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Abstract

We tackle the problem of finding association rules for quatitie data. Whereas most of
the previous approaches operate on hyperrectangles, \wes@a representation based on half-
spaces. Consequently, the left-hand side and right-haledogian association rule does not con-
tain a conjunction of items or intervals, but a weighted sdfimadables tested against a threshold.
Since the downward closure property does not hold for sulds ruve propose an optimization
setting for finding locally optimal rules. A simple gradiemiéscent algorithm optimizes a pa-
rameterized score function, where iterations optimizimg first separating hyperplane alternate
with iterations optimizing the second. Experiments witlo teal-world data sets show that the
approach is feasible and in fact finds meaningful patterns.thdrefore propose quantitative as-
sociation rules based on half-spaces as an interesting las& @f patterns with a high potential
for applications.

1 Introduction

Soon after the introduction of association rules for itetsi\g@searchers began to realize that associa-
tion rules would also be useful for quantitative data [11pdWlof the generalizations and extensions
of association rules to quantitative data either requiréseretization of the numerical attributes or
a characterization of the numerical attributes in the rigdmid side by their means and standard de-
viations. The discretization process, however, leads twsa of information in the data set. In the
following we present a novel approach that works directlyfencontinuous data, without the need for
any discretization or the calculation of statistical momseit derives quantitative association rules of
the form “if the weighted sum of some variables is greaten théreshold, then a different weighted
sum of variables is with high probability greater than a secthreshold”. For instance, consider a
table with wind strength, temperature and the wind chilexdApproaches so far applied to this data
would approximate the relationship among the variablesmyralle of quantitative association rules.
In contrast, the approach proposed here would find a weigduedof wind strength and temperature
on the left-hand side and the wind-chill index on the rigatiti side. Thus, it allows for the discovery
of non-axis-parallel regularities and can account for clative effects of several variables. Since the
downward closure property frequently used in conventiasabciation rule mining does not hold for
this type of rule, we cast the problem of finding such rulesrasgimization problem. The aim is to
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find rules that are locally optimal with respect to a paramzge score function. Consequently, the
user can adjust the parameters of the presented algoritioitain association rules that match her
individual interests. For instance, it is possible to sfyetarget values for certain parameters, such
that the algorithm attempts to find rules near the targetglgng rules that are too far off), while
simultaneously optimizing the rules’ confidence. The whiodenework is very flexible in several
directions and can easily be adapted to incorporate usatreamts. In summary, the paper has two
main contributions: Firstly, theepresentatiorof quantitative association rules based on half spaces,
and secondly, theptimization settindor finding such rules.

The paper is organized as follows: section 2 introducesdpessentation of quantitative asso-
ciation rules based on half-spaces. Section 3 elaboratdseasptimization setting for finding such
rules. A scoring function is defined, and an optimizatioroalfym is sketched. Finally, we present
the results of some experiments in section 4, discuss debabek in section 5, before we conclude in
section 6.

2 Quantitative Association Rules Based on Half-Spaces

As outlined above, the aim of this paper is to extend the aasow rule framework to quantitative
data. In general, an association rule is an implication effdrm “if the left-hand side condition is
true for an instance, then, with high probability, a riglatad side condition is also true”. In the tradi-
tional setting, the conditions on the right-hand side afteHand side are based on hyperrectangles of
discrete attributes. To extend association rules to coatis data, we therefore need to decide which
kind of “conditions” the quantitative association rulessid be based on.

Of course, there are lots of different ways to impose cood#ion numerical data. At the core
we would expect from a useful condition that it separatesrie@nce space in two subspaces, the
space of instances that meets the condition, and the onddbatnot. The border between those two
subspaces can then be conveniently expressed by sepagation function For numerical data, it
makes sense to select a smooth separation function to namitiné error that is caused by random
noise or measurement errors in the data. In this paper wedagilis onhyperplanesa particularly
simple, but powerful class of separation functions. Howehagge parts of this paper also apply to
more complex separation functions. From a geometricalpeets/e, a hyperplane is given by a
vectora and an intercepty. An instancer is then assigned to one half-space, if the scalar product
a - x + «p IS positive and to the other half-space, if it is negativefigare 1 (b), the one-dimensional
hyperplanex (i.e. a line) separates the two-dimensional space into &aifedpaces, one left af, the
other right ofa.

