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AbstractWe consider the problem of simulation preorder/equivalence between in�nite-state processes and �nite-state ones. We prove that simulation preorder(in both directions) and simulation equivalence are intractable between allmajor classes of in�nite-state systems and �nite-state ones. This result isobtained by showing that the problem whether a BPA (or BPP) processsimulates a �nite-state one is PSPACE-hard, and the other direction isco-NP-hard; consequently, simulation equivalence between BPA (or BPP)and �nite-state processes is also co-NP-hard.The decidability border for the mentioned problem is also established.Simulation preorder (in both directions) and simulation equivalence areshown to be decidable in EXPTIME between pushdown processes and�nite-state ones. On the other hand, simulation preorder is undecidablebetween PA and �nite-state processes in both directions. The obtainedresults also hold for those PA and �nite-state processes which are deter-ministic and normed, and thus immediately extend to trace preorder. Reg-ularity (�niteness) w.r.t. simulation and trace equivalence is also shown tobe undecidable for PA.Finally, we describe a way how to utilize decidability of bisimulationproblems to solve certain instances of undecidable simulation problems.We apply this method to BPP processes.�Supported by a Research Fellowship granted by the Alexander von Humboldt Foundationand by a Post-Doc grant GA �CR No. 201/98/P046.1



1 IntroductionWe study the decidability and complexity of the problem of checking simulationpreorder/equivalence between certain in�nite-state systems and �nite-state ones.The motivation is that the intended behavior of a process can often be easilyspeci�ed by a �nite-state system, while the actual implementation may containcomponents which are in�nite-state (e.g. counters, bu�ers). The same problemhas been studied recently for strong and weak bisimilarity [14, 19], and it has beenshown that these equivalences are not only decidable, but also tractable betweencertain in�nite-state processes and �nite-state ones. Those issues (namely thecomplexity ones) are dramatically di�erent from the `symmetric' case when wecompare two in�nite-state processes. Here we consider (and answer) analogousquestions for simulation, giving a complete overview (see Figure 1).The state of the art: Simulation preorder/equivalence is known to be undecid-able for BPA [10] and BPP [12] processes. Consequently, it is also undecidable forany superclass of BPA and BPP, in particular for pushdown (PDA) processes andPetri nets. An interesting positive result is [1], where it is shown that simulationpreorder (and hence also equivalence) is decidable for Petri nets with at most oneunbounded place.In [15] it is shown that simulation preorder between Petri nets and �nite-stateprocesses is decidable in both directions. Moreover, a related problem of regularity(�niteness) of Petri nets w.r.t. simulation equivalence is proved to be undecidable.Our contribution: In Section 3 we concentrate on complexity issues for sim-ulation preorder and equivalence with �nite-state processes. We prove that theproblem whether a BPA (or BPP) process simulates a �nite-state one is PSPACE -hard, and the other direction is co-NP-hard. Consequently, simulation equiva-lence between BPA (or BPP) and �nite-state processes is also co-NP-hard. Thosehardness results are also valid for any superclass of BPA and BPP processes, hencethe main message of this section is that simulation with �nite-state systems is un-fortunately intractable for any studied class of in�nite-state systems (assumingP 6= NP)|see Figure 1. It contrasts sharply with the complexity issues forstrong and weak bisimilarity; for example, weak bisimilarity between BPA and�nite-state processes, and between normed BPP and �nite-state processes is in P[19].In Section 4 we establish the decidability border of Figure 1. First we prove thatsimulation preorder between PDA processes and �nite-state ones is decidable inEXPTIME in both directions. Consequently, simulation equivalence is also inEXPTIME .Then we show that simulation preorder between PA and �nite-state processes isundecidable in both directions. It is rather interesting that the undecidability2



results hold even if we restrict ourselves to those PA and �nite-state processeswhich are deterministic and normed. Simulation equivalence between such pro-cesses is decidable (it coincides with bisimilarity [14]); however, as soon as weallow just one nondeterministic state in the PA process, simulation equivalencebecomes undecidable. We also show that all the obtained undecidability resultscan be formulated in a `stronger' form|it is possible to �x the PA or the �nite-state process in each of the mentioned undecidable problems (for example, thereis a �xed normed deterministic PA process P such that for a given (normed anddeterministic) �nite-state process F it undecidable whether P simulates F ). Thenwe demonstrate that regularity of (normed) PA processes w.r.t. simulation equiv-alence is also undecidable. It contrasts sharply with regularity w.r.t. bisimilarityfor normed PA processes, which is decidable in polynomial time [18]. All theobtained undecidability results also hold for trace preorder and trace equivalence,and therefore they might be also interesting from the point of view of the `classical'automata theory. See the last section for further comments.Finally, in Section 5 we study the relationship between bisimilarity and simulationequivalence. Our e�ort is motivated by a general trend that problems for bisimila-rity (equivalence, regularity) are often decidable, but the corresponding problemsfor simulation equivalence are not. We propose a way how to use existing algo-rithms for `bisimulation' problems to solve certain instances of the corresponding(and possibly undecidable) `simulation' ones. Such techniques are interesting fromthe practical point of view, as only small instances of undecidable problems canbe solved in an ad-hoc fashion, and some kind of computer support is absolutelynecessary for problems of `real' size. We also provide a little `case-study' wherewe show how to apply the proposed technique to BPP processes; in this way weobtain a large subclass of BPP processes where simulation equivalence as well asregularity w.r.t. simulation equivalence are decidable.In the last section we give a summary of existing results in the area of comparingin�nite-state systems with �nite-state ones. We also extensively discuss someaspects of the obtained results.2 De�nitions2.1 Process Rewrite SystemsLet Act = fa; b; c; : : :g be a countably in�nite set of actions. Let Const =fX; Y; Z; : : :g be a countably in�nite set of process constants such that Act \Const = ;. The class of process expressions is de�ned by the following abstractsyntax equation: E ::= � j X j EkE j E:E3



