (master). To achieve this modulation signal sharing, it is

necessary to disconnect the modulation signal of the slave camera and interconnect the grounds to

leave the circuit with the same ground reference.

In summary, the cable 3-4 shares the modulation signal of the camera master to one of the illu-

mination units of camera master and one of the camera slave, gets the power supply of the illu-

mination units from its own camera. Finally, the cable interconnects the ground reference between

the cameras. Using cable 3 and 4, it is possible to emit in the four illumination units at the same

modulation frequency of the master camera.

The table 6.3 shows the state of each device in each stage. The columns named IU corresponds to

the illumination unit of the cameras, which is in use or not (ON or OFF). MOD SIG means modula-

tion signal and tells if this signal is used in the IU or not (ON or OFF). Finally, the column CAPTURE

indicates if the camera is capturing the scene or not (ON or OFF). Combining this features, we can
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6.8. Real Implementation

3 Stages 6 Stages
Camera Left Camera Right

IU 1 IU 2 MOD SIG CAPTURE IU 1 IU 2 MOD SIG CAPTURE

Stage 1
Stage 1 ON ON ON ON OFF OFF OFF OFF

Stage 2 OFF OFF ON ON ON ON OFF OFF

Stage 2
Stage 3 OFF OFF OFF OFF ON ON ON ON

Stage 4 ON ON OFF OFF OFF OFF ON ON

Stage 3
Stage 5 ON ON ON ON ON ON OFF OFF

Stage 6 ON ON OFF OFF ON ON ON ON

Table 6.3.: Table of the 6-stage used in Stereo ToF related with the 3-stage system. (IU: Illumination

Unit, MOD SIG: Modulation signal connected to the illumination unit in state ON and

CAPTURE: Camera capturing the scene when is in state ON )

show that the different configurations can obtain the desired measurement when using the 3-stage

procedure.

These six stages allows us to capture the 6 measurements used in stereo ToF, without the necessity

of the hardware integration and modification. These measurements are equivalent to the values

that can be acquired using the original 3-stage system.

6.8.2. Manual switch - cables

Thanks to the fact that the PMD CamCube 2.0 is composed of one camera unit and two illumination

units, it is possible to obtain the required six measurements to test and prove the stereo ToF theory

using real ToF images. The camera unit has two output connectors in order to connect up to two

illumination units, which each one has an input connector. The cable between the camera and the

illumination unit has the next pin-out:

• 2 wires: Modulation signal sent as a differential signal (LED+, LED−).

• 2 wires: Power Supply (+12 V).

• 2 wires: Ground reference.

• 2 wires: It is not used until now (NC: No connection).

This cable has 4 wires to supply the illumination unit (2 wires with the supply voltage and 2

wires with the ground) and 2 wires for the modulation signal which is sent using a differential

voltage. We built 4 simple cables, which connect point to point these 6 wires, in order to supply the

infrared light source and send the modulation signal as in a normal ToF camera. This connection

diagram is shown in Figure 6.15(a).

Notice that the stages 1-4 only requires a simple extension cable which connects a camera unit to

the illumination units. For stages 1-4, we built 2 cables to connect the two illumination units.
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(b) Cable 3 and 4

Figure 6.15.: (a) Cable 1 and 2 are an extension of the original cable. The connection is one to one.

(b) Cable 3 and 4 are an interconnection between the two cameras and shares only one

modulation signal in the four illumination units. Pin 1 and 2 are the modulation signal

which is shared to the camera slave (camera slave modulation signal is disconnected).

Pin 5 and 8 are the ground which are shared between the cameras to have the same

reference.

For stages 5 and 6, two cables were designed and built to connect the 4 illumination units of the

two cameras at the same modulation frequency, and to provide the enough supply power to the

each illumination unit. The connection diagram is shown in figure 6.15(b).

The next list shows the cables which were built for the experiments:

• Cable 1 and 2: Length of 50 cms and are used as an extension of the normal cable, which

allows us to connect the infrared light source with the camera.

• Cable 3 and 4: Length of 60 cms and it takes the supply of each camera to each infrared light

source. It gets the modulation signal from only one connector (one camera) and it distributes

it to four illumination units.

These two cables ensure that all the illumination units use the same modulation signal and a

similar offset distance (if the building is made taking care of the cable length). The introduced

offset depth has to be estimated and then treated for the next data usage.
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6.8. Real Implementation

6.8.3. Automatic switch - electronic circuit

In the beginning, connection switches between the cameras and the illumination units were made

manually (Section 6.8.2). This manual switching required a static scene for at least 1 minute. There-

fore, an electronic circuit was designed in order to change the interconnections between the camera

units and illumination units automatically. The electronic circuit was designed including the fol-

lowing parts:

• Control unit: The control unit is the responsible for the communication with the computer

and the activation and state of the switches chip. The unit is composed of a microchip with a

serial connection and digital outputs.

• Switching unit: It is the responsible of the electronic switch as the control unit wants. This

unit is composed of 8 multiplexers or 8 switches Single Pole Double Throw (SPDT), two per

illumination unit (LED+, LED−).

• Supply and communication unit: This unit is in charge to supply the multiplexers and the

microchip. Also, it translates from USB to serial communication (USB to RS232-TTL).

For the control unit was selected a microchip ATMEGA8, due to its simplicity to program and

internal clock (it is not necessary to connect an external clock, and make the circuit design simpler).

Furthermore, the program speed is sufficient to make the communication to the computer and

to manipulate the multiplexers. The switching unit is composed of 8 analogous multiplexers or

switches, and it was implemented using 4 relays of Dual SPDT Switch RAL3W-K. These relays

allows us to connect the two modulation signals to an illumination unit and then, we can select

which modulation signal is used. The complete circuit uses the supply voltage provided by the

USB connection of the computer (maximum of 500mA).