In the case of association rules, the use of hyperplanes raditioms boils down to testing a
weighted sum of variables against a threshold; i.e. anniestain ann-dimensional space meets the
conditiona € R™*!, if

a1T1 + QoTy + -+ + Ty > —p (1)

With this, one could build an association rule suckka% 31 — 0.9x5+ 1.2z¢ > 250. In a particular
medical application this association rule might be intetpd as “if the body mass index is greater
than or equal to 31, then the weighted sum of the systolic sastalic blood pressure is greater than
or equal to 250”. Obviously, there are many cases where finslilch a quantitative association rule
might lead to valuable insights into the structure of thexddthand.
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Figure 1: Two non-perpendicular hyperplareand (a), and two perpendicular hyperplaneand
0, separating the instance space into four subspaces (b).

Of course, it is quite easy to generate a large number oftragsociation rules with high con-
fidence. For example, the association ruléx; > 5 — 2x; > 4 has confidence 100%, but
does not give any new insight. More generally, situatioks the one in figure 1 (a) are problem-
atic: we have two hyperplanesand in a two-dimensional space, that define an association rule
a1, + anxy > —ay — By + Pexa > — . The problem is that and s are highly correlated. If
an instance is left of the hyperplane, it is very likely to be left of thé hyperplane as well, simply
because the space that is right@®fbut left of « is much smaller than the space left@fand left
of 3. Because of that, the association rule has high confideraefev randomly generated data; it
does not give much information about the data at hand. Fopayuoses it is therefore essential, that
« andg are uncorrelated, i.e. they have to be perpendicular asurefigy (b). This is, of course, the
case, if the scalar product is zero:

Z a; -3 =0 (2
=1

Note that this requirement does not prevent using the sanmbles on the left-hand and the right-
hand side of an association rule. For example, the assatiatiex; + x5 > 2 — x7 — x5 > 0.21is
perfectly valid, becausg) - (,) = 0. Atfirst sight this might seem to be a strange finding. However
it is often easy to come up with a reasonable explanationudon & rule. For instance, if we know,
that in the example above the andz, values are always positive, we could (loosely) interpret th
rule as “ifz; andx, are sufficiently large, then;, is larger thanec, by a margin of at least 0.2”. This
might be a valuable insight in the structure of the data skaat. In the next section we describe an
algorithm that is able to find such quantitative associatides.

1Of course, in a strict mathematical sense it does not makeesencompare the “sizes” of subspaces, because all
subspaces are infinite anyway. A more formal justificatiomlMi@emand that the resulting probability distributions ar
independent for uniform data.



3 Quantitative Association Rule Mining

The main problem with finding good quantitative associatiales is that the space of rules is un-
countably infinite and therefore not suited to an enumenagitategy as employed by APriori [1]. In
particular, the downward closure property does not holdtmh rules, and thus we have to abandon
the idea of generating the complete set of solutions. Howexgecan adopt an optimization approach,
where the user can specify clearly the sort of rules she langdor, and the algorithm returns locally
optimal solutions. While this may seem unusual for assmriaule mining, it iS common practice
in other areas, for instance clustering (e.g, K-meansealung) and Bayesian learning (e.g., the EM
algorithm).

In the following we describe one particular algorithm fominig quantitative association rules in
this setting. First, we define a score function to assessititeréstingness” of an association rule.
Then, we sketch a simple optimization algorithm searchorgassociation rules with a low score.
Before we go into further detail, however, we need to intcihe basic setting and some notational
conventions.

For mining quantitative association rules we are givedaga setX containingm instances
Each instance is given as a vectoriofeal values, i.e.z € R”, so thatX C R". We are now
looking for association rules that are defined by two hy@eresa := (ag, a1, ..., a,)" andg =
(Bo, B1, - -, 3.)T. Thea hyperplane specifies the condition on the left-hand sidéefassociation
rule, thes hyperplane specifies the right-hand side. Both hyperplaregjiven in Hessian normal
form: theay value of a hyperplane is theintercept i.e. the hyperplane’s distance to the origin. The
direction vectora := (a1, ..., a,)T specifies the slope of the hyperplane. As a notational siftortc
we usea to denote the direction vector part @fand o, to denote the intercept of. Usually, the
direction vector is normalized so that| = 1 and the distance between an instan@nd« is sim-
ply a’x + . However, to allow for an efficient optimization procedunes will sometimes allow
non-normalized direction vectors. In this case we have ¢causodified distance functiaria, =) to
calculate the distance between a hyperplane and an instance

