
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Modelling System Families with Message
Sequence Charts: A Case Study

Stefan Wagner, Marı́a Victoria Cengarle, Peter Graubmann

TUM-I0416
Oktober 04

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-10-I0416-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
�
2004

Druck: Institut für Informatik der
Technischen Universität München

Modelling System Families with Message Sequence Charts:
A Case Study

Stefan Wagner1, María Victoria Cengarle1, and Peter Graubmann2

1 Technische Universität München, Institut für Informatik, Boltzmannstr. 3, D-85748 Garching
[wagnerst|cengarle]@in.tum.de
2 Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, D-81739 München
Peter.Graubmann@siemens.com

Abstract. A production system is used as case study of MSCs enriched with a connector construct
intended to improve the design. The language of MSCs is further enlarged with the notion of variation
points and variants in order to capture the evolutionary aspects of system family development. The
design of the basic production system is based on earlier work and provides the initial core assets of
the presented system family. Variations of the system are developed and incorporated into a family
model that can be parameterised by the features for a specific product.

Keywords: Message Sequence Charts, MSC Connectors, Product Lines, System Families, System
Family Evolution, Variation Points, UML Sequence Diagrams

Acronyms: MSC: Message Sequence Chart, HMSC: High-Level MSC, HTF: Holonic Transport
Vehicle

This work was sponsored in part by the BMBF within the Eureka Σ! 2023 Programme, ITEA projects ip0004
CAFÉ and ip02009 FAMILIES and by the DFG project InTime.

 1

 Modelling System Families with Message Sequence Charts: A Case Study

Contents

1 Introduction.. 3
Part I Concepts

2 Modelling Variability... 4
2.1 From Features to Variations... 4
2.2 Variability in Message Sequence Charts ... 5

3 MSC Connectors.. 9
Part II Case Study
4 Description of the Basic Production System.. 13
5 Basic System Design.. 15

5.1 High-level View... 15
5.2 First Iteration: Refining the HTF ... 19
5.3 Second Iteration: Refining the Database.. 25

6 Variations for a System-Family Environment ... 27
7 Family Model... 33

7.1 Features .. 33
7.2 Mapping of Features to Variation Points and Variants.. 34
7.3 High-Level View ... 35

8 Related Work ... 41
9 Conclusions.. 41
References ... 42
Appendix: Original MSCs... 43
Appendix: Alternative Formalisations of a Feature Model ... 46

2

Modelling System Families with Message Sequence Charts: A Case Study

1 Introduction

Software system families have established themselves as an important area in computer science
research and industrial practice [15]. In this paper, we develop and try out concepts to model a system
family using Message Sequence Charts (MSCs) in a case study. Special focus is on the applicability of
MSC connectors [3,6,7] for the description of component interaction. We also evaluate the usage of
MSC connectors as an abstraction means within standard MSCs. We further extend the standard MSC
language with additional concepts that proved useful in the context of system family description and
evolution. The approach is tailored for the MSC language but the concepts are equally applicable to
the UML [23] as well.

A system family, also called product line or product family, is a set of software systems sharing a
common, managed set of features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed way. [15]

The specification of a holonic flow of material in a production system [2] is used as basis for the case
study. In this production system, autonomous vehicles transport engine parts between machine tools
where they are processed. In this context, the term “holonic” refers to the computer-aided and highly
integrated control of this production system. It was selected because firstly it shows a high degree of
communication, and secondly, the basic specification and design could be taken over from [1]. We
intentionally resorted to an already existing specification in order to avoid ending up with a
specification that was particularly designed to meet our expectations with respect to the MSC
connector applications. This design is extended by several variants of both machine tool and transport
vehicle mechanisms in order to turn the basic production system into a larger system family. All these
variations are incorporated into a single parameterised model that allows a variant selection based on
system features.

Contribution. The contribution of this paper is twofold. Firstly, we show the usefulness of MSC
connectors in terms of conciseness. Secondly, variations and variation points are introduced into the
MSC language and a first methodical approach for the transformation of feature sets into variation
points and variants is presented and applied in a case study.

Outline. The report is divided into two main parts. Part I describes the concepts that are evaluated in
the case study that is presented in Part II. We start sketching out our approach to modelling variants
and variation points in Message Sequence Charts in Section 2; in Section 3 we summarise the MSC
connector concepts and indicate the usage of variants in this construct. In Section 4, we briefly
describe the basic production system as it is specified in [1,2]. Based on this specification, we design
this basic production system with MSCs and MSC connectors (Section 5). The high-level view of the
entire system is presented in Section 5.1; a refinement of the transport vehicles can be found in Section
5.2; the database of the transport vehicles is briefly refined in Section 5.3. In Section 6, we extend the
basic production system and introduce several alternative mechanisms for the production process. The
respective design changes let the basic production system evolve into a real system family as
presented in Section 7. Section 7.1 presents the features of the system family in a structured way,
Section 7.2 describes the connection between features and MSCs, and Section 7.3 shows the revised
MSCs of the high-level view. Eventually, we present related work in Section 8; conclusion and
outlook follow in Section 9.

 3

 Modelling System Families with Message Sequence Charts: A Case Study

Part I
Concepts

2 Modelling Variability

In this section we describe our approach to modelling system families with MSCs in general. The
basis for the modelling is a feature model following [10] that is used to identify the variability in the
system family. We define feature, variation point, and variant, and present a methodical approach for
the transition from the feature model to MSCs with variation points and variants.

2.1 From Features to Variations

A feature is an essential aspect or characteristic of a system in a domain. From the developers’ point
of view features can be described as distinctively identifiable abilities of the system that must be
implemented, tested, delivered, and maintained [22]. There exist methodical approaches such as
FODA [10] and FORM [22] that can be used to organise several features into a tree of And/Or nodes
in order to identify the commonalities and variabilities within the system. We assume that one of these
approaches is used to build a feature model as starting point from which we derive variation points in
MSCs with the method proposed below.

A feature can have several children in the tree that express different variations. Therefore, features
cannot directly be used to describe the variability in the model. We follow [15,20] in the definition of
a variation point: A variation point is a location within a use case of the system where a variation
occurs. That variation indicated by the variation point is captured in one or more variants that describe
the different possibilities of the variation. We understand use cases here in a very general sense so that
they describe different possibilities of the usage of the system. Moreover we consider the use case to
contain all layers of the system, e.g. low-level redundancy.

The main question concerning system family modelling is how to map features onto variation points
and variants. The general relationship is that certain features are mapped to variants of variation
points. Each feature, and consequently, the variant may be optional or alternative. A “mandatory
feature” does not describe a variant1, i.e., there is no variation and no need to map that feature to a
variant. An optional feature maps to a single variant of a variation point. The approach for alternative
features is similar. Each alternative becomes a variant of a common variation point. The name of the
parent feature can also name the variation point if it has only one optional or one set of alternative
features as children.

Hence we can describe a variation point by its name that might be directly derived from a feature. This
results in the following structure for a variation point:

VariationPoint ::= VariationPointName (VariantList)

VariantList ::= VariantName, VariantList

 | VariantName

We want to illustrate our approach with an example of a car wiper system: in our system, each car has
a front wipe; some models may have rear wipes. Both the front and the rear wipe must be able to wipe
steadily. The front wipe can optionally align its speed to the rain and car speed. Furthermore it can be

1 In literature, the term “mandatory feature” is used nevertheless, mostly in the context of feature selection

where “mandatory features” are useful in order to clearly determine the available choices.

4

Modelling System Families with Message Sequence Charts: A Case Study

a special type of wipe, either wiping in fixed intervals or starting automatically in case of rain. The
rear wipe has an optional washing device. The corresponding feature model is depicted in Figure 1.

wiper

front steady wipe

rear wipe

front wipe

mandatory

optional

alternative

autom. speed alignment

rear steady wipe

wash

interval wipe

autom. rain wipe
special type

Caption:

Figure 1 Example of a feature model for a car wiper

The feature model leads us to the following variation points and variants in the structure given above:

wiper (rear wipe)

rear wipe (wash)

front special (special type)

front autom. (autom. speed alignment)

special type (interval wipe, autom. rain wipe)

It can be seen that most variation points can use the name of their corresponding features. Only front
special and front autom. had to be given new names. In this example there is also only the variation
point special type that has two associated variants because there are only two alternative features.

2.2 Variability in Message Sequence Charts

For the MSCs we use the notion of variant occurrences and variation point occurrences derived from
the variants and variation points. If a feature is chosen, it implies potentially one or more variants that
have occurrences in several MSCs and connectors or the corresponding variation points appear in one
or more HMSCs.

A variant occurrence can be described in the following attribute grammar based on [26]:

Interaction ::= Basic

 | CombinedFragment

CombinedFragment ::= ...

 | variant(VariantName ArgumentList, Interaction)

 {allowedValues(VariantName.name, ArgumentList.list}

 5

 Modelling System Families with Message Sequence Charts: A Case Study

ArgumentList ::= (NonEmptyArgumentList)

 {ArgumentList.list := NonEmptyArgumentList.list}

 | ε

 {ArgumentList.list := nil}

NonEmptyArgumentList ::= Argument, NonEmptyArgumentList

 {NonEmptyArgumentList.list :=

 [(Argument.name, Argument.value) |

 NonEmptyArgumentList1.list]}

 | Argument

 {NonEmptyArgumentList.list :=

 [(Argument.name, Argument.value)]}

Argument ::= FormalParamenter : ActualParameter

 {Argument.name := FormalParameter.name;

 Argument.value := ActualParameter.value }

 | FormalParameter

 {Argument.name := FormalParameter.name;

 Argument.value := null}

MSCs are two-dimensional diagrams. Therefore the variant occurrences can appear in both
dimensions. One way to change MSCs is to introduce or to remove instances – this obviously is a
change in the horizontal dimension. Or we can modify the behaviour expressed in the MSC by adding
or removing messages and actions, by changing conditions or by re-ordering the events on the instance
axes (thereby of course keeping to the rules of the MSC language). All these changes can be seen as a
modification of the partial order described by the MSC and modify the vertical dimension. These two
dimensions for modelling variants are depicted in Figure 2.

variant

instances

messages,
conditions,

actions variant

variant (VariantName, ArgumentList)

Figure 2 The two dimensions of variation in MSCs with the respective representations of the variant occurrence.

