
Dissertation
Network Architectures
and Services
NET 2012-05-1

Latency Prediction for P2P Overlays

Benedikt Bruno Martin Elser

Network Architectures and Services

Department of Computer Science

Technische Universität München

TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Netzwerkarchitekturen

Latency Prediction for P2P Overlays

Benedikt Bruno Martin Elser

Vollständiger Abdruck der von der Fakultät für Informatik
der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. J. Schlichter

Prüfer der Dissertation: 1. Univ.-Prof. Dr. G. Carle

2. Prof. Y. Shavitt, Tel Aviv University / Israel

3. TUM Junior Fellow Dr. Th. Fuhrmann

Die Dissertation wurde am 20.12.2011 bei der Technischen Universität München eingereicht und durch die
Fakultät für Informatik am 03.05.2012 angenommen.

Cataloging-in-Publication Data
Benedikt Bruno Martin Elser
Latency Prediction for P2P Overlays
Dissertation, May 2012
Network Architectures and Services, Department of Computer Science
Technische Universität München

ISBN: 3-937201-29-7
ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
DOI: 10.2313/NET-2012-05-1
Network Architectures und Services NET 2012-05-1
Series Editor: Georg Carle, Technische Universität München, Germany
c\bigcirc 2012, Technische Universität München, Germany

Abstract

Peer-to-peer (P2P) applications have become countless since they were initially proposed
about ten years ago. They became popular among the general public when being used
as a platform for file sharing. However, their robustness and scalability sparked interest
from industry and research. Today these concepts drive some of the main businesses as
back ends or migrate intensive workload away from them. Recently, Microsoft added
P2P capabilities to their update mechanism. Adobe provides P2P APIs in their Flash
product. Amazon’s Dynamo and Skype are two examples of commercial success in this
area. One popular non-commercial example is the BitTorrent protocol.

P2P is a movement “back to the roots” of the Internet. The early ARPANET was
a system of equal computers providing services to each other. However, since that
time the core assumptions have changed. In the first place, the Internet has changed
dramatically in size. With the introduction of commercial Internet Service Providers in
1989 it became apparent that the Internet’s participants were no longer equally capable:
Dedicated bandwidth-rich machines provided services to customer machines, connected
via narrow-band dial-up links. Henceforth, the original P2P architecture was no longer
applicable and the classical Client/Server architecture became the predominant model.

With the rapid growth of the Internet even Client/Server suffered scalability issues.
At the same time the consumer Internet access saw huge changes. Persistent dial-
up connections became common along with an increase of the offered bandwidth.
Furthermore, academia introduced resilient algorithms that finally allowed the self-
organisation of a large number of hosts. Hence, a “Renaissance” of the P2P paradigm
began.

Today Client/Server is still the predominant paradigm. Meanwhile, P2P has proven
its capabilities and found adoption. Today’s P2P systems often avoid fully decentralized
solutions and rather employ a hybrid approach. They employ central components to
facilitate tasks such as a user management or billing. This central point creates a single
point of failure, as illustrated during the recent Skype downtime of 2010. It may also
constitute a bottleneck. Hence, today’s systems often use federated systems, for example,
in cloud computing data centers.

Despite P2P’s success, there exist only few software frameworks that support the
development of truly distributed applications, such as FreePastry. Others such as
OpenDHT are not maintained anymore. Often the P2P technique is tied to monolithic
applications, such as the eMule client and is thus not reusable.

i

A goal of this thesis is to introduce a software ecosystem that can foster the devel-
opment of P2P software. The "IGOR ecosystem" consequently pursues the Key Based
Routing (KBR) / application split, where the choice of an overlay is separated from the
higher application logic e. g. a DHT implementation. This allows developers to choose
an overlay architecture. It also eases maintainability. Furthermore, it is the first library
that enables complex endpoint operation. Rhea et al. considered this as a missing link
hampering the development of P2P applications in 2005, but to the best of our knowl-
edge no one has addressed Rhea’s concern. Another beneficial consequence from the
KBR split it is the ability to simulate the software stack at two levels, thereby allowing
developers to do high performance simulations of their applications by skipping one
part of the stack.

The optimal overlay topology is still an open research question. In an ideal scenario
clients attach preferably to nearby peers and thereby create efficient overlay structures.
However, clients would need to do a priori measurements to identify their nearby clients.
Network coordinates are an important technique that obsoletes a priori measurements.
They allow the peers to predict to which other peers they are likely to experience a low
round trip time.

Traffic in the Internet is known to change over time, e. g. it exhibits volatile behaviour.
One major challenge for a network coordinate algorithm is its ability to handle these
fluctuations. The most widespread algorithm is the Vivaldi algorithm. Vivaldi embeds
latencies and achieves highly precise network coordinates. However, recent studies have
raised doubt in Vivaldi’s ability to resolve the structure of the underlying network better
than at a continental level. Hence, it would fail to give a decent prediction.

In the present thesis I present an in-depth study of the Vivaldi algorithm and propose
an enhancement that leads to an order of magnitude improved accuracy. I start with
a simulation study from which I derive a profound understanding of the Vivaldi em-
bedding, which was fundamental for the development of my new algorithm. I conduct
the analysis using the IGOR ecosystem. To ensure realistic simulation settings I use
five different established sources of static RTT data, provided by independent scientific
research, as well as dynamic traces based on PlanetLab measurements that I conducted
myself. The simulations focus on Vivaldi’s performance and explore the algorithm’s
sensitivity to parameters. Hereupon I introduce the Hierarchical Vivaldi algorithm, a
Vivaldi variant that leads to an order of magnitude improved accuracy. I assure its
improved performance in comparative simulation studies. Hierarchical Vivaldi has been
included into the popular Vuze P2P client, which allowed me to confirm its performance
in a large scale real world setting. Over seven million users ran the software, over 2000
took part in our evaluation study, contributing extended measurements. The results
from that planet scale evaluation and a brief summary of our raw measurement data for
the scientific community concludes this thesis.

ii

Zusammenfassung

Seit dem Erscheinen der ersten Peer-to-Peer (P2P) Anwendungen vor mehr als 10
Jahren, erfreuen sich diese immer größerer Beliebtheit. Anfangs nur als komfortable
Möglichkeit zum Dateiaustausch genutzt, zog die Robustheit und Skalierbarkeit des P2P-
Konzepts schnell die Aufmerksamkeit von Wissenschaftlern und der Software-Industrie
gleichermaßen auf sich. Heute stellt P2P die Technologie für einige der bekanntesten
Produkte oder trägt durch das Konzept, die Arbeitslast auf teilnehmende Rechner zu
verteilen, dazu bei. So erweiterte Microsoft vor kurzem den “Windows Update” Mecha-
nismus um P2P Fähigkeiten. Adobe stellt Flash Entwicklern P2P APIs zur Verfügung.
Im kommerziellen Bereich weisen Amazons Cloud-Storage Lösung “Dynamo” oder
das weitverbreitete Videotelefonie-Programm Skype signifikant hohe Nutzerzahlen auf.
Eine verbreitete nichtkommerzielle Anwendung ist BitTorrent.

Im Prinzip ist P2P eine Rückkehr zu den Wurzeln des Internets. Im frühen ARPANET
war jeder Rechner eine gleichberechtigte Entität und stellte für alle anderen Rechner
Dienste zur Verfügung. Seit dieser Zeit haben sich jedoch die Anforderungen an die Art
der Diensterbringung deutlich geändert. Allein das Ausmaß des Internets hat drama-
tisch zugenommen. Nachdem 1989 mit den ersten kommerziellen Internet Providern
das Netz Privatleuten zugänglich gemacht wurde, bestand das Internet nicht mehr nur
aus gleichwertigen Diensterbringern. Dedizierte Maschinen, ausgestattet mit enromen
Kapazitäten an Arbeitsspeicher, Rechenleistung und zur Verfügung stehenden Band-
breite standen den spärlich über Modem angebundenen Rechnern von Verbrauchern
gegenüber. Die klassische Client-Server Architektur mit dedizierten Dienstberbringern,
hatte die Peer-to-Peer Architektur verdrängt.

Die rasante Durchdringung der Gesellschaft durch das Internet und das damit verbun-
dene Wachstum desselben, offenbarete jedoch Engpässe hinsichtlich der Skalierbarkeit in
der Client-Server Architektur. Zur gleichen Zeit ergaben sich weitreichende Änderungen
auf der Seite der Endbenutzer. Die Einführung der DSL Anschlüsse mit permanenter
Internetverbindung erreichte den Massenmarkt. Lösungen zur Selbstorganisation einer
großen Anzahl von Rechnern fanden den Weg von der Wissenschaft in endbenutzer-
freundliche Software. Die Renaissance des P2P-Paradigmas begann.

Noch immer ist zwar die Client-Server Architektur dominant. Jedoch hat auch P2P
seine Leistungsfähigkeit bewiesen und ist aus der heutigen technologischen Landschaft
nicht mehr weg zu denken. Heutige P2P-Systeme sind oft hybrid. Abläufe, die im verteil-
ten Szenarien oftmals schwer zu realisieren sind, wie zum Beispiel die Authentifizierung

iii

von Benutzern, werden von einer zentralen Komponente, etwa einer zentralen Benutzer-
verwaltung, erledigt. Diese hybride Architektur ist im P2P-Bereich vorherrschend. Zur
Verdeutlichung: Jede der einleitend erwähnten Applikationen verwendet den hybriden
Ansatz. Aber es bestehen weiter Saklierbarkeitsprobleme in hybriden Systemen, wie
die fehlende Ausfallsicherheit. Der zweimalige Ausfall des Skype-Netzwerkes im Jahre
2010 sei als Beispiel angeführt. Zentrale Komponenten sind auch ein Engpass, der die
Skalierbarkeit von Systemen begrenzt. Daher werden heute vermehrt massiv gebündelte
Ressourcen, sogenannte ”Cloud´´ Rechenzentren verwendet.

Trotz des Erfolges des P2P-Konzepts gibt es auch heute noch wenig grundlegende
Software (“Framework”), die eine Entwicklung von völlig dezentralen Programmen
unterstützt. Eine Ausnahme ist FreePastry, wohingegen OpenDHT nicht mehr aktiv
gepflegt wird. Wenn überhaupt, sind P2P-Komponenten applikationsspezifisch und
nicht wiederverwendbar, wie im Fall der eMule P2P-Software.

Zielsetzung der vorliegenden Arbeit ist die Vorstellung ein solches Framework, das
geeignet ist, die Entwicklung vollständig dezentraler P2P-Software voranzutreiben. Das
sogenannte ”IGOR framework´´ setzt die Idee der Trennung einer KBR-Schicht von
einer Applikationsschicht konsequent um. Die damit gewonnene Entkoppelung befreit
den Entwickler von der aufwändigen und fehleranfälligen Erstellung monolytischer
Insellösungen und verspricht eine komfortablere Wartung. Es entkoppelt darüberhinaus
die Netzwerk-Abstraktion (das Overlay) von höher angesiedelten Schichten, wie einer
verteilten Hash-Tabelle (DHT). Darüber hinaus, ist es zeitlich gesehen die erste Lösung,
die konsequent komplexe Operationen an Endpunkten ermöglicht. Derartige Operatio-
nen wurden bereits 2005 von S. Rhea gefordert, da sie die Verbreitung von P2P unnötig
behindern. Die Unterscheidung zwischen Overlay und darüber liegender Schicht hat
des weiteren den Vorteil, daß Komponenten getrennt simuliert werden können und
besonderes Augenmerk auf den jeweils zu simulierenden Teil einer Applikation gelegt
werden kann.

Eine der vordringlichsten Herausforderungen in P2P-Umgebungen ist die Zuteilung
von Ressourcen unter den Teilnehmern. Wie kann ein optimales Overlay aufgespannt
werden? Im Idealfall würden sich die Teilnehmer selbst mit möglichst Latenz-nahen
Teilnehmern verbinden. Wenn dieser Prozess von allen Teilnehmern ausgeführt wird,
entsteht ein effizientes Overlay. Um diese nahen Teilnehmer zu finden, müsste jeder
Teilnehmer a priori Messungen durchführen. Mit Netzwerk-Koordinaten steht jedoch
ein dedizierter Algorithmus zur Verfügung, der Messungen unnötig macht. Der Algo-
rithmus erlaubt Teilnehmern, die zu erwartende Latenz untereinander vorherzusagen.
Damit werden die Nachbarn herausgefunden, mit denen eine geringe Latenz zu erwar-
ten ist.

Latenzen sind im Internet zeitlichen Änderungen und stark schwankendem Verhal-
ten unterworfen. Ein Qualitätsmaß für einen Netzwerk-Koordinaten-Algorithmus ist

iv

dessen Fähigkeit, mit diesem Verhalten umzugehen. Einer der verbreitetsten Netzwerk-
Koordinaten-Algorithmen, der diese Ansprüche erfüllt, ist Vivaldi. Dieser Algorithmus
nimmt eine Latenz-Einbettung vor, die sehr präzise Netzwerk-Koordinaten erstellt.
Jedoch finden sich in der Literatur der letzten Jahre Zweifel an Vivaldis Fähigkeit, Struk-
turen genauer als bis zu einem interkontinentalen Mass aufzulösen. Damit würde der
Algorithmus verfehlen, eine verwertbare Vorhersage zu treffen.

Der Beitrag der vorliegenden Arbeit ist unter anderem eine grundlegende Analyse
des Vivaldi-Algorithmus. Der Schwerpunkt dieser Arbeit besteht in der Einführung
einer hierarchischen Variante des Vivaldi-Algorithmus, die zu einer deutlichen Verbesse-
rung der Latenz-Vorhersage führt. Dieser Schritt setzt zunächst eine intensive Analyse
des Vivaldi-Algorithmus voraus. Für die Analyse wird die zuvor entwickelte Software
Architektur ”IGOR” und ihre Komponenten verwendet. In Simulationen präsentiert
die vorliegende Arbeit dem Leser die Effizienz von Vivaldi. Darüberhinaus wird die
Auswirkung der cc und ce-Parameter auf den Algorithmus erforscht. Die Analyse bestä-
tigt frühere Erkenntnisse. Andererseits wurden oftmals in den original Publikationen
zu hohe Parameter Werte empfohlen. Darauf aufbauend stellt die vorliegende Arbeit
den hierarchischen Vivaldi-Algorithmus vor, der im Rahmen dieser Arbeit entwickelt
wurde. Durch die hierarchische Strukturierung der Latenz-Einbettungen wurde eine
substantiell verbesserte Vorhersageleistung erreicht. Diese Ergebnisse wurden in Simula-
tionen und in einer Kontinente übergreifenden Messung verifiziert. Bei dieser Messung
wurde der Algorithmus auf über 6 Millionen Rechnern ausgeführt. Den Abschluss der
Arbeit bildet die Publikation der erhobenen Messdaten zur weiteren Analyse durch die
Forschugsgemeinschaft.

v

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
Overview . 3
Published Work . 4

2. Round Trip Time Research 5
2.1. The Internet Architecture . 5

2.1.1. The Internet Anatomy . 6
2.1.2. Routing . 6
2.1.3. Autonomous Systems . 8
2.1.4. BGP . 8

2.2. Analysis of Round Trip Times . 10
2.2.1. Routing Paths and the Shortest Path 11
2.2.2. The Impact of Peering . 11
2.2.3. Bufferbloat . 12
2.2.4. Random early detection . 13

2.3. Current latency research . 13
2.3.1. Why optimize for latency? . 13
2.3.2. Bandwidth optimizations . 14
2.3.3. Anycast . 14
2.3.4. Internet Tomography . 15
2.3.5. Detour Routing . 16
2.3.6. Prediction vs ISP knowledge . 17

3. The Peer-To-Peer Paradigm 19
3.1. The Client/Server paradigm . 20
3.2. Unstructured Networks . 21
3.3. Structured Networks . 24

3.3.1. Key based routing . 24
3.3.2. KBR vs. Distributed Hash Tables 25
3.3.3. Iterative vs. recursive routing . 25
3.3.4. Kademlia . 26

vii

Contents

3.3.5. Chord . 26
3.3.6. Chord vs. Kademlia . 27

3.4. Hybrid P2P . 28

4. Igor 31
4.1. The KBR daemon . 31
4.2. Socket Interface: libigor . 32
4.3. Services . 33
4.4. Plug-in System . 34
4.5. NAT Traversal . 36
4.6. KBR Simulation . 37

4.6.1. PRIME SSF . 38
4.6.2. OMNeT++ . 40

4.7. Application Interface: libdht . 41

5. Proximity Enhancement Research 47
5.1. Overview . 47
5.2. Definitions . 48
5.3. Early Latency Prediction . 50
5.4. Big Bang Theory . 52
5.5. Vivaldi . 53

5.5.1. Central Vivaldi . 54
5.5.2. Dynamic Vivaldi . 56
5.5.3. Triangle Violations . 59

5.6. Pyxida . 59
5.7. Htrae . 61
5.8. PeerWise . 63
5.9. Meridian . 64
5.10. Ono . 65
5.11. Sequoia . 67
5.12. ISP assisted Oracle services . 67

5.12.1. Oracle . 68
5.12.2. Proactive Provider Assistance for P2P (P4P) 69
5.12.3. Application-Layer Traffic Optimization (ALTO) 69

5.13. Network Coordinates based on Matrix Factorization 69

6. The Hierarchical Vivaldi Algorithm 71
6.1. Overview . 71
6.2. Embedding Process . 72
6.3. Embedding Error Prediction . 75
6.4. Peer Selection Process . 76

viii

Contents

7. Vivaldi Simulations 79
7.1. Evaluation Methodology . 79
7.2. Data sets . 82
7.3. Simulator . 84
7.4. The impact of Triangle Inequality Violations 86
7.5. The choice of Neighbors . 87
7.6. Vivaldi Simulation Results . 90

7.6.1. Static data . 90
7.6.2. Dynamic data . 102
7.6.3. Conclusion . 104

7.7. Hierarchical Vivaldi Simulation Results 109
7.7.1. Static data . 109
7.7.2. Dynamic data . 115
7.7.3. Conclusion . 118

8. Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay 121
8.1. Methodology . 121

8.1.1. A Large Scale Overlay . 121
8.1.2. Vuze Plug-In . 122
8.1.3. Chronological Sequence . 124
8.1.4. Hierarchical Vivaldi Parameters 124

8.2. Results . 125
8.2.1. Evaluation of Hierarchical Vivaldi 126
8.2.2. Performance of Vivaldi-like systems 134

9. Conclusion 143

A. Extended Tables I

B. Extended Figures III

List of tables III

List of algorithms VII

List of figures IX

Bibliography XIII

ix

1. Introduction

C
artography is an ancient art that is older than Roman or Greek civili-
sations. At all times, mankind sought to build a graphical representa-
tion of their surroundings. Over time the art of producing such maps
improved: In ancient Greece the first maps based on mathematical
and geometrical models were developed. Furthermore, coordinates
as means to express positions in a metric space appeared. Due to the
intensive application in nautical navigation in the 12th century the

accuracy of maps was significantly improved. Today we have different elaborate kinds
of maps and various coordinate systems. For example, it is easily possible to measure
the distance from Munich to Rome with the help of a map using both cities’ coordinates,
without having to actually travel that distance. The quality of a map is measured in
terms of accuracy, degree of completeness or readability.

However, this kind of information — in this thesis I focus on latency information — is
not available for the Internet. There are illustrations, depicted as "Internet maps", but
their practical utility is limited. Some of these maps use Geo location data of autonomous
systems, some use GPS data of contributing hosts. None of these "Internet maps" has a
real value, as to measure distances in terms of latency. There is no projection that maps
two IP addresses to their mutual latency, because latency data is not metric.

It is, however, a desirable property to deduce the latency between two computers
easily. For example, Google optimizes their products for latencies as delays impact
business metrics: Answering requests from a nearby server decreases the time a user has
to wait, in other words improves the user experience. The result of a bad user experience
is the loss of customers. Therefore, a sizable effort is made to minimize latencies using a
variety of techniques, such as redirections using the Domain Name System.

A technique to predict and thus being able to minimize latencies is to assign coordi-
nates to nodes. Just as the process of deducing the geometric distance between cities a
node’s coordinate can be related to other coordinates to deduce latency. This technique
doesn’t involve any previous communication between two nodes, knowledge of their
coordinates is sufficient. However, latency data is neither metric nor stable. Scientific
research proposed different algorithms to produce and refresh coordinates. All of them
can be judged using some of the previously mentioned measures for the quality of a
map, accuracy, completeness, or for example the communication overhead of assigning
coordinates. In this thesis I analyze these algorithms and propose a novel scheme, Hier-
archical Vivaldi, in the main part of this thesis (chapter 6 to 8). As I analyze network
coordinates in fully decentral peer-to-peer overlays, I focus on decentral algorithms.

1

1. Introduction

These overlays hardly require an introduction: Peer-to-peer technologies play an
important role in modern applications. By locating data at the end-nodes the technology
creates benefits, such as bandwidth saving, scalability and resilience. There are plenty of
examples for successful P2P services, such as Spotify and of course Skype.

Recently, another technique promising scalability became popular. The cloud com-
puting concept pushes the application logic back into data centers. However, inside
these data centers P2P techniques organize the single nodes. Furthermore, in non-profit
systems that do not have an appropriate budget available P2P is the only vital option.
For example, file sharing based on BitTorrent does not depend on any external storage
services and accounted for 34.3 % of North American traffic in 2010.

Goals
Therefore, the primary goal of this thesis is to improve the overlay’s awareness of

its underlay. Peer-to-peer applications form overlay networks whose topology does
not need to reflect the underlying network’s topology. If it did, both the overlay and
the underlay could benefit. Applications in the overlay would experience a lower
communication latency and an increased throughput. The underlying network would
have to carry less traffic.

To improve that awareness I analyze the existing network coordinate algorithms. I
focus on truly distributed algorithms with no global knowledge requirements. The
current de-facto standard is the Vivaldi algorithm, along with an optimization of Vivaldi
called Pyxida. I will evaluate both algorithms to determine their performance under
ideal circumstances, and I try to deduce a set of recommended parameters.

After deriving a sound understanding about both algorithms, I propose the Hierarchi-
cal Vivaldi algorithm, a hierarchical enhancement to Vivaldi. Hierarchical Vivaldi is a
practical algorithm that improves over Vivaldi by an order of magnitude. I verify that
algorithm’s performance in both simulations and real life evaluations.

I have a special focus on the re-usability of the building blocks of my thesis. I start
out with the IGOR system, as provided by the doctoral thesis of Kendy Kutzner. Using
that basis I extend the components, following Rhea’s appeal of broadened interfaces.
I provide an ecosystem of P2P components that the community can re-use to develop
novel applications far beyond the typical "distributed hash table" scenario. The use of
these components for my simulations of Vivaldi and Hierarchical Vivaldi allows me to
reaffirm the re-usability of that ecosystem myself.

2

Overview

The remaining chapters of my thesis are concerned with the following topics:

Chapter 2 introduces the topic of round trip time related research. I start with an
overview of the Internet’s current structure and components. I identify sources of packet
delays and introduce research that focuses on latency optimization.

Chapter 3 describes the P2P paradigm. The need to locate information at edge nodes,
led to the development of structured overlays, which allow efficient searching. The
chapter briefly introduces algorithms and concepts that have been developed over the
last decade.

Chapter 4 introduces the Internet Grid Overlay Routing (IGOR) ecosystem, which
is designed to foster the development of P2P applications. Currently, P2P still consist
of application specific software solutions. I extended the key based routing (KBR)
daemon of Kutzner’s thesis [Kut08] into an re-usable ecosystem including a proximity
enhanced KBR daemon and a distributed hash table (DHT) library. My work picks up
Rhea’s appeal of "slightly broadened interfaces" [RGK+05] and provides a high degree
of extensibility and customizability.

Chapter 5 discusses the predominant algorithms that use proximity information for
overlay optimization. It introduces network coordinates as means of decentral latency
prediction. Using network coordinates, each peer can determine mutual round trip times
by comparing their virtual coordinates, similar to looking up distances on a city map.

Chapter 6 proposes the Hierarchical Vivaldi algorithm, a multi-dimensional approach
of network coordinates for latency prediction. Its hierarchy of embedding spaces pro-
vides a new, highly accurate error measure to distinguish nodes with well determined
coordinates from others with only vaguely determined coordinates.

Chapter 7 presents an extensive simulation of Vivaldi and the Pyxida algorithm.
It studies the optimal parameter combinations for both algorithms. Furthermore, it
evaluates Hierarchical Vivaldi using simulations based on realistic traffic sources. Using
the previously studied parameter settings I compare the performance of Hierarchical
Vivaldi to both Vivaldi and Pyxida.

Chapter 8 confirms the findings from the previous simulations in a planetary scale
measurement study. Included in the massively popular BitTorrent client Vuze, I evalu-
ated Hierarchical Vivaldi over a period of five month. During that time period clients
sent over 40 billion measurements back to the statistic collecting node. Finally I draw fur-
ther insight into the performance of network coordinate algorithms using the collected
measurement data.

Chapter 9 concludes the thesis and provides an outlook.

3

1. Introduction

Published Work

Parts of this thesis have been published:

Chapter 3:
Benedikt Elser and Thomas Fuhrmann and Georg Groh: Group Management in P2P
Networks. Proceedings of the 2nd IEEE Workshop on Grid and P2P Systems and
Applications (GridPeer 2010), August 2–5, 2010, Zurich, Switzerland

Chapter 4:
Benedikt Elser and Thomas Fuhrmann: A generic KBR library with built-in Simulation
Capabilities. Proceedings of the 7th International Workshop on Modeling and
Simulation of Peer-to-Peer Architectures and Systems (MOSPAS), Istanbul, Turkey,
2011

Chapter 6,7:
Benedikt Elser and Andreas Förschler and Thomas Fuhrmann: Spring for Vivaldi
– Orchestrating Hierarchical Network Coordinates. Proceedings of the 10th IEEE
International Conference on Peer to Peer Computing (P2P), Delft, The Netherlands,
2010

Chapter 7:
Benedikt Elser and Andreas Förschler and Thomas Fuhrmann: Tuning Vivaldi:
Achieving Increased Accuracy and Stability. Proceedings of the 4th International
Workshop on Self-Organizing Systems (IWSOS), Zurich, Switzerland, 2009

Chapter 8:
Benedikt Elser and Thomas Fuhrmann: Here is Your Peer! – Locating Peers on a
Regional Level with Network Coordinates. Proceedings of the 11th IEEE International
Conference on Peer to Peer Computing (P2P), Osaka, Japan, 2011

4

2. Round Trip Time Research

The major contribution of my thesis is an improved algorithm for latency prediction.
The purpose of a prediction is the omission of a measurement step, prior to actual
communication. For example, nodes could select the nearest replica out of a number
of servers, without measuring latencies to all of them. Latency sums up from a variety
of sources and events, such as routers or transport protocols. Additionally it fluctuates
due to a variety of factors e. g. route flaps or failovers. Therefore, this chapter introduces
the reasons for latency and its various sources, before turning to latency prediction
in Chapter 5. Hence, I will start with a brief introduction into the architecture of the
Internet’s architecture in Section 2.1. In Section 2.2 I will analyze that structure for
sources of latencies. Furthermore, I will introduce current work on latency research in
Section 2.2.

2.1. The Internet Architecture

The Internet is a computer network that interconnects millions of computing devices
throughout the world [KR07] On its highest functional level it consists of hosts or end-
systems that are connected to other hosts via a path. On a lower level this path consists of
passive communication links, like optical or copper cables and active packet forwarding
entities, such as routers switches or bridges. Hosts are identified in a common address
space, defined by the Internet Protocol (IP). They exchange messages along a path,which
are split into packages that are transmitted independently across the network. That
form of delivery implies no initial path allocation like in the plain old telephone service
(POTS).

The independent transmission, the so called ”stateless” nature of Internet protocols is
a direct result of their design principles [SRC84]:

[The end-to-end principle] suggests that functions [...] can completely and correctly
be implemented only with the knowledge and help of the application standing at the
endpoints of the communication system.

The most prominent example of this design principle is the Internet Protocol Suite’s
Transmission Control Protocol (TCP). It is layered on top of IP and provides a connection
oriented ordered reliable communication channel with error correction, flow and conges-
tion control [CDS74]. As a result of the end-to-end principle TCP’s packet transmission
is flexible enough to provide connections even when facing changes in routing decisions

5

2. Round Trip Time Research

or failures. Furthermore, because of the end-to-end principle routers could be built more
space efficient and focus on their routing duty.

2.1.1. The Internet Anatomy

Figure 2.1 presents a snapshot of the worldwide submarine cable system in 2008. It
is the back end of Internet communication. Satellite transmission faces the problems
of a shared medium, while being expensive. Hence, fibre optic cables connect the
continents. Clearly North America is the central communication hub. Nearly each
European submarine cable connects to the New York region, while only two cables
exist to Central and South America. The decentral architecture of the Internet, its fault
tolerant design and the redundant provision of cable links allows the network to operate
even under dramatic circumstances. During the earthquake in the western Pacific region
in 2011 half of the cables were damaged [Jou], yet Japan was still online.

From the latency perspective the figure reveals also information about the expected
performance. Latency is bound to the speed of light in fibre optics, which is 200 000

km/s. A signal across 1000 kilometers will take 5 milliseconds to propagate over this
setup. Therefore connections from Europe to Australia (approximately 16 000 km) are
lower bound at a RTT of roughly 160 ms. However, the actual RTTs are an order of
magnitude higher due to various influences, such as routing cf. Section 2.2.

2.1.2. Routing

Distributing route information about every available host to each end-host is obviously
not a practical solution. Hence, the Internet is organized in a hierarchy that is predeter-
mined by the IP name space. Each device is at least aware of the default gateway, a host,
which forwards packets, if the destination is not in the local scope (subnet). Dedicated
routers contain tables of prefix / host combinations. A route is selected by matching the
target address against each prefix. The longest prefix match identifies the most specific
route and determines the packets next hop. This algorithm repeats until the packet
reaches the destination host. Each routing decision is based upon local knowledge only,
and is often described as best effort service. Each routing decision adds a processing
delay to the path latency.

Connections between different networks creates the need for buffering at routing
devices. Packets need to be stored until the router is able to process them. For example,
a packet burst from two different 100 Mbit networks, targeting a third 100 Mbit network,
will consume all available bandwidth. Hence the router queues packets if that queue is
not saturated (congestion). Otherwise the router has to drop packets.

The TCP protocol uses dropped packets as input to a congestion avoidance algorithm
that throttles sending of packets (implicit congestion notification). It relies on timely
notification of these events. TCP’s success proves the effectiveness of this mechanism,
however, there are corner cases of ”chaotic” behaviour [VB00]. Veres et al. claim that

6

2.1. The Internet Architecture

Figure 2.1.: The worldwide submarine cable system in 2008 [Tel].

7

2. Round Trip Time Research

TCP’s implicit congestion avoidance contributes to the fractal nature of Internet traffic in
contrast to being a pure stochastic process. To avoid saturating a queue, which results in
packet drops, proposals for explicit notification through active queue management exist,
such as Random early detection (RED) [FJ93].

The impact of multiple queuing along a path is a major contributor of latency as
discussed in a recent study [KMS+09]:

Beyond propagation delay, high RTTs could also be the result of packets getting
queued up somewhere along the path between the clients and the nodes serving them.

I will discuss the problem of "bloated buffers" in Section 2.2.3.

2.1.3. Autonomous Systems

The Internet’s structure is tiered, following a hierarchical organisation. Independent
operators e. g. ISPs, universities, etc. control their (unique) routing prefix. They are
commonly referred as autonomous systems (AS). Contracts manage the delivery of
packets that terminate in other ASes (inter-domain traffic). Either an AS pays another
upstream AS to deliver inter-domain traffic, or two operators route non-transit traffic
between their networks, without charging one another for traffic (peering).

ISPs follow different incentives: First, they strive to attract a maximum number of
customers e. g. by bandwidth or price vantages. Second, they want to minimize their
costs for traffic they need to deliver outside their network. Third, they are reluctant to
process packets that transit their network. The third point leads to the use of hot potato
routing in peering situations [ZLPG05], a technique that delivers incomming packets to
the closest egress point, to minimize processing time in contrast to latency minimization
Section 2.2.2.

Depending on their size and peering requirements ISPs are divided into three Tier
categories, where Tier 1 ISPs do not need to purchase any inter-domain traffic, Tier 2
ISPs pay for some traffic and Tier 3 ISPs need pay for any exterior traffic. Depending
on their connectivity ISPs are often reduced to belong to the well connected network
”core” and the ”edge”. This is illustrated in Figure 2.2. Few Tier 1 ISPs are located in the
center part of the circle, colored in orange, while the majority is at the circles boundaries,
colored blue with occasional peerings.

2.1.4. BGP

The Border Gateway Protocol (BGP) is used in the inter- and sometimes intra AS routing
decisions. For simplicity reasons I focus on the inter-as roting (eBGP), iBGP is used only
in large ISP networks. BGP is a fully distributed path vector protocol. It incorporates
network policies into its path decision. Commonly these consist of combinations of
peering and cost information. Based on these policies routers dynamically updates their
forwarding tables and reflect changes in the network state instantly.

8

2.1. The Internet Architecture

Figure 2.2.: AS connectivity illustrated by the cadia project [DKR05].

Local BGP misconfigurations can have drastic impact on the global routing behaviour
[MWA02; CKV10]. For example, a national BGP blockade of the popular video streaming
site youtube.com in Pakistan, turned into a global one, due to a simple misconfiguration.
Hence all traffic would be routed via Pakistan [Ré08].

9

2. Round Trip Time Research

2.2. Analysis of Round Trip Times

The previous section introduced the basic architecture of the Internet. Along with it, I
presented the example of a connection between Europe and Australia, which is bound
at 160ms. However, latency measurements between end-host exhibit delays three times
higher (cf. Figure 2.3) or even more [SSW10b].

That example latency of 160ms is a theoretical limit, it is the transmission delay. Fibre
optical systems need processing to amplify their signal after a distance of approximately
110 km, which additionally increases latency. Furthermore, each routing decision intro-
duces additional delays, as it requires excessive processing of packets: Packets need to
be decoded from the medium, processed an encoded back onto the medium (processing
delay). Furthermore if a packet can not be processed immediately, it has to be queued
(queuing delay)

Another major contributor to delays is, the actual routing path. The Internet is a
network of autonomous systems and little is known about the actual inner workings
of an AS. It is however certain, that ISPs have no incentive to prioritize traffic passing
through. As Leighton puts it:

The path between sender and receiver is a "heterogeneous infrastructure that is
owned by many competing entities and typically spans hundreds or thousands of
miles" [Lei08]

 0

 50

 100

 150

 200

 250

 300

 350

 400

03/07 04:00 03/08 04:00 03/09 04:00

R
T

T
 [

m
s]

Date/Time

Figure 2.3.: RTT during a continuous measurement between planetlab4.lublin.rd.tp.pl and
planetlab-1.iscte.pt.

In his awarded paper "End-to-End Routing Behavior in the Internet", Vern Paxson
concluded that round trip time behaviour is imminent unpredictable [Pax97], hence
research focuses to find the reason for this misbehavior, which will receive attention
in this chapter. Figure 2.3 serves as introduction of the problem we are facing. RTT
does not only vary in small scale, but also shows fluctuations at a magnitude of 3 times.

10

2.2. Analysis of Round Trip Times

Starting at approximately 300 ms the RTT drops to 70 ms for a number of hours, before
returning back to 300 ms. A second drop after half a day seems to stabilize the RTT at 80
ms. The respective data was captured during a measurement between PlanetLab hosts
conducted in 2007 cf. Chapter 7. The illustrated data demonstrates the effect and the
presence of routing changes during standard network operation.

2.2.1. Routing Paths and the Shortest Path

A routing path, that is based on the geographic shortest route, should optimize the
transmission delay. Various parameters influence that path, however, in [MUF+10]
Mühlbauer et al. conclude that despite substantial research and age, the impact of these
parameters on the resulting route is still unknown. Therefore they investigate the impact
of parameters, such as the size of the autonomous system, peerings and policies etc.
to route stretch. In their study they are able to reassure the findings of Krishnan et al.
[KMS+09], concluding:

Overall the majority of routes incur reasonable stretch. [MUF+10]

However, they were unable to optimize routing paths to reflect geographical distances.
Their proposal is to enrich the intra domain protocols with geographic information, if
end-to-end path quality is to become more important in the future [MUF+10].

In [SSW10a] Schwartz et al. analyze the stability and diversity of end-to-end routes,
using a longitudinal analysis of data from 2006 and 2009, in [SSW10b] they analyze the
origins of delay variations from the same data. They analyze whether latency variations
differs significantly due to different routes. In both studies they confirm the exceptional
position of academic networks. These networks are usually neither load balanced nor
traffic shaped. Therefore they exhibit higher route stability and lower latency variance,
than commercial networks. Furthermore their second study confirms, that delays are
mainly introduced by "changes along the route itself" [SSW10b].

2.2.2. The Impact of Peering

Both studies [WMW+06; ZLPG05], investigate the role of routing and routing events in
detail. Wang et al. [WMW+06] found that in spite of the availability of redundant paths,
routing still suffers from missing redundancy information. Furthermore BGP’s built-in
fault tolerance comes at the cost of loss bursts that are especially high on failover events.
These bursts manifest in huge latency increases over periods of hours.

Zheng et al. [ZLPG05] discuss the use of hot potato routing in peering situations. As
discussed earlier in this thesis, the economic incentive of an ISP is to minimize the costs
of inter-domain traffic. Hence, they try to deliver that traffic to the closest egress point
as fast as possible. That behavior is not only malicious in terms of latency: The authors
found this to be responsible for triangle inequality violations (TIVs cf. Section 2.3.5) in
both an asymmetric as in a symmetric routing relationship.

11

2. Round Trip Time Research

Inferred Buffer Capacity

U
pl

oa
d

B
an

dw
id

th

.5s
1s

2s
4s

cable
dsl
fiber

1KB 4KB 16KB 64KB 256KB 1MB 4MB

16Kb/s

64Kb/s

256Kb/s

1Mb/s

4Mb/s

16Mb/s

Figure 2.4.: Uplink buffer size, inferred by ICSI Netalyzr [KWNP10].

2.2.3. Bufferbloat

Equipment of residential broadband Internet access has always received much attention
cf. [DHGS07]. A topic that has recently caught attention in network latency research is
the negative impact of overdimensioned buffers inside network hardware on overall
network performance [Get11; GN11]. So far, the bandwidth delay product has been
considered the "gold standard" concerning buffer sizing. However, in a broad study
conducted by the International Computer Science Institute (ICSI), their tool for testing
end user connectivity – the Netalyzr [KWNP10] – found a sizable fraction of network
hardware to be significantly over-buffered.

Figure 2.4 shows Netalyzr’s inferred buffer size plotted relative to the upload band-
width of the residential Internet access. Clearly most cable network hardware is
equipped at least with 32KB, however up to 256KB are common. The lines in the
plot indicate how long it takes to empty a buffer of the respective size. For example,
a 2Mb/s DSL modem will fill a buffer of 256KB in one second (second line from left).
In contrast, the bandwidth delay product at a RTT of 50 ms (typical for DSL links
cf. [HUKC+11]) recommends a buffer size of only 100KB. Obviously, the time to fill the
buffer is independent of the actual latency.

Until this buffer is filled, the TCP congestion control algorithm is unable to detect
the bottleneck bandwidth of the connection. Rather, TCP slow start will exponentially
increase the size of the send window. Thus, packets will be sent at a significantly higher
rate than the actual bottleneck bandwidth. One effect is that a single TCP connection

12

2.3. Current latency research

may be able to slow down all other connections crossing the same bottleneck, as it
cannot receive the required throttling notification in time. Another effect is that latencies
drastically increase, as many packets start getting queued and thus will have to wait
buffer size at bottleneck link / bottleneck link bandwidth seconds for their transmission – a
time span that obviously grows linearly with larger buffer sizes.

2.2.4. Random early detection

Section 2.1.2 mentioned the random early detection algorithm as means of active queue
management (AQM). AQM monitors the queue size inside a router and explicitly marks
packets with a congestion header. The marking process happens with a probability
relative to the queue length. Hence, the receiver of a marked packet can inform the
sender, that contributed to the congestion, to throttle sending. Explicit Congestion Noti-
fication (ECN) defines fields in both the TCP and IP protocols header for active queue
management. There are several extensions and competing proposals including RRED
[ZYCC10], an extra robust RED algorithm and RSFB [ZYC09], a stochastic algorithm.

AQM should have eliminated the bufferbloat problem years ago, and ICSI’s observa-
tions should be uncommon or impossible. Nevertheless, AQM methods appear to be
turned off by default in a large fraction of deployed routers. Older hardware is often
incompatible with the ECN bits. Network operators even tend to clear ECN bits on the
way from the sender to the receiver, in other cases they get ignored or misinterpreted
[BBB11]. Furthermore, the RED algorithm is known to be flawed in at least two different
ways. Recently et al. proposed the CoDel algorithm [NJ12], designed to solve REDs
design flaws.