T
o(a,z) == —+ap 3)
|
This distance simply normalizes the direction vector before calculating actual distance. For the
optimization procedure, we also need the derivatives of

d(a, ) 1 d(a, x) i( a-w
80&0 ’ 80@- n |5[‘ J

Tr; — —‘@|2 Oéj) (4)
For later use, we denote the derivative alongjieaxis byd;:

9 (a, )

aOéj

05(a, ) == (5)

The score function is a combination of four different ciigeeiconfidencecoverage contrastand
sparsenesdt is designed to be differentiable to make it amenable tnopation approaches. Con-
fidence is defined as for ordinary association rules, while@ge reflects the number of instances
covered by the left-hand side of a rule. Contrast is a measiunew evenly the instances are dis-
tributed if the left-hand side doe®t apply Thus, it measures whether the left-hand side makes any
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Figure 2: Confidence is optimal if the distribution is uneledh of «, while contrast is optimal if it is
even right ofa.

difference. Sparseness is a term penalizing overly complies. If only a few variables occur in a
guantitative association rule, then its sparseness valubexsmall.

To summarize, the setting is as follows: The user specifiegyatcoverage and a target sparseness
of the rules. Then the optimization algorithm is run untibadl optimum with respect to the score
function is found. The algorithm optimizes the confidenaajer the constraint that the contrast is
balanced, targeting at user-specified values for the rate/erage and sparseness. Random restarts
are usually performed to return several of those locallynegit association rules. In the following,
we will formally define the components of the score function.

3.1 Confidence

We are mainly interested in association rules with highfidencei.e. the fraction of instances i,
that fulfill both conditionsy andj divided by the fraction of instances that fulfill only thecondition
should be as high as possible. Figure 2 illustrates this ideaconsider only instances that fulfill
the « condition, i.e. that are left of the hyperplane. If an instanceis located left ofa and below
(3, it contributes to a high confidence score. If it is locatetl & «, but aboves, it decreases the
confidence measure. Thus, we have the following maximizadroblem at hand:

max Y I[0(a,z) > 0]sgn(d(5,z)) (6)

wherel]. . .| denotes the indicator function that is one if the conditiothie brackets is fulfilled and
zero otherwise.

Unfortunately, this “confidence score” has two disadvaesad-irst of all, it is not differentiable
and thus not suited for standard numerical optimizatiohrieques. Second, and more importantly,
it assigns the same weight to all instances, independetiechdtual distance of the instance to the
hyperplanes. In practice, most values are not known examilyonly up to a certain measurement
error. Thus, it makes sense to regard an instance that isfléfe o hyperplane, but very close to it,
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Figure 3: The sigmoid function as a replacement for the steptfon (a), and the function replacing
the absolute value function (b).

as “probably left ofo”. Such an instance should not contribute the same weiglteg@ptimization
problem as an instance that is very far franand thus “certainly left of,”. One common approach
to address those considerations is to usesipeoidfunction. The sigmoid function is given by

B 1
S l4e®

o(x):

(7)

and plotted in figure 3 (a). In its basic form, it is a “smoothegrsion of the step functiofi[fz > 0].
Since it assigns intermediate values in the vicinity of thigio, it takes the distance of an instance
to one of the hyperplanes better into account than the shepfsnction. Thesgn function is just a
rescaled version of the step functiean(x) = 2I[z > 0] — 1. Consequently we can use the sigmoid
function for a better handling of instances near gheyperplane as well.

With this, and by reformulating the maximization problemaasinimization problem, we get the
optimization problemmin, s («, 3, X ), wherel is defined as follows:

o, 3,X) = =Y o(d(a,x)) - (20(6(8,2)) — 1) 8)

zeX

For later use, we also give the derivatives with respeot amd3:

OB S (a0(0(8,2)) ~ 1) - (50, 2)) - 8} e, ) ©)
J zeX
T = S o8l 20(5(3,0) - 5(5.) (10
wherec’ is the derivative of the sigmoid function:
o (z) = (157)2 — 02() (11)



3.2 Coverage

A second criterion for the interestingness of an assodciatite is itscoverage The coverage is simply
the fraction of instances in the data set that satisfy thehi@fid side condition. Together with the
confidence, the coverage determines the support of theiassaaule, i.e. the fraction of instances
that fulfills both conditions. Unfortunately, the coveragfanteresting rules is not clear a priori. If
the coverage of an association rule is very large, the ruieiesfor almost the whole data set. Such
rules often express trivial dependencies in the data. Oattiex hand, if the coverage of arule is very
small, the pattern describes a very local phenomenon tigtttrjust be a random fluctuation instead
of a structural property of the underlying data. Thus, theecage values for interesting association
rules are somewhere in between, depending on the data athdritle knowledge about the data. In
practice, the desired coverage (or equivalently, the supisften determined empirically.