6

Modelling System Families with Message Sequence Charts: A Case Study

To express a change in the horizontal dimension, this is, for a modification of the occurrence of
instances in a MSC, we do not have a language construct in the standard [8] yet. We therefore
introduce a repeat construct for the MSC language that is capable of reduplicating instance axes.
Syntactically, this construct is designed to conform to the well known loop construct with the sole
difference that it is applied to instance axes instead of messages. It uses the keyword repeat followed
by the repetition boundary indication (n,m) where n and m stand for (expressions of) natural numbers.
This means that the operand – the instance axes together with the messages between them, contained
in the dashed box that limits the repeat operator – will be duplicated at least n times and at most m
times. Messages crossing the boundaries of the repeat operator will be duplicated accordingly; each
instance of such a repeated message is understood to be sent to or received from a small co-region that
is placed where the original message is attached to the instance outside the repeat operator, hence, the
send or reception order of these duplicated messages is arbitrary (see Figure 3).

Similar to the loop construct, the repetition boundary may take the form (n,inf). This means that the
repeat operand will be duplicated at least n times. Also, repeat <n> will be interpreted as repeat (n,n)
and repeat (inf) may replace repeat (1,inf). repeat (0,n) or repeat (0) are acceptable; in the first case,
the MSC part contained in the repeat operator may possibly be dropped out in a certain instantiation
(this includes the elimination of the messages that cross the boundaries of the repeat construct, too);
the second case just specifies that a certain MSC part does not occur: this is particularly relevant when
optional variants are described within one MSC. A repeat construct where the first repetition bound is
greater than the second one (i.e., n > m) is considered equivalent to a repeat (0) statement.

The repeat construct, originally thought for application in MSC connectors, proved also rather useful
to structure and simplify the classical MSCs. In this case study, we only used the repetition of one
instance axis a fixed number of times.2

Y

repeat (2)

alt

a

msc A

X

m

n

MSC A is resolved into
the equivalent MSC A’

Y1

msc A’
X Y2

a

a

m

m

n

n

alt

Figure 3 The repeat construct in MSC A and its resolution into MSC A’.

In case variations are too complex to be incorporated into a single MSC and actually describe strongly
different sequences, it is also possible to describe variation points in HMSCs as shown in Figure 4. It
is a combination of both dimensions on a higher level of abstraction and in essence similar to the
description of variations in use case diagrams in [13,14].

2 One might wonder whether a similar alternative construct with respect to instance axes might be useful;

however, the classical alternative inline expression already does the job.

 7

 Modelling System Families with Message Sequence Charts: A Case Study

vp

Figure 4 Variation points in HMSCs

Finally it is also possible to hide variants inside MSC connectors [3,6,7]. They use the same notational
elements as the standard MSC language. The difference is however that the variations are not visible
on the MSC level but are encapsulated in the connector. We introduce the MSC connectors in more
detail in the next section.

We return now to the wiping system example from above. We cannot go into details here but want to
illustrate the expression of variants in MSCs by an example MSC. In Figure 5 a possible sequence is
shown for incorporating the special types of front wipers. The FrontWiper is either started by the
RainSensor or by the UserInterface. In the interval wipe variant the length of the interval of the wiping
might be changed. Finally the stop order can again originate either from the RainSensor or from the
UserInterface.

 variant
 (autom. rain wipe)

RainSensor

msc FrontWipingSpecial

UserInterface

FrontWiper

changeIntervall(interval)

idle

start

start

idle

wiping

 variant
 (interval wipe)

stop

stop

Figure 5 MSC FrontWipingSpecial as an example for variants in MSCs

8

Modelling System Families with Message Sequence Charts: A Case Study

3 MSC Connectors

We sketch the main principles and the extensions to the standard MSC language [8] with connectors;
for a detailed description we refer to [4,5,7], further information can also be found in [3,6].

The reasons for the introduction of MSC connectors were twofold: On the one hand side, they are
intended to provide a MSC language construct suitable for describing and reasoning about component
interfaces and component interactions which allows abstraction to interactions in a similar way as the
MSC reference construct or decomposed instances do for component behaviour. On the other hand,
MSC connectors are meant to facilitate the message flow definition between those MSC constructs
that currently use the gate concept. It turned out that both aims can be realized using the same
language concept. In this case study, MSC connectors are used for both reasons, this means, to single
out domain respectively application specific interactions between components (see the respective
connector definitions in Figure 21 or Figure 33) as well as to abstract and generalize recurring
interaction patterns between MSC constructs (see the connectors defined in Figure 13, Figure 14, or
Figure 20).

MSC connectors represent the structure of an interaction between two (or more) MSC constructs
which in this section will summarily be called components in order to facilitate the presentation. It
should however be kept in mind that these “components” are either MSC components – usually
described by entire MSCs, MSC references in HMSCs or decomposed instances – or arbitrary MSC
constructs (like inline expressions or MSC references used to structure parts of the behaviour of a
MSC). The common property is that components communicate with each other via their environment.
Connectors match these environments and describe the details of the interaction structure.

Thus, the first of the MSC connector concepts is the extended environment of components: the
standard MSC language only provides one monolithic environment. This is extended by introducing
additionally environmental instances thus allowing partitioning of the overall environment in logically
distinct and disjunctive “environments” that resemble the roles a component takes in its interactions.
Environmental instances are indicated by the keyword env in the instance header (see Figure 6). It
should be mentioned that environmental instances may be repeated as well.

 environmental
instance

msc A

I1

a

u

E
 env

msc A

I1

a

b

 E

 E

E

msc A

I1

a

b

environment

(a) (b)

identifier

standard MSC environment
(represented by the MSC diagram frame)

(c)

environment

u

 identifier

b
u E

Figure 6 The structured environment and presentation variants: (a) Environmental instance E; (b) “Arrow mechanism”; (c)

“Attached environment identifier”.

Counterparts of the environmental instances in the MSC connectors are the so-called external
instances. From a logically point of view, they represent component roles involved in the interaction:
they describe the message exchange with the components which actually corresponds to component
messages sent to or received from the environment. External instances are identified by the keyword
ext in the instance header (see Figure 7).

 9

 Modelling System Families with Message Sequence Charts: A Case Study

The MSC connector definition resembles the MSC reference definition save that the keyword msc is
replaced by the keyword con (see Figure 7). External instances are allowed only in connectors. Beside
this, connectors are built by the same MSC constructs that are allowed in the MSC references, in
particular, there may be internal instances (these are the usual instances which are neither external nor
environmental) in order to allow message transformations. Connectors may also contain
environmental instances.

 con C
X P Y

b
y

z

ext ext

external instance X
proxy of an connected

MSC construct

external instance Y
proxy of another
connected MSC construct

internal instance P
transformations within the connector
(providing for “connection services”)

Figure 7 Definition of the MSC connector C.

The MSC connector application is syntactically expressed by a double lined arrow. Either one of the
arrow heads touches the involved instance axis, or a tiny circle above the crossing of instance axis and
connector symbol indicates that the respective instance is part of the interaction (see Figure 8). Using a
MSC connector to connect components now requires identifying the component environments with the
connector roles, this means, to associate external instances in the component MSC construct with
external instances in the MSC connector. The mapping is not necessarily one-to-one: for instance,
environments that describe roles distinguished by one component may be mapped onto one external
instance because earlier the interaction was defined without this distinction but the new component has
to be compatible with it nevertheless. This external instance mapping is described explicitly by listing
the associated external and environmental instance names where the connector meets the connected
component (see Figure 8b).3

Since MSC connectors are intended as abstraction means for interaction patterns, they cannot only
refer to concrete message names. Thus, MSC connectors contain message variables which are bound
to the concrete messages exchanged with the components via message mapping. The message
mapping specifies exactly how message variables can be substituted by the names of the concrete
messages. It is enclosed in square brackets and is placed below the connector symbol (see Figure 8a).

3 The general definition of the external instance mapping reflects the need for a flexible connector

application, but ensures the correctness of the association:
For each connector endpoint and the respective MSC construct, a non-empty subset of a partition of the external
connector instances has to be mapped injectively into a partition of the environmental instances of the MSC
construct. There is no message exchange among instances of the same partition element.

10

Modelling System Families with Message Sequence Charts: A Case Study

connected instance
(with respect to Y in B: I3 corresponds to Y in C)

msc B

Y
env

d

I3

c

msc A

I2

b E
c E

I1

a

con C

X P Y

b
y

z

ext ext

connected instances
(with respect to E in A:
I1 and I2 are represented by X in C)

msc D

C

E X Y [c z; d y]

external instance
mapping message

mapping

(a) (b)

ext. instance mapping
 on MSC A side:
 associate X to E

ext. instance mapping
 on MSC B side:
 corresponding Y

message mapping

message mapping
c z

c z; d y

A

B

Figure 8 MSC connector C connecting the decomposed instances4 A and B: (a) the connector application; (b) the

respective definitions of A, B and C.

The behaviour defined by a connector application is the result of a merging of the behaviours specified
by the MSC connector and the components. The basic merging procedure can be defined in the
following manner:

Each connector in/out message event on an external connector instance has to be
identified with a corresponding equally named in/out message event that is received from,
respectively sent to one of the environmental instances in the connected MSC that are
associated to the external connector instance through the external instance mapping.
The message mapping has to be performed prior to the merging.