2.3. Current latency research

After introducing the structure of the Internet and the sources how latency sums up,
this section presents current research on how to mitigate or even use delays. Initially
I motivate latency optimizations, then I present current research and conclude with a
examination, why latency optimizations can not be left to the ISP.

2.3.1. Why optimize for latency?

In 1996 Cheshire concluded in [Che96] that typically bandwidth is not a problem. Com-
monly bandwidth problems can be mitigated in a flexible way. For example, residential
bandwidth can be extended by purchasing more bandwidth. The Akamai report [Bel10]
sees this happen. However, latency problems last. The same home network that can be
equipped with a second subscriber line, cannot buy lower latencies beyond physical
limits. Remember that we already concluded in Section 2.1.1 that Australia is bound to
an absolute minimum delay of of 80ms.

13

2. Round Trip Time Research

Regardless of the equipment or protocols you use, your data cannot exceed that
theoretical limit. This limit equals the delay between when a packet is sent, and when
it is received, aka latency [Dou].

Furthermore, latency is the more useful information. Latency measurements will not
fluctuate that enormous facing path changes. Bandwidth is much more dependent on
the exact path (cf. [FJJ+01]).

Hence, the goal of this thesis is to provide stable network coordinates. If a peer is
presented with different replica, it should be able to choose the latency optimal choice
instantly.

2.3.2. Bandwidth optimizations

Although this thesis focuses on latency, I will briefly introduce the Thunder-Dome
series of algorithms [DMMP09; DMMP10]. The Thunder-Dome algorithm schedules
bandwidth measurements among hosts in a decentral fashion. Previously, algorithms
relied on a priori knowledge of the upload bandwidth. The key problem Thunder-Dome
addresses is the detection of that bandwidth. A misidentification arises easily, as the
computed bandwidth between two random hosts is the minimum of a sender’s up-
load capacity and the receivers download capacity: min(uploadsender, downloadreceiver).
Hence, the system schedules a number of pair-wise "tournaments" to determine the
upload bandwidth in a distributed and bandwidth conserving fashion. The winner of
such a "tournament" is reexamined until it determines a node, which is well provisioned
enough to correctly detect a node’s upload limits.

2.3.3. Anycast

One dilemma of a content provider is its dependence on the path between him and his
customers. Typically a path crossing numerous ASes with peerings, uplink contracts
and routing anomalies lies between them. This is a major obstacle for companies that
depend on low latencies. For example, Google tries to replace the traditional desktop
with pure web based solutions. They discovered, that an increase of 0.5 in latency is not
tolerated by Google’s users [ES09]. However an ISPs has no such incentives to optimize
is network for low latencies. Quite the contrary, the rising traffic demands of e. g. video
streaming [San10] mean higher costs.

Ideally content would be available in the operators own network, which increases
available bandwidth by avoiding upstream bottlenecks. This is the design idea of Content
delivery network (CDN). CDNs replicate cachable content close to the end user, and deliver
content transparently from that latency closest cache (edge node, ghost) instead of the
”original” source. For example, in Google’s CDN 75% of prefixes have a ghost within
1000 miles, which translates roughly to 20 ms at the speed of wire [KMS+09].

Technically, there are two common ways to accomplish locality. Typically CDN
providers e. g. Akamai will reply to DNS queries with the replication server that is

14

2.3. Current latency research

latency closest to that peer. These "ghosts" have different IP address, but the same
hostname. The second method, is redirecting clients via HTTP 300 headers.

CDNs use various informations such as provider support, geographic location and
network measurements to determine which replica a client should use. This topic is still
a field of optimization. Recently Google proposed a change to the recursive resolution
of DNS lookups. In the recursive setup DNS servers forward queries to the authoritative
nameserver instead of letting the client forward it. However, in that case a CDN cannot
come up with the best replica, because the query lacks information about the original
requester. Hence, Google submitted an IETF draft to include the requesting client IP
addresses in the DNS query header [CvdGLR10]. Due to privacy concerns it was later
revisited to include only client subnet information [CvdGLR11]. Although the proposal
did not leave status of a draft, Google and partners already implemented that technology
in production systems [Inca].

However, ”close” placing does not always yield the desired effect, as a study con-
ducted inside the CDN of Google by Krishnan et al. found:

Our analysis [...] of thousands of prefixes across the Internet shows that more than
20% of paths have an inflation greater than 50ms, even though most paths are
between clients and nearby nodes. [KMS+09].

The same study found latency problems in regions, whereas other peers from the same
region experienced latencies ten times lower. The investigation of these phenomenons
reaffirmed the two sources of latencies. First, the path might be flawed by routing
circuits, which is a serious misconfiguration. Second, a router on the path might be
congested, impacting client significantly.

2.3.4. Internet Tomography

Discovering a network’s anatomy, e. g. delays, loss rates or topography information, has
always received attention. Infrastructure providers are reluctant to the publication of
information about their networks. A reason for this is the notion of companies, to keep
their information as business secret. Furthermore on high loaded links, measurement
traffic, competing with business traffic is unwelcome. Investments into a monitoring
infrastructure for public consumption are uncommon. The only public available infor-
mation are BGP routes, which define the "interfaces" an ISP offers to the outer world.
Tools, such as cyclops [ZLMZ05], or the pinger project [MC00] breathes life into that
”principal structure” of the network.

Hence, the scientific community proposed ”Internet Tomography” [Pax97; CHNY02;
CCL+04] as methods of investigation, these black-boxes. Internet Tomography focussed
on the discovery of network parameters by a huge number of sophisticated tests. Today
the most visible tool that was developed during this ongoing effort is traceroute.

15

2. Round Trip Time Research

However, there are various other tools e. g. clink that precisely detects a connections
bandwidth. Internet Tomography follows two different objectives.

The first is link level parameter estimation, based on path measurements. By sending
packets to different receivers, assumptions about their common intermediate links are
possible.

The second is path level traffic quantisation, based on link level measurements. By
measuring traffic on an intermediate link, the direction of packets can be inferred.

Both approaches lead to inherent random data. Therefore, statistical techniques are
used to analyze the result.

Internet Tomography created the tools for projects like rocketfuel [SMW02], which
tries to derive data about the anatomy of ISP networks from measurements. Furthermore
it is the underlying technique for e. g. the bandwidth estimation component of ICSI’s
Netalyzr [KWNP10].

2.3.5. Detour Routing

"Detour Routing" sums up algorithms that change the Internet’s standard routing behav-
ior. Instead of a best effort service, specific optimizations can be applied. For example
Akamai’s SureRoute algorithm [Tec] uses detour routing initiated from Akamai Edge
nodes, to redirect users via the fastest path to an origin of non cachable content. That
service is offered both for performance reasons, and for failover situations, where routing
failures inhibit the direct path from customer to provider.

The PeerWise [LBL+09] algorithm, implements that service using a P2P network. It is
built upon existing Detour routing frameworks, such as Detour [SAA+99] or One Hop
[GMG+04]. However PeerWise exploits triangle inequality violations and detects them
via the Vivaldi network coordinate algorithm. I will first introduce triangle inequality
violations, before describing PeerWise:

Violation of the triangle inequality (Triangle Inequality Violation (TIV)) are a commonly
witnessed phenomenon on the Internet. Commonly direct path between two nodes
is received as the ”shortest path”. This reflects geometrical fundamentals, where in
a triangle of nodes A,B,C, the shortest path between two nodes has to be the direct
connection. The length of the path between node A and B will always be shorter than
the path A - C - B. However, the Internet does not reflect a metric space. Therefore a
drastic fluctuation in round trip times may yield such behaviour and detours via another
hop may provide smaller latencies.

In [WMW+06] Wang et al. study the causes of TIVs. They identified hot potato routing,
along with private peerings and interior level routing probles as a major sources of TIVs.
From their analysis, they conclude that TIVs are not a structural anomaly, but a direct
outcome of the Internet’s design and thus persistent. Measurements from a study by
Lumezanu et al. [LBSB09] confirmed these phenomena and also found them to be quite
common, varying with time. Their study found routing changes and queuing delays

16

2.3. Current latency research

as major sources of TIVs. Furthermore, they narrowed the lifetime of a TIV down to lie
between 5 hours and one day.

In their PeerWise system [LBL+09] system, the authors successfully exploited benefits
of TIVs. Each violation represents a potential shorter path between two nodes, involving
a detour via a third node. However, the faster path needs also more traffic for that node.
Therefore the algorithm is a broker among nodes, that ensures benefits for all three
parties, by searching for detours that benefit that third node.

The key idea is that two nodes can cooperate to obtain faster end-to-end paths without
either being compelled to offer more service than they receive [LBL+09]

The authors were able to prove that for 50% of nodes in their example data sets
detours existed. The mutual advantage requirement shrinks that fraction for some nodes
completely, others still exists. PeerWise employs network coordinates to predict and
select detours, as these algorithms are unable to cope with TIVs and thus exhibit a high
degree of error. This will receive broader attention in Section 5.5.

2.3.6. Prediction vs ISP knowledge

The first idea that comes to mind, when trying to predict latencies is support from an
ISP. The operator of a network is the presumably most competent partner to tackle this
issue. Solutions, how this can be accomplished are described in Section 5.12, this section
rather describes the relation of customers and ISPs.

One main application of latency prediction are overlay networks, such as file sharing
applications. Clearly ISPs’ reaction towards the P2P traffic generated from file sharing
was not welcoming. Both ISPs and users started a competition towards creating and
circumventing barriers for P2P traffic. Firstly ISPs attempted to limit P2P traffic by using
traffic shaping and blocking, based on targeted ports. However, applications switched
to use random port numbers. To identify P2P traffic with random port numbers ISPs
invested in Deep packet inspection. That move resulted in even bigger buffers, to allow
scanning of data, which lead to higher latencies. Users responded by encrypting data.
ISPs also attempted to redirect users to hidden caches in their network. This practice
is legally questionable, since this could be interpreted as a distribution of potentially
copyrighted data.

Therefore users will be reluctant to solutions offered by their ISP. Too big might be the
incentives for ISPs to keep traffic local, even if lower latency peers might exist outside
of their network. A recent study initiated by Google and conducted by Mueller et al.
[MA11] sheds light on the degree of ISP’s interference targeting BitTorrent traffic. Using
the "Glasnost" software setup [DMG+10] in Google’s Measurement Lab 1, users could

1http://http://www.measurementlab.net/

17

http://http://www.measurementlab.net/

2. Round Trip Time Research

test their Internet connections for signs of throttling of BitTorrent traffic. Starting in
2008 these measurements show indicators for throttling for most ISPs. The intervention
of the Federal Communications Commission (FCC) against the US provider Comcast
provoked a strong reaction and resulted in less throttling. Throttling still exists, for
example, the German provider "Kabel Deutschland" was convicted of throttling in 44.5%
of 450 tests 2. The specific result for that provider is interesting, as our measurements in
Section 8.2.2 led to the same conclusion while investigating Vivaldi anomalies.

2http://dpi.ischool.syr.edu/countries.html

18

http://dpi.ischool.syr.edu/countries.html

3. The Peer-To-Peer Paradigm

The P2P paradigm has become popular about a decade ago. The rediscovered focus on
end hosts symbolizes a return from the client/server architectures of the 90s back to a
decentral structure.

In its very beginning, the ARPANET, as the Internet was called at this time, consisted of
computers, each equal among them. It was initially a network between the Universities
of California (Los Angeles and Santa Barbara), Utah and the Stanford Research Institute.
The network was built, to share computing resources around the USA [TH09].

After the Internet became a mature technology, access was granted to less powerful
nodes, such as consumer level devices. In fact the overwhelming penetration of "the
web" in modern society produced an enormous number of end users. That imbalance
between service providers and consumers naturally led to the predominant client server
paradigm discussed in the next section.

However, in the last 10 years, with the rising demand for Internet access and services,
two developments have led to the renascence of the P2P paradigm. First, servers were
unable to cope with the rising consumer demand e. g. for video streaming. Second,
residential bandwidth reached rates, that allowed home users to meet the demands of
contemporary services, such as video streaming. Because end users share resources, the
P2P concept reaches "back to the roots" of the Internet, although the term P2P has only
been in use since 1999 along with the Napster system.

P2P research proposed the algorithms that will receive attention in this chapter.
They can be split into different flavors: Unstructured and structured overlays, with
occasional proposals of hybrid solutions. Unstructured overlays cause little mainte-
nance overhead (cf. Section 3.2). However, they need to search for information, like
the needle in the haystack. Structured overlays efficiently locate individual data items
(cf. Section 3.3). Their strict organisation guarantees success, provided the item is avail-
able somewhere in the overlay. If combined with proximity-awareness techniques as
described in cf. Chapter 5, they can achieve a good routing efficiency. As a downside,
maintaining the required structural constraints of the overlay requires a potentially high
overhead.

Hybrid P2P systems (cf. Section 3.4) migrate some tasks, such as billing, to a central
component, while retaining load intensive tasks distributed. One of the most prominent
examples for hybrid systems is BitTorrent, which I will introduce along with its well
known Vuze client in Section 3.4. That very client was used to conduct experiments "in
the wild" in Chapter 8.

19

3. The Peer-To-Peer Paradigm

These different P2P structures will receive attention in the course of this chapter. I will
introduce the most outstanding examples of each technique alongside the theoretical
reflections.

3.1. The Client/Server paradigm

The predominant architecture in computer networks is the Client/Server paradigm. When
a client requires a service, it connects to a service provider, a so called server. That server
fulfills the clients request. This model has a lot of benefits, for example:

\bullet The Client could be very simple, in complexity of both hardware and software.

\bullet The Server is holding software logic and data in one central place, which ensures
consistency of data and avoids fragmentation.

In recent years the demand for bandwidth intensive services increased [Cis10]. For
example, in 2010 online video consumed 36 % of the Internet traffic. Additionally, the
number of clients has increased, because of the overwhelming penetration of "the web"
in modern society. Therefore, servers face scalability issues in terms of bandwidth. One
method is to provide even more servers, placed closer to the users (cf. Section 2.3.3).
However, there is another approach. At the same time as servers see higher demands,
clients get equipped with increasing resources. Nielsen’s law [Nie98] predicts an annual
50% increase in user’s connection bandwidth. Today Clients’ bandwidths are sufficient
for providing a service, such as video streaming, which currently has a bit rate of
512kb/s in H.264/AVC MP [OBL+04]. The idea to directly connect clients defines a new
paradigm. Steinmetz et al. [SW05] define a P2P system as,

a self organizing system of equal, autonomous entities (peers) [which] aims for the
shared usage of distributed resources in a networked environment avoiding central
services.

In the words of the Client/Server paradigm, every client acts as server. Ideally, every
client uses and contributes resources to the network (decentralized resource usage). To
be able to do so it must operate independently: Each client makes decisions on the
basis of local knowledge only (decentralized self organization) [SW05, p. 11]. The latter
principle expresses a core design philosophy of P2P algorithms. Requiring more than
local information leads to abundant communication. That would make the system
overly complex and slow. Therefore local design is a fundamental principle.

These P2P networks are also referred as overlay networks cf. Steinmetz et al. :

Let V = 1, 2, ...n a set of all n nodes, or peers. Every Peer can be associated with
a graph G = (V,E). E is the set of edges e = (i, j) where j is a neighbor of i, i.e.,

20

3.2. Unstructured Networks

there is at least one entry in the routing table of i that uses j as the next node. For
edge e = (i, j), i is the source node and j is the target node. The number of edges is
denoted by m. G is sometimes called the overlay network of a Peer-To-Peer system.
The edges might be weighted, e.g., with the number of entries that use j as the next
node or the cost for the traverse of this edge. All edges are directed. [SW05]

The above definition intentionally leaves the type of node i\prime s identifier undefined.
Overlay networks commonly identify nodes by using random IDs, not IP addresses.
Thus, they emphasize their independence from existing network topologies.

To reach a target node T in a P2P network, that is not in the neighborhood NA of
a node A, at least one node B \in NA has to forward that message. The actual routing
algorithm is specific to the overlay algorithm and will be discussed in the following
sections. The sequence of nodes that forward a given message constitutes the path that
the message takes through the overlay. Each step along that path is called a hop.

P2P’s robustness roots in its design. Churn, the spontaneous joining and leaving of
nodes is at the overlay’s design very core. It diligently reflects the fact that end users
can and will disconnect their machines at any time. In contrast server systems are
dedicated machines and will only disconnect in case of failure. End user machines serve
many different tasks and thus do not operate for the sole purpose of serving. However,
compared to the sheer number of servers, they exist in abundant numbers. Therefore,
even if one client disconnects, another is there to take its place.

To sum it up, P2P’s main benefits are it resilience to faults, abundance of resources, the
ease of deployment, self organization and the high degree of decentralization [RD10].
However, not each problem can be easily addressed with simple dedicated algorithms.
There are scenarios where a centralized algorithm solves problems more easily. These
problems include membership control, privacy issues and the management of distributed
applications, which are still under active research.

3.2. Unstructured Networks

When the Napster system [VLO09, p.229] was shut down in February 2001 the fragility
of a network with a single point of failure became apparent. The system relied on an
index server, which was obligatory to keep the network operational. However, the
enormous scalability of the P2P paradigm that was achieved by the equal distribution of
workload among clients, sparked interest in the research community. A focus to improve
the robustness of totally decentralized networks evolved in the research community.
These networks should function in the absence of any central component. No structural
constraints are applied to the connections of a node. Only few connections to a tiny
subset of all available nodes are necessary.

21

3. The Peer-To-Peer Paradigm

In spite of the tiny number of connections the so-called small world phenomenon
[Mil67] leads to a network where each peer can reach every other peer along a short
path. The phenomenon became popular in the 1960s when a sociological experiment
found that six intermediates suffice to pass a letter from a randomly chosen person to a
specific target person in the US. Hence, also the term "Six degrees of Separation". The
experiment demonstrated that although a single person has only a few friends, each of
those is friend to a number of others. Clearly, each intermediate in the experiment had to
choose carefully that exact friend from her list of acquaintances that would be closer to
the messages target, in terms of geographical closeness, social situation etc. . Applied to
a P2P network, this means that each node can reach any other node by passing messages
among its neighbors. The way nodes are identified and how a message finds its target
are details to the specific algorithm. Rodrigues defines unstructured networks as:

In an unstructured P2P system, there are no constraints on the links between differ-
ent nodes, and therefore the overlay graph does not have any particular structure. In
a typical unstructured P2P system, a newly joining node forms its initial links by
repeatedly performing a random walk through the overlay starting at the bootstrap
node and requesting a link to the node where the walk terminates. [RD10]

Due to the inherent randomness of these overlays, their construction requires elaborate
algorithms for locating data. The next section introduces the simplest overlay: The
Gnutella [Rip01] protocol. More complex examples include Freenet [CHM+02], which
builds a structure on top of a unstructured network, while laying a strong focus on
privacy. Furthermore, the BubbleStorm [TKLB07] algorithm also tries to efficiently locate
data. Both approaches still cannot reach the efficiency of a DHT (cf. Section 3.3.2). I chose
to introduce Gnutella in the following chapter, as it is simple and widely studied in the
research community. This will enable the reader to quickly understand a unstructured
system without bothering with search or privacy optimizations.

Gnutella

The first true P2P protocol, working in a totally decentralized fashion is the Gnutella
protocol [Rip01] in its initial (0.4) version. In Gnutella all clients (servents) are equal
among each other. They form an overlay network based on their associated servent_id.
Every peer is connected to a number - commonly up to 10 - of other peers in a mesh
topology. These other peers are called the "neighbors" of a node. The number of
neighbors is also referred as the degree of a node. The Gnutella overlay is totally
randomly connected. Stability facing node churn is ensured by learning new nodes via
flooded Ping messages.

Gnutella is unable to determine, which neighbor is closer to a target because of the
random nature of its neighbors and IDs. Therefore, routing in Gnutella is, in contrast to
the small world experiment accomplished using an algorithm derived from the flooding

22

3.2. Unstructured Networks

protocol. A node that searches information broadcasts a request to its neighbors, which
in turn will contact their neighbors. The request is flooded in the network equipped
with a “time to live”(TTL) that is decreased when passing the search further. When the
lifetime counter is zero, the search terminates. This maximal network coverage is called
the horizon. The concept is very similar to the time to live (TTL) field of the IP header.
Clients answer to the request using the reverse routing path back to the query’s origin.

During Milgram’s letter passing experiment intermediate hops where able to choose an
optimal next hop. Although the Gnutella protocol is unable to determine that optimum,
it will nevertheless find the most efficient routing path. Real letters could not be copied
and passed to more acquaintances at ease. Therefore, the sociological study relied on the
best effort choice of the next hop. In contrast Gnutella sends the message to every next
hop and will naturally include the best next hop. Therefore, the duplicate that arrived
first, traveled the optimal path.

In Figure 3.1 two paths between node A and B exist. Each path involves intermediate
hops, the solid line needs four hops to reach B, the dashed line two. Furthermore, assume
each hop has a latency of one. If A searches for B, both paths will be flooded with a
search request, B will receive two messages, but the dotted path will reach B earlier. The
example illustrates the downside of flooding: Although flooding finds the fastest path,
it congests the network with duplicate searches.

Figure 3.1.: An example Gnutella network. Node A reaches Node B via multiple paths. If
every edge has weight 1, queries from A to B reach B first via the dotted path.

The Gnutella network evolved in its 0.6 protocol version due to poor performance. It
abandoned the balanced topology, where each node is equal. The system introduced
hubs, nodes with higher degrees than others that form a core overlay network. Normal
nodes attach to hubs as leafs. Hubs act as an index server for leaves, respond to their
queries or forward them to other hubs.

Unstructured networks are simple in their design and implementation. They do not
need elaborate algorithms to keep up a structure of any kind, which is an advantage
in terms of message overhead. Therefore, they received a lot of attention from the
research community, for testing and improving their behavior [AFS07]. The drawback in
terms of message overhead is the need to search by flooding queries across the network.
Furthermore, there is no guarantee that a search for content will yield an answer, as
there is no structure that helps locating content.

23

3. The Peer-To-Peer Paradigm

A next generation unstructured network is the recently proposed Equator service
[MCM+11] that uses the Barabási-Albert model to avoid flooding. Although it is spe-
cialized in locating equivalent servants, its potential for locating arbitrary information
deserve an analysis once all details of the algorithm are released.

If the simplicity and the absence of a protocol enforcing the structure of the network
makes these networks a better choice than the structured networks discussed in the next
section is still open research.

3.3. Structured Networks

The previous section discussed unstructured networks along with their shortcomings.
In this chapter, multiple proposed solutions to the problem of locating information will
receive attention. Their common denominator is, that, efficient lookups of data items are
possible, provided their key is known. Structured networks guarantee success, provided
the item is available somewhere in the overlay. As a downside, maintaining the required
structural constrains of the overlay requires a potentially high overhead.

In [RD10] structured networks are defined as follows:

Each node has a unique identifier in a large numeric key space, for example, the
set of 160-bit integers. Identifiers are chosen in a way that makes them uniformly
distributed in that space. The overlay graph has a specific structure; a node’s
identifier determines its position within that structure and constrains its set of
overlay links.

Keys are also used when assigning responsibilities to nodes. The key space is divided
among the participating nodes, such that each key is mapped to exactly one of the
current overlay nodes via a simple function. For instance, a key may be mapped to
the node whose identifier is the key’s closest counterclockwise successor in the key
space. In this technique the key space is considered to be circular (that is, the id zero
succeeds the highest id value) to account for the fact that there may exist keys greater
than all node identifiers.

Commonly these system implement a variant of binary search on their induced data
structure. Therefore, routing lookups resolve in log(n). Before discussing Section 3.3.1
and Section 3.3.2 will introduce a separation of layers between routing and higher level
functionality in a structured overlay.

3.3.1. Key based routing

Common to early proposed structured networks, was the focus on their data storing
capabilities in a distributed hash table (DHT cf. next section). As Dabek et al. pointed
out in [DZD+03], a DHT is not the right level of abstraction for generic P2P applications.

24

3.3. Structured Networks

This focus hampers the use of structured networks beyond primitive data storage. Dabek
et al. proposed the key based routing interface as a common API for structured P2P
systems.

The basic KBR API primitive is route(key, value). It is based on an application-
dependent key, which is hashed into a virtual address space, common to all applications
using the same KBR system. Every node handles the received value in an application-
dependent manner.

That simplified API provides functionality for various fully decentralized applications.
The following applications were developed at the Chair for Network Architectures of the
Technische Universität München, some as part of the development of this thesis: A chat
service [Hud08], a video-on-demand system [KCF05; Nit09], and a fully decentralized
file system [KF06; AEHF08]. Each of these applications serve a different purpose, but
each of them uses the KBR API as common denominator, which demonstrates the
flexibility of the API.

3.3.2. KBR vs. Distributed Hash Tables

A KBR overlay locates data items in a fully decentralized system. A DHT stores data in
such a system. It works just like its local counterpart. Given a key it looks up its value.
The key space is maintained across a number of nodes. Commonly, the service includes
algorithms for nodes joining and leaving the network, thus redistributing the key space
among all nodes. Furthermore, caching and replicating algorithms are available to in-
crease the systems reliability and responsiveness. The most popular academic DHT used
to be the now dysfunctional OpenDHT [RCKS05] [CRR+05]. Meanwhile, commercial
providers offer similar services e. g. Amazon’s Dynamo [DHJ+07].

Even though many applications successfully use a DHT as underlying service, it has
always been clear that a plain DHT does not suffice [RCKS05]:

We remain hopeful that sophisticated applications can be layered on top of a DHT
service, but think that DHT services should slightly broaden their interfaces.

Rhea encouraged the scientific community, to prefer the better abstraction of P2P
services at KBR level, because a systems endpoint operations can require more flexibility,
than just storing and retrieving data items. However, over the recent years, this required
broadening of the interfaces has not happened. One result of this thesis is a library that
eases the development of P2P applications, developed using the guidelines of Rhea’s
work, introduced in Chapter 4.

3.3.3. Iterative vs. recursive routing

Routing details are irrelevant for the functionality of a DHT. The peers could iteratively
search for the peer that handles a given key. If their search results in no closer peer, the
search terminates. On the other hand, they could recursively forward the messages to the

25

3. The Peer-To-Peer Paradigm

peer in charge. The latter has a better performance [RCKS05] and has thus become the
standard approach.

The routing details are, however, relevant for a generic KBR system, because, as a
consequence of the routing process, the KBR system establishes per-key aggregation
trees. Messages from a network region sent to the same destination are likely to pass
the same peers on their way. This property allows, for example, to implement efficient
caching. If, where, and how the caching shall be performed, is a matter of the application.
The KBR system determines nothing but the routing structure.

3.3.4. Kademlia

1

b

1111

b

1110

b

110.

b

10..

0

b

011. b

0101

b

0100

b

001.

b

000.

Figure 3.2.: The Kademlia binary tree with 4 bit IDs: Leaves in the tree are nodes, dots in
the IDs represent hidden subtrees.

Kademlia [MM02] is a structured network, developed by Maymounkov et al. in
2002. Its structure is inspired by a binary tree, with each leaf representing a node.
Congruent with the definition of structured networks in Section 3.3, each node in the
tree is identified by a unique 160 bit key. Figure 3.2 illustrates the tree structure using a 4
bit ID space. Kademlia adopts a symmetric XOR distance metric. That metric explicitly
reflects distances in the ID space with distances in the binary tree. Huge distances map to
distant subtrees, for example the distance between node 0100 and node 1111 in the above
figure is 1011.Small distances map to close subtrees. The authors chose Kademlia to use
iterative routing. Neighbors are stored in so called buckets. A client will send a packet
directly to the node that is closest to the target ID. It locates that node, by iteratively
requesting closer nodes, from its currently known closest nodes in his buckets. Requests
are sent to multiple nodes, so the algorithm can proceed, as soon as the first answer is
received. As with all structured networks, forwarding a message to its destination is
done in O(log(n)) hops.

3.3.5. Chord

Prior to Kademlia, in 2001 the Chord overlay was proposed at the MIT Laboratory for
Computer Science [SMK+01]. In contrast to Kademlia’s tree structure, the architecture
of Chord resembles a ring cf. Figure 3.3. Clients joining the network will be included
by inserting them between their ID-wise corresponding neighbors. Routing in Chord is
clockwise. Basically a node only needs to know its successor to be able to proper route
a query, based on its key, to the keywise closest node on the network. For efficiency

26

3.3. Structured Networks

reasons clients in the Chord ring hold more routing information, commonly referred as
"finger table", containing a list of nodes. Like most structured networks, the finger table
resembles a binary search tree.

The ith entry in the table at node n contains the identity of the first node, s that
succeeds n by at least 2i - 1 on the identifier circle [. . .] [SMK+01].

Figure 3.3.: A sample Chord network, equipped
with nodes and their routing tables
[SMK+01].

In other words, Chord’s routing
table contains many peers with IDs
close to its own ID and a decreas-
ing number of distant peers. By
using that form of finger table or-
ganisation, Chord resolves all lock-
ups via O(log(n)) messages[SMK+01],
because it knows its successor and
many neighbors as well as distant
targets.

In Figure 3.3 only n = 3 nodes
\{ 0, 1, 3\} exist in a network of size
m = 8. Therefore, a query for key 2

will be clockwise routed to its clos-
est location, in that example node
3, indicated by the respective ”key”
box. As the rest of the key space
is empty, each ”successor” entry in
the finger table points to node 0,
while the ”start” column of the en-
try points rightfully to 2i - 1.

Chord has been granted the ACM SIGCOMM ”Test of Time Paper” award, for research
conducted a decade ago, whose contents are still a vibrant and useful contribution today.

3.3.6. Chord vs. Kademlia

Both Chord and Kademlia share a log(n) lookup complexity. Kademlia’s authors
chose the use of iterative routing. This form of routing has benefits, but also prob-
lems cf. Section 3.3.3. Both approaches feature a tunable parameter for the routing
efficiency: Altering the size of buckets is equivalent to adapting the finger tables size.
Their routing system differs: Like Pastry and unlike Chord, the XOR topology is also sym-
metric (d(x, y) = d(y, x) for all x and y [MM02]. In other words, a message, received via
one path can be sent back via the same path. This is not the case in the Chord network,
as the clockwise metric would evaluate that path as far. Therefore, Chord cannot use
a potentially optimized path. This is a major drawback for Chord. On the other hand

27

3. The Peer-To-Peer Paradigm

Chord’s metric is much simpler in terms of consistency. A Chord node needs connections
to its right neighbor. Using that single hop the system is able to route a message slowly
but correctly. Kademlia has no such constraint, and it is hard to formulate it, in terms of
complexity and message overhead.

3.4. Hybrid P2P

Full distributed networks are designed with churn in mind. Therefore, they are redun-
dant and are able to handle fail overs. However, they also have shortcomings. These
include for example, membership control, privacy issues and the management of dis-
tributed applications. For example, the Servus telepathy extension [Hud08] developed
at our chair faces the need to authenticate a user against its account. However, without a
central user register, the user needs to claim her identify, for example using asymmetric
key cryptography. As long as both users already previously exchanged public keys, they
can identify each other without doubt. However, there is no straightforward solution to
bootstrap that trust.

Because of these challenges, commercial focus moved away from pure P2P into
server assisted- or hybrid P2P. These systems use P2P techniques to consolidate the
load intensive tasks at the participating nodes. A central server handles tasks that are
facilitated by having a central entity, such as billing oder authentication. For example,
the previously discussed Napster system used an index server, located at a central node.
But, by keeping the bandwidth intensive tasks of data transfer directly at the end user
the system gained the scalability of P2P systems. The rather bandwidth preserving and
seldom executed job of publishing the users available data was handled by the index
server. Publishing the index in a decentral fashion is far more complicated, e. g. using a
DHT requires more complex client implementations. Hence, the Napster architecture
was slick and well designed, but flawed by the central component.

Today, there are numerous server assisted P2P systems in both commercial and
noncommercial use. Also commercial successful applications, such as Skype, Spotify or
Amazon’s Dynamo use that technique.

In spite of their popularity, scalability issues imminent to central systems still exist at
the central component of hybrid P2P systems. Little has been learned since the time of
Napster. Two Skype downtimes illustrate that. According to the company’s information,
in August 2007 [VA07] the login server could apparently not handle a massive client
restart triggered by a Windows update. The most recent Skype downtime in December
2010 is said to be caused from overloaded servers triggering a client bug [LR].

The most popular noncommercial Server assisted P2P protocol is BitTorrent, which
will be introduced in the following.

28

3.4. Hybrid P2P

Figure 3.4.: Actors and operating mode of the BitTorrent protocol.

BitTorrent

According to Sandvine’s Global Internet Phenomena report [San10, p.15], BitTorrent
[Coh03] is currently the most popular file sharing protocol in the US and worldwide.
It is responsible for 34.3 % of North American traffic in 2010 and has been constantly
growing. BitTorrent’s popularity may involve different factors, however, it stands out
for its bandwidth utilization algorithm. According to [QS04] BitTorrent achieves near to
optimal global download performance. The system works in the following way:

To publish a file on the network, the file’s content is split up into equal sized data
blocks (chunks). A metadata file describing the file and its constituting chunks is created.
Every peer intending to download the published files needs this so called ”torrent
file”. The acquisition of that file is not part of the BitTorrent protocol and is commonly
provided by a web server. The metadata includes the size of a chunk, a list of each
chunks Hash ID and the Address of the coordinating server (tracker).

The tracker is the system’s central server component. It acts as a broker, distributing
peers addresses among each other. Previous systems, like Napster provided an index
server broking between participants, based on content demands. It was attacked for
assisting in illegal content distribution. BitTorrent in contrast relocates the file discovery
back to the users. The server is limited to maintain the list of registered clients. By design
all metadata is strictly limited to the torrent file. Hence, the trackers mere function as
client broker keeps it from aiding copyright infringements.

Each peer is connected to a subset of all peers, its sworm. Based on a variant of a
tit-for-tat algorithm it decides which other peers gain a share of its bandwidth (unchoke).
This algorithm rewards peers that cooperated, while preferring high bandwidth peers.
In that way BitTorrent achieves its outstanding download utilization. New clients that
have not contributed previously, may be selected at random in each fourth iteration of
the algorithm. In that way, the system remains open to newcommers. Figure 3.4 sums
up the different actors of the system.

29

3. The Peer-To-Peer Paradigm

The BitTorrent protocol still maintained, whereas many others are no longer devel-
oped. It is in the focus of research for nearly a decade now, for example the most
recent International Conference on Peer-to-Peer Computing (P2P’11) featured several
publications on BitTorrent and an exclusive track on "Bittorrent algorithms".

Vuze

A popular BitTorrent client is Vuze [Vuz]. The Java written software, previously named
Azureus was first released in 2003. The platform independent client implements the
BitTorrent protocol and provides a powerful plug-in API [Incb]. Built upon this API or
into the core client Vuze’s features include Vivaldi network coordinates (cf. Section 5.5),
plug-ins providing DHT functionality and various front ends to the client.

Based on the large user base and the easy extendability, Vuze is popular in the scientific
community. Various experiments distribute the client across PlanetLab nodes [BND10;
SB09]. Ledlie et al. designed and implemented an optimization to the Vivaldi network
coordinate algorithm called Pyxida, in close interaction with the Vuze development
community cf. Section 5.6. The Ono plug-in from Choffnes et al. is another research
plug-in that introduces a novel implicit approach to latency prediction into the Vuze
client cf. Section 5.10.

However, Vuze’s features come at a cost. In [SB09] Steiner et al. demand the noticeable
lag in Vuze that is introduced by the Java based framework. That lag is reflected in the
measured latencies. Therefore, they differentiate between application round trip time
(ARTT) and round trip time (cf. Figure 3.5).

VUZE

Java VM

Kernel

Network

Peer Peer

VUZE

Java VM

Kernel

Network

Application latency

Network latency

Figure 3.5.: The difference between application and network latency (cf. [SB09]).

This thesis also presents research that was partially conducted using Vuze’s extension
mechanism. Section 8.1.2 of this work presents the Hierarchical Vivaldi plug-in for Vuze.

30

4. Igor

The Internet Grid Overly Routing daemon IGOR, developed by Kutzner et al. [Kut08],
laid the foundation for the present thesis. My thesis converts the IGOR system into an
IGOR ecosystem. The process is twofold:

First, my thesis enhances the KBR daemon ("IGOR" or "IGOR daemon" hereupon)
to take advantage of proximity information (cf. chapter Chapter 5), notably the "Hier-
archical Vivaldi" algorithm introduced in Chapter 6. The development of proximity
extensions not only improves the performance of the KBR daemon, but also introduces
benefits for developers and researchers. Notably the extension API has seen significant
changes. Furthermore, testing and verification of the software introduced simulation
capabilities that reuse the IGOR daemon code seamlessly.

Second, the thesis introduces the libdht, which enables application developers to
implement DHT access with custom endpoint operations. Previously, the IGOR daemon
exported only a KBR library – libigor. Therefore, common code e. g. managing objects
and their respective lifetime had to be duplicated by each application. The new library
provides a unified implementation that respects Rhea’s appeal of "slightly broadened
interfaces", by providing a high degree of extensibility and customizability. Finally,
the library offers simulation capabilities decoupled from the IGOR daemon, another
strength of the employed KBR interface.

In the next section, I describe the daemon’s architecture, the overlay network itself
and the changes introduced in the present thesis. In the following section, I describe the
extended DHT library that provides access to the KBR system.

4.1. The KBR daemon

The daemon was designed following the design principles introduced in Chapter 3. The
KBR split adheres the Unix philosophy, of doing only one thing and doing it well. Hence,
it is a generic KBR daemon that supports all kinds of peer-to-peer applications, called
IGOR. An associated library – libigor – provides the KBR interface to the applications.

Basic routing system

IGOR employs Chord’s ring topology and finger concept, customized for using a sym-
metric metric similar to Kademlia. Hence, messages are forwarded towards the destina-
tion key in both ways, clockwise and counterclockwise. The advantage of the symmetric
metric is that reply messages can travel along the same path on which the request

31

4. Igor

messages was sent. Reusing the message’s route allows the receiver to use a potentially
optimized path, which the sender chose for latency or bandwidth reasons. By reusing
it, the receiver does not need to compute another optimized solution. Moreover, appli-
cation specific caching is easy to implement because an intermediate node is likely to
receive both the request and the response.

IGOR’s decision about the establishment of fingers is based on a rating algorithm.
To determine the different levels of gain, the daemon includes ratings for physical
proximity. The concepts of proximity based enhanced overlay creation and maintenance
will receive attention in Chapter 5. In brief, the IGOR daemon uses proximity neighbor
selection for the rating of potential fingers, i. e. if to accept a new peer. Furthermore,
IGOR uses proximity route selection when forwarding a message, i. e. deciding who is
the next hop? The required location information is calculated using an enhanced Vivaldi
network coordinate system, as described in [EFF10] and Chapter 6. Peers exchange that
information with a method similar to Meridian [WSS05] (cf. Section 5.9), i. e. when being
in contact, peers preferably exchange information about peers that are assumed to have
a low mutual latency. Other sources for determining proximity, such as AS membership,
have not yet been integrated, but could easily be added to IGOR’s modular design.
Therefore, the implementation is open to both ISP and CDN-based oracles.

Because of the latency and caching advantages discussed in Section 3.3.3 messages are
sent recursively on the overlay network. Therefore, each intermediate hop may serve as
cache or handle the encapsulated payload in an application defined manner.

IGOR is implemented using TCP because it matched most feature requirements for
actual connections listed in [Kut08]: Connection orientation, flow control and delay
measurements. These would otherwise have required a complex mechanism on top of
UDP. Therefore, Kutzner chose TCP as underlying transport medium. However, due to
the software’s design other algorithms may be implemented.

4.2. Socket Interface: libigor

The IGOR daemon is a stand-alone application. Clients connect to the daemon using
the libigor library. Internally this is implemented via socket communication. Hence,
even remote applications, e. g. behind a firewall, can use the daemon located in a de-
militarized zone (DMZ).

libigor’s API is similar to the Unix socket API providing socket, bind, send,
recv and close functions. It mimics the bind system call by registering a service
identifier (cf. Section 4.3) instead of ports. However, overlay communication is not a
traditional end-to-end communication. Upon receiving of a message, an application
may take an action depending on whether it is the destination or an intermediate hop
of a message. Therefore, the IGOR daemon introduced two flags, the upcall and the
final flag.

32

4.3. Services

The upcall flag controls the flow of a message, i. e. whether it will be delivered to
applications on intermediate hops. The final flag indicates if the node is the message’s
final destination. Because messages terminate at nodes with the closest ID to their
destination, these two IDs will unlikely be identical. Applications that use IGOR are
unaware of the routing state, which is handled in the daemon. Therefore, such an
indicator is a convenient result of the decoupling of routing daemon and message
handling. A received message with unset final flag can only appear with set upcall
flag inside an application.