Here X ranges over Const and � is a special constant that denotes the emptyexpression. Intuitively, the `:' operator corresponds to a sequential composition,while the `k' operator models a simple form of parallelism.In the rest of this paper we do not distinguish between expressions related bystructural congruence which is the smallest congruence relation over process ex-pressions such that the following laws hold:� associativity for `:' and `k'� commutativity for `k'� `�' as a unit for `:' and `k'.A process rewrite system [20] is speci�ed by a �nite set � of rules which are of theform E a! F , where E; F are process expressions and a 2 Act . We use Const(�)and Act(�) to denote the set of process constants and actions which are used inthe rules of �, respectively (note that Const(�) and Act(�) are �nite).Each process rewrite system � determines a unique transition system where statesare process expressions over Const(�), Act(�) is the set of labels, and transitionsare determined by � and the following inference rules (remember that `k' is com-mutative): (E a! F ) 2 �E a! F E a! E 0E:F a! E 0:F E a! E 0EkF a! E 0kFWe extend the notation E a! F to elements of Act� in a standard way. Moreover,we say that F is reachable from E if E w! F for some w 2 Act�.Various subclasses of process rewrite systems can be obtained by imposing certainrestrictions on the form of the rules. To specify those restrictions, we �rst de�nethe classes S and P of sequential and parallel expressions, composed of all processexpressions which do not contain the `k' and the `:' operator, respectively. Wealso use G to denote the class of all process expressions, and 1 to denote theset of process constants. The hierarchy of process rewrite systems is presentedin Figure 1; the restrictions are speci�ed by a pair (A;B), where A and B arethe classes of expressions which can appear on the left-hand and the right-handside of rules, respectively. This hierarchy contains almost all classes of in�nitestate systems which have been studied so far; BPA, BPP, and PA processes arewell-known [2], PDA correspond to pushdown processes (as proved by Caucal in[5]), PN correspond to Petri nets (see e.g. [23]), etc.In Figure 1 we also indicated the decidability/tractability border for simulationpreorder and equivalence with �nite-state systems which is established in thefollowing sections. 4
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tractabilityFigure 1: A hierarchy of process rewrite systems with the decidability/tractabilityborder for simulation with �nite-state processesIn the rest of this paper we consider processes as (being associated with) statesin transition systems generated by process rewrite systems. We also assume thatfor each system � there is some distinguished process expression which is con-sidered as a `default' process, or initial state of �. In what follows, we oftenidentify process rewrite systems with their initial states. A process P is said to bedeterministic i� each reachable state of P has at most one a-successor for everya 2 Act . A process is normed i� from every reachable state it has a terminatingcomputation. It follows that a BPA, BPP, or PA process � is normed i� X !� �for every X 2 Const(�).2.2 Behavioral EquivalencesIn this paper we compare in�nite-state processes with �nite-state ones w.r.t. cer-tain `levels' of their semantical sameness. Those `levels' are formally de�ned ascertain preorders and equivalences on the class of transition systems.We start with trace preorder and trace equivalence, which are very similar to the`classical' notions of language inclusion and language equivalence of automatatheory.De�nition 1. We say that w 2 Act� is a trace of a process E i� E w! E 0for some E 0. Let Tr(E) be the set of all traces of E. We write E vt F i�Tr(E) � Tr(F ). Moreover, we say that E and F are trace equivalent, writtenA =t B, i� Tr(E) = Tr(F ). 5



In concurrency theory, trace equivalence is usually considered as being too coarse.A plethora of �ner `behavioral' equivalences have been proposed [24]. It seemsthat simulation and bisimulation equivalence are of special importance, as theiraccompanying theory has been developed very intensively.De�nition 2. A binary relation R over process expressions is a simulation ifwhenever (E; F ) 2 R then for each a 2 Actif E a! E 0; then F a! F 0 for some F 0 such that (E 0; F 0) 2 RA symmetric simulation is called bisimulation. A process E is simulated by aprocess F , written E vs F , if there is a simulation R s.t. (E; F ) 2 R. We saythat E and F are simulation equivalent, written E =s F , i� E vs F and F vs E.Similarly, we say that E and F are bisimilar (or bisimulation equivalent), writtenE � F , i� there is a bisimulation relating them.Another natural (and studied) problem is decidability of regularity (i.e. `semantical�niteness') of processes w.r.t. certain behavioral equivalences.De�nition 3. A process E is regular w.r.t. bisimulation (or simulation, trace)equivalence i� there is a �nite-state process F such that E � F (or E =s F ,E =t F , respectively).2.3 Minsky MachinesAlmost all undecidability results in this paper are obtained by reduction of thehalting problem for Minsky counter machines.De�nition 4. A counter machine M with nonnegative counters c1; c2; � � � ; cm isa sequence of instructions1 : INS12 : INS2...k � 1 : INSk�1k : haltwhere each INSi (i = 1; 2; :::; k�1) is in one of the following two forms (assuming1 � l; l0; l00 � k, 1 � j � m)� cj := cj + 1; goto l� if cj = 0 then goto l0 else (cj := cj � 1; goto l00)The halting problem is undecidable even for Minsky machines with two countersinitialized to zero [21]. 6