Control Unit

The control unit is composed of a microchip ATMEGA8 and was included a led array as a user

output. Also, a connector for the USB-RS232 adapter was incorporated to make the connection to

the computer and to obtain the power supply of +5 volts from the USB standard. Besides, a power

led was added, which indicates when the circuit is supplied. One capacitor was included in parallel

to the power supply, to filter any noise in the supply voltage. The circuit also includes a power led,

which indicates when the circuit is connected to the supply voltage (USB). Furthermore, there are

six leds used to show the stage of the system and code of errors.

The microchip was set up to work at a clock frequency of 8 Mhz (the maximum of internal clock)

and serial connection of 38400 baud per second. Then, to connect to the control chip, it is necessary

to set up the speed of the serial port to 38400 baud per second. The algorithm used in the control

chip is as follows:

The control chip checks if some message is incoming and then, it is processed to determine the

requested command. After the execution of the requested command, the chip sends an acknowl-

edge to the computer in order to inform if the chip executed the command successfully (i.e., the

computer will know the state of the chip).

The commands of execution are detailed as follows:
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Figure 6.16.: Control circuit composed of a Microchip ATMEGA8, ADC connected to the multiplex-

ers and serial connection to the USB-RS232-TTL connector.

• “$SNCM !”: The circuit will be set the illumination units to the stage number N and camera

M .

• “$H!”: The circuit will be stopped.

• “$CALIB!”: The circuit will connect each infrared source with its camera (Infrared source 1

and 2 to camera 1 and 2 respectively). This is set to aquire synchronized images from both

ToF cameras, as the case of the stereo calibration of the system.

• “$Tt!”: The space time between switching is set to t milliseconds, where t is an interger value.

The messages of acknowledge are explained in the following:

• “$EC!”: Error of camera number, values allowed: 0 and 1 (in the case of two cameras).

• “$ES!”: Error of stage number, values allowed: 0, 1 and 2 (three stages).

• “$EM!”: Incorrect command. The command cannot be recognized by the control chip.

• “$STOP!”: The circuit was stopped.

• “$CALIB!”: The circuit was set-up in calibration mode.

• “$TIME!”: The space time between switching of the ciruit was set-up.

• “$OKSNM !”: The circuit executed the instruction. Stage number N and camera M .
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6.8. Real Implementation

Algorithm 1 Control code: checking and understanding messages; and manipulating the multi-

plexers

1. Creation of codes to the multiplexers

2. Initialization of ADC ports (0x00) // Everything deactivated

while true do

if No pending sending message and received message then

3. Process the message

if The message is correct then

4. Activate the correspondent illumination unit

5. Turn on the leds indicating the stage

6. Add a pending acknowledge message (OK)

else

7. Deactivate all illumination unit

8. Turn on leds indicating the error

9. Add a pending error message (Error)

end if

end if

if There is a pending sending message then

10. Send the pending acknowledge/error message

end if

end while

Switching Unit

This switching unit is composed of four relays RAL3W-K. Every RAL3W-K contains two multi-

plexers or switches, which are used for every LED+ and LED− of the camera. Each multiplexer

is connected to the LED+/− of camera left and right, and the output to the illumination unit.

The multiplexer can be managed to connect the output to camera left LED+/− or camera right

LED+/−. Thus, each illumination unit can be connected to LED+/− of camera left or camera

right independently, depending on the code given to the multiplexers.Due to the use of a relay for

the switching, a half H-bridge is necessary for the relays control. In this case, we use a LD293D,

which is composed by two half H-bridge, allowing us to control two relays. Then, two LD293D are

necessary to control the 4 relays of the circuit. The interconnection can be see in Figure 6.17.

In Figure 6.17 are shown the groups to manipulate the illumination unit of the cameras. The first

group manages the left illumination unit of both cameras, and it is used to select which modulation

signal is sent to the illumination unit. Then, the first multiplexer connect LED+ and LED− from

camera 1 and 2 as input and the left illumination unit of the camera left as output. The second

multiplexer do the same, but in the illumination unit of camera right as output. The second group

is analogous, but it manipulates the right illumination unit of both cameras. Every multiplexer has

its power supply connected to the +5 volts from the USB. Also, every multiplexer has the enable

pin connected to the control chip. The control chip can enable and disable each multiplexer.
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Figure 6.17.: Switching unit composed of four relays and two half H-bridge chip, divided in two

groups. First group (a) manages the left illumination unit of both cameras. Second

group (b) manipulates the right illumination unit of both cameras.

Supply and communication unit

This unit is in charge to supply the circuit and communicate to the computer. The USB port pro-

vides +5 volts and a maximum current of 500mA. The required energy can be provided by the USB

port. For that, an adapter from RS232-TTL to USB is used to translate the serial information from

USB to serial RS232. With that, the computer can connect through the USB port to the serial port

RS-232-TTL of the ATMEGA8. Also, this adapter gives the electric energy to the circuit from the

USB port of +5 volts. The multiplexer and control circuit are isolated from the illumination unit

supply. The ground of circuit and the illumination unit are connected to make a general reference.
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7. Stereo Time-of-Flight Simulator

THis Chapter introduces the implementation details of the Stereo ToF simulator, which was used

to evaluate the Multi-view Time-of-Flight system (Chapter 6). The Stereo ToF simulator is

based on the work of Keller et al. [53], which uses a Lambertian reflection model. The implemented

simulator generates a 3D object, using OpenGL and from this 3D model the four ToF source images

C(τi) where i = 1, 2, 3, 4 are calculated. The simulation includes attenuation of light in the air, the

object reflectance (Lambertian), and noise in the sensor modeled as a zero-mean Gaussian noise.