For this merging procedure, it is assumed that messages with identical names also have to correspond
with respect to their parameters.

As already stated above, besides the particular constructs for the connector concepts, all other standard
MSC constructs can be used in a connector definition. This is also the case for the repeat construct
which however has to conform to the number of repetitions required by the connected components;
otherwise, it has to inherit its cardinality through the connector application. There is also no particular
restriction to the language constructs for variation discussed in this paper (see Figure 9).

4 In analogy to the graphical presentation of the connector, we propose to denote a decomposed instance

with a double lined instance axis.

 11

 Modelling System Families with Message Sequence Charts: A Case Study

ext ext

variant

variant

variant

Figure 9 Variants in MSC connectors

12

Modelling System Families with Message Sequence Charts: A Case Study

Part II
Case Study

4 Description of the Basic Production System

Our case study is based on a specification [2] and a corresponding design [1] that describe a
production system for engine parts. The aim of the original design was to explore the applicability of
the UML-RT language [9] on the description of the system. We take the same example – without
major modifications – as the initial asset for our system family, first, to explore the applicability of
MSC connectors for the system family design purposes and then, to investigate into the representation
of variation points within MSCs.

The engine parts, more generally called work pieces, are deburred and washed by the system. In the
basic variant of the system, as described in [1, 2], three machine tools are used for deburring and
washing the work pieces, and three autonomic transport vehicles, also called holons or, for short,
HTFs5, carry the work pieces between the machine tools. Furthermore, there are input and output
storages, which buffer the work pieces on their way from and to the environment of the system. Of
course, the holons move the work pieces also between storages and machine tools.

The basic scenario of the production system is the following: Each work piece processed by the
system is taken from the input storage, treated by the first, second, and third machine tool in this order
and finally delivered to the output storage. The machine tools have in addition to their workplace a
buffer for two untreated work pieces.

All parts of the system synchronise by broadcast communication over a radio system. This makes the
system extremely flexible. To keep the system to a neat size, we assume according to the specification
that the communication is failure-free.

Each holon is only able to carry one work piece at a time. Furthermore, each holon has an internal
database that contains a complete copy of the state of the working process. They use this database to
make their decisions and keep it up to date by exchanging broadcast messages.

Figure 10 shows the major use cases of the system corresponding to the major scenarios described in
more detail below (following [1]).

5 This abbreviation comes from “holonic transport vehicle”; but since the original system was described in

German, the characters stand for “Holonisches Transport Fahrzeug”. In order to keep the relation to the
original study visible, we did not adapt the abbreviation to the English.

 13

 Modelling System Families with Message Sequence Charts: A Case Study

initialisation

negotiation

transport

OutStorage

InStorage

HTF

MachineTool

Figure 10 Use case diagram

A. Initialisation of the production:

1. One of the holons asks the output storage about the work plan, i.e. how many work pieces
should be treated. It is not defined which holon starts the initialisation.

2. The output storage sends the work plan via broadcast to everybody.

B. Negotiation of jobs between a machine tool and the holons:

1. A machine tool or input storage posts a job to carry away a (treated) work piece and
simultaneously sends its status.

2. The holons receive the message and update their database. They start to compute a bid.

3. The holon that has the first available bid sends its bid. The other holons listen and only send a
bid if they can do better. If no holon sends a bid, the machine tool will post the job again after
a certain time.

4. After a fixed time the machine tool ends the negotiation and the holon with the lowest bid is
assigned to the job.

C. Transport of a work piece:

1. A holon requests the necessary resources for the transport in arbitrary order.

• A holon requests a work piece from the input storage or a machine tool, respectively.

• A holon requests a place from the output storage or another machine tool.

2. The release of the resources is reported. The following actions can occur in arbitrary order.

• A machine tool or the input storage releases the work piece.

• The output storage or the other machine tool releases a place.

3. The holon transports the work piece and acknowledges the successful work piece transfer via
broadcast.

The class diagram in Figure 11 is based on [1]. It describes the static structure of the system with a
focus on the classes used in later sections. Furthermore it defines a basic terminology for the further
discussion of the system. We reduced this diagram to an overview of just the important classes in
consideration. An HTF, also called holon, includes a single Database, transports WorkPieces and
executes Jobs. The Jobs are defined in the production program ProdProg and involve two Locations.

14

Modelling System Families with Message Sequence Charts: A Case Study

A Storage, as well as a MachineTool, is at a specific Location. InStorage and OutStorage are both a
special kind of Storage.

MachineTool

{abstract}
InMachine

{abstract}
OutMachine

Location

Job

WorkPiece HTF Database ProdProg

1

1
1

*

11

1
1

*
1
1

1

1

0..1

0..1

0..1

*
* 0..1

2

*

{abstract}
Storage

{Singleton}
InStorage

{Singleton}
OutStorage

Figure 11 Class diagram

We define InMachine as the superclass of MachineTool and InStorage, and OutMachine as the
superclass of OutMachine and MachineTool, because they often serve the same purpose in the MSCs.
Considering implementation, the multiple inheritance structures can be problematic, in case of equally
named methods or attributes in both superclasses. In this study we assume no naming collisions.

5 Basic System Design

The following MSCs describe the scenarios of the use cases from Section 4 in greater detail. First we
develop a high-level view over the system, and then two refining iterations are performed. Each
section is composed of an HMSC to show the interrelations of the MSCs, the used connectors, and
some exemplary MSCs.

5.1 High-level View

The high-level view describes the interplay of the physical parts of the system, i.e. the communication
of HTF, machine tools, input storage, and output storage. It must be noted that all these MSCs send
their broadcast messages to the normal recipients as well as to the unspecified environment (i.e. the
standard MSC environment, as defined in [8]). This simply means that there could be other
components in the environment of the system that might be interested in these messages.

First the system starts the initialisation, and then a machine tool or the input storage posts a new order
to negotiate. Afterwards the HTF that won the bidding process takes the work piece, moves it to the
destination and releases the work piece. Finally the system waits for a new order to repeat the
sequence. Figure 12 shows the HMSC describing the overall behaviour of the system.

 15

 Modelling System Families with Message Sequence Charts: A Case Study

msc Overview

Init

NegotiationOfOrder

TakeWP

ReleaseWP

Figure 12 MSC Overview

The corresponding MSCs to the HMSC are depicted in the following but first the associated
connectors are described. The connector requestReply in Figure 13 is simple but powerful. It
represents two messages between two components. It means that one of the components requests
information from the other and receives a reply. Hence the external instances are called Req (for
Requester) and Rep (for Replier). The request/reply type of communication is common in distributed
systems and especially in this production system. The well-known naming of this connector [12]
makes it easy to understand when it is used in an MSC as can be seen in the following.

con requestReply

Req

ext

Rep

ext
x

y

Figure 13 CON requestReply

Broadcast is an important concept that is hard to express in standards MSCs and UML [24] and is also
typical for connectors [12]. The MSC connector in Figure 14 shows the simple and generic modelling
of a broadcast (or multi-cast) communication which is often used in the system. The connector
contains a single message that is sent to an arbitrary number of components. This is realised by the use
of the parameterised repeat construct. The parameter must be set when using the connector. The
external instances are called Sender and Rec (for Receiver).

16

Modelling System Families with Message Sequence Charts: A Case Study

con broadcast (n)

repeat (n)

Sender

ext

Rec

ext

x

Figure 14 CON broadcast

An interesting issue for tool support is that a CASE tool could ensure the consistency between the
number of repeated components inside the connector and the number of components connected with
the connector when used in an MSC.

Having described the necessary connectors, we detail the scenarios in the following. The initialisation
process of the system is described in the MSC in Figure 15. One HTF broadcasts a request for the
production program to all participants. It is non-deterministic which HTF sends the message. The
OutStorage answers by broadcasting the production program. The MSC uses the connector broadcast
introduced in Figure 14 above. It can be seen that the connector allows a simple modelling of
broadcasts. Only the number of recipients has to be passed as a parameter. Furthermore the repeat
construct keeps the MSC small and concentrated on the essentials.

repeat (2)

h:HTF

msc Init

:OutStorage

:HTF

broadcast (7)

Rec [prodProg x] Sender Rec Rec

broadcast (7)

Sender [requestProdProg x] Rec Rec Rec

repeat (3)

:MachineTool

Rec

Rec

Figure 15 MSC Init

A simple example for the negotiation of an order is depicted in Figure 16. A MachineTool has an order
to place (i.e. a new job to be done) and therefore broadcasts the job order to all HTFs. Every HTF
creates that job and one of them broadcasts a bid for it. It is assumed that the broadcasting HTF is the
one that computed the bid most quickly. The other HTFs would only broadcast a bid if theirs were
better (i.e. lower) than the first bid. In this MSC we assume that no other HTF has computed a better
bid. It is also important to notice that an HTF is not allowed to underbid its own bid. After a certain
period, the MachineTool ends the negotiation with a broadcast and the HTF save the status of the job.
This means that the winning HTF can start to transport the work piece.