3 The Tractability BorderIn this section we show that the problem whether a BPA process simulates a�nite-state one is PSPACE -hard. The other preorder is shown to be co-NP-hard.Consequently, we also obtain co-NP-hardness of simulation equivalence betweenBPA and �nite-state processes. All hardness proofs can be easily adapted sothat they also work for BPP processes. As simulation preorder and equivalenceare easily decidable for �nite-state processes in polynomial time, the tractabilityborder for simulation preorder/equivalence with �nite-state systems of Figure 1is established.Theorem 1. Let P be a BPA process, F a �nite-state process. The problemwhether F vs P is PSPACE-hard.Proof: We show PSPACE -hardness by a reduction of the PSPACE -completeproblem QBF. Let n 2 N and x0; : : : ; xn�1 be boolean variables. W.r. we assumethat n is even. A literal is either a variable or the negation of a variable. A clauseis a disjunction of literals. The quanti�ed boolean formula Q is given byQ := 8x09x1 : : :8xn�29xn�1(Q1 ^ : : : ^Qk)where the Qi are clauses. The problem is if Q is valid.We reduce this problem to the simulation problem. A �nite-state system � withinitial state s0 is de�ned as follows: s2i x2i! s2(i+1) and s2i �x2i! s2(i+1) for 0 � i �n=2 � 1, sn check�! qj for 1 � j � k, and qj qj! qj for 1 � j � k. A BPA system �with initial state Z is de�ned by the following rules:Z x2i! Z:X2i+1:X2i Z x2i! Z: �X2i+1:X2i for 0 � i � n=2� 1Z �x2i! Z:X2i+1: �X2i Z �x2i! Z: �X2i+1: �X2i for 0 � i � n=2� 1Z check�! �Xi qj! Xi if Xi occurs in QjXi qj! � if Xi does not occur in Qj�Xi qj! �Xi if �Xi occurs in Qj�Xi qj! � if �Xi does not occur in QjThe process s0 guesses the assignment for variables with even index. Z storesthis assignment and adds its own assignment for the variables with odd index.After the action check it is checked if the assignment satis�es the formula. If Zcan simulate s0 then every clause Qi is true. If Z cannot simulate s0 then this isbecause Z cannot do some action qj and thus Qj is not true. Thus Q is valid i�s0 vs Z. 7



Theorem 2. Let P be a BPP process, F a �nite-state process. The problemwhether F vs P is PSPACE-hard.Proof: The PSPACE -hardness proof of Theorem 1 carries over directly. We usethe same rules for � with parallel composition instead of sequential composition.Theorem 3. Let P be a BPA process, F a �nite-state process. The problemwhether P vs F is co-NP-hard.Proof: We reduce the NP-complete problem SAT to the problem if P 6vs F .Let n 2 N and x0; : : : ; xn�1 be boolean variables. A literal is either a variable orthe negation of a variable. A clause is a disjunction of literals. The formula Q isgiven by Q := 9x0; x1; : : : ; xn�1(Q1 ^ : : : ^Qk)where the Qi are clauses. The problem is if Q is valid.A BPA system � with initial state G0 is de�ned as follows: Gi g! Gi+1:Xi andGi g! Gi+1: �Xi for 0 � i � n � 1 and Gn check�! � and Xi qj! � if Xi is in Qj and�Xi qj! � if �Xi is in Qj. Furthermore we add rules Xi d! � and �Xi d! � for everyi. A �nite-state system � with initial state s is de�ned as follows: s g! s ands check�! si for 1 � i � k and si qj! si for any i; j with i 6= j and si d! si for every i.If Q is valid then there is an assignment that satis�es all clauses Qj. Then scannot simulate G0, because no si can do every action qj. If Q is not valid thenin every assignment some Qj is not true. Then s can simulate G0 by going to thestate sj. Thus Q is valid i� G0 6vs s.Theorem 4. Let P be a BPP process and F a �nite-state process. The problemwhether P vs F is co-NP-hard.Proof: The proof is similar to Theorem 3. The rules for � are like in Theorem 3with parallel composition instead of sequential composition. � is de�ned in thesame way, but we also add the rules s qi! u for every 1 � i � k, and u a! u for everya 2 fq1; : : : ; qk; g; checkg. Intuitively, if some qi is emitted before G0 completes theguess (i.e. before check is emitted), s goes to u where it can simulate everything.Again we have that Q is valid i� G0 6vs s.Corollary 1. The problems of simulation equivalence between BPA and �nite-state processes, and between BPP and �nite-state processes are co-NP-hard.Proof: Let P be a BPA (or BPP) process and F a �nite-state process. Let P 0 bede�ned by the rules P 0 a! P and P 0 a! F and F 0 be de�ned by the rule F 0 a! F .Then P 0 =s F 0 i� P vs F . The results follow from Theorem 3 and 4.8