Another extension to the socket concepts is a notification mechanism for topology
changes. When the neighbors in the KBR overlay change, applications may need to
adapt. E. g. DHTs need to check if their stored keys need to be replicated to the new peer.
The library realizes this by calling a user defined function that can be registered via the
igor_register_callback_neighborset_change call. The user is able to register
a payload, to be handed to the callback.

4.3. Services

A generic KBR system should isolate the different applications, running on its nodes. I. e.
only peers that run a given application should be bothered by the respective overlay
traffic. E. g. a mobile phone that joins a light-weight chat application should not have
to relay heavy traffic from a video-on-demand system. On the other hand, general
information that is useful for every node, e. g. peer recommendations, should be spread
widely. This sharing of general information especially helps applications that have only
a small user base. Being part of a large network helps them, e. g. to bootstrap quickly or
to smooth stabilization in case of node churn.

IGOR addresses this issue with the concept of services [Kut08; DKF08]. Just as every
node is in an overlay, each application is part of its own virtual service overlay, identified
by a unique service identifier. Messages that have a specific service identifier attached,
will be delivered only to nodes in that service overlay. Certainly, a peer can be part of
multiple service overlays. That peer will share messages and state for all its applications
along with their respective services. Thereby, IGOR efficiently optimizes the overlay
network, and isolates the different applications.

Holding state for each virtual ring, increases communication as well as memory de-
mands. However, the implemented solution mitigates the bad performance of using
isolated overlays, i. e. starting a new daemon for each application on a node. Clearly,
more advanced solutions e. g. ReDir [RCKS05] and DimishedChord [KR04] exist. LiteR-
ing [DKF08] includes an analysis of each proposals complexity, which is available in
Table 4.1.

33

4. Igor

ReDiR Isolated Overlays DimChord Lite-Ring

App. Inst. Join O(\mathrm{l}\mathrm{o}\mathrm{g}N \cdot \mathrm{l}\mathrm{o}\mathrm{g}M\ast) O(\mathrm{l}\mathrm{o}\mathrm{g}2 N) O(\mathrm{l}\mathrm{o}\mathrm{g}M) O(1) or O(\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g}N \cdot \mathrm{l}\mathrm{o}\mathrm{g}M\ast)

State per App. Inst. O(1) O(\mathrm{l}\mathrm{o}\mathrm{g}N) O(\mathrm{l}\mathrm{o}\mathrm{g}M) O(1)

Load Ratio O(1) O(1) O(\mathrm{l}\mathrm{o}\mathrm{g}M) O(1)

Routing (worst case) O(\mathrm{l}\mathrm{o}\mathrm{g}N \cdot \mathrm{l}\mathrm{o}\mathrm{g}M\ast) O(\mathrm{l}\mathrm{o}\mathrm{g}N) O(\mathrm{l}\mathrm{o}\mathrm{g}M\ast + \mathrm{l}\mathrm{o}\mathrm{g}M) O(\mathrm{l}\mathrm{o}\mathrm{g}M\ast)

Table 4.1.: Service Separation Complexity comparison [DKF08]. Let M be the overall num-
ber of nodes, M\ast be the number of nodes in the DHT and N the average
number of service members.

4.4. Plug-in System

The IGOR ecosystem is the result of multiple research projects [Kut08; KCF05; KF06;
AEHF08]. Therefore, the design and development of all software components including
the daemon is optimized for greatest flexibility and extendability. Due to that design,
proximity research that is the focus of my thesis could easily be implemented and tested.
A building block of IGOR is the modular design using plug-ins. The plug-in API was
intensively used and extended in this thesis.

There are four basic types of plug-ins. Each of them is responsible for a different
functionality.

\bullet Connection policy plug-in – Plug-ins of this type evaluate potential new finger
connections. They evaluate both connection requests from other peers and recom-
mendations to connect to another peer. (I. e. when peer A recommends peer B to
connect to peer C.)

When multiple policy plug-ins are loaded they decide jointly whether to accept or
decline a connection. The decision is based on an additive average of all plug-in
evaluation results. However, each plug-in can demand to accept or to decline a
connection regardless of the evaluation. Such an override is, for example, used to
always accept direct neighbors in the nodes’ key space.

\bullet Message plug-in – Plug-ins can define their own message types. The Meridian
gossiping algorithm, for example, needs to exchange the peers’ coordinates. Hence,
every plug-in that defines its own message type must implement an according
message plug-in. It determines how the messages are handled.

\bullet Task plug-in – Task-plug-ins are required for periodic actions, for example, regular
neighbor probes.

\bullet Snoop and piggy-back plug-in – Plug-ins can snoop on the (payload) traffic. They
can also piggy-back their own information onto other messages. The proximity
extension, for example, attaches its coordinate estimations to messages that head to
its immediate neighbors. (The latency measurement is not part of the overlay. The

34

4.4. Plug-in System

daemon reads the round trip times directly from the underlying TCP/IP network
stack.)

One important element of my thesis was to actually compare different network coor-
dinate algorithms and their configurations. However, coordinates were attached static
to the ID of a node. Previously, an ID (precisely a cNodeRef) of the IGOR daemon was a
three tuple of the following form:

<Node ID> <IP:Port>+<Coordinate>

Using a static form for IDs is suboptimal, because it lacks extensibility and allows only
one coordinate per ID. Therefore, I implemented a scalable and flexible solution.

ID add-ons A node ID identifies an overlay node uniquely. It is included in each
communication between nodes. It is also sent when recommending nodes to other nodes
(gossiping). However, to decide if a connection is valuable a client might need extra
information. E. g. clients behind a NAT gateway are unreachable without connection
reversal. To make them a priori aware of any extra information, IGOR provides a way to
extend the ID information.

Extensions to the IGOR daemon can register so called add ons (cNodeRefAddon) to
the IGOR ID (cNodeRef). Three functions provide this functionality:

bool HasAddon(const string &id) const;

template <class T>

T GetAddon(const string &id) const;

void UpdateAddon(const string &id, const string &payload);

Each add on is identified by its unique id string. Add ons register and update
their payload via the UpdateAddon call. The payload parameter contains the extra
information provided by the registered plug-in. With the help of that identifier, nodes
that receive an ID that has add on information can hand it to the corresponding class, if
it is registered in the client. If it is not registered, or unknown, the client is nevertheless
able to process all known parts of that ID. Therefore, the plug-in mechanism at ID level
assists development of IGOR because not all nodes need to execute similar software
versions.

Add-on data is intentionally of type string, hence cNodeRef’s most prominent
function is ToString(). Even inside the cNodeRef add ons are stored as string,
therefore type correctness is limited to the templated GetAddon call. The design rational
is the absolute necessity for a slim and simple libigor. libigor needs to understand
IDs. Hence, it links against the specific program code. However, libigor would need

35

4. Igor

to contain symbols of every add-on, if objects were not registered using their string
representation. Hence, libigor would contain machine code only targeted for the daemon.
This would result in increased library sizes and more complex linkage, without any
benefit. The ID add-on kept IGOR’s modular design rationale and made lightweight
simulation components possible.

IGORs extended ID format is:

<Node ID> <IP:Port>+{<id> <payload>}*

In its new form each ID obligatory contains the actual ID of the node and it’s transport
information. Thereafter follow all registered add ons. An + sign indicates the begin of
a new add on. The id component is the unique identifier of that add-on, as passed as
the first parameter to UpdateAddon. A whitespace marks the beginning of the string
representation of the add on’s payload.

4.5. NAT Traversal

A shortcoming of choosing TCP as underlying basis of the IGOR daemon is connection
setup in the light of network address translation (NAT) and firewalls. Due to its sim-
plicity UDP traffic can employ a technique called "Hole Punching" or STUN [RWHM03].
However, there are reasons to ignore that UDP based workarounds:

In practice, firewalls and network address translators (NATs) obstruct the access to
other peers. On the one hand firewalls implement an administrative decision, which
IGOR wants to obey. So, it refrains from stealth technologies, which e. g. use HTTP or
SSH ports for a P2P overlay. NATs, on the other hand, should also be considered as
technical solutions to deal with address space limitations. Furthermore, the correctness
constraints of the overlay require at least connections between neighbors. Therefore,
some connections need to be established. So, IGOR includes all the readily available
solutions for NAT traversal that do not require tampering the operating system’s IP
stack. Furthermore, tampering in IGOR is outside its reach:

To refrain from stealth techniques is both an ethical and technical decision: The estab-
lished STUN technique is UDP based and even worse, the proposed TCP based STUNT
method [GF05] requires excessive packet manipulations, while being not guaranteed
to succeed. These techniques firstly could circumvent an administrative decision and
secondly introduce complex privileged code paths into the system.

Therefore, one element of my thesis explored the available options to handle NAT at
the overlay level cf. [Wil09]. The solution is threefold.

First the IGOR system uses the miniupnp library [Ber]. It provides means of port
forwarding from a router to a client, using the Universal Plug and Play (UPnP) protocol.
That facility is common to home routers and allows users to easily implement port

36

4.6. KBR Simulation

Figure 4.1.: Connection Reversal (left) and Relaying (right) as means to circumvent Network
Address Translation.

forwarding. Hence, if a user enabled that functionality, she explicitly agrees to that
behavior.

Furthermore, during startup, after trying to configure UPnP, nodes test their connec-
tion status by analyzing, their number of successful outgoing and incoming connections.
If only one side of a connection is behind a NAT, IGOR supports connection reversal as
illustrated in Figure 4.1 (left): Client node B is behind a NAT, but connected to S. As A is
unable to connect directly to B, it requests S to relay its connection request to B, which in
turn can now initiate the connection.

If both nodes use are behind network address translation they are unable to establish
any direct communication, cf. Figure 4.1 (right). A and B need a third party S to relay
their communication. The use of relay nodes is a suboptimal solution – both security-
wise and traffic-wise. Hence, the relay functionality must be explicitly enabled for both
the client using a relay and the server acting as relay for a connection.

As a matter of fact, the NAT state of a node represents valuable meta information,
another peer could use a priori i. e. when learning about that peer. Hence, with the
extended ID specification abilities introduced previously any peer is able to publish her
detected NAT state as ID add on. Decision functions, such as the IGOR daemons connec-
tion plug-ins use the node’s NAT state, to compute more accurate recommendations, by
accounting the eventual overhead for NAT traversal. As a result of this thesis the IGOR
daemon is able to connect and operate facing network address translation.

4.6. KBR Simulation

The design decision of separating the KBR daemon and higher level functions is also
sensible for simulations. Typically, detailed and reproducible results from a realistic
network simulator are crucial to study e. g. the effects of proximity enhanced routing
or inter AS traffic. However, this level of detail is unimportant for higher levels. The

37

4. Igor

KBR split solved that by decoupling those higher levels from the actual overlay. Hence,
by skipping everything but the KBR overlay, computing power can be spent on bigger,
more realistic network topologies.

Previously, IGOR has been successfully tested on PlanetLab [PACR02], a global re-
search network. The network is built from nodes at research institutions running the
PlanetLab software. It currently consists of 1098 nodes at 530 sites [oPU]. A downside of
that service is inherent to its research foundation. PlanetLab nodes are homogeneous
machines because the participating organizations are commonly well connected and
bandwidth rich. However, the Internet is fundamental heterogeneous, with various
different and varying latency and bandwidth setups.

Hence, the KBR daemon was tested in medium scale homogeneous networks. Further-
more, these tests were not as reproducible, as if running in a simulation environment.
Functionality had been historically tested in local tiny setups only. These tests were
easier to reproduce, but still not identical.

That limited testing hampered the development of correct and realistic tested algo-
rithms. Furthermore, simulating at the network level allows the development and
evaluation of proximity predicting algorithms in a controlled environment. Therefore, a
simulation component for the whole IGOR ecosystem emerged as one goal of the present
thesis.

I evaluated different simulation framework, focusing on two criteria: First, the simu-
lation component needs to be able to seamlessly integrate into the IGOR software, to
maximize the coverage of code that could be tested. It should be able to support my
research in proximity optimized overlays, therefore it should be able to realistically
simulate a TCP stack. The evaluation resulted in two frameworks that matched these
requirements. I will introduce both in the following.

4.6.1. PRIME SSF

In [DV09] we analyzed the KBR overlay daemon using an earlier version of the simu-
lation component, based on Prime SSF [LMVH07]. Prime SSF implements the Scalable
Simulation Framework (SSF) [CLL+99], which serves as description of an interface rather
than an implementation. SSF consists of that API and the Domain Modeling Language
(DML), a description for networks of all kinds. Together with the SSF Network extension,
which contributes interfaces for network protocols like TCP, SSF forms a simulation
framework for distributed applications. There are various Java implementations and the
PRIME SSF implementation written in C++ available. As the KBR daemon is written
in C++, PRIME SSF, in the 3.0.1 version from August 2008 was chosen as the basis for
IGOR’s simulation component.

The PRIME simulator makes heavy use of annotations to the application’s source code.
Methods and variables are to be annotated, to help the simulator with the discovery of
variables, that need to be saved on context switch and which functions cause a context
switch. After an initial source - to - source translation, using the p4 preprocessor special

38

4.6. KBR Simulation

Figure 4.2.: Simulated Indian (11 routers, 8 hosts/router) and Nacamar (242 routers, 1
host/router) network topologies.

makefiles compile a monolithic program. Supplied with several DMZ files, describing
hosts and networks, the simulation starts.

In contrast to synchronous UNIX socket programming, the simulator is event based.
Hence, calls to blocking functions result in "context switches" to other simulated nodes,
the result of a blocking function is passed via a callback. Upon a "context switch" the
simulator processes its queue until the simulation time elapses to the completion of this
call.

First, we analyzed the structural correctness of the overlay. We used input data
from the RocketFuel [SMW02] project to create a realistic copy of the Nacamar/Tiscali
provider network and an Indian provider’s network. Figure 4.2 illustrates the topologies.
Furthermore, the same code ran on PlanetLab using 118 nodes. We analyzed the number
of messages of the stabilization protocol and the time until the network is stable i. e. until
the virtual ring is closed. In both settings, messages were sent to random destinations,
with a small set of neighbors that ensured overlay paths with multiple hops. After
verifying the correctness of our results and the congruency of the simulation and the
PlanetLab results, we performed initial measurements comparing it to a Gnutella based
system.

The development of the PRIME simulation component was a first step to the sim-
ulation component envisioned as goal of this thesis. SSFNet, however, left room for
improvement, for example the lack of distributed simulation capabilities, the static rout-
ing model and defects in the software. Due to these problems, and the obstructive code
changes introduced to IGOR, SSFNet was replaced by a pure OMNeT++ implementation.
The structure of the simulator fits much more to the existing design of IGOR.

39

4. Igor

4.6.2. OMNeT++

OMNeT++ is an extensible, modular, component-based C++ simulation library and framework
[Com]. It supports a broad range of networks, such as sensor or wireless ad-hoc networks.
Although calling itself a framework, OMNeT++ [Var01] is a comfortable simulator that
even comes with a graphical user interface. Equipped with the INET packet, which just
like SSFNet, implements the Internet Protocol Stack, OMNeT++ matches and supersedes
SSF’s features.

The simulator is event based, however the integration into the IGOR KBR daemon
was less intrusive than the SSF port and resulted in smaller and more stable simulator
code. The class cIgorOmnetTransport and cIgorInetTransport realize the respective
transports. Both are subclasses of cIgorTransport that provides the abstract message
passing APIs. This way, the same code that runs on the real network in the KBR daemon
can be tested in a simulated environment without modifications.

After switching to OMNeT++, I reproduced results from a measurement study on
PlanetLab in [EFF09]. We provided IGOR with topology information based on RTTs
from that study. During the measurement, 120 PlanetLab nodes ran the IGOR software.
We were able to simulate all nodes on an eight core machine in twice the measurement’s
real time. Our findings indicate that using the local simulation component is a valid
alternative to large scale testing in a complex distributed environment.

The major insights gained from both simulator ports are:

\bullet The importance of simulating running code, hence testing as much code as possible
inside a simulator

\bullet The importance of reproducible measurements and behavior

The development of P2P applications benefits substantially by the incorporation of
simulations at the earliest development stages. I consider the ease of using OMNeT++ is
seen as important factor of its success.

That experience gained from two simulator ports allowed a third development. To
explore the behavior of the Vivaldi network coordinate algorithm and my proposal
Hierarchical Vivaldi a third simulator was built with a focus on large simulations. This
was accomplished by the drastic reduction of features from the simulator cf. Chapter 7.
Neither a real transport protocol nor a real P2P application is simulated. The simula-
tor provides an event queue that manages RTTs and invokes the network coordinate
algorithm upon its objects. From an architectural point of view, IGOR’s modular design
drastically reduced the development time. IGOR’s network coordinate elements were
already self contained and easily combined into a thin library libvivaldi that provided
the implementation for the simulator’s core task.

On the DHT level, libdht offer a functionality that is similar to Free Pastry [RD01], as
described in Section 4.7.

40

4.7. Application Interface: libdht

4.7. Application Interface: libdht

I based libdht’s design on the results of Chawathe et al. [CRR+05] cf. Chapter 3. In
particular, I aimed at a generic library that provides more than just the usual DHT
functionality. The library should be flexible enough to support all kinds of application
requirements, and it should be focused enough to allow the efficient sharing of code.

The most common requirement is of course the general put/get interface for storing
key/value pairs. Moreover, applications need to be able to perform endpoint operations
that are more complex than just storage. For example, they need the flexibility to control
what data is stored and how it is stored. They also need to control the forwarding process,
for example, to suppress the further forwarding of a message.

Figure 4.3.: libdht and libigor in the IGOR Ecosys-
tem.

The principal architecture was cho-
sen and designed by Kutzner in
[Kut08]. The decision to extend and
extract the architecture into a library
comes from the understanding that
the lack of a public extensible library
has unnecessarily hampered the fur-
ther development of efficient P2P sys-
tems and their widespread use. Nei-
ther should an optional library "get in
the way" of the developer, nor should
it be only marginal necessary and es-
pecially not be overloaded with fea-
tures. Figure 4.3 illustrates libdht’s
position in the ecosystem. Applica-
tion developers could use it to enrich
their application, they can abandon
that option, or they can use it in parallel.

The library inherits the architecture from its predecessors: the IgorFs file system and
the VIDEGOR video recorder [KCF05; KF06; Kut08]. Common to both predecessors
is the modular approach to the architectural design, illustrated in Figure 4.4. Each
type of functionality is implemented in a separate module, inherited from cModule.
These Modules communicate via an IPC based messaging system, using the following
interface:

void cModule::SendMessage(
shared_ptr< cMessage const > message,
cModule *destination,
posix_time::time_duration relative_when

);

41

4. Igor

Figure 4.4.: The module concept of libdht.

virtual void cModule::HandleMessage (
shared_ptr< cMessage const > message

);

Upon construction, modules can specify the type of messages, they handle. Upon
receiving, their HandleMessage method is executed. Commonly a worker thread is
spawned to handle the new message, to avoid blocking the main message loop.

Figure 4.4 includes the library’s core components. The "KBR Communication" module
is the responsible module for easing the communication with the underlying KBR
daemon. It multiplexes messages of different types, received by the lower levels of the
software stack and sends them to the corresponding modules. The "Object Manager"
serves as central component for application developers. By handing object references
to that module, the library stores the modules in the last illustrated module,the "Cache
Manager". From the latter storage module, the Object manager retrieves the application
provided objects and handles their life cycle, by republishing them timely. The latter
module also serializes the cache content upon library unload, to preserve caches across
application runtime. The underlying IPC bus handles the message loop and calls the
HandleMessage functions.

Functionality is not limited to the three modules. Application developers are free to
develop their own cModule derived extensions. In [Wei09] we explored the concepts
of BitTorrent’s cooperation engine and their applicability to DHT concepts. We found
the concept generic enough to be applied operate distributed in a DHT. Therefore, we
created a custom Upload- and DownloadManager module in libdht that enables the
joint download of a resource from multiple peers. Together with a third cSwarm module,
application developers can enrich their applications with swarming functions.

42

4.7. Application Interface: libdht

Each module can be individually re-implemented and replaced. However, modules
can even be customized at a more fine grained level.

In libdht, an application can provide filters that run whenever a peer receives or sends
a message. A filter can check the received data. It can process the data and trigger its
further dissemination; or it can suppress the message from being further forwarded
towards the final destination. Thereby, an application can efficiently aggregate and cache
information.

Filters do not only apply to received messages, but also to outgoing cache elements.
Thereby, the system can transform, suppress, or validate the data before it is sent. A
filter for incoming messages implements the following API:

class cCacheInputFilter {
virtual bool Run (shared_ptr< cMessage const > message);
virtual string HandledNameSpace ();

}

Its counterpart, the filter for outgoing data operates on elements, exported from the
object storage:

class cCacheOutputFilter {
virtual bool Run(

cCacheElement const *inputElement,
cCacheElement **outputElement

);
virtual string HandledNameSpace ();

}

The provided functions are located at the heart of the system. While implementing
a complete module might be cumbersome, filters allow extensive changes in minimal
lines of code. Upon registration and initialization of the filter, the system automatically
checks the result of the HandledNameSpace call. Depending on type of data stored in
the cache or read from the cache, different filters get activated. The filter’s namespace
selects these types.

I illustrate the effect of that design with an example. Consider, for example, an
application layer multicast application, say a chat service or an audio conference tool.
Here, a prospective multicast group member sends a join request towards a given key.
Typically, this key will identify the group.

Upon receiving such a request, the application’s input filter checks if it has already
registered another downstream peer. If so, it adds the new requesting peer. Otherwise, it

43

4. Igor

Figure 4.5.: IGOR Application Interface: Architecture Overview.

creates an according record, adds the requesting peer, and issues its own join request for
that group. Multicast traffic is forwarded towards the said group key and to the locally
registered peers (except for the peer that the particular traffic came from).

libdht Simulation

984145a54697faaeacf46abbbc85bcd493aa74c1

ff5a0a2770f297f4205e7cc8a8ccf3803256fa91

ddc1a3934ef288c127ce7edfab7386204c775d09

8e9d9b5806d420cabaf26d5357ee14c6fba0df39

4bb90bbc5040d8dbdfb02204443dbc83cd358596

d19c1a3cf13aff9e592fa43c2e43f23b4046dd28

99c47de8b00dc8f67979477a69ff081c5099aecf

1dd49faf15b074b3486e4657047983c7848e1637

00ab6e09fad8d180fa20cadb83682b10017e012e

078d0a1dcefa72e46c6605c50b04f489be733de1

7cdb4d26481d7f637d337b89e9531595b01dcca5

9a6391ee2c1188974963c3a454facd5ef151f4ee

1493cd99e73b7e43003596cbfe36467501d16f9a

bf8d4e828e406e90635f3ef2c0a928d7c8101b09

36517b044323dca97e8a14fb239ee29fb9e5ae61

8cd2273b79b6b1472bec2f3c36e6a654e1bd15cf

9b9a0a4516965dcd5c95cbe8fc877dec3bb4cf83

557662bbaf38defed7bf7721b67ba0c05e6ab847

179dd19a13449b12cc9735f376f8d33a6914b426

0131418f26124708113c1ff7d78bbe2f0c549980

1d4e7283b3034980014f8ce1c4b9acead701750f

a4eb825fbf097312b47a98a08911cef963e5ad37

aacd10537ef284199ec8d24df75297f1c0973974

2e4e809b57ce25c5fd5aad09dfb294de28098bcb

e23af6debdc0a613eaeb227b6bb91038c60e1cec

3e27bf20c2ece10e3ba69ec727b121dd4910d06d

a3ee0ea13b5df2e90a74b2d50523ec1f69e2911b

050e03246fbb4b769e28921776f558e09fc1f65e

d7af7a601f3e93ed1c65e1ac7add4f1c7e7a72eb

abaf690c5bc36b5e38e9755619d3a91f330a4833

0b450f7989d921744191855a2274bcc4348cd0bb

bb31c76325a2f4059f014f561ed2d44a713d15ce

cac54ee77b2a6a3ab29db3b0c636a504101b27a2

bd8a67efe6cf4b0d80e6160da117303afe8cb4cf

7e888b449dea64e0edc052330f00b9a48b67fede

7d49be4f114a0e9928003106ab6c6fbda6b6b4b2

40118702825d29d692ddaab2b106bcfef68c6815

c2e559c78e2c99cf345d8634f5779da01d2cd7df

11b283496adba180b0c13e50d47c233eb487d331

9f82ec6f7988173db2e656812224fbd86b4ebb9c

1a26d38f237bb89abc829b0d1996c2963dae2754

117c80b5a0cea2eb123a5cc61ca83367abb5a91f

f477dd986d20a0dca5d00a9f848df3467679ff8d

c7d1dc9278836f5a87125732e8bc8974caff26dc

7a21cbcec8a4f195e7d638f97fb7d76ccc4cc34b

0f23d9cefd4fc9b23ed4819f0be7b0ded5daba51

40b18fbd8c1f6ecc587f24f3334108f24161d9ea

365f8a6bc786242a64e35e8e80eb1f88e97a93c7

65e81e6e8c2a3122a4480f0c72c36f3d570c6513

e320e567126d8fd4ff571b1e13a9b34835d5010d

b0b1fdcc526d400660676c403fe26e21ebb1f18a

cca5d672446f3fb287ebca131d03eac79acbedb6

3072a45d6b4a8ab47c99c26853ba2c0f27ffd08a

12fb1ca1e6f0cff9571483b4b1edb0104d0a9214

e045c2f0e06a9ff3a93ba2d07f63edc1fc75b94b

cfda5d0cd66da6684927f6ab267049dab96ab714

eeee030f558483f247a1b740c224170acd18bf5a

ee57e5e7b1d411cea9adb55e547851b1c603a78a

da1be3850009ad19aa5e1a9e25b14308148da587

04eb18e0e667a9053bdb790f1a712d96b19b8918

5d5690e824f326900a14c357a7f9b45557b3afb3

26eb8722700206cbb5e3a52097ec5797f6d9f0c8

83c8936fcf8a54f64c15a075015aa06c15f86026

9db29b45c8acee1453615e301b1d0fa74c89d6df

df6f43913a3fff88d67bef03b8ec6da4112cac75

863ee7bb70117188523542ab283602a8de283c2a

bedf44a4e0b22e2a30c4e672c9df0adb3eb68bbf

aebfc35a248f2e8355bc75e0a9c1ab0c0eea9455

3e60264abe72313c7e05161399213235d60e3a80

0dcdcce1f2cf3d2929cb483fe2dc20f895dde639

61bb75e44a1b9ec237af53266904482dfd9eb5d8

55ff35135bfbdcca83fce105d04cde58676b72ca

5258315edc22a0106609acafba76f609f6145781

79a16f38597ea6d3cc65219547ad13b00dc2c9ef

ae6f6d2bcf79efebbd15c9be2bab158a3414df4b

526acba55f82ced028faf9ba93c65e593f760175

68f02c22081a7ae9da20c0ed5c89c0308a07aabc

ad51a0a3c3744c1b9f7796ed9de8a711f6fdd86a

08fef0fd239f704e64f6124aae0b06753f42f6a0

72cb03aee4fd89ff47bb3962c1bcef05554aa6a8

4eb51b38d7653335ce266ac3d6cec3dbcc449597

3b7c664012df9964cdd3607cb8673a88034d766a

4ca1ff539278a29f3de4c2e939d27c2c974fb12f

3325b88d29759d10d8cd8e2754a46cb5ab7a79d8

0d12338cc78bfc495958fe6c59c3d099d40d5e9d

d6bfbfbd5d654e37aeae915afcab02c07ff6857c

5ddc2cb0115f4f5c3364a9601861a3c57a0be244

672409a9f7fa5831f1cc76ec3445a50f513f4bd9

673600b4046294b06f260d8374698c4e2cab3f17

62aaef947bb93571915adcd10b953e678dc29903

298343cd6d73ae3b64784228bf758354590e6632

120578855a37cf6f6d3b3a1f47c630bd0988f8a1

5f11e03e64c481adba0ea5bca112fc7675dd636b

562fbbdda4af1e28481c4cf316e713ede69eb440

89f5288401074a7308a62cb615957146c81b4727

e2cfd9321699dcc3c726e5c51a9c0fcf59d444ac

f5ac638817c07de25b656d9f75cfab954cc0057b

668828850529201cec24866954ff0d83493c4851

eb3189f556a1410c3fe7e55149829738f098e349

e80cd71d6070fb62bf37b886c4bf13546e2afb04

Figure 4.6.: Multicast traffic from 100 nodes cre-
ated in the built-in simulator.

Besides the relative ease of developing
P2P applications with the libdht library,
it also supports application developers
with its simulation capabilities. Using the
built-in simulation capabilities, the stu-
dents at our chair’s lab were, able to sim-
ulate a multicast application built with
this library on a network with 200 peers
and 10 different groups on their desktop
PCs. They were able to quickly track
down the errors in their implementation,
and they were easily able to simulate both
gracefully and ungracefully leaving peers.
Thereby, they could build an application
that proved to be robust after real-world
deployment. As the live system and the simulation both use the same code base, they

44

4.7. Application Interface: libdht

were able to reuse all their instrumentation for the performance analysis after deploy-
ment.

The key to that simulator lies in the KBR split cf. Section 3.3.1. Because libigor is
separated from all routing logic, by communicating only via route calls with the
underlying daemon, the library can operate on all kinds of different KBR proposals. And
because the application library libdht is split into modules that communicate via IPC,
the component communicating with the KBR daemon can naturally be replaced with
another implementation. Hence, I implemented a fake transport. Instead of calling into
a library or contacting a daemon the reimplemented cFakeIgorModule communicates
with other instances of itself via IPC. I implemented the clockwise routing metric from
Chord [SMK+01], however, any other routing metric is possible. The interface to the
simulator is currently limited, but serves as proof of concept. It is able to simulate node
churn and can delay messages at will.

Finally Figure 4.5 illustrates the combination of all parts to an ecosystem. Messages
issued from applications, pass the KBR/DHT library’s filter system, where they may be
transformed, queued, cached or forwarded to the KBR daemon. Each message that enters
or leaves the daemon is passed to plug-ins at the KBR level. The service plug-in inside
the daemon takes care of using only overlay hops that provide the same service. Other
plug-ins decide, which overlay path the message shall travel dealing with connection
specific attributes, including NAT and round trip times (RTT). Finally, the message is
delivered, thereby traveling through the stack in the opposite direction.

In [Sch10] we implemented our previous example of a multicast add-on for the
KBR/DHT library. This was done to prove the point of the great extensibility and
modularity of the library. During the development, no changes to the library were
necessary. Using the built-in simulator a network of 100 nodes was able to join 10
multicast groups concurrently on a commodity hardware system (cf. Figure 4.6).

45

5. Proximity Enhancement Research

This thesis is focused on proximity enhancements for creating latency optimized overlay
networks. Chapter 2 introduced the sources of latency and how it accumulates. Although
these reasons may be known, developing a good prediction algorithm is challenging.
The prediction of RTTs in a decentralized fashion is even more an elaborate art. This
chapter will introduce the most widespread algorithms and their approaches to reach
the goal of an accurate prediction.

5.1. Overview

Early works on P2P overlays completely ignored the topology of the underlying network.
But completely ignoring the underlying routing paths hampered the efficiency of the
overlay routing. To illustrate the problem, consider two nodes A and B, located in
Europe that do not share a direct overlay connection. In a network of n participating
nodes, the path between both nodes consists of up to log(n) hops. Any of these hops
could be located overseas, which adds the round trip time between Europe and North
America, approximately 115 milliseconds, to the path. In a worst case scenario, the
path includes multiple bounces between nodes in the US and Europe. As a result, P2P
overlays waste the Internet service providers’ (ISPs) bandwidth and annoy the users
with high latencies. The proposed optimizations for overlay networks are based on a
simple observation: Because the overlay totally abstracts from the underlying network,
routing paths may become unnecessarily inefficient.

The obvious solution would be to route the message to the destination, using an
optimal routing path. Clearly, the meaning of optimal depends on the context: An
ISP might be interested in keeping traffic local, or prefer his peerings. Users care for
low latencies and high bandwidth. This thesis focuses on prediction of latency optimal
paths, therefore both "optimal" and "near" hereafter mean latency close. The problem
is: How to deduce that optimal routing path? Sampling all possible choices results in
massive overhead. Flooding a message guarantees to find the latency optimal path, but
is inefficient and might congest the network. Prediction seems to be impossible because
of [Pax97], but Paxson only concluded that the behavior is unpredictable. In this chapter,
the reader will be introduced to algorithms that predict the actual RTT based on recent
observations. By observing the system, predicting is indeed possible.

There are several proposals how a peer can find proximate peers without having
to sample a lot of candidates. Vivaldi [DCKM04] employs network coordinates, i. e.

47

5. Proximity Enhancement Research

each peer is assigned a synthetic coordinate so that the computed distance of two peers
reflects their expected latency. Elser et al. [EFF10] and Agarwal et al. [AL09] propose
optimizations to this algorithm, but stick with its coordinate based model. Meridian
[WSS05] is also based on the idea that peers can be embedded into a metric space,
but avoids explicit coordinates and rather uses the measured latencies directly. Ono
[CB08] uses content distribution networks as oracles to determine the proximity of peers.
Other authors propose that the ISPs offer proximity recommendations to P2P systems
[AFS07; XYK+08].

Using any of these prediction techniques overlays are proximity aware and thus much
more efficient [CLY+09; LOH+10]. They allow peers to determine their latency adjacent
neighbors. So they can preferably attach to these selected peers and thereby create
efficient overlay structures (cf. Figure 5.8). Similarly, when routing a message, these
peers preferably forward them to low latency peers.

The problem of optimizing a path or choosing the optimal neighbor is reduced to the
problem of latency prediction. The fundamental advantage is this prediction property:
A priori sampling all nodes is minimum bound to the first answer, only if sampling
happens in parallel. In contrast, prediction involves no previous communication to
obtain latency characteristics, hence no additional time loss emerges.

A focus of current research is the problem how to improve the prediction quality. The
de facto standard today is computing and assigning synthetic coordinates to Internet
hosts with regard to their latency characteristics. So far I have introduced the proposals
briefly, to create an overview. In the next sections I introduce each in detail, to impart
the reader a sound understanding of the state of the art.

5.2. Definitions

Prior to introducing proximity prediction algorithms, I start with a formal definition of
the problems that motivate this thesis:

The Peer Selection Problem

The optimal peer selection problem is to select, from the set of peers that have
the desired object, the subset of peers and download rates that minimizes cost.
[AKR+05].

This problem is closely related to two other problems:

Proximity Route Selection PRS can be employed everywhere in overlay networks,
where the forwarding rules and metrics allow to choose from more than one entry in the
routing table. Pastry was the first system to allow such flexibility. In contrast initially
both Chord and Kademlia used a strict metric, which was subsequently softened, when
the need for proximity enhancement became evident. From the set of all possible next

48

5.2. Definitions

hops PRS first selects all next hops allowed by the routing metric, i. e. all next hops that
decrease the distance to the destination in the identifier space. All next hops in this set
are then evaluated using a second metric, e. g. latency. The message is then forwarded to
the next hop where the second metric is optimal.

PRS can also create a drawback, as a path chosen to optimize the second metric can
contain more hops than the path chosen by the primary metric, which can lead to a longer
transmission time. This potential drawback cannot be avoided, as only the next hop in
the path can be optimized. Global optimization would require global knowledge. PRS
requires a choice from two not necessarily congruent recommendations. The IGOR KBR
daemon reflects that stress ratio between different metrics, by basing routing decisions
on a joint decision of connection plug-ins (cf. Chapter 4).

Proximity Neighbor Selection While a truly decentralized P2P application cannot
rely on global knowledge to optimize its routes it can approach the problem in another
fashion. Instead of introducing a secondary metric, violating or bending the primary one,
the system could try to run the primary metric only on preselected optimal members.
Therefore PNS optimizes the connection table. In that way the secondary (proximity)
metric decides on neighbor selection and applies optimization at this point. This is
possible because commonly P2P system exchange neighbor information (gossiping), to
optimize their routing tables. The proximity metric can be integrated at that point,
selecting latency close entries from the received information, discarding others. The
optimization process might even involve replacing existing connections.

To sum it up, the Peer Selection Problem is not only a problem of selecting from whom
to retrieve an object. If an overlay’s construction or routing is guided by latency consider-
ations, the performance increases. Hence the Peer selection problem is a design problem,
that improves the overlay as a whole. By designing an overlay based on proximity,
the intercontinental overlay path from this chapter’s introductory example could be
avoided.

Embedding The focus of this thesis is on the analysis of network coordinates. Al-
gorithms that assign coordinates to reflect RTT distances rely on an approximately
exact layout of nodes on a plane. In contrast, similarity based algorithms like Ono
cf. Section 5.10, express distances using implicit measures. The process creating a layout
on a planar surface is called a embedding, a concept well known from topological graph
theory. Each node can be interpreted as a vertex v \in G in the graph of all nodes G,
leading to the following formal definition:

Let G = (V,E) be a simple, undirected graph, with the weight function f : E \rightarrow \BbbR +.
An embedding (\phi ,R, d) of a graph G is given by a non empty set R, a function
d : R \times R \rightarrow \BbbR + and an embedding function \phi : V \rightarrow R. The pair (R, d) is the

49

5. Proximity Enhancement Research

surface or space into which G is embedded. G together with the function f form the
underlying graph [Lau04].

The distance function d maps two nodes to their respective distances. For example,
on the Euclidean plane, the distance function is the norm of the vector between the
two points. In contrast distance in a hyperbolic space is bent towards the origin of that
surface.

An actual distance is computed using the node’s positions on the surface G, which is
assigned to each node in V by \phi . For convenience reasons hereafter the representation
\phi (vi) of node vi on the surface (R, d) is called the node’s coordinate xi. Furthermore,
the weight function is commonly replaced by the latency matrix L = (lij) L \in \BbbR x\times n, that
contains the latency lij between all nodes i and j.

The quality of an embedding is determined by the degree the distance function d

reflects the function f . To measure that quality of an embedding (\phi ,R, d) an error
function E is commonly defined. For example, the central Vivaldi algorithm described
in Section 5.5 minimizes the following error function:

E =
n\sum

i=1

n\sum
j=1

[d(\phi (vi), \phi (vj)) - f(vi, vj)]
2, (5.1)

That specific error function in the above equation computes the sum of the quadratic
absolute embedding errors. Furthermore, different forms of embedding algorithms exist
cf. [ST04]:

\bullet All pair (AP) Embed all nodes (n\times (n - 1)
2 distance pairs) at once.

\bullet Two phase (TP) Embed a small subset of landmark nodes (l\times (l - 1)
2 distance pairs)

in a first phase. All other nodes, embed their distances using these landmarks in a
second phase.

\bullet Random + Neighbors (RN) Embed respective to the neighborhood N of a node
and randomly selected distinct nodes.

After introducing the most important definitions, the remaining chapters will focus
on proximity predicting algorithms.

5.3. Early Latency Prediction

Internet Distance Map Service One of the earliest proposals for latency prediction is
the Internet Distance Map Service (IDMaps) project [FJJ+01]. Francis et al. envisioned
a service, which provides latency information with a delay and overhead less than those
of the gains achieved by using the service. Their proposed solution settled on landmark

50

5.3. Early Latency Prediction

servers, also called tracers. The authors chose these servers because a large number
of hosts making independent and frequent measurements could have a severe impact on the
Internet. In other words: The number of measurements need to be conducted in a system
should not be quadratic bound to the number of nodes | N | in that system (| N | \rightarrow | N | 2
measurements). Instead, only each tracer t \in T with | T | \ll | N | needs to determine
that latency. IDMaps distance computation is illustrated in Figure 5.1: The distance d1
between two nodes A,B sums up from the distance of both nodes to their nearest tracer
(dA + dB) plus the distance between both tracers. Hence, the distance between node A

and B is dA + dt12 + dB . Clearly, IDMaps is an early two phase embedding algorithm.

Figure 5.1.: IDMaps lack of client position information induces errors at close peers. IDMaps
computes d2 from both AP distances plus the tracer distance.

To maintain the correctness of the distance information, tracers perform periodic
measurements among all | T | nodes. These measurements are compressed using a t-
spanner algorithm, to limit the size of the exchanged data. Nodes are maintained in
groups, based on their address prefix (AP e. g. 10.1.1.0/24) at their corresponding tracer.
Distances between tracers and APs are learned while operating the network. Upon
receiving an initial request from an unknown AP, the contacted tracer advertises itself
as the nearest tracer to that AP. The tracker publishes this information across the tracer
network. If other tracers measure and find shorter latencies, they take the position of
nearest tracer. The system is designed as a client/server solution, hence end hosts can
query dedicated servers for distance estimations.