These source images are utilized to calculate the respective depth, amplitude and offset images,

using the equations of demodulation, which were introduced in Chapter 3.

7.1. Introduction

The Time-of-Flight camera simulator attempt to emulate the real ToF camera behavior, even its

noise and errors. There are principally two works where the researchers created a model for ToF

cameras, specifically a model of Photonic Mixing Device (PMD) sensor [95, 53]. Differences be-

tween these works are mostly related to their performance and their inclusion of error and noise

models. The first simulator was implemented in MATLAB, and thus, it is not suitable for real-

time simulations. The measurement of the phase shift of the received signal is the basis of their

simulated ToF sensor, which depends on the distance to the object. In this work, they simulate the

response of every sensor pixel, as a single point response of the 3D scene. Also, they have the possi-

bility of changing the position and orientation of the illumination unit and sensor separately, which

allows simulating ToF camera with bistatic and multibistatic (multi-illumination unit systems) con-

figurations. The case of the second simulator is different, it was implemented in OpenGL, which

allows running in real-time. This simulator models the most of the errors and noise, which can be

observed in a real ToF camera. It includes noise, flying pixels, motion artifacts and wiggling error.

The source of wiggling error is produced due to two effects: the emitter of infrared light is an area

and it is not the point source light; and the sensor pixel receives signal from an object area, i.e.many

rays come back to the sensor pixel. To emulate this error, two accumulations of light are utilized:

the integration of every ray emitted from the area of the illumination unit and hits each single object

point; and the accumulation of every ray reflected from the object area and hits each pixel camera.

To emulate the flying pixels, they generate a higher resolution depth image and then they take an

average of a neighborhood of the pixel, in order to simulate the multi-path averaging. They also

add noise to the source images to simulate the noise observed in the real sensor. Our simulator

uses two single ToF camera simulators based on the second work, which are in a stereo set-up.

In the simulation is included a delay between the cameras. Our simulation uses only a single ray

simulation, a Lambertian reflectance model of the objects and a Gaussian zero-mean noise in the

source images. Every noise image is calculated independently from each other ensuring different
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7. Stereo Time-of-Flight Simulator

noise pattern in every source image. The level of noise, reflectivity of the object and intensity of the

emitted signal can be changed in the simulation program as parameters.

7.2. Simulation Theory

In this section an overview of the Stereo ToF theory is reviewed. Assuming that we have a 3D

model of the object and two ToF cameras in stereo set-up with a known transformation between

them.

Given the emitted signal g(t) and the received signal S(t):

Emitted signal: g(t) = A · cos(ω · t) +B (7.1)

Received signal: S(t) = A′ · cos(ω · t+ ϕ) +B′ (7.2)

where ϕ is the phase-shift between the emitted and received signals, A is the amplitude and B

is the offset or bias of the emitted signal; A′ is the amplitude and B′ is the offset or bias of the

received signal; and finally ω is the angular frequency of the modulated sinusoidal wave. Usually,

the frequency f is given in MHz which can be converted to angular frequency with the equation

ω = 2πf .

The emitted signal is assumed as point source light and it is located at the same position and

orientation of the sensor. First, the infrared light is emitted from the illumination unit into the air

to the object. Then, the object reflects part of the incident light and finally the reflected light comes

back to the sensor through the air. When the light is traveling through the air, the light signal is

attenuated. Therefore, the emitted signal is attenuated from the illumination unit until the object.

Later, a quantity of incident light is reflected on the object surface. This quantity of reflected light

depends on reflectivity of the object surface. After, the reflected light flies back to the sensor and

it is also attenuated. The attenuation depends not only on the distance between the illumination

unit and object, but also on the distance between the object and sensor. For the case of a single ToF

camera the distance between the illumination unit-object and object-sensor is the same distance d.

Therefore, if we assume an attenuation as 1
d2 and a Lambertian reflection model, the reflected light

IR can be calculated as:

IR =
CR(ŵi · N̂)Ie

d2
(7.3)

where ŵi is the incident vector, N̂ is the surface normal, CR is the reflectivity of object material,

Ie = A ·cos(ω · t+ϕ)+B is the emitted signal and ϕ = 4πfd
clight

is the phase-shift of the received signal.

Then, the light received by the sensor IR can be estimated as the attenuation of the reflected light:

IR =
CR(ŵi · N̂)Ie

d4
(7.4)

The light acquired by the sensor IR is a simulated value of the captured light by a real sensor.

The acquired light has to be calculated in every pixel of the sensor. With the value of IR, the source

images C(τi) with i = 0, 1, 2, 3 are computed. For that, it is necessary to calculate Ie in the different

sampling points ω · t = 0, π
2 ,

3π
2 , 2π. Also, the value of Ie incorporates the phase-shift ϕ of the object

obtained from the distance d between the sensor and object.
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The values of C(τi) are:

C(τi) =
CR(ŵi · N̂)(A · cos( (i+1)π

2 + 4πfd
clight

) +B)

d4
+ ν (7.5)

where i = 0, 1, 2, 3 and ν is a noise introduced to the measurement.

Finally, having the values of C(τi) where i = 0, 1, 2, 3, it is possible to compute the offset, ampli-

tude and phase shift of the received signal as follows:

Offset: B′ =
A0 +A1 +A2 +A3

4
(7.6)

Amplitude: A′ =

»

(A3 −A1)
2
+ (A0 −A2)

2

2
(7.7)

Phase Shift: ϕ = arctan

Å

A3 −A1

A0 −A2

ã

(7.8)

To create the simulated images is necessary to compute the offset, amplitude and phase shift for

every pixel of the observer, using the 3D model of the object in the software.

The result of this simulation is a depth image, an amplitude image and an offset image of a

ToF camera. To simulate the stereo ToF, it is necessary to make some modification of the models.