The obtained hardness results are of course valid for any superclass of BPA andBPP (in particular for PDA and PN).4 The Decidability BorderIn this section we establish the decidability border of Figure 1. We show thatsimulation preorder (in both directions) and simulation equivalence with �nite-state processes are decidable for PDA processes in EXPTIME . It is possible toreduce each of the mentioned problems to the model-checking problem for an(almost) �xed formula ' of the alternation-free modal �-calculus1 (as we do notneed this powerful logic in the rest of our paper, we have omitted its de�nition;we refer to [17] for details).Then we turn our attention to PA processes. We prove that simulation preorderis undecidable between PA processes and �nite-state ones in both directions. It issomewhat surprising, as for the subclasses BPP and BPA we have positive decid-ability results. Moreover, simulation preorder is undecidable even if we considerthose PA and �nite-state processes which are deterministic and normed. Thus, ourundecidability results immediately extend to trace preorder (which coincides withsimulation preorder on deterministic processes). It is worth noting that simulationequivalence between deterministic PA and deterministic �nite-state processes isdecidable, as it coincides with bisimilarity which is known to be decidable [14].However, as soon as we allow just one nondeterministic state in the PA process,simulation equivalence with �nite-state processes becomes undecidable (there iseven a �xed normed deterministic �nite-state process F such that simulationequivalence with F is undecidable for PA processes). The same applies to traceequivalence.Finally, we also prove that regularity (�niteness) of PA processes w.r.t. simulationand trace equivalence is undecidable, even for the normed subclass of PA. Again,the role of nondeterminism is very special as regularity of normed deterministic PAprocesses w.r.t. simulation and trace equivalence coincides with regularity w.r.t.bisimilarity, which is easily decidable in polynomial time [18]. However, just onenondeterministic state in PA su�ces to make the undecidability proof possible.Theorem 5. Simulation preorder is decidable between PDA processes and �nite-state ones in EXPTIME (in both directions).Proof: Let P be a PDA process with the underlying system � and F a �nite-state process with the underlying system �. We construct another PDA system1We would like to thank Javier Esparza who observed the idea of the presented proof.9



�0, two processes A;B of �0, and a formula ' of the modal �-calculus such thatP vs F i� A j= ', and F vs P i� B j= '.We can safely assume that the set Const(�) can be partitioned into two disjointsubsets Control(�) and Stack(�), and that the rules of � are of the form pX a!q�, where p; q 2 Control(�), X 2 Stack(�), and � 2 Stack(�)�. The system �0is constructed as follows:� Control(�0) := Control(�)� Const(�)� f0; 1g� Stack(�0) := Stack(�) [ fZ0g where Z0 62 Stack(�)� for every rule pX a! q� of � and every G 2 Const(�) we add the rule(p;G; 0)X a! (q; G; 1)� to �0� for every rule G a! H of �, every p 2 Control(�), and every X 2 Stack(�0)we add the rule (p;G; 1)X a! (p;H; 0)X to �0Intuitively, the system �0 alternates the moves of � and �. The new bottomsymbol Z0 is added so that F cannot `get stuck' just due to the emptiness of thestack. Let ' � �X:( ^a2Act[a]haiX)where Act is the set of actions which are used in � and � (note that Act is �nite).The problem whether a PDA process satis�es ' is decidable in EXPTIME .Let P be of the form p�. Now it is easy to see that p� vs F i� (p; F; 0)�Z0 j= ',and similarly F vs p� i� (p; F; 1)�Z0 j= '.Corollary 2. Simulation equivalence between PDA and �nite-state processes isdecidable in EXPTIME.Theorem 6. Let P be a deterministic PA process and F a deterministic �nite-state process. It is undecidable whether P vs F .Proof: Let M be an arbitrary two-counter machine with counters initializedto m1; m2. We construct a deterministic PA process P (M) and a deterministic�nite-state process F (M) s.t. P (M) vs F (M) i� the machine M does not halt.Let Act := fzero1; inc1; dec1; zero2; inc2; dec2g. The PA process P (M) is de�nedby the following rules:Z1 zero1�! Z1 Z1 inc1�! C1:Z1 C1 inc1�! C1:C1 C1 dec1�! �Z2 zero2�! Z2 Z2 inc2�! C2:Z2 C2 inc2�! C2:C2 C2 dec2�! �The initial state is (Cm11 :Z1) k (Cm22 :Z2).10



The process F (M) corresponds to the �nite control of M. For every instructionof the form n : ci := ci + 1; goto n0we have an arc n inci�! n0. For every instruction of the formn : if ci = 0 then goto n0 else ci := ci � 1; goto n00 fiwe have arcs n zeroi�! n0 and n deci�! n00. Then we add a new state all and arcsall a! all for every a 2 Act . Finally, we complete the process F (M) in thefollowing way: For every node n, except for the one which corresponds to the �nalstate halt ofM, and every a 2 Act , if there is no arc n a! n0 for any n0, then addan arc n a! all . The initial state of F (M) corresponds to the initial state of M.The state of P (M) corresponds to the contents of the counters of M and thestate of F (M) corresponds to the state of the �nite control ofM. A round in thesimulation game corresponds to a computation step of M.The only problem is that P (M) may do steps that do not correspond to steps ofthe counter machine, e.g. P (M) does a step dec1 when the current state in F (M)expects inc1. In all these cases the construction of F (M) ensures that F (M)can (and must) respond by a step that ends in the state all . After such a stepF (M) can simulate anything. It is easy to see that P (M) 6vs F (M) i� P (M)can force F (M) to enter the state halt via a sequence of moves which correspondto the correct simulation of M. Thus P (M) vs F (M) i� the machine M doesnot halt.Remark 1. Theorem 8 still holds under the additional condition that both thePA process and the �nite-state one are normed. We can make the PA processnormed by adding the following rules:Z1 x1�! � C1 x1�! �Z2 x2�! � C2 x2�! �Observe that the resulting process is still deterministic. To make sure that F (M)can simulate the actions x1; x2, we add the rules n x1! all and n x2! all for everystate n of F (M) (this also includes the rules all x1! all and all x2! all). Theprocess F (M) is made normed by introducing a new state terminated where noaction is enabled, and a rule all x! terminated . It is easy to see that these newsystems P 0(M) and F 0(M) are deterministic and normed, and still satisfy theproperty that P 0(M) vs F 0(M) i� the machine M does not halt.The halting problem is undecidable even for two-counter machines with countersinitialized to zero. The construction of P (M) is then independent of M. Fur-thermore, there exists a universal Minsky machine M0; the halting problem for11