 17

 Modelling System Families with Message Sequence Charts: A Case Study

repeat (2)

w:InMachine

msc NegotiationOfOrder

h:HTF

:HTF

create job

broadcast (4)

Rec [jBid x] Sender Rec Rec

update job status update job status

broadcast (4)

Sender [jOrder x] Rec Rec Rec

create job

compute v

broadcast (4)

Sender [jEndOfNegotiation x] Rec Rec Rec

compute v

Figure 16 MSC NegotiationOfOrder

Figure 17 describes how a work piece is taken from the InStorage or a MachineTool. This implies that
the HTF h won the negotiation for the transport of that work piece. First the responsible HTF h drives
to the origin location. It requests the work piece from the InMachine (i.e. the InStorage or the
MachineTool, see Figure 11) which answers by releasing the work piece. This is handled in a
request/reply-like manner, thus we introduce the connector requestReply as described in Figure 13.
The HTF broadcasts to all other HTF its transportation job and they update their job databases.

repeat (2)

w:InMachine

msc TakeWP

h:HTF

:HTF

drive to origin
location

requestReply

Res Rep [requestWP x;
releaseWP y]

broadcast (4)

Rec [jTransporting x] Sender Rec Rec

update job update job

Figure 17 MSC TakeWP

The MSC for releasing a work piece is described in Figure 18. It is similar to and follows
chronological after the MSC TakeWP in Figure 17. Here it is assumed that the HTF h is transporting a
work piece. The transporting HTF drives to the destination location, requests a place for the work
piece, which is released by OutMachine (which can be OutStorage or a MachineTool, see Figure 11).
This is again communication in a request/response style and therefore the requestReply connector is
reused. Afterwards the HTF broadcasts to all other HTF the completion of the job and they update
their job databases again.

18

Modelling System Families with Message Sequence Charts: A Case Study

repeat (2)

w:OutMachine

msc ReleaseWP

h:HTF

:HTF

drive to destination
location

requestResponse

Res Req [requestPlace x;
releasePlace y]

broadcast (4)

Rec [jFinished x] Sender Rec Rec

destroy job destroy job

Figure 18 MSC ReleaseWP

5.2 First Iteration: Refining the HTF

In the first iteration, we concentrate on the behaviour of a single HTF because it contains most of the
logic of the system, i.e. databases of the working process and handling of the negotiations. It is refined
into the four components Database, Disponent, SingleJobControl, and IOSystem. The Database stores
all the relevant incoming information and information about computed bids. The Disponent is
responsible for handling the negotiation of orders, the SingleJobControl for executing a single job at a
time and the IOSystem is responsible for the communication with the environment.

The HTF behaviour must provide its part of the system behaviour described in Section 5.1. It first
initializes the process by receiving the production program, possibly by requesting it beforehand. Then
four activities run in parallel: The HTF negotiates orders, waits for a job and executes it, listens for
transporting messages and listens for finishing messages. In case it negotiates, the HTF can either be
in the listener or originator role, that means it has a lower bid than is currently the best and sends it or
just listens to the other bids, because its own bid is to high. If it has the lowest bid, the arrival of a new
job will be noticed, and it will take the work piece, transport it to the destination and release it there.
The HMSC in Figure 19 shows the life-cycle of an HTF.

 19

 Modelling System Families with Message Sequence Charts: A Case Study

msc HTFOverview

HTFInit

NegotiationOfOrderONegotiationOfOrderL HTFListenFHTFListenT

HTFReleaseWP

HTFTakeWP

HTFWaitingForJob

Figure 19 MSC HTFOverview

We again provide descriptions of the used connectors at first and then describe the MSC from
HTFOverview in more detail. The connector in Figure 20 is actually quite similar to the broadcast
connector in Figure 14, but it has an explicit instance between the external components that receive the
message from the sender and forwards it to all the other receivers. The forwarder can be set as a
parameter. In our case this will be the IOSystem.

con forward (n, forwarder)

repeat (n)

Sender

ext

Rec

ext
x

forwarder

x

Figure 20 CON forward

The connector getBids depicted in Figure 21 shows in contrast to the more technically, message-
oriented connectors, a more semantically interesting connector. It summarises the broadcasts of the
bids during the negotiation. This connector shows that it is not only possible to group a technical issue,
such as request/reply, to a connector, but also more application-oriented parts of an MSC. The
connector hides the whole forwarding mechanism and the loop over the incoming bids, but transports
that knowledge by using the name getBids to the reader of the MSC that uses the connector. It is
parameterised with the minimal times the forward connector should be looped, i.e. the minimal
amount of bids we want.

20

Modelling System Families with Message Sequence Charts: A Case Study

con getBids(n)

Bidder

ext

Prospect

ext

forward (1, :IOSystem)

Sender [jBid x] Rec

loop <n,inf>

Figure 21 CON getBids

We start with the initialisation from the point of view of an HTF. The corresponding MSC is shown in
Figure 22. First the request for the production program is broadcasted. This part is optional because
only one of the HTF does the request and therefore not each HTF sends this message. In our design it
is non-deterministic which HTF requests the program. In any case the database of the HTF receives
the broadcast of the production program from the output storage. The database stores that production
program and afterwards all components of the HTF are idle.

 msc HTFInit

:Database

Sender

env

:Disponent

:SingleJobControl

Rec

env

forward (1, :IOSystem)

Rec [requestProdProg x] Sender

forward (1, :IOSystem)

Sender [prodProg x] Rec

opt

idle

Figure 22 MSC HTFInit

The MSC NegotiationOfOrderL in Figure 23 describes how the negotiation of an order is handled
inside an HTF that is in the listener role, i.e. does not place a bid. When the HTF is idle it firstly
receives an order from the environment, then the disponent requests the status from the database. The
disponent computes depending on that status its own bid. During the computation arbitrary many bids
from other HTF may arrive. The arrival of these bids is encapsulated in the getBids connector (Figure
21). The bids are stored in the database. After finishing its computation the disponent asks the
database for the current best bid. If the best bid is still better than the own bid, the HTF does nothing
and just waits for the end of the negotiation, which is broadcasted from the machine tool that initiated
the negotiation and returns to the idle state. To illustrate the improved conciseness of the MSC, the
original MSC built without connectors is depicted in the appendix in Figure 50.

 21

 Modelling System Families with Message Sequence Charts: A Case Study

 msc NegotiationOfOrderL
:Database

:Disponent

getBids(1)

Bidder Prospect

forward (2, :IOSystem)

Sender [jOrder x] Rec Rec

Compute bid v

Sender

env

when idle

requestResponse

Res Req[getStatus x;
status y]

requestResponse

Res Req[getBid x;
bid y]

when bid <= v

forward (2, :IOSystem)

Sender [jEndOfNegotiation x] Rec Rec

idle

Figure 23 MSC NegotiationOfOrderL

Questions that arise looking at this MSC are if it makes sense to have connectors on this level of
abstraction at all and to connect connectors to environmental instances. From our point of view it
makes sense to have connectors here because it is also useful to structure the MSC on this level and
make it more concise. It also makes sense to use a connector with an environmental instance because
in some sense it is just an abbreviation for the real message passing. In a CASE tool it could be
realised that the message passing is expanded by (double-) clicking the connector.

A negative point is that it can be confusing to have connectors on different abstraction levels, because
the names of the roles can be equal or similar. Hence, it is not obvious at first sight to which connector
an environmental instance belongs. This shows that good naming is important when using MSC
connectors.

An alternative scenario is that the HTF under consideration places a bid in the negotiation process i.e.
is an originator. In Figure 24 this scenario is described. The first part is the same as in Figure 23 but in
this case its own bid is better than the currently lowest bid, therefore the disponent broadcasts the bid.
Now again arbitrarily many bids can possibly come in (encapsulated by the getBids connector) until
the end of negotiation is received. After that the disponent asks the database which HTF has made the
best bid. If it made the lowest bid it inserts the job in the database. In any case it reaches the idle state
again. The original MSC from [1] is again depicted in the appendix in Figure 51. It illustrates that the
introduction of connectors improves the MSC in terms of conciseness.

22

Modelling System Families with Message Sequence Charts: A Case Study

msc NegotiationOfOrderO

:Database

:Disponent

getBids(0)

Bidder Prospect

forward (2, :IOSystem)

Sender [jOrder x] Rec Rec

Compute bid v

Rec

env

when idle

requestResponse

Res Req[getStatus x;
status y]

requestResponse

Res Req[getBid x;
bid y]

when bid > v

Sender

env

getBids(0)

Bidder Prospect

forward (2, :IOSystem)

Sender [jEndOfNegotiation x] Rec Rec

requestResponse

Res Req[getBidder x;
bidder y]

idle

when bidder = self

inqueueJob(jobno)

opt

forward (2, :IOSystem)

Sender[jBid x]Rec Rec

Figure 24 MSC NegotiationOfOrderO

The SingleJobControl uses a busy-waiting approach for the execution of jobs. When the
SingleJobControl is idle it requests the next job from the Database. It either gets no job back if there

 23

 Modelling System Families with Message Sequence Charts: A Case Study

are no pending orders or gets a new job and changes to the newJob state. The latter state is the trigger
for the MSC HTFTakeWP (Figure 26) to start transporting a work piece. The trace is depicted in
Figure.

 msc HTFWaitingForJob

:SingleJobControl

:Database

alt

when idle

requestResponse

Req Res [getNextJob x;
noJob y]

idle

requestResponse

Req Res [getNextJob x;
job y]

newJob

Figure 25 MSC HTFWaitingForJob

The MSC in Figure 26 starts with the condition that the SingleJobControl is in the newJob state; hence
a new job has to be executed. The HTF drives to the origin location and requests the work piece. Then
it broadcasts that it is transporting a work piece and enters the transport state.

 msc HTFTakeWP
:Database

:SingleJobControl

Drive to origin
location

Receiver

env

when newJob

requestResponse

Req Res[requestWP x;
releaseWP y]

forward (2, :IOSystem)

Rec [jTransporting x] Rec Sender

transport

Res

env

Figure 26 MSC HTFTakeWP

Following after the MSC HTFTakeWP the MSC in Figure 27 shows how a job is finished. It starts
with checking if the current state is transport. The HTF drives to the destination location and requests
a place for the work piece it is carrying. The environment, i.e. the machine tool or output storage,
responds with the release of a place. The SingleJobControl then broadcasts that it has finished the job
and returns to the idle state.