First of all, a delay between the cameras and two camera positions, have to be introduced. The

stereo ToF system needs two ToF camera simulators, and they are located in two different positions.

Besides, the calculation of received signal in every sensor has to change properly depending on the

simulated stage. The simulated stages are as follows:

left IR light right IR light

Stage 1 ON OFF

Stage 2 OFF ON

Stage 3 ON ON

Table 7.1.: Summary of illumination unit manipulation for stereo ToF. All cameras are always

capturing.

Given an emitted signal in every camera as follows:

Camera left: gl(t) = Al · cos(ω · t) +Bl (7.9)

Camera right: gr(t) = Ar · cos(ω · t+ ϕ) +Br (7.10)

where both cameras are working at the same modulation frequency ω. We assume a distance dl

between an object point and the camera left. In the same way, we assume a distance dr between an

object point and the camera right. The states captured light in every stage per camera is shown in

the following items.

• Stage 1: The illumination unit of camera left is turned on and both cameras capture. The

emitted signal is gl, then Ie = Al · cos(ω · t + ϕ) + Bl, where the value of ϕ depends on the

camera where is computed.

– Camera left: The received signal is as a normal ToF: IR = CR(ŵi·N̂)Ie
d4

l

. Notice that the

attenuation is influenced only by dl. Here Ie is computed using ϕ = 4πfdl

clight
.
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– Camera right: The received signal is the reflection of the light from the object point

to the right camera. Then, the received signal is: IR = CR(ŵi·N̂)Ie
d2

l
d2
r

. Notice now that

the attenuation is dependent on both distances. This dependency is produced because

the first attenuation is made from camera left to the object, then reflected and finally

the reflected signal is again attenuated from the object to the camera right. Here Ie is

computed using ϕ = 2πf(dl+dr)
clight

.

• Stage 2: The illumination unit of camera right is turned on and both cameras capture. The

emitted signal is gr.

– Camera left: The received signal is the reflection of the light from the object point to the

left camera. Then, the received signal is: IR = CR(ŵi·N̂)Ie
d2

l
d2
r

. Notice now that the attenu-

ation is dependent on both distances as in stage 1 in camera left. Here Ie is computed

using ϕ = 2πf(dl+dr)
clight

.

– Camera right: Similar to stage 1, the received signal is as a normal ToF: IR = CR(ŵi·N̂)Ie
d4
r

.

Notice that the attenuation is influenced only by dr (now the camera right is turned on).

Here Ie is computed using ϕ = 4πfdr

clight
.

• Stage 3: The illumination unit of both cameras are turned on and both cameras capture. The

emitted signals are gl and gr.

– Camera left: The received signal is the reflection of the light from the object point to

the left camera. Then, the received signal is: IR = CR(ŵi·N̂)Iel
d4

l

+ CR(ŵi·N̂)Ier
d2

l
d2
r

. Note that

the received signals are the addition of the stage 1 and 2. Here Iel is computed using

ϕ = 4πfdl

clight
and Ier is computed using ϕ = 2πf(dl+dr)

clight
.

– Camera right: The received signal is the reflection of the light from the object point to

the right camera. Then, the received signal is: IR = CR(ŵi·N̂)Iel
d2

l
d2
r

+ CR(ŵi·N̂)Ier
d4
r

. Notice

that the received signals are the addition of the stage 1 and 2. Here Iel is computed using

ϕ = 2πf(dl+dr)
clight

and Ier is computed using ϕ = 4πfdr

clight
.

Having the considerations mentioned before, the stereo ToF camera can be simulated. The com-

putation of the light captured by the sensor is dependent on the distance, between the object -

camera left and object - camera right. The simulation has to calculate this distance and then it can

emulate the light received by the sensor.

7.3. Software implementation

The Simulator was implemented in OpenGL through OpenGL Shading Language (GLSL) which

allows a rendering of the source images at a fast frame-rate. From this source images is possible to

calculate the depth, amplitude and offset images using Equations 7.6-7.8. The implemented GLSL

program computes the source images C(τi) using the distance from the cameras to the object point

and the normals of the surface. The distances are used to computed the attenuation and phase shift.

The surface normals are used to compute the quantity of reflected light through the Lambertian

model. We utilized two Frame Buffer Object (FBO), one to render the source images and the other

to save the ground truth. For each camera, it is assumed that the sensor is located in the same
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7.3. Software implementation

position of its light source. In the case of stereo ToF, we have two cameras, and therefore, we have

two illumination units and two view points (cameras). The location of the cameras are given as

parameters, i.e.baseline and vergence. Every source image C(τi) for every camera is stored in an

image class to later compute the offset, amplitude and phase-shift. Besides, a Gaussian zero-mean

noise is added to every source image, it is possible to simulate the noise in the ToF cameras. The

source images are computed sequentially, i.e., one camera source image is computed one after the

other. For that, the program compute every source image by changing the eye view position and

storing every source image in distinguishable image objects. A shading program was implemented

to compute the source images, depending on the eye position, illumination unit activated and other

parameters which can be transfered from the main code. The simulation of the stages of the stereo

ToF is achieved changing the light condition (as in table 7.1) and the view point per acquisition in

the main code. Two OpenGL source light are created representing the illumination unit of every

ToF camera and they can be controlled from the main code. The illumination units can be activated

or deactivated separately. The activation and deactivation of the light source is made from the

main program and this command is communicated to the GLSL program. The activation of the

light sources allows the simulation of the three stages including the third where the interference

between the cameras occurs.

The simulation software is composed of two main codes, the first one controls the simulation

and the display, written in C++; and the second is the GLSL code which implements the simulation

of the source images and rendering of the 3D object in the OpenGL environment. The value of the

modulation frequency, material reflectivity, emitted amplitude and emitted offset are transfered

from the C++ code to the GLSL program through uniform variables.