Global network positioning One problem of IDMaps comes from a simple observation
illustrated in Figure 5.1. The actual distance between node A and B is d2 not d1. A
distance computed with IDMaps is not able to reflect peer positions. Hence, although
both peers may be close, the computed distance will still reflect the distance of both peers
to their respective tracers, plus the distance between those tracers. Similar problems

51

5. Proximity Enhancement Research

exist with nodes sharing a tracer. As one of the IDMaps authors put it: IDMaps is blind to
position [ST04].

Therefore, Global Network Positioning (GNP) [NZ02] pioneered with the concept of
network coordinates. Nodes exchange the computed coordinates. These coordinates
increase the accuracy of distance prediction and eliminate IDMaps blindness for position.
Furthermore, the exchanged coordinates allow end hosts to independently compute
their respective distance. Therefore, a server that is necessary in IDMaps is redundant in
GNP. That independence not only saves the latency of a query to a central server, but
also improves reliability, by eliminating a potential bottleneck.

To achieve stable coordinates, the authors propose a two phase algorithm. \scrD + 1

landmark servers \scrL initially compute their coordinates of dimension \scrD . Coordinates
x1 . . . xN are computed by minimizing the following equation:

fobj1(x1 . . . xN) =
n\sum

i,j| i>j

\varepsilon (d(xi, xj), lij) (5.2)

Where \varepsilon () is an error function e. g. computing the absolute displacement between real
and computed latency. The authors propose to solve resulting multidimensional global
minimization problem using solvers, such as the Downhill Simplex Algorithm.

After a stabilization period, clients can measure their RTT to landmark servers and
compute their coordinates based on these measurements. Subsequently, landmarks
adapt to changes inside their respective networks, using continuous measurements.

Vivaldi adopted the idea of network coordinates, but replaced the fixed set of land-
marks with its spring approximation model. This makes Vivaldi a self-organizing
system in the sense that it is independent of a landmark infrastructure, as we will see in
Section 5.5.

5.4. Big Bang Theory

The concept of Network Coordinates using Euclidean surface pioneered in the GNP
system. To improve the graph positioning, which is responsible for efficient and accurate
node placement, Shavitt et al. proposed the Big Bang Simulation (BBS) algorithm in
[ST04]. BBS uses force fields to compute each node’s kinetic energy. The authors found
improved performance and accuracy of their embedding algorithm, compared to other
methods such as Downhill Simplex. They emphasize the algorithms ability to avoid
suboptimal embeddings:

the kinetic energy accumulated by the moving particles enables them to escape the
local minima. [ST04]

The idea of force fields that actively push particles apart allows all nodes to be initially
placed at the same point, hence the name Big Bang Simulation. The force is a function of

52

5.5. Vivaldi

the embedding error of the system, the error function. Its antagonism is a friction force.
The former pushes particles apart, increasing their velocity, the latter slows them down.
The algorithm tries to arrive at a minimal force and friction configuration at a perfect
embedding.

The system is divided into four phases. In the first phase, the error function E\langle 1\rangle is
computed from the absolute error between the actual and computed distance between
particles. The authors describe the force in that phase similar to a spring network.

E\langle 1\rangle =

n\sum
i,j

(\| vi - vj\| - lij)
2

That model is the basis of the Vivaldi algorithm, hence the next section will explain it
in-depthh. The next phase uses the relative directional error between both values.

E\langle 2\rangle =
n\sum
i,j

E
\langle 1\rangle
ij

\mathrm{m}\mathrm{i}\mathrm{n}(\| vi - vj\| , lij)

In the last two phases, the directional relative error increasingly contributes to the
error function. Hence, the system is increasingly sensitive to embedding errors.

E\langle 3\rangle =
n\sum
i,j

\mathrm{e}\mathrm{x}\mathrm{p}(E
\langle 2\rangle
ij)

3
4 - 1

E\langle 4\rangle =
n\sum
i,j

\mathrm{e}\mathrm{x}\mathrm{p}(E
\langle 2\rangle
ij) - 1

The force computation requires distance information between all particles, which
requires a full meshed P2P network. That hampers its usability for truly distributed ap-
plications. Furthermore, the observed performance during simulations varied. Synthetic
Internet topologies, based on power-law graphs benefited from hyperbolic embedding.
Topologies gathered from measurements on the Internet did not exhibit an advantage
over traditional embedding schemes [ST08].

5.5. Vivaldi

The Vivaldi algorithm (Vivaldi henceforth) developed by Robert Cox et al. [CDK+03] is
a force based algorithm, for creating a network embedding. The algorithm incorporates
inter alia research from the GNP algorithm, by using network coordinates and the Big
Bang Simulation, which pioneered with the idea of force fields. Vivaldi replaces particles
and force fields with a spring embedder cf. Figure 5.2. Initially all coordinates are placed
at a single origin, similar to BBS. Because Vivaldi skips the different phases from BBS

53

5. Proximity Enhancement Research

and creates at the same time, remarkably good embeddings, the algorithm is currently
an established procedure of predicting Internet latency between arbitrary Internet hosts.

A

C

B
60

80

60
RTT 35 < 60

A

C

B
35

77

60

35

Figure 5.2.: Vivaldi’s spring concept illustrated: Node A and B supposedly 60 ms apart (left).
A RTT measure determines 35 ms. Hence, nodes adjust to 35 ms (right) after
a number of rounds under ideal circumstances.

Embedding: The learning problem, of assigning accurate coordinates to hosts, is
solved by simulating a physical spring network, as illustrated by Figure 5.2. A virtual
spring is placed between each pair of nodes. The spring’s rest length is the latency
between the node pair. Its current length is set to the Euclidean distance between them.
This displacement is identical to the prediction error of the coordinates. These simulated
forces cause the correct adjustment of each node’s network coordinates, starting from an
initial placement. Each iteration of the algorithm should minimize the prediction error,
which represents the potential energy of the system.

5.5.1. Central Vivaldi

To compare the performance of their decentralized algorithm, Dabek et al. proposed both
a central and decentralized variant of Vivaldi. This section briefly introduces the central
Vivaldi variant. Similar to Big Bang Simulation, the algorithm requires knowledge of the
latency matrix L = (lij) \in \BbbR n\times n that provides RTT information for each pair of nodes. In
contrast to BBS, Vivaldi sticks to the same error and embedding functions, abandoning
special functions for different phases. The algorithm is an all pair algorithm and does not
use landmarks to restrict the number of computations from n\times (n - 1)

2 . The error function
minimizes the following equation:

54

5.5. Vivaldi

E =
n\sum

i=1

n\sum
j=1

(lij - \| xi - xj\|) (5.3)

Each iteration of the algorithm between two nodes i and j, takes their coordinates
xi, xj and their respective round trip time RTT = lij \in L as input. The algorithm’s
result is an aggregated force vector \vec{}F that adjusts the coordinate of node i. The vector \vec{}F

pushes the node’s coordinate away from nodes that wrongfully seemed close and moves
the coordinate into the direction of nodes that were placed too far away.

Algorithm 1 describes the algorithm in pseudo code.

Algorithm 1: The Central Vivaldi Algorithm [CDK+03].
Input:

xi: local coordinate of node i
xj : remote coordinate of node j
lij : RTT from node i to node j

Constants:
t: damping constant

Output:
xi: updated coordinate of node i

function central-vivaldi(RTT, xi, xj)1
begin2

for i = 1 to n do3
F\leftarrow 04
for j = 1 to n do5

e\leftarrow lij - \| xi - xj\| 6
F\leftarrow F + e \times unit(xi - xj)7

xi \leftarrow xi + t\times F8

return xi9

end10

Central Vivaldi operates on a fixed vi for each pair (vi, vj) \in E in the following way.
The function unit(xi - xj) computes the norm vector of length 1, pointing from xj to
xi, which is multiplied with the absolute displacement between the computed and real
round trip time. The resulting displacement vector is aggregated in the force vector \vec{}F .
Each individual displacement contributes equally to \vec{}F . Finally the resulting force vector
is added to xi after damping \vec{}F with the constant t, which moves the coordinate into the
predominant direction of all forces acting upon it. Hereby t regulates the coordinates
reaction to these forces. A value t < 1 will provoke a smaller adjustment, t = 1 applies
the original force and t > 1 provokes a strong reaction.

55

5. Proximity Enhancement Research

5.5.2. Dynamic Vivaldi

In order to to increase the embedding quality of coordinates, the central Vivaldi algo-
rithm introduced in the previous section, as well as the Big Bang Simulation, or similar
proposals are all-pair algorithms. Therefore, they needed connections between all nodes.
Vivaldi in contrast restricts the algorithm’s input to a node’s neighbors and creates a
Random + Neighbors (RN) embedding. All nodes cooperatively contribute their local
knowledge to the embedding. Restricting to a node’s neighbors makes Vivaldi applicable
for a truly distributed operation.

However, two problems of the Random + Neighbors embedding need to be addressed,
in order to mitigate the smaller number of nodes that is in this embedding, compared to
an all pair embedding.

First, the speed of convergence is an important factor. Nodes need to be able to
quickly reach an accurate position in the embedding. A quick convergence towards an
accurate position is not only beneficial for the local node, but also for the whole network.
Therefore, the algorithm should produce a strong reaction to the shifting force. But a
strong reaction is only initially desirable, because as the accuracy of a node’s coordinate
rises, a strong reaction will build up oscillations and hampers the convergence towards
stable coordinates. Because of Internet’s imminent fluctuation of RTTs or transitory
phenomenons e. g. route flaps accurate coordinates should only produce a small reaction
to such disturbances. In BBS, Shavitt et al. introduced a friction force, to anticipate these
oscillations.

Second, a node that receives coordinates from another node lacks information about
the quality of that information. On the one hand, it could be an accurate embedding
that allows the other node to predict RTTs rather well. On the other hand, it could be a
low quality coordinate for various reasons, such as the following: The other node might
have joined the network only recently, or it might have experienced route flaps, which
might decrease the quality of its embedding.

If a peer adapts its coordinates to nodes with low quality coordinates, its own em-
bedding quality might decrease. Hence, in contrast to the central Vivaldi algorithm, a
peer should not adapt to forces from all nodes equally in the same way. It should rather
weight the force vector that alters its own coordinate with a factor that measures the
other embedding’s quality.

To overcome both problems Vivaldi introduces a local error component e attached to
each coordinate. Using the error ej from the remote node j a node i is able to measure
the quality of j\prime s coordinate xj . Thus, in the first line of Algorithm 2 computes an error
weight w. That weight is a sliding mean of both the local error of the node ei and the
remote error ej :

w =
ei

ei + ej

56

5.5. Vivaldi

If the local error ei is low, the computed weight will favor the own position, leading
to a small reaction. On the other hand, if the remote error is low, w ensures a strong
movement towards the other node’s position. Therefore, w reflects the above mentioned
concerns. If a node joined the network recently, it will quickly adopt towards an increase
of embedding quality. If the node already has a satisfying coordinate, it will react with
smaller adjustments. Figure 5.3 illustrates the median error of nodes in a simulated
environment. The setup and data sets of that figure are described in Chapter 7. After an
initial phase of high errors, all nodes jointly improve their coordinates towards a high
quality embedding, reflected by a moderate local error of 0.2.

0 5000 10000 15000
0.1

0.2

0.3

0.4

0.5

Time [ms]

L
oc

al
 e

rr
or

Perfect
RTT−Close
RTT−Close Meridian
Normal
Normal Meridian

Figure 5.3.: The local error of a simulated network.

The computation of coordinates is described in algorithm 2. It starts by computing
the already described weight. Hereafter the relative error of the measurement, the
displacement relative to the actual latency is computed. By using two constants ce and
cc, the algorithm first computes its updated local error, and computes the damping factor
\delta , which controls the actual adjustment of the node’s coordinates. A uniform vector
from xi to xj is set to \delta in each dimension and finally updates the coordinates.

Chapter 7 presents an excessive simulation study, reaching beyond our original paper
in [EFF09]. In the publication, we focused on the influence of various parameters,
including ce and ce and the choice of a latency matrix. Here I present further insight,
into on the choice of neighbors and their influence in the embedding quality.

Another contribution of Vivaldi is the proposal of a height vector that expresses an
additional distance to the target. That distance was introduced to improve the overall

57

5. Proximity Enhancement Research

Algorithm 2: The Vivaldi Algorithm [CDK+03].
Input:

xi: local coordinate of node i
xj : remote coordinate of node j
lij : RTT from node i to node j
ei: error estimation of node i
ej : error estimation of node j

Constants:
cc: coordinate adjustment constant
ce: error adjustment constant

Output:
xi: updated coordinate of node i
ei: updated error estimation of node i

function Vivaldi(lij , xi, xj , ei, ej)1
begin2

w \leftarrow ei
ei+ej3

es \leftarrow | \| xi - xj\| - lij |
lij4

ei \leftarrow es \times ce \times w + ei \times (1 - ce \times w)5
\delta \leftarrow cc \times w6
x\leftarrow x+ \delta \times (rtt - \| xi - xj\|)\times unit(xi - xj)7
return (xi, ei)8

end9

performance of Vivaldi and should explicitly capture the access network latency from
the end user hosts to their provider. Coordinates are adjusted in the following way. Each
n dimensional coordinate x \in \BbbR n gains an additional height component xn+1 also called
xh. Therefore, x is now x \in \BbbR n\times \BbbR . However, the height component is not an additional
dimension, but is treated separately during the computation. When subtracting or
adding two coordinates both height components xh + yh are added to the to that result.
The norm function therefore has the following form:

\| x\| :=

\sqrt{} n\sum
i=1

xi + xh

The distance function includes both the updated vector norm and subtraction func-
tions:

d(x, y) =

\sqrt{} n\sum
i=1

(xi - yi)2 + xh + yh.

58

5.6. Pyxida

Besides capturing the access network latency, Chapter 7 introduces another beneficial
property of height vectors. They are better at embedding non Euclidean data, hence data
that violates the triangle inequality. That violation degrades the quality of an embedding,
as I will introduce in the next section.

5.5.3. Triangle Violations

Embedding errors are inevitable for all network coordinate systems, if the input latency
matrix, is already flawed with violations of the triangle inequality equation (TIV). These
violations are common in real-world networks, but cannot be modeled in an Euclidean
space with positive height displacement [Lau04]. This affects the performance of network
coordinate systems significantly. Using simulations of several Vivaldi variants with up
to 32 dimensions (cf. Chapter 7), I could show that the quality of the embedding even
drops when using more than 10 dimensions.

Chapter 2 introduced the reasons for these violations. In this thesis I present simulation
studies using latency data available from several scientific publications. That data sets
are the King-Blog, MIT-King, Meridian and Azureus latency sets (cf. Section 7.2). As a
preparation for the simulation studies, I analyze how common TIVs are in each of these
sets. Not only the existence of TIVs but also the degree of them, deserves analysis. In
conformance with a definition by Ledlie et al. [LGS07] I define \rho r as measure for TIV
violations.

\rho r = \mathrm{m}\mathrm{i}\mathrm{n}
z1,z2,...,zr

\biggl(
lxz1 + lz1z2 + \cdot \cdot \cdot + lzry

lxy

\biggr)
where lxy is the measured latency between nodes x and y. Nodes zi represent intermedi-
ate nodes on the path between x and y. \rho 1 \in \BbbR + is the ratio of the shortest 1-hop indirect
path via z1 to the direct path from node x to node y. A value of \rho 1 < 1 indicates that
there is a path that violates the triangle inequality. \rho \infty reveals the existence of a shorter
path including an infinite number of intermediate hops zi.

Figure 5.4 shows that paths in the Internet commonly violate the triangle inequality.
All data sets exhibit not only single-hop violations of the triangle inequality, but also
multi-hop violations. Hence, all Vivaldi variants that have been proposed so far face the
fundamental problem of embedding Internet latencies into a metric plane.

The impact of the data’s non metric characteristics receives attention in Section 7.4.
That section will use \rho to verify an algorithms’ capability to cope with non metric data.

5.6. Pyxida

Research around Vivaldi [LGS07] proved its scalability, but also disclosed some prob-
lems with the system. The original algorithm had been picked up and included into
the popular Vuze BitTorrent client (cf. Section 3.4). Using collected data from that de-
ployment, Ledlie et al. revealed problems with Vivaldi in real world situations [LGS07].

59

5. Proximity Enhancement Research

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e
 p

e
rc

e
n

ta
g

e
 o

f
n

o
d

e
s

Indicator ρ1

Azureus ρ1
MIT−King ρ1
King−Blog ρ1

Meridian ρ1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e
 p

e
rc

e
n

ta
g

e
 o

f
n

o
d

e
s

Indicator ρ
∞

Azureus ρ
∞

MIT−King ρ
∞

King−Blog ρ
∞

Meridian ρ
∞

Figure 5.4.: Single-hop (left) and multi-hop (right) violations of the triangle inequality.

First of all, a node does not contact its peers equally often. According to Ledlie et al. the
resulting imbalance has a negative impact on the global optimization process. Secondly,
real world influences inevitably create spikes in the RTT measurements, which according
to the authors of [LGS07] distort the coordinates of an otherwise stable system massively.

Ledlie et al. proposed two improvements to the Vivaldi algorithm that compensate
for these problems: A low pass RTT filer based on mean values to include only plausible
RTT values. Therefore, each node should keep a RTT history of all contacted nodes and
judge new RTT measurements based on the their previous measurements. Furthermore,
their proposed revised algorithm addresses the imbalanced measurement frequencies.
The new algorithm migrates Vivaldi to a round based system. Algorithm 3 summa-
rizes Pyxida in pseudo code. Instead of computing the force vector \vec{}F from a single
measurement, each node keeps a list of its most recently used peers (recent neighbor set,
R). It contains those peers with whom a node ran the Vivaldi algorithm at most a time
et ago. All these measurements, one for each node in R, jointly contribute to \vec{}F of the
current measurement. The older a measurement, the less it contributes to the coordinate
corrections (line 11), Ledlie et al. call that property "neighbor decay". The force vector \vec{}F ,
which changes the peers’ coordinates, is then modified as follows

\~F =
N\sum
j=1

Fj \cdot
amax - aj\sum n - 1
i=0 amax - ai

(5.4)

where amax \leq et is the maximum age of an entry in the recent neighbor set, ak is the age
of the kth entry, and \vec{}Fk is the force pushing in the direction of that entry.

The most important contribution of Pyxida algorithm is that it does not only take the
most recent measurement into account, but that many measurements jointly contribute
to the coordinate adjustment. This greatly reduces spikes and other fluctuations. It is

60

5.7. Htrae

Algorithm 3: The Pyxida Algorithm [LGS07].
Input:

x: local coordinate of node
Y = \{ y1, y2, . . . , yk\} : coordinate of nodes from the k sized neighbor set R
RTT = \{ rtt1, rtt2, . . . , rttk\} : RTT to nodes in the neighbor set
A = \{ a1, a2, . . . , ak\} : time of last contact with all nodes in the neighbor set

Constants:
t: constant damping adjustment of local coordinate, similar to Vivaldi’s cc

Output:
x: updated coordinate of local node

function Pyxida(x, Y,R,A, t)1
begin2

s\leftarrow 03
F \leftarrow 04
amax \leftarrow \mathrm{m}\mathrm{a}\mathrm{x} \{ a1, a2, . . . , ak\} 5
for i = 1 to k do6

s\leftarrow s+ amax - ak7

for i = 1 to k do8
e\leftarrow rtti - \| x - yk\| 9
Fi \leftarrow e\times unit(x, yk)10

F \leftarrow F + Fi \times amax - ai

s11

return x\leftarrow x+ t\times F12

end13

also smoothes the of nodes that have a high measurement frequency compared to nodes
with a lower frequency.

The effect is that Pyxida filters and smooths the RTT measurements before they are
entered into the Euclidean model. The authors found out that a four dimensional
Euclidean space equipped with a height vector provides a robust latency estimation.

Ledlie’s proposal was included into the Vuze client and evaluated. However, the
Vuze authors later removed Pyxida from the client because its improvements did not
justify its resource demands. In [EFF09] we reaffirm these claims, as we found, that in
practice, Vivaldi and Pyxida do not differ much in their performance. In particular, both
algorithms were not able to produce coordinates that led to good overlay topologies.
We attribute this disappointing result to the way in which both algorithms handle
embedding errors.

5.7. Htrae

Htrae [AL09] is another variant of Vivaldi, fine tuning it in several ways. Agrawald
and Lorch discovered that the actual performance of Vivaldi is influenced by the initial
coordinates a node chooses and the movement of the coordinate system.

61

5. Proximity Enhancement Research

Figure 5.5.: Spherical Coordinates. Angle \phi and
\lambda determine the position of x.

A badly chosen initial position of a node
could not only result in bad performance
in the starting phase of the algorithm, but
could also converge to a suboptimal so-
lution in the long run, as discovered by
Shavitt et al. [ST04]. Commonly, a node
initializes its coordinates at random upon
the first contact with another node. In-
stead, Htrae uses public available data to
map the peer’s IP address to a real world
Global Positioning System (GPS) based
coordinate. Hereby, the coordinates are
likely to rest at a sensible, low-error posi-
tion from the start of the algorithm. Pyx-
ida, Vivaldi, and BBS need to place their coordinates randomly or at a virtual starting
coordinate, as they lack that information. Htrae’s coordinates change during the al-
gorithm, as they adapt to the actually measured RTT values. Hence, a direct relation
between a node’s position on the surface and a "real" geographic position does not exist.

Using the Microsoft XBox Network as testbed, the authors reassured their claim that a
good initial choice for the coordinates improves Vivaldi’s convergence. Inside the XBox
Network, Htrae was used to select a local server for nodes that requested partners for
multiplayer online games. To increase convergence speed, updates of the algorithm are
symmetric, which means that a node sends its updated coordinate immediately to its
communication partner.

Another proposed change to the algorithm is the use of spherical instead of Euclidean
coordinates cf. Figure 5.5. A spherical coordinate xN = (\phi N , \lambda N) of node N consists
of two angles, the latitude angle \phi N and the longitude angle \lambda N . A distance from the
coordinates origin, the radius r, which is optional to spherical coordinates is omitted by
the authors.

The updated computation of Vivaldi in spherical coordinates is:

r \leftarrow 1 - ccws(\| \vec{}xA - \vec{}xB \| - lAB)/ \| \vec{}xA - \vec{}xB \|
d \leftarrow cos - 1 [cos(\phi A)sin(\phi B) + sin(\phi A)sin(\phi B)cos(\lambda B - \lambda A)]

\gamma \leftarrow tan - 1

\biggl[
sin(\phi B)sin(\phi A)sin(\lambda B - \lambda A)

cos(\phi A) - cos(d)cos(\phi B)

\biggr]
\phi A \leftarrow cos - 1 [cos(rd)cos(\phi B) + sin(rd)sin(\phi B)cos(\gamma)]

\beta \leftarrow tan - 1

\biggl[
sin(\phi B)sin(d)sin(\gamma)

cos(rd) - cos(\phi A)cos(\phi B)

\biggr]
\lambda A \leftarrow \lambda B - \beta

The algorithm resembles Vivaldi, with minor adjustments for spherical coordinates.

62

5.8. PeerWise

The authors claim that this change eliminates the drift problem. Drifting is a movement
of the whole system in the coordinate space, common to network coordinate algorithms.
They attribute the low drift and the good performance of the algorithm to both their
bootstrapping changes and the use of spherical coordinates. The initial claim from
the Vivaldi paper [CDK+03] was that other coordinate spaces, including spheres have
limited effect. In [Fö09] we conducted a corresponding evaluation, which reassured
Dabek’s claim. The different findings of Lorch’s publication on the one hand and Cox or
our publication on the other can be explained in the experimental setup. Both [CDK+03]
and [Fö09] did not investigate the coordinate system’s possible mitigation on the drift
problem and lacked GPS based initialisation.

However, the use of Geo location databases might even yield a performance penalty,
as Poese et al. [PUK+11] found out, that

Geolocation databases can claim country-level accuracy, but certainly not city-level.

Therefore only nodes that are equipped with an actual GPS device might benefit from
their proposals. Even under those ideal circumstances, the use of 3 dimensional GPS
data lacks the information that two nodes at close physical locations might be connected
to different providers and could expose different latency behavior. Finally I found that
reusing previously computed coordinates is sufficient, (cf. Section 8.2.1).

Other embeddings for Vivaldi were proposed, such as a hyperbolic space. In [LS08]
the authors experienced mixed results with good performance for nearby peers. How-
ever the hyperbolic prediction underestimated the distant peers, therefore the authors
propose a mixed heuristic ThreshHyperbolic, which swithces between Euclidean and
hyperbolic coordinates.

5.8. PeerWise

In the preceding sections coordinates appear as one of several concepts to achieve latency
predictions. In contrast, Section 2.2.1 introduced the PeerWise [LBL+09] algorithm to
detect routing shortcuts. The algorithm’s triangle inequality violation detection is based
on the Vivaldi algorithm. At the heart of that detection lies the observation, that Vivaldi
is based on a metric space and should be able to embed other nodes with low error.
Hence, if a nodes has high embedding errors to another node, it is likely that a violation
in the metric space, a TIV is the cause. The goal of PeerWise is to set up a network of
detour routes, allowing packets to travel faster than the direct route.

The system tries to ensure mutual incentive. A node should not need to forward
packets for two other nodes, if it doesn’t benefit itself. The algorithm that ensures that
global fairness in PeerWise is described in the following:

If a node A discovers a shorter path to B via another node C using gossiping or
searching, it requests a detour from C. That request includes merchandise in the form of
neighboring nodes of nodes A that have a high embedding error. Hence, the requested

63

5. Proximity Enhancement Research

node may pick a detour via A, which provides mutual benefit. This agreement is called
a ”peering” in PeerWise’s terminology.

The choice of the optimal peering depends on different variables. Those include the
proximity of other nodes which yield the best results in simulations, or the respective
embedding error. Nodes with high proximity are likely to exploit diverse AS paths.

In an experiment conducted at PlanetLab, the authors verified their findings. 42 % of
nodes saw a decrease in download times, compared to the direct path. Therefore, the
authors concluded, that:

[...] the embedding error in network coordinate systems indicates detour routes
[LBL+09]

PeerWise is an innovative use of Vivaldi far from its original application.

5.9. Meridian

Meridian is a framework for node selection based on network location properties. It
offers a multi hop search for a closest node where each hop reduces the distance to the
target. Meridian guarantees to find exactly or nearly the closest node [WSS05]. It also
guarantees that no hop is farther from the target than the previous.

The Meridian framework creates an overlay network based on three components:

Figure 5.6.: Meridian closest node discovery
[WSS05]. Client contacts node A,
which forwards the request to B.

First each node maintains a ring-
structure that classifies its neighboring
nodes into rings, depending on their
latency distance from that node. Each
ring consists of k = m\times O(logN) mem-
bers. N is the number of nodes partic-
ipating in total in the Meridian algo-
rithm. m is the number of rings. The
rings size grows exponentially with
growing latency-distance cf. Figure 5.6.
The i-th ring has an inner radius ri =
\alpha si - 1 and an outer radius Ri = \alpha si

for i > 0, where \alpha is a constant, s

a multiplicative increase factor and
r0 = 0, R0 = \alpha . To mitigate churn,
Meridian also maintains an unspecified number of member candidates.

Second, a ring membership management component refreshes and improves the ring’s
characteristics. The selection of the ring members is done in a way, supposed to fill
the ring with geographically distributed nodes. To refresh that information each ring
member periodically measures its latency distance to each other member.

64

5.10. Ono

Third, a gossip-based node discovery protocol provides new candidates for the rings.
Each node A sends a single member of each ring to a randomly selected node B. Node B
can place these new nodes in its ring structure, after doing latency measurements.

Finding a closest node to v in a Meridian overlay, works in a similar way to DHT key
based routing cf. Figure 5.6. While a KBR system uses ID distances as metric, Meridian
replaces that metric with latency distances. Each hop A measures its latency to the target
T . That node picks a set of nodes from its latency-corresponding ring structure and
requests them to report their distance to T . If one of the remote nodes returns a smaller
latency, than the local achieves, the algorithm restarts at that node. Therefore, each hop
will find a node, nearer to the query’s origin. If no close hop can be determined, the
algorithm terminates.

Meridian’s accuracy in finding the closest node is unique for a distributed algorithm,
however, the repeated direct measurements during search make it unfeasible for a real
world P2P algorithm. The principle of gossiping closest nodes to other nodes, however,
is sensible and has been used in simulations introduced in the next chapter.

5.10. Ono

Choffnes et al. proposed Ono [CB08], which relies on a DNS based Content Delivery
Network to create locality. In Section 2.3.3 I introduced CDNs. They typically work by
replying to DNS queries with the replica server that is latency closest to the requesting
peer. Ono creates AS level granular locality by resolving a vector of DNS names. The
entries of that vector point to CDN managed sites from Akamai and Limelight. Through-
out this section, I use the example vector, proposed in the original paper [CB08, table
2]:

DNS name CDN Description

e100.g.akamaiedge.net Akamai Air Asia (South-East Pacific)
a1921.g.akamai.net Akamai CNN.com (US news site)
a245.g.akamai.net Akamai LeMonde.com (French news site)
a20.g.akamai.net Akamai Fox News (US news site)
wdig.vo.llnwd.net Limelight ABC Streaming Video (US TV)
a1756.g.akamai.net Akamai Popular website

These entries resolve to different IP addresses, depending on the IP address or AS
location of the inquiring peer. As the CDNs returns the nearest replica server to each
client, the resolved vector will reflect a nodes position in the network similar to a fin-
gerprint. For demonstration purposes I resolved the example server from four different
German ASes in Figure 5.7.

Because larger caches may be distributed across a number of machines, Ono uses
/24 address blocks, just like Address Prefixes (APs) in IDMaps. The algorithm runs

65

5. Proximity Enhancement Research

e100.g.akamaiedge.net a1921.g.akamai.net a245.g.akamai.net a20.g.akamai.net wdig.vo.llnwd.net a1756.g.akamai.net

AS 31334 - KABELDEUTSCHLAND-AS Kabel Deutschland Breitband Service GmbH

95.100.64 92.123.72 92.123.72 92.123.72 87.248.217 92.123.72
AS 3320 - DTAG Deutsche Telekom AG

88.221.136 195.145.147 195.145.147 195.145.147 87.248.217 195.145.147
AS 24940 - HETZNER-AS Hetzner Online AG RZ

95.100.128 92.123.72 92.123.72 92.123.72 87.248.217 92.123.72
AS 12816 - MWN-AS Leibniz-Rechenzentrum Muenchen

184.85.144 212.201.100 212.201.100 212.201.100 87.248.217 212.201.100

Figure 5.7.: An example Ono vector resolved in four different AS.

periodically, remembering each result vector. From this data it computes a ratio map \mu \alpha ,
which reflects the ratio of how often a hostname \alpha resolves to particular replica rn. E. g.

\mu e100.g.akamaiedge.net = \langle (95.100.64,\bfzero .\bfone), (88.221.136,\bfzero .\bfnine)\rangle

represents a peer that was directed to the IP 88.221.136 when resolving the address
e100.g.akamaiedge.net in 9 of 10 algorithm runs.

The actual peer selection works by assuming that peers that receive similar results
from the CDN have a low mutual RTT, e. g. they might be in the network of the same
Internet service provider (ISP). The similarity is computed by treating peer a’s ratio
maps as vector and computing a score between a and b using the following formula,
yielding a value of [0, 1]:

cos_sim(a, b) =

\sum
i\in Ia(\mu a,i \cdot \mu b,i)\sqrt{} \sum

i\in Ia \mu
2
a,i \cdot

\sum
i\in Ib \mu

2
b,i

Where I\alpha is the set of replica servers peer \alpha has been redirected to. If the result is
above a certain threshold (currently 0.15) Ono prefers these peers. The result does not
express a real distance, Ono uses implicit distance estimations.

Returning to the previous example I assume to be in the algorithm’s first round, for
the sake of clarity. I. e. each ratio map contains only one tuple with 100% redirection to
the sole replica. Therefore the respective scores from the peer in AS 31334 are:

AS Ono score

AS 3320 - DTAG Deutsche Telekom AG 0.167
AS 24940 - HETZNER-AS Hetzner Online AG RZ 0.640
AS 12816 - MWN-AS Leibniz-Rechenzentrum Muenchen 0.167

66

5.11. Sequoia

Hence the peer from AS 24940 is recommended. Ono is implemented as a plug-in
for Vuze (cf. Section 3.4) with 1,316,388 installations since 2008. The authors found that
using their technique 30 % of all recommendations lie in the same AS. They conclude
that Ono’s mission to reduce AS hops is accomplished.

Ono’s functionality is similar to GNP, but replaces the RTT measurements to the
landmark servers with the CDN queries.

5.11. Sequoia

The Sequoia tree approach by Ramasubramanian [RMK+09] uses the Internet’s hierar-
chical organisation, to represent it in a hierarchical data structure. The algorithm maps
end nodes on the Internet in a hierarchical tree like structure. No intermediate nodes
are represented, yet they are replaced by "virtual routers" that are pure virtual entities.
The path from the (measuring) root node to a leaf sums up, by the edge weight of each
virtual router along the way. The actual latency is the sum of the complete path.

In a P2P network it is impractical for each peer to create that path. Furthermore the
strong server centric focus of this project hampers adoption for a distributed system.
Nevertheless the study’s focus on hierarchical data structures deserves attention in
this thesis. The authors used a 4PC-\epsilon measure, which quantifies a given structure’s
resemblance of a tree metric on a [0, 1] scale. They studied several different latency
data sets on their embed ability. Their results indicate, that the Internet’s hierarchical
structure can indeed be represented by a hierarchical structure.

5.12. ISP assisted Oracle services

All previously introduced solutions focus on deducing topology information about a
node’s home and adjacent networks. One of the most obvious solutions, relying on ISP
provided information is more complex than it seems initially.

As mentioned in Chapter 2 with the expansion and rise of commercial providers,
topology information is considered a business secret. Therefore ISPs are in a stalemate
position. They have strong incentives to keep traffic local inside their AS, to avoid
traffic costs. However, they will not provide peering and topology information to their
customers, for them to optimize their requests. Quite the contrary, the Internet provider
Comcast shaped the traffic of their customers to save bandwidth in 2004 (cf. Section 2.3.6).

A possible solution to this dilemma is to let the ISP influence the peer selection process,
while still leaving their customers in control. Two possible solutions will be introduced
in the following.

67

5. Proximity Enhancement Research

5.12.1. Oracle

Aggarwal et al. [AFS07] introduce the idea of an oracle that pursues a similar goal as Ono.
Instead of relying on a CDN, the oracle is an ISP-operated recommendation server. The
server is provided with a list of candidate nodes, which the server will return sorted to
the client. The available sorting options differ depending on the target nodes’ locations.
If the destination is outside of the home AS, the list may be sorted based on number of
hops between the source and destination autonomous systems or the distance according
to interior gateway protocol weights.

If the destinations are inside the own AS, the ISP has more information about the can-
didate peers, hence the recommendations may be sorted by the geographic information,
which may resolve to city or even point of presence (PoP) level. The ISP is also aware of
performance levels, hence the list may be sorted using performance information, such
as delay or bandwidth. Finally the infrastructure of the provider provides information
about link congestion or router queues. Using the Oracle’s reply, a client can select the
best peer, without measuring manually.

Figure 5.8.: A simulated Gnutella network. Left: No proximity enhancements. Right: En-
hanced by the Oracle service [AFS07].

In Figure 5.8 the authors illustrate the difference between an optimized Gnutella
network in Figure 5.8(b) and an unoptimized Figure 5.8(a). As one would expect, the
unoptimized Gnutella network resembles chaos. The optimized network is the result of
Aggarwal’s algorithm, simulated in SSFNet. As each Gnutella client connects only to
ISP recommended clients, only local connections exist. Clearly, the network reflects the
underlying AS structure, which explains the perfect structure, the image on the right

68

5.13. Network Coordinates based on Matrix Factorization

exposes. While initially an optimization for the Gnutella network, the system is flexible
and can serve clients when selecting CDNs [PFA+10].

One possible critic of the approach is a potential violation of the principle of "Net
neutrality" [Cro07]. An ISP could sort the candidate nodes list biased by its economic
interest. He could e. g. prefer nodes with a slower, but cheaper access link. A far worse
problem is the users need to disclose information to a untrusted third party.

5.12.2. Proactive Provider Assistance for P2P (P4P)

A closely related solution is the P4P approach of Haiyong Xie et al. [XYK+08]. The
system is designed with a focus on both side’s privacy. The key observation of their
system is a reluctance on both the users and the ISP’s side to disclose information. P4P
provides an interface between networks and applications for exchanging:

\bullet static network policy

\bullet P4P distances

\bullet network capabilities

P4P lays a strong focus on privacy. Therefore the system never communicates factual
data. All information exchange centers around pDistances, which describe the current
costs an application, or the network experiences during a communication. These costs
may reflect OSPF ranked distances, bandwidth or routing constraints. The iTracker is the
communication endpoint between both ISP and application. In contrast to the Oracle, an
iTracker is designed to communicate with other externally managed iTracker instances.
Therefore multiple iTrackers from different ISPs can optimize their traffic flows jointly.
The P4P authors consider the Oracle as a subset of their broader and more generic
solution.

5.12.3. Application-Layer Traffic Optimization (ALTO)

Both approaches of Internet service provider assisted optimizations, are currently under
review by the Internet Engineering Task Force (IETF). Since 2008 a task force is working
on the standardization of traffic localization techniques as the ALTO system [SKS09;
SNS+10].

5.13. Network Coordinates based on Matrix Factorization

Another method to predict network distances are matrix factorization algorithms, also
called dot-product based NC system. The key idea is to represent the N\times N distance matrix
L using a combination of smaller matrices L = XY T . This technique is based on linear
dependencies in parts of the matrix L. These dependencies exists because nodes i, j from

69

5. Proximity Enhancement Research

the same AS will most likely share RTTs to other nodes. Therefore rows Li and Lj will
be linear dependent from each other. With this property at hand the rank(L) function
is much smaller and the matrix can be expressed as a product of smaller matrices. All
dot based NC system assign two coordinates to a node. For each node i their incoming
and outgoing vectors \vec{}Xi, \vec{}Y

T
i \in X,Y T represent a coordinate pair. This reduces the

computation of the distance between i and j to

d(i, j) = \vec{}Xi
\vec{}Yj =

d\sum
k=1

\vec{}Xik \cdot \vec{}Yjk

The advantages of the dot based approach are twofold compared to Euclidean ap-
proaches. A separation into incoming and outgoing vectors allows the explicit represen-
tation of asymmetric links. An Euclidean coordinate represents only one point in the
virtual space. Furthermore, the system can handle violations of the triangle inequality
because of the absence of Euclidean geometry’s constraints.

Currently there are a couple of dot based NC systems. The first practical solution
was IDES [MSS06]. To compute X,Y T the system uses a fixed set of m landmark server.
Ordinary hosts compute these vectors as well when joining the system. In IDES they
need to measure mutual RTT distances Dout and Din to each landmark server and
retrieve each landmark’s outgoing vector \vec{}Y T . Based on \vec{}Y T they compute their own
vector pair. As an optimization, ordinary hosts can measure to a subset of the landmark
servers and draw information from their vectors. The overall results of the system are
close to the results from Euclidean solutions. However, they are not able to match their
quality completely.

In [CWS+09] Chen et al. proposed Phoenix, an optimization of IDES. The operation of
IDES was relaxed with respect to the information and landmarks servers. In Phoenix,
a set of k nodes, called the early nodes substitute the landmark servers. To avoid local
solutions k needs to be larger that the coordinates dimension d. Each node joining a
system with n < k nodes is elected an early node. These nodes need carry out the IDES
algorithm to compute their set of vectors and substitute the information server. Normal
nodes will use them instead of IDES fixed infrastructure. The second optimization is a
concept already used in Vivaldi network coordinate systems, a measure of a node’s local
error. In simulation based studies the authors claim to match performance of Dabek’s
Vivaldi.

70

6. The Hierarchical Vivaldi Algorithm

This chapter introduces a novel concept of using a hierarchy of subspaces to cope
with the unavoidable embedding errors, such as the principal inability of the metric
space to reflect triangle inequality violations. A key observation of the Hierarchical
Vivaldi algorithm is that the embedding errors between a node and each of its neighbors
provide additional information that is itself embeddable: In a similar way that latencies
define the position of a node in a coordinate system, which we use to predict distances,
embedding errors define a position in a "displacement space", which can be used to
adapt a node’s latency prediction for additional accuracy. The following chapter shows
how to construct a hierarchy that embeds both the measured latencies and the respective
displacements. Based on such a hierarchy, I propose an algorithm based on Vivaldi, to
apply this technique to detect the embedding quality of a given network coordinate.