24

Modelling System Families with Message Sequence Charts: A Case Study

 msc HTFReleaseWP
:Database

:SingleJobControl

Drive to destination
location

Rec

env

when transport

requestResponse

Req Res[requestPlace x;
releasePlace y]

forward (2, :IOSystem)

Rec [jFinished x] Rec Sender

idle

Res

env

Figure 27 MSC HTFReleaseWP

The MSC in Figure 28 describe the listening of an HTF to the broadcast messages of the other HTFs.
It basically shows that the jTransporting and the jFinished messages are sent to the internal Database.

msc HTFListenT

:Database

Sender

env

forward (1, :IOSystem)

Sender Rec [jTransporting x]

msc HTFListenF

:Database

Sender

env

forward (1, :IOSystem)

Sender Rec[jFinished x]

Figure 28 MSCs HTFListenT and HTFListenF

5.3 Second Iteration: Refining the Database

The next iteration has the aim to describe the database of an HTF in greater detail. In this context it is
not completed, but only shows an example for a further refinement. The database of an HTF is chosen
for the refinement because it has the most complex interaction.

Considering the aim of this case study, showing the whole refinement step is not useful, because it
does not involve substantially new aspects. Therefore we describe one exemplary MSC with its used
connectors. One interesting issue here is that the database uses its own IOSystem which packs the
messages from the database into a kind of envelope and unpacks the incoming messages for the
database. This is different to the other connectors as we use parameters inside connectors.

The connectors for this service are depicted in Figure 29. They only forward to a single component, in
contrast to the forward connector in Figure 20. This connector allows one to ignore the packing and
unpacking in the normal MSC.

 25

 Modelling System Families with Message Sequence Charts: A Case Study

con forwardMsg(Forwarder)

Sender

ext

Rec

ext
x

Forwarder

msg(x)

con forwardSend(Forwarder)

Sender

ext

Rec

ext
x

Forwarder

send(x)

Figure 29 CON forwardMsg and CON forwardSend

The MSC connector reqResForward in Figure 30 is the combination of the two forward connectors
above and combines them to a request/reply type connector similar to the requestReply connector in
Figure 13. This shows again that this type of communication is common in communicating systems
and can be elegantly modelled with a connector.

con reqResForward(Forwarder)

Req

ext

Res

ext

forwardMsg(Forwarder)

Sender Rec [y x]

forwardSend(Forwarder)

Rec Sender [z x]

Figure 30 CON reqResForward

In Figure 31 the negotiation of an order is depicted from the point of view of the database of the
originator HTF. At first the database receives the broadcast of an order. In case the job with the job
number as in the order does not exist already in the database, a new job is created and the negotiation
starts. The database requests the current status and stores it. Then two threads run in parallel: The
environment (i.e. the disponent) requests the currently lowest bid and the database returns that value,
and the job receives the bids from the other HTFs. The end of the negotiation is sent to the job and the
job sends the lowest bidder to the environment. In case that the HTF containing the database is the
lowest bidder, the database gets the message to in queue the job.

26

Modelling System Families with Message Sequence Charts: A Case Study

msc DBNegotiationOfOrderO

db:Database

jobno:Job

Req

env

Sender

env

when not database.job includes jobno

create

negotiation start

par

loop <0,inf>

append job

opt

forwardMsg(:IOSystem)

Sender Rec[jOrder x]

reqResForward(:IOSystem)

Req Res[getStatus y; status z]

reqResForward(:IOSystem)

Req Res[getBid y; bid z]

forwardMsg(:IOSystem)

Sender Rec[jBid x]

forwardMsg(:IOSystem)

Sender Rec[jEndOfNegotiation x]

reqResForward(:IOSystem)

Req Res[getBidder y; bidder z]

forwardMsg(:IOSystem)

Sender Rec[inqueueJob x]

Figure 31 MSC DBNegotiationOfOrderO

6 Variations for a System-Family Environment

The issue explored in this case study so far is the usefulness of connectors in the description of a
system. The overall aim of this study is however to examine MSCs and MSC connectors in the design
of system families. To move further in that direction, we introduce variations of the system to build a
system family. More specifically we define the scope of the system family.

Changing Amounts. Some simple changes in the system are increasing the amount of HTFs and/or
machine tools. It results in a substantial change of what the system is capable of but requires only
small changes in the MSCs developed above. These changes do actually not affect the connector

 27

 Modelling System Families with Message Sequence Charts: A Case Study

definitions but only the connector applications. Assumed we want to increase the amount of machine
tools to 5 and the amount of HTF to 4, then we only have to change the parameter of the broadcast
connector used in most MSCs. We also have to change the MSCs themselves to reflect the increased
amount but that does not affect the connector. An example MSC that reflect both changes is the MSC
Init depicted in Figure 32.

repeat (3)

h:HTF

msc Init

:OutStorage

:HTF

broadcast (9)

Rec [prodProg x] Sender Rec Rec

broadcast (9)

Sender [requestProdProg x] Rec Rec Rec

repeat (5)

:MachineTool

Rec

Rec

Figure 32 MSC Init (Variation)

Variable processing sequence. A more complicated but interesting variation is to make the sequence
of the working process variable. This means that we do not have the same order of processing for all
work pieces but every work piece has an individual processing sequence. We assume that the
InStorage gets this information at the time it receives the new work piece and it is forwarded from the
machines to HTF and the other way round. This implies the following changes:

• The message jOrder needs an additional parameter with the next location for the work piece.

• Either relaseWP and requestPlace need additional parameters to forward the processing
sequence for the work piece, or a change in protocol and additional messages are incorporated
into the connector. We look further into the second possibility because of the more interesting
changes for the connectors.

The first change can not be expressed directly in the connectors because the parameters are not shown
in the current design. The second change has effects on the MSC TakeWP (Figure 17) and the MSC
ReleaseWP (Figure 18). That is where the advantages of the connectors come in. We do not
fundamentally change the MSCs but replace the general connector requestReply with the more
specific transferWP. This connector can be used in both MSCs because we have the exact message
names as parameters and can define the transfer direction this way. The protocol addition to transfer
the processing sequence can be encapsulated inside the connector. The new connector is depicted in
Figure 33 and the application can be seen in the changed MSC in Figure 34.

28

Modelling System Families with Message Sequence Charts: A Case Study

con transferWP

Req

ext

Res

ext

requestResponse

Req Res [x a, y b]

getSequence

sequence

Figure 33 CON transferWP

repeat (2)

w:InMachine

msc TakeWP

h:HTF

:HTF

drive to origin
location

transferWP

Res Req [requestWP a;
releaseWP b]

broadcast (4)

Rec [jTransporting x] Sender Rec Rec

update job update job

Figure 34 MSC TakeWP (Variation)

The only changes necessary are the replacement of the connector requestReply by transferWP and to
change the message variable names to a and b because of a naming conflict. This shows that it can be
a good idea to define connectors which have an application-oriented meaning, like transferWP here,
and just encapsulate simpler connectors like requestReply to allow an easier introduction of variations.
The change in ReleaseWP is analogous.

Fixed route for an HTF. Another variation is not to complicate the system but to simplify it by
introducing an easier negotiation of order. We achieve that by assigning one HTF for every two
machine tools. However, in the fixed sequence case it simplifies the negotiation of orders because the
machine tool does neither have to broadcast the order but to send it to its assigned HTF, nor to wait for
an answer. This assumes that an HTF has a buffer for the jobs (as it is the case in our design in Section
5.2). This change affects the three MSCs NegotiationOfOrder, TakeWP and ReleaseWP.

With the aim of changing the MSC from Figure 16 only slightly we can achieve the desired behaviour
by just changing some numerical parameters. We set the parameter of the repeat construct for the other
HTF to 0; similarly we set the parameters of the second and the third connector to 0. This has the
effect that only one HTF remains and that the jBid and jEndOfNegotiation messages are not sent. The
parameter of the first connector is set to 1 because only one HTF receives the message. However, that

 29

 Modelling System Families with Message Sequence Charts: A Case Study

approach is not elegant because it leaves the timer and the “compute v” and “update job status” in the
MSC although they have no actual meaning. Thus we move everything below the first connector into
an optional region in Figure 35 and allow an easy switch between system configurations.

repeat (0)

w:InMachine

msc NegotiationOfOrder

h:HTF

:HTF

create job

broadcast (0)

Rec [jBid x] Sender Rec Rec

update job status update job status

broadcast (1)

Sender [jOrder x] Rec Rec Rec
create job

compute v

broadcast (0)

Sender [jEndOfNegotiation x] Rec Rec Rec

compute v

opt

Figure 35 MSC NegotiationOfOrder (Variation)

The MSCs TakeWP and ReleaseWP do not have to be changed to conform to the behaviour but it is
not necessary that all HTFs are informed that one HTF is transporting a work piece or finished a job.
Therefore we change the MSCs using the same method as above, by setting the parameter of the repeat
construct to 0 and reducing the parameter of the broadcast connector to 1 in Figure 36. The MSC
ReleaseWP has to be changed accordingly.

repeat <0>

w:InMachine

msc TakeWP

h:HTF

:HTF

drive to origin
location

requestResponse

Res Req [requestWP x;
releaseWP y]

broadcast (1)

Rec [jTransporting x] Sender Rec Rec

update job update job

Figure 36 MSC TakeWP (Variation)

30

Modelling System Families with Message Sequence Charts: A Case Study

Central instance for negotiation of orders. If we want to keep the flexibility of the HTF but still
want to simplify the negotiation process, we could introduce a central instance that distributes the
orders. This would reduce the complexity of the HTF and the demand for the network. For this, we
need to have a class OrderDistributor that keeps track of the positions of the HTF, receives the orders
of the machine tools, decides which HTF has to execute the job and sends a message to it.