To take these considerations into account, we design a péeaaed coverage interestingness
functionc(a, g,t, X), that leaves the choice of the “target coverage” as paramétethe user. The
function should be low, if the coverage of the associatida given by« is near the desired target
coverage and high otherwise. In this way the user can adjust the sgduinction according to his
perception about which coverage is interesting. The falgwunction fulfills this requirement. It
is zero, if the coverage is equal tpand increases linearly with the factprasa departs from this
optimum:

cla,g,t, X):=g- ‘ Z (sgn(d(av, z)) — (2t — 1))‘ (12)
zeX
Using the factorg the user can fine-tune the importance of the desired covenaggation to the
interestingness score for the confidence,.iff set to one, confidence and coverage are treated equally.
If g is set to a lower value, confidence is weighted higher tharreme during the optimization
process.

Again, one can argue that instances very close to the hygreghould be weighted lower than
instances far from the hyperplane. As above, this is acHigyereplacing thegn function with a
scaled sigmoid function. The absolute value functignis not differentiable at: = 0. This might
be a problem during the optimization process, because tiriaption procedure might get stuck in
the induced “peak” optimum, even though nearby settings.foright have slightly worse coverage,
but better confidence scores. To avoid this problem, we ceplae absolute value with a modified
sigmoid functionr(z):

' 2x
T(z) = Ty

As can be seen in figure 3 (b), this function resembles thelatesealue function, except for the area
around the origin, where(z) is slightly lower. This leads to the following coverage igtingness
function:

- (13)

cla,g,t, X) =g T( S 20(8(ar ) — 2t)> (14)

zeX

With this we can estimate the interestingness of an assatiaile with regard to confidence and
coverage. Again, we give the derivativescatgarding tax:

80(%.:,)() =g- T'( Z(?U((S(a, x)) — 2t)> . Z(Qg’((S(a’ 7)) -0 (v, ) (15)

zeX zeX



wherer’(x) is the derivative of-(x):

' (x) == 20(x) + 2x0'(x) — 1 (16)

3.3 Contrast

The confidence and coverage scores determine what the patiom algorithm is looking for on the
left side ofa in figure 2: confidence requires that the lower left subspaogins more instances than
the upper left subspace, while coverage determines thidinaaf instances that are left of Just like
in traditional association rule mining, there is no coristreegulating the distribution of instances on
the right side ofv. For quantitative association rule mining, this can be dlem: one can simply
move thes hyperplane upwards until it is located above all instan&®hile this achieves maximal
confidence, the resulting association rule is not very @sting, because the right-hand side condition
is true for all instances anyway. One way to overcome thiblerua is to regulate the distribution of
instances that are right of with regard tos. One might be tempted to demand that most instances
right of o should be located above. However, this would generate association equivalences of
the form ‘@’z > —ay « BTz > —p3," instead of implications in one direction as in traditional
association rules. For our purposes it seems to be moreb$emsiask for an even distribution of
instances above and belgw

We call this criterioncontrast The rationale is that the “contrast” between the instarm/a
and below( should be as low as possible on the right sidevoh figure 2. This ensures that the
optimization algorithm searches ftwcal patterns, that is, patterns that hold for the specified subse
of patterns, but not for the reverse or general case. Thawoig contrast scoring functiof{«, 3, X)
formalizes the idea. It is zero, if the number of instancethaupper right subspace in figure 2 is
equal to the number of instances in the lower right subspadéereases linearly otherwise.

r(a, B, X) = ’ Z I[§(cr,z) < 0] sgn(é(ﬁ,x))’ (17)

Again, it makes sense to replace tiza and the absolute value function with differentiable counte
parts to accommodate for noisy data and avoid unwanted dptatha. This yields:

r(e, B, X) == T( Y o(—d(a,2))(20(5(8, 2)) - 1)) (18)

zeX

For the optimization algorithm in section 3.5 we also needdérivatives of-:

T =7 (S ot )(aot6(6,) 1)
>_(20(6(3,2)) = D)o’ (=d(a, 2))(~F(ar, ) (19)
P — (3 o)) 2065, = 1)) - 3 o(=dla )20 (65,26 (5.) (20)

zeX zeX



Algorithm 1 The frame algorithm, where iterations optimizing the fiegparating hyperplane alter-
nate with iterations optimizing the second
procedure QAR(t, g, h, X)
a < a random vector
(8 «— arandom vector
repeat
y «— L(a, B,t,9,h, X)
«a «— LineSearchlq, 3,t, g, h, X)
(G < LineSearch2¢, 5,t, g, h, X)
until |L(a, 5,t,9,h, X) —y| < 0.1
return (o, ()
end procedure

3.4 Sparseness

The three preceding scoring functions give sufficient infation to identify values ok and that are
unusual or interesting enough to justify a further analydiswever, for humans who have to interpret
the resulting association rules, there is one more pragrodterion: the components of theand

[ vectors of an quantitative association rule with low coniicks coverage and contrast scores are
usually not zero. This means that the resulting associatiencontaing: addends on both sides of
the implication. Itis hard and cumbersome work to identifyiet coefficients contribute significantly
to the confidence, coverage and contrast of the associat®rand which coefficients can be omitted
without changing the scores too much. Usually, the useepdindingsparseassociation rules, i.e.
rules where most coefficients are zero and only the relewagfficients are given. Those rules are
shorter and thus easier to interpret and validate.

To account for these pragmatic considerations, one can &elanato penalize non-sparse asso-
ciation rules. Bothy and s are normalized, so that the sum of the components is one., Thus
receive sparse vectors we only need to increase the vaiiatite components, so that we have many
very low (ideally zero-valued) components and a small nurolbéarge components. The following
functiona(a, h) expresses this property formally. It is zero, if one coeffitiis one and the others are
zero. In the worst case, where all components have vgi(ig/'n), the score is maximal atm — 2.

a(a, h) := hm — hmz (%)4 (21)
=1
The parametek determines how large this penalty should be in relationéatiher scores. If sparse-

ness is very important to the user, she should set it to a rafglewvnear one. Again, we give the
derivative for later use in the optimization procedure:

da(a, h) " ata;  of
7 4k Chat" RUS 22
da; m( 2 ap |a|4> (22)

If one incorporates this penalty function during the sedockassociation rules, the induced rules will
have many coefficients near zero. Unfortunately, they at@ecessarily exactly zero. However, one
can set those coefficients to zero in a post-processing stpuv changing confidence, coverage,
and contrast too much. This post-processing step is exggamsection 3.6.
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Algorithm 2 The line search algorithm to perform a gradient descenttb@pmaintains perpendic-
ularity. This version keepgs fixed and optimizes fotv. LineSearch2 uses the same algorithm, but
keepsa fixed and optimizes fof. Note thatr denotes the direction vector part.af

1: procedure LineSearchl4, 5,t, g, h, X)

2. repeat
y«— L(a,B,t,9,h, X)
A—VL(.,0B,tg,h X)
o= A
fi — i — (" 3)p
s« 0.5
while L(a + sp, 8,t,9,h, X) >y — 0.001s(u*'\) do

s« 0.9s

10: end while
11: o — + Sl
12: a — ﬁ
13: until |L(e, B,t,g,h, X) —y| < 0.01
14:  return «
15: end procedure

©e N dRw

3.5 The Algorithm

With the discussion in the previous sections we have a nuofleeiteria to decide whether a particular
« andg define an interesting quantitative association rule. Thed fiterestingness scoring function
L(a, 3, 9g,t, h, X) simply calculates the sum of those scores

Lle, 8, 9,8, h, X) i= U, B, X) + e, 9,8, X) + r(a, 3, X) + ala, h) + a(B,h)  (23)

A high score indicates that the association rule is unistarg with regard to the selected parameter
settings, a low score means we found an interesting rule. hAsstoring function is continuous,
there usually is a whole subspace of “good” rules and it iy ¢éasnodify a rule with a low score
to some small extent and obtain a rule with an even lower sadB=are therefore aiming at finding
association rules with optimally low score, that is, thealamptima of the scoring function, subject to
the constraint that” 3 = 0.

This constrained optimization problem can be tackled usstgblished methods from optimiza-
tion theory. A standard approach is to introduce a Lagrangkiptier and use one of the many
published optimization algorithms to solve the resultipgmization problem witl2n + 3 variables.
This can be a hard optimization problem for large values.olWe take a different approach that
alternatingly keeps: fixed while optimizings and vice versa. In this way one solves a sequence
of n + 1-dimensional optimization problems. Empirical resultsecttion 4 indicate that only a few
iterations are sufficient to find such an optimum.