The vertex shading program calculates the incident light vector, using the light source position

and object vertex, surface normal and observer vector with respect to the object vertex. Three

vectors are computed in the vertex program to represent the variables of the stereo-ToF simulator

and then they are communicated from the vertex program to the fragment software. The vertex and

fragment code check in every computation if the source light are turned on/off of each illumination

unit. This checking helps to manipulate the illumination units from the C++ code in order to

simulate the stages utilized for the Multi-view ToF system.

The main code is implemented in C++ and it is responsible of the rendering of the 3D object,

the manipulation of the light sources, changing the view points, addition of the noise in the source

images, calculation of the amplitude, offset and depth images from the simulated source images

and the optimization of the depth images. This main program allocate memory not only in the

Shading (FBO) for the GLSL programs, but also in the C++ memory for the storage of the images.

Also, the main code checks the states of the program, i.e., if the user wants to exit, start or stop the

simulation. The stages are represented by the variable i and each camera Cam is processed sepa-

rately. Furthermore, this main program run the GLSL programs, vertex and fragment programs.

The main code is summarized in the algorithm 2.

The vertex program calculates the vectors involved in the calculation the source images and it

automatically computes the interpolation necessary to transfer the information to the fragment

code. The vertex code is shown in the algorithm 3. This code shows that the state of turned on/off

of a total number of illumination units NUM-LIGHTS (in the stereo ToF are two) are checked. In the

code, wi represents the vector between the light source and the object point, N̂ is the normalized
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7. Stereo Time-of-Flight Simulator

Algorithm 2 Main code: rendering of object, manipulation of light sources, addition of noise and

optimization of stereo ToF

1. Creation of Buffers (FBO)

2. Creation of image classes per camera (4 source images, amplitude, offset and depth images)

3. Creation of the two OpenGL source light

4. i← 0

while true do

5. Rendering of 3D object

for Every camera Cam do

if i is 0 then

Stage 1

6. Activate illumination unit 1

7. Deactivate illumination unit 2

end if

if i is 1 then

Stage 2

8. Deactivate illumination unit 1

9. Activate illumination unit 2

end if

if i is 2 then

Stage 3

10. Activate illumination unit 1

11. Activate illumination unit 2

end if

12. Locate eye view point into camera Cam position

13. Source images← Run GLSL program (Vertex and Fragment code)

14. Source images← Source images + Noise

15. Amplitude image← Computation of amplitude image from source images

16. Offset image← Computation of offset image from source images

17. Depth image← Computation of depth image from source images

18. Display source images

19. Display amplitude, offset and depth images

20. i← i+ 1

if i is 3 then

21. i← 0

end if

end for

22. Optimize depth image of camera 1

23. Optimize depth image of camera 2

24. Display optimized images

25. Check pressed button (exit, stop, start)

end while

26. Save output and print messages
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7.3. Software implementation

normal vector of the surface and wr is the object vertex position w.r.t.the eye position.

Algorithm 3 Vertex code: computation of surface normal, object-illumination unit and object-eye

vectors
for i = 1→ Number of illumination units NUM-LIGHTS do

if Illumination unit i is enabled then

1. Compute vertex-eye vector wr

2. Compute vertex-illumination unit i vector wi

3. Compute vertex normal N̂

end if

end for

ftransform(); // Interpolate every vertex and transfer to fragment code (every pixel position)

The fragment code computes the received intensity in the image plane of the camera, and for that,

we use the vector calculated in the vertex code, which is also interpolated to every pixel position

by OpenGL. Here the final intensity value of the source image is calculated using the modulation

frequency, material reflectivity; and the dot product between the normal and incident light vector.

The fragment code is summarized in algorithm 4. In the algorithm, the for of MAX-LIGHTS is

checking, if the source light is activated or not and it is made in each source image computation. d1

and d2 are calculated to simulate the distances from the source light to the object and from the object

to the point of view (camera). Also, the delay φlr between the cameras is added in the simulation.

Algorithm 4 Fragment code: computation of surface normal, object-illumination unit and object-

eye vectors

CR ← reflectivity value from C++ program

φlr ← delay value from C++ program

sample← ωt = iπ2 with i = 1, 2, 3, 4 from C++ program

I ← intensity value from C++ (factor to reduce or raise the emitted signal)

for i = 1→ Number of illumination units MAX-LIGHTS do

if Illumination unit i is enabled then

1. Compute Lambertian term (Dot product between vertex-illumination unit i vector and

normal vector) LambTerm← CR(ŵi · N̂)I

2. Compute distance vertex-illumination unit i d1 ← |wi|

3. Compute distance vertex-eye→ d2 ← |wr|

4. Compute the emitted signal Ie ← 0.5(cos(sample+ 2πf (d1+d2)
clight

+ φlr) + 1.0)

5. Compute received signal in the pixel (including attenuation) IR ←
LambTerm·Ie

d2

1
d2

2

6. Store pixel value gl_FragData[0]← IR (in FBO 0)

7. Store distance d2 as ground truth gl_FragData[1] ← d2 (in FBO 1). Normalized be-

tween 0 and 1 using range 0-MaxDistance meters (20MHz → 7.5m).

end if

end for

The noise of the source images is introduced in the C++ code after the calculation of the simulated

source images by GLSL program. Every source image is stored in a buffer of 16-bits, simulating the
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7. Stereo Time-of-Flight Simulator

same data storage of the typical ToF camera. Therefore, the source images are stored using values

between 0 and 216. The noise is simulated as a percentage of this 216 possible values, i.e., a noise

level of p% is p∗216
100 . Finally, the range of noise is ±p∗216

200 from the ground truth.