The MSC NegotiationOfOrder has to be changed quite extensively, which is obvious, because we
changed exactly the negotiation process. We introduce the OrderDistributor which receives the order
from the machine, selects an appropriate HTF, forwards the order, and sends an acknowledge message
that the job is assigned to an HTF to the machine. Because of the extensive changes we give it a new
name and call it AssignmentOfOrder in Figure 37.

w:InMachine

msc AssignmentOfOrder

:OrderDistributor

h:HTF

create job

broadcast (1)
[jOrder x]Sender Rec Rec

broadcast (1)

Sender [jOrder x] Rec Rec

select HTF

broadcast (1)

Sender [jAssigned x] Rec Rec

create job

Figure 37 MSC AssignmentOfOrder

The MSCs TakeWP and ReleaseWP have to be changed as well but only slightly. We need only one
HTF in the MSCs but add the OrderDistributor which is notified when an HTF drives to a destination
and finishes a job. The altered MSC TakeWP is shown in Figure 38. The change in ReleaseWP is
similar.

 31

 Modelling System Families with Message Sequence Charts: A Case Study

w:InMachine

msc TakeWP

h:HTF

:OrderDistributor

drive to origin
location

requestResponse

Res Req [requestWP x;
releaseWP y]

broadcast (3)

Rec [jTransporting x] Sender Rec Rec

update job update job

Figure 38 MSC TakeWP (Variation)

Several similar machine tools. It may be that there are slow and fast machine tools and then it would
make sense to have several similar slow machine tools that are served by a fast one. This implies that
we first have a negotiation between several machine tools before the normal negotiation process can
begin.

This negotiation process is very similar to the original negotiation from the MSC NegotiationOfOrder.
Hence, we can specify some connectors that could be reused in both MSCs in Figure 39.

con jobOrder (n)

repeat (n)

Orderer

ext

Intrested

ext

broadcast (n)

[jOrder x] Sender Rec

con jobBid (n)
repeat (n)

Bidder

ext

Interested

ext

broadcast (n)

[jBid x] Sender Rec

con jobEndOfNegotiation (n)
repeat (n)

Orderer

ext

Interested

ext

broadcast (n)

[jEndOfNegotiation x] Sender Rec

Figure 39 CON jobOrder, CON jobBid, and CON jobEndOfNegotiation

The use of the connectors can be seen in Figure 40 that describes the negotiation of orders between
machine tools. The main benefit of the application-oriented connectors apart from reuse is that names
can be chosen that are much more adequate.

32

Modelling System Families with Message Sequence Charts: A Case Study

repeat (3)

w:InMachine

msc NegotiationOfOrderMachine

m:MachineTool

:MachineTool

create job

jobBid (5)

Interested Bidder Interested Interested

update job status update job status

jobOrder (5)

Orderer Contractor Contractor Contractor

create job

compute v

jobEndOfNegotiation (5)

Orderer Interested Interested Interested

compute v

Figure 40 MSC NegotiationOfOrderMachine

Furthermore the same variation of the negotiation process as with the HTF can be introduced by
having a central order distributor that handles the orders for the machines.

7 Family Model

In this section, we build a single model that incorporates all the features developed in Section 6. This
model can then be used to describe the system family and be easily configured according to the
desired variation. For this we make extensive use of the metaoperators defined in Section 2.2.

7.1 Features

At first we sort the variations found so far and determine the dependencies among them to finally get a
basic system with various possible features. The system we started with had a fixed number of HTFs
and machine tools; the transportation of the work pieces was organised using a negotiation process
between the HTFs.

We introduce the possibility to change the number of both, the HTFs and the machine tools in the
system. Actually, this offers two possible features: Either the numbers can be determined arbitrarily in
advance (preset before delivery) or they can be modified during the production process. We decided to
allow both possibilities in our system family. In order to facilitate the discussion, let us introduce a
few abbreviations for the various features. The variability of the complete number of HTFs is called
HVarA, that of the machine tools MVarA. The alternative features, that is to have different numbers of
HTFs or machine tools set before delivery which cannot be changed by the customer later during
system operation, are called HFixedA and MFixedA, respectively.

A variable processing sequence is added in contrast to the fixed order of processing in the initial
system. We shorten it to VarProcSeq and consider it completely independent of the other features.

 33

 Modelling System Families with Message Sequence Charts: A Case Study

To simplify the system, we introduce a new feature: it only allows HTFs to serve a fixed, predefined
route. This has the as a consequence that the negotiation process can be omitted. Obviously, in this
variant, the feature HVarA cannot occur because there is no longer the possibility to input a route for a
later added HTF. The shorthand term for this feature is FixedRoute.

Another possibility is to have a central instance (distributor) to replace the highly interactive
negotiation process between the HTFs (HDist). Obviously, it is only necessary if the routes of the
holons are managed, thus the FixedRoute variant and HDist cannot occur together. In addition, we can
also allow such a distributor for machine tools if the negotiation process described in the following is
not used. This feature is called MDist.

As mentioned above, the last variation we introduce is a kind of load balancing (MLoadBal) between
machine tools with the same functionality. This implies that either MDist is required or some kind of
negotiation process (MNeg).

HTS

HTF

InStorage

MachineTools

OutStorage

VarProcSeq

FixedRoute

VarRoute

HFixedA

HVarA

MLoadBal

Simple

HDist

HNeg

MDist

MNeg

MFixedA

MVarA

Figure 41 Feature model of the holonic transport system family

The dependencies of the introduced features are organised into a feature model following the notation
from [10] in Figure 41. Normal edges in the graph are incident to mandatory features, edges with a
circle at the end point to an optional feature, and edges with a vertical line between them connect
alternative features.

7.2 Mapping of Features to Variation Points and Variants

We need to build the connection between the feature list and dependencies from Section 7.1 and the
MSCs from the earlier sections to approach a family model that incorporates all the features. For this
we introduce variants, variation points, and parameters that are later instantiated in the MSCs.

We need four parameters for the MSCs to describe differences in the cardinality of several
components: mt is the number of machine tools, ht the number of HTF, mod the number of order
distributors for machines and hod the number of order distributors for HTF. The exact description of
these parameters in dependence of the feature model can be found in the appendix.

For the identification of the variation points and variants, only the feature model is needed. We can
map the features onto variation points and variants following the approach from Section 2.1. This
results in the following variation points using the notation from Section 2.2.

34

Modelling System Families with Message Sequence Charts: A Case Study

• HTS (VarProcSeq)

• HTF (VarRoute, FixedRoute)

• MNumber (MFixedA, MVarA)

• MTrans (MLoadBal, Simple)

• HNumber (HFixedA, HVarA)

• HLoadBal (HDist, HNeg)

• MLoadBal (MDist, MNeg)

These variation points have various occurrences in the MSCs that describe the system family.

7.3 High-Level View

This section describes a high-level view over the family model. We use the variation points and
parameters from Section 7.2 to describe a general model for all possible configurations of the system
family. To design a specific configuration, one has to choose the desired features from the feature
model and derive the variation points and parameters. Using these, the corresponding MSCs can be
constructed considering the variation point occurrence.

Figure 42 shows a high-level MSC that describes the general sequences in the system. We introduce
the additional notation element vp to denote a variation point occurrence in the sequences.

 35

 Modelling System Families with Message Sequence Charts: A Case Study

msc HolonicTransportSystem

Init

vp HTF

ReleaseWP

TakeWP

NegotiationOfOrder AssignmentOfOrder

HNeg HDist

vp MTrans

NegotiationOfOrderMachine

Simple

MNeg

AssignmentOfOrderMachine

MDist

vp HLoadBal

FixedRoute
VarRoute

vp MLoadBal

MLoadBal

Figure 42 MSC Overview (Family)

In Figure 43 the general initialisation process is depicted. This is mostly the same for all
configurations apart from the components and the cardinality of the components involved. It can be
seen here that the repeat construct is most useful for the description of product lines in MSCs. All
variations in cardinality and the presence and absence of components in specific MSCs can be
modelled with it. We have four variation point occurrences for the variations that are modelled by
these repeat constructs. However there is also a side-effect on the connectors in the other part of the
MSC because it uses also the parameters from the variants occurrences.

36

Modelling System Families with Message Sequence Charts: A Case Study

h:HTF

msc Init

:OutStorage

broadcast
(mt+ht+hod+mod)

Rec [prodProg x] Sender Rec

broadcast
(mt+ht+hod+mod)

Sender [requestProdProg x] Rec Rec

 repeat (mt)

:MachineTool

Rec

Rec

 variant
(MDist (mod))

:OrderDistributor

Rec

Rec

variant
(HDist (hod))

:OrderDistributor

Rec

Rec

 variant
 (MFixedA (mt) /
 MVarA (mt))

 repeat (ht-1)

:HTF

Rec

Rec

 variant
 (HFixedA (ht) /
 HVarA (ht))

Figure 43 MSC Init (Family)

The next two MSCs show the order process for HTFs. Either negotiation of a machine tool with all
HTF or an assignment through an order distributor is necessary. This is determined by the features
HNeg and HDist. If there is an explicit negotiation process in the MSC NegotiationOfOrder is
determined by the variant occurrence of VarRoute in Figure 44.

 repeat (ht-1)

w:InMachine

msc NegotiationOfOrder

h:HTF

:HTF

create job

jobBid (ht+1)

Interested Bidder Interested Interested

update job status update job status

jobOrder (ht+1)

Orderer Interested Interested Interested
create job

compute v

jobEndOfNegotiation (ht+1)

Orderer Interested Interested Interested

compute v

variant (VarRoute)

variant
(HFixedA (ht) /
HVarA (ht))

Figure 44 MSC NegotiationOfOrder (Family)

 37

 Modelling System Families with Message Sequence Charts: A Case Study

The MSCs AssignmentOfOrder and AssignmentofOrderMachine in Figure 45 do not contain any
variant occurrences because the whole sequence is only used if the feature HDist or MDist is chosen,
respectively.

w:InMachine

msc AssignmentOfOrder

:OrderDistributor

h:HTF

create job

jobOrder(2)

Orderer Interested Interested

jobOrder(2)

Orderer Interested Interested

select HTF

jobAssigned

Orderer Dist Interested

create job

w:InMachine

msc AssignmentOfOrderMachine

:OrderDistributor

:MachineTool

create job

jobOrder(2)

Orderer Interested Interested

jobOrder(2)

Orderer Interested Interested

select machine tool

jobAssigned

Orderer Dist Interested

create job

Figure 45 MSC AssignmentOfOrder (Family) and MSC AssignmentOfOrderMachine

The MSCs in Figure 46 and Figure 47 show again the usage of the repeat construct in variability
modelling in this case study.