For the sake of simplicity we use a simple gradient descerthodein each iteration. In the
following description of the algorithm we hold fixed and optimize fore. The other case can be
derived simply by usingg as optimization variable and using the gradient with regard as search
direction. First, the algorithm calculates the gradignt VL of L with regard toa as the locally
best descent direction. However, we can not use this dareétir the line search, because we might

10



Algorithm 3 A postprocessing algorithm to derive a sparse version ofidiinied association rule.
procedure MakeSparse(, 3, t)
Replace all values less tham a with O
Replace all values less thaim 3 with 0
Ve a
fori =1tondo
if 5; = 0then
%<0
end if
end for
if |7 > 0then
B f~ Tt
end if
return ( )
end proce

o
E\hb\

=1

|

ure

Q=

end up with a vector that is not perpendicularto We therefore calculate = A\ — (A7 3)3, that
is, the vector component of, that is perpendicular t@. The line search is then performed in the
direction. Thus, after the line search we have the new v@lue a + sp for some scalag that yields
the lowest score according foalong the line. The following equation shows that the neweal is
still perpendicular tgs.

atB=la+s(\—(\'p)B)" s
=a' B+ s\ B —s(A\B)BT5
=alB+ s\ —s\ 3 (24)
=0 (25)

(24) uses the fact that”3 = |3|?> = 1, because? has unit length and (25) follows, because the
starting vectory is perpendicular t@ anyway. The intercept, is not subject of the perpendicularity
constraint and we can simply use the derivativé afith regard tan, as intercept component for the
line search. For the line search loop we use a simple bagktiggapproach with the Armijo condition
as termination criterion.

As any other optimization procedure, this algorithm carstyetk in local optima with comparably
high scores. For the sake of simplicity we use random restarbbtain association rules with low
score. Of course, one can utilize simulated annealing oroéimgr global optimization strategy as
well.

3.6 Postprocessing and Visualization

In section 3.4 we introduced a penalty term for non-sparseove. If the user provides a high weight
h for this term, the vectora and 3 of the resulting association rule contain many componegés n
zero and only a few large components. However, they are ragssarily sparse in the sense that
most components are zero. Fortunately, the hyperplanesotohange too much, if one simply
sets all components below a certain threshold to zero. Irt pas®s this operation does not change
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Figure 4: A scatter plot of the left-hand side term and thbtrigand side term of the fifth association
rule in table 1.

confidence, coverage and contrast too much. The only protaermay encounter is that the resulting
a and 3 are not perpendicular anymore. As outlined in algorithmis tan be easily fixed by
determining the vector component gf that is perpendicular ta and does not modify the zero-
valued components if.

In practice, finding and displaying an association rule & pismall step in the knowledge dis-
covery process. The user usually needs to validate andpretethe association rule, gather more
information about the phenomenon at hand and finally astegseafulness. A nice property of quan-
titative association rules is the fact that the left-haie sind right-hand side conditions are essentially
projections from the instance spaceRaogether with a threshold. The projections calculate ke d
tance between an instance and the condition’s hyperplamecaiV therefore visualize the distances
between the instances and the two hyperplanes in a scattemgiere the x-axis specifies the the
distance to thex hyperplane and the y-axis the distance toghglane. Such a diagram can be quite
useful to gather more information about the kind of depengdretween the left-hand side and the
right-hand side of an association rule. For example, figuteigualizing the fifth rule in table 1)
suggests, that there might indeed be a (noisy) linear atioel between the left-hand side and the
right-hand side. Such information can be valuable for assgshe relevance and usefulness of the
pattern at hand.

4 Experimental Results

To assess the applicability and feasibility of the desctiakgorithm, we implemented a version in
MATLAB. In the following paragraphs we describe experingeah two data sets. As a proof of the
principle, we give some interesting results on a microadasa set and test the robustness of the
induced rules. Additionally, we assess the scalabilitywfimplementation using the larger “Cover

12



Id | Quantitative Association Rule Score Cov. Supp. Contr. Conf.