6.1. Overview

A pure Euclidean space cannot map data that violates the triangle inequality as Sec-
tion 5.5 of this thesis shows. I already illustrated the negative impact of TIVs on the
performance of network coordinate systems. Increasing the dimensionality of the co-
ordinate space does not improve the embedding quality. Using simulations of several
Vivaldi variants with up to 32 dimensions in Section 7.4, I demonstrate that the quality
of the embedding even degrades when using more than 10 dimensions. However, actual
data collected from the Internet shows that violations of the triangle inequality are
very common. 70 percent of all data sets in Figure 5.4 are flawed with single hop TIVs.
The same applies for the multi hop analysis. Especially the data set provided by the
Meridian authors is affected by one hop violations. The King-Blog data is notably flawed
with multi hop TIVs. Hence, all Vivaldi variants that have been proposed so far face a
fundamental problem.

To overcome this problem, I evaluated other non-metric spaces and found a pseudo-
Euclidean space as the most promising candidate. That space is both robust and compat-
ible to the concept of Vivaldi. Let me first define the pseudo-Euclidean space [Lau04]:

Definition 1. A pseudo-Euclidean space E is a real linear vector space equipped with a
non-degenerate, indefinite, symmetric bilinear function \langle ., .\rangle , called inner product. A pseudo-
Euclidean space can be interpreted as composed from two Euclidean subspaces, i.e. E+ of
dimensionality p and E - of dimensionality q such that E = E+ \oplus E - . The inner product is
positive definite on E+ and negative definite on E - . E is characterized by the signature (p, q).

71

6. The Hierarchical Vivaldi Algorithm

The inner product between two vectors x and y reads:

\langle ., .\rangle =
p\sum

i=1

xiyi -
p+q\sum

i=p+1

xiyi

For q = 0 that space is the normal Euclidean space.

However, instead of applying yet another metric, the algorithm uses only one facet
of pseudo-Euclidean spaces: Multiple spaces. In Hierarchical Vivaldi I use multiple
spaces, to reflect the misplacements of a coordinate, in contrast to a perfect embedding.
In particular, I split a pseudo-Euclidean space into two parts, one with positive and
one with negative definite metric. The full space embeds the measured RTTs of all
nodes. Each part recursively embeds a subset of these nodes. Applying this procedure
recursively leads to a perfect embedding of each node, because each displacement is
repeatedly embedded, hence adjusted, in the subspace hierarchy. By combining all
subspaces I obtain an interval for each predicted pairwise RTT. The spread of that
interval corresponds to the prediction quality for the respective node pair.

In the following sections, I formalize that algorithm.

6.2. Embedding Process

For the sake of clarity I start with an embedding of pairwise latency matrix data into
an Euclidean space E0. The embedding of a single measurement lij updating a node’s
coordinate is analogous, and is explained after the principal embedding process is clear.
Let L \in \BbbR n\times n be the matrix of the measured latencies between the nodes. Let D0 \in \BbbR n\times n

be the matrix containing the distances between the nodes, as computed by the Vivaldi
embedding algorithm. Let \Delta 0 \in \BbbR n\times n be the error matrix as defined by the following
equation:

L = D0 +\Delta 0

In other words L is identical to D0 after applying corrections in \Delta 0. Ideally \Delta 0 \equiv 0,
which would represent a perfect embedding. The original Vivaldi algorithm cannot
yield this result in practice, because e. g. its input data violates the triangle inequality.

Usually \Delta 0 is a dense matrix with both positive and negative values because Vivaldi
placed some nodes too close, others too far apart. To reflect these different errors, the
proposed algorithm splits \Delta 0 into two independent matrices, one containing the positive
components, the other the negative ones:

\Delta 0 = - M0 + P0

72

6.2. Embedding Process

L
φ0

Embedding

in R0 D0

Subtration

L−D0 ∆0

πm

πp

M0 φ1

Embedding

in R1

P0
φ4

Embedding

in R4

D1

Subtration

M0 −D1

D4

Subtration

P0 −D4

∆1

πp

πm

∆4

πp

πm M1

P1

M4

P4

φ2

Embedding

in R2

φ3

Embedding

in R3

φ5

Embedding

in R5

φ6

Embedding

in R6 D6

D3

D5

D2

Figure 6.1.: Construction of Hierarchical Embedding Tmax = 2.

Formally, two functions \pi m, \pi p : \BbbR n\times n \rightarrow \BbbR n\times n that operate on a matrix A = (aij) \in
\BbbR n\times n implement that splitting process. I define mij \in \pi m(A) and pij \in \pi p(A) as

mij :=

\Biggl\{
 - aij , if aij < 0

0, else
pij :=

\Biggl\{
aij , if aij > 0

0, else.

After the splitting operation, both M0 and P0 only contain non-negative components.
Now one can apply the Vivaldi algorithm again, to obtain an embedding for the latency
deltas in M0 and P0. This results in a second order decomposition:

M0 = D1 +\Delta 1

P0 = D2 +\Delta 2

Here, D1 and D2 contain the distances as predicted by the embedding. \Delta 1 and \Delta 2 are
the respective embedding errors.
D1,2 and \Delta 1,2 are sparser than D0 and \Delta 0, because each node pair is reflected either in

D1 or in D2, but not in both. Nevertheless, a node is likely to have neighbors such that
their RTTs are spread over the D1,2 embeddings.

Combining our results so far, we have fractionalized L into:

L = D0 - (D1 +\Delta 1) + (D2 +\Delta 2)

Every \Delta n matrix can be decomposed further, until the desired depth of recursion is
reached. The recursion ends naturally when a Di embeds only so few latency values
that the embedding becomes perfect.

The following definition summarizes this idea and provides the sketch for an algo-
rithm:

Definition 2. Let L \in \BbbR n\times n be a matrix of pairwise latency data. Let Tmax \in \BbbN be the
maximum depth of the hierarchy and \eta = 2Tmax+1 - 1, its number of elements. Let \scrB be a

73

6. The Hierarchical Vivaldi Algorithm

complete binary tree of depth Tmax with i = 0...\eta that shall be traversed in pre-order. Let
\wp 0, \wp 1, . . . , \wp \eta be embeddings with \wp i = (\phi i, Ri, di) for 0 \leq i < \eta .

\wp 0, \wp 1, . . . , \wp \eta is called hierarchical embedding of L at level Tmax, if \wp i meets the following
conditions:

1. Each embedding \wp i is tied to the ith node in \scrB and has exactly one left and one right
successor, unless it is a leaf node.

2. The first embedding (\phi 0, R0, d0) is based on the latency matrix L.

3. If \wp j is the left successor of \wp i, \wp j is based on \pi m(Li - Di)

4. If \wp j is the right successor of \wp i, \wp j is based on \pi p(Li - Di)

On an actual node that runs the Hierarchical Vivaldi algorithm, a single latency lij \in L

is embedded using that hierarchy. Hence, the unmodified Vivaldi or Pyxida algorithm
produces the predicted latency dij \in D0 and lij - dij produces the displacement \Delta ij

0 \in \Delta 0.
Depending on the positiveness or negativeness of \Delta ij

0 a distance in D1 or D\eta /2+1 is
predicted. Algorithm 4 shows this modified Vivaldi algorithm in pseudo code. In
contrast to the original Vivaldi algorithm it operates on a set of \eta -sized vectors for
coordinates and parameters. The algorithm initially applies the standard Vivaldi (or
Pyxida) algorithm to the current coordinate xn if the latency l is valid in line 5. After
the coordinate update, it descends further into the hierarchy, and calls itself recursively
with the coordinate displacement of the current subspace. The algorithm descends only
either the positive or negative subspace with that displacement, otherwise it is called
with a value of 0, which has no effect.

It is crucial to understand that not all the \wp i embed all the latency pairs. Each latency
pair is embedded only in the spaces along a path through the embedding hierarchy. The
reason is that by splitting \Delta i into a positive and a negative part, the Di become more
and more sparse. A negative latency delta is considered when embedding Mi, only. It is
excluded from the embedding of Pi, and vice versa.

Figure 6.1 illustrates the process: Consider a peer (local node) and a set of candidate
peers (remote nodes), which are a subset of all other peers in the system. Based on
its coordinate and the coordinates of the remote nodes, the local node calculates an
embedding \wp 0. For each remote node, the difference between the measured RTT and
the distance derived from this embedding determines the further path along which
this remote node’s latency is embedded. As a result, in each step down the hierarchy
there are less remote nodes to embed, and hence the embedding is more and more able
to match the input. Finally, if there were only three remote nodes left, the embedding
would be perfect (assuming a 2+1 dimensional space).

74

6.3. Embedding Error Prediction

6.3. Embedding Error Prediction

The algorithm, as described so far, cannot predict latencies from two random coordinates,
because only the actually measured latency between two nodes determines the path
through the embedding hierarchy. Without that path, comparing two sets of coordinates
is not meaningful. Algorithm 4 illustrates that point. In line 3 the latency between two
nodes is assigned to variable l. In the hierarchy’s lowest order subspace \wp 0 l is the actual
latency between i and j. Otherwise it is the displacement, which is embedded instead
of the latency in spaces \wp n with n > 0. Based on the displacement between l and dt the
algorithm either calls itself recursively with the overestimation m in line 12 or with the
positive under estimation p in line 16. Hence, the round trip time determines the path of
the algorithm. Therefore, it seems like the algorithm can only be applied to peers that
already know their mutual latencies. Nevertheless, the embedding hierarchy helps all
peers to optimize their peer selection process. The algorithm idea is as follows.

Every time two nodes are in direct contact, they measure their RTT. With this mea-
sured value and their coordinates they are able to perform the described hierarchical
embedding algorithm. Thereby, both nodes adjust Tmax+1 of their \eta embedding vectors
using the Vivaldi algorithm.

Figure 6.2.: Illustration of the error estimation process.

Assume now two nodes A and B that did not yet have direct contact. They cannot
use the embedding hierarchy to compute their predicted mutual latency, because such a
calculation is performed along a path in the embedding hierarchy, and determining that
path requires an actual latency measurement. Both nodes can, however, calculate the
latencies for all the 2Tmax possible paths (cf. Figure 6.2). Only one of these calculated
latencies is correct in the sense that it is the value that the hierarchical embedding would
produce if it had been given an actual latency measurement between A and B. Hence,
the interval, of all possible predictions in an important characteristic:

75

6. The Hierarchical Vivaldi Algorithm

A

B

A

B

Figure 6.3.: The Peer selection process. Left A’s well determined, Right: B’s well determined
peers.

If the original Vivaldi embedding \wp 0 in R0 is good, the error interval is small and the
peer selection process can trust the prediction. Otherwise, the respective peer might only
erroneously appear to be a good candidate. Thus, the hierarchical embedding algorithm
can predict an interval for the latency. Thereby, it can rate Vivaldi’s latency predictions
by a margin of error.

Algorithm 5 describes the computation of the margin of error in pseudo-code. The
resulting interval [dmin, dmax] gives us a simple quality measure. The error estimator ee is
the relative size of the error interval:

ee =

\Biggl\{
(dmax - dmin)/d0 if d0 \not = 0

1 otherwise

where d0 is the latency predicted by 0th embedding.

6.4. Peer Selection Process

The peer selection process can use the error estimator ee to classify a peer’s neighbor
candidate. When a peer needs to establish a new overlay connection, it considers
preferably its neighbor candidates with a low ee value only.

It is important to understand that this classification is local to each individual peer.
Not all nodes in the network classify their potential neighbors equally. Thus, it is very
unlikely that a peer is despised by all other peers. Figure 6.3 illustrates this effect. Node
A classifies different nodes as well determined than node B.

76

6.4. Peer Selection Process

Algorithm 4: Hierarchical Vivaldi Algorithm.
Input:
lij : measured RTT between node vi and vj
\vec{}X = \{ \vec{}x0, . . . , \vec{}x\eta - 1\} : Local coordinate vector
\vec{}Y = \{ \vec{}y0, . . . , \vec{}y\eta - 1\} : Remote coordinate vector
\vec{}\Sigma , \vec{}Z: local, remote error vector
\vec{}P , \vec{}\Theta : constant vector for cc, ce
n: current embedding space number
l: to be embedded rest latency in Rn

t: distance to the trees root
dt: estimated latency at depth t
m, p: entry in M , P

Constants:
Tmax: max depth of embedding

Output:
Updated X,\Sigma

function hierarchicalVivaldi(lij , t, n)1

begin2

l\leftarrow lij3

if l > 0 then4

(\vec{}xn, \sigma n)\leftarrow vivaldi(l, \vec{}xn, \vec{}yn, \sigma n, \zeta n, \theta n, \rho n)5

t\leftarrow t+ 16

if t \leq Tmax then7

dt \leftarrow \| \vec{}xn - \vec{}yn\| 8

m\leftarrow - (l - dt)9

if m < 0 then10

m\leftarrow 011

n\leftarrow hierarchicalVivaldi(m, t, n+ 1)12

p\leftarrow (l - dt)13

if p < 0 then14

p\leftarrow 015

n\leftarrow hierarchicalVivaldi(p, t, n+ 1)16

return n17

end18

77

6. The Hierarchical Vivaldi Algorithm

Algorithm 5: Computation of the error window.
Input:

Tmax: max depth of embedding
X = \{ \vec{}x0, . . . , \vec{}x\eta - 1\} : Local coordinate vector
Y = \{ \vec{}y0, . . . , \vec{}y\eta - 1\} : Remote coordinate vector

Constants:
Tmax: max depth of embedding

Output:
dmin, dmax: RTTs lower, upper bound

Variables:
n: current embedding space number
t: distance to the trees root
m, p: entry in M , P
dn: distance in Rn

du: distance in Rn’s parent space
flpSgn: flip signedness

function getMinMaxDistance(t, du, f lpSgn)1
begin2

t\leftarrow t+ 13
if t \leq Tmax then4

n\leftarrow n+ 15
dn \leftarrow \| \vec{}xn - \vec{}yn\| 6
if flpSgn then7

getMinMaxDistance(t, du + dn, false)8
else9

getMinMaxDistance(t, du - dn, true)10

n\leftarrow n+ 111
dn \leftarrow \| \vec{}xn - \vec{}yn\| 12
if flpSgn then13

getMinMaxDistance(t, du - dn, true)14
else15

getMinMaxDistance(t, du + dn, false)16

else17
dmin \leftarrow \mathrm{m}\mathrm{i}\mathrm{n} \{ du, dmin\} 18
dmax \leftarrow \mathrm{m}\mathrm{a}\mathrm{x} \{ du, dmax\} 19

return (dmax - dmin)20

end21

ew = getMinMaxDistance(0, \| x0 - y0\| , false)22

78

7. Vivaldi Simulations

The previous chapters introduced the necessity of proximity optimizations, their applica-
tions and the proposed solutions. I proposed the Hierarchical Vivaldi algorithm, which
promises to be an improvement over existing solutions. This chapter presents the results
from simulations of both Vivaldi and Pyxida, which serve as the basis of my thesis.
Furthermore, it evaluates my proposed Hierarchical Vivaldi, the major contribution of
my thesis in simulations.

I created a packet level simulator that uses latency matrices to create an overlay
between peers running the Vivaldi algorithm. The simulator’s topology information
is based upon several latency matrices from other research institutions and captured
latency data recorded during my own studies on PlanetLab. Using these simulations, I
developed a sound understanding of the functionality of Vivaldi.

Initially, I investigated the tuning of the Vivaldi variants. Both Pyxida and the original
Vivaldi algorithm offer several adjustable parameters. Their complex interaction offers
various possibilities to fine tune the algorithm. Based on that analysis I proposed
parameter choices in [EFF09] that can improve the algorithms’ performance significantly.

Furthermore, I simulated the impact of the neighborhood on the peers‘ ability to gain
an accurate embedding. I experimented with random, optimized and Meridian style
neighborhoods.

In the last section I simulated the Hierarchical Vivaldi algorithm. I found that the
algorithm reliably detects erroneous coordinates, which leads to a significantly improved
peer selection process and much better prediction quality. The simulated environment
allowed me to compare the resulting overlay topology to the achievable global optimum.
The algorithm misses that optimum only by a few percent. So, it outperforms the
previous Vivaldi algorithms by almost an order of magnitude.

7.1. Evaluation Methodology

In order to judge the effect of the existing and proposed Vivaldi algorithms quantitatively,
I use a number of indicators throughout the following chapters. To keep the results in the
context of existing publications, four of the five measures are from network coordinate
literature [PLS05; LGS07; DCKM04]. Only the fifth measure, candidate rank is a variant
of its direct predecessor, the RALP value, which captures RALP’s information in an
improved visual fashion.

79

7. Vivaldi Simulations

1. Relative embedding error The relative embedding error [LGS07] between a node i

and a node j is defined as the quotient

REEi,j =
| \| xi - xj\| - lij |

lij
(7.1)

where lij is the actual RTT between both nodes and \| xi - xj\| is their estimated RTT
based on the coordinates xi,j .

Furthermore, [LGS07] defines the relative embedding error of the entire system as the
quotient

REE =
1

n2

\sum
i,j\leq n

| \| xi - xj\| - lij |
lij

(7.2)

This indicator is sensitive to large deviations. Small values indicate only few high-error
prone nodes. The n2 part adjusts the result, as every node is counted multiple times.

2. Median error of an embedding The error of a node pair (vi, vj) is the absolute
displacement between the predicted RTT | xi - xj | and the actual RTT lij . The error of a
node vi is the median of all errors of node pairs (vi, vj). The error of the system is the
median of all node errors in the system [DCKM04].

3. Stability Stability [LGS07] is the change of a node’s coordinates if the other node’s
RTT stays constant. Stable coordinates are yet another indicator of the embedding quality.
They express in particular the utility of cached coordinates. Unstable coordinates are of
limited value to other nodes, as they change fast. Recommendations that are based on
highly instable coordinates are to lead to wrong decisions and are thus worthless. As
most P2P systems include some kind of gossip protocol to exchange — today increasingly
proximity based — recommendations, high instable coordinates will lead to wrong
decisions and thus render the proximity features worthless.

stability =

\sum
i\Delta xi
\Delta t

(7.3)

Here \Delta xi is the drift of xi in the time period \Delta t. In the following simulations, \Delta t is
usually set to 2 seconds for simulations of up to 500 seconds, otherwise it is set to 40
seconds.

4. Relative Application-Level Penalty The Relative Application-Level Penalty (RALP)
[PLS05] is defined as follows:

RALP =
1

n
\cdot
\sum
i\leq n

| vi - pi|
pi

, (7.4)

80

7.1. Evaluation Methodology

Figure 7.1.: The computations by the Relative AppLication Penalty measure.

Choffnes et al. [CB09] describe it as the penalty that a node experiences when it chooses a
peer based on network coordinates, as compared to the perfect choice that an omniscient
oracle could recommend based on actual RTTs. Let \vec{}P = (p1, p2, ..., pn) be a sorted list of
RTTs between peer i and n other peers, cf. Figure 7.1. Furthermore, let \vec{}V = \pi (\vec{}P) with
permutation \pi be the same list as \vec{}P , but sorted based on the predicted RTTs between the
peer and the recommended peers. In other words \vec{}V contains the actual RTTs between the
peer and its recommendations, but it is sorted based on the RTT prediction. Figure 7.1
illustrates the different sorting orders. On the left, is the list of measured RTTs \vec{}P , in the
middle the list of predicted RTTs sorted by the predicted value. Arrows indicate the RTT’s
position in that second list. E. g. p3, which has a value of 46ms is wrongly predicted as a
12 ms distance. The predicted list, resolved to the actual RTT (\vec{}V) is on the right, written
in bold, along with the actual computation. The misalignment of \vec{}P and \vec{}V is what RALP
expresses. A value of RALP = 0 indicates that the network coordinates predict the next
n neighbors perfectly.

RALP captures the impact an algorithm has on the peer selection process. In contrast
to other measures it focuses on the actual outcome of a decision. It judges an algorithm’s
capability to sort nodes based on their predicted RTT. This is also the main focus of any
peer selection process, which needs to pick the nearest n peers out of k recommended
ones. The relative error of the coordinate is at that point secondary.

A valuable property of RALP is its focus on low latency errors. I computed RALP
values from the King-Blog data in Figure 7.2. I started with a perfect prediction vector
\vec{}V : \forall i : vi = pi, which was increasingly disordered. The x axis indicates how many
percent of \vec{}V are disarranged. I took two approaches, represented by a solid and a dashed
line in the figure: In the first case, I reordered an increasing part of the low-RTT region
of the list: v1 to vk with increasing k, in the second case I reordered the high-RTT region
from vn to vk with decreasing k. Figure 7.2 confirms that the RALP indicator is much
more sensitive to errors in the low-RTT region. It responds almost immediately to small
errors and is constantly higher, compared to errors in the high-RTT-range.

In the following chapters, the RALP value for a peer i was calculated using n = 32

nodes out of 100 randomly chosen nodes that are not in the neighborhood of i. Unless

81

7. Vivaldi Simulations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100

R
A

L
P

% of RTTs shuffled

King-Blog Data 1798 Nodes
starting with small RTTs

starting with big RTTs

Figure 7.2.: The impact of small and high errors on the RALP indicator.

otherwise noted, all figures show the median of the RALP values for all peers. It is easy
to calculate the RALP in the static case because one can extract the RTT values directly
from the simulator. In the dynamic case, the latency to all peers needs to be measured,
which produces considerable overhead.

5. Candidate Rank Another statistical measure closely related to RALP is the candi-
date rank (cr). It captures the average RTT overhead of a peer when it connects to the k

best ranked candidates v1 to vk. If a peer fails to find its globally optimal peer p0 within
a reasonable sized recommendation list, the candidate rank expresses its average RTT
overhead when it just connects to the e. g. five best ranked candidates.

cr = \{ a0, \cdot \cdot \cdot , ak\} ; aj =
j\sum

i=0

(pi - vi)/j (7.5)

7.2. Data sets

The simulations in my thesis use both static and dynamic data. Static data is usually
described by a latency matrix that represents a snapshot of the measured round trip
times or a median of RTTs over a period of time. Dynamic data are the measurements of
a fully interconnected mesh of nodes over time. Therefore, the trace file includes real
fluctuations in latencies or eventual routing disruptions. Static data sets are smaller than
dynamic ones, as they contain only a single latency for a node pair. They are usually
captured using a standard method known as the "King" method.

The "King method" is an established procedure, introduced by Gummandi et al. in
[GSG02], initially proposed to predict latency between peers. The method is based on
the observation that the latency of two peers vi, vj is correlated to the latency between

82

7.2. Data sets

Azureus MIT King King−Blog Dynamic PlanetLab

0

100

200

300

400

500

R
T

T
 [m

s]

Figure 7.3.: RTT distribution in all data sets.

their closest DNS servers i and j. While King’s latency prediction has been superseded
by algorithms such as Vivaldi or BBS, the method is capable of collecting latency data
between arbitrary DNS servers, a highly popular feature among researchers. King uses
recursive queries to deduce these latencies: Initially a query in the authoritative domain
of j is issued to node i using a standard DNS resolver from a client node. Unable to give
an authoritative answer, i will forward the query to j. Hence, the desired latency lij is
the time between sending and receiving an answer from i minus the latency between
the client and i, which is measured in a second step. Of course these measurements are
repeated to avoid fluctuations and resolve random subdomains to prevent caching of
replies at node i.

The data sets are:

\bullet Azureus-to-PlanetLab is the trace from Ledlie et al. [LGS07]. During the develop-
ment of Pyxida’s maturing plug-in, 249 fully meshed PlanetLab nodes supported
the existing end user client installations. The trace yields a 249\times 249 full rank RTT
matrix and is available at [AZ].

\bullet MIT King is the data set of Dabek et al. used to derive the original Vivaldi algo-
rithm [CDK+03]. It is based on measurements with the King technique among 1740
DNS servers available from [MK0]. Notably, although DNS servers are usually
well connected, MIT King is the data set with the highest median RTT cf. Figure 7.3
and variance.

\bullet King-Blog is a data set similar to the MIT King data. It was extracted from 2500
DNS servers [Sys06]. With a median RTT of 66 ms it is the data set with the lowest
median latency in the simulation cf. Figure 7.3.

83

7. Vivaldi Simulations

\bullet Dynamic PlanetLab Dataset is a dynamic trace of 13,4 million single measure-
ments between 83 fully interconnected PlanetLab nodes, which I collected between
March 6 and 9, 2009 using the IGOR KBR overlay.

The Dynamic PlanetLab data set, which I captured in 2009 allows a simulation that
reflects the dynamics of a real network. For example, Figure 2.3 on page 10 shows a
latency collapse from 100 to 300 ms, which was captured in the dynamic trace. In the
time from the 6th to 7th. of March 2009. The trace represents a full mesh, whereas
subsequent measurements did not reach full rank. Therefore, I focus on that time period.
Figure 7.4 analyzes the trace data: For most node pairs at least 2000 measurements are
contained in the trace, cf. Figure 7.4 top left. The top right side of the figure shows the
number of node pairs with at least one measurement. 6806 measurements per hour are
necessary to refresh the whole mesh once per hour. The data set therefore refreshes
about 95% of all node pairs in one hour. At the bottom, the figure on the left sums up
the number of measurements per node, which is typically between 150.000 to 180.000.
Finally the bottom right figure shows the RTT distribution of node pairs.

7.3. Simulator

Chapter 4 introduced the various simulation solutions available in the IGOR ecosys-
tem. In order to evaluate the different Vivaldi variants, IGOR offers ready made and
throughly tested implementations. However, to evaluate both static latency matrices and
dynamic RTT traces a compiled language is suboptimal compared to comfortable data
manipulation functions offered by dynamic languages. Furthermore, the simulation of
a TCP stack and the underlying routing using the OMNeT++ framework is costly and
hampers the simulation of huge networks.

Therefore, I built a simulator that is flexible in input formats, offers a simulation queue
and re-uses IGOR’s Vivaldi implementation. The simulator is able to add jitter to the
static latencies in order to simulate small fluctuations common in real networks. Even the
simulation of bigger routing disruptions is possible because the user is able to provide an
updated latency matrix at any point in the simulation. The method of deriving a Vivaldi
simulation from a static matrix of pairwise RTTs was introduced by Cox et al. [CDK+03].
In [EFF09] we extended their design to allow a dynamic trace-based simulation.

On startup, the simulator randomly chooses a neighborhood of 32 peers for each node.
If the input data is a static latency matrix, the simulator also determines a sequence of
RTT measurements. In the dynamic case, the sequence of measurements is predefined by
the trace data. Finally, each node obtains the RTT values for all the peers in its respective
neighborhood and the main simulation loop begins.

Simulation Sequence There are two variants of how to determine the sequence of
RTT measurements in the static case: In [CDK+03] a node starts a new measurement

84

7.3. Simulator

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000

%
 o

f
n

o
d

e
 p

a
ir

s

measurements of node pairs

 0

 50000

 100000

 150000

 200000

 250000

 300000

#
 m

e
a
su

re
m

e
n

ts

RTT [ms]

%
 o

f n
od

e
pa

ir
s

1 5 10 50 100 500

1

2

5

10

20

50

100

Figure 7.4.: Analysis of the dynamic data trace: Top left: CDF of absolute measurements
between node pairs. Top right: Node pairs with measurements within a hour.
Bottom left: Absolute number of measurements per node ID. Bottom right:
CDF of RTT distribution in the data set.

85

7. Vivaldi Simulations

immediately after the previous measurement has completed (continuous adjustment,
CA). This leads to an imbalance because nodes with low RTT conduct more rounds
of the Vivaldi algorithm. Another drawback is the huge traffic overhead that those
continuous measurements cause. In order to avoid this imbalance and reduce the
overhead, I compare CA to a variant that uses predefined average time intervals for the
measurement rounds (uniform adjustment, UA). Each node measures each neighbor only
once per round. To allow each node to conduct as many measurement rounds as the
node pair with the lowest latency in a 500 seconds CA simulation, UA simulations stop
not until 20 000 seconds. A round is ten seconds long. To reflect the different adjustment
modes, the \Delta t parameter of the stability quality measure is also adapted. Continuous
adjustment sets the delta to 40 seconds while uniform adjustment sets it to 1000 seconds.

7.4. The impact of Triangle Inequality Violations

I discussed the negative impact of triangle inequality violations both in Chapter 2 and
Section 5.5. A Euclidean space cannot map non-Euclidean data. To measure that impact,
I enhanced a data set to reflect perfect metric latency data. Preprocessing the Azureus
data produced an artificial data set, where all pairwise latencies were raised so that they
did not cause a violation of the triangle inequality any more. That data set was chosen
for its smaller percentage of TIVs (\rho < 1) in Figure 5.4 (black dashed line) and for its size.
Resolving all TIVs is a computational hard task, therefore I chose a smaller data set.

Figure 7.5 compares Vivaldi’s performance facing a moderate number of TIVs (left
part) versus a TIV-stripped version (right part) of the Azureus data set. The top part
of the figure shows the chronological sequence, the bottom a CDF view at the end of
the simulation. Each figure uses the same Vivaldi configurations. I focussed on Vivaldi
embeddings in spaces of different dimensions. Comparing Vivaldi’s performance on
both the modified and the original data, the figure shows a median embedding error of
under 3% compared to 6% for each best performing simulation. The negative influence
of TIVs on network coordinate systems therefore is severe, which is also discussed in
different publications [LBL+09].

The figure reveals another notable point. The height enhancement of the Euclidean
model is able to embed TIVs. Comparing both CDF plots, the best performing configura-
tion on the left is 9D+Height, along with 4D+Height. The right side in contrast exhibits a
favor for the conventional Vivaldi variant, after removing all TIVs. This result indicates
that the height configuration scored best results in the left case for its better performance
facing TIVs. And indeed, Figure 7.6 shows the measure \rho using coordinates, gathered
from a Vivaldi embedding with negative heights. Both figures indicate that the resulting
embeddings for all static data sets do violate the triangle inequality, which is impossible
for the Euclidean embeddings produced by a non-height Vivaldi. An algorithm that is
based on an Euclidean space normally produces coordinates for which \rho > 1. Hence,
using a negative height component mitigates TIVs to a certain amount.

86

7.5. The choice of Neighbors

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500

M
e
d

ia
n

 E
rr

o
r

[m
s]

Time [s]

Vivaldi 2D
Vivaldi 5D

Vivaldi 10D
Vivaldi 20D

Vivaldi + Height 2D
Vivaldi + Height 4D
Vivaldi + Height 9D

Vivaldi + Height 19D
 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

M
e
d

ia
n

 E
rr

o
r

[m
s]

Time [s]

triangle equation violations cleared

Vivaldi 2D
Vivaldi 5D

Vivaldi 10D
Vivaldi 20D

Vivaldi + Height 2D
Vivaldi + Height 4D
Vivaldi + Height 9D

Vivaldi + Height 19D

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

%
 o

f
n

o
d

e
s

Relative Error

Vivaldi 2D
Vivaldi 5D

Vivaldi 10D
Vivaldi 20D

Vivaldi + Height 2D
Vivaldi + Height 4D
Vivaldi + Height 9D

Vivaldi + Height 19D
 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

%
 o

f
n

o
d

e
s

Relative Error

triangle equation violations cleared

Vivaldi 2D
Vivaldi 5D

Vivaldi 10D
Vivaldi 20D

Vivaldi + Height 2D
Vivaldi + Height 4D
Vivaldi + Height 9D

Vivaldi + Height 19D

Figure 7.5.: Triangle inequality violations impact on Vivaldi’s performance. Left: Azureus
data, Right: TIV-cleared Azureus data.

Finally, Figure 7.5 indicates the impact of dimensions. After an increase in perfor-
mance, the use of high dimensions does not yield better values. The best performing
configuration is a 10 dimensional Vivaldi, with or without height depends on the TIVs
of the data. Higher dimensions, even with two times higher dimensionality introduce a
notable overhead at no measurable benefit.

7.5. The choice of Neighbors

Starting with [CDK+03] PNS and PNR stress the importance of choosing latency close
neighbors in order to improve the performance of an overlay. But the opposite side, how

87

7. Vivaldi Simulations

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e
 p

e
rc

e
n

ta
g

e
 o

f
n

o
d

e
s

Indicator ρ1

Azureus−PlanetLab
MIT King
King Blog
Meridian

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e
 p

e
rc

e
n

ta
g

e
 o

f
n

o
d

e
s

Indicator ρ
∞

Azureus−PlanetLab
MIT King
King Blog
Meridian

Figure 7.6.: Single-hop (left) and multi-hop (right) violations of the triangle inequality using
negative heights.

neighbors in the overlay influence the performance of the Vivaldi algorithm itself has
never been studied.

Therefore, I conducted a simulations study, using the simulator, described earlier
in this chapter. Allowing each node to take each possible neighbor, maximizes the
flexibility of neighbor selection. Therefore, I used a static simulations, as they offer a full
rank latency matrix. Because the King-Blog data spans the largest matrix of 2500\times 2500,
I chose the latter for the simulation study. Each node had at least 32 neighbors. I define
the following scenarios, to supply each node with different neighbors:

\bullet Normal: Neighbors are assigned uniformly random, i. e. with no preference for
particular nodes. The neighborhood is static.

\bullet Normal Optimized: Similar to Normal, but removes the neighbor that provoked
the highest relative error in the most measurements during the Normal simulation.

\bullet Normal Meridian: After a standard assignment of neighbors, nodes update neigh-
bors based on recommendations, similar to Meridian closest node discovery.

\bullet RTT-Close: Uniformly random selection of neighbors out of the 250 latency closest
nodes.

\bullet RTT-Close enhanced: Similar to RTT-Close, but with the most erroneous node
removed.

\bullet RTT-Close Meridian: Starting with a subset of the 250 latency closest nodes, nodes
update neighbors based on recommendations.

\bullet Perfect: The closest nodes of each peer.

88

7.5. The choice of Neighbors

0 50 100 150 200 250 300

120

140

160

180

200

Time [s]

R
T

T
 o

ve
rh

ea
d

 [m
s]

RTT overhead [ms]
%

 o
f n

od
es

1 5 10 50 100 500

0

20

40

60

80

100

Figure 7.7.: The efficiency of a network coordinate based Meridian algorithm. Left: Median
candidate rank computed by comparing the Meridian optimized neighbor-
hoods with an omniscient oracle. Right: Distribution of candidate rank after
300 minutes.

Proximity Neighbor Selection: The simulator implements a PNS algorithm that is
based on the design of the Meridian algorithm. Upon contact from node A to node B, the
receiving node B selects a set R from its neighbors. Elements in R are chosen based on
their Vivaldi distance to A. For the simulation study | R| consists of a maximum of 4 ele-
ments. Upon receiving R, node A assures the correctness of the information using direct
latency measurements. If a recommended node is closer to A, than an existing neighbor
that existing node is removed. The algorithm resembles Meridian’s gossipping protocol,
by spreading closest node information among close peers. It replaces Meridian’s need
for direct latency measurements by a coordinate based prediction. Figure 7.7 illustrates
the achieved accuracy of the PNS algorithm. Starting with a total random neighborhood,
I compute the candidate rank each node by comparing a node’s current neighborhood
with an omniscient oracle. The left figure, illustrates that after a short initial period, the
median overhead is cut to 130 ms and finally reaches reaches a 50 % overhead cut off
below 120 ms. The cumulative distribution on the right shows the situation at the end of
the simulation: More than 200 nodes include their 32 closest neighbors within a 20 ms
overhead cf. right figure. The algorithm is stateless. A node will always recommend the
| R| closest peers, therefore it is more likely to recommend an already known node to the
receiver. Therefore, the change rate (the left part of Figure 7.7) diminishes.

During my simulations I discovered substantial differences between Vivaldi’s perfor-
mance, depending on the choice of neighbor nodes for Vivaldi. In Figure 7.8 a clear favor
for a random choice of neighbors emerges. On the left side of the figure the median rela-
tive error of a node shows that a static random neighborhood will outperform all other
variants. Even the Perfect choice, which could naïvely be considered as the best choice

89

7. Vivaldi Simulations

0 5000 10000 15000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [ms]

R
el

. E
rr

or

Perfect
RTT−Close
RTT−Close Meridian
Normal
Normal Meridian

0 5000 10000 15000

0.0

0.2

0.4

0.6

0.8

1.0

Time [ms]

R
A

L
P

Perfect
RTT−Close
RTT−Close Meridian
Normal
Normal Meridian

Figure 7.8.: Various Neighbors: Relative Error (left) and RALP (right) comparison (CA).

exhibits only mediocre results. Even after substantial run time, the algorithm shows
different behavior comparing the various neighbor set ups. The RALP measures on the
right side of the figure testify good performance for the Meridian random variant, but
still affirm a preference for random neighborhoods. Both figures affirm that a unilateral
choice of neighbors could converge to a suboptimal solution in the long run.

7.6. Vivaldi Simulation Results

In this section, I introduce the results from my extensive study on the existing Vivaldi
variants. I analyze all the proposed algorithm variants with the four data sets and
with various parameter settings. From that simulation I derive a recommended set of
parameters that allow Vivaldi to quickly find its position in the coordinate space and
react conservatively to routing disruptions.

7.6.1. Static data

The following section introduces the results from simulations using static latency matri-
ces. These static data sets allow a comparison of the different RTT probing intensities,
which I previously introduced: Continuous adjustment and uniform adjustment.

Vivaldi:

Figure 7.9 shows the error, Figure 7.10 the stability of the original Vivaldi algorithm with
continuous adjustment (CA). The figures show three static data sets and different values
for cc and ce. In accordance to Cox et al. [CDK+03] the figures indicate that smaller

90

7.6. Vivaldi Simulation Results

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

E
rr

o
r

[m
s]

Time [s]

cc=0,001 ce=0,1
cc=0,005 ce=0,1

cc=0,01 ce=0,1
cc=0,05 ce=0,1
cc=0,25 ce=0,1

cc=0,5 ce=0,1

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500
E

rr
o

r
[m

s]
Time [s]

cc=0,001 ce=0,5
cc=0,005 ce=0,5

cc=0,01 ce=0,5
cc=0,05 ce=0,5
cc=0,25 ce=0,5

cc=0,5 ce=0,5

 0

 5

 10

 15

 20

 0 100 200 300 400 500

E
rr

o
r

[m
s]

Time [s]

cc=0,001 ce=0,1
cc=0,005 ce=0,1

cc=0,01 ce=0,1
cc=0,05 ce=0,1
cc=0,25 ce=0,1

cc=0,5 ce=0,1

 0

 5

 10

 15

 20

 0 100 200 300 400 500

E
rr

o
r

[m
s]

Time [s]

cc=0,001 ce=0,5
cc=0,005 ce=0,5

cc=0,01 ce=0,5
cc=0,05 ce=0,5
cc=0,25 ce=0,5

cc=0,5 ce=0,5

 0

 5

 10

 15

 20

 0 100 200 300 400 500

E
rr

o
r

[m
s]

Time [s]

cc=0,001 ce=0,1
cc=0,005 ce=0,1

cc=0,01 ce=0,1
cc=0,05 ce=0,1
cc=0,25 ce=0,1

cc=0,5 ce=0,1

 0

 5

 10

 15

 20

 0 100 200 300 400 500

E
rr

o
r

[m
s]

Time [s]

cc=0,001 ce=0,5
cc=0,005 ce=0,5

cc=0,01 ce=0,5
cc=0,05 ce=0,5
cc=0,25 ce=0,5

cc=0,5 ce=0,5

Figure 7.9.: Median error for Vivaldi simulations using contiunous adaption. Top: Azureus
data. Middle: MIT King. Bottom: King-Blog data sets.

91

7. Vivaldi Simulations

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

cc=0,001 ce=0,1
cc=0,005 ce=0,1
cc=0,01 ce=0,1
cc=0,05 ce=0,1
cc=0,25 ce=0,1
cc=0,5 ce=0,1

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

cc=0,001 ce=0,5
cc=0,005 ce=0,5
cc=0,01 ce=0,5
cc=0,05 ce=0,5
cc=0,25 ce=0,5
cc=0,5 ce=0,5

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

cc=0,001 ce=0,1
cc=0,005 ce=0,1
cc=0,01 ce=0,1
cc=0,05 ce=0,1
cc=0,25 ce=0,1
cc=0,5 ce=0,1

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500

S
ta

b
il

it
y
 [

0
/ 0

0
]

Time [s]

cc=0,001 ce=0.5
cc=0,005 ce=0.5
cc=0,01 ce=0.5
cc=0,05 ce=0.5
cc=0,25 ce=0.5
cc=0,5 ce=0.5

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

cc=0,001 ce=0,1
cc=0,005 ce=0,1
cc=0,01 ce=0,1
cc=0,05 ce=0,1
cc=0,25 ce=0,1
cc=0,5 ce=0,1

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

cc=0,001 ce=0,5
cc=0,005 ce=0,5
cc=0,01 ce=0,5
cc=0,05 ce=0,5
cc=0,25 ce=0,5
cc=0,5 ce=0,5

Figure 7.10.: Stability for Vivaldi simulations using contiunous adaption. Top: Azureus data.
Middle: MIT King. Bottom: King-Blog data sets.