M0 (with given input values) is undecidable, and the construction of F (M0) isindependent of those input values. Hence we can conclude:Theorem 7. There is a normed deterministic PA process P and a normed deter-ministic �nite-state process F such that� the problem whether P vs F for a given (normed and deterministic) �nite-state process F is undecidable,� the problem whether P vs F for a given (normed and deterministic) PAprocess P is undecidable.Theorem 8. Let P be a deterministic PA process and F a deterministic �nite-state process. It is undecidable whether F vs P .Proof: Let M be an arbitrary two-counter machine with counters initializedto m1; m2. We construct a deterministic PA process P (M) and a deterministic�nite-state system F (M) s.t. F (M) vs P (M) i� the machine M does not halt.Let Act := fzero1; inc1; dec1; zero2; inc2; dec2; �g. For the construction of P (M)we start with the same PA process as in Theorem 6 and extend it by the followingrules, which handle all the behaviors that are `illegal' in a given state of P (M)w.r.t. the counter values it represents.Z1 dec1�! A1 C1 zero1�! A1Z2 dec2�! A2 C2 zero2�! A2A1 a�! A1 for every a 2 fzero1; inc1; dec1; �gA2 a�! A2 for every a 2 fzero2; inc2; dec2; �gThe intuition is that an illegal step that concerns the counter i (with i 2 f1; 2g)always introduces the symbol Ai, and from then on everything can be simulated.The initial state is (Cm11 :Z1) k (Cm22 :Z2). Note that P (M) is deterministic; a termthat contains both A1 and A2 can do the action � in two di�erent ways, but theresult is always the same.The system F (M) corresponds to the �nite control of M. For every instructionof the form n : ci := ci + 1; goto n0we have an arc n inci�! n0. For every instruction of the formn : if ci = 0 then goto n0 else ci := ci � 1; goto n00 fiwe have arcs n zeroi�! n0 and n deci�! n00. For the unique �nal state halt of the�nite control of M we add the rule halt �! halt . Note that a reachable state of12



P (M) cannot do � , unless it contains A1 or A2. Every step in the simulationgame corresponds to a computation step of M. It follows that F (M) 6vs P (M)i� F (M) can reach the state halt via a sequence of legal steps that correspondto steps of the counter machine (and do not introduce the symbol A1 or A2 inP (M)). Thus F (M) vs P (M) i� the machine M does not halt.Remark 2. Theorem 8 still holds under the additional condition that both thePA process and the �nite-state one are normed. The system F (M) is madenormed as follows: We introduce a new state terminated where no action is en-abled, and rules n x! terminated for every other state n of F (M). To assure thatP (M) can always simulate the action x, we add the rulesZ1 x�! �; C1 x�! �; A1 x�! �To make P (M) normed, it now su�ces to add the following:Z2 y�! �; C2 y�! �; A2 y�! �It is easy to see that these new processes P 0(M) and F 0(M) are deterministic andnormed, and still satisfy the property that F 0(M) vs P 0(M) i� the machine Mdoes not halt.The proof of the following theorem is the same as of Theorem 7:Theorem 9. There is a normed deterministic PA process P and a normed deter-ministic �nite-state process F such that� the problem whether F vs P for a given (normed and deterministic) �nite-state process F is undecidable,� the problem whether F vs P for a given (normed and deterministic) PAprocess P is undecidable.We have seen that simulation preorder is undecidable between deterministic PAprocesses and deterministic �nite-state ones in both directions. However, simu-lation equivalence (as well as any other equivalence of the linear time/branchingtime spectrum of [24]) is decidable for such a pair of processes, because it coincideswith bisimilarity which is known to be decidable [14]. It is thus interesting thatsimulation equivalence becomes undecidable as soon as we consider PA processeswith just one nondeterministic state; this is proved in the following theorem:Theorem 10. There is a �xed normed deterministic �nite-state process F s.t. theproblem whether P =s F for a given normed PA process P is undecidable.13