(1) | 0.13*PHO84 + 0.99*INOXk 0.02— YER135C> 0.04 -122.1 038 0.34 0.64 0.84

(2) | -0.17*SNZ1 - 0.98*GPH®> 0.04— -1116 043 036 056 0.83
-0.13*INO1 + 0.11*YDRO010C - 0.98*YLLO59C - 0.11*PGU% 0

(3) | SOR1< 0.04— ZRT1> 0.03 -100.7 053 0.46 044 0.84

(4) | YMRO31W-A < 0.02— -0.98*FIG1 + 0.11*PHO84 -93.0 047 037 0.68 0.79
+0.11*YOR382W+ 0.11*YHR126C- 0.06

(5) | ZRT1> 0 — 0.10*PHO84 - 0.99*YLL059C> 0 -89.8 041 032 063 0.7§

Table 1: Some of the generated quantitative associaties.rul

Type” data set [3].

4.1 Yeast Gene Expression

For our first experiment, we chose the gene expression datd skigheset al. [7]. The data set
was generated using microarray technology: the expresiets of 6316 genes in the yeast genome
were measured for 300 diverse mutations and chemical tezatnof yeast cells. The compendium
is given as a table with 300 instances, where each valuefigseitie log base 10 of the fold change.
High positive values indicate overexpressed genes, nvegadsilues denote underexpressed genes.
We selected the 50 genes with the largest standard devi@tiayur experiments. The goal of the
experiments was to show that the patterns are meaningfupateahtially useful for domain experts,
and that the algorithm is able to find non-random patterns.

Quantitatitive association rules based on half spacesrmangeresting type of representation for
the analysis of microarray data, because biochemical mesngsually consist of main pathways as
well as “side roads” that can be used if the other ways arekblbcThis applies particularly to the
Hughes dataset, where the biochemical network is exposedl sorts of stress (chemicals, etc).
Weighted sums of variables are a suitable means to moddlittdsof phenomenon ionerule: the
big players obtain larger weights in the rule, while the $ies obtain only smaller weights.

We performed experiments with tliegparameter set to 0.3, set to 1.0, and the sparseness pa-
rameterh setto 0.1, 0.3 and 0.5, respectively. Table 1 gives five obtst rules, together with their
“interestingness score”, coverage, support, contrastanfidence. As can be seen, a number of rules
with high confidence can be found. Contrast and coverageeatered around the target value of 0.5.

Rule (1) states that the less inositol and the less of a pladsplansporter is generated, the more
of a hypothetical transmembrane protein is generated.itbtas part of membrane lipides and thus
important for cell growth. Phosphate uptake is also esskfuti the cell. It might be the case that
the cell reacts to a stop of cell growth with the generatiomheftransmembrane protein. Rule (2)
states that if the cell reduces SNZ1 and GPH1 (glycogen datjom) as a reaction to the deple-
tion of nutrients, then growth is also reduced (INO1) and me&&rgy resources are tapped (PGU1
— polygalacturonidase). Rule (3) states that if SORL1 is kwen ZRT1 is generated. SOR1 is a
zinc-dependent enzyme, and ZRT1 is a high-affinity zincdpamt protein. Thus, the lack of SOR1
stimulates zinc transport. Rule (4) reflects the switch fraarmal growth to mating. Rule (5) states
that if the cell is in need of zinc, then it is also in need of ghlwate, and YLLO59C, supposedly an
inorganic phosphate transporter, becomes superfluous.

However, even though the rules do not contradict currentlevis on regulatory pathways, we
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Figure 5: Distribution of scores on the original (black) @ahd permuted (grey) data sets.

have no statistical evidence about the significance of thesruAfter all, it may well be that the
generated rules only describe random fluctuations instéash anherent structural property. We
therefore performed a permutation test to assess the rasssof the rules. We permute the values
in each column of the data set randomly to generate a new efatdth the same distribution, but no
structural relations between the columns. We then run tparighm ten times on the permuted data
set and note the best score found. This process is repeaddiaodred times to get an estimate of the
distribution of scores, that can be expected on random,itnites data. Figure 5 gives the resulting
histograms for the original and the permuted data. The sdoréhe permuted data are peaked around
-30, while the original data features a large number of aation rules in the range between -50 and
-150. Thus, we can be highly confident, that the induced riés€ribe indeed structural properties
of the yeast data set. In practical applications, we woutdmemend this randomization approach to
focus on significant findings.