92

7.6. Vivaldi Simulation Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5000 10000 15000 20000

E
rr

o
r

[m
s]

Time [s]

cc=0,001 ce=0,1
cc=0,005 ce=0,1

cc=0,01 ce=0,1
cc=0,05 ce=0,1
cc=0,25 ce=0,1

cc=0,5 ce=0,1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5000 10000 15000 20000

E
rr

o
r

[m
s]

Time [s]

cc=0.001 ce=0.5
cc=0.005 ce=0.5

cc=0.01 ce=0.5
cc=0.05 ce=0.5
cc=0.25 ce=0.5

cc=0.5 ce=0.5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000

E
rr

o
r

[m
s]

Time [s]

cc=0.001 ce=0.1
cc=0.005 ce=0.1

cc=0.01 ce=0.1
cc=0.05 ce=0.1
cc=0.25 ce=0.1
cc=0.25 ce=0.1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000

E
rr

o
r

[m
s]

Time[s]

cc=0.001 ce=0.5
cc=0.005 ce=0.5

cc=0.01 ce=0.5
cc=0.05 ce=0.5
cc=0.25 ce=0.5

cc=0.5 ce=0.5

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000

E
rr

o
r

[m
s]

Time [s]

cc=0.001 ce=0.1
cc=0.005 ce=0.1

cc=0.01 ce=0.1
cc=0.05 ce=0.1
cc=0.25 ce=0.1

cc=0.5 ce=0.1

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000

E
rr

o
r

[m
s]

Time [s]

cc=0.001 ce=0.5
cc=0.005 ce=0.5

cc=0.01 ce=0.5
cc=0.05 ce=0.5
cc=0.25 ce=0.5

cc=0.5 ce=0.5

Figure 7.11.: Median error for Vivaldi simulations using uniform adaption. Top: Azureus
data. Middle: MIT King. Bottom: King-Blog data sets.

93

7. Vivaldi Simulations

 0

 1

 2

 3

 4

 5

 6

 7

 0 5000 10000 15000 20000

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

cc=0.001 ce=0.1
cc=0.005 ce=0.1

cc=0.01 ce=0.1
cc=0.05 ce=0.1
cc=0.25 ce=0.1

cc=0.5 ce=0.1

 0

 1

 2

 3

 4

 5

 6

 7

 0 5000 10000 15000 20000

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

cc=0.001 ce=0.5
cc=0.005 ce=0.5

cc=0.01 ce=0.5
cc=0.05 ce=0.5
cc=0.25 ce=0.5

cc=0.5 ce=0.5

 0

 1

 2

 3

 4

 5

 6

 7

 0 5000 10000 15000 20000

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

cc=0,001 ce=0,1
cc=0,005 ce=0,1

cc=0,01 ce=0,1
cc=0,05 ce=0,1
cc=0,25 ce=0,1

cc=0,5 ce=0,1

 0

 1

 2

 3

 4

 5

 6

 7

 0 5000 10000 15000 20000

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

cc=0.001 ce=0.5
cc=0.005 ce=0.5

cc=0.01 ce=0.5
cc=0.05 ce=0.5
cc=0.25 ce=0.5

cc=0.5 ce=0.5

 0

 1

 2

 3

 4

 5

 6

 7

 0 5000 10000 15000 20000

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

cc=0,001 ce=0,1
cc=0,005 ce=0,1

cc=0,01 ce=0,1
cc=0,05 ce=0,1
cc=0,25 ce=0,1

cc=0,5 ce=0,1

 0

 1

 2

 3

 4

 5

 6

 7

 0 5000 10000 15000 20000

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

cc=0.001 ce=0.5
cc=0.005 ce=0.5

cc=0.01 ce=0.5
cc=0.05 ce=0.5
cc=0.25 ce=0.5

cc=0.5 ce=0.5

Figure 7.12.: Stability for Vivaldi simulations using uniform adaption. Top: Azureus data.
Middle: MIT King. Bottom: King-Blog data sets.

94

7.6. Vivaldi Simulation Results

values for cc and ce lead to more stable coordinates. But as the analysis suggests, this
improved stability is only relevant in the initial phase: After 500 seconds, the stability of
the embedding is similar for all parameter combinations. Also adjusting parameters has
only limited impact on the achieved error. However, the static simulation is designed
with static neighborhood and only modest jitter. Therefore, choosing more conservative
parameters that quickly adapt and do not exhibit huge instabilities is a sensible choice.
Moreover, I found through the course of all simulations that ce has only little influence
on the embedding error and the stability. A conclusion that is also supported by both
figures. Finally, the diversity of the data sets becomes apparent: For example, the
stability of the upper data set (Azureus) compared to the lower data set (King-Blog)
differ in both in the absolute values and in the time when both data sets reach stability.
Five out of six simulations in King-Blog reach stability with cc = 0.1 after 100 seconds,
but the identical setup takes 200 seconds to reach that point using the Azureus data.
However, stability does not automatically include accuracy: The Azureus data, which
happens to be quite unstable, reaches the best relative error in the Vivaldi experiments.

Figure 7.11 and Figure 7.12 show the same scenario for the uniform adjustment (UA)
variant. Due to the much lower measurement frequency the shown time scale covers
a larger range. In spite of the similar number of measurements it stands out that both
figures do not reach the accuracy of the CA variant. In all settings, both stability and
median error are worse. Previously, the Azureus data set reached a minimum median
error of 7 ms. Now the picture is different: The King-Blog data exhibits the lowest error,
with 9 ms, Azureus reaches only 10.7 ms. Furthermore, we see that small cc values
delay the convergence enormously, whereas large values lead to great instabilities. For
large cc values the low stability also leads to a high, fluctuating embedding error. As a
result I propose an optimal parameter choice at cc = 0.005. The ce parameter has limited
effect, however, a value of 0.5 leads to higher instabilities in combinations with bigger
values of cc. Similar to the CA variant, King-Blog is the most stable data set throughout
all parameter settings, and it is remarkably robust to the variation in measurement
frequencies. It also exhibits the same relative error, while scarifying only some stability.

Pyxida:

Figure 7.13 and Figure 7.14 show the Pyxida optimization of Vivaldi for continuous
adjustment, Figure 7.15 and Figure 7.16 for uniform adjustment. On the left column of
each figure, Pyxida’s et parameter is set to the median latency of each data set. The right
column is using et =\infty . This parameter choice causes the peers to adjust their position
relative to all the peers that they ever contacted. That setting reflects the choice of Ledlie
et al. in [LGS07]. The same setting is used in the UA variant: While the right column uses
\infty , the left uses the median RTT value. The median parameter choice causes the peers to
adjust their position only relative to active peers, i.e. those that have just sent their RTT

95

7. Vivaldi Simulations

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500

E
rr

o
r

[m
s]

Time [s]

t=0.001 et=120ms
t=0.005 et=120ms

t=0.01 et=120ms
t=0.05 et=120ms

t=0.1 et=120ms

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500

E
rr

o
r

[m
s]

Time [s]

t=0,001 et=∞

t=0,005 et=∞

t=0,01 et=∞

t=0,05 et=∞

t=0,1 et=∞

 0

 5

 10

 15

 20

 0 100 200 300 400 500

E
rr

o
r

[m
s]

Time [s]

t=0.001 et=159ms
t=0.005 et=159ms

t=0.01 et=159ms
t=0.05 et=159ms

t=0.1 et=159ms

 0

 5

 10

 15

 20

 0 100 200 300 400 500

E
rr

o
r

[m
s]

Time [s]

t=0.001 et=∞

t=0.005 et=∞

t=0.01 et=∞

t=0.05 et=∞

t=0.1 et=∞

 0

 5

 10

 15

 20

 0 100 200 300 400 500

E
rr

o
r

[m
s]

Time [s]

t=0.001 et=67ms
t=0.005 et=67ms

t=0.01 et=67ms
t=0.05 et=67ms

t=0.1 et=67ms

 0

 5

 10

 15

 20

 0 100 200 300 400 500

E
rr

o
r

[m
s]

Time [s]

t=0.001 et=∞

t=0.005 et=∞

t=0.01 et=∞

t=0.05 et=∞

t=0.1 et=∞

Figure 7.13.: Median error for Pyxida simulations using continous adaption. Top: Azureus
data. Middle: MIT King. Bottom: King-Blog data sets.

96

7.6. Vivaldi Simulation Results

 0

 50

 100

 150

 200

 0 100 200 300 400 500

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

t=0.001 et=120ms
t=0.005 et=120ms
t=0.01 et=120ms
t=0.05 et=120ms
t=0.1 et=120ms

 0

 50

 100

 150

 200

 0 100 200 300 400 500

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

t=0.001 et=∞

t=0.005 et=∞

t=0.01 et=∞

t=0.05 et=∞

t=0.1 et=∞

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

t=0.001 et=159ms
t=0.005 et=159ms

t=0.01 et=159ms
t=0.05 et=159ms

t=0.1 et=159ms

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

t=0.001 et=∞

t=0.005 et=∞

t=0.01 et=∞

t=0.05 et=∞

t=0.1 et=∞

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

t=0.001 et=67ms
t=0.005 et=67ms
t=0.01 et=67ms
t=0.05 et=67ms

t=0.1 et=67ms ls 5

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

t=0.001 et=∞

t=0.005 et=∞

t=0.01 et=∞

t=0.05 et=∞

t=0.1 et=∞

Figure 7.14.: Stability for Pyxida simulations using contiunous adaption. Top: Azureus data.
Middle: MIT King. Bottom: King-Blog data sets.

97

7. Vivaldi Simulations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5000 10000 15000 20000

E
rr

o
r

[m
s]

Time [s]

t=0,001 et=120ms
t=0,005 et=120ms

t=0,01 et=120ms
t=0,05 et=120ms

t=0,1 et=120ms

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5000 10000 15000 20000

E
rr

o
r

[s
]

Time [s]

t=0.001 et=∞

t=0.005 et=∞

t=0.01 et=∞

t=0.05 et=∞

t=0.1 et=∞

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000

E
rr

o
r

[m
s]

Time [s]

t=0.001 et=159ms
t=0.005 et=159ms

t=0.01 et=159ms
t=0.05 et=159ms

t=0.1 et=159ms

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000

E
rr

o
r

[m
s]

Time [s]

t=0.001 et=∞

t=0.005 et=∞

t=0.01 et=∞

t=0.05 et=∞

t=0.1 et=∞

 0

 5

 10

 15

 20

 0 5000 10000 15000 20000

E
rr

o
r

[m
s]

Time [s]

t=0.001 et=67ms
t=0.005 et=67ms

t=0.01 et=67ms
t=0.05 et=67ms

 0

 5

 10

 15

 20

 0 5000 10000 15000 20000

E
rr

o
r

[m
s]

Time [s]

t=0.001 et=∞

t=0.005 et=∞

t=0.01 et=∞

t=0.05 et=∞

t=0.1 et=∞

Figure 7.15.: Median error for Pyxida simulations using uniform adaption. Top: Azureus
data. Middle: MIT King. Bottom: King-Blog data sets.

98

7.6. Vivaldi Simulation Results

 0

 1

 2

 3

 4

 5

 0 5000 10000 15000 20000

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

t=0.001 et=120ms
t=0.005 et=120ms

t=0.01 et=120ms
t=0.05 et=120ms

t=0.1 et=120ms

 0

 1

 2

 3

 4

 5

 0 5000 10000 15000 20000

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

t=0.001 et=∞

t=0.005 et=∞

t=0.01 et=∞

t=0.05 et=∞

t=0.1 et=∞

 0

 1

 2

 3

 4

 5

 0 5000 10000 15000 20000

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

t=0.001 et=159ms
t=0.005 et=159ms

t=0.01 et=159ms
t=0.05 et=159ms

t=0.1 et=159ms

 0

 1

 2

 3

 4

 5

 0 5000 10000 15000 20000

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

t=0.001 et=∞

t=0.005 et=∞

t=0.01 et=∞

t=0.05 et=∞

t=0.1 et=∞

 0

 1

 2

 3

 4

 5

 0 5000 10000 15000 20000

S
ta

b
il

it
y

 [
0
/

0
0
]

Time [s]

t=0.001 et=67ms
t=0.005 et=67ms

t=0.01 et=67ms
t=0.05 et=67ms

Figure 7.16.: Stability for Pyxida simulations using uniform adaption. Top: Azureus data.
Middle: MIT King. Bottom: King-Blog data sets.

99

7. Vivaldi Simulations

information. When using CA a node will update its coordinates with any other node
and a set of its recent other nodes, which is a dynamic subset of it’s neighborhood. UA
in contrast assigns fixed time slices, hence nodes the set of other nodes is a static subset.
The difference is marginal, but might well explain the jump in accuracy that happens
when comparing the relative error. While King-Blog is robust against that change, it has
a modest change from 7 ms to 9 ms, both other data sets experience jumps from 10 to 15
ms (MIT King) and even 10 to 20 ms (Azureus). King-Blog is probably the least affected
set for its lowest median RTT and small variance.

As in the Vivaldi simulation, the achievable embedding quality depends on the
adjustment variant. Better results are achieved using continuous adjusting, at the cost of a
sizable communication overhead. Stability-wise et =\infty compared to a median et setting
provokes the largest difference. Using continuous adjustment one finds significant
stability improvements for et =\infty , but using uniform adjustment the opposite is true.
The huge neighbor decay provokes a significant instability.

RALP

In order to complement the analysis with an application-level metric, I further analyzed
the different variants using the RALP quality measure. Figure 7.17 shows the results
for continuous adjustment (left) and uniform adjustment (right). Clearly, all variants
improve over the random peer selection case, which does not use network coordinates
at all.

Just like in the previous sections, the difference between the two adjustment variants
depends on the data set. Simulations with the KING data set (bottom) behave compa-
rably for all variants (Vivaldi, Pyxida, w/ and w/o CA, UA) of the Vivaldi algorithm,
whereas the Azureus data set exhibits a significant dependence on the parameter choices.
In particular, when using the uniform adjustment variant, the original Vivaldi algorithm
outperforms the Pyxida optimization. Also the King-Blog data shows no significant
improvements of Pyxida over Vivaldi. This indicates that the claimed improvement of
Pyxida [LGS07] might not carry over to a general application ‘in the wild’, despite the
suggestive title of the respective publication.

Conclusion

The end of the static simulations marks also the end of comparisons for the different
different RTT probing intensities. I analyzed all data sets using different measures,
to determine the impact of that very change in measurement frequency. The results
demonstrate that the UA variant reproduces the CA results within a factor of two,
while requiring only sparse RTT probing (10 sec versus 120 ms). Due to the lower
measurement frequency the time until coordinates reach stability is more than ten
times higher and some accuracy is sacrificed to the lower probing traffic. However,

100

7.6. Vivaldi Simulation Results

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500

R
A

L
P

Time [s]

random selection
Vivaldi cc=0,005 ce=0,1

Vivaldi cc=0,25 ce=0,1
Pyxida t=0,005 et=120ms

Pyxida t=0,1 et=120ms

 0

 0.5

 1

 1.5

 2

 2.5

 0 5000 10000 15000 20000

R
A

L
P

Time [s]

random selection
Vivaldi cc=0,005 ce=0,1

Vivaldi cc=0,25 ce=0,1
Pyxida t=0,005 et=∞

Pyxida t=0,01 et=∞

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500

R
A

L
P

Time [s]

random selection
Vivaldi cc=0,005 ce=0,1

Vivaldi cc=0,25 ce=0,1
Pyxida t=0,005 et=67ms

Pyxida t=0,1 et=67ms

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5000 10000 15000 20000

R
A

L
P

Time [s]

random selection
Vivaldi cc=0,005 ce=0,1

Vivaldi cc=0,25 ce=0,1
Pyxida t=0,005 et=∞

Pyxida t=0,1 et=∞

Figure 7.17.: Comparison of Vivaldi and Pyxida using the RALP measure. Left: CA, Right:
UA.

101

7. Vivaldi Simulations

both variants represent extreme cases. The first variant always sends data, the other
only seldom. These results therefore represent a best and a worst case scenario to the
designer of a network coordinate enabled application. Furthermore, the RALP measure,
a measure designed to be application specific exhibits only marginal differences between
both variants´ end results. Therefore, one can conclude that performance is satisfying in
both cases and the results of an actual application are in the illustrated range.

7.6.2. Dynamic data

In order to better understand highly dynamic systems and their differences to static
systems, I captured and analyzed the PlanetLab RTT trace. The simulation was set up, in
a way that each node was randomly connected to 32 neighbors. Both the measurement
sequence and jitter of latencies were determined by the captured data in the trace.

A highlighted feature in many publications about the Pyxida algorithm is the me-
dian filter. It was proposed to mitigate fugacious and erroneous changes of latencies.
Therefore, I analyzed its influence on the actual results of a simulation. I carried out two
identical simulations rounds, with and without that filter. The median filter operates on
the last 30 minutes of measurement data, Pyxida’s et was set to the same value.

Figure 7.18 shows the embedding error for the Vivaldi and Pyxida algorithm using
the various parameter combinations from the previous chapter. The top figures shows
the results for Vivaldi, the bottom figures the results for Pyxida. All of these simulations
were carried out with the median filter proposed by Ledlie et al. In contrast, Figure 7.21
shows the same data and arrangement without this filter enhancement. First of all,
there is no significant observable effect of the median filter. Both median errors are
in a nearly identical range. Furthermore, the advantage of the Pyxida optimization
manifests the most when it is compared to a high cc parameter in the original Vivaldi
algorithm. Figure 7.19 puts a spot on the best performing parameter sets with latency
filter (left) and without (right). Clearly, when cc is set to 0.01 Vivaldi and Pyxida behave
almost identically. Furthermore, the latency filter has only a minimal impact on Pyxida’s
median error, while Vivaldi performs slightly worse.

Figure 7.20 illustrates the complete simulation setup stability wise. \Delta t was set to
a value of 1.5 hours with up to 10 nodes in the set. All measurements show large
instabilities for large values of cc and t respectively. Again, it is apparent that the
choice of large values for cc and t does not only lead to faster convergence (as stated in
literature), but also to an increased instability that in the end leads to a worse quality of
the embedding. Therefore, it is apparent that even though the Pyxida optimization can
yield a better stability in principle, it does only minimally improve the embedding for
the moderate values of t and cc that yield the best results overall.

As a final step, I re-examined the dynamic setting, just like the static data using
the RALP measure in Figure 7.23. Here I find that the Pyxida optimization shows a

102

7.6. Vivaldi Simulation Results

Figure 7.18.: Median error for dynamic trace simulations, using a RTT median filter. Top:
Vivaldi algorithm. Bottom: Pyxida algorithm.

103

7. Vivaldi Simulations

Figure 7.19.: Comparison of the best performing Vivaldi and Pyxida set ups. Left: With
median filter. Right: Without.

slightly better performance than the original Vivaldi algorithm. Again, cc = 0.005 and
ce = 0.1 outperform all other parameter combinations in the Vivaldi case. For the Pyxida
algorithm t = 0.005 is the best choice.

7.6.3. Conclusion

I draw several conclusions from the simulations in that chapter:
First, most constants are chosen too high to produce stable coordinates in dynamic real

world settings in the original publications. Seemingly the respective authors decided to
sacrifice the stability of the resulting embedding to obtain a faster convergence. I believe
this to be a bad trade, especially because most parameters produce similar relative
embedding errors.

Second, as a result of my analysis I will use the following values in the rest of my
thesis: ce = 0.1, cc = 0.005, t = 0.005, and et = 30min. These recommendations have
also been published in [EFF09] as general "best practise" parameters. In the analysis I
also spotted rare cases of especially poor performance of the Vivaldi algorithm family.
I therefore recommend using conservatively low parameters to also safeguard against
such cases.

Third, I could not reproduce the claimed drastic superiority of the Pyxida algorithm
proposed by Ledlie et al. [LGS07]. The only effect I could reproduce was a faster
convergence, which I consider not as important as stability. In the uniform adaption
case Pyxida is more stable to changed parameters, the comparison between a small
decay parameter et and\infty had comparable results. In the continuous adaption case,
the stability was worse with et =\infty . The improved convergence speed comes at a cost.

104

7.6. Vivaldi Simulation Results

Figure 7.20.: Stability for dynamic trace simulations, using a RTT median filter. Top: Vivaldi
algorithm. Bottom: Pyxida algorithm.

105

7. Vivaldi Simulations

Figure 7.21.: Median error for dynamic trace simulations, not using a RTT median filter. Top:
Vivaldi algorithm. Bottom: Pyxida algorithm.

106

7.6. Vivaldi Simulation Results

Figure 7.22.: Stability for dynamic trace simulations, not using a RTT median filter. Top:
Vivaldi algorithm. Bottom: Pyxida algorithm.

107

7. Vivaldi Simulations

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

06.03. 22:00 07.03. 02:00 07.03. 06:00

R
A

L
P

Date/Time

cc=0.005 ce=0.1
cc=0.01 ce=0.1
cc=0.25 ce=0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

06.03. 22:00 07.03. 02:00 07.03. 06:00

R
A

L
P

Date/Time

t=0.005 et=5min
t=0.005 et=30min

t=0.25 et=5min
t=0.25 et=30min

Figure 7.23.: RALP for Vivaldi (left) and Pyxida (right) for the dynamic data trace.

Pyxida reserves buffer space for its round based operation mode. The higher et is chosen,
the more buffer is needed. However, some applications will not do that trade, like for
example the Vuze client, that recently excluded Pyxida. Therefore, choosing the correct
parameter for Vivaldi is even more important.

What struck me at most in this study were the large differences between the data sets.
Even when comparing static data among each other, there are significantly different
reactions of the different algorithm variants. The differences between the results from
the static RTT matrices and the dynamic RTT traces were even greater. Ledlie et al.
[LGS07] argue that this depends on the magnitude of RTTs that the algorithm receives. I
could not confirm this hypothesis.

108

7.7. Hierarchical Vivaldi Simulation Results

7.7. Hierarchical Vivaldi Simulation Results

The previous section analyzed the behavior and performance of the Vivaldi algorithm
and its Pyxida optimization. Both algorithms were simulated using different parameter
combinations. From these simulations I could derive a clear recommendation about the
parameter choice to the reader.

In this section, I will introduce the results of my own proposal, the Hierarchical
Vivaldi Algorithm. To evaluate the performance of that hierarchical algorithm, I ran
several simulations and compared their performance to that of Vivaldi and Pyxida.
All simulations were carried out using the optimal parameter choices derived in the
previous section. I analyzed all the proposed algorithms with the four data sets of both
static and dynamic data.

7.7.1. Static data

The algorithm introduces additional parameters that need to be defined before used:
The depth of the embedding hierarchy is set to Tmax = 2, or Tmax = 1 when explicitly
stated (see figures). Each space \wp i with i > 0 uses a 2-dimensional space plus height
component. \wp 0 is using 4 dimensions plus a height component. A value greater than 2
for Tmax was intentionally left out because the resulting communication overhead does
not justify the gain. Using Tmax = 2 leads to \eta = 2Tmax+1 - 1 = 7 subspaces. A value of
Tmax = 3 yields \eta = 15 subspaces. With 3 dimensions of coordinates, the achievable gain
exceed a reasonable communication overhead. I reassured the behavior of the algorithm
with Tmax = 3 in a simulation and it outperformed the Tmax = 2 variant. However that
depth needs huge datasets to have a reasonable sized group of well determined nodes
and is computational expensive. Therefore, I refrained from carrying out simulations
with Tmax > 2. Each simulation was running for 500 seconds.

Hierarchical Vivaldi classifies the nodes’ peers into two groups, G1 and G2, based on
a threshold ee called the error estimation: G1 contains the nodes whose error estimation
remains under the threshold. To this group, I refer to as well determined; G2 contains
the nodes whose error estimation lies above the threshold, which I refer to as vaguely
determined. I used values of 0.3, 0.5 and 0.7 for this threshold. Naturally, each stricter
threshold shrinks the absolute number of peers that are considered to be well determined,
therefore I will refer to the threshold as "picky".

In this evaluation, I studied the following four parameters: Percentage of nodes in
the well determined group G1, RALP for G1, relative error of embedding in G1 and G2.
Remember that computing a measure for G\{ 1,2\} means considering only nodes in the
same group in the computation. For example, computing RALP for a node i means
selecting nodes that are not already neighbor of i and belong to the same group of well
or vaguely determined nodes.

109

7. Vivaldi Simulations

Figure 7.24.: Comparison of Hierarchical Vivalid and Hierarchical Pyxida using the Azureus
data set. Left: Percent of nodes in the well determined group G1. Right:
RALP values for well determined nodes.

110

7.7. Hierarchical Vivaldi Simulation Results

Figure 7.25.: Relative error for well determined (left) and vaguely determined node pairs.
Azureus data set.

111

7. Vivaldi Simulations

Figure 7.26.: Comparison of Hierarchical Vivalid and Hierarchical Pyxida using the King-
Blog set. Left: Percent of nodes in the well determined group G1. Right:
RALP values for well determined nodes.

112

7.7. Hierarchical Vivaldi Simulation Results

Figure 7.27.: Relative error for well determined (left) and vaguely determined node pairs.
King-Blog data set.

113

7. Vivaldi Simulations

Figure 7.24 and Figure 7.25 show data from the Azureus data set, while Figure 7.26 and
Figure 7.27 show data from the King-Blog data set. Each simulation was carried out with
different parameters ee and Tmax for both Hierarchical Vivaldi and Hierarchical Pyxida.
The first figure in a data set introduces the percentage of well determined nodes on the
left side and the corresponding RALP values on the right. The second figure compares
the relative error of the well determined nodes with the relative error of the vaguely
determined nodes. Naturally, a more picky threshold classifies more well determined
nodes into the vaguely determined group, which leads to better values in that group as
well.

What is apparent from the figures is that Hierarchical Vivaldi / Pyxida outperforms
its non-hierarchical counterparts clearly. Even when using the most picky threshold each
group is filled with candidate nodes, and the pickier the threshold, the more accurate
results emerge. The results slightly differ between the different data sets.

The King-Blog data in Figure 7.27 (right) shows the RALP values that Hierarchical
Vivaldi (top) respective Hierarchical Pyxida achieves for the different parameter choices.
For easier comparison, the figure again shows the RALP of their non-hierarchical coun-
terparts. As one can see, Hierarchical Vivaldi improves the RALP significantly. While
Pyxida predicts the latencies only within a margin of error of about 20%, the hierarchi-
cal variant can achieve a margin of error as low as a few percent only. In general, a
second-order error embedding, i. e. Tmax = 2, outperforms a first-order embedding.

In contrast, the Azureus data using Hierarchical Pyxida (Figure 7.24, bottom), only ten
percent of nodes are in the well determined group, which translates roughly to 25 nodes
in the examined Azureus data. The corresponding RALP values became too unstable
to make any reasonable assumptions, therefore it is not included in the plot. This is,
however, not a defect of Hierarchical Vivaldi because that data set already performed
poorly using the ee =\infty setting in the previous non-hierarchical setup, cf. Figure 7.23.
Naturally, the values grow more unstable with a much smaller group of nodes in the
hierarchical case. For the ten times larger King-Blog data in Figure 7.27, the same setting
produces good results, as discussed previously.

Moving on to the relative error results, the left column of the each figure shows the
error of the well determined nodes. Again, the hierarchical variants clearly outperform
their counterparts in both data sets. In the right column, the error of the vaguely
determined nodes leads to the best performance, when the threshold is set to the picky
ee < 0.3 value, because nodes with good relative errors are rejected from the best group
and decrease the relative error of the vague group.

From all figures, the impact of the depth parameter Tmax is clearly obvious. Best results
are achieved using a depth of 2. With Tmax = 1 and ee = 0.3 the relative error sometimes
meets or outperforms a Tmax = 2 setting with a undemanding ee value of 0.7. That
parameter choice is therefore an appropriate choice, where communication overhead is
critical. Hierarchical Vivaldi reaffirms another observation from the non-hierarchical
simulations. The Pyxida variant matches but does not outperform the Vivaldi variant

114

7.7. Hierarchical Vivaldi Simulation Results

when using hierarchies, hence Pyxida’s resource demands are not justified, because
Vivaldi can be used instead.

The absolute improvement strongly depends on the setting where the algorithm is
applied. When there are sufficiently many peers in the system, we can set a very picky
threshold and thereby reduce the RALP below one percent. A generous threshold
(ee = 0.7) with a first-order error embedding (Tmax = 1) keeps more than 80% of
the nodes in G1. A picky threshold (ee = 0.3) with a second-order error embedding
(Tmax = 2) only keeps about 20% of the nodes in G1. Since King-Blog contains 2500
nodes, this means that G1 contains between 500 (picky) and 2000 (generous) nodes.
Generally, I found that the error estimator ee is much more accurate than Vivaldi’s built-
in local error. As one can see, the proposed Hierarchical Vivaldi algorithms outperform
the plain Vivaldi algorithms by an order of magnitude under ideal circumstances.

Figure 7.28.: Relative error (left), RALP (right) snapshots at simulation end.

Figure 7.28 sums up the static simulations. The figure to the left illustrates the effect
that this selection has on the latency estimation error. For all parameter settings, Hierar-
chical Pyxida reduces the estimation error for the nodes in G1 simply by selecting those
nodes that have a low estimation error. The error for nodes in G2 is significantly worse.

The box plot in Figure 7.28 provides an in-depth RALP analysis of the King-Blog
simulation at various points in time during 200 seconds. Clearly, the well determined
group, which was picked by a 0.3 threshold using Tmax = 2 proves to lead to the best
range of RALP values across the data set.

In general there are only slight differences between the Hierarchical Vivaldi and
Pyxida variants.

7.7.2. Dynamic data

In the previous section I compared non-hierarchical simulations using static and dy-
namic data. This section completes the Hierarchical Vivaldi analysis, by comparing my

115

7. Vivaldi Simulations

Figure 7.29.: Comparison of Hierarchical Vivalid and Hierarchical Pyxida using the dynamic
data set. Left: Percent of nodes in the well determined group G1. Right:
RALP values for well determined nodes.

116

7.7. Hierarchical Vivaldi Simulation Results

Figure 7.30.: Relative error for well determined (left) and vaguely determined node pairs.
Dynamic data set.

117

7. Vivaldi Simulations

previous static Hierarchical Vivaldi analysis using dynamic data
Figure 7.29 introduces the percentage of well determined nodes in the left column and

the RALP values on the right. One can easily see that the data set is not suitable for a
RALP computations: When using Tmax = 2 and the most picky ee value, Hierarchical
Vivaldi has not even 2 % of nodes in the well determined group. For a total of 89 nodes
a computation of RALP is impossible. Although the values indicate satisfying results,
they are just too noisy. However, the computation of the relative error does not involve
a neighborhood of peers, therefore Figure 7.30 is more significant. All members of the
well determined group exhibit smaller error values, than the original non-hierarchical
counterparts. The already mentioned most picky setting exhibits some disturbances that
I account to the small number of peers.

Figure 7.31.: Relative application level penalty (left) and relative embedding error (right).

7.7.3. Conclusion

After the promising results from the static simulations and the noisy but satisfactory
results in the dynamic trace, I evaluated my proposal on PlanetLab using a maximum
number of nodes online. I restricted the measurement to a short time frame to ensure
a low probability of loosing a node due to hardware or software failures. Failures on
PlanetLab happen quite often, which is the reason for the dynamic trace’s inferior size.
I built Hierarchical Vivaldi into the IGOR overlay daemon and bootstrapped it with
a maximum of 32 neighbors per node. To save bandwidth only \eta = 3 spaces were
used. Figure 7.31 shows the relative application level penalty for an overlay with 312
peers for about 10 hours. (Figure 7.31 shows the respective relative embedding error,
and Figure 7.32 shows the fraction of well determined node pairs.) Upon start-up, the
overlay topology is quite sub-optimal, which leads to large RALP values. Over time,

118

7.7. Hierarchical Vivaldi Simulation Results

the peers settle in the network coordinate system, and the RALP values improve. After
about 1 - 2 hours the overlay has settled completely.

Figure 7.32.: Fraction of well determined node
pairs (measurement).

These results reaffirm the results from
the simulations I presented in this chapter.
They show that Hierarchical Vivaldi out-
performs the classical Vivaldi with about a
factor of 3, still a significant improvement
and an expected result with Tmax = 1. The
overhead of running a real KBR overlay
with structural constraints and high churn
rate of neighbors shows no negative im-
pact. Furthermore, all simulations proved
one important point: The pickier a thresh-
old is, the smaller and the better selected
is G1. Hierarchical Vivaldi is able to as-
sess the quality of an embedding. There-
fore, these results show that Hierarchical
Vivaldi works and is a real improvement
over classical Vivaldi. Furthermore, the results demanded further research with a max-
imum number of peers and a real world experiments. In the tradition of network
coordinate research I contacted the Vuze developers and thus gained such a real world
setting. The results are presented in the next chapter.

119

8. Hierarchical Vivaldi Deployment in a
Planetary-Scale Overlay

The previous chapter gave the reader a glimpse of the performance of Hierarchical
Vivaldi. The results of the simulations were promising, some of them outstanding.
However, a simulation using a captured dynamic trace is too short on input data to
get a more realistic view of the algorithm. Above all, real world measurement data is
known to be superior to testbed data [CB10]. A first peek at an online measurement in
the conclusion of the previous chapter affirmed my findings on Hierarchical Vivaldi’s
performance. A planetary scale experiment introduced in this chapter will reassure
the findings once more: A Hierarchical Vivaldi plug-in was included into the Vuze
client (cf. Section 3.4). That client is extremely popular among users download.cnet.com
counted approximately 8.2 million downloads [Int11] in October 2011. Using a voluntary
statistic collection component built-into the plug-in together with its enormous user
base, I was able to gain unique insights into both Vivaldi and my proposed algorithm.

This chapter briefly introduces the infrastructure that was used for collecting data,
before presenting an in-depth evaluation of Hierarchical Vivaldi. Previously, network
coordinates were said to only be able to distinguish among continents but not among
autonomous systems, countries, or even cities. The unique viewpoint along with ex-
perimental data that I have been able to gather in one of the world’s largest BitTorrent
networks allows me to retrieve the network coordinates´ honor. It shows that Vivaldi-
like algorithms can very well predict round trip times and can distinguish autonomous
systems or geographic regions. The analysis marks the final building block of my thesis.

8.1. Methodology

Before presenting results of the evaluation, this section briefly outlines the set up of
the study: It discusses the infrastructure, the study’s design, the plug-in itself, and the
different measurement settings receive attention.

8.1.1. A Large Scale Overlay

The goal of this real world measurement was to assess the performance of an improved
Vivaldi algorithm in a realistic setting. Steiner et al. [SB09] pursued a similar goal. They
evaluated the performance of the built-in Vivaldi algorithm in Vuze. Therefore, they built
a crawler that collected data from the Vuze BitTorrent overlay. The actual crawling was

121

8. Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay

done from different nodes inside the network including the Eurecom institute, France
and Mannheim, Germany. Unlike Steiner, this measurement component was included as
a plug-in into the official distribution of Vuze. Thereby, one can study the overlay from
the clients’ perspective rather than having an outside view only. Focusing on different
clients, different vantage points. One could for example, study the well-connected peers
in university networks and compare them to peers in DSL networks.

The measurement setup differentiates between so-called reporter nodes and plain nodes.
Reporters actively participated in the study and provide a vantage point. They regularly
reported to the collector site located at the Technische Universität München. All other
Vuze nodes ran the Hierarchical Vivaldi algorithm as well, but they did not report to the
collector. Each node executed the stock Vuze Vivaldi algorithm using two dimensions
plus height component (Vivaldi 2D+H) in parallel to the Hierarchical Vivaldi algorithm.

An ordinary Vuze node only became a reporter when its user explicitly enabled the
reporting mechanism inside the client. The reported data contained the coordinates of
the reporter and its current peers as well as the RTT to these peers (measured at the
application layer, cf. Figure 3.5). Furthermore, the meta-data included the autonomous
system ID and geo-location of the peers (as derived from the peers’ IP addresses), and the
peers’ unique IDs. It did not contain any peers’ IP addresses or any torrent information.
For privacy reasons, we also did not store the IP addresses of the reporter nodes.

Once per hour, each active reporter connected to the collector site and sent reports
about all its peers. To promote the interconnectedness of reporter peers, the reporter
received a list of other recent reporters. That list was composed using 25% of the most
recent reporters (during the last hour) in an uniform random way. In the time from May
2010 to March 2011, the collector site thereby received 3.883 \cdot 1010 reports from 5 013
unique reporters. An average report contained up to one kilobyte of data and described
one Vuze node as seen from the reporter. A load balancer distributed the reports across
six collector machines so that the system could handle peak times without data loss.

8.1.2. Vuze Plug-In

In Section 3.4, I introduced the Vuze BitTorrent client. Vuze is popular among users
and has an impressive history among research. The client is one of the first ones that
included the original Vivaldi algorithm. Scalability issues with Vivaldi became apparent
and were reported from developers of that very client. Being contacted from Vuze
developers, Ledlie et al. at Harvard conducted the first large scale analysis of Vivaldi
using Vuze. Their research resulted in the proposal of Pyxida [LGS07]. Congruently,
Choffnes et al. chose to implement Ono [CB08] as a Vuze plug-in. The steady use of
Vuze as a scientific device especially for proximity research is also reflected in its API.
The GENERIC_NETPOS interface allows seamless integration of position providers (class
DTNetworkPositionProvider) into the client. Vuze is able to handle different position
providers simultaneously. Just like the ID interface in IGOR (cf. Section 4.4) each position
provider’s payload that is attached to a message is serialized and prepended with an

122

8.1. Methodology

identifier. With the help of this ID, each client can call the corresponding module, if it is
registered.

The implementation details of the plug-in are available in [Fra11]. Here I introduce
only the modus operandi. On startup and shutdown the Hierarchical Vivaldi plug-in
restores and saves the node’s most recent coordinates. Reusing saved coordinates allows
me to investigate the reusability of coordinates (cf. Section 8.2.1).

As previously mentioned, the plug-in included opt-in functionality, which enabled
the reporting of statistics to the data collector. For privacy reasons I avoided storing IP
addresses of users. Measurement data was passed to the system via the HTTP protocol.
Therefore, the data collector was the single point of the system, where the IP addresses
of reporters accumulated. These addresses were never written to disk, but were kept
in a recently used (lru) list in memory, to send an excerpt of that list to a reporter upon
contact, in order to create locality upon the reporting nodes. Hence, measurements
between those nodes could be studied from both nodes. That node could then ping the
other client via a call to DistributedDataseContact::import(InetSocketAddress)

and DistributedDataseContact::ping().

To dynamically reconfigure the plug-in during the experiment, the design included a
command and control component. The remote override could alter parameters of the
Hierarchical Vivaldi algorithm and parameters like the number of pings to other overlay
nodes. That part could be disabled by the user, separate from her initial admission to
data reporting.

1

2

3

4

5

6

7

Date/Time

M
ill

io
n

in
st

al
ls

2010/11/10 2010/12/10 2011/01/10 2011/02/10 2011/03/10

Figure 8.1.: Total downloads of the final plug-in version.

123

8. Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay

8.1.3. Chronological Sequence

The experiment was divided into 4 phases. Initially, smaller tests on PlanetLab were
carried out. With the first inclusion into the Vuze code base, only beta testers for the 0.45

version of the client received that functionality. They joined the 500 PlanetLab nodes
that already served as testbed for the plug-in development and reporting infrastructure.
This marks the first phase of the experiment.

The experiment started officially with the first release of the Hierarchical Vivaldi
plug-in May 2010. The official release of Vuze 0.45 introduced the Hierarchical Vivaldi
algorithm to a wider audience by marking it as a recommended plug-in. Recommended
plug-ins gets installed automatically by the Vuze extension mechanism. The release
marks the second phase of the experiment. The broad user base sparked participation
among users. Up to 1000 activations of the statistics component were measured shortly
after the release. Therefore, the PlanetLab nodes were suspended, until September 2010.

At this point, we re-enabled the PlanetLab reserve in a third phase, to investigate their
impact on the system performance.

In a final phase in November we disconnected the latter once again, to measure a pure
end user based network (cf. Section 8.2.1). This was done to ensure unbiased results,
as PlanetLab features superb network connections, not found in end user homes. The
final version 485 of the plug-in was downloaded 7 million times, as Figure 8.1 shows.
The official release of Vuze 0.46 in January 2011 marks the end of our experiment and
Vuze removed the plug-in. Figure 8.2 sums up the lifetime of the Hierarchical Vivaldi
plug-in based on the number of reporter peers. The color code at the bottom of the figure
indicates the presence of PlanetLab nodes.