Proof: We reduce the second undecidable problem of Theorem 7 to the problemif P =s F . Let P 0 be a normed deterministic PA process, F be the �xed deter-ministic normed �nite-state system derived from the �nite control of the universalcounter machine as in Theorem 7. We construct a normed PA process P and a�xed deterministic normed �nite-state process F such that P 0 vs F i� P =s F . Itsu�ces to de�ne F by F a! F , and P by P a! P 0, P a! F . It follows immediatelythat P =s F i� P 0 vs F 0. Note that P is not deterministic; however, it containsonly one state (the initial state) where an action can be done in two di�erentways.On the other hand, simulation equivalence remains decidable between determin-istic PA and arbitrary (possibly nondeterministic) �nite-state systems. This is aconsequence of a more general result|see the next section.Remark 3. All undecidability results which have been proved in this section im-mediately extend to trace preorder and trace equivalence, because trace preorder andtrace equivalence coincide with simulation preorder and simulation equivalence inthe class of deterministic processes, respectively.Now we prove that regularity w.r.t. simulation and trace equivalence is unde-cidable for normed PA processes with at least one nondeterministic state. It isinteresting that regularity of normed deterministic PA processes w.r.t. any equiv-alence of the linear time/branching time spectrum of [24] is easily decidable inpolynomial time, as it coincides with regularity w.r.t. bisimilarity which is knownto have this property [18].Theorem 11. Regularity w.r.t. simulation and trace equivalence is undecidablefor normed PA processes.Proof: Let M be an arbitrary Minsky machine. We construct a normed PAprocess P 0 s.t. P 0 is regular w.r.t. simulation (and trace) equivalence i� M doesnot halt.Let P (M) and F (M) be the processes constructed in the proof of Theorem 6,modi�ed in the same way as in Remark 1. P 0 is given by P 0 a! P (M), P 0 a! F (M)(note that P 0 is normed). If M does not halt (i.e., if P (M) vs F (M)), then P 0is regular w.r.t. simulation and trace equivalence, since P 0 =s F 0 where F 0 is the�nite-state process de�ned by F 0 a! F (M). To complete the proof, we need toshow that if M halts, then P 0 is not trace equivalent to any �nite-state process.Let w be the sequence of actions which corresponds to the correct simulation ofM by the process P (M). The process F (M) can perform the sequence w, butit has to enter the state halt from which there are no transitions (cf. the proof ofTheorem 6). In other words, F (M) does not have any trace of the form w v where14



v 6= �. On the other hand, P (M) can perform any trace of the form w incn1 decn1where n 2 N. Suppose there is a �nite state system G with k states such thatP 0 =t G. Then G must have a trace aw inck1 deck1, and hence it can also performthe sequence aw inck1 decm1 for any m 2 N (here we use a well-known argumentfrom the theory of �nite automata). However, P 0 does not have this property|each trace of P 0 which is of the form aw v where v 6= � must satisfy the conditionthat w v is a trace of P (M). If we choose m = length(w) + k + 1, then obviouslyP (M) cannot do the sequence w inck1 decm1 . Hence aw inck1 decm1 is a trace of Gbut not a trace of P 0, and we have a contradiction.5 The Relationship between Simulation and Bi-simulation EquivalenceIn this section we concentrate on the relationship between simulation and bisimu-lation equivalence. It is a general trend that decidability results for bisimulationequivalence are positive, while the `same' problems for simulation equivalenceare undecidable. Major examples of that phenomenon come from the area ofequivalence-checking (bisimilarity is decidable in various classes of in�nite-stateprocesses, while simulation equivalence is not), and from the area of regularity-testing (�niteness up to bisimilarity is often decidable, while �niteness up to sim-ulation equivalence is not). BPP and BPA are examples for this [6, 4, 13]. Wehave even provided some new examples in the previous section.The next theorem suggests a possible way how to use existing algorithms for`bisimulation problems' to solve the corresponding `simulation problems'.Theorem 12. For every �nitely branching transition systems T1; T2 there are�nitely branching transition systems B(T1);B(T2) such that T1 =s B(T1), T2 =sB(T2), and B(T1);B(T2) are simulation equivalent i� they are bisimilar, i.e. B(T1) =sB(T2), B(T1) � B(T2).Proof: For any �nitely branching transition system T = (S;Act ;!; r) we de�nethe system B(T ) = (S;Act ;!0; r), where !0 is de�ned as follows:s a!0 t i� s a! t and 8u 2 S : (s a! u ^ t vs u) =) u vs tIn other words, we eliminate from T those transitions s a! t for which there is atransition s a! u with t vs u but u 6vs t, i.e. we preserve only `maximal' transitionsw.r.t. simulation preorder. Note that if there are some a-transitions from a states, then at least one of those a-transitions must be maximal; here we need theassumption that T is �nitely branching.15