4.2 Cover Type

The goal of the second experiment is to investigate the Isitiéyeof the optimization algorithm with
regard to the size of the data set. We therefore chose theetCigype” data set containing 581,012
instances from the UCI repository [3]. We removed the digcegtributes, leaving ten continuous
attributes describing cartographic properties of 30 x 3@emkand cells. We normalized the data
set, so that each column has a mean of zero and a standartiatewfone. We then applied the
optimization algorithm on subsets of different size, whie t parameter set to 0.5,set to 1, anch
set to 0.5. The experiments were performed on a Pentium I@RzZmachine. As the runtime of the
optimization algorithm depends on the number of line seateps and the runtime per line search,
the actual runtime varies for different random restarts.
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Data Set| Overall Numberof  Runtime pefr
Size Runtime Line Searches Line Search
100 26s 19 0.14s

1,000 74s 27 0.28s

5,000 23s 22 1.0s

10,000 | 46.9s 17 2.7s

50,000 264 s 18 14.7 s
100,000| 623s 23 27.1s

300,000 2004 s 23 87.2s

500,000 3529s 20 176.5s

Table 2: Runtimes of the optimization algorithm as a functtid data set size.

We therefore give the total runtime, the number of line deescthat were performed, and the
runtime per line search for the various data set sizes i tablThe table shows that the number of
line search steps remains below thirty for all data set @ipelsthat the runtime per search step scales
favorably with the data set size.

5 Related Work

The first approach to quantitative association rules wasa&atetsky-Shapiro [10], where the left-
hand side and right-hand side of the rules were tested fal#gwith numeric constants.

Most of the subsequent approaches to quantitative assocrales can be categorized as either
interval-based [11, 9, 4, 15, 5, 13] or distribution-bas2dl2]. In the former case, the items on
the left-hand side and right-hand side of the rules are difasetests for intervals of variables. In
the latter case, the numerical attributes in the right-hsidd are characterized by their means and
standard deviations.

The first interval-based approach discretizing the nurakatributes was proposed by Srikant
and Agrawal [11]. It is interesting to note that all previ@aproaches based on intervals had to face
similar trade-offs balancing support and confidence as alfirdpace association rules. Fukustaal.

[5] presented an efficient algorithm for quantitative asst@n rules using computational geometry
and sampling methods. While it scales up well in the size efdhtabase, the right-hand side is
restricted to exactly one categorical variable. Zhetgl. [15] proposed to cluster the data to improve
an interval-based approach. Fukuetaal. [4] and Yodaet al. [14] introduced variants with two
numerical variables on the left-hand side and one Boole&sin d@n the right-hand side.

Ultimately, all interval-based methods have to discreteenumerical attributes in one way or the
other, which inevitably leads to a loss of information. Rlegities that are not axis-parallel cannot
be detected or have to be approximated by several quaveitasisociation rules. Also, cumulative
effects of several numeric variables cannot easily be septed.

More recently, distribution-based approaches have begpoped: Lindell and Aumann [2] con-
sidered two types of rules. The first type contains sevetabcaical variables on the left-hand side
and a vector of the means of several numerical variables emigiht-hand side. The second type
consists of exactly one discretized numerical variablerenléft-hand side and exactly one mean
on the right-hand side. Webb [12] contributed efficient allipons for distribution-based association
rules. While this line of research is very interesting and haiigh potential for applications, the
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expressiveness of such rules is also quite restrictedubedais not possible to relate arbitrary sets
of continuous variables. Quantitative association rubeseld on half spaces seem to be a special case
of projection pursuiff6], a fairly broad statistical concept developed in 1970tsis an open ques-
tion whether a reformulation of the present approach in taméwork of projection pursuit would
bring any algorithmic improvement. Finally, the approaciesented in this paper is also related to
research on subgroup discovery [8], where the goal is takdar subgroups in the population with
statistically interesting properties.

6 Conclusion

We proposed a new representation for quantitative assatiatles based on half spaces and an op-
timization setting for such rules. The approach does natire@ discretization step and enables the
detection of regularities that are not axis-parallel. la design of the algorithm, many trade-offs are
involved. Among others, we have to balance the confidencéhencbverage to find good rules. How-
ever, a relatively simple optimization algorithm is su#ict to find locally optimal half-space rules.
From an algorithmic point of view, many improvements angagtons are conceivable. For instance,
one could replace the scalar product with a kernel to obtaioi@e complex separation function or in-
corporate more sophisticated optimization techniquesifiove the algorithm’s performance. Also,
the score function is obviously just one of several condde/@ossibilities. Another point is that it
easy to incorporate user constraints in the process to sijpgaiser interactively in exploratory data
analysis. Finally, we believe that quantitative assoaratules based on half-spaces are an interesting
new class of patterns with a high potential for applicatj@ng., in transcriptomics (microarray data)
and proteomics.
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