Pyxida filters and smooths the RTT measurements before they are entered into the
model. However, as I mentioned previously that algorithm was removed from the Vuze
client. Therefore, I was not able to test the Hierarchical Pyxida variant in practice, using
the Vuze client. Nevertheless the simulations from the previous chapter did not show
huge differences between Hierarchical Pyxida and Hierarchical Vivaldi.

8.1.4. Hierarchical Vivaldi Parameters

The same settings, as in the previous simulation chapter apply for the experiment.
Hierarchical Vivaldi and the original Vivaldi algorithm use the previously recommended
parameters cc = 0.1, ce = 0.01, and the depth parameter Tmax = 2.

For Hierarchical Vivaldi, the topmost space \wp 0 used 5 dimensions, while all other
spaces \wp 1...6 used 3 dimensions. Vivaldi was measured using both a two dimensional
space plus height component and a 5 dimensional space. Due to data loss on one of
the collectors´ nodes, the experiments lacks 1 month of measurement data for the 5
dimensional Vivaldi.

Compared to the simulations in the previous chapter I adapted the used measures
slightly: Both the RALP and the relative error measure (equations 7.4 and 7.2 on page 80)

124

8.2. Results

0

500

1000

1500

2000

2500

Date/Time

N
um

be
r

of
 n

od
es

2010/07/01 2010/09/01 2010/11/01 2011/01/01 2011/03/01

Number of peers (total)
thereof PlanetLab

Figure 8.2.: Absolute number of Peers contributing statistics at least once per hour. Bottom-
Colors indicate:

Only PlanetLab nodes
Only end user nodes
PlanetLab and end users

are changed from a 1
n2 to a 1

n factor. This quadratic coefficient adapts the measure to the
number of measurements in a full mesh. However, the Vuze measurement setup is only
sparsely connected. Therefore, I relaxed the quadratic adaption.

Another restriction is the scope of the RALP measure. Previously, I computed RALP
using non-neighboring nodes. This means that, both nodes have not adapted their coor-
dinates to their mutually measured RTT recently. However, this experiment abandons
that modus operandi because measurements are carried out using the Vuze framework,
as previously described. Using the built-in ping() adds the target node to the pool of
potential neighbors. A ping reply mandatory involves adapting the own coordinate.
Including a separate measurement component would have been an intrusive move,
which I decided not to take.

8.2. Results

This section presents a summary of findings of my evaluation study. The full analysis is
available in [Fra11]. All measurement data is published at the author’s website [Els11].
In the first section I compare Vivaldi and Hierarchical Vivaldi. In the second section I
use the unique viewpoint from inside the network to analyze the capabilities of a large
deployment of a network coordinate algorithm.

125

8. Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay

8.2.1. Evaluation of Hierarchical Vivaldi

0

20

40

60

Date/Time

W
el

l−
d

et
er

m
in

ed
 N

od
e

Pa
ir

s
[%

]

Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

2010/07/01 2010/09/01 2010/11/01 2011/01/01 2011/03/01

Figure 8.3.: Percent of nodes in the well determined group G1.

Figure 8.3 complements Figure 8.2 by showing the percentage of nodes in the well
determined group over the course of the whole simulation. The figure affirms the
findings from my previous simulations. At Tmax = 2 Hierarchical Vivaldi includes
60% of nodes when using a relaxed threshold into the well determined group. A
picky threshold includes only 30% of nodes into the well determined group, the static
simulations in contrast included slightly less nodes. During the experiment all groups
were appropriately filled with nodes, no "under-runs" like in the dynamic simulation
happened.

The overall performance of the system was optimal, Hierarchical Vivaldi met its expec-
tations. In Figure 8.4 I present the RALP results of the entire experiment. Disregarding
the spikes, caused by system shut downs when e. g. newer versions of the plug-in were
rolled out, the performance of the hierarchical variants is superior to the plain Vivaldi
variants at any time. From that overview one can quickly get a glimpse of the stability of
Hierarchical Vivaldi during the entire experiment. Furthermore, it initially convergences
much faster than Vivaldi 2D+H to a low RALP value. Figure 8.5 (left) shows the same
data in a CDF view. Clearly, the Vivaldi 2D+H variant is far from accurate. While 90%
of nodes have a RALP value of 0.13 using the most picky threshold for Hierarchical
Vivaldi, the 2D+H variant includes RALP values up to 0.87. 90 % of the nodes in Vivaldi
5D have a RALP value of 0.22, which is roughly 1.8 times higher than the Hierarchical
Vivaldi. Vivaldi 2D+H’s performance is unable to reach the performance of 5 dimen-
sional Vivaldi or Hierarchical Vivaldi at any time in the experiment. The surprisingly
good performance of Vivaldi 2D+H during August is quickly explained: It marks the

126

8.2. Results

0.0

0.5

1.0

1.5

Date/Time

R
A

L
P

2010/05/01 2010/07/01 2010/09/01 2010/11/01 2011/01/01

Vivaldi (2D+H)
Vivaldi (5D)
Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

Figure 8.4.: RALP values during the entire experiment.

begin of the second experiment phase. At that time, a huge number of nodes with stable
Vivaldi 2D+H coordinates began to report statistics.

However, that data includes large periods of instabilities, e. g. plug-in restarts, node
joins, leaves. Therefore, the right part of Figure 8.5 shows the final phase of the experi-
ment from 28.12.2010 until 13.01.2011: After the final release of our plug-in and the final
departure of all PlanetLab nodes, the situation does not change radically. That steadiness
reaffirms my results: Under ideal circumstances the 2D+H variant reaches a RALP value
of 0.2, the 5D variant 0.14 in the 90 percent percentile. Both results are slightly better
than the simulation results, however, they are computed using the actual neighborhood,
as previously explained. Hierarchical Vivaldi with the most picky threshold reaches
a value of 0.1, slightly worse than the simulation results that reached that value using
the same Tmax value, but a threshold of ee < 0.7. The drastic improvement of Vivaldi
2D+H shows that under ideal circumstances, these parameters are able to yield mediocre
results. However it is unable to handle joins or leaves of a large number of nodes, as
I present in the next section. Hierarchical Vivaldi also shows an improvement. Over
the total time of the experiment (Figure 8.5 left), the last ten percent of the hierarchical
algorithms seem unable to match Vivaldi’s performance. However that data includes
the whole range of the experiment. As I previously mentioned, the results for the first
month of Vivaldi 5D are lost. Presumably the missing data would increase Vivaldi 5D’s
RALP value in Hierarchical Vivaldi’s favor, because the 5D data misses the unstable
initial phase of the experiment.

The relative error for that same period from 28.12.2010 until 13.01.2011 in Figure 8.6
(top) reaffirms my findings once more: The hierarchical embeddings is superior to
both non-hierarchical settings. In a similar way, as the King-Blog simulation, from the
previous chapter, it reaches a value of 0.1 using the most picky settings. In spite of the

127

8. Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay

0.0 0.2 0.4 0.6 0.8 1.0

RALP

%
 o

f n
od

es

0

20

40

60

80

100

Vivaldi (2D+H)
Vivaldi (5D)
Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

0.0 0.2 0.4 0.6 0.8 1.0

RALP

%
 o

f n
od

es

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●

0

20

40

60

80

100

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●

Vivaldi (2D+H)
Vivaldi (5D)
Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

Figure 8.5.: ECDF RALP values during the entire experiment (left) compared to the final
experiment month (right).

good performance of 5D Vivaldi, the figure clearly shows the superiority of Hierarchical
Vivaldi, in both quantiles and median values. The analysis of the group size in the
bottom part of the figure yields no new insights. All group sizes confirm the findings
from the previous simulations.

The real potential of Hierarchical Vivaldi has so far not been accessed. Figure 8.7
shows the results of the initial PlanetLab testbed for the period from from 13th of June
2010 until 20th of June of the same year, where 500 highly connected nodes reproduce
the best results that have been achieved previously in simulations only. The top figure
shows the RALP values from the Hierarchical Vivaldi and Vivaldi algorithms. Clearly,
Vivaldi 2D+H has not yet stabilized and is highly erroneous. Vivaldi 5D shows good
behavior at a value of 0.1. However, Hierarchical Vivaldi reaches a near to perfect value
of 0.03, similar to the simulations from the previous chapters. Thus, the algorithm
has been able to insert nearly all 32 nodes at their correct position using their network
coordinates prediction together with the novel error prediction facility. RALP is an
application specific measure and translates to the benefit for the peer selection process.
The relative error of the well determined group, which ranges from 0.16 to 0.18 is 3 times
lower than 5D Vivaldi’s (0.50) as well. The lowest figure shows a complete analysis of
the relative error. The figure illustrates that Vivaldi 5D’s median relative error is at the
90% percentile of the Hierarchical Vivaldi variants.

128

8.2. Results

2010/12/29 2011/01/03 2011/01/08 2011/01/13 2011/01/18 2011/01/23

0.0

0.5

1.0

1.5

Date/Time

R
el

at
iv

e
er

ro
r

Vivaldi (2D+H)
Vivaldi (5D)
Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

30

40

50

60

70

80

Date/Time

W
el

l−
d

et
er

m
in

ed
 N

od
e

Pa
ir

s
[%

]

Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

2011/01/01 2011/01/06 2011/01/11 2011/01/16 2011/01/21 2011/01/26

Figure 8.6.: Relative error boxplots (top) and group size (bottom) during final experiment
month.

129

8. Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay

0.01

0.02

0.05

0.10

0.20

0.50

1.00

Date/Time

R
A

L
P

2010/06/19 2010/06/20 2010/06/21

Vivaldi (2D+H)
Vivaldi (5D)
Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

0.1

0.2

0.5

1.0

2.0

5.0

Date/Time

R
el

at
iv

e
er

ro
r

(9
0.

 p
er

ce
nt

ile
)

2010/06/19 2010/06/20 2010/06/21

Vivaldi (2D+H)
Vivaldi (5D)
Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

2010/06/18 2010/06/18 2010/06/19 2010/06/19 2010/06/20 2010/06/20 2010/06/21

0.01

0.02

0.05

0.10

0.20

0.50

1.00

2.00

5.00

Date/Time

R
el

at
iv

e
er

ro
r

Vivaldi (2D+H)
Vivaldi (5D)
Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

Figure 8.7.: Hierarchical Vivaldi performance during the first experiment phase. 18th to 21th

June 2010.

130

8.2. Results

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Date/Time

R
A

L
P

2010/08/29 2010/08/30

Vivaldi (2D+H)
Vivaldi (5D)
Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

2010/08/29 2010/08/29 2010/08/30 2010/08/30

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Date/Time

R
el

at
iv

e
er

ro
r

Vivaldi (2D+H)
Vivaldi (5D)
Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Date/Time

R
A

L
P

2010/11/17 2010/11/18 2010/11/19

Vivaldi (2D+H)
Vivaldi (5D)
Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

2010/11/18 2010/11/18 2010/11/19 2010/11/19

0.0

0.5

1.0

1.5

2.0

Date/Time

R
el

at
iv

e
er

ro
r

Vivaldi (2D+H)
Vivaldi (5D)
Hierarchical Vivaldi ee < 0.7
Hierarchical Vivaldi ee < 0.5
Hierarchical Vivaldi ee < 0.3

Figure 8.8.: From August 29th until November 18th all PlanetLab nodes were included into
the experiment.

131

8. Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay

The impact of PlanetLab

Stability is a critical feature for network coordinate systems. In a previous chapter
I measured stability of simulated coordinates using a change rate. During the Vuze
experiment I was able to measure the stability of a large scale system using the relative
error and RALP measures. Although only a small fraction of the seven million instal-
lations is online at each point in time, the Vuze network is without doubt very large
at any point of time during the experiment. Confronting that network with only 500
nodes from the PlanetLab testbed should not have a sizable effect on that network. To
investigate that question, the PlanetLab nodes that were previously used for testing and
bootstrapping purposes, were added to the active contributor list on October 28th. The
results in Figure 8.8 (top row) illustrate the impact of that addition. Both Vivaldi set-ups
experience disruptions higher than normal churn. Especially the 2D+Height variant
faces a drastic loss of accuracy. Hierarchical Vivaldi exhibit only a moderate reaction
both when using RALP or the relative error as measure. Vivaldi 5D increases in the
RALP measure from 0.96 to 1.2, which is a modest reaction. However it doesn’t reach a
RALP measure below 0.97 until the 3rd of October. The stability of Hierarchical Vivaldi
is unmatched during the whole experiment.

On November 18th all PlanetLab nodes were shut down. The impact of that action
is not reflected in the data (cf. Figure 8.8). It is reasonable, to conclude that that group
of nodes was not needed for the stabilization of the network, despite the constant
availability and well connected nature of these nodes. In contrast, the joining of a
larger group of nodes has a negative effect, once again despite their relative small size
compared to the rest of the network. The comparison with Lorch et al. [AL09] concludes
favorable. While they use GPS coordinates to produce good initial results, this setup
reuses roughly one months old coordinates from the end of the previous PlanetLab
activity. Although old coordinates provoke strong reactions in some Vivaldi settings,
the network as a whole adapts quickly to the disruption. When it took month in the
very first testing phase for all coordinates to adapt, the system here quickly returns to a
normal error rate. Finally, I conclude that Hierarchical Vivaldi is much more stable than
its non-hierarchical predecessors, which I consider an important benefit.

Htrae [AL09] claims to be superior for their GPS based initial seed of coordinates. From
the activation of the PlanetLab nodes, I learnt that using previously used coordinates
cuts the initial stabilisation period significantly until a reasonable accuracy is achieved.
However, whether any of the Vivaldi solutions or Htrae finds the global optimal solution
is neither certain for the present Vuze based evaluation or their XBox network. Both
testbeds lack a complete latency matrix that could assess the one or other claim.

132

8.2. Results

Conclusion

I draw several conclusions from the results of this large scale experiment:
First, considering the performance of Hierarchical Vivaldi, the results were superior

and met the expectations drawn from the simulation study. Throughout the entire time
period Hierarchical Vivaldi delivered results twice as good, during the PlanetLab-only
phase even three times as good results in comparison to the same non-hierarchical
configuration. Hierarchical Vivaldi is therefore an alternative for systems with highest
demands on prediction quality.

Second, as a matter of fact, the results also prove the most basic property of Hierar-
chical Vivaldi, the separation of nodes into well determined and vaguely determined
groups. During the entire period not one of the non-hierarchical configurations, or even
any of the well determined groups with a less picky threshold ee performed better than
a pickier configuration.

Third, my proposal proved to be more stable facing churn or massive joining of
vaguely determined nodes. While all non-hierarchical configurations got distracted by
a moderate join of 500 nodes the hierarchical variant detected those nodes as vaguely
determined and was able to deliver stable results.

Considering the non-hierarchical variants, there are also several observations. Espe-
cially Vivaldi 5D performed surprisingly good. The reason that performance could not
be assessed in simulations is the difference between the time period of the simulation
and the experiment. From the previous section we learnt, that it took Vivaldi 5D two
months to recover from the re-activation of PlanetLab nodes, therefore the better per-
formance "in the wild" is obvious, because both time periods differ by several orders of
magnitude.

The performance of the 2D+H Vivaldi was mediocre, however, considering the ex-
tremely low number of dimensions the results are reputable. Vivaldi 2D+H is unable to
tolerate nodes with coordinates that do not reflect an accurate position in the network.
The built-in error parameters of Vivaldi, that are related to the relative error are not able
to distinguish erroneous and well determined nodes. That effect is especially drastic, if
only two dimensions express the displacement. Even Vivaldi 5D suffers from that effect
judging from the same PlanetLab activation I described previously. However, there
may be situations where mediocre stability is tolerable, given the low overhead of three
dimensions.

To sum it up, all results are encouraging. The doubts in Vivaldi’s abilities to resolve
the structure of the underlying network better than at continental level deserve a re-
examination. This will happen in the next section.

133

8. Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay

8.2.2. Performance of Vivaldi-like systems

Analyzing the collected data showed that network coordinates can indeed reveal Internet
structures on a regional level.

Figure 8.9 shows the peers in U.S. university networks as seen from university-based
reporters at Santa Barbara, Urbana, and Chicago. The box plots show the distribution
of the measured and estimated RTTs for the states from west to east. The gray scale
indicates the number of reports, i. e. a black box is based on more reports than a light
gray box.

M
ea

su
re

d
R

TT
[m

s]

SW
 T

el
ev

is
io

n
So

ut
h

T
D

C
 F

in
la

nd
 S

ou
th

E
lis

a
So

ut
h

E
lis

a
E

as
t

E
lis

a
W

es
t

E
lis

a
O

ul
u

D
N

A
 S

ou
th

D
N

A
 W

es
t

Te
lia

So
ne

ra
 S

ou
th

Te
lia

So
ne

ra
 E

as
t

Te
lia

So
ne

ra
 W

es
t

Te
lia

So
ne

ra
 O

ul
u

C
SC

 S
ou

th

C
SC

 O
ul

u

0

50

100

150

200

250

300

E
st

im
at

ed
R

TT
[m

s]

SW
 T

el
ev

is
io

n
So

ut
h

T
D

C
 F

in
la

nd
 S

ou
th

E
lis

a
So

ut
h

E
lis

a
E

as
t

E
lis

a
W

es
t

E
lis

a
O

ul
u

D
N

A
 S

ou
th

D
N

A
 W

es
t

Te
lia

So
ne

ra
 S

ou
th

Te
lia

So
ne

ra
 E

as
t

Te
lia

So
ne

ra
 W

es
t

Te
lia

So
ne

ra
 O

ul
u

C
SC

 S
ou

th

C
SC

 O
ul

u

0

50

100

150

200

250

300

Figure 8.10.: Measured and estimated RTT from Oulu, Finland.

As one can see, the estimated RTT matches the measured RTT, even though the
estimated values are higher in general. Still, the estimation indicates the correct trend:
For example, peers in the East North Central region yield the best RTTs for the reporters
in Urbana and Chicago. The Californian peer is located at the most western position,
hence experiences rising RTTs to every other peer. The Vivaldi coordinates reflect this
accurately.

The situation is more difficult outside university networks. Figure 8.10, for example,
shows the peers in Finland as seen from a reporter in Oulu. Clearly the peers in the
CSC network at Oulu are the most preferable. The peers in the TDC, DNA, and CSC
networks in South Finland are also acceptable. The peers in the Elisa networks and those
in the Telia network at Oulu should better be avoided. In general, the RTT estimation
recommends good peers and avoids bad peers.

Typically, neither the autonomous system nor the geo-location are reliable indica-
tors for a peer’s performance. Figure 8.11 along with Table 8.2 shows the situation
for a reporter in the Kabel BW network in Deißlingen, Germany: Measurement and

134

8.2. Results
M

ea
su

re
d

R
TT

[m
s]

0

50

100

150
Santa Barbara, California

0

50

100

150
Urbana, Illinois

Pa
ci

fi
c

M
ou

nt
ai

n

W
es

t S
ou

th
 C

en
tr

al

W
es

t N
or

th
 C

en
tr

al

E
as

t N
or

th
 C

en
tr

al

E
as

t S
ou

th
 C

en
tr

al

So
ut

h
A

tl
an

ti
c

M
id

−
A

tl
an

ti
c

N
ew

 E
ng

la
nd

0

50

100

150
Chicago, Illinois

E
st

im
at

ed
R

TT
[m

s]

0

50

100

150
Santa Barbara, California

0

50

100

150
Urbana, Illinois

Pa
ci

fi
c

M
ou

nt
ai

n

W
es

t S
ou

th
 C

en
tr

al

W
es

t N
or

th
 C

en
tr

al

E
as

t N
or

th
 C

en
tr

al

E
as

t S
ou

th
 C

en
tr

al

So
ut

h
A

tl
an

ti
c

M
id

−
A

tl
an

ti
c

N
ew

 E
ng

la
nd

0

50

100

150
Chicago, Illinois

Figure 8.9.: Measured and estimated RTTs in US university networks

135

8. Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay

Country
Measured
RTT
[ms]

Estimated
RTT
[ms]

Germany 45 49
Switzerland 47 80

Poland 55 51
Netherlands 60 61

Austria 65 77
Finland 66 57

Bulgaria 69 69
France 80 101

UK 103 117
Russian Fed. 110 115

USA 184 199
Japan 314 318
India 342 362

Singapore 398 373
Australia 406 443

Table 8.1.: Average International RTTs as
seen from Deißlingen, Ger-
many.

Country
Measured
RTT
[ms]

Estimated
RTT
[ms]

Saarland 19 29
Mecklenburg V. 33 40
Hessen 39 48
Niedersachsen 39 46
Thuringen 41 45
Berlin 44 43
Bayern 46 47
Sachsen 62 71
Baden W. 64 82
Hamburg 67 78
NRW. 70 92
Bremen 73 94
Sachsen Anhalt 77 97
Schleswig Hol. 78 88
Brandenburg 82 88

Table 8.2.: Average national RTTs as seen
from Deißlingen, Germany.

estimation match quite well, but there is no clear correlation between RTT and region
or autonomous system. Even more interesting is the consultation of that node’s inter-
national measurements in Table 8.1. While both on a national and international scale
regions are well separated, there is an overlap between regions of Germany and neighbor
states for the European Union. Not only is Switzerland closer to Baden Württemberg
than Bavaria, even Amsterdam seems closer, compared to Nordrhein Westfalen. For
reasons of brevity a more complete version of the international and national table is
in the appendix, along with the number of clients per country (Table A.1). University
networks are different. They generally exhibit a good correlation between location and
RTT, a fact well known in literature [SSW10b].

Using universities as example serves well for showing the limits of a network coor-
dinate algorithm. In Figure 8.12 Californian Universities and their respective latencies
(left) measured from Santa Barbara. The figure is sorted from north to south. All median
RTT values settle at 11 milliseconds, however the variance of the RTT is high. In that
situation the algorithm is unable to come up with a prediction: The median values
of the prediction are three times higher than their actual counterparts. I did a further
investigation, to show that that performance is really an outcome of the variance in the
RTT values. Figure B.1 shows the same data, broken down at a month scale. It was
moved to the appendix for reasons of brevity. Clearly the prediction in January is just
as expected, judging from the RTT values on the left to the estimated values on the

136

8.2. Results
M

ea
su

re
d

R
TT

[m
s]

0

50

100

150

200

250

300 Deutsche Telekom AG

0

50

100

150

200

250

300 Arcor AG

Sa
ch

se
n

H
es

se
n

N
or

d
rh

ei
n

W
es

tf
al

en
B

re
m

en
B

ad
en

 W
ür

tt
em

be
rg

B
ra

nd
en

bu
rg

B
ay

er
n

T
hü

ri
ng

en
H

am
bu

rg
N

ie
d

er
sa

ch
se

n
Sa

ch
se

n
A

nh
al

t
R

he
in

la
nd

 P
fa

lz
B

er
lin

Sa
ar

la
nd

Sc
hl

es
w

ig
 H

ol
st

ei
n

M
ec

kl
en

bu
rg

 V
or

po
m

m
er

n
A

ll

0

50

100

150

200

250

300 Alice DSL

E
st

im
at

ed
R

TT
[m

s]

0

50

100

150

200

250

300 Deutsche Telekom AG

0

50

100

150

200

250

300 Arcor AG

Sa
ch

se
n

H
es

se
n

N
or

d
rh

ei
n

W
es

tf
al

en
B

re
m

en
B

ad
en

 W
ür

tt
em

be
rg

B
ra

nd
en

bu
rg

B
ay

er
n

T
hü

ri
ng

en
H

am
bu

rg
N

ie
d

er
sa

ch
se

n
Sa

ch
se

n
A

nh
al

t
R

he
in

la
nd

 P
fa

lz
B

er
lin

Sa
ar

la
nd

Sc
hl

es
w

ig
 H

ol
st

ei
n

M
ec

kl
en

bu
rg

 V
or

po
m

m
er

n
A

ll

0

50

100

150

200

250

300 Alice DSL

Figure 8.11.: Regional comparison of autonomous systems in Germany. Measurement from
Baden Würtemberg, Kabel BW.

137

8. Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay

right. However the other month lack measurements, or exhibit very imprecise latency
behavior, which the algorithm is clearly unable to cope with. This is one of the rare cases,
where an academic network exhibits high instabilities. Hence although it seems, that
Vivaldi failed to come up with a decent prediction, that figure clearly shows, that with
decent input data, Vivaldi is able to deliver such accuracy.

M
ea

su
re

d
R

TT
[m

s]

D
av

is

O
ak

la
nd

St
an

fo
rd

Sa
nt

a
C

ru
z

Sa
nt

a
B

ar
ba

ra

R
iv

er
si

d
e

L
os

 A
ng

el
es

Ir
vi

ne

Sa
n

D
ie

go

0

10

20

30

40

50
Californian Universities

E
st

im
at

ed
R

TT
[m

s]

D
av

is

O
ak

la
nd

St
an

fo
rd

Sa
nt

a
C

ru
z

Sa
nt

a
B

ar
ba

ra

R
iv

er
si

d
e

L
os

 A
ng

el
es

Ir
vi

ne

Sa
n

D
ie

go

0

10

20

30

40

50
Californian Universities

Figure 8.12.: Measured and estimated RTT between Californian Universities from north to
south.

When separating on the AS level, one expects, that traffic under provider control will
be prioritised among other traffic. This is confirmed by Figure 8.13 on page 141. Each of
the first three boxplots represent the RTT of the biggest ASes measured from that node.
The box labeled "Kabel Deutschland" is the node’s provider. However, although the
median values of Kabel Deutschland are in the lowest range of that group, it has exhibits
a remarkably high variance, which is unexpected. The effect is especially drastic, as Kabel
Deutschland is a big national provider in Germany. In the light of Google’s Glasnost
project, which tested residential Internet connections for signs of P2P traffic shaping
[MA11], the figure deserves attention. The Glasnost tool and respective publication
accused Kabel Deutschland of traffic shaping. And indeed a quick comparison with
Figure 8.14 reveals higher variance in the Kabel Deutschland network, compared to the
Kabel BW network, which although the name might suggest it, is not affiliated with
Kabel Deutschland. However that second data comes from a peer in Baden Württemberg,
unfortunately there was no second reporting peer from Mecklenburg Vorpommern.

The most important property of network coordinate algorithms is their ability to
recommend for or against a peer. Table 8.3 shows this feature in detail. It contains the
18 most active reporters. Assume a peer probes one after another the candidates from

138

8.2. Results

Best Best 3 3 of 5 Best 6 6 of 9 Best 9

Stevenage, UK 1 5 5 20 20 133
Kirkland, WA 2 11 11 68 12 68
Arlington, TX 2 12 7 44 12 44
Chicago, IL 2 13 6 40 13 52
Oak Creek, WI 4 80 60 80 74 93
Meno. Falls, WI 5 13 8 31 23 69
Sofia, Bulgaria 6 6 5 17 6 305
Deissling, Germany 6 12 10 30 12 121
Santa Barbara, CA 7 11 7 26 11 26
Rostock, Germany 9 129 38 129 38 129
Oulu, Finland 17 20 17 35 17 35
Vienna, Austria 31 31 15 73 30 73
Austin, TX 36 36 27 188 36 188
Saint Austell, UK 120 120 38 120 72 329
Almere, Netherlands 185 213 185 225 185 295
Geelong, Australia 213 213 107 213 126 318
Urbana, IL 214 285 176 285 179 332
Odessa, TX 469 469 88 469 101 471

Table 8.3.: Number of probes to find the RTT-wise best peers.

a sorted recommendation list, which is created by ranking the peers according to their
estimated RTT. The table gives the number of candidates that the peer must probe to
find the best, the three best, three out of the five best, etc. For more than half of the
listed nodes, less than ten probes suffice to find the globally best peer; and about 20
probes suffice to find six of the nine best peers. However there are situations, where a
misidentification of the best peer leads to an unacceptable high number of measurements.
For example the peer in Odessa, Texas needs 469 probes, to identify it’s closest peer.
However, this does not reliably forecast its overall performance. The third best peer
is identified as second best peer, hence is found in two probes, as the following table
excerpt (sorted by estimated latency) shows.

Position ID Estimated RTT Measured RTT
1 88494483e2cb5d431 81 112
2 5b0e00bc3b29d550a 99 92 (third best)
3 eb7e10440c1594239 100 105

\cdot \cdot \cdot
469 852cc323d67d61663 172 87 (best peer)

As a focus on the exact list of the n best peers is not necessarily the best measure,
we introduced the candidate rank in [EF11]. Hence Figure 8.15 shows that average
RTT overhead of a peer when it connects to the k best ranked candidates. Even though

139

8. Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay

the reporter at Urbana finds its globally optimal peer only at the 214th rank in the
recommendation list (cf. Table 8.3), it will have only a negligible average RTT overhead
of less than 5 milliseconds when it just connects to the five best ranked candidates. In
general, the overhead will be 5 - 15%.

0 5 10 15 20 25

0

5

10

15

Candidate rank

R
T

T
 o

ve
rh

ea
d

 [m
s]

Sofia, Bulgaria
Oulu, Finland
Deisslingen, Germany
Santa Barbara, California
Urbana, Illinois
Chicago, Illinois

Figure 8.15.: Absolute RTT penalty when using the k best-ranked peers.

Figure 8.16 shows how many of the k best ranked candidates are located in the same
region or AS as the peer. The figure shows the average of the 18 most active reporters.
Clearly a network coordinate algorithm is able to create locality in more than 60% of all
settings.

0 5 10 15 20 25

40

50

60

70

80

Candidate rank

lo
ca

l p
ee

rs
 [%

]

Same AS
Same Region
Both

Figure 8.16.: Cumulative fraction of peers in the same region or AS.

140

8.2. Results
M

ea
su

re
d

R
TT

[m
s]

0

50

100

150

200

250

300 Niedersachsen

0

50

100

150

200

250

300 Schleswig Holstein

D
eu

ts
ch

e
Te

le
ko

m
 A

G

A
rc

or
 A

G

K
ab

el
 D

eu
ts

ch
la

nd

A
lic

e
D

SL A
ll

0

50

100

150

200

250

300 Bayern

E
st

im
at

ed
R

TT
[m

s]

0

50

100

150

200

250

300 Niedersachsen

0

50

100

150

200

250

300 Schleswig Holstein

D
eu

ts
ch

e
Te

le
ko

m
 A

G

A
rc

or
 A

G

K
ab

el
 D

eu
ts

ch
la

nd

A
lic

e
D

SL A
ll

0

50

100

150

200

250

300 Bayern

Figure 8.13.: Comparison of autonomous systems at regional scale. Measurement from
Mecklenburg Vorpommern, Kabel Deutschland

141

8. Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay

M
ea

su
re

d
R

TT
[m

s]

0

50

100

150

200

250

300 Baden Württemberg

0

50

100

150

200

250

300 Nordrhein Westfalen

D
eu

ts
ch

e
Te

le
ko

m
 A

G

A
rc

or
 A

G

A
lic

e
D

SL

K
ab

el
 D

eu
ts

ch
la

nd A
ll

0

50

100

150

200

250

300 Bayern

E
st

im
at

ed
R

TT
[m

s]

0

50

100

150

200

250

300 Baden Württemberg

0

50

100

150

200

250

300 Nordrhein Westfalen

D
eu

ts
ch

e
Te

le
ko

m
 A

G

A
rc

or
 A

G

A
lic

e
D

SL

K
ab

el
 D

eu
ts

ch
la

nd A
ll

0

50

100

150

200

250

300 Bayern

Figure 8.14.: Comparison of autonomous systems at regional scale. Measurement from
Baden Württemberg, Kabel BW

142

9. Conclusion

In this thesis, I have presented Hierarchical Vivaldi, a new algorithm that supports the
selection of peers in proximity aware decentral peer-to-peer overlay networks. The
algorithm is based on the widely used Vivaldi algorithm. It optimizes Vivaldi’s peer
selection process with an error estimation, which is derived from a novel concept of
using a hierarchical embedding of measured latencies and their respective embedding
errors. The algorithm’s fundamental contribution is that it considers only those peers
whose estimated prediction error is below a given threshold. The resulting accuracy
outperforms the non-hierarchical approaches by an order of magnitude.

I presented an in-depth analysis of Internet latency prediction based on the Vivaldi and
Pyxida algorithm. In a simulation study, I analyzed the influence of various parameter
combinations and several sets of Internet traffic traces on these algorithms. To conduct
the study, I created a simulator using the components of the IGOR ecosystem. From
the results, I found that most of the parameters that were recommended in the original
papers are a magnitude too high. They adapt quickly to changes in the network and
therefore issue accurate predictions early. But by choosing more conservative parameters
coordinates adapt fast and do not exhibit huge instabilities as a response to disruptions
in latencies. Therefore I recommended modified parameters that improve the algorithms’
performance significantly.

Using the parameters deduced from my study I conducted a simulation study on my
Hierarchical Vivaldi algorithm. The results were more accurate than the non-hierarchical
approaches by an order of magnitude. Even when I compared a 22 dimensional Vivaldi
to a 5 dimensional Hierarchical Vivaldi (in the top space, 3 dimensions in the lower
spaces), the results of my proposal were still more accurate. By including the algorithm
in the popular Vuze client, I reassured the results from the simulation study based on
the performance of 7 million actual installations. Clearly Hierarchical Vivaldi is more
accurate than Vivaldi, and outperforms Vivaldi during the whole measurement. Because
it identifies peers with high errors, it is more robust to a huge amount of peers joining
the system with vaguely determined coordinates.

Finally, I re-evaluated the popular claim, that Vivaldi based network coordinate
systems can only resolve the structure of the underlying network to a continental level.
Using the massive amount of measurement data from the evaluation study, I was able to
invalidate that claim. The performance is much better than popular believed. Predictions
that resolve structures to a regional level are possible. For example, as demonstrated
one can clearly resolve the distances in the US from east to west. I also explored the

143

9. Conclusion

limitations of the algorithm. For example I tried to resolve Californian Universities from
north to south. These results were imprecise. Hence I evaluated smaller time frames
of the same data. That revealed that the real culprit were large periods of flaws in the
input RTT data, which was reflected in the prediction. Hence another contribution of my
thesis is the retrieval of the network coordinates’ honor, that network coordinates were
prematurely dismissed as not being helpful in the construction of peer-to-peer overlay
networks. It demonstrates that Vivaldi-like network coordinates can indeed successfully
recommend beneficial peers, even though the application layer round trip times of many
peers vary largely.

Thus I conclude that the goals of this thesis have been met: The primary goal was
to improve the overlay’s awareness of its underlay. Hierarchical Vivaldi improves
the prediction quality of the Vivaldi algorithm by an order of magnitude. During
the development of that algorithm I analyzed the existing algorithms in-depth. All
simulations were carried out using components of the IGOR ecosystem, which I extended
to include simulation capabilities. Another part of the ecosystem is the application level
library, that supports complex endpoint operations. With that ecosystem I provide a
toolset to developers to foster the creation of P2P applications, which was also a goal of
my thesis.

Future Work

Even though my thesis thoroughly studied Vivaldi and Hierarchical Vivaldi, further
analysis and improvements of Hierarchical Vivaldi are possible. First of all the hierar-
chical extension can be deeper integrated into the Vivaldi algorithm. Currently Vivaldi
uses its local and the remote error to compute the damping factor \delta , which controls the
actual adjustment of the node’s coordinates. Generally, I found that the error estimator
ee is much more accurate than Vivaldi’s built-in local error. In all simulations ee was
able to effectively separate the well determined nodes from the vaguely determined
ones. Hence computing the damping factor \delta depending on ee will lead to a coordinate
adjustment in a well determined amount.

Several publications advocate different spaces for the Vivaldi embedding. The hyper-
bolic space is evaluated in [LS08] with mixed results. The authors propose a heuristic
ThresholdHyperbolic, that uses hyperbolic coordinates for latency close and Euclidean
coordinates for distant peers. Under the assumption that the relative error that is embed-
ded in spaces \wp 0 is significant smaller than the actual RTT using a hyperbolic embedding
in the spaces below \wp 0 might yield an improved performance or reduce the resource
demand of Hierarchical Vivaldi. An improvement in prediction quality could allow to
use Tmax = 1, which reduces the overhead to only two additional spaces.

144

A. Extended Tables

Country Clients Measured
RTT [ms]

Estimted
ETT [ms]

Germany 4060 45 49
Switzerland 227 47 80

Poland 619 55 51
Hungary 402 56 60
Belgium 629 58 61

Netherlands 406 60 61
Austria 362 65 77
Finland 164 66 57

Denmark 125 68 67
Bulgaria 74 69 69
Romania 371 71 68
Sweden 456 77 78

Italy 2074 79 86
France 1128 80 101
Spain 633 93 102

UK 3763 103 117
Russian Fed. 993 110 115

Greece 648 112 141
Portugal 558 118 139
Canada 1298 178 194

USA 6545 184 199
Turkey 218 222 288

Malaysia 327 274 361
Mexico 241 302 366

Brazil 576 308 357
Japan 236 314 318
India 3780 342 362

South Africa 287 373 516
Singapore 248 398 373
Australia 1134 406 443

Table A.1.: Average International RTTs as seen from Deißlingen, Germany (extended ver-
sion).

I

A. Extended Tables

Country Clients Measured
RTT [ms]

Estimted
ETT [ms]

Saarland 37 19 29
Mecklenburg V. 55 33 40
Hessen 255 39 48
Niedersachsen 212 39 46
Thuringen 132 41 45
Berlin 280 44 43
Bayern 381 46 47
Sachsen 182 62 71
Baden W. 430 64 82
Hamburg 309 67 78
NRW. 1036 70 92
Bremen 159 73 94
Sachsen Anhalt 58 77 97
Schleswig Hol. 180 78 88
Brandenburg 30 82 88

Table A.2.: Average national RTTs as seen from Deißlingen, Germany (extended version).

II

B. Extended Figures

III

B. Extended Figures

O
ct

ob
er

S
ep

te
m

be
r

A
ug

us
t

Ju
ly

Measured RTT [ms]

0

10

20

30

40

50
Santa Barbara, California

0

10

20

30

40

50
Santa Barbara, California

0

10

20

30

40

50
Santa Barbara, California

D
av

is

O
ak

la
nd

St
an

fo
rd

Sa
nt

a
C

ru
z

Sa
nt

a
B

ar
ba

ra

R
iv

er
si

d
e

L
os

 A
ng

el
es

Ir
vi

ne

Sa
n

D
ie

go

0

10

20

30

40

50
Santa Barbara, California

O
ct

ob
er

S
ep

te
m

be
r

A
ug

us
t

Ju
ly

Estimated RTT [ms]

0

10

20

30

40

50
Santa Barbara, California

0

10

20

30

40

50
Santa Barbara, California

0

10

20

30

40

50
Santa Barbara, California

D
av

is

O
ak

la
nd

St
an

fo
rd

Sa
nt

a
C

ru
z

Sa
nt

a
B

ar
ba

ra

R
iv

er
si

d
e

L
os

 A
ng

el
es

Ir
vi

ne

Sa
n

D
ie

go

0

10

20

30

40

50
Santa Barbara, California

Figure B.1.: Californian universities from North to South. Timeline of measured (left) and
estimated (right) RTTs.