We prove that T =s B(T ). The fact B(T ) vs T is obvious; for the other direction,let us consider the greatest simulation R on T (i.e. R = f(s; u) 2 S�S j s vs ug).We prove that T is simulated by B(T ) in R. Clearly (r; r) 2 R; it remains to showthat whenever (s; u) 2 R and s a! s0, then there is a transition u a! 0 u0 of B(T )with (s0; u0) 2 R. As s vs u, there is at least one a-successor of u which simulatess0. Let u0 be the maximal one of those a-successors w.r.t. simulation preorder (seeabove); then u a!0 u0 and (s0; u0) 2 R as required.Now let T1 = (S1;Act ;!; r1), T2 = (S2;Act ;!; r2) be �nitely branching transi-tion systems. We prove that B(T1);B(T2) are simulation equivalent i� they arebisimilar. As bisimilarity is �ner than simulation equivalence, the `if' part is ob-vious. For the `only if' part, we show that the following relation is a bisimulation:R = f(s; u) j s 2 S1; u 2 S2; s =s ugIt clearly su�ces, because (r1; r2) 2 R. Let (s; u) 2 R. By de�nition of bisimula-tion, we must show that for each s a! s0 there is u a! u0 with (s0; u0) 2 R and viceversa (we only show the �rst part; the proof of the second one is symmetric). Lets a! s0. As s =s u, we also have s vs u and hence u must be able to `match' themove s a! s0 by performing some u a! u0 with s0 vs u0. Now it su�ces to showthat u0 vs s0. As s =s u, we also have u vs s and hence the move u a! u0 mustbe matched by some s a! s00 with u0 vs s00. To sum up, we have s0 vs u0 vs s00and hence s0 vs s00 | but it also means that s00 vs s0 (by de�nition of B(T1)). Weobtain s0 vs u0 vs s00 vs s0, hence u0 vs s0 as required.The construction of transition system B(T ) from the previous proof is not e�ectivein general. However, it provides us with a very general `strategy' or a `proof-method' which can be used to solve certain instances of an undecidable `simulationproblem' provided that the corresponding `bisimulation problem' is decidable|ifwe are to decide simulation equivalence between T1; T2, we can try to constructB(T1);B(T2) and decide bisimilarity between them. Similarly, if we are interestedwhether T is regular w.r.t. simulation equivalence, we can construct B(T ) andcheck its regularity w.r.t. bisimilarity.As simulation preorder between �nite-state processes is decidable, the systemB(T ) can be e�ectively constructed for any �nite-state system T . Moreover, if Tis deterministic then B(T ) = T . Thus, as a consequence of Theorem 12 we obtain:Theorem 13. Simulation equivalence is decidable between deterministic PA pro-cesses and (arbitrary) �nite-state ones.Theorem 12 can also be applied in a nontrivial way. In Appendix A we providea little `case-study'. We design a rich subclass of BPP processes where B(T ) ise�ectively constructible; consequently, simulation equivalence as well as regularityw.r.t. simulation equivalence are decidable in this subclass.16



6 Summary and ConclusionsThe following table summarizes the known decidability results in the area of equiv-alence/preorder checking between in�nite-state processes and �nite-state ones.The results which have been obtained in this paper are in boldface. In thecase of trace preorder/equivalence/regularity we distinguish between deterministicin�nite-state processes (left column) and general ones (right column); �nite-statesystems can be considered as deterministic here, because the subset construction[11] preserves trace equivalence.BPA BPP PA PDA PN� FS yes [8] yes [6] yes [14] yes [22] yes [15]reg. � yes [4] yes [13] ? ? yes [13]vs FS YES yes [15] NO YES yes [15]FS vs YES yes [15] NO YES yes [15]=s FS YES yes [15] NO YES yes [15]reg. =s ? ? NO ? no [15]vt FS yes yes yes [15] yes [15] NO NO yes yes yes [15] yes [15]FS vt yes no yes [15] yes [15] NO no yes no yes [15] yes [15]=t FS yes no yes [15] yes [15] yes [14] no yes no yes [15] yes [15]reg. =t yes no yes [13] ? ? no yes no yes [13] no [15]The results for trace preorder/equivalence might be also interesting from the pointof view of automata theory (trace preorder and equivalence are closely related tolanguage inclusion and equivalence, respectively). All `trace' results for BPA andPDA are immediate consequences of the `classical' ones for language equivalence(see [11]). It is interesting to compare those decidability issues with the onesfor PA, especially in the deterministic subcase. Trace preorder with �nite-statesystems tends to be decidable for deterministic processes; PA is the only excep-tion. At the same time, trace equivalence with �nite-state systems is decidablefor deterministic PA. The PA processes we used in our undecidability proofs areparallel compositions of two deterministic and normed BPA processes (which canbe seen as deterministic CF grammars). The parallel composition corresponds tothe shu�e operator on languages [11]. Thus, our results bring some new insightinto the power of shu�e on (deterministic) CF languages.Interesting open questions are left in the area of regularity-testing. We can con-clude that all the `?' problems are at least semidecidable, as it is possible toenumerate all �nite-state systems and decide equivalence with them.
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A The BPPk ClassesThe aim of this appendix is to `prove' our previous claims about generality andusefulness of Theorem 12. We demonstrate that it can also have nontrivial appli-cations, and nontrivial decidability results can be obtained in this way.We have chosen the class of BPP processes as the subject of our `case-study'. Itis known that e.g. the simulation equivalence problem is not even semidecidablefor BPP processes|see [12], while the bisimulation equivalence problem as wellas the regularity problem w.r.t. bisimilarity are decidable [7, 13].For each k 2 N we design the subclass BPPk of BPP processes which has thefollowing properties:� the process B(�) is e�ectively constructible for any process � of BPPk;moreover, B(�) is always a BPP process.� it is decidable whether a given BPP process � belongs to BPPk.� the class BPPk+1 is strictly greater than BPPk for every k 2 N.Consequently, the simulation equivalence problem as well as the regularity prob-lem w.r.t. simulation equivalence are decidable for processes of S1k=1 BPPk.First we need to introduce some BPP-speci�c notation. States of a BPP process �are parallel expressions which can be viewed as multisets over Const(�), becausethe `k' operator is commutative. Hence we can use the standard multiset relationson parallel expressions, writing e.g. X 2 XkY , or XkX � XkXkY . The set ofall parallel expressions over Const(�) is denoted by Const(�)
. We let Greekletters �; �; : : : to range over Const(�)
.For each k 2 N we de�ne the function Cutk on Const(�)
 as follows (we assumethat X1; : : : ; Xn are pairwise di�erent):Cutk(Xk11 k � � � kXknn ) = Xminfk1;kg1 k � � � kXminfkn;kgnIntuitively, Cutk(�) `cuts' from � exactly that information which is needed todetermine the behavior of � within the �rst k steps.Furthermore, for each � 2 Const(�)
 we de�ne the setContextk(�) = fCutk() j �k is a reachable state of �gNote that Contextk(�) is �nite and e�ectively constructible for each � 2 Const(�)
;here we use the fact that BPP processes form a (proper) subclass of Petri nets [9]and hence we can immediately apply some well-known results from this area. In20