38

Modelling System Families with Message Sequence Charts: A Case Study

w:InMachine

msc TakeWP

h:HTF

drive to destination
location

transferWP

Res Req [requestWP a;
releaseWP b]

broadcast (ht+hod+1)

Rec [jTransporting x] Sender Rec

update job

variant (HDist (hod)

:OrderDistributor

Rec

update job

w:OutMachine

msc ReleaseWP

h:HTF

drive to destination
location

transferWP

Res Req [requestPlace a;
releasePlace b]

broadcast (ht+hod+1)

Rec [jFinished x] Sender Rec

destroy job

variant (HDist (hod))

:OrderDistributor

Rec

destroy job

 repeat (ht-1)

:HTF

Rec

variant
(HFixedA (ht) /
HVarA (ht))

update job

 repeat (ht-1)

:HTF

Rec

variant
(HFixedA (ht) /
HVarA (ht))

destroy job

Figure 46 MSC TakeWP (Family), MSC ReleaseWP (Family)

 39

 Modelling System Families with Message Sequence Charts: A Case Study

w: MachineTool

msc NegotiationOfOrderMachine

m:MachineTool

create job

jobBid (mt)

Interested Bidder Interested Interested

update job status

jobOrder (mt)

Orderer Contractor Contractor Contractor

compute v

jobEndOfNegotiation (mt)

Orderer Interested Interested Interested

 repeat (mt-2)

:MachineTool

variant
(MFixedA (mt) /
MVarA (mt))

create job

compute v

update job status

Figure 47 MSC NegotiationOfOrderMachine

In the following, the connectors transferWP and jobAssigned used in the MSCs above are described.
We do not repeat connectors that were introduced in earlier sections and are unchanged in the family
model. These are the broadcast (Figure 14), jobOrder, jobBid, and jobEndOfNegotiation (Figure 39).

The connector in Figure 48 is an example where connectors help in introducing system family variation.
It contains an optional exchange of the messages getSequence and sequence that determine the sequence
of machine tools for a work piece. This part is guarded by a variant occurrence of VarProcSeq.

con transferWP

Req

ext

Res

ext

requestResponse

Req Res[x a, y b]

getSequence

sequence

variant (VarProcSeq)

Figure 48 CON transferWP

40

Modelling System Families with Message Sequence Charts: A Case Study

Finally, the connector jobAssigned in Figure 49 is needed for the MSCs that describe the assignments of
orders for HTF or machine tools. It simply returns acknowledges for the orderer and the other interested
component.

con jobAssigned

Dist

ext

Orderer

ext

jAssigned

Interested

ext

jAssigned

Figure 49 CON jobAssigned.

8 Related Work

KobrA [19] and its predecessor PuLSE [18] are development processes specifically focused on system
family development. They introduced the stereotype <<variant>> to denote variants in UML models
but have no defined transition from features to variation points and variants in sequence diagrams.

We borrowed the feature analysis approach from feature-oriented domain analysis (FODA) [10] and
its successor feature-oriented reuse method (FORM) [22]. The latter gives some guidelines on how to
map the features from a feature model to architecture models.

The approach in [27] uses the special symbol <<V>> to represent variability in UML class diagrams
that serve as domain models. It allows the expression of alternatives only in accompanying text.

The most similar approach to ours is [16] that also uses class diagrams with dependencies expressed
with OCL. The extension to a UML profile for product lines is proposed in [17] that introduces several
stereotypes for sequence diagrams. The vertical dimension however can only be marked optional in
that approach.

As an alternative to the further formalisations of a feature model described in the appendix, a
formalisation using description logic is presented in [25]. It differs strongly because it was built with
the aim to find feature interaction, not for the modelling of system families.

9 Conclusions

MSC Connectors. An observation we make in this case study is that connectors are indeed a means to
make MSCs more concise. It is important hereby to choose the right names. An MSC with just a few
connectors with speaking, intuitive names can help the reader to grasp the communication pattern of
components more quickly and more easily than using only standard messages in the MSCs. If the
names of the connectors were not chosen appropriately, it would however confuse the reader more
than it would help.

Furthermore there is also additional information in the MSC compared to standard MSCs. The
introduction of explicit environmental instances can increase the grasp of the reader for the MSC.
Instead of the anonymous environment, it is made explicit which roles from the environment interact
with the instances in the MSC.

 41

 Modelling System Families with Message Sequence Charts: A Case Study

Finally another interesting aspect concerning MSC connectors to notice is that the use of connectors
enforces the designer to consistency. If the forward connector with the IOSystem is used in the MSCs
to communicate with the environment, it is ensured that the IOSystem can not be forgotten. The
designer can concentrate at one task at a time.

Repeat Operator. We introduced the additional inline operator repeat in the MSC language that
proved to be useful especially for describing system families. The repeat construct specifies the
cardinality of instances and can therefore be parameterised to describe variations there.

Variation Point and Variant. Moreover two metaoperators were introduced, variant and vp, that
allow the description of a whole system family with MSCs. The metaoperator variant manipulates
MSCs in their horizontal and vertical dimension in that it adds, modifies, or removes interactions and
instance axes. The metaoperator vp is used in HMSCs and defines high-level decision nodes which are
resolved at the time of configuration. These metaoperators have been proved to suffice for the
purposes of the case study. Moreover, due to the fact that a MSC is exactly the union of the above
mentioned tree dimensions (i.e., vertical and horizontal dimensions plus abstraction), we think that
those metaoperators are indeed enough for variability representation in MSCs.

Current and Future Work. The meaning of the extensions introduced was given in informal terms, a
formal semantics must be defined. One possibility is to consider a kind of precompiler, which takes an
extended (H)MSC and a configuration, and delivers a (H)MSC without occurrences of the
metaoperators. The configuration could be conceived as a subtree of the feature model without
alternatives and with optional features possibly removed.

Regarding the whole process, from the analysis of commonalities and variabilities of a system family
to be through feature and use case modelling to the specification of MSCs, we feel it could
conceptually be carried out as follows. Initially, one is more or less precisely aware of the set of all
desired system traces, in any of the members of the system family. Those traces are associated to at
least one feature, and the set of all traces can be divided (not partitioned) into subsets associated to the
features. This reasoning also helps to produce a feature model.

Using the knowledge of which features are optional and which ones are alternative to other ones, the
corresponding trace sets are declared variants. In doing so, alternative features are organised around a
single variation point, whereas optional features belong each to a variation point of their own.

The (still ideal) traces are then used for two purposes: on the one hand for a use case modelling
including variation points, and on the other for a raw specification of MSCs with occurrences of
variation points and of variants.

In a next step we will formalise the semantics of the extensions introduced and elaborate on the
development process.

Acknowledgements. We are grateful to Manfred Broy who commented on a draft version. Furthermore we want to thank
Ingolf Krüger, Wolfgang Prenninger, and Robert Sandner for the preceding work on the holonic flow of material.

References

1. I. Krüger, W. Prenninger, R. Sandner: Development of an Autonomous Transport System using UML-RT. Technical
Report TUM-I0215, Institut für Informatik, Technische Universität München, 2002.

2. A. Braatz, A. Ritter: Spezifikation des verteilten Steuerungskonzeptes für den holonischen Materialfluss in einem
werkstattorientierten Fertigungssystem auf der Basis autonomer, freifahrender Transportsysteme. Referenzfallstudie,
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, 2002.
Available at: http://tfs.cs.tu-berlin.de/projekte/indspec/SPP/RefPAv2.ps

3. J. Grabowski, P. Graubmann, E. Rudolph: HyperMSCs with Connectors for Advanced Visual System Modelling and
Testing. In: SDL 2001: Meeting UML, Proceedings of the 10th International SDL Forum, Copenhagen, Denmark, June
2001 (Rick and Jeanne Reed, editors), Springer LNCS 2078, 2001.

4. P. Graubmann: Describing Interactions between MSC Components - The MSC Connectors. In: Rick Reed (Guest Editor):
Computer Networks, Special Edition: ITU-T System Design Languages (SDL), Volume 42, Issue 3, 21 June 2003, pp
323-342, Elsevier Science B.V.

42

Modelling System Families with Message Sequence Charts: A Case Study

5. P. Graubmann: MSC Connectors - The Chamber of Secrets. In: Rick and Jeanne Reed (eds.): SLD 2003: System Design.
Proceedings of the 11th International SDL Forum, Stuttgart, Germany, July 2003. LNCS 2708, Springer 2003.

6. P. Graubmann, E. Rudolph, J. Grabowski: Component Interface Descriptions using HyperMSCs and MSC Connectors.
IEEE Visual Languages and Formal Methods, Stresa, Italy, September 5-7, 2001.

7. P. Graubmann, E. Rudolph: MSC Connectors - The Philosopher's Stone. In: Edel Sherratt (ed.): Telecommunications and
beyond: The Broader Applicability of SDL and MSC. Proceedings of the 3rd SAM Workshop 2002, Aberystwyth, June
2002, Revised Papers, LNCS 2599, Springer 2003..