IV

List of Tables

4.1. Service Separation Complexity comparison [DKF08]. 34

8.1. Average International RTTs as seen from Deißlingen, Germany. 136
8.2. Average national RTTs as seen from Deißlingen, Germany. 136
8.3. Number of probes to find the RTT-wise best peers. 139

A.1. Average International RTTs as seen from Deißlingen, Germany (extended
version). I

A.2. Average national RTTs as seen from Deißlingen, Germany (extended
version). II

V

List of Algorithms

1. The Central Vivaldi Algorithm [CDK+03]. 55
2. The Vivaldi Algorithm [CDK+03]. 58
3. The Pyxida Algorithm [LGS07]. 61
4. Hierarchical Vivaldi Algorithm. 77
5. Computation of the error window. 78

VII

List of Figures

2.1. The worldwide submarine cable system in 2008 [Tel]. 7
2.2. AS connectivity illustrated by the cadia project [DKR05]. 9
2.3. RTTs during a continuous measurement between two PlanetLab nodes. 10
2.4. Uplink buffer size, inferred by ICSI Netalyzr [KWNP10]. 12

3.1. An example Gnutella network. 23
3.2. The Kademlia binary tree. 26
3.3. A sample Chord network [SMK+01]. 27
3.4. The BitTorrent System. 29
3.5. The difference between application and network latency. 30

4.1. Connection Reversal and Relaying as means to circumvent NAT. 37
4.2. Simulated network topologies. 39
4.3. libdht and libigor in the IGOR Ecosystem. 41
4.4. The module concept of libdht. 42
4.5. IGOR Application Interface: Architecture Overview. 44
4.6. Multicast traffic from 100 nodes created in the built-in simulator. 44

5.1. IDMaps lack of client position information. 51
5.2. Vivaldi’s spring concept illustrated. 54
5.3. The local error of a simulated network. 57
5.4. Single- and multiple-hop violations of the triangle inequality. 60
5.5. Spherical Coordinates. 62
5.6. Meridian closest node discovery [WSS05]. 64
5.7. An example Ono vector resolved in four different AS. 66
5.8. A simulated Gnutella network with and without proximity enhancements. 68

6.1. Construction of Hierarchical Embedding Tmax = 2. 73
6.2. Illustration of the error estimation process. 75
6.3. The Peer selection process. 76

7.1. The computations by the RALP measure. 81
7.2. The impact of small and high errors on the RALP indicator. 82
7.3. RTT distribution in all data sets. 83
7.4. Analysis of the dynamic data trace. 85

IX

List of Figures

7.5. Triangle inequality violations impact on Vivaldi’s performance. Left:
Azureus data, Right: TIV-cleared Azureus data. 87

7.6. Single-hop (left) and multi-hop (right) violations of the triangle inequality
using negative heights. 88

7.7. The efficiency of a network coordinate based Meridian algorithm. 89
7.8. Various Neighbors: Relative Error (left) and RALP (right) comparison (CA). 90
7.9. Median error for Vivaldi simulations using contiunous adaption. Top:

Azureus data. Middle: MIT King. Bottom: King-Blog data sets. 91
7.10. Stability for Vivaldi simulations using contiunous adaption. Top: Azureus

data. Middle: MIT King. Bottom: King-Blog data sets. 92
7.11. Median error for Vivaldi simulations using uniform adaption. Top:

Azureus data. Middle: MIT King. Bottom: King-Blog data sets. 93
7.12. Stability for Vivaldi simulations using uniform adaption. Top: Azureus

data. Middle: MIT King. Bottom: King-Blog data sets. 94
7.13. Median error for Pyxida simulations using continous adaption. Top:

Azureus data. Middle: MIT King. Bottom: King-Blog data sets. 96
7.14. Stability for Pyxida simulations using contiunous adaption. Top: Azureus

data. Middle: MIT King. Bottom: King-Blog data sets. 97
7.15. Median error for Pyxida simulations using uniform adaption. Top:

Azureus data. Middle: MIT King. Bottom: King-Blog data sets. 98
7.16. Stability for Pyxida simulations using uniform adaption. Top: Azureus

data. Middle: MIT King. Bottom: King-Blog data sets. 99
7.17. Comparison of Vivaldi and Pyxida using the RALP measure. 101
7.18. Median error for dynamic trace simulations, using a RTT median filter.

Top: Vivaldi algorithm. Bottom: Pyxida algorithm. 103
7.19. Comparison of the best performing Vivaldi and Pyxida set ups. 104
7.20. Stability for dynamic trace simulations, using a RTT median filter. Top:

Vivaldi algorithm. Bottom: Pyxida algorithm. 105
7.21. Median error for dynamic trace simulations, not using a RTT median filter.

Top: Vivaldi algorithm. Bottom: Pyxida algorithm. 106
7.22. Stability for dynamic trace simulations, not using a RTT median filter. Top:

Vivaldi algorithm. Bottom: Pyxida algorithm. 107
7.23. RALP for Vivaldi (left) and Pyxida (right) for the dynamic data trace. . . 108
7.24. Comparison of Hierarchical Vivalid and Hierarchical Pyxida using the

Azureus data set. Left: Percent of nodes in the well determined group G1.
Right: RALP values for well determined nodes. 110

7.25. Relative error for well determined (left) and vaguely determined node
pairs. Azureus data set. 111

7.26. Comparison of Hierarchical Vivalid and Hierarchical Pyxida using the
King-Blog set. Left: Percent of nodes in the well determined group G1.
Right: RALP values for well determined nodes. 112

X

List of Figures

7.27. Relative error for well determined (left) and vaguely determined node
pairs. King-Blog data set. 113

7.28. Relative error (left), RALP (right) snapshots at simulation end. 115
7.29. Comparison of Hierarchical Vivalid and Hierarchical Pyxida using the

dynamic data set. Left: Percent of nodes in the well determined group G1.
Right: RALP values for well determined nodes. 116

7.30. Relative error for well determined (left) and vaguely determined node
pairs. Dynamic data set. 117

7.31. Relative application level penalty (left) and relative embedding error (right).118
7.32. Fraction of well determined node pairs (measurement). 119

8.1. Total downloads of the final plug-in version. 123
8.2. Absolute number of Peers contributing statistics. 125
8.3. Percent of nodes in the well determined group G1. 126
8.4. RALP values during the entire experiment. 127
8.5. ECDF RALP values during the entire experiment (left) compared to the

final experiment month (right). 128
8.6. Relative error boxplots (top) and group size (bottom) during final experi-

ment month. 129
8.7. Hierarchical Vivaldi performance during the first experiment phase. 18th

to 21th June 2010. 130
8.8. From August 29th until November 18th all PlanetLab nodes were included

into the experiment. 131
8.10. Measured and estimated RTT from Oulu, Finland. 134
8.9. Measured and estimated RTTs in US university networks 135
8.11. Regional comparison of autonomous systems in Germany 137
8.12. Measured and estimated RTT between Californian Universities from

north to south. 138
8.15. Absolute RTT penalty when using the k best-ranked peers. 140
8.16. Cumulative fraction of peers in the same region or AS. 140
8.13. Comparison of autonomous systems at regional scale. Mecklenburg

Vorpommern. 141
8.14. Comparison of autonomous systems at regional scale: Baden Württemberg.142

B.1. Californian universities from North to South. Timeline of measured (left)
and estimated (right) RTTs. IV

XI

Bibliography

[AEHF08] Bernhard Amann, Benedikt Elser, Yaser Houri, and Thomas Fuhrmann. Ig-
orfs: A distributed p2p file system. In Proceedings of the P2P’08: Proceedings
of the 8th IEEE International Conference on Peer to Peer Computing, Aachen,
Germany, September 8 – 11, 2008. IEEE Computer Society.

[AFS07] Vinay Aggarwal, Anja Feldmann, and Christian Scheideler. Can ISPS
and P2P users cooperate for improved performance? ACM SIGCOMM
Computer Communication Review, 37(3):29–40, 2007.

[AKR+05] M. Adler, R. Kumar, K. Ross, D. Rubenstein, T. Suel, and D.D. Yao. Op-
timal peer selection for p2p downloading and streaming. In INFOCOM
2005. 24th Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, volume 3, pages 1538 – 1549 vol. 3, March 2005.

[AL09] Sharad Agarwal and Jacob R. Lorch. Matchmaking for online games and
other latency-sensitive p2p systems. ACM SIGCOMM Computer Communi-
cation Review, 39(4):315–326, 2009.

[AZ] PlanetLab-to-Azureus Latency Trace in Matrix Form (not augmented),
http://www.eecs.harvard.edu/~syrah/nc, accessed 19. Novem-
ber 2011.

[BBB11] Steven Bauer, Robert Beverly, and Arthur Berger. Measuring the state
of ecn readiness in servers, clients, and routers. In Proceedings of the
11th ACM SIGCOMM Conference on Internet Measurement, IMC ’11, Berlin,
GermanACMy, November 2011. ACM.

[Bel10] David Belson. Akamai state of the internet report, q4 2009. SIGOPS Oper.
Syst. Rev., 44:27–37, August 2010.

[Ber] Thomas Bernard. Miniupnp project homepage. http://miniupnp.
free.fr/. Accessed 12.04.2010.

[BND10] A. Bulkowski, E. Nawarecki, and A. Duda. Indexing and searching learn-
ing objects in a peer-to-peer network. In Education Engineering (EDUCON),
2010 IEEE, pages 1665 –1670, April 2010.

XIII

http://www.eecs.harvard.edu/~syrah/nc
http://miniupnp.free.fr/
http://miniupnp.free.fr/

Bibliography

[CB08] David R. Choffnes and Fabián E. Bustamante. Taming the torrent: A
practical approach to reducing cross-ISP traffic in peer-to-peer systems.
ACM SIGCOMM Computer Communication Review, 38(4):363–374, 2008.

[CB09] David R. Choffnes and Fabian B. Bustamante. What’s Wrong with Network
Positioning and Where Do We Go From Here? Technical Report NW-EECS-
09-03, North Western University, 2009.

[CB10] David R. Choffnes and Fabian E. Bustamante. Pitfalls for testbed eval-
uations of internet systems. ACM SIGCOMM Computer Communication
Review, 40:43–50, April 2010.

[CCL+04] Rui Castro, Mark Coates, Gang Liang, Robert Nowak, and Bin Yu. Net-
work tomography: recent developments. Statistical Science, 19:499–517,
2004.

[CDK+03] Russ Cox, Frank Dabek, Frans Kaashoek, Jinyang Li, and Robert Morris.
Practical, distributed network coordinates. In Proceedings of the Second
Workshop on Hot Topics in Networks (HotNets-II), Cambridge, Massachusetts,
November 2003. ACM SIGCOMM.

[CDS74] V. Cerf, Y. Dalal, and C. Sunshine. Specification of Internet Transmission
Control Program. RFC 675, December 1974.

[Che96] Stuart Cheshire. Latency and the quest for interactivity. White paper,
University of Stanford, Novemver 1996.

[CHM+02] Ian Clarke, Theodore W. Hong, Scott G. Miller, Oskar Sandberg, and
Brandon Wiley. Protecting Free Expression Online with Freenet. IEEE
Internet Computing, 6(1):40–49, 2002.

[CHNY02] Mark Coates, Alfred Hero, Robert Nowak, and Bin Yu. Internet tomogra-
phy. IEEE Signal Processing Magazine, 19:47–65, 2002.

[Cis10] Cisco Systems. Cisco Visual Networking Index: Forecast and Methodology,
2009-2014, June 2010.

[CKV10] L. Cavedon, C. Kruegel, and G. Vigna. Are BGP Routers Open To Attack?
An Experiment. In Proceedings of the iNetSec Conference, Sophia, Bulgaria,
March 2010.

[CLL+99] James Cowie, Hongbo Liu, Jason Liu, David Nicol, and Andy Ogielski.
Towards realistic million-node internet simulations. In International Confer-
ence on Parallel and Distributed Processing Techniques and Applications, June
1999.

XIV

Bibliography

[CLY+09] Rubén Cuevas, Nikolaos Laoutaris, Xiaoyuan Yang, Georgos Siganos, and
Pablo Rodriguez. Deep diving into bittorrent locality. In Proceedings of
the 5th international student workshop on Emerging networking experiments
and technologies, Co-Next Student Workshop ’09, pages 7–8, New York, NY,
USA, 2009. ACM.

[Coh03] Bram Cohen. Incentives Build Robustness in BitTorrent. In Proc. of the
Workshop on Economics of Peer-to-Peer Systems, Berkeley, USA, May 2003.

[Com] OMNeT++ Community. Omnet++ network simulation framework. http:
//www.omnetpp.org/, accessed 19. November 2011.

[Cro07] Jon Crowcroft. Net neutrality: the technical side of the debate: a white
paper. ACM SIGCOMM Computer Communication Review, 37:49–56, January
2007.

[CRR+05] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker, and
J. Hellerstein. A case study in building layered DHT applications. ACM
SIGCOMM Computer Communication Review, 35(4):108, 2005.

[CvdGLR10] C. Contavalli, W. van der Gaast, S. Leach, and D. Rodden. Client IP
information in DNS requests. Internet-Draft draft-vandergaast-edns-client-
ip-01, Internet Engineering Task Force, May 2010. Work in progress.

[CvdGLR11] C. Contavalli, W. van der Gaast, S. Leach, and D. Rodden. Client subnet
in DNS requests. Internet-Draft draft-vandergaast-edns-client-subnet-00,
Internet Engineering Task Force, January 2011. Work in progress.

[CWS+09] Yang Chen, Xiao Wang, Xiaoxiao Song, Eng Keong Lua, Cong Shi, Xiaohan
Zhao, Beixing Deng, and Xing Li. Phoenix: Towards an accurate, practical
and decentralized network coordinate system. In Proceedings of the 8th
International IFIP-TC 6 Networking Conference, NETWORKING ’09, pages
313–325, Berlin, Heidelberg, 2009. Springer-Verlag.

[DCKM04] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi:
A decentralized network coordinate system. In Proceedings of the ACM
SIGCOMM ’04 Conference, Portland, Oregon, August 2004.

[DHGS07] Marcel Dischinger, Andreas Haeberlen, Krishna P. Gummadi, and Stefan
Saroiu. Characterizing Residential Broadband Networks. In Proceedings of
the 7th ACM SIGCOMM Conference on Internet Measurement (IMC’07), San
Diego, CA, USA, October 2007.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly

XV

http://www.omnetpp.org/
http://www.omnetpp.org/

Bibliography

available key-value store. ACM SIGOPS Operating Systems Review, 41:205–
220, 2007.

[DKF08] Pengfei Di, Kendy Kutzner, and Thomas Fuhrmann. Providing KBR
service for multiple applications. In The 7th International Workshop on
Peer-to-Peer Systems (IPTPS ’08), St. Petersburg, U.S., February 2008.

[DKR05] X. Dimitropoulos, D. Krioukov, and G. Riley. Revisiting Internet AS-level
Topology Discovery. In Passive and Active Network Measurement Work-
shop (PAM), pages 177–188, Boston, MA, Mar 2005. PAM 2005. Illustra-
tion taken from http://www.caida.org/research/topology/as_
core_network/.

[DMG+10] Marcel Dischinger, Massimiliano Marcon, Saikat Guha, Krishna P. Gum-
madi, Ratul Mahajan, and Stefan Saroiu. Glasnost: Enabling End Users to
Detect Traffic Differentiation. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2010.

[DMMP09] John R. Douceur, James W. Mickens, Thomas Moscibroda, and Debmalya
Panigrahi. Thunderdome: discovering upload constraints using decen-
tralized bandwidth tournaments. In Proceedings of the 5th international
conference on Emerging networking experiments and technologies, CoNEXT ’09,
pages 193–204, New York, NY, USA, 2009. ACM.

[DMMP10] J.R. Douceur, J. Mickens, T. Moscibroda, and D. Panigrahi. Collaborative
measurements of upload speeds in p2p systems. In INFOCOM, 2010
Proceedings IEEE, pages 1 –9, March 2010.

[Dou] William L. Dougherty. It’s still the latency stupid. http://www.
edgeblog.net/2007/its-still-the-latency-stupid/.

[DV09] Dominik Vallendor. Umsetzung und Evaluation des Peer-to-Peer-Overlay-
Netzes IGOR in der Netzwerk-Simulations-Umgebung SSFNet, 2009.
Diplomarbeit, Universität Karlsruhe.

[DZD+03] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica.
Towards a Common API for Structured Peer-to-Peer Overlays. In Proceed-
ings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03),
Berkeley, CA, USA, 2003.

[EF11] Benedikt Elser and Thomas Fuhrmann. Here is Your Peer! – Locating
Peers on a Regional Level with Network Coordinates. In Proceedings of the
P2P’11: Proceedings of the 11th IEEE International Conference on Peer to Peer
Computing, Kyoto, Japan, August 2011.

XVI

http://www.caida.org/research/topology/as_core_network/
http://www.caida.org/research/topology/as_core_network/
http://www.edgeblog.net/2007/its-still-the-latency-stupid/
http://www.edgeblog.net/2007/its-still-the-latency-stupid/

Bibliography

[EFF09] Benedikt Elser, Andreas Förschler, and Thomas Fuhrmann. Tuning Vivaldi:
Achieving Increased Accuracy and Stability. In Proceedings of the Fourth
International Workshop on Self-Organizing Systems, Zurich, Switzerland,
December 2009.

[EFF10] Benedikt Elser, Andreas Förschler, and Thomas Fuhrmann. Hierarchical
Vivaldi – Cherry Picking on Network Coordinates. In Proceedings of the
P2P’10: Proceedings of the 10th IEEE International Conference on Peer to Peer
Computing, Delft, The Netherlands, August 2010.

[Els11] Benedikt Elser. Vuze 2010/11 Dataset, 2011. http://www.so.in.tum.
de/~elser/Vuze-Data.html.

[ES09] J. Brutlag E. Schurman. The user and business impact of server delays,
additional bytes, and http chunking in web search, June 2009. Presented
at the O’Reilly Web Performance & Operations Converence.

[FJ93] Sally Floyd and Van Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on Networking, 1:397–413,
August 1993.

[FJJ+01] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt,
and Lixia Zhang. IDMaps: A Global Internet Host Distance Estimation
Service. IEEE/ACM Transactions on Networking, 9(5):525–540, 2001.

[Fra11] Benedikt Fraunhofer. Entwicklung eines Azureus-Plugins zur Laten-
zvorhersage mit hierarchischen Netzwerkkordinaten, 2011. Diplomarbeit,
Technische Universität München.

[Fö09] Andreas Förschler. Einbettung von Peer-to-Peer-Netzwerkgraphen zur
Vorhersage von Paketumlaufzeiten, 2009. Diplomarbeit, Universität Karl-
sruhe.

[Get11] Jim Gettys. Bufferbloat: Dark buffers in the internet. IEEE Internet Comput-
ing, 15:96, 95, 2011.

[GF05] Saikat Guha and Paul Francis. Characterization and measurement of tcp
traversal through nats and firewalls. In Proceedings of the 5th ACM SIG-
COMM Conference on Internet Measurement, IMC ’05, pages 18–18, Berkeley,
CA, USA, 2005. ACM.

[GMG+04] K.P. Gummadi, H.V. Madhyastha, S.D. Gribble, H.M. Levy, and D. Wether-
all. Improving the reliability of internet paths with one-hop source routing.
In Proceedings of the 6th conference on Symposium on Opearting Systems Design
& Implementation-Volume 6, pages 13–13. USENIX Association, 2004.

XVII

http://www.so.in.tum.de/~elser/Vuze-Data.html
http://www.so.in.tum.de/~elser/Vuze-Data.html

Bibliography

[GN11] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark buffers in the internet.
ACM Queue: Tomorrow’s Computing Today, 9:40:40–40:54, November 2011.

[GSG02] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: estimating latency
between arbitrary internet end hosts. In IMW ’02: Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment, pages 5–18. ACM, 2002.

[Hud08] Stefan Hudelmaier. Realisierung des Extensible Messaging and Pres-
ence Protocol (XMPP) auf Basis eines strukturierten Overlay Netzes, 2008.
Diplomarbeit, Technische Universität München.

[HUKC+11] Aymen Hafsaoui, Guillaume Urvoy-Keller, Denis Collange, Matti Siekki-
nen, and Taoufik En-Najjary. Understanding the impact of the access
technology: the case of web search services. In Proceedings of the Third
international conference on Traffic monitoring and analysis, TMA’11, pages
37–50, Berlin, Heidelberg, 2011. Springer-Verlag.

[Inca] OpenDNS Inc. Global internet speedup. http://www.
afasterinternet.com/.

[Incb] Vuze Inc. Vuze plug in api. http://wiki.vuze.com/w/Plugin_
Development_Guide.

[Int11] CBS Interactive. Cnet download.com (website), 2011. http://download.
cnet.com/.

[Jou] The Wall Street Journal. Rush to fix quake-damaged un-
dersea cables. http://online.wsj.com/article/
SB10001424052748704893604576199952421569210.html.

[KCF05] Kendy Kutzner, Curt Cramer, and Thomas Fuhrmann. A self-organizing
job scheduling algorithm for a distributed vdr. In Workshop "Peer-to-Peer-
Systeme und -Anwendungen", 14. Fachtagung Kommunikation in Verteilten
Systemen (KiVS 2005), Kaiserslautern, Germany, 2005.

[KF06] Kendy Kutzner and Thomas Fuhrmann. The IGOR file system for efficient
data distribution in the GRID. In Proceedings of the Cracow Grid Workshop
CGW 2006, 2006.

[KMS+09] Rupa Krishnan, Harsha V. Madhyastha, Sridhar Srinivasan, Sushant Jain,
Arvind Krishnamurthy, Thomas Anderson, and Jie Gao. Moving beyond
end-to-end path information to optimize cdn performance. In Proceedings
of the 9th ACM SIGCOMM Conference on Internet Measurement, IMC ’09,
pages 190–201, New York, NY, USA, 2009. ACM.

XVIII

http://www.afasterinternet.com/
http://www.afasterinternet.com/
http://wiki.vuze.com/w/Plugin_Development_Guide
http://wiki.vuze.com/w/Plugin_Development_Guide
http://download.cnet.com/
http://download.cnet.com/
http://online.wsj.com/article/SB10001424052748704893604576199952421569210.html
http://online.wsj.com/article/SB10001424052748704893604576199952421569210.html

Bibliography

[KR04] David R. Karger and Matthias Ruhl. Diminished chord: A protocol for het-
erogeneous subgroup formation in peer-to-peer networks. In Proceedings
of the 3rd International Workshop on Peer-to-Peer Systems (IPTPS’04), pages
288–297, San Diego, CA, USA, 2004.

[KR07] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down
Approach (4th Edition). Addison Wesley, 4 edition, April 2007.

[Kut08] Kendy Kutzner. The Decentralized File System Igor-FS as an Application for
Overlay-Networks. PhD thesis, Universität Karlsruhe (TH), 2008.

[KWNP10] Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson.
Netalyzr: illuminating the edge network. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, IMC ’10, pages 246–259,
New York, NY, USA, 2010. ACM.

[Lau04] Julian Laub. Non metric pairwise proximity data. Dissertation, Technische
Universität Berlin, 2004.

[LBL+09] Cristian Lumezanu, Randy Baden, Dave Levin, Neil Spring, and Bobby
Bhattacharjee. Symbiotic relationships in internet routing overlays. In
Proceedings of the 6th USENIX symposium on Networked systems design and
implementation, pages 467–480, Berkeley, CA, USA, 2009. USENIX Associa-
tion.

[LBSB09] Cristian Lumezanu, Randy Baden, Neil Spring, and Bobby Bhattacharjee.
Triangle inequality variations in the internet. In Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement, IMC ’09, pages 177–183,
New York, NY, USA, 2009. ACM.

[Lei08] Tom Leighton. Improving performance on the Internet. ACM Queue:
Tomorrow’s Computing Today, 6(6):20–29, October 2008.

[LGS07] Jonathan Ledlie, Paul Gardner, and Margo Seltzer. Network coordinates
in the wild. In Proceedings of USENIX NSDI 07, Cambridge, Massachusetts,
April 2007.

[LMVH07] Jason Liu, Scott Mann, Nathanael Van Vorst, and Keith Hellman. An open
and scalable emulation infrastructure for large-scale real-time network
simulations. In Proceedings of the 26th IEEE International Conference on
Computer Communications., INFOCOMM’07, pages 2476–2480. IEEE, 2007.

[LOH+10] F. Lehrieder, S. Oechsner, T. Hossfeld, Z. Despotovic, W. Kellerer, and
M. Michel. Can P2P-Users Benefit from Locality-Awareness? In Proceedings
of the P2P’10: Proceedings of the 10th IEEE International Conference on Peer to
Peer Computing, pages 1 –9, August 2010.

XIX

Bibliography

[LR] Skype Limited Lars Rabbe. Cio update: Post-mortem on the skype outage.
http://blogs.skype.com/en/2010/12/cio_update.html.

[LS08] Cristian Lumezanu and Neil Spring. Measurement manipulation and
space selection in network coordinates. In Proceedings of the 2008 The 28th
International Conference on Distributed Computing Systems, ICDCS ’08, pages
361–368, Washington, DC, USA, 2008. IEEE Computer Society.

[MA11] Milton Mueller and Hadi Asghari. Deep Packet Inspection and Bandwidth
Management: Battles over BitTorrent in Canada and the United States. In
39th Research Conference on Communication, Information and Internet Policy
(TPRC 2011), Arlington, Virginia, USA, September 2011.

[MC00] W. Matthews and L. Cottrell. The PingER project: active Internet perfor-
mance monitoring for the HENP community. Communications Magazine,
IEEE, 38(5):130 –136, May 2000.

[MCM+11] G. Marchetto, L. Ciminiera, M.P. Manzillo, F. Risso, and L. Torrero. Locat-
ing equivalent servants over p2p networks. Network and Service Manage-
ment, IEEE Transactions on, 8(1):65 –78, march 2011.

[Mil67] Stanley Milgram. The small-world problem. Psychology Today, 1(1):61–67,
1967.

[MK0] MIT-King-Datensatz, http://pdos.csail.mit.edu/p2psim/
kingdata, accessed 19. November 2011.

[MM02] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer infor-
mation system based on the xor metric. In Peter Druschel, Frans Kaashoek,
and Antony Rowstron, editors, Peer-to-Peer Systems, volume 2429 of Lecture
Notes in Computer Science, pages 53–65. Springer Berlin / Heidelberg, 2002.

[MSS06] Yun Mao, Lawrence K. Saul, and Jonathan M. Smith. Ides: An internet
distance estimation service for large networks. IEEE Journal on Selected
Areas in Communications, 24(12):2273–2284, 2006.

[MUF+10] Wolfgang Mühlbauer, Steve Uhlig, Anja Feldmann, Olaf Maennel, Bruno
Quoitin, and Bingjie Fu. Impact of routing parameters on route diversity
and path inflation. Computer Networks, 54(14):2506–2518, December 2010.

[MWA02] R. Mahajan, D. Wetherall, and T. Anderson. Understanding bgp miscon-
figuration. In Proceedings of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 3–16. ACM,
2002.

XX

http://blogs.skype.com/en/2010/12/cio_update.html
http://pdos.csail.mit.edu/p2psim/kingdata
http://pdos.csail.mit.edu/p2psim/kingdata

Bibliography

[Nie98] Jakob Nielsen. Nielsen’s Law of Internet Bandwidth, 1998. http://www.
useit.com/alertbox/980405.html.

[Nit09] Thomas Nitsche. Konsistente Bewertung von Daten in verteilten Sys-
temen am Beispiel eines verteilten Videorecorders, 2009. Diplomarbeit,
Technische Universität München.

[NJ12] Kathleen Nichols and Van Jacobson. Controlling queue delay. Queue,
10(5):20:20–20:34, May 2012.

[NZ02] T. S. E. Ng and Hui Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In Proceedings of the Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies (INFO-
COM) 2002, New York, June 2002.

[OBL+04] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi. Video coding with h.264/avc: tools, perfor-
mance, and complexity. Circuits and Systems Magazine, IEEE, 4(1):7 – 28,
October 2004.

[oPU] The Trustees of Princeton University. Planetlab. http://www.
planet-lab.org/.

[PACR02] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A
Blueprint for Introducing Disruptive Technology into the Internet. In
Proceedings of HotNets–I, Princeton, New Jersey, October 2002.

[Pax97] Vern Paxson. End-to-end internet packet dynamics. In Proceedings of the
ACM SIGCOMM ’97 conference on Applications, technologies, architectures,
and protocols for computer communication, SIGCOMM ’97, pages 139–152,
New York, NY, USA, 1997. ACM.

[PFA+10] Ingmar Poese, Benjamin Frank, Bernhard Ager, Georgios Smaragdakis,
and Anja Feldmann. Improving content delivery using provider-aided
distance information. In Proceedings of the 10th ACM SIGCOMM Confer-
ence on Internet Measurement, IMC ’10, pages 22–34, New York, NY, USA,
November 2010. ACM.

[PLS05] Peter Pietzuch, Jonathan Ledlie, and Margo Seltzer. Supporting network
coordinates on planetlab. In WORLDS’05: Proceedings of the 2nd conference
on Real, Large Distributed Systems, pages 19–24, Berkeley, CA, USA, 2005.
USENIX Association.

[PUK+11] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Donnet, and
Bamba Gueye. IP geolocation databases: unreliable? ACM SIGCOMM
Computer Communication Review, 41:53–56, April 2011.

XXI

http://www.useit.com/alertbox/980405.html
http://www.useit.com/alertbox/980405.html
http://www.planet-lab.org/
http://www.planet-lab.org/

Bibliography

[QS04] Dongyu Qiu and R. Srikant. Modeling and performance analysis of
bittorrent-like peer-to-peer networks. ACM SIGCOMM Computer Commu-
nication Review, 34:367–378, August 2004.

[RCKS05] Sean Rhea, Byung-Gon Chun, John Kubiatowicz, and Scott Shenker. Fixing
the embarrassing slowness of opendht on planetlab. In Proceedings of the
Second Workshop on Real, Large Distributed Systems, WORLDS ’05, pages
25–30, Berkeley, CA, USA, 2005. USENIX Association.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. In Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms (Middle-
ware), Heidelberg, Germany, November 2001.

[RD10] Rodrigo Rodrigues and Peter Druschel. Peer-to-peer systems. Communica-
tions of the ACM, 53(10):72–82, October 2010.

[RGK+05] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Rat-
nasamy, Scott Shenker, Ion Stoica, and Harlan Yu. Opendht: a public
dht service and its uses. In SIGCOMM ’05: Proceedings of the 2005 con-
ference on Applications, technologies, architectures, and protocols for computer
communications, pages 73–84, New York, NY, USA, 2005. ACM.

[Rip01] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network. In
P2P’01: Proceedings of the First International Conference on Peer-to-Peer Com-
puting, pages 99–100. IEEE Computer Society Press, August 2001.

[RMK+09] Venugopalan Ramasubramanian, Dahlia Malkhi, Fabian Kuhn, Mahesh
Balakrishnan, Archit Gupta, and Aditya Akella. On the treeness of internet
latency and bandwidth. In Proceedings of the eleventh international joint
conference on Measurement and modeling of computer systems, SIGMETRICS
’09, pages 61–72, New York, NY, USA, 2009. ACM.

[RWHM03] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN - Simple
Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATs). RFC 3489 (Proposed Standard), March 2003. Obsoleted
by RFC 5389.

[Ré08] Réseaux IP Européens Network Coordination Centre. YouTube Hijacking:
A RIPE NCC RIS case study. RIPE-NCC, February 2008.

[SAA+99] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins,
E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan. Detour:
informed internet routing and transport. Micro, IEEE, 19(1):50 –59, January
1999.

XXII

Bibliography

[San10] Sandvine. Fall 2010 Global Internet Phenomena report, June 2010.

[SB09] Moritz Steiner and Ernst W. Biersack. Where is my peer? evaluation of
the vivaldi network coordinate system in azureus. In NETWORKING ’09:
Proceedings of the 8th International IFIP-TC 6 Networking Conference, pages
145–156, Berlin, Heidelberg, 2009. Springer-Verlag.

[Sch10] Dieter Schuster. Erstellung eines Application Layer Multicast Moduls im
IGOR Ecosystem, 2010. Diplomarbeit, Technische Universität München.

[SKS09] Jan Seedorf, Sebastian Kiesel, and Martin Stiemerling. Traffic localization
for p2p-applications: The alto approach. In Henning Schulzrinne, Karl
Aberer, and Anwitaman Datta, editors, Peer-to-Peer Computing, pages 171–
177. IEEE, 2009.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. In Proc. ACM SIGCOMM ’01, pages 149–160, 2001.

[SMW02] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies with
rocketfuel. In ACM SIGCOMM Computer Communication Review, volume 32,
pages 133–145. ACM, 2002.

[SNS+10] Jan Seedorf, Saverio Niccolini, Martin Stiemerling, Ettore Ferranti, and
Rolf Winter. Quantifying operational cost-savings through alto-guidance
for p2p live streaming. In Proceedings of the Third international conference on
Incentives, overlays, and economic traffic control, ETM’10, pages 14–26, Berlin,
Heidelberg, 2010. Springer-Verlag.

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in System
Design. ACM Transactions on Computer Systems, 2:277–288, November 1984.

[SSW10a] Y. Schwartz, Y. Shavitt, and U. Weinsberg. On the diversity, stability and
symmetry of end-to-end internet routes. In INFOCOM IEEE Conference on
Computer Communications Workshops , 2010, pages 1 –6, march 2010.

[SSW10b] Yaron Schwartz, Yuval Shavitt, and Udi Weinsberg. A measurement study
of the origins of end-to-end delay variations. In Arvind Krishnamurthy
and Bernhard Plattner, editors, Passive and Active Measurement, volume
6032 of Lecture Notes in Computer Science, pages 21–30. Springer Berlin /
Heidelberg, 2010.

[ST04] Yuval Shavitt and Tomer Tankel. Big-bang simulation for embedding net-
work distances in euclidean space. IEEE/ACM Transactions on Networking,
12:993–1006, December 2004.

XXIII

Bibliography

[ST08] Y. Shavitt and T. Tankel. Hyperbolic embedding of internet graph for
distance estimation and overlay construction. IEEE/ACM Transactions on
Networking, 16(1):25 –36, February 2008.

[SW05] R. Steinmetz and K. Wehrle. Peer-to-peer systems and applications. Lecture
notes in computer science. Springer, 2005.

[Sys06] Systems Research at Harvard (Syrah). King-Blog-Dataset, accessed 12. June
2011. http://www.eecs.harvard.edu/~syrah/nc, 2006. Variant
with at least 8 neighbors was picked.

[Tec] Akamai Technologies. Akamai sureroute. http://www.akamai.com/
dl/feature_sheets/fs_edgesuite_sureroute.pdf.

[Tel] Teleography.com. Submarine cable map 2008. http://www.
telegeography.com/.

[TH09] I.J. Taylor and A.B. Harrison. From P2P and grids to services on the web:
evolving distributed communities. Computer communications and networks.
Springer, 2009.

[TKLB07] Wesley W. Terpstra, Jussi Kangasharju, Christof Leng, and Alejandro P.
Buchmann. BubbleStorm: Resilient, Probabilistic, and Exhaustive Peer-to-
Peer Search. In Proceedings of the 2007 ACM SIGCOMM Conference, August
2007.

[VA07] Skype Limited Villu Arak. What happened on august 16,
2007. http://heartbeat.skype.com/2007/08/what_happened_
on_august_16.html.

[Var01] András Varga. The OMNeT++ discrete event simulation system. In
Proceedings of the European Simulation Multiconference, ESM ’01, Prague,
Czech Republic, 2001.

[VB00] A. Veres and M. Boda. The chaotic nature of tcp congestion control. In
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, volume 3, pages 1715 –1723
vol.3, March 2000.

[VLO09] Q.H. Vu, M. Lupu, and B.C. Ooi. Peer-to-Peer Computing: Principles and
Applications. Springer, 2009.

[Vuz] Inc Vuze. Vuze: The most powerful bittorrent app on earth (website).
http://www.vuze.com/.

[Wei09] Michael Weiß. Analyse der BitTorrent Cooperation Engine, 2009. Guided
Research, Abschlussbericht, Technische Universität München.

XXIV

http://www.eecs.harvard.edu/~syrah/nc
http://www.akamai.com/dl/feature_sheets/fs_edgesuite_sureroute.pdf
http://www.akamai.com/dl/feature_sheets/fs_edgesuite_sureroute.pdf
http://www.telegeography.com/
http://www.telegeography.com/
http://heartbeat.skype.com/2007/08/what_happened_on_august_16.html
http://heartbeat.skype.com/2007/08/what_happened_on_august_16.html
http://www.vuze.com/

Bibliography

[Wil09] Jonathan Will. NAT Traversal Techniques for the IGOR Overlay, 2009.
Diplomarbeit, Technische Universität München.

[WMW+06] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and Randy
Bush. A measurement study on the impact of routing events on end-to-
end internet path performance. In Proceedings of the ACM SIGCOMM ’06
Conference, SIGCOMM ’06, pages 375–386, New York, NY, USA, September
2006. ACM.

[WSS05] Bernard Wong, Aleksandrs Slivkins, and Emin Gün Sirer. Meridian: a
lightweight network location service without virtual coordinates. In Pro-
ceedings of the ACM SIGCOMM ’05 Conference, SIGCOMM ’05, Philadelphia,
Pennsylvania, August 2005.

[XYK+08] Haiyong Xie, Yang Richard Yang, Arvind Krishnamurthy, Yanbin Liu, and
Avi Silberschatz. P4p: Provider portal for applications. In Proceedings of
ACM SIGCOMM, Seattle, WA, August 2008.

[ZLMZ05] Beichuan Zhang, Raymond Liu, Daniel Massey, and Lixia Zhang. Collect-
ing the internet as-level topology. ACM SIGCOMM Computer Communica-
tion Review, 35:53–61, January 2005.

[ZLPG05] Han Zheng, Eng Lua, Marcelo Pias, and Timothy Griffin. Internet routing
policies and round-trip-times. In Constantinos Dovrolis, editor, Passive
and Active Network Measurement, volume 3431 of Lecture Notes in Computer
Science, pages 236–250. Springer Berlin / Heidelberg, 2005.

[ZYC09] Changwang Zhang, Jianping Yin, and Zhiping Cai. Rsfb: a resilient
stochastic fair blue algorithm against spoofing ddos attacks. In Commu-
nications and Information Technology, 2009. ISCIT 2009. 9th International
Symposium on, pages 1566 –1567, sept. 2009.

[ZYCC10] Changwang Zhang, Jianping Yin, Zhiping Cai, and Weifeng Chen. Rred:
robust red algorithm to counter low-rate denial-of-service attacks. Com-
munications Letters, IEEE, 14(5):489 –491, May 2010.

XXV

ISBN 3-937201-29-7
ISSN 1868-2634 (print)
ISSN 1868-2642 (electronic)
DOI: 10.2313/NET-2012-05-1

	Vorne
	diss-cover.VSD
	Vorne

	blanko
	dissertation
	Abstract
	Zusammenfassung
	1 Introduction
	Overview
	Published Work

	2 Round Trip Time Research
	2.1 The Internet Architecture
	2.1.1 The Internet Anatomy
	2.1.2 Routing
	2.1.3 Autonomous Systems
	2.1.4 BGP

	2.2 Analysis of Round Trip Times
	2.2.1 Routing Paths and the Shortest Path
	2.2.2 The Impact of Peering
	2.2.3 Bufferbloat
	2.2.4 Random early detection

	2.3 Current latency research
	2.3.1 Why optimize for latency?
	2.3.2 Bandwidth optimizations
	2.3.3 Anycast
	2.3.4 Internet Tomography
	2.3.5 Detour Routing
	2.3.6 Prediction vs ISP knowledge

	3 The Peer-To-Peer Paradigm
	3.1 The Client/Server paradigm
	3.2 Unstructured Networks
	3.3 Structured Networks
	3.3.1 Key based routing
	3.3.2 KBR vs. Distributed Hash Tables
	3.3.3 Iterative vs. recursive routing
	3.3.4 Kademlia
	3.3.5 Chord
	3.3.6 Chord vs. Kademlia

	3.4 Hybrid P2P

	4 Igor
	4.1 The KBR daemon
	4.2 Socket Interface: libigor
	4.3 Services
	4.4 Plug-in System
	4.5 NAT Traversal
	4.6 KBR Simulation
	4.6.1 PRIME SSF
	4.6.2 OMNeT++

	4.7 Application Interface: libdht

	5 Proximity Enhancement Research
	5.1 Overview
	5.2 Definitions
	5.3 Early Latency Prediction
	5.4 Big Bang Theory
	5.5 Vivaldi
	5.5.1 Central Vivaldi
	5.5.2 Dynamic Vivaldi
	5.5.3 Triangle Violations

	5.6 Pyxida
	5.7 Htrae
	5.8 PeerWise
	5.9 Meridian
	5.10 Ono
	5.11 Sequoia
	5.12 ISP assisted Oracle services
	5.12.1 Oracle
	5.12.2 Proactive Provider Assistance for P2P (P4P)
	5.12.3 Application-Layer Traffic Optimization (ALTO)

	5.13 Network Coordinates based on Matrix Factorization

	6 The Hierarchical Vivaldi Algorithm
	6.1 Overview
	6.2 Embedding Process
	6.3 Embedding Error Prediction
	6.4 Peer Selection Process

	7 Vivaldi Simulations
	7.1 Evaluation Methodology
	7.2 Data sets
	7.3 Simulator
	7.4 The impact of Triangle Inequality Violations
	7.5 The choice of Neighbors
	7.6 Vivaldi Simulation Results
	7.6.1 Static data
	7.6.2 Dynamic data
	7.6.3 Conclusion

	7.7 Hierarchical Vivaldi Simulation Results
	7.7.1 Static data
	7.7.2 Dynamic data
	7.7.3 Conclusion

	8 Hierarchical Vivaldi Deployment in a Planetary-Scale Overlay
	8.1 Methodology
	8.1.1 A Large Scale Overlay
	8.1.2 Vuze Plug-In
	8.1.3 Chronological Sequence
	8.1.4 Hierarchical Vivaldi Parameters

	8.2 Results
	8.2.1 Evaluation of Hierarchical Vivaldi
	8.2.2 Performance of Vivaldi-like systems

	9 Conclusion
	A Extended Tables
	B Extended Figures
	List of tables
	List of algorithms
	List of figures
	Bibliography

	blanko
	Hinten
	diss-cover.VSD
	Hinten