this case, we can employ e.g. the `standard' technique by Karp and Miller [16] toconstruct the set Contextk(�).Finally, we say thatX; Y 2 Const(�), X 6= Y are concurrent i� � has a reachablestate of the form XkY k�.De�nition 5. Let � be a BPP process, X 2 Const(�). We say that X is uselessi� whenever Xk is a reachable state of �, then for each basic transition X a! �there is Y 2 , X 6= Y and a basic transition Y a! � such that �kY � Xk�.Note that useless constants can be easily recognized; for a given X 2 Const(�)
we just construct the set Context1(X) a check whether each of its elements hasthe property indicated in the previous de�nition.Theorem 14. Let � be a BPP process, X 2 Const(�) a useless constant. Let�0 be a BPP process obtained from � by deleting all basic transitions of the formX a! � and transforming all basic transitions of the form Y a! �kXj, whereX 6= Y and X 62 �, to Y a! �. Then � =s �0.Proof: Clearly �0 vs �. To prove � vs �0, it su�ces to show that the relationR = f(X ik�; �) j i 2 N0; X ik� is a reachable state of �; � � �gis a simulation. However, it follows directly from the de�nition of useless variable.The previous theorem says that useless constants can be safely and e�ectivelyremoved. Thus, each process � can be transformed to a simulation equivalentprocess �0 which does not contain any useless constants. We can observe thatthis transformation is generally ambiguous|if the process � contains two uselessconstants X; Y , we can remove any of them in the �rst step. It is possible thate.g. Y is not useless anymore after we remove X, hence the order is signi�cantand di�erent �nal results can be obtained; however, the set of all possible resultsis �nite and e�ectively constructible.Example 1. Let � be the following BPP process:� = f A a! BkCkD, B a! B, C a! C, D b! DkEkE, E c! �C b! C, D b! DkE, gThe variables B and C are useless. If we remove B, we obtain�1 = f A a! CkD, C a! C, D b! DkEkE, E c! �C b! C, D b! DkE, g21



and the variable C is not useless anymore. Similarly, if we remove C we get�2 = f A a! BkD, B a! B, D b! DkEkE, E c! �D b! DkE, gand B is no more useless. As we shall see, there is a substantial di�erence between�1 and �2.De�nition 6. Let k 2 N. The BPPk class is composed of all BPP processes �from which useless constants can be eliminated in such a way that the resultingprocess �0 satis�es the following conditions:� whenever X a! �, X a! �, � 6= �, are basic transitions of �, then one ofthe following conditions hold:{ � � �{ � � �{ �k 6vks �k and �k 6vks �k for all  2 Contextk(X)� whenever X a! �, Y a! �, X 6= Y are basic transitions of � and X; Y areconcurrent, we have that �kY k 6vks Xk�k and Xk�k 6vks �kY k for all 2 Contextk(XkY )Theorem 15. Let � be a BPP process, k 2 N. It is decidable whether � 2 BPPkand if the answer is positive, the process B(�) can be e�ectively de�ned in BPPsyntax.Proof: We have already mentioned that useless variables can be e�ectively elim-inated in �nitely many ways. The two conditions of De�nition 6 can be checkede�ectively, because the set Contextk(�) is e�ectively constructible for each k 2 N,� 2 Const(�)
, and vks is decidable for each k 2 N.If we can eliminate useless variables from � in such a way that the resultingprocess �0 satis�es the conditions speci�ed in De�nition 6, the process B(�) canbe obtained from �0 just by omitting all transitions X a! � for which there is atransition X a! � with � � �.For example, the process � of Example 1 is in BPP1 and B(�) is easy to construct;�rst we remove the useless variable C, obtaining the process �2 which clearlysatis�es the requirements of De�nition 6 for k = 1. Now it su�ces to remove thebasic transition D a! DkE and the resulting process is exactly B(�). However,note that if we remove the useless variable B from �, the resulting process �1does not satisfy the second condition of De�nition 6 for any k 2 N; �1 has22



basic transitions C b! C, D b! DkE and as C;D are concurrent, we should haveCkDk 6vks CkDkEk for each  2 Contextk(CkD). However, clearly CkDk vsCkDkEk and hence this requirement cannot be satis�ed for any k 2 N.It is easy to see that the class BPPk+1 is always strictly greater than BPPk.However, there are also BPP processes which do not belong to S1k=1BPPk.It is of course possible to use more advanced methods and design richer subclassesof BPP where the process B(�) is e�ectively constructible. One could also con-centrate on more powerful models, e.g. on PA processes or Petri nets, but this isnot the aim of our paper. We just want to show that Theorem 12 really providesa solid base for attacking undecidable `simulation problems'.
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