8. ITU-T Rec. Z.120 (MSC-2000): Message Sequence Chart (MSC). (O. Haugen, editor), Geneva, 1999.
9. B. Selic, J. Rumbaugh: Using UML for modeling complex real-time systems. Whitepaper. ObjectTime Limited, 1998.
10. K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson: Feature-Oriented Domain Analysis (FODA)

Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University,
1990.

11. R.L. Constable: The Structure of Nuprl’s Theory. In: Logic of Computation. M.Broy and H. Schwichtenberg (editors).
Springer, 1997.

12. D. Hirsch, S. Uchitel, D. Yankelevich: Towards a Periodic Table of Connectors. Proceedings of COORDINATION’99,
Third Int. Conference on Coordination Models and Languages, Springer LNCS 1594, 1999.

13. S. Bühne, G. Halmans, K. Pohl: Modelling Dependencies between Variation Points in Use Case Diagrams. Proceedings
of the 9th International Workshop on Requirements Engineering – Foundations for Software Quality (REFSQ’03), 2003.

14. G. Halmans, K. Pohl: Communicating the Variability of a Software-Product Family to Customers. Software and System
Modeling 2(1): 15-36, 2003.

15. P. Clements, L. Northrop: Software Product Lines. Practices and Patterns. Addison-Wesley, 2002.
16. T. Ziadi, L. Hélouët, J.-M. Jézéquel: Product Line Derivation with UML. In: Groningen Workshop on Software

Variability Managment, 2003.
17. T. Ziadi, L. Hélouët, J.-M. Jézéquel: Towards a UML Profile for Software Product Lines. In: Software Product-Family

Engineering: 5th International Workshop (PFE’03), LNCS 3014, Springer, 2003.
18. M. Anastasopoulos, J. Bayer, O. Flege, and C. Gacek: A Process for Product Line Architecture Creation and Evaluation.

PuLSE-DSSA – Version 2.0. IESE-Report 038.00/E, Fraunhofer IESE, 2000.
19. C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B. Peach, J. Wust, J. Zettel:

Component-Based Product Line Engineering with UML. Addison-Wesley, 2001.
20. I. Jacobson, M. Griss, P. Jonsson: Software Reuse: Architecture, Process, and Organization for Business Success.

Addison-Wesley, 1997.
21. D. Muthig, C. Atkinson: Model-Driven Product Line Architectures. In: 2nd International Software Product Line

Conference, LNCS 2379, Springer 2002.
22. K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh: FORM: A feature-oriented reuse method with domain-specific

reference architectures. Annals of Software Engineering 5, 1998.
23. Object Management Group: UML 2.0 Superstructure Final Adopted Specification, August 2003. OMG Document ptc/03-

08-02.
24. I. Krüger, W. Prenninger, R. Sandner, M. Broy: Development of Hierarchical Broadcasting Software Architectures using

UML 2.0. In: Integration of Software Specification Techniques for Applications in Engineering, LNCS 3147, Springer
2004.

25. R. van der Straeten, J. Brichau: Features and Feature Interaction in Software Engineering using Logic. In: ECOOP 2001
Workshop on Feature Interactions in Composed Systems, 2001.

26. M.V. Cengarle and A. Knapp: UML 2.0 Interactions: Semantics and Refinement. In: Workshop on Critical Systems
Development with UML (CSDUML'04), 2004. To appear.

27. D. McComas, S. Leake, M. Stark, M Morisio, G. Travassos, and M. White: Addressing Variability in a Guidance,
Navigation, and Control Flight Software Product Line. In: Product Line Architecture Workshop at Software Product Line
Conference (SPLC1), 2000.

Appendix: Original MSCs

We give two examples of the original MSCs from [1] to demonstrate the improvement in terms of
conciseness. The two MSCs are the most obvious ones to illustrate this because they include the most
communication. They correspond to the MSCs in Figure 23 and Figure 24.

 43

 Modelling System Families with Message Sequence Charts: A Case Study

:IOSystem

msc NegotiationOfOrderL
:Database

:Disponent

Compute bid v

when idle

loop <1,inf>

when v’ <= v

idle

jOrder(jobno,buffno,w,s)

jOrder(jobno,buffno,w,s)

jOrder(jobno,buffno,w,s)

getStatus

status

jBid(jobno,h*,v*)

jBid(jobno,h*,v*)

getBid(jobno)

Bid(v’)

jEndOfNegotiation(jobno)

jEndOfNegotiation(jobno)

jEndOfNegotiation(jobno)

Figure 50 MSC HTSNegotiationOfOrderL (original)

44

Modelling System Families with Message Sequence Charts: A Case Study

:IOSystem

msc NegotiationOfOrderO
:Database

:Disponent

compute bid v

when idle

loop <0,inf>

when v’ > v

loop <0,inf>

idle

jOrder(jobno,
buffno,w,s)

jOrder(jobno,buffno,w,s)

jOrder(jobno,buffno,w,s)

jBid(jobno, h*,v*)

jBid(jobno,h*,v*)

getBid(jobno)

bid(v’)

jBid(jobno,h,v)

jBid(jobno,h,v)

jBid(jobno,h,v)

jBid(jobno, h*,v*)

jBid(jobno,h*,v*)

jEndOfNegotiation
(jobno)

jEndOfNegotiation(jobno)

jEndOfNegotiation(jobno)

getBidder(jobno)

bidder(h’)

when h’ = h

inqueueJob(jobno)

opt

Figure 51 MSC NegotiationOfOrderO (original)

 45

 Modelling System Families with Message Sequence Charts: A Case Study

Appendix: Alternative Formalisations of a Feature Model

In the following alternative formalisations of the feature model are provided. This is intended to help
in choosing only a valid configuration and also provides support in the derivation of parameters for the
MSCs. We developed to alternatives formalisations so far that are both presented in the following.

Logic. The first approach describes the feature dependencies as logical formulas. The primitive
features are described with the values true and false. We use ∆ as notation for the exclusive
disjunction. For the feature model from the case study (Figure 41) this looks like the following:

HNeg, HDist, HVarA, HFixedA, MVarA, MFixedA, MNeg, MDist, InStorage, OutStorage,
VarProcSequence ∈ {true, false}

VarRoute = (HFixedA ∆ HVarA) , (HDist ∆ HNeg)

HTF = FixedRoute ∆ VarRoute

MLoadBal = MDist ∆ MNeg

MachineTools = (Simple ∆ MLoadBal) , (MVarA ∆ MFixedA)

HTS = (HTF , MachineTools , InStorage , OutStorage , ŸVarProcSeq) .
 (HTF , MachineTools , InStorage , OutStorage , VarProcSeq)

These Boolean values of the features can then be used to determine the values of MSC parameters.
The parameter mt is the number of machine tools, ht the number of HTF, and mod and hod the number
of order distributor for machine tools and HTF, respectively. For this, we interpret the MSC
parameters as partial functions that map Boolean values to natural numbers or a subset of it. The
undefined parts of the functions represent configurations that are not possible or not allowed.

mod : Bool ä Bool Ø {0,1}

mod : (true,true) undef.

mod : (true,false) # 0

mod : (false,true) # 1

mod : (false,false) undef.

hod : Bool ä Bool Ø {0,1}

hod : (true,true) undef.

hod : (true,false) # 0

hod : (false,true) # 1

hod : (false,false) undef.

mt : Bool ä Bool Ø Í

mt : (true,true) undef.

mt : (true,false) # 3

mt : (false,true) # m ∈ {2,3,5,7,9}

mt : (false,false) undef.

46

Modelling System Families with Message Sequence Charts: A Case Study

ht : Bool ä Bool Ø Í

ht : (true,true) undef.

ht : (false,true) # h ∈ {2,3,4,6,8}

ht : (true,false) # 3

ht : (false,false) undef.

Dependent Types. Another possibility would be to use dependent types [11]. We interpret the features
as types and types of types. The symbol ε denotes no feature. LL stands for lowest level and returns
the types for the lowest level in the feature model. Again the feature model of the case study is shown
as an example.

LL(VarRoute) = {HVarA,HFixedA} ä {HDist,HNeg}

LL(FixedRoute) = {ε}

HTF = r ∈ {FixedRoute,VarRoute} ä LL(r)

LL(MLoadBal) = {MDist,MNeg}

LL(Simple) = {ε}

MachineTools = {MVarA,MFixedA} ä m ∈ {Simple,MLoadBal} ä LL(m)

HTS = HTF ä MachineTools ä {InStorage} ä {OutStorage} ä
 {VarProcSequence,ε}

This can as well be broken down to the parameters for the MSCs. This time we interpret the
parameters as total functions that map the Holonic Transport System (HTS) type to the natural
numbers or a subtype of it. Then we give the definition of the functions using assignments of HTS.
However, we only give the assignments needed for that definition and use the underscore symbol (_)
for any assignment.

mod : HTS Ø {0,1}

mod : (_,(_,_,MDist),_,_,_) # 1

mod : (_,(_,_,MNeg),_,_,_) # 0

hod : HTS Ø {0,1}

hod : ((_,(_,HDist)),_,_,_,_) # 1

hod : ((_,(_,HNeg)),_,_,_,_) # 0

mt : HTS Ø Í

mt : (_,(MFixedA,_,_),_,_,_) # 3

mt : (_,(MVarA,_,_),_,_,_) # m ∈ {2,5,7,9}

ht : HTS Ø Í

ht : ((_,(HFixedA,_)),_,_,_,_) # 3

 47

 Modelling System Families with Message Sequence Charts: A Case Study

ht : ((_,(HVarA,_)),_,_,_,_) # h ∈ {2,3,4,6,8,10}

48