7.4. Results

The results of ToF camera simulator are shown in Figure 7.1. These source images are simulated

without noise. Furthermore, depending on the sample, the images are with different illumination

levels. As it is expected, the first source image is more illuminated than the others (different posi-

tion in the sinusoidal signal). Using these four sources images, the phase-shift, the amplitude and

the offset can be computed, obtaining the images shown in Figure 7.2.

(a) (b)

(c) (d)

Figure 7.1.: Simulated source images in absence of noise. Object 1 meter of distance. (a) First sample

(wt = π
2 ), (b) Second sample (wt = π), (c) Third sample (wt = 3π

2 ), (d) Fourth sample

(wt = 2π).

The source images with a noise are shown in Figure 7.3. The noise in the source images can be

observed as small changes of grayscale levels. The source images, including the noise, are used to

calculate the phase-shift, the amplitude and the offset. These images also exhibits noise transfered

from the source images. The phase-shift, the amplitude and offset images can be seen in Figure 7.4.

The stereo ToF images are shown in Figure 7.5, where can be observed, not only the different

position and orientation of each ToF camera, but also the distinct noise introduced in the source

images.
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7.4. Results

(a) (b) (c)

Figure 7.2.: Amplitude (a), offset (b) and depth (c) images computed from the simulated source

images without noise.

(a) (b)

(c) (d)

Figure 7.3.: Simulated source images with a level of noise of 5%. Object is located 1 meter from

the camera. (a) First sample (wt = π
2 ), (b) Second sample (wt = π), (c) Third sample

(wt = 3π
2 ), (d) Fourth sample (wt = 2π).

(a) (b) (c)

Figure 7.4.: Amplitude (a), offset (b) and depth (c) images computed from the simulated source

images with a level of noise of 5%.
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7. Stereo Time-of-Flight Simulator

(a) (b)

Figure 7.5.: The offset images from left camera (a) and right camera (b) computed from the simu-

lated source images with a level of noise of 5% and baseline of 40 cms. Every camera

has its own pattern of noise.
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8. Conclusion and Discussions

FIrst of all, we presented a detailed state of the art of Time-of-Flight camera (Chapter 3), which

includes its working principles and applications in computer graphics. The working principles

were presented with a new formulation of the basic equations, including an explanation of its

electronic implementation. Furthermore, the errors and limitations were described, showing the

current algorithm to improve and use them in real applications. Also, the applications of the ToF

cameras in computer graphics, developed until now, were enlisted.

In Chapter 4, we have investigated the feasibility of MonoSLAM for 3D surface reconstruction

from monocular NBI sequences. The results demonstrate that MonoSLAM is a promising tool for

surface reconstruction in NBI sequences. However, this study shows that there are some challenges

for further improvement, which need to be addressed before MonoSLAM can be applied on endo-

scopic images in-vivo and in-situ. The tissue deformation which is present in the esophagus, can

greatly modify the appearance of the tissue, causing a failure in the feature tracking. Moreover,

due to the specular reflections and blurring caused by the esophageal surface, or as a result of the

fast camera motion, the image quality can be very poor. We have proposed simple methods to

address some of these challenges within the MonoSLAM framework. More robust approaches for

detecting and tracking of the landmark features could also be considered. For example geometric

verifications such those proposed in [6] could be added. Similarly, more sophisticated methods

could be applied for the removal of specular lights [97] and blurred images or regions [73]. Finally,

a-priori knowledge may also be used to enhance the accuracy of the reconstruction. For instance,

in [86] organ models are learned in order to constraint the depth estimates from stereo.

Additionally, we have presented a new online SLAM approach which uses a combined sen-

sor gathering images from a high-resolution camera registered to a ToF device (Chapter 5). The

combined HR-ToF sensor includes valuable depth information while allowing for high-precision

tracking. We address the SLAM problem by extending the measurement model and the innovation

formulas of the MonoSLAM algorithm. The results show that these extensions improve the map

uncertainty and the localization error of the camera. Future work directions include detecting 3D

features and using 3D tracking (scene-flow) methods to take full advantage of the depth image.

Furthermore, can be added the registration using a combined stereo and depth calibration [39]

method that models the depth error with B-spline or polynomial functions [68]. This is expected to

reduce the noise of the depth measurements. Finally, it would be interesting to use the proposed

model with an Unscented Kalman filter (UKF) [113] instead of Extended Kalman filter, since the

UKF converges better when the measurements have a non-Gaussian distributed noise as is the case

of the ToF depth measurements.

Finally, we have proposed a novel multi-ToF depth acquisition method that exploits the physical

properties of ToF devices and integrates measurements from the N cameras at a low-level (Chap-

ter 6). The (N + 1)-stage acquisition method permits obtaining redundant measurements that are
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used together with the geometry of the multi-view setup to optimize the depth values per pixel.

The optimization considers N(N +1) measurements acquired under N +1 different infrared light-

ing conditions from N points of view. We have used the example of two cameras to explain and

demonstrate the feasibility of the proposed method. All the calculated formulas are based on the

case of stereo-ToF. Results on simulated and real data show that the proposed method produces

more accurate depth images for reasonable stereo configurations. In addition, a theoretical proof

and the limitations of the system was presented, showing that the multi-view system, not only

reduces the noise of the measurement, but also detects the outliers measurements and occluded

points. In addition, the stereo-ToF simulator was explained in detail, including the program algo-

rithm and implementation instructions (Chapter 7). We focused on keeping high acquisition rates,

and thus proposed an optimization method that works pixel-wise, which enables real-time imple-

mentations. Nevertheless, regularization terms could be incorporated to enforce surface smooth-

ness and photometric models could be considered to relate the normals and reflection properties

of the surface with the measured values by the ToF camera [15]. Since the result provides N opti-

mized depth images, the proposed methodology can be combined with complementary methods

for depth calibration [72] and/or as an improved input to 3D reconstruction algorithms that com-

bine several ToF images [56, 77]. Finally, the approach was extended from two to N cameras (or

lighting units) by increasing the number of stages to N + 1 and not all the combination of stages

are always required.
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A. Phaseshift calculation details

Being the original and received signal:

Original signal: S(t) =A · cos(ω · t) +B (A.1)

Received signal: R(t) =A′ · cos(ω · t+ ϕ) +B′ (A.2)

The ToF camera measures at ϕorg = ω · t = iπ2 .

Time i = 0 ∧ ϕorg = 0 C(τ0) =A′ · cos(0 + ϕ) +B′ = A′ · cos(ϕ) +B′ (A.3)

Time i = 1 ∧ ϕorg = π
2 C(τ1) =A′ · cos(

π

2
+ ϕ) +B′ = A′ · cos(

π

2
) (A.4)

Time i = 2 ∧ ϕorg = π C(τ2) =A′ · cos(π + ϕ) +B′ (A.5)

Time i = 3 ∧ ϕorg = 3π
2 C(τ3) =A′ · cos

Å

3π

2
+ ϕ

ã

+B′ (A.6)

Simplifying and replacing the cosine rule cos(α+β) = cos(α) · cos(β)− sin(α) · sin(β), we obtain:

C(τ0) = A′ · cos(0 + ϕ) +B′

= A′ · cos(ϕ) +B′

C(τ1) = A′ · cos(
π

2
+ ϕ) +B′

= A′ · cos
(π

2

)

cos(ϕ)− sin
(π

2

)

sin(ϕ) +B′

= A′ ·
✟✟✟✟✟✯0

cos
(π

2

)

cos(ϕ)−
✟✟✟✟✯1
sin

(π

2

)

sin(ϕ) +B′

= −A′ · sin(ϕ) +B′
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A. Phaseshift calculation details

C(τ2) = A′ · cos(π + ϕ) +B′

= A′ · cos (π) cos(ϕ)− sin (π) sin(ϕ) +B′

= A′ ·✘✘✘✘✿−1cos (π) cos(ϕ)−✘✘✘✘✿0
sin (π) sin(ϕ) +B′

= −A′ · cos(ϕ) +B′

C(τ3) = A′ · cos(
3π

2
+ ϕ) +B′

= A′ · cos

Å

3π

2

ã

cos(ϕ)− sin

Å

3π

2

ã

sin(ϕ) +B′

= A′ ·
✟✟✟✟✟✯

0

cos

Å

3π

2

ã

cos(ϕ)−
✟✟✟✟✟✯

−1

sin

Å

3π

2

ã

sin(ϕ) +B′

= A′ · sin(ϕ) +B′

Then, we get four formulas for the values which are measured with the ToF camera. The phase

shift (ϕ), amplitude (A′) and offset (B′) of the received signal can be calculated as follows:

• Offset B′ (Gray-scale):

C(τ0) + C(τ1) + C(τ2) + C(τ3) =A′ · cos(ϕ) +B′ −A′ · sin(ϕ) +B′ −A′ · cos(ϕ) +B′ +A′ · sin(ϕ) +B′

⇒ C(τ0) + C(τ1) + C(τ2) + C(τ3) =
✘✘✘✘✘✘✘✘✘✘✘✿0

A′ · cos(ϕ)−A′ · cos(ϕ) +
✘✘✘✘✘✘✘✘✘✘✘✿0

A′ · sin(ϕ)−A′ · sin(ϕ) + 4B′

⇒ C(τ0) + C(τ1) + C(τ2) + C(τ3) =4B′

⇒ B′ =
C(τ0) + C(τ1) + C(τ2) + C(τ3)

4

• Phase Shift ϕ:

C(τ3)− C(τ1) = A′ · sin(ϕ) +B′ − (−A′ · sin(ϕ) +B′)

= A′ · sin(ϕ) +A′ · sin(ϕ) +✘✘✘✘✘✿0
B′ −B′

= 2A′ · sin(ϕ)

C(τ0)− C(τ2) = A′ · cos(ϕ) +B′ − (−A′ · cos(ϕ) +B′)

= A′ · cos(ϕ) +A′ · cos(ϕ) +✘✘✘✘✘✿0
B′ −B′

= 2A′ · cos(ϕ)
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C(τ3)− C(τ1)

C(τ0)− C(τ2)
=

2A′ · sin(ϕ)

2A′ · cos(ϕ)

=
✓
✓
✓✼
1

2A′

2A′ ·
sin(ϕ)

cos(ϕ)

= tan(ϕ)

⇒ ϕ = arctan

Å

C(τ3)− C(τ1)

C(τ0)− C(τ2)

ã

• Amplitude A′:

»

(C(τ3)− C(τ1))
2
+ (C(τ0)− C(τ2))

2
=
»

(2A′ · sin(ϕ))2 + (2A′ · cos(ϕ))2

=
»

4A′2 · sin(ϕ)2 + 4A′2 · cos(ϕ)2

=

 

4A′2 · (
✘✘✘✘✘✘✘✘✘✿1

sin(ϕ)
2
+ cos(ϕ)

2
)

=
√

4A′2 = 2A′

⇒ A′ =

»

(C(τ3)− C(τ1))
2
+ (C(τ0)− C(τ2))

2

2

Finally, the received can be reconstructed with the following three equations using only four

measurements of the received signal:

Offset: B′ =
C(τ0) + C(τ1) + C(τ2) + C(τ3)

4
(A.7)

Amplitude: A′ =

»

(C(τ3)− C(τ1))
2
+ (C(τ0)− C(τ2))

2

2
(A.8)

Phase Shift: ϕ = arctan

Å

C(τ3)− C(τ1)

C(τ0)− C(τ2)

ã

(A.9)

Another and more general point of view is to demodulate the phase between the emitted and

received signal using the cross-correlation. The cross-correlation technique gives a comparison be-

tween two signal and we can recover the relation of amplitude and phase between the emitted and

received signal. The cross-correlation function is as follows:

C(τ) = R(t) ∗ S(t) = lim
T→∞

1

T

∫ T
2

−T
2

R(t) · S(t+ τ) · dt (A.10)

where ∗ is the convolution in the time between two waves, s(t) received signal and g(t) reference

signal.

Resolving this convolution for our signal S(t) and R(t), we get the next function:

C(τ) =
A′ ·A

2
cos(ωτ + ϕ) +B′ ·B (A.11)
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A. Phaseshift calculation details

When we replace in this equation different values of ωτi = iπ2 with i = {0, 1, 2, 3}, we obtain the

next equations:

C (τ0 = 0) =
A′ ·A

2
cos(ϕ) +B′ ·B

C
(

τ1 =
π

2

)

= −
A′ ·A

2
sin(ϕ) +B′ ·B

C (τ2 = π) = −
A′ ·A

2
cos(ϕ) +B′ ·B

C

Å

τ0 =
3π

2

ã

=
A′ ·A

2
sin(ϕ) +B′ ·B

In the same way of our last calculations, we can deduce the values of the phase ϕ and amplitude

A′.

Amplitude: A′ =

»

(C(τ3)− C(τ1))
2
+ (C(τ0)− C(τ2))

2

2A
(A.12)

Offset: B′ =
C(τ0) + C(τ1) + C(τ2) + C(τ3)

4B
(A.13)

Phase Shift: ϕ = arctan

Å

C(τ3)− C(τ1)

C(τ0)− C(τ2)

ã

(A.14)
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B. Details of calculation of the limitations

In the limitations part (Section 6.5), the maximum phase-shift was determined as:

φmax = π − arccos

Å

A2

2A1

ã

if A1 > A2 (B.1)

φmax = π − arccos

Å

A1

2A2

ã

if A2 > A1 (B.2)

To plot this φmax (Figure 6.10), some assumptions were made:

• The surface has Lambertian reflection

• The infrared light has an inverse of quadratic attenuation

Then, the fraction A2

2A1
will be (using equations of Section 6.6):

A2

2A1
=

CR(ŵi·N̂)Ie
λ2

1
λ2

2

2CR(ŵi·N̂)Ie
λ4

1

(B.3)

A2

2A1
=

1
λ2

1
λ2

2

2 1
λ4

1

(B.4)

A2

2A1
=

1
λ2

2

2 1
λ2

1

(B.5)

A2

2A1
=

λ2
1

2λ2
2

(B.6)
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C. Measurement of the ToF camera

attenuation

To measure the attenuation of the Time-of-Flight camera in the air, we acquire ToF images at dif-

ferent distances from a white wall. The measurements were performed statically in each distance

position and where it was captured 100 images. We show in Figure C.1 the graph of the distance

versus the amplitude for an average value in a matrix in the center of the depth image of 10 × 10.

This matrix is selected to reduce the influence of the noise. The original attenuation values were

fitted to an inverse of a polynomial function, obtaining 1
2.41+6.76·λ2+0.70·λ4 .

We can conclude that the attenuation of the ToF signal is dependent on 1
λ4 , 1

λ2 and a constant; and

compared to the normal model of attenuation 1
λ4 , this new model includes the variables of 1

λ2 and

a constant with some coefficients. This attenuation model was used in the ToF simulator, having

a simulation more realistic to the real ToF camera images, instead using the typical attenuation

model.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05
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Fitted function  (2.41 +6.76 x2 +0.70 x4)−1

Figure C.1.: Real attenuation (red circles) and its fitted function (blue line).

119



C. Measurement of the ToF camera attenuation

120



D. ToF commander PCB print

The designed PCB is a 2-layer PCB with superficial components: resistance, led, multiplexer; and

non-superficial components: microcontroller Atmega 8 and pin head connector (4 for camera unit,

4 for illumination unit and 1 for USB connection).
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Figure D.1.: PCB print of the front part of the circuit
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Figure D.2.: PCB print of the back part of the circuit
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[80] A. Medina, F. Gayá, and F. del Pozo. Compact laser radar and three-dimensional camera. J.

of Optical Society of America A (JOSA A), 23(4):800–805, Apr 2006.

130



BIBLIOGRAPHY

[81] C. Mei, G. Sibley, M. Cummins, P.M. Newman, and I.D. Reid. A constant time efficient stereo

SLAM system. In British Machine Vision Conference (BMVC), 2009.

[82] E. Menegatti, A. Zanella, S. Zilli, F. Zorzi, and E. Pagello. Range-only SLAM with a mobile

robot and a wireless sensor networks. In Int. Conf. on Robotics and Automation (ICRA), pages

1699–1705, 2009.

[83] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to

the simultaneous localization and mapping problem. In Conference on Artificial Intelligence

(AAAI), pages 593–598, 2002.

[84] P. Mountney, S. Giannarou, D. Elson, and GZ. Yang. Optical biopsy mapping for minimally

invasive cancer screening. In Int. Conf. on Medical Image Computing and Computer Assisted

Interventions (MICCAI), pages 483–490, 2009.

[85] P. Mountney, D. Stoyanov, A. J. Davison, and GZ. Yang. Simultaneous stereoscope local-

ization and soft-tissue mapping for minimal invasive surgery. In Int. Conf. on Medical Image

Computing and Computer Assisted Interventions (MICCAI), pages 347–354, 2006.

[86] F. Mourgues, F. Devernay, and E. Coste-Maniére. 3D reconstruction of the operating field
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